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Preface

There are good Teasons to believe that
nonstandard analysis, i some ver-
sion or other, will be the analysis of
the future.

KurT GODEL

This book is a compilation and development of lecture notes written for
a course on nonstandard analysis that I have now taught several times.
Students taking the course have typically received previous introductions
to standard real analysis and abstract algebra, but few have studied formal
logic. Most of the notes have been used several times in class and revised
in the light of that experience. The earlier chapters could be used as the
basis of a course at the upper undergraduate level, but the work as a
whole, including the later applications, may be more suited to a beginning
graduate course.

This preface describes my motivations and objectives in writing the book.
For the most part, these remarks are addressed to the potential instructor.

Mathematical understanding develops by a mysterious interplay between
intuitive insight and symbolic manipulation. Nonstandard analysis requires
an enhanced sensitivity to the particular symbolic form that is used to ex-
press our intuitions, and so the subject poses some unique and challenging
pedagogical issues. The most fundamental of these is how to turn the trans-
fer principle into a working tool of mathematical practice. I have found it
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unproductive to try to give a proof of this principle by introducing the
formal Tarskian semantics for first-order languages and working through
the proof of Los’s theorem. That has the effect of making the subject seem
more difficult and can create an artifical barrier to understanding. But the
practical use of transfer is more readily explained informally, and typically
involves statements that are no more complicated than the “epsilon-delta”
statements used in standard analysis. My approach then has been to illus-
trate transfer by many examples, with demonstrations of why those exam-
ples work, leading eventually to a situation in which its formulation as a
general principle appears quite credible.

There is an obvious analogy with standard laws of thought, such as
induction. It would be an unwise teacher who attempted to introduce this
to the novice by deriving the principle of induction as a theorem from
the axioms of set theory. Of course one attempts to describe induction,
and ezplain how it is applied. Eventually after practice with examples the
student gets used to using it. So too with transfer.

It is sensible to use this approach in many areas of mathematics, for
instance beginning a course on standard analysis with a description of the
real number system R as a complete ordered field. The student already
has well-developed intuitions about real numbers, and the axioms serve to
summarise the essential information needed to proceed. It is rare these days
to find a text that begins by explicitly constructing R out of the rationals
via Dedekind cuts or Cauchy sequences, before embarking on the theory of
limits, convergence, continuity, etc.

On the other hand, it is not so clear that such a methodology is ade-
quate for the introduction of the hyperreal field *R itself. In view of the
controversial history of infinitesimals, and the student’s lack of familiar-
ity with them, there is a plausibility problem about simply introducing *R
axiomatically as an ordered field that extends R, contains infinitesimals,
and has various other properties. I hope that such a descriptive approach
will eventually become the norm, but here I have opted to use the founda-
tional, or constructive, method of presenting an ultrapower construction of
the ordered field structure of *R, and of enlargements of elementary sets,
relations, and functions on R, leading to a development of the calculus,
analysis, and topology of functions of a single variable. At that point (Part
III) the exposition departs from some others by making an early introduc-
tion of the notions of internal, external, and hyperfinite subsets of *R, and
internal functions from *R to *R, along with the notions of overflow, under-
flow, and saturation. It is natural and helpful to develop these important
and radically new ideas in this simpler context, rather than waiting to ap-
ply them to the more complex objects produced by constructions based on
superstructures.

As to the use of superstructures themselves, again I have taken a slightly
different tack and followed (in Part IV) a more axiomatic path by positing
the existence of a universe U containing all the entities (sets, tuples, rela-
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tions, functions, sets of sets of functions, etc., etc.) that might be needed in
pursuing a particular piece of mathematical analysis. U is described by set-
theoretic closure properties (pairs, unions, powersets, transitive closures).
The role of the superstructure construction then becomes the foundational
one of showing that universes exist. From the point of view of mathemat-
ical practice, enlargements of superstructures seem somewhat artificial (a
“gruesome formalism”, according to one author), and the approach taken
here is intended to make it clearer as to what exactly is the ontology that
we need in order to apply nonstandard methods. Looking to the future,
if (one would like to say when) nonstandard analysis becomes as widely
recognised as its standard “shadow”, so that a descriptive approach with-
out any need for ultrapowers is more amenable, then the kind of axiomatic
account developed here on the basis of universes would, I believe, provide
an effective and accessible style of exposition of the subject.

What does nonstandard analysis offer to our understanding of math-
ematics? In writing these notes I have tried to convey that the answer
includes the following five features.

