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Preface

A good part of matrix theory is functional analytic in spirit. This statement
can be turned around. There are many problems in operator theory, where
most of the complexities and subtleties are present in the finite-dimensional
case. My purpose in writing this book is to present a systematic treatment
of methods that are useful in the study of such problems.

This book is intended for use as a text for upper division and gradu-
ate courses. Courses based on parts of the material have been given by
me at the Indian Statistical Institute and at the University of Toronto (in
collaboration with Chandler Davis). The book should also be useful as a
reference for research workers in linear algebra, operator theory, mathe-
matical physics and numerical analysis.

A possible subtitle of this book could be Matriz Inequalities. A reader
who works through the book should expect to become proficient in the art
of deriving such inequalities. Other authors have compared this art to that
of cutting diamonds. One first has to acquire hard tools and then learn how
to use them delicately.

The reader is expected to be very thoroughly familiar with basic lin-
ear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R.
Halmos and Linear Algebra by K. Hoffman and R. Kunze provide adequate
preparation for this. In addition, a basic knowledge of functional analy-
sis, complex analysis and differential geometry is necessary. The usual first
courses in these subjects cover all that is used in this book.

The book is divided, conceptually, into three parts. The first five chapters
contain topics that are basic to much of the subject. (Of these, Chapter 5
is more advanced and also more special.) Chapters 6 to 8 are devoted to
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perturbation of spectra, a topic of much importance in numerical analysis,
physics and engineering. The last two chapters contain inequalities and
perturbation bounds for other matrix functions. These too have been of
broad interest in several areas.

In Chapter 1, I have given a very brief and rapid review of some basic
topics. The aim is not to provide a crash course but to remind the reader
of some important ideas and theorems and to set up the notations that are
used in the rest of the book. The emphasis, the viewpoint, and some proofs
may be different from what the reader has seen earlier. Special attention
is given to multilinear algebra; and inequalities for matrices and matrix
functions are introduced rather early. After the first chapter, the exposition
proceeds at a much more leisurely pace. The contents of each chapter have
been summarised in its first paragraph.

The book can be used for a variety of graduate courses. Chapters 1
to 4 should be included in any course on Matrix Analysis. After this, if
perturbation theory of spectra is to be emphasized, the instructor can go
on to Chapters 6,7 and 8. With a judicious choice of topics from these
chapters, she can design a one-semester course. For example, Chapters 7
and 8 are independent of each other, as are the different sections in Chapter
8. Alternately, a one-semester course could include much of Chapters 1
to 5, Chapter 9, and the first part of Chapter 10. All topics could be
covered comfortably in a two-semester course. The book can also be used
to supplement courses on operator theory, operator algebras and numerical
linear algebra. The book has several exercises scattered in the text and a
section called Problems at the end of each chapter. An ezerciseis placed at a
particular spot with the idea that the reader should do it at that stage of his
reading and then proceed further. Problems, on the other hand, are designed
to serve different purposes. Some of them are supplementary exercises,
while others are about themes that are related to the main development in
the text. Some are quite easy while others are hard enough to be contents
of research papers. From Chapter 6 onwards, I have also used the problems
for another purpose. There are results, or proofs, which are a bit too special
to be placed in the main text. At the same time they are interesting enough
to merit the attention of anyone working, or planning to work, in this area.
I have stated such results as parts of the Problems section, often with
hints about their solutions. This should enhance the value of the book as
a reference, and provide topics for a seminar course as well. The reader
should not be discouraged if he finds some of these problems difficult. At a
few places I have drawn attention to some unsolved research problems. At
some others, the existence of such problems can be inferred from the text.
I hope the book will encourage some readers to solve these problems too.

While most of the notations used are the standard ones, some need a
little explanation: .

Almost all functional analysis books written by mathematicians adopt
the convention that an inner product {u,v) is linear in the variable u and
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conjugate-linear in the variable v. Physicists and numerical analysts adopt
the opposite convention, and different notations as well. There would be no
special reason to prefer one over the other, except that certain calculations
and manipulations become much simpler in the latter notation. If v and v
are column vectors, then u*v is the product of a row vector and a column
vector, hence a number. This is the inner product of v and v. Combined
with the usual rules of matrix multiplication, this facilitates computations.
For this reason, I have chosen the second convention about inner products,
with the belief that the initial discomfort this causes some readers will be
offset by the eventual advantages. (Dirac’s bra and ket notation, used by
physicists, is different typographically but has the same idea behind it.)
The k-fold tensor power of an operator is represented in this book as
®* A, the antisymmetric and the symmetric tensor powers as AFA and V¥ A,
respectively. This helps in thinking of these objects as maps, 4 — ®*4,
etc. We often study the variational behaviour of, and perturbation bounds
for, functions of operators. In such contexts, this notation is natural.
Very often we have to compare two n-tuples of numbers after rearrang-
ing them. For this I have used a pictorial notation that makes it easy to
remember the order that has been chosen. If z = (z,...,z,) is a vector
with real coordinates, then z! and z are vectors whose coordinates are ob-
tained by rearranging the numbers z; in decreasing order and in increasing

order, respectively. We write 2! = (z},...,z%) and T = (z],...,z]),
where zt > --- >z} and z] < --- < z.

The symbol || - ||| stands for a unitarily invariant norm on matrices: one
that satisfies the equality ||[UAV]|| = |||A]|| for all A and for all unitary

U,V. A statement like ||A}| < || B|| means that, for the matrices A and B,
this inequality is true simultaneously for all unitarily invariant norms. The
supremum norm of A, as an operator on the space C”, is always written
as ||A||. Other norms carry special subscripts. For example, the Frobenius
norm, or the Hilbert-Schmidt norm, is written as ||A||z. (This should be
noted by numerical analysts who often use the symbol ||A||2 for what we
call [|A]].)

A few symbols have different meanings in different contexts. The reader’s
attention is drawn to three such symbols. If z is a complex number, |z! de-
notes the absolute value of z. If z is an n-vector with coordinates (z1, . .., Zn),
then |z| is the vector (|z1],...,|Zn|)- For a matrix A, the symbol |A| stands
for the positive semidefinite matrix (A* A)'/2. If J is a finite set, |J| denotes
the number of elements of J. A permutation on n indices is often denoted
by the symbol o. In this case, o(j) is the image of the index j under the
map o. For a matrix A, oc(A) represents the spectrum of A. The trace of a
matrix A is written as tr A. In analogy, if = (z;,...,1,) is a vector, we
write tr z for the sum ¥z;.

The words matrix and operator are used interchangeably in the book.
When a statement about an operator is purely finite-dimensional in content,
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I use the word matrix. If a statement is true also in infinite-dimensional
spaces, possibly with a small modification, I use either the word matrix or
the word operator. Many of the theorems in this book have extensions to
infinite-dimensional spaces.

Several colleagues have contributed to this book, directly and indirectly. I
am thankful to all of them. T. Ando, J.S. Aujla, R.B. Bapat, A. Ben Israel,
L. Ionascu, A.K. Lal, R.-C.Li, S.K. Narayan, D. Petz and P. Rosenthal read
parts of the manuscript and brought several errors to my attention. Fumio
Hiai read the whole book with his characteristic meticulous attention and
helped me eliminate many mistakes and obscurities. Long-time friends and
coworkers M.D. Choi, L. Elsner, J.A.R. Holbrook, R. Horn, F. Kittaneh,
A. Mclntosh, K. Mukherjea, K.R. Parthasarathy, P. Rosenthal and K.B.
Sinha, have generously shared with me their ideas and insights. These ideas,
collected over the years, have influenced my writing.

I owe a special debt to T. Ando. I first learnt some of the topics presented
here from his Hokkaido University lecture notes. I have also learnt much
from discussions and correspondence with him. I have taken a lot from his
notes while writing this book.

The idea of writing this book came from Chandler Davis in 1986. Various
logistic difficulties forced us to abandon our original plans of writing it
together. The book is certainly the poorer for it. Chandler, however, has
contributed so much to my mathematics, to my life, and to this project,
that this is as much his book as it is mine.

I am thankful to the Indian Statistical Institute, whose facilities have
made it possible to write this book. I am also thankful to the Department
of Mathematics of the University of Toronto and to NSERC Canada, for
several visits that helped this project take shape.

It is a pleasure to thank V.P. Sharma for his I&TgXtyping, done with
competence and with good cheer, and the staff at Springer-Verlag for their
help and support.

My most valuable resource while writing, has been the unstinting and
ungrudging support from my son Gautam and wife Irpinder. Without that,
this project might have been postponed indefinitely.

Rajendra Bhatia
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I
A Review of Linear Algebra

In this chapter we review, at a brisk pace, the basic concepts of linear and
multilinear algebra. Most of the material will be familiar to a reader who
has had a standard Linear Algebra course, so it is presented quickly with
no proofs. Some topics, like tensor products, might be less familiar. These
are treated here in somewhat greater detail. A few of the topics are quite
advanced and their presentation is new.

I.1 Vector Spaces and Inner Product Spaces

Throughout this book we will consider finite-dimensional vector spaces over
the field C of complex numbers. Such spaces will be denoted by symbols
V, W, Vi, Vs, etc. Vectors will, most often, be represented by symbols u, v,
w, x, etc., and scalars by a, b, s, t, etc. The symbol n, when not explained,
will always mean the dimension of the vector space under consideration.

Most often, our vector space will be an inner product space. The inner
product between the vectors u,v will be denoted by {u,v). We will adopt
the convention that this is conjugate-linear in the first variable v and linear
in the second variable v. We will always assume that the inner product is
definite; i.e., {u,u) = 0 if and only if v = 0. A vector space with such
an inner product is then a finite-dimensional Hilbert space. Spaces of this
type will be denoted by symbols H, K, etc. The norm arising from the inner
product will be denoted by ||ul; i.e., ||ul| = (u,u)!/2.

As usual, it will sometimes be convenient to deal with the standard
Hilbert space C™. Elements of this vector space are column vectors with
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n coordinates. In this case, the inner product (u,v) is the matrix product
u*v obtained by multiplying the column vector v on the left by the row
vector u*. The symbol * denotes the conjugate transpose for matrices of
any size. The notation u*v for the inner product is sometimes convenient
even when the Hilbert space is not C™.

The distinction between column vectors and row vectors is important in
manipulations involving products. For example, if we write elements of C™
as column vectors, then w*v is a number, but uv* is an n x n matrix (some-
times called the “outer product” of v and v). However, it is typographically
inconvenient to write column vectors. So, when the context does not de-
mand this distinction, we may write a vector z with scalar coordinates
Zi,-..,Zn, simply as (z1,...,Zn). This will often be done in later chap-
ters. For the present, however, we will maintain the distinction between
row and column vectors.

Occasionally our Hilbert spaces will be real, but we will use the same
notation for them as for the complex ones. Many of our results will be true
for infinite-dimensional Hilbert spaces, with appropriate modifications at
times. We will mention this only in passing.

Let X = (z1,...,zk) be a k-tuple of vectors. If these are column vectors,
then X is an n x k matrix. This notation suggests matrix manipulations
with X that are helpful even in the general case.

For example, let X = (z1,...,z«) be a linearly independent k-tuple. We
say that a k-tuple Y = (y1,...,yk) is biorthogonal to X if (y;,z;) = 6;;.
This condition is expressed in matrix terms as Y* X = I, the k x k identity
matrix.

Exercise 1.1.1 Given any k-tuple of linearly independent vectors X as
above, there exists a k-tuple Y biorthogonal to it. If k = n, this Y is unique.

The Gram-Schmidt procedure, in this notation, can be interpreted as a
matrix factoring theorem. Given an n-tuple X = (zy,...,%y) of linearly
independent vectors the procedure gives another n-tuple Q = (q1,.--,¢n)
whose entries are orthonormal vectors. For each k£ = 1,2, ..., n, the vectors
{z1,...,zx} and {qi,. .., gx } have the same linear span. In matrix notation
this can be expressed as an equation, X = QR, where R is an upper
triangular matrix. The matrix R may be chosen so that all its diagonal
entries are positive. With this restriction the factors ¢ and R are both
unique. If the vectors x; are not linearly independent, this procedure can
be modified. If the vector zy is linearly dependent on zi,...,Zg_1, set
qr = 0; otherwise proceed as in the Gram-Schmidt process. If the kth
column of the matrix @) so constructed is zero, put the kth row of R to be
zero. Now we have a factorisation X = QR, where R is upper triangular
and @ has orthogonal columns, some of which are zero. Take the nonzero
columns of @@ and extend this set to an orthonormal basis. Then, replace
the zero columns of @) by these additional basis vectors. The new matrix
@ now has orthonormal columns, and we still have X = QR, because the



1.2 Linear Operators and Matrices 3

new columns of () are matched with zero rows of R. This is called the QR
decomposition.

Similarly, a change of orthogonal bases can be conveniently expressed in
these notations as follows. Let X = (z1,...,zx) be any k-tuple of vectors
and E = (ei1,...,e,) any orthonormal basis. Then, the columns of the
matrix E*X are the representations of the vectors comprising X, relative
to the basis E. When k& = n and X is an orthonormal basis, then E*X is a
unitary matrix. Furthermore, this is the matrix by which we pass between
coordinates of any vector relative to the basis E and those relative to the
basis X. Indeed, if

u=ai€y+ -+ anen = 0171 + - + bnZn,

then we have
u=Fa, a;=c¢€lu, a=FE"uy,

J
u=Xb, b;j=zju, b=X"u

Hence,
a=FE"Xb and b= X"Fa.

Exercise 1.1.2 Let X be any basis of H and let Y be the basis biorthogonal
to it. Using matriz multiplication, X gives a linear transformation from
C™ to H. The inverse of this is given by Y*. In the special case when
X is orthonormal (so that Y = X ), this transformation is inner-product-
preserving if the standard inner product is used on C".

Exercise 1.1.3 Use the QR decomposition to prove Hadamard’s inequal-
ity: if X = (z1,...,%n), then

|det X| < ]l

j=1

FEquality holds here if and only if either the x; are mutually orthogonal or
some T; 18 zero.

[.2 Linear Operators and Matrices

Let £(V,W) be the space of all linear operators from a vector space V to
a vector space W. If bases for V,W are fixed, each such operator has a
unique matrix associated with it. As usual, we will talk of operators and
matrices interchangeably.

For operators between Hilbert spaces, the matrix representations are
especially nice if the bases chosen are orthonormal. Let A € L(H, K), and
let £ = (ey,...,e,) be an orthonormal basis of H and F' = (f1,..., fm) an
orthonormal basis of K. Then, the (i, j)-entry of the matrix of A relative
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to these bases is a;; = f;Ae; = (fi, Ae;). This suggests that we may say
that the matrix of A relative to these bases is F*AFE.

In this notation, composition of linear operators can be identified with
matrix multiplication as follows. Let M be a third Hilbert space with or-
thonormal basis G = (g, ..-,9p). Let B € L(K, M). Then

(matrix of B- A) = G*(B-A)FE
= G'BF F*AE
= (G*BF)(F*AE)
= (matrix of B) (matrix of A).

The second step in the above chain is justified by Exercise 1.1.2.
The adjoint of an operator A € L(H,K) is the unique operator A* in
L(K,H) that satisfies the relation

(2, Az)c = (A*2,T)n
forall z € H and 2z € K.

Exercise 1.2.1 For fized bases in H and K, the matriz of A* is the con-
jugate transpose of the matriz of A.

For the space L(H,H) we use the more compact notation £(H). In the
rest of this section, and elsewhere in the book, if no qualification is made,
an operator would mean an element of L(H).

An operator A is called self-adjoint or Hermitian if A = A*, skew-
Hermitian if A = —A*, unitary if AA* = [ = A*A, and normal if
AA* = A*A.

A Hermitian operator A is said to be positive or positive semidefinite
if {z, Az) > 0 for all z € H. The notation A > 0 will be used to express
the fact that A is a positive operator. If (z, Az) > 0 for all nonzero z, we
will say A is positive definite, or strictly positive . We will then write
A > 0. A positive operator is strictly positive if and only if it is invertible.
If A and B are Hermitian, then wesay A > Bif A— B > 0.

Given any operator A we can find an orthonormal basis v, - .., y, such
that for each & = 1,2,...,n, the vector Ay is a linear combination of
Y1,--->Yk- This can be proved by induction on the dimension n of H. Let
A1 be any eigenvalue of A and y; an eigenvector corresponding to A;, and
M the 1-dimensional subspace spanned by it. Let A be the orthogonal com-
plement of M. Let Py denote the orthogonal projection on . For y € N,
let Axy = Py Ay. Then, Ay is a linear operator on the (n—1)-dimensional
space N. So, by the induction hypothesis, there exists an orthogonal ba-
sis y2,-..,yn of N such that for k = 2,...,n the vector Axyx is a linear
combination of ya, ..., ykx- Now 1, ..., ¥y, is an orthogonal basis for H, and
each Ayy is a linear combination of y;,...,yx for k =1,2,...,n. Thus, the
matrix of A with respect to this basis is upper triangular. In other words,
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every matrix A is unitarily equivalent (or unitarily similar) to an up-
per triangular matrix T', i.e., A = QT'Q*, where Q is unitary and T is upper
triangular. This triangular matrix is called a Schur Triangular Form for
A. An orthonormal basis with respect to which A is upper triangular is
called a Schur basis for A. If A is normal, then T is diagonal and we have
Q*AQ = D, where D is a diagonal matrix whose diagonal entries are the
eigenvalues of A. This is the Spectral Theorem for normal matrices.
The Spectral Theorem makes it easy to define functions of normal matri-
ces. If f is any complex function, and if D is a diagonal matrix with A4, .. .,
Ar on its diagonal, then f(D) is the diagonal matrix with f(A;),..., f(An)
on its diagonal. If A = QDQ*, then f(A) = Qf(D)Q*. A special conse-
quence, used very often, is the fact that every positive operator A has a
unique positive square root. This square root will be written as A'/2.

Exercise 1.2.2 Show that the following statements are equivalent:
(i) A is positive.
(ii) A = B*B for some B.
(i) A=T*T for some upper triangular T'.

(wv) A = T*T for some upper triangular T with nonnegative diagonal
entries.

If A is positive definite, then the factorisation in (iv) is unique. This is
called the Cholesky Decomposition of A.

Exercise 1.2.3 (i) Let {Aa} be a family of mutually commuting operators.
Then, there is a common Schur basis for {Aq}. In other words, there exists
a unitary Q such that Q*A,Q is upper triangular for all .

(i) Let {Aq} be a family of mutually commuting normal operators. Then,
there exists a unitary Q such that Q*A,Q is diagonal for all a.

For any operator A the operator A*A is always positive, and its unique
positive square root is denoted by |A|. The eigenvalues of | A| counted with
multiplicities are called the singular values of A. We will always enu-
merate these in decreasing order, and use for them the notation s;(A) >
so(A) > - > sp(A).

If rank A = k, then sg(A4) > 0, but sg+1(A4) = -+ = sp(A) = 0. Let S be
the diagonal matrix with diagonal entries s, (A4),...,s,(4) and Sy the kxk
diagonal matrix with diagonal entries s3(A),.-.,sx(A4). Let @ = (Q1,Q2)
be the unitary matrix in which @; is the n x k matrix whose columns are
the eigenvectors of A*A corresponding to the eigenvalues s3(4),. .., s2(A)
and @ the n x (n — k) matrix whose columns are the eigenvectors of A*A
corresponding to the remaining eigenvalues. Then, by the Spectral Theorem

2
aune=( % 7).
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Note that
Qi(A"A)Q:1 = 5%, Q3(A"A)Q2 =0.
The second of these relations implies that AQs = 0. From the first one we

can conclude that if W, = AQl.S';l, then W;W; = I. Choose W5 so that
W = (W,, W) is unitary. Then, we have

a0 [ WidQr WrAQ: \ _( S+ 0
WAQ‘(W%AQl Ws4Q, )\ 0 0 )"

This is the Singular Value Decomposition: for every matrix A there
exist unitaries W and @ such that

W*AQ = S,

where S is the diagonal matrix whose diagonal entries are the singular
values of A.

Note that in the above representation the columns of ) are eigenvectors
of A*A and the columns of W are eigenvectors of AA* corresponding to
the eigenvalues s?(A), 1 < j < n. These eigenvectors are called the right
and left singular vectors of A, respectively.

Exercise 1.2.4 (i) The Singular Value Decomposition leads to the Polar
Decomposition: Every operator A can be written as A = UP, where U
is unitary and P is positive. In this decomposition the positive part P is
unique, P = |A|. The unitary part U is unique if A is invertible.

(ii) An operator A is normal if and only if the factors U and P in the
polar decomposition of A commute.

(iii) We have derived the Polar Decomposition from the Singular Value
Decomposition. Show that it is possible to derive the latter from the former.

Every operator A can be decomposed as a sum
A=ReA+iImA,

where ReA = 444~ and ImA = 452°. This is called the Cartesian
Decomposition of A into its “real” and “imaginary” parts. The operators
Re A and Im A are both Hermitian.

The norm of an operator A is defined as

lAll = sup ||Az].
[lzll=1
‘We also have
lAl= sup [{y,Az)|.
llzll=lyll=1

When A is Hermitian we have

Al = sup |(z,Az)].

flrll=1
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For every operator A we have
Al = s1(A) = [|A*AJIM>.
When A is normal we have
[lA]l = max{|);| : A; is an eigenvalue of A}.

An operator A is said to be a contraction if ||A]] < 1. We also use
the adjective contractive for such an operator. A positive operator A is
contractive if and only if A < 1.

To distinguish it from other norms that we consider later, the norm || A||
will be called the operator norm or the bound norm of A.

Another useful norm is the norm

n
4l = (3 s3(ANY? = (srAA)/?,
j=1
where tr stands for the trace of an operator. If a;; are the entries of a
matrix representation of A relative to an orthonormal basis of H, then

IAll2 = O lasi|*)2.
ij
This makes this norm useful in calculations with matrices. This is called
the Frobenius norm or the Schatten 2-norm or the Hilbert-Schmidt
norm.

Both ||A] and ||A||2 have an important invariance property called uni-
tary invariance: we have ||A|| = |[UAV| and ||All2 = |[UAV]|» for all
unitary U, V.

Any two norms on a finite-dimensional space are equivalent. For the
norms || A|| and || A||2 it follows from the properties listed above that

Al < 142 < n?)| 4]
for every A.

Exercise 1.2.5 Show that matrices with distinct eigenvalues are dense in
the space of all n x n matrices. (Use the Schur Triangularisation.)

Exercise 1.2.6 If ||A|| <1, then I — A is invertible and
(I-A)'=T+A+A%+ -,
a convergent power series. This is called the Neumann Series.

Exercise 1.2.7 The set of all invertible matrices is a dense open subset of
the set of all n x n matrices. The set of all unitary matrices is a compact
subset of the set of all n x n matrices. These two sets are also groups under
multiplication. They are called the general linear group GL(n) and the
unitary group U(n), respectively.
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Exercise 1.2.8 For any matriz A the series

2 n
epr=I+A+£—+---+A

2 E

converges. This is called the exponential of A. The matriz exp A is always
invertible and

(exp A) ™! = exp(—A).

Conversely, every invertible matriz can be expressed as the exponential of
some matriz. Every unitary matriz can be expressed as the erponential of
a skew-Hermitian matriz.

The numerical range or the field of values of an operator A is the
subset W(A) of the complex plane defined as

W(A) = {(z, Az) : ||z| = 1}.
Note that

WWUAU*) = W(A) for all U € U(n),
W(aA+bl) = aW(A)+bW(I) forall a,beC.

It is clear that if ) is an eigenvalue of A, then A is in W(A). It is also clear
that W(A) is a closed set. An important property of W(A) is that it is a
convex set. This is called the Toeplitz-Hausdorff Theorem; an outline
of its proof is given in Problem 1.6.2.

Exercise 1.2.9 (i) When A is normal, the set W(A) is the conver hull
of the eigenvalues of A. For nonnormal matrices, W(A) may be bigger
than the convez hull of its eigenvalues. For Hermitian operators, the first
statement says that W(A) is the closed interval whose endpoints are the
smallest and the largest eigenvalues of A.

(i) If a unit vector = belongs to the linear span of the eigenspaces cor-
responding to eigenvalues A1, ..., A\ of a normal operator A, then (z, Az)
lies in the conver hull of Ay,..., . (This fact will be used frequently in
Chapter III.)

The number w(A) defined as

w(4) = s |(z, Az)

is called the numerical radius of A.

Exercise 1.2.10 (1) The numerical radius defines a norm on L(H).
(i) w({UAU*) = w(A) for all U € U(n).
(1it) w(A) < ||A|| < 2w(A) for all A.
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(iv) w(A) = ||A]| if (but not only if) A is normal.

The spectral radius of an operator A is defined as
spr(A) = max{|A| : A is an eigenvalue of A}.

‘We have noted that spr(4) < w(A) < ||4]], and that the three are equal if
(but not only if) the operator A is normal.

1.3 Direct Sums

If U, V are vector spaces, their direct sum is the space of columns (*) with
u € U and v € V. This is a vector space with vector operations naturally
defined coordinatewise. If H, K are Hilbert spaces, their direct sum is a
Hilbert space with inner product defined as

<(:) (Z) > = (hy 1) + (k, K )k

We will always denote this direct sum as H @ K.

If M and N are orthogonally complementary subspaces of H, then the
fact that every vector z in H has a unique representation z = u+v with u €
M and v € N implies that H is isomorphic to M @ A. This isomorphism
is given by a natural, fixed map. So, we say that H = M & N. When a
distinction is necessary we call this an internal direct sum. If M, \ are
subspaces of ‘H complementary in the algebraic but not in the orthogonal
sense; i.e., if M and A are disjoint and their linear span is H, then every
vector z in H has a unique decomposition z = u + v as before, but not
with orthogonal summands. In this case we write H = M + A and say H
is the algebraic direct sum of M and N.

If H = M @®N is an internal direct sum, we may define the injecticn
of M into H as the operator Ipq € L{M,H) such that [a(u) = u for all
u € M. Then, I}, is an element of £(H, M) defined as I}z = Pz for all
z € H, where P is the orthoprojector onto M. Here one should note that
I, is not the same as P because they map into different spaces. That is
why their adjoints can be different. Similarly define In. Then, (Iaq, Iy) is
an isometry from the ordinary (“external”) direct sum M @& N onto H.

IfH = M®®N and A € L(H), then using this isomorphism, we can write

A as a block-matrix
A-— B C
~“\' D E )¢

where B € L(M),C € L(N, M), etc. Here, for example, C = I} Alx.
The usual rules of matrix operations hold for block matrices. Adjoints are
obtained by taking “conjugate transposes” formally.
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If the subspace M is invariant under A4; i.e., Az € M whenever z € M,
then in the above block-matrix representation of A we must have D = 0.
Indeed, this condition is equivalent to M being invariant. If both M and its
orthogonal complement A are invariant under A, we say that M reduces
A. In this case, both C and D are 0. We then say that the operator 4 is
the direct sum of B and E and write A= B@E.

Exercise 1.3.1 Let A = A, ® A;. Show that

(i) W(A) is the convex hull of W (A1) and W (Az); i.e., the smallest convex
set containing W(A;) U W(A4,).

(@) 1Al = max(|Al, [|4z]),
spr(A) = max(spr(A,), spr(Az)),
w(A) = max(w(4,),w(4z)).

Direct sums in which each summand H; is the same space H arise often in
practice. Very often, some properties of an operator A on H are reflected in
those of some other operators on H @ H. This is illustrated in the following
propositions.

Lemma 1.3.2 Let A € L(H). Then, the operators (4 %) and (% 2) are
. unitarily equivalent in L(H ® H).

Proof. The cquivalence is iumplenented by the unitary operator
WAL
72(-1 l)' n

Corollary 1.3.3 An operator A onH is positive if and only if the operator
4 2) on H@H is positive.

This can also be seen by writing (ﬁ ﬁ) - (ﬁ:;: g) (,q:)/2 A:)/’), and

using Exercise 1.2.2.

Corollary 1.3.4 For every A € L(H) the operator ('ﬁ' Iﬁ:l) is positive.

Proof Let A= UP be the polar decomposition of A. Then,
1Al A _ P PU*
A |AY - UP UPU*
I O P P I 0O
ov P P o v )

Note that (5 9) is a unitary operator on H & H. [ |

Proposition 1.3.5 An operator A on H is contractive if and only if the
operator (5 ) on H @ H is positive.
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Proof. If A has the singular value decomposition A = USV™*, then

1 A\ [V O I S v O
(27 )=(00)(s7)(5 &)
Hence (% 4) is positive if and only if (% %) is positive. Also, [|Alf = ||S]-
So we may assume, without loss of generality, that A = S.

Now let W be the unitary operator on H@®H that sends the orthonormal
basis {e1,ez2,-.-,€an} to the basis {e1,eni1,€2,€n12,--,€n,e2,}. Then,
the unitary conjugation by W transforms the matrix ( é ?) to a direct
sum of n two-by-two matrices

1 s 1 s 1 s,
(o 3)e(s 3)ee(a 1)

This is positive if and only if each of the summands is positive, which
happens if and only if s; <1 for all j; i.e., S is a contraction. |

Exercise 1.3.6 If A is a contraction, show that
A*(I — AA*)Y?2 = (I — A*A)/2 A"

Use this to show that if A is a contraction on H, then the operators

_— ( A (I—AA*)1/2>’

(I _ A*A)I/Z _A*
v o A —(I— AA™)/?
- (I_A*A)I/Z A*

are unitary operators on H @ H.

Exercise 1.3.7 For every matriz A, the matriz (| 4) is invertible and its

inverse is (é _IA). Use this to show that if A, B are any two n X n matrices,

then (é;l)—l(ABBg)(é?):(g;A)'

This implies that AB and BA have the same eigenvalues. (This last fact
can be proved in another way as follows. If B is invertible, then AB =
B~1(BA)B. So, AB and BA have the same eigenvalues. Since invertible
matrices are dense in the space of all matrices, and a general known fact
in complex analysis is that the roots of a polynomial vary continuously with
the coefficients, the above conclusion also holds in general.)

Direct sums with more than two summands are defined in the same way.
We will denote the direct sum of spaces H;, ..., Hy as 69?:17'[]-, or simply
as @j Hj.
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1.4 Tensor Products

Let V;,1 < j < k, be vector spaces. A mnap F from the Cartesian product
Vi x --- x V; to another vector space W is called multilinear if it depends
linearly on each of the arguments. When W = C, such maps are called
multilinear functionals. When k = 2, the word multilinear is replaced

by bilinear. Bilinear maps, thus, are maps F : V; x V, — W that satisfy
the conditions

F(u,av, + bvy)
F(au1 + b‘Uq, ‘l))

aF(u,v1) + bF(u,v),
aF(uy,v) + bF (uz,v),

for all a,b € C; wu,uy,us € Vi and v,v;,v2 € V,. We will be looking most
often at the special situation when each V; is the same vector space.

As a special example consider a Hilbert space H and fix two vectors z,y
in it. Then,

F(u)v) = ($yu)(y!v)
is a bilinear functional on H.

We sec from this example that it is equally natural to consider conjugate-
multilinear functionals as well. Even more generally we could study func-
tions that are lincar in some variables and conjugate-linear in others. As an
example, let A € L(H,K) and foru € K and v € H, let F(u,v) = (u, Av)x.
Then, F depends linearly on v and conjugate-linearly on u. Such function-
als are called sesquilinear; an inner product is a functional of this sort.
The example given above is the “most general” example of a sesquilinear
functional: if F(u,v) is any sesquilinear functional on I x H, then there
exists a unique operator A € L(H, K) such that F(u,v) = (u, Av).

In this sense our first example is not the most general example of a
bilinear functional. Bilinear functionals F'(u,v) on H that can be expressed
as F(u,v) = (z, u)(y,v) for some fixed z,y € H are called elementary.
They are special as the following exercise will show.

Exercise 1.4.1 Let z,y,z be linearly independent vectors in H. Find a
necessary and sufficient condition that a vector w must satisfy in order
that the bilinear functional

F(u,v) = (z,u)(y,v) + (2, u)(w,v)
is elementary.

The set of all bilinear functionals is a vector space. The result of this
cxcercisc shows that the subsel consisting of elementary functionals is not
closed under addition. We will soon see that a convenient basis for this vec-
tor space can be constructed with elementary functionals as its members.

The procedure, called the tensor product construction, starts by taking
formal linear combinations of symbols z ® y with z € H,y € K; then
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reducing this space modulo suitable equivalence relations; then identifying
the resulting space with the space of bilinear functionals.

More precisely, consider all finite sums of the type Zci(xi ® i),

2
¢ € C,z; € H,y; € K and manipulate them formally as linear combi-
nations. In this space the expressions

az®y) - (az®vy)

az®y) - (z®ay)
TIQY+T2Qy — (T1+22)®y
@ +zT®y — z® (y1+Yy2)

are next defined to be equivalent to 0, for all a € C;z,z;,z9 € H and
¥,91,y2 € K. The set of all linear combinations of expressions z ® y for
z € H,y € K, after reduction modulo these equivalences, is called the
tensor product of H and K and is denoted as H ® K.

Each term c¢(z ® y) determines a conjugate-bilinear functional F*(u,v)
on H x K by the natural rule

F*(u,v) = c(u, z) (v, y).

This can be extended to sums of such terms, and the equivalences were
chosen in such a way that equivalent expressions (i.e., expressions giving the
same element of H®K) give the same functional. The complex conjugate of
each such functional gives a bilinear functional. These ideas can be extended
directly to k-linear functionals, including those that are linear in some of
the arguments and conjugate-linear in others.

Theorem 1.4.2 The space of all bilinear functionals on H is linearly spanned
by the elementary ones. If (ey,...,en) is a fized orthonormal basis of H,
then to every bilinear functional F' there correspond unique vectors i, ..., T,

such that
F* = Zej ® (Ej.
J
Every sequence x;,1 < j < n, leads to a bilinear functional in this way.

Proof. Let F be a bilinear functional on H. For each j, F*(ej,v) is a
conjugate-linear function of v. Hence there exists a unique vector z; such
that F*(ej,v) = (v,z;) for all v.

Now, if u = Zaje; is any vector in H, then F(u,v) = Xa;F(e;,v) =
¥(ej,u){z;,v). In other words, F* = ¥e; ® z; as asserted. ]

A more symmetric form of the above statement is the following:

Corollary 1.4.3 If (ey,...,en) and (f1,-.., fn) are two fized orthonormal
bases of H, then every bilinear functional F' on H has a unique represen-
tation F = Eaij(ei ® fj)*.
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(Most often, the choice (ey,...,e,) = (f1,..., f) is the convenient one for
using the above representations.)

Thus, it is natural to denote the space of conjugate-bilinear functionals
on H by H@H. This is an n?-dimensional vector space. The inner product
on this space is defined by putting

(ur ® uz, vy ® v2) = (ur,v1){uz, v2),

and then extending this definition to all of H ® H in a natural way. It
is easy to verify that this definition is consistent with the equivalences
used in defining the tensor product. If (e;,...,en) and (fi,..., fa) are
orthonormal bases in H, then e; @ f;, 1 < 14,5 < n, form an orthonormal
basis in H ® H. For the purposes of computation it is useful to order this
basis lexicographically: we say that e; ® f; precedes ex ® f, if and only
ifeither i< kori=k and j < £

Tensor products such as H ® K or £* @ H can be defined by imitating
the above procedure. Here the space K* is the space of all conjugate-linear
functionals on KC. This space is called the dual space of K. There is a natu-
ral identification between KC and K* via a conjugate-linear, norm preserving
bijection.

Exercise 1.4.4 (1) There is a natural isomorphism between the spaces K ®
H* and L(H,K) in which the elementary tensor k @ h* corresponds to the
linear map that takes a vector w of H to (h,u)k. This linear transformation
has rank one and all rank one, transformations can be obtained in this way.

(i) An explicit construction of this isomorphism ¢ is outlined below. Let
€1,---,€n be an orthonormal basis for H and for H*. Let fi,..., fm be an
orthonormal basis for K. Identitfy each element of L(H,K) with its matriz
with respect to these bases. Let E;; be the matriz all whose entries are
zero except the (i, j)-entry, which is 1. Show that ¢(f; ® e;) = Ey; for all
1<i<m, 1< j<n Thus, if A is any m X n matriz with entries a,j,

then
eTHA) =) ai(fi®es) = Y (Aej) @ ej.
1,3 7

(iii) The space L(H,K) is a Hilbert space with inner product (A, B) =
tr A*B. The set Eij, 1 < i < m, 1 < j < n,is an orthonormal basis
for this space. Show that the map ¢ is a Hilbert space isomorphism; i.e.,
(p~1(A), 91(B)) = (A, B) for all A, B.

Corresponding facts about nultilincar functionals and tensor products
of several spaces are proved in the same way. We will use the notation @*H
for the k-fold tensor product H@H Q- @ H.

Tensor products of lincar operators are defined as follows. We first define
A ® B on elementary tensors by putting (A® B)(z® y) = Az ® By. We
then extend this definition linearly to all linear combinations of clementary
tensors, i.e., Lo all of H ® H. This extension involves no inconsistency.
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It is obvious that (A ® B)(C- & D) = AC ® BD, that the identity on
H® H is given by I ® I, and that if A and B are invertible, then so is
A® Band (A® B)™! = A~ @ B1. A one-line verification shows that
(A® B)* = A*® B*. It follows that A® B is Hermitian if (but not only if)
A and B are Hermitian; A ® B is unitary if (but not only if) A and B are
unitary; A ® B is normal if (and only if) A and B are normal. (The trivial
cases A = 0, or B = 0, must be excluded fqr the last assertion to be valid.)

Exercise 1.4.5 Suppose it is known that M is an invariant subspace for A.
What invariant subspaces for A® A can be obtained from this information
alone?

For operators A, B on different spaces H and K, the tensor product can
be defined in the same way as above. This gives an operator A ® B on
H ® K. Many of the assertions made earlier for the case H = K remain true
in this situation.

Exercise 1.4.6 Let A and B be two matrices (not necessarily of the same
size). Relative to the lexicographically ordered basis on the space of tensors,
the matriz for A® B can be written in block form as follows: if A = (ai;),

then
aii B e alnB

A®B = .
amB - an,B

Especially important are the operators AQ A® - --® A, which are k-fold
tensor products of an operator A € £(H). Such a product will be written
more briefly as A®* or ®* A. This is an operator on the n*-dimensional
space ®*H.

Some of the easily proved and frequently used properties of these prod-
ucts are summarised below:

1. (®A)(®*B) = ®*(AB).

2. (®kA)—1 = ®%A~! when either inverse exists.

3. (®FA)" = @FA".

4. If A is Hermitian, unitary, normal or positive, then so is ®* A.
5

. Ifay,. .., 0 (not necessarily distinct) are eigenvalues of A with eigen-
vectors uy, .. ., uk, respectively, then a; - - - ax is an eigenvalue of ®* A
and u; ® - -- ® ux is an eigenvector for it.

6. If s4,,...,s;, (not necessarily distinct) are singular values of A, then
Siy + -+ 8i, 18 a singular value of ®FA.

7. || & All = ||All*.

The reader should formulate and prove analogous statements for tensor
products A; ® A @ --- ® Ay of different operators.
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1.5 Symmetry Classes

In the space ®*H there are two especially important subspaces (for non-
trivial cases, k > 1 and n > 1).

The antisymmetric tensor product of vectors zi,...,z in H is de-
fined as

TN AT = (k!)_l/ZZG,,iL'a(]) K] To(k)s
o

where o runs over all permutations of the k indices and ¢, is £1, depending
on whether o is an even or an odd permutation. (g, is called the signature
of 0.) The factor (k!)~'/2 is chosen so that if z; are orthonormal, then
1 A--- AT is a unit vector. The antisymmetry of this product means that

TIN - NT N NN AT = =Ty N N3N - ANTi A N T,y

i.e., interchanging the position of any two of the factors in the product
amounts to a change of sign. In particular, z; A--- A zx = 0 if any two of
the factors are equal.

The span of all antisymmetric tensors z; A+ - - Az, in ®*H is denoted by
A¥H. This is called the kth antisymmetric tensor product (or tensor
power) of H.

Given an orthonormal basis (e1,...,e,) in H, there is a standard way of
constructing an orthonormnal basis in AFH. Let Qg denote the set of all
strictly increasing k-tuples chosen from {1,2,...,n}; i.e., T € Qg if and
only if T = (41,42,...,%), where 1 <4} <143 <:-- < iy < n. For such an 7
let ex = e;, A--- Ae;.. Then, {er: T € Qk} gives an orthonormal basis
of A*H. Such T are sometimes called multi-indices . It is conventional to
order them lexicographically. Note that the cardinality of Qx », and hence
the dimensionality of A¥H, is (}).

If in particular k = n, the space A¥H is 1-dimensional. This plays a
special role later on, When k > n the space A*H is {0}.

Exercise 1.5.1 Show that the inner product (x3 A+ -ATp,ya A~ Ayg) is
equal to the determinant of the k x k matriz ((z;,y;)).

The symmetric tensor product of z;,...,z, is defined as

Ty V- VI = (k!)_llzzza(l) @ ® ZTo(ky
4

where o, as before, runs over all permutations of the k indices. The linear
span of all these vectors comprises the subspace VEH of @*H. This is called
the kth symmetric tensor power of H.

Let Gin denote the set of all non-decreasing k-tuples chosen from
{1,2,...,n};i.e., T € Gr, if and only if Z = (iy,...,4x), where 1 < 4; <
i+« < i < n. If such an Z consists of ¢ distinct indices i,,...,i, with
multiplicities m,. .., my, respectively, put m(Z) = my!my!---my!. Given
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an orthonormal basis (e1,...,e,)-of H define, for every I € Gy n,-e1 =
ei, Vei, V- - -Ve;,. Then, the set {m(I)?%er:T € Gk,n} is an orthonormal
basis in VF*H. Again, it is conventional to order these multi-indices lexico-
graphically. The cardinality of the set G », and hence the dimensionality
of the space VEH, is ("TF71).

Notice that the expressions for the basis in A*H are simpler because
m(Z) =1for T € Qi -

Exercise 1.5.2 The elementary tensors z® - - - ® x, with all factors equal,
are all in the subspace VFH. Do they span it?

Exercise 1.5.3 Let M be a p-dimensional subspace of H and N its or-
thogonal complement. Choosing j vectors from M and k — j vectors from
N and forming the linear span of the antisymmetric tensor products of all
such vectors, we get different subspaces of N*H; for example, one of those
is AFM. Determine all the subspaces thus obtained and their dimensional-
ities. Do the same for VFH. )

Exercise 1.5.4 If dimH = 3, then dim®3H = 27, dimA3H = 1 and
dim V3H = 10. In terms of an orthonormal basis of H, write an element of
(NPHe VIH)L.

The permanent of a matrix A = (a;;) is defined as
per A = 2010(1)  Qng(n)-
o

where o varies over all permutations on 7 symbols. Note that, in contrast
to the determinant, the permanent is not invariant under similarities. Thus,
matrices of the same operator relative to different bases may have different
permanents.

Exercise 1.5.5 Show that the inner product (1 V---VZg,y1 V++-Vyk) is
equal to the permanent of the k x k matriz ({zi,y;)).

The spaces A¥H and V*H are also referred to as “symmetry classes” of
tensors — there are other such classes in ®*H. Another way to look at them
is as the ranges of the respective symmetry operators. Define P, and P, as
linear operators on ®*H by first defining them on the elementary tensors
as

Pa(z1®---@zx) = (K1) Y2z, A - Ay

Pz, ®-- - Qxx) = (K1)~ Y2zy v .- Vg

and extending them by linearity to the whole space. (Again it should be
verified that this can be done consistently.) The constant factor in the above
definitions has been chosen so that both these operators are idempotent.
They are also Hermitian. The ranges of these orthoprojectors are A¥H and
VEH, respectively.
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If A€ L(H), then Azy A --- A Az, lies in AFH for all z4,...,z¢ in H.
Using this, one sees that the space AFH is invariant under the operator
®*A. The restriction of ®* A to this invariant subspace is denoted by A*A
or A", This is called the kth antisymmetric tensor power or the kth
Grassmann power of A. We could have also defined it by first defining
it on the elementary antisymmetric tensors z; A --- A Ty as

/\kA(Elf\"'/\QZk):‘AIl/\"'/\AIk

and then extending it linearly to the span A*¥H of these tensors.

Exercise 1.5.6 Let A be a nilpotent operator. Show how to obtain, from a
Jordan basis for A, a Jordan basis for A2A.

The space V¥ is also invariant under the operator ®* A. The restriction
of ®* A to this invariant subspace is written as V¥A or AV¥ and called the
kth symmetric tensor power of A.

Some essential and simple properties of these operators are summarised
below:

1. (AFA)(A*B) = A¥(AB), (VFA)(VFB) = VE(AB).
2. (NFA)* = ARA*,  (VEA)* = VFA*.
3. (NFA)"L =AFATY (VEA)TL = vEATL,

4. If A is Hermitian, unitary, normal or positive, then so are A¥A and

VEA.
5. If ai,..., o are eigenvalues of A (not necessarily distinct) belonging
to eigenvectors uy, . . ., Uk, respectively, then a; - - - ay is an eigenvalue

of V¥ A belonging to eigenvector u1 V- - -Vug; if in addition the vectors
u; are linearly independent, then a; --- a4 is an eigenvalue of A¥A
belonging to eigenvector uy; A --- A ug.

6. If s1,...,s, are the singular values of A, then the singular values
of AFA are s;, - -+ s;,, where (i1,...,4x) vary over Qx n; the singular
values of V¥4 are s;, - - - s;, , where (4, . .., 1), vary over Gin-

7. trAFA is the kth elementary symmetric polynomial in the eigenval-
ues of A; trv¥A is the kth complete symmetric polynomial in the
eigenvalues of A.

(These polynomials are defined as follows. Given any n-tuple (ay,...,a,)
of numbers or other commuting objects, the kth elementary symmetric
polynomial in them is the sum of all terms a;, o, « - - a5, for (i1,%2,...,ik)
in Qg n; the kth complete symmetric polynomial is the sum of all terms
0, 0, -+ g, for (iq,92,...,1k) in G p.)

For A € L(H), consider the operator AQIQ®---QI+IQAQRI--- Q1T
+---+I/®IQ®---® A. (There are k summands, each of which is a product
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of k factors.) The eigenvalues of this operator on ®*#-are sums of eigenval-
ues of A. Both the spaces A¥H and V*H are invariant under this operator.
One pleasant way to see this is to regard this operator as the t-derivative
at t = 0 of ®*(I +tA). The restriction of this operator to the space AFH
will be of particular interest to us; we will write this restriction as Al If
u1,.--,uk are linearly independent eigenvectors of A belonging to eigen-
values ajy,...,Qk, then u; A--- A ug is an eigenvector of Al¥] belonging to
eigenvalue ay + - -+ + ag.

Now, fixing an orthonormal basis (ey,...,e,) of H, identify A with its
matrix (a;;). We want to find the matrix representations of A*A4 and VFA
relative to the standard bases constructed earlier.

The basis of A*¥H we are using is ez, T € Qk,n- The (Z,T)-entry of Ak A
is (ez, (A¥A)es). One may verify that this is equal to a subdeterminant
of A. Namely, let A[Z]J] denote the k x k matrix obtained from A by
expunging all its entries a;; except those for which ¢ € 7 and j € J. Then,
the (Z, J)-entry of AFA is equal to det A[Z|J].

The special case k = n leads to the 1-dimensional space A™H. The oper-
ator A™A on this space is just the operator of multiplication by the number
det A. We can thus think of det A as being equal to A™A.

The basis of VFH we are using is m(Z)"/2ez , T € Ggn. The (Z,J)-
entry of the matrix VXA can be computed as before, and the result is
somewhat similar to that for AFA. For T = (iy,...,4) and J = (j1, - - -, jk)
in Gk, let A[Z]|J] now denote the k x k matrix whose (r, s)-entry is the
(ir,js) - entry of A. Since repetitions of indices are allowed in Z and J,
this is not a submatrix of A this time. One verifies that the (Z, J)-entry of
vkA is (m(Z)m(J))~Y/? per A[Z|T].

In particular, per A is one of the diagonal entries of V™ A: the (Z,T)-entry
for 7T=(1,2,...,n).

Exercise 1.5.7 Prove that for any vectors uy,...,uk,v1,.-.,Vx we have

| det((us, ) < det({us, u;)) det{(v;, v;)),
Iper({us, v)* < per({us, uz))per((vi, v;))-

Exercise 1.5.8 Prove that for any two matrices A, B we have
|per(AB)|? < per(AA*)per(B*B).
(The corresponding relation for determinants is an easy equality.)
Exercise 1.5.9 (Schur’s Theorem) If A is positive, then
per A > det A.

[Hint: Using Exercise 1.2.2 write A = T*T for an upper triangular T. Then
use the preceding ezercise cleverly.]
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We have observed earlier that for any vectors z,,...,z; in H we have
det((z:,3,)) = flzy A - Azl

When H = R", this determinant is also the square of the k-dimensional
volume of the parallelepiped having zy, ...,z as its sides. To see this, note
that neither the determinant nor the volume in question is altered if we add
to any of these vectors a linear combination of the others. Performing such
operations successively, we can reach an orthogonal set of vectors, some of
which might be zero. In this case it is obvious that the determinant is equal
to the square of the volume; hence that was true initially too.

Given any k-tuple X = (zy,...,zt), the matrix ({(z;,z;)) = X*X is
called the Gram matrix of the vectors z;; its determinant is called their
Gram determinant.

Exercise 1.5.10 Every k x k positive matriz A = (a4;) can be realised as a
Gram matriz, i.e., vectors z;,1 < j < k, can be found so that a;; = (z;, ;)
for all4,j.

1.6 Problems

Problem 1.6.1. Given a basis U = (uy,...,u,), not necessarily orthonor-
mal, in H, how would you compute the biorthogonal basis (vy,...,v,)?
Find a formula that expresses (v, z) for each z € H and j = 1,2,...,k in

terms of Gram matrices.

Problem 1.6.2. A proof of the Toeplitz-Hausdorff Theorem is outlined
below. Fill in the details.

Note that W(A) = {{z,Az) : |jz|| = 1} = {trAzz* : 2"z = 1}. It is
enough to consider the special case dim H = 2. In higher dimensions, this
special case can be used to show that if z,y are any two vectors, then any
point on the line segment joining (z, Az) and (y, Ay) can be represented as
(z, Az), where z is a vector in the linear span of z and y. Now, on the space
of 2 x 2 Hermitian matrices consider the linear map ®(T') = tr AT. This is
a real linear map from a space of 4 real dimensions (the 2 x 2 Hermitian
matrices) to a space of 2 real dimensions (the complex plane). We want
to prove that ® maps the set of 1-dimensional orthoprojectors zz* onto a
convex set, The sct of these projectors in matrix form is

cost RPN | cos2t  e¥sin2t
( e ™gint \)(COSt e sint) = 2 + 2\ e ™sin2t —cos2t /°

This is a 2-sphere centred at (% 2) and having radius 1/v/2 in the Frobe-
nius norm. The image of a 2-sphere under a linear map with range in R?
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must be either an ellipse with interior, or a line segments=or a point; in any
case, a convex set.

Problem 1.6.3. By the remarks in Section 5, vectors z,. ..,z are lin-
early dependent if and only if 1 A --- A zx = 0. This relationship between
linear dependence and the antisymmetric tensor product goes further. Two
sets {Z1,...,Tk} and {y1,...,yx} of linearly independent vectors have the
same linear span if and only if £, A---Azy = cyy A- - - Ay for some constant
¢. Thus, there is a one-to-one correspondence between k-dimensional sub-
spaces of a vector space W and 1-dimensional subspaces of AFW generated
by elementary tensors z; A - -+ A .

Problem 1.6.4. How large must dim W be in order that there exist some
element of A2W which is not elementary?

Problem 1.6.5. Every vector w of W induces a linear operator T, from
AW to ASHIW as follows. T,, is defined on elementary tensors as
Tw(vi A--- ANvk) = v1 A--- A g A w, and then extended linearly to all
of AFW. It is, then, natural to write Ty, (z) = £ A w for any z € A*W.
Show that a nonzero vector x in AW is elementary if and only if the space
{w € W : z Aw = 0} is k-dimensional.

(When W is a Hilbert space, the operators T, are called creation oper-
ators and their adjoints are called annihilation operators in the physics
literature.)

Problem 1.6.6. (The n-dimensional Pythagorean Theorem) Let
Ti,--.,Zn be orthogonal vectors in R™. Consider the n-dimensional sim-
plex S with vertices 0,z1,...,z,. Think of the (n — 1)-dimensional sim-
plex with vertices z,...,z, as the “hypotenuse” of S and the remaining
(n — 1)-dimensional faces of S as its “legs”. By the remarks in Section 5,
the k-dimensional volume of the simplex formed by any & points y;,- - ., Yk
together with the origin is (k!)~!|ly1 A --- A yx||- The volume of a simplex
not having 0 as a vertex can be found by translating it. Use this to prove
that the square of the volume of the hypotenuse of S is the sum of the
squares of the volumes of the n legs.

Problem 1.6.7. (i) Let QA be the inclusion map from AFH into ®*H
(so that Q% equals the projection P, defined earlier) and let Qv be the
inclusion map from V*H into ®*H. Then, for any A € L(H)

NFA = PA(®FA)Qn,

VA = Py (®FA)Qu.

(i) | A% A< A%, vE A< [A]F
(iii) [detA| < [|A||",  |perA| < [lA]|"™.
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Problem I.6.8. For an invertible operator A obtain arelationship between
A"1 A”A and A"TLA.

Problem 1.6.9. (i) Let {ey,...,e,} and {fi1,..., fn} be two orthonormal
bases in H. Show that

e2a A= Aen, f2 Ae-- A fo)? = [er, f1)

(ii) Let P and @ be orthogonal projections in H, each of rank n — 1. Let
z,y be unit vectors such that Pz = Qy = 0. Show that

A HPQP) = |(z,y)> AV P.
Problem 1.6.10. If the characteristic polynomial of A is written as
t"+at" - ap,

then the coefficient a; is the sum of all k£ x k principal minors of A. This
is equal to tr A¥A.

Problem 1.6.11. (i) For any A, B € L(H) we have

k
®A-@*B=) C;,
j=1
where ‘ )
C;=(8*74)®(A-B)® (& 'B).

Hence,
| ®* A—&"B| < kM*'| A~ B,

where M = max(||Al], || B|)-

(ii) The norms of A*A — A*¥B and V¥ A — V¥ B are therefore also bounded
by kM*-1| A — B.

(iii) For n x n matrices A, B,

|detA — detB| < nM™ 1||A — B,

|perA — perB| < nM™ !||A — B|.

(iv) The example A = al,B = (a + €)I for small ¢ shows that these
inequalities are sometimes sharp. When ||Al| and || B| are far apart, find a
simple improvement on them.

(v) If A, B are n x n matrices with characteristic polynomials

"+ at" - tag,

t o1t - by,
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respectively, then
n _
o~ el < k() M4 - B

where M = max(||Al], || BI)-

Problem 1.6.12. Let A, B be positive operators with A > B (i.e., A— B
is positive). Show that

®*A > @FB,
ANFA > AFB,
vk4d > VkB,
detA > detB,
perA > perB.

Problem 1.6.13. The Schur product or the Hadamard product of
two matrices A and B is defined to be the matrix A o B whose (i, j)-entry
is a;jb;j. Show that this is a principal submatrix of A® B, and derive from
this fact two significant properties:

(i) |40 Bl < |A]l |B]| for all A, B.

(ii) If A,B are positive, then so is A o B. (This is called Schur’s
Theorem.)

Problem 1.6.14. (i) Let A = (a;;) be an n X n positive matrix. Let
Ty = Zai]’, 1<1<n,
j=1
s = Zaij.
3,5

Show that .
s"perd > n! H |ral2.

i=1
[Hint: Represent A as the Gram matrix of some vectors z1,...,Z, as
in Exercise 1.5.10. Let u = s~/2(z; + --- + z,). Consider the vectors
uVuV---Vuand z, V-V z,, and use the Cauchy-Schwarz inequality.]
(ii) Show that equality holds in the above inequality if and only if either
A has rank 1 or A has a row of zeroes.
(iii) If in addition all a;; are nonnegative and all r; = 1 (so that the
matrix A is doubly stochastic as well as positive semidefinite), then
n!

perA > ey
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Here equality holds if and only if a;; = 2 for all , .

Problem I1.6.15. Let A be Hermitian with eigenvalues a; > ap > ---
an,. In Exercise 1.2.7 we noted that

v

oy = max{(z, Az) : ||z|| = 1},

a, = min{(z, Az) : ||lz|| = 1}.

Using these relations and tensor products, we can deduce some other ex-
tremal representations:
(i) For every £k =1,2,...,n,

k k
Z aj = max Z(xj, Az;),
=1 =1

n

k
Z o = minZ(xj,Azj),

j=n—k+1 j=1

where the maximum and the minimum are taken over all choices of or-
thonormal k-tuples (z1,...,Zx) in H. The first statement is referred to as
Ky Fan’s Maximum Principle. It will reappear in Chapter II (with a
different proof) and subsequently.

(ii) If A is positive, then for every k = 1,2,...,n,

n

k
I[I o =min]](z; Az,

j=n—k+1 i=1

where the minimum is taken over all choices of orthonormal k-tuples
(Z1,...,2x) in H.

[Hint: You may need to use the Hadamard Determinant Theorem, which
says that the determinant of a positive matrix is bounded above by the
product of its diagonal entries. This is also proved in Chapter II.]

(ii) If A is positive, then for every 7 € Qg n

n

k
I o <detAZIT) < [[ o

j=n—k+1 j=1
Problem 1.6.16. Let A be any n x n matrix with eigenvalues ai,...,a,.
Show that 12
trAl n—1 [trA?
T < A2 = =220
ay -2 < | 222 (japg - 2
for all j = 1,2,...,n. (Results such as this are interesting because they

give some information about the location of the eigenvalues of a matrix in
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terms of more easily computable functions like the Frobenius norm || A[l2
and the trace. We will see several such statements later.)
[Hint: First prove that if z = (21, ...,2,) is a vector with z3 4 -+ 2, =

0, then
n—1\2 .
maxzy| < (22) il ]

Problem 1.6.17. (i) Let 23, 22, 23 be three points on the unit circle. Then,
the numerical range of an operator A is contained in the triangle with
vertices 2i, 29, 23 if and only if A can be expressed as A = 21 4; + 2945 +
23As, where A;, Az, Az are positive operators with A; + Ax + A5 = 1.

[Hint: It is easy to see that if A is a sum of this form, then W(A4) is
contained in the given triangle. The converse needs some work to prove.
Let z be any point in the given triangle. Then, one can find a;,as,as3
such that a; > 0,07 +az + a3 = 1 and 2z = o312 + az22 + azz3. These
are the “barycentric coordinates” of z and can be obtained as follows. Let
v = Im(Z122 + 2223 + Z321). Then, for j =1,2,3,

a; = Im (2= 2541)Ziv2 — 1)
v

where the subscript indices are counted modulo 3. Put

m A= zind)(Zj42 — Zi1)

A; =
7 v

Then, A; have the required properties.]
(ii) Let W(A) be contained in a triangle with vertices z;, 22, z3 lying on
the unit circle. Then, choosing A, As, A3 as above, write

I A S0 A A 3 1z
(A I >=Z(zjjj 141]>22Aj®<2j 1])
=1 =1

This, being a sum of three positive matrices, is positive. Hence, by Propo-
sition 1.3.5 A is a contraction.

(iil) If W(A) is contained in a triangle with vertices z), 22, 23, then || A]| <
max | z;]. This is Mirman’s Theorem.

Problem 1.6.18. If an operator T" has the Cartesian decomposition T' =
A +iB with A and B positive, then

171 < A7 + 1BI*.

Show that, if A or B is not positive then this need not be true.

[Hint: To prove the above inequality note that W(T) is contained in a
rectangle in the first quadrant. Find a suitable triangle that contains it and
use Mirman’s Theorem.|
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Springer-Verlag, 1978, and M. Marcus, Finite-Dimensional Multilinear Al-
gebra, 2 volumes, Marcel Dekker, 1973 and 1975. A brief treatment that
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is an interesting object with many uses in combinatorics, geometry, and
physics. A book devoted entirely to it is H. Minc, Permanents, Addison-
Wesley, 1978.

Apart from the symmetric and the antisymmetric tensors, there are other
symmetry classes of tensors. Their study is related to the glorious subject
of representations of finite groups. See J.P. Serre, Linear Representations
of Finite Groups, Springer-Verlag, 1977.
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a subject called Dilation Theory. See Chapter 23 of P.R. Halmos, A Hilbert
Space Problem Book, 2nd ed., Springer-Verlag, 1982.

The proof of the Toeplitz-Hausdorff Theorem in Problem 1.6.2 is taken
from C. Davis, The Toeplitz-Hausdorff theorem ezrplained, Canad. Math.
Bull., 14(1971) 245-246. For a different proof, see P.R. Halmos, A Hilbert
Space Problem Book.

For relations between Grassmann spaces and geometry, as indicated in
Problem 1.6.3, see, for example, I.R. Porteous, Topological Geometry, Cam-
bridge University Press, 1981. The simple proof of the Pythagorean Theo-
rem in Problem 1.6.6 is due to S. Ramanan.

Among the several papers in quantum physics, where ideas very close
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Hugenholtz and R.V. Kadison, Automorphisms and quasi-free states of the
CAR algebra, Commun. Math. Phys., 43 (1975) 181-197.

Inequalities like the ones in Problem 1.6.11 were first discovered in con-
nection with perturbation theory of eigenvalues. This is summarised in
R. Bhatia, Perturbation Bounds for Matriz Eigenvalues, Longman, 1987.
The simple identity at the beginning of Problem 1.6.11 was first used in
this context in R. Bhatia and L. Elsner, On the variation of permanents,
Linear and Multilinear Algebra, 27(1990) 105-110.

The results and the ideas of Problem 1.6.14 are from M. Marcus and
M. Newman, Inequalities for the permanent function, Ann. of Math., 75(1962)
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part (iii) of Problem 1.6.14 will hold for all doubly stochastic matrices. This
conjecture was proved, in two separate papers in 1981, by G.P. Egorychev
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van der Waerden conjecture: two proofs in one year, Math. Intelligencer,
4(1982)72-77.

The results of Problem 1.6.15 are all due to Ky Fan, On a theorem of Weyl
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Sci., U.S.A., 35(1949) 652-655, 36(1950)31-35, and A minimum property
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A special case of the inequality of Problem 1.6.16 occurs in P. Tarazaga,
Eigenvalue estimates for symmetric matrices, Linear Algebra and Appl.,
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of a linear operator, Trudy Seminara po Funkcional’ nomu Analizu, No. 10
(1968), pp.- 51-55. The inequality of Problem 1.6.18 is also noted there as
a corollary. Our proof of Mirman’s Theorem is taken from Y. Nakamura,
Numerical range and norm, Math. Japonica, 27 (1982) 149-150.



II

Majorisation and Doubly
Stochastic Matrices

Comparison of two vector quantities often leads to interesting inequali-
ties that can be expressed succinctly as “majorisation” relations. There is
an intimate relation between majorisation and doubly stochastic matrices.
These topics are studied in detail here. We place special emphasis on ma-
jorisation relations between the eigenvalue n-tuples of two matrices. This
will be a recurrent theme in the book.

II.1 Basic Notions

Let z = (z1,...,Z5) be an element of R™. Let z! and z7 be the vectors
obtained by rearranging the coordinates of z in the decreasing and the
increasing orders, respectively. Thus, if z! = (:1;%, ...,x}),, then a:% > 2>
zt. Similarly, if 27 = (z],...,z]),, then z] <--- < z]. Note that

- zl=zl_,,, 1<j<n (IL.1)

Let xz,y € R™. We say that z is majorised by y, in symbols = < y, if

k k
Yo <y, 1<ks<n, (I12)
j=1 j=1
and " "
zj = Zyjl (IL.3)
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Example: If z; > 0 and £z; = 1, then

(l,,—:;) < (z1,-..,za) < (1,0,...,0).

The notion of majorisation occurs naturally in various contexts. For ex-
ample, in physics, the relation z < y is interpreted to mean that the vector
z describes a “more chaotic” state than y. (Think of z; as the probability
of a system being found in state i.) Another example occurs in economics.
If z1,..-,%, and y1,. .., yn denote incomes of individuals 1,2,...,n, then
z < y would mean that there is a more equal distribution of incomes in the
state z than in y. The above example illustrates this.

From (IL.1) we have

||M?r

n n—k
§ : }: 1
z; — I]-.

Jj=1 J=1

Hence = < y if and only if

k k
dal>dyl, 1<k<n (IL4)
j=1 j=1
and " "
z] =Yyl (IL.5)
=1 Jj=1

Let e denote the vector (1,1,...,1), and for any subset I of {1,2,...,n}
let e; denote the vector whose jth component is 1if j € I and 0if j & I.
Given a vector z € R”, let

n
trz = Z:rj = (z,¢€),
j=1

where (-, -) denotes the inner product in R™. Note that

k
}: 1
I; = max(r,e

=1

where || stands for the number of elements in the set 7.
So, z < y if and only if for each subset [ of {1,2,...,n} there exists a
subset J with |I| = |J| such that

(z,er) < (y,es) (IL.6)

and
tr z = tr y. (IL.7)
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We say that z is (weakly) submajorised by y, in symbols = <., v, if
condition (I1.2) is fulfilled.

Note that in the absence of (II.3), the conditions (11.2) and (I1.4) are not
equivalent. We say that z is (weakly) supermajorised by y, in symbols
z <% y, if condition (IL.4) is fulfilled.

Exercise II.1.1 (i)z <y < 1 <, y and T < y.
(i) If a is a positive real number, then

T <y Y = QT <y OY,

z <Y y=az <Y ay.

(i11) T < y & —z <Y —y.
(iv) For any real number a,

T <Yy=ar<ay.

Remark I1.1.2 The relations <, <4, and <* are all reflexive and tran-
sitive. None of them, however, is a partial order. For example, if £ < y
and y < z, we can only conclude that x = Py, where P is a permutation
matriz. If we say that  ~ y whenever x = Py for some permutation matriz
P, then ~ defines an equivalence relation on R™. If we denote by R, the
resulting quotient space, then < defines a partial order on this space. This
relation is also a partial order on the set {x e R" : 7 > --- > z,}. These

statements are true for the relations <., and <* as well.

For a,b € R, let a V b = max(a,b) and a A b = min(a,b). For z,y € R",
define
TVY=(T1VY1,---,Tn VUn)
I/\'yZ(fL'l /\yl,...,zn/\yn).
Let

zt = zVvo0,
lz} = zV(-z).

In other words, z is the vector obtained from z by replacing the negative
coordinates by zeroes, and |z| is the vector obtained by taking the absolute
values of all coordinates.

With these notations we can prove the following characterisation of ma-
jorisation that does not involve rearrangements:

Theorem 11.1.3 Let z,y € R™. Then,
(i) z <y y if and only if for allt € R

n

Z(z]—t Z (y; —t)*. (11.8)
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(i) = <y if and only if for allt € R
Szt < St -yt (IL9)
j=1 j=1

(i) © < y if and only if for allt € R

Doz =t <3l —tl- (IL10)
Jj=1 j=1

Proof. Letz <, y. Ift > zi, then (z; — t)* = 0 for all j, and hence
(11.8) holds. Let x,lc aSt< x,lc for some 1 < k < n, where, for convenience,

a;}H_l = —o0. Then,
n k
 (zi—-t)t = Z(m —t)=> =zt —kt
j=1 j=1 j=1
k
< Su-re3 -0
: j—_—]

and, hence, (I1.8) holds.
To prove the converse, note that if ¢ = yt, then

Z(yJ —t)F = Z(y —t) = Zyi — kt.

j=1

But
k

k k
Sab—kt = Y (@-t)<d (z;-0)F
= = P

< }:(z S S
J=1
So, if (I1.8) holds, then we must have
k k
! 1

> 5 <d

i=1 i=1
ie, T <y Y.

This proves (i). The statements (ii) and (iii) have similar proofs. ]

Corollary 11.1.4 Ifz < y in R™ and u < w in R™, then (z,u) < (y,w)
in R"™_ In particular, T < y if and only if (z,u) < (y,u) for all u.
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An mex n matrix A = (a;;) is called doubly stochastic if

a;; >0 for all 1,7, (I1.11)
Zaij =1 for all 7, (I1.12)
=1
> ai;=1 forall i (I1.13)
j=1

Exercise 11.1.5 A linear map A on C" is called positivity-preserving if
it carries vectors with nonnegative coordinates to vectors with nonnegative
coordinates. It is called trace-preserving if tr Az= tr z for all . It is
called unital if Ae = e. Show that a matriz A is doubly stochastic if and
only if the linear operator A is positivity-preserving, trace-preserving and
unital. Show that A is trace-preserving if and only if its adjoint A* is unital.

Exercise I1.1.6 (i) The class of n x n doubly stochastic matrices is a
convez set and is closed under multiplication and the adjoint operation. It
is, however, not a group.

(i) Fvery permutation matriz is doubly stochastic and is an extreme
point of the convez set of all doubly stochastic matrices. (Later we will
prove Birkhoff’s Theorem, which says that all eztreme points of this convex
set are permutation matrices.)

Exercise 11.1.7 Let A be a doubly stochastic matriz. Show that all eigen-
values of A have modulus less than or equal to 1, that 1 is an eigenvalue of
A, and that ||A]| = 1.

Exercise I1.1.8 If A is doubly stochastic, then
|[Az| < A(lz]),

where, as usual, |z| = (|z1],.-.,|zn]) and we say that z <y if z; < y; for
all j.

There is a close relationship between majorisation and doubly stochastic
matrices. This is brought out in the next few theorems.

Theorem I1.1.9 A mairiz A is doubly stochastic if and only if Az < z
for all vectors z.

Proof Let Az < z for all z. First choosing = to be e and then
e; = (0,0,...,1,0,...,0),1 < i < n, one can easily see that A is dou-
bly stochastic.

Conversely, let A be doubly stochastic. Let y = Az. To prove y < = we
may assume, without loss of generality, that the coordinates of both z and
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y are in decreasing order. (See Remark I1.1.2 and Exercise I11.1.6.) Now
note that for any k,1 < k < n, we have

k k n
i3 am
j=1 =1 i=1
k n
If we put t; = Zaij’ then 0 <¢; <1 and Zti = k. We have
7=1 i=1

Il

k k n k
PRTEDI D EDY-
j=1 i=1 i=1 i=1

n k n
= Ztixi — Zmz + (k — Zt,).’lﬁk
=1 =1 =1

k n

= Z(t, — 1)($z — Ik) + Z ti(Ii - .’llk)
=1 i=k+1

< 0.

Further, when k = n we must have equality here simply because A is doubly
stochastic. Thus, y < z. u

Note that if z,y € R? and = < y then
(z1,22) = (tyr + (1 — t)y2, (1 — t)y; + ty2) for some 0 < ¢t < 1.

Note also that if z,y € R™ and z is obtained by averaging any two coordi-
nates of y in the above sense while keeping the rest of the coordinates fixed,
then z < y. More precisely, call a linear map T on R™ a T-transform if
there exists 0 <t < 1 and indices 7, k such that

Ty = (Y1, ¥-1,ty + (1 = )k Y1, - - (L= )Y5 + tUk, Yet1,- - Yn)-
Then, Ty < y for all y.
Theorem I1.1.10 For z,y € R™, the following statements are eguivalent:
(i) z<y.
(ii) z is obtained from y by a finite number of T-transforms.

(i%1) x is in the convez hull of all vectors obtained by permuting the coor-
dinates of y.

(v) = = Ay for some doubly stochastic matriz A.
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Proof. When n = 2;.then (i) = (ii). We will prove this for a general
n by induction. Assume that we have this implication for dimensions up
ton — 1. Let 7,y € R™. Since z! and y' can be obtained from z and y
by permutations and each permutation is a product of transpositions —
which are surely T-transforms, we can assume without loss of generality
that 23 > 22 > --- >z, and y; > y2 > --- > y,. Now, if z < y, then
Yn < 21 < yi- Choose k such that yx < 3 < yg—1. Thenz; = ty1+(1—t)yx
for some 0 <t < 1. Let

Tiz=(tz; + (1 — t)zk, 22, ., 2k—1, (L — t)21 + t2k, Zkt1s-- -1 2n)
for all z € R™. Then note that the first coordinate of Thy is z;. Let

= (z2,...,Ty)
!

Yy = (y27"'7yk—-17(1—t)y1 +tyk,yk+17~-'1yn)'

We will show that 2’ < ¢’. Since y1 > -+ > yp1 > T3 > To = -+ > Tp,
we havefor2<m<k-1

m m
>z <Yy
=2 j=2

Fork<m<n

m k—1
S o= Zyj + (1= t)y1 + tye] + Z Y
j=2 =k+1
= Zyj —ty1 + (¢ — Dk
J"l m
= Zyj -] > Zm] -z = zxj.
ji=1 7=2

The last inequality is an equality when m = n since z < y. Thus z’ < ¥/'.
So by the induction hypothesis there exist a finite number of T-transforms
Ty,..., T on R™! such that ' = (T, ---T2)y’. We can regard each of
them as a T-transform on R™ if we prohibit them from touching the first
coordinate of any vector. We then have

(Tr---Th)y = (Tr - - Te)(z1,¥) = (21,2") = =,

and that is what we wanted to prove.

Now note that a T-transform is a convex combination of the identity map
and some permutation. So a product of such maps is a convex combination
of permutations. Hence (ii) => (iii). The implication (iii) = (iv) is obvious,
and (iv) = (i) is a consequence of Theorem IL.1.9. ]

A consequence of the above theorem is that the set {z : z < y} is the
convex hull of all points obtained from y by permuting its coordinates.
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Exercise 1L.1.11 If U = (u;;) is a unitary matriz, then the matriz (Ju;,|?)
is doubly stochastic. Such a doubly stochastic matriz s called
unitary-stochastic; it is called orthostochastic if U is real orthogonal.
Show that if x = Ay for some doubly stochastic matriz A, then there erists
an orthostochastic matriz B such that £ = By. (Use induction.)

Exercise I1.1.12 Let A be an nxn Hermitian matriz. Let diag (A) denote
the vector whose coordinates are the diagonal entries of A and A(A) the
vector whose coordinates are the eigenvalues of A specified in any order.
Show that

diag (A) < A(A). (I1.14)

This is sometimes referred to as Schur’s Theorem.
Exercise 11.1.13 Use the majorisation (11.14) to prove that if /\Jl-(A) de-

note the eigenvalues of an n x n Hermitian matriz arranged in decreasing
order then for all k =1,2,...,n

k k
> M(A) =max Y (z;, Az;), (I1.15)
j=1 j=1
where the mazrimum is taken over all orthonormal k-tuples of wvectors
{z1,..-,zk} n C*. This is the Ky Fan’s maximum principle. (See
Problem 1.6.15 also.) Show that the majorisation (II.14) can be derived
from (II.15). The two statements are, thus, equivalent.

Exercise 11.1.14 Let A, B be Hermitian matrices. Then for all k =1, 2,
R

ZAl(A +B) < Z,\i A)+ ZAL(B) (11.16)
J=1 ji=1
Exercise I1.1.15 For any matriz A, let A be the Hermitian matriz
b 0 A
A= { A* 0 ] (I1.17)

Then the eigenvalues of A are the singular values of A together with their
negatives. Denote the singular values of A arranged in decreasing order by
s1(A4),...,8n A) Show that for any two m X n matrices A, B and for any
k=1, 2

k k k
> si(A+B) <> s;(A)+ ) si(B). (I1.18)
j=1 j=1 j=1

When k = 1, this is just the triangle inequality for the operator norm ||A]|.
For each 1 < k < n, define ||Al|(x) = Z§=1 s;(A). From (11.18) it follows
that || Al|(xy defines a norm. These norms are called the Ky Fan k-norms.
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11.2 Birkhoff’s Theorem

We start with a combinatorial problem known as the Matching Problem.
Let B = {by,...,b,} and G = {g1,...,9n} be two sets of n elements
each, and let R be a subset of B x G. When does there exist a bijection f
from B to G whose graph is contained in R? Tlis is called the Matching
Problem or the Marriage Problem for the following reason. Think of B
as a set of boys, G as a set of girls, and (b;, g;) € R as saying that the boy
b; knows the girl g;. Then the above question can be phrased as: when can
one arrange a monogamous marriage in which each boy gets married to a
girl he knows? We will call such a matching a compatible matching.
For each ¢ let G; = {g; : (bi,9;) € R}. This represents the set of girls
whom the boy b; knows. For each k-tuple of indices 1 < i) < --- < i < m,
k

let Gi...ip, = U G;, . This represents the set of girls each of whom are known

r=1
to one of the boys b;,, . . ., b;, . Clearly a necessary condition for a compatible
matching to be possible is that |G;,..;,| > k for all k = 1,2,...,n. Hall's
Marriage Theorem says that this condition is sufficient as well.

