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Like fire in a piece of flint, knowledge exists in the mind.
Suggestion is the friction which brings it out.

Vivekananda



Preface to the Second Edition

This expanded and corrected second edition has a new chapter on
the important topic of equidistribution. Undoubtedly, one cannot
give an exhaustive treatment of the subject in a short chapter. How-
ever, we hope that the problems presented here are enticing that the
student will pursue further and learn from other sources.

A problem style presentation of the fundamental topics of ana-
lytic number theory has its virtues, as I have heard from those who
benefited from the first edition. Mere theoretical knowledge in any
tield is insufficient for a full appreciation of the subject and one of-
ten needs to grapple with concrete questions in which these ideas
are used in a vital way. Knowledge and the various layers of “know-
ing” are difficult to define or describe. However, one learns much
and gains insight only through practice. Making mistakes is an in-
tegral part of learning. Indeed, “it is practice first and knowledge
afterwards.”

Kingston, Ontario, Canada, September 2007 M. Ram Murty
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Preface to the First Edition

“In order to become proficient in mathematics, or in any subject,”
writes André Weil, “the student must realize that most topics in-
volve only a small number of basic ideas.” After learning these basic
concepts and theorems, the student should “drill in routine exer-
cises, by which the necessary reflexes in handling such concepts
may be acquired. ... There can be no real understanding of the basic
concepts of a mathematical theory without an ability to use them in-
telligently and apply them to specific problems.” Weil’s insightful
observation becomes especially important at the graduate and re-
search level. It is the viewpoint of this book. Our goal is to acquaint
the student with the methods of analytic number theory as rapidly
as possible through examples and exercises.

Any landmark theorem opens up a method of attacking other
problems. Unless the student is able to sift out from the mass of the-
ory the underlying techniques, his or her understanding will only
be academic and not that of a participant in research. The prime
number theorem has given rise to the rich Tauberian theory and a
general method of Dirichlet series with which one can study the as-
ymptotics of sequences. It has also motivated the development of
sieve methods. We focus on this theme in the book. We also touch
upon the emerging Selberg theory (in Chapter 8) and p-adic analytic
number theory (in Chapter 10).



xii Preface

This book is a collection of about five hundred problems in ana-
lytic number theory with the singular purpose of training the begin-
ning graduate student in some of its significant techniques. As such,
it is expected that the student has had at least a semester course in
each of real and complex analysis. The problems have been orga-
nized with the purpose of self-instruction. Those who exercise their
mental muscles by grappling with these problems on a daily basis
will develop not only a knowledge of analytic number theory but
also the discipline needed for self-instruction, which is indispens-
able at the research level.

The book is ideal for a first course in analytic number theory ei-
ther at the senior undergraduate level or the graduate level. There
are several ways to give such a course. An introductory course at
the senior undergraduate level can focus on chapters 1, 2, 3,9, and
10. A beginning graduate course can in addition cover chapters 4,
5, and 8. An intense graduate course can easily cover the entire text
in one semester, relegating some of the routine chapters such as
chapters 6, 7, and 10 to student presentations. Or one can take up a
chapter a week during a semester course with the instructor focus-
ing on the main theorems and illustrating them with a few worked
examples.

In the course of training students for graduate research, I found
it tedious to keep repeating the cyclic pattern of courses in ana-
lytic and algebraic number theory. This book, along with my other
book “Problems in Algebraic Number Theory” (written jointly with
J. Esmonde), which appears as Graduate Texts in Mathematics, Vol.
190, are intended to enable the student gain a quick initiation into
the beautiful subject of number theory. No doubt, many important
topics have been left out. Nevertheless, the material included here
is a “basic tool kit” for the number theorist and some of the harder
exercises reveal the subtle “tricks of the trade.”

Unless the mind is challenged, it does not perform. The student
is therefore advised to work through the questions with some at-
tention to the time factor. “Work expands to fill the time allotted
to it” and so if no upper limit is assigned, the mind does not get fo-
cused. There is no universal rule on how long one should work on a
problem. However, it is a well-known fact that self-discipline, what-
ever shape it may take, opens the door for inspiration. If the mental
muscles are exercised in this fashion, the nuances of the solution



Preface xiii

become clearer and significant. In this way;, it is hoped that many,
who do not have access to an “external teacher” will benefit by the
approach of this text and awaken their “internal teacher.”

Princeton, November 1999 M. Ram Murty
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1

Arithmetic Functions

N will denote the natural numbers. An arithmetic function f is a
complex-valued function defined on the natural numbers N. Such
an f is called an additive function if

f(mn) = f(m) + f(n) (1.1)

whenever m and n are coprime. If (1.1) holds for all m, n, then f is
called completely additive. A multiplicative function is an arith-
metic function f satisfying f(1) = 1 and

f(mn) = f(m)f(n) (1.2)

whenever m and n are coprime. If (1.2) holds for all m, n, then f
is called completely multiplicative. The notation (m,n) will be fre-
quently used to denote the greatest common divisor of m and n.
Thus, (m,n) = 1if and only if m and n are coprime.

Let v(n) denote the number of distinct prime divisors of n. Let
Q(n) be the number of prime divisors of n counted with multiplic-
ity. Then v and 2 are examples of additive functions. Moreover, (2
is completely additive, whereas v is not.

Let s € C and consider the divisor functions
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os(n) =>_ d°,

din

where the summation is over the sth powers of the positive divi-
sors of n. The special case s = 0 gives the number of divisors of n,
usually denoted by d(n). It is not difficult to see that for each s € C,
0s(n) is a multiplicative function that is not completely multiplica-
tive. We also have a tendency to use the letter p to denote a prime
number.

An important multiplicative function is the Mobius function, de-
fined by

(=)™ ifn is square-free,
uin) = { 0 otherwise.

We set p(1) = 1.
The Euler totient function given by

e 1)

is another well-known multiplicative function which enumerates
the number of coprime residue classes (mod n).
The von Mangoldt function, defined by A(1) = 0 and

Aln) = logp ifn = p® for some o > 1, and p prime
o 0  otherwise,

is neither additive nor multiplicative. Still, it plays a central role in
the study of the distribution of prime numbers.

1.1 The Mobius Inversion Formula
and Applications

Exercise 1.1.1 Prove that
1 if n=1,

> ud) =

dln 0 otherwise.
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Exercise 1.1.2 (The Mobius inversion formula) Show that
=> g(d) VYneN

din

if and only if

Zu f(n/d) Vn € N.
dn

Exercise 1.1.3 Show that

Exercise 1.1.4 Show that

Exercise 1.1.5 Let f be multiplicative. Suppose that
n = H P~
p|n

is the unique factorization of n into powers of distinct primes. Show that

Y ofd) = [T+ @)+ @)+ + F0).

dn el

Deduce that the function g(n) = 3_,,, f(d) is also multiplicative. The
notation p®||n means that p* is the exact power of p dividing n.

Exercise 1.1.6 Show that

Z A(d) = logn.
dln

Deduce that

—> " u(d) logd.

dn
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Exercise 1.1.7 Show that

> u(d) =

d2|n

1 if nis square-free,
0 otherwise.

Exercise 1.1.8 Show that for any natural number k,

{ 1 if nis kth power-free,

> nld) =

d*|n 0 otherwise.

Exercise 1.1.9 If for all positive x,

n<x
show that .
Fz) =Y n(n)G(*)
n<x
and conversely.
Exercise 1.1.10 Suppose that
ng ) f (k)| < oo,

where d3(k) denotes the number of factorizations of k as a product three
numbers. Show that if

then

and conversely.

Exercise 1.1.11 Let \(n) denote Liouville’s function given by A\(n) =
(—=1)¥™) where Q(n) is the total number (counting multiplicity) of prime
factors of n. Show that



1.2 Formal Dirichlet Series 7

Y M) =

dln

1 ifnisasquare,
0 otherwise.

Exercise 1.1.12 (Ramanujan sums) The Ramanujan sum c,,(m) is de-

fined as
hm
) = 30 (%)
1<h<n
(h,n)=1
where e(t) = €™, Show that
> du(n/d).
d|(m,n)

Exercise 1.1.13 Show that

1<h<n
(h,n)=1

Exercise 1.1.14 Let 6 = (n,m). Show that

cn(m) = p(n/8)p(n)/o(n/s).

1.2 Formal Dirichlet Series

If f is an arithmetic function, the formal Dirichlet series attached to

[ is given by
D(f,s)=>_ f(n)
n=1

We define the sum and product of two such series in the obvious
way:

and
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where

) = Y Fdygle).
de=n
We sometimes write h = f * g to denote this equality. It is also
useful to introduce 6(n) = 1if n = 1, 6(n) = 0 for n # 1. Thus
D(6,s) = 1.

Exercise 1.2.1 Let f be a multiplicative function. Show that

D(fs)=1] (Z f(p”)p‘”s> :
p v=0

Exercise 1.2.2 If

() = D)= -

n=1

)

show that
D(p,s) = 1/¢(s).
Exercise 1.2.3 Show that

where —('(s) =Y (logn)n=".

Exercise 1.2.4 Suppose that

fn) =Y g(d).

d|n
Show that D(f,s) = D(g, s)((s).

Exercise 1.2.5 Let A(n) be the Liouville function defined by \(n) =
(—=1)%), where Q(n) is the total number of prime factors of n. Show
that

DO\ s) = 45(2;’)).

Exercise 1.2.6 Prove that
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Exercise 1.2.7 Show that

Z:l uf;t)l _

Exercise 1.2.8 Let d(n) denote the number of divisors of n. Prove that

¢(s)
((2s)

() _ ¢Hs)
; ns  ((2s)’

(This example is due to Ramanujan.)

Exercise 1.2.9 For any complex numbers a,b, show that

i oa(n)op(n) _ ¢(s)C(s — a)((s = b)((s —a—b)
— ns B ((25s —a—b) '
Exercise 1.2.10 Let g;(n) be 1 if n is kth power-free and 0 otherwise.
Show that

 ak(n) _ C(s)

2 k)

n=1

=)

1.3 Orders of Some Arithmetical Functions

The order of an arithmetic function refers to its rate of growth. There
are various ways of measuring this rate of growth. The most com-
mon way is to find some nice continuous function that serves as a
universal upper bound. For example, d(n) < n, but this is not the
best possible bound, as the exercises below illustrate.

We will also use freely the “big O” notation. We will write f(n) =
O(g(n)) if there is a constant K such that |f(n)| < Kg(n) for all val-
ues of n. Sometimes we use the notation > and write g(n) > f(n) to
indicate the same thing. We may also indicate this by f(n) < g(n).
This is just for notational convenience. Thus d(n) = O(n). However,
d(n) = O(y/n), and in fact is O(n) for any ¢ > 0 as the exercises
below show. We also have ¢(n) = O(n).

It is also useful to introduce the “little 0” notation. We will write
f(z) = o(g(x)) to mean

f(x)/g(z) =0
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as  — oo. Thus d(n) = o(n?), and in fact, d(n) = o(n¢) for any

€ > 0 by Exercise 1.3.3 below. We also write p®||n to mean p®|n and
a+1

ptttn.

Exercise 1.3.1 Show that d(n) < 2+/n, where d(n) is the number of di-
visors of n.

Exercise 1.3.2 For any € > 0, there is a constant C(e) such that d(n) <
C(e)n”.

Exercise 1.3.3 For any n > 0, show that

d(n) < 2(1+n logn/loglogn
for all n sufficiently large.
Exercise 1.3.4 Prove that o1(n) < n(logn + 1).
Exercise 1.3.5 Prove that

c1n® < ¢(n)oi(n) < con?
for certain positive constants c; and cs.

Exercise 1.3.6 Let v(n) denote the number of distinct prime factors of n.
Show that

logn
< .
v(n) < log 2

1.4 Average Orders of Arithmetical Functions

Let f(n) be an arithmetical function and g(x) a monotonic increas-
ing function of z. Suppose

> f(n) = zg(x) + o(zg(x))

n<x
as z — oo. We say that g(n) is the average order of f(n).
Exercise 1.4.1 Show that the average order of d(n) is log n.

Exercise 1.4.2 Show that the average order of ¢(n) is cn for some con-
stant c.
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Exercise 1.4.3 Show that the average order of o1(n) is cin for some con-
stant c; .

Exercise 1.4.4 Let qi,(n) = 1 if n is kth power-free and zero otherwise.

Show that
Z qx(n) = cxz + O (ml/k) )

n<x

where

— (n)
=2 ko
n=1

1.5 Supplementary Problems

Exercise 1.5.1 Prove that

as T — 0.

Exercise 1.5.2 Let J,(n) be the number of r-tuples of integers
(a1, a2, ...,a,) satisfying 1 < a; < nand ged(ay, ..., ar,n) = 1. Show

that )
Jr(n) =n" H (1 — 1?>

pln

(Jr(n) is called Jordan’s totient function. For r = 1, this is, of course,
Euler’s ¢-function.)

Exercise 1.5.3 For r > 2, show that there are positive constants ¢ and
¢y such that
an” < Jr(n) < eon”.

Exercise 1.5.4 Show that the average order of J,.(n) is cn” for some con-
stant ¢ > 0.

Exercise 1.5.5 Let dy(n) be the number of ways of writing n as a product
of k positive numbers. Show that

S B0 _ o),
n=1
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Exercise 1.5.6 If dj(n) denotes the number of factorizations of n as a
product of k positive numbers each greater than 1, show that

S e -1

nS

~—

n=1

Exercise 1.5.7 Let A(n) be the number of nontrivial factorizations of n.
Show that

S A _ (o s

ns

n=1

as a formal Dirichlet series.

Exercise 1.5.8 Show that

Y = ‘2(]’:):62 + O(d(k)x),

n<x
(n,k)=1

where d(k) denotes the number of divisors of k.
Exercise 1.5.9 Prove that

> uld)

d|n
v(d)<r

Il
|
—_
=
N
=
3
ﬁ S—
|
—
N—

where v(n) denotes the number of distinct prime factors of n.

Exercise 1.5.10 Let 7(z, z) denote the number of n < x coprime to all
the prime numbers p < z. Show that

m(x,2) = g;pg (1 - ;) +0(2%).

Exercise 1.5.11 Prove that

1
Zi > loglogx + ¢

p<z
for some constant c.

Exercise 1.5.12 Let w(x) be the number of primes less than or equal to x.
Choosing z = log x in Exercise 1.5.10, deduce that

(@) = O(logfogx)
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Exercise 1.5.13 Let M (z) = >_ . pu(n). Show that

n<z
()=

Exercise 1.5.14 Let F,[x] denote the polynomial ring over the finite field
of p elements. Let Ny be the number of monic irreducible polynomials of
degree d in Fp[z]. Using the fact that every monic polynomial in F,[x] can
be factored uniquely as a product of monic irreducible polynomials, show

that
Pt = Z dNy.
dln

Exercise 1.5.15 With the notation as in the previous exercise, show that
1
Nn = ﬁ Z M(d)pn/d
din

and that N,, > 1. Deduce that there is always an irreducible polynomial
of degree n in Fp[z].

Exercise 1.5.16 (Dual Mobius inversion formula) Suppose f(d) =
2_djn 9(n), where the summation is over all multiples of d. Show that

n
g(d) = dz u(%)F)
and conversely (assuming that all the series are absolutely convergent).

Exercise 1.5.17 Prove that

Z ('O;n) = cx + O(log z)

for some constant ¢ > 0.

Exercise 1.5.18 For Re(s) > 2, prove that

o~ () _ C(s—1)

n® ¢(s)

n=1



14 1. Arithmetic Functions

Exercise 1.5.19 Let k be a fixed natural number. Show that if

= Z g(n/dk)7
dk|n
then
Z w(d) f(n/d¥),
dk|n

and conversely.

Exercise 1.5.20 The mth cyclotomic polynomial is defined as

om(@) = [[ (@—C),

1<i<m
(i,m)=1

where (,, denotes a primitive mth root of unity. Show that
m_1= H (ﬁd(.%')
dlm

Exercise 1.5.21 With the notation as in the previous exercise, show that

the coefficient of

pP(m)—1

in ¢m(z) is —p(m).
Exercise 1.5.22 Prove that

bm(z) = H(xd — 1)nlm/d),

dlm

Exercise 1.5.23 If ¢y, () is the mth cyclotomic polynomial, prove that
if m=p®
Pm (1) =

1 otherwise,
where p is a prime number.
Exercise 1.5.24 Prove that ¢, (x) has integer coefficients.

Exercise 1.5.25 Let g be a prime number. Show that any prime divisor p
of a? — 1 satisfies p =1 (mod q) or p|(a — 1).
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Exercise 1.5.26 Let g be a prime number. Show that any prime divisor p
of 1+a+a%+---+a9 !satisfiesp=1 (mod q) or p = q. Deduce that
there are infinitely many primes p =1 (mod q).

Exercise 1.5.27 Let g be a prime number. Show that any prime divisor p
of
L+b+b* 4 b0

withb = a?" "' satisfies p = 1 (mod ¢*) or p = q.

Exercise 1.5.28 Using the previous exercise, deduce that there are infi-
nitely many primes p = 1 (mod ¢¥), for any positive integer k.

Exercise 1.5.29 Let p be a prime not dividing m. Show that p|¢.,(a) if
and only if the order of a (mod p) is m. (Here ¢y, () is the mth cyclo-
tomic polynomial.)

Exercise 1.5.30 Using the previous exercise, deduce the infinitude of
primes p =1 (mod m).



2

Primes in Arithmetic Progressions

In 1837 Dirichlet proved by an ingenious analytic method that there
are infinitely many primes in the arithmetic progression

a, a+q, a+2q, a+3q, ...

in which a and ¢ have no common factor and ¢ is prime. The general
case, for arbitrary g, was completed only later by him, in 1840, when
he had finished proving his celebrated class number formula. In
fact, many are of the view that the subject of analytic number theory
begins with these two papers. It is also accurate to say that character
theory of finite abelian groups begins here.

In this chapter we will derive Dirichlet’s theorem, not exactly fol-
lowing his approach, but at least initially tracing his inspiration.

2.1 Summation Techniques

A very useful result is the following.

Theorem 2.1.1 Suppose {a,}5°; is a sequence of complex numbers and
f(t) is a continuously differentiable function on [1, x]. Set

A(t) =" an.

n<t
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Then

> anfn) = A ()~ [ A f 0

n<x

Proof. First, suppose x is a natural number. We write the left-hand
side as

Zanf(n) = Z{A An—=1)}f(n)

: — S AW - Y AW+
n<z n<lzr—1
n+1
- A(n f(t)dt
ngézl ”/
- nE;:IJ/ 7

since A(t) is a step function. Also,
> / t)dt = / A(t
n<zr—1

and we have proved the result if x is an integer. If = is not an integer,
write [z] for the greatest integer less than or equal to =, and observe
that

A=) — f(ia))} - [TA(t)f’(t)dt _o,

which completes the proof.

Remark. Theorem 2.1.1 is often referred to as “partial summation.”

Exercise 2.1.2 Show that
Z logn = xzlogz —x 4+ O(log z).
n<z

Exercise 2.1.3 Show that

1
Z — =logz + O(1).
n

n<zx
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In fact, show that
1
li (3~ logz)
Jim (25 oo

exists. (The limit is denoted by v and called Euler’s constant.)

Exercise 2.1.4 Let d(n) denote the number of divisors of a natural num-
ber n. Show that

Z d(n) = zlogz + O(x).
n<x
Exercise 2.1.5 Suppose A(z) = O(z°). Show that for s > 6,
n _ 3/ Al) dt
1

ns $s+1 :

o0

n=1
Hence the Dirichlet series converges for s > 4.

Exercise 2.1.6 Show that for s > 1,

s > {=}
C(s):S_l—s . xsﬂdx,

where {x} = x — [x]. Deduce that lim,_,;+(s — 1)((s) = 1.

Consider the sequence {b,(x)}22, of polynomials defined recur-
sively as follows:

bo(l’) = 1,
1 (x) = rb_1(z) (r>1),
/ by(x)de = 0 (r>1).

0

Thus, from the penultimate equation, b, (x) is obtained by integrat-
ing rb,_1(x), and the constant of integration is determined from the
last condition.

Exercise 2.1.7 Prove that

te:vt
et —1°

F(z,t) = Zbr(l«); —
r=0 ’
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It is easy to see that

_ 4 3, .2 1
by(x) = 2% — 22° + 2° — 55,

bs(x) = 2° — 3t + 223 — La.

These are called the Bernoulli polynomials. One defines the
rth Bernoulli function B,(z) as the periodic function that coin-
cides with b,(z) on [0,1). The number B, := B,(0) is called the
rth Bernoulli number. Note that if we denote by {z} the quantity
= [z], By(z) = by({z})-

Exercise 2.1.8 Show that By,+1 = 0 forr > 1.

The Bernoulli polynomials are useful in deriving the Euler -
Maclaurin summation formula (Theorem 2.1.9 below).

Let a,b € Z. We will use the Stieltjes integral with respect to the
measure d[t]. Then

b

> s = [ o
a<n<b a

Notice that the interval of summation is a < n < b, so that

b b
>t = [ st [ s
a<n<b a a
because d[t] = dt — d{t} and Bi(t) = {t} — 3, by the theory of the

Stieltjes integral. We can evaluate the last integral by parts:

b b ,
l/ﬂw&@=0@—ﬂW&—/BwV@%
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since By (b) = By (a) = B1(0). From B, (t) = 2B (t), we can write

/f )dBi(t) = (f(b) — 31—/ f (t)dBy(t

provided that f is differentiable on [a, b]. We can iterate this proce-
dure to deduce he following theorem:

Theorem 2.1.9 (Euler-Maclaurin summation formula) Let &k be a
nonnegative integer and f be (k + 1) times differentiable on [a,b] with
a,b € Z. Then

k r+1
/ Ftydt + Z O(b) — 1) (a)) By
a<n<b =0
k b
n (]i +1)1> | Brar*

Example 2.1.10 For integers z > 1,

Zl log + 7+ o + s + O (
2 logx S -\
n & v 2r 122 3

n<x

Solution. Put f(¢) = 1/t in Theorem 2.1.9,a = 1,b =z, and k = 2.

Then
1 1/1 1 /1 * By(t)
- 7(7_1) 7<7—1> / dt,
Z n ogw+2 x +12 x2 , tt

1 1 1 ¥ Bs(t 1 1
Z:logx—i———/ 3()dt—kf—
n 1

t4 2¢  1222°

Since

we must have

Also,

so that the result is now immediate.
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Exercise 2.1.11 Show that for some constant B,
Zi —2\/:E+B+O(i)
= N NZZa

Exercise 2.1.12 For z € C, and |arg z| < m — 6, where 6 > 0, show that

Zlog(z +Jj) = (z +n+ %) log(z +n)
=0

1 " By(z)dx
- (Z‘2>1°g2+/0 o

2.2 Characters mod g

Consider the group (Z/qZ)* of coprime residue classes mod ¢. A
homomorphism

x:(Z/qZ)" — C*

into the multiplicative group of complex numbers is called a charac-
ter (mod ¢). Since (Z/qZ)* has order ¢(q), then by Euler’s theorem
we have

a? @) =1 (mod ¢),

and so we must have x¥(@(a) = 1 for all a € (Z/qZ)*. Thus x(a)
must be a ¢(q)th root of unity.
We extend the definition of x to all natural numbers by setting

n (mod if (n,q) =1,
x(n) _{ A (0 7 ot}(1er33ise.

Exercise 2.2.1 Prove that x is a completely multiplicative function.

We now define the L-series,

L(S7X) = Z XT(ZZL)
n=1

Since |x(n)| < 1, the series is absolutely convergent for Re(s) > 1.
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Exercise 2.2.2 Prove that for Re(s) > 1,
X\
L(Sv X) = H 1- ? )
P
where the product is over prime numbers p.

The character
xo: (Z/qZ)* — C*

satisfying xo(a) = 1 for all (a,q) = 1 is called the trivial character.
Moreover, if x and v are characters, so is x, as well as ¥ defined by

which is clearly a homomorphism of (Z/gZ)*. Thus, the set of char-
acters forms a group. This is a finite group, as the value of x(a) is a
©(q)th root of unity for (a,q) = 1.

But more can be said. If we write

q=pi" PRt

as the unique factorization of ¢ as a product of prime powers, then
by the Chinese remainder theorem,

Z/qZ ~ ®;L[p; L
is an isomorphism of rings. Thus,
(Z/qZ)" ~ @i(Z/p;"Z)".

Exercise 2.2.3 Show that (Z/pZ)* is cyclic if p is a prime.

An element g that generates (Z/pZ)* is called a primitive root
(mod p).

Exercise 2.2.4 Let p be an odd prime. Show that (Z/p®Z)* is cyclic for
any a > 1.

In the previous exercise it is crucial that p is odd. For instance,
(Z/8Z)* is not cyclic but rather isomorphic to the Klein four-group
Z]2Z x Z]2Z. However, one can show that (Z/2%Z)* is isomorphic
to a direct product of a cyclic group and a group of order 2 for o > 3.
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Exercise 2.2.5 Let a > 3. Show that 5 (mod 2%) has order 242

Exercise 2.2.6 Show that (Z/2°Z)* is isomorphic to (Z/2Z) X
(Z.)24727), for a > 3.

Exercise 2.2.7 Show that the group of characters (mod q) has order p(q).

Exercise 2.2.8 If x # xo, show that

Exercise 2.2.9 Show that

_J ¢l@) if n=1(modg),
Z x(n) = { 0 otherwise.
x(mod q)

2.3 Dirichlet’s Theorem

The central idea of Dirichlet’s argument is to show that
Y =+
iz, s
p=a(mod q)

where the summation is over primes p = a (mod g).
If ¢ = 1, this is clear, because

and )
log((s) = —Zlog (1—;)
- Y ()
D n=1

upon using the expression

[e.9]
x
—log(l —z) = Z gt
n=1
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Observing that
li =
Jim ¢(s) = +oo
by virtue of the divergence of the harmonic series, we get

lim log((s) = +o0.

s—1t

Consequently,

E{L(Z 22

P n>2

npns ) B

In view of the fact for s > 1,

1 1
ZZW <ZZ* Zm“x”

p n>2 P n>2 V4

we deduce

1
lim — = +00.
s—1+t - p3

Exercise 2.3.1 Let x = xo be the trivial character (mod q). Show that

lim log L(s, x0) = +0o0.
s—1t

Exercise 2.3.2 Show that for s > 1,

Z lOg L(S, X) = SO(Q) Z Z n;ns'

x(mod q) n>1 pn=1(mod q)

Exercise 2.3.3 Show that for s > 1 the Dirichlet series

o0

has the property that a1 = 1 and a,, > 0 for n > 2.

25

Exercise 2.3.4 For x # xo, a Dirichlet character (mod q), show that

| > <o X(n)| < q. Deduce that

_ i x(n)

n=1

converges for s > 0.
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Exercise 2.3.5 If L(1,x) # 0, show that L(1,%) # 0, for any character
X # Xo modg.

Exercise 2.3.6 Show that

lim (s — 1)L(s, x0) = ¢(q)/q.

s—1t

Exercise 2.3.7 If L(1, x) # O for every x # xo, deduce that

SliI{l-&-S_l H L(s,x) #0
x(mod q)

Z 1:+oo.

p=1(mod q) p

and hence

Conclude that there are infinitely many primes p = 1(mod q).

This exercise shows that the essential step in establishing the in-
finitude of primes congruent to 1 (modgq) is the nonvanishing of
L(1, x). The exercise below establishes the same for other progres-
sions (mod ¢).

Exercise 2.3.8 Fix (a,q) = 1. Show that

> a(m = { §@ T S wedd)

otherwise.

x(modq)

Exercise 2.3.9 Fix (a,q) = 1. If L(1, x) # 0, show that

i _ (a)
Slir{lJr s—1) H L(s,x) # 0.
x(mod q)

Deduce that

p=a(mod q)

The essential thing now is to show that L(1,x) # 0 for x # xo.
Historically, this was a difficult step to surmount. Now, there are
many ways to establish this. We will take the most expedient route.
We will exploit the fact that

H L(s,x)

x (mod q)
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is a Dirichlet series > 7, a,n~° with a; = 1 and a,, > 0. If for some
x1, L(1, x1) = 0, we want to establish a contradiction.

Exercise 2.3.10 Suppose x1 # X1 (that is, x1 is not real-valued). Show
that L(1, x1) # 0 by considering F(s).

It remains to show that L(1, x) # 0 when y is real and not equal
to xo.

We will establish this in the next section by developing an inter-
esting technique discovered by Dirichlet that was first developed by
him not to tackle this question, but rather another problem, namely
the Dirichlet divisor problem.

2.4 Dirichlet’s Hyperbola Method

Suppose we have an arithmetical function f = g * h. That is,
= S @i/
dln

for two arithmetical functions g and h. Define

= g(n)

n<x

= h(n)

Theorem 2.4.1 Foranyy > 0, -
St =S g@H () + 3 na6(5) - cwH().
nlx d<y dg%

Proof. We have

d ) = ) g(d)h(e)

n<z de<z
= Y g(@hle) + > gld)h(e)
- fg(d)H(Z) +d>i he){G(2) - cw)}
d<y e<?
. Zg(d)H(g) + h(e)G(g) = G(y)H(g) O
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The method derives its name from the fact that the inequality
de < x is the area underneath a hyperbola. Historically, this method
was first applied to the problem of estimating the error term E(x)
defined as

E(z) =) _oo(n) — {z(logz) + (2y — )z},

n<x
where oy(n) is the number of divisors of n and ~ is Euler’s constant.

Exercise 2.4.2 Prove that

Z oo(n) = xlogz + (2y — )z + O(Vx).

n<x

Exercise 2.4.3 Let x be a real character (mod q). Define

=> x(d)

dln

Show that f(1) = 1 and f(n) > 0. In addition, show that f(n) > 1
whenever n is a perfect square.

Exercise 2.4.4 Using Dirichlet’s hyperbola method, show that

Zf =2L(1, x)vVz + O(1),

n<x

where £(n) = g, X(d) and x # o.

Exercise 2.4.5 If x # xo is a real character, deduce from the previous
exercise that L(1, x) # 0.

Exercise 2.4.6 Prove that
1
3 x(n) _ o(1)
n X
n>x

whenever x is a nontrivial character (mod q).
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Exercise 2.4.7 Let
an = Z x(d)
dln
where x is a nonprincipal character (mod q). Show that
Z an = zL(1,x) + O(Vx).
n<x

Exercise 2.4.8 Deduce from the previous exercise that L(1, x) # 0 for x
real.

Thus, we have proved the following Theorem:

Theorem 2.4.9 (Dirichlet) For any natural number q, and a coprime
residue class a (mod q), there are infinitely many primes p = a (mod q).

2.5 Supplementary Problems

Exercise 2.5.1 Let di(n) be the number of ways of writing n as a product
of k numbers. Show that

)kfl

Z dy.(n) = z(logz)* ™

(= 1)! + O(x(log z)k~2)

n<x
for every natural number k > 2.

Exercise 2.5.2 Show that

Z log% =z + O(log x).

n<x

Exercise 2.5.3 Let A(x) =), .. an. Show that for x a positive integer,

n<x

T A(t)dt
Zanlogx:/ (*) )
n 1 t

n<x

Exercise 2.5.4 Let {x} denote the fractional part of x. Show that

> {Z}=0-na+0a"),

where ~y is Euler’s constant.



30 2. Primes in Arithmetic Progressions

Exercise 2.5.5 Prove that

Z log" % = O(x)

n<x
forany k > 0.

Exercise 2.5.6 Show that for x > 3,

= loglogw+B+O($lsgx>.

Exercise 2.5.7 Let x be a nonprincipal character (mod q). Show that
x(m) _ (L
2 <o)

Exercise 2.5.8 For any integer k > 0, show that

loghn  loght'z
= 1).
Z n k+1 +0()

n<x

Exercise 2.5.9 Let d(n) be the number of divisors of n. Show that for some
constant c,

Zd(nn) = ;log2m+2’ylogx+c+0<\/1§)

n<x

foraz > 1.

Exercise 2.5.10 Let o > 0 and suppose a,, = O(n®) and

A(z) := Z an = O(a°)

n<z

for some fixed 6 < 1. Define
b, = Z ag-
dln

Prove that
Z b, = cx + O (x(l—é)(1+o¢)/(2—6)) 7

n<x

for some constant c.
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Exercise 2.5.11 Let x be a nontrivial character (mod q) and set
=> x(d)

din

Show that
> f(n) = zL(1,x) + O(¢v/x),

n<x

where the constant implied is independent of q.

Exercise 2.5.12 Suppose that a,, > 0 and that for some § > 0, we have

> an <7

n<x

Let by, be defined by the formal Dirichlet series

S5y

n=1 n=1

S
N

S
»

Show that
by, < z(log x) )= 2

n<x

Exercise 2.5.13 Let {a,} be a sequence of nonnegative numbers. Show
that there exists oy € R (possibly infinite) such that

an

f(s) = —
n:ln

converges for Re(s) > o and diverges for Re(s) < og. Moreover, show
that the series converges uniformly in Re(s) > og + 6 for any 6 > 0 and

that
(B (oY — (_1\k = an(logn)k
£ = 0 =

for Re(s) > oo (0 is called the abscissa of convergence of the
Dirichlet series ) ° | a,/n®).
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Exercise 2.5.14 (Landau’s theorem) Let a,, > 0 be a sequence of non-
negative numbers. Let o be the abscissa of convergence of

fis) =%
n=1 n

Show that s = oq is a singular point of f(s) (that is, f(s) cannot be
extended to define an analytic function at s = s).

Exercise 2.5.15 Let x be a nontrivial character (mod q) and define
Oa,x = Z x(d)d*
din

If x1, x2 are two characters (mod q), prove that for a,b € C,

—S
E :Ua X1 n)op X2 n)n

C(S)L(S —a, Xl)L(S — b7 XQ)L(S —a— b7 X1X2)
L(2s —a —b,x1x2) '

as formal Dirichlet series.

Exercise 2.5.16 Let  be a nontrivial character (mod q). Set a = b, x1 =
x and x2 = X in the previous exercise to deduce that

o0

o _s  C(s)L(s—a,x)L(s—a,x)L(s —a—a,xo)
Z|Ga’X(n)’ "o L(2s —a—a,x0)

n=1

Exercise 2.5.17 Using Landau’s theorem and the previous exercise, show
that L(1, x) # 0 for any non-trivial real character (mod q).

Exercise 2.5.18 Show that ((s) # 0 for Re(s) > 1

Exercise 2.5.19 (Landau’s theorem for integrals) Let A(z) be right
continuous for x > 1 and of bounded finite variation on each finite in-

terval. Suppose that
= Az)
)= [ S

with A(zx) > 0. Let o be the infimum of all real s for which the integral
converges. Show that f(s) has a singularity at s = oy.
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Exercise 2.5.20 Let \ denote Liouville’s function and set

=Y An)

n<x

Show that if S(x) is of constant sign for all x sufficiently large, then
((s) # 0 for Re(s) > 1. (The hypothesis is an old conjecture of
Pélya. It was shown by Haselgrove in 1958 that S(z) changes sign
infinitely often.)

Exercise 2.5.21 Prove that
n
=3 () Boss®

where by, (x) is the nth Bernoulli polynomial and B,, denotes the nth
Bernoulli number.

Exercise 2.5.22 Prove that

bn(1 =) = (=1)"bn (),
where by, (x) denotes the nth Bernoulli polynomial.

Exercise 2.5.23 Let
sp(n) =1 428 138 o (n - 1R
Prove that for k > 1,

k
k+1 -
(k‘ + 1 Sk Z < + > k:-l—z—z.

1=0
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The Prime Number Theorem

Let 7(z) denote the number of primes p < z. The prime number
theorem is the assertion that

m(x)

im =
z—o0 x/log x

It was proved independently by Hadamard and de la Vallée Poussin
in 1896. It is the goal of this chapter to prove this theorem follow-
ing a method evolved by Wiener and Ikehara in the early twentieth
century.

As far as we know, it was Legendre who first conjectured that for
large z, w(x) is approximately

_r
logz — 1.08°

This suggests the truth of the prime number theorem. In a letter of
1849, Gauss related that as a boy he had thought about this question
and felt that a good approximation to 7 (x) is given by the logarith-
mic integral

Todt

liz:= —.
5 logt

This is closer to the truth. Indeed, one can prove
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~(a) =li + O e~V )

for some constant c. Integrating the logarithmic integral by parts,
we see that

o= 2 4 S My +1)!/$ dt
r = P — n ! P —
logz  (logx)? (log z)7t1 5 (logt)nt1’

from which it is easily deduced that if we interpret Legendre’s state-

ment as
T

mw) = logz — A(z)’
where A(z) — 1.08, then the above analysis shows that it is false,
since A(z) — 1.
Chebyshev in 1851 obtained by very elementary methods upper
and lower bounds for 7 (x). He proved that

m(x)

z/logx

m(x)

lim inf
imin +/logz’

<1 <limsup

so that if the limit exists, then it must be 1.

3.1 Chebyshev’s Theorem

The elementary method of Chebyshev begins by observing that the
binomial coefficient

2n

n

is divisible by every prime between n and 2n.

Exercise 3.1.1 Let
6(n) => logp,

p<n

where the summation is over primes. Prove that
O(n) < 4nlog?2.
Exercise 3.1.2 Prove that 6(2m + 1) — 6(m) < 2mlog 2. Deduce that

0(n) < 2nlog 2.
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Exercise 3.1.3 Let

Ylx) =Y logp= Y _ An),
V4

<z n<lz

where A is the von Mangoldt function. Show that

lem[1,2, -+, n] = ¥,
Exercise 3.1.4 Show that

1
e¥(2ntl) / 2" (1 —x)"dx
0

is a positive integer. Deduce that 1)(2n + 1) > 2nlog 2. (The method of
deriving this is due to M. Nair.)

Exercise 3.1.5 Prove that there are positive constants A and B such that

Ax < n(z) < Bz
=7 ~ logzx

log
for all x sufficiently large. This result was first proved by Chebyshev.

Exercise 3.1.6 Prove that

1
T(z):= Zlogn:xlogx—x+ glogx—}—c—i—O(l/x)

n<zx
for some constant c (this improves Exercise 2.1.2).

Exercise 3.1.7 Using the fact

logn = Z A(d),
dn
prove that
Z Afln) =logz + O(1).
n<x

Exercise 3.1.8 Prove that

Z; = loglogz + O(1).

p<w
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Theorem 3.1.9 (Bertrand’s postulate) For n sufficiently large, there is
a prime between n and 2n.

Proof: (S. Ramanujan) Observe that if
ag > ap = az 2 -

is a decreasing sequence of real numbers tending to zero, then
oo
apg —a; < Z(—l)"an <ag—aj+as.
n=0

This is the starting point of Ramanujan’s proof. We can write

T(z) = Zlogn: Z A(d) :Z@b(g).

n<lz de<z ez

We know that T'(z) = xlog  — 2+ O(log =) by Exercise 2.1.2. On the
other hand,

1 -2r(3) = Deo(2) < v -6(3) +4)

n<x

by the observation above. Hence

x x

v(@) —v(5) +¥(5) = log2)a+ O(log ).
On the other hand,
x
() — 1/1(5) < (log2)z + O(log z),
from which we deduce inductively
P(z) < 2(log2)z + O (log2 z).

Thus, ¥ (z) — w<%> > 1(log2)z 4+ O(log® z). Now, 1(z) = 0(z) +
O (y/zlog? ) . Hence

x 1

O(x) — 9(5) > g(log 2)z+ 0 (Vzlogz).

Therefore, for x sufficiently large, there is a prime between
z/2 and x.

Remark. This theorem was first proved by Chebyshev by a similar,
but more elaborate, method.
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Exercise 3.1.10 Suppose that {a, }5° , is a sequence of complex numbers

and set
S(z) = Z .
n<x
If
lim @ = q,
r—0o0 I
show that
an,
Z — = alogz + o(log x)
n<x n
as x — oo.

Exercise 3.1.11 Show that

if and only if
m(x)

im =
z—oo x/log x

Exercise 3.1.12 If
m(z)

z—oo x/logx

then show that

1
Z — = aloglogx + o(log log x).
p<z

Deduce that if the limit exists, it must be 1.

3.2 Nonvanishing of Dirichlet Series on Re(s) =1

The proof of the prime number theorem, as given by Hadamard
and de la Vallée Poussin, has two ingredients: (a) the analytic con-
tinuation of ((s) to Re(s) = 1 and (b) the nonvanishing of ((s) on
Re(s) = 1.

It was believed that any proof of the prime number theorem must
use the theory of complex variables until Erdés and Selberg inde-
pendently discovered an “elementary proof” in 1949.

In this section we will discuss nonvanishing results of various
Dirichlet series.
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Exercise 3.2.1 Show that

C(S):ifs ” {x}dx

s—1 1 s+l
for Re(s) > 1. Since the right-hand side of the equation is analytic for
Re(s) > 0, s # 1, we obtain an analytic continuation of (s — 1)((s).

Exercise 3.2.2 Show that ((s) # 0 for Re(s) > 1.
Exercise 3.2.3 Prove that foro > 1,t € R,

A(n)

n?logn

Relog (o +it) = Z

cos(tlogn).

Exercise 3.2.4 Prove that

Re(3log ((o) + 4log ((o + it) + log ((o + 2it)) > 0,
foro>1,teR.

Exercise 3.2.5 Prove that foro > 1,t € R,
C(0)*¢ (o +it)*¢ (o + 2it)| > 1.

Deduce that (1 + it) # 0 forany t € R, t # 0. Deduce in a similar way,
by considering

(o)’ Lo, x)* L(0, X%),
that L(1, x) # 0 for x not real.

Exercise 3.2.6 Show that —$ (s) has an analytic continuation to Re(s) =
1, with only a simple pole at s = 1, with residue 1.

In the exercises below we will attempt to unravel the essential
trigonometric idea underlying the proof of the nonvanishing of ((s)
on Re(s) = 1. We begin with a few trigonometric identities.

Exercise 3.2.7 Prove that

1 sin(n + 1)6
— +cosf 4+ cos20 + -+ cosnf = ('792).
2 2sin 5
Exercise 3.2.8 Prove that

sin 2n6

2sinf

cosf + cos30 + - -+ + cos(2n — 1)0 =
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Exercise 3.2.9 Prove that

1+

sin30  sin 56 sin(2n — 1)6 sin n@\ 2
- +o - (22

sin @ sin @ sin 6 sin 0

Exercise 3.2.10 Prove that
Zm 1 sin(m + )6 ?
2m+1)+2 Z (j+1)cos(2m —5)0 = <2> :
j=0
for all integers m > 0.

Remark. Notice that the case m = 1 gives
3+ 4cosf +2cos20 >0,

which would have worked equally well in Exercises 3.2.4 and 3.2.5.

The following exercise gives us a general theorem of nonvanish-
ing of Dirichlet series on Re(s) = 1.

Exercise 3.2.11 Let f(s) be a complex-valued function satisfying:
1. f is holomorphic in Re(s) > 1 and non-zero there;
2. log f(s) can be written as a Dirichlet series

ib

n=1

3

S
»

with b, > 0 for Re(s) > 1;

3. on the line Re(s) = 1, f is holomorphic except for a pole of order
e>0ats=1.

If f has a zero on the line Re(s) = 1, then prove that the order of the zero
is bounded by e /2. (This result is due to Kumar Murty [MM, p.10].)

Exercise 3.2.12 Let f(s) = [, L(s,x), where the product is over
Dirichlet characters (mod q). Show that f(s) is a Dirichlet series with
nonnegative coefficients. Deduce that L(s, x) # 0 for Re(s) = 1.
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3.3 The Ikehara - Wiener Theorem

We begin by reviewing certain facts from Fourier analysis. Let
0 : n dmf +
S=feC®R): lim 2"—==0 forall n,meZ" ;.

This space is called the Schwartz space of rapidly decreasing func-
tions. For f € S, we have the Fourier transform

~

1 o —itx
fla)= = | rweiae

The Fourier inversion formula gives
1 RN "
) = —— t)e"*dt.
f@)=—= [ iw

flo—y) = \/12? /_ F(t)eeitagy,

Hence

so that f(z — y) and f(t)e are Fourier transforms of each other.
Parseval’s formula is

/ Z f@)g(a)ds = [ Z F(t)a(.

Though these formulas are first established for f,g € S, they are
easily extended to all f,g € L?(R). We will employ these facts for
such functions.

The Riemann - Lebesgue lemma states that

A—00

lim / ft)eMdt =0
for absolutely integrable functions. The Fejér kernel

sin? \z
o) ==

has Fourier transform
- 21— 2l i jzl < 2a
K = / 22 =2
A@) { 0 otherwise.

We begin with the following theorem due to Ikehara and Wiener
(see for example, [MM, p.7]).
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Theorem 3.3.1 Let F(s) = .2, b,/n® be a Dirichlet series with non-
negative coefficients and absolutely convergent for Re(s) > 1. Suppose
that F(s) can be extended to a meromorphic function in the region Re(s) >
1 having no poles except for a simple pole at s = 1 with residue R > 0.
Then
B(x):= Y by = R+ o(x)
n<x

asxTx — 0.

Remark. Without loss of generality, we may suppose R > 0, for if
R = 0, we can consider F(s) + ((s). If F(s) is analytic at s = 1, we
obtain ), by, = o(z) as z — oo.

Proof. Replacing b, by b,/ R, we may suppose without loss of gen-
erality that R = 1. Then

Set x = e%. Then

Note that

/ e~ 5=y = 1 .
0 8—1

Setting s =146 +it, 0 > 0, we get

F(l +9 + it) 1 _ * u\ . —u —ud —iut
R 1 —/0 (B(e")e e e "™ du. (3.1)

Set
g(u) = B(e")e ™,
_ F(1+6+it) 1
he(t) = 1+0+it s—1
and

FA+it) 1
1+t s—1
which extends to a continuous function for all £ € R. We also put

u)—1e ™ ify
a0 ={ §70 20

h(t) = (s=1+it),
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Our goal is to prove g(u) — 1 as u — oo. The formula (3.1) says
that the Fourier transform of /27 ¢s is hs(t). Observe that for § > 0,
both of these functions are square-integrable, since

B(z) =) by < Y [bal(a/n)" < a°,
n<lz n=1

for every ¢ > 1. Applying Parseval’s formula gives, for each real v
and real A > 0,

Jo~ (g(w) = De ™ Ky (u—v)du = [ d5(u)Kx(u—v)du
= \/% [ hs(t) Ky (et dt.

Since K has compact support, the limit as § — 0 of the right-hand
side exists. The limit of the left side as 6 — 0 is

/0 " (9lw) — DE(u— v)du

by the monotone convergence theorem. Hence,

> 1 > 1> itv
/0 (9(u) = 1) Kx(u —v)du = \/ﬂ/oo h(t) K (t)e™dt.

By the Riemann - Lebesgue lemma, the limit of the integral on the
right-hand side as v — oo is 0. Thus,

o0

lim (g(u) — 1)Kx\(u —v)du = 0.

V—00 0

Since (by Exercise 3.4.13)

® gin? Az
dr =,

—00

we obtain
oo

lim g(u)K\(u —v)du = 7.

v—00 0

Making the substitution © = v + a/\ and noting that g(u) = 0 for
u < 0 gives

/OOOQ(U)K/\(U—U)dUZ/OOg(u)K,\(u—U)du:/oog(v—l—a/)\) SinQada,

2
o oo Q@
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Thus,

o) 2
lim g(v+ a/)\)sm a
V—00 Oé

—00

da =,

for each A > 0. Since B(z) is monotone increasing, we see that
g(ug) = g(ur)e™ ™,

Thus, for |a| < VA, we have

o252l

\F/\)efjf% > g<v - L)67%.

(3] S ug.

Hence

o1 [ s

VA 2
dov g/ g(v + /A)Sm Y da
v

00 2
< / (v+a/)\)812 %da.

Consequently
2/VA
lim sup g(v) = limsup g(v — 1/VA) < \/;re :
V—00 V—00 f /\ 811;20(1

Letting A — oo, we get

limsup g(v) < 1.

V—00

In particular, we conclude that g is bounded. Let A = sup, g(v)
Then,

00 2 v 2
/ (v+a/)\)sm ada—/
00 a?

sin” «
glv+a/A
[ _ﬁ( B

da
- /ﬁ lg(v+ a/X) — g(v — a//\)]

da <2A/ d—§<< L
i a2 T
Hence

VA
lim inf / oo+ /)™ sin”
v—oo J_ /3

da—7r—|—O(1/\f)

45
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For |a| < V), we have
gv+a/X) <g(v+ 1/\5\)61/‘5_0‘/\A <gv+ 1/\&)62/\&
so that

NI VA in2
g(v+ l/ﬁ)ewﬁ/ szada = / g(v+ a/)\)smzada,
o« ~VX @
and so
liminf g(v) = liminf g(v + 1/\5\) > T ?f(l/\/f) :
e v—00 2V [ ja sina do

Letting A\ — oo, it follows that
liminf g(v) > 1.

We therefore conclude that lim,_. g(v) = 1. This implies that
B
lim (z)

r—00 I

=1,

or equivalently
B(xz) =z + o(x).

We apply this theorem to the Dirichlet series

-y

which has nonnegative coefficients and is absolutely convergent for
Re(s) > 1. By virtue of ((s) # 0 on Re(s) = 1, we see that —%(s)
extends to a meromorphic function that has a simple pole at s = 1
with residue 1. Indeed, we know that

h(s) == (s = 1)¢(s)

isanalyticat s = 1and h(1) = 1. Moreover, as ((s) # OonRe(s) > 1,
we get by logarithmic differentiation:

W _ 1 ¢

n=1

h(s) s—1 C(S)’

for which our assertion is obvious. Applying the Ikehara - Wiener
theorem, we obtain the prime number theorem:
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Theorem 3.3.2 (The Prime Number Theorem) Let

Y(x) =Y An).
Then .
lim M =1.

Exercise 3.3.3 Suppose

f(s) = Z an/n’
n=1

is a Dirichlet series with real coefficients that is absolutely convergent
for Re(s) > 1. If f(s) extends to a meromorphic function in the re-
gion Re(s) > 1, with only a simple pole at s = 1 with residue r, and
lan| < by, where F(s) = -7 by, /n® satisfies the hypotheses of Theorem

3.3.1, show that
Z an = rx + o(x)

n<x

as r — oQ.

Exercise 3.3.4 Show that the conclusion of the previous exercise is still
valid if a,, € C.

Exercise 3.3.5 Let q be a natural number. Suppose (a, q) = 1. Show that

d(rig,a):= Y An)

n=a (mod q)

satisfies
b(x)
v=o0 2/(q)

Exercise 3.3.6 Suppose F(s) = Y -2, b,/n® is a Dirichlet series with
non-negative coefficients and is convergent for Re(s) > ¢ > 0. If F(s)
extends to a meromorphic function in the region Re(s) > c with only a
simple pole at s = c with residue R, show that

Z b, = Rt + o(z9)

c

=1.

n<x

as r — OoQ.
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Exercise 3.3.7 Suppose f(s) = > ..o, an/n® is a Dirichlet series with
complex coefficients that is absolutely convergent for Re(s) > c. If f(s)
extends to a meromorphic function in the region Re(s) > ¢ with only
a simple pole at s = c and residue r, and |a,| < b, where f(s) =
Y ne by /n? satisfies the hypothesis of Exercise 3.3.6, show that

T.C
D an=

n<x

+ o(z9)

as r — OoQ.

Exercise 3.3.8 Let a(n) be a multiplicative function defined by a(1) = 1
and

ay | pHe if a=1,
a(p”) = { 0 otherwise,
where |c,| < p? with § < 1. Show that as x — oo,
2
re
Z a(n) = 5 T o(z?)
n<x

for some non-zero constant r.

Exercise 3.3.9 Suppose c,, > 0 and that
Z cn = Az + o(x).
n<x

Show that .
Z ;n = Alogx + o(log =)

n<x

as xr — oQ.

3.4 Supplementary Problems

Exercise 3.4.1 Show that

ZA Ylogn = ¢(z)logx + O(x).

n<x
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Exercise 3.4.2 Show that

Z A(d)A(g) = A(n)logn + Z (d) log? d.

din dln

Exercise 3.4.3 Show that

> 10g

d|n
log? x if n=1,
2A(n)logz — A(n)logn + >, A(R)h(k) if n>1.

Exercise 3.4.4 Let

=> (Zu(d) log? 3)

n<z dn

Show that

S(x) = (a)loga + A(n)w(%) +0(x).

n<x

Exercise 3.4.5 Show that

= S 2] 2 ),

d<z
where ~y is Euler’s constant.

Exercise 3.4.6 Show that

Exercise 3.4.7 Using the fact
1 1
Z— = loga:+’y+0<—),
n x
n<x
deduce that

e Z MU(lz)(logZ—’y) + O(1).
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Exercise 3.4.8 Prove that

SE:) =2logz + O(1).

Exercise 3.4.9 (Selberg’s identity) Prove that

X

P(x)logx + Z A(n)w(ﬁ> =2zlogz + O(x).

Exercise 3.4.10 Show that

v(n) = O (M) ,

loglogn
where v(n) denotes the number of distinct prime factors of n.

Exercise 3.4.11 Let v(n) be as in the previous exercise. Show that

Z v(n) = zloglogz + O(x).
n<zx
Exercise 3.4.12 Let v(n) be as in the previous exercise. Show that
Z v?(n) = z(loglog )% + O(x loglog z).
n<z

Exercise 3.4.13 Prove that
00 12
A
/ S AT =
oo AT

T(z):= Z logn.

n<x

Exercise 3.4.14 Let

Show that for x > 1,
|T(z) — (xlogz — x)| <4+ log(z +1).
Exercise 3.4.15 Show that
W(w) — w(%) < (log 2)z + 12 + 3log(z + 1).

Deduce that

12logz  3log(z + 1)logx

< 2(log 2
V(w) < 2(og2)z + log 2 log 2
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Exercise 3.4.16 Show that
P(z) — w<g> + ¢<§> > (log2)x — 2log(z + 1) — 7.
Exercise 3.4.17 Prove that for z > e'2,

5(log z) log(z + 1)

- 7.
log 2

9() (%) > 5(0g2) -

Exercise 3.4.18 Find an explicit constant cy such that for x > co,

() _w(g) - (10%2)x _

Exercise 3.4.19 With ¢ as in the previous exercise, show that for x > cy,

x (log2)r  /z(logz)?
6) = 9(5) 76 log2 v

Exercise 3.4.20 Find an explicit constant ¢ such that for v > ¢y,

0(z) — 9(%) > (1022):6 —.

Exercise 3.4.21 Find an explicit constant c3 such that for x > c3, 6(z) —
0(z/2) > 1. Deduce that for x > c3, there is always a prime between x /2
and x.

Exercise 3.4.22 Let

=X o(3)

n<x

be a function of bounded variation in every finite interval [1, x|. Suppose
that as ¢ — oo,
F(x) = zlogz + Cz + O(z”)

with C, 3 constant and 0 < 8 < 1. Show that if M (x) := 3, ., u(n) =
o(z) as x — oo, then

f(2) = 2+ o{).
Exercise 3.4.23 Assuming M (z) = o(x) as in the previous exercise, de-

duce that
lim w(x)

T—00 I

=1.




4
The Method of Contour Integration

Given a sequence of complex numbers {a, }°° ;, one would like to
study the asymptotic behavior of

Ax) :== Z an

as x — o00. A standard method of analytic number theory is to study
instead the associated Dirichlet series

fls) =3,
n=1

derive an analytic continuation to a region containing the line
Re(s) = 1, and then apply methods of contour integration to deduce
an asymptotic formula for A(x).

4.1 Some Basic Integrals

We shall adopt the following notation:

1 c+ioo

— f(s)ds

2mi c—100
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27rz/ ut

This integral must be interpreted in the principal value sense. That
is, we first integrate from ¢ — iR to ¢ + iR and take the limit as R
goes to infinity.

will be abbreviated to

Exercise 4.1.1 If z > 1, show that

1 s
211 () S

forany c > 0.

Exercise 4.1.2 If0 < x < 1, show that

1 S
— | Zis=0, e>o.
271 (C) S
Exercise 4.1.3 Show that
1 d 1
— [ B2 s
2mi Jiey s 2

We summarize the previous examples and exercises in the follow-
ing. If
0 if O0<zx<1,

§(z)=14 3 if z=1,
1 if z>1,
then
1 c+ioo 5
O(z) = — —ds.
(=) = 3 /C_ioo s 7

Theorem 4.1.4 Let 6(x) be defined as above. Let

1 c—i—zR
I(x,R) = / —ds

271 —iR S
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Then, for x > 0,¢ > 0, R > 0, we have

r°min(1, R~ logz|™Y) if x#1,
[1(z, R) = 6(z)[ <

< if v=1

7 .
Proof. Suppose first 0 < z < 1. Consider the rectangular contour
Ky oriented counterclockwise with vertices ¢ — iR, c+ iR, U + iR,
U — iR, U > 0. By Cauchy’s theorem

1 S
— Tds=0= d(z).
2mi Ji, S

To prove the theorem, we must estimate the three integrals

1 U+iR s 1 U—iR s 1 U+iR 5
— T ds, — Tds, — T ds.
210 Jetin 8 21 Je—ir S U—iR S

U+iR ,.s 1 U
/ x—ds < / 20ds.
c+iR S R c

As U — oo, this integral is bounded by

Now,

l.C

R|log x|’

A similar estimate holds for the other integral. Now,
YR
<

1 U+iR x5ds
277'7:/(]_1‘]% S - U ’

which goes to zero as U — oo, since 0 < z < 1. This proves one
of the two stated inequalities in the case 0 < < 1. For the other
inequality, consider the circle of radius (c? + R?)!/2 centered at the
origin. This circle passes through ¢ —iR and c+iR. We can therefore
replace the vertical line integral under consideration by a circular
path on the right side of the line segment joining ¢ — iR to ¢ + iR.
The integral is easily estimated:

1 z°
I < —7mR-— ¢
|[I(z, R)| 2 R R<x,
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since |2*| < z¢ on the circular path.

The proof when x > 1 is similar but uses a rectangle or a circular
arc to the left. The contour then includes the pole at s = 0, where
the residue is 1 = J§(z). We leave the details as an exercise to the
reader.

Finally, the case = 1 is handled directly as in Exercise 4.1.3. We
have

2 +t2’

1 cHilt gg C/R dt
0

2t J._ip S s

1/3/6 du 1 1/°° du
)y 1+u* 2 7 [ geltu?

The last integral is less than ¢/ R, and this proves the theorem. [

which equals

Exercise 4.1.5 Let

0 an
f(s) = n:lE

be a Dirichlet series absolutely convergent in Re(s) > ¢ — €. Show that if
x is not an integer, then

Zan = L f(s)x—ds.
27 (c) S
n<x

(The integral is taken in the sense of Cauchy’s principal value.)

Exercise 4.1.6 Prove that for ¢ > 0,
1 i ds — Llogz)k if x>1,
2mi Jioy sFHLT L0 if x<1,
for every integer k > 1.

Exercise 4.1.7 Let

o0

flo) =3

n=1

an

be a Dirichlet series absolutely convergent in Re(s) > ¢ —e. For k > 1,
show that
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1
HZan(log 27?1/ U skH

n<x

Exercise 4.1.8 If k is any positive integer, ¢ > 0, show that

1/ z5ds B
271 (c) S(S+1)(8+k) N

Exercise 4.1.9 Let

1k .
(1—5) if x> 1,

if 0<xz<I.

) |

an
f(s) = "

n=1

be a Dirichlet series absolutely convergent in Re(s) > ¢ — €. Show that

k! c+ico f(S)deS
kZanx—n 270 Joioo S(s+1)---(s+k)

n<x

forany k > 1.

4.2 The Prime Number Theorem

We will use the ideas of the previous section to give another proof of
the prime number theorem. Our derivation is illustrative of a gen-
eral method of contour integration to derive such formulas. Thus, it
can be applied in other contexts. The method also has the advantage
of giving an explicit error term.

Our strategy is to begin with the formula

1 ¢z
ZA =5 /(2)—C(s)sds7

n<x

which is valid when z is not an integer. We will then move the line
of integration to the left and pick up the residue at s = 1 coming
from the simple pole of —(’(s)/((s). This residue is x, which is the
main term in the formula for ¢(z). Our contour will not include

= 0 nor any of the zeros of —('(s)/{(s), and so the error term
comes from estimating the horizontal and vertical integrals of the
contour.
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Exercise 4.2.1 Using the Euler - Maclaurin summation formula (Theo-
rem 2.1.9), prove that for o = Re(s) > 0,

n—1 1

1 - =S ©p—fz] -1
L n _3/ vlel=5,
n

ms 8—1

where [x] denotes the greatest integer function.

We will now study ((s) in the region Ry described by the rectan-
gle joining 2 — T, 2 + 4T, 0o + iT, 09 — i1, where op =1 — 1/log T,
T > e2.

Exercise 4.2.2 Using the previous exercise, show that

C(s) — —

S —

1= O(logT)
fors € Ry.
Exercise 4.2.3 Show that
((s) = O(logT)
for s on the boundary of Rr.

Exercise 4.2.4 Show that for o >
| Im(s)| — oo.

, C(s) = O(TY?), where T =

N[

Exercise 4.2.5 For s € Ry, show that
¢'(s)+

Exercise 4.2.6 Show that

1
o1 = O(log?T).

¢'(s) = O(log* T),
where T' = |Im(s)| and s is on the boundary of Rr.

The method used to show that ((s) # 0 for Re(s) = 1 can be
sharpened to yield a region in which ¢(s) # 0.

Theorem 4.2.7 Let s = o + it. There are positive constants c¢; and cy
such that

L- (10?7’)9 <02

where 1 < |Im(s)| < T.
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Proof. In Exercise 3.2.5, we proved
(@)’ ¢lo +it) ¢(o +2it)] > 1
for ¢ > 1. Thus,
[C(o + it)]* = |¢(o + 2it)| 7 [¢(o) 77

Now, ¢(0)(o—1) remains bounded as o — 11 and being continuous
for 1 < o < 2 has an upper bound in that region. By Exercise 4.2.3,
for some constant K,

(o +2it)| 7' > K(logT)~".

Thus we get
1C(o 4 it)|* > K1 (log T) (o — 1)3.
If o
1 <g<?2
T {logT =7 =7
then we obtain .

N> gy
in this region. We can extend this result to the region

A <144
U _a
(logT)® = — (log T')?

and 1 < |Im(s)| < T, by using the mean value theorem. Indeed,
choose s’ such that s’ = ¢/ + it, with

f=l L
7= Mg TP

Then
Clo" +it) — (o +it) = O((o — o’) log? T)

by an application of the mean value theorem and Exercise 4.2.5.
Thus, if ¢; is chosen sufficiently small, we obtain

¢(s)| > (log T)~".
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Exercise 4.2.8 Let s = o + it, with 1 < |t| < T. There is a constant
¢ > 0 such that )
¢'(s)

¢(s)

= O(log” T)

for
C
l———2<0o<2.
(logT)® =" =
We can now prove the prime number theorem in the following
form:

Theorem 4.2.9 Let
P(x) = An).
n<x
Then
Y(z) =2+ 0 (:1: exp (—c(log x)1/10)>

for some positive constant c.

Proof. We have for = which is 1/2 more than a natural number,

[l
Y(x) = 2mi J C(S) . ds

for any @ > 1. We choose ¢ = 1 + c/log9 T, with T > 1 to be
determined later. By Theorem 4.1.4, we can replace the infinite line
integral by the finite line integral:

1 a+iT / s
— —C—(s)ids
27t J o ¢ s

+O(g:1 <z>QA(n) min (1, 71 ‘1og2‘_1>> .

