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It is practice first and knowledge afterwards.
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Preface to the Second
Edition

Since arts are more easily learnt by examples than precepts, I have
thought fit to adjoin the solutions of the following problems.
Isaac Newton, in Universal Arithmetick

Learning is a mysterious process. No one can say what the precise rules
of learning are. However, it is an agreed upon fact that the study of good
examples plays a fundamental role in learning. With respect to mathemat-
ics, it is well-known that problem-solving helps one acquire routine skills in
how and when to apply a theorem. It also allows one to discover nuances of
the theory and leads one to ask further questions that suggest new avenues
of research. This principle resonates with the famous aphorism of Lichten-
berg, “What you have been obliged to discover by yourself leaves a path in
your mind which you can use again when the need arises.”

This book grew out of various courses given at Queen’s University be-
tween 1996 and 2004. In the short span of a semester, it is difficult to cover
enough material to give students the confidence that they have mastered
some portion of the subject. Consequently, I have found that a problem-
solving format is the best way to deal with this challenge. The salient
features of the theory are presented in class along with a few examples, and
then the students are expected to teach themselves the finer aspects of the
theory through worked examples.

This is a revised and expanded version of “Problems in Algebraic Num-
ber Theory” originally published by Springer-Verlag as GTM 190. The
new edition has an extra chapter on density theorems. It introduces the
reader to the magnificent interplay between algebraic methods and analytic
methods that has come to be a dominant theme of number theory.

I would like to thank Alina Cojocaru, Wentang Kuo, Yu-Ru Liu, Stephen
Miller, Kumar Murty, Yiannis Petridis and Mike Roth for their corrections
and comments on the first edition as well as their feedback on the new
material.

Kingston, Ontario Ram Murty
March 2004
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Preface to the First
Edition

It is said that Ramanujan taught himself mathematics by systematically
working through 6000 problems!® of Carr’s Synopsis of Elementary Results
in Pure and Applied Mathematics. Freeman Dyson in his Disturbing the
Universe describes the mathematical days of his youth when he spent his
summer months working through hundreds of problems in differential equa-
tions. If we look back at our own mathematical development, we can certify
that problem solving plays an important role in the training of the research
mind. In fact, it would not be an exaggeration to say that the ability to
do research is essentially the art of asking the “right” questions. I suppose
Pélya summarized this in his famous dictum: if you can’t solve a problem,
then there is an easier problem you can’t solve — find it!

This book is a collection of about 500 problems in algebraic number
theory. They are systematically arranged to reveal the evolution of concepts
and ideas of the subject. All of the problems are completely solved and
no doubt, the solutions may not all be the “optimal” ones. However, we
feel that the exposition facilitates independent study. Indeed, any student
with the usual background of undergraduate algebra should be able to
work through these problems on his/her own. It is our conviction that
the knowledge gained by such a journey is more valuable than an abstract
“Bourbaki-style” treatment of the subject.

How does one do research? This is a question that is on the mind of
every graduate student. It is best answered by quoting Pélya and Szegé:
“General rules which could prescribe in detail the most useful discipline
of thought are not known to us. Even if such rules could be formulated,
they would not be very useful. Rather than knowing the correct rules of
thought theoretically, one must have them assimilated into one’s flesh and
blood ready for instant and instinctive use. Therefore, for the schooling of
one’s powers of thought only the practice of thinking is really useful. The

Y Actually, Carr’s Synopsis is not a problem book. It is a collection of theorems used
by students to prepare themselves for the Cambridge Tripos. Ramanujan made it famous
by using it as a problem book.

ix



X Preface

independent solving of challenging problems will aid the reader far more
than aphorisms.”

Asking how one does mathematical research is like asking how a com-
poser creates a masterpiece. No one really knows. However, it is clear
that some preparation, some form of training, is essential for it. Jacques
Hadamard, in his book The Mathematician’s Mind, proposes four stages
in the process of creation: preparation, incubation, illumination, and ver-
ification. The preparation is the conscious attention and hard work on a
problem. This conscious attention sets in motion an unconscious mecha-
nism that searches for a solution. Henri Poincaré compared ideas to atoms
that are set in motion by continued thought. The dance of these ideas in the
crucible of the mind leads to certain “stable combinations” that give rise
to flashes of illumination, which is the third stage. Finally, one must verify
the flash of insight, formulate it precisely, and subject it to the standards
of mathematical rigor.

This book arose when a student approached me for a reading course on
algebraic number theory. I had been thinking of writing a problem book on
algebraic number theory and I took the occasion to carry out an experiment.
I told the student to round up more students who may be interested and so
she recruited eight more. Each student would be responsible for one chapter
of the book. I lectured for about an hour a week stating and sketching the
solution of each problem. The student was then to fill in the details, add
ten more problems and solutions, and then typeset it into TEX. Chapters 1
to 8 arose in this fashion. Chapters 9 and 10 as well as the supplementary
problems were added afterward by the instructor.

Some of these problems are easy and straightforward. Some of them
are difficult. However, they have been arranged with a didactic purpose.
It is hoped that the book is suitable for independent study. From this
perspective, the book can be described as a first course in algebraic number
theory and can be completed in one semester.

Our approach in this book is based on the principle that questions focus
the mind. Indeed, quest and question are cognates. In our quest for truth,
for understanding, we seem to have only one method. That is the Socratic
method of asking questions and then refining them. Grappling with such
problems and questions, the mind is strengthened. It is this exercise of the
mind that is the goal of this book, its raison d’étre. If even one individual
benefits from our endeavor, we will feel amply rewarded.

Kingston, Ontario Ram Murty
August 1998
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Chapter 1

Elementary Number
Theory

1.1 Integers

The nineteenth century mathematician Leopold Kronecker wrote that “all
results of the profoundest mathematical investigation must ultimately be
expressible in the simple form of properties of integers.” It is perhaps this
feeling that made him say “God made the integers, all the rest is the work
of humanity” [B, pp. 466 and 477].

In this section, we will state some properties of integers. Primes, which
are integers with exactly two positive divisors, are very important in number
theory. Let Z represent the set of integers.

Theorem 1.1.1 If a, b are relatively prime, then we can find integers x,y
such that ax + by = 1.

Proof. We write a = bg + r by the Euclidean algorithm, and since a,b
are relatively prime we know r # 0 s0 0 < r < |bl. We see that b,r are
relatively prime, or their common factor would have to divide a as well.
So, b =rg; + 7 with 0 < r; < |r|. We can then write r = r1¢a + 72, and
continuing in this fashion, we will eventually arrive at rx = 1 for some k.
Working backward, we see that 1 = ax + by for some z,y € Z. o

Remark. It is convenient to observe that
a _ q 1 by (g 1 g 1 r
b/ — \1 0/\r/ \1 O 1 0/ \n
_ (9 W{(a 1\  fax 1\ (e
1 0 1 0 1 0 Tk
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(say). Notice det A = +1 and A~! has integer entries whose bottom row
gives ¢,y € Z such that az + by = 1.

Theorem 1.1.2 Every positive integer greater than 1 has a prime divisor.

Proof. Suppose that there is a positive integer having no prime divisors.
Since the set of positive integers with no prime divisors is nonempty, there
is a least positive integer n with no prime divisors. Since n divides itself,
n is not prime. Hence we can write n = ab with 1 <a<mnand 1 <b < n.
Since a < n, a must have a prime divisor. But any divisor of a is also
a divisor of n, so n must have a prime divisor. This is a contradiction.
Therefore every positive integer has at least one prime divisor. o

Theorem 1.1.3 There are infinitely many primes.

Proof. Suppose that there are only finitely many primes, that is, suppose
that there is no prime greater than n where n is an integer. Consider the
integer ¢ = n!+1 where n > 1. By Theorem 1.1.2, @ has at least one prime
divisor, which we denote by p. If p < n, then p | n! and p | (a — n!) = 1.
This is impossible. Hence p > n. Therefore we can see that there is a prime
greater than n for every positive integer n. Hence there are infinitely many
primes. O

Theorem 1.1.4 If p is prime and p | ab, then p|a orp|b.

Proof. Suppose that p is prime and p | ab where a and b are integers. If
p does not divide a, then @ and p are coprime. Then Jz,y € Z such that
ax + py = 1. Then we have abx + pby = b and pby = b — abz. Hence
p | b—abz. Thus p | b. Similarly, if p does not divide b, we see that p | a. O

Theorem 1.1.5 Z has unique factorization.

Proof.

Existence. Suppose that there is an integer greater than 1 which can-
not be written as a product of primes. Then there exists a least integer
m with such a property. Since m is not a prime, m has a positive divi-
sor d such that m = de where e is an integer and 1 < d < m, 1 < e < m.
Since m is the least integer which cannot be written as a product of primes,
we can write d and e as products of primes such that d = p;p2---p, and
e = qiq2---qs. Hence m = de = p1pa---Pr - q1q2 - - - gs. This contradicts
our assumption about m. Hence all integers can be written as products of
primes.

Uniqueness. Suppose that an integer a is written as

a:pl.,.pr:ql...qs,

where p; and g; are primes for 1 <i <r, 1< j<s. Thenp; | q - -qs,
so there exists ¢; such that p; | ¢; for some j. Without loss of generality,
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we can let g; be q;. Since p; is a prime, we see that p; = ¢q;. Dividing

P Pr=4q1 " qs by p1 = q1, we have pa---p, = q2 -+ - q5. Similarly there
exists ¢; such that py | g; for some j. Let g; be ga. Then g2 = py. Hence

there exist g1,... ,g- such that p; =¢; for1 <i <randr <s Ifr <s,
then we see that 1 = g,y 1 - - - ¢s- This is impossible. Hence r = s. Therefore
the factorization is unique. O

Example 1.1.6 Show that
1

n

1

is not an integer for n > 1.

Solution. Let k € Z be the highest power of 2 less than n, so that 2% <
n < 281, Let m be the least common multiple of 1,2, ... ,n excepting 2*.
Then

m m
mS=m+—+4 -+ —.
2 n

Each of the numbers on the right-hand side of this equation are integers,
except for m/2%. If m/2* were an integer, then 2* would have to divide the
least common multiple of the number 1,2,...,2%¥ —1,2% 4 1,... , n, which
it does not. So mS is not an integer, which implies that S cannot be an
integer.

Exercise 1.1.7 Show that

R VD
3 5 2n —1

is not an integer for n > 1.

We can use the same method to prove the following more general result.

Exercise 1.1.8 Let a1,...,ay for n > 2 be nonzero integers. Suppose there is a
prime p and positive integer h such that p? | a; for some ¢ and p" does not divide
a; for all j # 3.

Then show that

is not an integer.

Exercise 1.1.9 Prove that if n is a composite integer, then n has a prime factor
not exceeding /n.

Exercise 1.1.10 Show that if the smallest prime factor p of the positive integer
n exceeds &/n, then n/p must be prime or 1.
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Exercise 1.1.11 Let p be prime. Show that each of the binomial coefficients
(z), 1 <k <p-1,is divisible by p.

Exercise 1.1.12 Prove that if p is an odd prime, then 277! =1 (mod p).
Exercise 1.1.13 Prove Fermat’s little Theorem: If a,p € Z with p a prime, and
pta, prove that a?~* = 1 (mod p).

For any integer n we define ¢(n) to be the number of positive integers
less than n which are coprime to n. This is known as the Euler ¢-function.

Theorem 1.1.14 Given a,n € Z, a®™ =1 (mod n) when gcd(a,n) = 1.
This is a theorem due to Euler.

Proof. The case where n is prime is clearly a special case of Fermat’s
little Theorem. The argument is basically the same as that of the alternate
solution to Exercise 1.1.13.

Consider the ring Z/nZ. If a,n are coprime, then @ is a unit in this
ring. The units form a multiplicative group of order ¢(n), and so clearly
a@®(™ =T. Thus, a®™ =1 (mod n). O

Exercise 1.1.15 Show that n | ¢(a™ — 1) for any a > n.
Exercise 1.1.16 Show that nt 2™ — 1 for any natural number n > 1.

Exercise 1.1.17 Show that

0 11(-)

pin

by interpreting the left-hand side as the probability that a random number chosen
from 1 < a < n is coprime to n.

Exercise 1.1.18 Show that ¢ is multiplicative (i.e., ¢(mn) = ¢(m)p(n) when
ged(m,n) = 1) and ¢(p®) = p*~*(p — 1) for p prime.

Exercise 1.1.19 Find the last two digits of 30,

Exercise 1.1.20 Find the last two digits of 21°%.

Let 7(z) be the number of primes less than or equal to z. The prime
number theorem asserts that
z

m(x)

as ¢ — oo. This was first proved in 1896, independently by J. Hadamard
and Ch. de la Vallée Poussin.

We will not prove the prime number theorem here, but derive various
estimates for 7(z) by elementary methods.

~ log x
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Exercise 1.1.21 Let px denote the kth prime. Prove that

Prt1 Sp1p2-- Pk + 1.

Exercise 1.1.22 Show that .
pr <2¥,

where px denotes the kth prime.

Exercise 1.1.23 Prove that n(z) > log(log z).

Exercise 1.1.24 By observing that any natural number can be written as sr?

with s squarefree, show that

Vz < 27,
Deduce that
log x
2log2’

w(x) >

Exercise 1.1.25 Let ¢¥(z) = > pa<y 08P Where the summation is over prime
powers p* < z. -

(i) For 0 <z < 1, show that z(1 —z) < %. Deduce that

! 1
/ z"(1—-x)"dr < —
0 4

for every natural number n.

(ii) Show that e¥"+1 fol z™(1 — z)" dz is a positive integer. Deduce that

P(2n+ 1) > 2nlog 2.

iii) Prove that 1(z) > fxlog2 for z > 6. Deduce that
2

zrlog2

>
m(@) 2 2logx

for z > 6.

Exercise 1.1.26 By observing that

2n
n<pH52np ‘ <n> ’

(z) < 9z log 2

show that

logx

for every integer x > 2.
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1.2 Applications of Unique Factorization

We begin this section with a discussion of nontrivial solutions to Diophan-
tine equations of the form z! + y™ = 2". Nontrivial solutions are those for
which zyz # 0 and (z,y) = (z,2) = (y,2) = 1.

Exercise 1.2.1 Suppose that a,b,c € Z. If ab = ¢* and (a,b) = 1, then show
that a = d? and b = €? for some d, e € Z. More generally, if ab = c? then a = d9
and b = ¢f for some d, e € Z.

Exercise 1.2.2 Solve the equation z? + y* = 2 where x, y, and z are integers
and (z,y) = (y,2) = (z,2) = L.

Exercise 1.2.3 Show that z*+y* = 2% has no nontrivial solution. Hence deduce,
with Fermat, that z* + y* = 2* has no nontrivial solution.

Exercise 1.2.4 Show that z* — y* = 22 has no nontrivial solution.

Exercise 1.2.5 Prove that if f(z) € Z[z], then f(z) =0 (mod p) is solvable for
infinitely many primes p.

Exercise 1.2.6 Let g be prime. Show that there are infinitely many primes p so
that p =1 (mod q).

We will next discuss integers of the form F, = 22" 4 1, which are called
the Fermat numbers. Fermat made the conjecture that these integers are
all primes. Indeed, Fy = 3,F) = 5, F» = 17, F3 = 257, and F; = 65537
are primes but unfortunately, Fy = 22° 1 1 is divisible by 641, and so Fj is
composite. It is unknown if F,, represents infinitely many primes. It is also
unknown if F, is infinitely often composite.

Exercise 1.2.7 Show that F,, divides F,, — 2 if n is less than m, and from this
deduce that F,, and F,, are relatively prime if m # n.

Exercise 1.2.8 Consider the nth Fermat number F,, = 22" +1. Prove that every
prime divisor of F, is of the form 2"tk + 1.

Exercise 1.2.9 Given a natural number n, let n = p{'---p.* be its unique
factorization as a product of prime powers. We define the squarefree part of n,
denoted S(n), to be the product of the primes p; for which a; = 1. Let f(x) € Z[x]
be nonconstant and monic. Show that liminf S(f(n)) is unbounded as n ranges
over the integers.
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1.3 The ABC Conjecture

Given a natural number n, let n = p{* - --pr’* be its unique factorization
as a product of prime powers. Define the radical of n, denoted rad(n), to
be the product p; - - - pg.-

In 1980, Masser and Oesterlé formulated the following conjecture. Sup-
pose we have three mutually coprime integers A, B, C satisfying A+ B = C.
Given any ¢ > 0, it is conjectured that there is a constant x(g) such that

max(|Al,|B|,|C|) < x(¢)(rad(ABC))"**.
This is called the ABC Conjecture.

Exercise 1.3.1 Assuming the ABC Conjecture, show that if zyz # 0 and =™ +
y™ = 2" for three mutually coprime integers x, y, and z, then n is bounded.

[The assertion z™ + y™ = 2™ for n > 3 implies zyz = 0 is the celebrated
Fermat’s Last Theorem conjectured in 1637 by the French mathematician
Pierre de Fermat (1601-1665). After a succession of attacks beginning
with Euler, Dirichlet, Legendre, Lamé, and Kummer, and culminating in
the work of Frey, Serre, Ribet, and Wiles, the situation is now resolved, as
of 1995. The ABC Conjecture is however still open.]

Exercise 1.3.2 Let p be an odd prime. Suppose that 2" = 1 (mod p) and
2" # 1 (mod p?). Show that 2¢ # 1 (mod p*) where d is the order of 2 (mod p).

Exercise 1.3.3 Assuming the ABC Conjecture, show that there are infinitely
many primes p such that 2°~! # 1 (mod p?).
Exercise 1.3.4 Show that the number of primes p < z for which

2" £ 1 (mod p?)

is > log =/ log log x, assuming the ABC Conjecture.

In 1909, Wieferich proved that if p is a prime satisfying
2P~1 21 (mod p?),

then the equation x?+yP = 2P has no nontrivial integral solutions satisfying
p{ zyz. Tt is still unknown without assuming ABC if there are infinitely
many primes p such that 22~ # 1 (mod p?). (See also Exercise 9.2.15.)

A natural number n is called squarefull (or powerfull) if for every prime
p | n we have p? | n. In 1976 Erdés [Er] conjectured that we cannot have
three consecutive squarefull natural numbers.

Exercise 1.3.5 Show that if the Erdos conjecture above is true, then there are
infinitely many primes p such that 2°~' # 1 (mod p?).
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Exercise 1.3.6 Assuming the ABC Conjecture, prove that there are only finitely
many n such that n — 1,n,n + 1 are squarefull.

Exercise 1.3.7 Suppose that a and b are odd positive integers satisfying
rad(a™ — 2) = rad(b” — 2)

for every natural number n. Assuming ABC, prove that @ = b. (This problem is
due to H. Kisilevsky.)

1.4 Supplementary Problems

Exercise 1.4.1 Show that every proper ideal of Z is of the form nZ for some
integer n.

Exercise 1.4.2 An ideal I is called prime if ab € I impliesa € I or b € I. Prove
that every prime ideal of Z is of the form pZ for some prime integer p.

Exercise 1.4.3 Prove that if the number of prime Fermat numbers is finite, then
the number of primes of the form 2™ + 1 is finite.

Exercise 1.4.4 If n > 1 and a™ — 1 is prime, prove that a = 2 and n is prime.

Exercise 1.4.5 An integer is called perfect if it is the sum of its divisors. Show
that if 2" — 1 is prime, then 2"71(2" — 1) is perfect.

Exercise 1.4.6 Prove that if p is an odd prime, any prime divisor of 22 — 1 is of
the form 2kp + 1, with &k a positive integer.

Exercise 1.4.7 Show that there are no integer solutions to the equation z*—y* =
222,

Exercise 1.4.8 Let p be an odd prime number. Show that the numerator of

1 1 1
1+§+§+"'+E

is divisible by p.

Exercise 1.4.9 Let p be an odd prime number greater than 3. Show that the

numerator of
(I IO
2 3 p—1

is divisible by pZ.

Exercise 1.4.10 (Wilson’s Theorem) Show that n > 1 is prime if and only
if n divides (n — 1)! + 1.
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Exercise 1.4.11 For each n > 1, let Q be the product of all numbers a < n
which are coprime to n. Show that Q@ = +1 (mod n).

Exercise 1.4.12 In the previous exercise, show that @ = 1 (mod n) whenever
n is odd and has at least two prime factors.

Exercise 1.4.13 Use Exercises 1.2.7 and 1.2.8 to show that there are infinitely
many primes = 1 (mod 2") for any given 7.

Exercise 1.4.14 Suppose p is an odd prime such that 2p + 1 = q is also prime.
Show that the equation
P + 27 +52P =0

has no solutions in integers.

Exercise 1.4.15 If x and y are coprime integers, show that if
wl’ + yp
T+ and ——
(= +y) praay
have a common prime factor, it must be p.

Exercise 1.4.16 (Sophie Germain’s Trick) Let p be a prime such that 2p +
=g > 3 is also prime. Show that

¥4+ yP+27 =0

has no integral solutions with p { zy2.

Exercise 1.4.17 Assuming ABC, show that there are only finitely many con-
secutive cubefull numbers.

Exercise 1.4.18 Show that

where the summation is over prime numbers.

Exercise 1.4.19 (Bertrand’s Postulate) (a) If ag > a1 2 a2 > -+ is a de-
creasing sequence of real numbers tending to 0, show that

Z(—l)nan < agp — a1+ as.
n=0
(b) Let T(x) =3, <, ¥(z/n), where )(z) is defined as in Exercise 1.1.25. Show
that
T(z) =zlogz — = + O(logx).

(c) Show that

T(z)—-2T (g—) = Z(—l)"_11/1 (%) = (log2)z + O(log z).
Deduce that i .

(@)= ¥ (3) 2 $log2)z + Olog ).






Chapter 2

Euclidean Rings

2.1 Preliminaries

We can discuss the concept of divisibility for any commutative ring R with
identity. Indeed, if a,b € R, we will write a | b (a divides b) if there exists
some ¢ € R such that ac = b. Any divisor of 1 is called a unit. We will
say that a and b are associates and write a ~ b if there exists a unit u € R
such that @ = bu. It is easy to verify that ~ is an equivalence relation.

Further, if R is an integral domain and we have a,b # 0 with a | b and
b | a, then a and b must be associates, for then Jc,d € R such that ac = b
and bd = a, which implies that bdc = b. Since we are in an integral domain,
de =1, and d, ¢ are units.

We will say that a € R is irreducible if for any factorization a = bc, one
of b or ¢ is a unit.

Example 2.1.1 Let R be an integral domain. Suppose there is a map
n : R — N such that:

(i) n(ab) = n(a)n(b) Ya,b € R; and

(i1) n(a) =1 if and only if a is a unit.

We call such a map a norm map, with n(a) the norm of a. Show that every
element of K can be written as a product of irreducible elements.

Solution. Suppose b is an element of R. We proceed by induction on the
norm of b. If b is irreducible, then we have nothing to prove, so assume that
b is an element of R which is not irreducible. Then we can write b = ac
where neither a nor c¢ is a unit. By condition (i),

n(b) = n(ac) = n(a)n(c)
and since a, ¢ are not units, then by condition (i), n(a) < n(b) and n(c) <

n(b).

13
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If a,c are irreducible, then we are finished. If not, their norms are
smaller than the norm of b, and so by induction we can write them as
products of irreducibles, thus finding an irreducible decomposition of b.

Exercise 2.1.2 Let D be squarefree. Consider R = Z[v/D|. Show that every
element of R can be written as a product of irreducible elements.

Exercise 2.1.3 Let R = Z[/—5]. Show that 2,3,1 + /-5, and 1 — /=5 are
irreducible in R, and that they are not associates.

We now observe that 6 =2 -3 = (1 + +/—5)(1 — v/=5), so that R does
not have unique factorization into irreducibles.

We will say that R, an integral domain, is a unique factorization domain
if:

(i) every element of R can be written as a product of irreducibles; and

(ii) this factorization is essentially unique in the sense that if a = 7y - - - 7,
and a = 11 - - - Ty, then 7 = s and after a suitable permutation, m; ~ ;.

Exercise 2.1.4 Let R be a domain satisfying (i) above. Show that (ii) is equiv-
alent to (ii*): if 7 is irreducible and = divides ab, then 7 | a or 7 | b.

An ideal I C R is called principal if it can be generated by a single
element of . A domain R is then called a principal ideal domain if every
ideal of R is principal.

Exercise 2.1.5 Show that if 7 is an irreducible element of a principal ideal
domain, then () is a maximal ideal, (where (x) denotes the ideal generated by
the element x).

Theorem 2.1.6 If R is a principal ideal domain, then R is a unique fac-
torization domain.

Proof. Let S be the set of elements of R that cannot be written as a
product of irreducibles. If S is nonempty, take a; € S. Then a; is not
irreducible, so we can write a; = asby where ag,by are not units. Then
(a1) G (a2) and (a1) G (b2). If both az,by ¢ S, then we can write a; as
a product of irreducibles, so we assume that a; € S. We can inductively
proceed until we arrive at an infinite chain of ideals,

(@1) G (az2) G(a3) G G (an) G-

Now consider I = |J;2,(a;). This is an ideal of R, and because R is a
principal ideal domain, I = («) for some « € R. Since o € I, a € (ay,) for
some n, but then (a,) = (a,;1). From this contradiction, we conclude that
the set S must be empty, so we know that if R is a principal ideal domain,
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every element of R satisfies the first condition for a unique factorization
domain.

Next we would like to show that if we have an irreducible element m,
and 7 | abfora,b € R, thenn |aor 7 | b. If w1t a, then the ideal (a,7) = R,
so Jx,y such that

ar+ny = 1,
= abr + wby =

Since 7 | abz and 7 | wby then = | b, as desired. By Exercise 2.1.4, we have
shown that R is a unique factorization domain. a

The following theorem describes an important class of principal ideal
domains:

Theorem 2.1.7 If R is a domain with a map ¢ : R — N, and given
a,b € R, 3q,7 € R such that a = bqg + r with r = 0 or ¢(r) < ¢(b), we
call R a Euclidean domain. If a ring R is Euclidean, it is a principal ideal
domain.

Proof. Given an ideal I C R, take an element a of I such that ¢(a) is
minimal among elements of I. Then given b € I, we can find ¢q,r € R such
that b = gqa + r where r = 0 or ¢(r) < ¢(a). But then r = b — ga, and so
r € I, and ¢(a) is minimal among the norms of elements of I. So r = 0,
and given any element b of I, b = ga for some q € R. Therefore a is a
generator for I, and R is a principal ideal domain. O

Exercise 2.1.8 If F is a field, prove that F[z], the ring of polynomials in z with
coefficients in F, is Euclidean.

The following result, called Gauss’ lemma, allows us to relate factoriza-
tion of polynomials in Z[z] with the factorization in Q[z]. More generally,
if R is a unique factorization domain and K is its field of fractions, we will
relate factorization of polynomials in R[z]| with that in K[z].

Theorem 2.1.9 If R is a unique factorization domain, and f(z) € R[z],
define the content of f to be the ged of the coefficients of f, denoted by

C(f). For f(z), g(z) € Rz], C(fg) = C(£)C(g).

Proof. Consider two polynomials f,g € R[z], with C(f) = ¢ and C(g) = d.
Then we can write

f(z) = cag + carz + - - + canz™

and
g(z) = dby + dbyz + - - - + dbp ™,
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where ¢, d, a;,b; € R, an,bm # 0. We define a primitive polynomial to be a
polynomial f such that C(f) = 1. Then f = cf* where f* = ap+a1z+---+
a,z", a primitive polynomial, and g = dg*, with ¢g* a primitive polynomial.
Since fg = cf*dg* = cd(f*g*), it will suffice to prove that the product of
two primitive polynomials is again primitive.
Let
f*g* =kot+kiz+---+ km+n$m+na

and assume that this polynomial is not primitive. Then all the coefficients
k; are divisible by some 7 € R, with 7 irreducible. Since f* and g* are
primitive, we know that there is at least one coeflicient in each of f* and
g* that is not divisible by 7. We let a; and b; be the first such coefficients
in f* and g*, respectively.

Now,

kir; = (aobizs + -+ ai—1bjy1) + asby + (@s41b5-1 + - -+ + @iy 5bo).

We know that k;,;,a0,a1,... ,a:—1,bg,b1,... ,bj_1 are all divisible by 7, so
a;b; must also be divisible by 7. Since 7 is irreducible, then 7 | a; or 7 | b;,
but we chose these elements specifically because they were not divisible by
7. This contradiction proves that our polynomial f*¢* must be primitive.

Then fg = cdf*g* where f*g* is a primitive polynomial, thus proving
that C(fg) = cd = C(f)C(g). O

Theorem 2.1.10 If R is a unique factorization domain, then R[z] is a
unique factorization domain.

Proof. Let k be the set of all elements a/b, where a,b € R, and b # 0,
such that a/b = c¢/d if ad — bc = 0. It is easily verified that k is a field; we
call k the fraction field of R. Let us examine the polynomial ring k[z]. We
showed in Exercise 2.1.8 that k[z] is a Euclidean domain, and we showed in
Theorem 2.1.7 that all Euclidean domains are unique factorization domains.
We shall use these facts later.

First notice that given any nonzero polynomial f(z) € k[z}, we can write
this polynomial uniquely (up to multiplication by a unit) as f(z) = cf*(z),
where f*(z) € R[z] and f*(x) is primitive. We do this by first finding a
common denominator for all the coefficients of f and factoring this out. If
we denote this constant by 3, then we can write f = f'/3, where f' € R[z].
We then find the content of f’ (which we will denote by «), and factor this
out as well. We let o/3 = ¢ and write f = ¢f*, noting that f* is primitive.

We must prove the uniqueness of this expression of f. If

fz) = cf*(z) = df'(z),

with both f*(z) and f'(z) primitive, then we can write

f'(z) = (c/d)f* () = (a/b)f" (@),
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where ged(a, b) = 1. Since the coefficients of f/(z) are elements of R, then
b| av; for all 4, where y; are the coefficients of f*. But since ged(a, b) = 1,
then b | y; for all i. Since f* is a primitive polynomial, then b must be
a unit of R. Similarly, we can write f*(z) = (b/a)f’(z), and by the same
argument as above, @ must be a unit as well. This shows that f*(z) ~ f/(z).

Let us suppose that we have a polynomial f(z) € R[r]. Then we can
factor this polynomial as f(z) = g(z)h(z), with g(z),h(z) € klz] (be-
cause k[z] is a unique factorization domain). We can also write cf*(x) =
d1g*(z)dah*(z), where g*(z), h*(x) € R[z], and g*(x), h*(x) are primitive.
We showed above that the polynomial g* (z)h*(z) is primitive, and we know
that this decomposition f(x) = cf*(z) is unique. Therefore we can write
f*(z) = g*(x)h*(z) and thus f(z) = cg*(z)h*(z). But both f(z) and
f*(z) = g*(z)h*(x) have coefficients in R, and f*(z) is primitive. So ¢
must be an element of R.

Thus, when we factored f(z) € k[z], the two factors were also in R[z].
By induction, if we decompose f into all its irreducible components in k[z],
each of the factors will be in R[z], and we know that this decomposition
will be essentially unique because k[z] is a unique factorization domain.
This shows that R[z] is a unique factorization domain. O

2.2 Gaussian Integers

Let Z[i] = {a + bi | a,b € Z,i = v/—1}. This ring is often called the ring of
Gaussian integers.

Exercise 2.2.1 Show that Z[i] is Euclidean.
Exercise 2.2.2 Prove that if p is a positive prime, then there is an element

x € Fp, := Z/pZ such that 2> = —1 (mod p) if and only if either p=2or p=1
(mod 4). (Hint: Use Wilson’s theorem, Exercise 1.4.10.)

Exercise 2.2.3 Find all integer solutions to ¥ + 1 = z* with z,y # 0.

Exercise 2.2.4 If 7 is an element of R such that when « | ab with a,b € R, then
| a or 7 | b, then we say that = is prime. What are the primes of Z[]?

Exercise 2.2.5 A positive integer a is the sum of two squares if and only if
a = b’c where c is not divisible by any positive prime p = 3 (mod 4).

2.3 Eisenstein Integers

Let p = (—1 + +/—3)/2. Notice that p? + p+1 = 0, and p® = 1. Notice
also that p? = p. Define the FEisenstein integers as the set Z[p| = {a + bp :
a,b € Z}. Notice that Z[p] is closed under complex conjugation.
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Exercise 2.3.1 Show that Z[p] is a ring.

Exercise 2.3.2 (a) Show that Z[p] is Euclidean.
(b) Show that the only units in Z[g] are +1, %p, and 3p°.

Notice that (z2 + z + 1)(z — 1) = 2° — 1 and that we have
PP = (oD =a® 241

so that
(1-p)(1—p*) =3=(1+p)(1—p)?*=—p*(1-p).

Exercise 2.3.3 Let A =1 — p. Show that A is irreducible, so we have a factor-
ization of 3 (unique up to unit).

Exercise 2.3.4 Show that Z[p]/(\) has order 3.

We can apply the arithmetic of Z[p] to solve z® + y3 + 23 = 0 for integers
z,y,z. In fact we can show that o® + 33 + 3 = 0 for o, 3, € Z[p] has no
nontrivial solutions (i.e., where none of the variables is zero).

Example 2.3.5 Let A= 1—p, § € Z[p]. Show that if X\ does not divide 8,
then #% = +1 (mod A*). Deduce that if «, 3,7 are coprime to A, then the
equation o + 3% + v3 = 0 has no nontrivial solutions.

Solution. From the previous problem, we know that if A does not divide
6 then § = £1 (mod ). Set £ = 6 or —6 so that £ =1 (mod \). We write
£ as 1 + dA. Then

+BF1) = £-1
= E-DE-pE-p)
= (dN(dA+1—-p)(1+dr—p?)
= dA(d\ + \)(d\ — \p?)
= Md(d+1)(d-p?).

Since p? = 1 (mod \), then (d — p?) = (d — 1) (mod A). We know from
the preceding problem that A divides one of d, d — 1, and d + 1, so we
may conclude that £€3 — 1 = 0 (mod %), so €3 =1 (mod A?) and 6 = +1
(mod A?). We can now deduce that no solution to a® + 8% + v = 0 is
possible with «, 3, and 7y coprime to A, by considering this equation mod
1. Indeed, if such a solution were possible, then somehow the equation

+1+1+1=0 (mod \?)

could be satisfied. The left side of this congruence gives £1 or £3; certainly
41 is not congruent to 0 (mod A*) since A* is not a unit. Also, +3 is not
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congruent to 0 (mod A?) since A? is an associate of 3, and thus A* is not.
Thus, there is no solution to o3 + 3% +v3 = 0 if @, 3,y are coprime to A.

Hence if there is a solution to the equation of the previous example, one
of a, B, is divisible by A. Say v = A"4, (§,A) = 1. We get a3+ 33 +83A3" =
0, 8, o, 8 coprime to .

Theorem 2.3.6 Consider the more general
B+ B +eNde® =0 (2.1)

for a unit . Any solution for 6, «, 8 coprime to A must have n > 2, but if
(2.1) can be solved with n = m, it can be solved for n = m— 1. Thus, there
are no solutions to the above equation with 4, a, B coprime to A.

Proof. We know that n > 1 from Example 2.3.5. Counsidering the equation
mod A, we get that £14+1+eA3" = 0 (mod A%). There are two possibilities:
if A3 = £2 (mod A*), then certainly n cannot exceed 1; but if n = 1, then
our congruence implies that A | 2 which is not true. The other possibility
is that A3* = 0 (mod A%), from which it follows that n > 2.

We may rewrite (2.1) as

_8)\37153 — a3+ﬂ3
= (a+8)(a+pB)(a+p*B).

We will write these last three factors as A;, Az, and Az for convenience.
We can see that A% divides the left side of this equation, since n > 2. Thus
A6 | A AzAs, and A% | A; for some i. Notice that

A1 — A = AS,
Al - A3 = )‘lgpza

and
A2 - A3 = )\,Bp

Since A divides one of the A;, it divides them all, since it divides their
differences. Notice, though, that A2 does not divide any of these differences,
since A does not divide 8 by assumption. Thus, the A; are inequivalent
mod A?, and only one of the A; is divisible by A2. Since our equation is
unchanged if we replace 3 with p3 or p?f3, then without loss of generality
we may assume that A2 | A;. In fact, we know that

)\371,—2 | Al-
Now we write
B = Aj/A
By = Ay/)

B3 = Ag/)\
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We notice that these B; are pairwise coprime, since if for some prime p, we
had p | By and p | Bz, then necessarily we would have

p|B1—By=p

and
pl)\Bl+Bz—B1=a.

This is only possible for a unit p since ged(a, 5) = 1. Similarly, we can
verify that the remaining pairs of B; are coprime. Since A3"72 | A, we
have A3"=3 | B;. So we may rewrite (2.1) as

—eX3" 7383 = B, B, Bs.

From this equation we can see that each of the B; is an associate of a cube,
since they are relatively prime, and we write

By = eN"3CY,
3

B, = 6202,
3

B; = e3C3,

for units e;, and pairwise coprime C;. Now recall that

A1 = « —}—,8,
AZ = o+ plga
A3 = a+p’B.

From these equations we have that

PAz+pAz+ A1 = P +p+1)+ 8@ +P+1)
0

so we have that
0 = p?ABs + pABy + AB,

and
0= p2B3 + pB2 + Bl.

We can then deduce that
p?esCs + peaChs + e X330 =0
so we can find units ey4, e5 so that
C3 + esC3 +esA*3C3 = 0.

Considering this equation mod A3, and recalling that n > 2, we get that
+1+e4,=0 (mod A3) so e; = F1, and we rewrite our equation as

C3 + (FC2)? + A3V 3 = 0.
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This is an equation of the same type as (2.1), so we can conclude that if
there exists a solution for (2.1) with n» = m, then there exists a solution
with n =m — 1.

This establishes by descent that no nontrivial solution to (2.1) is possible
in Z[p}. O

2.4 Some Further Examples
Example 2.4.1 Solve the equation y? + 4 = 3 for integers z,y.

Solution. We first consider the case where y is even. It follows that x must
also be even, which implies that 23> = 0 (mod 8). Now, y is congruent to
0 or 2 (mod 4). If y = 0 (mod 4), then y2 + 4 = 4 (mod 8), so we can
rule out this case. However, if y = 2 (mod 4), then y? + 4 = 0 (mod 8).
Writing y = 2Y with Y odd, and = = 2X, we have 4Y? + 4 = 8X3, so that

y2i1=2x3

and
Y +)(Y —-i)=2X3=(1+4i)(1-9)X3.

We note that Y2 + 1 =2 (mod 4) and so X? is odd. Now,

(Y +i)(Y —i)
1+i)(1—1i)

1+4Y 1-Y. 1+Y_1—Y_
5t " 9 5 "

1+ /1-Y\?

= s ) T\ 72~

We shall write this last sum as a® +b%. Since Y is odd, a and b are integers.
Notice also that a + b =1 so that ged(a,b) = 1. We now have that

X% =

X3 = (a + bi)(a — bi).

We would like to establish that (a+bi) and (a—bi) are relatively prime. We
assume there exists some nonunit d such that d | (¢ + b) and d | (a — b3).
But then d | [(a + bi) + (a —bi)] = 2a and d | (a + b)) — (a — bi) = 2bi. Since
ged(a,b) = 1, then d | 2, and thus d must have even norm. But then it is
impossible that d | (a + bi) since the norm of (a + bi) is a? + b* = X3 which
is odd. Thus (a+ bi) and (a — bi) are relatively prime, and each is therefore
a cube, since Z[i] is a unique factorization domain. We write

a+bi=(s+ti)® = s* — 3st* + (35%t — t7)i.
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Comparing real and imaginary parts yields

a = s3—3st?,
b = 3s%t—t3.

Adding these two equations yields a+b = s3—3st243s%t—t3. But a+b = 1,
so we have

1 = s3—3s2+35%t—1¢°
(5 — t)(s* + 4st + t2).

Now, s,t € Z so (s — t) = +1 and (s? + 4st + t2) = 1. Subtracting the
second equation from the square of the first we find that —6st = 0 or 2.
Since s and t are integers, we rule out the case —6st = 2 and deduce that
either s =0ort =0. Thus eithera=1,b=00ra =0, b =1. It follows
that Y = %1, so the only solutions in Z to the given equation with y even
are x = 2, y = +2.

Next, we consider the case where y is odd. We write 2° = (y+2i)(y—2i).
We can deduce that (y 4+ 2¢) and (y — 2i) are relatively prime since if d
divided both, d would divide both their sum and their difference, i.e., we
would have d | 2y and d | 4i. But then d would have even norm, and since
y is odd, (y + 2i) has odd norm; thus d does not divide (y + 2i). Hence,
(y + 2i) is a cube; we write

y+2 = (qg+7i)° = ¢> — 3¢r* + (3¢°r — r3)i.

Comparing real and imaginary parts we have that 2 = 3¢?r — r3 so that
r | 2, and the only values r could thus take are +1 and +2. We get that
the only possible pairs (¢q,7) we can have are (1,1), (—1,1), (1,-2), and
(—1,—2). Solving for y, and excluding the cases where y is even, we find
that x = 5,y = +11 is the only possible solution when y is odd.

Exercise 2.4.2 Show that Z[v/—2] is Euclidean.
Exercise 2.4.3 Solve y? +2 = z* for z,y € Z.

Example 2.4.4 Solve y? + 1 = 2P for an odd prime p, and z,y € Z.

Solution. Notice that the equation y2 + 1 = 23 from an earlier problem is
a special case of the equation given here. To analyze the solutions of this
equation, we first observe that for odd y, y2 = 1 (mod 4). Thus z would
need to be even, but then if we consider the equation mod 4 we find that it
cannot be satisfied; y? + 1 = 2 (mod 4), while 2P = 0 (mod 4). Thus y is
even,; it is easy to see that z must be odd. If y = 0, then 2 = 1 is a solution
for all p. We call this solution a trivial solution; we proceed to investigate
solutions other than the trivial one. Now we write our equation as

(¥ +i)(y — ) = 2"
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If y # 0, then we note that if some divisor § were to divide both (y +¢) and
(y — 1), then it would divide 2¢; if § is not a unit, then § will thus divide
2, and also y, since y is even. But then it is impossible that § also divide
y + i since 7 is a unit. We conclude that (y + ¢) and (y — i) are relatively
prime when y # 0. Thus (y +4) and (y — i) are both pth powers, and we
may write

(y +14) = e(a + bi)?

for some unit e and integers a and b. We have analyzed the units of Z[i];
they are all powers of ¢, so we write

(y + 1) = i*(a + bi)?.

Now,

(y—1)=(y+10) = (=)*(a - bi)P.
Thus
zk(a + bi)P(—4)F(a — bi)P
( +b%)P

7

(y+i)(y—1i) =

and it follows that = = (a2 + b%). We know that z is odd, so one of a and b
is even (but not both). We now have that

(y+i)—(y—1i) = 2i
= i*(a 4 bi)P — (—i)*(a — bi)?.
We consider two cases separately:

Case 1. k is odd.
In this case we use the binomial theorem to determine the imaginary
parts of both sides of the above equation. We get

2 = Im[(d)"((a+bi)P + (a—bi)P)]

= Im |()* ia”‘j(bi)j (?) + ia”‘j(—bz’)j (?)

j=0

= 2(_1)(k—1)/2 Z ap—j(b)j(_l)jm(?)

even j,
0<j<p

Thus

1=(—1)*=-1/2 Z a7 (b)7 (—1)9/2 (é’)

even j,
0<si<p
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Since a divides every term on the right-hand side of this equation, then
a |1 and a = £1. We observed previously that only one of a, b is odd; thus
b is even. We now substitute ¢ = £1 into the last equation above to get

5= ¥ een(?)

even j,
0<j<p

- o) o) ()

If the sign of 1 on the left-hand side of this equality were negative, we would
have that b% | 2; b is even and in particular b # £1, so this is impossible.

Thus
() (Q) ()
()r ) ()

Now we notice that 2 | b, so 2 | (§). If p = 3 (mod 4), then we are
finished because 2 { (’2’) Suppose in fact that 279 is the largest power of
2 dividing (§). We shall show that 29%! will then divide every term in
b*(E) — - 23 (pf 1), and this will establish that no b will satisfy our
equation. We consider one of these terms given by (b)7=2(?), for an even

J
;) (we are not concerned with the

o
|

value of j; we rewrite this as b*™2(
sign of the term). We see that

P\ _ (pr-2)\ _(@kE-1
2m 2m — 2/ 2m(2m — 1)
p—2\(p 1
2m—2,\2) m(2m —1)’
so we are counsidering a term

(o) C) =y

Now, 27 | (5) by assumption. Recall that b is even; thus 22m~2 | p2m—2,
Now m > 2; it is easy to see then that 2m — 2 > m, so 222 does not
divide m. Thus when we reduce the fraction

b2m-—2
m(2m —1)

to lowest terms, the numerator is even and the denominator is odd. There-

fore, -
o P2\ (p)_ 0"
229 | <2m — 2) (2) m(2m—1)
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Thus 29+! divides every term in b%(§) —-- -+ (,71)bP~% and we deduce that
no value of b can satisfy our equation.

Case 2. k is even.
This case is almost identical to the first case; we mention only the
relevant differences. When we expand

(y+1) — (y— ) = 2 = *(a + bi)? — (—i)"(a — bi)?
and consider imaginary parts, we get

1= (_1)k/2 Z ap—j(b)j(_l)(j—l)/z (p)

odd j, J
0<j<p

We are able to deduce that b = *1; substituting we get the equation

1 = Y ap—j(b)j(_l)(j—l)ﬂ(?)

odd 7,
0<j<p

_ 1_a2(12’)+a4({;)_...i(pfl)ap_1’

which we can see is identical to the equation we arrived at in Case 1, with b
replaced by a. Thus we can reproduce the proof of Case 1, with b replaced
by a, to establish that there are no nontrivial solutions with k& even. We
conclude that the equation y? + 1 = 2P has no nontrivial solution with
T,y € Z.

Exercise 2.4.5 Show that Z[v/2] is Euclidean.
Exercise 2.4.6 Lete = 14++/2. Write e® = tun+vnv2. Show that u2 —2v2 = +1.

Exercise 2.4.7 Show that there is no unit 7 in Z[v/2] such that 1 <7 < 1++/2.
Deduce that every unit (greater than zero) of Z[v/2] is a power of £ = 1 + /2.

2.5 Supplementary Problems

Exercise 2.5.1 Show that R = Z[(1 + +/—7)/2] is Euclidean.
Exercise 2.5.2 Show that Z[(1 4+ +/—11)/2] is Euclidean.

Exercise 2.5.3 Find all integer solutions to the equation z2 + 11 = ¢°.
Exercise 2.5.4 Prove that Z[+/3] is Euclidean.

Exercise 2.5.5 Prove that Z[/6] is Euclidean.
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Exercise 2.5.6 Show that Z[(1 4+ +/—19)/2] is not Euclidean for the norm map.
Exercise 2.5.7 Prove that Z[,/—10] is not a unique factorization domain.

Exercise 2.5.8 Show that there are only finitely many rings Z[\/c_i] with d = 2
or 3 (mod 4) which are norm Euclidean.

Exercise 2.5.9 Find all integer solutions of v*> = z3 + 1.
Exercise 2.5.10 Let 1, ..., z» be indeterminates. Evaluate the determinant of

the n x n matrix whose (4, j)-th entry is J~'. (This is called the Vandermonde
determinant.)



Chapter 3

Algebraic Numbers and
Integers

3.1 Basic Concepts

A number « € C is called an algebraic number if there exists a polynomial
f(x) = apx™ + -+ + ag such that ag,...,an, not all zero, are in Q and
f(a) = 0. If « is the root of a monic polynomial with coefficients in Z,
we say that o is an algebraic integer. Clearly all algebraic integers are
algebraic numbers. However, the converse is false.

Example 3.1.1 Show that v/2/3 is an algebraic number but not an alge-
braic integer.

Solution. Consider the polynomial f(x) = 922 — 2, which is in Q[z]. Since
f(+/2/3) = 0, we know that v/2/3 is an algebraic number.

Assume v/2/3 is an algebraic integer. Then there exists a monic poly-
nomial in Z[z], say g(z) = " + b,—12™ ! + - - - + by, which has a = 1/2/3

as a root. So
n n—1
2 2
9(0) = (%) +bas (%) et b

= (V)" + bp (V)" 1B) + - + bo(3)" = O.

If 7 is odd, (v/2)" is not an integer. So we can separate our equation into
two smaller equations:

> V23T =0 = V2 37 bi2timb/2gn=i—g

i odd i odd

Z biv/3 3" = 0

1 even

0,

and

27
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for i = 0,...,n. Since 3 | 0, each sum above must be divisible by 3. In
particular, because each summand containing b;,¢ # n, has a factor of 3, 3
divides the summand containing b, = 1. This tells us that 3 | 2(»~1/2 if n
is odd, and 3 | 2"/2 if n is even. In either case, this is false and hence we
can conclude that v/2/3 is not an algebraic integer.

Exercise 3.1.2 Show that if r € Q is an algebraic integer, then r € Z.

Exercise 3.1.3 Show that if 4 | (d + 1), then

—1++v—d

2

is an algebraic integer.

Theorem 3.1.4 Let o be an algebraic number. There exists a unique poly-
nomial p(x) in Q[z] which is mom'c irreductble and of smallest degree, such
that p(a) = 0. Furthermore, if f(z) € Q[z] and f(a) = 0, then p(z) | f(z).

Proof. Consider the set of all polynomials in Q[z] for which « is a root
and pick one of smallest degree, say p(x). If p(z) is not irreducible, it can
be written as a product of two lower degree polynomials in Q[z]: p(x) =
a(z)b(z). However, p(a) = a(a)b(a) = 0 and since C is an integral domain,
either a(a) = 0 or b(a) = 0. But this contradicts the minimality of p(z),
so p(x) must be irreducible.

Suppose there were two such polynomials, p(x) and g(z). By the division
algorithm,

p(z) = a(z)q(z) +r(z),
where a(z), r(z) € Q[z], and either deg(r) = 0 or deg(r) < deg(q). But
p(a) = a(a)g(a) + r(a) = 0 and g(a) = 0 together imply that r(a) = 0.
Because p(z) and ¢(z) are the smallest degree polynomials with « as a root,
r = 0. So p(z) = a(x)q(z) and a(z) € Q* (the set of all nonzero elements
of Q), since deg(p) = deg(q). Thus p(z) is unique up to a constant and so
we may suppose its leading coefficient is 1.

Now suppose f(z) is a polynomial in Q[z] such that f(a) = 0. If p(z)
does not divide f(z) then, since p(x) is irreducible, ged(p(z), f(z)) = 1. So
we can find a(z), b(z) € Q[z] such that a(x)p(x) + b(z) f(z) = 1. However,
putting z = « yields a contradiction. Thus, p(z) | f(z). a

The degree of p(z) is called the degree of « and is denoted deg(a); p(z)
is called the minimal polynomial of a.

Complex numbers which are not algebraic are called transcendental.
Well before an example of a transcendental number was known, mathe-
maticians were assured of their existence.

Example 3.1.5 Show that the set of algebraic numbers is countable (and
hence the set of transcendental numbers is uncountable).
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Solution. All polynomials in Q[z] have a finite number of roots. The set
of rational numbers, @, is countable and so the set Q[z] is also countable.
The set of algebraic numbers is the set of all roots of a countable number of
polynomials, each with a finite number of roots. Hence the set of algebraic
numbers is countable.

Since algebraic numbers and transcendental numbers partition the set
of complex numbers, C, which is uncountable, it follows that the set of
transcendental numbers is uncountable.

Exercise 3.1.6 Find the minimal polynomial of \/n where n is a squarefree
integer.

Exercise 3.1.7 Find the minimal polynomial of +/2/3.

3.2 Liouville’s Theorem and Generalizations

In 1853, Liouville showed that algebraic numbers cannot be too well ap-
proximated by rationals.

Theorem 3.2.1 (Liouville) Given «, a real algebraic number of degree
n # 1, there is a positive constant ¢ = c(a) such that for all rational
numbers p/q, (p,q) =1 and ¢ > 0, the inequality

holds.

Proof. Let f(z) = ana™ + an—12"" ' 4+ -+ + ap be € Z[z] whose degree
equals that of « and for which « is a root. (So deg(f) > 2). Notice that

a-1(2) - ()
o (o

anp” + an_1p" g+ -+ aog”
qTL

1
> —.
z
If « = a1,...,a, are the roots of f, let M be the maximum of the values
||, 1 < ¢ < n. If |p/q| is greater than 2M, then

a—=- ZMZ%.
qTL
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If |p/q| < M, then

so that

a——2 >
q |anlg™ H?:z laj —p/al ~ lan|(3M)"~1q”

Hence, the theorem holds with

P ‘ 1 1

]

Using this theorem, Liouville was able to give specific examples of tran-
scendental numbers.

Example 3.2.2 Show that

is transcendental.

Solution. Suppose not, and call the sum «. Look at the partial sum
k
Z LB
10" g’

with g, = 10%'. Thus,

’ p > ;
) 2
o= o7

k n=k+1 107

1 1 k+2 1 (k+2)(k+3)
= oGt T (10(k+1)!) + (10(k+1)!) +o

1 1 1 1
o VTt T

1
= ( 100+ 1) ) S,

where § =1+ 1/10%2 + 1/10% + - - -, an infinite geometric series which has

a finite sum. So
Tnn!
et 10

= 10(k+1 B qlls+1'
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If o were algebraic of degree of n then, by Liouville’s theorem, there exists
a constant c(c) such that

‘ B> cle)
qx qx
S0 we have s (@)
cla
>
ot T a4

However, we can choose k to be as large as we want to obtain a contradic-
tion. So « is transcendental.

It is easy to see that this argument can be generalized to show that
Zf:o a~™ is transcendental for all positive integers a. We will prove this
fact in the Supplementary Exercises for this chapter.

In 1873, Hermite showed the number e is transcendental and in 1882,
Lindemann proved the transcendency of . In fact, he showed more gen-
erally that for an algebraic number «, e® is transcendental. This implies
that 7 is transcendental since e™ = —1.

In 1909, Thue was able to improve Liouville’s inequality. He proved
that if « is algebraic of degree n, then there exists a constant c¢(a) so that
for all p/q € Q,

a—I—) > cle) .
gl = qn/2+1

This theorem has immediate Diophantine applications.

Example 3.2.3 Let f(z,y) be an irreducible polynomial of binary form of
degree n > 3. Assuming Thue’s theorem, show that f(z,y) = m for any
fixed m € Z* has only finitely many solutions.

Solution. Suppose f(z,y) = m has infinitely many solutions, and write it

in the form
n

f(xay) = H(.’E - aiy) =m,
i=1
where «; is an algebraic number of degree >3 Vi=1,... ,n.
Without loss of generality, we can suppose that for an infinite number
of pairs (x,y), we have

T T .
——o] < —-— for 1=2,...,n.
Y
Further, by the triangle inequality,
T 1/|z
- —a; 2 —(——(11 + E—al)
2\|y Y
1 .
> Elai——all for i=2,...,n.
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Hence,
T T
fl@yl = y'l|z—e '“’5_&" ’

T

Im| > kly™|= -],

m |z,

Kly[ |

where

1 n
k = on—1 H|ai—a1 .
i=2

However, by Thue’s theorem, this implies

c m 1 m(ck)~?
— <, <

However, for n > 3, this holds for only finitely many (z,y), contradicting
our assumption. Thus f(z,y) has only finitely many solutions.

Over a long series of improvements upon Liouville’s theorem, in 1955
Roth was able to show the inequality can be strengthened to

cla,€)
q2+e ’

a—Iz’Z
q

for any € > 0. This improved inequality gives us a new family of transcen-
dental numbers.

Exercise 3.2.4 Show that % 273" is transcendental.

Exercise 3.2.5 Show that, in fact, Y -, 277" is transcendental whenever

im fln+1)
)

3.3 Algebraic Number Fields

> 2.

The theory of algebraic number fields is vast and rich. We will collect below
the rudimentary facts of the theory. We begin with

Example 3.3.1 Let a be an algebraic number and define
Qla] = {f(a) : f € Qle]},
a subring of C. Show that Q[q] is a field.
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Solution. Let f be the minimal polynomial of «, and consider the map
¢ : Qz] — Qo] such that

n n
§ i § i
a; " —r a; .
i=0 =0

Notice that

n m

$(g) + d(h) =D _aial + Y bia' = ¢(g+h)
1=0 1=0
and
d(g)p(h) = (Z aiai> (Z bjaj) = Y abja'tT =¢(gh).
i=0 j=0 0<it+j<ntm

So ¢ is a homomorphism. Furthermore, it is clear that ker ¢ = (f), the
ideal generated by f (see Theorem 3.1.4). Thus, by the ring homomorphism

theorems,
Qlzl/(f) ~ Qla].

Let g be a polynomial in Q[z] such that f does not divide g. From Chapter
2, we know that Q[z] is a Euclidean domain and is therefore also a PID.
We also learned in Chapter 2 that the ideal generated by any irreducible
element in a PID is a maximal ideal. Since f is irreducible, Q[z]/(f) is a
field and so Q[c] is a field, as desired.

From now on, we will denote Q[a] by Q(«).

A field K C C is called an algebraic number field if its dimension over
Q is finite. The dimension of K over Q is called the degree of K and is
denoted [K : Q]. Notice that if « is an algebraic number of degree n, then
Q(e) is an algebraic number field of degree n over Q.

Let o and § be algebraic numbers. Q(a, ) is a field since it is the
intersection of all the subfields of C containing @Q, «, and 5. The intersection
of a finite number of subfields in a fixed field is again a field.

Theorem 3.3.2 (Theorem of the Primitive Element) If o and 3 are
algebraic numbers, then 30, an algebraic number, such that Q(a, 3) = Q(0).

Proof. Let f be the minimal polynomial of ¢ and let g be the minimal
polynomial of 3. We want to show that we can find A € Q such that
0 = a+ A8 and Q(e,3) = Q). We will denote Q(¢) by L. Clearly
L=Q(0) € Q(a, B).

Define ¢(z) = f(0 — Az) € L[z]. Notice that ¢(3) = f(6 — \3) =
f(a) = 0. So 3 is a root of ¢. Choose A € Q in such a way that 3 is the
only common root of ¢ and g. This can be done since only a finite number
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of choices of A are thus ruled out. So ged(¢(x), g(x)) = ¢(z — B), c € C*.
Then c(x — 3) € L[z] which implies that ¢,c8 € L, and so 3 € L.

Now, 8§ = a+ A3 € L which means that « € L. So Q(«,8) € L = Q(0).
Thus, we have the desired equality: Q(«, 8) = Q(0). a

This theorem can be generalized quite easily using induction: for a set
ai,... ,aqn of algebraic numbers, there exists an algebraic number 6 such
that Q(aq,...,an) = Q(#). Therefore, any algebraic number field K is
Q(8) for some algebraic number 6.

Exercise 3.3.3 Let o be an algebraic number and let p(z) be its minimal poly-
nomial. Show that p(x) has no repeated roots.

The roots of the minimal polynomial p(z) of « are called the conjugate
roots or conjugates of a. Thus, if n is the degree of p(z), then a has n
conjugates.

Exercise 3.3.4 Let o, 8 be algebraic numbers such that 8 is conjugate to c.
Show that 8 and « have the same minimal polynomial.

If & = 6V and 6@ ... ,0(™ are the conjugates of 8, then Q(8™)), for
i=2,...,n,is called a conjugate field to Q(6). Further, the maps § — 6%
are monomorphisms of K = Q(8) — Q(8)) (referred to as embeddings of
K into C).

We can partition the conjugates of  into real roots and nonreal roots
(called complex roots).

K is called a normal extension (or Galois extension) of Q if all the
conjugate fields of K are identical to K. For example, any quadratic exten-
sion of Q is normal. However, Q(+/2) is not since the two conjugate fields
Q(pv/2) and Q(p?V/2) are distinct from Q(+/2). (Here p is a primitive cube
root of unity.)

We also define the normal closure of any field K as the extension K
of smallest degree containing all the conjugate fields of K. Clearly this is
well-defined for if there were two such fields, K1 and KQ, then K1 N K,
would have the same property and have smaller degree if K; # K,. In the
above example, the normal closure of Q(+/2) is clearly Q(+/2, p).

Example 3.3.5 Show that Liouville’s theorem holds for a where « is a
complex algebraic number of degree n > 2.

Solution. First we note that if « is algebraic, then so is @ (the complex
conjugate of ), since they satisfy the same minimal polynomial. Also,
every element in an algebraic number field is algebraic, since if the field
Q(v) has degree n over Q, then for any 3 € Q(~) the elements 1,3,... ,8"
are surely linearly dependent. This implies that a + @ = 2 Re(a) and
a — @ = 2i Im(a) are algebraic, since they are both in the field Q(a, @).
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We can apply Liouville’s theorem to Re(a) to get a constant ¢ =
c(Re(a)) such that

Re(a) - £

C
>_7
q|l ~ q™

q

where Re(a) has degree m. Now,

D
> [Re(a) - ]
q
C
> —,
> £

To prove the result, it remains only to show that if the degree of « is n,
then the degree of Re(a) < n. Consider the polynomial

s

i=1
where a = o), a® ... o™ are the algebraic conjugates of a. Certainly
Re(a) satisfies this equation, so we must verify that its coefficients are in
Q.

To prove this, we need some Galois Theory. Let f be the minimal poly-
nomial of « over Q, and let F' be the splitting field of this polynomial (i.e.,
the normal closure of Q()). Recall that f is also the minimal polynomial
of @, and so F' contains o) and @ for i = 1,... ,n. Consider the Galois
group of F, that is, all automorphisms of F' leaving (Q fixed. These auto-
morphisms permute the roots of f, which are simply the conjugates of a.
It is easy to see that the coefficients of g(z) will remain unchanged under
a permutation of the o?’s, and so they must lie in the fixed field of the
Galois group, which is Q.

Since Re(«) satisfies a polynomial with coefficients in QQ of degree n, it
follows that the minimal polynomial of Re(a) must divide this polynomial,
and so have degree less than or equal to n. This proves Liouville’s theorem
for complex algebraic numbers.

Exercise 3.3.6 Let K = Q(6) be of degree n over Q. Let wy,... ,w, be a basis
of K as a vector space over (). Show that the matrix 2 = (wi(] )) is invertible.

Exercise 3.3.7 Let a be an algebraic number. Show that there exists m € Z
such that ma is an algebraic integer.

Exercise 3.3.8 Show that Z[z] is not (a) Euclidean or (b) a PID.
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The following theorem gives several characterizations of algebraic inte-
gers. Of these, (¢) and (d) are the most useful for they supply us with an
immediate tool to test whether a given number is an algebraic integer or
not.

Theorem 3.3.9 Prove that the following statements are equivalent:

(a) « is an algebraic integer.

(b) The minimal polynomial of o is monic € Z[x].

(¢) Za] is a finitely generated Z-module.

(d) 3 a finitely generated Z-submodule M # {0} of C such that aM C M.

Proof. (a) = (b) Let f(z) be a monic polynomial in Z[z], f(a) = 0. Let
¢(x) be the minimal polynomial of c.

Recall the definition of primitive polynomials given in Chapter 2: a
polynomial f(z) = ana™ + - -+ ag € Z[z] is said to be primitive if the ged
of the coefficients of f is 1. In particular, a monic polynomial is primitive.
By Theorem 3.1.4, we know f(z) = ¢(x)y(x), for some ¥(x) € Q[z]. By
the proof of Theorem 2.1.10, we know we can write

b(z) = %qﬁl(x), 1 (x) primitive, a,b € Z,  ¢1(x) € Z[z],
W) = 2% (z), v1(z) primitive, c,d € Z, 1 (z) € Z[z].

So b df (z) = acey (z)y1(z). But by Gauss’ lemma (see Theorem 2.1.9),
¢1(z)t1(x) is primitive, and f(z) is primitive, so bd = %ac and f(z) =
+¢1(x)t1 (). Thus the leading term of both ¢1(x) and 41 (z) is £1. Fur-
ther, ¢(a) = 0 = ¢1(a) = 0. So in fact ¢(x) = t¢1(x) which is monic in
Zlx].

(b) = (¢) Let ¢(z) = 2" + @n—12" 1 + - -- + ag € Z[z] be the minimal
polynomial of a. Recall Z[a] = {f(e) : f(z) € Z[z]}. In order to prove (c),
it is enough to find a finite basis for Z[a].

Claim: {1,a,... ,a" 1} generates Z[a] (as a Z-module).
Proof: It suffices to show that o, for any N € Z7, is a linear combi-
nation of {1,q,...,a" !} with coefficients in Z. We proceed inductively.

Clearly this holds for N < n—1. For N > n, suppose this holds Yo/, j < N.

aN — aN—nan

= oV "[—(ap+ara+ -+ an_10" )]
(—aN"ag)l + (¥ a)a 4 -+ (VN a1 )™ L

By our inductive hypothesis, —a™ "a; € Z[a] Vi = 0,1,...,n— 1.
Then Z[e] is a Z-module generated by {1,a,...,a™ 1}.
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(c) = (d) Let M = Z[a]. Clearly aZ[a] C Z[a].
(d) = (a) Let z1,...,x, generate M over Z. So M C Zzy + - - - + Zzx,.

By assumption ax; € M Vi=1,...,r. It follows that there exists a set of
cij € Z such that az; = Z;Ll cijz;¥i =1,...,r. Let C = (c;;). Then
T z1
C =« ,
Z, Z,
T
« (C—al)| : | =0.
T,
Since not all of x1,... ,z, can vanish, det(C — al) = 0. In other words,
Ci1 — & C12 ce Cin
C21 Co2 —Z - Con

=0 when z=c.

Cnl Cn2 tt Cpp — X

This is a polynomial equation in Z[z] of degree n whose leading coefficient
is (—1)". Take

@) = det(C — zI) for n even,
| —det(C —zI) for n odd.

Then f(z) is a monic polynomial in Z[z] such that f(«) = 0. Thus « is an
algebraic integer. u]

Example 3.3.10 Let K be an algebraic number field. Let Og be the set
of all algebraic integers in K. Show that O is a ring.

Solution. From the above theorem, we know that for «, (, algebraic
_integers, Z[a], Z[0] are finitely generated Z-modules. Thus M = Z[a, §] is
> also a finitely generated Z-module. Moreover,

(a+B)M C M,

and

(@B)M C M.

So a + # and af are algebraic integers; i.e., « £ 8 and af are in Og. So
Ok is a ring.

Exercise 3.3.11 Let f(z) = 2" + @n-12" "' 4+ .- + a1z + ao, and assume that
for p prime p | a; for 0 < i < k and p® { ao. Show that f(x) has an irreducible
factor of degree at least k. (The case k = n is referred to as Eisenstein’s criterion
for irreducibility.)
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Exercise 3.3.12 Show that f(z) = z° + 2* + 32% + 92% + 3 is irreducible over
Q.

3.4 Supplementary Problems
Exercise 3.4.1 Show that

1

2 o
is transcendental for @ € Z,a > 2.

Exercise 3.4.2 Show that

is transcendental for a € Z,a > 2.

Exercise 3.4.3 Show that

o0
g af(m)

m —f(n—}—l) > 2

n-»o0 f(n)

is transcendental when

Exercise 3.4.4 Prove that f(z) = 2° + 72® — 122® + 62 + 2 is irreducible over
Q.

Exercise 3.4.5 Using Thue’s theorem, show that f(x,y) = x%+ 725y —122%y* +
62> + 8y® = m has only a finite number of solutions for m € Z*.

Exercise 3.4.6 Let (, be a primitive mth root of unity. Show that

I @ -¢)=y™tmm
0<i,j<m~—1
i£]

Exercise 3.4.7 Let _
on@) = [ @-Ch)
1<i<m
(i,m)=1
denote the mth cyclotomic polynomial. Prove that

" 1= H¢d($)

dlm
Exercise 3.4.8 Show that ¢m(z) € Z[z].

Exercise 3.4.9 Show that ¢n,(x) is irreducible in Q[z] for every m > 1.
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Exercise 3.4.10 Let I be a subset of the positive integers < m which are coprime

to m. Set .
f@) =[] -
el
Suppose that f(¢m) = 0 and f(¢5,) # O for some prime p. Show that p | m. (This
observation gives an alternative proof for the irreducibility of ¢m(z).)

Exercise 3.4.11 Consider the equation z3 4 322y +zy? 4+ y® = m. Using Thue’s
theorem, deduce that there are only finitely many integral solutions to this equa-~
tion.

Exercise 3.4.12 Assume that n is an odd integer, n > 3. Show that z"+y" = m
has only finitely many integral solutions.

Exercise 3.4.13 Let (;» denote a primitive mth root of unity. Show that Q({m)
is normal over Q.

Exercise 3.4.14 Let a be squarefree and greater than 1, and let p be prime.
Show that the normal closure of Q(a/?) is Q(al/?,¢,).






Chapter 4

Integral Bases

In this chapter, we look more closely at the algebraic structure of O, the
ring of integers of an algebraic number field K. In particular, we show that
Ok is always a finitely generated Z-module admitting a Q-basis for K as a
generating set (where K is viewed as a Q-vector space). We will define the
trace and norm of an element of any number field. We will also define an
important invariant of a number field called the discriminant which arises
in many calculations within the number field. Finally, ideals in the ring of
integers of a number field will be briefly discussed at the end of the chapter.

4.1 The Norm and the Trace

We begin by defining two important rational numbers associated with an
element of an algebraic number field K. Recall that if K is an algebraic
number field, then K can be viewed as a finite-dimensional vector space over
Q. Then if @ € K, the map from K to K defined by ®,, : v — av defines a
linear operator on K. We define the trace of o by Trg(a) := Tr(®,) and
the norm of a by Nk (a) := det(®,,) (where Tr and det are the usual trace
and determinant of a linear map). We sometimes also use the notation
Trg /g for Trx and Ng/q for Ng.

Thus, to find Trx (), we choose any Q-basis wy,wa, ... ,w, of K and
write

aw; = E AjW; VZ,

so Trx () = TrA and Nk (o) = det A where A is the matrix (a;;).

Lemma 4.1.1 If K is an algebraic number field of degree n over Q, and
a € O 1ts ring of integers, then Trg(a) and Nk (a) are in Z.

41
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Proof. We begin by writing aw; = Y., a;jw; Vi. Then we have

j=1

n

a®)y Z agw(? Vi k

where a(*) is the kth conjugate of o. We rewrite the above by introducing
the Kronecker delta function to get

n n
E 5jka(] E a”w ),
j=1 =1

where §;; = {(1) li v# 3, Now, if we define the matrices
ifi=j.

Ao = (aP5y), =), A= (ay),

the preceding statement tells us that QA4 = AQ or A4g = Q7 1AQ, so we
conclude that TrA = TrAj and det A = det Ag. But TrAyp is just the sum
of the conjugates of « and is thus (up to sign) the coefficient of the z™~1
term in the minimal polynomial for «a; similarly, det Ag is just the product
of the conjugates of o and is thus equal (up to sign) to the constant term
in the minimal polynomial for . Thus Trx(a) and Ng(a) arein Z. O

Exercise 4.1.2 Let K = Q(7). Show that i € Ok and verify that Trg (i) and
Nx (¢) are integers.

Exercise 4.1.3 Determine the algebraic integers of K = Q(+/-5).

Given an algebraic number field K and wy,ws, ... ,w, a Q-basis for K,
consider the correspondence from K to M,(Q) given by a — (a;;) where
w; = Y. a;;w;j. This is readily seen to give a homomorphism from K to
M, (Q). From this we can deduce that Trg(-) is in fact a Q-linear map
from K to Q.

Lemma 4.1.4 The bilinear pairing given by B(x,y) : K x K — Q such
that (z,y) — Trx(xy) is nondegenerate.

Proof. We recall that if V is a finite-dimensional vector space over a field
F with basis e1,€2,...,e, and B : V x V — F'is a bilinear map, we can
associate a matrix to B as follows. Write

v o= Zaiei with a; € F,
u = Zbiei with b; € F.
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Then

B(v,u) = ZB(aiei,u)
= ZaiB(e,-,u)

i

Z a,-bjB(e,-, ej)

1,7

and we associate to B the matrix (B(e;, e;)). B is said to be nondegenerate
if the matrix associated to it is nonsingular. This definition is independent
of the choice of basis (see Exercise 4.1.5 below).

Now, if wy,ws, ... ,wy is a Q-basis for K, then the matrix associated to
B(z,y) with respect to this basis is just

(B(wi,w;)) = (Trx (wiw;)),
) — (k) (k)
but Try (wiw;) = 3w, 'w; " and thus we see that
(B(ws, wy)) = 0T,

where  is nonsingular because wi,ws, ... ,wy, form a basis for K. Thus
B(z,y) is indeed nondegenerate. a

Exercise 4.1.5 Show that the definition of nondegeneracy above is independent
of the choice of basis.

4.2 Existence of an Integral Basis

Let K be an algebraic number field of degree n over QQ, and O its ring of
integers. We say that wy,was,... ,w, is an integral basis for K if w; € O
for all ¢, and O = Zwy + Zwa + - -+ + Zwy,.

Exercise 4.2.1 Show that Jw],w3,... ,w; € K such that

Ok C Zwi 4+ Zw; + -+ + Zwy,.