Theorem 11.2.1 (Hall) A compatible matching between B and G can be
found if and only if

forall1<i; < - < <n, k=1,2,...,n.

Proof. Only the sufficiency of the condition needs to be proved. This is
done by induction on n. Obviously, the Theorem is true when n = 1.
First assume that we have

|G,11k| >k+1,

forall1 <i; <---<ix <n,1 <k<n. Inother words, if 1 < k < n, then
every set of k boys together knows at least k+1 girls. Pick up any boy and
marry him to one of the girls he knows. This leaves n — 1 boys and n — 1
girls; condition (I1.19) still holds, and hence the remaining boys and girls
can be compatibly matched.

If the above assumption is not met, then there exist & indices iy, ..., ik,
k < n, for which

|Giyoin| = K.

In other words, there exist k£ boys who together know exactly k girls. By the
induction hypothesis these k boys and girls can be compatibly matched.
Now we are left with n — k unmarried boys and as many unmarried girls. If
some set of h of these boys knew less than A of these remaining girls, then
together with the earlier k these h+k boys would have known less than A+%
girls. (The earlier k£ boys did not know any of the present n — & maidens.)
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So, condition (I1.19) is satisfied for the remaining n — k boys and girls who
can now be compatibly married by the induction hypothesis. |

Exercise 11.2.2 (The Konig-Frobenius Theorem) Let A = (a;;) be an n x
n matriz. If o is a permutation on n symbols, the set {a15(1),024(2), - - -»
ano(n)} 18 called a diagonal of A . Each diagonal contains ezactly one
element from each row and from each column of A. Show that the following
two statements are equivalent:

(i) every diagonal of A contains a zero element.

(ii) A has a k x £ submatriz with all entries zero for some k, ¢ such that
k+£>n.

One can see that the statement of the Kénig-Frobenius Theorem is equiv-
alent to that of Hall’s Theorem.

Theorem I1.2.3 (Birkhoff’s Theorem) The set of n x n doubly stochastic
matrices is a convez set whose extreme points are the permutation matrices.

Proof. We have already made a note of the easy part of this theorem in
Exercise II.1.6. The harder part is showing that every extreme point is a
permutation matrix. For this we need to show that each doubly stochastic
matrix is a convex combination of permutation matrices.

This is proved by induction on the number of positive entries of the ma-
trix. Note that if A is doubly stochastic, then it has at least n positive
entries. If the number of positive entries is exactly n, then A is a permuta-
tion matrix.

We first show that if A is doubly stochastic, then A has at least one
diagonal with no zero entry. Choose any k x ¢ submatrix of zeroes that A
might have. We can find permutation matrices Py, P, such that P, AP, has
the form

PIAP2:{O B]v

C D

where O is a k x £ matrix with all entries zero. Since P; AP, is again doubly
stochastic, the rows of B and the columns of C each add up to 1. Hence
k 4+ £ < n. So at least one diagonal of A must have all its entries positive,
by the Konig-Frobenius Theorem.

Choose any such positive diagonal and let a be the smallest of the ele-
ments of this diagonal. If A is not a permutation matrix, then a < 1. Let P
be the permutation matrix obtained by putting ones on this diagonal and
let

A—aP

l1—a
Then B is doubly stochastic and has at least one more zero entry than A
has. So by the induction hypothesis B is a convex combination of permu-
tation matrices. Hence so is A, since A = (1 — a)B + aP. ]

B =
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Remark. There are n! permutation matrices of size n. Birkhoff’s Theorem
tells us that every n x n doubly stochastic matrix is a convex combination
of these n! matrices. This number can be reduced as a consequence of a
general theorem of Carathéodory. This says that if X is a subset of an
m-dimensional linear variety in RY, then any point in the convex hull of
X can be expressed as a convex combination of at most m + 1 points of X.
Using this theorem one sees that every n x n doubly stochastic matrix can
be expressed as a convex combination of at most n? — 2n + 2 permutation
matrices.

Doubly substochastic matrices defined below are related to weak ma-
jorisation in the same way as doubly stochastic matrices are related to
majorisation.

A matrix B = (b;;) is called doubly substochastic if

bij > 0 for all i,j,

Zbi]' <1 for all j,
iil
Zbij <1 forall .

=1

Exercise I1.2.4 B is doubly substochastic if it is positivity-preserving,
Be <e, and B*e <e.

Exercise I1.2.5 Every square submatriz of a doubly stochastic matriz is
doubly substochastic. Conversely, every doubly substochastic matriz B can
be dilated to a doubly stochastic matriz A. Moreover, if B is an n X n
matriz, then this dilation A can be chosen to have size at most 2n x 2n.
Indeed, if R and C are the diagonal matrices whose jth diagonal entries
are the sums of the jth rows and the jth columns of B, respectively, then

B I-R
A=(I—C B* )

is a doubly stochastic matriz.

Exercise 11.2.6 The set of all n x n doubly substochastic matrices is con-
vex; its extreme points are matrices having at most one entry 1 in each row
and each column and all other entries zero.

Exercise I1.2.7 A matriz B with nonnegative entries is doubly substochas-
tic if and only if there exists a doubly stochastic matriz A such that b;; < a;;
foralli,j=1,2,...,n.

Our next theorem connects doubly substochastic matrices to weak
majorisation.
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Theorem 11.2.8..(i) Let z,y be two vectors with nonnegative coordinates.
Then T <w y if and only if z = By for some doubly substochastic matriz
B.
(it) Let T,y € R™. Then x <, y if and only if there exists a vector u
such thatx < u and u < y.

Proof. If z,u € R™ and z < wu, then clearly <., u. So, if in addition
u =<y, then z <, y.

Now suppose that z,y are nonnegative vectors and * = By for some
doubly substochastic matrix B. By Exercise 11.2.7 we can find a doubly
stochastic matrix A such that b;; < a;; for all ¢,j. Then z = By < Ay.
Hence, £ <y Y-

Conversely, let z, y be nonnegative vectors such that z <, y. We want to
prove that there exists a doubly substochastic matrix B for which z = By.
If x = 0, we can choose B = 0, and if z < y, we can even choose B to
be doubly stochastic by Theorem 11.1.10. So, assume that neither of these
is the case. Let r be the smallest of the positive coordinates of z, and let
s =X y; — X z;. By assumption s > 0. Choose a positive integer m such
that » > s/m. Dilate both vectors z and y to (n + m)-dimensional vectors
z',y’ defined as

(z1,---+Zn,8/m,...,s/m),

= (yl,.‘.,yn,O,...,O).

Then z' < 3. Hence ' = Ay’ for some doubly stochastic matrix of size
n + m. Let B be the n x n submatrix of A sitting in the top left corner.
Then B is doubly substochastic and z = By. This proves (i).

Finally, let z,y € R™ and z <,, y. Choose a positive number ¢ so that
x+te and y+te are both nonnegative, where e = (1, 1,...,1). We still have
z+te <, y+te. So, by (i) there exists a doubly substochastic matrix B such
that z +te = B(y + te). By Exercise I11.2.7 we can find a doubly stochastic
matrix A such that b;; < a;; for all4, j. But then z-+te < A(y+te) = Ay-+te.

Hence, if u = Ay, then z < u and u < y. |

Exercise 11.2.9 A matriz A is doubly substochastic if and only if for every
z > 0 we have Az > 0 and Az <, z. (Compare with Theorem II.1.9.)

Exercise 11.2.10 Let z,y € R™ and let x > 0,y > 0. Then = < y if
and only if = is in the convexr hull of the 2™n! points obtained from y by
permutations and sign changes of its coordinates (i.e., vectors of the form
(£Yo(1), £Yo(2)s - - - » Yo (n)), Where o is a permutation).
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I1.3 Convex and Mcnotone Functions

In this section we will study maps from R™ to R™ that preserve various
orders.

Let f : R — R be any function. We will denote the map induced by f
on R™ also by f; i.e., f(z) = (f(z1),-.-, f(z,)) for € R™. An elementary
and useful characterisation of majorisation is the following.

Theorem I1.3.1 Let z,y € R™. Then the following two conditions are
equivalent:

(i) z <y.
(i) tr o(z) < tr o(y) for all conver functions ¢ from R to R.

Proof. Letz < y. Then z = Ay for some doubly stochastic matrix A. So

T; = E ai;y;, where a;; > 0 and E a;; = 1. Hence for every convex func-

j=1 7=1
tion i, p(z;) < Zazj(»o(y]) Hence Z‘P(-’I’z) < Zaw‘P yi) = Z‘P(yj
To prove the converse note that for each t the functlon pi(z) = |a: —t|is
convex. Now apply Theorem II.1.3 (iii). [ ]

Exercise I1.3.2 Forz,y € R™ the following two conditions are equivalent:

(i) T <y y-

(i) tr p(z) < tr (y) for all monotonically increasing conver functions
@ from R to R.

Note that in the two statements above it suffices to consider only con-
tinuous functions.
A real valued function ¢ on R™ is called Schur-convex or S-convex if

z<y = o)< ) (11.20)

(This terminology might seem somewhat inappropriate because the condi-
tion (II.20) expresses preservation of order rather than convexity. However,
the above two propositions do show that ordinary convex functions are
related to this notion. Also, if z < y, then z is obtained from y by an
averaging procedure. The condition (II.20) says that the value of ¢ is di-
minished when such a procedure is applied to its argument. Later on, we
will come across other notions of averaging, and corresponding notions of
convexity.)
We will study more general maps that include Schur-convex maps.
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Consider maps @ : R™ — R™. The domain of ® will be either all of R™ or
some convex set invariant under coordinate permutations of its elements.
Such a map will be called monotone increasing if

<y = &z)<(y),
monotone decreasing if
—& is monotone increasing,
convex if
Btz + (1 - t)y) < 18(z) + (1 - )(y), 0<t<1,

concave if
—& is convex,

isotone if
T < y == Q(m) <’w Q(yL

strongly isotone if
T=<wy = Oz)<w 2(y),
and strictly isotone if
<y = ()< d(y).

Note that when m = 1 isotone maps are precisely the Schur-convex maps.
The next few propositions provide examples of such maps. We will denote
by Sn the group of n x n permutation matrices.

Theorem I1.3.3 Let ® : R™ — R™ be a convex map. Suppose that for any
P e S, there exists P’ € S,, such that

&(Pz) = P'®(z) forall zeR™ (1L.21)
Then @ is isotone. In addition, if ® is monotone increasing, then ® is
strongly isotone.
Proof. Letz < yin R™. By Theorem II.1.10 there exist Pi,..., Py in S,
and positive real numbers t,,...,ty with Xt; = 1 such that

= 2t]'Pj'y.
So, by the convexity of ® and the property (II.21)
®(z) < Xt;@(Py) = Lt; Pj®(y) = 2,say.

Then z < ®(y) and ®(z) < z. So ®(z) < P(y). This proves that @ is
isotone.

Suppose @ is also monotone increasing. Let u <., y. Then by Theorem
I1.2.8 there exists = such that u < z < y. Hence ®(u) < ®(z) and ®(z) <4,
®(y). So, ®(u) < @(y). This proves @ is strongly isotone. u
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Corollary I1.3.4 7f ¢ : R — R is a convez function, then the induced
map ¢ : R® — R" is isotone. If p is convex and monotone on R, then the
induced map is strongly isotone on R™.

Note that one part of Theorem I1.3.1 and Exercise I1.3.2 is subsumed by
the above corollary.

Example 11.3.5 From the above results we can conclude that
(i) z <y inR™ = |z| <4 |y].
(ii) z <y in R™ = 22 <, 2.
(iit) T <y in RY = 2P <, yP forp > 1.
(v) T <y, yinR® =zt <, yT.
(v) If  is any function such that p(et) is convez and monotone increas-
ing in t, then logz <y logy in R} = ¢(z) <w ©(y).

(vi) log T <y log y in R} =z <y y.

(vii) For z,y € R}

Here R stands for the collection of vectors x > 0 (or, at places, T > 0).
All functions are understood in the coordinatewise sense. Thus, e.g., |z| =

(lz1ls-- -5 lznl)-

As an application we have the following very useful theorem.

Theorem 11.3.6 (Weyl’s Majorant Theorem) Let A be an n X n matriz
with singular values s; > --- > s, and eigenvalues A1, :.., A, arranged in
such a way that |\| > -+ > |As|. Then for every function ¢ : Ry — Ry,
such that p(e') is conver and monotone increasing in t, we have

(A1), -, @(An])) <w (@(s1), - -, 0(sn))- (11.22)
In particular, we have
(IMalPy- s AP <w (85, -, 80), (11.23)
for allp > 0.
Proof. The spectral radius of a matrix is bounded by its operator norm.

Hence,
A1l < [IA[] = s1.
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Apply this argument to the antisymmetric tensor powers AFA. This gives

k k
It <Isn 1<k<n (IL.24)
=1 j=1

Now use the assertion of 11.3.5 (vii). [

Note that we have " .
1Tt =T11ss (11.25)
=1 j=1

both the expressions being equal to (det A*A4)/2.

Remark 11.3.7 Returning to Theorem I1.3.8, we note that when m = 1
the condition (I1.21) just says that ® is permutation invariant; i.e.,

®(Pz) = &(z), (I1.26)

forallz € R® and P € S,,. So, in this case Theorem I1.3.3 says that if
a function ® : R™ — R is convexr and permutation invariant, then it is
isotone (i.e., Schur-convez).

Also note that every isotone function ® from R™ to R has to be permu-
tation invariant because Pz and z majorise each other and hence isotony
of ® implies equality of ®(Pz) and ®(z) in this case.

However, we will see that not every isotone function from R™ to R (i.e.
not every Schur-convex function) is convex.

Exercise 11.3.8 Let ¥ : R® — R be any convez function and let ®(z) =

max U(Pz). Prove that ® is isotone. If, in addition, ¥ is monotone in-
creasing, then ® is strongly isotone.

Exercise 11.3.9 Let p : R — R be convez. For each k = 1,2,...,n, define
functions &) R™ - R by

k
So(k)(z) = m;xx Z‘p(xa(j)%
j=1

where o Tuns over all permutations on n symbols. Then p*) is isotone. If,
in addition, @ is monotone increasing, then ¥ is strongly isotone. Note
that this applies, in particular, to

o™ (z) =Y p(z;) = tr p(x).

=1

Compare this with Theorem II.3.1. The special choice (t) = t gives (¥ (z) =

k
S
j=1
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Example I1.3.10 For z € R® let £ = 2¥z;. Let
1 _
V(z) = - Z(zj —z)%
J

This is called the variance function. Since the maps x; — (z; — Z)? are
convez, V(x) is isotone (i.e., Schur-convez).

Example I1.3.11 Forz € RY} let

H(z) = Zm, log z;,

where by convention we put tlogt = 0, if t = 0. Then H is called the
entropy function. Since the function f(t) =t logt is convez for t > 0, we
see that —H (z) is isotone. (This is sometimes expressed by saying that the
entropy function is anti-isotone or Schur-concave on R%.) In particular, if
z; > 0 and Xz; = 1 we have

1 1
H(1707"'70)SH(mly“':xn)SH(EP")E)7

which is a basic fact about entropy.

Example 11.3.12 For p > 1 the function

Z(% —)p

is isotone on R . In particular, if z; >0 and Ez; = 1, we have
(n? +1)7 p
np—1 < Z( j + _—)

Example 11.3.13 A function ® : R™ — R is called a symmetric gauge
function if

(i) @ is a norm on the real vector space R™,

(i) ®(Pz) = ®(z) for allz e R*, P € S,,

(iii) ®(e1Z1, ... ,EnTn) = B(T1,...,Zs) if g5 = £1,
(iv) ®(1,0,...,0) = 1.

(The last condition is an inessential normalisation.) Ezamples of sym-
metric gauge functions are

Oy(z) = (lejlp)l/”, 1<p< oo,

Qo(z) = lrgagt |z
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These norms are commonly used in-functional analysis. If the coordinates
of T are arranged so as to have |z, > - > |z,]|, then

k
y(z) = |z, 1<k<n

j=1

is also a symmetric gauge function. This is a consequence of the majorisa-
tions (11.29) and (i) in Ezamples 11.8.5.

Every symmeltric gauge function is conver on R™ and is monotone on
R7 (Problem I1.5.11). Hence by Theorem I1.3.3 it is strongly isotone; i.e.,

T <w ¥ mRY = &(z) < O(y).
For differentiable functions there are necessary and sufficient conditions
characterising Schur-convexity:

Theorem 11.3.14 A differentiable function ® : R® — R is isotone if and
only if

(i) ® is permutation invariant, and
(ii) for each x € R™ and for all i,

0P od
(zi — z")(az,- (z) - oz, z)) > 0.

Proof. We have already observed that every isotone function is permu-
tation invariant. To see that it also satisfies (ii), let i = 1,7 = 2, without
any loss of generality. For 0 < ¢ <1 let

z(t) = (1 — t)z1 + tza, tzy + (1 — t)z2, T3, - -, Tn)- (11.27)
Then z(t) < z = z(0). Hence ®(z(¢)) < ®(z(0)), and therefore
d 8% 0P
0> 00| =t - w0 - 5o @)

This proves (ii).

Conversely, suppose P satisfies (i) and (ii). We want to prove that ®(u) <
®(z) if u < z. By Theorem 11.1.10 and the permutation invariance of & we
may assume that

u=((1—8)r) + sz2,5z1 + (1 — §)T2,23,...,Zn)
for some 0 < s < 3. Let z(t) be as in (I1.27). Then

Bu) - (z) = /Osgt-@(:c(t))dt
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- [ -2 | gt - gt a

_/0 m_(i)_ll_—_;tﬁt)_z [g—i(z(t))—%(z(t))] dt

< 0,

because of (ii) and the condition 0 < s < 2. ]

N|=

Example I1.3.15 (A Schur-conver function that is not convez) Let
®: 12 - R, where I = (0,1), be the function

1 1
®(z1,72) = log(_— —1) + log(~ —1).

Using Theorem I1.3.14 one can check that ® is Schur-convez on the set

{117 T e 12,$1 +x2 < 1}
However, the function log(+ — 1) is convez on (0, 3] but not on [3,1).

Example 11.3.16 (The elementary symmetric polynomials) For each k =
1,2,---,n, let S : R™ — R be the functions

Sk(z) = Z TiyTip - Ty -

1<ii<iz<--<ikg<n

These are called the elementary symmetric polynomials of the n variables

ZTi,...,Zn. These are invariant under permutations. We have the identities
0 R
E—Tsk(xh"‘:zn) =Sk—1(I1>"'7zj7"‘7mﬂ.)
Lj
and
Sk(zl,...,a':i,...,xn)—Sk(ml,...,:ij,...,mn)
= (zj _'zi)Sk—-l(I17"’,ji7'"7:%j7"'1$’n.)7

where the circumflex indicates that the term below it has been omitted.
Using these one finds via Theorem I1.3.14 that each Sk is Schur-concave;
i.e., —S8y is isotone, on RY.

n n
The special case k = n says that if z,y € R} and z < y, then Ha:j > Hyj.
j=1 =1
Theorem 11.3.17 (The Hadamard Determinant Theorem) If A is annxn
positive matriz, then

det A < ﬁajj.

Jj=1
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Proof. Use Schur’s Theorem (Exercise 11.1.12) and the above statement
about the Schur-concavity of the function f(z) = Hmj on R%}

[ ]

More generally, if A;,..., A, are the eigenvalues of a positive matrix A,
we have for k=1,2,....n

Sk(/\l,...,)\n) < Sk(au,...,ann). (1128)

Exercise 11.3.18 If A is an m x n complez matriz, then
det(AA") < [[ D lasil*
i=1 j=1
(See Ezercise 1.1.3.)
Exercise 11.3.19 Show that the ratio Sk(x)/Sk—1(z) is Schur-concave on

the set of positive vectors for k = 2,...,n. Hence, if A is a positive matriz,
then
Sn(@ii,---,8nn) S Sn—1(a11,---,ann) S1(a11,- -« Gnn)
Sn(A1,--5An) T Saci(Ag, o) T T S, AR)
_trA
= 4=

Proposition 11.3.20 If A is an n X n positive definite matriz, then

tr AB
(det A)Y/™ = min{ rn : B is positive and det B = 1} .

If A is positive semidefinite, then the same relation holds with min replaced
by inf.

Proof. It suffices to prove the statement about positive definite matrices;
the semidefinite case follows by a continuity argument. Using the spectral
theorem and the cyclicity of the trace, the general case of the proposition
can be reduced to the special case when A is diagonal. So, let A be diago-
nal with diagonal entries Ay, ..., A,. Then, using the arithmetic-geometric
mean inequality and Theorem I1.3.17 we have

trAB _ —Z/\ by > (H,\ )”"(Hb DY™ > (det A)Y/™(det B)M™,

for every positive matrix B. Hence, t—rfé > (det A)Y/™if det B = 1. When
B = (det A)/™A~! this becomes an equality. [

Corollary 11.3.21 (The Minkowski Determinant Theorem) If A, B are
n X n positive matrices then

(det(A + B))™ > (det A)Y/™ + (det B)'/™.
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I1.4 Binary Algebraic Operations and
Majorisation

For z € R™ we have seen in Section II.1 that

k

1)

I = max(x,ey).
; max(z, er)

It follows that if z,y € R™, then

z+y <zt +yt (11.29)

In this section we will study majorisation relations of this form for sums,
products, and other functions of two vectors.
A map ¢ : R? — R is called lattice superadditive if

©(81.t1) + @(s2,t2) < @(s1V sa,t1 Via) + p(s1 Asg, b1 Ata).  (IL30)

We will call a map ¢ monotone if it is either monotonically increasing or
monotonically decreasing in each of its arguments.

In this section we will adopt the following notation. Given ¢ : R? — R,
we will denote by ® the map from R™ x R™ to R™ defined as

®(z,y) = (P(21,91),- - - (T, Yn))- (I1.31)

Example 11.4.1 (i) ¢(s,t) = s+t is a monotone and lattice superadditive
function on R2.
(ii) (s, t) = st is a monotone and lattice superadditive function on R2 .
For (i) above we have

O(z,y) = (z1 + Y1,---,Tn +Yn) for z,y €R",
and for (1) we have
O(z,y) = (Z1y1,-- -, Tnuyn) for z,y € R™

Theorem I1.4.2 If ¢ is monotone and lattice superadditive, then

O(zt, y7) <w B(z,7) <w (=, 9Y), (11.32)
for all z,y € R™.
Proof. Note that if we apply a coordinate permutation simultaneously to
z and y, then &(z,y) undergoes the same coordinate permutation. The two

outer terms in (I1.32) remain unaffected and so do the majorisations. Hence,
to prove (I1.32) we may assume that = = z!;ie., 1 > 22 > --- > z,. Next
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note that we can find a finite sequence of vectors u(®, v ... 4« such
that _

yt= u(o),yT = u(N),y =4 for some 1 <j <N,
and each u(*+1) is obtained from u(¥) by interchanging two components in
such a way as to move from the arrangement y! to y' ; i.e., we pick up two

indices 1, 7 such that
(k)

7

(k)

1<j and u;’ >u

and interchange these two components to obtain the vector u(**1). So, to
prove (11.32) it suffices to prove

®(z,uF )y <, d(z,u®) (11.33)

for k=0,1,..., N —1. Since we have already assumed z; > z5 > --- > z,,
to prove (I11.33) we need to prove the two-dimensional majorisation

(p(s15t2), (52, t1)) <w ((s1,t1), (82, 12)) (I1.34)

if s; > s2 and t; > t5. Now, by the definition of weak majorisation, this is
equivalent to the two inequalities

w(s1,t1) vV p(s2,t2),

p(s1,11) + @(s2, t2),

p(s1,t2) vV p(s2,t1)
p(s1,t2) + p(s2,1)

IN A

for s; > s and ¢; > 3. The first of these follows from the monotony of ¢
and the second from the lattice superadditivity. |

Corollary 11.4.3 For z,y € R

o4yl <z 4y <zt +yh (11.35)
For z,y e R%

oty <p -y <zt -yt (11.36)
where T -y = (T1Y1,- - -, Tnln)-

Corollary 11.4.4 For z,y € R"
(zt,y") < (z,9) < (2t ). (I1.37)

Proof. If £ >0 and y > 0, this follows from (I1.36). In the general case,
choose t large enough so that z + te > 0 and y + te > 0 and apply the
special result. u

The inequality (I1.37) has a “mechanical” interpretation when z > 0
and y > 0. On a rod fixed at the origin, hang weights y; at the points
at distances z; from the origin. The inequality (II.37) then says that the
maximum moment is obtained if the heaviest weights are the farthest from
the origin.
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Exercise 11.4.5 The function ¢ : R? — R defined as ¢(s,t) = s At is
monotone and lattice superadditive on R%. Hence, for z,y € R®

avll\yT ~w TNAY < zll\yl.

1.5 Problems

Problem I1.5.1. If a doubly stochastic matrix A is invertible and A~? is
also doubly stochastic, then A is a perinutation.

Problem I1.5.2. Let y € R}. The set {z : £ € R}, z <, y} is the convex

hull of the points (r1¥5(1),: - - +TnYo(n)), Where o varics over permnutations
and cach r; is either 0 or 1.

Problem IL.5.3. Let y € R™. The set {z € R" : |z] <y [y|} is the
convex hull of points of the form (€1¥5(1)s - - - €n¥o(n)), Where o varies over
permutations and each ;5 = *1.

Problem IL.5.4. Let A = (4 41?) be a 2 x 2 block matrix and let
cA) = (" 2 )IfU= (¢ %), then we can write

C(A) = %(A FUAU).

Let A(A) and s(A) denote the n-vectors whose coordinates are the eigen-
values and the singular values of A, respectively.
Use (I1.18) to show that

S(C(A)) <4 s(A).
If A is Hermitian, use (I1.16) to show that

A(C(A)) < A(4).
Problem IL.5.5. More generally, let Py, ..., P, be a family of mutually
orthogonal projections in C" such that @P; = I. Then the operation of

taking A to C(A) = LP;AP; is called a pinching of A. In an appropriate
choice of basis this means that

An Agz - A An
as| e
Arl Ar2 Arr

A22

ATT

Each such pinching is a product of r — 1 pinchings of the 2 x 2 type intro-
duced in Problem I1.5.4. Show that for every pinching C

$(C(A)) <w s(A) (11.38)
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for all matrices A, and ‘
A(C(A)) < A(4) (11.39)

for all Hermitian matrices A. When P, ..., P, are the projections onto the
coordinate axes, we get as a special case of (I1.38) above

jbr A1 < "55(A4) = [| Al (1L40)
i=1
From (I1.39) we get as a special case Schur’s Theorem
diag (A) < A(A4),
which we saw before in Exercise 11.1.12.
Problem I1.5.6. Let A be positive. Then
det A < det C(A), (11.41)

for every pinching C. This is called Fischer’s inequality and includes the
Hadamard Determinant Theorem as a special case.

Problem I1.5.7. For each kK = 1,2,...,n and for each pinching C show
that for positive definite A

Sk(A(4)) < Sk(AC(A))), (11.42)

where Si(A(A)) denotes the kth elementary symmetric polynomial of the
eigenvalues of A. This inequality, due to Ostrowski, includes (I1.28) as a
special case. It also includes (II.41) as a special case.

Problem II.5.8. If A¥A denotes the kth antisymmetric tensor power of
A, then the above inequality can be written as

tr A¥ A <tr A¥(C(A)). (11.43)

The operator inequality
A A < AR(C(A))

is not always true. This is shown by the following example. Let

0

o O N
S O OO

0
i
0
0

O == O
O N = O
OO O

0
0 )
0

and let C be the pinching induced by the pair of projections P and I — P.
(The space A2C* is 6-dimensional.)
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Problem IL.5.9. Let {Ay,..., Az}, {#1, - - -, £} be two n-tuples of complex
numbers. Let
d(/\7 ,LL) = Hl;n lréljagxn IAJ - :u‘d(])|7

where the minimum is taken over all permutations on n symbols. This is
called the optimal matching distance between the unordered n-tuples
A and p. It defines a metric on the space C7,,,, of such n-tuples. Show that
we also have

d(A,p) = max - min |A — pl.

1,JC{1,2,...,n}
[I+]Jl=n41  jE€J

Problem I1.5.10. This problem gives a refinement of Hall’s Theorem un-
der an additional assumption that is often fulfilled in matching problems.
In the notations introduced at the beginning of Section I1.2, define

B; = {b; : (bj,0:) € R}, 1<i<n.

This is the set of boys known to the girl g;. Let

k
Bil“'ik = UBi" 1<) << <n.

r=1

Suppose that for each £ = 1,2,..., [12‘—] and for every choice of indices
1§i1<-~~<ik§n,

|Giyin| > k and | By | = k.
Show that then
|Giyoi ] = kforallk=1,2,...,n,1<i; <--- <ig < m.
Hence a compatible matching between B and G exists.

Problem I1.5.11. (i) Show that every symmetric gauge function is con-
tinuous.

(i1) Show that if ® is a symmetric gauge function, then @ (z) < ®(z) <
®;(z) for all z € R™.

(iii) If @ is a symmetric gauge function and 0 < t; < 1, then

(D(tlrz:l, e ,tnfEn) S @(Il, e ,:Zn).

(iv) Every symmetric gauge function is monotone on R%.

(v) If z,y € R™ and |z| < |y|, then ®(z) < P(y) for every symmetric
gauge function .
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(vi) If z,y € RY, then z <, y if and only if ®(z) < @(y) for every_
symmetric gauge function @. '

Problem I1.5.12. Let f : R, — R, be a concave function such that
£(0) =0.
(i) Show that f is subadditive: f(a +b) < f(a) + f(b) for all a,b € Ry.

(i) Let ® : R3* — R, be defined as
®(z,y) =) flz;)+ ) fy;), =yeky.
7=1 =1

Then ® is Schur-concave.
(iii) Note that for z,y € R}
(z,y) < (z +y,0) in Ri".

(iv) From (ii) and (iii) conclude that the function
F(z) =Y f(lz;))
j=1

is subadditive on R™.

(v) Special examples lead to the following inequalities for vectors

z,y € R™:

n n n
Sl +ulP <l + > lwlP, 0<p<tL
j=1 j=1 j=1

— |z +yl = |z = |yl

T YL + :

§1+[z]-+yjl ;1+|zj] j§1+|yjl

n n n

> log (1+ |z; +y50) < Y log(1+|z;]) + Y log(1 + [y5])-
j=1 j=1 i=1

Problem I1.5.13. Show that a map ¢ : R? — R is lattice superadditive if
and only if
Lp(ml + 61,20 — 62) + (P(.’L‘l —61,x2 + 62)
< o(z1 + 61,22 + 62) + @(z1 — 61,22 — 62)
for all (z1,z2) and for all §;,8, > 0. If ¢ is twice differentiable, this is
equivalent to
2
0 < Folznz2)
- 0z:0z,
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Problem I1.5.14. Let ¢ : R? — R be a monotone increasing lattice super-
additive function, and let f be a monotone increasing and convex function
from R to R. Show that if ¢ and f are twice differentiable, then the com-
position f o is monotone and lattice superadditive. When ¢(s,t) = s + ¢
show that this is also true if f is monotone decreasing. These statements
are also true without any differenciability assumptions.

Problem II.5.15. For z,y € R}
—log(z! +y") <w —log(z +y) <w —log(z' + ')
log(z! - y") <uw log(z - y) < log(z* - y*).
From the first of these relations it follows that

n n n
@ +u) < [[+v) < [[ @+ o))
j=1 i=1 =1

Problem I1.5.16. Let z,y,u be vectors in R™ all having their coordinates
in decreasing order. Show that
() (z,u) < (y,u) ifz <y,
(i) (z,u) < (y,u) if z <, y and u € R%.
In particular, this means that if z,y € R®,z <y, y, and u € R%, then
(z%u{,,ziu}l) ~w (yfui,...,yiui .
[Use Theorem I1.3.14 or the telescopic summation identity
k k
> asbi = (a; — ajia) (b + -+ +by),
j=1 j=1

where a;,b;, 1< j <k, are any numbers and ag41 = 0.]

I1.6 Notes and References

Many of the results of this chapter can be found in the classic Inequalities
by G.H. Hardy, J.E. Littlewood, and G. Polya, Cambridge University Press,
1934, which gave the first systematic treatment of this theme. The more
recent treatise Imequalities: Theory of Majorization and Its Applications
by A.W. Marshall and I. Olkin, Academic Press, 1979, is a much more
detailed and exhaustive text devoted entirely to the study of majorisation.
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It is an'invaluable resource on this topic. For the reader who wants a quicker
introduction to the essentials of majorisation and its applications in linear
algebra, the survey article Majorization, doubly stochastic matrices and
comparison of eigenvalues by T. Ando, Linear Algebra and Its Applications,
118(1989) 163-248, is undoubtedly the ideal course. Our presentation is
strongly influenced by this article from which we have freely borrowed.

The distance d(\, ) introduced in Problem I1.5.9 is commonly employed
in the study of variation of roots of polynomials and eigenvalues of matri-
ces since these are known with no preferred ordering. See Chapter 6. The
result of Problem I1.5.10 is due to L. Elsner, C. Johnson, J. Ross, and J.
Schonheim, On a generalised matching problem arising in estimating the
eigenvalue variation of two matrices, European J. Combinatorics, 4(1983)
133-136.

Several of the theorems in this chapter have converses. For illustration
we mention two of these.

Schur’s Theorem (II.14) has a converse; it says that if d and A are real
vectors with d < A, then there exists a Hermitian matrix A whose diagonal
entries are the components of d and whose eigenvalues are the components
of A.

Weyl’s Majorant Theorem (I1.3.6) has a converse; it says that if A1,..., A,
are complex numbers and sy, ..., S, are positive real numbers ordered as
[A1] > --->|As| and s; > --- > s,, and if

k k

H|/\j! < Hsj for 1<k<n,
j=1

=1
n n
[T%1=1Tss
j=1 j=1
then there exists an n x n matrix A whose eigenvalues are A;,..., A, and
singular values sy,...,Sn-

For more such theorems, see the book by Marshall and Olkin cited above.

Two results very close to those in 11.3.16-11.3.21 and I1.5.6-11.5.8 are given
below.

M. Marcus and L. Lopes, Inequalities for symmetric functions and Her-
mitian matrices, Canad. J. Math., 9(1957) 305-312, showed that the map
@ : R? — R given by ®(z) = (Sk(z))'/* is Schur-concave for 1 < k < n.
Using this they showed that for positive matrices A, B

[tr AF (A + B)VE > [tr AF AJVE 4 [tr A% BJVE. (I1.44)

This can also be expressed by saying that the map A — (tr A* A)V/* is
concave on the set of positive matrices. For k = n, this reduces to the
statement

[det(A + B)]*/™ > [det A]*/™ + [det B]*/™,

which is the Minkowski determinant inequality.
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E.H. Lieb, Convexz trace functions and the Wigner-Yanase-Dyson conjec-
ture, Advances in Math., 11(1973) 267-288, proved some striking operator
inequalities in connection with the W.-Y.-D. conjecture on the concavity of
entropy in quantum mechanics. These were proved by different techniques
and extended in other directions by T. Ando, Concavity of certain maps
on positive definite matrices and applications to Hadamard products, Linear
Algebra Appl., 26(1979) 203-241. One consequence of these results is the
inequality

AR (A + B)YE > Ak AVE L \RBY/E (11.45)

for all positive matrices A, B and for all kK = 1,2,...,n. In particular, this
implies that

tr AR (A+ B)YE > tr A% AYE ftr AR BYE

When k = n, this reduces to the Minkowski determinant inequality. Some
of these inequalities are proved in Chapter 9.
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Variational Principles for
Eigenvalues

In this chapter we will study inequalities that are used for localising the
spectrum of a Hermitian operator. Such results are motivated by several
interrelated considerations. It is not always easy to calculate the eigen-
values of an operator. However, in many scientific problems it is enough
to know that the eigenvalues lie in some specified intervals. Such infor-
mation is provided by the inequalities derived here. While the functional
dependence of the eigenvalues on an operator is quite complicated, several
interesting relationships between the eigenvalues of two operators A, B and
those of their sum A + B are known. These relations are consequences of
variational principles. When the operator B is small in comparison to A,
then A+ B is considered as a perturbation of A or an approximation to A.
The inequalities of this chapter then lead to perturbation bounds or error
bounds.

Many of the results of this chapter lead to generalisations, or analogues,
or open problems in other settings discussed in later chapters.

IT1.1 The Minimax Principle for Eigenvalues

The following notation will be used throughout this chapter. If A, B are
Hermitian operators, we will write their spectral resolutions as Au; =
ajuj, Buy = Bjvj,1 < j < n, always assuming that the eigenvectors u;
and the eigenvectors v; are orthonormal and that a; > a2 > -+ > a,
and B; > B2 > --+ > B,. When the dependence of the eigenvalues on the
operator is to be emphasized, we will write A!(A) for the vector with com-
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ponents )\{ (A),...,AL(A), where /\; (A) are arranged in decreasing order;
ie., A; (A) = a;. Similarly, AT(A) will denote the vector with components
Al(A) where Al (4) = an_j1,1<j < n.

Theorem II1.1.1 (Poincaré’s Inequality) Let A be a Hermitian operator

on H and let M be any k-dimensional subspace of H. Then there ezist unit
vectors z,y in M such that (z, Az) < A} w(4) and (y, Ay) > 4\T (4).

Proof. Let A be the subspace spanned by the eigenvectors ug, . .., u, of
A corresponding to the eigenvalues )\,lc(A), <AL (A). Then

dim M +dim N =n+1,
and hence the intersection of M and N is nontrivial. Plck up a unit vector

z in M NAN. Then we can write = Zgjuj, where Z[g[ = 1. Hence,
=k =k

(z, Az) = Y I612H(A) < STIEPALA) = AL(A).

i=k i=k

This proves the first statement. The second can be obtained by applying
this to the operator —A instead of A. Equally well, one can repeat the
argument, applying it to the given k-dimensional space M and the (n —
k + 1)-dimensional space spanned by uy,ug, ..., Un—k+1- [ ]

Corollary 1I1.1.2 (The Minimaz Principle) Let A be a Hermitian opera-
tor on H. Then

1 —
AL(4) = max imn (z, Az)
dim M=k ||z||=1
= min max (z, Az).
MCH TEM

dim M=n—k+1 |Jz||=1

Proof. By Poincaré’s inequality, if M is any k-dimensional subspace of
H, then min(z, Az) < /\,lc (A), where z varies over unit vectors in M. But if
T

M is the span of {uy,...,ux}, then this last inequality becomes an equality.

That proves the first statement. The second can be obtained from the first
by applying it to —A instead of A. |

This minimax principle is sometimes called the Courant-Fischer-Weyl
minimax principle.
Exercise I11.1.3 In the proof of the minimaz principle we made a par-
ticular choice of M. This choice is not always unigue. For example, if
/\,lc(A) = )\,lc +1(A), there would be a whole 1-parameter family of such sub-
spaces obtained by choosing different eigenvectors of A belonging to A,lc(A).
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This is not surprising. More surprising, perhaps even shocking, is the fact
that we could have A\t(A) = min{(z, Az) : z € M, ||z|| = 1}, even for a
k-dimensional subspace that is not spanned by eigenvectors of A. Find an
ezample where this happens. (There is a simple ezample.)

Exercise II1.1.4 In the proof of Theorem III.1.1 we used a basic principle
of linear algebra:

dim (M1 an) = dim M; +dim M, — dim(M1 +M2)
> dim M; +dim Mj —n,

for any two subspaces My and My of an n-dimensional vector space. Derive
the corresponding inequality for an intersection of three subspaces.

An equivalent formulation of the Poincaré inequality is in terms of com-
pressions. Recall that if V' is an isometry of a Hilbert space M into H, then
the compression of A by V is defined to be the operator B = V*AV. Usu-
ally we suppose that M is a subspace of H and V is the injection map.
Then A has a block-matrix representation in which B is the northwest

corner entry:
A= ( B x )
*  x

We say that B is the compression of A to the subspace M.

Corollary II1.1.5 (Cauchy’s Interlacing Theorem) Let A be a Hermitian
operator on ‘H, and let B be its compression to an (n — k)-dimensional
subspace N'. Then for 7 =1,2,...,n—k

A (A) = A(B) > AL (4). (IL.1)

Proof. For any j, let M be the span of the eigenvectors v,,...,v; of B
corresponding to its eigenvalues /\i(B), e )\]l. (B). Then (z, Bz) = (z, Az)
for all z € M. Hence,

i — i — mi 1)
Aj(B) = min (z,Bz) = min (z, Az) < A;(A).

l=ll=1 l=1l=1

This proves the first assertion in (II1.1).
Now apply this to —A and its compression —B to the given subspace A.
Note that

")‘%(A) = )\ZT(—A) = ’\i—i+1(_A) foralll1 <i<n,
and

~Aj(B) = AN(=B) = \,_4y_j41(—=B) foralll<j<n—*k.
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Choose i =j+k. Then the first inequality yields—)\;(B) < —/\;+k(B), which
is the second inequality in (IIL.1). ]

The above inequalities look especially nice when B is the compression of
A to an (n — 1)-dimensional subspace: then they say that

=P >a22 2 Pr1 2> an. (111.2)

This explains why this is called an interlacing theorem.

Exercise II1.1.6 The Poincaré inequality, the minimax principle, and the
interlacing theorem can be derived from each other. Find an independent
proof for each of them using Ezercise II1.1.4. (This “dimension-counting”
for intersections of subspaces will be used in later sections too.)

Exercise IIL.1.7 Let B be the compression of a Hermitian operator A to
an (n — 1)-dimensional space M. If, for some k, the space M contains the
vectors ui, ..., u, then B; = o for 1 < j < k. If M contains ug,. .., Un,
then Qj = ﬁj_l fOT‘k’ < ] <n.

Exercise 111.1.8 (i) Let A, be the n x n tridiagonal matriz with entries
ai, = 2cosf for alli,a;; =1 if |i — j| = 1, and a;; = 0 otherwise. The
determinant of A, is sin(n + 1)0/sin 6.

(ii) Show that the eigenvalues of A, are given by 2(cos + cos n]—:l),
1<j<n
(i1i) The special case when a; = —2 for all i arises in Rayleigh’s finite-
dimensional approzimation to the differential equation of a vibrating string.
In this case the eigenvalues of A, are
. Jjm .
M(A,) =—-4sin® ———, 1<j<n
() on+1) = =T
(w) Note that, for each k < n, the matriz Anp— 15 a compression of
A,. This ezample provides a striking illustration of Cauchy’s interlacing
theorem.

It is illuminating to think of the variational characterisation of eigenval-
ues as a solution of a variational problem in analysis. If A is a Hermitian
operator on R™, the search for the top eigenvalue of A is just the problem
of maximising the function F(z) = z* Az subject to the constraint that the
function G(z) = z*z has the fixed value 1. The extremum must occur at
a critical point, and using Lagrange multipliers the condition for a point
T to be critical is VF(z) = AVG(z), which becomes Az = Az. Our ear-
lier arguments got to the extremum problem from the algebraic eigenvalue
problem, and this argument has gone the other way.

If additional constraints are imposed, the maximum can only decrease.
Confining z to an (n — k)-dimensional subspace is equivalent to imposing
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k linearly independent linear constraints on it. These can be expressed as
Hj(z) = 0, where H;(z) = w}z and the vectors w;,1 < j < k are linearly
independent. Introducing additional Lagrange multipliers p;, the condition
for a critical point is now VF(z) = AVG(z)+)_; ; VH;(z); L.e., Az— Az is
no longer required to be 0 but merely to be a linear combination of the w;.
Look at this in block-matrix terms. Our space has been decomposed into a
direct sum of a space A and its orthogonal complement which is spanned
by {wi,---,wk}- Relative to this direct sum decomposition we can write

B C
(2 9)
Our vector z is now constrained to be in A/, and the requirement for it to
be a critical point is that (A — AI) (g) lies in AL, This is exactly requiring
z to be an eigenvector of the compression B.
If two=interlacing sets of real numbers are given, they can be realised as

the eigenvalues of a Hermitian matrix and one of its compressions. This is
a converse to one of the theorems proved above:

Theorem III.1.9 Leta;,1<j < n,andpf;,1 < i< n—1, be real numbers
such that
a2 B >2a> -2 Puo1 2 Qn.

Then there exists a compression of the diagonal matriz A = diag(ay, - .., aq)
having B;,1 <1 <mn—1, as its eigenvalues.

Proof. Let Auj; = ajuj; then {u;} constitute the standard orthonor-
mal basis in C™. There is a one-to-one correspondence between (n — 1)-
dimensional orthogonal projection operators and unit vectors given by
P = I — zz*. Each unit vector, in turn, is completely characterised by
its coordinates (; with respect to the basis u;. We have z = Y (ju; =
Yo(us2)ug, 3 [¢;]? = 1. We will find conditions on the numbers (; so that,
for the corresponding orthoprojector P = I — zz*, the compression of A to
the range of P has eigenvalues f;.
Since PAP is a Hermitian operator of rank n — 1, we must have

n—1
[ =8:) =tr A" [P(AT — A)P].
=1

If E; are the projectors defined as E; = I — u;uj, then

AP AT - A) = znj [ —ax) A" E;.

J=1 kj
Using the result of Problem 1.6.9 one sees that

APTLp. An-—lEj . /\n—lP — Kjlz AL p
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Since rank A"~ P = 1, the above three relations give

[TO=8) =3 IGPITIO - e, (I11.3)

Jj=1 k#j

an identity between polynomials of degree n — 1, which the {; must satisfy
if B has spectrum {3;}.
We will show that the interlacing inequalities between o; and §; ensure

that we can find (; satisfying (IIL.3) and Z[lez = 1. We may assume,
j=1
without loss of generality, that the o; are distinct. Put

n—1

[I(e;-8)
==l 1<ji<n. 1.4
v; H(aj"ak) <j<n (111.4)

k#j

The interlacing property ensures that all y; are nonnegative. Now choose
¢j to be any complex numbers with |(;|? = ~;. Then the equation (IIL.3) is
satisfied for the values A = a;,1 < j < n, and hence it is satisfied for all A.
Comparing the leading coefficients of the two sides of (II1.3), we see that
Z]Cj|2 = 1. This completes the proof.

; ]

IT1.2 Weyl’s Inequalities

Several relations between eigenvalues of Hermitian matrices A, B, and A+ B
can be obtained using the ideas of the previous section. Most of these results
were first proved by H. Weyl.

Theorem 111.2.1 Let A, B be n x n Hermitian matrices. Then,
A(A+B) < M(A) + A, (B) fori<j, (I1L.5)
M(A+B) 2 M (A) + A} (B) fori>j. (111.6)

Proof. Let uj,v;, and w; denote the eigenvectors of A,B, and A + B
respectively, corresponding to their eigenvalues in decreasing order. Let
i < j. Consider the three subspaces spanned by {w,...,w;}, {u:, ..., un},
and {vj_iy1,...,Un} respectively. These have dimensions j,n — ¢ + 1, and
n — j +1, and hence by Exercise II1.1.4 they have a nontrivial intersection.
Let x be a unit vector in their intersection. Then

M(A+ B) < (z,(A+ B)z) = (z, Az) + (z, Bz) < M} (A) + \j_,,(B).
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This proves (IIL.5). If A and B in this inequality are replaced by —A and
—B, we get (IIL6). -

Corollary I11.2.2 For each j =1,2,...,n

b

A (A) +M(B) S XA+ B) < AL(A) + MH(B). (I1L.7)
Proof. Put i = j in the above inequalities. |

It is customary to state these and related results as perturbation theo-
rems, whereby B is a perturbation of A; that is B = A+ H. In many of the
applications H is small and the object is to give bounds for the distance of
MB) from A(A) in terms of H = B — A.

Corollary II1.2.3 (Weyl’s Monotonicity Theorem) If H is positive, then
l 1 .
A (A+H) > X (A) for allj.

Proof. By the preceding corollary, /\j (A+H)> A}(A) + AL(H), but all
the eigenvalues of H are nonnegative. Alternately, note that (z, (A+H)z) >
(z,Ax) for all z and use the minimax principal. ]

Exercise 111.2.4 If H is positive and has rank k, then
MA+H)2A(A) 2 M (A+H) forj=1,2,...,n—k
This is analogous to Cauchy’s interlacing theorem.
Exercise 111.2.5 Let H be any Hermitian matriz. Then
A (A) = [ H|I < Aj(A+ H) < A (4) + [|H]|-
This can be restated as:

Corollary II1.2.6 (Weyl’s Perturbation Theorem) Let A and B be Her-
mitian matrices. Then

max|A;(4) = X;(B)| < [|4 - Bl

Exercise II1.2.7 For Hermitian matrices A, B, we have

14— Bl < max|A;(4) = A} (B)]

It is useful to have another formulation of the above two inequalities,
which will be in conformity with more general results proved later.

We will denote by Eig A a diagonal matrix whose diagonal entries are
the eigenvalues of A. If these are arranged in decreasing order, we write
this matrix as Eig!(A); if in increasing order as Eig'(A). The results of
Corollary II1.2.6 and Exercise I11.2.7 can then be stated as
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Theorem II1.2.8 For any two Hermitian matrices A, B,
||Eig! (4) - Eig"(B)|| < ||A - B|| < |[Eig"(A) — Eig'(B)||-

Weyl's inequality (II1.5) is equivalent to an inequality due to Aronszajn
connecting the eigenvalues of a Hermitian matrix to those of any two com-
plementary principal submatrices. For this let us rewrite (IIL5) as

Mo (A+B) < XA+ MH(B), (IIL.8)
for all indices ¢,j such that i 4+ 7 —1 < n.
Theorem II1.2.9 (Aronszajn’s Inequality) Let C be an n x n Hermitian

matriz partitioned as
A X
C B ( X* B ) ’

where. A is a k x k matriz. Let the eigenvalues of A,B, and C be oy > -+
> ag, B> > Bo_k, and vy > -+ > vy, Tespectively. Then

Yitj—1+ Y < a;+B; foralli,j withi+j—1<n. (111.9)

Proof. First assume that -, = 0. Then C is a positive matrix. Hence
C = D*D for some matrix D. Partition D as D = (D D3), where D; has
k columns. Then

C-( A X)_(DIDI D{Dz)

"\ X* B )T\ DiD; DiD, )’

Note that DD* = D;D} + DoDj. Now the nonzero eigenvalues of the
matrix C = D*D are the same as those of DD*. The same is true for the
matrices A = Dy D; and D;Dj, and also for the matrices B = D3 D and
D,D3. Hence, using Weyl’s inequality (II1.8) we get (IIL.9) in this special
case.

If 7, # 0, subtract v, from C. Then all eigenvalues of A, B, and C are
translated by —v,. By the special case considered above we have

Yiti—1 — Tn < (i — o) + (B — n)»
which is the same as (IIL.9) ]

We have derived Aronszajn’s inequality from Weyl’s inequality. But the
argument above can be reversed. Let A, B be n x n Hermitian matrices and
let C = A+ B. Let the eigenvalues of these matrices be a; > -+ > an, 61 >
-+ > Bn,and v, > -+ > 7n, respectively. We want to prove that v, 41 <
o; + ﬁj. This is the same as Yitj—1 — (Otn + ﬂn) < (ai — Otn) + (ﬁ] - ﬁn)
Hence, we can assume, without loss of generality, that both A and B are
positive. Then A = D} D; and B = D3 D, for some matrices D;, Do. Hence,

* * * * D
C = D;D; + D3Dy = (D Dz)( D; )
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Consider the 2n »-2n matrix
D, DDy D1D;
E= D} D3) = ! 2 ).
(2 )i o9 (2ot ook
Then the eigenvalues of E are the eigenvalues of C together with n ze-
roes. Aronszajn’s inequality for the partitioned matrix F then gives Weyl’s
inequality (II1.8).
By this procedure, several linear inequalities for the eigenvalues of a sum

of Hermitian matrices can be transformed to those for the eigenvalues of
block Hermitian matrices, and vice versa.

I11.3 Wielandt’s Minimax Principle

The minimax principlé (Corollary 111.1.2) gives an extremal characterisa-
tion for each eigenvalue o of a Hermitian matrix A. Ky Fan’s maximum
principle (Problem 1.6.15 and Exercise I1.1.13) provides an extremal char-
acterisation for the sum «; + --- + ai of the top k eigenvalues of A. In
this section we will prove a deeper result due to Wielandt that subsumes
both these principles by providing an extremal representation of any sum
aj, + -+ aj,. The proof involves a more elaborate dimension-counting for
intersections of subspaces than was needed earlier.

We will denote by V+W the vector sum of two vector spaces V and W, by
V — W any linear complement of a space W in V, and by
span {vi,.-.,vx} the linear span of vectors v, ..., .

Lemma II1.3.1 Let W; D Wy D --- D Wy be a decreasing chain of vector
spaces with dim W > k—j+1. Let w;,1 < j < k—1, be linearly independent
vectors such that w; € Wj, and let U be their linear span. Then there ezists
a nonzero vector u in Wy — U such that the space U +span {u} has a basis
vy,..., U withv; € W;,1<j < k.

Proof. This will be proved by induction on k. The statement is easily
verified when k = 2. Assume that it is true for a chain consisting of &k — 1
spaces. Let wy,...,wg_1 be the given vectors and U their linear span. Let
S be the linear span of ws, - .., wg—1- Apply the induction hypothesis to the
chain Wy D --- D Wy, to pick up a vector v in W5 — S such that the space
S+span{v} is equal to span{wvs, ..., v} for some linearly independent vec-
tors v; € W;,j = 2,...,k. This vector v may or may not be in the space
U. We will consider the two possibilities. Suppose v € U. Then U = S +
span{v} because U is (k—1)-dimensional and S is (k—2)-dimensional. Since
dim W; > k, there exists a nonzero vector v in W; — U. Then u,vs, ..., vk
form a basis for U + span{u}. Put u = v;. All requirements are now met.
Suppose v ¢ U. Then wy; ¢ S + span{v}, for if w; were a linear com-
bination of ws,...,wg_; and v, then v would be a linear combination of
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wi, Ws, . .., Wk—1 and hence be an element of U. So, span{w;, va,..., vk} is
a k-dimensional space that must, therefore, be U +span{v}. Now w; € W;
and v; € W;,j =2,...,k. Again all requirements are met. |

Theorem II1.3.2 Let Vi C Vo C --- C Vi be linear subspaces of an n-
dimensional vector space V, with dim V; = 45,1 <i; <ip <--- <4 < n.
Let Wy, D Wa D --- D Wy be subspaces of V, withdim W; =n—i; +1 =
codim V; + 1. Then there exist linearly independent vectors v; € V;,1 <
j <k, and linearly independent vectors w; € W;,1 < j < k, such that

span{vy, ..., Ut} = span{wy, ..., wg }-

Proof. When k = 1 the statement is obviously true. (We have used this
repeatedly in the earlier sections.) The general case will be proved by in-
duction on k. So, let us assume that the theorem has been proved for
k — 1 pairs of subspaces.”By the induction hypothesis choose v; € V; and
w; € W;,1 < j < k—1, two sets of linearly independent vectors having the
same linear span U. Note that U is a subspace of V.

For j = 1,...,k, let S; = W; N Vi. Then note that

n > dim W; +dim Vi —dim §;
Hence,
dimSjZik-ij-i-le'—j-l‘l.

Note that S; D S3 D --- D S are subspaces of Vi and w; € S; for j =
1,2,...,k—1. Hence, by Lemma II1.3.1 there exists a vector u in S;—U such
that the space U +span{u} has a basis u,,. .., ux, where u; € S; C Wj,j =

1,2,...,k. But U + span{u} is also the linear span of v1,...,vk—1 and u.
Put vg = u. Then v; € V},5 = 1,2,...,k, and they span the same space as
the u;. u

Exercise 111.3.3 If V is a Hilbert space, the vectors v; and w; in the
statement of the above theorem can be chosen to be orthonormal.

Proposition 111.3.4 Let A be a Hermitian operator on H with eigenvec-

tors u; belonging to eigenvalues )\]l- (4),7=12,...,n.
(i) Let V; = span{uy,...,u;},1 < j < n. Given indices 1 < i3 < --- <
ix < m, choose orthonormal vectors x;; from the spaces V;;,j = 1,...,k.

Let V be the span of these vectors, and let Ay be the compression of A to
the space V. Then

M(Av) > AL (A) for j=1,....k

(it) Let W; = span{uj,...,un},1 < j < n. Choose orthonormal vectors
z;, from the spaces W;;,j = 1,...,k. Let W be the span of these vectors
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and Ay the compression of A to W~ Then
M(Aw) <M (4) for j=1,...,k

Proof. Let y;,...,yx be the eigenvectors of Ay, belonging to its eigenval-
ues )\{ (Ay), .. .,A,lc(Av). Fix 7,1 < j < k, and in the space V consider the
spaces spanned by {z;,,...,z;;} and {y;,...,yx}, respectively. The dimen-
sions of these two spaces add up to k+1, while the space V is k-dimensional.
Hence there exists a unit vector u in the intersection of these two spaces.
For this vector we have

A (Av) > (u, Apu) = (u, Au) > A (A).
This proves (i). The statement (ii) has exactly the same proof. ]

Theorem II1.3.5 (Wielandt’s Minimaz Principle) Let A be a Hermitian
operator on an n-dimensional space H. Then for any indices 1 < i) < --- <
ir < n we have

k k

M(4) = max min _S_ T, Az;
_Z 'J'( ) MCCMy zjEM; : {zj, Az;)
=1 dim M;j=i; . orthonormal J=1

k
= min max E (zj, Azj).
N1D-- DNy z;EN; A
dim Nj=n—ij+1 =; orthonormal j=1

Proof. We will prove the first statement; the second has a similar proof.
Let V;; = span{u,...,u; }, where, as before, the u; are eigenvectors of A

corresponding to )\]1. (A). For any unit vector z in V;;, (z, AT) > /\f] (A). So,
if z; € V;; are orthonormal vectors, then

k

k
>z Az) > > N (A).
=1

j=1

Since z; were quite arbitrary, we have

k k
min D (e, Azg) 2 DO (A).
x; orthon;rmal Jj=1 j=1

Hence, the desired result will be achieved if we prove that given any sub-
spaces M C --- C My with dim M; = i; we can find orthonormal vectors

z; € M; such that

k k
D (x5, Azs) < > OAL(A).
7=1 j=1
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Let N; = W;, = span{vy,,...,vn},7 = 1,2,...,k. These spaces were
considered in Proposition II1.3.4(ii). We have N7 D N;--- D N and
dim N = n —i; + 1. Hence, by Theorem I11.3.2 and Exercise I111.3.3 there
exist orthonormal vectors z; € M; and orthonormal vectors y; € N such
that

span{z1,...,Tx} =span{yi,...,y} = W, say.
By Proposition IT1.3.4 (ii), A} (Aw) < A}, (A) for j =1,2,..., k. Hence,

K k
Z(xjv Azj) = Z(Ij, Awz;) =tr Ay
j=1

k
ZAL(AW sz (A).

This is what we wanted to p;bve: 7 [ ]

Exercise 111.3.6 Note that

k
Z,\ (A) = (ui;, Auy)).
=1

We have seen that the mazimum in the first assertion of Theorem II1.3.5
is attained when M; =V;; =span{uy,...,u;;},j = 1,...,k, and with this
choice the minimum is attained for z; = u;;,j = 1,...,k. Are there other
choices of subspaces and vectors for which these extrema are attained? (See
Ezercise 111.1.3.)

Exercise I11.3.7 Let [a,b] be an interval containing all eigenvalues of A
and let ®(ty,...,tx) be any real valued function on [a,b] x - - - x [a, ] that is
monotone in each variable and permutation-invariant. Show that for each
choice of indices 1 < i) < --- <1t < n,

@ (M), 2L )
= max min P ()\i (Aw_), R, /\i(AW)) )

MyC--CMy Ws=span{zy,...,z}
dim M;=i; 3 .eM;j,z; orthonormal

where Aw is the compression of A to the space W. In Theorem II1.8.5 we
have proved the special case of this with ®(t1,...,tk) =t1 + -+ + tk.

II1.4 Lidskii’s Theorems

One important application of Wielandt’s minimax principle is in proving a
theorem of Lidskii giving a relationship between eigenvalues of Hermitian
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matrices A, B and A + B. This is quite like our derivation of some of the
results in Section II1.2 from those in Section III.1.

Theorem I11.4.1 Let A, B be Hermitian matrices. Then for any choice
ofindices 1 < il L e & ik < mn,

k k x
D M (A+B) < YA (A) + D M(B). (I1L.10)
j=1 j=1

Jj=1

Proof. By Theorem III.3.5 there exist subspaces M; C --- C My, with
dim M; = i; such that

k k
1 . .
DN (A+B) = min 3z, (A+ B)z).

j=1 z; orthonormalji}

By Ky Fan’s maximum principle

k 13
> (zs, Bz;) <Y _AN(B),
j=1 j=1

for any choice of orthonormal vectors zy,...,zx. The above two relations
imply that

k k k
DAA+B)S min D (e, Azs) + ) (25, Bry).
J=1 Jj=1

=; orthonormal Jj=1

Now, using Theorem II1.3.5 once again, it can be concluded that the first
k

term on the right-hand side of the above inequality is dominated by Z}\t (A).
; [ ]
j=1

Corollary I11.4.2 If A, B are Hermitian matrices, then the eigenvalues
of A, B, and A + B satisfy the following majorisation relation

M(A+ B) — A (4) < A(B). (IIL.11)

Exercise 111.4.3 (Lidskii’s Theorem) The vector AY(A+ B) is in the con-
vez hull of the vectors A (A) + PAY(B), where P varies over all permuta-
tion matrices. [This statement and those of Theorem III.4.1 and Corollary
II1.4.2 are, in fact, equivalent to each other.]

Lidskii’s Theorem can be proved without calling upon the more intricate
Wielandt’s principle. We will see several other proofs in this book, each
highlighting a different viewpoint. The second proof given below is in the
spirit of other results of this chapter.
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Lidskii’s Theorem (second proof). We will prove Theorem I11.4.1 by
induction on the dimension n. Its statement is trivial when n = 1. Assume
it is true up to dimension n — 1. When &k = n, the inequality (II1.10) needs
no proof. So we may assume that k& < n.

Let u;,v;, and w; be the eigenvectors of A, B, and A + B corresponding
to their eigenvalues /\Jl-(A), )\Jl.(B), and )\;: (A + B). We will consider three
cases separately.

Case 1. it < n. Let M = span{w;,...,wn—1} and let Apq be the compres-
sion of A to the space M. Then, by the induction hypothesis

Ed

k
D M (Am+ Br) DM (Am) +ZA1(BM)

i=1 =1 =1

The inequality (I111.10) follows from this by _using the 1nterlacmg principle
(I11.2) and Exercise III.1.7.

Case 2.1 < 4;. Let M = span{us, ..., u,}. By the induction hypothesis

k

k k
SOM (A +Ba) < ST (A + DA BM).

7=1 Jj=1 Jj=1

Once again, the inequality (II1.10) follows from this by using the interlacing
principle and Exercise I11.1.7.

Case 3. i3 = 1. Given the indices 1 = i; < i3 < --- < ix < n, pick up the
indices 1 < £; < €y < ... < €y_i < n such that the set {i; : 1 < j < k}
is the complement of the set {n —¢; +1 : 1 < j < n— k} in the set
{1,2,...,n}. These new indices now come under Case 1. Use (I111.10) for
this set of indices, but for matrices —A and —B in place of A, B. Then note
that )\Jt(—A) = -—)\i_j_'_l(A) for all 1 < j < n. This gives

n—k n—k
Z A g, +1(A+B) < Z - ’\i—e,-+1(A) + Z - }‘111—_7'+1(B)'

j=1 =1

Now add tr(A + B) to both sides of the above inequality to get

Z,\l (A+B) < Z» (4) + Z,\l(B)
=1

i=1
This proves the theorem. ]
As in Section II1.2, it is useful to interpret the above results as pertur-

bation theorems. The following statement for Hermitian matrices A, B can
be derived from (III.11) by changing variables:

A(A) = AY(B) < MA - B) < AL(A4) — X1(B). (11L.12)
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This can also be written as
M(A) + AT(B) < M(A + B) < M (4) + AY(B). (I11.13)

In fact, the two right-hand majorisations are consequences of the weaker
maximum principle of Ky Fan.
As a consequence of (II1.12) we have:

Theorem I111.4.4 Let A, B be Hermitian matrices and let ® be any sym-
metric gauge function on R™. Then

@ (A(A) = A(B)) <@ (MA - B)) <@ (A\(4) - A1(B)).

Note that Weyl’s perturbation theorem (Corollary I11.2.6) and the in-
equality in Exercise II1.2.7 are very special cases of this theorem.

The majorisations in (III.13) are significant generalisations of those in
(11.35), which follow from these by restricting A, B to be diagonal matrices.
Such “noncommutative” extensions exist for some other results; they are
harder to prove. Some are given in this section; many more will occur later.

It is convenient to adopt the following notational shorthand. If z, y, = are
n-vectors with nonnegative coordinates, we will write

k k
log z <w logy if [[zi<][[uf fork=1,...,m (I11.14)

=1 =1

logz <logy if log z <, logy and Hm} = Hy]l-; (I1L.15)

j=1 j=1
k k k

log z —log z <, logy if Hxij < Hyjnzi], (111.16)
=1 j=1 j=1

for all indices 1 < 4; < --- < i¢ < n. Note that we are allowing the

possibility of zero coordinates in this notation.

Theorem II11.4.5 (Gel’fand-Naimark) Let A, B be any two operators on
H. Then the singular values of A, B and AB satisfy the majorisation

log s(AB) —log s(B) < log s(A). (I11.17)

Proof. We will use the result of Exercise II1.3.7. Fix any index k,1 <
k < n. Choose any k orthonormal vectors zi,...,Zk, and let W be their
linear span. Let ®(t;,...,tk) = tita---tx. Express AB in its polar form
AB = UP. Then, denoting by Ty the compression of an operator T to the
subspace W, we have

o (A%(PW)) s 1)‘2(PW)) = |det PW!Z
| det({z:, Pwz;))|?
| det((z, Pa;))?
| det((A*Ua:i, B$J>)|2
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Using Exercise 1.5.7 we see that this is dominated by
det ((A*Ux;, A*Ux;)) det ((Bz;, Bz;)) .
The second of these determinants is equal to det(B* B)wy; the first is equal
k

to det(AA*)yw and by Corollary II1.1.5 is dominated by Hs? (A). Hence,

3=1
we have

k
@ (M2 (Pw), .., \i(Pw)) < det(B*B)w ][ [s2(4)
J=1

k
=& (MUBBY), -, Ae(IBE)) [T (A)-
=1
Now, using Exercise II1.3.7, we can conclude:that

k k
§ U ESAGORES I RH(E:] T2,

J=1

ie.,
k k k
1Is:,(AB) < []s:, (B[ [si(4), (I11.18)
j=1 J=1 J=1
forall 1 <14 < ... <1ix <n. This, by definition, is what (II1.17) says. ®

Remark. The statement

HsJ(AB) < H 55 (A) H s;(B), (I11.19)

i=1

which is a special case of (II1.18), is easier to prove. It is just the statement
|| AR (AB)|| < [| A* Al| || A* BJ|. If we temporarily introduce the notation
st(A) and sT(A) for the vectors whose coordinates are the singular values
of A arranged in decreasing order and in increasing order, respectively, then
the inequalities (I11.18) and (II1.19) can be combined to yield

log s'(A) +1log s'(B) < log s(AB) < log s'(A) +log s*(B)  (IIL.20)

for any two matrices A, B. In conformity with our notation this is a sym-
bolic representation of the inequalities

Hs,J (A)Hsn i1 (B) < HSJ(AB) < H%(A)H%(B)

j=1

forall 1 <4 < -+ <ix < n. It is illuminating to compare this with the
statement (II1.13) for eigenvalues of Hermitian matrices.
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Corollary I11.4.6 (Lidskii) Let A, B be two positive matrices. Then all
eigenvalues of AB are nonnegative and

log M (A) +log AT(B) < log A(AB) < log A'(A) +log M (B). (1IL.21)

Proof. It is enough to prove this when B is invertible, since every positive
matrix is a limit of such matrices. For invertible B we can write

AB = B—-l/?(Bl/2A B1/2)BI/2.

Now B/2A B/? is positive; hence the matrix AB, which is similar to it,
has nonnegative eigenvalues. Now, from (II1.20) we obtain

log AH(AY?) + log AT(BY/?)
< log s(AY2BY?%) < log AV (AY/?) 4 log AY(BY/?).  (111.22)

But s2(AY/2BY?) = A(BY2ABY/?) = X(AB). So, the majorisations
(111.21) follow from (II1.22). ™

I11.5 Eigenvalues of Real Parts and
Singular Values

The Cartesian decomposition A = Re A + iIm A of a matrix A associates
with it two Hermitian matrices Re A = % and Im A = A;f . It is of
interest to know relationships between the eigenvalues of these matrices,
those of A, and the singular values of A.

Weyl’s majorant theorem (Theorem I1.3.6) provides one such relation-

ship:

log |A(A)] < log s(A4).

Some others, whose proofs are in the same spirit as others in this chapter,
are given below.

Proposition II11.5.1 (Fan-Hoffman) For-every matriz A
A;(ReA) <s;(A) forall j=1,...,n

Proof. Let z; be eigenvectors of Re A belonging to its eigenvalues )\]l- (Re 4)
and y; eigenvectors of |A| belonging to its eigenvalues s;(A),1 < j < n. For
each j consider the spaces span{z1,...,z;} and span{y;,...,yn}. Their di-
mensions add up to n+ 1, so they have a nonzero intersection. If z is a unit
vector in their intersection then

A (Re A)

IA

(z, (Re A)z) = Re{z, Az)
[(z, Az)| < [|Az|]
(z, A Az)'/? < s(A).

IA
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Exercise I11.5.2 (i) Let A be the 2 x 2 matriz ((1) (1)) Then s2(A) = 0,
but Re A has two nonzero eigenvalues. Hence the vector |\(Re A)|! is not
dominated by the vector s(A).

(it) However, note that |A(Re A)| <y s(A) for every matriz A. (Use the
triangle inequality for Ky Fan norms.)

Proposition I11.5.3 (Ky Fan) For every matrizc A we have
Re A(A) < A(Re A).
Proof. Arrange the eigenvalues A;(A) in such a way that
Re A1(A) > Re A2(A4) > --- > Re A, (4).

Let zi,...,Tn, be an orthonormal Schur-basis for A such that A;(A)

= (zj, Az;). Then X\;(A4) = (z;, A*z;). Let W = span{zy,...,zx}. Then

k k
D> ReXj(A) = Y (z;,(Re A)z;) = tr (Re A)w
Jj=1 j=1
k k
= Y X((Re Aw) < 3 M(Re A).
j=1 =1

Exercise 111.5.4 Give another proof of Proposition II1.5.8 using Schur’s
theorem (given in Ezercise I1.1.12).

Exercise I11.5.5 Let X,Y be Hermitian matrices. Suppose that their eigen-
values can be indezed as A;j(X) and A;(Y),1 < j < n, in such a way
that A;(X) < Mj(Y) for all j. Then there exists a unitary U such that
X <U*YU.

(i) For every matriz A there ezists a unitary matric U such that
Re A < U*|A|U.

An interesting consequence of Proposition II1.5.1 is the following version
of the triangle inequality for the matrix absolute value:

Theorem II1.5.6 (R.C. Thompson) Let A, B be any two matrices. Then
there ezist unitary matrices U,V such that

|A+ B| < U|A[U* + V|B|V*.

Proof. Let A+ B = W|A+ B| be a polar decomposition of A+ B. Then
we can write .

|[A+ Bl=W*(A+B)=Re W*(A+B)=Re W*A+Re W*B.

Now use Exercise I11.5.5(ii). ]
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Exercise IIL.5.7 (i) Find 2 x 2 matrices A, B such that the inequality
|A+ B| < |A| +|B| is false for them.

(%) Find 2 X 2 matrices A, B for which there does not ezist any unitary
matriz U such that |A+ B| < U(|A| + |B|)U*.

I11.6 Problems

Problem II1.6.1. (The minimax principle for singular values) For
any operator A on H we have
si(A) = [|Az]|

|| Az]|

max min
M:dim M=j zeM||z||=1
min max
N:dim N=n—j+1 zeN,||z||=1
for1<j<n
Problem IT1.6.2. Let A, B be any two operators. Then
s;(AB) < ||B||s;(A),
s;(AB) < ||Alls;(B)
for1<j<n.
Problem II1.6.3. For j =0,1,...,n, let
R; ={T € L(H) :rank T < j}.
Show that for j = 1,2,...,n,

55(4) = min |47,

Problem II1.6.4. Show that if A is any operator and H is any operator
of rank &, then

Sj(A)ZSj_._k(A—I—H), i=12,...,n—k.
Problem IT1.6.5. For any two operators A, B and any two indices , j such
that ¢ + j < n+ 1, we have
Sz'+j._1(A + B) < S,(A) + Sj(B)

Si+j_1(AB) S SZ(A)SJ(B)
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Problem II1.6.6. Show that for every operator A and for each k =
1,2,...,n, we have

k k
ZSj(A) = max Z(yj, A:L'J)
j=1

7
=1 |

where the maximum is over all choices of orthonormal k-tuples z,,...,zx
and y3,-..,yk- This can also be written as

k k
ZSj(A) = max Z(mj,UAa:j) ,
j=1

=1

where the maximum is taken over all choices of unitary operators U and

orthonormal k-tuples z1,...,zk. Note that for £ = 1 this reduces to the
statement B
lall= > |y A2)l.
ll=l|=llyl|=1
For k =1,2,...,n, the above extremal representations can be used to give

k

another proof of the fact that the expressions || A||x) = Zsj (A) are norms.
j=1

(See Exercise 11.1.15.)

Problem IIL.6.7. Let A = (a;;) be a Hermitian matrix. For each i =

1,...,n, let
1/2

ri= [ oy
J#i
Show that each interval [a;; — 73, ai; + ;] contains at least one eigenvalue
of A.

Problem IIL.6.8. Let oy > ag > --- > a, be the eigenvalues of a Her-
mitian matrix A. We have seen that the n — 1 eigenvalues of any principal
submatrix of A interlace with these numbers. If §; > 6, > --- > 6,1
are the roots of the polynomial that is the derivative of the characteristic
polynomial of A, then we have by Rolle’s Theorem

26 2a3 2261 2> ap.

Show that for each j there exists a principal submatrix B of A for which
a; > /\]l-(B) > 6; and another principal submatrix C for which é; >

AHC) > a1

Problem III.6.9. Most of the results in this chapter gave descriptions
of eigenvalues of a Hermitian operator in terms of the numbers (z, Az)
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when z varies over unit vectors. Sometimes in computational problems
an “approximate” eigenvalue A and an “approximate” eigenvector x are
already known. The number (z, Az) can then be used to further refine this
information.

For a given unit vector z, let p = (z, Az),e = ||(A — p)z]]-

(i) Let (a,b) be an open interval that contains p but does not contain
any eigenvalue of A. Show that

(b—p)(p—a) <€
(ii) Show that there exists an eigenvalue c of A such that |a — p| < €.

Problem II1.6.10. Let p and € be defined as in the above problem. Let
(a,b) be an open interval that contains p and only one eigenvalue o of A.

Then 5 2

<a< .
p—a="=F e p

This is called the Kato-Temple inequality. Note that if p—a and b— p
are much larger than ¢, then this improves the inequality in part (ii) of
Problem II1.6.9.

p_

Problem III.6.11. Show that for every Hermitian matrix A

k

> M(A) = max tr UAU”,
< UU~=I

7j=1

k

> A(A) = min tr UAU*
= U*=1I,

for 1 < k < n, where the extrema are taken over k x n matrices U that
satisfy UU* = I, Iy being the k x k identity matrix. Show that if A is
positive, then

k
[1M4) = max det UAU",
=1 UU*=I;

k
| JRMEN min_ det UAU™.
=1 UU*=I;

(See Problem 1.6.15.)

