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Preface

This book grew out of notes from several courses that the first author has taught
over the past nine years at the California Institute of Technology, and earlier at
the Johns Hopkins University, Cornell University, the University of Chicago,
and the University of Crete. Our general aim is to provide a modern approach
to number theory through a blending of complementary algebraic and analytic
perspectives, emphasizing harmonic analysis on topological groups. Our more
particular goal is to cover John Tate's visionary thesis, giving virtually all of
the necessary analytic details and topological preliminaries-technical prereq-
uisites that are often foreign to the typical, more algebraically inclined number
theorist. Most of the existing treatments of Tate's thesis, including Tate's own,
range from terse to cryptic; our intent is to be more leisurely, more comprehen-
sive, and more comprehensible. To this end we have assembled material that
has admittedly been treated elsewhere, but not in a single volume with so much
detail and not with our particular focus.

We address our text to students who have taken a year of graduate-level
courses in algebra, analysis, and topology. While our choice of objects and
methods is naturally guided by the specific mathematical goals of the text, our
approach is by no means narrow. In fact, the subject matter at hand is germane
not only to budding number theorists, but also to students of harmonic analysis
or the representation theory of Lie groups. We hope, moreover, that our work
will be a good reference for working mathematicians interested in any of these
fields.

A brief sketch of each of the chapters follows.

(1) Topot.octc %1 GROUPS. The general discussion begins with basic notions
and culminates with the proof of the existence and uniqueness of Haar
(invariant) measures on locally compact groups. We next give a substantial
introduction to profinite groups, which includes their characterization as com-
pact. totally disconnected topological groups. The chapter concludes with the
elementary theory of pro-p-groups, important examples of which surface later
in connection with local fields.

(2) SOME REPRESENTATION THEORY. In this chapter we introduce the funda-
mentals of representation theory for locally compact groups, with the ultimate
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aim of proving certain key properties of unitary representations on Hilbert
spaces. To reach this goal, we need some weighty analytic prerequisites, in-
cluding an introduction to Gelfand theory for Banach algebras and the two
spectral theorems. The first we prove completely; the second we only state, but
with enough background to be thoroughly understandable. The material on
Gclfand theory fortuitously appears again in the following chapter, in a some-
what different context.

(3) DUALITY FOR LOCALLY COMPACT ABELIAN GROUPS. The main points here
are the abstract definition of the Fourier transform, the Fourier inversion for-
mula, and the Pontryagin duality theorem. These require many preliminaries,
including the analysis of functions of positive type, their relationship to unitary
representations, and Bochner's theorem. A significant theme in all of this is the
interplay between two alternative descriptions of the "natural" topology on the
dual group of a locally compact abelian group. The more tractable description,
as the compact-open topology, is presented in the first section; the other, which
arises in connection with the Fourier transform, is introduced later as part of
the proof of the Fourier inversion formula.

We have been greatly influenced here by the seminal paper on abstract har-
monic analysis by H. Cartan and R. Godement (1947), although we give many
more details than they, some of which are not obvious-even to experts. As a
subsidiary goal of the book, we certainly hope that our exposition will encour-
age further circulation of their beautiful and powerful ideas.

(4) THE STRUCTURE OF ARITHMETIC FIELDS. In the first two sections the basics
of local fields, such as the p-adic rationals Q. are developed from a completely
topological perspective; in this the influence of Weil's Basic Number Theory
(1974) is apparent. We also provide some connections with the algebraic con-
struction of these objects via discrete valuation rings. The remainder of the
chapter deals with global fields, which encompass the finite extensions of Q
and function fields in one variable over a finite field. We discuss places and
completions, the notions of ramification index and residual degree, and some
key points on local and global bases.

(5) ADELES, IDELES, AND THE CLASS GROUPS. This chapter establishes the fun-
damental topological properties of adele and idcle groups and certain of their
quotients. The first two sections lay the basic groundwork of definitions and
elementary results. In the third, we prove the crucial theorem that a global field
embeds as a cocompact subgroup of its adele group. We conclude, in the final
section, with the introduction of the adele class group, a vast generalization of
the ideal class group, and explain the relationship of the former to the more
traditional ray class group.

(6) A QUICK TOUR OF CLASS FIELD THEORY. The material in this chapter is not
logically prerequisite to the development of Tate's thesis, but it is used in our
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subsequent applications. We begin with the Frobenius elements (conjugacy
classes) associated with unramified primes P of a global field F, first in finite
Galois extensions, next in the maximal extension unramified at P. In the next
three sections we state the Tchebotarev density theorem, define the transfer
map for groups, and state, without proof, the Artin reciprocity law for abelian
extensions of global and local fields, in terms of the more modern language of
idele classes. In the fifth and final section, we explicitly describe the cyclotomic
extensions of Q and Q. and then apply the reciprocity law to prove the
Kronecker-Weber theorem for these two fields.

(7) TATE's THESIS AND APPLICATIONS. Making use of the characters and duality
of locally compact abelian groups arising from consideration of local and global
fields, we carefully analyze the local and global zeta functions of Tate. This
brings us to the main issue: the demonstration of the functional equation and
analytic continuation of the L-functions of characters of the idele class group.
There follows a proof of the regulator formula for number fields, which yields
the residues of the zeta function of a number field F in terms of its class num-
ber hF and the covolume of a lattice of the group OF of units, in a suitable
Euclidean space. From this we derive the class number formula and, in conse-
quence, Dirichlet's theorem for quadratic number fields. Further investigation
of these L-functions-in fact, some rather classical analysis-next yields an-
other fundamental property: their nonvanishing on the line Re(s)=1. Finally, as
a most remarkable application of this material, we prove the following theorem
of Hecke: Suppose that X and x' are idele class characters of a global field K
and that XP XP' for a set of primes of positive density. Then X=FX' for some
character y of finite order.

One of the more parenthetical highlights of this chapter (see Section 7.2) is
the explanation of the analogy between the Poisson summation formula for
number fields and the Riemann-Roch theorem for curves over finite fields.

We have given a number of exercises at the end of each chapter, together
with hints, wherever we felt such were advisable. The difficult problems are
often broken up into several smaller parts that are correspondingly more acces-
sible. We hope that these will promote gradual progress and that the reader will
take great satisfaction in ultimately deriving a striking result. We urge doing as
many problems as possible; without this effort a deep understanding of the
subject cannot be cultivated.

Perhaps of particular note is the substantial array of nonstandard exercises
found at the end of Chapter 7. These span almost twenty pages, and over half of
them provide nontrivial complements to, and applications of, the material de-
veloped in the chapter.

The material covered in this book leads directly into the following research
areas.
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+ L -functions of Galois Representations. Following Artin, given a finite-
dimensional, continuous complex representation aof Gal(Q/Q), one asso-
ciates an L-function denoted L(as). Using Tate's thesis in combination with
a theorem of Brauer and abelian class field theory, one can show that this
function has a meromorphic continuation and functional equation. One of
the major open problems of modern number theory is to obtain analogous re-
sults for I-adic Galois representations ci, where I is prime. This is known to
be true for Q arising from abelian varieties of CM type, and L(oi,s) is in this
case a product of L-functions of idele class characters, as in Tate's thesis.

4 Jacquet-Langlands Theory. For any reductive algebraic group G [for in-
stance, GL (F) for a number field F], an important generalization of the set
of idele class characters is given by the irreducible automorphic representa-
tions ,r of the locally compact group G(AF). The associated L -functions
L(n;s) are well understood in a number of cases, for example for GL,,, and by
an important conjecture of Langlands, the functions L(oi,s) mentioned
above arc all expected to be expressible in terms of suitable L(n;s). This is
often described as nonabelian class field theory.

4 The p-adic L -functions. In this volume we consider only complex-valued
(smooth) functions on local and global groups. But if one fixes a prime p
and replaces the target field C by C,,, the completion of an algebraic closure
of Qp, strikingly different phenomena result. Suitable p-adic measures lead
to p-adic-valued L-functions, which seem to have many properties analo-
gous to the classical complex-valued ones.

4 Adelic Strings. Perhaps the most surprising application of Tate's thesis is to
the study of string amplitudes in theoretical physics. This intriguing con-
nection is not yet fully understood.

Acknowledgments

Finally, we wish to acknowledge the intellectual debt that this work owes to
H. Cartan and R. Godement, J.-P. Serre (1968, 1989, and 1997), A. Well, and,
of course, to John Tate (1950). We also note the influence of other authors
whose works were of particular value to the development of the analytic back-
ground in our first three chapters; most prominent among these are G. Folland
(1984) and G. Pedersen (1989). (See References below for complete biblio-
graphic data and other relevant sources.)



Contents

PREFACE .....................................................................................................vii

INDEX OF NOTATION ................................................................................ xv

1 TOPOLOGICAL GROUPS

1.1 Basic Notions ..................................................................................... 1

1.2 Haar Measure ..................................................................................... 9

1.3 Profinite Groups ............................................................................... 19

1.4 Pro -p-Groups ................................................................................... 36

Exercises................................................................................................. 42

2 SOME REPRESENTATION THEORY

2.1 Representations of Locally Compact Groups ..................................... 46
2.2 Banach Algebras and the Gclfand Transform ................................... 50
2.3 The Spectral Theorems .................................................................... 60
2.4 Unitary Representations ................................................................... 73

Exercises ................................................................................................. 78

3 DUALITY FOR LOCALLY COMPACT ABELIAN GROUPS

3.1 The Pontryagin Dual ........................................................................ 86
3.2 Functions of Positive Type ............................................................... 91
3.3 The Fourier Inversion Formula ....................................................... 102
3.4 Pontryagin Duality ......................................................................... 118

Exercises ............................................................................................... 125



xii Contents

4 THE STRUCTURE OF ARITHMETIC FIELDS

4.1 The Module of an Automorphism ................................................... 132
4.2 The Classification of Locally Compact Fields ................................. 140
4.3 Extensions of Local Fields .............................................................. 150
4.4 Places and Completions of Global Fields ........................................ 154
4.5 Ramification and Bases ..................................................................165

Exercises ...............................................................................................174

5 ADELES, IDELES, AND THE CLASS GROUPS

5.1 Restricted Direct Products, Characters, and Measures ..................... 180
5.2 Adeles, Ideles, and the Approximation Theorem ............................. 189
5.3 The Geometry of AK/K ...................................................................191
5.4 The Class Groups ...........................................................................196

Exercises ...............................................................................................208

6 A QUICK TOUR OF CLASS FIELD THEORY

6.1 Frobenius Elements ........................................................................214
6.2 The Tchebotarev Density Theorem .................................................219
6.3 The Transfer Map ...........................................................................220
6.4 Artin's Reciprocity Law ..................................................................222
6.5 Abelian Extensions of Q and Qp .....................................................226

Exercises ............................................................................................... 238

7 TATE'S THESIS AND APPLICATIONS

7.1 Local -Functions ...........................................................................243
7.2 The Riemann-Roch Theorem ..........................................................259
7.3 The Global Functional Equation .....................................................269
7.4 Hecke L-Functions ..........................................................................276
7.5 The Volume of CK and the Regulator ............................................281
7.6 Dirichlet's Class Number Formula ..................................................286
7.7 Nonvanishing on the Line Re(s)=1 .................................................289
7.8 Comparison of Hecke L-Functions ..................................................295

Exercises ...............................................................................................297



Contents xiii

APPENDICES

Appendix A: Normed Linear Spaces

A.1 Finite-Dimensional Notmed Linear Spaces .................................... 315
A.2 The Weak Topology ...................................................................... 317
A.3 The Weak-Star Topology............................................................... 319
A.4 A Review of LP-Spaces and Duality ............................................... 323

Appendix B: Dedekind Domains

B.1 Basic Properties ............................................................................. 326
B.2 Extensions of Dedekind Domains .................................................. 334

REFERENCES ............................................................................................. 339

INDEX ........................................................................................................ 345





Index of Notation

Notation Section Interpretation

N,Z,Q

R,C
R"

is
Sc

Card(S)

U S.

supp(f)

T(X)

A*, K*

AX

(K:F]

NwF(x)

trx7F(x)

KL

Z/nZ

q(n)
S1

Wl

prw

natural numbers, integers, and rational
numbers, respectively

real and complex numbers, respectively

nonnegative reals, positive reals

identity map on the set S

complement of the set S

cardinality of the set S

disjoint union of sets S.

support of a function f

continuous (complex-valued) functions on
a topological space X

continuous functions with compact support

positive elements of WA(X) with positive
sup norm

nonzero elements of a ring or field

group of units of a ring A

degree of a finite field extension K/F

norm map for a finite field extension K/F;
see also Section 6.4

trace map for a finite field extension K/F

compositum of fields K and L

integers modulo it

Euler phi function

the circle group

orthogonal complement of a subspace W

orthogonal projection onto a subspace W
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k[[t]] -
k((t)) -
GL,,(k) -
SL (k) -
B'(X) A.1

X"` A.1

11(C') Al
L(X) A.4

Lo(X) A.4

II - lip AA

AS B1
JK B.2

PK B.2

C/K B2
N(1) B2
A(x,,...,x,) B2
A(B/A) B.2

U, Rh, f L1

(f:) L2

limG, L3

Z L3

Zo L3

G° 1-3

Gal(K/F) L3

FS L3

IGI L4

Aut(V) 21
Auttop(V) 21

Hom(A,B) 2.2

End(A) 22
11 TII 2.2

ring of formal power series in t with
coefficients in the field k

fraction field of k[it]]

group of invertible nxn matrices over k

nxn matrices over k of determinant 1

unit ball in a normed linear space X

(norm) continuous dual of a nonmed linear
space X

C with 1i norm

measurable functions on X modulo
agreement almost everywhere

LP-space associated with a locally compact
spaceX

LP-norm

localization of a ring A at subset S

set of fractional ideals of a global field K

set of principal fractional ideals of K

traditional class group of a global field K

absolute norm map

discriminant of a basis x,,...,x
discriminant ideal of a ring extension B/A

left and right translation operators on f

Haar covering number

projective limit of a projective system {G,}

projective completion of Z

ring ofp-adic integers

connected component of the identity

Galois group of the field extension K/F

fixed field of a set S of automorphisms of F

order of a profinite group G

algebraic automorphisms of a vector space

topological automorphisms of a topological
vector space

bounded operators between Banach spaces

endomorphisms on a Banach space A

norm of a bounded operator T
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sp(a) 2.2

r(a) 2.2

A 22
d 22
TO(X) 23
T* 23
ATcEnd(H) 23

T'n 23
Homc(V, V') 21

d 3.1

Xt")cG 3.1

W(K,V) 3_1

N(e)cS' 3_1

VV 32
f*g 32
3'(G) 32

r(G) 32

f 13

V(G) 33

V'(G) 3.3

Th 33

mod0(a) 4.1

Bmck 4.1

ordk(a) 4 2

I ' ID. I ' I 4 2

;r=rtk 42
e=e(kilk) 43

spectrum of an element in a Banach
algebra

spectral radius

space of characters of a Banach algebra A

Gelfand transform of a

continuous functions that vanish at infinity

adjoint of an operator Tin a Hilbert space

the closed, self-adjoins, unital subalgebra
generated by Tin the ambient ring

square root of a positive operator

space of G-linear maps between two
representation spaces

Pontryagin dual of G

n-fold products within a group G

local basis sets for the compact-open
topology

a-neighborhood of the identity in S'

Hilbert space associated with p

convolution of functions

continuous function of positive type,
bounded by 1 on G

elementary functions on G

Fourier transform of a function f

complex span of continuous functions of
positive type

L'-functions in V(G)

Fourier transform of a measure

module of an automorphism a on G

ball of module radius m in a topological
field k

order of an element of a local field k

p-norm and infinity norm on Q or Fq(t);
see also Section 42

uniformizing parameter for a local field k

ramification index of an extension of local
fields
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f =f(k1Ik) 4.3

K 4A

KQ 4.4

4.4

4A

'PKf 4A

rx/F:-'PK - 4A

vIu 4A

o,, 4.4

OK 4A

DQ 4.5

PQ 4.5

jQ 4.5

Homk(L,M) 4.5

II' G,, 51
GS 11

F1 dgy I1

AK 5.2

IK 5-2

S. 5-2

A. 12
CK 5-4

IXI 54A,

CK =IK/K* 5.4

S. 5.4

IK S 54

I 5 4
K.S

RS

.

5-4

AKS 5-A

residual degree of an extension of local
fields

completion of a field K at a place v

completion of global field K at the place
corresponding to a prime Q

set of places of K

set of Archimedean places of K

set of ultrametric places of K

restriction map for places of a field
extension K/F

place v restricts to place u

local ring of integers with respect to a
place v

ring of integers of a global field K

decomposition group of a prime Q

canonical map from DQ to Gal(Fq/F)

induced isomorphism from DQ onto
Gal(KQIFp) where Q lies over P

embedding of L into M over k

restricted direct product

S-version of the restricted direct product

induced Haar measure on a restricted
direct product of locally compact groups

adele group of a global field K

idele group of a global field K

set of infinite places of a global field

the open subgroup As, of the adele group

idele class group of global field K; see also
Section 6.4

standard absolute value on the adele group

norm-one idele class group

set of Archimedean places of a global field

S-ideles of the global field K

S-ideles of norm one

S-integers of a global field

S-adeles of the global field K
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CK S 5A

VP 5-4

KAI, £4

JA,(M) 54

C/A,(M) 1.4

KM
1

5A

CIK (M) 5 A

'PQIP
&1

(P, K/F) 6 -1

F -(P) 6 -1

EF 6.2

(G,G) (U
Gab 6
V:Gab->Hab 6
CF 6.4

S-class group of a global field K

discrete valuation associated with a prime
P in a Dedekind domain

elements of K congruent to 1 modulo the
integral ideal M

fractional ideals relatively prime to M

wide ray class group of K relative to M

elements of K congruent to 1 modulo the
ideal M extended by a set of real places

narrow ray class group of K relative to M

Frobenius element associated with primes
Q and P, where Q lies over P

Artin symbol (or Frobenius class)

maximal unramified extension of Fat P

set of places of a global field F

commutator subgroup of a group G

abelianization of a group G

transfer map

idele class group for F global, F* for F
local

NK,F: CK -+ CF f-4 norm homomorphism

JK,F : CF -> CK 6.4 map induced by inclusion

rK= Gal F/K) 6.4 Galois group of the separable closure of F
over a finite extension K of F

i/C/F : rK -+ rF 6A inclusion map of Galois groups

V: rF -> rK 6A transfer map on Galois groups

gF:CF->rF (,4 Artin map

OXIF 64 Artin map with projection onto Gal(K/F)

F's 6 maximal abelian extension of a field F

F 6 extension of F by all nth roots of unity

F.. 6-5 extension of F by all roots of unity

0(z) 7A) theta function

d*x= dx/I x I 21 Haar measure on F* as given by the Haar
measure dx on a local field F

OF 21 elements of F* of unit absolute value

9F 21 valuation group of a local field F
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X(F*) 71
L(Z) or L(s,x) 71

F(s) 71
FF(s) 71
sgn(x) 71

XV =Z-11. 1 71

yv, 71

S(F) 71
Z(f,x) 71

o f U
DF 71

WF 71
g(ra2) 71
W(w) 11
S(AK) 72
ip(x) 72

Div(K) 2.2

Div°(K) 7 22

deg(D) 72
div(J) 72
div(x) 2.2

Pic(K) 7-2

Pic°(K) 7 22

L(D) 2.2

7 2

yvK 73
73

Z(f Z) 7.3

L(s,Z) 14

L(s,Z) 74
L(s,Z.) L4
c(s) 74

characters of a local field F

local L-factor associated with a local
character z; see also Section 74

ordinary gamma function

gamma function associated with F= R or C

sign character

shifted dual of a character X

multiplicative translate of an additive
character by a field element a

space of Schwartz-Bruhat functions on F

local zeta function; see also Section 7.3

dual of of with respect to the trace map

different of a field F

standard character of a local field F

Gauss sum for characters wand 2

root number associated with a character w

adelic Schwartz-Bruhat functions

average value of 97ES(AK) over K

divisor group of a function field K

group of divisors of degree zero

degree of a divisor D

principal divisor associated with f

divisor function extended to ideles; see
also Section 7 5

Picard group of a function field K

Picard group of degree zero

linear system associated with a divisor D

dimension of the vector space L(D)

standard character of a global field K

local different at P of a global field

global zeta function

Hecke L-function associated with a global
character x
finite version of L(s,Z)

infinite version of L(s,Z)

Riemann zeta function
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CA.(s) 7 4 Dedekind zeta function

reg(x) 7-5 regulator map

dK 1-5 discriminant of a number field K

WK 7-5 number of roots of unity in a global field K

RK 7.5 regulator of a number field

ri(K), r2(K) 7-6 number of real and nonconjugate complex
embeddings of a number field K into C

S(S) 7-1 Dirichlet density of a set of primes S
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Topological Groups

Our work begins with the development of a topological framework for the key
elements of our subject. The first section introduces the category of topological
groups and their fundamental properties. We treat, in particular, uniform con-
tinuity, separation properties, and quotient spaces. In the second section we
narrow our focus to locally compact groups, which serve as the locale for the
most important mathematical phenomena treated subsequently. We establish
the essential deep feature of such groups: the existence and uniqueness of Haar
measure; this is fundamental to the development of abstract harmonic analysis.
The last two sections further specialize to profinite groups, giving a topological
characterization, a structure theorem, and a set of results roughly analogous to
the Sylow Theorems for finite groups. The prerequisites for this discussion will
be found in almost any first-year graduate courses in algebra and analysis.

1.1 Basic Notions

DEFINITION. A topological group is a group G (identity denoted e) together
with a topology such that the following conditions hold:

(i) The group operation

GxG aG
(g, h) -4 gh

is a continuous mapping. (The domain has the product topology.)

(ii) The inversion map

G - G
g H g-

is likewise continuous.

By convention, whenever we speak of a finite topological group, we intend
the discrete topology.
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Clearly the class of topological groups together with continuous homomor-
phisms constitutes a category.

It follows at once that translation (on either side) by any given group ele-
ment is a homeomorphism G-+G. Thus the topology is translation invariant in
the sense that for all geG and UcG the following three assertions are equiva-
lent:

(i) U is open.
(ii) gU is open.
(iii) Ug is open.

Moreover, since inversion is likewise a homeomorphism, U is open if and only
if U-1 _ {x : x1 a U} is open.

A fundamental aspect of a topological group is its homogeneity. In general,
ifX is any topological space, Homeo(X) denotes the set of all homeomorphisms
X-+X. If S is a subset of Homeo(X), then one says that X is a homogeneous
space under S if for all x,ynX, there exists feS such that f(x)=y. (When S is
unspecified or perhaps all of Homeo(K), one says simply that X is a homogene-
ous space.) Clearly any topological group G is homogeneous under itself in the
sense that given any points g,hEG, the homeomorphism defined as left transla-
tion by hg-1 (i.e., x H hg lx) sends g to h. From this it follows at once that a
local base at the identity eEG determines a local base at any point in G, and in
consequence the entire topology.

EXAMPLES

(1) Any group G is a topological group with respect to the discrete topology.

(2) R*, R'', and C* are topological groups with respect to ordinary multipli-

(3)

cation and the Euclidean topology.

R" and C" are topological groups with respect to vector addition and the
Euclidean topology.

(4) Let k=R or C. Then the general linear group

GL"(k) = (geM"(k) : det(g)#O) (nz 1)

is a topological group with respect to matrix multiplication and the Euclid-
ean topology. The special linear group

SL"(k) = {geGL"(k) : det(g)=1) (nZ 1)

is a closed subgroup of GL"(k).
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In subsequent discussion, if X is a topological space and xeX, we shall say
that USX is a neighborhood of x if x lies in the interior of U (i.e., the largest
open subset contained in U). Thus a neighborhood need not be open, and it
makes sense to speak of a closed or compact neighborhood, as the case may be.

A subset S of G is called symmetric if S=S -1. This is a purely group-
theoretic concept that occurs in the following technical proposition.

1-1 PROPOSmoN. Let G be a topological group. Then the following assertions
hold:

(i) Every neighborhood U of the identity contains a neighborhood V of
the identity such that VVc U.

(ii) Every neighborhood U of the identity contains a symmetric neighbor-
hood V of the identity.

(iii) IfH is a subgroup of G, so is its closure.

(iv) Every open subgroup of G is also closed.

(v) If K1 and Kz are compact subsets of G, so is K, K2 .

PROOF. (i) Certainly we may assume that U is open. Consider the continuous
map q: Ux U-+G defined by the group operation. Certainly-'(U) is open and
contains the point (e, e). By definition of the topology on Ux U, there exist open
subsets V,, V2 of U such that (e, e) a V, x VZ. Set V= V, n VZ . Then V is a neigh-
borhood of e contained in U such that by construction VVg U.

(ii) Clearly g e U n U-' a g, g-' e U, so V= Un U-1 is the required symmet-
ric neighborhood of e.

(iii) Any two points g and h in the closure of H may be exhibited as the limits
of convergent nets in H itself. Hence by continuity their product is likewise the
limit of a convergent net in H and similarly for inverses.

(iv) If H is any subgroup of G, then G is the disjoint union of the cosets of H,
and hence H itself is the complement of the union of its nontrivial translates. If
H is open, so are these translates, whence H is the complement of an open set
and therefore closed.

(v) K,KZ is the image of the compact set K1xK2 under the continuous map
(k,,k2) -> k,k2. It is therefore compact by general topology Cl

Note that (i) and (ii) together imply that every neighborhood U of the iden-
tity contains a symmetric neighborhood V such that VVc U.
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Translation of Functions and Uniform Continuity

Given an arbitrary function f on a group, we define its left and right translates
by the formulas '

Lhf(g)=f(h-`g) and R f(g) f(gh) .

If f is a (real- or complex-valued) continuous function on a topological group,
we say that f is left uniformly continuous if for every a>0 there is a neighbor-
hood V of e such that

heV= IILhf-f1.<e

where 11 11. denotes the uniform, or sup, norm. Right uniform continuity is de-
fined similarly. Recall that ',(G) denotes the set of continuous functions on G
with compact support.

1-2 PROPOSITION. Let G be a topological group. Then every function f in
W,(G) is both left and right uniformly continuous.

PROOF. We prove right uniform continuity. Let K=supp(f) and fix a>0. Then
for every gEK there exists an open neighborhood U. of the identity such that

h EUs If(gh)-f(g)I<e .

Equivalently, f(g') is -close tof(g) whenever g-Ig' lies in U. Moreover, by the
comment following the previous proposition, each U. contains an open sym-
metric neighborhood s of the identity such that VBV, U9. Clearly the collec-
tion of subsets gV8 covers K, and a finite subcollection {g1V } 1 ,, suffices.
Henceforth we write VJ for Vg and U. for Ug . Define V, a symmetric open
neighborhood of the identity e, y the formula

V=(,.
J-t

If gEK, then gegll .. for some j. For hE V we consider the differencef(gh)-f(g):

If(gh) -f(g)I 5 If(gh) -f(g)I + If(g)-f(g)I

The point is that both g 'g and g Igh lie in Uj, so that both terms on the right
are bounded by & (Here is where we use that property VV,(z U, for all J.) This
establishes right uniform continuity for K.
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When g does not lie in K, then we must bound I f(gh)I. If f(gh)#0, then ghe
g,V for some j, and therefore f(gh) is e-close to AV. Moreover, gi-lg=gfighlr'
lies in Ui (here is where we use the symmetry of V), and it follows that If(g;)I<e
since gi is close to g andf(g)=O by assumption. Consequently If(gh)I<2s; and
the argument is complete. 0

Separation Properties and Quotient Spaces
Some authors assume as part of the definition of a topological group that the
underlying topology is T,. In this case it is also customary to reserve the term
subgroup for a closed subset that constitutes a subgroup in the ordinary alge-
braic sense. Note that in general we accept neither of these assumptions.

The following proposition shows, among other things, that for a topological
group the separation axioms T, and T2 (Hausdorff) have equal strength.

1-3 PROPOSITION. Let G be a topological group. Then the following assertions
are equivalent:

(i) G is T,.
(ii) G is Hausdorff.

(iii) The identity e is closed in G.

(iv) Every point of G is closed.

PROOF. (i)=:> (ii) If G is T, then for any distinct g,heG there is an open neigh-
borhood U of the identity lacking gh-1. According to Proposition 1-1, U admits
a symmetric open subset V, also containing the identity, such that VVc U. Then
Vg and Vh are disjoint open neighborhoods of g and h, since otherwise gh-1 lies
in V-'V=VVcU.

(ii)=(iii) Every point in a Hausdorff (or merely T,) space is closed.

(iii) =::> (iv) This is a consequence of homogeneity: For every point xeG there is
a homeomorphism that carries e onto x. Hence if a is closed, so is every point.

(iv) => (i) Obvious by general topology. 0
If H is a subgroup of the topological group G, then the set G/H of left cosets

of G acquires the quotient topology, defined as the strongest topology such that
the canonical projection p:g-4gH is continuous. Thus U is open in G/H if and
only if p-'(U) is open in G. Recall from algebra that G/H constitutes a group
under coset multiplication if and only if H is moreover normal in G. We shall
see shortly that in this case G/H also constitutes a topological group with re-
spect to t quotient topology.
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The following two propositions summarize some of the most important
properties of the quotient construction.

1-4 PROposrrlON. Let G be a topological group and let H be a subgroup of G.
Then the following assertions hold:

(1) The quotient space GIII is homogeneous under G.

(ii) The canonical projection p: G-+GIII is an open map.

(iii) The quotient space G/H is T, if and only if H is closed.

(iv) The quotient space G/H is discrete if and only if H is open. Moreover,
if G is compact, then His open if and only if G/H is finite.

(v) If H is normal in G, then G/H is a topological group with respect to
the quotient operation and the quotient topology.

(vi) Let H be the closure of (e) In G. Then H is normal in G, and the quo-
tient group G/H is Hausdorff with respect to the quotient topology.

PROOF. (i) An element xaG acts on G/H by left translation: xgH. The
inverse map takes the same form, so to show that left translation is a homeo-
morphism of G/H, it suffices to show that left translation is an open mapping
on the quotient space. Let U be an open subset of GIH. By definition of the
quotient topology, the inverse image of U under p is an open subset U of G,
and it follows that the inverse image of gUunder p is gU, also an open subset
of G. Therefore gU is open, and left translation is indeed an open map, as re-
quired.

(ii) Let V be an open subset of G. We must show that p(V) is open in the quo-
tient. But p(V) is open in G/H if and only if p '(p(V)) is open in G. By elemen-
tary group theory, Let x lie in so that x=vh for some ve V
and h EH. Since V is open, given any ve V, there is an open neighborhood U c
V containing v. Thus U,;h is an open neighborhood of x contained in
which is accordingly open.

(iii) By general topology, G/H is T, if and only if every point is closed. Since a
coset of H is its own inverse image under projection, each coset is a closed
point in GIH if and only if each is likewise a closed subset of G. But by homo-
geneity this is the case if and only if H itself is closed in G. (Note that we can-
not appeal to the previous proposition, since the topological space G/H is not
necessarily a topological group with respect to multiplication of cosets.)

(iv) Let H be a subgroup of G. Then by part (ii), H is an open subset of G if and
only if H is an open point of G/H. Since G/H is homogeneous under G, this
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holds if and only if G/H is discrete. Assume now that G is compact. Then so is
G/H, since p is continuous. But then H is open if and only if G/H is both com-
pact and discrete, which is to say, if and only if G/H is finite. (Recall our con-
vention that a finite topological group carries the discrete topology.)

(v) Assume that H is a normal subgroup of G. Then from part (ii) and the com-
mutative diagram

G
P
G/H

Ts
G
yP

TO(s) . G/H

(where Tg denotes left translation by g), we see at once that translation by any
group element is continuous on the quotient. A similar diagram establishes the
continuity of the inversion map.

(vi) Since {e} is a subgroup of G, so is its closure H. Moreover, it is the small-
est closed subgroup of G containing e and therefore normal, since each conju-
gate of H is likewise a closed subgroup containing e. In light of the previous
proposition, the full assertion now follows from parts (iii) and (v) above.

Part (vi) shows that every topological group projects by a continuous homo-
morphism onto a topological group with Hausdorff topology. In this sense the
assumption that a given group is Hausdorff is not too serious.

1-5 PROPOSIT[ON. Let G be a Hausdorff'topological group. Then the following
assertions hold:

(i) The product of a closed subset F and a compact subset K is closed.

(ii) If H is a compact subgroup of G. then p: G-*GIH is a closed map.

PROOF. (i) Let z lie in the closure of the product FK. Then there exists a net
converging to z of the form (xaya) with and yaEK. Since K is compact,
we may replace our given net by a subnet such that {ya} converges to some
point y in K. We claim that this forces the convergence of {xa} in F to zy[,
showing that z = zyly lies in FK, which is therefore closed. To establish the
claim, consider an arbitrary open neighborhood U of the identity e. We may
choose yet another neighborhood of e contained in U such that VVV U. Then
the nets {z-'xaya} and {y.-'y) are both eventually in V, whence the product
z-'xa ya ya' y = z--'x. y is eventually in U. Thus lim xa=zy-[, as required.
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(ii) If X is a closed subset of G, then arguing as the second part of the previous
proposition, we are reduced to showing that XH is likewise a closed subset of
G. But if H is compact, this is just a special case of assertion (i).

REMARK. The requirement that H be compact is essential. For example, in the
case G=R2, with subgroup H={(O,y):yER}, we have clearly G/H=R, and un-
der this identification, p(x,y) = x. Now let X= { (x, y) E R2 : xy = 1). Then X is
closed, but p(X)=R* is not.

Locally Compact Groups
Recall that a topological space is called locally compact if every point ad-

mits a compact neighborhood.

DEFINITION. A topological group G that is both locally compact and Hausdorff
is called a locally compact group.

Note well the assumption that a locally compact group is Hausdorff. Accor-
dingly, all points are closed.

1-6 PROPOSITION. Let G be a Hausdorff topological group. Then a subgroup H
of G that is locally compact (in the subspace topology) is moreover closed.
In particular, every discrete subgroup of G is closed.

PROOF. Let K be a compact neighborhood of e in H. Then K is closed in H,
since H is likewise Hausdorff, and therefore there exists a closed neighborhood
U of a in G such that K= UnH. Since UnH is compact in H, it is also compact
in G, and therefore also closed. By Proposition 1-1, part (i), there exists a
neighborhood V of e in G such that VVc U. We shall now show that
xEH )XEH.

First note that H is a subgroup of G by Proposition 1-1, part (iii). Thus if
x r= H, then every neighborhood of x-' meets H. In particular, there exists some
yEVx-lnH. We claim that the product yx lies in UnH. Granting this, both y
and yx lie in the subgroup H, whence so does x, as required.

PROOF OF CLAIM. Since UnH is closed, it suffices to show that every neighbor-
hood W of yx meets UnH. Since y-1 W is a neighborhood of x, so is y-1 WnxV.
Moreover, by assumption x lies in the closure of H, so there exists some ele-
ment zey-' Wr- xVnH. Now consider:

(i) the product yz lies both in Wand in the subgroup H;

(ii) by construction, ye Vx-';

(iii) by construction, zexV.



1.2. Haar Measure 9

The upshot is that yz lies in Vx-1 xV=VV, a subset of U, and therefore the in-
tersection Wn(UnH) is nonempty. This establishes the claim and thus com-
pletes the proof. U

1.2 Haar Measure

We first recall a sequence of fundamental definitions from analysis that cul-
minate in the definition of a Haar measure. We shall then establish both its
existence and uniqueness for locally compact groups.

A collection `m of subsets of a set X is called a a=algebra if it satisfies the
following conditions:

(i) XETZ.

(ii) IfAe`x12, thenAc&1R, where Ac denotes the complement ofA in X.

(iii) Suppose that A,, r=T? (n 2- 1), and let

0
A=UA,.

n=1

Then also A e`A2; that is, T? is closed under countable unions.

It follows from these axioms that the empty set is in `:fit and that `m is closed
under finite and countably infinite intersections.

A set X together with a a.algebra of subsets `l)t is called a measurable space.
If X is moreover a topological space, we may consider the smallest a6algebra .
containing all of the open sets of X. The elements of .0 are called the Bore!
subsets of X.

A positive measure p on an arbitrary measurable space (X T Z) is a function
p:`]R-+R+.4ao) that is countably additive; that is,

P(U An)_Yp(An)

for any family {An} of disjoint sets in V. In particular, a positive measure de-
fined on the Borel sets of a locally compact Hausdorff space X is called a Borel
measure.

Let p be a Borel measure on a locally compact Hausdorff space X, and let E
be a Borel subset off. We say that p is outer regular on E if

p(E) = inf{p(U) : UQE, U open) .
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We say that u is inner regular on E if

p(E) = sup(p(K) : KcE, K compact) .

A Radon measure on X is a Borel measure that is finite on compact sets, outer
regular on all Borel sets, and inner regular on all open sets. One can show that
a Radon measure is, moreover, inner regular on a-finite sets (that is, countable
unions of p-measurable sets of finite measure).

Let G be a group and let p be a Borel measure on G. We say that p is left
translation invariant if for all Borel subsets E of G,

p(sE) = p(E)

for all seG. Right translation invariance is defined similarly.

DEFINMON. Let G be a locally compact topological group. Then a left (respec-
tively, right) Haar measure on G is a nonzero Radon measure p on G that is
left (respectively, right) translation-invariant. A bi-invariant Haar measure is a
nonzero Radon measure that is both left and right invariant.

The following proposition shows that the existence of a left Haar measure is
equivalent to the existence of a right Haar measure and, in a sense, equates the
translation invariance of measure with that of integration. As usual, we let

W+(G)={f

We often abbreviate this to 01' when the domain is clear.

1-7 PROPOSrrION. Let G be a locally compact group with nonzero Radon
measure p. Then:

(i) The measure p is a left Haar measure on G if and only if the measure
p defined by p(E) = p(E-1) is a right Haar measure on G.

(ii) The measure u is a left Haar measure on G if and only if

f L, f dp = f f du
o c

for all fe 8.+ and se G.

(iii) If p is a left Haar measure on G, then p is positive on all nonempty
open subsets of G and
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Jfdp>0
a

for allfE W,'.

(iv) If p is a left Haar measure on G, then p(G) is finite if and only if G is
compact.

PRoOF. (i) By definition, we have the equivalence

p(E) = p(Es) Vs e G a p(E-') = As 'E-) Vs e G

for all Bore] sets E; the assertion follows at once. (For any topological group G,
clearly E is a Bore] subset of G if and only if E-' is.)

(ii) If p is a Haar measure on G, then the stated equality of integrals follows by
definition for all simple functions fe sio ` (i.e., finite linear combinations of
characteristic functions on G), and hence, by taking limits, for arbitrary fe Z..
Conversely, from the positive linear functional J6 - du on ',(G) we can, by the
Riesz representation theorem, explicitly recover the Radon measure p of any
open subset Uc G as follows:

P(U) = sup{ f f du : f e W.(G ), I I ./11.51, and supp(f) c U}
G

From this one sees at once that if the integral is left translation invariant, then
p(sU) = p(U) for all open subsets U of G, since supp(f) c U if and only if
supp(L, f)csU. The result now extends to all Borel subsets of G because a Ra-
don measure is by definition outer regular.

(iii) Since p is not identically 0, by inner regularity there is a compact set K
such that p(K) is positive. Let U be any nonempty open subset of G. Then from
the inclusion

KcUsU
seo

we deduce that K is covered by a finite set of translates of U, all of which must
have equal measure. Thus since p(K) is positive, so is p(U). If fe Z,, then
there exists a nonempty open subset U of G on which f exceeds some positive
constant R. It then follows that

JfdpZRp(U)>0
G

as claimed.
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(iv) If G is compact, then certainly u(G) is finite by definition of a Radon
measure. To establish the converse, assume that G is not compact. Let K be a
compact set whose interior contains e. Then no finite set of translates of K cov-
ers G (which would otherwise be compact), and there must exist an infinite
sequence (ss) in G such that

S. e U sjK
j<n

Now K contains a symmetric neighborhood U of e such that UUe K. We claim
that the translates sjU (j z 1) are disjoint, from which it follows at once from
(iii) that µ(G) is infinite.

PROOF OF CLAIM. Suppose that for i <j we have su=sv where u,ve U. Then sJ.=
s.uv-' es;K, since U is symmetric and UUc;K. But this contradicts Eq. 1.1. U

With these preliminaries completed, we now come to one of the major theo-
rems in analysis.

1-8 THEOREM. Let G be a locally compact group. Then G admits a left (hence
right) Haar measure. Moreover, this measure is unique up to a scalar mul-
tiple.

Via the Riesz representation theorem and statement (ii) of the previous prop-
osition, the existence part of the proof reduces to the construction of a left-
invariant linear functional on F,,(G). The key idea is the introduction of a
translation-invariant device for comparing functions in W,*.

Preliminaries to the Existence Proof
Let f, pe f *. Set U={seG: c(s) > so that a finite number of translates
of the open set U suffice to cover supp(f). Then there are n elements s1, ..., s,,e
G such that a linear combination of the translates of c by the s dominates f in
the following sense:

f5 .
Y, L'' .

I[01. j_t

The point is that if sesupp(f), then seSU for some j, so that S:-'se U if ql is
sufficiently large. Thus it makes sense to define (f:g), the Haar covering num-
ber off with respect to rp, by the formula
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r(
n n

(f:qp)=infEcj :0<ci,...,c, andf forsome s...... sn EG
j=t

Note that since II! IL is assumed positive, the Haar covering number is never
zero. We shall see shortly that (f: q) is almost linear in f for appropriately cho-
sen q,.

1-9 LEMMA The Haar covering number has the following properties:

(i) (f: rp) _ (L,f:go)forall sEG

(ii) (fI+A2:9)S(fI:9)+(2: )

(iii) (cf : ,p) = c(f: q) for any c>0

(iv) (fl: 9) 5 (f2: rp) whenever j Sf2

(v) U )
(vi) (fl:c)SU-fo)(fo:q)

PttooF. (1) Since left multiplication by any given group element constitutes a
permutation of the ambient group, for all sEG we have the equivalence

f (t) S EcL,,q,(t) Vt E G,=> L,f (t) S EcjL. op(t) Vt E G

which is to say that

f SIC'L"V<*L,f S C' L., q .

Hence precisely the same sets of coefficients c, occur in the calculation of (f: q')
as for (L, f qo).

(ii), (iii), (iv) Obvious.

(v) If the coefficients c, appear in the calculation of (f: q), then

f(s)5ycjco(sf's)5(Ec1)IIcII Vs EG

whence Ec, z IJ1I./IIipII,,, and the assertion follows.

(vi) We have the implication

f S c. L,, .fo and f, S E dkLk f 5 ycjdkL.,,,'P
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whence

(j:op)Sinf cidk=in1(Ec;)inf(Ydk)_(f:fo)(fo:'P)

as claimed. This completes the proof.

The Haar covering number yields an "approximate" functional as follows.
Fix foe W.+ and define

I'(f)= (fw)
(fo:q?)

By (vi) above, we have the inequalities

(f:V)S f:ffUo:q')and ( :p)5(fo:f)(f:q) -

Dividing the first by (fo:q') and the second by (f: c), we find that Iv is bounded
as follows:

(fo:f)-' <_h(f):5(f:fo) (1.2)

This bound is crucial to the existence of a Haar measure for G.
One would expect that as the support of shrinks, I9 will become more

nearly linear. This is confirmed by the following lemma.

1-10 LEMMA. Given f, andf2 in j+, for every e>0 there is a neighborhood V
of the identity e such that

Io(f)+f9(f2)SIo(f +f)+e

whenever the support of q' lies in V.

PROOF. By Urysohn's lemma for locally compact Hausdorff spaces, there exists
a function get.+ that takes the value 1 on supp(f1+f2) = supp(fj)vsupp(.6).
Choose S> 0 and let h =f + f2 + Sg, so that h is continuous. Next let hf=f,./h,
i=1,2, with the understanding that h, is 0 off the support off. Clearly both h= lie
in W,+, and their sum approaches 1 from below as 5 tends to 0. By uniform
continuity, there exists a neighborhood U of e such that Ih;(s)-h,(t)! < S when-
ever t-1seU.

Assume that supp(q.i) lies in Uand suppose that

h 5 C' L" q,

Then
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f,(s) = h(s)h,(s) S cJrp(s;'s)h,(s) S cJrp(s;'s)(h,(ss)+5) (i=1,2)
J J

and it follows that

(f:q')S cJ[h,(sJ)+S] (i=1,2) .
J

Since hl+h251, this last inequality implies that

J

But >c may be made arbitrarily close to (h: q'), and therefore by definition of l,'
and part (ii) of the previous lemma,

h(j)+h(f2) 5 (1+25)h(h)
S f2)+SIc(g)]

= I,(f + f2)+25[Ic(f +f2)+SIc(g)]

Finally, Eq. 1.2 asserts that all of the on the right are bounded inde-
pendently of rp, and so for any positive e> 0 we can choose 5 sufficiently small
that the stated inequality holds. 0

Existence of Haar Measure

We now prove the existence of a Haar measure for a locally compact group G.
The idea is to construct from our approximate left-invariant functionals Io an
exact linear functional. We shall obtain this as a limit in a suitable space.

Let X be the compact topological space defined by the bounds of II(f) as
follows:

x= fl[(fo:f)-',(f:fo)1
JEr,'

Then every function I., (in the technical sense of a set of ordered pairs in
F.` x R*) lies in X. For every compact neighborhood U of e, let Ku be the clo-
sure of the set {Iq,: supp((p) c U) in X. The collection {Ku} satisfies the finite
intersection property, since

nKU Kn
UJ-i J°i J



16 1. Topological Groups

and the right side is nonempty by Urysohn's lemma. Therefore, since X is
compact, (1 KU contains an element 1, which will in fact extend to the required
left-invariant positive linear functional on WA(G). Note that I, which lies in a
product of closed intervals excluding zero, cannot be the zero function on
W,(G), so that the extended functional will likewise be nontrivial.

Since I is in the intersection of the closure of the sets (If: supp(() c U), it
follows that every open neighborhood of I in the product X intersects each of
the sets (IV: supp(q)c U). We may unwind this assertion as follows:

For every open neighborhood U of e, and for every trio of functions
f,, fz, fE F.+ and every a>O, there exists a function V E lc' with supp(S )
(-- Usuch that V(j)-I4p(j)l <e,j=1,2,3.

(This statement extends to any finite collection of j, but we shall need only
three.) So given fe and ceR, we may simultaneously make I(cf) arbitrarily
close to IV(cf) and cl(f) arbitrarily close to cle(f). Appealing to Lemma 1-9
above, this shows that I(cf)=cI(J). Similarly we have that I is left translation-
invariant and at least subadditive. To see that I is in fact additive, we use Lem-
ma 1-10 to choose a neighborhood Uofe such that

(f,)+1,(f2)s I,(fi +f2)+a

whenever supp((o)g U. Then choose rp with supp(rp) e U such that I(f), 1(f2),
and I(f+f2) all likewise lie within e/4 ofIc(J',), I,(f2), and Ic(f+f2), respec-
tively. Since c is arbitrary, it follows at once from the inequality above and the
general sublinearity of l, that 1(f +f2)=I(f)+I(f2), as required.

Finally, extend I to a positive left translation-invariant linear functional on
',(G) by setting I(f) =I(f ) -I(J`). As we remarked above, in view of our gen-
eral discussion of translation-invariant measures and the Riesz representation
theorem, this implies that G admits a left Haar measure p and completes the
existence proof.

Uniqueness of Haar Measure

We now prove that the Haar measure on a locally compact group G is unique
up to a positive scalar multiple. Given two Haar measures p and v on G, clearly
it suffices to show that the ratio of integrals

J f(x)dp
Ci

f f(x)dv
c
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is independent offeW'. To simplify the notation, we shall often write 1(f) and
J(J) for the indicated integrals with respect to u and v, respectively. Given two
functions fge F,', the plan is to produce a function he l,' such that the ratios
I(f)/J(f) and I(g)/J(g) can both be made arbitrarily close to 1(h)/J(h).

Let K be a compact subset of G, the interior of which contains e. Then K
contains an open symmetric neighborhood of the identity whose closure Ko is
compact and symmetric. (The symmetry is clearly preserved by closure.) Define
compact subsets Kfand K. of G by

K1= v and Kg = v

(Recall that the group product of compact sets is compact.) For tnK0, define yr f
by

Equivalently, we have

y f(s) = f(st) -f(ts) .

yr.f = Rtf - Lr f .

Define yg similarly. Clearly y f and yg are supported in Kf and Kg, respec-
tively, and both vanish on the center of G and in particular at e. Let 8>0 be
given. Then by left and right uniform continuity, K. contains an open neigh-
borhood Uo of e such that for all seG and teU0, both Iyf(s)I and I yg(s)I are
bounded by e/2. Now Uo in turn contains a symmetric open neighborhood U, of
e whose closure K, is symmetric, compact, and contained in K0. Moreover, by
continuity we have that I yf(s)I <eand Iyg(s)I<efor all seG and all The
point is that as long as t remains in K,, translation off and g by t on either side
has approximately the same effect.

We now construct h. We claim first that since e lies in the interior of K,,
there exists a second compact neighborhood K2 of e such that K2 is contained in
the interior of K,. Granting this, it follows immediately from Urysohn's lemma
for locally compact topological spaces that there exists a continuous function
h : G -* R, that is 1 on K2 and 0 outside of K,. Define h : G -* R, by

h(s) = h(s)+h(s-') .

Then certainly he W,', supp(h) lies in K,, and h is an even function in the sense
that h(s)=h(s-1).

PROOF OF CLAIM. Since G is Hausdorff and the boundary B of K, is likewise
compact, B admits a finite cover by open sets each of which is disjoint from a
corresponding open neighborhood of e in KP The intersection of these neigh-
borhoods thus constitutes an open neighborhood U2 of e in K, and we now set
K2 equal to the closure of U2. Then by construction K2 is contained in the inte-
rior of Kt, as required.
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We come to the main calculations. All integrals are implicitly over G and
are translation-invariant, sincep and v are by assumption Haar measures. First,

I(f)J(h) = ff f(s)h(t)dp,d v,

= ff f(ts)h(t)dp,dv,

The second calculation uses the property that h is even.

I(h)J(f) = ff h(s)f(t)du,d v,

= Jjh(t-'s)f(t)du dv,

= f f h(s 't)f(t)dp,dv,

= ff h(t)f(st)dp,dv,

From these we can easily estimate the difference:

II(h)J(f)-I(f)J(h)I=I f5h(t){f(st)-f(ts)}dp,dv, I

=IJJh(t)r,f(s)dp,dv, I
S sp(K f)J(h) .

The point in the last line of the calculation is that supp(h) lies in a K, where r f
is small. Similarly,

I I(h)J(g)-I(g)J(h)I=I JJh(t){g(st)-g(ts)}dpdv,I

= I ff h(l),-,g(s) dud v,
I

5 sp(Ks)J(h) .

Dividing the first inequality by J(h)J(I) yields

I(h) I(f) sp(K1)
J(h) J(f) 5 J(f)

Dividing the second by J(h)J(g) yields

I(h) _ I(g) s sp(KS )

J(h) J(g) J(g)
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Since e is arbitrary, this shows that the ratio I(f)/J(f) is independent of f as
claimed. LI

1.3 Profinite Groups

This section introduces a special class of topological groups of utmost impor-
tance to our subsequent work. We begin by establishing a categorical frame-
work for the key definition that follows.

Projective Systems and Projective Limits
Let I be a nonempty set, which shall later serve as a set of indices. We say that I
is preordered with respect to the relation 5 if the given relation is reflexive
(i.e., isi for all iEI) and transitive (i.e., i5j and j5k = iSk for all i,j,kEI).
Note that we do not assume antisymmetry (i.e., i Sj and j 5 i need not imply that
i =j ); hence a preordering is weaker than a partial ordering. Clearly the ele-
ments of a preordered set I constitute the objects of a category for which there is
a unique morphism connecting two elements i and j if and only if 15j.

We say that a preordered set I is moreover a directed set if every finite sub-
set of I has an upper bound in I; equivalently, for all i, j EI there exists kEI such
that I5k and j5k. (Recall that directed sets are precisely what is needed to de-
fine the notion of a net in an abstract topological space.) While most of the spe-
cific instances of preordered sets that we meet below will moreover be directed,
we shall need only the preordering for the general categorical constructions to
follow. Beware, however, that directed sets will play a crucial but subtle role in
establishing that the projective limit of nonempty sets is itself nonempty. (See
Proposition 1-11.)

EXAMPLE. The integers Z are preordered (but not partially ordered) with respect
to divisibility and in fact constitute a directed set: a finite collection of integers
is bounded with respect to divisibility by its least common multiple.

Assume that I is a preordered set of indices and let {G,},E1 be a family of
sets. Assume further that for every pair of indices i,jEl with i5j we have an
associated mapping ip,i: G,-+ G,, subject to the following conditions:

(i) c'ii = 10, Vi E I

(ii) cryoippt=op, Vi,j,kEl,i5j5k

Then the system (G,, q,,i) is called a projective (or inverse) system. Note that if
we regard I as a category, then the association i H G, defines a contravariant
functor.
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DEFINITION. Let (G,, q,,,) be a projective system of sets. Then we define the pro-
jective limit (or inverse limit) of the system, denoted lim G,, by

limG,={(g,)eflG,: ! j=> (9(g;)=g;) .

Note that as' a subset of the direct product, lim G, comes naturally equipped

with a family of projection maps p1: lim G, -+ Gj , and with regard to these

projections, the projective limit manifests the following universal property:

UNIVERSAL PROPERTY. Let H be a nonempty set and let there be given a system
of maps (w,:H -), G,),, that is compatible with the projective system (G,, qr,) in
the sense that for each pair of indices i, j eI with i S j, the following diagram
commutes:

Gi G,

ql1i

Then there exists a unique map yi : H -* lim G, such that for each iel the dia-
gram

H-- limG,

also commutes.

4-

The mapping y/ is of course none other than h H (1(h)),, just as for the
direct product of sets, but in this case the compatibility of the yr, guarantees that
the image falls into the projective limit.

Note carefully that neither the definition of a projective limit nor the associ-
ated universal property asserts that a given projective limit of sets is nonempty.
In particular, the projection maps may have empty domain. Of course, if a com-
patible system (yr,:H -+ G,),, exists with nonempty domain H, then one infers
from the existence of elements of the form (yr, that the projective limit is
likewise nonempty.

The construction of the projective limit works equally well in the category of
groups (in which case the set maps are replaced by group homomorphisms, and
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the group operation is defined componentwise) or the category of topological
spaces (in which case the set maps must be replaced by continuous functions,
and the topology on the projective limit is the subspace product topology in-
duced from the direct product). In the case of groups, note that the projective
limit is never empty, since the identity element of the direct product clearly lies
in the projective limit. It follows from these remarks that the projective limit of
a projective system of topological groups is itself a topological group with re-
spect to the componentwise multiplication and the subspace topology.

REMARK. A more obvious topology on a product space FIX, is the box topology,
generated by sets of the form II U1 with U open in X, for all i. But this is a
much finer topology than the standard product topology. Moreover, with re-
spect to the box topology the product of compact spaces need not be compact.

In the following subsection we shall be concerned with projective limits of
finite groups. In passing we shall require conditions under which the projective
limit of finite sets is nonempty. It is here that the notion of a directed set re-
appears critically.

1-11 PROPOSITION. Assume that I is a directed set, and let (G1,q,.,) be a projec-
tive system offinite sets. Set G = Jim G,. Then:

(i) If each G. is nonempty, G is nonempty.

(ii) For each index iel,

p,(G)=nso(Gj) .

isj

PROOF. Our proof is adapted from a more general result in Bourbaki's Theory
of Sets, Chapter III, § 7.4. Let us call (S),E1 a compatible family (with respect to
our given projective system) if the following conditions are satisfied:

(a) For all iel, S,.cG,.

(b) For all i, j EI with i Sj,

(c) For all iel, S,#0.

Note well that if (S) is a compatible family of the form S={x1} for all iel, then
in fact (x.)eG, which in this case is ipso facto nonempty.

Henceforth let E denote the set of all compatible families. We impose an
ordering on E as follows: given compatible families (S) and (T), we shall write
(S,)5(T) if SzT; for all i. If E' is a totally ordered subset of E, then clearly Z'
admits the upper bound (T) defined by
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T;= nS; .

(S)EE'

Conditions (a)-(c) are trivially satisfied, and only the last of these requires fi-
niteness. Hence the given ordering is inductive.

Suppose that there exists a maximal compatible system (S)eE. We claim
that S,= q,l(S1) for all i sj. To prove this, let (T) be defined by

T, = flq,(S.)QS, .

i5j

Since (S,) is assumed maximal, our claim is established, provided that we can
show that also (T,)EE. Again (a) and (b) are routine; (c) is interesting. First
observe that if i5 j 5 k, then ip,k(Sk) c c,(S). Now consider the intersection that
defines Tr. Each of the factors appearing is a subset of the finite set S,. There are
only finitely many such subsets, and consequently we may assume that the in-
tersection is over a finite set of indices j,, ...,jr. But I is directed, so there exists
an element k in I such that kZj1, ..., jr. Thus by our previous observation,

r

Pik(Sk)c; nP,,-(S,.)=T
02=1

and therefore T, is manifestly nonempty.
We continue to assume that (S) is maximal in E and shall demonstrate next

that each S, contains exactly one element. Fix i and let x,ES,. Define (Tj) as fol-
lows:

Tj
S' n-'(x1) ifis j

=
Si otherwise.

Note in particular that T,= {x,}, since op is the identity on S,. Then (T.) lies in E:
(a) is obvious, (b) is an easy exercise, and (c) follows from the claim of the pre-
vious paragraph, namely that S ;(S) all jzi. Moreover, by construction
(Si) 5 (T.), whence, since (SP is maximal, we must in fact have equality. This
shows that S,= (x,). Since i was arbitrary, this suffices.

We now address both statements of the proposition. Again fix i eI. By defini-
tion of a projective system,

p,(G)Qnpy(G,) .

+sj
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One may argue as above that since all but finitely many factors on the right are
redundant, the given intersection is nonempty; thus it contains an element x1.
Define (T) as follows:

7l _ if i 5 j
GJ otherwise.

Note in particular that Tf={x,}. One sees without difficulty that (at last
establishing that E is nonempty!), and so by Zorn's lemma there is a maximal
element (S) of E with the additional property that (S) 2! (T). But then (S)= {yi}
and G is nonempty, as required by (i). Moreover, xj=y,e p1(G), which in light
of the preceding inclusion establishes (ii).

Profinite Groups
We now come to the principal definition of this section. It may seem at first to
be essentially group-theoretic, with the topology as an afterthought, but we
shall see shortly that this is not the case.

Consider a projective system of finite groups, each of which we take as hav-
ing the discrete topology. Their projective limit acquires the relative topology
induced by the product topology on the full direct product. This is called the
profinite topology, and accordingly the projective limit acquires the structure of
a topological group.

DEFINITION. A topological group isomorphic to the projective limit of a projec-
tive system of finite groups (endowed with the profinite topology) is called a
profinite group.

The following proposition summarizes the most fundamental global proper-
ties of a profinite group.

1-12 PROPOSITION. Let G be a profinite group, given as the projective limit of
the projective system (G1, gi). Then the following assertions hold:

(i) G is Hausdorjf with respect to the profinite topology.

(ii) G is a closed subset of the direct product r[ G.

(iii) G is compact.

PROOF. (i) The direct product of Hausdorff spaces is also Hausdorff, and any
subset of a Hausdorff space is clearly also Hausdorff in the induced topology.
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(ii) We may realize the complement of G in fI Gi as an open set as follows:

Gc=UU{($k)EIIGk y(gj)#gi}

Therefore G is closed, as claimed.

(iii) Since the direct product FIG, is compact by Tychonoff's theorem, this as-
sertion follows from (ii) on general principles: a closed subset of a compact
space is itself compact.

EXAMPLES

(1) Let nz 1, the additive group of integers modulo n. Then is
a projective system, since there is a canonical projection

Pmn:Z/nZ -).Z/mZ
[k]n h-) [k]_

whenever min, and these projections are clearly compatible in the required
sense. We may thus form their projective limit

Z = lim Z /nZ .

4-

Note that Z also admits the structure of a topological ring.

(2) Let H,, = (Z/nZ)", nZ 1, the group of units in Z/nZ. Then is a projec-
tive system, since a (unital) ring homomorphism maps units to units. Set

Z" = lim (Z /nZ)" .

Then Z" is a topological group under multiplication and in fact is the
group of units of i.

(3) Fix a rational prime p and set G,,, = Z/p-Z, mz 1. Again {Gm} is a projec-
tive system, and we form its projective limit to obtain a ring

ZP =limZ/p' Z .

This is called the ring ofp-adic integers.

(4) Let H. = (Z/p-Z)", m ! 1, so that {Hm} is a projective system as in Ex-
ample 2. Then set
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Z' = lim (Z /pmZ)" .

One checks easily that ZP is the group of units in Z ; this is called the
group of p-adic units.

(5) The set of all finite Galois extensions K/Q within a fixed algebraic closure
Q of Q forms a directed set with respect to inclusion. We have a corre-
sponding directed system of finite groups Gal(K/Q), where if K Q L, the
associated homomorphism Gal(L/Q) - Gal(K/Q) is just restriction. More-
over, we have an isomorphism

Gal(Q/Q) slim Gal(K/Q)

CrH (aix)

Topological Characterization of Profinite Groups

Recall that a topological space X is called connected if whenever X= Uv V for
nonempty open subsets U and V, then UnV#O. (Evidently an equivalent
statement results if we substitute nonempty closed subsets for open ones.) Every
point xnX is contained in a maximal connected subset of X, which is called the
connected component of x. In the special case of a topological group G, the
connected component of the identity e is denoted G°.

A topological space X is called totally disconnected if every point in X is its
own connected component. Clearly a homogeneous space is totally discon-
nected if and only if some point is its own connected component. In particular,
a topological group G is totally disconnected if and only if G°= (e).

1-13 LEMMA. G° is a normal subgroup of G. Moreover, the quotient space
GIG° is totally disconnected, whence (GIG°)° is the trivial subgroup of
the quotient.

PROOF. Let xeG°. Then x-IG° is connected (by homogeneity) and contains e,
whence x-1 G°eG°. Thus G° is closed under inverses. The same argument now
shows that xG°c G°, and that for all yeG, we have further that yG°y'c G°.
Consequently G° is indeed a normal subgroup of G°, as claimed. The second
statement is immediate: by homogeneity, the connected components of G are
precisely the elements of GIG°, and so by general topology (see Exercise 5 be-
low), GIG° is totally disconnected. El

1-14 THEOREM. Let G be a topological group. Then G is profinite if and only
if G is compact and totally disconnected.
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PROOF. =>) We have already seen that G is compact. Thus it remains to show
that G'= (e). Let Ube any open subgroup of G. Then UnG° is open in G° and
nonempty. Now consider the subset V of G defined by

V=
SECT°-U

Then since each is open in G°, so is V. Moreover, by elementary
group theory, U,-V=0, and G° is the disjoint union of two open sets, namely
Un G ° and V. But by definition G ° is connected, so either Un G ° or V must be
empty. Since the former is not, the latter is, and in fact G°= UnG°, which is to
say that G° c U. Since U is an arbitrary open subgroup of G, we have accord-
ingly,

G°c nU .

U an opensth n,of6

We must now make use of the profinite nature of G. Indeed, let

G=limG,

where each G, is a finite group with the discrete topology. Recall that for each
index i we have a projection map p.: G --* G. that is just the restriction of the
corresponding map on the full direct product. Let y=(y) lie in G and assume
that y is not the identity element. Then for some index io, it must be the case
that y,° * e;o. But now consider the set U0 = p,- (e,). Since the topology on G,0
is discrete and the projections are continuous, Uo is open in G. Since the pro-
jections are moreover group homomorphisms, Uo is in fact a subgroup of G.
But by construction, U0 excludes y. This shows that the only element in the
intersection of all open subgroups of G is the identity. Thus G° is trivial, as
required.

The proof of the converse is more delicate and requires three lemmas. We
begin with some preliminary analysis.

Let,, be the family of open, normal subgroups of G. This is clearly a di-
rected set with respect to the relation MsN if NcM. (In fact, two subgroups M
and N in .41 have a least upper bound Mr-N in f.) Moreover, the following
observations are elementary:

(i) For each Near, , the quotient group GIN is both compact and discrete,
hence finite.
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(ii) For each pair of subgroups M,NerV, with MSN, the kernel of the canon-
ical projection G -> GIM contains N, and hence this map factors through
GIN to yield the induced map

cMN:GIN -*GIM
xN H xM .

From this description it is clear that if LSMSN in A', then

97L.M° pM,N - c'L,N

and (GIN I.,,, constitutes a projective system of finite groups.

The point, of course, is to show that G is isomorphic to the projective limit of
this system.

1-15 LEMMA. Let the profinite group G' be given by

G'= lim GINr
N

where N varies over.4; as defined above. Then there exists a surjective,
continuous homomorphism a: G-a G'.

PROOF. For Ne-,r let aN denote the canonical projection from G to GIN, which
is surjective. Since GIN is homogeneous, we establish that aN is also continuous
by noting that aN (eQ,N) = N, which by hypothesis is open in G. Arguing as in
(ii) above, it is clear that whenever MSN in A', the following triangle is com-
mutative:

GIN

GIM

Thus by the universal property of projective limits, we have a continuous homo-
morphism a : G -* G' such that a, = pN o a for all where pN denotes
projection from G' onto GIN, the component of the projective limit corre-
sponding to N.

It remains to show that a is surjective. We claim that a has dense image in
G'. Granting this, we conclude the argument as follows: Since G is compact
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and G' is Hausdorff, the image of a is, moreover, closed in G. Thus Im(a),
being dense, must be all of G', as required.

To establish the claim we shall show that no open subset of G' is disjoint
from Im(a). Consider the topology of G': this is generated by sets of the form
pN (SN) , where S. is an arbitrary subset of GIN. Every open set in G' is thus
expressible as a union of finite intersections of these pN (SN) . Such an inter-
section U consists of elements of the form

(xN

where at most only finitely many of the coordinates are constrained to lie in
some given proper subset of the corresponding quotient; the rest are unre-
stricted. Now suppose that the constrained coordinates correspond to the sub-
groups N...... N, and that

M=nNJ .

J=1

Then given (xx)EG', the coordinates xxJ are all determined as images of the co-
ordinate xM under the associated projection maps. Since is sur-
jective, there is at least one element in such that a(t)M=xM, and conse-
quently t also satisfies a(t)N=xN for j=1,...,r. In particular, if (xN)CU, then
certainly a(t)e U, since a(tlagreees with (xN) in all of the constrained coordi-
nates. Thus U manifestly intersects Im(a), and by our previous remarks, so, too,
does every open set in G'. This completes the proof. 0

1-16 LEMMA. Let X be a compact Hausdorff space. For a fixed point PC-X, set
Wl = (K: K is a compact, open neighborhood of P). Define YcX by

Y= nK .

KEW

Then Y is connected.

PROOF. Note that the collection `W is nonempty because X itself is compact and
open.

Suppose that Y is the disjoint union of closed subsets Y, and Y2. We must
show that either Y, or Y2 is empty. Recall from general topology that a compact
Hausdorff space is normal. Accordingly, there exist disjoint open subsets U,
and U2 containing, respectively, Y, and Y2. Now set Z=X-(Uk-i U2), which is
closed and therefore compact. Since Yc Ulv U2, Z and Y are disjoint, which is
to say that Z lies in the complement of Y. Thus we have an open cover for Z
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Z(-- UK`
KEW

that admits a finite subcover. Hence there exist K...... K,E (such that

J

Let W denote the intersection of the K. Then W is a compact, open neighbor-
hood of P, and so W is itself in W. But also

W=(WnU,) U (WnU2)

since W is disjoint from Z, the complement of U,v U2. We now make note of
the following assertions:

(i) Both Wn Ui and Wn U2 are compact, open subsets of X.

(ii) P lies exclusively in one of Wr, Ul or Wn U2. Say PE Wn U,

From (i) and (ii) it follows that Wn U, ei! and so Yc Wn U,. Since Y2c Y and
Y2 is disjoint from U, it follows that Y2 is empty, as required. LI

1-17 LEMMA. Let G be a compact, totally disconnected topological group.
Then every neighborhood of the identity contains an open normal sub-
group.

PROOF. As a preliminary, note that G is Hausdorff: If x and y are distinct points
in G, then {x,y} is disconnected with respect,to the subspace topology. There-
fore there exist respective open neighborhoods of x and y that are disjoint. The
proof now proceeds in three steps: First, we show that every open neighborhood
U of the identity contains a compact, open neighborhood W of the identity. Sec-
ond, we show that W in turn contains an open, symmetric neighborhood V of
the identity such that WVc W. Third, from V we construct an open subgroup,
then an open, normal subgroup of G contained in U, as required.

Let Y_/ denote the set of all compact, open neighborhoods of the group iden-
tity e. Applying the previous lemma with P=e, we find that

Y= nK
Keg!

is a connected set containing e. But G is totally disconnected, so in fact Y={e}.
Now let U denote any open neighborhood of e. Then G- U is closed and
therefore compact. Since e is the only element of G common to all of the K in



30 1. Topological Groups

W,, there exist subsets Ks,...,Kre?l whose complements cover G-U, and there-
fore

r

w=f1K;
J=1

is a subset of U and a compact, open neighborhood of e. In particular, Well.
This completes the first step.

To begin the second step, consider the continuous map p:WxW-'G defined
by restriction of the group operation. We make the following observations:

(i) For every we W, the point (w,e)e u-'(W).

(ii) Since W is open, the inverse image of W itself under u is open in Wx W.

(iii) It follows from (i) and (ii) that for every we W, there exists open neighbor-
hoods U,, of w and V of e such that Uwx V cu-' (W). Moreover, by Prop-
osition 1-1, we may assume that each ,,, is symmetric.

(iv) The collection of subsets UK, (we W) constitutes an open cover for W. Since
W is compact, a finite subcollection U,'...' Ur suffices.

