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Preface

[Hilbert’s] style has not the terseness of many of our modern authors
in mathematics, which is based on the assumption that printer’s labor
and paper are costly but the reader’s effort and time are not.

H. Weyl [143]

The purpose of this book is to describe the classical problems in additive number
theory and to introduce the circle method and the sieve method, which are the
basic analytical and combinatorial tools used to attack these problems. This book
is intended for students who want to leam additive number theory, not for experts
who already know it. For this reason, proofs include many “unnecessary” and
“obvious” steps; this is by design.

The archetypical theorem in additive number theory is due to Lagrange: Every
nonnegative integer is the sum of four squares. In general, the set A of nonnegative
integers is called an additive basis of order h if every nonnegative integer can be
written as the sum of & not necessarily distinct elements of A. Lagrange’s theorem
is the statement that the squares are a basis of order four. The set A is called a
basis of finite order if A is a basis of order h for some positive integer k. Additive
number theory is in large part the study of bases of finite order. The classical bases
are the squares, cubes, and higher powers; the polygonal numbers; and the prime
numbers. The classical questions associated with these bases are Waring’s problem
and the Goldbach conjecture.

Waring's problem is to prove that, for every k > 2, the nonnegative kth powers
form a basis of finite order. We prove several results connected with Waring’s
problem, including Hilbert’s theorem that every nonnegative integer is the sum of
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a bounded number of kth powers, and the Hardy-Littlewood asymptotic formula
for the number of representations of an integer as the sum of s positive kth powers.

Goldbach conjectured that every even positive integer is the sum of at most
two prime numbers. We prove three of the most important results on the Gold-
bach conjecture: Shnirel’man’s theorem that the primes are a basis of finite order,
Vinogradov's theorem that every sufficiently large odd number is the sum of three
primes, and Chen’s theorem that every sufficently large even integer is the sum of
a prime and a number that is a product of at most two primes.

Many unsolved problems remain. The Goldbach conjecture has not been proved.
There is no proof of the conjecture that every sufficiently large integer is the sum
of four nonnegative cubes, nor can we obtain a good upper bound for the least
number s of nonnegative kth powers such that every sufficiently large integer
is the sum of s kth powers. It is possible that neither the circle method nor the
sieve method is powerful enough to solve these problems and that completely
new mathematical ideas will be necessary, but certainly there will be no progress
without an understanding of the classical methods.

The prerequisites for this book are undergraduate courses in number theory and
real analysis. The appendix contains some theorems about arithmetic functions
that are not necessarily part of a first course in elementary number theory. In a
few places (for example, Linnik’s theorem on sums of seven cubes, Vinogradov'’s
theorem on sums of three primes, and Chen’s theorem on sums of a prime and an
almost prime), we use results about the distribution of prime numbers in arithmetic
progressions. These results can be found in Davenport’s Multiplicative Number
Theory (19].

Additive number theory is a deep and beautiful part of mathematics, but for
too long it has been obscure and mysterious, the domain of a small number of
specialists, who have often been specialists only in their own small part of additive
number theory. This is the first of several books on additive number theory. I hope
that these books will demonstrate the richness and coherence of the subject and
that they will encourage renewed interest in the field.

I have taught additive number theory at Southern Illinois University at Carbon-
dale, Rutgers University—New Brunswick, and the City University of New York
Graduate Center, and I am grateful to the students and colleagues who participated
in my graduate courses and seminars. I also wish to thank Henryk Iwaniec, from
whom I learned the linear sieve and the proof of Chen'’s theorem.

This work was supported in part by grants from the PSC-CUNY Research Award
Program and the National Security Agency Mathematical Sciences Program.

I would very much like to receive comments or corrections from readers of this
book. My e-mail addresses are nathansn@alpha.lehman.cuny.edu and nathanson@
worldnet.att.net. A list of errata will be available on my homepage at http:/www.
lehman.cuny.edu or http://math.lehman.cuny.edu/nathanson.

Melvyn B. Nathanson
Maplewood, New Jersey
May 1, 1996
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Notation and conventions

Theorems, lemmas, and corollaries are numbered consecutively in each chapter
and in the Appendix. For example, Lemma 2.1 is the first lemma in Chapter 2 and
Theorem A.2 is the second theorem in the Appendix.

The lowercase letter p denotes a prime number.

We adhere to the usual convention that the empty sum (the sum containing no
terms) is equal to zero and the empty product is equal to one.

Let f be any real or complex-valued function, and let g be a positive function.
The functions f and g can be functions of a real variable x or arithmetic functions
defined only on the positive integers. We write

f=0()
or
f<g
or
g» f

if there exists a constant ¢ > 0 such that

| f(x)] < cg(x)

for all x in the domain of f. The constant c is called the implied constant . We
write

f Lab... 8
if there exists a constant ¢ > 0 that depends on a, b, . .. such that

[ f(x)] < cglx)
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for all x in the domain of f. We write

f=o(g)

if
lim & =0.
x—>00 g(x)

The function f is asymptotic to g, denoted
f~e
if
lim _f(x)
100 g(x)

The real-valued function f is increasing on the interval / if f(x;) < f(x;) for all
x), x2 € I with x; < x;. Similarly, the real-valued function f is decreasing on
the interval / if f(x;) > f(x2) for all x, x2 € I with x; < x2. The function f is
monotonic on the interval [ if it is either increasing on / or decreasing on /.

We use the following notation for exponential functions:

exp(x) = &*

and .
e(x) = exp(2mix) = e2*'%,

The following notation is standard:

Z the integers 0, 1, 2, ...

R the real numbers

R" n-dimensional Euclidean space

z the integer lattice in R"

C the complex numbers

izl the absolute value of the complex number z
Rz the real part of the complex number z

Qz the imaginary part of the complex number z
[x] the integer part of the real number x,

that is, the integer uniquely determined
by the inequality [x] < x < [x] + 1.

{x} the fractional part of the real number x,
that is, {x} = x — [x] € [0, ]).
il the distance from the real number x

to the nearest integer, that is,
llx|| = min{|x —n|: n € Z} = min({x}, 1 — {x}) € [0, 1/2].

(ay,...,a,) the greatest common divisor of the integers ay, ..., a,
{ai....,a,] the least common multiple of the integers a,, ..., a,
| X1 the cardinality of the set X

hA the h-fold sumset, consisting of all sums of h elements of A
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Waring’s problem






1

Sums of polygons

Imo propositionem pulcherrimam et maxime generalem nos primi de-
teximus: nempe omnem numerum vel esse triangulum vex ex duobus
aut tribus triangulis compositum: esse quadratum vel ex duobus aut
tribus aut quatuorquadratis compositum: esse pentagonum vel ex duo-
bus, tribus, quatuor aut quinque pentagonis compositum; et sic dein-
ceps in infinitum, in hexagonis, heptagonis polygonis quibuslibet,
enuntianda videlicet pro numero angulorum generali et mirabili pro-
postione. Ejus autem demonstrationem, quae ex multis variis et abstru-
sissimis numerorum mysteriis derivatur, hic apponere non licet.. . .!

P. Fermat [39, page 303]

'I have discovered a most beautiful theorem of the greatest generality: Every number
is a triangular number or the sum of two or three triangular numbers; every number is a
square or the sum of two, three, or four squares; every number is a pentagonal number or
the sum of two, three, four, or five pentagonal numbers; and so on for hexagonal numbers,
heptagonal numbers, and all other polygonal numbers. The precise statement of this very
beautiful and general theorem depends on the number of the angles. The theorem is based
on the most diverse and abstruse mysteries of numbers, but I am not able to include the
proof here. . ..