Problem II1.6.12. Let A, B be any matrices. Then

ZS]‘(A)SJ'(B) = supltr UAV B| = sup Retr UAV B,
UV uv

Jj=1
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where U,V vary over all unitary matrices.

Problem II11.6.13. (Perturbation theorem for singular values) Let
A, B be any n x n matrices and let ® be any symmetric gauge function on
R™. Then

@ (s(A) — s(B)) <w ®(s(A - B)).

In particular,
max |s;(A) — s;(B)| < [|A - B|.

[Hint: See Theorem I11.4.4 and Exercise I11.1.15.]

Problem ITI.6.14. For positive matrices A, B show that
M (A) - AT(B) < M(AB) < A\H(A) - AY(B).

For Hermitian matrices A, B show that
(ML), \1(B)) < tr AB < (AL(4), \(B)).

(Compare these with (I1.36) and (I1.37).)

Problem II1.6.15. Let A, B be Hermitian matrices. Use the second part
of Problem I11.6.14 to show that

|Eig' A - Eig! B||» < |4 - B||» < ||Eig' A - Eig' Bll,.

Note the analogy between this and Theorem II1.2.8. (In Chapter IV we
will see that both these results are true for a whole family of norms called
unitarily invariant norms. This more general result is a consequence of
Theorem II1.4.4.)

II1.7 Notes and References

As pointed out in Exercise I11.1.6, many of the results in Sections III.1 and
I11.2 could be derived from each other. Hence, it seems fair to say that
the variational principles for eigenvalues originated with A.L. Cauchy’s
interlacing theorem. A pertinent reference is Sur £’éguation d £’aide de
laquelle on détermine les inégalités séculaires des mouvements des planétes,
1829, in A.L. Cauchy, Oeuvres Complétes (Ile Série), Volume 9, Gauthier-
Villars.

The minimax principle was first stated by E. Fischer, Uber Quadratische
Formen mit reellen Koeffizienten, Monatsh. Math. Phys., 16 (1905) 234-
249. The monotonicity principle and many of the results of Section II1.2
were proved by H. Weyl in Das asymptotische Verteilungsgesetz der Eigen-
werte linearer partieller Differentialgleichungen, Math. Ann., 71 (1911)441-
469. In a series of papers beginning with Uber die Eigenwerte bei den Dif-
ferentialgleichungen der mathematischen Physik, Math. Z., 7(1920) 1-57,



II1.7 Notes and References 79

R. Courant exploited the full power of the minimax principle. Thus the
principle is often described as the Courant-Fischer-Weyl principle.

As the titles of these papers suggest, the variational principles for eigen-
values were discovered in connections with problems of physics. One fa-
mous work where many of these were used is The Theory of Sound by Lord
Rayleigh, reprinted by Dover in 1945. The modern applied mathematics
classic Methods of Mathematical Physics by R. Courant and D. Hilbert,
Wiley, 1953, is replete with applications of variational principles. For a still
more recent source, see M. Reed and B. Simon, Methods of Modern Math-
ematical Physics, Volume 4, Academic Press, 1978. Of course, here most of
the interest is in infinite-dimensional problems and consequently the results
are much more complicated. The numerical analyst could turn to B.N. Par-
lett, The Symmetric Eigenvalue Problem, Prentice-Hall, 1980, and to G.W.
Stewart and J.-G. Sun, Matriz Perturbation Theory, Academic Press, 1990.

The converse to the interlacing theorem given in Theorem II1.1.9 was
first proved in L. Mirsky, Matrices with prescribed characteristic roots and
diagonal elements, J. London Math. Soc., 33 (1958) 14-21. We do not know
whether the similar question for higher dimensional compressions has been
answered. More precisely, let a3 > --- > an, and By > --- > (B, be
real numbers such that Yo; = ¥8;. What conditions must these num-
bers satisfy so that there exists an orthogonal projection P of rank k such
that the matrix A = diag (@1,-..,a,) when compressed to range P has
eigenvalues f3i, . . ., B and when compressed to (range P)* has eigenvalues
Br+1s---,Pn? (Theorem II1.1.9 is the case k =n — 1.)

Aronszajn’s inequality appeared in N. Aronszajn, Rayleigh-Ritz and
A. Weinstein methods for approzimation of eigenvalues. I. Operators in
a Hilbert space, Proc. Nat. Acad. Sci. U.S.A., 34(1948) 474-480. The ele-
gant proof of its equivalence to Weyl’s inequality is due to HW. Wielandt,
Topics in the Analytic Theory of Matrices, mimeographed lecture notes,
University of Wisconsin, 1967.

Theorem 111.3.5 was proved in HW. Wielandt, An eztremum property
of sums of eigenvalues, Proc. Amer. Math. Soc., 6 (1955) 106-110. The
motivation for Wielandt was that he “did not succeed in completing the
interesting sketch of a proof given by Lidskii” of the statement given in
Exercise I11.4.3. He noted that this is equivalent to what we have stated
as Theorem I11.4.1, and derived it from his new minimax principle. Inter-
estingly, now several different proofs of Lidskii’s Theorem are known. The
second proof given in Section 111.4 is due to M.F. Smiley, Inegualities re-
lated to Lidskii’s, Proc. Amer. Math. Soc., 19 (1968) 1029-1034. We will
see some other proofs later. However, Theorem II1.3.5 is more general, has
several other applications, and has led to a lot of research. An account
of the earlier work on these questions may be found in A.R. Amir-Moez,
Extreme Properties of Linear Transformations and Geometry in Unitary
Spaces, Texas Tech. University, 1968, from which our treatment of Sec-
tion I11.3 has been adapted. An attempt to extend these ideas to infinite
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dimensions was made in R.C. Riddell, Minimaz problems on Grassmann
manifolds, Advances in Math., 54 (1984) 107-199, where connections with
differential geometry and some problems in quantum physics are also de-
veloped. The tower of subspaces occurring in Theorem II.3.5 suggests a
connection with Schubert calculus in algebraic geometry. This connection
is yet to be fully understood.

Lidskii’s Theorem has an interesting history. It appeared first in V.B.
Lidskii, On the proper values of a sum and product of symmetric matrices,
Dokl. Akad. Nauk SSSR, 75 (1950) 769-772. It seems that Lidskii provided
an elementary (matrix analytic) proof of the result which F. Berezin and
IM. Gel'fand had proved by more advanced (Lie theoretic) techniques in
connection with their work that appeared later in Some remarks on the
theory of spherical functions on symmetric Riemannian manifolds, Trudi
Moscow Math. Ob., 5 (1956) 311-351. As mentioned above, difficulties with
this “elementary” proof led Wielandt to the discovery of his minimax prin-
ciple.

Among the several directions this work opened up, one led to the follow-
ing question. What relations must three n-tuples of real numbers satisfy in
order to be the eigenvalues of some Hermitian matrices A, B and A + B?
Necessary conditions are given by Theorem I11.4.1. Many more were discov-
ered by others. A. Horn, Figenvalues of sums of Hermitian matrices, Pacific
J. Math., 12(1962) 225-242, derived necessary and sufficient conditions in
the above problem for the case n = 4, and wrote down a set of conditions
which he conjectured would be necessary and sufficient for n > 4. In a short
paper Spectral polyhedron of a sum of two Hermitian matrices, Functional
Analysis and Appl., 10 (1982) 76-77, B.V. Lidskii has sketched a “proof”
establishing Horn’s conjecture. This proof, however, needs a lot of details
to be filled in; these have not yet been published by B.V. Lidskii (or anyone
else).

When should a theorem be considered to be proved? For an interesting
discussion of this question, see S. Smale, The fundamental theorem of al-
gebra and complezity theory, Bull. Amer. Math. Soc. (New Series), 4(1981)
1-36.

Theorem II1.4.5 was proved in I.M. Gel’fand and M. Naimark, The rela-
tion between the unitary representations of the complex unimodular group
and its unitary subgroup, Izv Akad. Nauk SSSR Ser. Mat. 14(1950) 239-
260. Many of the questions concerning eigenvalues and singular values of
sums and products were first framed in this paper. An excellent summary
of these results can be found in A.S. Markus, The eigen-and singular val-
ues of the sum and product of linear operators, Russian Math. Surveys, 19
(1964) 92-120.

The structure of inequalities like (II1.10) and (II1.18) was carefully anal-
ysed in several papers by R.C. Thompson and his students. The asymmetric
way in which A and B enter (II1.10) is remedied by one of their inequalities,
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which says

k k k
S A (A B AL () + 3 OA (8)
j=1 i=1

=1

for any indices 1 < 4; < --- < ix < m,1 < p; < -+ < pr < 1, such that
ix + px — k < n. A similar generalisation of (III.18) has also been proved.
References to this work may be found in the book by Marshall and Olkin
cited in Chapter II.

Proposition 111.5.1 is proved in K. Fan and A.J. Hoffman, Some metric
inequalities in the space of matrices, Proc. Amer. Math. Soc., 6 (1955) 111-
116.

Results of Proposition I11.5.3, Problems II1.6.5, II1.6.6, II1.6.11, and
111.6.12 were first proved by Ky Fan in several papers. References to these
may be found in I.C. Gohberg and M.G. Krein, Introduction to the Theory
of Linear Nonselfadjoint operators, American Math. Society, 1969, and in
the Marshall-Olkin book cited earlier.

The matrix triangle inequality (Theorem II1.5.6) was proved in R.C.
Thompson, Convez and concave functions of singular values of matriz
sums, Pacific J. Math., 66 (1976) 285-290. An extension to infinite di-
mensions was attempted in C. Akemann, J. Anderson, and G. Pedersen,
Triangle inequalities in operator algebras, Linear and Multilinear Algebra,
11(1982) 167-178. For operators A, B on an infinite-dimensional Hilbert
space there exist isometries U, V such that

|A+ B| < U|A|U* + V|B|V*™.
Also, for each € > 0 there exist unitaries U, V such that
|A+ B| < U|A|U* + V|B|V* +¢l.

It is not known whether the € part in the last statement is necessary.

Refinements of the interlacing principle such as the one in Problem I11.6.8
have been obtained by several authors, including R.C. Thompson. See, for
example, his paper Principal submatrices I, Linear Algebra Appl., 1(1968)
211-243.

One may wonder whether there are interlacing theorem, for singular val-
ues. There are, although they are a little different from the ones for eigen-
values. This is best understood if we extend the definition of singular values
to rectangular matrices. Let A be an m x n matrix. Let 7 = min(m, n). The
7 numbers that are the common eigenvalues of (4* A)}/2 and (AA*)*/? are
called the singular values of A. (Sometimes a sequence of zeroes is added
to make max(m,n) singular values in all.) Many of the results for singular
values that we have proved can be carried over to this setting. See, e.g.,
the books by Horn and Johnson cited in Chapter L
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Let A be a rectangular matrix and let B be a matrix obtained by deleting
any row or any column of A. Then the minimax principle can be used to
prove that the singular values of A and B interlace. The reader should
work this out, and see that when A is an n X n matrix and B a principal
submatrix of order n — 1 then this gives

s1(A) > s1(B) > s3(4),

s2(4) > s2(B) > s4(4),
Csaa(A) > sea(B) > sa(d),
Sn_l(A) _>_ Sn—l(B) Z 0

For more such results, see R.C. Thompson, Principal submatrices IX, Linear
Algebra and Appl., 5(1972) 1-12.

Inequalities like the ones in Problems I11.6.9 and I11.6.10 are called “resid-
ual bounds” in the numerical analysis literature. For more such results, see
the book by Parlett cited above, and F. Chatelin, Spectral Approzimation
of Linear Operators, Academic Press, 1983. =Several refinements, exten-
sions, and applications of these results in atomic physics are described in
the book by Reed and Simon cited above.

The results of Theorem II1.4.4 and Problem III.6.13 were noted by
L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart.
J. Math., Oxford Ser. (2), 11(1960) 50-59. This paper contains a lucid sur-
vey of several related problems and has stimulated a lot of research. The
inequalities in Problem II1.6.15 were first stated in K. Lowner, Uber mono-
tone Matriz functionen, Math. Z., 38 (1934) 177-216.

Let A = UP be a polar decomposition of A. Weyl’s majorant theorem
gives a relationship between the eigenvalues of A and those of P (the sin-
gular values of A). A relation between the eigenvalues of A and those of U
was proved by A. Horn and R. Steinberg, Figenvalues of the unitary part
of @ matriz, Pacific J. Math., 9(1959) 541-550. This is in the form of a
majorisation between the arguments of the eigenvalues:

arg A(A) < arg A(U).

A theorem, very much like Theorems I111.4.1 and III.4.5 was proved by
A. Nudel’'man and P. Svarcman, The spectrum of a product of unitary ma-
trices, Uspehi Mat. Nauk, 13 (1958) 111-117. Let A, B be unitary matrices.
Label the eigenvalues of A, B, and AB as e*®,... e ¢t .. ¢~ and
e, ..., e"" respectively, in such a way that

2T > 2> - > an >0,

2t > B

v

"ZﬂnZO,

2r >y 2>, 2 0.
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If a3 + 1 < 2w, then for any choice of indices 1 < i; < -+ < i < n we

have k k k
Z’Yij < Zaij + Zﬁj-
j=1 j=1 j=1

These inequalities can also be written in the form of a majorisation between
n-vectors:

y—a<p.
For a generalisation in the same spirit as the one of inequalities (III.10)
and (111.18) mentioned earlier, see R.C. Thompson, On the eigenvalues
of a product of unitary matrices, Linear and Multilinear Algebra, 2(1974)
13-24.
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Symmetric Norms

In this chapter we study norms on the space of matrices that are invariant
under multiplication by unitaries. Their properties are closely linked to
those of symmetric gauge functions on R™. We also study norms that are
invariant under unitary conjugations. Some of the inequalities proved in
earlier chapters lead to inequalities involving these norms.

IV.1 Norms on C*

Let us begin by considering the familiar p-norms frequently used in analysis.
For a vector z = (z1,...,Z,) we define

Izl = O lz:P)?, 1<p<oo, (IV.1)
i=1
Izlloo = max Joi|. (IV.2)

For each 1 < p < o0, ||z|p defines a norm on C". These are called the
p-norms or the l,-norms. The notation (IV.2) is justified because of the
fact that

zlleo = lim lzlp. (Iv.3)

Some of the pleasant properties of this family of norms are

lzlly = I lz] I, for allz € C™, (Iv.4)
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Izllp < llyllp  if || < |yl, (IV.5)
Izl =Pzl forallz € C*,P € S,. (IV.6)
(Recall the notations: |z| = (|z1,- .., |zxl), and |z| < |y| if |z;] < |y;| for

1 < j < n. Sy is the set of permutation matrices.) A norm on C" is called
gauge invariant or absolute if it satisfies the condition (IV.4), mono-
tone if it satisfies (IV.5), and permutation invariant or symmetric if it
satisfies (IV.6). The first two of these conditions turn out to be equivalent:

Proposition IV.1.1 A norm on C" is gauge invariant if and only if it is
monotone.

Proof. Monotonicity clearly implies gauge invariance. Conversely, if a
norm || - | is gauge invariant, then to show that it is monotone it is
enough to show that ||z| < ||y|| whenever z; = t;y; for some real numbers
0 <t; £1,7=12,...,n. Further, it suffices to consider the special case
when all t; except one are equal to 1. But then

“(yh . tyk: 7yn)”

1+t +1—t 1+t _l—t 1+t +1—t
n Yi,---, 9 —5 Yk 2 Yks-- -, 9 Yn 2 Yn
<1t ||(!J17 --,yn)|l+——ll(yl,---,—yk,---,yn)ll
=H(yh~-7yn)|l~ -

Example IV.1.2 Consider the following norms on R?:
(i) lzll = lza] + |22 + |21 — 22|
(i) |zl = |z1] + |z1 — 22l
(it) ||zl = 2]z1| + |za-

The first of these is symmetric but not gauge invariant, the second is neither
symmetric nor gauge invariant, while the third is not symmetric but is
gauge invariant.

Norms that are both symmetric and gauge invariant are especially inter-
esting. Before studying more examples and properties of such norms, let us
make a few remarks.

Let T be the circle group; i.e., the multiplicative group of all complex
numbers of modulus 1. Let S,o0T be the semidirect product of S, and T.
In other words, this is the group of all n x n matrices that have exactly one
nonzero entry on each row and each column, and this nonzero entry has
modulus 1. We will call such matrices complex permutation matrices.
Then a norm || - || on C* is symmetric and gauge invariant if

llzll = |Tz|| for all complex permutations 7 (Iv.m)
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In other words, the group of (linear) isometries for || - || contains S,0T as a
subgroup. (Linear isometries for a norm ||-|| are those linear transformations
on C™ that preserve | - ||.)

Exercise IV.1.3 For the Euclidean norm ||z|o = (3 |z:]?)!/? the group
of isometries is the group of all unitary matrices, which is much larger than
the complez permutation group. Show that for each of the norms ||z||; and
Iz]lco the group of isometries is the complez permutation group.

Note that gauge invariant norms on C™ are determined by those on
R™. Symmetric gauge invariant norms on R” are called symmetric gauge
functions. We have come across them earlier (Example I1.3.13). To repeat,
amap @ :R® — R, is called a symmetric gauge function if

(i) @ is a norm,
(ii) ®(Pz) = ®(z) for all z € R™ and P € S,,
(iil) @(e1%Z1,---,EnTn) = O(z1,...,Tn) if g5 = 1.
In addition, we will always assume that ® is normalised, so that
(iv) ®(1,0,...,0) = 1.

The conditions (ii) and (iii) can be expressed together by saying that &
is invariant under the group S,0Zq consisting of permutations and sign
changes of the coordinates. Notice also that a symmetric gauge function is
completely determined by its values on R%.

Example IV.1.4 If the coordinates of  are arranged so that |z1| > |za| >
... > |znl, then for each k =1,2,...,n, the function

k
(@) = Dl (1v.8)

is a symmetric gauge function. We will also use the notation ||z||(x) for
these. The parentheses are used to distinguish these norms from the p-
norms defined earlier. Indeed, note that ||z||(1) = [|Zlleo and ||z|(ny = ||z]l1-

We have observed in Problem I1.5.11 that these norms play a very distin-
guished role: if @4y (z) < Pk (y) for all k= 1,2,...,n, then ®(z) < ®(y)
for every symmetric gauge function ®. Thus an infinite family of norm
inequalities follows from a finite one.

Proposition IV.1.5 For each k =1,2,...,n,

D) (z) = min{P(,)(u) + kPy(v) : z=u+v}. (Iv.9)
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Proof. We may assume, without loss of generality, that z € R}. If z =
u+v, then @y (z) < @y (1) + Q(xy (v) < Py (u) + kP (1) (v). If we choose

u = (z% —z,lc,zé —.'z;,lc,...,a:,lc —I,J;,O,...,O)
v = (z,lc,.”,m,lc,m,lcﬂ,...,:r}l),
then
ut+v = xl,
Qny(u) = Opy(z) - kz,lc,
Py(v) = mi:
and the proposition follows. |

We now derive some basic inequalities. If f is a convex function on an

interval I and if a;,7 = 1,2,...,n, are nonnegative real numbers such that
n

Zai =1, then

=1

f(z aiti) < Za,f(tl) forallt; € 1.
i=1 =1

Applying this to the function f(¢) = —logt on the interval (0,c0), one
obtains the fundamental inequality
n n
It <> aits if 620,020, a;=1 (IV.10)
i=1 i=1

This is called the (weighted) arithmetic-geometric mean
inequality. The special choice a; = a3z = --- = a, = % gives the usual
arithmetic - geometric mean inequality

n 1 n .
([Tt < - Zti if t;>0. (1v.11)
i=1 i=1 -
Theorem IV.1.6 Let p,q be real numbers with p > 1 and % + % = 1. Let
z,y € R®. Then for every symmetric gauge function ®
(|2 - yl) < [(I=P) VP [2 (Y| (Iv.12)
Proof. From the inequality (IV.10) one obtains

|z? 1yl
lz-yl < —+ =,
P q
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and hence 1 1
(lz-yl) < :;@(le”) + (—I<I>(Iyl")- (Iv.13)

For t > 0, if we replace z,y by tz and ¢!y, then the left-hand side of
(IV.13) does not change. Hence,

(- u) < g | S8(al) + (w1 (IV.14)

But, if
®) tp+1b here t,a,b >0
= —a+ —0, wheret,a, s
v p qt?

then plain differentiation shows that
min p(t) = a'/Pp*/9.
So, (IV.12) follows from (IV.14). ]

When @ = @(,,, (IV.12) reduces to the familiar Hélder inequality

DLl < Q1) PGy il ).

We will refer to (IV.12) as the Hélder inequality for symmetric gauge
functions. The special case p = 2 will be called the Cauchy-Schwarz
inequality for symmetric gauge functions.

Exercise IV.1.7 Let p,q,r be positive real numbers with % +% = % Show
that for every symmetric gauge function ® we have

[@(z - yMY" < [2(lz)]/P[@(|ly|9)] . (IV.15)

Theorem IV.1.8 Let ® be any symmetric gauge function and let p > 1.
Then for all z,y € R™

[@(|z + y[P)]M/P < [@(|z[P)]/P + [@(|y|P)] > (1V.16)

Proof. When p = 1, the inequality (IV.16) is a consequence of the triangle
inequalities for the absolute value on R™ and for the norm ®. Let p > 1.
It is enough to consider the case z > 0, y > 0. Make this assumption and
write

z+y)fP =z (2+y)P " +y (z+y)" "

Now, using the triangle inequality for ® and Theorem IV.1.6, one obtains

(e +yf) < B (@+y)P )+ 0y o+
(@) [((a + )" D)

[P P (( + )" D))
(@GP + (@) /7} (= + ),

+ IA |
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since ¢(p — 1) = p. If we divide both sides of the above inequality by
[@((z +y)P)]"/9, we get (IV.16). -

Once again, when ® = @,y the inequality (IV.16) reduces to the familiar
Minkowski inequality. So, we will call (IV.16) the Minkowski inequality
for symmetric gauge functions.

Exercise IV.1.9 Let ® be a symmetric gauge function and let p > 1. Let
89)(z) = [@(|z[P)]/7. (1v.17)

Show that ®P) is also a symmetric gauge function.
Note that, if ®, is the family of £,-norms, then

OW) = @,,,, for all p1,p2 > 1, (IV.18)
and, if ®(x) is the norm defined by (IV.8), then

k
2R (@) = (3l "), (Iv.19)
j=1

where the coordinates of = are arranged as |z1| > |z2| > -+ - > |znl-

Just as among the l,-norms, the Euclidean norm has especially interest-
ing properties, the norms ®® where ® is any symmetric gauge function
have some special interest. We will give these norms a name:

Definition IV.1.10 ¥ is called a quadratic symmetric gauge func-
tion, or a Q-norm, if ¥ = ®® for some symmetric gauge function ®. In
other words,

U(z) = [@(j]*)] /. (Iv.20)

Exercise IV.1.11 (i) Show that an lp-norm is a Q-norm if and only if
p=>2.

(i) More generally, show that for each k =1,2,...,n, @EZ; is a @Q-norm
if and only if p > 2.

Exercise IV.1.12 We saw earlier that if ®)(z) < P(xy(y) for all k =
1,2,...,n, then ®(z) < ®(y) for all symmetric gauge functions. Show that

if 83 (z) < ®8 (v) for all k = 1,2,...,n; then 3®(z) < ®@(y) for all
symmetric gauge functions ®; i.e., ¥(z) < U{y) for all quadratic symmetric

gauge functions.
If @ is a norm on C*, the dual of @ is defined as

?'(z) = sup [(z,y)l- (Iv.21)
o(y)=1
It is easy to see that ® is a norm. (In fact, ®’ is a norm even when & is
a function on C™ that does not necessarily satisfy the triangle inequality
that but meets the other requirements of a norm.)
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Exercise IV.1.13 If ® is a symmetric gauge function then so is ®'.

Exercise IV.1.14 Show that for any norm ®
(z,y)| < ®(z)®'(y) for allz,y. (Iv.22)

Exercise IV.1.15 Let &, be the l,-norm, 1 < p < co. Show that
, 11
@, =o,, where - + ri 1. (Iv.23)

Exercise IV.1.16 Let ® and ¥ be two norms such that
®(z) < c¥(z) for all = and for some c > 0.

Show that
®'(z) > 'V (z) for all =

We shall call a symmetric gauge function a Q’-norm if it is the dual of
a @-norm. The [,-norms for 1 < p < 2 are examples of Q'-norms.

Exercise IV.1.17 (i) Let ® be a norm such that ® = ®'. Then ® must be
the Euclidean norm.

(ii) Let ® be both a Q-norm and a Q'-norm. Then ® must be the Fu-
clidean norm. (Use Ezercise IV.1.16 and the fact that every symmetric
gauge function is bounded by the l;-norm.)

Exercise IV.1.18 For each k = 1,2,...,n, the dual of the norm @4y is
given by

1
D4y (z) = max {(b(l)(x), ']‘C'(I)(n) (I)} . (IV.24)
Prove this using Proposition IV.1.5 and Ezercise 1V.1.16.

Some ways of generating symmetric gauge functions are described in the
following exercises.

Exercise IV.1.19 Let 1l = a1 > as > -+ > a, > 0. Given a symmetric
gauge function ® on R™, define

U(z) = ®(ailzlt, . .., anlzld).
Then ¥ is a symmetric gauge function.

Exercise IV.1.20 (i) Let ® be a symmetric gauge function on R™. Let
m<n. Ifr €R™, letZ=(z1,.--,ZTm,0,0,...,0) and define ¥(z) = &(Z).
Then ¥ is a symmetric gauge function on R™.

(i) Conversely, given any symmetric gauge function ¥ on R™, if for
n > m we define &(z1,...,z,) = U(|z|}, ..., |z|L), then ® is a symmetric
gauge function on R™.
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IV.2 Unitarily Invariant Norms on Operators
on C"

In this section, C™ will always stand for the Hilbert space C* with inner
product (-, -) and the associated norm ||-||. (No subscript will be attached to
this “standard” norm as was done in the previous Section.) If A is a linear
operator on C*, we will denote by | A|| the operator (bound) norm of
A defined as
4]l = sup [|Az]. (Iv.25)
llzll=1

As before, we denote by |A| the positive operator (A*A)}/? and by s(A)
the vector whose coordinates are the singular values of A, arranged as
s1(A) > s2(A) > --- > 5,(A). We have

JAL= 11 1AL = s1(A). (1V.26)
Now, if U, V are unitary operators on C*, then [UAV| = V*|A|V and hence
Al = lUAV]| (Iv.27)

for all unitary operators U, V. This last property is called unitary invari-
ance. Several other norms have this property. These are frequently useful
in analysis, and we will study them in some detail.

We will use the symbol || - ||| to mean a norm on n x n matrices that

satisfies
NUAV]|| = [l1Alll (Iv.28)

for all A and for unitary U,V. We will call such a norm a unitarily in-
variant norm on the space M(n) of n x n matrices. We will normalise
such norms so that they all take the value 1 on the matrix diag(1,0,...,0).

There is an intimate connection between these norms and symmetric
gauge functions on R™; the link is provided by singular values.

Theorem IV.2.1 Given a symmetric gauge function ® on R"™, define a

function on M(n) as
[llAllle = 2(s(A)). (IV.29)

Then this defines a unitarily invariant norm on M(n). Conversely, given
any unitarily invariant norm ||| - ||| on M(n), define a function on R™ by

@y () = [||diag(z)ll, (IV.30)

where diag () is the diagonal matriz with entries x,, . .., T, on its diagonal.
Then this defines a symmetric gauge function on R™.

Proof. Since s(UAV) = s(A) for all unitary U,V, ||| - |||e is unitarily
invariant. We will prove that it obeys the triangle inequality — the other
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conditions for it to be a norm are easy to verify. For this, recall the majori-
sation (I1.18)

$(A+ B) <4 s(A) + s(B) for all A,B € M(n),

and then use the fact that ® is strongly isotone and monotone. (See Ex-
ample 11.3.13 and Problem I1.5.11.) To prove the converse, note that (IV.30)
clearly gives a norm on R™. Since diagonal matrices of the form
diag(e®1,...,e%") and permutation matrices are all unitary, this norm
is absolute and permutation invariant, and hence it is a symmetric gauge
function. ]

Symmetric gauge functions on R™ constructed in the preceding section
thus lead to several examples of unitarily invariant norms on M(n). Two
classes of such norms are specially important. The first is the class of
Schatten p-norms defined as

Al = @p(s(A)) = > _(s;(A)"I'/?, 1<p< oo, (IV.31)
j=1
[Allco = ®oo(s(A4)) = s1(A) = || Al (Iv.32)

The second is the class of Ky Fan k-norms defined as
k
[Alley = si(4), 1<k<n (IV.33)
j=1

Among the p-norms, the ones for the values p = 1, 2, 0o, are used most often.
As we have noted, ||A||« is the same as the operator norm || A|| and the Ky
Fan norm ||Al|1). The norm ||Al|; is the same as ||Al|(5)- This is equal to
tr(|A]) and hence is called the trace norm, and is sometimes written as
||All¢r- The norm

IAll2 = [ (s5(A))272 (IV.34)

=1

is also called the Hilbert-Schmidt norm or the Frobenius norm (and
is sometimes written as ||A||r for that reason). It will play a basic role in
our analysis. For A, B € M(n) let

(A, B) = trA*B. (IV.35)

This defines an inner product on M(n) and the norm associated with this
inner product is || 4]z, i.e. ,

[|All2 = (trA*A)'/2. (IV.36)
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If the matrix A has entries a;;, then.
4]z = O lay|?)2. (1V.37)
,j

Thus the norm [[A]|; is the Euclidean norm of the matrix A when it is
thought of as an element of C™. This fact makes this norm easily com-
putable and geometrically tractable.

The main importance of the Ky Fan norms lies in the following:

Theorem IV.2.2 (Fan Dominance Theorem) Let A, B be two n X n ma-

trices. If
”A”(k) S ”B“(k) fO’I"k’= 1,2,...,17.,

then
AN < IIBlll  for all unitarily invariant norms.

Proof. This is a consequence of the corresponding assertion about sym-
metric gauge functions. (See Example 1V.1.4.) |

Since ®(;)(z) < @(z) < P(ny(z) for all z € R™ and for all symmetric
gauge functions ®, we have

Al < TNAI < [ Allny = 1AlI (Iv.38)

for all A € M(n) and for all unitarily invariant norms ||| - |||
Analogous to Proposition IV.1.5 we have

Proposition IV.2.3 For each k =1,2,...,n,
|Allw = min{[| Bl + KIC] : A=B+C}. (IV.39)

Proof. If A= B+ C, then ||Alx) < [|Blx) + ICliwy < I1Bliny + KICI-
Now let s(A) = (s1,.--,5n) and choose unitary U, V so that

A = Ul(diag(s1, .- -, sa)|V.

Let
B = Uldiag(s1 — Sk,S2 — Sk;-- .Sk — Sk, 0,...,0)]V,
C = Uldiag(sk, Sks-- - Sk Sk+1,- - -»5n)|V-
Then
A=B+C,
k

IBlly =Y 55 — ksk = | Allxy — ks,

j=1
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ICN = sk,
and
1 Alley = I1Bll(ny + EICII. -
A norm v on M(n) is called sy.mmetric if for A, B,C in M(n)
v(BAC) < ||B|| v(A) ||CII. (1v.40)

Proposition IV.2.4 A norm on M(n) is symmetric if and only if it is
unitarily invariant,

Proof. Ifvisasymmetric norm, then for unitary U, V we have v(U AV) <
v(A) and v(A) = v({UPUAVV ) < »(UAV). So, v is unitarily invariant.
Conversely, by Problem 111.6.2, s;(BAC) < |B| |IC|s;(A) for all j =
1,2,...,n. So, if ® is any symmetric gauge function, then ®(s(BAC)) <
[|B|l IC]|®(s(A)) and hence the norm associated with ® is symmetric.  m

In particular, this implies that every unitarily invariant norm is sub-
multiplicative:

WABIT < Al Bl for all A, B.

Inequalitics for sums and products of singular values of matrices, when
combined with inequalities for symmetric gauge functions proved in Section
IV.1, lead to interesting statements about unitarily invariant norms. This
is illustrated below.

Theorem IV.2.5 If A, B are n x n matrices, then
s"(AB) <y s"(A)s"(B) forallr > 0. (1v.41)

Proof. If AFA is the kth antisymmetric tensor product of A, then

k
IA* Al = si(n¥A) =[] s5(4), 1<k<n
j=1

Hence,

k
- [[s;(aB)

j=1

IA* (AB)I™ < (Il A% Al LA BI)

k
[Is5(4)s5(B), 1<k<n.

j=1

Now use the statement 11.3.5(vii). n
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Corollary IV.2.6 (Hoélder’s Inequality for Unitarily Invariant Norms) For
every unitarily invariant norm and for all A, B € M(n)

WABIIL < (Il JAIPIMP 1] A9 (IV.42)
for allp>1 and%+%=1,

Proof. Use the special case of (IV.41) for r = 1 to get
@ (s(AB)) < @(s(A)s(B))

for every symmetric gauge function. Now use Theorem IV.1.6 and the fact
that (s(A4))P = s(|AlP). |

Exercise IV.2.7 Let p,q,r be positive real numbers with % +% = % Then
for every unitarily invartant norm

WTABITIM™ < (I LAPHPM#H) (Bl (Iv.43)
Choosing p = q = 1, one gets from this
IHABIM2(]] < (1Al IBIID>- (Iv.44)

This is the Cauchy-Schwarz inequality for unitarily invariant norms.

Exercise IV.2.8 Given a unitarily invariant norm |||-]|| on M(n), define
AIN® = Il |APIIIM? 1< p < oo (IV.45)

Show that this is a unitarily invariant norm. Note that

“A“g;z) = ”A”mm forall p1,p2>1 (IV46)

and .
14D = O s2(AN? for p>1,1<k<n (IV.47)

j=1

Definition IV.2.9 A wunitarily invariant norm on M(n) is called o Q-
norm if it corresponds to a quadratic symmetric gauge function; i.e., |||-|||
is a Q-norm if and only if there erists a unitarily invariant norm ||| - [||*
such that

A2 = (1A= Al (Iv.48)

Note that the norm || Il is @ @-norm if and only if p > 2 because
Al = | A" Al|p/2- (IV.49)

The norms defined in (IV.47) are Q-norms if and only if p > 2.
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Exercise IV.2.10 Let ||-|o denote a Q-norm. Observe that the following
conditions are equivalent:

(i) |Allq < |IBllg for all @-norms.
(iz) |[|A* All| < |||B*Bl|| for all unitarily invariant norms.

2
(iii) [|Al$D < B for k=1,2,...,n.

(iv) (s(A))* <w (s(B))*.
Duality in the space of unitarily invariant norms is defined via the inner
product (IV.35). If ||| - ||| is a unitarily invariant norm, define ||| - |||’ as
AIll'= sup |(A,B)]= sup [trA"B|. (Iv.50)
HiBlll=1 l1Blll=1

It is easy to see that this defines a norm that is unitarily invariant.

Proposition IV.2.11 Let ¢ be a symmetric gauge function on R™ and
let || - lo be the corresponding unitarily invariant norm on M(n). Then

I lle =1 ller-
Proof. We have from (I1.40) and (IV.41)
trA*B| < tr|A*B| =Y s;(A*B) <Y s;(A)s;(B).
j=1 j=1

It follows that
Alle < @'(s(4)) = | Aller-

Conversely,

llAller

@'(s(4))

sup zsj(A)yj y e RM,P(y) = 1}

= sup {tr[diag(s(A))diag(y)] : |diag(y)lle = 1}

< |diag(s(A)lls = 1 Alls- (]

Exercise IV.2.12 From statements about duals proved in Section IV.1,
we can now conclude that

(i) |tr A*B| < |||Alll - /| Bl||" for every unitarily invariant norm.
(ii) | Al = | Allg for 1<p<oo,l+1=1

(iie) 1Al = max{]| Allay, 21 A}, 1<k <n.
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(iv) The only unitarily invariant norm that is its own dual is the Hilbert-
Schmidt norm || - ||2.

(v) The only norm that is a Q-norm and is also the dual of a @Q-norm is
the norm || - ||2-

Duals of @Q-norms will be called Q’-norms. These include the norms
| 1 <p<2

An important property of all unitarily invariant norms is that they are all
reduced by pinchings. If Pj,..., P, are mutually orthogonal projections
such that Py ® P, @ ... @ P, = I, then the operator on M(n) defined as

k
C(A) =) P,AP; (Iv.51)
=1

is called a pinching operator. It is easy to see that
el < Al (Iv.52)

for every unitarily invariant norm. (See Problem IL5.5.) We will call this
the pinching inequality.
Let us illustrate one use of this inequality.

Theorem IV.2.13 Let A, B € M(n). Then for every unitarily invariant
norm on M(2n)

< s Ml S I )

Proof. The first inequality follows easily from the observation that
A 0
0 B
If we prove the second inequality in the special case when A, B are pos-

itive, the general case follows easily. So, assume A, B are positive. Then

[A+B 0} [Al/z Bl/z][AW 0]

] and [ g 2 ] are unitarily equivalent.

0 0 0 0 B2

where A'/2 B1/2 are the positive square roots of A, B. Since T*T and TT*

A+B 0 ] N
is unitarily

are unitarily equivalent for every T, the matrix [ 0 0

equivalent to

A1/2 0 AI/Z Bl/2 A A1/2B1/2
{31/2 0” 0o 0 ]2{31/2,41/2 B }
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But [ '81 g ] is a pinching of this last matrix.
As a corollary we have:

Theorem IV.2.14 (Rotfel’d) Let f : R, — R, be a concave function with
f(0) = 0. Then the function F' on M(n) defined by

F(A) = f(s;(4)) (IV.54)

j=1

is subadditive.

Proof. The second inequality in (IV.53) can be written as a majorisation
in R?":
(s(A),s(B)) <w (s(|Al +1B(),0)

for all A, B € M(n). We also know that s(|]A] + |B|) < s(A) + s(B). Hence
(s(4),s(B)) < (s(A) + s(B),0).
Now proceed as in Problem I11.5.12. |

Exercise IV.2.15 Let ||| - ||| be a unitarily invariant norm on M(n). For
m <n and A € M(m), define

=[5 311

Show that ||| - |||T defines a unitarily invariant norm on M(m).

We will use this idea of “dilating” A and of going from M(n) to M(2n)
in later chapters. Procedures given in Exercises IV.1.19 and IV.1.20 can be
adapted to matrices to generate unitarily invariant norms.

IV.3 Lidskii’s Theorem (Third Proof)

Let A!(A) denote the n-vector whose coordinates are the eigenvalues of a
Hermitian matrix A arranged in decreasing order. Lidskii’s Theorem, for
which we gave two proofs in Section II1.4, says that if A, B are Hermitian
matrices, then we have the majorisation

M(A) - A(B) < \(A - B). (IV.55)

We will give another proof of this theorem now, using the easier ideas of
Sections II1.1 and IIL.2.
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Exercise IV.3.1 One corollary of Lidskii’s Theorem is that, if A and B
are any two matrices, then

s(A) — s(B)| <w (A — B). (IV.56)

See Problem II1.6.13. Conversely, show that if (IV.56) is known to be true
for all mairices A, B, then we can derive from it the statement (IV.55).
[Hint: Choose real numbers a, 3 such that A+ al > B+ 31 >0.]

We will prove (IV.56) by a different argument. To prove this we need to
prove that for each of the Ky Fan symmetric gauge functions @y, 1 < k <
n, we have the inequality

D(k) (5(4) = 5(B)) < D) (s(A - B)). (IV.57)

We will prove this for @(;y and ®(y,), and then use the interpolation formulas
(IV.9) and (IV.39).
For ®(yy this is easy. By Weyl’s perturbation theorem (Corollary I11.2.6)
we have
max|);(4) = A;(B)| < |14 - Bl

This can be proved easily by another argument also. For any j consider
the subspaces spanned by {u1,...,u;} and {v;,...,v,}, where u;,v;,1 <
1 < n are eigenvectors of A and B corresponding to their eigenvalues )\f (4)
and )\% (B), respectively. Since the dimensions of these two spaces add up
to n + 1, they have a nonzero intersection. For a unit vector z in this
intersection we have (z, Az) > )\Jl.(A) and (z, Bz) < )\;(B). Hence, we
have

14~ B|| > |(z, (A~ B)z)| 2 A;(4) - A;(B).
So, by symmetry

IAj(A) = \(B) < IlA-Bl, 1<j<n

From this, as before, we can get

mJaXISj(A) —-s;(B)| <||A- B

for any two matrices A and B. This is the same as saying
(1) (s(A) - 5(B)) < B(y) (s(A - B)). (IV.58)

Let T be a Hermitian matrix with eigenvalues Ay > Ay > --- > Ay >
Apsi = -+ 2 A,, where Ap > 0 > Apqq. Choose a unitary matrix U such
that T = UDU*, where D is the diagonal matrix D = diag()1, ..., A\n)-
Let D* = (A, ..., Ap,0,---,0) and D~ = (0,--+,0, —Aps1, ..., —An). Let
Tt =UD*U*, T~ =UD~U*. Then both T+ and T~ are positive matri-
ces and

T=T"-T". (IV.59)

This is called the Jordan decomposition of 7.
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Lemma IV.3.2 If A, B are n X n Hermitian matrices, then
> I3 (4) = A (B)] < ||A ~ Bllny- (1V.60)
j=1
Proof. Using the Jordan decomposition of A — B we can write
[|A = Bl||(ny = tr(A — B)* + tr(A - B)".

If we put
C=A+(A-B)" =B+ (A-B)",

then C > A and C > B. Hence, by Weyl’s monotonicity principle, )\Jl-(C' ) >
)\; (A) and /\i(C) > /\]l-(B) for all j. From these inequalities it follows that

IXF(4) = A(B)] < M (2C) — X (4) = A{(B).

Hence,

DN (4) = X(B)] < r(2C — A= B) = |4~ Bl|ny-

Corollary IV.3.3 For any two n X n matrices A, B we have
B(n) (s(A) ~ s(B)) = Y _|sj(4) ~5;(B)| < A~ Bllwy- ~ (IV.61)
=1
Theorem 1V.3.4 For n x n matrices A, B we have the majorisation
[s(A) — s(B)| <w s(A — B).

Proof. Choose any index k& = 1,2,...,n and fix it. By Proposition IV.2.3,
there exist X,Y € M(n) such that

A-B=X+Y

and
1A = Blly = lIX|lmy + FIYI-

Define vectors «, 3 as

a = s(X+B)—s(B),
B8 = s(A)-s(X+B).

Then
s(A) —s(B) = a+B.
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Hence, by Proposition IV.1.5 (or Proposition 1V.2.3 restricted to diagonal
matrices) and by (IV.58) and (IV.61), we have

By (s(A) —s(B)) < P(my(@) + k(1) (B)
O(ny (s(X + B) — s(B)) + k @01y (s(A) — s(X + B))

< Xy + EllA = (X + B)|
[1 X1y + KlIY
= [[A- Bl|x-
This proves the theorem. =

As we observed in Exercise IV.3.1, this theorem is equivalent to Lidskii’s
Theorem.

In Section I1I.2 we introduced the notation Eig A for a diagonal matrix
whose diagonal entries are the eigenvalues of a matrix A. The majorisations

M(A) = AH(B) < M(A - B) < A\ (A) - \1(B)
for the eigenvalues of Hermitian matrices lead to norm inequalities
ll|Eig! (4) — Eig'(B)II| < [I|A - B[l < ||[Eig*(4) - Eig"(B)|ll, (IV-62)

for all unitarily invariant norms. This is just another way of expressing
Theorem I11.4.4. The inequalities of Theorem 111.2.8 and Problem I11.6.15
are special cases of this.

We will see several generalisations of this inequality and still other proofs
of it.

Exercise IV.3.5 If Sing!(A) denotes the diagonal matriz whose diagonal
entries are s1(A),...,s,(A), then it follows from Theorem IV.3.4 that for
any two matrices A, B

[lISing*(A) — Sing*(B)[|| < |l|A - Bl
for every unitarily invariant norm. Show that in this case the “opposite
inequality”

lIlA - B|| < |l|Sing(A) — Sing (B)]]|

is not always true.

IV.4 Weakly Unitarily Invariant Norms

Consider the following numbers associated with an n x n matrix:

(i) Jtr Al = | A (A);
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(ii) spr A = max |A;(A)|, the spectral radius of 4;
1<j<n

(iil) w(A) = ||r£1|?x1|<$’ Az)|, the numerical radius of A.

Of these, the first one is a seminorm but not a norm on M(n), the second
one is not a seminorm, and the third one is a norm. (See Exercise 1.2.10.)

All three functions of a matrix described above have an important in-
variance property: they do not change under unitary conjugations; i.e.,
the transformations A — UAU*,U unitary, do not change these functions.
Indeed, the first two are invariant under the larger class of similarity
transformations A — SAS™!, S invertible. The third one is not invari-
ant under all such transformations.

Exercise IV.4.1 Show that no norm on M(n) can be invariant under all
similarity transformations.

Unlike the norms that were studied in Section 2, none of the three func-
tions mentioned above is invariant under all transformations A — UAV,
where U,V vary over the unitary group U(n).

We will call a norm 7 on M(n) weakly unitarily invariant (wui, for
short) if

7(A) = 7(UAU*) forall A e M(n),U € U(n). (Iv.63)

Examples of such norms include the unitarily invariant norms and the
numerical radius. Some more will be constructed now.

Exercise IV.4.2 Let Ey; be the diagonal matriz with its top left entry 1
and all other entries zero. Then

w(A) = max [tr Ej;UAU"|. (Iv.64)
veUm)

FEquivalently,
w(A) = max{|tr AP|: P is an orthogonal projection of rank 1}.
Given a matrix C, let

we(A) = max |[tr CUAU*|, A€ M(n). (IV.65)
veUm)

This is called the C-numerical radius of A.

- Exercise IV.4.3 For every C € M(n), the C-numerical radius wc is a
wui seminorm on M(n).

Proposition IV.4.4 The C-numerical radius we is a norm on M(n) if
and only if

(i) C is not a scalar multiple of I, and

(i) tr C #0.
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Proof. If C = Al for any A € C, then wc(A) = |\ |tr 4], and this is zero
if tr A = 0. So w¢ cannot be a norm. If tr C =0, then we(I) = |tr C| = 0.
Again wc is not a norm. Thus (i) and (ii) are necessary conditions for we
to be a norm.

Conversely, suppose we(A) = 0. If A were a scalar multiple of I, this
would mean that tr C = 0. So, if tr C # 0, theu A is not a scalar multiple
of I. Hence A has an eigenspace M of dimension m, for some 0 < m < n.
Since et¥ is a unitary matrix for all real ¢ and skew-Hermitian K, the
condition we(A) = 0 implies in particular that

tr CetMAe ¥ =0 if teRK=-K".
Differentiating this relation at t = 0, one gets
tr (AC—-CA)K =0 if K=-K".
Hence, we also have
tr (AC — CA)X =0 for all X € M(n).

Hence AC = CA. (Recall that (S,T) = trS*T is an inner product on
M(n).) Since C commutes with A, it leaves invariant the m-dimensional
eigenspace M of A we mentioned earlier. Now, note that since wg(A4) =
we(UAU*), C also commutes with UAU* for every U € U(n). But UAU*
has the space UM as an eigenspace. So, C also leaves UM invariant for all
U € U(n). But this would mean that C leaves all m-dimensional subspaces
invariant, which in turn would mean C leaves all one-dimensional subspaces
invariant, which is possible only if C is a scalar multiple of I. ]

More examples of wui norms are given in the following exercise.

Exercise IV.4.5 (i) 7(A) = ||A]|+|tr A] is a wui norm. More generally,
the sum of any wui norm and a wui SeMINOTM iS 4 WUL NOTM.

(i) T(A) = max(||A4]|,|tr A|) is a wui norm. More generally, the maxi-
mum of any wui norm and a Wui SEMINOTM IS 4 WUL NOTM.

(i1i) Let W(A) be the numerical range of A. Then its diameter diam W (A)
is a wui seminorm on M(n). It can be used to generate wui norms

as in (i) and (%). Of particular interest would be the norm 7(A) =
w(A) + diam W(A).

(iv) Let m(A) be any norm on M(n). Then

T(A) = max m(UAU™)
veU(n)

1S @ wWul noTrm.
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(v) Let m(A) be any norm on M(n). Then
T(A) =/ m(UAU*)dU,
Um)

where the integral is with respect to the (normalised) Haar measure
on U(n) is a wui norm.

(vi) Let
7(A) = max max|(e;, Aej)|,
€1,.40€n 1,
where ey, ..., e, varies over all orthonormal bases. Then T is a wui

norm. How 1is this related to (i) and (iv) above?
Let S be the unit sphere in C™,
S={zeC: |zl =1},

and let C(S) be the space of all complex valued continuous functions on
S. Let dz denote the normalised Lebesgue measure on S. Consider the
familiar L,-norms on C(S) defined as

Ny = Il = /S f@)Pdz)/?, 1< p< oo,
Neolf) = [Iflloo = maxlf(a)l. (IV.66)

Since the measure dz is invariant under rotations, the above norms satisfy
the invariance property

Np(foU) = Ny(f) for all f € C(S),U € U(n).
We will call a norm N on C(S) a unitarily invariant function norm if
N(foU)= N(f) for all f € C(S),U € U(n). (Iv.67)

The Ly-norms are important examples of such norms.
Now, every A € M(n) induces, naturally, a function f4 on S by its

quadratic form:

fa(z) = (z, Az). (Iv.68)
The correspondence A — f4 is a linear map from M(n) into C(S), which
is one-to-one. So, given a norm N on C(S), if we define a function N’ on
M(n) as

N'(4) = N(fa), (1V.69)
then N’ is a norm on M(n). Further,

N'(UAU*) = N(fyav+-) = N(faoU*).

So, if N is a unitarily invariant function norm on C(S) then N’ is a wui
norm on M(n). The next theorem says that all wui norms arise in this way:
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Theorem IV.4.6 A norm 7 on M(n) is weakly unitarily invariant if and
only if there exists a unitarily invariant function norm N on C(S) such
that T = N', where the map N — N’ is defined by relations (IV.68) and
(IV.69).

Proof. We need to prove that every wui norm 7 on M(n) is of the form
N’ for some unitarily invariant function norm N.

Let F = {fa : A € M(n)}. This is a finite-dimensional linear subspace
of C(S). Given a wui norm 7, define Ny on F by

No(fa) = 7(4). (IV.70)

Then Ny defines a norm on F', and further, No(f o U) = No(f) for all
f € F. We will extend Ny from F to all of C(S) to obtain a norm N that
is unitarily invariant. Clearly, then 7 = N'.

This extension is obtained by an application of the Hahn-Banach Theo-
rem. The space C(S) is a Banach space with the supremum norm || f]|sc-
The finite-dimensional subspace F' has two norms Ny and || - ||co- These
must be equivalent: there exist constants 0 < @ < 8 < oo such that
a||fllee < No(f) < Bl|fllec for all f € F. Let G be the set of all linear
functionals on F that have norm less than or equal to 1 with respect to the
norm Np; i.e., the linear functional ¢ is in G if and only if |{g(f)] < No(f)

for all f € F. By duality then Ng(f) = sup|g(f)|, for every f € F. Now
geG

1g(F)] < BlIflleo for g € G and f € F. Hence, by the Hahn-Banach The-
orem, each g can be extended to a linear functional § on C(S) such that
13()] < BlIf|leo for all f € C(S). Now define

0(f) = suplg(f)], forall feC(S).
g€G

Then 6 is a seminorm on C(S) that coincides with Ny on F. Let

u(f) = max{0(f),allfllo},  feC(S)

Then u is a norm on C(S), and p coincides with Ny on F. Now define

N(f)= sup u(fol), feC(S).
veUm)

Then N is a unitarily invariant function norm on C(S) that coincides with
Ny on F. The proof is complete. u

When N = || - ||o the norm N’ induced by the above procedure is the
numerical radius w. Another example is discussed in the Notes.

The C-numerical radii play a useful role in proving inequalities for wui
norms:
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Theorem IV.4.7 For A, B € M(n) the following statements are equiva-
lent:

(i) T(A) < 7(B) for all wui norms 7.

(it) we(A) < we(B) for all upper triangular matrices C that are not
scalars and have nonzero trace.

(i11) we(A) < we(B) for all C € M(n).

(iv) A can be expressed as a finite sum A =Y 2z Ux BU}: where Uy € U(n)
and zx are compler numbers with 3 |zx| < 1.

Proof. By Proposition IV.4.4, when C is not a scalar and tr C # 0, each
we is a wul norm. So (i) = (ii).

Note that we(A) = wa(C) for all pairs of matrices A, C. So, if (ii) is true,
then wa(C) < wp(C) for all upper triangular nonscalar matrices C with
nonzero trace. Since w4 and wp are wui, and since every matrix is unitarily
equivalent to an upper triangular matrix, this implies that w4 (C) < wg(C)
for all nonscalar matrices C with nonzero trace. But such C are dense in
the space M(n). So wa(C) < wg(C) for all C € M(n). Hence (iii) is true.

Let K be the convex hull of all matrices e?UBU*,0 € R,U € U(n). Then
K is a compact convex set in M(n). The statement (iv) is equivalent to
saying that A € K. If A € K, then by the Separating Hyperplane Theorem
there exists a linear functional f on M(n) such that Re f(4) > Re f(X)
for all X € K. For this linear functional f there exists a matrix C such
that f(Y) =tr CY for all Y € M(n). (Problem IV.5.8) For these f and C

we have
we(A) = max |tr CUAU™| > |tr CA| = |f(A)| > Re f(A)

veUn)

> max Re f(X)

= max Re tr CeUBU*
o,U

= mgx[tr CUBU™|

= wC(B).

So, if (iii) were true, then (iv) cannot be false.
Clearly (iv) = (i). ]

The family we of C-numerical radii, where C is not a scalar and has
nonzero trace, thus plays a role analogous to that of the Ky Fan norms in
the family of unitarily invariant norms. However, unlike the Ky Fan family
on M(n), this family is infinite. It turns out that no finite subfamily of wui
norms can play this role.



IV.5 Problems 107

More precisely, there does not exist any finite family 7, ..., 7, of wui
norms on M(n) that would lead to the inequalities 7(A4) < 7(B) for all wui
norms whenever 7;(A) < 7;(B),1 < j < m. For if such a family existed,
then we would have

m
{X : 7(X) < 7(I) for all wui norms 7} = ﬂ{X s (X)) < (1)}
j=1
(v.m)
Now each of the sets in this intersection contains 0 as an interior point
(with respect to some fixed topology on M(n)). Hence the intersection also
contains 0 as an interior point. However, by Theorem IV.4.7, the set on the
left-hand side of (IV.71) reduces to the set {zI : z € C, |z| < 1}, and this
set has an empty interior in M(n).
Finally, note an important property of all wui norms:

7(C(4)) < 7(A) (IV.72)

for all A € M(n) and all pinchings C on M(n).
In Chapter 6 we will prove a generalisation of Lidskii’s inequality (IV.62)
extending it to all wui norms.

IV.5 Problems

Problem IV.5.1. When 0 < p < 1, the function ®,(z) = (3 |z:|P)}/?
does not define a norm. Show that in lieu of the triangle inequality we have

@p(z+y) < 2%_1[¢p(73) +@p(y)], O<p<l

(Use the fact that f(t) = t” on R, is subadditive when 0 < p < 1 and
convex when p > 1.)

Positive homogeneous functions that do not satisfy the triangle inequality
but a weaker inequality ¢(z + y) < c[p(z) + »(y)] for some constant ¢ > 1
are sometimes called quasi-norms.

Problem IV.5.2. More generally, show that for any symmetric gauge
function ® and 0 < p < 1, if we define ®® as in (IV.17), then

P (z +y) <2571 0WP(z) + @P(y)], 0<p< L
Problem I'V.5.3. All norms on C™ are equivalent in the sense that if ® and

U are two norms, then there exists a constant K such that ®(z) < K¥(z)
for all z € C™. Let

Ko g =inf{K : ®(z) < K¥(z) for all =}.
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Find the constants K¢ ¢ when ®, ¥ are both members of the family ®,.

Problem IV.5.4. Show that for every norm ® on C™ we have " = &;
i.e., the dual of the dual of a norm is the norm itself.

Problem IV.5.5. Find the duals of the norms ®®

() defined by (IV.19).

(These are somewhat complicated.)

Problem IV.5.6. For 0 < p < 1 and a unitarily invariant norm ||| - ||| on
Mi(n), let

AP = (|| |APIM?.
Show that

1A+ B[ < 237 [|llAI® +|1BII®]

Problem IV.5.7. Choosing p = ¢ = 2 in (IV.43) or (IV.42), one obtains
NIABII| < |||A*AJ|)2 11| B*BJ|[/.

This, like the inequality (IV.44), is also a form of the Cauchy-Schwarz in-
equality, for unitarily invariant norms. Show that this is just the inequality
(IV.44) restricted to Q-norms.

Problem IV.5.8. Let f be any linear functional on M(n). Show that there
exists a unique matrix X such that f(A4) =tr X A for all A € M(n).

Problem IV.5.9. Use Theorem IV.2.14 to show that for all A, B € M(n)
det(1 + |A + BJ) < det(1 + |A]) det(1 + | BJ).

Problem IV.5.10. More generally, show that for O<p<1land x>0
det(1 + p|A + B|P) < det(1 + plA|P) det(1 + p|B|P).
Problem IV.5.11. Let £, denote the space C™ with the p-norm defined

in (IV.1) and (IV.2), 1 < p < oo. For a matrix A let ||A||,—,» denote the
normrof A as a linear operator from £, to £y i.e.,

1A4llp—pr = max ||Az|lp.
llzll,=1

Show that
[l = max g

14lloomoo = max D Jass|.
J

NAllimeo = Hilé;xlaijl-
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None of these norms is weakly unitarily invariant.

Problem IV.5.12. Show that there exists a weakly unitarily invariant
norm 7 such that 7(A) # 7(A*) for some A € M(n).

Problem IV.5.13. Show that there exists a weakly unitarily invariant
porm 7 such that 7(A) > 7(B) for some positive matrices A, B with A < B.

Problem IV.5.14. Let 7 be a wui norm on M(n). Define v on M(n) as
v(A) = 7(|A]). Then v is a unitarily invariant norm if and only if 7(A4) <
7(B) whenever 0 < A < B.

Problem IV.5.15. Show that for every wui norm 7
7(Eig A) = inf{r(SAS™') : S € GL(n)}.
When is the infimum attained?

Problem IV.5.16. Let 7 be a wui norm on M(n). Show that for every A
trA
ra) > 24 )
n
Use this to show that

min{7(A—-B):tr B=0} = ltr—nAl'r(I).

IV.6 Notes and References

The first major paper on the theory of unitarily invariant norms and sym-
metric gauge functions was by J. von Neumann, Some matriz inequali-
ties and metrization of matric space, Tomsk. Univ. Rev., 1(1937) 286-300,
reprinted in his Collected Works, Pergamon Press, 1962. A famous book
devoted to the study of such norms (for compact operators in a Hilbert
space) is R. Schatten, Norm Ideals of Completely Continuous Operators,
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Schwarz inequality (IV.44) is proved in R. Bhatia, Perturbation inequalities



110 IV. Symmetric Norms

for the absolute value map in norm ideals of operators, J. Operator Theory,
19 (1988) 129-136. This, and a whole family of inequalities including the
one in Problem IV.5.7, are studied in detail by R.A. Horn and R. Mathias
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equalities for Schur products of matrices, Linear Algebra Appl., 91(1987)
13-28. A general study of these and related inequalities is made in R. Bha-
tia and C. Davis, Relations of linking and duality between symmetric gauge
functions, Operator Theory: Advances and Applications, 73(1994) 127-137.

Theorems IV.2.13 and IV.2.14 were proved by S. Ju. Rotfel’d, The singu-
lar values of a sum of completely continuous operators, in Topics in Math-
ematical Physics, Consultants Bureau, 1969, Vol. 3, pp. 73-78. See also,
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The theory of wui norms is not developed as fully as that of unitarily
invariant norms. Theorem IV.4.6 would be useful if one could make the
correspondence between 7 and N more explicit. As things stand, this has
not been done even for some well-known and much-used norms like the
Lp-norms. When N is the Lo, function norm, we have noted that N'(A4) =
w(A). When N is the L, function norm, then it is shown in the Bhatia-
Holbrook (1987) paper cited above that

NAIZ + [er A2\ "?
n + n? ’

N'(4) = (
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For other values of p, the correspondence has not been worked out.

For a recent survey of several results on invariant norms see C.-K. Li,
Some aspects of the theory of norms, Linear Algebra Appl., 212/213 (1994)
71-100.
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Operator Monotone and Operator
Convex Functions

In this chapter we study an important and useful class of functions called
operator monotone functions. These are real functions whose extensions
to Hermitian matrices preserve order. Such functions have several special
properties, some of which are studied in this chapter. They are closely
related to properties of operator convex functions. We shall study both of
these together.

V.1 Definitions and Simple Examples

Let f be a real function defined on an interval I. If D = diag(A;,-..,An)
is a diagonal matrix whose diagonal entries A; are in I, we define f(D) =
diag(f(M), .-, f(As))- If A is a Hermitian matrix whose eigenvalues A; are
in I, we choose a unitary U such that A = UDU*, where D is diagonal,
and then define f(A) =U f(D)U*. In this way we can define f(A) for all
Hermitian matrices (of any order) whose eigenvalues are in I. In the rest of
this chapter, it will always be assumed that our functions are real functions
defined on an interval (finite or infinite, closed or open) and are extended
to Hermitian matrices in this way.

We will use the notation A < B to mean A and B are Hermitian and
B — A is positive. The relation < is a partial order on Hermitian matrices.

A function f is said to be matrix monotone of order n if it is mono-
tone with respect to this order on n x n Hermitian matrices, i.e., if A < B
implies f(A) < f(B). If f is matrix monotone of order n for all n we say f
is matrix monotone or operator monotone.
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A function f is said to be matrix convex of order n if for all n x n
Hermitian matrices A and B and for all real numbers 0 < A < 1,

FI(I=XA+AB) < (1-X)f(A) +Af(B). (V.1)

If f is matrix convex of all orders, we say that f is matrix convex or
operator convex.

(Note that if the eigenvalues of A and B are all in an interval I, then
the eigenvalues of any convex combination of A, B are also in [. This is an
easy consequence of results in Chapter III.)

We will consider continuous functions only. In this case, the condition
(V.1) can be replaced by the more special condition

; (A;B) < SO +15) v

(Functions satisfying (V.2) are called mid-point operator convex, and
if they are continuous, then they are convex.)

A function f is called operator concave if the function —f is operator
convex.

It is clear that the set of operator monotone functions and the set of
operator convex functions are both closed under positive linear combina-
tions and also under (pointwise) limits. In other words, if f, g are operator
monotone, and if a, 8 are positive real numbers, then af + B¢ is also oper-
ator monotone. If f,, are operator monotone, and if f,(z) — f(z), then f
is also operator monotone. The same is true for operator convex functions.

Example V.1.1 The function f(t) = o + Bt is operator monotone (on
every interval) for every o € R and § > 0. It is operator convez for all
a,B8 €R.

The first surprise is in the following example.

Example V.1.2 The function f(t) = t*> on [0,00) is not operator mono-
tone. In other words, there exist positive matrices A, B such that B — A is
positive but B2 — A? is not. To see this, take

-(11) s (1)

Example V.1.3 The function f(t) = t? is operator convez on every in-
terval. To see this, note that for any Hermitian matrices A, B,

A*+ B> (A+B

2
1 2 2 1 2
—— — — =Z(A—-B)Y?>o0.
: 5 ) {(A°+ B — AB—BA) = ( )

This shows that the function f(t) = a + Bt +t? is operator conver for all
a,B€ER, v>0.
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Example V.1.4 The function f(t) = t> on [0,00) is not operator convez.

To see this, let
11 3 1

A +B (A+B\’ (6 1
2 2 “\10)°

and this is not positive.

Then,

Examples V.1.2 and V.1.4 show that very simple functions which are
monotone (convex) as real functions need not be operator monotone (op-
erator convex). A complete description of operator monotone and operator
convex functions will be given in later sections. It is instructive to study a
few more examples first. The operator monotonicity or convexity of some
functions can be proved by special arguments that are useful in other con-
texts as well.

We will repeatedly use two simple facts. If A is positive, then A < I if
and only if spr(A) < 1. An operator A is a contraction (||A4] < 1) if and
only if A*A < I. This is also equivalent to the condition AA* < I.

The following elementary lemma is also used often.

Lemma V.1.5 If B > A, then for every operator X we have X*BX >
X*AX.

Proof. For every vector u we have,
(u, X*BXu) = (Xu, BXu) > (Xu, AXu) = (u, X" AXu).

This proves the lemma.
An equally brief proof goes as follows. Let C be the positive square root
of the positive operator B — A. Then

X*(B— A)X = X*CCX = (CX)*CX > 0. .

Proposition V.1.6 The function f(t) = —% s operator momnotone on
(0,00).

Proof. Let B> A > 0. Then, by Lemma V.1.5, I > B~/2AB~'/2, Since
the map T — T~! is order-reversing on commuting positive operators,
we have I < BY2A71B1/2. Again, using Lemma V.1.5 we get from this
Bl< AL ]

Lemma V.1.7 If B> A >0 and B is invertible, then ||AY/?2B~1/2| < 1.

Proof. IfB>A>0,thenl > B Y/2AB~1/2 = (AY/2B~1/2)* A1/2B~1/2
and hence |[AY/2B~1/2|| < 1. ]
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Proposition V.1.8 The function f(t) = t'/? is operator monotone on
[0, 00).

Proof. Let B> A > 0. Suppose B is invertible. Then, by Lemma V.1.7,
1> ”A1/2B—1/2” > Spr(Al/2B—1/2) — SpI‘(B_l/4A1/ZB—1/4).

Since B~Y4*AB~'/4 is positive, this implies that [ > B~ 1/4AY/2B~1/4
Hence, by Lemma V.1.5, BY/2 > A2 This proves the proposition under
the assumption that B is invertible. If B is not strictly positive, then for
every € > 0, B + €l is strictly positive. So, (B +eI)1/2 > AY2. Let € — 0.
This shows that B1/2 > A/2, ]

Theorem V.1.9 The function f(t) = t" is operator monotone on [0,00)
for0<r<1.

Proof. Let r be a dyadic rational, i.e., a number of the form r = %,
where n is any positive integer and 1 < m < 2". We will first prove the
assertion for such r. This is done by induction on n.
Proposition V.1.8 shows that the assertion of the theorem is true when
m

n = 1. Suppose it is also true for all dyadic rationals 77, in which 1 <

j<n-—1 Let B> A and let r = Z*. Suppose m < 2"~1. Then, by the
induction hypothesis, B™2" " > A™/2"™"_ Hence, by Proposition V.1.8,
B™?" > A™/?" Suppose m > 2" 1. If B > A > 0, then A~! > B~
Using Lemma V.1.5, we have B™/2" A-1 pm/2" > pm/2" g-1pm/2" —
B(m/2"7'=1) By the same argument,

A1/ B(m/Z"_l—-l)A—l/2
A-—l/2 A(m/Z"_l—l)A——l/Q

A—1/2 Bm/?"A—le/Z"A—l/2

vV v

(by the induction hypothesis). This can be written also as

(A—l/ZBm/2"A—1/2)2 > A(m/2"_1—2).

So, by the operator monotonicity of the square root,

A—1/2Bm/2"A—1/2 > A(m/2"—1).

Hence, B™/2" > Am/?",

We have shown that B > A > 0 implies B™ > A" for all dyadic rationals
7 in [0, 1]. Such r are dense in [0, 1]. So we have B" > A" for all r in [0, 1].
By continuity this is true even when A is positive semidefinite . |

Exercise V.1.10 Another proof of Theorem V.1.9 is outlined below. Fill
in the details.
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(i) The composition of two operator monotone functions is operator mono-
tone. Use this and Proposition V.1.6 to prove that the function f(t) =
143 is operator monotone on (0,0).

(ii) For each A > 0, the function f(t) = i is operator monotone on

A+t
(0, 00).

(i) One of the integrals calculated by contour integration in Complex
Analysis is

oo
AT 1

1+

d\=mcosecrm, 0<r<l (v.3)
0

By a change of variables, obtain from this the formula

[e ]

- Sinrw [
th = - /_—)\+t)‘ dXi (V.4)

0
valid for allt >0 and 0 <r < 1.

(iv) Thus, we can write
tr—7—t—d()\) 0<r<i1 (V.5)
- /\+t 15 ’ ) .
0

where u is a positive measure on (0, 00). Now use (i) to conclude that
the function f(t) =t" is operator monotone on (0,00) for 0 <r < 1.

Example V.1.11 The function f(t) = |t| is not operator convez on any
interval that contains 0. To see this, take

a-(71 ) e=(40):
a=( 5 1) mm=( 7).

But|A+B| = V2 I. So|A|+|B|—|A+ B is not positive. (See also Ezercise
11.5.7.)

Then

Example V.1.12 The function f(t) = ¢tV 0 is not operator conver on
any nterval that contains 0. To see this, take A, B as in Example V.1.11.
Since the eigenvalues of A are —2 and 0, f(A) = 0. So (f(A) + f(B)) =
( (1) g ) Any positive matriz dominated by this must have ( (1) ) as an
eigenvector with 0 as the corresponding eigenvalue. Since 3(A + B) does

not have ( (1) > as an eigenvector, neither does f(i';i).
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Exercise V.1.13 Let I be any interval. Fora € I, let f(t) = (t —a) V0.
Then f is called an “angle function” angled at a. If I is a finite interval,
then every convex function on I is a limit of positive linear combinations of
linear functions and angle functions. Use this to show that angle functions
are not operator convez.

Exercise V.1.14 Show that the function f(t) = tVO0 is not operator mono-
tone on any interval that contains 0.

Exercise V.1.15 Let A, B be positive. Show that

A'+B (A +B)‘1 _ (A -B YA +B ) (AT - BT
2 2 B 2 '

Therefore, the function f(t) = % is operator convez on (0, co).

V.2 Some Characterisations

There are several different notions of averaging in the space of operators. In
this section we study the relationship between some of these operations and
operator convex functions. This leads to some characterisations of operator
convex and operator monotone functions and to the interrelations between
them.

In the proofs that are to follow, we will frequently use properties of
operators on the direct sum H @ H to draw conclusions about operators on
‘H. This technique was outlined briefly in Section I.3.

Let K be a contraction on H. Let L = (I-KK*)Y/2, M = (I-K*K)'/2.
Then the operators U, V defined as

Uz(ﬁ _K{’>, V=(AI§ ;{L> (V.6)

are unitary operators on H @ H. (See Exercise 1.3.6.) More specially, for
each 0 < X\ < 1, the operator

A2 —(1 =221
W = ( (1— V21 \2p ) V.7
is a unitary operator on H @ H.

Theorem V.2.1 Let f be a real function on an interval I. Then the fol-
lowing two statements are egquivalent:

(i) f is operator convez on I.

(ii) f(C(A)) < C(f(A)) for every Hermitian operator A (on a Hilbert
space H) whose spectrum is contained in I and for every pinching C
(in the space H).
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Proof. (i) =(ii): Every pinching is a product of pinchings by two comple-

mentary projections. (See Problems I1.5.4 and 11.5.5.) So we need to prove
this implication only for pinchings C of the form

X+U*X
C(X)= —+—2—q, where U = ( é _OI )

For such a C

ey = §(AXTAT) LA+ H0AD)
f(A) + U f(A)U

- o = C(f(A)).

(ii) = (i): Let A, B be Hermitian operators on H, both having their

spectrum in /. Consider the operator T' = 40 > on HOH. If W is

0 B
the unitary operator defined in (V.7), then the diagonal entries of W*TW
are AA + (1 —A)B and (1 — A)A + AB. So if C is the pinching on H @ H
induced by the projections onto the two summands, then

. _( M+ (1-)NB 0
C(WTW)‘< 0 (1—,\)A+AB>'
By the same argument,
CUHW TW)) = C(W*f(THW)

( Af(A) + (1 =N f(B) 0 )
0 (L=XNf(A)+Af(B) )

So the condition f(C(W*TW)) < C(f(W*TW)) implies that

FAA+ (1 =X)B) < Af(A) + (1 - A)f(B).

Exercise V.2.2 The following conditions are eguivalent:

(i) f is operator convez on I.

(i) f(Am) < (f(A))pm for every Hermitian operator A with its spectrum
in I, and for every compression T — Tpg.

(@) f(V*AV) < V*f(A)V for every Hermitian operator A (on H) with
its spectrum in I, and for every isometry from any Hilbert space
into H.

(See Section III1.1 for the definition of a compression.)
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Theorem V.2.3 Let I be an interval containing 0 and let f be a real
function on I. Then the following conditions are equivalent:

(i) f is operator convez on I and f(0) <0.

(ii) f(K*AK) < K*f(A)K for every contraction K and every Hermitian
operator A with spectrum in I.

(in) f(KTAK, + K3BK,) < K{f(A)K, + K3 f(B)K; for all operators
K, K5 such that K{ Ky + K5 Ky < I and for all Hermitian A, B with
spectrum in I.

(iv) f(PAP) < Pf(A)P for all projections P and Hermitian operators A
with spectrum in I.

Proof. (i) = (ii): Let T = (4 J) and let U,V be the unitary operators
defined in (V.6). Then

" _ ([ K*AK K*AL " _ [ K*AK —-K*AL

v TU—( LAK LAL ) ViV = ( ~LAK LAL )

So,

K*AK 0 _U'Tu +Vv*TV
0 LAL 2 ’

Hence,
f(K*AK) 0
0 f(LAL)
U*Tu + V*1TV
- ()
FU*TU) + f(V*TV)
2
U*f(TYU + V*f(TV

2
_ %{U( f(64) f?O) >U+V*( f(64) f?o) )V}
_21_{U( f(é‘l) 8 )UH,*( f(OA) g )V}

- (K*ft(JA)K Lf&)L >

Hence, f(K*AK) < K*f(A)K.

(ii)#(iii):LetT=(61 g),K=(§; 8>.ThenKisacon-

IN

traction. Note that

TH — ( K;AK) + K3BK, 0 )
- 0 o )
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Hence,

f(KfAKi+ K;BKs) 0 _ J(K*TK) < K*f(T)K
0 f(0)
Kif(A)K, + K5 f(B)K, 0
0 0/
(iii) = (iv) obviously.
(iv) =(i): Let A, B be Hermitian operators with spectrum in I and let
A0 I 0
< = = 1
0<A<L1.LetT ( 0 B ), P ( 0 0 ) and let W be the unitary
operator defined by (V.7). Then

PW*TWP — ( M+(1-XB 0 )

0 0
So,

(f(,\A+(1—,\)B) 0 )

F(PW*TW P)

0 f(0)
< Pf(W*TW)P = PW*f(T)WP
( Af(A)+ (1 =A)f(B) © >
0 0/
Hence, f is operator convex and f(0) < 0. [ ]

Exercise V.2.4 (i) Let \;, Ay be positive real numbers such that Ay Ay >
* /\II C*
C*C. Then ( C ol

(ii) Let ( é, CB ) be a Hermitian operator. Then for every € > 0,

) is positive. (Use Proposition 1.3.5.)

there exists A > 0 such that
A C* < A+el 0
C B - 0 M)

The next two theorems are among the several results that describe the
connections between operator convexity and operator monotonicity.

Theorem V.2.5 Let f be a (continuous) function mapping the positive
half-line [0, 00) into itself. Then f is operator monotone if and only if it is
operator concave.

Proof. Suppose f is operator monotone. If we show that f(K*AK) >
K*f(A)K for every positive operator A and contraction K, then it would

follow from Theorem V.2.3 that f is operator concave. Let T' = (‘3 g) and

let U be the unitary operator defined in (V.6). Then U*TU = ( KL:qAI? KL:qALL )-
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By the assertion in Exercise V.2.4(ii), given any € > 0, there exists A > 0
such that

U*TU < ( K*Ag('l‘e ;)I >
Replacing T by f(T), we get
K*f(A)K K*f(A)L . .
( Lf(A)K  Lf(A)L > = U™ f(T)U = f(UTUV)
( f(K*AK +¢) 0 )
- 0 FI

by the operator monotonicity of f. In particular, this shows K*f(A)K <
f(K*AK +¢) for every € > 0. Hence K* f(A)K < f(K*AK).

