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Preface to the Third Edition

In this edition, we have added two new chapters, Chapter 7 on the gauge
group of a principal bundle and Chapter 19 on the definition of Chern classes
by differential forms. These subjects have taken on special importance when
we consider new applications of the fibre bundle theory especially to mathe-
matical physics. For these two chapters, the author profited from discussions
with Professor M. S. Narasimhan.

The idea of using the term bundle for what is just a map, but is eventually
a fibre bundle projection, is due to Grothendieck.

The bibliography has been enlarged and updated. For example, in the
Seifert reference [1932] we find one of the first explicit references to the
concept of fibrings.

The first edition of the Fibre Bundles was translated into Russian under
the title “Paccioennsie ITpoctpancrsa” in 1970 by B. A. Mckosckux with
general editor M. M. IToctaukoBa. The remarks and additions of the editor
have been very useful in this edition of the book. The author is very grateful
to A. Voronov, who helped with translations of the additions from the Rus-
sian text.

Part of this revision was made while the authcr was a guest of the Max
Planck Institut from 1988 to 89, the ETH during the summers of 1990 and
1991, the University of Heidelberg during the summer of 1992, and the Tata
Institute for Fundamental Research during January 1990, 1991, and 1992. It
is a pleasure to acknowledge all these institutions as well as the Haverford
College Faculty Research Fund.

1993 Dale Husemoller






Preface to the Second Edition

In this edition we have added a section to Chapter 15 on the Adams conjec-
ture and a second appendix on the suspension theorems. For the second
appendix the author profitted from discussion with Professors Moore,
Stasheff, and Toda.

I wish to express my gratitude to the following people who supplied me
with lists of corrections to the first edition: P. T. Chusch, Rudolf Fritsch,
David C. Johnson, George Lusztig, Claude Schocket, and Robert Sturg.

Part of the revision was made while the author was a guest of the LH.E.S
in January, May, and June 1974.

1974 Dale Husemoller






Preface to the First Edition

The notion of a fibre bundle first arose out of questions posed in the 1930s
on the topology and geometry of manifolds. By the year 1950, the definition
of fibre bundle had been clearly formulated, the homotopy classification
of fibre bundles achieved, and the theory of characteristic classes of fibre
bundles developed by several mathematicians: Chern, Pontrjagin, Stiefel, and
Whitney. Steenrod’s book, which appeared in 1950, gave a coherent treat-
ment of the subject up to that time.

About 1955, Milnor gave a construction of a universal fibre bundle for any
topological group. This construction is also included in Part I along with an
elementary proof that the bundle is universal.

During the five years from 1950 to 1955, Hirzebruch clarified the notion of
characteristic class and used it to prove a general Riemann-Roch theorem for
algebraic varieties. This was published in his Ergebnisse Monograph. A sys-
tematic development of characteristic classes and their applications to mani-
folds is given in Part III and is based on the approach of Hirzebruch as
modified by Grothendieck.

In the early 1960s, following lines of thought in the work of A.
Grothendieck, Atiyah and Hirzebruch developed K-theory, which is a gener-
alized cohomology theory defined by using stability classes of vector bun-
dles. The Bott periodicity theorem was interpreted as a theorem in K-theory,
and J. F. Adams was able to solve the vector field problem for spheres, using
K-theory. In Part II, an introduction to K-theory is presented, the nonexis-
tence of elements of Hopf invariant 1 proved (after a proof of Atiyah), and the
proof of the vector field problem sketched.

I wish to express gratitude to S. Eilenberg, who gave me so much encour-
agement during recent years, and to J. C. Moore, who read parts of the



xit Preface to the First Edition

manuscript and made many useful comments. Conversations with J. F. Adams,
R. Bott, A. Dold, and F. Hirzebruch helped to sharpen many parts of the
manuscript. During the writing of this book, I was particularly influenced by
the Princeton notes of J. Milnor and the lectures of F. Hirzebruch at the 1963
Summer Institute of the American Mathematical Society.

1966 Dale Husemoller
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CHAPTER 1

Preliminaries on Homotopy Theory

In this introductory chapter, we consider those aspects of homotopy theory
that will be used in later sections of the book. This is done in outline form.
References to the literature are included.

Two books on homotopy theory, those by Hu [1]f and Hilton [1], con-
tain much of the background material for this book. In particular, chapters 1
to 5 of Hu [1] form a good introduction to the homotopy needed in fibre
bundle theory.

1. Category Theory and Homotopy Theory

A homotopy f;: X — Y is a continuous one-parameter family of maps, and
two maps f and g are homotopically equivalent provided there is a
homotopy f; with f = f, and g = f,. Since this is an equivalence relation, one
can speak of a homotopy class of maps between two spaces.

As with the language of set theory, we use the language of category theory
throughout this book. For a good introduction to category theory, see
MacLane [2].

We shall speak of the category sp of (topological) spaces, (continuous)
maps, and composition of maps. The category H of spaces, homotopy classes
of maps, and composition of homotopy classes is a quotient category. Simi-
larly, we speak of maps and of homotopy classes of maps that preserve base
points. The associated categories of pointed spaces (i.e., spaces with base
points) are denoted sp, and H,, respectively.

The following concept arises frequently in fibre bundle theory.

+ Bracketed numbers refer to bibliographic entries at end of book.



2 1. Preliminaries on Homotopy Theory

1.1 Definition. Let X be a set, and let ® be a family of spaces M whose
underlying sets are subsets of X. The ®-topology on X is defined by requiring
a set U in X to be open if and only if UN M is open in M for each M € ®. If
X is a space and if ®@ is a family of subspaces of X, the topology on X is said
to be ®-defined provided the ®-topology on the set X is the given topology
on X.

For example, if X is a Hausdorff space and if ® is a family of compact
subspaces, X is called a k-space if the topology of X is ®-defined. If M, <
M, < --- = X is a sequence of spaces in a set X, the inductive topology on X
is the @-topology, where ® = {M |, M,, ...}.

The following are examples of unions of spaces which are given the induc-
tive topology.

R!cR’c---cR'c:-cR® = U R"

12n
CICCZC"'CC"C"'CCOO=1U cr
S!lcS?2c-cS'c--c8S° = . Sr
1=n
RP!c RP*c---c RP"c:-c RP* = 1Q RP"
CPlcCP’c- cCP'c - cCP®= 1@ cpr

Above, RP" denotes the real projective space of lines in R"*!, and CP" de-
notes the complex projective space of complex lines in C"*!. We can view
RP" as the quotient of S" with x and — x identified, and we can view CP" as
the quotient of $2"*! = C"*!, where the circle ze for 0 < 0 < 2n is identified
to a point.

It is easily proved that each locally compact space is a k-space. The spaces
§%, RP*, and CP” are k-spaces that are not locally compact.

2. Complexes

The question of whether or not a map defined on a subspace prolongs to a
larger subspace frequently arises in fibre bundle theory. If the spaces involved
are CW-complexes and the subspaces are subcomplexes, a satisfactory solu-
tion of the problem is possible.

A good introduction to this theory is the original paper of J. H. C.
Whitehead [1, secs. 4 and 5]. Occasionally, we use relative cell complexes
(X, A), where A is a closed subset of X and X — A is a disjoint union of open
cells with attaching maps. The reader can easily generalize the results of
Whitehead [1] to relative cell complexes. In particular, one can speak of
relative CW-complexes. If X" is the n-skeleton of a CW-complex, then (X, X™")
is a relative CW-complex.
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The prolongation theorems for maps defined on CW-complexes follow
from the next proposition.

2.1 Proposition. Let (X, A) be a relative CW-complex having one cell C with
an attaching map uc: 1" - X = AUC, and let f: A—>Y be a map. Then f
extends to amap g: X — Y if and only if fuc: 01" — Y is null homotopic.

A space Y is said to be connected in dimension n provided every map
§"~! - Y is null homotopic or, in other words, prolongs to a map B" — Y.
From (2.1) we easily get the following result.

2.2 Theorem. Let (X, A) be a relative CW-complex, and let Y be a space that
is connected in each dimension for which X has cells. Then each map A -Y
prolongs to a map X — Y.

As a corollary of (2.2), a space is contractible, i.e., homotopically equiva-
lent to a point, if and only if it is connected in each dimension.

The above methods yield the result that the homotopy extension property
holds for CW-complexes; see Hilton [1, p. 97].

The following theorems are useful in considering vector bundles over CW-
complexes. Since they do not seem to be in the literature, we give details of
the proofs.

If Cis a cell in a CW-complex X and if uc: B" — X is the attaching map,
then u(0) is called the center of C.

2.3 Theorem. Let (X, A) be a finite-dimensional CW-complex. Then there
exists an open subset V of X with A = V < X such that A is a strong defor-
mation retract of V with a homotopy h,. This can be done so that V contains
the center of no cell C of X, and if U, is an open subset of A, there is an open
subset Uy of X with UyNA = U, and h(Uy) = Uy fort e L.

Proof. We prove this theorem by induction on the dimension of X. For
dim X = — 1, the result is clear. For X" = X, let V' be an open subset of X" !
with 4 = V' < X" and a contracting homotopy h;: V' — V'. Let U’ be the
open subset of V' with U'N 4 = U, and h(U’) < U’ for t € I. This is given by
the inductive hypothesis.

For each n-cell C, let uc: B" — X be the attaching map of C, and let V¢
denote the open subset uc! (V') of dB" and U denote uc'(U’). Let M denote
the closed subset of all ty for t € [0,1] and y € 0B" — V{. There is an open
subset V of X with VN X,_, = V' and uz'(V) = B" — M, that is, y € uc' (V)
if and only if y # 0 and y/| y|| € V{, and there is an open subset Uy of V with
UyNX"!=U"and y € uc!(Uy) if and only if y # 0 and y/||y|| € U¢.

We define a contracting homotopy h,;: V — V by the following require-
ments: h,(uc(y)) = ucQty/||yll + (1 — 2t)y) for y € B, t € [0,1], h,(x) = x for
xe V', te[0,5], h(x) = hj_;(hy(x)) for t € [3,1], where h; is defined in the
first paragraph. Then A is a strong deformation retract of ¥, and h(Uy) < Uy



4 1. Preliminaries on Homotopy Theory

by the character of the radial construction. Finally, we have uc(0) ¢ V for
each cell C of X. This proves the theorem.

2.4 Remark. With the notation of Theorem (2.3), if U, is contractible, Uy is
contractible.

2.5 Theorem. Let X be a finite CW-complex with m cells. Then X can be
covered by m contractible open sets.

Proof. We use induction on m. For m = 1, X is a point, and the statement is
clearly true. Let C be a cell of maximal dimension. Then X equals a
subcomplex 4 of m — 1 cells with C attached by a map u.. There are V7, ...,
V,._, contractible open sets in 4 which prolong by (2.3) and (2.4) to con-
tractible open sets Vi, ..., V,_; of X which cover A. If V,, denotes C =
uc(int B"), then Vi, ..., V,, forms an open contractible covering of X.

2.6 Theorem. Let X be a CW-complex of dimension n. Then X can be
covered by n + 1 open sets V,, ..., V, such that each path component of V; is
contractible.

Proof. For n =0 the statement of the theorem clearly holds, and we use
induction on n. Let V§, ..., V, be an open covering of the (n — 1)-skeleton of
X, where each component of V) is a contractible set. Let V' be an open
neighborhood of X"™! in X with a contracting homotopy leaving X" !
elementwise fixed h,: ¥V - V onto X" 1. Using (2.3), we associate with each
component of ¥/ an open contractible set in V. The union of these disjoint
sets is defined to be V. Let V, be the union of the open n cells of X. The path
components of V, are the open n cells. Then the open covering V,, ..., V, has

the desired properties.

3. The Spaces Map (X, Y) and Map,, (X, Y)

For two spaces X and Y, the set Map (X, Y) of all maps X — Y has several
natural topologies. For our purposes the compact-open topology is the most
useful. If (K, V') denotes the subset of all f € Map (X, Y) with f(K) < V for
K c X and V c Y, the compact-open topology is generated by all sets
{K,V) such that K is a compact subset of X and V is an open subset
of Y.

The subset Map, (X, Y) of base point preserving maps is given the
subspace topology.

The spaces Map (X, Y) are useful for homotopy theory because of the
natural map

0: Map (Z x X,Y)— Map (Z,Map (X, Y))
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which assigns to f(z, x) the map Z — Map (X, Y), where the image of z € Z is
the map x — f(z, x). This map

Map (Z x X,Y)—> Map (Z,Map (X, Y))

is a homeomorphism onto its image set for Hausdorff spaces. Moreover, we
have the following proposition by an easy proof.

3.1 Proposition. For two spaces X and Y, the function
0: Map (Z x X,Y)— Map (Z,Map (X, Y))

is bijective if and only if the substitution function o: Map (X,Y) x X - Y,
where o(f,x) = f(x), is continuous.

The substitution function o: Map (X,Y) x X - Y is continuous for X
locally compact. By applying (3.1) to the case Z = I, the closed unit interval,
we see that a homotopy from X to Y, thatis,a map X x I — Y, can be viewed
as a path in Map (X, Y).

A map similar to 6 can be defined for base point preserving maps defined
ori compact spaces X and Z, using the reduced product Z A X = (Z x X)/
(Z v X).Here Z v X denotes the disjoint union of Z and X with base points
identified. The space Z v X is also called the wedge product. The map
corresponding to 6 is defined:

Map, (Z A X,Y)— Map, (Z,Map, (X, Y))

It is a homeomorphism for Z and X compact spaces or for Z and X two
CW-complexes.

Let O be the base point of I = [0, 1], and view S* as [0,1]/{0,1}. The
following functors sp, — sp, are very useful in homotopy theory.

3.2 Definition. The cone over X, denoted C(X), is X A I; the suspension of
X, denoted S(X), is X A S'; the path space of X, denoted P(X), is Map,
(I, X); and the loop space of X, denoted Q(X), is Map, (S?, X).

A point of C(X) or S(X) is a class {x, t) determined by a pair (x,t) € X x I,
where {(x,,t) = (x,0> = base point of C(X) or S(X) and, in addition,
{x,1) = base point of S(X). If f: X - Y is a map, C(f)({x,t)) = {f(x),t>
defines a map C(f): C(X) - C(Y), and S(f)({x,t>) = {f(x),t> defines a map
S(f): S(X) — S(Y); with these definitions, C: sp, — sp, and S: sp, — sp, are
functors. Also, we consider the map w: X — C(X), where w(x) = {(x, 1). Then
S(X) equals C(X)/w(X). Since S! is [0, 1] with its two end points pinched to
a point, one can easily check that the equal sets S(X) and C(X)/w(X) have the
same topologies.

Path space P(X) can be viewed as the subspace of paths u: I - X such
that u(0) = x,, and Q(X) as the subspace of paths u:I— X such that
u(0) = u(1) = x,. If f: X - Y is a map, then P(f)u = fu defines a map P(f):
P(X)— P(Y), and Q(f)u = fu defines a map Q(f): Q(X) —» Q(Y). With these
definitions, P: sp, — sp, and Q: sp, — sp, are functors. Also, we consider the
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map 7: P(X)— X, where 7n(u) = u(1). Then Q(X) equals n '(x,) as a
subspace.

3.3 Proposition. The functions w: 15, — C and n: P — 14, are morphisms of
functors.

Proof. If f: X - Y is a map, then w(f(x)) = {f(x), 1) = C(f)w(x) for each
x € X, and fr(u) = fu(l) = n(P(f)u) for each u € P(X).

3.4 Proposition. The following statements are equivalent for a base point
preserving map f: X - Y.

(1) The map f is homotopic to the constant.
(2) There exists a map g: C(X) —» Y with go = f.
(3) There exists a map h: X — P(Y) with nh = f.

Proof. Condition (1) says that there is a map f*: X x I - Y with f*(x,0) =
Yo, f*¥(x, 1) = f(x),and f*(x,,t) = yo. The existence of f* is equivalent to the
existence of g: C(X) — Y, where g{x, 1) = f(x). The existence of f * is equiva-
lent to the existence of h: X — P(Y), where h(x)(1) = f(x).

3.5 Proposition. The spaces C(X) and P(X) are contractible.

Proof. Let h: C(X)— C(X) be the homotopy defined by hy({x,t)) = {x, st).
Then h, is the identity, and h, is constant. Similarly, let k: P(X) — P(X) be
the homotopy defined by k,(u)(t) = u(st).

As an easy application of Proposition (3.1), we have the next theorem.

3.6 Theorem. There exists a natural bijection a: [S(X), Y], — [X,Q(Y)],,
where af f<{x,t)] = [(0f)(x)(1)].

4. Homotopy Groups of Spaces

Let [X, Y], denote base point preserving homotopy classes of maps X — Y.
A multiplication on a pointed space Y is a map ¢: Y x Y — Y. The map 6
defined a function ¢y: [X, Y], x [X, Y], = [X, Y], for each space X, by
composition. If ([ X, Y]y, ¢x) is a group for each X, then (Y,¢) is called a
homotopy associative H-space. The loop space QY is an example of a
homotopy associative H-space, where ¢: QY x QY — QY is given by the fol-
lowing relation:

u(2t) for0<t =<
¢(u’ U)(t) = {1)(2[ — ]) for% é t é
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A comultiplication on a pointed space X is a map y: X - X v X. The
map y defines a function y¥: [X, Y], x [X, Y], = [X, Y], for each space Y,
by composition. If ([ X, Y],,¥¥) is a group for each Y, then (X, ) is called a
homotopy associative coH-space. The suspension SX is an example of a
homotopy associative coH-space, where y: SX — SX v SX is given by the
following relation:

({x,2t),%) for0 <t

V(D) = {(*,<x,2t — 1)) fori<t

The following result is very useful and easily proved.

4.1 Proposition. Let (X, ) be a homotopy associative coH-space and (Y, $) a
homotopy associative H-space. Then the group structures on [ X, Y], derived
for X are equal, and this structure is commutative.

The sphere S" equals S(S" 1), and there is a natural homotopy associative
coH-space structure on S".

4.2 Definition. The nth homotopy group (n = 1) of a space X, denoted
n,(X), is [S", X],, with the group structure derived from the coH-space struc-
ture of S".

The X — m,(X) is a functor for pointed spaces and homotopy classes of
maps preserving base points to groups.

The following proposition is useful in computing the homotopy groups of
S§¥, RP*, and CP~.

4.3 Proposition. Let X be a union of subspaces X, such that X, = X,.,. We
assume that each compact subset K of X is a subset of some X,. If for each n
there exists an integer q(n) such that the inclusion X, — X, induces an
isomorphism m,(X,) = n,(X,) for q(n) < q < k, the inclusion X, — X induces
an isomorphism n,(X,) = n,(X) for g = q(n).

A reference for this section is Hu [ 1, chap. 4].

5. Fibre Maps

A map p: E — B has the homotopy lifting property for a space W, provided
for each map g: W — E and each homotopy f,: W — B with pg = f, there
exists a homotopy g,: W — E with g, = g and pg, = f, for all t € I.

5.1 Definition. A map is a fibre map provided it has the homotopy lifting
property for CW-complexes.

To check whether or not a map is a fibre map, one need only verify that it
has the homotopy lifting property for cells.

The next theorem is useful in finding examples of fibre maps.
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5.2 Theorem. Let p: E— B be a map, and let {U,} for i€l be an open
covering of B such that p:p '(U;) - U; is a fibre map for all iel. Then
p: E - Bis a fibre map.

The next theorem is the most useful elementary property of fibre maps.

5.3 Theorem. Let p: E — B be a fibre map, and let x, € p~*(b,) = F, the fibre
of p over bye B. Then there is a natural group morphism 0: n,(B,by) —
7, _4(F, xo) such that the following sequence of groups is exact:

— To(E, Xo) 5 (B, bo) = T 1 (F, Xg) = 7, (E, xo) =

The reader is invited to apply this theorem to the following examples of fibre
maps.

(1) The exponential p: R — S* given by p(t) = exp 2zit with fibre Z.

(2) The map p: S" —» RP" which assigns to x the real line through x. The
fibre is Z,.

(3) The Hopf map p: S?"*! — CP" which assigns to x the complex line
through x. The fibre is S*.
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CHAPTER 2

Generalities on Bundles

A bundle is just a map viewed as an object in a particular category. It is the
basic underlying structure for the more complicated notions of vector bundle
and fibre bundle. In this chapter we study the category of bundles in a man-
ner that leads us to the additional structures on a bundle described in the
next two chapters. Examples are given to illustrate the concept of a bundle
and the various enrichments of this concept.

1. Definition of Bundles and Cross Sections

1.1 Definition. A bundle is a triple (E, p, B), where p: E — B is a map. The
space B is called the base space, the space E is called the total space, and the
map p is called the projection of the bundle. For each b € B, the space p~!(b) is
called the fibre of the bundle over b € B.

Intuitively, one thinks of a bundle as a union of fibres p~!(b) for be B
parametrized by B and “glued together” by the topology of the space E. Usu-
ally a Greek letter (&, #, , 4, etc.) is used to denote a bundle; then E(¢) denotes
the total space of &, and B(&) denotes the base space of &.

1.2 Example. The product bundle over B with fibre F is (B x F,p, B), where
p is the projection on the first factor.
In the next section we consider further examples of bundles.

1.3 Definition. A bundle (E', p’, B') is a subbundle of (E, p, B) provided E' is a
subspace of E, B’ is a subspace of B, and p’ = p|E": E' - B'.

Many of the examples in the next section arise as subbundles of product
bundles. Before taking up examples of bundles, we consider the general no-
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tion of cross section. Cross sections of certain bundles can be identified with
familiar geometric objects.

1.4 Definition. A cross section of a bundle (E, p, B) is a map s: B— E such
that ps = 1. In other words, a cross section is a map s: B — E such that
s(b) € p~1(b), the fibre over b, for each b € B.

Let (E',p’, B) be a subbundle of (E, p, B), and let s be a cross section of
(E, p, B). Then s is a cross section of (E’, p’B) if and only if s(b) € E’ for each
beB.

1.5 Proposition. Every cross section s of a product bundle (B x F, p, B) has the
form s(b) = (b, f(b)), where f: B — F is a map uniquely defined by s.

Proof. Every map s: B— B x F has the form s(b) = (s'(b), f(b)), where s':
B — Band f: B — F are maps uniquely defined by s. Since ps(b) = s'(b), sis a
cross section if and only if s(b) = (b, f(b)) for each b € B.

The proposition says that the function that assigns to each cross section s
of the product bundle (B x F,p, B) the map pr,s: B— F is a bijection from
the set of all cross sections of (B x F, p, B) to the set of maps B — F.

If (E,p,B) is a subbundle of the product bundle (B x F,p, B), the cross
sections s of (E, p, B) have the form s(b) = (b, f(b)), where f: B — F is a map
such that (b, f(b)) € E for each b € B.

2. Examples of Bundles and Cross Sections

Let (x]y) denote the euclidean inner product on R”, and let

Ix[l = \/(x]x)

be the euclidean norm.

2.1 Example. The tangent bundle over S, denoted ©(S") = (T, p, S"), and the
normal bundle over §”, denoted v(S") = (N, q, S"), are two subbundles of the
product bundle (S" x R"*!, p, S") whose total spaces are defined by the rela-
tion (b, x) € T if and only if the inner product (b|x) = 0 and by (b, x) € N if and
only if x = kb for some k € R.

An element (b, x) € T is called a tangent vector to S” at b, and an element
(b, x) € N is called a normal vector to S” at b. The fibres p~!(b) = T and q~*(b)
are vector spaces of dimensions n and 1, respectively. A cross section of 7(S”)
is called a (tangent) vector field on S”, and a cross section of v(S”) is called a
normal vector field on S”.

2.2 Example. The bundle of (orthonormal) k-frames ,(S") over S” for k < n,
denoted (E, p,S"), is a subbundle of the product bundle (S" x (S"), p,S")
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Figure 1

whose total space E is the subspace of (b,vy,...,1v,) € S* x (S")* such that
(blv;) = 0 and (v;|v;) = 6, jfor 1 <i,j < k.

An element (b,v,,...,v,) € E is an orthonormal system of k tangent vectors
to S" at b € §". A cross section of 7,(S") is called a field of k-frames. For the
bundle 7,(S") the existence of a cross section is a difficult problem, and it is
considered in a later chapter. Byy projecting on the first k-factors, the exis-
tence of a cross section of 7,(S”) implies the existence of a cross section of
(S fork <1< n

2.3 Definition. The Stiefel variety of (orthonormal) k-frames in R”, denoted
Vi (R"), is the subspace of (vy,...,v,) € (§"7*)* such that (v;]v)) = J; ;.

Since V,(R") is a closed subset of a compact space, it is a compact space.
With each k-frame (v,,...,v,) there is associated the k-dimensional subspace
{vy,...,0» With basis vy, ..., v,. Each k-dimensional subspace of R" is of the
form <v,...,v).

2.4 Definition. The Grassmann variety of k-dimensional subspaces of R”,
denoted G,(R"), is the set of k-dimensional subspaces of R” with the quotient
topology defined by the function (vq,...,v,) = {vq,...,v,» of V(R") onto
G.(R".

Then G,(R") is a compact space. Note that V;(R") = §" ! and G,(R") =
RP"!. By a natural inclusion we have G,(R") = G,(R"*"), and we form
G,(R*) = () G,(R") and give it the inductive topology.

k<n

2.5 Example. The canonical k-dimensional vector bundle y; on G,(R") is the
subbundle of the product bundle (G,(R") x R”, p, G,(R")) with the total space
consisting of the subspace of pairs (¥, x) € G,(R") x R" with x € V. Similarly,
the orthogonal complement vector bundle *y; is the subbundle of (G,(R") x
R", p, G,(R")) with the total space consisting of the subspace of pairs (V, x)
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with (V|x) = 0; that is, x is orthogonal to V. The first example holds for
n = oo whereas the second does not. This example plays a central role in the
theory of vector bundles.

A special case of this example is k = 1. Then the canonical vector bun-
dle y" on RP"™' = G,(R") is called the canonical line bundle (it is one-
dimensional).

2.6 Example. The tangent bundle 7(RP") can be viewed as the quotient of
7(S"). A point of RP" is a two-clement set +b = {b, —b}, where b € S”, and a
point of E(t(RP")) is a two-element set +(b,x) = {(b, x),(—b, —x)}, where
(b, x) € 7(S"). The projection is p(+(b,x)) = *b.

3. Morphisms of Bundles

A bundle morphism is, roughly speaking, a fibre preserving map. In the next
definition we make this idea precise.

3.1 Definition. Let (E,p,B) and (E',p’, B') be two bundles. A bundle mor-
phism (u, f): (E, p, B) — (E',p’, B’) is a pair of maps u: E— E’' and f: B> B’
such that p'u = fp.

The relation p'u = fp is, in effect, the requirement that the following dia-
gram be commutative.

E —Y 5 F

pJ lp‘

B . p
The bundle morphism condition p'u = fp can also be expressed by the
relation u(p~!(b)) = (p’) *(f(b)) for each b € B; that is, the fibre over b € B is
carried into the fibre over f(b) by u. It should be observed that the map f is

uniquely determined by u when p is surjective.

3.2 Definition. Let (E, p, B) and (E',p’, B) be two bundles over B. A bundle
morphism over B (or B-morphism) u: (E,p, B) — (E',p’,B)isamap u: E - E’
such that p = p'u.

The relation p = p’u is, in effect, the requirement that the following dia-
gram be commutative.

E— Y L F

N

B
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The bundle morphism condition p'u = p can also be expressed by the rela-
tion u(p~'(b)) = (p’) 1(b) for each b € B; that is, u is fibre preserving. The
bundle morphisms u over B are just the bundle morphisms (u, 1 ).

3.3 Examples. If (E',p’,B’) is a subbundle of (E, p, B) and if f: B — B and
u: E' - E are inclusion maps, then (u, f): (E',p’,B’) = (E,p, B) is a bundle
morphism. The cross sections of (E,p, B) are precisely the B-morphisms
s: (B, 1,B) - (E, p, B). Consequently, every general property of morphisms
applies to sections.

The pair (1g, 1g): (E,p, B) - (E,p, B) is a bundle morphism that is a B-
morphism. If (u, f): (E,p,B)— (E',p’,B’) and (u',f")(E',p’,B')— (E",p",B")
are bundle morphisms, we have the following commutative diagram:

O G

B—L.p L .p
Consequently, the compositions define a bundle morphism (u'u, f'f):
(E,p,B)— (E",p", B") which is defined to be the composition (u', f')(u, /) of

(u, f)and (v, f").

3.4 Definition. The category of bundles, denoted Bun, has as its objects all
bundles (E, p, B) and as morphisms from (E, p, B) to (E', p’, B') the set of all
bundle morphisms. Composition is composition of bundle morphisms as
defined above. For each space B, the subcategory of bundles over B, denoted
Bung, has as its objects bundles with base space B and B-morphisms as its
morphisms.

From general properties in a category, a bundle morphism (u,f):
(E,p,B) > (E',p’, B') is an isomorphism if and only if there exists a morphism
W', f):(E,p',B)— (E,p,Bywith f'f = 1g, ff' = lp,v'u= 1z, and uu’ = 1.
The notion of two bundles being isomorphic has a well-defined meaning.

3.5 Definition. A space F is the fibre of a bundle (E, p, B) provided every
fibre p~*(b) for b € B is homeomorphic to F. A bundle (E, p, B) is trivial with
fibre F provided (E, p, B) is B-isomorphic to the product bundle (B x F, p, B).

4. Products and Fibre Products

4.1 Definition. The product of two bundles (E, p, B) and (E’, p, B') is the bun-
dle (E x E',p x p’,B x B').

As with spaces, the reader can easily describe the operation of the product
as a functor Bun x Bun — Bun. Moreover, the concept clearly extends to an
arbitrary family of bundles. This is the product in the category Bun in the
sense of category theory.
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4.2 Definition. The fibre product &; @ &, of two bundles
¢ =(Eyp;,B) and ¢, = (E3,p, B)

over Bis (E; @ E,,q, B), where E; @ E, is the subspace of all (x,x") e E; x
E, with p,(x) = p,(x") and ¢(x,x") = p,(x) = p,(x').

The fibre product is sometimes called the Whitney sum. The fibre g ~*(b) of
(E, ® E,,q,B)over be Bis p7!(b) x p;'(b) = E; x E,. This is the reason for
the term fibre product.

We define @: Buny x Bung — Bung as a functor. Let u,:(E,,p;,B)—
(E%, pi, B)and u,: (E,, p,, B) = (E%, p3, B) be two B-morphisms. Then we de-
fine the B-morphism u, ® u,: (E, ® E,,q,B) —» (E| @ E},q’, B) by the rela-
tion (uy @ u,)(xy,x3) = (uy(xq), u5(x2)). Since piu,(x;) = py(xy) = pa(x;) =
paus(xy), u; @ u, is a well-defined morphism; clearly, the relation 1; @
lg, = 1g g, holds. If wv,:(E,p},B)—(E],p{,B) and v,:(E5,p;,B)—
(E%, p5, B) are also B-morphisms, then we have (v; @ v,)(u; @ u,) = (v,u,) @
(v,u,). Consequently, @ is a functor. The fibre product is the product in the
category Buny in the sense of category theory.

The map u: B x F; x F, > (B x F;)® (B x F,) defined by the relation
u(b,y(,y,)=(b,y{,y,) = (b,y:,b,y,) is a homeomorphism and defines a B-
isomorphism of product bundles u: (B x F; x F,,q,B)— (B x F{,p,,B)®
(B x F,,p,,B). Using this isomorphism and the functorial properties of @,
we have the next proposition.

4.3 Proposition. If (E,, p,, B) is a trivial bundle with fibre F, and if (E,, p,, B)
is a trivial bundle with fibre F,, then (E{,p,, B) ® (E,, p,, B) is a trivial bundle
with fibre F{ x F,.

In the next proposition we compute the cross sections of a fibre product.

4.4 Proposition. The cross sections s of a fibre product (E; ® E,, q, B) are of
the form s(b) = (s,(b), s,(b)), where s, is a cross section of (E{,p,B) and s, is a
cross section of (E,, p,, B) uniquely defined by s.

Proof. Each cross section sis a map s: B— E; @ E, < E; x E,; therefore, s
is of the form s(b) = (s,(b), s,(b)), where s,: B— E, and s,: B— E,. For s to
be a cross section, b = gs(b) = p,s,(b) = p,s,(b) for each b € B; that is, s, and
s, are cross sections.

Finally, we consider three calculations of fibre products. Let 6% denote the
product bundle (B x R, p, B).

4.5 Example. There is an isomorphism u: yun @ (*yn) = 0" defined by
u((V,x),(V;x")) = (V,x + x') for VeGR"), (V,x)eE(y), and (V,x')e
E(*y,»); see (2.5). Since every y € R” can be written y = x + x’, where x € V, x’
orthogonal to ¥, and since this decomposition is continuous in V, the map u
is a G, (R")-isomorphism.
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Figure 2

4.6 For the next two examples, we use the following notations. For each
b e R" b # 0, there are two linear functions v,: R" —» R”, the normal map, and
m,: R" > R, the projection on b, such that x = v,(x) + m,(x)x, 7m,(x) =
(b]x)/(b]b), v,(x) = x — m,(x)b, and (b|v,(x)) = O for each x € R™.

4.7 Example. Anisomorphism u: 7(S") @ v(S") — 0"*! is defined by the rela-
tion u((b, x), (b, x')) = (b, x + x') for (b, x) € E(z(S")) and (b, x') € E(v(S")). The
inverse of u is the B-morphism v defined by the relation v(b, x) = ((b, v;(x)),
(b, my(x)b)).

Let 4 denote the canonical line bundle on RP".

4.8 Example. Over RP", there is an isomorphism u: (n + 1)A = ©(RP") @ 0!
with inverse v defined by the following relations:

u(ib’(aob" "’anb)) = (i(b! vb(ao""aan))a(iba ﬂb(ao,---,an)))
o(£ (b, x),(£b,k)) = (£b, po(x + kb)b, ..., pu(x + kb)b)

These maps are well defined and are inverses of each other from the relations
a = v,(a) + my(a)b and —a = —v,(a) + m,(a)(—b), where —v,(a) = v,(—a) =
v_p(—a) and m,(a) = n_,(—a) = —n_,(a). Here we use the notations of (2.6)
and 4.6),and ké =E@ - (k) D L

5. Restrictions of Bundles and Induced Bundles

5.1 Definition. Let ¢ = (E, p, B) be a bundle, and let A be a subset of B. Then
the restriction of ¢ to A, denoted &|A, is the bundle (E',p’, A), where E' =
p~(A) and p|E'.

5.2 Examples. In a natural way we can consider G,(R") = G,(R"*™). Then
for the canonical k-dimensional vector bundle over the grassmannians,
7% " G(R") = Py,

If £ is the product bundle over B with fibre F and if A is a subset of B, then
£| A is the product bundle over 4 with fibre F.
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Restriction of bundles satisfies the following transitivity property. If 4; <
A < Band if ¢ is a bundle over B, we have &|A; = (£|4)|A;, and ¢|B = & If
u: ¢ - n is a B-morphism and if 4 < B, then

ug = u|E(E|A): {[A—>nlA

is an A-morphism. If v: y — £ is a second B-morphism, we have (vu), = v, u,
and (1;), = 1,,. Consequently, the functions ¢ +— &[4 and u > u, define a
functor Bung — Bun,,.

In the next definition we generalize the process of restriction.

5.3 Definition. Let £ = (E, p, B) be a bundle, and let f: B, — B be a map. The
induced bundle of ¢ under f, denoted f*(&), has as base space By, as total
space E, which is the subspace of all pairs (b,,x) € B; x E with f(b,) = p(x),
and as projection p, the map (b, x) — b;.

5.4 Example. Let £ be a bundle over B, and let 4 be a subspace of B with
inclusion map j: A — B. Then &|A4 and j*(&) are A-isomorphic. In effect, we
define u: |4 — j*(&) by u(x) = (p(x), x), and this is clearly an A-isomorphism.

If f*(&) is the induced bundle of ¢ under f: B, — B, then f:: E(f*({)) —»
E(&), defined by f.(b;,x) = x, together with f define a morphism (f;, f):
S*(&) > &, which is referred to as the canonical morphism of an induced
bundle.

5.5 Proposition. If (f, f): f*(&) — & is the canonical morphism from the bun-
dle of ¢ under a map f: B, — B, then for each b, € B; the restriction f:
pii(b) = p t(f(b,)) is a homeomorphism. Moreover, if (v,f):n— & is any
bundle morphism, there exists a By-morphism w: n — f*(&) such that f.w = v.
The morphism w is unique with respect to this property.

Proof. The fibre p;*(b,) = b, x E is the subspace of (b;,x)€ b, x E with
p(x) = f(b,). Consequently, fz:by x p~'(f(b,))—p~(f(by)) defined by
fe(by,x) = x is clearly a homeomorphism.

For the second statement, let w(y) = (p,(»),v(y)). Since (v, ) is a mor-
phism, we have f(p,(y)) = p(v(y)), and, consequently, w: E() — E(f*(¢))
is a B,-morphism. Clearly, we have f;w = v. For uniqueness, the relation
p1(w(y)) = p,(y), which holds for any B;-morphism w, and the relation
few = v imply that w(y) = (p,(y),v(y)) for each ye E(n). This proves the
proposition.

If u: £ > 5 is a B-morphism and if f: B, — B is a map, there is a B;-mor-
phism f*(u): f*(&) — f*(y) defined by the relation f*(u)(b,,x) = (b, u(x)).
Clearly, we have f*(1;) = 14, and if v: 7 — { is a second B-morphism, then
f*u)(by, x) = (by, vu(x)) = f*(v)(by, u(x)) = f*(@©)f*()(by,x).  Therefore,
we have the next proposition.
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5.6 Proposition. For each map f: B, — B, the family of functions f*: Bung —
Buny defines a functor. Moreover, for a B-morphism u: £ — n the following
diagram is commutative.

E(f*(m) —"— E()

f*(u)/r ;
E(f*¢) |—— EQ)
Bl—‘f’ B

Proof. We must check the last statement. Let (b, x) € E(f*(&)), and compute
u(felby, x)) = u(x) = f(by, u(x)) = f,(f*W))(by, x)). We have uf; = f, f*(u).

Finally, we have the following transitivity relation.

5.7 Proposition. Let g: B, » B, and f: B, — B be two maps, and let ¢ be a
bundle over B. Then 1*(§) and ¢ are B-isomorphic, and g*(f*(&)) and (fg)* ()
are B,-isomorphic.

Proof. Define u: & —» 1*(£) by the relation u(x) = (p(x), x), and u is clearly an
isomorphism. Next, let v: (fg)*(&) — g*(f*(¢)) be defined by wv(b,,x) =
(b,,(g(by),x)). Then v is clearly an isomorphism.

5.8 Corollary. Let f:(B;,A;) = (B, A) be a map of pairs, let g = f|A,;: A; —
A, and let & be a bundle over B. Then g*(&|A) and f*(E)|A, are A -isomorphic.

Proof. Letj: A — B and j,: A; - B, be the respective inclusion maps. Then
fj1 =Jjg, and, in view of (5.4), (5.6), and (5.7), there is the following sequence
of A,-isomorphisms:

FHONA; =T *(©) = (fi)*(©) = (jg)* (&) = g*(j*(0) = g*(¢|A)
The next result is useful in discussing fibre bundles.

5.9 Proposition. Let & = (E, p, B) be a bundle, let f: B; — B be a map, and let
f*(&) = (E{,py,B,) be the induced bundle of & under f. If p is an open map, p,
is an open map.

Proof. Let W be an open neighborhood of (b, x) € E;, where E; < B; x E.
We must find a neighborhood V of b; = p,(by, x) with p, (W) = V. From the
definition of the topology of E, there exist open neighborhoods V; of b, € B
and U of x € E with (V, x U)NE, = W. Let V = V; N f~!(p(U)). Then for
each b, € V there exists x € U with p(x) = f(b,), that is, (b,,x) € W and b, =
p1(by,x) € V. Therefore, we have p,(W) o V.
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The following relation between cross sections and induced bundles is use-
ful in Sec. 7.

5.10 Proposition. Let ¢ = (E, p, B) be a bundle, let f: B; — B be a map, and let
(fe, ): f*(&) = & be the canonical morphism of the induced bundle. If s is a
cross section of &, then o: B, — E(f*(&)) defined by a(b;) = (by,sf(b;)) is a
cross section with f.c = sf. If f is an identification map and if o is a cross
section of f*(&) such that f.o is constant on all sets f1(b) for b e B, there is a
cross section s of ¢ such that sf = fo.

Proof. We have p,a(b;) = p,(by,5f(b;)) = b, and f(b,) = psf(b;); conse-
quently, ¢ is a cross section of f*(&). The relation fya(b,) = fi(b;,sf(b,)) =
sf(b,) also follows.

For the second statement, we have a factorization of f;o by f, giving a map
s: B— E with sf = f.0. Moreover, psf = pf;0 = fp;0 = fand ps = 1y since f
is surjective. Then s is the desired cross section.

6. Local Properties of Bundles

6.1 Definition. Two bundles ¢ and # over B are locally isomorphic provided
for each b € B there exists an open neighborhood U of b such that ¢|U and
n|U are U-isomorphic.

Clearly, two isomorphic bundles are locally isomorphic.

6.2 Definition. A bundle ¢ over B is locally trivial with fibre F provided ¢ is
locally isomorphic with the product bundle (B x F,p, B).
The next proposition makes the idea of a local property meaningful.

6.3 Proposition. The relation of being locally isomorphic is an equivalence
relation on the class of all bundles over B.

Proof. The transitivity of the relation is the nontrivial part. Let U and V be
two open neighborhoods of b € B such that £|U and #|U are U-isomorphic
and #|V and |V are V-isomorphic. By (5.7), the bundles £|(U N V), n|(UN V),
and {|(U N V) are (U N V)-isomorphic.

6.4 Corollary. If & is locally isomorphic to a locally trivial bundle, ¢ is locally
trivial.

A local property of bundles is a property of bundles that is unchanged
between locally isomorphic bundles. The property that the projection is a
fibre map is a local property by 1 (5.2).

6.5 Proposition. Let & and n be two bundles over B, and let f: B, — B be a
map. If & and n are locally isomorphic, then f*(&) and f*(n) are locally
isomorphic over Bj.
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Proof. By Corollary (5.8), we have f*(£|U) = f*(¢)| f ~*(U) for each open set
U < B. If ¢|U and 5|U are U-isomorphic, f*(&)|f~(U) and f*(n)|f~*(U)
are f~!(U)-isomorphic.

6.6 Corollary. Let ¢ and n be two locally isomorphic bundles over B, and let
A < B. Then £|A and n| A are locally isomorphic.

6.7 Corollary. Let & be a locally trivial bundle over B with fibre F, let f: B, —
B be a map, and let A be a subset of B. Then f*(&) and £| A are locally trivial
with fibre F.

7. Prolongation of Cross Sections

In this section we generalize the prolongation theorems for maps (see Chap.
1, Sec. 2) to cross sections of locally trivial bundles. This prolongation theo-
rem is the fundamental step in the classification theory of fibre bundles over
CW-complexes. Although we prove the homotopy classifcation theorem for
fibre bundles over an arbitrary space, the results of this section are used to
give more precise information about homotopy properties of fibre bundles
over CW-complexes.

7.1 Theorem. Let ¢ = (E, p, B) be a locally trivial bundle with fibre F, where
(B, A) is a relative CW-complex. Then all cross sections s of &|A prolong to a
cross section s* of & under either of the following hypotheses:

(H1) The space F is (m — 1)-connected for each m < dim B.
(H2) There is a relative CW-complex (Y, X) such that B=Y x I and A =
(X x HN(Y x 0), where I = [0,1].

Proof. First, we prove the theorem under hypothesis (H1). We assume the
theorem is true for all B with dim B < n. This is the case for n = 0 because
B = A. We let B be of dimension n. By the inductive hypothesis we have a
cross section s’ of ¢|B,_; with s'|4 =s. We let C be an n-cell of B with
attaching map uc: I" — B. The bundle u#(¢) over I" is locally trivial, and since
I" is compact, we can dissect I" into equal cubes K of length 1/k such that
uF(&)|K 1is trivial. By (5.10) the cross section s’ defines a cross section ¢’ of
uF(&)|oI". Applying the inductive hypothesis to ¢’, we can assume that ¢’ is
defined on the (n — 1)-skeleton of I" decomposed into cubes K of length 1/k.
The cross section ¢’ now defined on 0K is given by a map 0K — F [see [1.5)],
which by the connectivity hypothesis on F prolongs to K. This prolonged
map yields a prolongation ¢ of ¢’ over each cell K and, therefore, a cross
section g of uf(&). Using the natural morphism uf(¢) — & over uc and (5.10),
we have a cross section s of ¢|C such that s¢[(CNB,_;)=s|(CNB,_,).
We define a cross section s* of ¢ by the requirements that s*|B,_, = s’ and
s*|C = sc. By the weak topology property, s* is continuous.
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Finally, if dim B = oo, F is n-connected for each n, and we construct induc-
tively cross sections s, of ¢|B, such that s,|B,_; = s,_; and s_; = s. We define
a cross section s* of £ by the requirement that s*|B, = s,.

Second, we prove the theorem under hypothesis (H2). We assume the
theorem is true for all Y with dim Y < n. This is the case for n = 0 because
x =Y and 4 = B. We let Y be of dimension n. By the inductive hypothesis
we have a cross section s’ of &|[(Y x 0)U(Y,_; x I)] with s'|[(Y x O)U
(X x I)] = s. We let C be an n-cell of Y with attaching map uc: I" — Y. The
bundle (- x 1;)*(&) over I" x I is locally trivial, and since I" x I is compact,
we can dissect I" x I into equal cubes K x [(i — 1)/k,i/k] of length 1/k for
1 < i £ k such that (ue x 1,)*(¢) is trivial over each of these cubes. By (5.10)
the cross section s’ defines a cross section ¢’ of (uc x 1,)*(&)|[(I" x O)U
(0I" x I)]. Applying the inductive hypothesis to ¢’ with respect to I" x
[0, 1/k], we can assume that ¢’ is defined on each 0K x [0, 1/k] making up
(I"), -y % [0, 1/k]. The cross section ¢’ on (6K x [0, 1/k])U(K x 0) is given
by a map (0K x [0,1/k])U(K x 0) > F [see (1.5)], which prolongs to K x
[0, 1/k]. This prolonged map yields a prolongation ¢ of ¢’ over each cell
K x [0, 1/k] and, therefore, a cross section of (u. x 1;)*(¢) over I" x [0, 1/k].
Continuing this process k times, we have a cross section ¢ of (u- x 1,)*(&).
Using the natural morphism (uc x 1,)*(¢) —» ¢ over uc x 1, and (5.10), we
have a cross section sc of &|(C x I) such that s.|(C x 0) = s|(C x 0) and
Scl(Y,—y x I) = s"|(Y,_; x I). We define a cross section s* of ¢ by the require-
ments that s*|(Y,_, x I)=s' and s*|(C x I) = sc. By the weak topology
property, s* is continuous.

Finally, if dimY = oo, we construct inductively cross sections s, of
E|(Y, x I)such that s,|(Y,_; x I) = s|(Y, x 0),and s_; = s|(X x I). We define
a cross section s* of ¢ by the requirement that s*|(Y, x I) = s,. This proves
the theorem.

Note: There is a parallel in the two proofs under the two hypotheses of
(7.1). The proofs differ only in the character of the prolongation over “small”
cells.

Exercises

1. Prove that t(S"*9)|S" is isomorphic to 7(S") @ 09, where 0 s the trivial bundle with
fibre R? and S" = S"*7 s the standard inclusion.

2. Prove that y¢%9G.(R") = 7., where G,(R") = G,(R""?) in a natural way. Let
G (R") © G +,(R"*%) by the map V-V @ W, where W is the g-dimensional
subspace with basis e, ,,, ..., €,.,in R""% Prove that y; 12| G,(R") = y,. @ 0%

3. Using the fact that $?"~! is the set of unit vectors in C", prove that S?"~! has one
unit vector field on it. Using the fact that $*" ! is the set of unit vectors in H", prove
that $*"~! has three unit vector fields on it which are orthonormal at each point.
Hint: Do cases S! and S3 first.
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4. Prove that if S” has a vector field which is everywhere nonzero the identity and the
antipodal map x — —x of $” — S" are homotopic.

5. Let & = (E, p, B) be a bundle with fibre F over B = B, UB,, where B; = 4 x [a,c]
and B, = A x [¢, b]. Prove that if ¢| B, and &|B, are trivial ¢ is trivial.



CHAPTER 3

Vector Bundles

A vector bundle is a bundle with an additional vector space structure on each
fibre. The concept arose from the study of tangent vector fields to smooth
geometric objects, e.g., spheres, projective spaces, and, more generally, mani-
folds. The vector bundle structure is so rich that the set of isomorphism
classes of k-dimensional vector bundles over a paracompact space B is in a
natural bijective correspondence with the set of homotopy classes of map-
pings of B into the Grassmann manifold of k-dimensional subspaces in
infinite-dimensional space.

1. Definition and Examples of Vector Bundles

Let F denote the field of real numbers R, complex numbers C, or quaternions
H.

1.1 Definition. A k-dimensional vector bundle ¢ over F is a bundle (E, p, B)
together with the structure of a k-dimensional vector space over F on each
fibre p~*(b) such that the following local triviality condition is satisfied. Each
point of B has an open neighborhood U and a U-isomorphism h: U x F* —
p~Y(U) such that the restriction b x F* — p~!(b) is a vector space isomor-
phism for each b € U.

An F-vector bundle is called a real vector bundle if F = R, a complex
vector bundle if F = C, and a quaternionic vector bundle if F = H. The
U-isomorphism h: U x F* - p~'(U) s called a local coordinate chart of &.

Examples 2(2.1), 2(2.5), and 2(2.6) admit the structure of a vector bundle
in a natural way.
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1.2 Example. The k-dimensional product bundle over a space B is the bun-
dle (B x F* p, B) with the vector space structure of F* defining the vector
space structure on b x F* = p~!(b) for b € B. The local triviality condition is
realized by letting U = Band h = 1.

1.3 Example. The tangent bundle 7(S") has a natural real vector space struc-
ture on each fibre since it is a subspace of R"**. In the quotient bundle t(RP")
there is a vector space structure on each fibre. As for local triviality, let U, be
the open subset of x € S" with x; # 0,0 £ i < n, and let u;: R" — R"™! be the
linear injection u;(xy,...,%,) = (Xq,---»X;; 0, X;41,...,X,). Then h;: U; x R" -
p Y (U;) = E(t(S")), where hy(b, x) = (b, v,(u;(x)) [see 2(4.6)] has the desired
properties. Also, this construction proves that t(RP") is locally trivial.

1.4 Example. The function =n: G (F™) x F™— F", where =n(V,x) is the
orthogonal projection of x into ¥, is a map. For H < {1,2,...,m}, a subset of
k elements, we have a linear map uy: F* — F™ by placing 0 in each coordinate
not in H. With these maps, we prove that y" = (E, p, G,(F™)) is locally trivial.
Since E is the subspace of G,(F™) x F™ consisting of pairs (V, x) with x e ¥,
the fibre over V is {V} x V, and the vector space structure is determined
by the subspace V. Let Uy be the open subspace of G,(F™) consisting of
V € G(F™) such that n(V, —): uy(F*) - V is a bijection. Then hy: Uy x F* —
p~!(Uy) is defined by the relation hy(V, x) = (V, n(V, x)), and hy is an isomor-
phism that is linear on each fibre. For more details of the above argument,
see Chap. 7. For the present, the above is an exercise.

From the local triviality of a vector bundle we have the following continu-
ity properties.

1.5 Proposition. Let & = (E, p, B) be a k-dimensional vector bundle. Then p is
an open map. The fibre preserving functions a: E@ E - E and s: F x E—>E
defined by the algebraic operations a(x,x’) = x + x' and s(k,x) = kx, k € F,
are continuous.

Proof. For each local coordinate h: U x F* — p~(U), the above statements
hold for the above functions restricted to p~*(U) or p"*(U) @ p~*(U) for s or
a, respectively. Since the family of p~*(U) is an open covering of E, the above
statements are true for ¢.

Using the ideas connected with this proposition, we are able to put an
algebraic structure on the set of cross sections of a vector bundle.

1.6 Proposition. Let s and s’ be two cross sections of a vector bundle ¢ =
(E,p,B), and let ¢: B— F be a map. Then the function s + s’ defined by
(s + s')(b) = s(b) + s'(b) is a cross section of &, the function ¢s defined by
(¢s)(b) = ¢(b)s(b) is a cross section of &, and the map b—0 e p~*(b) is a cross
section (the zero cross section).
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Proof. Let h: U x F* - p™}(U) be a local coordinate of ¢ over U, and let
h™'s(b) = (b, f(b)) and h™'s'(b) = (b, f'(b)) for be B, where f: U — F* and
f':U— F* are maps. Then h™!(s + s')(b) = (b, f(b) + f'(b)), h™*(¢s)(b) =
(b, p(b)f (b)), and h~1(0)(b) = (b,0) for b e U. Consequently, s + s', #s, and 0
are continuous maps and, therefore, cross sections.

Proposition (1.6) says that the set of cross sections of £ form a module over
the ring Cp(B(&)) of continuous F-valued functions on B(¢).

2. Morphisms of Vector Bundles

A vector bundle morphism is, roughly speaking, a fibre preserving map that
is linear on each fibre. In the next definition we make this idea precise.

2.1 Definition. Let ¢ = (E,p, B) and & = (E',p’, B') be two vector bundles. A
morphism of vector bundles (u, f): £ —» £’ is a morphism of the underlying
bundles; thatis, u: E — E’ and f: B — B’ are maps such that p'u = fp, and the
restriction u: p~!(b) = p~*(f(b)) is linear for each b € B.

2.2 Definition. Let ¢ = (E,p,B) and & = (E',p’,B) be two vector bundles
over a space B. A B-morphism of vector bundles u: ¢ —» ¢ is defined by a
morphism of the form (u, 15): £ — &'.

If u: £ » & is a B-morphism, then p’u = p, and the restriction u: p~*(b) —
(p’)"(b) is linear for each b € B.

2.3 Example. Let ¢ be the product bundle (B x F¥ p, B), and let # be the
product bundle (B x F™,p,B). The B-morphisms have the form u(b,x) =
(b, f(b,x)), where f: B x F* — F™is a map such that f(b, x) is linear in x. Let
L(F*, F™) denote the vector space of all linear transformations F* — F™. By
matrix representation, L(F¥, F™) is isomorphic to F*". Then f: B x F¥ — F™
is continuous if and only if b+ f(b, —) as a function B — L(F*, F™) is contin-
uous; i.e., each matrix element is continuous.

As with bundles [see 2(3.3)], identities are B-morphisms of vector bundles,
and the composition of vector bundle morphisms is a vector morphism. Let
¢ =(E,p,B)and &' = (E',p’, B') be two vector bundles, and let f: B— B’ be a
map. Then u: E — E' is defined to be u(x) = 0in (p’)*(f(p(b))), for each b € B
combines with f to define a morphism of vector bundles (u, f): £ — &'

2.4 Definition. The category of vector bundles, denoted VB, has as its
objects vector bundles. Its morphisms are defined in (2.1). Composition is
composition of morphisms of vector bundles.

For each space B, let VB denote the subcategory of vector bundles over
B and B-morphisms. For each integer k > 0, let VB* denote the full sub-
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category of k-dimensional vector bundles. Finally, the subcategory VB of
k-dimensional vector bundles over B is the intersection VBz N VB,

An isomorphism of vector bundles over B is a morphism u: £ — ¢ such
that there exists a morphism v: &' — ¢ with vu = 1, and uv = 1,.. In the next
theorem we derive a criterion for a B-morphism to be an isomorphism.

2.5 Theorem. Let u: &£ - & be a B-morphism between two vector bundles.
Then u is an isomorphism if and only if u: p~*(b) — (p’)"*(b) is a vector space
isomorphism for each b € B.

Proof. The direct implication is immediate because the inverse of u: p~*(b) —
(p’)"!(b) is the restriction to (p’)”!(b) of the inverse of u. Conversely, let
v: & > ¢ be the function defined by the requirement that v|(p’)~'(b) be the
inverse of the restricdted linear transformation u: p~'(b) - (p’)”!(b). The
function v will be the desired inverse of u provided v is continuous. Let U be
an open subset of B, let h: U x F* - p~}(U) be a local coordinate of &, and
let h': U x F¥— (p’)"*(U) be a local coordinate of &. It suffices to prove
v: (p') Y (U) -» p~*(U) is continuous for every such U. By (2.3), (k') *uh has
the form (b, x)+— (b, f,(x)), where b f, is a map U — L(F¥ F*). Then h™*vh’
has the form (b, x)— (b, f; *(x)), where b f,™' is a map U — L(F*, F*).
Therefore, the restriction v: (p')"}(U) — p~!(U) is continuous. This proves the
theorem.

Finally, we observe that the fibre product £, @ &, of two vector bundles
¢, and &, over a space B is a vector bundle over B. The vector space structure
on q~'(b) = p;'(b) x p5'(b) is that of the direct sum of two vector spaces. If
hy: U x F" - p;}(U) is a local chart of &, and if h,: U x F™— p;'(U) is a
local chart of &,, then hy @ h,: U x F"*™ — ¢~ '(U) is a local chart of
§ @&

2.6 Definition. The Whitney sum of two vector bundles ¢, and &, over B,
denoted &, @ &,, is the fibre product of the underlying bundles &, and ¢, with
the above vector bundle structure.

3. Induced Vector Bundles

In this section, we demonstrate that the results of Chap. 2, Sec. 5, apply to the
category of vector bundles.