4 1. Sums of polygons
1.1 Polygonal numbers
Polygonal numbers are nonnegative integers constructed geometrically from the

regular polygons. The triangular numbers, or triangles, count the number of points
in the triangular array

The sequence of triangles is 0, 1, 3,6, 10, 15, . ...
Similarly, the square numbers count the number of points in the square array

The sequence of squaresis 0, 1, 4,9, 16, 25, ....
The pentagonal numbers count the number of points in the pentagonal array

The sequence of pentagonal numbers is 0, 1, 5, 12,22, 35,.... There is a similar
sequence of m-gonal numbers corresponding to every regular polygon with m
sides.

Algebraically, forevery m > 1, the kth polygonal number of order m+2, denoted
Pm(k), is the sum of the first k terms of the arithmetic progression with initial value
1 and difference m, that is,

Pmk)=1+(m+1)+Cm+1)+---+((k—1m+1)

k(k —
- m——————-—(k D +k.
2
This is a quadratic polynomial in k. The triangular numbers are the numbers

k(k +1
prk) = (2* ).
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the squares are the numbers
pa(k) = k2,

the pentagonal numbers are the numbers

k(3k —1)
p3(k) = T
and so on. This notation is awkward but traditional.

The epigraph to this chapter is one of the famous notes that Fermat wrote in
the margin of his copy of Diophantus’s Arithmetica. Fermat claims that, for every
m > 1, every nonnegative integer can be written as the sum of m + 2 polygonal
numbers of order m + 2. This was proved by Cauchy in 1813. The goal of this
chapter is to prove Cauchy’s polygonal number theorem. We shall also prove the
related result of Legendre that, for every m > 3, every sufficiently large integer is
the sum of five polygonal numbers of order m + 2.

1.2 Lagrange’s theorem

We first prove the polygonal number theorem for squares. This theorem of La-
grange is the most important result in additive number theory.

Theorem 1.1 (Lagrange) Every nonnegative integer is the sum of four squares.

Proof. It is easy to check the formal polynomial identity

i +xi+ 3 +xDO+ i+ 4y = d+2d+2d+ 2, (1.1)
where
1 = Xxiy1+x2y2+Xx3y3 +X4ys
2 = X1y2—X2)1 — X3Ya+Xay3 (1.2)
3 = X1y3 — X3y +X2ys — Xay2
24 = X1Y4a— X4Y) —X2y3+X3)2

This implies that if two numbers are both sums of four squares, then their product
is also the sum of four squares. Every nonnegative integer is the product of primes,
so it suffices to prove that every prime number is the sum of four squares. Since
2 =12 + 12 + 0% + 0%, we consider only odd primes p.

The set of squares

{a*|a=0,1,...,(p — 1)/2}
represents (p + 1)/2 distinct congruence classes modulo p. Similarly, the set of

integers
(=b*=1|b=0,1,...,(p—1)/2}
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represents (p + 1)/2 distinct congruence classes modulo p. Since there are only
p different congruence classes modulo p, by the pigeonhole principle there must
exist integers @ and b such that0 < a,b < (p — 1)/2 and

a*=-b> -1 (mod p),
that is,
a*+b*+1=0 (mod p).
Leta? + b2 + 1 = np. Then
2

—1\2
p5np-a2+b2+lz+02_<_2(pT) +1 <%—+l < pt,

and so
l<n<p.

Let m be the least positive integer such that mp is the sum of four squares. Then
there exist integers x;, x;, X3, X4 such that

mp = x? +x3 +x3+x2

and
l<m<n<p.
We must show that m = 1.
Suppose not. Then 1 < m < p. Choose integers y; such that
yi=x; (mod m)
and
-m/2 <y, <m/2
fori=1,...,4. Then

yi+yi+yiaeyl=xl+xl+xl+xl=mp=0 (modm)
and
2,2, .2, .2
mr-y‘+y2+y3+y4

for some nonnegative integer r. If r = 0, then y; = O for all i and each x? is divisible
by m?. It follows that mp is divisible by m2, and so p is divisible by m. This is
impossible, since p is prime and 1 < m < p. Therefore, r > 1 and

mr-y,z+y§+y§+y3 < 4(m/2)2 = m?.

Moreover, r = m if and only if m is even and y; = m/2 for all i. In this case,
xi =m/2 (mod m) forall i, and so x? = (m/2)* (mod m?)and

mp -x,2 +x§ +x§ +x§ = 4(m/2)2 =m?=0 (mod mz).
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This implies that p is divisible by m, which is absurd. Therefore,
1<r<m.
Applying the polynomial identity (1.1), we obtain
m*rp = (mp)(mr)
-2+ x2+x2+xDHOE+ ¥R +yE+yd)
=7+ + 5 +12,

where the z; are defined by equations (1.2). Since x; = y; (mod m), these
equations imply that z;, = 0 (mod m) fori = 1,...,4. Let w; = z;/m. Then
wy, ..., Wy are integers and

rp = w? +w? + wl+wl,
which contradicts the minimality of m. Therefore, m = 1 and the prime p is the
sum of four squares. This completes the proof of Lagrange’s theorem.

A set of integers is called a basis of order h if every nonnegative integer can be
written as the sum of h not necessarily distinct elements of the set. A set of integers
is called a basis of finite order if the set is a basis of order h for some h. Lagrange’s
theorem states that the set of squares is a basis of order four. Since 7 cannot be
written as the sum of three squares, it follows that the squares do not form a basis
of order three. The central problem in additive number theory is to determine if a
given set of integers is a basis of finite order. Lagrange’s theorem gives the first
example of a natural and important set of integers that is a basis. In this sense, it
is the archetypical theorem in additive number theory. Everything in this book is a
generalization of Lagrange’s theorem. We shall prove that the polygonal numbers,
the cubes and higher powers, and the primes are all bases of finite order. These are
the classical bases in additive number theory.

1.3 Quadratic forms

Let A = (a; ;) be an m x n matrix with integer coefficients. In this chapter, we
shall only consider matrices with integer coefficients. Let A7 denote the transpose

of the matrix A, that is, AT = (a[ j) is the n x m matrix such that

T
a;.j

=a;,
fori =1,...,nand j = 1,...,m. Then (A7)” = A for every m x n matrix A,
and (AB)"T = BT A7 for any pair of matrices A and B such that the number of
columns of A is equal to the number of rows of B.

Let M, (Z) be the ring of n x n matrices. A matrix A € M,(Z) is symmetric if
AT = A.If A is a symmetric matrix and U is any matrix in M,,(Z), then UT AU is
also symmetric, since

WTAUY =UTATWUT) = UT AU.
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Let SL,(Z) denote the group of n x n matrices of determinant 1. This group acts
on the ring M, (Z) as follows: If A € M,(Z) and U € SL,(Z), we define

A-U=UTAU.
This is a group action, since
A-(UV)=UWVTAUV)=VT(WUTAU)V =(UTAU)-V =(A-U)-V.
We say that two matrices A and B in M,(Z) are equivalent, denoted
A~ B,

if A and B lie in the same orbit of the group action, that is, if B = A-U = UT AU
for some U € SL,(Z). Itis easy to check that this is an equivalence relation. Since
det(U) = 1 forall U € SL,(Z), it follows that

det(A - U) = det(UT AU) = det(U7) det(A) det(U) = det(A)

for all A € M,(Z), and so the group action preserves determinants. Also, if A is
symmetric, then A - U is also symmetric. Thus, for any integer d, the group action
partitions the set of symmetric n x n matrices of determinant 4 into equivalence
classes.