Conversely, suppose f is operator concave. Let 0 < A < B. Then for any
0< A <1 we can write

AB =AM+ (1-N)—2(B-A).
1-2A
Since f is operator concave, this gives
A
FO8) 2 A1) + (1= NF (258 - 4).

Since f(X) is positive for every positive X, it follows that f(AB) > Af(A).
Now let A — 1. This shows f(B) > f(A). So f is operator monotone. M

Corollary V.2.6 Let f be a continuous function from (0,00) into itself.
If f is operator monotone then the function g(t) = f_(ltj is operator convez.

Proof. Let A, B be positive operators. Since f is operator concave,
f(A'gB) > f(A);f(B). Since the map X — X! is order-reversing and
convex on positive operators (see Proposition V.1.6 and Exercise V.1.15),
this gives

() g

2 2 2

This is the same as saying ¢ is operator convex. |

Exercise V.2.7 Let I be an interval containing 0, and let f be a real
function on I with f(0) < 0. Show that for every Hermitian operator A
with spectrum in I and for every projection P

f(PAP) < Pf(PAP) = Pf(PAP)P.
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Exercise V.2.8 Let f be a continuous real function on [0,00). Then for
all positive operators A and projections P

FAV2PAY?YAV2P = AY2Pf(PAP).

(Prove this first, by induction, for f(t) = t™. Then use the Weierstrass
approzimation theorem to show that this is true for all f.)

Theorem V.2.9 Let f be a (continuous) real function on the interval
[0, ). Then the following two conditions are equivalent:

(i) f is operator convez and f(0) < 0.

(i1) The function g(t) = f(t)/t is operator monotone on (0, ).

Proof. (i) = (ii): Let 0 < A < B. Then 0 < A2 < B'/2, Hence,
B~1/2A1/? is a contraction by Lemma V.1.7. Therefore, using Theorem
V.2.3 we see that

f(A) — f(Al/ZB—l/ZBB—1/2A1/2) < AI/ZB_I/Zf(B)B_1/2A1/2.
From this, one obtains, using Lemma V.1.5,
A—I/Zf(A)A—l/Q < B—1/2f(B)B_1/2.

Since all functions of an operator commute with each other, this shows that
A~1f(A) < B7!f(B). Thus, g is operator monotone.

(if) =(i): If f(t)/t is monotone on (0,) we must have f(0) < 0. We
will show that f satisfies the condition (iv) of Theorem V.2.3. Let P be
any projection and let A be any positive operator with spectrum in (0, @).
Then there exists an € > 0 such that (1 + €)A has its spectrum in (0, @).
Since P +¢eI < (1 +¢€)I, we have AY2(P +el)AY/? < (1+¢)A. So, by the
operator monotonicity of g, we have

ATYV2(P 4 e)TTATV2f(AV2(P + eD)AY?) < (1 +€) TP ATHF((1 4+ €) A).

Multiply both sides on the right by AY?(P + eI) and on the left by its
conjugate (P + eI)A'/2. This gives

ATV F(AVA(Prel) AV AP (Pel) < (1+e) T (Prel) f((1+€) A)(Pel).
Let € — 0. This gives
ATV2F(AY2PAY?) A2 P < Pf(A)P.

Use the identity in Exercise V.2.8 to reduce this to Pf(PAP) < Pf(A)P,
and then use the inequality in Exercise V.2.7 to conclude that f(PAP) <
Pf(A)P, as desired. |

As corollaries to the above results, we deduce the following statements
about the power functions .
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Theorem V.2.10 On the positive half-line (0, 00) the functions f(t) = t",
where T 15 a real number, are operator monotone if and only if 0 <r < 1.

Proof. If 0 < r < 1, we know that f(t) = t" is operator monotone by
Theorem V.1.9. If r is not in [0, 1], then the function f(t) = ¢" is not
concave on (0, 00). Therefore, it cannot be operator monotone by Theorem
V.2.5. ]

Exercise V.2.11 Consider the functions f(t) = t" on (0,00). Use Theo-
rems V.2.9 and V.2.10 to show that if r > 0, then f(t) is operator convez
if and only if 1 < r < 2. Use Corollary V.2.6 to show that f(t), is operator
convez if —1 <1 < 0. (We will see later that f(t) is not operator conver
for any other value of r.)

Exercise V.2.12 A function f from (0,00) into itself is both operator
monotone and operator conver if and only if it is of the form f(t) =
o+ fBt, a,>0.

Exercise V.2.13 Show that the function f(t) = —t log t is operator con-
cave on (0,00).

V.3 Smoothness Properties

Let I be the open interval (—1,1). Let f be a continuously differentiable
function on /. Then we denote by f[!! the function on I x I defined as

f[l]()\,p) — f()\))\:i(ﬂ)7 A £

AN = 0.

The expression fIl(X, ) is called the first divided difference of f at
A )

If A is a diagonal matrix with diagonal entries Ay, ..., A, all of which are
in I, we denote by fl/(A) the n x n symmetric matrix whose (i, j)-entry is
FH (A, A)). If A is Hermitian and A = UAU™, let fl(A4) = U fIU(A)U*.

Now consider the induced map f on the set of Hermitian matrices with
eigenvalues in /. Such matrices form an open set in the real vector space
of all Hermitian matrices. The map f is called (Fréchet) differentiable at
A if there exists a linear transformation D f(A) on the space of Hermitian
matrices such that for all H

If(A+H) - f(A) - DF(A)H)| = o([l H]])- (V.8)

The linear operator D f(A) is then called the derivative of f at A. Basic
rules of the Fréchet differential calculus are summarised in Chapter 10. If
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[ is differentiable at A, then

DICANE) = S| (4418, (V.9)

t=0
There is an interesting relationship between the derivative D f(A) and
the matrix fl!)(A). This is explored in the next few paragraphs.

Lemma V.3.1 Let f be a polynomial function. Then for every diagonal
matriz A and for every Hermitian matriz H,

Df(A)(H) = f(A) o H, (V.10)

where o stands for the Schur-product of two matrices.

Proof. Both sides of (V.10) are linear in f. Therefore, it suffices to prove
this for the powers f(t) = t*,p = 1,2,3,... For such f, using (V.9) one

gets
P

Df(A)(H) =Y A HAP*,
k=1

P
This is a matrix whose (i, j)-entry is Z )\f")\;-"kh,-j. On the other hand,
k=1

P
the (7, 7)-entry of fm(/\) is Z )\Ik—l)\;»k. .
k=1

Corollary V.3.2 If A =UAU"* and f is a polynomial function, then

Df(A)(H) = U[fU(A) o (U*HU) U™ (V.11)
Proof. Note that
d " B d . .
7 t:of(UAU +tH)=U [(—12 t::Of(A +tU HU)] u-,
and use (V.10). n

Theorem V.3.3 Let f € C*(I) and let A be o Hermitian matriz with all
its eigenvalues in I. Then

Df(A)(H) = f(4) 0 H, (V.12)
where o denotes the Schur-product in a basis in which A is diagonal.
Proof. Let A = UAU*, where A is diagonal. We want to prove that

Df(A)(H) = U[fW(A) o (U*HU)U®. (V.13)
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This has been proved for all polynomials f. We will extend its validity to
all f € C! by a continuity argument.

Denote the right-hand side of (V.13) by Df(A)(H). For each f in C?,
Df(A) is a linear map on Hermitian matrices. We have

IDF(A)E)2 = IfH(A) o (U*HU)|l2.

All entries of the matrix f(U/(A) are bounded by |I|I<15|a]3§"] ()] (Use the
t<

mean value theorem.) Hence

IDF(A)(H)l2 < tfrslfﬁggllf'(t)l I1Hl2- (V.14)

Let H be a Hermitian matrix with norm so small that the eigenvalues of
A+H arein I. Let [a, b] be a closed interval in I containing the eigenvalues
of both 4 and A+ H. Choose a sequence of polynomials f,, such that f, — f
and f;, — f' uniformly on [a,b]. Let £ be the line segment joining A and
A+ H in the space of Hermitian matrices. Then, by the mean value theorem
(for Fréchet derivatives), we have

| fm(A+ H) = fo(A+ H) — (frm(A4) = fa(A)I
lH|| sup 1D fm(X) = Dfa(X)|l

IH| sup |Dfm(X) = DfalX)]l- (V.15)
XeL

IA

This is so because we have already shown that D f,, = Df, for the polyno-
mial functions f,.

Let € be any positive real number. The inequality (V.14) ensures that
there exists a positive integer ng such that for m,n > ng we have

sup [Dfm(X) = DI(X) < 5 (V.16)
XeL
and e
IDfa(4) - DAY < 5. (v.17)
Let m — oo and use (V.15) and (V.16) to conclude that
If(A+ H) = f(A) = (fo(A+ H) = fa(A)Il < %IIHH- (V.18)

If ||H|| is sufficiently small, then by the definition of the Fréchet derivative,

we have €
£ (A + H) = fa(4) = DI (A)E)] < glIH]|- (V.19)

Now we can write, using the triangle inequality,
If(A+H)— f(A) - Df(A)(H)|
< Nf(A+H) - f(A) - (fa(A+ H) - fu(A))]l
+ | fa(A+ H) — fa(A) = Dfa(A)(H)I|
+ [(Df(A) — Dfal(A))(H)|,
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and then use (V.17), (V.18), and (V.19) to conclude that, for ||H|| suffi-
ciently small, we have

If(A+H)— f(A) - Df(A)(H)| < ellH].
But this says that Df(A) = Df(A). ]

Let t — A(t) be a C! map from the interval [0,1] into the space of
Hermitian matrices that have all their eigenvalues in I. Let f € C'([), and
let F(t) = f(A(t)). Then, by the chain rule, Df(t) = DF(A(t))(A'(¢))-
Therefore, by the theorem above, we have

1

F(1) - F(0) = / FUCA) 0 A'(1)dt, (V.20)

0

where for each ¢ the Schur-product is taken in a basis that diagonalises
A(t).

Theorem V.3.4 Let f € C*(I). Then f is operator monotone on I if
and only if, for every Hermitian matriz A whose eigenvalues are in I, the
matriz fU(A) is positive.

Proof. Let f be operator monotone, and let A be a Hermitian matrix
whose eigenvalues are in I. Let H be the matrix all whose entries are 1.
Then H is positive. So, A+ tH > A if t > 0. Hence, f(A +tH) — f(A)
is positive for small positive ¢. This implies that Df(A)(H) > 0. So, by
Theorem V.3.3, fl1(A) o H > 0. But, for this special choice of H, this just
says that fl(A) > 0.

To prove the converse, let A, B be Hermitian matrices whose eigenvalues
arein I, and let B > A. Let A(t) = (1 —t)A+tB, 0 <t < 1. Then A(t)
also has all its eigenvalues in I. So, by the hypothesis, fl/(A(t)) > 0 for
all ¢t. Note that A'(t) = B — A > 0, for all ¢. Since the Schur-product of
two positive matrices is positive, fI/(A(t)) o A’(t) is positive for all ¢. So,
by (V.20), £(B) - f(4) > 0. =

Lemma V.3.5 If f is continuous and operator monotone on (—1,1), then
for each —1 < A < 1 the function ga(t) = (t + ) f(t) is operator convez.

Proof. We will prove this using Theorem V.2.9. First assume that f is
continuous and operator monotone on [—1,1]. Then the function f(t — 1)
is operator monotone on [0,2). Let g(t) = ¢f(¢ —1). Then g(0) = 0 and the
function g(t)/t is operator monotone on (0,2). Hence, by Theorem V.2.9,
g(t) is operator convex on [0,2). This implies that the function hq(t) =
g(t+ 1) = (¢ + 1) f(¢) is operator convex on [—1,1). Instead of f(t), if the
same argument is applied to the function — f(—t), which is also operator
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monotone on [—1,1], we see that the function ha(t) = —(t + 1)f(—t) is
operator convex on [—1,1). Changing ¢ to —t preserves convexity. So the
function hg(t) = ho(—t) = (¢ — 1)f(t) is also operator convex. But for
Al <1, gat) = %hl(t) + l;—)‘h,g(t) is a convex combination of h; and
hs. So gx is also operator convex.

Now, given f continuous and operator monotone on (—1, 1), the function
f((1 — €)t) is continuous and operator monotone on [—1,1] for each € > 0.
Hence, by the special case considered above, the function (¢+ A) f((1 —€)t)
is operator convex. Let € — 0, and conclude that the function (¢ + A)f(t)
is operator convex. ]

The next theorem says that every operator monotone function on I is
in the class C'. Later on, we will see that it is actually in the class C°.
(This is so even if we do not assume that it is continuous to begin with.)
In the proof we make use of some differentiability properties of convex
functions and smoothing techniques. For the reader’s convenience, these
are summarised in Appendices 1 and 2 at the end of the chapter.

Theorem V.3.6 Every operator monotone function f on I is continuously
differentiable.

Proof. Let 0 < e < 1, and let f. be a regularisation of f of order €. (See
Appendix 2.) Then f is a C* function on (—1+¢, 1 —¢). It is also operator
monotone. Let f(t) = lim fe(t). Then f(t) = LFt+) + Ft-))
E —
Let g-(t) = (¢+1) fe(t). Then, by Lemma V.3.5, g, is operator convex. Let
glt) = lin%) ge(t). Then g(¢) is operator convex. But every convex function

(on an open interval) is continuous. So g(t) is continuous. Since g(t) =
(t+1)f(t) and t + 1 > 0 on I, this means that f(t) is continuous. Hence
f(t) = f(t). We thus have shown that f is continuous.

Let g(t) = (¢t + 1) f(¢). Then g is a convex function on I. So g is left and
right differentiable and the one-sided derivatives satisfy the properties

gL g0, lmei(s) =), lmek()=g (). (V2)

But ¢4.(t) = F(¢) + (¢t + 1) f4(¢). Since ¢ + 1 > 0, the derivatives f, (¢) also
satisfy relations like (V.21).

Now let A = (3 2), s,t € (—=1,1). If € is sufficiently small, s,t are in
(—=1+¢,1—¢). Since f. is operator monotone on this interval, by Theorem

V.3.4, the matrix fgm (A) is positive. This implies that
s)— f(8)\?
(E=LDY < pano.

Let ¢ — 0. Since f. — f uniformly on compact sets, fe(s) — fe(t) converges
to f(s) — f(t). Also, fI(t) converges to 3[f\(t) + f.(t)]. Therefore, the
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above inequality gives, in the limit, the inequality

()= fO\* 1

(L) <L+ 2 elso + 1.0
Now let s | ¢, and use the fact that the derivatives of f satisfy relations
like (V.21). This gives

L6 < 150 + RO + 70,

which implies that f (t) = f’ (¢). Hence f is differentiable. The relations
(V.21), which are satisfied by f too, show that f’ is continuous. ]

Just as monotonicity of functions can be studied via first divided differ-
ences, convexity requires second divided differences. These are defined
as follows. Let f be twice continuously differentiable on the interval I. Then
f is a function defined on I x I x I as follows. If A;, A, Az are distinct

FUO,A) — (A, Ag)
A2 — A3 )

f[Z](A17 )\27 )‘3) =
For other values of Ay, Az, As, f[2 is defined by continuity; e.g.,
1
FAOAN) =S ()

Exercise V.3.7 Show that if A1, Aa, Az are distinct, then f21(A, A, A3) is
the quotient of the two determinants

fu) f(R2) f(Rs) AN
/\1 )\2 )\3 and /\1 /\2 /\3
1 1 1 1 1 1

Hence the function f& is symmetric in its three arguments.

Exercise V.3.8 If f(t) =t™, m=2,3,..., show that

FAOLAA) = Y AT
pratrim—2

Exercise V.3.9 (i) Let f(t) = t™,m > 2. Let A be an n x n diagonal
n
matriz; A = Z/\iP,- where P; are the projections onto the coordinate

i=1
azes. Show that for every H
d2

23| f(A+tH) 2 Y APHA'HA"

t=0 ptg+r=m—2

PyayT
2 > > APMNPHP;HP,
pHg+r=m—2 1<i,jk<n
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and

d2
Ta|  FA+tH) =23 fP( A, Ae) PH P HP. (V.22)
t=0

1,3,k

(i) Use a continuity argumeni, like the one used in the proof of Theorem
V.8.8, to show that this last formula is valid for all C? functions f.

Theorem V.3.10 If f € C?*(I) and f is operator convez, then for each
p € I the function g(X) = fll(u, \) is operator monotone.

Proof. Since f is in the class C?,g is in the class C!. So, by Theorem
V.3.4, it suffices to prove that, for each n, the n X n matrix with entries
g\, A;) is positive for all Ay,..., A, in 1.

Fix n and choose any Aj,...,An4+1 in I. Let A be the diagonal matrix
with entries Ay, ... An4+1. Since f is operator convex and is twice differen-

tiable, for every Hermitian matrix H, the matrix g;f‘ f(A +tH) must
=0

be positive. If we write Py, ..., P,4 for the projections onto the coordinate
axes, we have an explicit expression for this second derivative in (V.22).
Choose H to be of the form

0o 0 --- 5:1
H = 0o 0 --- & ’
& & - & 0
where £,...,&, are any complex numbers. Let z be the (n + 1)-vector
(1,1,...,1,0). Then
(z, LHP;HPyz) = £k€ibjn i1 (V.23)

for1<4,7,k <n+1, where §; »41 is equal to 1 if j = n+1, and is equal to
0 otherwise. So, using the positivity of the matrix (V.22) and then (V.23),
we have

(=)
IA

Z flz](Al’)\]7Ak)(m’RHPJHPk$)

1<i,5,k<n+1

= Z FBOG At Ae)Exbi.

1<i,k<n
But,

FO g1, M) — FH g1, Ak)
i — Ak

FBOG A, A) =
= glll(Ah )\k)
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(putting An41 = p in the definition of g). So we have

0< > g™, Mgk &

1<i,k<n

Since &; are arbitrary complex numbers, this is equivalent to saying that
the n x n matrix [gl)()\;, A\)] is positive. u

Corollary V.3.11 If f € C?(I), f(0) =0, and f is operator convez, then
the function g(t) = L(ti) s operator monotone.

Proof. By the theorem above, the function f(1(0,t) is operator mono-
tone. But this is just the function f(t)/t in this case. ]

Corollary V.3.12 If f is operator monotone on I and f(0) = 0, then the
function g(t) = 5*7"—\f(t) is operator monotone for |A| < 1.

Proof. First assume that f € C2%(I). By Lemma V.3.5, the function
ga(t) = (t + X)f(t) is operator convex. By Corollary V.3.11, therefore,
g(t) is operator monotone.

If f is not in the class C?, consider its regularisations f;. These are in C2.
Apply the special case of the above paragraph to the functions f.(¢)— f:(0),
and then let € — 0. n

Corollary V.3.13 If f is operator monotone on I and f(0) = 0, then f
18 twice differentiable at 0.

Proof. By Corollary V.3.12, the function g(t) = (1 + 1)f(t) is operator
monotone, and by Theorem V.3.6, it is continuously differentiable. So the
function k defined as h(t) = 1 f(t), h(0) = f'(0) is continuously differen-
tiable. This implies that f is twice differentiable at 0. ]

Exercise V.3.14 Let f be a continuous operator monotone function on I.
Then the function F(t) = fot f(s)ds is operator convez.

Exercise V.3.15 Let f € C*(I). Then f is operator convez if and only if
for all Hermitian matrices A, B with eigenvalues in I we have

f(A) = f(B) = ' (B) o (A~ B),

where o denotes the Schur-product in a basis in which B is diagonal.
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V.4 Loewner’s Theorems

Consider all functions f on the interval I = (—1,1) that are operator
monotone and satisfy the conditions

flO)=0,  f(0)=1. (V.24)

Let K be the collection of all such functions. Clearly, K is a convex set. We
will show that this set is compact in the topology of pointwise convergence
and will find its extreme points. This will enable us to write an integral
representation for functions in K.

Lemma V.4.1 If f € K, then

ft) < l—i—t for 0<t<1,
f(t) > l_j-—t for—1<t<0,
IF70)] < 2

Proof. Let A= ({ J). By Theorem V.3.4, the matrix

(P fw
fm(A)—<f(t)/t { >

is positive. Hence,

2
0 < o), (v.25)

Let g+(t) = (¢t £ 1)f(¢). By Lemma V.3.5, both functions g4 are con-
vex. Hence their derivatives are monotonically increasing functions. Since
gy (t) = f(t) + (t £1)f'(t) and g4 (0) = +1, this implies that

fO+E-1Dft)>-1 for t>0 (V.26)
and

fO+@+1)f'#)<1 for t<0. (v.27)
From (V.25) and (V.26) we obtain

fO)+1> u—'gfﬁf for ¢t>0. (V.28)

Now suppose that for some 0 < t < 1 we have f(t) > ﬁ Then f(t)? >
15 f(2). So, from (V.28), we get f(t)+1 > i%l But this gives the inequality
f(t) < 1%, which contradicts our assumption. This shows that f(t) < 1%
for 0 <t < 1. The second inequality of the lemma is obtained by the same
argument using (V.27) instead of (V.26).
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We have seen in the proof of Corollary V.3.13 that

(1 +if(E) - £(0)

7/0) + 5£"(0) = :

Let ¢ | 0 and use the first inequality of the lemma to conclude that this
limit is smaller than 2. Let ¢ T 0, and use the second inequality to conclude
that it is bigger than 0. Together, these two imply that |f”(0)| < 2. n

Proposition V.4.2 The set K is compact in the topology of pointwise
convergence.

Proof. Let {f;} be any net in K. By the lemma above, the set {f;(¢)}
is bounded for each ¢. So, by Tychonoff’s Theorem, there exists a subnet
{fi} that converges pointwise to a bounded function f. The limit function
f is operator monotone, and f(0) = 0. If we show that f'(0) = 1, we would
have shown that f € K, and hence that K is compact.

By Corollary V.3.12, each of the functions (1 + 1)fi(¢) is monotone

1
n (—1,1). Since for all i, lim(l + —)fi(t) = fI(0) = 1, we see that

(1+;)fl(t)> 1ift >0andls< 11ft<0 Hence, if t > 0, we have
(14 $)f(t) > 1; and if ¢ < 0, we have the opposite inequality. Since f is
contmuously dlﬁ'erentla.ble, this shows that f/(0) = 1. ]

Proposition V.4.3 All extreme points of the set K have the form

ft) = l—zt—oﬁ’ where a= %f”(O).

Proof. Let fe€ K. Foreach A\,—1 <A <1, let

0r(1) = (14 D))~ )

By Corollary V.3.12, g, is operator monotone. Note that ¢g»(0) = 0, since
f(0) = 0 and f/(0) = 1. Also, g4(0) = 1+ 2Af”(0). So the function hy

defined as 1

1+ %«\f”(O)
is in K. Since |f”(0)] < 2, we see that [ZAf”(0)| < 1. We can write

ha(t) = [(1+ ?)f(t) - Al

1

1 144 1 1 44
f= 5(1 + 5)\f (0))hx + 5(1 - 5/\f (0))h_x.

So, if f is an extreme point of K, we must have f = hy. This says that

(14 AP O)F0) = (1 + )0 - A
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from which we can econclude that
t
f(t) =

—-
1 177(0)t -
Theorem V.4.4 For each f in K there exists a unique probability measure

u on [—1,1] such that

1

1) = [ 5. (v.29)

-1

Proof. For —1 < A < 1, consider the functions hy(t) = ﬁ By Propo-
sition V.4.3, the extreme points of K are included in the family {hy}.
Since K is compact and convex, it must be the closed convex hull of its
extreme points. (This is the Krein-Milman Theorem.) Finite convex com-
binations of elements of the family {h) : —1 < A < 1} can also be writ-
ten as [ hadv(X), where v is a probability measure on [—1,1] with finite
support. Since f is in the closure of these combinations, there exists a
net {v;} of finitely supported probability measures on [—1,1] such that
the net f;(t) = [ ha(t)dv;(X) converges to f(t). Since the space of the
probability measures is weak* compact, the net v; has an accumulation
point p. In other words, a subnet of [ hady;(A) converges to [ hadu(A). So
1) = [ Pa(Odu(}) = | hpdu().

Now suppose that there are two measures p; and pg for which the
representation (V.29) is valid. Expand the integrand as a power series

oo

o = Zt"“)\" convergent uniformly in |A] < 1 for every fixed t with

n=0
[t| < 1. This shows that
> ot / Ndpy (M) =) e / Atdpa(X)
n=0 e} n=0 e

for all |t| < 1. The identity theorem for power series now shows that

1 1
/ Adp(N) = / Adun(N), n=0,1,2,...
-1 —1

But this is possible if and only if u1 = po. [ ]

One consequence of the uniqueness of the measure u in the representation
(V.29) is that every function hy, is an extreme point of K (because it can
be represented as an integral like this with u concentrated at Ag).

The normalisations (V.24) were required to make the set K compact.
They can now be removed. We have the following result.
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Corollary V.4.5 Let f be a nonconstant operator monotone function on
(=1,1). Then there exists a unique probability measure p on [—1,1] such

that
1

10 =10+ 70 [

21

: _t (). (V.30)

Proof. Since f is monotone and is not a constant, f'(0) # 0. Now note
that the function I%@ isin K. m

It is clear from the representation (V.30) that every operator monotone
function on (—1, 1) is infinitely differentiable. Hence, by the results of earlier
sections, every operator convex function is also infinitely differentiable.

Theorem V.4.6 Let f be a nonlinear operator convez function on (—1,1).
Then there exists a unique probability measure p on [—1,1] such that

t2
1—-AXt

1
1O = 10+ £+ 3770) [ a0 (vay
21

Proof. Assume, without loss of generality, that f(0) = 0 and f'(0) = 0.
Let g(t) = f(t)/t. Then g is operator monotone by Corollary V.3.11, g(0) =
0, and ¢’'(0) = 5 f”(0). So g has a representation like (V.30), from which
the representation (V.31) for f follows. ]

We have noted that the integral representation (V.30) implies that every
operator monotone function on (—1,1) is infinitely differentiable. In fact,
we can conclude more. This representation shows that f has an analytic
continuation

z
1- Az

1
£(2) = £(0) + £(0) / du(») (V.32)

defined everywhere on the complex plane except on (—oo, —1JU[1, co). Note

that
z Im 2z

S P VR Ty P

So f defined above maps the upper half-plane H, = {z : Im z > 0} into
itself. It also maps the lower half-plane H_ into itself. Further, f(z) = f(Z).
In other words, the function f on H_ is an analytic continuation of f on
H, across the interval (—1, 1) obtained by reflection.

This is a very important observation, because there is a very rich theory
of analytic functions in a half-plane that we can exploit now. Before doing
S0, let us now do away with the special interval (—1,1). Note that a function
f is operator monotone on an interval (a,b) if and only if the function

I
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f(ﬂ’:zi)£ + %) is operator monotone on (—1,1). So, all results obtained
for operator monotone functions on (—1,1) can be extended to functions
on (a, b). We have proved the following.

Theorem V.4.7 If f is an operator monotone function on (a,b), then f
has an analytic continuation to the upper half-plane H, that maps H,
into itself. It also has an analytic continuation to the lower-half plane H_,
obtained by reflection across (a,b).

The converse of this is also true: if a real function f on (a,b) has an
analytic continuation to H, mapping H, into itself, then f is operator
monotone on (a,b). This is proved below.

Let P be the class of all complex analytic functions defined on H, with
their ranges in the closed upper half-plane {z : Im z > 0}. This is called
the class of Pick functions. Since every nonconstant analytic function is
an open map, if f is a nonconstant Pick function, then the range of f is
contained in H, . It is obvious that P is a convex cone, and the composition
of two nonconstant functions in P is again in P.

Exercise V.4.8 (i) For 0 <r <1, the function f(z) = 2" is in P.
(ii) The function f(z) = log zis in P.

(iii) The function f(z) = tan z is in P.

(iv) The function f(z) = —1 isin P.
(v) If f is in P, then so is the function lfl—

Given any open interval (a,b), let P(a,b) be the class of Pick functions
that admit an analytic continuation across (a,b) into the lower half-plane
and the continuation is by reflection. In particular, such functions take only
real values on (a,b), and if they are nonconstant, they assume real values
only on (a,b). The set P(a,b) is a convex cone.

Let f € P(a,b) and write f(z) = u(z) + iw(z), where as usual u(z) and
v(z) denote the real and imaginary parts of f. Since v(z) = 0 fora < z < b,
we have v(z+iy)—v(z) > 0 if y > 0. This implies that the partial derivative
vy(z) > 0 and hence, by the Cauchy-Riemann equations, uz(z) > 0. Thus,
on the interval (a,b), f(z) = u(z) is monotone. In fact, we will soon see
that f is operator monotone on (a,b). This is a consequence of a theorem
of Nevanlinna that gives an integral representation of Pick functions. We
will give a proof of this now using some elementary results from Fourier
analysis. The idea is to use the conformal equivalence between H, and the
unit disk D to transfer the problem to D, and then study the real part u
of f. This is a harmonic function on D, so we can use standard facts from
Fourier analysis.

Theorem V.4.9 Let u be a nonnegative harmonic function on the unit
disk D = {z : |2| < 1}. Then there ezists a finite measure m on [0, 27| such
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that
27

N 1—r2
u(re?) = / T (e (V.33)

0

Conversely, any function of this form is positive and harmonic on the unit
disk D.

Proof. Let u be any continuous real function defined on the closed unit
disk that is harmonic in D. Then, by a well-known and elementary theorem
in analysis,

27
‘ 1 1—r2 .
0 _ = it
u(re®) = 2m / 1472 —2r cos(f —t) u(e)at
1 27
- - _ it
= o / P.(6 — t)u(e*)dt, (V.34)

0

where P, (6) is the Poisson kernel (defined by the above equation) for 0 <
r <1, 0 <6 < 2w If u is nonnegative, put dm(t) = 5-u(e)dt. Then m
is a positive measure on [0, 27]. By the mean value property of harmonic
functions, the total mass of this measure is

27

% /u(eit)dt = u(0). (V.35)
0

So we do have a representation of the form (V.33) under the additional
hypothesis that u is continuous on the closed unit disk.

The general case is a consequence of this. Let u be positive and harmonic
in D. Then, for € > 0, the function u(z) = u(7%;) is positive and harmonic
in the disk |z| < 1+ £. Therefore, it can be represented in the form (V.33)
with a measure m.(t) of finite total mass u.(0) = u(0). As ¢ — 0, uc
converges to u uniformly on compact subsets of D. Since the measures
m, all have the same mass, using the weak™ compactness of the space of
probability measures, we conclude that there exists a positive measure m

such that .

27

u(re®) = lin(l) uc(ret?) = /
E—
0

1-1r2
1+72 —2r cos(f —t)

dm(t).

Conversely, since the Poisson kernel P, is nonnegative any function repre-
sented by (V.33) is nonnegative. |

Theorem V. 4.9 is often called the Herglotz Theorem. It says that every
nonnegative harmonic function on the unit disk is the Poisson integral of
a positive measure.
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Recall that two-harmonic functions w,v are called harmonic conju-
gates if the function f(z) = u(z) + iv(z) is analytic. Every harmonic
function u has a harmonic conjugate that is uniquely determined up to
an additive constant.

Theorem V.4.10 Let f(z) = u(z) + iv(z) be analytic on the unit disk D.
If u(z) > 0, then there exists a finite positive measure m on [0,27] such

that
27

flz) = / Z—Zf—z dm(t) + i(0). (V.36)
0

Conversely, every function of this form is analytic on D and has a positive
real part.

Proof. By Theorem V.4.9, the function u can be written as in (V.33).
The Poisson kernel P, 0 < r < 1, can be written as

1—r2 2 . 1+ re®
P.(6) = = Inlging — —
© 1+7r2—2r cos 6 2;01‘ ¢ Re 1—re?
Hence,
1+ ret®-% et + ret?
P.(8—t)=Re T reien = Re g
and
27 it +
et + z
u(z) = Re / S dm(o)
0

So, f(z) differs from this last integral only by an imaginary constant.
Putting z = 0, one sees that this constant is 7v(0).
The converse statement is easy to prove. ]

Next, note that the disk D and the half-plane H, are conformally equiv-
alent,, i.e., there exists an analytic isomorphism between these two spaces.
For z € D, let

1z2+1
¢(2) = ST (V.37)
Then ¢ € H. The inverse of this map is given by
_o—t
z(¢) = Tk (V.38)

Using these transformations, we can establish an equivalence between the
class P and the class of analytic functions on D with positive real part. If
f is a function in the latter class, let

e(¢) = if(2(¢))- (V.39)
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Then ¢ € P. The inverse of this transformation is

f(2) = —ip({(2))- (V.40)

Using these ideas we can prove the following theorem, called Nevan-
linna’s Theorem.

Theorem V.4.11 A function ¢ is in the Pick class if and only if it has a
representation

O =a+oc+ [ 5

— 00
where a is a real number, § > 0, and v is a positive finite measure on the
real line.

dv()), (V.41)

Proof. Let f be the function on D associated with ¢ via the transforma-
tion (V.40). By Theorem V.4.10, there exists a finite positive measure m
on [0, 27] such that

27
et + 2 )
f(z) = / . de(t) — ia.
0

If f(2) = u(z) + iv(z), then @ = —v(0), and the total mass of m is u(0). If
the measure m has a positive mass at the singleton {0}, let this mass be
B. Then the expression above reduces to

et + 2
= [ G

(0,2m)

1+ .
dm(t) + B T———z_ — Q.

Using the transformations (V.38) and (V.39), we get from this

it %:Tz
Q) =a+ B¢+ ————dm(t).
./ et — g?

(0,27)
The last term above is equal to
“ (cost—sini
/ ————z——zdm(t).
2

¢ sin % + cos
(0,27)

Now, introduce a change of variables A = —cot % This maps (0,27) onto
(—00,0). The measure m is transformed by the above map to a finite
measure v on (—oo,00) and the above integral is transformed to

T 14X
/ ¢ dv(A).

—00
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This shows that ¢ can be represented in the form (V.41).
It is easy to see that every function of this form is a Pick function. |

There is another form in which it is convenient to represent Pick func-
tions. Note that
1+X 1 A
A—¢( _()\—(_)\2+1
So, if we write du(X) = (A% + 1)dv()), then we obtain from (V.41) the
representation

YA +1).

Q) =a+pB(+ /°° [/\—i—c - ﬁ%} du(X), (V.42)

where y is a positive Borel measure on R, for which [ z5du(]) is finite.
(A Borel measure on R is a measure defined on Borel sets that puts finite
mass on bounded sets.)
Now we turn to the question of uniqueness of the above representations.
It is easy to see from (V.41) that

o = Re (7). (V.43)

Therefore, « is uniquely determined by . Now let n be any positive real
number. From (V.41) we see that

p(in) a / L+ A2 +iA(n—n71)
RAASLL AV I TS dv(A).
in in A2 4 2 v()

As 1 — oo, the integrand converges to 0 for each A. The real and imaginary
parts of the integrand are uniformly bounded by 1 when n > 1. So by the
Lebesgue Dominated Convergence Theorem, the integral converges to 0 as
n — oo. Thus,

f = lim o(n)/in, (V.44)

and thus f is uniquely determined by .

Now we will prove that the measure du in (V.42), is uniquely determined
by ¢. Denote by u the unique right continuous monotonically increasing
function on R satisfying ©(0) = 0 and p((a,b]) = u(b) — p(a) for every
interval (a,b]. (This is called the distribution function associated with
du.) We will prove the following result, called the Stieltjes inversion
formula, from which it follows that p is unique.

Theorem V.4.12 If the Pick function ¢ is represented by (V.42), then
for any a,b that are points of continuity of the distribution function p we

have
b

u(d) — pla) = 7%1_% % / Im p(z + in)dz. (V.45)

a
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Proof. From (V.42) we see that

b

b ()
1 . 1 n
2|1 de = = N S
W/ m p(z + in)dz W/ ﬂn+/ ()‘_w)z_*_nzdﬂ(/\) dz

a

- 2 ﬁn(b—a)+/ / o)

—00 a

the interchange of integrals being permissible by Fubini’s Theorem. As
n — 0, the first term in the square brackets above goes to 0. The inner
integral can be calculated by the change of variables u = 3;—’\ This gives

b

/ ndzx _ L7
(=N 4n2 u?+1
a a—X\
(b - A) (a - A)
= arctan | —— ) —arctan | —— |.
n n
So to prove (V.45), we have to show that
17 b— A )
w(d) — p(a) = lim — / [arctan (——) — arctan (a )] du().
77—+0 i ?7
We will use the following properties of the function arctan. This is a mono-
tonically increasing odd function on (—oo,00) whose range is (=3, 7).

So,
0 < arctan (E:—)\) — arctan (a — )\) <.
n n

If (b— ) and (a — A) have the same sign, then by the addition law for
arctan we have,

b—A a—A (b —a)
arctan 7 — arctan —n— = arctan

72+ (b—A)(a—A)

If z is positive, then

x d z
1
arctanz=/ S/dt::r.
1+¢2
0 0

Now, let € be any given positive number. Since a and b are points of con-
tinuity of u, we can choose § such that

w(a+8) — p(a - 6)
(b +6) — p(b - 6)

€/5,

<
< g/5.
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We then have,

| (b) — ple) — + /oo[arctan (?) _ arctan (“ = A)]dﬂ(x) ;

— 00

< %b]o[arctan (b 7—7 A) — arctan (a ; A)]dﬂ(/\)

+% /b[7r — arctan (b :} }\) + arctan (a;n/\)]d#(x)
+% /“ larctan (b ; A) — arctan (a—;—)‘>]d#(/\)
5t Z artan 5 ) 40

b+
17 b— A A
+-= / [ — arctan ( — ) + arctan <a — )]du()\)
T Is n n

IN

a—56
1 b—
+—7; _/ arctan (772 ™ (7177(_ )\)621 — /\)> du(A).

Note that in the two integrals with infinite limits, the arguments of arctan
are positive. In the middle integral the variable A runs between a + § and
b— 6. For such A, - > % and “;n’\ < —%. So the right-hand side of the
above inequality is dominated by

2e n 7 b—a
5 v ox / P PR VLG
+6
a—§ b
n —a
T / = S\ PR VR o)
b—6
+ ! /[ — 2 arctan é]d (A
- ™ ; 1(A).
a+6

The first two integrals are finite (because of the properties of du). The third
one is dominated by 2(% — arctan %)[,u(b) — u(a)]. So we can choose 7 small
enough to make each of the last three terms smaller than €/5. This proves
the theorem. u
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We have shown above that all the terms occurring in the representation
(V.42) are uniquely determined by the relations (V.43), (V.44), and (V.45).

Exercise V.4.13 We have proved the relations (V.33), (V.36), (V.41) and
(V.42) in that order. Show that all these are, in fact, equivalent. Hence,
each of these representations is unique.

Proposition V.4.14 A Pick function ¢ is in the class P(a,b) if and only
if the measure p associated with it in the representation (V.42) has zero
mass on (a,b).

Proof. Let p(z + in) = u(z + in) + iv(z + in), where u,v are the real
and imaginary parts of ¢. If ¢ can be continued across (a,b), then as 5 | 0,
on any closed subinterval [c,d] of (a,b),v(z + in) converges uniformly to a
bounded continuous function v(z) on [c, d]. Hence,

d

ma—ma=%/wmw,

c

i.e., du(z) = Lv(z)dz. If the analytic continuation to the lower half-plane
is by reflection across (a,b), then v is identically zero on [¢, d] and hence so
is w.

Conversely, if ¢ has no mass on (a,b), then for ¢ in (a,b) the integral
in (V.42) is convergent, and is real valued. This shows that the function ¢
can be continued from H, to H_ across (a,b) by reflection. ]

The reader should note that the above proposition shows that the con-
verse of Theorem V.4.7 is also true.

It should be pointed out that the formula (V.42) defines two analytic
functions, one on H, and the other on H_. If these are denoted by ¢ and
¥, then ¢(¢) = ¥(¢). So ¢ and 1) are reflections of each other. But they
need not be analytic continuations of each other. For this to be the case,
the measure u should be zero on an interval (a, b) across which the function
can be continued analytically.

Exercise V.4.15 If a function f is operator monotone on the whole real
line, then f must be of the form f(t) =a+ ft, a €R, §>0.

Let us now look at a few simple examples.

Example V.4.16 The function ¢(¢) = _? is a Pick function. For this

function, we see from (V.43) and (V.44) that o = B = 0. Since ¢ is
analytic everywhere in the plane except at 0, Proposition V.4/.1J tells us
that the measure u is concentrated at the single point 0.
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Example V.4.17 Let p(¢) = (1/? be the principal branch of the square
root function. This is a Pick function. From (V.43) we see that

a=Re p(i) = Ree'™/* = %

From (V.44) we see that B = 0. If ( = A\ +in is any complex number, then

1/2 _ 1/2
Cl/zz(l_C_!;r_A> +isgnn<IC|2 A) ,

where sgn 7 is the sign of 1, defined to be 1 if n > 0 and —1 if n < 0.
o\ 172
So if 1 > 0, we have Im ¢(¢) = (ﬁz—é) . Asn 10, |[¢] comes closer to

[Al. So, Im (X + in) converges to 0 if XA > 0 and to |A|}/2 if A < 0. Since
@ is positive on the right half-axis, the measure u has no mass at 0. The
measure can now be determined from (V.45). We have, then

0
vz 1 1A A2
¢ _\/§+/(A—< /\2+1> ——adx. (V.46)

Example V.4.18 Let ¢({) = Log (, where Log is the principal branch
of the logarithm, defined everywhere ezcept on (—o00,0] by the formula
Log ¢ = In|¢| + i Arg . The function Arg C is the principal branch of
the argument, taking values in (—m, 7). We then have

a = Re(Logi)=0
g = lim 8l _ g
n—oo 147

Asn | 0,Im (Log(\ + in7)) converges to m if A < 0 and to 0 if A > 0.
So from (V.45) we see that, the measure u is just the restriction of the
Lebesgue measure to (—o0,0]. Thus,

0
1 A

Exercise V.4.19 For 0 <r < 1, let (" denote the principal branch of the
function ¢(¢) = ¢". Show that

0
. rw sin W 1 A -
(" = cos ——2—+ - /(A—C_A2+1)IAI dA. (V.48)

—00

This includes (V.46) as a special case.
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Let now f be any operator monotone function on (0,00). We have seen
above that f must have the form

0

1 A
t) = t _— .
f(t)=a+pt+ / (A_t A2“)(1,1@)
—00
By a change of variables we can write this as
f(t)—a+ﬂt+j° 2 D Y (V.49)
B N1 a+t) Y ’
0
where o € R, 8 > 0 and u is a positive measure on (0, 00) such that
/ VR 1d,u()\) < oo0. (V.50)
0
Suppose f is such that
f(0) :== }in(l) f(t) > —oo. (V.51)

Then, it follows from (V.49) that u must also satisfy the condition

/

du(A) < oco. (V.52)

>

We have from (V.49)

f(t) - £(0)

ﬁHO]o(,l\ )\—li—t) (X

© t
ﬂt+/0 oo -

Hence, we can write f in the form

FlE) = v+ Bt + /0 oo —’\t—d ), (V.53)

A+t
where v = f(0) and dw()\) = 3zdu()). From (V.50) and (V.52), we see
that the measure w satisfies the conditions

T
/ FER 1dw(x\) < oo and / Adw(A) < oo. (V.54)
0
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These two conditions can, equivalently, be expressed as a single condition

/ - i T dw() < (V.55)
0

We have thus shown that an operator monotone function on (0, c0) sat-
isfying the condition (V.51) has a canonical representation (V.53), where
v €R,8 >0 and w is a positive measure satisfying (V.55).

The representation (V.53) is often useful for studying operator monotone
functions on the positive half-line [0, co).

Suppose that we are given a function f as in (V.53). If u satisfies the
conditions (V.54) then

7(,\2 1 _) Mdw(d) > ~oo,

and we can write

£(t) = {7—7 (X’f% - %) /\zdw(/\)}+ﬂt+7 (/\—2%—1 - X%) A2duw()).
0 4]

So, if we put the number in braces above equal to a and du()) = A2dw()),
then we have a representation of f in the form (V.49).

Exercise V.4.20 Use the considerations in the preceding paragraphs to
show that, for 0 <r <1 andt > 0, we have

¢ sm s / _}:/\_ AT24 (V.56)
0

(See Ezercise V.1.10 also.)

Exercise V.4.21 Fort > 0, show that

log(1+41t) = / X%t’i A72dA. (V.57)
1

Appendix 1. Differentiability of Convex Functions

Let f be a real valued convex function defined on an interval I. Then f
has some smoothness properties, which are listed below.

The function f is Lipschitz on any closed interval [a,b] contained in I°,
the interior of I. So f is continuous on I°.
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At every point z in I°, the right and left derivatives of f exist. These
are defined, respectively, as

filz) = lim ____f(y; - i(x)7
' T f(y) - f(I)
fo(@) = B%Irl y—z

Both these functions are monotonically increasing on I°. Further,

lm fi(e) = fiw)
lm fi(@) = f.(w).

The function f is differentiable except on a countable set E in I°, i.e., at
every point z in J\E the left and right derivatives of f are equal. Further,
the derivative f’ is continuous on I°\E.

If a sequence of convex functions converges at every point of I, then the
limit function is convex. The convergence is uniform on any closed interval
[a,b] contained in I°.

Appendix 2. Regularisation of Functions

The convolution of two functions leads to a new function that inherits
the stronger of the smoothness properties of the two original functions.
This is the idea behind “regularisation” of functions.

Let ¢ be a real function of class C* with the following properties: ¢ >
0, is even, the support supp ¢ = [—1,1], and [ ¢ = 1. For each ¢ >
0, let pe(z) = %(p(f) Then supp ¢, = [—¢,€] and ¢, has all the other
properties of ¢ listed above. The functions ¢, are called mollifiers or
smooth approximate identities.

If f is a locally integrable function, we define its regularisation of
order ¢ as the function

f@) = (Frele) = [ fa-vewiy
_ / (@ — et)p(t)dt.
The family f. has the following properties.

1. Each f, is a C* function.

2. If the support of f is contained in a compact set K, then the support
of f. is contained in an e-neighbourhood of K.
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3. If f is continuous at zg, then liE)l fe(zo) = f(zo)-

4. If f has a discontinuity of the first kind at zg, then 1i§)1 fe(zo) =

1/2 [f(zo+) + f(=o—)]. (A point z is a point of discontinuity of the
first kind if the left and right limits of f at z exist; these limits are
denoted as f(xo—) and f(zg+), respectively.)

5. If f is continuous, then f.(z) converges to f(z) as € — 0. The con-
vergence is uniform on every compact set.

6. If f is differentiable, then, for every € > 0, (fc)' = (f')e.

7. If f is monotone, then, as € — 0, f/(z) converges to f'(z) at all
points z where f’(z) exists. (Recall that a monotone function can
have discontinuities of the first kind only and is differentiable almost
everywhere.)

V.5 Problems

Problem V.5.1. Show that the function f(t) = exp t is neither operator
monotone nor operator convex on any interval.

Problem V.5.2. Let f(t) = Ct - d, where a,b,¢,d are real numbers such
that ad — bc > 0. Show that f is operator monotone on every interval that
does not contain the point =2

Problem V.5.3. Show that the derivative of an operator convex function
need not be operator monotone.

Problem V.5.4. Show that for r < —1, the function f(¢) = t" on (0, c0)
is not operator convex. (Hint: The function fI!l(1,t) cannot be continued
analytically to a Pick function.) Together with the assertion in Exercise
V.2.11, this shows that on the half-line (0, c0) the function f(t) = ¢ is
operator convex if —1 < r < Qorif 1 < r < 2; and it is not operator
convex for any other real r.

Problem V.5.5. A function g on [0,00) is operator convex if and only if
it is of the form

T
g(t) = a+ Bt +t° + /A——
0

where «, 8 are real numbers, v > 0, and 4 is a positive finite measure.
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Problem V.5.6. Let f be an operator monotone function on (0, c0). Then
(=1)»"1f™(t) > 0 for n = 1,2,.... [A function g on (0,c0) is said to
be completely monotone if for all = > 0, (—1)?¢(™(t) > 0. There
is a theorem of S.N. Bernstein that says that a function g is completely
monotone if and only if there exists a positive measure u such that g(¢) =

J e*du()).] The result of this problem says that the derivative of an

0

operator monotone function on (0,00) is completely monotone. Thus, f
oo

has a Taylor expansion f(t) = Zan(t — 1)", in which the coefficients a,,

n=0
are positive for all odd n and negative for all even n.

Problem V.5.7. Let f be a function mapping (0, c0) into itself. Let g(t) =
[f(t™1)]~!. Show that if f is operator monotone, then g is also operator
monotone. If f is operator convex and f(0) = 0, then g is operator convex.

Problem V.5.8. Show that the function f(¢) = —cot ( is a Pick function.
Show that in its canonical representation (V.42), @ = 8 = 0 and the
measure p is atomic with mass 1 at the points nw for every integer n.
Thus, we have the familiar series expansion

oo

1 nw
—cot ¢ = - )
cot ¢ Z [mr —-¢ n?r?+41

n=—oo

Problem V.5.9. The aim of this problem is to show that if a Pick function
o satisfies the growth restriction
sup [ (in)| < oo, (V.58)

n—oc

then its representation (V.42) takes the simple form

b 1

o0 = [ e, (V.59)
—00

where p is a finite measure.

To see this, start with the representation (V.41). The condition (V.58)
implies the existence of a constant M that bounds, for all n > 0, the
quantity ny(in), and hence also its real and imaginary parts. This gives
two inequalities:

[ 01—
ICWH'/ m—dV()\)lﬁM,

—00

T 1422
o 477 [ ) <

—0o0
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From the first, conclude that

o [ P i

—00 —00

From the second, conclude that 8 = 0 and

i 2
/ o (1L X)) < M.

Taking limits as 7 — oo, this gives
/(1 + X)dv(N) = / du() < M.
—oo

Thus, u is a finite measure. From (V.41), we get

o(C) = / A dv(\) + / 1;_24(11/(,\).

This is the same as (V.59).
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Conversely, observe that if ¢ has a representation like (V.59), then it

must satisfy the condition (V.58).

Problem V.5.10. Let f be a function on (0, co) such that

fO=a+pt- [ Fdutv,
0

where & € R, # > 0 and p is a positive measure such that [ %d,u()\) < 00.
Then f is operator monotone. Find operator monotone functions that can

not be expressed in this form.

V.6 Notes and References

Operator monotone functions were first studied in detail by K.Lowner
(C. Loewner) in a seminal paper Uber monotone Matrizfunktionen, Math.
Z., 38 (1934) 177-216. In this paper, he established the connection between
operator monotonicity, the positivity of the matrix of divided differences
(Theorem V.3.4), and Pick functions. He also noted that the functions
f(t) =t", 0 <r < 1,and f(t) = log t are operator monotone on (0,00).
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Operator convex functions were studied, soon afterwards, by F. Kraus, Uber
konveze Matrizfunktionen, Math. Z., 41(1936) 18-42.

In another well-known paper, Beitrdge zur Stérungstheorie der Spectralz-
erlegung, Math. Ann., 123 (1951) 415-438, E. Heinz used the theory of
operator monotone functions to study several problems of perturbation
theory for bounded and unbounded operators. The integral representation
(V.41) in this context seems to have been first used by him. The operator
monotonicity of the map A — A" for 0 < r < 1 is sometimes called the
“Loewner-Heinz inequality”, although it was discovered by Loewner.

J. Bendat and S. Sherman, Monotone and convez operator functions,
Trans. Amer. Math. Soc., 79(1955) 58-71, provided a new perspective on
the theorems of Loewner and Kraus. Theorem V.4.4 was first proved by
them, and used to give a proof of Loewner’s theorems.

A completely different and extremely elegant proof of Loewner’s Theo-
rem, based on the spectral theorem for (unbounded) selfadjoint operators
was given by A. Kordnyi, On a theorem of Lowner and its connections with
resolvents of selfadjoint transformations, Acta Sci. Math. Szeged, 17 (1956)
63-70.

Formulas like (V.13) and (V.22) were proved by Ju. L. Daleckii and S.G.
Krein, Formulas of differentiation according to a parameter of functions
of Hermitian operators, Dokl. Akad. Nauk SSSR, 76 (1951) 13-16. It was
pointed out by M.G. Krein that the resulting Taylor formula could be used
to derive conditions for operator monotonicity.

A concise presentation of the main ideas of operator monotonicity and
convexity, including the approach of Daleckii and Krein, was given by
C. Davis, Notions generalizing convezity for functions defined on spaces
of matrices, in Convezity: Proceedings of Symposia in Pure Mathematics,
American Mathematical Society, 1963, pp. 187-201. This paper also dis-
cussed other notions of convexity, examples and counterexamples, and was
very influential.

A full book devoted to this topic is Monotone Matriz Functions and
Analytic Continuation, by W.F. Donoghue, Springer-Verlag, 1974. Several
ramifications of the theory and its connections with classical real and com-
plex analysis are discussed here.

In a set of mimeographed lecture notes, Topics on Operator Inequalities,
Hokkaido University, Sapporo, 1978, T. Ando provided a very concise mod-
ern survey of operator monotone and operator convex functions. Anyone
who wishes to learn the Kordnyi method mentioned above should certainly
read these notes.

A short proof of Lowner’s Theorem appeared in G. Sparr, A new proof of
Léwner’s theorem on monotone matriz functions, Math. Scand., 47 (1980)
266-274.

In another brief and attractive paper, Jensen’s inequality for operators
and Lowner’s theorem, Math. Ann., 258 (1982) 229-241, F. Hansen and
G.K. Pedersen provided another approach.
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Much of Sections 2, 3, and 4 are based on this paper of Hansen and
Pedersen. For the latter parts of Section 4 we have followed Donoghue. We
have also borrowed freely from Ando and from Davis. Our proof of The-
orem V.1.9 is taken from M. Fujii and T. Furuta, Léwner-Heinz, Cordes
and Heinz-Kato inequalities, Math. Japonica, 38 (1993) 73-78. Characteri-
sations of operator convexity like the one in Exercise V.3.15 may be found
in J.S. Aujla and H.L. Vasudeva, Conver and monotone operator functions,
Ann. Polonici Math., 62 (1995) 1-11.

Operator monotone and operator convex functions are studied in R.A.
Horn and C.R. Johnson, Topics in Matriz Analysis, Chapter 6. See also the
interesting paper R.A. Horn, The Hadamard product, in C.R. Johnson, ed.
Matriz Theory and Applications, American Mathematical Society, 1990.

A short, but interesting, section of the Marshall-Olkin book (cited in
Chapter 2) is devoted to this topic. Especially interesting are some of the
examples and connections with statistics that they give.

Among several applications of these ideas, there are two that we should
mention here. Operator monotone functions arise often in the study of
electrical networks. See, e.g., W.N. Anderson and G.E. Trapp, A class of
monotone operator functions related to electrical network theory, Linear
Algebra Appl., 15(1975) 53-67. They also occur in problems related to
elementary particles. See, e.g., E. Wigner and J. von Neumann, Significance
of Lowner’s theorem in the quantum theory of collisions, Ann. of Math., 59
(1954) 418-433.

There are important notions of means of operators that are useful in
the analysis of electrical networks and in quantum physics. An axiomatic
approach to the study of these means was introduced by F. Kubo and
T. Ando, Means of positive linear operators, Math. Ann., 249 (1980) 205-
224. They establish a one-to-one correspondence between the class of oper-
ator monotone functions f on [0, 00) with f(1) = 1 and the class of operator
means.
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Spectral Variation of Normal
Matrices

Let A be an n x n Hermitian matrix, and let A} (A4) > A3(A4) > --- > AL(A)
be the eigenvalues of A arranged in decreasing order. In Chapter III we
saw that AJL-(A), 1 < 7 < n, are continuous functions on the space of Her-
mitian matrices. This is a very special consequence of Weyl’s Perturbation
Theorem: if A, B are two Hermitian matrices, then

max|X}(4) = X(B)| < |4 - B

In turn, this inequality is a special case of the inequality (IV.62), which
says that if Eig!(A) denotes the diagonal matrix with entries /\]l-(A) down
its diagonal, then we have

IEig* (A) - Eig"(B)Il < [IA - Bl

for all Hermitian matrices A, B and for all unitarily invariant norms.

In this chapter we explore how far these results can be carried over to
normal matrices. The first difficulty we face is that, if the matrices are
not Hermitian, there is no natural way to order their eigenvalues. So, the
problem has to be formulated in terms of optimal matchings. Even after
this has been done, analogues of the inequalities above turn out to be
a little more complicated. Though several good results are known, many
await discovery.
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VI.1 Continuity of Roots of Polynomials

Every polynomial of degree n with complex coefficients has 7 complex roots.
These are unique, except for an ordering. It is thus natural to think of them
as an unordered n-tuple of complex numbers. The space of such n-tuples is
denoted by C%, ... This is the quotient space obtained from the space C™
via the equivalence relation that identifies two n-tuples if their coordinates
are permutations of each other. The space Cf,,, thus inherits a natural
quotient topology from C™. It also has a natural metric: if A = {Ay,..., A}
and = {p1,.--,Un} are two points in C? _,, then

sym?

d(A,u) = min lléljaén A5 = Ho(p)l,

where the minimum is taken over all permutations. See Problem I1.5.9.
This metric is called the optimal matching distance between A and pu.

T

Exercise VI.1.1 Show that the quotient topology on C, ., and the metric
topology generated by the optimal matching distance are identical.

Recall that, if

f(z)=2" —a1z" ' taz" 4 4 (=1)"ay, (VL1)

is a monic polynomial with roots ai,...,an, then the coefficients a; are
elementary symmetric polynomials in the variables o, ..., aq, i.e.,

a; = Z 05, gy - Q- (V1.2)

1<iy<--<i;<n

By the Fundamental Theorem of Algebra, we have a bijection S : C3,,, —
C™ defined as
S({a1,--.,an}) = (a1,-..,an.). (VL3)

Clearly S is continuous, by the definition of the quotient topology. We will
show that S~! is also continuous. For this we have to show that for every
€ > 0, there exists § > 0 such that if |a; —b;| < 6 for all j, then the optimal
matching distance between the roots of the monic polynomials that have a;
and b; as their coefficients is smaller than €. Let &, ..., & be the distinct
roots of the monic polynomial f that has coefficients a,. Given € > 0, we
can choose circles I';,1 < j < k, centred at §;, each having radius smaller
than € and such that none of them intersects any other. Let I" be the union
of the boundaries of all these circles. Let n = ;Ielg |f(2)]- Then n > 0. Since

' is a compact set, there exists a positive number é such that if g is any
monic polynomial with coefficients b;, and |a; — b;| < & for all 7, then
|f(2) — g(2)| < n for all z € T. So, by Rouché’s Theorem f and g have
the same number of zeroes inside each I'j, where the zeroes are counted
with multiplicities. Thus we can pair each root of f with a root of g in
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such a way that the distance between any two pairs is smaller than e. In
other words, the optimal matching distance between the roots of f and g
is smaller than . We have thus proved the following.

Theorem VI.1.2 The map S is a homeomorphism between C*,_ and C™.

sym

The continuity of S~ means that the roots of a polynomial vary contin-
uously with the coefficients. Since the coefficients of its characteristic poly-
nomial change continuously with a matrix, it follows that the eigenvalues
of a matrix also vary continuously. More precisely, the map M(n) — Cg,
that takes a matrix to the unordered tuple of its eigenvalues is continu-
ous.

A different kind of continuity question is the following. If 2 — A(z) is a
continuous map from a domain G in the complex plane into M(n), then
do there exist n continuous functions A;(2),..., An(2) on G such that for
each z they are the eigenvalues of the matrix A(z)? The example below
shows that this is not always the case.

0 =2
10
+ 2'/2. These cannot be represented by two single valued continuous func-
tions on any domain G that contains zero.

Example VI.1.3 Let A(z) = ( ) The eigenvalues of A(z) are

In two special situations, the answer to the question raised above is in
the affirmative. If either the eigenvalues of A(z) are all real, or if G is an
interval on the real line, a continuous parametrisation of the eigenvalues of
A(z) is possible. This is shown below.

Consider the map from RY, ,, to R™ that rearranges an unordered n-tuple
{M\1,...,An} in decreasing order as (A},...,AL). From the majorisation
relation (I1.35) it follows that this map reduces distances, i.e.,

Lot
pax [A; = pil < d(X p).

Hence, in particular, this is a continuous map. So, if all the eigenvalues of
A(z) are real, enumerating them as Al(z) > --- > AL(z) gives a continuous
parametrisation for them. We should remark that while this is the most
natural way of ordering real n-tuples, it is not always the most convenient.
It could destroy the differentiability of these functions, which some other
ordering might confer on them. For example, on any interval containing
0 the two functions +t are differentiable. But rearrangement in the way
above leads to the functions +|¢|, which are not differentiable at 0.
For maps from an interval we have the following.

Theorem VI1.1.4 Let A be a continuous map from an interval I into the
space C7,,,,. Then there ezist n continuous complex functions A;(t) on I
such that A(t) = {A1(t),..., An(t)} for eacht € 1.
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Proof. For brevity we will call n functions whose existence is asserted by
the theorem a continuous selection for A. Suppose a continuous selection
/\gl)(t) exists on a subinterval I; and another continuous selection )\gz)(t)
exists on a subinterval I. If I; and I; have a common point tg, then
{/\gl)(to)} and {A§2)(t0)} are identical up to a permutation. So a continuous
selection exists on I; U I5.

It follows that, if J is a subinterval of I such that each point of J has
a neighbourhood on which a continuous selection exists, then a continuous
selection exists on the entire interval J.

Now we can prove the theorem by induction on n. The statement is
obviously true for n = 1. Suppose it is true for dimensions smaller than
n. Let K be the set of all t € I for which all the n elements of A(t) are
equal. Then K is a closed subset of I. Let L = I\K. Let tg € L. Then
A(to) has at least two distinct elements. Collect all the copies of one of
these elements. If these are k in number (i.e., k is the multiplicity of the
chosen element), then the n elements of A(tp) are now divided into two
groups with k£ and n — k elements, respectively. These two groups have no
element in common. Since A(t) is continuous, for ¢ sufficiently close to tg
the elements of A(t) also split into two groups of k and n — k elements,
each of which is continuous in ¢. By the induction hypothesis, each of these
groups has a continuous selection in a neighbourhood of ;. Taken together,
they provide a continuous selection for A in this neighbourhood.

So, a continuous selection exists on each component of L. On its comple-
ment K, A(t) consists of just one element A(¢) repeated n times. Putting
these together we obtain a continuous selection for A(t) on all of I. n

Corollary VI.1.5 Let a;(t),1 < j < n, be continuous complez valued
functions defined on an interval I. Then there exist continuous functions
ai(t),...,an(t) that, for each t € I, constitute the Toots of the monic poly-
nomial 2® — a1 ()21 + -+ + (=1)"a,(1).

Corollary VI.1.6 Lett — A(t) be a continuous map from an interval I
into the space of n x n matrices. Then there ezist continuous functions
A(8), ..., An(t) that, for each t € I, are the eigenvalues of A(t).

VI.2 Hermitian and Skew-Hermitian Matrices

In this section we derive some bounds for the distance between the eigen-
values of a Hermitian matrix A and those of a skew-Hermitian matrix B.
This will reveal several new facets of the general problem that are quite
different from the case when both A, B are Hermitian.

Let us recall here, once again, the theorem that is the prototype of the
results we seek.
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Theorem VI1.2.1 (Weyl’s Perturbation Theorem) Let A, B be Hermitian
matrices with eigenvalues A{(A) > .- > AL (A) and )\{(B) > ... > \L(B),
respectively. Then

max|X; (4) = X5(B)| < |4 - BJ. (V14)

We have seen two different proofs of this, one in Section II1.2 and the
other in Section IV.3. It is the latter idea which, in modified forms, will be
used often in the following paragraphs.

Theorem VI1.2.2 Let A be a Hermitian and B a skew-Hermitian matriz.

Let their eigenvalues ay,...,an and fy,...,Bn be arranged in such a way
that
1] = - > ol and |81 > - > [al. (VL5)
Then
maxia; ~ osiil < |4~ B. (VL6)

Proof. For a fixed index j, consider the eigenspaces of A and B corre-
sponding to their eigenvalues {on,...,a;} and {B1,...,Bn-j+1}, respec-
tively. Let z be a unit vector in their intersection. Then

lA-BI* = J(1A-BI?+]4+B|?)

1

UG B)z|?*+I(A+ B)z|?)

I Az|? + || Bz||?

laj|® + 1Bn—js1l® = laj = Bn—jir|*-

At the first step above, we used the equality ||T'|| = ||T*| valid for all T'; at
the third step we used the parallelogram law, and at the last step the fact
that o  is real and f,_;41 is imaginary. |

I

v

For Hermitian pairs A, B we have seen analogues of the inequality (VI1.4)
for other unitarily invariant norms. It is, therefore, natural to ask for similar
kinds of results when A is Hermitian and B skew-Hermitian.

It is convenient to do this in the following setup. Let T" be any matrix
and let 7= A+1B be its Cartesian decomposition into real and imaginary
parts, A = I—Z—T—' and B = T;iT‘. The theorem below gives majorisation
relations between the eigenvalues of A and B, and the singular values of
T. From these several inequalities can be obtained.

We will use the notation {z;}; to mean an n-vector whose jth coordinate

1S zj.

Theorem VI1.2.3 Let A, B be Hermitian matrices with eigenvalues a; and
B;, respectively, ordered so that

lar| > --- > |an] and |G| > - > |Bal
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LetT = A+1iB, and let s; be the singular values of T. Then the following
majorisation relations are satisfied:

{lay +iBajs1}; < {52}, (VL7)
{1/2 (3 + 525,10} =< {lag +iB51%}5. (VL8)

Proof. For any two Hermitian matrices X,Y we have the majorisations
(11.13):
MEX) £ AT(Y) < MX +Y) < AHX) +A4Y).

Choosing X = A%, Y = B2, this gives
{laj +iBn—j1l*}; < {s;(A% + B*)}; < {la; +i6;1°};- (VL9)

Now note that
A2+ B*=1/2 (T*T +TT")

and
Sj(T*T) = Sj(TT*) = S?.

So, choosing X = ¥ and Y = ZZT— in the first majorisation above gives
1/2 {8} + sn_jp1}s < {s5(A% + B)}; < {s3};. (VL.10)

Since majorisation is a transitive relation, the two assertions (VI.7) and
(VL.8) follow from (VI.9) and (VI.10).

For each p > 2, the function ¢(t) = tP/? is convex on [0,00). So, by
Corollary 11.3.4, we obtain from (VI.7) and (VI.8) the weak majorisations

{log +iBn—j+1lP}; <w {57} (VL11)
1 .
BYYE] {(33 + 512-z—j+1)p/2 }i =w {lag + 165175 (VL12)
These two relations include the inequalities
D loj+ibanP <D sF, (VL13)
j=1 j=1
1 < n .
op/2 Z(Sf + Si~j+1)p/2 < Zlaj +i6;1P (VL.14)
Jj=1 j=1

for p > 2.

If a; and a, are any two nonnegative real numbers, then the function
g(t) = (at + a4)'/* is monotonically decreasing on 0 < t < co. So if p > 2,
then

af +ab < (a2 + ad)P/2. (VIL.15)
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Using this we get from (VI.14) the inequality
n n
2172 N <N oy + i1 (VL16)
j=1 =1

for p > 2.

Exercise VI.2.4 For 0 < p < 2, the function ¢(t) = tP/? is concave on
[0,00). Use this to show that for these values of p, the weak majorisations
(VI.11) and (VI.12) are valid with <,, replaced by <™. All the four in-
equalities (VI.18)-(VI.16) now go in the opposite direction.

Let A be any matrix with eigenvalues aj, ..., a,, counted in any order.
We have used the notation Eig A to mean a diagonal matrix that has entries
a; down its diagonal. If o is a permutation, we will use the notation Eig,(A)
for the diagonal matrix with entries g1y, - - - , @5 (n) down its diagonal. The
symbol Eiglt!(A) will mean the diagonal matrix whose diagonal entries
are the eigenvalues of A in decreasing order of magnitude, ie., the a;
arranged so that |a;| > --- > |ay,|. In the same way, EiglTl(A4) will stand
for the diagonal matrix whose diagonal entries are the eigenvalues of A
arranged in increasing order of magnitude, i.e., the a; rearranged so that
lai] < az| <0 < ol

With these notations, we have the following theorem for the distance
between the eigenvalues of a Hermitian and a skew-Hermitian matrix, in
the Schatten p-norms.

Theorem VI1.2.5 Let A be a Hermitian and B a skew-Hermitian matriz.
Then,
(i) for 2 < p < oo, we have

IEig!(4) - Eig(B)ll, < |14 - Bl (VL17)
A~ B, < 25~ # || Eighl(4) — Eig!(B)llp; (VL18)
(ii) for 1 < p <2, we have
[Eigh!(4) — Bighl(B)ll, < 277 %||4 — Bl,, (VL19)
A - B, < |[Eig'*!(4) — Eig'" (B)]. (V1.20)

All the inequalities above are sharp. Further,
(iit) for 2 < p < oo, we have
IEig!*!(4) ~Eig'" (B)ll, < |[Eig(A) - Eig, (B)ll, < uEig'”(A)—Eig'“(Bm),
(V121

for all permutations o;
(iv) for 1 < p < 2, we have

|Eig!!(A) — Eig!(B)|, < I|IEig(A)—Eig,(B)|, < |Eig"*!(4) —Eig""(B)ll,
(V1.22)
for all permutations o.
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Proof. Forp > 2, the inequalities (VI.17) and (VI.18) follow immediately
from (VI.13) and (VI.16). For p = co, the same inequalities remain valid by
a limiting argument. The next two inequalities of the theorem follow from
the fact that, for 1 < p < 2, both of the inequalities (VI.13) and (VI.16)
are reversed.

The special case of statements (i) and (ii) in which A and B commute is
adequate for proving (iii) and (iv).

The sharpness of all the inequalities can be seen from the 2 x 2 example:

A:((l)(l)), B:(_Ol é) (V1.23)

Here ||A — Bl|p = 2 for all 1 < p < oo. The eigenvalues of A are +1, those
of B are +i. Hence, for every permutation o

[|Eig(A) — Eig, (B)llp
1A= Bllp

1_1
=929 2

forall 1 <p < o0. ]

Note that the inequality (VI.6) is included in (VI.17).

There are several features of these inequalities that are different from
the corresponding inequality (IV.62) for a pair of Hermitian matrices A, B.
First, the inequalities (VI.18) and (VI.19) involve a constant term on the
right that is bigger than 1. Second, the best choice of this term depends
on the norm || - ||. Third, the optimal matching of the eigenvalues of A
with those of B — the one that will minimise the distance between them —
changes with the norm. In fact, the best pairing for the norms 2 < p <
is the worst one for the norms 1 < p < 2, and vice versa.

All these new features reveal that the spectral variation problem for pairs
of normal matrices A, B is far more intricate than the one for Hermitian
pairs.

Exercise V1.2.6 Let A be a Hermitian and B a skew-Hermitian matriz.
Show that for every unitarily invariant norm we have

lieig!(A) - Eighi(B)||l < 2I|A — B, (V1.24)

lA - Bll < V2I|Eig'*(4) - Eig!* (B)]]. (VL.25)

The term /2 in the second inequality cannot be replaced by anything smaller.

VI.3 Estimates in the Operator Norm

In this section we will obtain estimates of the distance between the eigen-
values of two normal matrices A and B in terms of |A — B||. Apart from
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the optimal matching distance, which has already been introduced, we will
consider other distances.
If L, M are two closed subsets of the complex plane C, let

s(L, M) = sup dist(A, M) = sup inf |A— ul- (VI1.26)
AeL AL HEM

The Hausdorff distance between L and M is defined as
h(L, M) = max(s(L, M), s(M, L)). (VI1.27)

Exercise VI.3.1 Show that s(L, M) =0 if and only if L is a subset of M.
Show that the Hausdorff distance defines a metric on the collection of all
closed subsets of C.

Note that s(L, M) is the smallest number § such that every element of
L is within a distance § of some element of M; and h(L, M) is the smallest
number § for which this, as well as the symmetric assertion with L and M
interchanged, is true.

Let {A1,...,An} and {u1,- .., un} be two unordered n-tuples of complex
numbers. Let L and M be the subsets of C whose elements are the entries of
these two tuples. If some entry among {A;} or {u;} has multiplicity bigger
than 1, then the cardinality of L or M is smaller than n.

Exercise V1.3.2 (i) The Hausdorff distance h(L, M) is always less than
or equal to the optimal matching distance d({A1,..., A}, {B1,---,8n})-

(ii) When n = 2, the two distances are equal.

(iit) The triples {0,m —e, m+¢€} and {m,e, —€} provide an example in
which h(L, M) = € and the optimal matching distance is m — 2e. Thus, for
n > 3, the second distance can be arbitrarily larger than the first.

If A is an n X n matrix, we will use the notation o(A) for both the subset
of the complex plane that consists of all the eigenvalues of A, and for the un-
ordered n-tuple whose entries are the eigenvalues of A counted with multi-
plicity. Since we will be talking of the distances s(c(A), o(B)), h(c(A),(B)),
and d(o(A),o{B)), it will be clear which of the two objects is being repre-
sented by a(A).

Note that the inequalities (V1.4) and (VI.6) say that

d(o(A),0(B)) < [|A- B, (V1.28)

if either A and B are both Hermitian, or one is Hermitian and the other
skew-Hermitian.

Theorem VI.3.3 Let A be a normal and B an arbitrary matriz. Then

s(o(B),0(A)) < | A - B (VL.29)
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Proof. Let € = ||A — BJ|. We have to show that if § is any eigenvalue of
B, then § is within a distance € of some eigenvalue o of A.

By applying a translation, we may assume that § = 0. If none of the a;
is within a distance ¢ of this, then A is invertible. Since A is normal, we
have |[A7}|| = Fnllm < 1. Hence,

[ATH(B - A < A7 1B - Al < 1.

Since B = A(] + A™}(B — A)), this shows that B is invertible. But then
B could not have had a zero eigenvalue. n

Another proof of this theorem goes as follows. Let A have the spectral
resolution A = Toajujuj, and let v be a unit vector such that Bv = fv.
Then

4= BI* 2> A= Bl =D ajujvu; — 5 ujvu;|®

= D lay — Bl

J

Since the u; form an orthonormal basis, Z|u;‘v|2 = 1. Hence, the above
)

inequality can be satisfied only if |a; — f8|? < ||A — B||? for at least one

index j.

Corollary VI1.3.4 If A and B are n X n normal matrices, then
h(c(A),0(B)) < ||A~ B (V1.30)

For n = 2, we have
d(c(A),o(B)) < ||lA— Bj. (V1.31)

This corollary also follows from the proposition below.
We will use the notation D(a, p) for the open disk of radius p centred at
a, and D(a, p) for the closure of this disk.

Proposition VI.3.5 Let A and B be normal matrices, and let € =
|A = B||. If any disk D(a,p) contains k eigenvalues of A, then the disk
D(a,p + €) contains at least k eigenvalues of B.

Proof. Without loss of generality, we may assume that a = 0. Suppose
D(0, p) contains k eigenvalues of A but D(0,p + €) contains less than k
eigenvalues of B. Choose a unit vector z in the intersection of the eigenspace
of A corresponding to its eigenvalues lying inside D(0, p) and the eigenspace
of B corresponding to its eigenvalues lying outside D(0, p+¢). We then have
lAz]| < p and ||Bz|| > p + €. We also have || Bz|| — ||Az| < (B — A)z|| <

B — A|| = ¢. This is a contradiction. ]
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Exercise VI.3.6 Use the special case p = 0 of Proposition VI.3.5 to prove
Corollary VI.3.4.

Given a subset X of the complex plane and a matrix A, let ma(X)
denote the number of eigenvalues of A inside X.

Exercise VI.3.7 Let A, B be two n x n normal matrices. Let K1, Ky be
two convez sets such that ma(K;) < k and mp(Ky) > n—k + 1. Then
dist(K,, K2) < ||A — B||. [Hint: Let p — oo in Proposition VI.5.5.]

Exercise V1I.3.8 Use this to give another proof of Theorem VI.2.1.