3.1 Proposition. Let & be a k-dimensional vector bundle over B, and let f:
B, —» B be a map. Then f*() admits the structure of a vector bundle, and
(f&, /) f¥(&) = & is a vector bundle morphism. Moreover, this structure is
unique, and f: py*(b,) - p~'(b) is a vector space isomorphism.
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Proof. The fibre pi'(b;) of f*(¢)=(E,,p,,B;) over b,eB, is b; x
p '(f(by)) < E, = B; x E. For (b;,x), (b,,x’) € p7'(b,), we require (b, x) +
(by,x") = (by,x + x') and k(b,, x) = (b, kx), where k € F. Since f.(b;,x) = x,
the restriction fy: py*(b;) > p~'(b) is a linear isomorphism, and this require-
ment uniquely defines the vector space structure of p;*(b;).

Finally, we exhibit the local triviality of f*(&). If h: U x F*— p™'(U) is
avector bundle isomorphism over U, then h': f~}(U) x F* - p7'(f~1(V)),
where h'(b,,x) = (by,h(f(b;),x)), is a vector bundle isomorphism over
f7HO).

In connection with the factorization in 2(5.5), we observe that if (u, f):
n — ¢ is a vector bundle morphism then u factors as a composition f,v, where
n— f*(&) 5 ¢, v(y) = (p,(»),u(y)), and fi(b;, x) = x. Moreover, v is a vector
bundle morphism over B(y). In view of Theorem (2.5), the B(n)-morphism v is
an isomorphism if and only if v is an isomorphism on each fibre, which, in
turn, is equivalent to u being a fibrewise isomorphism; that is, u: p,*(b) -
pz'(f(b)) is an isomorphism for each b e B(n).

We formulate this result in the following statement.

3.2 Theorem. Let & and n be two vector bundles. For amap f: B(y) — B(&), the
vector bundles n and f*(£) are B(n)-isomorphic if and only if there exists a
morphism (u, f'): n — & such that u is an isomorphism on each fibre of 1.

If u: £ - 5 is a B-morphism of vector bundles and if f: B; — B is a map,
then f*(u): f*(¢) - f*(n) is a B;-morphism of vector bundles. This is seen
immediately from the formula f*(u)(b,, x) = (b;, u(x)); that is, the linearity of
u over f(b,) implies the linearity of f*(u) over b,. Therefore, f*: VB — VB,
is a functor. Let g: B, —» B, and f: B, — B be two maps, and let ¢ be a vector
bundle over B. Then, as vector bundles, 1*(£) and ¢ are B-isomorphic, and
g*(f*(&)) and (fg)*(¢) are B,-isomorphic.

The above results apply to the restriction of a vector bundle ¢ to a sub-
space A = B(¢).

4. Homotopy Properties of Vector Bundles

The first two lemmas concerning vector bundles are the analogues of Exer-
cise 5 in Chap. 2 and the first step in the proof of 2(7.1) under the second
hypothesis.

4.1 Lemma. Let ¢ = (E,p, B) be a vector bundle of dimension k over B =
B, UB,, where B, = A x [a,c] and B, = A x [¢,b], a<c<b. If ¢|B, =
(Ey,p1,By) and &|B, = (E,, p,, B,) are trivial, & is trivial.

Proof. Let u;: B; x F* — E; be a B-isomorphism for i = 1, 2, and let v; =
u;|((B; N B,y) x F¥), i=1, 2. Then h =v3'v, is an 4 x {c}-isomorphism of
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trivial bundles, and therefore h has the form h(x, y) = (x, g(x)y), where (x, y) €
(B, NB,) x F*and g: A - GL(k, F) is a map. We prolong h to a B,-isomor-
phism w: B, x F¥ - B, x F¥ by the formula w(x, t,y) = (x,t,9(x)y) for each
x € A, ye F¥ and t € [¢,b]. Then the bundle isomorphisms u,: B x F* - E,
and u,w: B, x F* > E, are equal on (B; N B,) x F¥ which is a closed set.
Therefore, there exists an isomorphism u: B x F¥ — E with u|B; x F*¥=u,
and u|B, x F* = u,w.

4.2 Lemma. Let ¢ be a vector bundle over B x I. Then there exists an open
covering {U,}, i € I, of B such that &|(U; x I) is trivial.

Proof. For each b e B and t € I there is an open neighborhood U(t) of b in
B and V(z) of t in [0, 1] such that &|(U(t) x V(t)) is trivial. Therefore, by
the compactness of [0, 1], there exist a finite sequence of numbers 0 =
to <ty <--<t,=1 and open neighborhoods U(i) of b in B such that
EN(UG) x [t;—q,t;])is trivial for 1 £i<n.Let U= N U(i). Then the bun-

1<izn
dle &[(U x [0,1]) is trivial by an application of Lemma (4.1) n — 1 times.
Therefore, there is an open covering {U;}, i € I, of B such that &|(U; x I) is
trivial.

The next theorem is the first important step in the development of the
homotopy properties of vector bundles.

4.3 Theorem. Let r: B x I - B x I be defined by r(b,t) = (b,1) for (b,t)e
B x I, and let &% = (E, p, B x I) be a vector bundle over B x I, where B is a
paracompact space. There is a map u: E — E such that (u,r): £ - ¢ is a mor-
phism of vector bundles and u is an isomorphism on each fibre.

Proof. Let {U;}, iel, be a locally finite open covering of B such that
E|(U; x I)is trivial. This covering exists by (4.2) and the paracompactness of
B. Let {5;}, i € 1, be an envelope of unity subordinate to the open covering
{U;}, i € 1, that is, the support of #; is a subset of U; and 1 = max;,, (b) for
each be B. Let h;: U; x I x F* - p}(U; x I) be a (U; x I)-isomorphism of
vector bundles.

We define a morphism (u;,r,): ¢ —> ¢ by the relations ri(b,t) =
(b, max(y;(b), 1)), u; is the identity outside p~'(U; x I), and u;(hy(b,t,x)) =
h;(b, max(n;(b), ), x) for each (b,t,x)e U; x I x F*. We well order the set I.
For each b € B, there is an open neighborhood U (b) of b such that U; N U(b)
is nonempty for i € I(b), where I(b) is a finite subset of I. On U(b) x I, we
define r = 1y, 1y, and on p~}(U(b) x I), we define u = u;,," " uy, ), where
I(b) = {i(1),...,i(n)} and i(1) < i(2) < -- < i(n). Since r; on U(b) x I and u,
on p Y (U(b) x I) are identities for i ¢ I(b), the maps r and u are infinite com-
positions of maps where all but a finite number of terms are identities near a
point. Since each u; is an isomorphism on each fibre, the composition u is an
isomorphism on each fibre.
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4.4 Corollary. With the notations of Theorem (4.3), & = r*(¢|(B x 1)) over
B x I

Proof. This result is a direct application of Theorem (3.2) to Theorem (4.3).

Let ¢ = (E,p, B) be a vector bundle, and let Y be a space. We use the
notation ¢ x Y for the vector bundle (E x Y,p x 1,,B x Y). The fibre over
(b,y) e B x Yis p~1(b) x y, which has a natural vector space structure that it
derives from p~(b). If h: U x F¥— p~Y(U) is a U-isomorphism, the h x 1,:
UxYx Frsp(U)yx Y=(px1y,) (U x Y)isa (U x Y)-isomorphism.
Consequently, & x Y is a vector bundle, and this leads to the following ver-
sion of (4.3).

4.5 Corollary. With the notations of Theorem (4.3),
¢=(CIBx1)x1

are vector bundles over B x I.

Proof. For this, it suffices to observe that r*(¢|(B x 1)) =(¢|B x 1) x I. In
both cases the total space of the bundles is the subspace of (b,t,x) € B x I x
E(¢|(B x 1)) such that (b, 1) = p(x), and the projection is the map (b, t, x) —
(b, 1).

4.6 Corollary. With the notations of Theorem (4.3), there exists, after restric-
tion, an isomorphism (u,r). £|(B x 0) = &|(B x 1).

Proof. This s a direct application of Theorem (2.5) to the situation described
in(4.3)wherer=1onBx0=B x 1 =B.

Finally, we have the following important application of (4.6) in the frame-
work of homotopy theory.

4.7 Theorem. Let f, g: B— B’ be two homotopic maps, where B is a para-
compact space, and let £ be a vector bundle over B'. Then f*(¢) and g*(&) are
B-isomorphic.

Proof. Let h: B x I - B' be a map with h(x,0) = f(x) and h(x,1) = g(x).
Then f*(&) = h*(¢)|(B x 0) over B, and g*(¢) =~ h*(¢)|(B x 1) over B. By (4.6),
h*(&)|(B x 0) and h*(¢)|(B x 1) are B-isomorphic, and, therefore, f*(¢) and
g*(¢) are B-isomorphic.

4.8 Corollary. Every vector bundle over a contractible paracompact space B is
trivial.

Proof. Let f: B — B be the identity, and let g: B — B be a constant map. For
each vector bundle & over B, f*(£) is B-isomorphic to ¢, and g*(¢) is B-
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isomorphic to the product bundle (B x F¥, p, B). Since f and g are homo-
topic, ¢ is isomorphic to the product bundle (B x F*, p, B), by (4.7).

Theorem (4.7) is the first of the three main theorems on the homotopy
classification of vector bundles.

5. Construction of Gauss Maps

5.1 Definition. A Gauss map of a vector bundle é¥in F" (k< m < +w)isa
map g: E(¢¥) — F™ such that g is a linear monomorphism when restricted to
any fibre of £.

Recall that E(y") is the subspace of (V, x) € G,(F™) x F™ with x € V. Then
the projection q: E(y") - F™, given by the relation q(V, x) = x, is a Gauss
map. In the next proposition, we see that every Gauss map can be con-
structed from this map and vector bundle morphisms.

5.2 Proposition. If (u, f): E* — ™ is a vector bundle morphism that is an
isomorphism when restricted to any fibre of &¥, then qu: E(E¥) — F™ is a Gauss
map. Conversely, if g: E(£¥) — F™ is a Gauss map, there exists a vector bundle
morphism (u, ). E¥ — ™ such that qu = g.

Proof. The first statement is clear. For the second, let f(b) = g(p~'(b)) €
G,(F™). and let u(x) = (f(p(x)),g(x)) € E(y) for x € E(E%). We see that f is
continuous by looking at a local coordinate of &£, and from this u is also
continuous.

5.3 Corollary. There exists a Gauss map g: E(§) > F™ (k < m £ 4+0) if and
only if < is B(&)-isomorphic with f*(y*) for some map f: B(E) — G (F™).

Proof. This follows from Proposition (5.2) and Theorem (3.2).

In Theorem (5.5), we construct a Gauss map for each vector bundle over
a paracompact space. First, we need a preliminary result concerning the open
sets over which a vector bundle is trivial.

5.4 Proposition. Let ¢ be a vector bundle over a paracompact space B such
that ¢|U,, i€ 1, is trivial, where {U;}, i € I, is an open covering. Then there
exists a countable open covering {W;}, 1 < j, of B such that ¢|W; is trivial.
Moreover, if each b € B is a member of at most n sets U, there exists a finite
open covering {W;}, 1 < j < n, of B such that £|W; is trivial.

Proof. By paracompactness, let {#;}, i € I, be a partition of unity with V; =
7;72(0,1] = U,. For each b € B, let S(b) be the finite set of i € I with n,(b) > 0.
For each finite subset S = I, let W(S) be the open subset of all b € B such that
1i(b) > n;(b) foreachie S and j ¢ S.
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If S and S’ are two distinct subsets of I each with m elements, then W(S) N
W(S’) is empty. In effect, there exist i € S with i ¢ S’ and j € S’ with j ¢ S. For
b € W(S) we have 5,(b) > n,(b), and for b € W(S’) we have #;(b) > 1,(b). There-
fore, W(S)N W(S’) is empty.

Let W, be the union of all W(S(b)) such that S(b) has m elements. Since
i € S(b) yields the relation W(S(b)) = V,, the bundle &|W(S(b)) is trivial, and
since W, is a disjoint union, ¢|W,, is trivial. Finally, under the last hypothesis,
W, is empty for n < j.

5.5 Theorem. For each vector bundle ¥ over a paracompact space B there is
a Gauss map g: E(¢) — F*. Moreover, if B has an open covering of sets {U;},
1 i £ n, such that &|U; is trivial, £ has a Gauss map g: E(E) — F*.

Proof. Let {U;} be the countable or finite open covering of B such that &|U;
is trivial, let h;: U; x F* — &|U; be Ui-isomorphisms, and let {5;} be a parti-
tion of unity with closure of #;((0,1]) = U,. We define g: E(é)—»Z F* as

g =Y g where g;|E(,|U) is (n;p)(poh; ') and p,: U x F* — F* is the projec-

tion on the second factor. Outside E(&|U;), the map g, is zero.

Since each g;: E(¢) — F* is a monomorphicm on the fibres of E(&) over b
with #;(b) > 0, and since the images of g; are in complementary subspaces, the
map g is a Gauss map. In general, Z F*is F, but if there are only n sets U,,
then Z F¥is Fkn,

Theorem (5.5) with Corollary (5.6) is the second main homotopy classifica-
tion theorem for vector bundles.

5.6 Corollary. Every vector bundle £* over a paracompact space B is B-
isomorphic to f*(y,) for some f: B - G (F®).
The following concept was suggested by Theorem (5.5).

5.7 Definition. A vector bundle ¢ is of finite type over B provided there exists
a finite open covering Uy, ..., U, of B such that &|U; is trivial, 1 £i < n.

In the next theorem we derive other formulations of the notion of finite
type. By 1(2.6) and (4.8) every vector bundle over a finite-dimensional CW-
complex is of the finite type.

5.8 Proposition. For a vector bundle £ over a space B, the following are equiv-
alent.

(1) The bundle ¢ is of the finite type.

(2) There exists a map f: B — G,(F™) for some m such that f*(y") and & are
B-isomorphic.

(3) There exists a vector bundle n over B such that & @ # is trivial.
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Proof. By the construction in (5.5), statement (1) implies (2). Since y* @ *y"
is trivial over G (F™), then f*(y") ® f*(*y*) and 0™ are B-isomorphic. Let 5
be f*(*p). Since f*(y" @ *y) is trivial, the bundle & @  is trivial. Finally,
the composition E(¢) - E(E ® ) — B x F™ — F™is a Gauss map.

6. Homotopies of Gauss Maps

Let F*' denote the subspace of x € F* with x,;,, = 0, and F°* with x,; = 0
for i 2 0. For these subspaces, F* = F*' @ F°%. Two homotopies g¢: F" x
I — F?" and ¢°: F* x I — F?" are defined by the following formulas:

97 (Xgr X1, Xg,...) = (1 — )(xg, X1, X3,-..) + t(x0,0,%x,0,%x,,...)
g7 (X5 X1, X2,...) = (1 — 1) (xg, X1, X3,-..) + £(0,%0,0,x,0,x5,...)

The properties of these homotopies are contained in the following prop-
osition. In the above formulas and in the next proposition, we have
1<n< +o0.

6.1 Proposition. With the above notations, these homotopies have the follow-
ing properties:

(1) The maps g¢ and g% each equal the inclusion F" — F*".

(2) Fort=1,g¢(F") = F*NF* and g}(F") = F*"( F°%,

(3) There are vector bundle morphisms (u®, f): yn — 72" and (u°, £°): Jpn — y2"
such that qu® = g%, qy° = g1.

(4) f¢and f° are homotopic to the inclusion G,(F") — G(F?").

Proof. Statements (1) and (2) follow immediately from the formulas for g/
and g;. For (3), we use (5.2). Finally, the homotopies g¢ and g; define homo-
topies of f¢ and f° with 1.

The next theorem describes to what extent Gauss maps are unique in
terms of homotopy properties of their associated bundle morphisms. We use
the above notations.

6.2 Theorem. Let f, f,: B — G, (F") be two maps such that f*(y) and f{(yn)
are B-isomorphic and let j: G(F") — G,(F*") be the natural inclusion. Then the
maps j f and j f; are homotopic for 1 £ n < +oo0.

Proof. By hypothesis, there is a vector bundle & over B and two morphisms
(u, f): & = yn and (uy, f1): € > 7, Which are isomorphisms when restricted to
the fibres of £&. Let g = qu: E(¢) » F" and g, = qu,: E(¢) - F" be the associ-
ated Gauss maps. Composing with the above maps, we have morphisms
(uu, £°f): & — 72" with a Gauss map g¢g: E(&) = F*' N F?" and (u’u, f°f):
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& - p2" with a Gauss map g¢g,: E(£) » F°*N F?". We define a Gauss map
h: E(¢) x 1 — F*" by the relation h,(x) = (1 — t)g§g(x) + tg{g,(x). For a fibre
p~1(b) = E(&), the linear maps g$g: p~'(b) — F* and g{g,: p~1(b) —» F** are
monomorphisms, and since F**N F°% = 0, the map h,: p~'(b) > F*"is a linear
monomorphism. Therefore, there is a Gauss map h: E(£) x [ - F?" which
determines a bundle morphism (w, k): & — y2". The map k: B x I — G,(F*") is
a homotopy from f¢f to f°f,. Since f and f°f are homotopic and f°f; and
fy are homotopic, f and f; are homotopic. This proves the theorem.

Theorem (6.2) is the third of the three main homotopy classification
theorems.

7. Functorial Description of the Homotopy
Classification of Vector Bundles

Let P denote the category paracompact spaces and homotopy classes of
maps. Let ens denote, as usual, the category of sets and functions.

Let Vect,(B) denote the set of B-isomorphism classes of k-dimensional
vector bundles over B. For a k-dimensional bundle &, we denote by {&} the
class in Vect,(B) determined by &. If [ f]: B; — B is a homotopy class of maps
between paracompact spaces, we define a function Vect, ([ f]): Vect,(B) —
Vect,(B,) by the relation Vect, ([ f1)({&}) = {f*(£)}. By the remarks at the
end of Sec. 3 and Theorem (4.7), Vect,([ f]) is a well-defined function.

7.1 Proposition. The family of functions Vect,: P — ens is a cofunctor.

Proof. Since 1*(¢) and ¢ are B-isomorphic, the function Vect,([1]) is the
identity. If [ f]: B, » B and [g]: B, — B, are two homotopy classes of maps,
g*(f*()) and (fg)*(¢) are B,-isomorphic. Consequently, Vect, ([ f]1[g]) =
Vect, ([g]) Vect, ([ f]), and Vect, satisfies the axioms for being a cofunctor.
For each B, we define a function ¢g: [ B, G,(F*)] — Vect,(B) by the relation
és([f]) = {*(»)}. Again by Theorem (4.7), ¢y is a well-defined function.
The next theorem, together with the definition of Vect, and ¢g, brings to-
gether all aspects of the homotopy classification theory of vector bundles.

7.2 Theorem. The family ¢ of functions ¢y defines an isomorphism of co-
functors ¢: [ —, G (F®)] — Vect,.

Proof. First, we prove that ¢ is a morphism of cofunctors. For this, let
[f]: By > B be a homotopy class of maps. Then the following diagram is
commutative.
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[B,G(F*)] —*— Vect,(B)

[[fl.Gk(Fxnl JVectk(m)
© 5,
[B;, Gi(F*)] —— Vect,(B,)
In effect, if [g] € [B, G,(F*)], we have

Veet, ([f 1) ds([g]) = Vect([/ 1 {g*()} = {/*9*(n)}
and ¢, [[ /], Gu(F*)1Lg] = ¢s,([41LSD = {(a/)*()}-

Finally, ¢ is an isomorphism because each ¢ is a bijection. The function
¢g is surjective by (5.5) and (5.6), and it is injective by (6.2). This proves the
theorem.

7.3 The isomorphism ¢: [ —, G, (F*)] — Vect, is called a corepresentation
of the cofunctor Vect,. The preceding four sections have been dedicated to
proving that the cofunctor Vect, is corepresentable. In this way the problem
of classifying vector bundles, i.e., of computing Vect,(B), has been reduced to
the calculation of sets of homotpy classes of maps, i.e., the sets [B, G,(F®)].

8. Kernel, Image, and Cokernel of Morphisms with
Constant Rank

Let u: £ - n be a morphism of vector bundles over B. We define three bun-
dles ker u, which is a subbundle of &; imu, which is a subbundle of #; and
coker u, which is a quotient bundle of #. The total space of keru is the sub-
space of x € E(£) such that u(x) = 0 in  over ps(x). The total space of imu
is the subspace of u(x), x € E(£). The total space of cokeru is the quotient
space of E(n) by the following relation: y, y’ € E(y) are related provided
p,(y') = p,(y)and y — y" = u(x) for some x € E(£). The projection of 5 factors
through E(coker u) to define the projection of coker u.

In general, keru and coker u are not vector bundles because they do not
satisfy the property of local triviality. The following example illustrates this:
Let u:[0,1] x R—[0,1] x R be the [0, 1]-morphism defined by u(t,x) =
(t,tx). Then ker(u), = 0 for b # 0, and ker(u), = R for b = 0 and im(u), = 0,
and coker(u), = 0 for b # 0, and coker(u), = R. In the next definition we
describe those vector bundle morphisms u, where ker u, im u, and coker u are
vector bundles.

Recall that the rank of a linear transformation f: V — W is dimV —
dim {ker f'} which equals dim{im f}.

8.1 Definition. Let u: £ — 5 be a B-morphism. Then u is of constant rank k
provided u,: p~*(b) —» p~*(b) is of rank k for each b € B.
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8.2 Theorem. Let u: " — 5™ be a B-morphism of vector bundles of constant
rank k. Then ker u, im u, and coker u are vector bundles over B.

Proof. Since the statement refers to a local question, u, £", and n™ can
be restricted to a coordinate neighborhood. Consequently, there is a B-
morphism u: B x F"— B x F™ and it has the form u(b, x) = (b, u,(x)), where
b+ u, is a map B — L(F", F™). For each b € B, the rank of u, is k.

At aeB, ugs F"=V,®V,> F"=W,®W,, where V, = keru,, W; =
imu,, dim V; = dim W, = k, dim ¥, = n — k, and dim W, = m — k. For each
b € B, we define

V=F"OW,=V,®V,dW,3W,@W,®V,=F"®V,=W

by the requirement that wy|V; be (u,|V;) @ 0, w,|V, be (u,|V,) @ 1y, and
wy| W, be 0@ 1y, @ 0. Since u,|V;: V; » W, is an isomorphism, the linear
transformation w, is an isomorphism. Since the isomorphisms form an open
subset of L(V, W) and since b+ w, is continuous, the function w, is a linear
isomorphism for each b € U, where U is some open neighborhood of a. Let
v,: W — V be the inverse of w, for each b € U. Then b+ v, is continuous.

First, we prove the triviality of keru|U. We observe that (x,, x,) € ker u, if
and only if wy(x,, x,,0) = x,, x, € V,; that is, (x,, x,) = v,(x,), and we have
ker u, = v,(V,). Therefore, the map (b, x,)+> (b, v,(x,)) is a U-isomorphism
U x V, — E(ker u|U) with inverse (b, x) > (b, w,(x)).

Next, we prove the triviality of im u|U. For this, we observe that u,(x;) =
0 if and only if wy(x,)=0 for x, € V;. Therefore, u,|V;: V; »imu, is
an isomorphism for each b e U since w, is a monomorphism. Therefore,
(b,x) (b,uy(x)) is an isomorphism U x V; - E(imu|U) with inverse
(b, )= (b, v,(v)) since u,|V; = w,| V, for each b € U.

Finally, we prove the triviality of coker u|U. For this, we observe that
imu, MW, =0. For u,(x,,x,) €imu, N W,, we have w,(x;,X,,y) =0, and
since w, is injective, we have x; = x, = y = 0. Then the quotient map (b, y) —»
(b, ymod(im u)) is a monomorphism U x W, — E(cokeru|U), and, for rea-
sons of dimension, it is a U-isomorphism. Its inverse U-morphism is the
factorization of the projection U x (W, @ W,) - U x W, through coker u.
This proves the theorem.

8.3 Corollary. Let u: £" - n™ be a B-morphism that is injective, or, equiva-
lently, it is a monomorphism on each fibre of . Then imu and cokeru are
vector bundles.

Proof. The B-morphism has constant rank n.

8.4 Corollary. Let u: £" —u™ be a B-morphism that is surjective, or, equiva-
lently, it is an epimorphism on each fibre of £. Then ker u is a vector bundle.

Proof. The B-morphism has constant rank m.
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8.5 Remark. The usual terminology of exact sequences carries over to vector
bundles and morphisms of constant rank. A sequence ¢ —n — ( is exact
provided imu = ker v. A sequence

u u u
50—1’51—2’52_’"'_’@—1‘:’5':

is exact provided imu; = keru,;,, foreach i, | Li<n—-1LIf0-¢5n5
{ — 0 is an exact sequence, £ and ker v are isomorphic, and { and coker v are
isomorphic. This is called a short exact sequence. The bundle 0 is (B, 1, B). A
B-morphism u: £ — # is called a B-monomorphism when keru = 0 or, equiv-
alently, when u is injective; it is called a B-epimorphism when cokeru = 0 or,
equivalently, when u is surjective.

9. Riemannian and Hermitian Metrics on
Vector Bundles

IfxeR/letx = x,andifz=x + iye C,let Z = x — iy. Let F denote either R
or C.

9.1 Definition. Let V be a vector space over F. An inner product on V is a
function f: V x V — F, the field of scalars, such that the following axioms
hold.

(1) Blax + a’'x',y) = af(x,y) + a’B(x', y)
B(x,by + b'y") = b(x,y) + b'B(x,y’)
foreach x, x', y,y’ € Vanda,a’,b, b’ € F.
(2) B(x,y) = P(y,x)foreach x, ye V.
(3) B(x,x) = 0in R and f(x,x) = 0 if and only if x = 0.

With an inner product ff on V we can define what it means for x € V and
y € V to be perpendicular, namely, S(x, y) = 0. Let W be a subspace of V, and
let W° be the set of all y e V with B(x,y) = 0 for each x € W. Then W° is
easily proved to be a subspace of V,and V = W @ W°.

On R" and C" there is a natural inner product, the euclidean inner prod-
uct, which is given by f(x,y) = )  x;¥;. These formulas hold for R* and
Coo. 1<izn

We extend the notion of inner product to vector bundles in the next
definition.

9.2 Definition. Let ¢ be a real or complex vector bundle over B. A rieman-
nian metric or hermitian metric on ¢ is a function f: E(¢ @ &) — F such that,
for each b € B, B|(p~*(b) x p~(b)) is an inner product on p~!(b). The rieman-
nian metric refers to R = F and the hermitian metric to C = F.
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9.3 Example. Let 0 be the product k-dimensional bundle over B. Then
B(b,x,x") = (x]|x"), the euclidean inner product, is a riemannian metric in the
real case and a hermitian metric in the complex case.

9.4 Example. For k < m < +o0, the canonical bundle )" over G,(F™) has a
natural riemannian metric derived from the euclidean metric on F™. For
V,x,x") e E(y" @ ), let B(V, x, x") = (x|x'), the euclidean inner product. On
each fibre V the function f is clearly an inner product.

Using this construction and a Gauss map, we are able to get the next
general result.

9.5 Theorem. Every real or complex vector bundle with a Gauss map has a
riemannian or hermitian metric.

Proof. Let g: E(£) - F* be a Gauss map. Define f: E(6@® &) — F by the
relation B(x, x") = (g(x)|g(x’)). Then, since g is continuous and a monomor-
phism on each fibre, f§ is a riemannian or hermitian metric.

By (5.5) and (9.5), every bundle over a paracompact space has a metric.

Next, we consider the following application of metrics on vector bundles.

9.6 Theorem. Let 0 — ¢ 5 5 5 { — 0 be a short exact sequence of vector bun-
dles over B;that is, u is a monomorphism, im u = Kker v, and v is an epimorphism.
Let 8 be a metric on . Then there exists a morphism w: £ @ { — n splitting the
above exact sequence in the sense that the following diagram is commutative.

The morphism i is inclusion into the first factor, and j is projection onto the
second factor.

Proof. Let &' denote imu, where E(&') < E(y). Let E({’) be the subset of
x" € E(n) such that f(x,x") = 0 for all x € E({) with p,(x) = p,(x"). Then (" is
a subbundle of # consisting of vector spaces.

Let E(n), denote the fibre of 5, E(&'), the fibre of &, and E({’), the fibre of
(" over b e B.

Let g: E(n) — E(') be the projection of E(y), onto E(E'), over each
b € B. We wish to prove that g is continuous; for this, we consider g locally.



Exercises 39

We suppose u: B x F" - B x F™ is a B-monomorphism, and f(b, x,x’) is
the metric on B x F™. Then g: B x F"— B x F" is given by g(b,x) =
(b, Z b, x, u(ei))e,->, where ¢, ..., e, is the canonical basis of F". Clearly,
1<izn
g is continuous. Since g: n — £’ is a B-epimorphism, ker g is a vector bundle,
by (8.4). But ker g equals ('.
Clearly, v|{’: {' - { is a B-isomorphism since it is an isomorphism on the
fibres. Finally, we define w|& equal to the isomorphism u: & —» ¢ <  and w|{
equal to the isomorphism (v|{')™!: { = {’ = 5. This proves the theorem.

Observe that (9.5) and (9.6) apply to vector bundles over a paracompact
space by (5.5).

Exercises
1. Prove that a k-dimensional vector bundle &* is trivial if and only if it has k cross
sections sy, ..., S, such that s, (b), ..., s,(b) are linearly independent for each b € B.

2. Prove that every metric on a vector bundle ¢ with a Gauss map is of the form
constructed in (9.5).

3. Define the bundle dimension of a space B, denoted dim, B, to be the inf of all k
such that the inclusion G,(R?*") - G,(R®) induces a bijection [B,G,(R™"")] —
[B,G,(R*)] for all m, n = k. Let k = dim, B in what follows.

(a) Prove that the natural inclusion G,(R*)— G,(R**™) induces a bijection
[B,G(R*)] - [B, G(R**™)].

(b) Prove that the natural inclusion (see Exercise 2 of Chap. 2) G,(R?*) - G,,(R**™)
induces a bijection [B, G,(R*)] - [B, G,,(R**™)].

(c) If &" is an n-dimensional vector bundle over B, a paracompact space, with
n = k, prove that there exists a k-dimensional bundle # such that &" and n* @
6"* are B-isomorphic and, moreover, that 7 is unique up to B-isomorphism.

(d) If &£ and 5 are two bundles with dim ¢ = dim# = k such that ¢ ® 6™ and n @ 0™
are isomorphic, prove that ¢ and # are isomorphic (over B).

(e) If & is a vector bundle over B, prove that there exists a k-dimensional vector
bundle 5 over B such that £ @ n is trivial.



CHAPTER 4
General Fibre Bundles

A fibre bundle is a bundle with an additional structure derived from the
action of a topological group on the fibres. In the next chapter the notions of
fibre bundle and vector bundle are related. As with vector bundles, a fibre
bundle has so much structure that there is a homotopy classification theorem
for fibre bundles.

1. Bundles Defined by Transformation Groups

1.1 Definition. A topological group G is a set G together with a group struc-
ture and topology on G such that function (s, f)> st * isamap G x G — G.

The above condition of continuity on (s, £)— st~ ' is equivalent to the state-
ment that (s,t)—>stisamap G x G— G and s——»s !isamap G - G.

Examples. The real line R with addition as group operation, the real line
minus zero R — {0} with multiplication as group operation, the full linear
groups of nonsingular matrices GL(n,R) and GL(n,C), and the orthogonal,
unitary, and symplectic groups O(n), SO(n), U(n), SU(n), and Sp(n) are all
topological groups. The orthogonal, unitary, and symplectic groups are con-
sidered in detail in Chap. 7.

1.2 Definition. For a topological group G, a right G-space is a space X
together with a map X x G — X. The image of (x,s) € X x G under this map
is xs. We assume the following axioms.

(1) Foreach x € X, s, t € G, the relation x(st) = (xs)t holds.
(2) For each x € X, the relation x1 = x holds, where 1 is the identity of G.
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A space X is a left G-space provided there is given a map G x X — X such
that (st)x = s(tx)and 1x = x fors,t e Gand x € X.

If X is a left G-space, xs = s™'x defines a right G-space structure on X.
Since there is a bijective correspondence between left and right G-space struc-
tures, we need study only right G-spaces.

Examples. The space R" is a left GL(n, R)-space or a left O(n)-space, where
the G-space action is given by matrix multiplication. The space of ortho-
normal p-frames in n-space V,(R") is a right O(r)-space for each r, r < p,
where the action of O(r) is to change the first r vectors in the frame by an
orthogonal matrix. Scalar multiplication defines a left (R — {0} )-space struc-
ture on R".

1.3 Definition. A map h: X — Y from one G-space to another is called a
G-morphism provided h(xs) = h(x)s for all x € X and s € G.

Let M4;(X,Y) denote the subspace of G-morphisms X — Y. Since the
composition of G-morphisms is a G-morphism, the class of G-spaces and
G-morphisms forms a category denoted spg.

Two elements x, x" € X in a G-space are called G-equivalent provided
there exists s € G with xs = x’. This relation is an equivalence relation, and
the set of all xs, s € G, denoted xG, is the equivalence class determined by
x € X. Let X mod G denote the set of all xG, for x € X, with the quotient
topology, that is, the largest topology such that the projection n: X —
X mod G is continuous. Recall that n(x) = xG, and, occasionally, 7 is denoted
by my. Note that the projection = is an identification map.

1.4 Proposition. For a G-space X, the map x — xs is a homeomorphism, and
the projection n: X — X mod G is an open map.

Proof. The inverse of x+ xs is the map x+> xs~!, and x> xs is a homeo-

morphism. If W is an open subset of X, then n7'n(W) = () Ws is an open
seG

set, being a union of open sets Ws. Therefore, n(W) is open in X mod G for
each open set W of X.

From the above discussion, it follows that every G-space X determines a
bundle «(X) = (X, 7, X mod G). If h: X — Y is a G-space morphism, we have
h(xG) = h(x)G for each x e X. The quotient map of h is the map f:
X mod G - Ymod G, where f(xG) = h(x)G. Let a(h) denote the bundle mor-
phism (h, f): a(X) - a(Y).

1.5 Proposition. The collection of functions o: sp; — Bun is a functor.

Proof. Clearly, we have a(ly) = (1x, lymoag) and if i X > Y and k: Y > Z
are two G-morphisms, then a(kh) = a(k)o(h).
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1.6 Definition. A bundle (X, p, B) is called a G-bundle provided (X, p, B) and
a(X) are isomorphic for some G-space structure on X by an isomorphism
(1, /) (X) > (X, p, B), where f: X mod G — B is a homeomorphism.

2. Definition and Examples of Principal Bundles

A G-space X has the property that the relation xs = x holds only for s = 1 if
and only if it has the property that the relation xs = xt holds only for s = t.

2.1 Definition. A G-space X is called free provided it has the property that
xs = x implies s = 1. Let X* be the subspace of all (x,xs) e X x X, where
xe X, seG for a free G-space X. There is a function 7: X* - G such
that xt(x,x’) = x' for all (x,x’)e X* The function 7: X* - G such that
xt(x,x) = x' is called the translation function.

From the definition of the translation function 7(x, x’), it has the following
properties:

(1) 7(x,x) = 1.
(2) t(x,x)t(x",x") = 1(x, x").
(3) t(x',x) = t(x,x" ) for x, x’, x" € X.

2.2 Definition. A G-space X is called principal provided X is a free G-space
with a continuous translation function 7: X* — G. A principal G-bundle is a
G-bundle (X, p, B), where X is a principal G-space.

2.3 Example. The product G-space B x G, where the action of G is given by
the relation (b, t)s = (b, ts), is principal. To see this, observe that ((b,?),(b’,t)) €
(B x G)* if and only if b = b’, and the translation function has the form
©((b,t),(b,t")) = t~'t". The corresponding principal G-bundle is the product
bundle (B x G, p, B) (up to natural isomorphism). This is called the product
principal G-bundle.

2.4 Example. Let G be a closed subgroup of a topological group I'. Then G
acts on the right of I' by multiplication in I', and (x,x’) e I'* if and only
if x"'x" € G. The translation function for the G-space I' is 7(x,x’) = x !x/,
which is continuous for topological groups. The base space of the corre-
sponding principal G-bundle is the space of left cosets I' mod G. This example
includes some of the examples of fibrations in Chap. 1, Sec. 5.

2.5 Example. Let G be the two-element group {+1, —1}, and let S" be the
G-space with action given by the relation x(+1) = +x. Then (S")* is the
subspace of (x, +x) € $" x §", and the translation function is 7(x, +x) = +1,
which is clearly continuous. This principal Z,-space defines a principal Z,-
bundle with base space RP".

Finally, we prove that a principal G-bundle is a bundle with fibre G.
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2.6 Proposition. Let & = (X, p, B) be a principal G-bundle. Then & is a bundle
with fibre G.

Proof. For x € p~1(b) we define a bijective map u: G — p~*(b) by the relation
u(s) = xs. The inverse function of u is x’+ t(x, x’), which is continuous, and
u is a homeomorphism.

3. Categories of Principal Bundles

3.1 Definition. A morphism (u, f): (X, p, B) > (X', p’, B') between two princi-
pal G-spaces is a principal morphism provided u: X — X' is a morphism
between G-spaces.

Since p~'p(x) = xG and since f(xG) = u(x)G, the map u determines f. If
B = B'and if f = 1, then u is called a principal B-morphism.

Since the composition of principal morphisms or B-morphisms is a princi-
pal morphism or B-morphism, respectively, one can speak of the category
Bun(G) as consisting of principal G-bundles and morphisms and the sub-
category Bung(G) of Bun(G) as consisting of principal G-bundles and mor-
phisms over B. We have two natural structure stripping functors Bun(G) —»
Bun and Bung(G) — Bung.

The next theorem is the analogue for principal bundles of 3(2.5).

3.2 Theorem. Every morphism in Bung(G) is an isomorphism.

Proof. Let u: (X,p, B)— (X',p’, B) be a B-morphism of principal G-bundles.
First, we prove that u is injective. For this, we let u(x,) = u(x,). Since p(x,) =
p'u(x,) = p(x,), we have (x;,x,) € X*, and x,s = x, for some s € G. Since
u(x;) = u(x,) = u(x,)s, we have s = 1 and x, = x,. Next, we prove that u is
surjective. For each x' € X’ we let x € X be such that p(x) = p’(x’). Then
p'(x") = p(x) = p’(u(x)) and (u(x), x") € (X')*. Since u(x)s = x’ for some s € G,
we have u(xs) = u(x)s = x’, and u is surjective.

To prove u™! is continuous, let u(a) = a’ in X’, and let ¥ be an open
neighborhood of a in X. By the continuity of the action of G on X, there exist
open neighborhoods V; of ain X and N of 1 in G such that V; N < V. There
is an open neighborhod W of a’ in X’ such that 7'(W x W)N X'*) < N,
where 7’ is the translation function of X'. Using the continuity of u, we can
replace V; by V;Nu*(W) so that u(V,) = W. Now p(V;) = U is an open
neighborhood of b = p(a) = p(a’) in B by (1.4), and we replace W by WN
(p")'(U) so that p'(W) = U = p(V,).

For each x’ € W, we choose x € ¥, such that p(x) = p’(x’). Then we have
u(x), x' € W and u(x)s = x’ for some s e N, and x' = u(x)s = u(xs), where
xs € V; N < V. Therefore, for each x’ € W, we have u™*(x') e V and u™' (W) <
V. This proves that u™! is continuous at each a’ € X'. The theorem has been
proved.
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Observe that in the proof of the theorem we used only the fact that X was
a free G-space whereas X' must be a principal G-space.

4. Induced Bundles of Principal Bundles

The next proposition says, in effect, that the property of being a G-bundle or
principal G-bundle is stable under the operation of taking induced bundles.

4.1 Proposition. Let X be a G-space with an associated bundle ¢ = (X, p, B).
For each map f: B, — B the total space X, of f*(¢) = (X,,p,,B;) has a natu-
ral G-space structure, and there is a homeomorphism g: X, mod G — B, making
the following diagram commutative.

x, L x

p
P,

X,modG - B, » B

Moreover, the G-space structure on X, can be chosen in exactly one way such
that f; is a G-morphism. Finally, if (X,p,B) is a principal G-bundle,
(X4,p,,By) is a principal G-bundle.

Proof. We define the action on X, by G with the relation (b, x)s = (by, x5),
where p(xs) = p(x) = f(b;). Then f.((b;,x)s) = fi(by,xs) = xs = fi(by, X)s,
and f; is a G-morphism. Moreover, if f; is a G-morphism, G must act on X,
by the relation (b, x)s = (by, xs).

Next we define g((b,,x)G) = b,. Since X, mod G has the quotient topol-
ogy, the function g is continuous. Since p is surjective, the map g is surjective.
Since p(x) = p(x') if and only if x" = xs, s € G, the map g is injective. If W is
an open subset of X, mod G, then n~! (W) is an open subset of X, and g(W) =
p,(n~*(W))is an open subset of B,. Note that p, is an open map by 2(5.9) and
(1.4). Therefore, g is a homeomorphism.

Finally, if t: X* — G is a translation map for a principal G-space X, then
7,: X§¥ — G, defined by 7,((by, x), (by,x")) = 7(x,x’), is a translation map for
X,. Observe that ((b;, x), (b1, x")) € X¥ if and only if b; = b and (x, x’) € X*.

4.2 Theorem. Let (v, f): n > & be a morphism of principal G-bundles, and let
NS f*&) I3 ¢ be the canonical factorization given in 2(5.5). Then g is a princi-
pal bundle isomorphism over B(n), and therefore n and f*(&) are isomorphic
principal G-bundles. Finally, f*: Bung(G) — Bung (G) is a functor.

Proof. We recall g: X(n) — X(f*(&)) is given by g(x) = (p,(x), v(x)). Then we
have g(xs) = (p,(x), v(x)s) = g(x)s. Since f*(£)is a principal G-bundle by (4.1),
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g is a B(n)-isomorphism of principal bundles by (3.2). The last result follows
from 2(5.6).

Note the similarity of this theorem with 3(3.2). Theorem 3(3.2) plays an
important role in the homotopy classification of vector bundles, and Theo-
rem (4.2) is very important for the homotopy classification of principal bun-
dles and fibre oundles.

5. Definition of Fibre Bundles

Let ¢ = (X, p, B) be a principal G-bundle, and let F be a left G-space. The
relation (x, y)s = (xs, s”' y) defines a right G-space structure on X x F. Let X
denote the quotient space (X x F)mod G, and let pp: Xz — B be the factori-
zation of the composition of X x F BxLB by the projection X x F — X.
Explicitly, we have pg((x, y)G) = p(x) for (x,y) e X x F.

5.1 Definition. With the above notations, the bundle (X, pr, B), denoted
E[F], is called the fibre bundle over B with fibre F (viewed as a G-space) and
associated principal bundle & The group G is called the structure group of
the fibre bundle [ F].

Roughly speaking, a principal G-bundle ¢ = (X, p, B) consists of a copy of
G for each point b € B all “glued together” by the topology of X. The asso-
ciated fibre bundle £[ F] consists of a copy of F for each point of B all “glued
together” in a manner prescribed by the topology of the total space X, the
action of G on X, and the action of G on F. This gluing is done using the
quotient space X x F modG.

5.2 Example. Let ¢ be the principal Z,-bundle S* - RP! = S?, and let F =
[—1, + 1] be the left Z,-space with action (+ 1)t = +¢. Then [ F] is the fibre
bundle consisting of the Moebius band as total space.

The process of going from the principal bundle to the fibre bundle is
achieved in this case by “clamping” [ — 1, + 1] onto the two points of S* over
a given point of RP! = S! and by “sliding” the segment around on the base
space to get the total space consisting of the Moebius band. In general, the
total space of £[F] reflects the “twist” in the topology of the total space X
and the “twist” in the action of G on F. In the next proposition we prove that
E[F] is a bundle with fibre F.

5.3 Proposition. Let £[F] = X (X, pr, B) be the fibre bundle with associated
principal G-bundle ¢ = (X, p,B) and fibre F. For each b € B, the fibre F is
homeomorphic to pg*(b).

Proof. Let p(xo) = b for some x,€ X, and let f(y) = (xo,y)G be a map
f: F = Xp. Since pg((xo,y)G) = p(x,) = b, we can view f: F — pg'(b) by the
restriction of range from Xy to pp'(b).
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>

Figure 3

We prove that f has a continuous inverse by considering the map g,:
p (b) x F — F given by g,(x, y) = t(x,, x)y, where t: X* — G is the transla-
tion map of the principal G-space X. Clearly, we have g, (xs,s'y) = g,(x, y),
and by factoring through the restriction of the quotient map X x F — X, we
get a map g: pr'(b) — F. By the construction, f and g are inverse to each
other.

6. Functorial Properties of Fibre Bundles

Let (u, /): (X, p, B) > (X', p’, B') be a principal bundle morphism, and let F be
a left G-space. The morphism (u, f) defines a G-morphism u x 1z: X x F —
X' x F, and by passing to quotients, we have a map up: Xy — X such that
(up, [): CLF] - E'[F], where ¢ = (X, p, B) and {' = (X', p’, B).

6.1 Definition. A fibre bundle morphism from &[F] to &'[F] is a bundle
morphism of the form (ug, f): E[F] — & [F], where (u, f): £ — &' is a principal
bundle morphism. If B = B’ and f = 1, then ugp: E[F] — E'[F] is called a
fibre bundle morphism over B.

The rest of this chapter is devoted to the study of the category of principal
G-bundles and the category of fibre bundles with fibre F and structure group
G.

6.2 Proposition. The functions &+ E[F] and (u, f)— (ug, f) define a functor
Jfrom the category of principal G-bundles to the category of bundles, admitting
the structure of a fibre bundle with fibre F and structure group G.

Proof. Let (u, f): £ > & and (u', f'): & — &” be principal G-bundle morphisms.
By applying the quotient space functor to (u'u) x 1p = (u’ x 1g)(u x 15), we
get (u'u)p = upup. Similarly, we have (1y)F as the identity.

A fibre bundle morphism (ug, f): E[F] — £[F] is a fibre bundle isomor-
phism if and only if (4, f): £ — & is a principal bundle isomorphism. This is
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an example of the fact that the properties of a fibre bundle merely reflect
the properties of the associted principal bundle. On the other hand, the
properties of a fibre bundle as a bundle reflect also the nature of the action of
the group on the fibre; see Exercises 4 and 5.

6.3 Proposition. Let £ = (X, p, B) be a principal G-bundle and E[F] a fibre
bundle. For each map f:B; — B there is a canonical isomorphism g:
S*ELF]) — f*(&)[F] of bundles over B1 such that the natural morphism fyy:

THELF]) - ELF] factors by f*E[F]) % &) [F1-L2 ¢[F].

Proof. The total space X, of f*(£[F]) consists of pairs (b,,(x, y)G), where
f(by) = pe((x,y)G) = p(x) and fyf, is given by the relation fyp(by,(x,y)G) =
(x,y)G. The total space X, of f*(&)[F] consists of pairs ((b;, x), y)G, where
f(by) = p(x) and (f;)r is given by the relation (f;)¢(((b;,X), y)G) = (x,y)G. We
define the isomorphism g by the relation g(b,,(x,y)G) = ((b;, x),y)G. This
isomorphism is the result of applying the quotient space functor to the
canonical G-isomorphism B x (X x F)— (B x X) x F and observing that
(by,xs,57'y) = (b;,x,y)forb, e B,,xe X,ye F,seG.

6.4 Corollary. Let £[F] be a fibre bundle over B, and let A = B. Then £[F]|A
and (&| A)[F] are canonically A-isomorphic as bundles.

7. Trivial and Locally Trivial Fibre Bundles

Let ¢ be the product principal G-bundle (B x G, p, B). For each left G-space
F, the fibre bundle ¢[F] = (Y, q, B) is B-isomorphic over B to the product
bundle (B x F,p,B). Let g: Y - B x F be defined by g((b, s, y)G) = (b, sy).
Then g is a B-isomorphism.

7.1 Definition. Two principal G-bundles ¢ and # over B are locally isomor-
phic provided each b € B has an open neighborhood U such that &/U and
n|U are U-isomorphic (as principal bundles). Two fibre bundles [F] and
n[F] are locally isomorphic provided ¢ and # are locally isomorphic.

7.2 Definition. A principal G-bundle £ over B is trivial or locally trivial pro-
vided ¢ is a principal G-bundle that is isomorphic or locally isomorphic to
the product principal G-bundle. A fibre bundle &[F] is trivial or locally
trivial provided ¢ is trivial or locally trivial, respectively.

In view of Corollary (6.4), a principal bundle or a fibre bundle that is
trivial or locally trivial is trivial or locally trivial as a bundle. Conversely, it is
possible for a fibre bundle to be trivial as a bundle but not trivial as a fibre
bundle; see Exercise 4.
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8. Description of Cross Sections of a Fibre Bundle

The following theorem is of great importance for the classification of princi-
pal bundles and fibre bundles, because it yields a criterion for trivality of a
principal bundle and a means of constructing principal bundle morphisms.

8.1 Theorem. Let ¢ = (X,p,B) be a principal G-bundle, and let E[F] =
(X, pr, B) be an associated fibre bundle, where F is a left G-space. The cross
sections s of the bundle £[F] are in bijective correspondence with maps ¢:
X - F such that ¢(xt) =t 1¢(x) for xe X, t € G. The cross section corre-
sponding to ¢ is s4(xG) = (x, #(x))G in X for each xG € B.

Proof. Since (xt,¢(xt))G = (xt,t 1 $(x))G = (x,¢(x))G in Xp =X x FmodG,
the function s, is well defined. Since s, is the factorization of x+— (x, #(x))G
by the quotient map p, the function s, is continuous. Clearly, the relation
Pr(54(xG)) = pr((x,#(x))G) = p(x) = xG holds, and the map s, is a cross
section.

Conversely, let s be a cross section of £[F], and let ¢: X — F be defined
by the relation s(xG)= (x,¢,(x))G for each xe X. Since (x,¢,(X))G =
(xt, t 19 (x))G = (xt, ¢(xt))G, and since s is a cross section, the function ¢,
satisfies the relation ¢ (xt) = t ' ¢,(x) for each x € X, t € G.

Finally, if we prove the continuity of ¢, the theorem will be proved
because ¢+—s, and s— ¢, are functions that are inverse to each other.
Let xo € X, Yo = @s(x0), by = p(x¢), and s(by) = (x,y0)G. Let W be an open
neighborhood of y,. By the continuity of the action of G on F, there exist
open neighborhoods W' of y, and N of 1 in G such that NW' < W. Let V be
an open neighborhood of x, in X such that t((V x V)N X*) < N, where 7 is
the translation function of £. Since s is a map, there exists an open neighbor-
hood U of b, such that s(U) = (V x W')mod G. We replace V by p"*(U)N V.
The relation s(U) = (V x W')mod G is preserved, and p(V) = U. To prove
&(V)= W, let xe V and b = p(x) e U. Then s(b) = (x',y')G, where x" e V
and y'e W'. Since (x,y)G = (x1(x,x"),y)G = (x,t(x,x")y’ )G, we have
&y(x) = 1(x,x")y' e NW' < W and ¢,(V) = W. This proves the theorem.

By observing that ¢;: X — F is just a G-morphism with respect to G acting
on the right of X and F, we have two applications of Theorem (8.1) in the
next corollaries.

8.2 Corollary. Let ¢ = (X,p,B) and & = (X',p’,B’) be two principal G-bun-
dles. All principal G-bundle morphisms & — & are of the form (s, f), where s is
a cross section of E[X']. Moreover, using the equality Xy = X%, we have
/= (px)s.

The following diagram illustrates the situation in this corollary:
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Xy =X x X’mod G = X}

J 1

B s B

Proof. By Theorem (8.1) the set of cross sections of [ X’'] are in bijective
correspndence with G-morphisms ¢;: X — X', that is, maps ¢,: X — X’ with
(xt) = 171 y(x) = gy(x)t.

From the relation f = (py)s, we observe that s(xG) = (x,d,(x))G and
Px(s(xG)) = px((x, 4,(x))G) = px(¢y(x)) for x € X. Since f(xG) = px(¢y(x)), we
have the relation f = (p)s. This proves the corollary.

This corollary reduces the problem of the existence of a principal bundle
morphism ¢ — £’ to a more manageable problem of the existence of a cross
section. In particular, we can apply the results of Chap. 2, Sec. 7. An appli-
cation of this corollary is a decisive step in the homotopy classification of
locally trivial fibre bundles, and it plays a role similar to that of Gauss maps
for vector bundles.

8.3 Corollary. The following are equivalent statements for a principal G-
bundle ¢ = (X, p, B).

(1) The bundle & has a cross section.

(2) The bundle & is isomorphic to f*(n), where n is the product bundle over a
point and f is the unique constant map.

(3) The bundle €& is trivial.

Proof. Since as bundles & = £[G], we use (8.1) to prove the equivalence of
statements (1) and (2). The set of cross sections of & are in bijective correspon-
dence with maps ¢: X — G such that ¢(xt) =t @(x) = d(x)t. If f: B— * is
the unique constant map, it is induced by ¢, and by Theorem (4.2), the princi-
pal bundles & and f*(r) are isomorphic. Clearly, statement (3) implies (1), and
statement (2) implies (3) because the induced bundle of a trivial bundle is
trivial, by (4.2).

9. Numerable Principal Bundles over B x [0, 1]

This section has the same objectives as Sec. 4 in Chap. 3. Instead of consider-
ing all bundles over a paracompact space, as in Chap. 3, we consider numera-
ble bundles over an arbitrary space.

9.1 Definition. An open covering {U;}; s of topological space B is numera-
ble provided there exists a (locally finite) partition of unity {u;};.s such that

u;1((0,1]) = U, for each i € S.
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It is a standard result that a Hausdorff space B is paracompact if and only
if each open covering is numerable.

9.2 Definition. A principal G-bundle & over a space B is numerable provided

there is a numerable over {U;};.s of B such that £|U; is trivial for each i € S.
Observe that each numerable principal G-bundle is locally trivial and each

locally trivial principal G-bundle over a paracompact space is numerable.

9.3 Proposition. Let f: B' — B be a map, and let & be a numerable bundle over
B. Then f*(£) is a numerable bundle over B'.

Proof. Suppose that &|U; is trivial, where {U;}; s is an open covering of B
and {u;}; s is a locally finite partition of unity with the closure of u; 1(0,1) =
U, for each i € S. Then f*(&)|f~*(U;) is trivial, and {u;f};.s is a locally finite
partition of unity with the closure of (1;/)™*(0,1] = f~*(U;) for each i € S.
The results and the arguments proceed as in Sec. 4 of Chap. 3. Where the
proof in this more general situation is completely parallel to that given in
Chap. 3, we omit the argument and leave it as an exercise for the reader.

9.4 Lemma. Let & be a principal G-bundle over B = B;UB,, where B, =
A x [a,c]and B, = A x [c,b] fora < ¢ < b. If ¢|B, and £|B, are trivial, then
& is trivial.

In order that the argument in 3(4.1) should apply, we have only to observe
that the automorphisms h: B x G — B x G are of the form h(b, s) = (b, g(b)s),
where g: B — G is the map given by (b, g(b)) = h(b, 1). This follows from the
relation h(b, s) = h(b, 1)s = (b, g(b)s).

The next lemma is the analogue of 3(4.2), but a more delicate argument is
required here for the proof which is essentially due to Dold [4].

9.5 Lemma. Let ¢ be a numerable G-bundle over B x I (where I = [0,1]).
Then there exists a numerable covering {U,};.s of B such that &|(U; x 1) is
trivial for each i€ S.

Proof. Let {v;};.r be a (locally finite) partition of unity of B x I such that
&lv;71(0,1] is trivial for each j € T. For each r-tuple k = (k(1),...,k(r)) € T", we
define

o) = [] min{vy(x0)} forte [‘1: 1’ Q:|

1=g=sr

Then v,: B— I is continuous. Moreover, we have v,(x) > 0 if and only if
x x [(q — 1)/r,q/r] = v33,(0,1] for each 1 < g <r. This means, in view of
(9.4), that it suffices to prove that the family of open sets {v;'(0,1]} for all
ke T" and all r is a numerable covering of B, because &|(v;1(0,1] x I) is

trivial.
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Each (x,t) € B x I has a neighborhood which is contained in one set U,
and which intersects only a finite number of sets U;. Since I is compact, there
are for each x € B a neighborhood N and a natural number r such that

(1) N x [(qg — )/r,q/r] = Uy, for some k(q) e T foreach 1 < g <r.
(2) N x I intersects only a finite number of V; = v;1(0,1] forje T.

By property (1), {v;*(0,1]} is a covering of B, and by property (2), for a
given r, the family of {v,} for k € T is locally finite.

Now we augment the maps v, in such a way that we get a locally finite
partition of unity. Let w,(x) denote the sum of all the functions v,(x) with
k = (k(1),...,k(s)) and s < r. We define

U (x) = max(0, v, (x) — rw,(x))

For x € B, we have a k = (k(1),..., k(r)) with r minimal with respect to the
property that v,(x) > 0. Then w,(x) =0 and wu,(x) = v(x). Consequently,
the sets u, '(0, 1] form an open covering of B. Moreover, let m > r such that
vg(x) > 1/m. Then we have w,(x) > 1/m and mw,(y) > 1 for all y in a
neighborhood of x. In this neighborhood all u, with k = (k(1),...,k(s)) and
s = m vanish, and consequently the system {u,} is a locally finite partition of
unity such that &|(U, x I) is trivial where U, = u;'(0,1]. This proves the
proposition.

As with Theorem 3(4.3), the next theorem is the major step in the develop-
ment of the homotopy properties of numerable principal G-bundles. The
method of proof in the next theorem is essentially due to Milnor who intro-
duced it in the setting of microbundles.

