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Preface

The aim of this book is to provide an introduction for students and nonspecialists
to a fascinating relation between combinatorial geometry and algebraic geometry,
as it has developed during the last two decades. This relation is known as the theory
of toric varieties or sometimes as torus embeddings.

Chapters I-1V provide a self-contained introduction to the theory of convex poly-
topes and polyhedral sets and can be used independently of any applications to
algebraic geometry. Chapter V forms a link between the first and second part of the
book. Though its material belongs to combinatorial convexity, its definitions and
theorems are motivated by toric varieties. Often they simply translate algebraic
geometric facts into combinatorial language. Chapters VI~ VIII introduce toric va-
rieties in an elementary way, but one which may not, for specialists, be the most
elegant.

In considering toric varieties, many of the general notions of algebraic geometry
occur and they can be dealt with in a concrete way. Therefore, Part 2 of the book
may also serve as an introduction to algebraic geometry and preparation for farther
reaching texts about this field.

The prerequisites for both parts of the book are standard facts in linear algebra
(including some facts on rings and fields) and calculus. Assuming those, all proofs
in Chapters I-VII are complete with one exception (IV, Theorem 5.1). In Chapter
VIII we use a few additional prerequisites with references from appropriate texts.

The book covers material for a one year graduate course. For shorter courses with
emphasis on algebraic geometry, it is possible to start with Part 2 and use Part 1
as references for combinatorial geometry.

For each section of Chapters I-VIII, there is an addendum in the appendix of the
book. In order to avoid interruptions and to minimize frustration for the beginner,
comments, historical notes, suggestions for further reading, additional exercises,
and, in some cases, research problems are collected in the Appendix.
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Introduction

Studying the complex zeros of a polynomial in several variables reveals that there
are properties which depend not on the specific values of the coefficients but
only on their being nonzero. They depend on the exponent vectors showing up
in the polynomial or, more precisely, on the lattice polytope which is the convex
hull of such vectors. This had already been discovered by Newton and was taken
into consideration by Minding and some other mathematicians in the nineteenth
century. However, it had practically been forgotten until its rediscovery around
1970, when Demazure, Oda, Mumford, and others developed the theory of toric
varieties.

The starting point lay in algebraic groups. Properties of zeros of polynomials
that depend only on the exponent vectors do not change if each coordinate of
any solution is multiplied by a nonvanishing constant. Such transformations are
effected by diagonal matrices with nonzero determinants. They form a group which
" can be represented by C*' where C* := ¢ \ {0} is the multiplicative group of
complex numbers. C*" (for n = 2 having, topologically, an ordinary torus as
a retract) is called an algebraic torus. Demazure succeeded in combinatorially
characterizing those regular algebraic varieties on which a torus operates with an
open orbit. Oda, Mumford, and others extended this to the nonregular case and
termed the introduced varieties torus embeddings or toric varieties.

Once the combinatorial characterization had been achieved, it gave way to defining
toric varieties without starting from algebraic groups by use of combinatorial
concepts like lattice cones and the algebras defined by monoids of all lattice points
in cones. This is the path we follow in the present book.

Toric varieties—being a class of relatively concrete algebraic varieties—may ap-
pear to relate combinatorics to old-fashioned, say, up to 1950, algebraic geometry.
This is not the case. Actually, the more recent way of thought provides the tools
for building a wide bridge between combinatorial and algebraic geometry. Notions
like sheaves, blowups, or the use of homology in algebraic geometry are such tools.

In the first part of the book, we have naturally limited the topics to those which are
needed in the second part. However, there was not much to be omitted. Coming
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from combinatorial convexity, it is quite a surprise how many of the traditional
notions like support function or mixed volume now appear in a new light.

In our attempt to present a compact introduction to the theory of convex polytopes,
we have sought short proofs. Also, a coordinate-free approach to Gale transforms
seemed to fit particularly well into the needs of later applications. Similarly, in
Part 2 we spent much energy on simplifications. Our definition of intersection
numbers and a discussion of the Hodge inequality working without the tools of
algebraic topology are some of the consequences.

A natural question concemning the relationship between combinatorial and al-
gebraic geometry is “Does the algebraic geometric side benefit more from the
combinatorial side than the combinatorial side does from the algebraic geometric
one?” In this text the former is true. We prove algebraic geometric theorems from
combinatorial geometric facts, “turning around” the methods often applied in the
literature. There is only one exception in the very last section of the book. We quote
a toric version of the Riemann—Roch—Hirzebruch theorem without proof and draw
combinatorial conclusions from it. A purely combinatorial version of the theorem
due to Morelli [1993a] would require more work on so-called polytope algebra.

Many related topics have been omitted, for example, matroid theory or the theory of
Stanley—Reisner rings and their powerful combinatorial implications. The reader
familiar with such topics may recognize their links to those covered here and detect
the common spirit of mathematical development in all of them.

Part 1

Combinatorial Convexity



Convex Bodies

1. Convex sets

Most of the sets considered in the first part of the book are subsets of Euclidean
n-space. Many definitions and theorems could be stated in an affinely invariant
manner. We do not, however, stress this point. If we use the symbol R", it should
be clear from the context whether we mean real vector space, real affine space, or
Euclidean space. In the latter case, we assume the ordinary scalar product

(xy)=&m+---+&n forx=¢.....6) y=0,....m)
so that the square of Euclidean distance between points x and y equals
lx = yI* = (x =y, x = y).

Recall that an open ball with center x and radius r is the set {y | {lx — y|| < r}.
By (K, y) > 0, we mean (x, y) > O for every x € K. We assume the reader to
be somewhat familiar with n-dimensional affine and Euclidean geometry.

1.1 Definition. A set C C R” is called convex if, forall x, y € C, x # y, the
line segment

.yl ={Ax+ (0 -2y |0=<Ar =<1}
is contained in C (Figure 1).

Examples of convex sets are a point, a line, a circular disc in R?, the platonic
solids (see Figure 10 in section 6) in R>. Also @ and R” are convex.

If B is an open circular disc in R? and M is any subset of the boundary circle
88 of B, then B U M is also convex. So, a convex set need be neither open nor
closed. In general we shall restrict ourselves to closed convex sets.

There is a simple way to construct new convex sets from given ones:

1.2 Lemma. The intersection of an arbitrary collection of convex sets is convex.

Proor. If a line segment is contained in every set of the collection, it is also
contained in their intersection. O
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FIGURE 1. Left: convex. Right: nonconvex.

1.3 Definition. We say x is a convex combination of x,, . . ., x, € R" if there
exist Ay, ..., A, € R such that

() x =k + -+ Ax,

2 Mo+ A =1,

3) Ay =20,...,x >0.

If condition (3) is dropped, we have an affine combination of x,, .. ., x,, and
X, Xy,...,x, are called affinely dependent. If x, x,,...,x, are not affinely

dependent, we say they are affinely independent.

So, convex combinations are special affine combinations (Figure 2).
If x1, ..., x, are affinely independent, the numbers Aly ..., A, are sometimes
called barycentric coordinates of x (with respect to the affine basis x,, . . . , x).

1.4 Definition. The set of all convex combinations of elements of a set M C R*
is called the convex hull

conv M

of M; in particular, conv# = @. Analogously, the set of all affine combinations
of elements of M is called the affine hull

aff M

FIGURE 2.

1. Convex sets 5

of M. We will denote by lin M (linear hull) the linear space generated by M. Itis
the “smallest” linear space containing M.

If M = {x),...,x/}is a finite set, we say P := conv M is a convex polytope,
or simply a polytope.
If x1, ..., x, are affinely independent, we say
T,y = conv{xy, ..., x;}

is an (r — 1)-simplex or, briefly, a simplex. aff T,_; and 7,_; are said to have
dimensionr — 1.

v
Remarks.
(1) Clearly, M C conv M C aff M.
(2) Every polytope is compact (that is, bounded and closed).

1.5 Theorem.
(a) Aset M C R" is convex if and only if it contains all its convex combinations,
that is, if and only if

M =conv M,

(b) The convex hull of M C R" is the smallest convex set that contains M this
means M C M’ and M’ convex implyconvM C M'.

PRrooF. First, we will show that conv M is convex.
If x, y € conv M, there exist x;, ..., x,, »,.-.,ys € M and real numbers
Alyeees dpy 1y -« ., Mg such that

x:)\]x]+"'+lrxry )\l+"'+kr=ls MZO,---,)VZO
and

y=mn+oo sy, i+t us=1 pw =0,...,pu,=20
Employing 0 coefficients, if necessary, we may assumer = sand y; = x;, j =
l,...,r.Forarbitrary 0 < A < 1,
A+ (1 =Ny =AAx + -+ Ax)+ (1= NDuixi + ...+ @1ex)
= [AM + (= Dl + -+ [AA + (1 — A x,
Since all coefficients are nonnegative, and since
M+ A =Dpi+---+i+ (1 -, =2+ 1 - A =1,

Ax + (1 — X)y is a convex combination of x,, . . ., x,. S0, conv M is convex and,
in view of Remark 1, we obtain (a).

Now, to see (b), suppose M’ is a convex set, M’ O M, and that x € conv M.
Then thereexistxy, ...x, € Msuchthatx = Ay xi+ -+ A,x A1+ -+4, =
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l,and A, ..., A, all > 0.Since x, ..., x, € M’ as well, we find successively
yio= MG+ A7+ Ay + )7
y2i= (A +22)Ch + A2+ A3) w4+ A3 + Az + As) s

x =Mt A DM+ A+ A0+ AT
which are all in M’, hence, conv M C M. a

1.6 Definition. If C is a convex set, we call
dim C := dim(aff C)

the dimension of C. By convention, dim @ = —1.
1.7 Definition. A compact convex set C is called a convex body.

For example, note that points and line segments are convex bodiesinR”,n > 1,
so that a convex body in R” need not have dimension n.

1.8 Definition. Wesayx € M C R”isinthe relativeinterior of M, x € relint M,
if x is in the interior of M relative to aff M (that is, there exists an open ball B in
aff M suchthatx € B C M).If aff M = R”", then relint M =: int M (note that
relint R® = int R® = {0}).

Our main emphasis will be on convex polytopes and an unbounded counterpart
of polytopes, called polyhedral cones:

1.9 Definition. If M C R”, the set of all nonnegative linear combinations
x =y + -+ Ny, Yio.o. €M, X >=0,...,4 >0
of elements of M is called the positive hull
o :=posM

of M or the cone determined by M. By convention, pos @ := {0}.

Forfixedu € R",u # 0,and € R, theset H := {x | {x,u) = a}isa
hyperplane. Ht = {x | {x,4) > e}and H™ := {x | {x, 4} < «} are called the
half-spaces bounded by H.If o C H* and @ = 0, we say o has an apex, namely
0. (We use the symbol 0 for the number 0, the zero vector, and the origin).

IfM = {x,...,x,)is finite, we call

g = pos{xl,...,x,}

apolyhedral cone. Unless otherwise stated, by a cone we always mean a polyhedral
cone. Sometimes we write .

o = Rxo X + -+ R0 xXr,

2. Theorems of Radon and Carathéodory 7

FIGURE 3.

RR>o denoting the set of nonnegative real numbers.

Example. A quadrant in R? and an octant in R> are cones with an apex, whereas
a closed half-space or the intersection of two closed half-spaces H,', H;' with
0 € H;,0 € H, inR?, are cones without apex.

Since convex combinations are, by definition, nonnegative linear combinations,
we have

1.10 Lemma. The positive hull of any set M is convex.

Figure 3 illustrates a polyhedral cone of dimension three which is the positive
hull of a two-dimensional polytope K. Though pos M might generally be called a
cone, we reserve this term for polyhedral cones.

Exercises

[

. The convex hull of any compact (closed and bounded) set is again compact.

2. Find an example of a closed set M such that conv M is not closed.

3. Determine all convex subsets C of R>, for which R? \C is also convex. (Ex-
cept 9, R? there are, up to three such sets of affine transformations, that is,
translations combined with linear maps.

4. Call aset M e-convex if, foragiven ¢ > 0, each ball with radius € and center in

M intersects M in a convex set. Furthermore, call a set M connected if any two

of its points can be joined by arectifiable arc (as is defined in calculus) contained

in M. Prove: (a) Any e-convex closed connected set M in R? is convex. (b)

Statement (a) is false without the assumption of M being connected.
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2. Theorems of Radon and Carathéodory

The following theorem is helpful when handling convex combinations.

2.1 Theorem (Radon’s Theorem). Let M = {x,,...,x,} C R" be an arbirrary
finite set, and let My, M; be a partition of M, thatis, M MyUM, M,NM, = @,
M £0.M, £ 0.

(a) Ifr = n + 2 then the partition can be chosen such that

conv M; N conv M, # 0.

(b) Ifr > n+ 1andOisanapex of pos M, yetO ¢ M orr > n + 2, then the
partition can be chosen such that

pos M, N pos M, # {0}.

(¢) The partition is unique if and only if, in case (a), r = n + 2 and anyn + 1
points of M are affinely independent, in case (b),r = n+ 1 and any n points
of M are linearly independent.

2.2 Definition. We call M;, M, in Theorem 2.1 a Radon partition of M.
PROOF OF THEOREM 2.1.
(@) Fromr > n + 2, it follows that xy, . . ., x, are affinely dependent. Hence
Aixy+ -+ Ax, =0canhold withA; + .- + A, =0, notall A; = 0.
We may assume that, for a particular j,0 < j < r,
AM>0,...,4,>0; A4 £0,...,4 <0
We set
A=+ 4 A=Ay — =4 >0 and
X =27 x4 Auxg) = =27 X+ 4 A,
Then, x € conv M; N conv M, for
M= {x,...,x}, Mp:i=A{xjs1,.... %}

(b) By definition of an apex, there exists a hyperplane H such that H Npos M =
{O}andpos M C H*.Let H' # H be parallelto H and H' "M # @. Then,
for any x; € M, the ray pos{x;} intersects H’ in a point x . We apply (a)

to M’ := {x], ..., x'} relative to the (n — 1)- space H' and find a partition
of M’ into M, := {x],...,x} M; = {x},, ..., x;) such that conv M| N
conv M, # @.NowforM, ={x, x5 My = (x4, L, x/), we find

pos My N pos M, # {0}.

(c) We prove the uniqueness only in case (a); case (b) is proved similarly.

2. Theorems of Radon and Carathéodory 9

First, assume 7 = n 4+ 2 and no n + 1 points are affinely dependent. Suppose
that

A.‘4] = {xi‘,--.|xl'k}v MZ = [xig+|v"-vxiy,+2}
is a second Radon partition of M and

Yy € conv Ml M conv Mz.
Then,

y=u"uxi, +--+ exi) = = i, + - + Hns2Xi,,,)
where 1 > 0,..., 00 > 0 g1 < 0,00 g2 < 00k > 1, and
=+ e = —lgyy — - — fyg2. We may assume
X, = xj1 (e My).
We choose 0 < o < 1 such that
A" A + (1 — e uy = 0.
Then,

al_l(klxl + -4 A"+2xn+2)
+ 1 - a)u-_‘(#lx,'. tot Megaxi,, ) =0+0=0

and
AT At Aa) (L= @y 4+ pag2) = 0

expresses an affine relation between n + 1 of the points of M {(x;, and
Xji1 cancel out), unless all coefficients vanish. Therefore, A, = —a"(l -
a)rp! #ip, 2 = 1,...,n + 2, and there is amap g — ¢, g €
{1,....J,j+2....,n+ 2}, ¢ € {iz,...,n + 2} such that 2, =
—a (1 — a)Auy. Smccct‘I > 0,1 —a > 0,and A > 0, the set of those
o' for which p,» < 0 is the same as the set of those ¢ for which 1, > 0.
Therefore M) = {x;,...,x,;} = (Xirs o0 X} = M, and consequently
= M], too.

To prove the converse, we distinguish two cases.

(D r=n+2,and xy,..., x,4; are affinely dependent, A°4 = (X1, ..., Xpa )
I r>n+2.

In casc I, M is contained i m a hyperplane so that, by (a) we find a partmon of
M into M;, M2 with conv M; N conv M2 #* @. Then, M1 U {x,42}, Mz and M1»

M 2 U {x,42} are two different Radon partitions of M.

In case II, consider a proper subset M of M which has atleast n + 2 points. Let
M, M, bcaRadonpartmonofM Then, M, UM\ M), M, and M, MZU(M\ M)
are different Radon partitions of M. O
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Examples for M = (1, 2, 3, 4}

2.3 Theorem (Carathéodory’s theorem).
(a) The convex hull conv M of a set M C R" is the union of all convex hulls of
subsets of M containing at most n + 1 elements.
(b) The positive hull pos M of a set M C R" is the union of all positive hulls of
subsets of M containing at most n elements of M.

PROOF.
(a) Let

1) X =Mx;+ -+ Ax €convM,

and let 7 be the smallest number of elements of M of which x is a convex
combination. Contrary to the claim, r > n + 2 implies that there exists an
affine relation

(2)

pixy 4+ -+ uex, =0, withpyy +---+ 4, =0, butnotall u; = 0.

For p; # 0, we obtain from (1) and (2)

(3)
Aj Aj
x=Ax+- A, =AM ——m )t A )X
Hj Hj
We may assume y¢; > 0,and, forallpux > 0.k =1,...,r,
Ao M
M ek
Then,
Aj .
Ai— ——u;i =20 fori=1,...,r.

M

Since A; — A—’l u; = 0, equation (3) EXPresses x as a convex cotpbmatxon
of less than 7 elements of M, a contradiction of the initial assumption.

3. Nearest point map and supporting hyperplanes 11

(b) Replace in the proof of (a) “convex combination” by “positive linear combi-
nation” and “affine dependence of » + 1 elements” by “linear dependence of
r elements” to obtain a proof of (b).

a

Exercises

1. In analogy to the above examples in Figure 4, find all types of Radon partitions
of n + 2 points in R" whose affine hull is R”.
2. If aff M = R", then, conv M is the union of n-simplices with vertices in M.

3. Every n-dimensional convex polytope is the union of finitely many simplices,
no two of which have an interior point in common.

4. Helly’s Theorem. Suppose every n + 1 of the convex sets Ky, ..., K,, in R"
has a nonempty intersection, m > n + 1. Then, ", K: # . (Hint: For

m = n + 1 there is nothing to prove. Apply induction on m and use Radon’s
Theorem).

3. Nearest point map and supporting hyperplanes

Quite a few properties of a closed convex set X can be studied by using the map

that assigns to each pointin R" its nearest point on X . First, we show that this map
is well defined.

3.1 Lemma. Let K be a closed convex set in R". To each x € R’ there exists a
unigue x' € K such that

(*) lx — x| = inf Jx — y|.
. yek

PROOF. The existence of an x’ satisfying () follows from K being closed.
Suppose that, for x” € K, x” # x/,

lx — x"|| = inf |x — y|.
vek
Consider the isosceles triangle with vertices x, x’, x”. The midpoint m = % '+
x") of the line segment between x’ and x” is, by convexity, also in K, but satisfies
lix —mil < inf [lx — yf,
yek
a contradiction. a
3.2 Definition. The map

pxk ' R" — K

X — pxx)=x
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of lemma 3.1 is called the nearest point map relative to K.
Clearly,

3.3 Lemma.
(a) px(x) =xifandonlyifx € K;
(b) px is surjective.

Generalizing the concept of a tangent hyperplane is the following.

3.4 Definition. A hyperplane H is called a supporting hyperplane of a closed
convexset K CR"IfKNH #@Band K C H or K C HY.

We call H~ (or H, respectively,) a supporting half-space of K (possibly K C
H).

If u is a normal vector of H pointing into H* (or H ™, respectively), we say that
u is an outer normal of K (Figure 5), and —u an inner normal of K.

35Lemma. Let@ # K C R" be closed and convex. For every x € R" \K the
hyperplane H containing x' = px(x) and perpendicular to the line joining x
and x' is a supporting hyperplane of K described by H = {y | (y, u) = 1}, for
u = —*=%__ unless H contains 0.

<x'.Xx=x">»

Proor. The hyperplane H := {y | (y, u) = 1} (u as before) is perpendicular
to x — x’ and satisfies x’ € H. Moreover, (x — x’,x — x') > 0 implies
{x,x —x") > (x',x — x’) and, thus, x € H*. Suppose H is not a supporting
hyperplane of X . Then there existssome y € KN(H*\ H), y # x. Byelementary
geometry applied to the plane E spanned by x, x’, and y, the line segment [y, x’]
contains a point z interior to the circle in E about x with radius || x — x’||. Then,
lx — zll < |lx — x’||, a contradiction. O

FIGURE 5.
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3.6 Lemma. Let K C R" be closed and convex, and let x € R" \K. Suppose y
lies on the ray emanating from x' and containing x. Then, x' = y'.

PROOF. First, assume y € [x, x']. Then, in the case x’ # y’,

lx =" =y =Xl +lx =yl > Iy =¥l + lIx =yl > fIx - y'll,
a contradiction.
Ifx € [y, x'),x" # ¥, then, the line parallel to [y. ¥'] through x meets [x’, y'}
in apoint xo # x’. From |[x — xo|| = ||x — x'| ”-:j:;‘,;} (similar triangles) and ||y —

¥l < lly—x'll (Lemma3.1), we obtain || x — x| < |lx —x'||, acontradiction. 0

3.7 Lemma (Busemann and Feller’s lemma). px does not increase distances,
and, hence, is Lipschitz with Lipschitz constant 1. In particular, py is uniformly
continuous.

PROOF. Letx,y € R"\K.For px(x) = px(y), the lemma is trivial; so, sup-
pose px (x) # px(y),andlet g be the line through x’ := py(x) and Y = pr(y).
We denote by H,, H, the hyperplanes perpendicular to g in x’, y', respectively.

Neither of x and y lies in the open stripe S bounded by H, and H,, for if, say,
x does, the foot x; (orthogonal projection) of x on g lies in X, and then

e — xoll < flx — x'|f,

a contradiction. Also the points x, y cannot lie on the same side of H, or H,
opposite to § since [x, x' 1 N (S \ K) # @or[y,y] N (S \ K) # @ would
contradict what we just have shown and Lemma 3.6. O

3.8 Theorem. A closed convex proper subset of R" is the intersection of its

" supporting half-spaces.

PROOF. By Lemma 3.5, there exists a supporting half-space of K. Let K’ :=
(| H* for all supporting half-spaces H* of K. Clearly, K C K’.

Suppose x € K’ \ K. Then, px(x) # x and, hence, by Lemma 3.5, the
hyperplane perpendicular in pg (x) to the line joining x and py (x) separates x
and X, so that x € K’, a contradiction. C

Remark. Ingeneral, notall supporting half-spaces of K are needed to represent K
as their intersection. A triangle in R?, for example, has infinitely many supporting
half-planes, but three half-planes already suffice to represent the triangle as their
intersection.

3.9 Theorem. Any closed convex set K possesses a supporting hyperplane at
each of its boundary points. -

PROOF. Suppose xo € 3K is a boundary point of K, that is, any open disc U;
with center xo and radius 8 > 0 contains points from R” \ K. Then, X is the limit
point of a sequence {x;} — x; with x; € 9K, such that there exist supporting
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hyperplanes H, of K at x; according to Lemma 3.5. Let s5; be the ray of outer
normals of H; in x;,i = 1,2, ..., and let § be a sphere with center xq.

For sufficiently large i, s; N Sis a point y;, and x; = px (i), by Lemma3.6. {y}
has a cluster point yo # xp. Since px is continuous (Lemma 3.7), px (¥o) = Xo
and yo € K otherwise px(y) = Yo = xo would follow. Therefore, Lemma 3.5
applies, and the theorem follows. a

Exercises

1. Let K C R” be closed and convex. Then, dimK = % if and only if, for any
x € relint X, the set px' (x) is an (n — k)-dimensional affine space,0 < k < n.

2. Every closed convex set is the intersection of countably many of its supporting
half-spaces.

3. Let M C R” be compact. pos M has an apex if 0 ¢ conv M.

4, Aclosedset K C R" that possesses a well-defined nearest point map is convex.
(Hint: Reduce the problemton = 2. Use increasing sequences By C B, C - -
of circular discs B; C R®2\K,j =1,2,...).

4, Faces and normal cones

Although faces and normal cones will mainly be used in the special case of
polytopes, we introduce them for closed convex sets. This lets us see which are
properties specific to polytopes.

4.1 Definition. If H is a supporting hyperplane of the closed convex set XK, we
call F := K N H aface of K. By convention, @ and K are called improper faces
of K.

If we speak about faces, it should be clear from the context whether we include
? or X or not.
By Lemma 1.2,

4.2 Lemma. Every face of a closed convex set K is again a closed convex set.

So we can speak about the dimension of a face. Recall the convention dim @ =
-1. "

4.3 Definition. By a k-face F of K, we mean a face of dimension k. We call F
(a) avertexof X,ifk = 0,
(b) anedge of K,ifk = 1,
(c) afacetof K,ifk = dim K — 1.

We denote the set of vertices of K by vert X

-
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4.4 Lemma. Ler Fy and F be faces of a closed convex set K such that Fy C F.
Then, Fy is a (possibly improper) face of F,.

PROOF. Let £ = K N H,, where H, is a supporting hyperplane of X and,
hence, also of F;. Then,

FNHy, CKNHy=F,C FiNHy,
hence, Fp = F; N Hy which proves the lemma. ]
Remark. The converse of Lemma 4.4 is false. As Figure 6 illustrates, Fy can be a

face of Fy, F) a face of K, but F cannot be a face of K. For a polytope, however,
the converse of Lemma 4.4 is true (see Chapter II, Theorem 1.7).

Now, we will generalize Lemma 4.4.
4.5 Lemma. If F\, ..., F, are faces of a closed convex set K, then, F '= F, 1 N
-+ N F, is also a (possibly improper) face of K .

PROOF. Since being a face is not affected by doing so, we may assume 0 € F
(unless F = @ in which case there is nothing to prove).
Let H; = {x | {x, u;) = 0) be a supporting hyperplane of K such that F; =

K NH,i=1,...,r. By possibly changing signs of some of the u;, we can
arrange

KCH ={x|{xu)=<0, i=1._r

Wesetu := uy)+---+u,. If necessary, we can replace ) by 2u, so thatu #0
can always be assumed. We find

(x,u} = {x,u)) +---+{x,u,) <0 forallx € K.

Therefore, H := (x | {x, u) = 0} is a supporting hyperplane of K. Moreover,
{x, 4} = Ois true if and only if (x, u;) = --+ = (x, u,) = 0. Hence,

xe KNH ifandonlyif x e (KNH)N---N(KNH)=F.

F,F

Fi1GURE 6.
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4.6 Lemma.

(a) Suppose F is a face of the closed convex set K and x, X € relint F. Then,
any supporting hyperplane of K at x also contains %.
(b) If F, F' are faces of K and (relint F) N (relint F') # @, then, F = F'.

PrOOF.
(a) The line segment [x, X] is properly contained in a line segment [y, 3] C
relint F. Should a supporting hyperplane at x not contain % two of the points
X and y, ¥, would be separated, a contradiction.
(b) is a direct consequence of (a).

4.7 Definition. Let x be a point of the closed convex set K. We call
N(x) = —x + pg'()
the normal cone of K at x.
4.8 Lemma. N(x) is a closed convex cone; it consists of 0 and all outer normals
of K inx. Ifx € int K, then, N(x) = {0}.

ProorF. First, note that N(x) is, indeed, a cone. From Lemmas 3.5 and 3.6, we
deduce the second part of the lemma. p;' (x) and, hence, —x + p,_(] (x) is closed
since py is continuous (Lemma 3.7). To show that N (x) is convex, we arrange for
x = 0 with a translation. Then, for #, v € N(0), we may assume (K, u) < 0 and
(K, v} <0,sothat

(K,Au+ (1 —A)v) <0 for 0<i=<l;
hence, Au + (1 — A)v € N(0). |
4.9 Definition. Let o be a cone. Then,
G :={y|{o,y) 20)
is called the dual cone of o (Figure 7).
Lemma 4.8 implies Lemmas 4.10 and 4.11.
4.10 Lemma. fo is a cone with apex 0, then, N(0) = —& (& reflected in,0).

4.11 Lemma, Let F be a face of the closed convex set K. For x, ¥ € relint F
N(x) = N(%).

ProoF. This follows readily from Lemma 4.6. a

4.12 Definition. If F is face of a closed convex set X and x € relint F, then,
N (x) is denoted by N (F) and is called the core of normals of K in F.

o by AV ¢ - oy n o R o

e b s s 110+
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FIGURE 7.

4.13 Theorem. Ler K be a convex body in R" and x(F) one of the relative
inte-riorpoints of aface F # @ of K. Then, {relint N&(F)) | Fafaceof K} =
{relint N(F) | F a face of K} is a partition (disjoint covering) of R".

PROOF. Let 0 # u € R". Since K is bounded, there exists a hyperplane
H(a,u) = {z | {z,u) = a}suchthat K ¢ H-(a, w).PutH™ := N, H (a, u),
the intersection taken for all «, such that K C H7(a, u). Clearly, H- is
again a closed half-space and F ;= H N K # 0. For x(F) € relint F,
u € relint N(x(F)); this is elementary in every plane passing through x(F) and
containing u; hence, it carries over the general situation. So, every ¥ # 0 occurs
in some cone relint N (x(F)). Also, the point 0 occurs in relint N (x (X)) since, for
‘x € relint K, the cone N(x) is a linear space (= {0} if dim K = »n).
Suppose y € relint N (x(F,)) Nrelint N@x(F)). Then, px (y +x(F})) = x(F1)
and px (y + x(F2)) = x(F) so that, by Lemma 3.5, the supporting hyperplanes
in x(Fy) and x{ F,) coincide. This implies F;, = F,. ]

4.14 Definition. X (K) denotes the set of all cones N (F) and is called the fan of
K (see Figure 8). ° '

Exercises

1. Let K be convex and closed, int K # @, and let L be an affine subspace such

that LNint K = @, LNK # . Show that there exists a supporting hyperplane
of K which contains L.

2. For aplanar convex body K, write F;, —» Fjif F;is aface of F;,dim F; = i,

F
dim F; = j, and construct valid diagrams like Fo/ —>\K . Call the diagram
maximal if it can admit no further faces or arrows (in Figure 6, for example,
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FIGURE 8.

Fy — F, — K is maximal). Show, by examples, that, for dim K = 3,
there exist maximal diagrams of the following types:

1
Fop — K, Fo — F, — K, R/ — YK, Ffp — F —
F

2 F;
K, F/ —NK. Fy — F, — F, — K, Fy — F/'— MK,
F,
PN\
F— F1—K.

3. Characterize convex polytopes which have the same fan.
4. For 0 < k < n, call x a k-boundary point of the closed convex set X if
dim N(x) = n — k. Show (by using the nearest point map) that
a. K possesses only countably many 0-boundary points, and
b. the set of 1-boundary points can be covered by countably many rectifiable
arcs (that is, images of line segments under Lipschitz maps).

5. Support function and distance function

Now we will generalize the linear function k(. := {a, -} for arbitrary compact
subsets K of R": »

5.1 Definition. Let K C R” be a nonempty convex body. The map
hx : R" — R defined by u — sup, .k (x, u)

is called the support function of K (Figure 9a).

The next statement is an obvious consequence of the definition.

A b e e At e e o T
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5.2 Lemma. [fK + aisa translate of the convex body K , then,

hiva(U) = hyx(w) + {a, u) forallu e R" .

tl;lxanll;)le 1. Forn = 1,set K = [c, d]. Then (compare Figure 9a for ¢ = -2,

d,uy foru>0
hien(u) = { -
tear () { {c,u) foru <o,
5.3 Lemma.
(a) For every fixed nonzero u € R", the hyperplane
(x) Hy(u) = {x | (x,u} = hg(u)},
is a supporting hyperplane of K (Figure 9b).
(b) Every supporting hyperplane of K has a representation of the form ().
PROOF.
(a) Since K is compact and (-, u) is continuous, for some xy € K,
(x0, #) = hg(u) = sup(x, u).
xek

For an arbitrary y € K, it follows that {y, ¥} < (xo, u); hence, K ¢ Hy (u)
This proves (a). K

(b) L;:t H = ;{: | {x,u) = {xo, u)} bea supporting hyperplane of K at x,. We
choose u # 0 such that K C H~. Then, (x;, ) = su =h
which implies (b). Prek(5:4) K00

a

5.4 Definition. A function f : R* — R is said to be convex if, forall0 < A < 1
andx, y € R”, T

FOx + 1 =Ny) < Af(x) + U - DFG).

FiGURE 9a,b.
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Note that if f is convex and L is an affine subspace of R, then, f1, is also convex.

Example 2. Forn = | and x, y € R, the graph ['(f) of a convex function f
lies “below” the line-segment [(x, f(x)), (¥, £(»))]in R%. Hence for convex £, if
a<—-1<b<0 f(b) = |,and f(0) = O, then, (a, f(a) and (—b, —f (D))
are “above” the line through (b, 1) and (0, 0), so that f(a) > — and f(b) >
—f(=b).

5.5 Definition. A function f : R" — R is called positive homogeneous if, for
anyA > 0andx € R",

FOX) = Af(x).

5.6 Lemma. A positive homogeneous function f : R" —> R is convex if and
only if
)] fax+y) < f&x)+ f) foraillx,y €eR".

PROOF. Let the positive homogeneous function f be convex. Then (1) follows
from

Lrae+y = f(3x+ 1) s fo+ 1o,
Conversely, if (1) holds for f, then, for0 < A < 1,
Fx+Q =1y < fAx) + f(1 =2y = Afx)+ A =2 f,

so f 1s convex. o

5.7 Lemma.

(a) Afunction f : R" — Ris convex ifand only if, for every convex combination
x=Apxo+---+AXm 20 =0,...,%, =0,A0+ -+ X, = 1 of points
X0y » v Xn

m f(x) < Aof(xe) + -+ + Anf(xn).

(b) Every convex function f : R" — R is continuous.

(€) f : R" = Riscomvex ifand only if T*(f) := {(x,§) | x € R".§ €
R, f(x) < £} is a closed and convex subset of R"*".

(d) A positive homogeneous function f : R" — Ris convexifand only if T*(f)
is a closed convex cone.

»

PROOF.
(a) If (1) is true we obtain, for x; = - --

F(oxo + (1 — Aodx1) < Aof(xo) + (1 — ho) f(x1),

so that f is convex.
If, conversely, f is convex, we proceed by induction and assume that f
satisfies (1) (with n replaced by n — 1) on each (» — 1)-dimensional affine

=x,(using 1 — Ao = Ap + - -+ &),

b et o s T
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subspace of R”. Then, forip < landy := (1 —=Ag)~'(Ajx;4---+A

Xp) =
P+ )N ax + -+ Agx,), we find o

FQoxo + -+ Xuxy) = fhoxo + (1 = Ao)y)
< dof(xo) + (1 — Ap) f(y)

<hofGo) + A+ +A4,) (Z()‘l + -+ )»n)_l)\if(xi))
i=1

= lOf(-":()) + Alf(“‘:]) + -+ )\-nf(xn)s

so that (1) follows.
(b) Given a point xq in R”, we consider a regular n-simplex T := conv{x,, ...,
*n41} which possesses xp as center of gravity and for which Ihxy —
Xl = -+ = x4 — xl = 1. We set d := max{|f(x;) —
Fxols - 1 f o)) — f(xo0)l}. Let x lie in a 8p-neighborhood Us, (xq)
of xo such that Us (xp) C 7. Since T is covered by the n-simplices
T; = conv{xp, x, . cen el Xipl, e Xeph i =1, 00,0+ 1, we may
assume x to lie in one of the 7}, sayin T, ;, x = Aoxo + A1xp + - -+ + Aux,,
Ap = 0,000 =20, k+ --+4A, = 1. Clearly, ,; < 8§ < 1

i = 1,...,n. We may assume f(x) > Oin T (up to adding a constant).
g}lven ¢ > 0, we choose § := "(++” and obtain (using (a) and assuming
< &)

If ) — flxo)l < [hof(xo) + -+ + An f(n) — F(x0)l
= MfG) — o) + - + A (f ) — f(x0))]
<A+ 4+ A)d <ndd+1) =e.

Therefore, f is continuous.
(¢) Let f be convex. Given (x, &), (y, n) € rt(f),for0 <a <1,

flex + (1 —a)y) < af(x) + (1 — @) f(y) < a& + (1 — a)p; hence,
(8 + 1 -y m = (@x + (1 — )y, af + (1 —a)y) € TH(f).

Therefore, 'Y ( £) is convex. From (b), it readily follows that ' (f) is also
closed. The arguments may be reversed.

(d) If £ is positive homogeneous and convex, the closed set I*(f)is acone. If,

conversely, I'*(f) is a closed and convex cone, S is homogeneous and, by
(c), convex.

a

Remarks.

(1) ByCarathéodory’s theorem, in (a) we may choose x to be a convex combination
of an arbitrary number of points.

(2) If, in the definition of a convex function, R” is replaced by a closed convex
subset of R”, (b) and (c) need no longer be true. Example: Let the subset be
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the closed unit ball B of R, and let f(x) = Oforx € int B, f(x) = 1 for
X € dB.

5.8Lemma. The supportfunctionhi ofaconvexbody K is positive homageneous
and convex.

Proor. LetA > 0. We find
hx(Au) = sup{x, Au) = rsup(x, u) = Ahg(u).

xek xek
Hence, hg is positive homogeneous. -
From {(x, u) < hg(u), {x,v) < hx(v)forallx € K, we obtain

{x,u +v) < hg(u) + hg) forallx € XK.
Hence
hg(u + v) = sup{x, u + v) < hg(u) + hx(v).
xek
Therefore, by Lemma 5.6, h is convex. O

5.9 Lemma. hy is linear on each cone of the fan Z(K) of K.

PRrooF. All points « in a fixed cone o of X(K) have the same nearest point
xo := pk(u). As in the proof of Lemma 5.3 (b), we, thus, obtain
hklo = (x0, Mo-
a

5.10 Definition. Let K be an n-dimensional convex body in R",and let0 € int X.
The map
di : R > R
defined by

dy(Ax) = X, forx € 3K and A = 0,

is called the distance function of K.
We show that dx is well-defined (part (b) of the following lemma).

5.11 Lemma. Let K be an n-dimensional convex body in R". . . .
(@) If a line g intersects 3K in three different points, then, g is contained in a
supporting hyperplane of K, so, in particular, g 0 int K = 3.
(b) Any ray emanating from a point in int K intersects 3K in one and only one
point.

PROOF. ‘ .
(@) Let A, B,C € g N 3K, and let B lie between A and C. We consnder'a
supporting hyperplane H = {x | {x, ) = c} of K in B.If H did not contain

Sl D e s
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both A and C, it would separate these points properly, which contradicts the
definition of a supporting hyperplane.

(b) Let y € int X, o be a ray emanating from y, and 4 be the line that contains

o. The intersection & N K is a convex body, hence, a line segment [yo, y,].
Either yp or y; equals 0 N 3K.

a

5.12 Lemma. The distance function dx is positive homogeneous and convex.

PROOF. By definition, d is positive homogeneous.
To prove convexity, letdg (x) = A, d (y) = u.JfA = Ooru = 0,then,x = 0

or y = 0, and there is nothing to prove. SoletX # 0, u # 0. For é := ﬁ,we
obtain (1 — 8)x + 8y € K, for AX = x, Ky = y, hence,
- - A noo 1
12de((1 —®x +6y)=d I+ =d x +
x (( ) ¥) K(l+# l+ll»y) K(A+u( )
1
= dg(x + y),
P k(x +y)

hence,dx (x +y) < A+pu = dx(x)+dk (). Sodg isconvexby Lemma5.6. 0O
5.13 Definition. A convex body X is called centrally symmetric if it is mapped
onto itself by a reflection in a point ¢ (which assignstoeach x = ¢ + (x — ¢) the
point ¢ — (x — ¢) = 2¢ — x). We call ¢ the center of K.

From the above lemmas, we derive Theorem 5.14.

. 5.14 Theorem. Let K be a centrally symmetric convex body with 0 € int K as

its center. Then, dx defines a norm on the vector space R", that is, a map
d¢=|-'R" >R

satisfying, forallx, y € R" and ). € R,
(@) |lx|| = Oifand only ifx = 0,

(®) I1axil = IAf; lix]l,

© lx + yil = llxfl + yll.

Example 3. The “maximum norm” in R? is of the form
dg (x) := max{|x,|, |xz|}
where x = (x), x2) and K is the square with vertices (1,D), 1, -1, -1 D,

(-1, -1).

Example 4. The so-called Manhattan norm dg/(x) := |x1] + |x3| where K’ is
the square with vertices (1, 0), (0, 1), (-1, 0), ©, -1n.

In the following section we shall see how the norms in Examples 3 and 4 are
related to each other.
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Exercises

1. Determine explicitly the support functions for the following convex bodies in
RZ.
a. the unit disc,
b. conv {(1, 0), (0, 1), (-1, 0), (0, —1)}, and
c. the line segment {(—1, 0, (1, 0)}.

2. The support function ky is linear if and only if K is a point.

. Show explicitly that dy, dx-, in Examples 3 and 4, are norms.

4. Characterize those convex bodies K for which dx (x + y) = dx(x) + dx(¥)
implies that x and y are multiples.

w

6. Polar bodies

We will consider the polarity 7 in R" with respect to the unit sphere § = {x |
{x, x}) = 1}. It assigns to every affine subspace W of R* with 0 ¢ W a subspace
(W) of R" of dimensionn — 1 — dim W:1If 0 5 uisa point in R”, then,

7)) = H, = {x | {x,u) = 1}.

If the affine subspaces U and V which generate W are not parallel and if W does
not contain 0, then, 7 (W) = x(U) N (V). Note that w o is the identity.

The exceptional role of the point 0 can be avoided by going over to the projective
extension of R” by adding a “hyperplane at infinity”, He. Then, 7(0) = Hy. That
will be needed, for example, in Lemma 3.

6.1 Definition. Let O € int K, where K is a convex body. Then, for u # 0, the
half-spaces H” which contain 0 and, for Hy' := R’,

K* =) HS

uek

is called the polar body of K.
Clearly, 0 € int K* and K* = [ ¢3¢ H, » since 0 € int XK.

Example 1. .As three-dimensional examples, in Figure 10 we consider pairs of
platonic solids with center at 0 and the sphere § inscribed in the outer body, hence,
circumscribing the inner body (shaded).

6.2 Definition. We will represent the points of R" UHq, by the one-dimensional
subspaces of R"+! such that the points of H are spanned by vectors (0, ..., 0, &),
£ # 0. Then, a linear transformation of R**! up to multiplication by a nonzero
factor is called a projective transformation of R" UHc. Itis called permissible with
respect to the convex body K C R UHco, if Heo i mapped onto a hyperplane
disjoint from K.

D e ran
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FIGURE 10. Left: Tetrahedron. Middle: Octahedr i
: . : on and cube. Right:
dodecahedron. (Peatonic solids). gt loosshedron and

6.3 Lemma. If the convex body K is so transiated 10 t(K )} that O remains

’ » P p J
in the interion then T I Obta”led ﬁo’" 1K bv a 8’77"sslble rojective

PROOF. This follows from general facts on projective transformations. O

6.4 Theorem. Let K be a convex body with 0 € intK. Then,
(a) K* =K;
(b) Thedistance function of K equals the support function of K*, and, conversely,
dg = hg., dyg+ = hg.
PROOF.
(a) By definition of H,, for everyu # 0of K,
HS ={x|(ux) <1}
Therefore, (using the obvious notation (K, x) < 1)
K*={x|(K,x) <1} and K** ={y|(K*,y) <)

If y € K, then, the definition of X* yi *
, . yields {y, K*) < 1and, thus, K C K**
Suppose K # K**. Then, letx € K** \ K. For - '

4 . ’

X = pgx(x) and u:= x%x’
(x', x — x'
Lemma 3.5 yields

X € Hu+ \ Hua but also X C Hu_’

whence ¥ € K*. Since x € K**, it foll
: . R ows that (i, x) < 1,1 -
contradiction. ( )= Ldenx e o

Before showing part (b) we prove two lemmas.

6.5 Lemma. Le: K, K, b ; .
Then, K3 C K¢, 1> K2 be convex bodies such that 0 € int K, and K, C K,.
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PrROOF. If y € K, then, (K2, ¥} < 1, hence, in particular, (K, y} < 1. This
implies y € K7. o
6.6 Lemma. Ifx € 9K, 0 € int K, then, H, is a supporting hyperplane of K*.

PROOF. Weknow that K* = (1), ox H, . Forevery x € 3K, thereexists a B, €
R> such that Hg , is a supporting hyperplane of K*. Thus, K := conv({B.x |
x € dK}) includes X, and we obtain

kr=(\H = H. oK =[] H.

yeak ek xedk

Since, obviously, Hg , C H7, we find that 8, = 1 forevery x € 9K. a

PROOF OF (B). inTheorem 6.4: Letu € R" \{0}. We may assume 4 € 9K,
hence, dx (1) = 1. By Lemma 6.6, H,, is a supporting hyperplane of K*, and we
obtain Ag-(u) = 1 from Lemma 5.3. a

Example 2. In Figure 11 we illustrate the cones (in the notation of 5.7)
I*(dg) = T*(hx) and T'*(dx) = I (hg)
for K and XK' = K* of Examples 3 and 4 of section 5, where we obtain
I'*(dg) = pos(K + €), T'*(dx) = pos(K’ +e)
fore = (0,0, 1) € R

Theorem 6.4 implies

FIGURE 11.
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6.7 Theorem. Ler K be a convex body in R" with 0 ¢ int K. Set K, =
I'*(dg) C R"' (see Lemma 5.7)and H = {(x, 1) | x € R"}. Then,

(1) 9K, isthe graph of dg in R"*".

(2) Ky N H isatranslate of K.

(3) K} N H isatranslate of K*.

(4) K,.K? are cones with apex 0 in R"+!.

6.8 Theorem. Every positive homogeneous and convex function h : R — R

is the support function h = hy of a unique convex body K (whose dimension is
possibly less than n).

PROOF. Letuswrite R” = U @ UL, where U is the maximal linear subspace of
R" on which & is linear. Then, there exists @ € U such that, for (x, x') € U @ U+,

(x h(x, x") = (x, a) + hly: (x").

Moreover, ['* (h|y.) is a cone with apex 0 in UL & R (see Lemma 5.7). Thus,
there exists some b € U* such that the hyperplane H := {(y. {y, by € UL}
in U+ @ R intersects I'* (k|y) only in the apex. Now the set

Ko+ (0,1) := (U* x (1) NT*(hlys — (-, b))

is a convex body and, by Lemma 5.2, |1 — (-, b) the support function of K¢ — b.
Finally, () and Lemma 5.2 yield that 4 is the support function of K := Ky — b +
a. g

Exercises

1. Find explicitly the polar bodies of straight prisms and pyramids in R? with
regular polygons as bases.

2. Call an n-dimensional convex body K strictly convex, if 3K does not contain a
line segment, and differentiable, if there exists only one supporting hyperplane
ineachx € dK.Show that X is strictly convex if and only if K * is differentiable.

3. Letdim K < n,and let O € relint K. Use the definition for K* as in the text.

a. How is K* obtained from the polar body of X relative to aff K7
b. Is K** = K?

4. Let K be an unbounded closed convex set, dim X = 7, and let O € int K.
Weset K* := [,cx Hy where Hy := R".

a. Show that K* is a convex body.
b. Must K** = K?
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Combinatorial theory of polytopes
and polyhedral sets

1. The boundary complex of a polyhedral set

We will turn now to the specific properties of convex polytopes or, briefly, poly-
topes. They have been introduced in L.1 as convex hulls of finite point sets in
R". Our first aim is to show that, equivalently, convex polytopes can be defined
as bounded intersections of finitely many half-spaces. (This fact is of particular
relevance in linear optimization).

1.1 Theorem. Each polytope possesses only finitely many faces; they, too, are
polytopes.

PrROOF. Let P = conv{x|,...,x},and let F := P N H be a face where
H = {x | {x, a) = «) is a supporting hyperplane of P such that P C H~. We
may assume

Xiy.oooyXs € Hy  x541,...,%x €int H™
and find
(xi,a) = a for i=1,...,s,
(xi,ay =a— B, B >0 for i=s+1,...,r
Then, for

x=Mnx1+ -+ Ax,, M4+ A =1, Aj>0, j=1...,n

{x,a) = zr:ki(xi.a) = ikid - i Aifi =a — z’: AiB;.
=1 i=] i=s+1 i=s+1

Therefore, x € H if and only if 3/_ | A;8; = 0, which, in turn, is equivalent

to A4 = --+ = A, = 0. So, x is a convex combination of x,, . .., Xx;. Hence
H NP = convixy, ..., x,} is a polytope.
Since only finitely many convex hulls of elements of {xi, ..., x,} exist, the

theorem follows. @]
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1.2 Theorem (Krein-Milman theorem). Each polytope P is the convex hull of its
vertices, that is,

P = conv(vert P).

PRrOOF. Trivially, conv(vert P) C P. For the opposite inclusion, we may
assume that P = conv{xy,..., %} and x; & conv{xy, ..., Xi—{, Xixls---»
x,} =0 Piforl < i < r.Letg; := pp(x;) be the image of x; under the
nearest point map pp with respect to F;. By I, Lemma 5.3, the hyperplane H;
through g; with normal x; — g is a supporting hyperplane of P;. We translate H;
by adding x; — ¢; and so obtain a supporting hyperplane H; of P for which

{x;} = H,-’ NP

(otherwise, as is seen from the proof of Theorem 1.1, F = H/ N P would contain
some x; # x;). Therefore x; is a vertex of P. This implies P C conv(vert P).

Hence, the theorem follows. O
Convention:

If we write P = conv{xy, ..., x,}, we assume, if not otherwise stated, x;, ..., x,
to be the vertices of P, vert P = {xy, ..., x,}.

1.3 Definition. The intersection of finitely many closed half-spaces in R” is called
a polyhedral set.

1.4 Theorem. Every polytope P is a bounded polyhedral ser.

PROOF. We may assume aff P = R". Let F; := P N H; be the facets of P
((n — 1)-dimensional faces),andlet P C H; ,i =1,...,5.
Obviously, P is contained in

ﬁ H =P
i=1

Suppose xp € P’ \ P.Consider the union A of all affine subspaces of R” spanned
by xo and at most n — 1 vertices of P. Since A has no interior points, there exists

x € (int P) \ A

The line segment [x, x,] is not contained in .A and intersects 9 P in a point y. Since
3 P is the union of all (proper) faces of P (I, Theorem 3.9), y is contained in a face
F.Fromdim F < n — 1 would follow x € A, a contradiction. Therefore F is a
facet, say F, and y € relint F. But, then, aff £ would be one of the hyperplanes
Hi,i €{l,...,s} andsoxy & P’, acontradiction to the initial assumption. O

1.5 Theorem. Every bounded polyhedral set is a polytope.

PROOF. We will proceed by inductionondim P, P := H” N ... N H ™. Letus
assume that each of the (propcr_) faces F; := H; N P is a polytope. Replacing R”
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by aff P we may assume that P is of maximal dimension. Obviously,

5
conv(U F;) c pP;
j=1
it suffices, thus, to show the opposite inclusion for int P. For x € int P, fix a ray
o emanating from x not parallel to any H; for j = 1,...,s. Then, by I, Lemma
5.11, ¢ N 3P consists of one point x,. Since P C Uj‘=1 F;, the point x, is
contained in a face, say F;,. The analogous statement holds for the ray opposite
to 0. Since x € [x,, x;], we find x € conv(F; U F,), and, then,

(1 int P C conv(U F)).
j=1

We may summarize Theorems 1.4 and 1.5 as follows:

Lpolytopes = bounded polyhedral sets

1.6 Corollary. Any affine subspace L of R" intersects a given polyhedral set
(polytope) P in a polyhedral set (polytope).

We are now ready to prove the converse of I, Lemma 4.4, in the case of polytopes.
1.7 Theorem. Let P be a polyhedral set. If F, is a face of P and Fy is a face of
F\, then, Fy is a face of P.

PROOF. First, let P be bounded, that is, a polytope P, and vert P =:
{x1, ..., xn}. We may assume that x;, = 0 € Fy # F,. There are linearly
independent ug, u) such that, for H; := {x | {x, u;}) = 0},i =0, 1,

Fo=HyNF, FCH,
Fi=H NP, PcH.

We denote by x, . . ., x; the vertices of P \ F), by X¢41, ..., X, those of F) \ F.
Fori = 2,..., s, there exist points ¥, such that

H; = lin({x;} U (Ho N HY)) = {x | {x, u;} = 0}.

All u; lie in the plane (Hp N Hy)*; hence, we may assume that F, ¢ Ni, H~
and that all u;, considered as points, lie on the line g through ug and u; (Figure 1):

u; = ug + o; (U — ug), i=2,...,5

The u;’s even lie on the ray of g emanating from u, and including g, since
o; € Rei-Fromx; € H™,forj e {s + 1, ..., ¢}, we see that

0> (xj,ui) = (1 — a)(x;, uo).
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Since |y C H, implies {x;, up) < 0, (1 —a,) > 0. Hence, there exists a point
u € g separating ¥, from {u2, . .., u;} properly, that is,

u=ru + (1 —2r)u;, forsomeOd < i; <1,i=2,...,5.

The hyperplane H := {x | {x,u) = 0} is a supporting hyperplane of P with
H N P = Fp.Forx; € Fy, we obtain

(xj,u) = Aidxpm)y + (1 = A){xj, ) = (1 = A)xj, ui) <0,

since F; C H. Thus, {xj, 4) = 0 if and only ifx; € Fp C Hp N Hy. For
x; € vert P\ Fy, {x;, u;) < 0 and, thus,

(xiv u) = Ai{xi, uy) + (1 — A, w) = Ai{x, u1) <0,

which implies P C H"and PN H = F.

If P is not a polytope, we choose a sufficiently large n-simplex S so that int $
intersects each face of P (in particular, vert P C int S). Then, all bounded faces of
P are contained in int S. If F is an unbounded face of P, we findthat ¥ = PN H,
H asupporting hyperplane of P, ifandonly if F NS = PNSN H.Eachface F of
P intersects P N Sinaface F' := PN SN F of PN S suchthatdim F = dim F'.
So, the theorem readily follows from its validity for P N S. a

1.8 Theorem. Any proper face of a polyhedral set P is a face of a facet of P.

PrOOF. Let F = H N P be a face of P. We proceed in three steps:

(1) Every x € F lies in a facet of P: We may assume dim £ = n and dim F <
n — 2. For some y € int P, we consider the union M of all affine subspaces
spanned by y and an at most (n — 2)-dimensional face of P. By Theorem 1.1,
M is included in the union of finitely many hyperplanes. Therefore, in any
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neighborhood of x, there exists a point z ¢ M. The ray emanating from y and
containing z intersects the boundary of P in a point zo ¢ M, hence in a facet
Fo of P. Since zg can be arbitrarily close to x, we see that x € F,.

(2) The face F is included in a facet: Let x € relint F. By (1), x € Fp for
some facet Fy. Since Fp is a polytope, x € relint F’ for a face F’ of F,. By
Theorem 1.7, F’ is a face of P. Hence, by I, Lemma 4.6(b), F = F’, so that
FCFk.

(3) If F is included in a facet Fg, then, F is a face of F,, by I, Lemma 4.4.

0

1.9 Theorem. Letdim F/ = j, j = 0,...,n,andlet F' C F* for faces F!, F*
of the polyhedral set P, i < k. Then, there exist faces F'*', ., | F*~' of P such
that

Flc Fi*l c ... c F*! ¢ F*.

PROOF. We use induction on k. For & = i + 1, there is nothing to prove. So,
let £ > i + 1. Relative to aff F¥, the face F' is contained in a facet F*~! of F*
(Theorem 1.8). By applying the induction hypothesis, the theorem follows. O

1.10 Theorem. Each (dim P — 2)-face of a polyhedral set P is the intersection
of precisely two facets of P.

PROOF. We may assume that dim P = n. By step (3) of the proof of Theorem
1.8, F is aface of each of finitely many facets Fy, . . ., F; containing F.Essentially,
we reduce the problem to the case n = 2.

In appropriate coordinates, we may decompose R” as R" 2 @E with F ¢ R"2
to be a neighborhood of O relative to R" 2. For every x € relint F and every j,
we obtain pairwise different lines I,; in E, givenby {x} + EN F;. If s = 1,
then dim[P N ({x} + E)] = 1, which contradicts dim P = ».If s > 3, by
considering three lines, say I,, li2, I3, we may assume l,3 C conv(ly, ;).
Since that inclusion holds for all points in F near x, we find F3 C conv(F, U F,),
and F; is not a facet of P. a

1.11 Theorem. Let P be a polyhedral set, and fix j k € Z.owith j < k <
dim P. Then, every j-face F/ is an intersection of k-faces of P. In particular, F/
is an intersection of facets of P.

PROOF. By Theorem 1.9, there exists a chain
F/Cc...Cc F&' ¢ F¥ c F*H,

If k = j + 1, the theorem follows from Theorem 1.10. If ¥ > j + 1, we
apply Theorem 1.11 and see that F/ = F{*' 0 F/*' is an intersection of facets
relative to F/*%. Again, if k > j + 2, we represent F;*', F{*! as intersections
of (j + 2)-faces. Continuing in this way, the theorem follows. (As an illustration,
see Figure 2.) O
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FiGure2, F' = F}NF} = FINFHN(FENFY) = FEFNFZNF2?

Frequently, theorems on convex polytopes and, more generally, polyhedral sets
refer only to the inclusion properties of their sets of faces. It is, therefore, useful
to introduce the following notions.

1.12 Definition. The set of all proper faces of a polyhedral set P (without P and @)
is denoted by By(P). B(P) := By(P) U {@} is called the boundary complex B(P)
of P, By(P) the reduced boundary complex of P. A bijective, inclusion-preserving
map

¥ : B(P) - B(P",

where P, P’ are polyhedral sets, is called a combinatorial isomorphism (or equiv-
alence); when such a map exists, P and P’ are called combinatorially isomorphic:

P~ P,

Equivalence classes under combinatorial isomorphisms are also said to be types
of polyhedral sets (or polytopes).

Itis readily seen that =~ does satisfy the conditions of an equivalencg relation
(reflexivity, symmetry, transitivity).

Clearly, under an affine or permissible projective transformation, any polytope
is mapped onto a combinatorially equivalent one. The converse is not true, as can
be verified by pentagons in R.

The exercises below, although expressed for individual polyhedral sets, are, in
fact, concerned with types of polyhedral sets.

One of the basic invariants of a polytope under combinatorial isomorphisms is
the vector defined as follows. :
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1.13 Definition. The number of k-faces of a polytope (or a polyhedral set) P is
denoted by fi(P),k=10,...,n— 1,and

F(PY:= (fo(P), ..., fuacr(P))

is called the f-vector of P. For the improper faces @ and P, we set f_1(P) = 1,
f(P)y=1.

{fo(P), ..., fa_1(P)} cannot be an arbitrary set of natural numbers. They must
satisfy, for example, the “Euler relation” (to be discussed in III, 3).

Exercises

1. A polyhedral set P # @ in R", n > 1, does not possess a vertex if and only if
it contains a line.

2. Letx € relint F, F aface of the polyhedral set P in R”. Then, x is a k-boundary
point of P (see I, 4, Exercise 4) if and only if dim F = %.

3. If V C vert P, where P is a polytope, then, conv V is a face of P if and only
if aff V N conv[(vert P) \ V] = @.

4. Letl <k <npandxq,...,x; € vert P, P an n-dimensional polytope in R".
Then, there exists an (n — k)-face F of P suchthat F N {x,..., xx} = 0.

2. Polar polytopes and quotient polytopes

In I, 6, we introduced polar bodies of full-dimensional convex bodies. Now we
investigate special features of polar polytopes. In particular, we define polar faces.
Subsequently, we introduce quotient polytopes and their relation to polar polytopes.

Example 1. Let p n Figure 10 of chapter I be a vertex of one of the “inner”
polytopes P. Then, the polar plane 7 (p) of p intersects P* in the facet

F*:= P*Nn(p).

In the case of the octahedron, we obtain a square, in the case of the icosahedron, a
pentagon. If ¢ is an adjacent vertex of p, the polar face [p, ¢]* of [p, q] is again
a line segment

[p,q]" = P* Nr(aff[p,q]) = P* Nn(p) N r(g).

Example 2. Suppose [p, g] is such an edge of a 4-dimensional polytope P that
[P, g]is the intersection of three facets of P which are combinatorially isomorphic
to triangular prisms. Also suppose that p and ¢ are contained each in only one
more facet which is a simplex (Figure 3a). Then, P* contains two facets p*, g*,
and [p, q]* := p* N g* = P* N w(aff[p, q]) is a triangle (Figure 3b).
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FIGURE 3a,b.

In general, we will prove Theorem 2.1.

2.1 Theorem. Let P be an n-dimensional polytope in R", 0 € int P, and let P*
be the polar polytope under the polarity .
(a) If F is a proper face of P, then,

F* .= P* N x(aff F)
is a face of P* and
dimF*=n —1—dimF.
(b) The assignment F v+ F*, for all F € By(P), induces a bijective and
inclusion-reversing map
g: By(P) — Bo(P")

between the reduced boundary complexes of P and P*.

(¢c) F** = F.

(@ P* = (Nievenr Hy (see 1, 6.1.); in particular, P* is an n-dimensional
polytope with 0 € int P*.

Proor. We may assume that F = conv{vy, ..., v,} is a proper face of P =
conv{vp, ..., Uc).

(d) The inclusion P* = (1,30 H, C [j—o H,, is obvious. For the opposite

inclusion, it suffices to verify that x € H, for every x € (1} H,, and every

u € dp. By Theorem 1.2, there exists a representation

U = hovp + -+ + A Vs, where Ag +---+ A; = landall 4; > 0.
Thus, x € H; follows from
(x,u) ={x,hovo+ -+ Av) Qo+ ---+A) I =1

This implies, in particular, that £* is a polyhedron. The assumption 0 € int P
implies that there exists an n-simplex A with0 € int A C P. As a subset of
A*, the polyhedron P* is bounded and, thus, a polytope by Theorem 1.5.
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(a) The subset F* of P* is a face. Since 7 (aff F) = [_, H,,, we obtain that

F*=P'Nn@ff F) = PO H, = (P*NH,)
=0 i=0
is a face by I, Lemma 4.5.

One inequality is obvious becanse of F* C m(aff F) and the dimension
formula:

dim F* < dimw(aff F) = n — 1 — dim F.

There remains the inequality “>”. By Theorem 1.11, there exist facets F;
such that F = ﬂ'j=0 F;. Since 0 € int P, we can find vectors u; # 0 with
Fj = PN H,,. We may assume that ¢ = codim F; then, the u, are affinely
independent. If we can show thatu; € F} (C F*), for every j, then,

dmF*>t—1=n—-1—-dimF

follows. Thus, let F itself be a facet with F = P N H, and P C H, . Then,

s
F*=P*Nn@ff F) = P*Nx(H,) = [ |H; N ) H
=0 x€H,
yieldsu € F*,sinceu € H, holdsforeveryx € H, andsincev, € P C HS
implies u € H, .
(c) I, Theorem 6.4 implies

F=PNF=Pnaua(@ff F)) = P* Nnx(aff F*) = F**,

(b) Evidently, g is inclusion-reversing, and, by (c), ¢? = id, which implies the
desired statement.

a
2.2 Definition. The face F* of P* in Theorem 2.1 is called the polar face of F.

We remark that many “linear” properties of P carry over to P* since P* is
defined by the projective concept of polarity. In the example of a “bipyramid” P
above, the polar body is a prism and, hence, has parallel edges joining “top” and
“bottom”. If we slightly disturb one of the vertices of P, this is no longer true,
though the new polytope is combinatorially isomorphic to P. Even if P undergoes
only a permissible projective transformation, P* will not remain a prism; however,
P* will also undergo a permissible projective transformation so that its parallel

edges are mapped onto edges whose affine hulls intersect in a point. In general (I,
Lemma 6.3,

2.3 Lemma. If P is mapped onto P’ by a permissible projective transformation,
then, P'™* is also the image of P* under a suitable projective transformation.

By the following theorem, polarity is given a combinatorial frame:
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2.4 Theorem. If P and P’ are combinatorially equivalent, then, so are P* and
Pli '

P = P implies P*= P™.

ProoF. This follows from Theorem 2.1(b) and the definition of combinatorial
equivalence. a

So, we may consider P* as either a polytope or a type of a polytope.
One of the most important combinatorial invariants is the f-vector of a polytope
(see Definition 1.13). As a direct consequence of Theorem 2.1,

2.5 Theorem. For each n-dimensional polytope P,

Je(P*) = fas1(P), -1 <k <n

In the example of platonic solids (see Figure 10 in 1, 6), ¢ maps the 8 vertices,
12 edges, and 6 facets of a cube onto the 8 facets, 12 edges, and 6 vertices of
an octahedron, respectively. In the case of a dodecahedron, the 20 vertices, 30
edges, and 12 facets are mapped onto the 20 facets, 30 edges, and 12 vertices of
an icosahedron, respectively. If P is a simplex, P* is also a simplex, and, hence,
there are as many vertices as there are facets of a simplex.

As we have seen in Corollary 1.6, the intersection of an affine space U with a
polytope P is again a polytope. We consider a special choice of U:

2.6 Lemma. Let F be a proper face of the n-polytope P C R". Then, an affine
subspace U of R" can be chosen so that the following conditions are satisfied.
(a) aff(U U F) = R".

(b) If F' isa face of P and F g F', then U Nrelint F/ # @.

() IfFlisafaceof Pand F ¢ F',then, U N F' = @.

d) dim F +dim(UNP) =n — 1.

PROOF. Let H be such a supporting hyperplane of P that F = P N H, and let
x € relint . We choose, in x an affine subspace, Uy of H complementary to aff F
(relative to H). Let y € int P. Then, for a sufficiently small § > 0,

U:=Uy+8(y —x)
has propertieé (a), (b), and (c) whereas (d) is a consequence of (a} and (b). g
2.7 Definition. Let P, F, U be given as in Lemma 2.6. Then, P/F ;= PN U is

called a face figure or a quotient polytope of P with respectto F.For F = p €
vert P, we also say that P/p is a vertex figure (Figure 4).

Example 3. The vertex figures of
octahedra are
cubes are

quadrangles,
triangles,
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FIGURE 4,

icosahedra are pentagons, and
dodecahedra are triangles.

2.8 Theorem. Let F be a proper face of the polytope P, and let P* be the polar
polytope of P with respect to a polarity 7. For an affine subspace U of R", let ry
denote the restriction of w 1o U, and set ny (P/F) = wy(aff (P/F)).

(a) For any face figure P/F of F,

ny(P/F) = F*,

(b) Any two face figures of P with respect to F are combinatorially isomorphic.
Therefore, we can consider P/F to be the equivalence class of these face
figures.

'rmmw.Lak::mmpﬁommmmu==n—k—1ﬂnUannzamew

face G which contains F properly, we set

G 1—¢> ny(G NU).

If g := dim(G N U), so that g = dim G k- 1, then, by the construction in
Lemma 2.6, .

dme(G) = -k-1)-g~1l=n—(g+1+k—-1=n—-dimG — 1.

Therefore dim ¢(G) = dim G*. The mapping ¢ is inclusion-reversing as is the
polarity . So, by

¢(G) +— G* e B(F",
we obtain an isomorphism
Bo(ny(P/F)) —> By(FY),

whence (a) follows. Note that, by Lemma 2.6(c), only faces G including F properly
contribute to BGry (P/F)).

Part (b) of the theorem is a consequence of (a). a
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Example4. If Fisak-face of asimplex P, then, P/Fisan (n — k — 1)-simplex.
Example 5. If F is a facet of any n-polytope P, then, P/F is a point.

The mappings constructed in the proof of Theorem 2.8 easily yield the following
result:

2.9 Theorem. Let [F, P] be the set of proper faces of P which properly contain
the face F. Then, there are bijective mappings

X

(F. Pl 5 ByP/F) > Boru(P/F) 25 Bo(F™),

where @ reverses and r, x preserve inclusion.

Remark. The mapping ¢ lowers dimension by dim F, whereas ¢ reverses
dimension according to Lemma 2.6(d) and x is a combinatorial isomorphism,

Exercises

1. Find examples of 3-polytopes and 4-polytopes P other than simplices for which
(P = fi(P),

k=0,1,2ifn=3k=0,1,2,3ifn = 4
2. Find examples of pairs of 3-polytopes which have the same sets of vertex figures
but are not combinatorially equivalent.

a, Place on each facet F of a dodecahedron (I, Figure 10) a flat pentagonal
pyramid conv (F U {p}), so that again a convex polytope is obtained and
“old” edges are also edges of the new polytope P. Describe P* and draw a
diagram.

b. How does P* change for an n-dimensional P if a facet F of P is replaced by
conv (£ U {p}) so that, for the new polytope P’, vert P’ = {p} U vert P?

4. Let P be an n-polytope, G a face of P, F a face of G. Suppose G/F to be
defined relative to aff G. Show thatthe representationsof G/ F, P/ F,and P/ G
can so be chosen that (P/F)/(G/F) is defined (relative to aff (P/F)). Prove

(P/F)/(G/F) =~ P/G.

3. Special types of polytopes

There are two large classes of polytopes which are of great importance in the
sequel: _ :

RN ONT
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3.1 Definition. If a polytopec P has only simplices as proper faces, it is called
simplicial.
For such P, we call P* simple.

A more convenient characterization of simple polytopes is given by the following
lemma:

3.2 Lemma. An n-dimensional polytope Q is simple if and only if any vertex p
of Q is contained in precisely n edges of Q.

PROOF. Under the polarity 7, a vertex p of Q comresponds to a facet F, of Q*,
and the edges of Q containing p to the facets of F - Thus, the number of those
edges is precisely the number of facets of F, - Since Q" is simplicial if and only
if each of its facets F, has precisely n facets (see the remark following I, 14), the
lemma is evident. a

Now we will present some special types of polytopes.

3.3 Definition. If Q is an (n — 1)-polytope in R” and p ¢ aff O, we call P :=
conv({p} U Q) a pyramid with basis O (or over Q) and with apex p. If O, in turn,
is a pyramid over an (n — 2)-polytope, we say P is a 2-fold pyramid. Inductively,
P is called a k-fold pyramid over R if it is a pyramid whose basis is a (k — 1)-fold
pyramidover R, 1 <k < n.

3.4 Theorem. If P is a k-fold pyramid over R, then, P* is a k-fold pyramid over
the polar p* of the apex pof P, <k <n — 1.

- PROOF. Let Q be the basis of P (as a 1-fold pyramid). The polar face Q* is a

vertex of P*, and p* is a facet of P*. If g is a vertex of P* other than 0*, g =G*
for some facet G of P which is different from O and, hence, contains p- Therefore,
q is contained in p*, and, hence, by I, Lemma 4.4, a vertex of p*. This implies
P* = conv(Q* U p*) so that P* is again a pyramid.

If k > 1, we apply the same arguments to  instead of P, Continuing in this
way, the theorem is proved. O

3.5 Definition. Let Q be an (n — 1)-polytope, and let 7 be a line segment such
that
(relint @) N (relint 7) = {q},

is a single point. Then, P := conv(Q U I) is called a bipyramid with basis Q (or
over Q). P is said to be a k-fold bipyramid over R, 1 < k < n, if, in the case
k > 1, itis a bipyramid over a (k — 1)-fold bipyramid over R.

3.6 Definition. Let O be an (n — 1)-polytope, and let O’ be a translate of O not
contained in aff Q. Then,

P := conv(Q U @)
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is called a prism. P is said to be a k-fold prismover R,1 < k < n, if, in the case
k > 1,itisaprismovera (k — 1)-fold prism over R.

3.7 Theorem. If P is a k-fold bipyramid, P* is, up to a permissible projective
transformation, a k-fold prism, and conversely (Figure 5).

PROOF. First, let ¥ = 1. Up to a translation, we can assume g = 0 (in the
definition of a bipyramid). The translation induces a permissible projective trans-
formation (see I, 6). By an appropriate linear transformation (shear transformation),
we can arrange I perpendicular to aff Q. Let I = [a, b]. Now the polar faces of
the (n — 2)-faces of Q are line segments perpendicular to aff Q, with end points
on the facets @* and b* of P*, so that we obtain a prism. For £ > 1, we again
proceed inductively. O

3.8 Definition. An n-fold bipyramid is also called an n-crosspolytope, an n-fold
prism is also called an n-cube.

2-crosspolytopes are convex quadrangles, 3-crosspolytopes are octahedra. n-
cubes (also called spars or parallelepipeds) are affine images of ordinary n-cubes,
A particular case of Theorem 3.7 is

3.9 Corollary. If P is an n-crosspolytope, then, up to a permissible projective
transformation, P* is an n-cube, and conversely.

3,10 Definition. The curve {x(t) = (¢, 1%,....1") | t € R} is called a moment
curve. . Let x(11), . . ., x(t,) be different points on it, where v > n. Then,
C(v, n) := conv{x(n), ..., x(1,)}

is called a cyclic polytope (Figure 6).

If, in R?, every pair of two vertices of a polytope P are joined by an edge of
P, it is readily seen that P is a simplex. The polytopes C(v, n) forn > 4 show

N i
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FIGURE 6.

that this is. no longer true in R”. The importance of cyclic polytopes lies, more
generally, in their richness of faces.

3.11 Theorem. The cyclic polytopes are simplicial.
PROOF. First, we show that every n + 1 of the vertices of C(v, n) are affinely

independent. For pairwise different points £, . . ., #,
1 1n £ 1
Ly g ...
D= | = [T @&-w 0.
. . 0<i<j<n
1 8, 22 ...

Hence x(%), . . ., x(z,) are affinely independent,
Thus, each proper face F of C(v, n) in¢ludes, at most, n vertices of C(2, n),
and those are affinely independent, i.e., F is a simplex. O

;’,.12 Theorem. For2 < 2k < n, every subset of vert C (v, n) containing k points
is the vertex set of a (k — 1)-face of C(v, n); hence,

picem=() wosa<s].

PROOF. Fort) < .- < g, write the real polynomial in ¢

k
p) =[]t — 1)
as =

p(&y =Po+ Bt + - + But®.
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Consider the vector
b:=BnLbBy- -1 Bur0,...,0) e R"
as normal vector of the hyperplane
H={xeR"|{x,b) = —fo).
Then, forl <i <k,
(x(t), b) = Bit; + -+ - + But® = p(t) — o = —Bo.

hence, x(t;) € H fori = 1,...,k.
For any further vertex x(t,),

X
2
(x(1)), b) = —fo + pltj) = —Bo + [ |, — 3% > —o.
i=1
so H is a supporting hyperplane of C(v, »), and, by Theorem 3.11,
H NC(v, n) = convix(ty), ..., x(t)}
is a (k — 1)-face of C(v, n). O
3.13Theorem (Gale’'s evenness condition). LezV, beasetofn vgrtices of C(v, n).
Then, V, is the vertex set of a facet of C(v, n) if and only if all elements of

vert C(v, n) \ V,, are pairwise separated on the moment curve by an even number
of elements of V,,.

ProOOF. LetV, = {x(11), ..., x(1,)} where
h < - <1y,

and let V := vert C(v, n). Furthermore, set

a0 = —w =Y nt
i=1 j=0

c = (}’1: ERLL | y")yand
H:={x|{x,0)=-p} CR".
Then,
@) ey =Y vt =q@) -y =-w,
j=1
hence, x(#;), . .., x(t,) lie in A For all other z

q(t) = (x(),c) + v #0.

Therefore V, is the vertex set of a face of C(v, n) if and only if V \ V, lies on one
side of H. This, in turn, is equivalent to g(t) changing its sign an even numbc?:
of times while, increasing ¢, we move from one vertex of V \ V, to another. This

; [
proves the theorem.
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Theorem 3.13 and Theorem 3.11 imply Theorem 3.14.

3.14 Theorem. /nR",anytwo cyclic polytopes with v vertices are combinatorially
equivalent.

This justifies interpreting the notation C (v, n) as the equivalence class of cyclic
polytopes of dimension # with v vertices.

Remark. InIIl, 7., we shall see that in R", for each k among all polytopes with
v > n vertices, the cyclic polytopes have a maximal number of k-faces.

Exercises

1. If P is a pyramid over Q,

JiP) = fi (@) + fi-1(Q), O0<j=<n-1
For a k-fold pyramid over R,

minfk.j+1} k
Ley= 3y (i)fj-i(R), 0O<j<n-1

i=0

2. For an n-crosspolytope P and the n-cube P*,
f'(P)=2’+1( " ) f-(P"):z"—J("), 0<j<n-—1.
J j+1 J j = =

3. Let R be an (n — k)-polytope in R", 0 < k < n, and let 0 € relint R. Call
R* (1, 6, Exercise 3) an infinite k-fold prism, and show in which way it can be
considered as the limit of (a) a k-fold prism, (b) a k-fold bipyramid.

4. Justify the face structure of C (6, 3), as shown in Figure 6, by applying Gale’s
cvenness condition. :

4. Linear transforms and Gale transforms

The transformations, which we will introduce now, are useful tools for the in-
vestigation of polytopes (and polyhedral cones). (Their origin is from linear
programming theory), In particular, they will be used for the classification of
types of polytopes in section 6. Qur point of view for linear algebraic aspects is
close to that in P.R. Halmos’ book “Finite Dimensional Vector Spaces”.

First, we will present a coordinate-free definition. In the next section, the
consideration of diagrams will be made more concrete by using matrices.

Let V be a v-dimensional real vector space and let V* be the dual of V, that
is, the linear space consisting of all linear functionals x* : V —» IR. For a real
linear space U, let L : V — U be a linear map and L* the dual map defined by
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L*(w*) ;= u" o L forevery u* € U*. We write

v 5 uo v E v
We fix a basis by, .. ., b, of V and the dual basis b7, . . ., b} of V*, so that
x _ )1 fori =,
bibi) = & "{o fori # J.

For every subset M of V, there is a vector space
Mt = {x" € V' | x*(M) = 0).

Form € V, we write m' instead of {m}*.
Now, we will introduce the notion of a short, exact sequence. Assume we are
given a sequence

0 0 — W oV U 0

of linear maps and vector spaces. Then, we call (1) a short, exact sequence if
L, is surjective, L; is injective, and ker L, = im L,.

Then, we may interpret W as a linear subspace of V and L, as tlfe i{ljec-
tion W < V. Since we deal with vector spaces, by an easy exercise in lmegr
algebra, the exactness of the sequence (1) is equivalent to the exnstenc_e of a di-
rect sum decomposition V = W @ U, or, more precisely, to the existence of
homomorphisms

Lz Ll
(1a) w Pl 14 Pl u,
M, M,

such that (using the convention (L o M)(-) = L(M()) for the composition of
maps)

L10L2:0,M20M1 =0,L|OM1=idy,M20L2
idy, M, o L, + Lo M; = idy.

4.1 Lemma. The dual sequence

* * * e— 0
2) 0<—W+LTV(ZT—U

of (1) is also exact. -

ProOF. (la) yields the existence of homomorphisms

M; My
* »* *
(1b) w 2 Vv - UL
L3 Ly

2 I

such that
LyoL} =0,M;oM; =0 M oL} =idy, L;oM;
= idws, LT o M{ + M; o L} = idy..
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a

We now concern ourselves with finite families {x1, ..., xy} of (not necessarily

different) elements whose linear hull is &/. We fix an ordering and denote the
associated finite sequence by

X =, ..., x).

If abasis of U is fixed, we write the coordinates of the x ; as column vectors and we
also denote the resulting matrix (x; - - - x,) by X. Further, we fix a v-dimensional
vector space V withbasis by, ..., b,, thatis, V = RbH ... O Rb, = RY. The
finite sequence X now defines a surjective linear map

v v
Li:V=ZWoU —_— U, Za)-bjr—-»Zajxj.
Jj=1 Jj=1

4.2 Definition. For the dual basis bi,....bofthebasis b, ..., b,of V, we set
Xi = L3(b"), i=1,...,v,

and call the finite sequence

Xi=0.... %)
alinear transform of the sequence X. x; and %; will be referred to as the components
of X, X.
Note that the components of X span W*,

4.3 Lemma. IfX is a linear transform of X, then X is a linear transform of X.

PROOF. We will apply Lemma 4.1 twice, and use the elementary facts U = U**,
L= L7*, and so on:

w — 14 —_— 14
L, 1,
Wl V* ¢ U‘
L Ly
W=W" — V=v* —— [U=y*
Ly=L3 Li=L

Now, we find, for the elements of the transform of X,
LB =Lit) =x for i=1.... . v
]

Example 1. LetU, W be subspacesof V = R* = U@ W where J = lin{e,, e;},
W = linfes, ey}, €1, . . ., €4 the canonical basis of R*. We write the coordinates
of the elements of U, V, W as column vectors and those of the elements of V*,
U*, W* as row vectors, respectively. Applying a dual vector of V*, U*, or W* to

avector of V, U/, W, respectively, can be carried out as (matrix) multiplication of
arow vector and a column vector.
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Let

X = (x1x2x3%4) =

(D1b2b3bs) =

Ly, L, are given as matrices

Then,

Lib)=x,i=1,...,4andim L, = ker L) are readily checked. We obtain
(Figure 7)

% L6} bt -1 =2
* * td

n|_ | B | |5 o |2

’_‘3 L35 b2 1 0

Xa L33 b} 0o 1

4.4 Definition. By the rank of a finite sequence X of vectors of U, we mean the
dimension of the linear hull of the components of X,

rank X := dim lin X.