The O-term is estimated as follows:

if n < £orn > 2 then |log%| > log3, and the summation

corresponding to such n is bounded by

P(z) =

o(Fe-n7) =0(“ET)

since

i A?EZ) < (a—1)7"

n=1
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for any fixed @ > 1. For £ < n < 3£, we put z = 1 — 2 and observe
that |z| < 1/2. Also,
log ~ log(1 — 2) + = +
—_ = — —2Z) =z J— P
g n g B )

so that for |z] < 1/2,

‘10 ‘””‘ > 3

— —|Z].
Snl=1

Thus, for the summation corresponding to this range, we get the
estimate

X
(log x) Z 2aT|x — n| (log z)?
x/2<n<3x/2
since |x — n| ranges over %, %, e % + % Therefore, the O-term is

log? T zlog?z
O(a" ).
YTt

Now, —(’(s)/¢(s) has a simple pole at s = 1 with residue 1. By
Cauchy’s theorem,

1 a+iT ! s
Sy S (s)—ds
T JogiT C S
1 biT a=iT\ _ ¢
—rT o0 {(fa+iT+fb+zT + Jo > f ds}

where b = 1 — . The integrals in the above formula are easily

C
log® T
estimated using Exercise 4.2.8. Indeed,

1 b+iT ! s aj, 9T
1 / LS () |« T8 T
2wt Jorir G 7S T

with a similar estimate for
1 a+iT g/ 5

— —2(s)—ds.
ot Jy S

b—iT CI
/b—l—zT C ( ) ds

Also,
<Lz log T.
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Therefore,

2%1og” T

T + 2% log! T +

v =a+0
We choose T such that
2clogz = log!® T.
The error term becomes
O(x exp(—ci (log ) /10))

for some constant ¢; > 0. This completes the proof. O

In a later chapter we will see that this error term can be improved

to
@) (m exp <—02 (log 37)1/2) )

for some constant ca > 0. This can be further improved but not
substantially. The Riemann hypothesis would give an estimate of

O(z'/?log? z).

4.3 Further Examples

The technique introduced in the last two sections can be used to
treat other questions. We illustrate this through some examples.

Example 4.3.1 Prove that

Z d*(n)log? % = zPs(logz) + O <x1/2) ,

n<x

where P3(t) is a polynomial of degree 3 and d(n) denotes the number of
divisors of n.

Solution. By Exercise 1.2.8, we have

¢'(s) _ o dP(n)
C(QS)_nZ:l ns
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Thus, by Exercise 4.1.6 (with & = 3), we have

1 2 32 1 SOES
el log3 L — — ol
3! Z () log no 2 Jig) ((25) st as,

n<x

where a > 1. We first truncate the infinite line integral at R and
estimate the portion of the integral from —oo to —R and from R to
0. By Exercise 4.2.4, we have (*(s) = O([t|?), so that

1 C4(5) $8d B 1 a+iR <4( )

21 J (a) C(2s) s* * = omi a—in C(2 )7d O(E)

Now let C be the rectangular contour joining a — iR, a + iR,  + iR,
and £ — iR. By Cauchy’s theorem,

¢*(s) a*
27” c C(2s) s

4

_ Cs)z®
—d Res;—1 C(2s)s4'

Since )
C(S): ;‘FCO"‘Cl(S—l)‘i‘

it is easily seen that

Resslg_ézéz))zz = zPs(log z)
for some polynomial P3(t) of degree 3. Now we can write
57 CS( ; —ds=Vo+Hy —H_ — V),
where 1 YR ()
e = 2mi Jorin  ((25) s*
and

B 1 o+iR C4(5) T
7 2mi o—iR €(2S) st

The horizontal integrals H4 can be bounded using Exercise 4.2.4
and Theorem 4.2.7 to give

0 z%log” R '
R?logx
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For the vertical integral V; /5, we have
Wi 2 <K 22

Choosing a = 1 + 1/ log x, we obtain that the sum in question is

rlog’ R 1/2
xPs(logz) + O <R210gx> +0 (x ) .

Choosing R = = gives an error term of O (z'/2) as stated. O

Exercise 4.3.2 Suppose that for any € > 0, we have a,, = O(n®). Prove
that for any ¢ > 1 and x not an integer,

D= 2Lm if;Rf(i)deerO(x;E) +O(xelogx),

R

n<x

where
o0

an,
f(s) = vl

n=1

The Lindelof hypothesis is the assertion that for every e > 0,
((s) = O(t) for Re(s) > 1. One can show that it follows from the
Riemann hypothesis. It is, however, a substantially weaker conjec-
ture, which still remains unproved.

Exercise 4.3.3 Assuming the Lindelof hypothesis, prove that for any >0,
Z dk(n) = mPkfl(lOg aj) + O(:L»l/Q-i-e)7
n<x

where di,(n) denotes the number of ways of writing n as a product of k
natural numbers.

Exercise 4.3.4 Show that
M(x) = Z u(n) =0 (gg exp (—c(log x)1/10)>

n<x

for some positive constant c.

Exercise 4.3.5 Let E(x) be the number of square-free n < x with an even
number of prime factors. Prove that

E(x) = %x +0 (a: exp (—c(log x)l/m))

for some constant ¢ > 0.
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4.4 Supplementary Problems

(—=1)¥™) where Q(n) is the total number of prime factors of n, counted
with multiplicity. Show that

Z A(n) =0 (x exp (—c(log x)l/lo))

n<x

Exercise 4.4.1 Let \(n) be the Liouville function defined by \(n) =

for some constant ¢ > 0.

Exercise 4.4.2 Show that

(]2
=
=

Il
—

n

converges for every s with Re(s) = 1.
Exercise 4.4.3 Show that

580 e 140 o (tons )

n<x

for some constants B and c, with ¢ > 0. [This improves upon Exercise
3.1.7.]

Exercise 4.4.4 Let f(s) = > 7, A, /n® be a Dirichlet series absolutely
convergent for Re(s) > 1. Show that for any ¢ > 1,

> Ap=0(z°).

n<x
Exercise 4.4.5 Define a,, forn > 1 by

o
an, 1

Zos T sy

Prove that

Z an =0 (ﬂs exp (*C(log 1;)1/10))

n<x

for some positive constant c.
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Exercise 4.4.6 Prove that

Z p(n)d(n) = O (a: exp <—C(log 33)1/10>)

n<x
for some constant ¢ > 0.

Exercise 4.4.7 If f(s) = Y .2, an/n® is a Dirichlet series converging
absolutely for o = Re(s) = o4, show that

lim / flo+itym°tidt =

Exercise 4.4.8 Suppose

oo

= Zan/ns,
n=1
e}

= an/ns,
n=1

and f(s) = g(s) in a half-plane of absolute convergence. Then prove that
an, = by, forall n.

Exercise 4.4.9 If
oo
=3
n=1

converges absolutely for o = Re(s) > oq, show that

fim o [ (o inpar =3 ot
T 2T | _p PO TIINEE T 2L e

n=1

Exercise 4.4.10 Let Q(z) be the number of square-free numbers less than
or equal to x. Show that

Q(z) = ﬁ +0 <x1/2 exp <—c(log m)l/m))

for some positive constant c.

Exercise 4.4.11 Let v(n) = [[,,,, . Show that

D

n<x

()~
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Exercise 4.4.12 Show that
n
Y <
= o(n)

Exercise 4.4.13 Deduce by partial summation from the previous exercise

that
Z — << log x.

n<:1:
Exercise 4.4.14 Prove that
Z ~ clogx
n<lx ¢
for some positive constant c.
Exercise 4.4.15 (Perron’s formula) Let f(s) = >.>°, an/n® be a

Dirichlet series absolutely convergent for Re(s) > 1. Show that for x
not an integer and o > 1,

>
n<x

1 o+iT

. 1
=5mi ) . f(s) ds+0<z::( ) |an|mm<1’T|logﬁ|>>'

Exercise 4.4.16 Suppose a,, = O(n¢) for any € > 0 in the previous exer-
cise. Show that for x not an integer,

o+iT s pote
Zan—2m f(s)sd3+0< T )

n<x —iT

Exercise 4.4.17 Let f(s) = Y .2 an/n®, with a, = O(nc). Suppose
that

F(s) = C(s)"g(s),
where k is a natural number and g(s) is a Dirichlet series absolutely con-
vergent in Re(s) > 1 — ¢ for some 0 < § < 1. Show that

S ~ g(D(log 2)* 1/ (k — 1)}

n<x

as xr — OoQ.
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Exercise 4.4.18 Let v(n) denote the number of distinct prime factors of
n. Show that

Z o(n) T log x
¢(2)

n<x

asxx — 0.
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Functional Equations

In this chapter we will derive the functional equations of ((s) and
Dirichlet’s L(s, x). Our main tools will be the Poisson summation
formula and the theory of Fourier transforms.

5.1 Poisson’s Summation Formula

Let us recall Fejér’s fundamental theorem concerning Fourier series.
Let f(z) be a function of a real variable that is bounded, measur-
able, and periodic with period 1. The Fourier coefficients of f are,
by definition, given by

1
Cp = / f(x)6727rinxdx?
0

for each n € Z. The partial sums of the Fourier series of f are de-
fined as

SN (l’) — Z Cn627rina:‘

In|<N

Let zp € R be such that the function f(z) admits left and right limits:

flzo£0) = hli%l+ f(zo £ ).
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Then Fejér proved
fl@o+0) + flzo—0) _ . =~ So(zo) + -+ Sn(o)
2 N—o00 N +1 ’

If f(z) is continuous at x(, and the partial sums Sy(xo) converge,
then

e’}
f(l'O) = ¢ + E : (Cn62mn1’0 —I—C,n€_2mn$0>.
n=1

When f(z) is continuous and Y |c,| < oo, then the function is
represented by the absolutely convergent Fourier series

[e.@]
f(:L') _ Z Cn€27rin:c.
—00
If F'(x) is continuous such that

| Pl <o,

—0o0

then we define its Fourier transform by
A w .
F(u) = / F(:n)e_%”’“dx.
—00

It is also a continuous function of w. If

| P < o,

—0o0

then we have the Fourier inversion formula

F(z) = / h F(u)e?™ ™ .

—0o0
Thus, the Fourier transform of F(u) is F(—z).
Exercise 5.1.1 For Re(c) > 0, let F(z) = e~°I*l. Show that

. 2c
Fu) = 2 +4n2u?’

2

Exercise 5.1.2 For F(z) = e™™", show that F'(u) = e~ ™.
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Theorem 5.1.3 (Poisson summation formula) Let F' € L'(R). Sup-

pose that the series
Z F(n+wv)

converges absolutely and uniformly in v, and that

Z |E(m)] < co.

MEZ

Z F(n+v) = Z F(n)e2miny,

nez neZ

Then

Proof. The function
= Z F(n+v)
NneZ

is a continuous function of v of period 1. The Fourier coefficients of

G are given by
1 -
Cm = / G(v)e 2mmVdy

— Z/ 27rimvdv

ne’l

— Z/ 727rimxdx
ne’l

= /_ N F(x)e ™M dy = F(m).

Since ZmGZ |F (m)| < 0o, we can represent G by its Fourier series
Z F(n + U Z F 27r1nv
ne”Z nez
as desired. O
Corollary 5.1.4 With F as above,

Y F(n)=) F(n)

nez ne”L
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Proof. Set v = 0 in the theorem. O
Exercise 5.1.5 With F as in Theorem 5.1.3, show that

S F(* j ) = S By

nez nez
Exercise 5.1.6 Show that

e+1 i 2c
e —1 2 4+ 4Am2n2’
— o0
Exercise 5.1.7 Show that
Z 6—(n+a)27r/x _ 1’1/2 Z e—nzﬂx+27rina

nez ne”L

forany o € R, and x > 0.

Setting o = 0 in the previous exercise gives the following theo-
rem.

Theorem 5.1.8

_n2 _n2
E:enﬂ/z:xl/ZE :enTrac'

nez ne”Z

5.2 The Riemann Zeta Function

We will now derive the functional equation of the Riemann zeta
function and its analytic continuation to the entire complex plane.
To this end, we introduce the 8-function

9(2) _ Z emn2z

ne”L

for z € C, with Im(z) > 0. If we put z = iy and set w(y) = 0(iy),
Theorem 5.1.8 gives us the functional equation:

w(l/z) = 22w (x).

Riemann derives his functional equation from this fact. Recall
that the I'-function is given by the integral

I‘(s):/ e it571dt,
0

valid for Re(s) > 0.
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Exercise 5.2.1 Show that
I'(s+1) = sI'(s)

for Re(s) > 0 and that this functional equation can be used to extend
I'(s) as a meromorphic function for all s € C with only simple poles at
s=0,—1,-2,....

Noting that
F(f) :/ etts 14t
2 0

nxr, we get

s o]
7r_5/2f‘<7>n_5 :/ r3 e T gy
2 0

Hence, for o > 1, we can sum both sides of the above equation over
all positive integers n, to obtain

ﬂ_S/QF(g) C(s) = /000 z2! ( i e_”Qm) dz,

and putting t = n?

the inversion being justified by the absolute convergence of the
right-hand side. Indeed, notice that

[eS)
—_n2 _
E:e nET oo =TT

n=1

Observing that

iefn%m: _ w(x) — 17

n=1 2
we get

520 (e = [ it (CEZL
T F(2>C(s) /0 x?2 < 5 dx.
Let us put
w(z)—1

W(r) = 9

and write the right-hand side as

/ 22 \W (z)d.
0
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We decompose this as
o0 S 1 S
/ a;21W(x)da:+/ x2 W (2)de
1 0
and make the change of variables z — 1/z in the second integral to

get
& s dx &0 1 _§d.fC
/1 x2W(x)x+/l W(;):r 2

Now,

1 _w(l/z)—l_wl/Qw(m)—l_ 1 1/2 1/2
W(E)_ 2 2 - §+2x +a T W(z)

by Theorem 5.1.8. Therefore,

o0 1 _gdl’ o o0 1 1 1/2 1/2 _de
/1 W(x)m : r /1 ( 2—1—2:1: e W(:L‘))m i T
1 1 RO P
= / xz W(m)d—x
S S 1

Putting this together proves that

77_8/2F(§>C( s) = / W(x 1:2 —i—x 2 )d?x

for Re(s) > 1. However, the integral on the right-hand side con-
verges absolutely for all s € C, since W (z) = O(e™™") as x—o0. This
gives the analytic continuation and functional equation for ((s):

Theorem 5.2.2 We have

1 0 s 1-s\ d
7T75/2F(§>C(8) = SG-1) —i—/l W(x) <x5 + 2 > o
forall s € C. Moreover, if we define
§(s) = s(s = Va1 (3 )¢(s),

then £(s) is entire and £(1 — s) = £(s).
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Exercise 5.2.3 Show that ((s) has simple zeros at s = —2n, for n a posi-
tive integer.

Exercise 5.2.4 Prove that ((0) = —1/2.

Exercise 5.2.5 Show that ((s) # 0 for any real s satisfying 0 < s < 1.

5.3 Gauss Sums

For any character x (mod ¢), the Gauss sum 7 () is defined by

=Y x(me(").

m=1

where e(t) = e*™*. The Gauss sum plays a significant role in the
functional equation of Dirichlet L-functions.

Before we proceed, we classify Dirichlet characters (mod ¢) into
two types: primitive and imprimitive. Let o denote the trivial char-
acter (mod q). If d|q and 1 is a character (mod d), then xov is a
character (mod ¢). If d is a proper divisor of ¢ characters (mod ¢) ob-
tained in this way will be called imprimitive. Otherwise, we shall
say the character is primitive.

Example 5.3.1 If (n,q) = 1, then

Solution. We have

x(m)r(x) = imm)x(n)e(m)

on putting h = mn~! (mod ¢), which we can do, since (n,q) = 1. O
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Exercise 5.3.2 If x is a primitive, nonprincipal character (mod q), show
that .
— _ mn
(%) = D0 xm)e (")
if (n,q) > 1.

Theorem 5.3.3 If x is a primitive character (mod q), then |7(x)| = ¢*/?

Proof. By Exercise 5.3.2,

Thus
NP = 30 3 wm)x(ma)e( M2,

Summing over n for 1 < n < g gives

()T = q9(q),

so that |7(x)|? = ¢, as required. O

5.4 Dirichlet L-functions

The functional equation for a Dirichlet L-function L(s,x) can be
derived easily by means of the Poisson summation formula. The
discussion splits according as ¥ is an even or odd character, that is,
according as x(—1) = 1 or —1, respectively.

We discuss the even case first and relegate the odd case to the
exercises. Thus, suppose x(—1) = 1. We have

Wfs/2q5/2r(f>nfs _ /oo e mv/qx‘s d:E
2 0 T

We multiply this equation by x(n) and sum over n to get

e pin = [ (o)
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for Re(s) > 1. Since x(—1) = 1 and x(0) = 0, we rewrite this as
1 [ dx
- 5/2 hind
2/0\ T 6($7X) T Y

where
[ee)

O, x) = Y x(n)e ™™/,

n=—oo

We can derive a functional equation for §(z, x) by noting that upon
multiplication of the Gauss sum 7(%), we get

q [ee)

T(X)0(x, x) = Z x(m) Z o2 /q+2mimn/q

m=1 n=-—00

By Exercise 5.1.7, the inner sum is equal to

(q/x)V/? Y em(mfaynale
so that
q o)
T(X)0(z,x) = (Q/x)l/QZy(m) Z e~ (nat+m)*m/zq
m=1 n=—o00
= (q/$)1/2 Z Y(l)e—ﬂﬂ'/xq
l=—c0

= (a/0)"*0"", ).

Thus, as before, we write the integral for L(s, x) as
1 [ & d 1 [ _s d
2[ IEQG(I',X)QT—{—Q/; :E_ie('m_laX)ﬁ

1 [ dr q1/2 0o . dr
2/1 220(z,X) - + 2T(x)/1 272 0z, %)

The right-hand side is regular for all s € C, since #(z, x) = O(e™™).
Also, if we replace s by 1 — s and x by %, the expression becomes

1/2 s dx 1 —s dx
q = 1 —

9 - - 9 -
2 (X) \/1' T2 <I7 X) T 2 /1 T 2 ($7 X) Y
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which is the previous expression multiplied by ¢'/2/7(x), since
I7(x)|> = ¢. This proves the following theorem.

Theorem 5.4.1 Suppose x(—1) = 1. Set

§(s, ) = 772¢7T () L(s. ).
Then £(s, x) in entire and
€(S7X) = wX€(1 - SaY)7

where wy = 7(x)//q-

Exercise 5.4.2 Suppose x(—1) = 1. Show that L(s, x) has simple zeros
ats = —2,—4,-6,. ...

Below, we will derive the functional equation in the case x(—1) =
—1. Note that the above argument fails because for now, 6(z, x) is
identically zero.

Exercise 5.4.3 Prove that

7T_(S+1)/2q(s+1)/2f<7s + 1)n_s = /00 ne~ T w4, 5 dz

and hence deduce that

—(stb) (st (s+1 _ 1= a1 dw
T2 g2 F( 5 )L(S,x) ; O1(x, x)z 2 —

2
where
> 2
01z, x) = Y nx(n)e " /.
n=-—o0o0
Exercise 5.4.4 Prove that
o (o]
Z ne—anz/q—i-Zwimn/q _ i(q/x)3/2 Z (n + m)e—w(n-ﬁ-m/q)?q/x'
n=-—00 n=-—o0o q

Exercise 5.4.5 Prove that for x(—1) = —1, if we set

— —8/2 5/2 s+1
§(s,x) =7"""q F( 5 )L(S,x),
then £(s, x) is entire and

£(S7X) = wxg(l - 85%)7

where wy, = 7(x)/iq"/?.
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5.5 Supplementary Problems

Exercise 5.5.1 Let -
F) = ane ™
n=1

converge for y > 0. Suppose that for some w € Z,

f/y) = (=1)"y" f(y),

and that a,, = O(n°) for some constant ¢ > 0. Let

Ls(s) = Zann_s.
n=1
Show that (2r)~°T'(s) L ¢(s) extends to an entire function and satisfies the
functional equation
(2m)~°L(s)Ly(s) = (=1)“(2m) """ (r — s)Ly(r — s).
Exercise 5.5.2 Let

[e.9]
g(y) — Zane—%my
n=0
converge for y > 0. Suppose that for some w € Z,

9(1/y) = (=1)"y"g(y)

and that a,, = O(n®) for some constant ¢ > 0. Let Ly(s) = > 7" apn™*.

n=1
Show that (2m)~*I'(s)Lg4(s) extends to a meromorphic function with at
most simple poles at s = 0 and s = r and satisfies the functional equation

(2m)°T(s)Lg(s) = (=1)*(2m)" °I'(r — s)Lg(r — s).
Exercise 5.5.3 Let

_ a5 if =4,
‘I’(“")_{o " ez

Show that

¥(z) + Z e(mx) < 1

2mim | — 2nM||z||’
0<|m|<M

where e(t) = e*™ and ||z|| denotes the distance from x to the nearest
integer.
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Exercise 5.5.4 Let f(z) be a differentiable function on [0, 1] satisfying
|f'(z)| < K. Show that

Z /Olf(x)e(mﬂt)da:—f(o);f(l) < KlogM.

M
Im|<M

Deduce that

- [ _ O+ ()
;/0 f(z)e(mzx)dx = 5 .

Exercise 5.5.5 By using the previous exercise with f(xr) = x?, deduce
that

—=—.
i=m 6

Exercise 5.5.6 (P6lya - Vinogradov inequality) Let x be a primitive
character mod q. Show that for ¢ > 1,

Z x(n)| < ¢*?logq.

n<x
Exercise 5.5.7 Show that if x is a primitive character (mod q), then
x(n) ¢ logg
L1,y =Y 2 a7 084
Y
forany x> 1and g > 1.

Exercise 5.5.8 Prove that
> L(1,x) = ¢(q) + O(¢"* log q),
X7X0

where the summation is over all nontrivial characters (mod q).
Exercise 5.5.9 For any s € C with Re(s) > 0, show that for any x > 1,

L(s,x) = xén) +0 (|5|q1/2 logq> :

ox?
n<x

where x is a nontrivial character mod q and o = Re(s).
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Exercise 5.5.10 Prove that for any o > 1/2,

> L(o,x) = ¢(q) + O(¢**°),
X7X0

where the sum is over all nontrivial characters (mod q).

Exercise 5.5.11 Let By, (x) denote the nth Bernoulli polynomial intro-
duced in Chapter 2. For n > 2, show that

B, (x) _ Z e(mx)
(

2mim)"’
m7#0

Exercise 5.5.12 Let f(x) be differentiable on [A, B] and satisfy for some
constant K, |f'(z)| < K for all = € [A, B]. Show that

B oo B
INCEDS /A f(@)e(ma)dz,

m=—0Q0

where the dash on the summation means that the end-terms are replaced
by f(A)/2and f(B)/2. (Hint: Use Exercise 5.5.4.)

Exercise 5.5.13 Apply the previous exercise to each of the functions
f(x) = cos(2mx?/N) and f(x) = sin(272%/N) to deduce that

Nel (1+4)NY?2 if N =0 (mod4),
g e(n7>: N1/2 1f N =1 (mod4),
= \N 0 if N =2 (mod4),
iN1/? if N =3 (mod4).

Exercise 5.5.14 Let x be a nontrivial quadratic character modp with p
prime. Show that

-1

00 = 32 xtme( ) PR R i)

=1

bS]

From this result we can deduce the law of quadratic reciprocity
as follows.

Let p and ¢ be distinct odd primes. Let 7(x) be the Gauss sum for
x the quadratic character modulo p. Using the above formula and
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(a/q) = alD/2 (mod q) we get

)T = (D@ ()2 e )2

— (_1)(p—1)/2p(_1)(p—l)(q—l)/4p(q—1)/2

= (C1)eD/2+-DE-D/4, <1;> (mod q).

On the other hand, using the multinomial theorem, we obtain

()" = 1007 = 7(x) (Z (Z) e(ng/p) + f(e(l/p))> ,

where f(x) is a polynomial with integer coefficients divisible by ¢.
Using Exercise 5.3.2 we get

> (Z) e(ng/p) = (;) 7(X)-

n

)T = (;) (—1)D/2p & h(e(1/p))

for another polynomial h(z) with integer coefficients divisible by g¢.
Collecting same powers of e(1/p) and using the fact that 1, e(1/p),
e(2/p), ..., e((p —2)/p) are linearly independent, since 1 + z + 22 +
...+ 2P isirreducible (see, for example, [EM, p. 37 and p. 183]) we
get

<Z) p(—1)P-D/2 = (1) e-D/2HE-Da-D/1, (2) (mod q),

from which it follows easily that

(0)- @)

Exercise 5.5.15 Let ¢(s) = (2m)*T'(s)((s)((s+1). Show that ¢(—s) =
b(s).

Exercise 5.5.16 Show that ¢(s) in Exercise 5.5.15 has a double pole at
s = 0 and simple poles at s = 1. Show further that Ress—1¢(s) = m/12
and Ress—_1¢(s) = —m/12.



5.5 Supplementary Problems 83

Exercise 5.5.17 Show that if o(n) = }_,, d, then

57— ((s)es + ).

n=1
and that
0 24100
1
S e o L [ me)s)gts + 1.
n " omi 29— ico
n=1
Exercise 5.5.18 Show that
[ee)
n —27rnm o —27rn/m
@ - = + logx + Z .

Exercise 5.5.19 For a and b coprime integers and b > 0, define

b—1
C ay _ o2mija/b.
55
Let q be prime and (p, q) = 1. Show that
g+ 22) - e -2)

q
Exercise 5.5.20 Let r = p/q. Show that

PE(I) V t—l—t2ir9(t +12i7“) - (i\;piq)c(égg)’

with notation as in the previous exercise.

Exercise 5.5.21 Deduce from the previous exercise the law of quad-
ratic reciprocity

E) <g> — (T

C)() =0

for odd primes p and q, and where (&) denotes the Legendre symbol.

Exercise 5.5.22 Suppose that f(s) is an entire function satisfying the
functional equation

AT (s)f(s) = AY°T(1 — 5) f(1 — s).
Show that if f(1/2) # 0, then

f’(%) — —£(1/2) <logA + ?8@) .




6
Hadamard Products

An entire function f(z) is said to be of finite order if for some o > 0,

we have
f(z) =0 (")

as |z| — oo. If @ = 0, then f(z) is constant by Liouville’s theorem.
The infimum of the numbers « such that the above estimate holds
is called the order of f(z).

In the 1890s, Hadamard developed the theory of entire functions
of finite order. He showed that, very much like polynomials, they
can be factored into an infinite product over the zeros of f(z).

In this chapter we will derive this factorization theorem of
Hadamard for entire functions of order 1 and then apply it to de-
rive a wider zero free region for ((s).

6.1 Jensen’s Theorem

Let f(z) be an entire function of finite order 3. Jensen’s theorem
relates (3 to the distribution of the zeros of f(z).

Example 6.1.1 Show that an entire function f(z) of finite order 3 with-
out any zeros must be of the form f(z) = 9%), where g(z) is a polynomial
and B = degg.
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Solution.
Let h(z) = log f(z) — log f(0). Then h(z) is entire, since f(z) has
no zeros. Also, for any € > 0,

Reh(z) = log |f(z)| < R°*<.
Writing

o0

h(z) =Y (an +iby)z"
n=0
with a,,, b, € R, we see that for z = Re'?,
Re(h(z)) = Z anR" cosnf — Z b R" sinnf.
n=0 n=0
By Fourier analysis, we get

oalrr < [ [Re (1 (1) ).

Since h(0) = 0, we have ag = 0, and therefore

/0 " Re (h (Reie)) do = 0.

Observe that for x € R, we have

2¢ if x>0,
|z| + 2 =
0 if z<0O.

Hence

lan|R" < /0%{|Re(h(Rei9))!+Reh(Rei9)}d0

< RUTC
Letting R — oo yields a, = 0if n > f. O
Notice that in this example the same result holds if the estimate
B+e
) < e

holds for |z| = R; and R; is a sequence tending to infinity.
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Theorem 6.1.2 (Jensen’s theorem) Let f(z) be an entire function of
order [ such that f(0) # 0. If z1,29,..., 2, are the zeros of f(z) in
|z| < R, counted with multiplicity, then

n

1 2m . R
_ 1 10 = 1 1 T 0 1]
o [ el (ela = o £(0)] + o (")

Proof. We may assume, without loss of generality, that f(0) = 1.
Also, it is clear that if the theorem is true for functions g and h, that
it is also true for the product gh. Thus, it suffices to prove it for
functions with either no zero or one zero in |z| < R. Indeed, if f has
no zeros in |z| < R, the right-hand side is zero. The left-hand side is

! (log f(2)

Tm |z\:R z
which by Cauchy’s theorem is zero. Taking real parts gives the de-
sired result.

If f has one zero z = z; in |2| < R, we consider the contour
|z| = R taken in the counterclockwise direction and cut it from z;
to the boundary. We deform the contour so that we go around z;
in a clockwise direction along a circle of radius € (say). Then, by
Cauchy’s theorem with g(z) = log f(2),

1 dz
0=— —

2mi Cg(z) z
where C is the contour given above.

Since the argument changes by —27¢ when g(z) goes around the
zero z = z1, we see that as ¢ — 0, we deduce

1 27 .
%Al%W%Wwﬁ%R,

|21]
as desired. This completes the proof. O

An alternative proof of Jensen’s theorem can be given that avoids
the use of cutting the plane. One considers

0=

Then f(z) is regular for |z| < R. Moreover, |f(z)] = 1 on |z| = R,
and |f(0)| = |z1]/R, as a simple calculation shows. Jensen’s theorem
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is easily verified for this choice of f. But any holomorphic function
on |z| < R can be written as a function with no zeros in |z| < R and
a product of functions of the form

R(z — z;)
R?2 —ziz~

Now Jensen’s theorem easily follows.

Corollary 6.1.3 Let f be as in Theorem 6.1.2. Then

log <|21’Rn> < max log|f(z)| —log|f(0)].

lznl ) T Iel=R
Proof. This is clear from Jensen’s theorem. O
Now define n¢(r) := n(r) to be the number of zeros of fin |z| < 7.

Exercise 6.1.4 Show that

R on(r)dr
/0 (r)d < max log|f(2)| —log|f(0)],

r |z|=R
with f as in Jensen’s theorem.

Exercise 6.1.5 If f(z) is of order (3, show that ns(r) = O(r?*€), for any
e> 0.

Exercise 6.1.6 Let f(z) be an entire function of order [3. Show that

[e%S)
D leal™
n=1

converges for any € > 0 (Here, we have indexed the zeros z; so that
21] < lz2f < --).

6.2 Entire Functions of Order 1

We will now derive a factorization theorem for entire functions of
order 1. A similar result holds for entire functions of higher order,
and we relegate their study to the supplementary problems.
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Theorem 6.2.1 Let f(z) be an entire function of order 1 with zeros
21, 22, . .. arranged so that |z1| < |zo| < --- and repeated with appro-
priate multiplicity. Then f can be written as

F(2) = B2 ﬁ (1= e,
n=1 "

where A and B are constants.

Proof. The product

converges absolutely for all z, since
(1—z)e*=1—22+-..

and by Exercise 6.1.6. Thus, P(z) represents an entire function. If
we write

f(z) = P(2)F(2),
then F'(z) is an entire function without zeros. If F' were of finite
order, we could conclude by Example 6.1.1 that F'(z) = e9(2) where
g(z) is a polynomial.
By the remark after Example 6.1.1, it suffices to show that

|F(2)] < R

to deduce that F(z) = e9*) where g(z) is of the form A + Bz for
certain constants A and B.
To this end, we will choose R; satisfying

‘Ri— 2n]| > [20] 72

for all n. This can be done, since the total measure of the intervals
(|2n| = |2nl72, |2n| + |2a|72) is bounded by

[e%e)
2 Z |Zn’_2 < 0,
n=1

since f(z) has order 1.
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We write
P(z) = P1(2) P2(2) Ps(2),

where in P, |z,| < %Ri, in Py, %Ri < |zn| < 2R;, and in Ps, |2,| >
2R;. For the factors of P; we have for |z| = R;,

(o-2)e 2

_ 1>e—\z|/\zn| > ¢~ Ri/lznl

Zn
Since
1\
> leal ™ < (GR) X ll

|zn\<%R n=1

we get
|Pi(2)] > eXp(—R}“).

For P5(z),

> e 2|z — 2,|/2R; > R;?

(e
Zn

by the way we have chosen R;.
Since n(R;) = O(R; ), we get

_ 1+e c
|P2(Z)| > (Rz S)Ri > exp(_clR}+2 )

Finally, for P3(z), we have |z/z,| < 1/2 so that

(-2
Zn

0o
Z |ZTL‘_2<(2R)_1+EZ|ZTL‘_1_E'
n=1

|zn|>2R

> 6702R§/|zn\2

and

Thus, on |z| = R; we have
|P(2)] > exp(—R"),

so that
|F(z)] < exp(R1+4€).

Hence, F(z) = e9), where g(z) is a polynomial of degree at
most 1. |
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6.3 The Gamma Function

We will prove that 1/I'(z) is an entire function of order 1 and derive
its Hadamard factorization.

Exercise 6.3.1 Show that

== Ldy T
o 14w sinTx

for0 <z <1.

Exercise 6.3.2 Show that
w/2
I'(x)T(y) = 2T (x +y) / (cos 0)**~(sin0)*Y~1do
0

forz,y > 0.

Exercise 6.3.3 Show that
1
P(2)T(y) = T(z + ) / A=1(1 = A ldA,
0

(The integral is denoted B(z,y) and called the beta function.)

Exercise 6.3.4 Prove that

for0 <z <1.

Exercise 6.3.5 Prove that

()

Exercise 6.3.6 (Legendre’s duplication formula) Show that

1

F(2x)F<§) - 22x—1r(x)r(x + %)

forx > 0.
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Exercise 6.3.7 Let c be a positive constant. Show that as v — oo,
Iz 4 ¢) ~ 2T'(x).
Exercise 6.3.8 (Stirling’s formula) Show that
T(z) ~ e %27 12/27
asx — oQ.

Exercise 6.3.9 Show that 1/T'(z) is an entire function with simple zeros
atz=0,—1,-2,....

Exercise 6.3.10 Show that for some constant I,

(o 1 .
FF((Z)):/O {1—(1—t) 1}%—[(.

Exercise 6.3.11 Show that for z not a negative integer,

FF((j)):Z<n—11—1_n—1i—z)_K

for some constant K.
Exercise 6.3.12 Derive the Hadamard factorization of 1/T'(z):

1 a z
7 1 7) —z/n
() e znl:Il ( + " e )

where ~ denotes Euler’s constant.

Exercise 6.3.13 Show that

1 1 © [u] —u+ 3%
log () = (= - 3) logz‘HzlogQ”/o Tags

Exercise 6.3.14 For any § > 0, show that

logl'(z) = (z— %) logz—z+;log2w+0(|i|)

uniformly for —m +§ < argz < — 4.
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Exercise 6.3.15 If o is fixed, and |t| — oo, show that
ID(0 + it)] ~ e~ 37l |¢|72 /27
Exercise 6.3.16 Show that 1/I'(z) is of order 1.

Exercise 6.3.17 Show that

I"(z)
I'(2)

for |z| — oo in the sector —m + 6 < arg z < m — 0 for any fixed § > 0.

:logz—l—O(é’)

6.4 Infinite Products for £(s) and £(s, x)

In this section we will establish that £(s) and £(s, x) are entire func-
tions of order 1. Then we will derive their Hadamard factorizations.
Recall that

£(s) = (s — D1 (2) (o)

and that when Y is a primitive character (mod ¢),

s+a (s—i—a

§(s,%0) = (a/m) F 0 (252 ) Lis ),

where a = 0 or 1 according as x(—1) =1 or —1.
Exercise 6.4.1 Show that for some constant c,

[€(s)| < exp(c|s|log]s])
as |s| — oo. Conclude that £(s) has order 1.

Exercise 6.4.2 Prove that ((s) has infinitely many zeros in 0 <Re(s) < 1.

Exercise 6.4.3 Show that

&) =M (1- %)es/p,
p

where the product is over the nontrivial zeroes of ((s) in the region 0 <
Re(s) < land A= —log2, B = —v/2—1+ % log 4, where ~ is Euler’s
constant.
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Exercise 6.4.4 Let x be a primitive character (mod ¢q). Show that £(s, x)
is an entire function of order 1.

Exercise 6.4.5 Show that L(s, x) has infinitely many zeros in 0 < Re(s)

<1 and that
— oAtBs _ 5\ s/
§sx) = e E]Q J)er.

where the product is over the nontrivial zeros of L(s, x).

Exercise 6.4.6 For A and B occurring in the previous exercise, show that

et =¢(0,x)
and that

Re(B) = — > Re (;)

where the sum is over the nontrivial zeros p of L(s, x).

6.5 Zero-Free Regions for ((s) and L(s, x)

In Exercise 3.2.5 we proved the nonvanishing of ((s) for Re(s) = 1.
A similar deduction was made for L(s, x) in Exercise 3.2.12. Using
the Hadamard factorization for £(s) and &(s, x), we will derive a
wider zero-free region.

The starting point is

ne ’

_Re (CI(S)) _ ni::l A(n) cos(tlogn)

where, following custom, we write s = o + it.

Exercise 6.5.1 Show that

-3

(o (o+i (o +2i
g((a)) —iRe ( g((a iz‘t?) —Re ( C((a j:ig) 20

fort e Rand o > 1.
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Exercise 6.5.2 For 1 < o < 2, show that

o) _ 1

(o) o—1

+ A

for some constant A.
Exercise 6.5.3 Prove that
~Re (C/(S)) < Aloglt| = 3 Re ( L, 1)
¢(s) > s—p p

forl <o <2and |t| > 2.

Exercise 6.5.4 Show that

11
Re( +—)>0.
s—p p

Deduce that

—Re <CC/((5))> < Alog|t|

forl <o <2 |t| >2.

95

Exercise 6.5.5 Let p = [3 + iy be any nontrivial zero of ((s). Show that

for [t| > 2, '
" Re (C (o +it)

1
C(o—{—it)) < Aloglt] - o

_ﬁ'

Theorem 6.5.6 There exists a constant ¢ > 0 such that ((s) has no zero

in the region

o>1— S [ >2
log [t]

Proof. By Exercise 6.5.5,

¢'(o +1it) 1
—Re (| ZF——+~ Aql — .
e(((a+z‘t))< 1log ] o—p0
We also know, by Exercises 6.5.2 and 6.5.4, that
('(o) 1
C(O') < T + Ag
and
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Inserting these inequalities into

(o) (o +it {0+ 2it)
o R (i) R (o) 20

(Exercise 6.5.1), we obtain

4 3
— % 4 Aloglt
ey og |t|

-3

for some constant A. Taking o = 1+ ¢/ log |t| gives

B<1+ A d
log|t|] (3+ Ad)log|t|’

so that if ¢ is sufficiently small, we get

B<1

c

~ logt
for some suitable positive constant c. O

Corollary 6.5.7 There exists a constant ¢ > 0 such that ((s) has no zero

in the region
Cc

c>1l— —————.
- log(|t] +2)

Proof. The region o > 1, |t/ < 2 contains no zeros of ((s). Thus,
there must be a constant ¢; > 0 such that ((s) has no zeros in o >
1—c¢; and |t| < 2. Combining such a region with the zero-free region
provided by the theorem gives the result. O

Exercise 6.5.8 Show that

—Re (2/((;;) <Re <3%

1
for some constant ¢y > 0 and o > 1.

) + c1 log(|t| +2)

In the following exercises we will derive analogous results for the
Dirichlet L-functions L(s, x).

Exercise 6.5.9 Suppose that x is a primitive character (mod q) satisfying
X2 # xo. Show that there is a constant ¢ > 0 such that L(s, ) has no

zero in the region
C

o>1-—— -~
log(q[t| + 2)
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Exercise 6.5.10 Show that the previous result remains valid when x is a
nonreal imprimitive character.

We now proceed to extend the previous results for x? = xo. Let
us first observe that

L'(s,x0)  ((s)
L(s,xo)  C(s)

for o > 1. By Exercise 6.5.8,

‘Slogq

—Re (g((;)) < Re (i) + c1 log([t| + 2).

Hence, if 2 = xo,

L 2it, x>
—Re( (0 + zt,x))

1
R (7) log (|t + 2)).
Lo + 2it, v2) e\ 1rai) Teloslalltl +2))

When we insert this estimate into our previous calculations, we
obtain

1 <
c—0 o-—1

—I—Re( )+C310g(Q(|’Y| +2)).

o—1+4 21y

Let us write £ for log(q(|t| + 2)). Taking ¢ = 1 + § /£ and assuming
v > 0/L gives
4 3 L

so that
4 — 635 )

16 + 5c3d £

Hence if ¢ is sufficiently small in relation to c3, we get the following;:

6<1—

Theorem 6.5.11 There exists an absolute constant ¢ > 0 such that if
0 < 6 < cand x is a real, nonprincipal character (mod q), L(s, x) has no
zeros in the region

)
1-—
7T
and
0
t] > ,
log ¢

where £ = log(q(|t| + 2)).
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The case where [t| < 0/ log g still needs to be considered. We will
show that for suitable ¢ (independent of ¢) there is at most one zero
in the region and this zero is simple and real. Such a zero, if it exists,
is called a Siegel zero in the literature.

Theorem 6.5.12 There exists a positive absolute constant c such that if
0 < 0 < ¢, then L(s, x) has no zeros in the region

Cc

o>1——— -
log q([t| +2)

except possibly if x is real and nonprincipal, in which case there is at most
one simple, real zero in the region.

Proof. We need only consider the case where Y is real and nonprin-
cipal and |y| < 6/ logq. First suppose there are two complex zeros
in the region. We have

I 1
_M<Clbgq_z ,

L(o, x) ~0—p

the sum over the zeros being real, since they occur in complex con-
jugate pairs. If 3 + iy are zeros of L(s, x), with v # 0, then

L'(o,x) 2(c — )
— <l -
Lio,x) %1 g2t 2
Also,
L'(o,x)  ~=x(n)A(n) —A(n) (o) 1
_ - ANYZPN s — _ _
L(o, x) ; ne - ; ne C(o) - o—1 @
for some constant ¢g. Thus
2(c —B)
_ 1 __2e=r
o1 T
and taking o = 1 + 2§/ log ¢ gives
Lo 8
g1~ 208 5(c — B)

because

1) 1 1
Iyl < logq —5(0—1) < 5(0—5)~
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Therefore, 5
6<1—
log q
for a sufficiently small 6. The argument for two real zeros or a dou-
ble real zero is the same. This completes the proof. O

6.6 Supplementary Problems

Exercise 6.6.1 Prove that I'(s) has poles only at s = 0,—1, -2, ..., and
that these are simple, with

Res,—_I'(s) = (—1)%/k!.

Exercise 6.6.2 Show that

e VT = 1/ 2°T'(s)ds,
(o)

2me
forany o > land x > 1.

Exercise 6.6.3 Let f(s) = >.>°, a,/n® be an absolutely convergent
Dirichlet series in the half-plane Re(s) > 1. Show that

- 1
Zane_”/x = / f(8)x°T(s)ds
fo— 271 (U)

forany o > 1.

Exercise 6.6.4 Prove that
inz=z[(1- 7)
Sin z y4 < n27'r2

n=1

Exercise 6.6.5 Using the previous exercise, deduce that

1
Yo
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Explicit Formulas

In this chapter our goal is to derive the explicit formula

¢($):x—§az)—i(<8))—;log(1_$—2)7

where the sum is over the nontrivial zeros p of ((s). The method
will then be used to derive the result

Y(z)=z+0 (x1/2 log? x)

assuming the Riemann hypothesis. A similar result can be obtained
for primes in arithmetic progressions.

7.1 Counting Zeros

If f(2) is analytic in C' and non-vanishing on C, then the integral

! L/(z)dz

21 Cf

is equal to the number of zeros of f inside C, counted with multi-
plicity. This is easily seen by Cauchy’s theorem.
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Since

d
£1ng(z) =

we have

/ L/(z)dz = Aclog f(2),
cf

where Ao denotes the variation of log f(z) around the contour C.
Also,

log f(z) = log|f(2)| + iargf(2),

and log | f| is single-valued. Thus, the formula can be rewritten as

1
%Acargf(z).

Exercise 7.1.1 Let L be the two line segments formed by the line joining
2 to 2 + iT and then § + iT. Show that

Aparg(s—1) = +0(%).

Exercise 7.1.2 With L as in the previous exercise, show that

s/2

T
Apargm %= = —flogw.

Exercise 7.1.3 With L as in the previous exercise, show that
s T T T 3 1

st (3 +1) = Tiog T - Ty e o( L)
rarg 2—|— 5 log 5 2+87T+OT

Exercise 7.1.4 Show that

1
zp: TE (T2 O(logT),

where the sum is over the nontrivial zeros p = (3 + i~y of ((s).

Exercise 7.1.5 Let N(T') be the number of zeros of ((s) with 0<Im(s)<
T. Show that

N(T+1)—N(T) =0(ogT).
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Exercise 7.1.6 Let s = o + it with t unequal to an ordinate of a zero.
Show that for large |t| and —1 < o < 2,
¢'(s)
(s)

o1
=Y '—— +O(loglt]),
) TP

where the dash on the summation indicates that it is limited to those p for
which |t —~| < 1.

Theorem 7.1.7 Let N (T') be the number of zeros of ((s) in the rectangle
0<o<1,0<t<T. Then
T T T 7 1

Slog - — o~ + 2 +S(1) +0(7),

N(T
(T) = 27 2 2w 8

where
7S(T) = Aparg((s)

and L denotes the path of line segments joining 2 to 2 4 iT and then to
%+ 4T. We also have
S(T)=0(logT).

Proof. Let R be the rectangle with vertices 2, 2 + /1", —1 + T, and
—1, traversed in the counterclockwise direction. Then

2rN(T) = Ararg{(s).

There is no change in the argument as s goes from —1 to 2. Also,
the change when s moves from § + ¢T to —1 + ¢T and then to lis
equal to the change as s moves frorn 2t0 2+ 47T and then to 1 +iT,
since

E(o+it) =61 — o —it) =&(1 — o +it).

Hence 7N (T) = A arg{(s), where L denotes the path of line seg-
ments joining 2 to 2 + iT and then to £ + iT. By Exercises 7.1.1 and
7.1.3, we deduce

N(T) = T T T 7 (1)

= og — — — -
or 085 — o T HSM+O(5

where
wS(T) = A arg ((s).

Now, the variation of ((s) along o = 2 is bounded, since log {(s) is
bounded there. Thus,
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7S(T) = O(1) — /12:: Im <g((j))> ds.

We now apply Exercise 7.1.6, which says that

() 1o
(o) 2 5—p T OBt

where the dash on the summation means | Im(s—p)| < 1. Observing
that
2+4T 1
/ Im ( )ds = Aarg(s — p)
14T S—p

is at most m and noting that the number of terms in the sum above
is O(log|t|) by Exercise 7.1.5 gives us

S(T)=0(logT).

This completes the proof. O

7.2 Explicit Formula for ¢ (x)

Our main tool in deriving the explicit formula for ¢(z) will be The-
orem 4.1.4. Recall that this theorem says that

1 c+iR .s
I(z,R) = / L ds
2mt Jo_ip S
satisfies
z°min(1, R~logx|™Y) if z#1,
[ (z, R) —0(z)| <
‘ if z=1
R )
where
0 if 0<a<l,
d(z)=1< 1/2 if z=1,

1 if =>1.
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Exercise 7.2.1 Show that if x is not a prime power and x > 1, then

c+iR / s
ww:?/ _eBe

—ir  C(s) s

£0 (S (2 min (1.0 s 2] ).

Exercise 7.2.2 Prove that if x is not an integer, then
-1
Z ‘logg) =0 <xlog:ﬂ> ,
) n ]
FT<n<2z
where ||x|| denotes the distance of x to the nearest integer.

Exercise 7.2.3 By choosing ¢ = 1 +
deduce that

B 1 c+iR CI(S) x5 $10g2$
=57 L a0 (TR)

. 1 » ' .
if x — 5 is a positive integer.

I L_ iy the penultimate exercise,
ogx

Exercise 7.2.4 Let C be the rectangle with vertices c—iR, c+iR, —U+iR,
—U — iR, where c = 1+ 1/logx, and U is an odd positive integer. Show
that

21t Jo  ((s) s

! )2 e v ¢'(0) z”
[vI<R

where we are writing the nontrivial zeros of ((s) as p = [ + iv. (R is
chosen so that it is not the ordinate of any zero of ((s).)

Exercise 7.2.5 Recall that the number of zeros p = [ + i~y satisfying
|y — R| < 1is O(log R). Show that we can ensure |y — R| > (log R)~!
by varying R by a bounded amount.

Exercise 7.2.6 Let U be a positive odd number. Prove that
[¢'(5)/¢(s)] < (log 2|s])

for =U < o < —1, provided that we exclude circles of a fixed positive
radius around the trivial zeros s = —2,—4, ... of ((s).
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Exercise 7.2.7 In Exercise 7.2.4, letting U — oo along the odd numbers
and R — oo appropriately (that is, as in Exercise 7.2.5) prove that

b =o-3 2 SO Loy,
p

p - C0) "2
whenever x is half more than an integer.
We use these ideas to prove the following result:
Theorem 7.2.8 For some constant ¢1 > 0,
Y(x)=x+0 (:c exp (—01 \/@))

Proof. By the solution to Exercise 7.2.7, we know that

B zf ¢'(0) 1 L zlog?z xzlog’ R
1[1(:B)—:U—|/)|Z<R—C(O)+2log(1—m )+O< 7 +Rlogx>'

By Theorem 6.5.6, we have Re(p) = 3 < 1 — 75, so that the sum

over the zeros is
clogx 1
T exp ( — ) Z —.
log R
gR/ = p

By partial summation and Theorem 7.1.7 we have

1 Rlogt
3 o <</ %dt < log? R.
<R ’P 1
The optimal choice for R satisfies

log R = ¢y(log z)'/?

for some appropriate constant cy. It is now easily verified that this
gives the desired result. O

Exercise 7.2.9 Assuming the Riemann hypothesis, show that
Y(x)=xz+0 (:L'l/2 log? x)

as r — oQ.

Exercise 7.2.10 Show that if
Y(z) =2+ 0 (m1/2 log? x)

then ((s) has no zeros for Re(s) > 1/2.
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7.3 Weil’s Explicit Formula

The general philosophy of explicit formulas is to relate the sum of a
suitable function over prime powers to the sum of the Fourier trans-
form of that function over the zeros of the zeta function. The same
philosophy applies to any function of the Selberg class (see Chapter
8). Here, we develop it only for the zeta function. In many applica-
tions, such formulas are useful in establishing subtle information on
the distribution of prime numbers by exploiting information about
the zeros of ((s) or vice versa.

Lemma 7.3.1 Let ¢ > 0and let h(s) be holomorphic in the strip —3 —e <
Re(s) < L +eand satisfy h(s) = h(—s), h(s) = O(|s| 71 7) as |s| — <.
Then /(1
1 §
—_— s)ds = h(ivy),
2mi (3+e) 5( Z

where £(s) = s(s — 1)7r_3/2F(s/2)§(s), and the summation is over all -y
such that 1 + i~y is a zero of {(s) with Im(i~) > 0.

Proof. Recall that £(s) is an entire function of order 1 and has the
factorization )

ZoBs _ 5\ es/p

5¢ l;[ (1 p) e’’’

where the product is over the nontrivial zeros p = § + iy of {(s) in
0 < Re(s) < 1 (Exercise 6.4.3).
Thus

§ls) _ 1
&s) B+§(s_

By the argument in Exercise 7.1.6, we see that

£'(s) _ / s o
() = 2 gy +Oes(l+ 1)

where the dash on the summation means |Im(s — p)| < land ¢t =
Im(s). For any given T' we can vary 7" by a bounded amount to
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ensure that |y — ¢t| > (log7)~! by the argument in Exercise 7.2.5.
Thus the summation is O(|s|log |s|) for Im(s) = T

Thus, by the hypothesis on h(s), we can always find arbitrarily
large T' > 0 such that

£G+9)

i ts)
fors =oc+iT and -1 — ¢ < o < 1+ e. Now let Ry be the closed
rectangular contour described by traversing the vertices 3 + ¢ — iT),
t+e+iT, —3 —e+iT,and —% — e —iT. Since the zeros of ((s) occur
in pairs 1/2 + i, it follows by Cauchy’s theorem that

h(s) = O(ls|™)

1 76/(% + ) h(s)ds =2 Z h(iv).

. 1
2mi fh~€(§4‘5) 0<Im(iy) <T

Since

!/ T
Jim. mh(a +iT) = lim O(T") =0

for —% —e<o< % + ¢, it follows that the horizontal integrals tend
to 0 as T' — oc. By the functional equation £(s) = £(1 — s), we have

fl+s)  €lh-s)

1
= 5_
£(5 +3) (3 —3)

so that the vertical line integrals are equal to

1 .
1 s+eriT ¢/(1
— : Mh(s)ds.
21 Jive—ir &(5+5)

Now
g+ 1 LS I(s/24+3/4) ('(s+1/2)
€+s) s—1/2 2 BT T ar(s/2+3/4) " ((s+1/2)

On the vertical line Re(s) = 1 + ¢, the quantity

1 1 (s +1/2)
s—12 T2l sk

is bounded by
('(1+¢)

1
1 -1 .
/e+2 ogm+ 1 t0)
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Also,
I/(s/2 + 3/4)
[(s/2+ 3/4)
is bounded according to Exercise 6.3.17 by O(log(|s| 4+ 1)). Since

h(s) = O(|s|~17¢), the above integral converges absolutely. Letting
T — oo establishes the lemma. O

Theorem 7.3.2 (Weil’s explicit formula) Assume that h(s) satisfies
the conditions of Lemma 7.3.1. In addition, assume that h(it) = ho(t/2m)
is a real-valued function for t € R whose Fourier transform

holy) = / ho(t)e= 2Tt t

satisfies the bound
ho(y) = O(e™(2F)

for fixed e > 0as y — oo. Then we have

ho(logn)

= h(%) — %(log m)ho(0) + /_Z lmh()(t)dt’

where the first sum is over all zeros 1/2 + i~y satisfying Im(ivy) > 0, and
A(n) is the von Mangoldt function, so that the second sum is over all
prime powers.

Remark. The growth conditions on & and g ensure that the inte-
grals and sums in the formula converge absolutely.

Proof. Recall that

(3 +5)
1 1 1 I'(1/445/2) <= A(n)
R TSV Ry L voyr e R et
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so that inserting this into Lemma 7.3.1 we see that

1 S R
— — —logm
omi Joio \s+1/2 s—1/2 2%

I'(1/445/2) & .
TaT ) - h(i).
T ar3) O st pHio)s =%

Observe that by the growth condition on h,

1 1
— h(s)n™%ds = — h(s)n"%ds
211 (%_,_e) 211 (0)

by moving the line of integration to the purely imaginary axis. Thus

1 1 [ ,
— h(s)n"%ds = — h(it)e~tlosnqy
2wt Jo1 2m J_
(3+€) 00

1 [ ;
= 27T/oo ho(t/2m)e~ o8t

1 & .

- ho(t)e—thlogndt
2

= ho(logn).

Similarly, we can also move the other integrals to Re(s) = 0, which
gives rise to the other terms of the formula. This completes the
proof. O

7.4 Supplementary Problems

Exercise 7.4.1 Using the method of Exercise 6.5.3, prove that for 1 <
oc<2|t|>2

where Ay is an absolute constant, and the summation is over all zeros p
of L(s,x), and x is a primitive Dirichlet character (mod q). (Of course,
s = o +it, as usual.)
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Exercise 7.4.2 Let x be a primitive Dirichlet character (mod q). If p =
B + iy runs through the nontrivial zeros of L(s, x), then show that for
any real t,

> 1—|—(tl—fy)2 = O(log q([t[ + 2)).

Exercise 7.4.3 With x a primitive character (mod q) and t not coinciding
with the ordinate of a zero, show that for —3/2 < o < 5/2, |t| > 2,

L |
f(S,X) = Z 5= p + O(log q([t] +2)),
p

where the dash on the sum means we sum over p = [3 + i~y for which
It —~] < 1.

Exercise 7.4.4 Let x be a primitive Dirichlet character (modgq). Let
N(T, x) be the number of zeros of L(s,x) in the rectangle 0 < o < 1,
|t| < T. Show that
T T T
N(T,x) = ~log 2= — ~— + O(log ¢T)

T 2T 2T
forT > 2.

Exercise 7.4.5 Let x be a primitive Dirichlet character (modq). If = is
not a prime power and x(—1) = —1, derive the explicit formula

P, x) = Y x(n)A(n)

1-2m

 L0,X) = z
+2

where the first sum on the right-hand side is over the nontrivial zeros of
L(s, x)-

Exercise 7.4.6 Let x be a primitive Dirichlet character (mod q). If = is
not a prime power and x(—1) = 1, derive the explicit formula

xf 1 _
(@, x) = —Z; —logw —b(x) — 5 log(1 —27?),
P
where b(x) = lim,_ (% — %), and the sum on the right-hand side
is over the nontrivial zeros of L(s, x).
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Exercise 7.4.7 Let x be a primitive Dirichlet character (mod q) and set
a = 0or laccording as x(—1) = 1 or —1. If & — 1/2 is a positive integer,
show that

U(x = —Z——l—a(logx+b( )

<k ¥
o0 a—2m 2
T zlog” gz R
O(=5),
+m22:1 2m —a + R

where the first summation is over zeros p = 3+~ and R is chosen greater
than or equal to 2 so as not to coincide with the ordinate of any zero of

L(s, x)-

Exercise 7.4.8 If we assume that all the nontrivial zeros of L(s, x) lie on
Re(s) = 1/2 (the generalized Riemann hypothesis), prove that

U(z, x) = O(z"/*log? qz).

Exercise 7.4.9 Let

Plega)= S An),

n<x
n=a(mod q)

Show that the generalized Riemann hypothesis implies

U(x,q,a) = @ + 0 (:UI/Q log? qa:)

when (a,q) = 1.

Exercise 7.4.10 Assuming the generalized Riemann hypothesis, show
that there is always a prime p < ¢°log? q satisfying p = a (mod q) when-
ever (a,q) = 1.

Exercise 7.4.11 Show that if q is prime, then

1 if a hasorder g — 1

-1) (d)
qq_l Zﬂd) Z x(a) =

dlg—1 o(x)=d 0 otherwise,

where the inner sum is over characters x mod g whose order is d.
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Exercise 7.4.12 Let g be prime and assume the generalized Riemann
hypothesis. For q sufficiently large, show that there is always a prime p < q
such that p is a primitive root (mod q),

Exercise 7.4.13 Let q be a prime. Show that the smallest primitive root
mod g is O (2"9~Y¢'/2log q), where v(q — 1) is the number of distinct
prime factors of ¢ — 1.

Exercise 7.4.14 Let q be a prime and assume the generalized Riemann
hypothesis. Show that there is always a prime-power primitive root satis-
fying the bound O (474~ log* q).

Exercise 7.4.15 Let g be prime and assume the generalized Riemann hy-
pothesis. Show that the least quadratic nonresidue (mod q) is O(log? q).

Exercise 7.4.16 Let g be prime and assume the generalized Riemann hy-
pothesis. Show that the least prime quadratic residue (mod q) is O(log* q).

Exercise 7.4.17 Prove that forn > 1,

where the summation is over zeros p = (3 + iy, B € R, of the Riemann
zeta function.
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The Selberg Class

The Selberg class S consists of functions F'(s) of a complex variable
s satisfying the following properties:

1. (Dirichlet series): For Re(s) > 1,

> a
F(s) = n—z
n=1

where a; = 1. (We will write a, (F') = a, for the coefficients of
the Dirichlet series of F'.)

2. (Analytic continuation): For some integer m > 0, (s —1)™F(s)
extends to an entire function of finite order.

3. (Functional equation): There are numbers @ > 0, o; > 0, 7; €
C with Re(r;) > 0 such that

d
O(s) = Q° [ [ T(cus + i) F(s)
i=1
satisfies the functional equation

P(s) = wd(1 — s),

where w is a complex number with |w| = 1 and ®(s) = ®(3).
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4. (Euler product): For Re(s) > 1,

p
where ® 5
F,(s) = exp (Z Z)%Z)
k=1

and b,x = O(p*?) for some # < 1/2, and p denotes a prime
number here. We shall write b,(F') = bp,.

5. (Ramanujan hypothesis): For any fixed ¢ > 0,
an = O(nf),
where the implied constant may depend upon e.

A prototypical example of an element of S is, of course, the Rie-
mann zeta function. But more exemplary is the Ramanujan zeta
function

00

T

L) =30,
n=1

where 7, = 7(n)/n''/? and 7 is defined by the infinite product

d ottt =q ] -qm*
n=1 n=1

Ramanujan established properties (1), (2), and (3) and conjectured
(4) and (5). Property (4) was proved by Mordell and (5) by Deligne.

8.1 The Phragmén - Lindel6f Theorem

We discuss an important theorem that allows us to estimate the
growth of a function in the region a < Re(s) < b from its behaviour
on Re(s) = a and Re(s) = b. We first recall the maximum modulus
principle.

Exercise 8.1.1 Let f(z) be an analytic function, reqular in a region R
and on the boundary OR, which we assume to be a simple closed contour.
If | f(2)| < M on OR, show that |f(z)| < M forall z € R.
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Exercise 8.1.2 (The maximum modulus principle) If f is as in the
previous exercise, show that |f(z)| < M for all interior points z € R,
unless f is constant.

Theorem 8.1.3 (Phragmén - Lindel6f) Suppose that f(s) is entire in
the region
S(a,b) ={s € C: a <Re(s) <b}

and that as |t| — oo,
F(s)] =0 (")
for some o« > 1. If f(s) is bounded on the two vertical lines Re(s) = a

and Re(s) = b, then f(s) is bounded in S(a,b).

Proof. We first select an integer m > a, m = 2 (mod 4). Since arg s —
7/2 as t — oo, we can choose 17 sufficiently large so that

|args — /2| < w/4m.
Then for | Im(s)| > 17, we find that arg s = 7/2—9 = 6 (say) satisfies
cosmf = —cosmd < —1/v/2.

Therefore, if we consider

ge(s) = €= f(s),

then
lge(s)| < Keltl® g—elsI™/V2
Thus, |ge(s)| — 0 as |[t| — oco. Let B be the maximum of f(s) in the
region
a <Re(s) <b, 0<|Im(s)| <Ty.

Let T5 be chosen such that
|9:(s)] < B

for | Im(s)| > T5. Thus,
|f(s)| < Be™¥

|™ cos(m arg s) < Bee|s\m
for | Im(s)| > T5. Applying the maximum modulus principle to the
region

a <Re(s) <b, 0<|Im(s)| < Ty,
we find that | f(s)| < Bel*lI". This estimate holds for all s in S(a, b).
Letting € — 0 yields the result. O
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Corollary 8.1.4 Suppose that f(s) is entire in S(a,b) and that |f(s)]
= O(el'I") for some a > 1as |t| — oo. If f(s) is O(|t|*) on the two
vertical lines Re(s) = a and Re(s) = b, then f(s) = O(|t|*) in S(a,b).

Proof. We apply the theorem to the function g(s) = f(s)/(s — u)4,
where u > b. Then g is bounded on the two vertical strips, and the
result follows. O

Exercise 8.1.5 Show that for any entire function F' € S, we have
F(s) =0 (|t") .

for some A > 0, in the region 0 < Re(s) < 1.

8.2 Basic Properties

We begin by stating the following theorem of Selberg:

Theorem 8.2.1 (Selberg) For any F € S, let Np(T') be the number of
zeros p of F(s) satisfying 0 < Im(p) < T, counted with multiplicity.
Then

No(T) ~ <2 zd:a) TlogT

2
i=1
asT — oo.

Proof. This is easily derived by the method used to count zeros of
((s) and L(s, x) as in Theorem 7.1.7 and Exercise 7.4.4.
O
Clearly, the functional equation for F' € S is not unique, by virtue
of Legendre’s duplication formula. However, the above theorem
shows that the sum of the «;’s is well-defined. Accordingly, we
define the degree of F' by

d

deg I :=2 Z Q;.
i=1

Lemma 8.2.2 (Conrey and Ghosh) If F' € S and deg F' = 0, then
F=1.
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Proof. We follow [CG]. A Dirichlet series can be viewed as a power
series in the infinitely many variables p~* as we range over primes
p. Thus, if deg F' = 0, we can write our functional equation as

>om(L) = way T

n=1

where |w| = 1.