Let V1,..., V correspond to U...... Ur in (iii) above. Define an open neigh-
borhood Vc W of the identity as follows:

V=flv,
J1

By construction WVc W, and by induction WV"(-- W for all nZO. In particular,
V"c W for all n Z O. This completes the second step.

For the final step, we expand V to an open subgroup 0 of G contained in W
by the formula

O=UV" .

fit

(Note that 0 is closed under inversion because V is symmetric.) The quotient
space GIO is compact and discrete, hence finite, so we can find a finite col-
lection of coset representatives x1,...,x5 for 0 in G. It follows that 0 likewise
has only finitely many conjugates in G: all take the form

x,Ox'-' (j=l,...,s).

Thus
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N=n"Ox;'
J=J

is an open, normal subgroup of G. Moreover, since one of the conjugates of 0 is
0 itself, NcOcWc U. This completes the proof. O

This brings us at last to the conclusion of the topological characterization of
profinite groups.

PROOF OF THEOREM 1-14, CONVERSE. By Lemma 1-15, we have a surjective
homomorphism a: G-->G', where G' is the projective limit of the finite quo-
tients GIN for N an open, normal subgroup of G (i.e., Ne ..4'). Appealing to
Exercise 9 below, we see that it suffices to show that a has trivial kernel and
hence is injective.

Since a simultaneously projects on all of the quotients, it is clear that

Ker(a) = n N .
Ne..Y

By the previous lemma, every open neighborhood of eeG contains an open,
normal subgroup, which is therefore represented in the intersection above. It
follows that Ker(a) is contained in every neighborhood of e and hence in the
intersection of all such neighborhoods. But G is Hausdorff: the intersection of
all neighborhoods of e consists merely of e itself. Hence Ker(a) is indeed triv-
ial, and the theorem is proved. O

The Structure of Profinite Groups

The following theorem shows in particular that closed subgroups of profinite
groups and profinite quotients by closed normal subgroups are likewise pro-
finite.

1-18 THEOREM. Let G be a profrnite group and let H be a subgroup of G. Then
His open if and only if G/H is finite. Moreover, the following three state-
ments are equivalent.

(i) His closed.

(ii) His profrnite.

(iii) H is the intersection of a family of open subgroups.

Finally, if (i)-(iii) are satisfied, then GIH is compact and totally discon-
nected.
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PROOF. The first statement follows from Proposition 1-4, part (iv), since a
profinite group is necessarily compact. We next establish the given equiva-
lences.

(i)=(ii) H is a closed subset of a compact space and therefore itself compact.
Hence it remains to show that H is totally disconnected. But this is trivial: since
G°={e}, also H°={e}, and this suffices by homogeneity.

(ii)=(i) If H is itself profinite, it is a compact subset of a Hausdorff space and
hence closed.

(iii)=>(i) Suppose that H is the intersection of some family of open subgroups
of G. Then since every open subgroup is also closed [Proposition 1-1, part (iv)],
H is also the intersection of a family of closed subgroups of G, and therefore
itself closed.

(i)=(iii) As above, let .i{''denote the family of all open, normal subgroups of G.
If Ne.iV, then since N is normal, NH is a subgroup of G. By part (i), [G:N] is
finite, whence [G: NH] is likewise finite and NH is open. Moreover, clearly

FI c n Aril,
NEA'

It remains only to demonstrate the opposite inclusion. So let x lie in the indi-
cated intersection, and let U be any neighborhood of x. Then Ux-I is a neigh-
borhood of e, and so by Lemma 1-16, Ux-' contains some Noe.iV. Since x lies
in the given intersection, xeN0H. Now by construction, also xENox. Hence Nox
is equal to Noh for some heH, and consequently hENoxe U. The upshot is that
every neighborhood of x intersects H, and hence x lies in the closure of H. But
H is closed by hypothesis, and therefore XEH, as required.

For the final statement, the compactness of the quotient follows at once from
the compactness of G. Let p:G- *G/H denote the canonical map. To see that
G/H is totally disconnected, assume that p(X) is a connected subset of Gill that
properly contains p(H). Then Y=X-H is nonempty, and since we may assume
that H is nontrivial, Y contains more than one point. Hence Y is the disjoint
union of nonempty open (hence closed) sets F, and F2. One checks easily that
since H is closed, F, and F2 are both open (hence closed) in X. Thus X is the
disjoint union of the two nonempty closed sets F, vH and F2. But then the im-
age of F2 under p is (a) nonempty, (b) not the full image of X, and (c) both open
and closed in p(X). Since p(X) is connected, this is a contradiction. Hence the
connected component of p(H) is p(H) itself, and the quotient is totally discon-
nected, as claimed.
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A Little Galois Theory
We close this section by showing how profinite groups make a momentous ap-
pearance in connection with the Galois theory of infinite extensions. To begin,
we recall the following elements of field theory:

(i) Let F be a field. An element a that is algebraic over F is called separable
if the irreducible polynomial of a over F has no repeated roots. An alge-
braic field extension K/F is called separable if every element of K is sepa-
rable over F.

(ii) Assume that K is an algebraic extension of F contained in an algebraic
closure F of F. Then we call K/F a normal extension if every embedding
of K into F that restricts to the identity on F is in fact an automorphism
of K. (We say that such an automorphism is an automorphism of K over
F.)

(iii) A field extension K/F is called a Galois extension if it is both separable
and normal. The set of all automorphisms of K over F constitutes a group
under composition; this is called the Galois group of K over F and de-
noted Gal(K/F). If FcLQK is a tower of fields and K/F is Galois, then
K/L is likewise Galois.

Note that these notions do not require that K/F be finite. Our aim now is to
extend the fundamental theorem of Galois theory to infinite extensions. This
will require the introduction of some topology.

If S is any set of automorphisms of a field F, as usual Fs denotes the fixed
field of S in F; that is, the subfield of F consisting of all elements of F left fixed
by every automorphism of S.

Suppose that K/F is a Galois extension with Galois group G. Consider the
set Y of normal subgroups of G of finite index. If N, Me./rand MQN, we have
a projection map p,,,: G/M-+G/N, and hence a projective system of quotients
{G/N},,s,r. This system is certainly compatible with the family of canonical
projections pN : G --* G/N, which corresponds to the restriction map from
Gal(K/F) to Gal(KN/F). Thus we have a canonically induced homomorphism p
from G into the projective limit of the associated quotients.

1-19 PROPOSITION. Let K, F, G, and Vbe as above. Then the canonical map

p:G-- lam GIN

is in fact an isomorphism of groups. Hence G is a profrnite group in the
topology induced by p.
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In this context, we shall simply speak of the Galois group G as having the
profinite topology.

PROOF. We show first that p is injective. Certainly

Ker(p) = n N
Ne.r

and so we need only demonstrate that this intersection is trivial. Let oeKer(p)
and let XEK. Then by elementary field theory there exists a finite Galois exten-
sion FIF such that FcK and xEF. Now the restriction map from
G=Gal(KIF) to Gal(F/F) has kernel Gal(K/F), which is therefore a normal
subgroup of G of finite index. But then aEGal(K/F), and so o(x)=x. Since x is
arbitrary, a is the identity on K, and Ker(p) is trivial, as required.

We show next that p is also surjective. Fix (QH) in the projective limit. Given
an arbitrary element xeK, again we know that x lies in some finite Galois ex-
tension P of F with N=Gal(KIF') normal and of finite index in G and
Gal(F/F)=GIN. Now define QEGal(K/F) by a(x)=a,(x). By construction of
the projective limit, o is independent of the choice of extension F, and hence is
a well defined automorphism of K. Moreover, it is clear that or is j. (a) for all
N.

Note that the isomorphism constructed in the previous proposition is essen-
tially field-theoretic, and not merely group-theoretic. (See Exercise 12 below.)

1-20 THEOREM. (The Fundamental Theorem of Galois Theory) Let K/F be a
Galois extension (not necessarily finite) and let G=GaI(K/F) with the
profinite topology. Then the maps

a : L H H = Gal (K/L)

f:HHL=KH

constitute a mutually inverse pair of order-reversing bijections between
the set of intermediate fields L lying between K and F, and the set of
closed subgroups of G. Moreover, L is Galois over F if and only if the
corresponding subgroup H is normal in G.

PROOF. Note that in the case of a finite extension KIF, we may ignore the
topological restriction, and the statement amounts to the fundamental theorem
of Galois theory for finite extensions, a result that we assume. We proceed in
four steps.

STEP 1. We must show first that the map a is well-defined; that is, that a in-
deed yields closed subgroups of G. (The map O is of course well-defined on ar-
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bitrary subsets of G.) According to the previous proposition, H is profinite as
the Galois group of KIL, and Exercise 14 shows that this topology is identical
to that induced by G. Thus H is a profinite subgroup of a profinite group and is
therefore closed by Theorem 1-18.

STEP 2. We claim that a is the identity map. Let L be an intermediate field.
By definition a(L) fixes L, and so clearly 8(a(L));2L. Conversely, suppose that
z lies in fl(a(L)). Then since z lies in K and is therefore separable over L, z also
belongs to a finite Galois extension M of L contained in K. Let aeGal(M/L).
Then there exists aEGal(K/L) that restricts to a. (The extensibility of auto-
morphisms for infinite extensions follows from the finite case by Zorn's lem-
ma.) By construction, a(z) = z, and hence a(z) = z for all aeGal(M/L). But by
the fundamental theorem for finite extensions, we know that zEL. Hence we
have also that 8(a(L))cL, and the claim is established.

STEP 3. We shall show now that ao# is likewise the identity. By definition, for
any subgroup H of G we have that a(Q(H));;?H. Now assume that H is closed.
Then again by Theorem 1-18, H is the intersection of a family Il of open sub-
groups of G. Since a and # are clearly order reversing,

rg(H)=Q( fu)a UQ(w)
Uew Uew

and

a(ft(H))ca( U/.3(U))c na(fi(U))= nU=H .

MEW Ue9! UeWW

The point is that each of the open subgroups U has finite index, and thus in
each case a(Q(U))= U by the finite theory.

STEP 4. Finally, suppose that a(L)=Gal(K/L)=H, where L is some intermediate
field. Let a lie in G. Then from the diagram

K
0

K

Cr
L o(L)

F
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we deduce that Gal(K/o(L))= aH&-'. Thus according to parts (i)-(iii) above, we
have that a(L)=L for all auG if and only if aHd-l=H for all aEG. This is to
say that L is normal (and hence Galois) over F if and only if H is normal in G.

REMARK. We leave it to the reader to determine the effect of aoi4 on an arbi-
trary subgroup of Gal(K/F). (See Exercise 15 below.)

1.4 Pro-p-Groups

Our aim here is to introduce for profinite groups an analogue of the p-Sylow
subgroups that play such a crucial role in finite group theory. To begin, we
must first generalize the notion of order.

Orders of Profinite Groups
DEFINITION. A supernatural number is a formal product

rip ^O
P

where p runs over the set of rational primes and each nEENv (oo) .

Clearly the set of supernatural numbers is a commutative monoid with re-
spect to the obvious product. If a is a supernatural number, we set vv(a) equal to
the exponent of p occurring in a. We say that a divides b, and as usual write
alb, if vP(a) 5 vP(b) for all primes p. Note that if a I b, there exists a supernatural
number c such that ac=b.

Given supernatural numbers a and b, we may define both their least com-
mon multiple and greatest common divisor by the formulas

lcm(a, b) _ f pap(v°(a) v°(b))
and gcd(a, b) _ f

One extends these notions to arbitrary (even) infinite families of supernatural
numbers in the obvious way.

Now let G be a profinite group. As previously, let A' denote the set of all
open, normal subgroups of G. Recall that each quotient group GIN, for NeA',
is finite.

DEFINITION. Let H be a closed subgroup of G. Then we define [G: H], the index
of H in G, by the formula
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[G: HJ = 1cm [G/N: HN/N] .
NE.r

In particular, [G:{e}], the index of the trivial subgroup, is called the order of G
and denoted IGI.

Using the standard isomorphism between HN/N and H/HnN, we may recast
the definition above as

[G:H]= 1cm [G/N:HIHnN].
Nc.#

See also Exercise 16 below.

1-21 PROPOSITION. Let G be a profinite group with closed subgroups H and K
such that HcK Then [G:Kj=[G:H][H:K].

PROOF. Note that since H is closed, it is also profinite, and so the assertion is
well defined. Now let N be any open normal subgroup of G. Then

[GIN:K/KnNJ = [G/N:H/HnN] [H/HnN:K/KnN] . (1.3)

The 1cm (over Ne.41) of either side of the equation is, of course, [G:HJ. Con-
sider the factors on the right: if we replace N by any smaller subgroup N, C=_4"
both indices are inflated (cf. Exercise 17). Hence, taking intersections, any pair
of prime powers occurring in [G/N:H/HnN] and [H/HnN:K/KnN], respec-
tively, may be assumed to occur simultaneously. The upshot is that we can
compute the 1cm of the product by separately computing the Icm's of each fac-
tor. The first yields [G: HI; it remains only to show that the second yields [H:K].

Let M be any open, normal subgroup of H. Then M=Hn U, where U is open
in G. But by Lemma 1-17, U contains an open, normal subgroup N of G, and
one argues as above that

[HIM:K/KnM] I [H/HnN:K/KnN] .

Thus [H:K) may be computed as the 1cm over subgroups ofHof the form HnN,
where N is open and normal in G. Hence the second factor on the right of
Eq. 1.3 indeed yields [H: K], as required. O

REMARK. The proof shows that we may compute a profinite index as the icm
over any cofinal family rl of open normal subgroups of the ambient group;
that is, if for every NE.#'there exists an Me.4" such that McN, then

1cm [G/N:HN/NJ = 1cm [GIM:HMIMj .Ne.r ME!
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EXAMPLES

(1) Consider the p-adic integers

Z. = lim(Z/p"Z) .

Let if,, denote the kernel of the projection map from Zo to Z / p"Z. Since
this projection is surjective, we have and it follows that p°°
divides I Zp I. Conversely, every finite quotient of Zp has order a power of p,

and therefore I ZD I =p'.

(2) Next consider

Z = lim(Z/nZ)
n21

Arguing as above, every factor group Z/nZ occurs as a quotient of Z,
whence every positive integer is a divisor of its order. Thus

IZI = Hp- .
p prime

Pro-p-Groups

Let p be a rational prime. Recall that a group is called a p-group if the order
of every element is finite and a power of p. In the case that G is finite, this is
equivalent to the statement that the order of G is a power of p.

DEFTNTrION. A projective limit of finite p-groups is called a pro -p-group.

Of course, Z, is a pro -p-group; so is Hp, the projective limit of the Heisen-
berg groups H(Z/p"Z). (See Exercise 18 below.)

1-22 PROPOSITION. A profinite group G is a pro -p-group if and only (fits order
is a power of p (possibly Infinite).

PROOF. G) We have already seen in the proof of Theorem 1-14 that G is the
projective limit of its finite quotient groups GIN. If the order of G is a power of
p, then each of these quotients must be a p-group, as required.

=*) Suppose that G is the projective limit of the projective system P, of p-
groups. Then by definition of the topology of G, cofinal among the open normal
subgroups of G are subgroups of the form
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M=(fQ;)nG

where Q,=P; for all but finitely many indices, and Q,={ef} for the exceptions.
Now given an arbitrary xEG and specifying any finite subset of its coordinates,
there is clearly a finite exponent of the form q=p' such that x4 is trivial at each
of the specified coordinates. Hence GIM is a p-group, and it follows by the re-
mark following Proposition 1-21 that the order of G is a power of p.

DEFINrnON. Let G be a profinite group. A maximal pro-p-subgroup of G is
called a pro-p-Sylow subgroup of G (or more simply, a p-Sylow subgroup of G).

Note that the trivial subgroup may well be a pro-p-subgroup of G for some
primes p. The following theorem shows among other things that this is the case
if and only ifp does not divide the order of G.

1-23 THEOREM. Let G be a profinite group and let p be a rational prime. Then
the following assertions hold:

(i) p-Sylow subgroups of G exist.

(ii) Any pair of conjugate p-Sylow subgroups of G are conjugate.

(iii) IfP is a p-Sylow subgroup of G, then [G: P] is prime to p.

(iv) Each p-Sylow subgroup of G is nontrivial if and only if p divides the
order of G.

PROOF. As usual, let denote the set of open normal subgroups of G and recall
the explicit isomorphism

o:G -+lim GINr
x i-i (xN),,E,r

.

Note in particular that if x,yeG and xN=yN for every open normal subgroup N,
then x=y. A similar statement holds for arbitrary subsets of G.

(i) For each Ne.d', let .4a(N) denote the set of p-Sylow subgroups of the finite
group GIN. Then clearly .9(N) is finite and, moreover, nonempty. (If GIN has
order prime top, then the trivial subgroup is a p-Sylow subgroup.) Assume that
M,NFiYwith NcM. Then there exists a surjective homomorphism of finite
groups N:GIN->GIM. Since this map sends a p-Sylow subgroup of GIN to a
p-Sylow subgroup of GIM (refer again to Exercise 17), we obtain an induced
map N:.41(N)->.'(M). Thus we obtain a projective system (9a(N), 97.. N) of
finite nonempty sets, and the projective limit of this system is likewise non-
empty by Proposition 1-11. This means that there exists a projective system of
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p-Sylow subgroups where for each NE.M, we have PN c G/N. Let P
be the projective limit of the PN, which we can clearly identify with a subgroup
of the projective limit of the GIN and hence with a subgroup of G via qD. Then P
is a pro -p-group by construction, and we shall now show that it is maximal. Let
Q be any prop-subgroup containing P. Then for every open normal subgroup
N, QNIN;2PNIN=PN. But Q is a pro-p-group, so by the previous proposition,
QNIN is a p-group and therefore equal to the p-Sylow subgroup PN. Thus for
every open normal subgroup N, QNIN=PNIN, and therefore Q and P have the
same image under p and accordingly are equal. Hence P is indeed maximal, as
claimed.

(ii) Let P and Q be p-Sylow subgroups of G. For every NEA', we make the
following definitions:

PN = PNIN
QN = QN/N
YN = {yNEGIN : yNPNyN = QN}

Note that each YN is finite and, by the Sylow theorems for finite groups,
nonempty. Moreover, the subsets YN clearly constitute a projective system. Let Y
denote the (nonempty) projective limit of the YN, which we again identify with
a subset of G via to and let y lie in Y. Then by construction, yPy-' and Q have
equal projection in GIN for all open, normal N and are therefore equal. Hence P
and Q are indeed conjugate.

(iii) Let P be a p-Sylow subgroup of G. Then by definition

[G: PI = lcm [GIN:PNIN] .
1V CX

But by Exercise 19, for each N, the subquotient PNIN is a p-Sylow subgroup of
GIN, and so by finite group theory each index [GIN: PNIN] is prime to p. Hence
[G: P] is likewise prime top.

(iv) This follows at once from parts (i) and (iii).

1-24 COROLLARY. Let G be a commutative profinite group. Then the following
assertions hold..-

(i) For every prime p, G admits a unique pro p-Sylow subgroup.

(ii) Let p and q be distinct primes and let P and Q be the corresponding
Sylow subgroups. Then PnQ Is trivial.

(iii) G is isomorphic to the direct product of its Sylow subgroups.
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PROOF. (i) In light of the commutativity of G, this follows at once from parts (i)
and (ii) of the theorem above.

(ii) The order of PnQ must divide powers of both p and q, whence this inter-
section must be trivial.

(iii) Let N be an open normal subgroup of G. Then for each pro-p-Sylow sub-
group P we have a canonical projection from P onto PNIN, the unique p-Sylow
subgroup of GIN. Note that this projection is trivial for all but the finitely many
primes p that divide the order of GIN. By the theory of finite commutative
groups, we have

fl PN/N - GIN

where the product is taken over all of the Sylow subgroups of G. We may lift
this isomorphism to G as follows:

G = lim GIN
4-

= lim fl PNIN

= H lim PN/N

=fllim P/PnN
.=J JP

All products are over the set of Sylow subgroups of G; all projective limits are
over the family of open, normal subgroups of G. The final line of the calcula-
tion is justified by the cofinality of subgroups of the form PnN among the open
subgroups of P, which may be deduced from Lemma 1-17. 0
EXAMPLE. Recall that the abelian profinite group

Z = lim Z/nZ

has order np°', where the product is taken over all primes. Given a prime p, let
P be the unique corresponding p-Sylow subgroup of Z. Let P. denote the
unique p-Sylow subgroup of Z/nZ. Then

P = lim P = Urn Z/ p°°(")Z = lim Z/ pMZ = ZF 4.. P .

n n M

Thus according to the corollary, Z = n Zr .
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Exercises

1. Let G be a topological group. Show that the topology on G is completely
determined by a system of open neighborhoods of the identity e.

2. Let G=Z and impose the following topology: USG is open if either O U
or G- U is finite. Show that G is not a topological group with respect to
this topology. [Hint: If so, the mapping a H a + 1 would be a homeo-
morphism; show that it is not.]

3. This exercise shows that we may impose a nondiscrete topology on Z such
that Z is nonetheless a topological group with respect to addition. Let S'
denote the multiplicative group of complex numbers of absolute value 1.
Recall that an element of Hom(Z,S) is called a character of Z. We denote
such a character X. Let

9?_1ISi

X

where the product is taken over all characters. Then W is a compact topo-
logical group. Now consider the homomorphism

j:Z -+
n H (X(n))

(a) Show that j is injective; that is, show that for any nonzero n e Z there exists
a character X such that X(n) * 1.

(b) Let G=j(Z). Then G is a group algebraically isomorphic to Z and a topo-
logical group with respect to the subspace topology induced by 9?. Show
that G is not discrete with respect to this topology and conclude that Z it-
self admits a nondiscrete topological group structure with respect to addi-
tion. [Hint: Suppose that j(1) is open. Then there exists an open subset U of
.? such that Un G =j(l); moreover, we may assume that all but finitely
many projections of U onto its various coordinates yield all of S'. Noting
that j(l) generates the infinite group G, one may now derive a contra-
diction.]

4. Give an example of a topological group with a closed subgroup that is not
open.

5. Let X be a topological space and let C(X) denote the space of connected
components of X. (This constitutes a partition of X). As usual, we impose
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the quotient topology on C(A)--the strongest topology such that the canon-
ical projection p:X-*C(X) is continuous. Show that C(X) is totally discon-
nected with respect to this topology. [Hint: We say that a subset Y of a
topological space is saturated if whenever yeY, the entire connected com-
ponent of y lies in 1'. Let F be a connected component of C(X) that contains
more than one point. Show that P -'(F) is a saturated, closed, disconnected
set. Write p-'(F) as the disjoint union of two saturated, closed subsets of X,
and apply p to this decomposition to show that F is in fact disconnected-a
contradiction.]

6. Let G=GL,,(R). Show that G° is the set of nxn matrices with positive de-
terminant.

7. Let H be a subgroup of the topological group G. Show that its closure H is
normal (respectively, abelian) if H is.

8. Let f : G --> G' be a surjective continuous homomorphism of topological
groups. Show that f factors uniquely through G/Ker(J); that is, there exists
a unique continuous homomorphism f such that the following diagram
commutes: f

G G'

G/Ker(f)

Show that f is moreover injective. Under what conditions is f a topologi-
cal isomorphism onto its image?

9. Let f : X -. Y be a continuous bijective mapping of topological spaces and
assume that X is compact and Y is Hausdorff. Show that f is moreover a
homeomorphism. [Hint: It suffices to show that f is open. What can one say
about the image of U` under! where U is any open subset of X?]

10. Let I be an index set with preordering defined by equality and let (G;, 4pii)
be a projective system of sets defined with respect to I. What is the projec-
tive limit in this case?

11. Give an example of a projective system of finite nonempty sets over a pre-
ordered, but not directed, set of indices such that the projective limit is
nevertheless itself empty.

12. Let G be an arbitrary group. Show that in general G is not isomorphic to
the projective limit of the quotient groups GIN, as N varies over all of the
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subgroups of G of finite index. Hence not every abstract group acquires a
profinite structure by this device. [Hint: Take G=Z.J

13. Let (G,, q',) and (H,, g,,) be two projective systems of sets. (Note that we use
the same map designators q' for both systems.) Suppose that we have a
family of maps (C,:G,-sH,} that is compatible with these systems in the
sense that q o C= r,o qy for all pairs of indices i sj. Show that there exists a
unique map ;'G-+H on their respective projective limits such that
4 o p,=p, o C for all i, where p, denotes the appropriate projection map. Ob-
serve that this construction works equally well in the categories of groups,
topological spaces, and topological groups. [Hint: In light of the universal
property of projective limits, consider the family of composed maps
{op,: G-*H,}.J

14. Let KIFbe a Galois extension with Galois group G.

(a) Let L be an intermediate field that is finite over F. For any given QeG,
define NL(a)cG to be the set of reG such that o and r agree on L. The
subsets NL(o) constitute a subbase for a topology on G. Show (i) that this
topology remains unchanged if we restrict the subbase to normal interme-
diate fields that are finite over F and (ii) that this topology is identical to
the profinite topology on G.

(b) Now let L be an arbitrary intermediate field, and let H denote the Galois
group of K over L. Use the characterization of the profinite topology given
in part (a) to show that the topology induced on H by G is identical to the
profinite topology defined directly on H as Gal(K/L).

15. Let K/F be a Galois extension (not necessarily finite) and let H be any sub-
group of G=Gal(K/F) (not necessarily closed). Let a and fl be defined as
in Theorem 1-20. Show that a(fl(H)) = 9, the closure of H.

16. Let G be a profinite group and let H be a closed subgroup. Show that

[G: H]= 1cm [G:HNJ

where ..V is the set of all open, normal subgroups of G. Show further that if
M is any open subgroup of G containing H, then there exists an open nor-
mal subgroup N of G such that MQNH. Conclude from this and the previ-
ous equation that moreover,

[G: H] = Icm [G : MJ
Mopen
MAN



Exercises 45

17. Let V : G -a G' be a suoective homomorphism of groups with kernel L. Let
H be a subgroup of G of finite index and let H' be the image of H under op.
Show that [G:H]=[G':HI-[HL:H].

18. For any commutative ring A with unity, define the Heisenberg group H(A)
over A by

1 a c

H(A) = 0 1 b : a,b,c EA
0 0 1

(a) Show that H(A) is a group under multiplication in the matrix ring M3(A)
and that this construction is, moreover, functorial in A.

To continue, for n 2t 1, H(Z/p"Z) is clearly a group of order p 3n, and hence
a p-group. If m In, then by functoriality, we have that the canonical projec-
tion Z/p"Z-o.Z/p"'Z induces a homomorphism op. from H(Z/p"Z) to
H(Z/p"'Z).

(b) Show that (H(Z/p"Z),q,,,,,) is a projective system of groups.

Let if, denote the projective limit of the H(Z/p"Z); by definition, this is a
pro-p-group.

(c) Show that H(Z,) . Hl. [Hint: Consider the map

,r":H(Z,,) - H(Z/p"Z)

induced by projection from Z onto Z/p"Z. Show that this is a continuous
surjective homomorphism anuthat moreover, the family (n,,) is compatible
with the system of homomorphisms Finally, show that the map ar
obtained from the ;" by the universal property of the direct limit is the de-
sired isomorphism.]

19. Let G be a profinite group and p a rational prime. For each open, normal
subgroup N in G, let HN be a p-subgroup of GIN (not necessarily a p-Sylow
subgroup). Show that there exists a pro-p-Sylow subgroup P of G such that
PN/N2HN for all N. Conclude (i) that every pro-p-subgroup of G is con-
tained in a pro-p-Sylow subgroup of G; and (ii) that if P is a pro-p-Sylow
subgroup of G, then PNIN is a p-Sylow subgroup of GIN for each open,
normal subgroup N of G. [Hint: Generalize the argument from the proof of
part (i) of Theorem 1-23.1



2
Some Representation Theory

The general background for Tate's thesis involves locally compact groups, their
representations, and duality theory. Many of these basic prerequisites are de-
rived in this and the next chapter.

Here we develop elements of representation theory for a locally compact
topological group G represented in the automorphism group of a topological
vector space V. A representation in this context is in fact a restricted instance of
an ordinary abstract group representation, with the extra constraints involving
continuity and some specific topological conditions on V. Our development is
somewhat general without becoming excessively technical; in particular, we
postpone the assumption that G is commutative until as late as possible. This is
not empty abstraction: the noncommutative case is interesting in its own right,
as shown by Jacquet-Langlands theory, which deals with representations of the
general linear group.

The key results of this chapter are Schur's lemma for irreducible unitary
representations of a topological group G and the theorem that such representa-
tions are one-dimensional in the case that G is abelian. Considering that the
finite-dimensional analogues of these statements are not particularly deep, they
are surprisingly challenging to prove. In fact, the chase will lead us through the
spectral theory of Banach algebras, the Gelfand transform, and the spectral
theorems. (We state the second spectral theorem for completeness, but make no
essential use of it.) The Gelfand transform is especially noteworthy because it is
applied again in the following chapter in a wholly different context.

2.1 Representations of Locally Compact Groups

A field k (subject to some given topology) is called a topological field if both
addition and multiplication are continuous functions on kxk. A vector space V
(again subject to some given topology) over k is called a topological vector
space if the following two conditions are satisfied:

(i) The underlying additive group (V,+) is moreover a topological group.

(ii) The scalar multiplication map
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kxV --4V
(A, v) ra AV

is continuous (with respect to the product topology on kx V).

EXAMPLES

(1) If k is a topological field and V is any merely algebraic vector space over k,
then we have an isomorphism of vector spaces

V=rl k
I

where I is some index set. We may use the isomorphism to transfer the
product topology of n k to V. One checks easily that with respect to this
induced topology, V is a topological vector space over k. Moreover, for fi-
nite-dimensional V, every linear map is clearly continuous, and hence the
transferred topology is independent of the choice of isomorphism.

(2) Recall that a normed vector space V over R (respectively, over C) that is
complete with respect to the norm metric is called a real (respectively,
complex) Banach space. One checks easily that V is a topological vector
space over R (respectively, C) with respect to the norm topology. (Note
that any nonmed space may be embedded in its completion, with the given
norm extended by continuity; the completion is ipso facto a Banach space.)

Henceforth we shall assume that our topological vector spaces are Ti (and
hence Hausdorff, by Proposition 1-3). This is equivalent to the assertion that
(0) is a closed subset.

For a topological vector space V over k, we distinguish Aut(V), the group of
vector space automorphisms V-*V from Aut,,,P(V), the group of topological
automorphisms V-4 V (i.e., continuous vector space automorphisms with con-
tinuous inverse).

Recall that a subset S of a real or complex vector space is called convex if
for every x, yeS, each point of the form tx+(1-t)y, Osts 1, also lies in S. A real
or complex topological space is called locally convex if there is a base for the
topology consisting of convex sets. Thus, for example, the topological vector
spaces R" and C" are both locally convex.

DEFINITION. Let G be a locally compact topological group and let V be a locally
convex topological vector space over C. Then an abstract representation of G
is merely a homomorphism p:G-+Aut(V). We call p a topological representa-
tion (or simply a representation, without qualifier) if it satisfies the additional
condition that the map
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GxV--> V
(g,x) H Pg(x)

is continuous with respect to the product topology on G x V. [Note that forge G
we usually write pg for p(g).]

It follows at once from the definition that for a topological representation p,
the image of G under pin fact lies in Auto( V).

2-1 PROPOSITION. An abstract representation p: G-*Aut( V) is moreover a
topological representation of G if and only if it satisfies the following two
conditions:

(i) For every compact subset K of G, the collection of functions p(K) is
equicontinuous on V.

(ii) For every xe V, the map g N pg (x) is continuous from G to V.

PROOF. =) Certainly a topological representation satisfies (ii), so we need only
argue for (i). Let U be a neighborhood of 0 in V. By continuity, for each gEG,
there exists a neighborhood H. of g in G and a neighborhood W. of 0 in V such
that ph(x)e U for all h eHg and xe Wg. Since K is compact, there is a finite sub-
collection H,,...,H,, of the H. that cover K. Let W,,..., W. be the corresponding
neighborhoods of 0 in V, and set

n

W=nW. .

Then for all gEK and xEW, by construction pg(x)eU, and therefore the collec-
tion p(K) is equicontinuous, as claimed.

G) Let (g,x) lie in GxV. Since V is locally convex, it suffices to show that for
any convex neighborhood U of 0 in V, there exist neighborhoods H of g in G
and W of 0 in V such that for all h EH, p,,(x+W)g pg(x)+ U.

Assume that Kr_ G is a compact neighborhood of g. By condition (i), there
exists a neighborhood W of 0 in V such that ph(w)e U/2 for all heK and we W.
By condition (ii), there exists a neighborhood H of g contained in K such that
for all heH, likewise ph(x)-pg(x)e U/2. Now for arbitrary heG and we V, we
have that

Ph(x+w)-pg(x)=Ph(w)+(A(x)-Pg(x))
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Thus, in particular, if h eH and WE W, then by construction the indicated differ-
ence lies in U/2+U/2. But of course U/2+U/2=U, because U is convex, and
this completes the proof.

Note that the set of all mapping from V-+ V is the direct product of topologi-
cal spaces

F1 V
V

and thus acquires the product topology, which in this case amounts to the to-
pology of pointwise convergence. The subset Aut(V) in turn acquires the sub-
space topology, and viewed thus, condition (ii) above implies that the represen-
tation p: G--*Aut( V) is a continuous mapping. Therefore, given any compact
subspace K of G, p(K) is compact. Consequently, if V is a Banach space, the
Banach-Steinhaus theorem implies that p(K) is equicontinuous. Thus we have
proved the following corollary:

2-2 COROLLARY. Suppose that V is a Banach space. Then an abstract repre-
sentation p: G-4Aut(V) is moreover a topological representation if and
only if for every xe V the map g H pg (x) is continuous from G to V.

REMARK. The corollary holds more generally if V is a barreled space. See
Bourbaki, Topological Vector Spaces, Chapter III, § 4.2.

Let p:G-+Vbe an abstract representation of G. A subspace W of V is called
p(G)-invariant (or simply G-invariant, when p is understood from the context)
if p5(W) c W for all geG. Equivalently, if we view V as a module over the
group algebra C[G], then a p(G)-invariant subspace is exactly a C[G]-sub-
module. Both the trivial subspace (0) and V itself are p(G)-invariant. The class
of representations for which these are the only such invariant subspaces is espe-
cially noteworthy.

DEFINITION. An abstract representation (p, V) is called algebraically irreducible
if it admits no proper, nontrivial p(G)-invariant subspaces. A topological repre-
sentation (p, V) is called topologically irreducible (or simply irreducible, with-
out qualifier) if it admits no closed, proper, nontrivial p(G)-invariant
subspaces.

Algebraic irreducibility of course implies topological irreducibility, but not
conversely.

Given a representation (AV) of G, we can vary p by any homeomorphic
change of basis to obtain another representation that is essentially the same
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object. We generalize this notion of equivalence just slightly in the following
definition to accommodate the possibility of distinct representation spaces:

DEFINITION. We call two representations (p, V) and (p', V') equivalent and
write (p, V) if there exists a topological isomorphism T: V-+V'such that

Tops=ppoT (2.1)

for all geG; that is, for all geG, the following diagram commutes:

V V'

Pe I I Ps

V V.
T

One checks easily that Eq. 2.1 amounts to the assertion that T is a topologi-
cal isomorphism of C[G]-modules. Accordingly, we sometimes call T a G-
isomorphism. (More generally, an arbitrary linear transformation from V to r
that respects the action of G is called G-linear.)

2.2 Banach Algebras and the Gelfand Transform

Let A and B be Banach spaces defined over the same field. Recall that a linear
transformation T from A to B is called a bounded operator if there exists a real
constant c such that

IIT(a)II s cllall (2.2)

for all aeA. It is well known that a linear transformation T is a bounded opera-
tor if and only if T is continuous. Henceforth Hom(A,B) denotes the space of all
bounded operators from A to B. If TeHom(A,B), then the smallest c that makes
inequality 2.2 true is called the norm of T and denoted II TII. One shows easily
that Hom(A,B) is itself a Banach space with respect to this norm. In the special
case A=B, we write End(A) for Hom(A,A). [Keep in mind that the morphisms
in Hom(A,B) and End(A) are always topological as well as algebraic.]

Let A be a complex algebra that also admits the structure of a complex Ba-
nach space. Then A is called a Banach algebra if the norm is also sub-
multiplicative; that is, if

IIabII s (2.3)

for all a,baA. Throughout, we assume that our Banach algebras are unital; this
is to say that A contains a multiplicative identity 1 e. As usual, the group of
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units of A will be denoted A". We can always renorm A without disturbing its
topology to arrange that II 'All= 1, and henceforth we do so. (See Exercises 2 and
3 below.)

If A is a Banach algebra, each a(-=A acts on A by left multiplication. Let us
denote this map pa. Then according to the inequality 2.3, for all beA, we have
that ilpa(b)II=llabllsllall-llbll, whence lIPallsllall, the former norm being computed
of course in End(A). Since we assume that IIIA11=11 also IlaII=IIPa(1A)IISWall-
and thus the norm of a as an element of A agrees with its norm as an element of
End(A).

Again let a eA and assume now that llall < 1. Then one shows easily that the
series E'o aj converges (see Exercise 4 below), whence we observe that (1-a)
lies in A. with

E a . (2.4)
j=o

We shall need this observation for the following result.

2-3 PRoposiTloN. Let A be a Banach algebra as above. Then A" is an open
subset of A. Moreover, the mapping

A" -+ A"

a -3a-1

is a homeomorphism.

PROOF. Let and suppose that for b eA we have that Ila-bll < Ila-' II-' . Then
it follows that Ilar'(a-b)ll < 1, whence by the preceding observation we find that
the difference 1-a-'(a-b) lies in A". But then also b=a(l-a-'(a-b))eA",
showing that A" is open. The second statement follows at once, since the map
a I-- a-' is continuous on A" and is its own inverse.

With these preliminaries in hand, we now come to one of the principal defi-
nitions of this section, essentially a generalization of the notion of an eigen-
value familiar from linear algebra.

DEFINITION. Let A be a complex Banach algebra and let aeA. Then the spec-
trum of A, denoted sp(a), is the subset of C defined as follows:

sp(a)={A -a oA"} .

We shall see below that the spectrum of an element aeA is never empty.
Hence we may define r(a), the spectral radius of a, by

r(a) = sup(IA1: Aesp(a)) .
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[For the moment, we can take the spectral radius to be 0 if sp(a) is empty.) The
resolvent set of a is the complement of sp(a) in C. By construction, if A lies in
the resolvent set, then (A lA-a)-' exists in A.

2-4 PROPOSITION. Let A be a complex .anach algebra as above, and let p(x)
be a polynomial with complex coefficients. Then for all aeA, if Ar= sp(a),
then p(A) E sp(p(a)).

PROOF. Suppose that p(x) = Eo a,x'. Then we may compute that

i-

where b is some element of the algebra A for which we need no explicit calcu-
lation, but only the modest observation that b commutes with a. The point is
this: if the left-hand side of the preceding equation has inverse c, then 24-a
has inverse bc, a contradiction, since A is assumed to lie in the spectrum ofa.

REMARK. This result generalizes to convergent power series over C. (See Exer-
cise 5 below.)

2-5 LEMMA. Let aeA. Then r(a) 5 inf II

PROOF. We first show that sp(a) lies in the closed disk around zero of radius
Ilall. Note that in general for nonzero A we have (A - IA - a) = A(l4 -2 a). Thus
if IAl>Ilall, Eq. 2.4 applies to show that (A - 1A -a) is invertible. Now let AE
sp(a). Then by the previous proposition, A"esp(a") for all n;->O, and therefore,
by the first part of the argument, lAI"Slla"ll. Taking nth roots yields the stated
inequality.

The following theorem is the first major result about the spectrum of an
element. The proof requires three substantial, but familiar, results: Liouville's
theorem, the Nahn-Banach theorem, and the Cauchy integral formula. Recall
that if A is a complex Banach space, then A *, the dual space, denotes the space
of all continuous (equivalently, bounded) linear maps from A to C.

2-6 THEOREM. LetA be a complex unital Banach algebra. Then for every a(-=A
sp(a) is nonempty and compact. Moreover, the sequence lla"II"" converges
to the spectral radius of a.

PROOF. We first show that the spectrum is at least compact. Consider the con-
tinuous mapping
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C-+A

The resolvent of a is simply the inverse image of A" under this map. But then
since A" is open, so is the resolvent. Consequently the spectrum of a is closed
and, according to the previous result, also bounded. Therefore sp(a) is compact.

We next show that sp(a) is nonempty. Fixing an arbitrary VF_A *, define a
complex-valued function f on the resolvent set of a by the formula

Note that for fp sufficiently close to zero, we have

f(A-,u) _ q([(2-p).'A -al-' )

= rP([(A..IA-a)(14-

rP(Y u"(A, l4 -a)-"-' )
-o

p"q,((A-1,-a) n 1 )

n=0

(The last step follows from the linearity and continuity off) Thus f has a valid
power series expansion at every point of its domain and is accordingly holo-
morphic. Moreover, if 121>11all, we have

f(.)=q((A-14-a)')
='P(A-' (l,, - A-'a)-' )

= 97(Y A-"-'a)
n=0

"=0

and we can therefore bound f as follows:

YIAI-"-' IIq,
-0

II(v 11

(2.5)

IAI-Ilall
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Now assume that the spectrum of a is empty, whence a is nonzero. Then f is
entire, bounded on the closed disk I1IS211aII by general principles, and bounded
elsewhere by the quotient IIrvII1IIaII according to the previous inequality. By
Liouville's theorem, f must be constant, and since clearly lim f(2) -- 0 as I2 I -->
oo, this constant must be 0. Since this holds for arbitrary rpeA *, it follows from
the Hahn-Banach theorem that (A IA - a)-' is 0, which is impossible. Hence
sp(a) is nonempty.

Finally, it remains to establish that the spectral radius of a is as stated, and
in establishing this, we may certainly assume that an is nonzero for all nEN.
First we claim that the power series expansion for fgiven in Eq. 2.5, which was
established for I.%l>IlaJJ, in fact holds with uniform convergence for JAIzr, for
all r greater than the spectral radius of a. To see this, consider the auxiliary
function

_{f(A-) forA4, 0
g(A)

0 otherwise.

Since as we have seen, f is holomorphic for JAlzr> r(a), the power series repre-
sentation

g(2) = I An+Ip(a")
n=0

extends to the entire closed disk IAISr-l. Moreover, the Cauchy integral for-
mula tells us that for JAI Sr-' the remainder g,,, l after n terms is given by

A.al g(` )
2'ri, +l ds

where the integral is taken over the circle C of radius strictly between r-l and
r(a)-l. It follows easily from this that this remainder is bounded independently
of A. The upshot is that since g is represented by the uniformly convergent
power series given above for I2I5r-1, f is correspondingly represented by the
power series representation of Eq. 2.5 with uniform convergence for I2Izr, as
claimed.

Next let A=re'B where r>r(a). We may then integrate the series for A-"f(2)
with respect to Oas follows:

2a _ 2x
nJrn+lei(n+l)8f(re'B)d© = I f rn-me,(n m)eco(am)dO

0 m=00

= 2,rp(a")
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Moreover, this value is clearly bounded by 2,rr"''M(r)II q ll, where

M(r)=sup11 re'a'lA-all
e

Thus

I p(an)l!5 r"'' M(r)II rp I I

for all Appealing again to the Hahn-Banach theorem, we see that the
linear mapping ya" Hylla"ll (yEC), which is obviously of norm 1, extends
from the one-dimensional subspace spanned by a"(*0) to an element SoeA* of
lesser or equal norm. In this special case, the previous inequality reduces to

lla"ll 5 r' M(r) .

Since this holds for all r> r(a), taking nth roots and limits we find that

lim sup Ila"ll't" 5 r(a) .

This inequality together with Lemma 2-5 shows that the sequence Ila"ll'" is
indeed convergent to the spectral radius of a.

2-7 COROLLARY. (Gelfand-Mazur) IfA is a division ring, then A-C.

PROOF. Given aeA, there exists 2.Esp(a), so that A IA- a is not invertible. But
if A is a division ring, then A. lA-a = O, whence every element of A takes the
form for some complex A. Then evidently, A-C.

Quotient Algebras

In preparation for the discussion of the Gelfand transform, we make some brief
remarks on the quotient of a Banach algebra A by a (two-sided) ideal J, which
in particular is a linear subspace of A. Recall that as an algebra, AU consists of
the cosets a+J. We say that a represents its associated coset, and addition and
multiplication of cosets are defined by the addition and multiplication of asso-
ciated representatives. We define a seminorm on A /J by the formula

lha+Jll = inf{Ila--xll : xEJ} . (2.6)

It is easy to see that this is well-defined and lacks being a norm only insofar as
it is possible that 11a+Jll=O without it being the case that a represents the zero
element of the quotient.



56 2. Some Representation Theory

2-8 PROPOSITION. Assume that J is closed in A. Then Eq. 2.6 defines a norm on
A U. and A /J is likewise a Banach algebra with respect to this norm.

PROOF. In light of the preceding remarks, it suffices to show that the seminorm
on the quotient is submultiplicative and yields zero only on the zero element of
the quotient space. We consider first the latter point. If IIa+JII=O, there must
exist a sequence of points in J converging to a. But since J is assumed closed,
this means that aeJ, whence a+J=J, as required.

It remains to show that the seminorm on A /J is submultiplicative; that is,

IIab+JII

First note that since J is a linear subspace, IIa+JII can equally well be defined
as inf{Ila+xll : xEJ}. Accordingly,

Ila+xII ynfllb+yll

z inf Ilab+xb+ay+xyll
x.

z infllab+xll
XEJ

=IIab+JII

The first inequality in the calculation is justified by the submultiplicative nature
of the norm on A; the second is justified because the sum xb+ay+xy clearly lies
in the ideal J, provided that x and y do. This completes the proof.

REMARK. Note that if J is an ideal of the Banach algebra A, then in particular, J
is a subgroup of a topological group, and we may infer from Proposition 1-1
that the closure of J is likewise a subgroup of A. Moreover, since the norm is
submultiplicative, if {x.} is a convergent sequence in J, then so are the sequen-
ces {ax.} and {xla} for all aeA. It follows that the closure of J is likewise an
ideal of A.

The Gelfand Transform

In this subsection we specialize to commutative complex Banach algebras (al-
ways assumed to be unital). If A is such an algebra, a character of A is simply a
nontrivial (hence surjective and unital) homomorphism of complex algebras
from A to C. The set of all characters of A is denoted A.

2-9 PROPOSITION. Let A be as above. Then the following statements hold:

(i) Every maximal ideal ofA is closed.
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(ii) The mapping y H Ker y constitutes a h yective correspondence be-
tween A and the set of maximal ideals of A.

(iii)Every element ofA is continuous

(iv) For every aeA, sp(a) = { y(a) : yEA ).

PROOF. (i) Let M be a (two-sided) maximal ideal of A; that is, M is a proper
ideal of A and there exist no ideals properly between Al and A. By the remark
above, M, the closure of M, is likewise an ideal of A, and so to show that
M = M it suffices to show that Al is a proper ideal; that is, that Al excludes
all units. But since A' is open by Proposition 2-3, any unit in Al must be the
limit of units already included in M, contradicting the assumption that MxA.
Hence the maximal ideal M is closed, as claimed.

(ii) Since every character y is surjective, the quotient A /Ker y is a field. Hence
Ker y is maximal, and the given mapping is at least well-defined. Let M be the
closed ideal Ker y. Then we have the following commutative diagram:

rA --- C
AIM

Here p denotes the canonical projection onto the quotient (a continuous homo-
morphism of Banach algebras), and y is the unique induced map on the quo-
tient, which is at least an isomorphism of complex algebras. Every element of
AIM takes the form z lA+M for some zeC, and in fact the induced iso-
morphism is precisely

y is, moreover, continuous: for open UcC,

Y-'(U)

which is evidently open in AIM.
Conversely, if M is any maximal ideal of A, then AIM is not only a Banach

algebra but also a field, which by Corollary 2-7 is isomorphic to C. Call this
isomorphism y,,,. Then the diagram above defines a character y,, = YM °P,
and it is straightforward to check that for all characters y,

YKerr=Y

and for all maximal ideals M,
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Ker y,,, = M .

This establishes the claim.

(iii) The continuity of an arbitrary character y follows at once from its fac-
torization above into two continuous maps.

(iv) Let aEA. Then Aesp(a) if and only if (A 1A-a) is not a unit of A, and hence
(by Zorn's Lemma) if and only if (A- lA-a) is contained in some maximal ideal
M. But by part (ii) this occurs if and only if lies in the kernel of some
character y, which is to say, if and only if y(a)=A for some y.

We next introduce a topology on A, the space of characters on A, by duality.
As a preliminary, note that for each aeA, we have an associated map from A*
to C defined by q H rp(a) ; this is simply evaluation at a. Recall that one then
defines the weak-star topology on A * (abbreviated to the w*- topology on A *) to
be the weakest topology on A with respect to which all such evaluation maps
are continuous. Under this topology A* is a locally convex topological vector
space and, in particular, Hausdorff. (See Appendix A; especially sections A.2 and
A.3.) Moreover, convergence in the w*-topology amounts precisely to pointwise
convergence.

Part (iii) of the previous result shows that in fact A lies in A *. The subspace
topology on ,4 induced by the w*-topology on A * is called the Gelfand topology
on A.

2-10 LEMMA. The space A of characters on A lies in the unit ball of the dual
space A*. Moreover, A is both Hausdorff and compact with respect to the
Gelfand topology.

PROOF. For each aEA and yeA, we see from Proposition 2-5 and Proposition 2-
9, part (iv), that

y(a) 5 r(a) <_ II a ll . (2.7)

Thus II y1l51, and ,4 lies in the unit ball of the dual space A *, as claimed.
The Gelfand topology on A is clearly Hausdorfl; since it is induced from a

Hausdorff topology on A*. Since the unit ball in A* is compact by Alaoglu's
theorem, to show that .4 is compact, it suffices to show that it is closed. But if y
is the limit of a convergent net {ya} in A, then y(a)=limya(a) for all anA, so
that y is again a nontrivial homomorphism of complex algebras; that is, y A,
and therefore A is closed, as required.

For each aeA and yeA, define a(y)= y(a). Note that by construction each of
the functions a from A to C is continuous with regard to the Gelfand topology.
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Let G'(,4) denote the algebra of complex-valued functions on ,4 that are continu-
ous with respect to the Gelfand topology, and endow '(A) with the sup norm.
Then the mapping

F':A - '(A)
aHa

is called the Gelfand transform. The following theorem summarizes its funda-
mental properties.

2-11 THEOREM. Let A be a complex, unital, commutative Banach algebra with
character space A. Then the following statements hold:

(i) The Gelfand transform r: A --+'(A) is a norm-decreasing homo-
morphism of unital complex algebras.

(ii) The image of r separates points in A.

(iii)For every aeA, 6(A)=sp(a) and II6II.=r(a), the spectral radius of a.

(iv) The kernel of r is the radical of A; that is, the intersection of all
maximal ideals ofA. Equivalently, the kernel of r consists of all ele-
ment ofA having spectral radius 0.

(v) I' is injective if and only ifA is semisimple; that is, if and only if the
radical ofA is trivial.

PROOF. (i) It is straightforward to verify that I' is a hornomorphism of algebras.
For instance,

F(ab)(y) = y(ab) = y(a)y(b) _ (F(a)f'(b))(),)

Moreover, F is norm-decreasing by Eq. 2.7.

(ii) If y, and r2 are distinct characters, then y,(a)*y2(a) for some anA. There-
fore 6E1 separates y, and y2.

(iii) This is the content of Proposition 2-9, part (iv), and the definition of the
spectral radius.

(iv) Since every character yfactors through AIM for some maximal ideal M, the
only elements aeA that evaluate to zero under every character ymust lie in the
intersection of all maximal ideals of A, as claimed. The second statement fol-
lows from the previous part.

(v) This follows at once from (iv), to complete the proof.



60 2. Some Representation Theory

2.3 The Spectral Theorems

We begin with the complex extension of a familiar theorem in real analysis. A
linear space A of complex-valued functions is called self-adjoins if for every fn
A, its complex conjugate f is also in A. From the identity

f=(f+f)+i(f-f)
2 2i

one sees at once that A is self-adjoint if and only if A =AR + iAR, where A R de-
notes the subspace of real-valued functions in A.

Now let X be a compact Hausdorff space and let W(X) denote the space of
continuous complex-valued functions on X. Assume that A is not only a self-
adjoint subspace, but moreover a unital subalgebra of T(X), so that in particu-
lar A contains the constant functions. If A separates points, then so must AR,
and the real-variable case of the Stone-Weierstrass theorem applies to prove the
following extension:

2-12 PROPOSITION. Let A be a self-adjoint unital subalgebra of W(X) that
separates points. Then A is uniformly dense in T(X) with respect to the
sup norm.

This form of the Stone-Weierstrass theorem is critical to the first of our
spectral theorems and appears in the proof via the following corollary. To state
this corollary, we need to introduce for a locally compact Hausdorff topological
space X a class of functions somewhat larger than the class of complex-valued
continuous functions on X with compact support. Accordingly, we define '0(X)
to be the set of continuous functions f. X-)- C such that for each a>0, the set
{xeX : Lf(x)) - e) is compact. If X'=Xv{ w} is the Alexandroff one-point com-
pactification of X, then it is easily verified that fEW0(X) if and only if f extends
to a continuous complex-valued function f on '(X') such that f(w)=0.

2-13 COROLLARY. Let X be a locally compact Hausdorfspace and let A be a
self-adjoint subalgebra of 'o(X) that separates points with the additional
property that for every xeX there exists an feA such that f(x)*0. Then A
is uniformly dense in 8'0(X) with respect to the sup norm.

PROOF. Again let X' denote the one-point compactification of X. (Note that this
makes sense even if X is already compact, in which case we have simply ad-
joined an isolated point.) Identify A with a subalgebra of 8'(X') by extending
each element to a function that vanishes at co, and let A' be the subalgebra of
W(X') generated by A and the complex constant functions. Then A' is evidently
self-adjoint and unital. Moreover, A' separates points: since A already separates
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points in X, we need only observe that by hypothesis, for every xeX there is a
function feA that does not vanish at x, while by construction its extension to X'
does vanish at w The previous result now applies to show that A' is uniformly
dense in W(X'). Thus for each ge'o(X) [tacitly identified with an element of
' '(X')] and for each positive a there exists an fEA [again identified with an
element of '(X')] and a a .EC such that

I g(x) - f (x) +Al < e/2

for all xoX'. Since both f and g vanish at o it follows that JAI < e/2, and there-
fore f and g differ on X by less than e, as required.

Bounded Operators on Hilbert Spaces

In this subsection we specialize our analysis to the Banach algebra of bounded
operators on a Hilbert space. Actually, only a few formal aspects of such an
algebra will be needed, and these we highlight below.

First recall that a positive definite Hermitian form on a complex vector space
H is a mapping

HxH-* C
(v,w) H (vlw)

that satisfies the following properties:

(i) (u l u) E R, (u a H), with equality if and only if u = 0

(ii) (ulv)=(vju) (u,v eH)

(iii) (A.u + ftv l w) = 2(u l w) + p(v l w) (u, v, w H; ,Q, p E C)

Note that (ii) and (iii) imply also:

(iii)' (uI2v+,uw)=A.(uIv)+fs(uIw) (u,v,weH;A,pcC)

That is, the form (I) is positive definite, conjugate symmetric, linear in the first
variable, and conjugate linear in the second.

A complex vector space H together with a positive definite Hermitian form
is called a pre-Hilbert space. One shows easily that (I) defines a norm on H as
follows:

Ilvli = (vlv) .
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If H is moreover complete with respect to the associated metric, then H is called
a Hilbert space. In particular, H is a complex Banach space, and therefore a
topological vector space with respect to the topology induced by the norm.

Assume for the remainder of this discussion that H is a Hilbert space, and in
accordance with previous usage let End(H) denote the space of bounded linear
maps from H to itself. End(H) is thus a Banach algebra with respect to addition
and composition of functions, and it acquires some significant new structure
from H. In particular, it is well known (see Exercises 9 and 10 below) that for
every TeEnd(H) there exists a unique element called the adjoint
of T, such that

(Txly)=(xIT*y)

for all x,yEff. Moreover, the adjoint has the following elementary properties:

(i) For all TeEnd(H), T**=T; that is, the adjoint operator has period two.

(ii) For all T,,T2EEnd(H) and 2,,.12EC, (d7, +A2T2)*=;i T,* +A.2T2*; that is,
the adjoint operator is conjugate linear.

(iii) For all T,, T2EEnd(H), (T, T2 )* = T2 * T, *; that is, the adjoint operator is an-
timultiplicative.

(iv) For all TEEnd(H), II T11 = 11 T* II; that is, the adjoint operator is an isometry;
in particular, the adjoint operator is continuous.

(v) For all TeEnd(H), I17' T* II = II TII2.

The usual arguments from linear algebra suffice to establish properties (i)-
(iii). To establish (iv) and (v), note that for all T,

IIT(x)112= (T(x)IT(x))= (7'*T(x)Ix)!9

This shows that IITII25IIT*TII. But also IIT*TIISIITII'II7'*II, so we have the chain
of inequalities

IITII25IIT* TII<_IIT*II' 117'I1

and it follows that IITIISIIT*II for all T. By symmetry, we deduce that
II TII °IIT*II, thus proving (iv). In light of the previously displayed chain, prop-
erty (v) is now immediate.

The following terminology, largely familiar from linear algebra, is most use-
ful: An element TeEnd(H) is called normal if T commutes with 7'*; that is, if
T*T=TT*. An endomorphism 7' is called self-adjoint or Hermitian if it is equal
to its adjoint; that is, if T*=T. The endomorphism T is called unitary if its ad-
joint is equal to its inverse; that is, if T-1 = 7'*. Both self-adjoint and unitary
operators are automatically normal.
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It follows at once from property (v) above that if TeEnd(H) is self-adjoint,
then 11 T2 11 = 11 T11 1, whence

IIT2"11=IITI12"

for all nzO.

(2.8)

REMARK. Let A be a complex algebra. An operator a H a* on A is called an
involution if (a) the operator * has period two; (b) the operator * is conjugate
linear; (c) the operator * is antimultiplicative. If A is further a Banach algebra
and (d) the operator * moreover satisfies the identity Ilaa*11=lIal12 for all aeA,
we call A a C*-algebra. IfA is a C*-algebra, then

11a11' =11aa*II s

and arguing as above, we see that the operator * is in fact an isometry; that is,
IIaI1=lla*I1 for all aeA.

Clearly the notion of a C*-algebra is an abstraction of the properties of the
adjoint operator on the space of (topological) endomorphisms of a Hilbert
space. This generalization, however, is in some sense vacuous: the Gelfand-
Naimark theorem shows that every C*-algebra is isomorphic to a closed, self-
adjoint subalgebra of End(11) for some Hilbert space H by a map that preserves
both the complex algebra and metric structures of the corresponding spaces as
well as the *-operator; that is, by an isometric *-isomorphism.

Although we state the next suite of results (through Theorem 2-16) for en-
domorphisms of Hilbert spaces, the reader should note that in fact only the
properties of a C*-algebra are required.

We now resume the general exposition; we first consider the spectral radius
of normal elements of End(H).

2-14 PROPOSITION. Let TeEnd(H) be normal. Then r(T)=1IT11

PROOF. Since T is normal, (TT*)"'=T'(T*)'" for all nonnegative integers m.
Hence applying property (v) above (twice) and Eq. 2.8 to the self-adjoint opera-
tor TT*, we obtain

IITI12"=1I TT*II2" '=11 T2"(T*)2"ll12=11T2"(T2")111,2=11 T2"II

Thus

II T2"II2"= 11 TI1
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for all n, whence r(7')=1I TII by Theorem 2-6.

2-15 PROPOSITION. Let TeEnd(II). If T is unitary, then sp(T)gS'; if 7' is self-
adjoint, then sp(T)cR. (As usual, S'={zeC:IzI= 1} is the circle group.)

PROOF. We make two preliminary observations. First, since the adjoint operator
is antimultiplicative, an endomorphism of fI is invertible if and only if its ad-
joint is. In particular, given TeEnd(II), is invertible if and only if
A- lH - T* is likewise invertible, and hence Aesp(T) if and only if Ae sp(T*).
Second, if T eEnd(H) is itself invertible, then for any nonzero A,

-T)T-'=-(A"' .1H -T-')

and it follows that Aesp(T) if and only if A-'esp(T-').
Assume now that T is unitary, so that T7'*=1H. By property (v) above,

II T11= 1, and so the spectral radius of T is also 1. Noting that (T *)-l = T and
applying our preliminary observations, we deduce that Aesp(T) if and only if
A-1esp(T). Thus if Aesp(T), then both A and A-' have magnitude bounded by
1, which clearly forces A to lie in S', as claimed.

Finally, assume that T is self-adjoint, and consider the convergent series

exp(i7') _ OT)"

=o n!

By continuity and conjugate linearity,

exp(i7')* = Y ( 2" = exp(-iT)
.o

and so exp(iT)*=exp(iT)-I. Therefore exp(iT) is unitary. According to Exer-
cise 5 below, if Aesp(T), then cxp(iA)esp(iT), and by the analysis of the uni-
tary case, lexp(iA)I=1. Thus the real part of iA must be zero, which is to say that
AER.

Recall from the previous section that if A is a commutative Banach algebra,
then ,4 is the space of characters of A, and ,4 admits a compact Hausdorff topol-
ogy.

2-16 PROPOSITION. Let A be a self-adjoin!, unital, closed, commutative sub-
algebra of End(H). Then the Gelfand transform F:A -'(A) is an iso-
metric isomorphism of unital complex algebras. The map F is, moreover,
a *-isomorphism in the sense that f (T*) = I-(T) for all TeA.
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PR(x)F:. Note first that every element of A is normal, since A is commutative.
Therefore, by Theorem 2-11 and Proposition 2-14, for all TEA,

IITII = r(T) =IITII,

is indeed an isometry (hence continuous, injective, and therefore a homeo-
morphism onto its image).

Suppose that TeA is self-adjoint. Then by Proposition 2-15,

T(y) - y(T) E sp(T) c R

for all y, whence f is likewise self-adjoint in the sense that it assumes only real
values. Now any arbitrary TEA can be decomposed into a sum T=T°+iT, where
both T° and T, are self-adjoint and defined as follows:

T,-T+T* andT - T- T*
TO 2 2i

One sees at once that 7'*=T°-i7',. Since both F(T°) and I'(T,) are real-valued,
we may readily compute that

F(T*) = I,(T° - i 7 )
=T-(T°)-ir'(7,)
= F(T°)+il-(T )

= F(7o +iT )

= F(T) .

This establishes the second assertion of the proposition.
It remains to show that F:A -+W(A) is surjective, and for this we collect the

following facts about Im(r):

(i) Im(F) contains the constant functions, since A is unital, and Im(I) sepa-
rates points by Theorem 2-11, part (ii).

(ii) Im(F) is a self-adjoint subalgebra of WO), since A is self-adjoint in End(H)
and, as we have seen above, F(T*) = F(T) for all TEA.

(iii) lm(r) is closed in W(A), since it is isometrically isomorphic to A.

Thus, in accordance with (i) and (ii), the Stone-Weierstrass theorem (Proposi-
tion 2-12) implies that Im(F) is dense in 8'(A). Hence from (iii) we deduce that
in fact and this completes the proof. O
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The First Spectral Theorem
We now make our last preparations for the first spectral theorem. Assume

that TEEnd(H) is normal. Henceforth, AT shall denote the smallest closed, self-
adjoint, unital subalgebra of End(H) containing T. This is clearly the closure of
the algebra generated by 1H, T, and T*, and moreover, A. is commutative be-
cause T is normal. We must now distinguish between sp(T), the spectrum of T
computed as usual in the full algebra End(H), and spA(T), the spectrum of T as
computed in the subalgebra AT. The latter is defined by

spA(T)={AEC:A.'l,-T0AT"} .

Clearly sp(T)cspA(T); the opposite inclusion also holds, as we shall see in the
proof of the following theorem. Finally, if W is any nonempty subset of C, we
let ia, denote the inclusion map W-*C.

2-17 THEOREM. (The First Spectral Theorem) Let TeEnd(H) be normal, and
let AT be defined as above. Then there exists an isometric *-isomorphism
of unital complex algebras c1: W(sp(T)) -+AT such that (D(i,T>)=T.

PROOF. Consider the Gelfand transform of T as defined on the space of charac-
ters of AT:

T:AT -- C
y H y(T)

According to Theorem 2-11, part (i), T is a continuous mapping. Moreover, if
T (y,) = T (y2) , then appealing to Proposition 2-16, we have

y1(T*)=yy(T)=y2(T)=y2(T*) .

Thus y, and y2 agree on the unital subalgebra of End(H) generated by T and T*,
and hence, by continuity, they also agree on its closure, AT, that is, y,=y,.
Therefore T is injective, and so by the open mapping theorem a homeomor-
phism onto its image, which by part (iii) of the previously cited theorem is pre-
cisely spA(T). To summarize,

T:AT 4 sp,,(T)

Next consider the transposed map
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'P : W (spn (T )) -+ F(AT)

fl-4f07' .

This clearly respects conjugation and norm and is therefore an isometric *-
isomorphism. We now define cD=r-3`Y, so that the following diagram com-
mutes:

W(SP4 (7)) T(Ar)

\r

AT

Being defined as the composition of isometric *-isomorphisms, 4> is again an
isometric *-isomorphism. We consider its effect on a function fE'(spA(T)).
First note that by definition, `I'(f)(y) f(y(T)). But since the Gelfand transform
is an isomorphism, every map in F(AT) takes the form yH y(P) for some
unique PEAT. Thus by the diagram above, we find that s(f) is characterized
by the following property:

f(Y(T))=Y(,D(f)) VyEAT .

From this it is clear that (D(i,P,(T)) = T and that b(1) ='H. Thus it only re-
mains to show that sp4(T)=sp(T).

Let AEspA(T) and choose f e'(sp,,(T)) such that f has maximum absolute
value 1, f(A)=1, and f(p)=0 whenever I e. Let P= Off). Then since CD
is an isometry and f is zero away from A, we have that

I I (1.P4(T) -2)nI ,

5e .

Thus, if T-A. 1H were invertible, it would follow that

1= Illllm=IIPII
IH)PII

s
s II(T-A.1H)-'ll e .
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But since c is arbitrary, this forces II T-A 1H11 to infinity. Hence, T-) l y is not
invertible, and indeed 2esp(T). This completes the proof. U

Positive Operators
In this subsection we recall the notion of a positive operator and show, as an
easy consequence of the first spectral theorem, that such operators admit
"square roots" in an obvious sense to be defined below. As a preliminary we
need to introduce a criterion for invertibility that allows us to interpret elements
of the spectrum of an operator as generalized eigenvalues.

Again let H be a complex Hilbert space and let T is
bounded away from zero if there exists an e>0 such that IIT(x)IlzellxII for all
xdH. Note that a map bounded away from zero has trivial kernel and is there-
fore injective.

2-18 LEMMA. Let T be an operator in End(H). Then the following five state-
ments are equivalent:

(i) T is invertible in End(H).

(ii) T* is invertible in End(H).

(iii) T and T* are bounded away from 0.

(iv) T and T* are injective and Im(T) is closed in H.

(v) T is bijective.

PROOF. (i)a(ii) This follows at once from the antimultiplicativity of the ad-
joint operator.

Since T-'T(x)=x for all xefl, it is clear that T is bounded away from
zero by IIT-'11. In light of the equivalence between (i) and (ii), T* is likewise
bounded away from zero.

(iii)=(iv) We need only show that lm(T) is closed. But for all x,yeH,

11 T(x) - T(y )l l =11 T(x - y)I I Z ell- - yl l

for some positive E. Thus any Cauchy sequence in Im(T) must come from a
Cauchy sequence in II and must therefore converge. Hence Im(T) is closed.

(iv) =::,(v) Consider T(H)1, the orthogonal complement to T(H) in H. (See Ex-
ercises 11 and 12 below.) Since for all x,yeH, (T(x)Iy)=(xIT*(y)), it follows
from positive definiteness that T(H)1=Ker(T*), which by assumption is trivial.
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Consequently, since T(H) is assumed closed, we may conclude by Exercise 13
that T(H)=(T(H)1)1=H, as required.

(v) => (i) This is just a special case of the open mapping theorem.

We may use this result to make an explicit connection between the spectrum
of an endomorphism and an obvious generalization of the ordinary linear-al-
gebraic notion of an eigenvalue and corresponding eigenvector.

2-19 LEMMA. Let T be an operator in End(H) and let 2Esp(T). Then there is a
sequence of unit vectors {x,} such that either

(i) or

(ii)

PROOF. If both alternatives fail, then clearly T-AlH and its adjoint are bounded
away from 0 and therefore invertible, by Lemma 2-18. But this contradicts the
assumption that Aesp(T).

2-20 PROPOSITION. Let T be a normal operator in End(H), and again suppose
that Aesp(T). Then for every positive e there exists a unit vector xEH
such that IIT(x) -AxII < e. If A is isolated in sp(T), then in fact A is an ei-
genvalue of T

PROOF. According to the previous lemma, for arbitrary TEEnd(H), the first
statement must at least hold for one of T or T*. But since T is assumed normal,
and therefore so is T- A- lH, it follows from Exercise 14 that this statement cer-
tainly does hold for T.

To prove the second statement, we make use of the isometric isomorphism (D
described in the first spectral theorem. Let A be an isolated point of the compact
subset sp(T). Then we can define a continuous function f from sp(T) to C such
that f(.2)=1, while f vanishes identically elsewhere in sp(T). Then by construc-
tion and by Theorem 2-17,

0=

Here 1 denotes the constant function 1 on sp(T); note also that the infinity
norm is computed over sp(T), not C. Since f is not the zero map, neither is
4)(J), whence there exists a nonzero xeH such that (A.1H -T)x=0. Thus A is
an eigenvalue for T, as claimed.
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A self-adjoint operator TeEnd(H) is called a positive operator if <T(x)Ix>zO
for all xdH. If this is the case, we write TAO. Clearly for all TeEnd(H) the
product TT is positive.

2-21 PROPOSITION. A normal operator T is self-adjoint if and only if sp(T) c R
and positive if and only if sp(T)e R+.