(1) New definitions of familiar concepts, often simpler and more intu-
ttively natural

Examples to be found here include the definitions of convergence,
boundedness, and Cauchy-ness of sequences; continuity, uniform con-
tinuity, and differentiability of functions; topological notions of inte-
rior, closure, and limit points; and compactness.

(2) New and insightful (often simpler) proofs of familiar theorems

In addition to many theorems of basic analysis about convergence and
limits of sequences and functions, intermediate and extreme values
and fixed points of continuous functions, critical points and inverses
of differentiable functions, the Bolzano-Weierstrass and Heine-Borel
theorems, the topology of sets of reals, etc., we will see nonstandard
proofs of Ramsey’s theorem, the Stone representation theorem for
Boolean algebras, and the Hahn-Banach extension theorem on linear
functionals.

(3) New and insightful constructions of familiar objects

For instance, we will obtain integrals as hyperfinite sums; the reals
R themselves as a quotient of the hyperrationals *Q; other comple-
tions, including the p-adic numbers and standard power series rings
as quotients of nonstandard objects; and Lebesgue measure on R by
a nonstandard counting process with infinitesimal weights.
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(4) New objects of mathematical interest

Here we will exhibit new kinds of number (limited, unlimited, in-
finitesimal, appreciable); internal and external sets and functions;
shadows; halos; hyperfinite sets; nonstandard hulls; and Loeb mea-
sures.

(5) Powerful new properties and principles of reasoning

These include transfer; internal versions of induction, the least num-
ber principle and Dedekind completeness; overflow, underflow, and
other principles of permanence; Robinson’s sequential lemma; satu-
ration; internal set definition; concurrence; enlargement; hyperfinite
approximation; and comprehensiveness.

In short, nonstandard analysis provides us with an enlarged view of the
mathematical landscape. It represents yet another stage in the emergence of
new number systems, which is a significant theme in mathematical history.
Its rich conceptual framework will be built on to reveal new systems and
new understandings, so its development will itself influence the course of
that history.
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Foundations






1
What Are the Hyperreals?

1.1 Infinitely Small and Large

A nonzero number ¢ is defined to be infinitely small, or infinitesimal, if
le| < L foralln=1,2,3,....

In this case the reciprocal w = é will be infinitely large, or simply infinute,
meaning that

w|>nforaln=123,....

Conversely, if a number w has this last property, then i will be a nonzero
infinitesimal.

However, in the real number system R there are no such things as nonzero
infinitesimals and infinitely large numbers. Our aim here is to study a larger
system, the hyperreals, which form an ordered field *R that contains R as
a subfield, but also contains infinitely large and small numbers according
to these definitions. The new entities in *R, and the relationship between
*R and R, provide an intuitively appealing alternative approach to real
analysis and topology, and indeed to many other branches of pure and
applied mathematics.



4 1. What Are the Hyperreals?
1.2 Historical Background

Our mathematical heritage owes much to the creative endeavours of people
who found it natural to think in terms of the infinite and the infinitesimal.
By examining the words with which they expressed their ideas we can
learn much about the origins of our twentieth-century perspective, even if
that perspective itself makes it difficult, perhaps impossible, to recapture
faithfully the “mind-set” of the past.

Archimedes

An old idea that has never lost its potency is to think of a geometric
object as made up of an “unlimited” number of “indivisible” elements.
Thus a curve might be regarded as a polygon with infinitely many sides
of infinitesimal length, a plane figure as made up of parallel straight line
segments viewed as strips of infinitesimal width, and a solid as composed
of infinitely thin plane laminas.

The formula A = %TC for the area of a circle in terms of its radius and
circumference was very likely discovered by regarding the circle as made
up of infinitely many segments consisting of isosceles triangles of height r
with infinitesimal bases, these bases collectively forming the circle itself. In
the third century BC., Archimedes gave a proof of this formula using the
method of ezhaustion that had been developed by Eudoxus more than a
century earlier. This involved approximating the area arbitrarily closely by
regular polygons. From the modern point of view we would say that as the
number of sides increases, the sequence of areas of the polygons converges
to the area of the circle, but the Greek mathematicians did not develop
the idea of taking the limit of an infinite sequence. Instead, they used an
indirect reductio ad absurdum argument, showing that if the area was not
equal to A = érC, then by taking polygons with sufficiently many sides a
contradiction would follow.