To every n x n symmetric matrix A = (a;_j) we associate the quadratic form F4

defined by
Fa(xy, oo xp) = Z: Zai.jxixj-

il jel
This is a homogeneous function of degree two in the n variables xy, ..., x,. For
example, if /, is the n x n identity matrix, then the associated quadratic form is

Fr(xi, ... xa) =X} + x5+ -+ x2,

Let x denote the n x 1 matrix (or column vector)

X1

Xn
We can write the quadratic form in matrix notation as follows:
Fa(xy,...,xp) = xT Ax.

The discriminant of the quadratic form F, is the determinant of the matrix A. Let
A and B be n x n symmetric matrices, and let F4 and Fp be their corresponding
quadratic forms. We say that these forms are equivalent, denoted

FA ~ FB.
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if the matrices are equivalent, that s, if A ~ B. Equivalence of quadratic forms is an
equivalence relation, and equivalent quadratic forms have the same discriminant.
The quadratic form F4 represents the integer N if there exist integers xj, ..., X,
such that
Fa(xy,....x;)=N.

If F, ~ Fg,then A ~ B and there exists a matrix U € SL,(Z) such that
A=B.-U =UTBU. It follows that
Fa(x)=xTAx = xTUTBUx = (Ux)T B(Ux) = Fg(Ux).

Thus, if the quadratic form F, represents the integer N, then every form equivalent
to F, also represents N. Since equivalence of quadratic forms is an equivalence
relation, it follows that any two quadratic forms in the same equivalence class
represent exactly the same set of integers. Lagrange’s theorem implies that, for

n > 4, any form equivalent to the form xZ + - - - + x? represents all nonnegative
integers.

The quadratic form F, is called positive-definite if Fa(x),...,x,) > 1 for all
(x1,..., %) ¥ (0, ...,0). Every form equivalent to a positive-definite quadratic
form is positive-definite.

A quadratic form in two variables is called a binary quadratic form. A quadratic
form in three variables is called a ternary quadratic form. For binary and termary
quadratic forms, we shall prove that there is only one equivalence class of positive-
definite forms of discriminant 1. We begin with binary forms.

Lemma 1.1 Let
A _( an ap )
a2 a2
be a 2 x 2 symmetric matrix, and let

2 2
Fa(x), x2) = ay1xy +2a) 2x1X2 +a2.2X)

be the associated quadratic form. The binary quadratic form F, is positive-definite
if and only if

a, =1

and the discriminant d satisfies
d =det(A) =a; a22 —a}, > 1.
Proof. If the form F, is positive-definite, then
Fx(1,0)=ay; 21
and
Fa(-a12,a11) =110}, — 2110} , +a 1022

2
=a (01.102.2 - 01.2)
=a;d>1,
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and sod > 1. Conversely, ifa;; > | andd > 1, then
ay 1 Fa(x1, X2) = (@111 +ay.2x2)* +dx2 > 0,
and F4(x;, x2) = 0 if and only if (x;, x2) = (0, 0). This completes the proof.

Lemma 1.2 Every equivalence class of positive-definite binary quadratic forms
of discriminant d contains at least one form

2 2
Fa(xy, x2) = ay 1 xy +2a) 2x1X2 + @z 25

for which

2layz2l <ap) < —\/_
7

Proof. Let Fg(x), x2) = by 1x} + 2b) 2x1x2 + b2 %2 be a positive-definite quad-

ratic form, where
by, b, )
B - . .
( b2 b2
is the 2 x 2 symmetric matrix associated with F. Let a; ; be the smallest positive
integer represented by F. Then there exist integers ry, r; such that
F(ri,r2)=a.

If the positive integer h divides both r| and r, then, by the homogeneity of the
form and the minimality of a, ;, we have

F(ri.r2) a)

ayy < F(n/h,r2/h) = —5— W "R

<a.,

and so h = 1. Therefore, (r, r;) = 1 and there exist integers s, and s, such that
| = risy —rys) =ri(sy +r2t) — ra(s), +ny1)

for all integers ¢. Then

U-( n s +nt )ESLz(Z)
r, s2+nr

forallr € Z. Let

A=UTBU
- ( F(r,r2) aj,+ F(ry.r)t )

a'u+F(r1,r2)t F(sy +ryt,s52+nt)

a) a2
- ‘
a2 a2
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where

a) 3 = byyrisy + bia(risz + r2s) + baans:
a2 -a;.z +at
azy = F(sy+nt,s2+nrt) > ay,
since (sy + i1, s + rat) o (0,0) for all r € Z, and a, ; is the smallest positive

number represented by the form F. Since {a) , + a1t : t € Z} is a congruence
class modulo a, ;, we can choose ¢ so that

' a
la12] = |ay , +ayat| < -

Then A ~ B, and the form Fj is equivalent to the form Fa(x), x2) = aj 1x? +
2a) 2x1x2 + az 2x2, where

2ayz|l a1y < aza.
If d is the discriminant of the form, then

d=ay a2z —aj,,
and the inequality

2
ap,

2 2
aj, <aa2=d+aj, <d+ e

implies that

3a,2 \
—<d
2 =
or, equivalently,
2
ay) < 73.\/3
This completes the proof.

Theorem 1.2 Every positive-definite binary quadratic form of discriminant 1 is

equivalent to the form x? + x3.

Proof. Let F be a positive-definite binary quadratic form of discriminant 1. By
Lemma 1.2, the form F is equivalent to a form a, 1 x7 +2ay 2x) x2 +az 2x3 for which

2
2ajal <@y £ — < 2.
V3
Since a;,; > 1, we must have a;; = . This implies that a; ; = 0. Since the
discriminant is 1, we have
a2 =ayazz—al, = 1.

Thus, the form F is equivalent to x? + x2. This completes the proof.
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1.4 Ternary quadratic forms

We shall now prove an analogous result for positive-definite ternary quadratic
forms.

Lemma 1.3 Let
a. a2 a3

A= a2 a2 a3
a3 a3 a3
be a 3 x 3 symmetric matrix, and let F, be the corresponding ternary quadratic
form. Let d be the discriminant of F. Then
ay1 Fa(xy, x2, x3) = (@1,1%) + @1 22 + @1.3%3)° + G 4+ (x2, X3), (1.3)

where G . is the binary quadratic form corresponding to the matrix

2

a a2 —a a;az3 — a; 2a,

A* = 1,2 1423 l2213 (1.4)
aaaz3 —a)2a13 a)1a33 — Ay 4

and G - has discriminant ay \d. If F, is positive-definite, then G 4+ is positive-
definite. Moreover, the form F, is positive-definite if and only if the following three
determinants are positive:

a;) =det(a;)) > 1,
d -det( a) a2 ) > 1,
a2 a2

d =det(A) > 1.

Proof. We obtain identities (1.3) and (1.4) as well as the discriminant of G 4.
by straightforward calculation.
If F, is positive-definite, then

and

Fx(1,0,0)=a;,; = 1.

If Gae(x2,x3) < O for some integers x;, x3, then G4-(a)1x2,a11X3) =

a,z_lGA-(xz, x3) < 0.Let x; = —(a).2x2 +a; 3x3). Then
a1x; +ay2a),1x2 + a1 3a;,1x3 = 0,
and so
a1 Fa(xy,a),1x2, ay,1x3)
2
= (a11X1 +a)2a1.1%2 +a1.30),1X3)" + G 4+(a).1X2, a1,1X3)
= G+(ay1x2,a),1X3)

= a} G 4+(x2, x3)
<0.
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Since F, is positive-definite, it follows that x, = x3 = 0, and so the binary form
G 4. is also positive-definite. By Lemma 1.1, the leading coefficient of G 4- is
positive, that is,

d' =ay a2 —al, > 1,

and also the discriminant of G 4. is positive, hence
d =det(A) > 1.

This proves that if F, is positive-definite, then the integers a,,,d’, and d are
positive.