Thus, if a, # 0 for some n, then Q?/n is an integer. Hence Q?
is an integer. Moreover, a,, # 0 implies n|Q?, so that our Dirichlet
series is really a Dirichlet polynomial. Therefore, if Q? = 1, then
F =1, and we are done. So, let us suppose ¢ := Q? > 1. Since a; =
1, comparing the Q%* term in the functional equation above gives
lag| = Q. Since a,, is multiplicative, we must have for some prime
power p"||q that |a,-| > p"/2. Now consider the p-Euler factor

a

Fp(s) = %
J=0p]
with logarithm
log Fj,(s) = >
g p() — s

Viewing these as power series in x = p~°, we write
P(z) = ijo Ajad,

where A; = a,;, Bj = b,;. Since a; = 1, we can factor

pis

r

P(z) = (1 - Rix),

j=1

so that

We also know that
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so that

R' > 1/2‘
gggl i >

But

. . r R{ 1/j
' = B, = | 30 =
=1

tends to maxi<;<, |R;| as j — oo, which is greater than or equal to
p'/2. This contradicts the condition that b, = O(n’) with # < 1/2.
Therefore, Q = 1 and hence F' = 1. O

We can now prove the following basic result:

Theorem 8.2.3 (Selberg) If I € S and F is of positive degree, then
deg F' > 1.

Proof. We follow [CG]. Consider the identity

- 1
Zane_”x =— F(s)x™°T'(s)ds.
— 211 (2)
n=1
Because of the Phragmen - Lindel6f principle and the functional
equation, we find that F'(s) has polynomial growth in |Im(s)| in
any vertical strip. Thus, moving the line of integration to the left,
and taking into account the possible pole at s = 1 of F'(s) as well as
the poles of I'(s) at s = 0,—1, —2, ..., we obtain

= .. Plogz) & F(—n)(—1)"z"
Zl“ne _ (g)+z( )(=1)

X
n=0

where P is a polynomial. The functional equation relates F'(—n) to
F(n + 1) with a product of gamma functions. If 0 < degF < 1,
we find by Stirling’s formula that the sum on the right-hand side
converges for all . Moreover, P(log x) is analyticin C\{z <0:z €
R}. Hence the left-hand side is analytic in C\{z < 0 : € R}. But
since the left-hand side is periodic with period 27, we find that

f2) = ane™
n=1

is entire. Thus, for any z,
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by integrating by parts. Choosing = = 1/n gives a,, = O(1/n?).
Hence the Dirichlet series

e}

F(s) = s

n=1

an

converges absolutely for Re s > —1. However, relating F'(—1/2+it)
to F'(3/2 — it) by the functional equation and using Stirling’s for-
mula, we find that F'(—1/2 + it) is not bounded. This contradiction
forces deg F' > 1. O

An element F' € S will be called primitive if F # 1 and F' = F| F5
with F1, Fy € S implies 1 = 1 or F» = 1. Thus, a primitive function
cannot be factored nontrivially in S.

Exercise 8.2.4 Show that
deg F1 F> = deg I} + deg F>.
Exercise 8.2.5 If F' € S has degree 1, show that it is primitive.

Exercise 8.2.6 Show thatany F' € S, F' # 1, can be written as a product
of primitive functions.

Exercise 8.2.7 Show that the Riemann zeta function is a primitive func-
tion.

Exercise 8.2.8 If x is a primitive character (mod q), show that L(s, x) is
a primitive function of S.

Exercise 8.2.9 If F € S and € > 0 is fixed, show that |a,| < c(e)n®
implies that
|y | < c(€)(2F — 1)p*/k.

Exercise 8.2.10 Prove the asymmetric form of the functional equation for

¢(s): o
C(1—3s)= 21_S7T_S(COS ?)I’(s){(s)

Exercise 8.2.11 Show that for k € N,
C(=k)| < CkY/(2m)F

for some absolute constant C.
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Exercise 8.2.12 Show that
- —nr __ .—1 . C(_k)(_x)k
S e =gty Y S
n=1 k=0
Deduce that for k = 2,3, ...

(1 —k) =—B/k

and ((0) = —1/2, where By, denotes the kth Bernoulli number.

Exercise 8.2.13 Let x be a primitive Dirichlet character (mod q) satisfy-
ing x(—1) = 1. Prove that

L(1-s,%) = \/232;2) (2;) 1/2_S<cos %S>F(8)L(s, X)s

where 7(x) denotes the Gauss sum.

Exercise 8.2.14 Let x be a primitive character (modgq), satisfying
x(—1) = 1. Show that for k € N,

|L(—k,x)| < Ck!(g/2m)"
for some constant C' = O(,/q).

Exercise 8.2.15 Let x be a primitive character (modgq), satisfying
x(—1) = 1. Show that

L(1—-s,%) = —(277)_1/2?(;/? (2;)1/2_8(sin %S)F(s +1)L(s, x).

Exercise 8.2.16 Let x be a primitive Dirichlet character (mod q) satisfy-
ing x(—1) = —1. Show that for k € N,

|L(—k,x)| < C(k +1)!(g/2m)"

for some constant C' = O(,/q).
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Exercise 8.2.17 Prove that

S - — L(=k,x)(—2)F
S x(n)eme =y TR
n—lX

k!
k=0
Deduce that forn > 1,
L(l - n, X) = 7Bn,x/n’

where

Bu = 1Y x(@b, (%),

a=1 q

with b, (x) denoting the nth Bernoulli polynomial.

8.3 Selberg’s Conjectures

We have seen in the previous section that ((s) and Dirichlet’s L-
functions L(s, x) are primitive since they are of degree 1. Selberg
[S] conjectures that as x — oo:

(a) for any primitive function F,

F)|?
Z|ap(p )" _ loglogz + O(1);

(b) for two distinct primitive functions F' and G,

5 )5 _ o)

p<z p

We have also seen that any function of S can be factored into
primitive functions. Two of the important consequences of conjec-
tures (a) and (b) are contained in the following exercises.

Exercise 8.3.1 Assuming (a) and (b), prove that any function F € S can
be factored uniquely as a product of primitive functions.

Exercise 8.3.2 Suppose F,G € S and ay(F) = a,(G) for all but finitely
many primes p. Assuming (a) and (b), prove that F' = G.
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This exercise shows that a form of “strong multiplicity one” holds
for the Selberg class. It is possible to prove a slightly stronger ver-
sion of this fact without assuming (a) and (b). This is the goal of the
exercises below.

Exercise 8.3.3 If F'(s) = > °° ;apn~ % and o = Re(s) > o,(F), the

n=1
abscissa of absolute convergence of F, then prove that

T , an(F) if n=y,
lim — / F(o +it)y"tdt =
-T 0 otherwise,

for any real y.
Exercise 8.3.4 Prove that
-2, —fB/a j
1 Jods a”y P logy if y>1,
— 72 =
211 J(¢) (s + 3) 0 if 0<y<l,
forc>0and o, B > 0.

Exercise 8.3.5 Let f(s) be a meromorphic function on C, analytic for
Re(s) > %, and nonvanishing there. Suppose that log f(s) is a Dirich-
let series and that f(s) satisfies the functional equation

H(s) =wH(1—s),

where w is a complex number of absolute value 1, and

e LI Deis + 1)
[T, T(vis + &)

with certain A, oy, v; > 0 and Re(5;), Re(d;) > 0. Show that f(s) is
constant.

H(s) = f(s)

Exercise 8.3.6 Let F,G € S. Suppose a,(F') = a,(G), a
for all but finitely many primes p. Show that F = G.

pz(F) = a Q(G)

Exercise 8.3.7 Assume Selberg’s conjectures (a) and (b). If F € S has a
pole of order m at s = 1, show that F(s)/((s)™ is entire.

Exercise 8.3.8 Assume Selberg’s conjectures (a) and (b). Show that for
any F' € S, there are no zeros on Re(s) = 1.
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8.4 Supplementary Problems

Exercise 8.4.1 Verify that the primitive functions ((s) and L(s, x), where
X is a primitive character (mod q), satisfy Selberg’s conjectures (a) and (b).

Exercise 8.4.2 For each F', G in S, define

(F @ G)( HH

where
s) = exp ( Z Kbk (F)b,k (G)p_ks) :
k=1

If F(s) = det(1 — A,p~*) "t and Gp(s) = det(1 — Bpp~*) " for certain
nonsingular matrices A, and By, show that

Hy(s) = det(1 — (4, ® Bp)p~*) ™",

Exercise 8.4.3 With notation as in the previous exercise, show that if
F,G € S, then F ® G converges absolutely for Re(s) > 1

Exercise 8.4.4 If FF € S and F ® F extends to an analytic function for
Re(s) > 1/2, except for a simple pole at s = 1, we will say that F is @-
simple. Prove that a ®-simple function has at most a simple pole at s = 1.

Exercise 8.4.5 If F' € S and
F=FOF?...F*
is a factorization of F into distinct primitive functions, show that
Z ]a,p (e + e+ - +ei)loglogz 4+ O(1),
p<a
assuming Selberg’s conjectures (a) and (b).

Exercise 8.4.6 If F € Sand F ® F € S show that F is ®-simple if and
only if F is primitive, assuming Selberg’s conjectures (a) and (b).

Exercise 8.4.7 If F' € S is ®-simple and entire, prove that F'(1+it) # 0
forallt € R.
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Exercise 8.4.8 Let F' € S and write

F' > .,
—(s)= ;AF(H)H

ForT > 1landn € N, n > 1, show that

Z nf = —%Ap(n) +0 <n3/2 log? T) )
ly|<T

where p = 3 +iv, § > 0, runs over the nontrivial zeros of F(s).

Exercise 8.4.9 Suppose F',G € S. Let
Zr(T)={p=0B+1iv,8>0,F(p) =0and |y| < T}.
Suppose that as T — oo,
|Ze(T)AZ6(T)| = ofT),

where A denotes the symmetric difference AAB = (A\ B) U (B \ A).
Show that F' = G.
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Sieve Methods

9.1 The Sieve of Eratosthenes

The basic principle of a sieve method is the following: Given a finite
set of natural numbers, estimate its size (from above and below)
given information about the image of the set mod p for a given set
of primes p. For example, let S be the set of primes in the interval
[z, x]. We know that for each prime p < \/z, the image of S mod p
fails to contain the zero residue class. Given this information, the
estimation of S from above and below gives us estimates for 7(z) —
m(y/7).

The oldest method to attack this question is the sieve of Eratos-
thenes (300 B.C.). It was formally written in the following form by
Legendre in the eighteenth century.

Example 9.1.1 (Eratosthenes-Legendre) Let P, be the product of the
primes p < z, and w(x, z) the number of n < x that are not divisible by
any prime p < z. Then

m(x,z) = Z wu(d) {g}

d|P-
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Solution. Clearly,

@,z = S 3 uld)

n<z d|(n,P;)
= Dudd 1= ud)|3]
d|P; ’;‘Sf d|P;
as required. O

We saw in Exercise 1.5.10 that

m(x,2) =x H (1 - ]19) + 0(27%),

p<z

and in Exercise 1.5.11 that

1\ -1
H (1 — 7) > log 2.
p

p<z

This gives the estimate (Exercise 1.5.12)

£ z
W(:U,Z) < @ +O(2 )

Choosing z = log x, we obtain

m(z) = O(logi)gx)

Exercise 9.1.2 Prove that there is a constant c such that
1 ¢ 1
[10-;) =5z 0+0(52)
i P og z og 2

There is a famous theorem of Mertens that shows that the con-
stant c in the previous exercise is Euler’s constant v, given by

’y:tli)rélo<z%—logt).

n<t

This is proved in the following way. For ¢ > 0, we have

o0

1
((1+o0)= Z it

n=1
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Now consider
1
flo) = IOgC(lﬂLU)—ZF

p
1 1
= _Z{log (1—1*> +i}-
+o 140
> p p
In Exercise 9.1.2 it was proved that ¢ = ¢y + ¢, where
1 1
co=— {log<1—7>+f}
2 A

and

1
c1 = lim ( g f—loglogz’).
Z— 00 p

p<z

Hence ¢y = lim,_o f(0). It is clear that as ¢ — 07, log((1 + o) =
log 1 + O(c). Now, as ¢ — 07, log(1 — e77) = log o + O(0), so that
aso — 0T,

log¢(1+0) = —log(l—e7)+0(0)
- Z € :n + O(0o).
n=1

Put H(t) =, Land P(t) = > p<t %. By partial summation,

1 * P(u)
Zpua - ‘7/1 io

p

= a/ P(ehe tdt.
0

Similarly,
log¢(140) = o/ e H(t)dt + O(o)
0

as ¢ — 0. Hence,
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Since H(t) = logt + v + O(1/t) by Example 2.1.10, and P(e!) =
logt + c; + O(1/t), we deduce

flo) = U/Oooe_"t<’y—cl+O<H11))dt+0(a)

= (y—c1) +0/OOO e*"t0<t+%)dt + O(0).

An easy integration by parts shows that the integrand is O(c), so
that f(0) = co = v — ¢1. This proves the following theorem:

Theorem 9.1.3 (Mertens)

Ve =T1(0-5) = iz (+o(mm)

p<z

Exercise 9.1.4 For z < log x, prove that

e Y

m(z,z) = (14 o(1))

log z
whenever z = z(x) — 00 as x — 0.

We now define ®(z, z) to be the number of n < z all of whose
prime factors are less than or equal to z. This function, along with
7(z, z), plays an important role in sieve problems.

Exercise 9.1.5 (Rankin’s trick) Prove that

®(z,2) <2’ H (1 - plé)l

p<z
forany § > 0.
Exercise 9.1.6 Choose § = 1 — loéz in the previous exercise to deduce
that log 2
®(z, z) < z(log z) exp ( - logz>'

Exercise 9.1.7 Prove that

m(v,z) =x Z Mild) +O<x(logz) exp(* logx>)

log z
d| P, &
d<zx

for z = z(x) — oo as x — oo.
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Exercise 9.1.8 Prove that

S =TI0

d‘Pz p<z
d<z

1) oo (-2,

with z = z(x) — o0 as © — oo.

Exercise 9.1.9 Prove that

m(x,z) =2V (z) + O(x(log z)%exp ( — igij)),

where

Vi) =[ (1_;)

and z = z(xr) — oo as r — oo.

Exercise 9.1.10 Prove that
X

(x) <K loglog

log x

by setting log z = elog x/loglog x, for some sufficiently small e, in the
previous exercise.

Exercise 9.1.11 For any A > 0, show that

xe 7
(z, (log $)A) ~ m

as xr — oQ.

The estimate of Exercise 9.1.9 for 7(z) will be seen to be as good
as the one obtained by the elementary Brun sieve of the next section.
Let A be any set of natural numbers and let P be a set of primes. To
each prime p € P, let there be w(p) distinguished residue classes
mod p. Let A, denote the set of elements of A belonging to at least
one of these distinguished classes mod p. For any square-free num-
ber d composed of primes p € P, let

Ag = mp|dAp'
We denote by S(A, P, z) the number of elements of
A\ Upep p<zAp.

Let w(d) = [[,4w(p), and P(2) = [],<. pep P-
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Exercise 9.1.12 Suppose that

Z w(p) log p < klogz+ O(1).
p

p<z
pEP
Show that
FUJ(t?Z) = Z W(d)
<t
d|P(z)

is bounded by O(t(log z)" exp ( — i‘jgi))
Exercise 9.1.13 Let C be a constant. With the same hypothesis as in the
previous exercise, show that

Z wild) _ O((logZ)F”H exp(_ logw)).

Py log 2z
d>Cz

We are now ready to prove our version of the sieve of Eratos-
thenes. We follow [MS]. We suppose there is an X such that

Xw(d)
d

with Ry = O(w(d)). We also assume

|Aq| = + Ry

S 8P g+ 00)
p<z p
peEP
and set
wip
w(z) =] < - ”).
p<z p
peP

Exercise 9.1.14 (Sieve of Eratosthenes) Suppose there is a constant
C > 0 such that |A4| = 0 for d > Cx. Then

S(A,P,z) = XW(2) + O(m(log 2)" 1 exp ( — igij))



9.2 Brun’s Elementary Sieve
9.2 Brun’s Elementary Sieve

By comparing coeffients of " on both sides of the identity

(1-2)'1—2)’ =(1—2)""

St ()=o)

This implies that

we deduce

> ud) = (-1) <V(n1— 1>7

d|n
v(d)<r

133

where v(n) is the number of prime factors of n. This observation is

the basis of Brun’s elementary sieve. Namely, let

{,u(d) if v(d)<r

0 if  wv(d) >r.
Then setting

Pr(n) = Z (),

dln

we find thatif riseven, 3, (d) < ¢r(n) and if ris odd, 3, pu(d)

> 1r(n). Thus

Soud) =) +0( 3 Iu(@)).

dln dln
v(d)=r+1

Exercise 9.2.1 Show that for r even,
pir (d)
< ——= 4+ 0(Z").
W(I’,Z)il‘z ] +0(z")
d|P;
We now turn our attention to

pr(d)
D

d|P,
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By Mobius inversion,

pr(d) =Y p(d/6)r (6),

sld

so that

S S S gy o)

d|P; d| P, old
) - p(d)
=275 2y

8|P. d|P. /s

Py (6)
= V(2) ,
2 40)

where V (z) is as in the previous section and ¢ denotes Euler’s func-
tion. Let us note that

() _ o S Yr(0)
> y —V()+V()Z¢(6).

d|P; S|P
6>1

We now want to estimate the last sum. Observe that

$o(8) < (”“) - 1),

r

so that the sum under consideration is bounded by

3l A PR D (O F IO P

(jslff r<m<mn(z) p<z
1
< —'(log log z + ¢1)" exp(loglog z + ¢1),
7!

where we have utilized the elementary estimate
1

Z — <loglogz+ c1

p<z
for some constant c;. Since " > Z;, we can write 1 /7! < (e/r)", and
thus 4,(6)

V(2) v
2 40)

3| Py
6>1

< cgexp(r —rlogr + rlogA),
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where A = loglog z 4 ¢1, and we have used the estimate

\%4 .
() < log 2

The idea is to choose r so that the r log r term dominates. This will
minimize the error term. Indeed, choosing r to be the nearest even
integer to alog x/ log z, with o < 1, gives an error term of

Ofwemw (- crp )

for some constant c3, and we impose

alogx

> 2(loglog z + ¢1)
log 2z

to ensure that the error term is sufficiently small. This proves the
following theorem:

Theorem 9.2.2 There is a constant c4 > 0 such that for
log z < ¢4 log z/ log log z,

we have

m(x,z) <zV(z)+ O(:Eexp ( - c;;lng)).
log =
Remark. Observe that this is comparable to the estimate obtained
earlier by using the sieve of Eratosthenes combined with the careful
application of Rankin’s trick (Exercises 9.1.8 and 9.1.9).
Also note that Theorem 9.2.2 gives us the upper bound

m(xr) <K ’

log 1
logx( oglogx),
which is comparable to the estimate we obtained in Exercise 9.1.10.

Brun used his method described above to deduce that the number
of primes p < z such that p 4 2 is also prime is bounded by

< (loglog z)2.

X
(log z)?

From this, it is easy to deduce by partial summation that

Z/1<oo,

p
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where p is such that p + 2 is prime, a result that created a sensation
at the time it was proved by Brun.

Let A be a finite set of natural numbers, P a set of primes. For
square-free d composed of primes from P, let A, be the set of ele-
ments of A divisible by d. For some w(d) multiplicative, suppose

w(d
4d = D141 4 5,

Let S(A, P, z) denote the number of elements of A coprime to

P(z) = H .

p<z
peEP

As above

S(A,P,z) = Z Z n(d)

neAd|(n,P(z))

= > (v PEy+o( Y 1))

neA d|(n,P(z))
v(d)=r+1
w(d Alz"
= % i (P r) o (M),
T
d|P(z)

We make the hypothesis |R;| < w(d). Then

d|P(z)

+ O(l + Zw(p))T.

p<z
Exercise 9.2.3 Show that

pr (d)w(d) w(p) Yr(8)w(9)
Z)d: 11 (1_7) > e

d|P(z p<=
pEP

where Q(8) = [1,5(p — w(p)).
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Exercise 9.2.4 Suppose that w(p) < ¢, and that

Z M < ciloglogz + co
p<z p
peP

for some constants c, c¢1, and cy. Show that there are constants c3, c4, and
cs such that

> %(g();})((s) < %(03 loglog z + ¢4)" (log 2).
51P(2) '

6>1

We can put these inequalities together in the following form:

Theorem 9.2.5 (Brun’s elementary sieve) Suppose that w(p) < c and
that

Z M < ciloglogz + co
p<z p
peEP

for some constants c,cy, and cy. Suppose further that Ry = O(w(d)).
Then there are constants c3 and cy4 such that

S(A,P,z) = |A]] (1 = ”;p)> +0 <‘Ar|f> +0(z")

p<z
pEP

|A] - (c1loglog z + cq)"
L0 ( |

(o521 )

for any even number r.

To make this amenable for applications, we use the inequality

1 e\’
< (Z
rl = (r)
to obtain
S(A,P,z) =|A|(W(z) + O(exp(—rlogr +rlogz+r))) + O(z").

Our intention now is to make the r log r term dominate so that we
can get a small error term in the above result. Suppose that |A| < x.
We choose r to be the nearest even integer to

nloglog z
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for some 7 = n(x, z) soon to be specified. With this choice of r the
error term becomes

< xexp(—n(logn) loglog z4+n(log z) log log z4n log log z) 4 28108,

If we choose
alogx
log z)(loglog 2)’

for some o < 1, the error term is

( log x)
L zexp | —cs ,
log 2z

=1

for some positive constant c3. In particular, there is a constant ¢ > 0
such that for

log 2 < clogx
log log x
we have
1
S(A,P,2) = |AW () + O (zexp [ —es—22 ) ). (9.1)
log log x

Exercise 9.2.6 Show that the number of primes p < x such that p + 2 is
also prime is < x(loglog x)?/(log ).

Exercise 9.2.7 (Brun, 1915) Show that
i1
> <o
p

where the dash on the sum means we sum over primes p such that p + 2 is
also prime.

9.3 Selberg’s Sieve

The key idea of Selberg is to replace the use of the Mobius function
that appears in Brun’s sieve as well as the sieve of Eratosthenes by
another sequence optimally chosen so as to minimize the resulting
estimates. The method is best illustrated by the example below.

Let Ay = 1, and let us set Ay = 0 for d > z. Let us now consider
the problem of estimating 7(z, z).
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Exercise 9.3.1 Let P, = []
Show that

< P be the product of the primes p < =.

m(x,z) < Z ( Z )\d)Q,

n<z d|(n,P;)

for any sequence 4 of real numbers satisfying A\; = 1.
Exercise 9.3.2 Show that if |\q| < 1, then
Ady A
m@) < Y0 GEGe+ 0GR,
dy,da<z
where [dy, dg] is the least common multiple of di and ds.

The main idea is to notice that we have a quadratic form on the
right-hand side, given by

>

Y
ardy<z 112
and we seek to minimize it. We will show that there is a choice of
Ad’s such that |A\;| < 1, as required in Exercise 9.3.2. It should also
be noted that the error term here is O(2?) in contrast to O(27), which
we obtained in the simplest form of the sieve of Eratosthenes.

Exercise 9.3.3 Prove that
[d1,d2)(d1,d2) = dyda,
where (dy, dz) is the greatest common divisor of dy and ds.

Exercise 9.3.4 Show that

Ady Ady Ad 2
et 1) — ) .
d1§<z [dy,do] ;qﬁ( )(; d )
e - d<z
We now use the method of Lagrange multipliers to minimize the
quadratic form of the previous exercise.

Exercise 9.3.5 If

Ad

us = —
sld
d<z
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show that \
5
e E p(d/6)ug.

s|d

(Note that us = 0 for 6 > z, since A\q = 0 for d > z.)

Exercise 9.3.6 Show that if \y = 1, then

Z Ad; Ny
di,ds]

d1,d2<z

attains the minimum value 1/V (z), where

2(d
Ve =2 /fz><(d>)'

d<z

By Exercise 9.3.4, we must minimize

o)X )’

0<z old
d<z

subject to the constraint A\ = 1.

Exercise 9.3.7 Show that for the choice of

us = pu(6)/(#(8)V(2)),
we have |\g| < 1.
This leads to the following problem:

Exercise 9.3.8 Show that

x

V(2)

Deduce that 7(z) = O (z/log ) by setting z = />~

m(z,z) < +O(2%).

Exercise 9.3.9 Let f be a multiplicative function. Show that

f([d1,da]) f((d1,d2)) = f(d1)f(d2).
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Let P be a set of primes. Suppose that we are given a sequence
of integers A = {a,};2; and we would like to count the number
N(z,z) of n < x such that (a,, P(z)) = 1 where P(z) is the product
of the primes p < z, p € P. We now derive a more formal version of
Selberg’s sieve. For convenience, we write N (d) for the number of
n < zx such that d|a,, and assume

X
f(d)

for some multiplicative function f and some X.

N(d) = + Ry

Theorem 9.3.10 (Selberg’s sieve, 1947)

X
N(z,2) < erO( > ’R[dl,d2]|)a

dy,d2<z
where )
i [ild)
and

Proof. We have

N(z,z) < Z( Z )\d)Q,

n<lz d|(an,P(z
e I( (2))

where A1 = 1 and )\, are real numbers to be chosen. We will set \; =
0 for d > z. Expanding the right-hand side of the above inequality,
we get

N(z,z) < Z )\dl)\d2< Z 1)

d1,d2< d1,dzfan
n<x
< X Y gitay ol X PalbaliRua)
B dd<fd17d2) di,d2< l 2 .
1 z paE=s

By Exercise 9.3.8, we have

f(ld1,da]) = f(d1)f(d2)/f((d1,d2)).
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Hence, the first sum can be rewritten as

3 fAdlA@ f(dd)) = > fAdlAdQ > h(s

dy,d2<z dy,d2<z 5|d do

Rearranging, we get

S o (X 75)

0<z dld
d<z
which we seek to minimize subject to the condition A\; = 1. As

before, we set

=Y

§ld
d<z

By Mobius inversion (Exercise 1.5.16),

A "
7(5) %;M(d/(s) d

Thus, we must minimize

> A3

0<z

subject to the condition

1= Zu(d)ud.

d

By the Lagrange multiplier method,
2f1(0)us = Au(9)

for some scalar A. Thus,

so that
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Therefore, the minimum is

A2 (6) 1
Z‘f 4f2 _U(z)‘

0<z

In addition, we have

2= S wltua

[~ 4
_ ) 1A (t)
" R@ 2, FOUG)
t<z/d
Hence, @ )
B f(d w(t
U(Z))\d - N(d) fl(d) e fl(t)
t<z/d

Now, for d square-free,

f(d)
fi(d)

Therefore,

2 2
o o (= 20) 20 |
(2)Ad “”(M f1(5)) o B

t<z/d

from which we see that |\;| < 1. Hence, the error term is

O( Z R[dl,dﬂ)'
[d1,d2]<z

We have therefore proved

X
N(l’,Z) < w"’o( Z |R[d1,d2}|)7
[d1,d2]<z

as desired.

143
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Exercise 9.3.11 Show that
1
U(z) > S
2 f(6)

6<z

where f(n) is the completely multiplicative function defined by f(p) =
f(p).

Exercise 9.3.12 Let ma(xz) denote the number of twin primes p < x.
Using Selberg’s sieve, show that

mo(x) = O<log;82:v>'

Exercise 9.3.13 (The Brun - Titchmarsh theorem) For (a, k) = 1, and
k <z, show that

__@+dz
7(z,k,a) < o(k)log(2x/k)

for x > xo(€), where w(x, k, a) denotes the number of primes less than x
which are congruent to a (mod k).

Exercise 9.3.14 (Titchmarsh divisor problem) Show that
> dlp—1)=0(),
p<z

where the sum is over primes and d(n) denotes the divisor function.

9.4 Supplementary Problems

Exercise 9.4.1 Show that

Z 1 loglog x + log k
p p(k) ’

p<zw
p=1 (mod k)

where the implied constant is absolute.

Exercise 9.4.2 Suppose that P is a set of primes such that

peEP

Show that the number of n < x not divisible by any prime p € P is o(x)
as x — 0.
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Exercise 9.4.3 Show that the number of solutions of [d1,d2] < =z is
O(z(log 2)3).
Exercise 9.4.4 Prove that
1 loglog x
2. log(z/p) O\ Togz )
p<z/2 plog(r/p g
where the summation is over prime numbers.

Exercise 9.4.5 Let () denote the number of n < x with k prime fac-
tors (not necessarily distinct). Using the sieve of Eratosthenes, show that

r(Aloglogz + B)*
k!'log x

ﬂk(x) S

for some constants A and B.

Exercise 9.4.6 Let a be an even integer. Show that the number of primes
p < x such that p + a is also prime is

< @QQJF;),

where the implied constant is absolute.

Exercise 9.4.7 Let k be a positive even integer greater than 1. Show that
the number of primes p < x such that kp + 1 is also prime is

x 1
< Wg<l+p>'

Exercise 9.4.8 Let k be even and satisfy 2 < k < x. The number of
primes p < x such that p — 1 = kq with q prime is

x
p(k)log?(x/k)’
Exercise 9.4.9 Let n be a natural number. Show that the number of so-
lutions of the equation [a,b] = n is d(n?), where d(n) is the number of
divisors of n.

<

Exercise 9.4.10 Show that the error term in Theorem 9.3.10 can be re-

placed by
o( 3 d(a2)|Ra|>.

a<z?



146 9. Sieve Methods

Exercise 9.4.11 Show that

Z g -0 ( L) 7
el —1) log z
where the summation is over prime numbers.
Exercise 9.4.12 Prove that

[T (1-))< (1og1x)r‘

r<p<z

Exercise 9.4.13 Prove that for some constant ¢ > 0, we have

n2
Z Cf;(n)) = c(log z)* + O(log? ).

n<z
Exercise 9.4.14 Let d(n) denote the number of divisors of n. Show that
Z d*(p — 1) = O(z log® 2 log log z),
p<z
where the summation is over prime numbers.

Exercise 9.4.15 Show that the result in the previous exercise can be im-
proved to O(xlog? z) by noting that d*(n) < dy(n), where dy(n) is the
number of ways of writing n as a product of four natural numbers.
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p-adic Methods

10.1 Ostrowski’s Theorem

Recall that a metric on a set X isamap d : X x X — R, such that
1. d(z,y) =0 2 =y;
2. d(z,y) = d(y, »);
3. d(z,y) < d(x,z) +d(z,y) Vz € X.

Property (3) is called the triangle inequality. The pair (X, d) is
then called a metric space, with metric d.

A normona field Fisamap || - || : F — Ry such that

() ||z|| = 0 & = = 0;

2) [[zyll = [l=[llyll;

3) llz +yl < [[z][ + [ly]| (triangle inequality).

Exercise 10.1.1 If F'is a field with norm ||-||, show that d(x,y) = ||x—y||
defines a metric on F.

The well-known norm on the field of rational numbers is, of
course, the usual absolute value | - |. The induced metric |z — y| is the
usual distance function on the real line. But there are other norms that
we can define on Q that give rise to other metrics and “new” notions
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of distance. For each prime p and any rational number = # 0, we can
write z = p*»(*)z; where z, is a rational number coprime to p (that
is, when z; is written in lowest terms, neither the numerator nor the
denominator is divisible by p). Define a norm | - |, by

||, = p_yp(x)
for x # 0 and for z = 0, |0[, = 0.
Exercise 10.1.2 Show that | - |, is a norm on Q.

A norm satisfying
Iz +yl] < max(||z[], [ly[])

is called a nonarchimedean norm (or a finite valuation). The solu-
tion of Exercise 10.1.2 shows that the p-adic metric | - |, is nonar-
chimedean. A metric that is not nonarchimedean is called
Archimedean (or an infinite valuation).

Exercise 10.1.3 Show that the usual absolute value on Q is archi-
medean.

The celebrated theorem of Ostrowski states that essentially the
only norms we can define on Q are the p-adic norms and the usual
absolute value. To make this precise, we need the notion of equiva-
lence of two normes.

Given a metric space X, we can discuss the notion of a Cauchy
sequence. This is any sequence {a, }°° ; of elements of X such that
given any € > 0, there exists an N (depending only on ¢) such that
d(am,an) < € form,n > N.

Two metrics di,dz on X are said to be equivalent if every se-
quence that is Cauchy with respect to d; is also Cauchy with respect
to d2. Two norms on a field are said to be equivalent if they induce
equivalent metrics.

Exercise 10.1.4 If 0 < c < 1 and p is prime, define

CVP(x) Zf x ;& 07
|| =
0 if =0

for all rational numbers x. Show that || - || is equivalent to | - |, on Q.
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The usual absolute value on Q we will denote by | - | to distin-
guish it from the p-adic metrics. Note that we can always define a
“trivial” norm by setting ||0|| = 0, and ||z|| = 1 for x # 0. We also
note that || — z|| = ||z|| follows from the axioms.

Theorem 10.1.5 (Ostrowski) Every nontrivial norm ||-|| on Q is equiv-
alent to | - |, for some prime p or | - |oo.

Proof. Case (i): Suppose there is a natural number n such that ||n|| >
1. Let ng be the least such n. We know that ng > 1, so we can write
|[no]| = n§ for some positive a. Write any natural number n in base
no:

n=ap+ang+---+asny, 0<a;<nog,
and a5 # 0. Then, by the triangle inequality,

Il < llaoll + llarnol[ + - - + [asng|
< Alaoll +[lar[[ng + - - + [las|[ng".

Since all the a; are less than ny, we have ||a;|| < 1. Hence,
Inll < 14ng +---+ng®

1
ngés(l—i-ﬁ"‘r"-).
0

IN

Since n > nf, we deduce ||n|| < Cn® for some constant C' and for
all natural numbers n. Thus, ||nV || < CnV®, so that ||n|| < CV/Nn®.
Letting N — oo gives ||n|| < n® for all natural numbers n. We can

also get the reverse inequality as follows: since nj™* > n > ng, we
have
gl = lln+ngt — |
< lnll + [Ing™ —nl|,
so that
Inll > {lngt | = lIng** —nl]
> nés+1)a _ (n8+1 . n)a.
Thus,

+1
[n]] > n$T* = (ngt —ng)e,
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since n > ng, so that

\
Cw
+
=
Q
/~
=
|
/
—_
|
5-
—
Q
—

[Inl|

> On®

for some constant C;. Repeating the previous argument gives ||n|| >
n® and therefore ||n|| = n® for all natural numbers n. Thus, || - || is
equivalent to | - |oo.

Case (ii): Suppose that ||n|| < 1 for all natural numbers. Since the
norm is nontrivial, there is an n such that ||n|| < 1. Let ng be the
least such n. Then ny must be prime, for if ng = ab, then ||ng|| =
l|al[[|b]] < 1 implies ||a|| < 1 and ||b|]| < 1, contrary to the choice
of ng. Say ng = p. If ¢ is a prime not equal to p, then we claim
ll¢|| = 1. Indeed, if not, then ||g|| < 1, and for sufficiently large
N, ||¢V]| < 1/2. Similarly, for sufficiently large M, |[p™|| < 1/2.
Since pM, ¢V are coprime, we can find integers a and b such that
ap™ + bg"V = 1. Hence

L= lap™ +bg™ || < llallllp™ ] + [1ol[]1a"]]
< 1/2+41/2=1,

a contradiction. Therefore, ||q|| = 1. Now write C' = ||p||. Since
any natural number can be written uniquely as a product of prime
powers, we get

Inf] = €,

By Exercise 10.1.4, this metric is equivalent to | - |,, which com-
pletes the proof. O

Exercise 10.1.6 Let I be a field with norm || - || satisfying
||z + yl| < max({l]], [ly[])-

Ifa € F,and r > 0, let B(a,r) be the open disk, {x € F : ||z —al| < r}.
Show that B(a,r) = B(b,r) for any b € B(a,r). (This result says that
every point of the disk is a “center” of the disc.)

Exercise 10.1.7 Let F be a field with || - ||. Let R be the set of all Cauchy
sequences {ay } 52, . Define addition and multiplication of sequences point-
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wise: that is,
{annzy +{bn}nzy = {an + bn}nly,

{antnzs x {bn}nZy = {anbn}yl;-
Show that (R, +, x) is a commutative ring. Show further that the subset

R consisting of null Cauchy sequences (namely those satisfying ||an|| — 0
as n — oo) forms a maximal ideal m.

We can embed our field F in R by the map a — (a, a,...), which
is clearly a Cauchy sequence. Since m is a maximal ideal, R/m is a
field. R/m is called the completion of F' with respect to || - ||. In the
case of F' = Q with norm | - |,, the completion is called the field of
p-adic numbers, and denoted by Q,,.

We can extend the concept of norm to Q, by setting

|a|p = 7}1_{20|an‘p

for any Cauchy sequence a = {a,}52,. It is easily seen that this is
well-defined.

Theorem 10.1.8 Q, is complete with respect to | - |p.

Proof. Let {aU )};?‘;1 be a Cauchy sequence of equivalence classes

in Q). We must show that there is a Cauchy sequence to which it
converges. We write al) = {a,(lj )}3":1 and set s = {ag.j )};’il, the
“diagonal” sequence. First, observe that s is a Cauchy sequence,
since {aV/ )};’il is Cauchy, so that given € > 0, there is an N (¢) such
that for j,k > N(e), we have |a") — a(¥)|, < . This means that for
J, k,n > Nj(€) for some Nip(e), we have

n

al) — ag“)‘ < e.
P
In particular,

a; —ak

J

’ 0 _ (k)
J

< max (‘aw ) ’p7

j k
af) — qf )}p)

for j,k > Ni(e€). Therefore, s is a Cauchy sequence. We now show
that lim; . al) = 5. That is, given € > 0, we must show that there
is an Na(e) such that for j > Ny(e), we have

’ p

lal) — 5|, < e
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This means that we must show that for some N3(¢) and j,n > N3(
we have |a7(i7 ) g |p < €. But this is clear from the above for N3(e)

6)7
Ni(e). -

When we complete Q with respect to the usual absolute value
| - |oo, we get the real number field R, which is complete. When we
complete Q with respect to | - |, we get Q,, which we just proved to
be complete. It is this point of view that motivates p-adic analysis.
Real analysis is seen to be the special case of only one completion
of Q. As we shall see, it is fruitful to develop p-adic analysis on an
equal footing. When applied to the context of number theory, we
get an important theme of p-adic analytic number theory, which is
playing a central role in the modern perspective.

Exercise 10.1.9 Show that
Zp={r€Qp: |z|, <1}
is a ring. (This ring is called the ring of p-adic integers.)

Exercise 10.1.10 Given x € Q satisfying |x|, < 1, and any natural
number i, show that |x—a;|, < p~*. Moreover, we can choose a; satisfying
0<a; < pi.

Just as it is impractical to think of real numbers as Cauchy
sequences, it is impractical to think of elements of Q, as Cauchy
sequences. It is better to think of them as formal series

o0
> bap", 0<b,<p-1,
n=—N

as the following theorem shows.

Theorem 10.1.11 Every equivalence class s in Q, for which
|s|, < 1 has exactly one representative Cauchy sequence {a;}:°, satis-
fying 0 < a; < p'and a; = a;41(mod p') fori =1,2,3,....

Proof. The uniqueness is clear, for if {a}}3, is another such se-
quence, we have a; = a}(mod p'), which forces a; = a;. Now let
{ci}22, be a Cauchy sequence of Q, in s. Then for each j, there is an
N(j) such that

i — Ck|p < p_j
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for i,k > N(j). Without loss of generality, we may take N(j) > j.
Since |s|, < 1, we have |¢;|, < 1fori > N(1) because

lcilp < max(|cglp, i — cklp)
< max(|cklp, 1/p),
so that by choosing a sufficiently large k£ we are ensured that

lcklp < 1, since |s|, = limy_.o |ck|p < 1. By Exercise 10.1.10, we
can find a sequence of integers a; such that
la; —eng)lp < P77,

with 0 < a; < p’. The claim is that {a; }321 is the required sequence.
First observe that by the triangle inequality,

lajr1 = ajlp, < max(|aji — CN(jH)\p, EN(j+1) — CN@{W
leng) — ail,)
< max(p/ Lp I pI)=p,
so that '
a; = aj+1(modp’),

fori=1,2,....Second, for any j, and i > N(j), we have

IN

la; — cilp max(|a; — ajlp, [aj — eng)lps len) — ¢jlp)

< max(pd,p I, pI)y=pI
so that limi_,oo ]ai — Ci’p =0. O

The above theorem says that Z is dense in Z,, the ring of p-adic
integers. Now writing each a; of Theorem 10.1.11 in base p, we see
that

a; =by+bip+--+bi_1pt,

where 0 < b; < p. The condition a; = a;;1 (mod p') means that
a1 =bo+bip+ -+ bimp T +bip’

inbase p. Therefore, every element of Z,, canbe writtenas » -~ , byp",
0 < b, <p.Ifz € Qy, we can always multiply = by an appropriate
power of p (say p”) so that [p™ z|, < 1. Then, we can expand p" z as
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above to deduce that every p-adic number has a unique expansion
asy o nbup™", 0<b, <p—1.

It is useful to observe the analogy with Laurent series and the
tield of meromorphic functions of a complex variable. At each point
z € C, the meromorphic function has a Laurent expansion, which is
unique. Thus, if a rational number has denominator divisible by p,
we can think of it as having a “pole” at p. This analogy has been a
guiding force for much of the development in p-adic theory.

Exercise 10.1.12 Show that the p-adic series

0o
E Cpny Cn € Qpa
n=1

converges if and only if |cy |, — O.

Thus convergence of infinite series is easily verified. Note, how-
ever, that the analogue of Exercise 10.1.12 is not true for the real
numbers, as the example of the harmonic series shows.

Exercise 10.1.13 Show that
o
>
n=1

converges in Q.

Exercise 10.1.14 Show that

o0
Zn-n! = -1
n=1

in Q.

Exercise 10.1.15 Show that the power series

1
converges in the disk |z|, < p~ 1.
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Exercise 10.1.16 (Product formula) Prove that for x € Q, z # 0,
H [zl =1
P

where the product is taken over all primes p including oo.

Exercise 10.1.17 Prove that for any natural number n and a finite prime

b,
1

nly, > —.
‘ |P— |n|oo

10.2 Hensel’s Lemma

In many ways @, is analogous to R. For example, R is not algebrai-
cally closed. The exercises below show that Q,, is not algebraically
closed. However, by adjoining i = v/—1 to R, we get the field of
complex numbers, which is algebraically closed. In contrast, the
algebraic closure @p of Q, is not of finite degree over Q. Moreover,
C is complete with respect to the extension of the usual norm of
R. Unfortunately, Q, is not complete with respect to the extension
of the p-adic norm. So after completing it (via the usual method of
Cauchy sequences) we get a still larger field, usually denoted by C,,
and it turns out to be both algebraically closed and complete. It is
this field C,, that is the p-adic analogue of the field of complex num-
bers. Very little is known about it. The topic of rigid analytic spaces
in the literature refers to its study, which we will not cover in this
chapter. We confine much of our study to Q,,.

Exercise 10.2.1 Show that x> = T has no solution in Qs.

Example 10.2.2 Show that x* = 6 has a solution in Qs.

Solution. The equation z? = 6 (mod 5) has a solution (namely z =

1 (mod 5)). We will show inductively that z? = 6 (mod 5") has a
solution for every n > 1. Suppose

22 = 6 (mod 5").

We want to find 22 | = 6 (mod 5"1). Write 2,41 = 5"t + ,,. So we
must have
(5"t + z,)* = 6 (mod 5" 1),
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which means that 2 - 5*tz,, + 22 = 6(mod 5"). This reduces to

2
z; —6

2tx, + = 0 (mod 5),

so that we can clearly solve for t. The method produces a sequence
of integers {z,,}°° ; such that 22=6 (mod 5") and z,,1 1=, (mod 5").
The sequence is therefore Cauchy and its limit 2 (which exists in Q,
by completeness) satisfies x2 = 6. O

The method suggested by the previous example is quite general.
It is the main idea behind Hensel’s lemma which is the following
theorem.

Theorem 10.2.3 Let f(x) € Z,[x] be a polynomial with coefficients in
Zp. Write f'(x) for its formal derivative. If f(z) = 0(modp) has a
solution ay satisfying f'(ap) #Z 0 (mod p), then there is a unique p-adic
integer a such that f(a) = 0and a = ap (mod p).

Proof. We imitate the construction suggested by the example. Sup-
pose

f(z) = 0 (mod p")
has a solution a,,. We claim that there is a unique solution

Gp+41 (mOd pn+1)
such that
f(ans1) = 0 (mod p™+1)

and a,, 1 = ap(mod p™). Indeed, writing a,,+1 = p"t+a,, we require
f(p™t + a,) = 0 (mod p" ). We write f(z) =, ¢;z?, so that

FO "t +an) = Y cilan+pt)

1
3 culal + il ") (mod )
[

= flan) +p"tf (an) (modp”“).

We need to solve for ¢ in the congruence

p"tf'(an) + f(an) = 0 (mod p™*1).
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Since f(a,) = 0 (mod p™), this reduces to
tf'(an) = —(f(an)/p") (modp),

which has a unique solution (mod p), since f'(ay,) #Z 0 (modp), be-
cause a, = ag(mod p). This proves the claim. As before, {a,}>>, is
a Cauchy sequence, whose limit is the required solution. Since a1
is a unique lifting (mod p"*!) of a,, (mod p™), the uniqueness of the
solution is now clear. O

Exercise 10.2.4 Let f(x) € Z,[x]. Suppose for some N and ag € Z,
we have f(ag) = 0 (modp? *1), f'(ag) = 0 (modp™) but f'(ag )
0 (mod p™V*1). Show that there is a unique a € Z, such that f(a) =
and a = ag (mod p™V*1).

Exercise 10.2.5 For any prime p, and any positive integer m coprime to
p, show that there exists a primitive mth root of unity in Q, if and only if

m|(p — 1).

Exercise 10.2.6 Show that the set of (p — 1)st roots of unity in Qy, is a
cyclic group of order (p — 1).

Remark. The previous exercise shows the existence of p-adic num-
bers wp,w1,...,wp—1 that are roots of the polynomial 27 — z = 0
such that w; = i (modp). These roots are called the “Teichmiiller
representatives.”

Exercise 10.2.7 (Polynomial form of Hensel’'s Lemma) Suppose
f(x) € Zy[x] and that there exist g1, h1 € (Z/pZ)[x] such that

f(x) = gi(x)hi(x) (mod p),

with (g1, h1) = 1, g1(x) monic. Then there exist polynomials g(x), h
Zplx) such that g(z) is monic, f(x) = g(x)h(x), and g(xz) =
(modp), h(z) = hi(z) (mod p).

We now consider Q,,, the algebraic closure of Q. The p-adic norm
extends uniquely to Q, in the obvious way, which we will also
denote by | - |,. Indeed, if K/Q, is a finite extension of degree n,
we have for z € K,

(z) €
91(z)

||, = (|NK/QP (33)|p)1/n-

Theorem 10.2.8 | - |, is a nonarchimedean norm on K.
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Proof. It is clear that |z|, = 0 if and only if = 0. It is also clear that
|zy|p = |z|p|ylp, since the norm is multiplicative. To prove that

|z + ylp < max(|z]p, [yp)
we see (upon dividing by y) that it suffices to prove for a € K,

la + 1|, < max(|ap, 1).
It is easily seen that this follows if we can show

lal, <1=]a—1], < 1.
That is, we must show

[Nijq,(@)lp < 1= |Ngjg,(a =1, < 1.
This reduces to showing
NK/Qp(oz) €Zy= NK/Qp(a —1) € Z,,.

It is now necessary to use a little bit of commutative algebra. Clearly,
Qp(a) = Qp(ar — 1). Now let

fx) =2+ ap_12" '+ + a1z +ap

be the minimal polynomial for o. The minimal polynomial for o — 1
is clearly

flx+1) :xn—k(an_l—|—n)xn_1+--~+(1+an—1+"‘+a1+ao)-
Now N /q,(a) = (—1)"a and
Ngjg,(@—1) = (=1)"(1 + ap—1+ -+ a1+ ao).

We now use the polynomial form of Hensel’s lemma. If all the coef-
ficients of f(z) are in Z,, we are done. So, assume that

f(@)=a"+ap_12" '+ + a1 +ag

is such that ag € Z, but some a; ¢ Z,. Choose m to be the smallest
exponent such that p™a; € Z, for all i and now “clear denomina-
tors”:

g(x) = pmf(:I:) =bpa" + bnfll'n_l + -+ bix + by
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with b; = p™a;. Since f(z) is monic, b, = p™, and by = p™ag. By
assumption, at least one b; is not divisible by p. Thus

g(x) = (bna™ " + -+ 4 )2 (mod p),

where £ is the smallest index such that by, is not divisible by p. By Ex-
ercise 10.2.7 (the polynomial form of Hensel’s lemma) this lifts to a
factorization in Z, [x], which means that g(x) = p" f(x) is reducible,
a contradiction, since f(x) is the minimal polynomial of «. This
completes the proof. O

Exercise 10.2.9 Show that for p /=2, the only solution to z*=1 (mod p")
is x = %1, for every n > 1.

10.3 p-adic Interpolation

The notion of p-adic continuity is evident. We say that a function
f:Q, — Q,is continuous if f(z,) — f(x) whenever z,, — z.

The problem of interpolation is this: Given a sequence a, as,
as, ... of elements in Q,, does there exist a continuous function
[+ Z, — Qp such that f(n) = a,? Since the set of natural num-
bers is dense in Z,,, there can exist at most one such function.

The classic example of interpolation is given by the I'-function:

(e 9]
I'n+1) = / e “z"dr = nl.
0
Hence
o0
I'(s+1) = / e “zidx
0

interpolates the sequence of factorials.

Exercise 10.3.1 Show that there is no continuous function f : Z, — Q,
such that f(n) = n!

The difficulty in interpolation stems from n! being highly divisi-
ble by p. Thus, a natural idea is to consider the sequence

IT 4
1<j<n
(Up)=1
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instead of the factorials and hope that this works.

A continuous function f : Z, — Q, is in fact determined by its
restriction to natural numbers. Thus given a sequence of integers
{ar}32y, we need only verify that for any natural number m, there
is an integer N = N (m) such that

k=K (modp") = ap = ap (mod p™). (10.1)

That is, whenever k and &’ are close p-adically, then aj and ay are
close p-adically.
We first begin by showing that the sequence defined by

ar= ] J

J<k
(p)=1
has almost the property (10.1). As we shall see, this is essentially
Wilson'’s theorem of elementary number theory.

Exercise 10.3.2 Let p # 2, be prime. Prove that for any natural numbers
n, s we have

S

pS—1

(n+7) = —1 (mod p®).
j=1

(n+jp)=1
Exercise 10.3.3 Show that if p # 2,
a= ][] i
Jj<k
(p)=1

then aj4ps = —ay, (mod p®).

The previous exercise almost satisfies (10.1) apart from the sign.
This motivates the definition of the p-adic gamma function:

Exercise 10.3.4 Prove that for p # 2,

Ip(k +p°) = Tp(k) (mod p®).
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We now prove Mahler’s interpolation theorem. As will be seen,
the essential idea is combinatorial analysis based on a simplification
due to Bojanic.

Exercise 10.3.5 Let n, k be natural numbers and write
n=ap+ap+ap’+---,

k:bo+blp+b2p2+”',

for the p-adic expansions of n and k, respectively. Show that

(1) =) G G2) -+ et

Exercise 10.3.6 If p is prime, show that

(p,: ) = 0(mod p)

for1 <k <p"—1landalln.

Exercise 10.3.7 (Binomial inversion formula) Suppose for all n,

Show that

and conversely.

Exercise 10.3.8 Prove that

> ()eor(h) - e

k=0 0 otherwise.

Exercise 10.3.7 suggests the following. If f : Z, — Q, is continu-

ous, then let
) =3 (1)1t pw),
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so that .
n
s =3 (7 )anth,
k=0
If we can show that the function
> (i) ak(f)
k=0

is p-adically continuous, then this solves the interpolation problem.
That is, if we can show that the series converges, we are done. This is
the key idea of Mahler’s theorem, namely, to show that |a;(f)|, — 0
if the sequence { f(k)}7° , satisfies condition (10.1).

Exercise 10.3.9 Define

A=Y (’,j)(—l)”f(x + k).

k=0
Show that .
A" f(a Z( )A””fw— m).
7=0
Exercise 10.3.10 Prove that
" /m . (n
S (" Janestr) = S0 () st
§=0 J k=0

with ay,(f) defined by

anlf) = S (1) <Z>f(k)-

k=0

<x> { x(m—l)u’r-]l(!r—n—&—l) lf n> 1,

takes integer values for x € Z. Deduce that

(2

<1
p

forall x € Z,.
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Theorem 10.3.12 (Mahler, 1961) Suppose f : Z, — Q, is continuous.

Let .
=3y (7)o

Then the series

k=0

Proof. We know that given any positive integer s, there exists a pos-
itive integer ¢ such that for z,y € Z,,

z—ylp <p' = |f(x) = fF)lp <p

In particular,
[f(k+p") = f(R)lp <p~

fork=0,1,2,....

Since f is continuous on Z,, it is bounded there (recall that Z, is
compact), and so we may suppose without loss of generality that
|f(x)]p, < 1forall z € Z,. Hence,

lan(f)lp <1 for n=0,1,2,....
Now by Exercise 10.3.10,
i Z ( Nonssh+ 0+ () (st — ).
j=1 k=0

By Exercise 10.3.6, p[( )for1<j < pt — 1, so that

[@npe(f)lp < max {p™ Hanti (f)lp, p~°}-

Since |a,(f)|, < 1, we obtain

lan(f)lp <p™ for n>p.
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Replacing n by n + p' in the penultimate inequality and using the
above inequality, we obtain

lan(f)lp <p~ 2 for n>2p".
Repeating the argument (s — 1) times gives
lan(f)lp <p~° for n>sp.

This proves a,,(f) — 0 as n — oco. By Exercise 10.3.11, we have

G, =

for x € Z,. Therefore, the series

(T
a
> (i )outn)
k=0
converges uniformly on Z, and thus defines a continuous function.

Since this function agrees with f(n) on the natural numbers and N
is dense in Z,, we deduce the result. O

Exercise 10.3.13 If f(x) € C[z] is a polynomial taking integral values at
integral arquments, show that

for certain integers cy.

Exercise 10.3.14 If n = 1(modp), prove that n?" = 1 (mod p™*1).
Deduce that the sequence ay, = n* can be p-adically interpolated.

The previous exercise shows that if n = 1 (mod p), then f(s) = n*
is a continuous function of a p-adic variables s. The next exercises
show how this can be extended for other values of n.

Exercise 10.3.15 Let (n,p) = 1. If k = k' (mod (p — 1)p"), then show
that

nk = n* (modp™*1).
Exercise 10.3.16 Fix sop € {0,1,2,...,p — 2} and let A, be the set of
integers congruent to so (mod p — 1). Show that As, is a dense subset of
Zp.
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Exercise 10.3.17 If (n,p) = 1, show that f(k) = n* can be extended to
a continuous function on As,.

Remark. By Exercise 10.3.16, we see that f(s) = n® is a continuous
function f,, : Z, — Z, that interpolates n*, for s = sop(modp — 1).

10.4 The p-adic Zeta-Function

We begin with a brief description of p-adic integration theory. For
further details we refer the reader to Koblitz [K]. A p-adic distrib-
ution y on Z, is a Q,-valued additive map from the set of compact
open subsets in Z,,. It is called a measure if there is a constant B € R
such that

()], < B

for all compact open U C Z,.
To define a distribution or measure on Z,, it suffices to define it
on subsets of the form

I={a+p"Z, 0<a<pV -1, N=1,2,...},

since any open subset of Q,, is a union of subsets of this type.
It is not difficult to verify that a map p : I — Q) satisfying

p—1
wla+pZy,) = Z p(a + bp" + p"t7z,)
b=0

extends uniquely to a p-adic distribution on Z,.
We define the Bernoulli distributions. Let

1 1
ba(z) :a:2—a:+6,

be the sequence of Bernoulli polynomials. Define
n — n(k=1) a
uk(a+p Zp) p bk <pn)

Exercise 10.4.1 Verify that j, extends to a distribution on Z,.

If 11 is a p-adic measure, one can define a good theory of integra-
tion:
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Theorem 10.4.2 Let p be a p-adic measure on Z,, and let f : Z, — Q,
be a continuous function. Then the “Riemann sums”

Sy = Z f(wan)u(a+ pNZp)>

a<a<pN -1

where x,  is any element in the “interval” a + p"Z, converge to a limit
in Qp as N — oo, and this limit is independent of the choices {x, n}.

Proof. We first show that the sequence of Sy is Cauchy. By the conti-
nuity of f, we assume that N is large enough so that
|f(z) — f(y)| < € whenever z = y(modp?). Now let M > N. By
the additivity of y, we can rewrite

Sv= Y flean)n(a+p"Z,),

0<a<pM -1

where @ denotes the least nonnegative residue of a (mod p") . Since
Ta N = Ta M (mode) ,

|Sn = Smlp = > (fwan) = f@an))p (a+pV7Zy)

0<a<pM—1
< Be,

where |u(U)|, < B for all compact open U. Since Q, is complete,
the sequence of Sn’s converges to a limit. This limit is easily seen to
be independent of the choice of the z, n’s. O

If 1 is a measure on Z, and f : Z, — Q, is a continuous func-
tion, we denote by fzp f(z)dp(z) the limit of the “Riemann sums”
of Theorem 10.4.2.

We now introduce the Mazur measure. Let o € Z,. We let (o) n
be the rational integer between 0 and p" — 1 that is congruent to
o (mod p™). If p is a distribution and o € Q,, it is clear that apu is
again a distribution. If o € Zy, then 1’ defined by 1/(U) = pu(aU) is
again a distribution. Now let a be any rational integer coprime to p
and unequal to 1. We define the “regularized” Bernoulli distribution
by setting

pra(U) = u(U) — o Fup(al)

for any compact open set U. It can be shown that ji, o, is a measure.
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Exercise 10.4.3 Show that i o is a measure.

The measure 411 , is called the Mazur measure. Its significance is
disclosed by Theorem 10.4.7.

Exercise 10.4.4 Let dy, be the least common multiple of the denominators
of coefficients of by, (x). Show that

dppino(a+pNZy) = dpka™ g o(a + pNZ,) (mod p™).

Exercise 10.4.5 Show that

/ duk,a = k/ $k71d,u/1,a‘
Zyp Z

P

For any compact open set U and a continuous function f : X —

Qyp, we define
[ = [ rapw@an
U Zp

Exercise 10.4.6 If Z,, is the group of units of Zy,, show that
ha(Zy) = (1 —a ") (1 —p" 1By,
where By, is the kth Bernoulli number.

Putting these two exercises together gives the following impor-
tant theorem:

Theorem 10.4.7 (Mazur, 1972)

1
—(1=p* N By/k = — / AT
[0 k 1 Z;‘) @

By Exercise 8.2.12, we can interpret the left hand side of the equa-
tion in Theorem 10.4.7 as

(1-p1) - k).

The theorem allows us to show that these values can be p-adically
interpolated, provided that k lies in a fixed residue class (mod p—1).

Exercise 10.4.8 (Kummer congruences) If (p—1)ti and i=j (mod p"),
show that

(1—p"NBi/i=(1-p"")B;/j (mod p™*h).
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Exercise 10.4.9 (Kummer) If (p — 1) { ¢, show that |B; /i|, < 1.

Exercise 10.4.10 (Clausen and von Staudt) If (p — 1)|i and i is even,
then
pB; = —1 (mod p).

Theorem 10.4.7 and the Kummer congruences motivate the de-
finition of the p-adic (-function. If & is in a fixed residue class sg
(mod p — 1), then the Kummer congruences imply that the numbers

(1 -~ p'H) ¢(1—k)

can be p-adically interpolated. By Theorem 10.4.7 we see that this
function must be
1
a—(so+(p—1)s) _ 1

—1)s—1
/ a:-SOJF(p )8 du170“
Zy

and we designate it as ¢, 5, (s), and call it the p-adic zeta function.
One can show that ¢, 5, (s) does not depend on the choice of a.

This observation of Kubota and Leopoldt in 1964 initiated a rich
theory of p-adic zeta and L-functions. We refer the reader to Koblitz
[K] and Washington [W] for further details.

10.5 Supplementary Problems

Exercise 10.5.1 Let 1 < a < p — 1, and set ¢(a) = (a?~1 — 1) /p. Prove
that ¢(ab) = ¢(a) + ¢(b) (mod p).

Exercise 10.5.2 With ¢ as in the previous exercise, show that
¢(a + pt) = ¢(a) — at (modp),
where aa = 1 (mod p).

Exercise 10.5.3 Let [x] denote the greatest integer less than or equal to x.
For1 <a<p-—1,show that
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Exercise 10.5.4 Prove the following generalization of Wilson’s theorem:
(p— B)!(k — 1)! = (~1)" (mod p)

for1 <k<p-1

Exercise 10.5.5 Prove that for an odd prime p,

p_l 1)i+1

(mod p).
=1

.

Deduce that 2P~ = 1 (mod p?) if and only if the numerator of

L1 1
23 p—1

is divisible by p.

Exercise 10.5.6 Let p be an odd prime. Show that for all x € Z,, I'p(z +
1) = hy(2)I'y(x), where

—x if |x’P =1,
hp(z) =
-1 if |z|, <1.

Exercise 10.5.7 For s>2, show that the only solutions of x>=1 (mod 2°)
arex =1,-1,25"1 —1,and 2571 + 1.

Exercise 10.5.8 (The 2-adic I'-function) Show that the sequence defined
by
To(n) = (1" [ 4
1<j<n
(4,2)=1
can be extended to a continuous function on Zs.
Exercise 10.5.9 Prove that for all natural numbers n,
()Tl +1) = (~1)n/rksmt,
Exercise 10.5.10 If p is an odd prime, prove that for x € 7Z,,
Tp(@)Tp(1 - z) = (—1)"),

where ((x) is defined as the element of {1,2,...,p} satisfying ¢(x) =
x (mod p). (This is the p-adic analogue of Exercise 6.3.4.)
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Exercise 10.5.11 Show that
1 if p=3(mod4),

Pp(1/2)2:
—1 if p=1(mod4).



11
Equidistribution

11.1 Uniform distribution modulo 1

The theory of uniform distribution of sequences is vast and varied.
A good reference book is [KN]. Here, we give the most basic intro-
duction to this important chapter of analytic number theory.

A sequence of real numbers {x,}22 is said to be uniformly dis-
tributed modulo 1 (abbreviated u.d.) if for every pair of real num-
bers a,bwith0 < a < b < 1, we have

i TS N (2n) € [a, b}
N—o0 N

=b—a,
where (z,) := z,, — [x,] denotes the fractional part of z,,.

Usually, it is convenient to take a sequence {x,, }°° ; satisfying 0 <
x, < 1in discussing uniform distribution and we assume this is the
case in the discussion below. It is clear from the definition that if a
sequence {z, } > is u.d. then it is also dense in the unit interval.

Exercise 11.1.1 Let us write the sequence of non-zero rational numbers
in [0, 1] as follows:
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where we successively write all the fractions with denominator b for b =
1,2, 3, .... Show that this sequence is u.d. mod 1.

Exercise 11.1.2 If a sequence of real numbers {x,}>° ; is u.d., show that
for any a with 0 < a < 1, we have

#{n < N :z, =a} =o(N).

Exercise 11.1.3 If the sequence {x,,}5° | is u.d. and f : [0,1] — Cisa
continuous function, show that

and conversely.

Exercise 11.1.4 If {z,,}72, is u.d. then

1Y L
i,y 3 ) = | f@aa.

for any piecewise C-function f : [0,1] — C.

In particular, if {z,}72, is u.d. then for the functions f,,(z) =

e2mmT e have
lim ~— > ePmimen =
N—oo N ’
n<N

for all non-zero integers m. Weyl’s criterion (to be proved below) is
that the converse is true.