Archimedes applied this approach to give proofs of many formulae for
areas and volumes involving circles, parabolas, ellipses, spirals, spheres,
cylinders, and solids of revolution. He wrote a treatise called The Method
of Mechanical Theorems in which he explained how he discovered these
formulae. His method was to imagine geometrical figures as being connected
by a lever that is held in balance as the elements of one figure whose
magnitude (area or volume) and centre of gravity is known are weighed
against the elements of another whose magnitude is to be determined. These
elements are as above: line segments in the case of plane figures, with
length as the comparative “weight”; and plane laminas in the case of solids,
weighted according to area.! Archimedes did not regard this procedure as

LA lucid illustration of the “Method” is given on pages 69-70 of the book
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providing a proof, but said of a result obtained in this way that

this has not therefore been proved, but a certain impression has
been created that the conclusion is true.

The demonstration of its truth was then to be supplied by the method of
exhaustion. The lesson of history is that the way in which a mathematical
fact is discovered may be very different from the way that it is proven.
Indeed Archimedes’ treatise, along with all knowledge of his “method”,
was lost for many centuries and found again only in 1906.

Newton and Leibniz

In the latter part of the seventeenth century the differential and integral
calculus was discovered by Isaac Newton and Gottfried Leibniz, indepen-
dently. Leibniz created the notation dz for the difference in successive values
of a variable z, thinking of this difference as infinitely small or “less than
any assignable quantity”. He also introduced the integral sign [, an elon-
gated “S” for “sum”, and wrote the expression [ ydz to mean the sum of
all the infinitely thin rectangles of size y x dz. He expressed what we now
know as Leibniz’s rule for the differential of a product zy in the form

dzy = x dy + ydzx.

To demonstrate this he first observed that

dxy 1is the same thing as the difference between two successive
xy’s; let one of these be xy, and the other x 4 dx into y + dy.

Then calculating
dzy = (z+dz)(y+dy) -2y
= xzdy+ydz+ dzdy,
he stated that the desired result follows by

the omission of the quantity dzx dy, which is infinitely small in
comparison with the rest, for it is supposed that dz and dy are
infinitely small.

Leibniz’s views on the actual existence of infinitesimals make interesting
reading. In response to certain criticisms, he drew attention to the fact that
Archimedes and others

found out their wonderfully elegant theorems by the help of such
ideas; these theorems they completed with reductio ad absurdum

by C.H. Edwards cited in Section 1.4, showing how it yields the area under the
graph of y = z* between 0 and 1.
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proofs, by which they at the same time provided rigorous demon-
strations and also concealed their methods,

and went on to write:

It will be sufficient if, when we speak of infinitely great (or more
strictly unlimited), or of infinitely small quantities (i.e., the very
least of those within our knowledge), it is understood that we
mean quantities that are indefinitely great or indefinitely small,
i.e., as great as you please, or as small as you please, so that
the error that one may assign may be less than a certain as-
signed quantity ... by infinitely great and infinitely small we un-
derstand something indefinitely great, or something indefinitely
small, so that each conducts itself as a sort of class, and not
merely as the last thing of a class ... it will be sufficient sim-
ply to make use of them as a tool that has advantages for the
purpose of calculation, just as the algebraists retain imaginary
roots with great profit.

Further indication of this attitude is found in the following passage from
an argument in one of his manuscripts:

If dz, ddz ... are by a certain fiction imagined to remain, even
when they become evanescent, as if they were infinitely small
quantities (and in this there is no danger, since the whole
matier can be always referred back to assignable quan-
tities), then ...

Newton'’s formulation of the calculus used a different language and had a
more dynamic conception of the phenomena under discussion. He consid-
ered fluents x,y,... as quantities varying in a spatial or temporal sense,
and their fluzions z,7,... as

the speeds with which they flow and are increased by their gen-
eraling motion.

In modern parlance, the fluxion % is the derivative % of = with respect to
time ¢ (or the velocity of z). Newton wrote (1671):

The moments of the fluent quantities (that is, their indefinitely
small parts, by addition of which they increase during each in-
finitely small period of time) are as their speeds of flow ...if
the moment of any particular one, say x, be expressed by the
product of its speed & and an infinitely small quantity o (that is
by Zo) ...it follows that quantities x and y after an infinitely
small interval of time will become x + %o and y + yo. Con-
sequently, an equation which expresses a relationship of fluent
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gquantities without variance ot all times will express that rela-
tionship equally between x + o and y + Yo as between z and
y; and 50 x + Zo and y + yo may be substituted in place of the
latter quantities, x and y, in the said equation.