Theorem 4.2.2 Let a,09,...,a, be a set of generators for a finitely
generated Z-module M, and let N be a submodule.

(a') 3617 527 e 76777, in N 'thh m S n such that
N=27ZB+Z8s+ -+ ZBm
and 6’i = ZjZ’ipijaj with 1 < 3 <m and Dij eZ.

(b) If m=n, then [M : N| = p11pa2- - Pun.



44 CHAPTER 4. INTEGRAL BASES

Proof. (a) We will proceed by induction on the number of generators of
a Z-module. This is trivial when n = 0. We can assume that we have
proved the above statement to be true for all Z-modules with n — 1 or
fewer generators, and proceed to prove it for n. We define M’ to be the
submodule generated by as,as, ... ,ay, over Z, and define N’ to be NN M'.
Now, if n = 1, then M’ = 0 and there is nothing to prove. If N = N’, then
the statement is true by our induction hypothesis.

So we assume that N # N’ and consider A, the set of all integers k
such that Jks, ks, ..., k, with kag + koas + -+ - + kpap, € N. Since N is a
submodule, we deduce that A is a subgroup of Z. All additive subgroups
of Z are of the form mZ for some integer m, and so A = k11Z for some k1.
Then let 81 = kyja1 + kigas + -+ + ki, € N. If we have some « € N,

then
n
o = Z h,-a,-,
i=1

with h; € Z and hy € A so hy = akyy. Therefore, o — a3, € N'. By the
induction hypothesis, there exist
Bi= kijaj,
Jj>i
i=2,3...,m, which generate N’ over Z and which satisfy all the conditions
above. It is clear that adding (5, to this list gives us a set of generators of

N.
(b) Consider a, an arbitrary element of M. Then o = ¢;¢;. Recalling

that
Bi = pijey,
jzi
we write ¢; = p1191 + 71, with 0 < r < P11- Then o — qlﬂl = cha,-
where 0 < ¢| < p11- Note that @« = a — 181 (mod N). Next we write
ch = Paaqa + T2, where 0 < 13 < pag, and note that

a=a—qf —gf2 (mod N).

It is clear by induction that we can continue this process to arrive at an
expression o =3 k;a; with 0 < k; < p;; and a = o (mod N).

It remains only to show that if we have « = > ¢cja; and 8 = > diey
where ¢; # d; for at least one 7 and 0 < ¢;,d; < pj;, then a and 3 are
distinct mod N. Suppose that this is not true, and that

Z C;i0y = Z d,-a,- (mod N),

where ¢; # d; for at least one i. Suppose ¢; = d; for i < r and ¢, # d,.
Then Y (¢; — d;)a; € N, so

Z(ci —di)o; = Z ki3 = Z ki Zpijaj

27 i>r i>r j>i
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Since ¢, d, are both less than p,.., we have ¢, = d,., a contradiction. Thus,
each coset in M/N has a unique representative

o = E CiQy,

with 0 < ¢; < pj;, and there are p1i1pag- - - Pnn of them. So [M : N| =
P11P22 * * * Pnn- a

Exercise 4.2.3 Show that Ok has an integral basis.

Exercise 4.2.4 Show that det(Tr(w;w;)) is independent of the choice of integral
basis.

We are justified now in making the following definition. If K is an
algebraic number field of degree n over (), define the discriminant of K as

dx = det(w)?,
where wy,ws, ... ,wy, is an integral basis for K.

Exercise 4.2.5 Show that the discriminant is well-defined. In other words, show
that given wi,wq,... ,wn and 61,02,... ,6,, two integral bases for K, we get the
same discriminant for K.

We can generalize the notion of a discriminant for arbitrary elements of
K. Let K/Q be an algebraic number field, a finite extension of Q of degree
n. Let 01,09,... ,0, be the embeddings of K. For ay,as,... ,a, € K we
can define dg/g(a1,... ,an) = [det(a,-(aj))]Q.

Exercise 4.2.6 Show that

dr/g(l,a,...,a" ") = H (oi(a) ——Uj(a))2.
i>j

We denote dg/q(1,a,... ,a"" 1) by dg/gla).

Exercise 4.2.7 Suppose that u; = >37_, aijv; with a;; € Q,v; € K. Show that
dK/@(ul, U2y e e ,un) = (det(aij))2dK/@(v1, V2, .. ,vn).

For a module M with submodule N, we can define the index of N in
M to be the number of elements in M/N, and denote this by [M : NJ.

Suppose « is an algebraic integer of degree n, generating a field K. We
define the index of o to be the index of Z+ Za + - - + Za™ ! in Ok.

Exercise 4.2.8 Let a1,a2,... ,an € Ok be linearly independent over Q. Let
N =Zay + Zaz + - -- + Zan and m = [0 : N]. Prove that

dK/@(al, Ay ..., an) = m2dK.
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4.3 Examples

Example 4.3.1 Suppose that the minimal polynomial of « is Eisensteinian
with respect to a prime p, i.e., & is a root of the polynomial

" + ap_12" L+ -+ a1z + ao,

where p | a;, 0 < i < n —1 and p? | ag. Show that the index of « is not
divisible by p.

Solution. Let M =Z + Za + - - - + Za™ 1. First observe that since
a + an_la"_l 4+ +aax+ag =0,

then o™ /p e M C Ok. Also, [Nk (a)| = ag Z 0 (mod p?).

We will proceed by contradiction. Suppose p | [Ox : M]. Then there
is an element of order p in the group Ox /M, meaning 3¢ € Ok such that
& ¢ M but pf € M. Then

pE=by+bia+ - +b,_1a™?,

where not all the b; are divisible by p, for otherwise £ € M. Let j be the
least index such that pt b;. Then

b b bj_1
n = £— (_0+_1a+...+3_1a3—1)
p p p
S D2 P BN L
p p p
is in O, since both £ and
b b,
b—0+—1a+"-+—na]_1
p p p
are in Og. A
If n € Ok, then of course na™ 71 is also in O, and
n—j—1_ 0 noq 0" n—j—2
na = ;OL + 7(1)]‘.;_1 +bjjea+ -+ by ).

Since both o™ /p and (b1 +bj 120+ +b,a™ I72) are in O, we conclude
that (b;a""1)/p € Ok.

We know from Lemma 4.1.1 that the norm of an algebraic integer is
always a rational integer, so

-1
e (er) = B
D o
b}’ag_l

pn
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must be an integer. But p does not divide b;, and p? does not divide ag, so
this is impossible. This proves that we do not have an element of order p,
and thus pt [Og : M].

Exercise 4.3.2 Let m € Z,a € Og. Prove that dx/g(a +m) = dgg(a).

Exercise 4.3.3 Let a be an algebraic integer, and let f(z) be the minimal poly-
nomial of a. If f has degree n, show that dx,q(a) = (—1)(3) [T, f/(a9).

Example 4.3.4 Let K = Q(\/ﬁ) with D a squarefree integer. Find an
integral basis for Og.

Solution. An arbitrary element « of K is of the form o = 1 + rov' D with
r1,72 € Q. Since [K : Q] = 2, a has only one conjugate: r; — r2v/D. From
Lemma 4.1.1 we know that if « is an algebraic integer, then Trx () = 2ry
and

Ng(a) = (7'1+7‘2\/5)(7'1—7‘2\/5)

= 7‘% — Drg

are both integers. We note also that since « satisfies the monic polynomial
22 — 2rz + r? — Dr3, if Trx(a) and Nk (o) are integers, then « is an
algebraic integer. If 2r; € Z where r; € Q, then the denominator of 1 can
be at most 2. We also need r? — Dr3 to be an integer, so the denominator of
r9 can be no more than 2. Then let r; = ¢1/2, 72 = ¢2/2, where ¢1,92 € Z.
The second condition amounts to

g% — Dg3

1 €Z,

which means that g2 — Dg2 = 0 (mod 4), or g? = Dg? (mod 4).
We will discuss two cases:

Case 1. D =1 (mod 4).

If D=1 (mod 4), and g = Dg2 (mod 4), then g; and g are either
both even or both odd. So if @ = 71 + oV D is an algebraic integer of
Q(v/D), then either r; and 7, are both integers, or they are both fractions
with denominator 2.

We recall from Chapter 3 that if 4 | (—D + 1), then (1 + +/D)/2 is an
algebraic integer. This suggests that we use 1, (1 + +/D)/2 as a basis; it is
clear from the discussion above that this is in fact an integral basis.

Case 2. D= 2,3 (mod 4).

If g2 = Dg? (mod 4), then both g; and g must be even. Then a basis
for Ok is 1,+/D; again it is clear that this is an integral basis.

Exercise 4.3.5 If D = 1 (mod 4), show that every integer of Q(v/D) can be
written as (a + bv/D)/2 where @ = b (mod 2).
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Example 4.3.6 Let K = Q(a) where a = r'/3, r = ab® € Z where ab is
squarefree. If 3 | r, assume that 3 | a,31 b. Find an integral basis for K.

Solution. The minimal polynomial of « is f(x) = 23 — r, and a’s con-

jugates are a,wa, and w?a where w is a primitive cube root of unity. By

Exercise 4.3.3,
3

dxq(e) =~ [[f'(@®) = =82
i=1
So —3372 = m2dg where m = [OK L+ Zo+ Za2]. We note that f(z)
is Fisensteinian for every prime divisor of ¢ so by Example 4.3.1 if p | q,
p{m. Thus if 3 | a, 27a | dk, and if 3 { a, then 3a? | dg.

We now consider 3 = o /b, which is a root of the polynomial z3 — a2b.
This polynomial is Eisensteinian for any prime which divides b. Therefore
b? | dx. We conclude that dg = —3"(ab)? wheren =3 if 3| randn =1or
3 otherwise. We will consider three cases: 7 # 1,8 (mod 9), 7 =1 (mod 9)
and r =8 (mod 9).

Case 1. If r # 1,8 (mod 9), then 73 #Z r (mod 9).

Then the polynomial (z + )3 — r is Eisensteinian with respect to the
prime 3. A root of this polynomial is o — r and dg/g{a — 7) = dg/g(a) =
—27r2. This implies that 3 {m and so m = b.

We can choose as our integral basis 1, a, &?/b, all of which are algebraic
integers. We verify that this is an integral basis by checking the index of
Z + Zo + Zao? in Z + Zo + Zo? /b, which is clearly b. Thus

2
oK:z+Za+Z%.

Case 2. If r = 1 (mod 9), then ¢ = (1 + o + @?)/3 is an algebraic
integer.
In fact, since Trx(a) = Trgx(a?) =0, then Trx(c) =1 € Z and

_Nk(l+a+ae?) Ng(®-1) (r—1)

27 ~ 2INg(a—1) 27

NK(C)

because the minimal polynomial for 1 — o is 2® + 322 + 3z + 1 — r. The
other coefficient for the minimal polynomial of ¢ is (1 — r)/3 which is an
integer. If c is in Ok, then Ok /(Z + Za + Za?) has an element of order
3, and so 3 | m. Then dg = —3(ab)?, so m = 3b. We will choose as our
integral basis a, a2 /b, ¢, noting that since

2

«
1 = 3c—a—b—
3c—«a =
a = 0+a+0,
2
o = 0+0+b>—,

b
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then Theorem 4.2.2 tells us that the index of Z+Za+Zao? in Za+Zao? /b+Zc

is 3b. Therefore ) )
1
Ok =Za+2% 47212 F
b 3

Case 3. If r =8 (mod 9), consider d = (1 — a + o?)/3.

This is an algebraic integer. Trx(d) = 1,Ng(d) = (1+7)%/27 € Z, and
the remaining coefficient for the minimal polynomial of d is (1+r)/3 € Z.
By the same reasoning as above, we conclude that 3 | m and so m = 3b.
We choose a, a? /b, d as an integral basis, noting that

2

1 = 3d+a—b%,

a = 0+a+0,
a2

a? = 0+0+b7,

so that the index of Z + Za + Za? in Za + Za? /b + Zd is 3b. We conclude
that 5 )
1—-—
Ox = Za + Z% + ZC“T’LC“

Exercise 4.3.7 Let ¢ be any primitive pth root of unity, and K = Q(¢). Show
that 1,¢,... , (P2 form an integral basis of K.

4.4 Ideals in O

At this point, we have shown that O is indeed much like Z in its algebraic
structure. It turns out that we are only halfway to the final step in our
generalization of an integer in a number field. We may think of the ideals
in O as the most general integers in K, and we remark that when this
set of ideals is endowed with the usual operations of ideal addition and
multiplication, we recover an arithmetic most like that of Z. We prove now
several properties of the ideals in Of.

Exercise 4.4.1 Let a be a nonzero ideal of Ox. Show that a NZ # {0}.
Exercise 4.4.2 Show that a has an integral basis.

Exercise 4.4.3 Show that if a is a nonzero ideal in Ok, then a has finite index
in O K-

Exercise 4.4.4 Show that every nonzero prime ideal in O i contains exactly one
integer prime.

We define the norm of a nonzero ideal in O to be its index in Ox. We
will denote the norm of an ideal by N(a).
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Exercise 4.4.5 Let a be an integral ideal with basis a1,... ,an. Show that

[det(a)]? = (Na)?dx.

4.5 Supplementary Problems

Exercise 4.5.1 Let K be an algebraic number field. Show that dx € Z.

Exercise 4.5.2 Let K/Q be an algebraic number field of degree n. Show that
dx =0or 1 (mod 4). This is known as Stickelberger’s criterion.

Exercise 4.5.3 Let f(z) = 2" + an—12™ "' + --- + a1z + ao with (a; € Z) be
the minimal polynomial of . Let K = Q(6). If for each prime p such that
p? | dx/o(0) we have f(z) Eisensteinian with respect to p, show that Ox = Z[d)].

Exercise 4.5.4 If the minimal polynomial of « is f(z) = 2" + az + b, show that
for K = Q(a),

dxja(@) = (-D@ (@6 + a1 -,
Exercise 4.5.5 Determine an integral basis for K = Q(8) where 6> +20+1 = 0.

Exercise 4.5.6 (Dedekind) Let K = Q() where 8> — 6* — 20 — 8 =0.
(a) Show that f(z) = z> — 2* ~ 2z — 8 is irreducible over Q.

(b) Consider 3 = (6% + 6)/2. Show that 3* — 33° — 108 — 8 = 0. Hence 3 is
integral.

(C) Show that dK/Q(O) = —4(503), and dK/Q(l, 0, ﬁ) = —503. Deduce that 1, o,ﬁ
is a Z-basis of Ok.

(d) Show that every integer x of K has an even discriminant.
(e) Deduce that Ok has no integral basis of the form Z[o].

Exercise 4.5.7 Let m = p®, with p prime and K = Q(¢m). Show that
(1= m)*™ = pOx.

Exercise 4.5.8 Let m = p°, with p prime, and K = Q({m). Show that

(_1)«P(m)/2m~p(m)

drjaln) = =

Exercise 4.5.9 Let m = p®, with p prime. Show that {1,{m,... ,Qﬁ(m)_l} is
an integral basis for the ring of integers of K = Q(¢m)-

Exercise 4.5.10 Let K = Q(() where m = p®. Show that

(_1)«P(m)/2m~p(m)

dK = pm/P
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Exercise 4.5.11 Show that Z[¢, + {;'] is the ring of integers of Q(¢n + ¢ %),

where {, denotes a primitive nth root of unity, and n = p.

Exercise 4.5.12 Let K and L be algebraic number fields of degree m and n,
respectively, over Q. Let d = ged(dx,dr). Show that if [KL : Q] = mn, then
Okr C1/dOKOL.

Exercise 4.5.13 Let K and L be algebraic number fields of degree m and n,
respectively, with gcd(dx,dr) = 1. If {ou, ... , am} is an integral basis of Ox and
{B1,... .5} is an integral basis of O, show that Ok has an integral basis {a;3;}
given that [KL : Q] = mn. (In a later chapter, we will see that ged{dk,dr) =1
implies that [KL : Q] = mn.)

Exercise 4.5.14 Find an integral basis for Q(v/2, v/—3).

Exercise 4.5.15 Let p and q be distinct primes =1 (mod 4). Let K = Q(,/p),
L = Q(y/q). Find a Z-basis for Q(,/p, \/q).

Exercise 4.5.16 Let K be an algebraic number field of degree n over Q. Let
ai,...,an € Ok be linearly independent over Q. Set

A= dK/Q(al, e ,an).

Show that if a € Ok, then Aa € Z[a1,. .. ,an].

Exercise 4.5.17 (Explicit Construction of Integral Bases) Suppose K is
an algebraic number field of degree n over Q. Let a1,...,an € Ok be linearly
independent over Q and set

A= dK/Q(al, e ,an).

For each i, choose the least natural number d;; so that for some di; € Z, the
number

Wy = A_l Zdijaj € Ok.
Jj=1
Show that wi, ... ,wn is an integral basis of Ok.

Exercise 4.5.18 If K is an algebraic number field of degree n over Q and
ai,...,an € Ok are linearly independent over Q, then there is an integral basis
wi, ..., wn of O such that

aj = cpwr + -+ Cjwy,

c; €Z,j=1,...,n.

Exercise 4.5.19 If Q C K C L and K, L are algebraic number fields, show that
di | dp.
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Exercise 4.5.20 (The Sign of the Discriminant) Suppose K is a number
field with r; real embeddings and 2r; complex embeddings so that

r+2re=[K:Q=n
(say). Show that dx has sign (—1)"2.

Exercise 4.5.21 Show that only finitely many imaginary quadratic fields K are
Euclidean.

Exercise 4.5.22 Show that Z[(1 + +/—19)/2] is not Euclidean. (Recall that in
Exercise 2.5.6 we showed this ring is not Euclidean for the norm map.)

Exercise 4.5.23 (a) Let A = (a;;) be an m X m matrix, B = (b;;) an n X n
matrix. We define the (Kronecker) tensor product A® B to be the mn x mn
matrix obtained as

Abin Abz -+ Abin
Abay  Abyy  ---  Abag
: : : ’
Abnl Abn2 M Abnn
where each block Ab;; has the form
aitby;  ai2by; - Gimby;
a21bi;  agebi; -+ aambij
amlbij am2b'ij ctT ammbz’j

If C and D are m x m and n x n matrices, respectively, show that
(A® B)(C® D) = (AC) ® (BD).
(b) Prove that det(A ® B) = (det A)"(det B)™.

Exercise 4.5.24 Let K and L be algebraic number fields of degree m and n,
respectively, with ged(dg,dr) = 1. Show that

drxr =dy - dT.
If we set log [da|
S(M) = B 1oM
( ) [M:Q]’

deduce that 6(K'L) = 6(K) + 6(L) whenever ged(dk,dr) = 1.

Exercise 4.5.25 Let (,, denote a primitive mth root of unity and let K =
Q(¢m)- Show that Ok = Z[(m] and

(=1)Pm) ()
= L PP D

Exercise 4.5.26 Let K be an algebraic number field. Suppose that § € Ok is
such that dx,q(0) is squarefree. Show that Ox = Z[6].

dx



Chapter 5

Dedekind Domains

5.1 Integral Closure

The notion of a Dedekind domain is the concept we need in order to estab-
lish the unique factorization of ideals as a product of prime ideals. En route
to this goal, we will also meet the fundamental idea of a Noetherian ring.
It turns out that Dedekind domains can be studied in the wider context of
Noetherian rings. Even though a theory of factorization of ideals can also
be established for Noetherian rings, we do not pursue it here.

Exercise 5.1.1 Show that a nonzero commutative ring R with identity is a field
if and only if it has no nontrivial ideals.

Theorem 5.1.2 Let R be a commutative ring with identity. Then:
(a) m is a mazimal ideal if and only if R/m is a field.
(b) p is a prime ideal if and only if R/p is an integral domain.

(c) Let a and b be ideals of R. If p is a prime ideal containing ab, then
poaorp2b.

(d) If p is a prime ideal containing the product ajay - - - a, of r ideals of R,
then p D a;, for some i.

Proof. (a) By the correspondence between ideals of R containing m and
ideals of R/m, R/m has a nontrivial ideal if and only if there is an ideal a
of R strictly between m and R. Thus,

m is maximal,
< R/m has no nontrivial ideals,

&  R/mis a field.

53
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(b) p is a prime ideal

abep=>acporbcp,
ab+p=0+pinR/fp=>a+p=0+pordb+p=0+pin R/p,
R/p has no zero-divisors,

I A

R/p is an integral domain.

(c) Suppose that p D ab, p 2 a. Let a € a, a ¢ p. We know that ab € p
for all b € b since ab C p. But, a ¢ p. Thus, b € p for all b € b, since p is
prime. Thus, b C p.

(d) (By induction on r). The base case r = 1 is trivial. Suppose r > 1
and p 2 ajdz---a-. Then from part (c), p 2 ayaz2---a,_; or p 2 a,. If
© O aids---ar_), then the induction hypothesis implies that © O a; for
some ¢ € {1,... ,r — 1}. In either case, p D a; for some i € {1,... ,7}. O

Exercise 5.1.3 Show that a finite integral domain is a field.

Exercise 5.1.4 Show that every nonzero prime ideal g of Ok is maximal.

Let R be an integral domain. We can always find a field containing R.
As an example of such a field, take Q(R) := {[a,b] : a,b € R,b # 0} such
that we identify elements [a,b] and [¢,d] if ad — bc = 0. We define addition
and multiplication on Q(R) by the following rules: [a,b] - [¢,d] = [ac, bd]
and [a,b] + [c,d] = [ad + bc, bd).

We can show that this makes Q(R) into a commutative ring with [a, ] «
[b,a] =1, for a,b # 0, so that any nonzero element is invertible (i.e., Q{R)
is a field). It contains R in the sense that the map taking a to [a,1] is a
one-to-one homomorphism from R into Q(R). The field Q(R) is called the
quotient field of R. We will usually write a/b rather than [a, b].

For any field L containing R, we say that a € L is integral over R if o
satisfies a monic polynomial equation f(a) = 0 with f(z) € R[x].

R is said to be integrally closed if every element in the quotient field of
R which is integral over R, already lies in R.

Exercise 5.1.5 Show that every unique factorization domain is integrally closed.
Theorem 5.1.6 For o € C, the following are equivalent:

(1) « s integral over O;

(2) Okla] is a finitely generated O i -module;

(3) There is a finitely generated O g-module M C C such that aM C M.

Proof. (1) = (2) Let a € C be integral over Og. Say « satisfies a monic
polynomial of degree n over O. Then

Okle] = Ok + Oga+Oka® + -+ Oga™!
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and so is a finitely generated Og-module.

(2) = (3) Certainly, aOk[a] C Okla], so if Ok[a] is a finitely generated
Ox-module, then (3) is satisfied with M = Ok[a].

(3) = (1) Let ug,ug,. .. ,u, generate M as an Ox-module. Then au; €
M foralli=1,2,... ,n since aM C M. Let

n
aU; = Zai]”u]‘
j=1
forie {1,2,... ,n}, a;; € Og. Let A= (a;;), B=al, — A= (bi;). Then

n n
Y obiu; = Y (aby —aisuy
j=1

j=1
n
= au; — Zai]”u]'
j=1
= 0 forall .

Thus, B(u,uz, . yus)’ = (0,0,...,0)". But
(0,0,... ,O)T # (u1,ug,... ,un)T e C™.

Thus, det(B) = 0. But, the determinant of B is a monic polynomial in
Okla], so a is integral over Ok. m

Note that this theorem, and its proof, were exactly the same as Theo-
rem 3.3.9, with Ok replacing Z.

Theorem 5.1.7 O is integrally closed.
Proof. If a € K is integral over Ok, then let
M=0gu; +--+0Ogu,, oMCM.
Let O = Zvy +- - -+Zv,,, where {v1,... ,v,,} is a basis for K over Q. Then

M =37, 5% Zvgu; is a finitely generated Z-module with oM C M, so
o is integral over Z. By definition, o € Og. O

5.2 Characterizing Dedekind Domains

A ring is called Noetherian if every ascending chain a; C as Cag C --- of
ideals terminates, i.e., if there exists n such that a, = a,4% for all £ > 0.

Exercise 5.2.1 If a C b are ideals of Ox, show that N(a) > N(b).
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Exercise 5.2.2 Show that O is Noetherian.

Theorem 5.2.3 For any commutative ring R with identity, the following
are equivalent:

(1) R is Noetherian;
(2) every nonempty set of ideals contains a mazimal element; and
(3) every ideal of R is finitely generated.

Proof. (1) = (2) Suppose that S is a nonempty set of ideals of R that
does not contain a maximal element. Let a; € S. a; is not maximal in
S, so there is an a; € S with a; € az. ag is not a maximal element of S,
so there exists an a3 € S with a; € a2 C a3. Continuing in this way, we
find an infinite ascending chain of ideals of R. This contradicts R being
Noetherian, so every nonempty set of ideals contains a maximal element.

(2) = (3) Let b be an ideal of R. Let A be the set of ideals contained
in b which are finitely generated. A is nonempty, since (0) € A. Thus, A
has a maximal element, say a = (z1,...,2Z,). If a # b, then Iz € b\a.
But then a + (z) = (z1,%2,... ,Zn,z) is a larger finitely generated ideal
contained in b, contradicting the maximality of b. Thus, b = a, so b is
finitely generated. Thus, every ideal of R is finitely generated.

(3) = (1) Let a; € a3 C a3 C --+ be an ascending chain of ideals of
R. Then a = U;‘il a; is also an ideal of R, and so is finitely generated, say

a=(x1,...,Zn). Then 1 € a;,,...,2, € ;. Let m = max(i1,... ,in).
Then a C a,,, so a = a,,. Thus, a,, = dm+1 = ---, and the chain does
terminate. Thus, R is Noetherian. a

Thus, we have proved that:
(1) Ok is integrally closed;
(2) every nonzero prime ideal of O is maximal; and
(3) Ok is Noetherian.
A commutative integral domain which satisfies these three conditions

is called a Dedekind domain. We have thus seen that Og is a Dedekind
domain.

Exercise 5.2.4 Show that any principal ideal domain is a Dedekind domain.

Exercise 5.2.5 Show that Z[/—5] is a Dedekind domain, but not a principal
ideal domain.
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5.3 Fractional Ideals and Unique Factoriza-
tion

Our next goal is to show that, in O g, every ideal can be written as a product
of prime ideals uniquely. In fact, this is true in any Dedekind domain.

A fractional ideal A of Ok is an Og-module contained in K such that
there exists m € Z with mA C Og. Of course, any ideal of Ok is a
fractional ideal by taking m = 1.

Exercise 5.3.1 Show that any fractional ideal is finitely generated as an Ox-
module.

Exercise 5.3.2 Show that the sum and product of two fractional ideals are again
fractional ideals.

Lemma 5.3.3 Any proper ideal of O contains a product of nonzero prime
ideals.

Proof. Let S be the set of all proper ideals of O that do not contain a
product of prime ideals. We need to show that S is empty. If not, then
since Ok is Noetherian, S has a maximal element, say a. Then, a is not
prime since a € S, so there exist a,b € Og, withab € a, a ¢ a, b ¢ a.
Then, (a,a) 2 a, (a,b) 2 a. Thus, (a,a) ¢ S, (a,b) ¢ S, by the maximality
of a.

Thus, (a,a) 2 p1---p, and (a,b) D @} - - - g, with the p; and p non-
zero prime ideals. But ab € a, so (a,ab) = a.

Thus, a = (a,ab) 2 (a,a)(a,b) 2 p1--- prE} - - - ©,. Therefore a contains
a product of prime ideals. This contradicts a being in §, so S must actually
be empty.

Thus, any proper ideal of O contains a product of nonzero prime ideals.

O

Lemma 5.3.4 Let p be a prime ideal of Ok . There ezists z € K, z ¢ Ok,
such that zp C Of.

Proof. Take z € p. From the previous lemma, () = Ok contains a
product of prime ideals. Let r be the least integer such that (z) contains
a product of r prime ideals, and say (z) 2 g1 - - - pr, with the p; nonzero
prime ideals.

Since p D p1 - Pr, P 2 @i, for some ¢, from Theorem 5.1.2 (d). With-
out loss of generality, we can assume that ¢ = 1, s0 p D p;. But p; is a
nonzero prime ideal of O, and so is maximal. Thus, p = p;.
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Now, ps---pr € (), since r was chosen to be minimal. Choose an
element b € py--- p,, b ¢ 2O0k. Then

brto=bzlp; C (p2---pr)(c 1)
= ‘T—l(pl"'pr)
- .’E_l.rOK
= Og.

Put z = bz~!. Then zp C Ok. Now, if z were in Ok, we would have
bx~! € Ok, and so b € zOg. But this is not the case, so 2 ¢ Og. Thus,
we have found 2z € K,z ¢ O with zp C Og. |

Let p be a prime ideal. Define
p‘lz{xeK:achOK}.
Lemma 5.3.4 implies, in particular, that p~! # O.

1

Theorem 5.3.5 Let p be a prime ideal of Ox. Then p= is a fractional

ideal and pp‘l =0k.

Proof. It is easily seen that p~! is an O g-module. Now, pNZ # (0), from
Exercise 4.4.1, so let n € pNZ, n# 0. Then, np=! C pp~! C O, by
definition. Thus, ! is a fractional ideal.

It remains to show that pp~' = Ok. Since 1 € p~1, p C pp~! C Ok.
pp ! is an ideal of O, since it is an O -module contained in Q. But p
is maximal, so either pp~! = O, in which case we are done, or pp~! = p.

Suppose that pp~! = p. Then 2p C p Vz € p~!. Since p is a finitely
generated Z-module (from Exercise 4.4.2), x € Ok for all z € p~!, by
Theorem 5.1.6. Thus, p~! C Og. But 1 € p~!, so p~! = Ok. From the
comments above, and by the previous lemma, we know this is not true, so

pp~! # p. Thus, pp~* = O. =

1

Theorem 5.3.6 Any ideal of O can be written as a product of prime
ideals uniquely.

Proof.
Existence. Let S be the set of ideals of O that cannot be written as
a product of prime ideals. If S is nonempty, then S has a maximal element,
since Ok is Noetherian. Let a be a maximal element of S. Then a C g for
some maximal ideal g, since Qg is Noetherian. Recall that every maximal
ideal of O is prime. Since a € S, a # p and therefore a is not prime.
Consider p~la. p~la C p~lp= Ok. Since a ¢ p,

plaC pTtp =0k,
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since for any z € p\a,

plrCpla = zeppla=0ga=a,
which is not true. Thus, p~'a is a proper ideal of Ok, and contains a
properly since p~! contains Ok properly. Thus, p~'a ¢ S, since a is a
maximal element of S. Thus, p~'a = p; - -- p,, for some prime ideals ;.
Then, pp~la= pp; - pr, s0a=ppla=ppi---p, Butthena ¢ S, a
contradiction.

Thus, S is empty, so every ideal of Qg can be written as a product of

prime ideals.

Uniqueness. Suppose that a = g1 -- - p, = p] - - - P} are two factoriza-
tions of a as a product of prime ideals.

Then, ) 2 Pl ---p. = o1 pr, 50 P 2 g, for some 7, say p| 2 p1.
But p; is maximal, so p] = p;. Thus, multiplying both sides by (g})™!
and cancelling using (p}) 1p] = Ok, we obtain

Thus, continuing in this way, we see that » = s and the primes are unique
up to reordering. a

It is possible to show that any integral domain in which every non-zero
ideal can be factored as a product of prime ideals is necessarily a Dedekind
domain. We refer the reader to p. 82 of [Mat] for the details of the proof.
This fact gives us an interesting characterization of Dedekind domains.

When p and g’ are prime ideals, we will write p/gp’ for (p')"1p. We

ill al it
will also write 0102 B

PLos 0%
to mean (p]) " (p5) "1 (ph) Tp1p2 - pr-

Exercise 5.3.7 Show that any fractional ideal A can be written uniquely in the

form
@1 O

P 0
where the p; and p; may be repeated, but no p; = .

Exercise 5.83.8 Show that, given any fractional ideal A # 0 in K, there exists a
fractional ideal .A~! such that 447! = Ok.

For a and b ideals of Ok, we say a divides b (denoted a | b), if a D b.

Exercise 5.3.9 Show that if a and b are ideals of O, then b | a if and only if
there is an ideal ¢ of Ox with a = bc.

Define 0 to be the greatest common divisor of a, b if:
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(i) | aand ? | b; and
(i) elaande|b=e|d.

Denote 2 by ged(a, b).
Similarly, define m to be the least common multiple of a, b if:

(i) a|mand b | m; and
(i) alnand b|n=m|n.

Denote m by lem(a, b).

In the next two exercises, we establish the existence (and uniqueness)
of the ged and lem of two ideals of Of.

Let a = H:=1 P, b= H:=1 p{", with e;, f; € Z>¢.
Exercise 5.3.10 Show that ged(a, b) = a + b = [J7_, (%),

i=1 0%

Exercise 5.3.11 Show that lem(a, b) = anb = [[[_, o),

i

Exercise 5.3.12 Suppose a, b, ¢ are ideals of Ox. Show that if ab = ¢ and
ged{a,b) = 1, then a = 99 and b = ¢ for some ideals ? and ¢ of Ox. (This
generalizes Exercise 1.2.1.)

Theorem 5.3.13 (Chinese Remainder Theorem) (a) Leta, b be ide-
als so that ged(a,b) =1, i.e., a+b = 0. Given a,b € Ok, we can
solve

a (mod a),
b (mod b).

(b) Let p1,... ,p- ber distinct prime ideals in Og. Given a; € Ok, e; €
Zq, Iz such that x = a; (mod p7*) for alli e {1,... ,r}.

Proof. (a) Since a+b = Ok, Jz1 € 0, 22 € b with 21 + 2 = 1. Let
z =bzy +axs = ary (mod a). But, 2 =1 —2; =1 (mod a). Thus, we
have found an z such that * = a (mod a). Similarly, x = b (mod b).

(b) We proceed by induction on r. If r = 1, there is nothing to show.

Suppose 7 > 1, and that we can solve z = a; (mod p{*) fori=1,... ,r—1,
say a = a; (mod p;*) for i =1,...,r — 1. From part (a), we can solve

z = a(mod pf---pr ),

z = ar (mod pir).
Then z — a; € p5' - 77", £ =a, (mod pg). Thus, z — a; € P§* Vi, ie.,
z = a; (mod pi) Vi. O

We define the order of a in p by ord,(a) =t if p | a and p'*! {a.
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Exercise 5.3.14 Show that ord,(ab) = ordg(a) + ordg(b), where p is a prime
ideal.

Exercise 5.3.15 Show that, for o # 0 in Ox, N((a)) = |Nk(a)|.

Theorem 5.3.16 (a) Ifa=[]._; ©*, then
a) =[] N(e5)
i=1

(b) Ox/p = p*~t/p°, and
N(p) = (N(p))°
for any integer e > 0.

Proof. (a) Consider the map

¢: 0 —> él(OK/Pfi),
r — (z1,...,Zs),

where ; = z (mod p;*).

The function ¢ is surjective by the Chinese Remainder Theorem, and ¢
is a homomorphism since each of the r components £ — z; (mod pS*) is
a homomorphism.

Next, we show by induction that (,_; p5* = [I;_, pi*. The base case
r = 1 is trivial. Suppose r > 1, and that the result is true for numbers
smaller than r.

Mo = lcm(ﬂpz,pr>
i=1
= lcm<]—[pz,pr)
= prt
=1

Thus, ker(¢) = ,_; p§* = [1;_, p;*, which implies that
Ok /o~ &(0k/p5")-

Hence, N(a) = [T._, N(p5*).
(b) Since p°¢ ¢ p°!, we can find an element o € p*~1/p°, so that
ordy,(a) = e — 1. Then p° C (a) + p° C p°~'. So p°! | (@) + p°. But
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() +p° # p°, so p°~! = (a) + p®, by unique factorization. Define the map
é: O — p°1/p° by ¢(y) = ya + p°. This is clearly a homomorphism
and is surjective since p°~! = (a) + p°.

Now,

7 € ker(¢)

tet o0

Thus, Ok /p ~ p¢=!/p°. Also,

(Ox/p°)/(p°/p°) = Ok /o™

e—1

since the map from Oy /p° to O /p° ! taking z + p° to z + p is a
surjective homomorphism with kernel p¢~!/p®. Thus,

N(p®) = 0x/p°| = [0k/p* | |9 /¢"]
= N )N(p)
= N(p)* 'N(p) by the induction hypothesis
— Ny 0

Thus, the norm function is multiplicative. Also, we can extend the
definition of norm to fractional ideals, in the following way. Since any
fractional ideal can be written uniquely in the form ab~! where a,b are
ideals of Ok, we can put

Let O = Zw;i + --- + Zw,. Then, if p is a prime number, we have
pOk = Zpw;y + - - - + Zpwy, and so N((p)) = p", where n = [K : Q].

Exercise 5.3.17 If we write pOQ x as its prime factorization,
POk = pi" - 94’

show that N(g;) is a power of p and that if N(p;) = p{i, Y jefi=n.
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5.4 Dedekind’s Theorem

The number e; found in the previous exercise is called the ramification
degree of p;. (We sometimes write e, for e;.) We say the prime number p
ramifies in K if some e; > 2. If all the f;’s are 1, we say p splits completely.

Our next goal is to show Dedekind’s Theorem: If p is a prime number
that ramifies in K, then p | dx. Recall that dx = det(Tr(w;w;)), where
w1,-.. ,wn is any integral basis for Og.

Let D! ={z € K : Tr(z0k) C Z}.

Exercise 5.4.1 Show that D~! is a fractional ideal of K and find an integral
basis.

Exercise 5.4.2 Let D be the fractional ideal inverse of D~'. We call D the
different of K. Show that D is an ideal of O k.

Theorem 5.4.3 Let D be the different of an algebraic number field K.
Then N(D) = |dk]|.

Proof. For some m > 0, mD ™! is an ideal of Or. Now,

mD~ ! = Zmwi + - -+ Zmwy,.

Let
n
* — .. .
Mmw; = ) 0;Wj,
=1
SO
n
wl = E aﬂw],
£
j=1
and

n

— *

Wi = E bijwj.
j=1

Thus, (b;;) is the matrix inverse of (a;;/m). But
’I‘r(wiwj) = Tr (Z bik‘”;“{j)
k=1

= Z bir Tr(wiw;)
k=1
= b”

Thus, det(bi]‘) = dK.
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However, by Exercise 4.2.8, since mD~! is an ideal of O with integral
basis mwj, ... ,mw}, we know that

dicjo(musi, .. ,mwy) = N(mD™)2d
and from Exercise 4.2.7 we have

dijg(mwi, - .. ,mwy) = (det(ai;))*dx,
which shows that

|det(aij)| = N(mD™!) = m"N(D™Y),

and thus
a;;

[det(%2)] = N(D1) = N(D) .

Hence, |di| = |det{ ”)| = |det(a;;/m)|~t = N(D). O

Theorem 5.4.4 Let p € Z be prime, p C Ok, a prime ideal and D the
different of K. If p° | (p), then p°~1 | D.

Proof. We may assume that e is the highest power of p dividing (p). So let
(p) = p°a, ged(a,p) = 1. Let z € pa. Thenz =3 5 | pia;, pi € 9, a; € a.
Hence,

P = praf (mod p),

and

" = prmafm (mod p).

For sufficiently large m, pfm € p°, s0 zP" € p° and thus, 27" € pfa = (p).
Therefore, Tr(zP" ) € pZ, which implies that

(Tr(z))"" € pZ

Tr(z) € pZ

Tr(p~'pa) C

ptpaC D

Dp~Lpa C DD ! = Ok

fDQpp_la l—pap 1Cl_1 pe—l

Pt D. ]

A A

Exercise 5.4.5 Show that if p is ramified, p | dx.

Dedekind also proved that if p | d, then p ramifies. We do not prove
this here. In the Supplementary Problems, some special cases are derived.
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5.5 Factorization in Oy

The following theorem gives an important connection between factoring
polynomials mod p and factoring ideals in number fields:

Theorem 5.5.1 Suppose that there is a 8 € K such that O = Z[f]. Let
f(x) be the minimal polynomial of 6 over Z[x]. Let p be a rational prime,
and suppose

f(x) = fi(x)® - fo(x)®  (mod p),

where each f;(z) is irreducible in Fplz]. Then pOg = p$* - pg° where
9 = (p, f:(9)) are prime ideals, with N(p;) = pieefi.

Proof. We first note that (p, f1(8))* --- (p, f¢(0))°¢ C pOg. Thus it suf-
fices to show that (p, f;(8)) is a prime ideal of norm p% where d; is the
degree of f;.

Now, since f;(z) is irreducible over Fp, then F,[z]/(f;(x)) is a field.
Also,

Zlz)/(p) = Fplz], = Zzl/(p, fi(z)) ~ Fplz]/(filx)),

and so Z[z]/(p, fi(x)) is a field.
Consider the map ¢ : Z[x] — Z[0]/(p, fi(6)). Clearly

(p, filz)) € ker(p) = {n(z) : n(6) € (p, £i(9))}-
If n(z) € ker(y), we can divide by f;(xz) to get

n(z) = q(z)fi(x) + ri(x),  deg(r;) < deg(fi)-

We assume that r; is nonzero, for otherwise the result is trivial. Since
n(8) € (p, fi(6)), then r;(8) € (p, £:(8)), so 7;(8) = pa(8) + f:(6)b(#). Here
we have used the fact that Oy = Z[6)].

Now define the polynomial h(z) = ri(z) — pa(z) — fi(z)b(x). Since
h(#) = 0 and f is the minimal polynomial of 6, then h(z) = g(z)f(z) for
some polynomial g(x) € Z[z]. We conclude that r;(z) = pa(z) + fi(z)b(x)
for some a(z),b(x) € Z[z]. Therefore r;(z) € (p, fi(x))

Thus,
Z[6)/(p, f:(0)) ~ Zz]/ (p, fi(z)) = Fplz]/ (fi(2))

and is therefore a field. Hence, (p, f;(9)) is a maximal ideal and is therefore
prime.

Now, let €] be the ramification index of p;, so that pOx = p‘ill ng ,
and let d; = [Ok/p; : Z/p]. Clearly d; is the degree of the polynomial f;(x).
Since f(#) = 0, and since f(z) — fi(z)®*--- fo(x)® € pZ[z], it follows that
fr(8)er--- f4(0)%s € pOk = pZ[f]. Also, pi* C pOx + (fi(8)**) and so

g
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Therefore, e; > e; for all . But
Zeidi =degf=[K:Q]= Zegdi-
Thus, e; = e for all i. O

Exercise 5.5.2 If in the previous theorem we do not assume that Ox = Z[6]
but instead that p{ [0k : Z[6]], show that the same result holds.

Exercise 5.5.3 Suppose that f(z) in the previous exercise is Eisensteinian with
respect to the prime p. Show that p ramifies totally in K. That is, pOx = ()"
where n = [K : Q).

Exercise 5.5.4 Show that (p) = (1 — {,)?~" when K = Q((y)-

5.6 Supplementary Problems

Exercise 5.6.1 Show that if a ring R is a Dedekind domain and a unique fac-
torization domain, then it is a principal ideal domain.

Exercise 5.6.2 Using Theorem 5.5.1, find a prime ideal factorization of 50 i

and 70k in Z[(1 4+ v-3)/2).

Exercise 5.6.3 Find a prime ideal factorization of (2), (5), (11) in Z[4].
Exercise 5.6.4 Compute the different D of K = Q(v/-2).

Exercise 5.6.5 Compute the different D of K = Q(v/=3).

Exercise 5.6.6 Let K = Q(«a) be an algebraic number field of degree n over Q.
Suppose O = Z[a] and that f(x) is the minimal polynomial of a. Write

f@) =@ —a)bo+biz+ -+ bo12™™), b €Ok

Prove that the dual basis to 1, ..., 0™ ! is

Deduce that

rD_l = (Zb0+"-+an_1).

1
f'(a)

Exercise 5.6.7 Let K = Q(a) be of degree n over Q. Suppose that Ok = Z[q].
Prove that D = (f'(«)).

Exercise 5.6.8 Compute the different D of Q[(,] where ¢, is a primitive pth
root of unity.
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Exercise 5.6.9 Let p be a prime, p t m, and a € Z. Show that p | ¢m(a)
if and only if the order of a (mod p) is n. (Here ¢m(x) is the mth cyclotomic
polynomial.)

Exercise 5.6.10 Suppose p{m is prime. Show that p | ¢m(a) for some a € Z if
and only if p =1 (mod m). Deduce from Exercise 1.2.5 that there are infinitely
many primes congruent to 1 (mod m).

Exercise 5.6.11 Show that p{m splits completely in Q({,) if and only if p =1
(mod m).

Exercise 5.6.12 Let p be prime and let a be squarefree and coprime to p. Set
6 = a'/? and consider K = Q(#). Show that Ox = Z[6] if and only if e~ ! # 1
(mod p?).

Exercise 5.6.13 Suppose that K = Q(6) and Ox = Z[6]. Show that if p | dxk,
p ramifies.

Exercise 5.6.14 Let K = Q(6) and suppose that p | dg/g(6), ¢ do(8).
Show that p | dx and p ramifies in K.

Exercise 5.6.15 Let K be an algebraic number field of discriminant dx. Show
that the normal closure of K contains a quadratic field of the form Q(v/dk).

Exercise 5.6.16 Show that if p ramifies in K, then it ramifies in each of the
conjugate fields of K. Deduce that if p ramifies in the normal closure of K, then
it ramifies in K.

Exercise 5.6.17 Deduce the following special case of Dedekind’s theorem: if
p*™%!||dk show that p ramifies in K.

Exercise 5.6.18 Determine the prime ideal factorization of (7), (29), and (31)
in K = Q(V¥?2).

Exercise 5.6.19 If L/K is a finite extension of algebraic number field, we can
view L as a finite dimensional vector space over K. If & € L, the map v > av is
a linear mapping and one can define, as before, the relative norm Np, k(@) and
relative trace Trp k(o) as the determinant and trace, respectively, of this linear
map. If o € O, show that Ty k(a) and Ny, k(a) lie in Ok.

Exercise 5.6.20 If K C L C M are finite extensions of algebraic number fields,
show that NM/K(C!) = NL/K(NM/L(C!)) and TT‘M/K(C!) = TT‘L/K(TT'M/L(C!)) for
any a € M. (We refer to this as the transitivity property of the norm and trace
map, respectively.)

Exercise 5.6.21 Let L/K be a finite extension of algebraic number fields. Show
that the map
TT’L /K - LxL - K

is non-degenerate.
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Exercise 5.6.22 Let L/K be a finite extension of algebraic number fields. Let
a be a finitely generated Ox-module contained in L. The set

Dyjx(@)={z€L: Tryx(za)C Ok}

is called codifferent of a over K. If a # 0, show that DZ/IK (a) is a finitely generated
O k-module. Thus, it is a fractional ideal of L.

Exercise 5.6.23 If in the previous exercise a is an ideal of O, show that the
fractional ideal inverse, denoted Dy, k(a) of DZ/IK(a) is an integral ideal of Of.
(We call Dk (a) the different of a over K. In the case a is O, we call it the
relative different of L/K and denote it by D k)

Exercise 5.6.24 Let K C L C M be algebraic number fields of finite degree
over the rationals. Show that

Dum/k = Dy (Pr/xOm).

Exercise 5.6.25 Let L/K be a finite extension of algebraic number fields. We
define the relative discriminant of L/K, denoted dr;x as Np/x(DPr;k). This is
an integral ideal of Ok. If K C L C M are as in Exercise 5.6.24, show that

d/k = d(LI‘;’;(L]NL/K(dM/L).

Exercise 5.6.26 Let L/K be a finite extension of algebraic number fields. Sup-
pose that Or = Ok|[a] for some a € L. If f(x) is the minimal polynomial of &
over Ok, show that Dr,x = (f'()).

Exercise 5.6.27 Let K1, K2 be algebraic number fields of finite degree over K.
If L/K is the compositum of K;/K and K2/K, show that the set of prime ideals
dividing d;,x and dk, /kdk,/k are the same.

Exercise 5.6.28 Let L/K be a finite extension of algebraic number fields. If L
denotes the normal closure, show that a prime p of Ok is unramified in L if and
only if it is unramified in L.



Chapter 6

The Ideal Class Group

This chapter mainly discusses the concept of the ideal class group, and some
of its applications to Diophantine equations. We will prove that the ideal
class group of an algebraic number field is finite, and establish some related

results.
As in all other chapters, we shall let K be an algebraic number field
with degree n over Q, and let Ok be the ring of algebraic integers in K.

6.1 Elementary Results

This section serves as preparation and introduction to the remainder of the
chapter. We start by a number of standard results.

Recall that the ring Ok is Euclidean if given o € K, 33 € Ok such that
|N(e— )| < 1. Indeed, given 6,y € Ok, the fact that there exist ¢,r € Ok
with r = 8 — ¢y and

IN(r)| < IN()I

is equivalent to the fact that there exists ¢ € Ok such that
IN(0/y - @)l < L.
Let & = 6/7, let 8 = q, and we have
IN(e—B)| < 1.

In general, Ok is not Euclidean, but the following results always hold:

Lemma 6.1.1 There is a constant Hg such that given o € K, 30 € Ok,
and a non-zero integer t, with |t| < Hg, such that

|N(ta — 8)| < 1.

69
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Proof. Let {w;,ws,...,w,} be an integral basis of Og. Given any o € K,
there exists m € Z such that ma € Ok, so a can be written as

n
o= E CiWwy,
i=1

withe, e Qforalli=1,2,... ,n

Let L be a natural number. Partition the interval [0, 1] into L parts,
each of length 1/L. This induces a subdivision of [0, 1] into L™ subcubes.
Consider the map ¢ : oZ — [0,1]" defined by

to i> ({tcl}a {tCZ}) LA} {tcn})’

where t € Z, and {a} denotes the fractional part of @ € R. Let ¢ run from
0 to L™ (the number of subcubes in [0, 1]™). The number of choices for ¢ is
then L™ + 1, which is one more than the number of subcubes. There must
be two distinct values of ¢, say ¢; and t2, so that t;o and ta2c get mapped
to the same subcube of [0,1]™. Let

8=

i

([tres] = [taci])wis

n
=1

where [a] denotes the integer part of ¢ € R. Then,

(t1 —ta)a~ B = Z({tlci} —{t2ciPwi

=1

Let t = tl — tz, then

IN(ta - B)| =

N <Z({tlci} — {tgci})wi> .

i=1

Since |({t1¢:} — {t2¢:})| < 1/L, we then have
Vi< g ] (Z o |>

where w ) is the jth conjugate of w;. If we take L™ > 15— iy |y D)) =
Hyg (say) then

IN(ta — B)| < 1.
Furthermore, since 0 < t,t5 < L™, we have |¢t| < L™. Thus, if we choose
L= H%n, we are done. O

Let us call Hg as defined above the Hurwitz constant, since the lemma
is due to A. Hurwitz.

Exercise 6.1.2 Show that given «, 3 € Ok, there exist ¢t € Z, |t| < Hg, and
w € Ok so that [N{at — w)| < |[N(8)|.
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6.2 Finiteness of the Ideal Class Group

The concept of the ideal class group arose from Dedekind’s work in estab-
lishing the unique factorization theory for ideals in the ring of algebraic
integers of a number field. Our main aim of this section is to prove that the
ideal class group is finite. We start by introducing an equivalence relation
on ideals.

We proved in Exercise 5.3.7 that any fractional ideal A can be written
uniquely in the form

1.0

= 7

P10
where the @;, @} are primes in Ok, and no gp; is a @} (recall that we write
1/ = p~1). In particular, we can always write any fractional ideal A in
the form b

.A =
4
where b, ¢ are two integral ideals.
Two fractional ideals A and B in K are said to be equivalent if there
exist ¢, f € Ok such that (o)A = (8)B. In this case, we write 4 ~ B.
Notice that if Ok is a principal ideal domain then any two ideals are
equivalent.

Exercise 6.2.1 Show that the relation ~ defined above is an equivalence rela-
tion.

Theorem 6.2.2 There exists a constant Cx such that every ideal a C Ok
is equivalent to an ideal b C Ok with N(b) < Ck.

Proof. Suppose a is an ideal of Ok. Let § € a be a non-zero element such
that |N(8)| is minimal.
For each a € a, by Exercise 6.1.2, we can find t € Z,|t| < Hg, and
w € Ok such that
|N (ta —wp)| < [N(B)I-

Moreover, since ¢, 8 € 4, so ta — w3 € a; and therefore, by the minimality
of |[N(8)|, we must have ta = wf. Thus, we have shown that for any ¢ € a,
there exist t € Z, |t| < Hg, and w € Ok such that ta = wg.

Let
M= ]I ¢
[tI<Hxk
and we have Ma C (8). This means that (8) divides (M)a, and so
(M)a = (8)b,

for some ideal b C Of.

Observe that 8 € a, so M € (8)b, and hence (M) C b. This implies
that |[N(b)] < N((M)) = Ck. Hence, a ~ b, and Cx = N((M)) satisfies
the requirements. O
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Exercise 6.2.3 Show that each equivalence class of ideals has an integral ideal
representative.

Exercise 6.2.4 Prove that for any integer x > 0, the number of integral ideals
a C Ok for which N(a) <z is finite.

Theorem 6.2.5 The number of equivalence classes of ideals is finite.

Proof. By Exercise 6.2.3, each equivalence class of ideals can be rep-
resented by an integral ideal. This integral ideal, by Theorem 6.2.2, is
equivalent to another integral ideal with norm less than or equal to a given
constant C'x. Apply Exercise 6.2.4, and we are done. O

As we did in the proof of Exercise 6.2.3, it is sufficient to consider only
integral representatives when dealing with equivalence classes of ideals.

Let H be the set of all the equivalence classes of ideals of K. Given C;
and C; in #H, we define the product of C; and C; to be the equivalence class
of AB, where A and B are two representatives of C; and Cs, respectively.

Exercise 6.2.6 Show that the product defined above is well defined, and that H
together with this product form a group, of which the equivalence class containing
the principal ideals is the identity element.

Theorem 6.2.5 and Exercise 6.2.6 give rise to the notion of class number.
Given an algebraic number field K, we denote by h(K) the cardinality of
the group of equivalence classes of ideals (h(K) = |H|), and call it the class
number of the field K. The group of equivalence classes of ideals is called
the ideal class group.

With the establishment of the ideal class group, the result in Theorem
6.2.2 can be improved as follows:

Exercise 6.2.7 Show that the constant Ck in Theorem 6.2.2 could be taken to
be the greatest integer less than or equal to Hk, the Hurwitz constant.

The improvement on the bound enables us to determine the class num-
ber of many algebraic number fields. We demonstrate this by looking at
the following example:

Example 6.2.8 Show that the class number of K = Q(+/—5) is 2.

Solution. We proved in Exercise 4.1.3 that the integers in K are Z[v/—5],

so that
w?) =1, wél) =y -5,
w§2) =1, w£2) = —/-5,
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and the Hurwitz constant is (1 + v/5)2 = 10.45---. Thus, Cx = 10. This
implies that every equivalence class of ideals C € A has an integral repre-
sentative a such that N(a) < 10. a has a factorization into a product of
primes, say,

4= p102-.. Pm,

where g; is prime in O for alli=1,...,m.

Consider ;. There exists, by Exercise 4.4.4, a unique prime number
p € Z such that p € ;. This implies that p; is in the factorization of
(p) into product of primes in Okx. Thus, N(p;) is a power of p. Since
N(a) = [T%, N(p:), and N(a) < 10, we deduce that N(p;) < 10 for all i.
And so, in particular, N(p;) < 10. Therefore, p < 10. Thus, p could be 2,
3,5, 0rT.

For p = 2, 3, 5, and 7, (p) factors in Z[/—5] as follows:

(2) = (2,14+vV=5)(2,1—-V-5),

(3) (3,14+v=5)(3,1 — V=5),
(7) (7,3 +v=5)(7,3 — V=5),

and

(5) = (V-9)*.

Thus, p; can only be (2,1 + v/—=5),(2,1 — v/=5),(3,1 + v/=5),(3,1 —
vV=5),(7,3++v/=5), (7,3—+v/=5), or (v/=5). The same conclusion holds for
any g; for i = 2,... ,m. Moreover, it can be seen that (1/—5) is principal,
and all the others are not principal (by taking the norms), but are pairwise
equivalent by the following relations:

(2,1+vV-5) = (2,1-v-5),
B, 1+vV=-5)(1-v=-5) = (3)(2,1-v-5),
(3,1 -V=-5)(1+v=5) = (3)(2,1+V-5),
(7,3+V-5)(3-v=5) = (7)(2,1-v-5),
(7,3—V=-5)3+vV=5) = (7)(2,1+V-5).

Therefore, a is equivalent to either the class of principal ideals or the class
of those primes listed above.

Hence, the class number of K = Q(v/—5) is 2, and the problem is solved.
In the supplementary problems we will derive a sha.rper constant than Ck.

6.3 Diophantine Equations
In this section, we look at the equation

2+ k=18, (6.2)
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which was first introduced by Bachet in 1621, and has played a fundamental
role in the development of number theory. When k£ = 2, the only integral
solutions to this equation are given by y = 3 (see Exercise 2.4.3); and this
result is due to Fermat. It is known that the equation has no integral
solution for many different values of k. There are various methods for
discussing integral solutions of equation (6.2). We shall present, here, the
one that uses applications of the quadratic field Q(v/—k), and the concept
of ideal class group. This method is usually referred to as Minkowski’s
method. We start with a simple case, when k = 5.

Example 6.3.1 Show that the equation z2 + 5 = y3 has no integral solu-
tion.

Solution. Observe that if y is even, then z is odd, and z2+5 = 0 (mod 4),
and hence z2 = 3 (mod 4), which is a contradiction. Therefore, y is odd.
Also, if a prime p | (z,), then p | 5, so p = 5; and hence, by dividing both
sides of the equation by 5, we end up with 1 = 0 (mod 5), which is absurd.
Thus, z and y are coprime.

Suppose now that (z,y) is an integral solution to the given equation.
We consider the factorization

(z+V=5)(x — vV=5) = ¢*, (6.3)

in the ring of integers Z[v/—5].

Suppose a prime g divides the ged of (z + v/=5) and (z — v/—5) (which
implies g divides (y)). Then p divides (2z). Also, since y is odd, g does
not divide (2). Thus, p divides (z). This is a contradiction to the fact that
z and y are coprime. Hence, (x +1/—5) and (z — /—5) are coprime ideals.
This and equation (6.3) ensure (by Exercise 5.3.12) that

(z+vV-5)=da> and (z-+-5)="0b3

for some ideals a and b.

Since the class number of Q(v/—5) was found in Example 6.2.8 to be 2,
¢? is principal for any ideal ¢. Thus, since a3 and b® are principal, we deduce
that a and b are also principal. Moreover, since the units of Q(v/—5) are 1
and —1, which are both cubes, we conclude that

r+vV=5=(a+b/-5)3
for some integers @ and b. This implies that
1 = b(3a® — 5b%).

It is easy to see that b | 1, so b = +1. Therefore, 3a® — 5 = £1. Both cases
lead to contradiction with the fact that a € Z.
Hence, the given equation does not have an integral solution.
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The discussion for many, but by no means all, values of k£ goes through
without any great change. For instance, one can show that when £ = 13
and k = 17, the only integral solutions to equation (6.2) are given by y = 17
and y = 5234, respectively.

We now turn to a more general result.

Exercise 6.3.2 Let k > 0 be a squarefree positive integer. Suppose that &k = 1,2
(mod 4), and k does not have the form k = 3a® 4+ 1 for an integer a. Consider
the equation

o+ k=y (6.4)

Show that if 3 does not divide the class number of Q(v/—k), then this equation
has no integral solution.

6.4 Exponents of Ideal Class Groups

The study of class groups of quadratic fields is a fascinating one with
many conjectures and few results. For instance, it was proved in 1966
by H. Stark and A. Baker (independently) that there are exactly nine
imaginary quadratic fields of class number one. They are Q(v/—d) with
d=1,2,3,7,11,19,43,67,163.

By combining Dirichlet’s class number formula (see Chapter 10, Exercise
10.5.12) with analytic results due to Siegel, one can show that the class
number of Q(v/—d) grows like v/d. More precisely, if A(—d) denotes the
class number,

log h(—d) ~ %logd

as d — oo.

The study of the growth of class numbers of real quadratic fields is
more complicated. For example, it is a classical conjecture of Gauss that
there are infinitely many real quadratic fields of class number 1. Related to
the average behaviour of class numbers of real quadratic fields, C. Hooley
formulated some interesting conjectures in 1984.

Around the same time, Cohen and Lenstra formulated general conjec-
tures about the distribution of class groups of quadratic fields. A particular
case of these conjectures is illustrated by the following. Let p be prime # 2.
They predict that the probability that p divides the order of the class group
of an imaginary quadratic field is

1—}20[1(1—]%).

A similar conjecture is made in the real quadratic case.
These conjectures suggest that as a first step, it might be worthwhile
to investigate the exponents of class groups of imaginary quadratic fields.
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A similar analysis for the real quadratic fields is more difficult and is post-
poned to Exercise 8.3.17 in Chapter 8.

Exercise 6.4.1 Fix a positive integer ¢ > 1. Suppose that n is odd, greater than
1, and n? — 1 = d is squarefree. Show that the ideal class group of Q(v/ —d) has
an element of order g.

Exercise 6.4.2 Let g be odd and greater than 1. If d = 3 — z? is squarefree
with z odd and satisfying x* < 37/2, show that Q(v/—d) has an element of order
g in the class group.

Exercise 6.4.3 Let g be odd. Let N be the number of squarefree integers of
the form 39 — z2, z odd, 0 < z? < 39/2. For g sufficiently large, show that
N > 392, Deduce that there are infinitely many imaginary quadratic fields
whose class number is divisible by g.

6.5 Supplementary Problems

Exercise 6.5.1 Show that the class number of K = Q(1/-19) is 1.
We define the volume of a domain C' C R” to be

vol(C) = /C x(z)dz

where x(z) is the characteristic function of C"

(.’L')_ 17 &EC’
X =0, zec.

Exercise 6.5.2 (Siegel) Let C be a symmetric, bounded domain in R". (That
is, C' is bounded and if x € C so is —x.) If vol(C) > 1, then there are two distinct
points P, Q € C such that P — Q is a lattice point.

Exercise 6.5.3 If C is any convex, bounded, symmetric domain of volume > 2",
show that C contains a non-zero lattice point. (C is said to be convez if z,y € C
implies Az + (1 - ANy €Cfor 0 < A< 1)

Exercise 6.5.4 Show in the previous question if the volume > 2", the result is
still valid, if C is closed.

Exercise 6.5.5 Show that there exist bounded, symmetric convex domains with
volume < 2" that do not contain a lattice point.
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Exercise 6.5.6 (Minkowski) For z = (z1,...,zn), let
Li(a:):Zaijxj, 1 Siﬁn,
j=1

be n linear forms with real coefficients. Let C be the domain defined by
|Li(z)| <Ny, 1<i<n.

Show that if A\;--- A, > |det A| where A = (a;;), then C' contains a nonzero
lattice point.

Exercise 6.5.7 Suppose that among the n linear forms above, Li(z), 1 <i <m
are real (ie., ai; € R), and 272 are not real (i.e., some a;; may be nonreal).
Further assume that
LT1+T2+j = LT1+J’7 1<j5<ra.
That is,
n
Lritrats(x) = Zarﬁ-j,kwk, 1<j<rs.
k=1
Now let C be the convex, bounded symmetric domain defined by

L@l <X, 1<i<n,

with Arj4j = Arigrgtss 1 < J < ro. Show that if A;---An > |det A|, then C
contains a nonzero lattice point.

Exercise 6.5.8 Using the previous result, deduce that if K is an algebraic num-
ber field with discriminant dx, then every ideal class contains an ideal b satisfying
Nb < IdK|-

Exercise 6.5.9 Let X; consist of points

(,’El,... 1y TryY1,21,. .. 7y37z3)

in R"72¢ where the coordinates satisfy

|z1| 4+ ||+ 2VYE + 25+ 22 F 22 < ¢

Show that X; is a bounded, convex, symmetric domain.

Exercise 6.5.10 In the previous question, show that the volume of X, is

27‘—37r3t’n

nl

where n = r + 2s.
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Exercise 6.5.11 Let C be a bounded, symmetric, convex domain in R™. Let
ai,...,an be linearly independent vectors in R™. Let A be the n X n matrix
whose rows are the a;’s. If

vol(C) > 2"|det 4],
show that there exist rational integers z1,...,Tn (not all zero) such that

z1a1 + -+ Tnan € C.

Exercise 6.5.12 (Minkowski’s Bound) Let K be an algebraic number field
of degree n over Q. Show that each ideal class contains an ideal a satisfying

! T2
NOS % (é) ldKll/Q’
n ™

where 72 is the number of pairs of complex embeddings of K, and dg is the
discriminant.

Exercise 6.5.13 Show that if K # Q, then |dx| > 1. Thus, by Dedekind’s
theorem, in any nontrivial extension of K, some prime ramifies.

Exercise 6.5.14 If K and L are algebraic number fields such that dx and dr
are coprime, show that K N L = . Deduce that

KL: Q)= [K:QIL: Q.

Exercise 6.5.15 Use Minkowski’s bound to show that Q(+/5) has class number
1.

Exercise 6.5.16 Using Minkowski’s bound, show that Q(+/—5) has class number
2.

Exercise 6.5.17 Compute the class numbers of the fields Q(v/2), Q(v/3), and
Q(WV13).

Exercise 6.5.18 Compute the class number of Q(+/17).

Exercise 6.5.19 Compute the class number of Q(\/é)

Exercise 6.5.20 Show that the fields Q(v/—1), Q(+/=2), Q(v/=3), and Q(+/—=7)

each have class number 1.

Exercise 6.5.21 Let K be an algebraic number field of degree n over Q. Prove

that e
iz (5 ()

Exercise 6.5.22 Show that |dx| — 0o as n = o in the preceding question.
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Exercise 6.5.23 (Hermite) Show that there are only finitely many algebraic
number fields with a given discriminant.

Exercise 6.5.24 Let p be a prime = 11 (mod 12). If p > 3", show that the
ideal class group of Q(y/—p) has an element of order greater than n.

Exercise 6.5.25 Let K = Q(a) where « is a root of the polynomial f(x) =
x® — x + 1. Prove that Q(a) has class number 1.

Exercise 6.5.26 Determine the class number of Q(v/14).

Exercise 6.5.27 If K is an algebraic number field of finite degree over Q with
di squarefree, show that K has no non-trivial subfields.






Chapter 7

Quadratic Reciprocity

The equation z2 = a (mod p), where p is some prime, provides the starting
point for our discussion on quadratic reciprocity. We can ask whether there
exist solutions to the above equation. If yes, how do these solutions depend
upon a? upon p? Gauss developed the theory of quadratic reciprocity to
answer these questions. His solution is today called the Law of Quadratic
Reciprocity. Gauss, however, christened his result Theorema Auruem, the
Golden Theorem.

In this chapter, we will be examining this interesting facet of number
theory. We will begin with some of the basic properties of reciprocity. We
will then take a brief trip into the realm of Gauss sums, which will provide
us with the necessary tools to prove the Law of Quadratic Reciprocity.
Finally, once we have developed this Golden Theorem, we will show its
usefulness in the study of quadratic fields, as well as primes in certain
arithmetic progressions.

7.1 Preliminaries

In this section, we would like to search for solutions to equations of the
form z2 = a (mod p), where p is prime. We will discover that quadratic
reciprocity gives us a means to determine if any solution exists.

In order to appreciate the usefulness of quadratic reciprocity, let us
consider how we would tackle the congruence

2= -1 (mod 5).

The naive method would be to take all the residue classes in (Z/5Z) and
square them. We would get 02 = 0, 12 =1, 22 =4, 32 = 4, and 4% = 1.
Since 4 = —1 (mod 5), we have found two solutions to the above equation,
namely 2 and 3. This brute force method works well for small primes but
becomes impractical once the size of the numbers gets too large. Thus

81
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it would be nice to have a more accessible method to determine solutions.
The following exercise shows us a way to determine if there exists a solution
when p is fixed. However, determining solutions to the congruence is still
a difficult problem.

Exercise 7.1.1 Let p be a prime and a # 0. Show that z? = a (mod p) has a
solution if and only if a®~V/2 =1 (mod p).

Notice that Exercise 7.1.1 merely provides us with a means of deter-
mining whether a solution exists and gives us no information on how to
actually find a square root of ¢ (mod p).

Exercise 7.1.1 works very well for a fixed p. Suppose, however, we wish
to fix a and vary p. What happens in this case? This question motivates
the remainder of our discussion on quadratic reciprocity.

Definition. The Legendre symbol (a/p), with p prime, is defined as follows:

1 ifz? = a (mod p) has a solution,
(ﬂ) =< -1 ifz? = @ (mod p) has no solution,
p .
0 ifp|a.

If (a/p) = 1, we say that a is a quadratic residue mod p. If (a/p) = —1, a
is said to be a quadratic nonresidue mod p.

Exercise 7.1.2 Using Wilson’s theorem and the congruence
k(p — k) = —k* (mod p),
compute (—1/p) for all primes p.

Remark. One of the interesting results of this exercise is that we can now
determine which finite fields Fp,, for p prime, have an element that acts like
v/—1. For example, if p = 5, then p = 1 (mod 4), and so, (—1/p) = 1.
So there exists an element ¢ € Fs such that > = —1. However, 7 = 3
(mod 4), so F7 can have no element that is the square root of —1.

Before going any further, we will determine some properties of the Leg-
endre symbol.

Exercise 7.1.3 Show that

a®~ /2 = <%) (mod p).

5)-G)G)

Exercise 7.1.5 If a = b (mod p), then (a/p) = (b/p).

Exercise 7.1.4 Show that
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Exercises 7.1.3 to 7.1.5 give some of the basic properties of the Legen-
dre symbol that we will exploit throughout the remainder of this chapter.
Notice that Exercise 7.1.4 shows us that the product of two residues mod p
is again a residue mod p. As well, the product of two quadratic nonresidues
mod p is a quadratic residue mod p. However, a residue mod p multiplied
by a nonresidue mod p is a nonresidue mod p.

Theorem 7.1.6 For all odd primes p,
(g) ] 1 ifp==£1 (mod 8),
p/ |-1 ifp=35 (modS8).

Proof. To exhibit this result, we will work in the field Q(i), where i = /—1.

Notice that the ring of integers of this field is Z[i]. We wish to find when

there exist solutions to z? = 2 (mod p). We will make use of Exercise 7.1.1

which tells us there exists a solution if and only if 2°=1/2 = 1 (mod p).
Working in Z[i], we observe that

(1+4)% =1+2i+4=2i

Also, for p prime,

1+9P=1+ G’)H (g)i2+---+z'1’.

Considering the above equation mod pZl[i], we get
(1+4)P =1+ (mod pZl[i]).

But we also observe that

(L+4)P = (1+)1+9)r!
= ([1+9(A+0)H)E-/2
= (1 +1)(20)P~ /2
= 4P70/2(1 4 4)2(—0)/2
So,
iPD/2(1 4 2P D/2 = 1 4P (mod pZl[i]). (7.1)

We now consider the various possiblities for p (mod 8).
If p=1 (mod 8), then i? = i. As well, iP=1)/2 = 1. So, equation (7.1)
becomes
(1+1i) = (1+4)2°"V/2 (mod pZ[i)),

which implies
1=2?"Y/2 (mod pZ[1]).
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So, 1 = 2(P~1)/2 (mod p), and thus (2/p) = 1 by Exercise 7.1.1.

If p= —1 (mod 8), then # = —i. As well, i??~1/2 = _j. So, (7.1)
becomes

(1—14) = —i(1 +4)2®"Y/2  (mod pZ]i]),
which implies
1=2P~D/2 (mod pZli]).

Again, we have 1 = 2(P~1)/2 (mod p), and thus (2/p)=1.

If p = 3 (mod 8), then # = —i. Also, iP~1/2 =
equation becomes

1. So, the above

(1—1) = i(1+4)2®Y/2 (mod pZ[i)]),
—i(1+4) = i(1+4)2°"Y/2 (mod pZ[i)),
-1 = 2-1/2 (mod pZ[i]).
Since 1 # 2(P~1/2 (mod p), (2/p) = —1.
Finally, if p = 5 (mod 8), then i? = i. As well, i®?"1/2 = _1. From
this, it follows that

(1+d) = —1(1+1)27V/2 (mod pZ[i)),
-1 = 2-V/2  (mod pZ[i]).
Hence, (2/p) = —1, thus completing the proof. O

The above result can be restated as

(%) = (—1)@*-D/8

Exercise 7.1.7 Show that the number of quadratic residues mod p is equal to
the number of quadratic nonresidues mod p.

for odd primes p.

Exercise 7.1.8 Show that 3"?_1(a/p) = 0 for any fixed prime p.

The proof of the Law of Quadratic Reciprocity to be given does not
originate with Gauss, but is of a later date. The proof, however, makes
use of Gauss sums, and as a result, we will make a brief detour to describe
these functions.

7.2 Gauss Sums

Definition. Let p be a prime and let ¢, be a primitive pth root of unity.
We define the Gauss Sum as follows:

- 2 (e

a mod p
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where (a/p) is the Legendre symbol.

This sum has some interesting properties. We explore some of them
below.