Exercise V1.3.9 Let A, B be two nxn unitary matrices whose eigenvalues
lie in a semicircle of the unit circle. Label both the sets of eigenvalues in
the counterclockwise order. Then

max|;(4) = A,(B)| < 14 - B

Hence,
d(c(A),0(B)) < |A— BJ.

Exercise V1.3.10 Let T be the unit circle, I any closed arc in T, and for
€>0letl bethearc {z €T :|z—w| <€ for somew € I}. Let A, B be
unitary matrices with ||A — B|| = €. Show that ma(I) < mp(l;).

Theorem V1.3.11 For any two unitary matrices,

d(o(A), o(B)) < [[A - B].

Proof. The proof will use the Marriage Theorem (Theorem I1.2.1) and
the exercise above.

Let {A1,...,An} and {p1,. .., n} be the eigenvalues of A and B, respec-
tively. Let A be any subset of {A1,..., Az} Let p(A) = {u; : [uj — i <e
for some A; € A}. By the Marriage Theorem, the assertion would be proved
if we show that |u(A)| > |A].

Let I(A) be the set of all points on the unit circle T that are within
distance € of some point of A. Then u(A) contains exactly those p; that
lie in I(A). Let I(A) be written as a disjoint union of arcs Iy, ..., .. For
each 1 < k < r, let J; be the arc contained in I all whose points are at
distance > € from the boundary of Ix. Then Iy = (Ji)e.

From Exercise V1.3.10 we have

> ma(Je) <> _mp(Ix) = mp(I(A)).
k=1 k=1

But, all the elements of A are in some Ji. This shows that [A| < |u(A)]. ®

There is one difference between Theorem VI1.3.11 and most of our earlier
results of this type. Now nothing is said about the order in which the
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eigenvalues of A and B are arranged for the optimal matching. No canonical
order can be prescribed in general. In Problem VI.8.3, we outline another
proof of Theorem VI.3.11 which says, in effect, that for optimal matching
the eigenvalues of A and B can be counted in the cyclic order on the circle
provided the initial point is chosen properly. The catch is that this initial
point depends on A and B and we do not know how to find it.

Exercise V1.3.12 Let A = c;U;, B = coUsy, where Uy, Us are unitary ma-
trices and c¢1,c; are complez numbers. Show that d(c(A),o(B))
<||A- BJ.

By now we have seen that the inequality (VI1.28) is valid in the following
situations:

(i) A and B both Hermitian

(ii) A Hermitian and B skew-Hermitian
(i) A and B both unitary (or both scalar multiples of unitaries)
(iv) A and B both 2 x 2 normal matrices.

The example below shows that this inequality breaks down for arbitrary
normal matrices A, B when n > 3.

Example V1.3.13 Let A be the 3x 3 diagonal matriz with diagonal entries

M=, dp = L = SURSE feroT = (/34 /1) and et
U =1I—2vvT. Then U is a unitary matriz. Let B = —U*AU. Then B is a
normal matriz with eigenvalues pj = —A;, 7 =1,2,3. One can check that

dot), o(B) =[5, 1451 =/ 7]

d(a(A),a(B))
A - Bl
In the next chapter we will show that there exists a constant ¢ < 2.91
such that for any two n X n normal matrices A, B

So,
=1.0183".

d(o(4),0(B)) < c| A~ B
For Hermitian matrices A, B we have a reverse inequality:

|A-B| < I?Jagnlx\ﬁ(/l) - Al(B)|-

The quantity on the right is the distance between the eigenvalues of A
and those of B when the “worst” pairing is made. An analogous result for
normal matrices is proved below.
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Theorém VI1.3.14 Let A and Bidbe normal matrices with eigenvalues
{M,.- oy An} and {p1,...,un}, Tespectively. Then, there erists a permu-
tation o such that

|A-B| < V2 2ax | = () (V1.32)

Proof. The matrices AQ I and I ® B are both normal and commute with
each other. Hence A® I — I ® B is normal. The eigenvalues of this matrix
are all the differences A; — p15,1 < 4,7 < n. Hence

[A®I—-1® B = ngg.xlAi = pjl.

So, the inequality (V1.32) is equivalent to
lA-Bll <V2||A®I—-I1®BT|.
This is, in fact, true for all A, B and is proved below. ]

Theorem V1.3.15 For all matrices A, B
|A- Bl <V2)|A®I—-I® BT|. (VL.33)

Proof. We have to prove that for all z,y in C™
(2, (A= B)y)| < V2|A® T -1&BT| |jz|| |yl
We have
[z, (A= B)y)l = |z"Ay— 2" By| = [tr(Ayz" — yz" B)|
< |Ayz” —yz" B
The matrix Ayz* — yz* B has rank at most 2. So,
| Ayz™ — y=* By < V2| Ayz* — yz*Bll2.
Let Z be the vector whose components are the complex conjugates of the

components of z. Then with respect to the standard basis e; ®e; of C*®C",

the (4, j)-coordinate of the vector (A® I)(y®z) is Z aixyxZ;. This is also
k
the (i,j)-entry of the matrix Ayz*. In the same way, the (3, 7)-entry of

yz* B is the (4, j)-coordinate cf the vector (I ® BT )(y ® z). Thus, we have
|Ayz* —yz*Bll2 = [(A®I-1®B")(y®Zz)|
< lA®I-1@BY| |y®z|
lA®I-1®BT| |zl llyl-

This proves the theorem. ]

The example (VI.23) shows that the inequality (VI.32) is sharp. Note
that in this example A and B are both unitary. Also, 4 is Hermitian and
B is skew-Hermitian. In contrast, the factor v/2 in (V1.32) can be replaced
by 1 if A, B are both Hermitian.
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VI.4 Estimates in the Frobenius Norm

We will use the symbol S,, to mean the set of permutations on n symbols,
as well as the set of n x n permutation matrices. (To every permutation o
there corresponds a unique matrix P that has entries 1 in the (¢, j) place if
and only if j = o(i), and all whose remaining entries are zero.) Let 2, be
the set of all nxn doubly stochastic matrices. This is a convex polytope and
by Birkhoff’s Theorem (Theorem I1.2.3) its extreme points are permutation
matrices.

Theorem VI1.4.1 (Hoffman- Wielandt) Let A and B be normal matrices
with eigenvalues {A1,...,\,} and {u1,--.,un}, respectively. Then

n 1/2 n
;Ien:gn (Zp\z - Ma(i)lz) S “A — BIIQ S rréasx (Zl’\l . u'a(i)I2>
n cesy 2

. (VL34)

1/2

=1

Proof. Choose unitary matrices U,V such that UAU* = D;, VBV* =
D,, where D; = diag()y, ..., An) and Dy = diag(us, - - -, 4n)- Then, by uni-
tary invariance of the Frobenius norm, |A— B||3 = |[U*D,U - V*DyV |3 =
|D1W — W D,||?, where W = UV™*, another unitary matrix. If the matrix
W has entries w;;, this can be written as

A= B3 = |A — gl lwi .
,j
The matrix (|w;;|?) is doubly stochastic. The map (z;;) — Zl’\i — iz
%,
is an affine function on the set €, of doubly stochastic matrices. So it
attains its minimum at one of the extreme points of §2,,. Thus, there exists
a permutation matrix (p;;) such that

lA—- Bl > ZI/\i — 151°pis-
.3

If this matrix corresponds to the permutation 7, this says that
A= B3 > 1A — poml*
i

This proves the first inequality in (VI.34). The same argument for the
maximum instead of the minimum gives the other inequality. |

Note that for Hermitian matrices, the inequality (V1.34) was proved ear-
lier in Problem II1.6.15. In this case, we also proved that the same inequality
is true for all unitarily invariant norms.
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In general, there is no prescription for finding the permutation o that
minimises the Euclidean distance between the eigenvalues of A and those
of B. However, if A is Hermitian with eigenvalues enumerated as A; >
Ay 2 -+ 2 Ag, then an enumeration of u; in which Re p1 > Re pg >
--- > Re p, is the best one. To see this, just note that if A\; > Ay and Re
u1 > Re po, then

A =P+ e — pal? <A = el + e —

The same argument shows that an enumeration for which the maximum
distance is attained is one for which Re 43 < Re pz <--- < Re pun. (What
does this say when B is skew-Hermitian?)

Using the notations introduced in Section V1.2, the inequality (VI.34)
can be rewritten as

min([Eig(A) - Eig, (B)|l2 < A~ Bll2 < max|[Eig(A)—Eig, (B)|]2- (V1.35)

There is another way of looking at this. Since the eigenvalues of a normal
matrix completely determine the matrix up to a unitary conjugation, the
inequality (VI1.35) is equivalent to saying that for any two diagonal matrices
A, B

min||A — PBP*|lo < | A~ UBU"|l2 < max|[A~ PBP*[l5,  (V136)

where U is any unitary matrix and P varies over all permutation matrices.
Given any matrix B, let U be the set

Ug = {UBU"* : U € U(n)},

where U(n) is the group consisting of unitary matrices. Then Up is a
compact set called the unitary orbit of B. For a fixed diagonal matrix A,
consider the function f(X) = | A — X||2. The inequality (VI.36) then says
that if B is another diagonal matrix, then on the compact set g both the
minimum and the maximum of f are attained at diagonal matrices (just
some permutations of B). In other words, the minimum and the maximum
on the unitary orbit are both contained in the permutation orbit.

This is an interesting fact from the point of view of calculus and geom-
etry. We will see below that if A, B are real diagonal matrices, a stronger
statement can be proved using calculus. This will also serve to introduce
some elementary ideas of differential geometry used in later sections.

A differentiable function U(t), where t is real and U(t) is unitary, is called
a differentiable curve through I if U(0) = I. Differentiating the equation
U(t)U(t)* = I at t = 0 shows that for such a curve U’(0) is skew-Hermitian.
The matrix U’(0) is called the tangent vector to U(t) at I. If K = U’(0),
then et is another differentiable curve through I with tangent vector K
at I. Thus, the curves U(t) and e*¥ have the same tangent vector and so
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represent the same curve locdlly, i.e., they are equal to th&: first degree of
approximation. The tangent space to the manifold U(n) at the point I is
the linear space that consists of all these tangent vectors. We have seen that
this is the real vector space K(n) consisting of all skew-Hermitian matrices.

If Uy is the unitary orbit of a matrix A, then every differentiable curve
through A can be represented locally as e/ Ae™*X for some skew-Hermitian
K. The derivative of this curve at t = 0is K A— AK. This is usually written
as [K, A] and called a Lie bracket or a commutator. Thus the tangent
space to the manifold U4 at the point A is the space

Talls = {[A, K] : K € K(n)}. (VL37)

Note that this implies that T4ll4 is contained in K(n) if A € K(n).

The sesquilinear form (A4, B) = tr A*B is an inner product on the space
M(n). The symbol S+ will mean the orthogonal complement of a space S
with respect to this inner product.

Lemma VI.4.2 For every A € K(n), the orthogonal complement of Talda
in K(n) is the set of all Y that commute with A.

Proof. Let Y € K(n). Then Y € (Talds)* if and only if for every K in
K(n) we have

0 = (V[AK]) =tr Y*(AK — KA)
—tr(YAK — YKA) = tr[A, Y)K.

This is possible if and only if [4,Y] = 0. ]

The set of all matrices Y that commute with A is called the commutant
or the centraliser of A, and is denoted as Z(A). The lemma above says
that in the space K(n), (Talda)* = Z(A) for every A.

Theorem VI1.4.3 Let A € K(n) and let f(X) = ||A— X|2. Let B be any
other element of K(n). Then By is an extreme point for the function f on
the unitary orbit Up if and only if By commutes with A.

Proof. A point By is an extreme point if and only if the straight line
joining A and By is perpendicular to Ug at By. By Lemma VI.4.2 this is
so if and only if A — By commutes with By, i.e., if and only if A commutes

For skew-Hermitian (or Hermitian) matrices A, B, this gives another
proof of Theorem VI.4.1. However, in this case Theorem VI1.4.3 says much
more. From the first theorem we can conclude that if A and B are normal,
then the global minimum and maximum of the (Frobenius) distance from
A to Up are attained among matrices that commute with A. The second
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theorem says that when A and B areboth Hermitian this is true for all
local extrema, as well.

This last statement is not true when A is Hermitian and B is skew-
Hermitian. For in this case,

lA—UBU[ = || Al + |UBU*|I3 = |All3 + IIBII3

for all U. Thus the entire orbit U is at a constant distance from A. Hence,
every point on Up is an extremal point. However, not every point on Ug
need commute with A.

VI.5 Geometry and Spectral Variation: the
Operator Norm

The first theorem below says that if A is a normal matrix and B is any
matrix close to A, then the optimal matching distance d(o(A),o(B)) is
bounded by ||A — B||. This is a local phenomenon; global versions of this
are what we seek in the next paragraphs.

Theorem VI.5.1 Let A be a normal matriz, and let B be any matriz such
that ||A — B|| is smaller than half the distance between any two distinct
eigenvalues of A. Then d(c(A),ofB)) < ||A — Bj.

Proof. Let aj,...,ax be all the distinct eigenvalues of A. Let € =
||A — Bj|. By Theorem VI1.3.3, all the eigenvalues of B lie in the union of
the disks D(;,€). By the hypothesis, these disks are mutually disjoint. We
claim that if the eigenvalue a; has multiplicity m;, then the disk D(a,¢€)
contains exactly m; eigenvalues of B, counted with their respective multi-
plicities. Once this is established, the statement of the theorem is seen to
follow easily.

Let A(t) = (1—t)A+tB, 0 <t < 1. This is a continuous map from
[0,1] into the space of matrices; and we have A(0) = A, A(1) = B. Note
that ||A — A(t)|| = te, and so all the eigenvalues of A(t) also lie in the disks
D(aj,€) for each 0 < t < 1. By Corollary. VI.1.6, as ¢t moves from 0 to 1,
the eigenvalues of A(t) trace continuous curves that join the eigenvalues
of A to those of B. None of these curves can jump from one of the disks
D(aj,€) to another. So, if we start off with m; such curves in the disk
D(c;,€), we must end up with exactly as many. ]

Example V1.3.13 shows that if no condition is imposed on B, then the
conclusion of the theorem above is no longer valid, even when B is normal.
However, this does suggest a new approach to the problem. Let A, B be
normal matrices, and let (t) be a curve joining A and B, such that each
~(t) is a normal matrix. Then in a small neighbourhood of ~y(t) the spectral
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variation inequality of Theorem VI.5.1 holds. So, the (total) spectral vari-
ation between the endpoints of the curve must be bounded by the length
of this curve. This idea is made precise below.

Let IN denote the set of normal matrices of a fixed size n. If A is an
element of N, then so is tA for all real t. Thus the set IN is path connected.
However, N is not an affine set.

A continuous map v from any interval [a,b] into N will be called a
normal path or a normal curve. If y(a) = A and v(b) = B, we say
that v is a path joining A and B; A and B are then the endpoints of ~.

The length of «, with respect to the norm || - ||, is defined as
m—1
Gy () =sup > |1(tes1) — ()], (V1.38)
k=0

where the supremum is taken over all partitions of [a,b] as a = tg < t; <
.-+ < t, = b. If this length is finite, the path - is said to be rectifiable. If
the function -y is a piecewise C! function, then

b
&y () = / 7' ()l dt. (V1.39)

Theorem VI1.5.2 Let A and B be normal matrices, and let v be a rectifi-
able normal path joining them. Then

d(o(A), o(B)) < £ (7)- (V1.40)

Proof. For convenience, let us choose the parameter ¢ to vary in [0, 1].
For 0 < r < 1, let v, be that part of the curve which is parametrised by
[0,7]. Let

G={rel0,1]:d(c(4), o(v(r))) < &4 (r)}-
The theorem will be proved if we show that the point 1 is in G.

Since the function -, the arclength, and the distance d are all continuous
in their arguments, the set G is closed. So it contains the point g = sup G.
We have to show that g = 1.

Suppose g < 1. Let S = ¥(g). Using Theorem VI.5.1, we can find a point
tin (g,1] such that, if T = (¢), then d(c(S),o(T)) < ||S — T'||. But then

d(o(A), c(v())) < d(a(A), o(5)) + d(o(S),0(T))

< Gy HIS =T
< (-
By the definition of g, this is not possible. |

An effective estimate of d(c(A), o(B)) can thus be obtained if one could
find the length of the shortest normal path joining A and B. This is a
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difficult problem since the geometry of the set N is poorly understood.
However, the theorem above does have several interesting consequences.

Exercise VI1.5.3 Let A,B € N. Then the line segment joining A and B
lies in N if and only if A — B is in N.

Theorem VI1.5.4 If A, B are normal matrices such that A — B is also
normal, then d(c(A),o(B)) < ||A - B]-

Proof. The path v consisting of the line segment joining A, B is a normal
path by Exercise VI.5.3. Its length is ||A — B|}. n

For Hermitian matrices A, B, the condition of the theorem above is sat-
isfied. So this theorem includes Weyl’s perturbation theorem as a special
case.

A more substantial application of Theorem VI.5.2 is obtained as follows.
It turns out that there exist normal matrices A, B for which A — B is not
normal, but there exists a normal path that joins them and has length
|]JA — B||. Note that this path cannot be the line segment joining A and
B; however, it has the same length as the line segment. What makes this
possible is the fact that the metric under consideration is not Euclidean, and
so geodesics need not always be straight lines. (Of course, by the definition
of the arclength and the triangle inequality no path joining A, B could have
length smaller than ||A — Bj|.)

Let S be any subset of M(n). We will say that S is metrically flat in
the metric induced by the norm || - || if any two points A, B of S can be
joined by a path that lies entirely within S and has length ||A — B||. To
emphasize the dependence on the norm || - ||, we will also call such a set
I |-fat.

Of course, every affine set is metrically flat. A nontrivial example of a
I ||I-flat set is given by the theorem below. Let U be the set of n x n unitary
matrices and C - U the set of all constant multiples of unitary matrices.

Theorem VI.5.5 The set C-U is | - ||-flat.
Proof. First note that C - U consists of just nonnegative real multiples
of unitary matrices. Let Ay = roUy and A; = rU; be any two elements

of this set, where rg,7; > 0. Choose an orthonormal basis in which the
unitary matrix U; U ' is diagonal:

U Uy " = diag(e™, ..., i),

where
0a] < < |01] <.

Reduction to such a form can be achieved by a unitary conjugation. Such
a process changes neither eigenvalues nor norms. So, we may assume that
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all matrices are written with respect to the above orthonormial basis.sket
K = diag(ib,, .- -,i0,).

Then, K is a skew-Hermitian matrix whose eigenvalues are in the interval
(—im, iw]. We have

Il

[[Ao — Ai]] llred = mUUg || = max|ro — 1 exp(i6;)]

= |ro —r1 exp(if)]-

This last quantity is the length of the straight line joining the points rg
and 7 exp(if;) in the complex plane. Parametrise this line segment as
r(t)exp(itd1),0 < t < 1. This can be done except when || = =, an
exceptional case to which we will return later. The equation above can
then be written as

I

140 — A / | [7(t) exp(it6)]' |dt
0

Il

/ I () + r(£)i01 ] dt.
0

Now let A(t) = r(t)exp(tK)Uy,0 < t < 1. This is a smooth curve in
C - U with endpoints Ap and A;. The length of this curve is

[
0

/ 17 (£) exp(tK)Up + r(£) K exp(¢K)Usl|dt
0

Il

/ I (O] + (&) K | dt,
0

since exp(tK)Uy is a unitary matrix. But

I~ () +r(®) K| = m]ax|r'(t) +ir(t)8;] = |r'(t) + ir(t)0y].

Putting the last three equations together, we see that the path A(t) joining
Ap and A has length ”AO — Al”

The exceptional case |0;| = 7 is much simpler. The piecewise linear path
that joins Ay to 0 and then to A; has length ¢ + 1. This is equal to
Iro — 71 exp(i6, )| and hence to ||Ag — Ai1]l. [ |

Using Theorems V1.5.2 and VI.5.5, we obtain another proof of the result
of Exercise VI1.3.12.
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Exercise V1.5.6 Let A, B be normal matrices whose eigenvalues lie on
concentric circles C(A) and C(B), respectively. Show that d(o(4), o(B)) <
14— Bl

Theorem VI.5.7 The set N consisting of nxn normal matrices is ||-||-flat
if and only if n < 2.

Proof. Let A, B be 2 x 2 normal matrices. If the eigenvalues of A and
those of B lie on two parallel lines, we may assume that these lines are
parallel to the real axis. Then the skew-Hermitian part of A— B is a scalar,
and hence A — B is normal. The straight line joining A and B, then lies
in N. If the eigenvalues do not lie on parallel lines, then they lie on two
concentric circles. If « is the common centre of these circles, then A and B
are in the set @+ C-U. This set is || - ||-flat. Thus, in either case, A and B
can be joined by a normal path of length ||A — B]|.

If n > 3, then N cannot be || - ||-flat because of Theorem VI.5.2 and
Example VI.3.13. n

Example VI.5.8 Here is an ezample of a Hermitian matriz A and a skew-
Hermitian matriz B that cannot be joined by a normal path of length ||A —
Bj|. Let

010 0 1 0
A=} 1 0 1 B=}| -1 0 1
010 0 -1 0

Then ||A— B|| = 2. If there were a normal path of length 2 joining A, B, then
the midpoint of this path would be a normal matriz C such that ||A—C|| =
[|B = C|| = 1. Since each entry of a matric is dominated by its norm, this
implies that |ca; — 1] < 1 and |co; + 1| < 1. Hence ¢o; = 0. By the same
argument, cz2 = 0. So

* ok ok
A-C= 1 x *x |,
* 1 *

where * represents an entry whose value is not yet known. But if |A—C|| =
1, we must have

0 0
A-C=110
01

o O ¥

Hence

0
C=1| 20
0

OO =
O = o¥

But then C could not have been normal.
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VI.6 Geometry and Spectral Variation: wui
Norms

In this section we consider the possibility of extending to all (weakly) uni-
tarily invariant norms, results obtained in the previous section for the op-
erator norm. Given a wui norm 7, the 7-optimal matching distance
between the eigenvalues of two (normal) matrices A, B is defined as

d.(c(A),0(B)) = min (Eig A ~ P(Eig B)P7Y), (VI1.41)

where, as before, Eig A is a diagonal matrix with eigenvalues of A down its
diagonal (in any order) and where P varies over all permutation matrices.
We want to compare this with the distance 7(A — B). The main result in
this section is an extension of the path inequality in Theorem VI1.5.2 to all
wul norms. From this several interesting conclusions can be drawn.

Let us begin by an example that illustrates that not all results for the
operator norm have straightforward extensions.

Example VI.6.1 For0<t<m, let U(t) = ( e(’?t (1) ) . Then,

i .t
U() = U = 1 - €| =2 sin 3,
for every unitarily invariant norm. In the trace norm (the Schatten 1-
norm), we have

& (0(U (), o(U(0))) = 2|1 — ¢*/?| = 4 sin %

So,

di(o(U(2)),o(U(0))) t
=sec— >1, for t#0.
1U() — U )l 4
Thus, we might have d1(o(A),o(B)) > ||A— Bl|1, even for arbitrarily close
normal matrices A, B. Compare this with Theorems VI.5.1 and VI.4.1.

The @-norms are special in this respect, as we will see below.

Let @ be any finite subset of C. A map F': C — @ is called a retraction
onto & if |z — F(z)| = dist(z, ®), i.e., F' maps every point in C to one of the
points in ® that is at the least distance from it. Such an F' is not unique if
® has more than one element.

Let ® be a subset of C that has at most n elements, and let N(®) be the
set of all n x n normal matrices A such that o(A) C ®. If F is a retraction

onto ®, then for every normal matrix B with eigenvalues {f1,..., .} and
for every A in N(®) we have
B - F(B = max |3; — F(B;)| = max dist(3;, P
I8P = max |6, — F3) = maxdisn(,0)

= s(o(B),0(4)) < B - A
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by Theorem VI1.3.3. Note that the normality of B was required at the firsti
step and that of A at the last. This inequality has a generalisation.

Theorem VI.6.2 Let ® be a finite set of cardinality at most n. Let F be a
retraction onto ®@. Then for every normal matriz B and for every A € N(®)
we have

IB-F(B)lle <IB-Alq (V1.43)

for every Q-norm.

Proof. By Exercise IV.2.10, the inequality (VI.43) is equivalent to the
weak majorisation

[s(B — F(B))]* <w [s(A~ B)]*.

If 41, ..., B, are the eigenvalues of B, this is equivalent to saying that for
all 1 < k < n we have

k k
18, - F(B,)P <> s3(A- B)
j=1 j=1

for every choice of indices 14, ..., .
By Ky Fan’s maximum principle (Exercise 11.1.13)

k k
> s3(A—B)=max »_[l(A- B)u;|?,
i=1 j=1

where the maximum is taken over all orthonormal k-tuples vy,...,vk. In
particular, if e; are unit vectors such that Be; = §;e;, then

k k
D sH(A=B) 23 (A - Bi,)es, I
j=1 Jj=1

But if 8 is any complex number and e any unit vector, then ||(A — Be|| >
dist(8, o(A)). (See the second proof of Theorem VI.3.3.) Hence, we have

k k
> s3(A-B)> > |8, — F(B)I%,
j=1 j=1

and this completes the proof. ]

Exercise VI.6.3 Show that the assertion of Theorem VI.6.2 is not true
for the Schatten p-norms, 1 < p < 2. (See the ezample in (VI.23).)



V1.6 Geometry and Spectral Variation: wui Norms 175

Corollary VI.6.4 Let A be a normal matriz, and let B be-another normals
matriz such that ||[A — B|| is smaller than half the distance between the
distinct eigenvalues of A. Then

dg(o(A),0(B)) < [|[A-Bllg

for every Q-norm. (The quantity on the left is the Q-norm optimal match-
ing distance.)

Proof. Let € = |A — BJ|. In the proof of Theorem VI.5.1 we saw that
all the eigenvalues of B lie within the region comprising of disks of radius
e around the eigenvalues of A. Further, each such disk contains as many
eigenvalues of A as of B (multiplicities counted). The retraction F' of The-
orem VI.6.2 then achieves a one-to-one pairing of the eigenvalues of A and
those of B. |

Replacing the operator norm by any other norm 7 in (VI.38), we can
define the 7-length of a path v by the same formula. Denote this by £, (7).

Exercise VI.6.5 Let A and B be normal matrices, and let v be a normal
path joining them. Then for every Q-norm we have

dq(o(A),0(B)) < Lo(7)-
This includes Theorem VI.5.2 as a special case.
We will now extend this inequality to its broadest context.

Proposition VI.6.6 Let A be a normal matriz and let § be half the min-
imum distance between distinct eigenvalues of A. Then there erists a posi-
tive number M (depending on § and the dimension n) such that any normal
matriz B with |A — B|| < § has a representation B = UB'U*, where B’
commutes with A and U is a unitary matriz with || — U|| < M||A — B

Proof. Let a;,1 < j <, be the distinct eigenvalues of A, and let m; be
the multiplicity of ;. Choose an orthonormal basis in which A = ®;a;1;,
where I;,1 < j < 7, are identity submatrices of dimensions m;. By the
argument used in the proof of Theorem VI.5.1, the eigenvalues of B can be
grouped into diagonal blocks D;, where D; has dimension m; and every
eigenvalue of D; is within distance é of a;. This implies that

(a;Ix — Dp)7H| < % if j#k.

If D = @, D, then there exists a unitary matrix W such that B = WDW™.
With respect to the above splitting, let W have the block decomposition
W = [W;k],1 <j,k <r. Then
lA-B| = [[A-WDW"||=||AW - WD||
1 W;k(ej Ik — Di)lll-

I
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Hence, for j # k,
_ 1
Wikl < (@l = Dk) 7| |[A = B|| < 14— Bl
Hence, there exists a constaut K that depends only on é§ and n such that
W —&;Wj;||l < K||A— B
Let X = @®;Wj;. This is the diagonal part in the block decomposition of
W. Hence, || X|| < 1 by the pinching inequality. Let W;; = V;P; be the
polar decomposition of Wj; with V; unitary and P; positive. Then
IWj; = Vil = 1P — Ll < ||1P? - L),

since P; is a contraction. Let V = @;V;. Then V is unitary and from the
above inequality, we see that

IX — VI < I1X"X ~I|| = | X" X — W*W].
Hence,

w-vi W -X[+ X -V < W -X||+ | X*X -WW|

W =X + I(X* = WH)X|| + [W(X - W)
W — X|| < 3K[|A- Bl

ININ A

If we put U = WV* and M = 3K, we have || —U|| < M||A — BJ| and
B = WDW* = UVDV*U* = UB'U*, where B’ = VDV™*. Since B’ is
block-diagonal with diagonal blocks of size m;, it commutes with A. This
completes the proof. | |

Proposition V1.6.7 Given a normal matric A, a wui norm 7 and an
€ > 0, there exists a small neighbourhood of A such that for any normal
matriz B in this neighbourhood we have

d.(o(A),d(B)) < (1 +¢€)r(A - B).
Proof. Choose B so close to A that the conditions of Proposition VI1.6.6
are satisfied. Let U, B, M be as in that proposition.
Let S=U—1I,sothat U =7+ S and U* = I — S + S?U*. Then
A-B=A-B+[B, S|+UB'SU* - B'S.

Hence,

7(A- B +[B,S)) <1(A-B)+1(UB'SU* — B'S).
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Since A and B’ are commuting normal matrices, they can be diagonalised
simultaneously by a unitary conjugation. In this basis the diagonal of [B’, S]
will be zero. So, by the pinching inequality

7(A- B <71(A- B +[B,9)).
The two inequalities above give
d-(c(A),0(B)) < 7(A- B)+7(UB'SU* - B'S).

Now choose k such that

< k for all X.

Then, using Proposition V1.6.6, we get
T(UB'SU* — B'S) < 27(B'S)<2kM|B| ||A- B
< 2k*M|B|7(A - B).

Now, if B is so close to A that we have 2k2M || B|| < €, then the inequality
of the proposition is valid. ]

Theorem VI.6.8 Let A, B be normal matrices, and let v be any normal
path joining them. Then there exists a permutation matriz P such that for
every wut norm T we have

7(Big A — P(Eig B)P™') < 2,.(%). (VI1.44)

Proof. For convenience, let y(t) be parametrised on the interval [0, 1]. Let
~7(0) = A, 7(1) = B. By Theorem VI.1.4, there exist continuous functions
A1(t), - - -, An(t) that represent the eigenvalues of the matrix v(t) for each ¢.
Let D(t) be the diagonal matrix with diagonal entries A;(t). We will show
that

#(D(0) — D(1)) < £:(). (VL45)

Let 7 be any wuil norm, and let = be any positive number. Let (s, t]
denote the part of the path (-) that is defined on [s, t]. Let

G = {t: 7(D(0) — D(t)) < (1 +€)&(+[0, £])}. (VL1.46)

Because of continuity, G is a closed set and hence it includes its supremum
g. We will show that g = 1. If this is not the case, then we can choose
g’ > g so close to g that Proposition V1.6.7 guarantees

T(D(g) ~ PD(¢")P™") < (1 +¢€)7(v(9) — 7(g"), (VL.47)
for some permutation matrix P. Now note that

7(D(g) — P~ D(g)P) < 7(D(¢') — D(g)) + 7(D(g) — PD(¢")P7?),



178 VI. Spectral Variation of Normal Matrices

and hence if ¢’ is sufficiently close to g, we will have 7(D(g) — P~*D(g)P)
small relative to the minimum distance between the distinct eigenvalues of
D(g). We thus have D(g) = P~1D(g)P. Hence

7(D(g) = D(¢")) = 7(P~'D(g)P — D(¢')) = 7(D(g) — PD(¢')P™?).
So, from (VI1.47),
7(D(g9) — D(¢)) < (L +€)r(7(9) —(9"))-
From the definition of g as the supremum of the set G in (VL.46), we have
7(D(0) — D(g)) < (1+¢€)¢-(7[0, g))-
Combining the two inequalities above, we get
7(D(0) — D(¢)) < (1 +¢€)¢-(7[0,9')).

This contradicts the definition of g. So g = 1. |

The inequality (VI.45) tells us not only that for all normal A, B and for
all wul norms 7 we have

dr(a(A),0(B)) < £ (7), (V1.48)

but also that a matching of o(A) with o(B) can be chosen which makes
this work simultaneously for all 7. Further, this matching is the natural
one obtained by following the curves A;(t) that describe the eigenvalues of
the family ~y(t). ’

Several corollaries can be obtained now.

Theorem VI1.6.9 Let A, B be unitary matrices, and let K be any skew-
Hermitian matriz such that BA~! = exp K. Then, for every unitarily in-
variant norm || - |||, we have,

dyy(a(4),0(B)) < |K]|- (V1.49)

Proof. Let v(t) = (exptK)A, 0 < ¢t < 1. Then ~(t) is unitary for all
t,7(0) = A,~(1) = B. So, by Theorem VI.6.8,

dua(e(A)o(B) < [ I @)lat
0

But 7/(t) = K (exptK)A. So [|[+' (&) = [IKIl- m

Theorem VI1.6.10 Let A, B be unitary matrices. Then for every unitarily

mvariant norm .
dyy(o(4),0(B)) < 514 - Bl (V1.50)
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Proof. In view of Theorem VI.6.9, we need to show that
. _ s
inf{||K|| : BA™" = exp K} < 5|4 - B|.

Choose a K whose eigenvalues are contained in the interval (—im,in]. By
applying a unitary conjugation, we may assume that X = diag(i6, . ..,i0,).
Then

lA =Bl = I = BA™"|| = ||diag(1 — e***,..., 1 = ).

But if —7 < 6 < 7, then [0] < Z|1 — €*|. Hence, ||K||| < Z||A — B]| for
every unitarily invariant norm. n

We now give an example to show that the factor 7/2 in the inequality
(V1.50) cannot be reduced if the inequality is to hold for all unitarily in-
variant norms and all dimensions. Recall that for the operator norm and
for the Frobenius norm we have the stronger inequality with 1 instead of
/2 (Theorem V1.3.11 and Theorem VI.4.1).

Example VI.6.11 Let A, and A_ be the unitary matrices obtained by
adding an entry £1 in the bottom left corner to an upper Jordan matriz,
i.e.,

0 1.0 - 0
0 01 -0
Av=1{ . . . .
0 00 - 1
+1 0 0 --- O

Then for the trace norm we have ||Ay — A_||1 = 2. The eigenvalues of A+
are the n roots of £1. One can see that the || - || -optimal matching distance
between these two n-tuples approaches ™ as n — oco.

The next theorem is a generalisation of, and can be proved using the
same idea as, Theorem VI1.5.4.

Theorem VI1.6.12 If A, B are normal matrices such that A — B 1is also
normal, then for every wui norm 7

d-(c(A),0(B)) < 7(A— B). (VL51)

This inequality, or rather just its special case when 7 is restricted to
unitarily invariant norms and A, B are Hermitian, can be used to get yet
another proof of Lidskii’'s Theorem. We have seen this argument earlier
in Chapter IV. The stronger result we now have at our disposal gives a
stronger version of Lidskii’s Theorem. This is shown below.

Let z,y be elements of C*. We will say that z is majorised by y, in
symbols = < y, if z is a convex combination of vectors obtained from y by
permuting its coordinates, i.e., £ = La, Y., a finite sum in which each y, is
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‘a vector whose coordinates are obtained by applying the permutation o to
the coordinates of y and a,, are positive numbers with ¥a, = 1. When z,y
are real vectors, this is already familiar. We will say z is softly majorised
by y, in symbols z < y, if we can write z as a finite sum z = ¥z,9, in
which z, are complex numbers such that 3|z,| < 1.

n n
Exercise VI.6.13 Let x,y be two vectors in C™ such that sz and ny
=1 =1

n n
are not zero. If £ <5 y and ij = Zyj, then < y.
7=1 J=1

Proposition V1.6.14 Let A,B be n x n normal matrices and let A(A4),
A(B) be two n-vectors whose coordinates are the eigenvalues of A, B, respec-
tively. Then 7(A) < 7(B) for all wui norms 7 if and only if A(A) <, A(B).

Proof. Suppose 7(A) < 7(B) for all wui norms 7. Then, using The-
orem IV.4.7, we can write the diagonal matrix Eig(A) as a finite sum
Eig(A) = Lz UxEig(B)Uy, in which Uy, are unitary matrices and Z|zg| < 1.
This shows that A(A) = Xz, Sk(A(B)), where each Sy is an orthostochas-
tic matrix. (An orthostochastic matrix S is a doubly stochastic matrix
such that s;; = |u;;|?, where u;; are the entries of a unitary matrix.) By
Birkhoff’s Theorem each Sy is a convex combination of permutation ma-
trices. Hence, A(A) <s A(B). The converse follows by the same argument
without recourse to Birkhoff’s Theorem. |

Theorem VI1.6.15 Let A, B be normal matrices such that A — B is also
normal. Then the eigenvalues of A and B can be arranged in such a way
that if A(A) and A(B) are the n-vectors with these eigenvalues as their
coordinates, then

AA) = A(B) < A(A— B). (VL52)

Proof. Use Theorem VI.6.8 and the observation in Theorem VI.6.12 to
conclude that we can arrange the eigenvalues in such a way that

7(Eig A — Eig B) < 7(A — B)
for every wui norm 7. By Proposition V1.6.14, this is equivalent to saying
A(A) = A(B) <s AM(A - B),

where A(A) is the vector whose entries are the diagonal entries of the diag-
onal matrix Eig A. By a small perturbation, if necessary, we may assume
that trA # tr B. Since the components of the vectors A(A) — A(B) and
A(A — B) must have the same (nonzero) sum, we have in fact majorisation
rather than just the soft majorisation proved above. u
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We-can call this the Lidskii Theorem for normal matrices. It in-
cludes the classical Lidskii Theorem as a special case.

Exercise VI.6.16 Let A, B be normal matrices such that A — B is also
normal. Let T be any wui norm. Show that there exists a permutation matriz
P such that

7(A — B) < 7(Eig A — P(Eig B)P™!). (VL53)

VI.7 Some Inequalities for the Determinant

The determinant of the sum A + B of two matrices has no simple relation
with the determinants of A and B. Some interesting inequalities can be
derived using ideas introduced in this chapter. These are proved below.

Theorem VI.7.1 Let A and B be Hermitian matrices with eigenvalues
Q1,---y0n and B, ..., By, respectively. Then

n n
min l_Il(a,- + Bos)) < det(A + B) < max [ + 8oy,  (VL54)
i= =1
where o varies over all permutations.
Proof. If A and B commute, they can be diagonalised simultaneously,
n
and hence det(A + B) = H(ai + Bo(;)) for some o. So, the inequality

i=1
(VI1.54) is trivial in this case. Next note that the two extreme sides of (V1.54)
are invariant under the transformation B — UBU™* for every unitary U.
Hence, it suffices to prove that for a fixed Hermitian matrix A the function
f(H) = det(A + H) on the unitary orbit Up of another Hermitian matrix
B attains its minimum and maximum at points that commute with A.
Let By be any extreme point of f on Up. Then, we must have

4 det(A + e® Bpe %) = 0, (VL55)
dt|,—o

for every skew-Hermitian K. Now,
det(A + ¥ ByetK) = det(A + By + t[K, Bg]) + O(t?).
Note that, if X,Y are any two matrices and X is invertible, then
det(X +tY) =det X(1 +t tr YX 1) + O(¢?).
So, if A + By is invertible, the condition (VI.55) reduces to

tr[K, Bo](A+ By) ! =0.
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This is equivalent to saying
tr K(Bo(A+ Bo)™! — (A+ Bo)™'By) =
If this is to be true for all skew-Hermitian K, we must have
Bo(A+ Bg)™' = (A + By) ™' By.

Thus By commutes with (A + By)~?, hence with A + By, and hence with
A.

This proves the theorem under the assumption that A + By is invertible.
The general case follows from this by a limiting argument. |

Exercise V1.7.2 Let A and B be Hermitian matrices. If \}L(A)+ AL (B) >
0, then

f[ A (A) + AH(B)) < det(A + B) < f[ A(A) +Al(B).  (VL56)

j=1 j=1
This is true, in particular, when A and B are positive matrices.

Theorem VI.7.3 Let A, B be Hermitian matrices with eigenvalues a; and
B;, respectively, ordered so that

lai| > - > |an| and |Bi] > > Bl

Let T = A+1B. Then

|det T| < [ ] ley + iBn—jsal- (VL57)

j=1
Proof. The function f(t) = % logt is concave on the positive half-line.
Hence, using the majorisation (VI1.7) and Corollary I1.3.4, we have

n

n
> logley + ifn—ji1] > > logs;.

j=1 j=1

Hence,
n

Hlaj + fn—j+1] = HSj = |detT|.

=1 j=1 =

Proposition V1.7.4 Let T = A +iB, where A is positive and B Hermi-
tian. Then

|det T| = detAH1+s ATV2BATY2)21/2, (VI1.58)

7j=1
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Proof. Since T = AY2(] +iA~1/2BA~/2) A2 we have
detT = det A - det(I + iA"/?BA™/?). (V1.59)
Note that
|det(I +iA~Y/2BA~1/2)|?
= det[(/ +iA"Y2BATY?)(I —iA"Y/2BATY/?))
= det[l + (A"Y2BAY/?)?

[ +s;472BA7Y2)2). (VL60)
j=1

So, (VI.58) follows from (V1.59) and (VI.60). ]

Il

Corollary VI1.7.5 If the matriz A in the Cartesian decomposition T =
A+ 1B is positive, then |det T'| > det A.

Theorem VI.7.6 Let T = A+ 1B, where A and B are positive matrices
with eigenvalues oy > -+ > a, and By > -+ > [Bn, respectively. Then,

[det T| > [ [loy +48;1. (VL61)

7=1

Proof. We may assume, without loss of generality, that both A, B are
positive definite. Because of relations (V1.59) and (VI.60), the theorem will
be proved if we show

110 +s;(A712BA=Y2)?] H (1+0;262).
j=1 i=1
Note that
Sj(A_1/2BA_1/2) — Sj(A_l/zBl/2)2.

From (1I1.20) we have

{log sn—;11(A71/%) +log 5;(B'/?)}; < {log s; (A2 BY/?)};.
This is the same as saying

{log(a;/*B;/)}; < {log s;(A7/*B'/2)};.

Since the function log(1 + €%) is convex in t, using Corollary 11.3.4 we
obtain from the last majorisation

Zlog(l +a;%67) < Z log (1 + s,(A™Y/2B1/2)%)
=1 j=1

> log(1+ s;(A"V?BATY?)?),

=1

This gives the desired inequality. n
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Exercise VI1.7.7 Show that if only one of the two matrices A and B is
positive, then the inequality (VI.61) is not necessarily true.

A very natural generalisation of Theorem VI.7.1 would be the following
statement. If A and B are normal then det(A + B) lies in the convex hull

n

of the products H(ai + Bo(iy)- This is called the Marcus-de Oliviera
i=1

Conjecture and is a well-known open problem in matrix theory.

VI.8 Prcblems

Problem VI.8.1. Let A be a Hermitian and B a skew-Hermitian matrix.
Show that
|Eig!!!(4) — Eig''(B)llq < A - Bllo

for every Q-norm.

Problem VI1.8.2. Let T = A+ iB, where A and B are Hermitian. Show
that, for 2 < p < o0,

ITll, < 2'~*? min||Eig A + Eig,, (iB)|5,

max||Eig A + Eig,, (iB)|| < 2'/27V?|I T,
and that for 1 <p < 2,

| T|l, < 2'/7~/2 min||Eig A + Eig,, (iB)||,,
max||Eig A + Eig, (iB)|l, < 2°/77|T .

Problem VI.8.3. A different proof of Theorem VI.3.11 is outlined below.
Fill in the details.

Let n > 3 and let A, B be n x n unitary matrices. Assume that the
eigenvalues o; and 3; are distinct and the distances |a; — §;| are also
distinct. If 7;,v2 are two points on the unit circle, we write v, < ¥ if the
minor arc from 7; to y2 goes counterclockwise. We write (87) if the points
a, 3,7 on the unit circle are in counterclockwise cyclic order. Number the
indices modulo n, e.g., any; = @3-

Label the eigenvalues of A so as to have the order (ajag---ay). Let
§ = d(o(A),o(B)). Assume that § < 2; otherwise, there is nothing to
prove. Label the eigenvalues of B as fi,..., 8, in such a way that for any
subset J of {1,2,...,n} and for any permutation o

B < o N
I?Eajclaz ﬁz' > I?Eajclaz ﬁo’(z)l
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Then 6§ = 1rgiagcn|ai — [;|. Assume, without loss of generality, that this
maximum is attained at 7 = 1 and that a; < ;. Check the following.
(i) If B; < o, then neither (a;3;81) nor (aya;3:) is possible.
(i) There exists j such that |a;11 — f;] > 6. Choose and fix one such .
(i) We have (a1618jaj+1).
(iv) For 1 <i < j we have (8:6:0;).
Let K4 be the arc from o4, positively to oy and Kp the arc from

positively to ;. Then there are n — j + 1 of the a; in K4 and j of the f;
in Kg. Use Proposition V1.3.5 now.

Problem V1.8.4. Let a;,...,a, and (,..., 8, be any complex numbers.
Show that there is a number <y such that

max|a; — 7| + max|8; — v| < V2 max|a; — ;1.
7 7] 2,7

(The proof might be long but is not too difficult.) Use this to get another
proof of Theorem VI.3.14.

Problem VI1.8.5. Let A be a Hermitian and B a normal matrix. If the
eigenvalues a; of A are enumerated as a; > --- > a, and if the eigenvalues
B; of B are enumerated so that Re B1 > ---> Re (B, then

max |a; — f;] < V2 ||A - B.

1<j<n

Problem VI.8.6. Let A be a normal matrix with eigenvalues ay, ..., 0.
Let B be any other matrix and let ¢ = ||A — B||. By Theorem VI.3.3,

all the eigenvalues of B are contained in the set D = U D(aj,e€). Use

j
the argument in the proof of Theorem VI.5.1 to show that each connected
component of D contains as many eigenvalues of B as of A. Use this and
the Matching Theorem (Theorem I1.2.1) to show that

d(o(A), o(B)) < (2n - 1)||A - BJ|.

[If A and B are both normal, this argument together with the result of Prob-
lem 11.5.10 shows that d(o(A),o(B)) < n||A — B||. However, in this case,
the Hoffman-Wielandt inequality gives a stronger result: d(a(4), o(B)) <
v |A— B||. We will see in the next chapter that, in fact, d(c(A4),0(B)) <
3||A — B| in this case.]

Problem VI.8.7. Let A be a Hermitian matrix with eigenvalues a; >
-+ > g, and let B be any matrix with eigenvalues §; arranged so that
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ReB) > --- > RefB,. Let Ref; = p; and Imf; = v;. Choose an orthonormal
basis in which B is upper triangular and

B =M +iN +iR,

where M = diag(u1, ..., tn), N = diag(vy,...,v,) and R is strictly upper
triangular. Show that

[Tm(A — B)||3 = [IN|3 + 1/2]|RII3.

Hence,
Zly;]? < Im(A - B)|l3.

Show that
(S — )22 < [|Re(A — B)|l2 + %IlRllz-

Combine the inequalities above to obtain
(Slaj = Bi1*)? < V2 ||A = Bl

Compare this with the result of Problem VI.8.5; note that there B was
assumed to be normal.

Problem VI.8.8. It follows from the result of the above problem that if
A is Hermitian and B an arbitrary matrix, then

d(o(A), o(B)) < V2n ||A~ B].

The factor v/2n here can be replaced by another that grows only like logn.
For this one needs the following fact, which we state without proof. (See
the discussion in the Notes at the end of the chapter.)

Let Z be an n x n matriz whose eigenvalues are all real. Then

1Z = Z"|| < wllZ + Z7|l,

where
[n/2]

2 25-1
fyn=—ﬁZcot o .

7=1

The constant 7y, ts the smallest one for which the above norm inequality
is true. Approzimating the sum by integrals, it is easy to see that v,/ logn
approaches 2/m as n — oo.

Using the notations of Problem 7, show that

max |v;] < [|[Im B|| = [[Im (A - B)|,

max|a; — ] < |4~ M| = [Re(A~ B + 5 |1R ~ R"].
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Let Z.= N 4 R. Then -Z has only real eigenvalues, Z — Z* = R — R*, and
Z + Z* = 2Im(A - B). Hence,

max |a; — Bj| < [[Re(A — B)|| + (7n + 1)|[Im(A - B)||.
This shows that

d(o(4), o(B)) < (v +2)IIA - BJ.

Problem VI1.8.9. Let A be the Hermitian matrix with entries

a; = iy if 17,
a; = 0 for all 1.

Let B = A + C where C is the skew-Hermitian matrix with entries

- G = 5 i i# g
ci = 0 for all 3.

Then B is strictly lower triangular, hence all its eigenvalues are 0.

Show that ||A— B|| < « for all n, and ||A|| = O(log n). (This needs some
work.) Since A is Hermitian, this means that its spectral radius is O(log n).
Thus, in this example, d(c(A4), o(B)) = O(log n) and ||A — B|| < 7. So,
the bound obtained in Problem 8 is not too loose.

Problem VI.8.10. For any matrix A, let Ap denote its diagonal part and
Apr, Ay its parts below and above the diagonal. Thus A = Ay + Ap + Ay.
Show that if A is an n x n normal matrix, then

ALl < Vn—1l|Aull2, [[Aullz < vr—1]AL]2.

The example in VI.6.11 shows that this inequality is sharp.

Problem VI.8.11. Let A be a normal and B an arbitrary n x n matrix.
Choose an orthonormal basis in which B is upper triangular. In this basis
write A = Ap + Ap + Ay, B = Bp + By. By the Hoffman-Wielandt
Theorem

d2(c(A),0(B)) < |A— Bpll2 = |A - B+ Bullz.

Note that
A—B+By=(A—B)L+(A—-B)p+ Ay.

Use the result of Problem VI1.8.10 to show that
|A— B+ Byll <vn||A— B2
Hence, we have, for A normal and B arbitrary,

d2(0(A),0(B)) < vn [|A— Blf2.
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From this, we get for the Schatten p-norms

dp(o(A),0(B)) < n'/PIlA-Bl,, 1<p<2
dp(o(A),0(B)) < n'"YP|A-BJ|,, 2<p<oo.

Show that for 1 < p < 2 these inequalities are sharp. (See Example VI1.6.11.)
For p = oo, this gives

d(o(A), o(B)) < nllA - Bl|,

which is an improvement on the result of Problem 6 above.
If A is Hermitian, then ||Ay|l2 = ||AL|2- Using this one obtains a slightly
different proof of the last inequality in Problem VI.8.7.

Problem VI.8.12. Let A be an n x n Hermitian matrix partitioned as
A= (M R ), where M is a k x k matrix. Let the eigenvalues of A be

R N
A1 > .- > A\, those of M be py > --- > ug, and let the singular values of
R be p; > pa > --- . Show that there exist indices 1 < i; < --- < <m

such that for every symmetric gauge function ® we have

D(py — iy ik — Aiy) < @(p1, 01, 02,02, - - -)-

In other words, for every unitarily invariant norm we have
lldiag(uy = Aiys - -5 e = A ) < (IR @ R

In particular, we have

lldiag(m1 — iy, -k — Xi ) < IR

and
lldiag(rr — Xy, - -5 e — Xi)ll2 < V2 ||R]|2-

Use an argument similar to the one in the proof of Theorem VI1.4.1 to
show that the factor v/2 in the last inequality can be replaced by 1. This
raises the question whether we have

ldiag(rr = Ay, - - e = Al < IR

for all unitarily invariant norms. This is not so, as can be seen from the

example
0 1 V3
A= 1 0 O
V3 0 0

Problem VI1.8.13. Let @ be a closed subset of C, and let F' be a retraction
onto . Let N(®) be the set of all normal matrices whose spectrum is
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contained in ®. Show that if ® is a convex set, then for every unitarily
invariant norm

B —FBI < IIB-All,

whenever B is a normal matrix and A € N(®). If ® is any closed set, then
the above inequality is true for all Q-norms.

Problem VI.8.14. The aim of this problem and the next, is to outline
an alternative approach to the normal path inequality (V1.44). This uses
slightly more sophisticated notions of differential geometry.

Let A be any n x n matrix, and let O 4 be the orbit of A under the action
of the group GL(n), i.e.,

Os = {gAg~ ' : g € GL(n)}.

This is called the similarity orbit of A; it is the set of all matrices
similar to A. Every differentiable curve in O4 passing through A can be
parametrised locally as e Ae~*X, X € M(n). By the same argument as in
Section V1.4, the tangent space to O 4 at the point A can be characterised
as

Ts04 = {[A, X]: X € M(n)}.

The orthogonal complement of this space in M(n) can be calculated as in
Lemma VI.4.2. Show that

(TaO4)* = Z(A%).

Now, a matrix A is normal if and only if Z(A*) = Z(A). So, for a normal
matrix we have a direct sum decomposition

M(n) =T404 & Z(A).
Now, if B € O4, then B and A have the same set of eigenvalues and hence
da(o(A), o(B)) =0.

If B € Z(A), then there is an orthonormal basis in which A and B are both
upper triangular. Hence, for such a B,

da(o(A), o(B)) < ||[A— Blla.

Now, let y(t),0 < ¢t < 1 be a C* curve in the space of normal matrices.
Let v(0) = Ag,v(1) = A;. Let ¢(A) = da(c(Ag),0(A)). At each point v(t)
consider the decomposition

M(n) = Ty(5)O~) @ Z(7(1))

obtained above. Then, as we move along (t), the rate of change of the
function ¢ is zero in the first direction in this decomposition, and in the
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second, it is bounded by the rate of :¢hange of the argument. Hence we
should have

1
P(1(1)) < /0 17 (¢)ll2dt.

Prove this. Note that this says that

da(0(Ao), o(A1)) < &2(7),
if v is a C! curve passing through normal matrices and joining Ag to Aj.

Problem VI1.8.15. The two crucial properties of the Frobenius norm used
above were its invariance under the conjugations A — UAU* and the
pinching inequality. The first made it possible to change to any orthonormal
basis, and the second was used to conclude that the diagonal of a matrix
has norm smaller than the whole matrix. Both these properties are enjoyed
by all wui norms. So, the method outlined above can be adopted to work
for all wui norms to give the same result. (Some conditions on the path are
necessary to ensure differentiability of the functions involved.)

Problem VI.8.16. Fill in the details in the following outline of a proof of
the statement: every complex matrix with trace 0 is a commutator of two
matrices.

Let A be a matrix such that trA = 0. Assume that A is upper triangular.
Let B be the nilpotent upper Jordan matrix (i.e., B has all entries 0 except
the ones on the first superdiagonal, which are all 1). Then Z(B*) contains
only polynomials in B*. (This is a general fact: Z(X) contains only polyno-
mials in X if and only if in the Jordan form of X there is just one block for
each different eigenvalue.) Thus Z(B*) consists of lower triangular matrices
with constant diagonals. Show that A is orthogonal to all such matrices.
Hence A is in the space TgOp, and so A = [B, C] for some C.

VI.9 Notes and References

Perturbation theory for eigenvalues is of interest to mathematicians, physi-
cists, engineers, and numerical analysts. Among the several books that deal
with this topic are the venerable classics, T. Kato, Perturbation Theory for
Linear Operators, Springer-Verlag, 1966, and J.H. Wilkinson, The Algebraic
Eigenvalue Problem, Oxford University Press, 1965. The first is addressed
to the problems of quantum physics, the second to those of numerical anal-
ysis. Matriz Computations by G.H. Golub and C.F. Van Loan, The Johns
Hopkins University Press, 1983, has enough of interest for the theorist and
for the designer of algorithms. Much closer to the spirit of our book (but a
lot more appealing to the numerical analyst) is Matriz Perturbation Theory
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by G.W. Stewart and J.-G. Sun, Academic Press, 1990. Much of the mate-
rial in this chapter has appeared before in R. Bhatia, Perturbation Bounds
for Matriz Figenvalues, Longman, 1987.
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Complex Analytic Varieties, Addison Wesley, 1972. Other proofs may be
found in R. Bhatia and K.K. Mukherjea, The space of unordered tuples of
complex numbers, Linear Algebra Appl., 52/53 (1983) 765-768. The proof
of Theorem VI.1.4 is taken from T. Kato.
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norm is bounded by the corresponding distance between A and B, seems to
have been raised first in L. Mirsky, Symmetric gauge functions and unitarily
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Theorem VI.2.2 is due to V.S. Sunder, Distance between normal opera-
tors, Proc. Amer. Math. Soc., 84 (1982) 483-484. The rest of Section 2 is
based on T. Ando and R. Bhatia, Eigenvalue inequalities associated with
the Cartesian decomposition, Linear and Multilinear Algebra, 22 (1987)
133-147.
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and exclusion theorems, Numer. Math. 2(1960) 137-141, by F.L. Bauer and
C.T. Fike. Theorem VI.3.11 was first proved by R. Bhatia and
C. Davis, A bound for the spectral variation of a unitary operator, Lin-
ear and Multilinear Algebra, 15 (1984) 71-76. Their proof is summarised in
Problem VI1.8.3. This approach of ordering eigenvalues in the cyclic order is
elaborated further by L. Elsner and C. He, Perturbation and interlace the-
orems for the unitary eigenvalue problem, Linear Algebra Appl., 188/189
(1993) 207-229, where many related results are proved. The proof given in
Section 3 is adapted from R.H. Herman and A. Ocneanu, Spectral analysis
for automorphisms of UHF C*-algebras, J. Funct. Anal. 66 (1986) 1-10.

The first example of 3x3 normal matrices A, B for which d(c(A),o(B)) >
[|A— BJ| was constructed by J.A. R. Holbrook, Spectral variation of normal
matrices, Linear Algebra Appl., 174 (1992) 131-144. This was done using a
directed computer search. The bare-hands example VI.3.13 was shown to
us by G.M. Krause. The inequality (VI. 33) appears in T. Ando, Bounds
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for the antidistance, J. Convex Analysis, 2(1996) 1-3:It had been observed
earlier by R. Bhatia that this would lead to Theorem VI1.3.14. A differ-
ent proof of this theorem was found independently by M. Omladic and
P. Semrl, On the distance between normal matrices, Proc. Amer. Math.
Soc., 110 (1990) 591-596. The idea of the simpler proof in Problem VI.8.4
is due to L. Elsner.
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Example V1.5.8 is due to M.D. Choi. The special operator norm case
of the inequality (VI.49) was proved by K.R. Parthasarathy, Eigenvalues
of matriz-valued analytic maps, J. Austral. Math. Soc. (Ser. A), 26(1978)
179-197. Theorem VI1.6.10 and Example VI.6.11 are taken from R. Bhatia,
C. Davis and A. Mclntosh, Perturbation of spectral subspaces and solution
of linear operator equations, Linear Algebra Appl., 52/53 (1983) 45-67. The
inequality (V1.53) for (strongly) unitarily invariant norms was first proved
by V.S. Sunder, On permutations, convez hulls and normal operators, Lin-
ear Algebra Appl., 48 (1982) 403-411.

P.R. Halmos, Spectral approrimants of normal operators, Proc. Edin-
burgh Math. Soc. 19 (1974) 51-58, initiated the study of operator approx-
imation problems of the following kind. Given a normal operator A, find
the operator closest to A from the class of normal operators that have their
spectrum in a given closed set ®. The result of Theorem VI.6.2 for infinite-
dimensional Hilbert spaces (and for closed sets ®) was proved in this paper
for the special case of the operator norm. This was extended to Schatten
p-norms, p > 2, by R. Bouldin, Best approzimation of a normal operator in
the Schatten p-norm, Proc. Amer. Math. Soc., 80 (1980) 277-282. The re-
sult for @-norms, as well as the special one for all unitarily invariant norms
given in Problem VI1.8.11, was proved by R. Bhatia, Some inequalities for
norm ideals, Commun. Math. Phys. 111(1987) 23-39.

Theorem V1.7.1 is due to M. Fiedler, Bounds for the determinant of the
sum of Hermitian matrices, Proc. Amer. Math. Soc., 30(1971) 27-31. The
inequality (VI.56) is also proved in this paper. Theorem VI.7.3 is due to
J.F. Queiré and A.L. Duarte, On the Cartesian decomposition of a matriz,
Linear and Multilinear Algebra, 18 (1985) 77-85, while Theorem VI.7.6
is due to N. Bebiano. The proofs given here are taken from the paper by
T. Ando and R. Bhatia cited above. There are several papers related to the
Marcus-de Oliviera conjecture. For a recent survey, see N. Bebiano, New
developments on the Marcus-Oliviera Conjecture, Linear Algebra Appl.,
197/198 (1994) 793-802. :
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The results in Problem VI.8.7 are due to W. Kahan, Spectra of nearly
Hermitian matrices, Proc. Amer. Math. Soc., 48 (1975) 11-17, as are the
ones in Problem VI.8.8 (essentially) and Problem VI.8.9. In an earlier
paper, Every n x n matriz Z with real spectrum satisfies ||Z — Z*|| <
|Z + Z*||(logy n + 0.038), Proc. Amer. Math. Soc. 39(1973) 235-241, Ka-
han proved the inequality in the title of the paper and used it to obtain
the perturbation bound in the later paper. The exact value of ~, in this
inequality was obtained by A. Pokrzywa, Spectra of operators with fized
imaginary parts, Proc. Amer. Math. Soc., 81(1981) 359-364. The appear-
ance of a constant growing like logn in this inequality is related to another
important problem. Let 7 be the linear operator on M(n) that takes every
matrix to its upper triangular part. Then sup ||7(X)|//||X]| is known to
be O(log n). From this one can see (on reducing Z to an upper triangular
form) that the constant 7, also must have this order. Related results may
be found in R. Mathias, The Hadamard operator norm of a circulant and
applications, SIAM J. Matrix Anal. Appl., 14(1993) 1152-1167.

The results in Problems VI.8.10 and VI.8.11 are taken from J.-G Sun,
On the variation of the spectrum of a normal matriz, Linear Algebra Appl.,
246(1996) 215-223.

Bounds like the one given in Problem VI1.8.12 are called residual bounds
in numerical analysis. See W. Kahan, Numerical linear algebra, Canadian
Math. Bull., 9 (1966) 757-801, where the special improvement for the Frobe-
nius norm is obtained. The general result for all unitarily invariant norms
is proved in the book by Stewart and Sun. The example at the end of this
problem was given in R. Bhatia, On residual bounds for eigenvalues, Indian
J. Pure Appl. Math., 23 (1992) 865-866. The result in Problem VI.8.14 is
a well-known theorem; the proof we have outlined here was shown to us by
V.S. Sunder.



VII

Perturbation of Spectral Subspaces
of Normal Matrices

In Chapter 6 we saw that the eigenvalues of a (normal) matrix change
continuously with the matrix. The behaviour of eigenvectors is more com-
plicated. The following simple example is instructive. Let A = (*}° ,° )@
H, B= (i f) @ H, where H is Hermitian. The eigenvalues of the first 2 x 2
block of A are 1 +¢,1 —e. The same is true for B. The corresponding nor-
malised eigenvectors are (1,0) and (0,1) for 4, and —5(1,1) and J5(1,~1)
for B. As ¢ — 0, B and A approach each other, but their eigenvectors re-
main stubbornly apart. Note, however, that the eigenspaces that these two
eigenvectors of A and B span are identical. In this chapter we will see that
interesting and useful perturbation bounds may be obtained for eigenspaces
corresponding to closely bunched eigenvalues of normal matrices.

Before we do this, it is necessary to introduce notions of distance between
two subspaces. Also, it turns out that this perturbation problem is closely
related to the solution of the matrix equation AX —X B =Y. This equation
called the Sylvester Equation, arises.in several other contexts. So, we
will study it in some detail before applying the results to the perturbation
problem at hand.
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VII.1 Pairs of Subspaces

We will be dealing with block decompositions of matrices. To keep track of
dimensions, we will find it convenient to write

k L
A~ (A Az\m
Ay Az ) p
for a block-matrix in which k£ and ¢ are the number of columns, and m and
p are the number of rows in the blocks indicated.
Theorem VIL.1.1 (The QR Decomposition) Let A be an m x n matriz,

m > n. Then there is an m X m unitary matriz Q such that

Q" A= (g‘)m” (VIL1)

—_— 'rL ?
where R 1s upper triangular with nonnegative real diagonal entries.
Proof. For a square matrix A, this was proved in Chapter 1. The same
proof also works here. (In essence this is just the Gram-Schmidt pro-
cess.) ]
The matrix R above is called the R factor of A.

Exercise VII.1.2 Let A be an m x n matriz with rank A = n. Then the
R factor in the QR decomposition of A has positive diagonal elements and
is uniquely determined. (See Exercise 1.2.2.) If we write

n m—n
Q: (QI Q2 )m>

then we have
A=Q\R, Qi =AR"

Thus Q1 is uniquely determined by A. However, Qs need not be unique.
Note the range of A is the range of @1, and its orthogonal complement is
the range of Q2.

Exercise VII.1.3 Let A be an m xn matriz with m < n. Then there exists
an n X n unitary matrizc W such that

m n—m

AW= (L 0 )m,

where L is lower triangular and has nonnegative real diagonal entries.
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We remark here that it is only for convenience that we choose R (and
L) to have nonnegative diagonal entries. By modifying Q (and W), we can
also make R (and L) have nonpositive real diagonal entries.

Exercise VII.1.4 Let A be an m X n matriz with rank A = r. Then there
ezists an n X n permutation matriz P and an m x m unitary matriz Q such
that

«4p_ [ Ru Rio
QAP—( 0 0 ),

where Ry1 is an r X1 upper triangular matriz with positive diagonal entries.
This is called a rank revealing QR decomposition.

Exercise VII.1.5 Let A be an m X n matriz with rank A = r. Then there
erists an m X m unitary matrizx Q and an n X n unitary matric W such

that
N (T O
QAW—-(O 0),

where T is an v x r triangular matriz with positive diagonal entries.

Theorem VIL.1.6 (The CS Decomposition) Let W be an n x n unitary
matriz partitioned as

14 m
= VIIL.2
W (W21 Was )m (VIL2)

where £ < m. Then there exist unitary matrices U = diag(Uy1, Ua2) and
V = diag(Vh1, Vao), where Ur1, Va1 are £ X € matrices, such that

£ ¢ m-—/{
Cc -5 0 ¢

U'WV = s C 0 ¢ (VIL3)
0 0 I m—4£

where C' and S are nonnegative diagonal matrices, with diagonal entries
0<c;<---<¢c<landl>s; >---> 50 >0, respectively, and

C*+8*=1.

Proof. For the sake of brevity, let us call a map X — U*XV on the
space of n x n matrices a U-transform, if U,V are block diagonal unitary
matrices with top left blocks of size £ x £. The product of two U-transforms
is again a U-transform. We will prove the theorem by showing that one
can change the matrix W in (VIL.2) to the form (VIL.3) by a succession of
U-transforms.
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Let Uy, V11 be £ x £ unitary matrices such that

k -k
" C 0
UnWuvin = ( 01 I >,
where C; is a diagonal matrix with diagonal entries 0 < ¢; < ¢y < --- <

¢ < 1. This is just the singular value decomposition: since W is unitary, all
singular values of Wj; are bounded by 1. Then the U-transform in which
U = diag (Un1,) and V = diag (V13,1) reduces W to the form

k -k m
k Ch 0 |
_ ?
{—k —O_‘ _I_ —|_ o (VIL4)
m ? ? | ?

where the structures of the three blocks whose entries are indicated by ?
are yet to be determined. Let W5; denote now the bottom left corner of the
matrix (VIL4). By the QR Decomposition Theorem we can find an m x m
unitary matrix (J22 such that

4
Q32 W1 = (g) ¢ (VIL5)

m-—1{0°

where R is upper triangular with nonnegative diagonal entries. The U-
transform in which U = diag (I,Q22) and V = diag (I, I) leaves the top
left corner of (VII.4) unchanged and changes the bottom left corner to the
form (VIL5). Assume that this transform has been carried out. Using the
fact that the columns of a unitary matrix are orthonormal, one sees that
the last £ — k columns of R must be zero. Now examine the remaining
columns, proceeding from left to right. Since C) is diagonal with nonnega-
tive diagonal entries, all of which are strictly smaller than 1, one sees that
R is also diagonal. Thus the matrix W is now reduced to the form

kK ¢—k m
k c, 0 | ?
e—k | 0 I 1 ?
X ;,1‘ _0_ T "?‘ , (VIL6)
-k | o 0 | ?
m—4 0 0 | ?

in which S, is diagonal with C? + S% = I, and hence 0 < S; < I. The
structures of the two blocks on the right are yet to be determined. Now, by
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Exercise VII.1.3 and the remark following it, we can find an m x m unitary
matrix Vo2 which on right multiplication converts the top right block of
(VIL.6) to the form

e (L 0 ), (VILT)

in which L is lower triangular with nonpositive diagonal entries. The U/-
transform in which U = diag (/,1) and V = diag (I, Va2) leaves the two
left blocks in (VIL.6) unchanged and converts the top right block to the
form (VIL.7). Again, orthonormality of the rows of a unitary matrix and
a repetition of the argument in the preceding step show that after this
U-transform the matrix W is reduced to the form

kK 0—k k 0—k m—¢
k c, 0 | =85 o0 0
-kl o 1 | 0 0 0

0 | X33 Xas X3
{—k 0 0 | X4z Xaa KXy4s
0

. (VILS)
m—£\ 0 | Xsz Xsa Xss

Now, we determine the form of the bottom right corner. Since the rows of
a unitary matrix are mutually orthogonal, we must have C;5; = S; X33.
But C; and S; are diagonal and S; is invertible. Hence, we must have
X33 = C;. But then the blocks X34, X35, X43, X53 must all be 0, since the
matrix (VIL.8) is unitary. So, this matrix has the form

k {£—-k k ¢£—k m-—¥¢
k Ci 0 | -5 0 0
i—k|l o 1 | o o o0
k S 0 | & o0 0 (VIL9)
-k 0 0 | 0 X4 Xgs
m— £ 0 0 | 0 X54 X55
Xaa Xas

Let X = ( ) . Then X is a unitary matrix of size m — k. Let
Xsa Xss

U = diag (Iy, Iz, X), where I, and Iy are the identity operators of sizes ¢
and k, respectively. Then, multiplying (VIL.9) on the left by U*— another
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U-transform — we reduce it to the form

E -k E -k m—Z
k Gy 0 | =S 0 | 0
L—k 0 I | 0 0 | 0
LU —
k S1 0 [ C, 0 | 0 . (VIL.10)
-k 0 0 | 0 I |
N — —— - l —
m—£€\ 0 0 | 0 0 | 1
If we now put
E -k
_(Cy O k
c= (5 7).k
and
kE -k
(S5 0 k
5= < 0 0 ) 0~k
then the matrix (VIL.10) is in the desired form (VIIL.3). ]

Exercise VIL1.7 Let W be as in (VIL.2) but with £ > m. Show that there
exist unitary matrices U= diag (U1, Uzz) and V = diag (W11, Vaz), where
Ui, Vi1 are £ x £ matrices, such that

n—f 20—n n-—"¢
o 0 -S n—4~

U'WV = 0 I 0 20 —n (VIL11)
S 0 C n—£

where C and S are nonnegative diagonal matrices with diagonal entries
0<c<---<cpre<landl>s >---2>s,_¢ >0, respectively, and
C*+8%2=1.

The form of the matrices C and S in the above decompositions suggests
an obvious interpretation in terms of angles. There exist (acute) angles
0;, 5 >0, >0, >--- >0, such that c; = cosf; and s; = sin6;.

One of the major applications of the CS decomposition is the facility it
provides for analysing the relative position of two subspaces of C™.

Theorem VIL.1.8 Let X,,Y, be n x ¢ matrices with orthonormal
columns. Then there exist £ x £ unitary matrices Uy and Vy and ann x n
unitary matriz QQ with the following properties.
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(i) If 2¢ < n, then

¢
I ¢

QX U;= |0 e, (VIL12)
0/ n—2¢
¢
c ¢

QViVi= | S e, (VIL13)
0/ n—-2¢

where C, S are diagonal matrices with diagonal entries 0 <c¢; < --- < ¢ <
1and1> s >---> s, >0, respectively, and C? + 52 = I.
(i) If 2¢ > n, then

n—¥f¢ 20—n
I 0 n—¢
QXU = 0 I 20 —n (VIL.14)
0 0 n—1¢
n—¢ 20—n
C 0 n—4{
QY 1V = 0 I 20 —n (VIL.15)
S 0 n—/¢
where C, S are diagonal matrices with diagonal entries 0 < ¢; < --- <

Che<landl>s > --->s,_p>0, respectively, and C*> + S = 1.

Proof. Let 2 < n. Choose n x (n — ¢) matrices X, and Y, such that
X =(X1 Xp)and Y = (Y7 Y2) are unitary. Let

14 n—¢
X1Yh X{‘Y§> ¢

W=X"V= (X;Yl X3V, ) n—t

By Theorem VIIL.1.6 we can find block diagonal unitary matrices U =
diag(Uy, Us) and V = diag(V1, Va), in which U; and V; are £ x £ unitaries,
such that

* Yk * YOk = S C O
U Xah Vi Ui X3YaVa 0 o 1

(Gmn vy ) ¢ =57 )
Let @Q = (XU)* = (X Uy X3Usz)*. Then from the first columns of the two
sides of the above equation we obtain the equation (VII.13). For this () the
equation (VII.12) is also true.
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When 2¢ > n, the assertion of the theorem follows, in the same manner,
from the decomposition (VIL.11). u

This theorem can be interpreted as follows. Let £ and F be ¢-dimensional
subspaces of C™. Choose orthonormal bases zi,...,z; and ¥;,...,y, for
these spaces. Let X7 = (z1 22 -+ z¢), Y1 = (Y1 y2 - - y¢). Premultiply-
ing X1, Y] by @ corresponds to a unitary transformation of the whole space
C™, while postmultiplying X; by Uy and Y; by V; corresponds to a change
of bases within the spaces £ and F, respectively. Thus, the theorem says
that, if 2¢ < n, then there exists a unitary transformation @ of C® such
that the columns of the matrices on the right-hand sides in (VIL.12) and
(VII.13) form orthonormal bases for Q€ and QF, respectively. The span
of those columns in the second matrix, for which s; = 1, is the orthogonal
complement of Q& in QF. When 2¢ > n, the columns of the matrices on
the right-hand sides of (VII.14) and (VIIL.15) form orthonormal bases for
Q€& and QF, respectively. The last 2¢ — n columns are orthonormal vectors
in the intersection of these two spaces. The space spanned by those columns
of the second matrix, in which s; = 1, is the orthogonal complement of Q&
in QF.

The reader might find it helpful to see what the above theorem says when
£ and F are lines or planes in R3.

Using the notation above, we set

O(&,F) = arcsin S.

This is called the angle operator between the subspaces £ and F. It is a
diagonal matrix, and its diagonal entries are called the canonical angles
between the subspaces £ and F.

If the columns of a matrix X are orthonormal and span the subspace &,
then the orthogonal projection onto £ is given by the matrix £ = X X*.
This fact is used repeatedly below.

Exercise VII.1.9 Let £ and F be subspaces of C*. Let X and Y be ma-
trices with orthonormal columns that span £ and F, respectively. Let E, F'
be the orthogonal projections with ranges £, F. Then the nonzero singular
values of EF are the same as the nonzero singular values of X*Y .

Exercise VII.1.10 Let £, F be subspaces of C™ of the same dimension,
and let E, F' be the orthogonal projections with ranges £,F. Then the sin-
gular values of EF are the cosines of the canonical angles between £ and
F, and the nonzero singular values of EXF are the sines of the nonzero
canonical angles between € and F.

Exercise VII.1.11 Let £, F and E, F be as above. Then the nonzero sin-
gular values of E— F are the nonzero singular values of E*F, each counted
twice; i.e., these are the numbers sy, S1,S2,52,-- ..
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Note that by Exercise VII.1.10, the angle operator ©(&,F) does not
depend on the choice of any particular bases in £ and F. Further, ©(&, F) =
O(F,¢&).

It is natural to define the distance between the spaces £ and F as
|E—F||. In view of Exercise VII.1.11, this is also the number ||E+ F||. More
generally, we might consider |||E* F||, for every unitarily invariant norm,
to define a distance between the spaces £ and F. In this case, ||E — F|| =
I|E-F @ EF-).