In other words, if (z,y) is a point on the curve defined by an equation in
z and y, then (z + %o,y + yo) is also on the curve. But this does not seem
right: surely (z + %o, y + 7o) should lie on the tangent to the curve, the line
through (z,y) of slope /%, rather than on the curve itself? Moreover, in
making the proposed substitution and carrying out algebraic calculations,
Newton permitted himself to divide by the infinitely small quantity o while
at the same time stating that

since o is supposed to be infinitely small so that it be able to ex-
press the moments of quantities, terms which have it as a factor
will be equivalent to nothing in respect of others. I therefore cast
them out ...

which seems to amount to equating o to zero.

Such perplexities are typical of the confusions caused by the concepts of
infinitesimal calculus. In later writing Newton himself tried to explain his
theory of fluxions in terms of limits of ratios of quantities. He wrote that
he did not (unlike Leibniz)

consider Mathematical Quantities as composed of Parts ex-
treamly small, but as generated by a continual motion,

and that
fluzions are very nearly as the Augments of the Fluents.
His conception of limits is conveyed by the following passages:

Quantities, and the ratios of quantities, which in any finite time
converge continually to equality, and before the end of time ap-
proach nearer to each other than by any given difference, become
ultimately equal ... Those ultimate ratios with which quantities
vanish are not truly the ratios of ultimate quantities, but limils
towards which the ratios of quantities decreasing without limit
do always converge; and to which they approach nearer than by
any given difference, but never go beyond, nor in effect attain
to, till the quantities are diminished ad infinitum.

Newton considered that the use of limits of ratios provided an adequate
basis for his calculus, without ultimately depending on indivisibles:

In Finite Quantities so to frame a Calculus, and thus to inves-
tigate the Prime and Ultimate Ratios of Nascent or Evanescent
Finite Quantities, is agreeable to the Ancients; and I was willing
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to shew, that in the Method of Fluzions there’s no need of intro-
ducing Figures infinitely small into Geometry. For this Analysis
may be performed in any Figures whatsoever, whether finite or
infinitely small, so they are but imagined to be similar to the
Fuvanescent Figures ...

Fuler

The greatest champion of infinitely small and large numbers was Leonhard
Euler, said to be the most prolific of all mathematicians. He simply assumed
that such things exist and behave like finite numbers. A good illustration
of his approach is to be found in the book Introduction to the Analysis
of the Infinite (1748), where he developed infinite series for logarithmic,
exponential, and trigonometric functions from the following basis:

Let w be an infinitely small number, or a fraction so small that,
although not equal to zero, still a¥ = 1 + 1, where 1 is also
an infinitely small number ... we let ¥ = kw. Then we have
a“ = 1+ kw, and with a as the base for the logarithms, we
have w = log(1 + kw) ... If now we let j = £, where z denotes
any finite number, since w is infinitely small, then j is infinitely
large. Then we have w = £, where w is represented by a fraction

with an infinite denominator, so that w is infinitely small, as it
should be.

Euler took it for granted that Newton’s formula for the binomial series
works for his numbers, and applied it to the expansion of a® = g%/ =
(14 kw)’ to deduce that

kz k%22 k328

@ = I+t t ’

and hence when z = 1 that

a = 1+k+k2+k3+
h 12 3l
In fact, since kw = £, the general term (7} (kw)™ of the binomial series for
a® should be o ) )
JG-1)G—-2)---(j—n+1) k"2"
n! g’
Since j is infinitely large — =1, and the larger the number we

substitute for j, the closer the value of the fraction =% comes
to 1. Therefore, if j is a number larger than any asszgnable
number, then le s equal to 1. For the same reason == 5 = =1,

=3 — 1, and so forth.
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His next step was a natural one:

Since we are free to choose the base a for the system of loga-
rithms, we now choeose a in such o way that k =1 ... we obtain
the value for

a = 2.71828182845904523536028.

When this base is chosen, the logarithms ere called natural or
hyperbolic. The latter name is used since the quadrature of a
hyperbola can be expressed through these logarithms. For the
sake of brevity for this number 2.718281828459 - -- we will use
the symbol e ...