Theorem 7.2.1 For S as defined above,

> ()n

Proof. From the definition of a Gauss sum, we have
a b
22 (O] = (3)e)-
a mod p p b mod p p
By applying Exercise 7.1.4, we can simplify the above to get
S2 — Z (ab) <a+b
a,b p
We now make a substitution by letting b = ca, where (¢,p) = 1. Thus,
- T ¥ (5)e
(a,p)=1 (c,p)=1
Again, using Exercise 7.1.4, we get

§2 — Z Z ()Cal-i-C)

(a,p)=1 (c,p)=1

Z (I_C)) Z Ca (14c)

(c,p)=1 (a,p)=1

Observe that (1 +¢,p) = 1 or (1 +¢,p) = p. Since (¢,p) = 1, the second
case will only happen if ¢ = p — 1. But then, if (1 + ¢,p) = 1, we will have

Z CZ(1+C) — <1(;1+C) + <§(1+C) bt Cz(;p_l)(1+0) = _1.
(a,p)=1

But (1 + ¢,p) = p implies that

Z Cg(1+c) =141%4-- 411 =p—_1.
(a,p)=1
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Thus
g2 _ Z (E) Z CZ(H-C)
(c,p)=1 p (a,p)=1
_ Y- p—1 _
- 2L G e
- (-1 f)+(_—1) —1).
( )Z(p )
But

=.6)-2.0-6G)

From Exercise 7.1.8, we know that the first term on the right-hand side
must be equal to 0. So,

oo (-
[ G-G)es
- ()-G)e

2

But now we have shown the desired result, namely, S? = (‘7) p. ]

In the next exercise, we are going to prove an important identity that
we will utilize in proving the law of quadratic reciprocity.

Exercise 7.2.2 Show that
S?= (%) S (mod g),

where ¢ and p are odd primes.

7.3 The Law of Quadratic Reciprocity

We are now in a position to prove the Theorema Auruem, which we do in
this section. We also demonstrate how to use this beautiful result.
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Theorem 7.3.1 (Law of Quadratic Reciprocity) Let p and q be odd

primes. Then
(e) _ (2) (—1)Pt
q p

Proof. From Exercise 7.2.2, we have
q P q

Thus, cancelling out an S from both sides will give us

Sl = (%) (mod g).

Since ¢ is odd, ¢ — 1 must be divisible by 2. So

(g—1)/2
ga—1 — (52)(q—1)/2 — [p <__1):| ! )

p

The last equality follows from Theorem 7.2.1. Thus,

()=b(G)] oo,

From Exercise 7.1.2, (=1/p) = (—=1)*~V/2, We substitute this into the
above equation to get

(2) == ()2 (mod o)

Exercise 7.1.3 tells us that pl~1/2 = (p/q) (mod gq). So,

()= o

But both sides only take on the value +1, and since ¢ > 3, the congruence
can be replaced by an equals sign. This gives us

(-
(]

With this result, we can answer the question we asked at the beginning
of this chapter. That is, if we fix some a, for what primes p will z° = a
(mod p) have a solution? Expressed in terms of the Legendre symbol, we
want to know for which p will (a/p) = 1. We know from Exercise 7.1.4 that
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the Legendre symbol is multiplicative. So, we can factor a asa = ¢} - - - ¢~.

G)-G) (%)

So the question is reduced to evaluating (g/p) for each prime q. Note that
we already know how to solve (—1/p) and (2/p). Thus, all that needs to be
done is to evaluate (q/p) where ¢ is an odd prime. The next exercise helps
us to determine this.

Exercise 7.3.2 Let g be an odd prime. Prove:
(a) If ¢ = 1 (mod 4), then ¢ is a quadratic residue mod p if and only if p = r
(mod ¢), where r is a quadratic residue mod q.

(b) If ¢ = 3 (mod 4), then q is a quadratic residue mod p if and only if p = +b?
(mod 4gq), where b is an odd integer prime to q.

The next exercise will demonstrate how to use Exercise 7.3.2 to compute
(g/p) in the special cases ¢ =5, 7.

Exercise 7.3.3 Compute (%) and (%)

7.4 Quadratic Fields

In this section, we will focus on quadratic fields, that is, all algebraic number
fields K such that [K : Q] = 2. It can be shown that all quadratic extensions
can be written as K = Q(v/d), where d is some squarefree integer.

With: every algebraic number field comes an associated ring of integers,
Ok. Suppose that p € Z, and p is prime. We can let pOg be the ideal of
Ok generated by p. Since Ok is a Dedekind domain (see Chapter 5), every
ideal can be written as a product of prime ideals, i.e., pOg = p§* - - ptr.
However, because K is a quadratic extension,

p* = N(pOk) = N(p1)* - N(pr)*.
So N(p) = p, or N(p) = p?>. But then, we have three possibilities:
(1) POk = pg', where p # ¢;
(2) pOK = p?; and

(3) POk = p.

If (1) is true, we say that p splits. When case (2) occurs, we say that
p ramifies. Finally, if (3) occurs, we say that p is inert, i.e., it stays prime.
In the next exercises, we will see that we can determine which case occurs
by using quadratic reciprocity.
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Exercise 7.4.1 Find the discriminant of K = Q(+v/d) when:
(a) d=2,3 (mod 4); and
(b) d=1 (mod 4).

Remark. From the above exercise it follows that if mm = dg is the dis-
criminant of a quadratic field K, then 1, (m + /m)/2 will always form an
integral basis.

Theorem 7.4.2 Assume p is an odd prime. Then (d/p) =1 if and only if
POk = pp', where p # ', and p prime.

Proof. = From our assumption, we have a? = d (mod p) for some a. Let
P = (p7a+ \/a) and p/ = (p7a_ \/a)
We claim that pOg = pg’.
4

pp' = (p,a+Vd)(p,a—Vd)

= (0, p(a+Vd),pla — Vd),a® — d)
(p)(p,a+ Vd,a — Vd, (a® — d)/p)

= (p).

The last equality holds because 2a and p are both elements of the second
ideal. But (2a,p) = 1. From this, it follows that 1 € (p,a++v/d,a—Vd, (a®—
d)/p). It is clear that p # ' because if they were equal, then 2a and p would
be in p, from which it follows that p = Ok, which is false. Since the norm
of pOg is p?, N(p) must divide p?. Since p # (1), N(p) # 1. Also, it
cannot be p? because then N(gp’) = 1, which is false. So, both p and g
have norm p, and thus, they must be prime.

< In the comments after Exercise 7.4.1 we noted that {1, (m+/m)/2}
always forms an integral basis of O where m = d if d =1 (mod 4) and
m=4d if d = 2,3 (mod 4). Since pp’ = pOx, there must exist a € p, but
a € pOk. So, a =z +y(m—++/m)/2, where z,y € Z, but p does not divide
both = and y. Now, consider aQg, the ideal generated by a. We can write
a0k = pq, g € Og. Now, taking the norms of both sides, we discover that
N(p) = p must divide

sy

N(a0Ok) = 5

So, (2z + ym)? = y?m (mod p). If p | y, then p | (2z + ym)2. But then
p | 2z, and since p is odd, p | z. This contradicts the fact that p did not

divide both z and y. So p does not divide y, and since Z/pZ is a field,
2z + ym)?
(3/—2) =m (mod p).

But then we have found some z such that 22 = m (mod p). Since m = d
or m = 4d, then (d/p) = 1. O
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Exercise 7.4.3 Assume that p is an odd prime. Show that (d/p) = 0 if and only
if pOx = p?, where p is prime.

Exercise 7.4.4 Assume p is an odd prime. Then (d/p) = —1 if and only if
pOk = p, where p is prime.

What we have shown is a method for determining what happens to an
odd prime in a quadratic field that utilizes the Legendre symbol. We have
yet to answer what happens to p if p = 2. An analogous result holds for
this case.

Theorem 7.4.5 Suppose p = 2. Then:

(a) 20k = p?, p prime if and only if 2 | dg;

(b) 20k = pg', p prime if and only if d =1 (mod 8) and 21 dy; and
(c) 20k = p, p prime if and only if d =5 (mod 8) and 21 dg.

Proof. (a) < If 2| dg, then d = 2,3 (mod 4). If d =2 (mod 4), then we
claim that (2) = (2, v/d)?. Note that

(2,Vd)? = (4,2Vd, d) = (2)(2,Vd, d/2).

Since d is squarefree, then 2 and d/2 are relatively prime and thus the
second ideal above is actually Og. So (2) = (2, Vd)?.
If d =3 (mod 4) we claim that (2) = (2,1 + Vv/d)?, since

(2,14+Vd)? = 4,2+ 2vVd, 1+ d+2Vd) = (2) (2,1+\/E,1—72L—‘Z+\/8>.

Now we note that 1+ v/d and (1 + d)/2 + /d are relatively prime, and so
the second ideal is Og.

= We consider dg, which we know is congruent to either 0 or 1 mod
4. Suppose that dg =1 (mod 4). Then Ok is generated as a Z-module by
1,(1 + v/d)/2. There must exist some element a in p which is not in 2.
So a = m + n(1 + v/d)/2 where we can assume that m and n are either 0
or 1, since for any a € Ok, a + 2« is in g but not in p2.

Now, if n = 0, then m # 0 because otherwise ¢ = 0 and is obviously in
(2). Butifm=1,thena=1anda ¢ p. So,n=1andm =0or 1. We
know that a2 € (2), and

a®? = <m+ 1+\/8>2

2

! +2\/‘_i €(2).

-1
= m2+d—4———+(2m+1)

But 2m + 1 is odd and so a® ¢ (2), and we have arrived at a contradiction.
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We conclude that dg = 0 (mod 4), and so clearly 2 | dk.

(b) <= Suppose that d = 1 (mod 8). Then clearly from the previous
problem 2 { dg. We claim that (2) = (2, (1 + V/d)/2)(2, (1 — Vd)/2). Note
that

1++vd 1—vd 1+vd 1—+vd 1—-d
(477) (159) - ot

But the second ideal is just O since it contains 1 = (1++v/d)/2-+(1—Vd)/2.

= Now suppose that (2) splits in Ox. We know from part (a) that
d =1 (mod 4). If (2) = pp’, then N(p) = 2. There exists an element a
which is in p but not in pg’ = (2). Then a = m + n(1 + V/d)/2 where not
both m, n are even. Therefore 2 divides the norm of the ideal generated by
a, and

So (2m+n)? = n?d (mod 8). We know that 2 1 d. So suppose that n is even,
and further suppose that n = 2n; where n; is odd. Then 2 | (m+n;)%+n2d,
and since 2 { n?d, then 2 { (m+ n1)?, which implies that m is even. But we
assumed that not both m and n were even. Now suppose that 4 | n. Then
4| (2m + n) and so m is even, a contradiction. Then n must be odd, and
we can find an integer ng such that nngy =1 (mod 8).

Then d = n2(2m+n)? (mod 8), and since 2 1 d, we conclude ny(2m+n)
is odd, and d =1 (mod 8), as desired.

(c) Just as in Exercise 7.4.4, this follows directly from parts (a) and (b)
since if 2tdg and d # 1 (mod 8), then d =5 (mod 8). We know that (
cannot split or ramify in this case, so it must remain inert.

oX

7.5 Primes in Special Progressions

Another interesting application of quadratic reciprocity is that it can be
used to show there exist infinitely many primes in certain arithmetic pro-
gressions. In the next two exercises, we imitate Euclid’s proof for the exis-
tence of an infinite number of primes to show that there are infinitely many
primes in the following two arithmetic progressions, 4k + 1 and 8k + 7.

Exercise 7.5.1 Show that there are infinitely many primes of the form 4k + 1.

Exercise 7.5.2 Show that there are infinitely many primes of the form 8k + 7.

The results we have just derived are just a special case of a theorem
proved by Dirichlet. Dirichlet proved that if [ and k are coprime inte-
gers, then there must exist an infinite number of primes p such that p =1
(mod k). What is interesting about these two exercises, however, is the fact
that we used a proof similar to Euclid’s proof for the existence of an infinite
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number of primes. An obvious question to ask is whether questions about
all arithmetic progressions can be solved in a similar fashion.

The answer, sadly, is no. However, not all is lost. It can be shown that if
2 =1 (mod k), then we can apply a Euclid-type proof to show there exist
an infinite number of primes p such that p = [ (mod k). (See Schur [S].
For instance, Exercises 1.2.6 and 5.6.10 give Euclid-type proofs for p = 1
(mod k) using cyclotomic polynomials.) Surprisingly, the converse of this
statement is true as well. The proof is not difficult, but involves some
Galois Theory. It is due to Murty [Mu].

We can restate our two previous exercises as follows:

(1) Are there infinitely many primes p such that p=1 (mod 4)?
(2) p=7 (mod 8)?

From what we have just discussed, we observe that we can indeed apply
a Euclid-type proof since 12 =1 (mod 4) and 72 =1 (mod 8).

Exercise 7.5.3 Show that p =4 (mod 5) for infinitely many primes p.

In their paper [BL], Bateman and Low show that if [ is an integer
relatively prime to 24, then there are infinitely many primes p such that
p =1 (mod 24). Their proof makes use of the interesting fact that every
integer [ relatively prime to 24 has the property [2 = 1 (mod 24). (All the
integers relatively prime to 24 are 1, 5, 7, 11, 13, 17, 19, and 23. A quick
mental calculation will show you that the statement is true.) Because of
this fact, they can use a proof similar to Euclid’s.

Their proof relies on the ability to “cook up” a specific polynomial
f(z) € Z[z]. This polynomial is created in such a way so that we can use
quadratric reciprocity. Notice that in our exercises there is also some poly-
nomial sitting in the background. In Exercise 7.5.1, we used the polynomial
f(z) = 42? + 1. In Exercise 7.5.2, f(z) = 162% — 2 was used, and finally,
in the previous exercise, f(z) = 25x? — 5. Not all the polynomials used
are as simple as the ones we used. The next example uses a fourth degree
polynomial.

Example 7.5.4 Show there are an infinite number of primes in the arith-
metic progession 15k + 4.

Solution. Since 42 =1 (mod 15), we can use a Euclid-type proof. We will
start with a couple of observations about the polynomial

f@)y=2* -2 +22 +z+1.



7.5. PRIMES IN SPECIAL PROGRESSIONS 93

First, we note that it can be factored in the following three ways:

flz) = (z2 - ; - 1)2 + 1852 (7.2)
flx) = (—z2+g— %)2+%(z+1)2, (7.3)
flz) = (—z2 + g - %)2 —3z-1)>% (7.4)
We note by (7.2) that if p divides f(z), then —15 is a quadratic residue

mod p. By quadratic reciprocity,

HE -

So, there will be a solution only if (p/3) = 1 and (p/5) = 1 or if they
both equal —1. The first case will happen if p = 1 (mod 3) and p = 1,4
(mod 5). The second happens if p =2 (mod 3) and p = 2,3 (mod 5). So,

1 ifp=1,2,4,8 (mod 15),
(1%) =4¢-1 ifp=7,11,13 (mod 15),
0 otherwise.

From equation (7.3), we see that (—3/p) = 1. Using Exercise 7.3.2,

1 ifp=1,11 (mod 12),

3
(—) =4¢-1 ifp=5,7 (mod 12),
P 0 otherwise.

So, since we already know what (—1/p) is, we find that

1 ifp=1,7 (mod 12),

-3
<_) =4q-1 ifp=511 (mod 12),
0 otherwise.

Finally, equation (7.4) tells us that (5/p) = 1. But we know this only
happens when p=1,4 (mod 5).

When we combine all these results, we find that any prime divisor of
f(z) must be congruent to either 1 (mod 15) or 4 (mod 15).

We can now begin the Euclid-type proof. Suppose that there were only
a finite number of primes such that p = 4 (mod 15). Let py,...,p, be
these primes. We now consider the integer d = f(15p1p2- - - pn + 1). From
what we have just said, d is divisible by some prime p such that p = 1,4
(mod 5). Not all the prime divisors have the form p = 1 (mod 5). This
follows from the fact that d = f(15p; - pr+1) = 15p; - - Ppg(P1 - - - Pn)+4,
where g(z) is some polynomial. So, there is a divisor p such that p = 4
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(mod 15). But p cannot be in py,pa,... ,p, because when they divide d,
they leave a remainder of 4. This gives us the needed contradiction.

One item that we did not discuss is how to derive a polynomial that we
can use in a Euclid-style proof. One method involves a little ingenuity and
some luck. By playing around with some equations, you may happen upon
such a polynomial. Murty, on the other hand, describes [Mu] an explicit
construction for these polynomials. Though interesting in their own right,
we will refrain from going into any detail about these polynomials.

7.6 Supplementary Problems

Exercise 7.6.1 Compute (11/p).

Exercise 7.6.2 Show that (—3/p) =1 if and only if p=1 (mod 3).

Exercise 7.6.3 If p = 1 (mod 3), prove that there are integers a,b such that
p=a%—ab+b%

Exercise 7.6.4 If p = £1 (mod 8), show that there are integers a, b such that
a® — 2b% = 4p.

Exercise 7.6.5 If p = 1 (mod 5), show that there are integers a,b such that
a® +ab— b = 4p,

Exercise 7.6.6 Let p be a prime greater than 3. Show that:
(a) (—2/p) =1if and only if p = 1,3 (mod 8);

(b) (3/p) =1 if and only if p = 1,11 (mod 12);

(—3/p) =1if and only if p=1 (mod 6);

(6/p) = 1if and only if p = 1,5,19,23 (mod 24); and
(—6/p) =1 if and only if p=1,5,7,11 (mod 24).

Exercise 7.6.7 If p is a prime dividing n® — n* + 1, show that p is coprime to
n?, n® + n, and n® — n. Deduce that there are integers a, b, ¢ such that

an’> = 1 (mod p),
b(rn®+n) = 1 (mod p),
e(n®—n) = 1 (mod p).

Exercise 7.6.8 Let the notation be as in Exercise 7.6.7 above.

(a) Observe that z® — z* + 1 = (z* — 1)* + (2%)?. Deduce that

(an*—a)’+1=0 (mod p).
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(b) Observe that 2® — z* + 1 = (z* + 2% + 1)® — 2(z® + ). Deduce that
(bn* +bn®> +b)° —2=0 (mod p).
(c) Observe that 2% —z* 4+ 1 = (z* — 2% + 1) 4 2(z® — 2)2. Deduce that
(en*—en®+¢)>+2=0 (mod p).
(d) From z® —z* + 1 = (z* + 1)? — 3(2?)?, deduce that
(an* +a)> =3 (mod p).
(e) From z® — z* + 1 = (z* — 1)® + 3(3)?, deduce that
(2n* —1)> = -3 (mod p).
(f) From 28 — z* + 1 = (z* 4+ 32% + 1)2 — 6(z® + x)?, deduce that
(bn* +3bn*> +5)> =6 (mod p).
(g) From z® —z* + 1 = (z* — 32% + 1)® + 6(2® — z)?, deduce that
(en* —3cen® +¢)> = —6 (mod p).

Exercise 7.6.9 From Exercises 7.6.7 and 7.6.8, deduce that any prime divisor p
of n® —n* + 1 satisfies

3)-0-3)-0-0)-@)-

Deduce that p =1 (mod 24). Prove that there are infinitely many primes p =1
(mod 24).

[Exercises 7.6.7, 7.6.8, 7.6.9 were suggested by a paper of P. Bateman
and M.E. Low, Prime Numbers in Arithmetic Progressions with Difference
24, Amer. Math. Monthly, 72 (1965), 139-143.]

Exercise 7.6.10 Show that the number of solutions of the congruence
?+3° =1 (modp),

with 0 < 2 < p, 0 < y < p, (p an odd prime) is even if and only if p = +3
(mod 8).

Exercise 7.6.11 If p is a prime such that p — 1 = 4q with ¢ prime, show that 2
is a primitive root mod p.

Exercise 7.6.12 (The Jacobi Symbol) Let Q) be a positive odd number. We
can write @ = qiqz2---¢s where the ¢; are odd primes, not necessarily distinct.

Define the Jacobi symbol
a = (a
(Q) a I:I (th) '

j=1
If Q and @’ are odd and positive, show that:
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(a) (a/Q)(a/Q) = (a/QQ).
(b) (a/Q)(d'/Q) = (ad'/Q).
(©) (¢/Q)=(d'/Q)ifa=d (mod Q).

Exercise 7.6.13 If Q is odd and positive, show that

(%1) _ (L)@,

Exercise 7.6.14 If Q is odd and positive, show that (2/Q) = (—1)(@*~1/8,

Exercise 7.6.15 (Reciprocity Law for the Jacobi Symbol) Let P and @
be odd, positive, and coprime. Show that

(B)@-cre

Exercise 7.6.16 (The Kronecker Symbol) We can define (a/n) for any in-
teger a =0 or 1 {mod 4), as follows. Define

0 fa=0 (mod4),

)=<_i2)= 1 ifa=1 (mod 8),
—1 ifa=5 (mod8).

For general n, write n = 2°n1, with n1 odd, and define
()= (&
n/  \2 ni /)’

where (a/2) is defined as above and (a/n1) is the Jacobi symbol.
Show that if d is the discriminant of a quadratic field, and n, m are positive

integers, then
d d
— == for n=m (mod d)
n m

(%) - (%) sgnd for n=-m (mod d).

Exercise 7.6.17 If p is an odd prime show that the least positive quadratic
nonresidue is less than /p + 1.

(It is a famous conjecture of Vinogradov that the least quadratic non-residue
mod p is O(p®) for any € > 0.)

Exercise 7.6.18 Show that z* = 25 (mod 1013) has no solution.

Exercise 7.6.19 Show that z* = 25 (mod p) has no solution if p is a prime
congruent to 13 or 17 (mod 20).

Exercise 7.6.20 If p is a prime congruent to 13 or 17 (mod 20), show that
z* + py* = 252* has no solutions in integers.
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Exercise 7.6.21 Compute the class number of Q(+/33).
Exercise 7.6.22 Compute the class number of Q(+/21).
Exercise 7.6.23 Show that Q(+/—11) has class number 1.
Exercise 7.6.24 Show that Q(+/—15) has class number 2.

Exercise 7.6.25 Show that Q(+/—31) has class number 3.






Chapter 8

The Structure of Units

8.1 Dirichlet’s Unit Theorem

Let K be a number field and O its ring of integers. An element o € O
is called a unit if 33 € Ok such that o = 1. Evidently, the set of all units
in O forms a multiplicative subgroup of K*, which we will call the unit
group of K.

In this chapter, we will prove the following fundamental theorem, which
gives an almost complete description of the structure of the unit group of
K, for any number field K.

Theorem (Dirichlet’s Unit Theorem) Let Ux be the unit group of
K. Let n = [K : Q] and write n = vy +2rs, where, as usual, 1 and 2ro are,
respectively, the number of real and nonreal embeddings of K in C. Then
there exist fundamental units 1,... ,&,, where r = r1 + r9 — 1, such that
every unit € € Uy can be written uniquely in the form

e=Geptoer,

where ny,... ,n, € Z and ¢ is a root of unity in O. More precisely, if
Wk is the subgroup of Uk consisting of roots of unity, then Wi is finite
and cyclic and Ug ~ Wy < Z".

Definition. a € Ok is called a root of unity if Im € N such that o™ = 1.

Exercise 8.1.1 (a) Let K be an algebraic number field. Show that there are
only finitely many roots of unity in K.

(b) Show, similarly, that for any positive constant ¢, there are only finitely many
a € Ok for which |a'| < ¢ for all i.

If « is an algebraic integer all of whose conjugates lie on the unit cir-
cle, then o must be a root of unity by the argument in (a). Indeed, the

99
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polynomials
n

fap@) = [J(@ = a®)

i=1

cannot all be distinct since |a®*| = 1. If f, »(z) is identical with fq x(x)
where h < k (say), then the roots must coincide. If o = oF, then «
is a root of unity and we are done. If not, after a suitable relabelling
we may suppose that aVh = o2k @k = Ok gn=Dh — )k
a(Wh = ok Therefore,

aDR™ — @K™ (KR Dk

so that again, o is a root of unity.
This is a classical result due to Kronecker.

Exercise 8.1.2 Show that Wk, the group of roots of unity in K, is cyclic, of
even order.

Definition.

(i) An (additive) subgroup I' of R™ is called discrete if any bounded
subset of R™ contains only finitely many elements of I'.

(ii) Let {71,...,7} be a linearly independent set of vectors in R™ (so
that » < m). The additive subgroup of R™ generated by v1,... ,7, is
called a lattice of dimension r, generated by vy1,... ,%¥r.

Theorem 8.1.3 Any discrete subgroup T' of R™ is a lattice.

Proof. We prove this by induction on m:

In the trivial case, where I' = (0), T is a lattice of dimension 0. We will
thus, heretofore, assume that I' # (0).

Suppose first that m = 1, so that I' C R.

Let a be a nonzero element of I' and let A = {A € R: Aa € T'}. By
hypothesis, the set {y € ' : || < |a|} is finite. Then AN [-1,1] is finite
and contains a least positive element 0 < p < 1.

Let 8 = po and suppose that AG € T', with A € R. Then

M—-B=A-A)B=A-[A)pael,

which, by the minimality of u, implies that A = [)], i.e., A € Z which
implies that I' = ZJ is a lattice of dimension 1.

Now, suppose that m > 1.

Let {v1,... ,ux} be a maximal linearly independent subset of T (so that
I' C Ruy+- - -+Ruwy), let V be the subspace of R™ spanned by {vi,... ,vk—1}
and let To = ’'NV. Then [y is a discrete subgroup of V ~ R¥~! (as vector
spaces) so, by the induction hypothesis, is a lattice. That is, there are
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linearly independent vectors wy, ... ,w; € V such that I'g = Zw, +- - - +Zuwy,
and, since vy,... ,vk—1 € I'p, we must have [ =k — 1.

Evidently, {w1,... ,wk_1,wk := vx} is also a maximal linearly indepen-
dent subset of I' (since span{vy,... ,vxk_1} = span{wy,... ,wx—1} = V).
Let

k
T={ZaiwieI‘:OSai<1forlgigk—landogakgl}.

=1

T is bounded, hence finite, by hypothesis. We may therefore choose
an element x € T with smallest nonzero coefficient ar of wyg, say £ =
Zle b;w;. Since by, # 0, the set {wy,... ,wk_1, 2} is linearly independent.
Moreover, for any v € I, writing v = ciw1 + - - - + ck—1Wk—1 + CLZ, We see
that there are integers dy,...,dg_1 so that

k—1
v = vy — [ex]z — Zdiwi eT.
i=1
Since the coefficient of wy in ' is (cx — [ck])bx < bk, by the minimality of
br, we must have that ¢, — [cg] = 0 so that ¢ € Z and 7' € Ty = v €

I'og+Zx =T =Ty+Zx = Zw, + - - -+ Zwg_1 + Zx is a lattice of dimension
k. [}

Below, we will develop the proof of Dirichlet’s Unit Theorem.

Leto1,... ,00,,0r,41,0r+1,- - - 101 +ry; Ory 4+, De the real and complex
conjugate embeddings of K in C. Let E={k€Z:1< k <r;+rz}. For
ke E, set

7o k if & <rq,
k42 ifk> .

IfAC E,set A= {k: k € A}. Note that EUE = {k € Z:1 < k < r1+2r3}
and that, if = AU B is a partition of E, then EUE = (AUA)U(BUB)
is a partition of E U E.

Lemma 8.1.4 (a) Let myn € Z with 0 < m < n and let A = (d;;) €
My xm(R). For any integert > 1, there is a nonzero X = (%1,... ,Tp) €
Z™ with each |z;| <t such that, if y = XA = (y1,... ,Ym) € R™, then
each |y;| < ct?=™'™ where ¢ is a constant depending only on the matriz

(b) Let E = AU B be a partition of E and let m = |[AUA|, n=1r+2ry =
[K : Q]. Then there is a constant c, depending only on K, such that,
for t sufficiently large, 3o € Ok such that

clm-mlmn/im < a®)| < etttm o for ke A,
™ < o™ <t for keB.
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Proof. (a) Let § = max;<j<m 9 s, |dij|.- Then, for
0 #x=(z1,...,2n) € L5,
with each |z;| < t,

|’yj| = di;| < ét.

Consider the cube [—§t,6t]™ € R™. Let h be an integer > 1 and divide
the given cube into A™ equal subcubes so that each will have side length
26t/h. Now, for each x = (z1,...,z,) € [0,t|*NZ™"y = (y1,--- ,Ym) €
[—6t, 8t]™ which means that there are (¢ + 1)™ such points y € [—&t, §t]™
Thus, if ™ < (t+1)", then two of the points must lie in the same subcube.
That is, for some x’ # x”, we have that, if y = (x' — x")A = (y1,... ,Um)s
then each |y;| < 26t/h.

Since t > 1 and n/m > 1, (t + 1)™ > t"™/™ 4 1 so there exists an
integer h with t*/™ < h < (t+ 1)™™ (in particular, K™ < (t +1)"). Then
|lys| < 26t/h < 26t'~™/™ for each i.

(b) Let {w1, ... ,wn} C Ok be linearly independent over Q and suppose
that (z1,...,2,) € Z" If @ = Y7, xjw;, we have a®) =37 lzzw(k).
Let ki,... ,k, be the elements of A with k; = k; and let I4,... ,l, be the
elements of A with I; # [;, so that m = u + 2v. Let

wik") for1<j<u,
dij = Rewil’) foru <j<u+v,

Imwgl") foru+v<j<22ut+v=m

and let A = (d;;). By (a), there is a nonzero x = (z1,...,z,) € Z"
with each |z;| < ¢ such that, if y = xA, then each |y;| = | Y1, zidij| <
Ct'="/™ for some constant C.

For 1 <j <u,

le ”—Zzw 7) — o ki),
foru <j<u+wv,y; =Rea and for u+v < j < u+2v, y; =
Im o) = o) =y, +yr = lab)| < 20t —7/™ = ct!="/™ Therefore, for

any k€ A UZ,_|a(k)| < ctl—n/m,
If k € BU B, then each |z;| < t, and therefore

n n
la®)| = szwj < tZ|wj| = 0t.
j=1 j=1

Choosing ty = §, we see that |a¥)| <t, for all t > to.
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On the other hand, for A € B,

n
1<|Ng(@)] = []le®
=1
— H |a(k)| H |a(l)|Scm(tl~n/m)m|a(h)|tn—m—l
kEAUA leBUB

= |a®|>tc™.
Similarly, for j € A,

1< |NK(a)| < |a(j)|(ctl—n/m)m—ltn—m — |a(j)|cm—ltm/n—l
= |a(j)| > cl—mtl—n/m' O

Lemma 8.1.5 Let E = AU B be a proper partition of E.

(a) There exists a sequence of nonzero integers {a,} C Ok such that

|af}k)| > |a1(f£1 for ke A,

e®| < [o®|  for ke B,

and |Ng(a,)| < ¢™, where c is a positive constant depending only on

K and m=|AUA|.

(b) There exists a unit ¢ with |e®| < 1, for k € A and [e®| > 1, for
ke B.

Proof. (a) Let t; be an integer greater than 1 and let {¢,} be the sequence
defined recursively by the relation t,4; = Mt, for all v > 1, where M is a
positive constant that will be suitably chosen. By Lemma 8.1.4, for each
v, da, € Ok such that )

mmglonim < oW <ol n/m for ke A,
c ™, < |a1(}k)| <t, for ke B.

Now, let £ = min{1,n/m — 1} and choose M such that M" > ¢ so that
both M > ¢™ and M™/™ 1> ¢™. Then, if k € A,

1—
(k)| > —m+lt1—n/m _ . —m+1 tu+1 n/m tl—n/m > (k)
o™ | > ¢ v =c M >ty 2 oy

and if k € B, then

1

t _
la®)| < t, = 7+ <My < o).

Also,

INK(av)| = H |a1(}i)| H |a1(}j)| < (ctqu—n/m)mtg—m — M
i€ AUA j€BUB
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(b) Let {a,} € Ok be the sequence of algebraic integers in (a). Define
the sequence of principal ideals 4, = (®,). Then N(A,) = Ng(a,) < ™
(where N(A,) := #0k/Ay).

Since there are only finitely many integral ideals A, of bounded norm,
3u € N such that, for some v > u, A, = A, which means that o, = cay,
for some unit . We conclude that

k
|5(k)| _ a,(‘) <1 fork S A,
2®| \>1 forkeB.

O

Theorem 8.1.6 (Dirichlet’s Unit Theorem) Let U be the unit group
of K. Let n = [K : Q] and write n = r1 + 2ry, where, as usual, r1 and
2ro are, respectively, the number of real and nonreal embeddings of K in C.
Then there exist fundamental units €y,... ,&,, where r =1y + 19 — 1, such
that every unit € € Ug can be written uniquely in the form

5:(5717’1 ...5:‘7’7"

where ny,... ,ny € Z and ¢ is a root of unity in Og. More precisely, if
Wy is the subgroup of Uk consisting of roots of unity, then Wy is finite
and cyclic and U ~ Wy X Z7.

Proof. Let Ug be the unit group of K and consider the homomorphism
f:Ug — R"
e = (logle®],... log|e™).

We will show that:

(a) ker f = Wk and

(b) Im f =T is a lattice of dim 7 in R".
a) Suppose that ¢ € ker f, i.e.,

W] = ... =|emtra=b| =1,
= |5(7'1+7'2+1)| — ... = |5(7'1+27‘2—1)| =1.
But, since ¢ € Uk,
n
L= |Nk(e)| = [[1e¥] = Jemtmajertzra] = |ertra,
i=1
= |5(7‘1+7‘2)| — |5(T1+27‘2)| =1.

By Exercise 8.1.1, the number of ¢ € Ok such that |¢(| < 1 for all i is
finite. & must, therefore, have finite order in Uk, ie, ¢¥ = 1, for some
positive integer k and so £ € Wg.
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(b) If =M < log|e®| < M, for i = 1,...,r, then e ™™ < |¢®)]| < M
forall i ¢ S = {r; + ra,r; + 2r2}. But

(ritr2)|2 = [Nk (e)| < MTITATTY M

Higs |

Thus, we have that each |¢(9)| < ¢M"/2, By Exercise 8.1.1, there are only
finitely many ¢ for which this inequality holds. Therefore, any bounded
region in R™ contains only finitely many points of I so, by Theorem 8.1.3,
I' is a lattice of dimension t < r.

By Lemma 8.1.5 (b), we can find for each 1 < i < r, a unit ¢; such that
|e§i)| > 1 and |e§3)| <1lforj#iand 1< j<r Letz; bethe image of
¢; under the map f. We claim that i, ..., z, are linearly independent. For
suppose that

e

ary+ - +cxy =0,

with the ¢;’s not all zero. We may suppose without loss of generality that
c1>0and ¢ > ¢5 for1 <j<r. Then,

r T
0="> ciloglef’] > e > logle?’],
i=1 i=1

so that .

> loglei”] < 0.

i=1
Now the product of the conjugates of ¢; has absolute value 1. By our choice
of €1, we see that |¢\”| < 1 and we deduce that

T
Z log || > 0,
i=1

which is a contradiction. Thus, Ux ~ Wi xT', and as shown above, I" ~ Z.
a

Exercise 8.1.7 (a) Let I' be a lattice of dimension n in R™ and suppose that
{v1,...,vn} and {w1,... ,wn} are two bases for I" over Z. Let V and W
be the n X n matrices with rows consisting of the v;’s and w;’s, respectively.
Show that |det V| = |det W|. Thus, we can unambiguously define the volume
of the lattice I', vol(I") = the absolute value of the determinant of the matrix
formed by taking, as its rows, any basis for I' over Z.

(b) Let €1,... ,&r be a fundamental system of units for a number field K. Show
that the regulator of K, Rk = |det(log Iey) D{, is independent of the choice of
Elyee. 4Ep.

If ¢ is a fundamental unit in Q(v/d), then so are —¢,e~, —¢~!. Sub-
ject to the constraint ¢ > 1, ¢ is uniquely determined and is called the
fundamental unit of Q(\/E)
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Exercise 8.1.8 (a) Show that, for any real quadratic field K = Q(\/&), where d
is a positive squarefree integer, Ux ~ Z/2Z x Z. That is, there is a fundamen-
tal unit € € Uk such that Ux = {£e* : k € Z}. Conclude that the equation
—dy? =1 (erroneously dubbed Pell’s equation) has infinitely many integer
solutions for d = 2,3 mod 4 and that the equation 22 —dy® = 4 has infinitely
many integer solutions for d = 1 mod 4.

(b) Let d=2,3 (mod 4). Let b be the smallest positive integer such that one of
db® £ 1 is a square, say a2, a > 0. Then a +b+v/d is a unit. Show that it is the
fundamental unit. Using this algorithm, determine the fundamental units of

Q(v2), Q(V3).

(c) Devise a similar algorithm to compute the fundamental unit in Q(+/d), for
d =1 (mod 4). Determine the fundamental unit of Q(v/5).

Exercise 8.1.9 (a) For an imaginary quadratic field K = Q(v/—d) (d a positive,
squarefree integer), show that

Z/4Z for d=1,
Uk ~ S Z/6Z for d =3,
Z/2Z  otherwise.

(b) Show that Uk is finite <& K = Q or K is an imaginary quadratic field.

(c) Show that, if there exists an embedding of K in R, then Wg ~ {£1} ~ Z/27.
Conclude that, in particular, this is the case if [K : Q)] is odd.

Theorem 8.1.10 (a) Let (= e2™/™, K = Q(Cm). If m is even, the only
roots of unity in K are the mth roots of unity, so that Wg ~ Z/mZ.
If m is odd, the only ones are the 2mth roots of unity, so that Wy ~
Z[2mZ.

(b) Suppose that [K : Q] = 4. Then Wk is one of the six groups Z/2IZ, 1 <
1 <6. If, furthermore, K has no real embedding, then Ug ~ Wi X Z.

(c) Let K = Q({p), p an odd prime. For any unit ¢ € Uk, € = C;fu, for
some real unit w € Ug NR, k € Z/pZ.

(d) Let K be as in (c) and let L = Q({, + ¢, '). Then L = K NR and
conclude that Ux = ({p) x Up.

(e) For K =Q(¢s),
Uk = {#¢ket ke 2/5Z,1 € 7},
where ¢ = (14 +/5)/2 is the fundamental unit of Q(+/5).

Proof. (a) If m is odd, then Com = —C5*+! = —¢{™"™/2 which implies that

2m

Q(¢m) = Q(Com)- It will, therefore, suffice to establish the statement for m
even. Suppose that 6 € Q(¢,,) is a primitive kth root of unity, k£ t m. Then
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Q(¢m) contains a primitive rth root of unity, where r = lem(k, m) > m.

Then Q(¢r) € Q(¢m)
= p(r) = [Q&) : QI < [QUGm) : Q] = p(m)

(where ¢ denotes the Euler phi-function). But m is even and m properly
divides r implies that @(m) properly divides ¢(r), so that, in particular,
p(m) < ¢(r), a contradiction. Thus, the mth roots of unity are the only
roots of unity in Q((n).

(b) Wk is cyclic, generated by an rth root of unity, for some even r > 2.
Q(¢r) € K means that 4 = [K : Q] > p(r). A straightforward computation
shows that

pir)<4 = re{2,4,6,8,10,12}.
If K has no real embedding, then r;1 = 0,12 =2=r=r;+r2—1=1. By
Dirichlet’s theorem, Ux ~ Wik x Z. .

(c) Let e € Uk. Then 1 = |(g/2)®| = |e® /e®|, fori=1,... ,n=[K :
Q]. By the remark in the solution to Exercise 8.1.1, £/ is a root of unity
in K and so g/ = :E:C;f, for some k.

Since Ok = Z[(,], we may write ¢ = Zfz_g aiCI’;, each a; € Z. Then
p—2 p
el = (Z aiC;;) Zaz (mod p).
i=0
Since € = Y77 a;¢ ¢,
g = Zai =e? (mod p).

If e = —(}e, then e? = —&P (mod p). This implies that 2e? = 0 (mod p)
and so e? = 0 (mod p). In other words, e? € (p), a contradiction, since
is a unit.

Thus /€ = C;f, for some k. Let r € Z such that 2r = k (mod p) and let

= (,"e. Then &7 = C”e—C" ke =( e =g = e €Rand e = (Je).

( ) Let a = ¢+t Then a=2cos(2r/p) e Rso L = Q(a) € KNR.
But since [K : K ﬂ]R] =2 and (7 — a, + 1 = 0 so that [K : Q(a)] < 2, we
have that L = K NR. Thus, € € Uk, meaning € = :l:Cllfel, for some ¢; € L,
so that

UK = (Cp> X UL.

(e) It remains only to show that Q(¢s+¢5') = Q(V5). Let o = (5 +¢5 7t
G+E+E+G+1 = 0,
= GH+G+1+¢G +G2 = 0,

or a® 4+ a—1=0. Since o = 2cos(27/5) > 0, this implies that o =
—1++/5)/2 and we conclude that Q(a) = Q(/5). m]
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Exercise 8.1.11 Let [K : Q] = 3 and suppose that K has only one real embed-

ding. Then, by Exercise 8.1.9 (c), Wx = {£1} implies that Ux = {+u* : k € Z},

where u > 1 is the fundamental unit in K.

(a) Let u,pe®, pe™® be the Q-conjugates of u. Show that u = p~2 and that
dijo(u) = —4sin®0(p® + p~> — 2 cos 0)*.

(b) Show that |dx/q(u)| < 4(u® + u™® +6).

(¢) Conclude that u® > d/4 —6 —u™> > d/4 — 7, where d = |dk|.

Exercise 8.1.12 Let o = /2, K = Q(a). Given that dx = —108:
(a) Show that, if u is the fundamental unit in K, «® > 20.

(b) Show that 8= (a—1)"' =a® +a+1is a unit, 1 < B < u%. Conclude that
8 =u.

Exercise 8.1.13 (a) Show that, if o € K is a root of a monic polynomial f €
Z[z] and f(r) = £1, for some r € Z, then o — 7 is a unit in K.

(b) Using the fact that if K = Q(¥m), then dx = —27m?, for any cubefree
integer m, determine the fundamental unit in K = Q(¥/7).

(¢) Determine the fundamental unit in K = Q(/3).

8.2 Units in Real Quadratic Fields

In Exercise 8.1.8, we developed a simple algorithm with which we can deter-
mine the fundamental unit of a real quadratic field. However, this algorithm
is extremely inefficient and, moreover, there is no way of determining the
number of steps it will take to terminate. In this section, we develop a more
efficient and more enlightening algorithm, using continued fractions.

Definition.
(i) A finite continued fraction is an expression of the form

1
(lo+ 1 3

ai + 1
g+t —7

Gp—1+ —
n

where each a; € R and a; > 0 for 1 < ¢ < n. We use the notation
[@g, ... ,an] to denote the above expression.

(ii) [@g,.-. ,an] is called a simple continued fraction if ay,...,a, € Z.

(iii) The continued fraction Cy = [ao, ... ,ax], 0 < k < n, is called the kth
convergent of [ag, ... ,an].
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Evidently, a finite simple continued fraction represents a rational num-
ber. Conversely, using the Euclidean algorithm, one can show that every
rational number can be expressed as a finite simple continued fraction.

Exercise 8.2.1 (a) Consider the continued fraction [ag,... ,an]|. Define the se-
quences po, - .. ,pn and qo,. .. ,qgn recursively as follows:
po = ao, g =1,
p1=aoa1+1, Q= ai,
Pk = QkPr-1 + Pk—2, Qx = OkQk—1 + Qx-2,

for k > 2. Show that the kth convergent Cr = pr/qx.
(b) Show that prgr_1 — pr-19x = (—1)*71, for k > 1.

(c) Derive the identities
()*

Cry —Cro1 = ,
qxqk -1
for 1 <k <n, and
_1\k
Ck_Ck—2:M7
Qe Gk -2
for 2 <k <n.
(d) Show that
Ci>Cs>Cs > -,
Co<Coa<Cy<---,

and that every odd-numbered convergent Ca;41, j > 0, is greater than every
even-numbered convergent Cak, k > 0.

Remark. By (b), we can conclude that if [ag, ... ,a,] is a simple continued
fraction, then the integers pg, qx are relatively prime.
It is also useful to note for k£ > 1,

ap 1\ far 1\ = far 1\ _ (px P

1 0 1 0 1 0 % qu—1/’
which is easily proved by induction. Thus, the convergents can be easily
retrieved by matrix multiplication.

Exercise 8.2.2 Let {a;}i>0 be an infinite sequence of integers with a; > 0 for
i > 1 and let Cx = [ao, ... ,ax]. Show that the sequence {Cr} converges.

Definition. We define the continued fraction [ag, a1, ...] to be the limit as
k — oo of its kth convergent Cy.

lag,a1,...]= lim Cj.
k—oo
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Exercise 8.2.3 Let a = ap be an irrational real number greater than 0. Define
the sequence {a;}i>o recursively as follows:

1

or —ap

ar = [ox], o411 =

Show that a = [ao, a1,...] is a representation of o as a simple continued fraction.

By Exercise 8.2.3, it is evident that every real number o has an expres-
sion as a simple continued fraction. We can also show that the representa-
tion of an ¢rrational number as a simple continued fraction is unique. From
now on, we will call the representation of « as a simple continued fraction
simply the continued fraction of a.

Theorem 8.2.4 (a) Let o be an irrational number and let C; = p;/q;,
for 3 € N, be the convergents of the simple continued fraction of a. If
r,s € Z with s > 0 and k is a positive integer such that

|sa — | < |gra — pal,
then s > Qk+1-

(b) If o is an irrational number and r/s is a rational number in lowest
terms, s > 0, such that

1
— < _’
|oe — /3] 52

then r/s is a convergent of the continued fraction of a.

Proof. (a) Suppose, on the contrary, that 1 < s < gg+1. For each k > 0,
consider the system of linear equations

T+ Py = T,
kT + Q1Y = S

Using Gaussian elimination, we easily find that

(Pk+19k — PEQk+1)Y = Tqk — SPk,
(PeQr+1 — Pk4+1Qk)T = TqQkt1 — SPk+1-

By Exercise 8.2.1 (b), pri1gk — Pr@et1 = (—1)* 80 pegrtr — prrax =
(—1)**1. Thus, the unique solution to this system is given by

(=1)*(sprt1 — rqk11),
(—1)*(rqx — spr).

We will show that r and y are nonzero and have opposite signs.
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If z =0, then

T _ DPrt1
S Qi1

and since (pr+1,9k+1) = 1, this implies that gxy1|s, and so ¢zy1 < s,
contradicting our hypothesis.

If y = 0, then r = pyz, s = qxz, so that
|sac — 7| = |z| - lgeex — pi| > lgee — pil,

again contradicting our hypothesis.

Suppose now that y < 0. Then since gxz = s — gx4+1y and each ¢; >
0,z > 0. On the other hand, if y > 0, then qx+1y > qx4+1 > s 50 qpz =
s —qr+1y < 0and z < 0.

By Exercise 8.2.1 (d), if k is even,
Ph ¢ o < PotL
qk qk+1
while, if k£ is odd,
Pr+1 Pi

—_—— << a< —.
qk+1 9k

Thus, in either case, gy — pr, and qx+1 — pr+1 have opposite signs so that
z(gra — pr) and y(gr+1 — pr+1) have the same sign.

= |sa —7| = |(grz + qer19) — (Prz + Pry1y)|
|z(qre — p) + Y(qr10 — Pry1))

|lz| - gk — pi| + |yl - |grt10 — Picta |
|| - lguer — pi| 2> lgee — picl,

2
2

a contradiction, thus establishing our assertion.

(b) Suppose that r/s is not a convergent of the continued fraction of a,
ie., 7/s # pn/qn for all n. Let k be the largest nonnegative integer such
that s > g;. (Since s > qp = 1 and ¢ — 00 as k — oo, we know that such
a k exists.) Then ¢ < s < gx41 and by (a),

1
lgra —pr| <|sa—r| = sla—r/s|< o
1
= ok .
qk 2sqy,
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Since /s # pr/qk, |spx — Tak| > 1,

el _ |me v
Sqk 5qy; 9 S
I T S
q S8
< |- i +|a— Cl
9k S
1 n 1
2sq,  2s2
This would imply that
1 1
— < —
2sqr 252’
S0 qr > S, a contradiction. O

Exercise 8.2.5 Let d be a positive integer, not a perfect square. Show that, if
|2 —dy2| < V/d for positive integers , y, then z/y is a convergent of the continued
fraction of V/d.

Definition. A simple continued fraction is called periodic with period k if
there exist positive integers N,k such that a,, = anyi for all n > N. We
denote such a continued fraction by [ag,... ,an—1,8N, N1, .-+ GNFh=1)-

Exercise 8.2.6 Let o be a quadratic irrational (i.e, the minimal polynomial of
the real number o over Q has degree 2). Show that there are integers Po, Qo,d
such that

P,
o= PEYE i Qol(d— PR).
Qo
Recursively define
o = PEtVd
Qr
ar = [ok],
Pryy = arQr — P,
_ 4Py
Qk+1 - Qk )
for k =0,1,2,.... Show that [ao, a1, a2,...] is the simple continued fraction of

Q.

Exercise 8.2.7 Show that the simple continued fraction expansion of a quadratic
irrational o is periodic.

Exercise 8.2.8 Show that, if d is a positive integer but not a perfect square,
and o = ag = V/d, then

Pr-1—dgi-1 = (-1)*Qx,
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for all k¥ > 1, where pr/qx is the kth convergent of the continued fraction of
and Qx is as defined in Exercise 8.2.6.

Let n be the period of the continued fraction of vd. We can show,
using properties of purely periodic continued fractions, that n is the smallest
positive integer such that Q, = 1 (so that Q; # 0, for 0 < j < n) and that
Qn # —1 for all n. In particular, this implies that (—1)*Qx = %1 if and
only if n|k. For the sake of brevity, we omit the proof of this fact.

Theorem 8.2.9 Let n be the period of the continued fraction of Vd.

(a) All integer solutions to the equation x* — dy* = £1 are given by
¢ +yVd=£(Pp-1+ qu1Vd) :l€Z,

where pp_1/qn-1 s the (n — 1)th convergent of the continued fraction

of Vd.

(b) If d is squarefree, d = 2,3 (mod 4), then p,_1 + gn_1Vd is the funda-
mental unit of Q(\/d).

(c) The equation z? — dy? = —1 has an integer solution if and only if n is
odd.

(d) Ifd has a prime divisor p = 3 (mod 4), then the equation 2> —dy? = —1
has no integer solution.

Proof. (a) For any solution (z,¥) to the given equation,
(@ + Vdy)™ = £(a — Vdy).

Therefore, one of £(a, b) is a solution to z? — dy? = +1 if and only if each
of the four pairs is a solution. It will, thus, suffice to show that all positive
solutions are given by

z+yVd = (Pn_i1 + a1 Vd)™ : m > 0.

By Exercise 8.2.5, if 22 — dy? = £1, then = py_1,y = qx_1, for some k.
By Exercise 8.2.8, p2_; —dg?_, = (—1)*Q; = £1 = Qi = £1 and, by our
Remark, this implies that n|k. Since

Pn-1 < Pon-1<--- and In-1 < Qgop—-1 < ‘-,

we have that, in particular, the least positive solution to the given equation
is 1 = Pn—1,Y1 = Q@n-1. We will now show that all positive solutions
(m,Ym) are given by z,, + ymVd = (z1 + ylx/ﬁ)m, m > 0.

Taking Q-conjugates, z, — ymvVd = (21 — 1 Vd)™

(mm + ym\/a)(mm - ym\/a) = (m% - dy%)m = (il)m = :bl,
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so that (z,,,ym) is indeed a solution. Evidently, z; < zm,¥1 < Ym, so that
(Zm,Ym) I8 a positive solution.

Now, suppose that (X,Y) is a positive solution that is not one of the
(i, Ym). Then 3 an integer x > 0 such that

(331 +y1\/3)"‘ <X+ Y\/E < (1131 + ylx/ﬁ)"“ﬂ,

or

1< (21 +y1Vd) (X +YVd) <z, + y1Vd.
But 22 — dy? = +1 which implies that (z1 + y1vd) ™" = [£(z1 — 11 Vd)]".
Define the integers s,t such that
s+tVd = (z1 4+ 11Vd) (X + YVd) = (21 — 11 Vd)* (X + Y V).
Then

s —dt? = [£(z1 — V) (X + Y V)| [£(z1 + 11 Vd)* (X — Y Vd)]
= X?-dy?=+l1.

Thus, (s,t) is a solution to the given equation with
1 <S+t\/a<$1 +y1\/ﬁ.

Also,
0< (z1+mVd) ' <(s+tVd) ™ <1< s+tVd

But this implies that

25 = s+tVd+[t(s—tVd)] =s+tVd £ (s+tVd)"L >0,
AVd = s+tVdT[£(s—tVd)] >0,

and so (s, t) is a positive solution. By hypothesis, then, s > z1,¢ > y; and,
since s + t\/a <r1+u \/E, we have a contradiction.

(b) Since pp_1 + gn—1Vd > 1, this follows immediately from part (a).

(c) 22 — dy? = —1 = = = pg_1,y = qx—1 for some k, by Exercise 8.2.5.
But p?_, —dq?_, = (—1)*Qt = —1 if and only if n|k and k is odd. Clearly
then, a solution exists if and only if n is odd.

(d) 22 — dy? = —1 implies that z2 = —1( mod p) for all p|d. But, for
p = 3 mod 4, this congruence has no solutions. o

Exercise 8.2.10 (a) Find the simple continued fractions of v/6,+/23.

(b) Using Theorem 8.2.9 (c), compute the fundamental unit in both Q(+/6) and
Q(v23).

Exercise 8.2.11 (a) Show that [d, 2d] is the continued fraction of v/d? + 1.
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(b) Conclude that, if d® + 1 is squarefree, d = 1,3 (mod 4), then the fundamen-
tal unit of Q(vd? +1) is d + v/d* + 1. Compute the fundamental unit of
Q(v2), Q(v10), Q(v'26).

(c) Show that the continued fraction of v/d2 + 2 is [d, d, 2d].

(d) Conclude that, if d®+2 is squarefree, then the fundamental unit of Q(v/d2 + 2)
is d2 + 1 4 dv/d2 + 2. Compute the fundamental unit in Q(v/3), Q(v11),
Q(v51), Q(V66).

8.3 Supplementary Problems

Exercise 8.3.1 If n2 —1 is squarefree, show that n++/n? — 1 is the fundamental

unit of Q(v/n? —1).

Exercise 8.3.2 Determine the units of an imaginary quadratic field from first
principles.

Exercise 8.3.3 Suppose that 2°™ + 1 = dy® with d squarefree. Show that 2™ +
yVd is the fundamental unit of Q(v/d), whenever Q(\/a) # Q(V5).

Exercise 8.3.4 (a) Determine the continued fraction expansion of /51 and use
it to obtain the fundamental unit ¢ of Q(+/51).

(b) Prove from first principles that all units of Q(+/51) are given by £",n € Z.

Exercise 8.3.5 Determine a unit # =+1 in the ring of integers of Q(#) where
¢° + 60 + 8 =0.

Exercise 8.3.6 Let p be an odd prime > 3 and supose that it does not divide
the class number of Q(({,). Show that

P +yP 4+ 22 =0
is impossible for integers z,y, z such that p { zyz.
Exercise 8.3.7 Let K be a quadratic field of discriminant d. Let P, denote
the group of principal fractional ideals Ok with a € K satisfying Nx(a) > 0.
The quotient group Hyp of all nonzero fractional ideals modulo Py is called the

restricted class group of K. Show that Hy is a subgroup of the ideal class group
H of K and [H : Ho] < 2.

Exercise 8.3.8 Given an ideal a of a quadratic field K, let a’ denote the conju-
gate ideal. If K has discriminant d, write

|d| = pi'p2- - ps

where p1 =2, a1 = 0,2, or 3 and pa, ... ,p: are distinct odd primes. If we write
p:Ox = p? show that for any ideal a of Ok satisfying a = a’ we can write

01 at
A=TP" Pt

r > 0, a; = 0,1 uniquely.
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Exercise 8.3.9 An ideal class C of Hy is said to be ambiguous if C% =1 in Ho.
Show that any ambiguous ideal class is equivalent (in the restricted sense) to one
of the at most 2° ideal classes

pllzl...p?t, a,,::o,]_.

Exercise 8.3.10 With the notation as in the previous two questions, show that
there is exactly one relation of the form

Pt = pOk, Nk (p) >0,

witha; =0or 1, Y ;_ a; >0.

Exercise 8.3.11 Let K be a quadratic field of discriminant d. Show that the
number of ambiguous ideal classes is 27! where ¢ is the number of distinct primes
dividing d. Deduce that 2°~! divides the order of the class group.

Exercise 8.3.12 If K is a quadratic field of discriminant d and class number 1,
show that d is prime or d =4 or 8.

Exercise 8.3.13 If a real quadratic field K has odd class number, show that K
has a unit of norm —1.

Exercise 8.3.14 Show that 15 + 4/14 is the fundamental unit of Q(v/14).

Exercise 8.3.15 In Chapter 6 we showed that Z[v/14] is a PID (principal ideal
domain). Assume the following hypothesis: given a,8 € Z[v/14], such that
ged(a, 3) = 1, there is a prime 7 = a (mod 8) for which the fundamental unit
€ = 15+4+/14 generates the coprime residue classes (mod 7). Show that Z[/14]
is Euclidean.

It is now known that Z[v/14] is Euclidean and is the main theorem of
the doctoral thesis of Harper [Ha]. The hypothesis of the previous exer-
cise is still unknown however and is true if the Riemann hypothesis holds
for Dedekind zeta functions of number fields (see Chapter 10). The hy-
pothesis in the question should be viewed as a number field version of a
classical conjecture of Artin on primitive roots. Previously the classifica-
tion of Euclidean rings of algebraic integers relied on some number field
generalization of the Artin primitive root conjecture. But recently, Harper
and Murty [HM] have found new techniques which circumvent the need of
such a hypothesis in such questions. No doubt, these techniques will have
further applications.

Exercise 8.3.16 Let d = a® + 1. Show that if [u2 — dv?| # 0,1 for integers u, v,
then
|u? — dv®| > Vd.

Exercise 8.3.17 Suppose that n is odd, n > 5, and that n?9+1 = d is squarefree.
Show that the class group of Q(\/a) has an element of order 2g4.



Chapter 9

Higher Reciprocity Laws

9.1 Cubic Reciprocity

Let p = (=1 + +/=3)/2 be as in Chapter 2, and let Z[p] be the ring of
Eisenstein integers. Recall that Z[p] is a Euclidean domain and hence a
PID. We set N(a + bp) = a® — ab + b? which is the Euclidean norm as
proved in Section 2.3.

Exercise 9.1.1 If 7 is a prime of Z[p], show that N(m) is a rational prime or the
square of a rational prime.

Exercise 9.1.2 If w € Z[p] is such that N(7) = p, a rational prime, show that 7
is a prime of Z[p].

Exercise 9.1.3 If p is a rational prime congruent to 2 (mod 3), show that p is
prime in Z[p]. If p =1 (mod 3), show that p = 77 where 7 is prime in Z[p].

Exercise 9.1.4 Let 7 be a prime of Z[p]. Show that o¥(™~! =1 (mod 7) for
all a € Z[p] which are coprime to .

Exercise 9.1.5 Let m be a prime not associated to (1 — p). First show that
3| N(m) = 1. If (a,m) = 1, show that there is a unique integer m = 0,1, or 2
such that

oNM=D/3 = ym (mod 7).

Let N(w) # 3. We define the cubic residue character of a (mod 7) by
the symbol (a/7)3 as follows:

(i) (a/m)3=0if 7|
(i) aW®-D/3 = (o/7)3 (mod 7) where (a/7)3 is the unique cube root

of unity determined by the previous exercise.

117
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Exercise 9.1.6 Show that:
(a) (a/m)s =1 if and only if 2* = a (mod 7) is solvable in Z[p];

(b) (aB/m)s = (a/m)3(B/7)s; and
(c) if a =8 (mod 7), then (a/7)3 = (8/7)s.

Let us now define the cubic character x.(a) = (a/7)s.

Exercise 9.1.7 Show that:

(a) Xx(a)= Xw(Ot)2 = Xw(az); and
(b) Xw(a) = XF(Ol)-

Exercise 9.1.8 If ¢ =2 (mod 3), show that x4(@) = x¢(a?) and x,(n) =1 if n
is a rational integer coprime to gq.

This exercise shows that any rational integer is a cubic residue mod gq.
If 7 is prime in Z[p|, we say 7 is primary if # = 2 (mod 3). Therefore if
q = 2 (mod 3), then q is primary in Z[p]. If # = a + bp, then this means
a =2 (mod 3) and b =0 (mod 3).

Exercise 9.1.9 Let N(7) = p = 1 (mod 3). Among the associates of 7, show
there is a unique one which is primary.

We can now state the law of cubic reciprocity: let 71,72 be primary.
Suppose N(m1), N(w3) # 3 and N(m) # N(m2). Then

X1 (72) = Xy (T1)-

To prove the law of cubic reciprocity, we will introduce Jacobi sums
and more general Gauss sums than the ones used in Chapter 7. Let F,
denote the finite field of p elements. A multiplicative character on F, is a
homomorphism x : F — C*. The Legendre symbol (a/p) is an example
of such a character. Another example is the trivial character yo defined by
Xo(a) = 1 for all a € F;. It is useful to extend the definition of x to all of
Fp. We set x(0) =0 for x # xo and xo(0) = 1.

For a € F;, define the Gauss sum

ga(x) = Y x(£)¢*,

teF,

where ¢ = €>™/P is a primitive pth root of unity. We also write g(x) for
a1(x)-

Theorem 9.1.10 If x # xo, then [g(x)| = /p.
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Proof. We first observe that a # 0 and x # xo together imply that
da(x) = x(a=1)g(x) because
X(@)ga(x) = x(a) Y x(£)¢*

teF,

> x(at)¢®

ter,

= g(x)

With our conventions that x¢(0) = 1, we see for a # 0,

ga(XO) = Z Cat = 07
teF,
since this is just the sum of the pth roots of unity. Finally, go(x) = 0 if

X # Xo and go(xo) = p.
Now, by our first observation,

> 9a(x)9a() = 19()P(p - 1).

a€lF,

On the other hand,

Y 900900 = D D x(x(®) Y ¢

a€F, seF, teF, a€k,

If s # ¢, the innermost sum is zero, being the sum of all the pth roots of
unity. If s = ¢, the sum is p. Hence |g(x)|? = p. |

Let x1,X2,--. ,xr be characters of Fp. A Jacobi sum is defined by

I, oxe) = ), xalt) - xe(tr),

ti+-ttr=1

where the summation is over all solutions of £; +--- + ¢, = 1 in F,. The
relationship between Gauss sums and Jacobi sums is given by the following
exercise.

Exercise 9.1.11 If xi,...,xr are nontrivial and the product x:---xr is also
nontrivial, prove that g(x1)--- g(xr) = J(x1,-- -, Xr)g(X1 - Xr)-

Exercise 9.1.12 If x,,... , X, are nontrivial, and xi - - xr is trivial, show that

g(x1) - 9(xr) = xr(=1)pJ(x1,- -, Xr-1)-

We are now ready to prove the cubic reciprocity law. It will be conve-
nient to work in the ring {2 of all algebraic integers.
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Lemma 9.1.13 Let 7 be a prime of Z[p| such that N(n) = p=1 (mod 3).
The character x introduced above can be viewed as a character of the finite

field Z[p|/(7) of p elements. J(Xz,Xx) = 7.
Proof. If x is any cubic character, Exercise 9.1.12 shows that g(x)® =

pJ(x, x) since x(—1) = 1. We can write J(x, x) = a + bp for some a,b € Z.
But

g’ = (Z x(t)Ct>
ZX t)¢¥  (mod 3Q)
= Z ¢3*  (mod 39)

0
= -1 (mod 3Q).

Therefore, a + bp = —1 (mod 3Q2). In a similar way,
gX)*=a+bp=-1 (mod 3Q).

Thus, by/—3 = 0 (mod 3Q) which means —3b2/9 is an algebraic integer
and by Exercise 3.1.2, it is an ordinary integer. Thus, b = 0 (mod 3) and
= —1 (mod 3). Also, from Exercise 9.1.12 and Theorem 9.1.10, it is clear
that |[J(x, \)|>=p = J(x x)J( x). Therefore, J(x, x) is a primary prlme
of norm p. Set J(xx,Xr) = #'. Since 77 = p = n'x’, we have 7 | 7’ or
7 | w'. We want to eliminate the latter possibility.
By definition,

J(XrsXr) = Z X (t) Xz (1 — 1)
= Zt(p 1)/3 (p—]_)/3 (mod 7T)

The polynomial z(P~1)/3(1 — z)P=1)/3 has degree 2(p — 1) <p—1. Let g
be a primitive root (mod 7). Then

ZtJ—Zg‘“ =0 (modw)

a=0

if g7 # 1 (mod =), which is the case since j < p — 1. Thus, J(xx,Xx) = 0
(mod 7). Therefore 7 | 7/, as desired. O

Exercise 9.1.14 Show that g(x)* = pr.
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Lemma 9.1.15 Let 1y = ¢ =2 (mod 3) and m3 = 7 be a prime of Z[p] of
norm p. Then Xx(q) = xq(7). In other words,

(9),=(
m/3 \q/3
Proof. Let x, = X, and consider the Jacobi sum J(y, ..., x) with ¢ terms.

Since 3 | ¢ + 1, we have, by Exercise 9.1.12, g(x)?*t! = pJ(x,... ,x). By
Exercise 9.1.14, g(x)® = pr so that

g0 = (pm)@tVB,

Recall that
T %) = Y x(t1) - x(tg),

where the sum is over all ¢y,... ,tq € Z/pZ such that t; +--- +t; = 1. The
term in which ¢; = --- = ¢, satisfies g¢; = 1 and so x(¢)x(¢1) = 1. Raising
both sides to the gth power and noting that ¢ =2 (mod 3) gives

x(9)*x(t1)? =1

and so x(t1)? = x(q). Therefore, the “diagonal” term which corresponds
to t; = --- = tg has the value x(g). If not all the ¢; are equal, then we
get ¢ different g-tuples from a cyclic permutation of (¢1,...,t;). Thus

J(x---»x) = x(q) (mod g).
Hence (pm)@+1)/3 = py(q) (mod q) so that

p=D3x(t/3 = y(q) (mod q).

We raise both sides of this congruence to the (¢ —1)st power (recalling that
g—1=1 (mod 3)):

- — 2_ -—
pla DB =DS = x(q)T ' = x(g) (mod g).
By Fermat’s little Theorem, p?~! = 1 (mod q). Therefore,
2_
Xr(g) = 7@ V3 = xo(n) (mod g)

so that x(q) = xq(7) as desired. O

Theorem 9.1.16 Let my and w3 be two primary primes of Z[p|, of norms
p1, P2, respectively. Then Xr,(m2) = Xny(m1). In other words,

(52),= (),
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Proof. To begin, let 71 = 71,v2 = 2. Then p; = m17y1,p2 = m2y2, and
p1,p2 =1 (mod 3). Now,
g(X’YI )P2 = (X’Yl yret ’X’Yl)g(xzf)

by Exercise 9.1.11. (There are pa characters in the Jacobi sum.) Since
p2 =1 (mod 3),x?? = x~,. Thus,

v
(p2—1)/3
[90¢2)°] 72 = Txans- 2 Xon)-

As before, isolating the “diagonal” term in the Jacobi sum and observing
that the contribution from the other terms is congruent to 0 (mod p3), we
find

T(Xms 2 Xm) = X (p71) = X7 (P3)  (mod py).
By Exercise 9.1.14, g((~,)® = p171 so that
(p1m) PV = x,,(p2) (mod p2).

Hence X1, (P171) = X, (P3). Similarly, xx, (p2m2) = Xr,(p}). Now, by Ex-
ercise 9.1.7, X, (P3) = X, (p2). Thus

Xma(P171) = Xmy(P2)s
Xm (P272) = Xmo(P1).
Therefore
Xy (72) Xrz (P171) X, (T2P2)
= Xr, (1)
= Xm(P1m1m)
= Xz (T1) Xomy (P171),
which gives Xn, (72) = X, (71), as desired. O

Exercise 9.1.17 Let 7 be a prime of Z[p]. Show that z* = 2 (mod 7) has a
solution if and only if 7 =1 (mod 2).

9.2 Eisenstein Reciprocity

The Eisenstein reciprocity law generalizes both the laws of quadratic and
cubic reciprocity. In 1850, Eisenstein published the proof of this general-
ization by using the (then) new language of ideal numbers due to Kummer.
We do not prove this law here but content ourselves with understanding
its formulation and applying it to Fermat’s Last Theorem, in a particular
instance. We begin with the definition of the power residue symbol.

Let m be a positive integer. Then, it is known that Z[(,,] is the ring
of integers of Q(¢;n). In the case m is prime, this was proved in Chapter
4 (Exercise 4.3.7). The general case is deduced from Exercises 4.5.9 and
4.5.13. Let p be a prime ideal of Z[(,,| not containing m. Let g be its norm.
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Exercise 9.2.1 Show that ¢ =1 (mod m) and that 1,(m, (2, ... , (7! are dis-
tinct coset representatives mod gp.

Exercise 9.2.2 Let a € Z[{m], @ € p. Show that there is a unique integer 1
(modulo m) such that A
Q1™ = ¢, (mod p).

We can now define the power residue symbol. For a € Z[(,,], and p a
prime ideal not containing m, define (a/p), as

(i) (e/p)m =01if a € p; and

(ii) if @ € p, (a/p)m is the unique mth root of unity such that
QM@ =1)/m = (2) (mod m)
/) m

as determined by Exercise 9.2.2.

Exercise 9.2.3 Show that:

(a) (a/p)m =1 if and only if 2™ = a (mod p) is solvable in Z[(m].
(b) for all & € Z[¢m], aVN®~D/™ = (0/p)sm (mod p).

(c) (aB/p)m = (o/P)m(B/p)m.

(d) if a =B (mod p), then (a/p)m = (B/p)m

Exercise 9.2.4 If p is a prime ideal of Z[(,,] not containing m, show that

Cm) _ N@)-D/m
Cm .
£/ m

We will now extend the definition of (/). Let a = p1p2 - - - p, be the
prime ideal decomposition of a. Suppose a is coprime to m. For a € Z[(,,],

define B}
(87 (87
(2).-11(2),

If 8 € Z[(] is coprime to m, define

(5).~ (@)

B)m \B) ) m

Exercise 9.2.5 Suppose a and b are ideals coprime to (m). Show that:
(a) (aB/a)m = (a/)m(B/0)m;

(b) (a/ab)m = (a/a)m(B/b)m; and

(c) if o is prime to a and 2™ = « (mod a) is solvable in Z[{m], then (a/a)m = 1.

Exercise 9.2.6 Show that the converse of (c) in the previous exercise is not
necessarily true.
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Now let £ be an odd prime number. Recall that by Exercise 5.5.4, we
have (£) = (1 — ¢)*~! in Z[¢¢] and (1 — () is a prime ideal of degree 1.
We will say that a € Z[(,] is primary if it is prime to £ and congruent to
a rational integer modulo (1 — (;)?. In the case £ = 3, we required a = 2
(mod 3) which is the same as @ = 2 (mod (1—(3)?). So this new definition
is weaker but will suffice for our purpose.

Exercise 9.2.7 If a € Z[{,] is coprime to ¢, show that there is an integer c € Z
(unique mod ¢) such that {fo is primary.

We can now state the Eisenstein reciprocity law: let £ be an odd prime,
a € Z prime to £ and let a € Z[(;] be primary. If & and a are coprime, then

).~ @)

ale \a/e

We will now apply this to establish the theorems of Wieferich and Furt-
wangler on Fermat’s Last Theorem: let £ be an odd prime and suppose
2% + y* + 2¢ = 0 for three mutually coprime integers z,y,z with £ { zyz.

(This is the so-called first case.) We let { = (; be a primitive £th root of
unity and factor the above equation as

(z+y)(z+Cy) - (z+hy) = (-2)"

Exercise 9.2.8 With notation as above, show that (z + ¢*y) and (z + {’y) are
coprime in Z[(e] whenever i # j, 0 <1i,j < £.

Exercise 9.2.9 Show that the ideals (z + ('y) are perfect £th powers.

Exercise 9.2.10 Consider the element
a=(z+y) " (z+ ).

Show that:
(a) the ideal (@) is a perfect £th power.
(b) a=1-uX (mod A?) where u = (z + y)* 2y.

Exercise 9.2.11 Show that ("“a is primary.

Exercise 9.2.12 Use Eisenstein reciprocity to show that if 2° + y* + 2* = 0 has
a solution in integers, £ { zyz, then for any p | ¥, ({/p);* = 1. (Hint: Evaluate

(p/¢T "))
Exercise 9.2.13 Show that if
zt + yl +2t=0

has a solution in integers, { { zyz, then for any p | zyz, (/p), " = 1.
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Exercise 9.2.14 Show that (¢/p);* = 1 implies that p~! =1 (mod £2).
‘

Exercise 9.2.15 If £ is an odd prime and
eyt +2 =0

for some integers z, y, z coprime to £, then show that p*~! =1 (mod ¢2) for every
p | zyz. Deduce that 2" =1 (mod £2).