Conversely, if these three numbers are positive, then Lemma 1.1 implies that
the binary form G 4. is positive-definite. If F4(x;, x2, x3) = 0, then it follows from
identity (1.3) that

Gas(x2,x3)=0

and
a1 x;+a;2x2+a;3x3=0.

The first equation implies that x, = x3 = 0, and the second equation implies that
x; = 0. Therefore, the form F, is positive-definite.

Lemma 1.4 Let B = (b; ;) be a 3 x 3 symmetric matrix such that the ternary

quadratic form Fg is positive-definite. Let Gpg. be the unique positive-definite
binary quadratic form such that

by.1 F(y1, y2, y3) = (b1 y1 + b1 .2y2 + b1.3y3)* + G- (y2, y3).
For any matrix V* = (vifj) € SLy(Z), let
A* = (V' B*V* (1.5)

and let G 4+ be the positive-definite binary quadratic form corresponding to the
symmetric matrix A* and equivalent to the form G g-. For any integers r and s, let

1 r s
Vis=@ij)=1 0 vy, vi, | €SLyZ) (1.6)
0 v3, v,

and
A =VI BV, =(a)). (1.7)

Let F,, , be the corresponding ternary quadratic form. Then a, |, = b, and
ay1Fa,,(x1, X2, X3) = (@1.1X1 + ) 2%2 + @) 3%3)% + G 4+ (%2, X3),

where the matrix A* defined by (1.5) is independent of r and s.
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Proof. Since v;; = 1 and v;,; = v3; = 0, it follows from the matrix cqua-
tion (1.7) that

3 3 3 3 3
T
arj=_ 3 Vibiivij= Y > veabeivij =) biivi
k=1 el k=1 ial =

andsoa;; = b . Let

X] n
x=| x; and Visx=y=| »n |,
X3 y3
SO
3
Yi= Z Vi jXj.
j=1

In particular,
y2 = v2, 1x) + v22X2 + U23X3 = V] 1 X2 + U} 5X3
y3 = v3, 1x; + U32X2 + U3 3X3 = U3 | X3 + U3 5X3.

Let
y._(yz) and x._(xz).
y3 X3
Then
Vex* = y*.
It follows that
G (2, y3) = Gp-(V*x*) = G 4-(x2, X3).
Moreover,
3 3
biayi +biaya+bisys =Y bii ) vi X
im] =1
3 3
> (z b) y
jel \'i=l
=a) x| +a)2x2 +a) 3X3.
Since

Fa,,(x1, %2, x3) = x7 A, ,x = (V,;x)" B(V;,;x) = y7 By = Fp(y1, y2, 1),
it follows that
(a11x1 +ay2%2 +a1.3x3)2 + G ay, (%2, X3)
=ay ) Fy,,(x1, x2, x3)
= b1 Fy,,(x1, X2, X3)
= b).1Fp(y1, y2, ¥3)

= (biay1 +b1.2y2 + b1 3y3)2 + G e (32, ¥3)
= (@1.1X) +a1.2%2 + @) 3X3)° + G 4+ (X2, X3),
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and so
GA'(XZ' X3) = GA;,(XZ» x3)

for all integers r and s. This completes the proof.
Lemma 1.5 Letu, , uy,, and us, be integers such that
(ra, uzn,u3y) =1,

Then there exist six integers u; j fori = 1,2,3 and j = 2, 3 such that the matrix
U = (u; ;) € SL3(Z), that is, det(U) = 1.

Proof. Let (4.1, u2,,) = a. Choose integers u;  and u3 ; such that
UjglUz2 — Uz U2 =a.
Since (a, u3 1) = (1), uz1, u3,)) = 1, we can choose integers u3 3 and b such that

auz3 —buzy = 1.

Then the matrix

Uiy Ui é‘%gb
U=@ij)=| uzr uz2 ()b

us 0 us3
has integer coefficients and determinant 1. This completes the proof.

Lemma 1.6 Every equivalence class of positive-definite ternary quadratic forms

of discriminant d contains at least one form Z? j=1i.jXiX; for which

4
2max (la) 2], lay3l) < aiy < 3\’/2

Proof. Let F be a positive-definite termary quadratic form of determinant d, and
let C be the corresponding 3 x 3 symmetric matrix. Let a; , be the smallest positive
integer represented by F. Then there exist integers u; ;, u2,,, and u3 | such that

F(uiyouz i, usy) =ay.

If ()1, u2.1,u3,) =~ h, then the form F also represents a; ;/h?, and so, by the
minimality of a) |, we have (4,1, 43,1, u3,)) = 1. By Lemma 1.5, there exist integers
u; jfori =1,2,3and j = 2, 3 such that the matrix U = (u; ;) € SL3(Z). Let

B=U"CU = (b))
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Then F is equivalent to the form Fp, and
bi1=ay,
is also the smallest integer represented by Fg. By Lemma 1.3,
a1.1Fg(x1, X2, x3) = (b1.131 + b1.2X2 + by 3%3)* + G p+(x2, X3),

where G - (x2, x3) is a positive-definite binary quadratic form of determinanta, ,d.
By Lemma 1.2, the form G g-(x2, x3) is equivalent to a binary form
Gas(x2, x3) = a,",x% +ay ) X2x3 + a,tzxg

such that
. 2
a;, < —=vapd.

V3
Choose V* € SLy(Z) such that A* = (V*)TB*V*. Letr,s € Z,and let V,, €
SL3(Z) be the matrix defined by (1.6) in Lemma 1.4. Let
A=VIBV, =(@;). (1.8)

Note that the integer in the upper left coer of the matrix is still ay,;, the smallest
positive integer represented by any form in the equivalence class of F, and that,
by Lemma 1.3,

a}, =ay1a22 — az,.
Finally, it follows from (1.8) that
aj2=a\r+ b|_2v,‘., + bl,gv;',

and
a3 = a5 + by 2v) 5 + by 30 5.

Therefore, we can choose r such that

a
lay 2] < %
and choose s such that
lar sl < 22,
-2
Since
a1 < Fa(0,1,0) = ay,,
we have

2
ay) < a1a22
2 2
=0a)1822 —aj, +a;;
- al.l +“122
2

< J-\/al ld+a =
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This implies that

or, equivalently,

This completes the proof.

Theorem 1.3 Every positive-definite ternary quadratic form of discriminant 1 is

equivalent 1o the form x? + x} + x3.

Proof. Let F be a positive-definite ternary quadratic form of discriminant 1. By
Lemma 1.6, the form F is equivalent to a form F, = }_ a; jx;x; for which

4
0 < 2max (la; 2}, lay3l) <ay < <.

This implies that a); = a; 3 = 0. Since d « 0, it follows that a) ; # 0 and so

ay = 1. Therefore,
1 O 0
A= ( 0 az; az;3 ) ,
0 a3 a3;

A* = a2 a3
a3 azj
has determinant 1. By Theorem 1.2, there exists a matrix

U* -( U2 U223 ) € SLz(Z)

U3 Uz

where the 2 x 2 matrix

such that (U*)” A*U* is the 2 x 2 identity matrix /. Let

| 0 0
U= 0 U2 U3 .
0 wuz3 wus;3

Then U AU is the 3 x 3 identity matrix /5. This completes the proof.