9.6 Theorem. Let r: B x I > B x I be the map r(b,t) = (b, 1), and let £ be a
numerable principal G-bundle over B x I. Then there exists a G-morphism
(g.r): &= &

Proof. By (9.5) there is a numerable covering {U;};.s of B such that &|(U; x I)

is trivial. Moreover, there are maps u;: B — [0, 1] such that u;*(0,1] < U; and

such that max u;(b) = 1 for each b € B. The maps u; are easily constructed
ieS

from the partition of unity. Let h: U; x I x G- p ' (U; x I) = E(&) be a

(U, x I)-isomorphism of principal G-bundles.

We define a morphism (g;,r;): £ —» £ with the requirements that r(b,t) =
(b, max(u;(b), 1)), g; is the identity outside p~'(U; x I), and g;(h;(b,t,s)) =
h;(b, max(u;(b), t), s) for each (b,t,s) € U; x I x G. We choose a well ordering
on the set I. For each b € B, there is an open neighborhood U(b) of b such
that U;N U(b) is nonempty for i € I(b), where I(b) is a finite subset of I. We
define r = ry,)"* i, on U(b) x I and g = gy(,)" " giy,yon p_ (U (b) x I), where
I = {i(1),...,i(n)} and i(1) < i(2) <--- < i(n). For i¢I(b) the map r; is the
identity on U(b) x I, and g; is the identity on p~*(U(b) x I). The maps r and
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q are infinite compositions of maps where all but a finite number of terms
equal the identity near a point.

9.7 Corollary. With the notations of (9.6), the principal G-bundles & and r*(&)
are isomorphic over B x I.

Let £ = (X, p, B) be a principal G-bundle, and let W be a locally compact
space. Then the relation (x,w)s = (xs,w) defines a right G-space structure
on X x W. The translation map 1, for X x W is defined by the relation
7,.((x, w), (x',w)) = 1(x,x), where 1 is the translation map for X mod G and
X X W (X x WymodG are identification maps, and the function ¢:
(X x Wymod G — (X mod G) x W, where ¢((x,w)G) = (xG,w), is a homeo-
morphism. We are most interested in the above construction for W = [0,1] = L.
The following result is a corollary of (9.6) and (9.7).

9.8 Theorem. Let ¢ be a numerable principal G-bundle over B x I. Then
the bundles &, (E|(B x 1)) x I, and (&|(B x 0)) x I are G-isomorphic. If
&: B— B x I is the map ¢,b) = (b,i) for i =0, 1, then e}(&) and () are
B-isomorphic bundles.

Proof. Observe that r*(¢) and (&|(B x 1)) x I are (B x I)-isomorphic
principal G-bundles, where r(b, t) = (b, 1). By (9.7), r*(£) and £ are isomorphic
bundles, and consequently & and (¢|(B x 1)) x I are isomorphic principal
G-bundles. Similarly, & and (¢|[(B x 0)) x I are isomorphic.

For the last statement, observe that re, = ¢,, and the bundles r*(&)|(B x 0)
and &|(B x 0) are G-isomorphic. Therefore, ¢¥(&) = e§r*(&) and e§(&) are
isomorphic principal G-bundles. This proves the theorem.

As a corollary we have the following result.

9.9 Theorem. Let ¢ be a numerable principal G-bundle over B, and let
fi: B> B be a homotopy. Then the principal G-bundles f}(&) and f¥(€) are
isomorphic over B’

Proof. Consider the homotopy f: B’ x I - B and the maps ¢;: B'— B’ x I,
where ¢(b) = (b,i) for i =0, 1. Clearly, we have f; = f¢, and f*() is
isomorphic to ¢*f*(£). By (9.8) we have the result.

10. The Cofunctor kg

For each space B, let kg;(B) denote the set of isomorphism classes of
numerable principal G-bundles over B. Let {¢} denote the isomorphism class
of the principal G-bundle ¢ over B. For a homotopy class [ f]: X —» Y we
define a function kg([f]): kg(Y)— kg(X) by the relation kg([f1){¢} =
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{f*(&)}. By Theorem (4.2) the element { f*(¢)} is independent of the represen-
tative & of {£}, and by Theorem (9.9) it is independent of the representative f
in [ f]. Consequently, kg([ f]): kg(Y) = kg(X) is a function.

Let H denote the category of all spaces and homotopy classes of maps.

10.1 Theorem. The collection of functions kg: H — ens is a cofunctor.

Proof. Let f: X > Y and g: Y —> Z be two maps, and let £ be a numerable
principal G-bundle over Z. Then the bundles (gf)*(¢) and f*(g*(&)) are
isomorphic over X by the construction used in 2(5.7). Therefore, we have

ke(Lgl1LSf]) = kg(LfDks([g])- Since & and 1%(£) are isomorphic over Z, the
function kg(1,) equals the identity on kg (Z).

From general properties of cofunctors we have the next corollary.

10.2 Corollary. If f: X > Y is a homotopy equivalence, k([ f]): kg(Y) —
kg(X) is a bijection.

10.3 Corollary. If X is contractible, each numerable principal G-bundle over
X is trivial.

Proof. Observe that kg(x) has only one point, the class of the trivial bundle.
Now use (10.2).

Let w = (Ey, po, By) be a fixed numerable principal G-bundle. For each
space X we define a function ¢,(X): [X,B,]— kg(X) by the relation
(X)) [u] = {u*(w)}. By (9.9), 4,(X) is a function.

10.4 Proposition. The set of functions ¢,:[—,By]— kg is a morphism of
cofunctors defined H — ens.

Proof. Let f: X —> Y be a map, and let [u] be an element of [Y,B,]. We
compute

$o(X)[[f1, Bo][u] = ¢ (X)([u][f]) = {(uf)¥(w)}
and

k(LS DoY) [u] = k(LS D{ut(@)} = {f*u*(@))}

Therefore, we have ¢, (X)[[f1, By] = ke([f1)4,(Y), and ¢, is a morphism of
cofunctors.

10.5 Definition. A principal G-bundle @ = (E,, po, By) is universal provided
® is numerable and ¢,: [ —, B,] — kg is an isomorphism. The space B, is
called a classifying space of G.

From general principles, @,:[—,By,] = kg is an isomorphism of co-
functors if and only if each function ¢, (X): [ X, By] = kg(X) is a bijection.
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10.6 Proposition. A numerable principal G-bundle w = (E,, py, By) is univer-
sal if and only if the following are true.

(1) For each numerable principal G-bundle & over X there exists a map f:
X — B, such that & and f*(w) are isomorphic over X.

(2) If f, g: X — B, are two maps such that f*(w) and g*(w) are isomorphic over
X, then f and g are homotopic.

Proof. Observe that condition (1) says that ¢,(X) is surjective and (2) says
that ¢,(X) is injective.

This criterion for a bundle to be universal leads to the following definition.

10.7 Definition. A bundle w is called n-universal, or universal for dimensions
< n, provided ¢,(X) is a bijection for each CW-complex X with dim X < n.

11. The Milnor Construction

In this section, we consider the very simple elegant construction for a uni-
versal G-bundle and prove that the conditions of (10.6) are satisfied.

11.1 Definition of the G-space E;. For a group G, there is an infinite join
An element of E is denoted <{x, t) and written

<X,t> = (IOXO’tlxlv‘--’thka”‘)

where each x; € G and ¢; € [0, 1] such that only a finite number of ¢; # 0 and
Y t;=1.In the set E; there is the identification {(x,t) = {x’,t') provided
0=i

t; =t} for each i, and x; = x| for all i with t; = t; > 0. Observe that if t; = t; =
0 then x; and x; may be different but (x,t) = {x',t’) in the set E;. We
define a right action of G on E; by the relation {x,t)y = <{xy,t) or
(toXo,t1X1s-..)Y = (toXo¥, t1 X, Y,...) for y e G.

Now we put a topology on E in such a way that E is a G-space. For this
we consider two families of functions ¢t;: Eg — [0, 1] for 0 < i, which assigns
to the element (t5xq, ¢, X;,...) the component ¢; € [0,1], and x;: t7'(0,1] > G
for 0 < i, which assigns to the element (¢yx,t; X;,...) the component x; € G.
Observe that x; cannot be uniquely defined outside ¢; (0, 1] in a natural way.
For a e E; and y € G there are the following relations between the action of
G and the functions x; and ¢;:

xi(ay) = xi(a)y and ti(ay) = t(a)

The set E; is made into a space by requiring it to have the smallest toplogy
such that each of the functions t;: E; — [0,1] and x;: t;*(0, 1] — G is continu-
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ous, where t71(0, 1] has the subspace topology. From the relations t;(ay) =
t;(a) and x;(ay) = x;(a)y it is clear that E; is a G-space because the G-set
structure map E; x G — E is continuous.

We denote the quotient space E; mod G by B, and the resulting bundle by
wg = (Eg, p, Bg). This is the Milnor construction.

11.2 Theorem. The G-bundle wg is a numerable principal G-bundle.

Proof. First, we prove that wg is a principal G-bundle. The translation func-
tion t(a,a’) is given by the continuous function x;(a)x;(a’)"! on the open set
(710,17 x t7'(0,1]) N E¥, where E¥ is the subspace of pairs (a,a’) with
p(a) = p(a’) in B;. Finally, we observe that the open sets t;1(0,1] x ¢;71(0,1]
for 0 < i cover E¥. Consequently, wg is a principal G-bundle.

Since t;(ay) = t;(a) for y € G, we can define a unique map u;: B; — [0, 1]
with the property that u;p = t; on E;. Now we show that g is trivial over
each V; = u;1(0,1] = p(t;7*(0, 1]) by defining a cross section s; of wg over V;.
For this we use the map s;: t;71(0,1] — ¢ (0, 1] defined by s/(a) = ax;(a)™".
This map has the property that s/(ay) = ay(x;(ay))™! = ay(x;(a)y)™ =
ayy~'x;(@)”! = ax,;(a)"* = s/(a). By passing to quotients, the map s; defines a
map s;: V;— t71(0,1] < Eg such that s = s;p. Since p(a) = p(si(a)) for each
a e t;'(0,1], we have ps;(b) = b for b e V.. By (8.3) the existence of a cross
section implies that wg|V; is a trivial principal G-bundle.

Finally, to show that wg is numerable, we shall construct a (locally finite)
partition of unity {v;};<; on B; with v; 1(0,1] = ¥, = u;'(0,1]. We define

w;(b) = max(0,u;(b) — 3, u;(b))
j<i
and w;: B; —»[0,1] is a map with w;(0,1] = V;. For b € Bg, let w be the
smallest i such that u;(b) 0, and let n be the largest. Then we have
Y uib)=1. Then u,(b) = w,(b), and B; is covered by the open sets

w; 1(0,1]. Since u;(b) =0 for n < i, we have wy(b')=0 for all b’ with
Y u(b’)>3. This is an open neighborhood N,(b) of b such that
0<isn
N,(b)Nw;1(0,1] is empty for i > n. The open covering {w; (0, 1]} is locally
finite. Now we replace w; with v; = w;/}’ w;. This proves the theorem.
i

A
A

Observe that the spaces E; and By are filtered by subspaces
rcEg)c Eglh+ )= < Eg
* < Bg(n) = Bg(n + 1) =+~ = Bg
where p(Eg(n)) = Bg(n) and (tgxg,t; X;,...) € Eg(n), provided t; = O fori > n.

11.3 Example G = Z,. The space Eg(n) is just the n-sphere S" up to
homeomorphism, and the action of Z, on Eg(n) = S" is by the identity and



56 4. General Fibre Bundles

the antipodal map. The space Bg(n) is RP". The inclusions E;(n) < Eg(n + 1)
and Bg(n) < Bg(n + 1) are just the natural inclusions $" < $"*! and RP" <
RP"! The space E; is S® and B; is RP*.

The bundle (S"*!, p, RP"*!) is universal for dimensions < n.

11.4 Example G = S The space Eg(n)is just the (2n + 1)-sphere S*"*! up to
a homeomorphism, and the action of S* on Eg(n) = S***! is by the relation
(2o>2Z1s---r2,)e" = (e24,ez,,...,e"2,) for each e € S'. The space Bg(n)
is CP", complex n-dimensional projective space. The inclusions Eg(n) <
Eg(n + 1) and Bg(n) = Bg(n + 1) are just the natural inclusions $*"*! <
§2"*3 and CP" = CP"*!. The space E; is S°, and B; is CP*.

The bundle (§2"*!, p, CP") is universal for dimensions < 2n.

12. Homotopy Classification of Numerable
Principal G-Bundles

In this section, we prove that the bundle wg which comes from the Milnor
construction is a universal principal G-bundle.

12.1 Proposition. Let & be a numerable principal G-bundle over a space B.
Then there exists a countable partition of unity {u,},<, such that &|u;*(0,1] is
trivial for each natural number n.

Proof. Let {v;};.r be a partition of unity on B such that & is trivial over each
v;1(0,1] for i € T. For each b € B we denote the finite set of i € T with v;(b) >
0 by S(b), and for each finite subset S of T we denote by W(S) the open set of
b € B such that v;(b) > v;(b) foreachie Sand je T — S. Let ug: B— [0,1] be
the continuous map given by the

ieS,jeT—S

ug(b) = max [0, min  (v;(b) — vj(b))]

Then we have W(S) = ug'(0,1].

Let Card S denote the number of elements in S. If Card S = Card §’, then
W(S)N W(S’) is empty. To see this,letie S — S’ and je S' — S. For b e W(S)
we have v;(b) > v;(b), and for b e W(S') we have v;(b) > v;(b). The relations
cannot hold simultaneously.

Finally, we denote

Wo= U WI(©S) and w,(b)= 3} us(b)

m=Card § m=Card S

Then we have w,,*(0,1] = W,, and u,,(b) = w, /Z w,(b). The family {u,} is

the desired partition of unity since u, *(0, 1] = W,. Observe that &|W, is trivial
because &|W(S) is trivial and W, is a disjoint union.
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In the next theorem we prove that condition (1) of the criterion (10.6) for
w¢ to be a universal principal G-bundle holds.

12.2 Theorem. For each numerable principal G-bundle £ over a space B there
exists a map f: B — Bg such that & and f*(wg) are B-isomorphic principal
G-bundles.

Proof. Tt suffices to define a G-morphism (g, f): £ —» wg, for then, by (4.2), &
and f*(wg) are isomorphic. By (12.1) we can assume that there is a countable
partition of unity {u,},<, on Bsuch that &|u,*(0, 1] is trivial for n = 0. Let U,
denote u,'(0,1], and let h,: U, x G — E(¢|U,) < E(¢) be an isomorphism
defining the locally trivial character of &.

We define g: E(¢) —» Eg; by the relation

9(2) = (uop(2)(qoho (2)),.. ., unP(2)(quh, ' (2)),...)

where ¢,: U, x G — G is the projection on the second factor. Since for z,
where h,'(z) is undefined, we have u,(p(z)) = 0, the map g is well defined and
the relation g(zs) = g(z)s holds for each s € G since h,(zs) = h,(z)s. The map g
induces f: B — Bg and (g, f): £ > wg is a bundle morphism. This proves the
theorem.

We consider various maps B; — B;; determined by maps E; — Eg. Let EY
denote the subspace of all (x,t) € E; with t,;,, =0 for all i 2 0, and let EZ
denote the subspace of all (x,t) € E¢ with t,; = 0 for all i = 0. Let B be the
subspace p(EY') and B¢’ the subspace p(EY).

We use the following linear functions.

o, [1 =) 1= ()] -[0,1]
given by a,(t) = 2""'t — 2"*! 4+ 2. Clearly, we have o,(1 —(3)") =0 and

a,(1 — (3)"*!) = 1. We define a homotopy h%: E; — Eg such that h2%(x,t)y =
h24(xy, t) by the following relation h%(x,t) = (x',t') where for s € I,

, X; 0<i<n
X: =
! Xpej i=n+2j—1 for0 <j < o0
=n+2j
t; 0<i<n
ti =< 0u(8)t,-; i=n+2—1

(1 — o, ()t i=n+2j

and for s = 1 the relation (x',t') = (x,t). One can check that this is well
defined fors =1 — 27" e I,NI,_,. The homotopy is continuous because it is
continuous on the locally finite open covering of v;*(0, 1], where {v;} is the
partition of unity. The maps h®: E; — E; induce ¢g°%: B; — B such that
(h%4,g°%): wg — wg is a homotopy of bundle morphisms. Finally, we observe
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that h{(E;) = EY* and g3%(Bg) = B®. We have (he",gS): wg — wg by a simi-
lar construction, where h{'(Eg) = E§ and g§'(Bg) = Bg'.
In summary we have the following proposition.

12.3 Proposition. There are two homotopies (h, g2?), (he",gS"): wg — wg by
G-bundle morphisms of the identity 15: wg — wg, such that hy(Eg) = EZ,
988(Bs) = B, he'(Eg) = EY, and g&'(Bg) = BS'. The bundles wg, (95°)*wg,
and (g3’ )*wg are all isomorphic.

Proof. Only the last statement has to be checked. It follows from (h$¢, g9¢) =
(h$*,g%*) = 1 and Theorem (9.9).

Now we are in a position to check condition (2) of (10.6) for the bundle wg.

124 Theorem. Let f,, f;: X — Bg be two maps such that f§f(wg) and f{F(wg)
are isomorphic. Then f, and f, are homotopic.

Proof. Let & be any numerable principal G-bundle isomorphic to f§f(ws) and
f¥wyg). Then fy is homotopic to g§%f, by (12.3), and f, is homotopic to g&'f;
by (12.3). Consequently, by changing f, and f; up to homotopy, we can
assume that f,(X) = B2 and f,(X) = Bg'.

Now we define the G-morphism (k, f): & x [0, 1] - wg with f|X x 0 = f,
and f|X x 1 = f;. We have

k(z,0) = (to(2)x0(2), 0, t,(2)x,(2),0,...)

k(z,1) = (0,t,(2)x,(2),0,t5(2)x3(z),...)
and we prolong to k: E(¢) x I » E; by the function k(z,s) = ((1 — s) x
to(2)xo(2), st1(2)x,(2), (1 — 8)t,(z)x,(2), st3(2)x3(2),-..). Since clearly for ye G

we have k(zy, s) = k(z,s)y, the map k(z,s) induces a map f: X x I - B; such
that f(b,0) = f,(b) and f(b, 1) = f,(b). This proves the theorem.

12.5 Summary. The bundle wg; which arises from the Milnor construction is
universal.

13. Homotopy Classification of Principal G-Bundles
over CW-Complexes

Since all CW-complexes are paracompact (see Miyazaki [1]) and since all
open coverings of a paracompact space are numerable, the above results on
the homotopy classification of principal G-bundles apply to all locally trivial
principal G-bundles over a CW-complex. Using the results of Chap. 2, Sec. 6,
we derive the following more precise result.
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13.1 Theorem. Let B be a CW-complex, and let w = (X, po, By) be a locally
trivial principal G-bundle such that n,(X,) =0 for i <dimB. Then the
Sunction ¢,(B): [B, By] — kg(B) defined in the paragraph before (10.1) is a
bijection.

Proof. First, we prove that ¢,(B) is surjective. Let ¢ be a locally trivial
principal G-bundle over B. By Theorem 2 (7.1) under hypothesis (H1), the
fibre bundle £[ X, ] has a cross section. By Theorem (8.2) we have a principal
bundle morphism (u,f): ¢ > ®, and by Theorem (4.2) we have {{} =
(f*@)} = 4o B(SD.

Second, we prove that ¢, (B) is injective. Let f, g: B — B, be maps such that
{f*(w)} = {g*(w)}. By (8.2) the fibre bundle (f*(w) x I)[X,] has a cross
section s over B x {0,1}, resulting from the principal bundle morphisms
which are the compositions of (f*(w) x I)|(B x 0) > f*(w) > ® and
(f*(w) x D|(B x 1) > g*(w) » . By Theorem 2 (7.1) under hypothesis (H1),
this cross section s prolongs to a cross section s* of (f*(w) x I)[X,] over
B x I. By (8.2), we have a principal bundle morphism (w, h): f*(w) x [ » w
such that h(b,0) = f(b) and h(b, 1) = g(b) for b € B. This proves the theorem.

Exercises

1. Let X be a G-space, and Y a Hausdorff G-space. Prove that M(X, Y) is a closed
subset of Map (X, Y).

2. Let X be a G-space, where G is a finite group. Prove that X — X mod G is a closed
map.

3. Let H and G be two closed subgroups of a topological group I'. If H is a normal
subgroup of G, prove that I'mod H has a principal G/H structure with an asso-
ciated principal bundle (I'mod H, p, I' mod G), where p is the quotient of the
identity I’ -» I

4. Let ¢ be a principal G-bundle, and let G act trivially on the left of F, thatis, sy = y
for each s € G, y € F. Prove that £[F] is a trivial bundle with fibre F.

5. Let & be a principal G-bundle, and let G act on the left of F in such a way that for
some y, € F the result is ty, = y, for each t € G. Prove directly that ([F] has a
cross section, and then prove the result, using Theorem (8.1).

6. In Theorem (8.1), to what extent are the functions s — ¢ and ¢ — s, continuous if
the set of cross sections and the set of G-morphisms have the subspace topology
induced by the compact-open topology?

7. Let G be a discrete group. Formulate the property that X is a G-space and a
principal G-space in terms of the topology of X and the action of G on X.

8. Find a universal bundle for the group Z whose corresponding classifying space is
St

9. Find a universal bundle and classifying space for Z, such that the classifying space
is a CW-complex.



60

10.

11

12.

4. General Fibre Bundles

Let ¢ = (X}, p;» B;) be a principal G;-bundle, i = 1, 2. Then &; x &, = (X; x X,
P1 X pa, By x B,) has the structure of a principal G, x G,-bundle. If ¢; is a uni-
versal Gi-bundle, i = 1, 2, then &, x &, is a universal G; x G,-bundle.

Apply this theorem to prove the existence of a universal bundle with a CW-
complex as classifying space for each finitely generated abelian group (finite direct
sum of cyclic groups).

If u: G — H is a continuous group morphism, define a map B(u): B; = By. Under
what circumstances do you have a functor?

If X is an n-connected CW-complex and if Y is an m-connected CW-complex,
prove that X * Y is (n + m + 1)-connected.

. Let & = (X, p, B) be a numerable principal G-bundle. Prove that ¢ is universal if

and only if X is contractible.
Hint: See the article of Dold on partitions of unity, Theorem (7.5).



CHAPTER 5

Local Coordinate Description of
Fibre Bundles

In the first section, we show that, up to isomorphism, vector bundles are just
locally trivial fibre bundles with a finite-dimensional vector space V as fibre
and GL(V), the group of automorphisms of V, as a structure group. This is
done by examining how trivial bundles are pieced together, using systems of
transition functions to define a general locally trivial fibre bundle. We can
apply this analysis to prove a theorem which says that any continuous
functorial operation on vector spaces determines an operation on vector
bundles. This allows construction of tensor products, exterior products, etc.,
of vector bundles.

1. Automorphisms of Trivial Fibre Bundles

In 3(2.3) we saw that the B-morphisms of the trivial vector bundles u: B x F"
— B x F™ have the form u(b, x) = (b, f(b)u), where f: B — L(F", F™) is a map.
Moreover, u is an automorphism if and only if n = m and f(b): F" — F" is
a linear isomorphism for each b € B. A similar result holds for trivial fibre
bundles.

1.1 Theorem. Let ¢ = (B x G,p, B) be the product principal G-bundle. Then
the B-automorphisms & — £ over B are in bijective correspondence with maps
B — G. More precisely, the B-automorphisms of & have the form hy(b,s) =
(b, g(b)s), where g: B — G is a map.

Proof. From the relation hy(b,st) = (b, g(b)st) = (b,g(b)s)t = h,(b,s)t, it fol-
lows that h, is an automorphism with inverse morphism h;' = h,, where
g'(b) = g(b)~! for each b € B. Conversey, let h: £ —» ¢ be a B-automorphism.
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Since ph = p, we have h(b, s) = h(b, f(b, s)) for some map f: B x G — G. For
g(b) = f(b,1), we have h(b,s) = h(b,1)s = (b,g(b))s = (b,g(b)s) = h,(b,s). This
proves the theorem.

1.2 Corollary. Let F be a left G-space. The fibre bundle automorphisms
E[F1—-¢[F]1=(B x F,p,B) are all of the form hy(b,y) = (b,g(b)y), where
g: B— G is a map.

Proof. By (1.1), fibre bundle automorphisms are quotients of (b,s,y) —
(b,g(b)s, y). Since (b,g(b)s,y)mod G = (b,g(b)y), the fibre bundle automor-
phisms are of the form (b, y) = (b, g(b)y) = hy(b, y).

Note that for hy(b, y) = (b,g(b)y) and h,.(b,y) = (b,g’(b)y) we have hyh, =
h,,, and h, is the identity if and only if g(b) = 1 for each b € B.

2. Charts and Transition Functions

Let G be a group, and let Y be a left G-space. In this section, all principal
bundles are G-bundles, and all fibre bundles have fibre Y. For a space B, let
0(B) denote the product fibre bundle (B x Y, p, B). We view the total space of
a restricted bundle n| A as a subspace of the total space of #.

Since we have yet to relate formally the concepts of vector bundle and
fibre bundle, the above definitions and results are stated for both concepts. A
result of the following discussion is the relation between vector bundles and
fibre bundles.

2.1 Definition. Let # be a fibre bundle over B, and let U be an open subset of
B. A chart of 5 over U is an isomorphism h: (U) - 5| U.

A chart of a k-dimensional vector bundle n is a U-vector bundle
isomorphism U x F*¥ — y|U.

If h: B(U) —» n|U is a chart over U, and if V is an open subset of U, then h
restricts to a chart (V) — (n|U)|V = n|V of n over V.

2.2 Proposition. For two charts hy, h,: O(U) > n|U of n over U, there is a map
g: U — G such that h(b,y) = h,(b,g(b)y) for each (b,y)e U x Y. Moreover,
this g is unique. For two charts of n-dimensional vector bundles, the map g is
defined U - GL(n, F).

Proof. By (1.2), the automorphism h3'h,: 0(U)— O(U) has the form
hy'hy(b,y) = (b, g(b)y), and we have h,(b,y) = h,(b,g(b)y).

2.3 Definition. An atlas of charts for a fibre (vector) bundle # is a family of
pairs {(h;, V;)} for i € I such that h; is a chart of # over V; and the family of
open sets { ¥} covers B. An atlas is complete provided it includes all charts of
the bundle.
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A fibre bundle is locally trivial if and only if it has an atlas of charts. Then
it has a unique complete atlas. The covering associated with the atlas
{(h;, V;)} is the open covering {¥;}. A vector bundle is defined in terms having
an atlas of charts [see 3(1.1)].

Let {(h;, V;)} with i € I be an atlas for a fibre (vector) bundle n. We restrict
h; and h; to V;NV; and apply Proposition (2.2). There exists a unique map
g:.;: VNV, — G such that hj(b, y) = h(b, g, ;(b)y) for (b,y) e (V;NV}) x Y. The
functions g; ; on ¥;N V; have the following properties:

(T1) For each b e V,N VNV, the relation g; ,(b) = g, ;(b)g; ,(b) holds.
(T2) For each b € V,, the map g, ;(b) is equal to the identity in G.
(T3) Foreach b e VNV, the relation g; ;(b) = g; ;(b) holds.

Properties (T1) to (T3) follow from the fact that g; ; is the only map sat-
isfying the relation h(b, y) = hy(b, g; ;(b)y).

2.4 Definition. A system of transition functions on a space B relative to an
open covering {¥;} with i € I of B is a family of maps g, ;: ;N ¥; - G for each
i, j € I such that propertyy (T1) is satisfied.

Since g; i(b)g;,:(b) = g;,:(b) for b € V;, it follows that (T2), and similarly (T3),
is satisfied for a system of transition functions.

From the above discussion, there is a natural system of transition
functions {g; ;} associated with each atlas {(h;, V;)} of a fibre (vector) bundle
1, namely, those functions defined by the relations hj(b, y) = hy(b, g; ;(b)y).

2.5 Proposition. Let {(h;, V;)} and {h{,V;)} be two atlases for a fibre (vector)
bundle n with the same associated covering {V;} for i € I and with systems of
transition functions {g; ;} and {g; ;}. Let r;: V;— G be the unique maps such
that hi(b,y) = hy(b,r,(b)y) for b e V;and y € Y. Then g; ;(b) = ri(b)"*g; ;(b)r(b)
for eachbe VNV,

Proof. We  compute  hj(b,y) = hi(b, rj(b)y) = hy(b, g; ;(b)rj(b)y)  and
hi(b, g; j(b)y) = hy(b, r(b)g; j(b)y). Since hj(b,y) = hi(b, g; j(b)y), we have
ri(b)gi/,j(b) = gi,j(b)rj(b) or gi/.j(b) = ri(b)_lgi.j(b)rj(b)'

This proposition leads to the next definition.

2.6 Definition. Two systems of transition functions {g; ;} and {g; ;} relative
to the same open covering {V;} of a space B are equivalent provided there
exist maps r;: V; - G satisfying the relation (E): g} ;(b) = ri(b) g, ;j(b)r;(b) for
eachbe VNV,

The reader can easily verify that this relation is an equivalence relation.

2.7 Theorem. Let n and n' be two fibre bundles with fibre F and structure
group G over a space B or two vector bundles of dimension k with G =
GL(k,F). Let {(V;,h;)} be an atlas of n with transition functions {g; ;}, and let
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{(Vi,h})} be an atlas of n' with transition functions {g; ;}. Then n and n' are
isomorphic over B if and only if {g;;} and {g; ;} are equivalent systems of
transition functions.

Proof. Let f:n — n' be an isomorphism of fibre bundles or vector bundles.
From the relation hyb,y) = hi(b,g; ;j(b)y), it follows that fhyb,y)=
fhi(b,g; j(b)y), and {(V;, fh;)} is an atlas for " with transition functions {g, ;}.
By applying Proposition (2.5) to the atlases {V;,h;} and {(V, fh;)}, we find
that {g; ;} and {g, ;} are equivalent sets of transition functions.

Conversely, let g; ;(b) = ri(b)"'g; j(b)rj(b) for each b e V;N V;. We define f;:
V. x Y > V. x Yby fib,y) = (b,r,(b)"'y), and we define f: n — n’ by requiring
that f|(n|V,) = hif;hi* or hif; = fh;on V; x Y. For b € V;NV; the two defini-
tions of f lead to the same map. To see this, we choose (b,y) e (V;NV)) x Y
and prove that hifi(b,y) = fh;(b,y) implies h;f(b,y) = fh(b,y). For this
we make the following calculation:  hifi(b,y) = hj(b,r;(b)"'y) =
B (b, g /b)ry(b)™') = hi(b.r7 (b)gs (b)y) = hifi(b.g, (b)y). Using fhyb,y) =
fhi(b,g; ;(b)y), we have fhi(b,g; ;(b)y) = hif(b,g; ;(b)y) or fh; = h;f;. There-
fore, f is a well-defined map that is locally, and consequently globally, an
isomorphism.

2.8 Remark. Isomorphism classes of k-dimensional vector bundles and fibre
bundles with fibre F* and group GL(k,F) are determined by transition
functions that have values in GL(k, F). In the next section we see that a
bijection can be constructed between these two sets of isomorphism classes.

The discussion up to this point has been relative to a given covering {V;}
such that n|V; is trivial. If {¥}'} is a second open covering such that #|V} is
trivial, by working with {¥;N ¥/} we get an open covering for which charts
over V; and V; can be compared.

3. Construction of Bundles with Given
Transition Functions

3.1 Remark. Let n = £[Y] be a fibre bundle with fibre Y, structure group G,
and base space B. If {(V},k;)} is an atlas of # with transition functions {g, ;},
there is an atlas {(V,,h;)} of ¢ with transition functions {g;;}, where
h([Y]) = k.

3.2 Theorem. Let {V;} with i € I be an open covering of a space B, let G be a
topological group, let Y be a left G-space, and let {g; ;} be a system of transi-
tion functions associated with the open covering {V;}. Then there exist a fibre
bundle n = £[Y] and an atlas {(V;,h;)} for n such that the set of transition
functions of this atlas is {g; ;}. Moreover, if Y = F* and if G is a closed
subgroup of GL(k, F), then n admits the structure of a vector bundle. Finally, n
is unique up to B-isomorphism.
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Proof. By Theorem (2.7), if n exists, it is unique. We begin by constructing ¢.
For this, let Z be the sum space (i.e., coproduct or disjoint union) of the
family {V; x G} for i € I. An element of Z is of the form (b, s, i), where b € V;
and s e G. The inclusion maps ¢;: V; x G — Z are defined by the rela-
tion g¢;(b,s) = (b,s,i), and Z has the larget topology such that all the g; are
continuous.

On the space Z, we define an equivalence relation R by the requirement
that (b,s,i) and (b’,s',j) are R-related provided b = b’ and 5" = g; ;(b)s. From
properties (T1) to (T3) for transition functions we see that R is an equivalence
relation. Let X be the quotient space Z mod R, let g: Z — X be the canonical
quotient map, and let h; = ggq; for each i € I. We denote by (b,s,i) the class
of (b, s, i) in the space X.

We define p: X — B by p({b,s,i)) = b. Since p is a quotient of a projec-
tion, it is an open map. For b € V;, we have ph;(b,s) = b, and h;: V; x G > X
is a continuous injection.

The group acts on Z by the requirement that (b, s, i)t = (b, st,i). If (b, s, i)
and (b, s',j) are R-related, then (b, st,i) and (b,s't,j) are R-related. Therefore,
X becomes a G-space under the action of G defined by <b,s,i)t = <{b,st,i).
Clearly, we have p(x) = p(x’) if and only if xt = x’ for some t € G, and xt = x
implies that ¢ = 1. The translation function t(<{b,s;,i),<{b,s,,j>)=
1(<b,s1,1),<{b,g; j(b)s,,i)) = s7'g; j(b)s, is continuous. Consequently,
(X, p, B) is a principal G-bundle since p is an open map.

Since hy(b, s)t = <{b,s,iyt = {b,st,i) = h;(b,st), the maps h;: V; x G - ¢|V;
are G-isomorphisms. From the relation hy(b,g; j(b)s) = {b,g; j(b)s,i) =
<b,s,j> = hj(b,s), the set of functions {g; ;} is the set of transition functions
for the atlas {(V;, h;)}.

Finally, to define a vector bundle structure on n = E[F*], we require
a(x,y)mod G + a’(x,y’ )mod G = (x,ay + a’y’)mod G. If k;: V; x F¥— p~!(V))
is the chart given by the relation k;(b,y) = ((b,1,i)y)mod G, then k; is a
Vi-isomorphism of vector bundles.

3.3 Remark. There is a bijection between isomorphism classes of fibre
bundles with fibre F* and group GL(k, F) and isomorphism classes of k-
dimensional vector bundles. In both cases these isomorphism classes are
determined by an equivalence class of transition functions associated with a
complete atlas of a member of the isomorphism class. Moreover, if ¢ is a
principal GL(k, F)-bundle, then ¢[F*] is a vector bundle where the vector
space operations on F* determine the vector space operations on the fibres of

ELF].

4. Transition Functions and Induced Bundles

In this next proposition we calculate the transition functions of induced
bundles.
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4.1 Proposition. Let n = E[Y] be a fibre bundle over B with group G and
fibre Y, let f: B, > B be a map, and let {(V,,h;)} be an atlas for n with transi-
tion functions {g, ;}. Then {(f ~(V;), /*(hy)} is an atlas for f*(1) = f*(E)[Y]
with transition functions {g; ;f}.

Proof. By 4(4.2) and 4(6.3) the morphism f*(h;): 0(f 2(V})) = f*()|f (V)
is an isomorphism given by f*(h;)(b,,y) = (b, hi(f(b;),y)). If hy(b, g, ;(b)y) =
hj(b’ ), we have f*(hi)(bl’gi,j(f(bl))y) = f*(hj)(bu}’)a and {gi,jf} is the set
of transition functions for f*(n).

5. Local Representation of Vector Bundle Morphisms

Let £ =(X,p,B), n =(X',p’,B), and { = (X",p", B) be three vector bundles
over B with atlases {(U,,h,)} for ae A, {(V;,h})} for i eI, and {(W,,h})} for
r € R, respectively. Let {g,,} for a, be A4, {g;;} for i, jeI, and {g,} for r,
s € R be the transition functions for ¢, n, and {, respectively.

Let u: £ - n be a vector bundle morphism. Over the open set U, N V;, there
are the following vector bundle morphisms:

(U,N V) x F'—" (U, N V)= n|(U,N V)= (U,N W) x ™

The composition of these morphisms has the form (z, x) — (z, u; ,(z)x), where
U .o U,NV, - L(F",F™) is a map.

5.1 Proposition. With the above notations, there is a bijection between the set
of vector bundle morphisms u: £ — n and sets of maps {u; ,}, whereie I, a € A,
and u; ,: U,NV;— L(F", F™) such that for ze U,NU,N VNV,

(C): u; p(2) = g;,:(2)u; 1(2)9,,5(2)

Moreover, the maps u;, corresponding to u are given by h; ‘uh,(z,x) =
(Za ui,a(z)x)'

Proof. For given u: £ — n we begin by verifying the relation (C) of compati-
bility. For this, we calculate

hJ{(Z’ uj»b(z)x) = uhb(za X) = uha(z’ ga,b(z)x) = h,',(z, ui.a(z)ga,b(z)x)
= hj(z,9},(2)t;, o(2)g4,5(2) ).

Since h; is an isomorphism, we have the desired relation.

Conversely, for each family {u; ,} of maps satisfying (C), a corresponding
morphism u: ¢ —>#n is defined uniquely by the relation uh,(z,x)=
hi(z,u; ,(z)x). Observe that the images of h, cover X and the compatibility
relation (C) says that u is uniquely determined where the images of h, and of
h,, intersect. This proves the proposition.
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For ¢ = n and the same local charts for each vector bundle, we observe
that u = 1 if and only if u; ,(z) = 1 for each ze U NV, and iel, ae A. We
speak of the family {u; ,} representing u: & —»n with respect to the charts
{(U,, h,)} of & and {(V,h{)} of n.

5.2 Proposition. With the above notations, let {u; ,} represent the morphism
u: & —n, let {v, ;} represent the morphism v: n — {, and let {w, ,} represent the
morphism uv: & — (. Then for z € U,NV;N W, we have the relation w, ,(z) =
U, i(2)U; 4(2).

Proof. For z € U,NV;N W,, we have (z, w, ,(2)x) = (h)) tvuh,(z, x) =
((hy) " ohi) ((h) ™ uh,) (2, x) = ((h)) " oh) (2, u; o(2) %) = (2,0, :(2)u; 4(2)x).  This
proves the desired result.

In (5.2), the w,,: U,NW,— L(F", F?) are determined by the relation
Wr,a(Z) = Ur,i(z)ui,a(z) fOI' ZE Ua ﬂ I/l ﬂ VVr
The result 3(2.5) is an immediate corollary of the analsis in (5.1) and (5.2).

6. Operations on Vector Bundles

We wish to prove that every (continuous) operation on vector spaces defines
a corresponding operation on vector bundles. This will allow us to speak of
the direct sum & @ n of two vector bundles, which is the Whitney sum;
the tensor product ¢ ® n; the vector bundle Hom(&, ); and the rth exterior
power A"E, to mention a few examples.

Recall the notation VB for the category of all vector bundles over a space
B. For B equal to a point, the category VB can be viewed as the category of
vector space. Let VBg(p, ) denote the product category consisting of p copies
of VB; and q copies of VB3, the dual category of VBg. In the next definition
we make precise the definition of a continuous operation.

6.1 Definition. Let 0 denote the one-point space. A functor F: VBy(p,q) -
VB, is called continuous provided for each family of maps u;: Z — L(V;, W),

where 1 <i < p + g, the function z — F(u,,...,u,,,) s a map
Z>LIEW, .V Wosts o s Wyt ) FW o W Vs Vo)

The following functors are continuous: V@ W, V ® W, and Hom(V, W).
In the next theorem we see that a continuous functor on VB, defines a
functor on each VBy.

6.2 Theorem. For each continuous functor F: VBy(p,q) - VB, there exists a
family of functors Fg: VBg(p,q) — VB, one for each space B, such that
Fg (f*(1),....f*(,4y) and f*Fg(y,...,¢,4,) are Bi-isomorphic bundles
for each map f: B, — B. Moreover, it is required that F = F,,.



68 5. Local Coordinate Description of Fibre Bundles

Proof. We carry out the proof for the case p =g = 1. Let ¢ and &' be two
vector bundles over B with local coordinate charts {(U,,h,)} and {(U,,k,)}
with transition functions {g, ,} and {f, ,} for a, b € A. We define Fy(¢,&') to
be a vector bundle with the (continuous) transition functions {Fg(g, . f5.4)}
fora, b e A.

If u: £ > 5 and u': ' - & are morphisms, they are represented by {u; a}
and {u] ,}, respectively, where {(V,,h})} and {(V,, 1 !)} are atlases of n and 7/,
respectively. Then the family of maps F(u;,,u;,) defines a morphism
Fg(&, &) — Fg(n,n'), by (5.1), which is denoted Fg(u,u’). Since F is a functor,
it preserves the compatibility condition (C) of Proposition (5.1). Clearly,
Fy(1,1) = 1 by the remark following Proposition (5.1). With Proposition
(5.2), we see that Fy(vu,u'v') = Fg(v,v")Fg(u,u’) by applying F to the local
morphisms representing u, u’, v, and v’, where v:n—{ and v': {' > n" are
morphisms.

Finally, for a map f:B; - B we find that Fp (f*(),f*(')) and
f*(Fg(&, &) are By-isomorphic. For this, observe that {F(g, ,f, f,..f)} for a,
beA is a set of transition functions for both [*(Fg(&, &) and
Fg (f*(&),f*(&)) with respect to the open covering { f ~'(U,)}, where a € A
by Proposition (4.1).

In the next theorem we investigate to what extent the functors Fy are
uniquely determined by F.

6.3 Theorem. Let F, G: VB,(p,q) » VB, be two continuous functors, and let
¢: F - G be a morphism of functors. Then for each space B there exists a
morphism ¢g: Fg— Gg of functors defined in (6.2), where ¢g(Cy,...,Cp4,):
Fy(&y,.. s Cpig) = Gp(&y,..., &,y ,) restricted to the fibre over z € B zs;ust

¢(61 zy p+q z) F(él zy e ép'i-q,z)-_)G(él,z""aép+q,z)
With respect to this property, ¢g is unique.

Proof. For product vector bundles & of dimension r(i), we have
Pp(Eqs.. s Eprg) = 1g x p(F', .. Fr?*9) Since every vector bundle is lo-
cally tr1v1al the ¢p(¢y,...,¢,4,) are well-defined morphisms by the above
requirement. The uniqueness is clear.

6.4 Corollary. If y: G - H is a second morphism in (6.3), then (@) = Ypdp.
If ¢: F > F is the identity, ¢g: Fg — Fy is an isomorphism. If ¢: F - G is an
isomorphism, then ¢g: Fy — Gy is an isomorphism.

Proof. This results from the uniqueness statement in (6.3).

6.5 Remark. The functors Fjin (6.2) are unique up to isomorphism. Now we
discuss the following examples.
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6.6 Example. If £ and # are two vector bundles over B, the Whitney sum
& @ n is the prolongation to vector bundles of the direct sum functor. This
follows from the fact that the fibre of & ® n over a point of B is the direct sum
of the fibres of £ and of . The usual properties of direct sums of vector spaces
prolong to Whitney sums of vector bundles, by (6.3) and (6.4). There are the
following isomorphisms, for example:

(dn=n®@l and {@MAO)=(Cl@nN@®(

6.7 Example. The tensor product functor is continuous and, in view of (6.2),
we may define the tensor product ¢ ® n of two vector bundles over B. If
u: £ @ n—{ is a bundle map that is bilinear on each fibre b € B, then u
defines a vector bundle morphism v: ¢ ®  — { which is the usual factoriza-
tion of bilinear maps through the tensor product on each fibre. Using (6.3)
and (6.4), we have the following isomorphisms:

C®n=n®E (®MAN=ERN®L
(@0'=¢  and (@M= (ERNOER])

where &, 1, { are vector bundles over B and 0! is the trivial line bundle over
B. This discussion holds for real and complex vector bundles.

6.8 Example. The homomorphism functor Hom(¥, W) is continuous, and in
view of (6.2), we may define the homomorphism vector bundle Hom(¢, #).
The fibre over b € B is the vector space of homomorphisms ¢, — n,, where &,
and n, are the fibres of ¢ and 5 over b € B, respectively. A cross section s of
Hom(¢&,#) is just a vector bundle morphism u: & — #. The continuity of s and
the continuity of u are equivalent to each other.

6.9 Example. The rth exterior power functor A"V is continuous, and, in view
of (6.2), we may define the rth exterior power of A"¢ of a vector bundle £. In
the next proposition we relate the functors in (6.6), (6.7), and (6.9).

6.10 Proposition. Let ¢ = 4, @ -+ @ A, be the Whitney sum of n line bundles.
Then for r < n there is an isomorphism

Ar(;tl @’”@;Ln) = Z (;Li(1)®"'®;vi(r))

(1)< <i(r)

Proof. The above relation holds for vector spaces, and by (6.4) it holds for
vector bundles.

7. Transition Functions for Bundles with Metrics

The following subgroups of the full linear group will play a very important
role in subsequent developments. For x € R, the real numbers let X = x; for
x € C, the complex numbers, let X = x; — ix,, where x = x; + ix,; and for
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x € H, the quaternions of Hamilton, let X = x, — ix; — jx, — kx5, where x =
Xo + ix, + jx, + kx5. Let F equal R, C, or H. On the vector space F" we
define the inner product (x|y) = x,¥y, + - + x,y, and the norm |x|| =
(x[X)Y2 for x = (X1,..., %), ¥ = (V15--+, V) € F".

7.1 Definition. The orthogonal group in k dimensions, denoted O(k), is the
subgroup of u € GL(k, R) such that (u(x)|u(y)) = (x|y) for each x, y € R*. The
unitary group in k dimensions, denoted U (k), is the subgroup of u € GL(k, C)
such that (u(x)|u(y)) = (x|y) for each x, y € C*. The symplectic group in k
dimensions, denoted Sp(k), is the subgroup of ue GL(k,H) such that
(u(x)|u(y)) = (x|y) for each x, y € HX.

In each case, O(k), U(k), and Sp(k) are closed and bounded subsets of the
space of matrices. Therefore, they are compact (topological) groups. There
are important subgroups of O(k) and U (k).

7.2 Definition. The special orthogonal group in k dimensions, denoted
SO(k), is the closed subgroup of u € O(k) with det u = + 1. The special uni-
tary group in k dimensions, denoted SU (k), is the closed subgroup of u € U (k)
with detu = +1.

Further properties of O(k), SO(k), U(k), SU(k), and Sp(k) are developed in
later chapters. These groups are referred to as the classical groups.

In the next proposition, we see that a standard orthonormalization pro-
cess can be applied to cross sections of vector bundles with a metric.

7.3 Proposition. Let & be a vector bundle over B with a metric f, and let s, ...,
S, be cross sections of & such that s(b), ..., s,,(b) are linearly independent. Then
there exist cross sections s¥, ..., sk of & which are linear combinations of sy, ...,
S, With continuous scalar-valued functions as scalars such that B(s¥,s}) = 0, ;.

Proof. Let s¥(b) equal s,(b) divided by its length B(s,(b),s,(b))** (which is

>0) at each b € B. If the sT, ..., sf_, have been chosen with B(s¥,s¥) = ¢, ;,
1 <i, j<k—1, we define sF(b) to be s,(b) — Y, (s(b)[s¥(b))s¥*(b) di-
15jSk-1

vided by its length. In this way we define s¥, ..., s with the desired
properties.

The following theorem says that vector bundles over a paracompact space
have the orthogonal (unitary or symplectic) group as the structure group.

7.4 Theorem. Let & be a vector bundle over B with a metric . Then & has an
atlas {(V;, h¥)} of charts such that (x|y) = B(h} (b, x), h¥(b,y)) for each x, y € F"
and b € V,. The transition functors {g; ;} of this atlas have their values in O(n),
the real case with F = R; U(n), the complex case with F = C; and Sp(n), the
quaternionic case with F = H.
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Proof. Let {(V;,h;)} be an atlas of £&. Then there are cross sections h;(b, ¢;) =
si(b) for 1 < j < n of & over V; which are a base of the fibre over each b e V,.
By Proposition (7.3) there are n cross sections s%, ..., s* of £ over V; such that
B(s¥,s¥) equals 1 for i = j and O for i # j at each b € V;. We define hf: V, x
F"— &V, by h¥(b,ay,...,a,) = a;sF(b) + - + a,s¥(b). Then h} is a chart of &
over V;, and {(V;, h¥)} is an atlas with the desired property
For the last statement, we recall that hy(b, g; ;(b)x) = h;(b,x) for be V,NV,

and xeF" For beV,NV, we have (x]y)= B(h*(b x),h¥(b,y)) =
Bh¥ (b, g, (b)), (b, gy ;(b)x)) = (g ;(b)xIg; ;(B)y). Consequently, the last
statement follows for F=R, C, or H.

7.5 Remark. By 3(9.5) every vector bundle over a paracompact space has a
metric 5, and therefore Theorem (7.4) applies. This theorem applies to the
real, complex, and quaternionic cases.

7.6 Definition. Let ¢ be a vector bundle. Then the conjugate bundle to ¢,
denoted &, has the same underlying structure (E,p, B) and addition mor-
phism E @ E — E. The scalar multiplication map is given by ax equal to ax
in &,

For a real vector bundle, ¢ = .
7.7 Definition. A line bundle is a one-dimensional vector bundle.

7.8 Theorem. Let £ be a_real or complex line bundle with a metric (riemannian
or hermitian). Then ¢ ® & is a trivial line bundle.

Proof. A metric f: £@® & - F, where F = R or C, defines a vector bundle
morphism u: ¢ ® £ - B x F. Since u is a surjective morphism of one-
dimensional vector bundles, u is an isomorphism by 3(2.5). This proves the
theorem.

7.9 Remark. Theorem (7.8) holds over every paracompact space.

Exercises

1. In Theorem (1.1) and Corollary (1.2) determine to what extent g~ h, is a
homeomorphism of Map (B, G) onto Homg(B x G, B x G), where Homg(B x G,
B x G) has the subspace topology from Map (B x G, B x G).

2. Let 5 be a locally trivial fibre bundle with group G and transition functions {g; ;},
for i, j € I, defined with respect to an open covering {V;} of the base space. Prove
that 7 is trivial if and only if there exist maps r;: ¥; - G with g; ;(b) = ri(b)"'r(b) for
beV.NV,.

3. For the canonical principal bundles p: S — RP" and p: §*"*! — CP" determine an
atlas and compute the transition functions.
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4. Let U and V be two open subsets of a space Bsuch that B=UUVand UNV =
W, U---UW,, the connected components of U N V. Determine, up to isomorphism,
all principal G-bundles ¢ over B for G, a discrete group such that £|U and ¢|V are
trivial.

5. Let & be a k-dimensional vector bundle with atlas {(V;, h;) } and transition functions
{g.;}, where g, ;(b) € O(k) for each b e V,NV,. Prove that { has a metric § and,
moreover, that the metric f§ is unique under the requirement that each h; is metric
preserving.



CHAPTER 6

Change of Structure Group in
Fibre Bundles

In this chapter we consider the relation between principal H-bundles and
principal G-bundles, where H is a closed subgroup of G. We do this for
general principal bundles and then describe the relation, using the classifying
spaces and the local coordinate description. This is a generalization of the
process in Chap. 5, Sec. 7.

1. Fibre Bundles with Homogeneous Spaces
as Fibres

Let & = (X, p, B) be a principal G-bundle, and let H be a closed subgroup of
G. Then the relation on X defined by the action of the group H is compatible
with the projection p: X — B. Therefore, there is a bundle émod H =
(X mod H, g, B), where ¢ is the result of factoring p by the canonical map
X - XmodH.

1.1 Theorem. Let ¢ = (X, p, B) be a principal G-bundle, and let H be a closed
subgroup of G. Then there is a canonical B-isomorphism of bundles ¢ mod H —
([Gmod H], where the fibre Gmod H is the homogeneous space of right
cosets of H in G.

Proof. Let h: XmodH — X qn be defined by the relation h(xH) =
(x,eH)G. For v € H, we have h(xH) = h(xvH) = (xv,eH)G = (xv,v 'eH)G =
(x,eH)G, and h is a well-defined function. Since X mod H has the quotient
topology, h is continuous. For each u € G, we have (x,uH)G = (xu,eH)G, and
his surjective. For h(xH) = h(x'H), we have (x,eH)G = (x’,eH)G and x’ = xv
for v € H. Consequently, h is injective.
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Finally, we prove that h™! is continuous. The functions g;: X x G » X
and ¢g,: X x (Gmod H) - X mod H given by the relations g, (x,u) = xu and
g,(x,uH) = xuH are continuous. Since g,(x,uH) = g,(xv,v 'uH), the map g,
induces a map (X x (Gmod H))mod G — X mod H which is h™'. This proves
the theorem.

1.2 Corollary. The principal G-bundle & and the fibre bundle £[G], where G
acts on G by left multiplication, are isomorphic as bundles over B.
The corollary can be seen easily by a direct argument.

2. Prolongation and Restriction of Principal Bundles

2.1 Definition. For a closed subgroup H of G, let £ = (X, p, B) be a principal
G-bundle, and # = (Y, ¢, B) a principal H-bundle. Let f: Y — f(Y) = X be a
homeomorphism onto a closed subset f(Y) such that f(ys) = f(y)sforye Y
and s € H. Then 7 is called a restriction of £, and £ is a prolongation of #.

In other words, # is the result of restricting the structure group G of ¢ to
H, and ¢ is the result of prolonging the structure group H of # to G. In the
next two theorems the possibility of restriction and prolongation is discussed.

2.2 Theorem. Let H be a closed subgroup of G. Every principal H-bundle
n = (Y, q, B) has a prolongation & = (X, p, B) with structure group G. Moreover,
if n is trivial, locally trivial, or numerable, & is trivial, locally,trivial, or numera-
ble, respectively.

Proof. Since H acts on the left of G by multiplication in the group, we can
form y[G] = &, where ¢ = (X, p,B) and X = (Y x G)mod H. Then G acts on
the right of X by the relation xt = ((y, s)H)t = (y, st)H, which is compatible
with (hr,r"'s)H = (y,s)H for each r e H. Moreover, the relation f(y)=
(y,e)H defines a homeomorphism f: Y — f(Y) = X. Since the set Y x
(G — H)is open in Y x G, its projection X — f(Y) is open in X and f(Y) is
closed in X. The action of H is preserved by f because f(yr) = (yr,e)H =
(yr,r"'e)Hr = (y,e)Hr = f(y)r for r € H. The translation function 7 for & is
given by the relation t((y,s)H,(y’,s")H) = s't,(y,y’)s’, which is continuous
by properties of quotient topologies. Clearly, the prolongation of a trivial
bundle is trivial. The last statement of the theorem follows from 4(6.4).

2.3 Theorem. Let H be a closed subgroup of G. A principal G-bundle & =
(X, p, B) has a restriction to a principal H-bundle n = (Y, q, B) if and only if
¢mod H (or E[Gmod H]) has a cross section. Moreover, if & is trivial or
locally trivial, and if the principal H-bundle associated with G is trivial or
locally trivial, then n is trivial or locally trivial, respectively. If & is numerable
and if the principal H-bundle associated with G is locally trivial, then n is
numerable.
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Proof. Let f: Y —> X be a map defining a restriction of principal bundles.
Then the composition of f: Y — X and the quotient map X - X mod H is a
map o* such that 6*(ys) = o*(y)s for each s € H. This map o* defines a cross
section of ¢ mod H (or £[G mod H]).

Conversely, a cross section ¢ of £[Gmod H] defines a map g: X —
G mod H such that g(xs) = s 'g(x) = g(x)s for each s € G by Theorem 4(8.1).
Let Y be the closed subset g~ (eH) of X, let q be the restriction p|Y, and let
n = (Y,q, B). Let y,, y, € Y such that gq(y,) = q(y,). For some s € G we have
V2 = y15, eH = g(y,) = g(y,5) = s'g(y,) = s 'eH, and s e H. Finally, the
restriction of the translation function of the principal G-space X is the trans-
lation function of the principal H-space Y.

If & is trivial, we have H-morphisms Y - X, X —» G, and G — H which
compose to an H-morphism Y — H, and # is trivial by 4(8.3). For the state-
ment concerning local triviality we can use 4(6.4).

2.4 Corollary. Let B be a CW-complex, and let n(Gmod H) =0 for each
i <dim B. Then every principal G-bundle has a restriction to a principal
H-bundle.

Proof. The corollary follows from (2.3) by using Theorem 2(7.1) under hy-
pothesis (H1).

3. Restriction and Prolongation of Structure Group
for Fibre Bundles

The next theorem says that fibre bundles remain unchanged as bundles under
restriction or prolongation of the structure group.

3.1 Theorem. Let H be a closed subgroup of G, let F be a left G-space that is
also a left H-space, and let & be a principal G-bundle with n as restriction to the
subgroup H. Then there is a natural isomorphism g: n[F] — £[F] of bundles
over B.

Proof. Let f: Y —» X be the map defining the restriction of the principal
bundles. We define g: Y, — X by the relation g((y,z)H) = (f(y),2z)G. Then g
is a map since it is the quotient of f x 1.