Whereas the modern view is that

1 T
e = lim (1 + —) ,
—00 T

Euler had obtained it by stipulating that e = (1 + ) and indeed e* =
(1 + 3) , for infinitely large j. In this way he “proved” that

22 28
z - —_— —
e = 1+1'+ +3|+
12 333 e
log(l+2xz) = 1;—-2—4[_?_..1_{_...,
and also showed that
cos = e I AL S
ST TR 5
$3 ZL'5 eiw_e T
sinr = .’E—"'3—‘+—5—!‘—' e 5

by using the equations cosw = 1, sinw =w,and j =7 —-1=373—-2=---
with w infinitely small and j infinitely large.

Euler’s demonstration that the function e” is equal to its own derivative
employed the practice, which, as we saw, was adopted by Leibniz and New-
ton, of “casting out” higher-order infinitesimals like dz dy, (dz)?, (dz)?, etc.
Applying his series expansion for the exponential function to e%* he argued
that

d(e®) = "% _¢”
— ew(edw 1)

= ¢e%dz.
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Demise of Infinitesimals

The conceptual foundations of the calculus continued to be controversial
and to attract criticism, the most famous being that of Berkeley, who wrote
(1734) in opposition to the ideas of Newton and his followers:

And what are these fluzions? The velocities of evanescent incre-
ments? And what are these same evanescent increments? They
are neither finite quantities, nor quantities infinitely small, nor
yet nothing. May we not call them the ghosts of departed quan-
tities?

Eventually infinitesimals were expunged from analysis, along with the de-
pendence on intuitive geometric concepts and diagrams. The subject was
“arithmetised” by the explicit construction of the real numbers out of
the rational number system by the work of Dedekind, Cantor, and oth-
ers around 1872. Weierstrass provided the purely arithmetical formulation
of limits that we use today, defining lim,_,, f(x) = L to mean that

(Ve > 0) (36 > 0) such that 0 < |z — a| < § implies |f(z) — L| < e.

Robinson

Three centuries after the seminal discoveries of Newton and Leibniz, in-
finitesimals were restored with a vengeance by Abraham Robinson, who
wrote in the preface to his 1966 book Non-standard Analysis:

In the fall of 1960 it occurred to me that the concepts and meth-
ods of contemporary Mathematical Logic are capable of provid-
ing a suitable framework for the development of the Differential
and Integral Calculus by means of infinitely small and infinitely
large numbers.

The progress of symbolic logic in the twentieth century had produced an
exact formulation of the syntax of mathematical statements; an account
of what it is for a statement to be true of a mathematical system or
structure—i.e. for the structure to be a model of the statement; and meth-
ods for obtaining models of prescribed statements. One such method comes
from the compaciness theorem:

o If a set X of statements (of an appropriate kind) has the property
that each finite subset X’ of X has a model (a structure of which all
members of 3 are true), then there must be a single structure that
is a model of X itself.

Now suppose that we take X to consist of all appropriate statements true
of R (including the axioms for ordered fields amongst other things) together
with the infinitely many statements

O<e, <1, e<j, e<i, ..., e<i ...

n
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Using the compactness theorem it can be deduced that Yr has a model
*R, which will be an ordered field in which the element ¢ is a positive
infinitesimal. Moreover, this model will satisfy the transfer principle:

e Any appropriately formulated statement is true of *R if and only if
it is true of R.

This is reminiscent of Leibniz’s above-quoted remark that

the whole matter can be always referred back to assignable quan-
tities,

and might even suggest that there is no point in considering *R, since it
satisfies the same theorems as R. But on the contrary, what it offers is a
new methodology for real analysis, because the availability of infinitesimals
allows for easier and more intuitively natural proofs in *R of some theorems
that can then immediately be inferred to hold of R by transfer.

Of course for this to work, the theorems in question must be “appropri-
ately formulated”, and explaining what this means is one of our major goals.
As we shall see, *R fails to satisfy Dedekind’s completeness axiom stipulat-
ing that any nonempty set with an upper bound must have a least upper
bound, so this is not the sort of assertion to which transfer applies. In order
to determine which statements are subject to it we will need the “concepts
and methods of contemporary Mathematical Logic” that were available to
Robinson, but not to Leibniz, nor indeed to those in the intervening period
who tried to work with infinitesimals or construct non-Archimedean exten-
sions of the real number system. Robinson’s great achievement was to turn
the transfer principle into a working tool of mathematical reasoning. In
the last few decades it has been applied to many areas, including analysis,
topology, algebra, number theory, mathematical physics, probability and
stochastic processes, and mathematical economics.