4.5 Lemma. If X = (x,..., x,) is a sequence of points in U which generate
U, then

v = rank X + rank X,
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X3
[ ]
| |
1 ]
XQT ® X4 Y4+
|
_______ I___...___ ._.____._I__—.-_—
X4 Xa

FIGURE 7.

PROOF. Since we assume X to span U, rank X = dim . In the same way we
obtain rank X = dim W* = dim W. Thus,

v=dimV = dim W + dim U = rank X + rank X.

O
The following lemma is obvious:
4.6 Lemma. _
(@ IfLy : U — U isa bijective linear map, X is a linear transform of Ly (X)
as well. _
(b) If Ly : W* — W* is a bijective linear map, Lw.(X) is a linear transform
of X as well.

In particular, for A € R and linear transform X, the sequence AX is a linear
transform, too.

4.7 Definition. We call £(X) := ker L, ¢ V the space of linear dependencies
(or linear relations) of X. It is convenient to write @ € LXYCV=RbiB --©
R b, as column vector @ = (ay, ..., &) with respect to the basis (b1, .. ., b,).
Such a linear dependency is called an affine dependency if

4 +---4+a, =0.

So,o¢ = (ay,...,®,) isalinear dependency for X if and only if Za;x; = 0.
Note thatdim £(X) = v — dim U. There is an interpretation of £(X) also via X:
Consider X as the linear mapping

X:Wo>V= éRbﬁ w iii(w)bl;
il i=

then,
LX) =imX.
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4.8 Lemma. (o), ...,«.) € L(X) if and only if there exists a vectora ¢ W
such that
o, = x;(a) fori=1,..., v
PRrROOF. (aj,...,a) € L(X) = ker L, = im L, is equivalent to
3) a1y + - +aphy, = Ly(a) for somea € W.

Applying b7 to both sides of (3), we obtain that, equivalently,
a; = b} (L2(a)) = [L3(b)))(a) = Xi(a), i=1...,v

4.9 Lemma. Fori € {l,...,v},x; & in(X \ {x;}) ifand only ifx; = 0.

PrOOF. x; ¢ Iin(X \ {x}) is equivalent to saying that, in all (a,.::.,
@) € L(X),a; = 0.This, in turn, is expressed (see Lemma 4.8) by the condition
Xi(a) = Oforalla € W, so that ¥; is the zero map. 0

For a subsequence Y of X, we set

Y=@Ix gy

4.10 Lemma. The set of components of Y is linearly independent if and only if
lin¥ = lin X.

PROOF. Since linear independence does not depend on order, we may assume
that X = (Y, Z), so that

X=(2,¥) and L) x L@Z) C L(X).
Since lin ¥ C lin X = W*, we may replace the condition lin ¥ = W* by (4).
Foreverya € W, the equation ¥(a) = 0 implies 0 = X(a)

= (Z(a), Y(a)).

On the other hand, Y is linearly independent if and only if £(¥) = 0, see 4.7.

If £L(Y) = 0, then, Z(a) = O for every a € W and (4) holds, see 4.8. If
L(Y) # 0, then, there exists some nonzero (&, 0) € L(Y) x L(Z) € L(X), and
thus, by 4.8, some a € W with (@, 0) = X(a), so that (4) does not hold. |

)

Lemma 4.10 implies the following:
4.11 Lemma. Y is a basis of lin X if and only if? is a basis of lin X.

Now, we will apply Lemma 4.10 to polyhedral cones introduced in I, 1. Let

o = pos X

4. Linear transforms and Gale transforms St

be the cone determined by a finite sequence X in U. In order to study faces of the
cone o, we introduce a notion relating faces to their generating elements in X:

4.12 Definition. A (possibly empty) subsequence Y of X is called a face of X if
there exists a hyperplane H in U such that
(@ HNX =Y,and
(b) H is a supporting hyperplane of 0 = pos X.
The partially ordered set of faces of X (including @) is said to be the face
complex B(X) of X.

In the circumstances above, # No = pos(X N H) = pos Y is a face of g; note
that pos @ = {0}.If 0 € X, then, O is contained in every face of X.

One of the main objectives with using linear transforms is the characterization
of faces ¥ by properties of the corresponding subsequences ¥ of X.

4.13 Definition, Ifa  subsequence Y of a finite sequence X in the vector space U
is a face of X, then, Y is called a coface of X. The set of cofaces of X, partially
ordered by inclusion, is called the coface complex of X.

4.14 Theorem. A subsequence ¥ of Xisa coface if and only if
(5) 0 € relint pos ¥

(or, equivalently, O € relint conv ¥ ).

In Example 1 above, (%, X3, X4), (X2, X3, X4) and (%1, x2, X3, X4) are exactly
the cofaces, whereas (x;), (x2) and @ are faces; in the case of 0, as a supporting
hyperplane of o, choose H, for which H N o — {0}.

PROOF OF THEOREM 4.14. For o € R, we use the notation o, X) =
L' ,e;%;. Let Y be a subsequence of X = X1 .. x)say Y = (xy, ..., 1),

Then, ¥ satisfies (5)if and only if there exists anr € Q x RY, suchthat (&, X) =
0. By Lemma 4.3 and Lemma 4.8, we may replace the condition “la, X) = O
by requiring the existence of a* € U* such that @ — X(a*). Thus, we have the
following equivalent statements:

(a) Y satisfies (5).

(b) There exists a* € U* such that X (a*) € 0 x R,
’ (c) There exists @* € U* such that H := u e Ulaw = 0} satisfies

Yoo x, € Hand x4y, ..., x, € HY\ H.

(d) Y is a coface of X.
j O
¥ Linear transforms of a particular kind will be used in 5.4 for the characterization
) of polytopes. First, we will make the following observation:
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4.15 Lemma. A linear transform X of X satisfies 1 + - - - + X, = 0 if and only
if the components of X lie in a hyperplane H of U for whichQ ¢ H.

PROOF. Lemma 4.3 yields that X is a linear transform of X. By Lemma 4.8,
there exists a* € U* such that the points of X lie in # := {x | a*(x) = 1} if and
onlyif (1,..., 1) € £(X), thatis, ifand only ifx; +--- + X, = 0. a

This may motivate the following construction: Let X be such that its components
generate U. We identify U (as an affine space) with a hyperplane H in a linear
space U where 0 ¢ H; hence, dim U = dim U + 1. Then, X determines a finite

sequence Xy, = (X1, ..., %) in U with components that generate U.
4.16 Definition. A linear transform )_(0 = (:—f], RN fc,,) of X, is called a Gale
transform (or sometimes an affine transform) of X = (x1, ..., x,).

Remark. In appropriate coordinates of U, we may always assume that A =
U x {1}.

Note one advantage of considering Gale transforms instead of linear transforms
with respect to U: Whereas the components of X lie in W*, those of X; lie ina
lower-dimensional vector space W(f]; moreover, since X +. . . +X, = 0,according

to 4.15 X, is completely determined by only v — 1 of its elements.

Example 2. In Example 1, replace the elements x3, x4 by % X3, % X4, respectively.
Then the linear transform obtained by the same calculation as in Example 1 is

3 Ly -3 -3
| _ | LD -1 -3
% L3(b3) 1 o]’
%4 L(b2) 0 1

FIGURE 8.
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and it is readily verified that %, + %, + X3 + x4 = 0 (see Figure 8).

Exercises

1.
a. LetV = U@ W where U = R%, W = R. Proceed, as in Example 1, to
find a linear transform of

(1 0]2 3 1
(x1x213x4x5)—(0 1}3 3 1)-

b. Find the analog to Example 2.

2. Use Examples 1 and 2 to illustrate the proof of Lemma 4.7.
3. Consider aregular octahedron X that lies in the hyperplane {x = (£, ..., &) |
§4 = 1) of R*.

a. Find a linear transform for the vertices of the octahedron.
b. Determine all faces of vert X,

4 LetX :.X1UX2 with{(lﬂX_z = @,andlet U = Ui ®U; where U) := lin X,,
U, := linX,. Then, X = X, U X,, and lin X,, lin X, are complementary
subspaces of lin X (possibly lin X; = {0} or lin X, = {0}).

5 Matrix representation of transforms

Examples 1 and 2 in the preceding section can be generalized so as to provide a
method of calculating transforms by the use of matrices.

Let.U = linX = R" where X = (x1,....xy), and let e, . .., e, be the
canonical basis of R". Up to renumbering, we may assume that X| = €140, Xy =

e,. Then, writing the elements of U as columns and denoting the transposed terms
of a matrix (-) by (-)’,

X4 = (xn‘H.lr ey xn+l.ll)l
x, = (x d
[t u.ls---.xu,n)-
In short, we can express x;, . . . , x, as coordinate columns

X = (x ceeXy) = (En ,xn-H "'-xu)-

Weset V := R” @ RY™" and define a basis (of column vectors) by
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Now,
L] = (E,, | 0)

satisfies L1(b;) = x;,j = 1,..., v. Furthermore, for W = 0 x R*™", we choose

o
Lz = Eu_,,

Then, multiplying from the left with L,, L,, we obtain an exact sequence

0 > W-—>V—>U—0.
Lz L|

5.1 Theorem. Let X = (x1,...,xX,) be a finite sequence in R" such that
X1, ..., Xy is the canonical basis. Then, a linear transform is obtained by the
rows of the matrix

- il (_xn-H“‘_XU)
X = = —};
= Eyp
Xy
the columns of X form a basis of L(X).

PrOOF. For the row vectors b} defined by

bT En —Xpgl T Xy
br 0 l Eyn
we calculate b} - b;. Infact,fori =1,...,nand j > n,
(*1)
X jn
0 _ —0
b: b,:(O 010"'0_xn+|.1"'-xui) . =X = X = U
l -
\ o

Thus, the columns of X lie in £(X); they are obviously linearly independent and,

thus, comprise a basis for L(X).Fori =n+1,...,vorforj < n, b} -b; = §;
is trivially true. Hence, {b}, ..., b} is the dual basis for {#, ..., b,}, and
b’; bT (—xn+l T xu) x.l
L} : = : =l — | = :
: ) -* Eu—n <
b; b} X,

e P
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Occasionally (for example, in the proof of the next theorem), it is useful to

have the canonical basis vectors €1, ..., €, as part of the linear transform. This is
achieved as follows:

5.2 Theorem. Ler X = (x,, - .- » X,) be given such that x,, .
independent in R", and let a;, . .

of

.+, X, are linearly
-+ @y~ be any basis of £(X). Then, the rows &;

X1
(ar---a,_p) =

Xy
Jorm a linear transform of X.

PRroOF. Since £(X) and X do not change when we apply an automorphism to

R", we may assume that x,, . .., x, is the canonical basis of R". By 5.1, we may
assume that the columns of

)‘(:(—xn+l"'—xu)
Ey_n

form a basis of £L(X). Now, we consider the matrix (a; - - - a,_,) whose columns
are also a basis of £(X). We write

D
('50) =(a--- av—n)v

where D is a (v — n) x (v — n)-matrix, and we assert that D has rank v — n. For
otherwise, we could find a nonzero vectora ¢ L(X) whose last v — n coordinates
are zero Then a represents a nontrivial vanishing linear combination of X1, ..o, Xn,
contrary to the assumption that x;, . . ., x, are linearly independent.

Therefore we can write, with Dy 1= DyD-!,

(%) - (EIU)_],.)D'

Since the columns of (2 ) also represent linear dependencies and, thus, form a
basis of £(X), D, equals the upper part of X:

D] = (—x,,+1 s — IU).

Therefore, by Lemma 4.6, the rows of (ay--.a,_,) form a linear transform
of X. a

We now come to the analogous properties for Gale transforms. Let X =
(x1, ..., x,;) be a finite sequence generating U and choose H and £/ accord-
ing to Definition 4.16. We, then, introduce coordinates in {J so that H =Ux{l1).
Thus, X; = (X1, ..., &,), where = 7). This way, every affine dependency
a € Ly(X) is alinear dependency in Ly(Xp).
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5.3 Theorem. Ler X = (xi,...,x,) be a finite sequence in U, where
X1s ..., Xny are affinely independent; let a,, ..., a,_n_y € Ly(X) be affine
dependencies that generate LyX i1)- Then, the rows of (a1 -+ -a,_,_1) form a
Gale transform X v ofX.

PROOF. Since %y, ..., &,41 are linearly independent, Theorem 5.2 yields that

X is a linear transform of X ;. )
Now we tumn to the most important case, namely, that of a finite sequence given

by the vertex set of a polytope P,

3) X =vert P.

We wish to characterize vert P by properties of Gale transforms of X. First, we

consider two examples:

Example 1. We consider a triangular prism P in R® and wish to find 2 Gale
transform of X := vert P (see Figure 9). Since v = 6 and n = 3, the elements of
a Gale transform lie in a two-dimensional space. By Theorem 5.3, it is sufficient
to find two independent affine dependencies of x4, . . . , xe. Since X4 — X1, X5 — X2,
and x¢ — x3 coincide,

-1 101 -1 0
@ar={_1011 o -1)
By Theorem 5.3, the rows of (a;a4;) provide a Gale transform.,

Example 2. In the case of a pyramid in R® with rectangular basis, we find,
analogously to the first example, a single affine dependency

(1 =1 -1 1 o).

The Gale transform, thus obtained, lies in R'. Two pairs of its points coincide.

Xg

X5 id

X2
X1 X1 Xg

FGURE 9,

b Pitw va e

Tt ~
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5.4 Theorem. A finite sequence X in U = aff X consists of all points of the

vertex set of a polytope P in U if and only ifone (and, thus, every) Gale transform

X ¢ of X satisfies the following condition:

(4) For every hyperplane H in lin X ¢ Which contains 0, each of the associated
half-spaces H* and H™ includes at least two points of X, in its interior.

PrROOF. Inappropriate coordinates for {7 , we may identify U with U x (1} ¢ 0.
First, suppose that X comes from a polytope. Then, each element X of Xpisa
face. By Theorem 4.14, X, \ {%;} satisfies

5 0 € relint pos(X;, \ {Z.}).

Let H be ahyperplane inlin X;, with0 € H.Letk*, k~ be the number of elements
Ziinint H*, int H~, respectively. If k* = k= = 0, H = lin X so that A is not
ahyperplane. k* < landk~ > Qork~ < 1andk+ > 0 imply a contradiction
to (5). So, (4) follows,

Conversely, if (4) holds, then, (5) readily follows (since, otherwise, 0 would lie
on the boundary of o := pos(X & VXD, so that, fora supporting hyperplane H of
o with0 € Hando C H*, the half-space H~ would not contain two of the xi's
in its interior). Therefore, by Theorem 4.14, x; € vert P fori = I, ..., v a

5.5 Theorem. A sequence X = (x1,

cv oy Xy) in R" is the vertex set of a k-fold
pyramid with apexes x,, . . .

+ Xk, if and only if, for a Gale transform X o of X,

1=--'=4\:fk=0.

1

PROOF. A vertex x; of a pyramid is an apex if and only if it is not affinely
dependent on the other vertices. This is equivalent to the fact that, in every affine
dependency of X, the ith coefficient is zero, Goingoverto R” x{1} C R" x R =:
U, it just means the ith row in

X("/ == (al tr 'av—n—-l)s

is the zero vector. _ O
Example 3. The vertex setX = (xi,...,x,4) of an n-simplex in R” is charac-
lerized by ¥ = - - . = Xy = 0 for a Gale transform X of X. This also follows

directly from dim lin Xp=n+1-—n—1=0byLemma4.5.

Also, in the above Example 2 of a pyramid, it is seen that §5 =0.

The following lemma, which we shall need in V, Theorem 4.8 comments fur-
ther on the relation between linear and Gale transforms, the latter being a linear
transform with respect to a (dim U + 1)-dimensional vector space 0.

5.6 Lemma. If X = (x,,..., %) is a linear transform of the sequence X =
(xX1,...,x) in U and if b =X+ oo+ X, £ O, then, we obtain a Gale

transform of X by projecting X in direction b onto a one-codimensional linear
subspace of lin X which does not contain b.
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PrOOF. Up to a bijective linear transformation of £(X), we may assume that

(1, ..., 1) is one of the basis vectors ay, .. ., a._, introduced in Theorem 5.2,
say @y—, = (1,...,1)". So, we can write X; = (x/,1),i = 1,..., v, and
b = (x] + -+ + x/, v). Furthermore, we may assume, up to a bijective linear
transformation of lin X which leaves lin{(x, 1), ..., (x;, 1)} invariant, that b =
0, v).

Since ay, ..., a,—,-1 are linearly independent they provide a basis of £({X)
(relative to [}). Hence, X' := (x|, ..., x]) is a linear transform of X. Since
x; + -+ x, = 0, X’ is a Gale transform of X, ]
Exercises

[ony

Find a Gale transform of a bipyramid over a regular pentagon.

2. Find a Gale transform of a four-dimensional crosspolytope.

3. Let X be an arbitrary finite set. Describe how a Gale transform X is obtained
from a Gale transform of vert(conv X).

4. Let X consist of different points, and let X be centrally symmetric. Then,

we cannot always find a Gale transform which is also centrally symmetric.

(Consider, for example, a regular octahedron).

6 Classification of polytopes

Polytopes are called combinatorially isomorphic if their boundary complexes are
isomorphic. There is no hope of classifying all polytopes under combinatorial
isomorphism. However, partial classifications are possible. Gale transforms are
especially helpful if the restriction is made by assuming “small” numbers of
vertices.

6.1 Definition. Two sequences of points X = (%, ..., %), X = (xp, ..., %)
are called isomorphic if they have isomorphic coface complexes (see Definitions
4.12 and 4.13). Every sequence isomorphic to a Gale transform X of X is called
a Gale diagram of X.

By 4.14, X and X’ are isomorphic if and only if there exists a bijection between
their families of components such that, for each subsequence Z of X and the
corresponding subsequence Z’ of X',

0 € relintpos Z  ifandonlyif O € relintpos Z'.

Gale diagrams are more general than Gale transforms. Any Gale transform is a
Gale diagram, but not conversely. For example, the condition of Lemma 4.15 will,
in general, be violated if we proceed from a Gale transform to a Gale diagram (for
nontrivial examples, sec Lemma 6.3).

- —

P
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From the definitions and Theorem 4,14 we have the following two lemmas:

6.2 Lemma. Two n-polytopes P, P' are combinatorially equivalent if and only if
there exist isomorphic Gale diagrams of X := vert P, X' := vert P'.

6.3 Lemma. Let X = (&1, ..., x,) be a Gale transform, and let B; > 0,i =
L,...,v.Then, X and X' := (B1%1, ..., BuX,) are isomorphic Gale diagrams.

Now, we prove a first classification theorem {[«] denotes the integer part of u,
that is, the largest integer < u).

6.4 Theorem. There are precisely [ % n%] combinatorial types of n-polytopes with
n + 2 vertices.

PROOF. Let P be an n-polytope, and let X = vert P have n + 2 elements, We
may assume that P C R" x{1} C U := R"*'. Then, every Gale transform X lies
in a one-dimensional space. By Lemma 6.3, we can replace X by a Gale diagram
whose components are all either —1, O or 1. By condition (4) in Theorem 5.4, the
classification problem reduces to finding all partitions of a set of » + 2 elements
into three subsets M_;, My, M, such that M_, and M, each have at least two
elements.

Let the numbers of elements of M_,, Mg, Mibe 1 +r >2,t>20,14+5 > 2,
respectively. For reasons of symmetry, we may assume N

r <s.

Since r + ¢ + s = n, there are the following possibilities:

r ¢ §
] 0 n—1
2 0 n—2
[n/2) O n— tn/2]
1 1 n—2
(=102 1 |n 1-(m=1y2
i n — 2 1

The total number of possibilities is

n ft—l n—(n-3) n—(n—2)
1[5 p [ 2 [ 2],

Bly gistinguishing the cases n = 2k and n = 2k + 1, we find this sum to be
[zn°) O
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Thus, for an explicit classification of such polytopes, it suffices to provide [ %]
nonequivalent polytopes; that is easy for small n:

Examplel. n = 2: [ﬁnzl = 1. Every convex quadrangle is a representative.

Example 2. n = 3: Then, [4n*] = 2. Two nonisomorphic 3-polytopes with
five vertices are represented below. Figure 10a shows a bipyramid over a triangle,
Figure 10b a quadrangular pyramid. The two possible triples (r + 1,¢, s + 1) are
(2,0, 3) and (2, 1, 2); by Theorem 5.5, the second one belongs to Figure 10b.

Example 3. n = 4 [%nz] = 4, Figure 11 illustrates the Gale diagrams in the
proof of Theorem 6.4 and central projections of the respective polytopes into a facet
F. Although we cannot visualize the polytope itself, we can visualize its projection
into F. We “look through a three-dimensional window into the four-dimensional
polytope” (more about this in III, 4).

Type (a) represents a double simplex. The three-dimensional “window” is
F := conv{x), Xz, x3, X4}; the base of the bipyramid, projected into F, is
convixs, x3, X4, X5}

Type (b) represents the type of the cyclic polytope C(6,4). Of course, a polytope
combinatorially equivalent to a cyclic polytope need not be cyclic.

Types (c) and (d) are illustrated by projecting the pyramid into the basis of the
pyramid. The possible triples are indicated in Figure 11; the values of ¢ again
follow immediately from Theorem 5.5.

For n = 3, one of the types in Theorem 6.4 is simplicial; for n = 4, two
of them are. What is the general law behind these examples? In order to find an
answer, we first characterize simplicial polytopes by a property of the associated
Gale transforms.

6.5 Theorem. An n-dimensional polytope P = conv{xy, ..., X} is simplicial if
and only if, for a Gale diagram X of X = (vert P), the following condition holds:
(1) For any hyperplane H inlin X, with0 € H,0 ¢ relint conv(X N H).

PROOF. Suppose 0 € relint conv (X N H) for some hyperplane H. Since
dim P = n and P lies in a hyperplane of U which does not contain 0, we have
dimU =rank X =n+1,s0,rank X = v —rank X =v—n— 1 (Lemma 4.5).

FIGURE 10a,b.

— i —
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2 1 3

FIGURE 1la,b,c,d. (a) Double sim i
,0,¢,d. plex. (b) Cycli ] i
double simplex. (d) 2-Fold pyramid. Yete pelytope C(6, 9. (¢) Pyramid over a

2 0 4 3 0 3

—————

2 2 2

——

Then, by Carathéodor'y’s theorem (I, Theorem 2.3), for & = rank(H N X) <
; —n - 2, there_ existk +1 < v—-—n-1 affinely independent clement_s
{3, “oes Xk e_ X N H such that 0 € relint conv {x1, ..., Xx+1}. Therefore
X, ..., Xk41]) is a coface of X, and the corresponding (proper) face has at leas;

v—(v—n—1)=n+ 1 vertices and cannot be a simplex.

The converse is also true. a

6.6 Theorem. Of the combinatorial
, 3 types of n-poly ; .
precisely [ 3] are simplicial. f n-polytopes with n + 2 vertices,

PROOF. We may assume that P C R” x{1} C U = R"": for X = vert P. we

(6)bstain ran].( X. = 1 '.I‘hl.xs, H = {0} is the only possible hyperplane, as in Theorem
-3. So P is simplicial if and only if in the table in the proof of 6.4,t = 0 O

It i3s alsq possible to calculate the exact number of types of n-polytopes with
:t + hvemces; %he progf needs, however, a considerable amount of calculation
see the Appendix of this section)., We restrict ourselves to 3-polytopes.

6.7 Theorem. There exist precisely seven types of 3-polytopes with six vertices.

2l
é ROOF. By Lemr.na 6.3 Wwe Can assume that a Gale diagram of X for X = vert P
otf)rglslts ;nly of points on a circle with center 0 and possibly 0. From the definition
ale diagrams and by Lemma 6.2, we can move a i X i
. ! 2, ny point of X on the circl
without changing the type of P, as long as we observe the following rule: )

(2) Never move into or be int di i i
. yond a point diametrically opposite to another point of

So we can arrange all nonzero eleme X i
t ¢ i i
of avegular kosom s o 13 nts of X and their negatives to be vertices
We apply a further rule which does not change the type of P:
(3) If you can move a point of X on the circle into another one witho

2 thon doon ut violating
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Rules (2) and (3) lead 10 standard
polytopes.

Checking through all possib

the list of different types of 3

circle around a diagram poj

diagrams which represent different types of

ilities and applying Theorems 5.4 and 5 .3, we obtain
-polytopes with six vertices (in Figure 12). (By a little
nt, we indicate two coinciding points of X). i

Exercises

1. Determine all types of simplicial 4-polytopes with seven vertices.

2, Let X = iz,.f;; = xg, X5 = X6, X7 = Xg be the vertices of a 3-simplex T,
0 € int T. Describe a 3-polytope P with X = vert p — {xi,

.-+, Xg} which
has X = {x, ... » X3} as a Gale transform,
3. If each facet of an n-polytope P has v — 2 vertices (v the number of vertices
of P), then,

v < 2n.

4. Let P be an n-polytope, let x ¢ P, and let X be a Gale transform of X =
{x}Uvert P.Let H 5 0 be the hyperplane in lin X with normal vector %, and
let 7z be the orthogonal projection onto . Then, n (X \ {x}) is aGale transform
of vert P,
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Polyhedral spheres

1. Cell complexes

In the preceding chapter, we dealt with boundary complexes of convex polytopes.
They consist of cell decompositions of topological spheres, the cells again being
convex polytopes. If, however, any cell decomposition of a topological sphere
is given, there need not exist a convex polytope with isomorphic (in the sense
of inclusion of cells) boundary complex. We shall present counter-examples in
section 4 below. In fact, one of the major unsolved problems in convex polytope
theory is to find necessary and sufficient conditions for a cell-composed sphere to
be isomorphic to the boundary complex of a polytope (Steinitz problem).

In this chapter, we will introduce the basic concepts for the topology-oriented
partof polytope theory, including Euler and Dehn-Sommerville equations. We need
“polyhedral” cells and cell complexes, rather than the general notion of cells and
cell complexes. For that reason, we restrict our considerations to the explicit case
of Definition 1.1, despite the slight inconvenience that, right from the beginning,
we have to fix all (proper and improper) faces of cells. In cell complexes, @ is
considered an (improper) face of a polytope, but not of a cone.

1.1 Definition. Let F be a k-dimensional polytope or a k-dimensional cone, {F; |
i € I} the set of all its proper and improper faces, and ¢ : ¥ —» ¢(F) CR"a
homeomorphism. Then,

F = (p(?:‘) is called a k-cell in R™ with faces (p(?':,-).

The cell F is called a

straight cell if @ = idy,

3 simplex cell, if F is a simplex or a simplex cone,

¢ sphericalcell, if F (withits faces) is the intersection of the unit sphere and a cone.
} Cones are always chosen to be straight.
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Remark. A k-cell F comes from a polytope (as opposed to a cone) if and only if

k=1 and F is compact,
k=0 and @ is a face of F,
k=—1.

Remark. If {0} is a cell, it must be said if it is on account of a cone or a polytope.
In the former case, it has no proper faces. In the latter case, @ is a face of {0}.

1.2 Definition. A finite set C of cells in a Euclidean space is called a cell complex
if the following two conditions are satisfied:

(a) If F € C and Fp is a face of F, then Fy € C.

(b) If F, F' € C.then F N F’ is a common face of F and F’.

If all cells are simplex cells, we call C a simplicial complex. A cell complex
consisting of spherical cells is said to be a spherical complex.

Remarks.

(1) Since @ is not a cone, it follows from (a) and (b) that either all or no cells of
the cell complex come from cones.

(2) It should be noted that it is not sufficient to replace (b) in Definition 1.2 by
“F N F' e C".1f C consists of two triangles T, T’ in R? with their sides and
if T N T is a 1-side of T properly contained in a 1-sideof T, “F N F' € C”
is always satisfied; C is, however, not a cell complex.

Clearly,

1.3 Lemma. The boundary complex B(P) of a polytope P (including O bu:
excluding P) is a cell complex. It is a simplicial complex if and only if P is
simplicial.

1.4 Lemma. The fan E(P) of a polytope P (see 1, 4} is a cell complex.
As in the special case of boundary complexes B(P), we define the following:

1.5 Definition. Two cell complexes C, C' (whose cells are not necessarily of
the same type) are said to be isomorphic, C = C’, if there exists a“bijective,
inclusion-preserving map between them.

1.6 Lemma. The fan T(P) of an n-dimensional polytope P is isomorphic to
the boundary complex B(P*) of a polar polytope P* of P (where {0} € (P)
corresponds to @ € B(P*)).

ProOF. Ifvis a vertex of P, then, by [, Theorem 4.13, the normal cone N (v) is
an n-dimensional cone of Z(P), and N (v) N H, is the polar facet v* of v (compare

= o AT
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1I, Theorem 2.1(a)). We obtain an inclusion preserving bijection of vert P onto the
setof facets of P* which readily carries overto abijectionof Z(P)and B(P*). ©

Generalizing X (P), we define the following:

1.7 Definition. A cell complex T consisting of cones in R” with apex 0 is called
a fan. The fan is called polyhedral, if all its cells are polyhedral, simplicaial, if
each of its cones is a simplex cone, that is, the positive hull of linearly independent
vectors. We say the fan is complete if its cones cover R”. We denote the set of all
i-dimensional cones of T by £

1.8 Lemma. Let a cell complex C be given which is a fan, and let S be the unit
sphere with center 0. Then,

F— FNS

Jor all cones F € C induces an isomorphism of C onto a spherical cell complex.

1.9 Definition. IfC is a cell complex, then, the point set [C| := (. F is called
the support of C or the polyhedron that underlies C. If |C| is homeomorphic (that
is, can be mapped bijectively, bicontinuously) to a k-sphere we call C a polyhedral
k-sphere or shortly a polyhedral sphere.

Example 1. The boundary complex B(P) of an n-dimensional polytope is a
polyhedral (» — 1)-sphere.

Example 2. The intersection of a complete fan with the unit sphere is a polyhedral
sphere.

1.10 Definition. A subset of a cell complex C is called a subcomplex of C if it is
again a cell complex.

1.11 Definition. Let C be a cell complex, F € C.

sSt(F,C) ={F' eC| FcCF} is called the star of F in C.

SUF.C) 1= {F" e C | F’ C F' e st(F,C)} is said to be the closed
star of F inC.

{F'est(F,C) | FFNF ={0}} ifC consists of cones,

{Flest(F,C) | FFNF =@} otherwise is called the
link of FinC.

link(F.C) :

Remarks.

(1) In general, st(F, C) is not a subcomplex of C, st(F, C) and link(F, C) are
subcomplexes of C.

(2) From the second (three-dimensional) example in Figure 1, it can be seen that,
in general, link (F, C) is properly contained in st(F, C) \ st(F, C).



68 IIT Polyhedral spheres

link(F,C) link(F,C)
/

FIGURE 1.

Now, we will introduce a kind of multiplication for certain cell complexes C and
C'inR". Tothatend, let F € Cand F’ € C’ be cells:

1.12 Definition. Assume that F, F’ are cones with apex 0, so that (lin F) N
(lin F') = {0}. Then, we call

F - F' :=pos(F U F"
the join of F and F’.

There is an analogous construction of C and ¢’ for polytopes:

1.13 Definition. Let F, F” be polytopes. If

F.F := conv(F U )

isa(dim F + dimj’ + 1)-polytope with F and F' as faces, then, we call F - F'
the join of F and F’. More generally, if there exists a homeomorphism

v FF—eF . Fycw,
then, for F := @(F) and F’ := @(F"), we call
F.F :=oF . F) .
the join of F and F’, By convention, @ - F’ = F . F.@=F,andd-9 = 0.

Example 3. Each n-simplex T is the join F . F’ of two of its faces F , F’ such
that vert T = (vert F) U (vert F’) and (vert F) N (vert F') = @.

For the construction of the join of the cell complexes C and C' in R”, we need
an extra hypothesis (compare the remark after Lemma 1.15).

e S ———
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1.14 Definition. For F ¢ C, assume that F - F' is defined for every F' € C’ and
that, forevery F' # F” € (', relint(F - F') N relint(F - F") = @. Then, we call
F.C:={F - F|F eC)
the join of F and C’.

If F-C’ exists foreach F of acell complex C and ifrelint(F- F')Nrelint(G-G’) =
@ for any two different F, G € C and any two different £/, G’ € (', then, we call

C-C':={F-F'|FEC,F'EC'}
the join of C and C'.

L.15Lemma. The joinC - C' of C and C' is a cell complex. It contains C and C'.

PROOF. For polytopes, F-@ =@-F = FandC c C-C’aswellasC’ c C-C".
The defining properties 12 of a cell complex are readily verified. For cones, we
proceed analogously. O

Remark. In the definition of F . C' it is not sufficient to assume that F - F” is
defined for all ' € C'. For example, let C' := B(P) for a 2-polytope P in R?,
and F a point in R> \ P. Then, possibly, F - F’ is defined for all F* € B(P), but
some of them overlap in (relative) interior points.

Example 4. Let P be a two-dimensional polytope in R?, and let [ p, p']be aline
segment such that relint P 1 relint[p, p’] is a point. Then B(P) - { P, p, 0B} is
defined and is the boundary complex of a bipyramid.
Example 5. Let v be a vertex of a simplicial n-polytope P. Then,

{v, 3} - link(v, B(P)) = st(v, B(P)).
Example 6. Let C, C' be a regular r-gon and a regular s-gon, r, s > 3 in the &,

§2-plane and the &3, £4-plane of R*, respectively, both with centroid {=barycenter)
0. Then, C - C’ is defined and is a polyhedral 3-sphere with r - s 3-cells.

1.16 Lemma. Let F, F’ be cones in R” such that F - F' is defined.
(@) F-F' = F + F’ (vector sum).

(b) F - F'isacone with apex 0.

(€) If S is the unit sphere of R", then,

(FNS) - (FFNS)=(F-FHns
Jor the spherical cells FN S, F' N §.
PROOF. (a)Forx € F - F’, we may set
=AMy F e+ Myt Mg o+ A Ym

where yi.....% € F, yi4ts....¥m € F, and Alyo...ky > 0. Then, for
y=ayt o+t My ¥ = MaYisr + -+ Anym, we have x = y + y'.
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Hence, F - F' ¢ F + F'. The inclusion F + F’ C F - F' is trivially true, so (a)
follows.

(b) By definition, F - F’ isacone. Suppose {0} is notan apex of F - F’. Then, there
exists x # Osuchthatx € F-F'and —x € F-F’.By(a), wehavex = y+y and
—x =z+z7 wherey,z € Fandy', 2 € FF.NowO0=x—-x=y+z+y +2,
sothaty +z = —(y' + 2’). By the assumption (lin F) N (lin F’) = {0}, we obtain
y+z=0=y +7, and, hence,z = —y, 27 = —y'. Since 0 is an apex of F and
of F',wefind z = y = 7’ = y' = 0 and, therefore, x = 0, a contradiction.

(c) Since, by (a) and (b), F - F' is a cone with apex 0, we can find a hyperplane H
which does not pass through 0 and intersects £ - F' inapolytope (F - FYNH # @.
By central projection from 0, we see that (F - Fy N H and (F - F) N S are
homeomorphic. It is readily seen that (F - F)NH = (FN H) - (F' N H), s0
that (c) follows. d

Exercises

1. If P is a k-fold bipyramid over R (see II, 3), there exists a k-cube Q such that
B(P) = B(R) - B(Q).

2. Let v be a vertex of asimplicial polytope P. Then link (v, B(P)) is a polyhedral
sphere isomorphicto Bo(Q) = B(Q)\ 3 forsome (n — 1)-dimensional polytope
0.

3. Let C be a 4-cube. Then B(C) contains a subcomplex Cqy such that |Gy is
homeomorphic to an ordinary torus (“tube’).

4. Let v be a vertex of a polytope P. Define £ := {pos(F — v) | F € B(P)\
st(v, B(P)) a proper face of P}. Then, T is a fan, and T \ {0} = [B(P) \
st(v, B(P))].

2. Stellar operations

The operations introduced now are of fundamental importance in the so-called
piecewise linear (p.l.) topology. Although the present section can be considered
part of that theory, our aim is an application of a special type of these operations
in algebraic geometry (“blowing up” and “blowing down”, Chapter V{).

2.1 Definition. Let(C be acell complex, F € C, F # @. Forapoint p € relint F,
we call the transition
C — (C\SUF,O) U p- (KF,C)\ si(F,C)) =: s(p: F)C

a stellar subdivision (or elementary subdivision ) of C in direction p. The inverse
operation s~! (p; F) defined by s™' (p; F)(s(p; F)C) = C is said to be an inversc
stellar (or elementary) subdivisior:.
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FIGURE 2,

Put more simply, we throw out the star of a face F and join a relative interior
point of F to the boundary of the star. The result is called a stellar subdivision.

Example 1. If F is a point p, then, s(p; {p})C and C have the same O-cells,
though, in general, s(p; {p})C # C.

Example 2. If F is a cell of maximal dimension in C, then, st(F, C) = {F} and
s(p; F)C splits only F and leaves all other cells of C unchanged (Figure 2).

Example 3. Let dim F = 1 in a cell complex C whose cells have maximal
dimension 2. Figures 3a, b, c illustrate the cases in which the number of 2-cells
that contain the 1-cell F is 1, 2, or 3, respectively. In polyhedral 2-spheres, of
course, only case (b) occurs.

A point p € |C| determines F' € C by the condition “p € relint F”. In the
following example, p is chosen so that it determines different faces in different
cell decompositions of a set.

Example 4. In Figure 4, the cell complex in the middle (six 3-simplices plus
faces) is obtained by stellar subdivision of the right one (three 3-simplices plus
faces) as well as of the left one (two 3-simplices plus faces).

NAEIRCEON A

FIGURE 3a,b,c.
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FIGURE 4.

The boundary complex of a polytope stellar subdivision can be described as
follows:

2.2 Theorem. Let P be a polytope and s(p; F)B(P) a stellar subdivision of its
boundary complex. Then, there exists a polytope P’ such that

s(p; F)B(P) = B(P").

PROOF. We may assume dim P = n. For dim F = n — 1, we obtain a P’ by
placing a sufficiently “flat” pyramid onto F. Equivalently, we choose some point
g € ((int H') \ P where Hj, ..., H, are the affine hulls of those facets of P
not equal toFandP CH ,j= 1 ..., r,and, then, set P’ := conv({g} U P).

Let0 < dim F < n — 1 and p € relint F. Furthermore, let F = P N Hp(u),
Hp(u)a supporting hyperplane of P with outer normal u. We consider an (n — 1)-
face F € st(F, B(P)), F = P N Hp(v), and aface Fy of F notin st(F, B(P)),
Fy, = P N Hp(w) (Figure 5). We choose some p € relint F.For0 < a < 1,
Fo = PN Hp(av + (1 — o)w) (we may assume {u, v} > 0). Ifg e p+Ryott
is sufficiently close to p, we find some e € (0, 1), such thatg € Hp(av + a—
a)w) =: H(q, Fo).

We can assume P C H, (1) N Hp (v) N Hp (w). Then, also, P C H~™ (q,mFo)
Now we consider the set of all (n — 2)-faces of P.let Fy Fé”, covs Fyl be
all (n — 2)-faces in st(F, B(P)) \ st(F B(P)) We can choose the same g for
all these faces, so that P C H ™ (q, F "= ,s5.Let Hy, ..., H be the

Fo

FIGURE 5.

prosy L

e
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affine hulls of all facets of P that do not lie in st(¥, B(P)), where P C H_
J=1,...,r. Weset

(ﬂH )N (ﬂ H™(q, ).

i=1

Clearly, P’ = conv({g}U P). Furthermore, g - Fé” are facetsof P/, j = 1,
The assignment

p-Fé”r—»q-Fé” Jj=1L...,s

can readily be extended to an isomorphism
s(p; F)B(P) — B(P).

a

2.3 Definition. We say P’ is obtained from P by pulling up a point p of the
boundary of P.

A stellar subdivision of B(P) can also be characterized by a “cutting off”
operation dual to “pulling up”.

2.4 Theorem. Let P* be the polar polytope of P, and let F* be the polar face
of a proper face F of P. If the hyperplane H strictly separates vert F* from
(vert P*) \ (vert F*) and if F* C H™, then, for an arbitrary p € relint F,

B(P* N H™) =~ B(P™),
where P’ is defined according to Theorem 2.2,

PrOoF. We may assume n > 2. If p,, ..., p, are the vertices of F, then,
PYy ..., py are the facets of P* that intersect in F* € B(P*). The duals F(')* of
the (n — 2)-faces Fé'), defined as in the proof of Theorem 2.2, are line segments
emanating from vertices of F*. If, also, g is introduced, as in the proof of Theorem
2.2, the polar hyperplane H of g intersects each F_'’* in a point g; := (g - Fiy*,
i =1,...,5 So,convig,...,q} = q* in B(P™) is a facet whose boundary
complex consists of the polars G* of faces G € B(P’) that contain g. Since the
other faces of P* N H~ and P"™ are in a natural bijective and inclusion-preserving
correspondence, the theorem follows. O

The following combination of stellar subdivisions can, on the one hand, be
used to turn any cell complex into a simplicial one, and, on the other, be used to
decompose a cell complex into cells of arbitrarily small diameters (as is needed in
p.l. topology).

25 Deﬁnit_ion. Let C be a cell complex whose cells of dimension i are denoted
Fi,.... F}’_,i =0, ..., k (k the maximal dimension of a cell). For each FJ'?, we
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FIGURE 6.

choose apoint p’; € relint F}, forexample, the barycenter. We set s, 1= s(p's F)).
Then,

ﬁ(c)::S}lO...osl]o...os‘}‘o.__osf(c)

is called a barycentric subdivision of C.

It should be noted that sj- does not affect any cell F # F J‘ of dimension < i, $0
that barycentric subdivisions are well-defined.

Example 5. Figure 6 illustrates 8{3(C)), C acube, for the “visible” part of B(C).

Example 6, Figure 7 shows (C) for a cell complex consisting of three triangles,
six edges, and four vertices.

Finally, we will mention the combinatorial aspect of a problem which will
occupy us in Chapter V, 6, for special stellar subdivisions:

Problem. Given two polyhedral n-spheres C, C’ of the same dimension s, do
there exist stellar subdivision sy, ..., 55, 51, ..., s(’l such that from C, C’ the same
combinatorial sphere C” is obtained as indicated in the following diagram?

CereiimC e C
5 55 sy 5

The answer is yes for n = 2, and it seems also to be yes forn > 2 (c.f. Appendix
111, 2.).

A-A- A

FIGURE 7.
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Besides the barycentric subdivision, there is a decomposition of the boundary

complex B(P) of a polytope P into a simplicial complex in which no new vertices
occur:

2.6 Theorem. Let C be a cell complex and let Z,, ..., Z, be the 1-cells (in
case C is a complex of cones) or O-cells otherwise (in some order). For v; €
relint Z; ({v;} = Z; in case of O-cells), i = 1,...,r, we set Co := C and
G = s(ui; Z)Ci_1, i = 1,...,r. Then, C, is a simplicial complex which has
the same 1-cells (in case of a complex of cones) or 0-cells (in case of a compact
complex) as C has. Furthermore, |C,| = |C|.

PROOF. By definition, s(v;; Z;) does not add a 1-cell (in case of a cone complex)
or a O-cell (otherwise) to C;_y,i = 1,...,r. Suppose F € C, is not a simplex
cone or a simplex. Then, there exist Z; C F, Z, C F such that conv(Z iU Zy)
is not a cell of C,. But s(v;; Z;)C;_, contains conv(Z; U Z;) (by definition), a
contradiction. a

Now, we will turn to the problem of completing a noncomplete fan X (cor-
responding to problems of compactification in algebraic geometry). First, we
introduce the following notion.

2.7 Definition. LetC;, C; be cell complexes of polytopes or cones in R” (possibly
C) consists of polytopes and C, of cones). Then, we call GneG, = {oyNoy |
o1 € €, o3 € Gy} the intersection complex of C; and C.

Clearly, C; N C; is a cell complex.
If ¢y, Ci are complete fans, C; N C, is again a complete fan,

However, if C; consists of polytopes, so does C; M C,, no matter if C, consists
of polytopes or cones.

2.8 Theorem. Every fan T can be extended 10 a complete fanZ' O =,

PROOF. Let S be the unit sphere. We shall prove a somewhat stronger version of
the theorem:
Given a noncomplete fan X in R” and an ¢ > 0, we can find a fan ©” and a
complete fan £’ such that the following five conditions are satisfied.
HDXcxczg.

(ii) £\ £”and T’ N =" consist of simplex cones.

(iiiy X"\ Z consists of k-fold joins (Definition 1.12) 7 - gV ... %), 7 € &, o
al-cone,i =1,...,k 1 <k < n— 1 and their faces containing at least
one cone g‘.

(iv) |Z]\ {0} C int|Z"].

(v) Ifn > 2and0” € £”\ , then, each point of 0" N § has distance less than
& from a cell of X.
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We proceed by induction on n. For n = 1, T is either {{0}} or {{0}, Rxo} or
{{0}, R<«o} and ' = £” = {{0}, R0, R<o).

For n = 2, the set S \ |X| consists of finitely many arcs (without end points).
If pq is such an arc, we choose two points p’, ¢’ on it with distances less than ¢/2
from p, g, respectively. Then pos{ p, p’} and pos{q, ¢’} are considered as elements
of £”, and pos{p’, ¢’} as an element of ’. We do the same for all arcs and split
them if they are greater than or equal to 7w. We consider ¥ as a subset of £, also,
X" as a subset of £’ and obtain fans satisfying (i) to (v).

Letn > 2,andletp := R>0a,a = ¢NS,beal-coneof X for whichst(g, X)is
not complete. (If £ = {{0}} we firstextend Z by a 1-cone). We consider the tangent
hyperplane H of S ata and the fan X, := {pos(c N H —a) | ¢ € st(p, X))} with
origin a. By the induction hypothesis, there exist fans £, £’ such that conditions
(i) to (v) hold. We construct from them an extension of X as follows.

If Roo(b — a) is a 1-cone of X \ X, we assume [|b — a|| < &, for some
bound ¢, < & which depends only on a. Let o := R»o(6®’ — a) € X7,
169 —all < €4, = 1,...,k and 1, € =, be given,dimt, =n —k — 1,
suchthat 7, - g{" - - - o® € [ \ I, isan (n — 1)-cone. To 1, there corresponds
a unique 7 € st(g, ) such that 7, = pos(t N H — a). We set 0¥ 1= R0 b,
i=1,...,k Then, 7 := 7 - 0" ... o™ is well-defined. If b* is not a rational
vector, we replace it by a rational vector close to 5%’ and denote the new vector
again by b). From (ii) and (iii) applied to £,, £/, I., we see that changing the
b slightly, provides an isomorphic change of £/ and X/ whereas £, remains
unchanged. If g, is chosen small enough, the cone 7 intersects |I| only in t.
Therefore, I together with T and the faces of T is again a fan (a4, 7).

Let7, -g ... 0% € T\ X, be another such (n — 1)-cone. We associate with
it an n-cone T analogously, and continue in this way until Z)\ X, is exhausted.
We obtain a fan X (a).

Now let a simplex (n — 1)-cone g{”---3{*" e I, \ T be given,
81 1= RyoB® — a), 16 —all < €4 i = 1,....n — 1. As in the case
of b we may assume % to be rational. We consider the simplex n-cone
% := pos{a, bV, ..., b~} which, for sufficiently small &,, intersects £ only

in g. Adding all such cones to Z(a) provides a cone X" (a).

If a 1-cone of £ different from g exists on the boundary of {£|, we proceed in
the same way as before with X replaced by £”(a). Continuing in this way, we end
up with a fan X which satisfies | Z| \ {0} C int | %]

The set '\ | Zg] is open relative to S, Its (topological) closure does not intersect
|Z|. We intend to cover § \ |Z| by “small” spherical simplices. For this purpose,
we introduce the following subdivision of S into spherical simplices.

Consider a cube C circumscribed to S, and apply barycentric subdivisons to
B(C) successively until all simplices have diameter less than &, for a given gp < €.
The positive hulls of these simplices intersect § in spherical simplices with di-
ameter less than &y, If ¢ is chosen small enough, we can cover § \ |Zg| by
spherical simplices which do not intersect X. Together with their faces, they
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provide a simplicial spherical complex C. From C we obtain a simplical fan
Lo :={posT | T € C}. It satisfies I1Zc]| 0 |Z] = {0} and 1Zc| U2 = R
The last problem to be solved is turning the overlapping part of ¥, gmd zy i-nto

a cell complex. Let By consist of all cones of X7 which do not intersect int0 |24
(the “boundary complex” of Iy).andlet B, := Byn Z¢. We decompose the congs
o of 3\ T as follows. If o ¢ By, replace B(o) (the boundary complex of o)
by Ble)n ¢ ¢ By. If o ¢ By, it intersects both 3 and By. If g := o N | By
wc; replace B(oy) by B(oo) N Z¢. Having achieved this change for al! cones o e
%y \ I, we obtain a new cell complex Z{ from £. Its cells, however, are not all
polyhedral cones but polyhedral cones with subdivided faces. In orde:r to obtain
only polyhedral cones, we choose apoint p, € relint o foreacho ¢ T\ (ZUBy)
put Qo := R>o p, and apply a stellar subdivision in the sense that gt(a Z”)oi;
replaced by the join of g, and the (subdivided) boundary complex of st(’a ]E")
Hfareby, we start with those o which have an (n — )-face oy in By and con;tinlue:
withdimo = n — 2, and so0 on. We end up with a fan which we denote by £

. Next we wish to decompose the remainder ¢’ \{Zj|ofeachcone o’ € 3 \22. o
into polyhedral cones. If the elements of C have been chosen with sufficient] Cs 101
diameters, the following condition holds: Yo

(*) Each n-cone of £, which int i !
0 ersects a given o’ € I, belongs e
for one and the same o ¢ B,. ‘ Bloste. %)

) tg\r::)ptz ::r?;;fmough 2y has been decomposed into X7 above, we continue using
A As ir'u the earlier part of the proof, we associate with st(e, £)) an (n — 1)-
filmenfslonal fan Z, in the tangent hyperplane H, of § at P = Og N S. By the
mdgcuon hypothesis, we can extend Z, to a complete fan ¢, Becausé oty (*)
E;) mdyces a cell decomposition of Hy N (o' \ int 1 Zg1) from’ which we obtair;
(by taking positive hulls) a cell decomposition of ¢’ \ int [E51 = o’ \int|&7]
into c.ells o}, ..., 0} for some k. This cell decomposition preserves the cells of é’
contained in o’ and is hence compatible with . ’
. However, if we have accomplished all these decompositions, they may not
induce the same decompositions of a common face r of two of the cells. Let
3(r, 1),‘ .-, Z(z, r) be different decompositions of  into cell complexes T.‘hen
we consider Z(z, 1) M- - -1 X(x, r) and decompose the n-cones, which co;nain r,
by stellar subdivisions, into polyhedral cones (as we have done when we decom-
p(l)sed P2 info Z7). Proceeding in this way for all cones o’ € £ which intersect
B, we obtain a decomposition of (IZcl\ 25U IBy| into a cell complex of
pol;thcdral cones X which contains B; as a subcomplex of polyhedral cones
Fl{nally, we apply stellar subdivisions as in C to all cells of T, U X which.are
not simplex cones and which do not intersect |Z]\ {0). These st(:allar sflbdivision
do not affect X. Thus, we obtain from Iy U I acell complex of cones L.’ ;
lenote by £ the subcomplex of all cones of ¥ which have at least a 1-cone ian):
ogether with their faces. Now X’ and £ are readily seen to satisfy (i) to (v). " O
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Remark. Although, from Theorem 2.8, an algorithm _can be deduced for com(;
pleting a fan it will, in general, not be the most efficient one. For n = 3 an
pos |[Z| = R?, completion without additional l-co.nes ca-n be found, which is not
true for higher dimensions (c.f. the Appendix to this section).

Exercises

at 8(C) is always simplicial.
; ISI?:::r;?e taﬁs(olzxtion of {he abr())ve problem for £ the boundary complex of a
3-simplex and X’ the boundary complex of an octahc.dfo'n. .
3. Given a 3-simplex, do there exist three stellar subdivisions such that, in the
resulting complex, each pair of vertices is joined by a 1-cell?
4. Dualize 8(C) according to Theorem 2.4, and apply to Examples 5 and 6.

3. The Euler and the Dehn-Sommerville equations

Generalizing the f-vector f(P) of a polytope P (II, Definition 1.13), we call, for
an arbitrary cell complex C,

f©O = (O, ..., fi.1(C))

the f-vector of C, where f;(C) denotes the number of j-cellsofC,j = 0,...,n—
1. . .

If f; = f;(P) are the numbers of j-faces of an n-polytope P, there is a basic
relationship between them, known, for n = 3, as Euler’s formula

¢)) Ho—H+ =12

This equation is, in fact, true for any polyhedral 2-sphere; its prqof is, howeyer.
quite difficult. We shall prove a generalization of (1) to .n-dlmensxonal Spherl.ctﬁ
complexes obtained as intersections of the unit sphere with complete fans, whic
(up to isomorphisms) includes the case of boundary complexes of polytopes.

3.1 Theorem (Euler-Poincaré’s theorem). Let the Spheric.al complex C be ob-
tained by intersecting the cones of a complete fan in R" with an (n —‘1)-sphere
§"=1 about 0. Then,

n—1
@ Y= HO =1+ =1
j=0

PROOF. We use inductiononn.Forn =1, C ?s a pair ofpoirllts and (-1)°-2 =
1 + 1 so that (2) holds. Let (2) be true for 52 msfead of S” . ’
It is readily seen that there exists an (n — 2)-‘d1m(.=,n51ona] linear subspace
of R” which intersects S”~! only in the relative interiors of several at least two-
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dimensional cells of C, called cells of the second kind. All other cells are not
intersected by U; we call them cells of the Sirst kind.

To the set of vertices (0-cells) of a spherical cell F of C, we assign its convex
hull F in R” (of possibly higher dimension than F if F is nota spherical simplex).

Then, pos F = pos F.¥f a is a point in a sufficiently small neighborhood of 0, the
assignment

F=8""Npos F > §"' N pos(F — a)

is an isomorphism of C and a spherical complex C’. We can choose C' such that
for any vertex x € C’ we have —x ¢ (. Keeping this in mind, we can choose U
such that the following conditions are satisfied for any hyperplane # > U and
any F € C,
(1) H 0 F is a spherical cell.
(i) Either H N F is empty or a vertex or we have dim(HN F) = —1 + dim F.
(iii)y H contains at most one vertex of C.
Let H, := lin({p}UU) be the hyperplane passing through the vertex pofC.On
a semi-circle « consisting of points represented by unit normals of the hyperplanes
H D U we obtain a linear ordering of the H,, say, H,, H;, . . ., Hayp 1. We
choose hyperplanes H,, H,, . . ., Haj, so as to make the unit normal of Hy; on
« lie properly between that of H,;_; and that of Hypr, i = 1,..., fo; take
Hyp 1y = Hy. (The left side of Figure 8 illustrates the H; for a spherical cell of
the first kind, where C has five vertices: the right side refers to a cell of the second
kind, C having seven vertices).
Let F/bea jfaceof C,j = 1,...,n — 1,andlet P, := (H. N F | F eC)
be a complex of spherical cells on an (n — 2)-sphere. We set

O(F!, P = {(1) if |P:;| Nrelint F/ = @,

otherwise,
We claim that
L i y _ | 1 if F/ is of the first kind,
© ,;:(_1) PP = [0 if F/ is of the second kind
(see Figure 8).

Proof: If H;, with i odd, intersects a face F/ of the first kind, the hyperplane
H;.) intersects relint 7/ unless H; N F/ is the “last” vertex, that is, a vertex of
F/ with maximal i, H; itself also intersects relint F/, except for the “first” and the
“last” vertex of F/. Therefore, in the alternating sum on the left side of (3), the
number of even i, for which we have ®(F/, P:) = 1, exceeds the number of odd

8 i with ®(F/, P;) = 1 by one. This proves the first part of (3).

'
s

|

If F/ is of the second kind, there is no “first” or “last” vertex of F/, and each
H; intersects, by definition, relint F/, Therefore, the second part of (3) follows.
Let g; denote the number of all j-faces of the second kind.



80 III Polyhedral spheres

FiGURE 8.

We sum up (3) for all j-faces with a fixed j, and obtain

2/ _
4 3 D DRFE,PY = FiC) — g5
J—faces i=1

Now, summing over j, we find

n-1 25 n—1

n=1
& 2D Y YN RELP) =E(—1)’f;(C)—X;(—1)fg,-.
J=1 j—faces i=1 j=1 =

Weset Gy := {F N U | F € C} and apply the theorem inductively to Co. So, we
obtain

n-1

n—1 ) ) 3 R

© Y (~1Vg =Y (1Y fiao) =14+ =1+
j=1 j=1

Looking further at the left side of (5), the main step is to change the order of

summation. We claim that

fo(P) —1 if j = landiodd,

D Z O(F,P) = fi-1(P;)  otherwise.

Jj—faces
Proof: If i is even, each (j — 1)-face of 7; is, by deﬁnitio_n of H;, the 1r1ter.secnon
of a j-cell F/ with H;. The same is true if i is odd and j = 1. For odd i, let pé
be the vertex for which H; = lin({p;} U U). It is not the mtt?rscctlon of H; an
relint F! of a 1-cell. All other vertices of P; are such intersections. Therefore, (7)
is true. _ . .
From (5), (6}, (7) by applying the induction hypothesis to P;, we obtain

n—1

® N Y ew P
=1

j—faces

A b, 038" 8 o st

PR el

PR

: C.k < n — 2, the quotient C/F is again co
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z’;;;(_l)jfj—l(pi) + 1 ifiisodd
"= £ (P

II

if # is even
1D 0= (-1 ifis odd,
=1~ (=" = -1 4 (=1)""' ifiiseven.
Now,
21 n—l ) .
@ DY Y oF )
i=1 j=l j—faces

= D DD =)+ Y1y =
i even f odd

From (5), (6), and (9) we conclude that

= —fo(C).

n—1
LEVHO -1 (1 = - {0,

=1

and, hence, we obtain (2).
In terms of the f-vector Euler’s theorem implies Theorem 3.2.

3.2 Theorem. The f-vectors of polyhedral (n — 1)-spheres, defined by complete
fans in R", lie in a hyperplane of R", called Euler’s hyperplane.

If the spherical complex is simplicial, there are more relationships for the f-
vectors. Before proving this, we introduce an analog to the quotient polytope P/F
(F aface of the polytope P; see II, 2) for fans and spherical complexes,

3.3 Definition. Let t be a cone of a fan Z, and let U be the orthocomplement of
the linear hull lin 7 of 7 in R”. The fan, obtained from st(z, £) by perpendicular
projection onto U/, is called the quotient fan L/t of Tto 1. H C := {o N §"! !
o € Z}and F := 7 N §"! is substituted for I, 7, respectively, we obtain

a spherical complex from ¥ /7 called the quotient complex C/F (on the sphere
S§r—2-dim F )

We note that, for dimF = 5n — | or st(F,C) =
empty. It is readily checked that £ /7 is well
r = dimt, then, T/7is (n — r)-dimensio

{F}, the complex C/F is
~defined. If £ is complete and we set
nal. Furthermore, we have

34 Lemma. LetC be the (n — 1)-dimensional spherical complex obtained from
a complete fan in R" according to Definition 3.3. For any k-dimensional cell F of

mplete, and, for the number }”,-(F ) of
i-dimensional cells of C thar contain F,

F(F) = fiacsC/F),  i=ko....n—1.
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3.5 Theorem (Dehn-Sommerville equations). Let C be the spherical complex
obtained from a complete simplicial fan in R" by intersecting its cones with st
Then,

n—1 ;
ED) E(—l)‘(;cill)ﬁ(m:(—l)"‘fk<c>, k=-l....n-1
i=k

Remark. Fork = —1, we obtain Euler’s theorem as a special case of the Dehn-
Sommerville equations. For k = n — 1, the result is trivial.

ProoF OF THEOREM 3.5. Letus fix ak-face F. By Lemma 3.4,
Ji(F) = fizm1(C/F).

Therefore,

k-2 i
D CYTHLE/F)
=—1

n—1 n—l
D RE) = D i €1F) =

ne
—k—1
i=k s

n—k-2
= () Y (=) /P = (D R
j==1

= (__l)n—l

by Euler’s equation. Summation over all k-faces of C yields

n—1
10 Y. Y EvEE = Y, DT =0 DT

k—faces F i=k k—faces F
Changing the order of summation on the left side of (10), we obtain

n—1

(11) Y-y Y FE) = CD)TAO.

i=k k—faces F

Since C is simplicial, any i-face of C contains (} ) k-faces. Therefore,

5 i + 1
Z j}(F)=(;(-:_l)ﬁ(C)-

k—faces F

So, we obtain the theorem from (11). 0

Example. Forn = 3andk < 1, the formulas (E}) read explicitly (fr := £;(C)):

(E3) —fa+ - A+ fa=fo,
(ED fo—2fi+3fr = fo
(ED) -H+3f=h.

As we remarked before, (Eil) is Euler’s equation (1). (Eg) and (Ef) provide the
same equation

3f2=2f1,
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which does not follow from Euler’s equation.

3.6 Definition. For f; := £,(C),i = —1, ..n =1, we set

k .
b = i (C) = Z(—l)k_i(n—l)f;_l, O<k<n
i=0 n— k - -
and call k = (ho, ..., h,) the h-vector of C.

3.7 Theorem. The Dehn-Sommerville equations are equivalent to the equations
hy = h,_4, 0<k<n.

PROOF. We define two functions of the real variable ¢:
FOy =3 ffs  H®:=q —t)"F(l;).
i=0 -t

Then, H(t) = 37, fiif'(1 — 1)~ isa polynomial in ¢ and can be written as

n
H{) =) het
k=0

with coefficients

4 .
h’A = E — k- n—1i A
¢ i:O( g ("—k)fl_l’

Hence,h, = by, k= 0,..., n.

If we calculate F(z — 1) and F(—1), we see that the Dehn-Som

. merville equations
are equivalent to

F(t = 1) = (=1)"F(-n), or
(10) H(it)=1"H¢™).

Eomgan’ng coefficients in (10) shows the equivalence of (E{_pand by = h,_,
=0,...,n. ,
O

In section 6 the A-vector will be given a geometric meaning in case C is the
boundary complex of a simple n-polytope.

Exercises

L. LetCy, Gy .be simplicial 2-spheres isomorphic to boundary complexes B(P,)
B(P,) of simplicial polytopes P;, Py, respectively. v

Suppose A, Al € Cyand AINAY = @,also A,, AL € Gand A NAL = @

for 2-cells A, Aj, Ay, A} By identifying (“gluing together”) of A, and A,,
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also A} and A,, and taking away the interior of A; = A;, A] = A/, we obtain
a simplicial complex C whose set is a torus-like surface.

a. Prove that
H©C) — AEOC) + f2(0) =0.

b. If we repeat the gluing together of disjoint triangles of C,, C; so as to obtain
closed surfaces with g “holes”, what is the analogous formula of (a)?

2. Find the corresponding equation to (a) in Exercise 1, for acell complex obtained
from two simplicial (n — 1)-spheres by gluing together two pairs of disjoint
(n — 1)-simplices.

" a. Show directly that, for any simplicial spherical complex C, the left side of
(2) does not change if a stellar subdivision of C is applied.
b. By stellar operations, prove the Euler- and the Dehn-Sommerville equations
for all simplicial spheres obtained from the boundary complex of an n-
simplex.

4. The hyperplanes in R” with equations (E}) intersect in an affine space of
dimension [ § n].

4. Schlegel diagrams, n-diagrams, and polytopality of
spheres

If a 3-polytope P is made of glass and, if we stand close enough to one of its facets
F, we “see” the boundary complex B(P) as centrally projected into ¥, Figure 9
illustrates the case of platonic solids (see I, 6).

Because of the symmetries which platonic solids possess, all such projections
for one P look alike. If we consider, however, a triangular prism, there are two
different types of “windows”, triangles and rectangles, and we obtain two types of
projections (Figure 10).

The higher-dimensional analog is of some use in the investigation of polyhedral
spheres. In particular, we can “visualize” a 4-polytope by “looking through™ one
of its three-dimensional faces.

N

FiGure 9. Tetrahedron, Cube, Octahedron, Dodecahedron, and Icosahedron.

-
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FiGure 10.

4.1 Definition. Let P := H N .--N H” bean n-polytope with facets F; :=
P ﬂ‘Hl,..., F,ri=PNH,andlet p e intHl+ Nint Hy N..-Nint H-. We
consider the cell complex C obtained from B(P) \ {F; 1} by central projection into

¥y with projection center p and call C U {F|} a Schiege! diagram of P,

Figure 11 shows Schlegel diagrams of a 4-simplex and a 4-cube.

A natural question arises. Given any cell decomposition C of an (n — 1)-polytope
F,is C U {F} always a Schlegel diagram or at least isomorphic to a Schlegel
diagram? To be more precise, we define the following:

4.2 Definition. Let C be a cell complex in R"~ such that |C| = Fisan (n — 1)-
polytope, Fy € C for each face Fy of F and F' N 3 F is a face of F for any

F’ € C.Then, C U {F}issaid to be an (n — 1)-diagram. F is called the base of
the (n — 1)-diagram.

So our question can be restated: Is any (n — 1)-diagram equal or isomorphic
to a Schlegel diagram and, hence, isomorphic to the boundary complex of an
n-polytope?

As can be seen from V, 4, Example 1, an (» — 1)-diagram need not be a Schiegel
diagram though it is isomorphic to a Schlegel diagram. In fact, one of the most
celebrated results of classical polytope theory is a theorem of E. Steinitz (1922)

<=
—

FIGURE 11.
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saying that any cell decomposition of a 2-sphere, in particular, any 2-diagram, is
isomorphic to a Schlegel diagram. _ .

When Briickner (1893) used 3-diagrams in the classification of 4-polytopes
with few vertices, he tacitly assumed that all 3-diagrams are isomorphic to Schlegel
diagrams. It was not until 1965 that B. Grilnbaum proved this to be fa}se. Eve ntuall,):,
it turned out that one of the 3-diagrams found by Briickner (the “Briickner sphere”,
see below) was not isomorphic to a Schlegel diagram.

4.3 Definition. A polyhedral (n — 1)-sphere is said to be polytopal if it is
isomorphic to the boundary complex of an n-polytope.

So, a general problem can be formulated which is far from being solved:

Steinitz problem. Find necessary and sufficient conditions for a polyhedral (n —
1)-sphere to be polytopal.

We present an example of a 3-diagram which is not isomorphic to a Schlegel
diagram. It is simpler than the original one by Griinbaum.

4.4 Definition. Let F := (1, 3, 5, 7] be a 3-simplex with vertices 1, 3, 5, 7, and
let points 2, 4,6 € int F be chosen such that the simplices T, := [1, 2, 3, 4],
T, :=[3,4,5,6], T3 .= (1, 2, 5, 6] satisfy

nnNnt=134] ,NT: =[5,6] 'NT =[1,2]

(see Figure 12), and such that there exists a point 8 € int(conv{l, 2,3,
4,5, 6} \ (T} U T, U T3)) from which the triangles [1, 2, 3], [2, 3, 4], [3, 4, 5],
(4,5,6),11, 2, 6],11, 5, 6] can be “seen”.

FIGURE 12.
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The 3-diagram, having the following 3-simplices as 3-cells, is (up to an
isomorphism) called the Barnette sphere:

1,15, T3, [1,2,4,7),1,3,4,7), 3, 4,6,7], [3, 5,6, 7], [1, 2,5, 7],
(2,5.6,7),12,4,6,7],[1,2,3,8], 2,3, 4, 8], (3, 4, 5, 8], [4, 5,6, 8],
[1, 2, 6, 8]y []1 5, 6; 8], [1, 3, 5, 8], [2, 4, 6’ 8]’ and F as the base.

The defining properties of a polyhedral 3-sphere (Definition 1.9) are readily
checked. In order to get a 3-diagram one may choose, for example, 2, 4, 6 as ver-
ticesof atriangle A C int F with sides parallelto[1, 3],[3, 5],[1, 5], respectively,
and then rotate A a small amount about the line that joins the barycenters of A
and [1, 3, 5].

4.5 Definition. In the Barnette sphere, let p := [7, 8]N[2, 4, 6] € relint[2, 4, 6],

We apply successively s(p; [2, 4, 6]), s7I(p; [7. 8]), and call the resulting
3-diagram a Bruckner sphere.

4.6 Theorem. There does not exist a 3-diagram, withbase T;, i = 1,2 or 3, that
is isomorphic to the Barnette sphere. Hence the Barnette sphere is not polytopal.

PROOF. The assighment 1 +—> 3 > 5 > L2455 60 2,70 7,
8 > 8 induces an automorphism of the Barnette sphere, as does the assignment
=53 1,206 4279 7, 8 — B. Therefore, it is sufficient
lo prove the theorem for T, = [3, 4, §, 6].

Suppose 7, were the base of a 3-diagram of the Bamnette sphere. Then, 7, 8 €
int 5 are such that each two of the simplices [3, 4, 6, 7], (3, 5, 6, 7], [3, 4, S, 8],
[4, 5, 6, 8] do not have an interior point in common (Figure 13). The set T :=
L\ ([3,4,6,71U[3,5,6,71U (3, 4,5, 8] U [4,5,6, 8]) is to be filled with the
remaining cells of the Barnette sphere.

In any 3-diagram C we have, the following directly from the definitions:

(1) For any edge [a, b], the polygonal path link([a, 4], C) can be projected onto
a plane perpendicular to the line aff[a, 4] in which the projected path has no
self-intersection.

In the Barnette sphere S, since link({1,2],8) = [3,4] U [4, 7Nuf{7,5uU
(5.6 U6, 8] U [8, 3] =: 7, we must choose 1, 2 € T such that (1) is satisfied.

However, the triangular paths [3, 8] U [B, 6] U [6, 3] and [4, 71U 7, 51U 5, 4]
are linked as links of a chain. It is readily seen from Figure 13 that there does not
exist a projection of z without self-intersection onto any plane in R3.

Therefore, T, is not the base of a 3-diagram of the Barnette sphere. Since each
3-face of a polytopal 3-sphere must carry a 3-diagram, the theorem follows. [

Remark. The proof of Theorem 4.6 is based on the fact that any polytopal (n — 1)-
sphere can be realized in each of its (n — 1)-faces as an (n — 1)-diagram. This
condition, however, is not sufficient for polytopality, as Barnette and Schulz have
shown by other examples (c.f. the Appendix to this section).



88 III Polyhedral spheres

FIGURE 13.

As a direct consequence of Theorem 4.6, we have (in the terminology of section
1) the following theorem:

4.7 Theorem. Not every (simplicial) complete fan is isomorphic to a fan spanned
by the faces of a polytope P.

Exercises

—

The Briickner sphere is not polytopal. . .

2. Stellar subdivisions preserve polytopality, inverse stellar subdivisions, in
general, do not. .

3. The Briickner sphere and the Barmette sphere can be tumed into polytopal
spheres by appropriate pairs of a stellar subdivision and an inverse stellar
subdivision. o

4. By using Gale transforms, show that any (n — 1)-sphere with n + 2 vertices is

polytopal.

S. Embedding problems

Theorem 4.7 suggests the question: Which polyhedral spheres are isomorphic to
spherical complexes spanning a complete fan in the sense of Lemma .1 .8?.F.or
simplicial spheres, this is evidently equivalent to asking: When is a simplicial
sphere realizable or “embeddable” as the boundary complex of a “starshaped”
body?

r————.
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In this section we clarify some basic questions on embeddability of polyhedral
spheres. In the simplicial case, we have the following theorem:

5.1 Theorem. Any simplicial complex C with v vertices is isomorphic to a
subcomplex of a (v — 1)-simplex T"~.

PROOF. Any subset of the set of vertices of TV~ is the set of vertices of a face
of T"~!, Hence, an arbitrary bijection of the set of vertices of C onto vert T+~ can
be extended to an isomorphism of C onto a subcomplex of B(7"~!). a

5.2 Definition. Given a cell complex C, we call an injective map
¢ : €| — R*

a polyhedral embedding, if it is continuous, has a continuous inverse on e(IC)),
and satisfies the following condition:
(a) Forany cell F € C, ¢(F) is a polytope in R*.

If such a ¢ exists, we call C polyhedraily embeddable, or, briefly, embeddable
into R,

So, as a consequence of Theorem 5.1, we know that any simplicial complex is
embeddable into a sufficiently high-dimensional R*. An analogous theorem for
general cell complexes fails to be true even for polyhedral spheres:

5.3 Theorem. There exists a polyhedral 3-sphere with eight vertices which is not
embeddable into any R*.

PROOF. We construct a 3-diagram which has the property of the theorem. Let
[1.2,3, 4] be a 3-simplex, and let 5, 6, 7 be chosen in int[t, 2, 3, 4] such that
[1, 2] and [S, 6] are parallel, [1, 3] and [5, 7] are parallel, but [2, 3] and (6, 7] are
not parallel (Figure 14).

We may assume [2,7] to be an edge of the 3-polytope Py :=conv{], 2, 3, 5, 6, 7}.
We choose 8 € int Py \ [2, 3, 6, 7] such that {2, 3, 6, 7, 8} and [4, 5, 6, 7, 8] are
double-tetrahedra. Let § := C U {[1, 2, 3, 4]} be the 3-diagram with the base
(1,2, 3, 4], and let the 3-cells of C be given as follows: [1, 2, 3, 8], [1, 2, 4, S, 6],
(1,3,4,5,71,12,3,4,71,[2,4,6,71,[1,2,5.6,8),[1, 3, 5,7, 8],[2. 3, 6, 7, 8],
(4,5,6,7, 8]

Suppose § were embedded in R, k > 4. We leave the notation unchanged.
Then, the planes aff(1, 2, S, 6] and aff(1, 3, 5, 7] lie in a 3-space U and intersect
in the line aff[1, 5); therefore, 1, 2, 3, 5, 6, 7 lie in U. Since 2, 3, 6, 7 are affinely
independent, the double-tetrahedron [2, 3, 6, 7, 81 is also contained in U, so that
8 € U. Similarly, since 5, 6, 7, 8 are affinely independent, [4,5,6,7,8] C U,
and, hence, 4 € U. Then, all cells of S would lie in I/ C R*.

For any vertex i, consider the (five or six) 3-polytopes of st(i; S). Each 2-
face which contains i lies on precisely two of these polytopes, hence, not on the
boundary of st(i; §). This implies i to be an interior point of {sti; S)], i =
1,...,8.

]
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3
1
2
FIGURE 14.
If we consider, however, P ;= conv S, we see that P = conv(l, ..., 8}, so
that some i is not an interior point of | st(i; S)|, a contradiction. O

5.4 Definition. We call a polyhedral (n — 1)-sphere S star-.shaped if it can be
polyhedrally embedded into R" so that there exists a point p w_nh thq pro;_xarty that
each ray emanating from p meets |S| in one and only one point. p 18 saidtobe a
kernel point. The embedding is, then, also called star-shaped.

Clearly, each polytopal sphere is also star-shaped. The converse, however, is not
true:

Example. The Barnette sphere S is star-shaped. In its definition we have areal-
ization of S \ st(8, S) in R®. If 8 is placed in R*\ IR? we join 8 to the faces of
link(8, S) and obtain a pyramid. Its boundary complex is a star-shaped embedding
of S.

Theorem 5.3 shows that not every polyhedral sphere .has 2 star-shapc.ad
embedding. This still remains true if we restrict ourselves to simplicial spheres:

5.5 Theorem. There exists a simplicial 3-sphere with 12 vertices which has no
star-shaped embedding.

PROOF. We consider two copies S, S’ of a Bamette spher'e with 3-faces
[3, 4,5, 6], [3/, 4, 5', 6'], respectively, that are not bases of 3-diagrams (Thgo-
rem 4.6). We glue S, S’ together by identifying i and i, = 3, 4, 5, 6and lt.:avmg
away relint[3, 4, 5, 6] = relint{3’, 4, ', 6']. Let S be the sphere thus obtained.

e At St oSS, et
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Suppose S is realized in R* as a star-shaped sphere. Then, the hyperplane
aff[3, 4, 5, 6] splits S into two parts Sy, S,. If we alter the position of 0 by a
small amount, it remains a kernel point. So, we can choose 0 ¢ aff[3,4,5,6]asa
kernel point. The boundary of the cone pos[3, 4, 5, 6] separates R* into two sets.
One of them contains S, the other S,. By central projection of either S or S,

onto [3, 4, S, 6], we obtain a 3-diagram of the Barnette sphere, which contradicts
Theorem 4.6. |

Star-shaped spheres provide examples for the following:

5.6 Definition. A polyhedral sphere S is called fan-fike if there exists a complete
fan Z and an isomorphism

4y .S — T

which associates, with each face F € S, the cone pos F (in particular, pos # =

{OD.

If § is simplicial, the existence of ® is equivalent to S being star-shaped. This
is not true for non-simplicial S.

5.7 Theorem.

(a) The 3-sphere of Theorem 5.3 is fan-like but not embeddable and, hence, not
star-shaped.

(b) The 3-sphere of Theorem 5.5 is embeddable but not fan-like.

PROOF. (a) Let U be defined as in the proof of Theorem 5.3, and let 0 e

relintf1, 2, 3, 8]. We set U C R* and choose a vector a € R*\U. Then, the
assignment

i i—a fori=1,2,34
i+a fori =35,678

readily induces an isomorphism & of the given 3-sphere onto a fan-like 3-sphere

in R*: its 3-faces, which are not simplices, are “bent” but have convex cones as
positive hulls,

(b) By Theorem 5.5, the given 3-sphere is not fan-like. By Theorem 5.1 it is
embeddable into R''. (An embedding into R* can also readily be found), 0

As a summary, we list the hieratchy of (n — 1)-spheres we have obtained.

Polyhedral
/! N
Embeddable Fan-like
N 7
Star-shaped
T
Polytopal
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In chapter V, we shall further refine this list.

Exercises

. The Briickner sphere is star-shaped.

. Modify the 3-sphere of Theorem 5.3 by choosing (6, 7] parallel to [2, 3],
so that the base [1, 2, 3, 4] is decomposed into a simplex, a double simplex
([4, 5, 6, 7, 8]), and four pyramids. The resulting 3-sphere is polytopal.

. Generalize Theorem 5.3 to k-spheres for arbitrary & > 3.

4. We call a polyhedral 2-sphere simple if each of its vertices lies on precisely

three 2-faces. If a simple 2-sphere is embedded in R, it is automatically the

boundary complex of a polytope.

DN =

(98]

6. Shellings

Now, we will introduce a further tool for the investigation of polyhedral (n —
1)-spheres, in particular, of the boundary complexes of n-polytopes.

6.1 Definition. Let F, ..., F, bethe (n —1)-cells of apolyhedral (n — 1)-sphere
S. If the numbering can be chosen so that

(1) FNFELU-UF)

is a union of (n — 2)-cellsof S, foranyi = 1, ..., r — 1, we call the numbering
Fy, ..., F, ashelling of S. If a shelling exists, we say S is shellable.

Remarks.

(a) It is known that nonshellable polyhedral spheres exist.
(b) There exist several definitions of ““shelling” in the literature, but not all are
equivalent. One of them is (2) below.

6.2 Lemma, Ler Fy, ..., F, be a numbering of the facets ((n — 1)-cells) of a
polyhedral (n — 1)-sphere S such that the following is true:

FU---UF and )
FioU.--UF, are topological (n — 1)-balls,i = 1,...,r — 1.

Then, S is shellable.

)]

PRrROOF. (2)implies that (R U---UF)N(Fi ,U---UF)=3FU---U
F}) = 8(Fi;1 U --- U F.) is a polyhedral (n — 2)-sphere, hence composed
of (n — 2)-cells. Since F; N (Fi4y U --- U F,) is the (topological) closure of
d(FipU---UF)\ (P U---UFi_y),itisalso composed of (n — 2)-cells. [

i et it g
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Remark. The converse is not true. Consider a triangular prism in R?, choose F3,
Fy, Fs as the rectangular sides and F, F, as the triangular faces.