Theorem 11.1.5 [Weyl, 1916] A sequence {x,, }72; is u.d. if and only if
N .
) ePmimen = o(N), m= 41,42, ... (11.1)
n=1

Proof. As observed earlier, the necessity is clear. For sufficiency, let
e > 0 and f a continuous function f : [0, 1] — C. By the Weierstrass
approximation theorem, there is a trigonometric polynomial ¢(z)
such that deg ¢ < M, with M depending on e such that

sup |f(z) — o(x)] <e. (11.2)

0<z<1
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Then,

1 N
z)dr — > Flan)
n=1

1 1 1 X
[[ 0@ = o]+ [ otwae 53 )
By (11.2), the first term is < e. The second term is
| X
ds =1 3 o(en)| +

Again by (11.2), the last term is < e. Writing

§ : A 62mmm’

m|<M

1
/ o(z)dz = ag,
0

1 N N
SN S o
n=1

1<|m|<M n=1

<

1

n=1

] |

we see that

and

so that

! 1 a 1 a 2mimx
| otwe =3 otan 7 2.

Let T = 3 1}, j<m lam|- We may choose N (which depends on M)
sufficiently large so that all of the inner terms above are < ¢/T by
virtue of (11.1). Thus, this term is also < e. Hence,

ﬁ&ﬁzf% - [ st

This completes the proof. O

< Z |G|

1<|m|<M

Exercise 11.1.6 Show that Weyl's criterion need only be checked for pos-
itive integers m.
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Exercise 11.1.7 Show that the sequence {xy, }°° ; is u.d. mod 1 if and only

if
1 o
im, sy 3 ) = | @

for any family of functions f which is dense in C[0,1]. Here, C'0, 1] is the
metric space of continuous functions on [0, 1] with the sup norm.

Exercise 11.1.8 Let 6 be an irrational number. Show that the sequence
T, = nbisu.d.

Exercise 11.1.9 If 0 is rational, show that the sequence x,, = nf is not
u.d.

Exercise 11.1.10 Show that the sequence x,, = logn is not u.d. but is
dense mod 1.

Exercise 11.1.11 Let 0 < xz,, < 1. Show that the sequence {x,}>> is
u.d. mod 1 if and only if

1 & 1
lim —» z;, =
N—oo N ; "o+l
for every natural number r.

Exercise 11.1.12 If {x,,}°2  is u.d. mod 1, then show that {mx,}° , is
u.d. mod 1 for m a non-zero integer.

Exercise 11.1.13 If {z,,}5° ; is u.d. mod 1, and c is a constant, show that
{zn + ¢} is u.d. mod 1.

Exercise 11.1.14 If {z,,} 2, is u.d. mod 1 and y,, — c as n — oo, show
that {x, + yn 02 is u.d. mod 1.

Exercise 11.1.15 Let F}, denote the nth Fibonacci number defined by the
recursion Fy = 1,Fy = 1, Fy,41 = F,, + F,,_1. Show that log F,, is u.d.
mod 1.

To study the equidistribution of various sequences, an important
technique was introduced by Weyl and van der Corput. The tech-
nique is based on the following simple inequality.
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Theorem 11.1.16 (van der Corput, 1931) Let y1,...,yn be complex
numbers. Let H be an integer with 1 < H < N. Then
2

<

N+H > 2N+ H)
H+1Z|y"| H+1 2( H+1>

Proof. It is convenient to set ¢, = 0 forn < 0and n > N. Clearly,

H 2 H 2
j{:j{:yn+h = j{:j{:yn+h

h=0 n n h=0

(H +1)*

We note that the inner sum is zeroif n > N +1orn < —H. Thus, in
the outer sum, n is restricted to the interval [-H + 1, N]. Applying
the Cauchy-Schwarz inequality, we get that this is

(N+H)) Zym
n

Expanding the sum, we obtain

> Z Z Yn+hTnr = (H +1) Z nl® + D) UnthTsne

n  h=0k=0 n  h#k

2

In the second sum, we combine the terms corresponding to (h, k)
and (k, h) to get that it is

2 Re (Z ZH: > yn+hyn+k> :

n h=0k<h

We write m = n + k and re-write this as

2Re (Z EH: > ym_k+hym> =2Re( > EH: Ynirlm Y, 1

m h=0k<h m r=1 k<h;h—k=r

The innermost sum is easily seen to be H + 1 — r. Therefore,

<
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H
N+H 2, 2(N + H)

1_
HHZW e

This completes the proof. O

Corollary 11.1.17 (van der Corput, 1931) If for each positive integer r,
the sequence x4, — xy, is u.d. mod 1, then the sequence x, is u.d. mod 1.

Proof. We apply Theorem 11.1.16 with y,, = e?™™" to get

1 & i
- E :eZﬂimxn
N

n=1

L+ H/N  2(N+ H)
S +N2(H+1)TZ:1< H+1)

2 : 27mim(Tp4r—Tn)

Taking the limit as N — oo and using the fact that Tpar — Ty isu.d.
mod 1 for every r > 1, we see that

N 2

1
li 2TIMTy
N E>nc>o Zl H ’
for any H. Choosing H arbitrarily large gives the result. O

Exercise 11.1.18 Let y, ..., yn be complex numbers. Let H be a subset of
[0, H] with 1 < H < N. Show that

N+ H 2(N +H)
< Z|"‘2 ’HP ZN

where N, is the number of solutions of h—k = r withh > kand h, k € 'H.

Exercise 11.1.19 Let 6 be an irrational number. Show that the sequence
{n20}2, is u.d. mod 1.

Exercise 11.1.20 Show that the sequence {an® + bn}°_, is u.d. provided
that one of a or b is irrational.

Exercise 11.1.21 Let P(n) = agn® + aq_1n® ' + --- 4+ a1 + ag be a
polynomial with real coefficients with at least one coefficient a; with i >
1 irrational. Show that the sequence of fractional parts of P(n) is u.d.
mod 1.
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11.2 Normal numbers

Let = be a real number and b > 2 a positive integer. Then, = has a

b-adic expansion
e}
a
x=|z]+ Z FZ’
n=1

with 0 < a,, < b. This expansion is essentially unique. x is said to be
simply normal to the base b if for each 0 < a < b,
#n<N:ia,=a} 1

lim —.

N—oo N b

In other words, each digit occurs with equal frequency in the b-adic
expansion of x. More generally, we may consider a block of digits of
length k and inquire how frequently this block appears in the b-adic
expansion. To be precise, let Bj, be a natural number whose b-adic
expansion is of the form b1b - - - by. A number z is called normal to
the base b if

.1 . 1
]\}Erlwﬁ#{nSN—k+l:anﬂ-,l:bjforlgj§k:}:b—k.

For instance, the number

[e.e]

0.010101 - - - = Z

n=1

1
P

is simply normal to the base 2 but not normal to the base 2 since the
block 11 does not occur at all in the expression.
Exercise 11.2.1 Show that a normal number is irrational.

Theorem 11.2.2 The number x is normal to the base b if and only if the
sequence (xb™) is u.d. mod 1.

Proof. Let B, = b1bs - - - b, be a block of k digits. The block

AmAm41 - Omtk—1
in the b-adic expansion of z is identical with By, if and only if

By,
a3

Bk—|—1

< (xb™ 1) < o
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Let I}, denote this interval of length 1/b*. If the sequence {xb"}°°
is u.d. then

#{m <N —k+1:20™ eI} ~N/OF

as N tends to infinity. Thus, = is normal to the base b. Conversely, if
x is normal to the base b, then for any rational number of the form
y = a/b¥, we have

#{n<N : (2b")<a/b}=#{m < N —k+1: (ab™ ") <a/b*} + O(k).
This is easily seen to be equal to

S #{m<N—k+1:(2b"") € L} + O(k)
Bi<a

= (N/bk +0(N)) +O(k)

Br<a

which is aN/b* + o(N) since  is normal to the base b. Since the
numbers of the form a/b* are dense in [0, 1], the asymptotic above
extends to all y with 0 < y < 1. This completes the proof. O

Exercise 11.2.3 If = is normal to the base b, show that max is normal to
the base b for any non-zero integer m.

We will now show that almost all numbers are normal (in the
sense of Lebesgue measure).

Exercise 11.2.4 Let {v,, }2° ;| be a sequence of distinct integers and set for
a non-zero integer h,

S(N.z) — 1« 2mivnah
(N,z) = NnZ::l@
Show that ) X
/0 SN, 2)Pde = .
and

o0 1
Z/ IS(N2, 2)[2dz < oo.
N=1"0
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From the previous exercise and Fatou’s lemma, we deduce
1 o0
/ > IS(N?, z)Pda < oo,
0 N=1
so that
o
> IS(N?,2)? < oo,
N=1

for almost all z. Therefore,

lim S(N% z)=0

N—o0

for almost all z. Now, given any NV > 1, we can find an m such that
m? <N < (m+1)>

Thus,

2m

< 2
(N, 2)] < |8(m?,2)] + =

< |S(m?, x)| +

e

Thus,
lim S(N,z) =0,

N—o0

forall z ¢ V},, with V}, a set of measure zero. Since a countable union
of sets of measure zero is still measure zero, we have proved:

Theorem 11.2.5 Let v, be a distinct sequence of natural numbers. For
almost all x, the sequence {v,x}5° ; is u.d. mod 1.

Applying the above theorem with v, = 0" and using Theorem
11.2.2, we deduce that almost all numbers are normal to every base
b.

Exercise 11.2.6 Show that the sequence n'e is not u.d. mod 1.

The determination of which numbers are normal is not an easy
one. For instance, it is known that the number

0.12345678910111213...
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called Champerowne’s number, obtained by writing all the
numbers in sequence is a normal number to the base 10. In 1946,
Copeland and Erdos showed that

0.23571113171923...

obtained writing the sequence of prime numbers is normal to the
base 10. It is unknown at present if numbers such as V2,log2, e
or w are normal numbers to any base b. In fact, there are no con-
crete examples of numbers which are normal to any base b, although
almost all numbers are normal to any base b.

Exercise 11.2.7 If x is normal to the base b, show that it is simply normal
to the base b™ for every natural number m.

11.3 Asymptotic distribution functions mod 1

Let {x,,}°° | be a sequence of real numbers and let S(z; N) = #{n <
N :0 < (z,) < x}. A sequence {z,}7, is said to have the asymp-
totic distribution function (abbreviated a.d.f. mod 1 or simply

a.d.f.) g(z) if
. S(x;N)
R
for all 0 < x < 1. Clearly, g is non-decreasing and we have ¢(0) =
0 and g(1) = 1. A sequence which is u.d. mod 1 has asymptotic
distribution function g(x) = z. Thus, this is a generalization of the
concept discussed in the first section. As stated earlier, we assume

we have a sequence {z, }°°; with 0 < z,, < 1.

Exercise 11.3.1 A sequence {x,}5°; has a.d.f. g(x) if and only if for
every piecewise continuous function f on [0, 1], we have

Exercise 11.3.2 A sequence {xy,}72, has a.d.f. g(x) if and only if

1 & 1
lim N; e2miman _ /0 €2Mm (),

N—oo

for all integers m.
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Theorem 11.3.3 [Wiener - Schoenberg, 1928] The sequence {xy}2°
has a continuous a.d.f. if and only if for every integer m, the limit

N
— i 1 2TIMIy,
A, = 111N N (&
n=1

N—oo

exists and

N
D laml® = o(N). (11.3)
m=1

Proof. Suppose the sequence has a continuous a.d.f. g(x). The exis-
tence of the limits is clear. Now, by Exercise 11.3.2, we have

1
am:/ M dg ().
0

Thus,
lim 1 i lam|? = lim e i /1 /1 2@ =) dg (2)dg(y)
N—oo N &= ™ N—oo N £= [y g '
This is equal to

1ot/ N .
lim / / — 2= =Y) | dg(2)dg(y).
[ (3 3o

By the Lebesgue dominated convergence theorem this is equal to

1l 1 X sim(o—g)
lim — T E=Y) N dg(x)dg(y).
L] i > (2)dg(v)

The integrand is zero unless z — y € Z, in which case it is 1. The
set of such (z,y) € [0,1]2 is a set of measure zero. Therefore the
limit is zero. Conversely, suppose that the limit is zero. By the Riesz
representation theorem, there is a measurable function g(z) such
that

1
am:/ M dg ().
0
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Consequently,

1 1
/ / f(z —y)dg(x)dg(y) =0,
0 0

where f(x — y) = 0 unless © — y € Z, in which case it is 1. We want
to show that this implies that g is continuous. Indeed, if g has a
jump discontinuity at ¢ (say), the double integral is at least [g(c+) —
g(c—)]? > 0. This completes the proof. O

Exercise 11.3.4 Suppose that {x,,}5° , is a sequence such that for all in-
tegers m, the limits

N
. 1 2mima
= lim ~ g e "
n=1

N—oo

exist and

o0

Z |am|? < oo.

m=—o0
Put
o
7 (J:‘) _ Z am€2mmx'
m=—o00

Show that

N :xy, ) A
P ILERIEY

for any interval o, 3] contained in [0, 1].

11.4 Discrepancy

Given a sequence {x,,}°° ;, we define the sequence Dy by setting

Dy = sup #{nSN:aS(azn)gb}_

b—a
0<a<b<1 N ( )
and call this the discrepancy of the sequence.

Exercise 11.4.1 Show that the sequence {xy, }2° ; is u.d. mod 1 if and only
if Dy — 0as N — oo.
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Exercise 11.4.2 Show that

(sinﬂ-ﬂz>2 i (Z_1n)2:17 iy

n=—oo

The proof of Weyl’s criterion relied on the existence of finite
trigonometric polynomials which approximate the characteristic
function of an interval. It will be useful to have a quantitative ver-
sion of these approximations. There are several ways of obtaining
such a version. A most expedient route was discovered by Mont-
gomery [Mo] using functions that had earlier been discovered by
Beurling and Selberg and utilised by the latter to obtain sharp con-
stants in the large sieve inequality. This is the route we shall follow.

For z € C, we define sgnz = 1 if Re(z) > 0 and sgnz = —1 if
Re(z) < 0.

Theorem 11.4.3 (Beurling, 1938) Let

sinmz)? [ = 1 > 1 2
B(Z)< T ) <T§)(z—n)2_;(z+n)2+z>'

Then
1. B(z) is entire;
2. B(x) > sgnx for real x;
3. B(z) =sgnz+ O(eQW‘ImZ‘/\z\) ;

4. -
/ (B(z) —sgnzx)dx = 1.

—0oQ0

Proof. The first assertion is clear since sin 7z has simple zeros for
z € 7. To prove the second assertion, we observe that

<sin7r7r2>2 i (z_1n)2 1 (11.4)

n=—0oo

which is the content of Exercise 11.4.2. For x > 0, we also have

oo

1
Z (x +n)?
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<oo . du OOdu_l_OO x+”+1du<oo 1
=Dy S bl M Aabiad DY D Y a3
n=17%tn-1 z n=0" Ttn n=0

(11.5)
by the method used to prove the integral test. From (11.4), we have

B(2) — sen » = <Sm7r”>2 (i _ 22@)

for Re(z) > 0 and

B(z) —sgnz = <Sin7rm>2 (i * 272(2—1”)2>

for Re(z) < 0. The second assertion follows immediately from these
identities and (11.5). For the third assertion, we note that

sin? 1z = O(e?™! Im(z)|).

In addition, for x,y > 0, we have

[e.9]

Z 1 < 1 —i—min(/oo dt /OO dt )
(w4 n)?+y? T a4 y? o (@+8)? )y 2+

=0
1 4 mi 1«
= ———+min|—,— |.
x2 + 92 x’ 2y

Therefore,

Z|Z+n‘2: (1/|z]), for Re(z) >0,

and

Z ’Z 0O(1/|z]), for Re(z) < 0.

The third assertion is now immediate from these observations.
Finally, for the last assertion, we note from the second assertion that
the integrand is non-negative. Also,

/A (B(z)—sgnz)dr= /OA(B(JJ)JrB(—x))d:U: /OA (Sinﬂx>2 %d:ﬁ,

_A s
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after a short computation. The last integral tends to 1 as A tends to
infinity. This completes the proof. O

Following Selberg, we now use this theorem to majorize and mi-
norize the characteristic function of an interval via finite trigono-
metric polynomials.

Theorem 11.4.4 (Selberg, 1970) Let I = [a, b] be an interval and x its
characteristic function. Then, there are continuous functions Sy (x) and
S_(z) in L*(R) such that

S—(z) < xr(x) < S4(2),

with R

Si(t) =0, for [¢t>1.
In addition,

| @) - s-@)yds =1

and

/OO (ST(z) — x1(z))dr = 1.

Proof. With B as in Theorem 11.4.3, let
1
Si(x) = i(B(x —a)+ B(b—x)).
Then,

Si(z) = 5 (sgn (z —a) +sgn (b — x)) = x1(2),

N |

and

| 5e@) —xatands =1

—0o0

by the last assertion of Theorem 11.4.3. Hence, S, € L!'(R). More-
over, the function S is continuous, being the restriction of an entire
function. Now we will show that for ¢t > 1,

Sy(t) = /_ h Sy(z)e(—tz)dr =0, e(u)=e* .

To this end, we begin by showing

sam) = [ suwecumi=0(%+ 1)
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as A, B tend to infinity. By contour integration, J(A, B) can be writ-
ten as the sum of three line integrals, two of them being along the
vertical line segments [-A, —A —iT| and [B — iT, B] and one being
along the horizontal segment [—A — T, B — iT. This last integral is
easily estimated using Theorem 11.4.3. It is bounded by

B’ B
/ |B(z — iT)|e T dx <« / e gy,
_A _A

where A’ = A + max(|al, |b]) and B’ = B + max(|al, |b|). This inte-
gral tends to zero as T tends to infinity. The other two integrals are

similarly estimated. For z = —A + iy, we have

6—27Ty

B(z—a)z—l—i—O( ), for A > |al,
6—27ry
B(b—z):1+0< >, for A > |b),
so that
g e—27ry
+(Z) < A

and the integral over the left vertical line is

< 1 / ’ e 2™ dy < 1
AJ_ o A
The other vertical line integral is similarly estimated so that letting

A, B tend to infinity, we deduce that 5’+(t) =0fort > 1.Fort < —1,

we use S (—t) = S (t) and deduce the desired result from this. For
t = %1, the result follows by continuity of S_.. Finally, we set

S_(r) = —5(Bz —a) + Blz ~1),

and proceed analogously to complete the proof of the theorem. [

Exercise 11.4.5 For any 6 > 0, and any interval I = [a,b], show that
there are continuous functions H (x), H_(z) € L1(R) such that

H_(2) < xi(e) < Hy (),
with H(t) = 0 for |t| > 6 and

[ @)~ @nae = [~ ) i =

—0o0 —00
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Exercise 11.4.6 Let f € L'(R). Show that the series

Pa) =3 f(n+a),

nel

is absolutely convergent for almost all x, has period 1 and satisfies F(k) =
(k).

Theorem 11.4.7 Let M be a natural number. For any interval I = [a, b]
with length b — a < 1, write

Er(x) =Y xi(n+ ).
ne’

Then, there are trigonometric polynomials

such that for all x

and
_ v
M+1’ M+1

Proof. Take 6 = M + 1 in Exercise 11.4.5 and let H.. be the functions
obtained by that exercise. Put

Vi(x) = ZHi(n—i-x).
neZ

Sy(0)=b—a Si(0)=b—a+

By Exercise 11.4.6, Vi.(x) € L'(0,1) and V4. (t) = 0 for [t| > M + 1.
Thus,
Vi(z) = Z Vi(m)e(mx),

jm|<M

almost everywhere. Now set

S]j\}: Z Vi(m)e(mz).

Im|<M

Since xr(z) > H_(x), we get

@)= Y wuln+2)> S H (n+2) = V_(x)

nel ne”



188 11. Equidistribution

for almost all x. By continuity, we deduce that =Z;(x) > S}, (z) for
all z. Similary, we deduce Z;(z) < S;;(z) for all z. In addition, we

have
1

M+1

SE0)=b—a+

U
We now prove the following theorem due to Erdos and Turén.
The proof given below is due to Montgomery [Mo].

Theorem 11.4.8 (Erdos-Turan, 1948) For any integer M > 1,

2 2wwnxn

Proof. Let x be the characteristic function of the interval I = [a, b].
Using Theorem 11.4.7, we have

1
Dysqaa*s Z

N

ZE > ZS]J\Q(:%)
n=1

§ : 2TIMI

N
N(b— + Sy (m
(b—a)+ M1 0<|m2|:<M

To estimate S']J(/[(m), we use
X 1 1
Sip(m) :/ = (t)e(—mt)dt—l—/ (S () — Z1(t))e(—mt)dt,
0 0

to deduce
1
18, (m)] < /0 (S3;(x) — Er(@))d + [E1(m).

The integral is 1/(M + 1) and

21(m) = e(~gmla-+ ) O™,

from which we get

1
M+1

|S31(m)| <

sinm(b — a)m‘ 3

™m ~ 2|m|
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N N M
=1(z) < N(b—
Z 1(xn) < N(b a)+M+1+3mZ:1

Similarly, we obtain

N N Mo
= n) >N h— _ _ - 2mimzy, ,
2 2 N0 = =y 8 ) 2
from which the theorem follows. O

Exercise 11.4.9 Let x1,...,xn be N pointsin [0,1]. For 0 < z < 1, let
Ry(x) =#{m < N:0<zx, <z} — Nz
Show that

1 N L&
/R%V(g;)dxz (Z(mn—1/2)> 530 9
h=1

0 n=1

2

N
§ : 627Tihxn
n=1

Exercise 11.4.10 Let « be irrational. Let ||x|| denote the distance of x
from the nearest integer. Show that the discrepancy Dy of the sequence
na satisfies

1 1 &
Dy <+ + e 3~
N<<M+Nmz::1m|ma|]

for any natural number M.

11.5 Equidistribution and L-functions

We will discuss a general formalism to study equidistribution due
to Serre [Se]. Let G be a compact group with Haar measure x nor-
malized so that ;(G) = 1. The space X of conjugacy classes of G
inherits a natural topology from that of G as well as the measure.
Let K be a number field and for each place v of K, let Nv denote its
norm and let us suppose we have a map

V= X, € X.
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For each representation,
p:G— GL(V),
we set
L(s, p) = [ [ det(1 — p(zo)Nv—*)"".
Exercise 11.5.1 Show that L(s,p) defines an analytic function in the
region Re(s) > 1.

The sequence z, is said to be p-equidistributed in X if for any
continuous function f on X we have

S fw) = /G f(@)du(e),

Nov<z

. 1
lim

where 7 (z) denotes the number of places v with Nv < z.

By the celebrated Peter-Weyl theorem, every continuous function
[ can be approximated by a finite linear combination of irreducible
characters x. Thus, it suffices to verify the existence of the limit
when f is restricted to an irreducible character. The orthogonality
relations now give us:

Theorem 11.5.2 (Weyl criterion for compact groups) Let G be a com-
pact group with normalized Haar measure p. Let X be the space of con-
jugacy classes of G as above. A sequence x,, is is p-equidistributed if and
only if for every irreducible character x # 1 of G, we have

lim b Z x(zy) = 0.

UMK (.%') Nv<zx

Exercise 11.5.3 (Serre) Suppose that for each irreducible representation
p # 1, we have that L(s, p) extends to an analytic function for Re(s) > 1
and does not vanish there. Prove that the sequence x,, is p-equidistributed
in the space of conjugacy classes, with respect to the image of the normal-
ized Haar measure p of G.

This formalism includes many of the classical prime number the-
orems. Indeed, if G = (Z/mZ)* is the group of coprime residue
classes mod m, and K is the rational number field, then we can as-
sociate to each prime p coprime with m, the residue class it belongs
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to mod m. The associated L-functions are the Dirichlet L-functions.
Their analytic continuation and non-vanishing on Re(s) = 1 is the
content of Chapter 3. In this way, we deduce Dirichlet’s theorem
concerning the distribution of primes in a given arithmetic progres-
sion. More generally, if K/Q is a Galois extension with group G and
we associate to each unramified prime p of Q the conjugacy class
of the Frobenius automorphism of the prime ideal p lying above p,
then, the corresponding equidistribution theorem is the Chebotarev
density theorem.

A conjectural example is given by the Ramanujan 7 function. Re-
call that this function is defined by the product expansion

> rm)g =q @ -
n=1 n=1
In 1916, Ramanujan conjectured that 7(n) is a multiplicative func-
tion and this was proved a year later by Mordell. He also conjec-
tured that for every prime p, we have

Im(p)| < 2p™72.

Thus, we may write

11/2

T(p) =2p cos b,

for some unique 6, € [0, 7]. Inspired by the Sato-Tate conjecture in
the theory of elliptic curves, Serre [Se] made the following conjec-
ture. Let G = SU(2) be the special unitary group of 2 x 2 matrices
over the complex numbers. The conjugacy classes of G are para-
metrized by elements of the interval [0, 7]. More precisely, for each
6 € [0, 7] the corresponding conjugacy class X (¢) has the element

e? 0
0 e—i@ .

In Serre’s formalism, we can construct a family of L-functions at-
tached to the irreducible representations of SU(2) via the mapping

p— X(6p).

SU(2) has a standard 2-dimensional representation given by the
natural map p into GL(2). It is known that all the irreducible repre-
sentations of G are the m-th symmetric powers Sym™ (p). The Sato-
Tate conjecture (as formulated by Serre in this context) is the as-
sertion that the elements X (,) are equidistributed in the space of
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conjugacy classes of SU (2) with respect to the Haar measure, which
one can show is

2 sin® 0d#.
v

To prove this conjecture, it suffices to show that each of the L-series
attached to these representations extends to Re(s) > 1 and does not
vanish there. This conjecture fits neatly into a larger package of con-
jectures in the Langlands program. In fact, the example given above
with the Ramanujan 7 function is a special case of a larger family of
conjectures, one for each Hecke eigenform, and more generally, for
automorphic representations on GL(2). At present, it is known that
for m < 9, the m-th symmetric power L-series has the predicted
analytic continuation and non-vanishing property. Recently, Taylor
has announced a proof of the Sato-Tate conjecture for elliptic curves
(which is the original context in which such equidistribution con-
jectures were made).

Exercise 11.5.4 Let G be the additive group of residue classes mod k.
Show that a sequence of natural numbers {x,,}5° | is equidistributed in
G if and only if

N .
Z e27rzazn/k _ O(N),
n=1

fora=1,2,.. k-1

Exercise 11.5.5 Let p,, denote the n-th prime. Show that the sequence
{log pp }22, is not u.d. mod 1.

Exercise 11.5.6 Let vq,v2, ... be a sequence of vectors in R¥ /ZF. Show
that the sequence is equidistributed in R* /ZF if and only if

N
Z 627rzb-vn — O(N),
n=1

for every b € ZF with b unequal to the zero vector.

Exercise 11.5.7 Let 1,1, o, ...,ax be linearly independent over Q.
Show that the vectors v, = (nau, ..., nay,) are equidistributed in R¥ /7.

Exercise 11.5.8 Let a be a squarefree number and for primes p coprime to

a, consider the map
prxpi= (=,
SN
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where (a/p) denotes the Legendre symbol. Show that the sequence of x,’s
is equidistributed in the group of order 2 consisting of {£1}.

11.6 Supplementary Problems

Exercise 11.6.1 Show that Exercise 1.1.2 cannot be extended to Lebesgue
integrable functions f.

Exercise 11.6.2 (Féjer) Let f be a real valued differentiable function, with
f'(z) > 0 and monotonic. If f(x) = o(z) and zf'(x) — oo when x —
00, show that the sequence { f(n)}>°  is u.d. mod 1.

Exercise 11.6.3 For any ¢ € (0,1), and o # 0, show that the sequence
an®isu.d. mod 1.

Exercise 11.6.4 For any ¢ > 1, show that the sequence (logn) is u.d.
mod 1.

Exercise 11.6.5 Let f be real valued and have a monotone derivative f’
in [a,b] with f'(x) > X > 0. Show that

b .
/ 627rzf(:13)dx

Exercise 11.6.6 Let f be as in the previous exercise but now assume that
f(x) < =X < 0. Show that the integral estimate is still valid.

2
< —.
- 7T

Exercise 11.6.7 Let f be real-valued and twice differentiable on [a, b] with
f"(z) > & > 0. Prove that
< —.

b
2mif(x) d
€ T
/a V6

Exercise 11.6.8 Let b—a > 1. Let f(x) be a real-valued function on [a, b]
with f"(x) > 6 > 0 on [a,b]. Show that

Z e?wif(n)

a<n<b

4

f'(b) = f'(a) +1
7 :

<

Exercise 11.6.9 Show that the estimate in the previous exercise is still
valid if f"(z) < —§ < 0.
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Exercise 11.6.10 Show that the sequence {logn!}>° | is u.d mod 1.

Exercise 11.6.11 Let ((s) denote the Riemann zeta function and assume
the Riemann hypothesis. Let 1/2 + iy1,1/2 + 72, ... denote the zeros of
C(s) with positive imaginary part, arranged so that v; < o < y3---.
Show that the sequence {~,} is uniformly distributed mod 1.

Exercise 11.6.12 Let A,, be a sequence of sets of real numbers with # A,—
oo. We will say that this sequence is set equidistributed mod 1 (s.e.d.
for short) if for any [a,b] C [0, 1] we have

lim #{te Ay :a < (t) <b}

Jim. A, =b—a.

The usual notion of u.d. mod 1 is obtained as a special case of this by taking
Ay, = {x1,...,zn}. Show that the sequence of sets Ay, is s.e.d. mod 1 if and
only if for any continuous function f : [0, 1] — C, we have

: 1 !
Jm > f(t):/0 f(x)da.

teAn,

Exercise 11.6.13 Show that the sequence of sets A,, is s.e.d mod 1 if and
only if for every non-zero integer m, we have

1 .
lim e2mimt — ().
n—o0 #An t;

Exercise 11.6.14 Let A,, e the finite set of rational numbers with denom-
inator n. Show the sequence A,, is set equidistributed mod 1.

Exercise 11.6.15 A sequence of sets Ay, with A, C [0,1] and #A,, — oo
is said to have set asymptotic distribution function (s.a.d.f. for short)
g(x) if 4
t n:0<t<
i HEEAD SIS gt
Show that the sequence has s.a.d.f. g(x) if and only if for every continuous
function f, we have

1 '
T = 350 = [ r@)dsla).

teA,
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Exercise 11.6.16 (Generalized Wiener-Schoenberg criterion) Show
that the sequence of sets {A,}7°; with A, C [0,1] and #A, — oo
has a continuous s.a.d.f. if and only if for all m € Z the limit

. 1 ;
A = lim Y E g2rimt
n—oo
" teA,

exists and

N
Z ’am’2 = o(NV).
m=1
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Arithmetic Functions

1.1 The Mobius Inversion Formula
and Applications

1.1.1 Prove that

1 if n=1,
Zu(d){

dln 0 otherwise.

Let n = p{"---p}p* be the unique factorization of n as a product
of powers of primes. Let N = p; - - - p;.. Then

> ould) =D p(d),
din d|N

since the Mobius function vanishes on numbers that are not square-
free. Any divisor of N corresponds to a subset of {p1,...,px}. Thus,
forn > 1,

SIS )y =a-1t=o

d|n r=0

The result is clear if n = 1. O
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1.1.2 (The Mobius inversion formula)Show that

= Zg(d) Vn e N
dln
if and only if
Zu f(n/d) Vn € N.
dn
We have

Sou@f(5) = YoudY gl
din

dn el7

= > uld)g(e)

des=n

= D gle)> ud)
d|

eln

= g(n),

since the inner sum in the penultimate step is zero unless n/e = 1.
The converse is also easily established as follows. Suppose

Zu f(n/d).

din
Then
Do) = > > ule)f(dfe)
dln dln eld
= > ue)f(s)
est=n
= D f(5)) ule)
s|n el
= f(n),
since the inner sum is again by (1.1.1) equal to zero unless
n/s=1. O
1.1.3 Show that

> e(d) =
din
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We shall count the residue classes (mod n) in two different ways.
On the one hand, there are n residue classes. Each residue class
representative v can be written as dng, where d = (u,n). Thus
(nog,n/d) = 1. Thus, we can partition the residue classes u(modn)
according to the value of gcd(u,n). The number of classes corre-
sponding to a given d|n is precisely ¢(n/d). Thus

n=7y wln/d)=) o),

dln din
as desired. O
1.1.4 Show that (n) ()
p(n)  —p
n o ; d

This is immediate from the Mdbius inversion formula and Exer-
cise 1.1.3.

1.1.5 Let f be multiplicative. Suppose that

is the unique factorization of n into powers of distinct primes. Show that

Y f@= [+ o)+ @)+ + f(Y)

dln p*[In

Deduce that the function g(n) = 3_,, f(d) is also multiplicative. The
notation p®||n means that p® is the exact power dividing n.

A typical divisor d of nis of the formd =[], pP®), where 3(p) <
a and p®||n. Thus f(d) = [[,, f (pﬁ(p)), which is a typical term
appearing in the expansion of the product on the right-hand side.
Clearly, if n; and ny are coprime, then

glmng) = [ (L+f@) +-+ )

p*||n1na

= g(n)g(na),

since we can decompose the product into two parts, namely those
primes dividing n; and those dividing ny. (This result can be used
to give an alternative solution of Exercise 1.1.4.) O
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1.1.6 Show that
Z A(d) = logn.
din
Deduce that
A(n) == p(d)logd.
dn
This is immediate from the unique factorization theorem:
n:p{fél pgk’

where the p; are distinct primes. Then

k
logn = Z a;logp; = ZA(d).
dn

i=1

The equality
n
An) =D p(d)log -

dn
follows from Mobius inversion. Therefore,

Am) == () log d,

dn

since } ,, 11(d) = O unless n = 1 (by Exercise 1.1.1).
1.1.7 Show that

1 if n is square-free

> ud) =

d2|n 0 otherwise.

Clearly, the sum on the left-hand side is a multiplicative function.
It therefore suffices to evaluate it when n is a prime power. If n = p%,
we see that

1 if a<l,

> uld) =

d2|pe 0 otherwise.
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The result is now clear from this fact. O

1.1.8 Show that for any natural number k,

1 if n is kth power-free,

> u(d) =

d*|n 0 otherwise.

Since the left-hand side is a multiplicative function of n, it suffices
to evaluate it when n is a prime power. Thus

1 if a<k-1,

> uld) =

dk|pe 0 otherwise,
from which the result follows. O

1.1.9 If for all positive x,

show that

and conversely.

We have
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by an application of Exercise 1.1.1. For the converse,

2r() = X X wma( D)

n<z n<zm<z/n

- S o)
= G(z),
as required. O
1.1.10 Suppose that
ng ) f (k)| < oo,

where d3(k) denotes the number of factorizations of k as a product of three
numbers. Show that if

= Z f(mz

m=1
then
o0
1) =3 un)g(na
n=1
and conversely. We have, by absolute convergence of the series in-

volved,

o0 [e.9]

S un)gnz) = 3 um) Y flmna)
n=1 n=1 m=

[y

= me > un)

nlr

= flz)
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by Exercise 1.1.1. For the converse,

Z f(imz) = Z g(mnz)
m=1 n=1

SR
nlr
= g(x),

as required. In the first case, the rearrangement of the series is justi-
tied by the absolute convergence of

> flmna) = d(k)f(kz
m,n k=1

where d(k) is the number of divisors of k. In the second case, the
absolute convergence of
Z g(mnx)

follows from the convergence of

ng )| f (k).

0

1.1.11 Let \(n) denote Liouville’s function given by A\(n) = (—1)%),
where Q)(n) is the total number (counting multiplicity) of prime factors of
n. Show that

D Md) =

din

{ 1 if nisasquare,

0 otherwise.

The left-hand side is multiplicative and therefore it suffices to
compute it for prime powers. We have

> Ad) =

d|p™

{1 if o iseven,

0 if o isodd,
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from which the result follows immediately. O

1.1.12 The Ramanujan sum c,,(m) is defined as

where e(t) = e* . Show that

> du(n/d).

d|(m,n)

Let
hm

on) = 3 e(57):
1<h<n
Since this is the sum of a geometric progression, we find that
n if n|m,

g(n) =
0 otherwise.

But we can write

) = 3 ()

dln 1<h<n
(h,n)=d

I}

dln 1<hy <n1
(hy,my)=

where we have written h = dh;, n = dnj with (hy,n1) = 1 in the
last sum. Thus,
g(n) = ch/d(m)’
dln
which by Mobius inversion (Exercise 1.1.2) gives

Zu g(n/d).

dln
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But g(d) = d if djm and vanishes otherwise. Therefore,

en(m) =) dp(n/d)

d|(n,m)
as required. O
1.1.13 Show that L
pmy = 37 ()
I;n n
(h,n)=1
Set m = 1 in the previous exercise. U

1.1.14 Let 6 = (n,m). Show that
cn(m) = p(n/6)p(n)/e(n/d).

We have (by Exercise 1.1.12)
en(m) = ) du(n/d)

dJs

= 3 dulne/s)

de=9

= Z dﬂ(nle)a
de=§

where n = dn;. Now, u(nie) = u(ni)u(e) if (n1,e) = 1 and 0 other-
wise. Thus,

cn(m) = Y dp(m)ple)
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By Exercise 1.1.4,

o s L0 3) =TT 0 )

p|n p|d
pinq ping
from which the result follows. O

1.2 Formal Dirichlet Series

1.2.1 Let f be a multiplicative function. Show that
D(f5) =11 (Z f(p”)p‘”) .
P v=0

This is more or less an extension of Exercise 1.1.5 and is imme-
diate upon expansion of the infinite product on the right-hand side

and the unique factorization theorem. O
122 If
— 1
((s) = D(1,s) = s
n=1
show that

By Exercise 1.2.1,

g(s)_H<1+pls+piS+--->_H<1—pls>_l_

p

Again by Exercise 1.2.1,

D(:U’a S) = H(l -

The result is now immediate. O

1.2.3 Show that
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= — S
n=1 n C
where —('(s) = Y7, (logn)n~*. Since

o

~(s) = 3 (log )

n=1

and
RS
=D mu(n)n™?
by the previous exercise, we obtain upon multiplying the two series,

D(p* (= log), 5),

which by Exercise 1.1.6 is the formal series attached to A. O
1.2.4 Suppose that
f(n) =Y g(d).
din

Show that D(f,s) = D(g, s)((s).

This is immediate from the formula for the multiplication of for-
mal series. O
1.2.5 Let \(n) be the Liouville function defined by A\(n) = (—1)%),
where Q(n) is the total number of prime factors of n. Show that

D(\,s) = 2((288)).

Since ) is multiplicative, by Exercise 1.2.1 we have

111
D(\,s) = H<1—ps+p28—p35+~-->

p

3 NS (SN

¢(2s)
¢(s)

by an application of Exercise 1.2.2.
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1.2.6 Prove that

e 2V(n) B (2(8)
nzz:l ns  ((2s)

Since 2/ is multiplicative,

>, ov(n) 2 2
> — = H<1+ps+pzs+~->

n=1 p

The latter product is ((s)/((2s) by Exercise 1.2.5, so that the result
is now immediate. U

1.2.7 Show that

S lutn)] _
nS
n=1
Since || is a multiplicative function, we obtain
o |u(n)] 11 < 1 > ¢(s)
Z s = 1 + s = :
— n p p ¢(2s)
by Exercise 1.2.5. O
1.2.8 Let d(n) denote the number of divisors of n. Prove that

¢(s)
¢(2s)

= () _ 4(s)
7; ns  ((2s)

(This example is due to Ramanujan.)
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We observe the following identity due to Ramanujan:

o) an+1 _ ﬁn—&—l ,yn+1 _ 5n+1 .
> — ) — )T
— a-p v—9

1 — afB~yoT?

(1= anT)(1 — adT)(1 — ByT)(L — BoT)’

which is proved easily using the formula for the sum of a geometric
series. This identity is useful in other contexts, and so we record it
here for future use.

If we write

an—i—l _ 5n+1
a—p

we see that the special case o« = 3 = 7 = § = 1 gives the identity

:an+an—1ﬁ+._‘+aﬂn—l+ﬁn,

> 1—-12
nzl(n +1)21" = o
Thus,
. d%(n (a4 1)2
(P
n=1 p a=0
1 1\ *
= () ()
_ ¢Ys)
¢(2s)’
as desired. 0O

1.2.9 For any complex numbers a, b, show that

gy (mon(n)  C(3)C(s — a)d(s — B)C(s — a— b)
Z ns ((2s—a—0b) '

n=1

We have

Z””=H(Zw>

as
n=1 a=0 p
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Now,

pa(aJrl) -1

0a(p) = 14" P M = Ty

We apply Ramanujan’s identity (see Exercise 1.2.8) to deduce
0 ala+1) _ q bla+1) _q
> ) )
=\ pr—1 pb—1

1 _pa+bT2
(1 —petT)(1 —poT)(1 = p*T)(1 = T)

Putting T' = p~* in this identity, we deduce the stated result. O
1.2.10 Let g (n) be 1 if n is kth power-free and 0 otherwise. Show that

— q(n)  ((s)
; ns  ((ks)’

If we multiply out the series on the right-hand side, we obtain

o0

pld) 1
Z dkses ZE( Z M(d)>
d,e n=1 dke=n
The inner sum is gx(n) by Exercise 1.1.8. O

1.3 Orders of Some Arithmetical Functions

1.3.1 Show that d(n) < 2+/n, where d(n) is the number of divisors of n.
Each divisor a of n corresponds to a factorization o3 = n. One

of o or 3 must be less than or equal to /n. Thus, the number of

divisors of n is less than or equal to 2/n. g

1.3.2 For any € > 0, there is a constant C'(€) such that d(n) < C(e)n®.
Observe that

d(n) H a+1

pae :

p*[|n
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We decompose the product into two parts: those p < 2!/ and those
P > 21/6‘
In the second part, p¢ > 2, so that p*© > 2% and

a+1 a+1<

(ot = 20 — L.
p €
Thus, we must estimate the first part. Notice that
1
b WIS I
pee pee elog?2
since
e 10g2 < ea610g2 — gae < pae'
Hence .
1 =C
H ( * elog2> (€)
p<2l/e
is the desired constant. O

1.3.3 For any n > 0, show that
d(n) < 2(1+77) logn/loglogn

for all n sufficiently large.

We refine the argument of Exercise 1.3.2, where we now set

(14 3)log2
- loglogn
in the proof. The estimate for the second part of the product remains
valid. We must estimate (by applying 1 + = < e%)

1 1
1 < —ol/et.
H ( +elog2>_eXp{elog2 }

p<21/6

Now,
21/ = (logn)"/(1+32),

so that

log logn n
C(E) § exXp {(1_'_727)10g22(10gn)1/(1+g)}

exp n (log2) logn
2 loglogn

IA

for n > ng(n). O
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1.3.4 Prove that o1(n) < n(logn + 1).

We have )
n
o1(n) :Zdzzg gnzg
dln dln d<n
Now,
Z 1 < /n @ = logn
2<d<n d=Ji t
1.3.5 Prove that

cein? < d(n)or(n) < con?

for certain positive constants c; and cs.

We have o(n) .
n
=10 ;)
pln
and ( ) H pa+1_1
o1{n) =
pofln P71
Now,
UlT(Ln):H<1+1+12_|_ _}_]910[7)
p*l|n
so that o(m)or () .
njoi\n
=10 )

p*[|n

Since each factor in the product is less than or equal to 1, we have

<Z5(n)021 (n) <1

Also,

vV
S
—
—
3o
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where v(n) denotes the number of distinct prime factors of n, and
p; is the ith prime.
Recall that an infinite product

o0
H 1+ap)

converges if and only if >">7 , |a,| < co. Therefore
1 1

In addition, ¢(2) # 0. Since the product converges to a nonzero
limit, it is clear that there is a ¢; > 0 such that

11 (1 — pl) > ¢
i<v(n) :
O
1.3.6 Let v(n) denote the number of distinct prime factors of n. Show that

Writing n = p{ - - - pi*, where the p; are distinct primes, we obtain

Zai log p; < logn.

i
Since each p; > 2, we deduce the stronger result
(1og 2)2(n) < logn,
where Q(n) = Zle Q. O

1.4 Average Orders of Arithmetical Functions

1.4.1 Show that the average order of d(n) is log n.

We have "
ILOEDIEES ML

n<lx ab<z a<lz
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Now,

Thus,

We can compare

a<z
with the integral
Tdt
— =logux,
1 ¢
and we easily obtain
Zi =logz + O(1).

Thus,

Z d(n) = zlogz + O(z).

n<zx

1.4.2 Show that the average order of ¢p(n) is cn for some constant c.
By Exercise 1.1.4, we obtain

> en) = > pa)b

n<lz ab<z

= Zu(a) b.

a<lzx <z
a

The inner sum is

which is equal to
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Inserting this into the penultimate sum, we obtain

e = Yulo) (o + <j>)

n<x a<lz

72/‘

a<x

-3 o )

a
alz a=1

)-

Now,

by an easy application of the integral test.

The series -
Z p(a)
a2

a=1
converges by the comparison test. This completes the proof. (Later,
we shall see that the value of the series is 6/72.) O
1.4.3 Show that the average order of o1(n) is cin for some constant c;.
We have
Zal(n) = ZZd: Z d.
n<x n<z dln de<z
Now,
dod = ) d
de<zx e<z d<z/e
- S+
N 2le e
e<x
1 T
= 32 [ (G row)
e<zx
= *Z[ } + O(z log x).
ez
Also,
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so that

22
Zal(n) =3 Z e% + O(zlogx).

n<x ez

Since Y_ 1/e? < oo, we deduce

Z o1(n) ~ c12?

n<x

for some constant ¢;. O

1.4.4 Let gi.(n) = 1 if n is kth power-free and zero otherwise. Show that

> lo) = e + 0 (1),

n<x

where

By Exercise 1.1.8,

dk|n
so that
dan) = D p(d)
n<x dke<zx
T
= > ud)| ]
dk<zx
1/k
= 3w+ 0@
dk<z
By the integral test,

d > dt 1
@ < / - <z E,
e d 217k T

so that the desired result follows immediately. O
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1.5.1 Prove that L b
R AP
> o~ loge
n<x
(n,k)=1
as xr — OoQ.

By Exercise 1.1.1, the left-hand side can be written as

YooY u) = TudY

n<z  d|(nk) dlk n<z

:Z“ Z,

d|k t<z/d

= Z Niid) <log g + O(l))

dlk
by the solution of Exercise 1.4.1. Therefore,

Z % = (Z'u(dd)) logz + O(1),
dlk

n<x

(n,k)=1

219

where the O-constant now may depend on £. But, by Exercise 1.1.4,

pld) _ o(k)
2T

dk

which completes the proof.

O

1.5.2 Let J,(n) be the number of r-tuples (a1, az, . . ., a,) satisfying a; <

nand ged(ay, ..., ar,n) = 1. Show that

= TT(- )

pln

(Jr(n) is called Jordan’s totient function. For » = 1, this is, of course,

Euler’s ¢-function.)

We partition the total number of r-tuples (a1, as, ..., a,) accord-
ingtod = ged(ay, . ..,ar,n). Thus, 1 = ged(a1/d, ..., a,/d,n/d) and

each a; < n, so that we have

n"=> " Ji(n/d).

dn
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By Mobius inversion, the result is now immediate. O

1.5 Supplementary Problems
1.5.3 For r > 2, show that there are positive constant ¢y and cy such that

an” < Jr(n) < con”.

Since each factor of

1
Ie-)
pln
is less than 1, we can take ¢ = 1. For the lower bound, we have

[T(-5)= I (-5

pld i<v(n)

which converges to a nonzero limit as v(n) — oo. Thus, there is a
constant ¢; such that
Jr(n) > en”.

O

1.5.4 Show that the average order of J,.(n) is cn” for some constant ¢ > 0.
We have (by Exercise 1.5.2)

_ r o 1(d)
ZJT(n) - Zn Z dr

n<wx n<z dln
d r
- YT
d<z n<z



1.5 Supplementary Problems 221

where we have written n = dt in the inner sum of the penultimate

step. Now,
k+1
Z/ v"dr < Z t" < Z/ v"dv
k—1 k

1<t<N k=1

by a comparison of areas. Thus

N
Z = / v"dv+ O(N")
1

1<t<N

NrJrl
= O(N™).
7“4—1Jr (N7)

S tn) = St { g +0((3))}

from which we deduce

Thus,

n<zx

where

since it can be written as

A0

1.5.5 Let di(n) be the number of ways of writing n as a product of k
positive numbers. Show that

Clearly,
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since for each factorization n = de we can count the number of ways
of writing § as a product of £ — 1 numbers to enumerate dj(n). This

shows that
> dk(n) . > dk,l(n)
nzl v —<(s>n§jlns :

Since da(n) = d(n) satisfies

the desired result follows by induction. O

1.5.6 If d;.(n) denotes the number of factorizations of n as a product of k
positive numbers each greater than 1, show that

*

_]_)

Expanding the right-hand side as a Dirichlet series and collecting
terms we get the desired result. O

1.5.7Let A(n) be the number of nontrivial factorization of n. Show that

=<))7

as a formal Dirichlet series. We can write

n)=1+ Z dj.(n)
k=2

so that

) _14 (¢ (C(s) = 1)+ > (C(s) =

k=2

which is equal to

as required. O
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1.5.8 Show that

Y n= ¢’2(Z)x2 + O(d(k)z),

where d(k) denotes the number of divisors of k.
We have

S 0= SeYu@

W
= > ud> n
dlk i
= > udd >t
dlk t<z/d
- a5 +)

- Zu(d)d{;;wLO(z)}

d|k

which is equal to
v*¢(k)
2k

+ O(zd(k)),
as required.

1.5.9 Prove that

dln
v(d)<r

where v(n) denotes the number of distinct prime factors of n.

223

By comparing the coefficient of 2" on both sides of the identity,

1-2)(1-2)"=(1-2)"}



224 1. Arithmetic Functions

()=o)

Now, if N is the product of the distinct prime divisors of n, then

we deduce

dn dN
v(d)<r v(d)<r

and the latter sum is

k<r

by our initial observation. O

1.5.10 Let 7(z, z) denote the number of n < x coprime to all the prime
numbers p < z. Show that

m(x,z) =x H (1 - 11?) + 0(2%).

p<z

Let P, denote the product of the primes less than or equal to z.
Then

w2 = > u(d)

by Exercise 1.1.4, as required. U
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1.5.11 Prove that

1
5 — >loglogz + ¢
. P
P

for some constant c.
Since every natural number can be written as a product of prime
numbers, we have

So<I0-5)

n<z p<z

Taking logarithms and using the fact that

Z 1 logz + O(1),
n

n<x
we deduce
1
- Zlog (1 - 7> > loglogxz + O(1).
p<z p
Now, . ) .
so that .
Z — >loglogz + O(1),
p<w
since ), 1/p? < oo. This completes the proof. O

1.5.12 Let w(x) be the number of primes less than or equal to x. Choosing
z = log x in Exercise 1.5.10, deduce that

m(z) = O(logi)gm)’

Clearly,

m(z) < mw(x,z) + 2.

Now,

m(x,z) = H (1 — ;) + 0(2%)

p<z
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by Exercise 1.5.10. Choosing z = log z and observing that
1 1
—Zlog (1 — 7> = Zf +0O(1),
p<z p p<z p

we deduce

m(z,2) = wexp ( -> 1y O(l)) +O(a'8?)

p<z

O(logi)gx)

by the previous exercise. This completes the proof. O

1.5.13 Let M(x) =}, <, pu(n). Show that

ZM(%) =1

n<zx

We have
SM(E) =30 )= D ud) =3 (Yo ul@).
n<z n<z d<z/n dn<z r<z  djr

The inner sum is 1 if » = 1, and 0 otherwise by Exercise 1.1.1. The
result is now immediate. O

1.5.14 Let IF,[x] denote the polynomial ring over the finite field of p ele-
ments. Let N be the number of monic irreducible polynomials of degree d
in Fp[z]. Using the fact that every monic polynomial in Fp[x] can be fac-
tored uniquely as a product of monic irreducible polynomials, show that

pn = Z de.

dln

Consider the formal power series

Z Tdegf7

f
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where the summation is over monic polynomials f in [F,[z]. Since
every f can be written uniquely as a product of monic irreducible
polynomials and deg fi fo = deg f1 + deg f2, we obtain

Zrl—vdegf:]i[<1+Tvdegv+T2deg'u+_”)7
f v

where the product is over monic irreducible polynomials v of Fp[z].
Thus,

ZTdegf _ H(l_Tdegv>71

f v

(1 - Td) N

[
2

.
Il
—

But the left-hand side is
Dot =(1—pT) 7,
n=1
since the number of monic polynomials of degree n in p". Therefore,

—log(1 — pT') = — iNd log <1 - Td>
d=1

so that
> ngmn 0 O rde
pnrt T
2. = XN
n=1 d=1 e=1
o)
Tn
- YTy aw)
n
n=1 de=n
Comparing coefficients of 7" gives us the result. O

1.5.15 With the notation as in the previous exercise, show that

1
Nn = ﬁ Z :U’(d)pn/d
dn
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and that N,, > 1. Deduce that there is always an irreducible polynomial
of degree n in Fp[z].

The formula for NV, is immediate upon Mébius inversion of the
result derived in the previous exercise. Notice that

niNy, = Z,u,(d)p"/d.
d|

The right hand side can be viewed as the difference of two num-
bers in base p with the larger number having (n + 1) digits and the
smaller one at most n/2 4 1 digits. Thus, the righthand side is not
zero, so that nN,, > 1, which implies N,, > 1/n. Since N,, is an
integer, we get N,, > 1. (This fact is used to establish the existence
of finite fields F,,» for every n.)

1.5.16 Suppose f(d) = >_y,, 9(n), where the summation is over all mul-
tiples of d. Show that

and conversely (assuming that all the series are absolutely convergent).
We have

Sou(Z)fm) = Do u)f

dn t

= > u(t)>  gldtr)
= > glam)( Y u®) = g(m),

tr=m
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since the inner sum is 1 if m = 1, and zero otherwise. Similarly, for
the converse,

Y gn) = > gldr)
din t
= D> ulr)f(dir)
t r
= Y ram)( Y un) = f(@),

tr=m
since the inner sum is again 1 if m = 1, and zero otherwise. O

1.5.17 Prove that
Z pln) = cx + O(log x)
n

n<x

for some constant ¢ > 0. We have

so that (n) ()
p(n) o pd)rz
Z n _Z d M
n<x d<x
Hence,
p(d) rx p(d)
S Ll =+ Oteg)
d<z d<z
Now,
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1.5.18 For Re(s) > 2, prove that
— ¢(n) ((s—1)

2 T
Since
Z,u (n/d),
dn
we have
2 - (D)

as required.
1.5.19 Let k be a fixed natural number. Show that if

dk|n
then
Z w(d) f(n/dF)
dk|n

and conversely.

We have
ST fle) = D uld)d ] gle/dh)

dke=n dke=n 5k|e

> g/ (Y w@),

rk‘n d§:T

and the inner sum is 1 if r = 1, and 0 otherwise. Therefore,

Zu f(n/d®).

dk|n
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For the converse,

o oglnfdr) = 37N u(d)f(e/d")

dke=n dke=n §k|e

= Y wdfE)

dkskt=n

= s (D @) = £,

rk|n dé=r
as required.
1.5.20 The mth cyclotomic polynomial is defined as
om(@) =[] (@—G,
1<i<m
(i,m)=1
where (,,, denotes a primitive mth root of unity. Show that

2™ —1=]]¢alx)

dlm

We have '
1= ] (@~

1<i<m

231

We can partition the right-hand side according to d = ged(i,m).

Then, (i/d,m/d) = 1, and

C;n = C:,{;ld

is a primitive (m/d)th root of unity. Also, every primitive (m/d)th

root of unity is a root of ™ — 1. Thus,
2™ — 1 =[] émyalz) =[] da(x)
dlm dlm

as required.

O

1.5.21 With the notation as in the previous exercise, show that the coeffi-

cient of

pe(m)—1
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in ¢m(x)is —p(m).
The coefficient of 2™~ in ¢,,,(z) is clearly

> G

1<i<m
(i,m)=1

which is the Ramanujan sum —¢,,(1) = —pu(m) by Exercise 1.1.13.
O

1.5.22 Prove that
Pm(z) = H(wd _ 1)u(m/d)_

dlm
By Exercise 1.5.20,
2"t —1= H ¢a(z)
dlm
so that
log(z Z log ¢g(x
dlm

as formal series. By Mobius inversion,

10g ¢ (@ Zu )log(z™/% — 1).

Hence

bm(x) = [ — 1t/

dlm
as required. O
1.5.23 If ¢, () is the mth cyclotomic polynomial, prove that
if m=p,
Pm (1) =

1 otherwise,

where p is a prime number.
We have

— Lo I ¢at=)

dlm

d#1
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The left-hand side is 1 + = + 22 + - - - + 2™~L. Evaluating both sides
of the equation at z = 1 gives

logm = Z log p4(1).

dlm
d#1
Set g(d) = log ¢4(1), if d # 1 and g(1) = 0 otherwise. Thus,
logm = _ g(d),
dlm

and by Mobius inversion, we have
y

glm) = Y pu(d)logm/d
dlm

= — Z w(d)logd
dlm

for m # 1. By Exercise 1.1.6, g(m) = A(m) as required. O
1.5.24 Prove that ¢,,,(x) has integer coefficients. We proceed by induc-
tion on m. For m = 1, this is clear. Writing

=1 = [ 6a(@) = 6m@)( I] da))
d|

dlm
d<m

= ¢m(x)v(x) (say),

we find that v(x) has integer coefficients by induction. Also note
that v(x) is monic. Thus, by long division, we can write

2" —1=q(x)v(z) +r(z),

where ¢(x), r(z) have integer coefficients and either » = 0 or degree
of r < degree of v. For every complex root a of v(x), we have o —
1 = 0 so that 7(«) = 0. This forces r = 0 for otherwise it will have
more complex roots than its degree. Hence ¢(z) = ¢, (x) has integer
coefficients. O

1.5.25 Let q be a prime number. Show that any prime divisor p of a9 — 1
satisfies p = 1 (mod q) or p|(a — 1). We have
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a? = 1(mod p).

Thus, the order of a (mod p) divides ¢. Since ¢ is not a prime, it
must be either 1 or ¢. If itis 1, then a = 1 (mod p), so that p|(a — 1).
If the order is ¢, then ¢|p — 1, since the group of coprime residue
classes (mod p) has order p — 1. O

1.5.26 Let g be a prime number. Show that any prime divisor p of 1 4+ a +
a? + -+ a7t satisfies p = 1 (mod q) or p = q. Deduce that there are
infinitely many primes p =1 (mod q).

Notice that

l+a+a®+-+a'=——

if a # 1. Hence if
l+a+a*+---+a7'=0 (mod p),

then either a? =1 (mod p)and a # 1 (mod p) ora =1 (mod p). In
the former case g|p — 1, since a has order ¢. Notice that any prime
divisor of 27 —1 is congruent to 1 (mod ¢), by the previous exercise.
Thus, there is at least one prime congruent to 1 (mod q). If there are
only finitely many such primes, let us list them as

p1, P2, P3,---, Pk-

Then, putting a = gp1p2 - - - pr, we find that any prime divisor p of

l+a+a®+--a®!

is first, coprime to a = ¢p - - - px, and second, must be congruent to
1 (mod g) or equal to ¢, which is a contradiction. O

1.5.27 Let q be a prime number. Show that any prime divisor p of
L+b4b" 4 4 b7

withb = " satisfies p = 1 (mod ¢*) or p = q.
Ifb#1 (mod p), then

14b4.- bl 1= =0 (mod p)

implies that a has order ¢*, so p = 1 (mod ¢*). If b = 1 (mod p),
then p = g, as required. O
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1.5.28 Using the previous exercise, deduce that there are infinitely many
primes p = 1 (mod ¢*), for any positive integer k. In the previous

exercise, we set b = a?" " to deduce that
1+b4b" 4 4 b7

has a prime divisor congruent to 1 (mod ¢*). Thus, there is at least
one prime congruent to 1 (mod ¢*). Now suppose there are only
finitely many such primes, p1, ps, . . ., pr (say). Then, with

k—1

b= (gp1---pr)?

we deduce 1 + b + -+ + b97! has a prime divisor congruent to 1
(mod ¢*) different from py, ..., p,, a contradiction. O

1.5.29 Let p be a prime not dividing m. Show that p|é.,(a) if and only if
the order of a mod p is m. (Here ¢, () is the mth cyclotomic polynomial.)

Since
" —1= Hgbd(x),
d|m
we deduce ™ =1 (mod p). If k is the order of a (mod p), then
ab—1= Hgbd(a) =0 (mod p),
dlk
so that ¢4(a) = 0 (mod p) for some d|k. If k& < m, then
a™ — 1 = ¢p(a)da(a) (other factors) = 0 (mod p?).
Since ¢, (a + p) = ¢dm(a)(mod p) we deduce
(a+p)™ =1 (mod p?),

on the one hand, and

1

(a+p)™ =a™+ma™'p (mod p?),

on the other. Thus, ma™ 'p = 0 (mod p?), so that p|m (because
(a,p) = 1). This is a contradiction. Hence k& = m. For the converse,
if a has order m, then ¢”* =1 (mod p). From

a™ —1= H¢d(a)

dlm
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we deduce ¢4(a) =0 (mod p) for some d < m.If d < m, then

a®—1= H%(a)

sld
is divisible by p, implying a? = 1 (mod p). This contradicts the fact
that a has order m. O

1.5.30 Using the previous exercise, deduce the infinitude of primes p = 1
(mod m).

Observe that from
2™ —1 =[] ¢alx)

d|lm

we deduce that ¢4(0) = +1 for any d. Thus, ¢,,(m") is coprime to
m. As r varies over positive integers, only a finite number of them
can be equal to £1 since ¢,,(z) has degree ¢(m). Thus, for some r,

|Gm(m")] > 1,

and so there is a prime divisor p of ¢,,(m"). The order of m" (mod p)
is m. Hence, there is a prime p = 1 (mod m). If there are only
finitely many such primes p1, pa, ..., p: (say), then

Gm(mp1p2 -~ pr)

must have a prime divisor p = 1 (mod p) different from py, ..., ps.
This is a contradiction. O
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Primes in Arithmetic Progressions

2.1 Characters mod g

2.1.2 Show that
Z logn = xzlogz —x + O(log z).

n<x

Put f(t) = logt, a, = 1 in Theorem 2.1.1. We obtain

Zlogn = [x]logaz—/lw[t]it

n<x

= zlogzx —x+ O(logx)
upon writing [t] = ¢t — {t}, where {t} denotes the fractional part of

t, in the integral. O
2.1.3 Show that )

Z — =logz+ O(1).

n

n<x

In fact, show that
. 1
Jm (37 —toss)
n<x

exists.
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Put a, =1, f(t) = 1/t in Theorem 2.1.1. Notice that for = a posi-
tive integer, we have

1 1 T dt
> oa-ter = Y - [T

2<n<zx 2<n<zx

- G- [.9

2<n<zx
1 1
= Z <f+log(1——>>.
n n
2<n<x

Since

o)=L bl
we deduce that
Z %—logm

2<n<x
converges to a limit as z — oo.

2.1.4 Let d(n) denote the number of divisors of a natural number n. Show
that

Z d(n) = zlogz + O(x).
Since d(n) = Za|n 1, we have
z 1
;d(n) - ; 5] = xéa +0(a),

and by Exercise 2.1.3, we are done. O
2.1.5 Suppose A(x) = O(x?). Show that for s > 4,
n _ s/ Al) dt
1

ns ts+1 :
n=1

Hence the Dirichlet series converges for s > 4.
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By Theorem 2.1.1, with f(n) =n"%,
_s _ A) TA[)
Z apn ° = s + 5/1 prES, dt.

For s fixed, s > 6, we know that A(z) = O(z°), so that

i A2 _ g
r—00 I
Thus
> an A(t)
— =35 dt,
for any s > 4.

2.1.6 Show that for s > 1,

s > {x}
Gl=g=77%) o

where {x} = x — [z]. Deduce that lim,_,;+ (s — 1){(s) = 1.

By Exercise 2.1.5, we get

((s) = s/loox[:jldx
= s/loox_{x}d:c

$S+1

s—1 1 s+l

= 5 s {z} dx.

Also,

(s—=1)((s)=s—s(s—1) /Oo ii}lda:,

1
so that
lim (s —1){(s) =1,

s—1+

since the integral converges for s > 0.