1.5 Sums of three squares

In this section, we determine the integers that can be written as the sum of three
squares. The proof uses the fact that a number is the sum of three squares if
and only if it can be represented by some positive-definite ternary quadratic form
of discriminant 1, together with two important theorems of elementary number
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theory: Gauss’s law of quadratic reciprocity and Dirichlet's theorcm on primes in

arithmetic progressions. '
The statement that a is a quadratic residue modulo m mecans that there cxist

integers x and y such that x> — @ = ym. If p is prime and (a. p) = 1, then the

Legendre symbol (%) is defined by (%) = 1 if a is a quadratic residue modulo p
and (%) = —1 if a is not a quadratic residue modulo p. By quadratic reciprocity,
if p and g are distinct odd primes, then (5) - (,—’,) ifp=1 (mod4)org =1
(mod 4), and (g) =— (%) ifp=g=3 (mod4). Also, (I—,‘) = 1 if and only
if p=1 (mod 4),and (%) = lifandonlyif p=1or7 (mod 8).

Lemma 1.7 Let n > 2. If there exists a positive integer d’ such that —d’ is a

quadratic residue modulo d'n — 1, then n can be represented as the sum of three
squares.

Proof. If —d’ is a quadratic residue modulo d’n — 1, then there exist integers
a; 2 and a; ; such that

al,+d =ay(d'n—1)=aaz;2,

where
ayo=dn—-1>2d'-1>1
and so
ay =1
Equivalently,

’ 2
d =a) a22 —aj,.

a; a2 1
A=| a2 a2 0
1 0 n

det(A) = (a;.1a22 — af_z)n —azy=dn—azy=1.

The symmetric matrix

has determinant

By Lemma 1.3, the quadratic form F, corresponding to the matrix A is positive.
Moreover, F, has discriminant 1 and represents n, since F,(0.0.1) = n. By
Theorem 1.3, the form x? + x2 + x2 must also represent n. This completes the
proof.

Lemma 1.8 If n is a positive integer and n = 2 (mod 4), then n cun be
represented as the sum of three squares.
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Proof. Since (4n, n — 1) = 1, it follows from Dirichlet’s theorem that the arith-
metic progression {4nj +n — 1 : j = 1,2,...} contains infinitely many primes.
Choose j > 1 such that

p=dnj+n—-1a(4dj+1)n—-1
is prime. Letd’ =4 + 1. Sincen =2 (mod 4), we have
p=dn—-1=1 (mod4).
By Lemma 1.7, it suffices to prove that —d’ is a quadratic residue modulo p. Let
d = ]_[ ar,
gd’
where the g; are the distinct primes dividing d’. Then
p=dn-1=-1 (modgq;)

for all i, and

d= J] D=1 (mod4.

9 !
¢, m3 (mod 4)

[T ve=1

qi '
qu) (mad &)

By quadratic reciprocity we have
(5)-!
p
since p=1 (mod 4), and

(5)-G)G)

Therefore,

-11(%)
gd \P
p)"'
qld’ (q'
_1)&
‘Md'( i

This completes the proof.
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Lemma 1.9 Ifn is a positive integer such thatn = 1,3, or5 (mod 8). then n
can be represented as the sum of three squares.

Proof. Clearly, 1 is a sum of three nonnegative squares. Let n > 2. Let

3 ifn=1 (mod8)
c={ 1 ifn=3 (mod 8)
3 ifn=5 (mod 8).

Ifn=10r3 (mod 8), then

cn—1

2

Ifn=5 (mod 8), then

cn—1

=3 (mod 4).

cn—1
(sm.251)

By Dirichlet’s theorem, there exists a prime number p of the form

In all three cases,

cn — 1

2

p=4nj+
for some positive integer j. Let
d =8j+c.
Then
2p=Bj+cn—1=dn—1.

By Lemma 1.7, it suffices to prove that —d’ is a quadratic residue modulo 2p.
If —d’ is a quadratic residue modulo p, then there exists an integer xo such that

(xo+p)+d =x2+d =0 (mod p).

Let x = x if xo is odd, and let x = xq + p if x¢ is even. Then x is odd and x> + d’
is even. Since
x2+d’ =0 (mod 2)

and
x*+d' =0 (mod p),

it follows that
x*+d =0 (mod 2p).

Therefore, it suffices to prove that —d’ is a quadratic residue modulo p.
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d = ]—[q"‘.

q.ld’

be the factorization of the odd integer d’ into a product of powers of distinct odd
primes g;. Since
2p=-1 (modd),

it follows that
2p=-1 (mod g;)
and
(p.g)=1

for every prime g; that divides d'.
Ifn=10r3 (mod 8),thenp=1 (mod 4)and

(5)-G)E)

()
ald qi
Ifn =5 (mod8),thenp =3 (mod 4)andd = 3 (mod 8). From the
factorization of d’, we obtain

a= [1 & I 4

oW’ g’
g, =1 (mod J) qm3 (mod &)
= J] D" (mod 4
s
;™3 (mod §)
=—-1 (mod 4)
and so
[T v+=--1
9,!."
9, =) (mod 4)

It follows from quadratic reciprocity that
(5)-G) )
p p p
(5)
p
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-- 11 E)
a1d’ qi
q,=l (rod 3) q-l (madl) q;md (modl;
k, 4
-G 1 (f->
o’ qi i gi
q,@l  (mod &) q;m3 (mod 4)

In both cases,

= [1 o ] oo

a qi\d’
Gmds (mod ¥) q,m37 (mod )

= T o

@’
gims.7 (mod B)

Therefore, —d’ is a quadratic residue modulo 2p = d'n — 1 if
> k=0 (mod2).

(s
q; w87 (mad R)

This is what we shall prove. We have

d = ﬂ o I1 & II & II &

i q 1’ qid’
q,-l lmol!) 4,m3 (ool B) -1 (rod 8) q;®? {(mod 8)
= [ 3* ] 3"~ ]'[ (=% (mod 8)
q,d 914’
q;m3  (nmod Ry q, =8 (mod R) q,a’ (modS)
= J] 3 J] ¢ (meds).
[ 9’
¢ym3.S (mod ¥) q;w5.7 (mod 8)

Ifn=10or5 (mod 8),thenc =3and
d'=8j+3=3 (mod 8).
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This implies that
Y k=1 (mod?2)
oo
q,@)3 (mod %)

and

Y k=0 (mod2).

i
(mod %)

ws

q, =8,

Ifn=3 (mod 8),thenc =1 and
d=8j+1=1 (mod 8).

It follows that
Y k=0 (mod?2)

g
g, w35 (mod 8)
and
> k=0 (mod2).
g’
q,@3.7T (mod 8)
This completes the proof.

Theorem 1.4 (Gauss) A positive integer N can be represented as the sum of three
squares if and only if N is not of the form

N =48k +7).

Proof. Since
x2=0,1, ord (mod 8)

for every integer x, it follows that a sum of three squares can never be congruent to
7 modulo 8. If the integer 4m is the sum of three squares, then there exist integers
X1, X2, x3 such that

2,,2,,2
4m = xj + x5 + x3.

This is possible only if x;, x7, x3 are all even, and so

x\2  rx2\?2 rx3\?
n=(3)+(3) +(3)-
Therefore, 4°m is the sum of three squares if and only if m is the sum of three
squares. This proves that no integer of the form 4°(8k + 7) can be the sum of three
squares.

Every positive integer N can be written uniquely in the form N = 4°m, where
m=2 (mod 4orm=1,3,5 or7 (mod 8). By Lemma 1.8 and Lemma 1.9,
the positive integer N is the sum of three squares unless m = 7 (mod 8). This
completes the proof.

Theorem 1.5 If N is a positive integer such that N =3 (mod 8), then N is the
sum of three odd squares.
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Proof. Recall that x2 = 0,1, or4 (mod 8) for every integer x. If N = 3
(mod 8) is a sum of three squares, then each of the squares must be congruent to
1 modulo 8, and so each of the squares must be odd. This completes the proof.