There is a surprisingly simple proof for the shellability of polytopal spheres:

6.3 Theorem (Bruggesser-Mani shelling). If P isa polytope, B(P) is shellable.

PROOF. LetR" = aff P. We choose p € R” \P so close to a facet F of P that
the central projection from p provides a Schlegel diagram of B(P) with base F.
Let H be a hyperplane that strictly separates p and P. By a permissible projective
transformationg (see 1, 6), we map H onto the hyperplane at infinity, We set

Pi=9p), F:=¢pF), andP :=p(P).

Clearly, shellability is an invariant under permissible projective transformations
(as under any isomorphism of a given polyhedral sphere).

Let T := conv({p’} U F’). Then, P’ C T. We choose a point ¢’ € relint F’
such that x; := [p/, ¢'] N [B(P) \ {F’}| € relint F{ for some facet F| of P’
(Figure 15).

If F; is any facet of P not equal to F, then, aff F, does not intersect the line
segment [p. q] for g = ~'(g") (by the choice of p). Since relint{p’, q’] is the
image under ¢ of the complement of [p, ¢] on the line pq, we find [p’, ¢'1 N
aff F/ # . The point of intersection lies in [p’, x1]. We set

x; = [p', x]1Naff F}, i=2...,r—1,

where r is the number of facets of P’. By an appropriate choice of g’, all points

x; are different,i = 1,...,r — 1. Upto renumbering, we can assume x’, to lie
. .
between x;_ and x’, |, j = 2, ..., 7 — 2. Then, we claim that
Fl,...,F_\,F :=F s a shelling of B(P’).

The idea of the proof is as follows. We start a “space flight” from x; in direction
p. At any stage of the flight, we “se¢” an (n — 1)-polytope obtained from P’ by

FIGURE 15.
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central projection. Whenever we pass an x|, we “see’ one new facet. F MURY -_u Fl,
then, is the “visible” part of 3P’, and F/, | U - - - U F] is the “invisible” region of
a P’. Both sets are topological (n — 1)-balls, and we can apply Lemma 6.2.

The idea is made precise by the natural order of the x; on [p’, ¢’], and

Fii=¢ '(F), ..., F =@ "(F)

—
(-

provides the shelling we look for.

The “space flight” in the proof of Theorem 6.3 can also be carried out without
applying, first, the permissible projective transformation ¢. The “space ship” must,
then, pass, in the projective extension of R”, through “infinity” and return to the
“planet polytope” from the opposite side.

We dualize a “space flight” in the following way. Let x; := ¢~ (x]) be the
inverse images of x|, . .., x/_, in the proof of Theorem 6.3. They lie on a line g
which cuts the interior of P.Let g}, 0z be the two rays of which g \ P is composed,
and Suppose X1, ... . Xy € 01, Xs4ls - -2 Xr—1 € Q2. Suppose 0 € g Nint P. We

consider the polytopes

P; := conv({x;} U P), i=1,....r— 1.

If H; is the polar hyperplane of x;, then, the polar polytope P* is split by'I—I,-
into two polytopes, one of which is P*. In an appropriate orientation, we obtain

P.‘ =

1

P*NH- fori=1,...,s,
P*ﬂHﬁ’ fori =s+1,...,r—1,
The sequence
PPN HT,

PP, ... Pl.PPNH,,,.

FIGURE 16.
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can now be looked at as the part of P* still under water if the “rock” P* is succes-
sively “lifted” out of a lake with “surface” parallel to all the H; (and perpendicular
to g since 0 € gNint P), In Figure 16, left side, three facets of P (hatched) can be
“seen” from x;. Their polar faces, which are vertices of P*, are “above the water
surface” (right side of Figure 16).

It is somewhat involved, however, to give a definition of a dual shelling purely in
terms of cell complexes. This is why we have defined “shellable” more generally
than it can be done by using (2). We can characterize shellability in a dualizable
form:

6.4Lemma. Let Fy, ..., F, be the (n — 1)-cells of a polyhedral (n — 1)-sphere

S. Then, S is shellable if and only if the numbering of F\, . .., F, can be chosen

so that the following two conditions are satisfied for each F;, i = 1,...,r — 1:

(@) F; N Fjisan (n — 2)-cell for at least one j > i.

(") If F,, F; containa cell F' € S and j > i, then there is some j' > i such
that F; N Fy is an (n — 2)-cell of S which contains F'.

Proor. This is readily verified from Definition 6.1. O

An abstract dualization (which formally interchanges 0-cells and (n — 1)-cells
and reverses inclusion) leads to the following notion.

6.5 Definition. Letg;, ..., g, be the vertices of a polyhedral (n — 1)-sphere S.
If the numbering can be chosen so that foreachi € {1, ..., 5 — 1},
(@ [g:,g,]isa1-cell of S for at leastone j > i, and
(b) if g;,q; € Fforacell F € Sand j > i, then there exists j* > i such that
[g:, q;] is aface of F,
then, the numbering ¢1. . . ., g; is called a dual shelling of S.

6.6 Lemrﬁa. Let P be ann-polytope inR" and F\, . . ., F, the shelling of B(P),
constructed in the proof of Theorem 6.3. Then,

Ff, ... F
is a dual shelling of B(P*). Here, the line g = R -m is so chosen that no two
vertices of P™ have the same foot on g.

6.7 Definition. For an n-polytope P in R”, we fix m < R", according to
Lemma 6.6. For a face F of P*, we say that F culminates in its vertex v if
{m, v) = max,er{m, x). We call v a k-vertex of P* if the face of maximal dimen-
sion which culminates in v has dimension k. We denote the number of k-vertices
of P* by h;(P*).
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6.8 Theorem. Let P be a szmplzaal polytope, P* a polar polytope {which is
simple). Then, (ho(P‘), oo, by (P*)) is the h-vector of P, and
3

k .
Ek(P'>=hk(P)=Z(—1)‘—"(: k) (P = E( 1y~ ‘()f.(P'
i=0

PROOF. If F culminates in a k-vertex v of P* and has dimension k, the number
of i-faces culminating in v is (f) (since P* is simple). Hence,

" k -
@ =Y (l.)hm'), i=0,....n
k=i
Resolving (4) for the ;lk (P*) and applying I, Theorem 2.5, and III, Theorem 3.5
yields (3). O
Exercises

1. Find a shelling of the 4-cube (using a Schlegel diagram).

2. How many shellings of the boundary complex of a regular octahedron P exist
up to a symmetry of P?

3. Find a shelling a) of the Bamnette sphere , b) of the Briickner sphere.

4. Given the shelling of a polyhedral 2-sphere S, find a shelling of s(p; F)S for
any stellar subdivision s(p; F) of S.

7. Upper bound theorem

A fundamental question of polytope theory is that of an upper bound for the number
of i-faces f;(P),i = 1,...,n — 1, provided the number fo(P) of vertices is
prescribed. In particular, it is of importance in linear optimization. A conjecture
by T. S. Motzkin [1957] was first proved by P. McMullen [1970). There is a
precise answer to the question, that is, the upper bounds are attained for cyclic
polytopes. We remark that the result has been extended by R. Stanle)' [1975] to
arbitrary simplicial spheres. Stanley uses tools of commutative algebra. The proof
for polytopes we present here is due to N. Alon and G. Kalai [1985].

First we prove a combinatorial lemma. card A denotes the number of elements
of a finite set A.

7.1 Lemma, For a set of natural numbers Q := {1, .,
of subsets A;, B, of Q andm, s € Zzxo such that

., q}, let there exist h pairs

card A; £ s <m = card B;, i=1,...,h,

M b st )

AL
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and
) A, CB fori=1,...h,
A ¢ B, forl<i<j<h
Then
) hs("”'"“).
s

PROOF. Wemayassumecard A; =s 2 1,i = 1, ..., h, since adding elements
to A; does not increase A. The proof uses a trick. It assigns a vector of an exterior
product space to each set A; and to each set B; \ A;, so that (2) follows from
knowing the dimension of that space.

IV = RIS, let \’ V be the vector space generated by all exterior products
X1 A -+ A X, of vectors of V. As is known from linear algebra,

. s _q—m+s
@ amA\'vy = (177,

We choose vectors @y, . .., @, € R?™* in general position, that is, any set of at

most ¢ — m + s of them is linearly independent. Fori € {1, ..., h}, we set
5 g—card B;
y,-::/\aje/\V ¥ = /\ake /\
JEA; keQ\B;

From (1) and properties of the exterior product, we find
YAy #0  forie(l,.. ., A}

yiAyi =0 forl <i < j<h.
We claim that y,, . . ., ys are linearly independentin A’ V. Suppose ay y; + - - - +
apyr = 0, and, up toreordering, o; # Oforj =1,... .k, o401 = --- =) =

0.Then 0 = 0 A yx = (ay + -+ - + & ¥) A ¥ = @ ¥k A Y, which implies
o = 0, a contradiction.
So, we have found h linearly independent vectors in A* V, and, hence, by (3),

h < dim(/\"v) = (‘7 ""+S).

s
a

7.2 Definition. Let C be an (m — 1)-dimensional simplicial complex. An (s — 1)-
face F € C,s < m, is called free if it is contained in a unique face of maximal
dimension m — 1, The transition
C\st(F,0) fors > 0
¢— {C \ {v},va0-cell, fors =0,m =1

for a free face F is called an elementary (s, m)-collapse . A collapse process on
C is a sequence

4 C=CoDClD-"3C,
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of simplicial complexes such that C; is obtained from C;_; by an elementary
collapse,i = 1,...,t.

Remark. The case s = 0, m > 1 does not occur for the following reason: The
only case in which # is contained in a unique face of maximal dimension is that
in which C has only one vertex.

Example. If C consists of a 3-simplex and its faces, it can be turned into & by
one (2, 4)-collapse, two (2, 3)-collapses, three (1, 2)-collapses, and one (0, 1)-
collapse. One may also start with a (3, 4)-collapse or the (4, 4)-collapse.

7.3 Lemma. Lets,m € Z»>g, s < m, and let the simplicial complex C have g
vertices. The number h of all elementary (s', m')-collapses withs' < s, m’ > m
in any collapse process on C, is at most (7" "),

PRrROOF. We consider a collapse process (4). When proceeding from C; _; to C;,
let F; be a free face and M; O F; a face of maximal dimension m — 1, so that all
faces which contain F; are eliminated, i = 1, ...,¢.

Among the pairs (M;, F;), we select those pairs M = conv{a,...,
a;,}, F/ =conv{a;,, ..., a; } forwhich B; .= {i;,....iwh A; = {ir, ..., ig}
satisfy

s'<s and m' > m.

Let A be the number of such pairs. By definition of an elementary collapse, the
assumptions of Lemma 7.1 hold, so that the lemma follows. a

7.4 Theorem (Upper bound theorem).
Let C be a shellable simplicial (n — 1)-sphere or a polytopal sphere with v
vertices. Then,

fi€) £ fi(C(v, nY),

where C(v, n) is a cyclic n-polytope with v vertices.

i=1,...,n-1,

ProOF. Inthe case of a polytopal sphere, we may assume C to be simplicial, since
splitting a face without introducing new vertices increases the numbers f;(C), for
i > 1 (Theorem 2.6), and does not disturb C to be polytopal and, hence, shellable

(Theorem 6.3). As in Definition 3.6, we introduce the h-vector (4o, Ay, ..., h,)
defined by . .
i~1 .
—j=1
h = —1y—’-! n J (0), i =0,...,n.
’ };( ) (n_l. £©,
We set

hir=ho+---+h fori=0,....n h_:=0.
Then,

h'-:il,'—il,'_l, i:O,...,n.

As we have seen in IT, Theorem 3.12, £,(C(v, n)) = (. "I) fori =1, ..
As a consequence, we claim that -

fiC) =

(3

50 =

(6)

Proor or (5).

7. Upper bound theorem

[§1-t .
Z[(n—z—l)_( i .
i=0 n—j—-2 n—j-—2 !
[5] [31+1 'I_
+ 2 o .
[ivljl[(n—i—]) ( i .
i L\n—j—2 n—j—z) d
+(,,_§_ 1) (5§—1+f~1%). if n is even.

We set f; .= f;(C).

i+ . n=1

ST

i=0

- n—i
:Z( . )hi
io vt —J—1

J+! .
n—1
+ (n . l)h,,_,- by Theorem 3.7

2l
2

n—i i
. hy + :
f=0("_1_1) Z (nj—l)h'

l=u—j—]

by change of index (i < n — i)

99

S l31-1

iio{(nf;il)%n—;—l)]
“(aes )

1,550

h;

-
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6T ()]

which equals the right side of (5).

Proor oF (6).

& n—i : n—i
fi= ( ._)1':2(_._1)hi
i=0 n-—17j 1 i=0 n J

+ n _.t )hngi by Theorem 3.7
=4 +1 n—j-1
; n—i il i
== hi + R )h'

by change of index (i < n — )

- i 2 i1
+Z(n—j—1)hi_2(n"j—1)h“

=0 i=0
which equals the right side of (6).

FromQ < i < % — lwededucen —i — 1 > 3 > i, and, hence,

n—i—1y i ) > 0.
n—j-—2 n—j-2
Therefore, all coefficients in (5) and (6) are nonnegative. Since -

v fori = 1 [ﬁ]—1
fi(C(v.n))=(‘.+1), ori =1, 2] -,

an easy calculation gives

i1 _ —n4i
h,-<C(v,i))=(” "f' ) and hi(C(v.i))=(” " ')

i
forCv,i)i=1,...,[%)

[NV SV > o)
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So, because of (5) and (6), it suffices to show that

7 5,5("—7“), fori:],...,[ﬁ].
f 2

For the proof of (7), we use the shellability of the simplicial sphere C. If F is a face

of C, we set F := B(F) U {F) (set of all faces of F including F). Let i, ..., F,
be the shelling. We obtain

r

N Uir,- =OG"., k=1,....r -1,
j=1

ikl
where GX, j = 1, ..., s, are distinct (n —2)-faces of C. We set C; := Ui 41 Fo
i=0,..., r.Inpartticular C, = @. Fori = I,...,r—1,let
S=FE\{G']|., s :=0
j=1

S; is readily seen to be a free face of Ci—\. We obtain C; from Ci_y by deleting S,
and all faces which contain S;, that is, by an elementary (card §;, n)-collapse.
We denote by g; the number of elementary (i, n)-collapses in the shelling

Fi, ..., F,, thatis, the number of elements of {k | s = 1}. Since the number of
Jj-faces deleted in an elementary (i, n)-collapse is (J.';'_,.) and since C, = @,
J+1 .
n—i
-:E i, forj=—1,...,n—1.
& ',=0(j+l—i)g ’

Therefore, by definition of #; and Theorem 68,8, =h;fori =0,...,n The
number of all elementary (i, n)-collapses with i’ < i in the collapse process

C=0C D> >---D¢C,
ish; = Zi':o 8;- Hence, by Lemma 7.3, we obtain (7). O

Exercises

1. Describe explicitly the collapse process of C = B(P) where P is the Bamette

sphere with a shelling as found in 6, Exercise 2.

2. Let £i(B(P)) = ¢;(v, n),i=1,...,n—1,andlet P be an n-polytope. For
which v is P automatically a cyclic polytope?

3. Let P be a 3-polytope with v vertices. If P is decomposed into simplices whose
vertices lie in vert P, we obtain a three-dimensional simplicial complex €. Find
upper bounds for f;(C), £2(C), f£5(C) (as functions of v) which are sharp for
v <6

4. Given a simplicial n-polytope P with v < n + 3 vertices, find sharp lower
bounds for f;(P),i =1,...,n — L.
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IV

Minkowski sum and mixed volume

1. Minkowski sum

A fundamental operation for convex sets is the following (which can be defined
for arbitrary sets in R”).

1.1 Definition. For any two sets K, L in R", we call

K+L:={x+y|xecK,ye L)

the Minkowski sum or, briefly, the sum of K and L.

The sum of two triangles X, L in a plane is either a triangle, a quadrangle, a
pentagon, or a hexagon (Figure 1).

Minkowski addition may increase the dimension, as is seen from the examples
in Figure 2.

1.2 Lemma,
(a) If T denotes a translation, then, for any sets K, L in R",
WKY+L=1(K+L)=K + t(l).

(b) If K, L are both convex, closed convex or convex bodies, then, K + L is
convex, closed convex, or a convex body, respectively.

A b €2

FIGURE la,b,c.d.
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FIGURE 2a,b.c.d.

PROOF.
(a) 7 is given by a translation vector ¢. So, the assertion follows from (+ + K) +
L=t+(K+L)=K+(+1L).
(b) Letx, x' € K,andy,y € L. Then, for0 < & < 1,

ku+y)+ﬂ—lﬂf+y3:Ax+U—AMHJy+U—lU'€K+L,

if K and L are convex. The properties “closed” and “bounded” carry over
from K and L to K + L since addition is a continuous operation and maps

pairs of bounded sets onto a bounded set.
' O

Remark. Most considerations about Minkowski sums are invariant under trans-
lations, which is so because of Lemma 1.2(a). If we draw figures, we shall, in
general, not mark the origin. It is often helptul to visualize Minkowski addition
for convex sets as follows: Hold L in one of its points, p say, and move L around
by translations such that p attains all points of K. Then, the translates of L cover
K + L thatis, K + L = UpeK(l’ + L).If p € L, itcan easily be shown that
K+ L=KUU,ex(p+ L) provided K N L # 0.

1.3 Definition. If A is a real number and K C R” is a set, then, we call AK :=

{*x | x € KYamultipleof K.1f Ay, . .. A €Rand Ky, ..., K, are setsinR”,
wecall A\ Ky + - - - + A K, a linear combination of Ki..... K,.
Remark. . may be negative. However, (—1)K =: —K is not the negative of

K with respect to Minkowski addition: In Figure 1d, L = —K, but K +L =
K + (—K) is a hexagon. For 1 € Z.¢ the notion AK has two meanings, but,
fortunately, for convex K both have the same value: K + - -- + K = \K.

A times

From the definition of linear combinations and Lemma 1.2(b), we have the
following lemma;

1.4 Lemma. If K. ..., K, are convex and Ay, ..., A, are any real numbers,
then, M Ki + - - - + A K, is convex.

EPRTREIOTY
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A very useful property of the Minkowski sum is that it respects the additivity of
the support functions:

1.5 Theorem.

(@) If hi, hy are the support functions of the convex bodies K, L, respectively,
then, hgx + hy is the support function of K + L,

hyxyr = hx + hy.

(b) If Fisaface of K + L, then, there exist faces Fx, Fy of K, L, respectively,
such that

F=Fg+Fp.

Inparticular, each vertex of K + L is the sum of vertices of K, L, respectively.
(c) IfK, L are polytopes, sois K + L.
(d) IfK, L are lattice polytopes, so is K + L.

PRrooOF.

(@) hxpr(u) = squeK._vsL(X + you) = sup e (x, u) + sup, {y,u) =
hx () + by (u) forany u € R" \ {0}. ‘

{(b) For any convex body C and a vector u pointing away from C, according to
L, 5.3, let He(u) be a supporting hyperplane of C. Then, F = (K + L) N
Hygyp(u). We set Fy := K N He(u), Fr := L N Hy(u). Then, Hy (1),
Hy (u) and Hy ., (u) are parallel hyperplanes, Hx (1) = Hyg () + H, ().
Up to a translation of L, we may assume Hx (4) = H; (1). Then, we obtain

F=(K+L)NHk, (W) = (K + L)N (Hgu) + Hy(u))
=(KNHg) + (LN H (u)) = Fxk + FL.

(c) is a consequence of (b), since the sum of two vertices is a vertex and each
vertex of X 4 L is obtained in this way.
(d) is also a consequence of (b).

|

1.6 Definition. Let K, L be convex bodies in R” such that (aff K) N (aff L)isa
point. Then, we call X + L the direct sum K & L of K and L.

Figures 2a, b, and d illustrate direct sums; the examples in Figures 1 and 2¢
are not direct sums. The polar body (X + L)* of a sum of convex bodies has, in
general, no plausible interpretation in terms of K*, L*. Only in the case of direct
sums do we present such an interpretation.

1.7 Definition. Let K, L be convex bodies such that K N L = {0} C relint K N

relint L. Then, we set K o L := conv(K U L) and we say K o L splits into X and
L.
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Examples are any convex quadrangle in the plane, which splits into two line
segments, and any bipyramid in 3-space, in particular, an octahedron which splits
into a square and a line segment.

1.8 Theorem. Let K, L be polytopes in orthogonal subspaces of R” such that
0 € relint X Nrelint L, dim K + dim L = n, and denote by K™, L™ the poiar
polytopes of K, L relative to lin K, lin L, respectively. Then,

) (K@®L)" =KoL,

Proor. Since 0 € relint K™ N relint L™, the right side of (1) is defined. We
shall prove K & L = (K" o L™)*, which is equivalent to (1).

Let v be a vertex of Q := K o L™, We denote the unit sphere with center O
by S. Let H, be the polar hyperplane of v with respectto S, and let 0 € H . Then,
by II, Theorem 2,1(d), Q" := (ycyen ¢ M. - Since each vertex of Q is either a
vertex of K™ or a vertex of L, we see that H, is perpendicular either to lin K
ortolin L.

Let Fbeafacetof Q, F = conv{v,, ..., v, Upsy, ..., Us}Wherevy, ..., v, €
vert K@ and v,4q, ..., v, € vert L (s > n since dim K® = dim K and
dim L™ = dim L). Then, conv{v,. ..., v,}isafacet of K (relative to lin K*),

sothatag := H, N---N H, Nlin K is a point, and, hence, 4, N ---N H, is
a translate g of lin L. Similarly, a; := H,_, N --- N H, Nlin L is a point and
H,, N --N H, atranslate k1 of lin K. The intersection g N # is the polar face
a ;= F* of F (the pole of the hyperplane aff F). Hence, ¢ = ax + a is true for
any vertex a of 0* and vertices ax € vert K™ = vert K, a; € vert LW =
vert L.

Since K @ L is determined by the sumsof vert K andvert L. K @ L = Q* =
(K™ o L™)* follows. 0

Remark. Theorem 1.8 provides a new proof of 1I, Theorem 3.7. If P is a k-
fold bipyramid over R, then P* is obtained from R™ by adding k line segments

FIGURE 3.
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L,..., I, thus

P=R"@nL®- - -0I.

Example. In R’ consider a bipyramid (II, Definition 3.5 with K = Q, L = I).
Figure 3 illustrates K, L in translated positions.

Exercises

" a. If K or L is not convex, K 4 L may or may not be convex.

b. If X is not convex and not closed, X + L may be open, closed, or none of
both.

c. If K and K + L are convex bodies and L is convex, then L is a convex body.

2. If K, L are convex bodies and if X has differentiable boundary, that is, X

has a unique supporting hyperplane in each point of 3K, then, 3(K + L) is
differentiable.

a. Find two 3-simplices in R* whose Minkowski sum has 16 vertices.

b. Prove fo(P + Q) < fo(P)- fo(Q) for any pair of polytopes in R” ( fo(-) =
number of vertices).

4. In R* let Q be a convex r-gon and R a convex s-gon such that 0 o R exists.
Determine the f-vector of 0 o R.

2. Hausdorff metric

Now, we will introduce a distance function which turns the set X of all convex
bodies in R" Into a2 metric space. Here, we use the Minkowski addition of balls.

2.1 Definition. Let B be the unit ball with center 0, and K a convex body in R”.
Then, we call, for A > 0,

K +AB
the A-parallel body of K

2.2 Definition. Given two convex bodies X » L in R", let d(K, L) denote the

smallest 2 for which L lies in the A-parallel body of X and K in the A-parallel
body of L, so that

dK,L) :=inf(A | K +AB > Land L + AB D K}.
We call d(K, L) the Hausdorff distance of K and L.
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2.3 Theorem. Let K denote the set of all convex bodies in R'. The Hausdorff
distance is a metricon K, that is, forall K, L, M € K,

(1) d(X,L) = 0.

(2) d(K,L) =0ifandonlyif K = L.

(3) d(K. L) = d(L, K).

(4) d(K, L) < d(K, M) + d(M, L) (triangle inequality).

Example 1. In R?, let K := conv(2e;,—2e;,2e2}, L := convie;, —e;, €1 +
2e;, —e1 + 2e3). As is seen from Figure 4, d(K, L) = 1.

PRrROOF OF THEOREM 2.3.

(1)and (3) are true by definition of 4.

() Ifd(K,L) =0,K+0-B > L,andL+0-B D K;hence, K = L.Clearly,
d(K,K)=0.

(4) Wesetr := d(K, M),s :=d(M, L),andt := d(K, L).Then,K+rB D M,
M+rB>KandM+5B D L,L+sB D Mimply

K+@r+s)B > M+sB D L,
L+(+s)B D M+rB D K,

hence,r +s > t.
[}

v

Remark. If we define do(K, L) := infyek ver lIXx — yl, then, dp is nota metric
since (2) is, in general, violated. . _

Also di(K, L) := Sup,cx s Ix — ¥l does not define a metric as is seen, for
example, by choosing K = L as a line segment.

2.4 Lemma. For any two convex bodies K, L and a ball B,

d(K,L)=d(K + B,L + B).

S leasns Tormin, il SR . AN el ¢,
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PROOF. We will proceed in several steps.
(@) Let x bea pointsuchthatx + B C K + B. We assert x ¢ K. Suppose,

otherwise, x ¢ K. Let x' € K be the point nearest to x (x’ = Pk (x)
according to I, Definition 3.2). Let

H=1{yl{yu) = (', u)}

be the supporting hyperplane through x” with K C H~ (according to I, 35).
Then, the point in which (-, u) takes the maximal value on x + B does not
belong to x + B, acontradiction to x + B being a closed set.

(b) LetK + B C L+ B. WeshowK C L.Infact, p+ B C L + B for every
P € K is, by (a), equivalentto p € L forevery p € K.

(c) Proof of the lemma. For every A > 0, we have the following equivalent
statements:

(c.]) d(K,L) <.

(c2) K+ABO>LandL + AB D K.

(c3) K+AB+B>L+BandL+AB+B>K+ B.
(c4) d(K+B,L+ B) <4,

a
2.5 Theorem. Let K be any convex body. There exists a sequence of polytopes
P; C K which converges to K with respect to the Hausdorff metric, thus,
P,P,... — K.

PROOF. Given any ¢ > 0, assign to each x € 8K the open ball B, with center
x and radius &. Then, {B,} is an open covering of 8K . Since 9K is compact, there
exists a finite subcovering {B,,, ..., By} of K. Let P := conv{x,, ..., xq}.
Then, P +¢B > B, U---U B,, D 3K hence, P + £B being convex,

_ P+eBDOK.
Trivially, P C K C K + ¢B, hence, d(P, K) < e. Therefore, a sequence
P], Pz, . —_—> K

can be found. a

2.6 Theorem. Let K, K1, K. ... be convex bodies, and let O € int K. If

K],Kz,... — K, then, KﬁK],Kan,...

PROOF. Let By be a ball with center 0 and radius ro > 0, such that 2By C X.
Then, d(Bq, K) > rp. Since, for K1, K,, ... — K,Ki+¢B DK > 2B, for
appropriate €1, €2, ... —> 0, there exists an iy such that

— K.

K; D By fori > ij.
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K

FIGURE 5.

The same is true for the K; N K. o ‘ '
Let ¢ be any ray emanating from 0, and denote the points in which g intersects
3K, 9K, by p°,p°, respectively, (Figure 5). Then,

k=UJo.p1 K =Jo P

allp alle
and

K n ki = | Jo. pf1n (0. pf).
allp

But [0, p?] N [0, pf) equals (0, p] or [0, pf]. We set

8; := sup ||pf — pAll.
[

Then,
(K;NK)+ 8B DK, and K +48BDK NK.
At the same time,
K;+5,'BDK, and K+6,BDK,

N
Since Ky, K2, ... — K,weobtain 8y, 82, ... — 0, and, hence, K N K, K[:]
Kz,...——") K.

Remark. If X has no interior points, the theorem is false: Take, for example a
sequence of disjoint line segments [x;, ;) in R! whose endpoints x;, yi conve;ge tc
b Then, [x. 1], [x2, y2bo .- - — 0} = K,butKnix;, »w1=0,i=12,...

P

S N )

_ e e
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2.7 Theorem. Let K be a convex body, and O € int K. Then,

Ki,Ky.... — K
K. Ky,...— K*

v

if and only if
for the polar bodies with respect to the
unit sphere.
PROOF. LetK,, K3, ... —> K.ByTheorem2.6, K NKy, KNK,, ... — K,
sowesimplylet K, C K,i =1,2,...

As in the proof of Theorem 2.6, we introduce g, p¢, p° and find

(1 sup |Ipy ~ pell,supIp§ — p°ll.... — 0.
all g all p

Let H®, H be the polar hyperplanes of p°, pf, respectively, i = 1,2, ..., and
let0 € He~,0 € HF". Then, by definition of K*, K,

k*=()He K =[)H".
all o all o
Suppose K[, K3, ... —> K*. Then, considering K* C K'.i=1,2,...,wecan
choose a sequence of points ¢; € (3K?) \ K* such that |lg; — Pl llg2 —
Px-(g@)ll, ... A 0.
Let H® be the supporting hyperplane of K* in Px+(g:), and let H; be the
supporting hyperplane of K which has the same outer normal as H) has (Figure

6). Then, for the distance o; between H® and H;, o; > g — px-(g)l, and,
hence,

(2) o), 0, ...

0.

We consider the poles p®, p{" of H'"), H;, respectively; they are the intersections
of the same ray o; with 3K, 3K;, respectively. Since o; < d(KX;, K), it now
follows that Ky, K3, ... —~ K, a contradiction.

Therefore Ky, K3, ... —> K implies K!. K3,... — K*. The converse is
also true since K = K;,and K** = K. O

.

O

FIGURES. 2 = ¢;, 1 = py.(q;)



2.8 Theorem. Given a convex body, for any one of the following conditions, there
exists a convergent sequence Py, P>, ... — K of polytopes satisfying it:

(a) All P; are simplicial. ,

(b) All P; are simple. ,

(c) All P; are inscribed into K.

(d) All P; are circumscribed to K.

PRrOOF. .

(a) Given any sequence P, P;,... — K (see Theorem 2.5), we need only
slightly disturb the vertices of each P, in a sufficiently small neighborhood
to obtain simplicial polytopes.

(b) follows from (a) if Theorem 2.7 is applied to the polar of X relative to the
affine hull of XK.

(c) is implied by the proof of Theorem 2.5.

(d) 1s obtained from (c) by applying Theorem 2.7 to a polar body of X relative

to aff XK.
O

2.9 Theorem. Let K, K|, K, ... be convex bodies, and let By = roB be a ball
with radius ro > 0. If

By+ K\,By+Kz,... — K,
then, there exists a convex body Ky such that K = By + K.
ProoF. This is a consequence of Lemma 2.4. O
2.10 Theorem (Blaschke’s selection theorem). Let {K,}qaes be a set of infinitely
many convex bodies, all contained in the unit ball B. Then, there exists an infinite

sequence of different elements of this set, say K, K3, . . ., which converges (in the
Hausdorff metric) to a convex body K also contained in B; thus,

K, K3,... — K.
Proor. If we add to each K, the ball By := 3B, we obtain
0e B Cint(K, + By) C 4B.

Therefore, by Theorem 2.9, it suffices to find a convergent sequence among the
K, + Bo. Again, we write K, instead of K, + By and assume B C int KX, C 4B
for all @ €.1. So, in particular, all K, and the approximating polytopes we shall
use are full-dimensional.

We considerrays 0", . . ., o'’ emanating from 0, and the points p&’ := o' N
dK,,a € I, j = 1,...,r (Figure 7). If the rays are chosen appropriately, we
obtain

BC P, :=convi{p,....,p%"), ael

4. 11QUBVUILLL (HETIC 13

p(j)

FIGURE 7.

Each set {pé,j)}‘ ax el

J fixed, is contained in a closed line s ; ®
; Therefore, the points sement S < ¢

. 1 r
: (P;,),...,p((l))eslx...xsr
. (topological product space, or a parallelotope in R") lic in a compact set, and
hence, we can pick from them a convergent sequence, say '
) ( ,
(pl !~--‘p]r))v (P;]),...,pg)),,“ —_ (p(l)’...’p(r))
(1 .
such tha'l pil % p for r # 5. Then, obviously, for P := conv{p™" ")
we obtain a Hausdorff convergence vees pUL

>

PlsPZ,... — P

where P, # P, forr # 5. Now we consider a further ra

r+1 :
0, and set p’_(f+l) = dK; N Q(r+l); i=12,. y e emanating from

.. Again, there is a convergent

‘L (r+1) +1 :
,Subsequence of p;"*", pé’ ), ... which we denote by pf',“) f’;’l)
‘ i LELC )
K +1
3) Pt peen,
We set Pis 1= comp, ..., o0, i+t ). o
et Pii = convip)’, ..., pi?, pT*V} (where P P, s, for j=

)] :
l,..., r, the subsequence of Py, pY, .. . with the indices according to (3)), and

Py = conv(P U (p+hyy,
Then,
4) Py, Pra, ... — Pqy, ‘with vert P; C 3K,
for a subsequence Ki, Kz, ... of K, K, .

Ve continue choosing rays g7 +%) i
5 p fo g rays o . emanam?g from 0 such that, for a subsequence
i1y Fra, . .. of (4), using an obvious notation,

’ P, Py, ... — Py := conv(Pyyy U {p(rH)}),
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k = 2,3,...,vett P, C 8Ky (Ku. Ko, ... a subsequence of Kj_1.,

Kio12,--) .

Let¢; be theinfimumofalle > 0 which pcr_mitanopen coveringof § := 3(4B)
by r + k open £-balls centered at g, = SN o, and set&; := 2¢,. We can choose
the rays ¢"** such that ), &5, ..., &, ... — . '

Since Py C Py C -- - theset Py := Py, U Py U - - - is convex. Furthermore,
P is bounded, so K := Py (closed hull) is a convex body. We see now that

P;+¢&B DK, and (trivially) X +&B D P;.
Also,
P, +€&BD Kii, and (tnv1ally) Kii + B> Py

where P,, # P for r # s. Hence the diagonal sequence consists of different
elements and converges:

Kin.Kzn,... — K
O

The following equivalence relationship for polytopes defines classes of

polytopes which will be needed in the following two sections and in V, section 5. -

2.11 Definition. Two r-polytopes P and Q are called strictly combinatorially

isomorphic if there exists a bijective, inclusion-preserving map ¢ : B(P) —

B(0Q) such that the following condition is satisfied

(5) For any face F € B(P), the affine hulls aff ¥ and aff ¢ (F) are translates of
each other.

About general combinatorial isomorphism compare II, Definition 1.12.
2.12 Lemma. Two n-polytopes P, Q are strictly combinatorially isomorphic if
and only if Z(P) = E(Q) (compare 1, Definition 4.14).

PROOF. X(P) consists of the normal cones N (x) of P, as introduced in |, Defi-
nition 4.7. Hereby, N(x) = N(x) for x, x" € relint F for any fac.e FeB(P)(,
Lemmad.11). Since aff F is atranslate of (N (x))*, the lemmareadily follows. O

2.13 Lemma. If P and Q are strictly combinatorially isomorphic, then, P and
P + Q are also strictly combinatorially isomorphic.
Proor. This is a direct consequence of Lemma 2.12. O

2.14 Theorem. Let K, ..., K, be convex bodies. Then, there exist convergent
sequences of polytopes

(6) Py, Popy.... — K

2 il g
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such that Py;, ...

» Prj, are, for any fixed j, pairwise strictly combinatorially
isomorphic. .

PROOF. The existence of sequences (6) is guaranteed by Theorem 2.5. If & :=
dim X, < nforsomei € {1, ..., r}, we consider, first, a sequence (6) relative to
aff K;, and, then, choose an (n — k)-fold pyramid over P;; contained in P; j+é&;B
for sufficiently small ¢; > 0. Suppose g = d(Py, K;) if d(P_,;,», K) > 0,
i=1,...,r7 =12,..., otherwise &; := }.Then, we set P = P +
€;Pij +--- + &;P,; and obtain pairwise strictly combinatorially isomorphic
polytopes which satisty Py, Py, ... — K, i =1,... . r. a

3

Exercises

1. Amongall squares inscribed in a unit circle, find two which have largest possible
Hausdorff distance. What is the value of this distance?

2. We can extend the definition of Hausdorff distance to closed convex sets, al-
lowing the distance to become infinite. Find necessary and sufficient conditions
for two unbounded polyhedral sets to have finite Hausdorff distance.

3. Let X be a convex body and L. = {p} be a single point. Then, d(K, L) =
Sup.ex Ix — Pl

4. Given a two-dimensional convex body X, find a sequence of convex bodies
Ky, K3, ... —> K such that each K; has a twice differentiable support func-
tion. (Hint: Approximate X by polytopes P;, and “round off” the vertices of
each P; by arcs cut out of curves of the type x; = Cx[, 7 € Z>3).

3. Volume and mixed volume

We assume that it is known from calculus that any n-dimensional convex body K
possesses an n-dimensional volume V (K). A map & of a set M C R’ onto a set
M' C R” is called a Lipschitz map if there exists a constant ¢ > 0 such that

IPx) —PIl <c- x -y

for any pairx, y € M. Clearly such a & is uniformly continuous on M.

If a set M can be dissected into finitely many (n — 1)-polytopes, its (n — 1)-
volume is the sum of the (n — 1)-volumes of the polytopes. We further assume
that it is known from calculus that, if M has finite (n — 1)-volume and is mapped
under a Lipschitz map onto a set M’, then M has finite (n — 1)-volume.

3.1 Lemma., If K is an n-dimensional convex body, then, 3K has (finite) (n — 1)-
volume.

PROOF. Since K is bounded, we find a simplex A which contains K. The nearest
Point map px being Lipschitz (¢ = 1; see I, Lemma 3.7), we obtain the lemma
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from

px(3A) = 3K.

Volume and Minkowski addition are linked as follows.

Theorem (H. Minkowski).

Let Ky, ..., K, be convex bodiesinR",and  ; > 0,i =1,...,r.

Then, V(K + --- + A.K,) is a homogeneous polynomial of degree n in
A'ly er ey A-r:

r

1) VKi+ o+ MK)= Y V(K. oos Ko hg o A,
Olavees on=1
the summation being carried out independently over the g;,i = 1, ..., n.

3.3 Definition. Arranging the coefficients on the right side of (1) such that
V(Knions - -+ » Knion)) = V(Ko . .., Kp,) forany permutation w of g1, . . ., @n»
wecall V(K,,, ..., K,,) the (n-dimensional) mixed volume of K, ..., K,,.
PROOF OF THEOREM 3.2. We shall first carry out the proof for polytopes
and deduce Lemma 3.4, Lemma 3.5, Lemma 3.6, and Theorem 3.7 for polytepes.
Then, Lemma 3.8 extends all statements to arbitrary convex bodies.

We apply induction with respect to the dimension n. For n = 1, the K; are
intervals [p;, g;] or points p; = [p;, pil, pi < g;. We find

MK+ MK =+ e i -+ Age]
VuKi+ -+ MK)=g1+ -+ A2q —(ipr+---+ A p)
= }\I(ql - Pl) +---+ )\r(Qr - Pr)
=MVKD)+- -+ L V(K)
which is a polynomial of degree 1 in A4, ..., A,.
Suppose the theorem is true for n — 1 instead of n. First, we assume Xy, ..., K,
to be polytopes.

Let u # 0 be a fixed normal direction. We consider the supporting hyperplanes
H,(j (u) and the faces

F;:= Fju):= He @) OK;, j=1,...,r

We set
KA = A.]Kl +"‘+ArKr
Fau) := Hg, (1) N Ky

(A=, o5 40)),
(Figure 8).
Then

Fa) = MFy(u)+ .-+ A F.(u).
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* \‘
\‘ ‘\‘
A A u A
u . Fz
LY
u Fa \\
. A}
F 1 . AR

FIGURE 8.

Volumes do not change under translations, so for every given « we can assume
that all F; lie in the hyperplane H, () and apply the induction hypothesis to
V(Fa(u)). Furthermore, 0 € K, can be arranged. If dim K, < n, the assertion
of the theorem follows by inductive assumption. So, let dim K, = n, and let
uy1, ..., Uy be all outer facet normals of K, flu;|l = 1,i = 1,...,m. We
decompose K 4 into pyramids with apex 0 over the facets and obtain (v(-) denotin g
(n — 1)-dimensional volume, h, the support function of K »)

V(K1)

1 m
=Dk (v (Fa )

j=

m
= = D (Mhw ) o A @) )o(Fa())).
i=
Since, by inductive assumption, v(Fa (u;)) isahomogeneous polynomial of degree

n—="TlinA, ..., A, V(Ka)isahomogeneous polynomial of degree n in the same
variables. This proves the theorem for polytopes.

Before we finish the proof, we collect some basic properties of mixed volumes

for polytopes where we write K, ..., K, instead of Ki,....,K;,, 1 i <
¢ 5 in S r.

34 Lemma. V(X),...,K,) = V(K. ..., K (m) for any permutation  of

a....,n).

ProoF. This follows from the definition of mixed volume. 0

35Lemma. V(K, ..., K) = V(K) is the volume of K.
PROOF. The proof is immediate with the equation A"V(K) = V(iK) =

A'V(K,K, ..., K) where the first equality is true since V is an n-dimensional
volume, and the second a consequence of Theorem 3.2. O

Example 1. For planar convex bodies K, K, we have V(K1 +K3) = V(K +
V(K>) + 2V (K, K>3). In Figure 9a, b and c the volume of the hatched areas is
2V (K, Ky).
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A

FiGURE 9a,b,c.
3.6 Lemma. V(M Ky + MK, K2 ..., K)) = MV(Ky, Ky oK) +
MV(K{, K2, ..., K,) forany k) > 0,1} > 0.
PROOF. by Theorem 3.2. o
3.7 Theorem. V(K;, ..., K,) can be expressed as a linear combination of
volumes of sums of the K;, i € {1,...,n}, thatis,
nV(Ky, ..., K)=V{Ki +--- + K.

n
—ZV(K] +-+ K+ K+ +K)
i=] :

+Y V(K e+ Koo Koy 4o K

i<
+ K+ +K)—+---
n
+ (=Y VK K+ DY VKD,
i<jf i=1
In particular, forn =3,
6V (K1, K2, K3) =V(Ki + K2 + K3) — V(K2 + K3) — V(K1 + K3)
— V(K + K2) + V(K) + V(K2) + V(Ky).

PROOF. Because of Lemma 3.4 and Lemma 3.6, we can treat the equation of the
theorem in the same way as the equation

v

nlay---aq, =(ay +--- ‘*‘an)n
@) ~Sa+ - Fai Fam +ooan)
i=1

et (_l),,_2 Z(ai + aj)n + (_1)11—] Zagr
1

i<j i=

in elementary algebra.
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To verify (2) we proceed as follows. First, we look at all terms in which af
occurs, In the first term, we find it once, in the second # — 1 times, in the third
(";]) times, and so on. Altogether, it occurs

~1 —1
1*(n—1)+("2 )—+--~+(—1)"'3(:_3)

+ 2 - D+ (=)= - =0

times. In the same way, we proceed for af~'az, and so on. The only term which
occurs only once on the right side of (2) is nlay - - - a, (in the first term). All others
cancel out. O

3.8 Lemma. The mixed volume V(K,,..., K,) depends continuously on

Ky, ..., K, (in the Hausdorff metric), hence, Lemmas 3.4 to 3.6 and Theorem
3.7 extend to arbitrary convex bodies.

Proor. This follows from Theorem 3.7 since the ordinary volume and
Minkowski sum depend continuously on the polytopes. ]
The Proof of Theorem 3.2 is now readily completed by applying Lemma 3.8.
Example 2. Let § := conv{0, e}, ¢;, ¢3} be a simplex in R?, and I, := [0, e,
I, := [0, e7] line segments. We wish to calculate V (S, I;, L). By Theorem 3.7,
V(S . B)=VS+h+ L) - V(S +1)— V(S +h)

—V(h + )+ V(S + V) + V(L)

Clearly V() = V(h) = V(I + L) = 0 since V(.) denotes three-
dimensional volume. For reasons of symmetry, V(S + I}) = V(S + L,). We
know V() = 16,50 we must only calculate V(S + ) and V(S + 1) + b). We

83

€

FIGURE 10.
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obtain § + /; from S by joining a triangular prism to it (see Figure 10) whose
volume is evidently § . Therefore, V(S + I) = V(S + h) = .

From Figure 10, it is readily seen that V(S + I} + L) = 2%. Therefore
6V(S. I, L) =21 — % + % =1 hence, V(S. I, ) = 3.

39 Theorem. If K,,...,K, are larice polytopes in R, then,
n'V(K,, ..., K,) is an integer.

PROOF. By Theorem 1.5(d), sums of the K; are lattice polytopes. But lattice
polytopes can be dissected into lattice simplices. Each lattice simplex can, by a
volume-preserving affine transformation, be mapped onto a simplex with integral
coordinates on the coordinate axes of R”; therefore, each has volume ’f—| .k an
integer. Hence, the theorem follows from Theorem 3.7.

Exercises

1. The circumference of a planar convex polytope P has length 2V (P, B), where
B is the unit disc.

2. Let S be the simplex as in Example 2, and let /; again be [0, e;]. Find
V(S, =S, ).

3. Let K be any convex body, / a line segment. Then, V(Z, X, ..., K) can be
interpreted as volume of a cylinder. (Hint: V(/, ..., I, K,..., K) = 0if /
occurs at least twice).

4. Asum I, + --- + I, of finitely many line segments is called a zonotope. If
1; = [a;, bj], we call b; — a; a spanning vectorof I,, j = 1,..., r. Express
V(I + --- + I,) by determinants of spanning vectors.

4. Further properties of mixed volumes

Though Minkowski sums have a plausible geometric meaning, this is not so for
mixed volumes. We shall characterize mixed volumes in a way which, at Jeast in
a number of cases, displays them in a geometrical light. Our main aim will be
presented in the next section.

First, we lét P be a polytope and B the unit ball. We introduce angufar measures
in the following way.

4.1 Definition. Let F be a proper face of P. For x € relint F, we set

Of = pp' (X)N(P+B) —x

and call @ the outer angie of P in F (or in x). If dim @7 (= dim(aff @F)) = .
we say u(@F) is the angular measure of P in F (or in x), where v () denotes
k-dimensional volume.

ot A —n s A et o S8
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4.2 Lemma.
"V
k (1---7B’Ps---7p)= Z Uk(@[-‘)vn_k(p).
M n—k (n—k)—faces F

PrROOF. Fork = 0, we have F = P as an improper face. Then, we have
Or = {0}, and we set vo({0}) = 1. Then, V(P, ..., P) = V(P) = v,(P)isthe
volume of P (see Lemma 3.5).

We consider P + AB, A > 0. By Theorem 3.2,

(1) V(P + AB) =V(P) + x(’l‘) V(B, P, ..., P)

+A2(;)V(B, B.P,...,P)

n— n
+ei A ‘(n_ 1)V(B,...,B, P) + A"V (B).

Conversely, we decompose P + A8 as follows.

k = 0: F = P is the “inner” part of P + AB, and has volume V(P).

k = 1: Let F be a facet, and consider “above™ F the prism with basis F and
height A. The volume of the union of all such prisms is A ¥ v,_, (F) summed over
all facets F.

k = 2: Consider an (n — 2)-face F of P. Above F, we have a “log” (compare
Figure 11)

U pa' ) N (P +aB)).

perelint F

FIGURE 11.
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The total volume of all such pieces of P + AB is

Y v(@p)ua(F).

F an (n—2)—face

We continue in this way and obtain, finally,
k = n — 1: For any edge F of P, we find, “above,” F a piece of P + A B whose
volume is A" 'y, _1(©f)u; (F), s0, altogether

P Z U1 (@ p)ur (F).

F an edge

Now,

@ V@P+AB)=VPY+L Y. (@ i(F)

(n—1)—faces F
+o AT Y 0 (@R (F) + ATV(B).
1—faces F
By comparing coefficients in (1) and (2), we obtain the lemma. O

Example 1. Let P be atriangular prism with vertices 0, e;, €2, €3, €1+ €3, €2+ ¢€3.
Itis readily seen that3V(B, P, P) = 3+ V2and3V(B, B, P) = 2+ %ﬁ)n’.

Lemma 4.2 can be generalized such that B is replaced by any convex body Q.
We introduce outer angles with respect to Q which depend on the shape of Q and
also on the choice of 0 € Q. Before we introduce generalized outer angles, we
define the following notions.

4.3 Definition. Let Q be a convex body in R”, 0 € int 0, and let M be a set of
vectors in R”. Then, we call the point set

rg = |J @nHwy

ueM\ (0}

the M-shadow boundary of . We say I‘ﬁ is sharp if (x + ML) N @ is a single
point for each x € F‘g,. If M is a subspace of R", we call Ff, the shadow boundary
of Q in direction M*.

The intuitive meaning of “shadow boundary” is best illustrated for M being an
(n — 1)-dimensional subspace in R”. Under “illumination” of Q by rays of light
in the direction of a spanning vector of the line M+, the shadow boundary I‘f,
consists of those points on 3 Q in which the rays of light “touch” Q.

Example 2. Let Q be a cube in R®, M a two-dimensional subspace of R*. In
general, T2 is a hexagon on 3Q (1234561 in Figure 12). If we choose P to be
the octahedron Q* and F = [a, b] is an edge of P (compare Figure 12), then,

r$ . = F* (polar face of F on Q).
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FIGURE 12.

Exampée 3. If @ = Bisthe unit ball and U is an 7-dimensional subspace of R",
then, I';; is an r-dimensional great sphere on 3 B. For a k-dimensional face F of

any polytope P, the set I‘ﬁm is a spherical cell on 3 B of dimensionn — k — 1,
and

conv (F$,z, U (O} = ©.

Exampled. Let Q = P be an n-polytope, and let M be a hyperplane. Then, [ S

1s sharp if M is not perpendicular to the affine hull of an at least one-dimensional
face of Q.

4.4 Definition. Let U denote the linear subspace of R” which is a translate of
aff F (F some polytope). We say two polytopes P, Q are in skew position if, for

any pair F := P N Hp(u), G := Q N Hp(u) of faces defined by the same outer
normal u, we have

UrnUg = {0}

o te A . O

Clearly,

i
1
‘3 4.5 Lemma. If P and Q are in skew position, then, for any proper face F of P

the N (F)-shadow boundary Fs( ¢ of Q is sharp (N (F) the cone of normals; see
I, Definition 4.12).

Now we show the following lemma:

4.6 Lemma. Let P, Q be n-polytopes in R". Then, for any € > 0, there exists a
polytope ' such that

(1) d(Q, Q) < ¢.and
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(2) P and Q' are in skew position.

PROOF. Let G,,..., G, be those faces of Q for which faces Fy,..., F, of P
exist, respectively, such that Ur, N Ug, # {0},i = 1, ..., r. Up to renumbering,
letdim G, = --- = dimG,, = ky,...,dimG, = --- = dimG, = k; and
ky > --- > k¢ = 1. From each G, we choose a point

g erelintG;, i=1...,r

Successively, we pull up g; to a point g; in the sense of III, Definition 2.3, where
lg; — ¢ill < e canbe assumed,i =1,...,r.

First, we pull up the ¢; with dim G; = k, then those g, with dim G; = k;,
and so on. Since k; > - - - > kg, in the ith pulling up the faces G;14, ..., G, are
not affected. So, as a result of the r pulling ups, we obtain a polytope Q' for which
(0, Q) < &.

If G; is contained in a nonsharp N (F)-shadow boundary I‘ﬁ(r) (F = Fjor

some other face F of P) such that a translate of G, is contained in U, then, rﬁ( £

no longer contains a point of G, and, for ¢; € relint G, the vertex g; of @2
satisfies (Ur + ¢)) N Q' = {g;}. This readily implies (2). a

4.7 Lemma. Ifwe set, for the points q; in the proof of Lemma 4.6,
(1) '=q; +t(q — q),

then, for Q1) := conv (Q U{q1(1),....q-DN). P = {q1,--., 4.}, the N(F)-
shadow boundary I‘s(('}) is sharp, provided 0 <t < 1, and the set

O<t=x<l, i=1,...,r

AP . _ 1 Q) ¢
O = }1_'3(‘) Fr € Thery
is a topological ball of dimension, at most, n — dim F — 1.

PrROOF. Eachte with0 < ¢ < 1 can be chosen instead of ¢ so as to provide a
sharp shadow boundary of the “pulled up” polytope (Q(¢). Each two such shadow
boundaries represent subcomplexes of B(Q(¢)) which are isomorphic. Since the
vertices of these subcomplexes converge to distinct points as ¢ — 0, the lemma
follows. a

4.8 Deﬁniﬁqn. Wecallaset? .= {q),....¢,}aschosenin Lemma4.7 a puAlling
set and say G)g‘p is a local P-shadow boundary or local shadow boundary G)g if
it does not depend on P. We set

(:)(FJ‘P ={sy|0<s<1 yE€ C:)g'Pl.
Furthermore, let Erbe the linear space which is an orthogonal complement of
aff F, and let ¢ be the orthogonal projection onto E. Then,
0¢% = 7:(6%%)
is called the outer (@, P)-angle of P in F (or in a point of relint F). We set
Gg := ©Z7” if it does not depend on P and say @2 is the outer Q-angle of P in
F.

e 27 Al S ¢ A o a7
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Figure 13 provides an illustration for a set (:)2-” and its projection to 92‘7’. Er
is shown in a translated position (so it can be better visualized). Like a “Chinese
fan”, (Z)Q-” is composed of triangles with one side on é%” which is a polygonal
arc from 1 to 2. If P and Q are in a skew position, égp = é? and ®F'P = @?
do not depend on the choice of P.

Clearly, ®2'7 has finite k-dimensional volume v (%) for k = n — dim F.

4.9 Lemma. Let P, Q be n-polytopes. Then,

n
3) (k)V(Q,...,Q,P,...,P)z 3
k

ek (n—k)—faces F of P

v (©2 ),k (F).

PROOF. Asinthe case @ = B (Lemma 4.2), we consider a split of P + A0 into
pieces “above” the faces of the “inner” part P of P+ 10,0 < A < 1.However, in
this case, we cannot use the nearest point map for describing these gieces. Instead,
we observe that each of them is bounded by two translates of ®AFQ‘ and translates
of F (compare Figure 13). For the volume of the piece, we obtain

u (@32 PYv, o (F) = 20 (@2 Ty, (F).
Now we apply the same arguments as in the proof of Lemma 4.2 and obtain

Lemma 4.9, |

Example 5. Let P be a unit cube and £ P* an octahedron (P* polar to P, compare
Example 2), £ > 0. As an illustration, replace each circular arc in Figure 11 by a
line segment with the same endpoints. Now, we readily obtain

3 1
(1)V(sP‘, eP* P)=12. 582 = 6g2,

FIGURE 13.
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hence, V(P*, P*, P) = 2.
Lemma 4.9 is the starting point for proving the following three theorems.

4.10 Theorem. Let K be any convex body, and let Py, ..., P,_1 be polytopes.
Then, (hx(-) support function, compare 1, 5.1)

C) nVK, P Pac) = Y Bk @(F, . o)

llull=1
where F; := P, N Hp (u), u an outer facet normal of P = Py + ..« + P,_,,
F=FR4+---+F,_afacetof P,and v(-, ..., ") denotes (n — 1)-dimensional
mixed volume.

PRrROOF. Weset P .= AP + --- + AP A >0,i=1,...,n—1.
For a given ¢ > 0, we choose a polytope @ such that (K, Q) < ¢ and P, QO
are in skew position (Lemma 4.5). For any facet F of P, the outer Q-angle ®g
is a line segment perpendicular to aff F and has length Ay (u) if u is the outer
unit normal of F. If we apply Theorem 3.2 to both sides of (3) in Lemma 4.9 and
compare coefficients, we obtain (4) in the case X = (. Since mixed volumes
and support functions depend continuously on the respective convex bodies, the
theorem follows. O

4.11 Theorem. Ler Q, P, ..., P,_« be polytopes, and let P be a pulling set for
Pr+---4+ P,_,. Then,

n
(5) ( )V(Qv CCICIY Qv Plv crey Pn-—k) = Z Uk(eg'P)Uar—k(Fl, Py El—k)
k N——e——— F
k
where F = Fy+- - -+ F,_; isanarbitrary (n — k)-faceof P = Py +-- -+ P,_;,
Frafaceof Pi = 1,...,n — k,and vy,_4(-, ..., ") the (n — k)-dimensional
mixed volume.

PROOF. We compare coefficients after replacing P in (3) by P, + --- +
An_t P, and apply continuity arguments. ]

Remark. Theorem 4.11 may be extended to convex bodies X instead of polytopes
Q after ®X has been defined by a limit. We do not carry this out.

-

4.12 Theorem. Let K, K', K\, ..., K,_; be convex bodies, and let K C K'.
Then,

(6) VK. Ky,....,K,.) < VXK', K\, ..., K,_1).

PROOF. Given any ¢ > 0, we choose polytopes Py, ..., P,-; such that

d(K;, P) <ei=1,...,n—1

Let0 € K C K'.Then, hg(u) < kg () for all ¥ € R*. Hence, (6) is implied
by (4) in the case of polytopes Pi. ..., P, ;. By continuity arguments, Theorem
4.12 follows. ]
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4.13 Theorem. Let K, ..., K, be convex bodies. Then,

(a) V(K11 ey Km) > 0:

(b) V(Ki,...,K,) > Oifand only if each K; contains a line segment I; =
la;, bi] such thatb, — ay, ..., b, — a, are linearly independent.

PRrROOF.

(a) If we replace each K; by one of its points, p;, i = 1,...,n, and apply
Theorem 4.12, we obtain (a) from V (py, ..., DPn) = 0 (which follows, for
example, by Theorem 3.7).

(b) From Theorem 3.7, we obtain

"!V(Ily L) In) = V(Il + -+ In) = Idet(bl —Qly ..., bn - an)',
and by (6), we know V(Ky,...,K,) > V({y,...,1,). So, | det(b; —
ayy ..., by —a,)| > Oimplies V(Ky, ..., K,) > 0.

Conversely, let V(K, ..., K,) > 0,and suppose | det(b; —a,, ..., b, —

a,)| = O for arbitrary a;, b; € K;,i = 1,...,n. Then, the linear hull of
(Ky — K)) U --- U (K, — K,) has dimension, at most, n — 1, and, up to

translations, K; € H,i = 1,...,n. Then, Ki+.---+K;, C Hand
V(K + .-+ + K, ) = 0 for arbitrary index sets {in, ..., i} C{l,...,nl.
By Theorem 3.7, this implies V(K1, ..., K,) = 0, a contradiction.

]

Finally, we prove a property of two-dimensional mixed volume needed in the
following section.

4.14 Theorem. Ler A, B be planar convex bodies, and suppose there exist parallel
lines g # h which both support A and B. Then,

N 2V(A, B) = V(A) + V(B).

PROOF. We can assume A, B to be strictly combinatorially isomorphic 2-
polytopes, since a brief calculation shows that the inequality (7) is true if and only
ifitistrue for A, := 14 4+ (1 — A)B, By =uA+(0-u)B,0 < <pu<l,
(4=11,2,3,456,a],B=(I'2,3,4,5,6,b)in Figure 14.)

Consider g, A to be “vertical” lines (Figure 14), and let x4, k5 be the “upper”
polygonal arcs on 3 4, 3 B, respectively, having endpoints on g and &. By a trans-
lation with traces g, & we move B so that k3 is “below” k4. Replacing A, B by
A,, B, respectively, we can arrange, for sufficiently small 4 — A > 0, that the
following is true:

(c) Leta, bbe verticesof k4, k5, respectively, a, b ¢ gU k, which correspond to
each other under strict combinatorial isomorphism of A;, B,. Also let g’, #’
he the lines through a, b, respectively, paralle! to g. h. Then, the quadrangle
bounded by g’, k', k4, and kg, is contained in A, (compare Figure 14).

Again we write A, B instead of A, B,, respectively. From

l V(A + B) = 2V(A, B) + V(A) + V(B),
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RPN N>

FIGURE 14a,b.c.

we find that
2V(A, B) — V(A) — V(B) = V(A + B) —2V(A) — 2V(B).
It will be more convenient to consider
(8)  V(A.B)— jV(A) — 3 V(B) =2V(5(A+ B)) — V(A) — V(B)

SINCE K 1 (44 ) has vertices i = 1G +ii=1,...,6(see Figure 14ab).

If we consider the triangles (or trapezoids) of A, B, % (A + B) as illustrated in
Figure 14c, we see that :

2V(A(5(A + B)) — V(A(A) — V(A(B)) = 0.

In Figure 14b, an elementary argument shows that the volume of the hatched
parallelogram is larger than that of the dotted parallelogram (or equal if they are
degenerate). By a reflection in a line perpendicular to g, 4 and interchanging A
and B, we obtain an analogous statement for «, & on the “lower” parts of 94, 3B,
respectively. If we sum the differences of such volumes for all vertices of A, B, we
find that the right hand side of (8) is nonnegative. This proves the theorem. a

Exercises

1. Let p;, p2. .. . be a sequence of points in R” converging to a point p, such that
all points of the sequence are vertices of P := conv{py. p2, .. .} U {p}. Then,
we call P a pseudopolytope. Find a pseudopolytope P in R* which has a sharp
shadow boundary of infinite length.

2. Let § := conv{0, ¢|, 3, €3}; €1, €2, €3 be the canonical basis of R°. Calculate
V(S, S, —S) with the aid of Lemma 4.11.

3. If K, L are convex bodies and I = [a, b] a line segment in R3, then, for the
orthogonal projection 7 onto (aff 7 ),

V(K. L, 1) = va(r(K), x(L)) - la — bll.

A s, o il

ek =

e
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4. In Theorem 4.14, let A and B be polytopes. Then, equality in (7) holds if
and only if A, B are obtained, one from the other, by “telescopic extension in
direction g”, that is, by adding a line segment parallel to g (or a point).

S Alexandrov—Fenchel’s inequality

We now state one of the fundamental theorems in the classical theory of convex
bodies. For a proof, we refer to Schneider [1993].

5.1 Theorem (Alexandrov-Fenchel’s inequality). Let K, L, K;,..., K,_; be
convex bodies in R”. Then,
VK, L, Ky, ..., Ky 2)? 2V(K, K. Ky, ..o, Kp2)
(AF) xV(L,L,K,..., Ky-2).
LetC:={K,,...,K,»},sothat V(K,L,C)=V(K,L,K,,..., K,_3). We

discuss some useful variations of Theorem 5.1.
5.2 Theorem. For K, ;= AK+(1 —-AML, L, :=uK+{1-w)L,0<i <],
O=sp=l,
(1) V(Ks, L, O ~V(Ki, K5, OV(L,, L, C)

= — wiV(K, L C? - VK, K,OV(,L,O),
50 that (AF) is true for K, L if and only if it is true for K, L, with A # p.
PROOF. We apply the linearity rules, Lemma 3.6 and Lemma 3.4, and verify (1)

by elementary calculation. 3

We notice that (AF) is trivially true if V(X, K,C) = 0or V(L, L,C) = 0.So
we may assume V(K, XK,C) > Oand V(L, L, ) > 0. Up to a homothety of L,
we can arrange the side condition

(2) VK,K,C) = V(L,L,C)
so that (AF) becomes equivalent to
3) VK,L,C) = V(K,K,C).

5.3 Theorem. Let K, L, K, ..., K,_3 be polytopes, C ={K, ..., K,_2}, and
let VK, K,C) >0, V(L, L,C) > 0. We choose pulling sets Px, Py, Px 1 for
K, L, K + L, respectively, such that the outer angles @5 P, @4 P @K *-Frwt
are defined for each (n — 2)-face F of P := K, + .-+ + K, _; (Definition 4.8).
Then, (2) is equivalent to

@ > [0 — @™ | wiatFis - By = 0
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and (3) is true if and only if
® 2 [m@F ) — 405 vy atFi L By 2 0

is satisfied.

PRrROOF. By Theorem 4.3, we may replace (2) by

@ Y [n@F™) - w@) | uaF,. . R =0

Furthermore, by using (2), we obtain

n D
(2)V(K +L,K+L,C = Z vz(®f+1“P“L) Up—2(F1, ..., Fy2)

= 2(;)[V(K, L,C)+ V(K, K, 0),

so that, if (2), or equivalently (2'), is valid, (3) becomes equivalent to

(3) VK,L.C) - V(K. K,C)
-1

1 /n . P,

) B e et
X Up_o(F1, ..., Fu2) = 0.

Each of the sums is carried out for all (n — 2)-faces Fof P = K|+ . -+ K,_5. O

5.4 Corollary. IfK, L inTheorem 5.3 are replaced, according to Theorem 5.2, by
appropriate strictly combinatorially isomorphic polytopes (denoted again K, L)
andif P = Ky + - - - + K,_2 is also stricily combinatorially isomorphic to K, L,
then, we may choose @'F('P", GIF"PL, @f.“'p“" such that

) ®;§+L,P“, _ ®}F(.‘PK + @i_ P,

and (3) in Theorem 5.3 becomes equivalent to

) 3 [0a@F 7, 0™ = n(@F ) v o(Fi, . F) 2 0
where the sum is taken for all (n — 2)-faces of P.

PrROOF. In Theorem 5.2, if the term |A — p| is chosen small enough and 0 €
(int K) N (int L), then, given any facet G of L, we may find a ray g emanating
from 0 which intersects relint G, relint G, and relint G” where G', G” are the
facets of K, K + L, respectively, which correspond to G under strict combinatorial
isomorphisms. Let P, consist of all ¢ N G and an arbitrarily chosen point on
each (n — 2)-face of K, also Pk consist of all g; N G’ and points on (n — 2)-faces.
Then, Px 4. may be chosenas {a +b | a € Px,b € P}, and @)ﬁ‘p“’, ®ﬁ-'7",

OF*EPX+1 are quadrangles such that the sides containing 0 as an endpoint have
an intersection different from {0}. Then, (6) is satisfied, and (5') follows from
Theorem 3.2. )

/.
1
~
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Remark. Forn =2, V(X,K,C) = V(K) = V(L) = V(L, L, C) inCorollary
0, and (5’) becomes equivalent to Theorem 4.14.

We now turn to the question: When does equality hold in (AF)?

Clearly a sufficient condition is K and L to be homothetic: If K = a + 1L,
t > 0,then, V(K,L,C) =V(a+tL,L,C)=1tV(L,L,C),so that equality in
(AF) follows. However, homothety of K and L is not necessary.

Example 1. In B3, let I; 1= [a;,b;], j = 1,2, 3, be line segments such that
by, — ay, b, — a3, by — a3 are linearly independent. Then, for K = I} + &,
L = I+ L1, Ky .= I) + I, an easy calculation shows that equality holds in
(AF).

Example 2. Let K, be a 3-simplex in R?, and let X, L be obtained from X by
chopping off the vertices but leaving at least one point of each edge remaining
(Figure 15). Then, (2") and equality in (3") are trivially true, so that equality in
(AF) follows.

Remark. The problem to find necessary and sufficient conditions for K, L, C
under which equality in (AF) holds is currently unsolved (see the Appendix to this
section).

We present a special result:

5.5 Theorem. Let Ky, ..., K,_» be strictly combinatorially isomorphic n-

polytopes, and let K, L be n-polytopes such that K + L is in skew position 1o a

K, (and, hence, to each K, j = 1, ..., n — 2). Then, equality in (AF) holds if

and only if, up 10 a homothety of L, we have

(S) (Schneider’s condition) If Hy, (#) is a supporting hyperplane of K ;, such
that F = K;, N Hy, (4) isan (n — 2)-face of K, then,

Hy(u) = Hp(u).

VRS
\

~ 1

-~
~

(X4

Ny

FIGURE 15.
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PROOF. We can express () in terms of ©X. @%. Consider the set ®F (see
Decfinition 4.8). By the assumptions of the theorem and by using (1) in Lemma
5.4, we may suppose K, L to be strictly combinatorially isomorphic and both
in skew position to P. Then (:')’F( is a polygonal arc. Both end points of (:)’F‘ are
also end points of further local shadow boundaries. In fact, there is a one-to-one—
correspondence between the set of local shadow boundaries and the set of edges
of the dual polytope P* of P. It provides a homeomorphism between the union
of all local shadow boundaries of K and the union of all (closed) edges of P*
(which carries the edge graph of P*). Since the edge graph of P* is connected,
so is the union of all local shadow boundaries. Hence, from the definition of @5 .
(and, analoguously, ©%), (S) is equivalent to the following condition:

(S) Foreach (n — 2)-face Fof P =K, +--- + K,_3,

Of = el

It even suffices to show the following:

(8") Let F be an (n — 2)-face of P, and letax, a; be parallel edges of OX L,
respectively, which do not contain Q. Then, the lengths ok, a; of ak, a;,
respectively, are equal.

To deduce (8”) from equality in (AF), we introduce the following operations. Let
G = K N Hg(u) be a face of K. Also, let H be a hyperplane parallel to Hx ()
which separates vert G from (vert X) \ (vert G), such that vert G C int H,
(vert X) \ (vert G) C H~.Let ¢ be the distance of 4 and Hx (). Then, we set

cu,e)K = KNH™
and call c(u, £) a cut operation (Figure 16).
Suppose, in (8"),
(7) ag < 0y.
Let G x,» G be the inverse images of ak, a; on the local shadow boundaries
oF, oL £, respectively. Then G, G, are also parallel line segments. Let Gx =
K ﬂ Hy(uw), Gy = LN H (u), F = PN Hp(u).

Weapply cutoperations c(u, £),c(u, ') to K, L, respectively. Asaconsequence,
trapezoids are cut off from @ ®L. Also other outer K-angles and L-angles are,

Hx(u)

FIGURE 16.
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in general, affected. We denote them by @F =: @, ... . ©K  and 0L =:
L
O’-Hl"' 65"\!)

From each ©% 41> An area is cut off which can be split according to Figure 17.
One part is a trapezoid T with upper base length c;ax and altitude d;e for

constants ¢;, d;, 0 < ¢; < l 0 < d <1, c1 = d; = 1. The remaining part
(shaded in Figure 17) can be split into triangles ’K ..... tk & (asindicated in Figure
17) with areas e;; - £%, ¢;; constants, i = 1, rij = l e S

We proceed analogously for ©% . From the strict combinatorial isomorphism
of K, L, we see that the trapezoids 7, have upper base lengths ¢,o; and dlutudes
d;¢’ for the same constants ¢;, d; as above Also, the corresponding triangles ¢,
haveareaﬁe,,e Jd =1, =1, Si.

Hence, the change in (2 )\ asa consequence of ¢(u. &) applied to K and ¢ (u, ')
applied to L, amounts to

(8) (xxe — are) i cidi + (82 — &) Xr: i €.

i= i=1 j=I

Since oy < @y, we find ¢ > &’ (both sufficiently small) such that (8) vanishes.
Then, (2') is established for c(u, €)K, ¢(u, £')L instead of K, L, respectively.

Now we investigate the change in (3'). Since T and 7} are strictly
combinatorially isomorphic,

Tpor =T + T}

Let the lower base lines of 7, T} have lengths ¢;ax +CiE, cioy -G8, respectively,

for appropriate constants ¢;, i = 1, , 7. Then, by a brief calculation (Figure

18),
v2(Thy ) — 2va(Th) — 2u(T})
= M (3 (T + T = $0a(TE) — Lua(T))
= d¢idi(e — &) — ax) — 8cici(e — )2
;

Ty =(8,9,10,11] 5% =1, 2, 12]
“ =15,6,7)
=[3,11,12) ¢ =[4,7,8]

FIGURE 17.
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- e >3
j\ Y \\\\3”
4 A = = = = = - —_———t =N
VA L
4[\\ 1 \3;
vV \
vy d \
SRR \
v C \
y AV \
Ly k
VA Y '
= 7 2;
1 eba 22

- a —

Ti=0,234 Tha=102.3.41 & .¢=p

18. o ' =
FIGURE T£=[1v2,~3l’4’] c-e=a ¢ € =¢ d-ox=e

In the equation above, the quantity 8 z'ic, (e — €")? stems from the homotbetic
triangles with base lengths gie, 2‘,-5’. % c(e+¢") v_vhi_ch are partsof Tp, T7 . Ty y s
respectively. In the same way, for the triangles tz’, 2,7, £z% , , we find that

v(ti) — () — 2u20y7) = Beyie — €)%

Now the total change in (3') as implied by c(«, £), c(u, &) is
r r 5
© e — oL —an) Y cdi - 8 — &) Y @Gci + Y e).
i=1 i=1 i=1

For sufficiently small &, €' (¢ > &), the term (9) becomes positive. Since it must
be subtracted from (3'), we obtain a contradiction to (AF).

Therefore, ex = «;, and we obtain (S”) and, hence, (8", as a consequence of
equality in (AF). ’

If, conversely, (S") is true, the unions of local shadow boundaries of X and L (s.ee
beginning of the proof) are translates of each other, so that, by (2'). (3') equality
in (AF) holds. “

This completes the proof of Theorem 5.5. O

Exercises

1. Deduce from (AF) Minkowski’s “Inequality of the first kind™:

VX,....K, L) > V(K)("_l)/"V(L)l/"_

area—- .
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2. Let Iy, I, I, 14 be line segments in R? such that the difference vectors of their
end points are linearly independent. Show that equality in (AF) holds for

K:=2h+2Lb+5h+1L, L:=10+5L+2hL+2],
Ki=h+15 Ky=D5h+1
but (S) is not true.

3. InR3, let K := conv{ey, ey, e3}, L := conv{ey, €3, 2¢3}, K1 := ~K. Show
that -

V(K. L, K1)’ > V(K, K, K)V(L, L, Ky).
4. InR3, let K be a line segment. Characterize equality in (AF).

6 Ehrhart’s Theorem

Let P be a lattice polytope, that is, a polytope in R* whose vertices all lie in the
(canonical) lattice Z" . We denote by G (P) the number of Iattice points contained in
P. A similar theory can be developed for G (P) as for volumes and mixed volumes.
Here we restrict ourselves to a special question: How does G (kP) depend on k
for natural numbers k£? The answer is given by Ehrhart’s theorem, We shall need
Ehrhart’s theorem in the last section of chapter VIIL It turns out to be equivalent
to the so-called Riemann—Roch-Hirzebruch theorem for torus-invariant invertible
sheaves on smooth, compact, and projective toric varieties.
First we consider a special case:

6.1 Lemma. LetS := conv{0, ai, ..., .} be an n-simplex, wherea, .. ., a, €

Z". There exist consiants B, ..., By € Zxo such that, for any natural number k,
the number of lattice points in kS is

-1 k
G@ks) = (":")M,(H: )+---+ﬁ,,(n).

PROOF. Any lattice point y € kS has a unique representation

(1) y=x+a1al+--~+a,,a,,, a“eZzo, i=1....,n,

where x lies in the half-open interval (parallelepiped)

A= {t1a|+---+t,,a,, IOSti <1l,i= l,...,n}.

Let H; be the hyperplane which contains iay, ..., ia,, for any fixed i €
{0, ..., k}. We determine the number of lattice pointsin H;,N(kS),j =1,...,k,
and those in the “layers” bounded by H; , and H, fori = 1, ... , n. Then, the
lemma is established by using (1).

First, let x = 0 in (1). Then the combinations (1) which lie in # ; satisfy

(2) o+ Fan =, O<o;<j, i=1,...,n
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FIGURE 19. § = [0, a1, a;), A = [0, a1, @2, a1 + @2) \ ([31, @1 + &) U [a3, @) + a3])

We claim that there are precisely (":’i ;1) partitions of the type included in (2). In
fact, forn = 1, thereisonly 1 = (}) possibility. Suppose that the claim is true for
n — 1 instead of . Then, there are ("*/ l‘_";'_z) partitions

@+ Fo = j —ap
of j — a,. By summing, we find that the number of solutions of (2) is

3)

It a, =2 n—2 n+j—3) (n+j72)
- + .

ST () () (0

By another induction (assuming the claim to hold for j — 1 instead of j) and by
using the evident formula

P P\ _ p+1) < q)
@)+ (2)=CT) =

we see that the right hand side of (3) amounts to

n+j—2 + n+j—2)_(n+j—1)
n—1 n-2 n—1 )
as claimed. ) )
Now, we sum over the j, and use an analogous calculation by which we find the
total number of solutions of (1) forx = 0,
Xk:(nﬂ—l) 3 (n+k)
‘= n—1 n
If x lies properly between Hy and H; or on Hi, the number of solutions of (1)
reduces to ("**”"). Similarly, we find ("**~‘) possibilities for each x properly
between H;_, and H; oron H;,i € {1, ..., n}.
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Let 8; denote the number of lattice points in A properly between H;_; and H;
oron Hy,i € {1,...,n}.Inthe case k <« n, B =0forjefk+1,..., 0}
Then, we obtain the formula of the lemma. C

Example 1.. Fora, = (4, 1), az = (2, 3) we see, with the aid of Figure 19, that
B =5, B, = 4, and, hence, GkS) = (*1*) + 5('3") + 4(5) = sk + 2k + 1.
In particular, setting k = 3, gives G(35) = 52.

We call the set § := S\ (conv{0, ay, . . ., An-1}U---Uconv{0,ay,...,a,})
the pseudo-simplex associated with §. By G(M), we denote generally the number
of lattice points contained in the set M.

6.2 Lemma. G(kS,) is a polynomial ink € 7.

PROOF. We will use induction on the dimension of Sy. For dim S; = 0, there is
nothing to prove. So let the lemma be true for the pseudosimplices of dimension
less than ».

We consider the proper faces F("', ..., F of § which contain 0 and satisfy
0 <dim F < n,i =1,...,5.Then, §\ S, = O}UF"u. . .UF isadisjoint
union. By inductive assumption, G(k(S \ So)) = 1+ GG*F")+ -+ GKFY)
1s a polynomial in k. Hence, by Lemma 6.1, G (kSg) = GkS) —1-~ G(kFo”’) -
o+ = G(kF3™) is also a polynomial in . O

Theorem (Ehrhart’s theorem). Let P be a lattice polytope in R". Then, G(k P) is
a polynomial ink € 7.

PROOF. We can assume 0 to be a vertex of P. First, we decompose all faces of
P which do not contain 0 into simplicial complexes whose 0-cells are the given
vertices (see 111, Theorem 2.6). Then, we join each simplex, thus obtained, to 0
resulting in a decomposition of P into a simplicial complex C whose 0O-cells are
the vertices of P. The cells $'V, ..., $*) of C, which contain 0 and are # {0},
have the following property that

P={0lus’u...us®
is a disjoint union. Now the theorem follows from Lemma 6.2. a

Remark. fGkP) = 3! viki,y, € Z:>g, is the Ehrhart polynomial according

to Theorem 6.3 and if P := relint P, then, by a proof similar to that of Ehrhart’s
theorem, one can show Ehrhart’s reciprocity law:

Gk Py = (=1 3"y, (—ky.
i=0
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Exercises

LInRY leta; := 4. 1,1, a; = (2,3,2), a3 = (3,2, 1). Find G(kP) for
P = conv{0, a1, ay. az}. Calculate explicitly G(2P), G(3P). G(4P).

2. Let C be the unit cube (with 2" lattice points). Verify G(kC) = (k + 1)* by
Lemma 6.1.

3. Let E;(P) denote the number of lattice points on the boundary of a lattice

polytope P. Find a formula for (C;(kS } analogous to that in Lemma 6.1.
4. 4.For the simplex S, as in Lemma 6,1, prove (V () denoting volume)

n

nV(S) =Y (;)(—l)fG((n — 8.

=0

7 Zonotopes and arrangements of hyperplanes

7.1 Definition. A Minkowski sum
Z=S+ -+

of line segments Sy, .. .. S, inR" is called a zonotope. If each n of the line segments
point in linearly independent directions we say the zonotope is independent. .

The name “zonotope” is motivated by the “zones” obtained in the case n > 3
and independent Z as the union of all line segments in the boundary of Z which
are parallel toone S;, i € {l....,r} (Figure 20a). If Z is not independent, one
can choose “zones™ as indicated in Figure 20b.

There are many interesting features of zonotopes and applications to other parts
of geometry. We select only a few which we shall need in Chapter VII.

FiGURE 20a,b.
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7.2 Theorem. Forn = 2, a polytope Z is a zonotope if and only if it is centrally
symmetric.