239
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2.1.7 Prove that

text

et —1°

o0 t,r
Flat) = bile) 5 =
r=0
By the recursion for b,(x), we have
d o~
%F(l’a t) = TZ:; br(x)ﬁ

o t/r
= Zrbr_l(x)ﬁ

r=1 )
= t-F(x,t).

Thus,
log F(z,t) =tz + c(t).

Exponentiating, we get

F(z,t) = efote®),

On the other hand,
1 1 oo tr
F:c,tdx:/ br(z dr =1
| Paae= | (L o)
Thus,
1z 2=1
1 = fl(eterc(t))dx — ) [%} .
t_
_ ec(t) e 1 :
t
so that .
te®
F($,t) = et 17
as desired.

2.1.8 Show that Bay11 = 0 for r > 1.

Since

T tr t t tlet+1)
= b (0)— = =
2+§ ()T! et—1+2 2(et = 1)
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and the right-hand side is an even function, it follows that b,(0) = 0
for r odd, r > 3. O
2.1.11 Show that for some constant B,

Z\/lﬁ:Q\/:E+B+O(\}E).

n<x

Suppose first that x is a natural number. Put f(t) = 1/+/t in The-
orem 2.1.9,a = 1 and b = z. Take k = 0. Then,

> \/1% :2(\/5—1)+% <\}5 —1> +;/1t (—%)t*fﬁ/QBg(t)dt.

1<n<z

The integral

> Ba(t)
/1 Lt

converges, and we may write for some constant B,

T Bo(t) . [ Ba(t)
/1 gt =B = | gt

The latter integral is O(1//z), whence

Z\/lﬁ—zx/a’chBJrO(\}E)

n<x

for some constant B. If x is not a natural number, notice that

(V5= VB) (54 VET) =5 b1

From this inequality, the result is clear for all x. O

2.1.12 For z € C, and | arg z| < 7 — ¢, where § > 0, show that

. 1
Zlog(z+j) = (z—i—n—i— 2) log(z +n)
=0

1 "B
—n — <z — > log z + 71(m)dx.
2 0o Rtz
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We apply Theorem 2.1.9 for k£ = 1:

. b 1
S ) = [ fode 500 - )

a<j<b

- / "Byt (tydt.

Now set f(j) = log(z+ j) which is analytic in |arg z| < m — . The
result is now immediate.

2.2.1 Prove that x is a completely multiplicative function.

We must show that y(mn) = x(m)x(n) for all natural numbers
m, n. If m or n is not coprime to ¢, then both sides of the equation
are zero, and the result is clear. If m and n are coprime to ¢, then
since  is a homomorphism, the result is immediate. O

2.2.2 Prove that for Re(s) > 1,

L) =T (1 B x(p))_l’

s
» p

where the product is over prime numbers p.

Since y is multiplicative, so is x(n)/n*, and so

L(S,X)=H<1+X(p) LX) +>

S 2s
» p p

Now, x(p™) = x(p)™ so that

i xX(®™) _ (1 B X(P)>_1’
s

s
m=0 p

and the result is now clear. g
2.2.3 Show that (Z/pZ)* is cyclic if p is a prime.
We first list all the possible orders of elements of (Z/pZ)*:

di,ds,...,d, (say).
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Let e be the least common multiple of dy, ds, . . ., d, and factor
e — pclup;z . _ka

as a product of distinct prime powers. For each p}* there is some d;
divisible by it. Thus
dj = p?it
for some ¢ coprime to p;. Since the d;’s are orders of elements of
(Z/pZ)*, there is an element z; whose order is p;’t. Therefore, the
element y; = z! has order p}’. Hence, the element y;y5 - - -y, has
order e. Thus, we have found an element of order e. Therefore, e|p —
1. But the polynomial
€ —1

has (p — 1) roots (mod p), since every nonzero element of Z/pZ is a
root. Since Z/pZ is a field, any polynomial of degree e cannot have
more than e roots. Thus, (p — 1) < e. Since e|p — 1, we deduce e =
p — 1. Thus, we have found an element of order p — 1. O

2.2.4 Let p be an odd prime. Show that (Z/p®Z)* is cyclic for any a > 1.

For a = 1, we are done by Exercise 2.2.3. Let g be a primitive root
(mod p). We first find a ¢ such that

(g+pt)P" P #1 (mod p?).
Indeed, if g?~! # 1 (mod p?), then we can take t = 0. Otherwise,
(g+pt)r~t = g +plp—1tgP? (mod p?)

= 1+pp—1)tg?P=? (mod p?),

so that t = 1 works. Let g + pt have order d (mod p®). Then d|¢(p®)
by Euler’s theorem. Thus, d|p®~!(p — 1). Since g is a primitive root
mod p, (p — 1)|d, and so d = p"~!(p — 1) for some r < a. We also
know that

(g +pt)P~" =1+ pu,

where u; is not divisible by p. Thus

(g+pt)PP=1) = (1+pu)?

= 1+plpun) + (5 (pur)* + -
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Because pis odd, (§) = @ = 0 (mod p). Thus
(g+pt)P? V=14 p?u;  (mod p?).
By induction,
(g+pt)” P =1+pbu;  (mod p*t).
Now, g + pt has order d = p"~(p — 1) (mod p®) implies
(g+pt)" PV =1 (modp").

But then 1+ p"u; = 1 (mod p" 1) if r < a — 1, which implies p|uy, a
contradiction. Thus, r = a, and we are done. O
2.2.5 Let a > 3. Show that 5 (mod 2%) has order 202,

We will prove by induction that

on—3

57 =142""1 (mod 2"

for n > 3. For n = 3, this is clear, since 5 = 1 + 4 (mod 8). Suppose
we know

gn—3

5 =14+2"1 + 2™,

Then squaring both sides, we obtain
5277 = (14271 4 2ny)?
= 1422072 49202 4 21 4 27y 4 227y
= 1+27 2" fy - 2nty 4 2071y 4 2073

from which the result is immediate.
It is also clear that

577 = (142712 (mod 27)
= 1 (mod 2").
Thus, 5 has order 272 (mod 2"). a

2.2.6 Show that (Z/2°Z)* is isomorphic to (Z/2Z) x (Z/2%2Z), for
a > 3.
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By Exercise 2.2.5, we see that 5 has order 2472 (mod 2%). Observe
that if 5 = —1 (mod 2%), then 1 = —1 (mod 4), a contradiction.
Thus —1 is not in the subgroup generated by 5 (mod 2%). Hence,
every coprime residue class can be written as £5. O

2.2.7 Show that the group of characters (mod q) has order p(q).

Since

(Z/qZ)" = (Z/p1'Z)" x -+ x (Z/p}* )",
where ¢ = pi* - - - p;* is the unique factorization of ¢ into prime pow-
ers, we see that any character x (mod ¢) decomposes uniquely as

X1X2 " Xk

where x; is a character of (Z/p;"Z)*. If p; is odd, the latter group is
cyclic of order ¢(p;*), so that the number of choices for x; is ¢(p;*).
If p; = 2, then ; is a character of Z/27Z x 7Z/2%?Z, and again the
number of such characters is ¢(2%). Thus, the total number of char-

actersis o(p{') - - - p(PL*F) = ¢(q). O
2.2.8 If x # X0, show that

> xla)=o0.

a(mod q)
Since x # Xo, thereisa b (mod ¢q) such that (b,q) = 1and x(b) # 1.

Then
s= 3 xa)= 3 x(ab) = x(d)s,

a(mod q) a(mod q)

since ab runs through coprime residue classes as a does. Hence

(1 —x(b))s = 0.
Therefore, s = 0, since x(b) # 1. O
2.2.9 Show that

¢(q) ifn=1(mod q)

x(mod q) 0 otherwise.
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If n =1 (mod gq), the resultis clear. If n # 1 (mod ¢) and (n,q) =1,
then there is a character ¢ such that ¢)(n) # 1. Thus

T= Y x(n)= > @)n)=vn > x©n)
x(meod g) x(mod q) x(mod gq)

because 1y ranges over all the characters (modgq) as x does. But
then

(1-9m) Y xn) =0,

x(mod q)

so that 3~ (04 g) X(7) = 0, since ¢ 7 1. O

2.2 Dirichlet’s Theorem
2.3.1 Let x = xo be the trivial character (mod ¢q). Show that

lim log L(s, x0) = +o0.

s—1+

Since L(s, x0) = ¢(s) [1,),(1 — I%), the result is clear. O
2.3.2 Show that for s > 1,

Z log L(S, X) = Sp(q) Z Z n;ns :

x(mod q) n>1 pn=1(mod q)

pS
> el - Y Y (XA
(mod q) X(mod ¢q) P > P
1 7
= anns( > Xl )),
pn x(mod q)

the interchange of summation being justified because the series con-
verge absolutely for s > 1. By Exercise 2.2.9, we find that the inner
sum is 0 unless p” = 1mod ¢ in which case it is ¢(q). The result is
now immediate. g
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2.3.3 Show that for s > 1 the Dirichlet series

> a
el IT ZG.x)

n=1 Xx(mod q)

has the property that a1 = 1 and a,, > 0 for n > 2.
If we exponentiate the identity of Exercise 2.3.2 and use the series
2
r
xz = —_— DY
ee=1+z+ o T
the result is clear. O

2.3.4 For x # xo, a Dirichlet character (mod q), show that

> x(n)| <q

n<x

Deduce that

L(S>X) = Z XT(::)
n=1

converges for s > 0.

By Exercise 2.1.5

* S(t
L(s,x) = s/1 ts(+1)dt>

where S(t)=)_, <, x(n). By Exercise 2.3.8, we know that >, - x(n)=
0. Since x is periodic with period ¢, >, <, x(n) = 0 for any k. Let k
satisfy kg <t < (k+ 1)q. Then

St =Y x(n)+ > x(n).

n<kq kq<n<t
The first sum is zero, and the latter sum cannot exceed ¢. Thus, the

series converges for s > 0. O

235 If L(1,x) # 0, show that L(1,%) # 0, for any character x # Xxo
(mod q).

We know that
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10 = Jim S

n<x

since the series converges by Exercise 2.3.4. Now,

=t 5 X = T

n<x

from which the result follows. O
2.3.6 Show that

Jim (s —1)L(s, x0) = ¢(2)/4-

Since 1
Lisxo) = [T (1= )
plg

we obtain

. . 1
lim (s — 1)L(s, x0) = lim [(s — 1){(s)] H (1 _ E) )

s—1t s—1t

by Exercise 2.1.6. O
2.3.7If L(1, x) # 0 for every x # Xo, deduce that

li -1) L(
JoGe=n 11 e
x(mod q)

and hence

p=1(mod q) p
(That is, there are infinitely many primes congruent to 1 (mod ¢).)

We have

lim (s — 1) L( — lim (s—1)L L
Jim (s=1) ][ Z(s0) Sg{g(s )L(s.x0) [] L(s,x)
x(mod q) X#X0

- HL

X7X0
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On the other hand, by Exercise 2.3.2,

I ZGs,x)=exp <<P(Q) > n;rw)'

X(mOd Q) pnzlw(b;nod q)

Observe that we can write the exponential as

@(q)( > p15+ > 71;715)

p pn>2
p=1(mod q) p"=1(mod q)

and we clearly see that

1 1
hm+ Z ns < T
S a2 P pnz2 P
1
< < 00.
Zp: p(p—1)
Thus,
1
lim (s — 1) exp (SO(Q) :) # 0.
o p=1(mod q)
It is now immediate that szl(mod 2 % = +o0.

2.3.8 Fix (a,q) = 1. Show that

¢(q) if n=a (mod gq)

S X@x(n) =

x(mod q) 0  otherwise.

249

Note that x(a)x(a) = 1. Also, x(a)x(a™!) = 1. Hence x(a)

x(a™1), where a~! is the inverse of a in (Z/qZ)*. Therefore,

> x(@x(m)= Y xla'n),

x(mod q) x(mod q)

which by Exercise 2.2.9 is ¢(q) if a™'n = 1 (mod ¢), and 0 other-

wise. Thus,

e(q) if n=a (mod q),

x(mod q) 0 otherwise.
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2.3.9 Fix (a,q) = 1. If L(1, x) # 0, show that

. . CL)
Sli)r{1+ s—1) H L(s, x)X'* #£0.
x(mod q)

Deduce that

Z 1I—i-oo.

p=a (mod q)
We see that for s > 1,
— _ x(p")
> x(a)logL(s,x) = x(@) ) e
x(mod q) x(mod q)
1 7
= Ym0 X @)
pn x(mod q)

as in Exercise 2.3.2. The inner sum, by Exercise 2.3.8,1is ¢(q) if p" =
(mod ¢q) and zero otherwise. Thus

H L(s, X)m = exp (‘P(Q) Z n;ns)

n,p
p"=a(mod q)

As before

Slir{l+ s—1) H L(s X
x(mod q) -
T _ x(a)
- 51_1>I{1+($ 1)L(87X0) H L(Sv X) 7& 05
X#X0

since L(1, x) # 0. The result now follows as in Exercise 2.3.7. O
2.3.10 Suppose x1 # X, (that is, x1 is not real-valued). Show that
L(1,x1) # 0 by considering F(s).

By Exercise 2.3.4, L(s, x) converges for s > 0.If L(1, x1) = 0 then
set

L(87Xl) = (S - 1)9(57X1) (SaY)v

where g(s, x) is continuous for s > 0, s # 1. Observe also that since

o S(t
L(S,X) = SA tsg*l) dt,
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where |S(t)| < g, the integral is absolutely convergent for s > 0.
We also see that L(s, x) is differentiable. Thus if we set g(1,x) =
L'(1, x1) above, then g(s, x) is continuous for all s > 0. By Exercise
2.3.5, L(1,X;) # 0, and we can also write L(s,x;) = (s — 1)g(s,X1)-
Therefore,

HL(S7X) :L(S,Xo)(s—1)29(5,)(1)9(5,?1) H L(SaX)
X XFX1,X15X0

and we see that

li L(s,
Jim ) ) L(s, x)
= Slir{1+(s - 1)L(37 X0)<3 - 1)9(37 Xl)g(&ﬂ) H L(87 X)
XFX1:X15X0
v . _
=D i (s~ gsdgls ) I s =0
4 XFX1,X15X0
However, writing
> a
= = 1l Z6w
n=1 x(mod q)
> a
n
= 1+ o5
n=2
we proved a,, > 0 in Exercise 2.3.3, so that
li L > 1.
Jim ][ L(s0) >
X (mod q)
This contradiction implies L(1, x1) # 0. O

2.3 Dirichlet’s Hyperbola Method

2.4.2 Prove that
Z oo(n) = zlogz + (2y — )z + O (Vz) .

n<z
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We have

J()(TL) = Z 1.

din

We can apply Theorem 2.4.2 with f(n) = og(n), g = h = 1, and
y =

Yoo = 2 5] - [VaP

n<x d<\/z

= 23 S -[Val’+0(Va),
d<\/z

By Exercise 2.1.10, we have
1 1 1

Z —=zlogz+y+0(—=),
5 b pmeeaso( )
so inserting this above leads to

S 00(n) = zloga + 2y — [Val? + O(Va).

n<x
Now,

[Vz)? = (Vo = {Va})? = 2 + O(Vx)
from which we deduce the final result. O
2.4.3 Let x be a real character (mod ¢). Define
fn) =Y x(d).
din

Show that f(1) = 1 and f(n) > 0. In addition, show that f(n) > 1
whenever n is a perfect square.

Since x is multiplicative, so is f. If we write
n = p?l CEEE pgk
as the unique factorization of n as a product of prime powers, then

fn) = fi)-- f(p*)

=TT (04 x@) +x?) + -+ X)),
p*lIn
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Since x is real, x(p) = £1 whenever p is coprime to q. If x(p) = 1,
then

L+x(@)+-+x(") =a+1>0.

If x(p) = —1, the sum is either 0 or 1 according as « is odd or even.
If p|g, the sumis 1. In every case we have f(n) > 0. Clearly, f(1) =1
and when n is a perfect square, each «; is even. Thus, each sum in
the product is greater than or equal to 1. Hence f(n) > 1 whenever
n is a perfect square. O

2.4.4 Using Dirichlet’s hyperbola method, show that

Zf —2L(1,)vz + (1),

n<x

where £(n) = g, X(d) and x # o.

We let g(d) = x(d)/V/d, h(e) = 1/+/e in Theorem 2.4.1. We choose
y = v/x. Therefore,

SIW - M)+ ¥ 6(3) - cvanw)

n<x d<\f d<y/z

with notation as in Theorem 2.4.1. Now,

since
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where S(t) = >, <, x(n). Therefore,

1 1
=L|= — .
o) =1 (3x) +0 ()
We will write

S E () 2 o) -eom)

n<x

so that

Observe that

Hence,

) _ X)), Je vd
2w S gﬁ{2\/;+3+o<ﬁ>}+0(1)

n<x

where we have used

which is easily deduced by partial summation. This completes the
proof. O

2.4.5 If x # Xo is a real character, deduce from the previous exercise that
L(1,x) # 0.

Suppose L(1, x) = 0. Then
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On the other hand, by Exercise 2.4.3, f(n) > 0, and f(n) > 1 when
n is a perfect square, so that

f(n) 1
Z —_ > Z — > logx,
e

a contradiction. O

2.4.6 Prove that (n) .
x(n
> % =0(3)

n>x

whenever x is a nontrivial character (mod q).

By partial summation, we have

x(n) /°° s(t)dt

— L ,
n 12

n>x

where s(t) = >, -, x(n). But [s(t)| < g, so that the estimate is now
immediate. ]

2.4.7 Let
an = E X(d)a
dn

where x is a nonprincipal character (mod q). Show that

Z an = xL(1,x) + O(Vx).

n<x

We apply Dirichlet’s hyperbola method:

S-Sl + Do) -l

n<lz

where s(y) = >, <, x(n). Since [s(y)| < ¢, we get
_ x(d) @
Zan = :EZ y + O(y) +O<y).
n<zx d<y
Choosing y = \/x, we obtain

Zan:aj Z Xiid)—l—O(\/;E)

nlz d<\/z
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Finally, by the previous exercise,

d d
D e
A<V d>\/z

= L(1,x) + O(\/li),

which implies the required result. O
2.4.8 Deduce from the previous exercise that L(1, x) # 0 for x real.

Consider the Dirichlet series

o9
Qn
ns

n=1

with a, = 34, x(d) = 0, as in Exercise 2.4.3. Then, if L(1,x) = 0,
by Exercise 2.4.7

F(x):Zan:O(\/E).

n<x

A summation by parts, as in Exercise 2.1.5 gives

> ay > F(t)
ZE 28/1 part Ot

n=1

for s > 1/2 and the Dirichlet series converges for Res > 1/2. By
Exercise 1.2.4

nS

3 I L(s,%)C(s), Res> 1. 2.1)
n=1

Since L(s, x) converges and is analytic for Re s > 0 by Exercise 2.3.4
and ((s) has analytic continuation to Re s > 0 by Exercise 2.1.6 we
can set s = 1/2 + € in (2.1). The product on the right of (2.1) con-
verges to L(1/2,x)¢(1/2) as ¢ — 0, since ((s) has only a pole at
s = 1 by Exercise 2.1.6. On the other side of (2.1)

>~ a . a > 1

n m?2 _
Z oz = Z oy B e Z mit2e C(1+2¢)
n=1 m=1 m=1

by 2.4.3. However, as € — 0, {(1 + 2¢) — oo, since 1 is a pole of ((s).
This gives a contradiction. O
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2.4 Supplementary Problems

2.5.1 Let dy(n) be the number of ways of writing n as a product of k
numbers. Show that

)kfl

Z dy(n) = z(logz)* ™

(k- 1)1 + O(x(log 2)k~2)

n<x
for every natural number k > 2.

For k = 2, this is Exercise 2.1.4. We will prove the result by induc-
tion on k. Recall that

di(n) =Y dr1(9),
dln

so that

> di(n) = DD dpa(0)

n<lx n<z §ln

= de(é) E]

o<z

= 2y d’“—g(é) +O(z(log z)F~?)

o<z

by the induction hypothesis. Also by the same, and by Theorem
2.1.1,

(k—2)! Z dk—g@) :/1” (logt)*=2 + O((log t)*—3)

dt+0((log z)*=2),
o<z t

which easily gives

ogx)F1
Z dk(;(d) _ (l(kg_)l)! + O((log l’)k_2).

o<z

Inserting this in the above calculation gives the desired result. [

2.5.2 Show that -
Z log —=u + O(log x).

n<z
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By Exercise 2.1.2,

Zlogn =zlogx — z + O(log x).

n<x
Thus,
Zlogx— llogz = zlogx 4+ O(log x).
n<x
Subtracting gives the result. O

2.5.3 Let A(z) = }_, <, an. Show that for x a positive integer,

T A(t)dt
Zanlog/ (t) .

n<x

We write the left-hand side as

T
> {A(n) n—l)}log— = ZA(n)logﬁ
nlx n<z

T
— Z A(n)log
n<zx—1 n+tl
_ j{: 14(n)1 n+1
n<zr—1

since A(t) is a step function. O

2.5.4 Let {x} denote the fractional part of x. Show that

S {Z}=1-yz+oE,

n<zx



2.4 Supplementary Problems

where ~ is Euler’s constant.

We have
S} - SC-1)
= xZ%—Zao(n).

By Example 2.1.10 and Exercise 2.4.2, we find that this is

x <10g:c+7+0(i>> — (zloga + (2y — Dz + O(Vz)) ,

which simplifies to
(1—7)x+0(\/§),
as required.

2.5.5 Prove that .
Z log® o= O(z)

n<x

forany k > 0.
Since log t is an increasing function of ¢, we have for n > 2,

log z < / (logk E)alt.
n n—1 t

Zlogk% < /lx <logk %)dt.

n<zx

Hence,

Set u = x/t in the integral to deduce

T, k
Zlogkzgx/ OgQUdu:O(x),

1 u

259

since the latter integral converges for any £ > 0. (This also gives

another proof of Exercise 2.5.2 in the case k = 1.)
2.5.6 Show that for x > 3,

1 1
Z :loglogx+B:O( )
nlogn xlogx

0
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We apply Theorem 2.1.9 with f(t) = 1/(tlogt), a = 3, b = x, and
k = 0. Then,

Z 1 B /I dt +( 11 >
nlogn  J; tlogt 2zlogz  6log3

2<n<zx

dt.

* ({a} — 1)(1 + log )
v e

the first integral is
loglog « — loglog 3.

For the second integral, observe that the integrand is
1
15 )
t2logt

/00 ({t} — 3)(1 +1logt)dt
3

(tlogt)? —esoo

Thus, the second integral can be written as

C_O</:O tzilcfg)) :c+0(1:l(igx)'

This completes the proof. O

so that

2.5.7 Let x be a nonprincipal character (mod q). Show that
x(n) 1
=0 -0

By Exercise 2.3.4, we know that

> x(n) =0(1).
n<x
Thus, by partial summation,

0o [ ) o L),

n>x
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as required. O

2.5.8 For any integer k > 0, show that

loghn  loght!z
= 1).
Z n k+1 +0()

n<x

We apply Theorem 2.1.1 with a,, = 1/n and f(n) = log" n. Using
Example 2.1.10, we have

k
Z log"n = (log"z) <log:r—|-’y+0 <1>>
n x

n<x
—/ <logt+’y+0 <1>> k(logh—! t)%
1

The main term is now evident. The terms involving + as a coefficient
cancel. The remaining error terms are easily seen to be O(1). In fact,
this argument can easily be modified to show that

Z logh n _ loght! 2 +C+O<logk:ﬁ)'
n k+1 x

n<x

2.5.9 Let d(n) be the number of divisors of n. Show that for some constant
¢

d 1 1
Z ﬂ = —log?x +2vylogz + ¢+ O(—)
o 2 Vi
for positive integers x > 1.

We apply Theorem 2.1.1 with a,, = d(n) and f(n) = 1/n. Using
Exercise 2.4.2, we get

din)  ["(tlogt+ (2y — 1)t + O(V/1))dt
|

n 2
n<x

N (xlogx + (2y — 1)x + O(\/E))

x
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The integral is

ilog x+(27—1)10g3:+0(/1 1537)

Since the integral in the error term converges, we can write it as

oo dt 1
o) =0 L)
o 132 VT
for some constant ¢;. Combining these estimates gives the final re-
sult. O
2.5.10 Let o > 0 and suppose a,, = O(n®) and

= Z Gy, = O(J:‘S)

n<x

for some fixed 6 < 1. Define
bn = Z Qq.
din

Prove that

5)( a)
an—cx—i—O( = >,

n<zx

for some constant c. By Dirichlet’s hyperbola method,

S = Sl Ea() -]

n<x

- Y[+ 0(%) + 0w,
d<y

d<y
The sum ), d~° is O(y' ), so that

Zb Z [ ]+O( 51— 5+xy571).

n<lz d<y

We choose y = 229 to minimize the error terms (which is the case

when the two terms are equal). Thus

an—z d[zpo(;ff?z).

n<x
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Also,
e a,
Zad[—] = ngd +O(y't)
d<y d<y
and -
ad _ 4d d
d > d d
d<y d=1 d>y
We have .
c= Z % < 00
d=1

(by Exercise 2.1.5). By partial summation,

ad —1
> / Wi <.

d>y

Thus,
> ad E} = cx + O(zy” ' +y').

d<y

With the choice of y given above, we get

(1-8)(1+a) 1-5—52
an:cx+0(as 2-5 4 g 29 )

n<x
Since (1 —6)(1+a) >1—§ — 6%, we get
A=0)0+a)
Z b, =cx+ O
n<x ( )

as required.

2.5.11 Let x be a nontrivial character (mod q) and set

= x(d)

din

Show that
> f(n) =zL(1,x) + O(aV/),

where the constant implied is independent of g.

263



264 2. Primes in Arithmetic Progressions

We apply Dirichlet’s hyperbola method with y = \/z. Let S(z) =
anm x(n). Then

S =3 x5+ 3 s(5) - s (va) [val.

n<zx d<\/z d</z

Since |S(z)| < ¢q, we have

> fm) =Y x(@)]3] +0lava).

n<z A<z
Now,
> x@[2] =23 Xy onm
d<\/z A<z
and x(d) g
d%d = L(1,x) + O(ﬁ),

by partial summation. Putting this all together gives the desired
result. If we use Exercise 5.5.6, we can replace ¢ by q/?logq. O

2.5.12 Suppose that a,, > 0 and that for some § > 0, we have
Z an < ¢

Let by, be defined by the formal Dirichlet series

Sko (L)

n=1
Show that
Z by, < z(logz)! =%,
n<x
We have
bn = Z Adln/d
dn

and so we can apply Dirichlet’s hyperbola method with

A(z) = Z A,

n<zx
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to get
Dobn=2 asA(Z) - A(VR)"
nsw d<vz

The last term is O(x/(logz)??). The summation on the right hand
side is bounded by

T Qq
< (log z)? Z d’
d<yx
By partial summation,

a AWz VE g
> Ed<< (‘\/QJr/l t(;)dt,

which is easily seen to be O (logl"s :U), and this gives the stated re-
sult. O

2.5.13 Let {ay} be a sequence of nonnegative numbers. Show that there
exists oo € R (possibly infinite) such that

converges for Re(s) > oo and diverges for Re(s) < og. Moreover, show
that the series converges uniformly in Re(s) > oo + ¢ for any 6 > 0 and
that
oo k
®) gy = (_1)k § @nllogn)”
W) = (Y 2

for Re(s) > oy. (0 is called the abscissa of convergence of the Dirich-
let series Y 2 | an/n®.)

If there is no real value of s for which the series converges, we
take 09 = oo, and there is nothing to prove in this case. Now sup-
pose there is some real sy for which the series converges. By the
comparison test, the series converges for all Re(s) > sg, since the
coefficients are real and nonnegative. Now let o( be the infimum
of all real sy for which the series converges. This establishes the
existence of o¢. The uniform convergence in Re(s) > oo + J for any
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0 > 0 is immediate. Thus, in this region, we can differentiate the
series term by term to derive the formula

0 k
i) = (-pp 3 OB
>

O

2.5.14 Let a, > 0 be a sequence of nonnegative numbers. Let o be the
abscissa of convergence of

Show that s = og is a singular point of f(s). (That is, f(s) cannot be
extended to define an analytic function at s = s.)

By the previous exercise, f(s) is holomorphic in Re(s) > oy. If f
is not singular at s = 0y, then there is a disk

D={s:|s—o1] <d}

where o1 > o¢ such that |op — 01| < § and a holomorphic function
g in D such that g(s) = f(s) for Re(s) > so, s € D. By Taylor’s
formula,

© (0 (y
o) = 3 I sy

0 £(k) (5
= ka( 1)(3—01)k,

since g(s) = f(s) for s in a neighborhood of ¢;. Thus, the series

2 (—=1)kfE) (o

S,
k=0 )

converges absolutely for any s € D. By the previous exercise, we

can write this as a double series

k

2 (o1 — 5)F X a,(logn)”
k! Z nor

k=0 n=1
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If o1 —0 < s < o1, this convergent double series consists of nonneg-
ative terms and we may interchange the summation to find

E:Inglz al—s logn) :ifg<oo.
n=

n=1

Since o1 — 0 < 09 < o071, this is a contradiction for s = . Thus, the
abscissa of convergence is a singular point of f(s). O

2.5.15 Let x be a nontrivial character (mod q) and define
Oax = Z x(d)d

If x1, x2 are two characters (mod q), prove that for a,b € C,

—S
E :UGX1 bez n)n”* =

C(s)L(s —a,x1)L(s — b, x2)L(s —a — b, x1Xx2)
L(2s —a—b,x1x2)

as formal Dirichlet series.
We apply Ramanujan’s identity (see Exercise 1.2.8)
> n+l _ on+l n+l _ 5n+1
S () )
a—0 vy—9

1 — apyT?
(1= anT)(1 — adT)(1 — Ay T)(1 - BoT)

to deduce that

Zaa x1 (P")obx, (P™)T™

> n+1 a(n+1) _ n+1,b(n+1) _
Z (Xl —1 1)<X2(p2<2(p]))p— 1 1>T"

_ 1 — xa(p)xe(p)p**T?
(1 =xapx2(P)P*T)(1 = x1(p)p"T)(1 = x2(p)p*T)(1 = T)
Putting T' = p~* and multiplying over the primes p gives

C(s)L(s —a,x1)(L(s — b, x2)L(s —a — b, x1x2)
L(2s —a —b, x1x2) '

n=0
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2.5.16 Let x be a nontrivial character (mod q). Set a = b, x1 = x, and
X2 = X in the previous exercise to deduce that
i ’Ua X(n)|2n—s _ C(S)L(S —a, X)L(S - a? %)L(S —a— 67 XO) )

’ L(2s —a—a,xo)

n=1
Observe that
2
Tax(n)oax(n) = [oax(n)]
and XX = xo, so that the result is now immediate. (]

2.5.17 Using Landau’s theorem and the previous exercise, show that
L(1, x) # 0 for any nontrivial real character (mod q).

Set a = 0 in Exercise 2.5.16. Then

o loo (m)[>— ¢(s)L(s,x) L(s,X)L(s; xo)
nE_:l ns N L(2s, x0) '

The right hand side is regular for Re(s) > 1/2, except possibly s = 1.
However, if L(1, x) = 0, then the right-hand side is regular at s = 1.
Therefore, the Dirichlet series

o0

Z ’UO,X(”)P

n=1

represents an analytic function for Re(s) > o, where oy is the

abscissa of convergence. We must have oy < 1. However, for x real

and n = m?,

so that the Dirichlet series diverges for s = 1/2. Hence 1/2 < 0 < 1.
Since L(2s,x0)"! is regular for s > 1/2, we have a contradiction
because B
C(S)L(S, X)L(87 X)L(Sa XO)
L(237 XO)
is regular for any real s > 1/2. O

2.5.18 Show that ((s) # 0 for Re(s) > 1. We have for 0 = Re(s),

g(s):H(1+;+p§S+m),

p
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so that ) )
<)) 21;[(1—27,,—]3%—---),
so that .
|c<s>|21;[(1—p0_1) #0,
and the infinite product converges because o > 1. O

2.5.19 (Landau’s theorem for integrals)Let A(x) be right continuous
for x > 1 and of bounded finite variation on each finite interval. Suppose

that  Ax)
x
)= [ S

with A(x) > 0. Let o be the infimum of all real s for which the integral
converges. Show that f(s) has a singularity at s = op. This is simi-

lar to Exercise 2.5.14, and so we merely indicate the modifications
needed in the solution of that problem to obtain the required result.
As before, we can differentiate under the integral sign to get

f(k)(s) _ (_1)k /100 A(z)(log ﬂf)kdx.

ms—l—l

If 0y is not a singularity, we deduce that

-~ (01— k)* [ A(z)(log )
z:: X /1 dx,

xdl-‘rl
k=0

using the notation in the solution to Exercise 2.5.14. Interchanging
the summation and integration gives

/100 A(x)dx < 00

xs—&-l

for s satisfying o1 — 9 < s < o1. For s = 0y, this is a contradiction. [
2.5.20 Let X denote Liouville’s function and set
S(z) =Y An).
n<x

Show that if S(x) is of constant sign for all x sufficiently large, then
¢(s) # 0for Re(s) > 1/2. (The hypothesis is an old conjecture of Pélya. It
was shown by Haselgrove in 1958 that S(x) changes sign infinitely often.)



270 2. Primes in Arithmetic Progressions

We have by Exercise 1.2.5 and partial summation that

¢(2s) _ S/OO S(z)dx
1

C(S) rstl

If S(x) > 0 for all z, then the integral represents an analytic function
for Re(s) > oo, where o is the abscissa of convergence. However,
by Exercise 2.1.6,

(s—=1)((s) =s—s(s—1) /100 ii}lda:,

so if ((s) = 0 for some s satisfying 1/2 < s < 1, we get
> {x
1:(8—1)/1 m{er}ldx’

a contradiction because the right-hand side is negative. Thus ((s) #
0for1/2 < s < 1. We find that ((2s)/((s) has its first real singularity
at s = 1/2. Therefore, oy = 1/2. Therefore, ((2s)/((s) is regular for
Re(s) > 1/2, which means that ((s) # 0 for Re(s) > 1/2. (This is
the celebrated Riemann hypothesis, which still remains unproved,
as of the year 2000.) O

2.5.21 Prove that

bo(2) = an <Z> By_pa*,

k=0
where by, (x) is the nth Bernoulli polynomial and B,, denotes the nth
Bernoulli number.

We have from Exercise 2.1.7 that
F(xz,t) = e™F(0,t).

As power series, this equation is

> by (z)t" 27N /o= By t"
s 7 (; rl )(; 7 )’

so that comparing the coefficients of ¢" on both sides gives the
result. O

2.5.22 Prove that
bn(l - 55) = (_1)nbn($)a
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where by, (x) denotes the nth Bernoulli polynomial.

We have from Exercise 2.1.7 that

oo r (1—
Fl—zt) = Y-zt ="

from which the result follows. O

2.5.23 Let
sp(n) =18 28 138 4. 4 (n — 1),

Prove that for k > 1,

k
1 .
(k + 1 Sk Z <k+ > k-i—’L—Z.

=0

We consider the power series

0 k o L n—1
sp(n)t™ t &
S = Y S5
k=0 k=0 j=0
n—1 tj ent 1
= e =
= et —1
Writing
et — 1 B et — 1 t
et—1 t et —1
- (X
= g
k=1 j=0 J:

and comparing coefficients of both sides gives the result. O
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The Prime Number Theorem

3.1 Chebyshev’s Theorem

3.1.1 Let
6(n) = logp,

p<n
where the summation is over primes. Prove that

0(n) < 4nlog 2.

Since every prime between n and 2n divides

2n < 920
n [— )

because it is one of the binomial coefficients occurring in the bino-
mial expansion of (1 + 1)??, we see that

0(2n) — 0(n) < 2nlog?2.

If n = 27, we obtain §(2"!) — (2") < 2"tllog?2, valid for r =
0,1,2,...,m (say). Adding up these inequalities, we obtain

0(2m+1) < (2m+1+2m+...+2+1)log2

< (2™ —1)log2 < 2™ 2 log 2.
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If n satisfies 2™ < n < 2™*! then

O(n) = 6(2™)+ (0(n) —6(2™))

< 2mtlog2 4 (9(2™ ) — 6(2™))

IN

2+ 1og 2 4+ 2™ log 2 < 4nlog 2.

3.1.2 Prove that
f(n) < 2nlog 2.

We induct on n. If n is not prime, then
O(n)=0(n—1) <2(n—1)log2
by the induction hypothesis. If n is odd, write n = 2m + 1, then

notice that
2m +1
m

is divisible by all the primes between m + 1 and 2m + 1. Notice that
2m+1 n 2m+1 < 92m+1
m m+1) = ’

2<2m+ 1) < g2mt
m

so that

Hence
6(2m +1) —0(m) < 2mlog?2

and induction gives #(m) < 2mlog2, so that
0(2m +1) <4mlog2 < 2(2m + 1) log2

as desired. O

3.1.3 Let

b)= 3 logp= 3" An),

o <x n<x
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where A is the von Mangoldt function. Show that

lem[1,2,...,n] = v,

Clearly, we can write
lem|[1, 2 H P,
p<n
where e, is the largest power of p < n. Thus

e — [logn} _ Z 1,

logp an

from which the result follows.
3.1.4 Show that

1
e¢(2"+1)/ 2" (1 —x)"dx
0

is a positive integer. Deduce that 1)(2n + 1) > 2nlog 2. (The method of
deriving this is due to M. Nair.)

The integral
1 " /n 1
I= / 2"(1—x)"de = Z < > 1)k/ 2" dy
0 k 0
k=0
n 1)k
- Z;) ( ) n+k + 1
is a rational number. It is clear that lem[1, 2,. .., 2n+1]I is a positive
integer. Since
1
l—a)< -
r(l-2) <
for 0 < x < 1, we obtain
I<27m

Hence, by Exercise 3.1.3, we obtain

so that e¥(?"+1) > 227 ag required. a
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3.1.5 Prove that there are positive constants A and B such that

Az < n(z) < Bx
=7 ~ logx

log x

for all z sufficiently large. (This result was first proved by
Chebycheff.)
By the previous exercises, we have

O(x) < 2xlog2,
P(2n+1) > 2nlog2.

Hence,

Z logp < 2zlog2,
Vz<p<z

which implies
(m(z) — 7 (V) %logm < 2zlog?2.

This yields
4z log 2
log

m(x) <
Since 7 (v/z) < /x, we get

(x) < 4foz’i2 +0(va) =0(—).

T (V).

For the lower bound, notice that

Y(z) >z,
and that
P(z) —0(z) = Z logp = O(vzlog?z).
Hence

0(z) > z,
and as before,

Z logp + O(v/zlogx) > =,

Va<p<lz
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so that 7(z) log z > z for z sufficiently large. Thus, 7(x) >
3.1.6 Prove that

T
logz®

T(x):= Zlogn =zlogz —z+c+ O(1/x)

n<x
for some constant c. (This improves Exercise 2.1.2.)

We apply Theorem 2.1.9 with f(n) = logn, a = 1, b = z, and
k =1toget

r 1 1 [ Bo(t
Zlogn:/ logtdt—l—logac—i—/ 22( )dt—i—O(l).
1 2 2 /)1 t

n<x
T Bo(t)dt [ Bo(t)dt 1
/1 2 /1 g " O(E)’

and the integral on the right-hand side converges because B(t) is
bounded. Since

We have

x
/ logtdt =xlogxr —x + 1,
1

this completes the proof. O
3.1.7 Using the fact
logn = Z A(d),
din
prove that

n

> Aln) _ logz + O(1).
n<x

We have

T() =Y A5 ==) A;d) +0(W(2)).

d<z d<z
Since T'(z) = zlogz+O(x) and ¢(x) = O(x), we obtain the required
result upon dividing by =. O
3.1.8 Prove that .
> = =loglogz + O(1).

p<w
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From Exercise 3.1.7, we deduce

Z logp _ logz 4+ O(1),

p<w

since the contribution from higher prime powers is bounded by a
convergent sum. Thus, by partial summation,

1 1 Tllogt+O(1)} dt
= p logp 2 (logt)
Now,
/m dt =loglogz + O(1)
, tlogt 608
and s g
—— =0(1).
/2 t(logt)? @
The result is now immediate. O

3.1.10 Suppose that {ay }22 , is a sequence of complex numbers and set

S(z) = Z .

n<x
If
lim 5() = qa,
r—o00 I
show that
an
Z — = alogz + o(log x)
n<x n
as r — oo.

By partial summation

ZQ”ZS(:C)+/ i?alt:Ozlog:c—i—o(log:z:).
n T 1t

n<x

The integral is divided into two parts:

/x S(tQ)dt _ /y S(tQ)dt . /w S(tgdt_
Lt Lt , t
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We may use S(t) = at + o(t) in the second integral if we choose
y = y(x) — oo. The first integral is O(log y). Thus, choosing y such

that log y = o(log ) justifies the last step. O
3.1.11 Show that

lim @) _

r—oo I
if and only if

m(x)

z—oo 1/ log x

We have
Aln) (=) oY) dt
2 - +/2 (

logn log = logt)? t

2<n<z

- lozx +O<loz:c> +O</j bzgt)

Z Aln) =mn(z)+ O (xl/z logx) .

Now,

We have

Todt roodt x
=0 —— =0 .
/2 log?t (\/5) * /\/5 log?t (log2 x>

Thus, ¢(z) = = + o(z) implies 7(z) = z/logx + o(x/logx). The
converse is similarly deduced. Let f(n) = 1if n is prime, and zero
otherwise. Then

O(x) = Zf(n)logn:ﬂ(:n)logx—/;ﬂit)dt

n<z

= z+ol) +0(loza:)’

Therefore, §(z) = x + o(z). Since ¥ (z) = 6(z) + O (xl/Q log? ),
we deduce ¢ (z) = x + o(x) as required.
]
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3.2 Nonvanishing of Dirichlet Series on Re(s) = 1

3.1121If

m(z)
z—oox/logr

il

then show that

1
Z — = aloglogz + o(log log x).
p<z

Deduce that if the limit exists, it must be 1.

By partial summation,

1 m(x) T n(t)
Z]; = +/2 o) dt

p<z t
= aloglogz + o(loglog z).
By Exercise 3.1.8, we know that o must be 1. O

3.2.1 Show that

C(s) = i s Oo{x}daz

s—1 1 s+l

for Re(s) > 1. Since the right-hand side of the equation is analytic for
Re(s) > 0, s # 1, we obtain an analytic continuation of (s — 1)((s). This

was already derived in Exercise 2.1.6. It remains only to observe
that the integral on the right-hand side converges for Re(s) > 0.
Observe that ((s) has a simple pole at s = 1 with residue 1. O

3.2.2 Show that ((s) # 0 for Re(s) > 1.
We have
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and 1 1 1 1
1l ——— — . =1— >1— >0
pa p2a pU_l 20 _ 1
for o > 1, we are done. O

3.2.3 Prove that for o > 1,t € R,

Relog ((o +it) = i A(n)

tl .
. a7 logn cos(tlogn)

n—=

We have
log((s) = —Zlog (1 — pls>
P

=1
- XY

p k=1

= Z An) {cos(tlogn) —isin(tlogn)},
n=1

n?logn

from which the result follows. O

3.2.4 Prove that

Re(3log (o) 4 4log (o + it) +log (o + 2it)) > 0,
foro>1,teR.

By Exercise 3.2.3, we see that the left-hand side of the inequality
is

= A
z:l v f:g)n {3+ 4 cos(tlogn) + cos(2tlogn)}.

Since 3 + 4cosf + cos20 = 2(1 + cos#)? > 0, the result is now
immediate. g

3.2.5 Prove that for o > 1,t € R,
C(0)¢ (o +it)' (o +2it)] > 1.

Deduce that ((1 +it) # 0 forany t € R, t # 0. Deduce in a similar way,
by considering

¢(0)’ Lo, x) " L(o,x*),
that L(1, x) # 0 for x not real.
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By Exercises 3.2.3 and 3.2.4 we obtain
‘C(O‘)?)C(O' + it)2¢(o + 2it)‘ > 1.
Now, we know that

lim (o —1){(0) = 1.

o—1t

Suppose ((s) has zero of order m at s = 1 + it, t # 0. Then

lim MZC#O.

o—1+t (O’ — 1)m
Hence,
(0= 1)%C(0)3 (0 = 1) ¢(o + it (o +2it)| > (0 — 1),

Letting 0 — 17 gives us a finite limit on the left-hand side and
infinity on the right-hand side if m > 1. Therefore, {(1 + it) # 0
fort € R, t # 0. If x? # xo, where Y is the principal character
(mod g¢), then

e v
X\P
IOgL(J,X):g E p‘(f”)y’ o>1,

p v=1

and similarly for x2. Notice that if x(p) = ¢*"%, then x?(p) = ™.
Using the inequality 3+ 4 cos § + cos(260) > 0 and Exercise 3.2.3 with

t = 0, we get by taking real parts that
3log (o) + 4Relog L(o, x) + Relog L(a, x*) > 0.

This gives
[¢(0)* Lo, x) " L(o,x*)| = 1,

similarly to the above. If L(1,x) = 0 we get a fourth-order zero
for L(o, x)* while ((c)? gives a third-order pole. However, L(o, x?)
does not have a pole at s = 1, since x? is not the principal character.
O

3.2.6 Show that —%(s) has an analytic continuation to Re(s) = 1, with
only a simple pole at s = 1, with residue 1.
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Since ((s) # O for Re(s) > 1, s # 1, —C—l(s) is analytic for

Re(s) > 1, s # 1. Now, ‘
(5= 1c(s) =s—s(s—1) | x{i}ld

1

by Exercise 3.2.1. Thus, we can write

(s =1)¢(s) = sf(s),

where f(s) is analytic for Re(s) > 0. Therefore, differentiating the
equation, we get ((s) + (s — 1){'(s) = sf’(s) + f(s), so that
¢(s) _ f(s)  [(s)

PHEDE T T

Since lim, .1+ ((s) = +o00, we get lim,_,1+ (s — 1)%,(5) = -1 O
3.2.7 Prove that

1 sin(n + )6
7+c059+cos20+--'+cosn9:M.

0
2 2sm§

The left-hand side is the real part of

1 , . .
—5-1- (14—619—}—6219—&—”-—1—6"’9)_
The term in the parentheses is the sum of a geometric progression

and equals

cin+1)0 _ 1 (ei(n+1)0 —1) o—i0/2

e —1 2isin(6/2)

The real part is

sinfn+ 30 1
sin(n+ )6, 1

2sin g 2
and the result is now immediate. O
3.2.8 Prove that
in 2nfé
cosf 4 cos30 + - - - + cos(2n — 1)0 = sin 2nd
2sin 6

By Exercise 3.2.7,
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1 sin(2n + )0
— 4+ cosf +cos20 + - - -+ cos2nf = (,792)
2 2sin 5

and

sin(2n + 1)6

2sinf '
putting first 2n instead of n and 26 instead of 6, respectively. Sub-
tracting gives

1
§+cos29—|—cos4«9+---+cos2n9:

cosf +cos36 + - -+ cos(2n —1)0 =

sin(2n + $)0 _ sin(2n+1)¢

QSing 2sin 0

Now, sin 6 = 2sin % cos g, so that the above is equal to

2 cos g -sin(2n + $)0 — sin(2n + 1)0
4 sin g cos g
Since

1 0 0 1
sin(2n + 1)0 = sin (2n + 2) 6 cos 5 + sin 5 €08 <2n + 2) 0,

we deduce that the expression in question is

cos & sin(2n + 3)0 — sin § cos(2n + 3)0 _ sin2nf
2sin 6 2sin6’
as desired. O
3.2.9 Prove that

1+

sin30  sin 56 sin(2n — 1)6 sin n@\ 2

sin @ sin @ sin 6 sin @

We prove this by induction on n. For n = 1, it is clear. Assuming
that it is true for n < m, we must show it for n = m + 1. After a
simple calculation, we are led to prove that

sin?(n + 1)0 = sin® nf + (sin(2n + 1)6) sin 6,

or equivalently,
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(sin(n + 1)8 — sinnf)(sin(n + 1)0 4 sinnf) = (sin(2n + 1)0) sin 6.

Using
sinA+sinB = QSinA+B cos A-B
2 2
and A+B . A-B
sin A — sin B = 2 cos —; sin ;

we find that we must prove that

1 1
4 cos <n + 2) 0 sin g sin (n + 2> Hcosg = (sin(2n + 1)0) sin 6.

But the left-hand side is
. 1 .
sin 2 <n + 2> 0 -sind,
as desired. O
3.2.10 Prove that

2m—1 . 9
2m+1)+2 Z (j+1)cos(2m — j)0 = <W> ’

=0 S 5

for all integers m > 0.

We must prove

m sin(m + 1) ?
2m+1+22(2m—j+1)cosj0: ~702 .
j=1 Si 5

Changing 6 to 2¢, we must prove that

o sin(2m + 1) 2
2m+1+2§ (2m—j+1)cos2j(p:<_> )
= sin

By Exercise 3.2.7, we know that

sin(2n + 1)0

1
— +cos 260 + cos40 + - - - + cos2nf = -
2 2sin 6
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That is,
sin(2n + 1)¢

n
1+2Zcos2jg0: sin g

j=1
Summing both sides over 0 < n < 2m, we obtain

@ _’_1)_'_2%2": iy o sin(2n + 1)
m cos =) ———=.
} g sin ¢
The left-hand side is
2m 2m
(2m+1)+2) cos2je Y 1= (2m+1)+2> (2m—j+1)cos 2],
j=1 j<n<2m j=1

and the right hand side is
sin(2m + 1)\ 2
sin
by Exercise 3.2.9, as desired. O
3.2.11 Let f(s) be a complex-valued function satisfying

1. f is holomorphic in Re(s) > 1 and non-zero there;

2. log f(s) can be written as a Dirichlet series

oobn

ns
n=1

with b, > 0 for Re(s) > 1;

3. on the line Re(s) = 1, f is holomorphic except for a pole of order
e>0ats=1.

If f has a zero on the line Re(s) = 1, then the order of the zero is
bounded by e/2. (This result is due to Kumar Murty:.)

Suppose f has a zero at 1 + it of order & > 5. Then e < 2k — 1.
Consider the function

2k
g(s) = P F(s +igto)* 0
j=1

()L f(s 4 it) ¥ f (s + 2itg)* 2. f(s + 2kitg)?.
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Then g is holomorphic for Re(s) > 1 and vanishing to at least first
order at s = 1, since

4k? — (2k 4+ 1)e > 4k* — 2k +1)(2k — 1) = 1.
However, for Re(s) > 1,

2k

log g(s Z (2k+1+222(2k+1—j)n*iﬁo).
n=1 j:l
Let 6 = tglogn. Thenfors =0 > 1,
[e%9) 2k
Relog g(o) =log |g(o Z%(2k+1+222 2k+1— j)COS]Q)
n=1 ] 1

By Exercise 3.2.10, the quantity in the parentheses is greater than or
equal to 0. Thus,

9(o)] = 1.
Letting o — 17 we get a contradiction, since g(1) = 0. O

3.2.12 Let f(s) = [I,, L(s, x), where the product is over Dirichlet char-
acters (mod q). Show that f(s) is a Dirichlet series with nonnegative
coefficients. Deduce that L(s, x) # 0 for Re(s) =

By the Euler product for each L(s, x), we know that it does not
vanish for Re(s) > 1. Also, for Re(s) > 1,

log f(s ZlogLsx Enpmz;(

which by the orthogonality relations (see Exercise 2.3.8) is equal to

elg) > n;ns'

n,p
p"™=1 (mod q)

This is patently a Dirichlet series with nonnegative coefficients.
L(s, x) is regular for Re(s) > 0 (by Exercise 2.3.4) for x # Xo.
L(s, xo0) has a simple pole at s = 1. Applying Exercise 3.2.11 gives
the desired result. O
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3.3 The Ikehara - Wiener Theorem
3.3.3 Suppose

f(s) =) an/n®
n=1

is a Dirichlet series with real coefficients absolutely convergent for Re(s) >
1. If f(s) extends to a meromorphic function in the region Re(s) > 1,
with only a simple pole at s = 1 with residue r, and |ay| < by, where
F(s) = >, by/n® satisfies the hypotheses of Theorem 3.3.1, show that

Zan =rz+ o(z)

asxx — Q.

The series G(s) = F(s) — f(s) is a Dirichlet series satisfying the
hypotheses of Theorem 3.3.1, and therefore

> (b —an) = (R—1)z + o)

n<x

as x — oo. On the other hand,

Z b, = Rz + o(x),

n<x
so that
Z ap, = rz + o(x),
n<x
as required. O

3.3.4 Show that the conclusion of the previous exercise is still valid if
an € C.

Define
Fi(s) =Y an/n®
n=1

and observe that

1 o, (T
f—2(f+f)+l< % >
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Furthermore, (f+ f*)/2 and (f — f*)/2i are represented by Dirichlet
series with real coefficients, absolutely convergent in Re(s) > 1.
Since

we have f*(s) = f(5).

We leave it to the reader to show that f*(s) satisfies the Cauchy
- Riemann equations and thus both (f + f*)/2 and (f — f*)/2:
satisfy the condition of the previous exercise. The result is now
immediate. g

3.3.5 Let q be a natural number. Suppose (a,q) = 1. Show that

¢(xSQ7a') = Z A(n)

n<x
n=a (mod q)

satisfies
1m w(x)
v=o0 x/9p(q)

We apply the previous exercise to the function

/

)= 3 @ sx0)

©(q) (ot 0
which is
Z A(n)
ns
n=a (mod q)

Since L(s, x) # 0 on Re(s) = 1, and the only character contributing
a pole to the sum is the principal character, we see that

Resa=1/(s) = o(q)’

from which the result is immediate. O

3.3.6 Suppose F'(s) = > >, by /n® is a Dirichlet series with non-negative
coefficients and is convergent for Re(s) > ¢ > 0. If F(s) extends to a
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meromorphic function in the region Re(s) > ¢ with only a simple pole at
s = c with residue R, show that

n<zx

+ o(z)

as xr — oQ.

The Dirichlet series G(s) = F(s+ ¢ — 1) satisfies the conditions of
Theorem 3.3.1. Therefore,

Az) ::Znﬁ — Rz + o(x)

as z — oo. Now, by partial summation,

an = /A 1)t 2dt

n<x

= Ra®—(c—1) p + o(x°)
Rx° .
- c + O(LE )7
as required. O

3.3.7 Suppose f(s) = > o7, an/n® is a Dirichlet series with complex
coefficients absolutely convergent for Re(s) > c. If f(s) extends to a mero-
morphic function in the region Re(s) > c with only a simple pole at s = ¢
and residue r, and |a,| < by, where f(s) = > .2 by/n® satisfies the
hypothesis of Exercise 3.3.6, show that

T
D an=

n<x

o(z°)

as T — Q.

If we write g(s) = f(s + ¢ — 1), then ¢(s) satisfies the conditions
of Exercises 3.3.3 and 3.3.4. Thus,

a
S = o)

n<x
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as x — oo. By partial summation (as in the previous exercise), the
result is now immediate. O
3.3.8 Let a(n) be a multiplicative function defined by a(1) = 1 and

p+e if a=1,

a(p®) =
0 otherwise,

where |c,| < p? with § < 1. Show that as x* — oo,

7‘132
> a(n) = - tolz 2)

n<x
for some nonzero constant r.

The Dirichlet series f(s) =Y -, a(n)/n® is

p+cp 1 Cp
||<1+—):||<1+ +—).

S s—1 S

p » p p

p

We can factor

1 Cp cp
- <1+p3*1><1+1¥_p25*1 +)

It is easy to see that

T )

p

converges absolutely for Re(s) > 1 + 6. Moreover, h(s) does not
vanish in this half-plane. Also,

. 1 B C(s—1)
() =L (1+ ps—l) T ((2s-2)

p

by Exercise 1.2.7. Thus,

ERSCE
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can be continued analytically to Re(s) > 2 with only a simple pole
at s = 2 and residue r = h(2)/{(2) # 0. We can now apply the
previous exercise with ¢ = 2 to deduce the result. O

3.3.9 Suppose c,, > 0 and that

ch = Az + o(x).

n<x

Show that c
E — = Alog x + o(log x)
n

n<zx
as r — oo.
Let s(z) = >, <, ¢n- By partial summation, we get

o _ ) [,

2
n x t
n<x

= Alogx + o(log x)

as required. O

3.4 Supplementary Problems
3.4.1 Show that

ZA )logn = ¢ (z)logx + O(z).

n<x

By partial summation,

ZA )logn = (x )logx—/f w(tt)dt.

n<x

Using Chebyshev’s estimate that ¢)(z) = O(x) in the integral gives
the result. O

3.4.2 Show that

Z A(d)A(%) = A(n)logn + Z (d) log? d.

din dln
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By Exercise 1.1.6, we have

== u(d)logd,
din
so that
ZA(d)A(%) = 3 AWd)A(e)
dln de=n
= — Z A(d Z 9)logé
de=n to=e
= — ) p(d)logdA(d
dtd=n
Since
Z A(d) = IOg N
td=n/é
we have
ADA(E) = =5 u(d) logdlog X
SADA(G) = -2 ;
= logn—i—z,u log= d
din
as required. O

3.4.3 Show that

> ud log
dln
{10g2x if n=1,

- 2A(n)logz — A(n)logn + > .., A(R)h(K) if n>1.
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If n = 1, the result is clear. For n > 1, recall that 3, pu(d) = 0
(Exercise 1.1.1) and that — 3, pu(d) log d = A(n) (Exercise 1.1.6), so
that

Z wu(d 10g = Z 1(d)(log? d — 2log xlog d)
dn din
= 2A(n)logx + Z u(d) log? d.
din

By the previous exercise, we have

> pu(d)log?d = > A(R)A(k) — A(n)logn,

djn hk=n
which completes the proof. O
3.4.4 Let
- (St
n<z  dn
Show that

S(x) = d()logz + 3 A(nw(%) +O(x).

n<zx
We sum the result of Exercise 3.4.3 to get

S(z) = log?x 4 21(x logx—ZA )logn + ZA(mAn

n<lx mn<x

The first sum, by Exercise 3.4.1, is ¢(x) log x4+ O(x). The second sum

l > A (%)

n<x
Putting all this together gives the desired result. O
3.4.5 Show that
A2 i 2% 2
v —d;u(d)[d] {1082 =2},

where ~y is Euler’s constant.
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We have

S@) ==Y ud {10g2 g - 72}

n<z dn

since } g, u(d) = 1if n = 1, and 0 otherwise. Interchanging the

sums now gives the required result. O
3.4.6 Show that
_ S M) [t
S(x)—a:dZ; g {log 77 }—i—O(az).

Recall that (Exercise 2.5.5)

so that when we remove the square brackets in [z/d] in Exercise
3.4.5, the error term is O(x). O

3.4.7 Using the fact
1 1
Z— = log:c—l—'y+0<—),
n x
deduce that

@: Z ’ﬁ?(logﬁ—’y) + O(1).

By the previous exercise, we can write

S0 s} e 2} 000

d<z
Writing , ;
ogn= £ Lo

e<z/d
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gives

:;Mdd(log—'y) Z é+0<£210g§)’

e<z/d d<zx

and the error term is O(1) by Exercise 2.5.5, which proves the result.
O

3.4.8 Prove that

ng) =2logz + O(1).

By the previous exercise,

s T (s -0)

n<zx dn

A
_ Zﬂ“‘)gff—V
n

n<zx

= 2logz+ O(1)
by Exercise 3.1.7.
3.4.9 (Selberg’s identity) Prove that

x)logx + Z A(n)@b(%) =2zlogz + O(x).

n<x
By Exercise 3.4.4,
S(z) = logx—l—ZA ( ) O(z).
By the previous exercise,

S(z) =2zlogz + O(x).

Putting these facts together gives the result. O

3.4.10 Show that |
B ogn
v(n) = O(loglog n)’
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where v(n) denotes the number of distinct prime factors of n.
In the interval [1, n], the number with the largest number of prime
factors is
N =]]»
p<t

where t is chosen as large as possible so that NV < n. Hence
v(n) <7(t),

and by Chebyshev’s theorem (Exercise 3.1.4) we have log N >> t. By

Exercise 3.1.5,
t

t -
m(t) < logt’

so that v(n) < (log N)/logt. Also, n <[], p, by our choice of ¢.
Again by Chebyshev’s theorem,

logn < t,

so that

v(n) < logn/loglogn
as required. O
3.4.11 Let v(n) be as in the previous exercise. Show that

Z v(n) = zloglogx + O(x).

n<x

We have

v(n) = Z 1,

pln

so that

Sum) = Y [ﬂ :xZ;+O(az)

n<z p<z P p<z

= zloglogz + O(x)

by Exercise 3.1.8.
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3.4.12 Let v(n) be as in the previous exercise. Show that

Z v2(n) = z(loglog z)? + O(xloglog z).

n<x

We have

>orm=3 1= [“]+3[0]

n<x n<z p,qln pqsw p<z
p#4q

The second sum is O(z loglog =) by the previous exercise. The first
sum is

Y L 40w = Z*—

pq

pq<z pq<ac p2<z
PF#q
x
= E — + O(x).
pg<sz Pq

Now,

> a-(Z) T

pg<x p<z p,q<z
pg>z

and the first sum on the right-hand side is
(loglog z + O(1))?
by Exercise 3.1.8. The second sum is bounded by
IIDI-TIDMID I
Va<p<z q<z Vz<g<z p<:r
since p, ¢ < z and pg > x imply either p > \/x or ¢ > \/z. But

> 5.

f<p<m

by partial summation and Chebyshev’s estimate for 7 (¢). Thus, the
second sum in question is

O(loglog ),
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which completes the proof.

3.4.13 Prove that
® gin? \x
. ?dﬂf = TI.
Let
1 if |t < A
ft) =
0 otherwise.
Then 5 cin )
A S AT
flz) = :
2nx

By Parseval’s theorem

T Joo T2
as desired.
3.4.14 Let
T(x) = Z logn.
n<x

Show that for x > 1,

|T(x) — (xlogx — z)| < 4 +log(z +1).

By the inequalities of the integral test, we have

T(z) 2/ logtdt =xlogx —x + 1.
1

Also,

299

r+1
T(a:)g/ logtdt = (x4 1)log(x +1) — (x + 1) — 2log2 + 2.
1

Hence

1
T(z) — (xlogz —x) < zlog <L+ ) +log(z + 1)+ 3 —2log2.
x
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Since log(1 +t) <'t, for |t| < 1 we deduce
T (x) — (xlogx —x)| <4 +log(z+1)

as required. O

3.4.15 Show that

W(x) — 1/1(%) < (log2)z + 12 + 3log(z + 1).

Deduce that

12logz  3log(x + 1)logz

<
P(x) < 2(log2)x + log 2 log2

We have (by the proof of Theorem 3.1.9)
x x
— — 1< — —
V(@) 1/)<2) < T(z) 2T<2>‘

By Exercise 3.4.14, we have

T

T(x)— 2T<§> < (log2)xz + 12 + 3log(x + 1).

By iteration we obtain

¢<x) — ¢<E) < (log2)g + 12+ 3log(x + 1)

2 4
and so on. Adding these up gives the stated inequality. O
3.4.16 Show that

W(x) — w(g) + w(%) > (log2)z — 2log(z + 1) — 7.

We have (as in the previous exercise or by the proof of Theorem
3.1.9)

X X X
_ e ) > _ ).
V(@) ¢(2)+¢(3) = T() 2T(2)
Using Exercise 3.4.14 now gives the result. O
3.4.17 Prove that for x > e'2,

5(log x) log(z + 1)
log 2

o)~ (%) > 5 tog2)r - —7.
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By the previous two exercises

o)~ () = S(log2)r —2log(w + 1))~ 7

_12log(z +1) 3(logz)log(z + 1)
log 2 log 2 '

If z > e!'2, we can replace 2log(z + 1) and 2log(z + 1)/log2 by
(log z)(log(z + 1))/ log 2. O
3.4.18 Find an explicit constant cq such that for x > co,

wl@) - (%) > 1827

Since log x < log(x + 1), we may write by the previous exercise

5(log(x + 1))?