The congruence 27! = 1 (mod ¢?) was first established by Wieferich in
1909 as a necessary condition in the first case of Fermat’s Last Theorem.
The only primes less than 3 x 10° satisfying this congruence are 1093 and
3511 as a quick computer calculation shows. It is not known if there are
infinitely many such primes. (See also Exercise 1.3.4.)

9.3 Supplementary Problems

Exercise 9.3.1 Show that there are infinitely many primes p such that (2/p) =
—1.

Exercise 9.3.2 Let a be a nonsquare integer greater than 1. Show that there
are infinitely many primes p such that (a/p) = —1.

Exercise 9.3.3 Suppose that 2° = a (mod p) has a solution for all but finitely
many primes. Show that a is a perfect square.

Exercise 9.3.4 Let K be a quadratic extension of Q. Show that there are in-
finitely many primes which do not split completely in K.

Exercise 9.3.5 Suppose that a is an integer coprime to the odd prime ¢q. If
27 = a (mod p) has a solution for all but finitely many primes, show that a is a
perfect gth power. (This generalizes the penultimate exercise.)

Exercise 9.3.6 Let p =1 (mod 3). Show that there are integers A and B such
that
4p = A + 278

A and B are unique up to sign.

Exercise 9.3.7 Let p=1 (mod 3). Show that 3 = 2 (mod p) has a solution if
and only if p = C2 4 27D? for some integers C, D.

Exercise 9.3.8 Show that the equation
2 — 2% = 232"

has no integer solutions with ged(z,y,z) = 1.






Chapter 10

Analytic Methods

10.1 The Riemann and Dedekind Zeta Func-
tions

The Riemann zeta function ((s) is defined initially for Re(s) > 1 as the
infinite series
— 1
)= vl
n=1

Exercise 10.1.1 Show that for Re(s) > 1,

<(s)=H(1—I%)_I,

P

where the product is over prime numbers p.

Exercise 10.1.2 Let K be an algebraic number field and O x its ring of integers.
The Dedekind zeta function {x(s) is defined for Re(s) > 1 as the infinite series

(r(s)=D ﬁ,

where the sum is over all ideals of Ox. Show that the infinite series is absolutely
convergent for Re(s) > 1.

Exercise 10.1.3 Prove that for Re(s) > 1,

et =T1 ()

34

127
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Theorem 10.1.4 Let {a,,}>_; be a sequence of complex numbers, and let
Alz) =3, <, am = O(z%), for some § > 0. Then

>
converges for Re(s) > & and in this half-plane we have

N m > A(z) dz
Z me zstl

for Re(s) > 1
Proof. We write

Mo M
> = = > (A(m) — A(m - 1))m
m=1 m=1
M—1
= AMYM—°+ Am{m™® — (m+1)~°}
m=1
Since "
—s -8 __ " dz
m - (m+1)"° = s/m pran g
we get
% am _ A(M) +3/M A(z) dz
— ms  Ms 1 s+l
For Re(s) > 6, we find
lim A(M) =0,
M—ooo MS

since A(z) = O(z®). Hence, the partial sums converge for Re(s) > § and

we have -~
Um > A(z) dx
Z s =9 1 s+l

in this half-plane. a

Exercise 10.1.5 Show that (s—1){(s) can be extended analytically for Re(s) >
0.

Exercise 10.1.6 Evaluate

lim (s — 1)¢(s).

Example 10.1.7 Let K = Q(i). Show that (s — 1)(x(s) extends to an .
analytic function for Re(s) > %
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Solution. Since every ideal a of O is principal, we can write a = (a + ib)
for some integers a,b. Moreover, since

a=(a+ib)=(—a—1ib) = (—a+1ib) = (a —ib)

we can choose a,b to be both positive. In this way, we can associate with
each ideal a a unique lattice point (a,b),a > 0,b > 0. Conversely, to each
such lattice point (a,b) we can associate the ideal a = (a + ib). Moreover,
Na = a? + b%. Thus, if we write

oo

1 n
CK(S):ZNaS - %

n=1

we find that

Alz) = Z an,

n<z

is equal to the number of lattice points lying in the positive quadrant defined
by the circle a® + b2 < z. We will call such a lattice point (a,b) internal
if (a+1)2+ (b+ 1)2 < z. Otherwise, we will call it a boundary lattice
point. Let I be the number of internal lattice points, and B the number of
boundary lattice points. Then

IS%zSI+B.

Any boundary point (a,b) is contained in the annulus

(Vz — V22 <a? + 1 < (Vz +V2)?

and an upber bound for B is provided by the area of the annulus. This is
easily seen to be

r(VE+ V3 — (vE — V) = O(/a)
Thus A(z) = nz/4 + O(y/z). By Theorem 10.1.4, we deduce that

r [Tde (% E@)
T4 .z .zt

dz,

where E(z) = O(,/z), so that the latter integral converges for Re(s) >
Thus

1
5

(s — 1}k (s) = %sﬁ— s(s — 1)/1 fs(fl) dx

is analytic for Re(s) > 3.
Exercise 10.1.8 For K = Q(i), evaluate

Jim (s —1)Cxe (s).
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Exercise 10.1.9 Show that the number of integers (a,b) with a > 0 satisfying
a2+ D <zis
T

ol O(Vx).

Exercise 10.1.10 Suppose K = Q(/—D) where D > 0 and —D # 1 (mod 4)
and Ox has class number 1. Show that (s — 1)¢k(s) extends analytically to
Re(s) > 1 and find

lim (s — 1)¢x (s)-

(Note that there are only finitely many such fields.)

10.2 Zeta Functions of Quadratic Fields

In this section, we will derive the analytic continuation of zeta functions of
quadratic fields to the region Re(s) > 1.

Exercise 10.2.1 Let K = Q(\/c_l) with d squarefree, and denote by a, the num-
ber of ideals in Ox of norm n. Show that a. is multiplicative. (That is, prove
that if (n,m) = 1, then anm = @nam.)

Exercise 10.2.2 Show that for an odd prime p, a, =1+ (%).

Exercise 10.2.3 Let dx be the discriminant of K = Q(+/d). Show that for all

i — 7:4
primes p, ap_1+( z )

Exercise 10.2.4 Show that for all primes p,
- dK dK
w =) (%) -2 (%)
J=1 |pe

Exercise 10.2.5 Prove that

anzz(d%).

én

Exercise 10.2.6 Let dx be the discriminant of the quadratic field K. Show that
there is an n > 0 such that (%{i) =-1.

Exercise 10.2.7 Show that

> <d7K) < ldx|-

nlx
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Theorem 10.2.8 (Dirichlet’s Hyperbola Method) Let

1) =Y 9@ (5)

éln
and define
G) = 3 g,
H(z) = Y h(n)

Then for anyy > 0,

> ) =S a0k () + X w06 (5) - 6w (2).

n<z 6<y o<

|

Proof. We have

ST fny = D g(d)hle)
n<e Se<z
= > g@he) + > g(d)he)
de<z de<z
5<y 5>y
= Y90 (5)+ X re{c(2)-cw)}
6<y e<3y
- ég(é)H (%) + 2 h(e)G (f) - GyH (%)
as desired. .

Example 10.2.9 Let K be a quadratic field, and a,, the number of ideals
of norm n in Og. Show that

where
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so that we can apply Theorem 10.2.8 with g(8) = (2) and h(d) = 1,
y = /z. We get

o= T (%) [+ S e ) -ovana

n<z §</xT s</T
By Exercise 10.2.7, |G(z)| < |dx|- Hence

o= X (5[] vowa

n<e  <yE
Now [z/d] = z/§ + O(1) so that

Ya= S (%) % +0(Vz).

n<z §<VT
Finally,
dx\ 1 <= (dx\ 1 di \ 1
> (%)5-%(5)s Z.(5);
0<VT 6=1 >vT

and by Theorem 10.1.4 we see that

converges and

Therefore

Exercise 10.2.10 If K is a quadratic field, show that (s — 1)(x(s) extends to
an analytic function for Re(s) > 3.

Dedekind conjectured in 1877 that (s — 1){k(s) extends to an entire
function for all s € C and this was proved by Hecke in 1917 for all algebraic
number fields K. Moreover, Hecke established a functional equation for
Ck () and proved that

2m (27‘&')T2 hx Ry
|dxk|

where 7 is the number of real embeddings of K, ry is the number of complex
embeddings, kg is the class number of K, di is the discriminant of K, w
is the number of roots of unity in K, and Rg is the regulator defined
as the determinant of the r x r matrix (log|o;(¢;)|), and €1,... ,&, are a
system of fundamental units, o1,... ,0,,0p4+1,0r+1,--+ ,0r +r, are the n
embeddings of K into C.

lim (s — 1)(xe(s) =

)
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10.3 Dirichlet’s L-Functions

Let m be a natural number and x a Dirichlet character mod m. That is, x
is a homomorphism

X (Z/mzZ)* — C*.

We extend the definition of x to all natural numbers by setting

amodm) if (a,m)=1,
o) = 1 ( ) if (a,m)
0 otherwise.

Now define the Dirichlet L-function:

L(S7X) = Z X’I’(l?‘:).

Exercise 10.3.1 Show that L(s, x) converges absolutely for Re(s) > 1.

Exercise 10.3.2 Prove that

> x(n)

n<z

<m.

Exercise 10.3.3 If x is nontrivial, show that L(s,x) extends to an analytic
function for Re(s) > 0.

Exercise 10.3.4 For Re(s) > 1, show that
-1
x(p)
L(s,x) = <1 — —) .
o0 =TT (1 X8

Exercise 10.3.5 Show that

Z T(@)x(®) = {go(m) ifa=b (modm),

X mod m 0 otherwise.

Exercise 10.3.6 For Re(s) > 1, show that

Z log L(s, x) = ¢(m) Z n;ns.

x mod m p"=1mod m

Exercise 10.3.7 For Re(s) > 1, show that

S x@logLis,) = em) Y —

x mod m p=a mod m

Exercise 10.3.8 Let K = Q({m). Set
£(s) =TT £Gs. 0.
X

Show that {x(s)/f(s) is analytic for Re(s) > 3.
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10.4 Primes in Arithmetic Progressions

In this section we will establish the infinitude of primes p = a (mod m) for
any a coprime to m.

Lemma 10.4.1 Let {a,} be a sequence of nonnegative numbers. There
exists a g9 € R (possibly infinite) such that

an

n=1 ne
converges for o > og and diverges for 0 < og. Moreover, if s € C, with
Re(s) > 09, then the series converges uniformly in Re(s) > oo + & for any

d >0 and
®) (g — (_11k N~ an(logn)*
F®(s) (1);1 -

for Re(s) > og. (09 is called the abscissa of convergence of the (Dirichlet)
series y o apn”".)

Proof. If there is no real value of s for which the series converges, we
take o9 = oco. Therefore, suppose there is some real sg for which the
series converges. Clearly by the comparison test, the series converges for
Re(s) > s since the coefficients are nonnegative. Now let og be the infimum
of all real sg for which the series converges. The uniform convergence in
Re(s) > og + 6 for any & > 0 is now immediate. Because of this, we can
differentiate term by term to calculate f*)(s) for Re(s) > oo. o

Theorem 10.4.2 Let a, > 0 be a sequence of nonnegative numbers. Then

oo
an

)=, —
n=1 n

defines a holomorphic function in Re(s) > o9 and s = og is a singular point
of f(s). (Here g is the abscissa of convergence of the Dirichlet series.)

Proof. By the previous lemma, it is clear that f(s) is holomorphic in
Re(s) > ap. If f is not singular at s = ¢, then there is a disk

D ={s:|s—o1| <6},

where 01 > 0¢ such that |69 — 01| < & and a holomorphic function g in D
such that g(s) = f(s) for Re(s) > g9, s € D. By Taylor’s formula

< (g, < (8 (g,
a(s) = Z gk—(!)(s o)t = Z fk—(!)(s — o)
k=0 k=0
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since g(s) = f(s) for s in a neighborhood of ¢;. Thus, the series

i (%)
fk 0'1)(0_1_8)k

M

k=0

converges absolutely for any s € D. By the lemma, we can write this series
as the double series

2\ (01 — 8)F o= an(logn)*
D

k=

o

If o1 — 6 < s < oy, this convergent double series consists of nonnegative
terms and we may interchange the summations to find

o o k L o

an (01 — 8)%(logn)® an
D2 A =D i<
n=1 k=0 n=1

Since 01 — § < 09 < 01, this is a contradiction for s = og. Therefore, the
abscissa of convergence is a singular point of f(s). O

Exercise 10.4.3 With the notation as in Section 10.3, write

fls)= HL(s X)

n= 1

Show that ¢, > 0.
Exercise 10.4.4 With notation as in the previous exercise, show that

>

n=1

§|:

diverges for s = 1/¢(m).

Theorem 10.4.5 Let L(s,x) be defined as above. Then L(1,x) # 0 for
X 7 Xo-

Proof. By the previous exercise, the abscissa of convergence of

=[] LG =

is greater than or equal to 1/ (m). If for some x # xo we have L(1,x) =0,
then f(s) is holomorphic at s = 1 since the zero of L(s,x) cancels the
simple pole at s = 1 of

Lo =< I (1- ;).

pS
plm
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By Exercise 10.3.3, each L(s, x) extends to an analytic function for Re(s) >
0. By Exercise 10.1.5, ((s) (and hence L(s, xo)) is analytic for Re(s) > 0,
s # 1. Thus, f(s) is analytic for Re(s) > 0. By Theorem 10.4.2, the
abscissa of convergence of the Dirichlet series

oo
cn

ns
n=1

is not in Re(s) > 0 which contradicts the divergence of the series at s =
1/p(m). o
Exercise 10.4.6 Show that

Z %:%—oo.

p=1 (mod m)

Exercise 10.4.7 Show that if gcd(a,m) = 1, then

Z l=+Oo.

p=a (mod m)

10.5 Supplementary Problems

Exercise 10.5.1 Define for each character x (mod m) the Gauss sum

900 =D xl@em™.

a (mod m)

If (n,m) = 1, show that

xmg(x) = > X

b (mod m)
Exercise 10.5.2 Show that |g(x)| = vm.

Exercise 10.5.3 Establish the Pélya-Vinogradov inequality:

> x(n)

n<zx

< im!2(1 + logm)

for any nontrivial character x (mod m).

Exercise 10.5.4 Let p be prime. Let x be a character mod p. Show that there
is an a < p'/?(1 + log p) such that x(a) # 1.

Exercise 10.5.5 Show that if x is a nontrivial character mod m, then

L(l,x) =) xgln) +0 <‘/E:L°gm) .

n<lu
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Exercise 10.5.6 Let D be a bounded open set in R? and let N(z) denote the
number of lattice points in zD. Show that

. N(z)
Ilgrolo 7 = vol(D).
Exercise 10.5.7 Let K be an algebraic number field, and C an ideal class of K.
Let N(z,C) be the number of nonzero ideals of Ox belonging to C with norm
< z. Fix an integral ideal b in C~*. Show that N(z,C) is the number of nonzero
principal ideals (@) with o € b with |[Nx(a)| < zN(b).

Exercise 10.5.8 Let K be an imaginary quadratic field, C an ideal class of O,
and dx the discriminant of K. Prove that

lim N(z,C) __ 2

T 00 x w /|dK|7

where w is the number of roots of unity in K.

Exercise 10.5.9 Let K be a real quadratic field with discriminant dg, and fun-
damental unit €. Let C be an ideal class of Ox. Show that

. N(z,C) 2loge
lim —2—2 =~ >
zl-)n;o i3 ’/dK

where N(z,C) denotes the number of integral ideals of norm < z lying in the
class C.

Exercise 10.5.10 Let K be an imaginary quadratic field. Let N(z; K) denote
the number of integral ideals of norm < z. Show that

im N(z; K) _ 2mh

00 x o w /|dK|7

where h denotes the class number of K.

Exercise 10.5.11 Let K be a real quadratic field. Let N(z; K) denote the
number of integral ideals of norm < z. Show that

lim N(z; K) _ 2hloge
00 x /|dK| ’

where h is the class number of K.

Exercise 10.5.12 (Dirichlet’s Class Number Formula) Suppose that K is
a quadratic field with discriminant dx. Show that

2nh if d <0,
wq/|dk |

2hloge  jf gp >0,

> (5)a-
Vidx|

where h denotes the class number of K.
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Exercise 10.5.13 Let d be squarefree and positive. Using Dirichlet’s class num-
ber formula, prove that the class number of Q(v/—d) is O(\/c_ilog d).

Exercise 10.5.14 Let d be squarefree and positive. Using Dirichlet’s class num-
ber formula, prove that the class number h of Q(v/d) is O(Vd).

Exercise 10.5.15 With ¥ (z) defined (as in Chapter 1) by

P(z) = Y logp,

p*<z

prove that for Re(s) > 1,

—C—l(s) =3 iC)) dz.

¢ PR
Exercise 10.5.16 If for any € > 0,
¥(z) =z + 0@ /**),

show that {(s) # 0 for Re(s) > 1.

D=

A famous hypothesis of Riemann asserts that {(s)} # 0 for Re(s) >
and this is still (as of 2004) unresolved.



Chapter 11

Density Theorems

Given an algebraic number field K, we may ask how the ideals are dis-
tributed in the ideal classes. We may ask the same of the distribution of
prime ideals. It turns out that in both cases, they are equidistributed in the
sense of probability. For many reasons, it has been customary to view the
latter set of results as generalizations of the celebrated theorem of Dirichlet
about primes in arithmetic progressions.

11.1 Counting Ideals in a Fixed Ideal Class

As usual, let K be a fixed algebraic number field of degree n over Q, and
denote by N(z; K) the number of ideals of O with norm < z. For an ideal
class C, let N(z, C) be the number of ideals in C with norm < z. Clearly,

N(z;K)=» N(z,C)
C

where the summation is over all ideal classes of Q. Let us fix an ideal b
in C~! and note that if a is an ideal in C' with norm < z, then ab = ()
with o € b and |N(«a)| < zN(b). Conversely, if « € b and |N{a)| < zN(b),
then o = (a)b~! is an integral ideal in C with norm < z. Thus, N(z,C)
is the number of principal ideals («) contained in b with norm less than or
equal to zN(b).

If 51, ...,0, is an integral basis of b, then we may write

a=2z101 4+ + Znbn

for some integers 1, ..., £,. Thus, N(z, C} is the number of such &’s (up to
associates), with |[N(a}| < zN(b). We will now try to extract a single ele-
ment from the set of such associates by means of inequalities. Let €y, ..., €,
be a system of fundamental units (with 7 = 1 + r9 — 1 as in Theorem
8.1.6). Recall that it is customary (as we did in Chapter 8) to order our

139
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embeddings K — K® in such a way that for 1 < ¢ < r, K® are real,
and K(® = KG+r2) for r; +1 < 4 < r; + 5. We keep this convention
throughout this discussion. By Exercise 8.1.7, the regulator Rg is non-zero
and we may find real numbers ¢, ..., ¢, such that

T
> csloglel”] = log (le@|IN (@) V"), 1<i<n
j=1

Following Hecke [He], we will call the c;’s the exponents of o. We now want
to show that this equation also holds for i = r + 1. Setting e; = 1 if K® is
real, and e; = 2 if K is non-real, we see that

r+1 ]
> eilog (Ja®IN(a)[7") =0,
=1
because
o)+ ™| = [N(a)].
Also,
r+1 ]
Z e;log |€§_z)| =0.
i=1
Consequently,

T
ch log |€§_r+1)| =log (la(’r‘-i-l)”N(a)l—l/n) ,
j=1

as desired. Thus, this equation holds for all o!?,1 < i < n. (Why?) By
Theorem 8.1.6, every unit v of Og has the form

g

where { is a root of unity in K and the n;’s are rational integers. Thus,
any associate ua of a has exponents

Cl + N1y eeny Cp + N

Therefore, each « has an associate with a set of exponents satisfying the
inequalities
0<¢ <1, =12, r

If w denotes the number of roots of unity in K, we see then that wN (2, C)
is equal to the number of rational integers (z1, ..., ) not all zero, satisfying
the following conditions:

a=z101+  + 2u0n;
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IN(a)| = [a®) -+ a™] < 2N (b)

and for 1 <17 < n,
log (|a(’)||N ‘1/") Zc] log|e( )|, 0<¢ <1, j=1,..,r

In this way, we reduce the problem to counting lattice points in a region
of the Euclidean space R™. This region can be described as follows. We
choose arbitrary real values for the z; and “define” the set of numbers

n
o = Z xjﬁ](-z).
Jj=1

Corresponding to this set of numbers there is a uniquely determined set of
“exponents” ci, ....,c, provided the z;’s do not lie on the subspace defined
by a(® = 0 for some i satisfying 1 < i < n. Thus, if we include a(® £ 0
to the above set of inequalities, these inequalities describe a well-defined
region B (say) in R™. That is, if we put

a® — xlﬁﬁ") 4 2,89, 1<i<n,

and
N(a) = a® ..o,

then B, is the set of n-tuples (z1,...,2,) € R™ satisfying
la®...aM| < zN(b)

and either a(® = 0 for some 7 or for all 1 < i < n, we have
log (|a(’)||N ‘1/") Zc log |e( )|,

withO0<c¢; <1,7=1,...,1
Exercise 11.1.1 Show that B. is a bounded region in R"™.
Exercise 11.1.2 Show that tB; = B~ for any ¢t > 0.

Exercise 11.1.3 Show that N(z,C) = O(z). Deduce that N(z; K) = O(x).

The idea now is to approximate the number of lattice points satisfying
the above inequalities by the volume of B,. This we do below. As will be
seen, the calculation is an exercise in multivariable calculus.

Before we begin, it is important to note that for some § > 0 and ¢t = z!/™,
we have

vol(B;_sn) < wN(z,C) < vol(Byysyn)-
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To see this, we may associate each lattice point lying inside B, with an ap-
propriate translate of the standard unit cube, namely [0, 1]". Each translate
lying entirely within B, contributes 1 to the volume of B,. The error term
arises from the cubes intersecting with the boundary. In view of Exer-
cise 11.1.2, it is intuitively clear (see also Exercise 11.1.12 below) that by
enlarging the region by some fixed quantity and reducing the region by a
fixed quantity é in the way indicated, the above inequalities are assured.
Thus,
(2}/™ — §)™vol(B;) < wN(z,C) < (z'/™ + §)™vol(B;)

so that
wN(z, C) = vol(By)z + O(;pl‘%),

The essential feature of the theorem below is that this volume is indepen-
dent of the ideal class under consideration.

Theorem 11.1.4 (Dedekind)

2r1 (27)"2 Ry

Vdk|

Proof. Let M be the maximal value of |log |e§i)|| for j =1,...,r. We first
complete the domain B, by adding the points of the space lying in the
subspace a(® = 0 for some 7 and that also satisfy the inequalities

VOl(Bl) =

laW)| < eMN@®YY,  j=1,2,..,n.
Since these subspaces are of lower dimension, their contribution to the

volume is negligible. We denote the completed space by B;. If we now
change variables and put z; = y;z'/", we see that the volume is equal to

1

Now By is the domain described by
n .
a(i)zzyjﬁ](.’), 1<i<n
j=1

and
0< |a(1)...a(n)| < N(b),

so that there exist ¢;’s for 1 < j < r satisfying 0 < ¢; < 1 and

r
log (|a(i)||N(a)|‘1/") = Zc]- log |e§i)|, 1<i<n
7=1
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or
la®| < e™(N()Y",  1<i<n

and at least one o = 0. As noted, the region defined by these latter
conditions are manifolds of lower dimension and thus make no contribution
to the n-fold integral and thus, these conditions may be omitted in the
evaluation of J. To evaluate the integral, we change variables:

n
U; = Ck(z) :Zyjﬁy)? ISiST17
j=1

n
Ui + Uigry V — ZZZyjﬁJ(-z)7 ri+1<i<r+ro.

Thus, with our convention concerning the ordering of embeddings,

Zy (ﬁ(l) + ﬁ(l-‘r?‘z))
3\ 59 >

n ﬁ(l) ﬁ(i‘i‘?“z)
Uitr, = Z Yj 2\/— )

forr;1+1<i<7ry+re. The absolute value of the Jacobian for this change
of variables is easily computed to be

2‘T2N(b)\/ |d1{|.
Hence,

vol(B7) = duy - - - duy,

b)+/ |d / B
where B} is the image of B1 under the change of variables. The variables
U1, ..., Up, may take one of two signs and so if weinsist u; > Ofori =1,..., 7y,
we must multiply our volume (with this additional constraint) by a factor
of 2", We now shift to polar co-ordinates. Put

Pj = uj 1<j<n
and
ijOSOj:U,]', ijinej:Uj+T2, T1+15jST1+7'2,

with 0 < 6; < 27 and p; > 0. The Jacobian of this transformation is easily
seen to be

Pri+1l - Pritrs-
Thus,

. 2T1+T2 27-‘- T2
VOI(Bl) / / Pri+1" Pritr, dpl dp’r‘1+"‘2

N(o)Vldxl
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where C7 is the domain described by:

ri+re
0< ] o5 < N(b)
j=1
—1/n
r r .
log p; H Py’ = Z cjlog |€§z)|
j=1 j=1

for 1 <4 <7y + 72 (Recall that e; =1 for 1 <4 < r; and 2 otherwise.)
We make (yet) another change of variables. Put

Ti=p7, 1<j<ri+r.
The Jacobian of this transformation is easily seen to be
27 Py
so that the integral becomes
b)v/[dk| D;

where the region D7 is described by the conditions

dry -+ dTr 41y

TL Trtr, < N(B), 7,>0,

T
e )
logn = # IOg(Tl e 7',,‘1_’_/,‘2) + e; 2; Cj IOg |€§7')|
j=
We make one final change of variables: write the ¢;’s in terms of the 7,’s
and put
U=T1" Trtl-

The Jacobian of this transformation is now seen to be Ry and the final
result is

27‘1 2 TzR N(b) 2" (2m)2 R,
vol(B1) = 7:/|d—K/ / / dey---de, = (\/|)—| K

which completes the proof. a

By our remarks preceding the statement of Theorem 11.1.4, we imme-
diately deduce:

Theorem 11.1.5 (Weber)
2" (2m)"2 Ry

1-4
’lU\/|dK| )

N(z,C) = z+0O(z
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If N(z; K) is the number of integral ideals of K with norm < z, then

2" (2m)"?hg Rk

Mo = = ]

where hx denotes the class number of K.

Following Hecke, we define the ideal class zeta function as

1
C(S,C) = GGZCW.

Note that the Dedekind zeta function defined in the previous chapter may
now be written as

Crls) = 3 ¢(5.0)
C

where the summation is over all ideal classes.

Exercise 11.1.6 Prove that ¢(s,C) extends to the region R(s) > 1 — 2 except

n
for a simple pole at s = 1 with residue

271 (2m)"2 Rk
w |dK| '

Deduce that (x(s) extends to R(s) > 1 — 1 except for a simple pole at s = 1
with residue
o 2" (2n)"?hk Rk

pEK
wy/|dk|

3

where hx denotes the class number of K. (This is usually called the analytic
class number formula.)

Exercise 11.1.7 Prove that there are infinitely many prime ideals g in O x which
are of degree 1.

Exercise 11.1.8 Prove that the number of prime ideals g of degree > 2 and
with norm < z is O(z'/?log z).

Exercise 11.1.9 Let i be defined on integral ideals a of Ok as follows. p(Ok) =
1, and if a is divisible by the square of a prime ideal, we set u(a) = 0. Otherwise,
we let p1(a) = (—1)* when a is the product of k distinct prime ideals. Show that

> oup)=0
bla

unless a = Oxk.
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Exercise 11.1.10 Prove that the number of ideals of Ox of odd norm < z is
PKS'?H ( ) +0(" "),

where the product is over non-zero prime ideals p of Ok dividing 20 k.

Exercise 11.1.11 Let A(z) be the number of ideals of Ox of even norm < z
and B(z) of odd norm < z. Show that

. Alz) _
B

if and only if K = Q or K is a quadratic field in which 2 ramifies.

Exercise 11.1.12 With notation as in the discussion preceding Theorem 11.1.4,
let V; denote the set of n-tuples (z1, ..., z,,) satisfying

la™ .. a™| < 2N (b).
Let t = z*/™. Show that there is a 6 > 0 such that for each lattice point P

contained in V(;_s)~, all the points contained in the translate of the standard
cube by P belong to V.

11.2 Distribution of Prime Ideals

Let H be the ideal class group of K. Following Hecke, we define for each
character

x:H—>C*
the Hecke L-function
_ v x(e)
=2 N
where x(a) is simply x(C) if a belongs to the ideal class C. If x is the trivial
character X, note that L(s, xo0) = (x(s), the Dedekind zeta function. Since

H is a finite abelian group of order hy, its character group is also finite of
order hy and so, in this way, we have attached hg L-functions to K.

Exercise 11.2.1 Show that L(s, x) converges absolutely for #(s) > 1 and that
L6s,0 =] (1 _ x(p) )—1 |
p N(p)®

in this region. Deduce that L(s, x) # 0 for R(s) > 1
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Exercise 11.2.2 If y is not the trivial character, show that
> x(@)=0
c

where the summation is over the ideal classes C of H.
Exercise 11.2.3 If (1 and C; are distinct ideal classes, show that

Z x(C1)x(C2) = 0.

If C1 = Ca, show that the sum is hx. (This is analogous to Exercise 10.3.5.)

From Theorem 11.1.5, we obtain:

Theorem 11.2.4 Let n be the degree of K/Q. If x # xo, then L(s,x)
extends analytically to R(s) >1 - .

Proof. By Theorem 11.1.5, we have

S x@=Y_x(C)N(z,C) =0@""%),
C

C a€eC,N(a)<z

since (by Exercise 11.2.2)
> x(©) =0
c
O
In 1917, Hecke proved that L(s, x) extends to an entire function if x #
X0, and satisfies a suitable functional equation relating L(1 — s,%) with
L(s, x). In the case x = xo, he showed that (x(s) extends meromorphically
to the entire complex plane, with only a simple pole at s = 1. Moreover, it
satisfies the functional equation

Ex(s) =€k (1—9),

Ex(s) = ( Vidk| ) P(s/2)" T()"Ce (s)

where

oran/2

with I'(s) denoting the I-function. Recall that this is defined by

I'(s) = / e M54t
0

for R(s) > 0 and can be extended meromorphically to the entire complex
plane via the functional equation

['(s+1) = sI'(s).
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Our goal is to show that each ideal class contains infinitely many prime
ideals. This is analogous to Dirichlet’s theorem about primes in arithmetic
progressions. Indeed, as we will indicate later, the result i1s more than an
analogue. It is a generalization that includes the celebrated theorem of
Dirichlet.

Exercise 11.2.5 Let C be an ideal class of Ok. For R(s) > 1, show that

> X(C)logL(s,x) =hx ) ;nT(tg)m

meC

where the first summation is over the characters of the ideal class group and the
second summation is over all prime ideals p of Ok and natural numbers m such
that p™ € C.

We now proceed as we did in Chapter 10, Section 4. For the sum on
the right hand side in the previous exercise, we separate the contribution
from n =1 and n > 2. The latter part is shown to converge for R(s) > 1/2
(see 11.2.6 below). Thus, if we can show that L(1,x) # 0 for x # xq, we
may conclude as in Exercise 10.4.7 that

1
%W—+w.

Exercise 11.2.6 Show that

1
Z mN (p)™s

n>2,pmeC

converges for R(s) > 1/2.

Exercise 11.2.7 If x® # xo show that L(1,x) # 0.

This gives us a fairly self-contained proof of the infinitude of prime ide-
als in a fixed ideal class in the case hg is odd, for in that case, there are
no characters of order 2 in the character group. A genuine difficulty arises
in trying to show L(1,x) # 0 for x real. Historically, this was first cir-
cumvented using class field theory (and in most treatments, many authors
still follow this route). A somewhat easier argument allows us to deduce
the non-vanishing from the relatively simpler assertion that for real valued
characters x, L(s, x) admits an analytic continuation to (s) > 1/2. Then,
we may consider the function

1) = X ik = (o))

which is easily seen to be a Dirichlet series with non-negative coeflicients.
Moreover, it is easily verified that

r(b?) > 1.
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If L(1,x) = 0, then f(s) is regular at s = 1 and by Theorem 10.4.2, is
analytic for R(s) > oo, where oy is the abscissa of convergence of f(s).

Now
lim f 1+ZN 2s= +o0.

s—it

Thus, oo > 1/2. However, the assumption that L(s, x) admits an analytic
continuation to R(s) > 1 /2 implies that f(s) is analytic for R(s) > 1/2, a
contradiction. Thus L(1,x) #0.

In the above argument, we only used the fact that we can continue
L(s,x) to the real line segment [1/2,1]. It seems unrealistic to expect any
refinement of this argument unless we use the fact that we are dealing with
a quadratic character in some fundamental way. Indeed, if we consider the

series
¢(2s)

g(s) = Ok

then it is easy to see that the Dirichlet coefficients of g(s) are +1. Moreover,
g(s) has a zero at s = 1 and ((s)g(s) = ((2s) has non-negative coefficients.
However, it does not admit an analytic continuation to the line segment
[1/2,1] as it has a simple pole.at s = 1/2.

So far, we have been able to extend the results of Chapter 10 to show
the infinitude of prime ideals in a fixed ideal class. It is possible to refine
these results by introducing the notion of Dirichlet density. We say that a
set of prime ideals S of prime ideals of Og has Dirichlet density ¢ if

him ZpES ]‘/N(go)s
s»1+  log (k(s)

=4.

Clearly, any set of prime ideals with a positive Dirichlet density is infinite.

Exercise 11.2.8 Let C be a fixed ideal class in O k. Show that the set of prime
ideals p € C has Dirichlet density 1/hg.

Exercise 11.2.9 Let m be a natural number and (a,m) = 1. Show that the set
of primes p = a(modm) has Dirichlet density 1/¢(m).

Exercise 11.2.10 Show that the set of primes p which can be written as a+ 5b°
is 1/4.

By using more sophisticated methods, it is possible to obtain asymptotic
formulas for the number of prime ideals lying in a given ideal class. Indeed,
using standard Tauberian theory, one can show that the number of prime
ideals p in a given ideal class with norm < z is asymptotic to

1 =z

Elog:c’
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as x tends to infinity.

It is possible to go further. Let fo be an ideal of O and f., a subset
of real embeddings of K. We write formally f = fofo, and define the f-ideal
class group as follows. We define an equivalence relation on the set of ideals
coprime to fo by declaring that two ideals a and b are equivalent if

for some a, 3 € Ok coprime to fo, a— 8 € fo and o(a/B) > 0 for all o € foo.
The set of equivalence classes turns out to be finite and can be given the
structure of an abelian group, which we denote by H(f) and call the f-ideal
class group. In the case that fo = Og and f. is the empty set, this group
is the usual ideal class group. If f,, consists of all the real embeddings of
the given field, we call H(f) the ray class group (mod fg). One may now
define L-functions (following Hecke) attached to characters of these groups.
Proceeding as above, the theory can be developed to deduce the expected
density theorems. Indeed, for a fixed j-ideal class C, the set of prime ideals
 lying in C has Dirichlet density 1/|H(f)|. It is possible to derive even an
asymptotic formula for the number of such prime ideals p € C with norm

< z of the form
1 T

~ —

[H(f)| log

as r tends to infinity.

Exercise 11.2.11 Show that if K = Q, the principal ray class group mod m is
isomorphic to (Z/mZ)*.

The previous exercise realizes the coprime residue classes mod m as a
ray class group. In this way, the theorem of Hecke generalizes the classical
theorem of Dirichlet about the uniform distribution of prime numbers in
arithmetic progressions.

11.3 The Chebotarev density theorem

Let K/k be a Galois extension of algebraic number fields with Gal(K/k) =
G. Recall that if p is a prime ideal then so is o(p) for any o € G. For
each prime ideal p of k, we have (analogous to the situation in Chapter 5)
a factorization

pOK 3 goil oo goir'
If we apply a Galois automorphism o to both sides of this equality, we get
POk = o(p1)™ - o(pr)*r.

By uniqueness of factorization, we deduce that G acts on the set of prime
ideals p, ..., o, that lie above a fixed prime ideal p.
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Exercise 11.3.1 Show that the action of the Galois group on the set of prime
ideals lying above a fixed prime of k is a transitive action.

The decomposition group of p, denoted D,,, is the subgroup of G con-
sisting of elements o satisfying o(p) = p. The inertia group of p, denoted
1,,, is the subgroup of elements o satisfying

o(z) = z(mod p) Vo € Og.

It is easily seen that I, is a normal subgroup of D,. The quotient D, /I,
can be shown to be a cyclic group canonically isomorphic to the Galois
group of the finite field Ox/p viewed as an extension of Op/p. Thus,
there is an element (well-defined modulo I,,), denoted o, whose image in
Gal((0k/p)/(Ok/p)) is the mapping

x>z,

We call o, the Frobenius automorphism of . For p unramified in K, one
can show easily that as g ranges over the prime ideals above p, the o,
comprise a conjugacy class of G. This conjugacy class is denoted o, and is
called the Artin symbol of p.

Now fix a conjugacy class C of G. The Chebotarev density theorem
states the following.

Theorem 11.3.2 (Chebotarev) Let K/k be a finite Galois extension of
algebraic number fields with Galois group G. If C is a conjugacy class of
G, the prime tideals p of O with o, € C has Dirichlet density |C|/|G]|.
Thus, the Artin symbols are equidistributed in the conjugacy classes with
the expected probability.

A prime ideal p of k is said to split completely in K if
POk =1 pn

where n = [K : k|. This is equivalent to the assertion that the Artin symbol
op is equal to 1. Thus, from Chebotarev’s density theorem, we immediately
deduce:

Theorem 11.3.3 The set of prime ideals p which split completely in K
has Dirichlet density 1/[K : k].

Exercise 11.3.4 By taking k = Q and K = Q({n), deduce from Chebotarev’s
theorem the infinitude of primes in a given arithmetic progression a (mod m)
with (a,m) = 1.

Exercise 11.3.5 If k = Q and K = Q(v/D), deduce from Chebotarev’s theorem
that the set of primes p with Legendre symbol (D/p) = 1 is of Dirichlet density
1/2.
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Exercise 11.3.6 If f(x) € Z[z] is an irreducible normal polynomial of degree n
(that is, its splitting field has degree n over @), then show that the set of primes
p for which f(z) = 0 (mod p) has a solution is of Dirichlet density 1/n.

Exercise 11.3.7 If f(z) € Z[z] is an irreducible polynomial of degree n > 1,
show that the set of primes p for which f(z) = 0 (mod p) has a solution has
Dirichlet density < 1.

Exercise 11.3.8 Let g be prime. Show that the set of primes p for which p =1
(mod ¢) and

2% = 1(mod p),
has Dirichlet density 1/g(q — 1).

Exercise 11.3.9 If a natural number n is a square mod p for a set of primes p
which has Dirichlet density 1, show that n must be a square.

Let K/k be a finite Galois extension of algebraic number fields with
Galois group G as above. Let V be a finite dimensional vector space over
C. Suppose we have a representation

p: G — GL(V)

where GL(V) denotes the group of invertible linear transformations of V'
into itself. E. Artin defined an L-function attached to p by setting:

L(s,p; K/k) = [ [ det (1 = p(op) N(p)*[V10) ™
P

where the product is over all prime ideals p of k and g is any prime ideal of
K lying above p, which is well-defined modulo the inertia group I,,. Thus
taking the characteristic polynomial of p(o,) acting on the subspace V7¢,
which is the subspace of V' fixed by I,, we get a well-defined factor for each
prime ideal p. The product over all prime ideals p is easily seen to converge
absolutely for R(s) > 1 (why?). As these L-functions play a central role
in number theory, we will briefly give a description of results pertaining to
them and indicate some of the open problems of the area. The reader may
find it useful to have some basic knowledge of the character theory of finite
groups as explained for instance in [Se].

The celebrated Artin’s conjecture predicts that if p is a non-trivial irre-
ducible representation, then L(s, p; K/k) extends to an entire function of
s. If p is one-dimensional, then Artin proved his famous reciprocity law by
showing that in this case, his L-function coincides with Hecke’s L-function
attached to a suitable generalized ideal class group of k. This theorem is
so-called since it entails all of the classical reciprocity laws including the
law of quadratic reciprocity. Subsequently, R. Brauer proved that for any p
L(s, p; K/k) extends to a meromorphic function for all s € C. He did this by
proving an induction theorem which is really a statement about irreducible
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characters of finite groups. More precisely, if x is an irreducible character
of G, then Brauer’s theorem states that there are nilpotent subgroups H; of
G and one dimensional characters ¢; of H so that for some set of integers
n;, we have

x =3 niInd§, v,
i

where Ind% indicates the character induced from H to G by 1.

To see how Brauer’s theorem implies the meromorphy of Artin L-series,
it is convenient to modify our notation slightly by writing L(s, x; K/k) for
L(s, p; K/k) with x(g) = trp(g). As is evident, the definition of an Artin
L-series attached to p depends only on the character x of p. With this
convention, it is easy to verify that

L(s,x1 + x2; K/k) = L(s, x1; K/k)L(s, x2; K/k)

and that
L(s, Ind§, K/k) = L(s, ; K/ K")

where K indicates the subfield of K fixed by H. Thus, by Brauer’s
theorem, we may write

L(s,x;K/k) = H L(s,Ind§, vi; K/k)™.

By the invariance of Artin L-series under induction, we obtain
L(s,x; K/k) = [ [ L(s, ¢i; K/ K™T)™.
i

Now, by Artin’s reciprocity law, each of the L-functions appearing in the
product is a Hecke L-function, which by Hecke’s theorem is known to be
entire. In this way, we get the meromorphic continuation of L(s, x; K/k). Tt
is one of the aims of the Langlands program to prove Artin’s conjecture. The
celebrated Langlands-Tunnell theorem says that when p is 2-dimensional
with solvable image, then Artin’s conjecture is true. This theorem played
a pivotal role in the work of Wiles resolving Fermat’s last theorem.

11.4 Supplementary Problems

Following a suggestion of Kumar Murty (see [FM]), we indicate in the sup-
plementary problems (11.4.1 to 11.4.10) below how Artin L-series may be
used to give a proof of Chebotarev’s theorem using the techniques developed
in this chapter and Chapter 10. A modest background in the representation
theory of finite groups would be useful. For instance, the first three chap-
ters of [Se| should be sufficient background. The reader may also consult
[La] for an alternative (and more classical) approach.
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Exercise 11.4.1 Let G be a finite group and for each subgroup H of G and each
irreducible character ¢ of H define ag (¥, x) by

Ind§ ¢ =Y an(¥,x)x

where the summation is over irreducible characters x of G. For each y, let A,
be the vector (am (1, X)) as H varies over all cyclic subgroups of G and ) varies
over all irreducible characters of H. Show that the A,’s are linearly independent
over Q.

Exercise 11.4.2 Let G be a finite group with ¢ irreducible characters. By the
previous exercise, choose a set of cyclic subgroups H; and characters ; of H;
so that the ¢ x ¢t matrix (an, (s, x)) is non-singular. By inverting this matrix,
show that any character x of G can be written as a rational linear combination
of characters of the form Indgi 1 with H, cyclic and v; one-dimensional. (This
result is usually called Artin’s character theorem and is weaker than Brauer’s
induction theorem.)

Exercise 11.4.3 Deduce from the previous exercise that some positive integer
power of the Artin L-function L(s,x; K/k) attached to an irreducible character
x admits a meromorphic continuation to R(s) = 1.

Exercise 11.4.4 If K/k is a finite Galois extension of algebraic number fields
with group G, show that

Cr(s) = [ £ xs K/RXY,
X
where the product is over all irreducible characters x of G.
Exercise 11.4.5 Fix a complex number s € C with R(sg) > 1 and any finite

Galois extension K/k with Galois group G. For each subgroup H of G define the
Heilbronn character 6u by

0u(g) =Y _ n(H,x)x(g)

X

where the summation is over all irreducible characters x of H and n(H, x) is the
order of the pole of L(s,x; K/K*) at s = so. By Exercise 11.4.3, the order is a
rational number. Show that 8¢|g = 0x.

Exercise 11.4.6 Show that 0¢(1) equals the order at s = so of the Dedekind
zeta function (k(s).

Exercise 11.4.7 Show that

Z n(Ga X)2 < (Ords:so CK(S))Z .

X
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Exercise 11.4.8 For any irreducible non-trivial character x, deduce that
L(s, x; K/k)
admits an analytic continuation to s = 1 and that L(1, x; K/k) # 0.

Exercise 11.4.9 Fix a conjugacy class C in G = Gal(K/k) and choose g¢ € C.

Show that ) cl
= = log L 8, ;K k).
Z N(p)™ 1G] XX:X(QC) g L(s,x; K/k)

n,p, a;"EC

Exercise 11.4.10 Show that
i Znnecc VBN 0]
a1+ log ¢k (s) G

which is Chebotarev’s theorem.

Exercise 11.4.11 Show that (k(s)/Cx(s) is entire. (This is called the Brauer-
Aramata theorem.)

Exercise 11.4.12 (Stark) Let K/k be a finite Galois extension of algebraic num-
ber fields. If (k(s) has a simple zero at s = sq, then L(s,x; K/k) is analytic at
s = 8¢ for every irreducible character x of Gal(K/k).

Exercise 11.4.13 (Foote-K. Murty) For any irreducible character x of Gal(K/k),
show that

L(s,x; K/k)Ck (s)

is analytic for s # 1.
Exercise 11.4.14 If K/k is solvable, show that

D n(G,x)? < (ords=seCx (5)/Ci(s))? .
x#1






Part 11

Solutions






Chapter 1

Elementary Number
Theory

1.1 Integers

Exercise 1.1.7 Show that

IR I S
3 5 2n—1

is not an integer for n > 1.

Solution. Let S =1+ % + % + 4+ ﬁ We can find an integer k such
that 3* < 2n — 1 < 3%+, Define m to be the least common multiple of all
the numbers 3, 5,...,2n — 1 except for 3*. Then

g m m m
e A T .
Each of the numbers on the right side of this equation i1s an integer, except
for m/3*. If m/3* were an integer, then there would be some integer b such
that m = 3%b, but 3* does not divide 3,5,...,3* —2,3* +2,... , 2n— 1
80 it cannot divide their least common multiple. Therefore mS is not an
integer, and clearly neither is S.

Exercise 1.1.8 Let a1,...,a, for n > 2 be nonzero integers. Suppose there is a
prime p and positive integer h such that p" | a; for some 7 and p" does not divide
aj for all j # 1.

Then show that

1 1
S=—+..- 4+ —

al an

is not an integer.

159
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Solution. Let A be the maximum power of p dividing a;. We use the
notation p”||a; to mean that p* | a; but p"*1 { a;. Let m be the least

common multiple of a1,... ,a;_1,a;/p", ai41,...,a,. Then
m m m
mS=—+4-.. 4+ — 4+ —.
a ai—1 a; an

We see that m/a; is an integer for j = 1,2,... ., — 1,i +1,... ,n.
However, a; does not divide m, since if it did then p" would clearly have to
divide m, which means we can find a b € Z such that m = p"b. Since p"
does not divide a; for j =1,... ,2—1,2+1,... ,n, it does not divide their
least common multiple. Hence m/a; is not an integer, which implies that
mS is not an integer. Therefore

S=_+...+_

ai Qp

1S not an integer.

Exercise 1.1.9 Prove that if n is a composite integer, then n has a prime factor
not exceeding /n.

Solution. Since n is composite, we can write n = ab where a and b are
integers with 1 < a < b < n. We have a < /n since otherwise /n <a <b
and ab > /ny/n = n. Now, a certainly has a prime divisor, and any prime
divisor of a 1s also a prime divisor of n. Hence n has a prime factor which
is less than or equal to /n.

Exercise 1.1.10 Show that if the smallest prime factor p of the positive integer
n exceeds ¢n, then n/p must be prime or 1.

Solution. Suppose that the smallest prime factor p of the positive integer
n exceeds /n. Then p > n'/3. Hence n/p < n?/3. If n/p is composite,
n/p has a prime factor not exceeding /n/p by Exercise 1.1.9. We see
that v/n/p < n'/3. A prime factor of n/p is also that of n, and so we
have found a prime factor which is smaller than n'/3, which contradicts
our assumption. Therefore n/p is a prime or 1.

Exercise 1.1.11 Let p be prime. Show that each of the binomial coefficients
(Z), 1 <k <p-—1, is divisible by p.

() = mow

we see that the numerator is divisible by p, and the denominator is not, for
1 <k <p-—1. The result is now evident.

Solution. Since

Exercise 1.1.12 Prove that if p is an odd prime, then 27! =1 (mod p).
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Solution.

p—1
p
P =(1+1 = 1+ (>+1
(1+1) ;k

1+1 (mod p)

by the previous exercise.

Exercise 1.1.13 Prove Fermat’s little Theorem: If a,p € Z with p a prime, and
p1{ a, prove that a?~! =1 (mod p).

Solution. We can apply induction. For instance,

p—1
PYok
1+ 2% 27
> (7)

= 1+2° (mod p)

F=(1+2)7

since the binomial coefficients are divisible by p. By the previous exercise
2¢ = 2 (mod p) and so we find that

3 =3 (mod p).

Alternate Solution. We consider the field Z/pZ, obtained by taking
congruences mod p. Let @ denote the class of a (mod p). If p t a, then
a # 0 (mod p), and so @ is a unit in the field Z/pZ. The units of this field
form a multiplicative group G of order p — 1. By elementary group theory,
al®l = gp~1 =T, which means that a?~! = 1 (mod p).

Exercise 1.1.15 Show that n | #(a™ — 1) for any a > n.

Solution. ¢™ =1 (mod a™ — 1) and n is the smallest power of ¢ with this
property. Thus, a has order n (mod a™ — 1). Therefore, n | ¢p(a™ — 1).

Exercise 1.1.16 Show that n { 2" — 1 for any natural number n > 1.

Solution. Let us suppose the set of n > 1 such that 2" = 1 (mod n) is
nonempty. By the well-ordering principle, there is a least such number, call
it ng. Then
2" =1 (mod ng).
By Euler’s theorem,
2#(m0) =1 (mod ny).

Let d = (ng, ¢(ng)). By the Euclidean algorithm, we can find integers x
and y so that

noZ + ¢(no)y = d.
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Thus, 2¢ = 1 (mod ng). If d > 1, this gives 2¢ = 1 (mod d) contradicting
the minimality of ng. Thus, d =1 and we get

2=1 (mod ng)
which is also a contradiction.

Exercise 1.1.17 ShOW that
¢)(”) 1
= I l 1—=
I
pin !

by interpreting the left-hand side as the probability that a random number chosen
from 1 < a < n is coprime to n.

Solution. The probability that a number chosen from 1 < a¢ < n is
coprime to n is clearly ¢(n)/n. On the other hand, this is tantamount to
insisting that our number is not divisible by any prime divisors of n, which
is represented by the right-hand side of the formula.

Exercise 1.1.18 Show that ¢ is multiplicative (i.e., ¢(mn) = ¢(m)¢(n) when
ged(m,n) = 1) and ¢(p*) = p*~*(p — 1) for p prime.

Solution. By the previous exercise, it is clear that ¢ is multiplicative.
When n = p%, we find

1 -
¢(™) = p° (1 - —) =p*'(p-1).
p
Exercise 1.1.19 Find the last two digits of 3'°%°.

Solution. We find the residue class that 3190 belongs to in Z/100Z. This
is the same as finding the last two digits. By Euler’s theorem, 340 = 1
(mod 100), since

$(100) = ¢(4)$(25) = 2(20) = 40.

Therefore,
31000 = (31925 = 1 (mod 100).

The last two digits are 01.
Exercise 1.1.20 Find the last two digits of 21°%.

Solution. We need to find the residue class of 21°% in Z/100Z. Since 2
is not coprime to 100, we cannot apply Euler’s theorem as in the previous
exercise. However, we have

z=2"=1 (mod 25),
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z=2190=0 (mod 4).

We determine which residue classes z (mod 100) satisfy z = 1 (mod 25)
and z =0 (mod 4).

The last condition means z = 4k. We solve 4k = 1 (mod 25). Thus,
6(4k) = 6 (mod 25) so that k = —6 (mod 25). That is, kK = 19 (mod 25).
Hence, z = (19)4 = 76. This means

21000 = 76 (mod 100).
The last two digits are 76.

Exercise 1.1.21 Let px denote the kth prime. Prove that
Pr+1 Spipz---pr + L

Solution. We see that the number p1ps - - - pr+1 is coprime to py, p2, . . . , Pk
and either must be prime, or divisible by a prime different from py,... , pk.
Thus,

Pk+1 Spip2---pe+ 1.

Exercise 1.1.22 Show that .
e < 22 ,

where pr denotes the kth prime.
Solution. From the preceding exercise, we know that pxy1 <p1---pp + 1.

Now we have p1 < 22" and p» < 22°. Suppose that p < 22" is true for
2<k<n.

Then
Pn+1 < pip2-ooPp+1
< 9297 ...92" 1
_ 22'n+1_2 I 1
< 22'n+1 )

Hence p, < 22" is true for n > 1.

Exercise 1.1.23 Prove that 7(z) > log(log ).

Solution. From the previous exercise, we have that p, < 22" for n > 1.
Hence we can see that 7(22") > n.
For = > 2, choose an integer n so that "<z < ef". Then

logz < e™loge = e

and
log(logz) < nloge =n.
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If n > 2, then "1 > 27,

w(z)
m(e?")
r(2?")

log(log x).

IV IV IV IV IV

This proves the result.

Exercise 1.1.24 By observing that any natural number can be written as sr®

with s squarefree, show that
VT <27,

Deduce that

log x

™) 2 S1oga’
Solution. For any set of primes S define fs(x) to be the number of integers
n such that 1 < n < z with y(n) C S where y(n) is the set of primes
dividing n. Suppose that S is a finite set with ¢ elements. Write such an
n in the form n = r%s with s squarefree. Since 1 < r2s < x, we see that
r < 4/z and there are at most 2! choices for s corresponding to the various
subsets of S since s is squarefree. Thus fg(z) < 2%\/z.

Put 7(z) = m so that ppy1 > . If S = {p1,... ,pm}, then fg(z) =z

Then
z < 2™z =279 /z.
Thus /z < 27®) and hence 3 logz < m(z)log2, or equivalently,

log x
2log2

w(z) >

Exercise 1.1.25 Let ¢(z) = Zpa < logp where the summation is over prime
powers p* < .

(i) For 0 <z <1, show that z(1 —z) < 1. Deduce that

for every natural number n.

(ii) Show that e¥("+D fol z"(1—z)" dz is a positive integer. Deduce that ¢(2n+
1) > 2nlog2.

(iii) Prove that v(z) > izlog?2 for z > 6. Deduce that

> xlog 2
~ 2logzx

(z)

for z > 6.



1.1. INTEGERS 165

Solution. Clearly 4z? — 4z + 1 = (22 — 1)2 > 0 so (i) is now immediate.
The integral fol z™(1 — z)™ dx consists of a sum of rational numbers whose

denominators are less than 2n + 1. Since lem(1,2,... ,2n + 1) = ¥@n+D),
we find

1
e¥(2ntl) / (1 —x)"dz
0

is a positive integer. Thus, e¥(??*+1) > 227 This proves (ii).
For (iii), choose n so that 2n — 1 <z < 2n + 1. Then, by (ii),

() > Y2n—-1) > (2n—2)log2 > (z — 3) log 2.

For z > 6, x — 3 > z/2 so that ¥(z) > zlog?2/2. Since ¥(z) < 7(z)logz,

we deduce that
zlog2

2logx

m(z) >
for £ > 6.

Exercise 1.1.26 By observing that

II »

()

n<pl22n
show that 9z log 2
z log
<
() < log =
for every integer x > 2.
Solution. Since
2n
II » :
n
n<p<2n

we deduce that
Z logp < 2nlog?2

n<p<2n

because
<2n) < o2n,
n
Therefore
6(2n) — f(n) < 2nlog2,
where
f(n) = Z log p.
p<n

An easy induction shows that §(27) < 2"+1log?2 for every positive integer
r. given an integer £ > 2, determine r so that

27‘ Sx < 27‘+1'
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Then
B(z) <6(2"t!) <272 log2 < 4z log 2.

We deduce, in particular,

Z logp < 4z log?2,

VE<p<z
so that
(3logz) (n(z) — 7(Vz)) < 4z log2.
This means 82 log2
7(z) —m(vVz) < Togz
and 8x 1 9z log 2
(@) < TogiQ VT < fogi
because
Vi< zlog2
~ logzx

for x > 10, as is easily checked by examining the graph of
f(z) =+vzlog2 —logz.

For z < 10, the inequality is verified directly.

1.2 Applications of Unique Factorization

Exercise 1.2.1 Suppose that a,b,c € Z. If ab = ¢ and (a,b) = 1, then show
that a = d° and b = e? for some d, e € Z. More generally, if ab = ¢? then a = d*
and b = ¢? for some d, e € Z.

Solution. Write a = p'p3?---p2 and b = qﬂlqﬂ2' -¢5 where p; and

g; are primes for 1 < ¢ <rand 1< j < s and p; # ¢; for any ¢, j since
(a,b) = 1.

ab = (@ p2)(gl - ¢f)
= 02
2 7}
= p"epPr g g2

_ . 0 05
where ¢ = p{' ---plrqy* -+ - ¢5*.

By unique factorization, a; = 2v; and §8; = 26; for 1 < ¢ < r and
1 < j < s Hence we can write @ = p7™ ---p2’r and b = ¢2% ... ¢2%.
Hence 3d,e € Z such that a = d2 and b = e* where d = p]*---p)" and
— 05
e = ql ParaY qs .
The argument for gth powers is identical.



1.2. APPLICATIONS OF UNIQUE FACTORIZATION 167

Exercise 1.2.2 Solve the equation z? 4+ y? = 2% where z, ¥, and z are integers
and (z,y) = (y,2) = (z,2) = L.

Solution. Assume that z and y are odd. Then both z2 = 1 (mod 4) and
y?2 =1 (mod 4). Hence z2 = 2 (mod 4). But there is no z € Z satisfying
2?2 =2 (mod 4), so one of z or y is even.

Without loss of generality, suppose z is even and y is odd. Then z is

odd. We have z2 = 22 — ¢2, so

22 22— 2

Vi 4

N2 (z+y)(z—y)
= <2) = T 2

Since (z,y) = (v, 2) = (z, 2) = 1, we see that ((z+v)/2,(z —y)/2) = 1. By
Exercise 1.2.1, there exist a,b € Z such that (2 +v)/2 = @ and (z —y)/2 =
b2. Hence we have the two equations z + y = 2a? and z — y = 2b°.

Thus the solution is z = 2ab, y = a®?—b?, and z = a?+b? where (a,b) = 1
and a and b have opposite parity since y and z are odd. Conversely, any
such triple (z,y, z) gives rise to a solution.

Exercise 1.2.3 Show that z*+y* = z? has no nontrivial solution. Hence deduce,
with Fermat, that z? 4+ y* = z* has no nontrivial solution.

Solution. Suppose that 2% +y* = 22 has a nontrivial solution. Take |z| to
be minimal. By Exercise 1.2.2, we can write

2 = 2ab, (1.1)
¥ o= b —a? )
z = b +ad? (1.3)

with (z,y) = 1 and a and b having opposite parity.
Suppose that b is even. Then we see that

=0 —a’=-1=3 (mod 4).

This is impossible. Hence a is even. Then de¢ € Z such that a = 2¢ and
(e,b) = 1. Then z% = 2 - 2bc = 4bc. Since (b,c) = 1, b and c are perfect
squares by Exercise 1.2.1. Hence Im,n € Z such that b = m?,¢ = n?
where (m,n) = 1. By (1.2), we see that y?> = b> — a? = m* — 4n*. Hence
(2n%)? +4* = (m?)? and (2n%,y) = (y,m?) = (2n®,m?) = 1.

By Exercise 1.2.2, 2n? = 2a3, y = 3% — o2, and m? = o® + 2 where
(o, B) = 1 and o and 3 have opposite parity. Thus we can see that n? = af.
Hence by Exercise 1.2.1, 3p,q € Z such that o = p? and 3 = ¢2. Hence we
have m? = p* + ¢*. This is a solution of the equation z* 4+ y* = 22. But
m < b < |z| since m? = b < b> + a® = z. This is a contradiction to the

minimality of |z|. Therefore z* + y* = 2% has no nontrivial solution.
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Now suppose that z* + y* = 2% has a nontrivial solution. This would
imply that z* + y* = t2 where t = 22 has a nontrivial solution. But we
proved above that this is impossible, so z* + y* = z* has no nontrivial
solution.

Exercise 1.2.4 Show that z* — y* = 22 has no nontrivial solution.

Solution. Suppose that z* —y* = (22 4+ y?)(2? — y?) = 22 has a nontrivial
solution, and choose the solution such that |z| is minimal. If z is even,
then both y and 2z must be odd (since z,y, z are coprime). But then we can
rewrite the equation as (22)? = 22+ (y2)? and we know from Exercise 1.2.2
that this equation has no solutions for z even. So z is odd.

Suppose that y is odd. We again write the equation as (22)? = 22+ (y?)?,
and we see that by Exercise 1.2.2 we can write

z = 2ab, y2 =a? -0, z?2=d®+b°
for relatively prime integers a, b. Now,
0t — b4 = (a® + %) (a® — b?) = 2%y® = (ay)?,

and we have found another solution to the equation z* — y* = 22. But

a < va?+ b2 = z, contradicting our assumption about z. We conclude
that there are no solutions for y odd.
Now suppose that y is even. Then we can use Exercise 1.2.2 and write

y*=2cd, 2z =c—d*, 2*=c+d%

where ¢, d are coprime and of opposite parity. Without loss, we assume that
ciseven, d odd. But then we have (2¢,d) = 1, and we can use Exercise 1.2.1
which says that we can find integers s,t such that 2¢ = s2,d = ¢2. In fact,
s is even so we can write s = 2u, and thus ¢ = 2u?. Therefore we can write
z? = 2+ d? = (2u?)? + (t2)?. We now deduce that we can find integers v, w
such that 2u? = 2vw, t2 = v? — w?, = = v? + w?. Since u? = vw, we can
write v = a2, w = b%. But looking back, we see that t* = v% —w? = a* — b4,
and since @ = \/v < v? + w? = z, which is a contradiction. So z* —y* = 22
has no nontrivial solutions.

Exercise 1.2.5 Prove that if f(z) € Z[z], then f(z) =0 (mod p) is solvable for
infinitely many primes p.

Solution. We will call p a prime divisor of f if p | f(n) for some n. Clearly
f always has a prime divisor. Hence it suffices to show that f has infinitely
many prime divisors. Suppose that f has only finitely many prime divisors.
Let f(z) = ana™ + @pn_12" 1 + -+ a1z + ag and let p1,... ,px be the
prime divisors of f. For simplicity, we will write m = p; - - - px. Then

flagm) = an(agm)™ +--- 4+ ai1(agm) + ag
= aplanay" 'm™ + an_1a0" Im M 4+ faym + 1).
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Let g(z) = anao™ *2™ + an_1a0" 22" +--- +a;z + 1. Then we can see
that (p;,g(m)) =1 for 1 <7 < k. Hence g(im) has a prime divisor different
from p; for 1 < i < k. The prime divisor of g(m) is also that of f(agm).
Hence we can see that there is a new prime divisor of f different from p; for
1 < i < k. This is a contradiction. Therefore f has infinitely many prime
divisors.

Exercise 1.2.6 Let g be prime. Show that there are infinitely many primes p so
that p =1 (mod q).

Solution. Let us consider the polynomial

71
f@) = T2 =1+t 42t

and suppose that p is a prime divisor of f(z). Then z¢ = 1 (mod p)
for some z. Let zo be an integer such that f(rg) = 0 (mod p). Then
z0? =1 (mod p). If z¢ is not congruent to 1 (mod p), then ¢ is the order
of zg (mod p) since ¢ is a prime. Consider the multiplicative group G =
{1,...,p—1}. We see that Tg € G. Since ¢ is the order of zy (mod p),
we can see that ¢ | (p — 1). Hence p —1 = 0 (mod ¢q) and hence p = 1
(mod q). If o =1 (mod p), then 1+ zo +--- + zg_l = 0 (mod p) means
p = q. Therefore, any prime divisor of f is either ¢ or = 1 (mod gq).
By Exercise 1.2.5, there are infinitely many primes p such that f(z) = 0
(mod p) is solvable since f(z) € Z[z]. We conclude that there are infinitely
many primes p such that p =1 (mod g).

Exercise 1.2.7 Show that F, divides F,, — 2 if n is less than m, and from this
deduce that F, and F,, are relatively prime if m # n.

Solution. Write m = n 4 k where k is a nonzero positive integer. Then

F, —2 Fopr—2
F, F,
2"t _q
22" 4+ 1
(222 -1
22" 4+ 1
2" 1

= t+1 :t2k_1—t2k_2+..._]_

b

where ¢ = 22", Hence F,, divides F,, — 2.

Let d be the greatest common divisor of F,, and F,,. Then d | Fy, so
d| Fm —2 and d | Fy,,. Hence d | 2 and hence d = 1 or 2. Since F, and F,,
are odd, d = 1. Thus (Fy, F,,,) = 1. Therefore F, and F;, are relatively
prime if m # n.
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Exercise 1.2.8 Consider the nth Fermat number F,, = 22" +1. Prove that every
prime divisor of F, is of the form 2"k + 1.

Solution. Let p be a prime divisor of 22" + 1. Then 22" = —1 (mod p),
s0 (22")2 = 1 (mod p). Hence we have 22" =1 (mod p). We will show
that the order of 2 (mod p) is 2"*!. Let x = ord, 2. Since z | 2"*! we
can write £ = 2™ where m is an integer and 1 < m < n+ 1. Hence for all
n > m, 22" =1 (mod p). But by assumption 22° = —1 (mod p), which
implies that 22" =1 (mod p) holds only if m > n+ 1. We now consider
the multiplicative group G = {1,... ,p— 1}. We must have 2""! | p—1
since ord, 2 = 2"*! and the order of G is p — 1. Therefore we can write
p— 1 =2""k where k is an integer, and we conclude that p = 2"tk + 1.

Exercise 1.2.9 Given a natural number n, let n = p{’---p* be its unique
factorization as a product of prime powers. We define the squarefree part of n,
denoted S(n), to be the product of the primes p; for which a; = 1. Let f(z) € Z[z]
be nonconstant and monic. Show that liminf S(f(n)) is unbounded as n ranges
over the integers.

Solution. By Exercise 1.2.5, we know that f has infinitely many prime
divisors. Let p be such a prime and suppose f(z¢) = 0 (mod p). Observe
that f(zo +p) = f(zo) + pf'(z,) (mod p?). We define the discriminant of
a monic polynomial f to be

H(Ti - Tj)21

>3

where 71, ... ,7, are the roots of f. If p | f’(zo), then p would divide the
discriminant of f. (Why? see Exercise 4.3.3.) Choosing p sufficiently large,
we may assume this does not happen. In either case, we deduce that the
squarefree part of f(zg) is divisible by p or the squarefree part of f(z¢ +p)
is divisible by p. If S(f(n)) were bounded, we have derived a contradiction.

1.3 The ABC Conjecture

Exercise 1.3.1 Assuming the ABC Conjecture, show that if zyz # 0 and =™ +
y™ = 2" for three mutually coprime integers z, y, and z, then n is bounded.

Solution. First observe that max (|z|, |y|, |z|) > 1 for otherwise we have
zyz = 0. By the ABC Conjecture, we have

max(|2[™, [y|", |2[) < x(e) (rad(zyz)) .

Without any loss of generality, suppose that max (|z/, [y],|2|) = |2|. We de-
duce that |z|® < k(g)|z[>*3¢. Since |2| > 1, we conclude that n is bounded.

Exercise 1.3.2 Let p be an odd prime. Suppose that 2" = 1 (mod p) and
2" # 1 (mod p*). Show that 2¢ # 1 (mod p*) where d is the order of 2 (mod p).
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Solution. Since 2" =1 (mod p), we must have d | n. Write n = de. If
2¢ =14 kp and p | k, then

2n — 2de

(1+kp)°©
1+ kpe (mod p?)
= 1 (mod p?),

a contradiction. This proves the result.

Exercise 1.3.3 Assuming the ABC Conjecture, show that there are infinitely
many primes p such that 27! £ 1 (mod p?).

Solution. Let us write 2™ — 1 = u,v, where u, is the squarefree part of
2™ — 1 and vy, is the squarefull (or powerfull) part of 2 — 1. (Recall that a
number N is called squarefull (powerfull) if for every prime g | N we have
¢? | N. Thus for any number N, N/S(N) is squarefull (or powerfull) with
S(N) the squarefree part of N.) Therefore (un,v,) = 1.

We begin by showing that if p | u,, then 22! £ 1 (mod p?). Indeed, we
know that p | 2" —1 and p? { 2" —1. (As defined earlier in this chapter, p*||n
means that p* | n but p**1 { n. In this case, we would write p||2” — 1.) By
Exercise 1.3.2, p? { 2¢ — 1 where d is the order of 2 (mod p). Now d | (p—1)
by the little theorem of Fermat and Lagrange’s theorem. Write df = p— 1.
Then 2¢ = 1+ kp with p{ k so that 2°~! = (1 + kp)’ =1 + kfp (mod p?).
Since f | p—1 and p1{ k, we find that 2°P~! # 1 (mod p?) for every prime p
dividing .

Now suppose there are only finitely many such primes p. Since u,
is squarefree, this implies that u, is bounded. Now consider the ABC
equation:

(2" —1)+1=2"
The ABC Conjecture implies that

2" < k(e)(2 rad(2" — 1))1+E.

But rad(2” — 1) < unvi/? and so

Untp = 2" — 1 < 2™ < k() (2unv,1/2)1+5.

Since u, is bounded, this implies that v, is bounded, and hence n is
bounded, a contradiction.

Remark. This is due to J. Silverman [Sil] who also obtains, assuming the
ABC Conjecture, that the number of primes p < z for which 2771 # 1
(mod p?) is > log .

Exercise 1.3.4 Show that the number of primes p < z for which
2771 £ 1 (mod p*)

is > log z/ log log z, assuming the ABC Conjecture.
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Solution. If for any n, we have u, = 1, then the ABC Conjecture implies,
as above, that n is bounded. Thus for n sufficiently large (say n > N),
un, > 1. For each prime g satisfying N < ¢ < (logz)/log2, we have u, > 1.
Moreover, for any two distinct primes ¢; and go, ged(29* — 1,292 — 1) =1
because p | 2% — 1 and p | 22 — 1 implies that the order of 2 (mod p)
divides ¢; and ¢2 and so it divides their ged, which is 1. This implies that
p | 1, which is a contradiction.

Thus, for every prime p | uq, we find 2P~ # 1 (mod p?). In addition,
the u;s are mutually coprime. In this way we obtain

1
i <logz) S Tog log2
log 2 2log (1%3)

by Exercise 1.1.25

log z
2(log log z — loglog 2)
log z

> loglogz’

primes p < z such that 2P~! # 2 (mod p?).
Exercise 1.3.5 Show that if the Erdos conjecture above is true, then there are
infinitely many primes p such that 2P~ % 1 (mod p?).

Solution. Suppose for p > po that 27~! = 1 (mod p?). Let t = [, »-

Then
st)= ] -1
P<po

Now consider the sequence ¢,, = 2% — 1. We claim that ¢, is powerfull.
Indeed if 2 < p < po, then by Euler’s theorem p? | ¢,. If p > po, and
p | cn, then p? | vp4(;) by the argument in Exercise 1.3.3. Thus p? | ¢, and
50 ¢y, is squarefull. For n even, say n = 2k, we deduce that both 2kt¢(*) 1
and 2F¢(t) 1 1 are powerfull. But then, so is 2¥*¢() contrary to the Erdos
conjecture.

Exercise 1.3.6 Assuming the ABC Conjecture, prove that there are only finitely
many n such that n — 1,n,n 4+ 1 are squarefull.

Solution. If n — 1,n,n + 1 are squarefull, consider the ABC equation

(n®~1)+1=n2

Then,
n? < k(e)(rad(n?(n® — 1)))1Jr£
< /-c(z-:)(nl/Q\/n— lx/n-}-l)lJrE

since n, n — 1, and n + 1 are all squarefull. The inequality implies that n
is bounded. (This is due to A. Granville.)
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Exercise 1.3.7 Suppose that a and b are odd positive integers satisfying
rad(a” — 2) = rad(b" — 2)

for every natural number n. Assuming ABC, prove that a = b. (This problem is
due to H. Kisilevsky.)

Solution. Suppose without loss that a < b. Hence log b > loga so we can
choose £ > 0 so that logb > (1 + £)loga. Now apply the ABC Conjecture
to the equation (b™ — 2) + 2 = b™. Then

* < w(e)(2brad(t” —2))
< k(e)(2brad(a™ - 2)) e
< k(e)(2ba™) Ite

Taking nth roots and letting n — oo gives logb < (1 + ¢)loga, which is a
contradiction. This completes the proof.

Of course, we may consider the equation rad(ae™ — ¢) = rad(b” — ¢)
for a fixed integer ¢ coprime to a and b. The above argument applies in
this context as well. Recently, R. Schoof and C. Corrales-Rodrigafiez [Sc]
established this result in the special case ¢ = 1 without assuming ABC.