PROOF. Let Z be a zonotope. Up to translations, we can assume that all S; have
midpointsin0,i = 1,....r.So, Zis readily seen to be centrally symmetric.
Conversely. if Z is a planar and centrally symmetric polytope, say,a2k-gon Z =
[a), ..., ax]. consider the parallelogram [a), a2, a4, az42] and the polytopes
Z| = [a|. (/0% DU/ LT a.], ZQ = [ag, asz, ..., &1, az] (Figure 21)
Thenthe (2k —2)-gon Z, U(Z; +a; —ay) =: Zyisagainacentrally symmetric
polytope and

Z=2y+ lay, a]
By induction, we can assume Z; to be a zonotope. Therefore Z is also a

zonotope. a

Remark. Centrally symmetric polytopes in dimensions higher than two need not
he zonotopes as is seen from aregular octahedron in R? which cannot be a zonotope
because of the following theorem:

7.3 Theorem. Each fuce of a zonotope Z is again a zonotope.

PROOF. Let F be a facetof Z and H be a supporting hyperplane of Z for which

F = Z N H is true. We may assume 0 € vert F and S=[0.b1i=1,...,r.
[0, b;] is either contained in H or satisfies [0, ] N H = {0}, say, [0, b;] C H
fori=1,...,5s. ThenF = § +--- + S, readily follows. O

7.4 Definition. A finite set of (n — 1)-dimensional subspaces of R” is called a
hyperplane arrangement of R”. The cones into which R” is split by the hyperplanes
are said to be the cells of the hyperplane arrangement.

Remark. It is often useful 10 consider the projective ((n — 2)-dimensional) hy-
perplanes defined by the hyperplanes of the hyperplane arrangement. For example,

Ak+2

Az

FIGURE 21.
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for n = 3, plane arrangement can well be visualized by line arrangements in the
real projective plane.

The following theorem refers to complete fans as defined in II1, 1.

7.5 Theorem. LetZ = S;+- - -+ S, beann-dimensional zonotope inR", and let
0 be the center of symmetry of Z. Then, the complete fan . defined by projecting
the faces of Z* consists of the celis of a hyperplane arrangement.

Any hyperplane arrangement containing at least n linearly independent
hyperplanes is obtained in this way.

PROOF. Let H; bethe (r — 1)-subspace of R” orthogonaltoaff §;,i = 1,..., 7.
Each face F of Z which contains a translate of §,—we call it an S;-face—has
an affine hull orthogonal to H;; hence, F* is contained in H;. If Z is projected
orthogonally onto H;, we obtain a polytope Z; whose faces are projections of
S;-faces. The polar faces of Z; relative to H; are the F*, F an §;-face. Therefore,
H; carries a complete fan contained in Z.

The one-dimensional space g spanned by a vertex v of Z* is the intersection of
all hyperplanes H,; which are spanned by (r — 2)-faces of Z* containing v. g splits
into two rays which are the one-dimensional cones,and pos F* = pos{vi, ..., vp}
if {vy, ..., vp} = vert F*,

Conversely, if a hyperplane arrangement {H,, . .., H,} is given such that not all
H; are linearly dependent,i = 1,...,r, then, R" \ (F U --- U H,) consists of
open cones whose closures o are cones with apex 0. If ¢; is a normal vector of H;,
i=1,...,r, then,forS; := [—a;, a;) we obtaina zonotope Z = §; +-- -+ Srs
and Z* spans a complete fan which is readily seen to have the above cones ¢ as
n-cones. 0

FiGURE 22,

s s
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Example 1. If Z is a hexagonal prism with centrally symmetric basis, hence, Z*

a hexagonal bipyramid, the projective line arrangement corresponding to it is of
the type illustrated in Figure 22.

Exercises

1. A zor?otope Z is independent if and only if aff S; and aff S ; are not parallel for
i # J, and each proper face of Z is a spar (affine image of a cube).
Let P be a 3-polytope whose facets are centrally symmetric. Then, P is a

zonotope. (Hint: Show that any edge of P determines a “zone”; apply induction
onr),

2,

3. Find simplicial arrangements of 6,7,8 or 9 lines in the real projective plane

which do not correspond to bipyramids.

4. Determine the f-vector of an arbitrary three-dimensional, independent zono-

tope.
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Lattice polytopes and fans

1. Lattice cones

Inl, 1, we introduced the (polyhedral) cone o as the positive hull of finitely many
vectors xy, ..., Xg.

¢3)] c=pos{x|,...,xk}=IR20x1+~--+Rzoxk

It has an apex if there exists a supporting hyperplane H such that H N ¢ =

{0} (compare I, Definition 1.9). That property has an elementary geometric
interpretation:

Remark. Let H and H’ be paraliel hyperplanes in R" with0 € H. Leto be a

polyhedral cone witho N H' # @, Then, H N o = {0} ifand only if H' N o is
bounded.

PROOF. Assumethereisa0 # x ¢ HNo. Then, pos x C H No is unbounded.
If H 3 H’, then, choose ang € H’ No;thena + posx C H' No is unbounded,
a contradiction,

Now assume that there is an unbounded sequence a;, a», ... in H N o. The
sequence |la; [ ~'ay, |laz||'ay, . . . of unit vectors has a cluster pointa € o. Since
H and H’ are parallel, it is casy to see thata € H, contrary to H N o = {0}.

The following theorem enables us to apply results on polytopes to cones;

1.1 Theorem. The Jollowing properties of an, at least, two-dimensional polyhe-
dral cone o are equivalent.

(a) o has apex 0.

(b) There exists a hyperplane H' F O such that H' N o is a polytope.
(c) There exists a polytope P of dimension dim o — 1 such thar

g = pos P,
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PROOF. Suppose (a) to be true: Let H be a hyperplane with H N o = {0}. We
choose a hyperplane H' parallel to H such that H' No # @. Then, H' N o isa
polyhedral set, which is bounded according to the above Remark. This proves (b).

Now, we deduce (c) from (b). Set P := H’ N o, and suppose there 1s a vector
x € ¢ \ pos P.Sincedimg > 1, there exists a vectora € H' N o such that x,
a are linearly independent. Going over to the plane generated by 0, x, and a, we
may assume that n = 2. Then, H' 0 o bounded implies H N o = {0} for H as in
the above remark; in particular, x ¢ H. But, then, pos x N H" is not empty, though
pos x N pos P = {0}.

Let (c) be true. Since dim aff P < dim o, we obtain 0 ¢ aff P. Hence there
exists a hyperplane H' including aff P but not 0. Let H be the hyperplane parallel
to H' through 0. Then H N o = {0} by the above remark. O

Remark. If o = R, then, (b) holds, but neither (a) nor (c). So the condition
dim o > 2 in Theorem 1.1 is essential.

As a consequence of Theorem 1.1, we obtain the following theorem from
Theorems 1.4 and 1.5 in Il applied to (n — 1)-polytopes:

1.2 Theorem. Every polyhedral cone with apex 0 is a polyhedral set

2) Hl+ ﬁ---ﬂH,+,
where
3) Hyn- -NH =1{0].

Conversely, any polyhedral set (2) satisfying (3) is a polyhedral cone with apex 0.

In this chapter, we restrict our attention mainly to the case where x, .. ., x are
lattice points:

1.3 Definition. The points x € Z" C R" are called /attice vectors. In (1), if the

vectors X1, ..., X are lattice vectors, then, we call o a lattice cone (or rational
polyhedral cone). Similarly, we say that conv {xy, . .., x.} is a lattice poiytope if
xy, ..., x, are lattice points.

Remark. The condition “lattice vector” in the definition of a lattice cone may be
replaced by “vector with rational coordinates”, since multiplying all coordinates
with their common denominator yields a lattice vector. To a lattice cone 0 C R"
corresponds a “rational” cone og := o N Q" such that o = dg. Thus, for lattice
cones, we may go over to Q" instead of Z" and profit from the theory of Q-vector
spaces, which is easier than that of Z-modules.

Most properties of lattice cones we consider are not invariant under combi-
natorial isomorphisms (see definition in II, 1), not even under general linear
transformations. Nevertheless, combinatorial facts are often a useful starting point.
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Ff)r exa‘mple, if a classification is to be achieved, we first look at the “coarse” com-
binatorial classification, then specify further. There is a special group of linear
transformations which leaves invariant all properties of cones to be discussed.

1.4 Definition. A linear transformation L : R" —> R” and the matrix repre-

selnting it, with respect to the canonical basis, are called unimodular if L(z") =
Z". -

Unimodular transformations can be characterized as follows.

% 15 I.Jemma. A linear transformation L ; R" —»> R" is unimodular if and only
i if it is represented by a matrix A with integral entries and det A = +1.

{ .
\ PROOF. Let A be unimodular. Evidently, A is invertible as a real matrix. From

A(Z"M C Z”: we infer that A has integral entries: the columns of A are the image
gf the. canonical basis vectors ¢;. In the same way, A~! is integral. Thus, A is
invertible over Z; hence, detA is a unit in Z. The converse is obvious. ]

Example. The linear transformation of R? represented by

A= 11
0 1)/
a “shear-transformation” with {te; | r € R} as axis, is unimodular,

A cgne need not have an apex. However, we can represent every cone in the
following way.
1.6 Lemma,
i@ A.ny n-dimensional cone o is the vector sum of a cone ay with apex 0 and a
linear space U thus,
o =09+ U,

where

dimog + dim U = =,

b , ,
(b) If o is a lattice cone, 0g and U can also be chosen to be lattice cones,
ROOF.

a) The set U := o N (—0) is the maximal linear subspace of R” included
In g. We can choose the generators Xi,...,xxof o sothat x;, ..., x, €
Ux; g Uforj =r+ L..osk,andnox;, j = r + 1 ’ k ;sa
positive linear combination of other elements of {x,.. We set o
pos{x,+1, ...,Xk}. ’

We claim that

., Xk} We setog =

4 (lin op) N lin {xy, ..., x,} = {0).
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e projec-
Otherwise, for at least one x; € {X,41,...,%}, X4 5?3'; ;h ; (; o
tion parallel to lin {x,42, ..., xx} of x,4; would be a poin 7.7
lin {x, X} = pos{xi, ..., x}, so that, for x = ayxy + T
R Kala
(!1...-,‘1720! 0
> Al
Xppl = X A QraXep2 b Xk, Org2, oo, Ok 2

=onxy + - X + oaxeg2 e+ Qi
inimali 3. (4 and {x,
icti to the minimality of {x,41,....x} (
: CO: t;ag‘clt/mirrlnply lin (x|, ..., x,} = U, so part (a) of the lemma follows.

{(b) is a consequence of the way we proved (a). 5

. . . >0,

It should be noted that U in 1.6 is uniquely determined, where'a.s, for dl_maU Iy

we can choose g in many ways. If we write such a decomposition o = oy ,
we tacitly assume ¢y to be of minimal dimension.

1.7 Definition. ¥/ in Lemma 1.6 is called the cospan of o
U = cospano.

The most elementary among the possible building bricks of a polytope is a
simplex. Its counterpart for cones is the following.

1.8 Definition. A cone ¢ = pos{xy, ..., x;) is called simple (?r a simplex cor;e if
. Xi are.linearly independent. o is said to be simplicial if each proper face
Xlyooos

of & is a simplex cone.

i ” i ing of
Remark. We introduce the notion “simplex cone” to avoid a double meaning
“stmplicial cone” occuring in the literature.

From linear algebra, we know Lemma 1.9.

1.9 Lemma.

(a) Let 0 = pos{x,,...
(k — 1)-simplex.

(b) Any simplex cone has O as an apex.

}isa
xi} be a simplex cone. Then, conv {x,, . .., x}
Al

L , o ates are
1.10 Definition. We say a lattice vector is primitive or simple if its C(')Oti(tiil:l:tlzmce
rt;latively prime. If ¢ = pos{xi, - .., x¢}, where x|, ..., x; are prim

vectors, then we call them primitive generators of 0. in R” is said to be regular
A k-dimensional simplex cone & = pos{x, ..., x;} in R . € 7"

if x; are primitive, and if there exist primitive vectors Xi4 1, - - - » Xy

WXy, ..., X

such that
det(xl ‘e ._x") = ﬂ:l

PR
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Ifo =a + cospan ¢ is an arbitrary lattice cone, we call o reguiar if oy is a
simplex cone that is regular. {0} is also called regular.

Some characterizations of regularity are readily shown:

1.11 Lemma. The Jollowing conditions

pos{xy, ..., x,} with apex 0 and x,,
equivaient.

@) ois regular.

(b) Any lattice point of Z" is an integral lineqy combination of x, , .
(¢) Any element of ¢ N 7"

Jor an n-dimensional cone c =

-+ Xy primitive lattice vectors, are

N .
is a nonnegative, integral, linear combination of

Xly 0w, Xy,
(d) There exists a unimodular linear transformation that maps the canonical
basis vectors ey, . . . . e, onto x|,

-+ Xy, respectively,

In later sections we need to splita given cone o into re

gular cones. The first step
is cutting o into simplex cones, which we achieve here:

1.12 Theorem. Any cone ¢ = pos{ay, ..., a.} with apex 0 can be split into
simplex cones ), . . ., o satisfying the following conditions

(@) o =q U Ugy,

(b) o Na; is a face of o, andofa;, i, J=1,...k

) g = pos(a,-l,...,a,-q}forasubset {a,-,,...,a;q} C {ay,

-sar}oi =
1

PROOF. We aply

111, Theorem 2.6 to the cell complex consisting of ¢ and the
faces of o.

O

In the next section we shall need the following separation property (a
consequence of a special case of the so-called Hahn—Banach theorem);

-13Lemma (Separation lemma), Leto =posfay, ..., ar},0'=posiby, ..., b}
¢ cones with apex O such that dim o’ — n and (relint ) N (int ') = B. Then,
here exists q hyperplane H such thato C H*, o' ¢ H- (closed half-spaces).

ROOF. Equivalcntly to the lemma, we claim, that A = conv((—o)Ua’) has a

Pporting hyperplane passing through 0. Otherwise, since dim o’

= n, we find
at A = R”, and, hence,

O=ai(-a )+ - 4+ ap(—a;) + Bib; +--. + Bqb;,
appropriate ¢;, Bi € R0, p > 1, and g > 1 such that among the vectors
v @i by oL b there are n linearly independent ones. Thus,

N + - topa, = Bib;, + .+ Bebj, € oNog' = o
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Let oy, o, be the smallest faces of o, 0”, respectively, which contain ao. Then, it
iseasytoseethata; ,...,a, € oy,and b;, ..., b; € o, S0 we obtain

) dim conv(ay U ay) = n.

Let x € relint op. Then, also, x € relinto; and x € relintoy, hence, x €
relint conv(oy U ;). If k := dim o], choose k + 1 affinely independent points
Co, - - - » ¢ Of o] such that x € relint conv{cy, . .., cx}. Since dimo’ = n, we
can choose points ¢4, - - . » Cn, Such that cg, . . ., c, are vertices of an n-simplex
S C o'. We see that g intersects int S, and so,

(relint o7) N (int S) # 9,
which contradicts the assumption of the lemma. a

As a particular application, we note a property for the dual cone & of a cone @
with apex 0 (in 22 (¢} we shall see that ¢ automatically is full-dimensional).

1.14 Corollary. Leto be a cone in R" with apex 0 and & be n-dimensional. Then,
relinto Nintg # @.

PROOF. Otherwise, there would be a hyperplane H witho C HTandd C H™
by 1.13. For a normal vector v of H pointing into H*, by definitionof &, (v, ) >
0.Hence,d ¢ H¥ N H~ = H, acontradiction to dim¢ = n. a

Exercises

1. In[R?, let o be atwo-dimensional lattice cone with apex 0. ¢ can be mapped by a
unimodular transformation onto ¢’ = pos{e;, ge, +re;} forsomegq, r € Zq,
g, r relatively prime, 0 < g < r.

2. A subset T of a cone o is a face of ¢ if and only if it satisfies the following
conditions.

a. T isacone.
b. fx € o \tandx' € 5,then, x +x’' ¢ 7.

3. Carry out explicitly a subdivision of ¢ into simplex cones if & = pos P, P a

3—CUbe in {(S)-! st $3| 1)} C R4~ *
4, Extend Lemma .13 to the case where o or o’ does not have 0 as an apex.

2. Dual cones and quotient cones

Now we turn to dual cones which are related to the original cones in the same way
as polar polytopes are to the original polytopes. In fact, we shall see that there is
a direct relationship between the two dualizations.
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In1, 49 we have defined the dual cone of a cone o € R" by
F:={xeR"| (x,q) > 0}.

Ifor mve R", we set ';IJ_:: (R>p m). If a cone 7 is included in o, then, obviously,
g C i Moreoyer, 0% = {x | {x,0) = O} satisfies s = & N (-5) C &.
Equality holds if o is a linear subspace.

Exa_mpl:es. If a i.s an angular region in R?, then so is & (see Figure 1a). If o is a
ray in R", then 6 is a half-space H* > o, where H = L. If g isa half-

en g is lane in
R?, then, so is & (Figure 1b). For a quadrant ¢ in R? or an octant in R3 P

, O =a.,
2.1.Theonem. Let o be an n-dimensional cone in R” with apex 0, leth), ..., b
be inner normals of the facets of o. Then Y
¢ = pos{by, ..., b,}.
PROOF. Each pyperpl.anev H = {x | (x,b) = 0} supports o; hence,
{o, b} > 0. This 1mphcs_o* D pos{by, ..., b} If x satisfies (x, o) > 0, but
x ¢ pos{bi, ..., b} =: &, then, there exists a face pos{b;, ..., b;} of & and
a by, such that x = —ab,, + B1b;, + - + Bsbi, with positive a, 8y, ..., 8,
and an a; such that bi,a) = 0for j = 1,..,, s, but (b, ;) > 0. Now
(x, @) = —a(b,, a) < 0, a contradiction. D

For the cone o ill R*, set V := aff o, and let U be the orthogonal complement
of V. Then,6 = (6 N V)@ U and & N V is the dual of o N VinV.

2.2 Lemma. Let o and o; be cones in R”.

(a) Ifdimo = n and o has 0 as apex, then, dim & — n, and & has 0 as apex
(b) cospand = g2, '
(¢} o has 0 as apex, if and only if dim & = n.

D (o1 + 02" =61N06 (a1 + 02 Minkowski sum).

(e) (p’l 00'2)'= (;1 + 5’2.

(f) F = a.

FIGURE 1a,b,
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PROOF.

(d), (&), and (f) follow from the definition of dual cones.

(c) Let o # 0 have an apex. Then, there is a hyperplane H with # N o = 0,
Ht D o.letb € o be a generator of the ray H+. In a sufficiently small
neighborhood of b, we find linearly independent vectors by, ..., b, such
that, for H; := {x | {x,b;) = 0}, we alsohaveo N H; = 0ando C H,
i =1,...,n (otherwise H N o # 0 would follow from o being a closed
set). Clearly, b; € &, and, therefore, pos{d, ..., by} C & implies & to be
n-dimensional.

The converse is shown analogously.

(a) Letu € int 0. Then, for the facet normals b, .. ., b, as in Theorem 2.1,
{u, b)) > 0, fori =1,...,r.

Hence, for # := {x | {u, x} = 0}, by Theorem 2.1, we obtain,

HNg = {0}
(b) We obtain the following equivalent statements:
(bl) x € cospang = ¢ N (—a).
(b2) {(x,0) > 0and {—x,0) > 0.
(b3) (x,0) =0.
(b4) x €0,

2.3 Lemma. Let T be a face ofa, and let 0 # m € relint (t* N &). Then,
T =0 + Rxo(—m).

PROOF. If we can show that the obvious inclusions

(n T ConNm Con(-my

are equalities, then the claim follows immediately from 22 (¢).Forx € o 0 (—m),
we know Ehat {(x,m) < 0, while m € & means {x, m) > 0; hence, 6 N mt =
g N (—m).Fort D o N m™* it suffices to verify the following:

Ifveo\t, then, {m, v} #0.

Obviously we may assume that v # —m. Going over to the plane generated by 0,
v, and m, we may assume that n = 2. Then, lint = m* and v ¢ lin 7, hence,
(v,m) # 0. a

As we see from Lemma 2.2, the structure of ¢ is largely determined if, in
o = oy + cospan o, we know the structure of &y relative to lin op. So, we are
mainly interested in theorems about duals of full-dimensional cones with 0 as an

apex.
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It _tums.out that we only have to apply the results of II, 2 since there is a simple
relationship between polar polytopes and dual cones:;

" 2.4 Theorem. Let g be an n-dimensional cone in R" with apex 0. Then, we can

i
i
i

]
[y

i
]
g

find an (n — 1)-polytope P and a point u € relint P such that
(a) o = pos P,

(b) If P* denotes the polar of P in aff P with respect to the unit sphere centered
inu, and P is the reflection 2u — P* of P* in u (Figure 2), then,

J = pos P*.

PROOF. By 22 (c) and 114, there exists a unit vector # (intg) N (int &). We
may assume that# = (0, 1). Let us decompose every x € R” = R"~! x R in the
formx = (x', x,).Since 4 € int& andut = R"! x {0}, we obtainu-Ng = {0}
Then, ut 4 u = R*! x{1}, and .

P:= R x{IlhNo = P’ x {1}

is,ﬁ ]polytope with u € relint P and 0 € relint P'. For the polar bodies P* in
R*™" x{1} and P™* in R"~', we, obviously, have

P = P" x (1}.

But (,*' ¥) = lon P'is equivalent to ((*, 1), (', =1)) < 0 on P, that is,
0 (¥, =1) € =6, so that (since y’ € P™ is equivalent to (y', 1) € P* or

(Y, —1) € P* = 2u)
6 = — pos(P* — 2u) = pos(2u — P*) = pos P*.
0O

S Deﬁnitiop. By the assignment F +> F* of the faces of P respectively P* in
ff P according to I1, 21, we obtain an assignment

T:=posF +— T :=pos(—F* + 2u)
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between the faces of the cones o := pos P and & = pos P*. We call 7 the dual
face of T.

From II, Theorem 2.5 we find Theorem 2.6.

2.6 Theorem. Le: o be an n-dimensional cone with 0 as apex, and let fi (o)
denote the number of k-faces of . Then,

Ji(@) = fau(0)  fork=0,., .,n—1
2.7 Definition. Leto = og +cospano ando’ = o + cospan o’ be two n-cones
inR". Assume there are polytopes P in gp and P’ in o of codimension | such that
ap = pos P and o = pos P’.

) . ~ . o p
Then we call ¢ and o’ combinatorially isomorphic, ¢ =~ o', if P ~ P
and dimcospano = dim cospang’. Equivalence classes of combinatorially
isomorphic cones are said to be rypes of cones.

Inll, Definition 2.7 we have introduced the quotient polytope P JF.It depen(.is on
the choice of the defining affine space U its type, however, is uniquely determined.
For cones, we introduce quotients as follows.

2.8 Definition. If o is an n-dimensional cone with apex 0 and if t is a face of o,
we define the quotient cone o /1 as the type of

pos(P/F),
where ¢ = pos P, t = pos F, P an (n — 1)-polytope, and P/F a quotient
polytope.

If z is {0}, then, F = @, and, thus, 0/{0} = o. . .
Let us denote by B;(.) the set of proper, at least one-dimensional faces. By
Theorem 2.4 and Theorem I, 2.9 we derive Theorem 2.9.

2.9 Theorem. Le: [T, o] be the set of proper faces of o including T. Then we have
bijective, inclusion-preserving and, inclusion-reversing maps yr and ¢

[t. o] —‘7 Bi(a/7) 7 Bi(¥).

The following result is of importance for the construction of toric varieties.

2.10 Theorem, 5
(a) Ifo is a latiice cone, then, soiso.
(b) Ifo is regular, then 50 is G.

Proor. For the lattice cone o, we may consider all generators over Q instead of

R: In the decomposition o = ga + 7/ for U := cospan o, the space U and (by ‘

A o i e . o o et s AR o
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16 (b)) the cone oy have generators over Qso- Since & = 64 N T by 22 (d), we
essentially have to analyze Gy, and, up to a direct factor, we may do that in aff o).
Hence, we may assume that o — posix;, ..., %} with primitive generators x ;s
of full dimension » and has apex 0.

If H = lin r forafacetr of o, then, H = u* forsome u € Q". We may assume
that H = lin{x,, ..., x,_,}; then, we may choose u as the solution of the system
of equations {x;, u) = Sjm,forj = 1,...,nIfu, ..., u; denote the vectors
thus constructed for the different facets of o, then, by 21,6 = pos{uy, .
which proves (a).

For (b) we know, in addition, that n = ¢ = /. Thus, the matrix A =
(u},...,u)) is inverse to the matrix (x1, ..., x,). Since, by assumption,
det A~! = +1, Cramers rule implies that A has integral entries. a

-"ul},

For a linear map L between vector spaces, we denote by L* the dual map;
moreover, we identify the linear form (g, ) with a.

2.11 Corollary. Leto C R" and o’ C R’ be lattice cones, and let L : R" —

R’ be a linear map such that L(Z") C 7' and L(o) C o’. Then, L(0) and L*(6")
are lattice cones, and

L*cY co.
PROOF. Using elementary rules from linear algebra, we find that
L*@) ={L'®) | (x,0) 2 0} C {L*®) | {x, L(0)) > 0}
={L*x) [{L"(x),0) 20} C {v | (v,0) 2 0} = 5.

With respect to appropriate bases for 2" and 7", L* is represented by the
transposed matrix of the matrix which represents L. Thus, L(Z") C Z" implies
L*(Z') C Z". Hence, by Lemma 2.10, &, ¢, and, thus, L(o) and L*(o’) are

lattice cones. )

Exercises

l. Let a regular octahedron P be embedded in the hyperplane {(%, &,
£, 1)} of R*. Find the dual cone of o := pos P. (Use appropriate coordinates
for the vertices of P).

2. InR" acone o is self-dual, 0 = &, if and only if o = pos{a,...,a,} and

ai, ..., a, is an orthogonal basis of R".
- Lety € o. The following conditions are equivalent (each implies all others)
a. y € relinto.
b. (y,u) > Oforallu e 5 \ ot
c. 6 N (pos{yh+ = o,
d. o + Rxo(~y) = 0 + (—0).

. For cones, prove a statement analogous to that of 11, 2, Exercise 4.
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3. Monoids

3.1 Definition. A semi-group, that is a non-empty set § with an associative
operation

+:85x8— S,
is called a monoid if it is commutative and has a zero, i.e., an element 0 € § for
which
s+0=s, foralls e S,
and it satisfies the cancellation law

s+x=1+ximpliess =, foralls, t,x €.

3.2 Lemma. Ifo isa cone inR", then, 0 N Z" is a monoid.

PROOF. From the definition of acone o, x + y isino if x, y € o, in particular,
x+yeanZ'ifx,y € o NZ" The zero vector is the zero of the monoid. O

3.3 Definition. A monoid S is said to be finitely generated if there exist
ai, ..., a, € 8,called generators, such that

S=2Zs081 4+ -+ Zzpar-

A system of generators is called minimal if none of its elements is generated by
the others.

3.4 Lemma (Gordan's Lemma). If o is a lattice cone in R, then, the monoid
o N Z" is finitely generated.

PROOF. By Lemma 1.6 and Theorem 1.12, we may assume o to be a simplex
cone, ie., o = pos{a), ..., a) where ay, ..., a; are simple and £ < n.
Then the “fundamental parallelepiped”

k
Fi={) tja; 10<¢t <1

j=1

includes only finitely many lattice points. For each x € o N Z", there exists a
lattice point 'y € Z’;zl Z>oa; suchthatx —y € F. ) o

Example 1. Foro = pos{(7, 2), (2, 5)}in R2, it suffices to choose as additional
generators (1, 1), (2, 1), (3, 1), (1, 2) (see Figure 3).

Remark. We can obtain an example of a monoid which is not finitely generated
by considering a non-closed cone o

Let o' = pos{e;, ez} in R?, 0 := o’ \ pos {e;}. Then, o N 7?2 is not finitely
generated (see also Exercise 2(a)).

- a—
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FIGURE 3.

35 Lemma. If o has an apex, then, the monoid 6 N 7" has ( up to renumbering)
precisely one minimal system of generators.

PROOF. Let ay,...,a, and by, ..., b, be different minimal systems of
generators and b, ¢ {a,, ..., a}, say. There exist linear combinations, say

,
by = ija,- forA; € Zso
Jj=l .

and

n
a; = Zﬂikblu Wik € Zo fori = 1,... 1,
k=1

that yield a representation

m
by = Z Viby,
k=1

r .
! : 3 j=1 *juj1 > O, since the b;’s form a minimal system of generators
fls a monou_i. Or} the other hand, y; < 1; otherwise, -4, € o, though o has an
apex. That implies y, = 1 and y, = 0 fork > 2, since Yo owvb =0.Asa

where Y1 =

consequence, r = 1 and, thus, &, = a, a contradiction. 0

3.6 Lemma.

(a) A monoid S with generators ay, . . . , a; can be embedded as a subsemigroup
g)to a group G(S) which has ay, . . ., a; as group generators ( coefficients in

(b) GoNZ)=(—-ag)nz'.
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PRrOOF. o - when
(a) is shown by a standard procedure in linear algebra used, for example, whe
the semi-group of natural numbers is extended to the group of integers or

(Z,\{0}, -) is extended to (Q \{0}, -).
(b) This is clear from (a). -

3.7 Definition. A monoid S is called saturated if ax € S for ¢ € Z>o and
x € G(S) implies x € §.

From the definition of o N Z", we have Lemma 3.8.
3.8 Lemma. For every cone o, the monoid o N Z" is saturated.

We remark that non-saturated monoids can easily bc constructed from o N Z”
by omitting certain subsets of o N Z", as in the following examples:
Example 2. Letx,,...,x; € 6 N Z". Then, S(xy, ... . X;) U {0}, where
Sxp, .., x) =[x1+a)U---Ulx, +o0)NZ"

is a submonoid of & N Z” (Figure 4). Also, [Z" Nconv S(xy, ..., x,)]U {0}isa
submonoid.

Example 3. For every monoid ¢ N Z", where the cone ¢ = pos{ay, ....ax} is
generated by primitive lattice vectors a;,

8o = lagay + - + opa | &1, ..., 05 € Z>o}

is a submonoid. As is seen from Example 1, So need not be equal to o N Z".

In general there are relationships betweena, . . . , a,, which we discuss by using
the following notion:

X1

o Xa

FIGURE 4.
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3.9 Definition. Givenaset X = {a,..., ar} C Z7, wecall a vector (A, u) €
(R>0)" x (R»0)" a positive linear relation of X if S e = iy Mia;. We
denote the set of all positive linear relations of X by poslin X.

3.10 Lemma.
(a) poslin X is a lattice cone in RY.
(b) Z*¥ Nposlin X is a finitely generated monoid in R* .

Proor. Ifa, 8 € poslin X, clearly o + B € poslin X, also ta € poslin X for

every f € Rxp- So, poslin X is a cone in R%. Its linear hull is V := poslin X —
poslin X, and

poslin X = V N (R-)?.

Since (]Rzo)z’ is an intersection of half-spaces and, thus, a polyhedral cone in R¥,

poslin X is a polyhedral cone by II 16. Clearly, it has rational generators. This
proves (a).

(b) follows by Gordan’s Lemma 3.4. |
We remark that poslin X also contains the trivial positive linear relations (4, 1).
These are generated by the relations

(0,...,0,1,0,...,0,0,...,0,1,0,‘..,0), i=1...,r

Som even a nonempty set X of linearly independent vectors has a nonzero cone
poslin X,

Exercises
1. Decompose & C RR? into regular cones for ¢ = pos{(1, 0, 2), (1, 1, 3),
©, 2, 5)3.

"a. Amonoidg = (R-ga, + Rs0a2) NZ? inR?, ay, a3 primitive and linearly
independent, has ay, a, as generators if and only if the simplex

k=ma tom oy +a; <1, 0<a;c1, i=1,2)

does not contain a lattice point other than its vertices 0,41, a.
b. A statement analogous to (a) in RS is false.

3. Let o be a polyhedral cone with apex 0. If the monoid o N 7" is finitely
generated, o is a lattice cone.

4, . . .
a. Prove dim(poslin X) = r + dim L£(X) (see I, 4), where X has r elements.

b. Find a system of generators for poslin X if
X =1(1,0,0,(0,1,0), (1,0, ), (0, 1, 1), (1, 1, =1)}.

(Hint: First, apply a linear transformation which leaves the first two vectors
fixed and maps (1, 0, 1) onto (0, 0, 1)
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4, Fans

In I, 4 we introduced the fan X (K) of a convex body K as a set of outer normals
N&x) = —x + p'(x),

where an x € relint F is assigned to each proper face F of K. If K is a polytope P
and so possesses only finitely many faces, (K consists of finitely many cones.
Furthermore, if dim P = n, allcones ¢ € L (P) have 0 as apex, and,tox € int P,
there is assigned —x + x = 0 as a cone.

We now characterize those fans ¥ = X (P) which stem from tht‘: outer .cones
of n-polytopes P. In IIl, Definition 1.7 we have introduced. fans, in particular,
polyhedral, simplicial, and complete fans. If not stated otherwise, we shall always

“fan” a polyhedral fan. .
me:z il;);llustratecliJ b;’ Figure 5, acone of ¥ need not be a face of a full-dimensional
cone of . Also ¥ does not necessarily cover all of R”.

4.1 Definition. Let X, ¥’ be fans in R?, and L : R —> R" a linear map sucilh
that, for each o’ € T, there exists a o € T satisfying L(a’ NZ") C o N Z".
Then, we say that L is also a map of fans

L:¥Y —Z.
4.2 Theorem. To every fan T, there exists a simplicial fan ' such that ¥ and ¥’
have the same 1-cones and the identity map id of R" is a map of fans
id: Z — I
PROOF. This follows from III, Theorem 2.6. O

The following notion will be fundamental for the “projectiveness” of the varieties
to be introduced in Chapter V1. It specializes “polytopal”.

FIGURE 5.
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4.3 Definition. A fan X is said to be strongly polytopal if there exists a polytope
P* such that 0 € int P*, and

X = {pos F | F € B(P*)).
We call P* a spanning polytope of .

In particular, a strongly polytopal fan is complete. In analogy to polytopal
spheres, we could call a fan polytopal if it is isomorphic to a strongly polytopal
fan. We do, however, not need this notion. We use P* in Definition 4.3 rather
than P since the polar polytope of the spanning polytope of ¥ will occur more

often in later applications. Also, in accordance with I, Definition 4.14, we derive
Theorem 4.4.

4.4 Theorem. A fan X is strongly polytopal with spanning polytope P* if and

only if . is the fan & = Z(P) of (normal cones of) the polar polytope P = P**
of P*.

PROOF. The polar polytope P of P* is obtained as the intersection of all half-
spaces H,~ (see 1, Definition 6.1) where v; is a vertex of P*, So, if F is a facet

of P* with vertices vy, ..., v, then, 0 = pos{vy, ..., v} is the corresponding
cone, v = Hy, N-..N H, isavertex of P, and
Nw)=o¢.

Since each face is an intersection of facets (I1, Theorem 1.11), to an r-dimensional

face of P* there corresponds an (n — r — 1)-face of P, and, for a relative interior
point v of that face, we find that N(v) = o,

The converse is true by definition of Z(P)inl, 4.14. 0

4.5 Theorem. Given a complete fan X, there exists a strongly polytopal fan ¥’
such that

id: 2 — ¥
is amap of fans. L' = T'(Z) can be chosen to be the Jan of a zonotope Z.

PROOF. We extend each (n — 1)-cell of ¥ to its linear huil and obtain, in this
way, a hyperplane arrangement. By IV, Theorem 7.5, the theorem follows, a

From Theorem 4.4, it is readily deduced (compare IV, Definition 2.1 1):

4.6 Lemma. P*, 0" are two spanning polytopes of the same fan ¥ if and only if
P and Q are strictly combinatorially isomorphic.

Figure 6 illustrates Lemma 4.6, If a vertex v of P* moves along the one-
dimensional cone it spans, the polar hyperplane moves into a parallel position.
In higher dimensions, v can always be “slightly moved” along R>0 v without
changing 3 if P* is supposed to be simplicial. Dually, P must be simple, so that a
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G

FIGURE 6.

little parallel displacement of the affine hull of a facet transforms P into a strictly
combinatorially isomorphic polytope.

4.7 Theorem. Every complete fan E in R? is strongly polytepal.

PROOF. We intersect the unit circle about 0 with the one-dimensional cones of
% and choose as P* the convex hull of the points thus obtained. O

A statement analogous to Theorem 4.7, for n > 3, does not hold. However, we
can characterize the case of strong polytopality:

4.8 Theorem (Shephard’s criterion). Ler X := (ay, .. ., ax) be a finite sequence
of lattice vectors in Z' C U = R" that span the one-dimensional cones of
a complete fan , and let X iy be a Gale transform of X. For each proper face
o = posfa;,,...,a;_}of T, weset C(c) .= conv (}_([-, \{aj,....a; H. =
is strongly polytopal if and only if

M () relint C(o) # 9.
gex

PRrROOF. Weleth; .= tia;,t; > 0,i = 1,...,k. We wishtochoose 7, ..., &
such that P := conv{b, ..., b} is a spanning polytope of Z. From the Gale
transform, X; = (&1, ..., 4x) of X (in R*'; see I, Definition 4.16), we
obtain a linear transform X = (@,...,a) of X (with U as linear space) by
settinga; := (@;,, ) e H, CR¥"i=1,...,k

Then, B .= (E,, R Ek) = (tl‘lizl, ...,r[’[zk) is a linear transform of B :=
(b1, ....by). Leth := b, + --- + by. Clearly, b # 0. Therefore, by II, Lemma
5.6, the perpendicular projection of Bontoa one-codimensional subspace H of
R*~" with normal b provides a Gale transform B = (Z;|, R I;k) of B.

Let ¢ := (¢, 1) be the point in which the ray R.o b intersects H,. Given a
subsequence ¥ = (a;,,...,a;_ ) of X, wesetY = (&;,...,a;,). Then, the
following statements are equivalent (Figure 7).

@ b € relint pos{a,, ..., a;}.
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3) b € relint pos{5,~,, e, I;,-,}.
@ ¢ € relint pos{a,,, ..., a;}.
(5) ¢ € relintconv{g, , ..., a; }.
%) ¢ € relint conv{é,-,, . c:z,-,} = relint C(o).
A subsequence (‘bj,, -«+sbj_) of B represents a face of P if and only if
pos{b;,, ..., b;_.}is a face of the cone spanned by P after the embedding into

U. By I1, Theorem 4.14, this is equivalent to condition (3). Since (3) and (6) are
equivalent, we conclude that a spanning polytope P exists if and only if ¢’ can be

found such that (6) is simultaneously satisfied for every o € X, that is, condition
(1) is fulfilled. 1 0

Examples of complete, nonstrongly polytopal fans:

Example 1. InR*let X = (q, .
P with O € int P, (see Figure 8).
Let the fan X be defined by the following facets:

- » ) come from the vertices of a regular prism

Pos{ah az, a3}5 pos[a‘i’ as, aﬁ}s pos{al’ as, 04}, pos{a3s as, a6}1
posiai, a;, as}, pos{a,, as, as), pos{ay, a3, ag}, pos{ay, as, as}.

Then, the affine relationships

a —az —as +as =0

and

a —ay—as+as =0

R

FIGURE 7.
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provide a basis for the space of affine dependences of X. A Gale transform X ois
formed by the rows of the transposed of the matrix

1 0 -1 -1 0 1
1 -1 0 -1 1 0/}
(compare Figure 9).
It is readily seen that Shephard’s condition is not satisfied: Look at the faces

pos{a2v a6}7 POS{aL a4}v and pos{als a5}~

From the combinatorial point of view, the subdivided prism is equivalent to an
octahedron. However, its position in space can be varied only by moving the
vertices along their positive hulls so that an octahedron is not obtained (see Exercise

1.

Example 2. In R? choose a 3-simplex T, a vertex v of T, and a triangle A C
(R?@®R) \ aff T. P := conv(T U A) is then a polytope with 3 double-simplices
and (in general) 4 simplices as facets. We denote the verticesof T by 1,2,3,4 = v
(Figure 10), the vertices of A (after projection) by 5, 6, 7. We consider a Schlegel
diagram of P, namely a central projection into T,

We may place A such that we obtain facets Fy, ..., /5, up to renumbering as
follows:
Fl=[11 27 4a S, 6]
F,=123 467
F3 = []7 3’ 4! 5’ 7]
Fa=12,5 6,7
Fs=1[4,5, 6,7
Fe=11, 2 3, 5]
=12, 3,5, 7]
as
a -
\\j A
as ‘k R
cl - =
a3 S
NS =
N
as ay 54
FIGURE 8, FIGURE 9. -
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FIGURE 10.

We split the double simplices Fi, F>, F; as follows:

Split F; along [2, 4, 5] into two simplices
Split F; along [3, 6] into three simplices
Split F3 along [1, 7] into three simplices

In a Gale transform of the polytope P, we have, as cofaces, (3, 71, (1, 51, (2, 6]
and four triangles. Without calculating the coordinates explicitly, we see that it is
of the structure shown in Figure 11.

{13, 6,_ 71 which have no interior point in common. So the fan ¥ obtained by
projecting the splitted faces of P is not strongly polytopal.

The idea of Examples 1 and 2 underlies a general construction principle for
nonstrongly polytopal fans:

FIGURE 11.
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4.9 Theorem.
(a) There exist n-dimensional lattice polytopes,n > 3, withat least f, — n facets
( fo = number of vertices) which are simplicial but not simplices.
(b) If P is such a polytope, 0 € int P, the facets that are not simplices can be

dissected so that the fan obtained by projecting the new faces is not strongly
polytopal.

PROOF.
(a) LetC” be an n-dimensional cube with center 0. In each edge s of C", consider

that the hyperplane H; DO s perpendicular to lin s. We may assume that
0 € H . Then

P = m HS
s cdge of C”

is a polytope with fo(P) = 2" + 2n,

and fat(Py =n - 2071,

(compare Figure 12 forn = 3). Above each facet of C", a new vertex occurs.
On each H;, there are as many such vertices as the number of facets that
the edge lies on, that is, n — 1 vertices vy, ..., v,_;. If v, v’ are the end
points of s, a facet of P is a bipyramid F over conv{v, ..., v,_1}. Since
s \ {v, v’} C relint F, F is a double simplex.

Since fo —n=2"4+n < n-2""'forn > 3, (a) holds.

(b) LetFy, ..., F,,q > fo—n,bethe facets that are simplicial but not simplices.
We apply Radon’s theorem (I, Theorem 2.1) and find, for each £;, a partition
of vert F;:
vert F; = V, UV/, Vinv, =9,
FiGuRE 12. )

4. Fans 165
such that

(1) (conv V) N (conv V,.’) contains a relative interior point of F;.

The Gale transform of vert P has dimension fy — n — 1, so the coface of
each F; is contained in a hyperplane H;.

After the split, the cofaces are enlarged by an x; forx; € V, U V!, say
x; € V;. We may assume X; € H. Then, %; € H; for any other x; € V,,
since, otherwise,

0 € relint conv({X | x € (vert P) \ (vert F)} U V)

would be a coface of P and conv V; would be a face of F;, contrary to (1).
Hence,

V. c H .

So, if we select, from each pair (H;", H,), ..., (H}, H_"), one half-space at
random, the intersection of the interiors must be nonempty to fulfil Shephard’s
condition. Since ¢ > fy — n = 2 + dim H,, the selection can be made such
that the interiors have no point in common (also if some of the H; are linearly
dependent). So by Theorem 4.8, we can construct a fan which is not strongly
polytopal.

Vi C HY,

0

Besides the face-splitting according to Theorem 4.9 there is still another way

to find examples for nonstrongly polytopal fans. By definition of “nonpolytopal”
(I11, 4) we have the following theorem.

4.10 Theorem. Let Xy be an (n — 1)-dimensional polyhedral sphere embedded
into R" as the boundary of a star-shaped set with Q in its interior. If Ly is non-
polytopal, the fan & := {posag | a9 € o} is complete but not strongly polytopal.

As an example, consider the Bamette sphere (111, 4).
We now turn to a second fundamental property of fans:

4.11 Definition. A fan is called regular if all its cones are regular simplex cones.

Example 3. We start with a prism, as in Example 1, choosing x; := e, x; 1= e;,
X3 1= €3, X4 1= —€; — €3, X5 1= —e| — €3, Xg := —e1 — €. Split the faces, as

in Example 1, but also split conv{xy, x5, x¢} by a stellar subdivision (see III, 2) in
direction —ey — e; — es.

The following characterization of regular fans is very useful.

4.12 Theorem (Oda’s criterion). A complete simplicial fan % is regular if and
only if the following conditions are satisfied:
(a) There exists in X at least one regular n-cone.
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(b) If o = pos{xy, x2,...,x,}, 0° = posi{x], x3,...,x,} are two adjacent
n-cones, there exist integers o, . . ., a, such that

x1+x; +axs + -+ aux, = 0.

PROOF. Let T be regular, deto = det(x, x2, ..., %) = 1. Then, det(x],
X3, ..., X,) = —1, and, hence,

det(x; + X;, X34 eony Xy} = 0.

Since xs, . . ., x, are linearly independent, we can write
X+ X] = —aXy — - — QX
From
det(x|, X7, X3, ..., X,) = det(x;, —az2x2, X3, ..., X)
= —aydet(x), ..., x,) = —3,
we sec that o7 is integral. Similarly, a3, ..., «, are shown to be integers. So (a)

and (b) are true.
Conversely, let (a) and (b) be valid. For two adjacent n-cones ¢ =
pos{xy, X2, ..., Xn}, 0’ := pos{x], x2, ..., xu}, we deduce from (b) that

det(xy, x2, ..., x,) = —det(xy, x2, ..., X,).

Since I is complete, we shall see that all n-cones have the same absolute value
of det o, that is | det 6| =: ¢. Consider the set of all n-cones of ¥ with the same
absolute value of | det & |. Suppose it does not cover R". Then, there is a gap which
contains at least one n-cone gy, so the boundary of the gap contains at least one
(n — 1)-side of an n-cone o’ such that | det 0’| # | det oy, contrary to the initial
assumption.

By (a), therefore, all determinants of rn-cones are +1. 0

We remark that (a) in Theorem 4.12 cannot be left out, as is seen from the
example illustrated in Figure 13 where all 3-cones have determinant £2.

Exercises

1. By direct arguments, show that, in Example 1 xy, . . ., x5 cannot be moved on
their positive hulls so that they become vertices of a polytope that spans X.

2, In Example 2, find all possible splits of Fy, F;, F3 according to Theorem 4.9
and investigate in which cases the resulting fan is polytopal and in which it is
not.

. Show that the fan, in Example 3, is regular but not strongly polytopal.

4. Ifafan X is strongly polytopal, each fan obtained from I by a stellar subdivision

is also strongly polytopal. ‘

W
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e1+eg+2e3

-erex2e;

FIGURE 13.

5. The combinatorial Picard group

Given any fan ¥ we denote the set of its dual cones by £,

Y:={5|oex)

Examples (Figure 14).

If ¥ consists of the four quadrants of R?, the eight octands of R, or, generally,
the cones in which R” is subdivided by the coordinate hyperplanes, all n-cones
are self-dual. If we consider in Figure 14 the noncomplete fans consisting of {0}

and the one-dimensiorlal cones, 3 consists of R? and the half-planes which occur
in the illustrations of X.

5.1 L::mma. Ifo =0y + -+ ag,, where o; are the 1-dimensional Jaces of o,
theng = &, N --- N G, is an intersection of half-spaces.

PROOF. This is clear from the definitions and Lemma 2.2. =

If Zisafanando € T, we assign to ¢ the monoid

S:=nz".
v

v v O

[ o, S o2 o G2

G2

o o o2 v
v O4

[ox] pd

FIGURE 14.
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We obtain a system
§=8X)={S=5nZ" |0 €k}
of monoids assigned to T. So, there are bijective relations between £, 3, S(T)
> 3 > S(E).

From any one of them, we can always reconstruct the others.
From the definitions and Lemma 2.2 we find that

5.2 Lemma. For any two cones oy, 03 of a fan T,
@ (o1 +0)NZ = (1 NZ")N (G2 NZ"), and
(®) (01N NZ" = (1 NZ") + (62N Z").

The monoids of S(Z) are all sub-semigroups of the additive group Z". Now,
we consider residue classes of the sub-semigroups in Z".

To each ¢ € Z, we assign m, € Z" such that the following condition is
satisfied:

¢)) Ifop is aface ofo, m, — m, € cospandp.

Condition (1) guarantees that the inclusion of monoids in S(X) is preserved if we
replace each monoid & N Z" by its residue class m, + $ = m, + (§ N Z").

5.3 Definition. Asystem P := {m, + 6 },cx of translated cones is called a virtual
polytope (with respect to the fan T) provided {m, + &}, ey satisfies (1).
If X is strongly polytopal, we may choose {m, },es such that

2) ﬂ(mo +&) =P

cEeX

is a lattice polytope, and — P* spans . Then, P and P can be identified. More gen-
erally, (2) represents a Minkowski summand of the negative dual of the spanning
polytope of X.

5.4 Lemma. The virtual polytopes with respect to the same fan T are a
commutative group G with respect to the following addition (P’ := {m/, + 6}scx)
3) P+ P i={m; +m +6loes-

The zero element is 3.

Remark. In the case where P and P’ can be identified with polytopes P and P’,
respectively, P + P’ corresponds to the Minkowski sum P + P’

PROOF OF LEMMA 5.4. SinceQ € 6,5 + & = J, hence,
(my +6)+(m, +8)=m, +m, + 3.

Therefore, the addition of P and P reduces to ordinary set addition. 3 is the
zero element since (m, + &) + G = m, + & forany o € .

a4 G iara ¢ YL
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[+ 1 L

FIGURE 15.

The negative of P = {m, + 6}, cx can always be obtained by choosing —P :=
{—ms + G)oex as illustrated in Figure 15, 16, and 17 (with M as in Lemma 5.5).

We still have to show that (1) is preserved under the addition (3).Letog be a
face of ¢. Then,

Mg — Mg, € cospando  and  m) —m, € cospan

imply
(my +my) — (mg, + m, ) € cospan o,

since cospan &y is a linear space. Hence, (1) remains true. 0

It should be noted that in —P = {~m, + &}yex only the apexes —m, are the
negatives of the m, in P, whereas the cones & remain unchanged.

We remark, further, that neither P nor —P needs fo define a polytope, as Figure
17 illustrates (where X is the fan given by the quadrants of R? and their faces).

The following lemma is immediate from Lemma 5.4 and the definition of
monoids belonging to S(X%):

5.5 Lemma.

(a) The. systems M := {m, + 6 N Z'}pex = My + Sloex of residue classes
assigned to the semi-groups of S(T) define a commutative group G with

o

FIGURE 16, FIGURE 17.
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respect to the addition (M’ := {m), + S},cs)
4) M+Mi={m, + m_ + S)er.
The zero element is S(2).

(b) The groups G and G are isomorphic.

Many properties of virtual polytopes remain true under translations (applied
simultaneously to all m, + &,0 € X)asis the case for polytopes. So, it is natural
to assign to G or G the following group:

5.6 Definition. If G is the group of Lemma 5.5, we call G/ Z the combinatorial
Picard group Pic T of E. We denote its elements by P.

The Picard group Pic ¥ is a finitely generated, commutative group, and, hence,
by the fundamental theorem on commutative groups, is equivalent to a direct sum
Pic X EZ"@Zq,GS---EBZq,,,

where 7, denotes the finite cyclic group with i elements. Zy & - ®Zg, is called
the forsion of the group, g its Betti number. Torsion can be nonzero, as is in the
following example:

Example 1. In R?, let ¥ := {0y, 0y, 03} where oy := {0}, 0 := R0 €1, and

o2 := Rxoler + 2e3).

We considerm,, = m,, = 0,m,, = ¢,. Then, (m,, +&,)N (mg, +&7) isacone
whose apex (0, % ) is not a lattice point—which it need not be since o] + o & ?
(Figure 18). The virtual polytope P := {m,, + &,}i—0.1.2 is not obtained from ¥
by simultaneous translation via a lattice vector, so it does not represent the zero
element of Pic . However, 2P = {2m; + ¢,} is obtained from X by adding e,
to each cone, and so does represent zero. It is readily seen that Pic & = 7,.

e+2e;

€4

FIGuURE 18.
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A situation, as in Example 1, does not occur if at least one cone o € ¥ is
n-dimensional,

5.7 Lemma. For Pic ¥ to be a torsion-free group, it is sufficient that £ contains
an n-cone T,

PROOF. Suppose Pic I contains an element of finite order. Then, there is a virtual
polytope P = {m, +& ), and a natural number  such thatrP = {rm, 46 }yes
can be obtained from X by adding a lattice vector c. Since T is n-dimensional,
{rm.} = cospan ¥ is a lattice point, and, hence, rm, = c. Since m, is also a
lattice point ¢y, P = ¢ + 3, so that P represents the zero element of Pic £. [

If £ contains an n-cone, we can calculate Pic 5, explicitly. First, we discuss the
simplicial case;

5.8 Theorem. Let T be a simplicial fan inR" which contains at least one n-cone,
and let k be the number of one-dimensional cones of ¥, Then,

PicE = 7t~ .

PROOF. We assume, first, that ¥ is not only simplicial but also regular. Since
Z is simplicial, a virtual polytope P is determined by an arbitrary choice of the
my, for all one-dimensional ¢ € X. For any such ¢, we may replace m, by any
other point of the hyperplane mg + @. We may choose, for the sake of our proof,
M, not necessarily as a lattice point. The hyperplane m, + o' must, however,
always contain at least one point of Z”. It is convenient to let m, be the foot of 0
onm, + 0*.If gy, ..., o; are all 1-cones of ¥, we write

my, = a;c;, a; = 0, ”Cr": 1, i:l,...,k.
Then,
3) {ci, x) = ¢

is an equation of m, + 0;*. Let d; be a multiple of ¢; such that the hyperplane
H = {x|({d,x)= 1) hasthe following properties:

(a) There exists a lattice point on H;.

(b) There does not exist a lattice point y such that 0 < {(d;, y) < 1.

Then, each hyperplane parallel to H; and containing a lattice point is given by
an equation

(4) {di,x) =r;
where 7; is an arbitrary integer.

From the regularity of ¥, we deduce that (by Cramer’s rule), for di, ..., d,
representing m < n simple vectors which span a face of X, the system (4) of
equations ({ = iy, ..., i,) has a lattice point as a solution. Therefore, the vectors

{(r1, ..., ) € Z* can be chosen arbitrarily as representatives of virtual polytopes.
Since we identify virtual polytopes which differ only by a translation vector W/

) and by considering Lemma 5.7, Pic T = z* / zn = gk-u,
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If T is simplicial but not regular, we proceed as above. However, the numbers
r, € Z cannot be chosen arbitrarily since, in general, the systems (4) for i =
i1, ..., im do not have integral solutions, only rational ones. Multiplying one r;
and all solutions of the respective equations (4) by an appropriate integral factor
yields an integral solution. So the vectors (ry, ..., rx) which represent defining
elements of Pic T can be varied in each component. Since Z has only {0} and
groups isomorphic to Z as subgroups, it follows again that Pic & = 2z, a

5.9 Theorem. Let X be a fan in R which contains at least one n-cone, and let

Qls - -+ » Ok be the one-dimensional cones of £. We consider all maximal faces
o1, ..., 0, of T which are not simplex cones, and set, for a; = @i, + - - + @i,
i=1...,q,
Lo, = L(d;,...,d;,) (space of linear dependencies)
and
L::L‘,l+---+L,,q, A :=dim L.
Then,
Pic ¥ =z,

PROOF. We consider the vectors (ry, ..., r;) introduced in the proof of Theo-
rem 5.8 as representatives of virtual polytopes. They can no longer be chosen as
arbitrary lattice vectors. We must find the relationships which they satisfy.

Let o; be given as in the theorem, and let m,, be the corresponding defining
lattice vector of a virtual polytope. The one-faces of o; are spanned by vectors
d; , d; ; they satisfy

R

(di|) mU,) = ril
(&)

di,,mo) =13,

where the individual equations are introduced as in (4) (compare Figure 19).

It is useful to introduce the following matrix A. If L, is embedded in
L{d,, ..., dy) canonically, we may write a basis of L,, as row vectors in k com-
ponents. We choose this basis as the first rows of A. The next rows are chosen as
a basis of L,,, analogously. Continuing in this way, the last rows of A are a basis
of Ls,. .

By II, Lemma 4.8, A may be considered to be composed of linear transforms
(column vectors) of the sequences (d;,, . . .. d; ) as follows

basisof L,, { {0 -+ 0d),0 - oo 0dy, 0 -------
d;,
basisof L,, { \Q ----0d, 0 --.-.... ... 0d,, 0 -

.,i

i

e v s e
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Now, the conditions for r = (ry,...,r) € Z* to represent a virtual polytope
Ze, by II,_Lemma 4.8 (and the fact that ;... ,d.) is a linear transform of
s e, di)) ‘
] s

Ar' =0.

Since A has rank A, the vectors » span a subspace of R* of dimension k — A. So
we obtain

Picy — Zk—A/Zn ~ Zk—u—k .
O

Remark. In the above proof, the vectors a in II, Lemma 4.8, attain a concrete

meaning as points m, . In the case where the P; are ordinary polytopes, it suffices
to consider all vertices of the P; as points m,, .

Example 2. If T is simplicial, no nonzero space L,, occurs, so that A = 0 and
Theorem 5.9 reduces to Theorem 5.8.

Exal'nple 3. Let ¥ in R? be spanned by the cube with vertices ¢, + e, + e5. We
obtain L to be 4-dimensional and, hence, Pic & = Z -

Example 4. In Example 3, we replace the generator e; + ¢; + e3 of a 1-cone by
e := 2ey + 2e; + 3es, and change all faces containing e, + e; + e3 by taking e as

the generating vector instead of €1 + e2 + e3. (Figure 20). Now,dimL = A = 5§
so that Pic ¥ = {0).

Remark. .The fan of Example 4 cannot be spanned by the faces of a closed poly-
hedron (with planar faces). This is readily seen from the fact that those three

: Spanning rectangles which meet on R>o(—e€1 — €2 — €3) determine the remaining

three rectangles, the resulting polyhedron being a projective image of a cube. Then,
however, e would have to be a multiple of e; + €, + e3 which is not true.

Definition. We call u(X) := k —n — A the combinatorial Picard number of ©.

FIGURE 19,
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FiGure 20.

Example 5. If T consists of an n-cone o with & generators and all faces of o,
thenA =k — nand () = 0. )

We investigate more thoroughly the case of complete fans . In this case we
may choose (T the set of n-cones of )

My, = My, ifogisafaceof o € T,
where, of course, Equation (1) must be observed. So, if =" = {0y, ..., 0.} and
a; :=my,i =1,...,q,the cones
{ai +&1,...,aq +5'q}

determine an element P of Pic E. We write

P = [a +6|,...,aq +6q].
Definition. We call P an associated polytope of £, if ¥ = ):(_P)f thatis, if &
is spanned by — P* (compare Theorem 4.4), or, in other words, if X is the fan (of

normal cones) of — P (Figure 21).

Clearly,

FIGURE 21. -

cmae s
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5.15Theorem. ForanyP € Pic £(— P) there exists a lattice polytope Py,

combinatorially isomorphic to P (hence also associated with L), and a
number r such that
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512 Lemma. Let T be complete and strongly polytopal, and, let —P* be a

spanning polytope of T, so that P is an associated polytope of X. Then, for
vert P = {ay, ..., q,),

P =P(P)=lai +pos(P —a)), ..., a, + pos(P — ag)]
is an element of Pic X from which S can be reconstructed. Thus,
X =3(-P) for P= (a +pos(P —ag;))N---N (a, + pos(P — ag)).
Any (Minkowski) summand P’ of P can also be written in the Jorm
P =(a)+pos(P-a))N.--N (a, + pos(P — a,))
where an obvious assignment
a, +—> a
Provides a surjective map

Xp 1 vert P — vert P,

5.13 Definition. If P’ is a lattice summand of an associated polytope P of the

strongly polytopal fan ¥ (possibly P’ = P), we call (for a == yxpla), a; €
vert P)

P(P') = [a] + pos(P —ay), ..., a; + pos(P — a,)]
a polytope element of Pic T = Pic T(—P).

5.14 Lemma. Let ¥ = X(—P), and let P’, P” be lattice polytopes such that

P=pP+pP
Then,
P(P) = P(P') + P(P").
In particular, for any natural number r,
P(rP) = rP(P).

PROOF. This follows directly from the above definitions and Lemma 5.12.

The following theorem will enable us to find a finite system of generators of
Pic £(— P), consisting of polytope elements,

strictly
natural

P = P(Py) — P(rP).
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PROOF. Let P = (a; + &) N--- N (g, + d,). Since o; NZ" = §;, we have
a | — l-relationship between the &; and the S;. We can also represent P as an
intersection of half-spaces,

P=H Nn.--NH, where 0 € int P is assumed,

and H; N P,i = 1, ...,k are the facets of P.
Moreover, any representative of

P=1[b+6,....b, + 6]
can be characterized by
(Hy, ..., H),
where each H,” is a translate of H,i = 1, ..., k. Further, by definition of P,
we obtain a natural assignment

Hf,ﬁ---ﬂH,-p —> H,'lﬂ'“nH,'p

for any subset {if,...,ip} C {l,...,k}, as a result of the translations. In
particular, the vertices a; and b; are intersections such that
() HyN---NH, =a; +> bj=H,N---NH,, i=1...,q

For any positive integer r, we define
P, :=(UH +H)HN.-.-NH +H)
=H"n...NnH"",
where H,.(') :=rH, + H;,i = 1, ..., k. Furthermore, we set
") gty ~ L )
b =HN---NH.
We claim that
(a) bE—r) = ra, + b, is a point, and
(b for sufficiently large r, (6], ..., b’} = vert P,.

Proor oF (a).

HJ!:) = rHjﬂ + bjo for j@ € {jl’ ceey j‘i}a

hence,

bfir) = .HJ(':-) N---N HJ(:) = (rH;, +b)N---NGH;, +bp)
=r(H,N---NH)+b;

=ra; +b;, apoint.

PROOF OF (b). For sufficiently large r, ra; + b; ¢ conv{ra, + b, i # jb
since a; is strictly separated from (vert P) \ {a;} by a hyperplane. This proves
{bgr), ey b;r)} C vert P(,r).

We show that b ¢ H,” fori & (ii, ..., j). .
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In fact, since a; has positive distance from any H;, with i ¢ {j,..., j}
we obtain %bﬁ.’) = aj + 3b; ¢ H + 1b for sufficiently large r, and, hence,
b ¢ rH, +b = H".

Therefore, if B, B’ are sufficiently small balls with the same radius and centers

a;, b}”, respectively, the sets B N P and B’ N P, are translates of each other.
Hence,

(2)
pos(P —a;) = pos[(BN P) —a;] = pos[(B' N P,)) - b;”] = pos(P,, — b;')).

In B, B', respectively,
dim(H;, N P) = dim(H;” N P,)) = n — 1,

- 50 H}:) N P, is a facet F;:) of Py,o=1,...,s.

Suppose (vert Py) \ {b”, ... . b’} # @. Then, the edge graph of any

i: polytope being connected, we find an edge [b;”, b] of P, for which » €

vert P, \ (b, ..., bf]’)}. (1) implies (up to renumbering the H;:’)

(r) - r) ry _.
aff(b;", bl = H;" n--.nH” = g.

[y

i

i Since there is a bf') # b;’) on the line g (by Equation (2)), we find b = b}’) ;
} otherwise, there would be three vertices of Py. This proves (b).

} So, we have a bijection ¢ between vert P and vert Py which is inclusion-
preserving for facets and maps each facet onto a facet with the same outer normal.

{ Therefore, for sufficiently large r, we obtain a strict combinatorial isomorphism
between P and Py := Py,.Since rH; + H; = H,.(’),i =1,..., k, we conclude

that

P+ P(rP)=P(P).
O

Example 6. Consider X (P) to be the fan consisting of the quadrants of R? and
their sides, where P is the square witha; = 0,82 = e1,a3 = e;,anda, = e, +e.
Figure 22 illustrates an equation P + PBP) = P(Py).

’%Eﬁ%

FIGURE 22.



178 V Lattice polytopes and fans

5.16 Definition. If £ = X(P) is strongly polytopal, we call the group G, in
Lemma 5.4, the polytope group of X.

5.17 Theorem. Let £ = T (P) be strongly polytopal. .
(a) The polytope group G is the smallest group into which the semi-group of all
polytopes strictly combinatorially isomorphic to P can be embedded.
(b) Pic X can be generated by f,_1(P) — n — A + 1 polytope elements strictly
isomorphic to P where X is defined according to Theorem 5.9.

PROOF. (a) is a consequence of Theorem 5.15; (b) follows from Theorems 5.9
and 5.15. a

As the following examples show, summands of P can also be chosen for
generators of G or Pic X:

Example 7. If ¥ consists of the cones into which R" is split by the coordinate
hyperplanes, we canset P, = [0, ¢;] (line segments),i = 1, ..., n, and we obtain
a system of n polytope elements generating

Picx = 7".

Example 8. In the example of Figure 15, we may choose Py := [0, ¢;], P, :=
[0, e2], P3 := conv{e), ez, €; + e2). Therefore,

Picx = 7°.

Exercises

1. Find Pi¢c ¥ for X being spanned by the n-cube with vertices e, £ --- + ¢,.

2. Letthe facets of the cube C with vertices 0, ), 2e,, 3es, e) +2¢;, €1 +3e3, €2+
3e3, e1 + 2e3 + 3e; be numbered 1, . . ., 6 such that opposite sides have sum
equal to 7 (as in the case of a die). Let H; be a half-space with face ¢ on its
boundary such that the outer normals p; of H; are outer normals of C, in the case
i = 2,4 5,and point into the cube inthe case i = 1, 3, 6. Then, Hf, e, H6+
define a virtual polytope P. Find the smallest k such that

P+ PK*C) = P(Py)

for a three-dimensional polytope Fy.

3. Given any natural number r, find two polytopes P, P’, P % P’, such that
r = u(E(P)) = u(Z(P)).

4. If P = P’ - P” is the join of two polytopes P’, P” (III, Definition 1.13),
determine the combinatorial Picard number u(X(P)) from w(E(P')) and
r(E(P")). .
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6. Regular stellar operations

‘I‘n. III’,’ l“z_u{d 2, we introduced the concepts “cell complex™, “star”, “closed star”
link”, “‘join” and “stellar subdivision”. The cell complexes considered here are
fans, so all cells are cones. The Join of two cones ¢, ¢, for which o A o' = {0}

(rather than equal to @ as in the case of polytopes) and also (lin o') N (lin o) = {0}
can be written as o + ¢, ’

Of special interest are the following operations.

6.1 Definition, A stell.ar subdivision s(p; o) of a regular fan ¥ (in direction
p where p = Rsq p) is called regular if it preserves regularity. We also write
s{p; o) = s(p; o). Its inverse operation is, then, also called regular.

In the following, if we express a cone o as ¢ — pos{q,, ..

i . , WE as
automatically gy, . . . q-) sume

» 4r to be generators of @ N Z” and, hence, simple vectors.

6.2 Theorem. Let 3 be regular,c € £, 0 = pos{xi, ..., x}, x1, ... X sim-

ple, andlet p = Ry p, p simple. s(p; 0) is a regular stel Visi ;
ot gular stellar subdivision of T, if

(n p=x1+-- +x.

PROOF. Let o be aface of an n-dimensi o >
: - sional regular cone & (where
be in ¥). We set ( 7 need no

O = POos{xt, ..., X, Xeyr, ..., ),
sothatdeté = 1. s(p; o) splits & into n-dimensional cones,
01 :=Pos{p, X2, ..., Xpy Xagts ooy Xk, Ok
= pOS[.I], cees X1y Py Xk gy o ey, x,,}.
If (1) is true, we obtain
deto; = det(xi, ..., xi1, x4+ - + xp, Xigly o vy Xn)
=deta =1, i=1,. .. k.

So, all new cones are again regular.
Conversely, let &y, . . ., 0 be regular, and let

P=ox; + -+ apxy, a >0,...,a > 0.
Then,
det(xy, ..., xi_|, oix + ot X, Xy, ..., x,) = ajdetg = +a, = +1.
Since o; > 0, this implies thato; = 1,7 = 1,... % P =X+ + x; is
L kop = .

simple, since otherwise, for p = rqg.r > 1,q € 7*, we would have

*1 = det(rg TX T T XX, xy) = rdet(g, X, LX) =7 s

for s € 7, a contradiction. Therefore, (1) is true. O
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FIGURE 23a,b. (a) ’ e ten

Examples. o —
Undper a unimodular transformation L, regularity is preserved, and stellar sub

divisions are carried over as follows. Let a subdivision be applied, acc.:ordi:g t(e>
Theorem 6.2, in the direction p = X3 + - + Xk Then, after applying L, w
subdivide in the direction

L(p) = L(x1) + -+ + L(x).

6.3 Lemma. Let 0 ‘= pos{xy, ..., ) k > 1, be a regular cone, let o b}e
a.face of the regular n-dimensional cone & = pos{Xxy, ..., Xks Xk+1s - o x; ,
and let p:= x1 + -+ + % Then, for 0; = pos{xy, ..., Xi-1, P, x,—+1.r;d. .5" k_
x} 0 e {l,... k}, we can set @ = pos{yl,...;lzk,...,y,,] a =
LIS ] i » " 3 \ r
Pos{y;, ) )’,!_1, Yis y,{+]s s Yoo Ykl - o yn} such t
y j = i - 1,i+1,...,k
(2) -y +yi =Y j=1. L i-Lit ok |
PROOF. Since (2) remains valid if a unimodular transformation is alpphed, we
can assn.xme x; = e,i = 1,...,n. Then, g; has as generator,s Yy = e —
i i ’ , = e & e
€iy .. y’l = &_1 — €, Yi = € Yiy1 ;:e},-r] ee;l.,..B,);: 28;—1;)
= e = i thecasen = 3,k = 2,1 = 1).
Yetl = Ekilre-s Yn = €ne (See Figure 23b for >

This proves the lemma.

6.4 Lemma (Farey’s lemma). Leto = pos{xy, x2} bea two-dimensional cone of
a reguiar fan T in R®?, xy, x, simple, and let

: 2
a = aix +ax; € (into) N Z

be simple. Then, by applying finitely many regular .stellar subdivisions, ¥ can be
turned into a fan which contains R-o @ as a one-dimensional cone.

i i assume x| = €, Xz = €z.
F. Up to a unimodular transformation, we may =
g’l:roo— aip: 1. the lemma is proved after applying one subc_hv:snon. Ifa) >
o Iwe—apply s(Rso(e1 + €2);0). Let L be the shear for which L(e;) = e,
2 z

P

—rig,
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L(a)
. - —————0 q
e2 P} — —o » » - .
€1
FIGURE 24.

L(er + €3} = e3. Wemapa = (o, ap) onto L(g) = () — a2, a) = (o], )
(Figure 24).

faz > «; we interchange the parts of ey, 5. So either @) < o ora; < o
We divide o], o, by their greatest common divisor, and repeat the same procedure.

After a finite number of steps, a will be transformed into (1. 1) so that only one
more subdivision is needed. D

Lemma 6.4 can be generalized to higher dimensions (see Exercise 4 below).

However, there are no known analogs, for n > 2, to the following two strong
theorems.

6.5 Theorem. Let £, X' be regular and complete fans in R?. Then, there exist

regular stellar subdivisions s, . . ., SprSle i s; such that

Spo...oslz :S;O"'OS;EI =: zll,
or, in other symbols,

,
kY

5| Sp " y N 7
r 2 .. A0y «— - e ¥
ProOF. By applying Farey’s lemmaseveral times, we can arrange foreach 1-cone
of £ tobe a 1-cone of £* as well. So, let o = pos{x;, x2} be a 2-cone of T such
that a 1-cone o’ € T’ \ ¥ is contained in o'. Up 10 a unimodular transformation,
WE may assume x; = &), xa = e3. Let p' = Rypa’ = Rxo(e), a}), a’ asimple
vector.

If there is no other [-cone of £\ ¥ contained in o, we find a, = det(ey, ') =
1 = det(a’, e2) = «;, s0 that, by applying s(R>o0(e; + e2); o) we obtain p’ as a
cone of T (after subdivision),

Suppose a second l-cone p := R0 @ = Rxo0(@;, &), with simple@,in X'\ X
exists. If p" or pequals p := Rso(e; +€3), again we apply s(R»o(e; + €;); o). If,
however, no cone of 3’ \ X equals p, first, assume that PpC P +p=10€¥,
deto’ = 1. Wecanlet 5 C p + Rxp €2. Then, ] > o), = 1,6 > & > 1. We
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obtain
1 = aj@ — oy > ay@ — @) = 1,
a contradiction, ) ) i
Ifp ¢ p' + B, wecanassume thatp C p+ R0 €2 € /. Then, 0y > @y > 1
and1 = @ - 1 — &, - 0, a contradiction. a

Given regular, complete fans X, =’ in R?2, does there always exist a ff'n.l r”
which, conversely to Theorem 6.5, can by successive regular stellar subdivisions,
be transformed into ¥ as well as into £’? The answer is no, as can be seen from
the fans of Figure 235. . .

However, any regular, complete fan can be obtained by a chain of regular stellar
subdivisions from one or the other fan of Figure 25,

s 2
6.6 Theorem. Let To be the fan spanned by ey, e3, —e) — €2 in IR , and‘E(k,
the fan spanned by e\, e2, —e1, —e2 + kei, k € Z\{1, -1} (according to Figure
25). Given any regular and complete fan ¥ in R?, we can find regular stellar
subdivisions s, ..., Sp Or S\, ..., 5, such that

1] 4 —
spo--osiEg =% or sjo---05Zg =Z.

In other symbols,
5 Sp 5| 5 5

o Ll Cee — b or Z(k) —_ . —
PROOF. Suppose in X there exists a convex quadrangle A := c.onv{p, ay,
as, a3} whose vertices are 0, a, a2, as, such that the generator a; 1s'ad_]acent
to the generators a;, a3. We call A a reducible quadrangle. Up to a unimodular
transformation, we may assume a; = €, a; = & + ez..’l‘hen, det(e; + €3, a3) =
a3 — @y = 1, where a3 = (a31, @32). Since e1 + ez 1s a vertex of A, a3 < l.
Similarly, since a3 is a vertex of 4, a3z > O. This rear.hly llmphes az; = (0, 1).
Now, we apply s ' (R»0 a2, pos{a), a3}) and eliminate, in this way, a generatgr.

Doing this as often as possible, we obtain a fan %’ without a reducible

3 q '

quadrangle. So, conv{0, a;, a3, a3} is always a triangle A".

(0.1}

1.0 0.0

(k,-1)

FIGURE 25.

6. Regular stellar operations 183

In such a triangle A’, we can assume ¢, — 21, @, = e2. Suppose, among the
generators as, ay, . . ., following a; counterclockwise, there is at least one on or
“above” the line g through a;, a;. Among these generators, let g; = (aiy, @i2)
be one with maximal a;,. Then, g;,; = (@i 41.1, @ 41.2) must lie “below” the line
{ta; | t € R} (since T is complete). In the case @i+11 > 0, either a; ., is adjacent
to a; and conv{0, ai,1, 4y, a;} is reducible, or the same contradiction is obtained
for the generator b #£ a, adjacent to a;.

Inthe case ;41,1 < 0,conv{0, a;_y, a;, @; 11} is reducible. Therefore, o, . | =

0 and, hence, ¢;,; = —ay. Now i = 3, since, otherwise, conv{0, a; |, a;, i}
would again be reducible, and a, = —e; is readily seen to be adjacent to a;. Now
| = det(az, a3) = —a3; = 1, hence, a3 = —1,and @3 > 2. This proves ¥ to

be of type .

However,ifa3 = (a3, a3;) lies “below” g and “above” A ;= {tey | t € R}, we
again obtain a contradiction to A’ being a triangle. In the case a; = —ej, "“below”
A there can be only one more generator a,. Hence, X is of type X,

So let a; lie “below” A. Clearly a3, < O (since I is complete). Suppose, for
ay = (41, @s2), @41 > 0,04 < 0. Then, conv{0, a4, a;, a,} would be reducible.
Therefore, either 4, = 0 and a4 = a;, or ag; < 0. In the former case, we find

@31 = a3 = —1, hence T is of type Zo. In the latter case, oqy — 0, since,
otherwise, 0, e;, a3, a4 would be vertices of a convex quadrangle. So @y = —e,,
and X is again of type T;). O

If we consider Theorems 6.5 and 6.6 and attempt to apply the case n > 2, there
is no reasonable conjecture for n > 2 analogous to Theorem 6.6.

Oda’s conjecture (strong version). . Theorem 6.5 is also true for three-
dimensional fans.

As an example, we illustrate combinatorially how the fan of Example 1 in 4 and
the fan with generators ey, e,, €3, —¢; — e; — e5 can be succesively subdivided
into a common regular fan. All stellar subdivisions can be chosen to be regular
(Figure 26).

We remark that a “weak version” of Oda’s conjecture meanwhile has been
shown:

Any two, complete, regular, three-dimensional fans can be transformed into
each other by a chain of finitely many operations which are either regular stellar
subdivisions or inverses of such.

Regular stellar subdivisions can also be characterized by dual operations. As
we have seen in III, 2, the dual combinatorial operations are “cutting off faces™.
How does regularity come in? Theorem 6.10 below will give an answer. First, we
characterize regularity of a strongly polytopal fan ¥ = X (—P) with associated
polytope P by properties of P.

6.7 Lemma. A strongly polytopalfan's. = £(— P ) (compare Definition 4.3 and
L, Definition 4.14) is regular if and only if P possesses the following properties
(a) P is simple.
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FIGURE 26.
(b) For any vertex xo of P and the lattice points xu, . . ., x, adjacent to xo on
edges of P, the vectors Xy — Xo, ..., Xy — Xo span Z" integrally.

ProoF. Thisisclear from Lemma 1.11, Theorem 4.4, and Theorem 2.10(b). O

6.8 Definition. We call a lattice polytope lattice regular if it satisfies conditions
(a), (b) in Lemma 6.7.

Remark. The term “regular polytope” is defined by congruent edges and tlhe
existence of enough symmetries. To avoid confusion we use the words “lattice
regular”.

6.9 Lemma. Ler F be a proper face of a lattice regular polytope P. Then, the s?’t
H of all lattice points on edges of P, not on F but adjacent to vertices of F, lie in
a hyperplane H = aff H.

PROOF. Leta € vert F,andleta +b,, ..., a + b, be the adjacent lattice points
of a on edges of P, where

a+by,...,a+b. €F,

a+biyr,...,a+b, €F, k = dim F.
Up to a translation, we can set a = 0. Since det(by, .- ., by) = x1, we can, by
a unimodular transformation, arrange by = ey, ..., b, = e,. Then, all points

b =e;,i = k+1,...,n,lie in the hyperplane
H:{x=(€l"-~55n)I$k+1+"'+§n = 1}'

H remains invariant if we translate P, such that another vertex of F moves to 0,
and then apply a unimodular transformation which leaves H (as a whole) fixed
and maps the lattice points adjacent to 0 on edges onto ey, . . . , €,. S0, the lemma
follows. a
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FIGURE 27.

6.10 Theorem. To a regular stellar subdivision s(p; o) of a strongly polytopal
regular fan £ = E(—P) there corresponds the following operation on P or a
lattice polytope strictly combinatorially isomorphic to P,

Let p = R>ou, u simple, and let H be the supporting hyperplane of P with
outer normal u. If the edges emanating from the face F := P N H, but not in F,
do not all have at least three lattice points, we replace P by 2P. Then, we cut off
F from P by a hyperplane parallel to H that passes through the lattice points of
P closest to those on F but not in F (Figure 27).

PROOF. This follows readily from Theorem 6.2 and Lemma 6.9. a

We remark that the spanning polytope P* of X is not uniquely determined, but
can be varied by moving the vertices on the 1-cones of X. Dually, the hyperplanes

which carry facets of P can be translated, provided the combinatorial structure of
P is not changed.

Exercises

L. Let the fan £ = %, in R® have 3-cones o, := pos{e,, e;, €3}, 07 :=
Posier, —e; —ez, e3},03 := posie;, ~e; — ey, €3}, 04 := pos{e,, ez, p}, o5 1=
posiey, —e1 — e, p},06 := pos{e;, —e; — e, p} where p = —e3 +re, +sea,

r,s € Z.Find a sequence of regular stellar subdivisions and inverse regular
stellar subdivisions which transforms ¥, into £_,,.
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2. Let T be the fan spanned by the simplex A with vertices ey, ..., €,
—ey — -+ — e,, and let £’ be the fan into which R” is split by the coordi-
nate subspaces (spanned by the crosspolytope C). Find sequences s1, ..., 5,
and s, ..., s(’l of regular stellar subdivisions such that

Sp0:-r0onk =s; o---os;El.