1.6 Thin sets of squares

If A is a finite set of nonnegative integers such that every integer from 0 to N can
be written as the sum of h elements of A, with repetitions allowed, then A is called
a basis of order h for N. A simple counting argument shows that if A is a basis of
order h for N, then A cannot be too small.

Theorem 1.6 Ler h > 2. There exists a positive constant ¢ = c(h) such that, if A
is a basis of order h for N, then

jA| > cNVA,

Proof. Let |A| = k. If A is a basis of order h for N, then each of the integers
0,1,..., N is asum of h elements of A, with repetitions allowed. The number of
combinations of 4 elements, with repetitions allowed, of a set of cardinality k is
the binomial coefficient (“*2~"). Therefore,

¢ - - /Ich
N+]5(k+”: l)_k(k+l) (k+h I)Si

h! h!

for some constant ¢’ > 0 and all k, and so
RIN\'/*
IAI =k > (7) -CNl/h.

This completes the proof.
Since the squares form a basis of order 4, it follows that for every N > 0 the set
Qn of all squares up to N is a basis of order 4 for N. Moreover,

|Qn| =1+ [N'?] > N2,

This is much larger than ¢N'/4, which is a lower bound for the thinnest possible
basis of order 4. It is natural to ask if for every N there exists a set Ay of squares
that is a basis of order 4 for N and satisfies

Nm NIZ 0.

The answer is provided by the following theorem.

Theorem 1.7 (Choi—-Erdos—Nathanson) For every N > 2, there exists a set Ay
of squares such that Ay is a basis of order 4 for N and

4
lAnt < (m) N'3logN.
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Proof. The sets A, = A3 = {0,1} and Ay, = As = {0, ], 4} satisfy the
requirements of the theorem. Therefore, we can assume that N > 6.

We begin with a simple remark. By Theorem 1.4, if € is a nonnegative integer
and £ = 1or2 (mod 4), then £ is the sum of three squares. Since the square of
an even integer is 0 (mod 4) and the square of an odd integeris 1 (mod 4), it
follows that if m # 0 (mod 4) and a is any positive integer such that a*> < m,
then either m — a? is the sum of three squares or m — (a — 1)? is the sum of three
squares.

For N > 6, we let A(,:,) consist of the squares of all nonnegative integers up to
2N'/3 Then

1A < 2N 4 1.

Let Ag) consist of the squares of all integers of the form

[k1/2N|/3] or [k|/2N|/3]—],

where
4<k<N'3,
Then
1A < 2N - 3) =2N' 6.
Let
AD = AV U AD.
Then

IAQ] < aN'7.

Since Aﬁ,)) contains all the squares up to 4N /3 it follows from Lagranges theorem
lhé(l)t every nonnegative integer up to 4N/ is the sum of four squares belonging to
0)
Ay
Let m be an integer such that

4N2/3<m5N

and
m#%0 (mod 4).

We shall prove that there exists an integer ap € A(,g) such that
05m—a§ < 4N?3

and m — a? is the sum of three squares. Since

4 < N'7,

<N s

it follows that

m 1/3



26 1. Sums of polygons

Let
a=[k2N"].

Thena? € AD, (a — 1)? € A,
a® <kN?3 <m < (k+ 1)N?3,

and
a>kVANY3 — .,

It follows from our initial remark that either m — a® or m — (a — 1)? is the sum
of three squares. Choose a2 € {(a — 1)2,a2} € A®? such that m — a2 is a sum of
three squares. Since 4 < 3N 1/6 for N > 6, we have

0<m-a*

<m-a}

<m-(a-17

< (k+ )N — (k'2N'3 - 2)?

< (k+ 1)N?? —kN?P + &' 2N
- N3 4 ag\2NV/3

< N*?+4N'7?

< 4N,

and som —ag is the sum of three squares belonging to A(,J). Therefore,if0 <m < N

and m £ 0 (mod 4), then m is the sum of four squares belonging to A(A‘,».
Let

. log N
Av={@a):0<i< 2" and aea®l}.
log 4

Then Ay is a set of squares and

log N 2log N 4
1A~|s(i+l)m‘,‘3’l< L)‘w‘/% 2 _YN'"P1ogN.
log 4 log 4 log 2

Letn € [0, N].If n 2 0 (mod 4), then n is the sum of four squares belonging
0 AD C Ay.1fn =0 (mod 4), thenn = 4'm, where m % 0 (mod 4) and
0 <i <logN/log4. Then
m = a} +a3 + a3 +a;,
where a,,a3,a3.a4 € A(o). and so
n=4m=2a)’+2a)’ +2a3)* + (2'as)

is a sum of four squares belonging to A y. This completes the proof.
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1.7 The polygonal number theorem

We begin by proving Gauss’s theorem that the triangles form a basis of order three.
Equivalently, as Gauss wrote in his journal on July 10, 1796,

ETPHKA! num =A+A+A.

Theorem 1.8 (Gauss) Every nonnegative integer is the sum of three triangles.

Proof. The triangular numbers are integers of the form k(k + 1)/2. Let N > 1.
By Theorem 1.5, the integer 8NV + 3 is the sum of three odd squares, and so there
exist nonnegative integers ki, k2, k3 such that

8N +3 = (2k + 1)2 + (2ky + )2 + (2k3 + 1)?
=d(k2 + ky + K2 + ky + k3 + k3) + 3.

Therefore,
k|(k| + |) + kz(kz + ]) + k3(k3 + |)

N 2 2 2

This completes the proof.

Lagrange’s theorem (Theorem 1.1) is the polygonal number theorem for squares,
and Gauss’s theorem is the polygonal number theorem for triangles. We shall now
prove the theorem for polygonal numbers of order m + 2 for all m > 3. It is easy
to check the polygonal number theorem for small values of N/m. Recall that the
kth polygonal number of order m + 2 is

mk(k — 1)

(k) = ——— +k.
Pm(k) > +

The first six polygonal numbers are

pm(0) =0

pm(1) =1
Pm(2)=m+2
pm(3)=3m+3
pm(4) =6m + 4
Pm(5) =10m + 5.

If ky, ..., ks are positive integers, then, forr =0, 1,...,m +2 — s, the numbers
of the form

Pm(k1) + pm(k2) + - - - + pp(ks) + rpm(1) (1.9)
are an interval of m + 3 — s consecutive integers, each of which is a sum of exactly

m + 2 polygonal numbers. Here is a short table of representations of integers as
sums of m + 2 polygonal numbers of order m + 2. The first column expresses the
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integer as a sum of polygonal numbers in the form (1.9), and the next two columns
give the smallest and largest integers that the expression represents.

rpm(1) 0 m+2
Pm(2) + rpm(1) m+2 2m+3
2pm(2) + rpm(1) 2m+4 3m+4
Pm(3) +rpm(1) 3Im+3 4m+4
Pm(3) + pm(2) + rpm(1) dm+5 Sm+5
4p,(2) + rpm(1) 4m+8 5S5m+6
Pm(3)+2pn(2Q)+rpny(l) Sm+7 6m+4
Pm(4) +rp,(1) 6m+4 Tm+5
Pm(4) + pm(2) + rpm(1) Tm+6 8m+6
2pm(3) + pm(2) Tm+8 8m+7

Pm(4)+2Pm(2)+er(l) 8m +8 Om+17
Pm(4) + pm(3) +rpm(1) Om+7 10m+7
Pm(S) +rpm(1) 10m+5 1lm+6
Pm(5)+ pm(2Q)+rpm(1)  1lm+7 12m+7

This table gives explicit polygonal number representations for all integers up to
12m +7. It is not difficult to extend this computation. Pepin [95] and Dickson [23]
published tables of representations of N as a sum of m + 2 polygonal numbers
of order m + 2 for allm > 3 and N < 120m. Therefore, it suffices to prove the
polygonal number theorem for N > 120m.