PROOF. We know that a self-adjoint operator has real spectrum by Proposition
2-15. Assume, moreover, that T is positive, and let Aesp(T). According to the
previous proposition, for every a>0 there exist vectors x and y in H such that x
is a unit vector, y has norm less than a and T(x)=Ax+y. Thus

Os(T(x)Ix)_(,lx+ylx)=A(xlx)+(ylx>=A+(ylx)

It follows from the Cauchy-Schwarz inequality that 05.1+e. Since a is arbi-
trary, A cannot be negative.

Now assume that the spectrum of T is real. Then the mapping i(T) is self-
adjoint, whence so is T by the first spectral theorem. If, moreover, the spectrum
of T is nonnegative, then we may of course define the continuous function
f(2) = on sp(T), which corresponds to the self-adjoint operator r1(f ). Ac-
cordingly,

(T(x)I x) = (q)(f)2(x)Ix> = (a'(f)(x)I V(f)(x)> z 0

as required.

2-22 PROPOSITION. Let T be a positive operator in End(H). Then there exists a
unique positive operator T"2eEnd(H) such that (T"2)2=T. Moreover, T'n
commutes with every operator that commutes with T.

PROOF. Let f be as in the proof of the previous result and define T'a=(D(f), so
that clearly (T 12)2=T. By the Stone-Weierstrass theorem f may be expressed as
a uniformly convergent power series in the function 1,aT) on sp(T), whence T"2
may be expressed as a uniformly convergent power series in T. Thus T'R indeed
commutes with every operator that commutes with T. Uniqueness is established
in Exercise 15 below.

The Second Spectral Theorem

In this subsection we state, without proof, the second spectral theorem. As a
prerequisite we must first introduce the notion of a spectral measure.

Note that although we state this result in integral form, it is in fact an exten-
sion of the first spectral theorem to the class of bounded complex Borel fune-
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tions on the spectrum of a given normal operator. We shall return to this point
briefly below.

Let H be a Hilbert space, and let (XT?) be a measurable space (cf. Section
1.2). Then a spectral measure on X taking values in the operator space End(H)
is a mapping E: T?--*End(H) satisfying the following axioms:

(i) For all YET?, E(Y) is an orthogonal projection in End(H) onto a closed
subspace.

(ii) The full space X corresponds to the identity map, and the empty set corre-
sponds to the zero map; i.e., E(X)=1H, and F_(f)=0.

(iii) For all Y1, Y2E`]I, E(Yir) Y2)=E(Y,)E(Y2).

(iv) Let (Y.) be a countable collection of measurable sets. Then

F_(UY.)=VE(Y )

where the right-hand side denotes projection onto the closed subspace gen-
erated by the union of the images of the E(Y ).

Recall that a signed measure is a map from `IT? to Rv{too} that is additive
on countable unions of disjoint measurable sets and takes at most one of the
values too. According to the Hahn decomposition theorem, every signed meas-
ure p may be written as a difference of ordinary (nonnegative) measures p+ and
p- that are mutually singular; that is, X is the disjoint union of two measurable
sets X+ and X- such that p` is trivial on X-, and p- is trivial on X. Hence
integration with respect to p may be defined in the natural way as the difference
of two integrals defined with respect to pl and k . A complex measure is a sum
po+ipi of two signed measures po and p, that do not take the values too. Inte-
gration with respect to a complex measure is again readily defined.

One verifies easily that a spectral measure E on X gives rise to a family of
ordinary measures Axon X (xEH): for YEc, define

,ux(Y)=(E(Y)xIx) .

For all xEH, this measure is clearly bounded by 11x112, owing to axiom (i) for a
spectral measure. These measures px in turn give rise to a doubly indexed fam-
ily of complex measures pxY on X (x,yEH) defined by

=
1 4

'"x.Y 4 rT
or equivalently,
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px.r(Y) = (E(Y)xl Y)

Now let f be a bounded, measurable, complex-valued function on X, and
consider the associated integral

IJ(x,Y)=,f(2)dux.r(A)
X

This is clearly a sesquilinear form on H (i.e., linear in the first variable, conju-
gate linear in the second) and continuous on IfxH, because f is bounded by
Ilfll. while the measures px,iky are bounded by Il x+iky112 Hence by Exercise 9,
there exists an endomorphism Tf on H such that

(Tj(x)IY)=If(x,Y)

= Jf(A)d/qx,,(A)
X

One often expresses this more succinctly as an "operator integral," as follows:

TJ = jf(A)dE(A)
X

and this is henceforth the implicit meaning attached to such an integral With
this in mind we can now state the second spectral theorem (for normal opera-
tors).

2-23 THEOREM. (The Second Spectral Theorem) Let T be a normal operator in
End(H). Then there exists a spectral measure E defined on the Borel sub-
sets of sp(T) such that

T = jAdE(A)
ap(r)

That is, for all x, yeH,

(T(x)ly)= JAdpx,,,(A)

p(T)

where px r is the complex measure associated with E. Moreover, for every
Borel subset Y of sp(T), the associated projection E(Y) commutes with
every operator that commutes with T.
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While we will not prove this, we will at least say how a spectral measure E
on sp(T) is naturally associated with the normal operator T. Let Y be any Borel
subset of sp(T). Then the characteristic function X. from sp(T) to C is certainly
Borel measurable. Via an extension of the first spectral theorem, Xy corresponds
to an operator E(Y) in End(H), which turns out to be a projection that com-
mutes with every operator that commutes with T. The association Y ra E(Y) is
in fact the required spectral measure.

2.4 Unitary Representations

In this brief section we develop some basic facts about a special class of topo-
logical representations, the so-called unitary representations. We shall use the
first spectral theorem to prove a powerful topological extension of Schur's
lemma, a well-known result in the ordinary theory of group representations.

We begin working over a pre-Hilbert space H. One can show by routine
methods that if, the metric completion of H, also admits a compatible structure
as a pre-Hilbert space, which is by construction in fact a full Hilbert space.
Moreover, any bounded operator on H likewise extends uniquely by continuity
to a bounded operator on H. Hence adjoint operators are also defined for H by
restricting the adjoint defined on the completion.

Assuming that H is a pre-Hilbert space with respect to some given positive
Hermitian form (1), a bounded endomorphism T of H is called pre-unitary
(with respect to the given form) if, as one would expect, the following equation
holds for all x,yeff:

(x,y)=(T(x),T(y)) - (2.9)

Equivalently, TT*=1v, where T again denotes the adjoint of T. A pre-unitary
endomorphism on a Hilbert space is, of course, a unitary operator in the usual
sense.

More generally, if H and H' are pre-Hilbert spaces, we shall call an isomor-
phism T:H-H' pre-unitary if Eq. 2.9 holds.

DEFINITION. If (pH) is a representation of a locally compact group G on a pre-
Hilbert space H, we say that p is pre-unitary if each topological automorphism
pg (geG) is pre-unitary; that is, if

(u,v) = (Pg(u),Pg(v))

We also say that the underlying form (I) is invariant under p(G).
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DEFINITION. Two arbitrary topological representations (pH) and (p,H') are
called pre-unitarily equivalent if there exists a pre-unitary topological iso-
morphism T: H =H' such that T o p8 = pg o T for all ge G.

In the context of these definitions, if II and H' are moreover Hilbert spaces,
we then speak, respectively, of unitary representations and unitary equiva-
lences.

2-24 PROPOSITION. Let II and H' be two Hilbert spaces. If two unitary repre-
sentations (p, H) and V, H') are equivalent, then they are moreover uni-
tarily equivalent.

PROOF. Let T: H-H' be the topological G-isomorphism defining the equiva-
lence of (pH) and (p',H'). Define T*: H'-+ H by the relation

(T*(x)ly) _ (x1 T(y))

for all xcH', ycH. (Again see Exercises 9 and 10; note that this slight generali-
zation of the adjoint has all of the usual formal properties.) Then one shows
easily that TT* is a positive operator on H'. According to Proposition 2-22,
there exists a unique positive (in particular, self-adjoint) operator U such that
U2= TT* and U (hence U-') commutes with every operator that commutes with
TT*. An easy calculation shows that the composite operator U-'Tis unitary:

(U-'T)(U-'T)* = U-'TT*(U-')* = U-'TT*U-' = U-'U2U-' = 1H .

It remains to show that U-'T also defines an equivalence between the unitary
representations (pH) and (p',II'). This follows trivially, provided that U-' com-
mutes with p8 for all gEG, and for this it suffices to show that TT* commutes
with the pg . To establish this last assertion, we begin with the defining relation

Tp8 =Tpg .

Taking the adjoint of both sides (and noting that both representations are, by
assumption, unitary), we have

psT*=T*p'

whence

TT*pp =Tp87'*=pp TT* .

This completes the proof.
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We come now to one of the principal results of the present chapter: Schur's
lemma. This is an extension to our topological setting of a most elegant result
for abstract group representations. We give two proofs of the "difficult part,"
one based only on the first spectral theorem, proven above in its entirety, and
the other given as an illustration of how the second spectral theorem may be
applied.

The key to the first proof is the following immediate consequence of the first
spectral theorem.

2-25 PROPOSmON. Let T be a normal operator on a complex Hilbert space H,
and, as usual, let AT be the closure of the unital subalgebra of End(II)
generated by T and T*. Then the following three statements are equiva-
lent:

(i) sp(T) is a point.

(ii) AT=C.

(iii) T is a scalar multiple of the identity operator.

This brings us directly to the main event.

2-26 THEOREM. (Schur's Lemma).

(i) Let G be an arbitrary group, and let V and V' be vector spaces over
an arbitrary field. Suppose that both p and p' are algebraically irre-
ducible representations of G on V and r, respectively. If Te
Homc(V, V'), the space of all G-linear maps from V to V', then either
T is the trivial map or T is an algebraic isomorphism.

(ii) Assume further that G is a locally compact topological group and
that H is a complex Hilbert space. Let p be a topologically irreduci-
ble unitary representation of G on H, and let TeEnda(H), the space
of continuous G-linear maps from H to itself. If T is a normal op-
erator, then T is a scalar multiple of the identity map. In particular,
for arbitrary the product T*T is scalar.

PROOF. (i) By hypothesis, both V and V' admit no nontrivial, proper G-invariant
subspaces. Accordingly, if T is not surjective, it has trivial image, and if T is
not injective, its kernel is all of V. Thus if T is not an isomorphism, it is indeed
trivial, as claimed. Note well that this argument holds for arbitrary abstract
group representations, independent of ground field or topology.

(ii) Certainly we may assume that H is nontrivial. Let the representation
p: G-'End(H) be given as stated, and let T be a normal operator commuting
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with p. Suppose that Aesp(T). Then we can find a nonzero function f on sp(T)
that vanishes on an open neighborhood of A. in sp(T). Let CD : F(sp(T)) ->AT
again be the isometry of the first spectral theorem. Then W, the closure of the
subspace CD(f)H in H, is invariant under p(G); to see this, express CD(f) as a
limit of polynomials in T, which evidently commute with pg, for all gEG. It
follows now from the irreducibility of p and the nontriviality of f that in fact
W= H.

Now suppose that sp(T) is not a singleton. Then we may find another con-
tinuous function h with complementary support vis-i -vis f. But then

{0} = (D(h)QD(f)H

and W cannot be all of H. This contradiction shows that sp(T) must contain no
more than one point, and hence the previous proposition applies to complete
the proof.

ALTERNATIVE PROOF OFTHE SECOND PART. We give this alternative proof based
on the second spectral theorem only for positive operators, leaving the exten-
sion to arbitrary normal operators to the reader.

Let T be a positive operator on II, whence sp(T)cR+. By the second spectral
theorem, there exists a spectral measure E defined on the Borel subsets of sp(T)
such that

T = f 2dE(2)
.p(T)

Moreover, E has a crucial property: each projection E(Y) commutes with every
operator that commutes with 7' and, in particular, commutes with every pg,
since T is a G-endomorphism and p is unitary. Thus the image of each E(Y) is a
G-invariant subspace of H and therefore, by assumption, is either the trivial
subspace or H itself, which is to say that for every Borel subset Y, the endomor-
phism E(Y) is either the trivial projection or the identity projection.

Let us now unwind the previous equation. For all x,ydH, we have

(Tx,y)= 52du,,, (A.)
.P(T)

4

4Y1k JAdps+,ky(A.)
k=1 sp(T)

4 Z!k sup
kk=1 W SP(T)
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where for each term, the supremum is taken over all simple functions yi on
sp(T) such that t'(2)SA. Accordingly,

(7x,Y)= 1 EIksup
4 k=1 j

= _i ksup) inf(Yj)J ((x+ikY)I(x+iky))
4 k=1 j

=supy inf(}
J )gj 1Ytk((x+ikY)I(x+lkY))

_ (2ox,Y)

4 k=1

where each supremum is taken over all finite, disjoint measurable covers (Y }
of sp(T), and S. is either 0 or 1 depending on whether E(Y) is the zero projec-
tion or the identity projection. Thus T=A,-1N, as claimed.

REMARKS. (i) Suppose that in the second part ti is assumed finite-dimensional.
Then we can give a direct proof based on elementary linear algebra that for any
TEEndG(H), the product T*T is scalar. We know that T*T is a self-adjoint op-
erator on H, and so by the spectral decomposition theorem, If decomposes into
the direct sum of closed orthogonal eigenspaces with respect to T*T. Let W be
the eigenspace belonging to the eigenvalue A. Then for we Wand geG,

T*T(Pg(w)) = Pg(T*T(w)) = p8(Aw) = Apg(w)

so that p8(w) again lies in the eigenspace belonging to A. It follows that W is a
nontrivial, closed, G-invariant subspace of V. Since p is assumed irreducible, in
fact W=H, and therefore T*T=A lfr.

(ii) One key step in the proof of Schur's lemma is noteworthy even when G is
trivial: every normal operator on a Hilbert space H of dimension greater than
one leaves a nontrivial, proper, closed subspace WeH invariant. When If is
finite-dimensional, this follows from the existence of eigenvectors, but these
need not occur in the infinite-dimensional case. Thus some of the analysis on
Hilbert spaces that we have here developed is certainly unavoidable. Suffice it
to note further that there need not be invariant subspaces W in a general Ba-
nach space V, even for nice operators. For instance, Z admits an infinite-
dimensional, norm-preserving Banach representation that is in fact irreducible!

We conclude this section with a final application of these spectral techniques
to prove a theorem that provides a natural bridge into the next topic.
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2-27 THEOREM. Let G be a locally compact abelian group and let (p,H) be an
irreducible unitary representation of G on a Hilbert space H. Then
dim.(H) = 1.

PROOF. For every gEG, the corresponding unitary (hence normal) transforma-
tion p8 lies in EndG(H) and hence, by Schur's lemma, acts by a scalar, say,
X(g)ES'. Hence each nonzero xEH generates the G-invariant closed subspace
Cx, which must then be H itself, since p is assumed irreducible.

Note in the proof that since p is a representation of G, the map X is continu-
ous from G into S', with the further property that

X(gg') = X(g)X(g)

for all g,g'eG. This qualifies X as a (unitary) character of G, and such charac-
ters are very much at center stage in the following chapter.

Exercises

1. Let V be a topological space that is also a vector space over the topological
field k. Show that V is a topological vector space over k if and only if the
following maps are continuous:

VxV- V kxV -+ V
(v,w) H v+w (A, V) H ilv

2. Let A be a (complex) Banach algebra, possibly without unity. Show that A
embeds isometrically into a Banach algebra A' with unity. [Hint: Consider
the direct product A xC; there is only one way to extend the ring structures
of A and C to this product. For the norm, set II(a,2)II = hall + JAI, where the
latter is, of course, the ordinary complex absolute value.]

3. Let A be a Banach algebra with unity. Show that we may replace the given
norm II' II on A with another norm 11- II, that yields the identical metric to-
pology, with the further property that 11111,=1. [Hint: For each aEA, let pa
denote the left multiplication map and define IIaII,= 1Ip011, the norm of the
associated linear transformation.]

4. Let A be a Banach algebra and let satisfy 11all<1. Show that for all
integers m and n with 15m <n,
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II a'lls
Ilallm.l

j-»..l 1-11all

Conclude that the series E;-o a' converges in A.

5. Let A be a complex unital Banach algebra and let aeA. Let D denote the
closed disk in the complex plane of radius Ilall. Assume that f(z) is holo-
morphic in a region containing D (and hence, by elementary complex
analysis, has a valid power series expansion on D). Show (i) that f(a) con-
verges in A and (ii) that if Aesp(a) and AED, then f(A)esp(f(a)).

6. Let A be a complex unital Banach algebra and let x,ynA.

(a) Show that if 1-xy is invertible, then so is 1-yx. [Hint: Suppose that z is
the inverse of 1-xy. Show that xyz=zxy and deduce that l+yzx is the re-
quired inverse for 1-yx.]

(b) Deduce from part (a) that if A is a nonzero element in the spectrum of xy,
then A is likewise in the spectrum of yx. Show that restriction of this state-
ment to nonzero elements of the spectrum is in fact necessary.

(c) Conclude from parts (a) and (b) that if x is invertible, then the spectrum of
xy is identical to that of yx for all yEA.

7. Let A be a complex unital Banach algebra and let x,ynA. Show that xy and
yx have the same spectral radius. [Hint: Use the previous exercise.]

8. Let A be a complex Banach algebra without unity, and suppose that A em-
beds isometrically into a unital Banach algebra B as a subspace of codi-
mension 1. (According to Exercise 2, such an algebra B always exists.)

(a) Show that linear extension and restriction define a pair of inverse map-
pings between the character spaces A and B.

(b) Let I'a:B ---* F(B) denote the Gelfand transform for B. Show that the im-
age of A under F,, already separates points in h and hence in A . (See
Theorem 2-11.)

9. Let H be a Hilbert space. Show that every element of (PEH* takes the form

fi(x) = (xlxo)
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for some element xoeH uniquely defined by rp. [Hint: Assume that rp is not
the zero transformation and let K denote the kernel of rp. Decompose H
into the direct sum of K and Kl (the closed subspace of H consisting of
elements orthogonal to K). Clearly there exists yoeK' such that c(yo)=1.
Now show that xo=yo/11y011 has the required property. The key will be that
x- c(x)y lies in K for all xeH.]

10. Let H be a Hilbert space and let TeEnd(H). Show that the adjoint trans-
formation T*EEnd(H) exists and is unique. [Hint: For each yeH, the map-
ping x H (T(x) l y) lies in H*. Hence by the previous exercise there exists
an element T*(y)EH such that (T(x) ly) = (x I T*(y)) for all xEII. Now
show that T* lies in End(H).]

11. Let X be a subset of a Hilbert space H and define Xl to be the set of points
in H orthogonal to every element of X. Show that X -L is a closed subspace
of H.

12. Let W be a closed subspace of a Hilbert space H and define Wl as in the
previous problem. Show that H= W®W' as a vector space. [Hint: Given
xeH define pr(x), the orthogonal projection of x onto the subspace W, to
be the closest point of W to x. Then show that x = pr,,,(x) + (x-pr,,,(x)) is
the required unique decomposition.]

13. Continuing in the context of the previous problem, show that (X')1 is the
smallest closed subspace of H that contains the closure of X. Conclude, in
particular, that if W is a closed subspace of H, then (W1)'= If.

14. Let H be a Hilbert space and let T be a normal element of End(H). Show
that for all xeH, IIT(x)11=117'*(x)II [Hint: By definition of the adjoint, for all
xEH, (T(x)tT(x))=(T*T(x)l x). But T* commutes with T.]

15. Let TEEnd(II) be a positive operator on a Hilbert space H. Show that the
"square root" of T as defined in Proposition 2-22 is unique, arguing as fol-
lows:

(a) Show that if SEEnd(H) is a positive operator such that S2=T, then both T
and T"2 lie in As, the smallest closed, self-adjoint, unital subalgebra of
End(H) containing S.

(b) Show that T'R corresponds under the isomorphism of Theorem 2-17 to a
functiongEW(sp(S)) satisfying g2(A)=22 for all AEsp(S).

(c) Conclude from (b) and the positivity of S that in fact S= V1.
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16. (Unitarizability for Compact Groups) Let rr be a representation of a com-
pact group G on a finite-dimensional vector space V. Show that there exists
a scalar product (I) on V that is ,r(G)-invariant; that is, ;r is unitary with
respect to the Hilbert space structure defined on V by this scalar product.
Note that this construction applies to any finite group with the discrete to-
pology. [Hint: Pick any scalar product [ I I on V, and consider the average

(V Iv') vol(G)f

where dg is the Haar measure on G.]

17. Give an example of a finite-dimensional representation of a locally com-
pact, but noncompact, group for which the conclusion asserted by the pre-
vious exercise does not hold. [Hint: Try G=SL2(C), V=C2, with jrtaken to
be the standard representation.]

18. Let (,r, V) be a finite-dimensional unitary representation of a locally com-
pact group G. Show that Iris completely reducible; that is, there exists a di-
rect sum decomposition

V = ®,'_' 1 V.

such that (i) n(G) preserves each V , and (ii) the restriction of sr to V+ is ir-
reducible for all i. [flint: Take orthogonal complements of invariant sub-
spaces. ]

19. Give an example of an infinite-dimensional unitary representation of a
locally compact group G that is not completely reducible. [flint: Try G=R
and V=1,2 (R), where Yr acts by translation on the functions that constitute
V.1

20. (Orthogonality Relations for Compact Groups) Let (r, V) and (sr', V') be
nonisomorphic, irreducible, unitary representations of a compact group G.
Show that the following identity holds for all v1,v2E Vand v'1,v'2eV':

(7r(v1)Iv2)(2r(vi)Iv2 )'d9=0
C,

where dg denotes the Haar measure on G normalized to give total volume
one-this is called the probability measure on G-and ( I ) and (I >' de-
note the invariant scalar products on V and V', respectively.
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21. Let (,r, V) be an irreducible unitary representation of a compact group G

with Haar measure dg. Verify the following identity for all vj,v2,v3,v4E V:

.1(2r(g)v1Iv2)(;r(g)v3Iv4) dg

G

dim(V)(vllv2)(v3Iv4)

22. Let G be a locally compact group with Haar measure dg. Define L2(G) to be
the Hilbert space of square-integrable functions on G; that is, L2(G) con-
sists of the measurable functions f. G-3. C such that

JIr(g)I2 dg <_

Show that the right (or left) translation action of G on L2(G) defines a uni-
tary representation relative to the scalar product

(rI h) = j r(g)h(g) dg

This is called the regular representation of G.

23. Let (ir, V) be a finite-dimensional unitary representation of a compact
group G. For any pair (v,,v2) of vectors in V, define the associated matrix
coefficient to be the function G-+C defined by

g H (7r(g)vi I v2 )

where (I) denotes the ir-invariant inner product on V.

(a) Show that the character x,r: G-* C defined by g H tr ,r(g) is a linear com-
bination of matrix coefficients (relative to a basis of V). Show further that

x,.(g)=x (g')

for all gEG.

(b) (Orthogonality of Characters) Show that if (;r, G') is another finite-
dimensional unitary representation and if, moreover, ;,r and ir' are irreduci-
ble, then
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0 if ,r it r'

% if,,r'
V

Here * denotes the convolution product:

f * h(x) = J f(xy ')h(Y)d
G

24. Assume that G is a compact matrix group; that is, a compact subgroup of
GL (C). Let M(G) denote the C-linear span of the matrix coefficients of
all finite-dimensional unitary irreducible representations (,r,V) of G. One
endows M(G) with an algebra structure via the tensor product.

(a) Show that the elements of M(G) are continuous and that M(G) contains
the constant functions and separates points.

(b) Show that M(G) is uniformly dense in the space of continuous functions
from G to C.

(c) Show that M(G) is dense for the L2-norm in L2(G). This is defined by

1/2

111112={JIf(g)I2dg}

25. Again let G be a compact matrix group.

(a) Show that we have the following decomposition of the (right) regular rep-
resentation:

L2(G)- 6 _dim(V)-V
(R,V)efJ

where G denotes the set of inequivalent irreducible unitary representations
of G, and ® denotes the Hilbert direct sum; that is, the completion of the
algebraic direct sum.

(b) If G is finite, show that there is a natural identification of L2(G) with the
complex group algebra CG.
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26. Show that every irreducible unitary representation of a compact matrix
group is necessarily finite-dimensional.

REMARK. The assertions of the preceding three exercises are in fact true for any
compact group G (that is, without assuming'that G is a matrix group). Together
they are the content of the Peter-Weyl theorem, the most fundamental result in
the representation theory of compact groups.

27. Let G be a locally compact group, and let H be a closed, unimodular sub-
group. This means that the left and right Haar measures on H are identical,
after appropriate normalization. Let W be a Hilbert space with its corre-
sponding space of unitary transformations denoted ?l(W), and suppose that
a- H- W(W) is a unitary representation of H. Define

IWN(cr)

the so-called representation of G induced by (cr, W) to be the space of func-
tions f from G to W such that

(i) f(hg)=a(h)f(g) for all hEH, gEG, and

(ii) f is measurable and in L2 modulo II; that is, the product (f(g)j f(g)),
which by the previous condition and the unitarity of o is well-defined
on H\G, is integrable over the quotient space.

Note that G acts on Indc(cr) by right translation; that is, by the action

(x,f) N (g H f(gx))

for all g,xEG.

(a) Show that Indc'(o) is a unitary representation of G. (Hint: First show that

d
dg

dh

is a right G-invariant measure on the homogeneous space H\G; use it and
the H-invariant scalar product on W to define an appropriate scalar product
on IndN(Q).]

(b) If H is not unimodular, how should the definition of IndN(a) be modified
to ensure unitarity?
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(c) Show that if G is a finite group, then there is a natural G-isomorphism

IndH(Q).W®,CG

Note that the object on the right is the usual induced module in the repre-
sentation theory of finite groups.

28. Let G=R, here viewed as an additive, locally compact group with Haar
measure given by the ordinary Lebesgue measure dx.

(a) Given feL2(R) and zeR, define (p,f)(x) f(x+z). Show that

R - Aut(L2(R))
z H p,

is a well-defined unitary representation.

(b) Show that for zER, the operator p, has a purely continuous spectrum; that
is, for each ,%esp(p,), there exists no corresponding eigenvector, which in
turn is to say, no element feL2(R) such that pf-2f=0.

(c) Determine sp(p,) and the spectral measure E on sp(p,), as in the second
spectral theorem.

(d) Show that EndR(L2(R)) is commutative. [When this happens, one says that
the representation (p,L2(R)) is multiplicity-free.] Show nonetheless that
EndR(L2(R)) is not C, so that the representation is not irreducible.

(e) After studying Chapter 4, do this problem again for G=QP.



3
Duality for Locally Compact
Abelian Groups

For a locally compact abelian group G, its group G of characters (i.e., continu-
ous homomorphisms from G to S) also acquires the structure of a topological
group. In this chapter, we give two distinctive characterizations of what turns
out to be the same underlying topology for G and examine this topology in
detail. The main result is the Pontryagin duality theorem, which says in effect
that G and G are mutually dual, both algebraically and topologically. To prove
this, we build upon the results of the previous chapter, especially insofar as the
introduction of functions of positive type makes a critical correspondence with
the theory of unitary representations.

Another key element of the discussion is the definition of the Fourier trans-
form in this abstract setting. Extending the notion of the real Fourier transform,
we shall here associate with every suitable complex-valued function f on G a
complex-valued transform f on G. Moreover, we shall see that the functions f
and f satisfy a generalized form of the Fourier inversion formula.

The locally compact abelian groups of most importance to us will ultimately
be the additive and multiplicative groups associated with a local field F, which
in characteristic zero must be R, C, or a finite extension of the p-adics Qp. In
this context, the Fourier transform and the Fourier inversion formula bear
heavily on Tate's thesis. To be more precise, the local zeta functions Z(f, V, s) of
Tate are defined, for seC, with respect to an appropriate function f on a local
field F and a character X on F*. The functional equation then relates Z(f,x s)
to Z(f,Z,I-s), where X is the conjugate of the character X. Hence this mate-
rial is doubly critical to the sequel.

3.1 The Pontryagin Dual

Let G be an arbitrary group. If X is any subset of G, for n e N define X<' G as
follows:
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X(n) = {nxi : xl e X, j = 1,...,n r
lj_2 )

Thus we explicitly distinguish between and the n-fold Cartesian product of
Xwith itself.

Assume now that G is an abelian topological group, written multiplicatively.
Define G, the (multiplicative) group of continuous complex characters of G, to
be the set of all continuous homomorphisms G-*S', where as usual, S' denotes
the group of complex numbers of absolute value 1. G is also called the Pontry-
agin dual of G. Let K be a compact subset of G, and let V be a neighborhood of
the identity in S'. Then define the subset W(K, V) of G by the formula

W(K,V)={XEG:X(K)cV} .

The sets W(K, V) constitute a neighborhood base for the trivial character and
hence determine a topology on G, called the compact-open topology. If G is
discrete (in which case every compact set is finite), this topology evidently co-
incides with the topology of pointwise convergence.

We next define some key subsets in S'. Recall that S' has universal cover
given by the exponential map

q :R -- S'
x H e2'

which is in fact a continuous homomorphism with kernel Z. Let e be a real
number such that 0 < e_-9 1. Define N(e) eS' by

N(e)=q,((-3,+3))

Thus, N(e) is the image under la of a symmetric open neighborhood of OeR.

The key to the analysis of the compact-open topology on G is the following
technical lemma.

3-1 LEMMA. Let m be a positive integer and suppose that xcC is such that
x, x2,...,xm lie in N(1). Then xoN(1/m). Consequently, if U is a subset of G
containing the identity and X: G--S' is a group homomorphism (not nec-
essarily continuous) such that X(U(m))cN(1), then X(U)eN(1/m).

PROOF. Let r be an arbitrary positive'integer and suppose that x' lies in N(1).
Then clearly there exists such that xr=y., whence the quotient x/y is a
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complex rth root of unity. Thus xeN(1/r)p(q/r) for some integer q such that
05 q < r. We shall now make a crucial observation about sets of the form
N(1/r)q,(q/r) that in passing explains the factor of one-third in the definition of
N(s): for all positive integers r we have the implication

N(r1)nN( 1r+1)so(r91)#0 q=0

The point is that

N(r) _ {exp(23it ):t e(-- ,+r)}

while

N( 1 9 )={exp(2-rit).t e(3q-1 3q+1)}

r+l r+l 3 r+1 r+1

Hence the intervals indicated for the parameter t can have no intersection un-
less l/r > (3q- 1)1(r+ 1), which is to say that 2r+ 1 > 3qr, an inequality that
cannot hold unless q=0.

Suppose now that xeN(1/r) and x'11eN(1). Then xEN(11(r+l)) modulo an
(r+I)th root of unity, and therefore by the observation of the last paragraph, in
fact xeN(l/(r+l)). Thus it follows by induction that if x,xz,...,xm lie in N(1),
then x lies in N(1/m), as claimed.

The second statement follows immediately: Let geUcG, and suppose that
U contains the identity. Then clearly g,gz,...,g'"e U(m). Hence if X(U(m))gN(1),
X(g) satisfies the hypotheses of the first part of the lemma. Thus X(g)eN(1/m)
and X(U)cN(1/m), as claimed.

3-2 PROPOSITION. Let G be an abelian topological group. Then the following
assertions hold.-

(i) A group homomorphism X:0-+S' is continuous, and hence a charac-
ter of G, if and only if XI (N(1)) is a neighborhood of the identity in G.

(ii) The family {W(K,N(l))}k (indexed over all compact subsets of G) is a
neighborhood base of the trivial character for the compact-open to-
pology of G.

(iii) If G is discrete, then G is compact.

(iv) If G is compact, then G is discrete.

(v) If G is locally compact, then G is likewise locally compact.
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PROOF. (i) Suppose that indeed there exists an open neighborhood U of the
identity of G that maps into N(1) via X. Then since multiplication in G is con-
tinuous, for any positive integer m there exists an open neighborhood V of the
identity in G such that V(') is contained in U. Thus according to the previous
lemma, V" c:N(1/m), and X is continuous.

(ii) We need to show that for every compact subset K, of G and for every posi-
tive m, there exists a compact subset K of G such that

W(K, N(1))c W(K1,N(1/m)) .

Let K = K,), which is the continuous image of the compact set K' (direct
product), hence itself compact. If XeW(K,N(1)), then by construction, for all
xEKI, we have that ,Z(x),x(x)2'...'X(x)mEN(I). It follows now from the lemma
that X(x)eN(1/m), whence as claimed.

(iii) If G is discrete, then G = Hom(G,S' ), the set of all algebra homomor-
phisms from G to the circle group. Moreover, as noted above, the compact-open
topology on G is precisely the topology of pointwise convergence. But with
respect to the latter topology, Hom(G,S) is evidently a closed subset of the
space of all maps from G to S', which is itself compact. Hence G is compact.

(iv) Given any character X, X(G) is a subgroup of S' and hence not contained in
any set of the form N(e), 0 < e51. Thus if G is compact, then W(G,N(1)) can
contain only the trivial character, which therefore constitutes an open subset of
6. It follows at once that G is discrete.

(v) To show that G is locally compact, we shall show that if K is any fixed
compact neighborhood of the identity of G, then

W =W(K,N(1/4))

is a compact neighborhood of the identity in G. (Here the bar denotes closure.)
By part (ii), this suffices, since {W(K,N(1))} for K compact is a neighborhood
base at the identity.

Let Go denote the discrete topological group having the same group structure
as G. Note that only finite subsets of G. are compact. From parts (iii) and (iv)
we know that G0, is just Hom(G,S) with the topology of pointwise conver-
gence and that Go is compact. Define Wo by

Wo = {X eG0:X(K)c N(1/4)} .
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Now clearly Wo is closed in G0, and is therefore itself compact. Moreover,
Wcc_ W by part (i), and certainly We W0, since Go ignores continuity. Hence

W= Wo

and if ro denotes the topology induced on W by Go, and r denotes the topology
on W induced by G, it suffices to show thatro is finer than r; for then the com-
pactness of W with respect to ro will imply its compactness with respect to r, as
required. (In fact, the two topologies are then equal, since r, the compact-open
topology, is clearly finer than ro, the topology of pointwise convergence.) Let
K, be a compact subset of G and let m be a positive integer. For each Xo W,
consider the subset

W(X) _ (XW(K,,N(1/m)))nW .

We shall show that each W(X) is an open neighborhood of X with respect to ro,
whence rhas a neighborhood base at X contained in r,

Let V be an open neighborhood of the identity in G such that V(2m)c_K. Since
K, is compact, there exists a finite set F such that Define a subset
W0(X) of Was follows:

W0(X) = (XW,(F,N(l/(2m)))) nW

where W0(F,N(I/(2m))) denotes the set of characters on Go that map F into
N(1/(2m)). We claim that W0(X) is a r,-neighborhood of X contained in W(X),
and this will complete the proof. Since Wo(F,N(1/(2m))) is clearly open in Go,
only the inclusion W0(X)g W(X) needs verification.

Let peW0(X). Then by construction, u=X,croeW for some NE60 such that
Since clearly p=X NeW(2) it follows that

po(K) c N(l/2) c N(1)

From this we may draw two conclusions:

(a) The character is continuous [according to part (i)].

(b) By the assumption that V(2')cK and by the preceding lemma, we have that
p0(1")cN(1/(2m)) and hence the following chain of inclusions:

p0(K,) c 1(F) j(V) c N(1/(2m)) N(1/(2m)) = N(1/m) .

The upshot is that p0 in fact lies in W(K,,N(1/m)), and therefore u lies in W(X).
Thus W0(X) is indeed contained in W(X), as required.
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3.2 Functions of Positive Type

In order to motivate the principal definition of this discussion, we begin with an
elementary observation about unitary representations.

Let p be a representation of the topological group G (not necessarily locally
compact or abelian) in the space of unitary operators of a Hilbert space H. For
our current purposes, for any sEG it will be convenient to write p(s) rather than
p, for the associated operator. Fix xEH. We may now define a complex-valued
function q' on G as follows:

.P(s) = (p(s)(x) I x)

Let s...... sn be any family of elements in G and consider the complex nxn ma-
trix

A= ((p(s,-'si )) .

We claim that A is both Hermitian and positive semidefinite. The first point is
trivial: since each p(s) is unitary,

<p(Sf'S,)(x)IX>=<p(s,)(x)Ip(sj)(x)>=(p(Sj)(X)Ip(S,XX)>=<p(S,'sj)(x)Ix)

For the second, consider any complex vector z=(z) EC". Then we compute

(Azlz)= rp(s"Si)zjai
i.j=1

(p(S1)(X )I p(S j)(X ))Z jzi
i.j=1

n n

_ (Y,p(Sj)(zjX)I Y_ p(S,)(Zix))

I p(S,)(Z(X) I2 Z 0
i=1

This analysis will lead shortly to a key definition in which the preceding ine-
quality appears in continuous form.

Assume now that G is a locally compact group with (left) Haar measure ds.
Let 8' (G) denote the set of complex-valued continuous functions on G with
compact support. Recall that for every p, 15psoo, 'JG) is contained in the
Banach space L"(G) and is hence subject to the LP-norm and associated topol-
ogy defined by
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IIIII'=jJIIIPdx

lX
}"P

for finite p, with IIfII. defined to be the essential supremum of If I. [See Ap-
pendix A, Section A.4. Note that L °°(G) consists of functions in L(G) with finite
essential supremum.] In fact, for all p, S'0(G) is dense in L'(G).

DEFINITION. Let G be a locally compact topological group. Then a Haar-
measurable function q': G-iC in L' (G) is said to be of positive type (or posi-
tive definite) if for any fe '0(G) the following inequality holds:

JJp(s 't)f(s)dsf(t) dt z 0 .

Both integrals are implicitly over the full group G.

Note that the integrand is Haar measurable on GxG by Exercise 1 below,
and so Fubini's theorem applies to show that this double integral is in fact de-
fined. (Every locally compact group is the disjoint union of o compact spaces;
see Section A.4 of the Appendices.) Moreover, if the support off is contained in
the compact subset KcG, then the integrand has support contained in the com-
pact subset KxK of GxG. Since 97 is in L°°(G), it is bounded by II ipIh, the es-
sential supremum of q, except on a set of measure zero. Thus the integral is
itself bounded as follows:

IJJq,(s-'t)f(s)dsf(t)dt15Ilipll (3.1)

Here p(K) is the (necessarily finite) Haar measure of K.
To establish some fundamental properties of functions of positive type, we

make two connections: first with Hilbert spaces and second with unitary repre-
sentations.

If to is a function of positive type, we can define a positive sesquilinear (and
hence conjugate symmetric) form on WJG) by the formula

(Ilf2)9 = JJta(s 't)J(s)dsfz(t)dt .

Analysis similar to that above shows that this integral is defined and finite for
allj and fZ in WA(G). Put

W,,= {fE',(G):(flf), 0} .

It follows from the Cauchy-Schwarz inequality (the proof of which does not
require positive definiteness) that W, is a subspace of ' 'JG) and that We con-



3.2. Functions of Positive Type 93

sists of those functions that are degenerate with respect to So. We may thus form
the quotient space W,(G)IWc, , on which, by construction, ( I ) is a positive
definite Hermitian form. Let V9 denote the completion of this quotient, to
which the form (I )q, extends by continuity. Accordingly, V0 acquires the
structure of a Hilbert space.

Let f be any function on G and recall that for any SEG, we define L, f on G
as follows:

L,f(t) =AS It)

In the particular case that fE'.(G), then also L, fe'jG) by the continuity of
the group laws and one checks easily that the mapping

G - End(W,(G))
L,

is an abstract representation of G. Moreover, if so is a function of positive type
on G, and f is again in 8',(G), then

(L,fIL=f)9 = JJvp(t-'u)f(s't)dtf(s'u)du

= JJso((s-'t)-'(s'u))fWit) dtf(s'u)du

= JJrp(t-'u)f(t)dtf(u)du

= (fl f),

This shows that L induces at least an abstract unitary representation of G on the
Hilbert space V,,. To see that L is moreover a topological representation, it suf-
fices by Corollary 2-2 to show that for everyfEW,(G) the mapping

G -* W(G)
SHL,f

is continuous, which is to say that if sa-+s in G, then L,, f - L, f in WJG)
with respect to the q-norm. According to inequality 3.1., this will be the case,
provided that the obvious pointwise convergence

f(sa't)--* f(S't)

for teG is uniform. But clearly sQ't s 't uniformly in G, whence the re-
quired uniform convergence follows from Exercise 2 below. We summarize this
discussion in the following proposition:
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3-3 PROPOSITION. Let G be a locally compact group and let q, be a function of
positive type on G. Then the mapping L, induces a unitary represen-
tation of G on the associated Hilbert space Vv.

Further properties of functions of bounded type depend on a more detailed
examination of the representation above.

Definition of Convolution and the Representation of Bounded
Functions of Positive Type

The representation described above of G on V. allows us to represent a
bounded function rp of positive type in the following sense: there exists a func-
tion xce Vc such that

.p(s) = (xmIL,x,)c

almost everywhere for seG. To develop this result, we need first to recall the
notion of convolution of functions on G.

Let f and g be complex-valued Borel functions on a locally compact topo-
logical group G. Then their convolution f*g is defined by

f*g(t)= Jg(s't)f(s)ds= f g(s')f(ts)ds

provided that this integral, taken over the full group with respect to the (left)
Haar measure ds, exists. We shall make a more systematic study of the key
properties of convolution in the following section. In connection with our cur-
rent study of functions of positive type, we are interested in the special case f*9
where fe ' (G), prL'(G). Under these conditions, clearly f*q, exists. More-
over, if ta-+t in G, then

f qo(s ')(f (ts) - f (tas)) ds --* 0

and it follows that f*ip is continuous.

3-4 PROPOSITION. Let q, be a function of positive type on G. Then there exists
an element xce V97 such that

rp(s) = (xv ILsx.),,

almost everywhere for seG.
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PROOF. Let (a) be an index set for the collection of open neighborhoods a of
the identity of G. Since G is Hausdorff clearly (e)=f)aVa, and if we write
asQ whenever VpcVa, then (a) is a directed set. It follows from Urysohn's
lemma for locally compact spaces that for index c; we can construct a continu-
ous function ga: GAR. such that

(i) the support ofga is a compact subset of Va;

(ii) each ga satisfies the equality

J ga (s)ds=1
G

This simultaneously defines a net (ga(s)ds) of positive linear functionals on
Wc(G):

f H J.f(s)ga(s)ds
G

Evidently these converge weakly to the Dirac measure 5,, which is nothing
more than evaluation at the identity e; that is,

8.(f)=f(e) .

Let fEW,(G), and let ga be as above. Consider the integral

JJ p(s't)f(s)dsga(t)dt = J f *q.

which exists, since f* q, is continuous and g has compact support. We may now
define a linear form 1 on V that on ',(G) is given by

(D(f) = lim(f l ga),, = lim JJp(s't)f(s)dsga(t)dt = lim j f *op(t) ga(t)dt

To see that this limit exists and that in fact

(D(f)=f*9)(e)=5gq(s')f(s)ds

it suffices to note that in order to compute O(f) we may replace the factor f*V
in the integrand by the product where he'6(G) is a fixed function
that takes the value 1 in a neighborhood of e that contains the eventual support
of ga. Hence (f*rp) h lies in ',(G), and the previous equality is nothing more
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than the weak convergence of ge(s)ds to 5. Now since
exists an element x, V9 such that

V,, is self-dual, there

for all e VQ; this is to say that the g,, converge weakly in VP to x9.
We shall see next how x. behaves under the continuous group action from G

defined by s 1-4 L,. First we compute

( I L,x,), = lim(g I L,ga),,

=lim JJ4p(t-'u)t(t)dtga(s-'u)du

= J rp(t-'s) (t) dt .

Next we compute the inner product in reverse order:

(L,x0I lim(L,ga I ,
= lim JJ c(t-'u)g. (s `t) dt 4(u) du

=

By the conjugate symmetry of the Hermitian form (I ),, it now follows at once
from the two previous equations that

J q(t-'s) fi(t)dt= Jq(s't) fi(t)dt . (3.2)

In the special case that s=e, we have, in particular, that

f (3.3)

From Eq. 3.2 we deduce immediately that for arbitrary heT.(G),

(Ih), =
J (4 I LIx9),h(t)dt

and by (strong) continuity this equality clearly extends to all of Vo. This shows
that if is orthogonal to the CG-submodule of V9 generated by xo, then f is
zero in Vo. Thus VP is in fact generated as a CG-module by xq. In the special
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case =xo, the previous equation together with Eq. 3.3 shows that for all
WE c.

J q(s)v(s)dc=(x,, V'>c = J(xcI L,xo)9 w(s)ds

whence

90) = (X, I LX,),

almost everywhere, as required.

3-5 COROLLARY. Let q' be as above. Then op is equal to a continuous function
of positive type almost everywhere. If moreover, 4' is itself continuous,
then we have further that:

(i) op (e) Z0.

(ii) p(e)=sup I p(s)I, where s ranges over G.

(iii) op(s-') = .p(s) for all se G.

PROOF. The main statement is obvious from the representation of 'given in the
proposition: the inner product is continuous by the polarization identity from
linear algebra. For assertion (i), note that

p(e) _ (xc I L,xq,)9 = (xc I xq,) , z 0

Next, (ii) follows from the Cauchy-Schwarz inequality:

v(s)Z = (x,IL,x,)2 5 (x I x9)o(L,x,I L,x,,)v
= (x9Ixq) , = 9,(e)2

The key, of course, is that L, is unitary. Finally, (iii) is again an easy exercise in
unitary operators:

ip(S ,) = (xq I LJ , xc )q, = (L,x,, I xp )9 = (x9I L'x9 )f,= 9,(s) .

Elementary Functions

The functions of positive type that are continuous on G and bounded by I in the
L °°-norm constitute an important subset of L `°(G) denoted . '(G); that is,

.9(G) = { e'(G)n L °'(G) : opis a positive type and IIcIL51 } .



98 3. Duality for Locally Compact Abelian Groups

Note that by the corollary above, in this case the condition IIq,I1.s1 amounts to
nothing more than q(e)51.

A related collection of L functions, denoted ss(G), is defined as follows. A
function c lies in £'(G) if it is the zero map or if it satisfies the following three
conditions:

(i) rp is continuous and of positive type.

(ii) rp(e)=1.

(iii) For every decomposition 4p= rp,+q'2 into the sum of two functions q,i,
both lying in _60(G), there exist positive real constants A, and A. such that

V1 = A, to p2 = 2,v (whence A, +.12 = 1) .

The nonzero elements of '(G) are called elementary functions. Note that con-
dition (iii) asserts that elements of '(G) are in fact extreme points of

3-6 LEMMA. -,'-)-'(G) and F'(G) have the following properties:

(i) . '(G) is a convex, bounded subset of L°°(G). It is, moreover, weakly
closed and therefore weakly compact as a subset of L'(G)*.

(ii) Any convex, closed subset of 4'(G) containing its extreme points is all
of 911(G).

(iii) The extreme points of .'(G) consist precisely of the points of'(G).

PROOF. (i) .:'(G) is obviously convex and bounded. Now identify elements of
,9'(G) with elements of L'(G)* in accordance with the usual duality theory for
LP-spaces (see Section A.4 of Appendix A). Recall in particular that the infinity
norm of an element in L°°(G) is identical to the norm of the corresponding
functional between the Banach spaces L'(G) and C. To say that a sequence ig,
of functions in .9(G) is weakly convergent to some rpeL°°(G) is to say that for
all feL'(G) we have

Jfgxds-> jfrpds

It follows at once from this that IIq?1I.51 and that

55q (s't)f(s)dsf(t)dt-- jjrp(s-'t)f(s)dsf(t)dt

whence rp is also of positive type and therefore continuous by the previous cor-
ollary. More precisely, to represents the equivalence class of a continuous
function in L-(G)]. Thus as a subset of L'(X)*, 3'(G) corresponds to a closed
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subset of the unit ball, which is therefore compact under the weak-star topology
by Alaoglu's theorem.

(ii) This is a special case of the Krein-Milman theorem.

(iii) The only point to check is that a nonzero extreme point q e.,P(G) satisfies
rp(e)=1. But if ip(e)<l, then also

V(e)

lies in .9(G), and p is not extreme. 0

This brings us to a striking and exquisite theorem that connects the elemen-
tary functions with irreducible representations.

3-7 THEOREM. Let to be a continuous function of positive type on G such that
,p(e)=1. Then op e '(G) if and only if the unitary representation s H L, of
G in V. is irreducible; that is, V., itself and the zero subspace are the only
closed subspaces of c that are invariant under each of the transforma-
tions L3, for se G.

PROOF. =) Assume that q' is an elementary function. Let W be a closed G-
invariant subspace of 9' , with orthogonal complement W -L. Let prw denote the
orthogonal projection map into W. Then since each operator L., is unitary, we
have the following commutative diagram:

jr

W®W1 Fw
11

W1

L, Z I L,

W®W1 pr WI
Thus it suffices to show that if A is any orthogonal projection operator that
commutes with each Ls, then A is either the zero map or the identity map on
V,. Since in general we have (AxLv)r,=(AxIAy)4 for any projection, it follows
that for all saG,

V(s) = (xcI L,xo ),,

= (Ax9I L,xq,)q, +(x9 -AxcI L,xc).,

= (AxcIL,AX, )o + (x9 -- Axon L, (x,,- Ax' ))o

This expresses q' as the sum of two functions that, by Exercise 4, are of positive
type. Hence under the assumption that to is extreme,
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(Ax9IL,x9>9 = A(x9IL,x9>9

for all se G, and it follows that A =A-1 Vo, because as we observed in the proof of
the representation theorem for functions of positive type, x9 generates V9 as a
CG-module. But since A is idempotent, this forces A to be 0 or 1, as required.

G) Suppose that the given representation of G in V9 is indeed irreducible and
that p=p,+q7, is a decomposition of op into the sum of two functions from
.41(G). Then for each fEW,.(G), one observes easily that

<flf>c, s (fIf>q

From this it follows that any element of ',(G) that is degenerate with respect to
<I >9 is also degenerate with respect to (I )91. Thus 9, likewise defines a Her-
mitian form on V9, and accordingly there exists a continuous positive definite
endomorphism A of V, such that

for all , WWEV,,. Thus, in particular,

<Axq,IL,xq)q, _(x,IL,x,),1

for all seG. But also

(xc I L,xq, )q,, = -A (S)

The point here is that in the proof of Proposition 3-4, the convergence of the
net {gQ} to x9 with respect to the (I )9 norm will also hold with respect to the
(I )91-norm by virtue of the last-stated inequality. Thus V, is likewise repre-
sented by x9 in the sense above. The upshot is that

(Ax,IL,x.P),=q(s)

We claim now that A commutes with each L,. Granting this, Schur's lemma for
unitary representations (Theorem 2-26) implies that A is a scalar multiple A of
the identity map on V9, and therefore

91(S) = (AxcI L,xq,)9 = AV(s)

showing that to is indeed extreme.
Finally, to establish the claim we rely on the unitary nature of L, and com-

pute as follows:
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(ALsgIw)9, =(L,cIv,)V,
= (9 ILJ-, V)9,

=(AcIL,-,W)c
=(L,A9, IW)c

for all seG and op, tiveW (G). This completes the proof. 0

We can now make an enlightening connection between functions of positive
type and group characters. Here, at long last, we assume that G is abetian.

3-8 THEOREM. Let G be a locally compact abelian topological group. Then the
elementary functions of positive type on G are precisely the (continuous)
characters of G.

PROOF. Note first that a character x on G is clearly a bounded function in
L-(G). Moreover, by the following calculation it is of positive type:

if x(S't)f(s)ds f(t)dt=JJx(s)x(t)f(s)ds.r(t)dt

= f x(s)f(s)ds - f x(t)f(t)dt
Jx(S)f(S)ds12

for all f°'c(G). Since necessarily 2(e)=1, in light of the previous theorem it
suffices to show that given a continuous function q of positive type on G such
that 9)(e)=1, the following conditions are equivalent:

(i) The representation of G in v9 is irreducible.

(ii) q' is a character of G.

One implication is straightforward; the other depends on spectral theory.

(ii)=: (i) Suppose that to is a character of G and consider a function fEW,(G).
Then as above,

(f)o= ff p(s't)f(s)dsf(t)dt
=I J c(S)f(S)dS I2 .
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The point i.; that the subspace of W(G) consisting of functions degenerate with
respect to the form < I )o has codimension 1, and hence V. is a I-dimensional
and therefore irreducible representation of G.

(i)=(ii) Assume now that the representation of G via q in Vo is irreducible.
Then as a consequence of Schur's lemma (specifically, Theorem 2-27), the rep-
resentation s H L, is one-dimensional, whence for all to Vo,

L,(4) =A(s)h

where A(s) evidently depends continuously on s. Moreover, it is clear from the
preceding equation that indeed A is a character of G. Finally,

q(s) = (X,I L,ro )e = A(sxx,l x9>,, = A(s)r(e) = A(s)

whence to is likewise a character, as claimed.

3.3 The Fourier Inversion Formula

The principal technical tool for establishing the Pontryagin duality theorem in
the following section is the Fourier inversion formula. In this section we review
the Fourier transform and prove this fundamental result. Throughout, G de-
notes a locally compact abelian group with bi-invariant Haar measure dr and
continuous complex character group G.

DEFINT11oN. Let feL'(G). Then we define f:G -+ C, the Fourier transform of
f, by the formula

I(X) = f f(y)x(y)dy

for %E G.

Note that this formula makes sense, since for all yeG, X(y) has norm 1.
Hence if f is integrable, so is the product appearing in the integrabd. Moreover,
one verifies at once that l f(X)15 II f14 for f e L' (G), X e 6.

REMARK. In the special case that G=R, the topological group of real numbers
with respect to addition, we can identify each teR with the character

sHe
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In this case the formula above reduces to

f(t) = j.If (s)e-r:ids

R

which is of course the ordinary Fourier transform of a function defined on R.
The point is that despite appearances, this should in fact be regarded as a func-
tion on A.

Let V(G) denote the complex span of the continuous functions of positive
type on G, and define

V'(G) = V(G)rL'(G) .

We can now state the principal result of this section. (See Exercises 13 and 14
below for direct proofs of this theorem and the duality theorem for G finite.)

3-9 THEOREM. (The Fourier Inversion Formula) There exists a Haar measure
dZ on G such that for all feV'(G),

.f(Y)= J.f(X)X(Y)dX

Moreover, the Fourier transform f H f identifies V'(G) with V'((§).

The measure dX of the theorem is called the dual measure of dx, the given
Haar measure on G. To prove its existence, we must begin with some elemen-
tary properties of convolution.

3-10 PRoPOStTION. Let f and g be complex-valued Bore! functions on the lo-
cally compact abelian group G. Then the following statements hold.

(i) If the convolution f*g(x) exists for some xeG, then so does g*f(x),
and in fact g*f(x) = f*g(x).

(ii) If f'geL'(G), then f*g(x) exists for almost all xeG; moreover,
f*geL'(G) and

Ilf*gll, 5 VIII, II9II1 -

(iii) Iffg, heL'(G), then (f*g)*h=f*(g*h).

Thus, in particular, convolution is both associative and commutative on
L' (G ).
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PROOF. (1) This follows by direct application of the translation-invariance of the
Haar measure on G. We replace y by yx in the integrand that defines convolu-
tion to obtain

f *g(x) = f g(y 'x)f(Y)dy

= f g(Y ' )f (Yx)dy

=g*f(x)

Note that the last step is justified by the elementary observation that for locally
compact abelian groups, the Haar measure of a Borel subset E of G is equal to
that of E-1. (See Exercise 7 below.)

(ii) First consider the homeomorphism a from GxG to itself defined by

a(x,y) = (Yx,Y)

Observe that the inverse map sends (x,y) to (y'x,y). Next consider an open
subset US C. Then a(f-'(U)xG) is clearly a Borel subset of GxG, and by con-
struction, (x,y)Ea(f-'(U)xG) if and only ify'xe f-'(U). This shows that the
mapping

(X, Y) H f(Y-'x)

is a Borel function on GxG and hence so is

(X, Y) N f(y 'x)g(Y)

since the product of Borel functions is again a Borel function. (Here we may
view g as a function on GxG in the obvious way.) Since both f and g are L'-
functions, we have

If I f(y-'x)I d I g(Y)I dy <

and therefore Fubini's theorem applies to yield

f f If(Y 'x)g(y)Id4dx=IIIII1IISII1

It follows that If I* IgI is an L'-function and hence is finite almost everywhere;
so, too, then forf*g. Finally, the inequality of norms is clear from the previous
equation.
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(iii) Associativity follows by a calculation that again depends on Fubini's theo-
rem; the requisite hypotheses are guaranteed for almost all x by part (ii). To
begin,

f*(g*h)(x)= f f(y'x)(g*h)(y)dy
= f f(y-'x) f g(z -'y)h(z) dz dy

= ff .f(y-'x)g(z 'y)h(z) dy dz

Now replace y by yz in the inner integral to obtain

f *(g*hXx) = f f f(y
z-'x)g(y)h(z)dycfi

= f f *g(z-'x)h(z)dz
=(f*g)*h(x) .

This completes the proof.

We may infer from the previous result that for G as above, L'(G) constitutes
a Banach algebra with respect to convolution. One sees easily that if G is dis-
crete, then L'(G) has a unit (the characteristic function of the group identity).
The converse also holds. The Banach algebra structure of L'(G) allows us to
make an explicit connection between the Fourier transform and the Gelfand
transform.

3-11 PROPOSITION. Let B denote the Banach algebra L'(G), and as usual let
B = Homc(B,C)* denote the space of (nonzero) complex characters of B.
For any given character X of G and function fEL' (G), define

vx(f) = f (x) = jf(y)z(y)dy .

Then for each X, i lies in B. Moreover, the mapping

16 __>h

X H vX

is a bijection.

Note that the proposition subsumes the assertion that the Fourier transform of
the convolution f*g is the complex product of Fourier transforms f g .
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Pttoop. Clearly each vx is linear on L'(G), and not identically zero, since each
character x of G takes values of norm 1. We check with a routine calculation
that each such map is multiplicative:

vr(f*g)= f f*g(y)x(y)dy
f(z'y)g(z)d=x(y) dy

=j jf(z-'y)x(y)dyg(z)dz

_ f jf(y)x(zy)dyg(z)dz

= f f (y)x(y) dy j g(z)x( dz

= f(x)8(x)

We show next that every nonzero character of B is of the form vx for some
group character X. Let lv:B--i-C be a nontrivial algebra homomorphism. By
Gelfand theory (Lemma 2-10) we know that yr is a functional on L'(G) of norm
bounded by 1. Hence by the duality of L' and L`° there exists some gML`°(G)
having identical norm such that

w(f) = f f(x)q,(x)dx
a

for all feL'(G). Recall that for any yeG and function f defined on G, Lyf is
defined by Ly f(x) f(y-'x). Now compute:

j V(f)g(y)w(y) dy = w(f)w(g)
= y(f *g)
= J I f(y 'x)g(y)dyvo(x)dx

= j5L,.f(x)p(x)dxg(y)dy

= j w(Lyf)g(y)dy

Thus we have that

w(f)w(y) = w(L,f) (3.4)

for almost all yeG. One shows readily that the expression on the right is con-
tinuous in y-the elements of WA(G) are dense in L'(G) and left and right uni-
formly continuous-whence we may assume that w is likewise continuous; here



3.3. The Fourier Inversion Formula 107

we need that yi is not zero. Now applying the previous equation three times, we
obtain

w(f)c(xy) = w(L=L,.I) = w(L,.f)c(x) = w(f) v(X)go(y)

Again since w is nonzero, c is multiplicative on G. Thus in particular,

4,(y-') = ta(y)-i

whence Ic,(y)(=1 for all ye G, because V, has L°°-norm bounded by 1. This shows
that 9 is indeed a character of G and that yv = iV .

Finally, given two group characters X and z', if vx(f) = ve (f) for all func-
tions feL'(G), then by duality, X and z' must agree almost everywhere in G.
But since both are continuous by definition, it follows that X=X', as required. 7

The Ring of Fourier Transforms and the Transform Topology

Consider now the space A for, more explicitly, A(G), should we wish to
emphasize the underlying locally compact abelian group G[ defined by

A={f:f EL'(G)} .

Thus A consists of the Fourier transforms of functions feL'(G) and inciden-
tally defines a weak topology on G, the space of complex characters of G; this
is the weakest topology such that each f eA is continuous. We shall call this
the transform topology on 6. Since the Fourier transform of f *g is the com-
plex product of functions f g , it follows that A in fact constitutes a ring of con-
tinuous functions on G with respect to the transform topology. Now, according
to the previous proposition, each element f r =A may be regarded as the Gel-
fand transform of f insofar as we identify G with the space of characters on
L'(G) via the mapping Z" vx. More precisely, we have by construction that

f'(vx) = i5(f) = .?(Z)

where, strictly speaking, on the left f denotes the Gelfand transform operating
on the space of characters of L'(G) in the sense of Chapter 2, and on the right
f denotes the Fourier transform operating on G. These considerations lead at
once to the following proposition.
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3-12 PROPOSITION. Let G have the transform topology induced by A . Then the
ring A is a separating, self-adjoint, dense subalgebra ofTo(G).

PROOF. Let us first consider h = Horn c(B, C)* . According to Lemma 2-10, if
L'(G) is unital, then h is a (weakly) compact subset of the dual space B*, and
given fEL'(G), its Gelfand transform f lies in '(B) . Otherwise, B perhaps
is not closed, because the weak limit of nontrivial algebra homomorphisms may
in fact be trivial. Nonetheless, in either case B' = B u(O) is closed. Thus for
each feL'(G), we have that f , when extended by zero to h', lies in '(B'),
and therefore f e W o (B) .

Now identify W (d) with T(B) according to the topological isomorphism
induced by Z H vX. Then by Gelfand theory (Theorem 2-11 and Exercise 8 of
Chapter 2) it follows that A is at least contained in Wo(G) and separates points.
Thus it only remains to show that A is self-adjoint, since its density in '0(G)
is then a consequence of the Stone-Weierstrass theorem (see Proposition 2-13
and Exercise 9 below). Let feL'(G). Then for all characters X on G, we have '

j.r(y ')x(y)dy = 5f(y)x(y-' )dy

= f f(y)x(y)dy

= AX)

showing that A is indeed closed under complex conjugation, as required.

This application of Gelfand theory becomes even more compelling in con-
sideration of the following theorem:

3-13 THEOREM. Let G and G be as above, and let K denote a compact subset
of G, and Van open neighborhood of 1 in S'. Then the following state-
ments hold.-

(i) Each of the sets W(K, V) as defined in Section 3.1 is an open subset
of d in the transform topology.

(ii) The system (W(K, V)) in fact constitutes a neighborhood base for
the trivial character with respect to the transform topology of G.

(iii) The compact-open topology and the transform topology on G are
identical.

Note that (ii) immediately implies (iii), since by construction {W(K,V)} is
also a neighborhood base for the trivial character with respect to the compact-
open topology. The proof will be straightforward, given the preliminary lemma
that follows.
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3-14 LEMMA. Let G x G have the product topology defined by the topology
given on G and the corresponding transform topology on G. Then

(i) For everyfeL'(G), the map

GxG-+C
(Y,x) H (L,.f)^ (x)

is continuous. [Here (L, ,f )A denotes the Fourier transform of the left
translation of f by y.]

(ii) The map

GxC; -iC
(Y, X) I-) %(Y)

is likewise continuous.

PuooF. (i) Let (y0, be any fixed point in the domain of the given map.
Then, according to Exercise 8 below, for every a>0, there exists a neighbor-
hood U ofy0 such that

IILn-L,,II<e

for all ye U. Moreover, by construction of the transform topology there exists a
neighborhood V of Xo such that

I(L,,,f)^(,) - (L,bf)^(Xo)I < e

for all xeV Now since for any L'-function g and character x, I8(x)ISIISII1, it
follows in particular that

I(L"f)^W - (L f)^(x)I s Iw,J- L,b11I1 .

Therefore,

I(L,.f)^cz)-cL, f)^(xo)ls2e

whenever (y,x)e UxV, and this clearly establishes the asserted continuity.

(ii) Note that Eq. 3.4 is equivalent, in the special case q' = X, to the equation

I(x)x(Y) = (L,f)^ (x)
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Exercise 9 shows that for every ,Z there is an L'-function whose Fourier trans-
form does not vanish at x and hence does not vanish in a neighborhood of x
under the transform topology. Thus this last equation implies that the function
(y. x) H x(y) on the product space is, according to part (i), the quotient of
two continuous functions. Therefore both this function and its conjugate are
likewise continuous. This completes the proof.

PROOF OF THEOREM 3-13. According to our preliminary remarks, we need only
prove parts (i) and (ii). Moreover, it clearly suffices to deal with subsets W(K, V)
of the form W(K,N(s)), where the neighborhoods of the identity N(e)cS', e>0,
are defined as in Section 3.1.

(i) Let K be a compact subset of G, and let a>0 be given; choose and fix
%oEW(K,N(s)). Then in consequence of the preceding lemma, for every yoeK
there exist open neighborhoods U of yo in G and V of xo in G (with respect to
the transform topology) such that x(y)EN(e) for all xe V and ye U. The com-
pact subset K is covered by finitely many open sets U,,..., U,. with correspond-
ing character sets V,,..., V, Clearly the intersection of the Vi is an open
neighborhood of Xo contained in W(K,N(e)), and therefore W(K,N(e)) is open
in G, as claimed.

(ii) Let V be an open neighborhood of the trivial character, here denoted 1. We
must show that V contains a subset of the form W(K,N(e)) for some compact
subset K of G and some positive a But by definition of the transform topology
(consider its subbasel) we know that for some s,>0 there must indeed exist a
finite family of functions f ,..., f EL'(G) such that

n{x:If,(x)-f;(1)I< }sV .

Since ''(G) is dense in L'(G), we may further assume, at the cost of decreas.
ing e,, that each of the j has compact support K,. Let K denote the (necessarily
compact) union of the Kj and choose a positive e subject to the inequality

<
3ei

e
max; IIf,II,

An easy calculation now shows that if Ze-W(K,N(e)), then for all j,

If (x)-f1(1A<6,

whence xE V. Hence V contains a subset of the required form, and the proof is
complete. 13
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The Fourier Transform of a Character Measure

We continue with G and G as above. Let p be a Radon measure on G such
that AG) is finite. (Recall that a measure that is finite on the totality of its
ambient space is said to have finite total mass). ForyeG, define

J X(y)dit(X) .

We call this the Fourier transform of the measure p . From the assumption that
p has finite total mass, one deduces at once that this transform is both con-
tinuous and bounded by fe(G) on G. Moreover, an application of Fubini's theo-
rem shows that for allfEL'(G),

Jf(X)df,(X)= Jf(y)TI,(y)dy . (3.5)

The conditions for Fubini's theorem certainly hold since, f is bounded on G
and the product f(y)j(y) is measurable on G x G by the previous lemma.

3-15 PROPOSITION. If for T1(y) = 0 every yeG, then ft = 0. Thus
pletely determined by its Fourier transform.

N is com-

PROOF. According to Eq. 3.5, the hypothesis implies that

f f (X) df.(X) = 0

for all feL'(G). But recall that the ring of Fourier transforms of L'-functions is
dense in WO(G) . Hence, in particular,

j 0

for all continuous functions g on G with compact support. The result then fol-
lows at once by the elementary correspondence between Radon measures and
integrals.

This brings us to a key result-in fact, an amazing connection between
measures on the character space of G and functions of positive type.

3-16 THEOREM. (Bochner) The functions of J '(G) (that is, the continuous
functions of positive type on G with infinity norm less than or equal to 1)
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are precisely the Fourier transforms of Radon measures on d of total
mass less than or equal to 1.

PROOF. First note that by Exercise 10 below, the Radon measures of finite total
mass on a locally compact Hausdorff space correspond bijectively with the Ra-
don measures on its one-point compactification that take the value zero on (co).
Now let M denote the set of Radon measures on G of total mass less than or
equal to 1. If fr e M is a point measure of total mass i concentrated at - then of
course

7.Z(y) = j X(y)dh(X) = X(y)

whence the Fourier transform of h is precisely the character X itself, and thus
manifestly a function of positive type. Next suppose that A is the weak limit of
arbitrary measures L e M , by which we mean that corresponding Radon inte-
grals converge pointwise on '(G'). Then certainly

jldi I

and thus the space M is weakly closed and therefore compact by Alaoglu's
theorem. If feL'(G), we know that f '(G'), whence by definition of the
weak convergence of measures,

jf(X)dp=limjf(X)du .

From this and Eq. 3.5 we find that

j j(Y)T,r,(y)dy =1 m j.f(y)7 (y)dy

which is to say that is the weak limit of Th , again owing to the density of
the Fourier transforms in 8'0(G). This is the key, for it has the following con-
sequences:

(i) Since the every element of M is the weak limit of a linear combination of
point measures of total mass 1 with positive coefficients (see Exercise 11
below), the Fourier transform of each measure in M is the weak limit ofa
linear combination of characters with positive coefficients, and therefore
lies in the weakly closed set 9'(G).
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(ii) The Fourier transform is a weakly continuous map from Al to .9'(G), and
hence its image is a weakly compact and, in particular, weakly closed sub-
set of .9'(G). Moreover, this image is evidently convex and contains the
characters of G as well as the zero function. Hence by Exercise 6, it must
be precisely .9'(G) itself.

This completes the proof. 0

Recall that V= V(G) denotes the complex linear span of the continuous func-
tions of positive type on G and that such functions are bounded, since a con-
tinuous function of positive type obtains its maximum at the identity of G.
According to Bochner's theorem and the proposition that precedes it, each
function fE V determines a measure ,f of finite total mass on G such that f is
the Fourier transform of fif . This is to say,

f(Y) = J X(Y)df2f(X)

for all yEG.