Since every element of X has the form (x, z) G, where x € f(Y), the map g
is surjective. Since the relation on X x F determined by the action of G
induces the relation on f(Y) x F determined by the action of H, the map g is
injective.

Finally, we must show that g is an open map. Let g((yo,z0)H) =
(f(yo), 20)G and x4 = f(yo)- Let W be an open set containing (y,,zo)H in Y,
let q,: Y x F— Yz and p,;: X X F > X denote the natural projections, and
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let W, be the open neighborhood of y,e Y and W, of z, € F such that
q,(W; x W,) = W. There exists a symmetric open neighborhood N of 1 € G
and a neighborhood V of z, in F such that NV < W,. Let U be an open
neighborhood of x, in X such that p(U) < q(W,) and r((U x U)N X*) = N.
We replace W, by W, Ng *(p(U))N f~1(U) and U by p~*(q(W))N U. Then
we have p(U)=q(W,) and f(W,)< U. For each (x,z)e U x V, there
exists ye W, such that f(y)e U and f(y) = xs. This means that se N,
and g((y,s '2)H) = (f(),s 'z)G = (x,2)G. Therefore, we have g(W)>
glg,(W; x W;)) o p,(U x V), and g(W) is an open set. This proves the
theorem.

3.2 Corollary. With the notations of (3.1), the bundles n[G] and & are
isomorphic as bundles over B, and there is a map g: Yo —» X = X that is a
G-space isomorphism.

Proof. We need prove only that g commutes with the action of G. Since

9((y, 9H)t = ((f(), 9G)t = (f(y), s)G = g((y, st H), it follows that g is a
G-morphism.

4. Local Coordinate Description of Change
of Structure Group

Theorem (2.3) has the following interpretation for locally trivial bundles and
their local coordinate transformations.

4.1 Theorem. Let H be a closed subgroup of G, let £ = (X, p, B) be a locally
trivial principal G-bundle, and let {h;,V;} for i e I be an atlas of charts for &
with transition functions {g; ;}. The bundle ¢ has a restriction to a principal
H-bundle if and only if there exist maps r;: V; - G such that the transition
functions g; (b) = ri(b)“lg,-,j(b)rj(b) have values in H for each b e V,NV,.

Proof. By Corollary (3.2) and Theorem 5(2.7) the maps r; must exist because
¢ and y[G] are G-isomorphic. For the converse, by Theorem 5(3.2), the
transition functions describe the principal H-bundle n = (Y,q,B) and the
principal G-bundle &. The natural inclusion V; x H —» V; x G defines a map
f: Y - X which defines the restriction of & to #.

Theorem (4.1) says that if the transition functions have values in a sub-
group H of G, where G is the structure group of a fibre bundle £[ F], this fibre
bundle is isomorphic to [ F], where H is the structure group of .

The restriction process in this form has been carried through for vector
bundles over a paracompact space; see Chap. 5, Sec. 7.
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5. Classifying Spaces and the Reduction of
Structure Group

Let H be a closed subgroup of G, let wy = (Yy, q¢, By) be a universal bundle
for H, and let wg = (X, po, Bg) be a universal bundle for G. By Corollary
(3.2), w4 [G] is a numerable principal G-bundle over By. By the classification
theorem 4(12.2), there is a principal G-bundle morphism (hy, f): wz[G] —
g, Where f§f(wg) and wy,[G] are isomorphic over By,.

5.1 Theorem. With the above notations, let ¢ = (X, p, B) be a numerable prin-
cipal G-bundle over B with classifying map f: B — Bg; that is, f *(wg) and & are
B-isomorphic. Then the restrictions n = (Y, q, B) of & are in bijective correspon-
dence with homotopy classes of maps g: B— By such that f,g and f are
homotopic. We have the following diagram:

B - ! . Bg
9 /
N
By

Proof. Let n be a restriction of £ Then there is a unique homotopy class
determined by a map g: B - By such that g*(wy) and # are isomorphic.
Consequently, #[G] and g*(wy[G]) are isomorphic. From the above dis-
cussion we know that #[G] is B-isomorphic to g*(f¥(wg)), and & is B-
isomorphic to f*(wg). Since, by Corollary (3.2), [ G] and ¢ are isomorphic,
the classification theorem 4(11.2) implies that f and f,g are homotopic.

Conversely, if g exists, let n denote g*(wy,), where = (Y, ¢, B). We have an
H-morphism h’: Y, — X, where fif(wg) = (X, p, By) which is the com-
position of the quotient mod H of the inclusion Y, x H - Y, x G and the
isomorphism wy,[G] = f5f(wg). Under the induced bundle functor g*, this
defines an H-morphism h” = g*(h’) of Y into the total space of g*(fg*(wg)).
The H-morphism h” when composed with the isomorphism g*( f5f(wg)) — &
over B defines a restriction morphism h: Y - X which commutes with the
action of H. This proves the theorem.

In the case of the universal bundle wg defined by the Milnor construction,
an inclusion H = G defines a natural inclusion E4 < Eg. This inclusion
induces a natural map By — B and morphism wy — g.

Exercises

1. Prove that a principal G-bundle ¢ has a restriction to the subgroup 1 if and only if
¢ is trivial.

2. For a subgroup H of G, prove that every principal G-bundle restricts to a principal
H-bundle if and only if the map f,: By — B has a right (homotopy) inverse g,.
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Bg — By, that s, fog, ~ 1. Give a homotopy criterion for the restriction always to
be unique when g, exists.

3. Define restriction and prolongation of principal bundles for a (continuous) group
morphism h: H — G. In what sense do (2.2), (2.3), (3.1), (4.1), and (5.1) have ana-
logues for this more general situation?



CHAPTER 7

The Gauge Group of a Principal Bundle

The gauge group of a principal bundle is simply its automorphism group
with a topology coming from the mapping space topology. The mapping
space topology (called the compact open topology) will not be considered in
detail but will be outlined in the first section.

The classifying space B Autg(P) of the gauge Autg(P) of a principal bundle
P over B with structure group G enables us to describe the mapping space
Map(B, BG), whose connected components indexed by [B, BG] are just the
isomorphism classes of principal G-bundles over B. The fact that [ B, BG] is
naturally the set of isomorphism classes of principal bundles is the homotopy
classification of principal bundles, see chapter 3. This chapter can be viewed
as an extension of chapter 3 and as background for the applications of the
gauge group to differential geometry and mathematical physics.

1. Definition of the Gauge Group

1.1 Definition. Let p: P — B be a principal G-bundle. The gauge Autg(P) of
P is the subspace of u € Map(P, P) such that

pu=p and u(xs) = u(x)s forse G,xeP.

Thus, an element of the gauge group is G-equivariant and preserves the
projection to B, and this is why we denote it by Autg(P). From 3(3.2)
we know that if u € Auty(P), then the inverse u™': P — P is defined and
u~! e Auty(B).

We give Autg(P) the subspace topology from the mapping space
Map(P, P). A general reference for mapping spaces is Bourbaki, General to-
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pology, Chapter 10. From general mapping space theory we know that com-
position in Autg(P) is continuous, but there remains the question as to
whether or not ur>u~! defined Autg(P)— Auty(P) is continuous. We will
leave this question unanswered for the moment, for it will be resolved in the
context of other descriptions of the gauge group.

1.2 Remark. Let P denote a principal G-bundle over B. To each u € Autg(P),
we assign the continuous function ¢,: P — G defined by the relation u(x) =
x¢,(x) or by the formula ¢,(x) = t(x, u(x)) where 7: P xz P — G is the trans-
lation function of the principal bundle P. Next, observe that the relation
u(xs) = u(x)s is equivalent to the functional relation ¢,(xs) = s~ ¢,(x)s for all
xeP,seG.

1.3 Notation. For a topological group G we denote by Ad(G) the right G-
space G with right adjoint G-action given by x.s = s~ 'xs. Here the operation
s 'xs is multiplication in G. In addition, Ad(G) is a G-group because the
topological group structure on G is preserved by the right G-action. For X
and Y, two right G-spaces, we denote by Maps;(X, Y) the subspace of all
f e Map(X, Y) satisfying f(xs) = f(x)sforall se G, x € X.

In particular, we have that Autg(P) is a subspace of Mapg(P, P).

1.4 Remark. The function which assigns to an automorphism u € Autg(P)
the function ¢, € Mapg(P, Ad(G)) given by ¢,(x) = 7(x,u(x)) is a continuous
bijection. If ¢ € Mapg(P, Ad(G)), then we form

u(x) = x¢(x) € Autgz(P)

and this gauge transformation u satisfies ¢ = ¢,. This formula shows that this
mapping Autg(P) - Mapg(P,Ad(G)) is a homeomorphism. In this context,
we see that we have a topological group where for ¢, ¢’ € Mapg(P, Ad(G)) the
product is given by the relation ¢¢'(x) = ¢(x)¢’(x) in G and the inverse by

¢~ (x) =4(x)"" in G.

Now we have a third description in terms of cross sections of a fibre
bundle.

1.5 Notation. For a bundle p: E — B we denote by I'(E/B) the subspace of
cross sections s € Map(B, E). For a principal G-bundle P over B we denote
by Ad(P) the fibre bundle with fibre Ad(G) sometimes denoted P[Ad(G)] or
P x% Ad(G). The fibre bundle Ad(P) is a bundle of groups since the group
structure on Ad(G) is G-equivariant, and the space I'[Ad(P)/B] is a topologi-
cal group.

1.6 Remark. In 3(8.1) cross sections of a fibre bundle are described by map-
pings of the principal bundle into the fibre, and thus we have the following
bijection Mapg;(P, Ad(G)) » I'[Ad(P)/B] given by the function which assigns
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to the G-map ¢: P — Ad(G) the cross section s,: B — Ad(P) where s4(b) =
(x, #(x))mod G for x € P, an arbitrary element of the fibre P, over b € B. In
chapter 3 we did not take up the question of the continuity of this bijection
or its inverse, and we will not need it here since we use only the first two
descriptions of the gauge group.

Finally, we close with the following calculations of the gauge group.

1.7 Proposition. Let P be a principal G-bundle. If either P is trivial or if G is
abelian, then the topological group Autg(P) is isomorphic to the topological
group Map(B, G).

Proof. In the first case Mapg(B x G,G) = Map(B, G) since f(b,s) with
f(b,ss’) = f(b,s)s’ is of the form f(b,s) = f(b,1)s for s€ G, b € B, and in the
second case, Mapg(P,Ad(G)) = Map(B, G) because f(xs) = f(x) since the
action of G on Ad(G) is trivial. This proves the preposition.

2. The Universal Standard Principal Bundle of
the Gauge Group

2.1 Notation. Let p: P — B be a principal G-bundle, and let E; — B; denote
a universal bundle for G.

(1) Let Mapg(P, E;) denote the subspace of we Mapg(P, Eg) such that
w(xs) = w(x)sfor all xe P, s e G.

(2) Let Map,(B, B;) denote the subspace of f € Map(B, Bg) such that P and
f*(E;) are isomorphic.

(3) Let pp: Mapg(P, Eg) = Mapp(B, E;) denote the function which assigns to
w € Mapg(P, Eg) the quotient map f € Mapg(P, Bg) on the base spaces of
the bundles. The diagram related to this situation is the following

P—W>EG

|

S

B —L B,

2.2. Remark. The gauge group Autg(P) acts on the right of Mapg(E, E;) by
composition of bundle morphisms, that is, if u € Autg(P) and w € Mapg(P, Eg),
then we have wu € Mapg(P, E;). Moreover, if w, w' € Mapg(P, Eg) such that
pp(W) = pp(w’), then we have t(w,w’) = w™lw’ € Auty(P) with wt(w,w’) = w’
which is a translation function. This function

7. Mapg(P, Eg) Xmapys,8;) Mapg(P, Eg) — Autg(P)

is continuous being composition and inverse functions. In particular, we have
a principal bundle for the gauge group Autg(P).
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2.3 Definition. Let p: P — B be a principal G-bundle. The standard principal
bundle for the gauge group Autg(P) is

pp: Mapg(P, Eg) - Map,(B, Bg).

Now we consider this construction for the product principal bundle
pr;: B x G — B. Then the function which assigns to a G-map w: B x G —
E; the map w': B— E; given by w'(b) = w(b,1) is a homeomorphism
Mapg(B x G, Eg) - Map(B, Eg); with this notation we have pp(w) = pgw’
where pg: Eg — Bg is the projection in the universal bundle. This homeomor-
phism is right Map(B, G) equivariant where Map(B, G) is Autg(P) for the
product bundle B x G over B. The result is the following.

2.4 Remark. The standard principal bundle for the gauge group
Autg(B x G) = Map(B, G) of the product bundle is isomorphic to

pg: Map(B, Eg) - Map,(B, Bg)

where p¢ denotes composition by p,; on the left and Map,(B, B;) denotes the
subspace of null homotopic maps B — Bg.

Note that for this last statement we make use of the homotopy classifica-
tion of bundles to assert that Mapy, (B, B;) is the subspace of null homo-
topic maps. For the homotopy theory to be valid we must consider only
locally trivial bundles.

2.5 Convention. Locally trivial bundles are always trivial bundles over the
open sets of a numerical covering, i.e. a covering with a subordinate partition
of unity.

3. The Standard Principal Bundle as a
Universal Bundle

3.1 Definition. Let p: P — B be a principal G-bundle. Then the product of P
with Y is the principal G-bundle q: P x Y > B x Y where P x Y has the
action of G given by

(x,y)s = (xs,¥) forseG,xe X,yeY.

Note that if P is a locally trivial bundle, then so P x Y > B x Y the
product with a space Y.

3.2 Remark. Let P be a locally trivial bundle over a space B, x [0, 1]. Form
the restriction P|B, x {0} = P,. Then the first step in the homotopy classifi-
cation asserts that P is isomorphic to P, x [0,1] over B, x [0, 1], see 3(9.8).

The next proposition is a direct corollary of the homotopy classification
theory of principal bundles.
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3.3 Proposition. Let P be a locally trivial principal G-bundle. Then the space
Mapg(P, Eg) is nonempty and path connected, and Mapp(B, B;) is the path
component of f: B — Bg with f*(Eg;) isomorphic to P.

Proof. The fact that the space is nonempty is equivalent to the assertion that
P is isomorphic to f*(E) for some map f: B — Bg, see 3(12.3), which in turn
1s part of a bundle morphism u: P — E; inducing f. Thus, u € Mapg(P, Eg)
and the space is nonempty. To see that it is path connected, we consider two
elements u, u’ € Mapg(P, Eg) inducing maps f, f': B— B; where P is iso-
morphic to both f*(Eg) and f'*(E;). Hence, f and f’ are homotopic with
a morphism of bundles (w, h): P x [0,1] — E; such that w(x,0) = u(x) and
w(x, 1) = u'(x), see 3(12.4). Thus, w defines a path from u to u’ in Mapg(P, E;),
and proves the last statement. This proves the proposition.

Now we can prove more if we have the “exponential law” for mapping
space, namely a homeomorphism

Map(P x Y, Z) - Map(Y, Map(P, Z))

given by assigning to f(x, y) the map y— f(y)(x) = f(x,y). The exponential
law holds for P a locally compact space or in the general simplicial setting.

3.4 Theorem. Let P be a principal bundle over B such that P is a locally
compact space. Then Mapg(P, E;) is a contractible space.

Proof. Applying the exponential law for any space Y we have a homeomor-
phism Mapg(P X Y, Eg) » Map(Y, Mapg(P, E;)) between two path con-
nected spaces. We apply this to Y = Map(P, E;) where the identity and the
constant are connected by a path, that is, by a contracting homotopy. This
proves the theorem.

3.5 Corollary. For a principal bundle P as in (3.4) the classifying space of the
gauge group Autg(P) is Mapp(B, Bg) with universal bundle the standard princi-
pal bundle for the gauge group

Mapg(P, E¢) — Mapp(B, Bg) = B Auty(P).

4. Abelian Gauge Groups and the Kiinneth Formula

We begin with two general results in algebraic topology and tie these results
to gauge group, see Spanier, Algebraic topology.

(4.1) Definition. A space X is called a K(I1, n), or Eilenberg-MacLane space,
provided the homotopy groups of this space are given by
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I1 fori=n

m(X) = {0 fori#n

In other words, there is one nonvanishing homotopy group and it is de-
gree n. This means that IT must be abelian for n > 1, but I can be any group
for n = 1, and for n = 0 we can choose I1 to be any set. Since a K(I1, n) is path
connected, we can use any base point for n > 0.

4.2 Remark. For any abelian group IT and any n > 0 there exists an abelian
topological group 4 which is a K(II, n) as a space. Moreover, the classifying
space B(A) = BK(I1,n) = K(I1, n + 1), which gives an inductive construction
of K(I1,n) as an abelian group using a classifying space construction which
preserves products, and the loop space QK(I1l,n) = K(Il,n — 1) from the
homotopy exact triangle for a fibre sequence. Note that we have used the
symbol K(I1, n) for both the space and the type of space that it is.

4.3 Remark. Any abelian topological group A is a product of K(I1, n) spaces
as a commutative H-space up to homotopy, and indeed up to higher homo-
topies. This is a theorem of J. C. Moore which was proved in the simplicial
set/group context, see H. Cartan Seminaire 1954-55. This is also a reference
for (4.2).

4.4 Remark. The first nonzero reduced cohomology group of a K(I1, n) is in
degree n where H"(K(I1, n), [T) = Hom(IT, IT) which has a canonical element
1, corresponding to the identity on I1. Using 1,, we define a natural morphism
of abelian group valued functors on the category of spaces and homotopy
classes of maps

[X,K(I1,n)] - H*(X,II)

by assigning to a homotopy class of maps [ f]: X —» K(I,n) the element
H"(f)(1,) € H(X,II). On the subcategory of spaces with the homotopy type
of a CW-complex or on the category of simplicial sets this morphism of
functors is an isomorphism of functors.

4.5 Remark. From bundle theory using the fact that
K(IT,n) = BK(IL,n — 1),

we see that the homotopy set [ X, K(I1, n)], interpreted as cohomology in the
previous remark, can also be interpreted as isomorphism classes of principal
K(I1,n — 1)-bundles over X. In line with the topic of this chapter we study
the gauge group of one of these bundles. Since the structure is abelian, by
(1.7), the gauge group is independent of which principal bundle over X and
isomorphic to the mapping space Map(X, K(I1,n — 1)).

This leads us to the study of mapping spaces into K(II, n) spaces which
begins with the connected components [ X, K(I1,n)] of Map(X, K(I1, n)). An
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application of the theorem of J. C. Moore cited in (4.3) applied to the abelian
group structure defined by multiplication of the abelian group valued func-
tions gives that this space is a product of K(IT, q) spaces. The groups arising
are given in the following theorem of Ren¢ Thom.

4.6 Theorem. The space Map(X, K(Il,n)) is homotopy equivalent to the
product [] K(H"%X,T),q).

0<g<n

Proof. We give two proofs of this theorem. The first is by induction on n. The
case n = 0 is clear since K(I1,0) = IT is a discrete space. Next we apply the
inductive hypothesis for n — 1 to describe using (3.5) and (4.2). The connected
components of Map(X, Y) are indexed by [X, Y] the homotopy classes of
maps X - Y

Map(X,K(IL,n)) = [] B(Map(X,K(IL,n — 1))
[X, K(I1,n)]

where each connected component is the classifying space
B(Map(Xv K(Hv n— 1)))

of the gauge group of the K(Il,n — 1) bundles over X. Now we use the
inductive hypothesis to rewrite this expression for Map(X, K(I1, n))

Map(X, K(I1,n)) = K(H"(X,II),0) x B< I1 K(H"“""‘(X,H),p))

0<p<n-—-1

= [] KH"YX,I),q) forp+1=gq.

0<g<n
This completes the inductive step and proves the theorem.

For another proof we start with the evaluation map e(f) = f(x) at a base
point € X. This is a fibration e: Map(X, K(I1, n)) » K(I,n) with fibre
Map, (X, K(I1,n)). Now the homotopy groups m,(Map,(X, K(II, n)) can be
calculated using loop space properties of K(I, n) spaces and the homotopy
groups

nq(Mapo(X, K(I_L n)) = nO(Qq MapO(X’ K(“v n)))
= [X’ QqK(Hv n)]O
= [X’ K(H,n - q)]O
=H"9X,1T) by (44),
and this is n(Map(X, K(I1, n)) for ¢ < n and for ¢ = n we get an extra factor

of IT from =, (K(Il,n)) =1II in the fibre sequence. After knowing that the
bundle is trivial, we have another proof of the theorem.

Now we consider the relation of this decomposition of Map(Y, K(I1, n)) to
a Kiinneth formula for cohomology.
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4.7 Theorem. Let X and Y be two spaces with the homotopy type of CW-
complexes. Then we have the following direct sum decomposition of the
cohomology

H'X x Y,II)= @ HYX,H" Y, 1I)).

0<g<n
Proof. We use the description of cohomology as homotopy classes of maps
as given in (4.4) to calculate
H"(X x Y,II) = [X x Y,K(I1,n)]
= [X,Map(Y, K(I1, n)]
= [I [X.KH"Y,10),q)]

0<g<n

@ HYX, H"4(Y, ).

0<g<n

The proves the theorem on the Kiinneth formula.

Observe that the Kiinneth formula is equivalent to the mapping space
decomposition of (4.6), and from the Kiinneth formula we obtain another
proof of the decomposition (4.6).



CHAPTER 8

Calculations Involving
the Classical Groups

In this chapter we consider fibre bundles with the classical groups as fibre. By
studying these bundles, we are able to calculate homotopy groups of the
Stiefel varieties and classical groups. In the course of the development, we
derive a homotopy classification for general fibre bundles over a suspension.
Using this classification theorem and the homotopy groups of the classical
groups, we are able to classify all vector bundles over a sphere of dimension
<4.

1. Stiefel Varieties and the Classical Groups

In 5(7.1) and 5(7.2) we defined the five classical groups SO(k), O(k), SU (k),
U(k), and Sp(k). For discussing the common properties of these groups it is
convenient to unify the notation connected with them. Let F denote R, C, or
H. Let Ug(k) denote O(k) for F = R, U(k) for F = C, and Sp(k) for F = H. Let
SUg(k) denote SO(k) for F = R, and SU(k) for F = C. Consequently, Ug(k)
is the group of linear transformations u: F* —» F* such that (u(x)|u(y)) =
(x|y) for x, y € F¥, and SU,(k) is the closed subgroup of u € Ug(k) such that
detu = +1.

As a vector subspace, we can consider F¥ ¢ F**!, where a vector in F* has
zero in its (k + 1)-coordinate when viewed in F**!. Consequently, there exist
natural inclusions Ug(k) = Ur(k + 1) and SUg(k) = SUg(k + 1) because (x|y)
is the same for x, ye F* or x, y viewed in F**'. The groups Ug(k) and
SUp(k) are the subgroups of elements u, where ue Up(k + 1) and ue
SUg(k + 1), respectively, such that u(e,.,) = e,+,- As usual, we denote ¢; =

@)

©,...,0,1,0,...,0).



88 8. Calculations Involving the Classical Groups

With the inclusions F! ¢ F?2 ¢ --- < F¥ « F*¥*! < --- we are able to give
F* = | F*the inductive topology [see 1(1.1)]. The vector space F* has the

1<k
inner product induced by the inner product on each F*.

1.1 Definition. The infinite classical groups are the union | ) Ug(k), denoted

<

Uy (or Ug(o0)), with the inductive topology and the union U SUg(k),
denoted SU; (or SUg(0)), with the inductive topology. 1=

In special cases, we use the notation Up = 0 and SUp = SO for F =R,
Up = U and SU; = SU for F = C, and U, = Sp for F = H.

We recall that V(F") is the subspace of F*" consisting of k-tuples
(vy,...,vy), where (v;]v;) = 6; ; for 1 i, j < k. Here we may have n = oo, in
which case V,(F*) has the inductive topology defined by the following
subsets:

VlF)  V(F*'Y) <o c F") < - < W(F*) = kg Vi(F")

We define a map #u; or just n: Ug(n) - V(F") by the relation n(u) =
(u(ey),...,u(ey)). The map 7 is a continuous surjection. Moreover, the follow-
ing diagram is commutative.

Un) —%  V(F")

L

U(n + 1) —— V(F™*)

The vertical maps are inclusions.

There are two embeddings of Ur(m) in Ug(n) for m < n. First, Ug(m) acts on
ey,..., ey, yielding an embeading denoted Ug(m) = Ug(n), second, Ug(m) acts
oN €, 41, ---» &, yielding an embedding denoted 1,_,, X Ug(m) = Ug(n). The
first embedding was used for Definition (1.1).

1.2 Proposition. For u, v € Up(n) we have ni(u) = ni(v) if and only if u =
vw, where we l, x Upg(n — k). Moreover, (n})"‘ni(u) equals the coset
u(l, x Up(n — k)).

Proof. Clearly, u;(u) = n;(v) if and only if u(e;) = v(e;) for 1 £ i < k. This is
equivalent to v 'u(e;) = e;for | <i < k,orv 'ue 1, x Up(n — k). The second
statement is clear.

If Up(n)mod Ug(n — k) or Ug(n)/Ugp(n — k) denotes the homogeneous space
of right cosets modulo 1, x Ug(n — k), then ; defines a continuous bijection.

07: Up(nymod Ur(n — k) — V,(F")

The following theorem results from (1.2) and the fact that the spaces involved
are compact.
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1.3 Theorem. The map 6; given by the relation 6;((u)(1, x Up(n — k)) =
(uley),...,u(e)) is a homeomorphism Up(n)mod Ug(n — k) — V,(F").
Moreover, where is the following commutative diagram:

Ur(n)mod Uy(n — k) R AS

J l

Up(n + 1)mod Up(n + 1 — k) —5 W(F™+1)
The vertical maps are inclusions or are induced by inclusion.
By taking unions we have for n= 400 a homeomorphism 6;:
Urmod (1, x Ug) » V,(F*), where Uz mod(1, x Ug) has the inductive topol-
ogy which, as the reader can easily verify, equals the quotient topology.

1.4 Proposition. For k # n, and for F = R or C, the map induced by the inclu-
sion SUg(n)mod SUg(n — k) —» Ur(n)mod Ug(n — k) is a homeomorphism.

Proof. The relation u = vw for w € SUp(n — k) or Ug(n — k) as given in (1.2)
determines whether or not u and v determine the same right coset. If
det u = detv = 1, we have detw = 1, and the above map is an injection. For
each u there exist v and w as above, with detv = 1, and the above map is a
surjection. Since the spaces are compact, the map is a homeomorphism.

1.5 Examples. We have the following identifications, using the above results
and some elementary considerations.

(1) Fork = n,
O(m="V,R")  Um=V,(C) and  Sp(n =V,H"
(2) Fork < n,

w_ O  SO(n
V“(R)‘O(n—k)‘som—k)
w_ U  SU(n)
h(€) = Un—k)y SU@—k)
m_ Sp(n)

Vi(H") = Spin— K
(3) Fork =1,
w1 O SO(n)
R =S 1_0(n—1)_30(n—1)
P ¢/ () B ¢/ ()
ni(cn = s? I_U(n—l)_SU(n—l)
Sp(n)

V. (H" =S4n—1 —__ vy
1(H") Spin—1)
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(4) Forn=1or2,

so()=Su(l)=1  O()=Z,
U(l)=S0(2) = St the circle group

Sp(1) = SU(2) = §3 the multiplicative group of
quaternions of length 1

(5) Fork=n—1,
So0m)=V,-,(R") and  SU(n)=V,_,(C")

(6) For the relation between SUy and Uy, there are two exact sequences

det

SO(m)—»0mSZ, SUm)->UmSS!

2. Grassmann Manifolds and the Classical Groups

For (vy,...,v,) € Vi(F") we denote by {vy,..., v or p(vq,...,0,) the k-
dimensional subspace of F" with base vy, ..., v,. As before, we let G, (F")
denote the set of k-dimensional subspaces of F" with the largest topology
such that p: V,(F") - G,(F") is continuous. Since every subspace of F" has an
orthonormal base, p is surjective.

We consider the continuous surjection

pOg: Up(n)/Up(n — k) — G(F")

2.1 Proposition. For umod Ur(n — k) and vmod Ug(n — k), we have p0;'(u) =
pOi(v) if and only if v = us,s,, where s, € 1, X Up(n — k) and s, € Ug(k).

Proof. Let 6f(u) = (uy,...,u) € K(F") and 67(v) = (vy,...,0,) € Vi(F"). We
have <u,,...,u,y = {v,,..., 0, if and only if u; = s(v;), where s € Ur(k). Since
u; = u(e;) and v; = v(e;), by (1.2) we have u; = us,(e;) for 1 £i <k, and
s(v;) = us,(¢;) for k + 1 <i < n, where s, € 1, X Up(n — k). Finally, the rela-

tion u; = s(v;) is equivalent to us; = vs or v = us;s '

Consequently, p6 defines a continuous bijection ¥;: Up(n)/(Ug(k) x
Ur(n — k)) - G,(F"). Since the above spaces are compact, we have the next
theorem, in view of (2.1).

2.2 Theorem. The function Y(umod Ug(k) x Up(n — k)) = u(e,),...,u(e;))
defines a homeomorphism

¥i: Up(n)/(Up(k) x Up(n — k)) > G(F")

Moreover, the following diagrams are commutative.
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25

Ur(n)/Up(n — k) — W(F")

vk n
Ur()/(Up(k) x Up(n — k)) —— G(F")
The vertical maps are quotients in the above diagram.

Usm/(Up(k) x Up(n — k) —2%  G(F™)

i

Up(n + 1)/(Ug(k) x Up(n + 1 — k)) ——— G (F"*!)

The vertical maps are inclusions in the above diagram.

2.3 Remark. For F = R or C we leave it to the reader to discuss the space
SG,(F") of oriented k-subspaces, that is, subspaces together with an equiva-
lence class of orthonormal basis that differ by the action of SUL(k). As above,
one defines a homeomorphism

Yi: Up(m)/(SUg(k) x Ug(n — k)) = SG(F")

The next theorem follows from the fact that homogeneous spaces of com-
pact groups define principal bundles.

2.4 Theorem. The bundle (Vi(F"),p, G(F")) is a principal Ug(k)-bundle, and
the bundle (V,(F"), p, SG(F")) is a principal SUg(k)-bundle.

A map SG,(F") - G, (F") results by “forgetting” orientation. OQver each point
of G(R") are precisely two points representing the two orientations of a sub-
space, and over each point of G,(C") is a circle.

2.5 Examples. We have SG,(R") = $""!, G,(R")= RP"!, real projective
(n — 1)-space; SG,(C") = $*""!, G,(C") = CP""!, complex projective (n — 1)-
space; and G,(H") = HP"™!, quaternionic projective (n — 1)-space.

3. Local Triviality of Projections from
Stiefel Varieties

We begin by considering the action of Ug(k) on the right of V,(F"). For
a = [a; ;] € Ug(k) this action is given by the relation (vy,...,v)a = (v],..., ),
where vf = Y a; jv;. Then for (vy,...,v,) and (v},...,v;), two elements of

15isk
Vi(F"), it is clear by elementary linear algebra that {v,,...,v) = {v{,...,0;)
if and only if there exists a € Ug(k) with (v,,...,v,)a = (v,...,v;). Moreover,
a is unique if it exists.
To justify our definition of orthogonal projection in (3.2), we use the
following result.
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3.1 Proposition. For each x € F" and (vq,...,v)a = (v},...,0;), the relation
Y (xlv)ui= Y. (x|v])v] holds.
15isk 15isk

Proof. We calculatez (x|vj)vj= Z (x|a;, j0;)p, jUm Z (Z .>(x]vi)vm=

J

Z O;. m(x|0)V, = Z (xlv ;. ThlS proves the proposmon

i

Let 7: Vi(F") x F" — F" be defined by the relation n'((vy,...,v;), =

Y (x|v;)v;. By (3.1), (v;)— m'(v;)(x) is constant on the fibre over a point of

1<isk

G;(F ") of the projection p: V,(F") —» G,(F"). Therefore, since F" is locally com-
pact, ' defines a map 7: G,(F") x F" — F" which we write n,(x) for We
G.(F") and x e F". If W = (vy,...,1,), then 7y (x) equals n'(v;)(x), and we
have <{v;|x — ny(x)> =0 for each i with 1 <i < k. Let vy(x) denote x —
nw(x). With these notations we state the following definition.

3.2 Definition. The orthogonal projection of x € F" on W € G,(F") is my(x),
and the normal projection of x € F" to W € G,(F) is vy (x).

We define a function ¢’: V,(F") x V,(F") — R by the relation ¢'((v,, ..., v;),
(v},...,v5)) = lldet[(v;]v;)]]. Since the determinant of an element of Ug(k) is a
unit, we have o'((vy,...,0)a,(v%,...,0)b) = 0'((vy,...,0), (v],...,v;)). Conse-
quently, o’ defines a map o: G (F") x G,(F") > R, where a(W, W’) = 0. In the
next proposition we determine what it means for o(W, W’) > 0. For a subset
S < F", let S* denote the subspace of all v € F" with (v|S) =

3.3 Proposition. Let W, W'e G (F"). Then the following statements are
equivalent.

(1) o(W,W’) > 0.
) np(W)=W'.  (2) nyp(W')=W.
G) WAW™*=0. (3) WNW*=0.

Two k-subspaces W and W’ are called related provided they satisfy the above
five conditions.

Proof. For reasons of symmetry, it suffices to prove that (1), (2), and (3) are
equivalent. The fact that o(W, W’) > 0 is equivalent to the statement that
Ty V1), ..., Ty (v,) 1s a base of W’ where W = (v,,...,v,». This statement, in
turn, is equivalent to (2). For ny (W) = W’ we have v,.(x) # x foreach x e W
and (x| W’) # 0. This is a restatement of (3). This proves the proposition.

3.4 Corollary. Let W and W’ be two related elements of G, (F"). Then there
exist neighborhoods N of W and N' of W' such that V and V' are related for
each pair (V,V')e N x N'.
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3.5 Definition. Let IZ,(F") be the subspace of (F")* consisting of linearly
independent k-tuples in F". The Gram-Schmidt map GS: V,(F") - V,(F") is
given by GS(yy,..., i) = (vy,-..,0,), where v, equals y, divided by |y, |l and
vjequals y; — > (y;lv;)v; divided by

i<j
Yi— Z (yilvi)v;
i<j
For W e G,(F"), let O(W) denote the open set of all W’ related to W. For
W = {vy,...,v;» we define a linear inner product preserving map

where fi, . w(W)= W’ and the map f is continuous in (v,...,1;) €
Vi(F") and W’ e O(W). This s done by requiring f, . .., w(v;) = v;, where
Wi,s...,0) = GS(ny(vy),..., Tty (v,)). The above definition is well defined in
view of (3.3). With these notations we prove the following theorem.

3.6 Theorem. The projection p: Vi(F")— G(F") is locally trivial, and
(Vi(F™, p, G.(F™) is a locally trivial principal bundle with fibre V,(F*) = Ug(k).

Proof. For each subset of k elements H < {1,2,...,n} or {1,2,...} for n =
+00, we define Oy to be the open set O(Fy), where Fy = Y Fe; < F". We

ieH
define j: F* - Fy to be the natural inclusion where j(e,) = ¢;;, and i(1) is the
minimum of i € H, etc. Then we have the commutative diagram where f is an

Oy-isomorphism:

Oy x Vi(F¥) —L—— p™(0y) = Vi(F")
pry p
Oy < G, (F")

We define f(W,v,,...,0,) = (v},...,0x), Where v = fie,.... iy w(®i)s With
1 <i £ k. This proves the first statement of the theorem since the Oy cover
G, (F"). For the second, observe that f commutes with the action of Ug(k) on
the right.

3.7 Corollary. The projection p: V,(F") = G,(F") is a fibre map.
Proof. For this, we use (3.6) and 1(5.2).

3.8 Theorem. The map q: Vi (F")—> Vi(F") defined by q(v,...,04+1) =
(vy,...,0vy) is locally trivial with fibre V,(F"~*) = §"*71,

Proof. Let H < {1,...,n} be a subset of k elements, and let H' =
{1,...,n} — H. Let Fy, = Y Fe, asin (3.6). Let Of denote the open subset

ieH’
p~*(Oy), where Oy is defined as in (3.6). Then we have the following commuta-
tive diagram, where g is an Of-isomorphism:



94 8. Calculations Involving the Classical Groups

Of x Vi(Fyg) ———— q7(0f) < Vs (F,)

pry q
O = Vi(F,)

We define g(vy,...,00,X) = (V1,...,04,Ups1), Where vy = fi oy we(X).
This proves the theorem.

Observe in (3.8) that the fibre is a sphere, V,(F" %)= §"*"! for F =R,
§2n=2k-1 for F = C, and §*" *! for F = H.

3.9. Corollary. The projection q: V,.(F") - V,.(F") is a fibre map.
Proof. For this, we use (3.8) and 1(5.2).

3.10 Remark. Theorems (3.6) and (3.8) are usually proved using deep prop-
erties of Lie groups. Our proofs are elementary and geometric in character.

4. Stability of the Homotopy Groups of
the Classical Groups

Let F denote R, C, or H, and let ¢ be a corresponding integer, where ¢ equals
the dimension of the real vector space F over R. We make use of the follow-
ing fibre maps p.

Up(n) > Vi (F"™) = Up(n + 1) 5 V, (F**1) = g+t
SUR(n) = V,(F"™') = SUg(n + 1) 5 V,(F"*1) = Se+e-t

The above maps p (the second is defined only for F = R or C) are composi-
tions of the fibre maps V., (F"*') - V(F"*') considered in (3.8). Now the
next theorem is an easy consequence of the homotopy sequence of a fibre
map.

4.1 Theorem. The natural inclusions Ug(n)— Up(n + q) and SUg(n) -
SUp(n + q) induce morphisms m(Up(n)) - n(Up(n + q)) and w(SUg(n)) —»
n,(SUp(n + q)) which are isomorphisms for i < c¢(n + 1) — 3 and epimorphisms
foriZcn+1)—2.

Proof. If we prove the statement for ¢ = 1, then by factoring the above inclu-
sion Ug(n) > Ug(n + 1) - --- = Ug(n + q), we get our result. For g = +o00, we
use 1(4.3) and observe the hypotheses are easily satisfied.

For ¢ = 1 we use the above fibre maps and the homotopy sequence [see
1(5.3)]. We have

Ty (S V) o 1 (Up() = m(Up(n + 1)) = S V<)
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and a similar sequence for SUg(n) = SUg(n + 1). Our morphism is an epimor-
phism if 7,(S"**"*) = 0 or i < (n + 1)c — 1 and an isomorphism if, in addi-
tion, 7., (S™** ') =0ori+ 1 < (n + 1)c — 1. This proves the theorem.

4.2 Remark. For fixed i, i < (n + 1)c — 3 determines the stable range of n,
where
T;(Up(n)) » n(Up) or 7(SUg(n)) » m;(SUy)

are isomorphisms. In the real case, this range is i < n — 2; in the complex
case, this range is i < 2n — 1; and in the quaternionic case, this range is
i<4n+ 1.

5. Vanishing of Lower Homotopy Groups of
Stiefel Varieties

In this section we make use of the following fibre map p.
Up(m) = Ug(k + m) - Vi (F**™)

Again p is the composition of fibre maps V., ,(F") - V,(F") considered in
(3.8). The next theorem is an easy consequence of the homotopy sequence of
a fibre map.

5.1 Theorem. m,(V,(F**™)) =0 fori < (m + 1)c — 2.
Proof. Applying the homotopy sequence 1(5.3) of a fibre map, we have the
following exact sequence:
-+ = 1 (Up(m) S 7 (Up(m + K)) = m((F™) = 2 (Up(m)) 5 -
By Theorem (4.1), if i < ¢(m + 1) — 2, then a is an epimorphism and f is an

isomorphism, and =,(V;(F¥*™)) = 0. This proves the theorem.

Observe that 7,(V,(F*)) = 0 for all i. In the real case, m;(V,(R**™)) = 0 for
i <m — 1; in the complex case, m;(V,(C**™)) = 0 for i < 2m; and in the qua-
ternionic case, m;(V,(H**™)) = 0 for i < 4m + 2.

6. Universal Bundles and Classifying Spaces for
the Classical Groups

Putting together Theorems (5.1) and (3.6) and definition 4(10.7), we have the
next theorem immediately.

6.1 Theorem. For Ug(k), the principal bundle V,(F**™) — G, (F**™) is univer-
sal in dimensions <c(m + 1) — 2, and Vi(F*) - G (F®) is a universal bundle.
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For SUg(k), the principal bundle V,(F**™) — SG,(F**™) is universal in dimen-
sions <c(m + 1) — 2, and Vi(F*) —» SG,(F*) is a universal bundle.

We suggest that the reader compare V,(F™) and the join Ug(k) * - - - % Ug(k).
In this way the universal bundle V,(F*) —» G,(F®) can be mapped naturally
into the bundle coming from the Milnor construction.

7. Universal Vector Bundles

In Theorem 3(7.2) vector bundles over paracompact spaces were classified
using the universal principal bundle o} = (E, p, G,(F")) when n = +o00. By
6.1), af = (Vi(F"),p,G(F")) is the universal Ug(k)-bundle in dimensions
<c(n — k + 1) — 2. By 5(3.3), the fibre bundle «f[F*] is a vector bundle. We
compare of [ F*] and y,. using the bundle map f: af[F*] — y;, Where

f(vy,..., v, y)mod Up(k)) = ({vy,..., 00, Y101 + = + Yi0y)

For ae Ug(k), let (vq,...,00)a = (vi,...,v;) and ay =y’. Then we have
Y Yilm =Y, G ;ViVm = 2. y;vj, and u is a well-defined bundle morphism.
m m,j J

7.1 Proposition. The bundle morphism f:af[F*]— y» is a vector bundle
isomorphism.

Proof. From the definition of the vector bundle structure on of[F*] [see
5(3.3)], and the definition of f, it follows that f is a vector bundle morphism
which is an isomorphism on each fibre. By 3(2.5), f is an isomorphism.

Theorem (6.1) has an interpretation for vector bundles in view of (7.1) and
Remark 5(3.3).

7.2 Theorem. Let X be an n-dimensional CW-complex. The function that
assigns to each homotopy class [ f]: X — G(F**™) the isomorphism class
of the k-dimensional vector bundle f*(yf*™) over X is a bijection when n <

cim+ 1) —2.

7.3 Remark. We can reverse the process in (7.1) and get a description of the
associated principal U(k)-bundle, denoted Pr ¢, for any vector bundle &. The
total space of Pr ¢ is the subspace of the total space of ¢ @ Y. @ ¢ consisting
of orthonormal k-tuples (vy,...,v;) of vectors (of necessity all in the same
fibre). Then U(k) acts on the total space of Pr & by (vy,...,v)a = (v},...,v;),
where v; =Y a; ;v;. If & is trivial, Pr ¢ is a trivial principal U (k)-bundle, and

[t

L
the operation &+ Pr ¢ commutes with restriction. Therefore, Pr & is a princi-
pal U(k)-bundle, and, as above, it has the appropriate transition functions.
The reader can investigate to what extent Pr is a functor. The process
described above can be thought of as the analogue for vector bundles of
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F* V,(F*) for vector spaces. We could take the operation F¥— V, (F¥) and
define the bundle of m-frames in a k-dimensional vector bundle or F¥—
V,.(F*) and define the bundle of m-dimensional subspaces in a k-dimensional
vector bundle. We explore these constructions further in Chap. 15.

7.4 Example. For t(S"), Prt(S") is just V,,,(R"**) — V,(R"*!). Similarly, for
k-frames on §" = V;(R"*!) the bundle V., (R"*!) — V, (R"*!) is used.

8. Description of all Locally Trivial Fibre Bundles
over Suspensions

We view the nonreduced suspension SX of a space X as the quotient of
X x [—1,+1] with X x {—1} identified to one point, X x {+ 1} identified
to a second point, and no further identifications. For J = [—1, + 1], we
denote by XJ the image of X x Jin SX. Forxe X,te[—1, +1],let {(x,t>
denote the point in SX corresponding to (x,t)e X x [—1, +1]. Let SX,
denote X[0,1] and SX _ denote X[ —1,0]. Both the upper cone SX, and the
lower cone SX _ are contractible.

8.1 Definition. A bundle ¢ over a suspension SB is regular provided, for
some ¢ > 0, £|B(—¢, + 1] and &|B[—1, +¢) are trivial.

Every numerable principal G-bundle is regular over SB.

If {(B(—e¢, +11,hy),(B[—1, +¢),h,)} is an atlas for a regular principal
G-bundle ¢ over a suspension SB, there is just one transition function g, ,:
B(—¢, +&)— G to consider, where for <{b,t) € B(—¢, +¢) and se G there
is the relation h,({b,t),s) = hy(<b,t),g, ,{b,t)s). We restrict g, , to B =
B[0] = SB and denote the resulting map by c,. In the next theorem, we
determine the relation between the isomorphism class of £ and the map c,.

8.2 Theorem. Two regular principal G-bundles & and &' over SB are isomor-
phic if and only if there exists s € G such that ¢, and sc,s™" are homotopic.

Proof. If £ and &' are isomorphic, there exist ¢ > 0 and maps r,: B(—¢, +1] —
G and r,: B[ —1, +¢&) — G such that ¢, (b) = ri(b)ce(b)ry(b)™", where r,(b) =
r(b,0) for b € B. This statement follows from Theorem 5(2.7). By changing
the charts by the constant action of G, we can assume that c.(by) = ¢ (by) =
1. Consequently, we have r,(b,) = r,(by) = s € G. Since r; and r, are defined
on B(—e¢, +1] and B[ —1, +¢), which are contractible, there exist homoto-
pies h; ,: B— G for i = 1, 2 with h; ,(by) = h; (b) = s for each t € [0,1] and
b e B and h; o(b) = r,(b) for each b € B. Then h, ,(b)cs(b)h, (b)™" is a homo-
topy from c; to sc.s™ .

Conversely, by using r;(b, t) = s on the appropriate domain, we can assume
¢, and ¢, are homotopic. Therefore, the map c,.c;' is homotopic to the map
constantly equal to 1€ G. Therefore, we have r,: B(—e¢, 1] — G such that
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ri|B(—¢, +¢) = g1.,97%. If we define r, to be constantly equal to 1 € G with
domain B[ —1, +¢), we have g1 ,(x) = r{(x)g,,(x)r,(x) " for x € B(—¢, +¢).
Consequently, by Theorem 5(2.7), ¢ and &' are isomorphic.

8.3 Corollary. Let G be a path connected group. The function that assigns to
each isomorphism class of regular principal G-bundles & over SB the homotopy
class [c.] € [B, G] is a bijection.

Proof. In Theorem (8.2), observe that if u(t) is a path from 1 to s then
u(t)cu(t)™" is a homotopy from ¢, to sc,s~*. This remark and Theorem (8.2)
demonstrate the corollary.

8.4 Corollary. Let G be a path connected group. The isomorphism classes of
locally trivial principal G-bundles & over S" are classified by elements [c,] of
nn—l(G)‘

Proof. Note that S = S(S"™).

8.5 Definition. A map c;: B— G associated with the principal G-bundle ¢
over SB as in (8.1) is called a characteristic map of ¢.

The above discussion could be carried out for vector bundles of dimension
k, using G = Ug(k).

9. Characteristic Map of the Tangent Bundle over S"

9.1 Notation. Let a, be S" ! and a # —b. Let R(b, a) denote the rotation in
SO(n) with the two defining properties:

(R1) For each y with (aly) = (b]y) = O there is the relation R(b,a)y = y.
(R2) R(b,a)a = b, where the rotation is along the shortest great circle from a
to b.

The following formula holds:

((a + b)|x)
R(b =x—-——_ b) + 2 b
(b = x — T a4 )+ 2(al)
By a straightforward calculation, the reader can verify (R1), (R2), and the
relation |R(b,a)e;|| = 1for0<i<n-—1.

9.2 Principal Bundle of 7(S"). By (7.4) the principal SO(n) bundle associated
with 7(5") is SO(n + 1) 5 §", where p(u) = u(e,). The fibre is SO(n) with natu-
ral inclusion. Equivalently, the calculation could be made for O(n + 1) 5 5"
with fibre O(n).
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9.3 Notation. We define ¢: S" — {—e,} - SO(n + 1) by the relation ¢(x) =
R(x,e,), where R is defined in (9.1). Let r(x) = ¢(e,_,)*(x). We can calcu-
late g(e,—1)(Xgs---5X,) = (Xg5-+-»Xy—2, X4, —X,_1), and consequently we have
F(X0s -y Xn) = (X5 vy Xp_2s —Xp_1» —X,) and r* = 1.

9.4 Local Charts for SO(n + 1) - S". We define maps h,: (S" — {—e,}) x
SO(n) - SO(n + 1) and h,: (S" — {e,}) x SO(n) > SO(n + 1) by the relations
hi(x,u) = ¢(x)u and h,(x,u) = r¢(r(x))u, where the following diagrams are
commutative.

(8" — {—e,}) x SO(n) —=2— SO(n + 1)

(5" — {e,}) x SO() —=2— SO(n + 1)

pry p
Sn

Observe that p(¢(x)u) = ¢(x)u(e,) = ¢d(x)e, = x and ph,(x,u) = ré(r(x))u(e,) =
r¢(r(x))e, = r(r(x)) = x by (9.3). Clearly, h, and h, commute with the ac-
tion of SO(n) on the right. The transition map g, ,: " — {e,, —e,} = SO(n)
satisfies the relation h,(x,g, ,(x)u) = h,(x, u). Therefore, we have g, ,(x) =
(#(x))*ré(r(x)), and, restricting to S"!, we have c,(x) = (¢(x)) " 'ré(r(x)),
where ¢, denotes the characteristic map of the principal bundle SO(n + 1) —»
s".

9.5 Theorem. The characteristic map of t(S") has the form c,(x) = R(x, e,—,)*
for x e "1,

Proof. FirSt7 we ComPUte cn(en—1)=(¢(en-1 ))-1r¢(_en—l):(¢(en-1))_1¢(en-l)=
R(e,_,e,-;)*. For x #e,_,, we parametrize the intersection of Re, ®
Re,_, ® Rx with S" by spherical coordinates (0, ¢); see Fig. 4. Then e, =
(0,7/2), e,—; = (0,0), and x = (0,0). If y € S"~! is such that (y|x) = (y|e,—;) =
0, then ¢,(x)y = y = R(x,e,_,)*y, and so we consider what happens in the
2-sphere (Re, @ Re,_, ® Rx)N S". Since c,(x)e, = e, = R(x,e,_;)?e,, we need
prove only that R(x, e,)R(x, e,_,)*e,—; = rR(r(x),e,)e,_,.

First, we do the calculation for 0 <0 < /2 as in Fig. 4. We have
R(x,e,_1)*(0,0) = (20,0). Since R(x,e,) is a 90° rotation from e, to x
around the axis (6 + n/2,0) and 20 < 0 + ©/2, we have R(x,e,)(20,0) =
(0 + 7/2,0 — m/2). For the other side of the relation, we observe first that
r0,¢) = (n — 6, —¢) for 0 < 6 < n. Then R(r(x),e,) is a 90° rotation from
e, to (1 — 0,0) around the axis (n/2 — 6,0), and we have R(r(x),e,)(0,0) =
(n/2 — 0,7/2 — 0). Finally, we have rR(r(x),e,)(0,0) = r(n/2 — 0,7/2 — 0) =
(n/2 + 6,0 — 1)2).
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Figure 4

Second, we do the calculation for /2 < 0 < n. We have R(x, e,_,)*(0,0) =
(20 — 27, 0). Since R(x,e,) is a 90° rotation from e, to x around the axis
(0 —3n/2,0) and 60 — 3m/2 <20 —2n, we have R(x,e,)(20 —2n,0) =
(60 — 371/2,0 ~ n/2). For the other side of the relation, we observe also that
r0,¢)=(—n—0,—¢) for —n <0 <0. Then R(r(x),e,) is a 90° rotation
from e, to (r — 6,0) around the axis (r/2 — 0,0), and we have R(r(x), e,)(0,0) =
(n/2 — 0,7/2 — 0). Finally, we have rR(r(x), e,)(0,0) = r(n/2 — 6,7n/2 — 0) =
(0 — 3m/2,0 — =/2). This proves the theorem since a rotation is determined by
its image on two points x and y with x # y and x # —}y.

9.6 Corollary. The relation c,gn(—X) = c,sn)(X) is satisfied for each x € S"*.

Proof. We must prove that R(—x,e,_,)* = R(x,e,_,)*. In the (e,_,, x)-plane,
where e,_, is represented by 0 and x by 6,0 < 6 — &, we have — x represented
by 6 — n. Then R(x,e,_,)? is a rotation by 26, and R(x, e,_,)? is a rotation by
20 — 2r or that which is the same as 26.

9.7 Representations of the Characteristic Map. Let o: S" ' — O(n) be the
map defined by the requirement that a(x) be a reflection through the hyper-
plane orthogonal to x. For y € $" !, we have y = (y|x)x + (y — (y|x)x), and
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consequently a(x)y = y — 2(y|x)x. Let B: S" ' — O(n) be the map defined
by the requirement that f(x) is a “rotation” by 180° around the axis x.
For y e §"7!, we have B(x)y = 2(y|x)x — y. Note that a(x)y = — B(x)y, and
a(x)y = yor f(x)y = —yifand only if (x| y) = 0. We summarize further prop-
erties of o and f in the next proposition.

9.8 Proposition. The relation R(x,,x,)* = a(x;)a(x,) = B(x,)B(x,) holds.

Proof. Clearly, a(x;)a(x,) = B(x,)B(x;). Moreover, if y is orthogonal to x,
and x,, we have R(x,,x,)%y = a(x, )oc(xz)y B(x1)B(x,)y = y. It suffices to
show that R(x;, x,)*x, = B(x;)B(x,)x, = B(x,)x, equal the image of x, by a
rotation of 180° around x;. But this is the image of x, under a rotation
through x, by an angle twice the angle between x; and x,.

9.9 Corollary. The relation c,(x) = R(x,e,_;)* = a(x)a(e,—;) = B(x)B(€n—1)
holds.

10. Homotopy Properties of Characteristic Maps

For a list of properties of the degree of a map S" — S”, see Eilenberg and
Steenrod [1].

10.1 Theorem. Let p: SO(n) — S"™! be the projection p(u) = u(e,—,), and let
Co—1:S" 1 - S0(n) be the characteristic map. Then the degree of pc,_, is
(+)+ (=1

Proof. Let HY™! be the closed subspace of x € "' with +x,_; = 0. Then
pe,_: HY ' — 82581 — {—e, ,} is a homeomorphism, and | pc,—; de-
fines a map f;: H" 1/S" 2 - §"~! of degree + 1. Since ¢,_;(x) = ¢,_;(—x), we
have a homeomorphism pc,_;: H%. '/S" 2 —» §"!, and pc,_; defines a map
for H1/8""2 — §"71 of degree equal to the degree of x — — x, which is (— 1)
on §"1.

We have the following commutative diagram.

Sn—l Pln-1 Sn—l

{flvfz

Sn- I/Sn 2 = S 1 Sn—l

Consequently, the relation degpc,_, = +1 + (—1)" holds, and this proves
the theorem.

Therefore, deg pc,_, is 2 for n even and 0 for n odd. For a map f: "' x
S"~1 — §"! there is a bidegree (a, b) € Z x Z associated with it, where a is the
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degree of x — f(x,y,) and b is the degree of y — f(x,, ). The pair (a,b) is
independent of the pair (x,, yo)-

10.2 Corollary. The bidegree of (x,y)—a(x)y of S" ' x S"' -8 is
(41 +(=1y, —1).

Proof. By (10.1) x +— a(x)a(e,—; )y has degree 1 + (— 1)" and is independent of
ale,_;)y € S" 1. Moreover, the map y+ a(x)y is a reflection through a hyper-
plane. It has degree — 1.

10.3 Corollary. The bidegree of (x,y)—B(x)y of S" ! x §" 181 is
(+1+ (=1, —=(=1)").

Proof. Since f(x)y = —a(x)y, the degree of x+ —x which is (—1)" multi-
plied by the bidegree of (x, y)+— a(x)y yields the bidegree of f(x)y.

The following theorem is very useful in making calculations of homotopy
groups.

10.4 Theorem. Let ([ F] = (Ep, pp,S") be a fibre bundle with structure group
G and fibre F. Let c;: S"~' — G be the characteristic map of £, and for y, € F,
let cp: 8" — F be the map defined by cp(x) = c(x)yo. Then imd = ker « is
generated by [cp] in the exact sequence

Z=7,(8" 57, 1(F,y0) >, 1(Ep) > 0

Proof. We need only show that d([ f]) = [¢g], where deg f = + 1. Let f(x) =
R(x,e,)*(e,), where we consider f:(H*,5" ') > (S",{—e,}), and the induced
map f: H"/S"™! — S" has degree +1. For x e H" with x # e,, let h(x) be the
point in §"7! where the great circle from e, to x intersects $"*.

Let h;: H x F—pg*(H") and h,: H" x F — p*(H") be the restriction
of charts where h,(x,y) = hy(x,cs(x)y) for xe H'NH~. We define g¢:
(H*,S"') - (Eg, F), where

(x) = {hz(f(x), Yo) for f(x)e H*
I =V g (f0)celh(x) o) for f(x) e H™

If f(x) = h(x) = x’, the two definitions of g agree; that is, h;(x’,c:(x")yo) =
h,(x',yo). Clearly, pg = fand g(S" ') = F. For x € §" "}, we have f(x) = —e,,
h(x) = x, and g(x) = h;(—e,,c:(x)yo), which equals c,(x)y, viewed with
values in F. Then [ f] generates 7,(S") and d([ f]) = [cr], which proves the
theorem. Here we used an explicit form of ¢.
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11. Homotopy Groups of Stiefel Varieties

Let j: V,(F") - V., (F"™) be the map j(v,,...,v,) = (vy,..., Vs, €,+1). Then j
can be viewed as the inclusion of the fibre over e, of the map p: V, ., (F"*!)
— V,(F"*"), where p(v;,...,04+1) = U+, From this fibre map, we have the
homotopy sequence.