We could use the numbers [||ELF|| to measure the separation of £ and
F, even when they have different dimensions. Even the principal angles can
be defined in this case:

Exercise VII.1.12 Let x,y be any two vectors in C™. The angle between
z and y is defined to be a number Z(z,y) in [0,7/2] such that

1 |yt
lzlf iyl

Let £ and F be subspaces of C™, and let dim £ > dim F = m. Define
01,...,0, recursively as

Z(z,y) = cos™

fx =  max min  Z(z,y) = £(zk, Yk)-
zL{zy, mp—1]  yL(yr.vg_gq]

Then 5 > 0y > --- > 0, > 0. The numbers 0y are called the principal
angles between £ and F. Show that when dim £ = dim F, this coincides
with the earlier definition of principal angles.

Exercise VII.1.13 Show that for any two orthogonal projections E, F' we
have |E — F|| < 1.

Proposition VII.1.14 Let E, F be two orthogonal projections such that
|E — F|| < 1. Then the ranges of E and F' have the same dimensions.

Proof. Let &£, F be the ranges of E and F. Suppose dim £ > dim F.
We will show that £ N F* contains a nonzero vector. This will show that
IE-Fl =1

Let G = EF. Then G C &, and dim G < dim F < dim &. Hence ENG*
contains a nonzero vector z. It is easy to see that £ N G+ C FL. Hence,
zeFt [

In most situations in perturbation theory we will be interested in compar-
ing two projections E, F' such that ||E — F|| is small. The above proposition
shows that in this case dim E = dim F.



VIL.2 The Equation AX — XB =Y 203

Example VII.1.15 Let

10 1 0
1 10 0 0
X = — 1
=%lo 1|0 M 0 -1
0 1 0 O
The columns of X1 and of Y7 are orthonormal vectors. If we choose unitary
matrices
1 1 1 1 11
-1 1) v h)
and

1 1 1 1

1 1 -1 =1

Q_2 1 -1 1 =1 }°
1 -1 -1 1

| =

then we see that

1 0 1 0
0 1 1 0 1
QXIUI - 0 0 ) QYIW - —\_/_—é 1 0
0 0 0 1

Thus in the space R* (or C*),the canonical angles between the 2-dimensional
subspaces spanned by the columns of X, and Y1, respectively, are 7, .

VII.2 The Equation AX — XB=Y

We study in some detail the Sylvester equation,
AX -XB=Y. (VIL.16)

Here A is an operator on a Hilbert space H, B is an operator on a Hilbert
space K, and X,Y are operators from K into H. Most of the time we are
interested in the situation when K = H = C”, and we will state and prove
our results for this special case. The extension to the more general situation
is straightforward.

We are given A and B, and we ask the following questions about the
above equation. When is there a unique solution X for every Y7 What is
the form of the solution? Can we estimate || X|| in terms of [[Y]|?

Theorem VII1.2.1 Let A, B be operators with spectra o(A) and o(B), re-
spectively. If o(A) and o(B) are disjoint, then the equation (VII.16) has a
unique solution X for every Y.
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Proof. Let 7 be the linear operator on the space of operators, defined by
T(X)= AX — X B. The conclusion of the theorem can be rephrased as: 7
is invertible if 0(A4) and o(B) are disjoint.

Let A(X) = AX and B(X) = XB. Then 7 = A— B and A and B
commute (regardless of whether A and B do). Hence, o(7) C o(A) — o(B).
If z is an eigenvector of A with eigenvalue «, then the matrix X, one of
whose columns is z and the rest of whose columns are zero, is an eigenvector
of A with eigenvalue a. Thus the eigenvalues of A are just the eigenvalues
of A, each counted n times as often. So o(A) = o(A). In the same way,
o(B) = o(B). Hence 0(7T) C 0(A)—a(B). So, if 6 (A) and o(B) are disjoint,
then 0 € (7). Thus, 7T is invertible. ]

It is instructive to note that the scalar equation ax —zb = y has a unique
solution z for every y if a — b # 0. The condition 0 ¢ o(A) — o(B) can be
interpreted to be a generalisation of this to the matrix case. This analogy
will be helpful in the discussion that follows.

Consider the scalar equation ax — zb = y. Exclude the trivial cases in
which a = b and in which either a or b is zero. The solution to this equation

can be written as .
— 5,1 b
T=a (1 - ~) Y.
a

If |b]| < |al|, the middle factor on the right can be expanded as a convergent
power series, and we can write

r=a""! i (3)" y = i a~ " lyb
n=0 n=0

This is surely a complicated way of writing z = y/(a — b). However, it
suggests, in the operator case, the form of the solution given in the theorem
below. For the proof of the theorem we will need the spectral radius
formula. This says that the spectral radius of any operator A is given by
the formula

spr(4) = lim [ A"/,

Theorem VIL.2.2 Let A, B be operators such that o(B) C {z : |z| < p}
and o(A) C {z : |z] > p} for some p > 0. Then the solution of the equation
AX - XB=Y is

X=Y A"'YB™ (VIL17)

n=0

Proof. We will prove that the series converges. It is then easy to see that
X so defined is a solution of the equation.

Choose p; < p < pa such that o(B) is contained in the disk {z : |z] < p1}
and o(A) is outside the disk {z: |z| < pa}. Then o(A~?) is inside the disk
{z : |z| < p3'}. By the spectral radius formula, there exists a positive
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integer N such that for n > N, ||B™|| < pf and ||[A™"|| < p; ™. Hence, for
n > N, [A7" 'Y B™|| < (p1/p2)"||A~1Y||. Thus the series in (VIL17) is
convergent. L]

Another solution to (VIL.16) is obtained from the following considera-

tions. If Re(b — a) < 0, the integral Te‘(b‘“)dt is convergent and has the
value ﬁ Thus, in this case, the soh(l)tion of the equation ax — zb = y can
be expressed as z = Tet(b‘“)y dt. This is the motivation for the following
theorem. ‘

Theorem VII.2.3 Let A and B be operators whose spectra are contained
in the open right half-plane and the open left half-plane, respectively. Then
the solution of the equation AX — XB =Y can be erpressed as

X = / e tAYetB dt. (VIL18)
0

Proof. It is easy to see that the hypotheses ensure that the integral given
above is convergent. If X is the operator defined by this integral, then

AX - XB = / (Ae™t4Y e — e tAY B B)dt
0
= —eYeP| " =Y.
So X is indeed the solution of the equation. ]

Notice that in both the theorems above we made a special assumption
about the way o(A) and o(B) are separated. No such assumption is made
in the theorem below. Once again, it is helpful to consider the scalar case
first. Note that

1 _ ( 1 1 ) 1
(a=Q(b-0) a=¢ b-=(/b-a
So, if I" is any closed contour in the complex plane with winding numbers
1 around a and 0 around b, then by Cauchy’s integral formula we have

21

1
F/(a—o(b—odc“a—b'

Thus the solution of the equation az — zb = y can be expressed as

d.

T

S S
- 2m .F/ (a=Q0b-0
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The appropriate generalisation for operators is the following.

Theorem VIIL.2.4 Let A and B be operators whose spectra are disjoint
from each other. Let T' be any closed contour in the compler plane with
winding numbers 1 around o(A) and 0 around o(B). Then the solution of
the equation AX — XB =Y can be expressed as

1

X = (A= 'Y(B - tdC. (VIL19)
e
r

Proof. If AX — XB = Y, then for every complex number (,
(A-QX -X(B-()=Y.If A—( and B — ( are invertible, this gives

XB-O)'-(A-0T'X=(A-Q7YB-O"
Integrate both sides over the given contour I' and note that [(B—¢)~1d( =
r

0 and — [(A — {)~'d¢ = 2mil. This proves the theorem. -
r

Our principal interest is in the case when A and B in the equation
(VIL.16) are both normal or, even more specially, Hermitian or unitary. In
these cases more special forms of the solution can be obtained.

Let A and B be both Hermitian. Then A and iB are skew-Hermitian,
and hence their spectra lie on the imaginary line. This is just the opposite of
the situation that Theorem VII.2.3 was addressed to. If we were to imitate

(o]
that solution, we would try out the integral [ e~4Y¢e"Bdt. This, however,

0
does not converge. This can be remedied by inserting a convergence factor:
a function f in LY(R). If we set

X = /e“itAYe“Bf(t)dt,

then this is a well-defined operator for each f € L!(R), since for each ¢ the
exponentials occurring above are unitary operators. Of course, such an X
need not be a solution of the equation (VIL.16). Can a special choice of f
make it so? Once again, it is instructive to first examine the scalar case. In
this case, the above expression reduces to

.'J:=yf(a—b),

where f is the Fourier transform of f, defined as

[e e}

f(s) = / e * f(t)dt. (VIL20)

—00
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So, if we choose an f such that f(a —b) = —L., we do have az — zb = y.

The following theorem generalises this to operators.

Theorem VII.2.5 Let A, B be Hermitian operators whose spectra are dis-
joint from each other. Let f be any function in L'(R) such that f(s) = i
whenever s € o(A)—a(B). Then the solution of the equation AX - XB =Y
can be expressed as

X = / e Ay etB f(t)dt. (VIL.21)

Proof. Let a and 3 be eigenvalues of A and B with eigenvectors u and
v, respectively. Then, using the fact that e**4 is unitary and its adjoint is
e~ %4, we see that

(u, Ae™*AY MBy) = ("4 Au, YeitPy)
et BNy, Yu).

A similar consideration shows that
(u,e Y B By) = B~ gy, Vo).

Hence, if X is given by (VIIL.21), we have

I

(u,(AX — XB)v) = (a—B)(uYv) / ¢itB=a) £ (1)t

(o= B)(u, Yv) f(a — )
= (u,Yv).

Since eigenvectors of A and B both span the whole space, this shows that
AX-XB=Y. ]

The two theorems below can be proved using the same argument as
above. For a function f in L!(R?) we will use the notation f for its Fourier
transform, defined as

f(s1,82) = / /e—"(‘m“m)f(tl,t2)d,t1dt2.

Theorem VI11.2.6 Let A and B be normal operators whose spectra are
disjoint from each other. Let A = A; + iAs, B = By + 1By, where A; and
Ay are commuting Hermitian operators and so are By and By. Let f be

any function in L'(R?) such that f(s1,82) = ﬁ whenever s; + isy €
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o(A) — o(B). Then the solution of the equation AX — XB =Y can be
expressed as

X = / / emAitteA)y it BrttaBa) £(¢ ) 10)dt, di,. (VIL22)

Theorem VII.2.7 Let A and B be unitary operators whose spectra are
disjoint from each other. Let {a,}>° be any sequence in £, such that

ad . 1 _
Z ane™ = =% whenever ¢* € (o(A))"! - o(B).
— e'L

n=-—oo

Then the solution of the equation AX — XB =Y can be expressed as

X= Y a,A"'YB™ (VIL23)

n=—oo

The different formulae obtained above lead to estimates for ||| X||| when
A and B are normal. These estimates involve |||Y||]| and the separation §
between o(A) and o(B), where

6 =dist(o(A),o(B)) = min{|A — u| : A € 6(A), u € o(B)}.
The special case of the Frobenius norm is the simplest.

Theorem VIL.2.8 Let A and B be normal matrices, and let &
= dist(c(A), o(B)) > 0. Then the solution X of the equation AX — XB =
Y satisfies the inequality

1
X2 < 1Yz (VIL.24)

Proof. If A and B are both diagonal with diagonal entries Aj,..., A,
and py,.. ., fin, respectively, then the entries of X and Y are related by the
equation z;; = vy;;/(A; — pj). From this (VIL.24) follows immediately.

If A, B are any normal matrices, we can find unitary matrices U,V and
diagonal matrices A, B’ such that A = UA'U* and B = VB'V*. The
equation AX — XB =Y can be rewritten as

UAU*X - XVB'V*=Y
and then as
A(U*XV) - (U*XV)B' =U*YV.
So, we now have the same type of equation but with diagonal A’, B'. Hence,

1
IV XVll2 < ZIT*Y V2.

By the unitary invariance of the Frobenius norm this is the same as the
inequality (VII.24). |
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Example VII.2.9 If A or B is not normal, no inequality like (VII.24)
is true in general. For ezample, if A=Y =1 and B = (J !), then the
equation AX — XB =Y has the solution X = () '). Here 6 =1, |Y ||, =
V2, but | X||2 can be made arbitrarily large by choosing t large. Thus we
cannot even have a bound like || X |2 < £||Yl2 for any constant ¢ in this
case.

Example VII1.2.10 In this example all matrices involved are Hermitian:

(3 0 (-3 0
a=(3 5) 2=(0 1)

(s %) (s %)

Then AX — XB =Y. Here § = 2. But, for the operator norm, || X|| >
HIY|l. Thus, the inequality || X|| < $|IY|| need not hold even for Hermitian
A, B.

In the next theorems we will see that we do have || X||| < Z[I[Y]] for a
small constant ¢ when A and B are normal. When the spectra of A and B
are separated in a special way, we can choose ¢ = 1.

Theorem VII.2.11 Let A and B be normal operators such that the spec-
trum of B is contained in a disk D(a, p) and the spectrum of A lies outside
a concentric disk D(a, p+6). Then, the solution of the equation AX —X B =
Y satisfies the inequality

Xy < v (VIL25)

for every unitarily invariant norm.

Proof. Applying a translation, we can assume that a = 0. Then the
solution X can be expressed as the infinite series (VII.17). From this we
get

DoATHE Y B

n=0

WY N> (p+8)""p"
n=0

X

IA

IN

1
= Slivi
6 |

Either by taking a limit p — oo in the above argument or by using the
form of the solution (VII.18), we can prove the following.
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Theorem VII.2.12 Let A and B be normal operators with o(A) and o(B)
lying in half-planes separated by a strip of width 6. Then the solution of the
equation AX — XB =Y satisfies the inequality (VIIL.25).

Exercise VII1.2.13 Here is an alternate proof of Theorem VII.2.11. As-
sume, without loss of generality, that a = 0. Then A is invertible. Write
X = AY(Y + X B) and obtain the inequality (VII.25) directly from this.

Exercise VII.2.14 Choose unit vectors u and v such that Xv = || X||u
and X*u = ||X||lv; i.e., u and v are left and right singular vectors of
X corresponding to its largest singular value. Then (u,(AX — XB)v) =
1 X1 ({(u, Au) — (v, Bv)). Use this to prove Theorem VII.2.11 in the special
case of the operator norm.

Theorem VII1.2.15 Let A and B be Hermitian operators
with dist (o(A), o(B)) = 6 > 0. Then, the solution of the egquation
AX — XB =Y satisfies the inequality

X < 5 vl (VIL26)

for every unitarily invariant norm, where ¢; is a positive real number de-
fined as

er = inf{||flls : f € L'(R), f(s) = % when [s|> 1} (VIL27)

Proof. Let f5 be any function in L(R) such that fs(s) = 1 whenever
|s| > 8. By Theorem VII.2.5 we have

X = / e tAY etB fg(t)dt.
—00

Hence,

i<y [ 1@ =5ivn [ 5ok,

where f(t) = fs(t/6). Note that f(s) = 1 whenever |s| > 1. Any f with
this property satisfies the above inequality. m

Exactly the same argument, using Theorem VII.2.6 now leads to the
following.

Theorem VI11.2.16 Let A and B be mnormal operators with
dist (c(A), o(B)) =6 > 0. Then the solution of the equation AX — XB =
Y satisfies the inequality
c
X < 20y (VIL28)
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for every unitarily invariant norm, where

when 53 + 55 > 1}.
(VIL.29)

o = inf{|| |2 : f € L'(R?), f(s1,52) =

S1 + 152

The exact evaluation of the constants ¢; and ¢y is an intricate problem
in Fourier analysis. This is discussed in the Appendix at the end of this
chapter. It is known that

™
clz-—
2

and
™

T sint
<= | —dt <2091.
Co S 2 / : <
0
Further, with this value of ¢;, the inequality (VII.26) is sharp.

VIL.3 Perturbation of Eigenspaces

Given a normal operator A and a subset S of C, we will write P4(S) for
the orthogonal projection onto the subspace spanned by the eigenvectors
of A corresponding to those of its eigenvalues that lie in S.

If S; and S are two disjoint sets, and if E = P4(S;) and F = P4(Ss),
then E and F are mutually orthogonal. If A and B are two normal opera-
tors, and if E = P4(S;) and F = Pg(S;), then we might expect that if B
is close to A and S; and S, are far apart, then E is nearly orthogonal to
F. This is made precise in the theorems below.

Theorem VII1.3.1 Let A, B be normal operators. Let S; and Sy be two
subsets of the complex plane that are separated by either an annulus of
width § or a strip of width §. Let E = Pa(S:), F = Pp(S2). Then, for
every unitarily tnvariant norm,

IEFI < SIB(A-B)FIl < A~ Bl (VIL30)

Proof. Since E commutes with A and F with B, the first inequality in
(VIL30) can be written as

IEF) < {WAEF — EFB].

Now let FF = X. This is an operator from the space ran F' to the space
ran E. Restricted to these spaces, the operators B and A have their spec-
tra inside Sy and S, respectively. Thus the above inequality follows from
Theorem VII.2.11 when S; and S, are separated by an annulus, and from
Theorem VII.2.12 when they are separated by a strip.
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The second inequality in (VIL.30) is true because | E|| = |[F|| = 1. ]

The special case of this theorem when A and B are Hermitian, Sy is an
interval [a,b] and S, the complement in R of the interval (a — &, b+ §), is
known as the Davis-Kahan sin® Theorem. (We saw in Section 1 that
[[EF|| is the sine of the angle between ran E and ran F1. )

With no special assumption on the way S; and Sy are separated, we can
derive the following two theorems from Theorems VII1.2.15 and VII.2.16 by
the argument used above.

Theorem VII1.3.2 Let A and B be Hermitian operators, and let Sy, Sy be
any two subsets of R such that dist (S1,S2) = 6 > 0. Let E = P4(S1),
F = Pg(S3). Then, for every unitarily invariant norm,

IEF| < SIB(A- B)F|| < S|4~ Bll, (VIL31)

where ¢y s the constant defined by (VIL.27). (We know that c; = §.)

Theorem VI11.3.3 Let A and B be normal operators, and let S1,S5 be
any two subsets of the complex plane such that dist (S1,S52) =6 > 0. Let
E = P4(S1), F = Pp(S,). Then, for every unitarily invariant norm,

IEFI < ZIEA - B)FI| < ZIA- B, (VIL32)

where ¢z is the constant defined by (VII.29). (We know that c; < 2.91.)

Finally, note that for the Frobenius norm alone, we have a stronger result
as a consequence of Theorem VII.2.8.

Theorem VII.3.4 Let A and B be normal operators and let Sy1,Sy be
any two subsets of the complez plane such that dist (S, S2) = 6 > 0. Let
E = P4(51), F = Pg(S2). Then

IBF|; < §|B(4 - B)F|> < 1A~ Bl

VIL.4 A Perturbation Bound for Eigenvalues

An important corollary of Theorem VII1.3.3 is the following bound for the
distance between the eigenvalues of two normal matrices.

Theorem VIL.4.1 There exists a constant ¢,1 < ¢ < 3, such that the
optimal matching distance d(c(A), o(B)) between the eigenvalues of any
two normal matrices A and B is bounded as

d(o(A), o(B)) < c||A-B|. (VIL33)
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Proof. We will show that the inequality (VIL.33) is true if ¢ = cg, the
constant in the inequality (VII.32).

Let n = ¢3]|A — B|| and suppose d(c(A), o(B)) > 7. Then we can find a
§ > n such that d(c(A), o(B)) > 6. By the Marriage Theorem, this is
possible if and only if there exists a set S; consisting of k eigenvalues of
A,1 < k <n, such that the §-neighbourhood {z : dist(z, S;) < 6} contains
less than k eigenvalues of B. Let Sy be the set of all eigenvalues of B outside
this neighbourhood. Then dist(S1, S2) > 8. Let E = P4(S1), F = Pg(S2).
Then the dimension of the range of E is k, and that of the range of F' is
at least n — k + 1. Hence |[EF] = 1. On the other hand, the inequality
(VIL.32) implies that

C
IBFI <2 A~ B =3 <1

This is a contradiction. So the inequality (VIL.33) is valid if we choose
c= 62(< 2.91).

Example VI.3.13 shows that any constant ¢ for which the inequality
(VIL.33) is valid for all normal matrices 4, B must be larger than 1.018. W

We should remark that, for Hermitian matrices, this reasoning using
Theorem VIL.3.2 will give the inequality d(c(4), ¢(B)) < Z||A — BJ.
However, in this case, we have the stronger inequality d(c(A), o(B)) <
||A— Bj|. So, this may not be the best method of deriving spectral variation
bounds. However, for normal matrices, nothing more effective has been
found yet.

VII.5 Perturbation of the Polar Factors

Let A = UP be the polar decomposition of A. The positive part P in this
decomposition is P = |A| = (A*A)!/? and is always unique. The unitary
part U is unique if A is invertible. Then U = AP™!.

It is of interest to know how a change in A affects its polar factors U and
P. Some results on this are proved below.

Let A and B be invertible operators with polar decompositions A = UP
and B = VQ, respectively, where U and V are unitary, and P and @) are
positive. Then,

flA=Bll =lUP-VQll = IlP-U"VQ|l
for every unitarily invariant norm. By symmetry,
llA-Bll =llQ - V*UP|.

Let
Y=P-UVWQ, Z=Q—-V'UP.
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Then

Y+ 2" =PI -UV)+ (I -UV)Q. (VIL34)
This equation is of the form studied in Section VII.2. Note that o(P) is
a subset of the real line bounded below by s,(A4) = [[A7!||7! and o(Q)
is a subset of the real line bounded below by s,(B) = ||B~!||7!. Hence,
dist (o(P), o(—Q)) = sn(A) + sn(B). Hence, by Theorem VII.2.11,

Ilr=uvi| < 1Y + z|I.

1
52(A) + 5u(B)
Since [|Y[| = IZ]| = |4 = Bll and |1 — U=V = [|U = VI, this gives the
following theorem.
Theorem VII1.5.1 Let A and B be invertible operators, and let U,V be
the unitary factors in their polar decompositions. Then

2
U-V|| <
0=V e |

|A— B (VIL35)

for every unitarily invariant norm ||| - ||.
Exercise VIL.5.2 Find matrices A, B for which (VII.35) is an equality.
Exercise VII.5.3 Let A, B be invertible operators. Show that

2m

1141 - Bl I < (1 e B_1“_1> A= Bll,  (VIL36)

where m = min(||Al|, || B|)-

For the Frobenius norm alone, a simpler inequality can be obtained as
shown below.

Lemma VIL.5.4 Let f be a Lipschitz continuous function on C satisfying
the inequality

[f(2) — f(w)| < k|lz—w], forall z,weC.
Then, for all matrices X and all normal matrices A, we have

If(A)X = Xf(A)l2 < K AX — X Al2.

Proof. Assume, without loss of generality, that A = diag (A1,...,An)-
Then, if X is any matrix with entries z;;, we have

IF(A)X — XF(A)I3 >N = FOmisl
©,J

< B =P gl
i
= K|AX - XAl
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Lemma VIL.5.5 Let f be a function satisfying the conditions of Lemma
VII.5.4. Let A, B be any two normal matrices. Then, for every matriz X,

IF(A)X = X f(B)l2 < k[ AX — X B2.

Proof. LetT = ({ 2),Y = (J ¥). Replace A and X in Lemma VIL5.4
by T and Y, respectively. =

Corollary VII.5.6 If A and B are normal matrices, then

I Al = 1B] ll2 < |A = B2 (VIL.37)
Theorem VIL.5.7 Let A, B be any two matrices. Then
I 1AL = IBI I3 + Il 14" = [B*[ I3 < 2| A - BIi3. (VIL38)

Proof. LetT = (X, ‘3), S = (E?, ‘3). Then T and S are Hermitian. Note

that |T| = (M1 ,%,)- So, the inequality (VIL.38) follows from (VIL37).  m

It follows from (VIIL.38) that
[ |A] = |B] l2 < V2 |A - Bll2. (VIL39)

The next example shows that the Lipschitz constant /2 in the above in-
equality cannot be replaced by a smaller number.

Example VIL.5.8 Let

10 1
=(00) 2=

1 1 ¢
1Bl = 1+62(5 52>.

As e — 0, the ratio -”—%Lﬁ approaches /2.

O M

Then |A| = A and

We will continue the study of perturbation of the function |A| in later
chapters.

A useful consequence of Theorem VII.5.7 is the following perturbation
bound for singular vectors.

Theorem VIL.5.9 Let Sy, Ss be two subsets of the positive half-line such
that dist(S1,S52) = 6 > 0. Let A and B be any two matrices. Let E and
E' be the orthogonal projections onto the subspaces spanned by the right
and the left singular vectors of A corresponding to its singular values in
Si. Let F and F' be the projections associated with B in the same way,
corresponding to its singular values in Sy. Then

V2

(|EF|2 + |E'F'|$)Y? < 5 1A= Bl (VIL40)



216 VII. Perturbation of Spectral Subspaces of Normal Matrices
Proof. By Theorem VII1.3.4 we have

[EF|2

IN

511141 = 1Bl Iz,

|E"F'||2

IN

1 * *
SH1ATT= 1B |

These inequalities, together with (VII.38), lead to the inequality (VIL.40). &

VIL.6 Appendix: Evaluating the (Fourier)
constants

The analysis in Section VII.2 has led to some extremal problems in Fourier
analysis. Here we indicate how the constants c¢; and ¢, defined by (VIL.27)
and (VI1.29) may be evaluated.

The symbol ||f||; will denote the norm in the space L' for functions
defined on R or on R2.

We are required to find a function f in L!, with minimal norm, such
that f(s) = 1 when |s| > 1. Since f must be continuous, we might begin
by taking a continuous function that coincides with % for |s] > 1 and
then taking f to be its inverse Fourier transform. The difficulty is that the

function 1 is not in L', and hence its inverse Fourier transform may not

be defined. Note, however, that the function % is square integrable at oo.
So it is the Fourier transform of an L? function. We will show that under
suitable conditions its inverse Fourier transform is in L', and find one that
has the least norm.

Since the function % is an odd function, it would seem economical to
extend it inside the domain (—1,1), so that the extended function is an
odd function on R. This is indeed so. Let f € L*(R) and suppose f(s) = 1
when |s| > 1. Let foqq be the odd part of f, foaa(t) = IL_;L_—Q Then
fodd(s) = % when |s| > 1 and || foaall1 < ||f]l1- Thus the constant c; is also
the infimum of || f||; over all odd functions in L' for which f(s) = 1 when
|s] > 1.

Now note that if f is odd, then

fs) = / f(t)e ™ ®sdt = —i / f(t) sints dt
= -i/ Re f(t) sints dt + /Im f(¢) sints dt.

If this is to be equal to i when |s| > 1, the Fourier transform of Ref should
have its support in (-1, 1). Thus, it is enough to consider purely imaginary
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functions f in our extremal problem. Equivalently, let C be the class of all
odd real functions in L*(R) such that f(s) = & when [s| > 1. Then

1 = inf{|[f]:: f €C}. (VIL41)

Now, let g be any bounded function with period 27 having a Fourier
. 27
series expansion Zane’"‘. This last condition means that [ g(t)dt = 0.
n#0 0
Then, for any f in C,

/ f)gle—tydt =)  — = ', (VII.42)

n#0

Note that this expression does not depend on the choice of f.
For a real number z, let sgnz be defined as -1 if = is negative and 1 if x
is nonnegative. Let fy be an element of C such that

sgn fo(t) = sgn sint. (VIL.43)

Note that the function sgn fy then satisfies the requirements made on g in
the preceding paragraph. Hence, we have

/mmw

/ fo(t)sgn fo(t)d / fo(t)sgn fo(—)dt

—/ﬂm@M4WS/U®W

for every f € C. (Use (VIL.42) with z = 0 and see the remark following it.)
Thus ¢; = || fo||1, where fo is any function in C satisfying (VIL.43). We will
now exhibit such a function.

We have remarked earlier that it is natural to obtain fy as the inverse
Fourier transform of a continuous odd function ¢ such that ¢(s) = —;— for
|s| > 1. First we must find a good sufficient condition on ¢ so that its
inverse Fourier transform

co

/ (s) sints ds

— 00

5(8) =
ot) = 5
(which, by definition, is in L2) is in L'. Suppose ¢ is differentiable on
the whole real line and its derivative ¢ is of bounded variation. Then, an
integration by parts shows

oo o

1
/ p(s) sints ds = n / costs ¢'(s)ds.

—o0 —00
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Another integration by parts, this time for Riemann-Stieltjes integrals,
shows that

[e.e] [e o]
1
/ ©(s) sints ds = 2 / sints dy'(s).

As t — oo this decays as t% So (t) is integrable at co. Since ¢ is in L?, it
is integrable over any bounded interval. Hence, ¢ is in L*.

We will now find a function ¢ that satisfies the conditions of the above
paragraph, and show that if fo = ¢g, then f; satisfies the condition (VII.43).
One such function is

1/s for |s|] > 1
wo(s)=¢ 2 —ZcotZs forO<|s|<1 (VIL.44)
0 fors=0.

From the familiar series expansion

s s 1 > 2z
cot —z == =
2C0 27 ,24—712_:122—4112

(see L.V. Ahlfors, Complez Analysis, 2nd ed., p. 188) one sees that

oo

2s
Wo(s):Zm for 0 <s<1.

n=1

This shows that g is a convex function in 0 < s < 1, and hence gy is
of bounded variation in this domain. On the rest of the positive half-line
too ] is of bounded variation. So ¢o does meet the conditions that are
sufficient to ensure that fy = ¢g is in C.

Using the definition of g, it is straightforward to verify that for ¢t > 0,

2fo(t)

I

1
1- /cot gs sin ts ds,
0

2fo(t) — 2fo(t + ) sint  sin(t +7)

I

7

t t+7
fot) — fot+2m) = |2— 1 41|
0 T = ot Tt w ' 2(t+ 2n) ’

The quantity inside the brackets is positive for all ¢. Since fo(t) — 0 as
t — 00, we can write

o0

fot) = Y [folt+2nm) = fo(t+ (2n + 1)m)] sint

n=0

= h(t) sint,
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where h(t) > 0. This shows that f; satisfies the condition (VI1.43).
Finally, || fo|l1 can be evaluated from the available data. We can easily
see that

. 4 1 1 .
sgn sint = —(sint+ - sin3t+ = sinSt+---)
T 3 5
— _2__ l eint‘
e
nodd

Hence, using (VIL.42) we obtain

[ 1sateyae / folt) sen fo(~t)dt

- iy

n odd

We have shown that ¢; = 7. This result, and its proof given above, are
due to B. Sz.-Nagy.

The two-variable problem, through which ¢y is defined, is more com-
plicated. The exact value of ¢y is not known. We will show that ¢, is fi-
nite by showing that there does exist a function f in L'(R?) such that
f(s1,82) = s when 5% + 53 > 1. We will then sketch an argument that
leads to an estimate of ¢z, skipping the technical details.

It is convenient to identify a point (z,y) in R? with the complex variable
z = z + iy. The differential operator -dd—z = % a% +1 %) annihilates every
complex holomorphic function. It is a well-known fact (see, e.g., W. Rudin,
Functional Analysis, p. 205) that the Fourier transform of the tempered
distribution % is —27 (The normalisations we have chosen are different
from those of Rudin. )

Let ¢ be a C* function on R? that vanishes in a neighbourhood of the
origin, and is 1 outside another neighbourhood of the origin. Let ¥(z) =
fg’l. We will show that the inverse Fourier transform 1 is in L. Note that

1 dola)

z dz

n(2) = op(z) =

This is a C* function with compact support. Hence, 7 is in the Schwartz
space S. Let 77 € S be its inverse Fourier transform. Then (ignoring constant
factors) 1)(z) = 7(z)/z. Since 7 is integrable at oo, so is t. At the origin,
% is integrable and 7j(2) bounded. Hence 1 is integrable at the origin.
This shows that ¢y < oco.
Consider the tempered distribution fo(2) = 5= . We know that fo(£) =
%. However, fo & L. To fix it up we seek an element p in the space of
tempered distributions &’ such that
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(i) p € L' and supp p is contained in the unit disk D,
(ii) if f = fo+p, then fisin L' .

Note that ¢y = inf || f||; over such p.
Writing z = e, one sees that

1 oo T . B
1= 5 /TdT /I; — ie"2mp(2)|d0.
0 -

Let

™

F(r)= / ie'fp(z)d6. (VIL.45)

-7

Then

ks 1 -
/ - - ie%27p(z)|df > 27r|% — F(r)|,

and there is equality here if e®®p(re'?) is independent of 6. Hence, we can
restrict attention to only those p that satisfy the additional condition

(iii) 2p(z) is a radial function.
Putting
G(r)=1-rF(r), (VIL.46)

we see that

¢z = inf /]G(r)|dr, (VIL.47)
0

where G is defined via (VIL.45) and (VIL.46) for all p that satisfy the
conditions (i), (ii), and (iii) above. The two-variable minimisation problem
is thus reduced to a one-variable problem.

Using the conditions on p, one can characterise the functions G that
enter here. This involves a little more intricate analysis, which we will
skip. The conclusion is that the functions G that enter in (VIL.47) are all
L' functions of the form G = §, where g is a continuous even function

1
supported in [—1, 1] such that [ g(t)dt = 1. In other words,
~1

= inf{/ |g(t)|dt : g even, supp g = [—1, 1],/g =1,§ € L'}. (VIL48)
0

If we choose g to be the function g(t) = 1 — |¢|, then §(t) = sinz(%)(%)z.
This gives the estimate ¢y < 7.
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A better estimate is obtained from the function

g(t) = % cos-gt for |t} < 1.

Then
., __ 2 cost
g(t)_ﬂ- 7T2—-4t2.

A little computation shows that

ki

t
/ (t)|dt = % / St G < 2.90901.
0 0

Thus ¢ < 2.91.

The interested reader may find the details in the paper An eztremal
problem in Fourier analysis with applications to operator theory, by R.
Bhatia, C. Davis, and P. Koosis, J. Functional Analysis, 82 (1989) 138-150.

VIL.7 Problems

Problem VII.6.1. Let £ be any subspace of C™. For any vector z let

8(z,£) = min fjz —y.

Then §(z, &) is equal to ||(J — E)z||. If £, F are two subspaces of C", let

p(€,F) = max{ max 6(z,F), max 6(y,F)}.

ll=ll=1 lyli=1

Let dim £ = dim F, and let © be the angle operator between £ and F.
Show that
p(€,F) = ||sin Of = [|E - F||,

where E and F' are the orthogonal projections onto the spaces £ and F.

Problem VIIL.6.2. Let A, B be operators whose spectra are disjoint from

each other. Show that the operator (‘3 g) is similar to (4 3) for every C.

Problem VII.6.3. Let A, B be operators whose spectra are disjoint from
each other. Show that if C commutes with A + B and with AB, then C
commutes with both A and B.

Problem V1I1.6.4. The equation AX + X A* = —I is called the Lyapunov
equation. Show that if o(A) is contained in the open left half-plane, then
the Lyapunov equation has a unique solution X, and this solution is positive
and invertible.
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Problem VIIL.6.5. Let A and B be any two matrices. Suppose that all
singular values of A are at a distance greater than § from any singular value
of B. Show that for every X,

IMX—XB%+WFX—XBW%”2

1
Xt < 5 .

Problem VIIL.6.6. Let A, B be normal operators. Let S; and S5 be two
subsets of the complex plane separated by a strip of width 6. Let E =
P4(S1), F = Pg(Ss2). Suppose E(A — B)E = 0. If T(t) is the function
T(t) = t/V1 — t?, show that

ITUEF| < 1B - B)I.

Prove that this inequality is also valid for all unitarily invariant norms.
This is called the tan©® theorem.

Problem VII.6.7. Show that the inequality (VIL.28) cannot be true if
c2 < %. (Hint: Choose the trace norm and find suitable unitary matrices
A,B)

Problem VII.6.8. Show that the conclusion of Theorem VII.2.8 cannot
be true for any Schatten p-norm if p # 2.

Problem VII.6.9. Let A, B be unitary matrices, and let dist (c(A4), c(B))
= § = /2. If some eigenvalue of A is at distance greater than /2 from o(B),
then o(A) and o(B) can be separated by a strip of width /2. In this case,
the solution of AX — XB = Y can be obtained from Theorem VIIL.2.3.
Assume that all points of o(A) are at distance v/2 from all points of o(B).
Show that the solution one obtains using Theorem VII.2.7 in this case is

X=1/2A7'Y —~1/4YB+1/4 A2y B~
If o(A) = {1, -1} and o(B) = {3, —i}, this reduces to
X =1/2(AY —YB).
Problem VII.6.10. A reformulation of the Sylvester equation in terms
of tensor products is outlined below. Let ¢ be the natural isomorphism

between the Hilbert spaces H® H* and L(H) constructed in Exercise 1.4.4.
Show that for every operator A and for each E;;,

p(A® e ' (Ey) = AEy,
(p(I@A)(p_.l(EU) = EijAT,
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where AT is the transpose of A. .

Thus the multiplication operator A(X) = AX on L(H) can be identified
with the operator A ® I on H ® H*, and the operator B(X) = X B can
be identified with I ® BT. The operator 7 = A — B then corresponds to
A®I-I1®BT.

Use this to give another proof of Theorem VII.2.1.

Sometimes it is more convenient to identify £(H) with H ® H instead of
‘H ® H*. In this case, we have a bijection ¢ from H ® H onto L(H), that
is linear in the first variable and conjugate-linear in the second. With this
identification, the operator A on L(H) corresponds to the operator A® I,
while the operator B corresponds to I ® B*.
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In Theorem VIIL.2.5, all that is required of f is that f (s) = % when

s € o(A) — o(B). This fixes the value of f only at n? points if we are
dealing with n x n matrices. For each n, let b(n) be the smallest constant,

for which we have
b(n
1x1 < X yax - xp,
whenever A, B are n x n Hermitian matrices such that dist (c(4), o(B)) =

é. R. McEachin has shown that

6
b(2) = % =~ 1.22474 (see Example VII.2.10)
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b(3) = -V A 1.32285

8 + 510
18

and that
b= lim b(n) = T
n—00 2
Thus the inequality (VIL26) is sharp with ¢; = %. See, R. McEachin,
A sharp estimate in an operator inequality, Proc. Amer. Math. Soc., 115
(1992) 161-165 and Analyzing specific cases of an operator inequality, Linear
Algebra Appl., 208/209 (1994) 343-365.

The quantity p(£,F) defined in Problem VII.6.1 is sometimes called the
gap between £ and F. This and related measures of the distance between
two subspaces of a Banach space are used extensively by T. Kato, Pertur-
bation Theory for Linear Operators, Chapter 4.



VIII

Spectral Variation of Nonnormal
Matrices

In Chapter 6 we saw that if A and B are both Hermitian or both unitary,
then the optimal matching distance d(c(A), o(B)) is bounded by |A— B]|.
We also saw that for arbitrary normal matrices A, B this need not always
be true (Example VI.3.13). However, in this case, we do have a slightly
weaker inequality d(o(A), o(B)) < 3||A — B|| (Theorem VIL4.1). If one of
the matrices A, B is Hermitian and the other is arbitrary, then we can only
have an inequality of the form d(o(A), o(B)) < ¢(n)||A — B||, where c(n)
is a constant that grows like logn (Problems VI.8.8 and V1.8.9).

A more striking change of behaviour takes place if no restriction is placed
on either A or B. Let A be the nxn nilpotent upper Jordan matrix; i.e., the
matrix that has all entries 1 on its first diagonal above the main diagonal
and all other entries 0. Let B be the matrix obtained from A by adding
an entry € in the bottom left corner. Then the eigenvalues of B are the
nth roots of . So d(c(A), o(B)) = €'/, whereas |A — B|| = . When ¢ is
small, the quantity '/™ is much larger. No inequality like d(c(4), o(B)) <
¢(n)||A — B|| can be true in this case.

In this chapter we will obtain bounds for d(c(A), o(B)), where A, B
are arbitrary matrices. These bounds are much weaker than the ones for
normal matrices. We will also obtain stronger results for matrices that are
not normal but have some other special properties.
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VIII.1 General Spectral Variation Bounds

Throughout this section, A and B will be two n x n matrices with eigenval-
ues ai,.-.,0q, and fi, ..., By, respectively. In Section V1.3, we introduced
the notation

s(o(B), o(A)) = max min|a; — §;]. (VIIL1)
7 1
A bound for this number is given in the following theorem.
Theorem VIII.1.1 Let A, B be n x n matrices. Then

s(a(B), o(4)) < (Al + Bl /™|l A~ B|}/™ (VIIL2)

Proof. Let j be the index for which the maximum in the definition
(VIIL1) is attained. Choose an orthonormal basis ey,...,e, such that
B(31 = ﬁjel, Then

[s(a(B), o(A))]" = [minja; — 5[]

IN

1] le: — 851 = |det(A — ;)]

i=1

< A= BiDell - I(A = BiDen||

by Hadamard’s inequality (Exercise 1.1.3). The first factor on the right-
hand side of the above inequality can be written as ||(A — B)e;|| and is,
therefore, bounded by || A— B]||. The remaining n—1 factors can be bounded
as

1A= BDexl < ekl + 1651 < Al + 1B, for k=2,3,...,n.
This is adequate to derive (VIIIL.2). ]

Example VIII.1.2 Let A = —B = I. Then the two sides of (VIIL.2) are
equal.

Compare this theorem with Theorem VI1.3.3.
Since the right-hand side of (VIIL.2) is symmetric in A and B, we have
a bound for the Hausdorff distance as well:

h(o(4), o(B)) < (Al + | BI)"Y/"I|A - B||/". (VIIL3)

Exercise VIIL.1.3 A bound for the optimal matching distance
d(c(A), o(B)) can be derived from Theorem VIIL.1.1. The argument is
similar to the one used in Problem VI.8.6 and is outlined below.

(i) Fiz A, and for any B let

e(B) = (@MY /A - BV,
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where M = max(||All, |Bl|). Let a,...,an be the eigenvalues of A. Let -
D(e,, €(B)) be the closed disk with radius e(B) and centre a;. Then, The-
orem VIII.1.1 says that o(B) is contained in the set D obtained by taking
the union of these disks.

(i1) Let A(t) = (1—t)A+tB, 0 <t < 1. Then A(0) = A, A(1) = B, and
e(A(t)) < e(B) for all t. Thus, for each 0 <t <1, o(A(t)) is contained in
D.

(#i1) Since the n eigenvalues of A(t) are continuous functions of t, each
connected component of D contains as many eigenvalues of B as of A.

(iv) Use the Matching Theorem to show that this implies

d(o(A), a(B)) < (2n—1)(2M)* /| A - B||*/". (VIIL4)

(v) Interchange the roles of A and B and use the result of Problem I1.5.10
to obtain the stronger inequality

d(c(A), o(B)) < n(2M)'~V/"||A - B||M/™. (VIIL5)

The example given in the introduction shows that the exponent 1/n oc-
curring on the right-hand side of (VIIL.5) is necessary. But then homogene-
ity considerations require the insertion of another factor like (2M)'~1/.
However, the first factor n on the right-hand side of (VIIL.5) can be replaced
by a much smaller constant factor. This is shown in the next theorem. We
will use a classical result of Chebyshev used frequently in approximation
theory: if p is any monic polynomial of degree n, then

1
28X Ip(t)| = 521" (VIIL6)
(This can be found in standard texts such as P. Henrici, Elements of Nu-
merical Analysis, Wiley, 1964, p. 194; T.J. Rivlin, An Introduction to the
Approzimation of Functions, Dover, 1981, p. 31.) The following lemma is
a generalisation of this inequality.

Lemma VIII.1.4 Let T’ be a continuous curve in the complex plane with
endpoints a and b. If p is any monic polynomial of degree n, then

|b—a|"
> i L
max lp(N)] > an1 (VIIL7)

Proof. Let L be the straight line through a and b and S the segment of
L between a and b:

L = {z:z=a+t(b—a), teR}

S = {z:z=a+t(b—a), 0<t <1}

For every point z in C, let 2’ denote its orthogonal projection onto L. Then
|z —w| > |2 —w'| for all z and w.
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-Let Ai ¢ = 1,...,n, be the roots of p. Let A; = a + t;(b — a), where
t; € R, and let 2 =a + t(b — a) be any point on L. Then

n

HIZ—A’I—HI(t—t Jo—a) = b—al [t .l

i=1 i=1

n

From this and the inequality (VIIL.6) applied to the polynomial H(t —t.),
i=1

we can conclude that there exists a point 25 on S for which '

/ —al*
le = A I > 22n 17
Since I' is a continuous curve joining a and b,2z9 = Ay for some A\ € T.

Since |Ag — Ail > |Aj — Ai|, we have shown that there exists a point A\ on
n

b —al”
T such that [p(Ao)| = EI)\O -\ > a1 -

Theorem VIII.1.5 Let A and B be two n X n matrices. Then
d(o(A), o(B)) < 4(l|A]| + |IBI))* /| A - B|*/". (VIIL8)

Proof. Let A(t) = (1 —t)A+tB, 0 <t < 1. The eigenvalues of A(t)
trace n continuous curves in the plane as t changes from 0 to 1. The initial
points of these curves are the eigenvalues of A, and their final points are
those of B. So, to prove (VIIIL.8) it suffices to show that if I' is one of these
curves and a and b are the endpoints of I, then |a — b| is bounded by the
right-hand side of (VIIL.8).

Assume that ||A|| < ||B|| without any loss of generality. By Lemma
VIII.1.4, there exists a point Ag on I' such that
b—al”

Choose 0 < ty < 1 such that X is an eigenvalue of (1 — t9)A + tB. In
the proof of Theorem VIII.1.1 we have seen that if X,Y are any two n x n
matrices and if A is an eigenvalue of Y, then

|det(X — AD)[ < |X = YI(IX] + [y )" .

Choose X = A and Y = (1 — to)A + toB. This gives 1927 < |det(4 -
XoI)| < |1A - B||(JAll + || B|)» . Taking nth roots, we obtain the desired
conclusion. =

Note that we have, in fact, shown that the factor 4 in the inequality
(VIIL8) can be replaced by the smaller number 4 x 2-/™. A further im-
provement is possible; see the Notes at the end of the chapter. However,
the best possible inequality of this type is not yet known.
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VIH.2 Perturbation of Roots of Polynomials

The ideas used above also lead to bounds for the distance between the roots
of two polynomials. This is discussed below.

Lemma VIIL.2.1 Let f(2) = 2" + a;2" ! + --- 4+ a, be any monic poly-
nomsal. Let

=2 max lag|%. (VIIL9)

Then all the roots of f are bounded (in absolute value) by p.

Proof. If |z| > p, then

z a
IL.) = ’1 -+ 21 +
2" z
> 1- ' ' an
- TL
) fall
> 2 22 2"‘
> 0.
Such z cannot, therefore, be a root of f. =
Let ay,...,a, be the roots of a monic polynomial f. We will denote by
Root f the unordered n-tuple {ay,...,an} as well as the subset of the plane

whose elements are the roots of f. We wish to find bounds for the optimal
matching distance d (Root f, Root g) in terms of the distance between the
coefficients of two monic polynomials f and g. Let

f@) = a4 tan,
III.1
9(z) = 2"+bi2" M+ by (VIIL10)
be two polynomials. Let
_ 1/k 1/k
y=2 lrsn]?%cnmax({akl , &), (VIIL.11)

1/n
o(f,9) = {Zlak—bklv" ’“} . (VIIL12)

The bounds given below are in terms of these quantities.

Theorem VII1.2.2 Let f,g be two monic polynomials as in (VIII.10).
Then

s(Root f,Root g) < _lax — bi|u""%, (VIIL13)
k=1

where . is given by (VIIL9).
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Proof. We have

f(2) = g(z) = (ax — be)z"*.

k=1
So, if a is any root of f, then, by Lemma VIII.2.1,

n

lg(@)] < > lak— byl la*7*
k=1

< Y lak —bel
k=1

If the roots of g are B, ..., 3., this says that

[Mle-851< Zlak — by |p™F.
j=1 k=1
So,

n 1/n
minjor — B < {Zlak - bklu""k} -

k=1
This proves the theorem.
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Corollary VIIL.2.3 The Hausdorff distance between the roots of f and g

is bounded as

h(Root f,Rootg) < O(f, g). (VIIL.14)

Theorem VIIL.2.4 The optimal matching distance between the roots of f

and g is bounded as

d(Root f,Root g) <4 O(f, g). (VIIL.15)

Proof. The argument is similar to that used in proving Theorem VIII.1.5.
Let fi = (1—t)f+tg,0 <t < 1.If Ais a root of f, then by Lemma VIIL.2.1,

|A] € v and we have

L7

If

L(FX) = gODI < 1F(N) = g(V)]
D lak —bel AT < [O(f, 9)™

k=1

IN

The roots of f; trace n continuous curves as t changes from 0 to 1. The
initial points of these curves are the roots of f, and the final points are the
roots of g. Let I’ be any one of these curves, and let a,b be its endpoints.

Then, by Lemma VIIL.1.4, there exists a point A on I" such that

R



232 VIIL. Spectral Variation of Nonnormal Matrices

This shows that
la—bl <4x27'"0(f,9),

and that is enough for proving the theorem. |

Exercise VIII.2.5 Let h = (f +g)/2. Then any convex combination of f
and g can also be expressed as h + t(f — g) for some t with |t] < % Use
this to show that

d(Root f,Root g) < 4'~/" O(f, g). (VIIL16)

The first factor in the above inequality can be reduced further; see the
Notes at the end of the chapter. However, it is not known what the optimal
value of this factor is. It is known that no constant smaller than 2 can
replace this factor if the inequality is to be valid for all degrees n.

Note that the only property of v used in the proof is that it is an upper
bound for all the roots of the polynomial (1 —t)f + tg. Any other constant
with this property could be used instead.

Exercise VIIL.2.6 In Problem 1.6.11, a bound for the distance between
the coefficients of the characteristic polynomials of two matrices was ob-
tained. Use that and the combinatorial identity

" /n
k() =n2""!
> ok(3) =
k=0
to show that for any two n x n matrices A, B

d(c(A), o(B)) < n'/™(8M)*~Y/"|4 - B||}/™, (VIIL17)

where M = max(||A||, ||Bl|)- This is weaker than the bound obtained in
Theorem VIII.1.5.

VIII.3 Diagonalisable Matrices

A matrix A is said to be diagonalisable if it is similar to a diagonal
matrix; i.e., if there exists an invertible matrix S and a diagonal matrix D
such that A = S5, This is equivalent to saying that there are n linearly
independent vectors in C™ that are eigenvectors for A. If S is unitary (or the
eigenvectors of A orthonormal), A is normal. In this section we will derive
some perturbation bounds for diagonalisable matrices. These are natural
generalisations of some results obtained for normal matrices in Chapter 6.
The condition number of an invertible matrix S is defined as

cond(S) = [|SI| 1571-

Note that cond(S) > 1, and cond(S) = 1 if and only if S is a scalar multiple
of a unitary matrix.
Our first theorem is a generalisation of Theorem VI.3.3.
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Theorem VIIL.3.1 Let A = SDS™!, where D is a diagonal matriz and
S an invertible matriz. Then, for any matriz B,

s(o(B), o(A)) < cond(S)||A — B|. (VIIL18)

Proof. The proof of Theorem VI.3.3 can be modified to give a proof of
this. Let € = cond(S)||A — B||. We want to show that if 8 is any eigenvalue
of B, then g is within a distance ¢ of some eigenvalue o; of A. By applying
a translation, we may assume that 8 = 0. If none of the ¢; is within a
distance € of this, then A is invertible and

[ATH = ISDT'S7H| < cond(S)|D7Y| <
_ 1
|A-B|

cond(S)
€

So,
AN (B -A)| <A IB- Al <1

Hence, I + A7Y(B — A) is invertible, and so is B = A(I + A~}(B — A))
But then B could not have had a zero eigenvalue.

Note that the properties of the operator norm used above are (i) [ + A is
invertible if || A]| < 1; (ii) || AB|| < ||A|l || B]| for all A, B; (iii) || D|| = max |d;]
if D = diag(di,...,d,). There are several other norms that satisfy these
properties. For example, norms induced by the p-norms on C*,1 < p < oo,
all have these three properties. So, the inequality (VIII.18) is true for a
large class of norms.

Exercise VII1.3.2 Using continuity arguments and the Matching Theo-
rem show that if A and B are as in Theorem VIII.3.1, then

d(o(A), o(B)) < (20— D)eond(S)| A4 - B,
If B is also diagonalisable and B = TD'T~!, then
d(c(A),o(B)) < ncond(S)cond(T)||A — B].

An inequality stronger than this will be proved below by other means.

Theorem VIII.3.1 also follows from the following theorem. Both of these
are called the Bauer-Fike Theorems.

Theorem VIIL.3.3 Let S be an invertible matriz. If B is an eigenvalue
of B but not of A, then

IS(A—BN)7ESHIt < ||IS(A- B)S™. (VIIL19)
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Proof. We can write

S(B - pNns! S[(A—BI)+ B — A)S™*

S(A-BIS HI+S(A-BI)7IS™-S(B - A)S1}.
Note that the matrix on the left-hand side of this equation is not invertible.

Since A — (I is invertible, the matrix inside the braces on the right-hand
side is not invertible. Hence,

1 < |IS(A-BI)71s71-S(B-A)S
< IS(A-BD7ISTH |1S(B - A)S7H-
This proves the theorem. |

We now obtain, for diagonalisable matrices, analogues of some of the
major perturbation bounds derived in earlier chapters for Hermitian ma-
trices and for normal matrices. Some auxiliary theorems about norms of
commutators are proved first.

Theorem VIIL.3.4 Let A, B be Hermitian operators, and let T be a pos-
itive operator whose smallest eigenvalue is vy (i.e., T' > ~I > 0). Then

lIAT —TB[| = ~|lA— Bl (VIIL.20)
for every unitarily invariant norm.
Proof. LetT = ATl' —TI'B, and let Y =T + T*. Then
Y=(A-B)I'+T(4-B).

This is the Sylvester equation that we studied in Chapter 7. From Theorem
VIIL.2.12, we get

2914 - BJI < IY]ll < 2|7 = 2|| AT - TBj).
This proves theé theorem. |

Corollary VIII.3.5 Let A, B be any two operators, and let " be a positive
operator, ' > ~vI > 0. Then

(AT —T'B)® (A'T —I'B7)|| 2vll(A-B)® (A-B)||  (VIL21)
for every unitarily invariant norm.

Proof. This follows from (VIIL.20) applied to the Hermitian operators

(X. '3) and (é’. ]3), and the positive operator (g 19) ]
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Corollary VIIIL.3.6' Let A and B be unitary operators, and let I’ be a
positive operator, I' > vI > 0. Then, for every unitarily invariant norm,

AT = TB]| > v|lA - BI|- (VIIL.22)
Proof. If A and B are unitary, then
5;(AT' —=I'B) = s;(I'B* — A'T") = 5;(A"T — I'B*).

Thus the operator (AI' —T'B) @ (A*" — I'B*) has the same singular values
as those of AT' —I'B, each counted twice. From this we see that (VIII.21)
implies (VII1.22) for all Ky Fan norms, and hence for all unitarily invariant
norms. |

Corollary VIIL3.7 Let A, B be normal operators, and let I be a positive
operator, I' > ~vI > 0. Then

|AT — TBll; > 7||4 - Bll2. (VIIL23)

Proof. Suppose that A is normal and its eigenvalues are aj, . .., a,. Then
(choosing an orthonormal basis in which A is diagonal) one sees that for
every X

[AX - XA[f = lo: — ;i = A" X — XA*[j3.
¥
If A, B are normal, then, applying this to ({§ 5) in place of A and (§ %)
in place of X, one obtains

[AX — XBll» = |A*X — XB*|2. (VIIL24)
Using this, the inequality (VIII.23) can be derived from (VIII.21). |

A famous theorem (called the Fuglede-Putnam Theorem, valid in
Hilbert spaces of finite or infinite dimensions) says that if A and B are
normal, then for any operator X, AX = XB if and only if A*X = XB".
The equality (VIII.24) says much more than this.

Example VIII1.3.8 For normal A, B, the inequality (VII.23) is not al-
ways true if the Hilbert-Schmidt norm is replaced by the operator norm. A
numerical example illustrating this is given below. Let

T = diag(0.6384, 0.6384, 1.0000),

—0.5205 - 0.1642:  0.1042 — 0.3618: —0.1326 — 0.0260:
A= —0.1299+0.1709:  0.4218 +0.4685; —0.5692 —0.3178; |,
0.2850 — 0.1808¢ —0.3850 — 0.4257: —0.2973 — 0.17154¢



236 VIII. Spectral Variation of Nonnormal Matrices

—0.6040 4+ 0.1760:  0.5128 —0.2865¢  0.1306 + 0.0154¢

B= 0.0582 + 0.2850:  0.0154 + 0.4497i —0.5001 — 0.2833:
0.4081 — 0.3333;  —0.0721 — 0.2545; —0.2686 -+ 0.0247:
Then |A" - B
e~ - 0.8763.
7lA - B

Theorem VIII.3.4 and Corollary VIII.3.7 are used in the proofs below.
Alternate proofs of both these results are sketched in the problems. These
proofs do not draw on the results in Chapter 7.

Theorem VIIL.3.9 Let A, B be any two matrices such that A=SD;S™!,
B =TD,T™!, where S,T are invertible matrices and Dy, Dy are real diag-
onal matrices. Then

lIEig* (4) - Big! (B)[| < [cond(S)cond(T)]/2||4— Bl (VIIL25)
for every unitarily invariant norm.

Proof. When A, B are Hermitian, this has already been proved; see (IV.62).
This special case will be used to prove the general result.
‘We can write

A—B=S8DS"' ~TD,T™' = §(D1S7'T — S™'TD,)T™*.
Hence,
ID1S™'T — ST'TDa| = IS~ (A = B)TI| < IS7 1 A = Bl 7.
We could also write
A—B=T(T7'SD, — D,T7'5)S™!

and get
IT=*SD: — DTS\ < |7 1A — Bl IS]I-

Let S~!T have the singular value decomposition S~'T = UT'V. Then

ID1S™'T — ST'TD,|| = WD:UTV ~ UTV Dof|
= [|[U"D,UT —TVD,V*|| = [|[AT — B,

where A’ = U*D,U and B’ = VDyV* are Hermitian matrices. Note that
T-1S = V*I'"1U*. So, by the same argument,

IT='SDy — DT~ S|| = |I0 ™A = BT
We have, thus, two inequalities

aflA = BJ| = [JAT - TB],
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and
BllA - B|| > [|lAT~" =T B,

where o =[S |T||, 8 = ||T~!]| ||S||- Combining these two inequalities
and using the triangle inequality, we have

A=z (L + ) - (S D0 ) 2

_1y1/2]2 _
The operator inequality {( )1/2 (Fﬁl) ] > 0 implies that §+% >

@ ﬁ)l —=175 1. Hence, by Theorem VIII.3.4,

2flA - BIII_( 3 A" — Bl.

)1/2
But A’ and B’ are Hermitian matrices with the same eigenvalues as those
of A and B, respectively. Hence, by the result for Hermitian matrices that
was mentioned at the beginning,

A"~ B'll > |[Eig*(A) — Eig" (B)|l-
Combining the three inequalities above leads to (VIIL.25). ]

Theorem VIII.3.10 Let A,B be any two matrices such that
A=S5D,5"1, B=TDyT!, where S, T are invertible matrices and D1, Dy
are diagonal matrices. Then

da(c(A), o(B)) < [cond(S)cond(T)]*/?||A — Bz (VIIL.26)

Proof. When A, B are normal, this is just the Hoffman-Wielandt in-
equality; see (VI.34). The general case can be obtained from this using
the inequality (VIII.23). The argument is the same as in the proof of the
preceding theorem. |

Theorems VIII.3.9 and VIII.3.10 do reduce to the ones proved earlier
for Hermitian and normal matrices. However, neither of them gives tight
bounds. Even in the favourable case when A and B commute, the left-hand
side of (VII1.24) is generally smaller than [|A — B||, and this is aggravated
further by introducing the condition number coefficients.

Exercise VIIL.3.11 Let A and B be as in Theorem VIII.3.10. Suppose
that all eigenvalues of A and B have modulus 1. Show that

).y (e(A),o(B)) < {Ond(S) cond(T)]*/?||A — Bl| (VIIL.27)

for all unitarily invariant norms. For the special case of the operator norm,
the factor % above can be replaced by 1.

[Hint: Use Corollary VIII.3.6 and the theorems on unitary matrices in
Chapter 6.]
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VIII.4 Matrices with Real Eigenvalues

In this section we will consider a collection R of matrices that has two
special properties: R is a real vector space and every element of R has only
real eigenvalues. The set of all Hermitian matrices is an example of such a
collection. Another example is given below. Such families of matrices arise
in the study of vectorial hyperbolic differential equations. The behaviour of
the eigenvalues of such a family has some similarities to that of Hermitian
matrices. This is studied below.

Example VII1.4.1 Fiz a block decomposition of matrices in which all di-
agonal blocks are square. Let R be the set of all matrices that are block
upper triangular in this decomposition and whose diagonal blocks are Her-
mitian. Then R is a real vector space (of real dimension n?) and every
element of R has real eigenvalues.

In this book we have called a matrix positive if it is Hermitian and all
its eigenvalues are nonnegative. A matrix A will be called laxly positive
if all eigenvalues of A are nonnegative. This will be written symbolically as
0 <L A. If all eigenvalues of A are positive, we will say A is strictly laxly
positive. We say A <! B if B — A is laxly positive.

We will see below that if R is a real vector space of matrices each of
which has only real eigenvalues, then the laxly positive elements form a
convex cone in R. So, the order <% defines a partial order on R.

Given two matrices A and B, we say that ) is an eigenvalue of A with
respect to B if there exists a nonzero vector z such that Az = ABz.
Thus, eigenvalues of A with respect to B are the n roots of the equation
det(A — AB) = 0. These are also called generalised eigenvalues.

Lemma VIII.4.2 Let A, B be two matrices such that every real linear
combination of A and B has real eigenvalues. Suppose B is strictly lazly
positive. Then for every real A, —A + A has real eigenvalues with respect
to B.

Proof. We have to show that for any real A the equation
det(~A+ M —uB) =0 (VIIL28)

is satisfied by n real p.

Let p be any given real number. Then, by hypothesis, there exist n real
A that satisfy (VII1.28), namely the eigenvalues of A+ pB. Denote these A
as ¢;(u) and arrange them so that @1 (p) > @a(p) > -+ > @, (). We have

det(—A + AT — uB) = [ [ (X - wx(w))- (VIIL.29)
k=1
By the results of Section VI.1, each (1) is continuous as a function of

u. For large p, l%(A + uB) is close to B. So, ﬁ(pk(,u) approaches )\i(B) as
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u — 00, and )\,TC(B) as g — —oo. Since B is strictly laxly positive, this
implies that pg(u) — +oo as p — Foo.

So, every A in R is in the range of ¢y for each k = 1,2,...,n. Thus, for
each A, there exist n real p that satisfy (VIII.28). ]

Proposition VIIL.4.3 Let A, B be two matrices such that every real linear
combination of A and B has real eigenvalues. Suppose A is (strictly) lazly
negative. Then every eigenvalue of A+ iB has (strictly) negative real part.

Proof. Let pu = p; +1us be an eigenvalue of A+iB. Then det (A+iB —
p1l — iuoI) = 0. Multiply this by " to get

det[(—B + pal) + i(A — )] = 0.

So the matrix —B + usl has an eigenvalue —i with respect to the matrix
A —p1l, and it has an eigenvalue ¢ with respect to the matrix —(A — uyI).

By hypothesis, every real linear combination of A — u17 and B has real
eigenvalues. Hence, by Lemma VIII1.4.2, A — u; ] cannot be either strictly
laxly positive or strictly laxly negative. In other words,

AL(A) € p1 < AL(A).

This proves the proposition. n

Exercise VII1.4.4 With notations as in the above proof, show that
AL(B) < pa < A{(B).

Theorem VIIIL.4.5 Let R be a real vector space whose elements are ma-
trices with real eigenvalues. Let A, B € R and let A <Y B. Then )\t(A) <
)\,J;(B) fork=1,2,... n.

Proof. We will prove a more general statement: if A, B € R and 0 <% B,
then /\,lc(A + uB) is a monotonically increasing function of the real variable
. It is enough to prove this when 0 <% B; the general case follows by con-
tinuity. In the notation of Lemma VIII.4.2, )\,lc(A + uB) = pi(u). Suppose
wr(p) decreases in some interval. Then we can choose a real number A such
that A — g (p) increases from a negative to a positive value in this interval.
Since @g(p) — *oo as p — oo, for this value of A\, A — pi(u) vanishes
for at least three values of u. So, in the representation (VIIL.29) this factor
contributes at least three zeroes. The remaining factors contribute at least
one zero each. So, for this A, the equation (VIII.28) has at least n + 2 roots
w. This is impossible. u

Theorem VII1.4.6 Let R be a real vector space whose elements are ma-
trices with real eigenvalues. Let A, B € R. Then

AL(A) +AL(B) < AL(A + B) < AL(A) + A{(B) (VIIL.30)
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fork=1,2,... n.

Proof. The matrix B — AL (B)I is laxly positive. So, by the argument in
the proof of the preceding theorem, /\t(A + uB) — pAL(B) is a monotoni-
cally increasing function of u. Choose pu = 0,1 to get the first inequality in
(VII1.30). The same argument shows that /\t (A+pB) — pA}(B) is a mono-
tonically decreasing function of u. This leads to the second inequality. |

Corollary VIIL.4.7 On the vector space R, the function )\% (A) is convez
and the function \.(A) is concave in the argument A.

Theorem VIII1.4.8 Let A and B be two matrices such that all real linear
combinations of A and B have real eigenvalues. Then

max |AL(A) — A\L(B)| < spr(A - B) < ||A - B (VIIL31)

1<k<n

Proof. Let R be the real vector space generated by A and B. By Theorem
VII1.4.6,

Ae(A) + AL (B = A) S AL(B) < AL(A) + A{(B - A).
So,

IAL(B) — AL(A)]

IN

max (| (B — A)], [M.(B - 4)))

= spr(A— B) <||[A- B].
|

Note that Weyl’s Perturbation Theorem is included in this as a special
case.

Exercise VIII.4.9 Show that if only A, B and A+ B are assumed to have
real eigenvalues, then the inequality (VIII.31) might not be true.

VIIL.5 Eigenvalues with Symmetries

We have remarked earlier that the exponent 1/n occurring in the bound
(VIIL.8) is unavoidable. However, if A and B are restricted to some special
classes, this can be improved. In this section we identify some useful classes
of matrices where this exponent can be improved (though not eliminated
altogether). These are matrices whose eigenvalues appear as pairs %A or,
more generally, as tuples {\,w), ...,wP~ 1)}, where w is a pth root of unity.
We will give interesting examples of large classes of such matrices, and then
show how this symmetric distribution of their eigenvalues can be exploited
to get better bounds.
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Example VIIL5.1 Let AT denote the transpose of a matriz. A complex
matriz is called symmetric if AT = A and skew-symmetric if AT = —A.
If A is a skew-symmetric matriz, then X\ is an eigenvalue of A if and only
if —A ts. The class of all such matrices forms a Lie algebra. This is the Lie
algebra associated with the complex orthogonal group.

Example VIIL5.2 If AT is similar to —A, then, clearly, X is an eigen-
value of A if and only if —X is. The Lie algebra corresponding to the sym-
plectic Lie group contains matrices that have this property. Let n be an even
number n = 2r. Let J = (9 é), where I is the identity matriz of order r.

Let A be an n x n matriz such that AT = —JAJ~'. It is easy to see that
we can then write
A A A
T\ A3 AT

where A1, Aa, A3 are T XT matrices of which Ay and Az are skew-symmetric.
The collection of all such matrices is the Lie algebra associated with the
symplectic group.

Example VIIL.5.3 Let X be a matriz of order n = pr having a special
form

0o A 0 0 --- 0
0 0 A 0 --- 0
e N

0 0 0 0 -+ Ay

A, 0 0 O --- 0
where Ay, ..., Ap are matrices of orderr. LetY = diag(l,,wlr,... , WP,
where w s the primitive pth root of unity. Then Y ' XY =wX. So, if A is
an eigenvalue of X, then so are wA.w?X, ..., wP7I\.

Exercise VIII.5.4 Let Z = (fz A1), and suppose R commutes with A;.
Show that tr Z% = 0 if k is odd. Use this to show that X is an eigenvalue of

Z if and only if — X is.

Exercise VIIL.5.5 Let w be the primitive pth root of unity. If X,Y are
two matrices such that XY = wY X, then (X +Y)P = XP +YP.

Exercise VIII.5.6 Let Z be a matriz of order n = pr having a spectal
form

R A O 0 --- 0
0 wR A, 0 --- 0
Z=1 - . . L ’
e . W
A, O 0 --- --- wPIR
where R commutes with Ay, Az, ..., Ap. Use the result of the preceding ez-

ercise to show that tr Z* = 0 if k is not an integral multiple of p. Use this
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to show that if \ is an eigenvalue of Z, then so are wA,w?X\,---,wP™IA.
(This is true even when R commutes with As, ..., Ap_1.)

For brevity, an n-tuple will be called p-Carrollian if n = pr and the
elements of the tuple can be enumerated as

-1 -1
(1, Oy, WAL, e WOy . WP T, WP ), (VIIL.32)

where w is the primitive pth root of unity. We have seen above several
examples of matrices whose eigenvalues are p-Carrollian.

Exercise VIIL.5.7 Let si,1 < k < n denote the elementary symmetric
polynomials in n variables. If (ay,...,a,) is a Carrollian n-tuple written
in the form (VIIL.82), show that modulo a sign factor, we have

s.a”,‘..,a’r’ sz: p
se(ar, .. ’a”):{ 0]( ' ) ifk?é;P-

Use this to show that if ai,...,a, are roots of the polynomial
f(2)=2"4+a12" 4+ +an,
then of,...,aP are Toots of the polynomial
F(2) = 2" +ap2™ 4+ agpz" 2 + - + arp.
Proposition VIII.5.8 Let f,g be monic polynomials of degree n as in

(VIIIL.10). Suppose n = pr and the roots of f and g both are p-Carrollian.
Let v be as in (VIIL.11). Then the roots of f and g can be labelled as

a1,...,0qn and B1,..., 0, in such a way that
T 1/r
p_ gpP _ p(r—k)
max Jof — f7| < 4 {kz_llakp brply } : (VIIL33)

Proof. Use Theorem VII1.2.4 and Exercise VIIL.5.7. u

Theorem VIII1.5.9 Let n = pr and let A, B be two n X n matrices whose
eigenvalues are p-Carrollian. Then

d(c(AP), 0(BP)) < 4 c.p, MP™YVT||A— B||'/", (VIIL.34)

where M = max(||Al, | Bll) and

r 1/7
Crp = {ka (Z’) ) } . (VIIL35)
k=1
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Proof. See Exercise VIII.2.6 and use the preceding proposition. |

The two results above give bounds not on the distance between the roots
themselves but on that between their pth powers. If all of them are outside
a neighbourhood of zero, a bound on the distance between the roots can
be obtained from this. This needs the following lemma.

Lemma VIIL5.10 Let z,y be complez numbers such that |z| > p, |y| > p
and |zP — yP| < C. Then, for some k, 0 <k <p—1,

|z — wFy| < (VIIL36)

pr=t’
where w is the primitive pth root of unity.

Proof. Compare the coefficients of ¢ in the identity

p—1
11k = (@ - w*y)) = (-1)P[(z — )" — 4]
k=0
to see that
Spo1(z —y, T—wy,...,z —wP ly) = (=1)P"lpzP L.

The right-hand side has modulus larger than ppP~! and the left-hand side
is a sum of p terms. Hence, at least one of them should have modulus larger
than pP~1. So, there exists k, 0 < k < p— 1, such that

p—1
[z — oyl = 7~

I#k
J=0

p—1
But H|x — wly| = |zP — yP| < C. This proves the lemma. .
- |
=0

When p = 2, the inequality (VIIL.36) can be strengthened. To see this
note that

|z =y + |z + y> = 2(|z]? + |y|?) > 4p°.

So, either |z — y| or |z + y| must be larger than 2'/2p. Consequently, one
of them must be smaller than C/2'/2p.

Thus if the eigenvalues of A and B are p-Carrollian and all have modulus
larger than p, then d(c(A), o(B)) is bounded by C/pP~!, where C is the
quantity on the right-hand side of (VIII.34). When p = 2, this bound
can be improved further to C/v/2p. The major improvement over bounds
obtained in Section 2 is that now the bounds involve ||A — BJ|*/" instead of
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| A— B||*/". For low values of p, the factors c,, can be evaluated explicitly.
For example, we have the combinatorial identity

S :21;(”) —n2"2? ifn=2r
2%
k=0

VIII.6 Problems

Problem VIIL.6.1. Let f(2) = 2" +a;2" ! + --- + a, be a monic poly-
nomial. Let pi,...,u, be the numbers |ax|'/*, 1 < k < n, rearranged
in decreasing order. Show that all the roots of f are bounded (in absolute
value) by p + po. This is an improvement on the result of Lemma VIII.2.1.

Problem VIII.6.2. Fill in the details in the following alternate proof of
Theorem VIIIL.3.1.
Let 8 be an eigenvalue of B but not of A. If Bx = fz, then

z=S(BI - D)"'S~H(B - A)z.

Hence,
Izl < cond(S)l|B — All I|(8I = D) |zl

From this it follows that

min|fB — ;] < cond(S)||B — A|l.
3

Notice that this proof too relies only on those properties of || - || that are
shared by many other norms (like the ones induced by the p-norms on C™).
See the remark following Theorem VIIL.3.1.

Problem VIIIL.6.3. Let B be any matrix with entries b;;. The disks
Di={z:|z—bu| <Y |byl}, 1<i<nm,
J#i

are called the Gersgorin disks of B. The Gersgorin Disk Theorem
says that

O'(B) C OD,,

i=1
and that any connected component of the set UDi contains as many eigen-

values of B as the number of disks that form Ehis component.
The proof of this is outlined below.
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Consider the vector norm ||zl = max |z;| on C™. The norm it induces
1<i<n

on operators is
n
[Alloo—oo = Jpax 2; lag]-
=

Let D be the diagonal of B, and let H = B — D. Let 8 be an eigenvalue
of B but not of D. Then

BI—B=pI-H-D= (8] — D) - (8] — D)~H].

Since BI — B is not invertible, neither is the matrix in the square brackets.
Hence,
1< ||(BI = D)™ Hlloo—co-

From this, the first part of the theorem follows. The second part follows
from the continuity argument we have used often. Let B(t) = D+tH, 0 <
t < 1. Then B(0) = D, B(1) = B; the eigenvalues of B(t) trace continuous
curves that join the eigenvalues of D to those of B.

Note that the proof of the first part is very similar to that of Theorem
VIIL.3.3; in fact, it is a special case of the earlier one.

Problem VIIL.6.4. Given any matrix A, we can find a unitary U such
that
U'AU =T =D + N,

where T is upper triangular, D is diagonal, and N is strictly upper trian-
gular and, hence, nilpotent. Such a reduction is not unique. The measure
of nonnormality of A is defined as

A(A) = inf [N,

where the infimum is taken over all N that occur in the possible triangular
forms of A given above.

Now let B be any other matrix, and let § be an eigenvalue of B but not
of A. From (VIIL19) we have

[(D—BI+N)'<|lA-B].
Show that
(D-BI+N)™' = [[+(D-pN'NI"(D-p)""
[I—-(D-pBI)"'N+{(D-pI)"'N}?
+o A (=)D = B TINYI(D - BT

Let § = dist(B3,0(A)). From this equation and the inequality before it
conclude that

lA-B|| ™! < 6{1+é({1—)+<¥)2+---+(%ﬂ>n_1}.
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Now show that

) _lA-5]

(ata)

( ¢
A(A
6

1+____7+...

This is Henrici’s Theorem.