It is also worth observing that we do not need the equation

rad(a™ — 2) = rad(b™ — 2)

satisfied for all natural numbers n, but just an infinite subsequence.

1.4 Supplementary Problems

Exercise 1.4.1 Show that every proper ideal of Z is of the form nZ for some
integer n.

Solution. Suppose there is an ideal I for which this is not true. Then
show that there exist elements a,b € I such that ged(a,b) = 1.

Exercise 1.4.2 An ideal [ is called prime if ab € I impliesa € I or b € I. Prove
that every prime ideal of Z is of the form pZ for some prime integer p.

Solution. If I is an ideal, then it is of the form nZ for some integer n by
the previous question. Then ab € I implies that n | ab. But then since I is
prime, either a € T or b € I, so n | a or n | b, implying that n is prime.

Exercise 1.4.3 Prove that if the number of prime Fermat numbers is finite, then
the number of primes of the form 2™ + 1 is finite.
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Solution. Consider primes of the form 2™ 4+ 1. If n has an odd factor, say
n = rs with r odd, then 27° + 1 is divisible by 2° + 1, and is therefore not
prime.

Exercise 1.4.4 If n > 1 and @™ — 1 is prime, prove that a = 2 and n is prime.

Solution. If ¢ > 2, then a™ — 1 is divisible by a — 1. So assume a = 2.
Then if n has a factor, say k, then 28 — 1 | 2® — 1. Therefore if a® — 1 is
prime, a = 2 and n is prime. Numbers of this form are called Mersenne
numbers.

Exercise 1.4.6 Prove that if p is an odd prime, any prime divisor of 27 — 1 is of
the form 2kp + 1, with & a positive integer.

Solution. Suppose ¢ is a prime divisor of 2P — 1. Then g must be odd. We
note that 27 = 1 (mod ¢) and also, by Fermat’s little Theorem, 297! =1
(mod ¢q). Then p | (¢ — 1) since p is prime. Then ¢ = 1 (mod p) so
g = mp + 1 but since q is odd, m = 2k for some k, and so ¢ = 2kp + 1.

Exercise 1.4.7 Show that there are no integer solutions to the equation z*—y* =

222,
Solution. We will consider only solutions with ged(z,y) = 1, since any
common factor of z,y will also divide z. Therefore any solution to this
equation with ged(z,y) # 1 will lead to a solution with ged(z,y) = 1.

We notice that since the right-hand side of the equation is even, = and y
are either both even or both odd. Since z,y are coprime, they must be odd.
Then z* — y* =0 (mod 4) and so z is even. We can factor the equation as

(@® +y")(@® —y*) = 2%

We note that 22 +y% = 2 (mod 4) and 22 —y2 = 0 (mod 4), so (z? +y?)/2
is odd. Now we rewrite our equation as

<z2 i y2) (a2 —y?) = 22,

2

If there is an integer & such that J | (z2 4 y?)/2 and 4 | 2 — 3?2, then § | 222
and § | 2y2. But z,y are relatively prime and so § | 2. We know that
2t (2?2 +y%)/2 s0 § = 1 and our two factors are coprime.
This implies
2 +y? = 24,
22—y = 4,

since 22 — y2 = 0 (mod 4). We now factor this second equation above as

e )
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It is easy to see that the two factors are coprime, and so we can write
r+y = 26,
r—y = 2d°
Now we notice that we have
(@ +9)? + (z—y)* = 22" + 2" = 2(2® +9°).
Given our expressions above, this translates into the equation
4c* + 4d* = 442,

but we know that z* + y* = 22 has no solutions in Z. Thus, the given
equation has no solution.

Exercise 1.4.8 Let p be an odd prime number. Show that the numerator of

I W
23 p—1

is divisible by p.

Solution. Look at the sum modulo p.

Exercise 1.4.9 Let p be an odd prime number greater than 3. Show that the
numerator of
1+ = + = +-- 4 !
23 p—1
is divisible by p®.
Solution. Pair up 1/7 and 1/(p — i) and consider the sum mod p.

Exercise 1.4.10 (Wilson’s Theorem) Show that n > 1 is prime if and only
if n divides (n — 1)1 + 1.

Solution. When n is prime, consider (n — 1)! (mod n) by pairing each
residue class with its multiplicative inverse.

Exercise 1.4.11 For each n > 1, let @ be the product of all numbers a < n
which are coprime to n. Show that @ = +1 (mod n).

Solution. @ is clearly congruent to the product of elements of order 2.
Now pair up a and (n — a).

Exercise 1.4.12 In the previous exercise, show that @ = 1 (mod n) whenever
n is odd and has at least two prime factors.

Solution. Clearly ¢} = (—1)° (mod n) where 2s is the number of elements
a satisfying a> = 1 (mod n). Use the Chinese Remainder Theorem (see
Exercise 5.3.13) to determine s.
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Exercise 1.4.13 Use Exercises 1.2.7 and 1.2.8 to show that there are infinitely
many primes =1 (mod 2") for any given 7.

Solution. If p | F,,, then p = 1 (mod 2"*!). For each n > 7, we have
p=1 (mod 27). By Exercise 1.2.7 these primes are all distinct.

Exercise 1.4.14 Suppose p is an odd prime such that 2p + 1 = ¢ is also prime.
Show that the equation
¥ +2y7 + 52X =0

has no solutions in integers.
Solution. Consider the equation mod ¢. Then 2P = £1 or 0 (mod gq).
Exercise 1.4.15 If x and y are coprime integers, show that if

$p+yp

+ d
(z+y) an P

have a common prime factor, it must be p.

Solution. Suppose a prime ¢ is a common factor. Then

P + 9P
T+Y

=aP~! 2P 2y 4 yPTl = paPt (mod g).

Exercise 1.4.16 (Sophie Germain’s trick) Let p be a prime such that 2p +
1 =g > 3 is also prime. Show that

e +y’+2" =0
has no integral solutions with p { zyz.

Solution. By the previous exercise, z +y = a” and (2P +yP)/(x +y) = P
for some integers a and ¢. By symmetry, y + 2 = b, z + 2 = dP. If
q 1t ryz, then zP + y? + 2?7 = 0 (mod q) is impossible since +1+1+1=0
(mod ¢) is impossible. Now suppose g | zyz. If ¢ | z, then g { yz so that
224+ y+ 2z =0 = aP 4+ d? (mod ¢) which again is impossible if a, b, and
d are coprime to g. Thus one of these must be divisible by q. It is easy to
see that this must be b. Thus, y + z = 0 (mod g). Since

yp_+_zp
y+=z

is also a pth power, ¥ (say), we obtain the congruence
P =pyP~ ! (mod q).

Since g does not divide ¢, we deduce that
pyP~ ' =+1 (mod q).

Also, z + y = o” implies y = a” (mod q) so that y is a pth power mod ¢
which is coprime to ¢. Thus, p = +1 (mod g), a contradiction.
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Exercise 1.4.17 Assuming ABC, show that there are only finitely many con-
secutive cubefull numbers.

Solution. If n— 1 and n are cubefull, then apply ABC ton—(n—1) = 1.

Exercise 1.4.18 Show that

LI

Y4

where the summation is over prime numbers.

Solution. Clearly,

Sl et )

n<z p<x p<z

since every natural number n < z can be written as a product of primes
p < z. Now take logs. Then

Zl+0(1)210g Z%

p<x n<z

Since the harmonic series diverges, the result follows.

Exercise 1.4.19 (Bertrand’s Postulate) (a) If ap > a1 > a2 > --- is a de-
creasing sequence of real numbers tending to 0, show that

x>

Z(—l)”an < ao— a1+ az.

n=0

(b) Let T(z) = >, ., ¥(z/n), where () is defined as in Exercise 1.1.25. Show
that
T(z) = zlogz — z + O(log z).

(c) Show that

T(z)—2T (—) = Z(—l)”_lw (%) = (log2)z + O(log ).

n<x

Deduce that .
W(z) — o (5) > %(log 2)z + O(log x).

Solution. From
[o o]
Z(_l)nan =ag — (al — a2) — (a3 — a4) — e,
n=0

(a) is immediate.
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To see (b), observe that

Zlognzz Zlogp :Z¢<%):T(z).

n<z n<zx \p*in m<z

By comparing areas,

Z logn = / (logt) dt + O(log x)
1

n<zx
implies (b).

The first part of (c) is now clear. Since ¥(z/n) is a decreasing function
of n, we apply (a) to get

z z
—u(Z 2) > .
(@) - v (5) +9(5) = (og2)z + O(loga)
By Exercise 1.1.14, ¢(z) < 2z log 2. Therefore,
z
w(zx) — P <§) > 1(log2)z + O(log z).
Hence, there is a prime between z/2 and z for z sufficiently large.
(This simple proof is due to S. Ramanujan. We can deduce #(z) <

2z log 2 directly from (a) and (b) without using the solution to Exercise
1.1.26.)



Chapter 2

Euclidean Rings

2.1 Preliminaries

Exercise 2.1.2 Let D be squarefree. Consider R = Z[v/D]. Show that every
element of R can be written as a product of irreducible elements.

Solution. We define a map n : R — N such that for a + bv/D € R,
n(a+bvD) = |a® — D¥|.

We must check that this map satisfies conditions (i) and (ii) from the pre-
vious example.

(i) For a + bv/D,c+dvD € R,

n[(a+bV/D)(c+dvD)] = n[(ac+ bdD) + (ad + bc)VD)
|(ac + bdD)?* — (ad + be)* D|
= |(a® =¥’ D)(* - d*D)|

= n(a+bV/D)n(c+dvD),

so condition (i) is satisfied.

(ii) If 7 = a + bv/D is a unit in R, then 3s = ¢ + dv'D € R such that
rs = 1. But by condition (i), since 1 = n(1), 1 = n(r)n(s). Since our map
n only takes on values in the positive integers, then n(r) = n(s) =1 for all
units of R. The converse is clear.

Since we have found a map n which satisfies the conditions of Exam-
ple 2.1.1, we can deduce that every element of R can be written as a product
of irreducible elements.

Exercise 2.1.3 Let R = Z[\/—5]. Show that 2,3,1+ /=5, and 1 — /-5 are
irreducible in R, and that they are not associates.

179
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Solution. We define a map n : R — N such that n(a + bv/~5) = a? + 5b%.

If 2 is not irreducible, then there are elements r, s € R such that rs = 2,
with r, s not units. But then n(r)n(s) = n(2) = 4, and since r,s are not
units, it must be that n(r) = n(s) = 2. Then we must find integers a,b
such that a® 4 5b% = 2, which is clearly impossible, so 2 must be irreducible.

If 3 is not irreducible then we can find r,s € R with rs = 3, and r, s
not units. Since n(3) = 9, we must have n(r) = n(s) = 3. But by the same
argument as above, we see that this is impossible.

n(l + v/=5) = 6. The only proper divisors of 6 are 2 and 3, and so
if 1 + /=5 is not irreducible, then we can find r € R,  not a unit and
7| (1 ++/=5) with either n(r) = 2 or n(r) = 3. But we showed above that
this is not possible, so 1+ /-5 is irreducible. Since n(1 —/—5) = 6, then
1 — v/—5 must also be irreducible.

If two elements of R are associates, then they must have the same norm,
a fact which follows immediately from the condition that all units have norm
1. If a 4+ b\/—5 is a unit, then a? 4+ 56> = 1. This will only occur when
a = %1, and so the only units of Z[v/~5] are 1 and —1. Of 2,3,1 4+ /=5,
we see that the only two which could possibly be associates are 1 + /=5
and 1 — /=5 because they have the same norm. However, if we multiply
1+ /=5 by either of the units of Z[v/—5], we will not get 1 — /=5, and so
they cannot be associates.

We conclude that 2,3,1+ /=5 and 1 — /=5 are all irreducible and are
not associates.

Exercise 2.1.4 Let R be a domain satisfying (i) above. Show that (ii) is equiv-
alent to (ii*): if 7 is irreducible and 7 divides ab, then 7 | a or 7 | b.

Solution. Suppose R satisfies both (i) and (ii) above. Let @ € R be an
irreducible element, and suppose that 7 | ab, where

a="T1T2 " Tr,

b=y172" Vs

and 7;,y; are irreducible.

We know that 7 | ab =71 - - Tr-y1 - - - Vs, 50 it follows that ab = Ay -+ - Ay
where each ); is irreducible. By condition (ii), 7 ~ 7; for some ¢, or m ~ ~y;
for some j. Thus, if 7 | ab, then 7 | a or 7 | b.

Now suppose that R is a domain satisfying conditions (i) and (ii*) above,
and suppose that we have an element a¢ which has two different factoriza-
tions into irreducibles: ¢ = 7 ---7» and a = w1 --- 7. Consider ;. We
know that 71 | a, and so 7y | 71 ---7ms. By (ii*) we know that 7y | m; for
some %, and since both are irreducible, they must be associates.

We can now remove both 7, and m; from our factorization of a. We
next consider 15. Following the same process, we can pair up 7o with its
assoclate, and we can continue to do this until we have paired up each of
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the irreducible factors 7; with its associate m;. It is clear that if we continue
in this fashion, we must have r = s.

Exercise 2.1.5 Show that if 7 is an irreducible element of a principal ideal
domain, then () is a maximal ideal (where (z) denotes the ideal generated by
the element z).

Solution. We define ged(a, b), the greatest common divisor of a,b € R, to
be an element d such that the ideal (a,b) equals the ideal (d). It is unique
up to units. For a unique factorization domain, this definition coincides
with the usual one. We note that d must divide both a and b since they
are in the ideal (d).

If 7 is irreducible, we consider the ideal (7, &) where « is any element
not in (7). Since « is not a multiple of 7, and 7 is irreducible, then the
only common divisors of o and 7 will be units. Then ged(m, o) = 1. In
other words, the ideal generated by 7 is a maximal ideal.

Exercise 2.1.8 If F is a field, prove that F[z], the ring of polynomials in 2 with
coefficients in F, is Euclidean.

Solution. We define a map ¢ : F[r] — N such that for f € Flz], ¢(f) =
deg(f). Now consider any two polynomials f(z),g(z) € F[z].

If deg(g) > deg(f), then we can certainly write f(x) = 0-g(z) + f(z),
which satisfies the Euclidean condition. Then we can assume that m =
deg(g) < deg(f) = n, and write f(z) = ag + a1z + --- + a,z™, and g(x) =
bo 4+ b1z + bpx? + - - - + by, 2™, where an, b, # 0 and m < n. We proceed
by induction on the degree of f. That is, we will prove by induction on
the degree of f that we can write f(z) = ¢(z)g(z) + r(z), where r = 0 or
deg(r) < deg(g).

Define a new polynomial

h(z) = azb;tg(z)z™ ™.

Observe that the leading term of h(z) is anb,b,z™z™ ™ = a,z™ which
is the leading term of f(z), so that if fi(z) = f(z) — h(z), either fi(z) =0
or deg(f1) < deg(f). The theorem holds for fi(z), so we can write fi(z) =
f(z) — h(z) = q(z)g(z) + r(z), where r = 0 or deg(r) < deg(g) = m. Now
f(z) = q(x)g(z)+h(z)+r(z) and since h(z) is a multiple of g(z), the result
follows.

2.2 Gaussian Integers

Exercise 2.2.1 Show that Z[i] is Euclidean.

Solution. We define a map ¢ : Z[i] — N such that ¢(a + b)) = a? + b2.
Now, given any two elements of Z[i], say & = a+ bi and v = ¢+ di, can we
find ¢,r € Z such that a+bi = g(c+di)+r, wherer = 0 or ¢(r) < ¢(c+di)?



182 CHAPTER 2. EUCLIDEAN RINGS

Since we cannot divide « and « in the ring Z[i], we move temporarily
to the ring Q[i] = {r + si | r,s € Q}. In this ring,

=R

(

(

(ac+bd) (bc—ad).
CETORECEY N
= r+si,

with r,s € Q. We can now choose m,n € Z such that |[r —m| < 1/2, and
|s —n| <1/2. We set ¢ = m + ni. Then q € Z[i], and a = ¢y + r for some
suitable r, with

(r) = oéla—qv)

pla/y — @)o(7)
[(r —m)® + (s —n)?]$(7)

< (F+3)em
= 36(7)
< o)

We have shown that our map ¢ satisfies the properties specified above, and
so Z[i] is Euclidean.

Exercise 2.2.2 Prove that if p is a positive prime, then there is an element
z € F, := Z/pZ such that 2> = —1 (mod p) if and only if either p=2o0rp=1
(mod 4). (Hint: Use Wilson's theorem, Exercise 1.4.10.)

Solution. If p = 2, then 1 = —1 (mod 2),s0 12 =1 = —1 (mod 2). Hence
we can take z = 1. Conversely, if 1 = —1 (mod p), we can see that p = 2
since 1 = ap — 1 for some integer a which implies ap = 2.

We will show that in any field F, where 1 is not congruent to —1
(mod p), > = —1 (mod p) for an element z if and only if z has order
4 in the group of units of the field. Suppose that z2 = —1 (mod p). Then
the first four powers of z are z,—1, —z, 1. Hence z has order 4.

Conversely, suppose that z has order 4. Then, z¢ = (z2)?2 = 1 (mod p),
so (z2)2 — 1 =0 (mod p). Hence (22 + 1)(z2 — 1) = 0 (mod p). Since z is
an element of a field, 22 + 1 =0 (mod p) or 22 —1 =0 (mod p). However,

if 22 — 1 =0 (mod p), z has order 2. Hence 22 = —1 (mod p).
If p # 2, then F, is a field where 1 is not congruent to —1 (mod p).
Hence the existence of an element z such that 22 = —1 (mod p) is equiv-

alent to the existence of an element of order 4 in the group of units of F,,.
Let U, be the group of units of F,. Then |U,| =p — 1, and since the order
of any element divides the order of the group, if U, has an element of order
4, then we have 4 | p— 1 or, equivalently, p =1 (mod 4). Conversely, if we
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suppose that p = 1 (mod 4), then we can write p = 4k + 1 where k is an
integer and U, is a cyclic group of order p — 1 = 4k. If g is a generator of
U,, then g has order 4k. So g* has order 4. Hence we can see that if 1 is
not congruent to —1 mod p, 22 = —1 (mod p) occurs if and only if z has
order 4 in the group of units of the field, which occurs if and only if p =1
(mod 4).

Alternate Solution: Wilson’s theorem gives
(p—1)!'=-1 (mod p).

We can pair up k and (p — k) in the product above so that
k(p—k) =—k* (mod p)

implies
(—1)e=1)/2 <2_;._1)| 2=-1 (mod p).

Thus, if p = 1 (mod 4), there is an z € F, so that 2 = —1 (mod p).
The converse follows from Fermat’s little Theorem:

1= (2?)P~1/2 = (—1)P=V/2 (mod p)

so that (p — 1)/2 is even. That is, p=1 (mod 4).
We will provide another alternative proof of this fact in Chapter 7, using
quadratic residues.

Exercise 2.2.3 Find all integer solutions to y* + 1 = 2 with z,y # 0.

Solution. If z is even, then z3 = 0 (mod 8), which implies in turn that
y? = 7 (mod 8). However, if y = 1,3,5,7 (mod 8), then y2 = 1 (mod 8).
So z must be odd, and y even.

We can factor this equation in the ring Z[i] to obtain (y+1)(y —1) = z°.
If 36 such that 6 | (y + ) and § | (y — %), then & | 2¢, which implies that
4 | 2. But this would mean that z is divisible by 2, which we know is not
true. Therefore, we know that (y + ¢) and (y — ¢) are relatively prime in
Zl[i], and that they must both be cubes.

We know that we can write y +i = ej(a + b)) and y — i = ez(c + di)?
where a,b,c,d € Z and e, ey are units in Z[i]. However, the only units of
Zl[i] are £1 and =i, and these are all cubes, so without loss, assume that
e; =ey =1.

Next, we expand our factorization for y + i to get

y+1i=a®+ 3abi + 3ab® — b%.

Comparing the imaginary parts, we get 1 = 3a%b — b® = b(3a® — b?), with
a,b € Z. The only integers which multiply together to give 1 are %1, so
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we know that b = 1. If b = 1, then we have 1 = 3a? — 1, implying
3a? = 2, which has no integer solutions, so b # 1. If b = —1, then we get
1 =—3a% + 1, and so 3a? = 0, and a must be 0. However, if we substitute
a = 0 back into our original equation for y + ¢, we find that y = 0, which
we did not allow, and so b # —1.

We conclude that the equation y? +1 = z® has no integer solutions with

z,y # 0.

Exercise 2.2.4 If 7 is an element of R such that when 7 | ab with a,b € R, then
7 | a or 7 | b, then we say that 7 is prime. What are the primes of Z[:]?

Solution. Given m = (a+bi) € Z[i], we define the complex conjugate of 7 to
be the element 7 = (a—bi). We note that n(r) = a2+ b? = 77, and so given
any prime 7 in Z[¢], we know that m divides n(m). Using this information,
we observe that we can find all the Gaussian primes by examining the
irreducible factors of the primes of Z. For, let n(m) = pip2 - -pr be the
prime decomposition of n(m). We know that 7 | n(x), so 7 | p; for some 7.
If 7 | p; and 7 | pj, with p; # p;, then 7 | 1, since ged(p;, p;) = 1. But then
m would be a unit, and thus not irreducible. So, by examining all of the
divisors of the primes in Z, we will discover all of the primes of Z[i], once
and only once each.

We let 7 be a prime in Z[¢], and p the prime in Z such that 7 | p. By
the properties of the map n, n(r) | n(p) = p?, so n(n) =p or n(x) = p?. If
we let m = a + bi, then a® + b% = p, or a? + b = p2.

All the primes of Z are congruent to 1, 2 or 3 (mod p), and we will
examine these cases separately.

Case 1. p =3 (mod 4).

We just proved that if m = a + bi is prime, then either a® + b% = p, or
a® + b? = p? for some integer prime p. Let us assume that the first of these
possibilities is true. We know that p is odd, so one of a,b is even. Let us
say that a is even, and b odd, so that ¢ = 2z and b = 2y + 1 for some
z,y € Z. Then

a2+ = 4+ 4P +4y+1
= 4@+ +y) +1
= 1 (mod 4).

Since we had assumed that p = 3 (mod 4), we have a contradiction. So
a’? + v = p?, which means that n(r) = n(p), and so p and 7 must be
associates.

Therefore, primes in Z that are congruent to 3 (mod 4) and their asso-
ciates are prime in the ring Z[4].

Case 2. p=2 (mod 4).

There is, of course, only one such integer prime: 2. Assume we have
a prime m which divides 2. Since 2 = (1 +%)(1 —4), then 7 | (1 +4) or
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7| (1 —4). But n(1+41) =n(l —4) =2, and it is easy to show that (1 + %)
and (1 —©) are irreducible in Z[:] and so they are prime. So, if 7 | 2, then
e~ (144)orm~(1—1).

Case 3. p=1 (mod 4).

We recall Wilson’s Theorem, Exercise 1.4.10, which states that if p is a
prime, then (p — 1)! = —1 (mod p). We will in fact be using a corollary of
this theorem, which states that if p is a prime number of the form 1 + 4m,
then p | (n? + 1), where (2m)! = n. (We can also apply Exercise 2.2.2.)

Ifp|(n?+1)=(n+i)(n—1i)and 7 | p, then 7| (n+i) or 7 | (n — ).
If p were to divide (n %), then p | n and p | 1, which is clearly not the
case since p is not a unit. We conclude that p and 7 are not associates,
so n(m) # n(p), which implies that n(r) = a®? + b = p. Thus, if p = 1
(mod 4), then p does not remain prime in Z[i]. We can deduce that if
7 =a+bi and a? + b?> = p, then 7 is prime in Z[i].

Exercise 2.2.5 A positive integer a is the sum of two squares if and only if
a = b*c where c is not divisible by any positive prime p = 3 (mod 4).

Solution. Suppose that a is the sum of two squares. Let a = s + t2 and
let (s,t) = b. Then a = (bx)? + (by)? = b?(z? + y2) where (z,y) = 1. Let
¢ = 22 + y%. Then we have a = b%c where c is the sum of two relatively
prime squares.

By Exercise 2.2.2, ¢ is not divisible by any prime p = 3 (mod 4). In
fact, suppose that p | 22 + y2. Then, z? + y? = 0 (mod p), 22 = —y?

(mod p) and so ((y~1)?-2%) = (y~!-z)2 = —1 (mod p). By Exercise 2.2.2,
either p =2 or p=1 (mod 4). Hence ¢ is not divisible by any prime p = 3
(mod 4).

Now suppose that we have an integer a which we can write as a = b%c,
and suppose that ¢ is not divisible by any positive prime p = 3 (mod 4).
Then c is a product of primes each of which, by Exercise 2.2.4, is a sum of
two squares. Then ¥ = n(b) and ¢ = n(t + ri) where t and r are integers.

Then

b2 -c = n(b(t+ri))
= n(bt + bri)
= b2+
= ()% + (br)2

Hence a = b%c is written as the sum of two squares.
q

2.3 Eisenstein Integers

Exercise 2.3.1 Show that Z[p] is a ring.
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Solution. First observe that Z[p] is a subset of the complex numbers, so
associativity, distributivity, and commutativity are immediate for addition
and multiplication. Also, 0,1 € Z[p}, so we have additive and multiplicative
identities. If a + bp € Z[p], then —a — bp € Z[p], so we have additive
inverses. It remains to verify closure under addition and multiplication; if
a,b,c,d € Z, then (a+bp) + (c+dp) = (a+c) + (b+d)p € Z[p], so we have
closure under addition. Also (a+bp)(c+dp) = ac+(ad+bc)p+bdp?. We will
therefore have closure under multiplication if p? € Z[p]. But p?> = —1 — p,
so Z[p] is a commutative ring with unit.

Exercise 2.3.2 (a) Show that Z[p] is Euclidean.
(b) Show that the only units in Z[p] are £1, £p, and +p°.

Solution. (a) Define ¢ : Z[p] = N so that ¢(a + bp) = a®> —ab+ b* = o
for a € Z[p]. We consider a, 3 € Z|g], 3 # 0. We have

a_ap

B BB
Now 88 € Z and of3 € Z[p], so

a—g:s-}-tp

for some s,t € ). We set m and n to be the integers closest to s and t,
respectively, i.e., choose m and n so |m — s| < 1/2 and |n —t| < 1/2. We
set ¢ = m + np. Now,

qs(g—) = (s—m) = (s—m)(t—n) + (t—n)?

+

=
=

< i+
< L
So, writing r = a — g3, then if r # 0, ¢(r) = ¢(B)¢(a/B — q) < ¢(8), and

with the map ¢, for any «, 7 € Z[p], we can write « = ¢ + r where r =0
or ¢(r) < ¢(83). Thus, Z[p] is Euclidean.

(b) Observe that ¢ is a multiplicative map into the natural numbers, so
that if 7 is a unit of Z[p|, then ¢(n) = 1. We thus see immediately that
+1,4p, £p? are all units (it is easy to see that they are distinct). Suppose
n = a+bp were a unit of Z[p]. Then a®—ab+b? = 1 and (2a—b)2+3b% = 4.
From this equation it is clear that b = 0 or +1 are the only possible integer
values b could take, since 36> must be less than 4. To each solution for b
there are two corresponding solutions for a, and thus at most six distinct
pairs (a,b) in total. By the pigeonhole principle the list given above includes
all the units of Z[p].
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Exercise 2.3.3 Let A = 1 — p. Show that X is irreducible, so we have a factor-
ization of 3 (unique up to unit).

Solution. We have that ¢(A) = 3. If d | A, then ¢(d) | 3, ie., ¢(d) =1 or
3, so d is either a unit or an associate of A, and ) is irreducible.

Exercise 2.3.4 Show that Z[p]/()) has order 3.

Solution. Suppose a € Z[p], so that @ = a + bp for integers @, b. Then
a=a+b-b1l-p)=a+b—b\=a+b (mod A). Considered mod 3,
a + b could have residues 0, 1, or 2. Since A | 3 (see Exercise 2.3.3, above),
then a will have one of these residues mod A. Since ¢(A) does not divide
@(1) = 1, or ¢(2) = 4, none of these classes are equivalent mod A, and so
we have three distinct residue classes, which we may denote by 0 and +1.

2.4 Some Further Examples
Exercise 2.4.2 Show that Z[/—2] is Euclidean.

Solution. We define a norm ¢ : Z[v/—2] — N by ¢(a + by/—2) = a? + 2b%.
For «, 8 € Z[v/=2], we consider o/ = af/3(. Notice that 58 = ¢(8) so
BB € Z. Also, B € Z[/=2], so a3 € Z[/=2], so o/B = af/BB = c+d/—2
for some ¢, d € Q. We choose m and n as the closest integers to ¢ and d,
i.e., so that |m —¢| <1/2 and |n—d| < 1/2. We write ¢ = m +ny/~2. We
have that ¢(a/8 — q) = (c—m)?+2(d—n)? <1/4+1/2 < 1. So we write
o=qftrandr=a-—gf. Ifr#0, then ¢(r) = p(B)d(e/6 - ) < H(B).
We conclude that Z[/—2] is Euclidean.

Exercise 2.4.3 Solve y? + 2 =z for z,y € Z.

Solution. Write (y +v/~2)(y — v=2) = 3. If y were even, then z would
be also, but if z is even, then 3 = 0 (mod 8) whereas 8 does not divide
y2 +2. So y and 7 are both odd. Observe that (y +/~2) and (y — v/~2)
are relatively prime, since if d divided both, then d would divide 24/—2
and would thus have even norm, which is not possible since y is odd. Thus
(y + v/—=2) is a cube multiplied by a unit. The only units of Z[/—2| are
1 and —1, which are both cubes. Without loss, assume that the unit in
question is 1. We write

(y+V=2) = (a+b/-2)
= a® —6ab® + (3a%b — 2b%)V-2.

Comparing real and imaginary parts, we find that

y = a® — 6ab®
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and

1 = (3a%b—2b%)
b(3a® — 2b%).

Thus, b | 1 so b = £1. It follows that a = £1. Substituting into the
equation for y, we find that y = £5. Thus, the only solution to the given
equation is z = 3,y = £5.

Exercise 2.4.5 Show that Z[v/2] is Euclidean.

Solution. We define a norm ¢ : Z[v/2] — N by ¢(a + bv/2) = |a® — 2b?|.
Let o, 3 € Z[V/2]. We write 8 = ¢ + dv/2 and consider

a(c—dv?2)

B8 Blc—dvR)

Notice that |3(c—dv/2)| = ¢(8) so B(c—dV/2) € Z. Also, (c—dv/2) € Z[V2),
so a(c —dv2) € Z[V2], so

B Blc—dv2)

for some t, u € Q. We choose m and n as the closest integers to ¢ and wu,
ie. sothat jm —t| < 1/2 and |n — u| < 1/2. We write ¢ = m + nv/2. We
have that

a  alc—dv2) —ttuVd

Il

| (t=m)? = 2(u~n)* |

| (¢ =m)? | +]2(u-n)|
b+

1.

d(a/B—q)

A NN

We write & = g8+7r,s0 r = a—qB. If r # 0, then ¢(r) = ¢(B3)p(a/B—q) <
#(3). We conclude that Z[v/2] is Euclidean.

Exercise 2.4.6 Lete = 14++v/2. Write e™ = un+vnv/2. Show that u2—20v2 = +1.
Solution. Since ¢ is multiplicative and we have ¢(¢) = | — 1|, then
$(e") = |(-1)"| = Jup ~ 2up] = 1.

This gives infinitely many solutions to 2 —2y? = £1. It is easy to see that
all of these solutions are distinct: & € Z[v/2] and £ > 1 so0 ™t > ¢” for all
positive n.

Exercise 2.4.7 Show that there is no unit 7 in Z[v/2] such that 1 < <1+v/2.
Deduce that every unit (greater than zero) of Z[v/2] is a power of £ = 1 + v/2.
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Solution. Since —1 is a unit, for any unit £, —€ is also a unit, and negative
and positive units are in one-to-one correspondence; we shall only consider
the positive units of Z[v/2]. We write  as a + by/2. Since 7 is a unit,
é(n) = (a+ bv2)(a — bv/2) = +1. By assumption (a + bv/2) > 1 and
|(a 4+ bv2)(a — bv/2)| = 1, so it follows that

~1<(a~bV2) < 1.

Also, by assumption, 1 < a +bv/2 < 14 /2. So, adding these two inequal-
ities gives

0<2a<2+V2
Since a € Z this implies that a = 1. Notice now that there is no integer b

such that

1<1+bV/2<1+V2
If any unit, 9, did exist which was not some power of £, then by our
Euclidean algorithm we would be able to divide by (1 4+ v/2)¥, where k is
chosen so that (1++v/2)F < 1 < (1++/2)%*! and this would produce a new
unit ¢’ where 1 < ¢/ < 14 +/2. So the only positive units of Z[v/2] are
those of the form (1 + +/2)"; there are infinitely many.

2.5 Supplementary Problems
Exercise 2.5.1 Show that R = Z|(1 ++/—7)/2] is Euclidean.

Solution. Given a, 3 € R, we want to find v, ¢ € R such that o = v + 4,
with N(8) < N(3). This is equivalent to showing that we can find a v with
N(a/B—-v) <1l

Now, a/B = = + yv/~7 with z,y € Q. Let v = (u + v\/=7)/2 with
u,v € Z and u=v (mod 2). We want

N(z+y\/———(ﬂ%——7)) :(z~3)2+7( —9)2<1

2

or, equivalently,
(27 — u)? + 7(2y — v)? < 4.

First consider 2y. Choose for v either [2y] or [2y] +1, so that 2y —v < 1/2.
Now choose for u either [2z] or [2z] + 1, whichever has the same parity as
v. Then 2z — u < 1. Then

2z -u)?+72y—v)?<1+I=1 <y

We have found a « which works, and proved that Z[(1 + +/-7)/2] is Eu-
clidean.

Exercise 2.5.2 Show that Z[(1 + v/—11)/2] is Euclidean.
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Solution. Proceed as in Exercise 2.5.1. Given a, 3, we wish to find ~

such that N(a/8 —~v) < 1. Let /8 = z + yv/-1l,z,y € Q, and vy =
(u+vy/—11)/2 with u,v € Z and u = v (mod 2). We want

N(z+y\/—T~ (“—%—_ﬂ» <1,
> (27 — u)? + 11(2y — v)% < 4.

As in the previous exercise, choose v first to be the integer which is closest
to 2y, and then choose u to be the integer closest to 2z which also has the
same parity as v. Then (2z —u) <1 and (2y —v) < 1/2, s0

(Qz—-u)?+11Q2y-v)? <1+ =1 <4
Therefore Z[(1 + +/—11)/2] is Euclidean.
Exercise 2.5.3 Find all integer solutions to the equation z? + 11 = g3,
Solution. In the ring Z[(1 4+ +/—11)/2], we can factor the equation as
(x — V—=11)(z +V/—11) = 3.

Now, suppose that ¢ | (z — v/—11) and § | (z + v/—11) (which implies
that § | y). Then § | 2z and J | 24/—11 which means that ¢ | 2 because
otherwise, § | v/—11, meaning that 11 | z and 11 | y, which we can see is
not true by considering congruences mod 112. Then § = 1 or 2, since 2 has
no factorization in this ring. We will consider these cases separately.

Case 1. § = 1.

Then the two factors of 43 are coprime and we can write

(z+\/——11)=s<ﬁb2——\/——11>3,

where a,b € Z and a = b (mod 2). Since the units of Z[(1 4+ /—11)/2] are
+1, which are cubes, then we can bring the unit inside the brackets and
rewrite the above without ¢. We have

8(z +v~11) = (a + bv/—11)3 = a3 + 3ab®*v/—11 — 33ab® — 11b3V/—11
and so, comparing real and imaginary parts, we get
8z = a°—33ab® = a(a® — 33b?),
8 = 3a%b—11b® = b(3a® — 11?).
This implies that b | 8 and so we have 8 possibilities: b = +1, 42, +4, +8.
Substituting these back into the equations to find a,z, and y, and remem-

bering that @ = b (mod 2) and that a,z,y € Z will give all solutions to the
equation.
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Case 2. § = 2.
If 6 = 2, then y is even and x is odd. We can write y = 2y;, which gives

the equation
T+ /11 T —+-11 3
) 2 =2y,.

Since 2 divides the right-hand side of this equation, it must divide the

left-hand side, so
9 l (z + \/—11)
2

or

‘ (z —/ —11)
2 — .
2
However, since x is odd, 2 divides neither of the factors above. We conclude
that & # 2, and thus we found all the solutions to the equation in our

discussion of Case 1.

Exercise 2.5.4 Prove that Z[v/3] is Euclidean.

Solution. Given o, € Z[v3] we want to find v, € Z[v3] such that
o = By + 6, with N(§) < N(B). Put another way, we want to show that
N(a/B~7v) < 1. Let o/ =+ yV3,z,y € Q. Let v = u+ v/3, with
u,v € Z.

Now, N(a/B—7) = |(x —u)? - 3(y—v)?|. This will be maximized when
(x — u) is small and (y — v) is large. Choose for v and v the closest integers
to z and y, respectively. Then the minimum value for (z — u) is 0, while
the maximum value for (y — v) is 1/2. Then N(a/B8 — ) < |-3/4] < 1.
The conclusion follows.

Exercise 2.5.5 Prove that Z[/6] is Euclidean.

Solution. Assume that Z[/6] is not Euclidean. This means that there is
at least one z + yv/6 € Q(v6) such that there is no v = u + vv6 € Z[V6]
such that |(z — u)? — 6(y — v)?| < 1. Without loss, we can suppose that
0<z<1/2,and 0 <y <1/2. We assert that there exist such a pair (z, y)
such that

(—w)? > 1+6(y —v)?,

or
6y —v)2 > 1+ (z —u)?,
for every u,v € Z. In particular, we will use the following inequalities:
>1+6y° or(b) 6y2>1+42? (2.1)
2>146y% or (b) 62 >1+(1-2)% (2.2
>1+46y> or(b) 62 >1+(1+2)% (2.3)

either (a) T
either (a) (1 —
either (a) (1+
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If x = y = 0, then both first inequalities fail, so we can rule out this case.
Next, we look at the first two inequalities on the left. Since z2,(1—x)%2 <1
and 1+6y% > 1 and 7, y are not both 0, these two inequalities fail so (2.1 (b))
and (2.2 (b)) must be true. Now consider (2.3 (a)). If (1 + )2 > 1 + 6y?
and 6y% > 1+ (1 — x)? as we just showed, then

1+2)2>1+6y*>2+ (1-1x)°

which implies that 4z > 2 and since z < 1/2, we conclude that z = 1/2.
Substituting this into the previous inequalities, we get that

9 25 9
so 6y? = 2. Let y = /s with ged(r, s) = 1. We now have that 2472 = 5s2.

Since r 1 s, then 72 | 5, so r = 1. But then 24 = 5s2, a contradiction.
Therefore, (2.3 (b)) is true, which implies that

6y > 1+ (1+x)2>2.

However, since y < 1/2, 6y > 2 implies that 6 > 8, a contradiction. Then
neither (2.3 (a)) nor (2.3 (b)) are true, so Z[/6] must be Euclidean.

Exercise 2.5.6 Show that Z[(1 + +/—19)/2] is not Euclidean for the norm map.

Solution. If a ring R is Euclidean, then given any «,8 € R we can
find 6, such that @« = By + 6 with § = 0 or N(8) < N(B). Another
way of describing this condition is to say that given any 8 € R, we can
find a representative for each nonzero residue class of R/(5) such that the
representative has norm less than the norm of 3. We will try to find an
element of R = Z[(1 4+ +/—19)/2] for which this is not true.

Consider 8 = 2. N(2) = 4. We want to find all other elements of R
with norm strictly less than 4.

— 2 1 2
N(a—i—b\/ 19>:a + 195 <4,
2 4
= a’ + 196 < 16.

First note that if b > 0, there are no solutions to this inequality. For b = 0,
we can have a = 0,42, since a = b (mod 2). Thus, there are just three
elements with norm less than 4. However, there are more than three residue
classes of R/(2) (check this!). Therefore, the ring R = Z[(1 +/—19)/2] is

non-Euclidean with respect to the norm map.

Exercise 2.5.7 Prove that Z[/—10] is not a unique factorization domain.

Solution. Consider the elements 2++/—10,2—+/-10,2,7. Show that they
are all irreducible and are not associates. Then note that

(2 4+ v=10)(2 — V—=10) = 14,
2.7=14.
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Exercise 2.5.8 Show that there are only finitely many rings Z[vd] with d = 2
or 3 (mod 4) which are norm Euclidean.

Solution. If Z[/d] is Euclidean for the norm map, then for any 6 € Q(v/d),
we can find o € Z[v/d] such that

IN(d—a)| < 1.
Write 6 =7+ svVd, a=a+bVd, a,be Z, r,s € Q. Then
|(r —a)® —d(s - b)?| < 1.

In particular, take » = 0, s = t/d where t is an integer to be chosen later.

Then
£\ 2
2 — — —
a’ —d (b d)

so that |(bd —t)? — da?| < d. Since (bd — t)2 — da® = t?> (mod d), there are
integers z and z such that

<1

22 —de? =1 (mod d),

with |22 — dz?| < d.
In case d =3 (mod 4), we choose an odd integer ¢ such that

5d < t2 < 6d,

which we can do if d is sufficiently large. Then 22 —dx? = t? —5d or 2 — 6d.
Then one of the equations

22— 12 =d(z% - b5)

or
22— 12 = d(z? - 6)

is true. We consider this modulo 8. Then t? = 1 (mod 8) since t is odd.
Also, 22,22 =0,1, 0r 4 (mod 8) and d = 3 or 7 (mod 8). We are easily led
tot? — 22 =0,1, or 5 (mod 8). This means

d(z? —5)=5,4, or 1 (mod 8)

or
d(z* - 6)=6,5,2, or1 (mod 8).

All of these congruences are impossible. In case d = 2 (mod 4), we choose
t odd satisfying 2d < t? < 3d and proceed as above.

(The case d = 1 (mod 4) is more difficult and has been handled by
Heilbronn who was the first to show that there are only finitely many real
quadratic fields which are norm-Euclidean.)

A more general and analogous result for imaginary quadratic fields will
be proved in Exercise 4.5.21 in Chapter 4.



194 CHAPTER 2. EUCLIDEAN RINGS

Exercise 2.5.9 Find all integer solutions of y? = z® + 1.

Solution. We will determine all integer solutions of y?> — 1 = z%. From
(y—1)(y+1) = 23, we see that if (y— 1,y +1) = 1, then y — 1 = w3,
y+ 1 =13 (say). Thus,

2 =03 —u® = (v—u)(v? +vu+u?)
from which we deduce that
v—u==1, v +ou+u’==2

or
v—u= %2, v2 +vu+u? = =+1.

This gives rise to four cases. The only case that leads to a solution is
v —u =2 and v? + vu + u? = 1. This yields the solution (z,y) = (—1,0).
Now suppose (y — 1,y + 1) = 2. This gives rise to two cases

y—1=2u y+1=403 and y—1=4u® y+1=25

In the first case, we are led to u® + 1 = 2v® and in the second case, we
get 2u3 +1 = v3. As —1 is a cube, both equations are covered if we can
determine all integer solutions of

x3 43 =223,

We will use a “descent” argument to determine all coprime solutions.

To this end, we consider the ring of Eisenstein integers Z[p| where p? +
p+1=0. We recall a few facts about this ring. It is well-known that this
is a Buclidean domain for the norm map given by

N(a+bp) = a® + ab+ b2

Its unit group is {£1,+p, £p?}. It is also easily checked that 1, p, p? repre-
sent all the distinct coprime residue classes modulo 2Z[p]. We see that the
cube of every coprime residue class is 1 (modulo 2). If  is a unit = 1 (mod
2), then v = +1. Now we claim that any coprime solution (z,y, z) of

23+ y® = 2u?

in Z[p| satisfies N (zyz) = 1. Suppose not. Let (z,y, z) be such that N (zyz)
is minimal and > 2. We may let

A=z+y, B=pz+p’y, C=p’z+py

so that
ABC =2uz®, A+B+C=0.
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Let d = (4, B,C) so that the above equation becomes
ABC 3
B 2u ( z ) .

ddd “"\d
Now 2 is an irreducible element in Z[p] and A/d, B/d,C/d are mutually
coprime (as their sum is zero) so it can divide only one of them, say C/d
without any loss of generality. Thus, we may write

AJd =wa®, B/d=wup®, C/d=—2uz?,

with uq,us,us units. Also, oSy # 0 for otherwise, 2 = 0 and z = Ly,
which are not coprime solutions. Hence,

ure® +ua® = 2uzv?,
and dividing by the unit u; gives the equation
o® + /B = 2ug®

for some units v’ and uy. Observe that (8,2) = 1 for otherwise, 2|« and 2|y
which implies that «, 3,7 are not coprime, a contradiction. Reducing the
above equation mod 2 shows that v’ is a cube mod 2, and by our remark
above v’ must be £1. Thus ¢’ is a cube and we have

o + 8% = 2ur®.
Notice that by our choice of (z,y, 2)
N(zy2)® < N(ap)?® = N(ABC/d®) = N(2 /N (d)?

which means that N(zyd)® < 1. Thus, z,y,d are units. Hence, 23 = +1
and y3 = +1 and z is also a unit. Thus, N(zyz) = 1 contrary to our choice.
This proves our claim.

Therefore, the only solution for u? + 1 = 2% is u® = £1. This leads
to the solutions (z,y) = (2,3), (1,0) for the equation ¥ — 1 = z3. In the
other case of 2u® + 1 = v3, we have v = %1 which leads to (0,1), (2, —3).

We get a final set of five integer solutions for y? — 1 = z3.

Exercise 2.5.10 Let x1,...,zn be indeterminates. Evaluate the determinant of
the n x n matrix whose (4, j)-th entry is ]~ . (This is called the Vandermonde
determinant.)

Solution. Let V(zy, ..., z,) denote the value of the determinant. If we fix
Zg,..., Ty, Wwe may view the determinant as a polynomial in z, of degree
n — 1. Since the determinant is zero if 1 = x; for i > 2, the roots of the
polynomial are z3, ..., x,. It is easy to see that the leading coeflicient is

(—1)"_1V(z2, ey )
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so that the determinant is

n
( )n 1V 1‘2,... H 1‘1 —1‘]
j=2

By induction, we see that

V(@1 2n) = (-1)3) T (@i — 2y).

j>t



Chapter 3

Algebraic Numbers and
Integers

3.1 Basic Concepts
Exercise 3.1.2 Show that if r € QQ is an algebraic integer, then r € Z.

Solution. Let r = ¢/d, (¢,d) = 1, be an algebraic integer. Then r is the
root of a monic polynomial in Z[z], say f(z) = 2" + bp_12™ "1 + -+ + bo.
So
c\ "™ c\n—1
(%Y 4 (_> a1 by =
f(’f‘) (d) +0n—1 d + + 0o 0
& " +by_1c"ld 4+ bpd™ = 0.

This implies that d | ¢”, which is true only when d = £1. Sor = £c € Z.

Exercise 3.1.3 Show that if 4 | (d + 1), then

~1++/—d
2

is an algebraic integer.
Solution. Consider the monic polynomial

d
z2+z+%1eZ[z]

when 4 | d + 1. The roots of this polynomial, which by definition are

algebraic integers, are
dt1
RLERYA Bk b o (U

T = =

2 2

197
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Exercise 3.1.6 Find the minimal polynomial of \/n where n is a squarefree
integer.

Solution. If n = 1, the mininal polynomial is z — 1. If n # 1, then

x? — n is irreducible and has \/n as a root. Thus, the minimal polynomial

is either linear or quadratic. If it is linear, we obtain that /n is rational, a
contradiction. Thus, 22 — n is the minimal polynomial of v/n when n # 1.

Exercise 3.1.7 Find the minimal polynomial of v/2/3.

Solution. It is £2 — 2/9 since v/2/3 is a root, and v/2/3 is not rational.

3.2 Liouville’s Theorem and Generalizations
Exercise 3.2.4 Show that Y., 273" is transcendental.

Solution. Suppose that

oo

1
01:22537
ne==l

is algebraic. We proceed as in Example 3.2.2 and consider the partial sum:
k
3 L P
3n - )
n=1 2 Ik

with g = 23", As before,

a— Pk _ §°° _1_ < _S_
- 3n | — g3k+1°
%k i1 2 2

But since « is algebraic, by Roth’s theorem we have the inequality

S cla
3 2 g+2:
a9

But again we can choose k to be as large as we want, and so for ¢ sufficiently
small, this inequality does not hold. Thus, « is transcendental.

Exercise 3.2.5 Show that, in fact, 5°°°  27(") ig transcendental when
i 4 n=1

lim flnt1)

nooo  f(n) > 2.

Solution. Suppose

=1
a:nz::lzf(n)
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is algebraic. Following the same argument as above, we get the inequalities

S Pk c(a)
S || da)
qk+1 dk qQ

where g, = 2/, Now, for k sufficiently large,

k+1
% >2+6 = flk+1)>(2+06)f(k).
So, for large k,
g1 _ 2D s ()
—_— = > 2 = qk
" 27 (k)

which implies that gxy1 > qi”. By Roth’s theorem, we can deduce that

c(a) S
2+¢€ S ’
. qk+1
c(a) S
= — S -
qﬁ-‘re ‘112c+5 )
S
] £
= < ——q;.
9 = c(a) 9

As g — 00, this implies § < ¢, a contradiction for ¢ < §/2 (say).

3.3 Algebraic Number Fields

Exercise 3.3.2 Let o be an algebraic number and let p(z) be its minimal poly-
nomial. Show that p(z) has no repeated roots.

Solution. Suppose « is a repeated root of p(z). Then we can write

2

p(z) = (z - &)*g(z),

for some polynomial g(z) € C[z], and

P(z) =2(z — @)g(2) + (z — @)/ (z).
So p/(a) = 0 and from Theorem 3.1.4, p(z) | p'(z). But deg(p’) < deg(p),
and we have a contradiction. If 3 is a repeated root of p(z), then by the
following exercise, 3 has the same minimal polynomial and repeating the
above argument with 3 leads to a contradiction. Thus p has no repeated
roots.

Exercise 3.3.4 Let a, 3 be algebraic numbers such that 3 is conjugate to a.
Show that 3 and « have the same minimal polynomial.
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Solution. Let p(z) be the minimal polynomial of o, and let g(z) be the
minimal polynomial of 3. By the definition of conjugate roots, 5 is a
common root of p(z) and ¢(z).

Using the division algorithm, we can write p(z) = a(z)q(z) + r(z) for
some a(z), r(z) € Q[z] and either » = 0 or deg(r) < deg(q). But

p(B) = a(B)q(B) +7(B) =0

and ¢(3) = 0 so 7(3) must also be 0. Since q is the minimal polynomial for
B, 7 = 0. Thus p(z) = a(z)g(z), but, by Theorem 3.1.4, p is irreducible,
and both p(z) and ¢(z) are monic, so p(x) = q(z).

Exercise 3.3.6 Let K = () be of degree n over Q. Let wi,... ,wn be a basis
of K as a vector space over Q. Show that the matrix {1 = (w<] )} is invertible.

Solution. ,
w1 wg ) oL wi")
) (n)
Q _ wo w2 e w2
wn W o
Since 0 is an algebraic number of degree n, o, = 1,02 =0,... ,ap, = "}

also forms a basis for K over Q. Let A = (agj )). Then,

9 J1¢)) e g™
det A =
en'—l 0(2)'n—1 L. e(n)'n—l

which is the Vandermonde determinant. So A is invertible. Further,

WP =Y (o)

bzka](gj)a

Il

- 109>

>
Il

1

where 1 <i,j <n, and b;;, € Q.

Since the set {w1,... ,wn}, as well as the set {ay,...,a,}, are linearly
independent sets, it follows that both the rows and columns of the matrix
B = (by) are linearly independent. Hence B is invertible and )} = BA
and from elementary linear algebra, det 2 = det Bdet A # 0. Thus Q is
invertible.

Exercise 3.3.7 Let a be an algebraic number. Show that there exists m € Z
such that ma is an algebraic integer.
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Solution. Let p(z) € Q[z] be the minimal polynomial of a. So,

1

pla)=a" +ap—10" " + - +aja+ag=0.

Choose m € Z so that mag, may, ... ,ma,_1 are all integers. Now,
mta”™ + m"ap_10" 1+ +maja + mtag = 0,
& (ma)"® + man_1(ma)” ! +--- + m" la;(ma) + m"ag = 0.

Let g(z) = 2" + man_12"~ ! +-- - +m" " Layz + m"ay, then g(z) is a monic
polynomial in Z[z] and g(ma) = 0. Thus ma is an algebraic integer.

Exercise 3.3.8 Show that Z[z] is not (a) Euclidean or (b) a PID.

Solution. (a) Consider the elements 2,z € Z[z]. Clearly there is no way
to write z = a(z)2 + r(z) where both the conditions (i) a(z),r(z) € Z[z]
and (ii) deg(r) < deg(2) = 0 or r = 0 are satisfied.

(b) Again consider the two polynomials 2,z € Z[z]. Clearly (z) Z (2)
and (2) Z (z). Now, if (z,2) = («) for some a € Z[z], then « | 2 and « | z.
But if o | 2, then @ € Z, so @ = £1 or @ = +2. However, +1 ¢ (z,2)
and £2 tz. So the ideal generated by z and 2 is not generated by a single
element in Z[z]. Z[z] is not a PID.

Exercise 3.3.11 Let f(z) = 2" + an_12""* + - 4+ @12 + a9, and assume that
for p prime p | a; for 0 < i < k and p® { ao. Show that f(z) has an irreducible
factor of degree at least k. (The case k = n is referred to as Eisenstein’s criterion
for irreducibility.)

Solution. We will prove this by induction on n, the degree of f(z). The
case when n = 1 is trivial, so let us assume that the above statement is
true for any polynomial of degree less than n.

If f(z) is irreducible, there is nothing to prove, so assume that f(z) is
not irreducible. Then we can write

fl@) = g(@)h(=z)
= (bo+biz+ - +bx")(co+ 17 + -+ + cext).

Since p | ag and p? { ap, and ag = bycy, we deduce p | by or p | ¢y but not
both.

Suppose, without loss of generality, that p | by. We next consider a; =
bocy + byco. Since p | a; and p | by, but p 1 ¢o, then p | b;. Continuing in
this fashion, we get that p | b; for 0 <7 < k. If r < k, then we can factor
out a p from each of the coefficients in g(z), but this is absurd since then
p would divide every coefficient in f(z), and f is monic. Therefore k < r,
p|bi, 0 <i<k, p?tbo. Also b.c; =1 implies that g(z) or —g(z) is monic.
In any event, we have another polynomial which satisfies the conditions set
out above but which has degree less than n. Thus, by induction, g(z) has
an irreducible factor of degree greater than or equal to k, and this factor is
also an irreducible factor of f(z).
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Exercise 3.3.12 Show that f(z) = 2° + z* + 32 + 92 + 3 is irreducible over
Q.

Solution. By applying Exercise 3.3.11 to f(z) with p = 3, we deduce
that if f(z) is not irreducible, then we can factor it into the product of
a polynomial of degree 4 and a polynomial of degree 1, and so f(z) has
a rational root. However, we showed in Exercise 3.1.2 that if r € Q is
an algebraic integer, then r» € Z. Thus, f(z) must have an integral root,
and this root must divide the constant term which is 3. The only choices
are then +1,+3, and it is easy to check that these are not roots of the
polynomial in question.
We conclude that f(z) is irreducible since it has no rational root.

3.4 Supplementary Problems

Exercise 3.4.1 Show that
= 1
> o
n=0 a
is transcendental for a € Z, a > 2.
Solution. Suppose it is algebraic, and call the sum «. Look at the partial

sum
k

1 p
Ak = Z P
n=0
with g = a*'. Then
=1
|Ot - Otk| = Z —al
n=k+1
1
alk+1)! M,

where

1 1 )2
M=1+am+<am) e

an infinite geometric series with a finite sum. Thus,

oo

1
2

n=k+1

< M
-— k .
qk+1

If « is algebraic of degree n, then Liouville’s theorem tells us that we can

find a constant ¢() such that

L
dk

N ’ N c(a)
— > | > 7
gt 0

However, we can choose k as large as we wish to obtain a contradiction.
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Exercise 3.4.2 Show that
1
> &
n=1

is transcendental for a € Z,a > 2.

Solution. Suppose that

with g;, = a3°. We have

=1
2 &

n=k+1

=~ PETIE)
a3**

where S =1+ 1/a+ 1/a® + --- . Then by Roth’s theorem,
S _ cla,e)
- > -
A

]

But, we can choose k to be as large as we want to produce a contradiction.

Exercise 3.4.3 Show that

=
g af(")

is transcendental when

. fin+1)
lim =———— > 2,
nooo  f(n)
Solution. Suppose that
|
a= Z af ™
n=1

is algebraic. Following the same argument as in the previous exercise, we

get
. o)

iy 2+E b
'

Pk

——S > la—
9k

Qe+1

where g, = a/(®). For k sufficiently large,

flk+1)

o) > 249,



204 CHAPTER 3. ALGEBRAIC NUMBERS AND INTEGERS

and so -
Qe+1 af (kD) S (SR _ (148)
2Erl =gq, .
o of (B
This implies that gx4+, > qi‘*“s. By Roth’s theorem, we can deduce that
c(a S (o S
g+2: < = g+2: < =
q; Qk+1 q; 9%

S
= qi < C—Qi

(@)

As g — oo, we find § < ¢, a contradiction for sufficiently small .

Exercise 3.4.4 Prove that f(z) = 2% + 7x® — 122 + 6z + 2 is irreducible over
Q.

Solution. By Exercise 3.3.11, since 2 | a; for 0 < 7 < 5 then f(z) has
a factor of degree at least 5. This means that the polynomial is either
irreducible or it has a rational root. We showed earlier that if a polynomial
in Z[z] has a rational root, then the root is actually an integer. We also
know that any roots of a polynomial will divide its constant term, which in
this case is 2. It suffices to check that +1,£2, are not roots to deduce that
f(z) is irreducible.

Exercise 3.4.5 Using Thue’s theorem, show that f(z,y) = x®+7x’y — 1223y +
62y® + 84° = m has only a finite number of solutions for m € Z*.

Solution. Use the previous exercise to prove that the polynomial is irre-
ducible. The result follows from Thue’s theorem and Example 3.2.3.

Exercise 3.4.6 Let (» be a primitive mth root of unity. Show that
I G-&d=n""'m™

0<i,y<m~1
177
Solution. Since
m—1
T -1= H(z—(ﬁn),
i=0

we see that the constant term is
m—1
o™ ] ¢.=-1
1=0

Differentiating z™ — 1 above via the product rule, and setting = = (., we
see that

m—1
m¢im = [ (& - ¢
2

Taking the product over j gives the result.
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Exercise 3.4.7 Let .
¢m@) = [[ (==¢n)

1<4<m
(i,m)=1

denote the mth cyclotomic polynomial. Prove that

"~ 1= H da(z).

d|m

Solution. Every mth root of unity is a primitive dth root of unity for some
d | m. Conversely, every dth root of unity is also an mth root of unity for
d | m. The result is now immediate.

Exercise 3.4.8 Show that ¢m(z) € Z[z].

Solution. We induct on m. For m = 1, this is clear. Suppose we have
proved it true for ¢, (z) with » < m. Then setting

v(@) = ] dala),
dlm
d<m

we have by induction v(z) € Z[z]. Since v(z) is monic, and v(z) | (z™ — 1),
we find by long division that (z™ — 1)/v(z) = én(z) € Z[z].

Exercise 3.4.9 Show that ¢.,,(z) is irreducible in Q[z] for every m > 1.

Solution. Let f(z) be the minimal polynomial of {,, and suppose ¢, (z) =
f(x)g(z) with f(z),9(z) € Q[z]. By Gauss’ lemma (see Theorem 2.1.9) we
may suppose that f(z),g(z) € Z[z]. Let p be coprime to m. Then (%, is
again a primitive mth root of unity. Thus

f(Gh)g(Ghn) =0.

Suppose f(Cf,) # 0. Then g(¢f,) = 0. Since g(zf) = g(z)? (mod p) we
deduce that g(z) and f(z) have a common root in F,, a contradiction since
z™ — 1 has no multiple roots in F,. Thus, f(¢,) = 0 for any (p,m) = 1.

It follows that f(¢,) = O for any (i,m) = 1. Therefore deg(f) = ¢(m) =
deg(¢m)-

Exercise 3.4.10 Let I be a subset of the positive integers < m which are coprime
to m. Set

f@) =[] - ¢

i€l
Suppose that f(¢x) = 0and f(¢k,) # 0 for some prime p. Show that p | m. (This
observation gives an alternative proof for the irreducibility of ¢m(z).)
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Solution. Let K = Q((,,). Then f(¢?,) divides
IT «-¢)

0<i<m—1

in the ring Ox. Hence Ng,o(f(¢?,)) divides m by Exercise 3.4.6 above.
Since
f(z)? = f(z) € pZz],

we see upon setting z = (,,, that p| f(¢%,) and hence p | m, as desired.

Exercise 3.4.11 Consider the equation z° +3z%y+xy® +¢* = m. Using Thue’s
theorem, deduce that there are only finitely many integral solutions to this equa-
tion.

Solution. To use Thue’s theorem, we must show that f(z,y) = 2 +
322 + zy? + 32 is irreducible. If this polynomial is reducible, then so is
the polynomial f(x,1) = x3 + 322 4+ = 4+ 1. However, since f(z,1) has
degree 3, then if it reduces it will have a factor of degree 1, a rational root.
We have already shown that all rational roots of a monic polynomial in
Z|z] are actually integers, and all roots must divide the constant term of
a polynomial. The only possibilities for such a root are x = £1. A quick
calculation shows that neither of these two are in fact a root of f(z, 1), and
80 f(z,1) is irreducible, implying that f(x,y) is irreducible. We can now
apply the results of Example 3.2.3.

Exercise 3.4.12 Assume that n is an odd integer, n > 3. Show that 2" +y" =m
has only finitely many integral solutions.

Solution. If (zo, yo) is a solution to z™ + y™ = m, then (z¢ + yo) | m, since
"+ yn — (1‘ + y)(zn—l — "2 4ot yn—l).

Suppose |z| > m. Then the distance between z and the nearest nth power
will be greater than m, and x cannot satisfy the above equation. We then
have a bound on the size of z along with the constraint that z+y | m. There
can only be a finite number of pairs which satisfy these two constraints.

Exercise 3.4.13 Let (,» denote a primitive mth root of unity. Show that Q(¢m)
is normal over Q.

Solution. ¢, is a root of the mth cyclotomic polynomial, which we
have shown to be irreducible. Thus, the conjugate fields are Q(¢7,) where
(4,m) = 1 and these are identical with Q(¢,).

Exercise 3.4.14 Let a be squarefree and greater than 1, and let p be prime.
Show that the normal closure of Q(a'/?) is Q(a'/?,(,).

Solution. The polynomial zP — a is irreducible (by Eisenstein’s criterion).
The conjugates of al/? are Cgal/p. If K is the normal closure of Q(a!/?), it
must contain all the pth roots of unity. The result is now immediate.
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Integral Bases

4.1 The Norm and the Trace

Exercise 4.1.2 Let K = Q(¢). Show that ¢ € Ok and verify that Trx(¢) and
Nk (i) are integers.

Solution. We know that i is a root of the irreducible polynomial z2 + 1,
and so its conjugates are ¢, —i.
Thus, Trg(i) =i —i=0€ Z and Ng (i) = i(—i) =1 € Z.

Exercise 4.1.3 Determine the algebraic integers of K = Q(+/—5).

Solution. We first note that 1,+/—5 form a Q-basis for K. Thus any
a € K looks like a = ry + roy/—5 with 71,72 € Q. Since [K : Q] = 2, we
can deduce that the conjugates of o are r; +72+/—b and 7, — r24/—5. Then
Trg(a) = 2r; and

NK(a) = (’I‘l +T2\/—_5)(T1—T2\/—_5)

2 2
= r]{+9r;.

By Lemma 4.1.1, if @ € O, then the trace and norm are integers. Also, «
is a root of the monic polynomial 2 —2r;z + 7% + 5r2 which is in Z[z] when
the trace and norm are integers. We conclude that for o = r; + ro/=5 to
be in O, it is necessary and sufficient that 2r; and r? + 5r2 be integers.
This implies that 1 has a denominator at most 2, which forces the same for
2. Then by setting r; = g1/2 and ry = go/2 we must have (g2 +592)/4 € Z
or, equivalently, g2 + 5g2 = 0 (mod 4). Thus, as all squares are congruent
to 0 or 1 (mod 4), we conclude that g; and g, are themselves even, and
thus 71,79 € Z. We conclude then that Ox = Z + Z+/—5.

Exercise 4.1.5 Show that the definition of nondegeneracy above is independent
of the choice of basis.

207
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Solution. If fi,..., f, is another basis and A = (B(f;, f;)), then
A=PTBP,

where P is the change of basis matrix from ej,... e, to f1,..., fn. Since

P is nonsingular, det A # 0 if and only if det B # 0.

4.2 Existence of an Integral Basis

Exercise 4.2.1 Show that Jwi,ws3,... ,w, € K such that

Ok CZwi + Zwy + -+ + Zwy,.

Solution. Let wi,ws,...,w, be a Q-basis for K, and recall from Ex-
ercise 3.3.7 that for any o € K there is a nonzero integer m such that
ma € Og. Thus we can assume that wi,ws, ... ,w, are in Og. Now, as

the bilinear pairing B(z,y) defined previously was nondegenerate, we can
find a dual basis wi,ws,...,w; satisfying B(wi,w}) = d;;. If we write
Wy = > cpjwy, we have

6ij = TrK(wiwj*)
= Trg(w; Z CkjWE)
= ) oxy Trre (wiwn)-

If we introduce now the matrices, C = (¢;;),Q = (wfj)), then the above

becomes
I, =Q0TC = c =0T

We conclude that C is nonsingular and that wi*,ws*,... ,w,* forms a Q-
basis for K.
Let a be an arbitrary element of Ox. We write

n
o= Zajw;‘ with a; € Q
=1

50

n

. .

awizg ajw;w; Vi,
=1

and
TrK(awi) = Zaj ’I‘rK(wiw;‘) = Qa; Vi.

But aw; € Ok implies the left-hand side above is in Z, and thus a; € Z for
all 7. It follows then that Ox C Zw}] + Zws + - - - + Zwy,.

Exercise 4.2.3 Show that Ok has an integral basis.
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Solution. We apply the results of Theorem 4.2.2 with M = Zw] + Zw} +
-+ Zw} and N = Og. It follows directly from the theorem that there
exist wi,wa,. .. ,wy € O such that O = Zw; + Zws + - - + Zwy,.

Exercise 4.2.4 Show that det(Tr(w;w;)) is independent of the choice of integral
basis.

Solution. Let wi,ws,...,w, and 61,602,...,0, be two distinct integral
bases for an algebraic number field K. We can write

n
W; = E cijOj,
j=1
n
91' = E dijwj,
Jj=1

for all i, where ¢;; and d;; are all integers. Then (c;;) and (c;;)~* both have
entries in Z. So det(c;;), det(c;;)~! € Z, meaning that det(c;;) = £1.

Then
((50) (5

Z CilCjm Tr (919m) .
Im

Tr(wiw;)

i

i

Now if we define Q = (wi(j)),C = (¢;5),0 = (91(7)), then we can write
the above as the matrix equation Q7 = C(67O)CT from which it follows
that the determinants of (2 and © are equal, up to sign. Hence, det(070) =
det (QT Q).

Exercise 4.2.5 Show that the discriminant is well-defined. In other words, show
that given wi,wa,... ,wn and 61,6a,... ,0,, two integral bases for K, we get the
same discriminant for K.

Solution. Just as above, we have QTQ = C(6T0)CT for some matrix C
with determinant 1. Then dx = (det 2)? = (det ©)?(det C)% = (det ©)2.
This proves that the discriminant does not depend upon the choice of in-
tegral basis.

Exercise 4.2.6 Show that

drg(Lya,...,a" 1) = H (oi(a) — aj(a))z.

i>j

We denote dgg(l,a,. .. ,a" 1) by di/gla).
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Solution. First we note that o;(a) takes a to its ith conjugate, a(). Define
the matrix = (0;(a’)). Then it is easy to see that

1 a - a1

1 am ... gmn-

which is a Vandermonde matrix, and so

det Q) = H (’ (J) H (ai(a) — aj(a)).

i>7 i>]
It follows that
dxjola) = [det(os(a?))]”
= H (ai(a) — aj(a))z.
i<j

Exercise 4.2.7 Suppose that u; = 37| aijv; with a;; € Q,v; € K. Show that
2
dK/Q(Ul,Uz, R ,un) = (det(aij)) dK/Q(Ul,Uz, R ,Un).

Solution. By definition, dK/Q(ul,uz, Ce o Ug) = [det(ai(uj))]z.

k=1 k=1
If we define the matrices U = (0;(u;)), 4 = (ai;),V = (0i(v;)), then it is
clear that U = V AT and so (det U)? = ( VAT ) , and we get the desired
result:
dijg(u, Uz, .. ,un) = (det(ayy))*dr/q(v1,v2, - -, vp).
Exercise 4.2.8 Let a1,a2,... ,an € Ok be linearly independent over Q. Let
N =2Za1+Zaz +- - + Zan, and m = [Ok : N]. Prove that
diglat,az,. .. ,an) = m*dk.
Solution. Let aj,as,...,a, be an integral basis of Ox. Theorem 4.2.2

says that N has a basis (1, 02, ..., B, such that §; = 3°.,pije;. Then
from Exercise 4.2.7, N

2
dK/Q(ﬂlwn ,/Bn) = (det(pij)) dK/Q(al,... ,an)
= msz.
Reasoning as in Exercise 4.2.5, we deduce
dK/Q(ﬂlw .. ,/Bn) = dK/Q(al, . ,an),

which proves the result.
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4.3 Examples
Exercise 4.3.2 Let m € Z, a € Og. Prove that dx,g(a + m) = dg/q(a).

Solution. By definition, dx/q(a) = [];.,;(e® — a¥))2. We note that the
ith conjugate of a + m is simply a® + m, and so

dgjgla+m) = H(a(i)—i—m— (a(j)—km))2
i<
- H (o — a(j))z
i<y
= dK/Q(a)7

as desired.

Exercise 4.3.3 Let a be an algebraic integer, and 1et f (m) be the minimal poly-
nomia] of a. If f has degree n, show that dg g(a) 1) H e Gy,

Solution. Let f(z) be the minimal polynomial of &. Then if o), ... a(™
are the conjugates of @, f(z) = [[7_,(z — a®). Then

n

flz
Z x—a(k)

k:l
and A A
(@) = H(a(Z) — of®)),
ki
Therefore

—
“h
£

[
1=

H (k)
1 k#4

i=1 7

MO o) ]
k

- <—1><’2‘>dx/@<a>.

A

Exercise 4.3.5 If D = 1 (mod 4), show that every integer of Q(v/D) can be
written as (a + bv/D)/2 where a = b (mod 2).

Solution. By Example 4.3.4, an integral basis is given by 1, (1 + v/D)/2.
Thus every integer is of the form

c+d<1+\/1_)> _(@e+d)+dvD _a+bvD

2 2 - 2

Then we see that a = 2c+ d,b = d satisfies a = b (mod 2).
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Conversely, if a = b (mod 2), writing d = b and a = 2¢ + d for some c,

we find
a+bvVD (1 + \/D)
—  —etd

2
is an integer of Q(v/D).

Exercise 4.3.7 Let ¢ be any primitive pth root of unity, and K = Q(¢). Show
that 1,¢,...,¢?~? form an integral basis of K.

Solution. The minimal polynomial of ¢ is the pth cyclotomic polynomial,
P -1
z—1

We want to show that this is irreducible. Consider instead the polynomial
F(z) = ®(z +1). Clearly F will be irreducible over Q if and only if & is.

rz+1)P -1 _ _ _
F(x)z%:x” '+ paP 2+(§)x” 3+~--+(pf2)x+p.

=1+2%+ - +a2P L

®(z) =

This is Eisensteinian with respect to p and so F(z) (and thus ®(x)) is
irreducible. The conjugates of ¢ are ¢,(%,... ,(P~1. We can deduce that

[K:Q=p-1
Now,
oy Ma 1) - (@ - 1)
&'(z) = @- 12
_ p.’Ep_l—(l—}—.’E—}—"'—}—.’Ep_l)
B z—1 ’
and so -k
1k e
o (C ) - Ck -1
Using Exercise 4.3.3, we can compute
p—1 —k
dK/Q(C) = * H CI;C_ 1
k=1
1
= 4pPt—
[oi (¢ - 1)
1
= 4pp!
[Ti(1—¢v)
= +p?

since [[PZ1(1 — ¢F) = ®(1) = p. We know that dg o(¢) = pP~2 = m2dg
and also that p { m because F, the minimal polynomial for ¢ — 1, is p-
Eisensteinian, and dg;q(¢ — 1) = dk;g(¢). Then m must be 1, meaning
that Ox = Z[1,¢,... ,¢P72.
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4.4 Ideals in Ox
Exercise 4.4.1 Let a be a nonzero ideal of Ok. Show that anZ # {0}.