- 7.
log 2

x 1
_ah(Z) > = _
bia)—(5) = 5log2)z
Now let ¢ = (log 2)?/30, so that we have (log(x+1))? < cz, provided
that
(C:U)S/Q
6

or, equivalently, z > 36/c3. This yields

1+ <1+

9(w) (%) = Slog2)z -7,

provided that z > ¢y = 36/c3. O

3.4.19 With ¢ as in the previous exercise, show that for x > co,

x (log2)r  /z(logx)?
9<x)_9(§)> 6 g2 "

Let

0*(x) = Z log p.

<y
a>2
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Then, by the previous exercise,

o(zx) — e(g) + 0" (2) > (1°g62)”3 7

for x > ¢p. Also,

0 (z) < Vz(logz)?/log 2,
from which the result follows. O
3.4.20 Find an explicit constant ¢, such that for x > ¢,

0(z) — e(g) > (lof;)x _7.

We have
vz (log x)? - (log 2)x
log 2 12

iff z < exp ((log2)z'/4/1/12). This is certainly the case if

1 (1 s
L <0g2x1/4> ,
8\ V12
or in other words, if z > ¢y = 12* - 8!/(log 2)®. Therefore,

oo -of3) > 2D

if z> max(cg, c2), with ¢ as in Exercise 3.4.18. We set ¢;=max(cg, ¢2)
to deduce the stated inequality. O

3.4.21 Find an explicit constant cs such that for x > c3, 0(z) — 6(z/2) >
1. Deduce that for x > c3, there is always a prime between x/2 and x.

By the previous exercise, we may set c3 = max(c,96/log2) to

deduce that 0(x) — 0(x/2) > 1 for x > cs. O
3.4.22 Let .
) =32 1(3)

be a function of bounded variation in every finite interval [1, z|. Suppose
that as x — oo,
F(x) = zlogz + Cz + O(z”)
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with C, 3 constant and 0 < B < 1. Show that if M (x) :== ), ., p(n) =
o(x) as x — oo, then -

f(z) =z +o(x).

By replacing f(x) by
fole) = f(z) =z = (C =),

we find that

o= 34 (%)

n<x

satisfies Fy(x) = O(2?). It suffices to show that fy(z) = o(z). By
Mobius inversion,

T
folw) =3 um)Fo(%).
n<x
It is clear that Fyj is also of bounded variation. We write

fle) = Y umR(S)+ Y wmR(T)

n<ex ex<n<lx

= 214-22 (say).

We estimate ) _, trivially:

T X () < [T
1

n<ex

which is O(e' ~z).

For }",, we may write Fy(z) = P(z)—Q(x) with P and @ positive
monotonic increasing functions, since Fy is of bounded variation.
Thus

Yo=Y umm(T)

ex<n<x

= ) M(n)P(%>— > u(n)Q(%)-

ex<n<zx ex<n<lzx
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We estimate ), ., ., u(n)P (%) as follows. By partial summation,
for = a positive integer,

S oumpP(S) = 3 M@ -ME-1}P(5)

ex<nx ex<n<x

S < (r() - r(2)

ex<n<z—1

Thus,
> u(n)P(%)‘§2P(}> max |M(n)],

€/ ex<n<lz
ex<n<x

and a similar estimate holds for the )-term. For any fixed ¢ > 0,

i s P i e B <0
so that for z sufficiently large,
fo(x) = o(z)
as required. O

3.4.23 Assuming M (x) = o(x) as in the previous exercise, deduce that

lim ¥()

r—00 I

=1.

We know that

T(x):= Z logn = xlogx — z + O(logx)

n<x
and .
T(x) = — .
0= v(,)
We may apply the previous exercise with ¢ = —1 and any 0 < 3 <

1. We deduce that ¢(z) = z + o(z), which is the prime number
theorem. n



4
The Method of Contour Integration

4.1 Some Basic Integrals

411 1If z > 1, show that

1 x®
i “ ?ds =1
forany ¢ > 0.
Consider the integral
1 [cHiR s

— —ds,
2t J._ip S

with R > ¢, and the contour (i described by the line segment join-
ing ¢ — iR to ¢ 4+ iR and the semicircle Sg of radius R centered at ¢
and enclosing the origin. By Cauchy’s theorem,

S S

1
— x—d.s = Resszox— =1.
211 r S S
Thus iR
1 CT1 S 1 S
x—ds + — x—ds =1.

271 c—iR S 21 Sk S
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The second integral satisfies

37/2
‘1/ x—sds‘ < J:C/ " zfeosPdep.
2mi Js, S 21 Jr /2

Since z>1 and cos ¢ is negative in [r/2/37/2], we see that |27 ©¢| <
1. We split the integral by writing

3m/2 w246 3m/2—0
/ chos¢d¢§ / chosqﬁdd)_i_/ chosqﬁdd)
w/2 w/2 w/2+5

3m/2
_|_/ QZRCOS¢d¢,
3w /2—0

for some arbitrarily small 6 > 0. The first and last integrals are
bounded by 4. The middle integral is bounded by

o Rsinéd )

As R tends to infinity, the middle integral tends to zero. The other
two integrals are bounded by ¢ and since ¢ can chosen to be arbi-
trarily small, the integral in question tends to zero as R tends to

infinity. O
4.1.21If0 < x < 1, show that
1 S
— x—ds =0, c > 0.
2mi Jie) s

We proceed as in Exercise 4.1.1 and consider
1 c+iR s
b £d8
21t J._;p S
However, the contour we choose will be Dgr described as the line
segment joining ¢ — iR to ¢ + iR and the semicircle sg to the right
of the line segment, of radius R, centered at ¢ and not enclosing the

origin.
By Cauchy’s theorem,
1 S
27 Jp, S
Thus iR
1 CT1 S 1 Sd
Tds+— T o

2t J._ip S 2mi Js, s
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The second integral can be estimated as before by

—7/2
‘1/ x—sds‘ < xc/ mRCOS‘pdgp.
2mi Jg, S 21 Jrj2

The integral is easily estimated as in the previous exercise and so

the integralgoes to zero as R — co. O
4.1.3 Show that
% % = %, c>0
()
We have
1 [ctiR ds 1 R it

% 7RC+’L.t

1 L
= 5| = pdt
271' REC +t

2t J._ip S

The imaginary part of the integral vanishes, since the range of inte-
gration varies from —R to R. Thus, the integral is

c/R dt _1/W6du
m™Jo 02+t2_71' 0 1+u2
The latter integral tends to arctan oo = 7/2, so that the final result
is 1/2. O
4.1.5 Let
-~ a
flo)=)_ —

ns
n=1

be a Dirichlet series absolutely convergent in Re(s) > ¢ — e. Show that if
x is not an integer,

1 T
Z ap — % ” f(S)?dS

n<x

(The integral is taken in the sense of Cauchy’s principal value.)
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We can integrate term by term in the expression
1
5= | f(s)

Sds
270 J (¢ 2m/ Zan s’

since the function f(s) is uniformly convergent in this half-plane

By Theorem 4.1.4, we get, letting T' — oo

i ané(%) = Z Q-

n<x

n=1
O

4.1.6 Prove that for ¢ > 0,
z(log z)*

1 / x® d
—aSs =
1 k+1
27 (C)S 0 lf £L'§1,

for every integer k > 1.
When = > 1, we choose our contour (g as in Exercise 4.1.1. By

Cauchy’s theorem,
S

1 / o 1 i
——ds = Res;—g——— = —(log x)".
Ch gh+1 k!

27772‘ gkt1
Thus
1 [eTil s 1 xs 1
— = ds+ — | ——ds 1
omi g sk S+2m'/ grds = gy(log )",

The second integral is bounded by
l,C
SR

which goes to zero as R — oo.
If x < 1, we choose our contour Dg as in Exercise 4.1.2. By

Cauchy’s theorem,
1 x’ e — 0
o 3k+1 §
Thus iR
1 el g 1 z*
— ——ds + — ——ds = 0.
omi ) T o /S shr1 @



4.1 Some Basic Integrals 309

The second integral is easily estimated by

c

x
2 Rk+17
which goes to zero as R — oc. U
4.1.7 Let
-~ a
= -
f(s) = 2 s

be a Dirichlet series absolutely convergent in Re(s) > ¢ —e. For k > 1,
show that

e (065) =g 109

This is straightforward from the previous exercise. The proof is
analogous to that of Exercise 4.1.5. O

4.1.8 If k is any positive integer, ¢ > 0, show that

k
1/ x%ds B %(1_%> if x=>1,
271 Jooy s(s+1)---(s+ k)
(0 S(s+1)---(s+k) 0 Fo<z<

The method is identical to that of the previous exercises. If z > 1,
we choose our contour as in Exercise 4.1.1. We choose R > 2k such
that by Cauchy’s theorem,

1/c+zR r5ds +1/ x5ds
210 Jo—igp S(s+1)---(s+k) 2miJg,s(s+1)---(s+k)

xS

k
Res,—_ .
; =+ 1) (54 k)

The residues are easily calculated:
xs - x_.j
s(s+ 1) (s k) (=)= +1)- (D)) (k= 3)

Res;—_;
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which is o
(—1)a
ik = 3)"
and the sum of these residues is

k .
,;;<’;><—;>f:,;<1—;>’f
On Sr we obtain

R

and hence

1 z8ds xz°
zm/SR s(s+1)---(s+k) :O<ﬁ>’

which goes to zero as R — oo. In the case 0 < 2z < 1, we use
the contour as in Exercise 4.1.2, and since the integrand is analytic
inside this contour, Cauchy’s theorem gives

1 /C“R x%ds B _1/ x®ds
2mi Joip s(s+1)---(s+k)  2miJg, s(s+1)--(s+k)
with R > 2k, as before. The integral on the right is

‘/L,C
()
which tends to zero as R — oc. O
4.1.9 Let -
anp
f(s) = Z s

be a Dirichlet series absolutely convergent in Re(s) > ¢ — €. Show that

k! c+ico f(S).%'SdS
kaana}—n 270 Joioo S(5+1) - (s + k)

forany k > 1.
Substituting the Dirichlet series for f(s) in the expression
1 f(s)z*ds
27 (c) s(s+1)---(s+k)

and integrating term by term using the previous exercises, we ob-
tain the result. O
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4.2 The Prime Number Theorem

4.2.1 Using the Euler - Maclaurin summation formula (Theorem 2.1.9),
prove that for o = Re(s) > 0,

ms 2 s—1

n—1
1 -5 1-s S P
A
m=1 n &t
where [x] denotes the Qreatest integer function.

In Theorem 2.1.9, we take f(t) = 1/t* and k = 1 to get

S [ ) [

Let B — 0. Then,

D AT R
= ms  2n 1-—s n 27 gstl’
Thus,
n—1 1— [e'e) 1
1 1 n'~—s r—[z] -5
C(S):mzz:lms 2n5_1s_8/n JRPEN | dz
as desired. O

4.2.2 Using the previous exercise, show that

1

() = —

= O(logT)

fors € Ry.
We have

s—1 ms  2ns s—1 s+l ’

1 1,1 a1 _S/OO (z — [z] — 1/2)dx

and we observe that writing s = o + it,

n—1
1 "o Is| [ dx
< — 7d
'C< s—l‘ = m? 2n°' /1 Tty n x0Tl
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since
nl=s—1 " dx

s—1 1 x8

and |z — [z] — 3| < 3. Also, by the integral test,

(| " dx
Z o <1+ o)
mzlm 1 T

which gives an estimate of

1
3

s /°° dz 2(nt=7 —1) |sjn7°
142 — + —
+/ R o1 STy,
2nt=7 n |s|n=?
T 1-0 20

We are free to choose n optimally to minimize this quantity. Let
n=[T].InRr,|s| <2+ Tand foro > 1/2,

|s| 24T

<2+4T,
20 20 +

which leads to a final estimate of
2 24T
T'=° .
<1 -0 * T )

1
log T’
we have 1 — o < 1/logT, from which we get from above

1 dt |s| [ dt
—— <142/ =4+= :
‘4(8) s—1‘— + /1 tU+ 2 Jp totl

Since

oc>09g=1-—

By monotonicity, we get

1 © dt
- —| < 1+2/1 +H/ T

< logT,

for s € Rr, as required. O
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4.2.3 Show that
((s) =O(logT)
for s on the boundary of Rr.

Since

1 1
= <min(—— =
‘5—1‘ ‘a—1+z’T‘_mm(J—1’T)
and o > 1—1/logT for s on the boundary of Rr, we get the desired
result. U

4.2.4 Show that for 0 > 1/2,((s) = O(T"/?), where T = |Im(s)| — ooc.
By Exercise 4.2.1, we get with n = [T,

C)l<o(T)

by an easy estimation of the quantities in that formula. O

4.2.5 For s € Ry, show that

= 0(log?T).

We use Exercise 4.2.1 again and differentiate the formula there
with respect to s. Thus

¢'(s) + - _Zlogm log"+/l"<10gx>dw

2ns s
w J— J—
_/ x — [z] 1/2dx
xs—i—l
n

Cr—|x]-1/2
+s /n [xiq/(logx)dx.

Estimating all of the terms on the right-hand side as in Exercise
4.2.2, we get with n = [T'] the desired estimate. O

4.2.6 Show that
¢'(s) = O(log> T,
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where T = |Im(s)| and s is on the boundary of Rr.

We proceed as before:

1
>1-—
7= logT’

which implies (1 —¢)~2 < log? T, and this gives us the stated result.
O

4.2.8 Let s = o +it, with 1 < |t| < T. There is a constant ¢ > 0 such
that

¢'(s) _ 0e?
(o) ~ Ol T)

for

C
— < g <2.
(logT)? = =

Combining Theorem 4.2.7 and Exercise 4.2.5 gives the result. [

4.3 Further Examples

4.3.2 Suppose that for any € > 0, we have a,, = O(n*). Prove that for any
¢ > 1, and x not an integer,

Zan:i ) L7 ds +O( ZE)JrO(xElng),

21 Jo—ir s R

n<lz

where

By Theorem 4.1.4, we have

ct+iR
le'/c_iR (s d —gan—i—O(Z]aM( ) Imn(l,R‘ligm)).
ntc

The analysis of the error term is handled as in the proof of Theorem
4.2.9. We split the sum into three parts: n < z/2, /2 < n < 2z, and
n > 2x. For the first and last parts | logz/n| > log 2, so that

C
E ]an|(£) <« xfte
n

n<xz/2
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Also,

Z|an|( ) <z Z

n>2x n>2x

Finally, for the middle part (z/n) is bounded so that

Z |ay,| min (1, ;) < ajlogaz.
R‘log%‘ R

z/2<n<2x
Putting all this together gives the desired result. O
4.3.3 Assuming the Lindelof hypothesis, prove that for any € > 0,
> " dp(n) = 2Pp_1(log z) + O(x'/>*),

n<x

where di(n) denotes the number of ways of writing n as a product of k
natural numbers.

By Exercise 1.5.5, we know that

nS

n=1

By Exercise 1.3.2 and the fact that dj.(n) < d(n)*, we see that dj.(n) =
O(n®) for any € > 0. Applying the previous exercise, we obtain

> di(n) = 5 /CHR Cloa +0(“"26)

n<z R

for any ¢ > 1. If C is the rectangular contour joining ¢ — iR, ¢ + iR,
% + 1R, % — iR, we have by Cauchy’s theorem

1 k k S
—_— / L(S)xsds = R683:1C (s)x = zP;_1(logx)
211 s S

for some polynomial P;_; of degree k — 1. Also

i 0

c+iR ~k s c
ori [ e 0 gg) ()
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where the horizontal and vertical integrals in the contour have been
estimated using ((s) = O(t¢). Choosing R =zand c=1+1/logx

gives the desired result. O
4.3.4 Show that

= p(n) = O(z exp(—c(log z)"/'?))

n<zx

for some positive constant c.

By Exercise 4.3.2 with e = 0,

c+iR .s c+e
IOES=Y I $<<d> +0(F ).

n<x

By Theorem 4.2.7, |1/¢(s)| = O(log” R) for 1 < |Im(s)| < R and

60=1-— <o<2.

1
log’ R
We choose C to be the rectangular contour joining ¢ — R, ¢ + iR,
0 +iR and ¢ — iR. Then, by Cauchy’s theorem,

1 [ xids

2mi Jo sC(s)

Therefore,

1 ct+iR Sds 6+iR c—iR 15ds
27” c—iR SC B 27” < c+iR /6+1,R / > ( >

We use the estimate provided by Theorem 4.2.7 to estimate these

integrals:
i 0+iR /c iR < ¢ 1Og7R
270 \Jetir Rlogz ’

if R > 1. For the vertical integral, we can use the same technique to
bound the integrand, observing that 1/((s) is regular at s = 1 and
thus is bounded in 0 < |Im(s)| < 1,6 < Re(s) < 2. Therefore, the
vertical integral is

< ° log® R.
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Putting this all together gives

c+e c] 7R
Z,u(n)<< xR + 28

n<x

) 8
log® R.
Rlogx talog

Put ¢ = 1+ 1/logz. The optimal choice of R is obtained hy equat-
ing error terms. We choose R = exp(ci(logx)'/1%) to get for some
constant ¢ > 0,

M(z) < xexp <—C(log ng)1/1o>

as required. O

4.3.5 Let E(x) be the number of square-free n < x with an even number
of prime factors. Prove that

E(z)= %az +0 (:1: exp (—c(log 3:)1/1(]))

for some constant ¢ > 0.

The function a,, = p?(n)(1+4p(n))/2is 1if n is squarefree and has
an even number of prime factors, and 0 otherwise. Thus,

E(x) =) an=Q(x)/2+ O(M(x)),

where Q(z) is the number of square-free numbers less than or equal
to z. Now apply Exercise 1.4.4 to deduce the behavior of the main
term. By the previous exercise, M (z) = O (z exp (—c(log z)*/19)), so
that the result is now immediate. O

4.4 Supplementary Problems

4.4.1 Let \(n) be the Liouville function defined by \(n) = (—1)%™),
where )(n) is the total number of prime factors of n, counted with multi-
plicity. Show that

Z A(n) =0 (ac exp (—c(log m)1/10))

n<x

for some constant ¢ > 0.
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Recall that (see Exercise 1.2.5)

~ A(n) _ ((2s)
25w T

n=1

One can apply the method of contour integration as in Exercise 4.3.4
and derive the result. An alternative approach is to make use of Ex-
ercise 4.3.4 in the following way. We have from the above Dirichlet

series
An) =Y ple),
d2e=n
so that
S A = 3 ule)= 3 M(a/d?)
n<x d?2e<z d2<z

in the notation of Exercise 4.3.4. By that exercise, we have
M(x) =0 (m exp (—c(log x)l/w))
for some constant ¢ > 0. Inserting this estimate above gives

3 An) IR (;2 exp (—c <10g %) 1/10))

n<z d<\/z

= Z + Z (say).

d§x1/4 I1/4<d§x1/2

The first sum is easily seen to be

O (ac exp (—cl (log w)l/m) )

for some constant ¢; > 0. The second sum is bounded by
€ 3/4
>, p<at
d>zxl/4
and this completes the proof. O

4.4.2 Show that
(n)

ns

NE

Il
—

n
converges for every s with Re(s) = 1.
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Let s = 1 + it. By partial summation

, M(N N .
Z p(n)n =1 = Nf—i-it) +(1+ zt)/ M (w)w > duw.
n<N 1

The first term on the right-hand side is, by Exercise 4.3.4,

@) (exp (—c(log N)l/w)) .

The second term can be written as
o0
(1 +1it) / M (w)w > % dw — (1 + it) / M (w)w 2" dw.

Since M (w) = O(w/log? w), the first integral above converges to a
limit L (say) The second integral is bounded by

< / exp(—c(log w) /1) dw/w
N

dw

w

< exp(—g(log N)1/10 /

exp (—g(log w)1/10>
N

which is ¢
_¢ 1/10
O(exp( 2(logN) )),
since the integral converges. Letting N — oo shows that the series
converges to L. O
4.4.3 Show that
A(n) _ 1/10
Z:” —logx+B+O<eXp (—c(loga:) ))

for some constants B and c, with ¢ > 0. The summation is over prime
numbers. (This improves upon Exercise 3.1.7.)

We have
Aln) (=) T(t)dt
; n +/1 t2

= 1+ O(exp(—c(logz)'/1%)) + log z

+/1x0(tlexp(—C(logt)l/w))dt
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The integral is easily seen to converge. Accordingly, we split the
integral into two parts as
o0 oo
I

and estimate the second integral as in the previous exercise. This
shows that

A
Z Aln) =logx+ B; + 0O (exp (—cl(log x)l/m))
n<lz n
for some constants Bi, ¢; with ¢; > 0, as desired. O

4.4.4 Let f(s) =Y .2, An/n® be a Dirichlet series absolutely convergent
for Re(s) > 1. Show that for any c > 1,

> Ay =0(

n<x
We have
T\ ¢ .
W2 D14 (5) <,
n<x n<x n<x
as required. O

4.4.5 Define a,, for n > 1 by

oo
an

nS

Z ap =0 (:r: exp (—C(log x)l/m))

n<x

Prove that

for some positive constant c.

We have
an =3 uld)ue)

de=n

Applying Dirichlet’s hyperbola method (Theorem 2.4.1), we have

Sou= S (5) + 5 wami(3) - (Z).

n<x d< m/y Yy
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We choose y = v/ and apply Exercise 4.3.4 to get

S an = o(z flexp<c(1ogfl)”l°))

n<x d<\/z

= 0 (x exp (—cl(log x)l/m))

for some positive constant c; as required. O
4.4.6 Prove that

Z u(n)d(n) = O (zexp (—c(logz)'/1°

5 it =0 (s <o)

for some constant ¢ > 0.

We have

We may write
(1= =03 0= 0-3) ),

g(s)
5) = ,
o=
where ¢(s) is a Dirichlet series absolutely convergent for Re(s) >
1/2. Writing

so that

br,
g(S) - Ea

n=1

let us note that

p(n)d(n) = ) aabe,

de=n

where a,, is as in the previous exercise. Applying Dirichlet’s hyper-
bola method with
Az) := Z an,

n<z
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:ana

we get =
Z pu(n)d(n) = Z bdA(g) + Z adB(g) — A(y)B(g).
n<x d<y d<z/y

We choose y = /= and note that for some positive constants c,
Ax) =0 <x exp <—c(log x)l/lo))

(by Exercise 4.4.5). Also, by Exercise 4.4.4, B(x) = O (x1/2+6) . Thus

> p(n)d(n)
n<x
d aq € €
<Lz Z [bal exp(—c(log z) /1) + Z d|1/2J|r€ a2t 4 O(a%/4F).
d<\/z d</z
The series
3 [bal
d
d

is finite, and a,, = O(n°), and the second sum is
9] <$3/4+E) ]
The final contribution is
O (ac exp (—c(log x)l/m))

as required. O

44.7 If f(s) = Yo7, an/n® is a Dirichlet series converging absolutely
for o = Re(s) = o,, show that

lim / flo +itymetdt = a,,.

We have

1 T

o0
_ ain o+it
o | (3 Yt = 2Tz /
T n=1
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Now,
2T if m=n,

T it
/—T <%> = 2sin(T log m/n)

logm/n otherwise.

The sum
Z |an|
“—~ n7|logm/n|
n#m

converges. Indeed, if n < m /2 orn > 2m, thisis clear, since | log m/n|
is then bounded. If m/2 < n < 2m, then the finite sum is clearly
bounded. The result is now immediate. O

4.4.8 Suppose

[e.e]

= Zan/ns,
n=1
o0

= an/ns,
n=1

and f(s) = g(s) in a half-plane of absolute convergence. Then a,, = by,
forall n.

We apply the previous exercise:

_ T o+it
Ay = Tlglgo QT/ flo+it)ym7T*dt
1T ,
= Tlgr;o 57 /Tg(a +it)ym? T dt = by,

4491f
s) = Z an/n’
n=1

converges absolutely for o = Re(s) > o4, show that

li 1 r . 2d _ - ‘an’2
pim o [ |f(o +it)| t—z o

n=1
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We have
N2 am%
[fle+it)|” = ZmaJritnafit
m,n
_ z:|00n|2 Z AmGn (1
- n2o mon® \m/ ’
m#n
so that
1 (T

F(o + it)2dt io: |an|? N Z amay, 2sin(7T logn/m)
i = .

_ ’ n?o mon® 2T (logn/m)

T n=1 m#n

2T

The double series is analyzed as before. For fixed m, the ranges n <
m/2 and n > 2m are easily handled, and the remaining range is
finite. Thus, for fixed m, the summation over n is bounded. The
summation over m is also bounded, since ¢ > o,. Thus the double
sum is O(1/T) and the result follows. O

4.4.10 Let Q(x) be the number of squarefree numbers less than or equal to
x. Show that

Q(x) = ﬁ +0 <x1/2 exp (—c(log 3:)1/10>)

for some positive constant c.

We have .
Q)= Y uld) =Y u(d)| ]

d2e<zx d?<zx

as in Exercise 1.1.9. Writing [z/d?] = x/d? + E(z, d), we observe that
|E(x,d)| < 1. Now,

Q)= Y nd)5+ > pld)E(.d

d<\/z <z

Let us analyze the first term. We have

d > u(d)
P S
d>\/z

d<v/@ d=1

_ C(12)+0</; ]‘ﬁit)dt).
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By Exercise 4.3.4,

M(x)=0 (x exp (—c(log x)1/10)> ,

so that
o M(t)dt
i B
For the second term, we write

S wdE(r,d) = 3 (M(d) - M(d - 1)) E(x, d)
d<\/z A<z

= M(Va)E(z,[Va]) + ) M(@){E(z,d) - E(z,d+1)}.

< 2 Y2 exp (—c(log x)l/lo) .

d<ya—1
Using the estimate for M (z) and the fact |E(z,d)| < 1 gives the
result. O
4.4.11 Let v(n) = I1,,,, p- Show that
< o0
;S; ny(n)

Clearly, v(n) is multiplicative. Also,

1 11
> <<H<1+pz+p3+-~>,

() o
from which the result follows. O
4.4.12 Show that n
— <L
2 50
We have
n 1\-1 1
SOV I [(ERRES 3D 38
d(n) p
n<zx n<z pln n<z y(d)|n
1 x T
< ) o< <z,
e 45 T 2e (@)
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by the previous exercise. O
4.4.13 Deduce by partial summation from the previous exercise that

Z—<< log z.

n<:p

By partial summation,

as desired. O

4.4.14 Prove that 1
—— ~clogzx
2 )

n<z
for some positive constant c.
We consider the Dirichlet series

1 1
Zqﬁ e H<1+p5(p—l)+p25+1(p—1)+m>

n<x p

- H(”@—l)(isﬂ—l))‘

p

The quotient f(s)/((s+1) is easily seen to be regular for Re s > —1,
simply by long division of the Euler factors. We may write

f(s) = C(s+1)h(s),
so that

Z¢ ns

is ((s)h(s — 1), with h(s — 1) regular for Res > 0. We therefore have
by contour integration (or by an application of a Tauberian theorem)

that
Z o ~ C1T.

n<x

By partial summaton, we can deduce the desired result. O
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4.4.15 (Perron’s formula) Let f(s) = Y 7 a,/n® be a Dirichlet series
absolutely convergent for Re(s) > 1. Show that for x not an integer and
o>1,

Zanzz—m ~f(s ds+0(i< ) aﬂmin(l,jwligﬂ».

This is just a straightforward application of Theorem 4.1.4. O

4.4.16 Suppose a,, = O(n®) for any € > 0 in the previous exercise. Show
that for « not an integer,

Zan = L y f(s)fds%—O(x(;re).

We estimate the error term in the previous exercise as in Theorem
4.29forn < x/2orn > 3x/2. In these cases, the log term is bounded
absolutely from below. The series

converges. For /2 < n < 3z/2, we have |a,| = O(z¢), and we use
this in the estimate. The log term for this range of n is handled as in
the proof of Theorem 4.2.9. O

4.4.17 Let f(s) = > an/n®, with a,, = O(n*). Suppose that
F(s) = ¢(s)"g(s),

where k is a natural number and g(s) is a Dirichlet series absolutely con-
vergent in Re(s) > 1 — ¢ for some 0 < § < 1.

Show that
ZanNg Ing)k 1/( )'

n<x

as r — oo.
By the previous exercise,
o+iT

S o+€
=gt MOS0 )

2m —iT

n<x
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We move the line of integration to Re(s) = a > 1 — ¢. The pole at
s = 1 of ((s) contributes

zg(1)(log z)* !
k-1

By Exercise 4.2.4, ((s) = O(T"/?) for T — oo. Thus, the horizontal

integral contributes
6T [
log

and the vertical integral contributes

0] (:L‘“Tk/2>

on the line Re(s) = a. We choose T' = 227/*

term of
(@) (J:“J”’ + 9:”(17%)“).

We can choose o such that a + ¢ < 1 and o(1 — 2/k) + € < 1. This
completes the proof. O
4.4.18 Let v(n) denote the number of distinct prime factors of n. Show that

y :vlog:v
22~ e

n<z

, and this gives an error

as xr — OoQ.

We have - )
=27 ()
f(S) _nz_:l ns - C(QS)

by Exercise 1.2.6. Also, f(s) satisfies the hypotheses of the previous

exercise. Hence
Z gv(n) ¥ log x
¢(2)

n<z

as r — 00. O
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Functional Equations

5.1 Poisson’s Summation Formula

5.1.1 For Re(c) > 0, let F(z) = e~°*l. Show that

Plu)= o2

2 4 An2y?’
We have

O I
—0o

_ /OO e~ (ct2mimz g, 4 /OO e~ (c=2miv)z 7.,

0 0
Since - )
/ e dx = —
0 v
for Re(v) > 0, we get
P S S S

c+2miuw ¢ —2miu 2+ 4An2u?’
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2

5.1.2 For F(z) = e ™, show that F(u) = e~™".

We must show that

e 2 : 2
/ e~ T 6727rzasudl, — U ’

—0o0

which is the same as

/ e T gy = 1.

—00

But this is essentially the famous probability integral

o0 2
:/ e " dx = 1.
—00

To see this, observe that for u = 0, we have

I’ = / e‘”Qdac/ e_”yZdy
= / / eiﬂ—(x2+y2)dx dy
00 2m 9
= / rdr/ e " do,
0 0

where we have made the polar substitution * = rcosf, y = rsin#.
Thus

oo
I’ = / e (27mr)dr = 1.
0
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Since I > 0, we conclude that I = 1. For the general case, notice

that
a [ )2 0 )2
—7(x+iu) —7(x+iu)
ou / ° da / ( o’ ) de

—0o0 oo

= 2m’/ (:c+iu)e_”(w+i“)2dx

— o0

= Z/—Z (({%e_w(x”“)Q)dx
e

Thus, the value of the integral is independent of u. But for u = 0,
the value is 1. Hence
/ e @ gy = 1.

—00

5.1.5 With F as in Theorem 5.1.3, show that

S F(* : D) = S Emennt,

nez nez

Observe that the Fourier transform of F(x/t) is |[t|F(tu), so that
the result is now immediate from Theorem 5.1.3. (]

5.1.6 Show that

o

e +1 2c
e —1 _202—1—4%2712'

By Exercise 5.1.1 and Corollary 5.1.4, this result is immediate. [
5.1.7 Show that
Z 6—(n+a)27r/x _ 561/2 Z 6—n27rm+27rina
nel nez

forany a € R, and x > 0.
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We have the pair of Fourier transforms

Fit)=e ™ and F(t)=e ™.
Thus, the function e "(+@)” has transform e2mie=™"  Also,
e~ ™(a+t/V2)? has transform

; 2
x1/2627rzat\/56 Ttir

Applying the Poisson summation formula gives

Z e—ﬂ(a+n/ﬁ)2 _ 1,1/2 Z e—ﬂn2x+27rian\/5.

neL nez

Setting a = ay/z gives

— 2 R} .
Z e m(nt+a)?/z _ .1'1/2 Ze TnAr+2mwino

nez ne”Z

as desired. O

5.2 The Riemann Zeta Function

5.2.1 Show that
I(s+1) =sI'(s)

for Re(s) > 0 and that this functional equation can be used to extend
I'(s) as a meromorphic function for all s € C with only simple poles at
s=0,—-1,-2,....

The equation
I'(s+1) = sI'(s)

is easily deduced by an integration by parts. Thus, for Re(s) > —1,
we can define .
D(s) = LD

s
from which we see that I'(s) has a simple pole at s = 0. Continuing
in this way, we see that

_ I'(s+2)

I'(s) m7
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which gives a meromorphic continuation to Re(s) > —2 with again
a simple pole at s = —1. The result is now clear. O
5.2.3 Show that ((s) has simple zeros at s = —2n, for n a positive integer.

The integral on the right-hand side in Theorem 5.2.2 converges
for all s € C. Thus 7~%/2I'(s/2)¢(s) is analytic for any s = —2n,
with n a positive integer. Note that

1+ 2n(2n + 1)/ W () (:c_” + x"+1/2) .
1 X

Since the I'-function has a simple pole there, ((s) must have a sim-
ple zero at that point. O
5.2.4 Prove that ((0) = —1/2.

Since I'(s/2) ~ (s/2)7! as s — 0, multiplying the equation in
Theorem 5.2.2 by s/2 and taking limits as s — 0 gives the result. [

5.2.5 Show that ((s) # O for any real s satisfying 0 < s < 1.

Since (2}
s T
G =g=7795) i
we see that -
s dzx
Hence
1 s s 2s —1
=14+ — 1 = .
s—1 +s—1<<(8)< +s—1 s—1

Thus, for 1/2 < s < 1, we have (2s — 1)/(s — 1) < 0, which shows
that {(s) # 0 for 1/2 < s < 1. By the functional equation, we have
it for the whole range 0 < s < 1.

5.3 Gauss Sums

5.3.2 If x is a primitive nonprincipal character (mod q), show that

) = Y x(m)e(".")

1



334 5. Functional Equations

if (n,q) > 1.
Let us put

n ni

)

q q1
where (n1,¢1) = 1 and qi1|¢, ¢1 < ¢. If n is a multiple of g, the left-
hand side is zero, and so is the right-hand side, since

> x(m) =0.

m=1
So, we may suppose 1 < g1 < g. We have to prove that
q

Z Y(m)e(mnl) =0.

=1 q1

Write ¢ = ¢q1¢g2 and put m = aq; + b, where 0 < a < ¢2, 1 < b < g.
Then, the above sum can be rewritten

bn
> (") ¥ van o,
1<bzar > I/ 0<a<e
and it suffices to prove that the inner sum is zero. Let us write
S(b)= Y Xlaq +D).
0<a<q2
Observe that S(b + ¢q1) = S(b). If c is any integer satisfying
(Cv(J) = 17 c= 1(m0d q1)7
then
X(©S®) = > X(caq + cb)

0<a<q2

= Y X(aqi +b) = S(),

0<a<q2

since S(b+ ¢1) = S(b). Since x is a primitive character (mod ¢), it
is not periodic to any modulus ¢; that is a proper factor of g. Thus,
there are integers cy, ¢ such that

(617Q) = (CQ,Q) = 17 Cl1 =C3 (mOd QI)7

and x(c1) # x(c2). Hence, there exists ¢ = cic; ! (mod q1), (¢, q) = 1,
such that x(c) # 1. Thus S(b) = 0, as desired. O
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5.4 Dirichlet L-functions

5.4.2 Suppose x(—1) = 1. Show that L(s,x) has simple zeros at s =
—2,—4,-6,. ...

Since L(1 — s,%) has no zeros for Re(1 —s) > 1l and I'((1 — s)/2)
has no zeros at all, the only zeros of L(s,x) for Re(s) < 0 are at
s = —2,—4,—6,... corresponding to the poles of I'(s/2). This is so

because by the above, their product is entire. O
5.4.3 Prove that
a—(+D/2(s+D)/2p <5 ‘; 1> e /oo ne—mn?/q, 5! dj’
0 T

and hence deduce that

S S 1 1 o0 S
CE El)r(SJr >L(S,X) - / 01(z, )z dz
0

xT

where

Or(z,x) = Y. nx(n)e /1,

n=—0oo

Changing s to s + 1 in the formula

— _ © _n2 s dx
T s/2qs/2r(8/2)n s _ e wz/qmzi
0 xT
gives the first result. Then summing over n gives the second equa-
tion upon noting that since y(—1) = —1,
> 2 > 2
Or(z,x) = D nx(n)e =2 Tnx(n)e " T,
n=-—00 n=1
O
5.4.4 Prove that
[e.e] o
Z ne T/ TH2TIII G _ (o /)32 Z <n+ @)e—w(ner/q)Qq/l.
q

n=—oo n=—oo
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This is immediate from Poisson’s summation formula. Indeed, by
Exercise 5.1.7, we have

oo
§ : e—n27ry+27rino¢ _ —1/2 2 : —7t(n+a)?
n=—00 n=—00

Differentiating with respect to a gives

0.] oo
2mi ne MU TYT2mIne — _om,—3 > (n+ a)e~ (el n/y,

n=—oo n=—oo

and substituting = /q for y and m/q for a gives the stated equation.
O

5.4.5 Prove that for x(—1) = —1, if we set
E(s,x) = 7 *2¢" T (s + 1)/2) L(s, X),
then £(s, x) is entire and
£(s,x) = wx&(1 = 5, %),

where w, = 7(x)/(iq"/?).

By Exercises 5.4.3 and 5.4.4, we obtain

()

2 x 2 T

1/°° s dx zq1/2 o0 _1-s dx
=— 01(z,x)r2— + —— /(9155,)(:1:2.

2 )y NENTE e ), VT

This gives the analytic continuation for L(s, x) and establishes the
functional equation, since the change of the right-hand side when s
is replaced by 1 — s is as stated. O

5.5.1 Let

[e%S)
— § :ane—Qﬂny
n=1



5.4 Dirichlet L-functions 337

converge for y > 0. Suppose that for some w € Z,

f(/y) = (=1)"y" f(y),

and that a, = O(n°) for some constant ¢ > 0. Let
o
L¢(s) = Zann_s.
n=1

Show that (2r)~°T'(s) L ¢(s) extends to an entire function and satisfies the
functional equation

(2m)~*T(s)L(s) = (=1)*(2m) "= (r — s)Ls(r — s).

We have
/O f(y)ys—l _ /0 Z an€—27rnyys—1dy
n=1

& 00
_ § :an / e—27rnyys—1dy’
n=1 0

the interchange being justified by the estimate a,, = O(n¢) which
implies the absolute convergence of the integral. Changing vari-
ables in the integral gives

(27)*T(s) Ly(s) = /0 " ey,

which converges absolutely for Re(s) > 0. Now write the integral
as

1 (e’
/ f(y)ys‘ldy+/ Fly)y*tdy.
0 1

We make a change of variable y = 1/t in the first integral:

1 0o
/ f(y)y“dyz/ FL/A) e,
0 1
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Using the fact that f(1/t) = (—1)"t" f(t), we obtain

1 o0
/ f)y*tdy = (—1)“’/ ()t =Lt
0 1

Hence

(27) T (s)Ly(s) = / o <—1>wyf-5}dyy

= (=1*@m) I~ ) Ly(r — 5),
which establishes the functional equation. Note that the integral

converges for all s € C. This gives the result. O

5.5 Supplementary Problems
5.5.2 Let
g(y) — Zane—%my
n=0
converge for y > 0. Suppose that for some w € Z,

g(1/y) = (=1)"y"g(y)

and that a,, = O(n¢) for some constant ¢ > 0. Let

oo
Ly(s) = Z apn”®.
n=1

Show that (2m)~°T'(s)Lg(s) extends to a meromorphic function with at
most simple poles at s = 0 and s = r and satisfies the functional equation

(2m) 7T (s) Ly(s) = (=1)"(2m)"°T'(r — s) Ly(r — s).

Set
h(y) = ane™®™ = g(y) — ao.
n=1
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Note that the Dirichlet series > | a,n~*° converges absolutely for
Re(s) > 1+ c. Thus, in this half-plane,

(2m) T (s)Ls(s) = /0 " h(yyydy

= [ 6w - ay,
which converges for Re(s) > 0. Now,
h(1/y) = g(1/y) —ao
= (=1)"y"g(y) —ao

= (=1)"y"h(y) — ao(—=1)"y" — ao.
We write the integral
1 0
/0 h(y)y* 'dy + /1 h(y)y* ' dy

and change variables in the first integral by setting y = 1/t to obtain

1 [ee)
s—1 _ —s—1
/0 h(y)y*dy = /1 h(L/t)t™" dt

1
= [ ) a1~ ey
by the functional equation for h. Thus

(2m) "L (s) L (s)

-/ TR+ () Yy

[ee] o0
—ao / (—1)%y" >y — ag / gy,
1 1
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and the two integrals are easily evaluated:

S —s
—s—1 Y o 1
dy = [_ } _—
/1 4 4 s J1 s

[e's) r—s
r—s—1 Y > 1
dy — [_ ] _
/1 Y 4 r—sli r—s

so that

r—s S

(2) " T(s)Ly(s) = —ao((_l)w +1>
> s—1 _1\w,r—s—1
T / By (" + (—1)Py )y,

and the right-hand side gives the meromorphic continuation with
only simple poles at s = 0, r. Also, the functional equation is imme-
diate, since

2m) "= (r — s)L¢(r—s) = —ag <(_i)w + 1)

- TR+ (1P Y dy

= (=D)"@2m) T (s)Ls(s),

as required. O
5.5.3 Let
z—[2]—3% if 2¢Z
0 if v€Z
Show that

¥(z) + Z e(mx) - 1

2mim | — 2w M ||x||
0<|m|<M

where e(t) = €2™ and ||z|| denotes the distance from x to the nearest
integer.
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The function ¥ (x) is periodic with period 1. If z € Z, the result is
clear, since in the sum we can pair m and —m to get 0. Suppose first
0 <z <1/2. Then

/x e(mt)dt = e(maz) _ (=1)"

1/2 2wim  2mim’

so that summing both sides of this equation for 0 < |m| < M gives

B e(mx)
//2 mt))dt B Z 2mim’

0<|m|<M 0<|m|<M
since
S
2mim ’
0<|m|<M
Thus

//2 elmp))ar= 3 )y (x_;).

0<\m\<M 0<|m|<M

The integrand is a geometric progression, which is easily summed
to

e((2M + 1)t) — 1) (M + 3)t) — e(=(M + 3)t)

6(—Mt) ( €(t) 1 6(t/2) — 6(—t/2)

sin((2M + 1)mt)
sin 7t '

Recall the following mean value theorem for integrals: Let f(z) be
bounded, monotonic decreasing, nonnegative, and differentiable in
la, b] and let g(z) be a bounded integrable function. Then

[ st = s [* gy

for some a < ¢ < b. Indeed, letting
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we have by integration by parts,

b b
/f@M@sz@ﬂw—/ﬂ@W®Wm

and the last integral is, by the familiar mean value theorem for
integrals,

b
:mm/f@m:GWU@—ﬂw,

for some a < 7 < b. Suppose now, without loss of generality, that
G(n) < G(b). Then, since f(a) > f(b), we deduce that

G(n)f(a) <GO)f(b) + G(n)(f(a) — f(b)) < G(b)f(a).

Since G is continuous, we must have

G()f(b) + G(n)(f(a) = f(b)) = G(§) f(a)

for some ¢ satisfying a < & < b. Note that we apply this with f(z) =
1/sinmz, g(x) = sin(2m + 1)7z, and [a,b] = [z,1/2]. Then f(x) is
monotone decreasing, and we have

1/2 Gin (2 1)t 1 ¢
[ty 1y
m sin 7t sintz J,

1 { B co(s éim++1 )17)T7rt] 3

sinTx z

Thus,

dt| <
~ (2m+ 1)z

/x sin(2m + 1)xt
1

/2 sin 7t

by the elementary inequality sinmx > 2z, valid for 0 < z < 1/2.
The result is proved for 0 < = < 1/2. We still need to treat the range
1/2 < z < 1. Observe that ¥(1 — z) = ¥(—x) (because ¥ has period
1) and ¥ (—z) = —¥(x) because for x > 0, [-z] = —[z] — 1. Thus by
the above,

e(m(l —z)) 1
U(l—z)+ : < .
0<|mz|gM Zmim (2M 4+ 1)m(1 — )
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Now, 1 —z = ||z|| for 1/2 < z < 1. Hence

e(—mx) 1
- < .
@+ > o | < @r T Ol
0<|m|<M
which gives
e(mx) 1
7 <
@+ > Srm = @M + D]
0<|m|<M

for 2 < 2 < 1. This completes the proof.

5.5.4 Let f(x) be a differentiable function on [0, 1] satisfying | f'(x)]

Show that

Klog M
U

> / Feetmeyts - TOLID)

|m|<M

Deduce that

- [ _ O+ 1)
_ZO:O/O f(x)e(mz)dx = 5 .

By integrating by parts, we have for m # 0,

/f e(mz dx—[f 2mim } /f, 2mm

Summing both sides over 0 < |m| < M gives

Z /f (mx)dr = — /f mdx,

0<|m|<M 0<| <M

since

ICIDE et

0<|m|<M

as is easily seen by pairing m and —m in the summation.
By the previous exercise,

> Z(:Z:;:\Il(m—i_()(MixH)'

0<|m|<M

343

0.

< K.
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Before inserting this fact into the integral, let us note that

/
/01 Mf’(x) Z e(mx)dx < KlogM‘

2mim M
0<|m|<M
Similarly,
L e(mx)d Klog M
1 Fe Z mim = M
1=a7 0<|m|<M
Thus,

B M UM f1(0)d
_/1/M f(a:)\Il(a:)dm+O</1/M M\IxH)'

The error term is easily estimated by breaking the interval into two
parts: [1/M,1/2] and [1/2,1 — 1/M]. The error is O(K log M /M).
Therefore,

3 /f mxdx—/f dm+O(K1;§M>.

0<|m|<M

The integral on the right-hand side is

[r@(-Ye = @3] - [ oo
_ W_/Olf(x)dx

which completes the proof. O
5.5.5 By using the previous exercise with f(z) = 2, deduce that

1
276

2
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We have for m # 0,

/01 f(@)e(ma)de = [M] L 2/01 ze(ma)dz

2mim |, 2mim

1 n 1
2mim  2m2m?2’

by an easy integration by parts.

Form = 0,
! 1
dr = —.
/Of(l’) T =3

By Exercise 5.5.4,

1 1 1 1 log M

3 9 O< )‘

3 + Z <27rim + 271'2m2> 2 + M
0<|m|<M

Since

1
Z Tim 0,

2
0<|m|<M

the result is now immediate upon letting M — oo.
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0

5.5.6 (Pdlya - Vinogradov inequality) Let x be a primitive character

(mod q). Show that for ¢ > 1,

‘ > x(n)’ < q'*logg.

n<x

We use Gauss sums. By Example 5.3.1 and Exercise 5.3.2, we can

write

X = 3 xlm)e (7).

m=1

Since the summation is over any complete set of residues (mod q),
we can replace the range of summation by —¢/2 < m < ¢/2. Thus,

MO = 3 xm Ye(").

n<e 0<lm|<q/2  n<z
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The inner sum is bounded by 2/|e(m/q) — 1|. Writing e(m/q) — 1 =
e(m/2q)(e(m/2q) — e(—m/2q)) we obtain

DN SR

n<z 0<|m|<g/2
Using the inequality | sin x| > 2z for 0 < 2 < 1/2, we get

(01D x(n)] < qlogg.

n<x

Finally, by Theorem 5.3.3, |7(X)| = ¢'/?, so that the result is now
immediate. O

5.5.7 Show that if x is a primitive character (mod q), then

0=y 0 (1/2;“)

n<x
forany x> 1land g > 1.
We have

[e.o]

x(n) x(n)

L1 =y X =y X, 5o
n=1 n<z n>x

By partial summation and the Pélya - Vinogradov inequality

(Exercise 5.5.6), the second sum is

q'?logq

X

<

as required. O
5.5.8 Prove that

> L(1,x) = ¢(g) + O(¢"*log q),

XF#X0
where the summation is over all nontrivial characters (mod q).

By Exercise 5.5.7,

V=YX, O<q1/2 logq)

n<x
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for any nontrivial character y because the conductor of x is bounded
by ¢. Summing this over x # xo (mod g), we get

@10
S 00=3 (3 xm) +0 (31“)

XFX0 n<w X#X0

We choose x = ¢. Also,

v(g)—1 ifn=1 (mod q),

> x(n) =

X#X0 -1 otherwise.

Thus,
> L(1L,x) =¢(g) + O (q1/2 log q) :

XF#X0
as desired. O

5.5.9 For any s € C with Re(s) > 0, show that for any x > 1,

x(n) |slg"* log g
=2 S0 ((m ’

n<zx

where x is a nontrivial character (mod q) and o = Re(s).

By partial summation and the Pélya - Vinogradov inequality, we
have

x O(¢'?logq) .,
taJrl ’
n>x
from which the result is now immediate. O

5.5.10 Prove that for any o > 1/2,
ZLO’X )+O(3/27">
XFX0

where the sum is over all nontrivial characters (mod q).

By the previous exercise,

1/2]
) = x(:)+0<q Uogq)‘
ol n T
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Summing both sides over x # xo, we get

3/21,
S o)=Y 4 (z X<n>> o (qgglgq)

XF#X0 n<w XFX0

We treat the inner sum as in Exercise 5.5.8 and choose =z = ¢, to
obtain

Y Lex) = ¢l@)+0 (ql’” + q3/2"’>

X7X0

= (@) +0 (q3/2“’) :

as required. O

5.5.11 Let B,,(x) denote the nth Bernoulli polynomial introduced in Chap-
ter 2. For n > 2, show that

B, (x) _ Z e(mx)

= (2mim)™

For n > 2, the function defined by the series is uniformly contin-
uous. Let us denote it by By, (z)/n!. Then By, /n! = B,,—1(z)/(n—1)},
so that B],(x) = nBp_1(x). Also,

1
/ B,(z)dez =0 for n>2.
0

Exercise 5.5.3 shows that the formula stated in the exercise holds for
n = 1. These must therefore coincide with the Bernoulli polynomi-
als. This completes the proof. O

5.5.12 Let f(x) be differentiable on [A, B] satisfying |f'(x)| < K for all
x € [A, B]. Show that

B oo B
PIROEDY /A f(@)e(ma)da,

m=—0oQ

where the dash on the summation means that the end-terms are replaced

by f(A)/2and f(B)/2.
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By Exercise 5.5.4, we have

Z/n z)dz| <

|m|<M

fn)+ n+1

Adding this result over n € [A, B] gives

Now let M — oo to deduce the result.

Klog M

(B — A)K log M

349

5.5.13 Apply the previous exercise to each of the functions f(z) =

cos(2mz?/N) and f(z) = sin(2nz?/N) to deduce that

N (1+4)NY?2 if N =0 (mod4),
G\ e(”Q)— N1/2 if N=1(mod4),
4= \N/J )0 if N =2 (mod4),
; iN1/? if N =3 (mod4).
By Exercise 5.5.12, we have to evaluate
N
Z/ n?/N) = Z / ( + maz) dx.
n=0 m=—00

We change variables in the integrand: put + = Nt so that the

integral is

Nm?2

1
N/ e(Nt* + mNt)dt = Ne (—
0
We must therefore evaluate
1 m/2+1
/ e(N(t+ m/2)2)dt = / e(Nyz)dy.
0 m/2
Thus, we have
N

Semn 5 ()

n=0 m=—oo

>/01€(N(t+m/2)2) dt
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Now e(—Nm?/4)is 1if miseven, and i =¥ if m is odd. This suggests
we divide the infinite sum into two parts, m even and m odd:

j+1/2
Z (n?/N)= NZ/ e(Ny? dy—l—NzNZ/ )dy
n=0 j=—00 j=—o0 1/2
:N(I—H'N)/ e(Ny?)dy.

If we put y = N~1/?4, then the integral becomes
Nl/z/ e(u?)du = N~1/%¢

for some constant c. This constant is easily evaluated upon setting

N = 1. Then
N

Z ‘e(n?/N) =1,

n=0

sothatc= (1 +i7')~! = (1 — i)~!. Therefore,

S /N) = (fﬁz )

Notice that the left-hand side is equal to S and the right-hand side
takes the four values stated according as IV belongs to the various
classes (mod 4).

5.5.14 Let x be a nontrivial quadratic character (mod p) with p prime.
Show that

-1

S

= Sne(3) = {05 Dot
Clearly,
p—1
T(x) —1= m2::1(1 + X(m))e(%),

since SP ! e(m/p) = —1.
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Now, 1 + x(m) = 2 or 0 according as m is a square (mod p) or not
for (m,p) = 1. Thus,

p—1

T(x) = Z 6(722) +1
m=1
p—1 2

[e=]

m=

By the previous exercise, the sum is p'/2 if p = 1 (mod 4) and ip'/?
if p = 3 (mod 4), and this completes the proof.

5.5.15 Let ¢(s) = (2m)~°T'(s)((s)((s + 1). Show that p(—s) = ¢(s).

By Legendre’s duplication formula (see Exercise 6.3.6) we have

ron () =35

Also, by Exercise 6.3.5, I'(1/2) = /. Therefore,

os) = (emn 22 () (2T ) et + 1)
_ 2*1(fs/?r(s/z)g(s))ﬁs“)/?r(%)g(s +1).

By the functional equation of the (-function, we see that

S

os) = 27 0r (1) e - ) r () e(-s)
= 6(-9)

by another application of the duplication formula.

5.5.16 Show that ¢(s) in Exercise 5.5.15 has a double pole at s = 0 and
simple poles at s = =+1. Show further that Ress—1¢(s) = /12 and
Ress—_1¢(s) = —m/12.

Since I'(s) has a simple pole at s = 0 and ((s + 1) has a simple
pole at s = 0, it is clear that ¢(s) has a double pole at s = 0. It is also
clear that ¢(s) has simple poles at s = 1 and s = —1, the latter pole
arising from the I'-function. We have

Res,—1¢(s) = lim (s — 1)¢(s) = (27)71¢(2).
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By Exercise 5.5.5, this is equal to 7/12. Also,

Ress—_1¢(s) = lim (s+ 1)¢(s)

s——1
r 2
= lim (2m)"° (s+2)

s——1

= —(2m)¢(=1)¢(0).

By Exercise 5.2.4, ((0) = —1/2. Also, by the functional equation for
the Riemann zeta function, we have

¢(s)¢(s +1)

wl/zr( - %)g(—n = 771¢(2) = /6.

Now (—1/2)['(-1/2) =T'(1/2), since sI'(s) = I'(s + 1). By Exercise
6.3.5,T'(1/2) = /7. Therefore

¢(~1) = —1/12.

Therefore,

Res,__16(s) = —(2m)(~1/12)(~1/2) = /12,

5.5.17 Show that if o(n) = 3_4,, d, then

o

C(s+1),

and that

S o TL 2+i00
S 2 e L /2 5T (5)C(5)C(s + 1)ds.

= n 2% Jo_iso

The first part is clear. The second part follows from Exercise
6.6.3. 0

5.5.18 Show that
[o@) [o@)
J(n) —2mnx m mr 1 J(n) —27mn/x
=— — — 4+ -1 — .
> n ° 127 3 gl ) n °

n=1 n=1
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By Exercise 5.5.17, we can move the line of integration to Re(s) =
—2 to deduce

= o(n) T T
—2mnx

- ro_om
)3 n C 120 12 287

1 —2-+100

n=1

(2m2) T ()¢ (5)C(s + 1)ds

21 J o oo

by an application of Exercise 5.5.16. By Exercise 5.5.15, the inte-
grand becomes

2*p(=s) = °¢(s)

upon changing s to —s. Moreover,

1 2-+100 oo o n
T 5(91) 5T 1 727Tn/:p
377 Jy 1y DT+ s =30 0]
as desired. O
5.5.19 For a and b coprime integers and b > 0, define
a C— 2
et 2miga/b
C ( b) = Z e .
7=0
Let q be prime and (p, q) = 1. Show that
2 1
lim v/£0 <t + m) ~C <—p> .
t—0 q q q
Observe that
2]%) s —an2t —9min2
o+ 20) - ¢~ =2rin’/a
(7)) - X
q—1
_ Z e—27rib2p/q( Z e—Trn2t) )
b=0 n=b (mod q)

We now write n = ¢m + b in the inner sum:

§ : 771'71, § : effrt qm+b

n=b(mod q) m=—00
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Let 0(t,a) = 3. ___e2mina—n’mt Then, by Exercise 5.1.7, we have

> _xta?(m 2 _1/2 1 b
30 e = () (55.0).

Hence,
2pi T 1 b
lim V/#0 (t + ) =lim Vi) e *mP(g?) 7120 (2, > .
=0 q =0 b=0 tq* q

Ast — 0, 1/t¢> — oo, and the f-term goes to 1. The result now
follows. g

5.5.20 Let r = p/q. Show that

t 1 1—1
lim 4 / —0 — | = ( ) C a4 ,
t—0 \ t 4 2ir \ ¢+ 2ir 4./pq 4p
with notation as in the previous exercise.
Write

1 ?

— =T — =,
t + 2ir 2r

where
it + 2rt
T= ——.
2r (% 4 4r?)

Then the limit in question is

lim « / t i 6—7rn2 (t—i/2r)
t—0 t+ 2ur o
— lim / t 4172_:1 6271'7lb2q/4p Z efﬂnQT
t—0 t + 2r b—0 ’

n=b (mod 4p)

which is treated as in the previous exercise. The limit is easily eval-
uated to be

2p 1

Zoc(d).

qidp \dp

@(Z) — iewinQZ

Since



5.5 Supplementary Problems 355

is analytic for Im(z) > 0, the functional equation of the #-function

extends to O:
O(-1/z) = \/f@(z).

Now, /z is well-defined on the cut plane C \ (—o0, 0]. This means
that i = ¢/2 and
1 V2

%:7(1—73)

in the above limit that was evaluated. This completes the proof. [

5.5.21 Deduce from the previous exercise the law of quadratic reciprocity:

<Z) (Z) — (-7 T

for odd primes p and q, and (a/b) denotes the Legendre symbol.

The limits in the two previous exercises are equal by the func-
tional equation of the #-function. Therefore,

10 P 1—1 q

q (_q):4\/17q (@)‘

o(~2) = neve(D)o(h)

and it is easily checked that
()= (e G)

C(%) = 2(1 + iP9).

We have

Also

We use Exercise 5.5.13 (or put p = 1 in the above identity relating
C(—p/q) with C(q/4p)) to deduce

Va4 ifg=1(mod4),
C(1/q) =

iv/q if ¢ =3 (mod4).
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Moreover, C(4q/p) = (¢/p)C(1/p), so that

S0 2E0)0)

from which the result easily follows. O

5.5.22 Suppose that f(s) is an entire function satisfying the functional
equation
AST(s)f(s) = AY°T(1 — s) f(1 — s).

Show that if f(1/2) # 0, then

f’(%) — —f(1/2) <logA + 1;“/((11//22))> .

We logarithmically differentiate the functional equation and set
s = 1/2 to get the desired result. O
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Hadamard Products

6.1 Jensen’s theorem

6.1.4 Show that

Bon(rydr
/O (r)d < max log | f(2)| — log|f(0)],

with f as in Jensen’s theorem.

Let us order the z; so that
0= 20| < 21| <o2| <+ <an| < |zny1| =R

Then
Rn(r) ‘z”l‘n
[ = Z/
|z3]

lg‘ |—|—21 +~~+nlog£
|21 ® Jaal |2n]

- o8 (por )
E\Tallzal - J2al )
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The result is now clear from Jensen'’s theorem. O
6.1.5 If f(2) is of order 3, show that ny(r) = O(rP*€), for any € > 0.

Since

RA+e
mas | (2)] < exp (R7)

we get by Exercise 6.1.4 that

2R
/ mr) dr < RP*e.
0

T
But then n
2
/ ) gy RPte,
R T
so that n(R)log 2 < R*¢, as desired. O

6.1.6 Let f(z) be an entire function of order (3. Show that

o0

2 [l

n=1
converges for any € > 0 (Here, we have indexed the zeros z; so that
|21 < Jz2f < --0).

By partial summation,

> oo

e n(r)dr
Z:l|Z”| < /1 rO+1+e’
n=

By Exercise 6.1.5, n(r) < r+</2, and therefore the integral con-
verges.

6.2 The Gamma Function

= Ldy T
o 14w sin Tx

6.3.1 Show that

for0 <z <1.
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2% 1dz
|
where C, is the contour taken along the real axis from € to R, then in
the positive direction along the circle ¢; of radius R centered at the
origin, and then back along the real axis to z = € and finally around
the circle c; of radius e centered at the origin, taken in the negative

direction.
The function

Consider the integral

Zx—l

1+2
is regular except at = = —1, where it has a simple pole with residue

ewi(m—l)'

We will take ¢ < 1 < R so that integrating the function along the
contour indicated above shows by Cauchy’s theorem

/R ua:—ldu / Zm—ldz /‘6 (u€27ri)z—1du / Za:—ldz
— + + +
e 14w o 142 R 1+u e 1tz

= (2mi)e™ @D,

The two integrals along the real axis together give

R, z—1 R, z—1
(1 = 2mile=1) / wdu _ 9246 (sin 72) / u*"du
e 14w e 14w

The other two integrals tend to 0 as R — oo because on ¢y,

zz—l Rx—l
< )
1+z|~ R—-1
so that ) )
27 dz R*~ 21w R*
< 2TR = ———
/Cl 14z | " R-17""R-1
which tends to 0, since x < 1.
Similarly,
/ 221z 2me*
o 14z |7 1—¢
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which tends to 0, as € — 0 since = > 0. Therefore,

u

1+ u

00 ua:—l T
o l4+u sinmz’

= —2mie™,

[e.e]
—2ie™* (sin7x) /
0

which gives

6.3.2 Show that
w/2
[(z)I(y) =2T'(z +y) / (cos )%~ (sin 6)2¥~1dp
0

forz,y > 0.

For z,y > 0, we have

[(x)D(y) = ( /0 h e_ttx_ldt> < /O - e_“uy_ldu> .

Putting v = tv and inverting the order of integration, we obtain

o0 o0 d
Mx)'(y) = /0 ettmldt/o oyt 2V

[

o0 o0
— / ’inld'l) / eft(1+v)tx+y*ldt
0 0

[e%¢) Q}yildv
=T .
($+y)/0 (1 +’U)w+y

The interchanging of integrals is easily justified by Fubini’s theo-
rem. This last integral is

w/2
2/ (cos )% L(sin§)%~1dp,
0

where we have put v = tan? 6.
Again, making a substitution of A = cos? § transforms the integral
to

1
/ A2 — nrtan,

0
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which is the familiar beta function B(z,y).
For 0 < x < 1, we obtain

D(z)D(1—2) = /01 A1 = N)T%a,

Putting

in the integral gives

v* Ldy

1+wv

?

P(2)0(1 — 2) = /OOO

which by Exercise 6.3.1 is
™

sinz’
which gives the desired result.

6.3.3 Show that

1
[(x)(y) =T(z+ y)/o AT — N tdy.
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(The integral is denoted by B(z,y) and called the beta function.)

Making the substitution of A = cos? § in the integral of Exercise

6.3.2 gives
1
/ AL — Ny tdn,

0
which is the familiar beta function B(z,y).

6.3.4 Prove that

for0 <z <1.
This is clear from the solution to Exercise 6.3.2.

6.3.5 Prove that
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Since I'(1/2) is positive, we obtain I'(1/2) = /. O

6.3.6 Show that

F(21:)F(%> - 22f—1r(x)r(x + %)

forx > 0.