Ty V(™) = m(VG(F") 5 1 (Vs (F7) = m(Vi (F™))

This yields the next proposition immediately.

11.1 Proposition. The homomorphism
i TV(F™) = (Ve (F™7)

is an isomorphism for i < c(n + 1) — 3.

For ¢ =1, the inequality has the form i <n—2, and =;(V;(R")) =
n(S""') = 0. This yields m;(V,(R")) = 0 for i £ (n — k) — 1, which is Theorem
(5.1). The first nontrivial group is 7,_,(V;(R")). This we calculate in the next
proposition.

11.2 Proposition. The group n,_,(Vi(R")) is Z for k = 1 or n — k even and Z,
fork =2 and n — k odd.

Proof. For the case k = 1, we have n,_,(V,(R")) = m,_,(S" ') = Z. By (11.1)
it suffices to prove the result for k = 2 because n —2 < (n + 1) — 3. For k = 2,
we view V,(R") — S""! as the sphere bundle with fibre F = $"~? associated
with V,(R") > S"'. Then the characteristic map is cp(x) = c:(x)y =
a(x)a(e,—,)y by Theorem (10.4) and Corollary (9.9). By Theorem (10.4) there
is the exact sequence

Z=m, (S5 m, 5872 > 7, 5 (Va(R") - 0
where d[1] = [c;]. By Theorem (10.1), we have degcp = (+1) + (—1)""".
Then the above sequence becomes
Z5Z 57, 5(Va(R) -0
For n and n — 2 even, (1) = 0 and =,_,(V,(R")) = Z, and for n and n — 2
odd, d(1) = 2 and =n,_,(V,(R")) = Z,. This proves the proposition.

For ¢ = 2, the inequality of (4.1) becomes i < 2n — 1. Since n;(V;(C")) =
m,(S?" 1) = 0 for i < 2n — 2, we have m;(V,(C")) = 0 for i < 2(n — k) which is
Theorem (5.1). Moreover, T,(,—+1(Vi(C")) can be calculated n — k from the
case k = 1 because 2(n — 1) + 1 < 2n — 1. This yields the next result.

11.3 Proposition. The relation 1,4+ (Vi(C")) = Z holds.
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Proof. Note that for k = 1 we have n,,_,(V;(C")) = n,,-,(8**!) = Z, and
now we use (11.1).

For ¢ = 4, the inequality of (11.1) becomes i < 4n + 1. Again, n;(V,(H")) =
0 for i < 4(n — k) + 2. By the same argument as was used in (11.3), we have
the next proposition.

11.4 Proposition. The relation m,,_4y+3(V.(H")) = Z holds.

12. Some of the Homotopy Groups of
the Classical Groups

We consider some special calculations of low-dimensional homotopy groups.

12.1 =, of the classical groups. The inequality 0 < c¢(n + 1) — 3 holds for all
n=1if ¢ =2, 4 and for n = 2 if ¢ = 1. Using the elementary calculations
of Ug(1), SUR(1), SO(2), and O(2), we have n,(0O(n)) = Z, for all n = 1 and
7o(SO(n)) = moy(U(n)) = no(SU(n)) = ny(Sp(n)) = Oforalln = 1.

12.2 Relation Between 7n;(Ur(n)) and n;(SUp(n)). From the fibre sequence
SO0(n) - O(n) » Z, we have 0 = 1, ,(Z,) - 7,(SO(n)) - n;(0(n)) -» n;(Z,). For
i = 1, the inclusion SO(n) — O(n) induces isomorphisms of the homotopy
groups:

1(80(n)) - 1,(0(n))
From the fibre sequence SU(n) — U(n) — S* we have
0 = 7;44(S%) = m(SU(n) - m(U(n)) — mi(S")

For i = 2, the inclusion SU(n) — U(n) induces isomorphisms of the homo-
topy groups:

7(SU(n)) - m(U (n))
For i = 1, there is the exact sequence
0 - 7, (SUn) — n,(U(n) - n,(S') =Z -0
12.3 =, of the Classical Groups. Clearly n,(0(1)) = n,(SO(1)) = 0. Since

U(1) = SO(2) = S, since Sp(1) = S3, and since 1 < c(n + 1) —2forc =2 or
4, we have

1,(0(2) = 7,(S0(2)) = Z
Z=r7,(U()) =n,(U(n)) forl <n< 4w
0=mn,(SU))=7n,8U(n)) forl=n< +
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0= 7,(Sp(1)) = n,(Sp(m)) ~ for1<n < +oo

Since 1 < (n + 1) — 3 for n = 3, we must calculate 7,(SO(3)). For this we
prove SO(3) is homeomorphic to RP3. This can be seen as follows: An ele-
ment u € SO(3) leaves a point x, of the sphere |x|| = 1 in R? invariant and
rotates the plane orthogonal to x, by an angle 6,. We associate with u the
point 6,x, in the ball B(0, 7) in R* with antipodal points of 6B(0, n) identified.
This is RP? with a cell attached in the correct way so that the resulting space
is RP. Consequently, we have Z, = n,(RP?) = n,(SO(3)) = n,(50(n)) =
7n,(0(m))for3 <n < +o0.

12.4 =, of the Classical Groups. We prove that 7,(Us(n)) = n,(SUg(n)) =
for all n = 1. Observe that 0 = 7,(S*) = n,(U(1)) = n,(SU(1)). Since Sp(1)
SUR)=S8*and 2<c(n+ 1)— 3 for ¢ =2 or 4, we have 0 = n,(Sp(n)) =
7,(U(n)) = n,(SU(n)) for 1 < n £ +o00. From the above representations of
SO(n) and O(n) we have 7,(SO(n)) = n,(0(n)) for n < 3. To do the calculation
in the stable range, we consider the following fibre sequence:

0

S0(3)—>S0(4) - S
From the homotopy sequence, we have
0 = 1,(SO(3)) = 1,(SO(4)) - m,(S*) = 0

Therefore, we have 0 = 7,(SO(n)) = n,(0(n)) for n = 4 since 7,(SO(3)) =
n,(RP?) = 7,(8%) = 0.

This result concerning 7, of the classical groups is true of 7, of an arbi-
trary compact Lie group.

Using Theorems (10.1) and (10.4), we shall be able to calculate 75 and =,.
First, we have the following simple results.

12.5 We have 7,(0(2)) = n;(SO(2)) = n(U(1)) = 0 for i > 1 and equal to Z
fori=1.

12.6 =, of Unitary and Symplectic Groups. Again we use the relation SU(2) =
Sp(1) = S3, and we derive the result n;(U(2)) = n;(SU(2)) = n5(Sp(1)) = Z.
Since 3 <2n — 1 when n = 2 for the complex case and 3 < 4n + 1 for the
quaternionic case [see (4.1)], we have

Z = 14(Sp(k)) fork > 1
Z = 14(U(k)) = n5(SU(k)) fork =2

For k = 1, n5(U(1)) = n,(SU(1)) = 0.
We view S* as the subspace of x e H with ||x|| = 1, and we define two
maps

r:§*—>S0(4) and s5:5*—>S0(4)
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by r(x)y = xyx~! and s(x)y = xy for x € S* = H and y € R* = H. The prop-
erties of these two maps are summarized in the next two propositions. Note
the relation with (12.3).

12.7 Proposition. There is a commutative diagram where r’ is a homeomor-
phism, f is the natural projection, and g is the natural inclusion, where g(u)1 =
1eH =R*

$3 —— S0(4

fj [

’

r

RP?> — S0(3)

Moreover, the map r' is uniquely determined by this diagram.

Proof. Since r(x)1 = 1 and r(x) = r(—x), the map r’ exists. If r(x)y = y for all
y, then xy = yx for all y € H. This happens if and only if x is real, and there-
fore x = + 1. This means that ' is injective. The formula r(cos 0 + isin ) =
jcos 20 + ksin 26 and the formulas arising from cyclic permutations of i, j, k
demonstrate that the image of r includes all rotations about the three axes i,
j» and k. Therefore, ' is a bijection and a homeomorphism because RP? is
compact.

12.8 Corollary. The group n4(SO(3)) = Z is an infinite cyclic group gener-
ated by r: S* - SO(3).

Proof. The induced homomorphisms (r'), and f,: n5(S*) = Z > n5(RP?) are
isomorphisms.

For p: SO(4) - S3, where p(u) = u(1) in H, we have ps = 1, and s is a cross
section of the principal SO(3)-bundle p: SO(4) - S3.

12.9 Proposition. The space SO(4) is homeomorphic to S* x SO(3). Moreover,
n3(S0(4)) = Z[r]1 ® Z[s].

Proof. The first statement comes from 4(8.3). The cross section [s] generates
the image of 75(S*) — n5(SO(4)) and [r] generates the image of 75(SO(3)) —»
75(SO(4)). Since 75(SO(4)) = 75(S*) @ 7;(SO(3)), we have the result.

12.10 Proposition. The characteristic map cs of the principal SO(4)-bundle
SO(5) — S* is given by c5(x) = r(x)"'s(x)?.

Proof. Consider r(x) 's(x)?y = x 'x?yx = xyx. If x and y are orthogonal,
we have xyx = yxx = y. If y lies on the circle from 1 to x, then xy = yx, and
the map y — xyx = x?y is a rotation in this circle of an angle equal to twice
the angle from 1 to x. This can be seen immediately by parametrizing the
(1, x)-plane. Now we use Theorem (9.5).
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12.11 Proposition. 7,(SO(k)) = Z for 5 < k.

Proof. By (12.10), [c5(x)] = —[r(x)] + 2[s(x)]. By Theorem (10.4), there is
the exact sequence

74(8%) 5 1,(SO(4)) - 75(SO(5) - 0

Since the image of 0 is generated by —[r(x)] + 2[s(x)], we have n5(SO(5)) =~
cokerd = Z. Since 3 < k — 2 for k = 5, we have n5(SO(k)) = Z by (4.1).

Exercises

1.
2.

Verify that the formula in (9.1) has the desired properties.

Let f: B, > B be amap, and let & be a principal G-bundle over S(B) with character-
istic map c.: B~ G. Then prove c, f is a characteristic map of S(f)*($).

. Let wy = (E,, po, By) be a universal G-bundle in dimensions <n. Let ¢ denote the

characteristic map for f*(w,), where f: S" — B, is a map. If 0: n,(B,) — 7,_(G) is
the boundary map, prove that o[ /] = [c].

. Describe the characteristic maps of U(n) — S?"~! and Sp(n) - S*"~! as in Sec. 9.

Carry through the discussion in Sec. 1 for these bundles and their characteristic
maps.

. By viewing C? = H, prove that SU(2) = Sp(1). Then prove that 7;(U(2)) = 7;(S3)

fori > 2.

. Using the fact that m, , , (S*) = Z, for k = 3, calculate n4(Sp(k)), 74 (U(2)), m4(SU(2)),

n4(SO(k)) for 1 < k < 4.

. Calculate 7,44+ 2(Vi(C™) and myg—py+2(Vi(H™).

. Prove that the inclusion O(n)— O(n + 1) yields the exact sequence 0 —Z —

T,-1(0(n))-n,_(0O(n+1))—-0for neven and 0-Z,-n,_(0(n))-n,_(On+1))—
0 for n odd.

. Find all Ug(n) principal bundles over S" form =1,m =2, m = 3,and m = 4.
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ELEMENTS OF K-THEORY






CHAPTER 9

Stability Properties of Vector Bundles

Two vector bundles ¢ and # are called s-equivalent provided ¢ @ 6" and
n @ 0™ are isomorphic for some n and m where 6™ denotes the m dimensional
trivial vector bundle. Stable equivalence, or s-equivalence, is an equivalence
relation, and the stable classes form a ring (over finite-dimensional spaces),
with @ inducing the addition operation and ® the multiplication operation.
These are the K-rings of the space. We study the relation between isomor-
phism and stable equivalence. Also we consider elementary properties of the
cofunctor K.

1. Trivial Summands of Vector Bundles

Let F denote R, C, or H, and let ¢ denote dimy F. Using 2(7.1) and the fact
that F" — 0 is (cn — 2)-connected, we can decompose high-dimensional vec-
tor bundles into the Whitney sum of a trivial bundle and another bundle of
lower dimension. For a vector bundle &, let &, denote the subbundle of
nonzero vectors. Throughout this section, X denotes an n-dimensional CW-
complex.

1.1 Proposition. If & is a k-dimensional vector bundle with n < ck — 1, then ¢
is isomorphic to n @ 6" for some vector bundle n.

Proof. The fibre of &, is F*¥ — {0} and is (ck — 2)-connected. By Theorem
2(7.1), under hypothesis (H1), we have a cross section s of &,. The map s can
be viewed as an everywhere-nonzero cross section of &. This cross section
determines a monomorphism u: 0* — &, where u(b,a) = as(b) for (b,a)e
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E(0"). Let n be the coker u which is a vector bundle by 3(8.2), and since X is
paracompact, by 3(9.6), there is an isomorphism between ¢ and n @ 6*. This
proves the proposition.

For x € R, let {x)> denote the smallest integer n with x < n.

1.2 Theorem. Let m = {((n + 1)/c) — 1). Then each k-dimensional vector
bundle E* is isomorphic to n™ @ 0™ for some m-dimensional vector bundle 1.

Proof. By induction on k = m, &* is isomorphic to n™ @ 0™ for n <
¢(m + 1) — 1 in view of Proposition (1.1). This inequality also has the form
[m+ D)c]—1=m.

Note: For ¢ = 1 and real vector bundles, £¥ is isomorphic to " @ 6% " for
some #. For complex vector bundles, m is approximately n/2 and approxi-
mately n/4 for quaternionic bundles.

1.3 Remark. Theorem (1.2) says that a vector bundle over a point is trivial,
or, in other words, it has a basis. This theorem can be regarded as the natural
generalization to vector bundles of the basis theorem for vector spaces. In
the case of vector spaces there is a uniqueness theorem which says that two
bases have the same number of elements. Theorem (1.5) can be viewed as the
proper generalization of this result to vector bundles.

1.4 Proposition. If u, v: 0' — ¥ are two monomorphisms of vector bundles
with n < ck — 2, then coker u and coker v are isomorphic over X.

Proof. As in (1.1), a monomorphism 6' — ¢ is completely determined by a
cross section of &y, and a homotopy of monomorphism is determined by a
cross section of &g x I = (& x I), over X x {0,1}, where s[(X x 0) corre-
sponds to u and s|(X x 1) to v. Since dim(X x I) =n + 1 < ck — 1, we have
a prolongation of s to X x I as a cross section of £ x I. This cross section s*
determines a monomorphism w: 6! - & x I. Since coker w|(X x 0) is iso-
morphic to coker u and coker w|(X x 1) is isomorphic to coker v, there is an
isomorphism between coker u and coker v by 3(4.6).

1.5 Theorem. Let m = {((n + 2)/c) — 1>. If &¥ and EX are two k-dimensional
vector bundles such that m <k and &, @ 6' and &, @ 0" are isomorphic for
some I, then £, and &, are isomorphic.

Proof. By induction on [, it follows that ¢, and &, are isomorphic for n <
¢(k + 1) — 2 in view of Proposition (1.4). This inequality also has the form
(n+2)c)—1=k
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1.6 Remark. Every real vector bundle &* with k = n + 1 is isomorphic to
n"*t @ 0¥ "1, where 7 is uniquely determined by ¢ up to isomorphism. The
inequality given in (1.5) is the best possible, in general, as can be seen from the
isomorphism between 7(S") @ 0! and 0" @ 0! = 6"** given in 2(4.7) and the
fact that 7(S") is nontrivial for n # 1, 3, and 7.

Finally, observe that the methods in this section are elementary in the
sense that the general theory of fibre bundles is not used here. These results
can be derived from the refined homotopy classification theorem in 4(13.1).

2. Homotopy Classification and Whitney Sums

2.1 Definition. A classifying map of a vector bundle ¢ over a space X is a
map f: X — G,(F**™) such that ¢ and f*(y¥*™) are isomorphic.

We can reformulate the homotopy classification theorem for vector bun-
dles [Theorem 7(7.2)] as follows: Each k-dimensional vector bundle over a
CW-complex X of dimension n with n < ¢(m + 1) — 2 has a classifying map
f: X - G,(F**™) and f is unique up to homotopy equivalence. To calculate
the classifying map of a Whitney sum, we define a morphism (w,d): y,» X
o %?:lm’ where i = (Ey, py, Gi(F™), 7" = (E3, P2, G/(F™)), and ’Vlrcl:lm =
(E,p, G, (F"™)). We have the following commutative diagram, where
AW, W) =W, ® W, and

w((Wy, x1), (W, x3)) = (W, @ W), x; + X,)
E, x E, —2 > E

Jl’lxl’z JP

Gi(F") x G(F™) —2— Gy (F™*™)

2.2 Theorem. If f: X — G (F") is a classifying map for & and if g: X —
G,(F™) is a classifying map for n, then d(f x g)A is a clasifying map for &£ @ n.

Proof. Consider the vector bundle morphism h: f*(y.) @ g*(y") =
d(f x g)A)*(ppimy defined by the relation h((b,W,y),(b,W',y")) =
(b,W@®W',y+y') Since h is clearly a bijection, by 3(2.5), it is an
isomorphism. This proves the proposition.

There are two important special cases of Theorem (2.2).
2.3 Corollary. If f: X — G, (F") is a classifying map for a vector bundle ¢ and

if i: G(F") = G,(F"*™) is the natural inclusion, then if is a classifying map for

¢
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Proof. The space G,(F™) is just one point 0, and i is just d: G (F") x
Go(F™) — G (F"*™). For the unique map g: X — G, (F™), we have g*(yg') = 0.
Since & @ 0 is &, we have our result by (2.2).

2.4 Corollary. If f: X — G, (F") is a classifying map for a vector bundle ¢ and
if j: G(F") > Gy (F"™) is the natural inclusion, where j(W) = W @ F™, then
Jjf is the classifying map for £ @ 0™, where 0™ is the trivial m-dimensional vector
bundle.

Proof. The space G,(F™) has only one point F™, and j is just d: G,(F") x
G, (F™) - G, ,(F"™™). For the unique map g: X — G, (F™), we have g*(y) =~
0™ We have our result by (2.2).

2.5 Remark. Let t: G (F") — G,_,(F") be the map given by ©(W) = W*, the
orthogonal complement of W. Then, using the notation of (2.3) and (2.4), we
have the following commutative diagram for k + [ = n:

G((F") —— G(F"*™)

GUF") —1— Gyp(F"*™)

2.6 Theorem. For a CW-complex X of dimension n with n < c(m+ 1) — 2
and n < c(k + 1) — 2, the functions i,: [ X, G (F**™)] - [X, G (F*"™*")] and
Ju: [X, G(F*™™)] > [X, G (F**™*1)] are bijections.

Proof. The statement about i, is Theorem 7(7.2), and the statement about j,
follows from the commutative diagram in (2.5) where 7 is a homeomorphism.

2.7 Corollary. With the hypothesis of (2.6), the function j, i, [X,G,(F*")] -
[X,G,, ., (F*™*2)] is a bijection.

Observe that Theorem (1.5) is a corollary of (2.6). Our proof of (1.5) was
elementary in the sense that general fibre theory was not used.

3. The K Cofunctors

We begin by describing a general algebraic schema. First, we recall that a
semiring is a triple (S, a, u), where S is a set, a: S x S — S is the addition
function usually denoted a(a,b) = a + b, and u: S x S — S is the multiplica-
tion function usually denoted p(a, b) = ab. A semiring is required to satisfy all
the axioms of a ring except the existence of a negative or additive inverse. The
natural numbers {0, 1,2,3,...} with the usual addition and multiplication is
an example of a semiring. We speak of semirings with identity and which are
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commutative as with rings. Finally we recall that a semigroup is a pair (S, «)
satisfying all the axioms for a group except the one on the existence of
inverses.

3.1 Example. Let X be a topological space and let Vectg(X) be the set of
isomorphism classes of F-vector bundles over X where F = R, C, or H. These
vector bundles need not have the same dimension on each component of X.
For F =R or C the set Vecty(X) admits a natural commutative semiring
structure where (£,1) — & @ n is the addition function and ({,7) — £ ® 7 is
the multiplication function. For F = H, the set Vecty(X) admits only a natu-
ral commutative semigroup structure, where (&,7) — & @ 5 is the addition
function. We used the same symbol for a vector bundle and for its
isomorphism class.

Recall that a morphism from a semiring S to a semiring S’ is a function
f:S— 8" of the underlying sets such that f(a + b) = f(a) + f(b), f(ab) =
f(a)f(b), and f(0) = 0.

3.2 Example. For a pointed space X we have a semiring morphism rk:
Vectp(X) — Z, the rank or dimension of the vector bundle on the component
of X containing the base point. For H = F, rk is only a semigroup morphism.

Now we consider for general semirings the process of passing from a
semiring to a ring in the most efficient way. When applied to the semiring of
natural numbers, this process yields the ring of integers. A similar discussion
applies to the group completion of commutative semigroups.

3.3 Definition. The ring completion of a semiring S is a pair (S*, §), where S*
is a ring and 0: S - S* is a morphism of semirings such that if f: S — R is
any morphism into a ring there exists a ring morphism g: S* — R such that
g0 = f. Moreover, g is required to be unique.

For the construction of S* we consider pairs (a,b) € S x S and put the
following equivalence relation on these pairs; that is, (a,b) and (a’,b’) are
equivalent provided there exists ce S with a+b"+c=4a’"+ b+ c. The
reader can easily verify that this is an equivalence relation. Let {a,b) denote
the equivalence class of (a, b) (thought of as (a,b) = a — b). Let S* denote the
set of equivalence classes {a,b). Then we define <a,b) + {c,d) =
{a+ ¢,b +d)and {a,b){c,d> = {ac + bd,bc + ad). The negative of {a,b)
is ¢(b,a) and 0 = <0,0). Finally, 8: S — S* is defined by 6(a) = {a,0). We can
also view S* as the free abelian group generated by the set S modulo the
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subgroup generated by (a + b) + (— 1)a + (—1)b, a, b € S. We leave the de-
tails to the reader, for example, that multiplication prolongs linearly.

Finally, the uniqueness of (S*,6) follows from a commutative diagram
involving a second completion (S%,0,) of S, namely, the following:

S*

ST

Then ¢f and fy are identities. The situation with the group completion of a
semigroup is completely analogous to the above.

3.4 Definition. The K (X) ring (or group for F = H) of a space X is the ring
(or group) completion of Vectg(X).

Observe that Vect, is a cofunctor from the category of spaces and maps to
the category of semirings (or semigroups). If f: Y —> X is a map, then
Vectg(f): Vectp(X) — Vectg(Y) is defined by the relation Vecty(f)(¢) equals
the isomorphism class of f*(&) over Y. Here £ denotes both a vector bundle
and its isomorphism class.

Similarly, the functions K define a cofunctor. For a map f: Y — X there
are the following morphisms:

Vect,(X) ——— Kp(X)

Vectp(f)Jv JKF(f)

Vectg(Y) Kg(Y)

The requirement of commutativity defines the morphism K. (f). Ifg: Z > Y
is a second map, we have K(fg) = Kg(g)Kg(f) by the unicity statement in
(3.3). Similarly, Kg(1y) is the identity on Ky(X). More preciselyy, if ¢ —n e
Kp(X), we have Kg(f)(& —n) = f*(&) — f*(n).

By (3.3), the morphism rk: Vecty(X) — Z factors as follows:

K(X)

N

Vectg(X) Z

More precisely, we have rk(¢ — n) = rk& — rkn.

The multiplicative identity, denoted 1, in Kp(X) is represented by the
trivial line bundle and rk(1) = 1. Consequently, there is a morphism ¢: Z —
Kr(X) such that (rk)e = 1,, where ¢(n) is the class of 0" for n > 0. For a
(pointed) map f: Y — X, the following diagram is commutative.
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K(X)
/. | >
\KF(Y)

3.5 Definition. The reduced K, cofunctor, denoted K, is the
ker(rk: Kp — Z).

From the above diagram, the cofunctor K splits K (X) = K (X)® Z.
Moreover, kp(f) for a map f: Y — X is the restriction of K(f), and IZF isa
cofunctor. The following description of K.(X) is very useful for future
sections. First, we consider a definition.

3.6 Definition. Two vector bundles ¢ and 5 over a space X are s-equivalent,
denoted ¢ ~ n, provided there exists ¢ and n such that £ @ 6" and n @ 69 are
isomorphic over X. A bundle ¢ that is s-equivalent to 0 is called s-trivial.

Stable equivalence, or s-equivalence, is clearly an equivalence relation, and
isomorphic vector bundles are s-equivalent. Consequently, s-equivalence can
be thought of as a relation on Vectg(X).

3.7 Remark. Let X be an n-dimensional CW-complex. In the language of
s-equivalence, Theorem (1.2) says that every vector bundle is s-equivalent to
a k-dimensional bundle where n < ¢(k + 1) — 1, and Theorem (1.5) says that
two k-dimensional bundles ¢ and # are isomorphic if and only if they are
s-equivalent when n < c¢(k + 1) — 2.

In the next theorem we determine the s-equivalence classes of vector bun-
dles over a space.

3.8 Theorem. Let X be a space with the following property (S). For each
vector bundle & over X there exists a vector bundle n over X with £ @®n
isomorphic to some 0™. Then the function a: Vectg(X) — K p(X) defined by
(&) = & — rk(&) is a surjection, and o(E) = a(n) if and only if & and n are
s-equivalent. To form & — rk(), we view Z < Kg(X), using e.

With this theorem, we see that the s-equivalence classes can be identified
with the elements of K r(X).

Proof. To prove that « is surjective, let & — n € Kp(X), where rké = rkn. Let
1’ be a vector bundle such that n @ 5’ is isomorphic to 8™ Then in K(X)
we have ¢E—n=C(@n —n@®n=(@n —m=(@H —rk(E®n) =
a(¢ @ n'). Consequently, a is surjective.

Let £" and n™ be two vector bundles such that & —n = a(é) = a(n) =
n — m. Then there is a bundle { such that @ 0" ®( and n @ 6" @ { are
isomorphic. Let {’ be a vector bundle such that { @ {’ and 6¢ are isomorphic.
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Then E@O" DI =ED O™ and n @ O" D 07 =n @ 6" are isomorphic
and ¢ and n are s-equivalent. Conversely, if {¢@® 0" and n@® 0™ ar
isomorphic, we have a(¢ @ 0") = a(n ® 6™). Since a({ ® 69) = a({), we have
a(&) = a(n). This proves the theorem.

3.9 Example. The tangent bundle 7(S") to $" is trivial only forn = 1, 3, or 7,
and t(S") is s-trivial for all n since t(S") @ 6' =~ "1,

3.10 Remark. In 4(11.2) we classified all fibre bundles with given group G
and fibre F, and in 3(7.2) we classified all vector bundles of given dimension.
In the next secton we classify stability classes of all vector bundles; that is,
we represent K ;(X) as homotopy classes [ X, B;], where By is an H-space.
This will be proved for X, a finite CW-complex.

4. Corepresentations of K

There are two domains over which K has a corepresentation: first, over the
category of connected CW-complexes of dimension less than a fixed integer
and, second, over the category of all finite CW-complexes. Neither category
includes the other.

We begin by defining a morphism of functors ¢y.: [ X, G, (FZ")] - KF(X)
by the requirement that ¢,.([g]) equal the class of g*(y2") — n in K p(X).

4.1 Proposition. For an arbitrary category determined by paracompact spaces
X, the family of functions ¢yn: [X,G,(F*")] - Kp(X) is a morphism of
cofunctors.

Proof. Let f:Y—X be a map. Then (gf)*(y?") and f*(g*(y?")) are
isomorphic. Therefore, the following diagram is commutative:

#x ~
[X,G,(F?")] —— Kg(X)
I Gn(FZ")]J lfc;m

[Y,G,(F™] —— Ky(Y)

Therefore, ¢ is a morphism of cofunctors.

4.2 Theorem. On the category of connected CW-complexes of dimension < m,
the morphism ¢: [ —, G,(F*")] —» Kz(—) is an isomorphism for m < c¢(n + 1) —
2.

Proof. By Theorem (3.8), the elements of K -(X) have the form ¢ — rk(¢) and
& —rk(&) =n — rk(n) if and only if ¢ and # are s-equivalent. By (3.8) the
functions ¢y. are surjective. Moreover, if ¢y.([f]) = dxn([g]), then f*(y2")
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and g*(y2") are s-equivalent and of the same dimension. By (3.8), this means
that f*(y2") and g*(y2") are isomorphic over X, and, by 7(7.2), we have
[f1 = [g] Therefore, ¢y~ is a bijection for each X, and ¢" is an isomorphism.

4.3 Definition. Let By, denote the (] G,(F?") with the inductive topology.
1=<n

In the real case, we denote B, by B; in the complex case, by By; and in
the quaternionic case, by Bg,,.

4.4 Proposition. For each finite connected CW-complex X, there exists a k
such that the natural inclusion G,(F?*?)— B, induces a bijection
[X, G,(F*)] > [X, B] for g Z k.

Proof. By (2.7), for k such that dim X < ¢(k + 1) — 2, the following bijections
are induced by inclusions:

[X,G(F?)] - > [X,G,(F*)] >

Since X is compact, every map f: X — By, has the image f(X) = G,(F*") for
some n for k < n, and the function [X, Gq(FZ")] — [X,B,] is surjective.
Since the image of a homotopy of maps X — B, lies in some G,(F?") < B,
for some n for k < n, the function [X, G,(F?9)] — [X, B, ] is injective.

On the category of finite CW-complexes we define for ¢ with ¢(q + 1) —
2 = dim X the following sequence:

[X, By ] [X,G,(F*)] 5 R p(X)

Here «, is the inverse of the bijec_@ion [X, G (F 2] > [X, B r)]. We denote the
composition by 6: [—, B ] = Kp(—); it is independent of g for k < g. Since
0 is an isomorphism of cofunctors on each subcategory generated by a finite
number of finite CW-complexes, 6 is an isomorphism. Consequently, we have
the next theorem.

4.5 Theorem. There is an isomorphism of cofunctors, defined on the category
of finite connected CW-complexes, 0: [ —, B ] = K o(—). The cofunctors are
viewed as having values in the category of sets. Moreover B, has an H-space
structure such that 0 is a morphism of cofunctors with values in the category of
abelian groups.

Proof. Only the last statement remains to be proved. For this, we use the
following linear functions: fy: F® — F* and f,: F* — F* defined by fy(e;) =
e,;_, and f,(e;) = e,; for i = 1. Note that f;, and f, are monomorphisms, and
fo(F™) < F?" and f,(F") = F?". Therefore, f, and f, induce maps go, ¢.:
G, (F?") - G,(F*"), where go(W) = f,(W) and g,(W) = f,(W). Consequently,
there is a map ¥,: G,(F*") x G,(F*") - G,,(F*") where y,,(W, W') = fo(W) +
f.(W'"). Moreover, it is clear from the construction that y*(y3") = y2" x p2".
The maps i, give rise to the following commutative diagram where the verti-
cal maps are inclusions.
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G,(F?") x G,(F*) —2s G, (F*")

|

Gn+k(F2(n+k)) X Gn +k(F2(n+k)

Ui F4on +k))

G2(n +k)

In this way we see that there exists a unique map ¥: B, x B — By, such
that the following diagram is commutative where the vertical maps are inclu-
sions.

G(F™) x G,(F?) —2s G,,(F*)

l l

Bpy % Bp) R B
For [ f], [g] € [X, By, ], there exists an integer n such that we can view f,
g9: X = G,(F?"). Then 0([f]) = f*(y2") — nand 0([g]) = g*(y2") — n. More-
over, ((f x 9)AV*(v3n) = A*(f*(72") x g*(1a") = f*(73") ® g*(7;"). There-
fore, in Kp(X) we have O([y,(f x 9)A]) = f*(i") © g*(7a") — 2n =
(f*@2) — n) + (9*(32") — n) = O([f]) + O([g])- This proves the theorem.

4.6 Remark. In view of the natural splitting K ;(X) = K ;(X) ® Z, there is an
isomorphism 0: [ —, By, x Z] = K(—) for connected finite CW-complexes.

4.7 Remark. For a connected space X we can replace [ X, B ] by [ X, Br 1o
in the isomorphism 6: [ X, B(r,] = K¢(X). This amounts to working with s-
equivalent bundles each with a fixed trivialization at the base point. The
reader can easily verify that the same equivalence classes result. The H-space
structure ¥: Bpy X By, — B, is with respect to the base point which is the
image in Bz of ). Fe; in G,(F?").

1<iZn

4.8 Remark. For a contractible paracompact space X we have Kp(X) =0,
and for S°, we have K(S°) = Z.

5. Homotopy Groups of Classical Groups and K (S
The following theorem is useful in calculating K 4(S°).
5.1 Theorem. There is a group isomorphism K (') —» m;_,(Uy) for 1 < i.

Proof. By Theorem (4.5) and Remark (4.7) there is an isomorphism
071 Kp(S%) > [S', By Jo- By 1(4.1) the group structure on [S’, Bz ], can be
computed with the coH-space structure of S’ or the H-space structure of By,.
Using the isomorphism of (4.4), we have «: [S', G,(F*")], — [S', B 1o for
some large n.
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For the principal Ug(n)-bundle V,(F?") — G,(F*"), we have the homotopy
exact sequence

0 = 7(V,(F2) > m(Gy(F?) 5 1,y (Up(n)) = 1,y (V,(F?")) = 0

This holds by 7(5.1) for i <(n+ 1)c — 2. This yields the isomorphism
0: (G, (F*)) = m;_,(Ug(n)). By 7(4.1) for i — 1 < ¢(n + 1) — 3, the inclusion
Ug(n) — Ug induces an isomorphism r; _, (Ug(n)) = m; _; (Ur). We have the fol-
lowing sequence of isomorphisms:

Ri(8)S m(Buy) S m(Gu(F2") 5 1,y (Up(n) = 7y (Up)

The composition is an isomorphism K (%) — m;_,(Uy). This proves the
theorem.
5.2 Corollary. The calculations of K (S') are as follows:

RS =Z  Ke(8%)= Ky(8%) =

Ke(s)=2, Ko8)=0  KuSH)=0
Re($)=2Z, KRe($>)=Z Ky($?)=0
Ke(8%)=0 Ko(8)=0  Ku($*=0
Ke(SH=1Z Ko(SH=2Z RusYH =12

Proof. We apply Theorem (5.1), using (4.8) for K (5%, 7(12.1) for Ki(SY),
7(12.3) for R p(S2), 7(12.4) for K (S*), and 7(12.6) and 7(12.11) for K 4(S*).

5.3 Notation. The groups KC are frequently denoted by K or K U the
groups Ky by KO and the groups K, by KSp We make use of both sets of
notation.

5.4 Remarks. We will see later in Chapter 11 that Kc(S") = Ke(S"*2), and
also Kg(S") = Ky(8"**) and K4(S") = K(S™**) holds. This is the Bott peri-
odicity of K-theory. With this and 5.2 all the groups K(S’) are determined.

Exercises

1. Prove that 0: [ —, B, x Z] - Kp(—) is an isomorphism between cofunctors de-
fined on the category of all finite CW-complexes.

2. How does the discussion in Secs. 3 and 4 change when we define K(X) using vector
bundles of contant dimension?

3. Describe the bundles that determine generators of the groups given in (5.2).



CHAPTER 10
Relative K-Theory

We define a collapsing or trivialization procedure for bundles over X which
yields a bundle over X/A for a closed subset 4 of X. With this construction
we are able to give alternative descriptions of K(X, 4) = K(X/A). For a finite
CW-pair (X, A) we can define an exact sequence K(4) — K(X) « K(X, A) «
K(S(A)) « K(S(X)), using an appropriate “coboundary operator.” With this
sequence we see that in some sense the K-cofunctor can be used to define a
cohomology theory.

1. Collapsing of Trivialized Bundles

1.1 Definition. Let &" be a vector bundle over a space X, and let A be a
subset of X. A trivialization of £" over A4 is a map t: E(£|A) — F" which is a
linear isomorphism &, — F" upon restriction to a fibre of &| 4.

A trivialization is a means for collapsing all the fibres of & over 4 to a
single fibre over * in X/A.

1.2 Definition. Let ¢t be a trivialization over A of a vector bundle & over X.
The collapsing of & with respect to the trivialization ¢t is a triple (&/t,u,r),
where £/t is a vector bundle over X/A, (u,p,): &£ — &/t is a vector bundle
morphism, and r: ({/t),, — F" is an isomorphism. It is assumed that the re-
striction of u to £, — (/t),,() is a linear isomorphism and that r: (£/t), — F"
is an isomorphism such that t equals ru restricted to E(&| A4).

The following proposition states to what extent collapsed bundles exist.

1.3 Proposition. Let & be a vector bundle over X with a trivialization t over a
closed subset A of X. Then there exists a collapsing (&/t,u,r) of & with respect
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to t if and only if there exists a trivialization t' of & over an open set U
constaining A which prolongs t. If (({/t),u’,r’) is a second collapsing of & with
respect to t, there is a morphism v: £/t — (&/t) such that the following diagram
is commutative.

/é/t «——— (&/t),. (the fibre over the base point)

&ty —— @/
Moreover, v is unique with respect to this property, and v is an isomorphism.

Finally, every vector bundle on X/A is isomorphic to £/t for some bundle & on
X with trivialization t over A.

¢ F"

Note. The above theorem applies to each CW-pair (X, A); that is, X is
a CW-complex with subcomplex 4. So A is a neighborhood deformation
retract.

Proof. If the quotient (£/t, u, r) exists, there are a local coordinate chart (V, ¢),
where * € V, and a map ¢: V x F" — ({/t)|V such that r is the restriction of
#7' to the fibre of &/t over *. Let t' = ¢ 'u on & over p;'(V)= U. This
construction demonstrates also the last statement of the proposition.

Conversely, we construct E(£/t) as the quotient of E(¢) where x and x” are
identified provided t(x) = t(x’). There are no further identifications, and
E(&/t) > X/A with the induced projection is a bundle of vector spaces. Let
u: £ > &/t be the quotient map. It is a fibrewise linear isomorphism. The
prolongation t’ of t defines a trivialization of &/t on p,(V), and &/t is locally
trivial at *. The coordinate charts of &|(X — A4) define coordinate charts of
¢/t at other points of X/A.

Finally, for uniqueness the isomorphism v: &/t — (£/t) is defined as u'u™
over points other than * and by r'~'r near *, using charts that restrict to r
and r'. This proves the proposition.

1

1.4 Proposition. Let & and & be two vector bundles over X and X' with
trivializations t and t' over closed subspaces A and A’, respectively. Let (v, f):
& — & be a vector bundle morphism such that f(A) < A" and t = t'v. Then there
exists a vector bundle morphism (w, g): &/t — £'/t’ such that g is the quotient of
£, and the following diagram is commutative:

,f)

& — ¢

)

g 22 e
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Moreover, (w,g) is unique with respect to this property, and if (v,f) is an
isomorphism with f(A) = A', then (w, g) is an isomorphism.

Proof. The above diagram defines w uniquely. If (v, f) is an isomorphism, the
inverse of (v, f) defines the inverse of (w, g).

1.5 Proposition. Let £ and &' be two vector bundles over X with trivializations
t and t' over A. Then (¢/t) @ (E'/t') and (E D &)/t @ t') are isomorphic, and
(&) ® (E'/t') and (£ ® &)/(t ® t') are isomorphic.

1.6 Proposition. Let £ be a vector bundle over X, and let t;: E(E/A) — F" be a
homotopy of trivializations of & over A. Then &/t and &/t are isomorphic over
X/A.

Proof. We view t, as a trivializaton ¢t of £ x I over A x I. Since
(X x I)/(A x I)and (X/A) x I are naturally isomorphic, it follows that &/t is
isomorphic to ((¢ x I)/t)|(A x 0)and &/t, is isomorphic to (¢ x I)/t)|(4 x 1).
Since (¢ x I)/t is isomorphic to # x I for some #, there is an isomorphism
between &/t and &/t,.

1.7 Remark. In subsequent discussions, it will be convenient occasionally to
view a trivialization ¢ of £ over A4 as an isomorphism t: £| 4 — 6". Moreover,
we shall be able to view a trivialization as a vector bundle morphism ¢: & —
0", which is an isomorphism when restricted to A, using the next proposition.

1.8 Proposition. Let &, and &, be two vector bundles over X, and let
u:glA— E|A be a vector bundle morphism where (X,A) is a relative
CW-complex. Then there exists a vector bundle morphism v: &, — &, which
prolongs u.

Proof. We view u as a cross section of Hom(&,, &,) over A. Since the fibre of
Hom(¢&,, £,) is a vector space, which is a contractible space, the cross section
u prolongs to a cross section v of Hom(¢, &;) by 2(7.1).

It is easy to give a direct proof of (1.8) by constructing v over each skeleton
cell by cell.

1.9 Convention. For a trivialization t: £|A — 0" of & over A = ¢, we define
&/t to be £ on X and 6" on the discrete base point * in X outside X. Recall
that X* equals X U {*}, that is, X/g.

2. Exact Sequences in Relative K-Theory

All the exact sequences considered in this section arise from the following
sequence using standard homotopy constructions. We use the characteriza-
tion of K(X) given in 8(3.8).
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2.1 Proposition. Let A be a subcomplex of a finite CW-complex X. Then the
maps A—> X - X/A induce an exact sequence K(X/A) LA K(X) > K(A).
Moreover, if A is contractible, f: K(X/A) — K(X) is an isomorphism.

Proof. Since the composition 4 - X — X /A is constant, af is zero. Let & be
a bundle over X such that /A4 is s-trivial. Then there is an isomorphism
u: (E® 6% A - 0™ which, when composed with the projection 6™ — F™,
defines a trivialization t of ¢ @ 6* over A. Then (¢ @ 0%)/t is a vector bundle
over X/A4 whose induced bundle over X by the projection X — X/A4 is
s-equivalent to &.

For the last statement, if A is contractible, f: K(X/A) - IZ(X ) is an
epimorphism. Let & be a vector bundle over X/A such that p¥(&) is s-trivial;
that is, p%(¢ @ 0%) = p*(&) @ 6* is trivial over X. Since & @ 0¥ is isomorphic
to p*(& @ 6%)/t for some trivialization ¢ over A and since any two such
trivializations are homotopic over 4, it can be assumed that ¢ is the restric-
tion of a trivialization of p%(¢ @ 6*) over X. Consequently, & @ 0 is trivial
over X/A, and g is an isomorphism.

2.2 Corollary. Since K(X,A) = K(X/A) and since the inclusion A—X
induces two morphisms K(X) — K(A) and K(X) — K(A) with the same kernel,
the following sequence is exact:

K(X, A) — K(X) > K(A)

The following homotopy constructions are introduced to help adapt
Proposition (2.1) to the situation of amap f: X — Y.

2.3 Definition. For a base point preserving map f: X — Y the mapping cyl-
inder Z, of f is the space (X x I) + Y modulo the relation (x,1)e X x I
equals f(x)in Y and (+,t) equals *, and the mapping cone C; of f is the space
C(X) + Y modulo the relation <x, 1) € C(X) equals f(x) in Y.

If f: X — Yis a cellular map between CW-complexes, Z, and C, have the
structure of a CW-complex. We assume for the remaining discussion that f is
cellular and X and Y are finite CW-complexes.

2.4 We have the following diagram of maps and spaces:

Y
e
X — zZ, —— ¢

b(f )J a(a(f))

S(X) "o a(f)

s(f)l b(a(f))

S(Y) —— s(v)
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We define u(x) to be the class of (x,0) and v(y) the class of y in Z,. The map
w is the projection Z, — Z/u(X) = C, and a(f)(y)is the class of y in C,. We
define b(f)(y) = * and b(f)(x,t) = {x,t) in S(X). We view C,, as C(X) +
C(Y) modulo the relation {x, 1) equals { f(x), 1). To define r, we require that
r(C(Y)) = # and that r|C(X): C(X)— S(X) be the natural projection. The
homeomorphism j is defined by the relation j({x,t)>) = {x,1 — t).

2.5 Proposition. The map v is a homotopy equivalence. The sequence K(C )=
K(Y)— K(X) derived from the diagram in (2.4) is exact.

Proof. We define a map v': Z, —» Y by the requirement that v'(y) = y and
v'(x,t) = f(x). Then clearly v'v = 1. We have a homotopy k,: Z, — Z defined
by ky(y) =y and ky(x,t) = (x,1 — s(1 —¢t)). Then v’ =k, and 1 = k,;, and
this proves the first statement.

In the following diagram, which comes from (2.4), the bottom row is exact,
by (2.1), and the vertical morphism is an isomorphism. From this we prove
the proposition where f* denotes K (f).

2.6 Proposition. The sequence IZ(S(X))—»I?(CJ)—JZ(Y) derived from the
diagram in (2.4) is exact.

Proof. The map a(f) is an inclusion map, and the projection C,—
C;/a(f)(Y) = S(X) is just b(f). The proposition now follows from (2.1).

2.7 Proposition. The following diagram is commutative up to homotopy.

S(X) — a(f)

s( f)l ba(S))

J

S(Y) «—— S(Y)
The morphism K(S(X ) = K (Cuyy) is an isomorphism.

Proof. We define hy: C, .,y — S(Y) by the relations hy(x,t) = (f(x),(1 — s)t)
and hy(y,t) = (y,1 — st). When (x, 1) equals (y, 1), we have (f(x),(1 — s)1) =
(»,1 — 1s). This proves the first statement. The map r is a projection arising
from pinching C(Y) c C,,, to a point. Since C(Y) is contractible, Proposi-
tion (2.1) applies, and r': K(S(X)) — IZ(CM,) is an isomorphism.

Now we summarize the results of the previous propositions.
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2.8 Theorem. Let f: X — Y be a cellular map between finite CW-complexes.
The following sequence is exact:

RS2 Rsx0) 2L R -L kRv)-L Rx)

If A is a subcomplex of a Jfinite CW-complex X with inclusion map j, there is a
morphism § = (q')"b(j)': K(S(X)) = K(X/A) such that the following sequence
is exact:

R(S(X)) - R(S(4)) > R(X/4) » R(X) > K(4)

Proof. The exactness of K(S(X)) - K(C;) » K(Y) - K(X) follows from (2.5)
and (2.6). From (2.7) we have the following commutative diagram where the
top row is exact and the vertical morphism is an isomorphism.

/i%(cau,)
R(S(Y)) —— K(S(X)) —— K(C))

Consequently, the bottom row is exact, and the first sequence in the theorem
is exact.
For the second statement, we have the following commutative diagram:

J a(j) b(j)

A X e — S(A)
\X/A

Since q is the projection arising from pinching C(4) to a point, q: K(X/A) -
K(C;) is an isomorphism by (2.1). The top row is exact, and the vertical
morphism is an isomorphism in the following diagram:

Ry =2 k) 5 Rx)

g
K(X/4)

This proves the last statement of the theorem.

2.9 Remark. If £ is a vector bundle over S(A), then &|C(A4), and £|C(A)_ are

trivial bundles, and their relation on 4 defines an automorphism u: 6" — 6"

over A. This automorphism defines a trivialization ¢: 0"| 4 — F". The image
of the stability class of & under ¢ is the stability class of 6"/t over X/A.

2.10 Remark. Asin (2.8), the following exact sequence for a subcomplex A4 of
a finite CW-complex X holds:

K(S(X)) = K(S(A)) - K(X,A4) > K(X) - K(A4)
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If K were equal to H” and KS were equal to H"S = H" ™!, this would be a
portion of the exact sequence for the cohomology theory {H"}. This is the
reasoning used by Atiyah and Hirzebruch [2] to define the K*-cohomology
theory.

3. Products in K-Theory

In this section we deal only with real or complex vector bundles over finite
CW-complexes.

By the operation of the tensor product of vector bundles we have defined
a ring structure on K(X), and K(X)is an ideal in K(X) which is the kernel of
rk: K(X) — Z. The ring structure on K(X) is a group morphism K(X)®
K(X) - K(X), where the image of a ® b is denoted ab.

In the next definition we use py: X x Y—>X and py: X x Y- Y to
denote the two projections from the product.

3.1 Definition. For two spaces X and Y the external K-cup product is a
group morphism K(X)® K(Y)— K(X x Y) which assigns to each a® b e
K(X)® K(Y) the element py(a)py(b) in K(X x Y). By abuse of language,
px(a)py(b) is denoted simply by ab.

Since rk(p(a)py (b)) equals rk(a)rk(b), the external K-cup product induces
an external K-cup product K(X) ® K(Y) - K(X x Y) by restriction.

We derive a more precise form of the K-cup product by investigating K on
products and coproducts.

3.2 Proposition. For two pointed spaces X and Y let qx: X > X v Y and
qy: Y > X v Y be the two natural inclusions. Then the group morphism
(g%.qy): K(X v Y)—> K(X) + K(Y) is an isomorphism.

Proof. Since a vector bundle and its stability class on X v Y are uniquely
determined by their restrictions to X and to Y, the morphism (gY, q}) is a
monomorphism.

For a bundle £ on X and # on Y with dim ¢ = dim#, we can define a
bundle { on-X v Y with {|X = ¢ and {|Y = #, and the morphism (g, qy) is
an epimorphism.

The reader can supply a purely functional proof of (3.2), using only the
exact sequence in (2.1).

3.3 Corollary. The group morphism
(@155 @): R(Xy v v X)) = R(X) + - + K(X,)

is an isomorphism where q;: X; > X, v - v X, is the natural inclusion.
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3.4 Proposition. The inclusion X v Y < X x Y defines the following split
exact sequence:

0-KXAY) KX xY)>K(X v Y)>0

Proof. By (2.1) the sequence K(X A Y) > K(X x Y) > K(X v Y)is exact. If
Px: X X Y- X and py: X x Y - Y are the usual projections, the following
diagram is commutative.

RXAY) —s RXxY) —— RXVY)

px@pyl (4.4
K (X) + +K (V)

Therefore, the morphism K(X x Y)— K(X v Y) is an epimorphism with

right inverse (py @ py) (¢, gy ) - -

Finally, the above discussion applies to K replaced by KS, and
K(S(X x Y)) > K(S(X v Y)) is an epimorphism in the following exact
sequence of (2.8):

KSX x Y))»KES(X v Y)>KXAY)>K(X xY)

3.5 Proposition. If the first morphism below is the K-cup product, the follow-
ing composition is zero.

KX)®K(Y)»K(X x Y)>K(X v Y)

Proof. 1f ab is a cup product in K (X x Y), then a = 0 when projected into
K(Y)from K(X v Y)=K(X)® K(Y)and b =0 when projected into K(X).
Therefore, the product is zero when projected into K(X v Y).

3.6 Remark. In view of (3.5) and (3.4), there is a unique morphism KX)®

K(Y)> K(X A Y) which, composed with the monomorphism KX AY)>
K K(X x Y), is the K-cup product. Now we refer to this morphism K(X) ®
K (Y)- K(X A Y)as the K- -cup product.

3.7 Definition. Let (X, A) and (Y, B) be two finite CW-pairs. Then the relative
K-cup product is the~morphism K(X,A)® K(Y,B) > K(X x Y,(X x B)U
(A x Y)) which is the K-cup product.

K(X/4)® K(Y/B) - K((X/A) A (Y/B)) = K(X x Y)/(X x B)U(A x Y))
Recall that K(X, A) = K(X/A), etc., for the above definition.

4. The Cofunctor L(X, A)

To study K(X, A), we define a new cofunctor L(X, 4) in a manner similar to
that used in defining K(X). We use equivalence classes of pairs of vector
bundles &, and &, over X together with an isomorphism a: &,| A, — &;]A4.
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The following discussion applies to real, complex, or quaternionic vector
bundles.

4.1 Definition. Let (X, A) be a pair of spaces. A difference isomorphism (over
(X, A)) is a vector bundle morphism a: £, — £, such that the retriction o:
EolA = £(|A is an isomorphism. Two difference isomorphisms a: &, — &,
and f: n, — n, are isomorphic provided there exist isomorphisms u;: &; > n;
(over X) for i =0, 1 such that the following diagram of isomorphisms is
commutative.

fold —— &,14

Mold —L— n,14

4.2 Notation. Let S(X, A) [or, more precisely, Sp(X, A)] denote the semi-
group of isomorphism classes of difference isomorphisms of F-vector bundles
over (X, A). We define a commutative semigroup structure on S(X, A), using
the quotient function of the Whitney sum operation defined as usual by
a®P:loDno—> & @nyfora: & — ¢y and fing - n I f: (Y, B) > (X, A)is
a map, and if a: &, — &, is a difference isomorphism, then f*(x): f*(&,) —
f*(&,) is a difference isomorphism over (Y, B). This operation is compatible
with isomorphisms and Whitney sums, and therefore it defines a semigroup
morphism f*: S(X, A) — S(Y, B). With these definitions the following propo-
sition is clear.

4.3 Proposition. The semigroups S(X, A) and induced morphisms f* collect to
define a cofunctor from pairs of spaces and maps to commutative semigroups
and semigroup morphisms.

The identities 1: & — ¢ define special elements in S(X, 4). In the next prop-
osition we consider difference isomorphisms which are isomorphic to 1: £ ¢.

4.4 Proposition. Let o: &, — £, be a difference isomorphism over (X, A). The
restriction a: q| A — &, | A prolongs to an isomorphism if and only if a: £y — &,
is isomorphic to 1: &£ — &. Observe that in this situation £ is isomorphic to both

Soand &;.

Proof. If u: &, — ¢, is an isomorphism prolonging «, then (4,1) is an
isomorphism from a: &, — &, to 1: &, — &,. Conversely, if (ug,u,) is an
isomorphism from a: &y — &, to 1: &€ — &, the ui'u, is an isomorphism
prolonging a: £y| A — &, | A.

4.5 Definition. Let L(X, A) [or, more precisely, Lp(X, A)] denote the quo-
tient semigroup of S(X, A) defined by the equivalence relation where o: £, —
¢, and finy—n, are related provided a@1: ¢, DC—-E D¢ and
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PDLin,®L —n, @ are equal in Sp(X, A). Let [a: &, — £, ] denote the
element in L(X, 4) determined by a: &, — £, .

Clearly, this is an equivalence relation compatible with the semigroup
structure on S(X, 4), and L(X, A) is a commuative semigroup. Moreover, this
relation is preserved under induced morphisms f*: S(X, A) - S(Y, B) defined
by maps f:(Y,B)— (X, A4). From this, there is a quotient semigroup
morphism f*: L(X, A) — L(Y, B). The next proposition is immediate.

4.6 Proposition. The semigroups L(X, A) and the induced morphisms f* col-
lect to define a cofunctor L(X, A) from the category of pairs of spaces to the
category of semigroups.

4.7 Remark. The zero element of L(X, A) is the class consisting of all
isomorphisms a: ¢, — &, defined over X.

4.8 Special case. We calculate L(X,¢). In this case S(X,¢) = Vectp(X) x
Vectg(X), that is, pairs of isomorphism classes of vector bundles. Two pairs
(&o, &,) and (no,n,) determine the same element in L(X, ¢) if and only if there
exist {; and {, with & @ ¢, isomorphic to 5, ® {, for i = 1, 2. This implies
that £, @y, @ ((; D {,)and &, ® 1o @ ({; @ ;) are isomorphic, and the two
pairs (¢4, ;) and (y4,#,) determine the same element in K(X). Conversely, if
(o ®@n, @ and ny @ &, @ ( are isomorphic, that is, &, — &, =4y — 1, In
K(X), then for {; = n, ® { and {, = &, @ { the bundle & @ {, is isomorphic
ton; ® L, fori=1,2. As a quotient of the semigroups Vectz(X) x Vectg(X),
we have L(X, ¢) = K(X).

4.9 Remark. For a relative CW-complex (X, A) every a: &qlA — &,|A (in
particular, every isomorphism) prolongs to a morphism «’: £, — &, by (1.8).
Difference isomorphisms could be defined as triples (o, a, &;), where a:
£olA — £ A is an isomorphism.

5. The Difference Morphism

We wish to define an isomorphism A: L(X, A) - K(X, A) of cofunctors which
reduces to the identity on L(X,¢) = K(X, ¢) = K(X) for A = ¢. We demon-
strated the equality L(X,¢) = K(X,¢) in (4.8). All pairs in this section are
finite CW-pairs.

5.1 Theorem. For each pair (X, A) there is a function A: L(X, A) > K(X, A)
such that A([a: & — 0"]) = {&/a} — n, the class of &/ in K(X, A) = K(X/A).
This function A is unique with respect to this property, and for A = ¢ it is the
identity. Moreover, the set of A for various (X, A) defined an isomorphism
L(X, A) - K(X, A) of commutative group-valued cofunctors.



132 10. Relative K-Theory

Proof. For the first statement, each difference isomorphism a: &, — &, is
equivalent in L(X,A) to a @ 1: £, @ { — &, @ (. If { has the property that
E, @ and 6™ are isomorphic, the property A([o: &, — &,]) = {(&, @ )/
(x@® 1)} — m proves that A is uniquely defined. To prove that this relation
can serve as a definition of A, we consider [a: £ —» 0™] = [f: y — 6"]. There
exist vector bundles {; and {, with a ® 1: ¢ D {; - 6™ @ {, isomorphic to
PRL:n@® L, - 0"®(,. Since {,; and {, are s-equivalent, there exists a vec-
tor bundle { with {; @ { isomorphic to 0%, {, ® { isomorphic to 6%, and
m+p=n+q=k Then a@1: (@ O?—>0* and D 1: @ 07— 0 are
isomorphic, and in K(X, A) we have {{/a} —m = {(( D OP)/(a D 1)} —k =
{n®0)/(f@®1)} — k= {n/B} — m. Consequently, A is a well-defined func-
tion by the above relation.