The association off with the measure L f enjoys the following reciprocity
law:

3-17 LEMMA. Let f and g lie in V'=VnL'(G). Then we have the equality of
measures

S(x)d%if(X) = J(x)d&(x)

PROOF. Since these measures are completely determined by their Fourier
transforms, it suffices to establish the equality for the corresponding trans-
forms. This leads to a brief, but beautiful, exercise in integration, which depends
primarily on Fubini's Theorem and the construction of h f and fr8 :

TT(x)dAf(x)(Y)= JX(Y) 8(X)df(X)

= f X(Y) J g(z)X(z) dz d f (X)

= JJX(z-'Y)dfjf(X) g(z)dz

= Jf(z-'Y) g(z)dz
= f * g(Y)
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Thus the Fourier transform of the left-hand side of the asserted equality of
measures is precisely the convolution f*g, and by symmetry the Fourier trans-
form of the right-hand side is precisely g*f. But naturally, these convolutions
are equal, whence the equality of measures, as claimed.

Let.91denote the set of continuous, bounded, complex-valued functions p on
G that satisfy the following condition: there exists some complex measure
on G of finite total mass such that

ta(X) dif(X) = f(X) d ',(X)

for all fe Vl. According to the previous lemma, the Fourier transforms of ele-
ments of V' certainly lie in ,91: if q' = g for some ge V', then;, is simply f1a .

As our final preliminary to the proof of the Fourier inversion formula, we
establish some key properties of the set .4.

3-18 LEMMA. The set.3defined above has the following properties:

(i) If pe3 the associated measure i , is unique.

(ii) If q .5 arises as the Fourier transform of an element feL'(G), then
v'=f11.

(iii) If pr=.? is positive, then the measure vo is likewise positive.

(iv) The set 3 constitutes a module over the ring of continuous,
bounded, complex-valued functions on G; moreover, with respect to
this module structure, the mapping c - v, constitutes a homomor-
phism of modules into the space of complex measures on G of finite
total mass, viewed as a module over the same ring of continuous
bounded functions. In particular, we have that

vy+r=vo+yr and vac=av,

for all op, ye.J and continuous bounded functions a on G.

(v) If q,o.'; then every translation y of q. also lies in?, and to obtain yr
from v,, one applies the same translation. In particular, if fcL'(G)
and g is obtained from f by multiplication by a character ,-,, then
the associated functions g and ft8 are obtained from f and f1I re-
spectively via translation by xo.
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PROOF. (i) Let q n. . According to Exercise 12 below, there exists a net of
functions f in V'(G) such that f converges uniformly to the constant function
1 on compact subsets of G. By construction it then follows that

l m4P(X)dpf(X)= dv,(X)

and therefore v, is uniquely determined by op.

(ii) This follows at once from part (i) and the preceding lemma.

(iii) This essentially follows from the argument made in part (i) with one addi-
tional observation: according to Bochner's theorem, the measures j f that arise
in connection with the net f are each positive. Hence if 9) is positive, vo is the
limit of positive measures p(Z)dpf(X) and hence itself positive.

(iv) The additivity of the map iaH v., is obvious from the uniqueness state-
ment. Along the same lines, if a is continuous and bounded on the space of
characters of G, then the equality

a(X)V(X) dNf(X) = f(X)a(X) d ,(X)

shows at once that v,, = a vo . These facts taken together show that .9 is a
module over the given ring and that the map qn- v, is a module homomor-
phism.

(v) The issue here is not so much mathematics as typography. Hence we intro-
duce the following provisional notation: if p is a measure on a group and z is
any group element, we shall write pt for the left translation of p by z. That is, if
E is any measurable subset of the ambient group, then p:(E)=p(z-'E).

Fix a character Xo and define the translation yof op by "=V(%0 'X). With
the convention above in force, we make the following calculation, leaving the
details to the reader. For all heT,,(G) andfeL'(G),

f h(X)Y(X)dhf(X)= h(X).p(Xo'Z)4f(X)

= f h(Xoz)V(X)dfjf°' (X)

= f h(XoX),p(X)dfrzo' f(X)
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= f h(xox)(xa'fr(x)dv,(x)

_ h(xox)f(xox)d v,(x)

=Sh(x)f(x)d o° (x)

Hence

y(x)d4f(x) = .Y(x)dvq (x)

showing that yr is the required translation of v,. O

Proof of the Fourier Inversion Formula

The proof of the inversion formula proper now requires three steps. We defer
the identification of V'(G) with V'(G) via the Fourier transform until the fol-
lowing section.

First we claim that a function y that lies in (G) also lies in 9 Let K be a
compact subset of the space of characters that contains the support of y. Then
we may assert, as in part (i) of the preceding lemma, that there exists a function
fe V1 (G) whose Fourier transform is bounded away from zero on K. Hence the
quotient a= y I f is bounded and continuous on K and may be extended to a
bounded continuous function on the full space of characters by simply defining
it to be zero on the complement of K. Since the Fourier transform off lies in .9r;
it follows by part (iv) of the previous result that y likewise lies in J"', as prom-
ised.

The second step amounts to the choice of a Haar measure for the character
space. First consider the mapping

Y f I dvr(x)

IffeV'(G) is not identically zero, then neither is the associated measure f,
which is to say that there exists a continuous, bounded function a on the char-
acter space such that the measure a(,y)dhf(x) is also nonzero. But then taking
y to be the product a f , we have that d v, = a(x)dA f (z), whence the mapping
r) is not the zero map. The upshot is this: since n is not the zero map, it follows
from parts (iii), (iv), and (v) of the lenuna that i is in fact a Haar measure dx
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on 6. In particular, the translation-invariance follows from part (v) by the fol-

lowing calculation:

$1 dvL, r(X)= 1 (X)= L,-. I dvr(x)=j1 dvr(X)
0

Thus with respect to this measure we may write

jy(x)dx = jdir(x)

for all yin W, (G).
To begin the final step, note that for all 9E.-9 'and ae',,(G) the product aq

of course also has compact support. Thus according to the preceding equation
and part (iv) of the lemma,

ja(x)4'(x)dx = ja(x)d i,(x)

This is to say that

9(Z)d.- = d ;,(X)

But then, in particular, forfe V' (G),

f(X)dx = dhf(x)

and hence by construction,

f(y) = j x(y)dwf(x) = j f (y)x(y)dx

This establishes the formula. 0

We conclude this section with a fine corollary that prepares the way for the
identification of V'(G) with V'(6).

3-19 COROLLARY. Let f be a complex-valued function on G that is integrable
with respect to the Haar measure dx on G. Then the following statements
hold.-

(i) 1f f is moreover continuous and of positive type, then the Fourier
transform off is a positive function on the space of characters of G.
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(ii) For f as in the previous part we also have that

Jf(x)dxZ0 .

(iii) If f is positive on G, then its Fourier transform is a function of posi-
tive type.

Thus the Fourier transform defines an injective mapping from V'(G) to
V1(G ).

PROOF. (i) By the inversion formula, f is precisely the Fourier transform of the
character measure f (X)dx. According to Bochner's theorem, this must be a
Radon measure of finite total mass, and, in particular, positive. Hence the
Fourier transform off, being continuous, must also be positive.

(ii) This is a particular instance of part (i):

Jf (x)` x =f(1) Z 0

Here 1 denotes the identity character.

(iii) We leave this to the reader as an exercise in direct calculation.

The final statement now follows directly from part (iii) by linearity: Each
element in V'(G) can be written as a complex linear combination of positive
integrable functions. Hence the Fourier transform indeed defines a mapping
into the stated codomain; it is, of course, injective by the inversion formula.

Henceforth we assume that the Haar measures on G and its dual are nor-
malized so that the Fourier inversion formula holds.

3.4 Pontryagin Duality

Again let G denote a locally compact abelian group, with character group G,
which, as we have seen, is also locally compact and abelian. We can thus iterate
the operation of taking the dual and define a natural map

a : G -+ G, a(YXX) = X(Y)
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That is, a(y) is just evaluation at y on the dual space. This is clearly a
(continuous) character of G. The main point of this section is to establish the
following result:

3-20 THEOREM. (Pontryagin Duality) The map a: G -* G is an isomorphism of
topological groups. Hence G and G are mutually dual.

We begin with a lemma that shows that the map a is at least injective. This
will subsequently allow us to identify its image with a subset of G.

3-21 LEMMA. The mapping a defined above is injective; that is, G separates
points in G.

PROOF. Suppose that z is not the identity of G. Clearly it suffices to demonstrate
the existence of a character X such that Z(z)#1. Suppose that no such x exists.
Then by definition of the Fourier transform and Haar measure, it is immediate
that

f = (Ltf)^

for all fin L'(G). Hence by the Fourier inversion formula we get f=L= f for all f
in V'(G). Now, since G is Hausdorff, there exists an open neighborhood U of
the identity such that Ur-(r' U)=0. By Exercise 5, there exists a nonzero con-
tinuous function f of positive type with support in U. But for such f, it is impos-
sible thatf=Lsf. The contradiction completes the proof. O

Now let k be a compact neighborhood of the identity character in G. Given
an open neighborhood V of the identity in S', we may apply the construction of
Section 3.1 to define the following subset of the double dual of G:

W(K,V)={Vi eG:V'(X) eVforallX eK}

Such subsets and their translates constitute a base for the topology of G. Of
course, some of the elements in the double dual arise unambiguously from ele-
ments of G via the mapping a. Hence it makes sense to define

Wo(K,V)=W(K,V)na(G)

and to regard this as a subset of G. We shall use these subsets to characterize
the topology of G in a way that immediately implies that a is moreover a ho-
meomorphism onto its image.
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3-22 PRtoPOSITION. The subsets W0(K,V) and their translates constitute a
base for the topology of G.

PROOF. Let U be an open neighborhood of the identity eEG. Then again by
Exercise 5, there exists a continuous function g on G of positive type with sup-
port in U such that g(e) = 1. It follows from Corollary 3-19, part (i), that the
Fourier transform of g is positive. Moreover, from the inversion formula we
have

JI(X)dx=1 .

Thus we may identify g(X)dd with a finite Radon measure on G, which in
particular is inner regular. Accordingly, given any positive s there exists a
compact subset K of characters such that

j8(X)dX>1
K

and hence the corresponding integral over the complement of k is less than e.
Now consider the identity

g(y) = f S(X)X(y)dd+ f 8(X)X(y)dX
x x°

given by the Fourier inversion formula. As. V shrinks to a sufficiently small
neighborhood of 1 in S`, the first integral above eventually lies within s of
unity for all ye W0(K,V), while the second is unconditionally bounded in ab-
solute value by e. Hence g must be bounded from below by 1-2son W0(K, V).
But by construction, U contains the support of g, and therefore U contains
W0 (K, V), thus completing the proof.

3-23 COROLLARY. The mapping a defined above is bicontinuous; thus a is a
homeomorphism onto its image.

PROOF. By construction we have the identity

a(W0(K,V)) = W(K,V)n a(G)

which in light of the lemma and the proposition shows that a is bicontinuous at
the identity element of G. Since a is clearly a group isomorphism onto its im-
age, the result holds everywhere in G by translation.
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Recalling one of the fundamental facts of topological groups, this first cor-
ollary nets us a second:

3-24 COROLLARY. The image of a is closed in G.

PROOF. By general topology, a locally compact and dense subset of a Hausdorff
space must be open. Now a(G) is locally compact, being the homeomorphic
image of the locally compact group G, and, of course, is dense in its closure in
the double dual. Accordingly, a(G) is an open subgroup of its closure. But
since every open subgroup of a topological group is also closed, a(G) is in fact
identical to its closure, as required.

Given these two corollaries, the proof of Pontryagin's theorem reduces to
showing that a(G) is dense in the double dual of G. This requires a final bit of
delicate analysis.

The Plancherel Theorem

Let and as usual, define 1Wf(x)=f(x) for xeG. An easy calculation
shows that

I(x)=I(x)

Set g = f * f ; then certainly g is integrable and moreover, according to Exer-
cise 5 below, of positive type. ff f lies also in L2(G), the Fourier inversion for-
mula yields the following key observation:

f If(x)I2dx=g(l)

= f s(x)dx

= f I I(x)I2 dx

This shows that the Fourier transform induces a map

L1(G)n L2(G) -- L2(G)

fHI
which is an isometry onto its image.
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Recall that A = A(G) denotes the ring of Fourier transforms of functions in
L'(G). Let A, denote the subset of A arising from the isometry above. Note
that A, is stable under multiplication by elements of a(G):

[a(yo)-f](X)=X(yo)jf(y). (y)dy

= J.f(y)X(yo'y)dy

= Jf(yoy)x(y)dy
_ (L, f)^(X) -

The following result is the key to our current discussion.

3-25 LEMMA. A, is a dense subspace of the Hilbert space L2(G).

Granting this, since also L'(G)nL2(G) is dense in L2(G)-the intersection
contains ',(G)-the isometry defined by the restricted Fourier transform may
be extended by continuity to an isometric isomorphism

L2(G) -+ L2(G)

f H f .

Note that we continue to use the circumflex notation for this extended version
of the Fourier transform, called the Plancherel transform. To summarize, rela-
tive to the preceding lemma, we have established the following:

3-26 THEOREM. (Plancherel) Let G be a locally compact abelian group. Then
the extended Fourier transform defines an isometry of Hilbert spaces
from L2(G) onto L2(d). El

PROOF OF LEMMA. In view of the self-duality of Hilbert spaces and the Hahn-
Banach theorem, it suffices to show that zero is the only element of L2(G) or-
thogonal to every element of A, .

Assume that ge L2(G) is orthogonal to every element in A, . Since A, is
stable under multiplication by elements of a(G) for all and yEG, we have
that

Jg(X)f(X)X(y)dX=O .
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This says that the Fourier transform of the measure g(X)f(X)dd is zero, and
hence by a slight extension of Proposition 3-15 so is the product gf almost
everywhere. But note that for a character x we have (x f)^ = L' f . Thus given
any nonzero continuous element of A,, we can produce an element of 4, that
does not vanish in some neighborhood of Z. Hence if the product gf is zero
almost everywhere, it must be that g is zero in L2(G), as required.

3-27 COROLLARY. (Parseval's Identity) For all fgeL2(G), we have

5f(x)g(x)dx = 5f(X)8(X)dX

PROOF. By elementary linear algebra, a linear isometry is necessarily unitary.

3-28 COROLLARY. Let f and g lie in L2(G), and let h lie in L'(G). Then if
h=fg, we have h = f *g.

PROOF. Suppose that h factors as given. Let Xo be a character. We compute as
follows, appealing to Parseval's identity to justify the transition from the second
to the third line:

h(Xo) = Jf(y)g(y)X0(y)dy

= Jf(y)g(y)xo(y)dy

= Jf(X)g(x'Xo)dX

I*g(xo)

This completes the proof.

3-29 COROLLARY. The ring A of Fourier transforms of L L functions on G con-
sists precisely of convolutions of junctions in L2(G).

PROOF. If heL)(G), then h factors as fg for functions f,geL2(G). For instance,
h=r-Irl where rnL2(G) is defined by

r(x) _ h(x) / I h(x)I112 if h(x) # 0
0 otherwise.
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Hence h = f +g, and therefore every element of A is of the required form.
Conversely, by Plancherel's theorem every convolution of functions in L2(G)

takes the form f +g for some f and g as above, and hence is the transform of
the L'-function f-g. Accordingly, such products lie in A , as required.

This brings us to the final technical prerequisite for the proof of Pontry-
agin's theorem.

3-30 PRoposmoN. Let U be a nonempty open subset of G. Then there exists a
nonzero function f eA with support contained in U.

PROOF. Recall from Proposition 1-7, part (iii), that the volume of any nonempty
open set relative to a Haar measure is positive. Thus, by inner regularity, there
exists a compact subset K of U with positive measure. At every point of xEK we
can find an open neighborhood V of the identity and an open neighborhood Ux
of x such that UXV, is contained in U. Then since K is compact and G is locally
compact, there exists a compact neighborhood V of the identity such that K V is
contained in U. Define f as the convolution of the characteristic functions on
K and V, respectively. It follows at once from the previous result that f EA and
that f has support contained in KV, and therefore contained in U. Moreover,
one calculates at once that the integral of f over G is simply the product of the
measures of K and V, and hence positive. Thus f is nonzero on a set of posi-
tive measure.

Proof of Pontryagin 's Theorem

As we observed above, it remains only to show that a(G) is dense in G. If not,
then according to our last proposition, there exists a function in q e L'(G) such
that , is nonzero but nonetheless , vanishes on a(G). Let Xo lie in the dou-
ble dual. Then by definition,

w(zo) = J c (Z)zo(z ' )dx .

But the assumption that vanishes on a(G) means precisely that

5 q'(x)X(Y-' )dx = 0
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for all yEG. Hence, as in the proof of Plancherel's theorem, OP =0 almost eve-
rywhere, and therefore = 0. This contradiction completes the proof.

The only remaining issue in this chapter is to establish the last statement of
the Fourier inversion formula, namely that the Fourier transform identifies
V'(G) with V'(6). We have already shown that the map f H f is injective.

Let F lie in V'(G), and define a function Jon G by the formula

f(y)= JF(X)X(y)dx

Identifying G with G, this amounts to

f(y)=F(Y')

which places fEV'(G) by Corollary 3-19. [One verifies at once from the defini-
tion that ifyH q'(y) is of positive type, then so is yH q'(y-').] By the Fourier
inversion formula,

F(X) = f F(y)X(y) dy

= jf(y-')X(y)dy
= jf(y)X(y)dy

and this shows that F is the Fourier transform off Hence f H f is also sur-
jective, as required.

Exercises

1. Let G be a locally compact topological group. We consider functions from
G into either the real or complex numbers.

(a) Let f, andf2 be Haar-measurable functions on G. Show that the productfif2
is likewise Haar-measurable on G.

(b) Let f be a Haar-measurable function on G. Define F on G xG by

F(g,h) =f(g)f(h)

Show that F is Haar-measurable on G xG.
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(c) Let p be a Haar-measurable function on G. Define w on GxG by

u(g,h) _ q(g'h)

Show that v is Haar-measurable on GxG.

2. Let G be a topological group and let X be a metric space, with xoeX. Sup-
pose that f : G-*X is a continuous function subject to the condition that
there exists a compact subset K of G such that if soK, then f(s)=xo. (Thus
we generalize the idea of compact support to cases for which the codomain
has no algebraic structure.) Use Proposition 1-1 to show that f is uniformly
continuous in the following sense: for every a>O, there exists a neighbor-
hood V of the identity in G such that I f(s) f(t)I < e whenever s-'te V.

3. Let feWJG) and let ge'o(G). Show that likewise lies in Wc(G). [Hint:
For continuity, use an easy extension of Exercise 2 to show that if t.-+t in
G, then for any positive a eventually

I J(g(s 't)-g(s-'ta))f(s) dsI<IIflL p(suppf)e .

To see that f*g moreover vanishes at infinity, note that for every positive e
there exists a compact subset Ko of G such that IgI is bounded by eon Koc,
the complement of Ko. But also, the support off is confined to a compact
subset K, of G. Now if t lies outside of the compact product K=K1Ko, then
whenever is lies in K,, s-' must lie outside of KO. Thus

I J g(s )f (ts) dsl <11 f11, ft(K1)e

whence f*g(t) tends to 0 as t tends to infinity.]

4. Let p be a unitary representation of a locally compact group G on a Hilbert
space V. Let xeV be arbitrary. Show that the mapping

s H (xIp(s)[x])

is of positive type. This essentially establishes the converse of Proposition
3-4. [Hint: In the manner of the introductory discussion of Section 3.2,
consider the discrete analogue of this statement.]
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5. For f a complex-valued function defined on a locally compact abelian
group G, define f , also on G, by

f (S) = AS-')

Use the preceding exercise to show that if feWo(G), then the convolution
product f * f is continuous of positive type on G. Next use Urysohn's
lemma to show that for any open neighborhood V of the identity, there is a
continuous function g of positive type with support contained in V such
that g(e) =1.

6. Let G be a locally compact abelian group. Show that every closed, convex
subset of L`°(G) that contains the characters of G and the zero function
also contains .91(G). [Hint: Use Lemma 3-6 and Theorem 3-8.]

7. Show that for a locally compact abe/ian group G with Haar measure µ

p(E) _ ME-)

for all Borel subsets E. [Hint: Show that v(F_)=p(E-) is likewise a Haar
measure on G, hence a multiple A of p. But what if E is a symmetric subset
of G of finite measure? Must such subsets exist?]

8. Let G be a locally compact abelian group. Use that WJG) is dense in LP(G)
for 15p5oo to show that for all yeG the mapping

L'(G) -p L'(G)

is uniformly continuous. [The same is true for LP(G), lsp<oo.]

9. Let G be a locally compact abelian group. Show that for every character X
of G there exists a function feL'(G) such that f(X) * 0. [Hint: The real
part of X is positive in some neighborhood of 1. Use the local compactness
of G and Urysohn's lemma to construct an appropriate f. ]

10. Let X be a locally compact Hausdorff space. Show that each Radon meas-
ure p on X of finite total mass extends uniquely to a Radon measure p' on
X, the one-point compactification of X, such that p'({oo})=0. [Hint: To see
that p' is outer regular, observe that for E measurable,
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p(E) 5 inf p(U u S inf (p(U) + p(Uj)

where the infimurn is taken over all pairs of open sets U and U,p such that
U contains E and U contains co. But since p is inner regular on G, there
exist neighborhoods of oo of arbitrarily small measure. Now derive the in-
ner regularity of p' from its outer regularity and the fact that a subset of X'
is compact if and only if its complement is open; in essence the supremum
calculation over compact subsets of E is equivalent to the infimum calcula-
tion over open supersets of E.]

11. Let G be a locally compact topological group (not necessarily abelian) and
let p be a positive Radon measure on G of finite total mass. Recall that we
may identify p with a linear functional on IF ,(G), and that under this iden-
tification a point measure corresponds to a positive multiple of an evalua-
tion map. As usual, G' denotes the one-point compactification of G, and p
is extended to G'by setting p(oo)=0.

(a) Show that for every open neighborhood U of the identity in G and open
neighborhood V of oo in G' there exists a finite partition of G consisting of
measurable sets W , ..., ff , W. such that each W. admits a translate con-
tained in U and W. lies in V. [Hint: A finite number of translates of U
cover the complement of V, and these together with V-{oo} cover G. Ex-
tract the required partition from this open cover.]

(b) Let U, V, and W1, ..., W,, be as above and select points w E W. for j =1, ..., n.
Define a corresponding linear functional pu V on 'JG) by

pu.V(f)=Y_p(Wj)f(wj)

Show that for each f in 'c(G), as U approaches the identity and V ap-
proaches oo, pu v(f) approaches p(f ). [Hunt: Assuming that the support of
f is contained in the complement of V, we have evidently that

1f fdp-pu.v(f)15 f If(w)-f(wj)Idp(w) .

wj

Now use the finiteness of the mass of p and the uniform continuity off (cf.
Section 1.1) to deduce the conclusion.]

(c) Conclude from parts (a) and (b) that every measure p on G of the given
type is the weak limit of a linear combination of point measures of total
mass 1 with positive coefficients.
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12. Let G be a locally compact abelian group. Show that there exists a net of
functions f in v'(G) whose Fourier transforms converge uniformly to the
constant function 1 on compact subsets of the space of characters on G.
[Hint: Consider a compact neighborhood K of the identity and a positive
function gx having support on K whose integral is 1. What can one say
about the convolution fr = g,r *R,, especially in light of Exercise 571

13. (Duality for Finite Abelian Groups) Let G be a finite abelian group, and set

G = Hom(G,S1) .

Note that we may assume the discrete topology for G, whence continuity
plays no role.

(a) Let CG denote the space of complex-valued functions on G; in other
words, the complex group algebra of G. For every define its Fourier
transform by

f:G --C
X f(g)x(g)

8G

Prove directly that

f(g) _ (G) I I(x)x(g)
Zed

This is, of course, the finite version of the Fourier inversion formula.

(b) Show explicitly in the case G=Z/nZ that also G=Z/nZ. [Hint: If agener-
ates G, show that G is generated by the map %:o-k 4 e2i"kl" .]

(c) Let H be a subgroup of G, let p a H, and let yoG-H. Set H' equal to the
subgroup of G generated by H and y. Show that there exists an element
fr a H' that agrees with p on H. Conclude by induction that there exists a
character x of G that likewise agrees with # on H. From this and part (b),
deduce that for any goG, there exists a character x of G such that x(g)*1.
[Hint: Given any tnS' and nzl, one can find wES' such that w"=t.]

(d) Define a map a on G as follows:
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a:G->G=Hom(G,S')
g H a,:X H X(g)

Show that a is a well-defined injective homomorphism. [Hint: Use the pre-
vious part.]

(e) Define the map 4) between the group algebras CG and CG by sending f to
its Fourier transform f . Use part (d) to show that 1 is both C-linear and
injective.

(f) Show that any set of distinct characters of G are linearly inde-
pendent over C. [Hint: Start with a dependency relation of minimal length,
and then find a shorter one.]

(g) Let h be an element of CG that does not lie in the image of the map (D de-
fined above. Show that h must satisfy the equation

Y h(X)f- (X) = 0 .

,_' EG

Deduce from this that

I h(X)X = 0
XE6

as a function on G. Conclude from this and part (f) that h(X)=0 for all X,
and from this contradiction that 1 is indeed surjective.

(h) Show that dim(CG)=dim(CG). Conclude that the map a defined above is
in fact an isomorphism.

14. Let G be a profinite group, or equivalently, a compact, totally disconnected
group.

(a) Let X:G_C* be a continuous homomorphism. Then show that Ker(X)
must contain an open subgroup and that consequently, X must have finite
order. [Hint: First show that there exists a neighborhood U of 1EC* that
contains no nontrivial subgroup of C*.]

(b) For any nz1, let p:G-+ GL,,(C) be a continuous homomorphism; that is, a
representation of dimension n. Show that Ker(p) must still contain an open
subgroup, so that p(G) is a finite group.



Exercises 131

(c) Fix an algebraic closure Q Q C of Q, and let GQ denote the Galois group
of Q over Q. For any positive integer m, let p,,, denote the group of mth
roots of unity in Q. Observe that for any QEGQ, we have that a")=pn.
Now choose a rational prime p and set

Show that there exists a continuous homomorphism

xr:GQ -* Aut(W) -; g Qp

that, in contrast with the first part of the exercise, is not of finite order.
(Indeed, one can further imbed Q. in C and thus view X. as a complex
character on GQ, but this composition is not continuous for the standard
complex topology. The character suggested here is called the pth cycloto-
mie character.)



4
The Structure of Arithmetic Fields

This chapter develops the basic structure theory for local and global fields; we
follow A. Weil in stressing the topological rather than algebraic perspective,
although perhaps less emphatically. Thus the more algebraically inclined will
gain new insight into phenomena that have more often been treated in the con-
text of the fraction field of a discrete valuation ring with finite residue field, or
a Dedekind domain.

We begin by introducing an essential tool in the topological analysis of lo-
cally compact abelian groups and, in particular, of locally compact fields: the
so-called module of an automorphism. This leads us to the classification theo-
rem for local fields that appears in the second section, followed by an analysis
of the extension of such fields in the third. It is here that we first meet the no-
tion of ramification.

In Section 4.4 we study the more challenging global fields, the analysis of
which relies fundamentally on the dense embeddings of a global field F into
suitable locally compact fields. Thus the starting point is the classification of
the (locally compact) completions of F relative to an absolute value; this is a
generalization of Ostrowski's theorem, which says that the completions of Q
are either R or Q. for some prime p. We shall see that the Archimedean ones
are indexed by the nonconjugate embeddings of F into C, while the non-
Archimedean ones are in bijective correspondence with discrete valuations
arising in connection with prime ideals.

In the final section we introduce the decomposition group with its relation to
the corresponding local Galois group, further discuss ramification, and con-
clude with a technical result on global and local bases.

4.1 The Module of an Automorphism

Let G be a locally compact additive group with Haar measure p and consider a
(continuous) automorphism a of G. If X is any Borel subset of G, then so is aX,
and thus uo a is likewise a Haar measure on G. By uniqueness of the Haar
measure, it follows that uoa=cu for some positive real constant c, which is
then called the module of a and denoted modG(a). Thus, by definition, we have
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p(aX) = modG(a)p(X)

for all measurable subsets X of G. Obviously the module is multiplicative in the
sense that

mod0(afj) = modo(a) modG(Q)

for all automorphisms a and O of G.
As a special case, if k is a locally compact field-what we often refer to

more succinctly as a local field-and V is any topological vector space over k,
then every aek* defines an automorphism of V by left multiplication, and we
define mod.(a) to be the module of the associated automorphism. We extend
mod,, to all of k by defining mod,,(0) to be 0. In particular, we may define
modk(a) for aek to be the module of a acting on k itself.

4-1 PROPOSITION. Let k be a locally compact field with Haar measure u Then
is a continuous mapping.

PROOF. Fix a compact neighborhood X of zero and choose an arbitrary element
a lying in k. Note first that by Proposition 1-7, part (iii), p(X)>0. Now since p
is outer regular, for every positive a there is an open set U, aXe U, such that

p(U) 5 p(aX) + e .

Since multiplication is continuous and X is compact, there exists an open
neighborhood W of a such that WXc U. But then for all b e W, bXc U, and so

p(bX) 5 p(aX) + e

whence dividing by p(X),

modk(b) 5 modk(a) + p(X)-I s

Thus modk is at least continuous at zero. Moreover, this shows that for all posi-
tive x, the inverse image of (0,x) under modk is open. Now clearly

modk(a-I) = modk(a)-I

and so we have a commutative diagram

modk

k* R;

modk

k* -* R;
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from which it follows that for all positive x, the inverse image of (x,oo) is like-
wise open. Hence the inverse image of any open interval is open, and from this
we deduce that modk is continuous, as claimed. O

Since every discrete topological space is trivially locally compact, we can
expect serious progress in the classification of locally compact fields only if we
exclude this case. (Note in particular that the previous result is trivial for dis-
crete fields.) Accordingly, we shall henceforth address nondiscrete topological
fields.

4-2 COROLLARY. Assume that k is nondiscrete. Let U be any open neighbor-
hood of zero. Then for every positive e there exists an element ae U such
that 0 < modk(a) < e.

PROOF. The inverse image of [0, e) is an open neighborhood of zero. Hence its
intersection with U is likewise an open neighborhood of zero. Since k is not
discrete, this intersection contains a nonzero element a, which by construction
has the required property. U

4-3 COROLLARY. Assume that k is nondiscrete. Then the function modk is un-
bounded, and consequently k is not compact.

PROOF. By the previous corollary, for any positive e we may find aek such
that 0 < modk(a) < e. Hence modk(a-1) z s' , and the assertion follows. 0

4-4 PROPOSmON. Let k be as above and let in be a positive number. Define

B," _ (ar=k: modk(a)sm) .

Then B. is compact.

PROOF. Note first that B. is at least closed by the continuity of modk. Let V be a
compact neighborhood of zero, and let W be an open neighborhood of zero such
that WVc V. Then by the first corollary above there exists an element re W- V
such that 0< modk(r) < 1. We find inductively that r"e V for all positive n,
whence for any aek, the sequence {r"a}, which ties in the compact set Va,
must admit at least one limit point. But clearly lim modk(r"a) = 0, whence by
continuity the one and only limit point of this sequence is zero. Since V con-
tains an open neighborhood of zero, it now follows that for all ar=k, either a
belongs to Vor the integer va inf {n:r"aeV} is finite and positive. In the lat-
ter case, clearly

r"°aeV -rV . (4.1)
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We claim that for the numbers Y. are bounded from above by some
constant M. Granting this, it follows at once from Eq. 4.1 that the closed subset
B. is contained in the union of compact subsets V,r-1 V ,...,r-"V and is there-
fore compact.

PROOF OF CLAIM: Let X be the closure of V-rV, which is compact and excludes
zero. Set

,8= inf mod k(X)

Then tg is positive, since a continuous function on a compact set achieves its
minimum, which in this case cannot be 0. Choose M such that modk(r)"<flm.
Then if aeB,N V, we have

modk(r)M m S ,6S modk(r"°a) = modk(r) ° modk(a) 5 modk(r) m

and since 0 <modk(r) < 1, we must have vaSM. This completes the proof.

4-5 COROLLARY. For aek, lima" = 0 if and only if modk(a)<1.
w-,m

PROOF. If modk(a) < 1, then the elements all lie in the compact set B,, and
therefore the sequence {a"} converges. By continuity, the limit has module zero
and is therefore itself zero. The converse is obvious.

4-6 COROLLARY. Let I be a discrete field contained in k. Then for all ael*,
modk(a)=1. Moreover, I is finite.

PROOF. Suppose that ael* but modk(a)<1. Then the sequence {a"}",o lies in 1,
which, according to the previous corollary, is therefore not discrete-a contra-
diction. If modk(a)> 1, the same argument applies to a-. This establishes the
first assertion and shows moreover that lcB,. But a discrete subset of a com-
pact set must be finite.

4-7 PROPOSmON. The sets B. constitute a local base at zero for the topology
of k.

PROOF. Recall first that for a locally compact Hausdorff space, we at least know
that the compact neighborhoods of a given point constitute a local base. On any
compact neighborhood V of zero in k, mod, is bounded, say by m. Then cer-
tainly Vc B,,,, and X, the complement of the interior of V in B",, is likewise
compact and excludes zero. As above, set
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inf modk (x) > 0
XEX

Choosing y in R such that 0 <r< A we have Brc V, and this completes the
proof. 0

4-S PROPOSITION. The function modk induces an open homomorphism of k"
onto a closed subgroup r of R.

PROOF. Let x be the limit of a sequence (modk(a.)). where each aj.ek. Then
since modk is bounded on this sequence, eventually the a. fall into a compact
ball B. for some m. Hence x lies in the closure of the continuous image of a
compact set, which must itself be closed. It follows that in fact xemodk(B,),
whence modk(k) is closed. Accordingly t is closed in the usual induced topol-
ogy on R.

We next establish that modk is open on k". Let U denote the kernel of the
restricted map, so that we have a short exact sequence of commutative groups

1-*U-*k" -->1'-al .

Let V be an open subset of k" and let {x,} be any sequence in F converging to
some xe modk(V). Say x = modk(a) for some an V. The sequence {x1} pulls back
via modk to a sequence {a a} in the unit group k", and so as above, eventually the
points fall into one of the compact balls B,,,. Therefore some subsequence {a'}
of the sequence {a,} converges, say, to aek". By continuity, modk(a) =x also,
whence by group theory aeaUcVU. Since VU is open, eventually the points
of {a'',} must lie in the product of these two subsets. But by construction,
modk(VU)=modk(V), showing that the subsequence {modk(a'1)} of the original
sequence (xi)-and hence the entire sequence--eventually falls into modk(V).
The image of V under modk is therefore open, as claimed. 0

4-9 THEOREM. Let k be a locally compact, nondiscrete topological field with
Haar measure u. Then:

(i) There exists a positive constant AZ 1 such that

modk(a+b)SA-sup{modk(a),modk(b)} Va,bek . (4.2)

(ii) IfA=1, then modk(k*) is discrete.

PROOF. Define A by the formula

A =sup{modk(l+b)}
bB,
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Since the supremum is taken over a compact set (a translate of B), A is indeed
finite and clearly greater than or equal to 1. Moreover, taking a=1 in the in-
equality 4.2, we see that the number defined by this formula is clearly the
smallest possible value for which the stated inequality can hold.

To show now that inequality 4.2 holds for all a and b, it clearly suffices to
consider the case that either a or b is not zero. So assume that a is not zero and
that modk(b)smodk(a). (Otherwise, b is likewise nonzero, and we can switch the
roles of a and b.) Then setting calb, we have modk(c)51 and a+b=a(l+c).
By construction, modk(l+c)SA, and therefore

modk(a+b) = modk(a)modk(1+c)
S A modk(a)
= modk(b))

as claimed in part (i).
To prove (ii), suppose that A = 1. Let U denote the interior of B,, which obvi-

ously contains 0. Then modk maps 1+U into an open subset of I' that contains 1
but is itself contained in [0,1]. This means that modk(1+U) is the intersection of
an open subset of R with F, and, in particular, that there is an open interval I
containing 1 whose intersection with t is contained in [0,1 ]. However, 1 is an
accumulation point from the left in 1' if and only if it is also an accumulation
point from the right, since modk(a -1) = modk(a) -' for all a:;- 0, and so such an
interval I cannot exist unless 1 is not an accumulation point of F. But then the
set consisting of 1 alone is open in F, which is to say that IF enjoys the discrete
topology, as claimed.

DEFINmON. If k satisfies the inequality of part (i) with A = 1, then we say that k
(or modk) is ultrametric. In this case,

modk(a+b)ssup{modk(a),modk(b)) Va,b ek

and we call this the ultrametric inequality.

Via an easy induction, the ultrametric inequality implies that modk(n 1k) 5
modk(lk)= 1 for all neN, so that for an ultrametric field modk is bounded by I
on the prime ring. We shall establish the converse, and more, shortly.

The following propositions establish some properties of modk that depend on
the inequality 4.2 of the previous theorem. The first holds more generally for
any strictly multiplicative function.

4-10 PROPOSITION. Let F:N--R+ be a strictly multiplicative function [i.e., for
all natural numbers m and n, F(mn)=F(m)F(n)], and assume that there
exists some constant A such that
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F(m+n) 5 A sup(F(m),F(n) }

for all m,nnN. Then either (i) F(m)51 for all m, or (ii) F(m)=mx for
some positive constant A.

PROOF. We note first that since F is strictly multiplicative, the idempotents 0
and 1 must map onto idempotents, which is to say 0 and 1. Moreover, from the
identities and

F is not constant, then F(O) must be 0 and F(1) must be 1.
Define an auxiliary function N-'R+ by

f(m) =
(0 if F(m) = 0
logF(m) otherwise.

We shall show that for m22, f(m)=Alogm for some constant A. Let a=log A.
Then we have the following relations for all m, n, and nonzeroj:

f(m')
f(mn)5 f(m) + f(n)

f(m+n) s a+sup{ f(m), f(n)}

The middle relation is, of course, an equality, provided that neither m nor n is
zero. The last extends inductively to

f(lm,)Sra+sup{f(m;)}
ro

Now assume that m,nz2, and let b=sup{ f(0),...,f(n-1)}. Express m in base n
as follows:

r
m=Zdin' (05d,<n, i=0,...,r)

i=o

We assume in particular that d, is nonzero, whence nr5m. Then by the general
properties above, f(m)5ra+b+rf(n), whence the further inequality

f(m)Sa+f(n)+ b
log m log n log m

Replacing m by mi and taking j to infinity yields

f(m)<a+f(n)
logm loge
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Repeating this argument for n in this last inequality yields finally

f (m) 5 f (n)
logm logn

whence by symmetry, we deduce that f(m)/log m is a constant for mz2. Hence
for such m, f(m)=A.logm for some constant A, as claimed above.

If R is 0, then clearly alternative (i) holds for mz2, and the remaining cases
(m=0, 1) are covered by our preliminary analysis.

If A. is positive, then alternative (ii) holds for m22, and it only remains to
check m<2. But in this case F is not constant, and once again our preliminary
analysis yields the desired result. 0

Note that a function F on an arbitrary field k induces a function on N (or
even Z) by defining F(m)=F(m lk). In particular, the function modk induces a
strictly multiplicative function on N.

4-11 PROPOSITION. If modk is bounded on the prime ring of k (that is, if the
induced map on N is bounded), then in fact modk51 on the prime ring,
and moreover, k is ultrametric.

PROOF. Since modk(mJ)=modk(m)i, the induced map cannot be bounded unless
its values lie in [0, 1], It remains to show that k is ultrametric. Let N=2". Then
by successively splitting the summation

N

l aJ
J=1

into two summations, each involving half as many terms, we find that

N
modk(IaJ)5A"sup{modk(af)}

J=1 J

which clearly implies the following more general inequality for arbitrary N:

modk(EaJ)5AP092(1)1 sup{modk(aJ)}
J=1 J

Thus

modk(a+b)2" 5A"`' sup (modkl(2" )'1modk(a)jmodk(b)2.-j}
osj52" l
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Without loss of generality, assume that modk(a) 5 modk(b). Then since modk is
bounded by 1 on the prime ring, the previous inequality simplifies to

mod, (a+b)2" S A'+' mod, (a)2 .

Taking logarithms, dividing by 2", and letting n tend to infinity shows that
modk(a+h)Smodk(a), and thus k is ultrametric, as claimed. 0

4.2 The Classification of Locally Compact Fields

The main point of this section is the following classification theorem.

4-12 THEOREM. Let k be any nondiscrete locally compact field. Then:

(i) Ifchar(k)=0, k is R or C or a finite extension ofQP.

(ii) If char(k)=p>0, then k is ultrametric and isomorphic to the field of
formal power series in one variable over a finite field (i.e., the quo-
tient field of FQ[[tll for some finite field Fq and indeterminate t).

We begin with some preliminary results on topological vector spaces.

Topological Vector Spaces over Nottdiscrete Locally
Compact Fields
Let V be a topological vector space over a nondiscrete locally compact field k,
and let W be a finite-dimensional subspace of V of dimension n. Assume further
that W has basis wi,...,w". Consider the map

V

k" -+ it'
(aj ) i-4 I aj wj

Clearly p is a sum of continuous functions, from which one deduces at once
that rp is a continuous isomorphism of topological vector spaces.

4-13 PROPOSITION. Given k, V, W, and rp as above, the following assertions
hold:

(i) Let U be any open neighborhood of zero in V. Then Wrn U# {0}.

(ii) The mapping to is a homeomorphism. Consequently W admits pre-
cisely one structure as a topological vector space over k.
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(iii) W is closed and locally compact.

(iv) If V is itself locally compact, then V is finite-dimensional over k,
and modv(a)=modk(a)'imV for all aeV

PROOF. (i) Wn U must contain something other than zero, else via V-1 the zero
vector would constitute an open subset of k", contradicting the assumption that
k is not discrete.

(ii) We need only show that rp is an open mapping. Since according to Proposi-
tion 4-7, the sets

B I _ {aek: modk(a)5 t} (t>O)

constitute a local base at zero for k, it suffices to show that for all positive t,
ip(B$) contains a neighborhood of Oe W. We introduce an auxiliary map

w
k" -+ R"

(ai) H (modk(ai))i:i... "

which is continuous by Proposition 4-1. Define subsets A of k" and X of R"
respectively, by

A = ((ai) e k": sup (modk (ai )) =1)
i

and

X=U{(xi)ER;:x;=l,xxSlforjxi}

Clearly neither set contains zero. Note, moreover, that X is closed in R", and
therefore A, which is precisely yr1(X), is likewise closed in k". Furthermore, A
is a subset of the compact set B and therefore itself compact.

Now consider q(A), a compact subset of V, which also does not contain zero.
Since scalar multiplication is a continuous map from kx V to V, the inverse im-
age of V-q(A) contains an open neighborhood of (0k,0v). Again, since the sets
B1 constitute a local base at zero for k, it follows that there exists an open
neighborhood U of zero and an a>0 such that B.Unrp(A)=0. This is to say
that ifyek with modky-<e, then yUn o(A)=0.

Fix t>O and choose aEk such that 0<modk(a)set. (Such a exist according
to Corollary 4-2.) By part (i), the set (WnaU)-{0} is nonempty; suppose that
w=Za.w. lies therein. Let h be the index such that modk(ah) is maximal and
hence positive. Finally, define the following parameters:
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bj = (j = 1.... ,n)

z=a. 'w

Since (b) lies in A, z lies in rp(A). Since w lies in aU, z lies in yU with y = ah 'a.
By definition of Uand ewe must have that modk(y)>e. Therefore,

modk(ah) < e-' mod,(a) 5 t .

This implies that (aj) a B; and that w r= q7(B,). We conclude that

WrnaUcq,(B7)

whence q(B,) indeed contains a neighborhood of 0 in W, and therefore 9 is
open.

(iii) Clearly W is locally compact by part (ii). Suppose that z lies in the closure
of W but not in W itself. Then again by part (ii), we have a homeomorphism of
k"" onto <W, z), the subspace generated by W and z, which maps the closed sub-
space k"x{0} onto W. It follows that W itself is closed in (W,z), whence ze W-a
contradiction. Thus W is closed in V, as claimed.

(iv) Assuming for the moment that V is indeed finite-dimensional over k, in
light of part (ii) it suffices to prove the formula for mod,(a) for V=k". But by
Fubini's theorem, the effect of left multiplication by a on the measure of a
measurable subset of k" may be computed iteratively over each of the coordi-
nates, and from this we deduce immediately that mod,(a)=modk(a)", as
claimed.

It remains to show that a locally compact topological vector space V is in-
deed of finite dimension over k. Let there be given aek such that
0<modk(a)<l. Then according to Corollary 4-5, we have that lima"=0,
whence modk,(a)<1 also. (Note that this holds for any nontrivial locally com-
pact topological vector space V over k: by continuity of multiplication, for any
compact Kc V, a"K eventually falls into neighborhoods of 0 of arbitrarily small
measure.) Let W be a finite-dimensional subspace of V which is therefore
closed by part (iii), and consider the quotient space V'=V/W By devissage (see
Exercise 3),

mod,(a) = modH,(a) mod,(a) = modk(a)"w mod,,,(a)

and since modi (a)s l with equality if and only if V'= (0), we have mode .(a) s
modk(a)" w. But this upper bound is valid for all finite-dimensional subspaces
W, hence dim V must be finite or else modi,.(a) would be 0-a contradiction that
completes the proof.
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Preliminary Analysis for the Main Theorem

We develop some general statements about modk that will be needed in the
proof of the main theorem. In fact this analysis allows us to settle the case of
characteristic zero in short order.

Recall from the previous section that we define modk for N by the formula
and that according to Proposition 4-10, either

(1) modk(m)S 1 for all m (equivalently, k is ultrametric by Proposition 4-11), or

(2) there is a positive constant A such that modk(m)=mz for all m.

Assume first that alternative (1) holds, which is always the case fork of positive
characteristic, since then modk is clearly bounded on the prime ring of k. We
then have

meN}c B,

and since B, is compact, there exists at least one limit point a. For every posi-
tive a there are infinitely many m such that modk(m l k-a) 5 e. Let m and m' be
two such integers with m<m'. By the ultrametric inequality,

In particular, there exists n z l such that modk(n) < 1. Let p be the smallest posi-
tive integer for which this inequality holds. Since modk is multiplicative, p
must be prime (see the proof of Theorem 4-30), and by induction, moreover,
modk(mp) < I for every meN. Let j be a positive integer less than p. From the
identity

j=(j+MP)-MP

it follows from the minimality of p and again from the ultrametric inequality
that

mod k(j+mp) =1 .

Thus if n is any positive integer prime to p, then modk(n)=1, and in particular,
p is the unique prime at which modk is less than 1. This leads us to two possi-
bilities:

(a) Suppose that char(k)>0. In this case modk(char(k))=0, and according to
the analysis above, p is in fact equal to char(k).
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(b) suppose, still under alternative (1), that char(k)=0. Then modk(p) is not
zero, and we may write modk(p)=p-4 for some positive t. Expressing arbi-
trary n as mp' with m prime to p, we see at once that

modk(n) =Inly

where I I, is the p-norm on Q. [For nonzero c, the p-norm is defined as
follows: express c in the form p'"(a/b) where a and b are integers relatively
prime top; then I c I p-m.I

Let I I. denote the usual norm on R. It follows from case (b) that in charac-
teristic zero, under either alternative (1) or (2), we have that for all natural
numbers n,

modk(n) =Ink' (4.3)

where v is the prime p described above if alternative (1) holds and p is oo if al-
ternative (2) holds. Thus in this case the module has a uniform characteriza-
tion. Indeed, Eq. 4.3 is the key to the analysis in characteristic zero, as we shall
see in the following subsection.

REMARK. Note finally that if modk(p) < 1 for some positive rational prime
then either (a) holds, or (b) holds with v=p. In either case, k is ultrametric.

Proof of the Main Theorem in Characteristic Zero
We now dispense with the case char(k)=O. The isomorphism of algebras

Z -+
n H

P,

extends to an isomorphism which we regard as an identification.
By Eq. 4.3, modk induces the function x F-* 4 on Q. Since the sets B, con-
stitute a local base at 0 in k, the topological structure of Q induced by k is iden-
tical to that induced by the distance function Ix-yl, Hence in view of k's local
compactness, the closure Q of Q in k is precisely the completion Q. of Q rela-
tive to the metric v; that is, Q = Q,, (as locally compact fields). By Proposition
4-13, part (iv), k is finite-dimensional over Qv, so that if v=oo, k is a finite field
extension of R, and hence is either R or C. Otherwise, if v=p, then k is a finite-
dimensional extension of the p-adic field Q. This completes the proof of as-
sertion (i) of the main theorem.
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The bulk of the proof of assertion (ii) of the main theorem is in the analysis
of the local ring associated with a locally compact ultrametric field.

The Local Ring of an Ultrametric Field and Its Residue Field
Assume that k is ultrametric. Recall in particular (Proposition 4-9) that r, the
image of k* under modk, is discrete in R. We define the following subsets of
k:

A = (xek I modk(x) 5 1)
A" _ {xek I modk(x) = 1)
P = (xEk I modk(x) < 1)

We begin with an analysis of the major structural features of A, P, and A/P.

4-14 LEMMA. A is the unique maximal compact subring of k, and A" (as de-
fined above) is the group of units of A..

PROOF. Note first that A =B, is compact, whence its closed subset A" is likewise
compact. By the ultrametric inequality and the multiplicativity of modk, A is
clearly a ring with unit group A', as claimed. If S is any relatively compact
multiplicative subset of k, then CIE S implies that the sequence (a") has an ac-
cumulation point in S, and so modk(a)51. Thus ScA, and A is indeed maximal,
as required.

Recall that a local ring is an integral domain that has a unique maximal
ideal. Clearly every element lying outside of this maximal ideal is a unit. A
discrete valuation ring is a principal ideal domain having a unique prime ideal;
it is in particular a local ring. The unique prime ideal of a discrete valuation
ring R takes the form Rn, where vr, the unique irreducible element of R (up to
associates), is called the uniformizing parameter of R.

4-15 LEMMA. A is a discrete valuation ring, and hence a local ring, with
unique maximal ideal P =Asr, where the uniformizing parameter n is
given as any element in k* such that y=modk(n) is the maximal element
of I- less than 1. Moreover, the residue field A/P is finite.

PROOF. By the ultrametric inequality, P is obviously an ideal of A, and since
P=A-A", it is, moreover, open and the unique maximal ideal of A. Note also
that our description of,rek* is sensible, since F is discrete, and that n is neces-
sarily irreducible in A. One shows easily that y generates r, so that we have a
short exact sequence of groups
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modk

1_A' +k* -)- F-il

whence every element in aek* is expressible uniquely in the form u n' for some
ueA" and integer n, called the order of a and denoted ordk(a). (For con-
venience, we set ordk(0)=+00.) Consequently every proper ideal of A is gener-
ated by its element of minimal order and thus of the form n"A for some positive
integer n. Hence A is ipso facto a discrete valuation ring with unique maximal
ideal P=A,-r. Since P is open and A is compact, the residue ring A/P is discrete,
compact, and hence finite. This complete the proof.

4-16 COROLLARY. Every automorphism or of k (as a topological field) maps A
to A and P to P; hence it induces an automorphism or on A/P.

PROOF. A must map onto itself by virtue of its description as the maximal com-
pact subring of k, and since a (unital) ring homomorphism maps units to units,
P=A -A' likewise maps onto itself.

Henceforth we put q = Card(A /P). If modk(p) < 1 for some rational prime p,
then as observed in the remark above, k is ultrametric, and the present discus-
sion applies. Also, by definition p- lkeP, so that the characteristic of the residue
field A/P must be p, and q=pr for some positive integer r. Since A is compact,
and therefore of finite measure, and A is the disjoint union of q additive trans-
lates of P-,rA, p(A)=qu(irA), so that modk(rr)=q-I. We call q the module of
k. Thus

modk(a) = q o'dk(a) (a a k*) . (4.4)

4-17 PROPOSITION. Assume that k is locally compact and that modk(p) < 1 for
some prime p. Then the following assertions hold:

(i) Let {a}iZ0 be a sequence in k such that lima =0. Then the series

Y_ ai
i-0

converges in k.

(ii) Let (a J) be a fixed set of coset representatives forAIP that includes 0
and let ar=k* have order n. Then a is expressible uniquely in the form

a = Yaj,,ri (4.5)

with a,#0.
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PROOF. (i) Since modk is continuous, we must have also that lim modk(a) = 0.
Consider the sequence of partial summations

S. _ Ea3 .

J=0

Since k is ultrametric, for m<n,

mod(S" - Sm) 5 sup modk(a j) s sup modk(aj )
m<J5n m<j

and the bound can be made arbitrarily small. We see that the Sn must fall into a
compact subset of k and there accumulate to a unique limit point.

(ii) Since the a. are chosen from a fixed finite set, the numbers modk(y1rJ) con-
verge to zero, and hence so do the field elements a1Jrj. By part (i), a series of
the given form always converges. Next consider the possibility that

Y,a//r- = 0
J=0

but not all the a. are zero. If j, is the first index such that ajo * 0, then

9Jn=ajo
aj)TJ

j=j0+l

(each aj except 0 is a unit), which is impossible, since modk applied to the left is
q-j°, but modk applied to the right is bounded by q-(j0+o. It follows that any
representation of the form given in Eq. 4.5 is unique. Finally, given aek*, after
multiplication by ,r-" we may assume that aeA". We may then inductively
choose aj such that

"-l
a a y,ajrrJ (modP")

j=0

Note that ao x 0 because a v P. Thus

"-l

mod, (a - Y aj,rJ) S q-"
J=0

and as n--*oo, the partial sums converge to a. This completes the proof.
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Roots of Unity in k

We continue to assume that modk(p)<1 for some rational prime p (with all
notation as in the preceding subsection). In particular, this condition holds if
char(k)=p. We examine a special subgroup of k* that is simultaneously a trans-
versal for (A/P)*. From this we shall easily deduce part (ii) of the classification
theorem (Theorem 4-12).

We begin with a technical lemma. Recall that q, the module of k, is also the
order of the finite residue fieldA /P and that q=pr for some positive integer r.

4-18 LEMMA. Let aeA" and define a sequence in A as follows:

ao =a

an = a9" a?"_1 (n Z 1)

Then (an) converges to zero, and hence lim a?" exists.

PROOF. Since by assumption p an easy induction shows that

(1+P)' c 1+P"+' .

Now (A /P)* has order q- 1, so clearly a?-' E 1 +P, and from the inclusion above
it follows that a(4-')q" E I + P" Therefore,

an+] =
a?n+I - a'n = a9n(a(4-l)q"

- 1) E Pin+l

whence lim modk (a") = 0. Thus by continuity lim an = 0, as claimed. The sec-
ondand statement follows from Proposition 4-17, part (i), since the nth partial sum
of the series Ea is precisely a?".

According to the lemma, we can sensibly define

cE(a) = lima?"

for aeA". The definition also makes sense for aEP (where the limit is 0) and
hence for all ofA. Moreover,

cr(ab) = oo(a)aj(b)

for all a,beA, and in particular, a a")=w(a)n for all integers n and anA".
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Recalling that (1 + P)'° c 1 + P"'1 , we see that ov(a)=1 if a a l (mod P). Con-
versely, if w(a)=1, then eventually (a - l)q" = a4" -1 a P, and so an 1 (mod P).
Thus the inverse image of zero under w is P, while the inverse image of 1 is
precisely 1 +P. Note, too, that since aq"' e I +P for all aeA", w(a) ¢I =1. Choose
an element a, e-41 whose projection generates (A/P)* and put y,=w(a1). We
claim that u, generates a cyclic group of order q-1 in A".

PROOF OF CLAIM. For any integer n, we have the following chain of equiva-
lences:

"=1 aw(a,)=I
4aj E I+P
an=0 (modq-l)

Clearly this can hold if and only if u1 generates cyclic group of order q- 1.

Define M* to be the group of roots of unity in k of order prime to p. The
upshot of this discussion is that co induces an injective homomorphism of
groups (A/P)*-,.M*. This induced map turns out to be an isomorphism.

4-19 PROPOSITION. For every aeM*, w(a)=a. Hence the factorization of w
through the canonical projection onto (A/P)* induces an isomorphism of
groups M*=(A/P)*. Thus M=M *v(0) constitutes a complete set of coset
represent atives forAIP, and the polynomial x4-'-1 splits in k.

PROOF. Let acM* be of order n, and let N be the order of q in Z/nZ, so that qN
=1 (mod n). Then a4'' = a for all j z0, and consequently w(a) = a. Since M* is
a torsion group, this suffices to establish the first statement. The balance of the
proposition is easily deduced from the following commutative diagram:

M*

can.

1 (A/P)* M* U

In the case of positive characteristic, M=M*v(0) turns out to be much
more than a commutative monoid, and this is the key to part (ii) of the classifi-
cation theorem.

4-20 PROPOSITION. Assume that k is of positive characteristic p. Then M is the
algebraic closure of FD in k.
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PROOF. Let M be the algebraic closure of FP in k. We must show that every
nonzero element a r= M is a root of unity of order prime to p. Certainly a lies in
some finite extension of F. so that aP -1= I for some mz 1. Hence the order of
a has no factor of p, and acM, as required.

Combining this result with the representation of k by power series in the uni-
formizing parameter )r [Proposition 4-17, part (ii)] yields the following result.

4-21 PROPOSITION. Assume that k is locally compact with modk(p) < 1 for some
rational prime p. Then

(i) Every element of P" (neZ) is uniquely expressible as

Eaj;r' (aJ E M)
J2"

(ii) (M,+) is a subgroup of (k,+) (and hence M is a field) if and only if
char(k) is positive.

PROOF. We need only demonstrate (ii) in the forward direction. But this follows
at once from the existence of an injection of Al into the finite 'set A/P: if M is
closed under addition, it must have torsion, whence k has positive characteris-
tic.

Proof of the Main Theorem in Positive Characteristic
We consider the second statement of Theorem 4-12, the case char(k)=p>O, to
which the previous discussion applies. By the preceding proposition, every ele-
ment of k can be expressed uniquely as a power series in it with coefficients in
M (possibly involving finitely many terms with negative exponent). If k is of
positive characteristic, then M is a field and the assignment it H x induces an
isomorphism from k to M((x)), the field of formal power series in the indeter-
minate x with coefficients in M. This completes the proof.

4.3 Extensions of Local Fields

Returning to the more general case of a nondiscrete locally compact field k with
modk(p)<1, with no assumption on the characteristic of k, we now develop
some fundamental results on finite extensions. Accordingly, let k1/k be an ex-
tension of k of degree n. Recall that k, has a unique topology as a topological
vector space over k, in which category it is isomorphic to k". It follows that k, is
also nondiscrete and that any k-linear map of k1 onto itself preserves this topol-
ogy, which is to say that Aut(ki/k)=AuttP(k,/k).
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SPECIAL CONVENTION. For this section we adopt the following convention: if X
denotes any structure or invariant defined with respect to k, then X, denotes
that same structure or invariant defined with respect to k,. Thus A and A, are,
in particular, the local rings associated with the fields k and k,, respectively.

Ramification Index and Residual Degree

We shall now see how the finite extension k,/k of a local field k gives rise to a
finite extension of finite residue fields; this in turn yields two key parameters.

4-22 PROPOSITION. The finite extension k, of k satisfies the inequality
modk,(p) < 1 and therefore is likewise ultrametric. Moreover, A, r k =A
and P,nk=P.

PROOF. In light of the topological and algebraic characterizations of A, P, A,,
and P,, only the first statement requires justification. This follows from the
general formula

modk, (a) = modk (a)" (a E k)

applied top-lk to show that modk,(p) is also less than 1. 0

We come now to a fundamental relationship between the degree of the ex-
tension k,/k and the order of ,r, the uniformizing parameter in A, as an element
ofA,.

4-23 PROPOSITION. Let k,/k- be an extension of fields of degree n as above and
define q,, q, and e as follows:

q, =Card(A1/P,)
q = Card(A/P)
e = ordk, (lr )

Then q, = gffor some integer f, and moreover, n =ef for some positive in-
teger e.

PROOF. Certainly A, /P, is a finite extension of the finite field A/P, whence such
an exponent f exists. Using Eq. 4.4, we can compute modk, (p) in two ways:

modk, (ir) _ (qi) e = q-ef

modk,('Ir) =mod k0r)" = q-"
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A comparison of exponents yields the stated result.

The integers e and f appearing in this proposition are singled out in the fol-
lowing definition.

DEFINrrIOxs. The invariant e is called the ramification index of k,/k; the exten-
sion is called unramifred if a=1. The exponent f is called the residual degree of
k,/k, the extension is called totally ramified if f= 1.

Characterization of Unramified Extensions

We maintain the assumptions and notation of the previous subsection. In par-
ticular, k,/k is an extension of nondiscrete locally compact fields and
modk(p) < 1. Henceforth k and k, denote, respectively, the residue fields associ-
ated with the local rings of k and k,. Thus by definition [k,:k ] = f and q, = q- f.
In accordance with our convention, M,* denotes the set of roots of unity in k, of
order prime to p, and M, = M,* u {0} .

4-24 LEMMA. Let k, be a finite extension of k generated by one or more roots
of unity of order prime to p. Then:

(i) k, =k(M); k, is thus the splitting field for the polynomial x'11-1 - 1
and hence a Galois extension of k.

(ii) Every automorphism aeGal(k,/k) induces an automorphism on the
residue field a: E Gal(k, 1k); moreover, the mapping or H Q con-
stitutes an isomorphism of groups.

(iii) k, is cyclic and unramified over k.

PROOF. We know by the isomorphism M,*_(A,/P,)* (Proposition 4-19) that
M,* consists precisely of the roots of x'' -1, and we have seen that k, at least
contains M,, whence by assumption k,=k(M). The subsets A, and P, both re-
main invariant under every (necessarily topological) automorphism or of k, over
k, so or indeed induces the automorphism a of k, over k defined by a(a+P,)=
a(a)+P,. If Q is the identity on k,, then a(a)=a (mod P) for all aek,. But
since M, is a complete set of coset representatives for (A,/P,) and or permutes
the elements of M,, this implies that o(a)=a for all acM,. Hence or is the iden-
tity on all of k, =k(M, ), and therefore the group homomorphism a H a: is at
least injective. From this we deduce at once that

ef =[k,:k]5[k,:k]= f .
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Thus the ramification index e must be 1-which is to say that k,lk is unrami-
fied-and accordingly both Galois groups have the same cardinality. But if this
is the case, then injectivity implies bijectivity for the map oi-4 0, whence
Gal(k,/k) = Gal(kl/k), and the extension k, /k is indeed cyclic by elementary
Galois theory. This completes the proof.

4-25 PROPOSITION. Let k,/k be a finite extension of nondiscrete locally com-
pact fields with modt(p) < 1. Then k, is unramified over k if and only if k,
is generated over k by M, . Hence for every positive f, k has exactly one
unramified extension of degree f and this is generated over k by any
primitive (qi-1)th root of unity.

PROOF. Assume that k,lk is unramified of degree f and consider the intermedi-
ate extension 1=k(M,), with residue field 1 . Since M, also constitutes the set of
roots of unity in k(M,) of order prime to p, it follows that M, is isomorphic to
both / and k,; thus [l:k] = [k]:k] = f. But then [l:k]Zf, showing that k,=1. In
light of the previous lemma, this establishes the first statement and shows fur-
ther that an unramified extension of degree f is precisely the splitting field over
k of the polynomial xqf -1-1; it is therefore unique up to isomorphism.

4-26 COROLLARY. Let k,/k be as above. Then the following assertions hold:

(i) The mapping k, N k, constitutes a bijective correspondence between
the isomorphism classes of unramified finite algebraic extensions of k
and the isomorphism classes offinite extensions of T.

(ii) Given any finite extension k, of k, there exists an unramified sub-
extension Ilk such that k,11 is totally ramified.

PROOF. Part (i) is immediate from the previous proposition, since a finite field
is determined (up to isomorphism) by its order. For part (ii), take I = k(M,).
Then Ilk is maximally unramified and of degree f, the ramification index of k,
over k. For a uniformizing parameter yr of the local ring associated with k, the
following equations hold:

ordk, (7r) = e

ord,(fr)=1

In particular, ,r is also a uniformizing parameter for the local ring associated
with 1, so that e,t,,, = e. Since 1k,: k] = ef, it follows that [kl :l ]=e, fk1/t = 1,
and k,/l is totally ramified, as required.
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Finally, these results allow us to define the Frobenius automorphism associ-
ated with the unramified extension of any given degree. We shall study this in
detail in Chapter 6.

DEFINITION. Let k,/k be the unramified extension corresponding to the residue
extension ki/k where k =FQ. Then py is the automorphism of Gal(k,/k) corre-
sponding to the mapping x j_4 x9 in Gal (k /k) under the isomorphism given
above by Lemma 4-24, part (ii).

4.4 Places and Completions of Global Fields

A number field is a finite extension of Q. A function field in one variable over
a field k is a field extension K of k of transcendence degree 1. Hence K is an
algebraic extension of the intermediate field k(x) for some element xEK that is
transcendental over k.

Since number fields arc likely to be quite familiar, we will say a few words
only about function fields. If X is any compact Riemann surface (i.e., a one-
dimensional complex manifold), the field K=C(X) of meromorphic functions
on X is a function field over the field of complex numbers (whence the name).
In fact, every function field in one variable over C arises in this way. One also
knows that every compact Riemann surface is the set of complex points of a
smooth, projective algebraic curve over C. Given a function field K in one vari-
able over any field k, we may identify K with the field of rational functions of a
smooth projective algebraic curve X over k. K is purely transcendental if and
only if X has genus zero, which is to say that it is isomorphic to Pk1.

DEFINITION. A global field is one of the following:

(i) an algebraic number field K;

(ii) a finitely generated function field K in one variable over a finite field k=Fv.

That these types of fields have many common properties has become the
basis of one of the most fruitful analogies in mathematics.

Absolute Values
We study global fields mainly by analyzing the different types of "absolute val-
ues" they admit. Note that the function modk studied for local fields in the pre-
vious two sections is a particular instance of the following definition.

DEFINITION. Let F be a field. An absolute value (or valuation of order 1) on F
is a map

I1:F-+R,
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satisfying the following properties:

(AV-1) IaI=0 if and only if a=0.

(AV-2) IabI=IaI'IbI for all a,bEF.

(AV-3) There exists a positive real constant c such that for all a,bEFwe have
that Ia-+

Note that the ordinary absolute value function on the complex numbers is an
absolute value in the sense above with c=2. In fact, a somewhat stronger state-
ment is true.

4-27 LEMMA. Let I I : F -4 R. satisfy properties AV-1 and AV-2. Then the
following statements are equivalent:

(i) Property AV-3 holds with c52.

(ii) For all a, b eF, I a + b I S lal + lb I .

Statement (ii) is, as usual, called the triangle inequality.

PROOF. We need only show that (i) implies (ii). Assume that n=21" for some
positive integer m and let a1,...,an be a sequence of elements of F. Then by
induction it follows at once that

2'"
IEajl<_2m.suplajl

j=1

Now suppose that n is an arbitrary positive integer. We can always pad the se-
quence a l, ..., a,, with zeros out to 2' terms, where m satisfies the condition
2mzn>2"~'. The previous inequality then implies that

n 2""-' 2"
I IFajl, I Eajl)
)=1 j-1 j=2"'-'+1

<2-sup( 2ni-1 sup I aj) , 2in 1 sup j ajS2-1
j>2'_1

< sup l aj l
j

Thus we achieve the general relation

I)

Iyajl 5
j-1
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for arbitrary n > 0. In particular, setting a1 1 for all j, we obtain the inequality
InIs2n. Moreover,

i=I J=1

We may now proceed with the main calculation:

l a+bl"= 1(a+b)"I

= I (7)aib"-i

5 2(n+1)yI(")I IaliIbI" 3
jO

54(n+1)Y,(,)Ialilbl"-i

i=o

=4(n+1)(Ial +IbI)"

Taking the nth roots of both sides and then the limit as n-->oo now yields the
triangle inequality.

Note that if I I is an absolute value, then I1I=1. Indeed, by AV-2, if a=I11,
then a2=a, whence a is 0 or 1. But the possibility that a=0 is excluded by AV-
1, whence a= 1.

One says that I { is trivial if jai =1 for all nonzero aeF. Every absolute value
on a finite field k=Fq is trivial. This is so because for any nonzero aek, we
have aq-'=I; accordingly Ia19-1=1, and hence Ia1=1, since R, has no roots of
unity other than 1.

DEFINITION. Two absolute values I I and I I' on F are equivalent if there is a
positive constant t such that I a I' = I a I I for all aEF. A place of F is an equiva-
lence class of nontrivial absolute values.

Note that if we replace an absolute value I I satisfying AV-3 for some c>0
by I I` for some t>0, then c is replaced by c1. Appealing to the previous lemma,
we see that every absolute value is equivalent to one that satisfies the triangle
inequality.

The next proposition is similar in both form and proof to the corresponding
statement for the function modk on a local field (Proposition 4-11).
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4-28 PROPOSmoN. Let I
I be an absolute value on F. Then the following

statements are equivalent:

(i) 1-1 satisfies the ultrametric inequality (i.e., AV-3 with c=1).

(ii) The set {InI : nnN } is bounded.

In either case, InI is in fact bounded by 1 on N.

PROOF. That the first statement implies the second follows at once from the
observation that

lnI = Il+1+...+ll S 1 .

Conversely, suppose that InI is bounded by some positive constant Q for all
natural numbers n. Then since I I is multiplicative, In I cannot be greater than 1
for any n, or else In-I tends to infinity. Replacing I I by an equivalent absolute
value if necessary, we may assume that I I satisfies AV-3 with cS2 and hence
satisfies the triangle inequality. Thus we may calculate as in the previous result:

Ia+bl"sZI(;)I IalVIbI"-j

j=0

<-(n+l)sup{IaI,IbI}"
.

Taking the nth roots of both sides and then the limit as n-oo now yields the
ultrametric inequality.

DEFiNm0N. An absolute value is called non Archimedean, or ultrametric, if the
equivalent conditions of the preceding proposition are satisfied. Otherwise it is
called Archimedean, or ordinary.

Note that any absolute value I' I on a field F defines a nonnegative function d
on FxFby

d(a,b)=Ia-bI .