Solution. Let o be a nonzero algebraic integer in a satisfying the minimal
polynomial 2" + a._12""! + --- + ag = 0 with a; € Z Vi and ag not zero.
Then ag = —(a” + - - + a1a). The left-hand side of this equation is in Z,
while the right-hand side is in a.

Exercise 4.4.2 Show that a has an integral basis.

Solution. Let a be an ideal of Og, and let wy,ws,... ,w, be an integral
basis for Ox. Note that for any w; in Ok, agw; = —(0™ +- - +a1@)w; € a.
Therefore a has finite index in O and a C O = Zwy + Zwg + - - - + Ziwy
has maximal rank. Then since a is a submodule of Ox, by Theorem 4.2.2
there exists an integral basis for a.

Exercise 4.4.3 Show that if a is a nonzero ideal in Ok, then a has finite index
in Ok.

Solution. Surely, if O = Zw1 + Zws + - - - + Zwy, then by the preceding
two exercises we can pick a rational integer a such that

a0k = aZwy + aZws + - - - + aZw, C a C Ok.

But a0 obviously has index a™ in O. Thus, the index of a in Qg must
be finite.

Exercise 4.4.4 Show that every nonzero prime ideal in O g contains exactly one
integer prime.

Solution. If @ is a prime ideal of Ok, then certainly it contains an integer,
from Exercise 4.4.1. By the definition of a prime ideal, if ab € g, either
a € porb € p. So p must contain some rational prime. Now, if p
contained two distinct rational primes p, ¢, say, then it would necessarily
contain their greatest common denominator which is 1. But this contradicts
the assumption of nontriviality. So every prime ideal of O contains exactly
one integer prime.

Exercise 4.4.5 Let a be an integral ideal with basis a1,... ,a,. Show that
Het(a{”))” = (Na)’dx.

Solution. Since a is a submodule of index Na in O, this is immediate
from Exercise 4.2.8.
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4.5 Supplementary Problems
Exercise 4.5.1 Let K be an algebraic number field. Show that dx € Z.
Solution. By definition

dg = det(u.)lgj))2 = det (Tr(wiw;)),

where wi,...,wy is an integral basis of O. Since Tr(w;w;) € Z, the
determinant is an integer.

Exercise 4.5.2 Let K/Q be an algebraic number field of degree n. Show that
dk =0or 1 (mod 4). This is known as Stickelberger’s criterion.

Solution. Let wy,... ,w, be an integral basis of Ox. By definition,
dg = det(ai(wj))z,
where 071,... ,0, are the distinct embeddings of K into Q. Now write
det(0i(w;)) = P — N,

where P is the contribution arising from the even permutations and N the
odd permutations in the definition of the determinant. Then

dg = (P —N)2=(P+ N)? - 4PN.

Since 0;(P + N) = P+ N, and ¢;(PN) = PN we see that P+ N and
PN are integers. Reducing mod 4 gives the result.

Exercise 4.5.3 Let f(z) = z™ + 12"+ - + a17 + ap with a; € Z be
the minimal polynomial of §. Let K = Q(#). If for each prime p such that
p® | di/g(60) we have f(z) Eisensteinian with respect to p, show that Ox = Z[6].

Solution. By Example 4.3.1, the index of 8 is not divisible by p for any
prime p satisfying p? | di/q(0). By Exercise 4.2.8,

dK/Q(O) = msz,
where m = [Og : Z[f]]. Hence m = 1.

Exercise 4.5.4 If the minimal polynomial of & is f(z) = 2™ + az + b, show that
for K = Q(a),

dK/Q(a) = (—1)(3) (’I’Lnbn_1 + a"(l — 'I’L)n_l) .
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Solution. By Exercise 4.3.3,

drcja(@) = (~DE T 7'(a?),

i=1
where oV, ..., &™) are the conjugates of a. Now
fl(z) = na"'+a

1 n
= ;(m; + ax)

so that ‘ '
(—n(aa® + b) + aa®)
(i) ’

f(a) =

Hence

H fa®) = ()™t H(a(l ~ n)a) — nb)

11 i=1
= bla"(1-n)"f (a(_lnf_n))

Exercise 4.5.5 Determine an integral basis for K = Q(8) where 6% +20+1 = 0.

Solution. By applying the previous exercise, the discriminant of 4 is —59,
which is squarefree. Therefore O = Z[6).

Exercise 4.5.6 (Dedekind) Let K = Q(#) where §° — §* — 20 — 8 = 0.
(a) Show that f(z) = 2% — 2° — 2z — 8 is irreducible over Q.

(b) Consider 3 = (6% + 6)/2. Show that §° — 33> — 103 — 8 = 0. Hence 3 is
integral.

(c) Show that dk,q(8) = —4(503), and dk/q(1,6,3) = —503. Deduce that 1,60,
is a Z-basis of Ok.

(d) Show that every integer = of K has an even discriminant.

(e) Deduce that Ok has no integral basis of the form Z[a].

Solution. Note that if (a) is not true, then f has a linear factor and by

the rational root theorem, this factor must be of the form x —a where a | 8.

A systematic check rules out this possibility. (b) can be checked directly.
(c) This is easy to deduce from the formula

as a simple computation shows.
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For (d), write z = A+ B8 + C8, A, B, C € Z. Since

62 = 6420433,
6?2 = 28-6,
63 = 206+4,

we find
2% = (a®+6C*+8BC) +6(2C? — B2+ 24B) + 3(2B*+3C? +2AC +4BC)

so that
dio(1,z,2%) = —503(BC)*(3C + B)?> (mod 2),

which is an even number in all cases.
By (d), di/g(«) is even and hence is not equal to —503, which proves

(e)-
Exercise 4.5.7 Let m = p®, with p prime and K = Q((m). Show that
(1= ¢m)*™ = pOk.

Solution. First note that
™ -1 b
zm/p — 1 = H (',Ij - m)

so that taking the limit as = goes to 1 of both sides gives

p = J] a-¢n
1<b<m
(bym)=1
1-¢
— _ o(m) - >m
1<b<m

(b,m)=1
This latter quantity is a unit since

for any a satisfying ab =1 (mod m).

Exercise 4.5.8 Let m = p®, with p prime, and K = Q({m). Show that

_1)W(M)/2mv(m)
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Solution. We need to compute the Vandermonde determinant given by

CISCEN | I (< eS]
1<a,b<m
(a,m)=1
(b,m)=1
a#b

Let
0= T Gm—ch)

1<b<m
(b,m)=1

Clearly 8 = ¢),,(¢m) and Ng/g(6) is the discriminant we seek. Since

™ —1
¢m(x) = zm/p — 1
we find .
m¢m~
B (m) = —om
m T —1
and the norm of this element is
mm
Ng /gl /P 1)

Because 7 = (/P is a primitive pth root of unity,

N /(P — 1) = N /g(n — 1)™/7.

In Exercise 4.3.7, we saw that Ng(,),q(n — 1) = p.

Exercise 4.5.9 Let m = p®, with p prime. Show that {L,(m,...,¢2™ '} is
an integral basis for the ring of integers of K = Q((m).

Solution. Clearly Z[(y,] € O. We want to prove the reverse inclusion.
Let A=1— (. Since M = (1 — ()7 € Z[¢n] and ¢, = (1 — A)? € Z[(n),
we see that Z[(,] = Z[A]. Thus, it suffices to show Z[A] D Ok. Let o € Ok
and write

w(m)-1 ' w(m)-1 '
o = Z (Lj)\J = Z bj(ﬂn? (Lj,bj S Q
7j=0 7=0

It suffices to show a; € Z for j = 0,1,... ,p(m) — 1. Let 0c((m) = (5-
Then
p(m)-1 ' ¢(m)—1 .
v0) = Y bjom) = Y b
§=0

j=0
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for each (c,m) = 1. We solve for b; using Cramer’s rule. Moreover, by the
previous question, we see that
_ G
Thus, a; has at most a power of p in its denominator. Let n be the least
nonnegative integer such that p"a; € Z for j = 0,1,... ,¢(m)—1. Suppose
n > 0. Let k£ be the smallest nonnegative integer such that p does not
divide p™a. Then
a, A" € pOg = XM Qg

(by the penultimate question) for r =0,1,... ,k — 1. Since « is an integer,
pa € pOr = MMk so that

p(m)-1 _
Z pnaj)\J_k € A0k

j=k
so that p"ar € \Og NZ = pZ, a contradiction.

Exercise 4.5.10 Let K = Q({m) where m = p®. Show that

(- 1)&0(M)/2mv(M)

dK = pm/P

Solution. This is immediate from the previous two questions.

Exercise 4.5.11 Show that Z[¢, + ('] is the ring of integers of Q(¢n + ¢ 't),

where ¢, denotes a primitive nth root of unity, and n = p®.

Solution. Suppose a = ag + a1(Cn + (7Y + -+ an(Cn + ¢ HY is an
algebraic integer with N < %q&(n) — 1 and the a; € Q. By subtracting
those terms with a; € Z, we may suppose ay ¢ Z. Multiplying by ¢~ and
expanding the result as a polynomial in (,,, we find that

(Na=ay -+ +an
is an algebraic integer in Q((,). Therefore, it lies in Z[(,]. Since
2N < ¢(n) —2<4(n) -1,

we conclude ay € Z, contrary to our assumption above. (This is also true
for arbitrary n by applying Exercise 4.5.25.)

Exercise 4.5.12 Let K and L be algebraic number fields of degree m and n,
respectively, over Q. Let d = ged(dx,dr). Show that if [KL : Q] = mn, then
Orxr C€1/dOkOr.
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Solution. Let {ay,...,a,} be a Z-basis for O and let {51,...,8,} be
a Z-basis for ;. Then o;8;, 1 <i<m, 1< j <mn,is a Q-basis for KL
over Q since [KL : Q] = mn. Any w € Ok can therefore be written as

Mas
w= Z L 0ifj,

— T
3¥)

where r, m;; € Z and ged(r, ged(m;;)) = 1. It suffices to show that r | dx
and by symmetry r | d so that r | d. Since [KL : Q] = mn, every
embedding o of K into C can be extended to KL acting trivially on L.

Hence s
o(w) = Z —;Z—J—a(ai)ﬂj.
%,J

Set z; = Zj mi;3;/r. We then obtain m equations

Z o(ai)zi = o(w),

m
i=1

one for each 0 : K — C. We solve for z; by Cramer’s rule: z; = ~;/§ where

§ = det(o(a;)). Since % = dx we find

d 52mi-
5%'22 " B € Ok

j=1

since 0 and each of ; are algebraic integers. Hence dgm,;/r are all integers.
It follows that r divides all dxm,;. Since ged(r,ged(m;;)) = 1, we deduce
T | dK.

Exercise 4.5.13 Let K and L be algebraic number fields of degree m and n,
respectively, with ged(dx,dr) = 1. If {a1,... ,am} is an integral basis of O x and
{B1,...,Bx} is an integral basis of O, show that Ok has an integral basis {a;5;}
given that [KL : Q] = mn. (In a later chapter, we will see that ged(dx,dr) =1
implies that [KL : Q] = mn.)

Solution. This is immediate from the previous question.
Exercise 4.5.14 Find an integral basis for Q(+v/2,v/=3).

Solution. If K = Q(v/2),L = Q(v/=3), then dx = 8, dr = —3 which
are coprime. By the previous question, a Z-basis for the ring of integers of

Q(v2,V=3) is given by
{2 ()}

Exercise 4.5.15 Let p and ¢ be distinct primes =1 (mod 4). Let K = Q(,/p),
L = Q(,/q). Find a Z-basis for Q(/p, \/q)-
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Solution. We have dig = p, d;, = q which are coprime. Now invoke the
penultimate question to deduce that

{1,1+\/ﬁ71+\/§7(1+\/ﬁ) (1+2\/6)}

2 2 2

is a Z-basis for the ring of integers of Q(,/p, \/q)-

Exercise 4.5.16 Let K be an algebraic number field of degree n over Q. Let
ai,... ,an € Ok be linearly independent over Q. Set

A= dK/Q(al, AN ,an).
Show that if @ € Ok, then Aa € Z[ay, ... ,an].

Solution. Write a@ = ¢ja; + - - - + ¢pa, for some rational numbers ¢;. By
taking conjugates, we get a system of n equations and we can solve for ¢;
using Cramer’s rule. Thus ¢; = A;D/A where D? = A and it is easy to
see that A;D is an algebraic integer. Therefore Ac; is an algebraic integer
lying in Q so Ac; € Z, as required.

Exercise 4.5.17 (Explicit Construction of Integral Bases) Suppose K is
an algebraic number field of degree n over Q. Let ai1,...,an € Ok be linearly
independent over Q and set

A= dK/Q(al,. . ,an).

For each %, choose the least natural number d;; so that for some d;; € Z, the
number

w; = A_l Zdijaj € 0k.
j=1
Show that wy,... ,wn is an integral basis of Ok.
Solution. First observe that there are integers c;; so that
i
A_l Zcijaj €0
j=1
(e.g., ci;j = A). Clearly wy, ... ,w, are linearly independent over QQ because
dK/Q(w17~ .. ,’u)n) = A_n(dll N dnn)sz/Q(G’l? N 7(]wn)

by Exercise 4.2.7, and the right-hand side is nonzero. Observe now that if
a € O can be written as

a=A"(cia1 + - +cja;)
for some j, then dj; | ¢;. Indeed, write ¢; = sd;; + 7, 0 < r < dj;, so that

a—swj=A" (e — dji)ar + - +ra;) € Ok,



4.5. SUPPLEMENTARY PROBLEMS 221

contrary to our choice of w; if r # 0.
We now show by induction on j that every number of Ok of the form

A_l(-’lflal +---+ xjaj)

with z; € Z lies in Z[w,... ,wy]. For j = 1, there is nothing to prove
because then di; | z1 and we are done. Assume that we have proved it for
j < k. Then suppose

y= A" za + -+ zpap) € O
with z; € Z. Then dg | zk so that for some integer t,
y—twy = A" (zhay + -+ zh_yak—1) € Ok.

By induction, the right-hand side lies in Z[wy, ... ,w,] and so does y. For
j = n, this means that every number of Og of the form A~ (z1a; + - +
Znay) with x; € Z lies in Z[w,,... ,wy,]. But by the previous exercise,
every a € Qg can be so expressed.

Exercise 4.5.18 If K is an algebraic number field of degree n over Q and
ai,...,an € Ok are linearly independent over @@, then there is an integral basis
Wi, ... ,wn of O such that

a; = cirwr + - - + 6w,
cj €Z,j=1,...,n

Solution. We take wi,... ,w, as constructed in the previous exercise.
This is an integral basis. Solving for a; and noting that the matrix (d;;) is
lower triangular, we see that each a; can be written as above. Moreover,
the ¢;; € Z since wy, ... ,wy is an integral basis by construction.

Exercise 4.5.19 If Q C K C L and K, L are algebraic number fields, show that
dx | dr.

Solution. Let [K : Q) =m, [L: K] = n. Let ay,... ,a, be an integral
basis of K. Extend this to a basis of L (viewed as a vector space over Q) so
that ay, ..., @mn is linearly independent over Q. By Exercise 3.3.7, we may
suppose each a; is an algebraic integer. By the previous exercise, there is
an integral basis wy,... ,Wny of Op such that

a; = cjjwy + - -+ ¢jwy, G € Z.

Since the matrix (c;;) is triangular, it is easy to see that wy,... ,wn, lie in
K. Because the w; are algebraic integers, and ay, . .. ,a,, is an integral basis
of K, it follows that wi,... ,w,, is an integral basis of K. Now write down
the definition of the discriminant of L. Let oy, ... ,0m, be the embeddings

of L into C such that o;(w;) = wg-i) for1<j<m.



222 CHAPTER 4. INTEGRAL BASES

We order the o1,... ,0mn so that o;(z) = oy (z) for i = ¢’ (mod m)
and z € K. Then

dp = det(ai(wj))z

2
wgl) o wgm) wgl) . wgm) . wgm)
N wd) w™ wd ™ )
= 1 +1 2
wfnll . wfﬁl w7(7211 ) wfn_’fl) . wfnﬁfll)
wld) o i) i wim)
2
wi wi™ 0 0
= 1 +1 1
wfnz}-l wfyﬁh wf:ﬁ}-l )~ wfnl—l wfﬁﬁ) - wfyﬁ%
wih - wi Wt —wl® Wi - W
= dg-a,

where a is an algebraic integer. Since dj/dg is a rational number, we
deduce that o is a rational integer.

Exercise 4.5.20 (The Sign of the Discriminant) Suppose K is a number
field with r; real embeddings and 2r; complex embeddings so that

r42r2=[K:Q)=n
(say). Show that dx has sign (—1)"2.
Solution. Let wy,... ,w, be an integral basis of K. Then
dyg = det(ai(wj))z,
where o4, ... ,0, are the embeddings of K. Clearly
det(03(w;)) = (~1)" det(oi(w;))

since complex conjugation interchanges ro rows.
If ro is even, then det(ai(wj)) is real so that dg > 0. If ro is odd,
det (ai (w;)) is purely imaginary so that dx < 0.

Exercise 4.5.21 Show that only finitely many imaginary quadratic fields K are
Euclidean.
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Solution. If ¢ is a Euclidean algorithm for O, then let oy € O be such
that v(ap) is the minimum nonzero value of 3. Then, every residue class
mod «q is represented by 0 or an element a € Ok such that ¥(a) = 0.
Thus ag is a unit. In an imaginary quadratic field, there are only finitely
many units. If dg # —3, —4, the units are +1. Thus, if dx # —3,—4, we
find Ng g(ao) < 3, which implies that ag = £1. In particular, if o, is such
that ¥(a1) = min(a) where the minimum ranges over ¥(a) # ¥(ap),
then oy is not a unit, ¢¥(a1) > ¥(ag) so that not every residue class mod
a1 can be represented by a class containing an element whose -value is
smaller than ¥ (a;).

Exercise 4.5.22 Show that Z[(1 + +/—19)/2] is not Euclidean. (Recall that in
Exercise 2.5.6 we showed this ring is not Euclidean for the norm map.)

Solution. The argument of the previous exercise shows that not all residue
classes mod 2 and mod 3 are represented by elements of smaller i-value.

Exercise 4.5.23 (a) Let A = (a;;) be an m X m matrix, B = (b;;) an n X n
matrix. We define the (Kronecker) tensor product A ® B to be the mn x mn
matrix obtained as

Abyy Abiz - Abin
Abzl Abzz e AbZn

: : : ’
Abnl Aan e Abnn

where each block Ab;; has the form

aitbi;  aizbi; - aimbiy
azibi;  azebi; -+ azmbij
amlbij amZbij ce ammbij

If C and D are m x m and n X n matrices, respectively, show that
(A® B)(C® D) =(AC) ® (BD).
(b) Prove that det(A ® B) = (det A)™(det B)™.

Solution. Part (a) is a straightforward matrix multiplication computation.
For part (b), we use linear algebra to find a matrix U such that U~ BU is
upper triangular:
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Then det B = ¢j1¢22 - - - Cnp- Also, by (a),

(IU) " A9 B)(IQU)=A® (U 'BU)

which is
Ac11 Ac12 s ACln
0 ACQQ st ACzn
0 0 - Acpn

Again, by linear algebra, we see that

det(A® B) = []det(Aci)
i=1

n

= H(cZ‘ det A)

=1

= (det B)™(det A)",
as desired.

Exercise 4.5.24 Let K and L be algebraic number fields of degree m and n,
respectively, with ged(dx,dr) = 1. Show that

dxr =d% - dr.

If we set log |da]
og |amMm
(M) =
=71
deduce that §(KL) = §(K) + 6(L) whenever ged(dk,dr) = 1.

Solution. By a previous exercise, Qg has integral basis {a;3;} where

ay,... ,0, is an integral basis of Ok and 3y, ... , 8, is an integral basis of
OL. Let

A = (Trxe(eie)),

B = (Trp,(8:6))-

Then it is easily verified that the discriminant of KL/Q is det(A ® B).
By the previous exercise, this is dd7'. The second part of the question is
immediate upon taking logarithms.

Exercise 4.5.25 Let {, denote a primitive mth root of unity and let K =
Q(¢m)- Show that O = Z[¢m] and

(_1)¢(M)/2mv(m)

dx = [Lyjm P71
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Solution. Factor

m = Hpa.

p*|lm

Since the discriminants of Q((pa) for p®|lm are coprime, we have by the
previous exercise (and Supplementary Exercise 4.5.8)

log [de| (a2 )
— ] = - —— )logp.
o(m) X“;n Tpe1)

The sign of the determinant is (—1)™ = (—1)#(™)/2_ The fact that O =
Z[(] follows by an induction argument and Exercise 4.5.13.

Exercise 4.5.26 Let K be an algebraic number field. Suppose that § € Ok is
such that dx/g(f) is squarefree. Show that Ok = Z[f].

Solution. Let m = [OK : Z[O]]. Then, by Exercise 4.2.8,
drg(0) = m2dx.

If dg /(0) is squarefree, m = 1.






Chapter 5

Dedekind Domains

5.1 Integral Closure

Exercise 5.1.1 Show that a nonzero commutative ring R with identity is a field
if and only if it has no nontrivial ideals.

Solution. If z € R, x # 0, is a nonunit, then 1 ¢ (x), so (z) is a nontrivial
ideal.

Suppose that R has a nontrivial ideal a. Let z € a,z # 0. Then (z) C a.
If z is a unit, then 1 € (z) C a, so a = R, a contradiction. Thus, z is not a
unit, so R is not a field.

Exercise 5.1.3 Show that a finite integral domain is a field.

Solution. Let R be a finite integral domain. Let z,,z2,...,z, be the
elements of R. Suppose that x;xz; = z;x%, for some z; # 0.

Then z;(xz; — ;) = 0. Since R is an integral domain, z; = =%, so j = k.
Thus, for any z; # 0,

{ziz1,2:T0, ... ,2iTn} = {21,Z2,... ,Tn}.

Since 1 € R, there exists z; such that x;2; = 1. Therefore, z; is invertible.
Thus all nonzero elements are invertible, so R is a field.

Exercise 5.1.4 Show that every nonzero prime ideal p of Ox is maximal.
Solution. Ok /p is finite from Exercise 4.4.3 and it is an integral domain

from Theorem 5.1.2 (b). Thus, Exercise 5.1.3 shows that Og /p is a field,
which in turn implies that g is a maximal ideal of O .

Exercise 5.1.5 Show that every unique factorization domain is integrally closed.

227
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Solution. Let R be a unique factorization domain, a € Q(R).
Then a = a/b, for some a,b € R with (a,b) = 1. If « is integral over R,
then we have a polynomial equation

" +cp1d™ T4+ =0, ¢ €R.
Thus, multiplying through by b" and isolating a™, we have
a” = —blcp_1a" P+ -+ cab™”? + cob™1).

Thus, bla™. But, (a,b) = 1. By unique factorization, (a”,b) = 1. Therefore,
b is a unit in R, so a/b € R.
Thus, R is integrally closed.

5.2 Characterizing Dedekind Domains
Exercise 5.2.1 If a C b are ideals of O, show that N(a) > N(b).

Solution. Define a map f : Ox/a — Og/b by f(z +a) = z+ b. If
z+a=y+a,thenz—y€aCb,soz+b=y+b. Thus, f is well-defined.

The function f is not one-to-one since for any y € b\a, f(y +a) = 0,
but y + a # 0. It is onto since z + b = f(r + a). So we have a map from
the finite set Ok /a to the finite set O /b which is onto but not one-to-one.
Thus [Og/a| > |Ok/b], i.e., N(a) > N(b).

Exercise 5.2.2 Show that Ok is Noetherian.

Solution. Suppose that a; € a2 C ag & --- is an ascending chain of
ideals which does not terminate. Then N(a;) > N(ag) > N(az) > --- but
N(a;) is finite and positive for all 4, so such a strictly decreasing sequence
of positive integers must stop. Thus, the ascending chain of ideals must
terminate.

Exercise 5.2.4 Show that any principal ideal domain is a Dedekind domain.

Solution. Let R be a principal ideal domain. R is Noetherian since every
ideal is finitely generated. R is integrally closed since any principal ideal
domain is a unique factorization domain, and so is integrally closed by
Exercise 5.1.5.

Let (p) # 0 be a prime ideal and (z) 2 (p). Then, p € (z), so p = zy,
for some y € R. Thus, zy € (p), so z € (p) or y € (p). If z € (p), then
(z) = (p), and if y € (p), then y = pq, for some ¢ € R. This would imply
that p = zy = zqp and so xq = 1, since R is an integral domain. Thus,
(z) = R. Therefore, (p) is maximal.

Thus, R is a Dedekind domain.

Exercise 5.2.5 Show that Z[v/—5] is a Dedekind domain, but not a principal
ideal domain.
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Solution. Z[/—5] is not a unique factorization domain as was seen in
Chapter 2 by taking 6 = 2 x 3 = (1+v/—5)(1 — v/=5), and so cannot be a
principal ideal domain.

To see that it is a Dedekind domain, it is enough to show that it is
the set of algebraic integers of the algebraic number field K = Q(v/-5).
However, we have already proved this, in Exercise 4.1.3. So Z[+/—5] is a
Dedekind domain.

5.3 Fractional Ideals and Unique Factoriza-
tion

Exercise 5.3.1 Show that any fractional ideal is finitely generated as an O k-
module.

Solution. Let A be a fractional ideal of Og. Choose m € Z such that
mA C Ok. Since A is an Og-module, mA is an OQg-module contained
in Og and so is an ideal of Og. Since O is Noetherian, m.A is finitely
generated as an ideal. If m.A4 is generated as an ideal by {a1,...,a,},
then A is generated by {m~'a;,... ,m 'a,} as an Og-module. Thus, A
is finitely generated as an Ox-module.

Exercise 5.3.2 Show that the sum and product of two fractional ideals are again
fractional ideals.

Solution. Let A and B be fractional ideals. Since A and B are both
Ox-modules, so are their sum and product.
Let mA C Ok, nB C Ok with m, n € Z. Then

mn{AB) (mA)(nB)

OK7

N

so AB is a fractional ideal. Also,

mn{A+ B) n(mA) + m(nB)
nOkg +m0gk

OK7

N 1N

so A + B is a fractional ideal.

Exercise 5.3.7 Show that any fractional ideal .A can be written uniquely in the

form
©1...0r

Pr-- ok
where the p; and ) may be repeated, but no p; = gj.
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Solution. Choose a nonzero element ¢ € Z such that b := ¢4 C O. Let
(¢)=my---mg, b=n;---n the m;, n; prime.
Then (¢)A = b, so
n e n
4 M t

ml e ms
and cancelling the primes on the numerator that equal some prime on the
denominator, we have that m; # n; Vi, j. Also, if

_ al...av
A= by by’

with no a; = b;, then
ap - - Qymy - My = bl"'bwnl SRR (T
By unique factorization and the fact that no b; is an a; and no m; is an n;,

the b;’s must coincide up to reordering with the m;’s and the a;’s with the
n;’s, and so the factorization is unique.

Exercise 5.3.8 Show that, given any fractional ideal .A # 0 in K, there exists a
fractional ideal A™! such that AA™! = Of.

Solution. Let

pl"’pr
A=
£1 s
Then
A—I: p,lp;
pl...pr

is a fractional ideal with 4471 = O.

Exercise 5.3.9 Show that if a and b are ideals of Ok, then b | a if and only if
there is an ideal ¢ of Ox with a = bc.

Solution. If b D a, then ¢ := ab~! C bb™! = Og. Thus, a = be, with ¢ an
ideal of Of.
If a = be with ¢ C O, then a=bc C b.

Exercise 5.3.10 Show that ged(a,b) = a+ b = [[_, p™=(f0),
Solution. aCa+b, bCa+b,soa+b|a, a+b]b.

Ife|aand e| b, thena Ce, b Ce,sothata+b Ce ie,e|a+b.
Therefore, a + b = ged(a, b).
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Let 0 = HT pmin(ei,fi), and let min(e;, f;) = a;,

=10

T
o - T
i=1
T T
— e;—a; a;
= [Iei™]1¥
i=1 =1
T
= pri_aia, e;—a; >0 Vi.
i=1

Thus, ® O a which implies that 9 | a. Similarly, ? | b.
Suppose that ¢ | a and ¢ | b. Let

T
e=[[el, k>0,
=1

be the unique factorization of ¢ as a product of prime ideals. Suppose
k; > e; for some i € {1,... ,r}. We know that pf |eande|a,so pf | a,
ie., pf D ... per. Thus,
— i ki i— % "
(O Sl S B o e Ry g S STy
ki—e; i— i "
pi 2 0 2 P?l "'Ps_llps.:]l RN
i 2 £,
for some j # ¢, and so p; = p;, since p; is maximal. But this is a contra-
diction, so k; < e; for all 7, and every prime occurring in ¢ must occur in a.
Similarly for b, so k; < min(e;, f;). Thus, ¢ | 3, so ? = ged(a, b).

Exercise 5.3.11 Show that lem(a,b) =anb =[]_, p;nax(ei’f").

Solution. a2 anNb, b2 anb,soa|anb, b|anb. Suppose that a | e
and b |e. Thene Ca, e Cb,soeCanb. Thus, anb = lem(a,b). Let
m =], pr*%) and let

(2

8

T
e= [ e [1(#))¥,
=1

j=1
where p1,...,0r, 91, , % are distinct prime ideals. Suppose k; < e; for
some 1,
e C a
k 28 s v
= e (e () S el e,
k ki1 ki Kr. t s i~k "
= pll'..pi—llpi—l—ﬁl...p’r‘ (p’l)l(pg)t g p‘;’lpf pi
i —k;
C pf
-

§ -
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Thus, p; D g, for some j # i, or p; = p;-, for some j. Neither is true, so
k; > e;. Similarly, k; > f;. Thus, m | ¢, so m =lem(a, b).

Exercise 5.3.12 Suppose a, b, ¢ are ideals of Og. Show that if ab = ¢ and
ged{a,b) = 1, then a = 99 and b = ¢ for some ideals ® and e of Ok. (This
generalizes Exercise 1.2.1.)

Solution. We factor uniquely into prime ideals:
a= p‘l’zl e pir

and
b= (p) - ()"

where p1,..., 0 0),...,p} are distinct prime ideals since ged(a,b) = 1.
Now let ¢ = p& - -- @@ (g} )P - -- (!)%. Since ab = ¢9, we must have

by unique factorization. Thus a = 09 and b = ¢¢ with

O = g,
= ()™ (p)*,

as desired.

Exercise 5.3.14 Show that ord,(ab) = ordy(a) + ord,(b), where p is a prime
ideal.

Solution. From a previous exercise, a = p'a; and b = p*by, where p 2 a,
and p 2 by. Thus, ab = p*Ta;by, so p*™ | ab. If p*+**1 | ab, then
ab = p*tt*lc 50 pc = a;b;.

Thus, p O a1b1, S0 p 2 a; or p D by, since p is prime. This is a
contradiction, so ord,(ab) =t 4 s = ordy(a) + ord, (b).

Exercise 5.3.15 Show that, for a« # 0 in Ok, N({a)) = |Nk{a)|.

Solution. Let O = Zwy + - - - 4+ Zw,,. There exist o; = Y __, psjw;, with
Pii > 0, pij € Z such that (@) = Zoy +- -+ Za,, and N((a)g = P11 Dnn,
from Theorem 4.2.2.
We also know that (o) = Zaw; + - -+ + Zow,. Now, Nk (o) = det(c;;)
where Qw; = Z?:l CijWwy. And, if C = (Cij),R = (T'ij),P = (pz]), then
(awn,...,awp)t = Cwr,...,wn
= R(Oél, e

=  RP(wi,...,wn)T.
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where ow; = Z;l:l rjiej, rj; € Z. Therefore, by definition,
Ni(e) = det(RP) = det(R) det(P).

R and R™! have integer entries, since {aw;} and {a;} are both Z-bases
for (). Thus, det(R) = £1. So, det(C) = +det(P), det(P) > 0. Thus,
|det(C)| = det(P).

Thus, [Nk ()| = |det(C)| = det(P) = N((a)).

Exercise 5.3.17 If we write pOk as its prime factorization,
POK =p7* - 0y
show that N(g;) is a power of p and that if N(p;) = p!*, >y jefi=n.
Solution. Since pf* + pj’ = Ok for i # j,
OK/pOK fa OK/p‘;'l DD OK/p;-",
by the Chinese Remainder Theorem. Therefore

p" = N(p') - N(pg)
= N(p1)®* - N(pg)®.

Thus, N(p;) = p'+, for some positive integer f;, and n =e1fi +- - +eyf,.

5.4 Dedekind’s Theorem

Exercise 5.4.1 Show that D~! is a fractional ideal of K and find an integral
basis.

Solution. D! is an Ox-module since if z € Ok and y € D!, then
zy € D! because
Tr(zyOk) C Tr(yOk) C Z.

Thus, 0D~ C DL,

Now, let {wy,...,w,} be an integral basis of Ok . There is a dual basis
(see Exercise 4.2.1) {w{,...,w;} such that Tr(w;w}) = 6ij, 1 <4,5 < n.
Now Tr(wjw;) € Z for all w;, w}, so Zw; + -+ Zw}, C DL

We claim that D™! = Zw} + - .- + Zw}. Let z € D~!. Then

n

_E *
T = AWy ai6Q7

i=1

since {w7},... ,w}} is a Q-basis for K. Then

Tr(zw;) = Tr (Z aiw;*wj) =a; € Z.

i=1
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Therefore z € Zw} + - - - + Zw},. Therefore D~! = Zw} + -+ + Zw;.
Since for each w} there is an a; € Z such that qw] € O, if we let
m= H:‘l:l a;, then mD~! C Ok. Thus, D! is a fractional ideal.

Exercise 5.4.2 Let D be the fractional ideal inverse of D~!. We call D the
different of K. Show that D is an ideal of Ok.

Solution. D is certainly a fractional ideal of O and DD~! = Og. But,
from Lemma 4.1.1, 1 € D=1, Thus, D C DD! = Q. Thus, D is an ideal
of OK.

Exercise 5.4.5 Show that if p is ramified, p | dx.

Solution. Since p is ramified, e, > 1 for some prime ideal p containing p.
Thus, g | D, from the previous theorem, say pa = D. From the multiplica-
tivity of the norm function, we have N(p)N(a) = N(D), so N(p) | N(D).
Thus, pfe | dg, and so p | dg.

5.5 Factorization in Og

Exercise 5.5.2 If in the previous theorem we do not assume that Ox = Z[6)
but instead that p{ [Ox : Z[]], show that the same result holds.

Solution. Let m be the index of Z[f] in Og. Then for o € O, ma € Z[f].
In other words, given any «, we may write ma = by + b0 + by6% + - - +
b,_10™""1. Consider this expression mod p. Since m is coprime to p there
is an m’ such that m'm =1 (mod p). Then

a=bym' +bym'0+ -+ b, m'6"'  (mod p).

Thus, O = Z[f] (mod p).

In the proof of the previous exercise, we only used the fact that O =
Z[6] at one point. This was when we wrote that r;(6) = pa(8) + fi(0)b(6).
We now note that we simply need that r;(#) = pa(#) + fl( ) (mod p). The
proof will follow through in the same way, and we deduce that (p, fi(8)) is
a prime ideal of Z[6]. However, since

Ox/(p) ~ Z[6]/(p),

~

then
OK/(pvfz [0]/ pvfz

The rest of the proof will be identical to what was written above.
Exercise 5.5.3 Suppose that f(z) in the previous exercise is Eisensteinian with

respect to the prime p. Show that p ramifies totally in K. That is, pOx = (8)"
where n = [K : QJ.
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Solution. By Example 4.3.1, we know that p ¢{ [O K- Z[G]]. Moreover,
f(z) = 2™ (mod p). The result is now immediate from Exercise 5.5.2.

Exercise 5.5.4 Show that (p) = (1 — (,)?~" when K = Q((p).

Solution. The minimal polynomial of {, is ®,(z), the pth cyclotomic
polynomial. Recall that f(z) = ®,(x + 1) is p-Eisensteinian, and that

¢p — 1 is a root. Since Q(¢p) = Q(1 — (), and Z[(p] = Z[1 — (p), the
previous exercise tells us that (p) = (1 — (,)P™".

5.6 Supplementary Problems

Exercise 5.6.1 Show that if a ring R is a Dedekind domain and a unique fac-
torization domain, then it is a principal ideal domain.

Solution. Consider an arbitrary prime ideal I of R. Since R is a Dedekind
domain, I is finitely generated and we can write I = (a1,... ,a,) for some
set of generators ay,...,a,. In a unique factorization domain, every pair
of elements has a ged, and so d = ged(ay,. .. ,a,) exists. Then (d) =
(a1,...,an) = I, thus proving that R is a principal ideal domain.

Exercise 5.6.2 Using Theorem 5.5.1, find a prime ideal factorization of 50k
and 70 in Z[(1 + v/=3)/2].

Solution. We now consider f(z) (mod 7). We have
2—z+1=224+6x+1=(z+2)(z+4) (mod?7)

so 7 splits and its factorization is

(7) = (7’5+;/—_3> (7’9+;/—_3>.

Exercise 5.6.3 Find a prime ideal factorization of (2), (5), (11) in Z[z].

Solution. The minimal polynomial of i is 22 + 1. We consider it first mod
2.
22 +1=(z+1)? (mod 2)

s0 (2) = (2,4 +1)2 = (i +1)2 since 2i = (i + 1)2.
2+1=22-4=(z+2)(z—-2) (mod5)

so (5) = (5,1 +2)(5,i —2) = (i +2)(i — 2) since (2 +14)(2—1) =5.

Finally, we consider f(x) (mod 11). Since if the polynomial reduces it
must have an integral root, we check all the possibilities mod 11 and deduce
that it is in fact irreducible. Thus, 11 stays prime in Z]i].
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Exercise 5.6.4 Compute the different D of K = Q(+/-2).

Solution. By Theorem 5.4.3, we know that N(D) = |dx| = 8. Also, we
showed in Chapter 2 that O = Z[v/—2| is Euclidean and thus a principal
ideal domain. Then D = (a + by/—2) for some a,b € Z and N(D) =
a? + 2b% = 8. The only solution in integers is a = 0,b = +2, so

D=(2v-2)=(-2v-2).
Exercise 5.6.5 Compute the different D of K = Q(+/-3).

Solution. As in the previous exercise, we first observe that N(D) = |dg| =
3 and since the integers of this ring are the Eisenstein integers, which form
a Euclidean ring, Z[p] is a principal ideal domain and D = (a+bp) for some
a,b € Z. We must find all solutions to the equation

N(D)=3=a®—ab+b%

Since this is equivalent to (2a — b)2 4 362 = 12, we note that || cannot be
greater than 2. Checking all possibilities, we find all the elements of Z|p]
ofnorm 3: 24+ p, —14+p, —2—p, 1 — p, 1 +2p and —1 — 2p. Some further
checking reveals that these six elements are all associates, and so they each
generate the same principal ideal. Thus, D = (2 + p).

Exercise 5.6.6 Let K = Q(«) be an algebraic number field of degree n over Q.
Suppose Ox = Z[a] and that f(z) is the minimal polynomial of «. Write

f(z)=(z —a)bo+brz+ - borz™ "), b €Ok,

n—1

Prove that the dual basis to 1, «, ... , & is
bo bn_1
@) fa)
Deduce that .
Dl = m(Zbo + oo+ Zbpo).
Solution. Let a; = ¢, 09,... ,a, be the n distinct roots of f(z). We

would like to show that

. —
z—o; flo)

~ fl@)  _of r
= (

i=1

for 0 <r < n — 1. Define the polynomial
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Consider g,(c1). Note that f(a1)/(cn — ;) = 0 for all ¢ except ¢ = 1. Also,

(mf_(—zo)é)z:al = f(a).

Thus, g,(c1) = 0, and similarly, g-(a;) = 0 for 1 < ¢ < n. Since
deg(g-(z)) < n — 1, it can have at most n — 1 roots. As we found n
distinct roots, g,(z) must be identically zero.

For a polynomial h(z) = ¢o + ciz + -+ + cnz™ € K|z|, we define the
trace of h(z) to be

m
Tr(h(z)) = > Tr(c;)z* € Qlal.
=0
Since ay, ... ,a, are all the conjugates of «, it is clear that

@\ s fwer
o ((z = a)f’(a)) 2 ey =

But,
-1
f(z)a" ) < ( b;a” )
Tr = Tr zt=2"
((z —or@) = =" F@
Thus,
b;a”
Tr( i ) =0
f'(a)
unless i = r, in which case the trace is 1. Recall that if w;, ... ,wy is a basis,
its dual basis wi, ... ,w}, is characterized by Tr(w;wy) = d;;, the Kronecker
delta function. Thus, we have found a dual basis to 1, ¢, ... ,a™!, and it
is
bO bn—l

) Tl
By Exercise 5.4.1,

1
f'(e)

Exercise 5.6.7 Let K = Q(a) be of degree n over Q. Suppose that Ox = Z[o].
Prove that D = (f'(c)).

D =

(Zbo + - +an_1)

Solution. Let f(z) be the minimal polynomial of «, and let
f@)=(z—a)(bo+ " +baz"?).

Since f(z) is monic, b,_; = 1. Also, a,_1 = bp_2 — ab,_1 which means
that b,_o = a,—1 + ¢, where a,_; is an integer.
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We know from the previous exercise that

1
f'(@)

Since b,,_1 =1, Z C Zby + -+ + Zby_y. Since b,_s = a,_1 + «, we can
deduce that o« € Zby + - - - + an—l’, and by considering the expressions for
a;, 0 < i <n, wesee that in fact o* € Zby+---+Zby_1 for 1 <i<n-—1.
Thus,

Dl =

(Zbo + - - + Zby_1).

Z[o] € Zbo + - + Zby_y C Zfol,

and so we have equality. Thus,

and so D = (f'(a)).

Exercise 5.6.8 Compute the different D of Q[(,] where (, is a primitive pth
root of unity.

Solution. We can apply the results of the previous exercise to get D =

(F'(%))-

zP —1

f@) = —— =aP ' 4P i+,
, B prP~H(z — 1) — (2P - 1)

flz) = NP ,

’ _ ¢yt

O

Since ¢, !'is a unit, we find

DZ(@gl)

From Exercise 5.5.4 we know that (p) = (1—(,)?"!, andso D = (1—¢,)P2.

Exercise 5.6.9 Let p be a prime, p { m, and a € Z. Show that p | ¢m(a)
if and only if the order of a (mod p) is n. (Here ¢m(x) is the mth cyclotomic
polynomial.)

Solution. Since 2™ —1= [],, ¢4(z), we have a™ =1 (mod p). Let k be
the order of @ (mod p). Then k | m. If kK < m, then

akF—1= H¢d(a) =0 (mod p)

dlk
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so that ¢g4(a) =0 (mod p) for some d | k. Then
a™ —1 = ¢ (a)pa(a)( other factors) =0 (mod p?).

Since ¢p(a + p) = ¢m(a) (mod p) and similarly for ¢4(a), we also have
(a+p)™ =1 (mod p?). But then (a + p)™ = a™ + ma™ 'p (mod p?) so
that ma™ ! =0 (mod p), a contradiction.

Conversely, suppose that a has order m so that a™ =1 (mod p). Then
¢a(a) =0 (mod p) for some d | m. If d < m, then the order of a (mod p)
would be less than m.

Exercise 5.6.10 Suppose ptm is prime. Show that p | ¢,.(a) for some a € Z if
and only if p = 1 {mod m). Deduce from Exercise 1.2.5 that there are infinitely
many primes congruent to'1 (mod m).

Solution. If p | ¢ (a), by the previous exercise the order of a (mod p) is
m so that m | p — 1.

Conversely, if p =1 (mod m), there is an element g of order m (mod p)
because (Z/pZ)* is cyclic. Again by the previous exercise p | ¢m(a).

If there are only finitely many primes py, ... ,pr (say) that are congruent
to 1 (mod m), then setting a = (p; - - - p,)m we examine the prime divisors
of ¢m(a). Observe that the identity

z™ -1 =[] ¢al=)

dim

implies that ¢,,(0) = +1. Thus, the constant term of ¢,,(x) is 1 so that
¢m(a) is coprime to a and hence coprime to m. (If ¢,,(a) = +1, one can
replace a by any suitable power of a, so that |¢m(a)| > 1.)

By what we have proved, any prime divisor p of ¢,,(a) coprime to m
must be congruent to 1 (mod m). The prime p is distinct from py,... ,pr.

Exercise 5.6.11 Show that p{ m splits completely in Q({) if and only if p=1
{mod m).

Solution. Observe that ¢,,(z) has a root mod p if and only if p = 1
(mod m) by the previous exercise. But then if it has one root a it has p(m)
roots because m | (p — 1) and so (Z/pZ)* has a cyclic subgroup of order m.
Thus, ¢, (z) splits completely if and only if p =1 (mod m).

Exercise 5.6.12 Let p be prime and let a be squarefree and coprime to p. Set
6 = a'/? and consider K = Q(6). Show that Ox = Z[6] if and only if a?~! # 1
{mod p?).

Solution. Assume that Ok = Z[f]. We will show that a?~! # 1 (mod p?).
By Theorem 5.5.1,

pOK = p°
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since Q(6) has degree p over Q. Moreover,
p=(pb-a)

Also, (6 —a) € p and (6 — a) € p? so that
(6 —a)=pa

for some ideal a. Taking norms, we find |[N(6 —a)| = pNa and (Na,p) = 1.
(¢ — a) is a root of (z + a)® — a and this polynomial is irreducible since
Q(6 — a) = Q(0) has degree p over Q. Hence

N(@ —a)=a” —a=pNa

so that a? # a (mod p?).
Conversely, suppose that a? # a (mod p?). Then the polynomial

(z+a)’ —a

is Eisenstein with respect to the prime p. Therefore p { [O K @ Z[6 - a]]
by Example 4.3.1. But Z[# — a] = Z[f] so we deduce that p { [0k : Z[f]].
In addition, P — a is Eisenstein with respect to every prime divisor of a.
Again, by Example 4.3.1, we deduce that [OK : Z[G]] is coprime to a. By
Exercises 4.3.3 and 4.2.8,

dijo(6) = (1) B ppar~! = [0k : Z[0]]” - dic.

Since the index of 8 in Ok is coprime to both p and a, it must equal 1.
Thus Ox = Z[6).

Exercise 5.6.13 Suppose that K = Q(f) and Ox = Z[f]. Show that if p | dx,
p ramifies.

Solution. We will use the result of Theorem 5.5.1. Let f(z) be the minimal
polynomial of Z[6]. Suppose that p | dx, and

f(@) = fi(z) -+ fo(z)®  (mod p).

Since p | di/g(0) = [1(6; — 6;)2, then 6; = 6; in F,, for some i # j. Thus,
f has multiple roots in 117,,. Hence, one of the e;’s is greater than 1.

Exercise 5.6.14 Let K = Q(f) and suppose that p | dx/q(8), p? 4 dxq(0).
Show that p | dx and p ramifies in K.

Solution. Recall that dx,g(f) = m?dkx where m = [Og : Z[f]]. Clearly,
since p | di /q(6) but p* { dk/g(6), p | di, and p { m. We can now apply the
result of Exercise 5.5.2. Using the same argument as in 5.6.13, we deduce
that f(z) has a multiple root mod p and so p ramifies in K.
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Exercise 5.6.15 Let K be an algebraic number field of discriminant dx. Show
that the normal closure of K contains a quadratic field of the form Q(v/dk).

Solution. Let K be the normal closure of K , w1,... ,wy, an integral basis
of K, 01,...,0, the distinct embeddings of K into C. Then

dx = det(os(w;))* € Z.
Thus vdx = det(o;(w;)) € K.

Exercise 5.6.16 Show that if p ramifies in K, then it ramifies in each of the
conjugate fields of K. Deduce that if p ramifies in the normal closure of K, then
it ramifies in K.

Solution. Since each embedding o; : K — K is an isomorphism of fields,
any factorization of

(p) = p7' - oy
takes each prime ideal p; into a conjugate prime ideal pgl). If some e; > 1
then in each conjugate field, p ramifies. The second part is straightforward
upon intersecting with K.

Exercise 5.6.17 Deduce the following special case of Dedekind’s theorem: if
p*™*!||dx show that p ramifies in K.

Solution. By the penultimate exercise, p ramifies in Q(v/dg) and hence
in the normal closure. By the previous exercise, p ramifies in K.

Exercise 5.6.18 Determine the prime ideal factorization of (7), (29), and (31)
in K = Q(V2).

Solution. By Example 4.3.6, O = Z[2'/3]. We may apply Theorem 5.5.1.
Since z* — 2 is irreducible mod 7, 7Ok is prime in Q. Since

22— 2= (z+3)(2®> -3z +9) (mod 29)
and the quadratic factor is irreducible, we get
290k = P12
where deg p; = 1, deg po = 2 and g, o are prime ideals. Finally,
3 —2=(z-4)(z - 7)(z +11) (mod 31)
so that 310 splits completely in K.

Exercise 5.6.19 If L/K is a finite extension of algebraic number field, we can
view L as a finite dimensional vector space over K. If & € L, the map v — awv is
a linear mapping and one can define, as before, the relative norm N k(o) and
relative trace Trp k(o) as the determinant and trace, respectively, of this linear
map. If o € O, show that Try k(@) and Np, k() lie in Ok.



242 CHAPTER 5. DEDEKIND DOMAINS

Solution. By taking a basis wy,...,w, of L over K and repeating the
argument of Lemma 4.1.1, the result follows immediately.

Exercise 5.6.20 If K C L C M are finite extensions of algebraic number fields,
show that NM/K(a) = NL/K(NM/L(a)) and TT'M/K(a) = TT'L/K(TT'M/L(Q)) for
any a € M. (We refer to this as the transitivity property of the norm and trace
map, respectively.)

Solution. Fix an algebraic closure M of M. Let o4, ...,0p, be the distinct
embeddings of L into M which are equal to the identity on K. By field
theory, we can extend these to embeddings of M into M. Of these, let
M, ..., n be the ones trivial on L. If o is an arbitrary embedding of M into
M which is trivial on K, then as o is also an embedding of L into M, it
must be o; for some j. Thus, o} 'o fixes L and so must be an 7; for some

J
i. Thus, every embedding of M is of the form o, o 7; so that

Ny (a) = Haj(m(a)) = HUJ'(NM/L(O‘)) = Nk (Nap/o(@)),

as desired.

Exercise 5.6.21 Let L/K be a finite extension of algebraic number fields. Show
that the map
Try y2: 4 LxL—>K

is non-degenerate.

Solution. This follows from an argument analogous to the proof of Lemma
4.14.

Exercise 5.6.22 Let L/K be a finite extension of algebraic number fields. Let
a be a finitely generated O x-module contained in L. The set

Drx(@) ={ze€L: Tryx(za) C Ok}

is called codifferent of a over K. If a # 0, show that DZ/IK (a) is a finitely generated
Ok-module. Thus, it is a fractional ideal of L.

Solution. The fact that DZ/IK(a) is an Ox-module is clear. To see that it
is finitely generated, we take an O g-basis of a and repeat the argument in
Exercise 5.4.1 to deduce the result.

Exercise 5.6.23 If in the previous exercise a is an ideal of O, show that the
fractional ideal inverse, denoted Dy, (a) of DZ/IK {a) is an integral ideal of Oy,.
{We call Dy k(a) the different of a over K. In the case a is O, we call it the
relative different of L/K and denote it by Dr/x.)

Solution. We have DL/K(a)DZ/lK(a) = 0r and 1 € DZ/IK(a) so that
Dr/k(a) C ’DL/K(a)'DZ/lK(a) C Oy so that Dy x(a) is an integral ideal of
Or.
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Exercise 5.6.24 Let K C L C M be algebraic number fields of finite degree
over the rationals. Show that

Du/x = Duyo(DrLxOmr).

Solution. We have z € D;ll/L if and only if T'rps/ 1 (20nr) € Or which is
equivalent to

'DZ/IKTT'M/L(.Z‘OM) Q DZ/IKOL iff TT'L/K(DZ/IKTT’M/L(.’L‘OM)) Q OK

which by transitivity of the trace is equivalent to T'rs/ K(zDZ}K) C Og.
That is, we must have
-1 -1
Dk < Dyyk

which is true if and only if

—1

-’L‘E’DL/KDM/K,

which means

’DIT/II/L = DL/KDX;/K’

which gives the required result.

Exercise 5.6.25 Let L/K be a finite extension of algebraic number fields. We
define the relative discriminant of L/K, denoted dp x as N/ k(D k). This is
an integral ideal of Og. If K C L C M are as in Exercise 5.6.24, show that

dum/x = d%}f]NL/K (dmyL)-

Solution. By the transitivity of the norm map and by Exercise 5.6.24, we
have

Nyyx(Pymyx) = Nyyx(PayyDryx) =

Np/k(Nm/o(Pr/xDuyr)) = NL/K(’D[[{\;I}:(L]NM/L(’DM/L))

which gives the result. We remark here that Dedekind’s theorem concerning
ramification extends to relative extensions L/K. More precisely, a prime
ideal p of O is said to ramify in L if there is a prime ideal p of Oy, such
that p*[pOr. One can show that p ramifies in L if and only if p|dy k. The
easy part of this assertion that if p is ramified then p|dz,/x can be proved
following the argument of Exercise 5.4.5. The converse requires further
theory of relative differents. We refer the interested reader to [N].

Exercise 5.6.26 Let L/K be a finite extension of algebraic number fields. Sup-
pose that O = Ox[a] for some « € L. If f(z) is the minimal polynomial of «
over Ok, show that D, x = (f'(@)).
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Solution. This result is identical to Exercises 5.6.6 and 5.6.7. More gen-
erally, one can show the following. For each § € Oy which generates L over
K, let f(x) be its minimal polynomial over Ok. Define d.,x(6) = f'(6).
Then Dp,/k is the ideal generated by the elements 6,/ Kk (6) as @ ranges over
such elements. We refer the interested reader to [N].

Exercise 5.6.27 Let K;, K2 be algebraic number fields of finite degree over K.
If L/K is the compositum of K;/K and K2/K, show that the set of prime ideals
dividing dL/K and dKl/KdKz/K are the same.

Solution. By Exercise 5.6.25, we see that every prime ideal dividing

d, /kdK, /K

also divides dy,/x. Suppose now that p is a prime ideal of Ok which divides
dr/x but not di, /. We have to show that p divides d,,x. By the defini-
tion of the relative discriminant, there is a prime ideal p of Oy, lying above
p which divides the different Dy r. This ideal cannot divide Dk, ,x0OL
for this would imply that p divides dg, /k, contrary to assumption. Since
Dr/k = D1k, Dk, /k, we deduce that p divides Dy /,. Now let o € Ok,
so that o generates Ky over K. Let f(z) be its minimal polynomial over
K, and g(z) its minimal polynomial over K. (We have assumed that we
have fixed a common algebraic closure which contains K; and K,.) Then
L = Ki(¢) and g(z) = f(z)h(z) for some polynomial h over K;. Hence,
¢ (z) = f'(z)h(z)+ f(z)h'(z) which implies ¢'(a) = f'(@)h(a). Thus, ¢'(a)
is in the ideal generated by f’(a). By the remark in the solution of Exercise
5.6.26, we deduce that f'(a) € D x C . Therefore, g’(a) € p. The same
remark enables us to deduce that ¢'(a) € Dk, x implying that p divides
dKz/K .

Exercise 5.6.28 Let L/K be a finite extension of algebraic number fields. If L
denotes the normal closure, show that a prime p of Ok is unramified in L if and
only if it is unramified in L.

Solution. If we apply the preceding exercise to the compositum of the
conjugate fields of L, the result is immediate.



Chapter 6

The Ideal Class Group

6.1 Elementary Results

Exercise 6.1.2 Show that given «,3 € Ok, there exist t € Z,|t| < Hg, and
w € Ok so that |N{at — Bw)| < |N(B)|.

Solution. If we apply Lemma 6.1.1 with « replaced by «/3, we conclude
that there exist t € Z, |t| < Hg, and w € Ok such that

|N(ta/B —w)| < 1.
This implies |N(to — wB)| < |[N(B)|.

6.2 Finiteness of the Ideal Class Group

Exercise 6.2.1 Show that the relation ~ defined above is an equivalence rela-
tion.

Solution. It is trivial that A ~ A, and if A ~ B then B ~ A, for any
ideals A and B. Suppose now that A ~ B, and B ~ C. That is, there exist
o, 8,7,0 € Ok such that (a)A = (8)B, and (y)B = (#)C. It is now easily
seen that (ay)A = (86)C. Thus, A ~ B and B ~ C imply A ~ C.

Hence, ~ is an equivalence relation.

Exercise 6.2.3 Show that each equivalence class of ideals has an integral ideal
representative.

Solution. Suppose A is a fractional ideal in K. Let A4 = b/¢c, with b,¢ C
Ok.

We know from Exercise 4.4.1 that ¢NZ # {0}, so there exists 0 # t € Z
such that £ € ¢. Thus, ¢ O (¢) = tOk, and so ¢ divides (t). This implies
that there exists an integral ideal ¢ C Ok such that

ce = (). (6.1)

245
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We now have

:——:ebQOK.

b ceb
¢ ¢

Thus, A ~ be C Ok, and the result is proved.

Exercise 6.2.4 Prove that for any integer z > 0, the number of integral ideals
a C Ok for which N{a) <z is finite.

Solution. Since the norm is multiplicative and takes values > 1 on prime
ideals, and since integral ideals have unique factorization, it is sufficient to
prove that there are only a finite number of prime ideals g with N(p) < z.

Now, any prime @ contains exactly one prime p € Z, as shown in Exer-
cise 4.4.4. Thus, p occurs in the factorization of (p) C Ok into prime ideals.
Since N(p) > 2, we have N(p) = p* for some ¢ > 1. This implies there are
at most n possibilities for such p, since the factorization (p) = [];-, i
implies that p™ = N((p)) = [I;_, N(pi)* leading to s < n. Moreover,
p < N(p) < z. This proves the exercise.

Exercise 6.2.6 Show that the product defined above is well-defined, and that 7
together with this product form a group, of which the equivalence class containing
the principal ideals is the identity element.

Solution. To show that the product defined above is well-defined we only
need to show that if A; ~ By and Ay ~ By, then A1 45 ~ BBy, Indeed, by
definition, there exist aj,az, 51, B2 € Ok such that (oq).A4; = (8;)B1 and
(az) Az = (B82)Bs. Therefore

(Oéloéz)AlAz = (,31,32)BIB2~

Thus, A, A3 ~ B Bs.

Now, it is easy to check that H with the product defined above is closed,
associative, commutative, and has the class of principal ideals as the iden-
tity element. Thus, to finish the exercise, we need to show that each element
of H does have an inverse. Suppose C is an arbitrary element of H. Let
a C Ok be a representative of C (we showed in Exercise 6.2.3 that every
equivalence class of ideals contains an integral representative). If we pro-
ceed as we did when deriving equation (6.1), we conclude that there exists
an integral ideal b such that ab is principal. It then follows immediately
that the class containing b is the inverse of C.

Exercise 6.2.7 Show that the constant Cx in Theorem 6.2.2 could be taken to
be the greatest integer less than or equal to Hk, the Hurwitz constant.

Solution. As in Lemma 6.1.1, let {w),ws,... ,w,} be an integral basis of
Ok. Let C be a given class of ideals. We denote by C~! the inverse class of
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C in H. Let a be an integral representative of C~1. Consider the following
set

S = {8 c OKlS = Zmiwi, m; € Z, 0<m; < (N(a))l/"+l} .

i=1

Then |S| > N(a) + 1. Since N(a) = [Ok : a], we can find distinct a,b € S
such that ¢ = b (mod a). Thus, (a — b) C a. This implies that there exists
an integral ideal b such that (a —b) = ab. It is easy to observe that b € C.

We may write a — b= 3. | p;w;. Since a,b € S, |p;| < (N(a))}/™ +1,
and so we have

IN(@—b)| =

fi(55e0)

]:1 =1

f[ (Z |pz||w<”|>

i=1

< [N+ ﬁ[(f]w%)

j==1

IA

< [(N@)"+1]"Hp
We also know that since (a — b) = ab, |N(a —b)| = N(a)N(b). Thus,
N(b) < [1+ (N(a))"¥/"]"Hg.

However, observe that we can always replace a by the ideal ca, in the same
equivalence class, for any ¢ € O K\{O}, and with |N(c)| arbitrarily large; we
can therefore make [1 + (N(a))~1/*]" arbitrarily close to 1.

Thus, every equivalence class C has an integral representative b with
N (b) < Hg. This implies that every ideal is equivalent to another integral
ideal with norm less than or equal to Hg.

6.3 Diophantine Equations

Exercise 6.3.2 Let k > 0 be a squarefree positive integer. Suppose that k£ =1, 2
(mod 4), and k does not have the form k = 3a® £ 1 for an integer a. Consider
the equation

2> 4k =4 (6.4)

Show that if 3 does not divide the class number of Q(+/—k), then this equation
has no integral solution.

Solution. Similar to what was done in Example 6.3.1, y must be odd
(consider congruences modulo 4). Also, if a prime p | (z,y), then p | k;
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and hence, since k is squarefree (so, in particular, k£ is not divisible by
p?), by dividing both sides of the equation (6.4) by p, we end up having a
contradiction modulo p. Thus, « and y are coprime.

Suppose now that (z,y) is an integral solution to equation (6.4). As
given, k = 1,2 (mod 4), so —k = 3,2 (mod 4). Thus, the integers in
K = Q(v/—k) are Z][/—k]. We consider the factorization

(x+vV—=k)(z — vV—Fk) = ¢°, (6.5)

in the ring of integers Z[\/_——k]

As in Example 6.3.1, suppose a prime p divides the ged of the ideals
(x +v—k) and (z — v/—k) (which implies p divides (y)). Then p divides
(2z). Since y is odd, g does not divide (2). Thus, g divides (z). This
contradicts the fact that « and y are coprime. Hence, (z + v/—k) and
(xr — /—k) are coprime. Equation (6.5) now implies that

(x+vV—k)=a® and (z-v-k)=0b3

for some ideals a and b.

Let h(K) be the class number of the field K, then ¢*(¥) is principal for
any ideal c¢. As given, 3t h(K), so (3, h(K)) = 1. Thus, since a® and b® are
principal, a and b are also principal. We must have

(z +vV—k) = e(a+bV/—k)3, (6.6)

for some integers a, b, and a unit ¢ € Z[v/—k].
Let ¢ = z1 + z2v/—k. Then, since a € Z[y/—k] is a unit if and only if
N(a) = +£1, we have

22 + kx3 = £1. (6.7)

As given k£ > 0 and k is square-free, so k > 1. Thus, equation (6.7) implies
z2 = 0 and z; = +1. Hence, ¢ = +£1, and in equation (6.6) it could be
absorbed into the cube. We have

(x +vV—=Fk) = (a+b/—k)>.

This implies 1 = b(3a? — kb?). It is clear that b | 1, so b = +1. Both cases
lead to either k£ = 3a® + 1 or k = 3a® — 1, which violates the hypothesis.

Hence, we conclude that equation (6.4) does not have an integral solu-
tion.

6.4 Exponents of Ideal Class Groups

Exercise 6.4.1 Fix a positive integer ¢ > 1. Suppose that n is odd, greater than
1 and n? — 1 = d is squarefree. Show that the ideal class group of Q(v/—d) has
an element of order g.
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Solution. Since d is even and squarefree, d = 2 (mod 4). The ring of
integers of Q(v/ —d) is Z[v/—d|. We have the ideal factorization:

(n)? = (n%) = (1+d) = (1+ vV=d)(1 — V—d).

The ideals (1 ++/—d) and (1 — v/—d) are coprime since n is odd. Thus
by Theorem 5.3.13, each of the ideals (1 4+ v/—d), (1 — v/—d) must be gth
powers. Thus

ad = (1+vV—d),
@) = (1-v-d),

with aa’ = (n). Hence a has order dividing ¢ in the class group.

Suppose a™ = (u + vy/—d) for some u,v € Z. Note that v cannot
be zero for otherwise a™ = (u) implies that (a’)™ = (u) so that (u) =
ged(a™, (a/)™), contrary to ged(a, a’) = 1. Therefore v s 0.

Now take norms of the equation a™ = (u + vv/—d) to obtain

nm=ul+0v2d>d=n9 -1

If m < g—1, we get n9~! > n9 — 1 which implies that 1 > n9~1(n—1) > 2,
a contradiction.

Therefore a9 = (1++/—d) and a™ is not principal for any m < g. Thus
there is an element of order g in the ideal class group of Q(v/'—d).

Exercise 6.4.2 Let g be odd and greater than 1. If d = 39 — 2% is squarefree
with z odd and satisfying x2 < 39/2, show that Q(v/—d) has an element of order
g in the class group.

Solution. Observe that d = 2 (mod 4) so the ring of integers of Q(v/—d)
is Z[v/—d]. The factorization

39 = (z + vV-d)(z — vV—d)

shows that 3 splits in Q(v/—d), as the ideals (z ++/—d) and (z — v/—d) are
coprime. Thus
(3) = p1p1-
We must have
(z+V=d) = pf.

Therefore, the order of gp; in the ideal class group is a divisor of g. If
o7 = (u+vv/—d), then 3™ = v +v2d. If v 5 0, we deduce 3™ > d > 39/2
which is a contradiction if m < g — 1. Either g; has order g or v = 0. In
the latter case, we get u? = 3™, a contradiction since m is odd.

Exercise 6.4.3 Let g be odd. Let N be the number of squarefree integers of
the form 39 — 2%, z odd, 0 < 2% < 39/2. For g sufficiently large, show that
N > 3972, Deduce that there are infinitely many imaginary quadratic fields
whose class number is divisible by g.



250 CHAPTER 6. THE IDEAL CLASS GROUP

Solution. The number of integers under consideration is

1
—=392 L O(1).
o (1)
From these, we will remove any number divisible by the square of a prime.
Since ¢ is odd, 2 = 39 (mod 4) implies that 22 = —1 (mod 4) has a

solution. This is a contradiction. Therefore 4 { 39 — z2. If 3 | z, then
3| 39 — 22 s0 we remove such numbers. Their count is

1
—=39/2 1+ O(1).
67 (1)

If p is odd and greater than 3, the number of 39 — z? divisible by p? is at
most

3 0(1)
+
P2V2
Thus,
392 11 1 1 (39/2>
N> {2 % S 40(>—
vz 12 6 pggpz g
p>5

p>5 p n=5
- 1
= 1
Since % — % — % = %, we see N > 39/2. By the previous exercise, each of

these values gives rise to a distinct quadratic field whose class group has
exponent divisible by ¢g. By applying this result for powers of g we deduce
that there are infinitely many imaginary quadratic fields of class number
divisible by g.

(This argument is due to Ankeny and Chowla.)

6.5 Supplementary Problems

Exercise 6.5.1 Show that the class number of K = Q(+/—19) is 1.

Solution. We know that 1, (1++/—19)/2 forms an integral basis. We then
write

1++/-1
WV =1, W= _+_2__9

1—-+/-19
wiz) =1, wéz) = —,

2
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and use this to find the Hurwitz constant

i=1

_ (1+ 1+\/—19D (1+‘1—\/—19‘>
2 2

13.53---

Just as in Example 6.2.8, we examine all the primes p < 13 to determine
the prime ideals with N(p) < 13. The primes in question are 2,3,5,7,11,
and 13. They factor in Z[(1++/—19)/2] as follows: 2,3, and 13 stay prime,
and

s (1+\/—T9> (1—\/—T9>’

- ()
- () ()

These are all principal ideals and thus are all equivalent. This shows that
the class number of K = Q(v/—19) is 1.

Exercise 6.5.2 (Siegel) Let C be a symmetric, bounded domain in R™. (That
is, C is bounded and if z € C so is —z.) If vol(C) > 1, then there are two distinct
points P, @ € C such that P — @ is a lattice point.

Solution. Let ¢(z) = 1 or 0 according as z € C or not. Then set

P(@) =Y pl@+7).

NEZ™

Clearly, v¥(z) is bounded and integrable. thus

/R"/Z" P(r)dz = /R"/Z" ’gz:" o(z+7) dx

- S [ e

YEL™

= Z /+R"/Z" ¢(z) dx

~YEZL™

= /" ¢(z) dx

= vol(C) > 1.
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Since ¢ (z) takes only integer values, we must have ¢¥(z) > 2 for some z.
Therefore, there are two distinct points P+, P++' in C so their difference
is a lattice point.

Exercise 6.5.3 If C is any convex, bounded, symmetric domain of volume > 2™,
show that C contains a non-zero lattice point. (C is said to be conver if z,y € C
implies Ax+ (1 = A)yeCfor 0 <A <L)

Solution. By the previous question, the bounded symmetric domain %C
contains two distinct points %P and %Q such that %P - %—Q is a lattice
point, because

vol(C)

vol (10) = o > 1.

Since C is convex,
0#£y= %P — %Q eC

as P, € C. This is a nonzero lattice point in C.

Exercise 6.5.4 Show in the previous question if the volume > 2", the result is
still valid, if C is closed.

Solution. We can enlarge our domain by ¢ to create C. of volume > 2™.
For each ¢, C. contains a lattice point. Since

lim C, = C,

e—0

C also contains a lattice point (perhaps on the boundary).

Exercise 6.5.5 Show that there exist bounded, symmetric convex domains with
volume < 2" that do not contain a lattice point.

Solution. Consider —1 < z; < 1,1 <4 < n. This hypercube has volume
2™ and the only lattice point it contains is 0.

Exercise 6.5.6 (Minkowski) For « = (x1,...,2x), let

n

Li(m)=2aijmj, 1 Sign,
j=1

be n linear forms with real coefficients. Let C be the domain defined by

[Li(z)| < Ay, 1ZLi<n.

Show that if A\y---A, > |det A] where A = (a4;), then C contains a nonzero
lattice point.
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Solution. Clearly C is convex, bounded, and symmetric. We want to
compute the volume of C/2,

[f

L@z
1<i<n

We make a linear change of variables: y = Az. Then
dy; - - - dy, = (det A) dzy - - - dzp,

so we get
AL A,

|det A

from which the result follows because C is closed.

vol(C/2) = >1

Exercise 6.5.7 Suppose that among the n linear forms above, L;(r),1 <i<n
are real (i.e., a;; € R), and 27, are not real (i.e., some a;; may be nonreal).
Further assume that

Lrigrgtj = Lri4g, 1<j<re.

That is,

n

Lritrotj(z) = Zar1+j,kmk, 1<j<r.
k=1

Now let C be the convex, bounded symmetric domain defined by
[Li(z) < Xiy  1<i<n,

with Ari4j = Arigrg4iy 1 < 5 < r2. Show that if Ay ---An > |det A|, then C
contains a nonzero lattice point.

Solution. We replace the nonreal linear forms by real ones and apply the
previous result. Set

I _ LT1+j + LT1+T2+j
rit+7 2
and
" _ Ln—f—j - Lr1+rz+j
ri+j 2 .
Then Ly Ly ,; are linear forms. Clearly, if
)‘T1+j
|L 1+]| S \/5 3
| L )‘Tl +J

7‘1+]| S \/5 )



254 CHAPTER 6. THE IDEAL CLASS GROUP

then
|LT1+j| < )‘T1+j7

so we replace |Ly, ;] < Arij, [Lrytrptgl € Aryqj with Ly o and L7
satisfying the inequalities above. We deduce by the results established in
the previous questions, that this domain contains a nonzero lattice point
provided

Al Ap27T2

|det A’

where A’ is the appropriately modified matrix. A simple linear algebra
computation shows det A’ = 2772 det A.

> 1,

Exercise 6.5.8 Using the previous result, deduce that if K is an algebraic num-
ber field with discriminant dx, then every ideal class contains an ideal b satisfying

Nb < /|dx]-

Solution. Let a be any integral ideal and a4, ... ,«, an integral basis of
a. Consider the linear forms

Li(z) = Zaﬁ-i)zj
j=1

and the bounded symmetric convex domain defined by
|Li(z)] < |A[Y™,

where |A| = |det(a§.i))|. By the previous question, the system has a non-
trivial integral solution, (z1,...,zy). Let

w=T1001 + -+ Tpa, €a.
Then (w) C a so that for some ideal b, ab = (w). But
|N(w)| = [Na|[Nb| < |A

by construction. Also,
|A? = (Na)?|dk|

by Exercise 4.4.5. Hence, |[Nb| < 1/|dk|. Given any ideal a we have found
an ideal b in the inverse class whose norm is less than or equal to /|dk|.

Exercise 6.5.9 Let X; consist of points

(T1y-- yTr, YLy B1ye - s Ys, 2s5)

in R™*%* where the coordinates satisfy

[za]+ -+ |ze| + 2V + 2 + -+ 232 +22 <t

Show that X, is a bounded, convex, symmetric domain.
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Solution. The fact that X; is bounded and symmetric is clear. To see
convexity, let
P = (0,1,... 1a’7‘1b17017"' 1bsacs)

and
Q: (dl,... ,dr,el,fl,... ,es,fs)

be points of X;. We must show that AP + u@Q € X; whenever A, x> 0 and
A+ u = 1. Clearly
[Aa; + pds| < Xa;| + pldil.