To those unfamiliar with formal logic, the use of compactness may seem
like a kind of sleight of hand. A model of X’ is produced, but we do not see
where it came from. However, the compactness theorem itself has a proof,
and one way to prove it is to use the notion of an ultraproduct, an algebraic
construction that takes all the assumed models of the finite subsets of X
and builds a model of X out of them. We can apply this construction
directly to the structure R to build *R as a special kind of ultraproduct
called an ultrapower. This will be our first main task.

1.3 What Is a Real Number?

Consideration of this question provides motivation for the definition of the
hyperreal number system. Here are some standard answers.
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(1) A real number is an infinite decimal expression, such as

V2 = 1.4142135623731 - - -,

that identifies v/2 as the sum of the infinite power series

LA SOV SO E
10 ' 10 © 10% ' 10% T 10°

(2) A real number is an element of a complete ordered field. Here “com-
plete”, often called Dedekind complete, means that any nonempty
set with an upper bound must have a least upper bound. Any two
complete ordered fields are isomorphic, so this notion uniquely char-
acterises R.

(3) A real number is a Dedekind cut in the set Q of rational numbers: a
partition of Q into a pair (L,U) of nonempty disjoint subsets with
every element of L less than every element of U and L having no
Jargest member. Thus v/2 can be identified with the cut

L:{qu:q2<2}, U={qeQ:q¢ >2}.

The set of all Dedekind cuts of Q can be made into a complete ordered
field.

(4) A real number is an equivalence class of Cauchy sequences of ratio-
nal numbers. A sequence (r1,72,73,... ) is Cauchy if its terms get
arbitrarily close to each other as we move along the sequence, i.e.,

lim |r, —rm|=0.
7, — GO

Thus /2 is the limit of the rational Cauchy sequence
1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, ...

as well as being the limit of any of the subsequences of this sequence,
and of other rational sequences besides.

Two Cauchy sequences {r1,73,73,... ) and (s1, 82, 83,... ) are equév-
alent if their corresponding terms approach each other arbitrarily
closely:

lim |r, — s.| =0.
n—oo

This defines an equivalence relation on the set of rational-valued
Cauchy sequences, and the resulting set of equivalence classes forms
a complete ordered field. Any two equivalent Cauchy sequences will
have the same limit, and so represent the same real number. For ex-
ample, v/2 corresponds to the equivalence class of the above sequence.
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Answer (2) provides the basis for the aziomatic or descriptive approach
to the analysis of R. The object of study is simply described as being a
complete ordered field, since all its properties derive from that fact. The
axioms for a complete ordered field are listed, and everything follows from
that. This is by far the favoured approach in introductory texts on real
analysis.

The constructive approach takes as given only the rational number sys-
tem and proceeds to construct R explicitly. There are at least two ways
to do this, due respectively to Dedekind (answer (3)) and Cantor (answer
(®)).

It would be possible to develop an axiomatic approach to the hyperreals
*R by assuming that we are dealing with an ordered field containing R as
well as infinitesimals and satisfying the transfer principle “appropriately
formulated”. However, in view of the controversial history of the notion
of infinitesimal, one could be forgiven for wondering whether this is an
exercise in fantasy, or whether there does exist a number system satisfying
the proposed axioms. The constructive approach is needed to resolve this
issue. We will be discussing a construction of *R out of R that is analogous
to Cantor’s construction of R out of Q. Hyperreal numbers will arise as
equivalence classes of real-valued sequences, and the challenge will be to
find an equivalence relation on such sequences that produces the desired
outcome.

To conclude this introduction to our subject, let us examine another

putative answer to the question “what is a real number?”—mnamely, that a
real number is a point on the number line:

Now, the intuitive geometric idea of a line is an ancient one, much older
than the notion of a set of points, let alone an infinite set. The identification
of a line with the set of points lying on that line is a perspective that belongs
to modern times. For Euclid a line was simply “ length without breadth”,
and his diagrams and arguments involved lines with a finite number of
points marked on them. By applying the field operations and taking limits
of converging sequences we can assign a point to each real number, but the
claim that this exhausts all the points on the line is just that: a claim. One
could seek to justify it by invoking a principle such as the one attributed
to Eudoxus and Archimedes that any two magnitudes are such that

the less can be multiplied so as to exceed the other.