This function induces a topology on F, a base for which is given by open balls
relative to d, and this topology is nondiscrete if and only if the absolute value is
nontrivial. Clearly any equivalent absolute value induces the same topology
(one can also establish the converse), and d may in fact be taken as a metric on
F. We say that F is complete with respect to I I if F is a complete metric space
with respect to the metric topology defined by this absolute value. Thus, for
example, every local field with its associated absolute value (the module) is
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complete in this sense. The familiar construction of equivalence classes of
Cauchy sequences yields the following result:

4-29 PROPOSmoN. Let F be an arbitrary field and let I I be an absolute value
on F. Then F can be embedded in a field that is complete with respect to
an absolute value that is equivalent to I I on F.

Ostrowski 's Theorem
We shall now classify the places of prime global fields; that is, either the ra-
tional numbers Q or a function field Fq(t).

4-30 THEOREM. Let K be a prime global field. Then

(i) Suppose that K= Q. Then every nontrivial place of K is represented
by either the usual absolute value, sometimes denoted I Imo, or a p-
adic one i - Ip, for some prime p.

(ii) Suppose that K= Fq(t), and let R = Fq[t ]. Then every nontrivial place
of K is given by either the "infinite place " I I. defined by

If /gI . = gdcs(f)-ds(a)

or by the finite place I.1P corresponding to an irreducible polynomial
P(t)ER.

The first statement is called Ostrowski's theorem.

PROOF. Note that in either case we must have IzI=1 for any root of unity z. In-
deed, if z"=1, then IzI^=1, and so IzI=1, since there are no other roots of unity
among the nonnegative reals. We now address the two separate cases.

(i) Suppose first that I - I is ultrametric; the analysis is similar to that for an ul-
trametric module. For any positive integer n, we know by induction that InI51.
Since I . I is nontrivial, Ini < 1 for some positive integer, and we take n to be the
smallest such. We claim that n must be prime. For if m=m,m2 where both fac-
tors are greater than 1, then the inequality 1 > ImI = Imtl Im2I implies that Imd < 1
for at least one i, contradicting the minimality of m. Thus m is prime, and ac-
cordingly we shall henceforth write p for m.

We claim next that Ial=1 for any integer a prime to p. Indeed, any such a is
of the form dp+r for integers d and r with O<r<p. The choice of p forces Iri to
be 1. But since IrISmax{Idpl,IaI}, this forces Ial to be 1, as asserted. In sum-
mary, we have shown that
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Iapkl=IPIk

for all k where a is prime to p. The usual p-adic norm has the same form with
Iplp 1/p <1, and it is now clear that I I and I I, arc equivalent.

Now consider the case that I - I is Archimedean and hence may be assumed to
satisfy the triangle inequality. Then when restricted to N, this absolute value
function satisfies the hypothesis of Proposition 4-10 with A=2. Since it is
moreover unbounded, it follows from that same proposition that I I is just a
positive power of the ordinary absolute value function, and therefore it repre-
sents the same place of Q. This completes the proof of part (i).

(ii) We may identify the subring of K generated by 1 eK with the finite field F..
Thus the set of values In -1 I for n e Z is bounded, and hence I I is non-Archi-
mcdean; in fact, these norms are precisely 1 for all n prime top,.

Suppose that there exists a polynomial PEFq[t] such that IPI<1; clearly we
may assume that P is irreducible. Then arguing as above, IQI=1 for all Q not
divisible by P. Hence given any polynomial fEFq[1J, we may factor it into the
form P"Q where nZO and Q is prime to P, and thus If1=IP1" in accordance
with the second alternative of the assertion.

Now suppose that IPIzl for every irreducible polynomial PEFq[t]. Then
since lal=1 for all nonzero constants, it follows that 1.1 maps Fq[t]* into the
interval [1,00). Thus in particular, Itlzl, and we claim that in fact this inequal-
ity is strict. Suppose to the contrary that Itl=1. We will then show that 1 I takes
the value 1 on all of K*, contradicting the assumption that I . I represents a non-
trivial place. For this it clearly suffices to show that IfI=1 for all fEFq[tJ*, and
accordingly we can proceed by induction on n, the degree off The case n=0 is
clear. So assume that n is positive and write

f(t) = ao + tro(t)

where geFq[tJ* is of degree n-l. By assumption and induction, Itrp(t)I =1,
whence If I= 1, as claimed, because is non-Archimedean. So indeed Itl>1.

We claim next that for a nonzero polynomial f we have If I= I t I °eg(f ). Again
the proof goes by induction on n, the degree off, and again the case that n=0 is
clear. Writing f as above, we find at once that

If(t)Isitso(t)I=1t1" .

But then If I must be It I", for otherwise we have a contradiction from the ine-
quality

Itrp(t)IS sup{Ia01,lf(t)I}
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since Ja,J is 0 or 1. (We observe yet again that all non-Archimedean triangles
are isosceles!) This proves the claim and also the theorem, becauseclearly

f IJ I =
S IgI

Extension of Absolute Values

Let K denote an arbitrary global field. Let F denote a subfield of K of the form
Fq(t) if K is of positive characteristic p or let F=Q if K has characteristic zero.
In the former case, we can always find an element such that K is finite and
separable over Fq(t) (see Exercise 4), and hence we may assume that K/F is
finite and separable.

Next put n = [K: F] and for any place v of K, let K,, denote the completion of
K relative to a representative absolute value, say I L,,, belonging to the class v.
Let 9'K denote the set of all places of K. This is the disjoint union of two sub-
sets:

9'K = the set of Archimedean places of K, and

9'Kr = the set of ultrametric places of K.

Note that every ve_6PK induces by restriction a place u=res,(v)e9aF, and hence
we have defined a restriction map

r = rK,F:_97K ->
v 1-4 U

from the places of K to the places of F.
Since the previous discussion gives a complete description of 9"F, to under-

stand 93K,-it suffices to describe the image and the fibers of r.
Henceforth we shall write vlu if ver-l(u) and say that v lies over u or that v

divides u.
To analyze the relationship between local extensions and the global

extension K/F, we must analyze the embeddings over F of K into F,., the alge-
braic closure of the completion of F at u. By separability we know that K=F(a)
for some element a e PC P. Let p(x) denote the minimal polynomial of a
over F and suppose that

7-r-

P(x) = 1 1 Pj(x)
J=l
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is the irreducible factorization of p(x) in Fu[x]. For each j, fix a root a/ of po(x)
in T.. Note that these a1 are distinct, since p(x) is separable.

4-31 PROPOSITION. Let K=F(a) be a finite separable extension of F, where F
is either Q or Fq(t), and let u be a fixed place of F. Suppose further that
p(x) is the minimal polynomial of a over F and that p(x) factors over Fu
into the product of polynomials po(x) with corresponding roots a1, as
above (j=l,...,r). Then the following assertions hold:

(i) If v is a place of K that lies over u, then K,=Fu(/3), where f is a root
ofp(x) and hence separable- over Fu. In particular, K/Fu is a finite
separable extension.

(ii) The places v of K that lie over u are in bijective correspondence
with the embeddings of K into F. induced by the assignments
a H a1.

PROOF. (i) Consider this diagram of embeddings:

F

K = F(a) -4 K,,

F - F.
Clearly K. contains FF(/3), where 6 is the image of a and therefore a root of
p(x). But Fu()6) is finite-dimensional over F. and hence locally compact. Thus
it is a complete field containing both F and the image of a, which is to say that
k= Fu(/3).

(ii) Every finite extension FF(i) admits a unique topological structure as a lo-
cally compact field, namely the one induced by a vector space isomorphism
with (Fu)", where m is the degree of /3 over Fu, and the associated absolute
value on Fu. In particular, each of the extensions Fu(aj) admits an absolute
value, which, when restricted to the image of K, induces an absolute value on K
and a corresponding place v that obviously lies over u. Part (i) shows that every
such place arises in this way, since FF(f) is isomorphic to FF(a1) for some j.

It remains to show that distinct assignments a H a1 give rise to distinct
places. Consider, for instance, p,(x)eFF[x], which can be expressed-in the
obvious sense-as the limit of a sequence (q(x)) of polynomials over F. Then

Ilim q(a)li = Ilimq(a1)l1 = I pi(ai )I1 = 0
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where I Ij denotes the absolute value associated with the embedding a i-a aj.

But for j > 1,

I limq(a)Ij = Ilimq(aj )I j = I p,(aj )I j #0

which shows that I - I, and I - Ij represent different places. More generally then,
I - I j and I 1, represent different places whenever j *k, as required. This com-
pletes the proof.

As an immediate consequence of this proposition, we have the following
fundamental result.

4-32 COROLLARY. Let F, K, and u be as above and let n=[K:F].

(i) Define for vIu. Then

n=n,

In particular, the restriction map is surjective, and the fiber over
each place of F. is finite.

(ii) If K/F is moreover a Galois extension, then n is constant for all v I u.

PROOF. (i) The proof of the first statement is immediate because the degree of
K/F is also the degree of p(x), while the degree of each local extension Kj/F is
the degree of the corresponding factor po(x).

(ii) If K/F is Galois, all of the roots of p(x)EF[x] lie in K, whence every embed-
ding of K into T. contains all of the roots of p(x). Thus for all indices j and k,
FU(aj)cF(ak), so that all of the completions of K in fact give rise to the same
subfield of F,-only the embeddings are different-and hence are of the same
dimension.

We next analyze [K.: F] where v I u in the case that u is ultrametric.
Then is a finite extension of non-Archimedean local fields. Let

D . and o , ,

denote the respective local rings of integers of K and F, and let k and k' de-
note the residue fields of ou and o modulo their respective maximal ideals. Put

[k':k] .
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This is called the residual degree of K,, over F.

4-33 LEMMA. For all vju, we have

n = e f,
for some integer e,,.

In this context, the positive integer e is called the ramification index of K
over Fu. Note that our current use of the terms residual degree and ramification
index is consistent with that of Section 4.2.

PROOF. Let L/FF be the largest unramified subextension of K /Fw. Then, as we
noted earlier in our characterization of unramified extensions (see especially
Lemma 4-24 and Proposition 4-25), the residue field of L identifies with k', and
moreover, [L:F.]=[k':k]=f,. Put e,,= [K,,: U. The lemma follows.

4-34 COROLLARY. Let K/F be a finite separable extension of global fields, and
let u be a non Archimedean place ofF. Then we have

n = [K: FJ = E e,.f,.

Moreover, ifK/F is Galois, then both the ramification indices and the re-
sidual degrees are constant for all v lying over u, so that

n = efg

where e = e, f=f,,, and g is the number of places v of K lying over u.

PROOF. Since for a Galois extension we already know that n,,=e f, is constant, it
suffices to show that the residual degree is invariant. But in this case, all of the
local extensions are isomorphic to a single finite extension, say, K. of F.. The
maximal unramified subextension of K,, is obtained from F. by adjoining all of
the roots of unity of order prime to the characteristic and hence is also inde-
pendent of v. Finally, f., is precisely the degree of this subextension.

DEFINITION. The finite extension K/F is unramifred at u if e,= 1 for all v I u. It is
totally ramified if f,=1 for all v I u.

DEFINITION. Let E be an algebraic extension of a number field F, possibly of
infinite degree. Then we say that E/F is unramified (respectively, totally rami-
fied) at a place u of F if there exists a chain

F=E0cEl ccE=UE,
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of finite extensions such that each E1/E,_, is unramified (respectively, totally
ramified) at every place of E,_, lying above u.

The Ring of Integers of a Global Field
Let K be a global field. If K is a number field, then the ultrametric places of K
are also called finite places; the Archimedean ones are also called infinite
places.

Ifp=char(K) is positive, we fix an element teK such that K is a finite sepa-
rable extension of Fq(t) with F. = K n F,,. Here t is not canonically defined, but
this is of no consequence to what follows. We shall now define the infinite
places of K to be those lying over that place of Fq(t) represented by

(f/g L,=gdes(f) dee(8)

The remaining places of K are then called finite. We emphasize that in the
function field case, the distinction between finite and infinite places does not
correspond to the dichotomy of the ultrametric versus the Archimedean.

DEFINITION. Let K be a global field, with finite and infinite places defined as
above. Then we define ox, the integers of K, as follows:

ox= n{xeK:,x,,,51)
V finite

Thus oK is the intersection of the local rings of integers at all finite places of K
and is therefore itself a ring.

In consonance with this definition we shall in the sequel often write oKv for
what we had previously denoted o,, when we wish to emphasize the underlying
local field.

The proposition below summarizes the most important properties of the in-
tegers of a global field. The proof is largely elementary algebra and is therefore
omitted.

4-35 PROPOSITION. The ring of integers oK of a global field K has the following
properties:

(i) oK is a Noetherian domain that is integrally closed in its field of
fractions; moreover, every prime ideal of ox is maximal.

(ii) OK is in fact the integral closure of Z in K if K has zero characteris-
tic, and the integral closure of Fq[t] in K if K has positive charac-
teristic. U



4.5. Ramification and Bases 165

Part (i) says that oK is a Dedekind domain, from which it follows that every
nonzero element or ideal is contained in only finitely many prime ideals. (See
Appendix B.) This tells us in particular that the fraction field of oK is in fact K
itself.

Henceforth, for K a global field, a prime of K is simply a nonzero prime
ideal of the ring of integers oK. One shows easily that the quotient field oK/Q
(computed globally) is isomorphic to the local version o/Q,,, where v is the
ultrametric place associated with the prime Q. In particular, this quotient is
finite. We shall often write KQ rather than K, to denote the completion of K at
the place corresponding to Q; similarly we often write oQ for o,,.

If K/F is an extension of global fields, then we say that a prime Q of K lies
above a prime P of F if either of the following equivalent conditions holds: (i)
the place of K corresponding to Q lies above the place of F corresponding to P,
or (ii) PcQ.

4.5 Ramification and Bases

We close this chapter with two principal results. The first places a finite limit
on the number of primes that ramify in a finite separable extension K/F of
global fields. The second, which is quite technical, describes how we pass from
a global basis of K/F to a basis of the product of local extensions relative
to a fixed place u of F. This is essential to our geometric analysis of the adele
group in the following chapter.

Ramification and the Decomposition Group

Consider a finite Galois extension K/F of global fields with G=Gal(K/F), and
let Q be a prime of K. Then Q lies above some prime P of F, and we let F de-
note the residue field of/P. We define the decomposition group of Q in G to be

DQ = {aeG I a(Q)=Q} .

Now suppose that the residue field oK/Q is the finite field Fa, a finite extension
of F. We have a canonical homomorphism

pQ : DQ --+ Gal (F,,/ F)

that associates with cre DQ the map (x mod Q -4 o(x) mod Q) for all xe oK. This
makes sense because a(Q)-Q for all or in the decomposition group of Q. Also,
pQ(a) is trivial on F=oF/P, since or is trivial on F.

We shall have more to say later about the decomposition group in connec-
tion with the Frobenius elements, which we study in Chapter 6. For the mo-
ment we need only these elementary facts about the homomorphism PQ:



166 4. The Structure of Arithmetic Fields

4-36 PRopOSmoN. The canonical map pQ : DQ-+Gal(Fq/F) has the following
three properties:

(i) pQ is surjective.

(ii) pQ is also injective if and only if P is unramifred in K; i.e., if and
only if the local extension KQIFP is unramifred.

(iii) Each QE DQ extends to an automorphism of the completion K. that
is trivial on the subfield Fp. The induced map

jQ : DQ --- Gal(KQ/Fp)

is in fact an isomorphism.

PROOF. We first show that the order of DQ is the degree of the local extension
KQIFP. Let G=Gal(K/F). Then G has order efg, where e and f are the common
ramification index and residual degree of the primes lying over P, and g is the
number of such primes. But since G acts transitively on the set of primes of K
lying above P (see Exercise 5 below) and rDQ r'DQ if and only if r(Q)=r'(Q),
the integer g is also the index of DQ in G. Hence o(G)=g-o(DQ), whence the
decomposition group of Q has order ef, the degree of the corresponding local
extension. This proves the asserted equality.

We can now prove assertion (iii). Each aEDQ is by construction an isometry
of K, and so the extension jQ(cr) clearly exists and respects Fp. Moreover, jQ is
injective: jQ(Q) cannot be trivial unless cr is. But as we have just shown, DQ and
Gal(KQ/Fp) have common order, whence jQ is indeed an isomorphism.

Next consider the commutative diagram

PQDQ > Gal(FQ / F)
jQ

Gal(KQ / Fp) PQ

where PQ is the map o, ra (x mod Q H o(x) mod Q). Let LIFp denote the
maximal subextension of KQ/Fp such that L is unramified over Fp. From our
analysis of unramified extensions in Section 4.3, we know that L/Fp is normal
over Fp and that Gal(LIF,) is isomorphic to Gal(Fq/F) by the "restriction" of
pQ to Gal(L/Fp). This yields assertion (i), because ordinary restriction from KQ
to L yields a surjective homomorphism from Gal(KQ/Fp) to Gal(L/Fp).

Finally, we deduce assertion (ii) from the triangle. Since Gal(L/Fe) already
maps surjectively onto Gal(Fq/F), pQ-and hence pQ is moreover injective
exactly when L=XQ; that is, exactly when the local extension is unramified.
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Our goal for the remainder of this subsection is to establish the following
fundamental result, which will be critical to our subsequent discussion of local
and global bases.

4-37 PROPOSITION. Let K/F be a finite separable extension of global fields.
Then there are at most finitely many primes P in F that ramify in K.

REMARK. This is a far less precise statement than one might make using the
notion of the relative discriminant of K/F, but the present assertion suffices for
our purposes. (See Exercises 13, 14, and 15 below and Appendix B, Section 2.)
Moreover, the nonstandard proof that we give uses a key idea found in the
proofs of the Tchebotarev density theorem and the Artin reciprocity law, both
stated in Chapter 6: the reduction to cyclotomic and Kummer extensions.

PROOF. The argument proceeds in four steps. The first three are reductive; the
fourth is a direct argument for a much simplified special case.

STEP 1. We may assume that K/F is finite and Galois. Indeed, if K is not nor-
mal over F, let E be its normal closure. Then a prime P that ramifies in K must
certainly ramify in E: the ramification index measures the order of the corre-
sponding uniformizing parameter in a local extension KQ/Fp, and this can only
get larger if we pass to E. Thus it suffices to show that only finitely many
primes ramify in E.

STEP 2. We may assume that K/F is cyclic of prime degree, say 1. This is con-
siderably more subtle. We claim that any given prime P of F ramifies in K if
and only if there exists some intermediate field K1, KnK, QF, such that

(i) K/Ki is cyclic of prime degree, and

(ii) there exists a prime divisor P, of P in K, such that P, ramifies in K.

Certainly the backward direction is trivial, so suppose that P ramifies in K.
Then there exists a prime divisor Q of P in K such that KQ/Fr, is ramified, with
corresponding residue fields Fq and F. But then the natural map

PQ . Gal(KQ / Fp) -* Gal(Fq / F)

is surjective but not injective by the previous proposition. Let N denote the ker-
nel of this map. Again by the previous proposition, we may identify N with a
subgroup of the decomposition group DQ, and of course KQ is ramified over any
intermediate field containing KQ . Since KQ# KQ , we may choose an interme-
diate field L with KQJL7) KQ and KQ/L cyclic of prime degree. Let H be the
subgroup of fDQ corresponding to Gal(KQ/L) and put K1=KH. Then K/K1 is also
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cyclic of prime degree. Let P,=Q mox,, so that P, is a prime between P and Q,
and the completion of K, at P, may be taken in KQ. Now Gal(K/K1) is con-
tained in DQ, so in fact the decomposition group of Q computed relative to K,
is the full Galois group. Thus by the definition of K, and part (iii) of the previ-
ous proposition,

Gal(KQ/(K1)p1) = Gal(K/K1= Gal(KQIL)

and therefore (K,)p,=L. Since KQ/(K,)p, is ramified by construction-after all,
Gal(K/K1) is also contained in N-we have established our assertion.

According to this claim, then, any prime that ramifies in K/F gives rise to a
prime that ramifies in a cyclic intermediate extension of prime degree. But
since there are only finitely many such intermediate extensions-indeed, in-
termediate extensions of any kind-it suffices to show that only finitely many
primes ramify under these special conditions.

STEP 3. We may assume that K/F is cyclic of prime degree I and that F con-
tains all of the Ith roots of unity in the algebraic closure of F. If 1=p, the char-
acteristic of F, then the only Ith root of unity is 1 itself, and the present case
reduces trivially to that of the previous step. Hence we may assume for the bal-
ance of this step that I is different from p. Let S" denote a nontrivial, hence
primitive, lth root of unity in F, and consider the following diagram of fields:

/ KI(D)
K

ll / F(s)
F

To verify our reduction, it suffices to show that there are only finitely many
primes P in F that ramify in F(O. For then if there are only a finite number of
primes of F(C) that ramify in K(;), there can only be finitely many primes of F
that ramify in K.

Now consider the extension F(O/F. In the function field case, all of the resi-
due fields have characteristic p, which is here assumed distinct from I. In the
number field case, for only finitely many primes P of F is the corresponding
residual field of characteristic 1, since as we have seen, the restriction map for
absolute values has finite fibers. In either case, for all but the finitely many
primes whose residual characteristic is 1, the local extension Fp(O/Ft, is un-
ramified by Proposition 4-25. This concludes Step 3.
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STEP 4. We shall now prove the proposition in the case that K/F is a cyclic Ga-
lois extension of prime degree !, with the further assumption that F contains all
of the Ith roots of unity in its algebraic closure.

If I is different from p, the characteristic of F, by standard Kummer theory
we have K=F(a), with a a root of f(x)=x'-a, for some aeF*, where a itself is
not an Ith power in F. If 1 is identical to p, then again K=F(a), but this time a
is a root of f(x)=xP- x-a, for some a as characterized previously. Let S be the
set of primes Pin F such that I aIP* 1. Then S is finite, since o, is a Dedekind
domain. Further define S' (again finite) by

S' =
(S if char(F) > 0
S u (primes P with residual characteristic * 1) if char(F) = 0 .

The proof will be complete once we establish the following result:

4-38 LEMMA. Suppose that P does not lie in S'. Then for any prime Q of K ly-
ing over P the local extension KQIF, is unramifred.

PROOF OF LEMMA. Clearly the local extension is either trivial or cyclic of degree
1. We may thus assume the latter case, so that a is a root of f(x) in KQ-FP. Let
L be the maximal unramified subextension of KQ/Fp. We have the following
diagram of local and residual fields:

KgFQ

Now we consider the consequences of the relation f(a)=0. First note that
whichever of the two forms that f takes, since a is a unit in D p (for P not in S,
I alp=11), it follows that a is itself a unit in oQ and, in particular, integral with
respect to Q. Second, f(x) has a root ill in the residual field Fq that arises from
an integer of the corresponding local field. This second statement clearly holds
also at the middle level of the diagram above, and this is the key to the argu-
ment. Let us compute the formal derivative of f(x):

11xr-'
fi(x) -1 ifI=p.
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In either case f'(f) is not congruent to zero modulo P, and Hensel's lemma
(Exercise 6) applies-to the middle level!-to lift fi to an integer of L. But then
L contains a root of F and KQ=L. Thus P is unramified.

This complete the proof of the full proposition.

REMARK. Note that the hypotheses of Hensel's lemma, namely that

(i) f(Q) = 0 (mod P) and

(ii) f'(fl) 0 (mod P),

imply that f and f' do not have any roots in common; that is, the discriminant
off [or the resultant of (f, f')] is nonzero modulo P. This naturally leads to the
use of the discriminant of K/F to determine which primes ramify-typically the
more common approach.

Global and Local Bases
In this subsection, K/F is a finite separable extension of global fields. Let u be a
place of F,, and define M by

M=fK,,
vlu

That is, M is the product of all the completions of K at places lying over u. We
have an embedding

w

where w,, is the canonical embedding given by the completion at v. The fol-
lowing result is fundamental.

4-39 PROPOSITION. Let {eP be an F-basis of K, and let u be a place of
F. Then X= ( is an Fw-basis of M. Moreover, there exists
a finite set S of places of F, containing the A rchimedean ones, such that
for all uoS,

OM = fl 0Kv
WIu

is free over oFu . with basis X.
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If L and M are extensions of a common field k, then Homk(L, M) denotes the
set of embeddings of L into M that induce the identity map on k.

PROOF. Extend yi to an F-linear map

p:K®F' M

in the obvious way. Both sides are F.-vector spaces of dimension n, since as we
have just seen, the sum of the local degrees [K,: F.] is precisely the dimension
of K over F, and clearly is an F-basis for the domain. Hence it
suffices to show that q, is injective, in fact over F.. This requires one technical
preliminary.

Recall from our discussion of local and global degrees that K=F(a) for some
a and that every embedding of K into F. over F is induced by an assignment
a -a fl, where /y is a root of the minimal polynomial p(x) of a over F. More-
over, the associated place induced on K depends exactly on the conjugacy class
of /i: the assignments a N /3 and a H fi' give rise to the same place of K if
and only if 6 and /y' are roots of the same irreducible component of p(x) when
factored over F . The upshot of this discussion is that we can construct a bijec-
tion A. between the global and local embeddings into the algebraic closure of F.
as follows:

UHomF. (K,, T.)
VIM

Q or,

(a H Q) H (Wv(a) H f )

We now proceed with the main body of the proof. Consider the following
diagram:

_®1
K ®F F. M (9 FM F.

KI

F HomF(K,FP)
u A

v(Kv,F.)_ ) 11°F
F "" _u

FHomp.(Kv,Pu)1 ,
vlu

where A. is the isomorphism induced from A. and K is the F. -linear injection
induced by the F. -bilinear map
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F THomp(K.P,)Kx
(x, Y) H (a(x)Y)QEHom p(K.pu)

and similarly for each ,. Since by construction each embedding a :K -+ F.
W av

factors as K K for some unique v I u, we have that

A. (K(x (& Y)) = A ((a(x)Y)o,Ha,,, ((a9 ° W,. )V1 U

But also

and this is the same as the v-component of A..(K(x®y)). Hence the diagram is
commutative, and it follows that 97 0 1 and q' are injections, as required.

We now prove the second assertion of the proposition. Let u be any finite
place of F. Since oF is a discrete valuation ring and therefore a principal ideal
domain, each oKy is free over of , and thus oM is likewise free over op... The pre-
vious part shows that in fact the rank of oM is dimF(M)=n, the cardinality of
the basis X= { {v(ex), ..., Let S' be the finite set of places consisting of
the Archimedean ones, the unramifred ones, and those corresponding to primes
that divide the numerators or denominators of the ej. Then X certainly lies in
oM for all uvS'. Now consider the following claim:

CLAIM 1. There exists a finite set SDS' such that for all uoS, the collection
{ yi(e1), ..., spans oM over oFy.

Granting this, the collection { y'(e),..., is clearly a basis for oM over oF.
for all uES, as required.

To establish Claim 1, we consider the modules

L=yoFe, and F. .

Then for all uoS'. (The isomorphism follows from the
equality of dimensions.) The claim now follows, provided that L.= oM for all but
finitely many of these u. Let P. be the unique prime ideal of oF.. Then by
Nakayama's Lemma it suffices to show that

L+PuoM=oM
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and since u is unramified, this amounts to establishing

LM+(f PV)oM =0M
"I"

where P is the unique prime ideal of oK,. This in turn follows almost every-
where from our next claim.

CLAIM 2. For almost all places u, the elements yi(ej) span the product

R=fl oK/P
VIM

over F=oF /PM.

Here the bar denotes canonical projection into the quotient module. To prove
this, put

VIM

Then R identifies with oK/IM by the Chinese remainder theorem, since the prime
ideals P mK are all also maximal; moreover, each yi(ej) identifies with F,
Thus Claim 2 is equivalent to the following, which finally we prove directly:

CLAIM 3. For almost all places u, we have

PROOF OF CLAIM 3. Note that the indicated inclusion is equivalent to the state-
ment that oK c L +IM. Put 2t=LnoK. We have the following chain of equiva-
lences:

OKQL+IM g0Ka21+IM

21+IM some vIu

some vJu .

The second equivalence follows because IM is not contained in any maximal
ideal other than P,,. But by the general theory of Dedekind domains, 21 is con-
tained in only a finite number of prime ideals of oK, and hence we have the re-
quired inclusion for almost all u.
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Note that since K®FFW and are both finite-dimensional of the
same dimension, they acquire a canonical locally compact topological structure
from F. Thus we end with the following useful result, whose proof is left as an
exercise.

4-40 PROPOSITION. The algebraic isomorphism K®FF. -* M= fl,,. K. is in fact
a topological isomorphism. 0

Exercises

1. Let a be an automorphism of a locally compact group G. Show that if G is
discrete, then the module of a is 1.

2. Construct a strictly multiplicative F: N -* R, such that the conclusion of
Proposition 4-10 does not hold. (In particular, F must not satisfy the given
inequality.)

3. Let V be a locally compact topological vector space over a nondiscrete lo-
cally compact field k, and let W be a subspace of V. Show the following,
without appeal to the fact that V must indeed be finite-dimensional over k
(cf. Proposition 4-13):

(a) V is topologically isomorphic to W®W' for some subspace W' that is to-
pologically isomorphic to V/W. Here W and W' have the topology induced
by the projection maps pra,(X) and prw,(X); i.e., the weakest topology that
makes these projections continuous. (Note that both subspaces are trivially
locally compact with respect to this topology.)

(b) If X is a Borel subset of V, then pra,(X) and prK (X) are Borel subsets of W
and W', respectively.

(c) Let p and p' be Haar measures on W and W', respectively. Show that the
product is a Haar measure on V.

(d) Conclude that for each aek, modv(a)= modw(a) - modw,(a).

4. Let K be a Tinitely generated extension of transcendence degree 1 of the
finite field F. (Hence K is a global field.) Show that there exists an element
u in K such that K is a finite separable extension of the function field F(u).

5. Let K/F be a finite Galois extension of global fields, and let P be a prime of
F. Show that G=Gal(K/F) acts transitively on the set of primes of K lying
above P. [Hint: Let Q and Q' lie above P and suppose that a(Q) does not
equal (and therefore is not contained in) Q' for all aEG. What, then, can
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one say about fIo a(Q)? Does this product not lie in P? Must it not also
then lie in the prime ideal Q'?]

6. (Hensel's Lemma) Let F be a non-Archimedean local field with ring of
integers of (ac-F: I at 5 1) and prime ideal P= {xeF: Ixj < 1). Let feo,{x]
be such that for some aeoF,

f (a) = 0 (mod P) but f (a) 0 0 (mod P) .

Show that there exists beoF such that f(b)=0. Use this to show that F
contains all of the qth roots of unity for q= Card(oF/P).

7. (Krasner's Lemma) Let F be a non-Archimedean local field with algebraic
closure T. Suppose that a,/3e F satisfy

jfl-aj<Ira-al 'VreHomF(F(a),F)

and that /3 is separable over F(a). Show that F(a)cF(/3).

8. Let F be a non-Archimedean local field and let feFjx] be a monic, irreduc-
ible, separable polynomial. Let g be another monic polynomial in F[x] of
the same degree. Identifying f and g as points in the metric space F(aegf+'),
show that if g is close enough to f, then g is also irreducible. Show also that
there is a bijection { a; } --- {/i, } between the roots of f and those of g such
that F(a,)=F(,;) for all i. [Hint: Use the previous problem.]

9. Let F be a global field with non-Archimedean completion F,,, and let E/F
be a finite extension of degree d. Show that there exists an extension K/F
of degree d such that K embeds densely in E. [Hint: Use the previous exer-
cises.]

10. Let Fbe a non-Archimedean local field. Show (i) that for every nZI there
exists a unique unramified extension F,, of degree n. Now let F' denote the
maximum unramified extension of Fin its algebraic closure. Prove (ii) that
we have the following isomorphism of topological groups:

Gal(F-/F) . Z = lim(Z/nZ)

(See also Section 1.3.)

It. Let Fbe a non-Archimedean local field with prime ideal P and let E/Fbe a
totally ramified extension of degree e. Show that any uniformizing element
,r of E satisfies an Eisenstein equation over F, i.e., an equation of the form
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±aJr =0 (aj eoF,Vj;a,=l;aj=OmodP,VjSe-1; aO OmodP2) .

J=O

12. Show that for all n>l, a non-Archimedean local field has only a finite
number of extensions of degree less than or equal to n. [Hint: Use the pre-
vious three exercises.]

13. Let K/F be a finite separable extension of non-Archimedean local fields,
with respective rings of integers oK and oF., and uniformizing parameters 7rK
and ,rF. We define the inverse different (or codifferent) of K over F to
be ;PrjdoK, where d is the largest integer such that trKF(,rKdoK) c oF. The
different DK/F is then given by

dDK/F = ff ox

and the discriminant AK/F by

AK/F = NK,F
(rd)

o F

where NK,F is the norm map. Thus AK/F is an ideal of oF. (See Appendix
B.2 for a more general treatment in the case of a Dedekind domain.)

REMARK. When F is either QQ or FQ((t)), one drops the expression "over
F" and simply writes aK and AK for the different and the discriminant, re-
spectively.

(a) Let n = [K: F]. We know from the elementary theory of principal ideal do-
mains that there exist elements e1, .... efE OK that constitute a basis for oK
over oF. Use this fact to obtain the formula

A K / F = A K , F (e 1, ... , e,,) OF

where

AK,F(ej,...,e.) = det(trK,F(e;e)ISij,5,)EOF .

(b) Use part (a) to show that K/F is unramified (that is, if eK/F=I) if and only if
AK,F is a unit in oF. [Hint: Show that the discriminant is a unit in of if and
only if its image in o,/irFOF is nonzero, and that this in turn occurs if and
only if oK/.rFOK is a field. Then apply Corollary 4-26.1
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(c) One says that K/F is tamely ramified if the residual characteristic p does
not divide e(K/F). Show that K/F is tamely ramified if and only if vx(7 F)
(this is the exponent d occurring in the definition of the different) is pre-
cisely e(K/F)-1. (Hint: Show that these conditions are equivalent to having
oF= tr,(oR) I

(d) Let L/K also be finite separable extension. Show that

DUF = (DUR) (DRIP Od

and that

[Lxl
AL.F = NR,, (AUx )R/F

14. Let K/F be a finite separable extension of global fields. The inverse differ-
ent of K over F is defined by

{xEK : trrF(xox)c oF}.

This is a fractional ideal of K, whence we set 2)R,F, the different of K over
F, to be its inverse fractional ideal. (Again see Appendix B, both for a dis-
cussion of fractional ideals and for a more general treatment of the notions
under discussion here.) Define the discriminant AKJF to be the ideal of of
generated by NR,F(DA,F).

REMARK. As above, we abbreviate the notation for the different and the
discriminant to Dx and AK, respectively, when F is a prime global field.
Moreover, in the case of a number field we write dR for the integer defined
up to sign by AK=dKZ and loosely refer to this number as the discriminant.

(a) Show that 7 Z is the largest fractional ideal J of K such that trR,F(J) g OF.

(b) Prove the final part of the previous exercise in this global setting.

(c) Let P be a prime ideal in oF. Show that

AK,FOFp = [1 AXQ,Fp
QIP

where the product is taken over the primes of oR that lie above P. Conclude
that P is unramified in K if and only if it does not divide AKIF
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(d) Suppose that of is a principal ideal domain. Show, as in part (a) of the pre-
vious exercise, that

A,VF= AKIF(el,...,en) of

where {e,}j5n is an of-basis for ox. If of Z, show that AK AKF(el,...,e") is
independent of the choice of o,-basis.

(e) Show that every finite extension K of Q must be ramified at some prime p.
[Flint: Use the previous two parts. ]

15. In light of the previous exercises, we shall now examine cyclotomic exten-
sions.

(a) Let K=Q[e2,"Ip"]. Show that Z[e2x11p"] is the ring of integers in K.

(b) Let K be as above. With the AK as in the fourth part of the previous exer-
cise, show that

1 p" 1((p-1)"-1) where r 1 ifp" = 4 orp" m 3 mod 4
K

0 otherwise.

[Hint: Use Exercise 13 and evaluate

2yrrkm/p^det (e )05k5(p-1)pn-1, me(7Jp"Z)"

the so-called Vandermonde determinant.]

(c) For 1, let K. Q[e2 m], and let A,. denote the corresponding discrimi-
nant. Show that if m and r are relatively prime integers, then

Amr=Amer.

Conclude that the ring of integers in K. is Z[e2,rm].

(d) With K. as above, show that for any mZl, the prime p ramifies in Km if
and only ifpIm.
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Adeles, Ideles, and the Class Groups

To do harmonic analysis on a global field F, one needs to introduce two locally
compact abelian groups: AF, the adele group, and IF., the idele group. From one
perspective, if we view F as a discrete group, it is of great interest to determine
its Pontryagin dual F, which we know must be compact. Recall that for the
particular discrete group Z, its dual is simply the quotient R/Z. We shall see in
our analysis that the adele group plays the role of R, in the sense that F natu-
rally embeds discretely in A. with compact quotient AF/F, which ultimately
can be identified with F. For F=Q, one has a canonical surjection AQaR,
which induces a covering map AQ/Q-+R/Z with totally disconnected fibers.
This is discussed, after some preliminaries on approximations, in Section 5.3.

The pdele group of a global field F, which is moreover a topological ring, is
defined as the "restricted direct product" of the additive groups of the various
local completions F.,. The restriction is that an element of AF must satisfy
the condition that almost all of its coordinates xv lie in the ring o of integers of
F.,,, for v finite. The notion of a restricted direct product is in fact more general,
as developed in Section 5.1, and applies again when the additive group is re-
placed by the multiplicative group, leading to the construction of IF., the idele
group. This was first introduced by C. Chevalley as a generalization of the no-
tion of an ideal in F. It turns out that F* embeds discretely in IF., but is not co-
compact. The quotient CF=IF/F* is called the idele class group of F. We shall
see in Section 5.4 that there exists an important compact abelian group C11 such
that CF is isomorphic as a topological group to C'F x R' if F has characteristic
zero, and to C. x Z if F has positive characteristic. Moreover, the classical
ideal class group and the ray class group relative to an ideal reveal themselves
to be quotients of CF.

From the vantage point of number theory, the role of A. and IF, at least ini-
tially, was to provide an efficient derivation of the classical results of algebraic
number theory, as we shall now see. We discuss its further impact on class field
theory in Chapter 6. The important later work of Tate, building on the work of
Matchett, expanded this role immeasurably, and entered-at the suggestion of
E. Artin-analytic number theory as well. Suddenly there surfaced a radical
new way to derive Hecke's results on a class of zeta functions, and it led to an
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explicit formula for the "root number" occurring in their functional equations.
These issues are fully dealt with in Chapter 7.

In many modern applications not discussed in this book, one replaces the
multiplicative group of AF with G(AF), where G is a general "reductive" matrix
group such as GL,,. The groups G(AF) are locally compact, and the quotients
G(F)\G(AF) are important homogeneous spaces. If Z denotes the center of G,
then XF G(F)Z(AF)\G(AF) has finite volume, and the harmonic analysis on
L2(XF) relative to the right action of G(AF) holds the key, according to the
general philosophy of Langlands, to understanding the nonabelian extensions
of F.

5.1 Restricted Direct Products, Characters, and Measures

Let J ={v} be a set of indices, and let J. be a fixed finite subset of J. Assume
that for every index v we are given a locally compact group G,,, not necessarily
abelian, and that for all veJ, we are further given a compact open (hence
closed) subgroup H. of G,,.

DEFINITION. We define the restricted direct product of the G. with respect to
the H,, as follows:

fl'G ={(x,,):x E G, with X, EH. for all, but finitely many v)
v EJ

Note that the H are concealed in this notation; this will cause no confusion.
Let G denote the restricted direct product of the G with respect to the H,,.

Clearly G is a subset of the ordinary set-theoretic direct product of the G,, and,
moreover, a subgroup of the group-theoretic direct product. (In fact, G lies be-
tween the direct product and the direct sum of the component groups.)

We define a topology on G by specifying a neighborhood base of the identity
consisting of sets of the form nN,, where N. is a neighborhood of 1 in G,, and
N,, H,, for all but finitely many v. Note that this topology is not the product
topology; it is best understood in terms of the following construction.

Let S be any finite subset of J that contains J., and consider the subgroup Gs
of G defined by

Gs=FIG,xf H,,
vES vES

Then G. is the product of a finite family of locally compact groups with a com-
pact group; hence G. is locally compact in the product topology. Now here is
the key point: the product topology on G. is identical to that induced by the
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topology defined in the previous paragraph. Hence each subgroup of the form
Gs is locally compact with respect to the topology of the restricted direct prod-
uct. Since every xEG belongs to some subgroup of this form, it follows at once
that G is locally compact.

One verifies at once that G is a topological group with respect to the indi-
cated group structure and topology. Hence we have proven the first part of the
following result:

5-1 PROPOSITION. Let G. and H. be as above, and let G be the restricted direct
product of the G. with respect to the H,,. Then

(1) G is a locally compact group.

(ii) A subset Y of G has compact closure if and only if Y= IK,, for some
family of compact subsets Kg; G. such that Kv H,, for all but finitely
many indices v.

PROOF. As noted, we need only argue the second part. Suppose that K, the clo-
sure of Y, is a compact subset of G. Since subsets of the form Gs cover G and
since subsets of this form are clearly open, a finite number of Gs cover K. But a
finite union of Gs is obviously contained in a single subset of this form, whence
we conclude that Kg Gso for some finite collection of indices So. From this we
can draw two conclusions:

(a) Let p,, denote the projection from G onto G,,. Since the topology of G in-
duces the product topology on Gso, each map p is continuous. Hence p,(K)
is compact for all v.

(b) for all but finitely many v.

It follows at once that K, and hence Y, is contained in a product IIK,, of the
required form. The converse is obvious.

Finally, note that for each v we have a topological embedding

G -I G
x x,1,1,1,...)

with component

Since the image of G under this embedding evidently lies in which en-
joys the topology of pointwise convergence, it follows that each G,, may be
identified with a closed subgroup of G.
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Characters
The material in the remainder of this section, while logically belonging to the
current discussion, will not be used until Chapter 7. Since our immediate con-
cern is with characters, in this subsection we restrict our attention to abelian
groups.

Assume that G is the restricted direct product of the locally compact abelian
groups G. with respect to the open subgroups H,,. As usual, if ye G, we write y
for the projection of y onto the factor G. and, as addressed above, we identify
G with a closed subgroup of G.

5-2 LEMMA. Let Then z is trivial on all but finitely many
H,,. Consequently, for yeG, x(y,,)= I for all but finitely many v, and

x(y) = II x(y,,)

PROOF. We can obviously choose a neighborhood U of 1 in C* such that U
contains no subgroups of C* other than the trivial subgroup. Let N=rlN be an
open neighborhood of the identity of G such that x(N)c U, with Nv H for all
v lying outside some finite subset S of the full index set. Then

F1 1!,,cN
yes

whence

x(fH,)cU
VEs

But the left-hand side is a subgroup of C*, and so

x(11H,,)={I} .

v[S

In particular, for all veS. Now given yeG, we can factor it into a
product y, y2 y3 where

yi is the finite product of the projections of y that lie outside of any H,,;

y2 is the finite product of the projections of y that lie in some H for v a
member of the index set S identified above;

y3 comprises the remaining projections of y, all of which lie in some II for v
not lying in S.

This shows that x is trivial on all but finitely many projections ofy; the product
formula follows at once. L3
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5-3 LEMMA. For each v let Xv lie in Hom ,t(G,,, C*) and assume that XvjHV 1
for all but finitely many v. Then X=fIXv lies in Hom,t(G, C*).

PROOF. Let S be a finite set of indices such that yv 1 for vctS, and let m be
the cardinality of S. As in the previous proof, X=Il is well-defined (i.e.,
amounts to a finite product), and thus the only issue is continuity. Let U be a
neighborhood of 1 in C*. Choose a second neighborhood V such that V(m)cU.
For each veS there is a neighborhood N. of the identity of G. such that

V. It follows that

FIN, x 1 1 H,,
veS v6S

is a neighborhood of the identity in G that lies in the inverse image of U under
X. Hence X is continuous, as required.

Given an arbitrary G, as usual we can form its dual group G. If moreover,
v0J,,0, then define K(GV,HV) to be the subgroup of characters on G. that restrict
to the trivial map on H,,. Recalling from Section 3.1 the construction of the
compact open topology on the dual group, we see that if U is a sufficiently
small neighborhood of 1 ES1, then, as above, K(G,,, IQ= W(H,,, U). (The point
again is to choose U so small that it contains no nontrivial subgroups of C*.)
Hence K(G,,,H,,) is at least open in G. Now let XeK(G,,,H ), and consider the
following commutative diagram:

xG - -- > S1

G,,1 H,,
z

This shows that the assignment Xi-a X defines a mapping from to
One shows easily that this is in fact an isomorphism of topological

groups. Since H is open in G, it follows that G/H is discrete, and hence
(G,,/H,,)^ is compact. Thus K(G,,,HV) is likewise compact, and it makes sense to
form the restricted direct product of the groups G,, with respect to the sub-
groups K(G,,,H ).

5-4 THEOREM. Let G, H,, be as above, and let G be the restricted direct prod-
uct of the G,, with respect to the H,,. Then as topological groups,

G - ri'G



184 5. Adeles, Ideles, and the Class Groups

where the restricted direct product on the right is taken with respect to the
subgroups defined above.

PROOF. Consider the mapping

H fIx,

In view of the two previous lemmas, this is clearly an isomorphism of abstract
groups. Hence it remains to show that rp is bicontinuous, and for this it is
enough to establish bicontinuity at the identity.

Let U be a neighborhood of 1 in C* and let K be a compact neighborhood of
the identity of G. We know that K=fIK., where K,, is a compact neighborhood
of the identity of G. and for all but finitely many indices v. A character
x on G lies in the open neighborhood W(K, U) of the trivial character if and
only if Z(K)=fl;t(K,,)c U. Suppose that the subset S of indices for which X is
nontrivial on K,, has cardinality m. As previously, we can find a neighborhood
V of 1 in C* such that Vtm)g U. Then if

(x
veS Ves

it follows at once that ip(x,,)e W(K, U). But since by definition of the restricted
direct product topology N is an open neighborhood of the identity in its ambient
group, (o is continuous.

Finally, with the notation as above, let N= fIW(K,,, U) be an open neighbor-
hood of the identity in the restricted product fl'G,,. Then clearly W(fIK,,, U) is
contained in rp(N), and hence rp is open as well as continuous.

Measures

We shall now show how to define measures on restricted direct products of lo-
cally compact groups and, in the abelian case, on their Pontryagin duals.

5-5 PROPOSITION. Let G=fl'vE,G,, be the restricted direct product of locally
compact groups G. with respect to the family of compact subgroups
H,,cG,, (for veJ.). Let dg denote the corresponding (left) Haar measure
on G normalized so that

jdg,=1

N,.
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for almost all voJ.. Then there is a unique Haar measure dg on G such
that for each finite set of indices S containing J., the restriction dg, of dg
to

Gs=FIG, xF1 H
VES VES

is precisely the product measure.

PROOF. Choose a set S as indicated and define a measure dg, by taking the
product of the measures dgs,. The normalization of these measures forces the
volume of the compact group fI,,QsH, to be finite, as needed, and one checks
easily that dgs is indeed a Haar measure on Gs. Suppose now that TES is a
larger finite set of indices. Then, of course,

Gs =(f Gy x f x rl H,.)=GT .
YES VET-S VET VeS YET-S VET

Moreover, by construction,

dg, =(fl dg x fl dg..)x(11 dg,)
vES VET-S VET

and

dgr =(11dgY x fl dg.). (fl dg,,)
VES VET-S YET

We conclude at once from this that dgs coincides with the restriction of dgT to
the subgroup Gs.

Now, since G is locally compact, we know it has a Haar measure, which
restricts to a Haar measure on any Gs. Accordingly, we may fix any set S of
indices containing J., and define a Haar measure dg on G to be the Haar
measure that restricts to dg.. That this measure is independent of S and unique
follows from the conclusion of the first paragraph: given two sets of indices S
and S', the measure dg constructed relative to S uniquely picks out the product
measure on Gs.s, and hence also on Gs,.

Henceforth we write

dg = fl dg,,

for the (left) Haar measure on G defined by the proposition. We refer to this as
the measure induced by the factor measures. We shall next learn how to inte-
grate nice functions on G relative to dg.



186 S. Adeles, Ideles, and the Class Groups

5-6 PROposmoN. Let G be a restricted direct product of locally compact
groups as above, with induced measure dg.

(i) Let f be an integrable function on G. Then

f f(g)dg =1 m J.f(gs)dgs
G GS

If f is only assumed to be continuous, this formal identity still holds,
provided that we allow the indicated integral to assume infinite val-
ues.

(ii) Let So denote any finite set of indices including J. and those v for
which Vol(H, dg,)#I, and suppose that for each index v we are given
a continuous integrable function f on G. such that f,.I H I for all
vOS0. define

f(g)=[If,,(g,)
v

Then f is well-defined and continuous on G. If S is any finite set of in-
dices including S0, we have

J f(gs)dgs =
GS vES G,.

Moreover,

Jf(g)dg= II (Jfv(g,)dgv)
G V G,,

and feL'(G), provided that the right-hand product is finite.

(5.1)

(iii) Let (fv) and f be as in the previous part, with the added condition that
fv is the characteristic function of H,, for almost all v. Then f is inte-
grable. Moreover, in the abelian case, the Fourier transform off is
likewise integrable and in fact given by

J (g) = L1 I (5.2)
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PROOF. (i) Certainly

j f(g)dg = I m jf(g)dg
C

where the limit is taken over compact subsets C of G. But any such C is con-
tained in some GS, and the limit formula follows. Clearly, the identity holds
formally for f continuous, but not necessarily integrable.

(ii) SincefIHV=1 for almost all v and sinceg=(gv)eG has (by definition) almost
all of its components g in ri , is in fact a finite product for all such g,
and f is well-defined. The continuity off follows easily from the continuity of
each f because a base for G can be given in the form F1 Nix H H., where the
first factor is a finite product containing all of the components of G on which
the corresponding function f is nontrivial. Hence f may be computed locally as
a finite product of continuous functions.

Now fix any S satisfying the hypothesis of part (ii). Then by the definition of
GS and the assumption thatf,.IH, 1 and Vol(Hv,dgv)=1 for all v not in S, it is
clear that Eq. 5.1 holds since dgs is precisely the product measure on G. To
prove the second statement, note that by part (i), f is integrable if and only if

lim jf(gs)dgs <oo
GS

where the limit is taken over larger and larger S. But Eq. 5.1 implies that this
limit exists if and only if

limfl (jf(g,)d&)<cn
YES G all v Gr

which is true by hypothesis.

(iii) Since f,, is the characteristic function of H for almost all v,

FI jI (jf(gv)dgv)
G,. YES G,

for some finite set S, and is hence convergent. Therefore f is integrable on G.
In the abelian case, to establish the assertions about the Fourier transform,

let x=(Xv) denote a character of G, and for each f9, define h to be the product
f,,xv. Define h as fI9h9. Then h is integrable, since X is unitary, and the asser-
tions of part (ii) applied to h immediately yield Eq. 5.2.
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Assume henceforth that our groups are abelian. The final goal of this section
is to build a product measure on the group

G=1

that is dual to dg=nvdgv in the sense defined by the Fourier inversion theorem
(Theorem 3-9), where we again assume that the measures dg, have been nor-
malized so that H,, has volume 1 for almost all v. For each v, let

dXv = (dg,,)^

denote the dual measure to dg,, on G . For each v and feL'(Gv), we have by
definition that

j f(gv)xy(gv)dgv

If f, is the characteristic function of Hv, which is clearly integrable and of posi-
tive type on Gv, we deduce from the orthogonality relations that in fact

=1(xv) = ! x. (g )dg,, =
0 otherwise.H,

In other words, if II* is the subgroup of G,, consisting of characters trivial on
H. [that is, what we have previously denoted K(G,,,Hv)], then is the
characteristic function of H* times the volume of flv. From this observation
and the Fourier inversion formula, it follows that

Vol(H,,) Vol(H*) =1

where the first volume is computed relative to dgv and the second relative to
dXv. Consequently the latter measure also gives volume 1 to H* for almost all
v, and we can define dX = (dg)" as above.

5-7 PROposrnON. The measure ddso defined is dual to dg. That is,

f(g) = f f(x)x(g)dx
G

for all feV'(G).
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PROOF. Since we seek only to determine a normalization factor, it suffices to
check the formula given above for the product functions f=Ilf with f equal to
the characteristic function of H. for almost all v. The left hand-side is flf,,(g,,),
while according to the previous proposition, the right-hand side is

II
G,.

But since dx,, is the dual measure to dg,,,

f,,(g,,)= JfV(xV)x,(gV)dxv
G,

for each v, and the assertion follows. 0

5.2 Adeles, Ideles, and the Approximation Theorem

Let K be a global field and let K,, be the completion of K at a place v. Then
(K,,,+) is a locally compact additive group, which in the case of an algebraic
number field is either R, C, or a p-adic field. For all finite places v, K,, admits o,,
as an open compact subgroup. The restricted direct product of the K. over all v
with respect to the subgroups o (v finite) is called the adele group of K and
denoted A. Note that we have an algebraic embedding

K --* AK

X H(x,X,X,...) .

This map is well-defined because K always embeds in K. for all absolute values
v and every element of K is a local integer for all but finitely many places.

Along the same lines, for all places v of K, we can consider the locally com-
pact multiplicative groups Here the local units oy (v finite) constitute
an open compact subgroup, and hence we may form the restricted direct prod-
uct of the K,,* with respect to the subgroups o'. This is called the idele group
of K and denoted IK. Again we have an algebraic embedding

K* -- IK
X -4 (x,x,x,...)

which is clearly well-defined.

REMARK. The adele group AK admits an obvious ring structure, and we have an
algebraic isomorphism IK=AK' that identifies the idele group with a subset of
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the adele group. However, this is not a topological embedding: the topology on
the idele group as a restricted direct product is in fact stronger than the relative
topology induced by the full adele group. We can see this easily in the case
K= Q. Let S be any finite collection of primes including the infinite prime, and
let Np be any neighborhood of 1 in Qp forpeS. Then

(fNpxfZp)r IQ ¢R*xfz; .

p!S p<oo

The point is that we can construct a point x=(xp) in the product appearing on
the left such that for some piES, x, is a p-adic integer but not a p-adic unit; this
does not exclude x from IQ, but it does exclude it from the open set displayed
on the right. Hence the neighborhood base of the relative topology on IQ in-
duced from the adele group cannot in general accommodate the open sets in the
idele topology, which consequently is stronger. (We leave it to the reader to
observe that every set open in the relative topology is also open in the idele to-
pology.) Despite this dissonance, these topologies are related by an algebraic
map, as shown in Exercise 1.

Fix K and let S,,, denote the set of infinite places of K. Note that S.,==S, in
characteristic zero. We write A,,, for the open subgroup AS of the adele group
AK. Hence A. consists of elements of the adele group all of whose components
at finite places have absolute value less than or equal to one.

5-8 THEOREM. (The Approximation Theorem) For every global field K,

AK=K+AW .

Moreover, KnA,, ox.

PROOF. Here, of course, we identify K with the diagonal subset of its adele
group. We must show that given xEAK, there exists peK such that each com-
ponent of the difference x-,u is a local integer. We give the argument for K an
algebraic number field; the modifications for a function field are obvious.

Let p be a prime ideal of oK and assume that p lies over the rational prime p.
Then multiplying any nonzero element of the associated completion by p cer-
tainly reduces its p-adic absolute value, so that eventually it lies in the corre-
sponding ring of integers. This shows that there exists some finite rational
integer m such that mx is integral at all finite primes. Let { p1, ..., p,} be the set
of primes of K that divide m (clearly this set must include all the primes at
which the corresponding component of x fails to be integral), and let ni,...,nr
be a sequence in N. By the Chinese remainder theorem (see Exercise 2 below),
we can find deoK such that
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mxj =-A (mod p,')

where xj is the component of the adele x corresponding to pj. Let p=A/m. If we
choose each nj at least as large as the exponent of pj occurring in the factoriza-
tion of the ideal (m) in oK, then x-p=m-'(mx-2) is by construction integral at
each of the primes p...... p,. At other primes, its absolute value is identical to
that of mx-2, and hence it remains integral. This establishes the first assertion;
the second is trivial.

5-9 COROLLARY. Let A denote the adele group of Q. Then

A=Q+A,,=Q+(Rx f ZP) .
p pie

Moreover, QnA_=Z. O

5.3 The Geometry of AKI K

Let K denote a global field. Before describing the structure of the quotient of AK
by K, we must first investigate how the adeles behave under base change.

5-10 LEMMA. Let E/K be a finite extension, and fix a K-basis (u,, ..., u.) of E.
Then the natural map

a:1-1 AK -*AE
j=1

((xv,j)v)j HY_uj(xv,j)v

is an isomorphism of topological groups.

PROOF. The map a is certainly a vector space isomorphism, so the question is
only one of continuity. For every place v of K, define

E =HE,,
wIv

where w runs through the places of E lying above v. This is, of course, not a
field, but certainly a vector space over Kv, in which K itself embeds diagonally.
We have shown in Section 4.5 (Proposition 4-39) that E admits {u ...... u.} as
a K.-basis, and thus an algebra isomorphism
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n

a,,:fK, E,
!_1

(x1) -4 I Xjui

By Proposition 4-13, ati is also a topological isomorphism.

Define a subset 0E, of E by

0E = 1-1 0E. .
wIv

Then again by Proposition 4-39 there exists a finite set of places So of K, in-
cluding the Archimedean ones, such that for every voSO the map a,, defined
above induces by restriction an isomorphism

aV : jI oK -> 0EV .

J=

Now for any given finite set S that contains So, consider the products

AK=fKxfloKY and
VES VaS VES VQS

Then from what we have seen so far,

II AK =n1(nK. x11oK,.)nF- x1IoE =A'
J=I J=1 vas VES vas

Thus for each such set of places S, the collection ( av) induces a map

a S: fJ As -4 ASK B
J=j

which, according to the analysis of the previous paragraph, is a topological
isomorphism and by construction agrees with the restriction of a. Since this is
true for every S containing So and the open sets As cover A,, we deduce that a
itself must be a topological isomorphism.

5-11 THEOREM. K is a discrete, cocompact subgroup of AK.
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PROOF. Let Ko denote Q [respectively, the function field F(t)] if K is of char-
acteristic zero [respectively, of characteristic p]. Put n=[k:K0]. Then by the
preceding lemma we have the following commutative diagram of topological
groups, for which the top and bottom rows are isomorphisms:

Consequently, AK/K is compact if and only if (AKo/Ko)" is compact, which in
turn is true if and only if A4/KO is compact; similarly for discreteness. Thus we
may replace K by KO and assume for the remainder of the proof that K is either
Q or Fq(t). In the former can, let co denote the Archimedean place; in the latter
case, let oo denote the place defined by (t-'). Put oK equal to Z or Fq[t), accord-
ingly. We shall now exhibit a compact fundamental domain for K in AK.

Define a subset C of the allele group by

C=(xaAr:Ixjm52 and V v

It now suffices to show that CnK={0} and that AK=C+K.
Suppose that xEK also lies in C. Then xeoK, since xeo,, for all v*oo. In the

rational case, the requirement that lx.L51/2 certainly forces x to be zero. Now
consider the function field case. Then

1xIo
4-ord 1/, (x)

=

which cannot be leas than 1/2 for nonzero elements of F9[t]. This shows that
indeed CnK-(O).

It remains to show that Ax is covered by translates of K by elements in C,
and we do this in two steps. First we claim that if y is an adele of K, then we
may choose 8EK such that y,,-8eo, for every finite place v of K. We only need
to worry about a finite set S of places, and for each veS, we may construct an
element u-p(v)eK such that y-p is integral at v, and u is integral at all finite
places different from v. To see this we need merely note that for any irreducible
element x in oK, positive n, and integral elements a and b relatively prime to n;
we can always find a third integral element c such that
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a c
bar" 'r"

is integral at i because the congruence a=bc (modsr") is clearly solvable for c.
Thus S=F.Esft(v) meets our needs, and this completes the first step.

Continuing with y and c5 as above, we claim that we can next choose S'eox
such that I y, S1/2. If K= Q, the number S' is just the integer nearest to
(y_7.5); if K=F,(t), then S' is just the part of (y..:--8) that is a polynomial in t.
(The remainder is a polynomial in t-' with no constant term, and hence of in-
finity norm less than q - ', a value patently less than or equal to 1/2.) Now by
construction, both (yv-S) and S' lie in o,, for all finite places v. Thus

and I y,,,

whence x=y-S-S'EC. This clearly suffices, since by construction, x+S+S'=y
and S+S'EK.

If K is a number field, then the preceding result is the adelic version of the
well-known fact that ox is a discrete, cocompact subgroup of K.=fKµ where
the product is taken over all Archimedean w. Moreover, in the case K=Q we
can apply the approximation theorem to yield the following beautiful descrip-
tion of the quotient of AQ by Q.

5-12 PROPOSITION. There exists an isomorphism of topological groups

AQ/Q-4lim R/nZ .

The projective limit is, of course, taken over the positive integers as a directed
set with respect to divisibility.

PROOF. For each positive integer n set

C" = (x EAQ: 0 and xp E p°`dr(")ZP forp <co) .

Clearly each C,, is a compact subgroup, and moreover, the intersection of the C.
over all n is (0). This yields an identification

lim AQ /C" - AQ

((xp")o)" N(limxp")P
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where the ordinary limit on the right is also taken over the positive integers as a
directed set with respect to divisibility. (The point is that if we fix a prime p,
the sequence that results from taking the pth components of the indexed set of
adeles that constitute an element of the projective limit must converge in Qp.)
This isomorphism in turn induces an identification of quotients

Now consider the map

rp,,:R/nZ -*A, / (Q + C.)

given by sending x to the class of the adele with x as the Archimedean compo-
nent and zero as the finite component. This map is well-defined, because for all
products na, anZ, we have the decomposition

(na,0,0,...) = (na, na, na,..:) + (0, - na, - na.... ) E Q + C
T T t- 2 3

It is immediate that p is injective. The surjectivity follows from the approxi-
mation theorem, the proof of which may be readily extended to show that the
finite part of A. may in fact be replaced by C. From the existence of these
isomorphisms ip,,, we now deduce that

AQ/Q lira R/nZ

and this completes the proof. 0

REMARK. Thus AQ/Q is an inverse limit whose nth component corresponds to
the unique covering of R/Z of degree n, n21. Since >r,(R/Z)=Z has Z/nZ as its
unique quotient of order n for each nz 1, every finite cover of S' is obtained
from AQ/Q. Thus AQ/Q may be thought of as the "algebraic universal covering
space" of S', analogous to R as the "topological universal covering space" of
S'. The Galois group of the covering AQ/Q_+S', namely Z, may be thought of
as the "algebraic fundamental group" of S'. This is a simple instance of
Grothendieck's general construction of the algebraic fundamental group for
algebraic varieties, a notion that arose in connection with the following situa-
tion: Let X be a smooth projective algebraic curve over C, so that the set of
complex points X(C). defines a Riemann surface; i.e., a complex manifold of
dimension 1. Suppose that Y is a finite covering of X(C). Then by the Riemann
existence theorem, Y corresponds to a smooth projective algebraic curve X' with
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Y=X'(C). But if Y is an infinite cover, it will not be algebraic, and therefore
one needs to restrict to finite covers to remain in the algebraic category.

5.4 The Class Groups

In this section, we reverse the historical order and begin with the definition of
the idele class group CK of a global field K. We analyze its properties and then
show how the usual ideal class group Cl,, and, more generally, any ray class
group relative to an ideal, is a factor of the compact part of C. (In the function
field case, the class group C1K is usually called the Picard group and denoted
Pie OK.)

Let K be an algebraic number field or a finitely generated function field in
one variable over a finite field FQ where q=pe. Just as K embeds discretely in
AK, K+ identifies with a discrete subgroup of the icicle group I. via the diagonal
map. (See Exercise 3.) Since IK is abelian, its quotient by K under the quotient
topology acquires the structure of a topological group [cf. Proposition 1-4, (v)].

DEFINITION. The topological group

CK = IK/K*

is called the idele class group of K.

Since AK/K is compact, one might hope that CK is also compact. But this is
not true, as follows from the existence of a nontrivial absolute value that will be
defined shortly. But first we must standardize our absolute value functions:

DEFINITION. Let k be a local field. Then the normalized absolute value I - Ik on k
is defined as follows:

(i) If k= R, then I- Ik is the usual absolute value function.

(ii) If k= C, then Izl= zi , the square of the usual absolute value function.

(iii) If k is non-Archimedean with uniformizing parameter 1c then

IjrIk= I
q

where q is the order of the residue field Ok/Or' ok. This clearly extends
uniquely to k. Note well that for the infinite place associated with a !unc-
tion field of positive characteristic in the indeterminate t (so that the uni-
formizing parameter is in fact t-1), this normalized absolute value function
amounts to the formula I f(t)I,,=qd%f for polynomials f(t). (Hence the infi-
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rite place described in Chapter 4 was represented precisely by the corre-
sponding normalized absolute value function.)

The following lemma shows how these normalized absolute values behave
with respect to finite extensions of local fields. Recall that if Ilk is a finite ex-
tension of arbitrary fields, then every element xel defines, by multiplication, an
endomorphism p,, of I as a vector space over k; this is just the regular represen-
tation. In this context, the norm of x over k, denoted Nvk(x), is the determinant
of p,,. For a Galois extension, this reduces to the product of the conjugates of x;
in any case, N,,, is multiplicative,

5-13 LEMMA. Let 1/k be a finite extension of local fields. Then for all xeE, we
have

1X11 = I Nuk(x) Ik .

PROOF. This is clear in the Archimedean cases. So let k be non-Archimedean
with uniformizing parameter irk. It suffices to prove the lemma for x=ir,, the
uniformizing parameter for 1. Let n= [l: kj. Recall from Proposition 4-23 that
the ramification index and residual degree for the extension are defined by the
relations

9rk = u ICI* (u E )

qf= Card (o1/nr+ ol)

and that n=ef. We may certainly replace irk with u-* nk, so that -rk = 7r,". Ac-
cordingly,

and it follows that

I N,,k(iri )lk=
1

I9

Thus taking eth roots of this equation and recalling the definition of I we
obtain

I,r,l,= qf

as required.
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We now apply our construction of normalized absolute values to make the
following definition. Again let K be global field.

DEFINITION. Let I - L denote the normalized absolute value on the completion
K. Then define the absolute value I I AK : IK -)- R* by the formula

where as usual, x= (x,).

CRUCIAL REMARK. From the analysis of local fields in Chapter 4, it follows that
for any idele x, the value of I xI

AK
is precisely the module of the automorphism

y i-* xy as defined on the locally compact abelian group AK. (See the discus-
sion preceding Proposition 4-17.) This explains the choice of normalization at
the non-Archimedean places and, moreover, why the normalized absolute value
on C has been chosen as the square of the usual absolute value.

5-14 THEOREM. Let K be a global field. Then

(i) For every xeK* we have I X IAK=1.

(ii) The absolute value map I - IAx is surjective if char(K) = 0 and has im-
age of the form p m"Z if char(K) =p, where mo is an integer different
from 0.

The first part of this result is known as Artin 's product formula.

PROOF. (i) Suppose that E/K is a finite separable extension. Then according to
the lemma, for every xEE, we may write

IxIA,= JJ II I xl
UE9'K vE. ,v1u

= fJ I NE,1K (x)l.

But appealing to the isomorphism of Proposition 4-40, i E., we see
that

fl N5 ,Kv(x) = Np,K(x)
vIu

Thus
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I xIAe= fjINPix(x)I

and so the truth of the assertion for K will imply it for E. Since we have shown
that every global field is a finite separable extension of either Q or F (t), we
have now reduced the argument to these two cases. Moreover, since I IAx is
multiplicative, it suffices to establish the product formula for integral irreduci-
bles.

Suppose that K=Q and p is a rational prime. We may take p to be positive,
since it is clear that 1-11, =1 for all v. Then p has nontrivial absolute value at
only two places and hence

I -

This establishes the product formula for Q. For K=Fq(t), we must consider an
irreducible polynomial f(t)EFq[tl, and again this has nontrivial absolute value
at only two places. For the infinite place,

II(t)I = gd`sf

as noted above, while at the finite place,

If(t)If = q-dcgr

since of course, Card(Fq[tl/f(t)F9[tl) is gdfgf Thus once more the product for-
mula holds.

(ii) First assume that K is a number field, so that there is at least one Ar-
chimedean place w. For any positive real number t, we can pick some yeKK*
such that lylw t. Let x denote the idele whose w-component is y with all other
components equal to 1. Clearly, I x OAK= lylw t, whence I - IAK is suijective.

Next let K be a function field over a finite field, and let v be a place of K
with corresponding residue field F9, where q=pm.Then the normalized absolute
value of a uniformizing parameter ;r of K, is q''. Accordingly, given neZ, the
absolute value of the idele x=(1,...,1, ;Pr-",1,...) is p'"". The upshot is that the
image of each component of AK under the adelic absolute value is p"Z, and
hence the total image is p"'az for some nonzero integer mo. This completes the
proof.

We next use the absolute value I I AK on AK to define a subgroup of IK into
which K* does embed cocompactly. The key is to trivialize the absolute value.

DEFINITION. Let K be an algebraic number field or a finitely generated function
field in one variable over a finite field F9, where q=p°. Then we define
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IK

(the ideles of norm one) and

=IKIK*CI

This quotient is called the norm-one idele class group of K.

Note that C'K is well-defined, since K*cI',Y by the Artin product formula.
Moreover, we have a short exact sequence

I -- CK -+V(IK)->I

where according to the characteristic of K, V(IK)=Im(I {AK) is either R,* or of
the form p'oz.

5-15 THEOREM. For all global fields K, the quotient

CK = IKIK*

is compact.