If a: £ —>0™ and f:n— 0" are difference isomorphisms, then (¢ @ 7)/
(«@® ) and (&/a) @ (n/p) are isomorphic by (1.5). Consequently, we have
Ala) + Ab)=A(a+b), for a=[a:E—>60"], b=[p:n—0"], and a + b =
[c®p:EDn—>0"""].

If f: (Y,B) - (X, A) is a map, f*(¢/a) and f*(&)/f *(«) are isomorphic from
(2.4), and the relation f'({&/a} —m)= {f*(&)/f*(@)} —m or f'A=Af*
holds. Consequently, A is a morphism of group-valued cofunctors.

The function A: L(X, A) - K(X, A) is surjective because each element of
K(X/A) = I?(X/A) has the form {n} — m, where 5 is a vector bundle over
X/A. By (1.3) the vector bundle # is isomorphic to &/a for some difference
isomorphism a: & - 0™ over A. If {{/a} — m equals {n/f} —n in K(X, A),
then (£/0) @ 07 = (( D 07)/(x D 1) and (n/p) ® 0 = (n @ 6)/(f D 1) are iso-
morphic over X/A. By (1.3), the objects a @ 1: E D P > 0P ™ and D 1: 4 @
64 — 69%" are isomorphic. In L(X, A) we have [a: ¢ —» 0™] = [f: n — 6"], and
A is injective. This proves the theorem.

5.2 Corollary. Let j: X — (X, A) be the inclusion map, and let [a: &, — &, ] be
a member of L(X, ). Thenj'A([a: & — &) = {&} — {&,)-

5.3 Corollary. Let [o:¢o—¢y] be a member of L(X,*). Then A([x:
So— &1 ={&} — {&1} e K(X, %) = K(X).

Proof. Let j: X — (X, ) be the natural inclusion inducing the inclusion it
K(X) = K(X, *) > K(X), and apply (5.2).

5.4 Corollary. Let a,: £, — &, be a homotopy of difference isomorphisms over
A. Then [og: $o = &1] = [04: &o = &1 ] in L(X, A).

Proof. We apply (1.6)to o, @ 1: &£, @ { > &, @ {, where &, @ ( is trivial, and
the fact that A is injective.

5.5 Corollary. Let o: &y — &, and f: &, — &, be two difference isomorphisms
over A. If B|A equals (x| A)~*, or if B equals o*, the adjoint morphism for some
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riemannian metric on &, and &, defined fibrewise, then in L(X, A) we have

[o:&o—>&id= —[B: &1~ &0l

Proof. The result is true for A = ¢ or A = point by a direct inspection. In
general, we use the natural isomorphism L(X/A,*) — L(X, A) given by the
commutative diagram of isomorphisms.

L(X/A,%) —2— K(X/A,%)

J J

L(X,4A) —2— K(X,A)

6. Products in L(X, A)

We make use of the following lemma on vector spaces which is a special case
of the Kiinneth formula.

6.1 Lemma. Let a: U — U’ and B: V — V' be two linear transformations such
that one is an isomorphism. The following sequence is exact.

05U VLA ey eoUe V)22 e V' -0

Proof. Suppose that « is an isomorphism, and let {¢;} be a basis of U for i € I.
Clearly, (¢® 1,1 ® f) is a monomorphism, 1 ® f —a® 1 is an epimor-
phism, and (1@ f—a® 1)(e® 1,1 ® ) =0. Ifz e)®y,+2e®y,

ker(1® B — a® 1), we have ) a(e;)) ® (B(y:) — yi) = 0 or B(y;) = y;. Conse-

quently, (x®1,1® ﬁ)(Z e¢® y,-) =Y de)® i+ Y. e ®yj. This proves

4
the lemma.
Recall the notation ¢ ® y for p¥(&) ® p¥(n), where py: X x Y - X and
py: X x Y — Y are projections and £ is a vector bundle over X and y over Y.
Let a: &, — &, be a difference isomorphism over (X, 4) and f: n, — 1, over
(Y, B). We form the following sequence:

(O‘,ﬁ)Z0“’50@’]0%(50@’11)@(51®’70)M51 ®n,—0

By Lemma (6.1) this sequence is exact on (X x B)U(A x Y). For riemannian
metrics on &, &,, 1o, and 1,, we form the following difference isomorphism
on (X x Y,(X x B)U(A x Y))

aﬁ=|:1®ﬂ —a*®1

a®1 1@ p* }(50®’lo)®(61®m)ﬂ(éo®n,)@(fl®n0)
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6.2 Proposition. The product af is compatible with the equivalence relation
yielding L(X, A) and defines an L-cup product

L(X,A)® L(Y,B) > L(X x Y,(A x Y)U(X x B))

Proof. Ifeither a: £, — &, is an isomorphism over X or f: 4, — 1, over Y, the
sequences (o, f), (a*, B), and (—a, f*) above are exact over X x Y, and af is
an isomorphism over X x Y. Consequently, if « =0 in L(X,A4) or f =0
in L(Y,B), then aff =0 in L(X x Y,(X x B)U(A x Y)). This proves the
proposition.

6.3 Definition. The L-cup product of [a: &, — &,] and [f: 4o — 1] is de-
fined to be the class of af in L(X x Y,(A x Y)U(X x B)).
Similarly there is the K-cup product

K(X,A)@K(Y,B)KiEK(X x Y,(A x Y)U(X x B))
[see (3.7)].

6.4 Theorem. The following diagram is commutative.

L-cup

L(X,A)® L(Y,B) —2, L(X x Y,(A x Y)U(X x B))

JA@A JA
K(X,A)® K(Y,B) —, K(X x Y,(4 x Y)U(X x B))

Proof. For A =B = ¢, the above diagram is commutative because in
K(X x Y)we have ({&o} — {& D ({no) — {m}) = {(Co ®@no) ® (&, ®@ny)} —
{(o®n) D& ®ng)}. For A=x or ¢ and B==x or ¢, we have a
monomorphism K(X x Y,(4A x Y)U(X x B)) - K(X x Y), and commuta-
tivity holds in K(X x Y). Finally, in general, K(X, 4) = IZ(X/A), K(Y,B) =
K(Y/B), and K(X x Y,(4 x Y)U(X x B)) = K((X/A) x (Y/B)), and the L-
cup induced on K(X,A4)® K(Y,B) by A® A and A is the K-cup product.
This proves the theorem.

7. The Clutching Construction

A triad (X; X, X,) is referred to as a CW-triad provided X, and X, are
subcomplexes of the CW-complex X with X = X,U X,. With the result of
the next proposition it is possible to “glue” a vector bundle (real or complex)
£, over X; to a vector bundle £, over X, with an isomorphism
X oNX )= Eol(Xo N Xy).

7.1 Proposition. Let (X; X, X,) be a CW-triad with A = X, N X, let &, be a
vector bundle over X; for i =0, 1, and let a: £,|A — £y| A be a vector bundle



7. The Clutching Construction 135

isomorphism. Then there exists a triple (¢, uy,u,) such that & is a vector bundle
over X, u;: &, — E| X, is an isomorphism for i =0, 1, and ugo = u, over A.
Moreover, if (n,v,,v,) is a second triple with the above properties, there is an
isomorphism w: 5 — & with u; = wo; for i =0, 1.

Proof. Let E(£) be the space resulting from the identification of xe
E(£,|A) = E(&,) with a(x) € E(£y|A) = E(&,). There is a natural projection
E(¢) — X resulting from the projections of &;, a natural vector space structure
on each fibre of £, and natural bundle isomorphisms u;: &; - £| X, fori =0, 1.

To prove local triviality of &, we have only to find charts of £ near points
x € A. For x ¢ A the existence of local charts is clear. Let U be an open
neighborhood of x in X such that there is a retractionr: UN X, — UN A and
such that there are maps ¢;: (U N X;) x F"— &,|(U N X;) which are local co-
ordinate charts of &; over U N X,. Over the set UN A we have ag,(x,v) =
do(x, f(x)v), where f:UNA— GL(F") is a map. Replacing ¢,(x,v) by
do(x, f(r(x))v) for (x,v)e(UNX,) x F", we can assume that oag(x,v) =
do(x,v) for (x,v) e (UNA) x F". Consequently, there is a local chart ¢:
U x F" — £|U such that u;¢; = ¢|((U N X;) x F"). This proves the existence
statement.

For the uniqueness statement, let w: # — & be the isomorphism that is
uv; | X,; = €| X,;. Since E(n) is the union of the closed subsets E(7|X,) and
E(n| X,), wis a well-defined homeomorphism.

7.2 Notation. The bundle ¢ in (7.1) is denoted by &, ) &. It is unique up to

isomorphism in the sense of (7.1), and it is called the result of clutching &, and
£, along A. The triple (¢,,a, &,) is called clutching data over (X; X4, X ), and
o is called a clutching function.

From the uniqueness statment we have the following results immediately
for a CW-triad (X; Xy, X;)and 4 = X, N X,.

7.3 Proposition. Let & be a bundle over X. Then (¢]X,) | (£]X,) and ¢ are
1

isomorphic.

7.4 Proposition. Let (¢,,0,&,) and (14, B, no) be two sets of clutching data, and

let (w;, f;): &; — n; be vector bundle morphisms for i = 0, 1 such that woa = fw,

over A and f; = f|X; for f: (X, X;) = (Y, Y;). Then there exists a vector bundle

morphism (w,f): &\ &o = ny \J mo such that the following diagram is
[ B

commutative.
(wi, f3)

G —— m

("i,l)Jv J(Ui-l)

§1U§o "M" '71%)’70

a
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The morphism w is unique with respect to this property. If w, and w, are
isomorphisms, w is an isomorphism.

Proof. The existence and uniqueness of w follow immediately from the defi-

nition of E <§1 U §O>.
a
From the uniqueness statement in (7.1) we have the next proposition.

7.5 Proposition. Let (¢,,a,&,) and (n,, B,no) be two sets of clutching data.

Then (¢, ®n,) %)ﬂ (Eo ® 1) and <51 U éo) @ <111 kﬂ) no) are isomorphic,

and (&, ®ny) gﬂ (Eo ® 1) and <fl U éo> ® <111 kp) 110> are isomorphic.

There is a similar formula for duality.

7.6 Proposition. Let &, be a bundle over X, and let o,: |A— Ey|A be a
homotopy of clutching functions. Then &, \ ) &, and &, | ) &, are isomorphic.

%o L3

Proof. We view a, as a clutching function o :(&; x I)|(4 x I) > (&q x 1))
(A x I). Then &, | ) &, is isomorphic to [(51 x 1) {J (& % I):H(A x 0) and

& Ué& to [(51 x D) {J (& x 1)]

morphic to # x I for some 7, there is an isomorphism between &, U ¢, and

£ U &. A

(A x 1). Since (& x I) | J (& x 1) is iso-

In the next two sections, we outline the theory of L, (X, 4) and the elemen-
tary properties of half-exact cofunctors. The details are left as exercises for
the reader.

8. The Cofunctor L, (X, A)

In this section we consider in outline form a generalization of the results of
Secs. 4 to 6.

We consider complexes of length n consisting of vector bundles over X
which are exact when restricted to 4 and denoted

E0-8 38 38> =0

An isomorphism from a complex & to a complex # is a sequence of
isomorphisms u;: &; - #; for 0 < i < n such that the following diagram is
commutative.
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y az

0 EolA EA —> - > E"A 0
l B l B2 J
0 NolA nlA n"lA4 0

8.1 Notations. Let S,(X, A) denote the set of isomorphism classes of com-
plexes of length n defined over X and acyclic over A. We define a commuta-
tive semigroup structure on S,(X, A), using the quotient function induced by
the Whitney sum of two complexes. The induced complex defines a
semigroup morphism f*: S, (X, A) - S,(Y, B) for each map f: (Y, B) - (X, A),
from which it follows that S,(X, A) is a cofunctor.

An elementary complex is a complex 0 — &, -t & -+ > &, > 0such that
Ei=0fori#k—1,k, and o & _; - &, is an isomorphism over X. Two
complexes & and # are said to be equivalent provided there are elementary
complexes 04, ..., 6, and ¢, ..., ¢, such that E® 6, ® - ® 6, equals n ®
£ @ De,in S (X, A).

8.2 Definition. We denote by L,(X, A) the quotient semigroup cofunctor of
S.(X, A) under the above relation on elements of S,(X, A).

Observe that L,(X, A) is just L(X, A) of Sec. 4. One can prove that ¢
defines the zero element in L,(X, 4) if £ is acyclic on X.

By viewing a complex of length n as a complex of length n + 1, we define
a natural morphism L,(X, A) - L, ,,(X, A). By composition there are natural
morphisms L, (X, A) - L, (X, A).

For finite C W-pairs we have the following result which is left to the reader.

8.3 Theorem. The natural morphism L,(X, A) - L, (X, A) is an isomorphism.
This theorem is dependent upon the following result which follows from
2(7.1) or Lemma 7.2, Atiyah, Bott, and Shapiro [1].

8.4 Lemma. Let & and n be vector bundles over X, and let u: £|A — n| A be a
monomorphism. If dimy — dim ¢ + dim X, there exists a prolongation of u to
a monomorphism & — .

As in Sec. 5, we consider morphisms L,(X, A) - K(X, A).

8.5 Definition. An Euler characteristic for L,(X,A4) is a morphism of
cofunctors y: L, —» K such that for empty A there is the relation y(¢) =

Y. (=1)¢.
0<ign

The following theorem is proved by using Theorems (8.3) and (5.1).

8.6 Theorem. A unique Euler characteristic exists for L,, and it is an
isomorphism of cofunctors.
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As corollaries of this theorem there are the following results. Recall that
two complexes & and y are homotopic on (X, A) provided there is a complex
(on(X x I,A x I)suchthat { ={|(X x 0,4 x O)andy = {|(X x 1,4 x 1).

8.7 Corollary. Two homotopic complexes determine the same element in
L, (X, A).

We construct an inverse to the isomorphism L, (X, A) - L,(X, A). For ¢ €
S.(X, A) we can put riemannian metrics on ¢; and define of: &, - &;,_;. We
consider = (0 7y 5y, - 0), where 5, = Y &y and ny =) &4y and

B(xo, X2, Xg,. ) = (21 (x0) 25 (x3) + a3(x2), 03 (x,4) + s5(X4), . ..). Since
Erivt = 03i(E) D o, (E5;4,) over A, the element y defines a class in
S,(X, A). If £ e S,(X, A), then ¢ equals . This is easily seen to define an
inverse L, (X, A) = L,(X, A), by (8.6) and (8.7).

8.8 Products. If £ € S,(X, A) and if # € S,,(Y, B), then the tensor product ¢ ®
NES, m(X x Y, (X x B)U(A x Y)) by the Kiinneth formula.

This defines a biadditive pairing L,(X,A4)® L, (T,B)—> L, (X x Y,
(X x B)U(A4 x Y))such that x(ab) = y(a)y(b), where y is the Euler character-
istic.

9. Half-Exact Cofunctors

The following notion is due to Dold [5]. Again we give only an outline of
the results.

9.1 Definition. Let W denote the category of finite CW-complexes with base
points and homotopy classes of maps preserving base points. A half-exact
cofunctor U is a cofunctor defined on W with values in the category of
abelian groups such that for each subcomplex 4 of X the following sequence
is exact:

U(A) < U(X) « U(X/A)

9.2 Example. Ordinary reduced singular cohomology H"(—;G) is a half-
exact cofunctor. The natural quotient map X — X/A4 defines an isomorphism
H"(X/A4;G) > H"(X, A; G). The half-exactness property is derived from this
and the exact sequence for cohomology.

9.3 Example. Real, complex, and quaternionic K-group cofunctors are half
exact by (2.1).

9.4 Example. Let H be a homotopy associative and commutative H-space.
Then Uy = [—, H], is a half-exact cofunctor.
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9.5 Example. Let U be an arbitrary half-exact cofunctor, and let Z be a
(finite) cell complex. Then the functions that assign to X the group U(X A Z)
and to f: Y — X the group morphism U(f A 1;) collect to define a half-exact
cofunctor.

9.6 Proposition. Let U be a half-exact cofunctor. If X is a point, U(X) equals
0. If f is null homotopic, then U(f) equals 0.

The discussion in Secs. 2 and 3 applies to half-exact functors, and we have
the following theorems.

9.7 Theorem. Let f: X — Y be a cellular map of finite CW-complexes. Then,
with the notations of Sec. 2, there is the following exact sequence:

U(X) u) U(Y) Ula(f)) U(Cf) E(b(f)) U(S(X)) usu)) U(S(Y))

This theorem corresponds to (2.8), and corresponding to (2.10) is the next
remark.

9.8 Remark. For a subcomplex 4 of X there is a coboundary morphism
U(S(A)) —» U(X/A) such that the following sequence is exact.

UA) < U(X)« UX/A) <« U(S(A)) « U(S(X))

We leave it to the reader to state and verify (3.2) to (3.4) for half-exact
cofunctors.

The next theorem is an important uniqueness theorem which can be used
in giving a general K-theory setting for the periodicity theorem of Bott. It is
useful in comparing rational K-theory and rational cohomology theory.

9.9 Theorem. Let ¢: U — V be a morphism of half-exact cofunctors. If ¢(S™)
is an isomorphism for each m = 0, then ¢ is an isomorphism.
This theorem is proved by induction on the number of cells of X for ¢(X).
Finally, (2.6) and (9.7) are related to the following basic result known as
the Puppe mapping sequence (see Puppe [1]). We use the notations of (2.6)
and (9.7). Everything is for base point preserving maps.

9.10 Theorem. Let f: X — Y be a map, and let Z be a space. Then the follow-
ing sequence is exact as a sequence of sets with base points.

[X,Z]o <2 [Y, 210 &2 [C;, 200 225 [SX, Z]0 <L [5Y, Z],

Exercises

1. Develop the results of this chapter for vector bundles over a pair (X, A) where X is
a compact space and A is a closed subspace.

2. Fill in the details in Secs. 8 and 9.



CHAPTER 11
Bott Periodicity in the Complex Case

Using elementary methods in analysis and vector bundle theory, we present
the Atiyah-Bott proof of the complex periodicity theorem. In this setting we
see the role of the Hopf bundle in defining the periodicity isomorphism.

1. K-Theory Interpretation of the Periodicity Result
Ket k = 2 for complex K-theory K and k = 8 for real K-theory KO. From
the sequence of spaces
XvSosXxSsXask
there is the following exact sequence in either real or complex K-theory:
0->KX ASH>K(X xS > KX v S) -0
The external cup product or tensor product yields a morphism
K(X)® K(S*) - K(X x §%)
From this we have the following commutative diagram:
K(X)® K(8%) = (R(X)® R(sY) ® R(X)® R(SH © Z
- |
KX xS = KXASH@OKX)®oKSHYozZ

The morphism cup restricted to K(X) @ K(S¥) @ Z is the identity when re-
stricted to the last three summands. This leads to the following result.
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1.1 Proposition. The external cup product K(X) ® K(S¥) - K(X x S*) is an
isomorphism if and only if the external cup product K(X)® K(S¥)—
R(X A S¥)is an isomorphism.

Now we state the K-theory formulation of Bott periodicity.

1.2 Theorem. Let X be a compact space. The external cup products K(X) ®
K(S8%)— K(X x S?) in complex K-theory and KO(X)® KO(S8) —
KO(X x S%) in real K-theory are isomorphisms. In addition, K(S?) is a free
abelian group on two generators 1 and n class of the complex Hopf bundle, and
KO(S®) is the free abelian group on two generators 1 and ng, where ng is the
class of the real eight-dimensional Hopf bundle.

In view of Proposition (1.1), Theorem (1.2) is equivalent to:

1.3 Theorem. Let X be a compact space. The function that assigns to a €
K (X) the element a ® (n — 1)in K(X A S?)is a cofunctor isomorphism, and the
function that assigns to a € KO(X) the element a ® (ng — 8) in KO(X A §%)is
a cofunctor isomorphism.

We shall prove Theorem (1.2) for complex vector bundles.

2. Complex Vector Bundles Over X x S§?

2.1 Notations. We view S? as the Riemann sphere of complex numbers and
the point at infinity. Let D, denote the disk of z with |z| £ 1, and let D
denote the disk of z with |z| = 1. Then D, N D equals S!, the unit circle.

2.2 Notations. For a compact space X we denote the natural projections on
Xbyny: X xDy—X,n,:X x D, — X, and n: X x S* —» X. Observe that
we have (X x Dy)U(X x D)= X x §? and (X x Dy)N(X x D)= X x S™.
Let s: X —» X x S? be the map defined by the relation s(x) = (x, 1). We use
these notations throughout this chapter.

Using the clutching construction of Chap. 10, Sec. 7, we are able to give a
description of complex vector bundles over X x S2.

2.3 Proposition. Let & be a complex vector bundle over X x S?, and let { equal
s*(€). Then there is an automorphism u: n*(()— n*({) such that ¢ and
w§(0) U ¥ (() are isomorphic and u: {|X x 1 - {|X x 1 is homotopic to the

u
identity in the space of automorphisms. Moreover, u is unique with respect to
the above properties.

Proof. We consider s: X - X x D, or X x D_. The compositions smy: X X
Dy,— X x Dy and sn,: X x D, —» X x D, are homotopy equivalences.
Consequently, the natural isomorphism &|(X x 1) - 7*({)|(X x 1) prolongs
to two isomorphisms uy: &|(X x Dy) — n(() and u,: /(X x D) — n%(0).
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Two such extensions over X x D, or over X x D, differ by an auto-
morphism over X x D, or over X x D_, which is the identity on X x L.
Then u = u_'u, is the desired automorphism, for by Proposition 10(7.1)
there is an isomorphism between ¢ and n§({) () n¥({). This proves the
proposition. u

The task in the following sections is to consider clutching automorphisms
u: m*(¢) - n*({) for vector bundles { over X and the projection n: X x S —
X. Such a clutching map u is given by a continuous family of automorphisms
u(x,z): {,—»{ . forxe X and |z| = 1.

2.4 Definition. A Laurent polynomial clutching map u for { is a clutching
map of the form
u(r,2) = Y a(x)z*
|kl<n

where a,: { - { is a morphism of {. A Laurent polynomial clutching map u is
a polynomial clutching map provided u(x, z) = ao(x) + a,(x)z + --- + a,(x)z"
and is a linear clutching map provided u(x, z) = a(x) + b(x)z.

In the next proposition we see that any complex vector bundle & over
X x §? is isomorphic to n§(() () n¥(¢), where u is a Laurent polynomial
clutching map. “

2.5 Proposition. Let & be a complex vector bundle over X x S, and let { equal
s*¥(&). Then & is isomorphic to n§({) U n¥ (), where v is a Laurent polynomial
clutching map. v

Proof. Let & be isomorphic to n§({) U n¥(¢) as in Proposition (2.3), where u

is an arbitrary clutching map. Let a,: { — { be the morphism defined by the
integral

We define s,(x,2) to be )’ aj(x)z/ and u,(x,z) tobe 1/(n +1) >  si(x,2).

jI<k 0<k<n
Then u,(x,z) is the nth lgajlrtial Cesaro sum of a Fourier series, and by an
extension of Fejer’s theorem u, converges uniformly in x and z to u.

Let v = u, for large n, where u, is so close to u that it is a clutching map
homotopic to u. This is possible because homotopy classes of clutching maps
are open sets in the uniform topology. Then there is an isomorphism between
¢ and n§(¢) | n*(0). This proves the proposition.

v

2.6 Example. Let y denote the canonical line bundle over S? = CP!, and let
n denote the dual line bundle of y. Then y is isomorphic to the bundle obtained
by clutching two trivial line bundles over D, and D, with the clutching map
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u(z) = z, and n is isomorphic to the bundle obtained with the clutching map
u(z) = z7 1. To see this, we recall that E(y) is the subspace of ({zq,z,,
(Wg,w;)) € CP* x C2. If V; denotes the open set of {z,,z; > with z; # 0 for
i=0, 1, we have charts h;:V, x C— E(y|V;), where hy({zg,2;),a) =
(Czo,210,(a,2,a/z0)) and hy({z9,21),a) = ({20, 21 ),(20a/z;,a)). Since the
clutching map u(z) for |z| = 1 has the property that hy(z,a) = h,(z, u(z)a) for
z = z,/z4, we have u(z) = z. Similarly for the dual bundle the clutching map
is u(z) = z~! from the tensor product property of clutching maps, see 10(7.4),
and of dual bundles.

2.7 Notation. Let { be a complex vector bundle over X, and let u be a
clutching map 7*() — 7*({). Then n§({) () n%(() is denoted by [, u]. Denote

y=[0z]and n = [0%,z71].

2.8 Proposition. Let ¢ be isomorphic to [{,u] over X x S2. Then [{,uz"] is
isomorphic to £ ® y" or £ @ n~", where y" denotes the n-fold tensor product of
v and ® is the external tensor product.

Proof. This follows from tensor product properties of clutching maps 10(7.4);
that is, 7§(() ) n¥(() is isomorphic to (n%({) ® 6') | ) (n*() ® 6') which in

uz” u®zn

turn is isomorphic to { ® y".
By (2.8) we have a complete picture of vector bundles over X X S? whose
clutching map is a monomial; that is, [{, az"] is isomorphic to { ® y”".

3. Analysis of Polynomial Clutching Maps

By (2.5) every complex vector bundle ¢ over X x S? is isomorphic to
[{,z7"p], where p is a polynomial clutching function. By (2.8), [{,z7"p] is
isomorphic to [{, p] ® n" over X x S In this section we linearize polyno-
mial clutching functions in a manner analogous to the transformation used
in reducing nth-order differential equations to linear differential equations.

3.1 Notation. Let p= Y p,z* be a polynomial clutching function for a

O0<ksn
complex vector bundle { over X. Let L"(p) denote the linear polynomial

clutching function for the complex vector bundle L"({) = { ® “ @ { given
by the following matrix.

[P0 P1 P Pt DPn |

—z 1 0 0 0

0 —z 1 0 0

Lip)y=|
0 0 0 1 0
L0 0 0 —z 1]
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Observe that L"(p) is the product of three matrices where pf(z) = Y, ezt

r<k<n

and p}(z) — zp}s1(2) = p,.
1 p¥(2) ¥ [ plz) © 0 01[1 o 0 0
0 1 0 0 1 0 0| -z 1 0 0
0 0 0 0 0 1 ofl o o 1 0
0 0 1 0 0 0 1|l o o —z 1

Consequently, L"(p) =(1 + N;)(p@® 1,)(1 + N,), where N, and N, are
nilpotent. Then L}(p) = (1 + tN,)(p ® 1,)(1 + tN,) is a homotopy of clutch-
ing functions of L"({). This yields the following result.

3.2 Proposition. For a polynomial clutching map

p(z) = Z pez* for ¢ over X

0<k<n

[L"(¢), L"(p)] and [L"({), p ® 1,] are isomorphic vector bundles over X x S2.
Using these notations, we have the following two propositions for a poly-
nomial clutching map p(z) = ). p.z*for { over X. We may view p(z) as a
0<k<n

polynomial of degree n + 1.

3.3 Proposition. There is an isomorphism between [L"**({),L"*'(p)] and

(L"), L"(p)] @ [{,1].

Proof. We use the following homotopy of clutching maps:

Po P Pn-1 Pn 0
-z 1 0 0 0
0 0 1 0 0
0 O —z 1 0
| 0 0 0 —(1—1z 1

For t = 0 we have [L"*}({),L"**(p)] and for t = 1, [L"({), L"(p)]1 ® [, 1].

3.4 Proposition. There is an isomorphism between [L"*({),L"*'(zp)] and

LL"(), L"(p)]1 ® [€, 2]

Proof. We use the following homotopy of clutching maps.
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F 0 Do D1 DPn—-1 pn_
-z 1=t O 0 O
0 -z 1 0 O
0 0 0 1 0

0 0 0 —z 1|

For t = 0 we have [L"*!({), L"**(zp)], and for t = 1 we have [L"({), L"(p)] ®
2]

As a corollary we get two relations involving each of the Hopf bundles y
an dn.

3.5 Corollary. There is an isomorphism between y* ® 0 and y @ y, or between
N @landn ®n .

Proof. By (3.4) there is an isomorphism between [62,2z2] = [L?(6'),z?] and
[0, z2]®[0',z] =y @Dy, and by (3.2) there is an isomorphism between
[6%z*]and [0%,22] @ [0, 1] =7 D 1.

The proof of Corollary (3.5) follows directly from the following homotopy
of clutching maps.

[z O][cos(nt/Z) —sin(nt/Z)}[z O:I cos(mt/2)  sin(mt/2)
0 1| sin(nt/2) cos(nt/2) || O 1 || —sin(nt/2) cos(nt/2)

2
This map is z 0 fort=0and|” 0 fort = 1.
0 1 0 z

4. Analysis of Linear Clutching Maps

Let p(x, z) = a(x)z + b(x) be a linear clutching map for a bundle { over X. We
wish to prove that { decomposes into a Whitney sum {9 @ ¢° such that
plC%:¢% - ¥ is nonsingular for all z with |z| =1 and p|(°: (% —»(® is
nonsingular for all z with |z] £ 1. Then the bundle [{,a(x)z + b(x)] is
isomorphic to [£9,z] @ [¢°,1].

If p(x, z) has the form z + b(x), the fibre of {, at x will be the sum of the
eigenspaces of b(x) for values 4 with |A| < 1, and the fibre of {_ at x will be
the sum of the eigenspaces of b(x) for value 4 with |A]| > 1.

The following treatment of this case was pointed out by J. F. Adams. The
author is very grateful for his permission to use it here.

4.1 Notations. The linear clutching map a(x)z + b(x) = p(x,z): { = { is non-
singular for |z| = 1 and all x. By the compactness of the base space, the map
p(x,z) is nonsingular for all z with 1 — ¢ <|z| £ 1 + ¢and all x € X. Form
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Pol) = - f @)z + b(x)a(x)dz
27 J =1

and
1

= —| a@)z + b)) dz
2ni Jyp=1

Po(X)

where p,, p,: { = { are bundle morphisms independent of z.
The main properties of p, and p,, are contained in the next proposition.

4.2 Proposition. We have p(x, z)po(x) = p,(x)p(x,z) for all x € X and |z| = 1,
and po(x) and p,(z) are each projections; that is, py(x)po(x) = po(x) and

Poo(X)Po(X) = Pro(x)-
Proof. First, there is the following relation for z # w.
(aw + b)ta(az + b)™' = (az + b) 'a(aw + b)?
(az+ bt (aw + b)?

= + (R)
w—2Z z—W
To see this, we make the following calculation:
b)! b)™* b
(az + ) 4 ((lW + ) _ (aw + b)_l aw + (az + b)—l
w—z z—w w—z

b
+ (aw + b)7! a—zj—(az +b)7!
z—w

= (aw + b)ta(az + b)!

Now we use the symmetry between z and w. It should be noted that the first
equality in relation (R) holds also for z = w.

To derive the relation p(x, z) py(x) = po(X)p(x,z), we multiply relation (R)
by az + b on the left and right and then integrate. We get

1
(az + b)py = — f (az + b)(aw + b)ladw
27 J\z=

1
=—— a(aw + b)"!(az + b)dw
27Tl Iz1=1
= p,(az + b)

To prove that pypy = po, we chooser; and ry with 1 —e<r,<r; <1+e.
Then we calculate the following expression, using relation (R).

1
= — az + b) la(aw + b) ladzdw
PoPo = 33 fl . JM% ( )~ a( )

= 1. 3 ! (az + b)"la + ! (aw + b)"la |dzdw
7 Jizi=r, Jiwi=r, LW — 2 zZ—w
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1

=_ (aw + b)ladw
2mi

lwl=ry
= Po
Observe that

dw

f =0 for|z|=r;>r,
wi=r, W — 2

A similar calculation yields the relation p_p, = p,. This proves the

proposition.

4.3 Remark. The vector bundle projections p,: { — { and p,:{ — { are of
constant rank. This is a general property of projections and is easily seen by
considering local cross sections sy, ..., s, of { such that s;(x), ..., s,(x) is a
basis of ker(py), and s, ,{(x), ..., s,(x) is a basis of im(p,),. Then (1 — py)s; (),
..., (1 = pg)s,(y) is a basis of ker(p,), near x, and pys,.1(y), ..., poS,(y) is a
basis of im(p,), for y near x in the base space of (.

4.4 Notations. We denote the vector bundle im p, by {9, im p_ by (%, ker p,
by ¢°, and ker p,, by {*. The relation p(x, z)py(x) = p.,(x)p(x, z) implies that
the following restrictions of p(x, z) are defined:

p+(—,2): 8 - (%
p-(=,2: {2 > (2

4.5 Proposition. The restriction p,(—,z): {} — (% is an isomorphism for |z| =
1, and the restriction p_(—,z): {® — (% is an isomorphism for |z| < 1.

Proof. Let v be in the fibre of { over x such that (a(x)w + b(x))v = 0 for
|w| # 1. Then (a(x)z + b(x))v = (z — w)a(x)v and (a(x)z + b(x)) ta(x)v =
(z—w)'v for |z| = 1. If we integrate over the circle |z| = 1, we get the
relation

(x)0 = v for |w| < 1
Po 0 for|w/>1

If v € ker(a(x)w + b(x)) and |w| < 1, then v € {% and p_(x, z) is a monomor-
phism for |z| £ 1. If ve ker(a(x)w + b(x)) and |w| > 1, then ve(® and
p+(x,z) is a monomorphism for |z| = 1. For reasons of dimension, p, and
p_ are isomorphisms for |z| = 1 or |z]| < 1, respectively. This proves the
proposition.

4.6 Proposition. Letp, =a,z+ b, andp_ =a_z + b_ where p, and p_ are
defined as in (4.4), and let p' = p', + p', where p', =a,z + th, and p* =
ta_z + b_ for 0 £t < 1. Then p' is a homotopy of linear clutching maps from
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a,z+b_ to p. Moreover, the bundles [{,p] and [(%,z] ®[(°,1] are
isomorphic.

Proof. By (4.5), p. and p' are isomorphisms onto their images for all ¢,

0 <t <1.Then [{,p] and <C9, U Cf) @ <C9 U Cf) are isomorphic bundles
b

over X x S2 Since a,: % - {® and b_: {® — {* are isomorphisms, there are
isomorphisms between [(9,z] and (% () (% and between [{%,1] and

a;z

¢° ) {=. This proves the proposition.
b

4.7 Notation. Let p be a polynomial clutching map for { of degree < n. Then
the bundle L"({) = (n + 1){ decomposes with respect to the linear clutching
map L"(p), as in (4.6). We denote this as follows:

L") = L' p)+ ® L7 p)-

Then (4.6) says that the bundles [ L"(), L"(p)] and [L"(,p),,2z] @ [L"(, p)-, 1]

are isomorphic.
From the results of (3.3) and (3.4) and the above analysis, we have the
following result.

4.8 Proposition. Let p(x,z) be a polynomial clutching map of degree less than
n for a vector bundle {. For L"*(p), there are the following isomorphisms:

L*(¢py =L"Cps and  L"N(Cp)- = LN p)- @

For L"*(zp), there are the following isomorphisms:

L' zp)y = L"Cp) ®C  and  L""'((zp)- = L' p)-

5. The Inverse to the Periodicity Isomorphism

The periodicity morphism u: K(X) ® K(S?) — K(X x S?)is just the external
K-cup product. We wish to define an inverse morphism v: K(X x S$?)—
K(X) ® K(S?). For a vector bundle ¢ over X, the element of K(X) deter-
mined by ¢ is also denoted by &.

5.1 Notations. Let u be a clutching map for a vector bundle { over X. By
(2.4), there is a Laurent polynomial clutching map z"p,(x, z) arbitrarily close
and, therefore, homotopic to u for large n. Here p,(x,z) is a polynomial
clutching map where deg p,(x, z) < 2n. In K(X) ® K(S?), we consider the fol-
lowing element:

v(lw) = LG p)s @™ =1 +{@n"
Since (1 — n)n = 1 — nin K(S?), by (3.5), we have
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v(low) = L p)s @1 =)+ {® 7"
5.2 Proposition. With the above notation, we have v,({,u) = v, ., ((, u).

Proof. Using (4.8), we have the following relations in K(X):
L2"*2(, Pus1)+ = LP"F2(, ZPp+1)+ = LY zp,)e = LP(Cpa)+ ®C

From this we have
Var1(Gw) = L2 i)« @ (" — ") + L@ 0"
=L*Cp)s @A =)+ (@MW — ") + {@n""!
=Lp)s @ =) +{®n"
=v,(,u)

This proves the proposition.

5.3 Remarks. In view of (5.2), v({,u) may be written for v,({,u), since v is
independent of n. If u” is a second clutching map near u, the line segment
joining p, = z"f, to q, = z"g, is a homotopy of clutching maps, where f,
approximates u and g, approximates u’. Consequently, we have v({,u) =
v({,u') and v(&) equal to v({,u), where & = [{,u] is well defined. Observe
that v(¢ @ &) = v(¢) + v(&') for vector bundles on X x S2. Consequently, a
morphism v: K(X x §%) - K(X) ® K(5?) is defined.
Now we are in a position to prove the complex periodicity theorem.

5.4 Theorem. The external K-cup product u: K(X) ® K(S?) - K(X x §?) is
an isomorphism with v as its inverse.

Proof. First, we show that vu = 1. For this it suffices to prove that
vu(C ® n") = { ® n", where { is a vector bundle. Since u({ ® #") = [{,z7"], we
calculate

(62" =L @0 =)+ {@n"={®n"

This follows from the fact that L?"({, 1), = L°(, 1), = 0. We have vu = 1.
To prove uv = 1, we make use of two relations. The first comes from (4.6).

[L2"(C, pu)+» 2] = [L"(C), L*"(pa)] = L*"(C, pa)-» 1]
[L2"(C, pu)-» 2 7"] = [L*"(C), L*(p)1 ® 0" — [L*"(, pa)-, 11 @ 1"
The second comes from (3.2).
CL2"(), L2"(p,)] = [C, pulx,2)] + 2nL (b)

For v(&) = v([{,u]) = v([{,27"p,]) = L¥"(L,pa)s ® ("' — ") + L ® 1", we
make the following calculation:
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(&) = [L*(Cpa)s> 2" "] = [L"Cpa)ss 2 "1 + [G27"]
= (L), L*(p)1®n" — [L*(, pa)-, 11® 0" — [L2"(C, Pa)+, 11 ® 1"
+[6z7"]  by(a)
=2 ®n") + [Lz7"p,] = [L"(O), 11® 1"+ {®n" by (b)
=[{27"pa(x,2)]
=<

This proves the complex periodicity theorem.
As a corollary of the periodicity theorem, we can calculate K(S™).

5.5 Theorem. There is a relation K(S*"*') = 0, and K(S*") is infinite cyclic
with generator B,,, where the ring structure is given by p%, = 0. Moreover, the
natural map S* x " x §% - S induces a monomorphism K(S*") — K(S? x
. % $2) and the image of B, in K(S* x > x §?) equals a product a, - a,,

where a; = {{;} — 1 such that {; is a line bundle on S* x "> x S2.

Proof. Since the external cup product with f§, yields an isomorphism
K(S') - K(S' A $%), we have the result on the additive structure from the
relations K(S°) = Z and K(S*) = 0 of 9(5.2).
The induced morphism K(Sz")—+ K(S? x S Sz)lsamonomorphlsm by
9(3.4). The image f,, in K(S? x - x §?) equals the image of the K-cup
product of f,, , and f, under the monomorphism K(S>""2 x §2) >
R(S? x ™ x $?). Since B, equals {¢;} — 1, where {; is a line bundle induced
from S% to $?x ™ x §2 and since B2 =0 from the relation B2 =
({6} = 1D?>={6}*+1—-2{¢;} =0, we have the last statement of the
theorem.
The relation B3, =0 follows from the fact that the image of f,, in
K(S? x -+ x S?) has a square that is zero.

5.6 Remark. The above proof of the periodicity theorem was given by
Atiyah and Bott in Acta Mathematica, vol. 112, 1964. This proof was
modivated by their work on complex elliptic boundary value problems. In
the spring of 1966, motivated by the study of real elliptic operators, Atiyah
gave a proof of the real periodicity theorem similar in character to the above
proof of the complex periodicity theorem.

The first proof of the periodicity theorem was given by Bott in [3] using
geometric arguments. Soon after, J. C. Moore proved the periodicity theorem
using homology theory; see the H. Cartan Seminaire, 1959-1960.



CHAPTER 12
Clifford Algebras

Using methods from the theory of quadratic forms, one is able to construct
vector bundles over spheres and projective spaces. We develop some general
properties of Clifford algebras and completely calculate the Clifford algebras
that arise in topology. Apart from constructing vector fields on a sphere, the
topological applications are left to later chapters. Using Clifford algebras, we
can give a concrete description of Spin(n).

1. Unit Tangent Vector Fields on Spheres: I

In this section we consider the very classical problem of determining when a
sphere S" has a single unit tangent vector field on it. Our first means of
constructing vector fields is contained in the next proposition.

1.1 Proposition. If S"™* has k orthonormal tangent vector fields v,, ..., v,
then S™~* has k orthonormal tangent vector fields v¥, ..., v¥.

Proof. We can view v;: S"* — R" such that (x|v;(x)) = 0 and (v:(x)|v;(x)) =
d; ; for all x eS" ! and 1 <i, j <k Next, the sphere $™! can be con-
sidered as the join of g spheres S"!; that is, for x € S™~! we can write x =
(@(1)x(1), ..., a(q)x(q)), where x(i) e S"* and Y a(i)* =1, a(i) = 0. We de-

fine v¥: $™~! — R™ by the relation v¥(x(1)x(1), ..., a(q)x(q)) = a(1)v;(x(1)) +
++ + a(q)vy(x(q)). Then we have (x|vf(x)) = 0 and (v} (x)|vf(x)) = 6; ; for 1 <
i, j £ k by a direct calculation, using (x(i)|x(j)) = 0 for i # j.

1.2 Corollary. Every odd-dimensional sphere S™™* has a nonzero vector field
on it.
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Proof. Since m = 2gq, it suffices, in view of (1.1), to prove that S has a unit
vector field defined on it. Let v(x,,x,) = (—x,,x;). Then (x|v(x)) = 0 and
llo(x)| = 1 for each x = (x;,x,) € S*. The map v is a 90° rotation.

See Exercise 1 for a similar application.
In the next proposition we derive a property of S” with unit vector fields.

1.3 Proposition. Let S" be a sphere with a unit tangent vector field v(x). Then
the antipodal map x+— — Xx is homotopic to the identity.

Proof. Let h,(x) = (cosnt)x + (sinnt)v(x). Then h,: S* — S" is a homotopy
with hy(x) = x and h,(x) = —x. This deformation is on the great circle from
x to —x in the direction of v(x).

The degree of x - —x as a map S" — S" is (—1)"*!. From (1.2) and (1.3)
and this remark we get the following equivalences.

1.4 Theorem. For a sphere S" the following are equivalent.

(1) nisodd.

(2) x> —x is of degree 1.

(3) x+— —x is homotopic to the identity.
(4) S" has a unit tangent vector field.

By negation, the following statements are also equivalent properties of S".

(1) nis even.

(2) x+—> —xis of degree —1.

(3) x+ —x is not homotopic to the identity.
(4) S" has no unit tangent vector field.

2. Orthogonal Multiplications

In this section we see that orthogonal multiplications give rise to ortho-
normal vector fields on a sphere. The problem of the existence of orthogonal
multiplications is a purely algebraic problem.

2.1 Definition. A function u: R¥ x R" - R" is called an orthogonal multipli-
cation provided u is bilinear and ||u(y,x)|| = ||y llx|| for each y € R* and
x e R

For y e S¥! = R, the function x — u(y, x) is an orthogonal transforma-
tion, and for x € S"~* = R” the function y — u(y, x) is an isometry; i.., it is
inner product preserving since (x|y) = (1/2)(||x + yll — x|l — |Iy]).

An orthogonal multiplication u is normalized provided u(e,,x) = x for
each x e R", where ¢, = (0,...,0,1). If u(e,, x) = u(x), then u(y,u*(x)) is a
normalized orthonormal multiplication.
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In the next theorem we can see how orthogonal multiplications can be
used to define vector fields on spheres.

2.2 Theorem. If there exists an orthogonal multiplication u: R* x R" — R",
there exist k — 1 orthonormal vector fields on S"™*.

Proof. By the above remark, we can assume that u is normalized. Then, for
each x € $"7!, the vectors u(e;, x), ..., u(ex_;,Xx), x = (e, x) are orthonormal.
Then the v,(x) = u(e;, x), where 1 < i < k — 1 orthonormal vector fields on
sm1

2.3 Remarks. The existence of vector fields is closely related to the exis-
tence of orthogonal multiplications. Observe that v;(—x) = —uv;(x) in Theo-
rem (2.2), and therefore v (x), ..., v,_,(x) define vector fields on RP"~! which
are orthonormal. Scalar multiplication C x C" — C" defines an orthogonal
multiplication R? x R?" — R?", Corollary (1.2) follows also from (2.2).

In the next theorem we derive an algebraic version of the notion of ortho-
gonal multiplication. This leads to the study of Clifford algebras in the fol-
lowing sections.

2.4 Theorem. The set of normalized orthogonal multiplications u: R* x R" —
R" are in bijective correspondence with sets of uy, ..., u,_, € O(n) such that
7 = —1 and wu; + wu; = 0 for i # j. The correspondence is achieved by de-

U, =
fining u;(x) = u(e;, x) for given p.

L

Proof. Clearly, normalized bilinear u are in bijective correspondence with
linear transformations u,, ..., u,_,. To check the orthogonality condition it
is necessary to prove only that ||u(y,x)|| = 1 if |x| = |y| = 1. Let y, = 1.
The condition of orthogonahty reduces to showing that Z a;u; € O(n) if and
onlyif (a,,...,a,) € S¥!

Recall for a linear v: R" — R" that v € O(n) if and only if vv* = 1, where v*
is the transpose of v. The orthogonality property of u is equivalent to

i<j
Since uu¥ = 1,since Y. af = 1, and since (q;) are arbitrary on S*7*, the ortho-
i

gonality property of u is equivalent to the relation wuf + wuf = 0 for i < j.
For j = k we have u, = 1 and u; = —u* = —u;'. Therefore, we have u? =
—1.Fori < j <k, we have u,(—u;) + uj(—u;) = 0 or uu; + uju; = Ofori # j.
Conversely, these two conditions on the u;’s imply uuf + wu* = 0 fori < j.
This proves the theorem.

In the general theory of Clifford algebras we shall derive properties of
algebras which have a set of generators e, ..., ¢, and satisfy the relations
e} = —1land e;e; + eje; = 0 fori # j.
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If u,, ..., u,_; are linear transformations of a real vector space M onto
itself such that u? = —1 and w;u; + w;u; = 0 for i # j, there is an inner prod-
uct (x|y) on M such that (u;(x)|u;(y)) = (x|y) for each x, y € M.

In effect, let I,_, be the group generated by +u; for | <i<k— 1. An
element of I', _, is of the form +u,,), ..., uy,), where i(1) < --- <i(r), and [, _;
is a group with 2* elements. Let {x|y) be any inner product on M, and form
(xly)=27% 3 <a(x)la(y)). Since u; € Iy, we have (u;(x)[u;(y)) = (x]y)

cely

for each i.

2.5 Remark. The above discussion demonstrates that every module over a
Clifford algebra arises from an orthogonal multiplication.

3. Generalities on Quadratic Forms

Let R denote a general commutative ring with 1. All modules M are unitary,
that is, 1x = x for each x € M. We use the following definition.

3.1 Definition. A quadratic form is a pair (M, f), where M is an R-module
and f: M x M — R is a symmetric bilinear form; i.e., the following relations
hold.

(1) flax + a'x’,y) = af(x,y) + a’f(x’,y)fora,a’ e Rand x, x", y € M.
) f(x,by + b'y') = bf(x,y) + bf(x,") for b, b’ € Rand x, y, y' € M.
(3) flx,y)=f(y.x)forx,ye M.

Much of the following discussion can be carried through for antisym-
metric forms where axiom (3) is replaced by f(x,y) = —f(y,x) for x, ye M
and for sesquilinear forms over C where axiom (3) is replaced by f(x,y) =
f(y,x) for all x, ye M and axiom (2) is replaced by f(x, by) = bf(x, y) for x,
yeMand beC.

3.2 Remark. There is a second definition of a quadratic form (M, Q), where
Q: M — R is a function such that Q(ax) = a*Q(x) and fy(x,y) = Q(x + y) —
Q(x) — Q(y) is a symmetric bilinear form. If 1/2 € R, these two notions are
equivalent, and f(x, y) = (1/2)(f(x + y, x + y) — f(x,x) — f(y, ).

Let {(x,u)> = u(x) be the canonical pairing M x M* — R, where M* is
the dual of M. For each quadratic form (M, f) its correlation is the unique
homomorphism c¢,;: M - M ™ such that (x,c.(y)> = f(x,y) for each x, y € M.
For sesquilinear forms, M* denotes the conjugate dual of conjugate linear
functionals.

3.3 Definition. A quadratic form (M, f) is nondegenerate provided its cor-
relation ¢, is a monomorphism and is nonsingular provided c, is an
isomorphism.
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A quadratic form (M, f) is nondegenerate if and only if f(x,y) = 0 for all
y € M implies that x = 0. A quadratic form (M, f) is nonsingular if and only
if for each linear form u: M — R there exists a unique y € M such that u(x) =
f(x,y) for all x e M. The two notions are equivalent if R is a field.

If e, ..., e, is a basis of M, the elements f(e;e;) completely deter-

mine f. For x = ) x;e; and y = ) y;e;, we have f(x,y) = (Y. x.e;, ), y;e) =
7 7

Y. f(e;e;)x;y;. Moreover, the symmetry of f is equivalent to f(e;, ¢;) = f(e;, ;)

0]

for all i, j. When R is an integral domain, (M, f) is nondegenerate if and only
ifdet [ f(e;,e;)] # 0, and it is nonsingular if and only if det[ f(e;, ¢;)] is a unit.

3.4 Examples. On R”", n-dimensional euclidean space, (x|y) and —(x|y) are
two very useful quadratic forms.

3.5 Example. If (M, f) is a quadratic form and if E is a subspace of M, then
(E, fx), where fz = f|E x E, is a quadratic form.

3.6 Definition. An orthogonal splitting of a quadratic form (M, f), denoted
M =E, 1l 1LE,isadirect sum decomposition of M = E; @ -~ @ E, such
that f(x,y) = Ofor xe E;and y € E;, where i # j, 1 < i, j<r.

The following splitting result is very general and useful.

3.7 Proposition. Let (M, f) be a quadratic form and E a subspace of M such
that (E, f¢) is nonsingular. If E* is the subspace of all y € M with f(x,y) =0
for each x € E, then M = E 1 E* is an orthogonal splitting. If M is non-
singular, then E* is nonsingular.

Proof. 1t suffices to show M = E @ E*. Since E is nonsingular, f(E, y) = 0 for
y € E implies y = 0, and consequently we have ENE* = 0. If x € M, then
y f(x,y) is a linear functional on E. By nonsingularity it is of the form
f(x;,y), where x, € E. Then f(x,y) = f(x,,y) or f(x — x,;,y) =0 for each
y € E. Therefore, x — x, = x, € E* and M = E ® E*.

For the second statement, let u: E¥ — R be a linear functional. We prolong
u to M by u(E) = 0. There exists a unique y € M with f(x, y) = {(x,u). Since
f(x,y) = 0for x € E, we have y € E*. This proves the proposition. O

3.8 Example. Let (M, f) be a quadratic form, where M = Re has a single
basic element. We have f(xe, ye) = f(e, e)xy. Then f is nondegenerate if and
only if f(e,e) is not a zero divisor and nonsingular if and only if f(e,e) is a
unit. In the next theorem, we consider a case where a quadratic form is an
orthogonal sum of one-dimensional forms.

3.9 Theorem. Let (M, f) be a quadratic form over a field R with 2 # 0. Then
M =E, 1--- L E, where E, is one-dimensional for | S i<r.
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Proof. If f(x,y) =0 for all y e M, where x # 0, let L be a supplementary
subspace to x in M. Then M = L 1 Rx. If no such x exists, M is nonsingular
and f(x,x) # 0 for some x; otherwise f(x + y, x + y) = f(x,x) + 2f(x,y) +
f(y,y) = 0 would hold for all x, ye M, and f would be zero. If f(x,x) # 0,
then Rx is nonsingular and M = L 1 Rx, where L = Rx* by (3.7). Now the
inductive hypothesis is applied to L.

In terms of bases, Theorem (3.9) says that there is a basis e, ..., e, of M
such that f(e;,e;) = 0 for i # j. If R = C, the complex numbers, we replace e;
by e; divided by f(e;, e;)'/*> when f(e;,e;) # 0. If R = R, the field of real num-
bers, we replace e; by e; divided by f{(e;, ¢;)*/? for f(e;,e;) > 0 and by e; divided
by (—fl(e;, e;))'* for f(e;, e;) < 0. In summary, we have the following result.

3.10 Theorem. Every quadratic form (M, f) over C has a basis e, ..., e, € M
such that with respect to this basis f(x,y) = x,y, + *** + X,y,, where x =
X,e; + - +x,e, and y=y,e; + -+ y,e,. Every quadratic form (M,f)
over R has a basis e, ..., e,€ M such that f(x,y)= —x,y; — """ — XV +
Xp+1Ves1 + 00 + X,,, where k is the dimension of the largest subspace E such
that f(x,x) <0 for xe E, x # 0.

The integer k is called the index of f. The index is independent of the basis
ey, ..., e, that is used. This is an exercise.

4. Clifford Algebra of a Quadratic Form

For a quadratic form (M, f'), we consider linear functions u: M — A, where A
is an R-algebra such that u(x)? = f(x, x)1. The Clifford algebra is universal
with respect to such linear functions.

4.1 Definition. The Clifford algebra of a quadratic form (M, f) is a pair
(C(f),0), where C(f) is an R-algebra, and 0: M — C(f) is a linear function
such that 6(x)? = f(x, x)1 for each x € M. We assume the following universal
property: For all linear functions u: M — A with u(x)?> = f(x, x)1 there exists
an algebra morphism u’: C(f)— A such that 4’6 = u and u’ is unique with

respect to this property.
C(f)
/N

M —5 4

4.2 Theorem. A Clifford algebra (C(f),0) exists for each quadratic form
(M, ). If (C(f),0) and (C(f),0’) are two Clifford algebras, there is an algebra
morphism u: C(f) — C(f) such that ' = ufl. Moreover, u is an isomorphism
and is unique.
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Proof. For the first part, let C(f) be the tensor algebra T(M) = Z T*(M)
0=s

modulo the ideal generated by x ® x — f(x,x)1. Here T*(M) is the k-fold
tensor product of M. Let 6 be the composition of the injection M — T*(M) =
T(M) and the projection T(M) — C(f). If u: M — A is a linear function with
u(x)? = f(x,x)1, then u factors as M — T(M)> 4 and as M > C(f) % A.
Moreover, u’ is unique because im 0 generates C(f).

Finally, the uniqueness of (C(f), #) follows from the existence of two alge-
bra morphisms u: C(f)— C(f) and v: C(f) - C(f) with 6’ = uf and 6 =
vf’. This implies that 6 = vuf and 6’ = uvf’. From the uniqueness property
of factorizations, 1 = vu and 1 = uv. This proves the theorem.

4.3 The Z,-Grading of C(f). The algebra morphism —6: M — C(f) deter-
mines an involution B: C(f) — C(f) with B(x) = —0(x). Usually, we write
B(x) = X. Then we denote the subalgebra of x € C(f) with X = x by C(f)°
and the submodule of x € C(f) with X = —x by C(f). Then C(f)° is the
image of Z T*(M)in C(f), and C(f)* is the image of Z T**(M)in C(f).

Finally, we have C(f)=C(f)°® C(f)!, whichisa Z,- gradmg

4.4 Z,-Graded Algebras. An algebra A is Z,-graded provided A = A° @ A*,
where Z, = {0, 1} and A'A’ = A", A morphism f: A — B between two Z,-
graded algebras is an algebra morphism such that f(A4‘) = B'. The tensor
product of two Z,-graded algebras A and B, denoted A4 ®B, is the ten-
sor product of the underlying modules with (4°® B°)® (4' ® B') =
(A ® B)° and (A'® B @ 4° ® B') = (A ® B)! and multiplication given by
(x ® y)(x’ ® y) = (—1)¥(xx") ® (yy’) for x’ € A' and y € B’. Finally, two ele-
ments x € A and y € A’ commute (in the Z,-graded sense) provided xy =
(—1)Yyx, and, in general, two elements x, y € A commute provided their
homogeneous components commute. Note that C(f) is not graded
commutative.

4.5 Example. Let u: M — N be a morphism where (M, f) and (N, g) are qua-
dratic forms such that f(x, x’) = g(u(x), u(x")) for each pair x, x’ € M. Then u
defines morphism C(u): C(f) — C(g) of Z,-graded algebras.

4.6 Proposition. Let f: A— C and g: B— C be two Z,-algebra morphisms
of Z,-graded algebras such that f(x) commutes with g(y) for each x € A, y € B.
Then the module homomorphism h: A ® B — C defined by h(x ® y) = f(x)g(y)
is a morphism of Z,-graded algebras.