We need the following lemmas.

Lemma 1.10 Letm > 3 and N > 2m. Let L denote the length of the interval
1 [6N 2 [8N
[=]= — -3, = — -8).
(2 * m 3 3 * m 8)

L>4 ifN>108m

Then

and
L>¢etm ift>3andN >7¢*m>.

Proof. This is a straightforward computation. Let

x=N/m>2
and |
80-8—6.
We see that |
L-Jsx—s—J6x—3+g>e
if and only if

V8x —8 > /6x — 3+ ¢,



1.7 The polygonal number theorem
or, after squaring both sides and rearranging,
2x — €3 — 5 > 28p/6x — 3.
Squaring and rearranging again, we obtain
4x (x — (T€2 +5)) + (€3 + 5)* + 12¢% > 0.

This inequality certainly holds if
1\2
x z7e3+5-7(e— g) +5.

Therefore, ,
N 1
L>¢ if —37(8——) +5.
m 6
Since

2
7(4—%) +5=10786...,

it follows that L > 4 if N > 108m. Since

2 A%
7¢°>7|¢ 6 +5

29

for £ > 3, it follows that L > £ if £ > 3 and N/m > 7¢2. Therefore, if £ > 3 and

N > 7€2m3, then L > ¢m. This completes the proof.

Lemma 1.11 Letm > 3 and N > 2m. Let a, b, and r be nonnegative integers

such that

O<r<m

and
N-;(a—b)+b+r.

Consider the open interval

1 /6N 2 (8N
I1=]- — =3, = — —-8]).
(2+ m 3+ m )

If

bel,
then

b? < 4a
and

3a < b*+2b+4.

(1.10)

(1.11)

(1.12)
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Proof. From equation (1.10), we have

o=(1-5)02(57)

By the quadratic formula,

If b € I, then

This proves (1.11).
Again by the quadratic formula,

b2 +2b+4 —3a=b? -

if

If b € I, then

1 3 1 3)\? N-r
——=J)+,lz—-=) +6 -4
g (2 m) \/(2 m) ( m )
This proves inequality (1.12).
The following result is sometimes called Cauchy’s lemma.
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Lemma 1.12 Let a and b be odd positive integers such that
b? < 4a

and
3a < b®+2b+4.

Then there exist nonnegative integers s, t, u, v such that
a=s*+1%+u?+v? (1.13)

and
b=s+t+u+v. (1.14)

Proof. Since a and b are odd, it follows that 4a — b> = 3 (mod 8). By
Theorem 1.5, there exist odd positive integers x > y > z such that

4 — b? = x2 4+ y? 4+ 22,

We can choose the sign of +z sothatb+x+y+z=0 (mod 4). Define integers
s, t, u, v as follows:

s b+x+y+xz

4
. b+x b+x—-yFz
4
b+y s b—x+yFz
4
v btz s b—x—-y+tz
2 4 )

These numbers satisfy equations (1.13) and (1.14) and
s>t>u>v.

We must show that v > 0. By Exercise 8, the maximum value of x + y + z subject
to the constraint x2 + y? + z2 = 4a — b? is v/12a — 3b2. Also, the inequality
3a < b* +2b + 4 implies that +/12a — 3b2 < b + 4. Therefore,

x+y+z<+V12a-3b2 <b+4,

and so b
-XxX—y—2
v> ———— > —1.
- 4
Since v is an integer, we must have v > 0. This completes the proof.

The following result is a strong form of Cauchy’s polygonal number theorem.

Theorem 1.9 (Cauchy) Ifm > 4and N > 108m, then N can be written as the
sum of m + 1 polygonal numbers of order m +2, at most four of which are different
from O or 1. If N > 324, then N can be written as the sum of five pentagonal
numbers, at least one of which is O or 1.
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Proof. By Lemma 1.10, the length of the interval

1 /6N 2 (8N
l'(i"' 7—3, §+ 7—8)

is greater than 4 since N > 108m, and so / contains four consecutive integers
and, consequently, two consecutive odd numbers b; and b,. If m > 4, the set of

numbers of the form b +r, where b € {b;, by} andr € {0, 1, ..., m — 3}, contains
a complete set of representatives of the congruence classes modulo m, and so we
canchoose b € {b),b,} CTandr € {0, 1,...,m — 3} such that

N=b+r (mod m).

a_z(_l\_l_—_ly_:)+b_(l_3)b+2(N—’) (1.15)
m m m

is an odd positive integer, and

N-’;(a-b)+b+r.

By Lemma 1.11, since b € I, we have
b? < 4a
and
3a < b*+2b+4.
By Lemma 1.12, there exist nonnegative integers s, ¢, u, v such that
a=st+?+u? +0?

and
b=s+t+u+v.

Therefore,
N= ;(a —b)+b+r

-g( 2o s+t —t+u —ur v — V) (sHIFUHV)+T
= Pm($) + pm(t) + pm(U) + pm(V) + 7.

Since 0 < r < m — 3 and since 0 and 1 are polygonal numbers of order m + 2 for
every m, we obtain Cauchy’s theorem for m > 4, that is, for polygonal numbers of
order at least six. To obtain the result for pentagonal numbers, that is, for m = 3,
we consider numbers of the form b; + r and b, + r, where b;, b, are consecutive
odd integers in the interval /,and r = O or 1.
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Theorem 1.10 (Legendre) Letm > 3 and N > 28m>. If m is odd, then N is the
sum of four polygonal numbers of order m + 2. If m is even, then N is the sum of
five polygonal numbers of order m + 2, at least one of which is 0 or 1.

Proof. By Lemma 1.10, the length of the interval / is greater than 2m, so /
contains m consecutive odd numbers. If m is odd, these form a complete set of
representatives of the congruence classes modulo m, so N = b (mod m) for
some odd integer b € /. Let r = 0 and define a by formula (1.15). Then

N=§(a—b)+b,

and it follows from Lemma 1.11 and Lemma 1.12 that N is the sum of four
polygonal numbers of order m + 2.

If m is even and N is odd, then N = b (mod m) for some odd integer b € /
and N is the sum of four polygonal numbers of order m + 2. If m is even and N is
even,then N — 1 =b (mod m) for some odd integer b € / and N is the sum of
five polygonal numbers of order m + 2, one of which is p,,(1) = 1. This completes
the proof.

A set of integers is called an asymptotic basis of order h if every sufficiently
large integer can be written as the sum of h not necessarily distinct elements of
the set. Legendre’s theorem shows that if m > 3 and m is odd, then the polygonal
numbers of order m + 2 form an asymptotic basis of order 4, and if m > 4 and m
is even, then the polygonal numbers of order m + 2 form an asymptotic basis of
order 5.

1.8 Notes

Polygonal numbers go back at least as far as Pythagoras. They are discussed at
length by Diophantus in his book Arithmetica and in a separate essay On polygonal
numbers. An excellent reference is Diophantus of Alexandria: A Study in the
History of Greek Algebra, by T. L. Heath [53]. Dickson’s History of the Theory of
Numbers [22, Vol. 11, Ch.1] provides a detailed history of polygonal numbers and
sums of squares.

There are many different proofs of Lagrange’s theorem that every nonnegative
integer is the sum of four squares. For a proof using the geometry of numbers, see
Nathanson [93]. There is a vast literature concerned with the number of representa-
tions of an integer as the sum of s squares. Extensive treatments of these matters can
be found in the monographs of Grosswald [43], Knopp [74], and Rademacher [98].
Liouville discovered an important and powerful elementary method that produces
many of the same results (see Dickson [22, Vol. II, Ch. 11] or Uspensky and
Heaslet [122]).