In Exercise 6.3.3, put x = y to obtain

Lxz)? = 1“(2x)/01)\’”_1(1—)\)$_1d>\

1/2
= 2F(2x)/ AT = N)F A,
0

Since A(1—\) < 7, we may write \(1—)) = 1 — £, sothat A = 1’2*/2.
This substitution gives

1
= 21—2mr(2x)/ (1 —t)" 11 2ar.
0

The latter integral is, by Exercise 6.3.3,

F(a:)l"(%)
F(az + %) '

Inserting this in the penultimate step gives the desired result. [

6.3.7 Let c be a positive constant. Show that as x — oo,

[(x+¢) ~ xT(x).
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Suppose first that ¢ > 1. Then, by Exercise 6.3.3,

7) — ' _ y\e—1lyx—1
Tt " A(1 AT GN

— / (1 . e—t)c—le—a:tdt
0

= / tte Tt qt — / {t7 = (1 —e )} e at.
0 0

The first integral is I'(c)z~¢. The second integral is easily estimated
as follows. Notice that 1 — et < t for t > 0, and that

1
l—et>t— =t
€ 2

for 0 < ¢t < 1. Thus, the second integral is positive and less than
1 oo
/ {1-(1 —t/z)cl}tcle”dwr/ t e g,
0 1

For 0 < x < 1, we have forc > 1,
tyc—1
1- (1—7) <t
2

as is easily checked by elementary calculus. Thus, the second inte-
gral is less than

1 o)
T 1
/ tce_"”tdtjt/ tee "t dt = 7(0—’_ )
0 1

xc—l—l

This proves the result for ¢ > 1. For 0 < ¢ < 1, we can use the
formula

I(z+1)=al(x)
to deduce the result. O

6.3.8 Show that
D(z) ~ e 22 Y2\/or

as r — OoQ.
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By Exercise 2.1.12 we know that for a natural number n,
1
log'(n) = log(n — 1)! = (n - 5) logn —n+ci +o(1)

as n — oo (and with ¢; an absolute constant). If = is not an integer,
let us write x = n 4+ c for some 0 < ¢ < 1. By Exercise 6.3.7, we have

D(n+c) ~ n°T(n),

so that

logT'(z) = logI'(n)+ clogn + o(1)

= (x— 1) logn —n+c1 + o(1).
2
Also, .
n+c c c

log (%) =tog (14 ) = 1 +0( ;).

so that

1
logx = logn + € + O(—Q)
n x
Inserting this observation above gives
1
logT'(x) = (x — 5) logz —x +c1 + o(1).

We can use the duplication formula to evaluate c;. Indeed, on the
one hand we have from above

1
logT'(2z) = <2x — 5) log 22 — 2x + ¢1 + o(1).

On the other hand, by the duplication formula (Exercise 6.3.6) we
have

1 1
log'(2z) = (22 — 1) log 2 + log I'(x) + logF(m + 5) ~5 log T,

which is equal to
1 1 1
(21: - 5) log 2z — 2z — 3 log2 + 2¢) — ilogw +o(1),

so that
9 11 log 2
Cl — 4C1 — — logm — .
1 1 B g 5
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Thus, as required

c1 = log V2. O

6.3.9 Show that 1/I'(z) is an entire function with simple zeros at z =
0,-1,-2,....

From the functional equation

T()T(1—2) = —

sinz’
we see that I'(2)I'(1 — z) is regular except when z is an integer, in
which case it has a simple pole.
We also see from this functional equation that since I'(z) is regular
in Re(z) > 0, T'(1 — z) has simple poles at z = 1,2, 3, ... Therefore,
1/T(2) =T(1 — 2)(sinmz) /7

is regular in Re(1 — z) > 0. If Re(z) < 0, then Re(1 — z) > 1 and the
right-hand side of the above equation is regular. This completes the
proof. O

6.3.10 Show that for some constant K,
I'(z) L 1 dt

= 1—- (1=t — - K.
I'(z) /0 { ( ) } t

By Exercise 6.3.3, we have

I'(z = h)I'(h) _ ! h—1/1 _ ;yz—h—1
—F(z) = /Ot (1—1) dt

. % + /01 fa—p="t =1 ar,

The Taylor expansion of the left-hand side with respect to h is

F(lz){r(z)—r’(z)mm}{;+K+.~}
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The Taylor expansion of the right-hand side is

:2—}—/01{(1—75)51 }dt+0( B,

so that by equating the constant terms we get the desired result. [

6.3.11 Show that for z not equal to a negative integer,

for some constant K.

First, for z > 1, we use Exercise 6.3.10 and expand

in the integrand and integrate term by term to obtain the result. The
step is valid for z > 1 and by analytic continuation for all z unequal
to a negative integer. O

6.3.12 Derive the Hadamard factorization of 1/I'(z) :

1/T(= *evzzH ( ) —=/n,

where ~ denotes Euler’s constant.

We integrate the formula
I’ > 1 1
5L G E
I'(z) —\n+l n+tz
from z = 1 to z = w and take exponentials, to obtain

e VG Ca

n=1

for some constant B. Putting z = 1 gives
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> 1 1
0 = B+Z{log(1—|——)——}
o— n n

6.3.13 Show that

1 1 00 — +l

By Exercise 6.3.12,

logT(z) = Z{% —log (l—i—%)} — vz —log z

with each logarithm having its principal value.
By Exercise 2.1.12, we see that

s z 1 1
2 (1 f)} — log(N —1)! (1 4 7)
Z{n og +n og( N+ 2z +2+ +N—1

—<z+%> log z
—(N—%—i—z)log(]\f—i—z)—N

N
B d
+/ Bi{wydu
0 U+ z

Letting N — oo, and using

1 1
144 d-—— =logN 1
+2+ —I-N_1 og N + v +o(1)
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as well as )
2
log(N +z) =log N + N +O<ﬁ)’
we obtain the desired result by an application of Stirling’s formula.
This completes the proof. O

6.3.14 For any § > 0, show that

1 1 1
logF(z):(z—f)logz—z+flog27r+0 —
2 2 |2

uniformly for —m + 9 < argz < — 4.

By the previous exercise, it suffices to estimate

/°° B (u)du
0 u+z
Let us write f(v) = [ ([u] —u+ %)du Then f is bounded, since

f(v+1) = f(v) for any integer v. Thus,

Sy, [
= du = —

0o ut=z o (ut2z)?
Writing z = re'¥, we see that

lu+2? = (utre?)(u+re ™)
= (u+rcosp)+risin?p

= u’+ 2urcosg0+r2.

We break the integral into three parts,

r/2 2r ()
ok
0 r/2 2r
Since f is bounded, each of these integrals is O (1) as required. [

6.3.15 If o is fixed and |t| — oo, show that

ID(o + it)| ~ e 271 [t]7~2/27.
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This is immediate from Exercise 6.3.14.
6.3.16 Show that 1/T'(z) is of order 1.
This is a consequence of Stirling’s formula.

6.3.17 Show that

1;‘((;)) =logz+ O(,i,)
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for |z| — oo in the angle —m + § < argz < w — 6 for any fixed > 0.

By Exercise 6.3.13, we can differentiate the expression

1 1 * [u] —u+ 3
logl'(z) = <z—2> logz—z+210g27r—|—/0 [u]ufz2du

to obtain

P, L [P u
I(2) —logz—QZ—/O (u+2)22du.

The integral is easily seen to be O(1/|z|).

6.3 Infinite Products for £(s) and £(s, x)

6.4.1 Show that for some constant c,
[€(s)] < exp(c|s|log|s])

as |s| — oo. Conclude that £(s) has order 1.
By the functional equation,

£(s) =&(1 =),

so that it suffices to prove the result for o = Re(s) > 1/2.
Clearly,

%s(s — D)% < exp(c|s]),
and by Stirling’s formula

IT(s/2)| < exp(c|s|log|s]),
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which is valid in the range under consideration. We also have

(o)== —s [ gy

s—1 1 s+l

valid for o > 0. (Here {z} denotes the fractional part of x.) The
integral is bounded for o > 1/2. Since

=1,

|5|—>OO s—1

we see that for some constant c,

C(s)] < cs]

as |s| — oo. Putting all this together shows that £(s) satisfies the
stated inequality. Observe also that ((s) — 1 as s — oo through real
values, and since log I'(s) ~ slog s, we see that

£(s)| > exp(c1slog s)
for such values of s. Therefore, £(s) has order 1. O

6.4.2 Prove that ((s) has infinitely many zeros in 0 < Re(s) < 1.

The zeros of ((s) in the stated region are precisely those of £(s). If
there were only finitely many zeros, {(s)e™“ would be a polynomial
for some constant c. In particular,

€(s)] < e,

for some constant A. This contradicts the observation(deduced from
the solution to the previous exercise) that for a positive constant ¢y,

[€(5)] > exp(cislog s)
for real s tending to infinity. O
6.4.3 Show that
£(s) = eAtBs H (1 _ 3) e/,

P P

where the product is over the nontrivial zeros of ((s) in the region 0 <
Re(s) < land A = —log2, B = —v/2 -1+ %logélﬂ, where v is
Euler’s constant.
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The existence of the factorization is clear since £(s) has order 1.
Since the trivial zeros of ((s) are canceled by the simple poles of
I'(s/2), we see that the product must be over nontrivial zeros of
((s). Notice that

(1) = lim %s(s — 1){“%(%)((3)

8—)1

1 1
- () - e

1
_ ,71-—1/2F(1) _ 1
2 2 2

by Exercise 6.3.5. Therefore, £(0) = 3, and consequently, e = 1/2,
as required. To evaluate B, we logarithmically differentiate &(s):

gs) _ls) 1 ;logﬂi((?*ll))
s 4

so that
o) &)

§0) )
from the functional equation. We therefore need to evaluate
For the Hadamard product for 1/I'(s), we see that

2r(%+1)_2 s+ 2n on/’

g
1)

n=1
so that I(3/2)
~
— ~— —14+1og2
or@3/2) 2 T8
since
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Thus,
@ _ ¢(s) , 1 1
a0 G ) - g
Now, 5
g(S) = s—1 - SI(S)a
where ~ (r}d
T pax
I( ):/1 Tpstl
so that (s) .
S
i 1—-1I(1
lﬂ{g(s)+s—1} )
Now, N
B e €34 - tz}
and the latter integral is
N .. N-1 n+1
/ * 2[x]d:x = logN — n/ d—:ﬁ
1 r n=1 n r
N-1
1 1
= logN — i
- Yon(to L)
N
= logN — —+1
n=1
= 1—n.
Therefore,
&) v 1
0 2 +1 2log47r
and

1
B:—g—1+§log47r,

as required.
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6.4.4 Let x be a primitive character (mod q). Show that £(s, x) is an entire
function of order 1.

Recall that

> S(x)
L(s,x) = 8/1 o dx,

where S(z) = >, ., x(n). Since [S(z)| < g, the integral converges
for Re(s) > 0. Also, by the functional equation for {(s, x), it suffices
to estimate it for Re(s) > 3. Thus, for o = Re(s) > 1/2,

1105, X)] < 245,
so that
0l < 2008 0 (21)

< ¢"% exp(Cls|log|s|)

for some suitable constant C'. This inequality is best possible, since
for s — oo through real values, L(s, x) — 1, and Stirling’s formula
implies that the above inequality cannot be improved. O

6.4.5 Show that L(s, x) has infinitely many zeros in 0 < Re(s) < 1 and

that B N
— +Bs _ 2\, s/p
Els) = rp[(l J)er.

where the product is over the nontrivial zeros of L(s, x).

The trivial zeros of L(s, x) are cancelled by the I'((s + a)/2) fac-
tor. If L(s, x) had only finitely many zeros in the critical strip (0 <
o < 1), then it would be a polynomial and hence of order zero,
which is not the case. The final product follows from the Hadamard
factorization theorem. g

6.4.6 For A and B occurring in the previous exercise, show that

et =¢(0,x)

Re(B) = — Y Re (/1))

where the sum is over nontrivial zeros p of L(s, x).

and that
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Setting s = 0 in the Hadamard factorization of £(s, x) gives e =

£(0,x). (By the functional equation, we can therefore express A
in terms of L(1,%).) Logarithmic differentiation of the Hadamard
product and setting s = 0 gives

_€0x _ €0
€00 €Ly

by the functional equation. Writing B, for B (since it depends on
x), we find upon logarithmic differentiation of the expression for
&(s,X) and setting s = 1 that

¢(1Lx) ( 1 1>
— = Bﬁ + T = + p— 9
¢1,x) N Zp: 1—-p 7
where the sum is over nontrivial zeros p of L(s, x). Thus,
1 1
B, = —By — (7, + :)-
X X Z 1— D D
P
Since By = va we get

_2Re(B ZRe( >+Re (;)

The terms in the sum are nonnegative, and we can replace 1 — p
by p, since by the functional equation 1 — p is also a zero of L(s, x)
whenever p is. Thus,

2Re(B ZRe( >

so that .
ST Re ()

as required. O

6.4 Zero-Free Regions for ((s) and L(s, x)

6.5.1 Show that
00 e (S0 g (Sl

¢(o) C(o +1it) C(o + 2it)
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forte Rand o > 1.
Since
3+ 4cosf+cos20 >0,
the result is clear (See Exercise 3.2.4). ]
6.5.2 For 1 < o < 2, show that
¢'(o) 1
— —— 4+ A
¢(o) - +
for some constant A.
The function f(s) = (s — 1)((s) is regular, and nonvanishing for
Re(s) > 1. Hence,

e 1 )

= +
fs) s=1 " ((s
Since the left hand side is regular in Re(s)

)
> 1,
f'(o)
(o)
is bounded by a constant for 1 < o < 2. This proves the result. [
6.5.3 Prove that

—Re <§((j))> < Alog|t| — zp:Re <$ip + 1)

p
forl <o <2and|t| > 2.

By Exercise 6.4.3, we know that

§(s) _ ( 1 1)
£(s) b zp: s—p  p
and ( )
SONNAONE SIS P
CORNC IR IR SN F
so that
() 1

1 I'(s+1) 1 1
¢(s) 5—1_B_210gﬂ-+2f‘(§+1)_Zp:<s—p+ )
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By Exercise 6.3.17, the I'-term is O(logt) for |[t| > 2and 1 < o < 2.
Thus, in this region,

e (g ) <At - (5 )

p

since

Re(si1> = Re <(O‘—i)—|—it> - (o jS21+t2 :O<tl2>'

O
6.5.4 Show that ) .
Re(— +-)>0.
s=p P
Deduce that (s)
s
—Re ( ) < Alog |t
(o) ‘
forl <o <2 |t| > 2.
Let us write p = 3 + i~y. Then,
1 —
()=
s—p/ |s—pl
and )
Re <7) = %
p/ ol
Thus, by Exercise 6.5.3, we get the required estimate. O

6.5.5 Let p = (3 + iry be any nontrivial zero of ((s). Show that

¢'(o +it) 1

In the sum in Exercise 6.5.3, by taking one term involving 3 we
obtain the result. ]

6.5.8 Show that

—Re (g((j))) < Re (ﬁ) + c1 log(|t| + 2)

for some constant ¢y > 0and o > 1.
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We proceed as in Exercise 6.5.3:

d(s) 1 1 F’
s) 51 —B—ilogw+

w\m M\En

Y (2

p

The sum over the zeros is positive. The I'-term is O(log(|t| + 2))
Thus

—Re (Cg-“/((j))) < Re (ﬁ) + c1log(Jt] + 2).

(]
6.5.9 Suppose that x is a primitive character (mod q) satisfying x* # Xo

2
Show that there is a constant ¢ > 0 such that L(s, x) has no zero in the
region

C

o>1——
log(q[t| + 2)

We proceed as in the case of the (-function. We first observe that

/ / : / : 2
Lox0) pe <L (0+?t,x)> _Re <L (0+?t,x2)> >0
L(o, x0) L(o +it, x) L(o +it, x*)
fort € Rand o > 1. (Here we are using x? # xo, for otherwise, the
2

X~ term above will present difficulties.)
Observe that

L L'(a, x0) iXO _C'(U) P
L(o, x0)

for 1 < o < 2 and some constant ¢; > 0. Also (with the notation of
Exercise 6.4.5),

Re (g{j;‘;) =Re(B) + ) Re (Sl + 1) :

and fora =0or1,

Re (ég/((;;;))) = %log% + Re <2FF/(§C;) ) + Re <L’(S’X>) .
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Thus,

~ytoe e (1) retn - e (4 )

By Exercise 6.4.6,

1
En(l)
P P
and the I'-term is O(log(|t| 4+ 2)) by Exercise 6.3.17. Thus,
L'(s,x)
-R 1 t|+2) R .
e<L(s,x) < calog(qlt| +2) Z e p—
This estimate holds for any primitive character x (mod g), real or

complex. Since
1
>
Re (S — p) >0,

we can omit the series or any part of it in our estimations. Thus,

L'(s, x°)
—Re <L(<97X)> < ez log(qlt| +2),

provided that x? is a primitive character (mod ¢). If x? is not primi-
tive, let x; be the primitive character inducing x2. Then

L/(S>X2) L/(Saxl)
L(s,x?) L(s,x1)

p 7 logp
T = <> logp <logg.
plg plg

Thus, the penultimate estimate remains valid whether x? is primi-
tive or not. Hence, as before, we get (by choosing t = )

L'(o+it
_Re< (0 +it, x)

1
1 t+2) - ——
o rity)) <@losall+2) - —

ﬂ )
so that

4 3
—2 4 eslogq(lt] +2).
e R ogq(|t| +2)
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Taking o = 1 + §/log ¢(|t| + 2) with ¢ sufficiently small gives
B <1—caflogq([t| +2)
as required. O

6.5.10 Show that the previous result remains valid when x is a nonreal
imprimitive character.

If x1 induces Y, then the zeros of L(s, x) are the zeros of L(s, x1)
and the zeros of a finite number of factors of the form 1 — x1(p)p~*.
But the additional zeros are on the line o = 0. Thus, the result of Ex-
ercise 6.5.9 holds for all characters x (mod ¢) satisfying

x? # Xo- 0

6.5 Supplementary Problems

6.6.1 Prove that I'(s) has poles only at s = 0, —1, ..., and that these are
simple, with
Res,_ () = (—1)*/k!.

By Exercise 6.3.9, we know that 1/I'(s) is entire and has simple
zeros at s = 0,—1,—2,.... By the Hadamard factorization of 1/I'(s)
(Exercise 6.3.12), these are the only zeros. Thus, the first part of the
question is established. For the second part, we need to calculate

lim (s + k)I'(s).

But sI'(s) = I'(s + 1), so that
F()—F(S+1)—F(S+2)—-~-— I'(s+k)
o= s Cos(s+1) s(s+1)---(s+E—1)
by integration. Hence
) B (s+k)(s+k)
Jm s+ B0(s) = i e k=1

. I'(s+k+1)
lim
s~>fk$($+1)"'(8+k‘—1)

= (=1)k/k.
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6.6.2 Show that )

eV = — x°T'(s)ds,
27 (o)
forany o > 1,and x > 1.

We first truncate the infinite line integral at R and use Stirling’s
formula (Exercise 6.3.15) to estimate it. Thus

1 o-+1i00
/ z°T'(s)ds

27 JoyiR

o0
< x“/ e~ 3o 3 dt,
R

and the latter integrand is clearly e~/ for some constant ¢ > 0.
A similar analysis applies to the range from o — iR to 0 — ico. Thus,

1 SI—\( )d 1 U+ZR SF( )d + O( g —CR)
b X s)as = —; X s)as xTr e .
27 (o) 271 o—iR
As usual, we move the line of integration to Re(s) = —N — 3, N a

positive integer. We pick up the residue at the poles of I'(s), namely

N

> (1)kaF kL

k=0

The horizontal and vertical integrals are estimated easily using Stir-
ling’s formula. Indeed, the horizontal integral

1 —(N+3)+iR
P z°T'(s)ds
2mi o+iR
is bounded by O (:c"N e gR) . A similar estimate holds for the other
horizontal integral. The vertical integral
1 —(N+3)+iR

— x°T'(s)ds
210 J_(N+1)—iR

1 R
< x Nz /
—R

is bounded by

1
[(—N — = +it)

2 dt.
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Using the functional equation sI'(s) = I'(s + 1), we find that on
repeated application of this

I'(—N —1/2+it) =

so that )
r(L 4 it
yn—N—1m+nﬂghwv)y

By Stirling’s formula, |T'(3 + it)| = O (e—%lt\) and we deduce

1 —(N+3)+iR 1
/ 2’T(s)ds| =0 —— | .
NlgN+2

210 J_(n+1)—iRr
We now choose R = N and let N — oo through the integers to
deduce

O 1Yk
L. z°T'(s)ds = Z D= —e /e

2mi (o) =0 k!
as required. This could also be derived by Mellin inversion. O

6.6.3 Let f(s) = > .2 | an/n® be an absolutely convergent Dirichlet series
in the half-plane Re(s) > 1. Show that

oo 1
-n/x _ ST
ngl ane 57 /(U) f(s)z°T(s)ds

forany o > 1.
We have

i, (S Sang, [ (G) v

the interchange being justified by absolute convergence of the term
on the left-hand side. By Exercise 6.6.2, the integral on the right-
hand side is e~"/*, which completes the proof. O

6.6.4 Prove that

00 2
. z
smz:z”(l— o)
nem
n=1
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We have , )

. el? _ o=t

sing = ————
2i ’

so that

|sin z| < ell.

Since sin z is entire, the above estimate shows it has order 1. By
Hadamard’s factorization theorem,

SMZ _ A+Bz H (1 _ i)e—z/wn
z ™ ’
nez

n#0

for some constants A, B. Combining the terms corresponding to £n
in the product gives

0 2

sinz _ 4.p, z
z - H<1_7T2n2)'
n=1
Letting z — oo gives
1=¢4

)

so that A = 0. Also, sin(—z) = —sin z yields

as desired. O

6.6.5 Using the previous exercise, deduce that

2T Ta
=n 6
We have
sin z 22 24 a 22
—1_Z 42 ... = 1
z 6 120 H( 772712)
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Expanding the product on the right-hand side and comparing the
coefficient of z? on both sides gives

1 S |
i D
n=1

as desired. .



7

Explicit Formulas

7.1 Counting Zeros

7.1.1 Let L be the line joining 2 to 2 + iT and then § + iT. Show that

Arparg(s—1) = T —i—O(l).

2 T
We have
Apargs = 1) = argliT - ) = & + ancsin (L)
arg(s — 1) = arg(¢T — =) = — 4 arcsin | ———— | .
LAts ST Ty V1t4r?
Since )
lim i =1,
z—0 X
we have .
. arcsinx
lim =1
z—0 x
Thus,

: 1 1
arcsin (W) =0 <T> )

which proves the assertion.
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7.1.2 With L as in the previous exercise, show that

s/2

T
Apargn % = —Elogﬂ.

We have

1 1
Apargm /2 = AL(—gtlogTr) = —§Tlog7r.

7.1.3 With L as in the previous exercise, show that

s T T T 3 1
A r<f 1):4 L4 (7)
Larg 2+ 5 og2 5 +87T+O T

By Stirling’s formula,

s 5 T
ALargF<§ + 1) = ImlogF(Z + ?)

im{(§s yen o ) -5 F ¢ e s0(3)

This is easily calculated to be
T T T 3 1
“log— — — 4+ = -
2 %72 2+87T+O<T>’

as required. O

7.1.4 Show that .
2Ty~ OoeT):

where the sum is over the nontrivial zeros p = 3 + iy of ((s).

By Exercise 6.5.3 we know that

C’(8)> < 1 1>

—Re < Alog|t| — Re + -

< ¢(s) g 2 s—p p

for1 < ¢ < 2and |t| > 2 with A an absolute constant. If we take
s = 2 +¢T in this formula, we deduce

1 1
ZRe( —l—) < AjlogT
P p

s—p
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for some constant Ay, since |’/¢| is bounded for Re(s) = 2. But

1Y 2-8 1
Re<s—p) ECIE LE G PR e e 2

and )
Re <> = 52
P p
Since
3 1 .
2 M
~ |rl
we deduce

for some constant As. Since
A+ (T -7 <4(1+(T —1)?%),

the required result is now immediate. O

7.1.5 Let N(T') be the number of zeros of ((s) with 0 < Im(s) < T'. Show
that
N(T+1)— N(T)=0(ogT).

We must count zeros p = 3 + i satisfying ' < v < T + 1. Thus,
0 <+ —T < 1. From the previous exercise, the contribution of such
zeros to the sum is greater than or equal to 1/2. Hence, the estimate
now follows from the previous exercise. O

7.1.6 Let s = o + it with t unequal to an ordinate of a zero. Show that for
large |t and —1 < o < 2,

ro 1
= Z s—p + O(log [¢]),

where the dash on the summation is limited to those p for which [t—~| < 1.
From the formula

) 1 1 T(s/241) 11
C(s) s—1 B 21g +2F(8/2+1) Zp:<s—p+p)
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evaluated first at s = § + it and then at 2 + it and subtracting gives
¢'(s) 1 1

= — log |t
¢(s) ; s—p 2+it—p + Ologt])

because of the estimate for the growth of the I'-term (see Exercise
6.3.17). Note that

1 1 ’ 2—0 3
- B - . S PR
s=p 2+it—p| |[(s=p)2+it—p)| " [t—1]

so that the contribution of the zeros satisfying |t — | > 1 is
3 6
2 RS2 TT R
—~l2 = 1 — ~27
ey E P T 1t

and the latter sum is O(log|t|) by Exercise 7.1.4. Finally, in the re-
maining terms, |y — t| < 1, and we have

2+it—p[=1

for such zeros. The number of such zeros is O(log|t|) by the previ-
ous exercise. Putting this all together gives the desired result. [

7.2 Explicit Formula for ¢ (x)

7.2.1 Show that if x is not a prime power and x > 1, then

1 c+iR B C/(S) s

Ty S P
+ O(iA(n) (%)cminu,}z—ly log %y—w).
n=1

Since z is not a prime power,

b(z) = i A(n)é(%).
n=1

By Theorem 4.1.4, the result is now immediate. O
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7.2.2 Prove that if x is not an integer, then
-1
Z ‘ log f‘ ( log y:)
n ||

where ||z|| denotes the distance of x to the nearest integer.

Let z1 be the largest integer less than z. Split the sum into two
parts: 32 <n < zand z < n < 2z. Writing n = 21 — v, we have

logE Zlogﬂ:—log (l—v) > v
n n T L1

Thus,

T
] ﬁ <y 1
‘ og < Z » O(zlogz).
7x<n<a:1 v=1
For n = 21, we have

o m o) (5]

x
log — = —
T xr

The analysis for the range z < n < 2z is similar. Putting this all
together gives the stated result. O

7.2.3 By choosing ¢ = 1 + in the penultimate exercise, deduce that

1
log x

1 [eHR () zlog? x
v =5 [ v (UF)

. 1 e .
if © — 5 is a positive integer.

By Exercise 7.2.1, we must estimate
> T\ ¢ T
E A(n) (—) min (1, R log —\71>
n n
n=1
1

with ¢ = 1+ 1/logz. Indeed, if n < =z, or n > 2z, [log Z| 7! is
bounded, and the contribution of such terms is

<—Z:m.
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By partial summation

= A(n) % ) (t)dt
Z > < c/l < logx

tC'H

n=1

by an application of Chebyshev’s estimate for ¢(x). Thus, the con-
tribution from the terms n < 3z orn > 2z is

O(xloRgx>'

For § < n < 2z, we apply Exercise 7.2.2 and observe that in this
range z/n is bounded. Since ||z|| = 3, we find that the contribution

from n in this range is
0 <x log? x> ’
R

where we have used A(n) < log2x for n < 2z. O

7.2.4 Let C be the rectangle with vertices c—iR, c+iR, —U+iR, —U —iR,
where ¢ = 1+ 1/logx and U is an odd positive integer. Show that

L[ ) 2 () zm
N Y ds = o — . T )
2 )y T ST 2 T +0<;<U om

[vI<R

where we are writing the nontrivial zeros of ((s) as p = [ + ivy. (R is
chosen so that it is not the ordinate of any zero of ((s).)

By Cauchy’s theorem, we need to compute the residue of the in-
tegrand whenever a pole occurs. Since ((s) has zeros at s = —2m
with m > 0, in addition to its nontrivial zeros, we must compute
the residue of the integrand there. By Exercise 6.5.3 and the partial
fraction expansion for

r(5+1)

o (5+1)
we see that —('(s)/((s) has a simple pole at s = —2m with residue

—1. Thus, the residue of the integrand above is 2™ /2m when s =
—2m. The contribution of the remaining singularities is clear. O

7.2.5 Recall that the number of zeros p = 3 + iy satisfying |y — R| < 1
is O(log R). Show that we can ensure |y — R| > (log R)~! by varying R
by a bounded amount.
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Consider the zeros p = § + iy satisfying R — 1 < v < R+ 1.
The number of such zeros is O(log R). We subdivide the interval
[R — 1, R + 1] into equal parts of length ¢/log R for some constant
c. The number of parts is O(log R), and we now choose ¢ such that
the number of parts exceeds the number of zeros. By the pigeonhole
principle, there is a part that contains no zero. Thus for R; lying in
such a part, we must have |R;—~| > (log R;)~!. Since R,—R = O(1),
we have proved the desired result. O

7.2.6 Let U be a positive odd number. Prove that

¢()/¢(s)] < (log2|s])

for =U < o < —1, provided that we exclude circles of a fixed positive
radius around the trivial zeros s = —2,—4, ... of ((s).

The functional equation in its asymmetric form is

. _ol—s__—s E
C(1—s)=2"5x (cos , )r(s)g(s).
The logarithmic derivative of the right-hand side is

1 FI !
—log 2w — —mtan s + (s) , <(s)

2" T T )
We need to estimate this for ¢ > 2. The tangent term is bounded if
|s — (2m + 1)| > r for some fixed r. The second term is O(log |s|)
by Stirling’s formula and therefore O(log 2|1 — s|) if ¢ > 2. The last
term is bounded in the region. This completes the proof. O

7.2.7 In Exercise 7.2.4, letting U — oo along the odd numbers and R — oo
appropriately (that is, as in Exercise 7.2.5) prove that

w(x):x—zg;p—i((g)) —i—%log(l—x*z),

p

whenever x is half more than an integer.
By Exercise 7.2.3,

1 PR (s) 2 rlog? x
w0 =5 [~ 50 (F5),

We replace the vertical line segment by the contour C and take into
account the contribution of the residues:
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! —2m 2
ey = 3 L0 T _IR_IU"‘O(xlOé x)

P C(O) 0<2m<U

where I denotes the two horizontal integrals in the contour C and
Iy denotes the vertical integral along Re(s) = —U. By Exercise 7.1.6
we have

¢(s)
where the dash on the summation means |R—v| < land —1 <o <2.
With R chosen as in the previous exercise, we can arrange
v — R| > (log R)™".

The number of zeros in the summation is O(log R). Thus,

¢'(s)

¢(s)
for —1 < o < 2. Thus the contribution to the horizontal integral I
for this range of o is

< (log® R) /

-1

C’(S) _ Z/Sip +O(logR),
)

= O(log? R)

C

s log? R
xds‘ < 2%
S

Rlogx

In the range o < —1, we use Exercise 7.2.6 to get

zlog? R n log2R /‘1
Rlogx R J .y

0 zlog? R .
Rlogx

Ip < x%do,

which is

The vertical integral is

Iy <
We first let U — oo along odd positive integers to obtain

ba@) = - 3 “Z— 2/((8)) + 3 log(1—a72)

zlog’z  zlog’R
+O< R +Rlogaz: '
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Now let R — oo appropriately (as in Exercise 7.2.5) to deduce the
result. O

7.2.9 Assuming the Riemann hypothesis, show that

Y(z)=xz+ 0 (x1/2 log? a:)
as r — oo.

Again, by Exercise 7.2.7, we have

xf zlog’z xzlog’R
w(m‘)—x—zp—i-O( 7 +R10gx .
[vI<R

The Riemann hypothesis says that p = 1 + iv. Thus, the sum over

the zeros is
(0] (ml/Q log? R) .

Choosing R = \/z gives the desired result. O
7.2.10 Show that if

Y(x)=z+0 (x1/2 log? x)

then ((s) has no zeros for Re(s) > 1/2.
By partial summation

) /OO b (a)de
1

C(S) s+l

Inserting the estimate for ¢(x) into the integral gives an analytic
continuation of —(’(s)/((s) for Re(s) > 1/2 apart from a simple
pole at s = 1. This means that ((s) has no zeros for Re(s) > 1/2, as
required. (The same deduction can be made from the weaker esti-
mate of O(x'/?+¢) for any ¢ > 0, for the error term.) O

7.3 Supplementary Problems

7.4.1 Using the method of Exercise 6.5.3, prove that for 1 < o < 2, |t| > 2,

e () < - Ee (L)
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where Ay is an absolute constant, and the summation is over all zeros p
of L(s, x), and x is a primitive Dirichlet character (mod q). (Of course,
s = o +it, as usual.)

This is essentially contained in the solution to Exercise 6.5.9.

7.4.2 Let x be a primitive Dirichlet character (mod q). If p = 3 + i~y runs
through the nontrivial zeros of L(s, x), then show that for any real t,

> = — Olog (] +2)).

We take s = 2+it in the previous exercise. Since |L'/L| is bounded
for such s, we obtain

ZRe(S i p) < Aslogq(Jt] + 2).
p

Now,

Re ( 1 ) B 2-8 N 1
s—p) (2=0P+({t—7)? " 4+ (-2
and this last quantity is greater than or equal to (1 + (¢t — 7)%)~*
from which the result follows. 0.

7.4.3 With x a primitive character (mod q) and t not coinciding with the
ordinate of a zero, show that for —3/2 < o < 5/2, |t| > 2,

r o1
f(SaX) = Z s—p + O(log q(t| + 2)),
p
where the dash on the sum is over p = 3 + i~y for which |t — ~| < 1.

The method is essentially the same as Exercise 7.1.6. O

7.4.4 Let x be a primitive Dirichlet character (mod q). Let N (T, x) be the
number of zeros of L(s, x) in the rectangle 0 < o < 1, |t| < T Show that

T ¢ T
N(T,x) = ;log% o + O(log qT)

forT > 2.
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We follow the method of Theorem 7.1.7. Let R be the rectangle
with vertices

5 5 3 3

ST, ST, -2 44T, —S —iT.

5 (A 9 + ol 5 + ol 5 {
(This rectangle is slightly larger than the one used for ((s) so as to
include a possible zero at s = —1.)

This rectangle contains at most one trivial zero of L(s, x), either
at s = 0 or s = —1. Therefore,
2n(N(T, x) + 1) = Ararg&(s, x).
By the functional equation (Theorem 5.4.1),
arg&(o +it, x) = arg&(1 — o — it,X) + ¢

for some constant independent of s. Therefore, the contribution of
the left half of the contour is equal to that of the right half. Clearly,

sS+a

Aargf( ):Tlogg—T—i—O(l),

where a = 0 or 1 according as x(—1) is 1 or —1, and A is the half
contour from % — 3T to % — 4T, then to % + 4T, and then to % + 7T
We add these two variations and then double the result. It remains
to consider

21S(t, x) = AL(s, x).

Since log L(s, x) is bounded on Res = 5/2, it suffices to consider the
variation along the horizontal segments from 1/2 — i7" to 5/2 — iT,
and from 5/2 + iT to 1/2 + ¢T. By Exercise 7.4.3, this reduces to
calculating A arg(s — p) along the line segments. But this variation
is at most 7, and we get

S(t,x) = O(log g(t| + 2)).

This gives the desired formula for N (T, x). O
7.4.5 Let x be a primitive Dirichlet character (mod q). If = is not a prime
power and x(—1) = —1, derive the explicit formula
P, x) = Y x(n)A(n)
n<x

xf L0, x) 2, gl—2m
+2.

' p L) < 2m — 1’
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where the first sum on the right hand side is over the nontrivial zeros of
L(s, x)-

This follows easily by the method used in Exercise 7.2.7 where
we replace ('(s)/((s) by L'(s,x)/L(s, x). O
7.4.6 Let x be a primitive Dirichlet character (mod q). If x is not a prime
power and x(—1) = 1, derive the explicit formula

P 1
W) =—Y % ~logz —bx) — 5 log(1 —~2),
P

Lisx) s
is over the nontrivial zeros of L(s, x).

where b(x) = lims_ <L,(5’X) — l), and the sum on the right-hand side

This again follows mutatis mutandis from the method of Exercise
7.2.7. However, the only difference is that now L(s, x) has a simple
zero at s = 0, and so

L,(S”;:)) = % +bo(x)+---.

e~
w

Since

s 1

7:7+10gx+ ,

s s
the residue of —L'(s, x)z*/sL(s,x) at s = 0 is —(logx + b(x)). The
trivial zeros contribute

9] _
x?m

2m

1
= ——log(1 —z7?).
2
m=1
(]
7.4.7 Let x be a primitive Dirichlet character (mod q) and set a = 0 or 1
according as x(—1) = 1 or —1. If & — 1/2 is a positive integer, show that

xp
Y(ax) = — > ——(1—a)logz+b(x))
p
<R
= gom zlog? qzR
+mZ:1 om—a © ( R > ’

where the first summation is over zeros p = 3+~ and R is chosen greater
than or equal to 2 so as not to coincide with the ordinate of any zero of

L(s, x)-
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We follow the method of Exercises 7.2.3, 7.2.4 and 7.2.7. The only
difference is that we must use the estimate

L'(o +iR, x)

= O(log?
L(o + iR, X) O(log™ ¢ R),

valid for —1 < o < 2, which is easily deduced from Exercises 7.4.2
and 7.4.3. For o < 1, we must use the estimate

L'(s, x)
L(s, x)

= O(logqls|),

provided that we exclude circles of radius 1/2 around the trivial
zeros. The latter estimate comes from logarithmic differentiation of
the functional equation in its asymmetric form:

L(1—s,x) = w(x)2"5n5¢* 1/ <cos %7‘((5 - a)> I'(s)L(s, x)

(see Exercises 8.2.13 and 8.2.15), where |w(x)| = 1. The result is now
derived as in Exercise 7.2.4. O

7.4.8 If we assume that all the nontrivial zeros of L(s, x) lie on Re(s) =
1/2 (the generalized Riemann hypothesis), prove that

P(x,x) =0 <x1/2 log? q:z:) .

We choose R = z!/2 in the previous exercise. We need to estimate
>
[y|<z!/2 !
as well as b(x). By partial summation and Exercise 7.4.4, we obtain
1 2
Z Tl = O(log" qx).
pl<atrz ¥

As for b(x), this appears only if x(—1) = —1. In that case, we have
from Exercise 6.4.5 that

L'(s,x) 1 oo 4 I(s/2) 1 1
L) ~ 2 %% 2r<s/2>+B(X”;<s—p+p>'
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Replacing s by 2 and subtracting gives us

Dy | T(s/2) L1
T(sx)  20(s/2) +Zp:( ) +o),

so that

In this sum, the terms with |y| > 1 are easily handled:

>0

[v]>1

e
p

< Z = ‘2 = O(logq)

[v[>1

by Exercise 7.4.2. For |y| < 1, we observe that |2 — p| > |2 — p|?, so
that

b(x) = O(log q) Z =
<1
The number of zeros in the sum is O(log q) by Exercise 7.4.4, and for
each p we have |p| > 3, from which the result follows. O
7.4.9 Let

baga)= Y Aw).

n<x
n=a(mod q)

Show that the generalized Riemann hypothesis implies

U(x,q,a) = ﬁ + 0 <$1/2 log? q:L‘)

when (a,q) = 1.
We have

1
1/)(90’(17 r Z;i

For x = xo, the trivial character, we have
¥(,x0) = 7 + O(a'/?log® z)

by Exercise 7.2.9. For x # xo, we have ¢/(z, x) = O (z'/?log? qz) by
the previous exercise, from which the desired result follows. O
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7.4.10 Assuming the generalized Riemann hypothesis, show that there is
always aprimep < q* log* gsatisfying p = a (mod q) whenever (a, q) = 1.
By Exercise 7.4.9, we have

X

vl ga) = ¢(q)

+ 0 <x1/2 log? qac) .

Putting 2 = Aqg?log? ¢ for an appropriate constant A gives us the
required result. O

7.4.11 Show that if q is prime, then

¢(g—1) p(d) [ 1 if ahasorderq—1
g—1 Zs@( ZX(G)_{

d) 0 otherwise.
dlg—1 o(x)=d

where the inner sum is over characters x (mod q) whose order is d.
Let f(a) = 1 if a is a primitive root and 0 otherwise. Let g be a
primitive root (mod ¢) and set

T(¢') =e*™/171 1<j<q-1.

Then T is a multiplicative character (mod ¢) and all multiplicative
characters mod ¢ can be written as T for some k, 1 < k < ¢ — 1.
Now write

f@) =) flox(a).
X
By orthogonality, we see that
. 1 y
ky — & 2mijk/q—1
(a—1)=1

The right hand side is a Ramanujan sum and by Exercise 1.1.14 is
easily evaluated as

ela - ()
(q— 1)@(%) '

If we write d = (¢ — 1,k), then d|¢ — 1. Moreover, T* has order
(¢ — 1)/d. As d ranges over the divisors of ¢ — 1, so does (¢ — 1)/d,
and the result is now clear. O
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7.4.12 Let q be prime and assume the generalized Riemann hypothesis. For
q sufficiently large, show that there is always a prime p < q such that p is
a primitive root (mod q).

By the previous exercise, we have that

—
;_1 }: ( §:1b$x

dlg—1 o(x)=d

is the number of prime powers p’ weighted by log p such that p/ is

a primitive root (mod ¢). The leading term (corresponding to d = 1)
gives

plg—1)

L)

For x # xo, we use Exercise 7.4.8 to deduce that the contribution is

(0] <gp(q — 1)d(q — 1Daz'/?log? q:n) ,

qg—1

where d(q — 1) is the number of divisors of ¢ — 1, since the number
of characters of order d is p(d).

Since 1(z) =  + O (21/%1log? z) , we see that for z = ¢, the main

term is larger than the error term, for ¢ sufficiently large. Moreover,

if p/ < ¢ is a primitive root, so is p < q. O

7.4.13 Let q be a prime. Show that the smallest primitive root (mod ¢q)
is O(2"4= Vg /2 log q), where v(q — 1) is the number of distinct prime
factors of ¢ — 1.

By Exercise 7.4.11, the number of primitive roots (mod ¢) that are
less than x is

pla—1)  wla—1) 11(d)
q—1 qg—1 Z o(d) Z (ZX(G))

d\q 1 X) d a<zx

By the Pélya - Vinogradov inequality (Exercise 5.5.6) we find that
the innermost sum is O (ql/ 2log q) . Thus, the number of primitive
roots less than x is

o(g—1) ($ i O(2u(q—1)q1/2 log q)),
qg—1

which is positive if z > 241 ¢1/2log ¢. This completes the proof.
g



7.3 Supplementary Problems 401

7.4.14 Let q be a prime and assume the generalized Riemann hypothe-
sis. Show that there is always a prime-power primitive root satisfying the
bound O (4”(‘1*1) log? q).

We examine the solution of Exercise 7.4.12, where we showed
that the number of prime-power primitive roots is

plg—1) v(g—1),,1/2
R (m +0(2 q'*log q))
A little reflection shows that d(q — 1) can be replaced by 2(4=1),

Setting x = C4(a=1) Jogt ¢ for a sufficiently large constant gives us
the desired result. O

7.4.15 Let q be prime and assume the generalized Riemann hypothesis.
Show that the least quadratic nonresidue (mod q) is O (log® q).

Since
a 2 if a is a nonresidue,
- (0)-
q 0 otherwise,
we see that '
1
2 2 (1 () eer
pi<z q
equals
Y(z)

5 + O(2"?log? qz)
under the stated hypothesis. If z = C log® ¢ for a sufficiently large g,
the result is now clear. g

7.4.16 Let q be prime and assume the generalized Riemann hypothesis.
Show that the least prime quadratic residue (mod q) is O(log* q).

This is clear from the method of the previous exercise. O

7.4.17 Prove that for n > 1,

where the summation is over zeros p = (3 + iy, B € R, of the Riemann
zeta function.
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Let R denote the rectangle oriented counterclockwise with ver-
tices 3/2 — iT, 3/2 + iT, f1/2 +iT, —1/2 — iT. Clearly,

nsds = p_
o RC 5= Zn n

where p runs over zeros of ((s) inside the rectangle. Let I1,...,I4
be the four parts of the integral relative to the sides of R starting
with the vertical one in the half-plane Re(s) > 1 and proceeding
counterclockwise. Moreover, we have chosen 7" such that

/

—CC(U +it) = O(log? t)

uniformly in —2 < ¢ < 3, which we can do as in the solution of
Exercise 7.2.7. Thus,

I Z ( )3/2+nedt

= Tam+o( Y A(m)(:L)S/Q“OgW).

m=1

m#n

Splitting the summation into the ranges
m<n/2, n/2<m<2n, m>2n

and handling these sums as in Exercises 7.2.2 and 7.2.3 gives an
estimate of O (n/2) for the error term above. By using the estimate
of O (log2 T) for the integrand, we deduce that

L, I, < n3/? log? T

Finally, for I3, we use the functional equation to relate ¢’ /¢(—1/2 +
it) to ¢' /¢(3/2 — it). The T-factor gives rise to a term of the form

O(logT)
by Stirling’s formula, and after integrating we get that
Iy < n?? log? T

Thus, the result is now clear. O
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8.1 The Phragmén - Lindel6f Theorem

8.1.1 Let f(z) be an analytic function, reqular in a region R and on the
boundary OR, which we assume to be a simple closed contour. If |f(z)| <

M on OR, show that |f(z)| < M forall z € R.

If z € R, then by Cauchy’s theorem,

1 " (w)dw
oy [ Lt
T Jop w—z
so that
|f"(2)] < KM"™,
where

K:l/ ’ dw
21 Joplw — 2

Taking nth roots and letting n — oo gives the result.

O

8.1.2 (The maximum modulus principle) If f is as in the previous ex-
ercise, show that |f(z)| < M for all interior points z € R, unless f is

constant.
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If 2 is an integer point, consider the Laurent expansion of f about

Z0-
f (zo + rew) = Z anrem?.
n=0
Parseval’s formula yields that

1 2

N\ (2 >
f (zo + rew) ‘ do = Z |an|?r2m.
n=0

2 Jo

If zp is an interior point where the maximum is attained, we have
lap] = M and

M = |ao|* < faol® + Jas]?r® + -+

IN

1f(z0)]* =1,
so that we are forced to have a; = ag = --- = 0 and f is constant. (]

8.1.5 Show that for any entire function F' € S, we have
F(s) =0 (|t|")

for some A > 0, in the region 0 < Re(s) < 1.

This is an immediate consequence of the functional equation and
Stirling’s formula. Indeed, F'(s) isbounded on Re(s)=2. By the func-
tional equation and Stirling’s formula, it has polynomial growth on
Re(s) = —1. By the Phragmén - Lindelof theorem, it has polynomial
growth in the region —1 < Re(s) < 2. O

8.2 Basic Properties
8.2.4 Show that
deg F1 F> = deg I} + deg F>.

Since
NF1F2(T) = NF1(T) + NFz(T)v

the result is immediate from Theorem 8.2.1.

8.2.5If F' € S has degree 1, show that it is primitive.
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If F' is not primitive, we can write F' = F} Fy with F # 1, Fy # 1.
But then, deg F' = deg F; +deg F», and by Theorem 8.2.3 and Lemma
8.2.2, deg F1 > 1 and deg I, > 1 so that deg F' > 2, a contradiction.
[Observe that the proof shows that any F' € S of degree less than 2
is primitive.]

O
8.2.6 Show that any F' € S, F' # 1, can be written as a product of primi-
tive functions.

We first show that every F' € S is divisible by a primitive func-
tion. If F' is not primitive, we write F' = F;G; with F; # 1 and
G1 # 1. Since deg F < deg F, we either have F} primitive or not.
If not, factor 1 = F»G5 and in this way we get deg F» < deg F7. In
fact, we have

0<degF; < degl —1,

0<degFr < degh)—1<degkF —2,

and so on. This cannot go on ad infinitum. Thus, any function F' € S
has a primitive factor, F; (say). Write F' = F1G; and now proceed
to decompose G. Since the degree of each factor is strictly less than
deg F, the process terminates. U

8.2.7 Show that the Riemann zeta function is a primitive function.
((s) has degree 1 by Theorem 5.2.2. Now apply Exercise 8.2.5. [

8.2.8 If x is a primitive character (mod q) show that L(s, x) is a primitive
function of S.

By Theorem 5.4.1 and Exercise 5.4.5 we see that L(s, x) extends
to an entire function and has degree 1. O

8.29If F € S, show that |ay| < c(e)n® implies that

by | < c(e)(2F — 1)p*e/k.

We have

F(s) :gfg :Hexp<§p’;ﬁ>

p
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so that

We deduce that

anlogn—Z] (logp)a Ay fpi -

pln
Setting n = p* yields
k—1
kb, log p = kayx log p — Z] (logp)a,
7=1

We now induct on k. For £ = 1, we have a, = b, and the result is
clear.

Assume that the inequality has been proved for exponents less
than or equal to k — 1. Then

k—1
k|bpk| < C(e)kpke + Z]‘bpﬂ ‘C(e)p(kij)e
j=1
k—1

k+ ) (20 -

=1

IN

-1

IA
a
~—

i
x
(o)
/N
[\
ol

as desired. O
8.2.10 Prove the asymmetric form of the functional equation for (s):

C(1—s)=21"%7"¢ (cos %) T'(s)¢(s).

We recall that I'(s) satisfies
I(s)I'(1 —s) =n/sinws,

by Exercise 6.3.9 and the Legendre duplication formula (Exercise
6.3.6):

T'(28)y/7 = 228*1r(s)r<s + %)
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Combining these two facts gives

r(s)

= g 1/291-s ( cos g)F(s)

By the functional equation for ((s), we may write

_§) = gl/2-s I'(s/2) s
C(1-s) CESTIS

by Theorem 5.2.2. Putting these together gives the result.
8.2.11 Show that for k € N,

C(=k)| < CR!/(2m)"
for some absolute constant C.
By the previous exercise,

(k + 1)r)

IC(—k)| = ‘2_k7r_k_1 cos ( 5

Since limy_,o ((k + 1) = 1, we get
C(—k)| < Ck!/(2m)*

as required.

8.2.12 Show that

= —nx — - —k)(—a)*
> :x1+§<< )=o)t

n=1

Deduce that for k = 2,3, ...

(1 —k) = —By/k

> T'(k+ 1)¢(k + 1)) .

407

and ((0) = —1/2, where By, denotes the kth Bernoulli number. med-
skip We specialize the proof of Theorem 8.2.3 to the case of the (-

function:
oo

- L1 e SR (=)t
e =l 4 .
2 2
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By Exercise 8.2.11, the power series on the right-hand side con-
verges for |z| < 2m. The left-hand side is a geometric series that
is easily summed to be

By Exercise 2.1.7,

X > .CL'k
ex_lzszkl’
k=0
so that
1 1 < Bpzh!
Ly b
e*—1 =z P k!

We may compare coefficients of the two power series to deduce that
(=1)*'¢(1 = k) = By/k.

For k odd, £ > 3, B = 0 by Exercise 2.1.8. Hence the formula is
clear for k odd > 3. For k even, we obtain

C(1—k) = —By/k.

For k = 1, we have ((0) = B; = 1/2, and we recover the result of
Exercise 5.2.4. 0

8.2.13 Let x beaprimitive Dirichlet character (mod q) satisfying x(—1) = 1.
Prove that

£ =550 = 225 () (s (o). )

)\ ¢

where 7(x) denotes the Gauss sum.

By the functional equation (Theorem 5.4.1), we have

L(1-s7%) = qm(ﬂ)ms F<§) L(s, ).

7(x) \¢q r(%)
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As in the solution to Exercise 8.2.10, we have
r(s)
17
r(%)

from which the result is easily deduced. O

= g 1/291=s ( cos 7%S>F(s),

8.2.14 Let x be a primitive character (mod q) satisfying x(—1) = 1. Show
that for k € N,
|L(=k, x)| < Ck(q/2m)"

for some constant C' = O(,/q).

We proceed as in Exercise 8.2.11, except that we use the previous
exercise instead of Exercise 8.2.10. O

8.2.15 Let x be a primitive Dirichlet character (mod q) satisfying x(—1)=
— 1. Show that

L(1-s,X)= —(2#)1/2% (2—7r>1/2_8<sin E)F(s + 1)L(s, x).

This again uses the method of Exercise 8.2.10. By Exercise 5.4.5,
we have

By the formula

'(s)
1—
r(7)
(derived in the solution to Exercise 8.2.10) we obtain the desired
result. O

= g 1/291-s ( cos %) I'(s)

8.2.16 Let  be a primitive Dirichlet character (mod q) satisfying x(—1)=
— 1. Show that for k € N,

|L(—k, x)| < C(k+ 1)!(q/2m)"

for some constant C' = O(,/q).
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We proceed as in Exercises 8.2.14 and 8.2.11, except that we use

the previous exercise to derive the estimate. O
8.2.17 Prove that
o o0
— L(ikaX)(ix)k
2 x(me™ =3 =
n=1 k=0

Deduce that for n > 1,

where .
— g1 @
By =4 ;x(a)Bn<q>,
with By, (x) denoting the nth Bernoulli polynomial.

From the proof of Theorem 8.2.3, the derivation of the formula

= n)e " = = L(—]{Z,X)(—l’)k
nZlX( ) kZ:Ok!

is clear. The left-hand side can be simplified as follows.

doxe™ = 3T x(b) Y e

b(mod q) n=b(mod q)

q ) ( i e,(qr+b)z>
=0

e—bx

1—e

I
(]

S8
I

1

Il
E?Q

(b)

o
I
—

e(qu)r

edr —1°

|
M=

x(b)

o
I
—

Now, by Exercise 2.1.7,

> by (z)t" te®t
2

p— t .
et —1
=0

<

Thus,
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can be expanded as

oo r—1,.r—1
br<1 N é)&_
q rl

r=0

When we insert this in the above formula, we obtain

o0 oo q -1
o b qx)”
S xme =37 (S xpee (1~ 2)) 42
n=1 r=0 b=1 1 ’
(notice that for » = 0, by(x) = 1), and since
a
> x(b) =0,
b=1
the polar term disappears. We deduce
G~ b
D) = =3 xO)bn (1)
Recall that B, (z) = b,({z}) and that
Bn(1—z) = (=1)"Bu(z)
(see Exercise 2.5.22), from which the stated result follows. O

8.3 Selberg’s Conjectures
8.3.1 Assuming (a) and (b), prove that any function F' € S can be factored
uniquely as a product of primitive functions.

Suppose
F=F1---Fr

is a factorization of F' into distinct primitive functions F; and
F=aG..af

is another factorization of F' into distinct primitive functions G;.
Then
F& ... Fer :G{l...gft
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and we may suppose, without loss of generality, that no F; is a G;.
Comparing the pth coefficient of both sides of the above equation,

we deduce
Z eiap(F, Z fijap(G

Multiplying both sides of the equation by a,,(F1), dividing by p, and
then summing over p < x gives us

e1loglogx + O(1) = O(1),
assuming (a) and (b). Thus, e; = 0, a contradiction. This proves the

unique factorization. O

8.3.2 Suppose F,G € S and ap(F) = ay(G) for all but finitely many
primes p. Assuming (a) and (b), prove that F' = G.
Let us write

F=F1'---Fr
G=F"...Ff
where F1,. .., F, are distinct primitive functions and e;, f; are non-

negative integers. We want to show that e; = f; for all i. Without
loss of generality, suppose e; # f1. Then, since

we have

Z eiap(F, Z fiap(F,
for all but finitely many primes p. Multiplying both sides of the
equation by a,(F1), dividing by p, and then summing over p < z
gives

(s, (Z >p<F1>)

p<z i>2 p<x

p<lz 1>2 p<lz

AT )
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Assuming (a) and (b) gives
e1loglogx + O(1) = filoglogx + O(1),

whence e; = f1, a contradiction. Thus, ¢; = f;, for all i and we have
F=aG. U
833 IfF(s) =Y 2 japyn % and o = Re(s) > o(F), the abscissa of
absolute convergence of F', then prove that
an(F) if n=y,

1 [T .
lim — [ F it)y T dt =
TET;OQT/T (o +it)y

0 otherwise,
for any real y.
We have

ag T 0 it
/ F(o + ity tdt = ;JT/ (Z%(%) )dt.
n=1

Interchanging the summation and integration, which is justified
by absolute convergence of the Dirichlet series, we obtain that the

above is Tlog(y/n)
sin T log(y/n
= oty Z < T log(y/n) )

with the a, term occurring only if y is a natural number. The series

is easily seen to converge absolutely if n > 2y or n < y/2. The
intermediate range is a finite sum, and so as 7' — oo, the summation
in the penultimate step goes to zero as required. This completes the
proof. O

8.3.4 Prove that

. Jds oy~ logy if y>1,

2mi J () (as +B) 0 if 0<y<1,

fore>0and o, 3 > 0.
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First, suppose y > 1. We apply contour integration as in Exercise
4.1.6. Let (g be the contour described by the line segment joining
¢ — iR to ¢ + iR and the semicircle Si of radius R centered at ¢
enclosing —(3/a. Then, by Cauchy’s theorem

1 yods y® 9 _
271 Jep (as+ 3)? s=—p/a (as+ 3)? @y o8y
Thus,
1 c+iR

y°ds 1 / yids ~2 _BJa
2mi Jo_ig (as+B)?  2mi Jg, (as+ 3)? Y &Y

The second integral satisfies

c r3m/2
< yﬁ / yRcosgad(p’
w/2

1 yids
2mi /SR (as + )2
and the latter integral is easily seen to be bounded (see Exercise
4.1.1). Thus, as R — oo, the integral goes to zero.

If now 0 < y < 1, then we choose the contour Dpg (as in Exercise
4.1.2) described by the line segment joining ¢ — iR to ¢ 4 <R and the
semicircle Sg to the right of the line segment of radius R, centered
at c and not enclosing s = —3/a. By Cauchy’s theorem,

L[ _vds
2mi Jp,, (as+3)2

O

We now proceed exactly as above.

8.3.5 Let f(s) be a meromorphic function on C, analytic for Re(s) > 1
and nonvanishing there. Suppose that log f(s) is a Dirichlet series and
that f(s) satisfies the functional equation

H(s)=wH(1-s),
where w is a complex number of absolute value 1, and

[T, T(ays + 5:)
1%, T(vis + 8;)

with certain A, oy, v; > 0 and Re(3;), Re(d;) > 0. Show that f(s) is
constant.

H(s) = A° f(s)
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Since f(s) is analytic in Re(s) > 3, and the I'-function does not

have any poles in Re(s) > 0, we see immediately that H(s) is ana-
lytic and nonvanishing (since f is) in the region Re(s) > 1/2. By the
functional equation, the same is true for Re(s) < 1/2. Thus H(s) is
entire. By Stirling’s formula and the functional equation, we see that
H (s) is of order 1. Since H (s) has no zeros, it follows by Hadamard’s
theorem that H(s) = e**? for some constants a and b. Hence

f'(s)
f(s)

is a Dirichlet series (since log f(s) is). The derivative of this is again
a Dirichlet series. Since

i (7)== 2 e

m=0

do

dl 1
T r
=a—logA+ Z f(%‘s +9i)vi — Z f(ais + Bi)ay
i—1 i=1

then by Exercise 8.3.4 we deduce

0 a <f'<s>
21 J (o) ds \ f(s)

for any y > 1. By Exercise 8.3.3, this means that every coefficient of

4 (1)
ds \ f(s)
is zero. Since f’(s)/f(s) is a Dirichlet series, this means that f'(s)/
f(s) = 0. Hence f(s) is a constant. O

8.3.6 Let F,G € S. Suppose ap(F') = ap(G), a2(F) = ay2(G) for all
but finitely many primes p. Show that F = G.
Set

>f@=0m

P

F(s) = [ Fo(s)/Gols).

Since log F,(s) is an absolutely convergent Dirichlet series for
Re(s) > 6,wededucethat F),(s)isabsolutely convergentforRe(s) > ¢
and is nonvanishing there. Since § < 1/2, this holds for Re(s) > 1/2.
Since ay(F') = a,(G) and a,2(F) = a,2(G) for all but finitely many
primes p, we can factor

<1 L wF) %z(F))l

ps p25
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from the numerator and denominator of F},(s)/a,(s) and write
F(s) =11 /().
P

where each f,(s) is absolutely convergent for Re(s) > 1/2 and non-
vanishing there. Thus, f(s) satisfies the conditions of Exercise 8.3.5.
Hence f(s) is constant, and that constant must be 1, since

lim f,(s) =1
and consequently lim,_,, f(s) = 1. Therefore, F' = G. O

8.3.7 Assume Selberg’s conjectures (a) and (b). If F' € S has a pole of order
mat s = 1, show that F(s)/((s)™ is entire.

If G is a primitive function that has a pole at s = 1, then

ap(G)
27

p<z

is unbounded as © — oo. If G # ¢, by (b) we have

Z CLp(G) — Z a’p(G)ap(C) — O(l),

p p

p<z p<w

a contradiction. Thus, the only primitive function with a pole at s =
1 is the Riemann zeta function. By Exercise 8.3.1, ((s) must appear
in the unique factorization of F' as a product of primitive functions.
O

8.3.8 Assume Selberg’s conjectures (a) and (b). Show that for any F € S,
there are no zeros on Re(s) = 1.

By Exercise 8.3.1, it suffices to prove this for primitive functions
F. For the primitive function ((s), this is true by Exercise 3.2.5. So
we may suppose F' # (. By Exercise 8.3.7, we may also suppose
F(s) has no pole at s = 1 and that it extends to an entire function.
For any ¢ € R, we can conclude that G(s) = F(s + it) is again
primitive. By conjecture (b),

Z CLP(G]))CLP(C) — O(l)

p<w
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as ¢ — oo. This means that

> ~on)

p<z

for all t € R. Hence, F'(s) has no zeros on Re(s) = 1. O

8.4 Supplementary Problems

8.4.1 Verify that the primitive functions ((s), and L(s, x), where x is a
primitive character (mod q), satisfy Selberg’s conjectures (a) and (b).

To verify (a) for ((s), we apply Exercise 3.1.8. This also verifies (a)
for all L(s, x). To verify (b), notice that

X X
1
pgx ; n log n o)
follows easily by partial summation.

Now,
n)logn
P xmlogn iy 4

n<x

and henceis O(1). On the other hand, we can write log n=3}_ ;,, A(d),

o that ()1 (@A) ©)
SRR =Y SR K.

n<x d<z e<z/d

The inner sum by Exercise 2.4.6 is

L(1,y) +o(g).

Hence

n<z d<:c

by an application of Chebyshev’s theorem (Exercise 3.1.5). There-

fore,

d<zx
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since L(1, x) # 0 by Exercises 2.3.10 and 2.4.5. The result now fol-
lows easily by partial summation.

Finally, if x1 and x» are distinct primitive characters mod ¢; and
mod g» (respectively) then we may view xiY2 as an imprimitive
character mod [q1, ¢2]. Indeed, we may extend both x; and x2 to
characters mod [g1, ¢2] in the usual way. If ¢; = ¢, the extended
character is trivial if and only if x1 = x2. If g1 # g2, then x1x2 is
never trivial, and so we are done by the previous considerations. [

8.4.2 Foreach F', G in S, define

(F @ G)( HH

where -
s) = exp (Z Kb (F)b (G)p_]“).
k=1

If F(s) = det(1 — A,p~*) "t and Gp(s) = det(1 — Bpp~—*) ! for certain
nonsingular matrices A,, and By, show that

Hy(s) = det(1 — A, ® Byp )"

We use the well-known identity

det(1 — At) = exp (i M]:)tk) ;

k=1

so that what we must show is

S k k\+k
det(1 — (A® B)t) = exp (; W).

Since the matrices A, and B, are nonsingular, the eigenvalues of the
matrix A® B can be taken to be \;j1; as \; runs through eigenvalues
of A and p; runs through eigenvalues of B. Thus the right-hand
side of the identity to be proved is det(1 — (A ® B)t) as required. [J

8.4.3 With notation as in the previous exercise, show that if F,G € S,
then F' ® G converges absolutely for Re(s) > 1.

This is the immediate consequence of Exercise 8.2.9.
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8.44IfF € Sand F®F extends to an analytic function for Re(s) > 1/2,
except for a simple pole at s = 1, we will say that F' is ®-simple. Prove
that a ®@-simple function has at most a simple pole at s = 1.