Let f(t) =t*/(1+t+---+t*"1). Then f(t) is close to t* for small values
of t, and to t for large values of ¢. Thus, when A(A) is close to 0, i.e.,
when A is close to being normal, the above bound leads to the asymptotic
inequality

s(o(B), o(A) S ]A-BJ.
In Theorem VI.3.3 we saw that if A is normal, then s(o(B), o(4)) <
|A- Bl

Problem VIIL.6.5. Let v be any norm on the space of matrices. The
v-measure of nonnormality of A is defined as

AL (A) = inf v(N),

where N is as in Problem VIII.6.4. Suppose that the norm v is such that
[A]l < v(A) for all A. Show that A(A) in Henrici’s Theorem can be replaced
by A, (A).

Problem VIII.6.6. For the Hilbert-Schmidt norm || - ||2, the measure of
nonnormality satisfies the inequality
nd—n

1/4
M) < (BF7) T A any?

for every n x n matrix A. (The proof is a little intricate.)

Problem VIIL.6.7. Let A have the Jordan canonical form J = SAS™!.
Let m be the size of the largest Jordan block in J. Let B be any other
matrix. Show that for every eigenvalue 3 of B there is an eigenvalue a of

A such that

18— o™ -1
—_— < ||IS(A=B)S .
T 7ot < ISt-B)s7

Problem VIII.6.8. Let A,B,I' be as in Theorem VIIL.3.4.
Let (A — B)z; = \jz;, where the vectors z; are orthonormal and the
eigenvalues \; are indexed in such a way that s; := s;(A — B) = |A;]. Let
y; be the orthonormal vectors that satisfy the relations (A — B)z; = s;y;-
Note that y; = %z ;. Note also that the difference of AT' ~I'B and (A— B)T
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is skew-Hermitian. Use this to show that, for 1 < k < n,

k k
Re Y (z;,(AT~TB)y;) = Re Y (z;, (A— B)l'y;)
j=1

=1

k
i (5, Tyj) 2> ’stj-
1 j=1

[
M=

[y
I

Use this to give an alternate proof of Theorem VIII.3.4. ( See Problem
I11.6.6.)

Problem VIIIL.6.9. Fill in the details in the following proof of Corollary
VIIL.3.7. Let D =T — «I. Then

| AT — TB|3 I(AD — DB) +v(A - B)|3

IAD — DBJj; +~*| A~ BJj3

+2vRe tr (AD — DB)*(A — B).

So, it suffices to show that the last term is positive. This can be seen by
writing

2 Re tr (AD—DB)*(A-B) = tr {(AD-DB)*(A-B)+(A-B)*(AD—-DB)}
and then using cyclicity of the trace to reduce this to

tr D[(A— B)*(A— B) + (A— B)(A— B)*].

Problem VIIL.6.10. (i) Let X be a contractive matrix; i.e., let || X|| < 1.
Show that there exist unitaries U and V such that X = (U + V). Use this
to show that if D; and D, are real diagonal matrices, then

lID1X — XD,|| < ||Di — D]

for every unitarily invariant norm. [(See (IV.62).]
(i) Let A = SD;S™!, B = TD,T™!, where S and T are invertible
matrices and D;, D5 are real diagonal matrices. Show that

Il A = BJ| < cond(S)cond(T)||Eig* (4) — Eig' (B)|].-
Problem VIIL.6.11. Let A and B be any two diagonalisable matrices with
eigenvalues Ay,..., A\p and p1,. .., in, respectively. Let A = SD; S, B =

TD,T-1, where S and T are invertible matrices and D;, D, are diagonal
matrices. Show that

1/2
|A— B2 < cond(S)cond(T)mT?x (Zl)‘i — p“rr(i)lz) ’
i
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where 7 varies over all permutations on n symbols. [See Theorem VI.4.1.]

Problem VIIL.6.12. Let A be a Hermitian matrix with eigenvalues
ai,.-.,an. Let B be any other matrix. For 1 < j < m, let

Dj ={z:|z—0a;| <||A- B, [Im 2| < [[Im(A - B)||}-

The regions D; are disks flattened on the top and bottom by horizontal
lines. Show that the eigenvalues of B are contained in UDj’ and that each

Fi
connected component of this set contains as many eigenvalues of A as of B.

Problem VIII.6.13. Let R be a real vector space whose elements are
k

matrices with real eigenvalues. Show that the function Z/\Jl-(A) is a convex
j=1
k
function of A on this space for 1 < k < n. Show that the function Z)\JT—(A)
=1
is concave on R.

Problem VIIIL.6.14. If R; is invertible, then

R A\ _ (R 0 I R'A,
Ay Ry ) \ Az Ry— ART'Ay 0 I :

Use this to show that if
_ R A
7~(a &)

and R commutes with A;, then Z and —Z have the same eigenvalues. (Show
that they have the same characteristic polynomials.) This gives another
proof of the statement at the end of Exercise VIIL.5.6, for p = 2. The same
method works for p > 2. For instance, the case p = 3 is dealt with as
follows. If R;, Ry are invertible, then

R A 0

0 Ry A

A3 0 R3

Ry 0 0 I Ri'A 0
=| o Ry 0 0 I R4

As -AgRl_lAl R3+A3R1—1A1R;1A2 0 0 I

Derive similar factorisations for p > 3, and use this to prove the statement
at the end of Exercise VIIL.5.6.
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VIIL.7 Notes and References

Many of the topics in this chapter have been presented earlier in R. Bhatia,
Perturbation Bounds for Matriz Figenvalues, Longman, 1987, and in G.W.
Stewart and J.-G. Sun, Matriz Perturbation Theory, Academic Press, 1990.
Some results that were proved after the publication of these books have, of
course, been included here.

The first major results on perturbation of roots of polynomials were
proved by A. Ostrowski, Recherches sur £a méthode de Graffe et Les zeros
des polyndmes et des series de Laurent, Acta Math., 72 (1940), 99-257. See
also Appendices A and B of his book Solution of Equations and Systems of
Equations, Academic Press, 1960. Theorem VIII.2.2 is due to Ostrowski.
Using this he proved an inequality weaker than (VIIL.15); this had a factor
(2n — 1) instead of 4. The argument used by him is the one followed in
Exercise VIII.1.3.

Ostrowski was also the first to derive perturbation bounds for eigenvalues
of arbitrary matrices in his paper Uber die Stetigkeit von charakteristischen
Wurzeln in Abhdngigkeit von den Matrizenelementen, Jber. Deut. Mat. -
Verein, 60 (1957) 40-42. See also Appendix K of his book cited above.

The inequality he proved involved the matrix norm ||A], = Z[aij|,
%]

which is easy to compute but is not unitarily invariant. With thisvnorm,
his inequality is like the one in (VIIL4).

An inequality for d(c(A), o(B)) in terms of the unitarily invariant
Hilbert-Schmidt norm was proved by R. Bhatia and K.K. Mukherjea, On
the rate of change of spectra of operators, Linear Algebra Appl., 27 (1979)
147-157. They followed the approach in Exercise VII1.2.6 and, after a little
tidying up, their result looks like (VIII.4) but with the larger norm || - |2
instead of || - ||. This approach was followed, to a greater success, in R. Bha-
tia and S. Friedland, Variation of Grassmann powers and spectra, Linear
Algebra Appl., 40 (1981) 1-18. In this paper, the norm || - || was used and
an inequality slightly weaker than (VIII.4) was proved.

An improvement of these inequalities in which (2n — 1) is replaced by
n was made by L. Elsner, On the variation of the spectra of matrices,
Linear Algebra Appl., 47 (1982) 127-138. The major insightful observation
was that the Matching Theorem does not exploit the symmetry between
the polynomials f and g, nor the matrices A and B, under consideration.
Theorem VIII.1.1 is also due to L. Elsner, An optimal bound for the spectral
variation of two matrices, Linear Algebra Appl., 71 (1985) 77-80.

The argument using Chebyshev polynomials, that we have employed in
Sections VIII.1 and VIII.2, seems to have been first used by A. Schonhage,
Quasi-GCD computations, J. Complexity, 1(1985) 118-137. (See Theorem
2.7 of this paper.) It was discovered independently by D. Phillips, Improv-
ing spectral variation bounds with Chebyshev polynomials, Linear Algebra
Appl., 133 (1990) 165-173. Phillips proved a weaker inequality than (VIIL.8)
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with a factor 8 instead of 4.

This argument was somewhat simplified and used again by R. Bhatia,
L. Elsner, and G. Krause, Bounds for the variation of the roots of a poly-
nomial and the eigenvalues of a matriz, Linear Algebra Appl., 142 (1990)
195-209. Theorems VIIL.1.5 and VIIL.2.4 (and their proofs) have been
taken from this paper. Using finer results from Chebyshev approximation,
G. Krause has shown that the factor 4 occurring in these inequalities can
be replaced by 3.08. See his paper Bounds for the variation of matriz eigen-
values and polynomial roots, Linear Algebra Appl., 208/209 (1994) 73-82.
It was shown by Bhatia, Elsner, and Krause in the paper cited above that,
in the inequality (VIIL.15), the factor 4 cannot be replaced by anything
smaller than 2.

Theorems VIII.3.1 and VIII.3.3 were proved in the very influential paper,
F.L. Bauer and C.T. Fike, Norms and ezclusion theorems, Numer. Math.,
2 (1960) 137-141. See the discussion in Stewart and Sun, p. 177.

The basic idea behind results in Section VIIL.3 from Theorem VIII.3.4
onwards is due to W. Kahan, Inclusion theorems for clusters of eigenvalues
of Hermitian matrices, Technical Report, Computer Science Department,
University of Toronto, 1967. Theorem VIII.3.4 for the special case of the
operator norm is proved in this report. The inequality (VIIL.23) is due
to J.-G. Sun, On the perturbation of the eigenvalues of a normal matriz,
Math. Numer. Sinica, 6(1984) 334-336. The ideas of Kahan's and Sun’s
proofs are outlined in Problems VII1.6.8 and VIII.6.9. Theorem VIII.3.4,
in its generality, was proved in R. Bhatia, C. Davis, and F. Kittaneh,
Some inequalities for commutators and an application to spectral variation,
Aequationes Math., 41(1991) 70-78. The three corollaries were also proved
there. These authors then used their commutator inequalities to derive
weaker versions of Theorems VIII.3.9 and VIII.3.10; in all these, the square
root in the inequalities (VIII.25) and (VIII.26) is missing. For the operator
norm alone, the inequality (VIIL.25) was proved by T.-X. Lu, Perturbation
bounds for eigenvalues of symmetrizable matrices, Numerical Mathemat-
ics: a Journal of Chinese Universities, 16(1994) 177-185 (in Chinese). The
inequalities (VIIL.25)-(VIIL.27) have been proved recently by R. Bhatia,
F. Kittaneh and R.-C. Li, Some inequalities for commutators and an appli-
cation to spectral variation II, Linear and Multilinear Algebra, to appear.

The inequality in Problem VIII.6.10 was proved in R. Bhatia,
L. Elsner, and G. Krause, Spectral variation bounds for diagonalisable ma-
trices, Preprint 94-098, SFB 343, University of Bielefeld. Example VIII.3.8
(and another example illustrating the same phenomenon for the trace
norm) was constructed in this paper. The inequality in Problem VIIL6.11
was found by L. Elsner and S. Friedland, Singular values, doubly stochastic
matrices and applications, Linear Algebra Appl., 220(1995) 161-169.

The results of Section VIII.4 were discovered by P. D. Lax, Differen-
tial equations, difference equations and matriz theory, Comm. Pure Appl.
Math., 11(1958) 175-194. Lax was motivated by the theory of linear partial
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differential equations of hyperbolic type, and his proofs used techniques
from this theory. The paper of Lax was followed by one by H.F. Wein-
berger, Remarks on the preceding paper of Lar, Comm. Pure Appl. Math.,
11 (1958) 195-196. He gave simple matrix theoretic proofs of these theo-
rems, which we have reproduced here. L. Garding later pointed out that
these are special cases of his results for hyperbolic polynomials that ap-
peared in his papers Linear hyperbolic partial differential equations with
constant coefficients, Acta Math., 84(1951) 1-62, and An inequality for hy-
perbolic polynomials, J. Math. Mech., 8(1959) 957-966. A characterisation of
the kind of spaces R discussed in Section VIII.4 was given by H. Wielandt,
Lineare Scharen von Matrizen mit reellen Eigenwerten, Math. Z., 53(1950)
219-225.

It was observed by R. Bhatia, On the rate of change of spectra of oper-
ators II, Linear Algebra Appl., 36 (1981) 25-32, that better perturbation
bounds can be obtained for matrices whose eigenvalues occur in pairs £A.
This was carried further in the paper Symmetries and variation of spectra,
Canadian J. Math., 44 (1992) 1155-1166, by R. Bhatia and L. Elsner, who
considered matrices whose eigenvalues are p-Carrollian. See also the paper
by R. Bhatia and L. Elsner, The g-binomial theorem and spectral symmetry,
Indag. Math., N.S.; 4(1993) 11-16. The material in Section VIIL5 is taken
from these three papers.

The bound in Problem VIIL.6.1 is due to Lagrange. There are several
interesting and useful bounds known for the roots of a polynomial. Since
the roots of a polynomial are the eigenvalues of its companion matrix,
some of these bounds can be proved by using bounds for eigenvalues. An
interesting discussion may be found in Horn and Johnson, Matriz Analysis,
pages 316-319.

The Gersgorin Disk Theorem was proved in S.A. Gersgorin, Uber die
Abrenzung der Eigenwerte einer Matriz, Izv. Akad. Nauk SSSR, Ser. Fiz. -
Mat., 6(1931) 749-754. A matrix is called diagonally dominant if |a;;| >
Zlaijl, 1 < i < n. Every diagonally dominant matrix is nonsingular.
i
Gersgorin’s Theorem is a corollary. This theorem is applied to the study of
several perturbation problems in J.H. Wilkinson, The Algebraic Figenvalue
Problem. A comprehensive discussion is also given in Horn and Johnson,
Matriz Analysis.

The results of Problems VIIL.6.4, VIII.6.5, and VIIL.6.6 are due to
P. Henrici, Bounds for iterates, inverses, spectral variation and fields of
values of nonnormal matrices, Numer. Math., 4 (1962) 24-39. Several other
very interesting results that involve the measure of nonnormality are proved
in this paper. For example, we know that the numerical range W(A) of a
matrix A contains the convex hull H(A) of the eigenvalues of A, and that
the two sets are equal if A is normal. Henrici gives a bound for the distance
between the boundaries of H(A) and W(A) in terms of the measure of
nonnormality of A.
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There are several different ways to measure the nonnormality of a ma-
trix. Problem VIIL.6.6 relates two such measures by an inequality. The re-
lations between several different measures of nonnormality are discussed in
L. Elsner and M.H.C. Paardekooper, On measures of nonnormality of ma-
trices, Linear Algebra Appl., 92(1987) 107-124.

Is a nearly normal matrix near to an (exactly) normal matrix? More pre-
cisely, for every € > 0, does there exist a § > 0 such that if ||[A*A—AA*|| < §
then there exists a normal B such that |4 — B|| < €? The existence of such
a 6 for each fixed dimension n was shown by C. Pearcy and A. Shields, Al-
most commuting matrices, J. Funct. Anal., 33(1979) 332-338. The problem
of finding a § depending only on € but not on the dimension n is linked
to several important questions in the theory of operator algebras. This
has been shown to have an affirmative solution in a recent paper: H. Lin,
Almost commuting selfadjoint matrices and applications, preprint, 1995.
No explicit formula for 6 is given in this paper. In an infinite-dimensional
Hilbert space, the answer to this question is in the negative because of
index obstructions.

The inequality in Problem VIII.6.7 was proved in W. Kahan, B.N. Par-
lett, and E. Jiang, Residual bounds on approzimate eigensystems of non-
normal matrices, SIAM J. Numer. Anal. 19(1982) 470-484.

The inequality in Problem VIII.6.12 was proved by W. Kahan, Spectra
of nearly Hermitian matrices, Proc. Amer. Math. Soc., 48(1975) 11-17.

For 2 x 2 block-matrices, the idea of the argument in Problem VIII.6.14
is due to M.D. Choi, Almost commuting matrices need not be nearly com-
muting, Proc. Amer. Math. Soc. 102(1988) 529-533. This was extended to
higher order block-matrices by R. Bhatia and L. Elsner, Symmetries and
variation of spectra, cited above.



IX

A Selection of Matrix Inequalities

In this chapter we will prove several inequalities for matrices. From the
vast collection of such inequalities, we have selected a few that are simple
and widely useful. Though they are of different kinds, their proofs have
common ingredients already familiar to us from earlier chapters.

IX.1 Some Basic Lemmas

If A and B are any two matrices, then AB and BA have the same eigen-
values. (See Exercise 1.3.7.) Hence, if f(A) is any function on the space of
matrices that depends only on the eigenvalues of A, then f(AB) = f(BA).
Examples of such functions are the spectral radius, the trace, and the de-
terminant. If A is normal, then the spectral radius spr(A) is equal to || A||.
Using this, we can prove the following two useful propositions.

Proposition IX.1.1 Let A, B be any two matrices such that the product
AB is normal. Then, for every unitarily invariant norm, we have

ABI < I BA- (IX.1)

Proof. For the operator norm this is an easy consequence of the two facts
mentioned above; we have

|AB|| = spr(AB) = spr(BA) < || BA||.

The general case needs more argument. Since AB is normal, s;(AB) =
IAj(AB)|, where |A{(AB)| > -+ > |A\(AB)| are the eigenvalues of AB
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arranged in decreasing order of magnitude. But |A;(AB)| = |X;(BA)|. By
Weyl’s Majorant Theorem (Theorem I1.3.6), the vector |A(BA)| is weakly
majorised by the vector s(BA). Hence we have the weak majorisation
s(AB) <4 s(BA). From this the inequality (IX.1) follows. n

Proposition IX.1.2 Let A, B be any two matrices such that the product
AB is Hermitian. Then, for every unitarily invariant norm, we have

IABI| < [[Re(BA)[- (IX.2)

Proof. The eigenvalues of BA, being the same as the eigenvalues of the
Hermitian matrix AB, are all real. So, by Proposition 111.5.3, we have the
majorisation A(BA) < A(Re BA). From this we have the weak majorisation
[A(BA)| <w |A(Re BA)|. (See Examples 11.3.5.) The rest of the argument
is the same as in the proof of the preceding proposition. |

Some of the inequalities proved in this chapter involve the matrix expo-
nential. An extremely useful device in proving such results is the following
theorem.

Theorem IX.1.3 (The Lie Product Formula) For any two matrices A, B,

A B\™
li — — = A+ B). IX.
Jim (exp g m> exp(A + B) (IX.3)
Proof. For any two matrices X,Y, and for m =1,2,..., we have
m—1 )
Xm—y™m=Y" X"I(X -Y)YI.
=0
Using this we obtain
[X™—Y™| <m M™ X - Y, (IX.4)

where M = max(|| X, [[Y]])-
Now let X,, = exp(AJrTB), Y = exp % exp % m = 1,2,.... Then

7

| Xm|| and ||Y:.|| both are bounded above by exp (“AI%B—"). From the

power series expansion for the exponential function, we see that

2

et @y ] ez @y e))

0 <$) for large m.

Il

Xm—Ym

A+B 1[/A+B\?
1+++(+)+



IX.2 Products of Positive Matrices 255

Hence, using the inequality (IX.4), we see that
m m 1
15 = Yl < m exp(lAll +1BINO (= )

This goes to zero as m — oo. But X = exp(A + B) for all m. Hence,
lim Y,' =exp(A+ B). This proves the theorem. n
m—00

The reader should compare the inequality (IX.4) with the inequality in
Problem 1.6.11.
Exercise IX.1.4 Show that for any two matrices A, B

m-—00

. B A B\™
lim (exp 5 SXP o eXp Z—ﬂ) = exp(A + B).

Exercise IX.1.5 Show that for any two matrices A, B

tB tB\'/*
}ir% (exp 5 exp tA exp ?) = exp(4 + B).

IX.2 Products of Positive Matrices

In this section we prove some inequalities for the norm, the spectral radius,
and the eigenvalues of the product of two positive matrices.

Theorem IX.2.1 Let A, B be positive matrices. Then
|A°B?|| < ||ABJ|®>, for 0<s<1l (IX.5)
Proof. Let
D={s:0<s<1, |A°B%| < |ABJ°}.

Then D is a closed subset of [0,1] and contains the points 0 and 1. So, to
prove the theorem, it suffices to prove that if s and ¢ are in D then so is
=t We have

s+t s+t

A= B |?

s+t +t

|B*F* As+t B*5*|| = spr(BT ATt B
— spr(Bs As+t Bt) < ”Bs As+t Bt”
< |B°4°|| |A'B'| = | A*B°|| || A"B|.

s+t
2

)

At the first step we used the relation |T||2 = | T*T||, and at the last step
the relation ||| = ||T|| for all T'. If s,¢ are in D, this shows that

s+

| A% B || < | AB|(++V/2,
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and this proves the theorem. B
An equivalent formulation of the above theorem is given below, with

another proof that is illuminating.

Theorem IX.2.2 If A, B are positive matrices with || AB|| < 1, then ||A°Bs|| <

1 for0<s<1.

Proof. We can assume that A > 0. The general case follows from this by
a continuity argument. We then have the chain of implications

IAB|| <1 = |AB?A|| <1= AB%A<I
= B?< A% (by Lemma V.1.5)
= B < A™?% (by Theorem V.1.9)
= A°B?*A° < I (by Lemma V.1.5)
= |JA*B¥A%|| <1= ||A°B°| < 1.
|
Another equivalent formulation is the following theorem.
Theorem 1X.2.3 Let A, B be positive matrices. Then
|AB|* < [|A*B*||, for t>1. (IX.6)

Proof. From Theorem IX.2.1, we have ||A'/t BY/¢|| < ||AB||'/t for t > 1.
Replace A, B by A, BY, respectively. n

Exercise 1X.2.4 Let A, B be positive matrices. Then
(i) ||A* BY*||t is a monotonically decreasing function of t on (0, 00).
(ii) ||A*Bt||** s a monotonically increasing function of t on (0,00).

In Section 5 we will see that the inequalities (IX.5) and (IX.6) are, in
fact, valid for all unitarily invariant norms.

Results akin to the ones above can be proved for the spectral radius in
place of the norm. This is done below.

If A and B are positive, the eigenvalues of AB are positive. (They are
the same as the eigenvalues of the positive matrix AY/2BAY2) If T is
any matrix with positive eigenvalues, we will enumerate its eigenvalues as
A(T) > Xa(T) > -+ > A(T) > 0. Thus A (T) is equal to the spectral
radius spr (T).

Theorem IX.2.5 If A, B are positive matrices with A\1(AB) < 1, then
M(A°B°) <1 for0<s<1.
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Proof. As in the proof of Theorem 1X.2.2, we can assume that A > 0.
We then have the chain of implications

/\1(AB)SI = AI(AI/ZBA1/2)SI = AI/ZBAI/QSI
= B<A' = B <A = ABAT <]
= M(AYZBAY?) <1 = M\(A°BS) <1
This proves the theorem. ]
It should be noted that all implications in this proof and that of Theorem

IX.2.2 are reversible with one exception: if A > B > 0, then A® > B® for
0 < s < 1, but the converse is not true.

Theorem IX.2.6 Let A, B be positive matrices. Then
AM(A°B°) < AJ(AB), for 0<s<1. (IX.7)

Proof. Let A;(AB) = o?. If a # 0, we have /\1(—2— g) = 1. So, by Theorem
IX.2.5, A\ (A°B®) < o = \{(4B).

If @ = 0, we have \;(A'/2BA'/?) =0, and hence A/?BA'/? = 0. From
this it follows that the range of A is contained in the kernel of B. But then
As/2B5A%/?2 = 0, and hence, A\ (A°B®) = 0. (]

Exercise IX.2.7 Let A, B be positive matrices. Show that
A(AB) < M(A'BY), for t>1. (IX.8)

Exercise I1X.2.8 Let A, B be positive matrices. Show that
(i) [M(AYEBYY)] is a monotonically decreasing function of t on (0, 00).
(i) [A1(ABY)]Yt  is a monotonically increasing function of t on (0, 00).

Using familiar arguments involving antisymmetric tensor products, we
can now obtain stronger results.

Theorem IX.2.9 Let A, B be positive matrices. Then, for0 <t < u < oo,
we have the weak majorisation

AVEH(ABY) <, AM(A“BY). (IX.9)
Proof. For k = 1,2,...,n, consider the operators A*A and A*B. The

result of Exercise IX.2.8(ii) applied to these operators in place of A, B
yields the inequalities

k k
1 1 i
I »/4atBy) < [T A/ (4B (IX.10)
j=1 =1
fork=1,2,...,n. The assertion of 11.3.5(vii) now leads to the majorisation

(IX.9). n
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Theorem IX.2.10 Let A, B be positive matrices. Then for every unitarily
invariant norm we have

IB*ABY| < [(BAB)!||, for0<t<1, (IX.11)
I(BAB)'| < [IB*A*B||, fort>1. (IX.12)

Proof. We have
IB*A'BY|| = ||(A"2B*)*(A?BY)| = | A*/*B|* < | A**B||*,
for 0 <t <1, by Theorem IX.2.1. So
|BtA'BY| < | BABJ|*, for0 <t < 1.
This is the same as saying that
s1(B*A'B') < st (BAB).

Replacing A and B by their antisymmetric tensor powers, we obtain, for
1<k<n,

k k
[1s:(BA*BY) < [ [ s{(BAB).

=1 =1

By the argument used in the preceding theorem, this gives the majorisation
s(B*A'B') <, s([BAB]Y),

which gives the inequality (IX.11).
The inequality (IX.12) is proved in exactly the same way. |

Exercise IX.2.11 Derive (as a special case of the above theorem) the fol-
lowing inequality of Araki-Lieb-Thirring. Let A, B be positive matrices, and
let s,t be positive real numbers with t > 1. Then

tr[(BY2ABY?)%] < tr[(BY/2AtB/?)"]. (IX.13)

IX.3 Inequalities for the Exponential Function

For every complex number z, we have |e?| = |e®¢Z|. Our first theorem is a
matrix version of this.

Theorem IX.3.1 Let A be any matriz. Then

el < flle®e A1) (IX.14)

for every unitarily invariant norm.
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Proof. For each positive integer m, we have ||A™|| < ||A||™. This is the
same as saying that s?(A™) < s2™(A) or s;(A*™A™) < sT(A*A). Replac-
ing A by AFA, we obtain for 1 <k <n

k k
[Tss(amam) < []s;(1a74m).

i=1 j=1

Now, if we replace A by e4/™ we obtain

k k
[Isie* e?) < [sitle™ /met/™m).
=1 j=1

Letting m — 00, and using the Lie Product Formula, we obtain

k k
[Tsite® e®) < [LssCe® ).
i=1 j=1

Taking square roots, we get

k k
Hsj(e Hs](eReA
3=1 3=1

This gives the majorisation
s(e?) <, s(efe4)
(see 11.3.5(vii)), and hence the inequality (IX.14). ]

It is easy to construct an example of a 2 x 2 matrix A, for which ||e?]|
and ||eRe4|| are not equal.

Our next theorem is valid for a large class of functions. It will be conve-
nient to give this class a name.

Definition IX.3.2 A continuous complez-valued function f on the space
of matrices will be said to belong to the class T if it satisfies the following
two properties:

(i) f(XY)= f(YX) for all X,Y.
(i) |f(X*™)] < fF([XX*]™) for all X, and form =1,2,...
Exercise IX.3.3 (i) The functions trace and determinant are in T .

(i) For every k, 1 < k < n, the function pi(X) = tr AF X is in 7.
(These are the coefficients in the characteristic polynomial of X .)
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(it) Let A\j(X) denote the eigenvalues of X arranged so that |\ (X)| >
[A2(X)| > -+ > |Au(X)|. Then, for 1 < k < n, the function fi(X) =
k

H Aj(X) isin T, and so is the function | fx(X)|. [Hint: Use Theorem

=1

11.3.6.]

(iv) For 1 < k < n, the function gi(X) = Z])\ (X)] isin T.
j=1
(v) Every symmetric gauge function of the numbers |A1(X)], ..., | A (X)]
isin 7.
Exercise IX.3.4 (i) If f is any complez valued function on the space of

matrices that satisfies the condition (ii) in Definition IX.8.2, then f(A) >0
if A> 0. In particular, f(e®) > 0 for every Hermitian matriz A.

(%) If f satisfies both conditions (i) and (%) in Definition 1X.8.2, then
f(AB) > 0 if A and B are both positive. In particular, f(e?e®) > 0 if A
and B are Hermitian.

The principal result about the class 7 is the following.

Theorem IX.3.5 Let f be a function in the class T. Then for all matrices

A, B, we have
[f(e*1B)| < f(eReAeRe B). (IX.15)

Proof. For each positive integer m, we have for all X,Y
IFIXYE™) < FUEXXY)T™)
= FIXYYT X
= JXXYYTPT.
Here, the inequality at the first step is a consequence of the property (ii),

and the equality at the last step is a consequence of the property (i) of
functions in 7. Repeat this argument to obtain

IFIXYP™) < FUX XY )
< XX ‘[YY*]Z” .

217;—-1

Now let A, B be any two matrices. Put X = e?/2" and Y = €8/2" in
the above inequality to obtain

m m._nm * m m pm—1 m - m m—1
lf([eA/2 eB/‘Z ]2 )l < f([eA /2 eA/2 ]2 [eB/Z CB /2 ]2 )
Now let m — oo. Then, by the continuity of f and the Lie Product
Formula, we can conclude from the above inequality that
|f(€A+B)| < f(e(A+A')/26(B+B‘)/2) — f(eR.e AeR,e B).
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Corollary IX.3.6 Let f be a function in the class T. Then
[F(e®)] < f(e"*),  for all A, (IX.16)

and
0 < f(e?*P) < f(eeP), for Hermitian A,B. (IX.17)

Particularly noteworthy is the following special consequence.

Theorem IX.3.7 Let A, B be any two Hermitian matrices. Then
lle** 21l < llete®l (IX.18)

for every unitarily invariant norm.

Proof. Use (IX.17) for the special functions in Exercise 1X.3.3(iv). This
gives the majorisation

MetB) <, Ae?eP).
But A\(eAB) = s(eA*B) and A(e?ef) <, s(e“eP). Hence
s(e?tB) <, s(e?eP).
This proves the theorem. ]

Choosing f(X) = trX, we get from (IX.17) the famous Golden-
Thompson inequality: for Hermitian A, B we have

tr(e?*8) < tr(ee®). (IX.19)

Exercise IX.3.8 Let A, B be Hermitian matrices. Show that for every uni-
tarily invariant norm

1/t

tB tB
exp 5> exp tA exp 5

decreases to |||exp(A + B)||| ast | 0. As a special consequence of this we
have a stronger version of the Golden-Thompson inequality:

tB tB
tr exp(A + B) <tr (exp 5 exptA exp ~2—> forall t>0.

[Use Theorem IX.2.10 and Ezercise IX.1.5.]
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IX.4 Arithmetic-Geometric Mean Inequalities

The classical arithmetic-geometric mean inequality for numbers says that
Viab < i(a+b) for all positive numbers a,b. From this we see that for
complex numbers a,b we have |ab] < 1(la|?> + [b]?). In this section we
obtain some matrix versions of this inequality. Several corollaries of these
inequalities are derived in this and later sections.

Lemma IX.4.1 Let Y;,Ys be any two positive matrices, and let Y =Y —
Y;. LetY =Y+ Y~ be the Jordan decomposition of the Hermitian matriz
Y. Then, for j=1,2,...,n,

MNET) A1), X(YT) < A(Ye).
(See Section IV.3 for the definition of the Jordan decomposition.)

Proof. Suppose A;(Y) is nonnegative for j = 1,...,p and negative for
j=p+1,...,n Then \;(Y*) is equal to A;(Y) if j = 1,...,p, and is zero
forj=p+1,...,n.

Since Y1 =Y + Y2 > Y, we have X;(Y1) > X;(Y) for all j, by Weyl’s
Monotonicity Principle. Hence, A;(Y1) > A;(Y'*) for all j.

Since Y = Y1 — Y > -Y, we have \;(Yz) > X;(=Y) for all j. But
A(=Y) =M )forj=1,...,n—pand \j(-Y) =0for j >n—p
Hence, A, (Y2) > A;(Y ™) for all j. u

Theorem IX.4.2 Let A, B be any two matrices. Then
1
5;(A*B) < Esj(AA* + BB*) (IX.20)
for1<j<n.
Proof. Let X be the 2n x 2n matrix X = (4 %). Then
0 0 B*A B*B

XX*z(AA + BB 0>,X*X:(AA AB)

The off-diagonal part of X*X can be written as
0 A*B 1 . . "
v=( g N0 x-veexw,

where U is the unitary matrix ((I) _OI). Note that both of the matrices in
the braces above are positive. Hence, by the preceding lemma,

L) < 0 (XK), M(Y) < g0 X).



IX.4 Arithmetic-Geometric Mean Inequalities 263

But X*X and XX* have the same eigenvalues. Hence, both A;(Y*) and
A;(Y ") are bounded above by 1 \;(AA*+BB*). Now note that, by Exercise
I1.1.15, the eigenvalues of ¥ are the singular values of A*B together with
their negatives. Hence we have

s;(A*B) < %sj(AA* + BB*).
]

Corollary IX.4.3 Let A, B be any two matrices. Then there exists a uni-
tary matriz U such that

1
|[A*B| < EU(AA* + BB*)U™. (IX.21)
Corollary IX.4.4 Let A, B be any two matrices. Then
* 1 * *
4Bl < 5 llAA™ + BB*| (IX.22)

for every unitarily invariant norm.

The particular position of the stars in (IX.20), (IX.21), and (IX.22) is
not an accident. If we have

11 00
=(o0)2=(01)
then s1(AB) = V2, but 1s:(AA* + BB*) = 1.
The presence of the unitary U in (IX.21) is also essential: it cannot be

replaced by the identity matrix even when A, B are Hermitian. This is
illustrated by the example

11
s (1),

A considerable strengthening of the inequality (IX.22) is given in the
theorem below.

Theorem IX.4.5 For any three matrices A, B, X, we have
1
llA"X Bl| < SllAA™X + X BB (IX.23)
for every unitarily invariant norm.

Proof. First consider the special case when A, B, X are Hermitian and
A = B. Then AX A is also Hermitian. So, by Proposition 1X.1.2,

IAX Al < [IRe(X A%)|| = %IIIAZX + X A%, (IX.24)
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which is just the desired inequality in this special case.

Next consider the more general situation, when A and B are Hermitian
and X is any matrix. Let

A 0 0 X
T‘(o B)’Y_(X* 0)'
Then, by the special case considered above,

ITYTY < ZIT?Y + YT (1X.25)

Multiplying out the block-matrices, one sees that

0 AXB
wr = (BX*A 0 )
. - 0 AX + XB?
T2V +YT? = <B"’X*+X*A2 ! .

Hence, we obtain from (IX.25) the inequality
1
IAX Bl < SIIAX + X B2 (1X.26)

Finally, let A, B, X be any matrices. Let A = A,U, B = B;V be polar
decompositions of A and B. Then

AA*X + XBB* = A2X + XB?,

while
[lA*X Bl = [lUA1 X B V||| = || A1 X Bl

So, the theorem follows from the inequality (IX.26). m
Exercise I1X.4.6 Another proof of the theorem can be obtained as follows.

First prove the inequality (IX.2}) for Hermitian A and X. Then, for arbi-
trary A, B and X, let T and Y be the matrices

0 0 A G 0 X 0 0
0 0 0 B X< 0 0 0
T=1 20 00" Y=l 0o 000}
0 B* 0 0 0 0 0 0

and apply the special case to them.

Exercise IX.4.7 Construct an ezample to show that the inequality (1X.20)
cannot be strengthened in the way that (IX.23) strengthens (IX.22).

When A, B are both positive, we can prove a result stronger than (1X.26).
This is the next theorem.
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Theorem IX.4.8 Let A, B be positive matrices and let X be any matriz.
Then, for each unitarily invariant norm, the function
f@) = [|A* X Bt 4 ATt X B (IX.27)

is convex on the interval [—1,1} and attains its minimum at ¢t = 0.

Proof. Without loss of generality, we may assume that A > 0 and B > 0.
Since f is continuous and f(t) = f(—t), both conclusions will follow if we
show that f(t) < 3[f(t+ s) + f(t — s)], whenever ¢ + s are in [-1,1].

For each t, let M; be the mapping

My(Y) = %(AtYB“ + AtV BY.
For each Y, we have
IVl = 444y B BA| < JIIAY B~ + A=Y B
by Theorem 1X.4.5. Thus [|Y]| < [IMe(Y)|- From this it follows that
IM(AX B)|| < [[M M (AXB)||, for all s,t.

But,
1
MM = §(,/\/ttJrs + M, ).

So we have
IMAXB) < 2 {IMero(AX B+ 1M (AX B}
Since [|[M(AXB)||| = 1 f(t), this shows that
£6) < 17 +5) + £~ 9)].

This proves the theorem. u

Corollary 1X.4.9 Let A, B be positive matrices and X any matriz. Then,
for each unitarily invariant norm, the function

9(v) = |A"XB'™" + A" X B (IX.28)

is convez on [0,1].
Proof. Replace 4, B by AY2, B'/2 in (IX.27). Then put v = 1#t.  m

Corollary IX.4.10 Let A, B be positive matrices and let X be any matriz.
Then, for 0 < v <1 and for every unitarily invariant norm,
llAX B~ + A'~*XB¥|| < [|[AX + X B|. (IX.29)

Proof. Let g(v) be the function defined in (IX.28). Note that g(1) = g(0).
So the assertion follows from the convexity of g. [ ]
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IX.5 Schwarz Inequalities

In this section we shall prove some inequalities that can be considered to
be matrix versions of the Cauchy-Schwarz inequality.

Some inequalities of this kind have already been proved in Chapter 4.
Let A, B be any two matrices and 7 any positive real number. Then, we
saw that

Il 1A*BI(I* < [I(AA*)TI BB (IX.30)

for every unitarily invariant norm. The choice r = % gives the inequality
Il [A*BI2)1 < 1A 1Bl (IX.31)
while the choice r = 1 gives
llA*B(I* < [lAA*|| 1BB*|l. (IX.32)

See Exercise 1V.2.7 and Problem IV.5.7. It was noted there that the in-
equality (IX.32) is included in (IX.31).

We will now obtain more general versions of these in the same spirit as of
Theorem IX.4.5. The generalisation of (IX.32) is proved easily and is given
first, even though this is subsumed in the theorem that follows it.

Theorem IX.5.1 Let A, B, X be any three matrices. Then, for every uni-
tarily invariant norm,

A" X B||* < [|AA*X|| I XBB||. (IX.33)

Proof. First assume that X is a positive matrix. Then

IA*XB|I> = [lA"X2X2B|? = ||((X/2A4) (X2 B)|?
< IXVPAATXY| IX2BB X,
using the inequality (IX.32). Now use Proposition IX.1.1 to conclude that
IlA*X BI? < |AA*X|| ||X BB*|.

This proves the theorem in this special case. Now let X be any matrix, and
let X = UP be its polar decomposition. Then, by unitary invariance,

lA*XBll = WA"UPBI| = [[U*A*UPB],
AA*X]|| = [lAA*UP|| = |[UTAAU P,
IXBB*|| = [|[UPBB*|| = ||PBB||

So, the general theorem follows by applying the special case to the triple
U*AU, B, P. ]

The corresponding generalisation of the inequality (IX.30) is proved in
the next theorem.
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Theorem IX.5.2 Let A, B, X be any three matrices. Then, for every pos-
itive real number v, and for every unitarily invariant norm, we have

I A*X Bl < [ |A4*XTI| 1| |IXBB['|I (IX.34)

Proof. Let X = UP be the polar decomposition of X. Then A*XB =
A*UPB = (PY2U* A)*P'/?B. So, from the inequality (IX.30), we have

IA*XBI|I* < (|(PY2U* AA*UPY?)T|| ||(PY*BB* PY/?)7||.  (IX.35)
Now note that
AT(PY2U* AA*UPY?) = XT(AA*U PU™).
Using Theorem IX.2.9, we have
A (AAUPU*) <, X2([AAP[UPU).
But (UPU*)? = UP?U* = X X*. Hence,
N2([AA*P[UPU*?) = s"(AA* X).

Thus,
AT (PY2U*AA*UPY?) <, sT(AA*X),

and hence
l(P/2U*AA*UPY?) || < ||| |AA*X||. (IX.36)

In the same way, we have

A(PY2BB*PY?) = X (PBB*) <, N/%(P?[BB*]%)
= s"(PBB*)=s"(XBB").
Hence
l(PY2BB*PY2)|| < || IXBB*[|. (IX.37)

Combining the inequalities (IX.35), (IX.36), and (IX.37) we get (IX.34). =

The following corollary of Theorem IX.5.1 should be compared with
(I1X.29).

Corollary IX.5.3 Let A, B be positive matrices and let X be any matriz.
Then, for 0 < v < 1, and for every unitarily invariant norm

14*XB'| < [[AX ||| X B~ (IX.38)

Proof. For v = 0,1, the inequality (IX.38) is a trivial statement. For
v= %, it reduces to the inequality (IX.33). We will prove it, by induction,
for all indices v = k/2™, k=0,1,...,2". The general case then follows by
continuity.
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Let v = 2—’§+—— be any dyadic rational. Then v = p + p, where y =
5;’“_—1, p = 2% Suppose that the inequality (IX.38) is valid for all dyadic
rationals with denominator 27~ !. Two such rationals are p and A = p+2p =
v+ p. Then, using the inequality (IX.33) and this induction hypothesis, we
have

llA” X B llA#+e X BI=A)|

lA?(A* X B'=*)B?||

< AP A X B 4 X B B2
= |[|A'\XBI_’\|“1/2|||A“XBI_””|1/2
< AXIPIX B2 AX /2] X BYIO+72

LAXO+72) X Bt~ Oz
= JlAX|“IxB|—.

This proves that the desired inequality holds for all dyadic rationals. |

Corollary IX.5.4 Let A, B be positive matrices and let X be any matriz.
Then, for 0 < v <1, and for every unitarily invariant norm

A* X B[ < X[~ Il AX BI|". (IX.39)

Proof. Assume without loss of generality that A is invertible; the general
case follows from this by continuity. We have, using (IX.38),

A X B¥| li(a) = AX B =0

< AT AX| T AX B
= [IXIAXBY|”.
E
Note that the inequality (IX.5) is a very special case of (IX.39).
Exercise IX.5.5 Since |||AA*||]|] = |||A*A]||, the stars in the inequality

(IX.32) could have been placed differently. Much less freedom is allowed for
the generalisation (1X.83). Find a 2 x 2 ezample in which |||A* X B|||? is
larger than ||A*AX|| | XBB*||.

Apart from norms, there are other interesting functions for which Schwarz-
like inequalities can be obtained. This is done below. It is convenient to have
a name for the class of functions we shall study.

Definition IX.5.6 A continuous complez-valued function f on the space
of matrices will be said to belong to the class L if it satisfies the following
two conditions:

(i) f(B)>f(A)>04B>A>0.
(ii) |f(A*B)2 < f(A*A)f(B*B) for dall A, B.
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We have seen above that every unitarily invariant norm is a function in
the class £. Other examples are given below.

Exercise IX.5.7 (i) The functions trace and determinant are in L.
(ii) The function spectral radius is in L.

(ii) If f is a function defined on matrices of order (’,:) and is in L, then
the function g(A) = f(A*¥A) defined on matrices of order n is also in
L.

(iv) The functions pi(A) =tr A¥ A, 1 < k <n, are in L. (These are the
coefficients in the characteristic polynomial of A.)

(v) If s;(A), 1 < j < n, are the singular values of A, then for each

k
1 <k < n the function fr(A) = Hsj(A) isin L.

=1
(vi) If A;(A) denote the eigenvalues of A arranged as [A(A)| > --- >
k

[An(A)|, then for 1 < k < n the function fi(A) = [] \i(A) is in L.
j=1

Exercise IX.5.8 Another class of functions T was introduced in 1X.5.2.
The two classes T and L have several elements in common. Find examples
to show that neither of them is contained in the other.

A different characterisation of the class £ is obtained below. For this we
need the following theorem, which is also useful in other contexts.

Theorem IX.5.9 Let A, B be positive operators on H, and let C be any
operator on H. Then the operator (é % ) on H®H is positive if and only
if there exists a contraction K on 'H such that C = BY? K A'/2,

Proof. By Proposition 1.3.5, K is a contraction if and only if ( . IY) is
positive. The positivity of this matrix implies the positivity of the matrix

A2 I K* A2 0
( 0 Bl/2>(K 1)( 0 Bl/2)

A Al/ZK*B1/2
= ( B2k AY/2 B ) :

(See Lemma V.1.5.) This proves one of the asserted implications. To prove
the converse, first note that if A and B are invertible, then the argument
can be reversed; and then note that the general case can be obtained from
this by continuity. ]



270 IX. A Selection of Matrix Inequalities

Theorem IX.5.10 A (continuous) function f is in the class L if and only
if it satisfies the following two conditions:

(a) f(A) >0 forall A>0.

(6) 1f(C)? < f(A)f(B) for all A, B,C such that (é C;) is positive.

Proof. If f satisfies condition (i) in Definition IX.5.6, then it certainly
satisfies the condition (a) above. Further, if (é (’;) is positive, then, by
the preceding theorem, C = BY/2K A'/? where K is a contraction. So, if
f satisfies condition (ii) in IX.5.6, then

IF(O) = |f(B?KAY?)? < f(B)f(AY?K*KAY?).

Since AY?2K*K AY/? < A, we also have f(AY2K*K A'/?) < f(A) from the
condition (i) in IX.5.6.
Now suppose f satisfies conditions (a) and (b). Let B > A > 0. Write

B A\ (B-A 0 " A A
A B ) 0 B-A A A )
The first matrix in this sum is obviously positive; the second is also positive

by Corollary 1.3.3. Thus the sum is also positive. So it follows from (a) and
(b) that f(A) < f(B). Next note that we can write, for any A and B,

A*A A*B\ _(A* 0\[( A B
B*A B*B )~ B 0 00 )

Since the two matrices on the right-hand side are adjoints of each other,
their product is positive. Hence we have

|f(A*B)|* < f(A*A)f(B*B).
This shows that f is in L. n

This characterisation leads to an easy proof of the following theorem of
E.H. Lieb.

Theorem IX.5.11 Let Ay,...,Am and By, ..., By be any matrices. Then,
for every function f in the class C,

2

lf (i A Bi) < f (iAZAi) f <§m:B;B,-). (IX.40)
‘f (Z Ai) < f (ZIAiI) f (E}Aﬂ) . (IX.41)
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_ .o (ATA, ATB,
Proof. For each i = 1,...,m, the matrix (B:Al BB,
A

ing the product of ( Bi 8) and its adjoint. The sum of these matrices is,

) is positive, be-

therefore, also positive. So the inequality (IX.40) follows from Theorem
IX.5.10. )
Each of the matrices ('ﬁ:l Iﬁgl) is also positive; see Corollary 1.3.4. So

the inequality (IX.41) follows by the same argument. ]

Exercise IX.5.12 For any two matrices A, B, we have tr(|A + B|) <
tr(|A| + |B|). Show by an ezample that this inequality is not true if tr
1s replaced by det. Show that we have

[det(|A + B])J> < det(|A| + |B|) det(|A*] + | B*]). (IX.42)

A similar inequality holds for every function in L.

IX.6 The Lieb Concavity Theorem

Let f(A, B) be a real valued function of two matrix variables. Then, f is
called jointly concave, if for all 0 < o < 1,

f(OLAl + (1 - OZ)AQ, OcBl + (1 - a)Bg) Z ch(Al, Bl) + (1 - Oé)f(Ag, Bz)

for all Al, AQ, Bl, Bz.
In this section we will prove the following theorem due to E.H. Lieb. The
importance of the theorem, and its consequences, are explained later.

Theorem IX.6.1 (Lieb) For each matriz X and each real number 0 <
t <1, the function

f(A,B) =tr X*A*XB'*
is jointly concave on pairs of positive matrices.

Note that f(A, B) is positive if A, B are positive.
To prove this theorem we need the following lemma.

Lemma IX.6.2 Let Ry,R5,5:,52,T1,T> be positive operators on a
Hilbert space. Suppose Ry commutes with Ry, S; commutes with S, and
T, commutes with Ty, and

Ry >81+Ty, Ry>5,+T,. (IX.43)
Then, for0<t <1,

RIRLt > Stgl-t 4 Tirl-t. (IX.44)
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Proof. Let E be the set of all ¢ in [0, 1] for which the inequality (IX.44)
is true. It is clear that E is a closed set and it contains 0 and 1. We will
first show that E contains the point %, then use this to show that E is a
convex set. This would prove the lemma.

Let z,y be any two vectors. Then

lz,($1/%85% + T2 Ty %))

< Nz 5128,y + [z, TP Ty Py)
< 182l 1S3yl + I T %) |1 T3 %yl
< (1Sl + 11T 22212015 2yl + 11T 2y )22

by the Cauchy-Schwarz inequality. This last expression can be rewritten as
((z, (81 + T)2)?[(y, (S2 + To)y)] />
Hence, by the hypothesis, we have
2 q1/2 2,1/2
(z, (5,28, + T *Ty ")) | < [(=, Raz) (y, Ray)] /.
Using this, we see that, for all unit vectors u and v,

|(u R_1/2(51/251/2 T1/2T21/2)R—1/2 )I
]<R—1/2 (51/251/2+T1/2 ;/Z)Rz—l/zv)[
(BT, RYPu)(R3 %o, Ry w))/?
= L

IN

This shows that
”R—I/Z(SI/Z 1/2 1/2T1/2)R;1/2|| <1

Using Proposition IX.1.1, the commutativity of R; and Rs, and the in-
equality above, we see that

1R; VRTS8 + TP R AR < 1.
This is equivalent to the operator inequality
R2—1/4R1—1/4(Sll/2521/2 1 T11/2T21/2)R;1/4R1—1/4 <
From this, it follows that
S8 + TV < RUPRY®.

(See Lemma V.1.5.) This shows that the set E contains the point 1/2.
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Now suppose that 4 and v are in E. Then
R{Ry™ > SESyH4+THT, ™
R{R;™ > S{SV+TyT; .

These two inequalities are exactly of the form (IX.43). Hence, using the
special case of the lemma that has been proved above, we have,

(R{Ry ™)V (RY Ry ™)M?
> (SES,THYMRA(SY ST + (TET VAT Ty )2

Using the hypothesis about commutativity, we see from this inequality that
2(pu + v) is in E. This shows that E is convex. ]

Proof of Theorem IX.6.1: Let A, B be positive operators on ‘H. Let A
and B be the left and right multiplication operators on the space £(H)
induced by A and B; i.e., A(X) = AX and B(X) = X B. Using the results
of Exercise 1.4.4 and Problem VII.6.10, one sees that A and B are positive
operators on (the Hilbert space) L(H).

Now, suppose A;, Ao, By, B, are positive operators on H. Let A = A; +
Az, B = By + Bj. Let A;, Az, A denote the left multiplication operators
on L(H) induced by A;, A2, and A, respectively, and Bi, Ba, B the right
multiplication operators induced by Bj, Bo, and B, respectively. Then A =
A; + Ay, B = B; + Bs. Hence, by Lemma 1X.6.2.,

ABYTE > ALBTE+ ASBYTY
for 0 < t < 1. This is the same as saying that for every X in L£L(H)
(X, A'XB™) > (X, ALXBI~t + ALXB)™Y),
or that
tr X*A'XB'"t > tr X*ALXBI7t +tr X*ALX By

From this, it follows that

A1 +As B+ B 1 1
F(F572 =570 2 (A By) + 5 (42, Ba).
This shows that f is concave. |

Another proof of this theorem is outlined in Problem IX.8.17.
Using the identification of L(H) with H®H, Lieb’s Theorem can be seen
to be equivalent to the following theorem.

Theorem IX.6.3 (T. Ando) For each 0 < t < 1, the map (A,B) —
At ® Bt is jointly concave on pairs of positive operators on H.
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Exercise IX.6.4 Let t1,ty be two positive numbers such that t1 + to < 1.
Show that the map (A, B) — A% @ B2 is jointly concave on pairs of positive
operators on H. [Hint: The map A — A® is monotone and concave on
positive operators for 0 < s < 1. See Chapter 5.]

Lieb proved his theorem in connection with problems connected with
entropy in quantum mechanics. This is explained below (with some simpli-
fications).

The function S(A) = —tr Alog A, where A is a positive matrix, is called
the entropy function. This is a concave function on the set of positive
operators. In fact, we have seen that the function f(t) = —t logt is operator
concave on (0, c0).

Let K be a given Hermitian operator. The entropy of A relative to K
is defined as

S(A,K) = % tr [AV2, K]?,

where [ X, Y] stands for the Lie bracket (or the commutator) XY —Y X . This
concept was introduced by Wigner and Yanase, and extended by Dyson,
who considered the functions

Si(AK) = % or (|44, K][AY, K]), (IX 45)

0<t<l.

The Wigner-Yanase-Dyson conjecture said that S;(A4, K) is concave in
A on the set of positive matrices. Lieb’s Theorem implies that this is true.
To see this note that

Si(AK) =tr(KA'KA'™t — K2A). (IX.46)

Since the function g(A) = —tr K2A is linear in A, it is also concave.
Hence, concavity of S;(A, K) follows from that of tr K A*K A*~t. But that
is a special case of Lieb’s Theorem.

Given any operator X, define

I,(A, X) = tr(X*ALX A"t — X*X A), (IX.47)

0 <t < 1. Note that Iy(A4, X) = 0. When X is Hermitian, this reduces to
the function S;, defined earlier. Lieb’s Theorem implies that I;(A, X) is a
concave function of A. Hence, the function I(A, X') defined as
d
I(AX) = ¥ Ii(A,X) =tr(X*(log A)XA—X"X(log A)A) (IX.48)
t=0
is also concave.
Let A, B be positive matrices. The relative entropy of A and B is
defined as
S(A|B) = tr(A(log A —log B)). (IX.49)

This notion was introduced by Umegaki, and generalised by Araki to the
von Neumann algebra setting.
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Theorem IX.6.5 (Lindblad) The function S(A|B) defined above is jointly
convex in A, B.

Proof. Consider the block-matrices
(A0 ({00
(5 5) x=(70)

S(A|B) = -I(T, X).
We noted earlier that I(T', X) is concave in the argument 7. |

Then note that

Exercise IX.6.6 (i) Show that for every pinching C, S(C(A)|C(B)) <
S(A|B).

(ii) Let T be the normalised trace function on nxn matrices; i.e., T(A) =
Ltr A. Show that for all positive matrices A, B

7(A)(log T(A) —log 7(B)) < 7(A(log A —log B)). (IX.50)

This is called the Peierls-Bogoliubov Inequality. (There are other in-
equalities that go by the same name.)

IX.7 Operator Approximation

An operator approximation problem consists of finding, for a given oper-
ator A, the element nearest to it from a special class. Some problems of
this type are studied in this section. In formulating and interpreting these
results, it is helpful to have an analogy: if arbitrary operators are thought
of as complex numbers, then Hermitian operators should be thought of as
real numbers, unitary operators as complex numbers of modulus one and
positive operators as positive real numbers. Of course, this analogy has its
limitations, since multiplication of complex numbers is commutative and
that of operators is not.

The first theorem below is easy to prove and sets the stage for later
results.

Theorem IX.7.1 Let A be any operator and let Re A = %(A+A*). Then,
for every Hermitian operator H and for every unitarily invariant norm,

lA—ReA|l <||A-HI| (IX.51)

Proof. Recall that |||T]] = [||T*||| for every T'. Using this fact and the
triangle inequality, we have

llA—1/2 (A+ A9

Il

1/2|A- A"l =1/2|A- H+ H - A"|
12 (1A - HIll + [I[(A = H)*ll}) = llA - HI|-

IA
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This proves the theorem. |

The inequality (IX.51) is sometimes stated in words as: in every unitarily
invariant norm Re A is a Hermitian approximant to A.

The next theorem says that a unitary approximant to A is any unitary
that occurs in its polar decomposition.

Theorem IX.7.2 If A =UP, where U is unitary and P positive, then
lA=Ull <llA-WIl <[lA+U]| (IX.52)

for every unitary W and for every unitarily invariant norm.

Proof. By unitary invariance, the inequality (IX.52) is equivalent to
WP =1l <P —-UWll <||P+I|.

So the assertion of the theorem is equivalent to the following: for every
positive operator P and unitary operator V,

P =1l < WIP = VIl < WP+ I]f- (IX.53)

This will be proved using the spectral perturbation inequality (IV.62). Let

= 0 P = 0o Vv
P2 ) (2 1)

Then P and V are Hermitian. The eigenvalues of P are the singular values
of P together with their negatives. (See Exercise I1.1.15.) The same is true
for V, which means that it has eigenvalues 1 and -1, each with multiplicity
n. We thus have

Eig!(P) - Eig"(V) = [Eig"(P) - I) @ [-Eig'(P) + I,
Eig!(P) — Eig' (V) = [Eig!(P) + I] @ [-Eig'(P) — I].
So, from (IV.62), we have

liEg"(P) - I @ [Big"(P) - 1)l < (P -V)®@-V)|
< |IEig'(P) + 1) ® [Eig(P) + 1]]I.
This is equivalent to the pair of inequalities (IX.53). n

The two approximation problems solved above are subsumed in a more
general question. Let ® be a closed subset of the complex plane, and let
N(®) be the collection of all normal operators whose spectrum is contained
in ®. Given any operator A, what operator in N(®) is closest to A? The
two theorems proved above answer this when ® is the real line or the unit
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circle. When @ is the whole plane or the positive half-line, the problem
becomes much harder, and the full solution is not known. Note that in the
first case (® = C) we are asking for a normal approximant to A, and in
the second case (® = R, ) for a positive approximant to A. Some results
on this problem, which are easy to describe and also are directly related to
other parts of this book, are given below.

We have already come across a special case of this problem in Chapter
6. Let I be a retraction of the plane onto the subset @; i.e., F' is a map of
C onto ¢ such that |z — F(z)| < |z —w| for all z € C and w € ®. Such a
map always exists; it is unique if (and only if) ® is convex. We have the
following theorem.

Theorem IX.7.3 Let F be a retraction of the plane onto the closed set ®.
Suppose @ 1is conver. Then, for every normal operator A, we have

A= F(AI<lIA- N (IX.54)

for all N € N(®) and for all unitarily invariant norms. If the set ® is not
convez, the inequality (IX.5/) may not be true for all unitarily invariant
norms, but is still true for all Q-norms. (See Theorem VI.6.2 and Problem
VI1.8.13.)

Exercise IX.7.4 Let A be a Hermitian operator, and let A= AT — A~ be
its Jordan decomposition. (Both At and A~ are positive operators.) Use
the above theorem to show that, if P is any positive operator, then

llA— AT < [IA - Pl (1X.55)

for every unitarily invariant norm. If A is normal, then for every positive
operator P
lA— ReA) || < [|A - PJI. (IX.56)

Theorem IX.7.5 Let A be any operator. Then for every positive operator
P
4~ (ReA)"|lz <A~ Pl (IX.57)

Proof. Recall that ||A||% = ||Re 4|3 + ||Im A||3. Hence,
A~ (Re A)*|3 = [Re A — (Re A)*|| + [[Im A3

From (IX.55), we see that |[Re A — (Re A)*||2 is bounded by ||Re A — P||3.
This leads to the inequality (IX.57). [ ]

The problem of finding positive approximants to an arbitrary operator
A is much more complex for other norms. See the Notes at the end of the
chapter.

For normal approximants, we have a solution in all unitarily invariant
norms only in the 2 x 2 case.
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Theorem IX.7.6 Let A be an upper triangular matriz

(A b
A= ( 0 A ) , b>0. (IX.58)
Let 6 = arg(A, — A\2), and let
Ny = Mioogb (IX.59)
07\ Le¥h Xy )¢ '

Then Ny is normal, and for any normal matric N we have
4~ Noll < IA— NI (IX.60)

for every unitarily invariant norm.

Proof. It is easy to check that Ny is normal. Let N = ( “zl iz ) be
3 T4

any normal matrix. We must have |zs| = |z3| in that case.

Now note that, if T = ( b

t . . o
¢ t2 ) is any matrix, we can write its off-
3 I4

diagonal part ( 1? tOZ ) as %(T—U TU™*), where U is the diagonal matrix
3

with diagonal entries 1 and -1. Hence, for every unitarily invariant norm,

el Il

Using this, we see that [|A — N|| > ||| diag (b — z2, —z3)]|- But,

B 1

b < |b—z2| + |z2] = |b — 22| + 23] <2 max(|b — z2|, |z3])-

Thus the vector 3(b,b) is weakly majorised by the vector (|b — z2|, |z3l),
which, in turn, is weakly majorised by the vector (s;(A — N), s2(A — N))
as seen above. Since A — Ny has singular values (%b, %b), this proves the
inequality (IX.60). ]

Since every 2 x 2 matrix is unitarily equivalent to an upper triangular
matrix of the form (IX.58), this theorem tells us how to find a normal
matrix closest to it.

Exercise IX.7.7 The measure of nonnormality of a matriz, with respect to
any norm, was defined in Problems VIII.6.4 and VIII.6.5. Theorem 1X.7.6,
on the other hand, gives for 2 x 2 matrices a formula for the distance to the
set of all normal matrices. What is the relation between these two numbers
for a given unitarily invariant norm?
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IX.8 Problems

Problem IX.8.1. Let A, B be positive matrices, and let m, k be positive
integers with m > k. Use the inequality (IX.13) to show that

tr(A*B¥)™ < tr(A™B™)*. (IX.61)

The special case,
tr(AB)™ < tr A™B™, (IX.62)

is called the Lieb-Thirring inequality.
Problem IX.8.2. Let A, B be Hermitian matrices. Show that for every
positive integer m

(i) |tr(AB)?™| < tr A?mB?™,

(i) tr(A™B™)?| < tr A?™B?™,

(iii) |tr(AB)*™| < tr(AZmB?m)2,

(Hint: By the Weyl Majorant Theorem |tr X™| < tr|X|™, for every matrix

X.) Note that if
1 1 -1 1
=( 4 e (),

then |tr(AB)3| = 5,|tr A3B3| = 4, tr(AB)® = 9, and tr(4A3B%)? = 0.
This shows the failure of possible extensions of the inequalities (i) and (iii)
above.

Problem IX.8.3. Are there any natural generalisations of the above in-
equalities when three matrices A, B, C are involved? Take, for instance, the
inequality (IX.62). A product of three positive matrices need not have posi-
tive eigenvalues. One still might wonder whether [tr(ABC)?| <
|tr A2B?C?|. Construct an example to show that this need not be true.

Problem IX.8.4. A possible generalisation of the Golden-Thompson in-
equality (IX.19) would have been tr(eA*5+C) < |tr(e“ePeC)| for any three
Hermitian matrices A, B, C. This is false. To see this, let S;, S3, S5 be the
Pauli spin matrices

0 1 0 —i (1 0
s=(Vo) ==(07) »=(ch)

If a,,as,as3 are any real numbers and a = (a? + a2 + a2)'/2, show that
y 1 2 3

inh
exp(Xa;S;) = (cosh a)I + St @

EajS].

a
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Let
A=1tS), B=1S;, C=1(55— S5 —8).
Show that
tr(eATP+C¢) = 2 cosh ¢,
[tr(e?ePeC)| = 2 cosh t[l — % +0(t9)].

For small ¢, the first quantity is bigger than the second.

Problem IX.8.5. Show that the Lie Product Formula has a generalisation:
for any k& matrices A;, Ao, ..., A,

A A A\
lim (exp—lexp ~—2—---exp —k> =exp(A; + Az + - + Ag).
m m m

m— 00

Problem IX.8.6. Show that for any two matrices A, B we have
llA*B + B*AJ| < [|[AA™ + BB™|

and
[lA*B + B~ A|| < ||A*A+ B*B||

for every unitarily invariant norm.

Problem IX.8.7. Let X,Y be positive. Show that for every unitarily in-

variant norm
wx-vis|| (5 )|

From this, it follows that, for every A,
A*A— A4 < AP,
and
|A*A = AA™||, < 2P AL, 1<p<co.

" Problem IX.8.8. Let A, B be positive matrices and let X be any matrix.
Show that for all unitarily invariant norms, and for 0 < v < 1,

IlA“X B~ — A~ XBY|| < [2v — 1] || AX — XB]|.
Problem IX.8.9. Let A, B be positive operators and let T' be any operator

such that ||T*z|| < ||Az|| and ||Tz]| < ||Bz] for all z. Show that, for all
z,y and for 0 < v <1,

[z, Ty)| < [|IA* =] | B"y]l-
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[Hint: From the hypotheses, it follows that A=!7 and TB~! are contrac-
tions. The inequality (IX.38) then implies that (4~*)!~*T(B~!)¥ is a con-
traction.]

Problem IX.8.10. Use the result of the above problem to prove the fol-
lowing. For all operators T', vectors z,y, and for 0 < v < 1,

l(z, Ty)|? < (2, |IT* 24 )z) (y, [T[*y).

This inequality is called the Mixed Schwarz Inequality.

Problem IX.8.11. Show that if A, B are positive matrices, then we have
det(I + A+ B) < det(I + A)det({ + B).

Then use this and Theorem IX.5.11 to show that, for any two matrices

A, B,
|det(I + A+ B)| < det(I + |A])det(I + |B]).

(See Problem IV.5.9 for another proof of this.)

Problem IX.8.12. Show that for all positive matrices A, B

tr(A(log A —log B)) > tr(A — B). (IX.63)
10 1 €
The example A = 0 2 ) B = 9 shows that we may not have

the operator inequality A(log A — log B) > (A — B).

Problem IX.8.13. Let f be a convex function on an interval I. Let A, B
be two Hermitian matrices whose spectra are contained in I. Show that

ulf(A) - F(B)] > te{(A~ B)F'(B)] (1X.64)
The special choice f(t) = tlogt gives the inequality (IX.63).

Problem IX.8.14. Let A be a Hermitian matrix and f any convex func-
tion. Then for every unit vector z

f((z, Az)) < (z, f(A)z).
This implies that, for any orthonormal basis zi, ..., zZ,,
> F((z5, Azj)) < tr f(A).
J=1

The name Peierls-Bogoliubov inequality is sometimes used for this inequal-

ity, or for its special cases f(t) =e’, f(t) =e™¢, etc.
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Problem IX.8.15. The concavity assertion in Exercise IX.6.4. can be gen-
eralised to several variables. Let t,t5,t3 be positive numbers such that
t; +ta+t3 < 1. Let Ay, Az, A3 be positive operators. Note that

AT ®AZ ® A7 = (AT ® Ay @ )(I® I ® AF).

Use the concavity of the first factor above (which has been proved in Exer-
cise IX.6.4) and the integral representation (V.4) for the second factor to
prove that the map (4, Az, A3) — A% ® A ® AF is jointly concave on
triples of positive operators. More generally, prove that for positive num-
bers ty,...,tx with t; +---+t; < 1, the map that takes a k-tuple of positive
operators (A1, ..., Ax) to the operator A} ®--- ® A}* is jointly concave.

Problem IX.8.16. A special consequence of the above is that the map
A — ®FAY* is concave on positive operators for all k = 1,2, ... Use this
to prove the following inequalities for n x n positive matrices A, B:

(i) ®k(A + B)l/k > ®kA1/k + ®kBl/k,
(ii) /\k(A-i- B)l/k > AEAL/K + /\kBl/k,
(i) VE(A+4+ B)VE > vkAlUk L ykBL/E
(iv) det(A+B)Y™ > det AY™ 4 det B/,
(v) per(A+B)Y™ > per AY™ + per BY/™,
() cel(A+BIVE) > cu(AV%) 4 cu(BY),

where ¢ (A) =tr AF(A)for 1<k <n.
The inequality (iv) above is called the Minkowski Determinant Theorem
and has been proved earlier (Corollary 11.3.21).

Problem IX.8.17. Outlined below is another proof of the Lieb Concav-
ity Theorem which uses results on operator concave functions proved in
Chapter 5.

(i) Consider the space L(H) @ L(H) with the inner product
((Rl, Rz), (51,52)) = tI‘(R’{Sl + R;SZ)

(ii) Let A;, A2 be invertible positive operators on H and let A =
1/2 (Al + As). Let

A(R) = ARA™!,
A12(R,S) = (A1RAT!, AsRAZY).

Then A is a positive operator on the Hilbert space £L(H) and A;z is
a positive operator on the Hilbert space L(H) & L(H)

(iii) Note that for any X in L(H)
tr X*ALX AVt = (X AY2, AY(X AY?))
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and

tr(X*ALX AT+ XTALX ALY
= (XA?, XAY%), AL (XA, X AY?)).

(iv) Let V be the map from L(H) into L(H) ® L(H) defined as
1 1/2
V(XAY?) = E(XA/ L XAV

Show that V is an isometry. Show that

A=V"ApRV.

(v) Since the function f(¢) on [0,00) is operator concave for 0 < ¢ < 1,
using Exercise V.2.4, we obtain

VALV < (V*ARV)E = A
(vi) This shows that
tr XTAX AT > 1/2tr(XTALX AT+ XTALX ASTY)

when A; and A, are invertible. By continuity, this is true for all
positive operators A; and As. In other words, for all 0 < t < 1, the
function

f(A) =tr X*AtX A
is concave.

(vii) Use 2 x 2 operator matrices (4 %) and (% J) to complete the proof
of Lieb’s concavity theorem.

Problem IX.8.18. Theorem IX.7.1 can be generalised as follows. Let ¢
be a mapping of the space of n x n matrices into itself that satisfies three
conditions:

(i) ? is the identity map; i.e., p(p(A)) = A for all A.

(ii) ¢ is real linear; i.e., p(@A + fB) = ap(A) + fp(B) for all A, B and
all real o, 8.

(iii) A and ¢(A) have the same singular values for all A.

Then the set I(p) = {A : p(A) = A} is a real linear subspace of the
space of matrices. For each A, the matrix (A4 + ¢(A)) is in I(yp), and
for all unitarily invariant norms [[|A — (A + ¢(A))|| < |[|A — BJ|| for all
B e I(p).
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Examples of such maps are p(A) = £A*, p(A) = +AT and p(A) = £A,
where AT denotes the transpose of A and A denotes the matrix obtained
by taking the complex conjugate of each entry of A.

Problem IX.8.19. The Cayley transform of a Hermitian matrix A is
the unitary matrix C(A) defined as
C(A) = (A —il)(A+i)" L
If A, B are two Hermitian matrices, we have
%[C(A) —C(B)] = (B+il)" (A — B)(A+il)".
Use this to show that for all j,
1/2 5,(C(A) - C(B)) < s,(A~ B).
[Note that ||(A+iI)7!|| < 1and ||(B+iI)7*|| < 1.] In particular, this gives
1/2[IC(A) - C(B)Il < A - Bl

for every unitarily invariant norm.

Problem IX.8.20. A 2 x 2 block matrix A = (41! 412), in which the four
matrices A;; are normal and commute with each other, is called binormal.
Show that such a matrix is unitarily equivalent to a matrix A = (A‘ B ),

0 A,
in which A,, Ao, B are diagonal matrices and B is positive. Let

Ay 1B
Ny = 2
0 ( %UZB Ag )7

where U is the unitary operator such that A; — Ay = U|A; — Az|. Show
that in every unitarily invariant norm we have

A~ Noll < |4~ NJ|

for all 2n x 2n normal matrices N.

Problem IX.8.21. An alternate proof of the inequality (IX.55) is out-
lined below. Choose an orthonormal basis in which A is diagonal and A =

(A+ %_)- In this basis let P have the block decomposition P = (£ P2y

0 —A- P21 Pa2
At — Py 0
0 —A7 — Py

By the pinching inequality,
Since both A~ and P,, are positive, |||A7||| < |[|JA™ + Pagl||. Use this to
prove the inequality (IX.55).

This argument can be modified to give another proof of (IX.56) also.
For this we need the following fact. Let T and S be operators such that
0 < ReT < ReS, and ImT = ImS. If T is normal, then |||T||| < [IISIll,
for every unitarily invariant norm. Prove this using the Fan Dominance
Theorem (Theorem IV.2.2) and the result of Problem IIL.6.6.

lA— Pl =
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IX.9 Notes and References

Matrix inequalities of the kind studied in this chapter can be found in
several books. The reader should see, particularly, the books by Horn and
Johnson, Marshall and Olkin, Marcus and Minc, mentioned in Chapters
1 and 2; and, in addition, M.L. Mehta, Matriz Theory, second edition,
Hindustan Publishing Co., 1989, and B. Simon, Trace Ideals and Their
Applications, Cambridge University Press, 1979.

Proposition IX.1.1 is proved in B. Simon, Trace Ideals, p. 95. Proposition
IX.1.2, for the operator norm, is proved in A. Mclntosh, Heinz inequalities
and perturbation of spectral families, Macquarie Math. Reports, 1979; and
for all unitarily invariant norms in F. Kittaneh, A note on the arithmetic-
geometric mean inequality for matrices, Linear Algebra Appl., 171 (1992)
1-8. The Lie product formula has been extended to semigroups of operators
in Banach spaces by H.F. Trotter.

Our treatment of the material between Theorem IX.2.1 and Exercise
I1X.2.8 is based on T. Furuta, Norm inequalities equivalent to Léwner-Heinz
theorem, Reviews in Math. Phys., 1(1989) 135-137. The inequality (IX.5)
can also be found in H.O. Cordes, Spectral Theory of Linear Differential
Operators and Comparison Algebras, Cambridge University Press, 1987.
Theorem IX.2.9 is taken from B. Wang and M. Gong, Some eigenvalue
inequalities for positive semidefinite matriz power products, Linear Algebra
Appl., 184(1993) 249-260. The inequality (IX.13) was proved by H. Araki,
On an inequality of Lieb and Thirring, Letters in Math. Phys., 19(1990)
167-170. Theorem IX.2.10 is a rephrasing of some other results proved in
this paper.

The Golden-Thompson inequality is important in statistical mechanics.
See S. Golden, Lower bounds for the Helmholtz function, Phys. Rev. B, 137
(1965) 1127-1128, and C.J. Thompson, Inequality with applications in sta-
tistical mechanics, J. Math. Phys., 6(1965) 1812-1813. It was generalised
by A. Lenard, Generalization of the Golden-Thompson inequality, Indiana
Univ. Math. J. 21(1971) 457-468, and further by C.J. Thompson, Inegquali-
ties and partial orders on matriz spaces, Indiana Univ. Math. J. 21 (1971)
469-480. These ideas have been developed further in the much more gen-
eral setting of Lie groups by B. Kostant, On convezity, the Weyl group and
the Iwasawa decomposition, Ann. Sci. E.N.S., 6(1973) 413-455, and sub-
sequently by others. Inequalities complementary to the Golden-Thompson
inequality and its stronger version in Exercise IX.3.8 have been proved
by F. Hiai and D. Petz, The Golden-Thompson trace inequality is com-
plemented, Linear Algebra Appl., 181(1993) 153-185, and by T. Ando and
F. Hiai, Log majorization and complementary Golden-Thompson type in-
equalities, Linear Algebra Appl., 197/198(1994) 113-131. Theorem IX.3.1
is a rephrasing of some results in J.E. Cohen, Inequalities for matriz ex-
ponentials, Linear Algebra Appl., 111(1988) 25-28. Further results on such
inequalities may be found in J.E. Cohen, S. Friedland, T. Kato, and F.P.
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Kelly, Figenvalue inequalities for products of matriz ezponentials, Linear
Algebra Appl., 45(1982) 55-95, in D. Petz, A survey of certain trace in-
equalities, Banach Centre Publications 30(1994) 287-298, and in Chapter 6
of Horn and Johnson, Topics in Matriz Analysis.

Theorem 1X.4.2 was proved in R. Bhatia and F. Kittaneh, On the
singular values of a product of operators, SIAM J. Matrix Analysis, 11(1990)
272-277. The generalisation given in Theorem IX.4.5 is due to R. Bhatia
and C. Davis, More matriz forms of the arithmetic-geometric mean in-
equality, STAM J. Matrix Analysis, 14(1993) 132-136. Many of the other
results in Section IX.4 are from these two papers. The proof outlined in
Exercise 1X.4.6 is due to F. Kittaneh, A note on the arithmetic-geometric
mean inequality for matrices, Linear Algbera Appl., 171(1992) 1-8. A gen-
eralisation of the inequality (IX.21) has been proved by T. Ando, Matriz
Young inequalities, Operator Theory: Advances and Applications, 75(1995)
33-38. If p,g > 1 and % + ;11 = 1, then the operator inequality |AB*| <
U(3|AIP + ;|B|*)U* is valid for some unitary U.