PROOF. Recall from the proof of Theorem 5-11 that there is a compact subset (V
of AK such that AK=K+4), Since AK is locally compact, there exists a Haar
measure p on AK, which we shall now fix; of course, ,u(1) is finite. Choose a
compact subset Z of AK such that u(Z)>,u((D). Construct two subsets of differ-
ences and products of elements in Z as follows:

ZI _ {zIZ2 : z1,Z2EZ}

Z2 = {Z1Z2 : ZI,Z2EZ}

These sets are also compact by the continuity of subtraction and multiplication.
Since K is discrete in AK, KnZ2 is finite, with nonzero elements, say, y,,...,yr.
Now set

`I'U6({(u,y,'v): u,v EZ1})
J=I

where 8 is the embedding of IK into AKxAK that sends x to (x,x-'). (See Exer-
cise 1.) Since 6 is a homeomorphism onto its image, `F is a compact subset of
IK, whence the theorem is a consequence of the following claim:
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CLAIM. I6 c K*`Y.

PROOF OF CLAIM. First recall that for any ye IK, I Y IAK= yj is the module of
the automorphism of AK given by multiplication by y. Now pick anyx a Ix .
Since I x IAK= 1, we see that the compact sets xZ and x 'Z have the same volume
as Z. Since p(Z) > p((D), it follows from Exercise 4 that there exist elements
z1,z2,z3,z4EZ, z1xz2, z3*z4, such that a=x(z1-z2) and 8-x-'(z3 z4) are both in
K. Then aQ=(z1-z2)(z3 z4) evidently belongs to K*nZZ {y,,...,y,}. In other
words, (z1-z2) (z3 z4) y;_' =1, for some j sr. Thus

5(xf)=5(Z3 Z4)=(z3 Z4, (Z1-Z2)Yj 1)EZ1XZ1yj_ 1

This shows that xfeP and completes the proof.

It is useful to have S-versions of the groups we have been discussing, for any
finite set S of places of K containing Sm, the set of Archimedean places. Of
course, there are no such Archimedean places if charK is positive. (This nota-
tion is unfortunately conventional, although not entirely sensible: it excludes
the infinite places for a function field. Let the reader beware.)

DEFINITION. Let K and SLDS,o be as above. Then define the S-ideles of K by

IK.S eo;,,Vv 0S} .

Equivalently,

IK,s = fK* x fl 0,
veS ves

5-16 LEMMA. 1K s is open in IK; it is compact if and only if S=0, which can
occur only in positive characteristic.

PROOF. That IK s is open in IK is clear, because the restricted direct product to-
pology on IK is the same as the relative topology induced by the product
(See Section 5.1.) Since K,,* is not compact for any v, 1K.S is compact if and
only if S is empty. But in characteristic zero, we require that S contain the
nonempty set of Archimedean places, so this can happen only in positive char-
acteristic, as claimed.

DEFINITION. Let K and SQS. be as above. Then

1I", = IK n IK.s
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denotes the set of S-ideles of norm one.

According to the lemma, IK s is an open subgroup of IK in the relative to-
pology induced by the full idele group.

DEFINITION. The ring of S-integers of K is defined to be

Rs=KnAxs
where

AK's = (XEAK : XvEDv, VVOS) .

The definition above in particular gives oK as Rsm for K a number field, and
oK as Rso for K a function field, where in the latter case So denotes the set of
infinite places of K. Also note that

#n # n 1

Rs K IK.s = K IK.s .

This is because IKs is the group of invertible elements in A,,, and

vas vOS

5-17 PROPOSITION. Let S be a finite set of places of K containing.. The fol-
lowing statements hold:

(i) The quotient IK.s / Rs is compact.

(ii) There exists an isomorphism

x
pK X

Zr(S)
Rs =

where pK is the group of roots of unity in K and

r(S) = sup(O, Card(S)-1 ) .

PROOF. (i) Since IK.s is open in Ii, its image IK.s/Rs is an open (hence
closed) subgroup of IK / K*. But according to our previous theorem, the ambi-
ent space is compact, and hence the assertion.

(ii) Since we know this for the special case S=0 (see Exercise 5), we may as-
sume that S is nonempty. Put
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where the product is taken over all places and Cv (xeK,,: jxj,=1). This "adelic

circle" is a compact subgroup of Ix .s. We have a short exact sequence of topo-
logical groups

1-* C -_*IK,s -* -i l .

YES

Note that

1.6

K* / C = R, _= R, if v is Archimedean

IZ, if v is non-Archimedean.

Writing r=ri+r2, where r, is the number of Archimedean places in S and r2 is
the remainder, this yields the sequence

1-*C-->IK.s ->R'' xZ'2 .

Since, again by Exercise 5, CnK* =fsK and also IK s n K* = R,' , we get the
short exact sequence

1->pK- -+L-*1

where L is the image of K* in R'' x V2. Since K* is discrete and cocompact in
IK s , an application of Exercise 6 below (with A= FI shows that L is iso-
morphic to Z.

REMARK. Part (i) implies in particular that RS is finitely generated as an abe-
lian group, a fact that is not obvious from the definition. For K a number field
and S=SS, this was established by Dirichlet and Minkowski.

We now introduce S-versions of the idele class group, which have a critical
property when S is nonempty.

DEFINITION. The S-class group of K is defined by

CK.S-Ix/(K*-IKS)
.
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The critical property is this: The inclusion map of norm-1 ideles into the full
idele group always induces an injection of quotients

IKIK*IK.s IK1K*IK,s .

However, if S*O, this map is moreover an isomorphism, because we can then
always represent any idele class on the right with an idele of norm one by ad-
justing a component corresponding to a place in S. If S is empty, then we are in
characteristic p>O, and the map has cokernel isomorphic to Z by Theorem 5-
14, part (ii).

5-18 THEOREM. The S-class groups of K have the following properties:

(i) In the case that S is nonempty, CK s is a finite group.

(ii) In the case that S is empty, CK 0 is isomorphic to the direct product
of Z with a finite group.

PROOF. We have seen that the image of IK,s in IK is open. Since IK /K* is
compact, the quotient IK/K*IK s must then be finite. The theorem now follows
from the preceding analysis of the injection of IK/K*IK s into CK,,. U

The Traditional Class Group

A global field K is the field of fractions of the Dedekind domain R=DK, the
ring of integers of K. A fractional ideal of K is a nonzero finitely generated R-
submodule of K. Thus in particular, the ordinary nonzero ideals of R are frac-
tional ideals of K. One knows from the basic theory of Dedekind domains that
JK, the set of fractional ideals of K, constitutes a group under multiplication of
(fractional) ideals and, moreover, that J. is a free abelian group on the prime
ideals of R. This is to say that we may write every fractional ideal aEJK
uniquely as

1-1 P-Pa =
P

where the product is taken over all prime ideals P of R and nP is zero for almost
all P. (See Appendix B.) We sometimes write vp(a) for the exponent nf, defined
by this factorization, and similarly define vp(x) for nonzero xEK. More pre-
cisely, vp(x)=vp(xR)=ord',(x), where rr is a uniformizing parameter for R. We
call vp the discrete valuation associated with P.

Fractional ideals of the form Ra, aEK*, are called principal fractional ideals,
and these constitute a subgroup PK of JK that includes the nonzero principal
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ideals of R. The quotient group JKIPK is the traditional ideal class group of K,
here denoted Cl,. If aeJK, then [a] denotes its projection into the class group.

As previously, S. denotes the set of infinite places of a global field K. Hence
SL is either S. for a number field or So for a function field.

5-19 PROPOSITION. Let K be a global field. Then there is a natural isomor-
phism

CK.sd = C1K

PROOF. Define a map

a: 'K -+CIK
x H [1-1 P°P(xP)}

P

with vp as above. Then a is a well-defined homomorphism. Moreover, if
xEK*, then

(x) = fl p'r(x)
P

is the principal fractional ideal generated by x, and so a(x)=1 . Since a(x)
depends only on the components of x corresponding to the finite places, a is
trivial on n(vEsm)Kv*. Finally, a is trivial on nP opx, since op"cKer(vp) for all
P. In summary, a is trivial on K* 1Ksm and hence induces a homomorphism

a : CK.sm -+ CIK

sending the class of x to a(x) .
Suppose that aeJK. Then vp(a) is nonzero for only a finite number of P. Ac-

cordingly, we may define an idele x by requiring that x be nonzero at the infi-
nite places and xp= .1;p+P(a) for the places corresponding to primes P, where ,r, is
the associated unifonmizing parameter. Then by construction a([x])=[a], and
thus a is surjective.

Finally, suppose that a([x])=1 for some xelK. Then there is a yEK* such
that

(Y) _ r-1 P"P(xP)
P

This implies that for all P, Vp(y)=Vp(xp), and so we may choose u=(up) a flop'
such that (xu)P yp, for all P. Then xu and y differ by an element of fl(VEs )Kv*;
that is, x and y differ by an element of 'K3 Consequently, xEK* IK s., which
means that its class [x] in CK s is trivial. Hence a is also injective. 0
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REMARK. By saying that a is natural we mean that it is functorial for the inclu-
sion of fields in one direction and for the norm map in the other.

Ray Class Groups
Again let K be a global field, the fraction field of with fractional
ideal group JK. Let M be a nonzero integral ideal of R, so that we may factor M
uniquely as

where P, is the prime corresponding to the finite place v of K, with associated
discrete valuation vp. Let S be the set of finite places where vp(M)>0.

DEFINITION. An element aEK* is said to be congruent to 1 mod M if the fol-
lowing conditions hold at every V ES:

(i) aE o;,

(ii) Vp(a-1)ZV (M)

The set of all such a is denoted KMi; one checks easily that this constitutes a
subgroup of K*.

DEFINITION. Let K and Mbe as above. Then define

JK(M) _ {IEJK : (I,M) = R} .

That is, JK(M) consists of the fractional ideals of K that are comaximal with
respect to M. In particular, if then aREJ(M). We may thus further
define

ClK(M) = JK(M) /KM
I

We call ClK(M) the (wide) ray class group of K relative to M (or with conduc-
tor M).

EXAMPLE. Consider the case K=Q. Then R=Z is a principal ideal domain,
R" = (±1), and each nonzero integral ideal M takes the form mZ for some
unique positive integer m. Define a map

V : C1K(M) --4 (Z/mZ)'/{±l}
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that sends the class of a fractional ideal (a/b)Z (with both numerator and de-
nominator prime to m) to the double residue class ±[a][b]-l. This map is well-
defined on JJ(M) and factors through Clx(M) because (a/b)Z maps to the
identity if and only if a m±b (mod m) in the elementary sense. Since 9 is clearly
surjective, it is in fact and isomorphism.

More generally, for a number field K this construction is usually extended to
include the signs at the real places. Let {w1,...,w1) be a set of real embeddings
representing inequivalent real places (not necessarily exhaustive), and put

M=(M,w,,...,w,)

where M is an integral ideal.

DEFINITION. An element is said to be congruent to 1 mod M if the fol-
lowing conditions hold at every veS:

(i) an I (mod M), as above

(ii) w(a)> 0, t/j=1,....I

The set of all such a is denoted KM 1 , and as previously, this constitutes a sub-
group of K*.

DEFINITION. We define the quotient

Clx(M) = J., (M)/KM,

When {w,, ...,w,} comprises the entire set of real places of K, then this is called
the narrow ray class group of K relative to M.

EXAMPLE CONTINUED. Again consider the case K=Q. Let M = (M,00), with M
generated by m>0 as before. We can now in a sense refine our map rp to an iso-
morphism

Clx(M) = (Z/mZ)"

The point is that by using the narrow ray class group, we can distinguish signs
in (Z/mZ)". More particularly, given any ideal xZ in JK(M), we take x=alb,
with a and b uniquely given positive integers relatively prime to m and to each
other, and then map xZ to [aJ[b]-l. This map is clearly a surjective homomor-
phism with kernel KM ,K.
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Exercises

1. Let K be a global field, and let A' have the product topology. Show that
the mapping

Ix -* A6
x i-- (x,x-I)

is a topological isomorphism onto its image (under the relative topology
induced by that of the codomain).

2. Let A be an integral domain for which all prime ideals are maximal. Show
that if PI and P2 are distinct prime ideals of A, then

+P2 = A

for all positive integers m and n. [Hint: Prove this directly for all m when
n=1, and then proceed by induction.)

3. Let K be a global field. Use the discrete embedding of K into the associated
adele group and Exercise 1 to show that K* embeds discretely in the asso-
ciated adele group.

4. Let G be a locally compact abelian group with Haar measure u. Suppose
that F is a subgroup of G and that 4) is a compact subset of G such that
G=F+(D. Show that if X is a compact subset of G such that u(X)>p((D),
then there exist distinct elements xi,x2EXsuch that

5. Let K be a global field. Show that IxL= 1 at every place v of K if and only if
x is a root of unity in K.

6. Let G be a topological group isomorphic to R'x Z'+'-' for some integers sz
rZO, and let A:G->R be a nontrivial, continuous homomorphism such that
when r>0, A is in particular nontrivial on W. Assume that IF is a discrete,
cocompact subgroup of Ker(A). Show that 1--=Z'.

7. Let K be a global field. Show that the isomorphism a: CK s = C!K is natu-
ral in the sense of the remark following Proposition 5-19.

8. Let K be a global field and let S be a finite, nonempty set of places of K
containing the infinite ones. Show that RS [=KnAKS), the ring of S-
integers of K, is a Dedekind domain. [Hint: Appeal to the case S=S,,,
where we know this to be true by Appendix B.]
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9. For any Dedekind domain R with fraction field K, define Pic(R) to be the
group of invertible fractional ideals of K modulo the principal ones. With
this definition and the preceding exercise in mind, prove the following S-
version of Proposition 5-19:

Let K be a global field, and let S be a finite nonempty set of places of K
containing the infinite ones. Then there is an isomorphism CK s = Pic(Rs).

Show also that for S large enough, CK s is trivial.

10. Let K be a number field.

(a) Show that an element xeK* is a unit of oK if and only if NK,Q(x)=±1.

Assume for the remainder of this exercise that K is a quadratic number
field; that is, K=Q(S), where Sz=d, a square-free integer.

(b) Show that

Z[5) if d = 2,3 (mod 4)
OK

Z[l2S[ if das 1(mod 4).

(c) Assuming that d is negative, list the units of oK.

(d) Assuming that d is positive and congruent to either 2 or 3 modulo 4, show
that the units of oK are precisely those numbers a+bS such that the integer
pair (a,b) satisfies Pell's equation a2 - db2 = ±1. Show, moreover, that
there is a fundamental unit u,=ai+b,5, a,,b,>0, such that every unit in oK
is of the form ±u1" for some nEZ. The pair (ai,b,) is called a fundamental
solution to Pell's equation.

(e) For this part, we assume that the reader is familiar with continued frac-
tions. Assume that d is as in the previous part, and let [ao,be
the (simple) continued fraction expansion of S with "convergents"

A"IB" _ [ao,a1,...,a"] .

Show that for some n, the pair (A",B") constitutes a fundamental solution
to Pell's equation. Check in particular that when d=2 (respectively, 3), the
fundamental unit of K= Q(S) is 1+.5 (respectively, 5 +25).
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11. Let R be a Dedekind domain, for example the ring of integers in a number
field.

(a) Suppose that Pic(R), the class group of the fraction field of R, is trivial.
Show then that R is a unique factorization domain; that is, every nonzero
element of R is expressible as the (finite) product of irreducible elements
and that this factorization is unique up to order and associates. [Hint: Show
that any two elements a,bER, not both zero, have a greatest common divi-
sor by looking at the intersection of aR with bR.]

(b) Show that every integral ideal I in R can be written as the intersection of a
finite number of principal ideals.

(c) Prove the converse of part (a): if R is a unique factorization domain, then
Pic(R) is trivial. [Hint: To show that every integral ideal is principal, show
first that having unique factorization forces the intersection of any two
principal ideals to be principal, and then appeal to part (b).]

MORAL. The class number hK of a number field measures the failure of
unique factorization in oK.

12. (Artin) This exercise develops an explicit description of the connected
component of C. Let K be a number field of degree n=r,+2r2, where r,
and r2 are, respectively, the number of real and nonconjugate complex em-
beddings of K into C. Recalling that oK has rank r=r,+r2-1, fix a set
{uP..., ur) of multiplicatively independent units in oK. Put

V=R®Z

and embed Z in V by the diagonal map that sends m to (m, m). Write

IK = IK X If

where the elements in IK (respectively, IK) have only trivial finite
(respectively, infinite) components.

(a) Show that for any y e If
K

and x e Z, the expression yx makes sense. [Hint:
If

K
has a fundamental system of neighborhoods of unity consisting of sub-

groups of finite index.]

(b) Show that for any z E If
K

and t E R, the expression z' makes sense, and that
it can be normalized to obtain real values at real places.
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(c) For j= 1, ..., r2 and to R, let 4 (t) denote the idele with component a 29;t at

the jth complex place and 1 everywhere else. Define a mapA by

A V' ®R'2 -+ I,
r r

(A,t)= (A,,...,Ar,t1,...tr2) H flu,'2'OJ(tj)
1=1 J=1

Show that A(A, t) is a principal idele if and only if every A, and every t. lies
in Z.

(d) Let A : V' ® R'2 -+ C'' denote the induced map to the idele class group.
Show that V/Z is compact, connected, and infinitely and uniquely divisible.
Conclude that D=Im(A) is compact, connected, and infinitely divisible.

(e) Show that every infinitely divisible element of C'' lies in the closure of D,
and hence lies in D itself.

(f) Show that D contains the connected component of CK, and conclude that
in fact D is the connected component of C'' . [Hint: Use that D contains the
image of IK mIf .J

13. Let R be a commutative ring with unity. Define the Heisenberg group of R
as follows:

1 a b

H(R) = 0 1 c :a,b,ccR
0 0 1

Show that for any global field, H(K) embeds as a discrete, cocompact sub-
group of H(AK).

14. Continuing in the context of the previous problem, show that the abeliani-
zation map

H(AK) -1AK
1 a b

0 1 c

0 0 1

H (a, b)

induces a continuous surjective map
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fr : H(AK)/H(K) -> (AK/K)2

whose fibers identify with AK/K.

15. Let K be a global field.

(a) Show that GL2(K) embeds as a discrete subgroup of GL2(AK).

(b) Show that the corresponding quotient space-not quotient group, for this
embedding is not normal-is not compact.

(c) Let denote the subgroup of consisting of scalar matrices. Show
that the quotient space GL2(AK)/Z(AK)GL2(K) is still not compact.



6
A Quick Tour of Class Field Theory

One could argue that the principal goal of number theory is to understand the
integral or rational solutions of systems of Diophantine equations; that is, poly-
nomial equations with integral coefficients. Nineteenth-century mathemati-
cians, mainly riding the impetus provided by attempts to tackle the Fermat
equation x"+y"=z" (n23), realized the benefits of studying the solutions in
extended number systems R, as opposed to confining one's attention to only Z
and Q, and this led eventually to global and local fields and their rings of inte-
gers. Such an extension often was made to allow for the presence of suitable
roots of unity in R, which provided desirable factorizations, such as

X. +y" _ y)
j=o

Two related problems immediately arose, the first associated with the general
failure of unique factorization in R, leading to the class group, and the second
pertaining to the question of how rational primes factor, or split, in R. The lat-
ter problem was first solved in its entirety, in the guise of the study of quadratic
forms, for quadratic fields F=Q(5), where 6-2=D is an integer that is not a
square in Q. It was established that an odd prime p splits in F if and only if D
is a quadratic residue-that is, a square-mod p, and that the set XD of primes
for which D is a quadratic residue mod p completely determines the extension
F/Q. (In modern parlance, one says that the set XD defines a canonical open
subgroup of the idele class group CQ.) Of special importance here is the quad-
ratic reciprocity law, which for primes p and q gives a precise relationship be-
tween the status of p as a quadratic residue mod q and the status of q as a
quadratic residue modp. Further progress followed on cyclotomic and Kummer
extensions, and, perhaps most significantly, an assertion of Kronecker led to
the realization of all abelian extensions of Q as subextensions of the cyclotomic
ones.

By the early twentieth century, the central problem of algebraic number
theory had become that of describing the splitting of primes in finite abelian
extensions ("class fields") L of an arbitrary number field K in terms of struc-
tures associated with K itself. A particular subclass that was well understood
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early on was the maximal unramified abelian extension 11(K), called the Hil-
bert class field of K, whose Galois group Gal(H(K)/K) turned out to be isomor-
phic to the ideal class group Clx. In the 1930s, Takagi gave a general solution
to the problem and established in the process an abstract isomorphism of the
Galois group of any finite abelian extension L of K with a ray class group of K.
(As we have seen in Chapter 5, every ray class group is a quotient of the idele
class group.) A completely satisfactory understanding of abelian extensions LIK
was finally achieved with the revolutionary work of E. Artin, who proved a
general reciprocity law. Artin reciprocity, on the one hand, vastly extends
Gauss's law of quadratic reciprocity and, on the other, gives a canonical iso-
morphism between Gal(L/K) and the relevant ray class group. The key tool is a
crucial homomorphism called the Artin map.

In this chapter, after introducing the required technical preliminaries on
Frobenius elements, the Tchebotarev density theorem-a huge generalization of
Dirichlet's theorem on primes in arithmetic progressions-and the transfer
map, we summarize (without proof) the main results of abelian class field the-
ory i1 la Artin. While we state everything for idele class groups rather than ray
class groups, the reader may consult Section 5.4 for the relevant dictionary.
Putting matters in adelic language might seem an unnecessary complication,
but it is absolutely essential if we are to apply the techniques of harmonic
analysis. We end the chapter with an explicit description of the abelian exten-
sions of Q and Q. including a proof of the Kronecker-Weber theorem.

SPECIAL NoTEs. (i) The results of this chapter are not prerequisite for the proof
of Tate's thesis in the following chapter, but they will play a role in some of our
applications. (ii) In the exercises for Chapter 7, we shall develop a proof of the
Tchebotarev density theorem as reformulated in terms of Dirichlet density.
Since this proof in fact relies on Artin reciprocity, it is important to stress here
that Artin's law is itself independent of the Tchebotarev density theorem. While
Artin was inspired by ideas in Tchebotarev's proof, his actual argument does
not depend upon it, and hence we introduce no latent circularities.

6.1 Frobenius Elements

The goal of this section is to introduce a family of special elements-or, more
properly, of special conjugacy classes-in the Galois groups of global fields.
We fix a global field F, and for any Galois extension K/F denote the corre-
sponding Galois group Gal()M. .

We shall first consider the case of a finite Galois extension K/F with
G=Gal(K/F). Let Q be a prime of ox. Then Q lies above some prime P in o.,,
and we let F denote the residue field o,/P. Recall from Section 4.3 that we then
define the decomposition group of Q in G to be
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DQ= tar= G: a(Q)=Q}.

Let the residue field oK/Q be identified with the finite field Fq. Then we have a
canonical homomorphism

PQ : DQ -+ Gal(Fq/F)

that associates with aeDQ the map (x modQ i-4 a(x) modQ) for all xEOK. As
proven previously, the map pQ is always surjective and is in fact an isomor-
phism if and only if P is unramified in K. Moreover, each aE DQ extends to an
automorphism of the completion KQ that is trivial on the subfield FP; the in-
duced map

jQ:DQ-Gal(KQ/FP)

is unconditionally an isomorphism.
One knows from elementary field theory that Gal(Fq/F) is cyclic, generated

by the Frobenius map

XHX'f

where Card(F)=pf. With this in mind, we make the following definition.

DEFINmoN. Let P be unramifred in K. Then the Frobenius element gPQ,P in
DQCG associated with QIP is defined by

= PQ (x H x'f)

Note that this element unfortunately depends on the choice of Q over P. In-
deed, suppose that Q' is another prime dividing P. Note first that DQ, is conju-
gate to DQ. Explicitly, we know that we can find fEG such that f(Q')=Q, and
consequently 8-' aji preserves Q' for each aEDQ.

6-1 LEMMA. The maps ipQ,p and cQTP are conjugate in the Galois group G.

PROOF. Choose f EG as above so that flDQ,,O-' = DQ. Then by definition,

PQ,,, =PQ(XHX'f) .

To show that this is conjugate by fl to q.'Q1p, we explicitly compute as follows:
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, '-pQ/PN(x+Q')=/' "cqQ/P(Nx)+Q)

=f'(i(xp,)+Q)
=xpf+Q'

=PQ'/p(x+Q')

This completes the proof.

DEFINITION. The Frobenius class in G corresponding to P, denoted q'P K/F or
(P, K/F), is the conjugacy class of the Frobenius element op,,P.

This is well-defined by the previous lemma. The notation (P, K/F) is some-
times called the Artin symbol of P relative to K/F We shall next analyze the
functorial properties of these Frobenius classes.

6-2 PROPOSITION. The Artin symbol has the following properties:

(i) Let M/F be a finite Galois extension and K/F a normal subextension,
so that the restriction map NM/K from Gal(M/F) to Gal(K/F) induces
an isomorphism between Gal(M/F)/Gal(M/K) and Gal(K/F). Then for
any prime P unramifred in M,

NM/K(P,MIF) = (P,K/F) .

(ii) Let K and K' be two finite Galois extensions of F that are, moreover,
linearly disjoint over F. Then for every prime P unramifred in KK; we
have that anGal(KK'/F) lies in the Frobenius class (P,KK'/F) if and
only if(alK,olK,)E(P,KIP) x(P,K'/F).

(iii) Let K/F be a finite Galois extension, and let L be an intermediate
field, not necessarily normal over F, with [K:L[=m. Let P be a prime
of F unramified in K, and suppose that Q is a prime of L that divides P
and that P is a prime of K that divides Q. Then we have that LQ=Fp if
and only if OpP,P E Gal(K/L). Moreover, the number of primes Q of L
lying over P such that LQ FP is given by the formula

1 Card ({a E Gal(K/F) : aipi,,p a-' E Gal(K/L) })
m

REMARK. A prime Q of L dividing P such that LQ=Fp is called a degree-one
prime over F. When LIF is normal, (P,K/F) is a subset of Gal(K/L) if and only
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if p,,p eGal(K/L) for some Frobenius element defined over P, and in this case
P splits completely in L into a product of primes of degree 1.

PROOF. (i) Let P' be a prime of K above P, and P" a prime of M above P'. Let k,
k', and k" denote the corresponding residue fields. Then we have the following
diagram:

M --t Mp. LD op., -* k"

I I

K - Kp, o p, -1 k'

I I

F -> Fp o p -- k

Let k=F4o, and let Q'eGal(k'/k) and or"eGal(k"/k) denote, respectively, the
Frobenius automorphisms of k' and k" over k. Both Q' and or" are given by the
assignment x H x'°, and thus it is clear that or' is no more than the restriction
of a". Moreover, since P is unramified in M, the decomposition groups

Gal(M/F) and Dp,c Gal(K/F) are, respectively, isomorphic to Gal(k"/k)
and Gal(k'/k). Since by construction pp,,,peGal(M/F) and pp,,peGal(K/F) are
the preimages of ar' and a" under these isomorphisms, we see also that ip,,,p is
the restriction of opp,,,p. The same then holds for the associated conjugacy
classes, and hence (i) holds.

(ii) Let

r: Gal(KK'/F)-*Gal(K/F)xGal(K'/F)
dH(01K10IK')

denote the canonical homomorphism. This is in fact an isomorphism because K
and K' are assumed linearly disjoint over F. Now let P denote a prime of KK'
lying above P. Then Q = T n oK and Q' = P n OK, are, respectively, primes of
K and K' lying under P and over P. One checks easily that

P) IPI K = c'QIP and 9PIpI K' _'Q'Ip

Conversely, any pair of intermediate-level Frobenius maps must arise via y
from a conjugate of VPp because y is an isomorphism. This proves (ii).

(iii) Let the primes P, Q, and P be as shown:
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K Ox

I I I

L oL Q Q
I I I

F of Q P

Again we must keep in mind two elementary, but crucial facts: the Frobenius
map r = Vp,p lies in the decomposition group Dp cGal(K/F), and

Dp =_ Gal(K),/Fp)

where this isomorphism is nothing more than extension of an automorphism of
K over F to one of K¢ over Fp. Now if Q is in fact a degree-one prime, which is
to say that LQ=Fp, then the corresponding extension of r is ipso facto trivial on
LQ, and therefore on L. Thus reGal(K/L). Conversely, if rEGal(K/L) and
qo=Card(ofJP), then it follows that aqua (mod Q) for aeoL, from which we
deduce at once that the residue fields of L and F are identical. Accordingly
L,Fp, as required. This proves the first statement of (iii).

To conclude, we establish the formula. We know now that the number of
primes P of K dividing P such that P n oL is of degree one over P is exactly
the number of Frobenius elements defined over P that lie in Gal(K/L); this is
just Card((P,K/F)nGal(K/L)). Now the number of such primes lying over any
single given degree-one prime in L is always m/f, where f be the residual de-
gree associated with T. (Clearly f is the same whether computed with respect
to L or F and is therefore independent of P n oL, provided that this intermedi-
ate prime is indeed of degree one.) Thus the number of degree-one primes in L
is f/m times the cardinality of (P,K/F) n Gal(K/L). But every element of this
intersection is represented exactly f times in the form o qF,,, 0'-' as Q
runs over Gal(K/F), and from this the formula follows at once. O

Arbitrary Unramifred Extensions

Recall that an extension OF is called unramified at a place u of F if there exists
a chain

of finite extensions such that each E,/E,._, is unramified (in particular, finite
and separable) at every place of E, 1 lying above u.
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DEFINmoN. Let F be a global field and P a prime in F. Then PW(P) denotes the
maximal subextension of F/F that is unramified at P. This is called the maxi-
mal unramified extension of F at P.

It is easy to check that F°(P) exists (see Exercise 1 below) and is a Galois
extension of F. For we have seen that each step in the tower that defines an
unramified extension is the splitting field of a polynomial of the form x'-I, and
hence is itself Galois over F. Clearly,

Gal(F' (P)/ F) = lim K / F
4-

where K runs over finite Galois extensions of F contained in F(P). The previ-
ous proposition shows that the Frobenius classes cK,F (P,K/F) patch nicely to
give a class (P, F(P) IF) in Gal(F(P)IF).

It is perhaps disappointing that we cannot define the Frobenius class in the
absolute Galois group Gal(F/F) , but we point out without proof that if

p :Gal(F/F) -+ GL (Q,)

is a continuous representation arising from the /-adic cohomology of a smooth
projective variety over F (with I a prime different from the characteristic of F),
then p is unramified at all P outside a finite set S of primes. In other words, p
factors through GF S, the Galois group of the maximal extension of F in k that
is unramified outside S. Since Gal(F(P)/F) maps onto GF5, we see that p(rep)
is well-defined at every PoS.

6.2 The Tchebotarev Density Theorem

Given a finite Galois extension K/F of global fields, we have seen how to define
a map

V=' KIF: EF - SKIF Gal(K/F)N
PHop P

where E. denotes the set of places of F, SK/ , denotes the (finite) union of the
Archimedean places and the finite places that ramify in K, and Gal(K/F)# is the
space of conjugacy classes of Gal(K/F). A natural question to ask is whether
every conjugacy class is opp for some P. The answer is yes, as affirmed by the
following beautiful result, given here without proof.
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6-3 THEOREM. (Tchebotarev) Let G=Gal(K/F). Then for every conjugacy class
C in G there exist infinitely many primes P such that opp=C. More pre-
cisely,

lira
Card{P: N(P) 5 x, q = C} - Card(C)

=gym Card{P:N(P) s x} Card(G)

Here, N(P), the (absolute) norm of the prime P, is the cardinality of the as-
sociated residue field. The limit on the left side of the equality is called the
natural density of the set described in the numerator. (As noted above, we
prove a reformulation of this theorem in terms of Dirichlet density in the exer-
cises for Chapter 7.)

An illuminating special case of this theorem arises when F=Q and
K=Q(Q, the field of mth roots of unity over Q, for some m> 1. Then one
knows that the Galois group G of K/F is abelian, and in fact isomorphic to
(Z/mZ)". Explicitly, each a relatively prime to in gives rise to an element

a
°a' Cm H `gy

//

of G. For every prime p not dividing in, this extension is unramified (proved for
in prime in Section 4.3). Now let C be a conjugacy class in G, so that in the
present case C corresponds to a singleton subset {a}c(Z/mZ)". Then one can
deduce that

q7v={Qa} a paa(mod m).

Thus Tchebotarev's theorem becomes the well-known theorem of Dirichlet on
primes in arithmetic progressions, namely that there are infinitely many primes
p congruent to a modulo in, and, more specifically, that the density of such
primes is 1/q(m).

6.3 The Transfer Map

In preparation for the statement of the Artin reciprocity law, we now introduce
a subtle and entirely group-theoretic construction that is of interest in its own
right. The subtlety lies in that in general there is no homomorphism from a
group to a subgroup.

Let G be any group, with H a subgroup of finite index. Let (G, G) denote the
commutator subgroup; i.e., the subgroup generated by the products sts 1 t_1
where s and t vary over G. Since conjugation by any element is an automor-
phism of G, the commutator subgroup is normal in G, and the corresponding
quotient group Gb=G/(G,G) is called the abelianization of G. The homomor-
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phism in question is the transfer map, also called die Verlagerung by German
aficionados,

V: G'b->H'b

and is defined as follows.

First choose a section s:H\G-+G; that is, a set of representatives for H\G,
the set of right cosets of H in G. Put

hx.Y = s(Y)xs(Yx)-' e H

where Yx denotes the effect of right translation on a coset Y in H\G. (Of course,
H\G is a G-setl) Clearly, h,.y measures the failure of s(Y)x to equal s(px);
that is, the failure of s to be a G-map. Next define

V(x)= fj hry mod(H,H)

Thus the right-hand side is the natural image of the given product in H'b.

6-4 PROPOSrrtON. The map V : G-+Hb is a group homomorphism independent
of the choice of the section s:G-,H\G.

PROOF. First we show that V is independent of the choice of section. Let s' be
another section. Then there is a function rl:H\G-+H such that

s'(Y) = rXY)s(Y)

for each eH\G. Given XE G, the direct calculation

fls'(Y)xc'{px)-' _ f
Y Y

F1 rXY)s(p)xs(Yx)-'
rl(y)-1

shows that we may calculate 17(x) using either section and obtain the same re-
sults modulo the commutator subgroup (H, H).

We may make a similar calculation to see that V is a group homomorphism:
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V(x,x2)=fls(y)x,x2s(yx,x2)-' mod(H,H)
Y

= fl s(Y)Xis(YX1)-"S(Yx,)x2s(YXi x2)-' mod(H, H)
Y

= f s(y)xxs(Yx, )-' . fl s(yxi )x2s(YX1x2)-' mod(H, H)
Y P

=V(x,)V(x2)

In moving from the second line to the third, we note that the indicated trios of
factors all lie in H, whence all of the right hand-trios can be accumulated
modulo (H,H) into a single product. In moving from the third to the fourth, we
note that as y varies over H\ G, so does yx, .

In consequence of this proposition, it follows from the universal property of
the abelianization of a group that V induces a unique map

V:

which we call the transfer map. We also write Vo H for this map to emphasize
the domain and codomain. From the previous proposition it follows that the
transfer map is completely intrinsic to G and H, and independent of the choice
of section. Moreover, it satisfies a kind of transitivity:

6-5 PROPOSITION. (Transitivity of the Transfer Map) If HcKcG, then

VG.H = VK.H c Va.K

PROOF. Exercise.

In. his book The Theory of Groups, M. Hall gives an alternative development
of the transfer map via monomial representations (1959, pp. 201-203).

6.4 Artin's Reciprocity Law

One of the major success stories in number theory this century has been the
work of Takagi and Artin on the description of abelian extensions of global
fields. This is codified elegantly and concisely by the Artin reciprocity law. In
this section we shall, without proof, state this law simultaneously for global and
local fields and indicate its associated functorial properties. We begin with a
few preliminary considerations.

Let Fbe a global or local field. Put

C., -
IF IF if r is groom.

(F* if F is local
*
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We know that this is a locally compact abclian group. Moreover, if K/F is a
finite extension, we will be concerned with two natural homomorphisms:

,jwF : CF -- CK and NK,F : CK -i CF .

The first map is simply that induced by inclusion. The second is the norm ho-
momorphism, which in the global case is induced by

sir

where F. is the ordinary norm. Observe that this idele class version of
the norm is well-defined: the ordinary version maps integers to integers (cf.
Appendix B, Section 2), and Proposition 4-39 shows that elements of K map to
elements of F. Note also that according to Exercise 3 below, the image of NKiF
is an open subgroup of CF.

Next fix a separable algebraic closure F and put

rK= Gal(F/K)

for any extension K/F with K c F. To describe the functoriality of Artin reci-
procity, we shall also need two maps on the Galois side. The first is simply the
inclusion

iK/F : rK -- rF .

The second, which goes in the opposite direction, is the more subtle transfer
map

V: r"->rKb

defined as above on the abclianizations of the domain and codomain.
Before stating Artin's reciprocity law, let us take note of the relationship

between the cokernel of the norm map and the Galois group for four particular
extensions K/F.

CASE 1. Let F= R and K= C. Then Gal(C/R) _ { 1, p}, where p denotes complex
conjugation. Moreover, the cokernel of the norm map

Nc,R : C* --), R*

is simply the quotient of R* by the nonzero squares, which is to say the cyclic
group of order 2. Hence there is a unique abstract isomorphism between
R*/N(C*) and Gal(C/R) sending the class of -1 top.
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CASE 2. Let F= C. Then since the complex numbers are algebraically closed, K
must also equal C, and both the cokernel of the norm map and the Galois group
are trivial.

CASE 3. Let p be an odd prime, and let F= Q. and K=Q,(i), where 52=2. Then

NKiF(K*) = {re Q,*: r = x2-2y2, for some x, yeQQ} .

It is a good exercise to check that this norm subgroup has index 2 in Q;. Of
course, Gal(K/F) is also cyclic of order 2.

CASE 4. Let F=Fq, and let K be any finite extension. Note that the norm map
from K* to F4 is always surjective, and hence has trivial cokernel. Hence the
situation here is very different from that of a local or global field.

6-6 THEOREM. (Artin Reciprocity) Let F he a global field or a local field. Then
there exists a homomorphism, called the Artin map,

BF : CF -+ Gal(F/F)'b = r'F

satisfying each of the following two groups of assertions:

PART ONE-The Artin Map for Abelian Extensions

(i) For every finite abelian extension K/F, let BK/F denote the composition
of OF with the natural projection Fb -> Gal(K/F). Then BK,F is sur-
jective with kernel NKIF(CK).

(ii) Conversely, given any open subgroup N of CF of finite index, there
exists a finite abelian extension K/F such that N=Ker(9K,F). In par-
ticular,

CF /N = Gal(K/F) .

(iii) Let K/F be a finite abelian and unramified extension of the non-
Archimedean local field F with residual extension k'/k. Then we have
explicitly

OK/F(x) = W{z)

where to is the Frobenius element of Gal(K/F)aGal(k'/k)=(p).
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(iv) Let K/F be a finite abelian extension of global fields, and let P be a
finite prime in F that is unramifted in K. Denote by xP the class in CF
defined by the idele

T
place P

all of whose components are 1 except at the place defined by P, where
the component is a uniformizing parameter jr. Then we have

OK/F(xp) = VP

where qP=(P,K/F). [Note that since K/F is abelian, the Frobenius
conjugacy class cP is in fact a single element of Gal(K/F).]

PART Two-Functoriality

Let K/F be a finite separable extension, not necessarily abelian (with F
either global or local). Then we have the following two commutative dia-
grams:

(i)

CK
oK

NK/F j. ,J. 'K /F

CF

(ii)

CK

1K/F T

CF

IF

oK

Moreover, if K1/F Is an abelian extension with sub extension KIF, then we
have a further commutative diagram
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F*/Nx,/F(K*)
Ox,/F'

Gal(K1/F)

proj proj

F*/Nx,F(K*) Gal(K/F)
Bx/F

Note well that the inclusion-induced map on the class group side corre-
sponds to the transfer map on the Galois side and that the inclusion map on the
Galois side corresponds to the norm map on the class group side. In the abelian
case, we may simply identify the projections.

6.5 Abelian Extensions of Q and Qp

In this section, working over either Q or Q. we consider class field theory in a
particular and concrete setting. We prepare with some general field-theoretic
notions.

Let F be a field, for which we implicitly fix an algebraic closure. If K, and
K2 are Galois extensions of F, then so is their compositum K1K2, and in fact we
have an embedding

Gal(K1K2/F) - Gal(K1/F) x Gal(K2/F)
Q H ((71x,,aIK2)

which is an isomorphism if K, and K2 have intersection F. Thus if K, and K2
are moreover abelian extensions, so again is their compositum. Thus there ex-
ists a maximal abelian extension F"b of F, which is precisely the compositum of
all abelian extensions of F within its algebraic closure.

Henceforth, for any n?1, F,, denotes the field obtained by adjoining the nth
roots of unity to F (again, within its fixed algebraic closure). We shall soon see
that this is always a finite Galois extension of F. We further let F. denote the
compositum of all of the F,,, nzl.

We now state the main theorems of this section.

6-7 THEOREM. Let F be a local or global field. Then for all n, F. is a finite
abelian extension. Moreover, the following assertions hold:

(i) If F=Q, then by an isomorphism that associates
ae(Z/nZ)" with the automorphism of F,, induced by w N w°, where w
is a primitive nth root of unity. Consequently, F.cF°b.
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(ii) IfF=Q. and n is relatively prime to p, then F,, IF is unramifred, with
Gal(F,,/F) cyclic. In fact, every finite unramifred extension of Qp oc-
curs as some F,,, with (p,n)=1.

(iii) If F= Q. and n is a power of p, then F,,IF is totally ramified, with
Gal(F"/F) =(Z/nZ)".

6-8 THEOREM. (Kronecker-Weber) Let F be either Q or Qp. Then F.=Fb.

REMARK. Let F=Q. Then by the Kronecker-Weber theorem, given any finite
abelian extension K of F, we can find a positive integer n such that K is con-
tained in the field F,,=Q(ezirV"). Thus one can think of K as being generated by
the values of the function ell's at rational arguments. Kronecker's Jugendtraum
(youthful dream) was to hope that any finite abelian extension of a number field
F could be generated by values at algebraic arguments of a suitably chosen set
of transcendental functions. This dream is realized for imaginary quadratic
fields F, where the abelian extensions are all generated by the values of elliptic
functions at "division points." Further progress has been made by Shimura and
others. Kronecker's dream has in fact influenced much of modern number the-
ory.

PROOF OF THEOREM 6-7. We begin with some basic Galois theory. Let F be any
field with separable algebraic closure F. For positive n, consider the equation

Ax) = x"-1

over F. Then its splitting field is precisely F". If char(F)=p>O, then there are
no nontrivial p-power roots of unity in F. Thus if we write n=p'm, with in
prime to p, the nth roots of unity in F are the same as the mth roots of unity.
Therefore, in the case of positive characteristic p, we can and shall assume that
n is prime top. _

Let w be a primitive nth root of unity in F, so that w"=1, but w'"# 1 for any
positive in smaller than n. Indeed, such an w must exist because the formal de-
rivative off

f'(x) = nx"-1

is nonzero for nonzero x-after all, n is assumed prime top in positive charac-
teristic-and therefore f must have n distinct roots in F. Hence this necessarily
cyclic group of solutions must have order n and, of course, a generator co. From
this we see at once that F,,=F(w) and that F,, is the splitting field of a separable
polynomial over F. Accordingly, F,, is a finite Galois extension of F.

Fix a primitive nth root of unity as Then of is again a primitive nth root of
unity if and only if r is an integer prime to n. In this way we obtain exactly
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q(n) primitive roots. Now if it must send W to another prim-
itive nth root of unity. Thus we must have

a(W) = Waa

for some aae (Z/nZ)". Moreover, for Or, rE G,

Waar = (Qr)(W) = ,(War) = Waaar .

Thus aar agar, and so we have a homomorphism of groups

y: G -+ (Z/nZ)'

Since ais the identity of G if and only if Waa is w itself, which is to say, if and
only if as=1 in (Z/nZ)", it follows that y is injective and that G is abelian.

Keeping in mind that w generates F,, over F, each element ae(Z/nZ)" con-
versely gives rise to an automorphism or. of F,, defined by

Qa(W) = Wa .

However, this might.not be an element of G by virtue of its failure to restrict to
the identity on F, and this will indeed occur if some power of w lying in F is
moved by a.. Hence in general y is not surjective.

Before specializing to Q or Q. we observe that for any din, we may define a
factorfd(x) off(x) by setting

.fd(X)= H(X-CO bn/d
br,(Z/dZ)"

Then clearly,

f(X) = JJ fd (X)
dIw

with fi(x)= (x- 1). We customarily call fn the nth cyclotomic polynomial. Since

J,%.X)
fd(X)

djn.dxn

we see inductively that each cyclotomic polynomial lies in F[x[. Moreover,
since each is monic, it follows from the Euclidean algorithm that its coefficients
in fact lie in the subring of F generated by 1. In this sense, the cyclotomic poly-
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nomials are generic over any field, although they may or may not be irreducible
depending upon F.

With these preliminaries in hand, let us now proceed to each of the three
statements of the first theorem.

(i) Now let F= Q. Then for nz3, F contains no nth root of unity, and therefore
w° does not lie in F for any a prime to n. Moreover, F. is simply the splitting
field of the cyclotomic polynomial f, and elements of G permute the primitive
roots of unity. Thus to show that y is an isomorphism, it suffices to show that
f,,(x) is irreducible, for then the order of G will be the degree of f,,, which is
clearly q(n), the order of (Z/nZ)'.

Let g(x) be the irreducible factor of f (x) that is the minimal polynomial of w
over F. Since g is the product of linear factors of the form (x-w°), its coeffi-
cients are both rational and integral over Q, which is to say that g(x)eZ[x]. We
claim that it is enough to show that for every prime p not dividing n, a)p is also
a root of g. For this implies by iteration that ae is a root of g for all a prime to
n, thus forcingg=f,,. Write

f» (x) = g(x)h(x)

with h necessarily having integral coefficients because g is monic. If g(od) is
not zero, then h(am) must be, and therefore w is a root of h(xP), which is con-
gruent to h(x)P modulo p. So, g and h have a common root when reduced
modulo p, contradicting the separability off,, modulo p that obtains whenever p
does not divide n. This contradiction shows that W is indeed a root of g, as
claimed.

To summarize, we have the isomorphism

y: Ci 4 (Z/nZ)'
or H ao

in the case F=Q.

(ii) In the case that F=Qp, we know by Proposition 4-25 that a finite extension
of F is unramified if and only if it is of the form F,,, with n relatively prime to
p. Such extensions are moreover cyclic by Lemma 4-24.

(iii) Finally, we assume that F=Qp and that n=p'. We still have the injective
homomorphism from G=Gal(F,,/F) into (Z/nZ)' that we constructed previ-
ously. As in part (i), to show that this map is moreover an isomorphism, it suf-
fices to show that the order of G is again rp(n).
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Let w be a primitive nth root of unity in F,,, so that in fact and set

Then S" is a primitive pth root of unity. Now define

f(x) X

J=O

Note thatf(x) is irreducible because g(x)=f(x+l) is an Eisenstein polynomial.
[That is, the leading coefficient of g(x) does not lie in the unique prime ideal of
Z., but all of the other coefficients do, and the constant term does not lie in the
square of this ideal.] It follows that

f (CO) =
wjP' ' _ t S"j =0

J-1

whence f is the irreducible polynomial of w over F. But of course

deg f - (p - 1)p'-' = co(n)

showing that the degree of the extension and hence the order of G, is
precisely q(n), as required.

It remains only to show that F,/F is totally ramified. To begin, let ,r=w-1,
so that ;r is a root of the irreducible polynomial g(x), which, too, has degree
fi(n) over F. Then F,,=F(ir)-F[x]/(g(x)). The residual extension is still
generated over F. by the image x of x. But happily

g(x) = X'P(n)

where g(x) is the reduction of g(x) modulo p, whence x = 0. (Eisenstein!)
This implies that showing that is totally ramified, as required.

Proof of the Kronecker-Weber Theorem: The Local Case

We first consider the local situation, so that F=QP. By the previous theorem,
we have the following inclusions:

QP=FcF"=
(P.n)=1
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where F", F and F'b are as above, and F' is the maximal unramified exten-
sion of F in the given algebraic closure.

Recall that according to our statement of Artin reciprocity, for every finite
abelian extension K/F there is a canonical isomorphism between Gal(K/F) and
F*/NK1F(K*). Moreover, every open subgroup of F* is a norm subgroup; that is,
is of the form Nx,F.(K*) for some finite abelian extension K of F. Consequently,
since F'b is the compositum (and hence direct limit) of such extensions K, we
can identify

Gal(F'b/F) = lim Gal(K/F)
K

with the projective completion of F*; that is,

Gal(F'b/F) = lim F-*/N
N

where the limit is taken over open subgroups N of P. Next recall that we have
a short exact sequence

vpIFF**Z-*0 (6.1)

which splits once we choose a uniformizing parameter rr, via yr: Z-*F*,
VI(n) = 7r". For every open subgroup N of F*, this yields another split short exact
sequence

VP
1-+oF/oFnN-*F*/N-*Z/nZ-*0 .

With the existence of a left inverse for VF in hand, we can take the corre-
sponding profinite limits to obtain

m

1- s of Gal(F°b/F)-+Z 0 (6.2)

which defines a projection q' from Gal(F'b/F) onto Z. (From the proof of Theo-
rem 1-14, we know that a profinite group is the projective limit of its quotients
by open normal subgroups. Since the subgroups of n N are cofinal among the
open subgroups of of , the projective limit of the corresponding quotients is
precisely of itself.) And we have a final short exact sequence

1-* Gal(F`b/Fw) -). Gal(F°b/F) 4 Z -* 0 (6.3)



232 6. A Quick Tour of Class Field Theory

derived from the projection p from Gal(F'b/F) onto Gal(F' /F) via the natural
identification of Gal(F"IF) with Gal(F/F) _=i, where F=Fp is the residue
field of F.

6-9 LEMMA- The projection q defined in sequence 6.2 may be identified with
the natural projection p of Gal(F'b/F) onto Gal(F's/F). Consequently we
have an isomorphism Gal(Fb/F)= of .

To prove the main statement, we must produce a compatible family of homo-
morphisms from

the quotients v1(F*/N), N open, that appear as factors of the projective
limit that constitutes the cokernel in sequence 6.2

to

the groups Gal(K/F), K unramified, that appear as factors of the projec-
tive limit that constitutes the cokernel in sequence 6.3

such that the induced map on the respective projective limits is an isomorphism
a satisfying p =a -op. The following lemma contains the technical key:

6-10 LEMMA. Let K be a finite abelian extension of F with ring of integers oK.
Then the following statements are equivalent:

(i) The extension K/F is unramified.

(ii) NK/F(OK)= op .

Moreover, in this case F*/NK/F(K*) is a quotient of vv(F*).

PROOF. Let F'/F be the residual extension corresponding to K/F, and as usual,
put f= [F': F] and n = [K: F] = ef, where e is the ramification index. Let ),rF and
irK denote, respectively, the uniformizing parameters for of and 0K. Then from
sequence 6.1 we get

F* = of x Z and K* = oK x Z

and this is compatible with the group action from Gal(K/F). Recalling that the
norm of irK is ,rf , one then easily obtains

F*/NK/F(K*) = oF. INK/F( oK ) x (Z/fZ) .
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Since F*/NK,F(K*) is isomorphic to Gal(K/F), its order is n. Thus K/F is un-
ramified if and only if n=J, which is to say, if and only if NK,F( oK )= op . The
final statement is now obvious.

REMARK. We have the following commutative diagram with exact rows:

1 - 1+YrKOK oK F'* -+ 1

.j. N N ,!, N

1 I + rrF o, -+ o; -+ F* -I 1

Since the norm map on the (finite) residue fields is always surjective, it follows
readily that N(oK)=oF if N(1+nrnoK)=1+frFoF. Thus if the norm fails to be
surjective, it already fails at this level.

PROOF OF LEMMA 6-9. Suppose that K, is a finite abelian extension of F and
that K is any Galois subextension contained therein. From the diagram

F*/NK,,F(K*) = OF/ INKS/F(OK1) x VF(F*)IIIVF(NK,/F(OK,))

y i y

F*/NK,F(K*) = OF/NK,F(OK) X VF(F9)/VF(NK/F(OK))

we see that the canonical projection on the left decomposes into the direct
product of the two canonical projections indicated on the right. In the case that
K is the maximal unramified subextension of K,, it follows from the previous
lemma that Gal(K/F)aF*/NK1F(K*) is in fact isomorphic to the right-hand
factor on the second line. Moreover, since K1/K is then totally ramified, the
projection on the right is the identity map, and hence we have an isomorphism

ax, : vF (F* /NK,,F (K*)) -* Ga1(K/F)

If K, is another finite abelian extension of F that contains K, with maximum
unramified subextension K'/F, we have a diagram

prq
vF(F*INK,,F(Kl*)) vF(F*INKi,F(Ki*))

1 1

vF(F*/NK,F(K*)) vF(F*/NK',F(K'*))
4l 1

Gal(K/F) - Gal(K'/F)
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where the vertical sequences constitute aK, and aKf , respectively. To show
that these maps are compatible with the projective systems is to show the
commutativity of this diagram, which easily reduces to the commutativity of the
lower square. But if we unwind the definitions and identifications, this follows
at once from the explicit description of the Artin map given for local fields in
Part One, statement (iii), of the Artin reciprocity law (Theorem 6-6).

From this analysis we see that the maps aKI indeed induce an isomorphism
a of projective limits

a : 1 mvF(F*/NK,,F(K*)) - lim Gal(K/F) = Gal(F'/F)

where the limit on the left is taken over all finite abelian extensions of F and
the limit on the right over all finite unramified extensions of F. In view of the
remarks immediately following the statement of the lemma, it now suffices to
show that a moreover satisfies the condition p = a o q, where p and c are de-
fined by sequences 6.2 and 6.3 above. This amounts to checking the commuta-
tivity of the diagram

F*INK,,F(K*) -> Gal(K1IF)

F*INK,F(K*) -i Gal(K/F)

where the vertical maps are the canonical projections and the horizontal maps
are the isomorphisms BK1,F and OK,,. But this is no more than an element of the
functoriality of the Artin map. [See Theorem 6-6, Part Two, diagram (iii).]

We now return to the proof of the Kronecker-Weber theorem. By the first
lemma, which holds for arbitrary local F, we have

Gal(F"b/F') - of .

(The compositum of local fields is local by Zorn's Lemma.) Now let F=Qp, and
consider the diagram

F =F F-
P

Fur

F
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where FP is the extension of F obtained by adjoining all roots of unity of order
a power of p. One checks easily that FP. and F' are linearly disjoint over F. (It
suffices to verify this for finite totally ramified and unramified extensions; see
Exercise 2 below.) Thus from Theorem 6-7, part (iii), we may deduce that

Gal(F IF-)aGal( FJ/F)=I m(Z/p"Z)" =_ Z;

Accordingly, the Galois groups of both F. and Fb over F'a are isomorphic to
the p-adic units, and since F'(--F.gF'b, we get an identification of F. with
F'b once we prove the following:

6-11 LEMMA. Any surjective (continuous) homomorphism p:Z Zr is an
isomorphism.

The proof of this lemma is left as an exercise. (One approach is to use that
Zr is isomorphic to FP x ZP and that ZP is Noetherian as a module over Z. )
Thus we have established that every abelian extension of QP is cyclotomic.

Proof of the Kronecker-Weber Theorem: The Global Case

We now consider the global case F= Q. By Artin reciprocity (Theorem 6-6),
every finite abelian extension K/Q determines a canonical open subgroup
U= U(F) of CQ IQ/Q* such that CQIU identifies, via the Artin map, with
Gal(K/Q). For each mz1, let U. denote the open subgroup associated with the
mth cyclotomic extension F,"=Q(e2iri1'"). Since the first part of the reciprocity
law implies in particular that the correspondence between open subgroups and
finite abelian extensions is bijective and inclusion-reversing, we need only
show that U contains U for some m. To do this, we must first understandopen
subgroups of IQ and IQ/Q* somewhat better. The following result is key:

6-12 PROPOSITION. The idele group admits a decomposition as a direct prod-
uct of topological groups

IQ = Q* x R; x Z"

where ix = lim(Z/nZ)" = fl ZP . Hence C. = R+ x Z" .

P

PROOF. Define a map :IQ_3Q* by

fi(x) = sgn(x. )fl I x, IF '
P
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for x=(x,,,x2,If m is a nonzero rational integer with prime
factorization

m=tflpja

j=1

then

4(m)=±FIlpjlpjj
J=1

But the normalized absolute value of each pj with respect to itself is pi-1, and so
in fact, g(m)=m. From this we deduce that fi(x)=x for all nonzero rational x; in
other words, 4 provides a continuous group-theoretic section to the diagonal
embedding Q*-*][Q. Thus we have Finally, it is obvious that

R; x n ZP
P

whence the assertion follows.
We return to the proof that for any finite abelian extension K of F= Q, the

associated open subgroup U of C. contains U. for some mz1. By the proposi-
tion above, any such U can be identified with an open subgroup of R+ x ;k'.
Since the positive reals admit no nontrivial open subgroups, U must be of the
form R; x U, where the latter factor is an open subgroup in V. But an ex-
amination of the local base for the topology of k at the identity-and the Chi-
nese remainder theorem-reveals at once that U must contain some Um, the
unique subgroup of CQ corresponding to

This completes the proof of the Kronecker-Weber theorem.

The Characters of CQ

We conclude this section by describing all of the (continuous) characters of the
idele class group of Q.

6-13 PROPOSITION. Every character of IQ that is trivial on Q* is a product of
the form XI I" , where X is a character of finite order and s is a complex
number.

PROOF. Let weHom,a,,(IQ,C*) with 0Q.=l. We have a topological isomor-
phism
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C* - R; xS'
z = re" -4 (r, a")

which we regard as an identification. Accordingly, we can decompose w as the
product wrw. with w,: IQ -p R' and w,,: IQ -* S'. By the previous proposition,
we may view w as a continuous character of R; x V. Since the second factor is
compact and totally disconnected, its complex characters are of finite order.
(See Chapter 3, Exercise 14. This is not true if, for example, we consider P-adic
characters!) Thus w,j1" =1, while must be of finite order. Now put
X(x)=w (p(x)), where p is the projection of IQ onto V. Since w, is trivial on
both Q* and Z", it factors through the projection

IQ ->R;
X I-4 1X I

and so w,(x)=i(IxI,,) for a continuous homomorphism /1: R; -* R'. Let d/i be
the "differential" of 8-1 that is, di(t)=log,8(e1). Since this map is linear, it must
be equivalent to multiplication by a real numbery. Exponentiating, we get

wr(x) =Ixlp

By a similar argument, we see that any continuous homomorphism y:R; -). S'
must be of the form a -> a" for some tER. Putting all of this together, we get
w=w,wv with

wr(x)=kx1X and

for some y, to R. Hence the assertion of the proposition holds with s=y+it.

REMARK. A character X on IQ that factors through CQ and has finite order must
accordingly be trivial on the R; component of the idele class group and hence
is neither more nor less than a character of V. Moreover, X further factors
through some component (Z/nZ)' of Z". This follows by continuity: for every
rational primep,

X(Z;) = X(Z/pZ)"
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for some nP, where we have implicitly embedded the quotient into the inverse
limit in the obvious way. Hence, since X has finite image,

X(ZX)=X(f] Zp)=X((Z/Pi'...p"'Z)' )

P

for some finite collection of primes pi. Thus the idele class character X induces
a Dirichlet character, which is to say a character of (Z/nZ)" for some positive
n. (Dirichlet characters are customarily extended to all of Z/nZ by assigning
zero to elements not invertible modulo n.) The smallest n that affords such a
factorization is called the conductor of X. Moreover, this association is patently
reversible: given any Dirichlet character, we can certainly pull it back to a
character of the group Z", and hence to a unique idele class character on IQ.
Thus the rational idele class characters of finite order lie in a natural bijective
correspondence with the Dirichlet characters.

Exercises

1. Let F be a global field and Pa prime of F. Show that F(P) exists and is in
fact given as the compositum of all finite, unramifed extensions of K/F in a
fixed algebraic closure F. [Hint: This is an exercise in cardinality. How
many such K are there?]

2. Let F be a local field with finite extensions K and L that are, respectively,
totally ramified and unramified. Show that K and L are linearly disjoint
over F. [Hint: Choose a basis B for L over F such that (i) BcoL and (ii) B
projects onto a basis of the corresponding residue fields. What happens to a
linear dependence relation over oK when reduced modulo the unique prime
of the compositum of K and L? Keep in mind that the residue extension
corresponding to K/F is trivial. Conclude that B remains linearly inde-
pendent over K and hence that K and L are linearly disjoint over F.1

3. Let F be a global field.

(a) Show, for every place u of F and for every positive integer n, that (F*)" is
an open subgroup of F*. [Hint: First show that a subgroup G of F* of fi-
nite index is open if and only if it is closed.]

(b) Show, for every place u of F and for every finite extension L of F, that the
image of L* under the norm map NL,FF is an open subgroup of F*. [Hint:
Note that ifn=[L:F], then (F*)" is a subgroup ofNL/F"(L*).]
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(c) Let K/F be a finite extension. Show, for any place u of F, that the map

fIK * Jy*
'Ju

(xv) H H NK,./F, (xv )

has open image.

(d) Let K/F be a finite extension. show that NK,F(CE) is an open subgroup of
CF. [Hint: First analyze the map NK,F:

4. Let F be a local field, and let BF : CF -* FFb be the Artin map. Recall that
CF is just F* in this local case.

(a) Show that 9F(o ,.) lies in the inertia group

I = Ker (I'Fb - Gal(Fq /Fq) )

where F9 is the residue field of F.

(b) Using Part One, statement (ii), of Theorem 6-6, show that 9F induces an
isomorphism of of with 1.

(c) Show that the natural topology of of is identical to that induced by the
norm subgroups.

5. Let Fbe a global field, and let OF : CF -). r;b be the Artin map.

(a) Show that if F is a number field, then 0, is surjective with kernel equal to
the connected component of the identity of C,,..

(b) (Artin-Tate) Show that if F is a function field over a finite field FY, then ©F
is injective with dense image. Show, moreover, that each automorphism in
the image restricts to an integral power of the Frobenius map x N xq
on Fq .

SPECI,at. NOTE. It is beyond us to compose problems on class field theory and
the relationship of Arlin's reciprocity law to the classical power residue sym-
bols, prime decompositions. etc., equal to the amazing ones found in Algebraic
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Number Theory by Cassels and Frdhlich (1968, pp. 348-364). We encourage
the reader to try all of these wonderful and productive exercises.



7
Tate's Thesis and Applications

It is well known that much information on rational primes is encoded in the
Riemann zeta function c'(s), which is defined by the absolutely convergent se-
ries

1
c(s) = I

1

n21 n

for complex numbers s such that Re(s)>I. Moreover, this function admits an
analytic continuation to the whole s-plane, except for a simple pole at s=1, and
satisfies the functional equation

f(s) _ (l - s)

where

b(s) = ,r-1/21-(2
)S (S)

One establishes this analytic continuation and the functional equation by mak-
ing use of the Mellin transform of the theta function

9(z) = Ze2xin2x

nez

and the well-known identity

Ee-nn2t2 = 1-1 Ee (7.1)
neZ neZ

for t>0.
Euler was the first to study S'(s), but only for s real. He established the Euler

product expansion [in fact valid in the domain Re(s)>1]

(s)=F1
P (I-P 1)
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where p runs over the rational primes. He also realized that the assertion c(s)
approaches infinity as s--*1' is equivalent to the infinitude of primes in Z. One
could greatly generalize the zeta function with the introduction of the Dirichlet
series. Given a multiplicative sequence which is to say that amn aman
whenever m and n are relatively prime, one can form the series

aL(s) _ I ns

which is absolutely convergent in some right half-plane. Two very important
examples are (i) L(s)=EX(n)n-, where X is a Dirichlet character (for instance,
as derived from the Legendre symbol), and (ii) L(s)=EX(a)(Na) S, where a runs
over the nonzero ideals of the ring of integers of a number field K and X is a
character of the ideal class group CIK. (In the latter example, when X=1, the
resulting series is called the Dedekind zeta function of K.) A simultaneous gen-
eralization of these two is the L-function L(s,X) associated with a (continuous)
character X of the idele class group CK of any number field K. A substantial
achievement of E. Hecke was to establish the analytic continuation and the
functional equation of L(s,X) for any idele class character X by an enormously
complicated application of generalized theta functions and the higher analogues
of Eq. 7.1, which we now understand as consequences of the Poisson summa-
tion formula. One thing that Hecke's method could not describe satisfactorily
was the nature of the global constant W(X), the so-called root number, appear-
ing in the functional equation ofL(s,X). Then, circa 1950, following a sugges-
tion of his erstwhile thesis advisor E. Artin, J. Tate made use of Fourier
analysis on adele groups to re-prove both the analytic continuation and the
functional equation of L(s,X). In the process, Tate also established local func-
tional equations along with a factorization of the "abelian" root number, for
which he gave an explicit formula.

The basic idea of Tate was to realize the local factors and the global L-
functions of X as the greatest common divisor of a family of zeta integrals, with
a consequent generalization of Gauss sums. The key is to take a nice topologi-
cal ring R such as QP, R, or A,.-and to consider integrals of the form

Z(X.(0)=5z(-x)c(x)dr

where X is a character of R' and to is a nice function on R. The functional
equation reflects the Fourier duality between (X,q) and where is the
Fourier transform of q, and (pi - I' )' = p l - I'- if p is a unitary character of R".
Note that in the formally analogous case R=Fp, x is of order dividing (p-1),
and every function q on R is a linear combination Ecwyi where y' runs over
the characters of the additive group of R; that is, elements of Hom(Fp,C*). So,
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as suggested above, in this case, z(X 4p) becomes Ec,,B(X y.), where each
g(X {v) is the Gauss sum

a=1

X(a)e2arab(w)/p

for some integer b(ye). When R is a local field or the adele ring of a global
field, the characters yr of R are oscillatory and z(,r yr) will not converge. Here
the zeta integrals make sense only for suitable functions to and may have sin-
gularities; the true analogue of the Gauss sum turns out to be the epsilon factor

q) occurring in the functional equation. When R is the adele ring of a
global field F, the multiplicative characters X of interest will always be trivial
on F* and thus will define idele class characters.

In his thesis, Tate used some ad hoc spaces of functions over local and
global fields. Here we will systematically use the spaces of Schwartz-Bruhat
functions.

We end this chapter with applications, and, in particular, with a proof of the
characterization of idele class characters X via their local components Xp, for p
running over a set of primes of density greater than one-half.

7.1 Local c-Functions

Let F be a local field with absolute value I - I and Haar measure dx. Define

d*x= c. dx
IxI

for some fixed real number c>O, which we always normalize to c=1 for F Ar-
chimedean. Then d*x is a Haar measure on F*. When F is non-Archimedean,
let of denote its ring of integers, P=PF its maximal ideal, -rF the uniformizing
parameter, and F. the corresponding residue field. Recall that F* is the direct
product UFx SF, where OF is the subgroup of F* consisting of elements of unit
absolute value and .SF is the valuation group; that is,

SF= {ye R + : y=Ixl, for some xeF*}.

Then SF equals R; if F is Archimedean and qZ otherwise. (Note that OF is just
the usual group of units in of in the non-Archimedean case.)

Let X(F*)=Hom.1(F*,C*) denote the space of continuous group homo-
morphisms from F* to C*. In this chapter, we refer to elements XeX(F*) as
characters of F*. These have sometimes been called quasi-characters. Char-
acters with codomain given as S' are here distinguished as unitary characters.
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Hence unitary characters of F* are ordinary group characters in the sense of
Chapter 3. (Admittedly, the term has been overworked.) We see that every
XEX(F*) factors into the product

where p is the pullback of a unitary character on UFgF*, uniquely defined by
the restriction of x and s is a complex number. This is because the compact-
ness of U. forces its characters to be unitary, while the characters of SF are all
of the form t N t' for some se C. A straightforward calculation shows that
while s may not be uniquely determined by this factorization-examine the
non-Archimedean case-nonetheless, Re(s), the real part of s, always is. Ac-
cordingly, we call Re(s) the exponent of X.

The object of this section is to introduce the local L -factor L(X) associated
with an arbitrary character x of F* and to realize it as the greatest common
divisor of some local zeta integrals.

We say that ZEX(F*) is unram fled if XI up= 1. If F is non-Archimedean, set

L(X)(I-X(rrF))' ifXisunramified
1 otherwise.

If F= C, then OF is S', and X takes the form

X,.,: re'B H rsei"6

for some uniquely defined seC and neZ. (Recall that the dual group of S' is
the discrete group Z; for arbitrary real n, the map e'9 H e'"a is not continuous.)
We then set

2
114)

nI)

where F(s) is the traditional F-function

F(x) =1 a-`t:-l dt
0

and I'o(s)=2(2,r)-I'(s). Finally, for F=R, in which case U, =(±I), we may
write X=,u I.1, with both p and s uniquely defined. Letting sgn denote the sign
character x H x/IxI , we set
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jrR(S)=n ,'Zr(sl2) ifp=1
L(x)= rit (s+1) ifp=sgn.

Given a character X of F* and a complex number s, the product xl - I' of
course also defines a character, and one customarily writes L(s,X) for L(XI - I').
Moreover, we define the shifted dual of X by

so that

L((xl-I')")=L(1-s,x"1).

Fix a nontrivial additive character yi of F; that is, a nontrivial element of
F = Hom(F, S') , the ordinary dual group of (F,+). One can show that if yr' is
any other additive character on F, then

yr'(x) = v(ax)

for some ac=F. (See Exercise 1 below.) We will denote this character yra. It fol-
lows from this that map a H y., is an isomorphism of topological groups from
the additive group F to the dual group F, and hence we have the following
result, which we shall later extend to adele groups:

7-1 PROposmoN. Any local field F viewed as an additive locally compact
topological group is isomorphic to its (unitary) dual. In fact, given any
nontrivial character {v of F, the mapping

F ->F
a H y/a

is an isomorphism of topological groups. O

In a case such as this of a self-dual, locally compact abelian group, we may
speak of a Haar measure dx as being self-dual if it is equal to its own dual
measure in the sense defined by the Fourier inversion formula (Theorem 3-9).