Also

VO F pe)? + (s + ufi2 S A0+ +uvel + 17,

as is easily verified. From these inequalities, it follows that AP + uQ € X;
so that X; is convex.

Exercise 6.5.10 In the previous question, show that the volume of X; is

21‘—871_8t’n

n! ’

where n = r + 2s.

Solution. We begin by making a change of variables to polar coordinates:
2y; = pjcosb;, 2x; = p;sinb;, 4dy;dz; = pjdp; df; so that integrating
over x; > 0 for 1 <i <r gives

vol(Xy) = 2T-2_23/;)1---psd:vl---d:depl---dpsty--dOs

= 2T2_28(27r)3/ P1 Ps dﬂ:l"'dﬂ:r dpl "'dp87
Y:
where

Y2 :{(1"17'-' s Ly PLly -« - aps):l‘ivpj ZO’$1+"'+$T+P1+”'+PS St}

Let fr s(t) denote the value of the above integral. By changing variables, it
is clear that

frs(1)

1
/ fr—1,s(1 — 1) day
0

1
= fs() / 27 g
0

1

= _1.(1).
r+23f 15(1)

Proceeding inductively, we get

(29)! 'fO,s(l)-

frs(1) = Tt 2s)l
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Now we evaluate fo ;(1) by integrating with respect to p, first:

1
foas(l) = ‘/0 Psfo,s—1(1—ps)dps

1
= fO,s—l(l)/O pS(l_ps)zs_z dps
fO,s—l(l)

2s(25— 1)
Again, proceeding inductively, we find fo (1) = 1/(2s)! so that

1 1

frs(1) = el nl

This completes the proof.

Exercise 6.5.11 Let C be a bounded, symmetric, convex domain in R". Let
ai,...,an be linearly independent vectors in R™. Let A be the n x n matrix
whose rows are the a;’s. If

vol(C) > 2"|det A,
show that there exist rational integers x1,... ,Zn (not all zero) such that
r161+ -+ Znan € C.
Solution. Consider the set D of all (z4,...,z,) € R" such that
z1a1 + - - - + Tpa, € C.

It is easily seen that D is bounded, symmetric, and convex because C is.
Moreover, D = A~1C so that by linear algebra,

vol(D) = vol(C)(|det A|)~*.

Thus, if vol(D) > 2", then D contains a lattice point (z1,... ,z,) # 0 such
that zyay + - - - + Tpa, € C. But vol(D) > 2™ is equivalent to

vol(C) > 2"|det A|,
as desired.

Exercise 6.5.12 (Minkowski’s Bound) Let K be an algebraic number field
of degree n over Q. Show that each ideal class contains an ideal a satisfying

! r2
Na< lﬂ (é) \dx|*/2,
n m

where 7 is the number of pairs of complex embeddings of K, and dx is the
discriminant.
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Solution. Given any ideal b, let wy,... ,w, be a basis of b. Let
a; = (0'1(&),:), ceeyO0py (wi)vR‘e(UT1+1(wi))7
Im(UT1+1(wi))7 LR 7Re(UT1+T2 (wi))v Im(UT1+T2 (wi))) €R™

Then the a; are linearly independent vectors in R™. Consider the bounded
symmetric convex domain X; defined in Exercise 6.5.9 above (with r =
r1,8 = r2). By Exercise 6.5.10 above, the volume of X; is

27‘1 —T2 ,n.Tg t’n
n!
If ¢ is chosen so that this volume is greater than 2"|det A|, then X; contains
a lattice point (1,... ,%n) so that

0+ 101 + - + Tnan € Xi.

Let us set @ = 21wy + - - - + Tpw, € b. By the arithmetic mean — geometric

mean inequality, we find

t
N(a)|¥/™ < =
IN(@)"™ <

IN(a)| < (%)n

Moreover, det A = 27"2|N(b)||dx|*/? and

t"  27|det A 4\"
O T (2) et

nl = ori—ragre

so that

Thus, there is an « € b, & 5 0 such that

= pn

1 /4\™
V@< 2 (3) bl

Write (o) = ab for some ideal a. Then

1 /4\™
vas i (3) e

nn
as desired.

Exercise 6.5.13 Show that if K # Q, then |dx| > 1. Thus, by Dedekind’s
theorem, in any nontrivial extension of K, some prime ramifies.

Solution. Since Na > 1, we have by the Minkowski bound,

n! /4\"?
1<— (;) |dge |/
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so that n n /2
T n
|dK|1/2 > Zl_ (E) 2 > Zl_ (E) = c,,

n! \ 4

say. Then
Cntl _ (2)1/2 (1+ 1)",

Cn 4 n
which is greater than 1 for every positive n. Hence ¢,41 > ¢,. We have
¢y > 1so that {dg| > 1,ifn > 2.

Exercise 6.5.14 If K and L are algebraic number fields such that dx and dj
are coprime, show that K N L = Q. Deduce that

[KL:Q]=[K:Q][L:Q]

Solution. If M = K N L, then by a result of Chapter 4, dps | dx and
dpr | dr. Since di and dp are coprime, dps = 1. But then, by the previous
exercise, M = Q. We have

[KL:Q]=[KL: K]K :Q].

Let L = Q(6) and g its minimal polynomial over Q. If [KL : K] < [L: Q],
then the minimal polynomial 4 of § over K divides g and has degree smaller
than that of g. Thus the coefficients of h generate a proper extension T
(say) of Q which is necessarily contained in K. Hence, dr|dk. If we let L
be the normal closure of L over Q, then h € L[z]. We now need to use the
fact that primes which ramify in L are the same as the ones that ramify in
L (see Exercise 5.6.28). Since T is contained in L, we see that dr|d; and
by the quoted fact, we deduce that dy, and dg have a common prime factor
if dr > 1, which is contrary to hypothesis. Thus, dr = 1 and by 6.5.13 we
deduce T = Q, a contradiction.

Exercise 6.5.15 Using Minkowski’s bound, show that Q(+/5) has class number
1.

Solution. The discriminant of Q(+/5) is 5 and the Minkowski bound is
2! V5
—Vb=—=111....
22 Vs 2

The only ideal of norm less than v/5/2 is the trivial ideal which is principal.

Exercise 6.5.16 Using Minkowski’s bound, show that Q(v/—5) has class number
2.

Solution. The discriminant of Q(v/—5) is —20 and the Minkowski bound

18 9 4
ZV20=2(2.236...) =284....
m m
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We need to look at ideals of norm 2. There is only one ideal of norm 2 and
by Exercise 5.2.5 we know that Z[/—5| is not a principal ideal domain.
Hence the class number must be 2.

Exercise 6.5.17 Compute the class numbers of the fields Q(v/2), Q(v/3), and
Q(V13).

Solution. The discriminants of these fields are 8,12, and 13 respectively.
The Minkowski bound is

Vldkx| < 3V13=1.802....

The only ideal of norm less than 1.8 is the trivial ideal, which is principal, so
the class number is 1. (Recall that in Exercises 2.4.5 and 2.5.4 we showed
that the ring of integers of Q(v/2) and Q(+/3) are Euclidean and hence
PIDs. So that the class number is 1 for each of these was already known
to us from Chapter 2.)

Exercise 6.5.18 Compute the class number of Q(+/17).
Solution. The discriminant of Q(+/17) is 17 and the Minkowski bound is

1 —
LV1T=206....

We need to consider ideals of norm 2. Since

9-17 3-+17 3+V17

9 =
4 2 2

2 splits and the principal ideals ((3 + v/17)/2) and ((3 — v/17)/2) are the
only ones of norm 2. Therefore, the class number is 1.

Exercise 6.5.19 Compute the class number of Q(v/6).

Solution. The discriminant is 24 and the Minkowski bound is
Wu=Ve=244. .,

2 ramifies in Q(+v/6). Moreover,
—2=(2-V6)(2+ V6)

so that the ideal (2 — v/6) is the only one of norm 2 since (2+v/6)/(2—v/6)
is a unit. Thus, the class number is 1.

Exercise 6.5.20 Show that the fields Q(v/—1), Q(v/—2), Q(v/—3), and Q(v/~=7)

each have class number 1.
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Solution. The Minkowski bound for an imaginary quadratic field K is

2
—v|dk|-
s

The given fields have discriminants equal to —4, —8, —3, —7, respectively.
Since Y

2 442

ZV8="X2=180...,

m m
we deduce that every ideal is principal.

Exercise 6.5.21 Let K be an algebraic number field of degree n over Q. Prove

that )
m\" {n”
dx| > (F) (m) :
Solution. This follows directly from Minkowski’s bound.

Exercise 6.5.22 Show that |dx| — oo as n — oo in the preceding question.
Solution. From integral calculus,
logn! = nlogn —n+ O(logn),

so that -
log |dk| > (2 + log Z) n+ O(logn).

Exercise 6.5.23 (Hermite) Show that there are only finitely many algebraic
number fields with a given discriminant.

Solution. We give a brief hint of the proof. From the preceding question,
the degree n of K is bounded. By Minkowski’s theorem, we can find an
element o # 0 in Ok so that

0] < Videl, e <1, i=2

We must show « generates K, but this is not difficult. With these inequal-
ities, the coefficients of the minimal polynomial of « are bounded. Since
the coefficients are integers, there are only finitely many such polynomials.

Exercise 6.5.24 Let p be a prime = 11 (mod 12). If p > 3", show that the
ideal class group of Q(y/—p) has an element of order greater than n.

Solution. Since —p =1 (mod 3), 22 = —p (mod 3) has a solution and so
3 splits in Q(v/—3). Write
(3) = pr1p}-
We claim the order of gp; in the ideal class group is at least n. If not, pf*
is principal and equals (u + vy/—p) (say) for some m < n. Taking norms,
we see
3" =% 4 pv2
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has a solution. If v # 0, this is a contradiction since p > 3. If v = 0, we
get m is even, so that

m m m/2 m
Pl = (w) = (3™/2) = o *(p))™?,
contradicting unique factorization.

Exercise 6.5.25 Let K = Q(a) where « is a root of the polynomial f(z) =
z° — z + 1. Prove that Q(a) has class number 1.

Solution. Since f(x) is a polynomial of the type described in Exer-
cise 4.5.4, we deduce immediately that dg/g(a) = 5° —4* = 2869 = 19-151.
Since dg/g(c) is squarefree, Exercise 4.5.26 tells us that Ox = Z[c] and
dx = 2869. A quick look at the graph of f(z) = z® — z + 1 shows that
r1 =1 and rp = 2.

Using Minkowski’s bound, we find that every ideal class must contain an
ideal a of norm strictly less than 4. Therefore we must look at the numbers
2 and 3 to see how they factor in this ring. Let p be an ideal such that
Np =2or 3. Then p is prime, because Ok /g is a field. Recall that to find
p we consider f(z) mod p. If

f@)=fi* (@) fe(x) (mod p),

then pOg factors as pi* -- - pg° with Np; = pf* where f; is the degree of
fi(@).

First, suppose we have an ideal p with Np = 2. Then p must appear in
the prime factorization of 20k, and so in the factorization of f(z) (mod 2),
there is a linear factor. However, it is easy to see that 5 — z + 1 has no
linear factor mod 2, and so there are no ideals of norm 2. By a similar
argument, we see that z°> — z + 1 must have a linear factor mod 3, if there
exists an ideal p with norm 3. Again, it is clear that z° — x + 1 can have
no linear factor, and we conclude that there are no ideals of norm 3 in Og.
Thus, the only ideal of norm less than 4 is the trivial ideal, and we conclude
that Ox has class number 1.

Exercise 6.5.26 Determine the class number of Q(v/14).

Solution. The Minkowski bound in this case is
21
2—2\/14- =+14=374....

Then we must check ideals of norm less than or equal to 3. Therefore we
must look at 20 and 30k to see how they factor in this ring. Since 3 is
inert, there are no ideals of norm 3. However, 2 ramifies as

(2) = (4 + VIA)(4 - VI4) = ¢,

where p = (4 + V14). This is a principal ideal, and we conclude that all
ideals of Q(v/14) are principal and so the class number is 1.
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Exercise 6.5.27 If K is an algebraic number field of finite degree over Q with
dx squarefree, show that K has no non-trivial subfields.

Solution. By Exercise 6.5.13 and 5.6.25, any proper subfield would intro-
duce a power into the discriminant of K.



Chapter 7

Quadratic Reciprocity

7.1 Preliminaries

Exercise 7.1.1 Let p be a prime and a # 0. Show that 2 = a (mod p) has a
solution if and only if a®~V/2 =1 (mod p).

Solution. = Suppose that 2 = a (mod p) has a solution. Let ¢ be this
solution, i.e., 3 = a (mod p). But then,

aP~D/2 = (g2)P~D/2 = P~ =1 (mod p).

The last congruence follows from Fermat’s Little Theorem.

<« We begin by noting that @ # 0 (mod p). So a (mod p) can be viewed
as an element of (Z/pZ)™, the units of (Z/pZ). Since (Z/pZ)* is a cyclic
group, there exists some generator g such that {g) = (Z/pZ)*. So, a = g¥,
where 1 < k < p — 1. From our hypothesis,
alP=D/2 = gh(e=1/2 = 1 (mod p).

Because the order of g is p— 1, p — 1|k(p — 1)/2. But this implies that 2|k.
So k = 2k’. So, we can write a (mod p) as

a=g" =g =(¢*)" (modp).
Hence a is a square mod p, completing the proof.
Exercise 7.1.2 Using Wilson’s theorem and the congruence
k(p— k) = —k* (mod p)
compute (—1/p) for all primes p.

263
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Solution. The case when p = 2 is trivial since every odd number is con-
gruent to 1 (mod 2). Then we will assume that p is an odd prime. To
begin, we recall Wilson’s theorem (proved in Exercise 1.4.10) which states
that for any prime p, we have (p—1)! = —1 (mod p). We note that (p—1)!
can be expressed as

(p—1)!:1-2-3---’%1-(p—1%1)-(p—(z%ld))---(p—l)-

Thus, when we mod out by p on both sides, we get

B () (- (5o

-1

I
-
ro
o

i
—~
—_
e
)
L
¢
[\v]
| |
TN
<
N
—_
N—’
—
[\v]
~~
=
o
o
<
y

If p=1 (mod 4), then it follows that (p — 1)/2 = 2a for some integer
a. Hence, from the above identity,

o () = (5 =t i

So, —1 is a quadratic residue mod p if p =1 (mod 4).

If p=3 (mod 4), we find that (p — 1)/2 is odd. If 22 = —1 (mod p),
then by Exercise 7.1.1, (=1)(P=9/2 = 1 (mod p). But since p = 3 (mod 4),
we know that (—1)P=1/2 = —1 (mod p). So, there can be no solutions to
7?2 = —1 (mod p) if p =3 (mod 4).

Thus
(_—__1_)__ 1 ifp=1 (mod4),
p/) |-1 ifp=3 (mod4).

Finaliy, we observe that we can encode this information more compactly

(:;) — (—1)®-D/2

Exercise 7.1.3 Show that
a®~1/2 = (g) (mod p).

Solution. If p | a, then the conclusion is trivial. So, suppose p does not
divide a. By Fermat’s Little Theorem, a?~! = 1 (mod p). We can factor
this statement as

as

aP™t—1=(@P V2 _1)(a® V2 1 1) =0 (mod p).

Thus, a®?~1/2 = £1 (mod p). We will consider each case separately.
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If a»~V/2 = 1 (mod p), then by Exercise 7.1.1, there exists a solution
to the equation 2 = a (mod p). But this implies (a/p) = 1.

If a?»~1/2 = —1 (mod p), then Exercise 7.1.1 tells us there is no solution
to the equation 22 = a (mod p). So, (a/p) = —1. We conclude that

alP~ /2 = (%) (mod p).

)=6)G)

Solution. We will use Exercise 7.1.3 to prove this result. Thus,

(“_b> = (ab)®V/2 (mod p).

Exercise 7.1.4 Show that

p
Similarly,
(2)=a 7 (modp),
and .
(5> =bP"V/2  (mod p).
But then
(%’) = (ab)PV/2 = qP-D/2p-1)/2 = (%) (%) (mod p).
Thus

(5)=G)(G) o

But because the Legendre symbol only takes on the values £1, we can

I‘eWI‘lte thlS Statement as

which is what we wished to show.

Exercise 7.1.5 If a = b (mod p), then

(5)=(6)

Solution. This is clear from the definition of the Legendre symbol. If a is
a quadratic residue mod p then so is b. The same is true if @ is a quadratic
nonresidue.
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Exercise 7.1.7 Show that the number of quadratic residues mod p is equal to
the number of quadratic nonresidues mod p.

Solution. The equation a(P~1/2 =1 (mod p) will have (p—1)/2 solutions.
This can be deduced from the fact that (Z/pZ)* is a cyclic group with some
generator g, where g is a (p — 1)st root of unity. So, for any even power of
g, i.e., g?F, we will have

() P~D/2 = (=1 =1 (mod p).
For any odd power,
(PFYP=D/2 = (e=1/2) £ 1 (mod p).

The last congruence holds since g is a (p—1)st root of unity. Thus, half of the
elements of (Z/pZ)* will correspond to some even power of g, and hence,
a'P~D/2 = 1 (mod p). But this in turn implies that there are (p — 1)/2
elements such that (a/p) = 1. Since there are (p — 1) residues mod p, there
are (p—1)— (p—1)/2 = (p — 1)/2 residues that are not squares. But now
we have that the number of quadratic residues mod p and the number of
quadratic nonresidues mod p are equal.

OE

a=1

Exercise 7.1.8 Show that

for any fixed prime p.

Solution. From Exercise 7.1.7, the number of residues equals the number
of nonresidues. So, there are (p —1)/2 residues, and (p — 1)/2 nonresidues.

Thus )
Z(%) =p;1(1)+pgl(—1):0.

a=1

7.2 (zauss Sums

Exercise 7.2.2 Show that

s'=(4)s (mod o)

p
where ¢ and p are odd primes.

Solution. Let K = Q(({,), where (, is a primitive gth root of unity. Let
R = Ok be its ring of integers. So
q

S4

H It
N
SRR N
~— Wie
(=3 . o’
T e
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This follows from the fact that (z1 4+ - +z,)? = z] +--- + 2¢ (mod g).
Also, because ¢ is an odd prime, and because (a/p) only takes on the values
+1, we have (a/p)? = (a/p). Hence

Z (%) »7 (mod qR).

a mod p

.
SO, it f()ll()WS that

1= 3 (g (mod e

Sq

However,

a mod p p
a
= (2> 3 (—q>ggq (mod gR).
p a mod p p

But as a runs through all the residue classes mod p, so will ag. Thus,
q P q
S?= v S (mod gR).

From this, it follows that

completing the proof.

7.3 The Law of Quadratic Reciprocity

Exercise 7.3.2 Let ¢q be an odd prime. Prove:

(a) If ¢ = 1 (mod 4), then g is a quadratic residue mod p if and only if p = r
(mod ¢), where r is a quadratic residue mod g.

(b) If ¢ =3 (mod 4), then g is a quadratic residue mod p if and only if p = +b*
(mod 4q), where b is an odd integer prime to g.

Solution. (a) We begin by rewriting the result of Theorem 7.3.1 in the
following equivalent form:

()

Since ¢ =1 (mod 4), (g — 1)/2 is even, so we will have

0E)-
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From this it follows that either (p/q) =1 = (¢/p), or (p/q) = —1 = (q/p).
We can now prove the statement.

= If (¢/p) = 1, then (p/q) = 1. So, by Exercise 7.1.5, p = r (mod q),
where 1 is a quadratic residue mod gq.

<= Suppose p = r (mod ¢), and (r/q) = 1. But then (p/q) = (r/q), and
thus, (p/q) = 1. Since (¢/p) = (p/q) by quadratic reciprocity, we must also
have that (¢/p) = 1, which implies that ¢ is a quadratic residue mod p.
This completes the proof of (a).

(b) Suppose ¢ = 3 (mod 4). Then, quadratic reciprocity gives us

()= 0)

= Suppose (g/p) = 1. Then, we have two cases:

Case 1. (—1)P=1)/2 = _1 and (p/q) = —1.

Case 2. (—1)»=D/2 =1 and (p/q) = 1.

Case 1. First we note that (—1)P~1/2 = _—1 implies that p = 3
(mod 4). Because ¢ = 3 (mod 4), we have from an earlier exercise that

(2)-6)--
q q
But then, we find that

(3)-)@)-)

q a/)\q a/

Hence (p/q) = (—b?/q), and p = —b? (mod q). We can suppose that b is
odd. If not, we can replace it with ¥ = b+ ¢, which is odd. Since b is odd,
b=2n+1. Thus b2 = 4n? + 4n + 1, and so —b? = 3 (mod 4). Since we
already deduced that p = 3 (mod 4), we have p = —b% (mod 4). Because
p=—b? (mod q), we conclude that p = —b? (mod 4q).

Case 2. (—=1)P~1)/2 = 1 implies that p = 1 (mod 4). Also, (p/q) =
(b%/q). Assume b is odd for the same reason given above. So p = b
(mod q). Because b is odd, we have b = 2n + 1, which means that b =1
(mod 4). But p = 1 (mod 4), so clearly p = »* (mod 4). Since we also
know that p = b2 (mod q), we conclude that p = b? (mod 4q).

< Suppose we have p = +b? (mod 4q), where b is coprime to q. We
will examine each case, p = b2 (mod 4q) and p = —b? (mod 4q) separately.
If p = b% (mod 4q), we have p = b? = 1 (mod 4), and p = b*> (mod gq).
But p = 1 (mod 4) implies that (—1)?~1/2 = 1. Since p = b? (mod q) it

q q '

Hence
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80 ¢ is a quadratic residue mod p.

If p = —b? (mod 4q), we have both that p = —b? = 3 (mod 4), and
p=—b? (mod q). So, (—1)»~1/2 = _1 from the fact that p =3 (mod 4).
From p = —b? (mod q), we deduce that

0-()-@ -

Since ¢ = 3 (mod 4), we know that (—1/¢) = —1. So, (p/q) = —1. Thus,

(4) = oo (2) = ye-p -1

It now follows that ¢ is a quadratic residue mod p. This completes the
proof.

Exercise 7.3.3 Compute (5/p) and (7/p).

Solution. We will first compute (5/p). Since 5 =1 (mod 4), we can use
part (a) of Exercise 7.3.2. So (5/p) =1 if and only if p =r (mod 5), where
r is a quadratic residue mod 5. It is easy to determine which r are quadratic
residues mod 5; 12 = 1,22 = 4,32 = 4,42 = 1. So, 1 and 4 are quadratic
residues mod 5, while 2 and 3 are not. Thus

1 ifp=1,4 (mod 5),

5
(5> =¢-1 ifp=2,3 (mod 5),
0 ifp=5.

Now, we will find (7/p). Since 7 = 3 (mod 4), we must use part (b) of
Exercise 7.3.2. So, we have to compute all the residues mod 28 of all the
squares of odd integers prime to 7. Some calculation reveals that

1213%,15%,272=1 (mod 28),

32,112,172,252 =9 (mod 28),

and
52,9%,17%,232 =25 (mod 28).

Thus
. 1 ifp=+1,49,4£25 (mod 28),
(—) =4 -1 if p=45=+11,+£13 (mod 28),
0 ifp=".
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7.4 Quadratic Fields

Exercise 7.4.1 Find the discriminant of K = Q(v/d) when:
(a) d=2,3 (mod 4); and
(b) d=1 (mod 4).

Solution. (a) If d = 2,3 (mod 4), then w; = 1,w, = V/d forms an integral
basis for Og. Then an easy calculation shows that di = 4d.

(b) For d =1 (mod 4), then w; = 1,ws = (1 + V/d)/2 forms an integral
basis. Then di = d.

(See also Example 4.3.4.)

Exercise 7.4.3 Assume that p is an odd prime. Show that (d/p) = 0 if and only
if pOx = p?, where g is prime.

Solution. = We claim that pOx = (p, vVd)2. Notice that

(p,Vd)? = (p%,pVd,d) = (p)(p, Vd, d/p).

Because d is squarefree, d/p and p are relatively prime. So, (p, Vid, d/ p) = 1.
Since (p,Vv/d) is a prime ideal (for the same reason given above), we have
shown that pOg ramifies.

< Once again, let m be the discriminant of K = Q(v/d). Since pOg
ramifies we can find some a € p, but a € pOk. So, a =z + y(m + /m)/2.
Since a2 € pOg, we get

2 2 2
2z +ymP 4t my? (22 +ym)

1 1 \/EEPOK.

Thus, p | (22 +ym)? +my? and p | y(2z+ym). If p | y, then p | 22. Since p
is odd, p | z. But then a € pOg. This is a contradiction. So, p | (2z + ym)
and p | my?. Thus, p | m. But this means that (d/p) = 0, since p is an odd
prime.

Exercise 7.4.4 Assume p is an odd prime. Then (d/p) = —1 if and only if
pOx = p, where p is prime.

Solution. This follows immediately from Theorem 7.4.3 and Exercise 7.4.3.
If (d/p) = —1, then we know that pOg does not split, nor does it ramify.
So pOj must stay inert. Conversely, if pOg is inert, the only possible value
for (d/p) is —1.

7.5 Primes in Special Progressions

Exercise 7.5.1 Show that there are infinitely many primes of the form 4k + 1.
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Solution. Suppose there are only a finite number of primes of this form.
Let p1,p2,... ,pn e these primes. Let d = (2pip2---pn)? + 1. Let p be
a prime that divides this number. So d = 0 (mod p), which implies that
(-1/p)=1.

From Exercise 7.1.2, we know that this only occurs if p = 1 (mod 4).
So, p € {p1,p2,... ,Pn}- But for any p; € {p1,p2,...,Pn}, p; does not
divide d by construction. So p & {p1,p2,... ,Pn}. Thus, our assumption is
incorrect, and so, there must exist an infinite number of primes of the form
4k + 1.

Exercise 7.5.2 Show that there are infinitely many primes of the form 8% + 7.

Solution. Suppose the statement is false, that is, there exist only a finite
number of primes of the form 8k + 7. Let p1,p2,...,pn be these primes.
Construct the following integer, d = (4p1p2---pn)? — 2. Let p be any
prime that divides this number. But then (4pip2---p,)% = 2 (mod p), so
(2/p) = 1. From Theorem 7.1.6, we can deduce that p = +1 (mod 8).

We claim that all the odd primes that divide d cannot have the form
8k + 1. We observe that 2 | (4p1ps---pn)? — 2. So, any odd prime that
divides d must divide 8(p1p2---pn)? — 1. If all primes were of the form
8k + 1, we would have

8(p1p2- - pn)? — 1= (8ky +1)°* - (8ka + 1) -+ - (8kyy, + 1)°.

But now consider this equation mod 8. We find that —1 = 1 (mod 8),
which is clearly false. So, there must be at least one odd prime p of the
form 8k + 7 that divides d.

So, p € {p1,p2,--- ,Pn}. But pcannot be in {p1,pa,...,pn} since every
p; leaves a remainder of —2 when dividing d. So, {p1,p2,...,pn} does not
contain all the primes of the form 8k + 7. But we assumed that it did.
We have arrived at a contradiction. Therefore, there must be an infinite
number of primes of the form 8k + 7.

Exercise 7.5.3 Show that p =4 (mod 5) for infinitely many primes p.

Solution. From the preceding comments, we know that we can use a
Euclid-type proof to prove this assertion since 42 = 1 (mod 5). So, suppose
there exists only a finite number of such primes, say p,ps,. .. ,pn. Consider
the integer 25(p1p2 - - - pn)? — 5. Then for any prime divisor not equal to 5,
we will have (5/p) = 1. From Exercise 7.3.3, we know that this will only
occur if p=1,4 (mod 5). Since p # 5, then p | 5(p1 - - - pn)? — 1. So, all the
prime divisors cannot be congruent to 1 (mod 5), because if this was true,
—1 =1 (mod 5) which is clearly false. So, there is some p = 4 (mod 5)
that divides 5(p; - - - p,)? — 1. But p is not any of the py, ... ,p, since none
of these numbers divide 5(p; - - - p,)? — 1. This gives us a contradiction.
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7.6 Supplementary Problems
Exercise 7.6.1 Compute (11/p).

Solution. Since 11 =3 (mod 4), we use Exercise 7.3.2 (b) which says that
11 is a quadratic residue mod p if and only if p = +b% (mod 44) where b
is an odd integer prime to p. If we compute 2> (mod 44) for all possible b,
we get

12,212232/43° = 1 (mod 44),
32,19%,25%,412 = 9 (mod 44),
52,172,272,392 = 25 (mod 44),
72,152,29%2,372 = 5 (mod 44),

92,132,312,352 = 37 (mod 44).

It is now easy to determine the primes for which 11 is a quadratic residue
by applying Exercise 7.3.2.

Exercise 7.6.3 If p = 1 (mod 3), prove that there are integers a,b such that
p=a%—ab+ b2

Solution. Let p = (1++/—3)/2 and consider Q(v/—3). The ring of integers
of Q(v/—3) is Z[p]. Sincep =1 (mod 3), z24+3 =0 (mod p) has a solution.
Hence p splits in Z[p]. Now use the fact that Z[p| is Euclidean.

Exercise 7.6.4 If p = 41 (mod 8), show that there are integers a,b such that
a? — 2b% = 4p.

Solution. Consider the Euclidean ring Z[v/2).

Exercise 7.6.5 If p = +1 (mod 5), show that there are integers a, b such that
a®+ab—b%=1p.

Solution. Let w = (14 v/5)/2 and consider Z[w].
Exercise 7.6.10 Show that the number of solutions of the congruence
2’ +y* =1 (modp),
0<z<p, 0<y<p(panodd prime), is even if and only if p = +3 (mod 8).

Solution. Pair up the solutions, (z,y) with (y, z). The number of solutions
is even unless (z,z) is a solution which means that 2 is a square mod p.

Exercise 7.6.11 If p is a prime such that p — 1 = 4q with ¢ prime, show that 2
is a primitive root mod p.
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Solution. The only possible orders of 2 (mod p) are 1,2,4,q,2q, or 4q.
Since p > g, the orders 1, 2, 4 are impossible. If the order is g or 2q, then
2 is a quadratic residue mod p. However, p =5 (mod 8).

Exercise 7.6.12 (The Jacobi Symbol) Let Q be a positive odd number. We
can write QQ = qi1q2---gs where the g; are odd primes, not necessarily distinct.

Define the Jacobi symbol
a a
(Q) - H ((h) ’

If @ and Q' are odd and positive, show that:
(a) (/Q)(0/@) = (6/QQ).

(b) (a/Q)(a'/Q) = (ad'/Q).

() (a/Q) = (a'/Q) if a =a’ (mod Q).

Solution. All of these are evident from the properties of the Legendre
symbol. For (c), note that a = o’ (mod Q) implies a = a’ (mod ¢;) for
i=1,2,...,s.

Exercise 7.6.13 If @ is odd and positive, show that

(:Ql) EPERNCEZ

Solutijon.
(3)~I1(5) = -2 = iz
Q =1 N j=1

Now, if a and b are odd, observe that

ab—1 _(a—1+b—1> _(e-D(-1) =0 (mod 2).

2 2 2 2
Hence
a—1+b—1 :ab—l
2 2 2
Applying this observation repeatedly in our context gives

A WP B
(Q) A

Exercise 7.6.14 If Q is odd and positive, show that (2/Q) = (—1)(Q2_1)/8.

(mod 2).

Solution. If a and b are odd, then

a®b® -1 <a2—1 b2—1) (a® —1)(* - 1)

8 8+8
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s0 we have
a2-1 »¥-1_ a2 -1

+ =
8 8 8
Again applying this repeatedly in our context gives the result.

(mod 8).

Exercise 7.6.15 (Reciprocity Law for the Jacobi Symbol) If P and Q are
odd, positive, and coprime, show that

(5)(8) =

Solution. Write P = [[;_, p; and @ = [];_, g;. Then

() - 1()-1I()

j=1 j=14=1
p;—1 q;—1
- HH("’) e
j=1l:i=1

- (@

by the reciprocity law for the Legendre symbol. But, as noted in the pre-
vious exercises,

" pp—-1 P-1
Zp2 =-—— (mod 2)
=1

and .
:9_
2 =

(mod 2),
i=1

which completes the proof.

Exercise 7.6.16 (The Kronecker Symbol) We can define (a/n) for any in-
teger a =0 or 1 (mod 4), as follows. Define

0 ifa=0 (mod4),

ay_ (e \_ ifa= (m );
()= (%) = ¢ ezt s

For general n, write n = 2°n;, with n; odd, and define
-G (=
n/  \2 n/’

where (a/2) is defined as above and (a/n1) is the Jacobi symbol.
Show that if d is the discriminant of a quadratic field, and n, m are positive

integers, then
d d
- == for n=m (mod d)
n m
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(g) = (%) sgnd for n=-m (mod d).

Solution. Let d = 2°d’,n = 2°n/,m = 2°m’ with d’,n/,m’ odd. If a > 0,
the case b > 0 is trivial since then ¢ > 0 and both the symbols are zero. So
suppose b = ¢ = 0. Then

(£)-(2)- (F ()

and similarly

d 2¢d’ 2 m ,
— ) = _ (_1ye(mP-1)/8 (TN \(m—-1)(d'—1)/2
(m) (m) =D (7)o :

Since 4 | d, the first factors coincide for m and n. The same is true for the
other factors in the case n = m (mod d). But if n = —m (mod d), they
differ by sgnd’ which is sgn d.

In the case a = 0, we note d = 1 (mod 4). Then

(-G -6 ()-() ()
since (d/2) = (2/d) for d =1 (mod 4). Thus (d/n) = (n/d) and (-1/d) =
sgnd. Therefore

(i) = (é) for m,n>0, m=n (modd)

and

and
(4)- ()= () ome () (2) e
for n = —m (mod d).

Exercise 7.6.17 If p is an odd prime show that the least positive quadratic
nonresidue is less than /p + 1.

(It is a famous conjecture of Vinogradov that the least quadratic nonresidue
mod p is O(p®) for any € > 0.)

Solution. Let n be the least positive quadratic nonresidue and m the least
such that mn > p, so that n(m — 1) < p. Since p is prime, n{m — 1) < p <
mn. Now mn — p < n so that

-(5)-(3)-6)

Therefore m > n, so that (n —1)2 < n(n — 1) < p.
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Exercise 7.6.18 Show that z* = 25 (mod 1013) has no solution.

Solution. First observe that 1013 is prime. If ! = 25 (mod 1013) had a
solution 7o, then z2 = £5 (mod 1013). However,

(13153) - (10513) - (10513) = (2) =-1

8o the congruence has no solutions.

Exercise 7.6.19 Show that z* = 25 (mod p) has no solution if p is a prime
congruent to 13 or 17 (mod 20).

Solution. If the congruence has a solution, then
+5 5 p +3
1 = —_ = —_ = — = —_ = —1
5)-6)-60-()-~

Exercise 7.6.20 If p is a prime congruent to 13 or 17 (mod 20), show that
z* + py* = 25z* has no solutions in integers.

a contradiction.

Solution. We may suppose that ged(z,y,z) = 1, because otherwise we
can cancel the common factor. Also ged(p,z) = 1 for otherwise p | z and
p | y. Now reduce the equation mod p. We have a solution to z* = 252*
(mod p) so that by the previous question,

-(5)- ()~

Exercise 7.6.21 Compute the class number of Q(1/33).

a contradiction.

Solution. The discriminant is 33 and the Minkowski bound is
% 33=2.87....

Since 33 = 1 (mod 8), 2 splits as a product of two ideals each of norm 2.

Moreover,
_ V33-5 V33+5
2 2

2

and so the principal ideals

V33-5 V3345
(F52) wa (557)

are the only ones of norm 2. Hence the class number is 1.
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Exercise 7.6.22 Compute the class number of Q( V21).

Solution. The discriminant is 21 and the Minkowski bound is 2.29... .
However, 21 = 5 (mod 8) so that 2 is inert in Q(v/21). Therefore, there
are no ideals of norm 2 and the class number is 1.

Exercise 7.6.23 Show that Q(+/—11) has class number 1.

Solution. The field has discriminant —11 and Minkowski’s bound is

2
—v11=211....
T

We must examine ideals of norm 2. Since —11 = 5 (mod 8), by Theo-
rem 7.4.5, 2 is inert in Q(+/—11), so that there are no ideals of norm 2.
Hence the class number is 1.

Exercise 7.6.24 Show that Q(+/—15) has class number 2.

Solution. The field has discriminant —15 and Minkowski’s bound is

2 156=2.26....
m

Since —15 = 1 (mod 8), by Theorem 7.4.5, 2 splits as a product of two
ideals p, g’ each of norm 2. If p were principal, then

o= (u+v\/——15>
2

for integers u,v. However, 8 = u? + 15v2 has no solution. Thus g is not
principal and the class number is 2.

Exercise 7.6.25 Show that Q(+/—31) has class number 3.

Solution. The discriminant is —31 and the Minkowski bound is
2
;\/3_ =3.26....

So we must consider ideals of norm less than or equal to 3.
Since —31 =1 (mod 8), 2 splits as g2 - ph (say). Since

()

3 is inert so there are no ideals of norm 3. Moreover, neither p, or g4 are
principal since we cannot solve

8 = u? + 314°.
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Since

12 +(31) - 12 (1—\/—_31> (1+\/—_31>

8= 4 - 2 2

and ((1—+/—=31)/2), ((1++/—31)/2) are coprime, p3 and (g})> are principal.
2 cannot be principal since 16 = u% + 31v2 has no solution except (u,v) =
(£4,0) in which case

05 = (4) = (2)® = p3(p5)%,

which implies (p4)2 = 1, a contradiction. Thus, as each ideal class contains
either (1), p2 or g5 and because p2 is inequivalent to (1) or ps we must
have p2 ~ 5. Thus, g3 ~ (1). Thus, the class number is 3.
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The Structure of Units

8.1 Dirichlet’s Unit Theorem

Exercise 8.1.1 (a) Show that there are only finitely many roots of unity in K.

(b) Show, similarly, that for any positive constant c, there are only finitely many
a € Ok for which |a®| < ¢ for all i.

Solution. (a) Suppose that o™ = 1. Then a € Ok, |a|" =1= |a| =1

and, if o;,...,0, are the distinct embeddings of K in C, then, for each
o) = g;(a), we have that 0;(a)™ = oi(@™) = 1 = |ad]| =1 for i =
1,...,n.

The characteristic polynomial of « is
kG .
falz) = H(m —a ) =z" fa, 12"+ Fag € Zz]
i=1
Now, 4
Oy = (—l)Jsj(a(l), .. ,a(")),

where s; (e, ... ,a(")) is the jth symmetric function in the a, ie., the
sum of all products of the a(¥, taken j at a time. This implies that

lan—;| < (?) < nl

Thus, since the a;’s are bounded, there are only finitely many choices for
the coefficients of the characteristic polynomial of a root of unity @ € K
and, hence, only finitely many such roots of unity.

(b) Suppose that a € O such that || < cforalli=1,... ,n. Asin
(a), let

falz) = H(m —aN=z"4a, 12" '+ Fap € Zz]

=1
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280 CHAPTER 8. THE STRUCTURE OF UNITS

be the characteristic polynomial of «. Then

(n
|an_j| = |5;(aD,... ™) < a( ) < c'nl.
J
Thus, the coefficients of the characteristic polynomial of such an « in O
are bounded. There are, therefore, only finitely many such a.

Exercise 8.1.2 Show that Wk, the group of roots of unity in K, is cyclic, of
even order.

Solution. Let ay,... , o be the roots of unity in K. Forj =1,... 1, of’ =
1 for some g; which implies that a; = e2™P3/% | for some 0 < p; <g; — L
Let g = H£=1 ;- Then, clearly, each «; € (€2™/%) so W is a subgroup of
the cyclic group (e2™/%) and is, thus, cyclic. Moreover, since {+1} C Wk,
Wi has even order.

Exercise 8.1.7 (a) Let I' be a lattice of dimension n in R™ and suppose that
{v1,...,vn} and {wy,... ,wn} are two bases for I" over Z. Let V and W
be the n X n matrices with rows consisting of the v;’s and w;’s, respectively.
Show that |det V| = |det W|. Thus, we can unambiguously define the volume
of the lattice I', vol(I') = the absolute value of the determinant of the matrix
formed by taking, as its rows, any basis for I" over Z.

(b) Let €1,...,&r be a fundamental system of units for a number field K. Show
that the regulator of K, Rk = |det(log |€§.i) )|, is independent of the choice of
Ely.e. yEr.

Solution. (a) Since {w;,...,w,} is a Z-basis for I, we can express each
v; as a Z-linear combination of the w;’s, say v; = > 7_; aj;w;. Setting
A = (ai;), we have that V = AW. Since {v1,... ,v,} is also an integral
basis for T, the matrix A is invertible, A € GL,(Z) = det A € Z* = {+1}.
Thus, |det V| = |det A||det W| = |det W|.

(b) As before, define

fZUK — RT,
e — (logleW,... logleM).

Im f is a lattice of dimension r in R", with Z-basis {f(e1),..., f(e:)},
for any system of fundamental units, £1,... ,¢,. By definition, Rg is the
absolute value of the determinant of the matrix formed by taking, as its
rows, the f (6(i))’s. By (a) then, Ry is independent of the particular system
of fundamental units.

Exercise 8.1.8 (a) Show that, for any real quadratic field K = Q(+/d), where d
is a positive squarefree integer, Ux ~ Z/2Z x Z. That is, there is a fundamen-
tal unit £ € Ux such that Ux = {£e* : k € Z}. Conclude that the equation
x? —dy? = 1 (erroneously dubbed Pell’s equation) has infinitely many integer
solutions for d = 2,3 mod 4 and that the equation 2 — dy® = 4 has infinitely
many integer solutions for d = 1 mod 4.
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(b) Let d =2,3 (mod 4). Let b be the smallest positive integer such that one of
db® £1 is a square, say a*, a > 0. Then a + bV/d is a unit. Show that it is the
fundamental unit. Using this algorithm, determine the fundamental units of

Q(v2), Q(V3).

(¢) Devise a similar algorithm to compute the fundamental unit in Q(v/d), for
d =1 (mod 4). Determine the fundamental unit of Q(/5).

Solution. (a) Since K C R, the only roots of unity in K are {£1}, so
Wiy = {£1}. Moreover, since there are r; = 2 real and 2r; = 0 nonreal
embeddings of K in C, by Dirichlet’s theorem, we have that Ux ~ Wiy XZ ~
Z/2Z x Z.
Suppose that d = 2,3 (mod 4), so that Ox = Z[Vd]. If e = a + bVd €
U%, then
Nk(e) = (a+ bVd)(a — bVd) = a® ~ db® = 1.

ie,eache =a+bVd € U% yields a solution (a,b) € Z? to the equation
12 —dy? = 1. Since U% =~ Z is infinite, there are infinitely many such
solutions.

Suppose, now, that d =1 (mod 4), so that

Oxz{%b\/a:a,beZ,aEb (mod2)}.

If e = (a + bVd)/2 € U%, then Ng(e) = (a® —db?) /4 =1 = a® — db? = 4.
Since UZ% is infinite and each of its elements yields an integral solution to
z2 — dy? = 4, this equation has infinitely many solutions z,y € Z.

(b) We have that db®+1 = a2 so Nk (a+bVd) = +1 and a+bVd € Uk.
Also, a,b > 0 means that a + »/d > 1 so a + bv/d = €, for some k > 1,
where € is the fundamental unit in Q(v/d). If k > 1, then write ¢ = a4 64,
@, > 0. It is easy to see that a + bvd = (o + ﬂ\/a)k implies that « < a
and 8 < b. But d3%2+1 = o?, contradicting the minimality of b. Therefore,
a+ b/d is, in fact, the fundamental unit.

In Q(v/2), 2(1)2 -1 =12 = 14 /2 is the fundamental unit. In Q(v/3),
3(1)2+ 1 = 22 = 2 + /3 is the fundamental unit.

(c) Let d = 1 (mod 4). The same argument as in (b) shows that, if
b is the smallest positive integer such that one of db? & 4 is a square, say
a?,a > 0, then (a + bV/d)/2 is the fundamental unit in Q(v/d). In Q(v/5),
5(1)2 — 4 = 12 = (1 + v/5)/2 is the fundamental unit.

Exercise 8.1.9 (a) For an imaginary quadratic field K = Q(+/—d) (d a positive,
squarefree integer), show that

Z/4Z ford=1,
Uk ~{Z/6Z ford=3,
Z/2Z  otherwise.
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(b) Show that Uk is finite <& K = Q or K is an imaginary quadratic field.

(c) Show that, if there exists an embedding of K in R, then Wi ~ {£1} ~ Z/2Z.
Conclude that, in particular, this is the case if [K : Q] is odd.

Solution. (a) Suppose that —d = 2,3 (mod 4) so that Ox = Z[v/—d]. Let
a+byv—d € Ug. Then a? + db® = 1 (since a?,b%,d > 0, a® + db? # —-1). If
b=0, then a = £1. If b # 0, then a? + db? > d; thus,

d>1 = Ug={£l}~7Z/2Z.
Ford=1, a® +db?> = a®> + b2 = 1 = (a,b) € {(£1,0),(0,£1)}
= Ug = {£1,+i} = (i) ~ Z/4Z.

Suppose now that —d = 1 (mod 4). Then (a + bv/—d)/2 € Ug =
a® +db® = 4. If d > 4, then the only solutions to this equation are (a, b) =
(£2,0)

= Uk ~ 7.)2.

If d = 3, then a2 4 db® = a2 + 3b? = 4. Then (a,b) € {(£2,0), (£1,£1)},
so that

Uk = {5, 2, £1} = (—G) ~ Z/6Z

(where (3 = (=1 ++/=3)/2).

(b) We have already shown that for K a quadratic imaginary field, Ug
is finite. Now, suppose that Uy is finite. Then ry + ro = 1 which implies
that either 11 = 1,7, = O so that [K : Q] =71 +2rp = 1 and K = Q
orry =0,r2 =1and [K: Q] =2 and K € R, so that K is quadratic
imaginary.

(c) If there exists an embedding o : K — R, then K ~ ¢(K) and in
particular Wi ~ W, (g C R. Since the only real roots of unity are {1},
we must have Wx = o~ 1({£1}) = {£1}. In particular, if [K : Q] = r1+2r2
is odd, then rq is odd and, therefore, > 1.

Exercise 8.1.11 Let [K : Q] = 3 and suppose that K has only one real embed-
ding. Then, by Exercise 8.1.8 (c), Wx = {£1} implies that Ux = {+u* : k € Z},
where u > 1 is the fundamental unit in K.

(a) Let u, pe'? pe™*? be the Q-conjugates of u. Show that u = p~2 and that
dxo(u) = —4sin®6(p® + p~° — 2cos ).

(b) Show that |dx/g(u)] < 4(x® +u™2 +6).
(c) Conclude that u®> > d/4—6 —u™® > d/4 — 7, where d = |dk]|.
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Solution. (a) Ng(u) = up? = £1, so u = +p~2, but u > 1 implies that

_ -2
u=p*

drolw) = ] @™ —u)?
1<r<s<3
= (p2 = pe®)?(p™% — pe"*)?(pe’® — pe~
_ (,o_4 — p(ef 1 e=i0) +p2)2(p(ew _ e—w))
= (p7* —p(2cosh) + pz)z(p(2i sin 9))2
= —4sin?0(p® + p~3 — 2cos ).

i0)2
2

(b)
|dx/q(u)] = 4sin? 6(p® 4+ p~2 — 2 cos ).

Now set z = p3 + p~3, ¢ = cosf and consider
f(z) =01 —cH)(z —2)* —2°

This function attains a maximum when z = —2(1—c?)/c and this maximum
is 4(1 — ¢?) < 4. Therefore

ldrso(u)] < 4(p®+p )% + 16
4(u® +u? 4 6).

(c) Since d = |dk| < |dg/p(u)|, we have

d d
3¢ - 3 a
u>4 6—u >4 7.

Exercise 8.1.12 Let a = ¥/2, K = Q(«). Given that dx = —108:

(a) Show that, if u is the fundamental unit in K, u® > 20.

(b) Show that 8= (o —1)""' = a® + a+ 1 is a unit, 1 < 8 < u?. Conclude that
8 =u.

Solution. (a) By Exercise 8.1.11, u® > 108/4 — 7 = 20 so u? > 202/3 > 7.

(b) Computation shows that 1 < a—1 < 1 and therefore 1 < (a—1)"! <
7 < u?. Since 3 is a power of u, this power must be 1. Therefore 3 = u is
the fundamental unit in K.

Exercise 8.1.13 (a) Show that, if @ € K is a root of a monic polynomial f €
Z[z] and f(r) = %1, for some r € Z, then a — 7 is a unit in K.

(b) Using the fact that if K = Q(¥m), then dx = —27m?, for any cubefree
integer m, determine the fundamental unit in K = Q(V/7).

(c) Determine the fundamental unit in K = Q( V3).
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Solution. (a) Let g(z) = f(z + r). Then g(z) is a monic polynomial in
Z[z] with constant term g(0) = f(r) = +1. Since g(a —r) = 0, the minimal
polynomial of @ — r € Ok divides g(z) and, thus, has constant term =1.
Therefore Ng{a —r) =£1so o —r € Ug.

(b) dg = —27- 7% implies that u3 > 27-72/4 — 7 > 323 and so u? >
(323)%/3 > 47 by Exercise 8.1.11.

Let f(z) = 2° — 7 and note that f(2) = 1. Then ¥/7 — 2 € Ug. Also,
1/u? < 1/47 < 2 — /7 < 1 implies that 1 < (2 — ¥/7)~! < u2. Therefore,
(2 — ¥/7)~! is the fundamental unit of Q(+/7).

(c) Let @« = V3, K = Q(a). dg = —27-32 = —3° We observe
that o is a root of f(z) = 2 — 9 and f(2) = —1 s0 &? — 2 € Ug.
We have u® > 35/4 — 7 > 53 and thus u? > 14. Since {; < o? -1 <
1,1 < (e? —2)7! < 14 < u2. Thus, (o? — 2)~! is the fundamental unit of
K = Q).

8.2 Units in Real Quadratic Fields

Exercise 8.2.1 (a) Consider the continued fraction [ao, ... ,as]. Define the se-
quences po, - - - ,Pn and qo, . .. , gn recursively as follows:
Po = ao, qo = 1,
p1 = aoar + 1, q = a1,
Pk = QkPrk—1 + Pk-2, Gk = akqk-1 + Qk—2,

for k > 2. Show that the kth convergent Ck = pi/qk.
(b) Show that prgx—1 — pr—19x = (—l)k_l, for k> 1.

(c) Derive the identities

-1 k—1
Cy—Ck-1= 1) ,
qrkqk—1
for 1 <k < n,and
ax(—1)*
Ci—Ch_g = M,
qkqk—2

for2<k<n.
(d) Show that
Ci1>C3>Cs >+,
Co<Co<Cy<oeny

and that every odd-numbered convergent Ca;41, 7 > 0, is greater than every
even-numbered convergent Cax, k > 0.

Solution. (a) We prove this by induction on k.
For k =0, Cy = [ag] = po/qo. For k =1,

1 (1,0(1,1+I D1
Cr=lag, 1) =ap+ — = —— =—.
a1 ay q1
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For k > 1, suppose that

Pk _ OkPr—1 + Dk—2

Cr = .
ak  QxGk—1 1+ Gk—2

Since px_1,Pr—2,qk—1, gk—2 depend only on ag, ... ,ax_1,

Crky1 = |G0,015.-. ,0k—1,0k +
Qp+1

(ak+ . )Pk—l + Pk—2

Qg1

(ak+ ! )Qk—1+Qk—2

ap41
agy1(arPr—1 + Pr—2) + Pr—1
ar41(arqr—1 + qre—2) + qr—1
Qp+1Pk + Pk—1 _ DPk+1
Qk+19k + qr—1 B Qrt1

(b) Again, we apply induction on k. For k =1,

P1go — pogq1 = (apa1 +1) - 1 —apa; = 1.
For k > 1,

Pk+1Qk — PkGk+1 = (Gk+1Pk + Pr—1)ak — Pr(Ck+1qk + Qr—1)
= Pr—1Gk — PrGe—1 = —(—1)* 1 = (=1)F,

by our induction hypothesis.

(c) By (b),
PrQr—1 — QkPr—1 = (—1)F L.

Dividing by qxqx—1, we obtain the first identity. Now,

dk dk—2 qrdr—2

Ck - Ck_z = Pk _ DPr—2 — DPkqk—2 — Pk—29k .

But

PkQk—2 — Pk—2qk = (@kPr—1 + Pk—2)qk—2 — Pk—2(0kqr—1 + Gx—2)
= ar(Pr—1qK—2 — Pr—2Gk—1) = ax(—1)*72,

establishing the second identity.

(d) By (c), .
-1
Cr = Cr—2= ax(~1)7 :
qkqk—2
Thus, Cx < Ck_2, for k odd and Ci > Ci—o2, for k even. In addition,
(_1)2m—1
Com —Com1=———<0 = Cyp_1 > Oy,

g2mq2m—1

= Cak < Cy(jgksn) < Coiny4r < Caja
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Exercise 8.2.2 Let {a:}:>0 be an infinite sequence of integers with a; > 0 for
i > 1 and let Cx = [ag,... ,ax]. Show that the sequence {Cx} converges.

Solution. By Exercise 8.2.1 (d), we have
Ci>C3>C5>---.

Moreover, each Cy;41 > ao so that the sequence {Cyj41};>0 is decreasing
and bounded from below and is, thus, convergent, say lim;_,., Ca;4+1 = .
Also,

Co<02<04<“‘
and Ca; < Cay1 for all j,k > 0. In particular, each Cy; < C;. The
sequence {Ca;};>0 is increasing and bounded from above and, therefore,
also converges, say lim;_, C2; = ap. We will show that a1 = as.
Since each a; > 1,q90,q1 > 1, we easily see, by induction on k, that
gk = QkQk—1 + qi—2 > 2k — 3. By Exercise 8.2.1 (c),

1 1
< -
@2j+1q2; ~ (45— 1)(47 - 3)

Coj1 — Oz = — 0,

as j§ — oo. Thus, both sequences converge to the same limit o = a3 =
and

lim C; =a.

j—oo

Exercise 8.2.3 Let o = ap be an irrational real number greater than 0. Define
the sequence {ai}:>0 recursively as follows:

1
ak— ak

ak = [Oék], Qp4+1 =
Show that o = [ao, a1, ...] is a representation of a as a simple continued fraction.

Solution. By induction on k, we easily see that each «y is irrational.
Therefore 41 > 1 which means that axy1 > 1 so that [ag,a1,...] is a
simple continued fraction. Also,

[ao] + (@0 — o)) = ap + ail

= [a'0aa1] = [a0aa'1aa2] == [a'Oaa'l," . aa'k,ak+1],

& = &y

for all k. By Exercise 8.2.1 (a),

_ Ogy1Pk + Pk—1

k19K + gr—1
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so that

Op+19k + Q-1 Gk
|~ (Prqr-1 — Pr—19x)
(Cht1Gk + Qe—1)qk ]
1
(Qk+1qk + Ge—1)k
1

%

a— Gyl Ok+1Pk + Pr—1 @1

1
<——-—=0
S @2k 32

as k — oo. Thus,
a= lim Ck = [ag,al,...].

k—oo

Exercise 8.2.5 Let d be a positive integer, not a perfect square. Show that, if
|22 —dy?| < /d for positive integers x, y, then = /y is a convergent of the continued
fraction of V/d.

Solution. Suppose first that 0 < z2 — dy? < v/d. Then
(z+yVd)(z—yVd) >0 = z>yVd,

_ 'f_f _ T g_Toyvd
Y Y Y
z? — dy? z? — dy? 1

T et sewd) W

Thus, by Theorem 8.2.4 (b), z/y is a convergent of the continued fraction

of Vd.
Similarly, if —vd < 2% — dy? < 0, then

0<p-ta2c L o > 2
N ]L_y _y_ 1 _y-z/vd
NZEEE T d x

y? —a?/d <y2—x2/d 1

oy +o/Vd)  27/vVd 2

Thus y/x is a convergent of the continued fraction of 1//d.

Let a be any irrational number. Then a = [ag, a1,...] implies 1/a =
[0,a0,a1,...]. We therefore have that the (k + 1)th convergent of the con-
tinued fraction of 1/« is the reciprocal of the kth convergent of «, for all
k>0.

Using this fact, we find that, as before, z/y is a convergent of the
continued fraction of v/d.
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Exercise 8.2.6 Let a be a quadratic irrational (i.e, the minimal polynomial of
the real number o over Q has degree 2). Show that there are integers Py, Qo,d

such that

with Qo|(d — P§). Recursively define

Py +Vd
Qo

Py + Vd

o >
, Qk
ak (o],
Pk.+_1 aka - ka
d— Pl
Qk+l Qk )
for k =0,1,2,.... Show that [ag,a1,az2,...] is the simple continued fraction of

Q.

Solution. There exist a,b,e, f € Z, e, f > 0, e not a perfect square, such

that
_a+b/e af ++/eb?f?
f f?
and, evidently, f?|(a?f? — eb?f?). Set Py = af, Qo = f%,d = eb?f2. This
sequence is well-defined, since d is not a perfect square = Q. # 0 for all &.
By Exercise 8.2.3, it will suffice to show that ay,1 = —— for all .

Qp—0g

P + \/C_i
ap —ar = -—Q—k — Qk
vd — (axQr — Px)
Qk

\/C_i—Pk+1

Qx

d—PZ 4
Qr(Vd + Piy1)

QrQry1
Qe(Vd + Pryr)

1

Q1

Exercise 8.2.7 Show that the simple continued fraction expansion of a quadratic
irrational « is periodic.

Solution. By Exercise 8.2.6, we may write

a__Po-f-\/c_i
Qo
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with Qo|(P# — d). Setting

P, +d
ap = ——,

Qk
ar = o),
Prii = axQr — Fr,
d— P2,

Qk

Qk+1 =

we have
Py =0, P =d,
Qo =1, Q1 =1,
ap=vVd+1, oy =d+Vd2+1,

ag = d, a; = 2d.
and a = [ag, a1, ...]. Now,

_ OgPr—1 +Pr—2

arqr-1 + qk—2

and if o' denotes the Q-conjugate of a,

! !

QLDk—1 + Dk— oo —Ci_

o = ;/cpk1 Pk—2 - a;c:_Qk2</ k2).
0Lqr—1 + qr—2 grk—1 \ & —Cr_1

Since Cx_1,Cr_2 = a as k — oo,

o/ - Ck_z
— 1.
o —Cyg_q

Therefore, o, < 0, and, since o, > 0, o — o} = 2Vd/Qx > 0, for all
sufficiently large k. We also have QzQr41 =d — P74 s0

QkSQka+1:d_P1?+1Sd

and
Pl <d—Qr<d

for sufficiently large k. Thus there are only finitely many possible values
for P, Qr and we conclude that there exist integers ¢ < j such that P; =
P;,Q; = Q;. Then a; = a; and, since the a; are defined recursively, we
have

o = [ag,al,... sy Ai—15Qgy v ,aj_l].
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Exercise 8.2.8 Show that, if d is a positive integer but not a perfect square,
and o = ag = V/d, then

k
plzc—l - dqﬁ_l = ("1) Qx,
for all £ > 1, where px/qx is the kth convergent of the continued fraction of o

and @y is as defined in Exercise 8.2.6.

Solution. By inspection, pZ — dgZ = [V/d]?> — d = —Q1. Now, suppose that
k > 2. Writing

QkPrk—1 + Pr—2

\/C_i = Qg = [ag,al,. . ,ak_l,ak] =
Opqk—1 + gr—2

and recalling that ay = (Py + v/d)/Qs, we have
Vi (P + Vd)pr—1 + QrPr—2

(Pr + Vd)gr—1 + Qrqr—2

= dge_1 + (Pegr—1 + Qrar—2)Vd = Pepr_1 + QrPr—2 + pr—1Vd.
Equating coefficients in Q(\/c_i), we have

dgk—1 = Prpr-1 + QrPr—2
and

Pk—1 = Prqr-1 + Qrqr—2-
Computation yields

Pi_1—dgi_1 = (Pr-19k—2 — Pr—20k—1)Qk = (—1)*Q.

Exercise 8.2.10 (a) Find the simple continued fractions of v/6,/23.

(b) Using Theorem 8.2.9 (c), compute the fundamental unit in both Q(v/6) and
Q(v23).

Solution. (a) Using notation of previous exercises, setting a = ag = .\/6,
we have

Py =2,

PO:07 P2:2a
Qo=1, Q=2 Q=1
aO:\/gv 01:2—‘[_2\/6 02:2—‘(-\/6,
ap = 2, a =2, as = 4.

Thus, the period of the continued fraction of a is 2 = v/6 = [ag, a1, G3] =
[2,2,4]. Applying the same procedure, we find v/23 = [4,1,3,1, 8].

(b) For \/6, Cl = pl/ql = [0,0,(1,1] = ag + 1/(11 =2+ 1/2 = 5/2 Thus,
the fundamental unit in Q(v/6) is 5 + 21/6.

For v/23, C3 = [4,1,3,1] = 24/5. Therefore the fundamental unit in

Q(v/23) is 24 + 5v/23.
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Exercise 8.2.11 (a) Show that [d,2d] is the continued fraction of v/d? + 1.

(b) Conclude that, if d° + 1 is squarefree, d = 1,3 (mod 4), then the fundamen-
tal unit of Q(\/m) is d + vd? + 1. Compute the fundamental unit of
Q(v2), Q(v10), Q(v26).

(c) Show that the continued fraction of vd2 + 2 is [d, d, 2d].

(d) Conclude that, if d>+2 is squarefree, then the fundamental unit of Q(v/d? + 2)
is d*> + 1 + dv/d? + 2. Compute the fundamental unit in Q(v/3), Q(v/11),
Q(v/51), and Q(v/66).

Solution. (a) Observing that d? < d? + 1 < (d + 1)2 for all d > 0, we see
that [V/d? + 1] = d and setting a = oy = Vd? + 1, we have

Py =0, P =4,
Qo =1, Q1 =1,
o = Vd?+1, o =d+vVd:+1,
ag = d, a1 = 2d.

/
This implies that the period of the continued fraction of v/d2 +1 is 1.
Therefore Vd2 4 1 = [ag,a1] = [d, 2d).

(b) d = 1,3 (mod 4) and thus d2 + 1 = 2 (mod 4). Thus, if d*> + 1 is
squarefree, then the fundamental unit of Q(+v/d2 + 1) is pg + govVd? + 1 =
d+vd?+1.

(c) Observing that d? < d?>+2 < (d+1)? forall d > 1 we get [V/d2 + 2| =
d and setting a = ag = Vd? + 2, we have

Plzda

Py =0, P, =d,
Qo=1, Q=2 Q2=1,
= VET2,  a=TTYEEE o gy Ve,
ag = d, ay = d, 2 as = 2d.

Therefore the period of the continued fraction of v/d2? + 2 is 2, so
Vd2 42 = [ao, ar, (1,2] = [d, d, 2d]

and thus
P d?+1
¢ d =
(d) For all d, d>+2 = 2,3 (mod 4) so, if d is squarefree, the fundamental

unit in Q(v/d? +2) is p1 + q1vVd2 +2 = d? + 1+ dvVd2 + 2.

1
:d _ =
td

8.3 Supplementary Problems

Exercise 8.3.1 If n® —1 is squarefree, show that n++v/n2 — 1 is the fundamental

unit of Q(v/n? — 1).
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Solution. The continued fraction of vn? —1is [n —1,1,2(n — 1)], so that
the first two convergents are (n —1)/1 and n/1. Now apply Theorem 8.2.9.

Exercise 8.3.2 Determine the units of an imaginary quadratic field from first
principles.

Solution. We have already determined the units of Q(i) and Q(v/~3).
They are £1,+i and +1, £p, £p?, respectively. Now we determine the
units of an arbitrary field Q(v/—d) where —d = 2,3 (mod 4). All units are
of the form a + bv/—d with a® +db?2 = 1. It is easy to see that since d > 2,
this has no solution except fora = +£1,b= 0. If —d = 1 (mod 4), then units
will be of the form (a + bv/—d)/2 where a = b (mod 2) and a® 4 db? = 4.
Since we already know the units for d = 3, then d > 7 and once again, the
only solution is a = £1,b=0.

Exercise 8.3.3 Suppose that 22" + 1 = dy® with d squarefree. Show that 2™ +
yv/d is the fundamental unit of Q(v/d), whenever Q(v/d) # Q(v/5).

Solution. Suppose not. Let (a + bv/d)/2 be the fundamental unit. Then

for some integer j. If an odd prime p divides j, we can write

p
d

where (u + vv/d)/2 is again a unit. Hence

on+p Z (;;C)Udekup—Zk = uA,
k

say. Clearly, (u,A) = 1 so we must have either v = 1, A = 2"*? or
u = 2"*+P A = 1. The latter case is impossible since

A= pvp—ld(p—l)/Z > 1.

Hence u = 1. But then dv? = 5 or —3. The former case is ruled out by
the hypothesis and the latter is impossible. Thus, if 2™ + yVd is not the
fundamental unit, it must be the square of a unit. But then, this means
that

2 4 gy Vd = (u+ vVd)? = (W + dv?) + 2uvVd

and this case is also easily ruled out.

Exercise 8.3.4 (a) Determine the continued fraction expansion of v/51 and use
it to obtain the fundamental unit £ of Q(+/51).
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(b) Prove from first principles that all units of Q(v/51) are given by €™, n € Z.

Solution. See Exercise 8.2.11.

Exercise 8.3.5 Determine a unit # +1 in the ring of integers of Q(6) where
6*+60+8=0.

Solution. Consider n =1+ 6.

Exercise 8.3.6 Let p be an odd prime > 3 and suppose that it does not divide
the class number of Q((,). Show that

Z*+yP+2" =0
is impossible for integers x, y, z such that p t zyz.

Solution. We factor

p—1

? + 9 = [[ (= + Gy) = —2".
1=0

Since p t zyz, the terms (x4 (ly) are mutually coprime for 0 < i < p — 1.
Moreover, viewing the equation as an ideal equation gives

(z+Gy) = af

for some ideal a;. Since p does not divide the class number, a; itself must
be principal. Therefore .
(z+ Gpy) = ea?,

where ¢ is a unit in Q(¢p) and o« is an integer of Q((p).
By Exercise 4.3.7, Z[(p] is the ring of integers of Q((,) and

2 p—2
LG G5 Ch
is an integral basis. Therefore, we can express
-2
a=ao+(11§p+"'+ap—2§,’,’ )

so that
of =ag+---+ab_,=a (modp),

where @ = ag+ - -+ap_2, by a simple application of Fermat’s little Theorem
(Exercise 1.1.13). Also, we may write € = (jn where 0 < s < p and 7 is a
real unit, by Theorem 8.1.10. Hence, for ¢z = 1,

T+ Gy = (B (mod p),

where (3 is a real integer of Q((,). Also, by complex conjugation,

z+(, 'ly=¢°8 (mod p).
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Then
¢ @+ Gy)— e +¢ 'y) =0 (mod p).

Since 1,(p, ... ,(272 is an integral basis for Q((p),
co+eilp+ o+ cp_zq,"Z =0 (mod p)
holds if and only if
= =--=¢_2=0 (modp).

Write (B~%(x + (py) — (¢5z + ¢(57'y) = 0 (mod p). If 2 < s < p— 2 and
s # (p+1)/2, the powers of ¢, are all different and less than p — 1 in the
above congruence. Hence z = y = 0 (mod p), a contradiction.

If s=(p+1)/2, then 2+ (py = (pz+y (mod p) so that z = y (mod p).
Similarly, £ = z (mod p) so that

2P+ y?+ 22 =32P=0 (mod p).

Since p > 3, we get p | z, a contradiction.

If s =0, then 2+ Gy — (z+{; 'y) =0 (mod p) so that y = 0 (mod p),
a contradiction.

Ifs=1,¢ 'z +y=(r+y (mod p) and so p | z, a contradiction.

fs=2 2+ Gy = g;}x+<§y and so £ = y = 0 (mod p), again a
contradiction.

Finally, if s =p— 1,

Gz + Gy) = ¢ e+ ¢ %y (mod p),

that is,
C@+Gy) =Gar+y  (mod p),

which gives p | z (since p > 5), again a contradiction.

Exercise 8.3.7 Let K be a quadratic field of discriminant d. Let P, denote
the group of principal fractional ideals Ok with a € K satisfying Nk (a) > 0.
The quotient group Ho of all nonzero fractional ideals modulo Py is called the
restricted class group of K. Show that Hy is a subgroup of the ideal class group
H of K and [H : Ho] < 2.

Solution. If d < 0, the norm of any nonzero element is greater than 0 and
so the notions of restricted class group and ideal class group coincide. If
d > 0, then H = Hj if and only if there exists a unit in K of norm —1.
This is because vdOk is in the same coset of Ox (mod Fy) if and only if
Vd = ea with Ng(a) > 0, and € is a unit. Since Nx(v/d) < 0, this can
happen if and only if € is a unit of norm —1.
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Exercise 8.3.8 Given an ideal a of a quadratic field K, let a’ denote the conju-
gate ideal. If K has discriminant d, write

|d| = p'p2- - pt,

where p1 =2, a1 = 0,2, or 3 and p2,...,p: are distinct odd primes. If we write
p:Ok = p? show that for any ideal a of Ok satisfying a = a’ we can write

a a
a=rppt,

r >0, a; = 0,1 uniquely.

Solution. We first factor a as a product of prime ideals. The fact that
a = d implies that if a prime ideal p divides a, so does g'. If p is inert then
it is principal and generated by a rational prime. If p splits, then p and p’
{which both occur in a with the same multiplicity) can be paired to give
again a principal ideal generated by a rational prime. Only the ramified
prime ideals cannot be so paired. Since p? = p;Ok, we see immediately
that a has a factorization of the form described above. If we have another
factorization
a:rlpbl---pbf, ry >0, b;=0,1,

then taking norms we obtain 72p?! ... p% = r?ph ... pP 5o that a; = b;

(mod 2). Since a; = 0 or 1, and b; = 0 or 1, this means a; = b;. Hence
r=7r.

Exercise 8.3.9 An ideal class C of Hy is said to be ambiguous if C* = 1 in Ho.
Show that any ambiguous ideal class is equivalent (in the restricted sense) to one
of the at most 2! ideal classes

P pt, ai=0,1

Solution. Let a be an ideal lying in an ambiguous class. Then a? = («)
with Ng(a) > 0. But we have aa’ = (N (a)). Therefore

aa’ = (Nk(a)/a)(a) = (Nk(a)/a)a®
so that a = a’. By the previous question, a can be written as
ror e er

r > 0, a; = 0,1. In the restricted class group, these form at most 2 ideal
classes.

Exercise 8.3.10 With the notation as in the previous two questions, show that
there is exactly one relation of the form

pfl"'ptat:pOKv NK(p)>O7

with a; =0or 1, 3!  a; > 0.
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Solution. We first show there is at least one such relation. If d < 0,
then p1---p; = (Vd). If d > 0, let € be a generator of all the totally
positive units of K (i.e., units ¢ > 0 and &’ > 0). Set u = v/d(1 —&). Then
p = —/d(1 —¢') so that ey’ = —v/d(e — 1) = p. Therefore (u) = (') and
by the penultimate question, we have the result.

To establish uniqueness, consider first the case d < 0. If

o1 ot =p0k, Nik(p)>0,

then (p) = (o) since g, = ;. Therefore p = bv/d for some b € Q. The
other two cases of Q(v/—1) are Q(v/—3) are similarly dealt with. If now
d > 0, then p = np’ with n a totally positive unit. We write n = ™ for
some m. With p defined as above, notice that p/u™ = p' /()™ so that
p/u™ =r € Q. Hence (p) = (1)™. Since () has order 2 in the (restricted)
class group we are done.

Exercise 8.3.11 Let K be a quadratic field of discriminant d. Show that the
number of ambiguous ideal classes is 2~ where # is the number of distinct primes
dividing d. Deduce that 2°~" divides the order of the class group.

Solution. This is now immediate from the previous two exercises. Since
the restricted class group has index 1 or 2 in the ideal class group, the
divisibility assertion follows.

Exercise 8.3.12 If K is a quadratic field of discriminant d and class number 1,
show that d is prime or d =4 or 8.

Solution. If d has ¢ distinct prime divisors, then 2!~ divides the class
number. Thus ¢t < 1. Since the discriminant is either squarefree or four
times a squarefree number, the result is now clear.

Exercise 8.3.13 If a real quadratic field K has odd class number, show that K
has a unit of norm —1.

Solution. Since K has odd class number, H = Hj. This means there is a
unit of norm —1.

Exercise 8.3.14 Show that 15+ 41/14 is the fundamental unit of Q(v/14).

Solution. The continued fraction development of /14 is

and the convergents are easily computed:

3411 15
1’13747

By Theorem 8.2.9, we find that 15 4 41/14 is the fundamental unit.
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Exercise 8.3.15 In Chapter 6 we showed that Z[v/14] is a PID (principal ideal
domain). Assume the following hypothesis: given o,8 € Z[v/14], such that
ged{a, 3) = 1, there is a prime 7 = a (mod ) for which the fundamental unit
€ = 15+4+/14 generates the coprime residue classes (mod 7). Show that Z[v/14]
is Euclidean.