3. Forn = 3, find polar polytopes P, P’ (up to strict combinatorial isomorphism)
of P* := A, P := C inExercise 2 such that the construction of Theorem 6.10
can be carrried out explicitly for the dual operations of sy, ..., 5p, Syees s;,
respectively.

4. Extend Farey’s lemma to arbitrary dimension n > 2, and prove it.

7. Classification problems

We wish to classify fans under reasonable restrictions. From the point of view of
applications in algebraic geometry, the main emphasis is placed on regular fans.
For the sake of simplicity, we restrict ourselves to complete fans. Regularity is not
an invariant under combinatorial isomorphisms of fans, not even invariant under
all linear transformations. The appropriate equivalence relationship is given by
unimodular transformations.

7.1 Definition. We call two fans X, T’ unimodular equivalenr if there exists a
unimodular transformation L : R" —> R" which preserves Z", such that L maps
the cones of T bijectively onto the cones of X',

So, on the one hand, by considering regular complete fans, we restrict the large
variety of possible fans. On the other, combinatorially equivalent fans need not be
unimodularly equivalent, which again enlarges the number of possible types. In
fact, classification problems are solved only under strong limitations.

Complete fans are combinatorially isomorphic to polyhedral spheres. We note,
first, that not all polyhedral spheres represent, conversely, complete fans (an ex-
ample is given in 111, Theorem 5.5). Already this requires sorting out polyhedral
spheres if we want to have complete fans.

We now list several properties of fans and their logical dependencies.

7.2 Definition. We call a complete fan I rational, if all its cones are rational, and
polyhedral if it is spanned by a (not necessarily convex) polyhedral sphere, that
is, any o € X has a representation ¢ = pos F,, where dimo = 1 + dim F and
{F, | o € T} is a polyhedral sphere (see III, Definition 1.9).

The list below refers to properties of ¥ which are not invariant under
combinatorial isomorphisms (compare III, 5). ‘

imme s,  m—————
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m complete
/7 N
rational complete polyhedral
T /7
rational simplicial 0

complete

@ strongly polytopal
/!
regular strongly polytopal

regular complete

7.3 Lemma. [n the list above, no implication can be reversed.

2
PROOF. @ 7~ : We choose a complete fan in R, which contains pos{e; +
v2¢,) as a 1-cone.

. Vg . See, for example, any nonsimplicial complete fan.

.-/». Choose, for example, the complete fan in R? with generators
ey, ey, —281 — ez

-/» : See 5, Example 4 (Figure 20).
. 7 . Any nonsimplicial polytope provides a counterexample

. s @ The Barnette sphere (see I11, 5) can be reallzed in R* such that its
cells span a fan X. Since the Barnette sphere is not polytopal, X is not polytopal,

and, hence, not strongly polytopal. But, also, polytopal fans need not be strongly
polytopal, see the Examples 1 and 2 in section 4.

@ 7 : Consider the fan I illustrated in Figure 8 of 4. We choose x; = e,
X2 = €12,X3 = €3, X4 = —€2 — €3, X5 = —€) — €3,X¢ = —e; — €. We split the
cone pos{xs, Xs, Xg} by introducing the additional generator x; = —e; — e; — e3.
We leave the other cones unchanged. In this way, we obtain a regular complete fan
which is not strongly polytopal.

7 .
@ 7> L_I: Consider the fan of Figure 13 in section 4. (W

7.4 Definition. A regular complete fan is called minimal if it cannot be obtained
from another regular complete fan by a regular stellar subdivision.

Theorem 6.6 can be looked at as a classification theorem:

7.5 ’.I'heorem. Any two-dimensional minimal regular complete fan is unimodular
equivalent 1o Ty or Ly, k € Z\{l, —1} (see Figure 25).
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As we mentioned in section 6, no analog of Theorem 7.5 is known for dimension
n > 2.Results have only been found for small numbers g of generators. We restrict
ourselveston = 3andtog < 6.

7.6 Lemma. Let T be a regular complete fan in R®, and suppose ap, ay, a3, a3
are generators such that st(Rxo ag, ) consists of o1 1= pos{ag, a;, &2}, 02 =
pos{a, az, a3}, 03 := pos{ag, as, ai} and their faces. If 0, ap, ay, a3, as are the
vertices of a polytope, either 2ay = a + az + ai or ay can be eliminated by the
inverse regular stellar subdivision s~ (R0 a0, posiai. a2, a3}).

Proor. Up to a unimodular transformation, we can let a; = e, a; = ey,
ap = e3. Fora; = (e, B, y) we obtain from the regularity of &

det(er, e3, a3) = - =1, det(ez, €3, a3) = —a = 1.

as is “above” lin{e), e,} and “below” aff{e;, e;, €3}, hence, we obtain, from e =
B = —1,thaty = 1ory = 2. This implies 2ap = a1 + @2 + a3 orag =
a; + az + az. In the latter case, we can apply Theorem 6.2. O

7.7 Theorem. Any three-dimensional minimal regular complete fan with g < 6
generators is unimodular equivalent to one of the fans shown in Figure 28 where,
inb,r £ 1,-1,inV,r > s,r >0, (r, 5) is different from (0, 0), (1, 0), and, in
c, (r, 5) is different from (1, 0), (0, 1), (—1, 0), and (¢, —1).

€3 -er€a+r€3 €3
e €2
€4 €1
~81-€2€s 23
€3 €3
)\ &2 -e1 ez
-€-€2 : €4 te-e; ﬁ €4
-83+Te1+Se2 -83+T€1+5€2
~ FIGURE 28, )

7. Classification problems 189

A A A A

FIGURE 29a,b,c,d.

PROOF. Firstwe find all polyhedral simplicial 2-spheres with at most six vertices.
If there are only four vertices, we obtain Figure 29a, which is a Schlegel diagram.

Also for five vertices, there is, combinatorially only one type (Figure 29b). If
there are six vertices, we know from II, Theorem 6.7 that the polytopal types are
those illustrated in Figure 29c, d. By II, Theorem 6.7, any simplicial sphere with
six vertices is isomorphic to one of them.

Now we look at the regular realizations. If we extend the arguments of Lemma
7.6, we see that, up to a unimodular transformation, only the upper left fan in
Figure 28 is a regular realization in the case of four one-dimensional cones.

Let the given fan have five generators. Up to a unimodular transformation we
assume e), €, €3 to be three of them. Leta = (y, @2, 3) and b = (B, B2, B1)
be the remaining ones such that the following determinants of three-dimensional
cones are to be considered:

det(e;, a,e3) — —o) =1
det(a, e, €)= —ap, = 1
det(ez, a, b) = —a1ﬁ3 +o3p = —1

det(a, e1, b) = —ozf3 + a3y = —1
det(e;, ez, b) = B3 = —1

We obtain @ = (—1, —1,@3) and b = (8, B2, —1) with a3(By — By) = 0. If
a3 = 0, wesetr := B, s := B, and obtain the cases illustrated in the lower
left fan of Figure 28 where, for reasons of symmetry, r > s and r > 0 may be
assumed. (r, s) = (0, 0) has already been considered in case b. (r,s) = (1,0)
yields ey = b + e3. If a3 #£ 0, hence, 8, = B, we obtain from det(a, e, b) =
—1 438, = —1that B = B, = 0. Forr := a3, we find the cases illustrated in
the upper right of Figure 28, where r £ 1, —1 because of Lemnma 7.6.

So, let the fan have six generators. Again, we can assume that e;, ey, €3 span a
three-dimensional cone of the fan.

Claim The given fan does not have the combinatorial structure illustrated in
Figure 29c¢,
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PROOF. Let a = (@), az,a3), b := (B, B2, B3), ¢ := (1, ¥2, ¥3) be the
remaining generators such that the determinant equations for the 3-cones are
(1) det(ey, e3,a) = —z = 1,
(2) det(ez, €3,a) = a) = —1,
(3) det(ey, e, b) = B3 = -1,
(4) det(e;,a,¢) = aqays — o3y = —y3 —a3ya = 1,
(5) det(ez,a,¢) = a3y + 3 = —1,
(6) det(ey, b,c) = Bays — fay2 = —1,and
(7) det(ez, b,¢) = —Biys— 1 = 1.
The equations (4) and (5) imply

(8) ay(y1 —y2) = 0.

From Lemma 7.6, we deduce that one of the following three cases must hold:
9 a3 =0, 9) a3<0 or (9" a3=2.

Case (9)

From (4), we find y3 = —1. Also, since 83 = —1, we see that 0, ey, e2, b, ¢ are
vertices of a poiytope, hence, by Lemma 7.6, e| + ¢2 + ¢ = 2b and, therefore,
y3 = —1 = 283 = —2, a contradiction.

Case (9)

From (8) we have y1 = y2 =: y. From (6) and (7), we find that (8, — B2)ys = 0.
Since @3 < 0 implies y3 < 0, we obtain 8; = B2 =: B. From (5) and (7), we
obtain

(10) as(l + Bys) =1 + y3.

Since y3 < 0, we have a3(1 + Bys) < 0. Using (9') this implies 1 + 8ys = 0,
and, hence,

©A) B <=0, or (YB) B=1landy; = —1
Case (9'A)

B = Oimpliesy = —1,and, hence, by (5),ys = a3—1,sothata = (-1, —~1, a3),
b = (0,0, —1),and ¢ = (-1, —1, a3 — 1). Nowa + b = c, contrary to the
minimality of the fan. So, let 8 < 0. We setay = —a3, f' = —B,y; == — V3
so thatej > 0,8 > 0, y; > 0. Rewriting (10), we see that

an 1+ aj = y3(1 — flay)

with only positive parameters. The left side of (11) is positive, the right side
nonpositive, a contradiction.

Case (9'B)

By(5),y = 0,sothatb = (1,1, —=1),c = (0,0, —1),and, hence,b = ey +e2+¢,
contrary to the minimality of the fan.

. a———— e

2 s i ettt A o AR _ e AN e

Exercises 191
Case (9")

Geometrically, this means that the point e3 lies “below or on” the affine plane H
spanned by the points e, e, a. If b lies “above” the plane H' spanned by e, e,
¢, we interchange the roles of e3 and b, so that (9) or (%) occurs again.

Suppose, therefore, b lies below or on H'. Clearly, b and ¢ also lie “below” H
(otherwise the fan were not complete). Since 85 = —l and 8 := B, = B,, we find
B < 0.Furthermore, 3 < Oandy := y; = y» < 0.By(4),1 = —y3—asy > 3,
a contradiction.

This proves our claim.

In the octahedral case Figure 29d, we assume e, e, €3 to be generators and
to span a cone of the fan. We seta = (a1, 0z, @3), b = (B), B2, B3), and ¢ =
(71, 2, ¥3), where a is adjacent to €3, e3 and b is adjacent to ey, 3. By calculating
all determinants which involve a, b, or ¢, we obtain the following equations:

Q) o = —1, Br =1, 3 = —1.
w2fy =0, ayy =0, Baya = 0.(i1)
(iii) 0 f3y + azfiy, = 0.

Up to change of notation, we can interchange e, ¢; and a, b simultaneously, also
ey, e3 and a, ¢ or &3, e3 and b, c. Therefore, there is no loss of generality if we
let a; = 0 to satisfy the first equation of (ii). For the second and third equations
of (ii), we have solutions o3 = B3 = Qora; = y» = Oory; = B = Oor
vi = v2 = 0.Incase yy = B3 = 0, it follows from (iii) thate; = Oor g = 0
or y; = 0. In all cases, one of the vectors a, b, ¢ has only one nonzero coordinate
and another one only two nonzero coordinates. We may assume oy = o3 = 0and
B3 = 0o that

a=—e, bh=pe —e, and c=ye + pre; — e;.

Weset: ;= 8,7 := y1, s := ¥, and obtain the cases of the lower right of Figure
28 where (r, s) # (1,0), (0, 1), (—1, 0, (£, —1), since in these cases ¢ + e
equals e}, ez, —ey, b, respectively, so that the fan were not minimal. 0

Remark. Instead of working directly with determinants, as in the last part of the
proof of Theorem 7.7 one can use Qda’s criterion (Theorem 4.12)

X1 + X] + uxy + vx3 = 0, u,v ez,

where xy, x|, x2, x3 are generators such that pos{x;, x;, x3} and pos{x],
X2, x3} are cones of the fan. u, v are then called weights (of the edge [x3, x3]).
The classification proceeds by characterizing weighted edge graphs of simplicial
spheres which belong to minimal complete regular fans.
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Exercises

1. Any complete fan in R? is combinatorially isomorphic to a regular complete
fan.

2. The fanin R?, spanned by the faces of an icosahedron, is isomorphic to a regular
complete fan.

3. Find out for which pairs of integral vectors (z, r, s) the fans in the lower right
of Figure 28 are the same up to a unimodular transformation. [Hint: (1, r, s),
(1, —r, r + s) is such a pair.]

4. Find (up to unimodular transformations) all minimal regular complete fans in
R* with g < 6 generators.

8. Fano polytopes

We consider a special class of fans; their cells are spanned by the faces of polytopes
which are defined as follows.

8.1 Definition. Let x;, ..., x, be simple lattice vectors which are the vertices of
a polytope P with 0 € int P. Then, P is called a Fano polytope provided the
complete fan it spans is regular.

8.2 Theorem. /n R2, up to unimodular transformations, there exist five Fano
polytopes, as illustrated in Figure 30.

PROOF. We may suppose ey, ez to be adjacent vertices of P, Leta = (a;, a3) #

e, be adjacent to ;. Then a; = det(e;, @) = —1, and, since e1e; := {(§1, &) |
£ + & = 1} is a supporting line of P, o) < 1.
Similarly, for the vertex b = (81, f2) # €1 adjacentto ez, f1 = —1, B2 < 1.

We denote the vertices adjacent to a, b and different from e, e2 by a’ = (o], @3),
b’ = (87, B3), respectively.

First, suppose &y = B, = 1. Then, a| +a; = det(a, a)=—-l,and B8] + B; =
det(d', b) = —1, and, hence, @’ € {—e;, —e2}, b’ € {—e;, —e2}. It follows that
eithera’ # b’ anda’ = —ep, b’ = —e ora’ = b’ equal to —e; or —ez. In both
cases, no further vertex exists, and we obtain polytopes of type F4 or Fs.

Ifa; = 1and B; < 0, then, again, & + a; = —1. Furthermore, &; > —1.
This implies 8; > —1, hence, 82 = 0, and we obtain a polytope of type F; or Fa.

ANNAN
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FiGure 30. F,, F,, F3, Fs, and Fs
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The same conclusion is drawn for 8 = l and @; < 0. Solet ; < O and

B2 < 0.Then, a, b belong to {—ey, —ea, —e; — €3}, and we readily obtain one of
the types Fi, F,, F3, Fa. O

Remark. Types F3, 4, F5 are not minimal in the sense of the preceding section.
By inverse regular stellar subdivisions F3 can be reduced to F;, and F,, Fs just
as well to F as to F,.

The direct analogs of 7 and 7, in R® are the simplex T = conv{e,, e;. €3,
—e1 — €2 — e3} and the octahedron convie;, —e,, €2, —e;, €3, —e1}. We present
a further example (Figure 31).

Remark. In dimensions three and four, all Fano polytopes (up to unimodular
transformations) have been classified by Batyrev (there are 18 and 121 types,

respectively). For higher dimensions, partial results are known. We prove one of
them.

First, we remind ourselves of the split of polytopes (IV, 1). If P,, P are polytopes
in complementary linear subspaces of R”, 0 € relint P,,0 € relint £, then, P, o
Py := conv(Py U P;) is said to split into Py, P;. Dually, P} & Py = (P o Py)*.

Furthermore, we define the following polytopes that generalize Fs:

8.3 Definition. A polytope Py, := convie;, —e1,..., e, —ex, €1 + -+ +
e, —ej ...~ e}, k even, or aunimodular copy of it, is called a de!f Pezzo polytope.
8.4 Theorem. Any n-dimensional, centrally symmetric, Fano polytope P splits
into line segments and del Pezzo polytopes,
P=11o---OI,OP(kI)O---OP(k_‘), r+k +---+k =n.

PROOF. The proof proceeds in several steps. First, we claim that

(1) Let F := conv{ey, ..., e}, and — F be facets of P. Then any further vertex
a = («y, ..., o,)of P satisfies
-l=<a =<1, j=1...,n.

FIGURE 31,
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Proof: We consider the unimodular transformation (for row vectors)

1 0 0

1 1 0
L= .

1 0 1

Then, L(F) = convie,,e; + €2,...,e1 + ey}, L(—F) = conv{—e;, —€ —
€1, ....—er—e,}.Let F; := conv{e|, e;+ez, ....e1+e€; 1, e1+€jr1, ..., e1+
e,} be a facet of L(F), and let F, := conv({a} U F;) be a facet of L(P) adjacent
to L(F). Since H, := {& = 1} and — H, are supporting hyperplanes of L(P),
we see that eithera = —e; — ¢; or; = 0. In the latter case,

o; =det(e;. e+ ez, ....e1+ej 1, a,e1 Fejpn, .. 0 ) =1,

since F, spans a regular cone pos F,.
The hyperplane aff F, has (fora # —e; — e;) an equation

§ — & =—1

Its intersection with Hy := {&, = 0} supports the polytope L(P) N Hy in Hy, and
hence H; := {£§; = —1} supports

L(P) = conv (L(F) U L(—F) U [L(P) N Hy)), j=2,...,n

For reasons of symmetry, — H; also supports L(P), j = 2,...,n.

Weobtain L(P) C H N---NH, N(=H)N---N(—H), whichis also true
fora = —e; — e;. Hence, (1) holds for L(P) instead of P. Since L~ preserves
&, ..., &, (1) also follows for P inthe case j = 2,...,n.

To verify (1) for j = 1, we consider the facet F, = conv{b,e; + e3,...,
e +e,), b # e, of L(P).Forb = (B, ..., B eitherb = —ejor B) = 0.In

the latter case,
B — - - — B, =deth,e; +e,...,e +e)=—1
The supporting hyperplane aff 7, of L(P) has an equation
4t =1
which remains invariant under L~'. Therefore,

—1552+"'+Enfl

for all points of P. Since L™ (0, &, ..., &) = (=& — - — &, &2, ... &), we

obtain |£;} < 1, and, hence, (1) for j = 1.

(2) Leta = (@, ..., o,).a = (o), ..., a,)bevertices of P, both not contained
in FU (—F). Then, for j = 1,...,nneithera; = (x;- =lnore, = a:,. =
—1 is true.

Proof: Again, consider L (P) so that, as we have seen above,

a; =a; = 0.

RPN
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Suppose, fora j > 1,&; = a; = —1.Then, q, a’, F; would be contained in
the supporting hyperplane {§, — §; = 1}, and, hence, P would not be simplicial
contradicting regularity. By symmetry, it follows thate; = o = 1isnot possible,
either. Since o, aj- remain invariant under L~! for j = 2, ..., n, (2) follows for
Jj =2,...,n Wemayassume n > 1 (forn = 1,(2)is trivial). By interchanging
the roles of ¢y and some or; # o, (2) also follows for j = 1.

(3) Any vertex of P not in ¥ or — F can, up to renumbering of coordinates, be
written as

a=(1,-1,....1,-1,0,...,0)
(there may be no zeros).
Proof: Since all vertices not in L(F) U L(—F) of L(P) lie in {&; = 0}, those
of P which are notin F or —F lie in
g1+ -+ =0,
So, the claim follows from (1).

PROOF OF THE THROREM. According to (3),leta = (1,-1,....1, =1,
0,...,0) be a vertex of P not in F or —F, Since P is centrally symmetric,
—a =(=1,1,...,=1,1,0,...,0) is also a vertex. We writc all vertices of P

(except those in F and — F) as rows of a matrix:

1 -1 1 —-1]0 0
—1 I -1 1 0 0
0 0 0 0

*
0 0 0 0

2%
Because of (2), the lower left part of this matrix consists of zeros. The split of

the matrix represents a split of the polytope into P = Py, o Py, where dim Py =
n—k.

We repeat the procedure until there is no further vertex a & F U (—F) and
obtain a split

P = P((), Q P(k,) O+ 0 P(;\-\).

Py, contains only verticese,, —¢;,i = 1,...,r =n—k —.-. —k,, and, hence,
splits into r intervals, 'l

Exercises

1. Find three Fano polytopes with eight vertices in R* each two of which are not
related by a unimodular transformation.
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2. Find (up to unimodular transformations) all Fano polytopes in R3

with at most
six vertices.

. Prove the converse of Theorem 8.4: Alj split polytopes presented there are Fano
polytopes.

4. Prove that a Fano polytope in R" with two facets F , —F (symmetric with
respect to 0) has, at most, 2n + 2 vertices.

Part 2

Algebraic Geometry
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Toric Varieties

1. Ideals and affine algebraic sets

From its beginning, algebraic geometry is concerned with sets of zeros of finitely
many polynomials. These affine algebraic sets form a basic part of the theory, usu-
ally as “charts” of which more general varieties are built up (by “gluing together™).
The undertying field of coefficients may be general or restricted to one of the fields
Q. R, C, of rational, real, or complex numbers, depending on the topic discussed
and the methods used.

We shall set up a framework which, on one side, fits the special type of varieties
to be considered, and, on the other side, is general enough to include quite a num-
ber of basic algebraic geometric concepts. Though we stick to rather “classical”
geometric objects, in many cases, we need modern terminology to formulate the
equivalents of combinatorial geometric facts in algebraic geometry.

As a coordinate field, we choose the field C of complex numbers throughout.
Many results could be extended to the cases of other fields, but we do not stress this
possibility. There might be a question about “real” geometry which requires real
coordinates. For our purposes, it is enough to give real illustrations by choosing
polynomials “as real as possible” (for example, 5,2 + ‘;’22 — 1 representing a circle,
rather than §2 4 &} + 1, which has no real zeros). We can do this because most
facts considered do not depend on specific values of the coefficients of polynomials,
avoiding exceptional cases. For the general setting, the coordinate field C is, in a
way, more convenient, since any nonconstant polynomial has a zero in C.

Polynomials are considered to be C-valued functions of a complex vector space
V.If& := (&, ..., &) is a coordinate vector of V with respect to some basis, a
polynomial f is given as a linear combination of monomials

FE =Y Mg Er = D ONE, forii= G, ... i),

where A; € C, i ; € Zso, and only finitely many A; are nonzero. The ring of all
such polynomials (under ordinary addition and multiplication) is denoted by

C[Eh CCIERE) Em] = C[S]
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Any (finite) set of polynomials determines a geomeirical object in V, namely,
the set of its common zeros. The sets thus obtained are called affine algebraic sets
(see Definition 1.1); for a single nonconstant polynomial, they are called (affine
algebraic) curves, if dim V = 2, surfaces, if dim V = 3, and hypersurfaces in
general. On the other hand, for a given subset M of V, we consider the collection
of all polynomials vanishing on M it has the structure of an ideal in the ring of
all polynomials. The relation between polynomial ideals and affine algebraic sets
is our first object of study.

1.1 Definition. Let F be a subset of C[€] := Cl&. ..., &n]- The set

V(F) :={§ = &1,....Ex) | f(§) =0,

is called the (complex) affine algebraic set V(F) — (™ definedby F.If F' C F,
we say V(F) is an (affine) algebraic subset of V(F'). We set V(f) := V({f]).

forall f € F},

Evidently such an affine algebraic set is a closed subset of C” (with respect to
the usual topology).

First, we recall the definition and some elementary properties of ideals in a ring
R (which is always assumed to be commutative with unit element 1).
1.2 Definition. An additive subgroup a of R is called an ideal in R if
r-a € a holds for arbitrary a € nandr € R,
or briefly
R-acCa

In other words, a is closed with respect to multiplication by arbitrary ring elements.

If a # R, wecall a proper. If F is a subset of R, then, the set of all finite R-linear
combinations

R-F:={n-a+ - --+r-alreR, a; € F, k € Zx}

is an ideal, called the ideal generated by F. In particular, for F = {a}, the ideal
R-a := R -{a} =: (a) is called the principal ideal generated by a. As examples,
we have the “zero ideal” 0 := R - (0) = (0) and the ideal R = R - 1 = (1).

If F is a subset of C[£] and if a is the ideal generated by F, then, clearly, every
polynomiai in a vanishes on V (F), and we even have the following lemma:

1.3Lemma. IfF isasubset of C|&]and a the ideal generated by F, then V(F) =
V(a).

Thus, we see that every affine algebraic set can be defined by an ideal. On the
other hand, given an arbitrary subset of C, we associate with it an ideal as follows:

A s e At ot £ ek
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1.4 Definition. For a subset Z of C", the set

iz :={f eCIt]| fiz =0}
is an ideal, called the (vanishing) ideal of Z.
If V is an affine algebraic set V(a) in C™, then we also write ay instead of ivie-

Note that the inclusion & C ay in general is proper. Evidently, we have the
following relationships:

1.5 Lemma.
(@ If F C F', then, V(F) D V(F').
(b) IfZ C Z', then iz Dig.

To study the relationship between ideals and affine algebraic sets more closely,
we, first define the sum and the product of two ideals (respectively cosets) of

R so that they are again ideals (respectively, cosets). More generally, we set the
following definition:

1.6 Definition. For an ideal a of R and subsets S, S; of R, define

ZS}' = {E Sj |Sj € Sj},
finite
S a:={37 5a |meZs,s €8S,a ca,)l,
(f+o)g+a):=fg+a forf,geR.

Clearly, S - a is an ideal of R, included in a.

1.7 Lemma. For ideals a and a’ in C[£), the setsa + o’ and a - o’ are also ideals,
and

(@ V(a-a)=V{ana) = V(@)U V),

(b) V(a+a') = V(a) N V(a'), and

(c) V(CIED) = B, and V(o) = C™.

PROOF.

(a) The equation f(a)f'(a) = 0 implies f(a) = 0 or f(@) = 0, since C has
no zero divisors. Using Lemma 1.5, we obtain the equalities.

(b) Fora € V(e)NV(a'), f € a,and f' € o, weobtain (f + f')(a) = 0, and,

hence, a € V(a + a'), which implies “>”. The opposite inclusion follows
from 15.

(c) is obvious, since 1 € C[£].
o

Remark. The properties above show that the collection of all affine algebraic
subsets of C™ is the family of all closed sets of a topology on C™, which we
shall call the Zariski topology (see Definitions 123 and 124). As we have seen
above, affine algebraic sets are closed subsets of C™; hence, the Zariski topology
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is coarser than the usual topology on C”. It can be defined for affine algebraic
varieties over an arbitrary field of coefficients. For x = (x;,...,x,) € C",
{x} = V(& — x1, ..., &En — xp); hence, every one-point subset of C™" is affine
algebraic and, thus, closed in the Zariski topology. We denote by

my = C[&](sl - xl) + -+ C[E](Em - xn))
the ideal i.{_r].

Now, we consider some examples of ideals and affine algebraic sets:
Example 1. a:= R (¢2 + &2 — D isanideal in R := C[&, &].
Example 2. a:= R - (& — 1)(§2 — 1)(§; — 1) isan ideal in R = C[£}, &, &).
Example3. a:= R- (&} +&} — 1)+ R- (§ — &) isanideal in R = C[&, &)

Exampled. a: = R- & — &)+ R- 51+ &) =R-& + R - & isanideal in
R = Cl&, &)

On the geometric side, V(a) is a {(complex) circle in Example 1, the union of
three planes in C? in Example 2, the two intersection points of a complex line and
a complex circle in Example 3, and one point in Example 4.

We are now going to introduce the notion of the (reduced) coordinate ring of
an affine algebraic set V (a) in C™. Hilbert’s famous “Nullstellensatz” shows that
V (a), endowed with the Zaniski topology, is entirely determined by its coordinate
ring. First we recall the notion of a residue class ring of R: If a is an ideal in R,
then the set

R/a:={f +a]| f € R}

of all cosets, with sum and product of cosets defined as in 1.6 forms a ring.

1.8 Definition. If ais anideal in R = C[x] and ay is the ideal of all polynomials
vanishing on V(a), we call R/ay =: Ry, sometimes also denoted by R, the
coordinate ring or the ring of regular functions of the affine algebraic set V (a).

Let f € Ry. Any two polynomials g € f + ay and g’ € f + ay define the
samemap glv : V — C.

We remark that Ry has no nilpotent elements, that is, nonzero elements a power
of which is zero. Note that the elements of Ry can be interpreted as the restrictions
of polynomial functions to the affine algebraic set V from the ambient space C™
and conversely. In particular, the generators £, := &; +ay of Ry are the restrictions
of the coordinate functions, which explains the name “coordinate ring”.

1.9 Lemma. For every sequence Y| D Y, D --- of algebraic sets, there is an
integer r such thatY, = Y, = --- ‘

——, SRt A PN .., A £
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PROOF. Letiy C iy, C --- be the corresponding chain of ideals in R :=
Clé1, .. ., &), andleti = 2, iy.. By Hilbert's Basissatz (compare, for example,
van der Waerden [1967]) the ideal i is finitely generated, thatis,i = R -5, +-- - +
R - where n; € R.Since n; € i = (U2, 1y, 7, € iy, forsomei, € Z.o.
Letm :=max{i; | j =1, .. .+ k}. Then, 5, € iy, for j = 1,..., k, and we get
iy, = iy,,, = -+ whichequals i. G

1.10 Definition. A proper ideal p of R is called a prime ideal if rs € p implies
r € pors € p. A proper ideal m of R is called a maximal ideal if m C m’ for an
arbitrary proper ideal m’ implies m’ = m.

We note the following elementary result:

1.11 Lemma. Anideal a of R is
(@) prime if and only if R/a is an integral domain,
(b) maximal if and only if R/a is a field.

As fields have no zero divisors, we evidently have
1.12 Corollary. Every maximal ideal is prime.
Affine algebraic sets whose vanishing ideal is prime play a special role:

1.13 Definition. An affine algebraic set V C C” is called irreducible or an
affine algebraic variety if it is not the union of two proper algebraic subsets. If
Vi C V2 C C" are two affine algebraic varieties, we say that V) is a subvariery
of V2. It determines an ideal denoted by iy, y, := {f € Ry, | fly, = 0} =
v /lv, C Cl&L. - - -, Eal/iv, = Ry,.

1.14 Lemma and Definition. Each algebraic set X is a finite union of irreducible
algebraic sets X;. If we assume X; ¢ X, fori # j, then, the X, are determined
uniquely and are called the irreducible components of X.

PROOF. Suppose X is not a finite union of irreducible algebraic sets. Then, in
particular, X is not irreducible, sothat X = YUY where Y S Xand Y’ S X.If Y
and Y’ are both finite unions of irreducible sets, then, sois X. Therefore, at least one
of them, ¥ say, is not aunion of irreducible components. By repeating this reasoning
and using induction, we can find an infinite sequence X 2 Y =: ¥, Y22 ---such
that none of the ¥; is a finite union of irreducible algebraic sets. So, the sequence
does not get stationary, contrary to Lemma 1.9.

Therefore X = X, U...UX; isaunionof finitely many irreducible components.
We may assume X, ¢ X, fori # j (otherwise we leave out X,).

Suppose X = X| U -.- U X, is another such representation. For each j e
(L., kL X; = X; NX = (X; NX)U---U(X; N X.,). Since X, is
irreducible we find that X; N X; = X, for some i, hence, X; C X!. But, also,



204 VI Toric Varieties

X! C X, forsome g, hence, X, C X; C X,, and, therefore, X; = X = X,.So,
each X is an X/, and, analogously, each X; is an ,,. Therefore, the X; are uniquely
determined. O

1.15 Lemma. An affine algebraic set X is irreducible if and only if Yix is prime.

PROOF. Assume X is irreducible, and let £ - g € ix. Then, V(f -g) = V(fH U
V(g) D X.Since X isirreducible, V(f) D> XorV(g) D X whichmeans f € iy
or g € iy. Hence, iy is prime.

If X is not irreducible, then, X = X' U X", X’ g X, X" ;X, hence, iy ;ix/,
ix gixn. We may assume f € iy \ ixs, g € iy» \ ix. Then, f - g € iyxux~, so
that iy is not prime. 0

The “Nulistellensatz” is the higher dimensiohal analog of the “Fundamental
Theorem of Algebra”.

1.16 Theorem (Hilbert’s Nullstellensatz). Let a C CIl&] be an ideal, and let
f € Cl&). Then, f € iy if and only if there exists a natural number k such that
ffea

1.17 Corollary (Weak version of Hilbert’s Nullstellensatz). Every maximal ideal
of C[&]) is of the form

(1) m, = Cl£1¢E —xa) + - - + CIEIEm — xn)

foraunique pointx = (xy, . . ., X}, and, conversely, every such ideal is maximal.
In particular, the maximal ideals of CI£) are finitely generated.

PROOF OF THEOREM 1.16. We need only show the “only if part” of the
theorem. So, let f¢ ¢ a for every k, and let m D a be the maximal ideal of
R := CI£] for which, also, f* ¢ m for every k. First, we claim that, for each
i € {1,...,m}, there exists an o; such that §; — a; € m. We may assume i = 1.
If& — B ¢ mforeach 8 € C, then, f% € m + R(§; — B) for some natural
number kg, so there are polynomials ps € mand gg € R such that

2) ps a1 — B) = f*.

Since C is uncountable, we find nonnegative integers d and & such that {8 € C |
degree of g5 = d and kg = k}is an infinite set. The polynomials f € R ofdegree
< d clearly form a vector space of finite dimension over C. Therefore we can find
distinct numbers B, ..., B, € C and numbers Ay, ..., A € C\{0} such that

3 Mg+ o+ Argp = 0. )

Covewam o
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Forq:=2:= NE =B —B_ o B
obtzin, usimy (12) andl (3),1 1 =B = Bir) -+ (1 — B) € Cl& ], we

ftq :Zli[pﬂ‘ + 9561 — )]
X E =B (&= Bio))E - Bir) - (& - B
= ;A.-pﬂ,(a =B =B~ Bie) (& - B) e m.

‘ On the other hand, we see, from ¢ € C[&] and from 84,..., 8, being dis-
tinct, that g(8,) # 0, so that ¢ is not the zero polynomial. We write g(&;) =
v& —v) (&1 —yl)) (using the Fundamental Theorem of Algebra), where
YsVis .-, ¥r—1 € Cand y # 0. Using (2), we obtain ’

k
a0 g =y G- g, -y
=y .f"(fl"n — pyl).. . (fkvr-| _ Py,_l) € m.

Hence fX*n+-+kv-i ¢ ;a2 contradiction.
Proceeding in the same way for&;, ..., &,, we find a;,

.., @, such that
(4) My = RE —a) + - + Ry — ) Cm.
Let 4 € m be arbitrary. Then, we can write
k&, ..., ) = h((gl —a) +ag,..., ¢m — ) + ) =g+c

for some g = YL (& — a)gi(!) € mandc € C. Frome —= h — geEm

we conclude = 0. Therefore m = {h € CI£) | h(ay, ..., o) = 0l =m
Since m > a we have (ay, . .., o) € V(a). On the other hand, f ¢ m, hence
f(oq,...,a,,,) # 0so that f ¢ iv(a). (]

PROOF OF COROLLARY 1.17. Choose f = 1. Since it is shown that m — m
in the proof of Theorem 1.16, the corollary follows from 4. 5

We now list some useful consequences of Hilbert's Nullstellensatz. The first is

essentially a restatement, where Hom .
: ent, ¢ -aig{C[-], C) denotes the set of C-algebra
homomorphisms (which, by definition, send 1 to 1): ’

1.18 Corollary. There is a one-to-one corresp.
C™, the maximal ideals m, of Cl&,
ClEl = C. f = f(x):

ondence between the points x of
..., End, and the evaluation homomorphisms

C" «— {m C CI€] | m is a maximal ideal} <— Homg _u,(CI£), C).

The proof of the last equivalence stems from the fact that those algebra homo-

morphisms are uniquely determined by their kemels, which i i
(oo Lomma 200, » Which are maximal ideals,
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The next result characterizes the points of an affine algebraic set in ideal-
theoretic terms;

1.19 Corollary. If u is an ideal in C[£), then
V@ ={xeC"|acCm};
in particular,
v = {f €CIE1| f* €a}, and V(o) = V(ivw)-

PROOF. We only show the last part. By Theorem 1.16, V(a) = V({f | ffe
aforsome k € Z.o}) = V(@) 4

By the following obvious lemma, the points of an affine algebr?.ic setV = V(a)
correspond precisely to the maximal ideals of the coordinate ring Ry (or of the
residue class ring R/a):

1.20 Lemma. Let a be an ideal of a ring R. Then, the maximal ide_als of_ the ring
R := R/a are precisely those of the form @ := m/a with m maximal in R and
aCm

That yields a generalization of Corollary 1.18:

1.21 Corollary. If V is an affine algebraic set with coordinate ring Ry, then,
there is a one-to-one correspondence between the sets

V «— {m C Ry maximal ideal} «— Homg _ag(Ry, C).

For the set of maximal ideals, there is the following standard notion in
commutative ring theory:

1.22 Definition. The set of all maximal ideals of a ring R is called the (maximal)
spectrum of R and is denoted by spec R.

Now, we introduce topological considerations into the investigation of affine
algebraic sets. We recall that a topology on a set X is a co.llection f’f subsets of
X, called open sets, such that arbitrary unions and finite mtersec_:tlons of open
sets are open, and also @, X are open. X is then called a topological space. Bi-
jective maps between topological spaces which preserve open sets, are said to be
homeomorphisms.

On manr;occasions, we shall use “ordinary” topology which is induced in C" b’y
the ordinary open sets of R2". But, for many purposes, another (“non—Hausdorff™)
topology, which we introduce now, is helpful.

1.23 Definition. A subset of an affine algebraic set X is called Zariski open ifitis
the complement of an algebraic subset which, in turn, is said to be Zariski closed.

1 €

RO U RV Uy
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1.24 Lemma and Definition. Let {X,};; be a Jamily of Zariski closed (open)
subsets of an affine algebraic set X. Then, there exists a Sinite subset Iy I such
that (N, X, = ﬂie,o Xi (Ui Xi = Ul-e,o X;). In particular, the Zariski open
sets define a topology on X, called the Zariski topology.

PRrROOF. For finite intersections, there is nothing to prove. Suppose it is false for
?nﬁnite'inmrsections'. Then, for any finite su.bset Io'c I Mies Xi § MNic 1, Xi. By
increasing Iy succesively, we find a decreasing chain of algebraic sets which does
not become stationary, contrary to Lemma 1.9.

Passing over to complements, we obtain the corresponding statement for
unions. C

Remark. The finiteness properties of Zariski topology expressed in Lemma

1.24 have no analog in ordinary topology and make Zariski topology a powerful
instrument.

Remark. If we associate with each ideal a of R the subset V(a) = {m € spec R |
a C m}, then, obviously, the collection of all these sets V (a) is the family of closed
sets of a topology on spec R, which is also called Zariski topology. It is, then, a
consequence of Corollary 1.21 that an affine algebraic set V, endowed with the
Zariski topology, is homeomorphic to spec Ry of its coordinate ring Ry.

Remark. For an ideal a of the polynomial ring C[£], the residue class ring R :=
CI£)/a s generated as a C-algebra by the classes &, := &, +aforj = 1,.. ., m.
Conversely, a finitely generated C-algebra R can be written as a residue class ring
Cl§, ..., &) /aforsomemanda suitably chosen ideal a. Such a presentation and,
hence, the affine algebraic set V (a) in " defined by these data, is not unique. The
preceding Remark shows, however, that any two such “models” are homeomorphic.
Thus, we can associate with such a finitely generated C-algebra R a well-defined
“abstract affine algebraic set,” namely, its spectrum spec R, endowed with the
Zariski topology. Moreover, if R is an integral domain, that is, without zero divisors,

then every such ideal a is prime, and we may consider spec R as an abstract affine
algebraic variety.

Remark. In commutative ring theory, there is the more general notion of the
prime spectrum spec R of a commutative ring R, that is the collection of all prime
ideals p of R. That notion is very useful in abstract al gebraic geometry. If R = Ry
is the coordinate ring of an affine algebraic set, the elements of spec R are in one-
to-one correspondence with the (irreducible) subvarieties of V. For our purposes,
the more restricted notion of a maximal spectrum is sufficient,

From polynomials, we now proceed to rational and regular functions, thus,
providing tools for the study of divisors in chapter VII.

Let ¥ be an affine algebraic variety, and let Ry be its coordinate ring. Since Ry
is an integral domain, we can consider its quotient Sfield Ky
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1.25 Definition. By a rational function, we mean any element of a quotient field
Ky. We say that a rational function f € Ky is regular at p € Y if in an open set
U which contains p, we can express f as f = ‘,5, forg,h € Ry,h(p) # 0.If f
is regular at each point of U, it is called regular on U. A rational function regular
on Y is simply said to be a regular function.

1.26 Lemma. A rational function f € Ky is regular ifand only if f € Ry.

PROOF. If f € Ry, itis clearly regular. So, let f € Ky be regular. For any p
let f = £ where g,, hp € Ry and hy(p) # 0. WesetUp; == {x € ¥ |
hp(x) # of. By definition, p € U, ¢, and so, {U, s}y is an open covering of
Y. By Lemma 1.24 we can choose a finite subcovering {Up, s} p.er for appropriate
pi € Y,i=1,..., k. Wesetg; 1= g, h; := hp,. Consider the ideal i ;=
Ry -hy +-+-+ Ry - by C Ry, and suppose i # Ry.Let m be a maximal ideal
which contains i. By Hilbert’s Nullstellensatz, m = m, = {v € Ry | v(x) = 0}

for some x € Y. In particular, h;(x) = Ofori = 1,..., k. Butx € U, ¢ for
some i, so thath; (x) # 0,acontradiction, Thereforei = Ry,andi > 1 = > figi
for appropriate f; € Ry, hence, f = 3 fifgi = 2_ fihi € Ry. |

1.27 Lemma. Let Uy be the setof all points of Y at which a given rational function
f is regular. Then Uy is a nonempty Zariski open set.

ProoOF. Using the notation as in the proof of Lemma 1.26, we may, write Uy =
Upeu, Up.s. Therefore, Uy is a union of Zariski open sets, and, hence, Zariski is
open. O

Remark. Notethat f € Ky definesamap f : Uy = C, p+> f(p) = %"%.
We extend the notions of Definition 1.8 and Definition 1.13 as follows.
1.28 Definition. A Zariski open subset U of an affine variety Y is called a quasi-
affine variety. We define on it the ring of regular functions
Ry :={f € Ky | fisregularon U}.
Let F be a subset of Ry. By an algebraic subset of U we mean the set
V=VFU) :={xel]| f(x) =0forall f € F}

(compare Definition 1.1). For F = {f}, we set V(f, U) := V({f}, U). We say
that an algebraic subset V of U is irreducible or a subvariety of U if it is not the
union of two algebraic subsets of U, both different from V. As in the case of an
affine variety each algebraic subset of U is a finite union of uniquely determined
irreducible components. Each subvariety V of U determines an ideal

vop:={(feRy| flv =0}

Remark. Let Uy C Y, Uy C Y be two quasi-affine varieties. Then, Ry, = Ry,
does not imply U, = Usz. Example: Rgr = Reny(p) forn > 2 andsome p € C".

bt = s = ) mkbm
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1.29 Lemma. Let U be a quasi-affine variety in Y. Then, the following is true
(@) If D C Y isirreducible, sois DN U. If DN U # @, then, DN U is (in t.he
Zariski topology) an open and dense subset of D.
(b) If D C U isanirreducible algebraic subset of U, then, the Zariski closure D
of D isirreducible in Y and satisfies DN UiD. Moreover, iy, = ip y N Ry.
(¢) The Zariski topology induces a topology on U (also called Zariski t(;pology)
whose closed sets are the algebraic subsets of U.

ProoF.

(a) Let D C Y beirreducible, DNU # @, and suppose D N is not irreducible.
Then, DN U = D; U D, for Dy, D, Zariski closed in D, and we can find
:fl, fz € Ry suchthatﬁ € 1Dz.U\iD|.U.f2 € iD,‘U\iDLU.CIcarly, f] 'fz €
ip,up,.u. Choose a py € Dy suchthat f(p;) # 0. We have f, = fﬁ where
8pi»hp € Ry and hy, (p1) # 0. Then g,, € (ip,u \ ip, ) N Ry. In an

analogous way, we fin i i i i
we obgtain ¢ d8&p, € (i,.v \1p,v) N Ry.Since g, - g5, € ipnu.v,

DD (DNV 8y, gp YHU(DN(Y\U)) D (DNUYUDN(Y\U)) = D.

Since D isirreducible and DN U # @, this implies D = DN V(gp 8p ¥,
he.nce, & " 8py €iny.Butg, ¢ ipy, gy ¢ ipy,conrary toipy being
prime (Lemma 1.15). Since DNU = D\ [(¥ \U)N D] andsince (¥ \ U)N D
is a closed subset of the variety D we conclude that D N U is a Zariski open
and therefore dense subset of D.

{(b) Let D C U be irreducible. Then, ip y C Ry is prime (Lemma 1.15). Also
}'D‘UnRy is obviously prime and defines the subvariety D C 7. By deﬁnition:
tpy = ip.y N Ry is the largest ideal in Ry which is contained in ip y, so it
corresponds to the smallest algebraic subset of ¥ containing D, and; hence
toD Notethat DNU D> DNYU = D, ,

Let f €ipy CRy.Forpe D, f = £ forg, h, € Ry, h,(p) # 0.
In pamcqlar, g€ = f - hp € ipy. Since §p € ipy, we obtain g, =
f-h,, € pnu.ys and, since ipn 4, is prime, we see that f € ijny . Finally,
ipy Cipnyyand D D DNU D D, hence, D = DNU.

(©) Ej;‘ Leglma 124, D = Uf=, D, where the D, are irreducible. Then, D =

i=1 i

By (b), Di = D;NU.hence, DNU = Ji_(D;nty=J*_, D; =D. O

1.30Lemma. LetU; C U? C Y be two quasi-affine varieties in the affine variety
Y, and let D C U, be an irreducible subvariety of U, such that ip y, C Ry, is
Uy 2
gener}czzted by one element g1, € Ry, thatis, ipy, = gp - Ry,. Then, ipny, v, =
8o - Ry,. - o

PROOF. Let f e iDﬂM.U,- For p € DN U, we may write f = ? where
8. hp € Ry, hp(p) # 0. g, is regular on U, and gplpny, = 0. Since D is

irreducible, we see that g,/p = 0 which implies g, € ipy, and hence g =

&p - wp where w, € Ry,. Therefore f = g, - }:’—: and E% = %‘»’— follow which
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mcans that g—f] is regular in all points of D N U;. Since gp(x) # 0in Uy \ D,
regularity of r{) holds everywhere in Uy, and f € Ry, - gp follows. O

1.31 Definition. Let X, Y be quasi-affine varieties, and let¢ : X — Y be a map
such that, forevery f € Ry, f o ¢ € Ry. Then, we call ¢ a morphism.

Any morphism ¢ defines a ring homomorphism ¢* © Ry — Ry by f —
p*(f) = fop

Example 5. Let U C Y be Zariski open in Y. Then the inclusion U < Y
determines a morphism of quasi-affine varieties. ¢* : Ry — Ry is the restriction
of aregular function on ¥ to the subset U. We may, then, interpret¢* : Ry — Ry
as the inclusion Ry C Ry.

Example 6. Let U be an affine variety and Z C U be a subvariety of U. Then,
the inclusion Z — U determines a morphism ¢ : Z — U. One easily proves
that ¢* : Ry — R is a surjection and ker ¢* = iz . In particular, we get that
Rz = Ry/isy.

The following lemma is evident.

132 Lemma. Lety : Z — U beamorphism of affine varieties. Then, forx € Z,

-1
My = ¢‘ (m.).

1.33 Definition. A morphism g is said to be an isomorphism if it is bijective and
if p* is an isomorphism. By an open inclusion, we mean an isomorphism onto
some Zariski open sct. By a closed embedding, we mean an isomorphism onto a
Zariski closed subset.

1.34 Lemma. Ler ¢ : X — Y be a morphism of affine varieties, and let ¢* :
Ry = Rx be the corresponding morphism of rings. Then,

(a) @* is an isomorphism if and only if ¢ is an isomorphism, and

(b) @* is surjective if and only if ¢ is a closed embedding.

Proor.

(a) We need only show the “only if” part. Let ¢* be an isomorphism and, hence,
define a bijection between maximal ideals of Ry and (p*"'(Rx). Then, by
Lemma 1.32, ¢ is a bijection.

(b) If ¢ is a closed cmbedding, it splits into an isomorphism g : X — @(X)
and the inclusion ¢(X) C Y where @(X) is closed in Y. Then, ¢* splits into
a surjection Ry — Ry /ixx,y = Ryx) and an isomorphism ¢g : Ryx) —
Ry, s0 @” is a surjection.

Conversely, if ¢* is a surjection, then, its kernel is a prime ideal determining a
subvariety Z of Y. The points of Z are in one-to-one correspondence with maximal
ideals of Ry which contain iz and, hence, with ideals of the form ¢*~'(m), where
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m is maximal in Ry. Therefore, by Lemma 1.32, Z = ¢(X). By (a), we see that
¢ : X — ¢(X) is an isomorphism. O

1.35 Definition. Let U be a quasi-affine variety. We say that U is an affine variety
if and only if U is isomorphic to some affine variety V C ¢

Example 7. C\{(0} — Y = {(x.y) e C? | xy = 1}, x —> (x, x7 ).

1.36 Definition. Let X be an affine algebraic variety. By the dimension dim X
of X, we mean the supremum of all integers n such that there exists a chain
0#XyC X, C---C X, = X of distinct irreducible sets.

Example 8. The dimension of C' is 1, since the only irreducible sets are the whole
space and a single point.

1.37 Definition. Given a ring R, the height of a prime ideal p is defined as the
supremum of all integers such that there exists a chain py C .-+ ¢ P = pof
distinct prime ideals. The supremum of heights of all prime ideals of R is called
the (Krull) dimension of R.

1.38 Lemma. IfY is an affine algebraic variety, then, the dimension of Y is equal
to the dimension of its coordinate ring Ry.

PRrooF. The imreducible affine algebraic sets contained in ¥ ¢ ¢” correspond
to those prime ideals in R := C[£, ..., &,] which contain iy. These ideals are in
one-to-one correspondence g to prime ideals in Ry = C[&,, . .., £:1/1y:

o:R — Ry =R/iy
p = ¢(p).
So, the above definitions imply the lemma. O

We recall some elementary facts on rings and fields. Let R, D R, betworings.
We say that @ € R is integral over R, if there exists a polynomial w(x) =
x" + a1 x"71 4+ - 4 @ in Ry[x] such that w(a) = 0. The elements of R,
which are integral over R, provide aring R; O R;, and we have Ry D R,

If all elements of R, D R, are integral over R,, we call R, integral over R,. If
R3 O R, D R, arerings such that R; is integral over R, and R is integral over R,
then, Ry is integral over Ry. Let Ry O R, where R; is adomain with quotient field
K.Forana € R, whichis integral over Ry letw(x) = x* +a_1xk '+ .. -+ ag,
@ € Kfori = 0,...,k — 1 be a polynomial of minimal degree such that
w(a) = 0. Then, it follows that a, . . . , a.-) € R,.

Let Ky > K be fields. We callelements ay, ..., q ¢ K, algebraically depen-
dent over K, if there exists a polynomial w(xy, ..., x) € Kalxy, ..., x;] such
that w(ay, . ... a;) = 0, otherwise, algebraically independent. A maximal set of
algebraically independent elements is called a transcendency basis. Its cardinality
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does not depend on the transcendency basis and is called the rranscendency degree
tr deg K of K over K».

A transcendency basis can be chosen from any set of generators of X over K.
If{a1, . .., @} isatranscendency basis, then, each element a of K, is algebraically
dependent over the field Ka(a), ..., a;) which means that there exists a polyno-
mial w € Kj(a,, ..., a)[x] such that w(a) = 0 or, equivalently, there exists a
polynomial & € K,[xy, ..., X, Xi41) such that @(ay, . .., a;, @) = 0. (For more
about transcendency degree compare, for example, Winter [1974], p. 41).

1.39 Lemma. Ler X ; Y be affine algebraic varieties in C". Then, tr deg Ky >
trdeg K.

PRrROOF. We may choose the coordinate functions &, ..., & (up to a permu-
tation) as a transcendency basis of Ky, ¥ = tr deg Ky. So, we have iy §ix C
Cl&, . ... &1 If f € ix \ iy, then, f is algebraically dependent on the quotient
field C(&;, ..., &) C Ky.Thus, we find f" 4+ @p_y - f" ' +---+a =0
fora; € C&, ..., &), that is, @; = gi/h,', 8, h; € Cl&, ..., &] This im-
plies W - f™ + Wyt - f" N 4o+ wo = Owherew; = g - ho- ki -
hin co-h,_y € C[El,...,sk],i =0,....m—1,w, = ho---h,_;. Since
f € ix, we obtain wy € iy. But wy is not zero on Y, since, otherwise, we
could divide by f. Thus, wo = wo(&, ..., &) is a nonzero polynomial de-
termining the algebraic dependence of &, ..., % on X. So we conclude that
trdeg Kx < tr deg Ky. d

1.40 Lemma. Let X C Y be affine varietiesin C". Iftrdeg Ky > rdeg Kx +2
then there is an affine variety X' such that X ;Cé X' ; Y.

PrOOF. Let dimY = k. Since ¥ C (" is an affine variety, the functions
&), ..., &, generate the ring Ry = CI[%, ..., & ]/iy. We consider an element
w € iy which is a nonzero polynomial represented as asum w = wo + - - - + Wy
of homogeneous polynomials w; of degree i, where i = 0, ..., m. We may as-
sume that w,, # O. Substituting new coordinates &, = &,, & = & — a;¢, or
& =& +aé,a,€C,i=1,...,n~1, weobtain

w(§{~ R %_'/') =wp(a, ..., a1, 1} - (‘Erll)m

+ terms in which &, is of degree < m.

Since w,, is a nonzero homogeneous polynomial, we find a,, ..., a,—1 € C such
that w,{ai,...,a,_1, 1) # 0.

Then, we see that £, is integral over C[&),...,&,_}/Gy N CI&. ...,
& 1) C Ry. We write again & instead of &/, i = 1,..., n. By repeating the
same procedure, we find &y, ..., &, &1, ..., & such that &, . .., & provide a
transcendency basis of Ky, and &4, ..., &, are integral over &, ..., & which
means that Ry is integral over C[&;, ..., &] C Ry.

Let &, ..., & form a transcendency basis of Rx. Then, ixy N Cl&, ...,

£1 = 0. In particular, tr deg Ky = /. By assumption, ! < k — 2-Letp C Ry
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pe. 2.1 maximal ideal for which p N (Cl&1, ..., &) - (Ry \ iy r)) = 0. By def-
mition, p C ixy. If f, g ¢ p, then, by the maximality of the ideal p, we find
a-f = p + w6, ..., &) - ¢ wherea € Ry, P eEpc ¢ ’ixy and
b-g=pr+wi,... &) C2, where b € Ry, p; € p,c; ¢ ixy. i—lénce,
a-b-f-.g =p+wii. .. 8w, ) o -czwith.p € p and
c-c ¢ ix.y, s0 that f - ¢ ¢ p, and we conclude that p is prime.
By. definition, p ; ix.y C Ry.Hence, p defines a variety X’ such that X’ ; X. It
rer;x:lfr;sc :’oss:lov:) St:at Y:?e X ’ or, equivalently, that p ;é.(.) in Ry,
ppose p = 0 in Ry. Then, by the definition of p, for any nonzero

ideal i D p=0in (ClE&, ... yE41]1 - (Ry \ixy)) # 0.Since! < k-2
?md 51,_. N form. a transcendency basis of Ry = Ry/ixy, we can find an
f(riredu_c-lble polynoml.al ve Cli, ..., &, 620\ Cl&, ..., &linigy. Then, the
i e;}lx = Ry - vsatisfiesi N (C[¢&, . .., &l (Ry \ixy)) #0.
low, f-v=g-h fors:.omef €Ry,geClh,... . &rl.andh ¢ iy y. In
particular, g and v are relatively prime polynomialsin &y, ..., &. -
Letw(x) := x" +a,_1x" "'+ ... +ap,a ¢ Clér, ... &)i=0,...,r—1

be a polynomial of mini = Tw( ¥
bes polynomial of minimal degree such that w (k) = 0. Then, (£) w(E =0

r

v
w/(x) = (E)rw(—x) = xr -+ a,_| gx’—l + -4 ag g_
v g v v’

is a polynomial of minimal degree such that w'(f) = 0. Hence, q; £ ¢
Cl&, ..., ék]fori =0,..., r— 1. Inparticular, v divides g, fori = 0, . . .l,lr— 1.
Hence, a; € iy y sothat k" € ix.y, a contradiction. This provesthatp # 0. [

From Lemmas 1.?9 and 1.40, we conclude that each chain of varieties can be
con?pleted. to a maximal chain, thatis, X ¢ X, C --- ¢ X; = X such that
Xo is a pomt'and trdegKx, =trdegKy_ +1=(@G—1)+1=i The other
assertions being evident, we obtain the following theorem:

1.41 Theorem.

(@) IfY is an affine variety, thendimY = dim Ry = tr deg Ky.

(b) lEachhchain of irreducible varieties can be completed to a chain of maximal
ength.

(©) If X isavarietyinY, then, dim X equals dim Y minus the height of iy in Ry.

Corollary. LetU C X bea quasi-affine variety in an affine variety X. Then,
dim U = dim X = trdeg Ky = trdeg K.

)_}?ROOF. Let Yo C Y_, C -+ C Y, = U be a maximal chain in U, Then,
0 C--- CY, = Xisamaximal chain in X. Otherwise, by Lemma 1.29 and

. Ci ul <om
Iheole"l 1 40 WE CO d ple[e 1t al‘ld Intersect again Wlth (J Obtalnlll a
g g longer

Example 9, dim C” = n.
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Exercises

1. For each of the following algebraic sets A, find the ideal a in C[&, ..., &)
satisfying A = V (a):

a. A is a finite set of points.

b. A is the union of all coordinate hyperplanes of C".

¢. A is an m-dimensional linear subspace of C',0 < m < n.
d. A is the union of a hyperplane H and a point not on H.

2. Prove that linear manifolds of C" (translated linear subspaces) are algebraic
varieties.
. Find a subalgebra of C[&1, £2] which is not finitely generated.
4. Any morphism of quasiaffine varieties is continuous with respect to Zariski
topology as well as with respect to ordinary topology.

(o8]

2. Affine toric varieties

Let R ;= C[&, ..., &) be the polynomial ring in 2n variables, n > 1. Then,
a:=RE & — D+ -+ R(§pbn — 1)

is an ideal in R. For_z; =& +ae€ R/a,i =1,...,2n, we, thus, have (writing
simply 1 instead of 1 € R/a)

ZJZn+J = ly

and, hence zJT’ =zuyjforj=1,._.,n

2.1 Definition. The elements of
Clz.z7'1:=Cla1,-- vz 27", 2 1 = Cl&1L - - . E2)/a
are called Laurent polynomials, whereas terms
Aozt =gt fora = (o, ..., 0,) € 2", XE€CH
are said to be Laurent monomials. .
The monic (i.e., » = 1) Laurent monomials form a (multiplicative) group. The
key for the construction of toric varieties is the fact that the mapping
(1) ®:2" = Clz, 27", a2
provides an isomorphism (again denoted by #) between the (additive) group Z"
and the (multiplicative) group of monic Laurent monomials.
2.2 Definition. The support of a Laurent polynomial f = 3 g 2029, is defined
as

supp(f) :={a € Z" | A, # O}. .
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We, obviously, have

supp(f + g) < supp(f) Usupp(g) and supp(fg) C supp(f) + supp(g)

for f, g € Clz, z7'],and supp(1) = {0}. Hence, if aring R of Laurent polynomials
is “monomial” in the following sense, then the set | fer SUPP f is a submonoid
of Z":

2.3 Definition. A ring R of Laurent polynomials is called a monomial algebra if
it is a C-algebra generated by Laurent monomials.

The set of all Laurent polynomials, with support in a given submonoid of 7",
clearly is a monomial algebra. For a lattice cone o, we know that the set o N 7"
is a submonoid, which, by Gordan’s lemma, is even finitely generated. Thus, we
have the following lemma

2.4 Lemma and Definition. For a lattice cone o, the ring

R = {f € Clz,z”'1 | supp f C o}

is a finitely generated, monomial algebra.

We note that R,, being a subring of C[z, z~'], has no zero divisors. Moreover,
we recall that every finitely generated C-algebra without zero divisors defines
an abstract affine algebraic variety, namely, its maximal spectrum. The varieties
defined by the rings R, are basic for the algebro-geometric objects to be considered
in the sequel;

2.5 Definition. For a lattice cone o, the maximal spectrum X, := spec R, is
called an (abstract) affine toric variety (or torus embedding).

As we always may consider such a cone ¢ as a lattice cone in the subspace lin o
with respect to the lattice lin o N Z", we tacitly shall assume, in general, that & is
n-dimensional. In particular, that holds for the cones we have ta consider in later
sections, namely, those which are duals of strictly convex lattice cones in R".

The reason to call the variety X, “toric” will be explained in 2.8 below.

Now, we now want to study the subvarieties that realize such an abstract variety
X, in suitable affine spaces C*. We recall that these geometric realizations are
obtained by introducing coordinates, which corresponds to a choice of generators

of the monoid ¢ N Z”. In particular, we have to discuss transformations between
different coordinate systems.

Example 1. The largest possible n-dimensional cone is ¢ := R”. Then, viewed
as a monoid, ¢ N Z" = Z" has generators ey, ..., e, —ey, ..., —e,, S0 the
associated algebrais R, = Clz1, ..., 20, 27", ..., z;'}). The corresponding toric
variety X, can be described in C?* with coordinates £, . . . , &, as solution set of
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the equations
Eié:u—i = 1, i = 1,...,’1.

Hence, Xg = V(E1&uqp1 — 1, ..., 8nd2 — 1). Forn = 1, we obtaina(complex)
hyperbola with {£, = 0} and {&; = 0] as asymptotes (Figure 1) compare section1,
Example 7. '

We may also realize X, as the set of points

T:={@....2) €C |z #0,i =1,...,n} = @©\(OD",

ey 2n
which is isomorphic to V (£1&,+1 — 1, . . ., &,&2, — 1) under the projection C* —
C". The inverse of the restricted projection V(z1zp41 — 1, ..., 2a22s = 1) = T
is given by
(Zl..u,Zn) = (Z]y'--sznsZ]_ly"'qz"_])'

2.6 Definition. The set T := (C \[0})" =: (C*)" is called a (complex algebraic
n-)torus.

We note that T includes the real n-torus (§')"; in fact, T can be identified with
(8" x (R-0)" (see section 3). The name “algebraic torus” certainl.y reflects that
relationship, a deeper relationship comes from the theory of algebraic groups. We
remark that the notion of an algebraic torus should not be confused with that of a
compact complex torus, which will, however, not be used in our text.

. . 21
Remark. The realization of the torus 7 in €' provides a closed subset of C*",
whereas, as a subspace of C”, the torus T is not closed.

We mention that the choice of monomial generatorsey, . .., e,, —(e1+...+ e,.,)
corresponds to another realization of the n-torus, this time as an afﬁne algebraic
subvariety in C"*!. In the coordinates zy, . . ., Z», Zo41, the variety is defined by
the single equation z| - - - z, - z,+1 = 1 (see Exercise 4).

jatf = —
l—
—

R
|

—— —— ]

FIGURE 1.
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As in the special case of the torus 7', we are going to look for suitable coordinates
in some affine space C* in which an abstract affine toric variety X, can be realized
as an affine algebraic variety given by a finite set of algebraic equations.

Let A = (a1, ..., ax) be asystem of generators of the monoid o N Z" (which
exist by Gordan’s lemma). If we set

u:=7% € Clz, 27", fori = 1,...,k,

then, R, = Cluy, ..., u;]. With the indeterminates &1, ..., &, thereisanalgebra
homomorphism
s Cl1 .- &1 > Cluy, ..., ul, &> uifori=1,... k.

Our aim is to determine the ideal a := a4 := ker @4 (which depends on the choice
of A), so that

Clér, ... &)/aa = Cluy, ..., ul = R,.

The definition of a, can be rephrased as follows. For every f € C[£], f € ay, if
and only if ¢4 (f) = 0, which, in turn, is equivalent to f(4) = 0in C[u].

We consider integral positive linear relations (v, 1) (see V 39) for the system
A, i.e., equations of the form

k
20°

2) v-A=p-A, whereuy,ve?Z

andv. A := E’jzl v;a;. Such a relationship provides a monomial equation
2= @)@ = @ @M = A

or, in terms of the generators u; = z% of R,, a binomial relationship

(3) uy ol — Ut = 0.

Thus, it is clear that for such a relationship (v, &) the corresponding binomial
£" — £# is an element of the ideal a,. In fact, we want to show that a, is generated
by those binomials;

2.7 Theorem. For every lattice cone o, the corresponding affine toric variety X,
is realized by the affine algebraic variety V(a,) in C*, where A = @y, ...,a;)
is a system of generators of the monoid o N 7" and the ideal a4 of Cl&y, - .., &]
is generated by finitely many binomials of the form §" — g,

PrOOF. By Lemma V 3.10, the monoid of all integral, positive, linear relation-
ships (2) is finitely generated. Hence, it suffices to show that every element of a, is
a sum of binomials as above. For a polynomial f = SSMEY, Fla) = 3 Ut =
2 A2V, soforeverya € o NZ", the coefficient ¢, of 29 is > vdme Mo f € an
if and only if all these ¢,’s vanish. Hence, in that case, if A, # 0 for some multi—
indexv € Z’;O, there is another one, say u # v, which satisfiesv- A = u - Aand
Ay # 0. The corresponding binomial Au(§" — £#) is in a,; subtracting it from
f yields a polynomial in a, with strictly fewer terms than f. The proof is thus
obtained by an obvious induction. a
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We have seen in Corollary 1.17 that the points of V' := V(as) correspond
bijectively to the maximal ideals m of the polynomial ring C[£1, which contain
a4, and also to the ideals m := m/a, of the ring R, which is just the coordinate
ring Ry. Hence, the generators uy, .. ., u; of R, are the coordinate functions on
X, that realize X, in Ccr A point with coordinate vector x = (x1,...,Xx) € ct
represents a point of X, if and only if the relationships x* = x* hold for all (v, )
that satisfy (2).

In 2.7, the description of the affine variety V (a,) in C* representing an abstract
affine toric variety X, allows some immediate conclusions which will be used in
the sequel:

2.8 Theorem. Fixasystem A = (a, ..., a;)of generators for the monoid o NZ"
and set V ;= V(a,).
(a) Themappingy : T — V givenbyt := (1), ..., 4,) > (9, ..., t™) sends
T bijectively onto the open subset V N C** of V.
(b) For arbitrarily chosen x € V andt € T, the point (tV'x,, . .., t%x;) also

belongsio V.

PROOF.

(a) It is clear that each y(r) satisfies the defining binomial relationship from
above and that all points in y (T) have nonzero coordinates. Choose a lattice
pointa in o such that all translated points a + ¢; alsolicino, whereey, .. ., €,
denotes the canonical basis of R”. The Laurent monomials z* =: fo(u) and
Zt% =: fi(u) all belong to the coordinate ring R, = Clx] C Clz, z7'].
For a point y(¢), fi(y(t)) = ;2% = 4 fo(y(#)), hence we recover t; =
Fi(y )/ foly ()); in particular, y is injective. On the other hand, each point
x of V N C* lies in im(y): As the monomials f; take nonzero values on x,

x = y(ii(x)/ fox), .. -, falx)/folx)).

(b) is readily verified.
]

Thus, we have seen that each n-dimensional, affine toric variety includes the
n-torus as an open subset. Moreover, (b) says that the torus T, looked at as an
abelian group, operates in a natural way on such a variety (see section 5 for more
details on the torus action).

Example 2. For o := pos({e), ¢2}), the monoid o N 72 has linearly independent
generators ey, e;. Therefore, o = o, the zero ideal, and
X, =C".
The same is true for each cone
o = pos({e; + ve;, ey}), forv € Z.

More generally, if o = pos({ai, - .., a,)}) is a regular lattice cont in R", then,
again, a = ¢; hence, X, can by identified with the affine space C”".

e 1 -y
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Example 3. For o := pos({e;, ¢, + 2e;}), the monoid ¢ N 72 is generated by
ay = e1,a; = €| + 2¢;,a3 = e) + e,. There is a linear relationship

a, + a; = 2a;s,

and, hence, a monomial equation
Uil = u%.

X, is a quadratic cone with “singularity” in (0, 0, 0) (Figure 2) (more on
singularities in section 8).

We are going to discuss in more detail the transition from one such system of
coordinate functions on X, to another one. There are two cases. Here, we can
profit from the decomposition o = gy + cospan o of Lemma V 1.6. By Theorem
2.12 below, we essentially have to consider the following cases:

(1) The cone o has an apex.

Then, by V, Lemma 3.5, the monoid ¢ N Z" has a minimal system A =
(@1, ..., a) of generators, which is unique up to renumbering. Therefore, we
have distinguished minimal systems of coordinates u; := 7z, ... U = 7%,
We may, however, introduce additional generators and, thus, additional coordi-
nates. As an example, consider the an affine plane C? as affine toric variety X,
for o := pos({e1, e2}) C R? (see Example 2 above). Choosing the additional
generator a; := e + e; for the monoid o N Z?, we obtain the representation
Cl&,, &, &]/(& 152 — &3) = Clu), u2, us] for the abstract coordinate ring R, . The
corresponding model for X, is the quadric surface in C* given by the equation

) Uz = uy - U,
which is identified with C2 through the parametrization

Wy, u2) > (uy, uz, 4y - uy),

with the inverse given by the projection

(U1, uz, u3) = (uy, uy).

FIGURE 2.
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This can be easily generalized to the case of an arbitrary cone o with an apex. .The
additional generators a; for j =k + 1,. .., k' are positive integral corg_xlbman(ms
a; = ):le vjia;, so we have the corresponding relationships u; = u,” - -~ ;"
The model V  C* for X, that corresponds to the minimal system of generators,

with coordinates (u1, . . . , 4i), is mapped to the model V' C C* via
(TP 7S T ¢ STRNURNE YOS PR PPN 1] ) I8

where the extra coordinates u ; are given by the relations from above. The inverse
map is again given by the projection onto the first k coordinates (u1, ..., up).
(2) cospan o # {0}. o N

Here, in any case (except 0 = R), there exist different minimal systems of
generators of o N Z". We consider the following:

Example 4. For the half-plane ¢ = pos({e;, —e1, ez}) and fixed v € Z>o the
monoid o N Z2 has e;, —ey, b = vey + e; as generators, (see Figure 3 for v = 2).
In particular, ¥} 1=z = z), Uz '= 2 % = zl_l, u3z 1= 22 = gy and vy 1= uy,
v 1= Up, ¥3 = 2" = z)z; are two coordinate systems, and

U = Uy Uy = vy
Uy = Uz U = W02

v
vy = u‘fug, and Uy = VU3

are transformation formulae for the coordinates.

We now intend to introduce a notion of isomorphy under which X, and C* x C
are isomorphic:

2.9 Definition. Let ® : Cf¥ — €™ be a monomial mapping (i.e. every nonzero
component of ¢ is a monomial in the coordinates of C*), and let X, Cck
and X, > C" be (realizations of) affine toric varieties. If &(Xs) C Xq, then
@ := ®|y, is a morphism called an (affine) toric morphism from X‘{ to Xo. ‘If @
is bijective and the inverse mapping ¢ !: X, — X, is again a toric morplnsm,
then, we call ¢ a (toric) isomorphism, we say that X, and X, are iscmorphic, and
write X, =X, or, briefly, X; = X,

toric

FIGURE 3.
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Moreover, if o = o, then, we call ¢ a coordinate transformation.

Because of Lemma 2.10 below, we do not have to really distinguish between
the abstract affine toric varieties and their geometric realization. We also want to
justify this for toric morphisms. Such morphisms X, — X, are closely related
to monomial homomorphisms # : R,. — R, of the coordinate algebras, where

the algebra homomorphism # is called moromial if it is given by monomials in
the monomial generators:

Remark. Every toric morphismg : X, — X, uniquely determines a monomial
homomorphism ¢* ; R,» — R, and vice versa.

PROOF. Let ¢ be given. Then, by definition, there is a commutative diagram
Xs = V@@ < ¢t
O A
X0 E V(@) — "
where @ is monomial, i.e., of the form ®(x) = (A;x,..., Ax®™). The
corresponding algebra homomorphism
" Clyn .-yl = Clxyy .-y x), gr>god
maps y; to A,x‘ and, thus, is monomial. It is readily seen that
4) ®(V(a)) C V(a') ifandonlyif &*(a) C a.
Hence, ®* induces a monomial homomorphism
¢* Ry = Clyl/a’ — Clxl/a= R,
l i
Clv] — Clu]

Conversely, a monomial homomorphism # : R,- — R, can be lifted to a mono-

mial homomorphism ® : C[y] — Cl[x] with ©(a’) C a. That corresponds to a
monomial morphism

d:C—C" x> OGN, ....O00m)

with &* = @. We have @(a’) C a, hence, ®(V(a)) C V(«') by (4), so ® induces
a toric morphismg : X, — X,.. O

We note that toric morphisms are continuous with respect to the induced metric
topology, since they are given by polynomials. In particular, if two affine toric
varieties X, and X, are isomorphic, then, they are homeomorphic. Hence, on an

abstract toric variety, there is a well-defined “complex” topology, which is finer
than the Zariski topology.

Remark. For the “gluing maps” in section 3, we need, in particular, the toric
morphisms that come from an inclusion ¢’ C o of n-dimensional cones. For
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systems of monoid generators A of ¢ N Z" and A’ of 6’ N Z", there are positive
integral linear combinations a/ = v® . A, which yield monomial identities z% =
2""A ie., v; = u”". It is clear that the corresponding toric morphism induces
an isomorphism between the copies of T which are included in the affine toric
varieties X, and X,.

Up to a toric isomorphism, the geometric realization of an abstract toric variety
does not depend on the choice of coordinates:

2.10 Lemma. If R, = Clur,..., ) =Clé)/aand R, = Clvy, ..., 0] =
Clnl/a’ are two representations of R, by coordinate rings, then, there exists a
coordinate transformation between (), . .., ug) and (v, . . ., Un)-

PROOF. LetA = (ay,...,ax) and B = (b1, ..., by) be systems of generators
of the monoid o N Z7, and let »; := z% and v; := z% be the corresponding
coordinates. We can represent each b; as a positive integral linear combination of
the a;’s, and conversely. This provides the coordinate transformation. O

With an appropriate notion of isomorphisms, on each of the levels
lattice cones — coordinate algebras — affine toric varieties

one object determines the other two. So, for lattice cones, we seta C R" = lino
and 6’ C R™ = lino’, we call 0 and o’ isomorphic and write e = o', ifm = n
and there is a unimodular transformation L : " — R" with L(¢) = ¢’. Then,
the monoids ¢ N Z" and ¢’ N Z" are isomorphic as well.

We call the coordinate algebras R, and R, monomially isomorphic, and we
write R, mﬁRor or, briefly, R, = R,, if there exist mutually inverse monomial

homomorphisms R, < Ro.
Then, we obtain the following theorem:

2.11 Theorem. For lattice cones o C R" = lino and o’ C R™ = ling’, the
Jollowing conditions are equivalent:

(@c =0 (B)R, =Ry  (c) Xy =X,

mon toric
PrOOF. The implications “a) = b) = c)” are clear, so we are left with “c) =
a)”. We have seen in the Remark above that every toric morphism ¢ : X; — X,
induces a (monomial) homomorphism of monomial C-algebras ¢* : Ry — R,.

First, we show that ¢* extends uniquely to a monomial homomorphism
@ : Clwn wity . Wy wi'l —> Clzn g’y 2 7, ']

of the Laurent polynomial algebras with R,, C Clw, w™'land R, C Clz, z'}:
Choose a lattice point # € o’ such that all lattice points b+ ¢, for j = 1, ..., m
also belong to o’ (this is possible since o’ is of full dimension). With g := w? and
g; = whti = w;go we set ©(w;) 1= p*(g,)/¢"(go), which is a well-defined
Laurent monomial of Clz, z"‘]_ since p*(go) and ¢*(g;) are Laurent monomials.
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Thus, we have @ (w,) = A;jz% withA, € C* and ¢; = (cj1,
j=1....m,

As ¢! Xs = X, is a toric isomorphism by assumption, we immediately find
that © is a Laurent monomial C-algebra isomorphism, so its inverse maps z; to

., Cjn) € Z" for

piw® with u; € C*andd; = (i, ..., dyy) € 7" fori — 1,..., n Thus, we
have ‘
n
w; = 9_1(AJZC’) =1 I_I @—I(Z;‘j;)
i=1
n
=Aj~nuf""w"i"d" forj=1,..., m,
i=1

so we obtain (using an analogous calculation for z; = @ (u, w® )) the equations

n
chidik =38, A l—[uf” =1, Zdi;cjk = 8i,
i1

and

m
d;;
M I—[A’jl = 1.
j=1

Consequently, the integral matrices

(Cj)j=tmi=t..n and  (di})izt_mjm1. .m

are inverse to each other; in particular, m = n.

By the construction of ®, ©(R,) C R,.Let A = (a1,....a) and B =
(b1, ..., by) denote systems of generators of the monoids o N Z"and o' N 7"
respectively. Then, ® maps each generator v, = w® of R, to a monomial KsuP =

x5z in the generators u, = z% of R,, where x;, € C* and p; € Z’;o for
s =1,...,1.On the other hand, ©@(w™) = [T}_,(A;z%)%, 50 31_, ¢;b

k . .. . . Sj B
¥ ie1 @i Psi 1s a positive integral linear combination of the a;’s. Together with the

analogous statement for ®~!, this implies that o and o’ are isomorphic lattice
cones. O

Let us discuss the case of a lattice cone ¢ with nontrivial U = cospan g. Via

the decomposition ¢ = oy + U of Lemma V 1.6, it can be reduced to the case of
cones with apex 0:

2.12 Theorem. For an n-dimensional lattice cone o in R, setd := n — dim oy
Then, the affine toric variety X, has the structure of a Cartesian product

X, = X, x C*.
In particular, if the cone o is regular, then,

Xa ~ Cn—d XC*d.
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PROOF. We choose sets of generators ay, .. ., ap forogNZ" and by, . .., by for
UNZ",respectively. Their union generates the monoid ¢ NZ", Every linear relation
of the form }_ via; = Y~ u;b; is trivial, so any linear relation involving both sets

of generators splits uniquely as the sum of a relationship involvingonly ay, . . ., @
and another one involving the only by, ..., bw. Letuy, ... uprand vy, ..o, e
be the corresponding coordinate functions for representations V' of X, in c¥
and V" of Xy = C*? in C¥', respectively. Then, uy, ..., ug, v1, ..., v are

the coordinates for the affine subvariety V of C¥**" representing X,,. There is no
algebraic relationship of the form f(x) = g(v) with nonconstant polynomials f
and g, so a point (x, y) € C¥ x C*" lies in V if and only if x lies in V’ and y in
v’ = *, ie., V = V' x V”, which proves the claim. 0

Exercises

1. Fork € Z.;, find coordinates and equations for X,,, where o := pos({e;, e; +
kea)).

2. Find coordinates and an equation for X, where o := pos({e;, 2, &) + €2 +
2e3)).

3. Determine X, foro = R".

4. The n-torus T has the two representations by the points assigned to

—1 —1y ~ -1
spec Cluy, . .., U, uy o ..., 4, Y = specCluy, .- -, uy, g -+ -u,)7 )

Find the change of coordinate functions.

3. Toric varieties

We are now going to construct general toric varieties by “gluing” affine ones. The
gluing information is encoded in a fan £ in R", but not in the most straightforward
way: For the present purpose, it turns out to be essential to pass to the duals & (see I,
49 and V,2) of the cones o € X and to consider the associated affine toric varieties
X . The condition that the cones of T have 0 as apex guarantees that their duals are
all of the same dimension #. If 7 is a face of a cone &, then, we have an inclusion
& C t. By the Remark preceding Lemma 2.10, the induced toric morphism
Vo : X; = X; is an isomorphism given by a coordinate transformation on the
copies of the complex algebraic n-torus T included in both varieties as an open
subset. We want to show that ¥, ., is an open inclusion. That will allow glueing
any two such affine toric varieties X5, X;- along the open subsets corresponding
to the common face T := o0 No’.