This entails that for each real number r there is an integer n > r, and that
precludes there being any infinitely large or small numbers in R. But then
one could say that the Eudoxus—Archimedes principle is just a property
of those points on the line that correspond to “assignable” numbers. The
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hyperreal point of view is that the geometric line is capable of sustaining
a much richer and more intricate number set than the real line.

1.4 Historical References

Amongst the numerous books available, the following are worth consulting
for more details on the historical background we have been discussing.

M. E. BARON AND H. J. M. Bos. Newton and Leibniz. Open Uni-
versity Press, 1974.

J. M. CuiLD. The Early Mathematical Manuscripts of Leibniz. Open
Court Publishing Co., 1920.

E. J. DUKSTERHUIS. Archimedes. Princeton University Press, 1987.

C. H. EDWARDS. The Historical Development of the Calculus. Springer,
1979.

LEONHARD EULER. Introduction to the Analysis of the Infinite, Book
I, translated by John D. Blanton. Springer, 1988.



2
Large Sets

2.1 Infinitesimals as Variable Quantities

Cauchy (1789-1857) is regarded as one of the pioneers of the precision that
is characteristic of contemporary mathematics. He wrote:

My principal aim has been to reconcile rigor, which I have made
a law to myself in my Cours d’analyse, with the simplicity which
the direct consideration of infinitely small guantities produces.

His method was to consider infinitesimals as being variable quantities that
vanish:

When the successive numerical values of a variable decrease in-
definitely so as to be smaller than any given number, this vari-
able becomes what is called infinitesimal, or infinitely small
quantity .... One says that a variable quantity becomes in-
finitely small when its value decreases numerically so as to con-
verge to the limit zero.

Even today there are textbooks containing statements to the effect that a

sequence satisfying
lim 7, =0

n—o0

is an infinitesimal, while one satisfying

lim r, = co
n—0od
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is an infinitely large magnitude. Can we then construct a number system in
which such sequences represent infinitely small and large numbers respec-
tively? :

According to Cauchy, the sequence

1,

(172
=
el

is an infinitesimal, as is

1111

20426287
If these represent infinitely small numbers, perhaps we should regard the
second as being half the size of the first because it converges twice as

quickly? Similarly, the sequences

1,2,3,4,...,
2,4,6,8,. ..

both represent infinitely large magnitudes, and arguably the second is twice
as big as the first because it diverges to co twice as quickly. On the other
hand, the distinct sequences

1,2,3,4,...,
2,2,3.4,. ..

will presumably represent the same infinite number.

These ideas are attractive because they suggest the possibility of using
infinitely small and large numbers as measures of rates of convergence. But
in the construction of real numbers out of Cauchy sequences (Section 1.3),
all sequences converging to zero are identified with the number zero itself,
while diverging sequences have no role to play at all. Clearly then we need
a very different kind of equivalence relation among sequences than the one
used in Cantor’s construction of R from Q.

2.2 Largeness

Let r = (r1,72,73,... ) and s = {s1, $2,83,... ) be real-valued sequences.
We are going to say that r and s are equivalent if they agree at a “large”
number of places, i.e., if their agreement set

E.s={n:r, =s,}

is large in some sense that is to be determined. Whatever “large” means,
there are some properties we will want it to have:

e N={1,2,3,... } must be large, in order to ensure that any sequence
will be equivalent to itself.
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e Equivalence is to be a transitive relation, so if F,.; and E;; are large,
then F,; must be large. Since E,.; N E; C E,;, this suggests the
following requirement:

If A and B are large sets, and AN B C C, then C is large.

In particular, this entails that if A and B are large, then so is their
intersection A N B, while if A is large, then so is any of its supersets

C DA

e The empty set @ is not large, or otherwise by the previous require-
ment all subsets of N would be large, and so all sequences would be
equivalent.

Requiring AN B to be large when A and B are large may seem restrictive,
but there are natural situations in which all three requirements are fulfilled.
One such is when a set A C N is declared to be large if it is cofinite,
i.e. its complement N — A is finite. This means that A contains “almost |
all” or “ultimately all” members of N. Although this is a plausible notion -
of largeness, it is not adequate to our needs. The number system we are
constructing is to be linearly ordered, and a natural way to do this, in
terms of our general approach, is to take the equivalence class of sequence
r to be less than that of s if the set

Lys={n:r, <s,}
is large. But consider the sequences

r = {(1,0,1,0,1,0,...) ,
s = (0,1,0,1,0,1,...) .