We will say that a complex-valued function f on F (or F*) is smooth if it is
F- for F Archimedean, and locally constant otherwise; that is, f(x)=f(xo) for
all x sufficiently close to x0. In the Archimedean case, a Schwartz function f on
F is a smooth function that goes to zero rapidly at infinity; more precisely,

p(x)f(x) --> 0
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as x-+oo for all polynomials p(x). A Schwartz-Bruhat function is a Schwartz
function if F is Archimedean, and a smooth function with compact support in
the non-Archimedean case. We let S(F) denote the space of Schwartz-Bruhat
functions; this is clearly a complex vector space.

Given JES(F) and the fixed additive character yr, we may define the Fourier
transform off by

f(y) _ ! f(x)yr(xy) dx .

F

Note that in this chapter it is convenient to drop the traditional conjugation of
the second factor of the integrand; accordingly, this conjugation reappears in
the Fourier inversion formula. While this is well-defined and in fact again lies
in S(F), it nonetheless depends on the choice of the pair (yr,dx). In his thesis,
Tate normalizes his measure to be self-dual relative to yi so that the identity

f(x)= f(-x)

holds. We shall avoid this normalization at least for the local non-Archimedean
case.

Given feS(F) and XEX(F*), we define the associated local zeta function, or
local zeta integral, to be

Z(f, X) = J f(x)X(x) d*x .
F'

The main result of this section is the following:

7-2 THEOREM. Let JES(F) and X = p I Is with p unitary of exponent o-=Re(s).
Then the following statements hold.-

(i) Z(f,X) is absolutely convergent if or is positive.

(ii) If cre(0, 1), there is a functional equation

Z(f,') = r(X,w,dr)Z(f,X)

for some r(x, y,dx) independent off which in fact is meromorphic as
a function of s.

(iii) There exists a factor e(X, V, dr) that lies in C* for all s and satisfies
the relation

Y(X, yr,dx) = s(X,1,,dx)
L(Xv)
L(X)
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According to part (i), Z(f, X") converges for c r< 1, and so part (ii) immedi-
ately yields a mcromorphic continuation of 7_(f,X)=Z(f,u,s) to the whole s-
plane, although initially this function is defined and holomorphic only for
Re(s)>O. Moreover, from parts (i) and (iii) we deduce that

L(X)Z(.f, X") = e(X, V, dx)L(X") Z(f, X)

Since the zeta factor on the left is absolutely convergent to the left of 1 and the
epsilon factor on the right is a nonzero complex number, this implies that the
poles of Z(f,X) are no worse than those of L(X), which is independent off. We
will see later that the "local L-factor" is given as L(X)=Z(fo,X) for some suit-
able,

PROOF. (i) Since X= ui I ` and u is unitary, we need to show that

I(f,a)= c JIf(x)l.IxI°-' dx<co .

F-(O)

First suppose that F is Archimedean. Then, since f is a Schwartz function, the
integrand goes to zero rapidly as x approaches infinity. Also, as x approaches
zero, the behavior of the integral is governed by the fact that IxIa-I is integrable
around zero for any positive a Thus the integral is finite, and we may pass to
the second and final case.

Suppose next that F is non-Archimedean. Since f is then locally constant
with compact support, it factors through a finite quotient group of the form

IF O F /'rF L F

for some integers m and n. Hence by linearity and the translation invariance of
the Haar measure, it suffices to check the assertion for functions f that are
merely the characteristic functions of the various ideals 1rFOF . But from the
decomposition

it follows that

9rF OF - (O) = U Irk DF
k=J

I(f,cr)=c
F- (0)

= JIf(x)H'Hxl°d*x
F-
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= Vol(oF, d*x) Y q-k°

k2j

-j°
= Vol(oF, d*x) q

-°1-q

which is finite for o positive. This completes part (1).

(ii) Choose an auxiliary function heS(F). Tate's key idea is first to prove the
following:

7-3 LEMMA. For all Xwith exponent o-e(0,1), we have

Z(.f,Xv)Z(h,X)

PROOF. Note that these zeta functions are well-defined at least for such or by
part (i). We may write

Z(f,X)Z(h,X')= Jf f(x)h(Y)X(xy')IYI d*xd*Y
F'x F'

Since d*xd*y is the product (Haar) measure on F*xF* and hence invariant
under the translation (x, y) H (x, xy), this double integral becomes

JJ .r(x)h(xY)X(Y-' )I xYI d *x d *Y = J(f,h)(Y)X(Y `)I YI d *y (7.2)
F'xF' F

where

{f, h}(Y) = J f(x)h(xy)I xI d*x
F'

Both steps are justified by Fubini's theorem. The symbol (f,h) in fact has a
critical property:

CLAIM. {f,h}={h,f}.

Indeed, since we have by definition of h that

{f,h}(y)=c JJ f(x)h(z)+V(xyz)dzdx
FxF
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which by Fubini's theorem equals

c f h(z).f(yz)dz = (h, f)(y)
F

and thus the claim is established. The full lemma of course follows at once from
Eq. 7.2. LI

Let us now return to the proof of part (ii) of Theorem 7-2. Fix a function
foeS(F) and put

r(x)=r(x,W,dx)= Z(.fo,Xv}

Z(fo, X)

Then by the preceding lemma, yis independent of the choice of fo, and we have

Z(j,x") = r(x, v,, dx)Z(f, x)

as asserted. As noted above, since Z(fx) is defined for all'- with positive expo-
nent, while Z(f, z') is defined for all x with exponent less than unity, we will
get the requisite meromorphic continuation of Z(f,X) if we can show that y(X)
is meromorphic everywhere. This will follow as a byproduct of the proof of the
final assertion, where we will in fact compute y(X) for a suitable f.

(iii) We shall choose a special function (or family of functions) f for each of the
three cases defined below. The computations are done for the standard measure
dx (to be defined), which is self-dual for a standard choice of 1g. In Exercise 8
below we shall indicate the ensuing changes for an arbitrary pair (dx, 0.

CASE ONE: F=R. We take dx to be the usual Lebesgue measure and choose our
standard character to be

y,(x) = e-2xix

As we have observed previously, every character XnHom.,,t(R*,C*) must be of
the form I Is or sgn I Is, where sgn is the sign character. Suppose first that
x= I ' I-,. Then take

f (x) = e
_ Mx2
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which is clearly in S(R). Then

Z(f,X)= Je-"21x1'd*x =2f e-=2x._1dx.

R' 0

Putting u = >&, the integral reduces to

Z(f,x) = s12 =g-,12 r(s12)
0

since in general,

F(s/2)= Je "u''2-'du.
0

Checking this against the definition of L(X), we have shown that Z(f,X)=L(X)
for all characters X of this form. Next recall that

f(Y)= Je -'e-2,azrdx=f(x).
R

(This classical formula can be proven by contour integration.) Thus we have

Z(f,X")= Jf(x)X'(x)d*x
R-

which equals L(X") by what was just shown. So for X=I I', we have

Y(x) = L(X")
L(X)

and we may put s(X)=s(X V/,

For F real, there still remains the possibility that X=sgn I I°. Under these
circumstances take

f(x)=xe'°2.

Then since sgn(x)=x/Ixl, we find that
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Z(J ,X) = I xe--x2 .lxl Ixl' d*x
11 x

= re- :2Ixl'+' d*x

R'

4:L+-,) r(s + 1)

2

where the last line follows by the first computation. Thus again Z(f,X)=L(X) by
definition. But contour integration also shows that

f(Y) =
iye-"y=

and so

ZU,X )=i f xe" =iL(X').

Thus for X=sgn I I' we have s(X)= s(x yi dr)=i.

CASE Two: F=C. We take the measure on C to be dzdi=2dxdy, which is
twice the ordinary Lebesgue measure and self-dual with respect to our standard
complex character

W(z) = e-2"i(r+i)

Furthermore, we adjust the norm on C to agree with the module; that is, for
purposes of these calculations, set

IzI=zi .

As we have seen above, since C*= R; x S', every character of C* takes the
form

x:.,re,9 H rse"O

for some uniquely defined complex s and integral n. Put

(z)
(2rr)-1 z a 2"'i forn z 0

2"'t fore <0 .



252 7. Tate's Thesis and Applications

One can show that the Fourier transform of f is then given by

J"(z) = (2,r) -1 jl"l1-"(z)

for all n. Note finally that d*z=(2/r)drdO We may then compute for n positive
or zero:

z(j",x,.") = jj"(z)x:."(z)d*z
C.

= 2;
(z"e 2=:(zz).,e;"B(:)d*z

2,r ao
( rr"e2x'2rzi 1 drdO
00 r

-(,+p)a 2 s+f-1
=(2 r) 2

(e 2". (2;rr2)
2 4,rrdr .

J0

The result cries out for the substitution t=2,rr2, whence

2) f Z -IT.{J",X,")= J e t dt
0

=(2,,r)-<f`2)F(s+
.)

2

=L(X,.")

Repeating the calculation for negative n shows that in fact,

Z(.f",X,,") _ (2,r)
(J* 2)I'(s+ 2)

=L(X...")

for all n. Since clearly

it follows from the linearity of this calculation and from the formula for the
Fourier transform of f. given above that

n
Z(J,,x:")=il"1(2,r) 2 F(1-s+I2I)



7.1. Local 4-Functions 253

Consequently,

and

e(XJ.n)=1I"I.

This completes the proof for the complex case.

CASE THREE: F is a non-Archimedean local field. We shall treat only the case
of characteristic zero; see Exercise 5 for positive characteristic. Thus we as-
sume that F is a finite extension QP for a fixed rational prime p. We have a
standard additive character V on QP defined by the following composition:

can. e2al(-)

WP = [QP - QP/ZP - Q/Z -4 S'].

(Exercise 3 gives an explicit construction.) This character induces a standard
additive character yfF on F via the trace map from F to QP. Thus for xnF,

yiF.(x) = V/,(tr(x)) .

Note that WF is clearly trivial on oF.. We know, moreover, that any additive
character of F takes the form

yr(x) = ylF(zx) = y/P(tr(zx))

for some zEF. (Likewise, in positive characteristic we can define a standard
character wF in the local case such that yF. is trivial on the associated ring of
integers; again, see Exercise 3.)

Fix a nontrivial additive character yi and the corresponding self-dual meas-
ure dx. For these calculations, yr need not be the standard character. Define an
integer constant m as follows:

m=inf{rEZ: 4.=l}

where P is the unique prime of F, and here we understand P° to be oF. Note
that in is indeed finite because yr is assumed continuous and takes the value one
at zero. We call P' the conductor of yr. For the trivial character, one custom-
arily takes the conductor to be oF..

For a multiplicative character X:F*-+C* we define the conductor to be P",
where UR I+P" (nzO) is the largest subgroup of this form on which X is triv-
ial. In the case that n is zero, we take U° to be of and say that X is unramified.
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Consider again the trace map tr:F--+Qp, which is nondegenerate; indeed,
the nondegeneracy of the trace map characterizes finite separable extensions.
We can define a subset of of F, called the dual of oF, as follows:

OF ={x EF: Zp}.

One sees at once that of is a Zp-submodule of F, and since F is a local field,
there exists an integer d such that

-dOF=nF OF

Note that by construction, the standard character on F has conductor OF', which
accordingly has exponent -d. We now define D= DF, the different of F, by

D=(OF) 1rp0F.

Thus the different of F is the inverse of the dual of of with respect to the trace
map. (See Appendix B, Section 2, and also the exercises from Chapter 4 for
more information on the different.)

Write x,." for the map

x H I X I' w(x/I x I)

where w is a unitary character of conductor P". Certainly every multiplicative
character of F is of this form, and while the indices do not completely deter-
mine they do suffice to determine the ensuing computations. Now definef
by

.r(x)
(W(x) ifx E P'"-"

Sl
0 otherwise

(7.3)

where again P'" is the conductor of u. We shall now compute Z(f,xs ") sepa-
rately for n equal to zero and for n positive.

CASE n=0. This is a routine calculation. We need only keep in mind that yr is
trivial on its conductor P'", w is trivial everywhere, and P'"-{0} is the disjoint
union of the sets irk of for kzm. Accordingly, we compute
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Z(f,x,.")= Jf(x)x,,"(x)d*x
P

= JIxI'd*x
P°-1o}

= Vol(o', d*x) I q k' (7.4)

=Vol(o',d*x) q
m.

1-q
j

= q-"° Vol(o ,, d*x) L(s, 1)

where of course, L(s, l)=L(% o).

CASE n>0. One sees at once that

Z(f, X,,.) = Y 4-k: J yr(u)w(u)d*u .

k2m-,. V
P

To resolve this expression, we resurrect in modern form one of the classic con-
structions of number theory. For any multiplicative character w : o' --.S' and
additive character A: we define the associated Gauss sum to be

g(w,A) = J w(u)A.(u)d*u
o;

Then

Z(f, x;") =
Y q-A'g(w,

w.k )
k2m-

where again y',(x)= y'(tx).

7-4 LEMMA. Let w and A have conductors P" and P', respectively. Then the
following statements hold:

(i) Ifr<n, then g(a2)O.

(ii) Ifr=n, then Ig(a;1)I2=cVo1(oF,dr)Vol(U",d*x).

(iii) Ifr> n, then Ig(a12)I2=cVol(oF,dx) [Voi(U", d*x)-q-1 Vol(U,_,, d*x)1.
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PROOF. Write U= o' as a disjoint union of cosets modulo U,= 1+P', and note
that A(a(l+,rb))=A(a)A(rc'ab)=A.(a) by definition of the conductor. Thus

g(w, A) = Y A(a)w(a) j w(u) d*u
U/Ur U,

But if r<n, then wlu, is nontrivial, and the indicated integral is zero by the or-
thogonality of the characters. This proves part (i).

Now suppose that rzn. We have

Ig(w, A)I2 = J J w(xy-)A(x - y)d*x d*y
U U

= f w(z)h(z)d*z
U

where

h(z)= JA(y(z-1))d*y=c5A(y(z-1))dy
U U

(The second equality holds because d*x and lyl=1 whenever y lies in
the unit group U.) Thus

h(z) = c j A(y(z -1))dy- cJ A(y(z -1))dy
oy P

c(1 - q ') Vo1(OF, dc) if vp(z -1) Z r
-cq-' Vol(oF,dr) ifvv(z-1)=r-1
0 otherwise.

From this we get

Ig(w,A)IZ=

c(1- q-') Vol(oF, dx) Vol(U, d*x) if 0 = r(= n)

cVol(oF,dx)[Vol(Ur,d*x)-q' jw(z)d*z) if0<r

and parts (ii) and (iii) now follow at once. E3

Resuming the computation of Z(j,Xs.), we deduce from the first part of the
lemma and the equation that precedes it that for n positive,
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Z(f, X,.") = (7.5)

But now we see from part (ii) of the lemma that since the conductor of both w
and have exponent n, the second factor on the right-hand side of this
equation cannot be zero. Thus in this case Z(f,X, is essentially an exponential
function, with neither zeros nor poles-which is well, because by definition
L(X3")=1 forn>0.

Next we make ready for the other half of the calculation, and for this we
need to compute a Fourier transform.

7-5 LEMMA. For the function f defined by Eq. 7.3, the Fourier transform off is
given as Vol(P"-",dx) times the characteristic function of of for n = 0 and
as Vol(Pm -", dr) times the characteristic function of P"-1 for n>0.

PROOF. By definition,

f(y)= f .f(x)w(xy)dx= f w(x(y+l))dx.
F Pw-n

Let n=0. Then since the conductor of y/is P'", by orthogonality f(y) is zero if
y does not he in os.. When y does lie in or., then f (y) = Vol(P-"). Now sup-
pose that n is positive. Then if y is not in P"-1, then vv(y+l)Sn-1, and thus
the product x(y+1) occurring in the integrand does not lie in P'". Accordingly,
wy+i is a nontrivial character of P"-", and by orthogonality, fly) is zero.
When y does lie in P"- 1, then again f (y) = Vol(P""") . O

With this fundamental technical lemma in hand, we are now prepared to
compute the value of Z(f, X;") .

CASE n=0. Using the last lemma and the by now familiar decomposition of
integers of F into the disjoint union of subsets of a given valuation, we find that

Z(f,X;o)=Vol(P",ctx) f X;.o(y)d*y
Op- (o(

= Vol(P", dx)y q-k()-=) f d*y

k20
Dx

= Vol(P", dx) Vol(o,, d *x) 1
1- q-(I-S)

= Vol(P", dx) Vol(oF, d*x) L(X, o) .
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Thus we find from this and Eq. 7.4 that

r(X,,o)=q"" Vol(P",dx) L(X:o)
L(X,.o)

and

e(X,.o, W, dc) = q"" Vol(Pm,dc).

CASE n>O. Again the lemma applies, and we have at once that

Z(f,X,")= Vol(P'"-",dr) !w(u)d*u
PI-I

= Vol(P',dv) 5W(-u)d*u
1+P"

= Vol(Pm ",dx)Vol(1+P",d*x)w(-1)

since the conductor of w is identical to that of its conjugate. The result is a con-
stant, as it should be, since L(X;") =1 for n positive. Accordingly, it follows
from Eq. 7.5 that

E(X,.", v,dr) = r(X,,", W,dr)=
qt,"-"_,Vol(P"'-",dx)Vol(1+P",d*x)w(-1)

g(w, Vs_)

Now one sees easily that

g(w, w(-I)g(w,

and since the conductor of V*,"..,, is P", by combining the formulas above for the
epsilon factor with part (ii) of Lemma 7-4, we get the following compact for-
mula:

w dx) = I q(.-.X,-I)

Here we have also used that Vol(P'"-") = q"-'" - Vol(oF.).

To conclude our analysis, we observe that in all three cases the poles of
Z(J,X) are given by the zeros of the now clearly meromorphic function

y(X, W, dx) = e(X, W, dx)
L(X" )
L(X)
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because the regions of absolute convergence of Z(f,X) and Z(f,Xv) are, re-
spectively, Re(s)>0 and Re(s)<1. Moreover, the zeros of y must coincide with
the poles of L(X), since L(X) and L(X`) have no zeros. This finishes the proof of
Theorem 7-2. D

The Root Number
Let F be a non-Archimedean local field of characteristic zero. From Exercise 7
below we have the following result:

Suppose that yr(x)=v/p(tr(x)), the standard nontrivial character of F.
Then the associated self-dual measure dx on F is the one that satisfies
the relation Vol(oF.,dx)=N(VF)-is=q- , where Z = /rF°. OF is the differ-
ent ofF, as described above.

For a multiplicative character w, one defines the root number W(w) by

W(w) = e(wl I',yr,dx) .

One can show (see Exercise 9 below) that W(w) is of absolute value 1. If the
conductor of w has exponent n and A is any additive character whose con-
ductor also has exponent n, one sees readily that

g(w, R) = cVol(P") Y_m(x)2(x) .
XEU/U"

The sum on the right is the usual Gauss sum. Now suppose that y/ is the
standard character and dx the self-dual measure. Then it follows immedi-
ately from the formula above and the preceding expansion that

W(w)=q-"'2
jw(x)W(x,r

(d."))
. (7.6)

xWU/U"

7.2 The Riemann-Roch Theorem

A basic result of abelian harmonic analysis, both in the classical and adelic
settings, is the Poisson summation formula, which relates the averages over a
lattice of a nice function and its Fourier transform. The Riemann-Roch theorem
provides a nontrivial and valuable extension. In the function field case, it can
be interpreted as giving the "usual" Riemann-Roch theorem for curves over FQ,
whence its name.

We begin with some notation. Let K be a global field. Then define

S(Ax) _ ®' S(Kw )
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where the restricted tensor product of the Schwartz-Bruhat spaces con-
sists of functions of the form

f = O f,, : f,. E `d v and . I., =1, for almost all v .

We shall call such an f an adelic Schwartz-Bruhat function; in this case it
makes sense to write

f(x)=flf,.(x..)
w

for all Let dx denote a Haar measure on A. and define L2(AK) us-
ing this measure. It is easy to see that S(AK) is dense in L2(AK).

Fix a nontrivial (continuous) unitary character yr on AK such that WIK=1.

(See Exercises 4 and 6 for the existence of such characters.) Define the adelic
Fourier transform on any feS(AK) by

f(y) = Jf(x)*v(xy)dx.
AK

Here we normalize dx to be the self-dual measure for V. In Exercise 12 below
we shall deduce that the mapping f H f defines an automorphism of S(AK)
that moreover extends to an isometry of L2(AK).

We are interested in functions on A. that are invariant with respect to
translation by elements of K. One example is W. An obvious approach to find-
ing others is to take an average over K. To elaborate, set

fi(x) = 1 97(y+x)
reK

for q,ES(AK). When this function is convergent for all x, we see that for all
SEK it satisfies the relation

;((5 >q,(y+S+x)=>qp(y' +x) =fi(x)
yeK y'eK

where Y'=y+S. Thus j;(S+x) = ;(x), as desired.

DEFINITION. Let f be complex-valued on AK such that both f and f are nor-
mally convergent; that is, both are absolutely and uniformly convergent on
compact subsets. Then we say that f is admissible.
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7-6 LEMMA. Everyfunction feS(AK) is admissible.

PROOF. Let fES(Ax). We have to show the absolute and uniform convergence of
f over any compact subset C of A. By enlarging C, we may assume without
loss of generality that C takes the form

Cmxfl R""xllo,
VES VQS

where S is a finite set of finite places including those at which fl,,#l,

C. = 1I C.

is a compact set in the product taken over the set S. of infinite places,
and n,, is an integer for all veS. We may enlarge S to contain S and assume
that fv is the characteristic function of F'," for all veS-S,,. Note that such
functions generate S(AK). Define a fractional ideal I in ox by

I= f-1
VES-S

where k,,=inf{n,,,m,,}. Suppose that f(r+z)*O for some zeC and yEK. Then y
lies in P,' for all veS-S,,, and in o,, for all veS. Thus

17(z)1:5 Y, I fm(r+zm)I

where
rer

fm = jlf, ES(K,) and Za
Vesd

But 1 is a discrete subgroup of K. (this follows, for instance, from the discrete-
ness of K in AK), and the Schwartz-Bruhat function f has a uniform absolute
bound over the compact set C,,, with the further property that the value of

decreases rapidly with z in the number field case, while f has
compact, hence finite, support in the function field case. Thus for a number
field, the number of r that occur in any shelf of radius B and thickness AB can
grow at most as a power of B, while I f,, goes to zero faster than any polyno-
mial; for a function field, the number of terms in the summation is finite. The
normal convergence of f follows. Since this extends at once to its Fourier
transform, which also lies in S(Ax), the proof is complete.
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7-7 THEOREM. (Poisson Summation Formula) Let fES(AK). Then f = f ; that
is,

>f(r+x)=Y,f(r+x)
reK reK

for all xEAK.

PROOF. Every K-invariant function q' on AK induces a function, again denoted
ip, on AK/K. For all zeK we set

(z) = Jc'(t)w(tz)dt
Ar/K

where dt is the quotient measure on AK/K induced by dt on AK. This is to say
that dt is characterized by the relation

Jf(t) dt = f (>f(r+t))dt = Jf(t)dt
Ax/K Ax/K reK AK

for all continuous functions f on AK with appropriate convergence properties.
(The integration variable t, as it occurs on the left and in the middle, takes val-
ues in the quotient group AK/K; nonetheless, the indicated expressions are well-
defined.) We shall need two lemmas.

7-8 LEMMA. For everyfunction fin S(AK), we have

fIK=fIK

PROOF. Fix zeK. By definition,

f(z)= Jf(t)w(tz)dt
AK /K

J (>f(r+t))w(tz) dt .
AK/K reK

Since we assume that the unitary character yv has the property w(K=1, we have
that

w(tz) = w((r +t)z)
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for all yEK. Accordingly, by definition of the quotient measure (relative to the
counting measure on K) it follows that

f(z)= j (Ef(r+t)w((y+t)z) )at
AK/K yeK

= j f(t) v(tz)dt
AK

= f(z)

and this completes the proof.

7-9 LEMMA. Let fES(AK). Then for every xEK, we have

f(x)=
y.K

PROOF. By the previous lemma, f IK = 71K on K. Hence the summation

Y f(r)w(rx)
rEK

is normally convergent. In particular,

If(r)I<
rEK

13

and so the Fourier inversion formula applies. (Since the Pontryagin dual of the
quotient AK/K is K itself under the discrete topology, the indicated summations
correspond to the appropriate integrals.) The assertion of the lemma follows.

We are now prepared to deduce the Poisson summation formula. Indeed, if
we put x=0 into the second lemma and then apply the first, we have on the one
hand that

f(°) = f--(Y)f(r) .

yeK reK

But on the other hand, by definition,



264 7. Tate's Thesis and Applications

f(o)= f(y)
yeK

and this suffices.

It is of interest in number theory to understand the average

f(rx)
yeK

for an idele x. [Note that the absolute convergence of this summation follows
from that of Tf(y), which is implicit in the admissibility off ] One cannot get
this information from the previous theorem, and one needs instead the follow-
ing stronger result.

7-10 THEOREM. (Riemann-Roch) Let x be an idele of K and let f be an element
of S(AK). Then

Y_ f(rx)= I Y_ .i`(rx-')
yeK 1 x I yEK

PROOF. Fix xEAK, and for arbitrary YEA., define h(y)=f(yx). Clearly,
hES(AK). Thus, by the Poisson summation formula,

>h(r)= Ih(r)
yeK rEX

But

h(r)= j f(yx)W(ry)dy
AK

=II f f(y)W(ryx-')dy

=lzlf(rx')

The theorem now follows immediately.

The Riemann-Roch Theorem for Algebraic Curves

When K is a function field in one variable over Fq, the previous theorem can be
interpreted to yield the perhaps more familiar Riemann-Roch theorem of alge-
braic geometry. We shall explain this after some preliminaries.
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A divisor on K is a formal linear combination

D=En,,v
v

where the sum runs over all places v of K and each coefficient n, is an integer
that is zero for almost all v. The divisors on K naturally form an additive group,
denoted Div(K). The degree of a divisor D=Env is defined by

deg(D) = En,, deg(v)
V

where deg(v) is the degree (over F9) of the residue field Fqy at v. Thus

q, = N(v) = gdJV)

Since deg(D+D')=deg(D)+deg(D'), we see that the degree map defines a
homomorphism deg:Div(K)-+Z, the kernel of which is denoted Div°(K), the
group of divisors of degree zero.

Given any feK*, we can associate a divisor, called a principal divisor, by
setting

div(f) = Z v(f )v
v

where v(1) of course denotes the valuation off at v. [In geometry, it is custom-
ary to write ord,(f) rather than v(f).1 Since v(f) can be nonzero only at a finite
number of places, div(f) is a bona fide divisor. Moreover, it is obvious that
div(fg)=div(f)+div(g). The quotient Div(K)/div(K*) is denoted Pic(K) and
called the Picard group of K. Elements of Pic(K) are called divisor classes.

Recall that Artin's product formula says that for all feK*,

If IA,, =F11A=1

But

If Iv = qv v(f) = q--(f)des(v)

for all v, so

deg(div(f )) _ E v(f) deg(v) = 0 .

Thus we see that dv(K*)cDiv°(K).
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Now suppose that div(f)=div(g) for f and g in K*. Then div(f/g)=0, and
the quotient a f/g is a unit of o for all v. From Chapter 5, Exercise 5, we
know that any such a must lie in FQ*. To summarize, we have the following
exact sequence of groups:

div
1 Fq -* K* -a Div°(K) -* Pic°(K) -+ 0

where Pic°(K), the Picard group of degree zero, of course denotes the quotient
DivO(K)/div(K*). Clearly, deg induces a homomorphism, again denoted deg, on
Pic(K), with kernel Pic°(K). Elements of Pic°(K) are called divisor classes of
degree zero.

We next introduce the partial ordering on Div(K) defined by

D=>n,,vzD'=Yn;v if Vv.
V

With this, to each divisor D one may associate the following linear system of D:

L(D) _ {O}v{feK*:div(f)z-D} .

Since div(f) has degree zero for feK*, we have at once that L(O)=Fq. One may
further deduce from the Artin product formula that L(D)=(0) if deg(D)<0.

Note that L(D) is clearly closed under scalar multiplication from Fa. More-
over, it is closed under addition by the ultrametric inequality:

v(f+g) a inf{v(f),v(g)} .

Hence L(D) is in fact a vector space over F4, and one writes 1(D) for the dimen-
sion of this space. One sees immediately from our previous observations that
l(0)=l and l(D)=O if deg(D)<O. It is not a priori clear, however, that in gen-
eral this number is finite.

7-11 PROPOSITION. For any divisor D, the number 1(D) is finite.

PROOF. The first step is to extend the divisor map to ideles. Accordingly, we
define

div : I, -+ Div(K)
(x,,) H v(x,)v.

It is easy to see that this extended map is surjective. Moreover, we have the
following set of equalities:
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Ker(div) = fl ox = Ix.e IK/K*ix.o = Pic(K)

div(IK) = Div°(K) IK/K*IK.0 = Pic°(K)

Next let be defined by requiring that each component func-
tionJ, be the characteristic function on o,,. Given any divisor D=Envv, we may
associate an idele x(D) such that v(x(D),,)=n for all v. Then, by construction,
we have for all reK* that

f (rx(D)) =
1 if v(yx(D)r) z 0 Vv
0 otherwise

In other words, for nonzero y, we have that f(yx(D)) is nonzero if and only if
reL(D). Note also that f(0)=1.

Since fES(AK), j is admissible, as defined previously, and accordingly, the
following sum converges:

f (yx(D))
yeS

But from our analysis above of f(rx(D)) as a function of y, we see that this sum
is exactly Card(L(D))=qKD). Hence l(D) is finite, as claimed.

7-12 THEOREM. (Riemann-Roch, Geometric Form) Let K be a function field in
one variable over F9. Then there exists an integer g20 (called the genus
of K) and a divisor xof degree 2g-2 (called the canonical divisor of K),
such that

1(D) -1(x-D) = deg(D) - g + I

for every divisor D.

Before deducing this from the earlier, harmonic analysis version, of the Ri-
emann-Roch theorem, let us note two important consequences.

7-13 COROLLARY. If deg(D)>2g-2, then l(D)=deg(D)-g+1. In particular, if
K is a rational function field (that is, if K has genus zero), then for any
pair of distinct places v and v ; there exists a functlon fEK* with a simple
zero at v and a simple pole at V.

PROOF. Since deg(D)>2g-2=deg(90, deg(x--D)<0, and, by an earlier obser-
vation, l(x--D)=0. So by the Riemann-Roch formula, l(D)=deg(D)-g+1. If,
moreover, g=O and v and v' are distinct places, consider the divisor D=v-v'.
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We may assume that deg(v)zdeg(v'), whence deg(D)Z0 and so 1(D)z1. Thus by
definition there exists a nonzerofEL(D) that satisfies the assertion.

7-14 COROLLARY. For the canonical divisor 'we have that /(x) =g.

PROOF. This follows at once from the special case D=O, since clearly,
deg(0)=0, and as we have seen, 1(0)=1.

PROOF OF THEOREM. Pick any nontrivial character yr:AK-*S' that is trivial on
K. (For instance, the standard character; see Exercise 6.) At each place v, let
the conductor of yr be P" . Since m is zero for almost all v, we get a divisor
by setting

One knows also that if ;v' is another nontrivial character of AK that is trivial on
K, then there exists such that yr'(x)= VI(ax) for all xeAK. Moreover, one
checks easily that if the divisor x' is constructed relative to yr', then

x'= x+ div(a)

and thus x'is uniquely determined modulo principal divisors.
Now let f=®,J ES(AK) be defined as above, so that again each component

function fv is the characteristic function on o, We have already seen that for
any divisor D=En,,v,

q,(D) =;.r(yx(D))
rex

with x(D) defined as above. This is one side of the identity given in the earlier
version of the Riemann-Roch theorem (Theorem 7-10). Note also that

t = q^r = qd (D)
Ix(D)I

V

So in light of the previous version, it remains only to show that

D) s+i.f (Yx(D)-') = q'(-"'
reK

(7.7)

Recall that the Fourier transform is taken relative to the self-dual measure dx
on AK defined by yi It follows from Exercise 7 below that for all v,
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N(P-- )1/2 - the characteristic function of PI

Note that

so that

N(Pny )112 = qv ny/2 = q+dcg(v)ny/2
V

flN(Pm,.)I/2=q deg(_"Y2=ql-Y
v

Thus we have for all 7EK* that

1 q1-8 if v(r) t m + n
I(Yx(D) ) =

0 otherwise

and Eq. 7.7 follows at once by definition of 1(x--D).
Note that the formula in the theorem shows at once that g must be an inte-

ger, which, as we have seen above, must be l(x). Thus g is indeed a nonnega-
tive integer, as asserted.

REMARK. One learns in basic algebraic geometry that given any function field K
over Fq as above, there is a smooth projective curve X defined over Fq such that
K identifies with the field of rational functions on X. Thus the Riemann-Roch
theorem provides valuable geometric insight into X.

7.3 The Global Functional Equation

Let K again be a global field with integers oK and different D=DK. Note that the
different is defined just as in the local case, but here it is not generated by a
power of a uniformizing parameter. (See Appendix B, Section 2.) The local
versions of the integers and different at a finite prime P will be denoted o,, and
7 , and in fact, the global different is determined by these local versions.

We shall now construct a standard character for the adele group AK. At each
place v of K, let yr,, denote the standard character and dx the associated self-
dual measure. We recall from Section 7.1 that for a number field K, these char-
acters are given explicitly by

1 , (tr(x)) v finite, v1p
IPv(x) = e-2nitr(x) v infinite

where tr denotes the trace map from K,, to Q,,, and yrp is the familiar composi-
tion Q -+Qp/Zp-*Q/Z-4S1. (Refer to Exercises 3 and 5 for the function field
case.) IOw set
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WK(x) _ fl

for all adeles x=(x,). Then WK is well-defined, because yr,,=1 on o,, for almost
all v, and hence WK is a nontrivial character. Moreover, if F denotes either Q or
Fq(t) depending upon whether we are dealing with a number field or a function
field, the standard character on Ax clearly factors through the trace map from
AK to A. defined by

tr:AK -- AF

(xv)v H (z
VIM

where u ranges over all of the places of F. This is to say that

WK(x) = y', tr(x))

for all adeles x of K.
As in the local case, we have a continuous homomorphism

Ax -t AK
YHWK.y

where V y(x)=VK(yx) and the product yx is taken componentwise. One shows
easily that the given map is an isomorphism of topological groups. We record
this and related elementary facts about the characters of the adele group in the
following result, the proof of which we leave as an exercise.

7-15 PROposmoN. Let K be a global field with standard character
group AK. Then the following four assertions hold:

Wx on the

(i) The group A. is self-dual by the isomorphism y 1-) Wxy .

(ii) Wx is trivial on K and hence induces a character on Ax/K.

(iii) The Pontryagin dual of AK/K (respectively, K) may be naturally
identified with K (respectively, AK/K). Explicitly, this can be real-
ized by the map that sends xEK to yip; E(AKIK)^. Hence by the self-
duality of the full adele group, the translation WK.y of Wx is trivial
on K if and only if yeK.

(iv) If , is any character of AK/K, then WY has conductor o for almost
all places v of K.

Let dx denote the Haar measure on Ax defined by the product measure fI dr,,
on 11,,K,,. One knows from Section 5.1 that this measure is self-dual with re-
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spect to our standard character 4(/K, and one can show easily that dx moreover
satisfies the relation

d(ax) = I aI dx

for all ideles aeIK=Aut(AK).

The Global Zeta Function

Let X denote any C*-valued character of IK that is trivial on K*; in other
words, an idele-class character. For fES(AK), we define the global zeta function

Z(f,x)= jf(x)x(x)d*x
tK

A word about the normalization of d*x, which again is induced by the product
measure fl,d*x on II,,K,,*: for each non-Archimedean place v, it will be con-
venient for us to take the corresponding constant factor c=c (see Section 7.1)
such that

d*x = q dx,
qY - l I x.1

We do this so that o' will get measure (N(D))-1/2=q_d,12. Note again that dv=0

for almost all v.
One shows easily that Z(f,X) is normally convergent in Q=Re(s) > 1, where

X has factorization pl - I' with p unitary, and that it defines a holomorphic
function there. Define r to be X-'I - I, as in the local case.

7-16 THEOREM. (Meromorphic Continuation and Functional Equation) Z(f X)
extends to a meromorphic function of s and satisfies the functional equa-
tion

Z(f, X) = Z(f, X') .

The extended function Z(f,X) is in fact holomorphic everywhere except
when p=I , rER, in which case it has simple poles at s=ir and
s=1 +i r with corresponding residues given by

-Vol(CK1 )f(0) and Vo1(CK)f(0)

respectively.
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Here, as in Chapter 5, the symbol CK denotes the quotient IK/K*, which is the
compact part of the idele class group IK/K* . The volume of C'K is taken rela-
tive to the quotient measure on CK defined by d*x and the counting measure on
K*. The computation of Vol(C'K) will be done in Section 7.5.

REMARK. While we implicitly state and prove this result with respect to the
standard character-which is all we shall need for the next section-it remains
true for an arbitrary adele class character cv with the proviso that the associated
measure remains self-dual to V.

PROOF. If K is a number field, we may write, for any X of exponent greater than
one,

Z(f,X)= JZ,(f,X)!dt
0

t

where

Z,(f, X) = J f (tx)X(tx) d*x
1x

(llcre the product ix takes place in a fixed infinite component of x.) For K a
function field, we have

Z(f,x)= EZ,(f,x)
Tao=0

with Z,(f, X) as above. We will establish a functional equation for Z,(f X) by
using the Riemann-Roch theorem. To be precise, we assert the following:

7-17 PROPOSITION. The function Z,(f,X) satisfies the relation

Z,(f,X)=Z,_1(f,X')+f(0) f X"(x/t)d*x - f(0)JX(tx)d*x
C,r CX

PROOF. Since C'K is the quotient IK/K*, we have

Z,(f,X)= J (Y f(atx))X(tx)d*x = JX(tx)d*x > f(atx)
C,r

ac K' CK oEK'

where the summation should now be regarded as the second factor of an iter-
ated integral. We have also used the hypothesis that X=1 on K*.
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To apply the Riemann-Roch theorem, we need to sum over K, not K*. This
leads us to consider the following expression:

Z,(f,x)+f(o) f x(tx)d*x
C'

which equals

f x(tx)d*x I f(atx).
Ck aEK

Via the Riemann-Roch theorem, we may replace the right-hand factor by

Thus

Z1(f,x)+f(o) f x(tx)d*x = f xtx) d*x J(at 'x')
Ck Ck aeK

= f It-'xcX(tx-')d*x EJ(at-'x)
Ck oEK

where in the second line we have replaced x by x-'. But one shows easily that
this equals

Zr i(f,x")+f(O) f xv(xIt)d*x
CK'

since x'=x' I.1. The formula now follows.

We return to the proof of Theorem 7-16. Suppose that K is a number field.
Then we may write

Z(f,x)= f Z,(J,x) f dr+ fz,(J,x)l dt.
0

The second integral is simply

f f(x)x(x)d*x
{xE1 K : {x21 }

(7.8)

which converges normally for all s. Indeed, the convergence is better for small
or, and since we know it converges for a>1, it must do so everywhere. But also
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f z,(f,X)1dt=IZrXv)Idt+E (7.9)

where the correction term is given from the previous proposition by

E= f I

f(o)Xv(t_') f X'(x)d*x - f(o)x(t) f X(x)d*x I I dt.
Cic C1 J

Via the substitution of t-' fort, we find that

f Zr (f,X") L dt = f Z:(f,Xv) I dt
0

and hence this integral is convergent for all o by the argument above. It re-
mains to analyze E. By the orthogonality of the characters, however, both

f X(x)d*x and f XV(x)d*x
cx' c'x

are zero if X is nontrivial on IK; hence E is likewise zero in this case. When
Z=pf IJ is trivial on IK, we know that in fact X=I JS', where s'=s-ir, for some
real r, and in this case,

E f [j(o)t''-' Vol(Cx)- f(0)td Vol(CK)] I dt

= Vol(d ho)
i
- f(O)

Since E is a rational function, we get the desired meromorphic continuation of
Z(f,,X) to the whole s-plane. We have also shown incidentally that it is holo-
morphic everywhere if px I r' , and that when p= I. rr ' its only poles are at
s=ir and s=1 +i r, with respective residues -Vol(C,r) f(0) and Vol(C,r) f (0).

Finally, observe from Eqs. 7.8 and 7.9 that in fact the global zeta function
may be expressed as
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1 ,

Z(f,x) = J Z,(.f,x) i dt+ j Z,(f,x")' dt + E(f, x)

= f f f(tx)x(tx)d*x 1 dt +f j f(tx)x"(tx)d*x 1 dt + E(f,x)
1IX t SIX r

Moreover, since

f(x) = f(-x) and ((x)")" = x

it follows also that

Z(f,x )= JZ,(f,xv) dt+5Z,(f,x)- dt + E(f,x")

f (tx)x" (tx)d*xdt + j j f(-tx)x(tx)d*x 1 dt + E(f,x").
1 IX t I IX t

But from our explicit formula above we see at once that E is invariant under the
transformation (f, x) -4 (f, z'), and we may replace x(tx) by x(-tx) every-
where because x is an idele-class character and hence indifferent to sign. Thus
for K a number field we obtain the functional equation

Z(f, Z) = Z(f, x" )

as claimed.
The function field case remains. Here, by a similar argument, we get that

Z(f,x)=Z,(f,x)+I Z,. (f, z) +17-,. (f, Z') + E'
>O >o

where {t} is a set of representatives of Ix modulo IK with I and

E' = E [f(O)Z'(t_,,) Jxv(x)d*x -f(0)x(IA) Jz(x)d*x
n<0

cK cat

Using the preceding proposition in the case n=0, we can write
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Z1(f,X)= 1 [Z,(f,X)+Z.(f,x"))+f(0) JX"(x)d*x -f(°) f x(x)d x .

2 2 ck 2 ck

Putting a"=1/2 for n=0 or a,,=1 if nZ1, we then find that

Z(f,x)=Y, e"[z,"(f,x)+z,"(f,x + E
R2!0

where

E=
0 ifX*I.1'

n20

But E"zo q' ' =1/(1-q °), so when X= I.13 we have that

E = -.f(0)2f(0)j
.

The assertions of the theorem now follow as in the number field case.

7.4 Hecke L-Functions

In this section we introduce and analyze global L-functions. While we state and
prove the results only for number fields, even stronger results hold for function
fields. In particular, in positive characteristic these L-functions turn out to be
rational functions in q,', where q is the order of the corresponding field of con-
stants. (See Exercise 22 below.)

Let X be an idele class character of Ix for a number field K. As previously,
we may write X as pi -1', where u is unitary and seC. Again, q the real part s,
is called the exponent of X. At each place v of K, we define a local character

K;, -* C
t H X(l,...,l,t,1,...,1)

with component

Then X(y)=r z(y). Note that this makes sense because the restriction of X,, is
trivial on the units of o for almost all v. (See Lemma 5-2.) Recall from Sec-
tion 7.1 that we define the local L-factors at finite places v by
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ifXyised
L(X")

= 1 if X is ramified.

We may now define the (global) L -function of X in terms of its local versions
by the product expansion

L(X)=11L(X,.)
V

wherever this is convergent.

7-18 LEMMA. L(X) is absolutely convergent and nonzero whenever the expo-
nent ofX is greater than 1.

PROOF. Write X as XoI-1°, with Q=Re(s). With respect to convergence issues,
we may ignore the finite set of places v where X. is ramified: since z is trivial
on the units of u. for almost all v, it is likewise unramified for almost all v.
Then

F I L(XV)I =1 j 11-

and we must show that its logarithm converges for c r> 1. Since

log(fl I L(Xy )I) _ E l o g ( -
1- Xo., ( )9.'I )

Re(Z E
Xo.V(hV)mgv )

Vm>o m

it suffices to establish the convergence of

We will do this for the number field case, leaving the function field case for an
exercise. Letting p vary over the set of positive rational primes, write

r -,teaF=yy
v VIr.U>O m
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The number of v lying over any given prime p is bounded by n = [K: Q], and for
each such v, the number q is a positive integral power of p. Therefore,

E5nYYp
-.a

=nlog(JJ 1-p °)p w>O m

But np(l-pL) is the classical Euler product, which sums to E,atn-` and is ab-
solutely convergent if t>1.

DEFINm0N. Let x be an idele class character of Ix. Then for complex s define
the Hecke L -function L(s,x) by

It is also convenient to define finite and infinite versions of the Hecke L-
function:

L(s,xf) = JJL(s,x,)
V finite

L(s, Z.) = f L(s, x.)
v inrmite

The product of these two clearly gives L(s,x). Note, in particular, that when
x=l, we have

L(s,If) _ JJ 1

where P is the prime associated with the finite place v and N is the absolute
norm map. In particular, if K= Q, we obtain the Riemann zeta function

S(s)
P1-p'

in (Re(s)>1). For arbitrary K, L(s, lf) is called the Dedekind zeta function of K,
and denoted SK(s). Just as in the rational case, for Re(s) >I we have

1

.;K (s) =
e

N(a),

where a runs over the set of nonzero ideals of ox.
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REMARKS. (i) Hecke actually considered a slightly different definition involving
a generalized ideal class character; we explore this subsequently in Exercise 13.
(ii) What we here denote L(s, Z) is sometimes written as A(s,x); the notation

classically denotes that which we have called L(s,X.).

7-19 THEOREM. Let x be a unitary idele class character. Then L(s,X), which is
a priori defined and holomorphic in (Re(s)>1), admits a meromorphic
continuation to the whole s -plane, and satisfies the functional equation

L(1- s, XV) = e(s, X)L(s, X)

where

e(s,x)=fle(xJ I') EC* .

Moreover, this meromorphic continuation is entire unless X= ieR,
in which case there exist poles at s = i z and s =1 +1 r with respective resi-
dues - Vol(C') and IN(4)1-112 Vol(CK).

PROOF. First we claim that the asserted functional equation of L(s,X) will fol-
low once we show that it is meromorphic everywhere. Indeed, if we choose a
factorizablef=®,,fES(AK), we will have (by Section 5.1) that with respect to
any adele class character on Ax,

z(hx")=rizcl ,X: )

Specializing to the standard character W. and appealing to the global functional
equation of Section 7.3 and the local one of Section 7.1, we obtain

r, E(s,Xr)L(1-s,Xv) = E(s,X)L(1-s,Xv)
V L(s, Z,) L(s, X)

Hence we shall have our functional equation and meromorphic continuation,
provided that L(s,X) is indeed meromorphic.

That L(s,X) is meromorphic in turn follows at once from Theorem 7-16 if we
can establish the existence of a function f=®,, j,ES(AK) with the property that

Z(.fx1 ' I') = h(s,x)L(s,X) (7.10)

for a nonzero meromorphic function h. But we can see now that for every place
v, we have already, in the proof of Theorem 7-2, constructed a local function

such that
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where h, is entire and everywhere nonzero for all v and, in fact, equal to I for
almost all v. Indeed, in the real and complex cases the given Schwartz-Bruhat
functions f, yield Z(./v,Xvl. I`)=L(s,X) precisely. In the p-adic case, the local
standard characters are given by

yp(tr(x))

where v lies above the rational prime p. If we again let m denote the exponent
of the conductor of y/v, which is zero for almost all v, then our previous con-
struction takes the form

ifx e P""-"
jv(x) = 0 otherwise

where nv is the exponent of the conductor of X,,. From our prior calculations
(see Eqs. 7-4 and 7-5) and the normalization of d*x,, to give volume q- on the
local unit groups, it follows that

q-m,.(=-vz)L(s, Xv) ifn =0
Z(ff,XVI.1")

9 )L(s,Xv) otherwise.

Moreover, since nv is zero for almost all v, we see that jv is the characteristic
function of ov for almost all v, and thus f=®vff, does indeed define a function f
in S(AK) such that Z(.JXl I3) has the requisite property of Eq. 7.10.

Finally, for X=1- I-" the expressions given for the residues are derived as
follows from the corresponding residue formulas of Theorem 7-16. Locally we
have everywhere that f,(0)=1, which establishes the residue at s=0. To com-
pute the residue at s=1, we can, via the global functional equation, simply
compute the residue at s=0 for the Fourier transform of fv. But in this case,
nv 0 for all v, so by construction fv is the characteristic function of P'", because
this is precisely the conductor of y/ . It then follows from Exercise 7 below that

jv(0) =I

Thus taking the product of these over all v completes the proof. 0
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7.5 The Volume of CK and the Regulator

Let K again be a global field. Since the residue of OK(s) at s=1 involves the vol-
ume of CK = IK /K*, it is our next order of business to compute it. First recall
the following definitions and results from Chapter 5.

For any finite set S of places of K, let us now define the S-ideles of K by

IK.S VS)

with norm-one version given by

IiK.s
= IK r-1 'K,$

Observe that here we do not require that S contain the infinite places of K, and
thus this is a slight, but compatible, extension of the definition given previously
in Chapter 5. Note also that IK.O = IK m is compact.

We shall prepare ourselves for the eventual volume calculation with three
preliminary steps.

STEP ONE. Assume henceforth that S is nonempty. Then we have the short ex-
act sequence

1+IKS'K*/K*=Ixs/K*nIKS+Cx=IK/K*_+Cxs=IK/K*'IK *1

where CKs has finite order, say, hs. (We proved this in Section 5.3 only for the
case that S contains S,,, but the present extension is trivial.) Consequently,

Vol(C'' ) = hs Vol(IK s /K*n IK,s) (7.11)

and our calculation is reduced to finding the volume of the second factor.

STEP Two. Assume henceforth that K is a number field. Take S=S,, the set of
Archimedean places of K, and write Card(S) as the sum rl + r2, where rl is the
number of real embeddings into a fixed algebraic closure of Q, and r2 is the
number of nonconjugate complex embeddings. Define the logarithmic map as
follows:

A : Ir.s< -+ Rs° = R'j"

(X) H (log IXV1y )VESm
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This is clearly a continuous homomorphism. Next define a hyperplane H in
R"' by the equation

it,, +2Et,,=0
v real v complex

7-20 LEMMA. The logarithmic map has the following properties:

(i) Im(A) = H.

(ii) Ker(A) = Iir.ra(= IK.e)

PROOF. That the image of A lies in H follows from two facts. First, that

fl I Xvly =1 Vx = (xv) E 1I .S.
vES,,

and second, that the normalized absolute value I.1v coincides with the usual
absolute value for v real and the square of the usual absolute value for v com-
plex. Moreover, given t=(tv)EH, we can consider the idele with x, 1 for
v finite and xveKK for of ordinary absolute value tv. Then by construction
A(x)=t, and this proves part (i). Since lxjv=1 for all v for any xEIKO, it is obvi-
ous that Ix OcKer(A). Now suppose conversely that x E IK belongs to Ker(A).
Then loglxjv 0, i.e., l xjv 1, for all veS,,,. Thus X E IK.O(= IK,e) .

The restriction of A to K* n IK sq is called the regulator map and denoted
reg(x). Recall that in fact,

oK = K*n IK.sb

From the lemma above, we see that

Ker(reg) = IK., n K* = pK

where pK is the set of roots of unity in K. Put

wK = Card(pK) and L = reg(oK) .

Then L is a discrete subgroup of H, which in turn is isomorphic to R' where
r=rl+r2 1. Also, since IK/K* is compact, HIL is likewise compact. Thus L is a
full lattice in H.
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STEP THREE. As our final preliminary for the calculation at hand, note that
clearly, I1 .. admits the product decomposition

flu,
v reel v complex v finite

where U denotes the subset of elements of K,, of absolute value one. We can
thus establish a Haar measure on IK H given by the product measure whose
factors are defined as follows:

For v real, this is the counting measure on U,=(±I).
For v complex, this is the ordinary Lebesgue measure on S.
For v finite, this is the normalized measure d*x defined previously.

Thus

2 for v real

2fr for v complex
N(4)-''2 for v finite

where D,, is the different for finite v. Since one knows from Appendix B, Sec-
tion 2, that the absolute value of the discriminant dK (see also Chapter 4, Exer-
cises 13 and 14) is given by

I dKI = f N(A)
finite

we get, relative to this measure,

Vol(II 0) = 2'1(2n)'=I dK I-12 (7.12)

We may now combine the results of our three preliminary steps to obtain the
following marvelous formula:

7-21 THEOREM. Let K be a number field. Then we have

- Res1 I SK (s) = Vol(CK) =
2'1(2,r)' hK RK

WK 1dKI

where hK is the class number of K and RK is the regulator of K; that is,
the volume of HIL relative to the quotient measure induced by the map
.7* defined below.
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PROOF. From step two we have at once the commutative diagram below, all of
whose rows and columns are exact:

1 1 0

4,

1 -3 UK og
reg

L - 0
4,

I

W

1 I
A

1 3 IK.m IK.s --3 H -* 0

4,

1 -> IK.glfUK -3 HIL - 0
4,

0

The formula now follows at once from Eqs. 11 and 12. Note that RK is computed
with respect to the quotient measure induced (ultimately) by the measure on
I;r.e established in step three and our standard measure on the idele group.

REMARK. Let T (=PK) denote the torsion subgroup of oK , and define L' by

L' _ (oxIT) ® Z

which we regard as a free Z-module. Define a homomorphism

reg': L' -F R'1"2
(u,m) N reg(u)+mJ

where is the vector with 8,=1 (respectively, 5,=2) for v real
(respectively, for v complex). Then it follows from the remarks above that reg'
is an embedding whose image is a full lattice in R'1+'2. This induces an isomor-
phism

(reg'®R):L'®RR"

One can check that RK is none other than the absolute value of the determinant
of this map relative to integral bases drawn from L' on the left and Z'1"2 on the
right. There are many situations in arithmetic and algebraic geometry where
two lattices like this are sitting in a Euclidean space and the determinant of an
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associated map from one to the other, as above, gives special values (or resi-
dues) of more general zeta functions. This is an active area of research.

We will conclude this section with the function-field case. Here we fix any
place v° of K and take S= (v°). As previously, let Div°(K) denote the group of
divisors of degree zero on K; that is, finite formal sums D of the form

D=ln,,v (n,,eZ)
V

with deg(D) 0. (See Section 7.2.) Again we have the Picard
group of degree zero given by the quotient

Pic°(K) = Div°(K)/K*

where each fEK* defines the divisor Recall that in forming
this quotient, we are using implicitly that Z. v(J)deg(v)=0, which is to say that
f has as many zeros as poles, when counted with multiplicities. Indeed, this is
true of any element x of adelic norm one because by definition, II,,I x,, IV 1.

We may once again extend the divisor map from K* to a larger structure:

div:IK S -*Div°(K)
x H >v(x,,)v .

V

Since x is a local unit at almost all v, we know that v(x,,) is zero almost every-
where, and so the formal sum on the right has at most finitely many nonzero
components. Moreover, arguing as above, E,,v(J)deg(v)=0 because xe IK.S,
and thus the extended map is indeed well-defined. Finally, suppose that
xeKer(div). Then v(x,,)=0 for all v, and therefore xEIKO n,, U,.

From the equality IK 0 n K* = F4 , we get the short exact sequence

1->IK0/Fq*--* IAS/K*->Pic°(K)--*O

Thus Pic°(K) is compact and discrete, and therefore finite. With these consid-
erations in mind, we have the following function-field-theoretic version of our
previous theorem:

7-22 THEOREM. Let K be a function field over F9. Then

1
-Res,, 4K (s) = Vol(CK) =

1089
Cand(Pic°(K)) .
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7.6 Dirichlet's Class Number Formula

In this section, we shall specialize our results to the base field Q, prove a fac-
torization formula, and then recover the class number formula of Dirichlet for
cyclotomic fields.

Recall from Section 6.5 that there is a natural identification of idele class
characters x of Q of finite order and the Dirichlet characters %D. By abuse of
notation, we will write x to denote either.

7-23 PROPosrrION. Fix mz 1, and consider F.= Q(e2iriIm). Then we have

(s) _ fl L(s, x) (7.13)

where the product runs over all the Dirichlet characters x of conductor
mx dividing m.

PROOF. It suffices to show that for each rational prime p the corresponding lo-
cal factors are the same. In other words, we have to show that for t=p-°,

fl(1-tf)=fl(1-x(p)t) (7.14)
VIP x

where jV-- [Fm QP]. Since Fm is Galois over Q, jv f is the same for each of the
g places v lying above p, and likewise, the corresponding ramification indices
have a common value, which we denote e. We know further that

q(m) = [Fm: Q] = erg

Hence the left-hand side of Eq. 7.14 may be rewritten and factored as follows:

F1 t' (I - tf )g = 11 (1-zt)8
VIP :1=1

Accordingly, one may obtain Eq. 7.14 at once from the following lemma, the
proof of which we leave as an exercise.

7-24 LEMMA. For every fth root of unity z there are g characters x (mod m)
such that x(p)=z.

Note that on the right side of Eq. 7.13, the factor corresponding to the trivial
character is precisely the Riemann zeta function, which has a simple pole of
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residue I at s=1. Thus by the residue computation of 4.M(s) at s=1, we have the
following formula:

(21r}p(m)rz

h,,,R, = fl L(l, X) . (7.15)
W. l dml ,mode

,rsl

Here the symbols wm, dm, hm, and Rm denote, respectively, the number of roots
of unity, discriminant, class number, and regulator associated with Fm.

One can do better. Suppose that K is any finite abelian extension of Q. By
the Kronecker-Weber theorem, K is a subfield of some Fm. Put G=Gal(K/Q),
which is a quotient group of G.=Gal(Fm/Q)-(7JmZ)'. Then its Pontryagin
dual G is a subgroup of Gm. Dirichlet characters X modulo m are naturally
identifiable with elements of Gm. A refinement of the proof of Eq. 7.13 gives in
this case the factorization

x(s)= HL(s,X)
XEQ

In particular, 6x(s) is a factor of 4FT(s). Now using the residue formula for 4K(s)
at s=1, we obtain the following powerful theorem.

7-25 THEOREM. (Class Number Formula) Let K be a finite abelian extension of
Q with Galois group G, number of roots of unity wx, class number hx,
regulator Rx, and discriminant dx. Let r,(K) and r2(K) denote, respec-
tively, the number of real and nonconjugate complex embeddings of K
into an algebraic closure of Q. Then we have

2^(x)(2,r)'

dx
hxRx = n L(l,X).

WK ,fl

X:t

One may wonder at the importance of this formula. The reason is that L(1,X)
admits a concrete expression. Indeed, as we shall see in Exercise 14 below, by
elementary Fourier analysis one may obtain an explicit formula:

7-26 PROPOSITION. Fix m z 1, and let X be a Dirichlet character modulo m.
Then

jX(a)log(1-ezxia/m)L(l, Z) _ -g(X)
M amodm
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where g(X) is the Gauss sum

Y-X(a)ez r;a/m

a mod m

More explicitly, we have

g(x)
2 tri X(a)a if x(-1) _ -1

m amodm 0L(l,x)=
-g(x) YX(a)logjl-e2,r;a/ml if X(-1)=+1

m amodm

When this proposition is combined with the preceding theorem and then
specialized to quadratic fields, we get the following beautiful result of Dirichlet.

7-27 THEOREM. (Dirichlet) Let K=Q(h) be a quadratic field of discriminant
,52 =D, and let XD be the quadratic Dirichlet character associated to K by
class field theory; that is, for all rational primes p not dividing D, p splits
in K if and only if XD(p)= 1. Then the root number for XD is given by

W(XD)= g(XD)(-1)' E(-1,+1)

where r=0 (respectively, 1) i[(-1)= 1 (respectively, -1). Moreover:

(i) IfD<0, then

'(XDhK = - Zj(a)a .

2D amodD
(a.D)=l

(ii) If D>0, let u0 denote the fundamental unit of K; that is, a generator
of oK modulo its torsion subgroup. Further let u0 = up K. Then

I u = 11-e2xra1DIW(xD )

O<a<D/ 2
(a,D)=1

PROOF. The assertion about W(XD) is developed in Exercise 15 below. Let D<0.
Then r2=1, r,=0, R,=1 (since oK has rank ri+r2-1=0), and G has a unique
nontrivial character, which one can show to be XD. Also, K is imaginary if and
only if XD(-1)=-1, which says that the real prime does not split in K. It is easy
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to check that the conductor m of XD is just IDI. This gives (i) immediately.
When D>O, we have r,=2, r2=0, wK=2, and RK=log luol. Accordingly,

hK logluol = 2)
a mod D
(a,D)=I

The asserted identity then follows by exponentiation, once we note that

X(a)=X(-a) and I1-e2,riaiDl=11-e 2a;a/DI

This completes the proof.

7.7 Nonvanishing on the Line Re(s)=1

One of the consequences of Dirichlet's class number formula is that L(1,X) is
nonzero for any nontrivial Dirichlet character X. The goal of this section is to
prove, more generally, the following theorem.

7-28 THEOREM. Let K be a number field and X a unitary character of CK. Then
L(s,X) does not vanish at s =1 + it for any to R

PROOF. For X unitary and tER, note that L(s,Xl 1") = L(s+it,X) and that XI' I"
is also unitary. Thus, after replacing X by XI . I", we may reduce the proof to
showing that L(s,X) has no zero at s=1 for any unitary character X. Recall that
L(s,X) has a pole at s=1 if and only if X=1, in which case the pole is simple.
Thus we may assume that X is a nontrivial unitary character, and, since L(s,X-)
has no zeros, show that

L(1,Xf) x 0. (7.16)

To do so, we shall separately treat two cases.
First consider the case that X is quadratic; that is, X2=1. (If K=Q, this case

is already known to us, but we shall give a unified treatment.) For Re(s)>l,
define

L(s) = SK(s)L(s,Xf) and D(s) = logL(s)

and continue L(s) meromorphically to the whole s-plane via its factors. From
the product expansions of CK(s) and L(s,Xf) we know that L(s) has neither zero
nor pole in {Re(s)>l), and hence we may choose a single-valued branch of
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D(s) in that region. Moreover, from these same two expansions we see readily
that

D(s) + X(P) . (7.17)
P n,zi

N(P)s.,

This is a Dirich/et series with nonnegative coefficients, since x(P)e{-1,0,+1
and is absolutely convergent in {Re(s)>I }.

Now we will give an argument based on a ubiquitous method of Landau,
which requires two purely complex-analytic preliminaries.

7-29 LEMMA. Let D(s)=EnZ1an/n'' and suppose that for some real number t,
D(s) converges absolutely at s=t. Then D(s) converges normally in the
region {Re(s)>t) and hence defines an analytic function there.

PROOF. Replacing D(s) by D(s+t), we may assume that t=0. Then i21an con-
verges absolutely, and so for every e>0 there exists a positive N such that

k

jlanf <e
n=N

whenever kZN. It is easy to see (by regrouping terms) that

k k-1 n k

Dan`n' _ Z(YIa,I)(n-' -(n +l)')+(LIanI)k-'
n=N n=N raN n=N

for any complex s, whence one immediately deduces that for real Q>0

i 1a.In-° +k-°]= eN-° Se
n=N n=N

This suffices to establish normal convergence in {Re(s)>0} because we can
always shift the complex part of the exponential onto the an without disturbing
the absolute convergence of the associated series. O

7-30 LEMMA. Let D(s) be as above and assume further that for all nz 1.
Suppose that D(s) converges normally in {Re(s)>t} and that D(s) is
holomorphic at s=t. Then there exists a number t0<t such that the series
En21anIns converges in {Re(s)>10} and therefore represents D(s) in this
region.

PROOF. Again, we may assume that 1=0. Let D(s) be holomorphic on a disk of
radius R about zero, and choose S<R12. Then for all positive or we can write
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D(o) = I a e-(o-s)'oame-swg'+

AZ1

) e
a,,

( y(8-Q)'(logn)'
"a1 .'zo m!

-
_..o "a m !

The rearrangement is valid because the nonnegativity of the a guarantees the
requisite absolute convergence. (One may think of this as a discrete instance of
Fubini's theorem.) This gives a power series expansion for D(s) in a neighbor-
hood of 5 that must be valid in a disk of radius RI>R/2, since clearly such a
disk can be inscribed in our original circle of radius R-within which D(s) is
holomorphic by assumption. Thus, reversing the force of the equality above, we
find that the series representation Z"aia"/n' is indeed valid to the right of zero,
as asserted.

Let us now return to the proof of the theorem. Restricting our attention to
the real half-line, we have from Eq. 7.17 that D(cr) takes on nonnegative real
values for o>1. Suppose that L(1,Xf)=0. Then we claim that L(s) is invertible
at s=1. Otherwise, it has a pole or a zero there. The former is impossible be-
cause OK(s) has only a simple pole at s=l, and the latter is impossible because
D(Q) is nonnegative to the right of s=1, and therefore

lim D(ar) * -oo .

Accordingly, we can continue D(s) to the left until we encounter the first sin-
gularity, say at ooeR, if indeed there is one. Applying the lemmas, we find that
the expansion given by Eq. 7.17 is still valid for oo<0, which therefore remains
nonnegative to the right of Qo. This tells us that

lim D(Q) = +oo
o-poa

But then L(s) must have a pole (and not a zero) at s=oo. This is impossible be-
cause neither 4K(s) nor L(s,Xf) has a pole at any point other than s=1 (and only
in the former case). This means that we can continue D(s) to the left as far as
we want, say to a=-2, and the previous expansion remains valid, with D(a)
nonnegative on the real half-line. Now observe that SK(s) has a zero at s=-2,
because r(s/2)''t'nF(s) -xP4K(s) has no pole there, while r(s) has simple poles at
the values s=0,-l,-2,.... [See Theorem 7-19 and the local constructions of the
L(X).] Since L(s,Xf) has no pole, L(s) has a zero at s=-2, whence it follows that



292 7. Tate's Thesis and Applications

tim D(Q) _ --co
a-+-2

-a contradiction! Therefore, L(s,Xf)*0, as required.
Now let X be nonquadratic. We set

L(s) _ ;x(s)2L(s,Xf)L(s,Xf) and D(s) =logL(s) .

Then

D(s) _ I E 2+X(P)+, (P)
P M01

N(P)m'

Since X is unitary, X(P) is of the form etd,*, and hence

2+X(P)+X(P) = 2+2cos(t,) z 0 .

Now the argument from the quadratic case goes through verbatim.

The following result will be used in the next section.

7-31 PROPOSmON. Let X be a unitary idele class character of K. Then we have

(i) The summation

r X(P)
P prime N(P)'

is holomorphic at s=1, provided that X is nontrivial.

(ii) Moreover,

lim I 1 / log( 1 ) = I
a-+1' Pprime N(P)1 s-i

PROOF. Recall that logL(s,X) is absolutely convergent in Re(s)>l, and note,
moreover, that it equals

X(P)
+ Y

X(P)"(PY
P prime 1) .22 P prime (P)

Now, on the one hand, the second series is dominated in absolute value by
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I 1

m22 Pprime N(P)-

which converges at s=1. On the other hand, if X*1, L(s,X) is invertible at s=1
by the previous theorem. Hence both

L(s, X) and V X(P)
Pprime N(P):

are holomorphic at s=1. Now let X=1. Then L(s,x)=SK(s)L(s,XOe) has a simple
pole at s=1, and so we can write 4K(s)=(s-l)-'H(s), with H(s) invertible in
{Re(s)Z1}. Then

log SK (s) = log( 11) + log H(s)

with log H(s) holomorphic at s=1. Thus

10 9lim (Y I ) /log( 1 ) = lim g
K ( =1

,-pr p N(P)' s -I .-.i' Ilogs-1)

as claimed.

Given any set S of primes P, we say that S has Dirichlet, or analytic, density
S=S(S) if we have

Jim (E )/log(1)=5 .

P's N(P)' S-1

It is part of the definition that the left-hand side converges; if it diverges, S has
no Dirichlet density. Clearly S(S) is unchanged if S is modified by a finite set,
and, by the preceding proposition, 5(S) =I if S contains almost all the primes P
in K. (See Exercise 16 below for further elaboration of these ideas.)

An immediate consequence of the proposition and some elementary Fourier
analysis is the following celebrated theorem of Dirichlet on prime numbers in
arithmetic progressions.

7-32 THEOREM. (Dirichlet) Fix a positive integer in and let a be any integer
relatively prime to in. Then there exist infinitely many rational primes p
that are congruent to a modulo m. In fact, the set Sq m of such primes has
Dirichlet density I/q(m).
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PROOF. Define

h(s) = 1

p.amodm P'

Note that by the orthogonality of the characters of (Z/mZ)", given any integer b
relatively prime to m, we have

Xmod..

Accordingly, we may compute

g(s)

_ ip(m) if balmod m
fib) o otherwise.

E X(a)(Y X(P)) = Z ( E X(a'P)) p-'

Xmodm P P p Xmodm

(7.18)

where a' is the multiplicative inverse of a modulo m. From Eq. 7.18 we see that

g(s) = qi(m) -h(s) .

By part (i) of the previous proposition,

is holomorphic at s=1 ifX is nontrivial. Thus

1

lim h(s) / log(1 ) = 1 lim
P.

"V s-1 4P(m) '-''' log( 1.)
s-

1

q(m)

by part (ii) of the same proposition.

REMARK. Some number theorists prefer to work with "natural density" rather
than the Dirichiet density. (See Section 6.2.) When the former exists for a set S
of primes, then the latter exists as well, and the two densities are equal. But
there are exotic S for which the latter exists, but not the former.

The Tchebotarev density theorem is a tremendous generalization of Dirich-
let's theorem on primes in arithmetic progressions. Exercises 18-21 below will
lead the reader through an elegant proof due to 0. Schreier that uses the results
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of this section. Also, Exercise 23 below will deal with the prime number theo-
rem, or, more precisely, with its natural extension to arbitrary number fields.

7.8 Comparison of Hecke L-Functions

In this concluding section we shall prove the following beautiful theorem of
Hecke, with an immediate and striking corollary. Throughout, K denotes an
algebraic number field.

7-33 THEOREM. (Hecke) Let p, and p2 be unitary idele class characters of K.
Suppose that the local components At, .p and p, ,p are equal on a set
S=S(p,, p2) of primes of positive Dirichlet density. Then there exists a
character X of finite order on CK such that u,=Xp2. Moreover, for any
nzI, if 6(S)> 1/n, then Xhas order less than n.

7-34 COROLLARY. If the Dirichlet density of S is greater than one-half, then in
fact, p,=p2.