Proof. Since (x,y)— f(x)g(y) is a bilinear map A x B—C, h is de-
fined as a Z,-graded module homomorphism. Let x® y;€e A® B' and
X;® y € A’ ® B, and compute h((x ® y:)(x; ® y)) = (— 1)’h(((xx)) ® (y:y)) =
—1 V) f(x)g(y)g(y) = f(X)g(y)fx)g(y) = h(x ® y)h(x;® y). This

proves the proposition.
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Let (M, f) be a quadratic form, and let M = E; L E,. We denote the
restriction f|E; by f; for i=1 or 2. Let (C(f,),6;) be the Clifford algebra
for (E;, f;) and define ¢: M — C(f}) ® C(f,) by the relation P(xy,X,) =
(CA x1)® 1) + (1 6,(xy)). Now we calculate ¢(x1,x2) = 0,(x,)? ®1 +
91£x1) ® 02(x2) — 0;(xy) ® by(x;) + 1 ® 0:(x,)* = 0,(x,)? ® 1 +
1® 05(x2)* = filxp,x1) + fo(x2,%5) = f((x;,xz),(xpxz)) Therefore, there
exists an algebra morphism u: C(f) — C(f;) ® C(f>) such that the following
diagram is commutative.

/C(f)
y .
N
) ® C(fy)

4.7 Theorem. The above algebra morphism u is an isomorphism.

Proof. We construct v: C(f;) ® C(f,) = C(f), an inverse of u. Let q,: E; —
M be the inclusion morphisms g,(x;) = (x;,0) and ¢,(x,) = (0,x,) which
define Z,-graded algebra morphisms C(g;): C(f;) > C(f) for i=1, 2. If
f(z,z’) =0 in M, we have 0(z)0(z’) + 0(z')0(z) = 0, since (0(z) + 0(z"))* =
fz+z,z+2) = f(z,2) + f(z',2') = 6(2)*> + 0(z')>. Therefore, we have
C(q1)(x1)C(q2)(x2) = —C(q2)(x2)C(qy)(x;) for x; = 0,(y;) with y; € E; and
i =1, 2, and the hypothesis of Proposition (4.6) is satisfied on the genera-
tors im 0, of C(f;) and im 0, of C(f,). Therefore, there is a Z,-graded
algebra morphism of v: C(f1)®C(f2) — C(f) such that v(x1®x2) =
C(f)(x)C(f2)(x2).

The elements of the form 0(x,,0) and 6(0,x,) generate C(f). For these
elements, we have vuf(x,,0) = vé(x,,0) = v(6,(x,)) = 6(x,,0) and similarly
vub(0, x,) = 6(0, x,). Consequently, the relation vu = 1 holds. The elements
of the form 0,(x;) ® 1 and 1® 0,(x,) generate the tensor product C(f1) ®
C(f>). We compute uv(0,(x,) ® 1) = ub(x,,0) = #(x,,0) = 0,(x,)® 1, and
similarly we have uv(1 ® 6,(x,)) = 1 ® 6,(x,). Therefore, v is the inverse of u,
and u is an isomorphism.

Let (M, f) be a quadratic form,and let M = E, L --- L E,.

4.8. Corollary. There is an lsomorphtsm u C(f)— C(f1)® ‘® C(f,) such
that u(0(0,...,0,x;,0,. L) =1®:- ®0( )® ®1for1<]<r

5. Calculations of Clifford Algebras

5.1 Proposition. Let (M, f) be a quadratic form, where M has one basis ele-
ment e and a = f(e,e). Then C(f) = R1 @ Re with the relation e* = a.
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Proof. The tensor algebra is freely generated by e, and the relation e = a
holds in the Clifford algebra.

The reader can easily verify the universal property for C(f) = R1 @ Re.
Note that dimg C(f) = 2. Moreover, C(f)° = R1 and C(f)! = Re.

5.2 Theorem. Let (M, f) be a quadratic form where M has a basis e, ..., e,
with f(e;,e)) = 0 for i # j and a; = f(e;, e;). Then C(f) is generated by e,, ...,
e, with relations e? = a; and e;e; + eje; = 0 for i # j. The elements e, " ey,
where i(1) < -+ < i(s) and 1 < s < r, together with 1 form a base of C(f). The
dimension of C(f)is 2"

Proof. The first statement is immediate, and the relation e? = a; clearly
holds. As in the proof of (4.7), we have e;e; + e;e; = 0 since f(e;,e;) = 0. From
theAisomQrphism u:C(f) = C(f1)® - ® C(f,), we have ule;y, " e;y) =
x; ® - ®x,, where x; = ¢, for i =i(j) and x; = 1 for i # i(j), all j with
1 = j = s The elements of the form u(e;y) - e;y) and 1 form a base of
C(f1) ® - ® C(f,) This proves the theorem.

5.3 Notation. Let C, denote C(—(x|y)), where —(x|y)is a form on R, and let
C; denote C((x]y)), where (x|y) is a form on R¥ There are two real alge-
bras of dimension 2*. Let C{ be the complexification C, ® C = C, ® C. Then
Ct = C(—(z|w)) = C((z|w)), where —(z|w) is a form on C*.

We wish to calculate the algebras C,, C;, and C;. The next proposition is
the first step. We use the notation F(n) for the algebra of n x n matrices with
coefficients in F.

5.4 Proposition. As algebras over R, there are the relations C, =~ C, C, @ H,
C, 2 R®R, and C, = R(2), and as algebras over C, there are C{ =2 C® C
and C5 = C(2).

Proof. First, C, is two-dimensional over R with basis elements 1 and e, where
e? = —1, and this is C. Also, C, is four-dimensional over R with basis ele-
ments 1, e,, e, and e, e,, where e? = e3 = —1 and e;e, = —e,e,. If we map
1tol,e, toi,e,to],and e e, to k and prolong to C, — H, we get an algebra
isomorphism.

For C; there are two basis elements 1 and e, where ¢ = 1. If we map
1—>(1,1) and e — (1, —1) and prolong to C; > R @R, we get an algebra
isomorphism. For C} there are four basis elements 1, e,, e, and e, e,, where
e? =e2=1ande,e, = —e,e,. If we map

1 0 d 0 1
— —
€, 0 —1 an €, 10

and prolong by linearity, we get an algebra isomorphism C, — R(2).
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For the last statement we use the relations F ® R(n) = F(n) for F = C or
Hand FR(R®R)=F@F.

The next calculations will be useful.

5.5 Proposition. There are isomorphisms C (X)C =~ C@® C, C Q) H = C(2),
R R
and H (X) H = R(4).
R

Proof. The first two follow from C® C, == C® C, for k=1, 2 in Pro-
position (5.4). For the third, we define an isomorphism w:H X)H —
R

Homyg (H, H) = R(4) by the relation w(x; ® x,)x = x; xX,. Then w is an alge-
bra morphism, and it suffices to show w is epimorphic since dim H (X) H =
R

16 = dim R(4). First, note that w(l® 1) = land w(i® i)l = 1, w(i ® i)i = i,
w(i®i)j = —j, and w(i ® i)k = —k. Similar relations hold for w(j ® j) and
w(k ® k). Consequently, w(l1®1 +i®i+ j® j+ k ® k)/4) projects 1 on
1 and i, j, k onto 0. Moreover, we calculate w(i® j) 1 =k, w(i ® j)i = j,
w(i® j)j =i, w(i® j)k = —1, and a similar calculation holds for w(j ® k)
and w(i ® k). Consequently, every matrix with only one nonzero entry is in
im w. These generate R(4), and therefore w is epimorphic.

The following periodicity result is basic for the calculation of C, and C;.

5.6 Theorem. There exist isomorphisms u: C,,, > C, ® C, and v: Cp,, —
C, ® Cs.

Proof. Let ey, ..., ¢, be the basic generators of C, and e, ..., ¢; for C,. We
defineu’: R¥*? 5 C, ® C,byu'(e;)) = 1 ®e;for1 <i<2,andu'(e;) = e/_, ®
e,e, for 3<i<k+ 2 We calculate u'(¢;)’ =(1®e¢) (1R®e)=1R®e? =
—1 for i<2 and u'(e;)* = e/*, ®e,e,e;e, =1 ® 1(—1) = —1. Also note
that u’(e;)u’(e;) + u'(e;)u’(e;) = Ofori # j. Therefore, u’ prolongs to u: C, . ,—
C, ® C,. Since u carries distinct basis elements into distinct basis elements, u
is injective. For reasons of dimension it is an isomorphism.

For v we require v(e;) =1 ® e for 1 <i <2 and v(e}) = e;_, ® eje; for
3 =i <k + 2. Then, as in the previous case, v is an isomorphism. This proves
the theorem. O

5.7 Corollary. There are isomorphisms Cy.q — C, (X) C, and Cppy > C; (X)
R R

C,, where C, = C, =~ C, ® C, @ H(2).

Proof. Let k=2 in (5.6); then there are isomorphisms C, =~ C, ® C, =~

C, and C, ® C; = H® R(2) = H(2). For the first part, we have isomor-

phisms .,y > C; ., ® C, » C, ® (C, ® C,) = C, ® C, and similarly C;, ,—
G2 ® G > GG,
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5.8 Corollary. There are isomorphisms C,,4 — C, ® R(16) and C; .3 - G, ®
R(16).

Proof. We iterate (5.7) and use H2)®@ H2)=H®H® RQ2)® R(2) =
R(4) ® R(4) = R(16).

5.9 Corollary. There is an isomorphism C;,, — C; @ CQ2).
C

Proof. From (5.6) there is an isomorphism C,X)C = Ci,, -
R

C,;®C®C2=(C,;®C>®<Cz®C>=C§®C(2). 0
R R R C R C
5.10. Table of Clifford algebras.
k G, G G
1 C R®R cCocC
2 H R(2) C@2)
3 H®H C(2) C2)® C(2)
4 H(2) H(2) C()
5 C@) H(2) ® H(2) C4)®C@E)
6 R(S) H() c®)
7 R(8) @ R(8) C(®) C(@) @ C(8)
8 R(16) R(16) C(16)

Our success in calculating the algebras C,, C;, and C; depended on the fact
that in certain cases the graded tensor product could be replaced by the
ordinary tensor product, for example, C,®C,=Ci,, =C. @ C, and
G® G =Cn

6. Clifford Modules

6.1 Definition. A Z,-graded module M over a Z,-graded algebra A4 is an
A-module M with M = M° @ M such that A'M’ = M**J for i, je Z,. A
Clifford module is a Z,-graded module M over a Clifford algebra C(f).

We are particularly interested in Clifford modules over the algebras C,
and C;. In the next two propositions we reduce the study of Clifford modules
to ordinary (ungraded) modules.

6.2 Proposition. The function ¢(x) = e; ® x for x € C(f) prolongs to an (un-
graded) algebra isomorphism ¢: C(f)—C°(—xy @ f), where C°(—xy®f)<



162 12. Clifford Algebras

C(—xy @ f) = C(—xy) ® C(f) and e, is the generator of C(—xy) such that
ed=—1.

Proof. Lete,, ..., e, be a basis of M for the form (M, f) with f(e;,e;) = 0 for
i # j. We calculate ¢(e;)? = (e, ® €;)(eq ® €;) = —e3 ® e? = e?. Therefore,
the prolongation exists and is a monomorphism since distinct basis elements
are carried into distinct basis elements. Since dim C(f) = dim C°(—xy + f),
¢ is an isomorphism.

A direct picture of the isomorphism ¢: C,_; — C¢ is given by the for-
mula ¢(xo + Xx;) = X + e.x, for x, + x; € G2, @ C;i_,. Here ¢ is a vector
space isomorphism, and the multiplicative character follows from the rela-
tion ¢(xo + x1)¢(yo + ¥1) = (xo + &x1) (Yo + €y1) = XoYo + €xX1€ ¥y +
ex(x1yo+Xoy1) = (Xoyo+x1y1) tex1 Yo+ Xoy1) = ¢((Xo+Xx1)(Yo+ 1))

Let A4 be a Z,-graded algebra. Let M(A4) denote the free abelian group
with irreducible Z,-graded A-modules (e.g., modules with no submodules) as
free generators, and let N(A) denote the free abelian group with irreducible
A-modules as free generators.

6.3 Proposition. Let (M, f) be a quadratic form. The functor R, which assigns
to each graded C(f) module M = M° + M the C(f)° module M°, induces a
group isomorphism M(C(f)) = N(C(f)°).

Proof. Let S be the functor that assigns to each C(f) module L the graded
C(f)°-module C(f) &) L.

c(ry°
An isomorphism SR — 1 of functors is given by the scalar multiplication

C(f) Q@ M°— M in the module, and an isomorphism 1 — RS is given by
c(hHo
L - 1 ® L. This proves the proposition.

Let M, denote M(C,), M; denote M(C;), N, denote N(C,), and N§ denote
N(Cs). Using (6.1) and (6.3), we have group isomorphisms M(C,) = N(C?) —
N(C,_,) and M(C)— N(C°) » N(C;_;). In summary we have the next
proposition.

6.4 Proposition. There are group isomorphisms M, — N,_, and M - N;_,.

From general properties of matrix algebras we know the irreducible
modules over F(n) and F(n) @ F(n). In the case of F(n), there is only one,
namely, the action of F(n) on F”", and its dimension (over F) is n. In the case
of F(n) @ F(n), there are two, namely, the two projections F(n) @ F(n) — F(n)
followed by the action of F(n) on F", and both have dimension n (over F).

Finally, if a, denotes the dimension of M° over R, where M is an irreduc-
ible Z,-graded C,-module, and af of M° over C, where M is an irreducible
Z,-graded C;-module, then we have Table 6.5.
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Table 6.5. Table of Clifford modules.

k C, N, M, q Cs N¢ M 4
1 C z z 1 Ccac 707 z 1
2 H z z 2 Q) z Z0Z 1
3 H®H 707 z 4 CQ@®CQ) ZoZ zZ 2
4 H(2) z Z0Z 4 C4) z Z0Z 2
5 C@) z z 8  CHeCl) ZozZ z 4
6 R(@3) z z 8 c@®) z Z0Z 4
7 RE)®ORE) ZOZ z 8  CO@®CO ZaZ z 8
8 R(16) zZ Z0Z 8 C(16) z Z0Z 8

Then N, ,g = N,, My,s =M, a,,g=16a,, Ni, = N;, Mg,s = M;, and
Qv 2 = 2ay.

For the next calculation we need the center of C,, that is, the set of ele-
ments commuting with every element of C,.

6.6 Proposition. The center of C, is Rl for k =2r and R1 + R e, - ¢, for
k =2r + 1. The center of C? is Rl for k =2r — 1 and R1 + R e, - ¢, for
k = 2r.

Proof. Anelement x € C, is in the center of C, if and only if e;x = xe; for each
i,1 £i <k Sincee; ! = —e;, we must have ¢;xe; = —x. Let

l(k)
X =) Q... iwet

Then we have

-1 _ s) (k) i(s)+1 i(1). i(k)
€sX€ *—Z( 1) diy,..., z(k)el e +Z =1y i1, ... itk €1 €

where the first sum is for indices with i(1) + --- + i(k) even and the second
sum is for i(1) + --- + i(k) odd. Therefore, e,xe; ! = x for each 5, 1 < s <k,
if and only if a;y, . ;4 =0 for (i(1), ..., i(k)) #(0,...,0) and k even and
Ayy),....iw = 0 for (i(1),...,i(k)) #(0,...,0) and (1,...,1) and k odd. For the
statement about C? we use in addition the isomorphism C, — C2,, of (6.2).
This proves the proposition.

6.7 Confunctor Properties of M and N. Let u: A > B be an algebra mor-
phism of semisimple algebras; i.e., all modules over these algebras are direct
sums of irreducible modules. Then we define u*: N(B) » N(A4) by requiring,
for each B-module L, the scalar multiplication of the A-module u*(L) to be
given by the relation that ax in u*(L) is u(a)x in L. The rest of the structure
of L is unchanged. If, in addition, u: 4 —» B is a Z,-graded morphism, then
u*: M(B) » M(A) is defined as above.

6.8 Examples. We consider the following isomorphisms for a quadratic form

(M, f).
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(1) For be M — {0} = C(f), o,: C(f)— C(f) is the inner automorphism
ay(a) = bab ™!, and its restriction to C(f)°, a,| C(f)°, is denoted ay.

(2) We have B: C(f) - C(f), where B(x, + x,) = X, — X, for x, € C(f)° and
x, € C(f)".

(3) By (6.2) there is an isomorphism ¢: C, — C?,, given by #(xo + x,) =
Xo + ex41 X, for xo e C2 and x, € C}.

Finally, we have an involution ¢ of M(C(f)), where ¢(M)°® = M' and
c(M)' = M.

6.9 Proposition. The following diagrams of isomorphisms are commutative,
using the above notations.

1 R 4*
M, M, N(Ck0+1) N(Cl?+l) — N,
c l Ja; Jag* lag,’:ﬂ lﬂ*
1 R #*
My « M, ., N(Cl?+1) N(Cl?+l) — N,

Proof. For the first square, observe that multiplication by b is an isomor-
phism M° - M! and M! — M°. The second square is commutative by the
definition of &y from a;,. For the last square we compute o, #(x, + Xx;) =
Cert(Xo+ a1 X1)(—€py) = —€iy 1 Xo+€1 Xy = Xo — €s X1 = PPxo+xy).
Therefore, ¢*f* = a¥  ¢*. This proves the proposition.

6.10 Proposition. Let m, and m, correspond to the two distinct irreducible
graded modules in M,, or M5,,. Then c(m,) = m, and c(m,) = m,.

Proof. By (6.9), the action of ¢ on M,,, corresponds to the action of f* on
N4p-1- By (6.6), the center of C,,,_, has a basis 1 and w = e, - e,,,_,, Where
®? = 1. Then multiplication by (1 + w)/2 and by (1 — w)2 is a projection of
C4m—1 on two ideals which are direct summands. Since f(w) = w, the auto-
morphism interchanges these two ideals, and f* interchanges the two irre-
ducible C,,,_; modules. The above argument applies to C5,,_, with o =
iMey ey

The results in (6.6) to (6.10) are preliminary to the calculation of L, =
coker (i*: M., » M,), where i*: M,,, > M, is induced by the inclusion i:
C, — Cy4,. Similarly, we denote by Lj the coker (i*: Mf,, » Mj).

6.11 Proposition. The following diagrams are commutative where n: Cyq —
Ci11 is the automorphism with n(e;) =e; for i £k — 1, n(e,) = ey, and
T(€r1) = €
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i*

My, —— M,

L.—— 0

i*

Ne — Ny
The similar diagram in the complex case is also commutative.
Proof. Using the following commutative diagram, we have the result by
applying the cofunctor N.
Ci—y S G
jaf lqﬁ
G —— G

Here j(e;) = e;for i < k — 1 and j(e,) = e,,,. Moreover, we use the following
commutative diagram:

i *

13
My, — M,

R,,*J jR

N(C) —L2— N(C)

The proposition is proved by putting these two diagrams together.

6.12. Table of L, and L;

k C, N, M, L. q
1 c(1) z z Z, 1
2 H(1) z z Z, 2
3 HH®H() ZoZ z 0 4
4 H(2) z z07 Z 4
5 C(4) z z 0 8
6 R(8) z zZ 0 8
7 RO)®RE) ZOZ z 0 8
8 R(16) z 7207 Z 8

Moreover, we have C, g = C, ® Cg, Niyg = Ny, Mg = M,, and a5 =
16q,.

k C N¢ M L a

1 cyecl) ZoZ z 0 1
2 cQ) z 72072 Z 1
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Moreover, we have Ci,, = Cf X) C(2), Nfy, = Ni, Mi,, = M, Li,, = K§,
C

and af,, = 2a;.

To prove the above statements, for k = 1,2 we have L, = coker (N, — Ny)
and L, =~ coker (N, — N,), which are defined by the restriction to R of C
acting on C and to C of H acting on H, respectively. Two components result,
and the cokernel is Z,.

For k =5, 6, we have L5 =~ coker (Ns - N,) and Ly = coker (Ng — N5s),
which are defined by restricting C(4) to H(2) acting on H? and R(8) to C(4)
acting on C*. Irreducible modules go into irreducible modules, and L =
Lg=0.

For k = 3, 7, we have L; =~ coker (N; — N,) and L, = coker (N; — Ng)
which are defined by restriction of H(1) @ H(1) and of R(8) @ R(8) to the first
factor. Then N3 — N, and N, — N, are epimorphisms, and L; = L, = 0.

For k = 4, 8, we have L, = coker (M5 - M,) and Ly = coker (Mg — My).
Since there is only one generator z of M,,,, we have c¢(z) = z. Then its
image in M,,, also has this property. Consequently, z projects to m, + m,
which is invariant under ¢ by (6.10) for reasons of dimension. Then coker
(Mypi1 = Myy) = Z.

The reasoning used in the last two paragraphs applies to the complex case.
This verifies the tables.

7. Tensor Products of Clifford Modules

An_isomorphism ¢, ;: Gy, = G, ® G, is defined by the relations ¢, (e;) =
e@1for1<i<kand¢, (&) =1®e_fork+1=i<k+1

7.1 Definition. Let M be a Z,-graded A-module, and let N be a Z,-
graded B-module. The Z,-graded tensor product, denoted M ® N, is the
ordinary tensor product with the following grading (M ® N)°=(M°®N°)®
(M'® N'yand (M ® N)! = (M' @ N°) @ (M° ® N')and with the following
scalar multiplication by A ® B.

(@®b)(x®y)=(—1)(ax®by) forbe B and x e M’
The operation (M, N)— ¢ (M ® N)is a bilinear map and defines a group
morphism
M, QZ@ M; - M,y
Similarly, there is a morphism Mj (X) Mf - M;,,. Therefore, M, = 5 M,
V4 0=k

becomes a graded ring, and similarly M§ = )  Mj is a graded ring.
0=k

7.2 Proposition. For ue M, (or M;), ve M, (or M;), and we M,, (or M),
there are the following relations:
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(1) u(ww) = (uv)w.

(2) c(uv) = uc(v).

(3) For the inclusions i: C,_; » C, and i*: M, > M, _,, there is the relation
(ui*(v)) = i*(uv).

(4) uv = vu for kil even and uv = c(vu) for kil odd.

Proof. Statements (1) to (3) follow easily from the definitions. For the last
statements, we have the following diagram:

G ®C
.1

T
Cirs

S ~
C,® C,

Here T(x, ® Vo) = (= 1Py, ® x, for x, € Cf and y, e C}. Let 0 = ¢, Tg,,
which is an automorphism of C, ,,. Observe that a(e;) = ¢,,;for 1 <i < k and
gle;)=¢e;_,fork+1=i=<k+ Il Then o is a composition of kl inner auto-
morphisms o,, where b € R — 0. For example, o, where b = (e, + ez)/ﬂ
interchanges e, and e,. By (6.9) this is kI applications of ¢ when applied
to M. Since T*(N®M) M ® N and since o*¢f, = ¢F, T*, we have
o (N M) = cPigF (M ® N). This proves (4).

As an application of (7.2), we have the following proposition and theorem.

7.3 Proposition. Let A denote the class of an irreducible graded module over
Cg. Then multiplication by A defines an isomorphism M, - M, 4. If u denotes
the class of an irreducible graded module over C5, multiplication by p defines
an isomorphism My — My, ,.

Proof. By the table for g, the result follows from reasons of dimension for
k # 4m. For k = 4m there are two generators m; and m, of C,,, with ¢(m,) =
m, and c(m,) = m,, as in (6.10).

By (2) in (7.2) we have Am, = Ac(m,) = c¢(4n,). For reasons of dimension
and by (6.10), Am, and Am, are the two generators of M,,,,s. This argument
applies to the complex case. This proves the proposition.

By (3) in (7.2), the image i*: M, — M, is an ideal, and the quotient graded
ring L, Z L, is defined as in (6 ). Let the image of 1 in Lg be denoted

by Ag Slmllarly for L, we have an induced ring structure, and p generates L.

7.4 Theorem. One can choose generators 1€ Ly, A, e L, A,€L,, and 1z €
Lg of the graded ring L, satisfying the relations 24, =0, A} =0, 2,4, =0,
43 = 4)g, and 1 is the unit of L. One can choose generators 1 € L, and i € L
of the graded ring LS, where 1 is the unit. The ring homomorphism c: L, — L



168 12. Clifford Algebras

given by complexification is defined by c(4,) = 0, c(4,) = 2u*, and c(dg) = p*,
and the group homomorphism r: LS, — L, given by restriction from C; to C, is
defined by r(p) = r(u) = 0, r(u?) = Ay, and r(u*) = 22g.

Proof. Since L, = Z/2Z, it is generated by 4, with 24, = 0. Since a, = 1,
a, = 2, it follows that A? generates L, = Z/2Z.

Let w = e, --¢, in C,. For k = 2q we have w? = (—1)? and k = 4m we
have w? = 1. If M is an irreducible graded C,-module, » acts on M° as the
scalar ¢ = + 1, and the ¢-module corresponds to the action of w equal to
multiplication by &. Since e;w = —we;, if M is an e-module, ¢(M) is a (—e¢)-
module. If M is an e-module and if N is an ¢’-module, then M ® N is an
g¢’-module.

Let 4, be the class of an irreducible C,-module M in L, which is a (—1)-
module. Then M ® M is of the type e = +1 in cases over Cg. Let Ag be the
class of the (4 1)-module W of Cq. Then we have M ® M = W*; for reasons
of dimension, 8% = 4- 16, we have u?> = 4. This proves the statement for the
real case.

For k = 2q we have w? = (— 1) If M is an irreducible graded C;-module,
o acts like +i? on M°. Again M is called an ¢e-module if o acts by scalar
multiplication by ¢ on M°. Let u{ € M5, denote the generator corresponding
to an irreducible i%-module. Then we have p{ = (uf)® by considering dimen-
sions of modules in the class. This proves the statement for the complex case.

For the relation between the real and complex cases, let M be a real

e-module for C,,,. Then M (X) C is a complex (— 1) e-module for C5,,. The
R

complexification L, — Lj is given by 1, — 27 for reasons of dimension.

For the statement about r we use the relations rc(y) = 2y and cr(x) =
x + X, where X is the conjugate of x. Observe that z = —¢. This proves the
theorem.

7.5 Remark. In the paper of Atiyah, Bott, and Shapiro [1], group
morphisms
L,—»KO(S*) and  L:t— K(SY

are defined. These morphisms are proved to be isomorphisms using the
graded ring structure of L, and L, described in (7.4) and the Bott periodicity.

8. Unit Tangent Vector Fields on Spheres: 11

Let p(n) be the number such that there exist (p(n) — 1) orthonormal tangent
vector fields on $"~! by Clifford algebra constructions, see Theorem (2.2) and
Remarks (2.3). There exists an orthogonal multiplication R x R" — R"if and
only if R"is a C,_,-module, by (2.5).
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8.1 Table of Irreducible Modules Over C,_,. Let b, be the minimum dimen-
sion n such that R" has the structure of a C,_, -module.

8.1 Table of Irreducible Modules Over C,_,. Let b, be the minimum dimen-
sion n such that R" has the structure of an irreducible C,_,-module.

k 1 3 4 5 6 7 8 9
G, R C H HOH HQ2 C4 R@B REBO®R®S R(6)
b 1 2 4 4 8 8 8 16

Moreover, b, , 5 = 16b,. Note that if R" admits the structure of an irreducible
C,-module, then $"~! has k orthonormal tangent vector fields.

8.2 Theorem. If n = (0dd)2°"16%™, where 0 < c(n) < 3, then p(n) = 2™ +
8d(n).

Proof. The formula holds by inspection for 1 <n < 8. For n = 8, we use
by s = 16b, which follows from C,, 3 = C, ® R(16).

It is a theorem of Adams that there are not p(n) orthonormal tangent
vector fields on $"7?; see Chap. 16.

9. The Group Spin(k)
Let (x;, ® " ®x,)* =x,® *®x,; define an operation on T(M) =
Y. T*(M). Since (x ® x — f(x,x)1)* = x ® x — f(x, x), the linear involution

0=k
*: C, — C, is defined where

-1)/2
(eiu)"'ei(r))* =€ir) " Ci1) = (— l)m /

Moreover, (xy)* = y*x*.

€ic1)” " Cigr

9.1 Definition. Let pin(k) denote the subgroup of the multiplicative group of
units in C, generated by §*~! where S¥! = R* = C,, and let Spin(k) denote
the subgroup pin(k) N C? of pin(k).

For u € C,, we have u € pin(k) if and only if u = x, - x,,, where x; € $*™!
for 1 < i < m. Moreover, we have uu* = +1 if and only if m is even, that is,
ue C?, and uu* = —1 if and only if m is odd, that is, u € C}. Consequently,
uu* = + 1 for u e Spin(k).

For u e pin(k), we define ¢(u) € 0(k) by the relation ¢(u)x = uxu*. Clearly,
¢(u) is linear and satisfies the relation

Ipu)x]® = (uxu*)(uxu*) = uxxu* = —xx = ||x||*
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The properties of Spin(k) are contained in the next theorem.

9.2 Theorem. The map ¢: pin(k) - O(k) is a continuous group epimorphism
with $71(SO(k)) = Spin(k) and ker ¢ = {+1,—1} for the restriction ¢:
Spin(k) — SO(k). Moreover, for k = 3, Spin(k) is the universal covering group
of SO(n) and ny(Spin(k)) = =, (Spin(k)) = 0.

Proof. Clearly, ¢ is continuous, and the relation ¢(uv)x = wuvx(uv)* =
uvxv*u* = u(@(v)x)u* = @(u)¢(v)x yields the group morphism property of ¢.

To prove ¢ is surjective, we begin by proving that ¢(u) for ue S"! is
a reflection through the hyperplane perpendicular to u. Let x = tu + v/,
where (uju’) = 0. Then @u)x = u(tu+u')u* = tuuu* + uu'v* =
—tu — uw'uu* = —tu + u’. This proves the statement about ¢(u) for u e S*.
Since these reflections generate O(k), the map ¢ is surjective.

For ue $"', det ¢(u) = —1 and det ¢(u, ---u,) = (—1) for u;e S"! and
1 < i £ r. Therefore, u € Spin(k) if and only if ¢(u) € SO(k).

For u e ker ¢ we have ue,u* = e;, or ue; = e;u since uu* = 1, and, con-
versely, these conditions imply that u € ker ¢. This happens if and only if u is
in the center of C, intersected with C?, that is, u € R1. This is equivalent to
u = +1 since uu* = u® = 1.

For the last statement, it suffices to prove that +1 and —1 in Spin(k)
are connected since ¢: Spin(k) — SO(k) is locally trivial. Since the element
(e, cost + e,sint)(e; cost — e, sint) = —cos 2t — e e, sin2t is a member of
Spin (n), we get a path in Spin(n) from —1 to + 1 by varying t from 0 to /2.
This construction can be used to prove that Spin(k) is connected directly.

Exercises

1. Using the fact that S3 has three orthonormal tangent vector fields and that S7 has
seven orthonormal vector fields, prove that S"~! has 2° — 1 orthonormal tangent
vector fields where n = (0dd)2°16¢ and ¢ < 3.

2. A morphism u: (M, f) — (N, g) between two quadratic forms is a module morphism
u: M — N such that g(u(x), u(x’)) = f(x,x’) for all x, x" € M.

. Describe explicitly i: C,_, — C, for the table of C, in (5.10).

. For x, y e 87! = C,, verify the formula xy + yx = 2(x|y) directly.
. Prove that 7;(SO(k)) = m;(Spin(k)) for i = 2.

. Calculate the kernel of ¢: pin(k) — O(k).

. Referring to (4.5), in what sense is (M, f) — C(f) a functor?

0 N9 AN B W

. Let 2 be a unit in R. Prove that a module morphism u: M — N prolongs to an
algebra morphism v: C(M, f) - C(N, g) if and only if 4 is a morphism of quadratic
forms.



CHAPTER 13

The Adams Operations and
Representations

Every representation M of a topological group G and every principal bundle
o over a space X determine a fibre bundle «[M] over X that admits the
structure of a vector bundle. For a given « the function that assigns a[ M] to
M prolongs to a group morphism R(G) - K(X), where R(G) is the represen-
tation ring of G. We study K(X) using this morphism; in particular, proper-
ties of operations in K(X) can be derived from properties of operations in
R(G).

1. /-Rings

1.1 Definition. A A-semiring is a (commutative) semiring R together with
functions A: R — R for i = 0 satisfying the following properties:

(1) 2%x) =1 and A'(x) = x for each x € R
(2) Foreachx,ye R, A*(x + y) = ) A¥

i+j=k
A morphism u: (R, ') - (R’, i') between two A-semirings is a semiring mor-
phism u: R — R’ such that A'(u(x)) = u(A(x)) for each xe R and i = 0. A
A-ring is a A-semiring whose underlying semiring is a ring.

1.2 Example. The semiring of isomorphism classes of vector bundles
Vectp(X) is a A-semiring for F = R and C, where we define A/[¢] = [A‘E],
using the ith exterior power which exists by 5(6.9). Then axioms (1) and (2)
follow from corresponding properties of exterior powers of vector spaces and
Theorem 5(6.3).
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If f:Y—> X is a map and if ¢ is a vector bundle, by 5(6.9)f*(A'¢) and
Af*(&) are Y-isomorphic. Consequently, Vect,(f): Vectp(X) — Vectp(Y) is a
morphism of A-semirings.

To define a A-ring structure on K (X), we use the following construction.
For a A-semiring R with operations A, we define 4,: R— 1 + R[[t]]" to
be 4,(x) = Y. A'(x)t’. By axiom (2) we have 4,(x + y) = 4,(x)4(y). Here 1 +

iz0
R[[t]]" denotes the semigroup of power series 1 + a;t + a,t*> + -+ . If R is
a ring, then 1 + R[[¢]]" is a commutative group.

1.3 Proposition. Let R denote the ring completion of the underlying semiring
R of the i-semiring (R, A%). There exists a A-ring structure on R given by opera-
tions ' such that the natural morphism 6: R — Risa - -Semiring morphism.
Moreover, the operations ilare unique with respect to this property.

Proof. The underlying additive group structure of R is the group comple-
tion of the underlying semigroup structure of R. We consider 4,: R —> 1 +
R[[{1]", which is the multiplicative group of _power series with 1 as a con-
stant term. This defines to a group morphism 4,: R—1+ R[[1* such that
J .0 = 4,. Moreover, /, is unique with respect to this property. Let 4 (x) be
defmed by the relatlon p (x) = Z Zi(x)t’. Then ) are operations on R sat-

iz0

isfying (1) and (2). From the relation 1,0 = 4,, the function 6 is a morphism of
J-semirings. Since Z, is unique, 4’ is uniquely defined.

1.4 Application. The rings K(X) and KO(X) admit a A-ring structure such
that A'[£] = [A¢] for a vector bundle class [¢]. If f: Y — X is a map, then
f* K(X)— K(Y)and f: KO(X)— KO(Y) are A-ring morphisms.

2. The Adams -Operations in A-Ring

Associated with the operations A’ in a A-ring are the Adams operations /*.

2.1 Definition. Let ¢,(x) = ) y¢*(x)t* be given by the relation ¥_,(x) =

i1
—t((d/dt)A,(x))/4,(x) for a A-ring R. The functions *: R — R are the Adams
Y-operations in R.
The y-operations on a A-ring R have the following properties.

2.2 Proposition. The function y*: R —» R is additive, and if u: R > R’ is a
J-ring morphism, then u(y*(x)) = Y*(u(x)) for x € R.

Proof. We have
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—t(d(dt) A (x + y))/2(x + y)

— t[((d/dt) 4,(x)) A(y) + A(x)((d/dt) 2,(y)1/2(x) 4,(y)
—1((d/dt) 2,(x))/ A(x) — t((d/dt) A())/A(y)

Yo(x) + Y- ()

and therefore, by comparing coefficients, we have y*(x + y) = y*(x) + ¥ (y).
For the last statement, we apply u to the coefficients of ¥/,(x) and 4,(x).

Yo (x+y)

I

Il

2.3 Proposition. If i'(x) = 0 for i > 1, then y*(x) = x*.

Proof. We have A,(x) = 1+ tx and (d/dt)A(x) = x. Then V_(x) =

—tx/(1 + tx) or ¥, (x) = tx/(1 — tx) Z x*t*. Since Y, (x) = Y. ¢*(x)tk, we
k=1

have y*(x) = x*.

2.4 Remark. From a universal formula relating symmetric functions we
have y*(x) = sf(4,(x),. .., Ay(x)) for n=>k, where x* + -+ + x* = s}'(5,,...,0,)
and o; are the elementary symmetric functions; see Proposition (1.8) of the
next chapter.

2.5 Proposition. There is the following relation between A' and y* for x € R:
YEx) — AP X 4+ (= DA Y (x) 4 (= DkAR(x) = 0
Proof. From the definition A,(x)¥_,(x) + t(d/dt)4,(x) = 0, we have
( Y A x)t >< Z —])itpi(x)t‘> +t Y (k+ 1)A¥!(x)t* = 0. Therefore,

i%0 K20

IIV

Z(Z (— D AN (x) + kiX( ))t"zO

i+j=k

This leads to the stated formula.

2.6 Special cases. For k = 1, we have y'(x) + (—1)A'(x) = 0, or
Yrx) = x
For k = 2, we have y%(x) — A'(x)¢*(x) + 24%(x) = 0, or
Yr(x) = x* - 24%(x)

and for k = 3, we have y3(x) — A1 (x)y?(x) + A2(x)¥ (x) + (—1)*343(x) = 0,
or

P3(x) = x3 4+ 343(x) — 3xA%(x)
2.7 Definition. A i-semiring with line elements is a triple (R, %, L), where

(R, A%)is a A-semiring and L is a multiplicatively closed subset of R consisting
of x € R with A{(x) = 0 for i > 1.
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In the case of Vecty(X) or Kp(X) for F = R or C, the set L consists of the
classes containing line bundles.

2.8 Definition. A A-semiring R splits, provided for each finite set x,, ...,
x, € R there exists a A-semiring monomorphism u: R — R’, where (R’, A, L") is
a J-semiring with line elements L’ such that each u(x;) is a sum of line ele-
ments in L.

Later in this chapter we shall prove that certain representation rings are
split A-rings. This will allow us to prove that the result of Theorem (2.9),
which follows, holds for the A-rings K(X) and KO(X). These additional prop-
erties are very important.

2.9 Theorem. Let R be a split A-semiring. Then y*: R — R is a semiring mor-
phism for each k = 0, and y/*y' = y*.

Proof. Let x, y € R, and let u: R - R’ be a semiring monomorphism, where
ux)=x; + - +x,u(y)=y; + - +y,and xy, ..., X,, ¥y, ..., y are line
elements of R". Now we compute

u( (xy)) = pruxu(y) = Y. ¢ xy;) = 3 xEy;

iJj

(3 )(m, ( o)(gvm)

= YH )y () I ()

Since u is a monomorphism, Y*(xy) = y*(x )(// (»)

With the same notations, we have u(y*y'(x)) = Y ¢ (u(x)) = y*¥'(x, +
~+x)—a//(x1 et x) = x4 XM = YMx 4+ x,) =
u(y*(x)). Again, smceulsamonomorphlsm yryt =y

2.10 Remark. Let (R,1) be a A-ring where the * operations satisfy the
following:

(1) The functions /* are semiring morphisms.
Q) Yyt =y

If u: R" > R is a monomorphism of A-semirings, then R’ satisfies (1) and (2).

2.11 Definition. A A-semiring with line elements and conjugation is a 4-tuple
(R, A%, L, ), where (R, A% L) is a A-semiring with line elements and %: R — R is
a A-semiring involution such that xx* = 1 for x € L.

2.12 Remark. Examples of the above concept are Vecto(X) and K(X),
where x* is the complex conjugate bundle. For a A-semiring R with line
elements and conjugation, y ~¥(x) = y/*(x*) = y*(x)* is defined and (1) and
(2) hold.
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3. The y* Operations

In a A-ring R, the y/* are polynomial combinations of the A’. We consider here
other operations which are combinations of the A'. These operations are
useful in studying the representation rings of Spin(n) and the immersion
theory of manifolds.

3.1 Definition. The y-operations in a A-ring R, denoted y’: R — R, are de-
fined by the requirement that y,(x) = 4,,;-,(x), where y,(x) = Y, y'(x)t"

0Zi

We have the relation A,(x) = y;,;+5(X) and the relation

Zyx)t—z )1 =0 =Y At +it+-)

0=i 0<i 0=i

3.2 Proposition. The y-operations in a A-ring R have the following properties:
(1) Y°(x) = 1 and y*(x) —xforeachxeR.
(2) Foreachx,ye R,y (x + y) = Y, 7'(x)y(y).

i+j=k )
(3) Y(x) = A*(x) + Y @i Ai(x) and A4(x) = y*(x) + ;‘ by 7' (x)

i<k

where a;, and b; , are integers.

Proof. The first two statements follow from the relations y°(x) = A%(x),
p1(x) = A!(x), and y,(x + y) = 7(x)y,(»). For the last relation we consider the
kth coefficient of 4,;_,(x) and of y;, 4 4(x).

The operations y* are used in applications of K-theory to immersion the-
ory. We use the y operations in Chap. 14, Sec. 10.

3.3 Examples. From the definition
PX) + 1)+ P+ P () +
= A0(x) + AL)t(1 + ¢ 4+ 2 4 7)) + A2 (1 + 2t + 3t2+)
+ X+ 34 )+
we get the following relations:
7o(x) = 2°(x) = 1
Y0 = 29 = x
P2(x) = A*(x) + A (x)
P3(x) = 23(x) + 24%(x) + A1 (x)

yH(x) = A*(x) + 34°%(x) + 347 (x) + A1 (x)
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4. Generalities on G-Modules

Let F denote R, C, or H. Then each finite-dimensional F-vector space M has
a unique topology such that any vector space isomorphism F"— M is a
homeomorphism. Moreover, this is a norm topology. Frequently, in the next
three sections, special considerations are required for F = H because of its
noncommutative character. These considerations will be left to the reader.

4.1 Definition. Let G be a topological group. A G-module M is a G-space
such that the action of s € G on M is linear.

For s € G and a G-module M, let s,, denote the linear automorphism of M
such that sy,(x) = sx. Then the relations 1,, = 1, (st)y; = Syt and (s 1)y =
(s») ! hold. The function (s, x)— sx of G x M — M is continuous.

4.2 Example. The space F" is a Up(n)-module and SUg(n)-module with the
G-module action given by a linear transformation acting on F".
Other examples will arise in the next paragraphs.

4.3 Definition. A function f: M — N is a G-morphism between G-modules
(both over F) provided f is F-linear and f(sx) = sf(x) for x e M and s € G.

The identity on M is a G-morphism, and the composition vu: M — L of
G-morphisms u: M — N and v: N — L is a G-morphism. The kernel, image,
and cokernel of a G-morphism are defined and admit the structure of a
G-module in a natural way. Let Homg (M, N) denote the set of all G-
morphisms M — N. Then Homg (M, N) is a subspace (or subgroup for F =
H) of Homg (M, N).

4.4 Definition. Let M and N be two G-modules. Then the direct sum of M
and N, denoted M @ N, is a G-module, where s(x,y) = (sx,sy) for se G
and (x,y) e M @ N. The vector space structure on M @ N is the direct sum
structure.

The direct sum plays the role of the product and coproduct in the category
of G-modules. A similar definition applies to the direct sum of n modules.

4.5 Definition. The tensor product M ® N and exterior product A"(M) of
G-modules M and N are defined by the relations s(x ® y) = sx ® sy and
S(Xy AN X)) =SXy At A SX,.

The operations of direct sum, tensor product, and exterior product are
related in the next proposition.

4.6 Proposition. Let M, ..., M, be one-dimensional G-modules. Then
AN(M, ® - ®M,) and Y My, ® ®M,, are isomorphic as G-
modules. i(1)y< <itr)

Proof. The isomorphism given by x; A - A X, > x; ® *** ® X, preserves
the action of G.
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4.7 Definition. Let M and N be two G-modules. Then the relation sf =
syfsy* defines a G-module structure on Homg(M, N).

Observe that for f € Hom, (M, N) we have f € Homg (M, N) if and only if
sf = f for each s € G. For the action sa = a on F, we have the structure of a
G-module on the dual module M* = Hom, (M, F), the module of conjugate
linear functionals.

4.8 Definition. A G-module M is simple provided M has no G-submodules,
i.e., no subspaces N with sN = N for all s € G.

4.9 Proposition. Let M be a simple G-module. Then every G-morphism f: M —
N is either zero or a monomorphism, and every G-morphism g: L — M is either
zero or an epimorphism.

Proof. Either ker f equals M or 0, and either coker g equals M or 0 in the
second case.

As a corollary, we have the next theorem.

4.10 Theorem. (Schur’s lemma). If f: M — N is a G-morphism between two
simple G-modules, f is either zero or an isomorphism. If M = N and if F is
algebraically closed, f is multiplication by a scalar.

Proof. The first statement follows from (4.9). For the second statement, let 4
be an eigenvalue of f, and let ker (f — 1) = L be a G-submodule of M. Since
L # 0, we have L = M and f(x) = Ax. This proves the theorem.

The proof in the next proposition is straightforward and is left to the
reader; see Cartan and Filenberg [1, chap. 1].

4.11 Proposition. For a G-module M, the following statements are equivalent.

(1) The module M is a sum of simple G-submodules.

(2) The module M is a direct sum of simple G-submodules.

(3) For each G-submodule N of M, there exists a G-submodule N’ with M =
N@N'

4.12 Definition. A G-module M is semisimple provided it satisfies the three
equivalent properties in (4.11).
In Sec. 6 we prove that for a compact group every G-module is semisimple.

5. The Representation Ring of a Group G and
Vector Bundles
For a topological group G, let M(G) denote the set of isomorphism classes

[M] of G-modules M over F. The operations [M] + [N] = [M @ N] and
[M][N]=[M ® N] make M(G) into a semiring (only a semigroup for
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F = H). For F = R or C, the functions 4;,[M] = [A‘M] define a i-semiring
structure on Mg(G).

5.1 Definition. The representation ring Ry(G) of a topological group G is the
ring associated with the semiring My(G); see 9(3.3).

The elements of Rp(G) are of the form [M] — [N], where M and N are
G-modules, and there is a natural morphism Mg(G) —» Rz(G). Moreover by
(1.3), Rp(G) admits a natural A-ring structure.

5.2 Definition. Let u: G — H be a morphism of topological groups; that is, u
is continuous and preserves the group structure. Let M be an H-module. We
define u*(M) to be the underlying vector space of M with G-module structure
given by sx = u(s)y(x) for se G and x € M.

Then for a topological group morphism u: G - H and H-modules M and
N we have u*(M @ N) = u*(M) ® u*(N), u*(M ® N) = u*(M) ® u*(N), and
u*(A'M) = A'u*(M). Consequently, u* defines a A-semiring morphism
M;(u): Mp(H) = My(G) by Mp(u)[M] = [u*(M)], and this defines a unique
A-ring morphism Rp(u): Rp(H) = Rg(G) such that the following diagram is
commutative.

MEg(u)

M;(H) —— M(G)

Rp(u)

Rp(H) —— Rg(G)

5.3 Proposition. With the above notations, Ry is a cofunctor from the category
of topological groups to the category of A-rings (only groups for F = H).

As with vector bundles, we denote Ro(G) by R(G), Rg(G) by RO(G), and
Ryu(G) by RSp(G).

5.4 Remark. Vector bundles and G-modules are related by the following
mixing construction. For each locally trivial principal G-bundle « over a
space X and each G-module M, the fibre bundle «[ M] is formed. Since the
action of G preserves the vector space operations on M, there is a natural
vector bundle structure on a[M]. Since a[M @ N] and «[M] @ «[N] are
isomorphic, since a[M ® N] and a[M] ® «[N] are isomorphic, and since
Ala[M] and a[A'M] are isomorphic, there is a morphism of A-semiring &:
M;(G) — Vectg(X) defined by the relation &([M]) equals the isomorphism
class of «[M]. The morphism & defines a A-ring morphism, also denoted 4,
R;(G) » Kp(X). We shall discuss this morphism further in a later section.

5.5 Example. View Z, as { +1, — 1}, a subgroup of S, the circle group in the
complex plane. Then S' — S! mod Z, is a principal Z,-bundle. If M = R is
the standard representation of O(1) = Z,, then a[M] is the canonical line
bundle on S' = RP!.
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6. Semisimplicity of G-Modules over
Compact Groups

All topological groups are compact in this section.

5.1 Haar Measure. We outline the properties of the Haar measure that will
be used in this section. A rapid proof of the existence and uniqueness can be
found in Pontrjagin [1, chap. 4, sec. 25].

Let V be a normed vector space over F, and let G be a compact topologi-
cal group. Let C,(G) denote the normed space of all continuous f: G — V,
where | f| = sup| f(s)|| for s € G. Let C(G) denote Cg(G).

The Haar measure is the linear function p: C(G) —» R with the following
properties:

(1) If £ = 0, then u(f) = 0, and if, in addition, f(s) > O for some s € G, then

u(f) > 0.
(2) For the function 1, u(1) = 1.

(3) w(L,f) = u(f), where L,f(s) = f(as) for a, s € G.

It is a theorem that u exists and is unique with respect to properties (1) to (3).
See Pontrjagin [1].

The Haar measure defines a unique Haar measure p,: C,(G) — V for each
normed linear space V from the requirement that up,(f) = u(uf) for each
R-linear u: V> R. Ife,, ..., e,is a basis of V, and if f' = fie;, + - + f e, €
Cy(G), then py(f) = u(f1)ey + -+ + p(fa)en

6.2 Definition. A hermitian form on an F-module is a function f: M x M —
F such that x> B(x,y) is linear for each y e M, f(x,y) = B(y,x) for each
x, y€ M, and f(x,x) > 0 for each x e M, x # 0. A hermitian form f is G-
invariant provided B(sx, sy) = B(x, y) for each x, y € M and s € G. The corre-
lation associated with § is the morphism c;: M — M™ defined by the require-
ment that ¢;(x)(y) = B(x, ) for x, y € M.

Observe that f is G-invariant if and only if ¢, is a G-morphism.

6.3 Proposition. Every G-module M has a G-invariant hermitian metric f.

Proof. Let f’(x, y) be any hermitian metric on M. The function s — f’(sx, s)
is continuous and has a Haar integral f(x,y) for each x, y € M. From the
linearity of the Haar integral, the form f(x, y) is linear in x and conjugate

linear in y. Moreover, we have B(x, y) = B(y, x) and f(x, x) > 0 for each x e M
with x # 0.

6.4 Corollary. If M is a simple G-module, c;:: M — M™ is an isomorphism of
G-modules for each G-invariant B, and M and M™ are G-isomorphic.

6.5 Theorem. Every G-module M is semisimple.
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Proof. Let Lbe a G-submodule, and let § be a G-invariant hermitian form on
M. Let L’ denote the subset of y € M with f(x, y) = 0 for all x € L. Clearly, L’
is a G-submodule of M and LN L’ equals 0. For each x € M the function
y = P(x,y) is an element of L, and since cz: L — L* is an isomorphism, we
have z € L with B(x,y) = B(z,y) for all y e L. Then x — z = z’ is a member of
L', and xequals z + z’ withz € L, z’ € L'. Therefore, we have M = L @ L'. By
(4.11) and (4.12), M is semisimple.

6.6 Corollary. The set of G-module classes [M], where M is simple, generate
the group Rg(G).

7. Characters and the Structure of the Group Ry(G)

We wish to prove that the simple module classes freely generate Ry(G) as an
abelian group. For this we introduce characters.

7.1 Definition. The character of a representation M, denoted y,,, is the ele-
ment of Cr(G) given by s+ Trs,,. Let chy G denote the subring of Cy(G)
generated by the characters y,, of representations.

The characters have the following properties all of which follow from
elementary properties of Tr.

7.2 Proposition. If M and N are isomorphic G-modules, then y,, equals yy.
For two modules M and N, we have xpyen = X + Xy a0d Yyen = ImXn- For
a character y, we have y(tst 1) = x(s) for all s, t € G.

There is a natural ring morphism Rg(G) — chy G defined by the function
[M]+ yy- This is clearly an epimorphism.

7.3 Notation. For each u € Hom, (M, N) one can form syus,, which is a
function of s, and integrate it over G to get an element of Hom(M, N),
denoted #i. By the invariance of the integration process, # is @ member of
Homg (M, N). Moreover, i = u if and only if u € Homg(M, N). For two
G-modules M and N, we define {y,,, xy> €qual to the integral of x,,(s)xn(s 1)
over G.

Next we consider the Schur orthogonality relations.

7.4 Theorem. Let M and N be two simple G-modules. Then {yp, x> = 0if M
and N are nonisomorphic and (¥, xn> > 0if M and N are isomorphic. More-

over, {ym>xu> = 1if F=C.

Proof. If f: M — F is F-linear and y € N, then for u(x) = f(x)y we have it = 0
when M and N are nonisomorphic. If a(s) is a matrix element of s,, and b(s)
of sy, the integral of a(s)b(s™') over G is zero. Since {y,,xny> €qual the
integral of x,,(s)yn(s™!) over G is a sum of integrals of the form a(s)b(s™*)
over G, we have {y, xx> = 0 when M and N are nonisomorphic.
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For the second statement, let F =Cande,...,e, be an F-basis of M. Let
E; ; denote the integral of sE; ;s~" and E; ; of s™'E; ;s over G, where E; e, =
0; xe¢;. By Theorem (4.10) E;, 1s multlpllcatlon by /1, j» and E7 ; is multiplica-
tion by A} ;. Looking at the matrlx elements of E; ; and E7 ;, we have 4; ;6 , =
210 - This means that 1/, = A7 ;= Aand A ; = /1",- = 0fori# j. Since 1 =
E + “+ E,,, we have 1 equal to n times the integral of sE;;s™! or ni.
Therefore, 2 equals (dim M)™*.

Finally, if a(s) and b(s) are two matrix elements of s,,, the integral of
a(s)b(s ') is zeroifa # band is 1 = 1/nif a = b is a diagonal matrix element.
Therefore, (yu, xa > €qual n(1/n) or 1. If M is real, we form N = M ® C, and
Caws v = {ae» Xa 18 strictly positive. This proves the theorem.

7.5 Corollary. The set of isomorphism classes of simple G-modules freely gen-
erates the abelian group Rp(G), and the ring morphism [M]+ 3, of Rg(G) -
chp G is an isomorphism.

Proof By (6.6) the set of isomorphism classes of simple G-modules generate
Ry(G). If a sum ZaL[L] = 0 in R;(G), we have ZaLxL = 0in ch; G, and by

taking the inner product with y,., we have aM<xM,xM> = 0 for each simple
module M. Since (), xm> # 0, ap equals O for each distinct class of simple
modules. This proves the corollary.

7.6 Corollary. If M and N are two G-modules with y, = xn, then M and N
are isomorphic.

Proof. By (7.5), M and N are each the direct sum of simple modules in the
same isomorphism classes.

7.7 Corollary. Let u: G — H be a morphism of topological groups such that
for each t € H there exists s € H with sts™* € u(G). Then Ry(u): Rp(H) —» Rg(G)
is a monomorphism.

Proof. For an H-module M we have y,saq = xpt on G. If ypu = yyu, we
have y,, = y since u(G) intersects each conjugate class of elements in H and
since characters are constant on conjugate classes, by (7.2). By (7.6) M and N
are isomorphic. Therefore, if Rp(u)[M] = Rp(u)[N], we have [M] = [N],
and this verifies the corollary.

7.8 Corollary. Let u: G — G be an inner automorphism. Then Rp(u) is the iden-
tity on Rp(G).

Proof. By the last properties of characters in (7.2), u induces the identity on
chy G and, therefore, on Rg(G).
This corollary can be deduced from the definition of R(G) directly.
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8. Maximal Tori
An important class of compact groups are the tori.

8.1 Definition. The n-dimensional torus, denoted T", is the quotient topolog-
ical group R" mod Z". A torus is any topological group isomorphic to an
n-dimensional torus.

There follow the well-known results about Lie groups which we assume
for the discussion in this section.

8.2 Background Results. See Chevalley [1] for proofs.

(1) For n # m the tori T" and T™ are nonisomorphic. Consequently, the
dimension of a torus is well defined.

(2) A topological group is a torus if and only if it is a compact, abelian,
connected Lie group. The natural quotient map R” — T" is a Lie group
morphism.

(3) Every element in a connected, compact Lie group G is a member of a
subgroup T of G, where T is a torus.

(4) A closed subgroup of a Lie group is a Lie group.

We use the following definition of maximal torus in a topological group.

8.3 Definition. A subgroup T is a maximal torus of a compact group G
provided T is a torus with G = | ) sT37".

seG

The condition G = U sTs ! says that each conjugate class of G intersects
seG

T. Since T is connected, G is also connected. By examples [see (8.4)], we see
that a wide class of groups have maximal tori. Their importance lies in the
fact that Corollary (7.7) applies to the inclusion T — G, where T is a maximal
torus of G. In general, every compact, connected Lie group has a maximal
torus.

8.4 Examples. A maximal torus of U(n) and of SU (n) consists of all diagonal
matrices. Let D(6) denote the matrix

[cos@ —sin HJ
sin 0 cos @
let D(8,,...,6,) denote the 2r x 2r matrix with D(6,), ..., D(6,) on the
diagonal, and let D(6,,...,6,, ) denote the (2r + 1) x (2r + 1) matrix with
D(6y), ..., D(6,), 1 on the diagonal. Then the subgroup of all D(0,,...,6,)is a
maximal torus of SO(2r), and the subgroup of all D(6,,...,6,, ) is a maximal
torus of SOQ2r + 1).