Their agreement set is empty, so they determine distinct equivalence classes,
one of which should be less than the other. But L, (the even numbers) is
the complement of L, (the odds), so both are infinite and neither is cofi-
nite. Apparently our definition of largeness is going to require the following
condition:

e For any subset A of N, one of A and N — A is large.

The other requirements imply that A and N — A cannot both be large,
or else AN (N — A) = @ would be. Thus the large sets are precisely the
complements of the ones that are not large. Either the even numbers form
a large set or the odd ones do, but they cannot both do so, so which is it
to be?

Can there in fact be such a notion of largeness, and if so, how do we
show it?



18 2. Large Sets
2.3 Filters

Let I be a nonempty set. The power set of I is the set
PI)y={A:AC T}

of all subsets of I. A filter on I is a nonempty collection 7 C P(I) of
subsets of I satisfying the following axioms:

/
e Intersections: if A, B € F, then AN B € F.

e Supersets: if A« Fand AC BC 1, then B € F.
Thus to show B € F, it suffices to show
AinNn---NA, CB,

for some n and some A,,..., A, € F.
A filter F contains the empty set @ iff 7 = P(I). We say that F is proper
if @ ¢ 7. Every filter contains I, and in fact {I} is the smallest filter on I.

An ultrafilter is a proper filter that satisfies
e for any A C I, either A € F or A € F, where A¢ = I — A.

2.4 Examples of Filters

(1) F* = {A C I:i¢c A} is an ultrafilter, called the principal ultrafilter
generated by i. If I is finite, then every ultrafilter on I is of the form
F* for some i € I, and so is principal.

(2) F°={ACI:I— Ais finite} is the cofinite, or Fréchet, filter on I,
and is proper iff [ is infinite. F°° is not an ultrafilter.

(3) If @ # H C P(I), then the filter generated by H, i.e., the smallest
filter on I including H, is the collection

F'={ACI:ADBiN---NB, for some n and some B; € H}

(cf. Exercise 2.7(4)). For H = § we put F'* = {I}.

If H has a single member B, then F* = {A C I : A D B}, which is
called the principal filter generated by B. The ultrafilter F* of Exam-
ple (1) is the special case of this when B = {i}.

(4) If {F, : x € X} is a collection of filters on I that is linearly ordered by
set inclusion, in the sense that F, C F, or F, C F, for any z,y € X,
then

Upex Fe={A:Fx e X (A € F,)}

is a filter on 1.
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Facts About Filters

The filter axioms are equivalent to the requirement that
ANnBeF if A BeF.

If F C P(I) satisfies the superset axiom, then F # @ iff I € F. Hence
{I} C F for any filter F.

An ultrafilter F satisfies

ANnBeF if Ac Fand BeF,
AUBeF if AeForBelF,
AceF i A¢F.

Let F be an ultrafilter and {A1, ..., A,} a finite collection of pairwise
disjoint (A; N A; = 0) sets such that

AiU---UA, e F.
Then A; € F for exactly one i such that 1 <i <n.

If an ultrafilter contains a finite set, then it contains a one-element
set and is principal. Hence a nonrincipal ultrafilter must contain all
cofinite sets. This is a critical property used in the construction of
infinitesimals and infinitely large numbers (cf. Section 3.8).

F is an ultrafilter on [ iff it is a mazimal proper filter on I, i.e., a
proper filter that cannot be extended to a larger proper filter on [
(cf. Exercise 2.7(5)).

A collection H C P(I) has the finite intersection property, or fip,
if the intersection of every nonempty finite subcollection of H is
nonempty, i.e.,

Bin---NB,#0
for any n and any B,,...,B, € H.

Then the filter F'* is proper iff H has the fip.

If H has the fip, then for any A C I, at least one of the sets HU {A}
and H U {A°} has the fip.

Zorn’s Lemma,

Fact 2.5(8) suggests a way to construct an ultrafilter: start with a set that
has the fip, e.g., {I}, and go through all the members A of P(I) in turn,



20 2. Large Sets

adding whichever of A and A° preserves the fip. This presupposes that
there is such a thing as a listing of the members of P(I) that could be used
to “go through them all in turn”.

Now, the assertion that any set can be listed in this way is one of many
mathematical statements that are equivalent to the axiom of choice, which
asserts that for any given collection of sets there exists a function whose
range of values selects a member from each set in the collection. The version
of the axiom of choice most used in algebra is Zorn’s lemma:

If (P, <) is a pa