PROOF OF THEOREM. Let p, and p2 be given as stated and suppose that S(S) is
positive. Suppose further that

X=Ak'

is of order greater than or equal to some positive integer n. Then certainly Xj* l
for all integers j of absolute value less than n. Define

(F'X'(P))(E z '(P))
D(s) _ j=0 j-0

Pprime N(P)-
and

Ds(s) =n2
PEs N(P)'

Then both D(s) and Ds(s) are Dirichlet series with nonnegative coefficients.
Moreover, since X(P)=l for all PeS, in fact, Ds(s) is a subseries of D(s), and
both are absolutely convergent in Re(s)>1. For real a>1, we can infer from the
nonnegativity of the coefficients that

Ds(a)SD(a). (7.19)

CLAIM. The function D(s) has the following property:
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lim D(Q) / log(
I )=n

o-.i' or-1

(It is here that we shall need to know that the order of x is indeed greater than
or equal to n.) Before proving the claim, let us see how it suffices to prove the
theorem. Indeed, by definition we have that

Iim D5(Q) / log(1 1) = n2,$(S)
or

and by the inequality 7.19, this forces the inequality S(S)511n. But this will
hold for every positive n if X has infinite order, contrary to the hypothesis that
t5(S) is positive. Thus X must be of finite order, and if its order is greater than
or equal to n, then 5(S)5 1/n. Thus the contrapositive holds, and this is pre-
cisely the assertion that if 5(S)> 1 In, then X has order less than n.

PROOF OF CLAIM. We first note that

D(s) = ny
1 + E Xi (P) (7.20)

r N(P)' 0sj.ksn-1
N(P)'

jxk

By the first part of Proposition 7-31, we have that the summation

Y V(P)
L.. N(P)'

is holomorphic at s=1 for all characters v#1, and this certainly applies to the
characters xj-k for 0 5 j, k 5 n-1, j #k, provided that the order of X is at least n.
Moreover, we know from the second part of that same proposition that

lim (I 1 ) / log(1) = 1
s-ft' P N(P)' s - 1

The claim now follows directly from Eq. 7.20.

REMARK. One can deduce this theorem from the stronger "equidistribution"
result of Hecke on the values at Frobenius elements of any idele class character
X whose restriction to CK maps surjectively onto S'. See Serre (1989, Appen-
dix to Chapter 1) for a lovely treatment.
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Exercises

1. Let F be a local field and let yr be a nontrivial unitary character on F; that
is, a continuous, nontrivial homomorphism from F as an additive group
into S', the circle group. For each define yia:F-+Sl by

yra(x) = W(ax) .

(a) Show that W. is again a unitary character of F, and that yra is trivial if and
only if a=0.

(b) Show that yr H yea defines a continuous, injective homomorphism a1, of F
into its Pontryagin dual F.

(c) Show that the image of ay, is dense in F. [Hint: Show that y/a(b)=1 for all
beFifand only if b=0.]

(d) Show that ay, is bicontinuous.

(e) Show that a,,(F) is a complete, hence closed, subgroup of F. Conclude
that aw is an isomorphism of topological groups.

2. Let F be a non-Archimedean local field with ring of integers oF. and maxi-
mal ideal P. Fix a nontrivial unitary character yr of F. Let P'° be the con-
ductor of yr; that is, the largest fractional ideal P' on which w is trivial.
Let as,,, as defined in the previous exercise, be the isomorphism between F
and its Pontryagin dual.

(a) Show that via a. P' identifies with the Pontryagin dual of 0F. (This is
also the inverse different of F, which soon makes its appearance.)

(b) Let nz1 and xnF. Show that xP"eKer(yi) if and only if xe P'-".

3. In this exercise we construct nontrivial characters for non-Archimedean
local fields, including the standard character for Q and its extensions, and
the standard character for the completion of Fp(t) and its extensions, at the
place defined by t-1.

(a) Given any xEQ,, let n be the smallest nonnegative integer such that p"x
lies in Z,. Let r be such that rimp"x mod p". Put

VU(x) = e2sir/p- .
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Show that y/: QP-*S' is a nontrivial unitary character of conductor Z. and
that it identifies with the composite map Q,*Q

(b) Let K., denote the completion of K=FP(t) defined by the place t-'. Show
that K.=FP((t-')); that is, that each xEK, can be uniquely represented by a
formal power series

r
l a"t"

with a"E Z/pZ for all n less than or equal to the integer r. Put

y/ao (x) = e2niai/P ES'
.

Show that yip, is a nontrivial unitary character of K. of conductor FP[[t-' ]].

(c) Let tr be any irreducible polynomial in FP[t]cK, and let K,, denote the
completion of K defined by the prime ideal (sr), with residue field k, which
we may identify with a transversal of (,r) in FP[t]. Show that every xEKZ
can be written in the form

"=r

for some integer r, with each coefficient a,,Ek. Next put

2attrk/rP(a-t)/P

Show that y/., is a nontrivial unitary character of KR.

(d) Let F be any non-Archimedean local field. Show that F is a finite separable
extension of a local field Fo as in parts (a), (b), or (c) above. Let WO denote
the corresponding character of Fo defined therein. Given xEF, set

v(x) '- w0WF/F(x))

Show that w is a nontrivial unitary character of F.

(e) Continuing in the same context, show that when the characteristic of F is
zero, the conductor of Sv is the inverse different q;'. In this case show also
that for f the characteristic function of oF, the Fourier transform off is
N(2),,)-''2 times the characteristic function of ' .
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4. We shall now construct the standard character on AK/K for an algebraic
number field K.

(a) For each rational prime p, let yip denote the standard character of Qp de-
fined above. Also define yr,: R-'S' by y/m(x)=a-2i"r. Show that

V/: AQ -p. S'

(xv.)-3fW"(x")

is a nontrivial unitary character on AQ, which is trivial on Q (embedded
diagonally). [Hint: Use the Artin product formula.]

(b) For any number field K, define y/K: AK-+S' by

y/K (x) = f W,, (x,, )

where v ranges over all the places of K and y/ is the standard character on
the local field K", as constructed above. Show that WK is a nontrivial uni-
tary character on AK.

(c) Show also that y/K(x) =y/(tr(x)) where tr denotes the adelic trace map from
K to Q. Conclude from part (a) that wK is trivial on K.

5. We shall now construct the standard character for the completion K" of
K=FF(t) at any finite place v.

(a) Let ,r(t) be an irreducible element of FF[tJ of degree d;-> I. Show that K has
a unique place v such that the polynomial n(t) generates the maximal ideal
ov 1 }. Show further that and that the
polynomials in FF[t] of degree less than din fact generate o"/,ro".

(b) Given any place v of K (possibly infinite), let us define

Kt') = {XEK:IxIv51 Vu*v} .

Show that K"=K()®o". [Hint: By replacing t by t-I if necessary, one may
assume that v is defined by an irreducible polynomial 2r(t)EFp[t] and then
apply the previous part.]

(c) Let v be any finite place of K; that is, one defined by an irreducible poly-
nomial ,r(t)EFF[t] of positive degree d. Show that every element y of KM
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can be written as z/>r" for some nZO and polynomial z=z(t)eFP[t] of the
form

cit d-1 + C2t "d-2 + ... + C"d

with CJe FP for al! j, possibly all zero. If x = y+a a K with ae o, put

Y/(X) =
e2nic,lP

(This is of course well-defined despite the status of c, as a residue class
modulo the prime p.) Show that vii, is a nontrivial character of K, of con-
ductor o,,.

(d) Let v, it, and y be as in the previous part. Show that y$a,t-1 (mod t-2).
Conclude that where W. is as in part (b) of Exercise 3.
[Hint: Write it as tdg, with g a polynomial in 1-' of constant term 1, so that
y=fg-"t-nd

6. We may now use the results of previous problems to construct the standard
character VIK: AK->S1 for K any global field of positive characteristic.

(a) Suppose that Ko=FP(t). Define WKo by

WKp(x)_ f lv,.(xv)

where W, is given by Exercise 3 and vr (v finite) is given by part (c) of the
previous exercise. Show that WKO is a nontrivial character of AKo that
moreover, is trivial on Ko.

(b) Now let K be any finite separable extension of Ko. Use the trace map from
K to Ko (or, equivalently, the corresponding adelic trace map) to define the
standard character v'K on K. Show that this character is nontrivial on AK,
but trivial on K.

7. Let G be a locally compact abelian group with Haar measure dg, and let dg
be the dual measure; that is, the measure on the Pontryagin dual G relative
to which the Fourier inversion formula holds. Suppose that we have an
isomorphism a: G =* G of topological groups.

(a) Show that there is a unique multiple such that lr identifies with its
dual measure under a. One calls p the self-dual measure on G relative to
the isomorphism a.
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(b) Let G be the additive group of a non-Archimedean local field F, yr:F-+S'
the standard unitary character, and aw the isomorphism of Exercise 1. De-
note by dx the self-dual measure relative to W (that is, relative to aw).
Show that Vol(oF,dx)=N(2)F)-"'2, where OF denotes the different of F.

8. In this exercise we analyze the dependence of the epsilon factor on the ad-
ditive character W and the Haar measure dx. Let F be a local field and con-
sider 4X, yr, dx) for any Xe Hom.., t(F*, C*).

(a) For every positive real number t, show that

e(X

(b) Let aEF*, and let Wa denote the character defined by yra(x)= 4u(ax). Show
that

£(x, Wa, dx) = x(a)I aI-I (X, W dx) .

(c) Let F be non-Archimedean with unique prime ideal P, and let P" and P'
be the conductors of X and yr, respectively. Then show for every unramified
character v of F* that

e(Xv, y, dx) = fYr ,"+") E(X, W dx)

where ,r is a uniformizing parameter for oF. Note that the first factor on the
right is well-defined because v is unramified. [Hint: Use the explicit for-
mula given in Eq. 7.6.1

9. Let F be a local field with standard character W and self-dual measure dx,
and let X=wl IJ be a (quasi-) character on F* with w unitary. Put

W(w) = e(, dx)I s _ '/ .

(a) By using the functional equation, show that

W(w)W(m) = w(-1) .

Conclude that IW(w)I=1. [Hint: First prove that W(w) = w(-1)W(w).1

(b) Using Section 7.1, show that for F=R, W(w)=1 (respectively, -i) for w=1
(respectively, w=sgn). Show further that when F= C, we have W(w)=1.
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(c) Let F be non-Archimedean with uniformizing parameter ;r, and let w as
above have conductor /r^oF. Put

G=
SeU/U"

where .1rdoF Z. (the different), Ur l+vrroF (r>0), and U is the full group
of units in oF. Show directly that IG12=q". Then appeal to Eq. 7.6 to de-
duce (once again) that IW(w)j=1.

10. (Tate) Let F be a non-Archimedean local field with uniformizing parame-
ter if, and let w be a unitary character of F* with conductor ,r"o,,. Let a be
an ideal of of such that a2 divides 7r"oF. Put b=a-';r"oFcoF.

(a) Show that there exists an element cEF such that coF= x"DF and also

w(1+t) = yi(c-'t)

for all tEb. [Hint: Suppose that a#oF, so that it divides a. If t,zeb, then
tze,r"oF. Consequently, w(1 +t) w(I +z)= w(I +t+z), and therefore the map
that sends t to w(1+t) is a character of the additive group b, and this ex-
tends to one on F. Now appeal to the isomorphism of F with its dual.]

(b) For c as in the previous part and F now assumed to have characteristic
zero, show that

W(w) = N(ba-1)-1/2 Y w(C-'x) y/(c-'x)

x (I+a)/(1+b)

NOTE. When a=o', this result is identical to Eq. 7.6.

(c) For w unramified, show that W(w)= w(ir)d if ,rd of 7) .

(d) Let E be a number field containing W(w). Then show that for every place v
of E not dividing the residual characteristic p of F, we have IW(w)lp=1.
Using the Artin product formula, conclude that if E has a unique place u
above p, then also I

(e) Suppose that n"oF=;ra. Then, using part (b), show that z=(w(c-I)W(w))2
lies in the cyclotomic extension E=Q(e2'"/p') for some rz1. Show further,
using part (d), that z must be a root of unity.
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(f) (Lamprecht, Dwork) Suppose that w is either unramifred (that is, n=0) or
wildly ramified (that is, n22). Show that W(w) is a root of unity. [Hint:
This is clear if n is even. When n is odd, write ;r^oF=ira and apply the
previous part.]

11. Let K be a global field. For any idele class character X=(X,), put

(a)

(b)

W(x)=rjW(xo .

Show that W(X) W(x-')=1. In particular, if X is unitary, then I W(X)l =1.

Let K be a number field, and let X be quadratic or trivial. Conclude from
part (a) that W(X)=±1. [This number is called the sign of the functional
equation of L(s,X).] Show, moreover, that if X is unramified everywhere,
then

W(X) = X (DK)

where j is the associated character of the class group C/K (cf. Proposition
5-19). [Hint: Use the previous problem.]

(c) Let X be a quadratic idele class character, and let E/K be the quadratic ex-
tension corresponding to the open subgroup Ker(X) of CK by class field
theory (Theorem 6-6). Note that i&(s)= CK(s) L(s,X) and deduce the formula

s(s,X)= (ldKl/Idel'i2)1-2,

where dK and dF are the discriminants of K and E, respectively.

(d) (Hecke's Theorem, Serre's Proof) Let K be a number field. Then prove:

THEOREM. (Hecke) The ideal class of aK is a square in the class
group CIK.

[Hint: Observe that it suffices to show that j (7.) =1 for every quadratic
character x of CIK. Then appeal to parts (b) and (c) of this problem.]

12. We consider here the Fourier transforms of Schwartz-Bruhat functions.

(a) Let F be a local field. Show that for every fnS(F), its Fourier transform
likewise lies in S(F). [Hint: For F Archimedean, this is a well-known clas-
sical fact. In the non-Archimedean case, use that f is a linear combination of



304 7. Tate's Thesis and Applications

(b)

characteristic functions of the basic compact sets P", where P is the unique
prime associated with F.)

Let K be a global field and assume that fES(AK). Show that the Fourier
transform of f is likewise in S(AK). [Hint: First prove that S(AK) is gener-
ated by factorizable functions ®J,,, where each f, lies in for all v,
and then use the previous part to establish the result in this special case.]

(c) Use the results of Chapter 3 to show that the Fourier transform map
S(AK) -+S(AK) extends to an isometry LZ(AK)->LZ(AK).

13. (Hecke Characters) Let K be a number field of degree d, let S be a finite set
of places containing S., and let JK(S) be the group of fractional ideals
prime to S. Furthermore, let IK(S) denote the subgroup of IK consisting of
ideles y=(y,,) such that yv 1 at every place v in S.

(a) Define a: 'K(S) -+JK(S) by

a(y) = TT Pv(r,. )
vials

Show that a is a surjective homomorphism with kernel

U(S) = (yeIK(S):y,,e ov' , Vv finite) .

Conclude that every character X of IK that is unramified outside S defines a
character X of JK(S).

(b) Let /7 be a Grossencharakter (or Hecke character) of K, which is to say a
homomorphism from JK(S) to C* for which there exists an integral ideal M
with support S, complex numbers s,,...,s, and integers m,,...,md such that
for every aEK*(M), one has

d

Ma)) _ fJ a. (a)' l aa(a)I
r-

where {c.} is the set of embeddings of K in C. Show that everyQ is of the
form ,j for some character X:IK-sC* that is trivial on K*. [Hint: Show
that fl defines a character of the ray class group CIK(M) and then lift it to
the idele class group CK.]
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(c) Let 40 =X for an idele class character X unramified outside S. Show that CD
is in fact a Grossencharakter. [Hint: Take

M = 1-1
PVv

Ves

where n is the exponent of the conductor of y,. For aeK*(M), show that
a(a) by using first that la,J= l for all v in S and

second that X is trivial on K*.[

14. Fix an integer kz 1, and consider the polylogarithm function

z"
'k(Z) k

n

Note that 1,(z)=-log(1-z). The special case of 12(z) is called Euler's
dilogarithm function.

(a) Show that the series is normally convergent in the open unit disk {fzf<I}
and that it has finite limit on the unit circle S' (respectively, S'-(1)) if
k>1 (respectively, k=1).

(b) Let X be a Dirichlet character of conductor m;-> I. For w an mth root of
unity, put

G(X, w) = J X(c)-c
c mod m

Let L(s,X) be the Dirichlet L-series, and assume that X is not the trivial
character if k=1. Put X(-1)=(-ly. Then show that

L(k,,)=? L G(X,e 2,ibi",)[lk(e2,.iba,)+(-1),lk(e-2'' "))l
m 15b5m/2

[Hint: Expand X in terms of the basis (e2xib/" :05b<m) of C[Z/mZ].]

(c) Show that

G(X e-2,ribim) = X(b)G(X, e-2,riim)
.

Simplify part (b) accordingly for k=1 and deduce Proposition 7-26.
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(d) For any kZ1, show that there is an elementary expression for the Dirichlet
series L(k, X) if X(-1) _ (-1)k.

15. Let xbe a Dirichlet character of conductor m;-> 1. As above, put

Show that

W(X) =
GW (-i)r

m

where r=0 (respectively, 1) if x(-1)= I (respectively, -1), and

G(X) _ I X(a)e2aia/m

amodm

16. Let K be a number field and let S be a set of primes in oK. One says that S
has lower Dirichlet density

1 I I
¢(S) =1im inf

a .! log S1i Pes N(P)s

provided that the indicated Jim inf exists. The upper Dirichlet density
8(S) is likewise defined via the lim sup.

(a) Show that every S has both a lower and an upper Dirichlet density. [Hint:
Use Proposition 7-31, part (ii), and also that a bounded sequence in R has
an infimum and a supremum.]

(b) Show that S has a Dirichlet density (as defined previously) if and only if
8(s) = s(s) .

(c) Let T be any finite set of primes in oK. Show that 8(SvT) =¢(S) and
8(S v T) =5(S) . Conclude, in particular, that any finite set of primes has
density zero.

(d) Let . ' denote the set of degree-one primes of K; that is, prime ideals of oK
such that N(P)=1. Show that for any set S of primes, 5(S-)= 8(S)
and 8(S n J,0') = 8(S). Conclude that the set of primes in oK of degree
greater than one has density zero.
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17. Let E/K be a finite abelian extension of number fields with Galois group
G=Gal(E/K). Let U= NK,K(CE). Recall that CK/U is isomorphic to G via
class field theory. (See Theorem 6-6.) For any character X of G, let j de-
note the corresponding character of CK that is trivial on U. Keeping in
mind that the extension E/K is abelian, for any prime P of K, we let

(E/K)
gyp = P )

denote the corresponding Frobenius element. Now set

r(P) =

and put

(X(c,) if P is unramified in E or if X is trivial
0 otherwise

L(s, X) _ I) (1- X(P)N(P)-' )_t
P

(a) Show that L(s,X) converges absolutely in (Re(s)>1) and further admits a
meromorphic continuation to the whole s-plane, with no poles except pos-
sibly a simple one at s=1, which occurs only when X=1. Show, moreover,
that there is a functional equation relating s to 1-s. [Hint: Use Theorems
6-6 and 7-16.1

(b) Show that

5s(s)= LTL(s,X)
%EG

[Hint: Write the left-hand side as an Euler product over the primes P of K.1

(c) Show that

lim 1
X (P)

=
fI if =1

x~I' log PE9K N(P)' 0 otherwise.
s-1

The following four problems lead the reader through a proof of a version of the
Tchebotarev density theorem, here reformulated in terms of Dirichlet density.
Recall that.9'K f denotes the set of finite places of K, or, equivalently, the set of
prime ideals of 0K.
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THEOREM. Let E/K be a finite Galois extension of number fields with Galois
group G, and let C be a conjugacy class in G. Set

SK (C)Pelf: (EP ) C}.

Then 8(SK(C)) exists and equals Card(C)/Card(G).

We shall also need the degree-one version of SK(C), which we define as

S'K(C) = SK(C)n-IK" .

The first problem is well known and deals with the abelian case. The next three
encapsulate the ideas from an elegant proof due to 0. Schreier.

18. Let E/K be a finite abelian extension, so that C reduces to a singleton set
{a} for some ac=G. We recall from Chapter 3, Exercise 13, the discrete
form of the Fourier inversion formula: if f is a complex-valued function on
G, then

f(g)= Card(G)xE f(x)x(g)

where

I(x) = I f(g)x(g)
aeG

(a) Given aeG, define fa:G-+C by

fa(g)= X(a-'g)
rEO

Show that fa is in fact the characteristic function of (a).

(b) For all geG show that

I l= E I f.(g)
=

1 - x(P)
PEsK(C)

N(P)
PESK(C)

N(P)., Cani(G) rECT P N(P),

(c) Show that 8(SK(C)) exists and equals 1/Card(G)=Card(C)/Card(G). [Hint:
Use the previous exercise.]
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19. Suppose that E/K is any finite normal extension of number fields. Let G be
the associated Galois group, and let C be a conjugacy class in G. Suppose
further that E' is an auxiliary finite abelian extension of K with Galois
group G' such that E and E' are linearly disjoint over K. Put L=EE'.

(a) Show that LIK is normal with Galois group -9=GxG'.

(b) Choose any conjugacy class C'={a} in G', and let H be the subgroup gen-
erated by CC' in G. Put F=LX, and consider the compositum FE'. We have
the following diagram:

L=EE'
HI F

E F E'

K

Show that FE' is a normal extension of F with Galois group given by

Gal(FE'/F) = H/Hr-(C) - (C') c G'.

Using the previous problem, conclude that

S({QED': FQF C'})=

where f'= Card((C')).

(c) For P ESx(C), define aa(F)=Card({ Q E_IP,'(C) : QIP}). Show that

ap(F)=Cu(ff) Card({rES:rCr-' EH})

[Hint: Use Proposition 6-2.]

(d) Put f-- Card(C). Assuming that f I f', show for P E S'K (C) that

I-iLIK
P

nH=O

20. We continue in the context of the previous problem and always assume that
flf'.
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(a) Show that

where

(b) Show that

s(Sx(C,C'))= fnn'

where n and n' denote Card(G) and Card(G'), respectively. [Hint: Show
that aa(F)=nn'1ff'.]

(c) Let

Show that

8(S,r (C)) Z
fn
nn

where again 8 denotes lower Dirichlet density, as defined above. [Hint:
Any absolutely convergent summation indexed over P e SK (C) can be re-
written as a double summation, first over Q'EG' and then over

(PESK(C): E /K =d}.

Use this and appeal to part (b).1

21. We continue in the context of the previous two problems.

(a) Show that we can choose G' such that the quotient n f/n is arbitrarily close
to 1. [Hint: Suppose that f has prime factorization

r
a

f = fj P;J (a1 > 0)

J=I

aP(F)
~ J

1 1
lim -log(-)

' s - 1s_l+ PESK(C.C') N(P)s
f

SK(C,C')={PeSK(C):(EPK =C'}.

nJ =Card({v' EG':fIo(a')}).

Then take G' of order
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such that for each j, pilJ- piJ-' elements of G' have order a power of p".]

(b) Use the previous exercise and the first part of this one to show that

s(SK(C))zf
n

(c) Show that

d(SK(G-C))z n-f
n

[flint: G-C is the disjoint union of conjugacy classes different from C.)

(d) Show that 6(SK(C)) exists and is given by f/n=Card(C)/Card(G). [Hint:
Use part (c) to conclude that

S(SK (C)) :!g fn
But the lower and upper Dirichlet densities always exist, and the latter
bounds the former from above.]

22. Let K be a function field in one variable over a finite field Fq. The first
parts of this exercise lead to a proof of the following result:

THEOREM. The functionCK(s) is a rational function of T=q-1. More pre-
cisely, there is a polynomial P of degree 2g, where g is the genus of K,
with P(0)=1, such that

OK(s)
P(T)

(1-T)(I-qT)

Furthermore, P(1)=h, the order of the divisor class group Pic°(K). (See
Section 7.5.)

REMARK. A celebrated theorem of A. Weil asserts in addition that P(T) lies in
Z[t] and admits a factorization over C of the form
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2j
fl(1-ajT)
rl

with each a. an algebraic integer of absolute value q"2. Consequently, every zero
of SK(s) lies on the line (Re(s)=1/2)-in other words, the Riemann hypothesis
holds for K! But a proof of this result lies far beyond the scope of this book.

(a) Show that there exist infinitely many places v of K such that N(v)=q. Hcrc
the norm of v simply measures the cardinality of the residue field associ-
ated with the corresponding local field K,,. [Hint: Suppose not. Then

C (s)=fl(1-q-'). (1-q fs)-t
v6S Ves

for a finite set S, with f, 2 for all v outside S. Deduce from this that in
fact, log ;,Ks) has a finite limit as s--> V, and thus derive a contradiction to
Theorem 7-19.]

(b) Show that OK(s) is a meromorphic function of q,*. [Hint: Show that the
image of I.1KR : IK R; is qZ, and then use that S"x (s) = L (1.1' ) ]

(c) Using part (b) and Theorem 7-19, show that 4K(s) takes the form given in
the theorem above, with P(q-°) an entire function.

(d) Using the functional equation forCK(s), deduce the following functional
equation for the numerator:

P(T)=gST22P( T).
9

Deduce that P must be a polynomial, and (by using Theorem 7-22) that
P(1)=h.

(e) Let X be any idele class character of K. Show that L(X) is a rational func-
tion of T=q ". [Hint: Reduce to the unitary case and argue as above. Pro-
vided that X* I - I' , the function L(X) is in fact a polynomial in T. ]

23. Let K be a number field. For x> 0, put

7rK(x) = Card((P prime in oK:N(P)Sx)) .

The "prime number theorem" for K then asserts that as x-ioo,
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YrK (x) -
logx

(7.21)

For K= Q, this was conjectured by Riemann and proven independently by
Hadamard and de la Vallee-Poussin in 1896. The object of this exercise is
to deduce this theorem from the following theorem for Dirichlet series:

THEOREM. (Tauberian Theorem for Dirichlet Series) Let

D(s)
natty,

be a Dirichlet series with nonnegative coefficients an that satisfies the fol-
lowing conditions:

(i) D(s) is normally convergent in {Re(s) > 1 }.

(ii) D(s) is invertible on the line {Re(s)=1 ) except for a simple pole at the
points= I of residue a.

Then

Ya -- ax
nsx

asymptotically in x.

(a) Show that

S'K(s)l4x(s) = D(s)+ip(s)

for some function p(s) holomorphic and nonzero in {Re(s)t 1 } and D(s)
the Dirichlet series defined by an=logn, if n is the norm of some prime P,
and an=0, otherwise.

(b) Using the results of Section 7.7, show that the function D(s) of the previous
part satisfies the hypotheses of the Tauberian theorem and has residue 1 at
s=1. Deduce that

g(x) = E logN(P) - x
N(P)Sx

x

(c) Put bn=an/logn. Show that for any mZ1, we have
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_ 'g(m)I al

)TK (m) = m
+ h(m)

nogn

where

_ I
Ilogn

1 _ 1h(m) n<mg(n)log(n+1)

[Hint: an=g(n)-g(n-1).J

(d) Using that g(n)-n, prove Eq. 7.21 by showing that h(m) is o(m/logm); that
is,

lint
logm h(m) = 0 .

[Hint: Show first that

m-sao m

(logn log(n+1) nlog2n

for alln>1.]



Appendices

The two appendices address, respectively, the elementary theory of normed
linear spaces and the factorization properties of Dedekind domains. In both
areas, our goal is to review fundamental definitions and results that have been
used frequently in the main exposition; hence the discussions below are sharply
limited. We shall indicate comprehensive sources in the references.

Appendix A: Normed Linear Spaces

In the main, this appendix addresses common topological constructs on normed
linear spaces and particular aspects of LP-spaces and LP-duality. We show first
that the topological possibilities for a finite-dimensional normed linear space X
are essentially limited to one, and then discuss for general X the weak topology
and the weak-star topology on the continuous dual X*. The discussion culmi-
nates in Alaoglu's theorem. The final section defines the LP-spaces for locally
compact Hausdorff spaces and states without proof the duality theorem for
spaces belonging to conjugate exponents.

A.1 Finite-Dimensional Normed Linear Spaces

If X is any normed linear space (real or complex), we let S' (X) denote the set of
elements of X of norm 1. Similarly, B'(X) denotes the set of all elements of
norm less than or equal to 1, the so-called unit ball.

Recall that 1,(C") is the complex normed linear space whose underlying
vector space is C" with norm given by

II(aa)II = laJ + .. + la"I

for (al)EC". [We shall also write a for (a') when convenient.] The point of this
brief discussion is to show that every complex normed linear space of dimen-
sion n is isomorphic to li(C") in the category of complex normed linear spaces
with morphisms given as continuous linear maps. It follows from this that any
two finite-dimensional complex normed linear spaces of the same dimension
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are likewise isomorphic. Note that this discussion applies equally well to the
category of real normed linear spaces.

We begin with some easy preliminaries. Let X be a complex normed linear
space of dimension nz 1. Choose a basis x...... x" for X, via which we may de-
fine the following map, which at the least is an isomorphism of vector spaces:

4p:l(C")->X

i
Evidently,

II ta((a,))IIs supllx,ll I aiI

whence 97 is bounded with respect to the 1,-norm and hence continuous. We
wish to show more, namely that g' is an isomorphism of normed linear spaces.
The key technical point lies in the following lemma:

A-1. LEMMA. There exists a positive constant esuch that for all elements (as.)E
11(C") of unit norm, Ilq,((ai))IlZ c

PROOF. As (ai) ranges over the compact set S'(11(C")), II4p((ai))II at some point
assumes a minimum value. This minimum cannot be zero, since the vector
space isomorphism qp has trivial kernel, and the zero vector is manifestly not of
unit norm. Hence the minimum is indeed a positive number e, as claimed.

We deduce from the lemma that c is moreover a topological isomorphism as
follows. Let xeB'(X) be nonzero and suppose that g-1(x)=a. Then.

I1q,(a/Ilal1)IIZ_-

and so by construction,

Il ea'(x)Ii=llallsllxll 1

Hence qrI is likewise bounded, and therefore continuous. Thus we have proven
a fundamental result:

A-2. THEOREM. Let X be a finite-dimensional complex normed linear space of
dimension n. ThenX is isomorphic to II(C"). Consequently, any two finite-
dimensional normed linear spaces of the same dimension over C are
isomorphic.
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As a further consequence of the isomorphism q we may observe that every
finite-dimensional complex normed linear space is moreover complete, and
therefore a complex Banach space.

A.2 The Weak Topology

Let X be a (real or complex) normed linear space. Then the given norm defines
a topology on X via the associated metric. This is called the norm, or strong,
topology, and with respect to it, X is of course a locally convex topological
vector space. We shall now introduce a second natural topology on X, compara-
ble to the norm topology, but still of a somewhat different character.

DEFINITION. Let X* be the continuous dual of X. The weak topology on X is
defined to be the coarsest topology such that each map x*nX* is continuous.

Since the inverse image of any open neighborhood of 0 must be weakly open
for each x*, the weak topology has a neighborhood base at 0 given by sets of the
form

.N(0;x*,...,x,!;e)={xEX:)x*(x)I<e,j=1,...,n). (Al)

We may deduce from this that the weak topology is Hausdorff and satisfies the
first axiom of countability; hence with regard to convergence we may deal with
sequences rather than nets. Thus it follows at once from the definition that a
sequence (xj) in X converges weakly (i.e., converges in the weak topology) to a
point x0 in X if and only if for each x*EX*, we have

x*(xo) = lim x*(x,.) .
J__

(A.2)

These observations yield the following fundamental result:

A-3. PROPOSITION. Let X be as above. Then the following assertions hold:

(1) The weak topology is indeed weaker than the norm topology.

(ii) X is also a locally convex topological vector space with respect to
the weak topology.

PROOF. (i) Recall that in an arbitrary first countable topological space, the clo-
sure of a subset Y is exactly the set of points that can be obtained as the limits of
convergent sequences in Y. Clearly, Eq. 2 implies that strong convergence im-
plies weak convergence (since each x* is continuous), and so if a subset of X is
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weakly closed, it is also norm closed. Hence the weak topology is indeed
weaker than the norm topology.

(ii) Let {(x1,y1)} be a weakly convergent sequence in XxX with limit (xo,Y0).
Then the sequences {x} and {y,} converge weakly to x0 and yo, respectively.
Now since each x* is additive, the definition of weak continuity and the ordi-
nary continuity of addition on X with respect to the norm topology yield the
weak limit

{x+y1} -+ xo+yo .

Hence we have the following commutative square of mappings and weak limits:

(x , Y1) F--) xi + Y.i
I I

(xo>Yo) H xo+Yo

showing that addition is weakly continuous on XxX. A similar argument shows
that scalar multiplication is likewise weakly continuous, and hence X is at least
a topological group with respect to the weak topology.

It remains to show that X is weakly locally convex. For this, we consider Eq.
A. 1. Suppose that

x,yeN(O;x*,...,x,*;e) .

Then for all indices j and real numbers t, 05t51, the triangle inequality yields

Ixj*(tx+(1-t)Y)I s tlx*(x)I+(l-t)Ixj*(Y)l s e

whence tx+(1- t)y e N(O;x*, ..., x,*; r). HenceX is locally convex.

The weak topology on a normed linear space X also gives rise to a weak
dual: the space of all linear maps from X to the ground field that are continuous
with respect to the weak topology on X. The notation for this construction
might have proved too much of a challenge (perhaps X,*.k), but fortunately,
the weak dual coincides with the ordinary norm dual.

A-4. PROPOSITION. Let X be a normed linear space. Then the weak dual ofX
coincides with X*, the ordinary norm dual of X.

PROOF. Let W be an arbitrary space with topologies r and r' and suppose that r
is weaker than r'. Then for any fixed topological space Y, every map WAY that
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is r-continuous is automatically r'-continuous: if the inverse image of every
open subset of Y is open in the r topology, it is certainly also open in the r'
topology. In particular, since the weak topology is weaker than the norm topol-
ogy, every weakly continuous linear map from X to C is a norm continuous
linear map from X to C. Conversely, by definition of the weak topology every
norm continuous functional is also weakly continuous.

We show next that in a Banach space, weakly compact sets are norm closed
and norm bounded. The key to this is the uniform boundedness principle,
which we now recall: Let X be a Banach space, and let Y be a normed linear
space. Suppose that 9 is a subset of Hom(X, Y), the space of bounded opera-
tors from X to Y, such that for every xoX, the set {T(x): Te 9) is bounded in
Y. Then 9 is a bounded subset of Hom(X, Y).

A-5. PROPOSITION. Let K be a weakly compact subset of the Banach space X
Then K is norm closed and norm bounded.

PROOF. Since K is weakly compact, it is weakly closed, and hence norm closed.
It remains to show that K is bounded. Since each element of the dual space is
weakly continuous, for each element x*EX, we know that x*(K) is a compact,
hence bounded, subset of C. But consider the natural isometric embedding of K
into X** defined by k(x*)=x*(k) for each keK. (The isometry, hence injectiv-
ity, follows from the Hahn-Banach extension theorem.) Under this identifica-
tion, K is a subset of Hom(X*, C) which is bounded at each point of its domain.
Hence by the uniform boundedness principle, K is norm bounded in X**, which
is to say norm bounded in X.

A.3 The Weak-Star Topology

Let X be a (real or complex) normed linear space, with norm continuous dual
X*. Then every element xeX gives rise to an evaluation map VJEX** in the
usual way:

v,,(x*) = x*(x)

for all x*eX*. Indeed, since X is locally convex, the Hahn-Banach separation
theorem asserts in particular that the mapping x H vx is an embedding. Ac-
cordingly, we shall often simply write x(x*) for vx(x*).

DEFINITION. The weak-star topology on X* is the coarsest topology such that
each evaluation map vx for xeX is continuous.
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Note that in the special case that X=X**, the weak-star and weak topologies
on X* coincide by definition. Thus they can differ only to the extent that the
evaluation maps from X do not exhaust X**.

We can also characterize the weak-star topology on X by limits and neigh-
borhoods. A net {x2*} in X* converges in the weak-star topology to a point xo*
in X* if and only if for each xeX we have

xa*(x) = Jim xt*(x) . (A.3)

Moreover, since the inverse image under an evaluation map yr of a neighbor-
hood of zero in C must be weak-star open for each xeX, the weak-star topology
has a neighborhood base at 0 given by sets of the form

N*(0;xl,...,x,,;e)=(x*eX:Ix*(x,)I<e,j=l,...,n). (A.4)

Thus as above, we have that the weak-star topology is both Hausdorff and first
countable. These facts suffice to prove the following result:

A-6. PROPOSITION. LetX be as above. Then the following assertions hold:

(i) The weak-star topology ofX* is weaker than the weak topology.

(ii) X* is a locally convex topological vector space with respect to the
weak-star topology.

PROOF. (i) Rewriting Eq. 4 explicitly in terms of evaluation maps, we have

N*(0; xl,..., x,,; e) = (x* E X: I vz, (x*)I < e, j = 1, ..., n) .

Thus we see that weak-star neighborhoods are in fact weak neighborhoods, and
this proves (i).

(ii) The argument that X* is a locally convex topological vector space with re-
spect to the weak-star topology is entirely similar to the corresponding argu-
ment for the weak topology. C]

We shall next show that the weak-star dual of X* is precisely X. Note that
this argument is not as shallow a formality as the proof that the weak and norm
duals of X are identical. In fact, the key is the following purely linear algebraic
result:

A-7. LEMMA. Let V be a vector space over the field k, and let f, gj, ...,g be
elements of the dual space. Suppose further that Ker(f) LD (n Ker(gj)).
Then f lies in the span ofg...... g,,.
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PROOF. By induction on n. If n=1, we have Ker(f)QKer(g,), so that both fand
g, factor through the induced maps f,g, : V/Ker(g,)-*k. Since the quotient
space has dimension no greater then one, f is certainly a scalar multiple of
and hence f is likewise a scalar multiple of g1.

Now assume that n>1. Let

fl,911,

denote the respective restrictions of the indicated maps to Then clearly,

Ker(f+) Q n Ker(gi! )
m-'

whence by induction, f j is a linear combination of the maps g1 1, ...,g,r1 1. Thus
for some family of scalars A,_., A.,,_, ek, the map

fAjgi
J

vanishes on Ker(g ). But then Ker(f) Ker(g ), and so by the case n =1 it
follows that I is a scalar multiple of g,,. Hence f is indeed a linear combination
of the g,, as claimed.

A-8. PROPOSITION. Let X be a normed linear space. Then the weak-star dual of
X* coincides with X itself.

PROOF. Let x as an element of the dual of X* via
the evaluation map. Then by definition of the weak-star topology, x is a weak-
star continuous map on X*, and so only the converse is interesting.

Let f be a weak-star continuous linear map from X* into C. Then

U= {x*eX* : I f(x*)+<l}

is weak-star open in X* and hence contains an open neighborhood of zero of
the form N*(O; x,,. . -, x,,; e). Now suppose that for some x* eX* we have

x*(xj)=0 (.1=1,...,n)

which is to say that x* lies in the kernel of each of the evaluation maps corre-
sponding to the xt and in particular, x* a N*(0; x,, ..., x,,; e) U. Then also for
all scalars .Z we have
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(Ax*)(xf)=0 (! = 1,...,n)

whence l f(Ax*) I < 1 for all A. But then in fact, f(x*)=0. The upshot is that
Ker(f);;?(nKer(xl)), whence by the previous lemma f is a linear combination
of the x. and therefore itself a member of X, as required.

The most fundamental property of the weak-star topology on the dual of a
normed linear space is the following criterion for compactness:

A-9. THEOREM. (Alaoglu) Let X be a normed linear space and let B. denote
the unit ball of the (norm) continuous dual X*. Then

(1) B. is a weak-star compact subset ofX*;

(ii) Any bounded and weak-star closed subset of X* is weak-star com-
pact.

PROOF. (i) Let x*EBx.. Then for every xeBx, the unit ball in X, we have that
jx*(x)Is 1. Thus we obtain an injective mapping

BX.-* rID
BX

x* f-4.r%,,

from BX. into a product of unit disks D in the complex plane. Moreover, since
the weak-star topology on X* and the product topology on the codomain are
both the topology of pointwise convergence, the map above is in fact a topo-
logical isomorphism onto its image, and accordingly we may regard it as an
identification. Therefore, since by Tychonoffs theorem the full domain is com-
pact, it suffices to show that BA,. is, under the given identification, a closed sub-
set thereof.

Suppose that {xJ*} is a sequence in B. convergent to some function
f : Bx-*D. Then by pointwise convergence and the linearity of the dual ele-
ments it follows at once that

f(ax+by) = af(x) + bf(y)

whenever x, y, and ax +by lie in Bx. From this it is clear that f extends uniquely
by linearity from any basis contained in Bx to some element of X*, or, to put it
the other way around, f is the restriction of some unique element in X*, which
we also denote f. Moreover, sincef is the weak-star limit of functionals of norm
less than or equal to 1, f likewise has norm less than or equal to 1, and so is
itself a member of Ba... Accordingly, Bx. contains its limit points and is there-
fore closed, as required.
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(ii) Any bounded and weak-star closed subset Y of X* is contained in some ex-
pansion of the unit ball Bx. by a positive factor A. Since multiplication by such
a scalar is a homeomorphism of X* onto itself, Y is then a weak-star closed sub-
set of the weak-star compact space AB,-, and hence itself weak-star compact. l]

A.4 A Review of LP-Spaces and Duality

Let X be a locally compact Hausdorff space. Recall that a Radon measure on X
is a Borel measure p that is finite on compact sets, outer regular on all Borel
sets, and inner regular on all open sets. (See Section 1.2.) An integral defined
with respect to a Radon measure is called a Radon integral. Not surprisingly,
one can also develop Radon integrals as an extension of a linear functional I on
T0(X), the space of continuous functions on X with compact support, with the
additional proviso that I(f)2t0 wheneverftO.

Let f and g be measurable functions on X. Then we say that f and g agree
almost everywhere (with respect to p!) if the subset of X on which f and g disa-
gree has measure 0. Clearly, agreement almost everywhere is an equivalence
relation on the space of measurable functions on X. The quotient space modulo
this relation is denoted L(X). By customary abuse of language we shall often
speak of elements of L(X) as ordinary functions. Moreover, we admit functions
f:X--*R.{too} into L(X), provided that the subset Y=f-'((too)) has measure
zero and that f is measurable on the complement of Yin the ordinary sense.

Let L'(X)cL(X) denote the vector space (real or complex, according to
context) of integrable functions on X (with finite integral). By definition of ab-
stract integration, fEL'(X) if and only if I fIEL'(X). More generally, for any
real number p;-> I define LP(X)cL(X) as follows:

L°(X) = (fEL(X):IfI°eL'(X)) .

One defines a norm II II, on LP(X) by the formula

UP

HAP=If If1Pdx

By virtue of Minkowski's inequality, II I1, is indeed a norm on L '(X), and in
fact, LP(X) constitutes a Banach space with respect to this norm.

One extends these considerations to the case p=oo as follows. Assume that
f : X- (0,00] is a measurable function. Consider the subset S of R defined by

S= {aeR: p(f-'(a,oo]) = 0) .

Now define s, the essential supremum off by the formula
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JnnfS ifS*O
s=

00 otherwise.

Note that if S is nonempty, then indeed sES by virtue of the formula

f-'(Is,-ll =Uf-' ((s +
n

and the fact that a countable union of measurable sets is measurable. Given any
feL(X), define Il!IIL to be the essential supremum of If I. Accordingly, set

L`°(X) _ is finite} .

Elements of L °°(X) are called essentially bounded functions. The general inclu-
sion

(f+g)-'((a + b,ol) c f-'((a,xl) Li g-'((b,cel)

shows at once that II II,, is indeed a norm on L °°(X). In fact, L "°(X) is a Banach
space with respect to this norm.

Duality
We conclude this synoptic review with a key duality statement for L"-spaces,
but first we must introduce a technical restriction on our locally compact Haus-
dorf space X.

DEFINITION. A topological space X is called -compact if X is the countable
union of compact subsets.

Clearly the metric spaces R" and C" are a compact, since each is the union
of balls of integral radius. Moreover, one can show that every locally compact,

compact Hausdorfspace is normal. We now state the main result:

A-10. THEOREM. Let X be a locally compact, a--compact Hausdorfspace with
Radon measure p. Let p and q satisfy the relation

where 1:5p, q :!g co and l /co is defined to be zero. Then for each pair of
functions ffL"(X) and geL4(X),
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(fIg>= Jfkdu
X

is finite. Moreover, the mapping

L°(X) --s L4(X)*

fH(fl-)
defines an isometric isomorphism from L p(X) to (L 9(X))*.

Note that this theorem clearly extends to the case that X is the disjoint union
of cr-compact sets, a condition met by every locally compact topological group
G, as demonstrated by the following argument:

Let K be a compact neighborhood of the identity of G. Then K admits a
symmetric subset V, also a neighborhood of the identity, which we may assume
is closed and hence compact. The subset V in turn generates a subgroup H of G,
which is manifestly the countable union of compact sets:

H=U(V) .

J=1 k=1

Finally, G is the disjoint union of cosets of H, thus proving our claim.
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Appendix B: Dedekind Domains

We now survey the elementary theory of Dedekind domains. In particular, we
demonstrate the crucial property that the group of fractional ideals of a Dede-
kind domain is free on its prime ideals, and we examine the behavior of primes
under extension. Throughout, all of our rings are commutative with unity.

B.1 Basic Properties

Let A be an integral domain, which is to say that {0} is a prime ideal of A.
Then a nonempty subset ScA* is called multiplicative if it is closed under
multiplication. In this case, we can construct the ring

As = {als : aEA, sES}

via the usual quotient construction: a/s=a'/s' if and only if as'=a's. This is
called the localization ofA at S. Given any sES, we clearly have an embedding
of A in As defined by sending aEA to as/sEAs, and one sees that we may as-
sume that 1 ES.

In the particular case that S=A*, the localization As is the full fraction field
of A. This example has an important generalization. Let P be any prime ideal of
A. Then S=A -P is a multiplicative set. (We accept the convention that a prime
ideal is a proper ideal.) In this case, we write A, for A. and speak of the local-
ization of A at P.

Localization at an arbitrary multiplicative set S has the following key prop-
erty with respect to prime ideals.

B-1 PROPOSITION. Let A be an integral domain and let S be a multiplicative
subset ofA. Then the maps

Q' i-4Q=Q'nA
Q ,-4 Q' = QA

constitute a mutually inverse pair of order preserving bijections from the
set of prime ideals ofA5 to the set of prime ideals ofA that have empty in-
tersection with S.

PROOF. Exercise. 0

A ring having exactly one maximal ideal is called a local ring. We see at
once that in such a ring, the complement of this unique maximal ideal consists
precisely of the group of units. It follows from the proposition that if P is a
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prime ideal of A, then AP has only one maximal ideal, namely PAP. Therefore
the localization of a ring at a prime ideal is always local, and if Q is any ideal
of A not contained in the prime P, then clearly QAP blows up to AP. Thus lo-
calization at a prime ideal vastly simplifies the multiplicative structure of a
ring.

REMARK. Some algebraists prefer to reserve the term local ring for a Noether-
ian ring with a unique maximal ideal; they then call what we have defined
above a quasi-local ring.

The ideals of an integral domain and the full ring itself are determined by
localization at maximal ideals in the following sense.

B-2 PROPOSITION. Let A be an integral domain. Then

(i) We have that

A=nAM
M

where the intersection is taken over all maximal ideals ofA.

(ii) Let JocJ, be a chain of ideals in A such that JoAM=J,AM for all
maximal ideals M ofA. Then J,=J,.

PROOF. Let x=y/z (y,zEA) lie in the given intersection, and assume that xeAM
for every maximal ideal M. Consider the set 1= {aeA : aynAz}, which is clearly
an ideal of A. If M is any maximal ideal, then y/z=y'Iz' for some ring elements
y' and z' with z' not in M. Hence z'el, and thus I does not lie in any maximal
ideal. Accordingly, I=A, and so 1 EI, whence yeAz and x=y/zEA. This proves
part (i). The proof of part (ii) is similar, but in this case we show that for every
xeJ,, the ideal is all ofA, showing at once thatxeJo. 0

Local rings admit a special case that will be of utmost importance to us. A
principal ideal domain having exactly one nonzero prime (hence maximal)
ideal is called a discrete valuation ring. Note that this definition excludes
fields. If the unique prime ideal of A is generated by the irreducible element n;
then it is called a uniformizing parameter for A, and it is unique up to a factor
in A'. One sees at once that every nonzero element of A factors as uir" for some
unit u and unique nonnegative integer n; moreover, every ideal of A has the
form Air", again for a unique n. This brings us to the key definition of this ap-
pendix.

DEFINITION. Let A be a Noetherian integral domain. Then A is called a Dede-
kind domain if for every nonzero prime ideal P of A, the localization AP is a
discrete valuation ring.
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Our most interesting examples will arise shortly in connection with integral
elements. For the present, we make the following elementary observations, all
of which follow immediately from the first proposition above:

(i) Any principal ideal domain is a Dedekind domain.

(ii) Every prime ideal of a Dedekind domain is maximal.

(iii) The localization of a Dedekind domain at any multiplicative set is likewise
a Dedekind domain.

Our goal for this section is to demonstrate some fundamental equivalent
characterizations of a Dedekind domain, but before doing so, we must review
the notion of an integral element over a ring.

Integral Elements
Let B be an extension of the ring A, so that inclusion is a unitat ring homomor-
phism. Then an element xEB is said to be integral over A if there exists a
monic polynomial p(t)EA[t] such that p(x)=0.

B-3 PROPOSITION. Let A, B, and x be as above. Then the following four state-
ments are equivalent:

(i) The element x is integral over A.

(ii) The ring A [x] cB is finitely generated as a module over A.

(iii) The ring A[x] is contained in a subring A' of B that is finitely gener-
ated as a module over A.

(iv) There exists an A [x]-module L, finitely generated over A, such that the
only element ofA that annihilates L is zero.

PROOF. That (i) implies (ii) follows at once from the observation that if x satis-
fies a monic polynomial of degree n in A[t], then by Euclidean division A[x] is
generated by 1,x, ...,x" as a module over A. Clearly, (ii) implies (iii), and (iii)
implies (iv). (For the latter, take L=A[x] itself, which contains 1.) Thus it re-
mains only to show that (iv) implies (i).

Let L be as stated, and let b....., b, be a set of generators for L over A. Then
for each index i we have an equation

xb, = Y.?.ybj
J-,

for some A. Now consider the rxr matrix M defined by
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M = (x8;1 - 2; )

where S,, is the Kronecker delta. Then we have the matrix equation

Mb=O

where b is the column vector whose components are b,,...,b,. Multiplying both
sides of this equation by the adjoint of M shows that d=det(M) annihilates
every b, and hence all of L. By hypothesis we then must have that d=0, and
therefore x satisfies the monic polynomial det(tS,t-2,1) inA[t]. Thus x is integral
over A, and this completes the proof. l]

If x,yeB are both integral over A, then A[x,y] is finitely generated as an A.
module, and hence by part (iii) above, their sum, difference, and product are
likewise integral over A. Thus we have the following immediate corollary:

B-4 COROLLARY. Let A and B be as above. Then the set of all elements of B
that are integral over A is a subring of B containing A. O

The ring consisting of all elements of B integral over A is called the integral
closure of A in B. One deduces easily from the proposition above that the op-
eration of taking the integral closure within a fixed extension is idempotent. If
A is equal to its integral closure in an extension B, we say that A is integrally
closed in B. We say that an integral domain is integrally closed (without refer-
ence to an extension) if it is integrally closed in its fraction field. We leave it to
the reader to show that every unique factorization domain is integrally closed.

Characterization of Dedekind Domains

With the notion of integral closure in hand, we can now state our main result
on the characterization of Dedekind domains.

B-5 THEOREM. Let A be an integral domain, and assume that A is not a field.
Then the following three statements are equivalent:

(i) A is a Dedekind domain.

(ii) For each maximal ideal M of A, the localization A. is a discrete
valuation ring, and each nonzero element of A is contained in onlyfi-
nitely many prime ideals.

(iii) A is Noetherian, integrally closed, and every nonzero prime ideal is
maximal.
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Before proving this, we need to do a little more elementary commutative
algebra.

B-6 PROPOSITION. Let A be a Noetherian ring. Then

(i) Every ideal ofA contains a product of prime ideals.

(ii) There exist distinct prime ideals PI,...,Pr and corresponding positive
integers mi, ...,mr such that

{0}=fP'"-' .

1=1

Assume further thatA has zero divisors and that every nonzero prime ideal
ofA is maximal. Let the prime ideals P1, ...,Pr and integers ml, ...,mr be as
above. Then we have, moreover, that

(iii) A f j A/P!"f .

(iv) The prime ideals P,'..., P, are the only prime ideals ofA.

PROOF. Part (1) follows by Noetherian induction: If I is maximal among ideals
not containing a product of primes, then there exist x and y in A such that nei-
ther x nor y lies in I, but the product xy does. Then (Ax+I)(Ay+1)cI, and both
factors, by virtue of being strictly larger than 1, contain products of primes;
hence so does I-a contradiction. Part (ii) is an immediate corollary. Part (iii)
then holds in consequence of the Chinese remainder theorem, once we note that
if I and J are distinct maximal ideals of A, then I' and J" remain comaximal
for all positive m and n. Finally, part (iv) follows at once from part (iii). O

B-7 COROLLARY. Let A be a Noetherian ring for which every nonzero prime
ideal is maximal. Then every nonzero ideal of A is contained in only fi-
nitely many prime ideals. In particular, every nonzero element of A is
contained in only finitely many prime ideals.

PROOF. Let I be a nonzero ideal of A. If I is prime, it is contained in only one
proper ideal, namely I itself. Otherwise, Al! is not an integral domain, and we
can apply parts (ii) through (iv) of the preceding proposition to this quotient. O

We may now proceed to the proof of the main theorem.

PROOF OF THEOREM. (i) =:> (ii). If A is a Dedekind domain, it certainly satisfies
the condition of the preceding corollary, and hence assertion (ii) clearly holds
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for A. (Note that {0} is not a maximal ideal, whence the localization state-
ment.)

(ii)=(iii). First, since A is the intersection of its localizations at maximal ide-
als, each of which is integrally closed by virtue of being a unique factorization
domain, we have thatA itself is integrally closed. Second, ifPcQ is any proper
chain consisting of a prime ideal P and maximal ideal Q, then PAQcQAQ is
likewise a proper chain of prime ideals in the discrete valuation ring A.-an
impossibility. Hence every prime ideal of A is maximal, and it only remains to
show that A is Noetherian.

Let 1 be any nonzero ideal in A and let XEI, with x itself nonzero. Then there
exist only finitely many prime ideals P...... P, of A that contain I. At each cor-
responding localization-which is a principal ideal domain-we have

IA pi _ yi APi

for some y,,...,y,, each of which, as one shows easily, we may assume also to
lie in 1. Now consider the ideal

which is clearly contained in I. On the one hand, if P is any prime ideal of A
not containing x, then JAP and IAP both blow up to A. On the other hand, if P
is any prime ideal of A that does contain x, then P=P1 for some j, and by con-
struction,

y1ApgJA,gJAP=yjAP
and again JAP=IAP. Thus Jc! constitutes a chain of ideals that collapses lo-
cally at every prime ideal, and therefore =1 by Proposition B-2. Accordingly,
our original ideal I is finitely generated, whence A is Noetherian.

(iii)=(i). Since A is given as Noetherian, we need only show that for each
nonzero prime ideal P, the localization AP is a discrete valuation ring. We
know already that AP has a unique prime ideal, because the nonzero primes of
A are maximal by hypothesis. Since this localization is also integrally closed
and Noetherian, the proof of the characterization theorem is complete if we can
show that any Noetherian, integrally closed domain having precisely one non-
zero prime ideal is also a principal ideal domain. Let B be such a ring, with Q
its unique nonzero prime.

Given xeB-B", consider the nontrivial quotient B/Bx as a module over B.
For each nonzero element y+Bx in this quotient, let I(y)cB denote its annihi-
lator. Then because B is assumed Noetherian, among these annihilators there is
a maximal element, I,,, corresponding to, say, e (B/Bx)*. One checks
readily that I is prime and hence equal to Q. So while y itself does
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not lie in Bx. Thus z =ya,/x does not lie in B, and therefore z cannot be integral
over B. But certainly QzcB, whence Qz is an ideal ofB. We claim that in fact,
Qz=B. Assume contrariwise that QzcQ. Then we have:

Qz is a B[z]-module.

Qz is finitely generated over B.

Since B is an integral domain, the final statement of Proposition B-3 yields a
contradiction: namely, that z is integral over B. Thus Qz=B, and setting -r=z-1,
we have Q=B?r (and in fact, -ir will be our uniformizing parameter).

We now complete the proof that B is a discrete valuation ring. Let I be any
nonzero ideal of B. Then 1=Iz-lzclz, whence we have an ascending chain of
B-modules

which must become stationary. But if Iz"=Iz' , then Iz" is a B[z]-module,
finitely generated over B, and again we have the contradiction that z is integral
over B. Hence only a finite part of this chain can remain in B. So assume that
for some nonnegative integer n,

Iz"cB but Ii"" cr B.

Then it cannot be the case that Iz"c;.-Q=Brr, or else multiplying by z=rr' yields
another contradiction, and therefore Iz"=B. This to say that I=Bjr". Hence B is
principal, and the proof is complete.

Factorization of Ideals
We shall now develop another critical property of a Dedekind domain. The

point is that while a Dedekind domain need not exhibit unique factorization at
the level of elements, it does so nonetheless at the level of ideals.

B-8 PRoposmoN. Let A be a Dedekind domain. Then every nonzero ideal I of
A has a unique factorization into a product of prime ideals. In fact, the
ideals appearing in this factorization are precisely those prime ideals
containing 1.

PROOF. Clearly we may assume that I is a proper ideal. Then I is at least con-
tained in some prime ideal, and Corollary B-7 implies that there are only fi-
nitely many such primes. Let these be Pj,...,Pr. They are also precisely the
primes of A/I, and we know from Proposition B-6 that

rI;2
11 PIRJ
J-1
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for some positive integers ni. By the Chinese remainder theorem,

r r

B=A/f Pj"J =f AIPj-J
i=1 i=1

and by localization it is easy to see that every ideal in the factor rings appearing
on the right takes the form

pJ.'/P"i

for some nonnegative mi. Hence the image of I in B takes the form

r
F1 Pj J / Pi"f
j=1

and therefore

We see at this point that the mi are in fact positive, or else we would contradict
the hypothesis that I is contained in each of the Pi. This shows the existence of
the asserted prime factorization.

We can easily deduce uniqueness, again by localization. Suppose that

r
=TTQ;

l=I 1=l

for a second family of prime ideals (Qi). Then localizing at any P. yields, on
the left-hand side,

mAP 2rJ J
J

where ii is the uniformizing parameter for the local ring APB. Hence each Pi
must correspond to a Qi, and corresponding factors must manifest the same
exponent. This completes the proof. O

REMARK. A strong form of the converse of this proposition holds: an integral
domain in which every ideal is the product of prime ideals is necessarily a
Dedekind domain.
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Fractional Ideals and the Ideal Class Group
Let A be a Dedekind domain with field of fractions K. A fractional ideal of K is
a nonzero finitely generated A -submodule of K. Let JK denote the set of all such
fractional ideals, the so-called ideal group of K. This clearly contains all the
ideals of A and, in particular, A itself.

Given I,JEJK, define the product IJ as for ordinary ideals; this clearly re-
mains in JK. Moreover, for IeJK, define I-'={xeK: IxcA}. One checks easily
that I-1 EJK, but perhaps it is not obvious that I"tI=A. For ordinary ideals this
follows from Proposition B-8 by localization; for arbitrary elements of JK we
need an extension of the cited proposition. This is given by the first part of the
following theorem.

B-9 THEOREM. Let A and K be as above. Then every element of IeJK has a
unique factorization of the form

I=HPM'
i=1

where the exponents m, may be positive or negative. Consequently, JK is a
free abelian group on the prime ideals of A.

PROOF. We can construct an element xEA such that IxcA. Noting that
I=(Ix)(Ax)-', we may then apply Proposition B-8 to both Ix and Ax to get our
factorization. The rest is a straightforward exercise.

Elements of the form Ax in JK, with xeK* are called principal fractional
ideals, and these constitute a subgroup denoted P. The quotient CIK=JK/PK is
the familiar ideal class group of K. Note well that for a general Dedekind do-
main, ClK need not be finite. This shows that one essentially needs some analy-
sis to supplement the abstract algebra in Chapter 5.

B.2 Extensions of Dedekind Domains

In this section we give some further fundamental definitions and state, without
proof, some key results that arise in connection with extensions of Dedekind
domains. Indeed, the theorems that appear here in essence define our interest in
this rich class of rings.

Throughout, let A be a Dedekind domain with fraction field K, and let LIK
be a finite extension of K. Then the integral closure of A in L is a subring of L,
which we denote B. Clearly, AQB. The following theorem is paramount; it has
the immediate particular consequence that for a global field K, the ring of inte-
gers uK is a Dedekind domain.
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B-10 THEOREM. Let the ring extension B/A and the field extension LIK be
given as above. Then B is also a Dedekind domain.

While we omit the proof, we will remark that one approach to proving this
result is to advance in two steps by introducing an intermediate field E such
that one story of the resulting tower is separable, while the other is purely in-
separable. In the separable case, we may use the nondegeneracy of the trace
map to show that the corresponding integral closure is Noetherian, and then
proceed to show that it satisfies part (iii) of our characterization of Dedekind
domains (Theorem B-5). In the purely inseparable case, we may use part (ii) of
our characterization: the argument is reducible by localization to the case that A
is a discrete valuation ring, and one then shows that B is likewise a discrete
valuation ring.

From this theorem and the results of the preceding section, we have at once
that given any prime ideal P of A,

9
PB =11

j

where Ql,...,Q2 are the prime ideals of B that lie above (that is, contain) P.
Hence in this entirely algebraic setting we now become reacquainted with two
old friends from Chapter 4.

DEFINITIONS. The number ej defined above is called the ramification index of Qj
over A. The number

j = (B/Qj: A/P)

(that is, the degree of the extension of residue fields) is called the residual de-
gree of Qj over A.

Of course, every prime Q of B lies over some prime P of A, namely QrnA.
Thus Q is said to be ramified over A if Q has ramification index greater than
one or if the corresponding extension of residue fields fails to be separable.
Otherwise, we say that Q is unramifred over A. In the same vein, a prime P of A
is ramified in B if it is divisible by a prime of B ramified over A; otherwise, P is
unramified.

We have these familiar-looking results that relate ramification index to re-
sidual degree:

B-11 THEOREM. Let P and Ql,...,Q8 be as above. Then the following state-
ments hold:
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(i) The summation Eel j equals the dimension of B/PB over the residue
field A IP and, moreover, is bounded by the degree of L over K.

(ii) IfL/K is separable, then in fact, 2ejj=(L:K).

(iii) If LIK is Galois, then all of the ei have a common value e and all of
the j have a common value f, moreover, efg= (L: K).

The Norm of an Ideal

Again A is a Dedekind domain with fraction field K, LIK is a finite extension of
K, and B is the integral closure of A in L. Recall that for any xEL,

NL,K(x) and trL,K(x)

the norm and the trace of x, are, respectively, the determinant and the trace of
the K-linear endomorphism of L that sends to xy. One knows that

NL,K(x)=(fla(x))[LXL and trL,K (x) = [L:K]r y-a(x)

where both sum and product are taken over a full set of embeddings of L over K
into a fixed algebraic closure of K, and [L : K], is the inseparable degree of the
extension. It follows at once from these formulas that both maps send elements
ofB into A.

We may extend the norm map NL,K:L-*K to ideals. If I is an ideal of B,
define NL,K(I) to be the ideal of A generated by all of the images NL,K(x), where
x ranges over I. In the special case that K=Q, the ideal NL,K(I) is contained in
Z and therefore is generated by a unique positive integer, which we shall de-
note simply N(I). This is called the absolute norm of an integral ideal in a
number field.

We summarize the most important properties of the norm and absolute norm
for ideals in the two following propositions.

B- 12 PROPOSmTioN. Let the extensions B/A and LIK be given as above and as-
sume further that the latter is separable. Suppose that I is a nonzero ideal
of B with prime factorization

I = fIQ7J .

J=1

Put P.=Q1nA and set f, equal to the residual degree of Qf over A. Then

P
NL,K(I)=F1 J1r1

i=1
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B- 13 PROPOSITION. Let K be a number field and let A be the integral closure of
Z in K. Then for any nonzero ideal I of A, we have N(I) = Card(A/I).

The Different and the Discriminant
The extensions A/B and LIK remain as above, with the continuing assumption
that L/K is separable. If J is any subset of L, then J' denotes its dual subset,
which is defined by

J'= (xeL:tr,K(xJ)cA) .

One can show that if J is a fractional ideal of L, then J' is likewise a fractional
ideal of L. The dual subset corresponding to B itself is called the inverse differ-
ent of B/A. The different of the extension, denoted DB,A, is then the inverse
fractional ideal of the inverse different. Since DB,A is the inverse of a fractional
ideal that contains 1, it is in fact an ideal of B, and one can show that this ideal
is determined locally.

The following general relation shows how the different is fundamental to the
calculation of the dual of any fractional ideal J of L:

J'= (Da1A)-1J-1 .

Moreover, one has this essential connection with ramification:

B-14 THEOREM. Let Q be a prime ideal of B. Then Q is ramified if and only if
Q divides the different DB,A. In fact, Q'-1 divides DB,A, where e is the
ramification index of Q over A.

REMARK. As an immediate corollary, we have that only finitely many primes of
B are ramified over A.

We now develop one further ring invariant. Let x1,...,...... x,, be a basis for L over
K. Then

A(x,,...,xn) = det(trL,K(x;xj))15ijSn

lies in K and is called the discriminant of the basis x,, ...,xn. If each x, lies in B,
then A(x,,...,x,,) lies in A. Thus as xi,...,xn range over all bases of L over K
that are contained in B, the elements generate an ideal of A, de-
noted A(B/A) and called the discriminant ideal. This again may be determined
locally, and the discriminant gives us a criterion for ramification at the lower
level:

B-15 THEOREM. Let P be a prime ideal ofA. Then P ramifies in B if and only if
P contains the discriminant ideal A(B/A).
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Finally, we state the relation between the different and the discriminant; this
is mediated by the norm:

B-16 THEOREM. Let the rings A and B and the separable extension L/K be as
above. Then we have that

NLiK(Dau) = A(B/A) .

That is, the discriminant is the norm of the different.

The reader should refer to the exercises from Chapter 4 for a development of
the different and the discriminant for the integers of local and global fields.
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ramification index, 152, 163, 335
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narrow, 207
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regulator (of a number field), 283
regulator map, 282
representation(s)

(topological), 47
(topologically) irreducible, 49
abstract, 47
algebraically irreducible, 49
equivalent, 50
induced, 84
multiplicity-free, 85
pre-unitarily equivalent, 74
pre-unitary, 73
unitarily equivalent, 74
unitary, 74

residual degree, 152, 163, 335
resolvent set, 52
restricted direct product

characters, 182
definition, 180

restriction map (for places), 160



Index 349
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field), 312

Riemann zeta function, 241, 278
Riemann-Roch theorem, 264

geometric form, 267
root number, 242, 259

S

Schur's lemma, 75
Schwartz function, 245
Schwartz-Bruhat function, 246

adelic, 260
S-class group, 203
second spectral theorem, 72
self-adjoint function space, 60
self-adjoint operator, 62
self-dual measure, 245, 246, 300
separable (elements and extensions),

33
sesquilinear form, 72
shifted dual, 245
S-ideles, 201, 281

of norm one, 202
sigma compact (topological space),

324
sign character, 244
signed measure, 71
S-integers (of a global field), 202
smooth function (on a local field), 245
spectral measure, 71
spectral radius, 51
spectrum (of an element in a Banach

algebra), 51
purely continuous, 85

standard character(s)
adelic, 269
complex, 251
local non-Archimedean, 253, 297,

299
real, 249

Stone-Weierstzass theorem, 60
strictly multiplicative function, 137
supernatural number, 36

T

tamely ramified extension, 177
Tauberian theorem (for Dirichlet

series), 313
Tchebotarev density theorem, 220
theta function, 241
topological field, 46
topological group

characters, 87
definition, I
quotient space, 6
separation axioms, 5

topological vector space, 46
totally disconnected (topological

space), 25
totally ramified extension, 152, 163
trace map (on a field extension), 336
transfer map, 221

on Galois groups, 223
transitivity, 222

transform topology, 107
translation (of functions), 4
translation-invariant

Borel measure, 10
topology, 2

triangle inequality, 155

U

ultrametric absolute value. See
absolute value, ultrametric

ultrametric field or module, 137
ultrametric inequality, 137
uniform boundedness principle, 319
uniform continuity (left and right), 4
uniformizing parameter, 145, 327
unit ball, 315
unitary characters, 243
unitary operator, 62
unramified character, 244
unramified extension, 152, 163
unramified prime, 335
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w

weak-star topology, 58, 319

z
zeta function

weak dual (of a nonmed linear space), global, 271
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The general aim of this book is to provide a modem approach to number
theory through a blending of complementary algebraic and analytic per-
spectives, emphasizing harmonic analysis on topological groups. The more
particular goal is to cover John Tate's visionary thesis, giving virtually all

of the necessary analytic details and topological preliminaries-technical
prerequisites that are often foreign to the typical, more algebraically inclined

number theorist. While most of the existing treatments of Tate's thesis are
somewhat terse and less than complete, the authors' intent is to be more
leisurely, more comprehensive, and more comprehensible. The text
addresses students who have taken a year of graduate-level courses in

algebra, analysis, and topology. While the choice of objects and methods
is naturally guided by specific mathematical goals, the approach is by no
means narrow. In fact, the subject matter at hand is germane not only to
budding number theorists, but also to students of harmonic analysis or
the representation theory of Lie groups. Moreover, the work should be a
good reference for working mathematicians interested in any of these fields.
Specific topics include: topological groups, representation theory, duality

for locally compact abelian groups, the structure of arithmetic fields, ade-
les and ideles, an introduction to class field theory, and Tate's thesis and
applications.
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