To prove that claim, we choose a simple lattice vector m € relint(z+ N g). Its
existence follows from the proof of V, Lemma 2.3, and it satisfies

-«

t=06+ Rxo(—m)
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and, hence,

TNZ" = (6 NZ") + Zso(—m).

The monoid ¥ N Z” is, thus, obtained from & N Z* by introducing the additional
generator —m that lies in cospan 7. We may assume that a;, ;= m occurs as the last
member in a system of generatorsa, . . ., a; of & NZ". The monoid ¥ NZ" is, thus,
generated by ay, ..., a, a4y = —m. It is now readily seen that all nontrivial
relationships between these generators are sums of relationships involving only
a;,k e a;,and thf+()lbviousre]ationshipak +ai1 = 0.Infact, given arelationship

g = Zj:l pia; with v, p; € Zsp and vey1 > piyr, say, we may
subtract 44 114x+1 on both sides and, thus, reduce it to k1 = 0. Adding vy a,
on both sides and using a; +a;,, = 0, then, leavesus witha relationship involving
only ay, ..., a;.

On the side of the monomial algebras R; and R; with the corresponding gen-
erators u; := z%, the additive relationship a; + a4, = 0 corresponds to the
multiplicative relationship uxu;,; = 1in R;. As that is the only “new” defining
relationship when passing from R; to R;, and as the generators w; are just the
coordinate functions on the toric varieties X; and X;, we, thus, see that the pro-
jection (x1, ..., Xk, xeq1) > (xq, ..., x) identifies X; with the open subset of
Xs given by (x; # 0) (called a “principal” Zariski open subset). We have, thus,
proved the following result:

3.1 Lemma. With the above notation, we have a natural identification

X: = X5\ {u = 0}

Remark. In general, the “hyperplane section” X; N {u; = 0} is not a linear
subspace, as is seen in the following example. For o := pos{e,, e2, €3} C R
and the face v := pos{e;}, we may choose m = a4 = €2 + e3. Then, X; is
the affine 3-space C*, embedded in C* by the coordinates u; := z; fori < 3and
us = z223. Therefore, the “hyperplane section” X; N (4, = 0) in C* consists of
the two coordinate planes (u; = uq = 0) and (3 = uy = 0) that meet in a line,
namely, the u-axis.

For two cones 0, 6’ € 2, let r := o N ¢’ be the common face. Choosing an

appropriate coordinate system vy, . . ., v; for X5, according to the lemma above,
we have isomorphisms

Xo \ e = 0} = X3 = X5 \ {y = 0).
Their composition yields a toric isomorphism (see 2.9)
Yoot X \lux = 0) > X5\ fur = 0)
corresponding to the coordinate transformation

(y, oo csup ue ) = (v, ..., o v
OfX;.
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3.2 Definition. The above isomorphism ¢, - is called the gluing map that glues
together X; and X along X;.

Using these gluing data, we can now construct a general toric variety as follows:

3.3 Definition. Let X be a fan in R". In the disjoint union |, .y X5, we identify
two points x € X; and x” € X, that are mapped to each other by the gluing
map ¥, - The set of points, thus, obtained is called the toric variety (or torus
embedding) Xz determined by Z.

We still have to check some properties in order to justify the notation roric
variety for Xx. For our purpose, it suffices to see that Xz is a topological space
endowed with an open covering by affine complex varieties that intersect (Zariski)
open subvarieties. Such a covering is given by the (copies of the) affine toric
varieties X;, for o € X, that are naturally included in Xg, thus, defining the
topology. So, these data are provided by construction. In fact, we consider two
different topologies on Xy, corresponding to the two topologies on affine toric
varieties, namely, the “ordinary” or “complex” topology and the Zariski topology
(Definition 1.24). Next, we note the following result, essentially already stated in
2.8:

3.4 Lemma. Each affine toric variety X; contains the torus T as a Zariski open,
dense subset.

PROOF. The zero cone o := {0} is a face of every cone o € X, and its dual
0 =R’ yields X; = T. O

Moreover, all these embedded tori ¥, , (T) are identified under the gluing maps
(see also the Remark preceding 2.10), thus, proving the following lemma:

3.5 Lemma. There is a natural, open, dense embedding of the torus T into Xx.

Finally, we note the following result:

3.6 Lemma. With respect 10 the “ordinary” topology defined by the ordinary
topologies on the affine toric varieties X;, the space Xz is Hausdorff.

Proor. If two different points x, x’ lie in the same affine open subvariety X,
they have disjoint, open neighborhoods. Assume that we have x € Xz \ X;
and x’ € Xz \ X; for different cones o, o’ € . As these cones intersect in a
common face T, we find a lattice point m € 4 satisfying m € relint(z+ N &) and
—m € relint(v* N 67). Then, u; := z” and v; := z " are coordinate functions
on X; and X;-, respectively. It follows from 31 that they satisfy u;(x) = 0 and
v(x") = 0 and that we have u;v; = 1 on the intersection X; = X; N X;.. It is,
thus, clear that the sets {lui] < 1} C X5 and {|v;| < 1} C X4 have the desired
property. ‘ a
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We remark that only a weaker “separation property” holds for the Zariski
topology.

We can also express the gluing construction on the abstract level (see 2.5),
without the explicit use of coordinates. The natural inclusion of a face in a cone
of ¥ induces natural inclusion maps (denoted < ™ and **<«—", respectively):

T «— g,
R; « R;.
and
X;: = spec R; — spec R; = X5,
thus, providing the gluing maps.

For the following examples, we recall the definition of the complex projective
n-space P" as the space of lines (i.e., one-dimensional complex linear subspaces)
in C"*'. Any nonzero vector v := (5, 11, ..., 5,) defines a line C v, and two
such vectors v, v° € C"' \{0} define the same line if and only if one is a (nonzero)
scalar multiple of the other. We may, thus, associate with any element C -v of [P
its homogeneous coordinates [no, m1, . . ., n,] where at least one component 7, is
nonzero, and all components are determined only up to a common (nonzero) scalar
factor. The subset U, := {[no. 71, ..., 7.] € P’ | n, # 0} can be identified with
the affine n-space C" by means of the bijective mapping

U, — c*

[770: nlv'“inn] — (n(l/njv"'vnj—l/r]jv ’7]+1/’7j‘---e77n/7’j)|
that defines the jth system of inhomogeneous coordinates (also called affine co-
ordinates) (£;i)i=1.. » on [P". The projective n-space is, thus, cndowed with a
covering by n + | copies of the affine n-space. For0 < j < k < n, the transition
from the coordinates ({; ;) to (£ ,) that provides the gluing of U, and U, is readily
seen to be given by a monomial transformation. To see that P” is a toric variety,
we note that the intersection (), U; is immediately identified with C*", that is,
the torus 7 is embedded in . Moreover, the natural torus action (see section 5)
on C" = Uy by componentwise multiplication extends to P” in the obvious way

(TS M IR L I T M ) I S U Y TL/ TT M

In Example 1, we show that the complex projective plane P? is a toric variety; the
general case of [P is discussed in Example S.

Example 1. Let the projective plane P> = {[no. 7. 721 | n, € C, notall 5y =
0] be given, the homogeneous coordinates ng, n,, 72 being determined only up to
a common multiple.

It is covered by three affine planes Ag := {(1, mngl, 7727)6‘) | o # 0},

Ay = {Gomy s 1omam ') | # Oband Az = {(non; ", mny " 1) | ma # 0.

Setting z, := mny"', 22 1= man, ', we obtain

Ao = {21, 2k A1 = {(z7 " 2227 D) and A2 = {(z, . 2125 "))

We find isomorphic coordinate rings, each representing an affine planc (compare
Figure 4):
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-81+e>s
o
-e1
FIGURE 4.
oo :=R>0e; + Rxo €2, o1 :=Rx0 €2 + Rso(—€1 — €3),
Rs, =Clz1, 22}, R;, =Clzi', z7'22),
X5, =Ao, X5 =Ay,
02 '=Rxpe) + Rxo(—e, — €2)
Rs, =Cluiz; ', 25 '),
X5, =Aq.
Example 2. Given P' xP' = {([no, m), [{0. 1)) | (ovm) # (0, 0),

(%o, §1) # (0, 0)}.
We may cover P! x P' by four “charts”, that is, affine planes. We set

a=mng', n=oggl
Ao = {2, 22)) = Xgo A1 = (7. )} = X5, A2 = {21, 55} = Xa,,
Ay = (", z;)} = Xs,, where 0o, . . ., o3 are given as is seen from Figure Sa.

Figure 5b illustrates the restriction of P! x P! to its real points.

Example 3 Hirzebruch surfaces H;. We consider a hypersurface in P x P? =
{([nﬂy n]]a [{0! gl! §2]) I ('70’ T“) # (0’ 0)1 (CO! Cla ;2) # (0, 05 0)] given by an

equation
kr _ ok
nodo = M ¢, keZ.

It is called a Hirzebruch surface H;. By a modification of the arguments in
Example 2, we find four affine planes as charts whose gluing togetifer depends on
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v v
g1=0) Go=0Cp

v v
J3=03 T1=02

FIGURE Sa,b.

k. They are given by the spectra of the following rings (compare Figure 6):

R;, = CIz", 21 = Clz1. z2].

Rs, = Clz™%, ") = Clz; ', w3,

Rs, = Clz ™, 2] = Clzy ', 22l.

Rs, = Clz™ 7%, z72) = Clz; '35, 53 ']
We return to these examples later on. We now discuss a method to get a simplified
“real” picture of what a toric variety looks like. We write the complex parameter
z € C* using polar coordinates (r, #): z = re’> = r(cos® + isin®) with

r:=|z] > 0and 0 < ¥ := arg(z) < 2x (Figure 7).
The absolute value map

(C* —> R>0- > |Z|

is continuous (with respect to the usual metric topology) surjective, a group ho-
momorphism; for every r > 0, the “fiber” {z € C* | |z] = r} is a circle of
radius 7.

(k1)

FIGURE 6.
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FIGURE 7.

Applying the absolute value to each componentof (z3, . . .. z,) € T, we obtain
the map

V. T= (C‘)" I (R>0)"a (Zisovns Zn) — (|Z||v oy ‘an)

that is again a continuous surjective homomorphism. Each fibre
WUy, ..., r,) is the cartesian product of # circles, so it is a compact real torus
of real dimension n. We note that ¥ admits an obvious continuous surjective
extension to a map ¥ > (Rx0)".

On the other hand, applying the “argument” mapping

P:C*— S i={zeC |z =1}, z+r—> /e
to each component of (zy, ..., z,) € T, we obtain the map
Q:7T= (C‘)" b (S])") 2ty ..oy Zn) > (Zl/lZlI; ey Zn/IZnD-

That is again a continuous surjective homomorphism. On the compact real n-torus
(S")” embedded in T, that map is the identity; in topology, such a map is called
a “retraction”. Each fibre ®~!(x), for some point x € (8H", is isomorphic to
(R.q)". It is obvious to see that the product mapping

w.e:r — (R-0)" x (81",
(Zl""vzri) — ((lzllv'-'a|zn|)v (Zl/lz]|!'--vzﬂ/|znl))

actually is a hdmeomorphism (with respect to the product topology) and a group
isomorphism, thus, exhibiting T as a product of two factors:

3.7 Definition. We call the subgroup (S§')* C (C*)" the compact factor Ty, and
(R.g)" C (TC*)" the radial factor Tne of the torus T = (C*)".

For an affine toric variety V = X thatisrealized in C* by the choice of a system
of generators (ay, - . . , a;) of the monoid & N Z”, the embedded torus inherits this
product structure. Moreover, if two affine toric varieties X3 and X are glued, it

USRS

vy

[P PIRPEPI N
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is immediately clear from the description that the gluing map y, , respects this
product structure and, thus, identifies the compact factors and the radial factors of
the embedded tori, respectively.

We have already noted that the projection W : T — T4 onto the radial
factor can be extended to a map W of the toric variety C" onto (R»¢)", i.e., onto
the closure of the radial factor. This fact can be generalized to any affine toric
variety X5: For any geometric realization V = V(a,4) in some C* given by a
choice of generators as mentioned above, the equality W(V) = V N (Rx0)* holds.
That follows easily from the structure of the binomial relationship (3) preceding
Theorem 2.7. Moreover, it is clear that this set is just the closure (in the “ordinary”
topology) of the radial factor of the embedded torus in V. We denote with X the
corresponding subset of X;.

3.8 Definition. The subset | J, .5 X3¢ of a toric variety X5, is called the manifold
with corners Mc(Xg) associated to Xx.

Figure 8 shows Mc(X ) for Examples 1 to 3.

Remark. As the binomial relationships and the gluing maps for affine toric va-
rieties are given by normalized monomial functions (that is with coefficient 1),
toric varieties can be defined over any field. In particular, using the field R of real
numbers instead of C, we, thus, obtain the “real part” of a (complex) toric variety
X5 . Then, the manifold with corners associated with Xy is also contained in the
real part (see Figure 8a where Mc(Xz) is the dotted area). However, the theory
of toric varieties does not wholly work for R instead of C since, often, Hilbert’s
Nullstellensatz is used, which is no longer true if we replace C by R.

Example 4. We obtain the toric variety P? x P' by the fan of Figure 9a (spanned,
for example, by the bitetrahedron conv{e;, e;, —e; — €2, €3, —e3}). Figure 9b
shows Mc(P? x P'); Figure 9c illustrates P? x P' and a homeomorphic image

™
Mo

FIGURE 8a,b.c.
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i

V

FIGURE 9a,b,c.

of Mc(P? x P') (using a circular disc with diametrically opposed points on the
boundary, identified as a model for the real part of B2, a line segment with end
points identified for the real part of P').

Remark. Inour Examples 1 to 4, the defining fan I is always spanned by a convex
polytope P. In all these cases, the associated manifold, with corners Mc(X ), is
seen to be (isomorphic to) the polar polytope P* (see I, 6) of P.

Example 5. The n-dimensional complex projective space P": Generalizing Ex-
ample 1, we see that P" is the toric variety determined by the fan ¥ with the
n-dimensional cones

oo :=pos(ey, ..., e,) and
g; ==pos(ey, ..., L1, €+1,---,6n, —(1+ --+e)) fori=1,...,n.
The n + 1 toric varieties X; fori = O, ..., n, covering Xy, are just the copies

U; = " of the affine n-space that correspond to the system of inhomogeneous
coordinates.

Example 6. So far, all fans have been complete, that is, they have covered R".
We shall give a characteristic property for toric varieties Xy with complete X
(compactness) in section 9. As an example, for a noncomplete fan, let ¥ consist
of the four one-dimensional cones in Example 2 together with {0}. Then, Xz is
obtained from P' x P! by deleting four points, namely, the origins of the four
charts Ay, ..., A3 in Example 2.

3.9 Definition. An affine toric variety X, is said to be regular or smooth or
nonsingular if o is regular (see V, section 1), quasi-smooth or Q-factorial if o is
a simplex cone. A toric variety X is called regular or smooth or nonsingular if,
forany o € X, X; is regular. We say Xy is quasi-smooth if, forany o € X, X5
is quasi-smooth.

Examples 1 to 5 are regular toric varieties. Example 7 is nonregular,

o
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FIGURE 10a,b.

Remark. For our purposes, we do not need to discuss more refined notions like
tangent spaces and differentials. Of course, these concepts are very important in the
general theory of complex varieties; thus, one has to use them for a more thorough
study of toric varieties.

Example 7. The projective quadratic cone: For the complete fan ¥ in R?, defined
by e, e; + 2e;, and —e; — ¢, (Figure 10a), we know from section 2, Example 3,
that X is the affine quadratic cone, whereas X, and X, are affine planes as they
are defined by regular cones. We illustrate the real part of Xz in Figure 10b: the
affine quadratic cone X, is completed by the “circle at infinity” that represents a
complex projective line . That line /, in turn, is the union of a coordinate axis of
X, and another one of X ;.. The real picture is that of a “pinched (real) torus”—the
inner tube of a tire with a “meridian” squeezed to a point.

Example. Letay, ..., a, be simple lattice vectors which span R” nonnegatively
and, hence, define a (uniquely determined) complete fan ©. We call X5 a weighted
projective space.

Exercises

1. Let £ be the fan obtained from the regular octahedron conviey, e, e,
—e1, —e2, —e3) by projecting its faces from 0. Show that Xs = P! x P! x P!,

2. In R, let ¥ be obtained by projecting from 0 the faces of the square Q =
convie; + ez, e — €3, ~e| + e, —€;, — e3} and adding {0}. Find the affine
toric varieties which define Xs.

3. Let X := {Rxo0 €1 + Rxp €2, Rxg €3 + Rxo{—e1 — €2 — €3), Faces}. Describe
Xxz.

4. Find analogs of the Hirzebruch surfaces in dimension three which are
hypersurfacesin P! x P>. Find their fans and their defining affine toric varieties.
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4. Invariant toric subvarieties

In the present section, we want to associate with each cone ¢ in a fan T a toric
variety X/, that is embedded into X5 as a closed subvariety. In the systematic
discussion of the torus action on a toric variety, we shall see that Xz, is an orbit
closure.

To begin with, let o be a cone with apex 0 in R”, and let T be a proper face of
the dual cone &. We note that, for dimensional reasons, 7 is never the dual of a
cone with apex 0 in R”, (see V, Lemma 2.2(c)).

Letay, ..., ax be asystem of generators of the monoid t N Z". We extend itto a
systemay, . .., dx, Giyl, - - - , dg Of generators of @ N Z". These systems provide
coordinates

(ul»'-~|uk), (ul’~~-aukauk+lv'--vuq)

(withu; := z% fori = 1, ..., q as in section 2) for the affine toric varieties X,
and X;. We may assume that @41, ..., a8, € T NZ".Inthatcase, it is easy to see
that none of the coordinate functions us41, .. . , #, is invertible on X, so there is
a natural mapping

¢ X; — X
(ul;---vuk) [ (u]v~-'1uk107~-~10)-
In fact, in all monomial relationships [17_, ui" = [}, u’’, as in section 2,

formula (3) (following 2.6), withe; > O forsomei > k, 8; > 0 forsome j > k.
In the special case = {0}, the cone & has an apex, so the origin0 € C? isa
point of X, and we obtain p(X;) = {0} C X;.
Since every linear relationship between ay, ..., a; in & also holds in z (and
vice versa), the equations that characterize X,, according to Theorem 2,7, remain
unchanged under . Therefore,

4.1 Lemma. ¢ is an injective affine toric morphism.

I

We may, thus, identify X, and the closed subvariety ¢(X.) = Xz N (se41
=1y, = 0)of X;.

4.2 Definition. A closed subvariety of the affine toric variety X, is called an
invariant affine (closed) toric subvariety if itis of the form ¢ (X ) = X5 N (us1 =
- = u, = 0) as above.

We note that, in general, if a closed subvariety Y of an affine toric variety X is
an affine toric variety itself, it is not invariant under the torus action introduced in
the next section. As an example, consider the affine quadratic cone Y <> C> or
the affine plane C? realized in C* by the coordinates (41, u2, uy + u3). For that
reason, we call subvarieties, satisfying the conditions of the definition, “invariant”.
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Example 1. If 0 = ¢ = pos(e;, e3) is the first quadrant in R?, and t = pos(ey),
then ¢(X.) is the &, axis of the affine plane X3 = 2.

Example 2. In R?, we consider the cone ¢ = pos{e;, e; + 2e,), its dual & =
pos(2e; — ez, e2), and the face T = pos(2e; — ¢;) of &. With respect to the
generators a; = 2e; — €3,a; = e),a3 = e; of the monoid & N Z2, we have three
coordinates u; = z% for X, satisfying the equation u,u; = u%. With respect to
these coordinates, X = X; N (2 = u3 = 0), i.e., the & -axis. For t’ = pos(as),
we get Xor = X5 N (u) = uy = 0), ie., the &-axis. '

Remark. We can also give an alternative description of the invariant affine toric
subvarieties without using coordinates: A linear endomorphism of R” that maps
the monoid 6 N Z" surjectively onto 7 N Z" induces a surjective homomorphism

R; — R., hence an injective map
X, = spec R, — spec R; = X3

(maximal -idcals of R, are lifted to maximal ideals of R;).

Now letafan ¥ and afixed cone o € I be given. We consider the star st(a, T)
of o in X, i.e., the set of all cones ¢’ € X that contain o as a face (see III, 1).
Using the orthogonal projection 7 : R” — o onto the linear subspace oL of
R", we obtain the collection of cones (Figure 11)

Yjo = {n(c”) | o’ € st(o, )}

that is easily seen to be a fan in o+, called a quotient fan of ¥ (compare III,
Definiiion 3.3).

FIGURE 11.
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Obviously, the elements (o) € I /o are lattice cones with respect to the
lattice 7 (Z"). We now consider the dual (X /o) of the fan in ot

4.3 Lemma.
(a) We have the equality

(E/oy = {¢'Not | a’ € stig, T)},

and each cone T = &' Not € (X /o) is a face of the corresponding cone
A

a ' v .
(b) The following diagram is commutative (st (-, ) denoting the set of dual cones)

o'—+&’

st (o, ) — st(a, T)
i } Not
2/0’ n(a’_)_»:r)r(a’)' (E/U)'
PROOF. This follows easily from the definition of dual cones. a

We now show that we can embed the toric variety X 54, given by the fan /o
inogt,into Xx.

4.4 Lemma. . _ ' .
(@) To each cone T = &' N ot in (X /o) there corresponds an invariant toric

embedding X, — X5 . _ -

(b) Each such embedding X, — Xy is compatible with the gluing of the aﬂi.ne
toric varieties in Xz ;o and in X, respectively. As a consequence, the chozc'.e
of o determines an embedding of X s ;o into X5 as an invariant closed toric
subvariety.

PROOF. 3
(a) 7 is an element of (X /o) and a face of &’. So, we can apply Lemma 4.1.

(b) is a consequence of (a). .

Note that, under m, the lattice Z" need not be projected onto ol nz.
Furthermore, ¥ need not be simplicial.

Example 3. In the fan X defining the projective plane P2 (see section 3, Example
1), we choose o = pos(ez). Then,

st(o, £) ={0p. 01,0}, st(@, ) = {5, 51, Re1 + Rro €2} and
U-L =Re|1
T /o ={pos(er), pos(—e1), {01}, (E/0) = {pos(er), pos(—er). Rel

Thus, we see that X5, is a projective line, namely, a coordinate tine of P?. .

s o CARASE. _skash ¢, el e i

5. The torus action 237

Example 4. For P! x P! (see section 3, Example 2), we obtain the following
invariant toric subvarieties: the four projective lines

P' x{0}, P' x{oo}, {0} x P, and {co} x PP'

(their real points form the four circles in Figure 5b), and the four points in which
these lines intersect. The defining cones for these invariant toric subvarieties can
readily be found.

Example 5. For the Hirzebruch surface #; (see section 3, Example 3), general-
izing the previous example, which is just the special case k = 0, we obtain four
projective lines and their four points of intersection as proper toric subvarieties.
An illustration of H; will be given in section 6, Example 3.

Example 6. For P? x P' (see section 3, Example 4), the fan T is spanned by
the bitetrahedron conviey, €3, —e; — €3, e3, —e3} in R* (see Figure 9a in sec-
tion 3). It contains five one-dimensional cones (spanned by the vertices), nine
two-dimensional cones (spanned by the edges), and six three-dimensional cones
(spanned by the facets). Correspondingly, there are five two-dimensional, nine
one-dimensional, and six zero-dimensional, invariant, (affine) toric subvarieties.
In the illustration of the real part of X5 given in Figure 9c, the two-dimensional
toric subvarieties are represented by the horizontal plane in the middle (P? x {0})
and the horizontal planes on top and at the bottom that have to be identified (both
represent P? x {oo}), the two vertical planes through the center, and the cylindrical
boundary (each of them represents a product {, x P', where [; is a coordinate line
of P2). The one-dimensional toric subvarieties are projective lines. Two of them
are represented by the two diametrically arranged pairs of parallel lines on the
cylindrical boundary and another two by similar pairs on the top and the bottom
Plane; these pairs are to be identified. One is given by the pair consisting of the
“upper” and the “lower” boundary circle, which are to be identified, and the iden-
lifying diametrically opposite points. Another one is represented by the middle
circle with the same identification. The remaining three are given by inner line
segments. The nonnegative part of each projective line is contained in the hatched
part of Figure 9c or is represented by an edge of the prism of Figure 9b,

Exercises

!. Find all invariant toric subvarieties of P (considered as a toric variety; see
Example 5 in section 3).

2. Find all invariant toric subvarieties of Xy in Exercise 1 of section 3.

3. Any invariant toric subvariety of a toric variety X determined by an (n —
1)-face o of I, is either a torus, an affine line, or a projective line.

4. Any invariant toric subvariety of a regular toric variety is again regular.
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5. The torus action

Let T := (C*)" be the n-dimensional aigebraic torus. It is clear that T is‘a group
with respect to coordinatewise multiplication. As such, it “operates” on 1ts_e1f. In
this section, we discuss the extension of that operation to a ratural torus action on
a toric variety. N

We 1ecall that an action {or operation) of a group G (with the composition
written multiplicatively) on a set X is amapping G x X — X, (g, x) > gx, that
satisfies the two conditions g(hx) = (gh)x and ex = x for arbitrary g, heG
and x € X, where ¢ € G denotes the neutral element of the group. In particular,
we always have g 7' (gx) = x,soforfixedg € G, the mapping)_(' — X,x > gx
is a bijection. We also say that G is a transformation group acting (or ogeratmg)
on X. For a fixed element x € X, the subset Gx := {gx | g € G}of X is calle_d
the orbit of (or through) x. It is clear that each point of X lies on a unique orbit.
If there is only one orbit, the action is called transitive. In particular, a group acts
on itself transitively by multiplication. If H is a subgroup of G, then, an action of
G on X obviously induces an action of H on X.

Now let o be a cone in R” with apex 0, and let A = (a), ..., ax) be a system
of generators of the monoid & N Z". As we know from Theorem 2.7, the choice
of A determines a geometric realization of the affine toric variety X; as an affine
algebraic subvariety V of C*. Moreover, we know from Theog_:m .2.8(a) that the
mapping T — C! given by ¢ — (t*,...,t%) maps T bijectively onto the
open dense subset V N (C*Y* of V, the embedded torus (cf. Lemma 3.4). Next,
we recall from 2.8(b) that, for x = (x1,...,x) € Vandt € T, we h:_wc
(t“x;,...,t%x) € V.The mapping T x V — V, thus defined, is a torus acnqn
on V that extends the natural action of the torus on itself. The embedded torus is
an orbit of that action, called the “big” orbit.

To see that the action is independent of the choice of A, we recall from 2.10
that, for every two systems of coordinates (), ..., #;) and (vy, - .., Un) OD an
abstract affine toric variety X;, corresponding to different choices A and :;1’ okf
monoid generators and thus to different geometric realizations V = V(a) 1r} C
and V' = V(¢') in C", there is a coordinate transformation ¢ : V. — V', ¥n
the remark preceding 210, we have already noted that ¢ induces a bijection—m
fact, a coordinate transformation—between the embedded copies of the torus in
V and V', respectively. Then, it is easy to see that, for every given point x =
(xX1,...,x) € V,its image ¢(x) = (y1,-.., Ym) € Vf, and foreveryt € T,
e xy, ..., 1%x) = ("), ..., ty,). The identification of the abstract afﬁpe
toric variety X; with its geometric realization V C C* is, thus, compatible with
the torus action on V, so,

5.1 Theorem. With the above notation, the map

TxXs > Xs, ((,x)m1x:=0"x,...,t%%)

POy
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is an action of the torus on the affine toric variety X, called the natural torus
action. It extends the natural action of the torus on itself. The embedded torus is
an orbit of the action, called the “big” orbit.

Now, let £ be a fan in R”. Foracone ¢ € ¥ and a face 7 of o, it is obvious
that the identification X; = X; \ (ux = 0) of Lemma 3.1 is compatible with
the natural torus action on these affine toric varieties. This immediately implies

that all gluing maps ¥, ,- respect the torus action, too. That proves the following
result:

5.2 Theorem. For a fan T in R', the natural torus actions on the affine toric
varieties X3, for o € X, are compatible with the gluing maps and, thus, yield a

natural torus action on the toric variety Xs. The statements of Theorem 5.1 carry
over to this more general case.

As the torus action on an affine toric variety X; is given by monomials, the
following result is immediately clear:

5.3 Theorem. With respect to the “complex” and the Zariski topology, the torus
actionT x Xy — Xg is given by a continuous map. The big orbit is an open,
dense subset, so every other orbit is contained in its closure,

Thus, the torus acts on X = Xy as a group of continuous transformations;
in particular, for each element r+ € 7,themap X — X, x + Ix is a
homeomorphism.

Without entering further into the discussion, we mention that toric varieties
are algebraic varieties, the torus is an algebraic group, and it acts as an algebraic
transformation group.

Now, we want to discuss the behavior of invariant toric subvarieties with respect
to the torus action. As at the beginning of the previous section, we first consider
the affine case. Using the same notation, we, thus, look at a cone o with apex 0 in
R" and a face 7 of the dual cone &. With respect to a suitable “toric” coordinate
SYStern uy, ..., Uk, Uiy - U ON X, Xy = X N (g = -+ = u, = 0).
From the description of the natural torus action on X; given in Theorem 5.1, we
get the following justification of the name “invariant, affine, toric subvariety™:

5.4 Lemma. Each invariant, affine, toric subvariety X, of an affine toric variety
Xs is invariant under the natural torus action on X ;.

The smallest invariant, affine, toric subvariety of X ; which can be thus obtained,
corresponds to the smallest face of &, namely, to cospan &. We want to show that
cospan & it is a distinguished orbit of the torus action on X;.

5.5 Lemma. The invariani, affine, toric subvariety of X corresponding to
cospan 6 is an embedded torus of dimension dim cospan& = n — dim o. The
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subvariety is the only closed orbit of the natural torus action on X3, and it lies in
the closure of every other such orbit.

ProoF. To simplify the notation, we write y := cospang. We can choose
a system of generators ai, ..., a of the monoid g N 7" with the follow-
ing properties: The elements ai, ..., a,, 0541 = —(@ + -+ + a,) with
0 < p := dimy are a minimal system of generators for the monoid y N Z,
and a; ¢ y fori = p+2,...,k Without loss of generality, we may as-
sume that @, = ¢; fori = 1,..., p holds. The corresponding coordinates
Wi ... Up Upp1 1= (w1 up)~! are invertible functions on X, whereas
Up42, - - -, Uy are not invertible. To see that the torus acts transitively on X, , we
choose an arbitrary point x = (%1, ..., X Xp+1, 0, ..., 0) € X, (withx; # 0
and x| --- X, - xpy1 = 1). Then, 1t = (x,"....,x;‘, 1, ..., 1) lies in the torus
T, and satisfies tx = (1,...,1,1,0,...,0). This proves that the torus T acts
transitively on X,,, so X, is an orbit, Moreover, we can immediately identify X,
with the subtorus 7/ := {t € T | f,41 = -+ = 1, = 1} of dimension p and
identify the induced action of 7’ on X, with the natural action of 7’ on itself.

Next, we want to prove that X, is the only closed T-orbit in X ;. For every point
x € X;,weknow that the first p + 1 coordinates are always nonzero. Hence, for a
point x ¢ X, there is at least one nonzero coordinate x; withi > p + 2, and itis
clear that this coordinate is nonzero for all points on the orbit 7x. We observe that,
by suitably choosing the basis elements e, 1, - - ., e, of Z", we may assume, for
every generator ; withi > p + 2, the last n — p components to be nonnegative,
and at least one of them to be strictly positive.

This is a consequence of the general fact that each cone o with apex Ois contained
in a regular cone, which we prove as follows. Let H be a hyperplane for which
H N o = {0} (compare V, 1). Up to a unimodular transformation, we may assume
H = pos{e, ..., e,—1},ando C H+Rsoe,.butnoto C H . For an appropriate
natural number r, the hyperplane H + re, intersects o in a lattice polytope P.
Any translation of P by a translation vector ¢ € H N Z" parallel to H may be
extended to a unimodular shear of R" with axis H. We can choose ¢ such that the

shear maps P and, hence, o into posfer, . .., e}.

Now consider the subtorus T” := {t € T | t, = -+ = 1, = 1} that is com-
plementary to 7’. For every A € C*, the element £”(3) := (1, ..., 1, A, ..., })
liesin T”, and 1" (A x = (x1, ..., Xp, Xp41s A"P*Zx,,.ﬂ, ..., AP x) with all ex-
ponents B2, . . ., Bi positive. All these points t"(A) x are in the orbit 7x. On the
other hand, the limit pointlim _,p t"(A) x = (X1, ..., Xp, Xp11, 0, ..., O) clearly
liesin X, sothe orbit Tx is not closed. As X, is an orbit itself, it lies in the closure
of Tx, as follows easily from the continuity of the action. 0

5.6 Lemma. Every invariant, affine, toric subvariety X, of X contains a unique
orbit O, that is relatively open and dense in X, that is, X, is an orbit closure.
Conversely, every orbit closure in X is such an invariant toric subvariety X fo
a unique face T of G. . -

.
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PROOF. Using Theorem 5.3, the first part follows easily from the next result.
For the second, we use a decomposition of the cone & as given in V, Lemma
1.6. We can find a basis {e, ..., €p, €pyl, - - ., €} of the lattice Z" such that
{e1, e ep} is a basis for y N Z" (with y := cospan & as before).Consider
the linear subspace U’ := lin{ep41....,¢,}. Then, v := & N U’ is a (lattice)
cone with apex O satisfying & = y + v and dim y + dimv = n. By suitably
modifying the basis {e},11, ..., e,} of U’ N Z" if necessary, we may assume that
v C pos{ept, ..., e,} holds. Every face of § can be uniquely written in the form
T =y + 7%, where 7o = rNwvisaface of v. Let A(v) 1= {@p+2, ..., ay} be the
unique minimal set of generators of the monoid v N Z" (see V, Lemma 3.5 applied
to lin(v)). Then, A(7p) ;= A(v) N 7p is the minimal set of generators of rp N Z".

Now consider a point x € X that is not in the closed orbit. Hence, with

respect to the coordinate system (u,, ..., Wp, Upyl, Upy2, ..., W) correspond-
ing to the minimal set of generators A := A(g) := {a1,....a,,ap41,
pyz, ... 0} witha; := ¢ fori < p and @pr1 = —(a1 + ... + ap) (see

the proof of Lemma 5.5), there are coordinates x; # 0 for some i > p+2,50
A(x):={a; € Alx; #0, i > p + 2} is not empty. Then, 7 := v N lin A(x)
obviously is the smallest face of v containing A(x). From the structure of the
relationships defining X, it is not difficult to check that A(x) = A(7o) holds.
Then, T := U’ + 79 has the property that the point x lies in the open, dense orbit
of X;, so X, is the closure of the orbit Tx. 0

5.7 Theorem. The natural torus action on an invariant toric subvariety X, of X 5
is given by the induced action of a subtorus T' of T.

PROOF. We can choose a basis (ey,...,e,) of the lattice Z" such that
(e1,...,e) is a basis of linr, and t C cospang + pos{er,...,e}. Ac-
cordingly, we have a system of monoid generators ay, ..., Gm, dmits ..., a0
for ¢ N Z" with = pos{a;,...,a,},and a; ¢ 7 fori > m + 1. Let
Uiy .o, a0d w1, ..., Uy, Umyy, ..., Uy be the corresponding coordinates on
X, and X;, respectively, Then, the natural torus action of (C*)" on X, is given
by s(xi, ..., x0) = (%%, ...,5%x,) fors = (sq,... v S) € (CH. It
is immediately clear that this is compatible with the induced action of 7% :=

{t € T |ty = .- =1, = 1} on the invariant affine toric subvariety
X, = ”X5 0 (ms1r = -+ = uy = 0). We remark that the complementary
torus 7" :={t eT |ty =--- = = 1} acts trivially on X,. O

For a fixed cone o in the fan £, we now consider the invariant toric subvariety
X3/o of X5. It is endowed with its own natural torus action. By Lemma 5.6, we
know that, in the affine case, an invariant toric subvariety is an orbit closure and
the natural torus action is induced from the natural torus action on the ambient

yariety by restricting it to a suitable subtorus. It is now easy to see that this holds
in the general case, too.
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5.8 Theorem.
(a) Any orbit is the embedding T, of @ torus of some dimension k between 0and
n.
(b) X7y is the disjoirt union of all its orbits; their number is finite.

ProoF.
(a) follows from Lemma 5.6.
The first part of (b) is a consequence of the definition of an orbit. The second

part follows inductively, since any toric subvariety Xyo contains a torus T; of .

dimension & as a dense subset and Xz;0 \ Tk is covered by lower dimensional
tori whose closures are again toric subvarieties associated with the proper faces of

Yr/o. A

5.9 Definition. We call each T; an embedded torus. T, = T is said to be the big
torus in X5 (compare Lemma 3.5).

Example 1. P' is covered by the one-dimensional torus C* and two zero-
dimensional tori, one consisting of 0 € C, the other of oo (on the Riemann
sphere of complex numbers).

Example2. P' x P' (see Example2in3).7 = C*? is the two-dimensional orbit.
There are four one-dimensional orbits and four zero-dimensional ones.

Remark. Torus actions can be used to characterize toric varieties. In fact, the
original definition and the name of toric varieties stem from the theory of algebraic
groups (Demazure 1970, Mumford et al. 1973, T. Oda 1973).

Exercises

1. Find all orbits on a Hirzebruch surface (see Example 5 in section 4).
2. Find all orbits of X5 = P' x B' x P' as introduced in Exercise 1 of section 3.
3. Prove that any torus action on P’ (Example 4 in section 3) is a projective linear

transformation of P".
4. Considerthe subgroup 7o of T consisting of all matrices C with || = -+ =
|c,] = 1. Find all orbits of 7o for P' x P' (see Example 2 above).

6. Toric morphisms and fibrations

In section 2 we introduced toric morphisms for affine toric varieties. We will
extend them, now, to general toric varicties and characterize the extensions

combinatorially. .
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6.1 Theorem. LetLy : R r n r .
a map of fors 0:R" — R, Lo(Z") C Z be alinear map which induces

L:Yy — ¥
(see V. 4.1). Then, L gives rise, in a natural way, to a map
v Xg —_— X}:'

whose restriction ¥, = V| .
s = Wlx, t0 any affine piece X; ; .
morphism p & of Xt is an affine toric

v, Xs —_ Xé,_

I’l p [4 8 p
s p 1A tHnuo espe
Qrti u}al I}us‘ ma contin us W”h res Ct 10 ”le CO"'lplex alld 1o the Za’l;kl

6.2 Definition. We call ¥ =: L a toric morphism,

l’i};ﬁo;.or: ’THE()VR'EM 6.1. Leto € Z.By V, Corollary 2.11, the dual map L*
yields L*(0’) € ¢ if L(o) C o’ Furthermore, &, &', L*(&") are lattice cones

Leta,, ..., a; be generat ‘]
- + be generators of 6 M Z" and b, . . ., b, be generators of 5’ N 7.
(1) L*(by) :=apay + - - - + apan,
i €Zs0. i=1....m j=1 ..k
Because
(2) 6,/ N Zr — L* &n Zn

is 2 homomorphism of monoids, we obtain a ring homomorphism
R; — Ry
and the induced morphism

spec Ry =: X; — L X; = spec Ry

of the affine varieties defined by R; and R;. In the coordinates u

o)

4wy = 5 i
w % " of X, con_'eSpondmg to a;,...,a; and the coordinates
1. .-+ Wy) Of X5 corresponding to by, .. ., b,,.
3
(uls . uk) an i &
u U . wl Py _
> (I koa ey My U )—(wls---vwln)»

so that we obtain an affine toric morphism.

(UIf (uy, . .). ,}Lllk) }is represented in another affine chart X:, 7 € X% by
1, .- -, Ug), the change of coordinates is obtained b inear '
- _ : y a linear transfo i
;): t}‘nje fliat.nce vectors which define the coordinates (see proof of Lemma 2"1“(;1 :zg
e definition of gluing map in section 3). Since L i i ‘
o ! - Since L is the same linear map f
tger_u:ralors, 'L is readily seen to be compatible with the gluing maps. Ar; :;ﬁils
oric morphisms are continuous with respect to both topologies (see the discussion
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following Definition 2.9), it is clear that the maps obtained by gluing are again
continuous. O

6.3 Definition. Let X5, Xy be toric varieties with embedded tori 7 C Xy,
T C X5
Let¥ : Xs — Xy beamap,anda : T — 7’ a homomorphism such that

(9] Yic-x) = al(c) - ¥(x) forallc e 7T.

Then, we call ¥ equivariant (with respect to «).

6.4 Theorem. Every toric morphism ¥ is equivariant with respect to a suitable
homomorphism of the embedded tori.

Proor. Since T is dense in X, it suffices to prove (1) forall x € T. Let ¥|r
be given by

n o= ud" - ug,
by = u
Then, forc = (¢, ..., ¢g), a; = (@i, ... Qig),
(CLu)® - (cqug) = ¢ cg Ul ugt = Yy
so that (¢) := (¢, ..., ¢%) defines a homomorphism T — T’ with respect
to which W is equivariant. a

Example 1. Let o := pos{er, e + 2e;}, 6’ := pos{e;, e + 4ez}, and let Ly
be defined by Lo(e;) = e1, Loler + 2e2) = e1 + e, 50 Lo(o) C o' holds.
Then, Lq can be represented by the symmetric matrix A := ((') g) and Lj by the
transposed matrix A" = A.

The vectors a; = 2e; — e2, a2 = ey and aa = e) generate & N 72, and
by = 4e; — &3, b, = e and by = e, generate &’ N Z? (Figure 12). Then,
L[;(b]) = zals Ls(b2) = 2a2) L;(b:;) = a3,

so that in the corresponding affine coordinates u; = z% of X and v; = z% of
X5 fori = 1,2, 3 (withuyuy = u? and vivy = v3),

2 2
(uy, uz, u3) +—> (U7, u3, 43

The map is surjective but not injective.

Example 2. Let T be the complete fan in R? with generators e, 2, —2e1 — ez,
—e) - e, and let T’ be the fan of [P? with generators ey, e;, —€; — e;. We consider
Lo=id = L.

The toric variety X is covered by three affine planes C2, together with X,
defined by the nonregular cone o := pos{e;, —2e; — e3} (Figure 13). We note
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4 e+der

FIGURE 12.

that X is the affine quadratic cone, see Example 3 of section 2. We study the

restriction of ¥ = L onto Xs. In addition to a; = —e; + 2¢5, a; = —e;, we
need a third generator a3 = —e; + e; for & N Z2, whereas b, = —e; + e, and
by = —e) generate ¢’ N Z2. Nowv, b, = a3 and by = a, so that, for u; = z%,

i = 1,2, 3, the affine toric morphism ¥, := ¥|x, is given by
G, uz, u3) > (u3, uy)

and is a toric morphism of the quadratic cone X; defined by uu, = u3 into the
affine coordinate plane X;. = C? of P2, The line {(u), 0, 0)} is mapped onto
one point (0, 0), and the points (43, 0) for which u3 # 0 have no inverse image.
Therefore, W, is neither injective nor surjective. (W, however, is surjective.)

6.5 Definition. Let X = T’ - T” be the join of two fans T/, T” (see I1I, 1.12 to
1.14) such that

(a) X’is contained in a k-dimensional subspace U of R",0 < &k < n,

FIGURE 13.
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(b) T can be projected bijectively onto a fan X, lying in the orthogonal
complement U+ of U.
Then, we call T, a projection fan of T perpendicular to ', and say that £ has
a projection fan (with respect to ', £").

Remark. The following example shows that ¥ = X’ . £” need not have a
projection fan with respect to a given decomposition.

Let £’ := {Rs0 €1, R0 €2, {0}}, =7 := {Rx0 €3, Rxo(—e1 — €2 + €3), {0}}.
Then, the join £ = I’ - E” exists, but the projection of £” onto R e3 is not
injective. However,

6.6 Lemma. IfT = X'- £” and T’ is complete (relative to U = lin |T'|), then,
T has a projection fan T, (in UL).

PROOF. Let 7 be the perpendicular projection onto U*. Suppose, for a”, t” €
T, 0" N 1" = {0}, we have n(c”) N 7(x") 2 a # O.Letb € 7 ' (@) No”
andc € m~'(a) N t”. Then, the line g through b, c is parallel to U, and the linear
hull of g is a plane, which intersects U in a line g’. If g1, 02 are the two rays of
¢ emanating from 0, g1 + R>0b C o’ - ¢”, 01 + Rxoc C o' - 7" for some
o' € ' and g2 + Reob C T - 0", 02 + Ryoc C t’+ 1" for some 7' € X’
(o', T’ exist because of the completeness of £). Since ¢ + R>0 b, 01 + Rxo0¢,
02 + R»a b, 02 + Ryp ¢ all lie in 2 half-plane, one of the first two sets intersects
one of the second two outside U, so that [(6’ -o”) N (T - NI\ U # @ or
(e - )N (' oM\ U # @, contrary to the definition of “join”. 0

6.7 Theorem. Let £, ¥, X" be regular fans in R" such that T = X' . T”, and
let X be the projection fan of T perpendicular to lin |Z'|. Then, the projection
7 . ¥ —> Yo induces a map of fans such that, for any oy € Zo, we have an
isomorphism

') 77 (X5) = Xg x Xg,

(Here &, is the dual cone of o, relative 1o lin gy, and 7 is defined according to
Theorem 6.1 and Definition 6.2). If o = X" (up to a unimodular transformation)
we obtain, in particular, an isomorphism

Xz = Xz' X Xx".

6.8 Definition. We call 7@ a fibration of Xy with base space Xz, and fibers
7 (po) = {p) x Xzr = Xy forany po € Xx, andap € 7~ Y(po). Then,
X5 is said to be the typical fiber of the fibration. In short, we say that Xz is an
Xs-fiber bundle over Xz, In the case Xy = Xy X Xz«, W€ call the fibration
trivial.

PrROOF OF THEOREM 6.7. By Definition 6.5, each ¢” € X" is injectively
mapped by 77 onto a gy € Yo, whereas 7 (o’) = (0} for every ¢/ € L'. So we

s da

s ot st * A o dmd AP
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find n (0’ - ¢") = 0p. Since 7(2") C Z" the linear map 7 induces a map of fans
which we denote also by 7:

T:X — I
We consider the induced toric morphism
T X): —_— XED-

From X'(a:,,,u)v = Xa x _Xan and X3+ = X, (dual cones ¢, ", gy, relative to
appropriate lower dimensional spaces), we find that

Rlxgegny : Xy — Xz
For a fixed 67, this is true for each ¢’ € T, so that
- -
T (X(;o) = Xz: x X&n.

This readily implies the theorem. O

Example 3. Let T be the fan of a Hirzebruch surface Hy (Example 3 in section
3). Then, ¥ = X' - £, where ¥’ covers a line, so that X5 is a projective line.
Therefore all fibers are projective lines, “twisted” in Xy, and H, is a P'-fiber
bundle over P'.
We illustrate the real points of ), as a closed Mbius strip (Figure 14).

_ We dgnote the real projective plane by ]P%,), represent it as a circular disc with
dlametrlcally opposite points identified, and identify IP(‘,) (real projective line) with
acircle so that P, x P}, is represented by a full torus in R?. By the equation

nedo = mi,

a twiste(.i bandinP, x P|,, is given which is a (projective) Mdbius strip. The fibers
are the lines (represented by line segments) of which the Mobius strip is composed.
The real partof X5 x X~ is obtained from the Mbius strip by leaving out one of
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the fibers, that is, “cutting the Mobius strip” so that it becomes an ordinary strip,
the cartesian product of an affine line and a projective line.

Exercises

1. Let X = {posie;.er + 3ea}, posie; + 3ez, e2}, pos{ez, —ey},
pos{—e;, —€2}, pos{—eaz, 1}, faces} and let L be the perpendicular projection
onto R ez. Find L explicitly.

2. Given " as toric variety and L = 2 - [, [ the identity map, describe L in
projective coordinates.

3. If a point p is deleted from a projective plane P2, a fibration of B? \{p}, with
a projective line as base space exists. Find a fan for P? \{p} and describe the
fibration according to Theorem 6.11.

4. Find the three-dimensional analog of Example 3 (' two-dimensional).

7. Blowups and blowdowns

We are now going to study a special case of a toric morphism and its inverse
operation.

7.1 Definition. Let £ be a regular fan, and let s(p; o) be a regular stellar
subdivision of & (V, Definition 6.1). Then, the toric morphism

v, : X.,-(p;(,)g —> Xy

induced by the identity map I, W, = 1 (see Theorem 6.1), is called an equivariant
blowdown or in short a blowdown of X, (,,c)s - The inverse operation ¥, ! is said
to be an (equivariant) blowup of Xx.

Example 1. Leto := pos{e) — ez, €2} be acone of some regular fan T in R%. By
s(e;; o), wedecompose ¢ into oy = posie; — ez, e1} and oy = pos{e;, e2}. Then,
& = posie;, ey +e2},d) = pos{er +e2, —e;}, and &, = posiey, ez} (Figure 15).
We setu; 1= 29 = 21, 4 1= 297 = nizp U] = 0 = 5 uy =
e = 71z25(= ), uf =2 = a(=m) Uy =0 =2
The two affine planes X5 = {(u}, u3)), X5, = {(uY, u%)} are mapped under

the blowdown W into the affine plane X5 = {(u1, u)}:
X, — Xs

X3, — X5

(u),u) r—> (W ul, uy) (uj.uy) +—> (uf, uluz).
The projective line with charts {(«;, 0)} = {(z3', O {0, up)} = {0, z2)} is
mapped onto the point (0, 0)- For (), u2) # (0, 0), the blowdown is bijective.

We illustrate the blowdown for X, inFigure 16. Theline u; = 0 whichis projected
onto (0, 0) lies on a hyperbolic paraboloid. .

Rt e
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7.2 Thc'eorem. Let X5 be a regular 1oric variety, and let X 5, be an invariant toric
subvariety defined by the star st(o; ) ~ Ly 0f o6 in £;1 < k '= dimo < n
(a) C{nder _the blowup W', any point x of Xz, is replaced by a (k_— 1-)-
dimensional projective space.

(b} The blowdown WV, is a toric morphism which is bijective outside W~ Xg)
a 0/

Proor. Leto = pos{ay, ..., a;},and let p :=a; + - - - + a;. First, we assume

that dim ¢ =n for a & €st(o; %), & = pos{a;, .

€st(o; ), 2 Gky Qgys - .., ay). Then, b

the regular stellar subdivision in direction p, & is split into n-dimensional coneys

o, i=pos{ar, ..., ai—1, P, @i4t, -, Gy ..., &), 0 = 1,..., k. By V, Lemma
uj

FIGURE 16.
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6.3, we can set

é =p0${b1,...,b‘,...,b,,},
and
&, = pos{by — by, ..., bi-y — bi bibisy — bis .o by — bi, begrs .-, br)y
: — (b by
where i =1, ..., k. Therefore, X: has coordinates (4;, .. ., !’t,,) = (zb', o zo)
! S b —b, b —b; /] +1—0;
and X;, has coordinates (v, ..., vn) = (@77, ..., T 20,2 N
b b 2y W |y, s given by the equations
Wy UV, ---y Uiy = Vi U, W = Ui,
Higl =Vig Uiy ooy Uk = UkV1  Bigl = Vktly ooy U = Une
Its inverse is defined for v; # 0. If v; = O, the imaoges of allo points
2 G
Wiy - i, 00 vigay ooy Uk Ukl vy V) are (0, ..., 0, vy o~ ), for
any fixed set V= {lc)kH, ..., u,} of coordinates, that is, the fiber X, of Yolx,,
2 o . (1) h x
above (0, ..., 0, Vis1, .. -, Uy) is an affine (k — 1)-space XZ . Any two suc :
i 0y . _
are isomorphic to each other and to X((,'). Butthe X;°,i = 1,..., k, can be con

sidered as the affine charts of the projective (k — 1)-space defined by generators
by — by, ba — b3, ..., buoy — by, by — by they all lie in (pos{p})* and have sum 0.

If the maximal dimension of a cone ¢ € st(c; ) is less than n_, say r =
dim& < n, & has a cospan # {0}. We define the g; as above, replacing » by r,
i=1,...,k Then,

cospan & = cospang; = - - - = COSpan dy,
so that X3, X5, . .., X have the same coordinates ; for j > k. Hence, all
51 Xapy -0 Xg D& ‘
arguments above can be applied. 3

InExample 1,n = k = 2,hence, o0 = o, and the o; are those introduced there.

Example 2. Suppose 0 = 0 = pos{ey, €2, e3} in R (see? V, 6, Figure 23a).

Independent of a fan to which o belongs, we obtain a blowup in (0, 0, 0) of _X s =

¢3 in which (0, 0, 0) is replaced by a projective plane. The fan of the pro_!ectfve

plane has generators e; — €, €2 — €3, €3 — €1. The affine charts ?f the perJccuve
- - - —1 - -

plane have coordinates (2125, 2223 Y, (z225"s 2327 '), and (23274 2125 )-

Example 3. Let o := pos{e;, es} in R? (see V, 6, Figure 23b). If for some

fan T, ¢ = pos{er. e3, &2} € st(o, ), we set o1 = pos{e; + e3, e3, €2},
o, = posiel, €1 + €3, €2). Then & = pos{ey, e3, €2}, 61 = posier, €3 — e, ez},
G, = pos{e; — e, e3, e2}. As coordinates for X, we obtain (v, v2, vy) =

(z1, 297, 2%?), and, for X;,, (v}, vy, vy = (2174, 27, Z"’)_- If (ul,.uz, u3) h:
(z%, %, ¢*?) are the coordinates of Xz, lhe_ blo.v_vdo_wn ¥, induces in X5, t c:,
map (v1, U2, v3) — (V1. 112, v3), which. is bxje?txve for v; # /0 alnd ’map;.
{(0, vz, v3)} onto {(0, 0, v1)}. Similarly, ¥, induces in X5, the mdp (v}, vy, Uy)

PR N
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(vyvy, v5, v3), which again is bijective for vy # 0 and maps {(v;. 0, v})} onto
(0, 0, v))}. Since v; = v} ! and vz = v for any fixed v; = vy = p, the sets
{(0, v2, p)} and {(v}, 0, p)} can be considered charts of a projective line which is
mapped under ¥, onto (0, 0, p).

In the above arguments, if ¢; is replaced by —e,, we see that, for p~! instead
of p, the inverse image of (0, 0, p~') is also a projective line. Since {(0, 0, ml,
{(0, 0, p~1)} are aftine charts of the projective line Xy, we obtain an illustration
of case (b) of Theorem 7.2.

If o bounds a second 3-cone & = pos(ey, e3, b}, then, clearly, (b, e2) < O,
so that, in the above arguments, e, is replaced by —e;. As a result, we find that,
under the blowup \IJO", any point of the projective line with charts {(0, 0, v3)},
{(0, 0, v;l)} is replaced by a projective line.

Now, we will translate the results on fans, which we collected in V, 6, into the
language of toric varieties.

7.3 Definition. We call X5 complete if T is complete, that is, covers all of R".

Remark. In section 9, we shall see that “complete” is equivalent to “compact”.

From V, Theorem 6.5,

7.4 Theorem. Let X3, X5 be regular, complete, two-dimensional toric varieties.

Then there exist equivariant blowups \Ill“l, ey \Ill','l, \IJ;", N ll!‘;_' , Such that
Xy — —r Xyr c o — Xy
=1 -1 -1 7t
v v; ¥ v

where X x» is again a regular, complete, two-dimensional toric variety.

V., Theorem 6.6 implies

7.5 Theorem. Anyregular, complete, two-dimensional toric variety can be succes-
sively blowndown into either a Hirzebruch surface My, k # %1, or into P2. Hence,

there exist equivariant blowdowns Wy, ..., ¥,, Wi, ..., W such that either
Xy — -+ — Hi, k #+1, or Xy — .. — P,
¥ v, . W 1'%

|

Remark. Inthe case k = +1, H, can be further blowndown to P?.

Oda’s conjecture (strong version). Theorem 7.4 is also true for regular, complete,
three-dimensional toric varieties.

Remark. A weak version of Oda’s conjecture has been shown for arbitrary di-
mension. Given any two regular, complete, n-dimensional toric varieties Xy, X5,
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there exists a sequence of operations, that are either blowups or blowdowns and
transform Xy into Xz (see Appendix to this section).

Exercises

1. Transform any Hirzebruch surface into P? by an aiternating sequence of
equivariant blowups and blowdowns.

2. Translate the stellar subdivisions, in the example illustrated in Figure 26 of V,
6, into equivariant blowups, where the left upper fan is given by V, 4, Example
2, and the right upper fan is one of a projective 3-space. Present equations for
all blowdowns.

3. Let T consist of one regular n-cone ¢ and the faces of o. Any equivariant
blowup P! gives rise to a fibration wli(x £,) —> Xr, where Xy, is a toric
subvariety of Xx.

4. By using Farey’s lemma generalized to higher dimensions (V, 6, Exercise 4),
prove De Concini~Procesi’s Theorem: Given regular fans X, Z’ which have
the same point sets || = |X'|, there exists a fan " obtained from I by
a finite sequence of regular stellar subdivisions such that each cone of " is
contained in a cone of ¥'. In terms of toric varieties, there exist equivariant
blowups W', ..., W and a toric morphism ¢ such that

Xz — — X5r «— Xy
wy! w;! ¢

8. Resolution of singularities

If an n-dimensional toric variety Xg is regular, it is composed of pieces
C* x ¢***, and hence, in whichever sense of the word, nonsingular. In the case
n = 1, Xy is either an affine line or a projective line or C*. Therefore,

8.1 Lemma. Any one-dimensional toric variety is regular.

If n = 2, the simplest case of a “singularity” is that of the apex of a quadratic
conical surface (equation uju; = u%; see section 2). In its fan, a cone ¢ =
pos{e;, €1 + 2e2} occurs which has determninant equal neither to 1 nor to —1.
The size of | det o| is, in a way, a measure of how bad a singularity is. In higher
dimensions, a similar observation can be made for n-dimensional simplex cones
o (which may have arbitrarily large | det 7).

We are interested in resolving singularities. Before this we will give a pragmatic
definition of singularity.

8.2 Definition. A point x € Xg is called singular or a singularity of Xy if
some affine chart X3, 0 € I, to which it belongs, is not of the type C* x C*'™*
according to Theorem 2.12. .
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8.3 Lemma. If a singularity x of X lies in an orbit T, of Xz, according to
Theorem 58 then, all points of the orbit Ty are singularities. The big torus does
not contain singularities.

Proor. If one point of T; lies in X, so do all points. Therefore, the lemma is

tTrue by the definition of a singularity. Since T = C*", there is no singularity in
. O

84 Deﬁniti(?n. L_et X be a toric variety which has singularities, and let X5 be
a regular toric variety for which || = |X’|, and a toric morphism

¥: Xy — Xz
exists isomorphic on the tori. Then, we call ¥ a resolution of (the singularities of)

Xsx.

8.5 Theorem. Any toric variety Xy with singularities possesses a resolution .

We m.ay choose W as composed of morphisms W, , . . ., W, which stem from stellar
subdivisions s, . . ., Sq:
I3
T, — =
1

X):l —)wq —>y, X}:.

PROOF. First, by stellar subdivisions, we turn ¥ into a simplicial fan T’ {compare
V, Theorem 4.2). Leto € X' be a nonregular maximal cone, dimo = k. We
apply induction on & and assume that a (k — 1)-face o of o has been made
regular by stellar subdivisions of . Thus, o is split into k-simplices. Let T be
one of them, T = 75 + @, where 19 C 0p and 1p is regular. Up to a unimodular
uransformation. Wwe can assume 7o = pos{e;, ..., e-i}. Then, ¢ = Rspa, a
;mple,a =aje;+ -+ o101 T e (in R* spanned byt),ay, ..., ak:l, a1 €

>0.

Ifa = 1, risregular. If @ > 1, there exists a lattice point & = B1e; + - - - +
Bi_1ex ) + %a,O <B < lLi=1,...,k — 1. We obtain

7__
o = |detle;,...,e_1, b, €41, ...,60-1,0)] <a = det(e, ..., e, a).

We apply to I the stellar subdivision s(b; X) in direction b. All k~-dimensional
cones affected by.s(b; L) split into cones with smaller determinant of generators.
Hence, after a finite number of steps, we end up with only regular cones. O

Example 1. L_eta ‘= pos{es, e1 + 2¢;} belong to any fan T; & = pos{e,, 2¢, —
e2}. The coordinates of X5 are (41, 43, u3) = (22, 2297, z%), so that uuy = u?

is the equation of the conical surface. We subdivide o in direction Rx>ole; + ez)3

Let g1 := posie;, e; + €2}, ) := pos{e;, e; — e;}. Then, we may set X; =
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{(v1, v} = {(z2, 27}, and W, is given by
(uy, ug, t3) = (U1, V123, V1v2).

So, first, we map each point (v, v2) onto the point (v, vz, viv2) of a regular
quadratic surface, and then project onto the conical surface {(vy, v.u%, v}
Hereby, the line {(0, v»)} is mapped, first, onto the line {(0, v;, 0)} and then onto
the point (0, 0, 0), whereas the lines {(c, v7)} for ¢ # O are mapped onto the lines
{(c, v, cvy)} and, then, onto the parabolas {(c, cv%, cuvy)) (Figure 17).

The mapping W, in Example 1 is based on a stellar subdivision and looks much
like a blowdown (which it is not, since X; is not regular). In fact, we can look at
W, as induced by a blowdown, if we consider the affine space C3, in which X; is
embedded, as an affine toric variety X;, T = T = pos{ei, €2, e3}. By the regular
stellar subdivision in direction e; + €, we define a blowup Wl of X;. One of
the charts of W~'(X;) is given by X5, where gp = posi{ei, ey + €2, €3}, and,
hence, &y = pos{e,, e — €3, e3}. The coordinates of X, are, then, (v, vz, v3) =
(22, 2172, 2%), so that (u;, uz, u3) = (v, vlvg, v3). Now, v3 = vV again
represents the above surface, this time obtained from the quadratic cone by blowing
up C? along {(0, uz, 0)}.

What we have seen in Example 1 refers to a general idea of how to resolve sin-
gularities. In the example, the conical surface, we started with, and the embedding
space were both toric varieties. This need not be s0. In many cases, it is useful to
choose the embedding space as a toric variety and embed singular nontoric vari-
eties in it. We do not develop the general theory but illustrate it only in a further
example.

Example 2. Let P? be given as a toric variety (see section 3, Example 1) by the
fan with 1-cones generated by €1, €2, —e| —e2. The homogeneous coordinates are

FIGURE 17.
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FIGURE 18,

[, &, 1 &] (related to the coordinates of the affine toric charts as explained in
section 3). We consider a curve given by the equation

¢)) £l82 — £267 + 8262 = 0.

It has singularities in C(1, 0, 0), C(0, 1, 0), and C(0, 0, 1), that is, in the zeros

Sf~ the thr_ee affine charts of P? (Figure 18 provides a qualitative picture). Here

smgulax_'lty” can be understood as in the above definition although the curve is
not a toric variety (by Lemma 8.1).

As in Example 1 of section 3, we write the affine charts as Aq = {(z9, z%2)} =
{1, 22)h AL = {7, z79%)) = (7). 7' )}, A2 = {2 ) =
{tmzy! 7 H). , -
. We blow up 0 in each of the affine planes Ay, A,, A3, replacing O by a projective
line IP'. The resolution of singularities can be geometrically understood as follows.

’4

71

FIGURE 19.
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As Figure 19 illustrates, each line of A; passing through 0 of A; is “lifted” ur?der
the blowup to a line of the ruled surface. So, the two tangents 9f the curve in 0
“take along” the point of tangency to different points of P' (Figure 19)'. Dom.g
this for all three charts, we obtain, from (1) a curve without self-intersection. It is
contained in the surface obtained from [F? by the three blowups, called a del Pezzo
surface.

In the present example, we may even go a step further and tran_sform the new
curve back into P2 without creating new singularities. We choose a different system
of charts of P2, those obtained from the generators —e;, —e2, e; + e2. We app!y
blowdowns given by the inverse stellar subdivisions s, Lsst, 55", as illustrated in
Figure 20 (51, 52, 53 the stellar subdivisions giving rise to the above blowups). Ete :s
readily checked that the curve obtained has (in coordinates wy = z27¢', wz = z7°)
an equation

1-wl4uw =0,

so that its extension in P is a projective ellipse.

Exercises

1. Consider an arbitrary complete (rational) fan X in R? with 3 generators. Find
a resolution of Xs. _ 3

2. Given the fan ¥ as in Figure 13 of V, 4. Resolve the singularities of Xx.

3. In Example 2 we have described the resulting curve after thc.blowup's and
blowdowns in w , wz-coordinates. Find the equations of the curve in coordinate:.
given by the other two charts of the projective plane.

P e e weme
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4. Consider the real part of the curve (1) in A, after choosing £3 = +/—1. Show
explicitly that the curve consists of two graphs of functions & = f(&)), & =
g(£1). Find the tangents in (0,0).

9. Completeness and compactness

A fan X is called complete if its cones cover R”. We have also called a toric
variety Xy complete if ¥ is complete (section 7). We now wish to characterize the
completeness of X5 by topological means.

9.1 Theorem. A toric variety X is compact if and only if T is complete.

PRrOOF.

I. Let X5 be compact. By induction, we show that X is complete. Forn = 1,
the projective line is the only compact toric variety; its fan is complete. Forn > 1,
suppose X is not complete. Then there is a one-dimensional cone p € T on the
boundary of |Z}; so Xy := n(st(p; L)) is also not complete. But the subvariety
Xx, is closed in Xy and, hence, also compact. Therefore, by induction, £y would
have to be complete, a contradiction.

IL. If a sequence of points has no accumulation point, either it has a subsequence
in a subvariety which also has no accumulation point or we find a subsequence
(x.)iez.., in the big torus such that, for each m € 27, either (z” (x;))icz., OF
(z7"(xi))iez,, is bounded. In the former case, we assume the assertion to be true
by induction. In the latter case, welet M := {m | (" (xi))iez.., is bounded }. Then,
pos M is a cone for which M = (pos M) N Z" and pos M U pos(—M) = R".
Hence, pos M contains a half-space, and we findao € X suchthaté C pos M.In

X3, all coordinates u'i, ..., u}, are bounded, hence, (x, )iez., has an accumulation
point, a contradiction. a

Since the embedded torus 7 is dense in X5, from Theorem 9.1,

9.2 Theorem. If T is complete, X is a compactification of the torus T .

9.3 Theorem.

(@) Each toric variety X5 possesses a toric compactification Xg. (£ C ¥’ and
Xz compact).

(b) If X is smooth, X5 can also be chosen smooth.

PROOF.
(a) follows from III, Theorem 2.8.
(b) We apply Theorem 8.5 to Xs. From the construction of X' in the proof of
111, Theorem 2.8, it is readily seen that all cones of T can be left unchanged
when X’ is made regular,

]
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Example. Given = = {R»0 €1, R>0 €2, Ryo(—€1 — e7), {0}} we qbtain i-lS-Xx'a
noncompact variety P? \(p, g, r} where p, q, r are noncollinear points. Filling in
the three 2-cones, we compactify by adding p, ¢, and r.

Exercises

. Given T = {Rzo0e1, Reo(—€1), Ryo(—e€2), Raoler + 2e2), Rzoes,
R-ole; + €2 — e3), Ryo(e2 — €3), {0}}, find a regular compactification X
of X5 such that £ and £’ have the same 1-cones.

2. Let ¥ consist only of {0} and finitely many 1-cones. Describe Xz.

3. Let T be the complete fan in R? with generators e,, —ey, ez, —€2,€3, €1 + €2 — €3
such that the four octands of ®?, which contain Ryo €3, are in X. Consider X',
as introduced in part II of the proof of Theorem 9.3, and describe Xx-.

4. Let P? be given as toric variety by the fan T with generators e;, €2, —e1 — €2.
Let W', ..., %', ... be the blowups obtained successively by introducing
the new generators e; + ez, . . ., €1 +kez, ... If we apply the infinite sequence
of blowups, we obtain a generalized toric variety X in an infinite-dimensional
space. Collect information about X; show that X is not compact.

uar e

VII

Sheaves and projective toric varieties

1. Sheaves and divisors

In VI, Lemma 1.27, we introduced rational functions as functions whose restriction
on an appropriate Zariski open set Uy is regular, that is, represented by a quotient
f = g/h of polynomials g, # with & nowhere 0 on Uy. Even more concretely,
we may choose Up to be a Zariski open subset of the torus T so that the rational
functions on X ¢ cre all given by rational functions on 7.

For further investigation of a toric variety Xy, it is useful to study systems of
rational functions on Xy. This may be done in several ways; one is that of sheaves;
another is that of divisors. We first introduce the idea of sheaves. We do not need
sheaves in full generality. Dealing with rational functions makes things easier than
dealing with general objects of algebraic geometry.

1.1 Definition. Let R be a (commutative) ring with 1, and let M be a commutative
group (written additively) together with a multiplication

RxM — M
(a,x) r— ax
such that the following rules are satisfied,
a(x +y) = ax + ay,
(a+ b)x = ax + bx,
a(bx) = (ab)x, forall a,be R, x,ye M,

and I-x =x.

Then, we call M an R-module or, briefly, a module.

Remark. A module is a generalized vector space, the field of scalars being
replaced by a ring. Of course, any vector space over a field K is a K -module.

~Nen
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1.2 Definition. A module homomorphism ¢ : M —> M’ of an R-module M
into an R’-module M’, R a subring of R’, is a map for which

plax + by) = ap(x) + bp(y), forall a,be€ R, x,ye M.

If R = R’ and g is bijective, we call it a module isomorphism.

Example 1. Consider the set M of all polynomials in one variable with integral
coefficients. Then M is a Z-module. It has an extension to a C-vector space of
polynomials with complex coefficients. If a homomorphism of this vector space
into another C-vector space is restricted to M, we obtain a module homomorphism,

Clearly,

1.3 Lemma. Any commutative group G can be considered a 7,-module by setting
l-x=x,(-1)-x=—x,andk - x=x+k—-1)-x, k€ Z.

Therefore, if we discuss modules, we include commutative groups by consider-
ing them as Z-modules.

1.4 Definition. Let X be a toric variety with Zariski topology. To each open subset
U of X, let a ring F(U) of rational C-valued functions on U be given such that
the following is true:
(a) Forany pair V C U of open subsets of X and any f € JF(U), the restriction
flv belongs to F(V).
(b) LetU = | J U, be aunion of open sets U,, & in some index set, and, for each
@, let an element f, € F(U,) be given such that

Selv,nu, = Sfelun,
for any such pair f,, fz. Then, there exists an element f € F(U) such that

flu, = fu. forall «.

Then, we call the collection F := F(U)ycx a sheaf of rational functions on
X, in short, a sheaf (in this book).

A rational function f is determined by its restriction f|;; to any Zariski open
set U. Therefore, for the sake of a simplified notation, we identify f and f|y.
Restriction from U to V determines the inclusion F(U) — F(V).

1.5 Lemma. Let F and F' be sheaves and (U, e a covering of X by Zariski
open sets. If F(U) = F'(U) for each U contained in some U, then, F = F'.

PROOF. Let V be an arbitrary Zariski open set of X. Then, we deduce from
(b) that F(V) = Nae; FIV N Us) = Moy FV 0O U,) = F'(V); hence,
F=F. ) =

I by Nl Vs * AN b T M
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Remark. (b)is a“gluing property” by which collections of “local” functions are
pasted together to “‘global” functions on X (as an open set).

1.6 Theorem. 7o each open subset U of a toric variety X5, we assign the ring
of regular functions on U, and denote it by O(U). Then, ) is a sheaf of rational
Sunctions on Xx.

L.7 Definition. O is called the structure sheaf Oy, of Xx.

PROOF OF THEOREM 1.6. (a)and (b) are immediate from the definitions. O

1.8 Theorem. For the sheaf © = Ox, of a toric variety,
(a) O(X:) = Ry is a ring of Laurent polynomials for any o € T.

®) OXpp) =Clz. 271 =Clzt, - 2,3y oo oy 25 '], and
(€} O(Xx) = Cif T is complete.
PROOF.

{a) This has been shown in the proof of VI, Lemma 1.26.

(b) is a special case of (a).

(c) Let f € O(Xx). Then, f is a Laurent polynomial, and f € (), s R
implies supp f € [,z 6 = {0} so that f is a constant function.

|

Remark. From Theorem 1.8, we see that the structure sheaf defines on each
affine piece X of a toric variety (as a special open subset) a module of Laurent
polynomials. For other open subsets this is not true, in general. As an example,
consider, in X; of Example 2 below, an open subset U = X; \ {(z1,22) |
2y — za = 0}. Then, —Il—l e O(U), but Tl_.'; is not a Laurent polynomial.

1.9 Definition. Let F be a sheaf of rational functions on Xy which assigns to
each open set U of Xy an O(U)-module F(U) of rational functlons on U. Then,
F is called a sheaf of O, -modules.

The next theorem presents the sheaves we are mainly concerned with in the
present chapter.

1.10 Theorem. Let Xy be a toric variety. To each cone T € I, let a vector
m, € Z" be given such that the following is true:
(@) Ifroisaface of T, then,m. — m,, € cospan %,.
Then, we obtain a sheaf F of O-modules of rational functions by seiting
(N F (@) :={0},
(2) FW) :=z""OW) for any nonempty, open set U < X;, and
Q) FW,U---UU) :=z"vOW) N - N " OW,)
JoropensetsU; C Xy, i=1,...,s.
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PROOF. First, we show that F(U) is well defined. An open set U may be con-
tained in different affine charts Xz, X, which are also open in Xz. Then, we must
show that

0] Z"OW) = " o).
In fact, 7o ;= T N 7’ is a common face of 7 and 7’ Therefore, by (a), m, — my, €
cospan 7o and m, — m;, € cospan %y, hence,m, —m, € cospan tp. Fromtp C 7
and 7o C 1/, we obtain R;, D R; and Ry, D Ry It follows that 2T € Ry,
and, hence, by (2), 2" Rz, = 2" R3,. So, the claim (I) is true.
If U is not contained in any X; but intersects X;,, ..., Xz, we set
U=WUNX)U---UUNXg)
and, by applying (3), obtain
FU) =2"0OUNX) N---NZ™OW N Xy,).

So, using (I), we see that F(U) is again well defined. The sheaf properties (a) and
(b) are evident. ]

Example 2. Consider P? as represented by the fan in Example 1 of XI, 3_.1We

have O(Xs,) = Clz1, 221, O(X,) = Clzgi', 71 '22), OXy) = Clziz;, 27 )
It we choose F(X5,) = O(X5,), F(Xs) := 210(X5), F(X5,) 1= 220(Xs,),

all other elements of F are determined. We find mg, = 0, m,, = €1, Mo, = €2

and, foro;; == o, Naj, i, j = 0,1,2,i < j, choose mg,, = 0, mg, = 0,
m,, = e (see Figure la). ;

Another sheaf is obtained by setting F'(X3,) := O(X;,). .7/-'(X5,)
,'0(X;), F X)) = zZ_IO(XaZ), m, = 0,m, = —e, mg, 1= —e.
Figure 1b illustrates that the compatibility condition (a) can be satisfied: For the
cones o;; = 0; Noj,i,j =0,1,2,i < j,we choose my, = 0, mg, 1= 0,
ms, .= —€1.

\:__"' H
N ]
N I
\\ I
\\l
FIGURE 1a,b.
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There is a difference between F and 7’ in Example 2 which we shall consider
later. ¥ has “global sections”, namely, F(X;,) N F(X;,) N F(X;,) = {az; +

Bza +v | a, B,y € C}, that s, all linear functions in z;, z2. However, F* has no
such elements except 0.

1.11 Definition. Let F be a sheaf of O-modules on a toric variety Xy. Each
f € F(U) is called a section of F, and we say that the section z”* in Theorem
1.10(2) generates F on the open piece X;. If f € F(Xx), we call f a global
section of F and F(X ) the O(Xx)-module of global sections, of F.

We now tumn to objects which are based on the zeros and poles of rational
functions and which are in close relationship to sheaves of such functions.

1.12 Definition. A subset D of a Zariski open subset ¥ of Xy is called a prime
divisor on Y if, for each 0 € I, the intersection DN X3z NY isan (n — 1)-
dimensional subvariety of X; N Y. In particular, in the case ¥ = Xg, we say
that D is an invariant prime divisor if D N X; is always an invariant affine toric
subvariety of X;. Formal linear combinations

D=nD+---+nD,, neZ, i=1...,r,

are called (Weil) divisors on Y, in particular, invariant divisors on ¥ = Xs
if Dy, ..., D, are invariant prime divisors. By the sum of two divisors D =
YD, D' =y . nD,wemean D + D' := Y} ,(n; + n})D;. Let ¥, C
Yy C Xy be Zariski open sets in Xz. If D = Y, n;D; is a divisor on ¥,, we
call Dly, 1= 3 pny4pn:(D;i N 1)) the restriction of D to Y. If n; > 0 for
i =1,...,r, wesay that D is effective and write

D > 0.
1.13Lemma. Let X be a quasi-affine variety such that Ry is a unique factorization

domain (as is always true if X = Xz for a regular o € X, compare the next
lemma), and iet D be a prime divisor on X. Then, i x is generated by one function.

PROOF. ip yx is prime since D is prime. Each f € ipx may be written as

S = fi--- fux where f|, ..., f; are prime elements and x is a unit of Rx. Then,
foratleastonei € {1, ..., k) the prime ideal Ry f; is contained in ip x. Butip x
has height 1, so that Ry f; = ip x. 0

114 Lemma. Leto be a regular cone, and let D be a prime divisor on Xs. Then,
ip x, C Ry, is generated by one function.

Proor. By VI,2.12, X; = C¥ xC"* ¢ C" for some k € {0, ..., r}. By
Definition 1.12, D’ := D N X is prime on X;. By VI, 1,29 b), D’ c " is also
prime. Since the ring C[£,, .. ., §,] is a unique factorization domain, we see, from
Lemma 1.13 thatip, o C CI&1, ..., &,] is generated by one element. Therefore,
by VI, Lemma 1.30, ip x, is also generated by one element. O
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Let f be arational function on Xz, and let D be a prime divisoron Y. We assume
that X, has at least, one 1-cone. We can find an open set X; withdim t = 1 such
that D N X; # @.Since X; = C x C*"~!, we see that X; is smooth.

By Lemmas 1.14 and VI, Lemma 1.30, ipnx,nr.x.nry C Ry,ny is genc_arath by
one function gp, so that ipnx.av.x;ny = Rx,ny - &p. Since ipnx;ny 15 prime,
gn € Rx,ny is a prime element. We represent f as a quotient f = £ for
g.h € Rx,ny. We set

npe i=max{r | gp divides g, r > 0},
npy =max{s | gp, divides k, s > 0},

and npy =Rpg— Rpn:

1.15 Lemma.

(a) np. s does not depend on the choice of the representation f = §, or on the
choice of the generator g of ipnx.ny.x:ny.

(b) np. s remains unchanged if we replace Xz N'Y by another quasi-affine open
set U for which DNU # @andipruy C Ry is generated by one element.

(¢) np s # Oonly for a finite number of prime divisors.

Proor. ,

(a) Suppose f = £ = . Then gh' = g'h, and hence, np; + nD'h‘, =
npg + npy Thisimplies np g = npg — non = Apg — RO If. gp s
a further generator of ipnx.ar.x;ny, then, gn = gp - x for some unit x of
Ry.ny. so that g}, divides g if and only if g, divides g, analogously for A.

(b) We set U’ := X; N Y. Suppose gpny generates ipnv.y C Ry and gpnu
generates ipnyry C Ry Wehave D ¢ (X \U) U Xg\U) = X-g \
(UNUYysothat DNUNU' # B. Now, by VI, Lemma 1.30, we obtain

Ryny D iprunu.uny = Runue - §prv = Runu - 8pnur-

Therefore, g pny and gpny differ only by a unit on Runy:-

(¢) Given a prime divisor D, we know there exists an X;, dim t = 1, such that
DN X; NY # @. Then, for any representation f = §,where g, h € Ry,
we consider all prime divisors Di ., { = 1,..., !, which are irreducible
components of V(g -, X;) C X;.Butny g £ 0implies D C V(g -k, X3)
and DN X;: C V(g-h, X;). From the irreducibility of D and by VI, Lemma
1.29b), we get DN X; = D, forsomei,and D = DNX; NY =
D, . N X; NY. Since there are only finitely many X; and finitely many D, .,
fof each T we conclude that only finitely many divisors D satisfy np s # (;]

1.16 Definition. A divisor is called principal on Y if it is of the form
(f) = Z nu_fD.
D primeon ¥

We say a divisor is locally principal or a Cartier divisor if, for ea.ch x € Y, there
exists a Zariski open subset U of ¥ such that x € U and the divisor is principal on
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U. Two Cartier divisors D, D’ are called linearly equivalent if D — D' is principal.
If D~ D' > 0, we write D > D’. We say a Cartier divisor is T-invariant or, in
short, inveriant if it remains the same under each torus action.