Theorems IX.5.1 and IX.5.2 were proved in R. Bhatia and C. Davis,
A Cauchy-Schwarz inequality for operators with applications, Linear Al-
gebra Appl., 223(1995) 119-129. For the case of the operator norm, the
inequality (IX.38) is due to E. Heinz, as are the inequality (IX.29) and
the one in Problem IX.8.8. See E. Heinz, Beitrdge zur Stérungstheorie der
Spektralzerlegung, Math. Ann., 123(1951) 415-438. Our approach to these
inequalities follows the one in the paper by A. Mclntosh cited above. The
inequality in Problem IX.8.9 is also due to E. Heinz. The Mixed Schwarz
inequality in Problem IX.8.10 was proved by T. Kato, Notes on some in-
equalities for linear operators, Math. Ann., 125(1952) 208-212. (The papers
by Heinz, Kato, and McIntosh do much of this for unbounded operators
in infinite-dimensional spaces.) The class £ in Definition IX.5.6 was in-
troduced by E.H. Lieb, Inequalities for some operator and metriz func-
tions, Advances in Math., 20(1976) 174-178. Theorem IX.5.11 was proved
in this paper. These functions are also studied in R. Merris and J.A.
Dias da Silva, Generalized Schur functions, J. Algebra, 35(1975) 442-448.
B. Simon (Trace Ideals, p. 99) calls them Liebian functions. The character-
isation in Theorem IX.5.10 has not appeared before; it simplifies the proof
of Theorem IX.5.11 considerably.

The Lieb Concavity Theorem was proved by E.H. Lieb, Convez trace
functions and the Wigner-Yanase-Dyson conjecture, Advances in Math.,
11(1973) 267-288. The proof given here is taken from B. Simon, Trace Ide-
als. T. Ando, Concavity of certain maps on positive definite matrices and
applications to Hadamard products, Linear Algebra Appl., 26(1979) 203-
241, takes a different approach. Using the concept of operator means, he
first proves Theorem IX.6.3 (and its generalisation in Problem IX.8.15) and
then deduces Lieb’s Theorem from it. The proof given in Problem IX.8.17
is taken from D. Petz, Quasi-entropies for finite quantum systems, Rep.
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Math. Phys., 21(1986) 57-65. Theorem 1X.6.5 was proved by G. Lindblad,
Entropy, information and quantum measurements, Commun. Math. Phys.,
33(1973) 305-322. Our proof is taken from A. Connes and E. St¢rmer,
Entropy for automorphisms of II; von Neumann algebras, Acta Math.,
134(1975) 289-306. The reader would have guessed from the titles of these
papers that these inequalities are useful in physics. The book Quantum En-
tropy and Its Use by M. Ohya and D. Petz, Springer-Verlag, 1993, contains
a very detailed study of such inequalities. Another pertinent reference is
D. Ruelle, Statistical Mechanics, Benjamin, 1969. The inequalities in Prob-
lem IX.8.16 are taken from T. Ando, Inequalities for permanents, Hokkaido
Math. J., 10(1981) 18-36, and R. Bhatia and C. Davis, Concavity of certain
functions of matrices, Linear and Multilinear Algebra, 17 (1985) 155-164.
Theorems IX.7.1 and IX.7.2 were proved in K. Fan and A.J. Hoffman,
Some metric inequalities in the space of matrices, Proc. Amer. Math. Soc.,
6(1955) 111-116. The inequalities in Problem IX.8.19 were also proved in
this paper. The result in Problem IX.8.18 is due to C.-K. Li and N.-K.
Tsing, On the unitarily invariant norms and some related results, Lin-
ear and Multilinear Algebra, 20 (1987) 107-119. Two papers by P.R. Hal-
mos, Positive approzimants of operators, Indiana Univ. Math. J. 21(1972)
951-960, and Spectral approximants of normal operators, Proc. Edinburgh
Math. Soc., 19 (1974) 51-58, made the problem of operator approximation
popular among operator theorists. The results in Theorem IX.7.3, Exer-
cise IX.7.4, and in Problem IX.8.21, were proved in these papers for the
special case of the operator norm (but more generally for Hilbert space
operators). The first paper of Halmos also tackles the problem of finding a
positive approximant to an arbitrary operator, in the operator norm. The
solution is different from the one for the Hilbert-Schmidt norm given in
Theorem IX.7.5, and the problem is much more complicated. The problem
of finding the closest normal matrix has been solved completely only in
the 2 x 2 case. Some properties of the normal approximant and algorithms
for finding it are given in A. Ruhe, Closest normal matriz finally found!
BIT, 27 (1987) 585-598. The result in Problem IX.8.20 was proved, in the
special case of the operator norm, by J. Phillips, Nearest normal approz-
imation for certain normal operators, Proc. Amer. Math. Soc., 67 (1977)
236-240. The general result was proved in R. Bhatia, R. Horn, and F. Kit-
taneh, Normal approzimants to binormal operators, Linear Algebra Appl.,
147(1991) 169-179. An excellent survey of matrix approximation problems,
with many references and applications, can be found in N.J. Higham, Ma-
triz nearness problems and applications, in the collection Applications of
Matriz Theory, Oxford University Press, 1989. A particularly striking ap-
plication of Theorem IX.7.2 has been found in quantum chemistry. Given
n linearly independent unit vectors ey, ..., e, in an n-dimensional Hilbert
space, what is the orthonormal basis f, ..., f, that is closest to the e;, in
the sense that %||e; — f;||? is minimal? The Gram-Schmidt procedure does
not lead to such an orthonormal basis. The chemist P.O. Lowdin, On the
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non-orthogonality problem connected with the use of atomic wave functions
in the theory of molecules and crystals, J. Chem. Phys., 18(1950) 365-374,
found a procedure to obtain such a basis. The problem is clearly equivalent
to that of finding a unitary matrix closest to an invertible matrix, in the
Hilbert-Schmidt norm. Theorem IX.7.2 solves the problem for all unitar-
ily invariant norms. The importance of such results is explained in J.A.
Goldstein and M. Levy, Linear algebra and quantum chemistry, American
Math. Monthly, 78 (1991) 710-718.



X

Perturbation of Matrix Functions

In earlier chapters we derived several inequalities that describe the variation
of eigenvalues, eigenvectors, determinants, permanents, and tensor powers
of a matrix. Similar problems for some other matrix functions are studied
in this chapter.

X.1 Operator Monotone Functions

If a, b are positive real numbers, then it is easy to see that |a”—b"| > |a—b|"
ifr >1,and |[a"—b"| < |a—b|" if 0 < r < 1. The inequalities in this section
are extensions of these elementary inequalities to positive operators A, B.
Instead of the power functions f(t) =¢", 0 < r < 1, we shall consider the
more general class of operator monotone functions.

Theorem X.1.1 Let f be an operator monotone function on [0,00) such
that f(0) = 0. Then for all positive operators A, B,

I1£(A) = F(B)I| < f(IlA - BIl)- (X.1)

Proof. Since f is concave (Theorem V.2.5) and f(0) = 0, we have
fla+b) < f(a) + f(b) for all nonnegative numbers a, b.

Let @ = |A — BJ|. Then A — B < . Hence, A < B+ ol and f(A) <
f(B+al). By the subadditivity property of f mentioned above, therefore,
F(A) < £(B) + f(a)L. Thus f(A) — f(B) < f(a)I and, by symmetry,
f(B)Y — f(A) < f(a)I. This implies that |f(A) — f(B)| < f(a)l. Hence,
1/(A) — F(B)] < f(a) = F(IA~ BI). -
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Note the special consequence of the above theorem:
[A"=B|<[A-B|, 0<r<1 (X.2)

for any two positive operators A, B. Note also that the argument in the
above proof shows that

(A = F(B)Il < fFClA = B

for every unitarily invariant norm.

Exercise X.1.2 Show that for 2 x 2 positive matrices, the inequality
|AY/2 — BY/2||, < ||A — B||3/? is not always valid. (It is false even when
B=0)

The inequality (X.2) can be rewritten in another form:
[A"=B"|<||[|[A-B["|l, 0<r<l (X.3)

This has a generalisation to all unitarily invariant norms. Once again, for
this generalisation, it is convenient to consider the more general class of
operator monotone functions.

Recall that every operator monotone function f on [0, co) has an integral
representation

f(t) =+ Bt + / %dw(x), (X.4)
0

where v = f(0), f > 0 and w is a positive measure such that f0°° 1%\dw(z\)
< 00. (See (V.53).)

Theorem X.1.3 Let f be an operator monotone function on [0,00) such
that f(0) = 0. Then for all positive operators A, B and for all unitarily
invariant norms

llfCA) = fB)I < (1A = BDII- (X.5)

In the proof of the theorem, we will use the following lemma.

Lemma X.1.4 Let X,Y be positive operators. Then
X +D7 = (X+Y + DT <= +D7H
for every unitarily invariant norm.

Proof. Since (X+1I)~! < I, by Lemma V.1.5 we have Y/2(X +1)~1Y/?
<Y. Hence,

I-YY2X+D) WYY t<i—(Y+1)h
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Therefore, by the Weyl Monotonicity Principle,
1 _ - _
NI-YAX+ DY 2 ) <Al -y + 17

for all j. Note that Y/2(X + I)~'Y'/2 has the same eigenvalues as those
of (X +I)~2Y(X +I)~2. So, the above inequality can also be written as

MI-(X+D72Y(X+D72+ 1) <Az - [y +1]7Y).
From the identity

(X+D - X+Y+D7!
= (X+DH{I-[(X+DY(X+I)"2 + (X +1)2

and the fact that ||(X + 1)~ %|| < 1, we see that
{ -1 —1
NX+IT =X +Y+117)
< MI-[(X+D7FYV(X+D)72 +1)7Y).
Thus,
l — — ! _
NX+07 =X +Y+I) < NI -[Y+17Y)

for all j. This is more than what we need to prove the lemma. |
Proof of Theorem X.1.3: By the Fan Dominance Property (Theorem
1V.2.2) it is sufficient to prove the inequality (X.5) for the special class of
norms || - ||(ky, £ =1,2,...,n.

We will first consider the case when A — B is positive. Let C = A — B.
We want to prove that

1£(B+C) = f(B)llw < IF(O)llr- (X.6)

Let o5 = 5;(C), = 1,2,...,n. Since o; are the eigenvalues of the positive
operator C, we have

5;(R(C)) = h(oj), F=1,...,n,

for every monotonically increasing nonnegative function h(t) on [0,00).
Thus

IRy = Y _hloy), k=1,...,m,

=1

for all such functions h.
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Now, f has the representation (X.4) with v = 0. The functions St and

}\—}i—t are nonnegative, monotonically increasing functions of ¢. Hence,
k
IFCNwy = D _floy)
j=1
k ® k Ao
= -+ L dw(x
ﬁZUJ /Z)\‘FUJ' U)()
Jj=1 0o J=1

BICHu + [ AIC(E + A1) (.
0

In the same way, we can obtain from the integral representation of f

145+ )~ £(Bloy
< BICIw + [ M(B+CNB+C+ A1 = BB+ M) du()
0

Thus, our assertion (X.6) will be proved if we show that for each A > 0
I(B+CYB+C+A)""=B(B+A) k) < ICC+ )7 |-

Now note that we can write

x -1
X(X+A) =1~ (7 +I> .
So, the above inequality follows from Lemma X.1.4. This proves the theo-
rem in the special case when A — B is positive.

To prove the general case we will use the special case proved above and
two simple facts. First, if X,Y are Hermitian with positive parts X+, Y+
in their respective Jordan decompositions, then the inequality X < Y
implies that | X*[/(xy < [Y*|(x) for all k. This is an immediate conse-
quence of Weyl’s Monotonicity Principle. Second, if X7, X5, Y1, Y2 are pos-
itive operators such that X3 X2 = 0, 1Yz = 0, || X1llx) < [Y1ll(x), and
| X2ll(ky < [IYall(xy for all k, then we have || X1 + Xa (k) < [Y1 + Yal|(x) for
all k. This can be easily seen using the fact that since X; and X5 commute
they can be simultaneously diagonalised, and so can Y3, Y3.

Now let A, B be any two positive operators. Since A — B < (4 — B)¥,
we have A < B + (A — B)*, and hence f(A) < f(B + (A — B)"). From
this we have

f(A) - f(B) < f(B+ (A~ B)") - f(B),
and, therefore, by the first observation above,

ILF(A) = F(B)] ey < NIF(B + (A= B)") = F(B)llxy
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for all k. Then, using the special case of the theorem proved above we can
conclude that

£ CA) = F(B) NIy < 1F(A = BID)llwy
for all k. Interchanging A and B, we have

1f(B) = F(A ey < IFUB = Al (k)
for all k. Now note that
fA-BMf(B-A") = o,
f(A=BI") + f([B—- A]Y) f(lA—- BY),
[F(A) = FB)T [f(B) - FA)]T 0,
(F(A) = FBN" +[f(B) - fFAT = [f(A) - F(B)|

Thus, the two inequalities above imply that

17(A) = fF(B)Mwy < NFUA = BNl

for all k. This proves the theorem. |

Exercise X.1.5 Show that the conclusion of Theorem X.1.8 is wvalid for
all nonnegative operator monotone functions on [0,00); i.e., we can replace
the condition f(0) = 0 by the condition f(0) > 0.

One should note two special corollaries of the theorem: we have for all
positive operators A, B and for all unitarily invariant norms

A" =Bl <l |A-B["|l, 0<r<1, (X.7)

llog(I + A) —log(I + B)|ll < llllog(Z + [A — B}l (X-8)

Theorem X.1.6 Let g be a continuous strictly increasing map of [0, 00)
onto itself. Suppose that the inverse map g~ ' is operator monotone. Then
for all positive operators A, B and for all unitarily invariant norms, we
have

llg(A) = g(B)Il = llg(|A = BIII- (X.9)

Proof. Let f = g¢g~!. Since f is operator monotone, it is concave by
Theorem V.2.5. Hence g is convex. From Theorem X.1.3, with g(A4) and
g(B) in place of A and B, we have

A= Bl <l f(lg(A) = a(BIDII-

This is equivalent to the weak majorisation

{s5(A = B)} <w {s;(f(l9(A) = g(B)))}-
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Since f is monotone,

s;(f(l9(A) — g(B)]) = f(s;(9(A) — 9(B)))

for each j. So, we have

{s;(A=B)} <uw {f(s;(9(4) — 9(B)))}-

Since g is convex and monotone, by Corollary 11.3.4, we have from this

{9(sj(A—=B))} <w {s;(9(4) — g(B))}.

Since g is monotone, this is the same as saying that

{si(glA = B))} <w {s;(9(4) — g(B))},

and this, in turn, implies the inequality (X.9). ]

Two special corollaries that complement the inequalities (X.7) and (X.8)
are worthy of note. For all positive operators A, B and for all unitarily
invariant norms,

A" = B[ = Il [A = BI"|l, if r>1, (X.10)

llexp A —exp Bl > || exp(|4 — Bl) — 1] (X.11)

Exercise X.1.7 Derive the inequality (X.10) from (X.7) using Fzercise
Iv.2.8.

Is there an inequality like (X.10) for Hermitian operators A, B? First note
that if A is Hermitian, only positive integral powers of A are meaningfully
defined. So, the question is whether [||[(A — B)™||| can be bounded above
by [|A™ — B™||. No such bound is possible if m is an even integer; for the
choice B = — A, we have A™ — B™ = 0. For odd integers m, we do have a
satisfactory answer.

Theorem X.1.8 Let A, B be Hermitian operators. Then for all unitarily
invariant norms, and form =1,2,.

li(A = By™*H| < 22m||A%m+t — BPm|. (X.12)

For the proof we need the following lemma.

Lemma X.1.9 Let A, B be Hermitian operators, let X be any operator,
and let m be any positive integer. Then, for j =1,2,...,m,
HlAm+jXBm—‘j+1 _ Am—]+1XBm+3”|
< |JA™HIHLX B™TI . g™ X BmAItY)| (X.13)
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Proof. By the arithmetic-geometric mean inequality proved in Theorem
IX.4.5, we have
IAX Bl < 1/2 ||A*X + X B|

for all operators X and Hermitian A, B. We will use this to prove the
inequality (X.13). First consider the case j = 1. We have

I”Am+1XBm _ AmXBm+1 I“
[lA(A™X B! — A™" X B™)B||

< 172 [|A2(A™XB™ ! — 4™~ 1XB™)
+ (AmXBm—l . Am—lXBm)B2”|
< 1/2 ||A™T2XB™T - AmTIX BT

+1/2 [|A™M X B™ — AmX B™H|.
Hence
”|Am+1XBm _ AmXBm+1|” S “|Am+2XBm—1 _ Am_lXBm+2|”.

This shows that the inequality (X.13) is true for j = 1. The general case
is proved by induction. Suppose that the inequality (X.13) has been proved
for 7 —1 in place of j. Then using the arithmetic-geometric mean inequality,
the triangle inequality, and this induction hypothesis, we have

A+ X Bmoatt — AmoIt X ||
= JJA(A™H 1 XB™ I - AmTI X BTN B
< 1/2||A2(A™HTIX BT — Amoi X Bmtiel)
+ (Am+j—1XBm—j _ Am—jXBm+j—1)BZHI

< 1/2||AmHH X BT AmI X BT
+1/2 ||A™HGD x gD+ _ gm-G=DH+ x gmtG-D)
< 1/2 I”AA'”H-J_‘_IJ(BTn"—J — Am_jXBm+j+1”|
This proves the desired inequality. n

Proof of Theorem X.1.8: Using the triangle inequality and a very special
case of Lemma X.1.9, we have

14*™(A - B) + (A - B)B*™||
< At = BP| 4 || AT B — ABT|
< 2flamtt — BE | (X.14)

Let C = A — B and choose an orthonormal basis z; such that Cz; = A, z;,
where |\;| = s;(C) for j = 1,2,...,n. Then, by the extremal representation
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of the Ky Fan norms given in Problem I11.6.6,

k
> zj, (A2™C + CB™)z;)|

Jj=1

[[A*™C + CB*™||x)

v

Il

k
> il{(zs, A’mxj) + (x5, B"z5)}

=1

Now use the observation in Problem I1X.8.14 and the convexity of the func-
tion f(t) = t2™ to see that

(zj, A%Mz5) + (25, B*"z;) 2 || Azs|*™ + || Bz P

> 217 (||Azg | + || Bz )™
> 217%™ Az; — Bzl

— 21—2ml/\j|2m.

We thus have
k
”A2mc + CB2m“(k) > 221_2m|Ajl2m+1
j=1

21—-2m”(A _ B)2m+1“(k).
Since this is true for all k&, we have
[1427C + CB>™| > 2'-2m||(4 — B+

for all unitarily invariant norms. Combining this with (X.14) we obtain the
inequality (X.12). |
Observe that when B = — A, the two sides of (X.12) are equal.

X.2 The Absolute Value

In Section VIL5 we obtained bounds for ||| |A| — |B| ||| in terms of
|l|A — B|||- More such bounds are obtained in this section. Since |A] =
(A*A)Y/?| results for the square root function obtained in the preceding
section are useful here.

Theorem X.2.1 Let A, B be any two operators. Then, for every unitarily
tnvariant norm,

Il 1Al =B < V2(llA + BI| 1A - BI|)*/2. (X.15)

Proof. From the inequality (X.7) we have
Al 1B < Il |A*A — B*B|'/2]. (X.16)
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Note that

A"A-B'B=1/2{(A+B)"(A- B)+(A-B)*(A+ B)}. (X.17)
Hence, by Theorem I11.5.6, we can find unitaries U and V such that
|A"A—B*B|<1/2{U|(A+ B)*(A- B)|U* +V|(A- B)"(A+ B)|V*}.

Since the square root function is operator monotone, this operator inequal-
ity is preserved if we take square roots on both sides. Since every unitarily
invariant norm is monotone, this shows that

Il |A*A— B*BI"?||> < 1/2]|[U|(A+ B)*(A- B)|U*
+ VI|(A-B)"(A+ B)|V*]'/?|2.

By the result of Problem IV.5.6, we have
WX+ Y P20 < 2000 X202 + 1011202
for all X,Y. Hence,

Il1A*A - B*BI"2|* < || [(A+B)"(A- B)'?|?
+1(A - B)*(A+B)|'/?|I*

By the Cauchy-Schwarz inequality (IV.44), the right-hand side is bounded
above by 2||A+ Bj| ||A— BJ|- Thus the inequality (X.15) now follows from
(X.16). ]

Example X.2.2 Let
1 0 0 1
a=(o0) #=(00)

1A =Bl lh=2 |lA+Bli=]A-Bl:=V2
So, for the trace norm the inequality (X.15) is sharp.

Then

An improvement of this inequality is possible for special norms.

Theorem X.2.3 Let A, B be any two operators. Then for every QQ-norm
(and thus, in particular, for every Schatten p-norm with p > 2) we have

114l = 1Bl llq < (1A + BllllA - Bll)'/>. (X.18)

Proof. By the definition of Q-norms, the inequality (X.18) is equivalent
to the assertion that

(AL = 1B < I 1A+ B2 1A - B (X.19)
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for all unitarily invariant norms. From the inequality (X.10) we have
(A= 1B < Il AP — 1B = |A*A - B B]|.
Using the identity (X.17), we see that
llA*A— B*B| <1/2 {[I(A+ B)"(A - B)|| + (A — B)"(A+ B)||}.

Now, using the Cauchy-Schwarz inequality given in Problem IV.5.7, we see
that each of the two terms in the brackets above is dominated by

Il 1A+ B2 1A - B2 |2,
This proves the inequality (X.19). ]

Theorem X.2.4 Let A, B be any two operators. Then, for all Schatten
p-norms with 1 <p <2,

I 1Al = Bl llp < 27 2(|A+ Bl A — B|jp)*>. (X.20)
Proof. Let 1
1X1lp == (2 s5(X)) P forallp> 0.

When p > 1, these are the Schatten p-norms. When 0 < p < 1, this defines
a quasi-norm. Instead of the triangle inequality, we have

X + Y, <2Y77 (| X[, + IY]lp), O<p<1. (X.21)

(See Problems IV.5.1 and IV.5.6.) Note that for all positive real numbers
r and p, we have
Xl = 1X1175- (X.22)

Thus, the inequality (X.7), restricted to the p-norms, gives for all positive
operators A, B

A" B, <||A-BJ;, for 0<r<1,1<p< oo (X.23)
Hence, for any two operators A, B,

1Al - IB| [, < |l4*A - B*BJ}), 1<p<oo.

Now use the identity (X.17) and the property (X.21) to see that, for
1<p<y

Il A*A~B"Bllp/z < 2*P7?{||(A+B)* (A~ B)llp/2+ (A~ B)*(A+B)llp/2}-

From the relation (X.22) and the Cauchy-Schwarz inequality (IV.44), it fol-
lows that each of the two terms in the brackets is dominated by
|A + Bl|pl|A — B||p- Hence

[ A"A ~ B*Bllp/s < 22771 A+ Bll| A~ Bl
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for 1 < p < 2. This proves the theorem. ]

The example given in X.2.2 shows that, for each 1 < p < 2, the inequality
(X.20) is sharp.
In Section VIL.5 we saw that

I 1Al = Bl |2 < V2 [|A - Bll2 (X.24)

for any two operators A, B. Further, if both A and B are normal, the factor
/2 can be replaced by 1. Can one prove a similar inequality for the operator
norm instead of the Hilbert-Schmidt norm? Of course, we have from (X.24)

14l =Bl | < V2n ||A - B (X.25)

for all operators A, B on an n-dimensional Hilbert space H. It is known
that the factor v/2n in the above inequality can be replaced by a factor
¢n = O(log n); and even when both A, B are Hermitian, such a factor is
necessary. (See the Notes at the end of the chapter.)

In a slightly different vein, we have the following theorem.

Theorem X.2.5 (T. Kato) For any two operators A, B we have

1< 2 1A Bl (24 10g MIEIBL
il - 1811 < 2pa- By (24105 BHEIED) . gcan)

Proof. The square root function has an integral representation (V.4); this
says that

ﬁﬂ=l/x%7x”%x
i
0

We can rewrite this as

/2

SN

/u*ﬂ~»ﬂu+n*wx
0
Using this, we have
1 o0
A1 = 1B = [ XEBE 40 = (4P £ 0 (k)
0

We will estimate the norm of this integral by splitting it into three parts.
Let

a=|lA-B|* B=(lAl+|B])*
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Now note that if X,Y are two positive operators, then -Y < X —Y < X,
and hence || X — Y| < max(||X||,||Y]]). Using this we see that

n / MZ[(BJ2 4+ )7 = (AP + ) dA|
0

< /)\‘Wd)\ =20'? =2|A - B|. (X.28)
0

From the identity
(IBP+X) " = (AP +2) 7 = (IBP+X) AP = IBP) (AP +2) 7 (X.29)
and the identity (X.17), we see that

IOBI + 27 = (AP + 07| A2 A+B| | A~ B

<
< AT2EY2|A - B
Hence,

I / N2BR + N - (AP NN < 20A- Bl (X.30)
B

Since A*A — B*B = B*(A — B) + (A* — B*)A, from (X.29) we have
(B +X2)7" = (AP + 07

= (BP+XN7'B(4-B)(A*+ 07!
+ (B +X) "N A" = BYA(AP + 0L (X.31)

Note that
I(BZ+M)7'B*| = [IBUBI*+ )~
1

BB + X)) < CINIER

since the maximum value of the function f(t) = z%5 is 53177 - By the same
argument,

1
2 ~1
IA(A +2) 77 < oz

So, from (X.31) we obtain

IUB2+ 2" = (AP + N7 < A73/2||A - B].
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Hence
B B
H/AWmBF+M*—ﬂAF+M*MWSHA—BW/X*M

¢

B

[e4

Al + 1Bl

= A= B] log TA—B]

2||A — Bl log (X.32)
Combining (X.27), (X.28), (X.30), and (X.32), we obtain the inequality

(X.26). n

X.3 Local Perturbation Bounds

Inequalities obtained above are global, in the sense that they are valid
for all pairs of operators A, B. Some special results can be obtained if B is
restricted to be close to A, or when both are restricted to be away from 0. It
is possible to derive many interesting inequalities by using only elementary
calculus on normed spaces. A quick review of the basic concepts of the
Fréchet differential calculus that are used below is given in the Appendix.

Let f be any continuously differentiable map on an open interval I. Then
the map that f induces on the set of Hermitian matrices whose spectrum is
contained in [ is Fréchet differentiable. This has been proved in Theorem
V.3.3, and an explicit formula for the derivative is also given there. For each
A, the derivative Df(A) is a linear operator on the space of all Hermitian
matrices. The norm of this operator is defined as

IDf(Al = sup | Df(A)B)I- (X.33)
1Bl=1

More generally, any unitarily invariant norm on Hermitian matrices leads
to a corresponding norm for the linear operator D f(A); we denote this as

NDfCAIN = e IDf(AYB)II- (X.34)

For some special functions f, we will find upper bounds for these quanti-
ties. Among the functions we consider are operator monotone functions on
(0,00). The square root function f(t) = t'/2 is easier to handle, and since
it is especially important, it is worthwhile to deal with it separately.

Theorem X.3.1 Let f(t) = t/2, 0 < t < oco. Then for every positive
operator A, and for every unitarily invariant norm,

IDf(A < 1/2 ||A7H)M2. (X.35)

Proof. The function g(t) = t2, 0 < t < oo is the inverse of f. So, by
the chain rule of differentiation, D f(A) = [Dg(f(A))]~! for every positive
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operator A. Note that Dg(A)(X) = AX + XA, for every X. So
[Dg(f(AN)(X) = AV2X + X AY2.

If A has eigenvalues ; > -+ > a, > 0, then dist(c(AY/?2), o(—AY?))
= 2a3/* = 2||A~1||~1/2. Hence, by Theorem VII.2.12,

IDg(FANHI < 172 A2
This proves the theorem. n
Exercise X.3.2 Let f € C'(I) and let f' be the derivative of f. Show that
17/ (AN = IDFAYDI < IDFA)- (X.36)
Thus, for the function f(t) = t'/2 on (0, 00),
IDFA) = 1Al (X.37)
for all positive operators A.

Theorem X.3.3 Let ¢ be the map that takes an invertible operator A to
its absolute value |A|. Then, for every unitarily invariant norm,

IDe(A)| < cond(A) = A7 [|A].- (X.38)

Proof. Let g(A) = A*A. Then Dg(A)(B) = A*B + B*A. Hence
IDg(A)||| < 2||All. The map ¢ is the composite fg, where f(A) = A2
So, by the chain rule, Dp(A)=Df(g(A))Dg(A) = Df(A*A)Dg(A). Hence

DA < 1D f (A" A I Dg (A

The first term on the right is bounded by 2||A~!|| by Theorem X.3.1, and
the second by 2||A||. This proves the theorem. |

The following theorem generalises Theorem X.3.1.

Theorem X.3.4 Let f be an operator monotone function on (0,00). Then,
for every unitarily invariant norm,

DA < 11 (A (X.39)

for all positive operators A.

Proof. Use the integral representation (V.49) to write

T oA
sy =a+pir [ (57 - g ) WOV,
0
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where a, 3 are real numbers, 8 > 0, and p is a positive measure. Thus

A

f(A>=az+ﬁA+]°[
0

Using the fact that, for the function g(4) = A~! we have Dg(A)(B) =
~A71BA™!, we obtain from the above expression

Df(A)(B) = 8B+ /(A + A)7TEBOA + A) T rdu(N).
0

Hence

IDfCAI < B+ / I+ A) P du(N). (X.40)
0

From the integral representation we also have
oo
1
=0+ [ Gogmiu)
0

Hence

oo

£ (A = 161 + / (A + 4)2du()]). (x.41)

0

If A has eigenvalues a; > --- > a,, then since 8 > 0, the right-hand sides
of both (X.40) and (X.41) are equal to

oo

B+ / (A + an) 2du()).

0

This proves the theorem. |

Exercise X.3.5 Let f be an operator monotone function on (0,00). Show
that

IDF(A = IDFAYDI = £ (Al

Once we have estimates for the derivative D f(A), we can obtain bounds
for | f(A) — f(B)|| when B is close to A. These bounds are obtained using
Taylor’s Theorem and the mean value theorem.

Using Taylor’s Theorem, we obtain from Theorems X.3.3 and X.3.4 above
the following.
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Theorem X.3.6 Let A be an invertible operator. Then for every unitarily
nvariant norm

I 1Al = [B] I < cond(A)|IA ~ BJ| + O(l|A - BII*) (X.42)

for all B close to A.

Theorem X.3.7 Let f be an operator monotone function on (0,00). Let
A be any positive operator. Then for every unitarily invariant norm

IF(A) = FBII < ILF (A A = Bl + O(l14 - BII?) (X.43)
for all positive operators B close to A.
For the functions f(t) =t", 0 < r < 1, we have from this
A" = BTl < r| ATHIPTTIIA — Bl + O([|A — BII*). (X.44)

The use of the mean value theorem is illustrated in the proof of the
following theorem.

Theorem X.3.8 Let f be an operator monotone function on (0,00) and
let A, B be two positive operators that are bounded below by a; i.e., A> al
and B > al for the positive number a. Then for every unitarily invariant
norm

llf(A) = F(B)II < f(a)llA - BIl. (X.45)

Proof. Use the integral representation of f as in the proof of Theorem
X.3.4. We have

FI(A) = BT + / (A + A)~2dpu()).
0

If A>al, then
FA) <B4+ / (A4 a)"2du(A)]I = f'(@)I.
0

Let A(t) = (1 —-t)A+tB, 0 <t < 1. If Aand B are bounded below by
a, then so is A(t). Hence, using the mean value theorem, the inequality
(X.39), and the above observation, we have

If(A) - B3I < S 1D f(A®) (A NI
sup || f' (A A" @
0<t<1

fa)ll4 - B

IN

IA
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A special corollary is the inequality
[lIA" = B™|| <ra" '||JA-BJ|, 0<r <1, (X.46)

valid for operators A, B such that A > al and B > al for some positive
number a.

Other inequalities of this type are discussed in the Problems section.

Let A = UP be the polar decomposition of an invertible matrix A. Then
P = |A| and U = AP~!. Using standard rules of differentiation, one can
obtain from this, expressions for the derivative of the map A — U, and
then obtain perturbation bounds for this map in the same way as was done
for the map A — |A|. There is, however, a more effective and simpler way
of doing this.

The advantage of this new method, explained below, is that it also works
for other decompositions like the QR decomposition, where explicit formu-
lae for the two factors are not known. For this added power there is a small
cost to be paid. The slightly more sophisticated notion of differentiation on
a manifold of matrices has to be used. We have already used similar ideas
in Chapter 6.

In the space M(n) of n x n matrices, let GL(n) be the set of all invertible
matrices, U(n) the set of all unitary matrices, and P(n) the set of all
positive (definite) matrices. All three are differentiable manifolds. The set
GL(n) is an open subset of M(n), and hence the tangent space to GL(n)
at each of its points is the space M(n). The tangent space to U(n) at
the point I, written as 77U(n), is the space (n) of all skew-Hermitian
matrices. This has been explained in Section VI.4. The tangent space at
any other point U of U(n) is TyUm) =U -K(n) = {US: S € £(n)}. Let
‘H(n) be the space of all Hermitian matrices. Both H(n) and X(n) are real
vector spaces and H(n) = iK(n). The set P(n) is an open subset of H(n),
and hence, the tangent space to P(n) at each of its points is H(n).

The polar decomposition gives a differentiable map ® from GL(n) onto
U(n) x P(n). This is the map ®(A) = ($,(4), ®2(A)) = (U, P), where
the invertible matrix A has the polar decomposition A = U P. Earlier in
this section we called ®5(A) just ¢(A) and evaluated its Fréchet derivative.
An explicit formula for the derivative D®,(A4) is obtained below. This map
is a linear map from M(n), the tangent space to GL(n), into the space
U - K(n), the tangent space to U(n) at the point U.

The main idea of the proof below is simple. Let ¥ be the map from
U(n) x P(n) to GL(n) that is the inverse to ®; i.e., ¥(U, P) = UP. This
is a much simpler object to handle, since it is just a product map. We
can calculate the derivative of this map and then use the inverse function
theorem to get the derivative of the map ®.

Theorem X.3.9 Let ®; be the map from GL(n) into U(n) that takes an
mvertible matriz to the unitary part in its polar decomposition, ®,(UP) =
U. Then for each X € M(n), the value of the derwative D®1(UP) at the
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point UX is given by the formula

(D@, (UP)(UX) =2U / e *P(iIm X)e ‘Pt (X.47)
0

Proof. The domain of the linear map D¥(U, P) is the tangent space to
the manifold U(n)xP(n) at the point (U, P). This space is (U-K(n), H(n)).
The range of D¥ (U, P) is the tangent space to GL(n) at UP. This space
is M(n). We will use the decomposition M(n) = U - K(n) + U - H(n) that
arises from the Cartesian decomposition. By the definition of the derivative,
we have

d

(DY, P)US, H) = —

U(Ue'® P +tH)
t=0

tS
— H
" tone (P +tH)

= USP+UH

for all S € K(n) and H € H(n).
The derivative D®(U P) is a linear map from M(n) onto (U-K(n), H(n)).
Suppose
[DR(UP)(UX) = (UM, N).

Since ® = U1, from the two equations above we see that
UX = [D‘I)(UP)]_I(UM, N)=[D¥((U,P)(UM,N)=UMP + UN.

Hence,
X=MP+N.

Our task now is to find M from this equation. Note that M is skew-
Hermitian and N Hermitian. Hence, from the above equation, we obtain

MP+PM=X—-X*"=2ilmX.

This equation was studied in Chapter 7. From Theorem VII.2.3 we have
its solution

M= 2/e"tP(iImX)e"tP dt.
0
This gives us the expression (X.47). |

Corollary X.3.10 For every unitarily invariant norm we have

D21 (UP)|| = IP~H. (X.48)
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Proof. Using (X.47) and properties of unitarily invariant norms, we see
that

D2 (UP)UX) < 2/ lle™ I NX I e 1 d.
0

If P has eigenvalues ; > -+ > ay, then [e 7| = e~ So,

oo

IDS,UP)UX)|| < 2 / e~ | X | de
0
s IXI = [P X

Hence,

D2, (UP)| = o 1IHD<1>1(UP)(X)III < 1P
The choice X = ivv*/||vv*|||, where v is an eigenvector of P belonging to
the eigenvalue a,,, shows that the last inequality is in fact an equality. ]

Two corollaries follow; the first one is obtained using the mean value
theorem and the second one using Taylor’s Theorem.

Corollary X.3.11 Let Ag, A; be two elements of GL(n), and let Uy, Uy
be the unitary factors in their polar decompositions. Suppose that the line
segment A(t) = (1 — t)Ao + tA;, 0 <t < 1, lies inside GL(n). Then, for
every unitarily invariant norm

1o = Ul < max 141 - 140 — Al (X.49)

Corollary X.3.12 Let Ag be an invertible matriz with polar decomposition
Ag = UgPy. Then, for a matriz A = UP in a neighbourhood of Ag, we have

IlUo — Ul < 11451l 140 — All + O(lll A0 — AlI*).- (X.50)

Exercise X.3.13 From the proof of Theorem X.3.9 one can also extract a
bound for the derivative of the map A — |A|. What does this give? Compare
it with the result of Theorem X.35.3.

Let us see now how this method works for a perturbation analysis of the
QR decomposition.

Let A, (n) be the set of all upper triangular matrices with positive di-
agonal entries. Each element A of GL(n) has a unique factoring A = QR,
where Q € U(n) and R € A;(n). Thus the QR decomposition gives rise
to an invertible map @ from GL(n) onto U(n) x A (n). Let Are(n) be
the set of all upper triangular matrices with real diagonal entries. This is a
" real vector space, and A (n) is an open set in it. Thus the tangent space
to Ay (n), at any of its points, is Are(n). For each A = QR in GL(n)
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the derivative D®(A) is a linear map from the vector space M(n) onto the
vector space (@ - K(n), Are(n)). We want to calculate the norm of this.

First note that the spaces K(n) and Ayre(n) are complementary to each
other in M(n). We have a vector space decomposition

M(n) = K(n) + Are(n). (X.51)

Every matrix X splits as X = K + T in this decomposition; the entries of
X,K and T are related as follows:

kjj = ilmz;; forall 7,

ki; = —Zj for 7>,

ki]' = Tjj for 1> 79,

ti; = Rexy; for all 7, (X.52)
tij = T, +x5 for 7>,

tij = 0 for > j

Exercise X.3.14 Let P; and P2 be the complementary projection opera-
tors in M(n) corresponding to the decomposition (X.51). Show that

P1ll2 = [P2ll2 = V2,

where ||Pjllz = sup ||P;jX|2, and ||- ||z stands for the Frobenius (Hilbert-
[IXN2=1

Schmidt) norm.

Now let ¥ be the map from U(n) x A (n) onto M(n) defined as
¥(Q,R) = QR. Then ¥ and @ are inverse to each other. The derivative
DY (Q, R) is a linear map whose domain is the tangent space to the mani-
fold U(n) x A (n) at the point (Q, R). This space is (@ - K(n), Are(n)).
Its range is the space M(n) = Q - K(n) + Q - Are(n). By the definition of
the derivative, we have

d

a tK
S| Qe R+4T)

t=0

d tK
—_ tT
@, Qe (R+1tT)

= QKR+QT

forall K € K(n) and T € Are(n).
The derivative D®(QR) is a linear map from M(n) onto Q - K(n) +
Are(n). Suppose
[DS(QR)(QX) = (QM, N),

where M € K(n) and N € Are(n). Then we must have

QX = [D®(QR)|" (QM,N) = [D¥(Q, R)|(QM, N) = QMR + QN.
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Hence
X=MR+ N.

So, we have the same kind of equation as we had in the analysis of the polar
decomposition. There is one vital difference, however. There, the matrices
M, N were skew-Hermitian and Hermitian, respectively, and instead of the
upper triangular factor R we had the positive factor P. So, taking adjoints,
we could eliminate N and get another equation that we could solve explic-
itly. We cannot do that here. But there is another way out. We have from
the above equation

XR'=M+ NR™L (X.53)

Here M € K(n); and both N and R~! are in Are(n), and hence so is their
product NR~!. Thus the equation (X.53) is nothing but the decomposition
of X R~! with respect to the vector space decomposition (X.51). In this way,
we now know M and N explicitly. We thus have the following theorem.

Theorem X.3.15 Let ®,, P2 be the maps from GL(n) into U(n) and
A (n) that take an invertible matriz to the unitary and the upper tri-
angular factors in its QR decomposition. Then for each X € M(n), the
derivatives D®;(QR) and D®3(QR) evaluated at the point QX are given
by the formulae

(D2 (QR)(QX) = QP (XR™Y),
[D22(QR)|(QX) = Po(XR™1)R,

where P, and P, are the complementary projection operators in M(n) cor-
responding to the decomposition (X.51).

Using the result of Exercise X.3.14, we obtain the first corollary below.
Then the next two corollaries are obtained using the mean value theorem
and Taylor’s Theorem.

Corollary X.3.16 Let &1, D, be the maps that take an invertible matriz
A to the Q and R factors in its QR decomposition. Then

V2 AT,
V2 cond(4) = V2 | A] |A7].

D@1 (A)ll2

<
| D@2(A)ll2 <

Corollary X.3.17 Let Ag, A; be two elements of GL(n) with their respec-
tive QR decompositions Ag = QoRoy and A1 = Q1 R;. Suppose that the line
segment A(t) = (1 — t)Ag + tA1, 0 <t <1, lies in GL(n). Then

1Q0 — Qill2 < V2 max I4®) | 140 — Aull,

[Ro — Rall2 < V2 fax cond(A(t))[l Ao — Atll2.
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Corollary X.3.18 Let Ag = QoRo be an invertible matriz. Then for every
matriz A = QR close to Ay,

Qo — Qll2 < V2 [[ A7 || | Ao — All2 + O(H{‘lo - Al3),
| Ro — R|l2 < V2 cond(Ap)|| 4o — Allz + O(|| Ao — Al[3).

For most other unitarily invariant norms, the norms of projections P;
and P, onto the two summands in (X.51) are not as easy to calculate. Thus
this method does not lead to attractive bounds for these norms in the case
of the QR decomposition.

X.4 Appendix: Differential Calculus

We will review very quickly some basic concepts of the Fréchet differential
calculus, with special emphasis on matrix analysis. No proofs are given.

Let X,Y be real Banach spaces, and let £(X,Y) be the space of bounded
linear operators from X to Y. Let U be an open subset of X. A continuous
map f from U to Y is said to be differentiable at a point u of U if there
exists T' € £(X,Y) such that

o ) — f) Tl
v ol

0. (X.54)

It is easy to see that such a T, if it exists, is unique.

If f is differentiable at u, the operator T above is called the derivative
of f at u. We will use for it the notation D f(u). This is sometimes called
the Fréchet derivative. If f is differentiable at every point of U, we say
that it is differentiable on U.

One can see that, if f is differentiable at u, then for every v € X,

D) = L flu+tv). (X.55)
di|,_q
This is also called the directional derivative of f at u in the direction v.
The reader will recall from elementary calculus of functions of two vari-
ables that the existence of directional derivatives in all directions does not
ensure differentiability.
Some illustrative examples are given below.

Example X.4.1 (i) The constant function f(z) = ¢ is differentiable at all
points, and D f(z) =0 for all z.

(ii) Every linear operator T is differentiable at all points, and is its own
derivative; i.e., DT (u)(v) = Tv, for all u,v in X.

(i) Let X,Y,Z be real Banach spaces and let B : X xY — Z be
a bounded bilinear map. Then B is differentiable at every point, and its
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derivative DB(u,v) is given as
DB(u,v)(z,y) = B(z,v) + B(u,y)-

(iv) Let X be a real Hilbert space with inner product (-,-), and let f(u) =
lull? = (u,u). Then f is differentiable at every point and Df(u)(v) =
2(u,v).

The next set of examples is especially important for us.

Example X.4.2 In these examples X =Y = L(H).
(i) Let f(A) = A%Z. Then

Df(A)(B) = AB + BA.

(ii) More generally, let f(A) = A™, n > 2. From the binomial expansion
for (A + B)™ one can see that

Df(A)(B)= Y. ABA*

J+k=n—1
3,k20

(iii) Let f(A) = A~} for each invertible A. Then
Df(A)(B) = —-A"'BA~L
(i) Let f(A) = A*A. Then
Df(A)(B) = A*B + B*A.
(v) Let f(A) = e?. Use the formula

1
eA+B _ eA — /e(l—t)AB et(A+B)dt

0

(called Dyson’s expansion) to show that
1
DF(A)(B) = / =04 B oth gy
0
The usual rules of differentiation are valid:
If f1, fo are two differentiable maps, then f; + fo is differentiable and

D(f1 + f2)(u) = Df1(u) + Dfo(u).

The composite of two differentiable maps f and g is differentiable and we
have the chain rule

D(g- f)(u) = Dg(f(u)) - Df(u).
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In the special situation when g is linear, this reduces to
D(g- f)(v) =g- Df(u).

One important rule of differentiation for real functions is the product
rule: (fg) = f'g+gf'. If f and g are two maps with values in a Banach
space, their product is not defined — unless the range is an algebra as well.
Still, a general product rule can be established. Let f, g be two differentiable
maps from X into Y7, Y3, respectively. Let B be a continuous bilinear map
from Y; x Y, into Z. Let ¢ be the map from X to Z defined as p(z) =
B(f(z), g(z)). Then for all u,v in X

Do(u)(v) = B(Df(u)(v), 9(w)) + B(f(w), Dg(u)(v))-

This is the product rule for differentiation. A special case of this arises
when Y; = Y2 = L(Y), the algebra of bounded operators in a Banach
space Y. Now ¢(z) = f(z)g(z) is the usual product of two operators. The
product rule then is

Dp(u)(v) = [Df(w)(v)] - g(u) + f(u) - [Dg(u)(v)]-

Exercise X.4.3 (i) Let f be the map A — A™! on GL(n). Use the product
rule to show that
Df(A)(B) = —A'BA™1.

This can also be proved directly.
(ii) Let f(A) = A=2. Show that
Df(A)(B)=—-A"'BA™2 - A72BA™L.
(iii) Obtain a formula for the derivative of the map f(A) = A™, n =
3,4,....
Perhaps, the most useful theorem of calculus is the Mean Value Theorem.
Theorem X.4.4 (The Mean Value Theorem) Let f be a differentiable map

from an interval I of the real line into a Banach space X. Then for each
closed interval [a,b] contained in I,

1£(b) = fla)ll < |b—al Sup [IDF(@)1-

This is the version we have used often in the book, with [a,b] = [0, 1].
There is a more general statement:

Theorem X.4.5 (The Mean Value Theorem) Let f be a differentiable map
from a convez subset U of a Banach space X into the Banach space Y. Let
a,b €U and let L be the line segment joining them. Then

I£(®) = f(a)ll < llo—all sup IDf(w)l-
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(Note that there are three different norms that occur in the above inequal-
ity. These are the norms of the spaces Y, X, and £(X,Y), respectively.)

Higher order Fréchet derivatives can be identified with multilinear maps.
This is explained below.

Let f be a differentiable map from X to Y. At each point u, the deriva-
tive Df(u) is an element of the Banach space £(X,Y). Thus we have a
map Df from X into £(X,Y), defined as Df : v — Df(u). If this map
is differentiable at a point u, we say that f is twice differentiable at u.
The derivative of the map Df at the point u is called the second deriva-
tive of f at u. It is denoted as D?f(u). This is an element of the space
L(X,L(X,Y)). This space is isomorphic to another Banach space, which
is easier to handle.

Let £L2(X,Y) be the space of bounded bilinear maps from X x X into Y.
The elements of this space are maps f from X x X into Y that are linear
in both variables, and for whom there exists a constant ¢ such that

£ (21, z2)]| < cllal [l

for all z1,z2 € X. The infimum of all such c is called || f||. This is a norm
on the space £2(X,Y), and the space is a Banach space with this norm.
If p is an element of £(X, L(X,Y)), let

o(z1, z2) = [p(z1)](x2) for zi,z2 € X.

Then ¢ € L2(X,Y). It is easy to see that the map ¢ — @ is an isometric
isomorphism.

Thus the second derivative of a twice differentiable map f from X to Y
can be thought of as a bilinear map from X x X to Y. It is easy to see that
this map is symmetric in the two variables; i.e.,

D? f(u)(v1,v2) = D f (u)(v2,v1),

for all u,v;,ve. (This symmetry property is extremely helpful in guessing
the expression for the second derivative of a given map.)
Some examples on the space of matrices are given below.

Example X.4.6 Let X = M(n) and let f(A) = A%, A € M(n). We have
seen that Df(A)(B) = AB+BA for all A, B. Note that Df(A) = La+Ra4,
where Ly and Ry are linear operators on M(n), the first one is the left
multiplication by A and the second one is right multiplication by A. The
map Df : A — Df(A) is a linear map from M(n) into L(M(n)). So
the derivative of this map, at each point, is the map itself. Thus for each
A,D?f(A) = Df. In other words,

[D*f(A)(B) = Df(B) = Lp + Rp.
If we think of D?f(A) as a linear map from M(n) into L(M(n)), we have
(D?f(A)(BV))(B2) = (Ls, + Rp,)(B2) = BiB2+ BaBa
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for all By, By. If we think of it as a bilinear map, we have
[sz(A)](Bh BQ) = BlB2 + BzB]_.

Note that the right-hand side is independent of A. So the map A — D2 f(A)
is a constant map. These are noncommutative analogues of the facts that
if f(z) = 22, then f'(z) = 2z and f"(z) = 2.

Example X.4.7 Let f(A) = A3. We have seen that
Df(A)(B) = A’B + ABA + BA®.

This is the noncommutative analogue of the fact that if f(x) = z°, then
f'(z) = 3z2. What is the second derivative? From the formula f"(z) = 6z,
and the fact that D2 f(A) is a symmetric bilinear map, we can guess that

[D2f(A)](B1,Bz) = AB]BQ+BlABg+BlBQA+AB2B1+B2ABI+B231A4

Prove that this indeed is the right formula for D?f(A). Note that the map
A — D?f(A) is linear.

Example X.4.8 More generally, let f(A) = A™. From the binominal the-
orem one can see that

[D*f(A))(B1,B2) = . [A'BiA*ByA* + A'B,A*B A"].

jHk4e=n—2
3,k,20

Example X.4.9 Let f(A)=A"1, A € GL(n). We know that Df(A)(B)=
~A"'BA7Y, for all B € M(n). This is the noncommutative analogue of
the formula (z71)’ = —z~2. The analogue of the formula (z™1)" = 2z73
is the following:

[D2f(A)(B1,By) = AT'BiAT'B, A1 + A7 B A7 B AT

This can be guessed from the bilinearity and symmetry properties that
D?f(A) must have. It can be proved formally by the rules of differentia-
tion. ’

Example X.4.10 Let f(A)=A"2,A € GL(n). We know that D f(A)(B)=
~A"'BA~%2 -~ A=2BA~'. Show that

[D2f(A)(B1,B2) = A?BiAT'ByA™' + A72B,A7 B A7}
+ AT'ByAT2B, AT + AT1ByATIB AT
+ AT'BiAT'By A2 + AT'B,ATIBI AT

This is the analogue of the formula (z72)" = 6z~%.
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Example X.4.11 Let f(A) = A*A. We have seen that Df(A)(B) =
A*B + B*A. Show that D?f(A)(B,, B2) = B} By + B;B,. Note that this
expression does not involve A. So the map A — D?f(A) is a constant map.

Derivatives of higher order can be defined by repeating the above proce-
dure. The pth derivative of a map f from X to Y can be identified with a
p-linear map from the space X x X x---x X (p copies) into Y. A convenient
method of calculating the pth derivative of f is provided by the formula

61’
D f()(os,- ) =

T Fluttyoy+- - +t,u,). (X.56)
10ty

ty=---=t,=0

Compare this with the formula (X.55) for the first derivative.
Example X.4.12 Let f(A) = A™, A€ L(H). Then forp=1,2,...,n,

[DPf(A)(By, ..., By)
= 2 Y. APByA?Byz - A By A

oc€S, 3,20,
n+tIipp1=n-—p

where Sp, 15 the set of all permutations on p symbols. There are 7%»! terms
in the above double sum. These are all words of length n in which n — p of
the letters are A and the remaining letters are By, ..., By, each occurring
ezxactly once. Notice that this ezpression is linear and symmetric in each of
the variables By,. .., Bp. When dim H = 1, this reduces to the formula for
the pth derivative of the function f(z) = z™:

fP>z)=n(n-1)(n—p+1)z"? = A

G

The reader should work out some more simple examples to see the ex-
pressions for higher derivatives.

Another important theorem of calculus, Taylor’s Theorem, has an
analogue in the Fréchet calculus. Of the different versions possible, the one
that is most useful for us is given below.

Let f be a (p+1)-times differentiable map from a Banach space X into a
Banach space Y. For h € X, write [h]™ to mean the m-tuple (h,h,...,h).
Then, for all z € X and for small A,

P

If(z+h) = flz) =Y % D™ f()((R™)Il = O(IR]P*Y).

m=1
From this we get

p

If@+h) = fl@)l < %llef(m)ll IRI™ + O(IR]P+Y).

m=1
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Finally, let us write down formulae for higher order derivatives of the
composite of two maps. These are already quite intricate for real functions.
If we have p = f(g(z)), then we have

W) = fO(g(z))gM(2),

¢P(z) = fO>g)gP (@) + FD(g(z))g® (z),

G (z) = fO(g(2))[g™ @) + 3P (9())g™M (z)g? (z)
+ fN(g(2))g® ().

If X,Y, Z are Banach spaces and if f is a map from X to Y, and g a map
from Y to Z, then for the derivatives of the composite map ¢ = f o g, we
have the following formulae. By the chain rule,

Dy(z) = Df(g(z))Dg(z).

AS)

AS)

The second and the third derivatives are bilinear and trilinear maps, re-
spectively. For them we have the formulae:

[D¢(z))(z1,22) = [D*f(g9(2))(Dg(z)(z1), Dy(z)(z2))
+ Df(9(=)([D*g(2)](z1,72)),

(Dp(2))(z1,22,23) = [D°f(g(2))(Dg(z)(z1), Dg(z)(z2), Dg(z)(z3))
+[D?f(9(2)))(Dg(z)(21), [D?g())(z2, 23))
+ [D?£(9(2)))(Dg(z)(22), [D?g(2))(z1, 23))
+[D*f(9(2){(Dg(z)(3), [D?9(2)](z1, 22))
+ Df(9(2))[D%g(2)](z1, 22, z3)-

The reader should convince himself that considerations of domains and
ranges of the maps involved, symmetry in the variables, and the demand
that in the case of real functions we should recover the old formulae lead
to these general formulae. He can then try proving them.

We have also used the notion of the derivative of a map between mani-
folds. If X and Y are differentiable manifolds in finite-dimensional vector
spaces, and f is a differentiable map from X to Y, then at a point u of X
the derivative D f(z) is a linear map from the linear space T,, X into the lin-
ear space Ty(,)Y. These are the tangent spaces to X and Y at u and f(u),
respectively. All manifolds we considered are subsets of M(n). Of these,
GL(n), P(n), and A, (n) are open subsets of vector subspaces of M(n).
So these vector spaces are the tangent spaces for the manifolds. The only
closed manifold we considered is U(n). It is easy to find the tangent space
at any point of this manifold. This was done in Chapter 6. Most of the
results of Fréchet calculus can be restated in this setup with appropriate
modifications.
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X.5 Problems

Problem X.5.1. Let f be a nonnegative operator monotone function on
(0,00).
(i) Show that if A is positive and U unitary, then

If (AT = UF A < If(|AU = UAD]I.

(ii) Let A be positive and X Hermitian. Let U be the Cayley transform
of X. We have

U (X —i)(X +19)7H,
X = I+ -U)?=2(I-U)"t —il.

Show that
I (A)X = X FA < 20T - U) Pl F (AU = UAD]-

Use the relation between U and X again to estimate the last factor, and
show that

1+ s2(X) 2
X0 (g ax - X)L

(iii) Let A, B be positive and X arbitrary. Use the above inequality to
show that

IF(A)X — X FAl <

1+ s3(X) 2
I - x el < 2 E s (s iax - xa)

[Hint: Use 2 x 2 block matrices.]
When X = I, this reduces to the inequality (X.5).

Problem X.5.2. Let f be a nonnegative operator monotone function. Let
A, B be positive matrices and let X be any contraction. Show that

llF(A)X - XfFB)Il < 5/4 I1AX — X B]I-
[Hint: Use the result of the preceding problem, replacing X there by 1X]

Problem X.5.3. From the above inequality it follows that if A, B are
positive and X is any matrix, then for 0 <r <1,

|A"X — XB"|| < 5/4 || X|'"T|AX — XBJ||".
Show that we have under these conditions

IA"X = XB"||l2 < | Xl "l AX — X Blf3.
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[Hint: Reduce the general case to the special case A = B. Use Holder’s
inequality.]

Problem X.5.4. Let A, B be any two operators. Show that

A= B2l < |4+ Bl |4 - BIl.

Problem X.5.5. Let A be a positive operator such that A > al > 0. Show
that for every X
2af| Xl < IAX + X Al

[Use the results in Section VII.2.]
Use this to show that if A,B are positive operators such that
AY2 4 BY/2 > q] >0, then

1
142 - B2 < Slia—Bj.

[Hint: Consider the operators A/2 + BY/2 and A'/2 — BY/2 ]

Problem X.5.6. Let A and B be positive operators such that A > al >0
and B > bl > 0. Show that for every nonnegative operator monotone
function f on (0, c0)

lIf(A) = F(B)| < Cla,b)]|A - B,
where C(a,b) = £8=1®) if g £ b, and C(a,b) = f'(a) if a = b.

Problem X.5.7. Let f be a real function on (0, c0), and let f(™) be its nth
derivative. Let f also denote the map induced by f on positive operators.
Let D™f(A) be the nth order Fréchet derivative of this map at the point
A. Let

DM = {fID"F(A)| = IIf™(A4)] for all positive A}.

We have seen that every operator monotone function is in the class D).
Show that it is in D™ foralln =1,2,....

Problem X.5.8. Several examples of functions that are not operator
monotone but are in DM) are given below.

(i) Show that for each integer n, the function f(¢) = t™ on (0,00) is in
the class D1,

(if) Show that the function f(t) = ag + a1t +--- + a,t™ on (0, c0), where
n is any positive integer and the coefficients a; are nonnegative, is in
the class D(1).
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(iii) Any function on (0,00) that has a power series expansion with non-
negative coefficients is in the class D).

(iv) Use the Dyson expansion to show that the exponential function is in
the class D(1).

(v) Let f(t) = [ e du()), where p is a positive measure on (0, co).
0
Show that f € D). [Use part (iv).]

(vi) From the Euler’s integral for the gamma function, we can write, for

r >0,
1 oo—,\t -1
= AT A
I‘(7")/6
0

Use this to show that for each r > 0, the function f(¢) = t™" on
(0,00) is in DM,

Problem X.5.9. The Cholesky decomposition of a positive definite matrix
A is the (unique) factoring A = R*R, where R is an upper triangular
matrix with positive diagonal entries. This gives an invertible map ® from
the space P(n) onto the space A (n). Show that

IDB(A)]; < %uAanA-lu

for every A. Use this to write local perturbation bounds for the map ®.

Problem X.5.10. A matrix is called strongly nonsingular if all of its
leading principal minors are nonzero. Such matrices form a dense open set
in the space M(n). Every strongly nonsingular matrix A can be factored
as A = LR, where L is a lower triangular matrix and R an upper trian-
gular matrix. Further, L can be chosen to have all of its diagonal entries
equal to 1. With this restriction the factoring is unique. This is the LR
decomposition familiar in linear algebra and numerical analysis.

Let S be the set of strongly nonsingular matrices, A; the set of lower
triangular matrices with unit diagonal, and A,s the set of nonsingular
upper triangular matrices. Let &1, ®; be the maps from S into A} and A,
given by the LR decomposition.

The set S is an open set in M(n). So the tangent space to it at any point
is M(n). The set A, is an open subset of the vector space A consisting
of all upper triangular matrices. So the tangent space to A, at any point
is A. The set A} is a differentiable manifold (a Lie group, in fact). The
tangent space at I to this manifold is the space Af, consisting of lower
triangular matrices with zero diagonal.



320 X. Perturbation of Matrix Functions

Follow the approach in Section X.3 to obtain the bounds:
[D®1(A)ll2 < cond(L)[|R™],

[D®2(A)|l2 < cond(R)[ L.

Use these to obtain local perturbation bounds for the LR decomposition.

X.6 Notes and References

Most of the results in this chapter can be proved for infinite dimensional
Hilbert space operators. Many of them are valid for operator algebras as
well.

Let f be a continuous real function on an interval that contains the spec-
tra of two Hermitian operators A, B (on a Hilbert space H). The problem
of finding bounds for || f(A4) — f(B)|| in terms of |4 — B|| has been inves-
tigated in great detail by many authors. Many deep results on this were
obtained by the Russian school of Birman, which includes Farforovskaya,
Naboko, Solomyak, and others.

When f is differentiable and f’ is bounded, one would expect to find
inequalities of the form

IF(A) = FBY) < cllf'llo 14 - BIl.

Counterexamples to show that such inequalities are not true, in general,
were constructed by Yu.B. Farforovskaya, An estimate of the norm
[l F(B)— f(A)| for self-adjoint operators A and B, Zap. Nauch. Sem LOMI,
56(1976) 143-162. (English translation: J. Soviet Math. 14, No. 2(1980).) It
was shown by M. Sh. Birman and M.Z. Solomyak that such inequalities can
be found under stronger smoothness assumptions. The reader should see
their paper titled Double Stieltjes operator integrals, English translation, in
Topics in Mathematical Physics, Volume 1, Consultant Bureau, New York,
1967.

Theorem X.1.1 is taken from F. Kittaneh and H. Kosaki, Inequalities
for the Schatten p-norm V, Publ. Res. Inst. Math. Sci., 23(1987) 433-443.
The inequality (X.3) was proved by M.Sh. Birman, L.S. Koplienko, and
M.Z. Solomyak, Estimates of the spectrum of the difference between frac-
tional powers of self-adjoint operators, Izvestiya Vysshikh Uchebnykh Zave-
denni. Mat, 19 (1975) 3-10. Its generalisation in Theorem X.1.3 is due to
T. Ando, Comparison of norms |||f(A) — f(B)||| end |||f(JA— B])|||, Math.
Z., 197(1988) 403-409. Our discussion of the material between Theorem
X.1.3 and Exercise X.1.7 is taken from this paper. For p-norms, the in-
equality (X.10) has another formulation: if A,B are positive

|AY = BV < A= B/t forp>1,8>1.
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The special case ¢t = 2 of this was proved by R.T. Powers and E. St¢rmer,
Free states of the canonical anticommutation relations, Commun. Math.
Phys., 16 (1970) 1-33. The point of this formulation is that if A, B are
positive Hilbert space operators and their difference A— B is in the Schatten
class Z,, then AY* — B/t is in the class Z,,, and the above inequality is
valid.

Theorem X.1.8. is due to D. Jocic and F. Kittaneh, Some perturbation
inequalities for self-adjoint operators, J. Operator Theory, 31(1994) 3-10.
The proof of Lemma X.1.9 given here is due to R. Bhatia, A simple proof
of an operator inequality of Jocic and Kittaneh, J. Operator Theory, 31
(1994) 21-22. As in the preceding paragraph, for the Schatten p-norms, the
inequality (X.12) can be written as

“A— B”(2m+1)p < 22m/2m+1”A2m+1 _ BZm+1”;/2m+17

for m =1,2,...,p > 1 and Hermitian A, B. The result is valid in infinite-
dimensional Hilbert spaces. A corollary of this is the statement that if the
difference A?™+1 — B?™+1 s in the Schatten class Z,, then A— B is in the
class Zigmy1)p-

The first inequality in Problem X.5.3 was proved by G.K. Pedersen,
A commutator inequality (unpublished note). The generalisation in Prob-
lem X.5.2, the inequalities in Problem X.5.1, and the second inequality in
Problem X.5.3 are due to R. Bhatia and F. Kittaneh, Some inequalities for
norms of commutators, SIAM J. Matrix Anal., 18(1997) to appear. The
motivation for Pedersen was a result of W.B. Arveson, Notes on extensions
of C*-algebras, Duke Math. J., 44 (1977)329-355. Let f be a continuous
function on [0,1] with f(0) = 0, and let € > 0. Arveson showed that there
exists a & > 0 such that if A and X are elements in the unit ball of a C*-
algebra and A > 0, then [|[AX — X A|| < § implies ||f(4)X — X f(A)]| < e.
The inequality in Problem X.5.3 is a quantitative version of this for the
special class of functions f(f) = t",0 < r < 1. Weaker results proved
earlier and their applications may be found in C.L. Olsen and G.K. Peder-
sen, Corona C* - algebras and their applications to lifting problems, Math.
Scand., 64(1989) 63-86. It is conjectured that the factor 5/4 occurring in
these inequalities can be replaced by 1.

The inequality (X.20) for p = 1 was proved by H. Kosaki, On the conti-
nuity of the map ¢ — || from the predual of a W*-algebra, J. Funct. Anal.,
59(1984) 123-131. For the Schatten p-norms, p > 2, the inequality (X.18)
was proved by F. Kittaneh and H. Kosaki in their paper cited above. The
other parts of Theorems X.2.3 and X.2.4, and Theorem X.2.1 were proved
by R. Bhatia, Perturbation inequalities for the absolute value map in norm
ideals of operators, J. Operator Theory, 19(1988) 129-136.

The constant /27 in (X.25) can be replaced by a factor ¢, = logn. This
has been known for some time and is related to other important problems
in operator theory. See two papers by A. Mclntosh, Counterezample to a
question on commutators, Proc, Amer. Math. Soc., 29(1971) 337-340, and
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Functions and derivations of C*-algebras, J. Funct. Anal., 30(1978)264-275.
It is also known that such a factor is indeed necessary, both for the operator
norm and for the corresponding inequality for the trace norm ||.|;. This
implies that, if H is infinite-dimensional, then the map A — |A| on L(H)
is not Lipschitz continuous. Nor is it Lipschitz continuous on the Schat-
ten ideal Z;. The inequality (X.24) due to Araki and Yamagami, on the
other hand, shows that on the Hilbert-Schmidt ideal Z, this map is contin-
uous. For other values of p,1 < p < oo, E.B. Davies, Lipschitz continuity
of functions of operators in the Schatten classes, J. London Math. Soc.,
37(1988)148-157, showed that there exists a constant -y, that depends on
p, but not on the dimension n, such that

I A= 1Blll, < % [lA-B],

for all A, B. Theorem X.2.5 was proved in T. Kato, Continuity of the map
S — |S| for linear operators, Proc. Japan Acad. 49 (1973) 157-160, and
interpreted to mean that the map A +— |A| is “almost Lipschitz”. Results
close to this were obtained by Yu.B. Farforovskaya in the papers cited
above.

Bounds like the ones in Section X.3 have been of interest to numerical
analysts and physicists. References to much of this work may be found
in R. Bhatia, Matriz factorizations and their perturbations, Linear Alge-
bra Appl., 197/198 (1994) 245-276. Theorem X.3.1, and the proof given
here, are due to C.J. Kenney and A.J. Laub, Condition estimates for ma-
triz functions, SIAM J. Matrix Analysis, 10(1989) 191-209. Theorem X.3.4
was proved in R. Bhatia, First and second order perturbation bounds for
the operator absolute value, Linear Algebra Appl., 208/209 (1994) 367-376.
Theorems X.3.3, X.3.6, X.3.7, and X.3.8 are also proved in this paper. The
inequality in Problem X.5.5 is taken from J.L. van Hemmen and T. Ando,
An inequality for trace ideals, Commun. Math. Phys., 76(1980) 143-148.
This paper has references to physics literature, where such inequalities are
used. The inequality in Problem X.5.6 is proved in the paper by F. Kit-
taneh and H. Kosaki cited earlier. Most of the results after Theorem X.3.9
in Section X.3 were proved by R. Bhatia and K. Mukherjea, Variation of
the unitary part of a matriz, SIAM J. Matrix Analysis, 15(1994) 1007-1014.
The full potential of this method was exploited in the paper cited at the
beginning of this paragraph, where several other matrix decompositions of
interest in numerical analysis are studied. The results of Problem X.5.9 and
X.5.10 are obtained in this paper. (Some of these were proved earlier using
different methods by A. Barrlund, R. Mathias, G.W. Stewart, and J. G.
Sun.)

Bounds for the second derivative of the map A — |A| are obtained in R.
Bhatia, First and second order perturbation bounds for the operator absolute
value, Linear Algebra Appl., 208/209 (1994) 367-376; and for derivatives of
higher orders in R. Bhatia, Perturbation bounds for the operator absolute
value, Linear Algebra Appl., 226(1995) 639-645. The reader may try to



X.6 Notes and References 323

prove such inequalities using the methods explained in Section X.4. Since
this map is the composite of two maps, A — A*A — (A*A)Y/?, its analysis
can be broken into two parts. No good bounds of higher order are known
for other matrix decompositions.

Results in Parts (v) and (vi) of Problem X.5.8 are taken from R. Bhatia
and K.B. Sinha, Variation of real powers of positive operators, Indiana
Univ. Math. J., 43(1994)913-925. In this paper it is also shown that the
functions f(t) = t” on (0,00) belong to the class D) if » > 2, but not if
1 < r < /2. We have already seen that these functions are in D) for all
real numbers r < 1.

In Section X.4 we have given a bare outline of differential calculus. More
on this may be found in J. Dieudonné, Foundations of Modern Analy-
sis, Academic Press, 1960, and in A. Ambrosetti and G. Prodi, A Primer
of Nonlinear Analysis, Cambridge University Press, 1993. For calculus on
manifolds, the reader could see S. Lang, Introduction to Differentiable Man-
ifolds, John Wiley, 1962. In our exposition we have included several exam-
ples of matrix functions and formulae for higher derivatives of composite
maps that are not easily found in other sources.
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254
Hilbert-Schmidt norm, 7, 92, 97,
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Hoffman-Wielandt inequality,
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Hoffman-Wielandt Theorem, 165
Holder inequality, 88
for symmetric gauge func-
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for unitarily invariant
norms, 95
hyperbolic PDE, 251
hyperbolic polynomials, 251

inner product, 1
inner product, on matrices, 92
imaginary part of a matrix, 6
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for singular values, 81
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jointly concave, 271, 273
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Jordan decomposition, 99, 262,
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Konig-Frobenius Theorem, 37
Krein-Milman Theorem, 133
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main use, 93
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Lebesgue Dominated Conver-
gence Theorem, 139
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Lidskii’s Theorem, 69, 179
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multiplicative, 73
third proof, 98
for normal matrices, 181
Lie algebra, 241
Lie bracket, 167
Lie Product Formula, 254, 280
Liebian function, 286
Lieb’s Concavity Theorem, 271
Lieb’s Theorem, 270
Lieb-Thirring inequality, 279
Lindblad’s Theorem, 275
Lipschitz continuous, 322
Lipschitz constant, 215
Lipschitz continuous function,
214
logarithm, 145
principal branch, 143
logarithmic majorisation, 71
Loewner’s Theorems, 131, 149
Loewner-Heinz inequality, 150
Lowner-Heinz Theorem, 285
Lowdin orthogonalisation, 287
LR decomposition, 319
perturbation of, 320
Lyapunov equation, 221

majorisation, 28
weak, 30
of complex vectors, 179
soft, 180
manifold, 167
Marcus-de Oliviera Conjecture,
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Marriage Problem, 36
Marriage Theorem, 162, 213
Matching Problem, 36
Matching Theorem, 185
matrix convex, 113
matrix convex of order n, 113
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matrix monotone of order n, 112
matrix triangle inequality, 81

Matrix Young inequalities, 286

mean value theorem, 303, 307,
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measure of nonnormality, 245,
251, 278
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mid-point operator convex, 113

minimax principle, 58

of Courant, Fischer and
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for singular values, 75

Minkowski determinant inequal-
ity, 56

Minkowski Determinant Theo-
rem, 47, 282

Minkowski inequality, for sym-
metric gauge functions,
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Mirman’s Theorem, 25

Mixed Schwarz inequality, 281,
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mollifiers, 146

monotone, 45, 48

monotone decreasing, 41

monotone increasing, 41

multi-indices, 16

multilinear functional, 12

multilinear map, 12

multiplication operator, 223

multiplication operator, left, 273

multiplication operator, right,
273

nearly normal matrix, 252
Neumann Series, 7
Nevanlinna’s Theorem, 138
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absolute, 85
bound, 91
gauge invariant, 85
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Ky Fan, 92
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operator, 91



permutation invariant, 85
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symmetric, 85
trace, 92
unitarily invariant, 91
weakly unitarily invariant,
102
normal approximant, 277
normal curve, 169
normal matrices, distance
between eigenvalues,
212
normal matrices, path connected,
169
normal matrix, 4, 8, 160, 161,
168, 172, 177, 180, 253
function of, 5
spectral resolution, 161
normal path, 169, 177
normal path inequality, 189
numerical radius, 8, 102
numerical range, 8, 25
v-measure of nonnormality, 246

operator approximation, 192,

275, 287

operator concave function, 113,
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operator convex function, 113,
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integral representation, 134
operator monotone function, 112,
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canonical representation,
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infinitely differentiable, 134,
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integral representation, 134
inverse of, 293
operator norm, 7
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optimal matching distance, 52,
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Index 343
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orthostochastic matrix, 35, 180

p-Carrollian, 242
p-norms, 84
pth derivative, 315
partitioned matrix, 64, 188
Peierls-Bogoliubov Inequality,
275, 281
permanent, 17, 19
inequality, 19, 21, 23
perturbation of, 22
permutations, 165
permutation invariant, 43
permutation matrix, 32, 37, 165
complex, 85
permutation orbit, 166
pinching, 50, 97, 118, 275
pinching inequality, 97
for wui norms, 107
Pick functions, 135, 139
Nevanlinna’s Theorem, 135
integral representation, 138
Poincaré’s Inequality, 58
Poisson kernel, 136
polar decomposition, 6, 213, 267,
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perturbation of, 305
positive approximant, 277
positive definite, 4
positive matrices, product of, 255
positive matrix, 4
positive part, 6, 213
positive semidefinite, 4
positivity-preserving, 32
power functions, 123, 145, 289
operator monotonicity of,
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operator convexity of, 123
principal branch, 143
probability measure, 133
probability measures, weak*
compact, 136
principal angles, 202
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Pythagorean Theorem, 21

Q-norm, 89, 95, 174, 175, 277
Q@'-norm, 90, 97
QR decomposition, 3, 195, 307
perturbation of, 307
rank revealing, 196
quasi-norms, 107
quantum chemistry, 287

R factor, 195
real eigenvalues, 238
real part of a matrix, 6
real spectrum, 193
rectifiable normal path, 169
rectifiable path, 169
reducing subspace, 10
regularisation, 146
residual bounds, 193
retraction, 173, 277
roots of polynomials, 230
continuity of, 154
perturbation of, 230
Rotfel’d’s Theorem, 98
Rouché’s Theorem, 153
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Schatten 2-norm, 7

Schatten p-norm, 92, 297, 298
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Schur-convex, 40, 41, 44

Schur-convexity, and convexity,
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Schur-convexity, for differentiable
functions, 45

Schur product, 23, 124

Schur’s Theorem, 23, 35, 47, 51,
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converse of, 55
Schur Triangular Form, 5
Schwartz space, 219

second derivative, 313
second divided difference, 128
self-adjoint, 4
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similarity transformations, 102
singular value decomposition, 6
singular values, 5
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majorisation, 157
of products, 71
perturbation of, 78
singular vectors, 6
perturbation of, 215
sinf theorem, 224
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spectral radius formula, 204
spectral resolution, 57
Spectral Theorem, 5
square root, 297, 301
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norm of the solution, 208
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symmetric norm, 94
symmetric tensor power, 16, 18
symmetric tensor product, 16
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T-transform, 33
tangent space, 167, 305
tangent vector, 166
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construction, 12
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orthonormal basis for, 14
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unitary approximant, 276
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unitary matrix, 4, 162, 178
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