Solution. We define the Euclidean algorithm inductively as follows. For
u € Z[v14], define p(u) = 1. If ¢ generates the residue classes (mod ),
where 7 is prime, define p(r) = 2. If 8 is a prime for which ¢ does not
generate the residue classes (mod ), define ¢(3) = 3. Now for any v €

Z[\/14], factor

’Y = ﬂfl 7['57‘18{1 “':8.{37
where ¢(m;) =2, ¢(5;) = 3. Define

p(r) = 2er+ -+ +en) +3(fi 4+ fu).

An easy induction argument using the Chinese Remainder Theorem (The-
orem 5.3.13) shows that ¢ is a Euclidean algorithm.

Exercise 8.3.16 Let d = a® + 1. Show that if |u® — dv?| # 0,1 for integers u, v,
then
|u® — dv®| > Vd.

Solution. The continued fraction expansion of v/d is
[a,2a,2a,...]

and the convergents py/qy always satisfy pf —dq? = +1. If [u? —dv?| < V4,
then u/v is a convergent of v/d, by Exercise 8.2.5. Since |u2 — dv?| # 0,1,
we are done.

Exercise 8.3.17 Suppose that n is odd, n > 5, and that n?9+1 = d is squarefree.
Show that the class group of Q(v/d) has an element of order 2g.

Solution. We have (n)?9 = (v/d — 1)(v/d + 1). Since n is odd, each of the
ideals (—1 4+ v/d) and (1 + v/d) must be coprime. By Exercise 5.3.12, each
of them must be a 2gth power. Therefore

0% = (Vd-1)
and
(@) = (Vd+1).

We claim that a has order greater than or equal to g. Observe that n?9+1 =
2 (mod 4) because n is odd. Therefore 1,v/d is an integral basis of Q(v/d).
If a™ were principal, then

a™ = (u+vVd)
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implies that
n™ = |u® — dv?|,

which by the previous exercise is either 0,1 or > v/d. The former cannot
hold since n > 5. Thus,

n™ > Vd=1+vn29+1>n9.

Hence, m > g. Since m | 2g, we must have that a has order 2g.

It is conjectured that there are infinitely many squarefree numbers of
the form n?9 + 1. Thus, this argument does not establish that there are
infinitely many real quadratic fields whose class number is divisible by g.
However, by a simple modification of this argument, we can derive such a
result. We leave it as an exercise to the interested reader.



Chapter 9

Higher Reciprocity Laws

9.1 Cubic Reciprocity

Exercise 9.1.1 If  is a prime of Z[p], show that N(m) is a rational prime or the
square of a rational prime.

Solution. Let N(m) = n > 1. Then 77T = n. Now n is a product of
rational prime divisors. Since 7 is prime, 7 | p for some rational prime p.
Write p = my. Then N(p) = N(n)N(vy) = p®. Thus, either N(7) = p or
N(rm) = p2.

Exercise 9.1.2 If = € Z[p] is such that N(7) = p, a rational prime, show that 7
is a prime of Z[p].

Solution. If 7 factored in Z[p], then 7 = af and p = N{(w) = N{(a)N(0)
which implies that N{a) = 1 or N(8) = 1 so that m cannot be factored
nontrivially in Z[p].

Exercise 9.1.3 If p is a rational prime congruent to 2 (mod 3), show that p is
prime in Z[p]. If p=1 (mod 3), show that p = 77T where 7 is prime in Z[p].

Solution. Let p = 2 (mod 3) be a rational prime. If p = 7, with
N(v), N(r) > 1, then p? = N(w)N(v) implies that N(n) = pand N(v) = p.
Writing m = a + bp, we find p = N(7) = a® — ab + b? so that

4p = 40 — dab + 4b® = (2a — b)? + 3b°.
Hence p = (2a — b)? (mod 3), a contradiction since 2 is not a square mod

3.
Finally, if p =1 (mod 3), then by quadratic reciprocity:

3)-G)6)-6-6)-

299
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so that z2 = —3 (mod p) has a solution. Hence py = z? + 3 for some
z,y € Z. Therefore p divides (z+v—3)(z—v—3) = (z+1+2p)(z—1-2p).
If p were prime in Z[p], it would divide one of these two factors, which is
not the case. Thus p = af for some o, 8 € Z[p] and N(a) > 1, N(8) > 1.
Hence N(a) = p so that a@ = p. Moreover, « is prime by Exercise 9.1.2.

Recall that in Section 2.3 we found that 3 = —p?(1 — p)? and (1 —p) is
irreducible, so that 3 is not a prime in Z[p].

Exercise 9.1.4 Let 7 be a prime of Z[p]. Show that o™ ™~! =1 (mod ) for
all a € Z[p] which are coprime to 7.

Solution. Since 7 is prime, the ideal (m) is prime. Hence Z[p]/(7) is
a field, containing N(m) elements. Its multiplicative group, consisting of
classes coprime to 7, has N(x)—1 elements. Thus, by Lagrange’s theorem,
the result is immediate.

Exercise 9.1.5 Let 7 be a prime not associated to (1 — p). First show that
3| N(x) — 1. If (o, ) = 1, show that there is a unique integer m = 0, 1 or 2 such
that

aNmM=D/3 = ym (64 ).

Solution. By Exercise 9.1.3, we know that 7 | (aV(™~! — 1). By Exer-
cise 9.1.4, we know N(m) = 1 (mod 3). Thus, we can write § = aN(m)-1)/3
and observe that

B —1=(B-1)(B-p)B-p).

Since 7 is prime and divides 3% — 1, it must divide one of the three factors
on the right. If 7 divides at least two factors, then 7 | (1 — p) which means
7 is an associate of 1 — p, contrary to assumption. Thus, 8 = 1, p, or p?
(mod 7) as desired.

Exercise 9.1.6 Show that:

(a) (a/m)s =1 if and only if 2 = & (mod ) is solvable in Z[p];
(b) (aB/m)s = (o/m)3(B/m)s; and

(c) If a = (mod «), then (a/n)s = (B/)s.

Solution. Clearly if 3 = @ (mod =) has a solution, then by Exercise 9.1.4,
aN(mM=1/3 = 1 (mod =) so that (a/7)3 = 1. For the converse, let g be a
primitive root of Z{p]/(m). Then, writing a = ¢" we find g{"N(M-D/3 = 1
(mod 7) so that

f(iv(_?;ﬁ =0 (mod N(r)—1).
Hence 3 | r, and o is a cube mod 7. That is, 23 = a (mod 7) has a solution.

This proves (a).
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For (b),

aﬁ w)— m)— w)—
<?> = (af)N®-DB = GNR-D/3gWN -1/
3

(2),(5), tmodm

For (c), if @« = 3 (mod =), then

(2), = a1/ = govte)-1/a = (é) (mod 7).
3 w 3

™

Exercise 9.1.7 Show that:

(@) xr(a) = xx(@)® = xx(c?); and
(b) xr(a) = xz(a).

Solution. x(a) is by definition one of 1, p, or p? so that (a) is immediate.
For (b), observe that

oN(M-1/3 = v (a) (mod 7)

implies
aNm™-1/3 =y (a) (mod 7)

on the one hand. On the other hand,
alVm-1/3 = y (@) (mod )

by definition. Part (b) is now immediate.

Exercise 9.1.8 If ¢ = 2 (mod 3), show that x,(@) = xq(0?) and x4(n) = lifn
is a rational integer coprime to q.

Solution. Since g = g,

Xq(@) = xg(@) = Xq(a) = Xq(a?)
by the previous exercise. Also,
Xq(n) = Xq(R) = Xq(n2) = Xq(n)z-

Since x4(n) # 0, we deduce x,4(n) = 1.

Exercise 9.1.9 Let N(z) = p = 1 (mod 3). Among the associates of w, show
there is a unique one which is primary.
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Solution. Write m = a + bp. All the associates of m can be written down:
a+bp,—b+(a—-b)p,(b—a)—ap,—a—bp, b+ (b—a)p,{a—b)+ ap. Since
p = a® — ab+ b?, not both a and b are divisible by 3.

If b = 0 (mod 3), then 7 = 1 (mod 3) implies @ = 1 (mod 3) so that
—a =2 (mod 3) and hence —a — bp is the primary. If a = 0 (mod 3) then
one of (b —a) —ap or (a — b) + ap is primary. If both a and b are coprime
to 3, then we must have a = b (mod 3), for otherwise 3 | p, contrary to
assumption. Thus a = b = %1 (mod 3), so that one of b+ (b — a)p or
—b+ (a — b)p is primary, as desired.

Exercise 9.1.11 If x1,...,xr are nontrivial and the product x;---x- is also
nontrivial prove that g(x1)---g(x») = J(x1,--- , x~)g(x1 " Xr)-

Solution. Define v : F, — C by ¥(t) = ¢*. Then v(t1 + t2) = ¥(t1)w(t2)
and we can write g(x) = >, x{(¢t)¥(t). This is just for notational conve-
nience. Now

Il

g(x1) - 9(xr)

(Z xl(tl)w(t1)> o (Z xr(tr)w(tr>>
= Zw(s) ( Z Xl(tl)"'Xr(tr)> .

tittto=s

If s # 0, writing ¢; = su;, the inner sum becomes
(xa-xe)(8)I (X, -+ xr)-

If s = 0, then the inner sum is

Z x1(t1) - xr(t;) =0

t1 4ot tr=0
since t,...,t,_1 can be chosen arbitrarily so that t, = —t; —--- — t,_1,
and each of the sums corresponding to #1,... ,t._1 is zero since x1,..., X

are nontrivial. This completes the proof.

Exercise 9.1.12 If x1,..., X, are nontrivial, and x; - - - x» is trivial, show that
9(x1) -+ g9(xr) = xr(=DpJ(x1,- - s xr-1)-
Solution. By the previous exercise,
9(x1) - 9(xr—1) = J(x1,- - Xr—1)9(X1  + Xr-1)-
Multiplying both sides of the equation by g(x,) leads us to evaluate
9(xr)g(x1 - Xr-1)-
However, (X1 Xr—1)Xr = Xo means that
9(x1 -+ xr-1) = 9(Xr) = xr(—=1)p
by the proof of Theorem 9.1.10.
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Exercise 9.1.14 Show that g(x)® = pr.

Solution. By Exercise 9.1.12, g(x)® = pJ(x, X) and by the previous exer-
cise, J(x, x) = 7.

Exercise 9.1.17 Let 7 be a prime of Z[p]. Show that 3 = 2 (mod 7) has a
solution if and only if 7 = 1 (mod 2).

Solution. We first observe that 23 = 2 (mod =) is solvable if and only if
z3 = 2 (mod ') is solvable for any associate of 7. Thus we may assume
that 7 is primary.

If m = ¢ is a rational prime, then x,4(2) = x2(¢) = x2(1) = 1 so that 2
is a cubic residue for all such primes. If 7 = a + bp is primary, by cubic
reciprocity, xx{2) = x2(m). The norm of (2) is 4 and

m=na"D/3 = yo(r) (mod 2).

Thus x{2) = x2(m) =1 if and only if # = 1 (mod 2).

9.2 Eisenstein Reciprocity

Exercise 9.2.1 Show that ¢ = 1 (mod m) and that 1,¢m,C2, ... ,¢{m™! are dis-
tinct coset representatives mod gp.

Solution. Observe that

™ —

o = tret ke = [[ @G

Putting z = 1 in this identity gives

m—1

m=[[1-¢)

i=1

If ¢, = ¢Z, (mod p) (say), then ¢/ P =1 (mod ©) so that m = 0 (mod p),
contrary to m ¢ p. Thus 1,(m,... ,¢7 ! are distinct mod p. Moreover,
the cosets they represent form a multiplicative subgroup of Z[(,]/ e of order
m. Since (Z[¢m)/p)” has order ¢ — 1 = N(p) — 1, we must have m | ¢ — L.

Exercise 9.2.2 Let o € Z[(m], & € p. Show that there is a unique integer ¢
(modulo m) such that
V™ =i (mod p).

Solution. Since (Z[gm] / p)* has g—1 elements, we have o9~1 = 1 (mod ).
Thus

m—1
(c (¢-1)/m _ ¢)=0 (mod p).
=1
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Since p is a prime ideal, there is an integer 7, 0 < 4 < m, such that
ol /m = ¢t (mod p).
This ¢ is unique by Exercise 9.2.1.

Exercise 9.2.3 Show that:
(a) (a/p)m =1 if and only if z™ = & (mod p) is solvable in Z[{m];

(b) for all a € Z{¢m], a5 = (a/p)m (mod p);

)
(c) (aB/p)m = (@/P)m(B/p)m; and
(d) if @ =4 (mod p), then (a/p)m = (B/©)m-

Solution. If 2™ = a (mod p) has a solution, then

oN@)-D/m = ¢N®)~1 =1 (mod p)

by the analogue of Fermat’s little Theorem. Thus, (a/p),, = 1. For the
converse, we know that (Z[(n]/p) * is cyclic, being the multiplicative group
of a finite field. Let g be a generator, and set a = g". If (a/p) = 1, then
ae=1/m™ =1 (mod p). Hence ¢"@1)/™ = 1 (mod gp). Since g has order
q — 1, we must have

-1

=0 (modg-1).
Hence, m | r, so that « is an mth power. This proves (a).

For (b), we need only note the case a = 0 (mod p) which is clear. Parts
(c) and (d) are proved exactly as in the case of the cubic residue symbol in

Exercise 9.1.6.

Exercise 9.2.4 If p is a prime ideal of Z[(x] not containing m show that

( m ) (V(p)-1)/m.
£/ m
Solution. By definition,

(%) = ¢(WE@-D/m (mod g).

Since both ({n/p)m and (&N(p)—l)/ ™ are mth roots of unity and by Exer-
cise 9.2.1, distinct roots represent distinct classes, we must have

(Qﬁ) — (V(E)-1)/m,
o/ m

Exercise 9.2.5 Suppose a and b are ideals coprime to (m). Show that:
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(a) (aB/a)m = (0/0)m(B/a)m;
(b) (e/ab)m = (a/a)m(B/6)m; and

(c) if o is prime to a and ™ = & (mod a) is solvable in Z[(x], then (a/a)m = 1.

Solution. Parts (a) and (b) are immediate from Exercise 9.2.3. For (c), we
note that ™ = a (mod p) has a solution for every prime ideal p dividing
a. Thus by Exercise 9.2.3 (a), {(a/p)m = 1 for every prime ideal p dividing
a. thus, (a/a), = 1.

Exercise 9.2.6 Show that the converse of (c) in the previous exercise is not
necessarily true.

Solution. Choose two distinct prime ideals 1, p2 coprime to (m). The
map

Zitml/1r = Z[énl/p1,
B (mod p1) +— BN (p1)=1)/m (mod 1),

is a homomorphism with kernel consisting of the subgroup of mth powers
by Exercise 9.2.3 (a). This subgroup has size (N(p;) —1)/m. Hence the
image is the subgroup of mth roots of unity. Thus, we can find 3, so that

5(N(p1)—1)/m = ( (mod p),
NWN(e2)=1)/m = em=1 (164 ).

By the Chinese Remainder Theorem (Theorem 5.3.13), we can find

a = B (mod p),
a = v (mod pg).

Then (a/p1)m = (B/p1)m = Cm, (@/p2)m = (¥/p2)m = (=", and there-
fore (a/p1p2)m = 1. But then 2™ = a (mod g, p2) has no solution because
neither 2™ = a (mod gp1) nor 2™ = a (mod gp3) has a solution.

Exercise 9.2.7 If a € Z[{,] is coprime to ¢, show that there is an integer c € Z
(unique mod £) such that {fo is primary.

Solution. Let A = 1 — (4. Since the prime ideal (\) has degree 1, there
is an a € Z such that a = a (mod A). Hence (a — a)/A = b (mod A). So
we can write & = a + b\ (mod A?). Since (¢ = 1 — A, we have (§ =1 — cA
(mod A?). Thus,

Ga=(1—-cA)(a+b\)=a+ (b—ac)h (mod A\?).

Now, (a,f) = 1 for otherwise A | a contrary to assumption. Choose c
so that ac = b (mod A). Then (fa = a (mod A?). Moreover c is clearly
unique mod £.
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Exercise 9.2.8 With notation as above, show that (z + ¢*y) and (z + ¢(7y) are
coprime in Z[(¢] whenever ¢ # 7, 0 < i,j < £

Solution. Suppose a is an ideal of Z[(,] which contains both (z + (*y) and
(z +¢7y). Then (¢ — ")y € a and

({7 =z = (x+Cy) - @+ y) e a

Since z and y are coprime, we deduce that (¢? —(*) € a. By Exercise 4.3.7
or by 4.5.9, we deduce that a and (¢) are not coprime. Since (£) is totally
ramified and (£) = (1 — ¢)*~! we see that (1 —¢) = A € a. Thus (2) € ()
which implies £ | z contrary to assumption.

Exercise 9.2.9 Show that the ideals (x + ¢'y) are perfect £th powers.

Solution. Since the ideals (z + ¢'y), 1 < i < £ — 1, are mutually coprime,
and their product is an fth power, each ideal must be an fth power (see
Exercise 5.3.12).

Exercise 9.2.10 Consider the element
-2
a=(z+y) " *(z+Cy)

Show that:
(a) the ideal (a) is a perfect £th power.
(®) o =1—u) (mod A?) where u = (z +y)* %y.

Solution. (a) is immediate from the previous exercise. To prove (b),
observe that z +(y =z + y — Ay. Thus

a=(z+ y)e_1 — Aylz + y)“2 = (x + y)e~1 — Au.

Now zf + ¢y + 2 = 2 + y + 2z (mod £), by Fermat’s little Theorem. If
£| (z +y), then £ | z, contrary to assumption. Therefore

(z+y) =1 (mod?¥)

since £ { (z + y). Since (£) = (\)*"! we find @ = 1 — uA (mod A?) which
gives (b).

Exercise 9.2.11 Show that {T“a is primary.
Solution. We have
CTra=(1-A)""a=(14+uN(1—u\) (mod\?)

so that ("%« =1 (mod A?). Hence, ("“q« is primary.
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Exercise 9.2.12 Use Eisenstein reciprocity to show that if zf + y® + 2 = 0 has
a solution in integers, £ { zyz, then for any p | y, ({/p),; “ = 1. (Hint: Evaluate

(p/¢T A)e.)

Solution. By Exercise 9.2.11, (™ “« is primary so by Eisenstein reciprocity,

(%)~ (59),-G). G).

Now (¢"“a) = () is an £th power by Exercise 9.2.10 (a). So the left-hand
side of the above equation is 1. To evaluate (a/p)e, note that

)€~1

a=(z+y (mod p),

since p | y. Thus, since p is primary,

()~ (5, - (&),

again by Eisenstein reciprocity. By Exercise 9.2.9, (z + y) is an £th power
of an ideal so that (a/p)¢ = 1. Therefore ({/p),* =1 for every p| y.

Exercise 9.2.13 Show that if
4 yl +z2f=0
has a solution in integers, [ { yz, then for any p | zyz, ({/p); " = 1.

Solution. We proved this for p | y in the previous exercise. Since the
equation is symmetric in z,y, z the same applies for p | z or p | 2.

Exercise 9.2.14 Show that ({/p), " = 1 implies that p* 71 =1 (mod £2).

Solution. Let us factor (p) = g1 --- @y as a product of prime ideals. We
know that N(g;) = p’, and that gf = £ — 1. Thus, by Exercises 9.2.4 and

9.2.5,

(ﬁ) _ ﬁ (i) _ ﬁC(N(m>~1>/e _ ool -1)/e
P/le 2i\Pi/e 0

Since ({/p)y = 1, we have

f_
ugp 7 150 (mod £).

Moreover, (g,¢) = 1, (u,£) = 1, so that p/ =1 (mod ¢2). Since f | £—1,
we deduce that p*~! =1 (mod ¢£2).
Exercise 9.2.14 is a famous result of Furtwangler proved in 1912.
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Exercise 9.2.15 If £ is an odd prime and
4yt 42 =0

£—1

for some integers , y, 2z coprime to £, then show that p*~* =1 (mod £2) for every

p | Tyz. Deduce that 2" =1 (mod ¢?).

Solution. By Exercise 9.2.14, the first assertion is immediate. For the
second part, observe that at least one of x,y, z must be even.

9.3 Supplementary Problems

Exercise 9.3.1 Show that there are infinitely many primes p such that (2/p) =
-1

Solution. We know that (2/p) = —1 if and only if p = £3 (mod 8).
Suppose there are only finitely many such primes ¢qi, ... , gx (say) excluding
3. Consider the number b = 8¢1¢3---qx + 3. By construction b is not
divisible by any g;. Moreover, b =3 (mod 8) so that (2/b) = —1. Let b=
P1 - Pm be the prime decomposition of b with p; not necessarily distinct.

Since
2= ()-11G)

we must have (2/p;) = —1 for some i. Since p; is distinct from gy, ... , gk,
this is a contradiction.

Exercise 9.3.2 Let a be a nonsquare integer greater than 1. Show that there
are infinitely many primes p such that (a/p) = —1.

Solution. Without loss of generality, we may suppose a is squarefree and
greater than 2 by the previous exercise. Suppose there are only finitely
many primes qi, ... ,qk, (say) such that (a/¢;) = —1. (This set could pos-
sibly be empty.) Write a = 2°r; - - - r,, for the prime factorization of @ with
e =0 or 1 and r; odd and distinct. By the Chinese Remainder Theorem,
we can find a solution to the simultaneous congruences

1 (modgq), 1<i<k,
= 1

1

c

modr;), 1<i<m-—1,

8 8 8 8
|

with ¢ any nonresidue mod r,,. (It is here that we are assuming a has at
least one odd prime divisor.) Let b be a solution greater than 1 and write
b = p1---ps as its prime decomposition with p; not necessarily distinct.
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Since b =1 (mod 8), (2/b) = 1. Also, by the quadratic reciprocity law for
the Jacobi symbol, (r;/b) = (b/r;). Thus

©-G) 16 -(2)-—

Also,
t
(4 =11 (_)
b =1 Di
Therefore, (a/p;) = —1 for some p;. Moreover, p; | b and b is coprime to
q1,--- ,qr by construction. This is a contradiction.

Exercise 9.3.3 Suppose that 22 = a (mod p) has a solution for all but finitely
many primes. Show that a is a perfect square.

Solution. Write a = b%c with ¢ squarefree. Then (c/p) = 1 for all but
finitely many primes. By the previous exercise, this is not possible if ¢ > 1.
Thus, ¢ =1.

Exercise 9.3.4 Let K be a quadratic extension of Q. Show that there are in-
finitely many primes which do not split completely in K.

Solution. Let K = Q(v/D), with D squarefree and greater than 1. By
the previous question, there are infinitely many primes p such that z% =
D (mod p) has no solution. Hence (D/p) = —1. By the theory of the

Kronecker symbol, we deduce that p does not split in K.

Exercise 9.3.5 Suppose that a is an integer coprime to the odd prime q. If
2% = a (mod p) has a solution for all but finitely many primes, show that a is a
perfect gth power. (This generalizes the penultimate exercise.)

Solution. We must show that if a is not a gth power, then there are
infinitely many primes p such that £ = @ (mod p) has no solution. We
will work in the field K = Q(¢,). Write

(@) = pi* -,
where the (; are distinct prime ideals of Ox. We claim that ¢ ¢ e; for some
i. To see this, let p; = p; N Z. Since (g,a) = 1 we have ¢ # p; for any i, so
each p; is unramified in Q. Thus

ordp, a = ord, (a) = e;.

If q | e; for all 4, then a would be a gth power. So we may suppose gt ej,.
Now let q1, ... ,qx be a finite set of prime ideals different from py,... , p,
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and (1—¢,). By the Chinese Remainder Theorem (Exercise 5.3.13), we can
find an x € Ok satisfying the simultaneous congruences

z = 1 (modg;), 1<i<k,

z = 1 (modyg),

z = 1 (modgp;), 1<j<n-1,
r = ¢ (mod pn),

where ¢ is chosen so that (¢/pn) = ¢;. Let b be a solution greater than 1.
Then b =1 (mod ¢) and hence is primary. Hence

5),- ().

by the Eisenstein reciprocity law. Now
b n b €5
(3) -II(z) - 71
@/ q i=1 Pi/ g

since ¢ { e,. On the other hand, factoring b into a product of prime ideals
and using the multiplicativity of the gth power residue symbol, we deduce

that
2).
©/q

for some prime ideal @ dividing b. Hence 27 = a (mod g) has no solution.
Since b is coprime to the given set qi,...,qr of prime ideals (possibly
empty), we can produce inductively infinitely many prime ideals g such
that 29 = a (mod p) has no solution. A fortiori, there are infinitely many
primes p such that 7 = a (mod p) has no solution.

Exercise 9.3.6 Let p =1 (mod 3). Show that there are integers A and B such
that
4p = A® + 27B%

A and B are unique up to sign.

Solution. We work in the ring of Eisenstein integers Z[p]. Since p =1
(mod 3), p splits as 77 in Z[p]. Writing @ = a + bp, we see that

p=a?—-ab+ b
Thus,
4p = (2a — b)%2 + 36> = (26— a)? + 3a® = (a + b)? + 3(a — b)%.

A simple case by case examination (mod 3) shows that one of a,bora—b
is divisible by 3 because p = 1 (mod 3). The uniqueness is evident from
the uniqueness of p = a? — ab + b2.
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Exercise 9.3.7 Let p =1 (mod 3). Show that 2°> = 2 (mod p) has a solution if
and only if p = C? 4 27D? for some integers C, D.

Solution. If 28 = 2 (mod p) has a solution, so does 23 = 2 (mod =) where

p = 7T is the factorization of p in Z[p]. By Exercise 9.1.17, # = 1 (mod 2),
and we write m = a + bp. By the previous exercise, we can assume

p=a®—ab+ b

with 3 | b (without loss of generality). Thus, 7 =1 (mod 2) implies that
a=1 (mod 2),b=0 (mod 2). Writing

4p = A% 4+ 27B?,

we have A = 2a—b, B = b/3. Since B is even, so is A. Thus, p = C?+27D2.
Conversely, if p = C? + 27D?, then 4p = (2C)? + 27(2D)2. By uniqueness,
B = +2D, by the previous exercise. Thus B is even and so is b. Therefore
m=a+bp=1 (mod 2). By Exercise 9.1.7, 2> =2 (mod ) has a solution
in Z[p]. Since Z[p]/(w) has p elements, we can find an integer y = z
(mod 7). Thus y3 =2 (mod 7). But then y*> =2 (mod 7) so that y® =
(mod p).

Exercise 9.3.8 Show that the equation
z° —2y° = 23"
has no integer solutions with ged(z, v, z) = 1.

Solution. Reduce the equation mod 23 to find z3 = 2y® (mod 23). If
23 t y, 2 is a cubic residue (mod 23). By the previous exercise, we can
write

23 = C? +27D?

which is not possible. If 23 | y, then 23 | z and then 23 | gcd(z,y, 2).






Chapter 10

Analytic Methods

10.1 The Riemann and Dedekind Zeta Func-
tions

Exercise 10.1.1 Show that for Re(s) > 1,
1\ !
@ =T(1-%)
» p

where the product is over prime numbers p.

Solution. Since every natural number can be factored uniquely as a prod-
uct of prime powers, it is clear that when we expand the product

11 1
11 L+ ot ot o o

3s
p p
the term 1/n® occurs exactly once. The assertion is now evident.

Exercise 10.1.2 Let K be an algebraic number field and O g its ring of integers.
The Dedekind zeta function (i (s) is defined for Re(s) > 1 as the infinite series

1
Ck(s) = Z W?

where the sum is over all ideals of Ox. Show that the infinite series is absolutely
convergent for Re(s) > 1.

Solution. For any s with Re(s) > 1, it suffices to show that the partial
sums
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are bounded. Indeed, since any ideal can be expressed as a product of
powers of prime ideals, it is evident that

1 1 1
3 o < L (v o v o )

where o = Re(s) > 1. Hence

Y < 4L (1- (Nto)v)_l'

Na<z

For each prime ideal p, we have a unique prime number p such that N(p) =
pf for some integer f. Moreover, there are at most [K : Q] prime ideals
corresponding to the same prime p. In fact, they are determined from the
factorization pO g = 5! - - - pg° and by Exercise 5.3.17, >°7_ e;fi = [K : Q)
where Np; = pfi. Since e; > 1 and f; > 1, we find g < [K : Q]. Hence

> UVLTSH(I_I%)—[K;Q}.

Na<lz p<z

Since the product [ (1 — p~?)7! converges absolutely for o > 1, the result
follows.

Exercise 10.1.3 Prove that for Re(s) > 1,

ot =1 (1 )

Solution. Since every ideal a can be written uniquely as a product of
prime ideals (see Theorem 5.3.6), we find that when the product

11 (” (lec»)s * (Nslco?s *)

|2

is expanded, 1/(Na)® occurs exactly once for each ideal a of O.

Exercise 10.1.5 Show that (s — 1){(s) can be extended analytically for Re(s) >
0.

Solution. We apply Theorem 10.1.4 with a,, = 1. Then A(z) = [z], the
greatest integer less than or equal to z. Thus,

o<

1 /°° [z] dx
E —=s .
ns ;. xtt!
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Writing [z] = z — {z} we obtain for Re(s) > 1,

)= s [T

s—1

Since {z} is bounded by 1, the latter integral converges for Re(s) > 0.
Thus, (s — 1){(s) is analytic for Re(s) > 0.

Exercise 10.1.6 Evaluate

lim(s — 1)¢(s).

s—1
Solution. From the previous exercise we have

lim(s — 1){(s) = lim s — lim s(s — 1) /100 %ﬂi

s—1 s—1 s—1

and the latter limit is zero since the integral is bounded. Hence, the desired
limit is 1.

Exercise 10.1.8 For K = Q(), evaluate
lim (s — 1)¢k(s).
s—1+

Solution. Clearly, this limit is 7 /4.

Exercise 10.1.9 Show that the number of integers (a,b) with a > 0 satisfying

a?+ Db <czis -

— 4+ 0(7).

2vp OV

Solution. Corresponding to each such (a,b) we associate (a, v Db) which

lies inside the circle u? + v? < z. We now count these “lattice” points.
We will call (a,/Db) internal if (a + 1)2 + D(b + 1)? < z. Otherwise,

call it a boundary lattice point. Let I be the number of internal lattice

points, and B the number of boundary lattice points. Each lattice point

has area v/D. Thus

\/Efggxgx/ﬁ(um)

since in our count @ > 0 and b € Z. A little reflection shows that any
boundary point is contained in the annulus

(Ve—vDF1)’ <u?+0* < (Va+vVD+1)
which has area O(v/zD). Thus
VDB = O(VzD)
and we get B = O(y/Z). Thus,

Tr

2vD

I:

+O0(Vz).
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Exercise 10.1.10 Suppose K = Q(v/—D) where D > 0 and —~D # 1 (mod 4)
and Ok has class number 1. Show that (s — 1){x(s) extends analytically to
Re(s) > % and find

lim (s — 1)¢x (s)-

{Note that there are only finitely many such fields.)

Solution. Each ideal of O is principal, of the form (a + bv/D). We may
choose a > 0. Thus

CK(S):Z(a2+Db2 Z vt
a>0 n=1
beZ

where a,, is the number of solutions of a? + Db? = n with a > 0,b € Z. By
Theorem 10.1.4, we have
* A(z)
CK(S) = s/l ',rs+l d.’E’

where A(z) =Y, ., an. By the previous exercise,

so that

B TS * E(z)dz
Gls) = =

—_—_— + S s
2v/D(s — 1 xst!

where E(z) = O(y/z). The latter integral converges for Re(s) > 1. This
gives the desired analytic continuation. Moreover,

™ ™

2D /||

(In the next section, we will establish a similar result for any quadratic field
K.)

lim (s ~ )¢ (5) =

10.2 Zeta Functions of Quadratic Fields

Exercise 10.2.1 Let K = Q(v/d) with d squarefree, and denote by an the num-
ber of ideals in O of norm n. Show that a, is multiplicative. (That is, prove
that if (n,m) = 1, then anm = anam.)

Solution. Let a be an ideal of norm n and let

k
o= 1T
i=1
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be the unique factorization of n into distinct prime powers. Then by unique
factorization of ideals,
S
e
o=l
=1

We see immediately that
k
A, — H ap?,- .
i=1

This implies that a,, is multiplicative.

Exercise 10.2.2 Show that for an odd prime p, a, = 1+ (d/p).

Solution. By Theorem 7.4.2, we see that an odd prime p splits in Q(+/d)
if and only if (d/p) = 1, in which case there are two ideals of norm p. If
p does not split, there are no ideals of norm p. Finally, if p ramifies, then
(d/p) = 0 and there is only one ideal of norm p, by Exercise 7.4.3.

Exercise 10.2.3 Let dx be the discriminant of K = Q(v/d). Show that for all
primes p, ap = 1 + (dx /p)-

Solution. Since dx = d or 4d, the result is clear for odd primes p from
the previous exercise. We therefore need only consider p = 2. If 2 | dk,
then by Theorem 7.4.5, 2 ramifies and there is only one ideal of norm 2. If

2 'f dg, then
dg \ 1 ifdg=1 (mod8),
(7) " 1-1 ifdgk=5 (mod 8),
by the definition of the Kronecker symbol. The result is now immediate
from Theorem 7.4.5.

Exercise 10.2.4 Show that for all primes p,
e
_ dx dx
=3 (%) =% (%).
j=1 8|p

Solution. The norm of any prime ideal is either p or p?, the latter occurring
if and only if (d/p) = —1. Thus for o = 2, the formula is established and
for o = 1, the previous exercise applies. If (d/p) = —1, then clearly ay« =0
if o is odd and if « is even, then there is only one ideal of norm p%. If p
splits, then any ideal of norm p® must be of the form

¢ (')
for some j, where pOx = pg'. It is now clear that ape = o + 1 which is

the sum
j=0

7=
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Finally, if p ramifies, there is only one ideal of norm p®, namely p* where
pOk = p*. This completes the proof.

Exercise 10.2.5 Prove that
— dK
an = Z( L ) .
§ln
Solution. Since a, is multiplicative,
>~ (d
K
o= 1 (2 (%)
pein \7=0 * P
by the previous exercise. The result is now immediate upon expanding the

product.

Exercise 10.2.6 Let dx be the discriminant of the quadratic field K. Show that
there is an n > 0 such that (dx/n) = ~1.

Solution. We know that dx =0 or 1 (mod 4). If dxk =1 (mod 4), then

fOI‘ any Odd n we have

Let |dk| = pa where p is an odd prime. Since dk is squarefree, p{ a. Let
u be a quadratic nonresidue modulo p. We can find an odd n = u (mod p)
and n = 1 (mod 2a) by the Chinese Remainder Theorem. Then

(5)-G) G- ()

as desired. If di is even, let dx = d;ds where d; is 4 or 8 and ds is an odd

discriminant. Then
dg\ _ (dr) (22
n) \n n

by definition of the Kronecker symbol. Since d; = 4 or 8, it is easy to find
an a such that (d;/a) = —1. Choose n = a (mod d;), n = 1 (mod da).
Then (di /n) = —1, as desired.

Exercise 10.2.7 Show that

> (finﬁ) < ldk|.

n<x
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Solution. Let

dg
n mod |dk|

(n,dkg)=1

Choose ng such that (ng,|dk|) = 1 and (dx/no) = —1. (This is possible
by the previous exercise.) Then

dK _ dK
Go)s- 2 (o)
n mod |dg|

(n,ldx|)=1

As n ranges over residue classes mod |dg| so does nng. Hence

—Sz(d—K)S:S
o

so that S = 0.
Now define v by

vldg| <z < (v +1)|dk]|-

5(%)-,2.(%)

n<s ldx lv<n<a

> (8)-x

n<|dglv i=1 \(j-1)ldk|<n<jldk]|

Then,

since
dx
n

and the inner sum is zero because it is equal to S. Thus

> (%)) < lax.

n<e

Exercise 10.2.10 If K is a quadratic field, show that (s — 1){x(s) extends to
an analytic function for Re(s) > 1.

Solution. By Theorem 10.1.4,

cs * E(r)dx

CK(S):S_1+S 1 .’135+1 3

where E(x) = O(y/z). The integral therefore converges for Re(s) > 3.
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10.3 Dirichlet’s L-Functions

Exercise 10.3.1 Show that L(s, x) converges absolutely for Re(s) > 1.

Solution. Since |x(n)| < 1, we have
i x(n)
n=1 e

where o = Re(s). The latter series converges absolutely for Re(s) > 1.

=1
SZF7

n=1

Exercise 10.3.2 Prove that

<m.

> x(m)

n<x

Solution. If x is nontrivial, there is an ¢ (mod m) coprime to m such that
x(a) # 1. Then

S ox)= Y x@)=x ¥ x).

b mod m b mod m b mod m
(b,m)=1 (b,m)=1 (b,m)=1

Hence

Now, partition the interval [1, z] into subintervals of length m and suppose
that km < z < (k + 1)m. Then

doxm =Y xm+ Y, x(n).

n<z n<km km<n<zx

The first sum on the right-hand side is zero and the second sum is bounded
by m .

Exercise 10.3.3 If x is nontrivial, show that L(s,x) extends to an analytic
function for Re(s) > 0.

Solution. By Theorem 10.1.4, this is now immediate.

Exercise 10.3.4 For Re(s) > 1, show that

L(s,%) :H(1 - %ﬁﬁ)_l.

P
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Solution. Since x is completely multiplicative,

2
L(s,x) = H(1+Xp—@+%+---)

-10-%)

Exercise 10.3.5 Show that

Z 2(@)x(b) = {cp(m) ifa=b (mod m),

x mod m 0 otherwise.

Solution. If a = b (mod m), the result is clear. If a # b (mod m), let ¢
be a character such that 1(a) # %(b). Then

Yo wahxa™h) = Y (@x)(ba™)

x mod m x mod m

= ) x(ba™),

x mod m
because as x ranges over characters mod m, so does ¥x. But
(1=9p@a™) > x(bal)=0
x mod m

so the result follows.

Exercise 10.3.6 For Re(s) > 1, show that

Z log L(s, x) = ¢(m) Z n;ns'

x mod m p*=1mod m

Solution. By Exercises 10.3.3 and 10.3.5, we find

Y logL(s,x) = Zn;ns > X"

x mod m n,p x mod m

p"=1( mod m)

Exercise 10.3.7 For Re(s) > 1, show that

S X@logLis) =¢(m) Y —

npns '

x mod m p"*=a mod m
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Solution. By Exercise 10.3.3,

> X@lELE0 =Y — X X@xG)

x mod m n,p x mod m

since the series converges absolutely in Re(s) > 1. By Exercise 10.3.5, the
inner sum on the right-hand side is ¢(m) when p” = a (mod m) and zero
otherwise. The result is now immediate.

Exercise 10.3.8 Let K = Q({m). Set

f(s) = HL(s, X)-
X
Show that (x (s)/f(s) is analytic for Re(s) > 3.
Solution. The primes that split completely in Q((,,) are those primes

p =1 (mod m). Thus, because there are ¢(m) ideals of norm p for p =1
(mod m),

¢k (8)

-1
(o)
. (Np)
1 —¢(m)
= H (1 — —s) 9(s),
p=1mod m p
where g(s) is analytic for Re(s) > 1. By Exercise 10.3.6
1 —¢(m)
ew=- T (1-5)  #e
X p=1 mod m p

where h(s) is analytic and nonzero for Re(s) > £ (Why?).

Thus, (x(s)/f(s) is analytic for Re(s) > 3. This gives the analytic

continuation of (k (s) for Re(s) > 1. We can in fact show that

¢x(s) = [T L(s,%).

10.4 Primes in Arithmetic Progressions

Exercise 10.4.3 With the notation as in Section 10.3, write

o0

f&) =TILe0 =3 =

Show that ¢, > 0.
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Solution. This is immediate from Exercise 10.3.6 because

1
f(s) =exp| ¢(m) o
pnzgod m np

Exercise 10.4.4 With notation as in the previous exercise, show that

0o
Cn

ns
n=1

diverges for s = 1/¢(m).

Solution. By Euler’s theorem (Theorem 1.1.14), p?(™ = 1 (mod m) for
prime p{m. Thus,

aplom) Y —

f(1/¢(m)) —Te)

p*=lmod m

vV
[e]
5
]
[ =

Since

we are done (by Exercise 1.4.18).

Exercise 10.4.6 Show that

p=1 mod m

Solution. By Exercise 10.3.6,

1 1 .
Z p—F :M Z log L(s, x)-

p*=1mod m

As s — 17, we see that

p=lmodm

because L(1,x) # 0 for x # xo and

. . 1
S (D R
pim



324 CHAPTER 10. ANALYTIC METHODS

Note that

PRI P T
Lyt T S plp—1)
p

Exercise 10.4.7 Show that if gcd(a, m) = 1, then

Z 1=+c>o.

p=a mod m

Solution. By Exercise 10.3.7,

> n;nSZﬁ > x(a)log L(s,x).

p"*=a mod m

As s — 1T, we see that

p=a mod m
again because L(1, x) # 0 for x # xo and

lim log L(s, x¢) = +o0.
s—1t

Hence there are infinitely many primes in any given coprime residue class
mod m.

10.5 Supplementary Problems

Exercise 10.5.1 Define for each character x (mod m) the Gauss sum

900 = > x(@)e™m.
a mod m
If (n,m) = 1, show that
XM = 3 x(B)nm
bmod m
Solution.

X(n)g(i) = Z X(n)i(a)e2wia/m

a mod m

— Z y(b)e%ribn/m

b mod m

upon setting a = bn in the first sum. Observe that as a ranges over coprime
residue classes (mod m), so does bn since (n,m) = 1.
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Exercise 10.5.2 Show that |g(x)] = v/m.

Solution.
m—1 mel )
Z |X(n)|2|g(Y)|2 = X(b)e%”b"/m
n=1 ol e
m—1
= X(bl)X(bg) 32”2(b1—b2)n/m
b1.ba =

The last sum is the sum of a geometric progression and is (0 unless b; = by
(mod m) in which case it is m. Thus,

$(m)lg(x)|* = me(m)

from which the result follows.

Exercise 10.5.3 Establish the Pélya—Vinogradov inequality:

> x(n)

n<z

< §m*2(1 + logm)

for any nontrivial character x (mod m).

Solution. By the two previous exercises, we get

me):g(x)—lz( > x(b)e"”'“’"/’”)

n<x n<z \bmod m
Interchanging summation gives

Z e27ribn/m _ e27rib([a:}+1)/m -1
e2nib/m _ ] ’

n<x

provided b # 0 (mod m). Observe that the numerator is bounded by 2 and
the denominator can be written as

emib/m (emib/m _ gmmib/m) — 9iemib/m g mb
m

so that for b # 0 (mod m)

. 1
2mibn/
Zewznm< -,rb|'
m

et ~ |sin

Since |sin Z'Eb| = |sin ”(%QL we may suppose b < m/2. In that case,
. wb 2 [ wh
sin—| > —{ —
m T\m
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because sinz > 2z/7 for 0 < z < /2, as is seen by looking at the graph
of sinz. Therefore

m
< x| ~* —
doxml < ™ Do 5
n<x b mod m
< _,2m log m.

The last inequality follows by noting that
1 ™ dt
E -<1+ — =1+logm.

b<m

Exercise 10.5.4 Let p be prime. Let x be a character mod p. Show that there
is an a < p'/?(1 + log p) such that x(a) # 1.

Solution. If each a < p'/?(1 + logp) = u (say) satisfies x(a) = 1, then
> x(a) =u.
alu

By the Pélya-Vinogradov inequality, the left-hand side is < 1p'/?(1+logp),
which is a contradiction.

Exercise 10.5.5 Show that if  is a nontrivial character mod m, then

L) = 3 M)y o (VmoEm),

n<u

Solution. By Theorem 10.1.4,

3 x(n) _ /oo A(z) dx
n i 2

n>u

where

0 if x < U
A = s
(x) {Zu<n§z X(n) ifz > u.

By Pélya-Vinogradov, A(z) = O(y/mlogm) and so
Z x(n)  [* A(x)dx 0 (\/ﬁlogm)
n u '

2

n>u u

Therefore
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Exercise 10.5.6 Let D be a bounded open set in R? and let N(z) denote the
number of lattice points in D. Show that

im V()

r—r0oQ T

= vol(D).

Solution. Without loss of generality, we may translate our region by a
lattice point to the first quadrant. A lattice point (u,v) € D if and only if
(u/x,v/x) € D. This suggests we partition the plane into squares of length
1/« with sides parallel to the coordinate axes. This then partitions D into
small squares each of area 1/2?. The number of lattice points of xD is then
clearly the number of “interior squares.” For this partition of the region, we
write down the lower and upper Riemann sums. Let I, denote the number
of “interior” squares, and B, the number of “boundary” squares. Then, by
the definition of the Riemann integral

I

= I; + B,
=< vol(D) < Lo+ Bs
x

)
so that I I 4B
lim -2 — lim =27 vol(D).

T—=0 T—ro0 :E2

On the other hand,
I. <N(z)< I, + B,.

Thus,
N
lim (;E) = vol(D).

r—oo

Exercise 10.5.7 Let K be an algebraic number field, and C' an ideal class of K.
Let N(z,C) be the number of nonzero ideals of Ok belonging to C with norm
< z. Fix an integral ideal b in C~'. Show that N(z,C) is the number of nonzero
principal ideals (&) with « € b with |[Ng(a)| < N (b).

Solution. For any a € C, ab = (&) so that (a) C b. Moreover N (a) =
N(a)N(b). Conversely, if o € b, let a = b~!(a) which is an integral ideal
of norm < z.

Exercise 10.5.8 Let K be an imaginary quadratic field, C an ideal class of Ok,
and dx the discriminant of K. Prove that
N
lim (z,C) _ 2

r—00 T w,\/lcl_Kl,

where w is the number of roots of unity in K.

Solution. By the previous exercise, wN{z, C) is the number of integers
a € b with 0 < [Nk (a)| < z|N(b)| where b € C~! is fixed. Let 31, 32 be an
integral basis of b, and let 37, 35 be the conjugates of 31, 32, respectively.
Define

D = {(u,v) ER?:0 < |[uf) +vf|* < 1}.
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Clearly D is bounded (as is easily verified). Then wN(z, C) is the number
of lattice points in 1/zD so that (by the penultimate exercise)

lim wN{(z,C)

T—00 T

= vol(D).
Set u; = Re(uf; + vB2), ug = Im(uf + vB2) so that

vol(D) = / / du dv

[uB1+vPB2|2<1

2 . // duy dus
Nby/ldk] |

u1+u§ <1
27

Nby/|dk|

Exercise 10.5.9 Let K be a real quadratic field with discriminant dx, and fun-
damental unit €. Let C be an ideal class of Og. Show that

lim N(z,C) _ 210g€,
r—00 T Vdi

where N(z,C) denotes the number of integral ideals of norm < z lying in the
class C.

Solution. As in the previous two exercises, we fix an ideal b € C~! and we
are reduced to counting the number (), with (Ng(a)) < xNb. Therefore,
fix an integral basis 01, 82 of b, B8], 35 denote the conjugates, respectively.
Notice that we have infinitely many choices of « since (o) = (e™a) for any
integer m. Our first step is to isolate only one generator. Since a/a’ is a
unit of norm 41, there is an integer m so that

—2mloge <log lg,—l < (—2m+2)loge.
Thus, setting w = €™a, we find

0 <log < loge.

w
|Nk (w)/2]

If wy, wo are associated elements of b satisfying the same inequality, then
the fact that w;, = nws for some unit 1 gives 1 < || < e. Thus, n = %1
because ¢ is a fundamental unit. Therefore 2N (z, C) is the number of w € b
such that 0 < |[Ng(w)| < (Nb)z,

w

W < 10g8.

0 <log
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Now consider

uf1+vf
0< log |uﬁ1+vﬁ2|1/12|uﬁ{2+’Uﬁ§|1 5| < 10g6.

, 0< |lufy + vBa||uf] +vHh] < 1,
D = ( (u,v) e R*:
Proceeding as in the previous question gives

. 2N(z,C) 4loge
lim = .
T—00 T IdKI

Exercise 10.5.10 Let K be an imaginary quadratic field. Let N(z; K) denote
the number of integral ideals of norm < z. Show that

lim N(z; K) _ 2xh
T—00 T w /ldKl,

where h denotes the class number of K.

Solution. Clearly,
N(z; K) =) N(z,0),
c

where the (finite) sum is over the ideal classes of K. Thus,

N(z; K N(z, C
lim N K) = lim Nz C)
T—00 x = T—ro0 x
and by the penultimate question,
N{(z,C) 27

lim =

LT—r00 T w,/|dK|'

Exercise 10.5.11 Let K be a real quadratic field. Let N(z, K) denote the
number of integral ideals of norm < z. Show that

lm N(z;K) _ 2hloge
T—00 T /ldKl ’

where h is the class number of K.

Solution. This follows exactly as in the previous question except that we
invoke the corresponding limit of N(z, C) for the real quadratic case.

Exercise 10.5.12 (Dirichlet’s Class Number Formula) Suppose that K is
a quadratic field with discriminant dg. Show that

00 2nwh .
(dK)l__{w ldx| if die <0,

Z n ) n ) 2les 554 0

n=1 ldi| 1 K > )

where h denotes the class number of K.
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Solution. By Example 10.2.9, the number of integral ideals of norm < x

is cx + O(y/z) where
— (dx\ 1
=3 (%)%

. Nz, K) =(dx\1
Jim —2= —;(ﬂ;

Comparing this limit with the previous two questions gives the desired
result.

Thus,

Exercise 10.5.13 Let d be squarefree and positive. Using Dirichlet’s class num-
ber formula, prove that the class number of Q(v/—d) is O(v/dlog d).

Solution. Let D be the discriminant of Q(v/—d). By Dirichlet’s class

number formula,
w4/ |D Z ( )

n=1

Since |D| = |d| or 4|d|, it suffices to prove that

;( ) O(logd).

By a previous exercise (Exercise 10.5.5), we have for any u > 1,
— (D dlogd
Z(_>lzz(2>l+o(@>,

nj/n njJjn U
n=1 n<u

which was derived using the Pélya-Vinogradov inequality. Choosing v =
V/d, and noting that

253 (2) - otosa),

we obtain the result.

Exercise 10.5.14 Let d be squarefree and positive. Using Dirichlet’s class num-
ber formula, prove that the class number A of Q( \/_ )is O \/c_l

Solution. Let D be the discriminant of Q(v/d). By Dirichlet’s class number

formula,
2hloge > D) 1
«/|D| _Z<n n
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where ¢ is the fundamental unit of Q(v/d). Since

a+bvd
2

for integers a,b and a? — db® = +1 or +4 we deduce that

e=a+b/d

loge > logd.

Estimating the infinite series as in the previous question, the result is now
immediate.

Exercise 10.5.15 With ¢(z) defined (as in Chapter 1) by

Y(z) = Y logp,

oZo
prove that for Re(s) > 1,

—z(s)zs i jﬁs(fl)dw

we differentiate to obtaln

C n=1 ne
where A(n) = logp if n = p® and 0 otherwise. It is clear that
b(@) = 3 Aw)
n<x

and so the result now follows by Theorem 10.1.4.

Exercise 10.5.16 If for any € > 0,
Y(@) =z +0('/**),
show that ((s) # 0 for Re(s) > 1.

Solution. If the given estimate holds, we obtain an analytic continuation
of

for Re(s) > 3, apart from a simple pole at s = 1. Thus ((s) has no zeros

in Re(s) > %






Chapter 11

Density Theorems

11.1 Counting Ideals in a Fixed Ideal Class

Exercise 11.1.1 Show that B, is a bounded region in R".

Solution. Since the integral basis 81, ..., 8, is linearly independent over Q,
di/Q(B1, -, Brn) = [det(B)]? # 0.
Thus the linear map
Py, xn) = (V) ., ™)

is invertible. Let M be the largest of the values |log |e§-i)|| for1<4,j5<r.
Then for each element of B,, we have from the second relation defining B,,

|t < e™(N(b)z)!/",

holds for 1 < i < n. Therefore the image of ¢ is a bounded set and thus
the inverse image is bounded.

Exercise 11.1.2 Show that ¢tB; = B~ for any ¢t > 0.

Solution. There are two conditions defining B,. The second one involving
units is invariant under the homogenous change of variables. The first
inequality gets multiplied by t™.

Exercise 11.1.3 Show that N(z,C) = O(z). Deduce that N(z; K) = O(z).

Solution. We may write the z;’s in terms of the a(9’s by inverting
the transformation matrix, as noted in Exercise 11.1.1. As the a(®’s are
O(z*/™), we deduce that the x;’s are O(z'/™). The result is now immediate.

333
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Exercise 11.1.6 Prove that ((s,C) extends to the region ®(s) > 1 — 1 except
for a simple pole at s = 1 with residue

27 (2m)™ Ric
wy/ld]

Deduce that (x(s) extends to R(s) > 1 — L except for a simple pole at s = 1

with residue 3
2" (2m)?hx Ry

PK = T\/d—Kl,

where hx denotes the class number of K.

Solution. If we let ax = px/hk, and consider the Dirichlet series

Zﬁm': (s,C) — ak((s),

then by Theorem 11.1.5, we have
Z am = O(x )

By Theorem 10.1.4, f(s) converges for R(s) > 1 — 1. As {(s) has a simple
pole at s = 1 with residue 1, the latter assertions are immediate.

Exercise 11.1.7 Prove that there are infinitely many prime ideals in Ok which
are of degree 1.

Solution. We have

8G9 =Y s+ T v

© n>2,p

The second sum is easily seen to converge for R(s) > 1/2. The first sum
can be separated into two parts, one over primes of first degree and the
other over primes of degree > 2. Again, the second sum converges for
R(s) > 1/2. If the first sum consisted of only finitely many terms, the right
hand side would tend to a finite limit as s — 17, which is not the case as
the Dedekind zeta function has a simple pole at s = 1.

Exercise 11.1.8 Prove that the number of prime ideals p of degree > 2 and
with norm < z is O(z'/%log z).

Solution. If p is a prime ideal of degree r > 2, then N(p) = p” < x
implies r < (log x)/ log2 and p < x/2. For each prime, there are a bounded
number of prime ideals in K above p. Thus, the final estimate is obtained
by counting the number of possible pairs (p,r) and this is O(z'/? log ).
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Exercise 11.1.9 Let 4 be defined on integral ideals a of Ok as follows. u(QOk) =
1, and if a is divisible by the square of a prime ideal, we set p(a) = 0. Otherwise,
we let p(a) = (—1)* when a is the product of k distinct prime ideals. Show that

> _u(®) =0

bja
unless a = O .
Solution. Clearly, the function
fla) =" p(b)
bla

is multiplicative and so, it suffices to evaluate it on prime ideals. But this
is clearly zero.

Exercise 11.1.10 Prove that the number of ideals of @k of odd norm < z is

el (1 - ﬁ) +O@' ),

where the product is over prime ideals p of Ok dividing 20k.
Solution. By the previous exercise, the number of such ideals is
PIRDINIC
N(a)<x b|(a,2)

since an ideal has odd norm if and only if it has no prime ideal divisor
above 2. Interchanging summation and using Theorem 11.1.5, we obtain
the result.

Exercise 11.1.11 Let A(z) be the number of ideals of O of even norm < z
and B(z) of odd norm < z. Show that

A(z)

lim —— =
if and only if K = Q or K is a quadratic field in which 2 ramifies.
Solution. From the previous exercise, we see that

B(z) =[] (1 - ﬁ)) pxT + O ™7).

|2

We see that A(z) ~ B(z) if and only if A(z) + B(x) ~ 2B(x). That is, if

and only if
1 1
- = | I 1———.
2 ( N(@))
pl2
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Let g1, ..., p; be the prime ideals above 2 with norms 2™, ..., 2™ respec-
tively. The above equation implies

In other words, we have
t
gmitetme—1 _ H (2m —

The right hand side is a product of odd numbers and so the only way the
left hand side can be odd is if m; + - -- + m; = 1 which means that there is
only one prime ideal above 2 and it has norm 2. This can only happen if
K =Q or if K is a quadratic field in which 2 ramifies.

Exercise 11.1.12 With notation as in the discussion preceding Theorem 11.1.4,
let V, denote the set of n-tuples (z1, ..., z,) satisfying

laV .. o™ < zN(b).

Let t = x'/. Show that there is a § > 0 (independent of z) such that for each
lattice point P contained in V{;_s)~, all the points contained in the translate of
the standard unit cube by P belong to V.

Solution. We fix § > 0 and choose it appropriately later. We may write
the norm form a(V ---a(™ as

i1 in
E : iy, in Ty " Ty

—oin

where the summation is over all positive integers iy, ..., 4, such that i; +
-+ i, = n and the a;,_;,’s are rational integers. If P = (uy,...,un),
then any point contained in the translate of the standard unit cube by P
is of the form (u; + t1,...,un + t,) with #;’s bounded by 1. Thus, by the

solution of Exercise 11.1.1, we deduce that the norm of any such point is

> iyl U+ 0@,

i1y.nsin

This has absolute norm

1

<E-86)"+0@E™T)<z-néa™™ +0@™) <z

if we choose § sufficiently large so that the negative sign dominates. (This
result is important to make the intuitive argument preceding Theorem
11.1.4 rigorous. Indeed, a similar argument shows that there is a 6 > 0
so that for any lattice point P contained in V,, the entire translate of the
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standard unit cube by P is also contained in V{;15~. If U is the group
generated by the fundamental units, there is a natural action of U on R"
which preserves the absolute value of the norm form. Then B, can be
described as the set of orbits under this action. That is, B, = V,/U so
that from the containments established above, we deduce the result stated
before Theorem 11.1.4.)

11.2 Distribution of Prime Ideals

Exercise 11.2.1 Show that L(s, x) converges absolutely for R(s) > 1 and that
L(37X):H<1_ X(ﬁo)>—1,
S N(p)®

in this region. Deduce that L(s, x) # 0 for R(s) > 1.

Solution. We have by multiplicativity of x,
L(s,x) =[] (1 _ X )l
. N(p)®
and the product converges absolutely for R(s) > 1 if and only if
Z 1
— N(p)®

converges in this region, which is certainly the case as there are only a
bounded number of prime ideals above a given prime p. The non-vanishing
is also clear.

Exercise 11.2.2 If y is not the trivial character, show that
> x(€)=0
c
where the summation is over the ideal classes C of H.

Solution. If x is not the trivial character, there is a Cy such that x(Cp) #
1. Thus,

3 x(CCo) = x(Co) 3 X(0),
C C

where we have used the fact that as C runs over elements of the ideal class
group, so does CCy. The result is now immediate.
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Exercise 11.2.3 If C'y and C are distinct ideal classes, show that
Z x(C1)x(C2) =
x

If C1 = C2, show that the sum is hx. (This is analogous to Exercise 10.3.5.)

Solution. If C; = C,, the result is clear. We consider the sum
>_x(4
X

for A # 1. We can then take a non-trivial character ¢ of the subgroup
generated by A and extend this character to the full ideal class group in
the usual way. Then,

> ()4 Zx

and as before, the result is now evident.

Exercise 11.2.5 Let C' be an ideal class of Ox. For R(s) > 1, show that

ZX Ylog L(s,x) = hx Z Np

pmel

where the first summation is over the characters of the ideal class group and the
second summation is over all prime ideals p of Ok and natural numbers m such
that p™ € C.

Solution. In the left hand side, we insert the series for log L(s,x). By
interchanging the summation and using the orthogonality relations estab-
lished in the Exercise 11.2.3, we obtain the desired result.

Exercise 11.2.6 Show that

converges for R(s) > 1/2.

Solution. As noted earlier, the number of prime ideals above a fixed prime
p is at most the degree of the number field. Thus, the result is clear from
the fact that )

m ms
m2>2,p P

converges for R(s) > 1/2.

Exercise 11.2.7 If x* # xo show that L(1,x) # 0.
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Solution. We use the classical inequality
3+4cosf+ cos26 > 0,
as follows. We write

x(p) = €'
so that for real ¢ > 1,

R (3log (k (o) + 41og L(o, x) + log L(o, x*))
= 4
ZmN (3+4cosfp, +cos26,) >

Hence,

¢k (0)*Lio, x)* L(0,x*)| 2 1.
If L(1, x) = 0, the left hand side of this inequality tends to zero as ¢ — 11,
which is a contradiction.

Exercise 11.2.8 Let C be a fixed ideal class in O k. Show that the set of prime
ideals p € C has Dirichlet density 1/hk.

Solution. We have by the orthogonality relation,
1
Zx )log L(s, x) hKZ—;+O(1)
e Np)

as s — 17. Since L(1,x) # 0, we may take limits of the left hand side
as s — 11 and obtain a bounded quantity from the non-trivial characters.
Since L(s, x0) = Ck (s), we deduce immediately that

2pec /N(®)® 1

lim =g€C Y o
o1+ loglr(s)  hx

as desired.

Exercise 11.2.9 Let m be a natural number and (a, m) = 1. Show that the set
of primes p = a(mod m) has Dirichlet density 1/¢(m).

Solution. This is immediate from Exercise 10.3.7.

Exercise 11.2.10 Show that the set of primes p which can be written as a® +5b°
has Dirichlet density 1/4.

Solution. We have already seen that the class number of Q(v/—5) is 2. The
set of prime ideals lying in the principal class are of the form (a + by/—5)

and have norm a? + 5b%. By Hecke’s theorem, the Dirichlet density of these
prime ideals is 1/2 and taking into account that there are two ideals of
norm p in the principal class gives us the final density of 1/4.
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Exercise 11.2.11 Show that if K = Q, the principal ray class group mod m is
isomorphic to (Z/mZ)".

Solution. The elements of the principal ray class group are the ideals («)
modulo m with a totally positive generator and (&, m) = 1. The result is
now clear.

11.3 The Chebotarev density theorem

Exercise 11.3.1 Show that action of the Galois group on the set of prime ideals
lying above a fixed prime p of k is a transitive action.

Solution. Suppose not. Take a prime ideal g which is not in the Galois
orbit of p; (say) lying above the prime ideal p. By the Chinese remainder
theorem (Theorem 5.3.13), we may find an element © € pand x—1 € o(p;)
for all o in the Galois group. But then, Ng/i() is an integer of O which
on one hand is divisible by g and on the other coprime to p, a contradiction.

Exercise 11.3.4 By taking k = Q and K = Q({m), deduce from Chebotarev’s
theorem the infinitude of primes in a given arithmetic progression a (mod m)
with (a,m) =1.

Solution. The Galois group consists of automorphisms 7, satisfying

Ta((m) = Cfn

Comparing this with the action of the Frobenius automorphism of p, we see
that o, = 7, where p = a (mod p). By Chebotarev, the Dirichlet density
of primes p for which o, = 7, is 1/¢(m).

Exercise 11.3.5 If k = Q and K = Q(v/D), deduce from Chebotarev’s theorem
that the set of primes p with Legendre symbol (D/p) = 1is 1/2.

Solution. By Theorem 7.4.2, we see that these are precisely the set of
primes which split completely in K and by Chebotarev, the density of such
primes is 1/2.

Exercise 11.3.6 If f(z) € Z[z] is an irreducible normal polynomial of degree n
(that is, its splitting field has degree n over @Q), then show that the set of primes
p for which f(z) =0 (mod p) has a solution is of Dirichlet density 1/n.

Solution. By Theorem 5.5.1 and Exercise 5.5.2, we see that the set of
primes p for which f(z) = 0 (mod p) has a solution coincides with the set
of primes p which split completely in the field obtained by adjoining a root
of f. By our assumption, this is a Galois extension of degree n and to say
p splits completely is equivalent to saying that o, = 1. By Chebotarev, the
Dirichlet density of such primes is 1/n.
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Exercise 11.3.7 If f(x) € Z|z] is an irreducible polynomial of degree n > 1,
show that the set of primes p for which f(z) = 0 (mod p) has a solution has
Dirichlet density < 1.

Solution. Let K be the splitting field of f over Q with Galois group G.
Let H be the subgroup corresponding to the field obtained by adjoining a
root of f to Q. It is not difficult to see that f(z) = 0 (mod p) has a solution
if and only if the Artin symbol oy, lies in some conjugate of H. This is a set
stable under conjugation. If we take into account that the identity element
is common to all the conjugate subgroups of H, we obtain

|Ugec gHg ™| <[G: HI(|H| - 1) +1=|G| +1-[G: H| < |G|

if [G: H] = n > 1, which is the case.

Exercise 11.3.8 Let ¢ be prime. Show that the set of primes p for which p =1
(mod g) and

has Dirichlet density 1/q(q — 1).

Solution. The second condition happens if and only if ¢ = 2 (mod p) has
a solution and together with p = 1 (mod p), the conditions are equivalent
to saying p splits completely in the field Q(,, 2}/%). As this field has degree
q(q — 1), the result now follows from Chebotarev’s theorem.

Exercise 11.3.9 If a natural number n is a square mod p for a set of primes p
which has Dirichlet density 1, show that n must be a square.

Solution. If n is not a square, the field Q(y/n) is quadratic over QQ and by
Chebotarev, the density of primes for which n is not a square is 1/2. (This
shows that we can assert the conclusion of the theorem if the set of primes
p for which n is a square has density > 1/2.)

11.4 Supplementary Problems

Exercise 11.4.1 Let G be a finite group and for each subgroup H of G and each
irreducible character ¥ of H, define ar (¥, x) by

Indf ¢ = > an(¥,x)x
X

where the summation is over irreducible characters x of G. For each ¥, let A,
be the vector (am (1),x)) as H varies over all cyclic subgroups of G and ¥ varies
over all irreducible characters of H. Show that the A,’s are linearly independent
over Q.
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Solution. If

ZCXAX =0

X

for some integers ¢, then by Frobenius reciprocity, the character
o= ox
X

restricts to the zero character on every cyclic subgroup. By the linear
independence of characters (or equivalently, by the orthogonality relations),
each ¢, is equal to zero.

Exercise 11.4.2 Let G be a finite group with ¢ irreducible characters. By the
previous exercise, choose a set of cyclic subgroups H; and characters ¢, of H;
so that the t x t matrix (am, (¥, x)) is non-singular. By inverting this matrix,
show that any character x of G can be written as a rational linear combination
of characters of the form Indgi i, with H; cyclic and ; one-dimensional. (This
result is usually called Artin’s character theorem and is weaker than Brauer’s
induction theorem.)

Solution. Since the row rank of a matrix is equal to the column rank, it
is clear that we can choose a set of such H;’s and v¢;’s. Thus,

Indg, ¥; = ZaHi(Q/’zw X)X-
X

Moreover,
an (¥, x) = (Ind, x)

are all non-negative integers. Thus, the inverse matrix consists of rational
entries.

Exercise 11.4.3 Deduce from the previous exercise that some positive integer
power of the Artin L-function L(s,x; K/k) attached to an irreducible character
x admits a meromorphic continuation to R(s) = 1.

Solution. By the previous exercise, we may write L(s, x; K/k) as a product
of functions of the form L(s, v;, K/K**)™ with m;’s rational numbers. By
the Artin reciprocity law, each L(s, 4, K/K*i) coincides with L(s, x;) with
xi & Hecke character of K. As L(s, ;) has a meromorphic continuation
to R(s) = 1, the result follows.

Exercise 11.4.4 If K/k is a finite Galois extension of algebraic number fields
with group G, show that

CK(S) = HL(37 X K/k)X(1)7

X

where the product is over all irreducible characters x of G.
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Solution. Since the right hand side represents the L-function attached to
the regular representation, which is Ind?l, we have that it is equal to

L(s,1,K/K) = (k(s),
by the invariance property under induction of Artin L-series.

Exercise 11.4.5 Fix a complex number so € C with R(sp) > 1 and any finite
Galois extension K/k with Galois group G. For each subgroup H of G define the
Heilbronn character 0y by

Or(g) = > _n(H,x)x(9)

where the summation is over all irreducible characters x of H and n(H, x) is the
order of L(s,x; K/KH®) at s = so. (By Exercise 11.4.3, the order is a rational
number.) Show that 8¢|H = 6q.

Solution. We have

bcle =Y (G, X)xla

X
But

X|lm = Z(X|H,¢)¢
¥

where the sum is over irreducible characters 1 of H. Thus,

bclm =) (Z n(G, x)(xIH,w)) P.

P X

By Frobenius reciprocity,

(xl#, %) = (x, Ind§)

so that the inner sum is

> " n(G, x)(x, Ind§¢).

X

This is equal to n{H, ) since

L(s, %, K/K™) = L(s,IndGy, K/k) = [] L(s, x, K/k) etndiv).
X
Thus,
Oclu =Y n(H,$)p =0u.
P

Exercise 11.4.6 Show that (1) equals the order at s = s of the Dedekind
zeta function (g (s).
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Solution. We have

8a(1) =D _n(G,x)x(1)

X

which by Exercise 11.4.4 is the order of (x(s) at s = sg.

Exercise 11.4.7 Show that

D (G, x)? < (ords=s, Cx(s))*.

X
Solution. We compute (6¢g, 0¢) using the orthogonality relations to obtain
> n(G,x)*
X
On the other hand,
(bc,0c) = € Z [2e16))
9eG

By Exercise 11.4.5, 6(g) = 64 (g). But if H is abelian, n(H,v) > 0 by
Artin’s reciprocity law and so for h € H,

6 ()| <> n(H, ) |9(h)].
P

Thus,
08(h)] <> n(H,v) = 0u(1),

Y

which by Exercise 11.4.6 is the order of the Dedekind zeta function (x(s)
at s = sg. The result is now immediate.

Exercise 11.4.8 For any irreducible non-trivial character x, deduce that
L(s, x; K/k)
admits an analytic continuation to s = 1 and that L(1,y; K/k) # 0.

Solution. Since the Dedekind zeta function has a simple pole at s = 1, we
see that the previous exercise applied to the point so = 1 implies

> n(Gx)’
X#1

because n(G, 1) = 1. Hence, n(G,x) = 0 for any x # 1. By Exercise 11.4.3
we are done.
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Exercise 11.4.9 Fix a conjugacy class C in G = Gal(K/k) and choose gc € C.
Show that

1 C| o= —
D % ;x(gc)logL(s,x; K/k).

m,p, ot €C

Solution. This is an immediate consequence of the orthogonality relations.

Exercise 11.4.10 Show that
_ 2po,ec NGB |
lim =P%ecc * v~ _ I
so1+ log (k. (s) |G
which is Chebotarev’s theorem.

Solution. We take the limit as s — 17 in both sides of the equation of the
previous exercise. Observe that by Exercise 11.4.8, the limit as s — 1T of
log L(s, x; K/k) for x # 1 is finite. Since L(s,1; K/k) = (x(s), the result is
now immediate.

Exercise 11.4.11 Show that (x(s)/(x(s) is entire. (This is called the Brauer-
Aramata theorem.)

Solution. By Exercise 11.4.7, we have
n(G,1)? < (ordg—s,Cx(s))%

But n(G,1) = ord,=5,(x(s) and as both (x(s) and (x(s) are regular every-
where except at s = 1, we deduce that

ords=s,Ck(s) < ords=s,Ck(s),

for sg # 1. But for sg = 1, this inequality is also true. The result is now
immediate. (It is a famous conjecture of Dedekind that if K is an arbitrary
extension of k (not necessarily Galois), then (x(s)/Cx(s) is always entire.
This exercise shows that the conjecture is true in the Galois case. The
result is also known if K is contained in a solvable extension of k.)

Exercise 11.4.12 (Stark) Let K/k be a finite Galois extension of algebraic num-
ber fields. If {x(s) has a simple zero at s = so, then L(s, x; K/k) is analytic at
s = sg for every irreducible character x of Gal(K/k).

Solution. If (i (s) has a simple zero at s = sq, then

Y G x)* <1

X

By the meromorphy of Artin L-series, we have that each n(G,x) is an
integer. The inequality implies that for at most one x, we have [n(G, x)| =
1. If x is non-abelian, then the factorization of (x(s) as in Exercise 11.4.4
gives a contradiction for the corresponding L-function introduces a pole or
zero of order greater than 1. Hence x is abelian, but in this case the result
is known by Artin reciprocity and Hecke’s theorem.
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Exercise 11.4.13 (Foote- K. Murty) For any irreducible character x of Gal(K/k),
show that
L(s,x, K/k)Cxk (s)

is analytic for s # 1.

Solution. This is immediate from the inequality
|n(G7 X)l < Ords:so Ck (8)
for so # 1.

Exercise 11.4.14 If K/k is solvable, show that

DGy x)? < (ords=seCr (5)/Ci(s))” -

x#1
Solution. Let f = 6 — n(G, 1)1 and note that
(£, /)= _n(Gx)*
Xx#1
Now by Exercise 11.4.5

£(9) = by (9) = n(G, 1) = n((g), 1) = n(G, 1) + > _ n({g), ¥)i(g).
vl

The subfield fixed by (g) is a subfield of K and we know Dedekind’s con-
jecture for this extension. Thus,

n((g),1) —n(G,1) > 0.

Therefore,

1£(9)] <n((g),1) =n(G, 1) + > n(g), ) = ords=s, (Cx (5)/Ck(5)),
P#l

from which the inequality follows.
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