Example 3. Let Xy = C", and let f; € Cl£, ..., &] be prime polynomials,
i =1... ,kForf=f" - f* a € 7, and setting D, := {f; = 0},
i=1...,k()=Y" aD,.

From Lemma 1.14 we obtain Lemmas 1.17 and 1.18.

1.17 Lemma. Let o be a regular cone, and let D be an arbitrary Weil divisor on
X;. Then D is principal on X, .

1.18 Lemma. LetY be a Zariski open subset of a toric variety Xy, and let Dy =
Y_; niD; be a Weil divisor on Y. Then, {f € Ky | (f) + Do > 0} is a vector
space (of rational functions) over C.
Proor.

Let (f) + Dy > 0, (f) + Dy > 0, and let D be a prime divisor on Y.
We find a regular cone t such that D N X, NY # @. Then by Lemma 1.14,

ipnx.nr.xny C Ry ny is generated by one element gp,. Weset f = £, f' = £,
where g, h, g'h" € Ry ry. Then,

gh' +g'h
+ f =
I+ f hh'
Wesetnp := n; forD = D;,andnp = Qotherwise. Byassumption,nn)f +np >
0. From f = {,—'j,,we obtain np gp +“nD > npuy and from f' = £ we find
npgh+np = nppy. Hence, by definition of ny g andnp g np giign +np >
np ps SO that

np sy +np = 0.

Since this is true for any D, we conclude that (f + f') + Do > 0. d O

1.19Lemma. Let f = ZL, a;z™ be aLaurent polynomial on X g wherea; # 0,
i =1,...,k Define f'(z) :== f(t-2),tinthetorus T. Then, the following vector
spaces (of polynomials) over C coincide:

lin{f' jteT)=ln{g" |i=1
PROOF. We note that

.-, k).

k &
ff@=fa-2=7 atzy" =Y ar"iz™,
i=] =1

We wish to choose t = (#7, ..., 1{"),i = 1,..., k. such that the system
k k
in 3 . .
Z ait(l)m,zm, — ft (Z) U Zait(k)m,zm, — f’m(Z),
izl i=1
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. . .
Jooked at as a system of linear equations in the vanables_z"", ..., 2™, may be
resolved. The determinant of the coefficient matrix is readily seen to be

t(l)ml . t(l)nu

A=a--an| :
r(k]m, .. r(k)m..

Letp = (p, - - -, pn) beasequence of differ‘ent prime numbers, and let 1% :=
..., pf,), i = 1,...,k. A little calculation .sh0ws that, L_xp to a nonz;:lr;)
corl15tam, A is a non-vanishing Vandermonde determinant (as usgd inthe pr(?of of IL,
Theorem 3.11). So, the z* occuring in f may be expressed as linear combmanonEs]
of 1L

1.20 Lemma. Let f bea Laurent polynomial on X such that (f) > 0. Then, f
is regular on X;.

Proor. From (f) = 0, we obtain (f) = 0, and, hence, by Lemma ll.‘19,
(z) > 0, which implies m; € &, and " is regularon Xs, i = 1,..., kT CE
£ =35, az™ is also regular.

1.21 Lemma. Let f be a rational function on Xs. If (flu) = O for some open
U C X3, then, f isregularon U.

ici tive

PROOF. Wewrite (f) = 3 p pime n0.s D-The coefficients np ¢ ca\;be ntegya 1.\1_

only in the case D N U = @ or, equivalently, D C X; 3 U e se =

U oD C X:\U. Fix a point p € U, and choose any g € iy.x, \ ip.x,. For
Mg

. . . « N . k 0
any prime divisor D C Y, g € 1p and np, > 0, which implies (f % ) >

- i = L&
for sufficiently large k. By Lemma 1.20, f - g* € Rx,. Finally, f = =& where

g (p) # 0,and f - g¥, g“ € Ry, . Hence, f is regular at each p € U. O
We are now able to build up sheaves by the aid of divisors.

1.22 Theorém. Each Cartier divisor D on X = Xs determines a sheaf L, as
follows:

LoU) ={f € Kx | (f)+ Dz OonU}.

PRooOF. The sheaf properties arc readily verified by using the precedinf\
lemmas. O

We shall prove special properties of these sheaves in the following section.

S —

- v
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Exercises

I. LetP' x P! be given as a toric variety X (see VI, 3, Example 2). Find sheaves
Fi1, Fa, F3 such that the global sections are as follows:

Fi(Xs) = (oo + @121 + 0222 + 232122 | g, ..., a3 € C)
Fa(Xz) = (a0 + 121 | ap, 2y € C}

Fi(Xs) = {0}.

2. Consider P? x P! as a toric variety X5 (VI, 4, Example 6). Does there exist a
sheaf according to Theorem 1.11 satisfying F\(Xz) = {ag + o121 + 22 +
33 | @, ..., 03 € C)?

3. Consider P” as a toric variety. Find the structure sheaf and a sheaf whose global
sections are all linear functions in n complex variables.

. Define isomorphisms between sheaves, and show that, if F, F’ are sheaves
according to Theorem 1.10 for which m,» = m, + aforallo € X and a fixed
lattice vector a, then, F, F’ are isomorphic.

2. Invertible sheaves and the Picard group

Now we will now investigate further the sheaves introduced in section 1. We define
tensor products of them and introduce the so-called Picard group.

2.1 Definition. We call two sheaves F, F' of Oy, -modules isomorphic , F =
F', if there exists, for any open set U of Xy, an isomorphism ¢, be:ween the
O(U)-modules F(U), F'(U) such that g, |y = @y for each open subset ¥V C U.

2.2 Definition. A sheaf F of Oy, -modules is said to be invertible if there exists
a covering {U,} of Xy by Zariski open sets such that

F(Uy) = Ox; (Uy)
forall U, € {U,}.
2.3 Lemma. The sheaves introduced in Theorem 1.10 are inveriible.

PROOF. We choose {U,} = {Xs}ser. By definition F(X;) = 2" O(Xs).
Multiplication by z=" clearly provides a module isomorphism

F(X5) 5 O(X3).

For F(Xs), the meaning of “invertible” can be made concrete.
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Ifweset F'(X;3) := 7™ O(X;5),then, by set multiplication, 7 (Xs)- 7' (Xs) =
(O(X53). In combinatorial terms (see Figure 2) it means that
(mo +6) + (-m, +6) = 6.

So, O(X;) attains the meaning of a unit element. This observation will be
extended to the sheaves themselves. Before we do so, we will achieve two things.
In Theorem 2.13, it will be shown that all invertible sheaves on a toric variety Xg
are of the type introduced in Theorem 1.10. Here, we will introduce a multiplication
for invertible sheaves which allows us to define unit elements and inverse elements
in the set of invertible sheaves on Xx.

2.4 Lemma. The sheaf Lp introduced in Theorem 1.22 is invertible.

PROOF. We can cover Xz by Zariski open sets U contained in X; for some
o € = suchthat D = (g)on U for g € Kx;. By Lemma 121,

LoU) ={f € Kxy | (f-8) 200nU}={f € Kxs | -5 €OW)}
=g~ o).
Multiplication by g provides the module isomorphism

Lo =g oWy = oW).

Let us recall the definition of a tensor product.

2.5 Definition. Let A, B be modules over a ring R. Consider all formal linear
combinations of elements of A x B with coefficients in R. Then, an R-module
M, is obtained. In M, we define the submodule a generated by all elements

(a +a’v b) - (av b) - (aI! b)’

FIGURE 2.

- dmboan fva -

e ot a2
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(a,b+b) — (a, b) — (a, ),
(ra, b) — r(a, b),
and
(a,rb) —r(a, b),
wherea,a’ € A,b, b € B, r € R are arbitr
s b, s ary. Then A ® B := My/a = M is
an R-module which we call the rensor product of A and B. ! °

From the definition we readily see the following lemma:

2.6 Lemma. The iensor multiplication in the definition of a tensor product is a
map

®:. AxB — M
ab)y — a®b
satisfying the following properties for alla,a' € A, b, b’ € B,r € R,
@+d)®b=a®b+ad @b,
aQ@RGBG+b)=a®@b+aQb,
and (ra) @b =a ® (rb) = r(a ® b).

ExamPle L. Let V, V' be vector spaces overa field K, dim V = n,dim V' = n’
We write the elements of V as column vectors, with respect to some basis of V

anddthe elements of V' as row vectors with respect 1o a basis of V’. The matrix
product '

a) albl albn'
a®b:=|: |- b= : :
a, anbl tre anbn'
defines a tensor product in a natural way. Asarcsult, V Qx V' =: M(n, n’)

is tht,: l«.f-mod.ule of all n x n’-matrices with entries taken from X which is an
n - n’-dimensional vector space over K.

Note - i
(] ote that np[ all n x n'-matrices are of type a ® b. For example, the unit matrix
0 ]) 15 readily seen not to be a tensor product.

Example 2. Let R = C, and let 4, B be ri

. - , R ¢ rings of Le i i

coefficients in C. For f € A, g € B, we set ’ surent polynomials with
f ®g:=f-g

and, in this way, obtain A ® B. In particular, if A = Clz1}, B := C[zs], the

clement zy + z20f A ®- B = i
c B = Clzy, z2] is not the tensor produ
of A and an element of B. P ct of an element

in particular, 7' ® 7/ := 5+

*
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2.7 Definition. Let F, G be sheaves of Oy, -modules. For any open subset U of
X5, we set

(F @ ) = (F Bo,, D) := FU) B0y, Gy,
and call F ® G the tensor product of the sheaves F and G.

2.8 Lemma. F ® G is a sheaf of Ox.-modules.

PrOOF. By definition of the tensor product of modules over a ring, we know that
(F ® GY(U) is an O, (U)-module. We have

(f @ v = (flv) ® glv).
All defining properties of a sheaf follow by definition. O

2.9 Lemma. Let F, G, H be sheaves of Ox, -modules. Then,
FOHSHZFRGOH) ad FRGZGOF.
Proor. By
@@b)®c r— a®@ba),

a bijection is given between the generating elements of (F ® G ® ?1, F& 1(\g ®
H) , respectively. Its extension to linear combinations provides an isomorp 15115
Similarly, £ commutativity is shown to hold.

foranya € F,be G, ce ",

2.10 Theorem. ‘ _ hen F— £
(a) Let F be an invertible sheaf of rational functions on Xg. Then, 7 = Lp,
for some Cartier divisor Dr on X. o
(b) Let Fy = Lp, and F2 = Lp;,. Then, Fi®Fy = Lp, +py, or equivalently,
D}-‘ szD}_-*"D}-' . P .
(c) Two@ivheaves }I', = LZD}.I and F, = L D5, Gre isomorphic if and only if Dg,
and Dy, are linearly equivalent.

PROOF. ' .
(a) As we have seen above for each of the sets {J of the given covering we have

a module isomorphism
pu : F(U) — OU).

We set-fy := g (1). Then, F(U) = OW)- fu.Each fy defines a_pri_ncipal
divisor ( fy) on U. We assert that two such divisors ( fy), (fy) coincide on

: —- ”n ’ d,
U N U’ In fact, ;‘Tv isasectionof (F® F-HUNU’)=0W NU')an

i L L no zeros and poles on
hence, is regular. The same is true for <£-. S0, 7= has s fp s o
U N U’ and represents a unit fo of Ryny-- Therefore, fu = fuvr+ fos
and fy- represent the same divisor. ' ‘ -
fUWc as);ociate with F a Cartier divisor as follows. Given a prime divisor D,
we choose a Zariski open set U for which DN U # @, and we set

npF .= —Np.f.-

Py e U
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As we have seen, the number np_r does not depend on the special choice of
U. We set

Dy = Z nD_}'D

D prime
which is readily seen to be a Cartier divisor; hence, F = Ly, It satisfies

LpAU)=1{f € Kx; | (f) + Dr > Oon U}

= (f ek | L cowy
fu

= fv - OWU) = F).

(b) Let F;, F, be two such sheaves. We assert that CDfI ®£sz = [,Dfl +Dz,-In
fact, Lp, (U) = f - OU), Lps, (U) = g - O(U), hence Lp;,, +05,(U) =
f-8-0U) =(f-0U)® (g -0OW) = ED;I W) & Lp,,(U). By
Lemma 1.5, the two sheaves coincide.

(¢) Now, Lp, = Lp,, implies Epfl_gf2 = [lDfl ® [:_Df] = OXs). Let
f = ¢ '(1) generate Loy, -ps,- Then, (f) = Dx, — Dg,. Hence, Dy, and
Dy, are linearly equivalent. The converse is also true.

a

2.11 Theorem. The invertible sheaves of Oy, -modules define a commutative

group with respect to tensor multiplication (and after identifying isomorphic
copies).

PROOF. The group properties follow from Lemmas 2.8, 2.9, the definition of
“invertible”, and by setting F~! = L_p,, for each F = Lp,. ]

2.12 Definition. The group introduced in Theorem 2.11 is called the Picard gro\up
Pic X5 of X;.

2.13 Theorem. Any invertible sheaf F on X is isomorphic to one of the sheaves
introduced in Theorem 1.10.

Proor. ByTheorem2.10,F = £, forsome Cartier divisor D . The restriction

of Dy to the big torus 7 is, by Lemma 1.17, a principal divisor (fp) for some
rational function f on X5, Let

Do := Dy — (o),
and let 7y be the invertible sheaf defined by Dy (see Theorem 1.22). Then, by
Theorem 2.10,
F=Lp, =ZLp, =F.

Therefore, it is sufficient to prove that F satisfies the conditions of Theorem | .10.
Note that the sets of zeros and poles define invariant divisors on X 5.
We choose some o € E. To each 1-face of o, there corresponds an invariant
divisor D;,i = 1, ..., k. The intersection is a closed orbit O, :=DyN..-ND,.
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Givenap € O,.the Cartier divisor — Do can be represented on some neighborh:l?;
U of p by aprincipal divisor (f), thatis, (f) = —Dgon U.\’?:/(?can ﬁnc'iamor;]o e
7" such that (f - z") > Oon U. By Lemma 1.21, j; - 7" is regular onL . m
we may represent f - 7" as a quotient f -'z"’ = %, where g,_"'r! aie aDurcon
polynomials regular on X; and h(p) # Q. Fl_nally, =&z . )1 = —-Dy
some neighborhood of p,and f' 1= g - 2" isa Laurent polynomial. _
Consider the divisor (f') + Do. The prime divisors Dy, REEE .Dk do not.occur 12
(f) + Dy. The other divisors occur with positive coe,fﬁcnent since they mterselc
the torus and f” is regular on the torus. The‘:(refore, (f)+ Do = 0. }:r;alog(;nisl);
(f" + Dy = 0, and we find f = ¥ _,aiz". By Lemmas 1.18 and 1.

y:
i

(z™) + Dg > 0, which means, by Lemma 1.21, that T is regular at p. For at

ion, i .2 = £ = 1. We obtain
least one such function, <+ (p) # 0, since 3, a; =7 1. We o .
@™) = (f) = —Dp in some neighborhood of p. But, in the representation

of (™) and — Dy, only the prime divisors Dy, ..., Dy oceurn. Thex_r co'cfﬁments
are cqual since the divisors are the same on some neighborhood which intersects

Dy, ..., Dy. Thus, - Dy = (™) on X; which implies
FolXs) = {f € Kx, | (f) + Do 20} ={f € Kx, | (f-z2™ =20}
= 7"O(X;5).
The other sheaf properties are evident. O

We can also express the Picard group in terms of Cartier divisors and in terms
of invariant Cartier divisors.

2.14 Theorem. ' -
(a) The Cartier divisors of X = Xx define a group Dl\{c X under addition. |
(b) The principal divisors are a subgroup Divp X of Dive X. . .
(¢) The T-invariant Cartier divisors of X = Xy define a group Dive X under
addition. ‘ .

(d) The principal T-invariant Cartier divisors provide a subgroup Divy X of
DiVC X. . 7

(¢) PicX = DiveX/DivpX = Divl. X/ Div} X.

PROOF. N
(a) to (d) readily follow from the definitions.
(e) We assign to each D the sheaf F = Lp (Theorem.l .22). Then, by Th.eor.en:
2.10, we obtain a homomorphism whose kernel is the group of principa
divisors. This shows the first isomorphism. The second readily follows from

Theorem 2.13. 0

2.15 Theorem. For any toric variety Xz, the combinatorial Picard group Pic T
(V, 5) and the Picard group of X are isomorphic (as groups),

Pic £ = Pic X5. *
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PRrROOF. By Theorem 2.13, each sheaf F of rational functions on X5 is isomor-
phic to a sheaf as introduced in Theorem 1.10. The latter sheaves are determined

by the systems m,, ¢ € E. Now, the theorem readily follows from V, Lemma
5.5. )

2.16 Theorem. Let Xy, be an arbitrary n-dimensional toric variety where T con-

tains at least one n-cone, and let, for anyo € I, the space of linear dependencies
of the generators of o be denoted by L,. If oy, .
which are not simplex cones, we set

.-, 0y are all maximal cones
Li=Lo+---+L, and A:=dimL.
For k being the number of 1-cones of T, we obtain
Pic Xy = gzt

Proor. SeeV, Theorem 5.9. a

Example 3. Pic X5 = {0} if X; is affine (= consisting of one cone o and the
faces of g), as is true, in general, for affine varieties in algebraic geometry.

Example 4. Pic Xy = {0} is also possible for compact toric varieties, as is seen
from V, 5, Example 4.

Example 5. Pic Xy = Z* " if T is simplicial and contains an n-cone.

Example6. Pic P’ = 7Z,since, as atoric variety, P* = Xy is given by a simplicial
fan withk = n + 1.

2.17 Definition. We call u(Xs) := k — n — A the Picard number of Xx.

Exercises

—

- Find p(X z) for E being spanned by the faces of a pyramid with basis Q.

. If the singularities of a toric variety X5 are resolved according to VI, section
8, how does 14(X5) change?

In any dimension #, find a compact toric variety Xz for which u(Xz) = 0.

Find a centrally symmetric rational realization of a dodecahedron A, and

determine Pic X5 for the fan spanned by the faces of A.

(%]

3. Projective toric varieties

In this section, we shall study a condition under which a compact toric variety
Xs may appropriately be “embedded” into a projective space . The respective
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condition for X is that of “strong polytopality” (V, Definition 4.3). First, we recall
some facts on projective spaces and introduce some basic notions in a way which
fits into the special situation we will discuss.

Each point of P can be described by homogeneous coordinates [xg, . . ., X,]
(see V1, section 3), which are defined up to common multiples by nonvanishing
complex numbers. We will consider the polynomial ring Clxo, - - ., X1

3.1 Definition. By a form of degree k we mean a homogeneous polynomial
of degree k. The vector space of all forms of degree k will be denoted by

Clxo, - - - Xr)k-

Note that each f € Clxo. .. ., X,] can be represented as f=f+-+f
where0 < i) < -+ <y <kand f; € Clxo, .-+ % )i,s J =1,...,L

The forms of degree k do not define functions on P, since [Axq, ...,
rc] = Txp, ..., x/) for & # Obut frxg, ..., Ax) = A f(xp, ..., x,) Which,
in geveral, does not coincide with f(xp, ..., x,). However, the zero set of the
form is well defined.

3.2 Definition. Let Fy, ..., Fy beformson .
AsetZ={xelP | Fix)=" = Fi(x) = 0} is called an algebraic subset
of P’.

As in the case of algebraic subsets of affine varieties, each algebraic subset Z
of P’ defines the homogeneous ideal

izp = (f bt Sl filz =00 =1

So, the ideals are of the same type as those for affine sets, and, hence, have the
same properties. In particular, they are finitely generated.

3.3 Lemma and Definition. The aigebraic subsets of P’ may be considered as
the closed sets of a topology on B, called the Zariski topology on .

PrOOF. This follows from the above remarks about the ideals iz . 0

On P, we can define rational functions f = % where Fy, F3 € Clxo, ...,/ k
for some k > 0. We may assume Fy, F, to be relatively prime. Then, f is a well
defined, regular function on the set X =P \{x | F(x) =0}, and it satisfies

)\kFl(x01 ""x')
kkFZ(xl)) B sxr)

for any A # 0. Let U be a subsct of . The set Ry of all rational functions regular
on U is readily seen to be aring. In analogy to V1, Definition 1.8, we call it the ring
of regular functionsonU. One should keep in mind, however, that its elements are
not functions of the homogeneous coordinates xo, .. . , Xr. but of the points they
represent. Furthermore, the degrees of the forms Fy, F, are supposed to be equal.

fxg, ... Ax) = = f(x0,.--+%r)
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Example 1. We consider the rin

. gs Ry, ..., Ry, where U, . ..

charts of P". Recall that U; ={[xo,..o.,x,]Ix,-;£0} iio 'Urrmetheafﬁne
We see that Ry, = {f = & | k = 0,F € Clxo,..., %}
0 Gl K 2

?[xi,.:.,d_x'l, %‘;. ;—’ = Clyi, ..., y,] where y, = %‘_‘ for j =
veeaband y;, = ZEforj =1i+1 r. Moreover, w ' a bijecti
i » N , we h

o U; —> C’ defined by [xg, ..., x, ] —> (2, ..., &=L “—”ave ailjcf;;’l“

corresponding ring homomorphism “ CREE R

¢ :Clyive.., ] =Rer — Ry

is an isomorphism. Hen ;1 i ism i
g p ce, ¢; 1s an 1somorphism in the sense of VI, Definition

Thus, P’ can be covered by o i i
Chus, pen sets U; that are isomorphic to ¢’
which we have already found by considering P” (for r = n) as a toric val"i:t;e)s(l;lt

where X has n + 1 cones gy, . . ., o, of dimension » and U=Xs,i =0

(compare VI, section 3). o

3.4 Lemma. The Zariski topology on W', as defined in Lemma 3.3, coincides

with the Zariski topology for ] j i
Doty o) pology for P considered as a toric variety Xs (compare VI,

PROOF. It is sufficient to prove that, on each U; (introduced in Example 1), the
topology defined by regular functions and the topology induced by the Zax’iski
topology on X5 are equal.

First, let Z be the zero set of finitely many forms
Z={pelP |Fi(p)=0, j=1,...,5).

;tf::;zznﬁulij:' (£ €U | ,_FKJT (p) =0, Fj € Clxo, ..o X i, J=1,.. s}
: , i is the zero set of regular functions which : set in the
induced topology of X ich defines a closed set in the

Conversely, let Z C U; be the zero set of regular functions of Ry.. Then
Z = {pE U,‘ [ f](p)=0! fj c RU,-v j = 1,...,5}.

Setting F; := x'/ f; we i
¢ g F; i fi associate a form F; € Clxo, ..., X lx; with each f; =
—& such that Z is described as

"
z,7
i

LZ={pelU |F(p)=0 j=1,...,5s)
=UN{pelP | Fi(p)=0, j=1,...,s)

This completes the proof of the Lemma. O

3.5 Definition. We call a com i 1 Ig v
S-3 1e . pact toric vanety X i i i i
: p ; x projective if there exists an

¢ZX): — ]P'r
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of Xy into some projective space such that ¢(Xz) is Zariski closed in P". We
consider ' as a toric variety whose big torus 7 has dimension r. We say & is
equivariant, if it is equivariant in the sense of VI, Definition 6.3, where the image
@ (Tp) of the big torus Tp acts on ®(Xz) as a subgroup of T. If an equivaniant &
exists, we call Xz equivariantly projective.

Letp : Xz <> P’ be an equivariant morphism. We obtain
T ={lxg,-...x) | x #0, i=0,...,r}

elr, + To —
Z2=1(2Q1, .1 20) — [2™, ..., z™].
The monomials z™ are defined up to a common multiple z”, so that
™™, ..., ™) may also be chosen as a representative.

In V, section 5, we introduced the notion of an associated polytope P of a
strongly polytopal fan £. We obtain P by translating and intersecting the duals of
all cones of ¥ so that & = X.(—P) becomes the fan of normal cones of — P (see

also I, section 4):
P =(ay+pos(P —a))N---Niay + pos(P — ag)).

Figure 3 illustrates o}, 6; and —6; = pos(a; — P) forsomei € {1,...,q}
Sometimes, we write m,, instead of a;.
Ifby,...,b, € Z" are chosen so that they satisfy the compatibility condition

(1) in V, section 5, instead of P, we obtain either & or a polytope
Q= (b +d)N---N (b + 7,

which can be lower dimensional. For sufficiently large r € Z»o,  is a summand
of rP (see V, Theorem 5.15). If I is not strongly polytopal, Q can still be a
polytope. However, it does not carry enough information to reconstruct X from it.

3.6 Definition. If a sheaf F of Oy, -modules is given according to Theorem 1.10,
andif & = X(— P)isthe fan of apolytope — P, wecall P = P(F)an F-polytope.

Clearly:

FIGURE 3. .
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37 Lemma. IfP = P(F)isan F
_ L IfP = -polytope, then any latti 7 1
combinatorially isomorphic to P is also an F -polytope.y #He Pobpe sirictly

?};8 Ltl!;nm.a. Let ¥ = X(—P) be the fan of a polytope —P. Then, P := nP pgq
the Jo ’z')wmg property. For any lattice point a of P, the generators of the mo, y
0, NZ" ‘= [pos(P —a)]N 7" liecin P — q. o

E’ROOF. First, let a be a vertex of P. We decompose &, into simplex cones
1, f ,ftr (see V Theorem 1.12). For each monoid T N Z", we see from the
zlrlocl) (? Gordan’s lemma (V,' Lemma 3.4) that there are generators in the par-
elepiped spannefi by the simple lattice vectors a1, ..., a;, for which . =
po]sja;1, ceey a.-.,,},l = 1,..., 5. This parallelepiped is readily seen to lie in f"—a
e}_t)a € relint F where F is a face of P, 1 < dimF < n. Wesetad =
Er(:s(vm— a) =f {Ailx) = ()) M-« N {fe(x) > 0} for functionals h. ..., f;:i For
wgmlz& ZOLF.Yeﬁndcl.- =pos(P —v) = {filx) = 0}N---N{f(x) > 0}
NSl Letr = POS(E—U) ={fix) == i) = 0} N {fiy1 (x) >
{fi(x) = 0}. Since a € relint F, i oo(m —a) =0 where

’(;,-h € Z-p and m; afe the vertices of F, i = 0, . .. s ; We may assume v = m
. .en,}z‘z —v = E).:, a;(m; —a) + (g — 1)(v — a) which means that a —(L'
15 1n the monoid M generated by all m — a for m € P. Hence, all elements
? r: v" = 1(;;1 —a) + (@ — v) are in M so that, by the first part of the proof,
NUO Zf C .?Iotetl’:atﬁc+1(a—v) >0,..., fila—v) > Osincea € relint F.
f;’-lv’.orp € Oy nZ ,fk+l(P+l(a - U)) > 07 sy fI(P+A(a - U)) > Ofor
;Jenslentlilir(ge A.Moreover, fi(p+Aila—v)) = 0,..., Silp+ir@a—v) >0
e, p a—v) € 6, and 5 — 50 N 2"
ponee . PEO,+A(v—a) C M,sothat M = &, N "
4

3.9 Definition. By a rational ma :
De . p ¢ : X--—Y, we m
Zariski openset U of X to ¥, o:U->Y. e & morhism from 2
Each sequence (7 ™) of i
a . EER monomials defines a rational map to
possibly a morphism, which, then, is readily seen to be uniquely determigcd o

3.110 ILemma. A rational map, defined by (z"*, ..., z™), is a morphism if and
?rfn); :'f for eac;ig € Xy, we can find a monomial 2™ such that the monomials
z v 2™ are regular at p and do not all vanish there.

D
tIoi;iO(()iF. Let X g be a smallest affine piece of Xy which contains p. Itis sufficient
nd an extension of ¢ on X;. Assume " (p) # 0. Then, also, 2"+ #0
on all of X, and we obtain a well defined morphism , ,

¥t X5 — U;
X — (Mmoo, ey,
A : my—m, _ Mt
11 functions z™ = &+ areregularon X;. 0

3.11 h rem, A oric varie 3 ] 1)) p)o](:‘C“V n
l €0 tor vay ly X is equlvarlant
( ) el_fa donlylelS
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PROOF. Let T be strongly polytopal, and let P be an associated polytope with
a set of vertices {m, | 0 € £}, sothat P = [yezmlmo + &). We also
consider the cones &, as introduced in Lemma 3.8. For any a € P, we may
assume the generators of each G. N Z" to be contained in P — a; if this is not so,
we replace P by nP (sce Lemma 3.8). Let mo, ..., m, be all lattice points in P,
and let &; := pos(P —m;),i =0, ..., r (compare Lemma 3.8). We consider the
rational map

p: Xz I P

0 4 —> [z"(p), ..., 2" (P)]

where 2™ (p) = p™ incase p = (p1, ..., ps) € T (but the monomials 2"/ are

not defined in each point of Xy). Then,

‘p‘xa‘ : X&, d Ui
p —> (Zmo—m,- (p), ey an,—m,' (p))
is a morphism, for each i = 0,...,r. Therefore, ¢ is a morphism. More-
over, since Ry, = C[’;—?...., Gol G, E), Ry, = Clz™ ™, ...,

X,
mg—nt My —
(IR

2™ ™) is generated by 2 mi (¢ Xs )": Ry, — Ry, is asurjection.
Hence, by VI, Lemma 1.34, p|x; is a closed embedding.

We still have to show that ¢ is a bijection. Suppose ¢(p) = ¢(gq) € U;. Then
all "/~ areregularat pandg,j = 0, ..., r.hence, p, g € X;. Butg|x, isan
embedding, sothat p = ¢q.

Conversely, let ¢ : Xz — P’ bean equivariant embedding, given by rational
functions z™, . .., z™.Foro € £ and O, = {p}, ¢(p) € U; for some i. As
@ is equivariant, ¢(7o) is a subgroup of the big torus T of . Hence, ¢ ' (Ui) =
¢\ WU: Np(Xg)) = U; N e(Xx) is an affine open, T,-invariant subset of Xx
and contains Xs. Hence, X = e H(U) = U,E,O X; D X for some index set
I,, and o; € . We consider the cone o i=Nie I &;. The intersection o’ N Z"
represents all monomials which are regular on X. |-, : e~ N (UD) — Uiis
a closed embedding. Then, by VI, Lemma 1.34, p* is a surjection. The functions
PRy =M, @) = ™7™ are regular on U; and span R,-iy,).
Since p~'(U;) is affine, it equals X,, and O, is its only minimal orbit. Hence,
Oy = {p)} and X, = X; is the smallest open invariant subset containing p.

Finally, we see that, for each o € =@ them; —m;, j =0....,r.(@as
above), generate 6 N Z". We choose m; = m, for the cones o € £, For any
T € £,wechooseaog 2 1,0 € £ and set m; 1= m,. Note that the system
(mo + & | 6 € TM}is a virtual polytope. The polytope P = Noezn (Mo + )
contains my, .. . , m, and is of maximal dimension. The m,, foro € ™, are
clearly the vertices of P. The associated fan E(— P) is seen to equal Z. Hence, &
is strongly polytopal. U

3.12 Theorem. Let Xs. be equivarianily projective, and let

D : Xy — P *

VA o 3 . ¢ 4
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be the embedding which is induced by the rational map ¢ in (1). Then, ®(Xz) is
the set of common solutions of finitely many monomial equations

(2) &0 oy o
x 0. x" = oL %
ip I X(H.. xir

which arise from affine relationships
@My + - - -+ aemi, = om0+ aem;,
ao+"'+ak=ak+l+"'+ary ajGZZ(), j=11"‘sr-
ProoOF. We considef the ideal i C Clxo, ..., x,), generated by all forms F e
Clxo, - - ., x,), for which F(z™, ..., z™) is the zero Laurent polynomial (as, for
exar:np]e, F(xo, x1, X2, X3) = xgx2 — x1x3 in Example 3 below which satisfies
F(gm, 2™, 2™, g™) = z™tm — M+t = O since my + my = my + m3). We
= 4).

%mow., by Hilbert’s basis theorem (or as a consequence of V, Lemma 3.10), that i
is finitely generated. It defines a subvariety ,

Z:=|xelP | F(x) =0 forall F e i}.
We assert that Z = ®(Xg). In fact, for U; as above,

. F
Lo = {;I | Fe C[xo,...,x,]k nit, k> 0}

_ Xg Xi—1  Xi41 Xr
_{fEC[;_'v'-'v B v---y_]
i Xi X X
| f(zmo-m,', e, Zm,--l—m,-’ zm,-H—m,-’ e, Zm,—m.-) = 0}

On the other hand, we deduce from ®| x;, * Xs — U; being an embedding that

. X0 Xi_ X;
l@(Xx)ﬁU,-U, = ker(?" . C[_v"-i ;ly iha y ey ﬁ]
Xi Xi Xj Xi
—> ™™™, L, T e e

= iznu,.u,-

gence, Q(Xz)NU; = ZNU;fori =0,...,r,and we conclude that $(X3) =
Let F be any for_m of degree k in i, and write F = )", a;x’ where I is a
fimte set of vectors i = (iP, vvsir) € (Zso) ' suchthatip + - - i, = k. Let
m .= (m,?,’.,-' .o.my)andm i = mgig + - - - + m,i,. Then, F(z™,...,z2™) =
Zb,-e_,a}f m:O.ForI,,, ={iel|m-i=mand M :={m.i|iel} we
] mnyy — ,
;)f tfam- @™ ™) = Y nen Qies, 42" = 0, and, hence, 3, a; = 0.
oir i ej In, a; #£ 0, then, there is an a; # O with j € I,. By sﬁ'btracting
a; (x - x ) frf)m F , we find a form with a number of monomials smaller than F.
Proceding by induction we find that F = " b;(x' — x/) wherem -i = m - j

Hence, mpin+- - - 4+ m,i, = myj j ] ]
! , y = 0]0+"‘+m randl 4. — ¥ i
This proves the theorem. & ’ TSt JE]

Example 2. If ¥ has generators e1, ..., €,, —e; — -+ — e, (see VI, section

3, Example 5), we may choose, as an associated i
o iated polytope, the simplex P

-+ —ey}. Since the vertices of P are the only lattice points of P
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and since there are no affine relations between them, each point {yp, ..., y,] of
[P represents a point of X5, that is,

Xs =P

Example 3. Hirzebruch surfaces Hy = P' x P! and H, (see VI, 3, Example 3
with X reflected in 0). )

For Hp = P' x P', we can choose a square with side length 1 as P, so t}.lere
are four coordinates (yg, Y1, y2, ¥3), and we obtain an embedding of P' x ]PT mt_o
P by one equation yyy; = yy3. For ;, we find an embedding into ]P"‘ which is
represented by the following equations in the coordinates y; := z" (Figure 4),

Yo¥2 = Y1 Y4, nys =y, and Yoy = y2ya

It is readily scen that none of these monomial equations is a consequence of the
others.

Remark. The search for equations can be achieved as follows. For eac? vertex m
of P, consider all m — m;, form, € (P NZ") \ {m) as generators of & and look
for a basis of the space of all positive linear relations in the sense of V,_ 3. Use tl_lem
to represent X; according to VI, Theorem 2.7, and make thc.: mo_nomxa] equatlo.ns
homogeneous (by setting §; = :—ﬂ ,i=1,...,k and multhlylng thc_ mon_omlz.ll
equations by an appropriate power of yp). Collect all equanf)ns obtalped in this
way, and sort out those which are consequences of others. This search is not at all
trivial and leads to questions of linear programming.

For k > 1, the number of equations for a Hirzebruch surface increases rapifily
(compare Exercise 1). So, the equivariant projective representation o_f ?{k according
to Theorem 2.2 is, in general, rather awkward. The original definition of #; by
one equation in P* x P! is much more elegant. Furthermore, it can be shown by
other methods that H; is always embeddable into a P°.

ma
m:
ms 2 ma mp
Mg ms Mo m
FiGURE 4. -

N YRR,
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3.13 Theorem. Given a compact 1oric variety X, there exists a projective toric

variety Xs: and an equivariant morphism ¢ : Xg —> X z (induced by the
identity map of R" ).

PROOF. This is a conclusion from V, Theorem 4.5,

O
3.14 Definition. An invertible sheaf F of rational functions is called very ample if,
forabasis sg, . . ., s, of the vector space F(Xs) of global sections (see Definition

1.11), the assignment x 1 [so(x), ..., 5.(x)) provides a closed embedding ¢ :
X5 — P'. We say F is ample with ampleness factor k if F* = F @ ... @ F

(k times) is very ample. If 7 = £, (see Theorem 1.22) is ample, we also say that
D is ample.

If X5 is equivariantly projective, hence, possesses an F -polytope P = P(F),
then, by Lemma@-5, Fis ample with » as an ampleness factor. The invariant global

sections correspond to the lattice points of P. We have used this fact implicitly in
the proof of Theorem 3,12.

Exercises

1. Find an embedding of the Hirzebruch surface H; into P° by setting up five
quadratic monomial equations none of which is a consequence of the others
and which imply all equations (2).

2. Find an embedding P! x P! x P! into p7 by an appropriate 3-cube as polytope
P. Find nine quadratic monomial equations none of which is a consequence of
the others and which imply all equations ).

3. Find a polytope P for the weighted projective space introduced in V1, 3,
Example 8. b

4. Represent P x P4, p, 4 € Z>o, as a toric variety, and find a polytope P for
the embedding P” x p7 <> according to Theorem 3.12.

4. Support functions and line bundles

In section 2 we have shown that the Picard

. . group of a toric variety has four
Isomorphic characterizations

Pic X5 = Dive X5/ Divp Xy = Div] X3/ Divl Xy = Pic 5.

We shall add three more descriptions, This illustrates nicely the interaction of
different algebraic geometric and combinatorial concepts in the special case of
toric varieties. We use seven “languages” to express the same facts.

First, we introduce piecewise linear functions defined on the point set | T | which,

in the case of a complete projective toric variety, are the negative support functions
of polytopes — P, where & = Z(—P) (see I, Definition 4.14).
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FiGURE 5.

Example 1. Let £ be the fan of P' x P' consisting of the four quadrants
o1, ...,040f R? and their faces. We choose as P the square “‘I’ILh vertices m,, = 0,
m’ = e, Mgy, = €1+ e2,Mo, = ¢,. Weobtain P = (my, +o)N- - -ﬂ'(ﬂma.+<74),
ano(i for the corresponding sheaf, we have the defining modules z" O(Xs,),
i=1,...,4. Weset

0,xy=0 for x € oy,

(e, x) for x € a3,
h(x) = —h_P(x) = (e‘ + e, _x) forx € o3,
(e, X) forx € os.

Clea-rly, h(el) = —h_p((?l) = 0, h(e2) = —h—P(eZ) = 0, h(—el) =

_h_p(—e) = —1, and h(—e2) = —h_p(—e2) = —1 (Figure 5).

Example 2. We choose the same £ as in Example 1 but characterize, in F.igulte
6, a virtual polytope, which is not a polytope, by a function & whose negative 1s
not convex.

h(x)

i
T

T

ELRHLARAR

LI
0]

(BRI

Ll

FIGURE 6.
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4.1 Definition. Given a complete fan T, we call a function
h|E — R

a virtual support function of X if it satisfies the following conditions;
(1) A is continuous.

(2) Foreacho € X, there exists an m; € 7 such that

h(x) = (m,,x) forallx € o.

An immediate consequence of Definition 4.1 and V, Definition 5.3 is the
following.

4.2 Lemma. h is a virtual support function if and only if the set {m, + & }yex is
a virtual polytope, that is, the set {m, ). ex satisfies the comparibility condition

) mge — mg, € COSpan oy if oy is a face of 0.
The following theorem is also readily obtained by using the results of V, section
5

4.3 Theorem.

(a) The virtual support functions of % define a group SF(Z) under addition.

(b) The linear functions obtained in case all m, equal the same lattice point
define a subgroup LF(XZ) of SF(Z).

(c) We have

Pic £ = SF(Z)/ LF(Z).

Example3. We considerthe fan ¥ introduced in V, 5, Example 4. As we remarked
there, & cannot be spanned by the (planar) faces of a spherical polyhedron. Hence,
there is no continuous function which is linear on each 0 € E. So, no virtual

support function and hence no Cartier divisor exists, which proves again Pic X5 =
{0}.

Now we turn to a notion that is closely related to that of sheaves and is used in
many parts of algebraic geometry and complex analysis.

4.4 Definition. Let {U,},, be a Zariski open covering of a toric variety X, and

letg,p fore, B e I be invertible maps on U, N Uy satisfying the following cocycle
condition:

Foranya, B,y € 1,8, - gya = gpa N Uy N Uy N U,
We glue together each pair U, x C, Ug x C by the map Lag X id:
8ap xMd: UaNUg) x C —> (U NUg) x C
n n

UaXC UﬂXC
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As aresult, we obtain a point set £. We say (£, {gqp)), or briefly £, is a line b.undle
with transition maps gep- The map m : £ — X5, defined by (x, ¢) > x in any
U, x C, is called the projection map of L.

By definition, each g.x preserves all fibers 7~} (x). Moreover, 7 ~'(x) has the
structure of a one-dimensional vector space over C.

Example 4. £ = X5 x C with go = id foreach paire, 8 € / (if any covering
is given) is called the trivial line bundle.

Note that, for any open set U contained in some U, , we can find an isomorphism
(5) foa TN U) — U xC
such that, for any x € U,
faleig T @) — {x} x C

is an isomorphism of one-dimensional vector spaces.

4.5 Definition. Let (£, g4p), (L', g;ﬁ), be two line bundles on Xy with respt.act to
open coverings {Uy }aes» {UaJarerr and with projection maps 7, ', respe’cnvc?ly.
We say L and L’ are isomorphic if there exists a bijective map ¥ : L — £’ which
leaves each fiber as a whole fixed, #' o ¥ = m, such that, for any U C U, N Ug,
a e l,B el and fy, asin(5), the map composition

-1
!Uil

-1 fep
UxC — a '(U)

e oy 28 uxce
is of the form

(x, 1) —  (xe(x))
for some regular and invertible function ¢ on U.
Remark. The definition of a line bundle does not depend on the special coverin'g
{Ug)aer- If we proceed to a finer covering {Ug}wer. then, for each o' € I,
Us = Uy .cy, Ur and we set g;,ﬂ,(t) = gap(t) fort € Uy NUp C, U(,, N Us.
It is readily checked that the g, are well defined and (£, gap), (L, gorp) are
isomorphic.

Lemma 4.6 is an immediate consequence of Definition 4.5.

4.6 Lemma. Let {Uy,)qes be a Zariski open covering of Xz, and ler (L, gag),
(L', g.4) be two line bundles on Xx with respect to this covering. L and L' are
isomo(;;hic if and only if there exist invertible functions g, on Uy such that

8ug = gag:ﬂ,g;l on U, N Ug. .

S s oty Bal s oy 4

an
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Next, we introduce tensor products of line bundles.

4.7 Definition. Let (£, g.p), (L', g:,ﬂ) be two line bundles on Xz (relative to the

same covering {Uylqer])- By the tensor product £ ® £’ of £ and £ we mean the
line bundle defined by the transition maps

Bup ‘= 8up Bup-
The line bundle given by

Zop = ga_ﬂl

is said to be the inverse line bundle L' of £. The group of all line bundles on Xy
(up to isomorphisms) under ® is denoted by Lb X .

4.8 Theorem. Pic Xy = Lb X5.

PROOF. Given an invertible sheaf F, we introduce, for each Zariski open subset
U of Xy, the function f;; as in the proof of Theorem 2.10. In particular, for
a covering {U,}qes, we set f, := f, and obtain, on U, N Ug, an invertible
function g.4 1= f, - fﬁ_l. If £, defines the same element of the Picard group as
S« does, there exists an invertible function g, and a rational function f such that
fo = - 8a- fa- S0, g4p satisfies the condition in Lemma 4.6, and we obtain a line
bundle (£, gus) which, up to an isomorphism, is unique. Tensor products of line
bundles, then, correspond to tensor products of invertible sheaves, and it is readily
seen that we obtain a group isomorphism of Pic Xz and Lb X 5 (after identifying
isomorphic copies). -

We can construct, explicitly, an invertible sheaf from a line bundle. To do so,.
we introduce sections (compare the sections of sheaves in Definition 1.11).

4.9 Definition. Let (L, g.4) be a line bundle on X5 with respect to the covering

{Us}aes, and let U be any Zariski open subset of X ¢. By a section of L on U, we
meanamaps : U — n~ () given by

Sa 1 Us NU —

x —

(U, NU) x C
(x, g5, (x))

where g, is regular on U, and satisfies g, / 8« = 8op foreach § € I. The set of
sections on U 1s denoted by I'(U, £).

(U, L) has the structure of an O(U)-module. Sums s + s’ are defined by the
sums g5, + g, .For f € Ry = O(U), the product f - 5 is defined by the functions
f : g‘a'

For any fixed « € I, we consider the injective map

i, F(U, £) —> Kx)’

s —> 8soe
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We set F(U) = i,(T'(U, £)) and obtain Lemma 4.10.
4.10 Lemma. F is an invertible sheaf of rational functions.

Analogously to invariant Cartier divisors, we now introduce the following toric
notion for line bundles.

4.11 Definition. Let (£, go.) be aline bundle on Xz with respect to the covering
{Xs}oex. If for each element 1 of the big torus T the map

¥ : L — L
lx;xc @ Xs xC — X; xC
(x, ) — @x, t"c)
satisfies

! * gor(X) = gor(1X),

then, we call £ equivariant.
Example 5. Let £ = X5 x C.Forany m € Z’, we define the torus action yr by

Y (x, ¢) = (1x, t™¢). Denote the set of equivariant (“trivial”) line bundles, thus
obtained, by Tr X .

We denote the group of all equivariant line bundles (under ®) by Elb X 5. For-

getting about torus action, we obtain a morphism Elb Xy — Lb Xz whose kernel
is Tt X5 (as introduced in Example 5). Moreover, we readily obtain Theorem 4.12.

4.12 Theorem. For the group Elb Xz of equivariant line bundles,
LbXy = Pict = EbXg/TrXs

In summarizing, we obtain the following diagram of “languages™ and a sevenfold
characterization of Pic Xy:

Virtual Invertible
polytopes sheaves
Virtual Invariant . Pic X
support Cartier Pic X - z
functions divisors .
l | SF(£)/LF(Z) Divl X5/ Divy Xz
Line bundles Cartier divisors l l )
\ / LbXg Dive X5/ Divp Xz
Equiveriant \ /

line bundles Elb Xg/Tr X L,

At e S SmasR 3,
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Exercises

—

. Find the statements analogous to Example 1 for any Hirzebruch surface.

2. Find the transition functions g,. of line bundles on X5 where (a) X5 = P"
(b) Xz = P' x P! x P!, and (¢) X5 is a Hirzebruch surface.

3. Inthe language of virtual polytopes, verify directly that Pic X5 = 0in Example
3.

4. Consider ¥ := {R»g €1, Rs0(—e)), {0}} as a fan in R?. Describe Pic X5 and

its analogs in all seven languages, as mentioned in the text.

’

5. Chow ring

The theory of divisors and virtual support functions, as considered in the preceding
sections, was based on combining linearly toric (n — 1)-subvarieties of a toric va-
riety X 5. We wish to extend the theory to linear combinations of toric subvarieties
of any dimension £, 0 < k < n — 1, and embed Pic X5 into a ring built up by
such varieties. We restrict ourselves to X being regular and complete.

To achieve this, we could use a standard procedure in algebraic geometry, that
is, defining “k-cycles” and “rational equivalence™ as analogs of “divisors” and
“linear equivalence”. It is, however, more convenient for us to proceed somewhat
differently, making use of the various “languages” presented in section 4.

5.1 Definition. Let Xy be a complete smooth toric variety, and let g, ..., gz be

the one-dimensional cones of E. To each g;, we assign an indeterminate variable

U;,i = 1,...,k, and consider the polynomial ring Z[U),, . . ., Ux). We introduce

the following ideals in this ring.

{1) Let a be generated by all monomials U;, - - - U/, 1 < iy < -+
whichg; +.--+0; & .

(2) Let b be generated by all linear polynomials a1; U1 + -+ + ai;Us, j =
l,...,nwhere q; := (a,,...,a,) € Z" is the simple vector for which
¢ =Rsoaii=1,...,k.

- < i, < kfor

Then, we call Z[U1, ..., U;)/(s + b) the Chow ring Ch(Xs) of X 5. We set u;
for the residue class determined by U;, i = 1, ..., k.

Example 1. Let X5 be the Hirzebruch surface with generators a; = (1, 0),
az = (0, ),a3 = (—1,0),as = (r, —1). Then, ais generated by U, U5 and U, U,.
The defining linear polynomials of b are U} — Us +rUs and Uy — Us. Using Lemma
5.3 below, we see that Ch(Xs) = {au; + Buz + yu us + 8 | o, B, ¥,8 € Z).

5.2 Lemma. Pic X5 is isomorphic to the additive subgroup of all linear
polynomials of Ch(Xs).
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PROOF. We represent Pic Xz as SF(X)/ LF(X) according to Theorem 4.3. To
each linear polynomial a4 + - - - + aux, we assign a piecewise linear function
h: |Xz| —> R by setting h(a;) := —a;,i = 1, ..., k, and extending linearly
on each cone of £, Since I is simplicial, the extension is well defined. So (1) and
(2) in section 4 are satisfied. Conversely, any h satisfying (1) and (2) in section 4
defines a linear polynomial by setting o; := —h(a;),i =1,..., k.

The linear functions of LF(Z) are integral linear combinations of the functions
{e;, x) where ¢;, . . ., e, is the canonical basis of R". From

(e.a)=a;, i=1,...,n, j=1,...k

we see that b = LF(X). Since a does not contain linear elements, the lemma
follows. ]

5.3 Lemma (“Shifting away” lemma). Let X be regular and complete. If o =
Qi+ -+oi, € E,wesetPo := U, - U andp, .= [P;] = P-+a+b.lfois
afaceofc’ € Landdimo > 0, thenthere exist coneso; € ¥,dimo; = dimo,
j=1,...,q.and integers c; such that no a; is a face of o’ and

Po = C‘pol + .- +cqpa"_

PROOF. Let 7 be a face of o such that dimo = 1 4 dim t (for dimo = 0,
there is nothing to prove). Since T is complete, we may assume dim o’ = n.
Up to renumbering the g; = Ryoa, i = 1,...,k lete’ = g1 +--- + @n,
c=@¢1+ -+os,andt =gy + - + g (or {0} if dim & = 1). By definition
of b and the regularity of Z,

anuy + -+ apu, =0
(1) : (2) deta;...a,) = *1.
aplidy + - F Qealty = 0

Solving (1) for uy, ...
ui, ..., U, as integral linear combinations of u, 41, ...,

, u, by Cramer’s rule and by using (2), we obtain
u;. In particular,

uy = byyipyi + -+ b, buyry-... .y €Z.
Since X is complete, k > n,so that atleastone b; # 0,n + 1 < i < k. Now,
+ brugduy - u

+ brugua - - - uy,

Do = Uy -y = (bpzittpg) + -+

- bn+luu+lu2 R Th SO

where all those w4 - - - 1, are nonzero for whichg; + 1 € Z,i =n+1,...,k
This proves the lemma. 0
Example 2. Leta) := e),a; = €3,a3 := e3,and a4 := —€) — €2 — €3 be the

generators of T for Xz = P°. We find that a is generated by U U;U3Us, and b by
Uy —Us, Uy —Us, Uy —Us. Hence uy = uy = uz = ugand uugusus = u‘;' = 0.
We may represent Ch(Z) either by {eewe; + Bu? +yui +8 | a, B, vy, 8 € Z}orby

U i -
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{au; + Buruz +yvuiuous +8 | @, B, v, 8 € Z}. Weconsidero” := g, + 02 + 03,
0 = @1 + 02. Then, for oy := @1 + 04, P = po,.

Example3. InR?% letg| := Rx0€1,02 := R»0 2,03 := Roo(—e] +€3), 0 :=
R>o(—e€1), @5 := Rzo(—€1 — €2), 06 := Rxo(—e2),and 0 = g, 0’ = 0, + 03.
We find that u; — u3 — us — us = 0, and, hence, Doy = Uy = U3y + ug + Us
(Figure 7).

5.4 Definition. If o0 = g, +--- 4 g;, € X, we call the square-free monomial
Po = uj, - - - u;, a face element of Ch(Xs). Foro = {0}, weset p, = 1. We
denote, by Ch “?(X 1), the subgroup of Ch(X 5) generated by the face elements for
afixed degree. We say p, represents the toric subvariety X := X3/, determined
by £/0 = n(st(g, )).

5.5 Theorem. The Chow ring can be decomposed as follows:

Ch(Xz) = Ch®(Xz) @ - @ Ch ™ (Xy).
PROOF. Suppose u | is a monomial of Ch(Xg), f; < --- < i,. lfg;, +
-+ 0, € X, the monomlal equals zero. So,leto = ¢, +---+¢;, € L. In

thc case r; > | we replace u;, according to Lemma 5.2, by a linear combination
of u; which do not belong to u;,, ..., u,. Continuing in this way, we replace
u;' - - - u} by anintegral linear combination of square—free monomials. This proves
the theorem. O

Example4. Example 2 canreadily be generalized to show that forg; := R»g ) +
*+ Rr08,00 := {0}, Ch(P') = Z poy ®Z po, & - B Z po,.

Multiplication in the Chow ring is closely related to the intersection of toric
subvarieties. From Theorem 5.5 and the preceding definitions we derive Lemma
5.6.

& P2 \\\
pa \\\\
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5.6 Lemma. Ifo,t € X ando Nt = {0} and p,, p. are the face elements
which represent X(q), X (1), then, ps - py represents the intersection X ) N X ().

This relationship will be considered again in chapter VIII.

Exercises

i

. Find Ch(X) of Example 3 according to Theorem 5.5.

2. Find Ch(X ) for the higher dimensional analogs of Hirzebruch surfaces (VI,
3, Example 3).

3. Show that the assumption “X is complete” can be weakened such that Theorem
5.5 still holds.

4, Find examples of nonregular toric varieties for which the shifting away lemma

can be proved.

6. Intersection numbers. Hodge inequality

If n toric hypersurfaces of an n-dimensional toric variety intersect in finitely many
points, we are interested in counting the numbers of points of intersection, counted
with “multiplicity”. This leads to what is known as the intersection numbers of
divisors. First, we discuss some of the basic ideas. Throughout this section, we
assume X' to be a smooth and compact toric variety of dimension n.

Let p;,..., 0, be 1-cones of ¥ and D, ..., D,, the corresponding invari-
ant divisors (toric (n — 1)-subvarieties defined by st(g;, £),i = 1,...,n). If
o = 01 + -+ + 0, is an n-cone of I, the D, are the closures of the coordinate
hypetplanes of X and, hence, intersect “transversally” in one point. So, we asso-
ciate intersection number 1 with D, , ..., D,,.If g1 + - - - + @, is not contained
in a cell of X, the subvarieties D,, have empty intersection, hence, intetsection
number 0. This is a natural starting point for intersection numbers.

Not equally trivial, but still “natural”, is the requirement that an intersection
number does not change if one divisor is replaced by a linearly equivalent one.
In particular, self-intersection numbers can be defined by n linearly equivalent,
different copies of the same divisor. We shall see that such intersection numbers
are possibly negative.

Finally, we want intersection numbers to be linear in each component. For
example, if a D,, is replaced by k D,,,, each point of intersection with other divisors
is to be counted k times. Also, the additivity is geometrically plausible.

We use these intuitive requirements for a definition.

6.1 Definition. LetD := TCDiv(Xx) be the group of T -invariant Cartier divisors
on a smooth compact n-dimensional toric variety Xs. Thena mapping of the n-fol

SUPT
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cartesian product

Dx - xD —
.

is called an intersection number for toric divisors if it satisfies the following
conditions for all Dy, Dy, D, ..., D, € D.

(1) (Dy.---.Dy) = (Drq1). -+ + Dnypy) for any permutation r of 1, ..., n.

(2) (Dl + D;DZ o '-Dn) = (DnDy.--- -Dn) + (D;DZ e -Dn)-

) &D.Dy.---.D,) = k(D\.D2.- - -.D,), fork € 7.

4) (D\.Dy.---.Dy) = (D|.Dy. - - - .Dy), if Dy, Dy are linearly equivalent.

(5) For l-cones g1, ..., 0, 0f Z,

1 ifer+---+0, € ZW
Dy.-++.D,) = " '
(Dy, 0.) [0 o+t &5

We shall prove existence and uniqueness of intersection numbers only for com-
pact smooth projective Xg, since, in this case, there is a natural relationship to
mixed volumes. First will we look at some examples.

Example 1. Letr = land £ = {0, := Ryo0 €1, 02 := Rxo(—e1), {0}}. Any
T-invariant divisor D = —(my, e1}D,, — {ma, —&1)D,, = —m D, + m2D,,
(m,, m; € 7Z) can be characterized by a function A which may be convex or
concave.

The corresponding  invertible sheaf has rings z"' Oy, (X;,),
2" Oy, (Xg,): Clz, z71]. It has nonconstant global sections if m; < m; (h
concave). Up to linear equivalence (adding a linear function to 4 or applying a
translation to P = (m; + 01) N (my + 92) = [m;, my]), we can assume the
global sections of the invertible sheaf to be the polynomials ay + o1z + - - - +
@py—m, 2727 ™. The maximal degree which occurs is my — m, also called the de-
gree of the invertible sheaf. The corresponding divisor D is an (m, — m,)-fold
point so that my — m; provides the self-intersection number of D. Also, in the

case my — my < 0 (h linear or convex), we call m, — m| the self-intersection
number of D.

6.2 Lemma. Forn = 2,lett beal-cone of aregular completefan T, v = Ryo a,
and let 01 := Rsou + Rx0 b, 02 := R0 a + Rxo ¢ be the adjacent 2-cones of T
in¥,a, b, csimple. Ifa € 7 is the integer for which

aa+b+c=0,
then, D, has self-intersection number
(D;.D;) = a.

PROOF. Wesetg| := Ryo b, 02 := R>0¢. Wemay assume g = e,. As a Cartier
divisor, D, is given by the piecewise linear function 4, defined by A(b) = A(¢) =
0, h(a) = —1,h(x) = 0 foro € R?\(o) U o) (Figure 8) so that / defines an
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invertible sheaf on Xx. We can add the linear function {(a, -} to it and obtain an
equivalent function A,

h(x) ;= h(x) + {a, x), forx € R?.

Clearly, l-z(x) = 0forx € . The restr_iction of htort deﬁ_nes an i_nvertible sheaf
on D;. By Example 1, (D;.D;) = —(h(b) + h(c)). From A(b) + h{c) = h(b) +
(@, by+h(c)+la,¢) = {a,b+c) = —ala,a) = —a,wefind(D..D;) =a. O

Example 2. The projective plane P? is given by a fan with generators a = e,
b = e, ¢ = —e; — ¢€3,and, hence, a + b + ¢ = 0. Therefore (D..D;) = 1 for
each coordinate line of P2. This is intuitively obvious. Any two different lines of
P? are projectively equivalent and intersect in one point,

Example 3. Ifa = b+ c, we may consider the fan £’ obtained from E by deleting
T, 01, 07 and introducing o7 U o3 as a new cone. Then, Xy is obtained from X g
by a blowup, and the exceptional projective line has self-intersection number —1.

6.3 Theorem. Let Xy be a smooth, compact, projective toric variety, ¥ =
Z(—P). Then, intersection numbers are well defined and uniquely determined.

For Cartier divisors D\, ..., D, whose piecewise linear functions are convex
and, hence, are represented by polytopes Py, . .., P,, respectively,
(Dy.---.D) =n'V(P,..., P).

For Cartier divisors represented by virtual polytopes Py = P(P)) =P P), ...,
P, = P(P,) — P, P) (see V, Theorem 5.15), we can calculate (D). - - -.D,)
successively from the intersection numbers of the Cartier divisors Dy, ..., D,
givenby P(Py), ..., P(P,), respectively (D given by P),

(DD =n'V(P, ..., P)) = (D1 +nD.---D, + r,D).

Proor. By IV, Lemma 3.4 and Lemma 3.6, the mixed volume function
V(- ..., ) satisfies (1), (2), and, in the case k > 0, also (3).

i
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Let k = —1. We associate with — D, the virtual lattice pelytope (V. Definition
53) P for which

P + P(Py) = PO)).
Since V({0}, Py, ..., P,) = 0(V, Lemma 3.6), we obtain
(=D1.D3.---.Dyy + (D1.Dy. - --.D,) = 0.

Now, (3) follows for all k e 2.

To prove (4), we apply the following characterization of linear equivalence
(compare Theorem 4.6). The piecewise linear functions 4, k" of D), D, respec-
tively, differ only by a linear function. Hence, the virtual polytopes differ only by
the addition of a point, that is, by a translation. V(,...,")is, however, invariant
under translations (IV, Lemma 3.6).

Conceming (5), we remind ourselves that, fora I -cone ¢ € X, theCartier divisor
D, can be represented by the virtual polytope P, := {m, + 8} U (X \ {3}).

The sum P, + P(P) =: P(P,) is always a polytope element. Let gy, . . ., o
be n different 1-cones of . If D is again given by P,

(Dg, + DDy, + D.---.Dy, + D) = nlV(P,,, ..., P,).

Each P, is obtained from

P =(my +8)0 ([ (m +0))
oertt
by “moving out” the supporting hyperplane m,, + oi- of P such that, between
my, + o and m,, + 1, + o, there are no lattice points (Figure 9).
First, we illustrate the idea of the proof for n = 27If o) + g, ¢ Z, thatiis if oy,
02 are not adjacent in ¥, we obtain

m V(P Po) = V(P + Py)) — V(P,) — V(P,,).

LetA) := P, \ P,A; := P,, \ P.Then, we obtain V(P, + P,,) =4V(P) +
2V(A)) + 2V (Ay) and V(P,) = V(P) + V(Ay), V(P,,) = V(P) + V(A3).
Hence, (D, + D.D,, + D) = 2V(P,,, Py = V(P + P,)) — V(P,) —
V(P,,) = 2V(P) + V(A)) + V(Ay).

— =

FIGURE 9.
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Furthermore,
(Dy,. Dy = (Dy, + D.D)y — (D.D) =2V(P,,, P) — 2V(P)
V(P, + P)—V(P,) —3V(P)
=4V(P) +2V(A)) — V(A)) —4V(P) = V(A)).
Similarly, (D,,.D) = V(A,). Therefore,
(D, Dy,) = (Dy, + D.D,, + D) — (D,,.D) — (D,,.D) — (D.D) = 0.

In the case g + @3 € I, the calculation of (D,,.D,,) works similarly, except
that an additional area B occurs in £,, + P, (hatched in the lower right part of
Figure 10). Clearly, V(B) = 1. Therefore

(D,,.-D,) = 1.
The proof for arbitrary n proceeds analogously. If k < n of the cones gy, ..., g,
are different faces of a 7 € X, say 0y, ..., 0. a k-dimensional parallelotope B

occurs in the sum P, + .- + P, ,and V(B) = 1 or 0 accordingto k = n
or k < n, respectively. Expressing mixed volumes by volumes according to IV,
Theorem 3.7, a calculation, as in the case n = 2, is readily carried out so as to
prove (3).

It still remains to be shown that intersection numbers are uniquely determined
by (1) —(5). Applying (1) - (4) implies that we need only prove (Dy,.---.D,) .to be
uniquely determined forany gy, ..., g, € T'". The case where they are all differ-
ent is clear from (5). So, we assume inductively that (Dg,.---.D,,) is determined
by (5)if,atmost, n — k < nof gy, ..., g, coincide. Suppose uniqueness is true
if at least & of the D, are different, and letonly k — 1 of the Dy, in (Dy,.- - -.D,,)
differ, say g1, ....0k-1. If 01 + -+ - + 0, € I, then, (D,,.---.D,,) = 0. So,
letg; +---4+ 90, € X, hence,oc :=p1+---+gy =01 +---+o1 € X
(and o face of ¢’ € ). By the shifting away lemma (Lemma 5.3), we can set

FIGURE 10.

6. Intersection numbers. Hodge inequality 295

.ng = ﬂlDQ,I +-- +ﬂng,_( where Qi; g{le-‘--Qk—l}sj = 1,...,s. Now,
n

(DQI" : "DQn) = Zﬂf(DQl" : "Dl?l—l'DD,,'DQk-n" ) "DQn)'

each term has k different factors and hence is uniquely determined. Since, by (4),
the intersections numbers do not change under linear equivalence of the £, , the
intersection number (D,,.- - -.D,, ) is uniquely determined. rl

Example 4. Let X5 be a del Pezzo surface whose fan Z has generators a; =

e+ ey, a; = e, a3 = —€1, 44 = —€] — €2,a5 = —es, and a, = e;. The
associated polytope P is shown in Figure 11.
We denote the Cartier divisor of P by D and set D == Dp.ya.i =1,...,6.

We wish to calculate (D,.D,). For this purpose, we observe that
(DvDy) = (D + D.Dy + D) — 2(Dy + D.D) + (D.D).

The divisor Dy + D is represented by the polytope P obtained from P by joining
a triangle (dotted area in Figure 11) to it. From (D1 + D.Dy + D) = 2V(P),
(D +D.D) = 2V(P,, P) = V(Py + P) — V(P)) — V(P),and V(P|) = 3}
V(P) = 3, V(P, 4+ P) = 13, we obtain (D,.D;) = —1, in accordance with
Example 3.

6.4 Theorem (Toric Hodge inequality). Given a smooth, compact, projec-
tive toric variety, let D be an arbitrary T-invariant Cartier divisor, and let
D', Dy, ..., Dy_y be T-invariant Cartier divisors which are represented by
polytopes. Then,

(D.D'.Di.-+-.Dy3)* > (D.D.Dy.- - D, _5)(D'.D'.Dy.- - Dy ).

PROOF. If D is also represented by a polytope, this is a direct consequence of
Theorem 6.3 and the Alexandrov-Fenchel inequality (see IV, 5).

S0, let D be arbitrary. According to V, Theorem @515, we replace Dby D+ kD’
for sufficiently large & > O such that D + kD’ is represented by a polytope. Then,
by using (2), (3), we obtain the theorem from

(D+kD'.D'Dy.--..D,_,)?

N
as t P+Py ! s

as N

FIGURE 11.
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> (D + kD'.D + kDI.Dl. e mD,,_z)(D’.D’.Dl. oD, ).
|

Remark. If D', Dy, ..., D,_, are not represented by polytopes, the Hodge in-
equality need not be true. For example, let a del Pezzo surface be given as in
Example 4. Then, (D1.D1) = (D3.D3) = —1, but (D.D3) = 0, so that the Hodge
inequality is violated.

6.5 Theorem (A special toric Hodge index theorem). Given a smooth, compact,
projective toric variety, let D be an arbitrary T-invariant Cartier divisor, and
let D', Dy, .... D, s be T-invariant Cartier divisors which are ample repre-
sented by polytopes. If (D.D".Dy.---.D,) = 0 and (D.DDy.---. D, ) # 0,
(D'.D'.Dy.---.Dy.2) # 0. Then

(D.D.Dy.---.D,_3) < 0.

PROOF. This is an immediate consequence of Theorem 6.4. O

Exercises

1. Extend Lemma 6.2 to the n-dimensional case and prove the toric Nakai-
Moishezon criterion for ampleness. Let X5 be a smooth compact projective
toric variety, A T-invariant Cartier divisor D is ample if and only if, for
any (n — l)-face g1 + -+ + @u-1 € Z (& € v i=1,....n—1),
(D.D,,.---.D,, ) < 0.

2. In VI, 3, Example 4 find all types of intersection numbers (D, .Dg,.Dy,) which
occur (g1, 02, @3 arbitrary 1-cones of the fan).

3. Generalize condition (5) in the definition of intersection numbers if T is allowed
to be an arbitrary, complete simplicial fan.

4. Discuss equality cases of Theorem 6.5; use the results of IV, 5, in particular,
Example 2.

7. Moment map and Morse function

There are direct relationships between an affine or a projective toric variety and the
defining cone or polytope, respectively, which we shall study now. They provide
new insight into the structure of toric varieties, and they produce tools for giving
the Chow ring a topological meaning (in Chapter VIII).

7.1 Theorem. Let ¢ = pos{mi, ..., m,} be an n-dimensional simplex cone,

and suppose my, ..., M, ....m are simple lattice vectors which gener-
v L

ate the monoid ¢ N Z'. For u = (uy,....w) = @', ....2", ...,

A b D sl o . SR ALt o AN B 3 il W=
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™), consider the map

@ X‘; —_— "
U o um +---—+—u,,m,,.
Then,
(1) ¢ m?ps the bigtorus T = {u | u; F0.i =1, k} onto the torus
) T::{ulm}lo+~-+u,,m,,Iu,-;éO,izl,‘..,n].
(2) ¢| x;° maps X3 bijectively onto &, in particular each orbit of X 0 onto the
relative interior of a face of & ( compare VI, Definition 3.8). V

Proovr.
(1) is true by definition of ¢.
(2) Among the |3;| roots of x™, there is
Therefore, 720
I, ..., n}
Since X; is the disjoint union of tori in dimensions 0. _ .

tl;evsame arguments as for X; to the subvarieties X cof X
of 5.

T » the only one which is real and positive.
15 mapped bijectively onto 7% = {y ¢ 7/ | y; » 0.; =

-+ 1, we may apply
&, Where 7 is a face

—

Example 1. Let ¢ := v
‘= posie;, e; + 2e;}, hence, 6 = - _
pos{m,. m} (see Example 3 in VI, 2). pos2er — ea.ea) =

The degree of p is 2. The point 1 - m, + 1 -my = 2e in & has two inverse image:s

w = (1,1, 1),u® = (1,1, =1).H
4 LD, = U L, =1). However. m\, m; (as generators of 1-faces of
@) have unique inverse mmages v = (1,0,0), w = (0, 1, 0), respectively. xz0

consists of the points V4
o POIMts (uy, uz, +.,/uruz) foru, > 0,u; > O(shaded areain Figure

~

\§ w1008

s

A w=010)
PRl

291'82
(1 1-1

FIGURE 12.
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Example 2. If X; is regular, p provides an isomorphism for X; = cr 4 x ¢
according to VI, Theorem 2.12.

The map g can also be defined for nonsimplicial o. We will not discuss this but
will proceed to maps of compact projective toric varieties onto polytopes.

Asin section 2, we assign a complex coordinate (parameter function) x; := z™,
i =0,...,r toeach lattice point m; of an n-dimensional lattice polytope P. We
assume P to be “large enough”, that is, multiply it, possibly by a positive integer,
such that we obtain an embedding

Xsipy = F
according to Definition 3.5. Let {mq, ..., m,} = P NZ".
7.2 Definition. Let f : Xz —> P be given by

+ - r
Fxy = |xolmo + |x, |m,
Ixol + - - - + [x/|

We call f the moment map of Xx.
Furthermore, let g : X5 —> P be defined by

xol?mo + - - + |x, *m,
ol + - -+ + |x 2
We say g is the modified moment map of Xs.

glx) :=

Clearly, f(x) and g(x) are convex combinations of mo, .. ., m,, hence, inP.

7.3 Theorem. [ and g are continuous surjective maps with the following

properties.

(1) f, g map the big torus T of Xz onto the interior of P, and, more gencrally,
each orbit onto the relative interior of a face of P.

2 fo = fl X2 and g = gl Xz are bijective. In particular, they map each
closure of an orbit bijectively onto a face of P.

PROOF. It is sufficient to undertake the proof for f since the transformation
Uxol, - - -, 16 1) — (x0l?, . .., |x,|%) preserves (1) and (2).

If (xo, . . ., x,) is replaced by (Axp, . - ., Ax,), for any A # O, then, f does not
change. So, we can assume |xg| + - -+ + x| = 1. Clearly, f is continuous on Xx.

Both statements (1) and (2) refer to the tori Tr of which X5 is composed. Each
of them corresponds to a face F of P where T = Tp. But any face F defines a
subvariety of X, given by those x; = 2" for whichm; € F N 7", and by the
affine relations between such m; (see section 3). Therefore, it is sufficient to prove
(1) and (2) for the big torus 7.

First, we show that f is a surjective map of Xx onto P. Lety € P,

@ y = yomo +--- + y.ms,
(b )’0+"'+)’r=]a

i, et it s . S il 2,
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{c) ¥ >0, i=0,...,r

We cor'lsider the set C; of all vectors (yq, ..., y,) which represent the same y
accordmg to the conditions (a), (b), and (c). C, is a point only if the face F of
P for which y € relint F is a simplex. From one representation of y we obtain
others by adding representations of 0,

(a) 0 =aomo+ - + a,m,,
(b") ag+ -+ =0.
The set of vectors a := (ay, ..., a,) that satisfy (a'), (b’) is an affine subspace C’

of R, and C, C y + C',
We wish to select one among the possible representations of y which is, in some

way, '“canonical". This can be achieved by choosing y such that it minimizes the
function

®(yo, -+, ¥r) 1= yo(=1 +log yo) + - - - + y.(~1 + log y,)

on Cy. The function & can be defined for all points y € R™*' with y; > 0,

{ = 0,...,r (using ylogy — 0asy — 0%). Restricted to an
3 Sing_ . y real torus
T CR*,0<dim7T <r+1,d has a Hessian matrix

y,'TI 0

(4] y!

5

for appropriate indices iy, . .., i,. Suppose ® had two minima on /C‘., attained in
y*, y** say. Since the Hessian is positively definite on the line segment Jjoining y*
¥**, we obtain a contradiction. Therefore y* = y**. ,
I‘,e( a € C’ be chosen arbitrarily (so that (a’), (b) are satisfied). Up to renum-
lf)ermg, we canseta = (ag, ..., @p, Qpit, ..., 0, 0, ..., 0), where ¢; > 0 for
t€{0,....p} =" A, anda; < Oforje{p+1,...,5) = A_.
Let y(#) := y* + ta,t € R. We claim that y* satisfies

(3) *p) -, *Apyi *0

Yo Ve = Ypit Y
There are four different cases.

Case |

For sufficiently small ¢ > 0, foralli ¢ A
) ’ U A_ and all —¢ 7
¥i(t) < 1.Then, y(t) € Cy, and + <t <¢g0<

@ 4 ;
7r YOm0 = @olog yg +--- +a;logy; =0

(because of the minimality of ® in y*). From (4) we readily obtain (3).
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Case 2

If case 1 fails to be true for at least one i, we see that y* = 0 (unless y = mi, a
trivial case). First, let y}' = D alsobe true suchthati € A,,j € A_.Then, (3)is

trivially satisfied.

Case 3

y* = 0forani € A, but y}‘ > Qfor j € A_. Then, for suitably small ¢ > 0,
0' < yit) < liswueforal/ € Ay UA_andforall0 < ¢ < ¢. Therefore,

;W)’(t)) = ag log yo(t) + - - - + o5 log ys(¢)
t

exists in y*. Since a; > 0 and log y:(t) < 0,
d
Iim — ®(y(¢)) = —oc.
Jim = Py )

But, then, in any neighborhood of y*, there is a point of C, in which & is smaller
than in y*, a contradiction.

Case 4

yr =0forani € A_buty; > Ofor j € A,.Here, we proceed analogously to
Case 3. o

This completes the proof of the surjectivity of IO. ' .
In order to show injectivity for f restricted to X3, lety € P be given according

to (), and let (yp, ..., ¥,) = (@™, ..., 2™r). Then

moilogzy + - - + mo, logz, = log yo

%)
malogzy +---+mg, logz, = log y,.

We see from (5) that the vector (log yp, . .., log yr) if a linear con'lbmanon of the
vectors i ; := (mo;, ....my),j = 1,..., n.Eachm; however,is onhogona:ktlo
the affine space aff C, = {(y0, ..., ¥) | yomo+---+y-m- = y},and,hencg, he
same is true for (log y, . . . , log y,). On the other hand', (log yo, - o log y,) isthe
gradient of ®(yo . . ., y,)- Therefore @ attains its mimr_nal v:lue in *( YOs oo ;"’y,_)‘,
and, hence, yg = yg, ..., yr = ¥/, 50 that t.he(;nonomnals M=y .=
* = ..., zp) are uniquely determined.

d \‘?)erzasse(ril;hat zlz,!.) ey 2 'fre a)llso uniquely determined: In (5), we replace
Yo, ...+ ¥ by ¥3...., ¥, respectively: Since, among my, . .., m,” t.here.arzln
linearly independent vectors, the solution (log z1. e logz,) € ‘IR is uniqu é
determined. Hence z; > 0, ..., 2, > O are also uniquely determined.

Example 3. We consider m := 0,m :=2e — ez,.and ms :-: e, sothat Pis a
triangle in R2. X5 is obtained as the projective extension of X; in Example 1. The

e Mt i i

prv

cokmen

e it — S

P e
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cone pos{2e, — ey, e,} is replaced by the triangle P. S and g project the hatched
area in Figure 12 extended by the “points at infinity™ bijectively onto P.

Now we combine the modified moment map g with a linear functional (m, -}
m e Z".

*

7.4 Definition. Let P be alattice polytope, {my, ..., m,} = PNZ", such that P
is associated with the fan T and gives rise to an embedding Xy <> . We choose

anm € Z", such that {m, mp), ..., (m, m,} are different and nonzero, and define
& =Clxo,....x) € P)
Jom : Xz — R,

|Xol*(m, mg) + - . + |12 {m, m, )
ol + -+ + Ix, |2
Then, f, is called the Morse function of X £ with respect to m.

f(m)(-x) =

7.5Theorem. Let P and X5 be givenasinthe definition of the Morse function, and
suppose, in addition, that X, is regular. Up t0 renumbering them;, letm,, ... m,
be the lattice points adjacent to a vertex mo of P on the edges emanating from
mo. The one-point orbit X 1= & (mo) is the zero point of an affine piece X; of
Xy. If we choose my to be the zero of R, then Som(x) is expressed in the local
coordinates u; = 3% =: v; + /=1w; (v;, w; € R) of X; as
©  Sfon@) = (F + wiim, mi) + - + @2 + wdim, m,) + F,
where F is a power series in v, . . ., Un, W1, ..., W, wWhose terms are of degree
greater than 2.

By the choice of m, (im, m;) # 0,i = |, ..., n.

PROOF. We divide numerator and denominator of Fum(x) by |xgi? and, from
2

f“ﬂz = uu; = l)j2~ + wj,obtain
o] + whim, m) + - + @2 + wm, m,)
L+ + w4+ + (02 + w?)

Since my, ..., m, generate 7" integrally, any m; ¢ {m,,...,m,}isa nonneg-

ative, integral, linear combination of my, ..., m, and gives rise to a monomial
T ufr = u, ki € Tmo ky -+ k> 1. Then, vf + wf is a polynomial
mu, .., W, w,, of degree greater than 2. By expansion of f{,,,(x) into
d Taylor series we obtain (6). G

f(M)(x) =

7.6 Definition. A point x of Xy is called critical with respect to fi,, if, in real
local coordinates according to Theorem 7.5, fion has vanishing partial derivatives

(inwv;, w;, j = 1,...,n) at x. The index of feay In X is twice the number of
positive coefficients (m. m;} in (6).

The following two theorems are immediate consequences of Theorem 7.5:
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FIGURE 13,

7.7 Theorem. The critical points of X5 with respect 1o any Morse function fm)
of X are the zero-dimensional orbits and only these.

7.8 Theorem. For m € Z" \{0}, let the open half-space H* be defoined by{y €
R" | {m,y) > O}. Then the index of fiu, in the one-poir.u orbit x of del(fee
Theorem 7.5) equals twice the number of edges of P emanating from mo and lying
inH?.

= ' m= 2ey, and P =conv{0, e, €2, €1 + e3}.

Example 4. Let Xy =P' x P!, m=e) + 2e1,

Denotgthe cones oy, . . ., a3 as in V1, 3, Example 2, and let'a, b, c, d_be thze ‘ZCI:

point of X3,, X5, X5,, Xs,, respectively. The index of fi,, is then 4ina, 2in b,
0 Y 1 T A

2 in ¢ and 0 in d, respectively (Figure 13).

. .. ' i
Remark, If X5 is restricted to its real points (not only positive 9ncs.) or de
fined over R instead of C, then the Morse function in (6) attains the form

(U = (U], “ ey Un))
Sem @) = v¥m, my) + -+ vEm, m) + Fo

for a series Fg in vy, . . ., v, whose terms are of degree greater than 2(.i The iln(:;:;
is, then, defined as the number of positive (rrf, m.,-),i f {1, ..., n}, and equals
number of edges emanating from mg and lying in H*.