We use the following interpretation of the well-known theorem of
Kronecker in number theory (see Hardy and Wright [1, theorem 442,
p. 380]).
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8.5 Theorem. Letay,...,a, € Rsuchthat 1,a,, ..., a, are Q-linearly indepen-
dent. Let a denote the class of (a,,...,a,) in T". Then the set of all a*, where
k =0, is dense in T".

8.6 Definition. An element a of a topological group G is a generator pro-
vided the set of all a*, where k = 0, is dense in G. A topological group is
monic provided it has a generator.

Theorem (8.5) says that each torus is monic.

8.7 Theorem. Let G be a topological group with a maximal torus T. If T’ is
any torus subgroup of G, then T' < sTs™' for some s € G. Moreover, T is a
maximal torus if and only if T' = sTs~*.

Proof. If ais a generator of T’, we have a € sTs ! for some s € G. This means
that a* e sTs ' forall k = 0and T' = sTs ! for this se G. If T' = sTs !, we

have G = ) sT's™", and T’ is a maximal torus. If T’ is a maximal torus,
seG
we have T' = sTs™! and T < tT't™! or T c tsT(ts)™ . But for reasons of

dimension [see (1) in (8.2)], T = tsT(ts)™! and T’ = sTs'. This proves the
theorem.

8.8 Remarks. By Theorem (8.7) a maximal torus of G is a maximal element
in the ordered set (by inclusion) of torus subgroups of G. If G has a maximal
torus in the sense of Definition (8.3), the maximal tori of G are precisely the
maximal elements of the ordered set of torus subgroups of G. It is a theorem
of E. Cartan, for which A. Weil and G. Hunt (see Hunt [1]) have given
proofs, that each maximal element in the ordered set of torus subgroups of a
connected Lie group G is a maximal torus in the sense of Definition (8.3).

8.9 Definition. Let G be a topological group with maximal torus T. Then the
rank of G is the dimension of T.

Observe that the rank of a group is independent of the maximal torus T
by (8.7) and (1) in (8.2).

We can improve on the result of (8.7) as interpreted in (8.8). We can prove
that a maximal torus is actually a maximal element in the set of abelian
closed subgroups of G for a compact Lie group G. For this we use the next
lemma.

8.10 Lemma. Let G be an abelian Lie group whose connected component is a
torus T and G/T is a finite cyclic group with m elements. Then G is a monic
group.

Proof. Let a be a generator of T, and let b € G such that the image of b
generates G/T. Then b™ is in T, and there exists ¢ € T with b™c™ = a. Then bc
is the desired generator.



184 13. The Adams Operations and Representations

8.11 Theorem. Let T be a torus subgroup of a connected, compact Lie group
G. Let s commute with all elements of T. Then there exists a torus subgroup T’
of GwithT< T andseT'.

Proof. Let A be the closed subgroup of G generated by T and s, and let T, be
the connected component of the identity in 4. Then T is connected, com-
pact, and abelian, and, therefore, a closed subgroup of a Lie group. By (4) and
(2) of (8.2), Ty is a torus subgroup. Then A/T; is a finite group since it is
compact and discrete. Let A’ be the subgroup of A generated by T;, and s. By
(8.10), A’ has a generator x. Therefore, there is a torus T’ with A’ = T';
moreover, we have T < T"and s e T'.

8.12 Remark. If T is a maximal torus, then we have s € T for all s € G com-
muting with each element T. Consequently, maximal tori are maximal ele-
ments of the ordered set of closed abelian subgroups of a compact, connected
Lie group. On the contrary, it is not true that all maximal abelian closed
subgroups are tori.

For a torus subgroup T of G, let Ny denote the normalizer of T in G, that
is, all s € G with sTs~! = T. Then T is a normal subgroup of Nr.

8.13 Definition. The Weyl group W(G) of a compact group G is Ny/T, where
T is a maximal torus of G.

The function t+> sts™! is an automorphism of T for s € Ny, which is the
identity for s € T. Therefore, W(G) acts as an automorphism group of T. We
shall compute the Weyl groups for the classical groups U(n), SU(n), SO(n),
Sp(n), and Spin(n) in the next chapter.

8.14 Theorem. Let T be a maximal torus for a compact Lie group G, and let
W(G) be the Weyl group of G. Then as a transformation group of T only the
identity of W(G) acts as the identity on T, and W(G) is a finite group.

Proof. The first statement follows immediately from (8.12). For the second,
the groups Ny and W(G) are compact. The action of an element u of W(G) on
T" determines a linear transformation 6,: R" — R", where 0,(Z") = Z". This
construct defines a continuous injection of W(G) into a discrete space. This is
possible only if W(G) is finite.

8.15 Remark. If T is a maximal torus in G and if W is the Weyl group, then
by (7.7) the morphism R(G) — R(T) induced by the inclusion is a monomor-
phism. The Weyl group W acts on T, and therefore on R(T). The subring
R(T)" of elements left elementwise fixed by W contains the image of R(G)
since an inner automorphism of G induces the identity on R(G) by (7.8).
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9. The Representation Ring of a Torus

We begin with a general result on the complex representation rings of abelian
groups.

9.1 Theorem. Let G be an abelian group, and let M be a simple G-module over
C. Then M is one-dimensional over C, and s, is multiplication by A,, where
s> A is a group morphism G — C*, with C* the multiplicative group of non-
zero elements in C.

Proof. For s € G, the fact that G is abelian means that s,,: M - M is a G-
morphism. By Theorem (4.10) s,, is multiplication by a complex number.
Since each one-dimensional subspace of M is a G-submodule and since M is
simple, M is one-dimensional. The last statement is immediate from the rela-
tion A4, x = Ay, X.

9.2 Example. Let M(k,,...,k,) denote the one-dimensional representation
of T", where the action of T" is given by the relation (6,,...,0,)z =
exp[2ni(k,0, + - + k,0,)]z for (k,,...,k,) € Z". Since s(x ® y) = sx ® sy is
the relation deﬁnmg the action of G on a tensor product, M(k,,...,k,) ®
M(y,...,1,)=Mk, +1,,....k, + 1,).

9.3 Theorem. The simple T(n)-modules are the one-dimensional T(n)-modules,
and each one is isomorphic to precisely one module of the form M(k,,...,k,).
The ring RT(n) is the polynomial ring Z[a,,07",... 0,0, ], where o; is the

class of M(0,...,0, 1 0,...,0).

Proof. The first statement follows from (9.1) and the fact that all group mor-
phisms T(n) - C* are of the form (6,,...,6,) - exp[2ni(k,0, + - + k,0,)].
For the second statement, observe that oft---af» equals the class of
M(k,,...,k,). These monomials form a Z-base of RT(n) and the multiplica-

tive structure follows from (9.2).

9.4 Remark. In view of (7.8) every ring R(G) is a subring of Z[o,,a;?,...,
o,, o, '], where G is of rank n. This gives some information about the nature
of R(G).

9.5 Theorem. For a topological group G with maximal torus T, the complex
representation ring R(G) is a split A-ring with involution. For the real represen-
tation ring RO(G) there is a 2-ring monomorphism ey RO(G) — R(G) given by
complexification; that is, ey, ([L]) = [L® C].

Proof. A monomorphism R(G) — R(T) is induced by inclusion. The line ele-
ments of R(T) are the classes (¥ - - - «*™ = [M(k(1),...,k(n))]. The involution
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[M]* is [M], where M is the conjugate module of M and ax in M is ax in M.
We have (k1) -+ gk )k — o 7k(1) ... o ~k(m)

Finally, if ¢5: R(G) — RO(G) is the group homomorphism given by restric-
tion of scalars from C to R, we have ¢y(ey(x)) = 2x. Since R(G) is a free
abelian group by (7.5), ¢, is a monomorphism. This proves the theorem. The
results of (2.9) and (2.12) apply to R(G) and RO(G).

10. The y-Operations on K(X) and KO(X)

We wish to verify the formula %' = ¥/* and prove that y* is a ring mor-
phism as defined on K(X) and KO(X). To do this, we shall use the result that
these statements hold for R(G) and RO(G), where G is a compact Lie group
with a maximal torus. An oriented vector bundle is one with structure group
SO(n).

We begin with some preliminary propositions.

10.1 Proposition. Let ¢ be an n-dimensional vector bundle, and let { be a line
bundle over X. Then the bundles A"** (¢ @ () and A"(¢) ® { are isomorphic
over X.

Proof. This is true for vector spaces with a functorial isomorphism. By 5(6.4)
it is true for vector bundles.

10.2 Corollary. Every vector bundle class {¢} in KO(X) is of the form a; —
a,, where a, is the class of an oriented vector bundle and a, is the class of a line
bundle.

Proof. In (10.1), let { equal A"&, where n is the dimension of . Then ¢ @ A"
is orientable, and in KO(X) we have {&} = {& @ A"¢} — {A"¢}.
Let {* denote the k-fold tensor product of a vector bundle .

10.3 Proposition. Let & be an n-dimensional vector bundle, and let { be a line
bundle over X. Then A*(¢ ® () and A*(¢) ® (¥ are X-isomorphic, and in K(X)
or KO(X) there is the relation y*({&} {L}) = Yy *({EHYH({L}).

Proof. For vector spaces there is a functorial isomorphism between
A¥(E® () and A*(&) ® (% By 5(6.4) there is a natural isomorphism between
A (¢ ® ) and A (&) ® (-

For the formula involving y* we use induction on k and the relation given
in (2.5).

10.4 Notations. Let p,, denote the regular complex representation U(m) and
its class in RU(m) or the regular real representation of SO(m) and its class
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in RO(SO(m)). Let &™ and n" be two vector bundles over X with princi-
pal bundles a or . Using the constructions of (5.4), we have a morphism
—~— — ~
@ f: R(U(m) @ U(n)) > K(X) such that («@ B)(p,@0) = al(p,) =
— ~
{&¢} and (@ B)(0 @ p,) = B(p,) = {n} in K(X) for complex vector bun-
—

dles. For real vector bundles the morphism « @ f is defined RO(SO(m) ®
S0(n)) - KO(X).

With these notations we are able to state and prove the main result of this
section.

10.5 Theorem. In K(X) and KO(X) the Adams operations y* are ring mor-
phisms, and the relation Yy = Y/ holds for the action of Y* on these groups.

Proof. Observe, if T is a maximal torus of G and T’ of G', that T@ T' is a
maximal torus of G ® G'.
Then the theorem holds for K(X) and for the subgroup of KO(X) gener-

—
ated by classes of oriented real vector bundles from the relation y*(a @ ) =

(M)l//k and from the fact that the above relations hold in R(U(m) @ U (n))
and in RO(SO(m) @ SO(n)) by Theorem (9.5). Finally, the theorem holds for
all of KO(X), by (10.2) and (10.3).

10.6 Remark. We leave it to the reader to define the action of ™% on K(X)
and KO(X) such that y 7! is the complex conjugate of ¢ for a line bundle ¢&.

11. The y-Operations on K(S")

The following is a general calculation of y* for elements defined by line
bundles.

11.1 Proposition. Let { be a line bundle over X. Then we have y*({{}) = {{}¥,
and if ({{} — 1)* = 0, then we have Y*({{} — 1) = k({{} — 1).

Proof. The first statement follows from (2.3), and the second statement from
the following calculation:

UG =D ={0 1= -1+ D) = 1=k({{} -1
We recall from 11(5.5) that K(S*"*')=0 and K(S*") = Zp,,, where
B, is the generator of a cyclic group and f3, = 0. Moreover, the image

of B,, in K(S? x X S?) under the natural monomorphism K(S3")—
m

~

K(S? x -+ x §%) equals a product a, ---a,,, where a} = 0 and a; = {{;} — 1
such that {; is a line bundle on S? x --- x S2. The image of Y*(B,,) is
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¥*a,)---y*a,) = k™a, - a,, which is k™ times the image of f,,. Since
K(5%™) — K(S% x -+ x §?), we have the following theorem.

11.2 Theorem. The group K(S*™) is infinite cyclic with generator f,,, such
that p,, = 0. Moreover, Yy*(B,,,) = k™Bap-



CHAPTER 14

Representation Rings of Classical Groups

In the previous chapter we saw the importance of the relation between the
representation rings R(G) and K(X). In this chapter we give a systematic
calculation of R(G) for G equal to U(n), SU(n), Sp(n), SU(n), and Spin(n).
Finally, we consider real representations of Spin(n), which were successfully
used by Bott for a solution of the vector field problem.

1. Symmetric Functions

Let R denote an arbitrary commutative ring with 1, and let R[x,,...,Xx,]
denote the ring of polynomials in n variables. Let S, denote the group under
composition of all bijections {1,2,...,n} — {1,2,...,n}, that is, the permuta-
tion group on n letters.

For each polynomial P € R[x,,...,x,] and t€ S, we define P by the
relation *P(xy,...,X,) = P(Xyq)- - Xogm)-

1.1 Definition. A polynomial P(x,,...,x,) is symmetric provided ‘P = P for
eacht €S,.

1.2 Example. In the ring R[x,...,x,,z] we form the product [] (z + x;)

1<isn
and write it as a polynomial in z with coefficients in R[x,,...,X,], that is,
[l G+x)= Y oaixy,...,x,)z""". Since the product of linear polyno-
1<i<n 0<iZn
mials is invariant under the action of S,, the polynomials o;(x,,...,X,) are
symmetric. We call o;(x,,...,x,) the ith elementary symmetric function.
Occasionally we write 6" to denote the number of variables n in o;.
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1.3 Remarks. Observe that 6f=1, 6{(x,...,X,)=X; 4+ "+ X, 05 (X1,5...,X,)=
Xyt X, and OR(Xq,. ., X,) = O Xy1)" " Xigy, Where 1 < i(1) <+ < i(k) < n.
By convention we define ¢ = O for i > n. Finally, we have 6/ (x,,...,X,_;) =
al'(x1,...,X%,-1,0), and o] is homogeneous of degree i in n variables.

1.4 Example. If g(y,,...,y,) is a polynomial, g(s7,...,0,) is a symmetric
polynomial in n variables.

1.5 Definition. In the ring R[y,,...,y,], the weight of a monomial
pd)... yatm is defined to be a(l) + 2a(2) + -+ + ma(m). The weight of an
arbitrary polynomial is the maximum weight of the nonzero monomials of
which it is a sum.

If g(yy,...,y,) is a polynomial of weight k, then g(a,(xy,...,X,),---,
Opm(Xy,--.,X%,)) s a polynomial of degree k in x4, ..., x,,.

The next theorem is the fundamental theorem on elementary symmetric
functions.

1.6 Theorem. The subring R[o,,...,0,] of R[x4,...,x,] contains all the sym-
metric functions, and the elementary symmetric functions are algebraically
independent.

Proof. We prove this by induction on n. For n =1, ¢,(x,) = x,, and the
result holds. We let f be a symmetric polynomial of degree k and assume
the result for all polynomials of degree <k — 1. Then f(x,,...,Xx,_;,0) =

g(o1,...,0,_1), where o;(X{,...,X,—1) = 6;(Xq1,..., X,_1,0). We form the sym-
metric polynomial f(xy,...,X,) = f(Xy,...,X,) — ¢g(64,...,0,_1). Then we
have deg f; < kand f, (x,,...,X,_1,0) = 0. Since f; is symmetric, x, and o, =

X, x, divide fi(x,,...,x,). Therefore, f(x,,...,x,)= 06,fo(X1,...,X,) +
g(oy,...,0,_,), where f, is symmetric and deg f, < deg f. By applying the
inductive hypothesis to f,, we have f(x,,...,x,) = h(g,,...,0,).

To show that the g, ..., o, are algebraically independent, we use induc-
tion on n again. For n = 1, we have o, = x,. Let f(o,,...,0,) = 0, where
floy,...,0,) = flo1,...,0,_1)(@,)" + -+ foloy,...,0,_,) = 0 and m is mini-
mal. Let x, = 0 in g;, and the result is g, = 0 and fy(o},...,0,_,) = 0, where
0{(XqseevsXp_q) = 0(Xy,...5X,—1,0). By inductive hypothesis, we have f, = 0,
and this contradicts the minimal character of m. Therefore, m = 0 and f = 0.
This proves the theorem.

1.7 Application. There exist “universal” polynomials in n variables s; such
that
xk+ -+ xk=sM0y,...,0,)

The polynomials s; arise from another construction. Recall that a formal
series ag + a;t + -+ in R[[t]] is a unit if and only if a, is a unit in R. Let
1 + R[[t]]* denote the multiplicative group of formal series 1 + a,t + ---.
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1.8 Proposition. Let f(t)=1+ y,t+ -+ y,t" in 1+ R[[t]]". Then
2 StV V) (= 0F = —t[(d/de)f(D)1/1(0).

k20

Proof. We prove the result for the polynomial ring R[ay,...,0,] <
R[x,,...,x,] and then substitute y; for ;. Here o; is the ith elementary
symmetric function in the x, ..., x,. For f(t) = | + o,t + - + 0,t” we have

fO=0+x0)--(1 + x,1)
and

—t[(d/dr) f())/f (1) = —t(d/dt)log f(1)

= —tx /(1 + x.t) — - —tx,/(1 + x,t)
=Y i+ +x) (=0

k=1
= Sl'c'(o'la"wo-n)(_t)k

k=1

This proves the proposition.

2. Maximal Tori in SU(n) and U(n)

Let x4, ..., x, be an orthonormal base of C*, and let T(x,,...,X,) denote the
subgroup of u e U(n) with u(x;) = a;x;. Let ST(x,,...,x,) denote the sub-
group T(x,,...,x,)NSU(n) of SU(n). As usual, let e,, ..., e, denote the
canonical base of C". Every orthonormal base x,, ..., x, of C" is of the form
w(e,y), ..., w(e,), where w € U(n). The element w is uniquely determined by the
base xy, ..., x,. The base is called special provided w € SU (n).

2.1 Theorem. With the above notations, the subgroups T(x,,...,X,) are the
maximal tori of U(n), and the subgroups ST(x,,...,x,) for special bases x,, ...,
X, are the maximal tori of SU(n). The rank of U(n)is n and of SU(n)is n — 1.
The Weyl group of U(n) and of SU(n) is the symmetric group of all permuta-
tions of the indices of the coordinates (a,,...,a,).

Proof. First, we observe that ue T(x,,...,x,) is determined by u(x;) =
a;x;, where a;€ C and |g;| =1 for 1 £ j<n For ST(x,,...,x,) there is
the additional condition that a,---a, = 1. Consequently, T(x,,...,x,) is
an n-dimensional torus, and ST(x,,...,X,) is (n — 1)-dimensional. Next,
we observe that wT(e,,...,e,)w™ = T(w(e,),...,w(e,)) for we U(n) and
wST(ey,...,e,)w * = ST(w(e,),...,w(e,)) for we SU(n). For each ue U(n)
there is a base x, ..., x, of C" such that u(x;) = a;x;, where the x; are eigen-
vectors of u. There exist w e U(n) with x; = w(e;) and u e wT(ey,...,e)w "
Since the x; can be changed by a scalar multiple a, where |a| = 1, we can
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assume we SU(n) and a, --a,=1 for ue SU(n). We have proved that
Un)= |J wT(ey,....,e,)w  and SUm) = () wST(ey,...,e,)w™ .

weU(n) weSU(n)
Finally, to compute the Weyl groups, we let u € ST (e, ...,e,) with u(e;) =
a;e; and a; # ay for j # k. For wuw ' € ST(ey,...,e,) or T(e,,...,e,) we have

wuw ™ (¢;) = be; and uw'(e;) = bw '(¢;). Therefore, w™'(e;) = ae,, with
la] = 1 and j = k. The Weyl group W of U(n) and of SU(n) is the full permu-

tation group on the set of n elements {e,,...,e,} since conjugation by w,
where w(e,) = e,, w(e,) = —e,;, and w(e;) = ¢; for i = 3, permutes the first
two coordinates of (a,,...,a,) € T(ey,...,e,) or ST(ey,...,e,). Similarly all

permutations are in the Weyl group. This proves the theorem.

3. The Representation Rings of SU(n) and U(n)

In the next theorem we determine R(U(n)) and R(SU(n)), using properties of
elementary symmetric functions. We use the notation 4; for the class in RU (n)
or RSU(n) of the ith exterior power A'C", where U (n) or SU(n) acts on C" in
the natural manner by substitution. If p, denotes the class of C" in the A-ring
RU(n) or RSU(n), then 4; equals A(p,).

3.1 Theorem. The ring RU(n) equals Z[A,,..., A, A, ], where there are no
polynomial relations between Ay, ..., A,. As a subring of

RT(n) = Z[oy, 01", .., 0,0, ']
the relation 4, = Yy Ui1)" " O holds. The RSU(n) equals the polyno-

(1)< --- <i(k)

mial ring Z[Ay,...,2,_;]

Proof. Asa T(e,,...,e,)-module, C"is a direct sum of one-dimensional mod-
ules corresponding to «,, ..., ®,. The representation as an elementary sym-
metric function 4, = Y 01y " %y follows from Proposition 13(4.6).

i(1)< - <i(k)
Observe that 4, = a, -, is a one-dimensional class where uy = (detu)y for
u € U(n). Then the one-dimensional class 4;! is defined by uy = (detu)™'y
for y e C. Therefore, we have Z[,,...,4,,4,*] = RU(n) = RT(n)¥ < RT(n).
From properties of elementary symmetric functions Theorem (1.6), we know
there are no polynomial relations between 4, ..., 4,.

Finally, we prove that Z[4,,...,4,,4,'] = RT(n)", which also implies it
equals RU(n). Let f(ay,...,,) be a polynomial in o, o, ..., a,, o, ! which
is invariant under permutations of a;, ..., a, Then f(ay,...,a,) =
(4.) *g(ay,...,,), where g is a polynomial in «, ..., a, and invariant under
all permutations of «,, ..., a,. By Theorem (1.6), we have g(xy,...,a,) =
h(Z4,...,4,) for some polynomial h. This proves the above statement con-
cerning RU(n).



4. Maximal Tori in Sp(n) 193

For the ring RSU (n), observe that the ring R(ST'(e;,-..,e,)) is the quotient
of RT(e,,...,e,) by the ideal generated by 4, — 1 = a,---a, — 1. Therefore,
RSU(n) is the polynomial ring Z[4,,..., 4, ). This proves the theorem.

4. Maximal Tori in Sp(n)

4.1 Description of Sp(n). We view H" as C?". Then multiplication by j is
a conjugate linear J: C*" — C2" defined by J(e¢;) = e;,, for 1 <i < n and
J(e;)= —e;_, for n + 1 <i <2n. We have J> = —1, and J determines the
quaternionic structure on the complex vector space C*". The identification
H" = C?" allows us to view Sp(n) as a subgroup of U(2n). For u € U(2n) we
have u € Sp(n) if and only if uJ = Ju or, in other words, u € Sp(n) if and only
if f(u(x),u(y)) = f(x,y), where f(x,y) = (x|J(y)). The form f is an antiher-
mitian form, that is, f(y,x) = —(J2y|Jx) = —(Jy|x) = — B(x,y). In terms of
(2n)-tuples x, y € C*", we have B(x,y) = Y, (X;Jisn — X;+a¥:). For a diago-

1<isn
nal element u = diag(a,,...,a,,) € U(2n) we have u € Sp(n) if and only if a; =
a;., for 1 i < nfrom the relation uJ = Ju.

Asin Sec. 2, let T(x,,..., x,) denote the subgroup of u € Sp(n) with u(x,) =
exp(2mif,)x, for an orthonormal base of H". As usual, let ey, ..., e, denote the
canonical base of H". Every orthonormal base x, ..., x, of H" is of the form
w(e,), ..., w(e,), where w € Sp(n).

4.2 Theorem. With the above notations, the subgroups T(x,,...,X,) are the
maximal tori of Sp(n). The rank of Sp(n) is n, and the Weyl group of Sp(n) is
the symmetric group of all permutations of the indices of the coordinates
0,,...,6,) together with maps of the form (0,,...,0,)—(x0,,..., +£0,). It has
2"n! elements.

Proof. As with U(n), we have wT(x,,...,x,)w™ ! = T(w(x,),...,w(x,)), and it
suffices to prove that T(e,,...,e,) is an n-dimensional torus. This is clear
since it consists of all diag(a,,...,a,,) in U(2n) with |a,| =--- =|a,] = 1 and
a; = G4, for 1 £i < n. To prove that each T(x,...,x,) is a maximal torus, it
suffices to show that every w € Sp(n) is a member of some T'(x,,...,x,). For
this, we let x, be an eigenvector of w over C; that is, we have w(x,) = a,x,,
and w(Jx;) = Jw(x,) = J(a,x,) = a;Jx,. Continuing this process on the
orthogonal complement of x, and Jx; in C*", we get the desired base
Xy, ..., X, of H" with w € T(x,,...,X,)

Finally, to compute the Weyl group, we let u € T(ey,...,e,) with u(e,) =
ave, and a; # a, for j # k. For wuw™' € T(ey,...,e,), we have wuw '(e,) =
b.e, and uw*(e,) = b,w!(e,). Therefore, w™*(e,) equals some ¢, and b, equals
a, and @,, and the action of u> wuw™ permutes the coordinates and conju-
gates some of the coordinates. All such permutations and conjugations are
possible by inner automorphisms. This proves the theorem.
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5. Formal Identities in Polynomial Rings

To compute the ring RSp(n), we need some formal identities in the ring
Z[OCI,OCII, ° n’ 1]

5.1 Proposition. There exists a polynomial f,(y)e Z[y] such that
X"+ x™™ = f,(x + x7). This polynomial satisfies the recursion formula

1Y) = YY) = fui (V) with fo(y) = 1 and fi(y) =

Proof. 1t suffices to establish the recursion formula. For this, we calcu-
late (x™ + x™")(x + x71) = (x™" 4+ x7") + (x"7 + X7 or f(y)y =
fm+l(y) + fm—l(y)'

5.2 Proposition. Let f € R[x,x '] suchthat f(x) = f(1/x), where R is an arbi-
trary commutative ring with 1. Then f is a member of R[x +x']c
R[x,x'].

Proof. We have f(x) = ) a,x™ with a,, = a_,, since f(x) = f(1/x). Therefore,
f has the form ) a,(x™+ x™)= Y a,j.(x + x7') by (5.1). This proves

m=0 m=0

the proposition.

5.3 Corollary. Let f e R[o, a7, ..., a0 ] with flay,...,0,...,%)=
fley,...,a; ..., a,) for each i. Then we have

feR[oy +oarl,. .0+ 0t

Let o,,..., 0, denote the elementary symmetric functions in the r variables
o +o7t, ..., + o and Ay, ..., 4, denote the elementary symmetric func-
tion in the 2r variables «, ..., «,, oql, ..., 0, ! (case 1) or the 2r + 1 variables
Upyenns O 0 Yy, 0t 1 (case 2).

5.4 Proposition. With the above notations we have

sty b€Zloy,...,0] and =0+ ) a0
1<k

for a,e Z and k < r. In addition, A,, ..., A, are algebraically independent, and
Zlo,,...,0,] =Z[2{,..., 4]

Proof. The other statements follow easily from the relation 4, =6, + 3, 4,0,
I<k

For each sequence 1 Si(l) < - <i(k) =r and numbers ¢(j)= +1, the
monomial af{) "o ,(k) appears in oy exactly once. The polynomial 4, is a sum
of monomials of{) - aff) with i(1) < --- < i(l), where i(p) = i(p + 1) implies
e(p)= —¢e(p+ 1) and | =k or k — 1 (with k — 1 only in case 2). For each
I < k, if the monomial o5} i) appears in )k — g, with coefficient a,, the

result of any permutation of the indices i(l), ..., i(/) and any substitution



7. Maximal Tori and the Weyl Group of SO(n) 195

e(i)— —&(i) appears with coefficient a,. Therefore, we have 4, — 6, = Y a0,
1<k

This proves the proposition.

6. The Representation Ring of Sp(n)

To compute the ring RSp(n), we denote the class of the exterior power A'C?"
in RSp(n) by A;, where Sp(n) acts on C?" = H" by substitution.

6.1 Theorem. The ring RSp(n) equals the polynomial ring Z[2,,...,A,], where
as a subring of Zloay,ait,... o, 0,"] the element A, is the kth elementary
symmetric function in the 2n variables o, a7, ..., o,, o, t.

Proof. As a T(e,,...,e,)-module, C** = H" is a direct sum of 2n one-
dimensional modules corresponding to a,, a7%, ..., a,, @, *, and the represen-
tation of 4, as the elementary symmetric function in oy, ai?, ..., a,, a,!
follows from Proposition 13(4.6). Since the Weyl group W consists of all
permutations of {1,...,n} composed with substitutions o> o', we
have by (5.2) the inclusions Z[4,,...,4,] = RSp(n) c Z[o4,...,0,] =
Zloy,o7t,... 0, 0,1]", where g, is the kth elementary symmetric function in
the n variables o, + a7, ..., a, + «,'. By (5.3) and (5.4) we have RSp(n) =
Z[4y,...,4,] as a polynomial ring. This proves the theorem.

7. Maximal Tori and the Weyl Group of SO(n)

Let x4, ..., x, denote an orthonormal base of R”, and let T(x,,...,x,) denote
the subgroup of u € SO(n) with u(Re,;_; + Re,;) @ Re,; | + Rey;for1 <i <
n/2. We have u(Re,;_; + Re,;) € SO(2) and u(e,) = e, for n odd. As usual, let
e,, ..., e, denote the canonical base of R". Each orthonormal base x, ..., x,
of R" with x; A - A X, =ae; A -+ A e, and a > 0 is of the form w(e,), ...,
w(e,), where w € SO(n). Such a base w(e,), ..., w(e,) with w € SO(n) is called
special. For w € SO(n) we have wT(x,,...,x,)w " = T(w(x,),...,w(x,)).
Let D(6) denote the rotation

cos2nf —sin2n6
sin2nf  cos 2wl

in SO(2), and let D(0,,...,0,) equal diag(D(0,),...,D(6,)) in SO(2r) and equal

diag(D(0,),...,D(6,),1) in SOQ2r + 1). Then T(e,,...,e,) is the group of all
D(,,...,0,)forn=2ror2r + landfor0 <6, < 1.

7.1 Theorem. With the above notations, the subgroups T(x,,...,X,) for some
special basis x, ..., x, of R" are the maximal tori of SO(n). The rank of SO(n)
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is r, where n = 2r or 2r + 1. The Weyl group W of SO(2r + 1) consists of

the 2'r! permutations of the indexes of (0,,...,0,) composed with substitutions
@,,...,0)—(£0,,...,+0,), and Weyl group W of SO(2r) consists of the
2""1r! permutations of the indexes of (0,,...,0,) composed with substitutions

0y,...,0,)—(e,0y,...,¢60,)withe,= +1and e, ¢, = 1.

Proof. Clearly, T(e,,...,e,)is an r-dimensional torus n = 2r or 2r + 1. Since
wT(ey,...,e,)w = T(w(e,),...,w(e,)), we have only to show that each u e
SO(n)is a member of some T'(xy,...,x,) to prove the first two statements. For
this, we let ¢ = a + ib be a complex eigenvalue of u with eigenvector x,; + ix,.
Then we have u(x; + ix,) = (a + ib)(x; + ix,) = (ax; — bx,) + i(bx; + ax,).
Since |a + ib] = 1, we can represent u|(Rx; + Rx,) by D(6,) for some 6,. If
all eigenvalues are real, then 6, = 0 or 1/2 for ¢ = 1 or — 1, respectively. This
procedure is applied to u restricted to the orthogonal complement of Rx; +
Rx, togetue T(x,,...,X,)

As with SU (n), all permutations of the coordinates (0,,...,0,) are realized
by conjugation by elements of SO(n ) Since diag(—1,1)D(0)diag(—1,1) =
D(—0), conjugation of D(b,,...,6,) by diag(—1,1,...,1, —1) yields
D(—0,,0,,...,0,) forn =2r + 1 and D(—0,,...,0,_,,—6,) for n = 2r. Com-
posing with permutations, we see that the Weyl group is at least as large as
was stated in the theorem. To prove the Weyl group is no larger than this, we
let ue Tle,,...,e,), where u = D(0,,...,0,) and 0; # 0, for i # j. If we view
u € U(n) where SO(n) = U(n), then u has eigenvectors e,;_, + ie,; with eigen-
values exp(+2mif)) for 1 < j <r, where n = 2r or 2r + 1. If w e SO(n) with
wuw ! € T(e,,...,e,), then from the proof of (2.1) we know that u — wuw™! is
a permutation of the indices of e;, | £i < n. This is a permutation of the
indices of 6,, ..., 6, together with a coordinate substitution (6,,...,0,)—
(£0,,..., £6,)as described above. This proves the theorem.

8. Maximal Tori and the Weyl Group of Spin(n)

8.1 Notations. Asin Chap. 12, let ¢: Spin(n) — SO(n) be the natural covering
morphism ¢(u)x = uxu* for u e Spin(n) and xeR". Let w;: S' =R/Z —
Spin(n) be the homomorphism given by the relation w;(0) = cos2n0 +
e;-1€,;s8in2nf for 1 < j < n/2. First, observe that w0 + 1/2) = —w;(0) and
that

ek fork #2j—1,2j
[fw;(0)]e, = e;j-1 cos4nb + e,;sin 4nl fork=2j—1
—e,;_; sin4nb + ¢, ;cos 4nb for k =2j

In other words, ¢w;(0) = D(O,...,0,26,0,. 0) for all 0 e R/Z. Let w: T —
Spin(n) be defined by w(d,,.. 6' ) = w,(0, ) ,(6,) for (0,,...,6,) e T" and
n=2ror2r+ 1
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We have the following diagram where 7" = o(T(r)).

"

T ¢ [

po
\‘T=T(e1,...,e,,) —— SO0(n)

Then ker o consists of (0,,...,6,) with 6, =0 or 1/2 (mod 1) and 0, + --- +
6, = 0 (mod 1), and there are 2" ! elements in ker w. Then ker ¢ consists of
two elements, 1 and — 1. Note that we have | = w(6,,...,6,) for 6; =0 or 1/2
(mod1) and 6, + -+ 6, =0 (mod 1) and —1 = w(fy,...,6,) for ;=0 or
1/2(mod 1)and 0, + - + ¢, = 1/2 (mod 1). Finally, we have ¢w(0,,...,6,) =
(20,,...,26,)in T(e,,...,e,).

T =T'(ey,...,e,) —> Spin(n)

8.2 Proposition. The torus T'(ey,...,e,) is a maximal torus of Spin(n), and the
Weyl group of Spin(n) is the Weyl group of SO(n).
Proof. If u e Spin(n) such that uT’(e,,...,e,)u”! = T'(e,,...,e,), we have
pW(T'(ey, ..., e,))p) " = §(T'(ey,- ... e,))
or
¢(u) T(el L] en)¢(u)_1 = T(el LRRRE en)

Then we have Ny = ¢7*(Ny) and T' = ¢~ *(T). This means that N;./T’ is
isomorphic to Ny/T and that () uT'u™ = Spin(n). This proves the

u € Spin(n)
proposition.
The homomorphisms T" 5 T” % T induce the following ring morphisms:

RT - RT' - RT"
where ¢w induces the morphism
Zlog, o7t 0,0 = Z[od? a7 2, ol a2
On T(ey,...,e,) we have a;(0,,...,0,) = 0;, and on T" we have
al?(0,,...,6,) =6, o;(6y,...,0,) = 206,

and (o, o,)"?(0,,...,0,) =0, + -+ 0,. Observe that o, ..., a,, and
(o, "+~ ,)"?is 0 on ker w. Therefore, we have oy, ..., «,, and («, - -a,)"> € RT".
This leads to the following result stated with the above notations.

8.3 Proposition. The morphism ¢: T'— T induces the inclusion RT =
Z[al’a;l9‘ . '?ar9 ar_lj - Z[“l?“;”' . '?ar,ar_l’(al e a")l/zj = RT"

Proof. Since T' — T is a twofold covering, the rank of RT” as a RT is at most
2, and therefore RT" is Z[ oy, o7, ..., o, 008, (00 - o, ) 2],
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9. Special Representations of SO(n) and Spin(n)

The modules over Spin(n) fall naturally into two classes: those where — 1 acts
as the identity and those where — 1 acts differently from the identity. The first
class consists of Spin(n)-modules coming from SO(n)-modules with the natu-
ral homomorphism ¢: Spin(n) — SO(n), and the second class of Spin(n) comes
from Clifford modules over C, (see Chap. 12).

9.1 Proposition. A Spin(n)-module M decomposes into a direct sum of sub-
modules M, ® M, where —1 acts as the identity on M, and M, is an SO(n)-
module and where —1 acts as multiplication by —1 on M, and M, is a C,_,-
module with Spin(n) coming from the inclusion Spin(n) = C? and the isomor-
phism C? = C,_,.

Proof. Observe that —1 e Spin(n) and (—1)*> = +1. We decompose a
Spin(n)-module M into M = M; ® M, where —1 acts as the identity on M,
and as multiplication by — 1 on M,. The action of ¢;e, in Spin(n) for 1 <i <
n — 1 on M, satisfies the properties of u; in Theorem 12(2.4), and we have an
orthogonal multiplication on M,. This in turn defines a C,_;-module struc-
ture on M, compatible with the action of Spin(n) on M, given by the inclu-
sion Spin(n) = C? and the isomorphism of C? =~ C,_, [see 12(2.5) and
12(6.2)]. This proves the proposition.

9.2 Some SO(n)-Modules. The canonical SO(n)-module structure on R” is
defined by requiring the scalar product to be substitution. The ith exterior
product A'R" when tensored with C yields an element 4; of RSO(n)
and RSpin(n). Viewing RSO(n) < Z[a,,a7%,...,a,,a, '] and RSpin(n)
Zlo, a0t 0,0 (2, - a,)"?], where n = 2r or 2r + 1, we have A; equal
to the ith elementary symmetric functionin oy, a;’%, ..., a,,a, ! for n = 2r and
in o, o, ..., 0, ", 1for n=2r+ 1. This follows from the fact that the
action of D(6;) on e,;_; — ie,; is multiplication by exp(2zif;) and on
e,j-1 + ie,; is multiplication by exp(—2mif)).

We have a linear isomorphism f: A*R” - A" R", where f(e;;, A """ A
€ixy) = sgn(o)ejy, A -+ A ej,—4y and o is the permutation of {1,...,n} with
a(p)=i(p) for p<k and o(p) = j(p — k) for k <p < n. Since we have
e, A Ae,=ul(ey) Ao A ule,), for each u € SO(n), f is an isomorphism of
SO(n)-modules. Moreover, we have ff = (—1)*""®_ and therefore, in RSO(n)
and R Spin(n) we have 4, = 4,_; for i < n/2.

For n = 2r, we have f: A'R*” — A'"R?" with ff = (—1)" = (—1). Forr =0
(mod2), f has two eigenvalues +1 and 4, = A7 where A} is the eigenspace
corresponding to +1; for r =1 (mod?2), f has two eigenvalues +i and
4, = A5 + ;, where A} is the eigenspace corresponding to +iin A'"R* ® C.

9.3 The Spin Modules. Since Spin(n + 1) is a subgroup of the group of units
in C%,, = C,, each C,-module determines a real Spin (n + 1)-module, and
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each C;-module determines a complex Spin(n + 1)-module. Let A denote the
Spin(2r + 1)-module corresponding to the simple module over C5, = C(2") of
dimension 2", and let A*, A~ denote the Spin(2r)-module corresponding to
the two simple modules over C5,_, = C(2"')® C(2"!), each of dimension
2"71. To be specific, let A* correspond to the module where i"e, - - e,, acts as
a multiplication by =+ 1, respectively. The references for the above remarks
are 12(5.9) and 12(6.5).

9.4 Proposition. In R Spin(2r + 1),
A= ] @7 +a*?)

1<jzr

&(1)/2 ... y&(r)/2
231 A

e(j)=*1
In R Spin(2r),
At = ai(l)/Z.‘.ars(r)/Z
g(1)---e(r)=1
A = ai(l)/2...are(r)/2
&(1)---g(r)=—1
In RSO(2r),
+ ...
A= O‘ig((x )) ais((:))

(1)< <i(r),e(1) - e(r)= %1

Proof. Let T', Spin(n), and C, ® C =~ C:_, act on the left of C;_, by ring
multiplication. Then we get 227/2" = 2" factors of A for n=2r + 1 and
22r=1or=1 — 2r~1 factors of each A", A",and A = A* + A~ for n = 2r. Using
the homomorphism w: T(r) - T” in (8.1) we compute the character of A on
T(r). The diagonal entries of the action T" on C;_, as functions on T(r) are
all of the form H cos2nt;. For n=2r + 1 there are 22" such entries,

15jsr
and for n = 2r there are 2%"~! such entries. For n = 2r + 1, the character of

2"A equals 2°" ]_[ cos2nl;; for n=2r, the character of 2''A equals

1)<
2271 ] cos2nb,. In both cases, the character of A equals 2" [[ cos2n6, =
15j<r 15jsr
l_[ (e21u‘0j + e—2ni0j).

1<jsr

In the ring R Spin(n), we conclude that
A= T @+
15jsr
= Z O‘i(l)/z o gEN/2
a(j)=+1
For the case n = 2r, A splits as A* + A™. Since the elements A" and A~ are
both invariant under the Weyl group, we have A* equal to one of the
following expressions and A~ equal to the other.
o(i(l)/Z e EN/2
gl)--re(r)=+1
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To distinguish these two cases, observe that w(1/4,...,1/4) =e, " -e,,.
In A", w(1/4,...,1/4) is multiplication by i", and therefore the character

evaluated at (1/4,...,1/4) must be 2"'i" and we must have A* =
ai’(l)/Z ... af(')/z

e(1)---g(r)=1

The above reasoning applies to 4. This proves the proposition.

Now we are in a position to calculate RSO(n) and R Spin(n), knowing
enough about certain elements in these rings.

10. Calculation of RSO(n) and R Spin(n)

We begin by considering what happens to the elements A¥(p,) under restric-
tion in R Spin(n) — R Spin(n — 1) and RSO(n) - RSO(n — 1). For the study
of these restriction properties it is more convenient to work with the opera-
tions y*. Let n denote the class of the trivial n-dimensional G-module viewed
as an element of RG. Then we have 4,(n) = (1 + t)* and y,(n) = (1 — t)™"

10.1 Proposition. The elements y'(p, — n) in R Spin(n) or RSO(n) restrict to
9%(pp—1 — (n — 1)) in R Spin(n — 1) or RSO(n — 1), respectively.

Proof. Forn =2r + 1 we have
Ai(pn = 1) = Z(py) Aem) ™!
=1 +o, )1 +at) (1 + o)t + o)1 +0)(1 + )2
Also, 4,(p, — n) equals this expression for n = 2r. Then we have

Ye(py — 1) = )‘l/l—t(pn ~n)

= A_t_ t -1 _ p\2r
—<1+1_ta1> <1+1_ta, )(l t)

=(1—t+at)-(1—t+a7l

Observe that y,(p,,+; — (2r + 1)) = y,(p,, — 2r), and since the image of «, in
R Spin(2r — 1) or RSO(2r — 1)is 1, we have y,(p,, — 2r) = %(p2,—1 — 2r — 1)).
This proves the proposition.

10.2 Remark. Observe that by examinipg coefficients of ¢t as in 12(3.2) we
have y*(p, — n) = Mp,) + Y. a4 (p,) and A(p,) = y(p, — n) +
i<k

Y. biy'(p, — n) for integers a;  and by ;.

i<k

The object of this section is to prove the following theorem.

10.3 Theorem. In the case n = 2r + 1, RSpin(2r + 1) equals the polynomial
ring ZLA (Paps1s-+ > A" H(P2rs1)s Asrsr ), and RSOQ2r + 1) equals the polyno-
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mial ring Z[A*(pzp41s- ., A" 1 (02,+1)]- The following relation holds: A2,,, =
A(Pre1) + o+ AN (pgpen) + L.

In the case n = 2r, R Spin(2r) equals the polynomial ring Z[i*(p,,),-..,
A"72(pa,), A3, AL ], and RSO(2r) equals the ring generated by A*(p,,),...,
A77N(p20)s A(p2y)s AT(p2,) With one relation

AL+ A2 )+ A2 ) = (T AT )
In R Spin(2r), the following relations hold:
ASAS = 25(pa) + A7 2 (py) + 0
AS A =2 o) + A7 (o))
A3 A% = 2L(py,) + A7 (py) + -

Proof. We begin with the case of n = 2r + 1. First we prove the character
formula A, Ay =14 A (payi1) + - + A7(p241)- We consider the fol-
lowing polynomial:

APyir) = (1 + o)1+ a7't) (1 4+ o, 0)(1 4+ o ') (1 + 1)

Since the coefficient of t/ is A(p,,4;) in A(ps+1), We have 4,(pz4+,) =
14+ A+ + A2 =2(1 4+ A' + -+ + ") because A/ equals A"*'7/. Since
I+ a)(I+ o) =042+ o' = (2} + «7"%)%, we have 1+ A"+ +
2
A= (1/2)2,(pzp41) = < [T "?+ a}71/2)> = A2 ... This is the desired for-
15jsr
mula. Before considering the corresponding results for n = 2r, we finish the
case n = 2r + 1.

To prove the statement about RSO(2r + 1), we proceed as in (6.1). Since
the Weyl group consists of all permutations of {1,...,n} composed with
substitutions between «; and o;', we have by (5.2) the inclusions
Z[AY(pyrs1)s-- s A(P2rs1)] = RSOQ2r + 1) € Z[oy,...,0,] = Z[oy,a ...,
a,,o, ']%. We have denoted by o; the jth elementary symmetric function in
the r variables o, + a7,..., o, + o, '. By (5.4), RSO(2r + 1) is the polynomial
ring ZLA' (P2r41)s -+ +> A" (P2r41)]-

To prove the statement about R Spin(2r + 1), we view RSO(2r + 1) c
R Spin(2r + 1), using the twofold covering morphism ¢: Spin(2r + 1) —
SO(2r + 1). We let T be the covering transfromation, where T(+1) = F1.
Then T carries A,,,, into —A,,,, and leaves RSO(2r + 1) elementwise fixed.
From the discussion in (9.1) and (9.3) we see that every element of
R Spin(2r + 1) has a unique representation of the form aA,,,, + b, where
ae€ Z and b e RSO(2r + 1). A polynomial relation

0=f(Y..., " Ayiy) =0

decomposes as fy(A%,...,A") + A,y fo(AY,..., A7) = 0. This implies that as
polynomials f; = f, = 0. Therefore, R Spin(2r + 1) is the polynomial ring
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2 pas1)s-- s A HP2r41)s Asysr ] This proves the theorem for the case
n=2r+ 1.

For the case n = 2r, by the argument in the first paragraph of the proof,
there is the following relation:

AZ A5, + 2A5,A5, + AL A,
= A2rA2r
=242 py) + 0 4+ 2077 (py,) + A5(p2) + A (p2))

To examine this relation further, we write

A= Y AR e ta)2
r r
£(j),8G)=+1

For a given term, let u equal the number of j’s with ¢(j) = 6(j) = 1, a the
number of j’s with &(j) = 1 and 6(j) = — 1, b the number of j’s with &(j) =
—1 and 4(j) = 1, and v the number of j’s with &(j) = 6(j) = — 1. Then we
have u + a + b + v = r. Such a term belongs to A;,Aj, if and only if b + v
and a + v are each even; such a term belongs to Aj,Aj3, if and only if exactly
one of the two numbers b + v and a + v is even; and such a term belongs to
A3, A3, if and only if b + v and a + v are each odd. A monomial in the above
sum representation of A3, has the form o) --- o where 5(j) equals 0 or
+ 1. Then u is the number of #(j) = +1, a + b of n(j) = 0, and v of #(j) =
-1
First, we prove the following splitting of the relation for A,,A,,.

A;rAgr = lr—l(er) + Ah“r-3(p2r) + Tt
ALAS, + AL A = Ai(py) + A(p2) + 2007 2 (pyy) + +77)

To see this, we consider an element A"" = Y ai} - ot L, whose terms cancel
in pairs if at all. For a7+ o™ to be a monomial in the above sum for A",
we must have u + v = r — i (mod 2). If O(¢g) denotes the number of ¢(j) = — 1
and O(9) of 6(j) = —1, then we have u + v=r—a—b=r+2v — O(e) —
0(6) = r — O(g) — O(6)(mod 2). Consequently, if the monomial o7 --- 1"
appears in A"\, we have i = O(¢) + 0(8) (mod 2). Since O(g) = 0 or 1 (mod 2)
implies af? - -- 422 the monomial appears in A}, or A3, respectively. This
yields the splitting A3, = (A3,A3, + A5, A3,) + 2A3 A,

Second, we prove the following splitting of the relation for A},Aj, +
A, A3, Because of the symmetry under the substitution of «f for «f,
A3.A3, — A3,A5, is a sum of monomials occurring in A". Consequently,
A3, A3 equals A, + A% 4+ -+~ or A% + A% + ---. To distinguish between the
two cases, we use the notation of (5.2), where g; is the jth elementary
symmetric function in «; + a7, ..., a, + o, . In this case o, splits into ¢,” and
o, , where
ot = y 1D gy

n(1)-- nir)=+1
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As in (5.4), A", equals 6, plus terms linear in g4, ..., 0,_,. Consequently,
A%rA-Ztr = iri (er) + ir—z(er) +

This proves the relations between the elements Az, and A(p,,). The relation
stated for RSO(2r) follows from A3 A3 A3, A5, = A A5, AS A5,

For R Spin(2r), Z[1*(p,,),..., A" %(p,,), A3, A5 ] is a polynomial ring be-
cause these elements generate R Spin(2r) from the discussion in (9.1) and
(9.3), and the following inclusions are given by restriction: R Spin(2r + 1) =
RSpin(2r) and RSO(2r + 1) = RSO(2r). The rings R Spin(2r + 1) and
RSO(2r + 1) are made up of the elements left fixed by an involution T of
R Spin(2r) and RSO(2r), respectively. By (10.1) and (10.2), the elements
A'(p,) can be replaced by 7i(p, —n), and the polynomial generators
P (P2rer —2r+ 1)), oy PPz — @r+ 1)), Ayyy of RSpin(2r + 1)
restrict to y'(p,, — 2r), ..., 7" Y(p,, — 2r) and A3, + A3,. The involution T of
R Spin(2r) can be thought of as an element of the Weyl group of Spin(2r + 1),
where each ring is viewed as a subring of RT'(r), and we have T(A3,) = AJ,.
Therefore, over Q, the rational numbers y'(p,, — 2r), ..., "~ %(p,, — 2r), A3,
and A;, are algebraically independent. Consequently, the ring R Spin(2r)
contains the stated polynomial ring. It remains to check that 2',..., A""% A",
A~ generate R Spin(2r). We sketch this as follows. For u € R Spin(2r) note
that u 4+ Tuis divisible by A" — A™. Hence 2u is a polynomial P in /;, A", and
A™. Moreover this polynomial must be divisible by 2 otherwise there would
be a relation mod 2 between A;,, A*, and A™.

As for RSO(2r), this ring is clearly generated by Al(p,,), ..., A" (pa,),
A%(p,,), and A7 (p,,) from the inclusion RSO(2r + 1) = RSO(2r). In this inclu-
sion RSO(2r + 1) is the subring of elements left fixed by an involution of
RSO(2r) which interchanges 1’ (p,,) and A" (p,,). The elements A'(p,,), ...,
A" N pay), An(par) + A" (p,,) are algebraically independent, and A%(p,,) —
A" (p,,) satisfies the quadratic relation in the statement of the theorem. This
proves the theorem.

11. Relation Between Real and Complex
Representation Rings
In the previous sections we have calculated the complex representations of

various groups. In this section we consider the relation of R(G) to RO(G) and
RSp(G).

11.1 Notation. We have the following morphisms of group-valued
confunctors:
ey: RO—-> R &: R— RO &s,: R— RSp eyt RSp—>R

The morphism ¢, is defined by tensoring with C, and &g, is defined by
tensoring with H. The morphism ¢, is defined by the restricting scalars from



204 14. Representation Rings of Classical Groups

C to R, and ¢, by restricting the scalars from H to C. The morphism ¢
preserves the A-ring structures on RO and R.

11.2 Remark. If o is a principal G-bundle over a space X, we have the
following commutative diagrams where & is defined in 13(5.4).

RO(G) —*— R(G) R(G) —2— RO(G)
KO(X) —2— K(X) K(X) —2— KO(X)

(
R(G) —=— RSp(G) RSp(G) —~— R(G)

| l

K(X) — KSp(X) KSp(X) —— K(X)

As with vector bundles, there are immediately the following relations
involving the operations &.

11.3 Proposition. Between R(G) and RO(G) the relations eyey =2 and
eyeo = 1 + W_, hold, where \y_, is the y operation in the A-ring R(G) and refers
to the conjugate representation of bundles. Between R(G) and RSp(G) the
relations esyey = 2 and eyes, = 1 + Y_, hold, where y_,x denotes the con-
jugate class of x.

In the next theorem we derive a criterion for a complex representation to
be the complexification of a real representation or the restriction of a
quaternionic representation. In the remainder of this section, G is a compact,
connected Lie group; that is, G has a maximal torus.

11.4 Theorem. Let M be a complex G-module with a G-invariant hermitian
form n. Then M is the complexification of a real G-module if and only if M
admits a G-invariant nondegenerate symmetric form 5, and M is the restriction
of a quaternionic G-module if and only if M admits a G-invariant
nondegenerate antisymmetric form 7.

Proof. If M is the complexification of L, we get a form f§ by complexifying the
symmetric nondegenerate G-invariant form Re{n|L x L}.If j € H acts on M,
we define y(x,y) = Re{n(x, jy) — n(y, jx)}. Since y(x, jx) # 0 for x # 0 and
since y(x, y) = —7y(y, x), the form 7y is a nondegenerate, antisymmetric form.
This proves the direct implications in the theorem.

For the converse, let a(x,y) be a nondegenerate bilinear form with
o(y,x) = ex(x,y) for all x, ye M and e = +1. Let u: M - M be the real
G-automorphism with «(x, y) equal to the complex conjugate of #n(u(x), y).
Now we calculate n(u(x), y) = a(x, y) = ea(y, x) = en(u(y), x) = en(x, u(y)). Since
n(u*(x),y) = n(x,u*(y)), the automorphism u? is self-adjoint. Thus we can
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decompose M as the direct sum M, @ --- @ M, where u” has the eigenvalue
4; on M;. The 4; are real, and we can suppose that 4; # 4; for i # j. This
implies that n(M;, M;) = 0 for i # j. The relation u*(x) = 4;x yields the rela-
tion w?(u(x)) = Lu(x), and we have u(M;) < M,. Since n(u(x),u(x)) =
en(u?(x), x) = em(x,x) > 0 for x € M;, we have sgne = Sgn A, for all i. We
replace # on M by n*, where n*|(M; x M;) equals M(nl(Mi x M;)), and we
replace u by u*, where u*|M; equals (I/M)(ulMi). Therefore, we have
(u*)> = e on M.

For e = +1,let M, be the eigenspace of +1 and M_ of —1 for u*. Since
u*(ix) = —iu*(x), we have iM, = M. Then the scalar multiplication func-
tion C @ M, — M defines a G-isomorphism.

R

For ¢ = —1, let j(x) = u*(x). Then M admits H as a field of scalars ex-
tending the action of C so that M is a G-module over H. This proves the
theorem.

11.5 Corollary. Let M be a complex G-module which is either the complexi-
fication of a real G-module or the result of restricting the scalars to C from a
quaternionic G-module. Then M and its dual M™* are isomorphic complex G-
modules.

Proof. The nondegenerate G-invariant symmetric or antisymmetric form on
M has associated with it a correlation isomorphism M — M ™ of G-modules.

11.6 Corollary. Let M be a simple complex G-module with M = M*. Then M
is either the complexification of a (simple) real G-module, in which case A*M
does not contain the trivial one-dimensional G-module, or the restriction of the
scalars to C of a (simple) quaternionic G-module, in which case S*M, the sym-
metric product, does not contain the trivial one-dimensional G-module.

Proof. The natural duality pairing M ® M* — C defines the trivial one-
dimensional G-submodule of (M ® M*)*, where M ® M*)* and M @ M
are isomorphic. But M ® M is isomorphic to 22M @ S*M, and one or the
other contains the trivial one-dimensional G-module. If S2M contains the
trivial one-dimensional G-module, there is a symmetric nondegenerate form
on M. By (11.4), M is the complexification of a real G-module. If A>M con-
tains the trivial one-dimensional G-module, there is an antisymmetric non-
degenerate form on M. By (11.4), M is the restriction of the scalars to C from
a quaternionic G-module. This proves the corollary.

11.7 Corollary. Let M be a complex G-module. Then the number of simple
components of M coming from real G-modules minus the number of simple
components of M coming from quaternionic G-modules equals the number of
times that 1 occurs in y*M in RG.
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Proof. If M is simple, y*M = M ® M — 2A*M will contain 1 with scalar
multiple +1 if M is the complexification of a real G-module, with scalar
multiple — 1 if M is the restriction of a quaternionic module, and with scalar
multiple 0 if M and M* are nonisomorphic. This follows immediately from
(11.6).

12. Examples of Real and Quaternionic
Representations

12.1 Examples. The usual action of SO(n) on R” and A'R" defines elements
of RO(SO(n)) whose complexifications are p, and A'p,, respectively. Since the
A'p, generate RSO(2r + 1), the morphism g,: RO(SO(2r + 1)) = RSO(2r + 1)
is an isomorphism. Recall that the relation ¢5¢, = 2 and the fact that R(G) is
a free abelian group imply that g, is a monomorphism. For SO(2r), the
module A"R?" splits over R and C if r is even and splits over C for r odd. Then
&y: RO(SO(2r)) - RSO(2r) <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>