Suppose F has a pole of order mat s = 1. Let sbe realand s — 17
Then

log F(s) ~ mlog T
But log F'(s) = >_, % + O(1). Since F is ®-simple, we have by

definition )
F 1
Z |ap(F) ~ log
- ps s—1

as s — 17. Thus, by Cauchy’s inequality

o (F)? 1/2 . 1/2
<(z) (25)

p

ap(F
T (F)

S
> P

from which we deduce that |m| < 1, as required. O

845IfF € Sand
F=FOF ... F*

is a factorization of F into distinct primitive functions, show that

F 2
ST (2 gt ey logloga + 0(1),

p<w p

assuming Selberg’s conjectures (a) and (b).

= Zeiap(FZ)

We have clearly

from which

a a
S = Sy
p<zx p<zx
and the result is now clear. O

84.6IfF € S,and F ® F € S show that F is @-simple if and only if F
is primitive, assuming Selberg’s conjectures (a) and (b).
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One way is clear. If F'is primitive, then F' is ®-simple. Now sup-
pose F'is ®-simple. Then

3 lap(F) loglog z 4+ O(1).

p<z
If F = F{'F35? - F* is the factorization of F' into distinct primitive
functions, then by Exercise 8.4.5, we get
l=el+e5+ - +ef,
from which we deduce that F' is primitive. O

847 If F' € S is ®-simple and entire, prove that F'(1 4 it) # 0 for all
teR

Suppose I has a zero on Re(s) = 1. By translating, we may sup-
pose F' has a zero at s = 1. Consider

G(s) = ((s)F(s)F (s)(F ® F)(s).

Then G(s) is a Dirichlet series that is analytic for Re(s) > 1/2. Also,
log G(s) is a Dirichlet series with nonnegative coefficients. By Exer-
cise 3.2.11, G(1 +it) # 0 for all ¢ € R. By Landau’s theorem (Exer-
cise 2.5.14) the abscissa of convergence is a real singularity oq (say).
Thus log G(o) > 0 for o > (. Hence

G(o)| =1

for 0 > oy. By continuity, |G(0¢)| > 1. However, oy is a singularity
of log G(s), which must come from a zero of G(s). Thus G(sg) = 0,
which is a contradiction. Hence, F/(1) # 0. O

8.4.8 Let F' € S and write
F = .
— 4 (s) = Z_:lAF(n)n .

ForT > 1landn € N, n > 1, show that

Z nf = —%Ap(n) +0 <n3/2 log? T)
IyI<T

where p = 3+ i7y, f > 0 runs over the non-trivial zeros of F(s).



8.4 Supplementary Problems 421

This is a generalization of Exercise 7.4.17 and the proof is similar.
(The result shows how to reconstruct F'(s) from a knowledge of its
Zeros.) O

8.4.9 Suppose F,G € S. Let
Zr(T)={p=0B+1iv,8>0,F(p) =0and |y| < T}.
Suppose that as T — oo,
|Ze(T)AZ6(T)| = ofT),

where A denotes the symmetric difference AAB = (A\ B) U (B \ A).
Show that F = G.

By the previous exercise,

—Ap(n) = lim — Z n’

T—oo T
Iv[<T

where the summation runs over zeros of F(s) with imaginary part
~ satisfying |y| < T'. Since the zeros of Gi(s) are the same apart from
o(T) of them, we find that the above limit is —Ag(n). Thus, F = G,
as required. O



9
Sieve Methods

9.1 The Sieve of Eratosthenes

9.1.2 Prove that there is a constant c such that

T (1) = i (1 0li2))

p<z

Let V(2) =[],<. (1 - 1). Then

—logV(z Z Z e

p<z k>2

The second sum satisfies

Z ZZZ

k>2 p<z k>2
so that .
—logV(z) = Z* + o +O(*)7
p<z p
with
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On the other hand, we have

R(z) := Z logp _ log z + O(1)

p<z

by Exercise 3.1.7, so that by partial summation

Z; _ RG), (7R

ot logz J, tlog?t

= loglogz+c +0(10;2‘>

for some constant ¢;. Thus,

1
—logV(z):10g10g2+(co+cl)+0( ),
log z

so that with ¢ = ¢g + ¢1,

I(5) = e (00 ()

p<z

as required. O

9.1.4 For z < log x, prove that

xe T
m(x,z) = (14 0(1))

log z
whenever z = z(x) — 0o as x — 0.
By Exercise 9.1.2,

m(z,z) =z ][] (1 - ;) +0(2%).

p<z

For z < logx, the error term is O(z?) with § < 1. The result now
follows by applying Mertens’s theorem. O

9.1.5 (Rankin’s trick) Prove that

1\ L
®(z,2) <2l H <1 - ]95)
p<z

forany § > 0.
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For any 6 > 0, we have

O(x,z) < Z 1< Z (%)5

n<x n<x
pln=p<z \n:p<z
< SI(-5)
p<z
O
9.1.6 Choose 6 =1 — logz in the previous exercise to deduce that
log
o(z, 1 ( — )
(z,z) < z(log z) exp og 2
Choosing 6 =1 — n withn — 0 as z — oo, we see that
D(x, 2z <<5L‘6H <1+ )
p<z

Applying the elementary inequality 1 + = < e, we obtain

O(x,z) < exp (5logaz + Z )

p<z

Writing p° = plp? = ple”8P, and using the inequality
e’ <1+ xze®, we deduce

S L i omn=),

p<z p<z
since p < z. Now choosing n = - gz gives the desired result. O

9.1.7 Prove that

m(z, 2) —xzu ( logz)exp< iij))

d| Pz
d<z

for z = z(z) — 0o as x — .
Observe that

m(z,z) =x Z Miid) + O(®(z, 2)),

d| Pz
d<z
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since [z/d] = 0 unless d < x. Now use Exercise 9.1.6. O
9.1.8 Prove that
d 1 1
§ p(d) = H (1 - 7) +O<(logz)2exp (— ng)),
d P log 2
d| Pz p<z

with z = z(x) — o0 as r — oo.
We have
p(d) 1 p(d)
SEL-T(1-) -2

d| Pz pSZ d| Py
d<z d>x

The last sum is dominated by
1 D(x, 2) © P(t, z)dt
I Gl et Rat's A\
Z d— x +/$ 27
d| Pz

d>x

on using partial summation. Using the estimate derived for ®(t, z)
in Exercise 9.1.6, we get that the integral is bounded by

o logt dt & dt
to2) [ o (= i0g1) T = 0089 | e
log
2 J—
< (log z)“exp ( logz)
This completes the proof. O
9.1.9 Prove that
1
m(x,z) =zV(2) + O (ac(log 2)%exp (—gij)) ,
where .
Viz) = 1—-
o-I1( )
PSSz
and z = z(x) — o0 as r — 0.
This essentially follows from Exercises 9.1.7 and 9.1.8. O

9.1.10 Prove that .

m(xr) <K loglog =

log
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by setting log z = elogxz/loglogx for some sufficiently small € in the
previous exercise.

We have
m(x) < m(x, z) + 7(2).
Choosing z as stated shows that

X

m(x, z2) K I loglog

ogx

from Mertens’s theorem and Exercise 9.1.9. Here, the implied con-
stant depends on e. O

9.1.11 For any A > 0, show that

-
1 A -~ xre
™ (x, (log)”) Aloglog
as x — oo.
Apply Exercise 9.1.9 with z = (log z)*. O
9.1.12 Suppose that
1
Z w(p) logp < klogz+ O(1).
p<z p
peEP
Show that
Fut,2):= Y w(d)
d<t
d|P(z)
is bounded by
o logt
O(t(log z)" exp ( - logz>>'

We apply Rankin’s trick for any 6 > 0,
Fu(t,z) < Y w(d)(t/d).
d|P(z)
Since w is multiplicative (by definition), we see that

Fw(tyz) Sexp (Slogt_i_Z&g‘)) ,
p

p<z
PEP
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on applying the elementary inequality 1 + « < e”. Settingd =1 —n
and using the inequality e < 1 4 ze”, which is valid for z > 0, we
obtain

p)l
Fu(t,z) < texp —nlogt+zw( "Z Jlogp
e 0

The hypothesis gives by partial summation that

Z w(p) < kloglogz+ O(1),

p<z
peEP

so that
F,(t,z) < texp(—nlogt + rloglog z + kn(log z)2").

Choosing = 1/ log z gives the result. O

9.1.13 Let C' be a constant. With the same hypothesis as in the previous
exercise, show that

> wizd) = 0((10g 2)" exp ( ~ logx))'

d|P(z) log 2
d>Cz

With the notation of Exercise 9.1.12, we have

§ D [T R

2 I
d|P(2) Ca !
d>Cz
and the previous exercise immediately gives the result. O

9.1.14 (Sieve of Eratosthenes) Suppose there is a constant C' > 0 such
that |Aq| = 0 for d > Cz. Then

S(A,P,z) = XW(z)+ O(w(log 2)" L exp ( - igij))
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By the inclusion - exclusion principle, we have

SAP2) = 3 ud)Ad

d|P(z)

= Y w@ 2D ok (cr, 1)),

d
d|P(z)
d<Cux

in the notation of the previous exercise. Then, the first sum can be
rewritten

x|y M 5 MO
Pt 75

so that we can use the estimate of Exercise 9.1.13 on the second sum.
Exercise 9.1.12 gives an estimate for F,(Cz, z). This completes the
proof. O

9.2 Brun’s Elementary Sieve

9.2.1 Show that for r even,

m(x,z) <z Z Mrc(ld) +0(=").

d|P,

Recall that

m(x,z) = Z Z

n<z d|(n,P;)

S w(@

n<zd|(n,Pz)

> p(d) [3}

d|P,

$Zluréd)+2’ﬂr(d)

d|P, d| P,

IN

IN

IN

The last term is easily seen to be O(z"), as required. O
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9.2.3 Show that

Z,Ur :H< p)Z%&((;)

d|P(z) SES; 0| P(=
where Q(6) = [1,5(p — w(p))-
By Mdbius inversion, we have
= uld/8)u(8),
sld
so that
- w(d
> prldetd) 5 El) S /5y, ()
d|P(z d|P(z) 6\d
_ Pr(0)w(d) p(d)w(d)
o Z Z d
8P (2) d|P(z
_ w(p) wr ()w
- 10 ) 5 O
p<z 3|P(2)
pEP
where ©(8) = [T,;5(p - w(p))- 0
9.2.4 Suppose that w(p) < c, and that ) = ) < ¢1loglog z + ¢ for

cP
some constants ¢, c1, and cy. Show that there are constants cz, c4 and cs

such that

Z Yr()w(9) 5 (63 loglog z + ¢4)" (log 2)*

5\P(z

Recall that 5 1
¥r(8) < <”( )~ )

r
so that the sum under consideration is

G

3| P(2)
6>1
m\ 1 w(p) \™
< — )
- Z (r)m!<zp—c>
r<m<m(z) ;’ES’[Z)
1
< —‘(03 loglog z + ¢4)" exp(cs loglog z + ¢4),
r!
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which gives the result. O
9.2.6 Show that the number of primes p < x such that p + 2 is also prime
is < x(loglog x)?/(log z)2.

Let A={n:n<z}; P={p: 2<p< z}, the set of odd primes
less than or equal to z. For each odd prime p, we distinguish the
residue classes 0 and —2(mod p), so that w(p) = 2. Then, w(d) =
2v(d)  where v(d) is the number of prime factors of d, and A; =
NplaAp- By the Chinese remainder theorem,

zw(d)
d

|Ag| = + Ry

with |Ry| = O(2"¥)). Applying (9.1), we get

S(A, P, z) =W (z) + O(az(exp ( - C?izgzw))

We choose log z = logxz/Aloglogz for an appropriate constant A
This gives the result, since

wer= T (2= 11 (-2

3<p=z 3<p<z

so that an application of Mertens’s theorem completes the proof. [
9.2.7 (Brun, 1915) Show that

Z/1<oo,

b

where p is such that p + 2 is prime.

Let m2(x) be the number of twin primes less than or equal to z. By
partial summation, the sum is

< 00.

o mo(t)dt /°° (loglog t)2dt
N
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9.3 Selberg’s Sieve

9.3.1 Let P, =[] ., p be the product of the primes p < z. Show that

m(x,z) < Z ( Z )\d)Q,

nsz df(n,Pz)

p<z

for any sequence g of real numbers satisfying A\; = 1.

This is clear from A\; = 1. The quantity on the right-hand side is
always nonnegative and is equal to 1 when (n, P,) = 1. O

9.3.2 Show that if |A\q| < 1, then

Ady Ad 2
m(zr,z) < g 221+ 0(29),
where [dy, dg) is the least common multiple of dy and ds.

In Exercise 9.3.1, we expand the sequence,

7T(.’L‘,Z) S Z Z )\dl)\dz

n<z dy,da|(n,Ps)

> (Y1),

dy,d2<z n<w
dy,da|n

IN

since Ay = 0 for d > z. Since

Yoi-= [dfdﬂ +0(1)

n<x
dy,dg|n

and |\4| < 1, the estimate is clear. O

9.3.3 Prove that
[d1, d2](dy,d2) = dida,

where (dy, dz) is the greatest common divisor of dy and d.

This is clear from unique factorization. Write

P | PR, | Y
p p
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Then
[dy, do) = [ [ pmex(er )
p
and .
(d17 d2) = H pmln(allaﬁp) .
p
O
9.3.4 Show that

Ady A 2
D G = 200 (Z T
dy,da<z ’ 5<z ;\Sdz

By the previous exercise, we can write the left-hand side as

S i) = 3 S 3 o0

dy,do<z dy,d2<z d|(d1,d2)
2
- Yoo (X %)
0<z ld

d<z

as required (notice that this is a “diagonalization” of the quadratic
form). O

9.3.5If
A
%

é|d
d<z

show that

=3 (/o)

8ld
(Note that us = 0 for § > z, since \gq = 0 for d > z.)

This is an application of the dual Mobius inversion formula (Ex-
ercise 1.5.16). O

9.3.6 Show that if \y = 1, then

Z Ady Ny
[d1, da]

d1,d2<z
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attains the minimum value 1/V (z), where

,u

d<z

By Exercise 9.3.4, we must minimize

> o0)(3 )

6<z éld
d<z

subject to the constraint A; = 1. By Exercise 9.3.5 we must minimize

subject to
By the Lagrange multiplier method, this minimum is attained when

2(6)us = Au(0)

for some scalar A. Thus,

so that

and the minimum is

_A“cs)_xj 20) 1
200 Ty =T 2 60 Ve

0<z

as desired. O
9.3.7 Show that for the choice of

us = p(9)/(¢(0)V(2)),
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we have |\g| < 1.

We have, by Exercise 9.3.5,
A
Fd = Z p(t)uay
p(d) t
d Z ng

(d,t)=

t<z/d
Hence
1 12 ()
V(A = u(d)H<1+_>
da s P g o
%(6) 1(t)
= wa)Y X
% #(9) i o(t)
Thus,

AV (2)| < Z =
t<=

so that |\4| < 1, as required.

9.3.8 Show that .
m(z,z) < %0) +O(2%).
Deduce that m(z) = O( 1557 ) by setting z = pl/2—¢,
We have
H
0<z

by the following elementary argument. We have

,u

0<z 5<z

Now,

435
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and it is clear that

Oﬂ\H

(]
tl\’)
(o9

1
S-St
6<z m<z

where the dash on the sum means that m has a squared prime factor.

Se]

<z

Clearly,
;1 1 1 1
< = <
mz<:zm_4<z:5 4logz+0())
Thus,
Z 12 (9)
22 5(0)
Now choose z = x1/27¢ to obtain the desired result. O

9.3.9 Let f be a multiplicative function. Show that

f([di,da2]) f((di,d2)) = f(dy)f(d2).

We can write
[d1,d2] = (d1,d2)erea,

where €1 (dl, dg) = dl, 62(d1, dQ) = dg. Thus €1, €2, (dl, dg) are mutu-
ally coprime. Therefore,

f([dy, d2]) = f((da, d2)) f(e1) f (e2).
Multiplying both sides by f(d,d2) gives

f([d1,da]) f((d1,d2)) = f(d1)f(d2)

as desired, since e; and (d;, d2) are coprime, as well as e and (d1, d2).
O

9.3.11 Show that

1
U(Z)ZZ%a

6<z

where f(n) is the completely multiplicative function defined by f(p) =
f(p).
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We have

Now, for square-free n,

f(n)
fi(n)

[ R
f<p>1‘££<1 %)

where the dash on the summation means that d ranges over ele-
ments of the monoid generated by the prime divisors of n. Hence,
for square-free n,

so that

N ) 1
U(2) ;ﬁ(d) ng@’

as required. O

9.3.12 Let o (z) denote the number of twin primes p < x. Using Selberg’s

sieve, show that
T
=0 .
m2(2) <log2 ;v>

We consider the sequence a,, = n(n + 2) and count the number
of elements coprime to P,. The number of n < z such that d|a,, is
clearly

:UZ;(d) o <2u(d)>

by an application of the Chinese remainder theorem. Thus, f(d) =
d/2"@ in the notation of Selberg’s sieve, and we have

N(z,z) < L—FO ovldi,d2]
X,z U(z) <d17d22§2 )

< % +0(22v<d>)2.

d<z
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By Exercise 1.4.1, the error term is easily seen to be O (z%log® z) . By
Exercise 9.3.11,
Uiy > S 2
EE e

d<z

where w(d) is the number of prime factors of d counted with mul-
tiplicity. By partial summation (using the result of Exercise 4.4.18)

we deduce
>

d<z

ow(d)

~ c(log 2)*

for some nonzero constant c. Thus,

X

N(z,z) < 5 +0 (2%log?z) .

(log z)

The number of twin primes is clearly less than or equal to z+ N (z, z)
for any value of z. Choosing z = z'/* (say) gives us the required
result. O

9.3.13 (The Brun - Titchmarsh theorem) For (a,k) = 1, and k < «z,
show that @240
+e€)z
m(x,ka) < —————
0 = R g2 /)
for x> xo(€), where w(x, k,a) denotes the number of primes less than x
which are congruent to a (mod k).

We consider the set of numbers n < x, n = a (mod k) that are not
divisible by primes p such that p < z and (p, k) = 1. Clearly, the
primes counted by

m(z,k,a) —m(z,k,a)

are contained in this set. In the notation of the Selberg sieve, we

obtain
xr

N(d) = 1
(@) = -5 +0(1),
and the upper bound becomes
x 2
WU (2) + O(z%).

By Exercise 9.3.11,
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Now,

k 1\-1 1 1
—U(z) > 1—- g = > E -,
o(k) g < p) (ddkﬁ)z d =m

} =1

and the latter quantity is asymptotic to log z. This gives a final esti-
mate of .
+0(2%),
COITER

and choosing z = (2x/k)'/?~¢ gives the final result. O

9.3.14 (Titchmarsh divisor problem) Show that 3, d(p—1) = O(x),
where the sum is over primes and d(n) denotes the dwzsor function.

m(z, k,a) <

We have, trivially,

n)SQZl,

d<vm
so that
ddp-1)<2 ) w(x,d,1).
p<w d</x

By an application of the Brun - Titchmarsh theorem we get

T 1
2= < s 2 55

p<z 0</x

By Exercise 4.4.14 (or the weaker 4.4.13) we are done. O

9.4 Supplementary Problems

9.4.1 Show that
1 log 1 + log k
Z 1o og ogxk og ’
= p (k)
p=1 (mod k)

where the implied constant is absolute.
By partial summation, we have

1 w(z, k1) Tt k,1)dt
s Lomwkl) ok )l
p T 2 t

p<z
p=1(mod k)
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We have the trivial estimate n(z,k,1) < x/k, so the first term is
negligible.

For the integral, we break the interval of integration into two
parts: [2, k] and [k?, z]. On the first interval we use the trivial esti-
mate to get an estimate of O((log k)/k). On the second interval, we
use the Brun - Titchmarsh theorem (Exercise 9.3.13) to obtain the
final result. O

9.4.2 Suppose that P is a set of primes such that
1
Z — = +0o0.
pEP

Show that the number of n < x not divisible by any prime p € P is o(x)
as r — oo.

We apply the sieve of Eratosthenes. The number is clearly

bounded by
z [ (1 — 1) +0(2%)

p<z p
peP

for any value of z. Now, for 0 < z < 1,
e <(1—z)t

so that 1 — x < e~*. Hence the bound in question is

§xexp(— Z;) + 0(2%).

p<z
pEP
Since
1
32 = e
peEP p
the result follows upon choosing z = log . O

9.4.3 Show that the number of solutions of [d1, ds] < z is O(z(log 2)?).

The number in question is clearly

< Y Y 60)

di,d2<z [d1, d] 8|y, do
1\2 )
< ngb(&)(Z ﬁ) < z(logz)zqu(;)
0<z old 0<z
d<z

< z(log 2)3,
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as required. O
9.4.4 Prove that
1 loglog x
Z log(z/p) =0 logz )’
p<a/2 plogl\x/p g
where the summation is over prime numbers.

We subdivide the interval [1,z/2] into subintervals of the form
I = [¢7,e7T!] . We estimate

1 1 1
E < : E -,
log(a/e) £+ p

a7, Plog(z/p)

By Chebyshev’s theorem,

1 el 1
Z*<<€](*.><<f.
p J

pelj J
We need to estimate
tog(=/2) 1 loglog x
> ~=0( )
= J log(x/e7) log x
by an easy partial summation. O

9.4.5 Let my,(z) denote the number of n < x with k prime factors (not
necessarily distinct). Using the sieve of Eratosthenes, show that

z(Aloglogx + B)*

<
(@) < k!'log x

for some constants A and B.

We prove it by induction on k. For k& = 1, this is Exercise 1.5.12.

Clearly,
1
m(2) < ¢ > mei(a/p),

p<z/2
since a number p; - - - p, < x is counted k times in the summation

> ma(x/p).

p<z/2
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(Also, we may suppose that each p; < x/2, since k > 2.) By the
induction hypothesis and Exercise 9.4.4, we are done. O

9.4.6 Let a be an even integer. Show that the number of primes p < x such
that p + a is also prime is

< (10§x)2 g <1 * ;)’

where the implied constant is absolute.

We let a,, = n(n + a) and apply the Selberg sieve. For P, we take
the set of all primes, and in the notation of Theorem 9.3.10 we take
2<z<z.lIfn > /z,thena, =0 (mod p) implies that either n or
n + a is composite. Thus, the number to be estimated is less than or
equal to

Vz + N(z,2).

Let us write each square-free d as

d=p1-- Prq1--q,

where the p;’s divide a and the ¢;’s are coprime to a. By the Chinese
remainder theorem it is easily seen that for square-free d,

N(d)

X

f(d)

where R; < 2¢(4) and f(d) is the completely multiplicative function
defined by

+ Ry,

p/2 if (p,a) =1,
fp) =
D if pla.
Thus, by Exercise 9.3.11 and Theorem 9.3.10, we obtain that the
number of primes in question is

< ﬁ+[;@+0(§22W<d>).

The error term is easily seen to be O(z%log 2). As for the other term,

we have 1
U(Z) Z Z Wa

m<z
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where
QWa (m)
1/f(m) =

with we(m) equal to the total number (including multiplicity) of
prime factors of m that are coprime to a. If we let d,(m) be the num-
ber of divisors of m coprime to a, then we see that
1/f(m) > dq(m)/m. Hence

m

9

S|

DR (ERES

m<z pla y(n)la

where v(n) is the product of the distinct prime divisors of a.
Rearranging the sums, we find that the above sum is

>0 Y Am =Y Y dm),
t=1

m<z t<z mlt
mt,y(t/m)la y(t/m)la

The inner sum is clearly greater than or equal to d(t). Thus

U(z)>g<1—;>2d§t>.

t<z

By Exercise 2.5.9, this gives
1 2
U(z) > H 1- » (log z)=.
pla

Choosing z = z!/* and observing that

I1 (1 —;)1 - 11 (1 - p12)1(1+ l)

p
pla pla
1
< II (1 + f)
pla P

gives the final result. O
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9.4.7 Let k be a positive even integer greater than 1. Show that the number
of primes p < x such that kp + 1 is also prime is

x 1
<<(10gx)2g<1+p>.

We proceed as in Exercise 9.4.6 and take the sequence
an = n(kn + 1). As before, we obtain

x
N(d) = —— + Ry
D= F@
with |Rg| < 2¢(4), and f(d) as in Exercise 9.4.6. We proceed as in the
previous exercise to deduce the result. O

9.4.8 Let k be even and satisfy 2 < k < x. The number of primes p < x
such that p — 1 = kq with q prime is

X

< o) 08 (/)

We substitute x/k for x in the previous exercise and observe that
we have actually proved

[1(-3) o

1 2
oIk 8" T

as the upper bound. Since the product is k/¢(k), the result follows.
O

9.4.9 Let n be a natural number. Show that the number of solutions of the
equation [a,b] = n is d(n?), where d(n) is the number of divisors of n.

Clearly, a and b can only have prime factors dividing n. Writing
n= le/p(n)7 a = Hpvp(a)7 b= Hpvp(b)
pln pla plo

we must have v,(n) = max(vp(a), vp(b)). The number of solutions
for this latter equation is enumerated as follows. We can set v,(a) =
vp(n) and vary v,(b) between 0 and v,(n) or the other way around.
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But we have counted the pair (vp(a), vp(b)) = (vp(n), vp(n)) twice.
Thus the number of solutions is

[1vx) +1) = d»?).

pln

9.4.10 Show that the error term in Theorem 9.3.10 can be replaced by

O( Y d(a*)|Ral).

a<z?

By the previous exercise, the number of solutions of [di,d2] = a

is d(a?), and we are done. O
9.4.11 Show that .
D — X
>l o)
= e(p—1) <logx)

where the summation is over prime numbers.

Observe that
IO <10+ )
so that
ﬁ < % %
Therefore,

The latter sum is split into two parts: d < /z and d > /z. On
the second part we use the trivial estimate 7(x,d, 1) < z/d, and on
the first part, we use the Brun - Titchmarsh theorem to deduce the
desired estimate. O

9.4.12 Prove that
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We have the inequality
11—z <e™®,

easily verified to be valid for z > 0. Indeed, let f(z) = e ™ + 2 — 1.
Then f/'(x) = —e~®+ 1, which is nonnegative for > 0. Hence, f(x)
is increasing, so that f(x) > f(0) = 0, for z > 0. This fact, combined
with the elementary fact

1
Z — =loglogz + O(1),
p<z

gives the desired result. O

9.4.13 Prove that for some constant ¢ > 0, we have

n2
Z (ﬁ(n)) = c(logz)® + O (log* ) .

n<x

We consider the Dirichlet series

f(S)ZiM:HQerS(;’_I)JF...).

2 ol ~ L.

We see that g(s) = f(s — 1) has a pole of order 3 at s = 1. Moreover,
we can write g(s) = ¢3(s)h(s), where h(s) is regular for Re(s) > 1/2.
Hence by the methods of Chapter 4, we deduce that

Zd )n/o(n) ~ crz(log )2
nlx

The result now follows by partial summation. O
9.4.14 Let d(n) denote the number of divisors of n. Show that

Zd2(p —1) = O(zlog? xloglog z),

p<w

where the summation is over prime numbers.
The sum in question is

> w(w[dr,do], 1) = w(x,n, 1)d(n?)

[d1,d2]<z n<x
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by Exercise 9.4.4. By the Brun - Titchmarsh theorem, this latter sum
is bounded by
xd(n?)
<Y
; ¢(n)log &

We split the summation over dyadic intervals of the form
[2%, 2] = I}, (say). The sum is

x d(n?
<<ZN_k > (") :

k=1 nelk (p(n)

where N = [log z/log 2]. The inner sum by the previous exercise is
O(k?), and we must estimate

N-1 k2 N-1

i = X ;
N -k ,

k=1 7=1

(N —j)?

(S

< xN?log N = O(zlog? zloglog z),

as desired. O

9.4.15 Show that the result in the previous exercise can be improved to
O(xlog? x) by noting that d*(n) < dy4(n), where dy(n) is the number of
ways of writing n as a product of four natural numbers.

If we write n = dydadsdy < z, then we must have some d; > n'/%.
It is than not difficult to see that

-1 < Y dlp—1)

p<x p<z
< Z 7T(£E,d1d2d3,1).
dydads<z3/4

Now apply the Brun - Titchmarsh theorem (Exercise 9.3.13) to get
the desired result. O



10
p-adic Methods

10.1 Ostrowski’s Theorem

10.1.1 If F is a field with norm || - ||, show that d(x,y) = ||z — y|| defines
a metric on F.

We may suppose 0 # 1 in F, in which case |[1|| = ||1||? implies
[1]| = 1. Hence || — 1]|> = 1 gives || — 1|]| = 1. Now, d(z,y) = 0
& ||z —y|| = 0 & z = y; also, d(x,y) = d(y, ), since || — 1|| = 1.
Finally, d(z,y) = llo -yl < llo — 2I| + ||z — || = d(, 2) + d(,2),
which is the triangle inequality. O

10.1.2 Show that | - |,, is a norm on Q.

Clearly |z|, = 0 if and only if z = 0. Also, we can write z =
pP @y = prWy, with 21, 41 coprime to p. Then, it is clear that
lzy|p, = |z|p|lylp- To prove the triangle inequality, suppose first that
vp(z) # vp(y) and without loss of generality v,(x) < 1,(y). Then
rT+y= p%(@xl + pr(y)yl = pl’p(it) (1;1 + pl’p(y)_l’p(fﬂ)yl)’ so that |$ +
Ylp < |x|p = max(|x|p, |y|p) in this case. If v,(z) = vp(y), the number
x1 + y1 when written in lowest terms has denominator coprime to
p. Thus,

|+ ylp < max(|z[p, |ylp)
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in this case also. Thus, we have the triangle inequality satisfied in a
sharper form. O

10.1.3 Show that the usual absolute value on Q is archimedean.

We must show that |z + y| < max(|z|, |y|) is not satisfied for some
pair of rational numbers z,y. If z > y > 0, we have [z +y| =2 +y >
x = |z|. O

10.1.4 If 0 < ¢ < 1 and p is prime, define
cvr if z
oll = { ?

0 if x =0,
for all rational numbers x. Show that || - || is equivalent to | - |, on Q.
Since vp(z + y) < min(v,(x), v,(y)) the result is clear. O

10.1.6 Let F be a field with norm || - ||, satisfying
|z + yl| < max({l]], [ly[])-

Ifa € Fandr > 0, let B(a,r) be the open disk {x € F : ||z — a|| < r}.
Show that B(a,r) = B(b,r) for any b € B(a,r). (This result says that
every point of the disk is the ‘center’ of the disk.)

If z € B(a,r), then ||z—a|| < r,sothat||z—0b|| = |[(x—a)+(a—b)||
< max(||z — al|, |la — b||) < r, so that x € B(b,r). The converse is
also clear. O

10.1.7 Let F be a field with || - ||. Let R be the set of all Cauchy sequences
{an}22 . Define addition and multiplication of sequences pointwise: that
is

4

{antnzi + {bn}nzs = {an + bu}nZy,
{antnzy x {bn}nZy = {anbn}yl;-
Show that (R, +, X ) is a commutative ring. Show further that the subset

R consisting of null Cauchy sequences (namely those satisfying ||a,|| — 0
as n — oo) forms a maximal ideal m.

We must first show that the sum and product of two Cauchy se-
quences is again Cauchy. Let ¢ > 0. Choose N; such that ||a, —
am|| < €/2 for n,m > Nj. Choose Ny such that ||b,, — b,,|| < €/2 for
n,m > Na. Then, for N = max(Np, N2), we have

[[(an +bn) = (@m +bp)l| < lan — aml| + [|by — by|

< €/2+¢€/2 =k,
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for n,m > N. Thus, the sum of two Cauchy sequences is again
Cauchy. Now let K be such that ||a,|| < K, ||b,|| < K for all n (this
is clear from the Cauchy property). Then given ¢ > 0, choose M;
such that for n,m > M;, we have ||a, — an|| < €/2K. Let M> be
such that ||b, — by,|| < €/2K for n,m > My. For M = max(M;, Ma)
and n,m > M, we have

lanbn — ambml|l < lanl[||bn — bl + [|bm]|[lam — anl|

< €/2+¢€/2=¢.

Thus, the product of two Cauchy sequences is again Cauchy. There-
fore R is closed under taking sums and products. The other ring
axioms are easily verified. Clearly, the sum and product of two null
sequences is again a null sequence. It is also clear that given a null
sequence {a,}7>; and a Cauchy sequence {b,}°°; € R, {anb,}>2,
is again a null sequence. Therefore, the null sequences form an ideal
m of R. To show that m is a maximal ideal, it suffices to show that
R/m is a field. To do this, we must show that any nonzero element
has an inverse. Thus, given {a, }52; ¢ m, we know that there is an
e1 > 0 such that |a,|, > € for all n sufficiently large. By adjust-
ing a few of the initial elements (if necessary) we may suppose that
an, # 0 for all n, because the adjusted sequence would still be in the
same equivalence class (mod m). It is now clear that {1/a,,}5° ; is a
Cauchy sequence and is inverse to the given sequence. Thus, R/m
is a field and m is a maximal ideal. O

10.1.9 Show that
Zp={z€Qp: |z, <1}

is a ring. (This ring is called the ring of p-adic integers.)
8 g g g

Each x € Q, is a Cauchy sequence, say {a, },;= . We have defined
|z|, = limy, o0 |an|p. Thus, |a,|, < 1 for n sufficiently large, since
the values taken on by |ay,|, are integral powers of p. If z,y € Q,, are
such that |z,| < 1 and |y,| < 1, then writing y = {b,}2,, we see
that |a, + by, < max(|an|p, |bnlp) < 1 for n sufficiently large. The
same is true for |a,by|, = |an||bn|. Thus, it is clear that Z,, is a ring.
This completes the proof. O

10.1.10 Given x € Q satisfying |x|, < 1, and any natural number i, show
that |z — a;|p, < p~t. Moreover, we can choose a; satisfying 0 < a; < p.
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Let = a/b, with (a,b) = 1. Since |z|, < 1, p does not divide b,
so that p’ and b are coprime. We can therefore find integers u and v
such that ub + vp’ = 1. Let a; = ua. Then

a a
la; — x|, = ‘ua - E‘p = ‘g‘p\ub— 1,

< p

9

so that a; does the job. By translating a; by a multiple of p’ we can
ensure 0 < a; < p', and the above inequality is not altered. [J

10.1.12 Show that the p-adic series

0o
E Cpny, Cn € Qp
n=1

converges if and only if |c, |, — 0.

It is clear that if the series converges, then |c,|, — 0. Now sup-
pose |cul, — 0. Let sy = SN ¢,,. Since Q,, is complete, it suffices
to show that {sx}%7_; is Cauchy. We have for M > N,

s —snlp = leny1+eni2t o+ eml,
< max ([enalps lentalp, s lenlp) s
which goes to 0 as N — oo. O
10.1.13 Show that

o0
E n!
n=1
converges in Q.

Clearly, |n!|, — 0 as n — oo, and we are done by Exercise

10.1.12. O
10.1.14 Show that
x

Z n-nl=-1

n=1
in Qy.

We have
N
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as an easy induction argument shows.
Indeed, s1 = 2! — 1 =1and
sSN41 =SSN+ (N+1D)(N+1)=(N+2)!-1
by the induction hypothesis. Thus, limy_. sy = —1.
10.1.15 Show that the power series

1
converges in the disk |x|, < p~ 7=1.
The power of p dividing n! is

o0

[o¢]
mn n mn
Yl <Xy

i=1

Therefore,

so that
2 nlly < Jalpp/# 0,

which goes to 0 as n — oo.

10.1.16 (Product formula) Prove that for x € Q,
H 2|y =1,
P

where the product is taken over all primes p including oo.
This is just a restatement of unique factorization.
10.1.17 Prove that for any natural number n and a finite prime p,
1

nl, > ——.
This also is clear from
Inl, = p_yp(n)

and
n|oo = p7™ (n/pr™).

453
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10.2 Hensel’s Lemma

10.2.1 Show that x> = T has no solution in Qs.

If it did, then we could write z as a 5-adic number

oo

T = Z and".

n=—N

The 5-adic expansion of 7is 2 4+ 1 - 5, so that N = 0. Thus

o0 2
(Zan5”) —241-5.
n=0

Reducing (mod 5) shows that a3 = 2 (mod 5) has a solution, which
is not the case. U

10.2.4 Let f(x) € Zplz]. Suppose that for some N and ay € Z, we
have f(ap) = 0 (modp? *1), f'(ap) = 0 (modp™) but f'(ag) % 0O
(mod p™N ). Show that there is a unique a € Zy, such that f(a) = 0 and
a=ap (modpNtt).

We proceed as in the proof of Theorem 10.2.3. Write f(z) =
>, ciz'. We will solve inductively

f(an) =0 (modp2N+n+1)

satisfying an41 = an (modp™*" 1), f'(a;) = 0(modp") and
f(an) # 0 (modp™N*1). Writing ap1 = an + tpV ™!, we need
to solve

flan +tpN Tt =0 (modp2N+"+2) ,

which reduces (as before) to
flan) +pV Tt (an) = 0 (mod p*V H7H2)

2N+n+1

We can divide through by p , since

f(an) = f(ag) =0 (mode) ,

which gives a congruence (mod p) since f'(a,)/p" is coprime to p
Thus, we can solve for ¢. The sequence {a,}2°; is Cauchy, and its
limit satisfies the required conditions. O

10.2.5 For any prime p and any positive integer m coprime to p, show that
there exists a primitive mth root of unity in Q, if and only if m|(p — 1).
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First suppose m|(p—1). The polynomial f(x) = 2™ — 1 has m dis-
tinct roots (mod p) because (Z/pZ)* is a cyclic group of order (p—1).
Moreover, each of these roots lifts to Z, by Hensel’s lemma. Among
the roots (mod p), precisely p(m), where p(m) denotes Euler’s func-
tion, have order exactly m. For the converse, notice that if « € Q,
such that o has order m then, since f(z) is monic, @ € Z, and « is
an element of order m (mod p). Thus, m|(p — 1). O

10.2.6 Show that the set of (p — 1)st roots of unity in Q, is a cyclic group
of order (p — 1).

This is again a consequence of Hensel’s lemma. Each of the
residue classes mod p lifts to a unique (p — 1)st root of unity in Z,,.
It is clear that the set of such roots of unity is a group. The cyclic-
ity follows from the fact that there is an element of order (p — 1)
established in the previous exercise. O

10.2.7 (Polynomial form of Hensel’s lemma) Suppose f(x) € Zy[x]
and that there exist g1, h1 € (Z/pZ)|x] such that f(x) = gi(x) hi(x)
(mod p), with (g1, h1) = 1, g1(z) monic. Then there exist polynomials
g(x), h(x) € Zy|x] such that g(x) is monic, f(x) = g(z)h(z), and g(z) =
g1(z) (mod p), h(x) = hi(z) (mod p).

The idea is to construct two sequences of polynomials g, and h,
such that

Gnt1 = gn(modp"),  hyi1 = hy(modp™),

and f(x) = gn(x)hy(x)(mod p™), with each g, monic and of degree
equal to deg g; and then take the limit. The idea is as in Hensel’s
lemma. We do this first for n = 2. Write ¢g2(z) = ¢1(z) + pri(x), for
some polynomial 71 (x) € Zy[z]. Similarly, ho(x) = hi(z) + psi(x).
We want

£(2) = ga(@)ha(z) (modp?).

That is,

f(@) = gi(@)ha(z) + pri(@)hi(z) + psi(e)gi(z) (modp?).

Since f(x) = gi(x)hi(z) (modp), we can write f(x) — g1(z)hi(z) =
pki(z) for some ki (z) € Zy|x]. Therefore, we get

k1(z) = ri(x)hi(z) + s1(x)g1(z) (mod p).
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Since (g1, h1) = 1, we can find polynomials a(z), b(z) such that
a(@)g1(x) + b()hs (z) = 1 (modp).

If we set 71(z) = b(x)ki(x), 51(z) = a(x)ki(x), these polynomials
almost work for r1, s;. We have to ensure that deg go = deg g; and
that go is monic. By the Euclidean algorithm for (Z/pZ)|x],

1(z) = g1(x)q(z) + ()
with degr; < degg;. Set s1(x) = §1(x) + h1(z)g(x); then
ri(z)hi(z) + s1(2)g1(x) = ki(x) (modp)

as required. Also, since degr; < deggi, we have g» monic and
deg g2 = deg g1. We now continue in this way for g3, g4, . . . and take
the limit. .

10.2.9 Show that for p # 2, the only solution to z* = 1 (modp") is
x = *£1, for every n > 1.

For n = 1, this is clear. Since the polynomial f(r) = 2% — 1
satisfies f'(z) = 2z and f'(£1) # 0 (modp) (since p # 2), we
can apply Hensel’s lemma to obtain that both = 1 (modp) and
xz = —1 (mod p) extend to p-adic solutions. These are clearly x = £1.
g

10.3 p-adic Interpolation

10.3.1 Show that there is no continuous function f : 7, — Q, such that

f(n) =n!

Let x € Z, \ Z. We want n! — f(z) as n — x. But n! is getting
p-adically closer to 0 as n — x (since n gets large in the usual sense
as n — x). Therefore, lim,,_,, n! = 0, so that there is no continuous
p-adic function interpolating the factorials. O

10.3.2 Let p # 2 be prime. Prove that for any natural numbers n, s we

have
s_1

(n+j) = —1(mod p*).

p

j=1
(n+j,p)=1
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The numbers n,n+1, ..., n+p°—1form a complete set of residues
mod p°. The product therefore is congruent to the product of all the
coprime residue classes mod p°. Now, in any abelian group A4,

[To=1I9

geA gEA
g2=1

since we can pair g and g*

10.2.9,

in the left-hand product. By Exercise

22 =1 (mod p®)

has only 2 solutions, namely « = £1. Thus,

p°—1
H (n+j) = —1 (modp®).
Jj=1
(n+j,p)=1
(Notice that for s = 1,n = 0, this is just Wilson’s theorem.) O

10.3.3 Show that if p # 2,

ap = H j ’
i<k
(4:p)=1

then ajps = —ag(mod p®).
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We have

IIH:= 117 II

j<k+p°® J<p®  p°<j<k+p®
(4,p)=1 (4:p)=1 (4:p)=1
= — H j(mod p*)
i<k
(4,p)=1

by application of Exercise 10.3.2. Therefore,

Aptps = —ay (mod p®).

10.3.4 Prove that for p # 2,

I'p(k +p°) = Tp(k) (mod p®).

We have I',(n) = (—1)"a,—1, in the notation of the previous exer-
cise. Thus,

Tp(k +p%) = (1) apips—1 = (—1)Fag_1 (modp®),

which gives the result. (Note that p is odd.) O

10.3.5 Let n, k be natural numbers and write
n=ap+ap+ap’+---,

k=bo+bip+bap®+ -,

for the p-adic expansions of n and k, respectively. Show that

(1) =) G G2) -+

We have

(T+2)" = (1+2)™(1+2)"P(1+2)2" .
= (1+2)°(1+2")2(1+2")% - (modp).
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Now compare coefficients of z* onboth sides. Since k = by+bip+- - -
is the unique p-adic expansion, the result is now evident. O

10.3.6 If p is prime, show that

<p,: ) = 0 (modp)

forl1 <k <p"—1landalln.

The p-adic expansion of p" is just p", so that ag = a1 = --- =
an—1 = 0 from which the result now follows. O

10.3.7 (Binomial inversion formula) Suppose for all n,

Show that

and conversely.

Consider the multiplication of formal power series:

(Zm)(Eo) =S

It is easily seen that

b, = Zn: <Z> AkCr—k -

k=0

Thus, the given relation for b, implies

o o
S ey
1 !
e = n!
from which the result is clear. O

10.3.8 Prove that

(=)™ if n=m,

()4,

otherwise.
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Put

(=)™ if k=m,
ap =
0 otherwise.

In the notation of the previous exercise,

so that

a":kno (Z)(l)"k<2)(1)m{ ;Dm ) n:.mj

otherwise,

as desired. O
10.3.9 Define

A" f(x)

I

S

N
> 3

N——
—~
~
S

>
~
—~~
8
+
N

Show that

NTCES (T) A f (i — m).

It suffices to show that

m

o) =3 () A pG - m),

J=0

for the result follows by applying the operator A™ to both sides of
the equation. But then

m

z<>z<>z<>

Jj=0 7=0 k=0
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and the inner sum is 0 unless k& = m, in which case it is (—1)™, by

Exercise 10.3.8. Thus, the result is immediate. O
10.3.10 Prove that

S (" Janest) = X0 () e m

=0 \J k=0

with ay(f) defined by

an(f) = ’g(—l)”—’f (7) s

0

For m = 0, the formula is clear. By the previous exercise,

m

angom =3 (") o)

=0
Now,

A" fm) =Y (Z) (=" F (k4 m),

k=0

and we need only observe that A" f(0) = a,(f) to complete the
proof. O

10.3.11 Show that the polynomial

" 1 if n=

takes integer values for x € Z. Deduce that
x
n

For x a natural number, this is clear. If z = —m (m € N) then

<_7;”> = (-1 <m e 1) €Z.

<1
p

forall x € Z,.
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The polynomial (¥) is continuous. Since Z is dense in Z,, it follows
that for all x € Z,
x
(-

10.3.13 If f(x) € Clz] is a polynomial taking integral values at integral

arguments, show that
T
r@) =]

k

<1 4
p

for certain integers cy.

This is purely formal, and a consequence of Exercise 10.3.7. In-

deed, set .
) =3 (}) ot

k=0

which gives a sequence of integers, since the f(k) are all integers.
By the binomial inversion formula,

Let D be the degree of f. Set

(@) = é (F)axth:

0

Now, for0 <n < D,

F=3 (})ostr) = k; (1) astr) = s

k=0

Since the polynomials f(z) and f*(x) have the same degree and
agree on D + 1 points, we must have f(x) = f*(z). This completes
the proof. O

10.3.14 If n = 1 (mod p), prove that n?" = 1 (mod p™*1). Deduce that
the sequence aj, = n* can be p-adically interpolated.

We prove the congruence by induction. For m = 1, we may write
n = 1+ tp, for some ¢, so that n? = (1 + tp)? = 1 (mod p?). Assume
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that the result has been shown for m < n. Then, we must show that
that n?" = 1 (mod p"*2). By induction, we have n?" = 1 + jp"*! for
some j. Hence, n?""" = (1 + jp"™)? = 1 (modp"*?) as required.
To prove that the sequence of a;’s can be p-adically interpolated, it
suffices to show that if k& = k'(mod p™), then a; = ap (mod p™+1).
Indeed, we have

k—Fk

n = 1(mod p™™!)

by what we have just shown. O
10.3.15 Let (n,p) = 1. If k = k' (mod (p — 1)p"), then show that

k— K

n-=n (modeH).

We have to prove
n** =1 (mod pN ).
But this follows from Euler’s theorem. O

10.3.16 Fix so € {0,1,2,...,p — 2} and let As, be the set of integers
congruent to so (mod p — 1). Show that Ay is a dense subset of Z,,.

This is an application of the Chinese reminder theorem. Given
m € Z,, we must find an integer n such that n = m(mod p”) and
n = so(mod p — 1), which we can do since p and p — 1 are coprime.
O

10.3.17 If (n, p) = 1, show that f(k) = n* can be extended to a continu-
ous function on As,.

For s € As,, we write s = sg + (p — 1)s1, and hence f(s) =
n*0(nP~1)%1, Since n?~! = 1 (modp), the function (n?~!)! can be
p-adically interpolated for all s; € Z, by Exercise 10.3.14. Thus, f
extends to a continuous function on A, . O

10.4 The p-adic ¢(-Function

10.4.1 Verify that pu, extends to a distribution on Zj,.
We must verify that

p—1

pi(a +p"Zy) = Z px(a +bp™ + p" 7).
b=0
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The right-hand side equals

n+1k1 a+bp
)Zb < n+1 >

After multiplying both sides by p~"(*~1)

reduces to

, the identity to be proved

x(px) pht Z by (a: + )
and this is easily deduced from the power series generating func-
tion for the Bernoulli polynomials g
10.4.3 Show that 11 o is a measure.
We have

a 1 1 aa)y 1
prala+pVZ,) = N——((pﬁ —2>

- b T )

where [-] denotes the greatest integer function. Thus,
aa (1/a) —1
o] + 4=t
Since o € Z3, 1/a € Zp and ((1/a) —1)/2 € Zyifp # 2. If p = 2,
thena™! =1 (mod2) and (a~! — 1)/2 € Z, in this case also. Thus,

1
.a(a +pNZp) = o [

piala+ pNZp) € Zp,
and hence
1.0 (@ +pVZp)| < 1.

Since every compact-open set U is a finite disjoint union of inter-
vals of the form a + p"'Z,, the result immediately follows from the
nonarchimedean property of the p-adic norm. O

10.4.4 Let dj, be the least common multiple of the denominators of coeffi-
cients of b (x). Show that

dkuk,a(a + pNZp) = dkk:ak_lm,a (a + pNZp) (mode) )
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The Bernoulli polynomial begins as

ab — Skl

k_k
2

as is easily checked. Now,

_ a _ aa
il %) = (o () -t (55 ) )

The polynomial dj By (z) has integral coefficients, and its first two
terms are dyx® — k(dy/2)z*!. Since x = a/p" has denominator
p", and we are multiplying by p™*~1), the terms after z*~2 will be
divisible by p"¥ for x = a/p". Thus,

dp fik (a + pNZp)

dpp™N D) <pa ( O;j\azv)’“
gkl

S(p v o () ) moan)
- [

A e (- ) )

k kK

a 7k<a a _kakflakfl[%]>
p pN pN
k

_§(ak71 _ afk(akflakfl)» (mode)

Il
=¥
>
—
”3\
2 =
\
>
3
Z
?r
C‘/

Il
o
>
—
2
|
Q

a a -1

1 N
]+ ) )

pNZp) (mod pN).

Il
QL
x>
T
IS
End
L
N

Il
QU
>
O
IS
ol
=
=
=
Q
—~
S
+

10.4.5 Show that

/ duk,a :k/ xk_ld,ul,a‘
Zp z

p
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In the notation of the previous exercise we see that

dy, / dpge = Z figa (a+p~Zy) (modp™)
Zp 0<a<pN —1
= dpk Z a" o (a+p"N7Zp) (modp"),
0<a<pN -1
from which the result now follows. O

10.4.6 If Z,, is the group of units of Z,, show that

pea(Zy) = (1 —a ") (1 - p* By,
where By, is the kth Bernoulli number.

Clearly,

tra(Zy) = pka(Zp) — pi,a(PZp)
= (Zp) — a_kuk(aZp) — 1k(PZyp) + O‘_kﬂk(azp)-
Now, 1x(Zp) = By, and g (pZ,) = p*~!By. Also, since « is an inte-

ger coprime to p, aZ, = Z,, so that u(aZy,) = By, and py(apZy,) =
pF~1B,,. The result now follows. O

10.4.8 (Kummer congruences) If (p — 1) { i and i = j (mod p™) show
that

(1—p" Bifi=(1—p' ")Bj/j (modp™*').

Let a be a primitive root (mod p). Since (p — 1) { i, we have o’ # 1
mod p), so that a™* — 1 € Z. By Theorem 10.4.7, it suffices to prove
at—1=a7 —1 (modp™*!)and

/ xi_ld,ulya = / mj_ld,uLa (modp"+1) .
Zp Zp

The former congruence follows from Euler’s theorem. The latter fol-
lows from ! = 2771 (mod p"*1), by the same theorem. O

10.4.9 (Kummer) If (p — 1) 1 i, show that | B; /i|, < 1.
As in Exercise 10.4.8,
/ xiildul,a
Z*

P

|Bi/ilp =la™" =11 = p 1!

p
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Since (p — 1) fi, o — 1 is coprime to p. Thus,
P

/ xi_ldl‘tl,a
Z

*
P

|Bi/i|p =

P
< 1

because |1t1,o(U)|p, < 1 for all compact-open sets U.

10.4.10 (Clausen and von Staudt) If (p — 1)|i and i is even, then

pB; = —1 (mod p).

By Exercise 2.5.23,

" /m+1
1 " — B m+1—k
(m+ 1)3(p) kzzo( ) B,

where
sm(p) =1"+2" 4+ -+ (p—-1)".
Therefore,
1 m+1 e
pBm = sm(p) — kZ—O m—|—1< L )kamH

which is equal to

—1
pm—i-l m m Bk 1
smP) = ; k—1) kP ‘

467

By Exercise 10.4.9, |By/k|, < 11if (p — 1) { k. We now write

m = (p— 1)t and inducton t. For t = 1,

_ L NS (P Be
PBp=spa0) =0 =D ()P =1 (modp)

k=1

by Fermat’s little theorem. The result is now deduced by an easy

induction argument.

O
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10.5 Supplementary Problems

10.5.1 Let 1 < a < p — 1, and set ¢(a) = (aP~! — 1)/p. Prove that
¢(ab) = ¢(a) + ¢(b) (mod p).
We have

(ab)P™' = a?7'WP7 = (1+ pé(a))(1 + po(b))
= 1+ p(¢(a) + ¢(b)) (mod p?),

and the result is now clear. O

10.5.2 With ¢ as in the previous exercise, show that

¢(a +pt) = ¢(a) — at (modp),

where aa = 1 (mod p).

We have
(a+pt)P~t = aP7! 4 p(p — DtaP~? (mod p?)
= 1+ po(a) — ptaP~'a@ (mod p?)
= 1+ p¢(a) — pt(1 + pé(a))a (mod p?)
= 1+po(a) —pta (mod p?),
from which the congruence follows. O

10.5.3 Let [x] denote the greatest integer less than or equal to x. For 1 <
a < p—1, show that

p— .
20 S
P

We have

p—1 p—1 p—1

Y dlag) = D @)+ () (modp)

j=1 Jj=1 J=1

p—1
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Thus
p—1 p—1

= 6(j) — Y _ d(aj) (modp).
j=1 j=1

Write aj = r; 4+ pgj, where 1 < r; < p — 1. Then by Exercise 10.5.2,

$(aj) = (r; + paj) = 6(r;) - q (mod p),

so that
p—1 p—1 -
> blag) =D é(ry) Z ; (mod p).
=1 j=1 j=1

Now, aj = r; (mod p) and ¢; = [aj/p], so that

=4[]

as desired. O

10.5.4 Prove the following generalization of Wilson’s theorem:

(p— K)!(k = 1)! = (=1)* (mod p)
for1<k<p-1

Write

-1 =p-DI=@p@-DpE-2) (- (k-1))(p—Fk)! (modp)
= (—=1)F 1k = 1)!(p — k)! (mod p),
from which the result follows. O

10.5.5 Prove that for an odd prime p,

p_l 1)i+1

(mod p).
J=1
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Deduce that 2P~ = 1 (mod p?) if and only if the numerator of

1 1 1
1— 4= - =
23 p—1

is divisible by p.
We have,

w1 (1+1)”2:1’§<p>

p 2p 2p 4
1224
2

ll
Flp !

By Wilson’s theorem the numerator of each summand is congruent
to —1 (mod p). By Exercise 10.5.4, the denominator is congruent to
(—1)75(mod p). Thus

op—1 _ 1 p—1 —1)i+1
2ol O noap),

as desired. O
10.5.6 Let p be an odd prime. Show that for all x € Zp, I'p(z + 1) =
hy(2)T'p(z), where

—x if |z[p, =1,

hp(z) =
-1 if |z|, <1

From the definition, we have

—nlp(n) if (n,p) =1,
Lpn+1) =
“Tyn) if (n,p) £ 1.

The result now follows by continuity. O

10.5.7 For s > 2, show that the only solutions of 2?2 = 1 (mod 2°) are
r=1,-1,25""—1,and 271 + 1.
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We have 2%|(z% — 1). Since 22 — 1 = (x — 1)(z + 1), exactly one of
(x — 1) or (z + 1) is divisible by 4. Either 2||(x — 1) or 2||(z + 1). In

the former case, z = —1 (mod 2571), so that

r=2"4 -1
for some t. If ¢ is even, we get + = —1 (mod 2°). If ¢ is odd, we get
=21 — 1 (mod?2°.) In the latter case, = 1 (mod 2~ !), and if
is odd, we get x = 2°7! + 1 (mod 2°). a

10.5.8 (The 2-adic I'-function) Show that the sequence defined by

La(n) = (=1)" ] J
1<i<n
(7,2)=1

can be extended to a continuous function on Zs.
We have
To(n+2°) =To(n) [] (n+4)

0<j<2*

As we remarked earlier, the product of all the elements in an abelian
group is equal to the product of the elements of order 2. We must
therefore solve

22 =1 (mod 2%).

By Exercise 10.5.7, these are precisely 1,—1,25"! 4+ 1, and 257! — 1.
Therefore,
Iy(n 4 2%) =Ty(n) (mod 2°),

from which the result follows by an application of Mahler’s theo-
rem. This completes the proof. O

10.5.9 Prove that for all natural numbers n,

Lyp(=mTyln + 1) = (=D,

By Exercise 10.5.6, we have
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and so on. Thus,

Fp(_n)_l = H hp(—4)
j=1

for any natural number n. Again by Exercise 10.5.6, we know that

hy(—j) = —1if p|j, and j otherwise. Thus,

Lp(—n)™" = (=" T

1<j<n
(4,p)=1

= (_1)["/p]+n+1rp(n+1>7

as desired.

10.5.10 If p is an odd prime, prove that for x € Z,,

Lp(a)Tp(1 — ) = (1)),

where ((x) is defined as the element of {1,2,...,p} satisfying ¢(x)

x (mod p). (This is the p-adic analogue of Exercise 6.3.4.)

From Exercise 10.5.9, we have
Dy + DTy(—n) = (~1)" 2,
Write n — 1 instead of n:
Dy(m)Ty(1 — n) = (~1)" =D/,
If n = ag + a1p + asp?® + - - - is the p-adic expansion of n, then
[(n=1)/p] = [((a0 — 1) + arp+---)/pl.
First suppose ag # 0. Then
[(n—=1)/p]=a1+asp+---,
so that n — p[(n — 1)/p] = ap = ¢(n). Clearly,

(_1)n+[(n—1)/1ﬂ — (_1)n—p[(n—1)/p] _ (_1)€(n)

9

and the formula is proved in this case. If ag = 0, then

n—1=(p—1)+bip+--
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and
[(n—1)/p] =b1+bap+---,

which gives
n—pl(n =1)/p] = p = L(n),
and again the formula is proved.

10.5.11 Show that

1 if p=3(mod4),

Tp(1/2)* = {
-1 if p=1(mod4).

By Exercise 10.5.10,

Tp(1/2)* = (1) /2.

Now, £(1/2) = ¢((p+1)/2) = (p+ 1)/2, so the result follows.

473



11
Equidistribution

11.1 Uniform distribution modulo 1

11.1.1 Let us write the sequence of non-zero rational numbers in [0, 1] as
follows:
111213123415
’2737374°4’5°5'5’5°6°67
where we successively write all the fractions with denominator b for b =
1,2, 3, .... Show that this sequence is u.d. mod 1.

We denote by z,, the sequence thus formed. Our goal is to show
that the number of n < M with z,, < x is asymptotically Mzx. Let
us first consider all the fractions with denominator at most V. The
number of such fractions is

For each z, we count the number of fractions < z. This number is

Y Y ),

b=1 a<bx d|a,d|b
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since the inner sum is zero unless (a,b) = 1. We find easily that this

iZu(d) > L

b=1 d|b a<bz,dla

The innermost sum is [bz/d] and so the sum in question is

N

2y ¢b)+0 | D db) |,

b=1 b<N

where d(b) denotes the number of divisors of b. By Exercise 1.4.1,
the error term is O(N log N). By Exercise 1.4.2, the main term is as-
ymptotic to czN? for some constant c. In other words, Viy ~ ¢N?.
Now let M be an arbitrary integer. As the sequence Vi is strictly
increasing, there is an NV such that

VN <M < Vyyr.
The number n < M with z,, < z is equal to
VN + O(Nlog N) + O(¢(N +1)).

Since M = Viy + O(¢(N + 1)), this completes the proof. O
11.1.2 If a sequence of real numbers {x,,}7  is u.d., show that for any a
with 0 < a < 1, we have

#{n < N : (z,) = a} = o(N).

For any € > 0, we take b = a + € so that from the definition of u.d,
we have
#{n < N: (0,) € [a,a+ ]} < 26N,

for N > Ny(e). Since the quantity in question is bounded by the
above, we are done. O
11.1.3 If the sequence {x,, }72 ; is u.d. and f : [0,1] — C is a continuous
function, show that

and conversely.
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It suffices to establish the result for real-valued functions. For any
characteristic function of an interval, we have the result by virtue
of the definition of uniform distribution. Let ¢ > 0 be fixed. By
the theory of the Riemann integral, we know that there are step
functions (that is, finite R-linear combinations of characteristic func-
tions) f1, f2 such that

fi(z) < f(z) < fa(w),

/0 () < /0 () < /0 fo(a)de,
and

1
0< / (o) — fa(a))dz < e

The result is now immediate from our initial remark. For the con-
verse, we observe that given any € > 0, the characteristic function
X[a,p] Of the interval [a, b] can be approximated by continuous func-
tions f1, fo such that

J1(2) < Xfap) (%) < fo(2),
and

1
/0 (fo(z) — fi(x))dx < e.

Indeed, we may take

0 ifz<a
(x—a)fe fa<z<a+e

filx) =141 fate<z<b—e
(b—2x)fe iftb—e<z<b
0 ifo<z

with f(x) analogously defined. Note that

1
[ o) ~ s < 2e

This completes the proof. O
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11.1.4 If {x,}22  is u.d. then

N 1
Jim_ ;ﬂxn) = | f(x)da,

for any piecewise C'-function f : [0,1] — C.

This is clear from the previous exercise. g
11.1.6 Show that Weyl'’s criterion need only be checked for positive integers
m.

This is immediate upon taking complex conjugation in Weyl's cri-
terion. g
11.1.7 Show that the sequence {x,,}°° ; is u.d. mod 1 if and only if

L !
i DS = | @

for any family of functions f which is dense in C'[0, 1]. Here, C[0, 1] is the
metric space of continuous functions on [0, 1] with the sup norm.

The proof of this result follows the method of Theorem 11.1.5. We
simply replace trigonometric polynomials by finite linear combina-

tions of functions in our family. O
11.1.8 Let 6 be an irrational number. Show that the sequence x,, = nf is
u.d.

By Weyl's criterion, it suffices to check

N
Z e27rimn9 _ O(N)
n=1

for m = 1,2, ... Indeed, the sum on the left hand side is the sum of a
geometric progression and equals

eQm’m(NJrl)H -1

627rim0 -1

This is bounded by 2/[e?*" — 1|, where the denominator is non-
zero since 6 is irrational. Thus, the sum in question is clearly o(V).
U
11.1.9 If 0 is rational, show that the sequence x,, = nf is not u.d.

Let # = a/bwith a, b coprime integers. Then, Weyl’s criterion fails
with m = b since

N .
Z 627rzb(na/b) - N.
n=1
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]
11.1.10 Show that the sequence x,, = logn is not u.d. but is dense mod 1.
By Weyl’s criterion, we need to consider the sum

N N
2 :627rzm logn _ 2 :n27rzm_
n=1 n=1

We may apply the Euler-Maclaurin summation formula to the right
hand side to deduce that it is

N 1 . N .
/ 2Ty 4 5(]\/ 2mim 1) 4 / By (t)(2mim)t*™ ™1 qt,
1 1

This is easily seen to be

N2m’m+l -1
————— + O(log N).

w1 T OUosN)
Dividing by N and letting N tend to infinity shows that the first
term does not converge. For example, for m = 1, we have

N?™ = cos(2mlog N) + isin(27 log N).
If N =27, we get
N?™ = cos(2nrlog 2) + i sin(277 log 2).

Since log 2 is irrational, the sequence 7 log 2 is u.d. and we can make
rlog 2 (mod 1) to be close to any number for infinitely many choices
of r. Thus, the limit does not exist. To show the sequence is dense
mod 1, we need only note that mlog2 is u.d. mod 1 since log 2 is
irrational. O
11.1.11 Let 0 < z,, < 1. Show that the sequence {x,, }5°, is u.d. mod 1 if
and only if

1 & 1

lim — =

N E>nc>o N Z Tn r—+ 1 ’
n=1

for every natural number r.

If the sequence is u.d., then the value of the limit follows from
Exerc