Exercises

1. Let ¢ := pos{tk + 1, &, k), (k, k + 1,k,), (k, k, k + 1)} for some n.atm:ztl;
. number & > 0. Find the map ¢ according to Theorem 7.1 and determine i

degree.
2 D::ermine explicitly the moment map of X5 = P? x P4, p, g natural numbers

or 0.

ol e e ot e ak e
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3. Calculate explicitly the Morse function of X s =P x P xp
m = (1, 2, 3) and each one-point orbit.

4. Discuss the restriction of the Morse function Jom
X g (analogously to the above Remark).

with respect to

to the compact torus Tp of

8. Classification theorems. Toric Fano varieties

In this section, we will collect a few classification theorems for smooth, compact,
toric varieties, which are translations of the combinatorial results in V, sections
7 and 8, into the algebraic geometric language. Concerning the general case, we
restrict ourselves to dimensions two and three. (Numerous results for arbitrary
dimensions are known; see the Appendix to this section). We, then, concentrate
on an interesting special class of n-dimensional toric varieties defined by Fano
polytopes.

Forn = 1 we have seen that there is only one compact toric variety, namely p',
Forn = 2, we derive Theorem 8.1.

8.1 Theorem.
(@) Any smooth, compact two-dimensional toric variety can be blown down to
IP? or to a Hirzebruch surface Hy, k € Z\{1, —1).
(b) Each Hirzebruch surface Hy is a P! -fiber bundle (see VI, 6) over P!,

PROOF. (a) This follows from V, Theorem 7.5.

(b) has already been stated in VI,
6, Example 3. G

]

Inthe case n = 3, no general theorem exists as for n=
on the Picard number of X5 (see section 3

SI(E) — n (£1() the number of 1-cones).

2, We impose conditions
) which, for a smooth compact Xy, is

8.2 Theorem. Any smooth, compact three-dimensional toric variety, with Picard
number at most 3, can be blown down to

one of the following types of toric varieties:
I P,
(2) a P'-fiber bundle over P2,
(3) a P*-fiber bundle over P', or
(4) a P'-fiber bundle over a Hirzebruch surface Hy.

PROOF. This follows from V, Theorem 7.7. 0O

8.3 Definition. Let X5 be a smooth and

compact toric variety, and let o, . . ., 0
be the 1-cones of . The divisor

r

_K:=DQI+"'+DQ,

is called the anticanonical divisor of X 5.
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The name is seen from the following background. Consider the (“logarithmic”)
differential form 2L A .- A %= on the big torus 7. It has the property of being in-

variant (possibly uwf) to the sigrf)" if we replace the torus coordinates (z, ..., z») =
', ..., ) bythecoordinates (u,, ..., u,) = (™, ..., Z")of anaffine piece
X; of Xz, where & = pos{myi, ..., m,} and det(m;, ..., m,) = £1.This can

be seen by direct calculation. For example, in the case n = 2,

dul duz e — _ _
A = nh ""(mllzl IZm'dZI +m122212mzd22)
u Uz
A (maizy ‘2™ dzy + mzzzz_lz"'zdzz)
] - le de
= z7'2; ' (day Adzy)det(my, m)) = £ — A —.
Z) 22
Sozy!---z;!is aregular function on T which extends to an invertible sheaf X0

of rational functions on Xz where K(QOy,) = z~ "+ " 0(X;). It corresponds
1o a toric Cartier divisor X = o Dy +- - - + &, D, where the coefficients are readily
seentobe oy = - - = a, = —1. K is called the canonical divisor of Xs. Then,
—K is the anticanonical divisor. The piecewise linear function —A, by which it is
described, has value 1 on each generator a;, where g; = Rxoa;, i = 1,...,7.

If —h happens 1o be strictly convex, it is the support function of a polytope P*
whose vertices are the generators ay, . .., a, of g1, ..., o, respectively. So, P*
is a Fano polytope.

8.4 Definition. If the anticanonical divisor —K = D, + - - - + D,, of a smooth,
compact, projective toric variety is ample, we call it a foric Fano variety. .

Clearly,

8.5 Lemma. A smooth compact projective toric variety X5 is a toric Fano variety
ifand only if T is spanned by a Fano polytope P* (polar to an associated polytope
PofX).

8.6 Definition. We call a k-dimensional, toric Fano variety a del Pezzo variety
Yy, if it is obtained from P' x - - - x P! (k-fold) by blowing up in two T-invariant
points. ¥z is said to be a del Pezzo surface.

From V, Theorem 8.2, we derive Theorem 8.7.

8.7 Theorem. There exist five 1ypes of two-dimensional toric Fano varieties,
(1) P

2) P' x P,

(3) H, (Hirzebruch surface),

(4) P! x P! blown up in one invariant point,

(5) del Pezzo surface.

A M i s - A 0+

i
5

1
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2.8 Lemma. AnydelPezzo variety is characterized by a del Pezzo polytope Py, =
onv{el,...,ek,—el,..., €, e F -t —e — .. — ei} (see V, 8).

PROOF. This follows from V, Theorem 8.4. a

3.9 The9mm. Any n-dir_nensional toric Fano variety Xy with g centrally
ymmelric, Fano polytope is the product of projective lines and del Pezzo varieties

— !
Xp =P X X P xYy x--- x Y,

r

rhkit 4k =

PROOF. This is a conclusion from V, Theorem 8.4 O
o, [

Forn = 2 only (2 . '
polytopes. ¥ (2) and (5) in Theorem 8.7 have centrally symmetric Fano

The following three-dimensional Fano i
variety d
characterized by Theorem 8.9, 7 o5 mot belong 10 those

Exa“lples. (See \‘ 8,Ilgule 31)‘ F XH] blow" up 1n an ap ropriate ] -Invariant
4 p p p

t {\s Fm v, 8,.w§ remark that there are precisely 18 types of three-dimensional
oric Iano varieties and 121 four-dimensional ones (Batyrev’s theorem).

Exercises

1. Characterize the toric Fano varieti i i
[haract arteties with Fano polytopes as in V, 8, Exercises

2. Find a four-dimensional toric Fano varj
ariety whose F: i
cymimet y ano polytope is not centrally
3. Ca!culate (—I.< » Do) for ¢ € = where ¥ is the fan of any two-dimensional
. toric Fano variety and does not split into lower-dimensional polytopes.
. ,flxlr]:om_pac.t, smooth, toric variety Xy is a toric Fano variety if and only if the
ollowing is true. Let gy, ..., g,_; be 1-cones of T suchthat gy +. .- 4 g,_,

isan (n — 1)-face of X, and let — K be the anticanoni ..
! ical diviso
(=K.Dy,.....D,, ) > 0. visor of Xz. Then,
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Cohomology of toric varieties

1. Basic concepts

In this last chapter, we wish to study topological properties of toric varieties which
are hidden in the structure of the Chow ring.

We shall need some knowledge of algebraic topology. To fix the notation and to
give those readers who are not yet familiar with homology theory some introduc-
tory information, we will present a short survey of the homological terminology
and describe the origins of some of the facts used. For more details, we recommend
Fulton [1995].

One of the original problems of topology is that of classifying manifolds or more
general topological spaces up to bijective, bicontinuous mappings, called homeo-
morphisms. Toric isomorphisms, for example, are homeomorphisms, though they
possess algebraic (and differential geometric) properties which are neglected if we
concentrate on topological features. Another example is given by the boundaries of
convex bodies of the same dimension. Any two of them are homeomorphic, where
the homeomorphism can easily be obtained by translation and central projection.

Working on classification problems usually means looking for invariants under
homeomorphisms (or more general continuous maps). The Euler characteristic,
for example, as considered in chapter 111, is the same for the boundary of any
polytope of n-dimensions, and also for other cell-decomposed spheres.

Here “invariance” has an even stronger meaning than remaining the same under
homeomorphisms. It refers also to the cell-decomposition which is chosen. We
have shown this invariance for polytopes (in III, 3); the general proof is, however,
rather complicated. (We note that our interest in cell complexes was not motivated
by topology but by combinatorial data used in the algebraic discussion of toric
varieties).

Often the invariants are of an algebraic nature, mainly groups or modules. Con-
sider, for example, closed Jordan curves on a 2-manifold A If M is a compact
two-dimensional torus, we may consider each such curve continuously “deformed”
in M 50 as to obtain the join of a k-fold “meridian”  and an m-fold “equator”
b through a definite point 0. The new curve is said to be *homotopic™ and, for
specific deformations to be introduced below, “homologous” to the original one.

LTt}
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The abelian group with generators a, b, that is, Z x Z, 1s, then, called the first
homology group of M. If M is a sphere, however, any closed curve can be “de-
formed” into a point, and the first homology group assigned to M is the trivial
group.

If we want to make the definition of homology groups precise, one of the main
problems is to fix the “equivalence under deformation™ of the curves and, more
generally, of k-cycles (k-spheres) in M. Linear equivalence of divisors in toric
varieties is, in particular, such an equivalence, but, of course, not the most general
one. A classical way to handle the problem is that of “simplicial homology™.

We look for a decomposition of the given space into (or an approximation
of it by) a simplicial complex C, consider k-cycles consisting of cells of C, and
define homology groups. Then, we show the invariance of such groups if one
decomposition is replaced by another. The main steps of defining the homology
groups are as follows.

Let S := conv{xo, . . ., X¢} be ak-simplex. If an even permutation is applied to
the vertices of Sy, it represents an orientation-preserving map of Sy onto itself. An
orientation-reversing map is assigned to an odd permutation. So, we assign two
orientations to S;. By +{xo, ..., x;} we denote the class of simplices obtained
from S; by the even permutations, and, by —(xo, . . . , X, those obtained by odd
permutations.

Now, formal integral multiples of simplices attain a geometric meaning.
m{xg, . .., X} is, form > 0, an m-fold copy of the oriented simplex Si, whereas

(—m){xo, . .., xx) = —mixo, ..., x3) is an m-fold copy of S; with the opposite
orientation. O - {Xo, . . ., x) is a formal zero element. The abelian group, obtained
from all k-dimensional simplices of C as generators, is called the kth chain group
C(C) of C, and its elements are said to be k-chains. C;(C) is a free abelian group
with f; (C) generators. If C has no k-cell (for example, if & < 0), we set Ci(C) = 0
(zero group).

The (k — 1)-face of S; obtained by deleting x, is analogously assigned an orienta-

tion and denoted by {xo, ..., %, . . ., Xx). We define the boundary of (xo, . . ., X)
by
Blxoy .. Xi) = { S (=D xo, . Fi ) fork >0,
0 fork = 0.

X2
Xa

X9
X1

X4

FiGURE 1.

Sewars s e
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Le;_ Sts - S be the generating simplices of C,(C). Then, we extend 3, to an
arbitrary element ¢ := o8} + -+ + @, 87 (o; € Z;i = L...,q)by
e i= &S} + -+ + ST € Gy (C),

and obtain a group homomorphism (k > 1))

% G0y —  Ci(0),
called a boundary operation.

E;Kample 1.1 In the complex C of Figure 1, Co(C) = Z°, C\(C) = 77, Co(C) =
Z°, and 8253 = (X0, X1) + {x1, %2) + (x2, x0), %87 = (x1, x3) + Exs x2) I
(2, 1), 8283 = (x1, £4) + (x4, 33) + x5, x1). Since (x1, %2} = —(xz, x1) (odd
pennqtatlon), 32(S; + S7) = (x0, x1) + {x1, x3) + {x3, X2} + {x2, x )’

A little direct calculation shows that e

¢)) 381 Cry1 (C) = {0).

Wehce_lll alchain ¢ € Ci(C) closed, if 3,c = 0,and a bounding chain, if there exists
a chain ¢’ € Ck+1(C).SuCh that 3;41¢" = c. We say two chains c;, c; € Cy are
homologous ¢, ~ c,, if their difference €1 — ¢ is a bounding chain.

TEC notion _“homologous" now gives a precise definition of the sort of lo-
cal “deformations” that are allowed. We can replace a (¢ — l)-face ¢ :=

(xo,...,i,-,...,xk)of(xo,...,xk)by
ci=—{Fo ..o — = (=D Tk, L iy, )
= CDM e F ) = = (D s R
since (—1)'¢ — ¢ is the boundary of (x,, ..., Xi} and, hence, homologous to

O}.I "I_‘he opposite operation is also allowed. Intuitively speaking, we may “pull” a
ge?:;sagé; , (C) over simplices of C,(C), and, hence, apply a special “homotopic”
So, in Example 1, (xq, x;) + {x1, x2) + {(x2,xg) can be “deformed” into
(X0, X1} + (x1, x3) + {x3, x2) + (x2, xo) and, then, into {xo, x;) + {x;, x4} +
‘(x4, x3) + {x3, X2} + {x2, xp}, and, on the other side, {(xp, x;} + {x7, x3) + (|x : Xg)
is hor_nologous to O since it bounds Sz'. So, all three chains are ho;nologouszio ?)
é‘hns is no longer true if one of the 2-cells is deleted from the simplicial comp]e);
However, “homologous” includes much more than “deformable into each other”
F9rexample, let an ordinary torus be simplicially decomposed, andlet T, T’ be twt;
trlangles (2-cells) of the simplicial complex. Denote by C the c,omplex oi)tained b,
deleupg T, T_' but leaving 3,7, 3,7 in the complex. Then, 3,7 — 02T’ bounds thz
2-c‘l‘1am consnst{ng of all 2-cells of C, hence, is homologous to 0. But 3,7 cannot
be deformed" into 8,7 inside C, and 3,7 — 3,7 is not deformable into a point
(Deformations are treated explicitly in so-called homotopy theory) Pt
The closed chains in C; (C) form a subgroup Z, (C) of C;(C), as d6 the boundin
chains B, (C), and, because of (1), B, (C) is also a subgroup of Z,(C). Moreovef,
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Z:(C) = ker & (kernel of the homomorphism 3;), and Bi(C) = im 8 (image
of 9,41). We call

@ Hi(C) := Zi(C)/Bi(C) = ker 3/ im &41

the kth homology group of C. For k # 0, ..., n (n the maximal dimension of a
cell of C), we set H,(C) := {0}.

If C consists of a simplex and its faces, clearly, H;(C) = {0} for k # O.
Also, in the example of Figure 1, each 1-chain is homologous to 0, and, hence,
H(C) = {0}. If, however, 521 is deleted from C, we find for the new simplicial
complex C’, that H;(C') = Z.Inthe case where C is connected (any two points can
be joined by a polygon in C), Ho(C') = Z, whereas, in the case where C consists
of p connected, mutually disjoint subcomplexes (components), Hy(C) = Z°.

The relationship “homologous to 0" can be generalized for c, ¢ € Ci(C) by
saying that ¢ is homologous 10 ¢’ relative 1o a subcomplex Coof Cifc —cis
homologous to a chain ¢y € Ci(Co) in the ordinary sense (¢ — ¢’ can be “pulled
into Cp™). Then, all the above definitions carry over, so that, by adding the word
“relative” everywhere, the kth relative chain group Cy (C, Cp), the group Z; (C, Cp)
of relative cycles, and the group By (C, Co) of relative boundary chains are defined.
Then,

Hi(C, Co) := Zi(C, Co)/Bi(C, Co)

is said to be the kth homology group of C with respect to Cy.

If a topological space X can be decomposed into or approximated by simplicial
complexes C so that H,(C) does not depend on the special choice of C, we set
Zi(X) 1= Zi(C), Bi(X) := B(C), Hi(X) := Hi(C) and call Hy(X) the kth
homology group of X. Analogously, the kth relative homology group H(X,Y)
of X, with respect 10 a subspace Y of X, is defined. In the next sections, we
shall assume H,(X) and Hic(X, Y) to be defined for a toric variety X and a toric
subvariety Y of X, both considered as real topological spaces. So we shall not care
any more about simplicial decompositions or approximation. (For references see
the Appendix to this section).

To homology groups, dual groups are assigned in the same way as dual vector
spaces are assigned to vector spaces. To any pair 4, G of commutative groups we
assign

Hom(A, G) := {¢ | ¢ : A — G a homomorphism},
which is a group with operation defined by
(¢ - ¥)(x) = p(x) o P(x)

(“-” the group operation in Hom(4. G), “o” that in G).
The dual maps can also be defined as in the case of vector spaces. Iff:A— B
is a homomorphism, f* is defined by f*(y) = ¢ o f forall ¢ € Hom(B, G),

forallx € A

A L B

Hom(4,G) <= Hom(B, G).

At aen
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In this way we assign to the homomorphism 8, its dual homomorphism

8-y := 3} and call it cobounda ]
ry operation. Furthermore, t CF(X; =
Hom(C,(X), G), and obtain e st 6) =

B+
3) oIS a0 B ol o
@ &6y & oy gy B

It is readily seen that

5) 818 C (X G) = 0, forallk € 7,

analogously to (1).
Now we define the kth cohomology group of X with coefficients in G by

Hk(X; G) :=ker 8; /im &;_,,

and H*(X; G) = 0 in the case & € {0, ..., n}.

In fact, the ldea.s of hqmology and cohomology groups turn out to be fruitful
for purely algebraic considerations. We replace Ci(X) and C*(X; G) by abelian
ﬁroups and 9, 8; by homomorphisms satisfying (1) or (5), respectively. Then

omology apd cohomology groups can be defined, as above, by ker 3,/ im 9, |
and ker &,/ im §;_;, respectively. .
) At-syﬁsterr(ll()3) OE (4) or its generalization to groups is called a chain complex if
it satisfies or (5). (One should be aware that * 7 i :
ifroent oo at “complex” in Chapter III has a
If subspaces of topological spaces are investigated, sometimes, several chain

complexes are to be compared. So let two chain compl "be gi
- . exes 4, A" be
with homomorphisms f; : A, — A,, i Biven fogether

P S g 5
> A /AL — AL I
3 Jeg 1 J 4 Jea
Y a‘ ! a
A — A — Ay 5 AL, sl

such that all “square diagrams™ are commutative, that is, f; o

! _—
foreach k € Z. Then, we write, briefly, ot = B © i

AL o4

and call f := (fi)iez a chain mapping. Its main application can be found in a

combination of exact sequences 0 —» A —f> Ay =5 a7 0 in chain
k
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complexes A, A, A",

0 0 0
{ { A
— A 2 k SN Ay —
b i 7 V fimr
A M oA S AL —
b 8kt 8k b 81
oA B S AL —
1) { ]
0 0 0

More simply, we say that the sequence

(6) 60 — A L o4 EH 4 — 0

of chain complexes is exact. ’ , o
Let H] := ker 8;/im 8, ,,, H := Ker 8,/ im Bit1,and HY 1= ker 3/ im 9,

be the homology groups defined by A’, A, A”, respectively. We can order them as
follows in an exact sequence, called the long, exacr sequence of the (short) exact

sequence (6).

(dudis r o Uk
— HI:,+1 H — H

Q) ) )
(g1 Hk" (de s H}i._]

Here, (fu)x. (g»)« are the homomorphisms which are naturally induced by fz, ”gk,

" "
respectively. We wish to define (d,)x+1. To any element x; ) € ker 3, C Agyt
we assign an element x; € A; as follows (illustrated by the diagram below).

/

Xk
L fe
B+
X1 Xk
4 8k 1 &
X4 - 0.

2 Al at is surjective,
From the exactness of Agy; —> Ay, —> 0, we see that gx4) b

hence, x},, = 8i+1(Xx41) fOr some xi € Agsr. Weset xp = 3k+l(xi+1)(an‘;
obtain from 0 = 87, ; (x4 ) = Bfe1 0 8kr)(Xes1) = (80 a1 (i) = &k

! ’ M n
that x € ker g = im fi. Therefore, x; = fi(x}) for some x; € A;. We assig

is assi is, i ique. But it can be shown, by brief
x} to x;, ;. This assignment 1S, in general, not unique
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calculation, that we obtain uniqueness if we consider the homology classes x;, | +
im 8;,, and x; + im d,_,. We obtain a homomorphism (d.)i+1 : HY}y — HJ,
called a connecting homomorphism. Again, some direct calculations are needed
to prove the exactness of (7).

Example 2. A standard example is the following. Let C be a simplicial complex,
and let Co be a subcomplex of C. For each k, there is an exact sequence

0 — Gy = O B ) — o

iy being the injection (ix(cp) = c¢o for each ¢y € (p), and Ji being the projec-
tion (ji(c) = ¢ + Ci(Co) for each ¢ € Ci(0)). We set A := (Ci (Co)kezs
A = (Ce(Cez. A" := (Cr(C, Cy))rez- The long exact homology sequence (7)
provides, in many cases, useful information about C.

In closing this short survey, let us return, once again, to simplicial homology.
First, we note that we can replace simplicial complexes by more general cell
complexes. The cells are topological balls which are convex polytopes or, more
generally, can be decomposed into such polytopes.

If C is a cell complex whose cells are polytopes, we construct the dual cell
complex C* as follows. We apply the barycentric subdivision 8 to C and consider,
for each vertex v of C, the sets | st(v, 8(C))| as new maximal cells, that is, cells
of maximal dimension. All other cells are defined by successive intersection of
maximal cells (Figure 2).

In the case where C is the boundary complex B(P) of a polytope P, we can
directly set C* := B(P?*), where P* is a polar polytope of P (compare II, 2).

We can show that H"*(C, Z) = H,_(C*), and deduce from it what is known
as Poincaré duality, that is,

&) H(C) = H'*(C, 7)

FIGURE 2.
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if |C| is a compact, orientable manifold. Again, Poincaré duality (in generalized
versions Alexander duality or Serre duality), then, applies to manifolds which are
approximated by C or have C as a decomposition.

Exercises

]. Find a simplicial complex C whose point set is homeomorphic to a two-
dimensional compact torus (built up, for example, by 18 triangles in R?). Verify
Ho(C) = Z, Hi(C) = 7, and Hx(C) = Z.

2. Work out explicitly the long, exact, homology sequence in the case where C
consists of the boundary complex of a 3-simplex from which one triangle F is
deleted, and Cp consists of the vertices and edges of F.

3. Consider P! as a real two-dimensional manifold, find a simplicial complex
C whose point set is homeomorphic to P', and calculate all homology and
cohomology groups Hi(C), H*(C), and k € Z.

4. Rewrite the introduction of chain complexes, chain mappings, long exact
sequences, etc. in terms of § instead of 9, that is, for cohomological groups.

2. Cohomology ring of a toric variety

In this section, we will consider smooth, projective varieties X5. Let H . (Xg) be
the kth homological group of X £ (as 2n-dimensional topological space) introduced
either by simplicial decomposition or in some other standard way of topology. Also,
let H*(X5; Z) be the kth cohomology group of Xz with coefficients n G = Z
(we restrict ourselvesto G = Z throughout). H*(Xs; Z) := &, H*(Xy; Z) has
a ring structure, which will be described precisely, and is called the cohomology
ring of X 5. Our aim in this section is to prove the following:

2.1 Theorem. Let Xz be a smooth, projective toric variety.
(a) The combinatorial Chow ring and the cohomology ring of X are isomorphic
as rings,

Ch(Xg) = H* Xz 7).

(b) The odd cohomology groups vanish,
H**\(X5:2) = 0,
(¢) The Betti numbers of H 2(Xy; 7) can be calculated from the face numbers

(f-vector) of Z,

i 2 . — 3 i { .
ﬁZJ = rank H (X):, Z) = ;(—1) + (l)fn—n

Jorl € Z.

where f; is the number of i-dimensional cones of E.
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Remark. The theorem is also true for compact, nonprojective toric varieties.

Thc_e proqf of Theorem 2.1 proceeds in several steps. The starting point for
C(.)mbm'atorlal Chow rings had been the (n — k)-cones o of T assigned to the k-
dimensional faces F of a polytope P associated with I (negative polar polytope of
a polytope which spans ¥). In Xz, a toric k-subvariety is defined by F, which can
also be _considercd the closure O, of a k-dimensional orbit 0O, of X ;_-, Since the
cycles O, can also be chosen as representatives of homology classes ir.1 Hi (X3)
we obtain a natural assignment e

Po : Ui — [IDQ,”‘

where D, denotes the invariant divisor defined by the 1-cone g;,i = | r
| D,, | the point set it carries, and o

po:Ui-+-Uy, > [IDy|N---0|D, ] € H(Xs).
By Poincaré duality,

d: Hi(Xz) — H"%Xg:2),

and d o pg induces a map

p:ChXs) — H'(X5:2)
which we must show to be an isomorphism.

(M po(a + b) =0, so p is well defined.

Infact, letU;, - - - Uy, be agenerating element of a, thatis o; + - - -+ 0;,~¢ X.Any
. X . . > . . . v i )

two Dy, Dj,i, j € {ir, ..., i),i # j,intersecttransversally (in a toric subvariety)

or not at all. At least two of them do not intersect (otherwise 0i,+--+o0, € L)

henc‘e, po(U;, -+ - U;,) = 0 (zero element of H;(Xy)). Therefore, po(a) = 0
b is spanned by linear polynomials .

(@), myUs + - -+ + (a,, m)U,
which represent principal divisors (z") =: Dy.

'/-\s a topological cycle, Do is homologous to 0 as is true for any principal
divisor (f): One considers the real interval [0, co] and the space E 1= {f~1(2) |
t € [0, oo]}._;l"he boundary of E consists of the point sets | D, | := {f~'(0)} and
IWD_ lb:t: {f I(oog‘ If we consider each point of | D | U | D_| with its multiplicity.

e obtain cycles D, D._ also in the sense of homology th ’
simplicial approximation), By theory (for cxample. by

Now, Dy — D, — D_ is homolo is 1 i

- gous to 0. This implies b) = O.F
po(b) = pola) = 0, we obtain py(a + b) == 0. Pol®) o
Now, we construct abasis for H, (X sisti G i
a . (X 1) consisting of classes [0, ], d =n—
We use a Morse function as defined in VII, section 7. (Oobdme =0k
Let m € Z" be chosen such that (up to renumbering), for the zero orbits 1

)
s Xy

@ Jm®) < - < for (D).
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We define sets

uy

X,' = {x € XZ | f(m)(x) < f(,,,)(X)}.

There is a largest face F; of P which culminates in the vertex m; of P which

corresponds to % , that is, F; belongs to the dual shelling of P determined by m (see
111, 6). Let O; be the closure of the orbit (toric subvariety) defined by F;. Then, by

(2,
b,‘ C X,'.H‘

We express fun(x) in a neighborhood of (;::g]r', according to VII, Theorem 7.5,
as

fx) = @ + wdm,mp) + -+ 2 + wdm, m,) + F

where, in local coordinates x; = 27", x, = v; +/—lw;, j =1,..., nO, afm:
F as in VII, Theorem 7.5. Up to renumbering, we may assume {m, m‘j) > 0, (o}
j=1,...,,and {m, m;) < Ofor j = & + 1,..., n, where 24; is the index
. iy
of fim inx. B . ‘
{;16) coordinates of 0, arc given by the vertices of £;. Therefore, the points of

. . [i) .
0, in the affine piece of Xz which contains x are characterized by

3) Xt == 2 = 0.

Now, we apply some results of Morse theory (see, for example, Milnor (1969]).
The affine space (3) (**handle”) has dimension 2n — 2, and gene_rate_s anelement of
the relative homology group Ha, -2, (Xi41, X1), its boundar_y l){mg in X; gclompare
Example 2 of section 1). Since it is part of O;, we obtain, in a natural way, a
homomorphism

h: Hz,,_z;.”.(XH,.]) —> H211—2X1(Xi+11 X,

which is surjective.
Furthermore (Milnor [1969], p. 29),

7 fork = 2n — 2,

) He(Xov1, X0 = {0 otherwise.

We obtain the long, exact, homology sequence (based on chain groups as in
Example 2 of 1)

—  Hyp X, X)) —  Huy(Xi)

—>  Hzp0, (Xiy1) A Hyon (Xip1, X)) —

By (4), the first of these groups vanishes and the last one is isomorphic to Z. So
we have the short exact sequence

h
0 — Hyn(Xd) — Hyn X)) — 2 — O

NP,

o

e, st A, g, €
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This sequence splits. Therefore,

©) Ho0, (Xit1) = Haw 0, (X)) © Hyyop (Xi41, X))
= Hyuy,(X)OZ.

By repeated application of (5), we find (since X, = X £)

©) H(Xz) = Ha-0,(X5) = P 2oy »

where Z;, = Z and the summation is carried out for all i suchthat2x; = 2n — k.

PROOF OF PART (A) OF THEOREM 2.1. From (6), it follows that the map p :
Ch(Xy) — H*(X3z;Z)is surjective. Since it maps formal linear combinations
onto formal linear combinations, it is a homomorphism of groups. Moreover, it
preserves the multiplicative structure, since multiplication in H*® (Xx; Z) isdefined
by intersection of cycles and py has been defined by po(U;, - -- U,) = (D, | N
-+ N [Dy, 1. So itremains to be shown that p is injective or, equivalently, possesses

an inverse map. In fact, we can assign, to each orbit closure O;, uniquely, a face F
I k ]
of P which is an intersection F :(I'l N---N fl‘l of facets of P, To each [F,', there
corresponds a divisor D,,,. We assign to F the square-free monomial I/ 1 U =
q(0;) (up to renumbering). By the “shifting away” Lemma 5.3 in Chapter VII,
these monomials generate the Chow ring. Now, ¢ induces the inverse map of p.
Part (b) of Theorem 2.1 follows from (4).

Part (c) of the theorem is a consequence of I11, Theorem 6.8. [

Exercises

—

- Find, explicitly, the Chow rings of the Hirzebruch varieties H,,r €2Z.

2. Find all Betti numbers 8, for any projective space P".

3. How do the Betti numbers change if a smooth, compact toric variety is blown
up along a T -invariant subvariety?

4. Calculate the Betti numbers of a smooth, compact toric variety Xy which is

an Xy -fiber bundle over X 5, (X1, X5, also smooth; see VI, 6) from the Betti
numbers of Xy and X,.

3. Cech cohomology

Having calculated homology and cohomology groups for smooth, compact pro-
Jective toric varieties X ¢, we now turn to the study of invertible sheaves on Xz by
cohomological means. We restrict ourselves to calculating the Cech cohomology
of invertible sheaves as introduced in VII, 1 and base on it, in the next section, a
version of the Riemann—-Roch~Hirzebruch theorem. To understand the relationship
between simplicial cohomology, general cohomology of sheaves on a toric variety,
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and Cech cohomology, some more work must be done. Simplicial cohomology co-
incides with the general cohomology of a constant sheaf (a sheaf of continuous
functions to a group Z considered with discrete topelogy). On the other hand, the
general cohomology of any sheaf (in particular, simplicial cohomology) can be
calculated by the Cech complex of a so-called acyclic covering (Leray’s theorem).

We only mention that the affine covering {X; }s 5 is acyclic for any invertible
sheaf, so that we can use Cech cohomology of this covering for defining the
cohomology of invertible sheaves on a toric variety.

Let X be any fan. We denote by 1, the function which has constant value 1 on
o and is O elsewhere. Then, each cochain (in the sense of section 1) of the cell
complex X with coefficients in C can be interpreted as a linear combination of
such functions. In short,

CHZ,.O)=Cly,® - BC-l, =C,

where {01, ..., a} = ZUR,

We may look at these cochain groups in terms of sheaf theory. % can be con-
sidered as a covering of the set | X |. If the sheaf axioms are extended to nonopen
coverings of a topological space, we readily see that a sheaf C,z; of piecewise
constant, complex-valued functions on |X| is obtained if we set

Cizile) :=C-1,

and extend it to unions of cones of X. (We could also consider open &-
neighborhoods of the cones ¢ and apply the original sheaf axioms of open
coverings).

The covering X of |X] corresponds to the open covering {X;s},cz of X5, and
a N t is the counterpart of Xy N X;.

To each group C)z (o), we assign the Oy, -module Ox, (X;), that is, to C|x|,
there corresponds the structure sheaf Oy, of Xg.

In general, let U := {U;} be a covering of a set X. For our purposes, it suffices
to assume that U has only finitely many elements Uy, .. ., U,. Furthermore, we
suppose that an n-dimensional cell complex C exists such that

(a) there isabijective map ¢ of U into the set of maximal cells of C, o (U;) =: o},
j=1...r,
(b) each (n — k)-cell of C is the intersection of at most k¥ + 1 maximal cells, and
© pWU)N---NeW,)isacellof C forany U;,,..., Ui, € U.
Let 7 be a sheaf of functions defined in some way on the U;.
As examples, we have

X=|x, U=Z, F=Cgzg,
X =Xs,and U = {Xs}oex, F = O the structure sheaf,

inbothcasesC := X.

If v is an (n — k)-dimensional cell of C and if tr = oy, N -+ - N oy, (05, - -, Oy
maximal), then, we set
(1) Ul' = U,'(,--.," = Uiq [AREERE Uﬂ-
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Let i, ..., 7 beall (n — k)-cells of C. We call
WU, F) o= FU,) @ - ® FUy,)

the k cochain group of U with coefficients in .

We wish to define a coboundary operator for these cochain groups. For any
f € CHU, F), we set

Jiic == fluy,.,
and
k+1
@ i = ;(—l)"*'f,-o.u,-)__.,-m U, »

j’,.(r_;./_,,.k+l meaning ﬁu...,rj_,,-j*,...,-m. Fork € Z\{0, ..., n}, we define

d*f =0  (zero map).
Itis readily seen that we obtain a homomorphism
& CtU, F) — YW, ).
In particular, for k = 0,
@f) =i = Dlunv,. £ NeW,)isan (n — 1)-cell of C.
. A;kin simplicial homology it is readily shown that d*d* ! = Osothatim d*~! ¢
T .

3.1 Definition. The group
H(U, F) = kerd*/im d*~!

is called the kth Cech cohomology group of X with respect to the covering U =
{X;}oex and with coefficients in the sheaf F.

Example 1. Let £ be a complete fan in R? with two-dimensional {(successive)
cones oy, ..., o,, and let F be an invertible sheaf as defined in VII, 1. For f=
(fio--, fr) € FXs)® - @FXs)df =(fi—fo. fa—For oo, froy —
foo fr = ), and HO({X;}oex, F) = kerd® = {(fi,..., 1))

} Exercises

1. _Consider the (noncomplete) fan ¥ := (Rsg e, Rxo €2, R>o(—€; — e3), {O}}
in R?, and let 7 be an invertible sheaf as in VII, 1. Find #0({X; }, oz, 7).

2. l:ind the Cech cohomology groups for X, consisting of a single n-cone and its
aces.

3. Prove explicitly that d*+!g% = 0,

4. Find all Cech cohomology groups for one-dimensional toric varieties,
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4. Cohomology of invertible sheaves

We wish to calculate I?"({X(;]aez,}‘) for an invertible sheaf F on X5 as
considered in VII, 1. First, we show that

4.1 Lemma. Each element of a torus action on X ¢ leaves the Cech cohomology
groups H*({X; }oex . F) invariant.

PROOF. ¢ leaves each U, fixed, hence, induces an isomorphism for each F(U;)
and, therefore, an isomorphism of C¥(U, ) = F(U,) & --- & F(Uy,). This
readily implies the lemma. O

If 2 occurs in each flx,, dimz = n — k, with nonzero coefficient, then, z”
generates a subgroup HE of H*({X5)oex, F). If not, we set H: = {0).

Clearly, H* N HX, = ({0} if m # m’. Therefore, we have a natural
decomposition:

4.2 Lemma. F!"({X{;},,E:,;, F) = Bpezr HE.

So, the calculation of Cech cohomology is reduced to the question of finding
the }Vl,ﬁi for all m € Z". This question will be answered for invertible sheaves
which correspond to polytopes. For that purpose, we use generalizations of the
sheaf €54, as introduced in section 3.

To begin with, we consider an arbitrary invertible sheaf ¥ and the (real-valued)
piecewise linear function 4 {on | X|) by which it is described. For any m € Z", we

set
Xm ={o € T | {m, x)=h(x) forall x € o}.

T (m is a subfan of ¥ and defines a toric variety Xg, C Xg. The piecewise
constant functions g : |X,,| — C satisfying

| . Cy - 10 ifo € 2(,,,]
§lo = 1o ifo & Tom

define a subsheaf of Cz; which we denote by

C(m) .

There is a natural isomorphism of C. to Cjz,,, (defined as Cz in section 3).
Cwy = Cix ifh(x) < 0forall x € [Z].
Furthermore, we define the following sheaf. Let

™ = {o \ |Zml | o € T}

be a set of convex cones. They are, in general, neither open nor closed. Nevertheless
we can define piecewise constant, complex-valued functions on such cones and
obtain a sheaf which we denote by C"" because of

(0 \ lz(m)l) n (T \ |Z(m)|) = (0 N t) \ |E(m)|
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for any pairo, T € X.

Example 1. Let X be the fan of P! x P! in R? (see VI, 3, Example 2) and define
a piecewise linear function & on % (Figure 3). Thus,

—x1 +x2 forx € oy,

h(x) = x; +x; forx € oy,
—x1 —x2 forx € oy,

X1 —x; forx € os.

We find form = 0, Zimy = {Rxo €1, Rso(—ey), {0}, Tim = {o:\Re, fori =

0,1.2,3, R.ge2. R-o(—e2)}. The toric variety Xk, is the complement of two
“meridians” in X5.

We define a homomorphism
wiHAE,Cr) —  AOE™, ™)
as follows. Let £ € C%(Z, C)z;). Then,

_ | flovz., ifo € T,
u(f|”) B IO ifo € Z(m)-

4.3 Lemma. The sequence

0 — kerp —> H'Z,Cr) 5 AYE™ ¢y — o

Is exact (¢ the inclusion map).

PROOF. If:_r € L), then, o \ | Z,,| contains all relative interior points of & so
that the restriction map u is surjective. f 0 € ), then, o \ [ 24yl = @,.and,

by setting £(f) = O forall f € Cz (o), we also obtain a surjective map. ¢ is, by
definition, injective. O

. kWe wish to calculate the groups HY(Z, Ciny) from the groups
HY(Z, Cjz;) and H*(Z'™, C*). For this purpose, we set up the following
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diagram of chain complexes.

0 0 0
) ) o

0 —> CE, Cim) — CUE, Ciz) —> COUEM, ™) — 0
14d° 1 d° L 1 d°

0 —> CUE. Cony) — CUE. Q) -+ CHEM™, 2 - 0

Ld {d' Ld

ByLemma4.3, we find C(Z, Cy,) = ker s (u applied to C(E, .5)). From
the definition of the coboundary operators d', we readily see that the exactness
of the first “horizontal” sequence (Lemma 4.3) carries over to the exactness of all
“horizontal” sequences. We obtain a long, exact, cohomology sequence

0 —> HYT. Cony) —"—» e, o )i» O pomiy L
N H (z C[””) ___) H (Z lxl)_) Hl\():(mi C(nn)
__) H“+l(z\ C(m)) —_—>

From now on, we need additional assumptions for £ and Z,,,.

4.4 Lemma. Suppose int(JZ} \ ||} is an open ball. Then,

(a) HYE,Cy) =0 fork > 0,
(b) HA(Z ¢ty =0 fork > 0.
PROOF.

(a) We remind ourselves that fJ‘(Z, C,x)) is an interpretation of ordinary co-
homology of T with coefficients in C. Using the fact proved in algebraic
topology that H*(|Z|. C) does not depend on the dccomposition of |Z ], we
obtain

HYZ.Cx) = HY(Z,©) = H*(ZI. O

The latter group is known to be O for k > 0, so (a) follows, -
(b) Here, the arguments are essentially the same as in (a), it does not matier if a

cone is closed or not.
]

4.5 Lemma. Let T be complete, and let F be an invertible sheaf on Xy which
can be represented by a convex (not necessarily strictly convex) piecewise linear
function % (so that X5 is not necessarily projective; see VII, Theorem 2.2).

(a) If form e 7"
() {m,x) > h(x) forall x € R”

then, HX ({Xs}nex, F) = H*(X, Cim) = Oforallk > 0.

n

s s e ot 5 s
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(b)
. Sofme P
(X slpex . Fy = ~ o
o 0 otherwise.
Preos Weeont e the shove T 0 ngt A Lo wee e e 1o ey

L.emma 4.4 1o it, we sce that H‘(Z. Cum) = Gtorall & = 0. So it remamns 1w be
shown that H* = H*(Z, Cn).

A rational function £ ljes in ker @V if and onlv if it i< the restriction o a reeular
function on cach Yo o e 20 thatas o o b nmn oY a ». vl seonon of o
/¢ FiXy)y. From the definition of I[,H, o it f £

Now, from VII, Theorem 1.10 and I)chnmon ? 6. we l\nm\ Ihdl f c Fi(X)
if and only if a lies in the F-polviope P. This is. in turn, equivalent 10 (1),
Therefore. form « Poeachvs ¢ Y hoon 00 wntha /'![,J‘!,‘( Y A TV

P Pothen cr oo ker and. hens .’wl",f,,\' oy s oo B we also nave
H(Y, Cioms) = Cor 0,8 )4‘,_.‘,;, or 2 X, # ¥, respectively, Dherefore the
starting points of the boundary operations, by which the higher Cech cohomology
sequences are defined. are the same. so that /14~ H5Z.« Sforallk -

Lemma 4.5 and Lemma 4.2 imply Theorem 4.6,

4.6 Theorem. 1ot £ be complete, and let F b an onwvertibic sica; of 3 vaiued
rational functions on Xy which can be represented by a piccewise linear convex
function h. Then

H (Xa}ax F) = 0 Jork == 0
and

rank HOUX:1oov. F) = G(P).

the number of lattice points in the polyiope P with support funcrion b (see IV, 6).

Exercises

1. Show that Lemma 4.2 does not hold for Example 1.

2. Find H* ({Xs}uex. F) for X consisting of one n-cone and its faces and 7 an
arbitrary T -invariant invertible sheat on X5:.

3. Work out explicitly the long, exact, cohomological sequence in the case of
P' x P' (a fan, as in Example 1) and F defined by P = conv{0, ¢,}.

4. Let F), F7 be two invertible sheaves on X s-. Find H {Xsloer, F1 ® F>) from
H‘({X boex Fi), i =1, 2.
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5 The Riemann-Roch—Hirzebruch theorem

Let X ¢ be a smooth, projective toric variety. We will apply the results of section 4 to
astudy of the Euler characteristic of a toric Cartier divisor assigned to a polytope P
and discuss its calculation by combinatorial data of P. For a definition of the Euler
characteristic (following Hirzebruch), we use the language of invertible sheaves.

5.1 Definition. If 7 is an invertible sheaf of rational functions on a toric variety
Xy, we call

XXz, Fy = ) (=1) rank H/({X; }oex, F)
i=0

J

the Euler characteristic of F.
Theorem 4.6 implies Theorem 5.2.

5.2 Theorem. [fF is given by an upper convex piecewise linear function h such
that —h is the support functior of a polytope P, then,

XXz, F) = G(P),

the number of lattice points in P.

It is possible to calculate x (Xy, F) via the Chow ring of Xy by using the so-
called Riemann—Roch-Hirzebruch theorem. At the moment, the formula obtained
is not known to have a “toric” proof. We assume it to be true without proof.
Because of Theorem 5.2, it provides a method for counting the number of lattice
points in P. As we mentioned in the introduction to this book, the Riemann-Roch—
Hirzebruch theorem is the only example we present of combinatorial information
obtained from algebraic-geometric information. In all other cases we have deduced
algebraic-geometric facts from combinatorial-geometric ones.

5.3 Definition. Let Uy, ..., U, be the variables in the Chow ring, as introduced
in VII, 5. We set

Cp = Z U(.I...UI-P, {i],...,ip}c{l,...,k}

l'|«':---<l;,,

and call ¢, the pth Chern classof Xz, p = 1,...,n. We, alsowe setco = 1.

Remark. The U; can be identified with the divisors D,, which are also bijectively
assigned to the 1-cones of X. Then, ¢, is identified with the anticanonical divisor
which we have introduced in VII, 8. We do not discuss, here, the general topological
meaning of Chern classes. Our definition is pragmatic and concentrates on the toric
situation.
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5.4 Definition. Letthe symbols y,, . .., y, (inan algebraic extension of the Chow
ring) be indirectly defined from

(1+y1)"‘(1+)/,,)=(;0+c]+...+C"

as solutions of the equations

Z Yiir =¥y = Cp hovdp) cfl o n,

Ny,

which show on the left sides the elementary symmetric functions in y,, .. ., y,.
Then, we call the term of order p in the formal Taylor expansion of

14l Yn
1
M [ —en 1 — gV

the pth Todd class Td, of Xz, p = 0, ..., n, where Tdy = 1.

Remark. It can be shown from the multiplication rules in the Chow ring that
Td, = Ofor p > n. The first terms are

Tdy=1, Tdy = %c,, Td; = %(cf +¢), and Td; = 2—l4c|cz.
Considering the bijective assignments for g; € =V,
U <« o <« D,,
we also have the biunique correspondence
Uy -+ U, <« (DQ”.- --.Dy )

between the monomials of greatest order in Ch X5 and the intersection form for

the respective divisors. So, we assign to each Ui, - -+ U;, a number in Z. For the
sake of abbreviation, we write U; = D, and U,, - - - U, = (Dy,.---.Dy ) =
Dy, -+ D,,.

Now, we present the main result in a toric version (@ =Rsoa;,i =1,...,k).

5.5 Theorem (Riemann-Roch-Hirzebruch). Let X5 be u Smooth, projeciive toric
varietyandlet D = — Zf.‘:] h(a;} Dy, be a Cartier divisor assigned to a polytope
P with support function h. For the invertible sheaf F defined by P,

”n

1 d .
) X(Xg, F) =GPy =Y s 2 h@)D,) - Td, ,.
i=1

j=0 7/° =

Example 1. Hirzebruch surface H, (compare VII, 5, Example 1): We consider
the polytope P as in Figure 4.
The support function # of P has values

h(a;) = —1, h{a) = —1, h(a) =0, and h(as) = 0.
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(1,r+1)

Dy

Do
{0,1)

D4

(010) D3 (1 ’0)

FIGURE 4.

Therefore,

1 1
= 5 1+ 75 (Do + Doy + Dou + Do) + 4)

0!
1 1
+F(DQ|+D92)'E(DQI+D92+DQ$+DQJ)

1
+ —2—'(D9, + Dy,)? - 1

1 1

which is, in fact, the number of lattice points of P, as directly obtained from Figure
4.

Itis remarkable that Theorem 5.5 provides a formula for G{P) in which only data
of ¥ and the values of the support function  of P in the direction of facet normals
occur. So, in particular, if P is replaced by a strictly combinatorial equivalent
copy P’, only the values of 2(a;) in (2) change. If P’ becomes very large, a direct
counting of the lattice points of P might fail, but (2) remains calculable.

Remark. Further results about counting lattice points can be obtained by com-
bining the Riemann—-Roch—Hirzebruch theorem and Ehrhart’s theorem (IV, 6.); see
Fulton’s book [1993] (further references in the Appendix to this section).

P s =
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Exercises

1. By Theorem 5.2, verify that G(P) = 7 in the hexagon associated with a del
Pezzo surface (see VII, 8).

2. Given any cube associated with the fan of P! x P' x P', calculate G(P) by
Theorem 5.2.

3. Find an alternative proof of Ehrhart’s theorem (IV, 6) by using Theorem 5.5.
a. Prove a theorem analogous to Minkowski’s theorem (IV, Theorem 3.2), and
introduce mixed lattice point numbers.

b. Find properties of mixed lattice point numbers analogous to those of mixed
volumes (1V, 3).
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Summary: A Dictionary

Combinatorial Convexity Algebraic Geometry
Lattice cone o Affine toric variety X,
—regular —smooth

—simplex cone
Face t of lattice cone o
Lattice point m = (m,...,m,)
Summ + m’
Monoide N 2z
Lattice Z"
Fan T

~complete

—regular

-simplicial

—strongly polytopal
Join £’ - X" of fans X', X"
Regular stellar subdivision
Inverse regular stellar subdivision
Starst(o, ) of ¢ € T
Unimodular transformation of "
Map of fans L
Lattice polytope P

associated with £ = T(P)

Fano polytope
Simplex
Regular simplex
Direct sum P, & P,
of summands Py, P, of P

Lattice polytope strictly combinatorially

isomorphic to P
Virtual polytope P
Combinatorial Picard group Pic £
Polytope element P(P")
Minkowski sum P’ 4+ P”

—quasi-smooth
Subvariety X. of X,
Monomial z” = z}"' ...z
Product . Zm' — Zm+m'

Spectrum spec Clo N Z*)
Torus T' = C* = spec C[Z"]
Toric variety Xy

—compact

~smooth

—quasi—smooth

—projective
Fiber bundle Xy 5~ with typical fiber Xy
Blowup
Blowdown
Invariant toric subvariety of Xy
Algebraic isomorphism of X 5
Toric morphism L
Projective toric variety Xy = Xgpy_

Toric Fano variety

Weighted projective space
Projective space

Product space Xzp,, x Xgipn

Ample 7 -invariant Cartier divisor of Xy, £

Invertible sheaf F

Picard group Pic X5

Ample invertible sheaf F(P")
Tensor product F(P*) @ F(P")
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Support function of P’ strictly
combinatorially isomorphic to P
Virtual support function
l-cone g of &
System = = {gy, ..., &}
of all one-dimensional cones of X
Volume V (P’) of P’ multiplied by n!

Mixed volume V(P1, ..., P,)
of summands P, ..., P,of P
Alexandrov-Fenchel inequality
Number of edges [mg, m'] of P,
mg a vertex of P
for which {m, m’ — mg) > 0
relative to given m € Z°
P CI A BT
where f, is the number of
{ -dimensional faces of a
simplicial fan £ = Z(P)
Number G (£) of lattice points
in the summand P, of P

Ample T -invaniant Cartier divisor
Dpi of X5p)

T -invariant Cartier divisor

Special Cartier divisor D,

Canonical divisor (first Chern class)
Dm +--+ Dm

Self-intersection number
(Dpi. - -.Dp)y of Dp

Intersection number (Dp,.- - - .Dp,) of the
Cartier divisors D¢, ..., Dp,

Hodge inequality

Half the index of the Morse function fi,,
of Xyp, in the zero-dimensional
orbit defined by mg

Betti number 8, = rank H¥(Xs: Z)

Euler characteristic x (X gpy, F(Fo))

mmnnrenn
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Appendix

Historical notes, commentaries, additional exercises, research problems, suggestions
for further reading

HN Historical notes
C Commentaries
AE Additional exercises

RP Research problems
SFR Suggestions for further reading.

Introduction

HN For more about Minding’s contributions (around 1841) and the recent work of Russian
authors (Bernstein, Kouchnirenko), see the historical notes in Khovanskii [1988]. Concern-
ing the development of toric varieties see Demazure {1970], Kempf, Knudson, Mumford,
and Saint Donat (1973], Danilov [1978], Oda [1988].

PART I Combinatorial Convexity

Chapter I Convex bodies

HN The general theory of convex bodies was developed by Minkowski around 1900.\
relating it to the isoperimetric problem and other parts of analysis. A first survey of results
is Bonnesen and Fenchel [1933]; see also Blaschke [1916]. A.D. Alexandrov introduced
convex body theory into differential geometry; see Busemann [1958], Burago and Zalgaller
[1988]. In the latter book, one finds more on inequalities in convex body theory; see also
Leichtweil [1987). We do not quote references conceming the influence of convex body

theory in functional analysis. About measure theoretic aspects, gecometric probability, and
integral geometry, see Schneider [1993).

1. Convex sets

AE 5.1f M C R" is convex, then the set of interior points of M and the set of relative
interior points of M are also convex. .
6. Affine transformations L : R* — R™ preserve convexity.
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. S
7.Given aset X C R", define j(X) := UYH‘_EX[x, y). Find the least & for which j*(X)
(= j o---0 j(X))equals conv X. ‘ . .
8. Suppose aray {x + ta | 1 € Ryo} emanating from a point x of a convex set C C R” is
contained in C. Then foreachy € Calso {y +ta | t € R0} C C.

2. Theorems of Radon and Carathéodory

{ é i i 1967].
HN See references about Radon and Carathéodory in Griinbaum [ '
AE, SFR About Helly type theotems, see Griinbaum [1967], p. 22 and 126. About Radon’s
theorem, see Eckhoff (1979], [1993].

3. Nearest point map and supporting hyperplanes

HN,C The use of the nearest point map for developing the basics of convex body theory
in P. McMullen, G.C. Shephard [1971] had been proposed by this aut'hor. We shall al§o
use it in what follows. About Busemann and Feller’s lemma, see the literature quoted in
Busemann [ 1958].

4. Faces and normal cones

AE 5. A closed convex set K is bounded if and only if £(K) covers R".

5. Support function and distance function

AE 5. Define wx (#) := hx (#) + g (—u) forunit vector u to be the width of K in direction
u.
(a) wy(u) = wgy . (u) forany x € R". ' _
) Fi:‘ld an example of a planar convex body of constant width (w («) independent on x)
which is not a circular disc. (Use three circular arcs having midpoints on the other arcs.)

. Ly
(¢) Find analogs of (b) in R”. _ . -
(d) The spherical balls are the only centrally symmetric convex bodies of constant width.
A series of nice problems about convex bodies of constant width can be found in Jaglom
and Boltjanskij [1956].

6. Polar bodies

AE 5.Find K* for X in Figure 6. ' N .
6. Find an example of a convex body K which has a finite posm_ve number o
one-dimensional faces and no two-dimensional faces. What does K * look like?

Chapter 11 Combinatorial theory of polytopes and
polyhedral sets

HN The first systematic treatment of this subject is in the book Of, Griinbaum {1967). We
largely follow McMullen—Shephard [1970] (compare our remarks in HN,C of I,‘3).Z' |
SFR More material on the combinatorial theory of polytopes can be found in Zieg e(;
[1994]. The reader interested in connections to optimization may also consult Stoer an
Witzgall [1970].
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1. The boundary complex of a polyhedral set

HN Theorem 1.2: see Krein—Milman [1940], which refers, more generally,

to convex sets
in vector spaces of arbitrary dimensions.

2. Polar polytopes and quotient polytopes

C Our definition of P/F is more concrete than the definition given in McMullen and
Shephard [1971], p. 69-71.
SFR For quotient polytopes a “global” counterpart to the “local” notion used here is that

of fiber polytopes; see Billera and Sturmfels [1991 ], Reiner and Ziegler [1994], and Ziegler
[1995].

3. Special types of polytopes

SFR A class of polytopes generalizing cyclic polytopes is that of so-called neighborly

polytopes; see McMullen and Shephard [1971], pp- 90-93. About regular polytopes, see
Coxeter [1973].

4. Linear transforms and Gale transforms

HN We follow the treatment in McMullen [1979] which, in turn, is partly based on Ewald

and VoB [1973]. Application of Gale transforms to polytope theory was introduced by Perles
{see Griinbaum (1967), p. 108).

SFR About Gale transforms and toric varieties, se¢ also Oda and Park [1991].

5. Matrix representation of transforms

AE 5. Let X again be a finite set of points, and let G be a group of affine transformations
mapping X onto itself. Then, we canassign to X a Gale transform X with an affine symmetry

group G such that the same assignment applied to X, G leads back to X, G. (Se¢ Ewald
and VoB [1973] and McMullen [1979)).

6. Classification of polytopes

HN, SFR Theorem 6.4 can be generalized to polytopes with n + 3 vertices, Lloyd [1970].
Also, the classification problem has been solved for a number of other classes of polytopes;
c.f. Bokowski and Shemer {1987].

AE 5. Find a 3-polytope P other than a pyramid which is combinatorially equivalent t¢”
P

RP The combinatorial classification of polytopes under reasonable restrictions is a

worthwhile field of research. Besides restricting the number of vertices, assumptions on

combinatorial symmetries can be made (Ewald and VoB [1972], Ewald [1979], Ewald,
Kleinschmidt, and Schulz [1976]).

Chapter HI Polyhedral spheres

1. Cell complexes

HN Cell complexes have played an essential role in the development of algebraic topology,
originally called combinatorial topology. In text books on topology, they are often restricted
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1o simplicial complexes. Cell complexes are of particular importance in the so-called p.l.
topology (piecewise linear). For references, see Rourke and Sanderson [1972].

2. Stellar operations

HN See Rourke and Sanderson [1972] about stellar subdivisions in topology. Theorem 2.1:
see Grinbaum (1967}, p. 80.

C According to an unpublished paper by Morelli, the problem mentioned in the text is
solved in the affirmative.

AE S. Call the maximal distance between vertices of a cell F the diameter of F. Given
any cell complex and any £ > 0, there exists a k € Zzo, such that each cell of 8*(C)
(B* := B o--- o B,k times) has diameter less than &.

6. Subdivide a tetrahedron and a cube (together with their faces considered as cell complexes)
by a finite succession of stellar subdivisions, such that the resulting cell complexes are
isomorphic.

7. Let ¥ be a fan in R® for which pos |Z| = R>. Find a complete fan £' D> I with
DOGEL U

8. Find a fan T in R* for which pos |Z| = R* but each complete £’ O I satifies PO
Ell]_

SFR Ewald and Shephard [1974], Ewald [1978), Pachner [1987}, {1991].

3. Euler and Dehn-Sommerville equations

HN The proof of Theorem 3.1 generalizes an idea of Griinbaum {1967], Chapter 8, applied
1o polytopes. The same is true for Theorem 3.3.

SFR See an extended Euler theorem in Bjémer and Kalai [1988]; also compare Barvinok
[1992], Bjorner [1986); Bjérner and Kalai [1989]; Chan [1994]. About generalized Dehn—-
Sommerville equations, see Bayer and Klapper [1991]. One of the greatest achievements in
polytope theory is the characterization of all lattice vectors which are f-vectors of polytopes.
McMullen had stated a conjecture (McMullen and Shephard (1971}, p. 179). The necessity
of his conditions were shown by Stanley [1980] (using commutative algebra and toric
varieties). McMullen [1993b), [1995] has replaced the algebraic gecometric arguments in
Stanley’s proof by those of polytope algebra. Billera and Lee [1980] proved the sufficiency.
See also Oda [1991].

4. Schlegel diagrams, n-diagrams, and polytopality of spheres

HN Schiegel diagrams: see Schlegel {1883], Griinbaum [1967]. About diagrams not iso-
morphic to Schlege! diagrams, see Griinbaum (1967], 11.5. Barnette sphere: see Barnette
[1970]. The Steinitz problem has been solved (in the affirmative) for polytopes with, at
most, n + 3 vertices by Mani [1972] and Kleinschmidt [1976].

SFR For a survey article on polytope complexes, see Klee and Kleinschmidt [1992]. See
also Bokowski and Swrmfels (19891,

RP It is one of the big unsolved problems in combinatorial geometry 10 find necessary
and sufficient conditions for the polytopality of polyhedral spheres (Steinitz problem).
Under suitable restrictions, the problem can be attacked. About a new development, see
Richter-Gebert [1995], Richter-Gebert and Ziegler [1995).

b
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5. Embedding problems

HN The example in Theorem 5.2 i
Schulz {19031 em 5.2 is due to C. Schulz [1979}. Theorem 5.3: see Ewald and

SFR About related embedding problems, see Sarkaria [1988], [1991].

6. Shellings

HN Theorem 6.1: Bruggesser and Mani [1971]).

SFR See a detailed analysis about shellings i j
' gs in Danaraj and K1 ;
{1994], Lickorish [1991]. s e 974

About shellability and Cohen-Macaulay complexes, see Kind and Kleinschmidt [1979].

see also Ziegler

7. Upper bound theorem

::{1\:1 S!an:je,y [19375] ha§ extended the upper bound theorem to simplicial spheres by using
S :e CBII a:eul;flﬁ;l_lgly ;x(rllgs. S(;,le a further paper on *polytope algebra™ McMullen [1991]
+ Kleinschmidt and Lee [1984], B '
Witk (197 [ ], Brendtstedt [1982], McMullen and
SnI;R As_an analog ‘f’ the upper bound theorem, there is a lower bound theorem. Detailed
information about this can be found in Brendstedt [1983]. Also compare Lee [1992]

Chapter IV Minkowski sum and mixed volume

HN- The theory of mixed volumes is a vital part of Minkowski's original work on convex
bodies. It provides the basis for a solution of the isoperimetric problem. For a survey of
re_cent results, see Schneider [1985], [1993]. After Bernstein [1976] and Teissier [1979]
discovered the relationship between mixed volumes and intersection numbers in algebrai

geometry, the theory has attracted new interest. .

1. Minkowski sum

AE 5. Find convex bodies K, L of any gi i i i
. ! , y given dimension n > 1 which are not ball
;ha;h K + L is a ball (compare additional Exercise 5 of L, 5). ek, soeh
- The Minkowski sum of affine subspaces L, M of R” i
: ' s s an affine subspace. How d
3lmen51on of L + M depend on the dimensions of L and M? P o docesthe
. Find three sets A, B, C in R?, such that A .
., B, , + 8, A )
oy e ses A, | + C, B + C are not convex but
SFR About zonotopes, see McMullen [1971], Shephard [1974], Stanley [1989]. About

decomposability of polytopes (with respect to Mi i
Minki ;
Meyer (1974]. pect to Minkowski sum), see Smilansky [1986], and

2. Hausdorff metric

HN Theorem 2.7: Our proof is different from the ori
Hadwiger (19551, p. 20.

AE 5. Extend .Lhe Hausdorff metric to arbitrary compact subsets of R".

6. In the definition of Hausdorff distance replace the unit ball by a fixed n-dimensional

convex body. Show that conver, ence in the w di e is e ivi rff
ne at i
i & 1stance 1s qui alent to that in Hausdo

ginal one by Blaschke [1916]; see
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3. Volume and mixed volume

AE 5. Any centrally symmetric convex body in R? is the limit of a sequence of zonotopes
(see Exercise 4) in the Hausdorff metric. .
SFR A survey of recent results about mixed volumes is in Sangwine-Yager [1993].

4, Further properties of mixed volumes

SFR More on shadow boundaries is in Shephard [1972]. About a characterization of mixed
volumes, see Firey [1976].

5. Alexandrov and Fenchel's inequality

HN A detailed version of the classical proof by Alexandrov and Fenchel can be found
in Leichtweid [1980] and in Schneider [1993]. Concerning equality, see Ewald [1988c];
Ewald and Tondorf [1994].

SFR Schneider [1985], and Stanley [1981].

RP There is a good chance to find new results on the equality case by using the method
presented here. Compare Ewald and Tondorf [1994], Gartner [1996].

6. Ehrhart’s theorem

HN Original proof in Ehrhart [1977].

SFR An alternative proof can be found in Brion [1988], simplified by Ishida [1990]. See also
Stanley [1986], MacDonald [1971], Hibi [1991], Wills [1989], a survey article: Gritzmann
and Wills [1993], 4.2. About a related question, see Brion [1992].

7. Zonotopes and arrangements of hyperplanes

HN Theorem 7.5 is due to Coxeter [1962].

Chapter V Lattice polytopes and fans

1. Lattice cones

C We use the terminology “simplex cone™ for what is usually called a “simplicial cone”.
As polytopes are called “simplicial™ if all their proper faces are simplices, it seems more
reasonable to reserve the notion “simplicial” to cones whose proper faces are simplex cones,

2. Dual cones and quotient cones

AE 5. Generalize the notion of a cone to @ = pos M for any set M C R". Then, the dual
cone & is also well-defined.

(a) Does "M closed” always imply “o = pos M closed™? .

(b) Find a cone 0 = pos M with apex 0, M a set of lattice points that is not a polyhedral

cone but topologically closed. ) '
(c) If o = pos M for a set of lattice points, then, also, & = pos M’ for a set M’ of lattice

points.

3. Monoids

AE 5. Let o be a two-dimensional core in R? with apex 0.

AN e st S
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(a) conv{(e N Z2) \ {0}} is a polyhedral (unbounded) set with at most five vertices.
(b) Find generators for the monoid o N 72,

6. Find a (nonsaturated) monoid S, such that § \ {a} is no monoid for any @ € §.
SFR About the algebraic theory of monoids, see Trung and Hoa [1986). More aboy
monoids and toric varieties in Rentzsch [1991].

4. Fans

HN Shcphar.d’s criterion (Theorem 4.3) in Shephard [1971]. Theorem 4.4 s 4 new result.
See Oda_’s criterion (Theorem 4.6) in Oda [1978], (1988], Miyake and Oda [1975]. About
the relationship between zonotopes and systems of hyperplares (arrangements), see 1V, 7.

5. Combinatorial Picard group.

HN Theorem 5.9 for complete T is due to Eikelberg {1992a], partly based on results by
Smilansky [1986a). Here we present a simplified version of the proof. The most general
version of Theorem 5.2 can be found in Rentzsch [1991] (formulated in algebro-geometric
language; compare VIL, 2 below).

6. Regular stellar operations

HN Theorem 6.1 in Miyake and Oda [1975). Farey’s lemma (Lemma 6.2): see Rademacher
[1964). Proof of Oda’s weak conjecture for n = 3 proved in Danilov [1983]; a gap in the
proof filled in by Ewald [1987). For arbitrary n, Oda’s weak conjecture has been shown
by Wiodarczyk [1992] and by Morelli [1994]. Oda’s strong conjecture for arbitrary » is
supposed to have been solved by R. Morelti.

7. Classification problems

HN, SFR A large number of classification results can be found in the books of Oda [1978],
[1988]. In Kleinschmidt [ 1988}, all regular complete n-dimensional fans with combinatorial
Picard number, at most, 2 have been characterized. Batyrev [1991] has extended the result
to Picard number 3. In Gretenkort, Kleinschmidt, and Sturmfels (19907 it is shown that a
strongly polytopal fan need not have a combinatorially isomorphic copy which is regular.

RP Admit Picard number larger than 3 but restrict the fans by the existence of symmetries

(central, axial, or others), and find further classification results, (For the combinatorial
aspects, compare RP in 11,6),

8. Fano Polytopes /

HN Theorem 8.2: Qur proof is a sim
Voskresenskij (1985].

RP 1. The maximal possible number of vertices a Fano polytope can have is limited. The
e‘xact bounds for n > 3 are not known. Batyrev's conjecture: If P is an n-dimensional
Fano polytope with f,(P) vertices, then, f(P) < 3n for n even, fo(P) < 3n — 1forn
?1dgdg 8S]ome results in Klyachko and Voskresenskij [1985]; Batyrev [1982b), [1986], Evertz
2. Investigate generalized Fano polytopes defined as polytopes P with only O as interior
point and facet hyperplanes of the form {a, x) = 1, a a simple lattice vector, Compare
Batyrev [1992b], Koelman [1992]. .
SFR Batyrev [1982a], (1992); Demin [1981]; Ewald [1988a]

plified version of the original proof in Klyachko and
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PART 2 Algebraic Geometry

Chapter VI Toric varieties

HN, SFR As standard texts about the introduction of toric varieties into the theory, we
mention Oda [1988], Kempf, Knudsen, Mumford and Saint Donat {1973]; Danilov [1978);
and the paper Demazure {1970]. Short introductions can also be found in Teissier [1982];
Brylinski (1977]; Audin [1991]; and Fulton [1993]. About another relationship between
combinatorial and algebraic geometry, see Barthel, Hirzebruch and Hofer [1987].

1. Ideals and affine algebraic sets

HN, C Hilbert’s Nullstellensatz: We follow the proof in Brodmann [1989], p. 59, which
assumes the underlying field to have uncountably many elements. There exist many more
general versions and proofs for the theorem.

SFR As standard books on algebraic geometry, we mention Hartshorne [1977] and Sha-
farevic [1974]. For the reader who understands German, we recommend Brodmann [1989],
a book with detailed and well-illustrated proofs for all theorems.

2. Affine toric varieties

C In all available texts on the introduction of toric varieties, some knowledge of algebraic
groups is preassumed, and a coordinate-free definition of toric varieties is presented. Our
less elegant approach is accessible without knowledge of algebraic geometry or algebraic
groups.

AE 5. Leto, T be cones such that o — o and r — r are complementary linear spaces. How
does X, . depend on X, and X.?

RP In Theorem 2.7 if the number of binomials can be limited to ¢ — n, we call X, a
complete intersection of \ts relation hypersurfaces defined by the binomials. Find all such
complete intersections, possibly under suitable restrictions for o. (About affine complete
intersections in the ordinary sense, see Nakayima [1986] and Hamm [1990]).

3. Toric varieties

AE 5. Describe the toric variety obtained from Xy = P? x P' (Example 4) if all three-
dimensional cones are celeted in .

6. Find Mc(X¢) for Examples 6 and 7.

7.If the fans £’, £” are contained in complementary subspaces of R", describe X5+ x Xz~
as a toric variety.

SFR About higher-dimensional analogs of Hirzebruch varieties (Hirzebruch [1951]), see
Kleinschmidt [1988]. Concerning manifolds with corners (which will indirectly occur again
in VII, 7), compare Jurkiewicz [1985); Oda [1988]. On quotients of toric varieties (related
to fiber polytopes; compare I1, 2 SFR), see Kapranov, Sturmfels, and Zelevinsky {1991},
An interesting property of toric varities is in Wtodarczyk [1993]. Compare also Batyrev
[1993], [1994], Batyrev and Meln’nikov [1986], Fine [1989].

4. Invariant toric subvarieties

AE 5. Forany n > 2, find a complete toric variety X whose invariant toric subvarieties
(except X z) are regular, but each X;, dim o = n, is not regular.

A - aa,
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6. If k is the maximal dimension of faces of a fan X in R, what is the minimal dimension
of an invariant toric subvariety of X y?

5. Torus action

SFR For a general background in algebraic groups, we recommend Borel [1969] and
Springer [1981]. About arelation between toric varieties and complex-symmetric spaces, see
Lehmann [1983]. Compare also Bialynicki-Birula [1973], Bialynicki-Birula and Sommese
[1973]; Fine [1993).

6. Toric morphisms and fibrations

C Example 3: The real part of X, is a typical “nonorientable” surface, as considered in
topology. One should note, however, that ,, as a complex surface, that is, a topological
four-dimensional manifold, is orientable: All smooth complex manifolds have this property,
as is shown in complex analysis.

SFR About toric morphisms, Reid [1983], Crauder [1984].

7. Blowups and blowdowns

HN The idea of “blow—ups™ is due to H. Hopf (first version in 1931) and is also called
Hopf's a-process. Its characterization for toric varieties by a regular stellar subdivision has
been discovered by Miyake and Oda [1973].

SFR The Oda canjectures reduce to combinatorial problems; see Appendix of V, 6.

8. Resolution of singularities

AE 5.Leto consist of acone o with apex 0 and all faces of o, so that X £ can be embedded
in a C? according to section 2. Suppose 0 € C?, is an isolated singularity of X¢. Consider
7, also as an Xz, with X, consisting of a regular g -dimensional simplex cone and its faces,
How many blowups of Xz, in 0 are needed to resolve the singularity of Xz ?
HN, SFR Toric varieties of dimension two admit at most so-called cyclic quotient singu-
larities. The minimal resolutions of these singularities were first studied by F. Hirzebruch
[1953] by means of continued fractions. A combinatorial version in Oda [1988], pp. 24~
37. About quotient singularities in higher dimensions, see Ehlers {1975]. A contribution
f’i]SO in Ewald and Spazier [1994). — For canonical combinatorial algorithms of resoly-
ing three-dimensional toric singularities, see Aguzzoli and Mundici [1994], Bouvicn)and
Gonzales and Sprinberg [1992], [1995]. — Important classes of singularities are canoni-
cal and terminal singularities were introduced by Reid [1980]. They occur in Mori theory
(a survey can be found in Reid (19871, Kollar [1987]). About the toric version of Mori
theory, see Reid [1983a]; Oda [1988); Oda and Park [1991]. Reid [1983a]) and Ishida and
Iwashita [1986] gave a combinatorial classification of canonical three-dimensional toric
ingularities. Similar classification results for canonical three-dimensional and terminal
four-dimensional quotient singularities can be found in Morrison and Stevens [1984]) and
Monison [1985]; see also Pouyanne [1992]. — So-called Gorenstein singularities are spe-
-ial canonical singularities. About their combinatorial characterization, see Stanley [1978];
shida [1980], Miranda [1985], Reid [ 1989]. On “crepant” resolutions, see Markushevic, OI:
hanctzky, and Perelonor [1987], Roan and Yau [1987), Roan [1989] for the case of abelian
juotient singularities, Batyrev [1994] for the general case. A constructive crepant desingu-
arization algorithm following Reid’s general reduction strategy (Reid [1980], [1983b]) in
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Dais, Henk, and Ziegler [1996]. For various topological investigalions. and desingylariz‘ati.on
methods of hypersurfaces or complete intersections being embedded in affine toric va‘nenes
(or appropriate compactifications thereof), see Khovanskij [1977], [1978], Kouchnirenko
[1976], Danilov and Khovanskij [1987), Oka (1979] to [1993b]; Hamm [1990], Morales
[1984]; Tsuchichashi [1991a], [1991b]; Ishida [1991]; Batyrev. {1993a]; Batyrev anc% Cox
[1994]; Cattani, Cox and Dickenstein [1995]; Cox [1995c]; Ishii [1995]. : About an ideal-
theoretic approach to the general desingularization process of toric varieties ('ljheo’rem 8.5)
see Kempf, Knudsen, Mumford, and Saint and Donat [1973], pp. 31-40, B-rylmskl [19?0].
— The so-called deformation theory of toric varieties and toric singularities has mainly
been developed by K. Altmann (1991] to {1995}. o -
RP As one of the numerous open problems about singularities of toric varieties, we memfon
the classification of canonical and terminal singularities in higher dimensions followm.g
Morrison and Stevens [1984] and Morrison [1985]. A combinatorial problem, hereby, is
that of finding a substitute for White’s lemma [1964] which holds for n = 3 but not for
n > 3 (for counterexamples see Wessels [1989]).

9. Completeness and compactness

SFR About alternative proofs for Theorem 9.1, see Oda [1988], p. 16. Conc;min‘g T}:leorem
9.3, see Sumihiro [1974], Oda [1988], p. 17. Related questions of compactification in Ash,
Mumford, Rapoport, and Tai [1975].

Chapter VII Sheaves and projective toric varieties

1. Sheaves and divisors

C We choose a restricted definition of sheaf. About the general notion, see, for c)-czfmple,
Hartshorne [1977] or Shafarevic [1974], where sheaves also occur in the definition of
generalized algebraic varieties (schemes). ‘

SFR A simplified definition of sheaves can also be found in Springer [1981].

2. Invertible sheaves and Picard group

HN About the equivalent group Pic T, see V, 5 and the references there. In the case Xz
is compact, the tesults on Pic X can also be obtained by topological means; see Fieseler
[1991]. .
AE 5.1f X5 is an X -fiber bundle over Xz, how is Pic Xz related to Pic X ¢ anc.l Pic Xy/?
6. Let X5 be smooth. How does Pic Xz change if an equivariant blowup is applied?

3. Projective toric varieties

AE 5. Let P := conv{0, ey, e, ¢) + €2, €, + €2 + res) be a polytope _in ]}&3', r > 1,
r € Z.Consider the projective toric variety Xy for ¥ = XL(P), and let the invertible sheaf
F = F(P) be defined by F. Show explicitly that F ® F is very ample.

RP 1. Call a hypersurface defined by a monomial equation a Z»hyperﬁfce of _]F’. We say
X is a complete intersection of S-hypersurfaces if its embedding in P” is !he‘ mtersec.tlon
of r — n T-hyperfaces. We conjecture that the only smooth examples of such intersections
are P* and P' x [P'. (Compare RP in V1,2). .

2. For which regular Xy in Theorem 3.13 is Xy also regular? The respective fans have
combinatorially been classified by Gri'mbaum {1972]. :
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SFR About hyperplane sections of polytopes and toric varieties, see Khovankij [1986].
Call the least & for which F®* is very ample, 7 an ample invertible sheaf, the least ampleness
Sactor kg of F. In Ewald and Wessels [1991], it is shown that ky < n — 1 and that the bound
is sharp, (An alternative proof in Liu, Trotter, and Ziegler [1992]). Smooth toric varieties
with Picard number, at most, 3 are necessarily projective; this is shown in Kleinschmidt and
Sturmfels [1989]. See also Ebihara [1992).

4. Support functions and line bundles

C By and large, our notation follows that of Oda [1988].

5. Chow ring

HN Our definition of the Chow ring is based on the work of Jurkiewicz [19801, [1985].
SFR For more details on the Chow ring, see Jurkiewicz [ 1980], {1985], and Danilov [1978].

6. Intersection numbers. Hodge inequality

HN, C The relationship between Alexandrov and Fenchel’s inequality (AF) and the Hodge
index theorem has been discovered by Teissier [1981], [1982). He deduces AF from the
Hodge index theorem, as do Danilov [1978] and Oda [1988]. Here, we proceed in the
opposite direction after the intersection numbers have been introduced appropriately.

RP Teissier’s proof of AF does not contribute more to characterizing the equality case than
Alexandrov’s original paper does. Recent progress in the combinatorial characterization of
equality in AF still has to be transferred into algebraic-geometric conclusions. Also, what
equality generally means in Theorems 6.2 and 6.3 has not yet been clarified.

SFR About general intersection theory, see Fulton [1984]; Goresky and MacPherson [1980].

[1983]; about intersection in toric varieties, see Fulton {19931, Fulton and Sturmfels [1993];
Wesscls [1993].

7. Moment map and Morse function

HN The moment map for toric varieties seems to have been introduced independently by
Atiyah (1983} and Jurkiewicz [1980]. The proof of Theorem 7.3 presented here is due to
Carl Lee [1988].

SFR In Audin [1991], torus actions on symplectic manifolds are studied with an extensive

use of moment maps and Morse functions. A special chapter is dedicated to the case of toric
varieties.

8. Classification theorems, Toric Fano varieties

~

HN See the notes about Fano polytopes in V, 8.

RP Translate classification results for polytopes and fans as discussed in RP of V, 7 into
algebraic-geometric langnage, and deduce structure theorems for the varieties.

SFR Batyrev from [1982a] to [1994], Dais [1994], Ito and Reid [1994]. For details on
classification theorems, see Oda [1978], [1988], Batyrev [1991], [1992], Demin [1981].
Ewald [1988a]. See also Fischli [1991].

HN, SFR Recently, toric geometry has also been used for the construction of Calabi and
Yau manifolds which are of particular significance for mathematical physics (string theory).
For the constructive techniques, invariants (Hodge numbers and others), and the so-called
mirror symmetries (which, in many cases, correspond to the polarity of polytopes), we refer
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to Roan [1991]; Morrison [1993]; Batyrev [1993a], [1993b], [1994]; Batyrev and Borisov
[1994a], [1994b], [ 1995]; Batyrev and Dais [1994]; Batyrev and van Straten [ 1995]; Borisov
[1993]; Dais [1995]; Dolgachev [1994); Kobayashi [1994]; Wagner {1995].

Chapter VIII Cohomology of toric varieties

1. Basic concepts

SFR As text books on algebraic topology, in particular homology and cohomology, we
recommend Fulton [1995], Massey [1991}], Spanier [1966]; for those who can read German,
also the geometrically oriented book Stécker and Zieschang {1988).

2. Cohomology ring of a toric variety

HN This section is mainly based on the work of Jurkiewicz [1980], [1985]; see also Ehlers
[1975].

SFR About the singular case, sec McConnell [1989]. See also Bifet [1993], de Meyer,
Ford, and Miranda [1993]

3. Cech cohomology

SFR A recent introduction into Cech cohomelogy can be found in Gunning [1990].

4. Cohomology of invertible sheaves

HN The proof of Theorem 4.6 presented here gets along without so-called spectral
sequences and is due 1o R. Lehmann (personal communication).

SFR Goresky and McPherson [1980], [1983] have presented a theory of intersection num-
bers (“intersection homology”) which is applicable to algebraic varieties, with singularities.
About the case of toric varieties, see Stanley [1987], Fischli and Yavin [1991], Yavin {1991],
and Fieseler [1991]. See also section 3 of Ishida [1990]. '

5. Riemann-Roch-Hirzebruch theorem

HN, SFR The original proof of Theorem 5.5 in Hirzebruch [1962]. The general theory
is thoroughly treated in Fulton [1984]; c.f. also Fulton [1992] for the toric case. A related
calculation of G(P) also in Brion [1988]; c.f. Cappell and Shaneson {1994]. About Chern
classes in singular toric varieties, see Barthel, Brasselet, and Fieseler [1992]. A generaliza-
tion of Theorem 5.5 to the quasi-smooth case in Pommersheim {1993}, [1995a], [1995b].
About the further development, see Fulton [1993], Kantor and Khovanskij [1993]. A purely
combinatorial version of the Riemann—Roch-Hirzebruch theorem can be found in Morelli
[1993a).
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