Legendre and Gauss determined the numbers that can be represented as the sum
of three squares. See Dickson [22, Vol. II] for historical references. In this chapter,
I followed the beautiful exposition of Landau [78]. There is also a nice proof by
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Weil [140] that every positive integer congruentto 3 (mod 8) is the sum ot three
odd squares.

Cauchy [9] published the first proof of the polygonal number theorem. Legen-
dre’s theorem that the polygonal numbers of order m form an asymptotic basis of
order 4 or 5 appears in [80, Vol. 2, pp. 331-356]. In this chapter | guve a simple
proof of Nathanson [91, 92], which is based on Pepin {95].

Theorem 1.7 is due to Choi, Erdos, and Nathunson [13]. Using a prababilistic
result of Erd6s and Nathanson [36], Zollner [152] has proved the existence of a
basis of order 4 for N consisting of &« NV/*¢ squares. It is not known if the ¢ can
be removed from this incquality. Nathanson [89], Spencer {118&], Wirsing {145],
and Zbllner [151] proved the cxistence of “thin™ subsets of the squares that are
bases of order 4 for the set of all nonnegative integers.

1.9 Exercises

1. Letm > 2. Show that the polygonal numbers of order m + 2 can be written
in terms of the triangular numbers as follows:

Pm(k) = mpy(k) + k
forallk > 0.

2. (Nicomachus, 100 A.D.) Prove that the sum of two consecutive triangular
numbers is a square. Prove that the sum of the nth square and the (n — 1)-st
triangular number is the nth pentagonal number.

3. Let v(2) be the smallest number such that every integer N can be written in
the form
N - :!:xlz :i: e :!:xz(z).

Prove that v(2) = 3. This is called the easier Waring’s problem for squares.
Hint: Use the identities

2x+ 1 = (x + 1) — x?
and
2x = (x+ 1) —x2 - 12,

4. Prove that if m is the sum of two squares and n is the sum of two squares.
then mn is the sum of two squares. Hint: Use the polynomial identity

62+ x2)(2 + y2) = (xiy1 + Xap2)? + (x1y2 — Xay1).

S. (Nathanson [88]) Prove that there does not exist a polynonnal identity of the
form
G+ +xDOT+ 4y =+ 25+ 2,
where z), 22, z3 are polynomials in x,, x2, x3, y1, y2, y3 With integral coef-
ficients.
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1.

1.9 Exercises

. Prove that Theorem 1.4 implies Lagrange’s theorem (Theorem 1.1).
. Prove that the set of triangular numbers is not a basis of order 2.

. Let §2 = {(x,y,2) € R®: x2 + y2 + z2 = 1}. Prove that

x+y+z:(x,y.2) € §?) = [-3,V3].

n
Fa(X1y .o Xp) = Zai.jxixj
igel

and

n
Fe(xy, ..., xp) = Z bi jxix;
il

be quadratic forms in n variables such that
Fa(x1,...,x,) = Fg(x),..., Xn)

forallx),...,x, € Z.Prove thata; ; = b; j foralli.j=1,...,n.

Let A be an n x n symmetric matrix, and let F, be the corresponding

quadratic form. Let
U=(uj)
and
B=UTAU = (b; ).

Prove that
bjj=Fa(urj,uzj, ... Unj)

forj=1,...,n.
For N > 1,letk = [N | and

A={0,1,....k— 1} U{k,2k,...,(k — 1)k}.
Show that A is a basis of order 2 for N such that

Al < 2v/N +1.

. Leth>2,k>2, and

h-1
A-{O}UU{a;k‘ cap=1,....k—1}.
=0

Prove that A is a basis of order h for k" — 1 and

|Al < h(k—1)+1.

35
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13. (Raikov [99], Stohr [119]) Let h > 2 and N > 2". Let A be the set
constructed in the preceding exercise with

k=[NYE]+1.
Prove that A is a basis of order & for N such that

|A] < ANV 4 1.
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Waring’s problem for cubes

Omnis integer numerus vel est cubus; vel e duobus, tribus, 4,5,6,7,8,
vel novem cubus compositus: est etiam quadratoquadratus; vel e duo-
bus, tribus &c. usque ad novemdecim compositus &sic deinceps.’

E. Waring [138]

2.1 Sums of cubes

In his book Meditationes Algebraicae, published in 1770, Edward Waring stated
without proof that every nonnegative integer is the sum of four squares, nine cubes,
19 fourth powers, and so on. Waring’s problem is to prove that, for every k > 2,
the set of nonnegative kth powers is a basis of finite order.

Waring’s problem for cubes is to prove that every nonnegative integer is the
sum of a bounded number of nonnegative cubes. The least such number is denoted
8(3). Wieferich and Kempner proved that g(3) = 9, and so the cubes are a basis
of order nine. This is clearly best possible, since there are integers, such as 23 and
239, that cannot be written as sums of eight cubes.

Immediately after Wieferich published his theorem, Landau observed that, in
fact, only finitely many positive integers actually require nine cubes, that is, every

'Every positive integer is either a cube or the sum of 2,3,4,5,6,7,8, or 9 cubes; similarly,
every integer is either a fourth power, or the sum of 2, 3, ..., or 19 fourth powers; and so
on.
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sufficiently large integer is the sum of eight cubes. Indeed, 23 and 239 are the
only positive integers that cannot be written as sums of cight nonnegative cubes.
A set of integers is called an asymptotic basis of order h if every sufficiently large
integer can be written as the sum of exactly / elements of the set. Thus, Landau’s
theorem states that the cubes are an asymptotic basis of order eight. Later, Linnik
proved that only finitely many integers require eight cubes, so every sufliciently
large integer is the sum of seven cubes, that is. the cubes are an asymptotic basis of
order seven. On the other hand, an examination of congruences modulo 9 shows
that there are infinitely many positive integers that cannot be written as sums of
three cubes. ,‘
Let G(3) denote the smallest integer A such that the cubes arc an asymptotic
basis of order A, that is, such that every sufficiently large positive integer can be
written as the sum of A nonnegative cubes. Then '
4<G3) <1 Il
To determine the exact value of G(3) is a major unsolved problem of additive
number theory. It is known that almost ull positive integers are sums of four cubes,
and it is possible that G(3) = 4. v
The principal results of this chapter are the theorems of Wicferich-Kempner
and of Linnik. Because of the mystery surrounding sums of few cubes, we also
include a section about sums of two cubes. We shall prove that there are integers
with arbitrarily many representations as the sum of two nonnegative cubes, but
that almost all numbers that can be written in at lcast one way as the sum of two
nonnegative cubes have essentially only one such representation. '

2.2 The Wieferich-Kempner theorem

The proof that g(3) = 9 requires four lemmas.

Lemma 2.1 Let A and m be nonnegative integers such that m < A% and m can
be written as the sum of three squares. Then

6A(A% +m)
is a sum of six nonnegative cubes.

Proof. Let m,, m,, m3 be nonnegative integers such that

m = m? +mk +ml.

Then
O<m<J/m<A
fori =1,2,3,and

3
6A(A2 +m) = 6A(A* +m} +mi+md) = ((A+m)’ +(A—m)).

i=l
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This completes the proof.

Lemma 2.2 Lett > 1. For every odd integer w, there is an odd integer b such
that

w=>b> (mod?2).

Proof. If bis odd and w = b* (mod 2'), then w is odd. Let b, and b, be odd
integers such that
b} =b3 (mod 2').

Then 2' divides
b3 — b} = (by — by)(b? + byb, + b?).

Since b2 + byb; + b is 0dd, it follows that 2' divides b, — b, that is,
by =b; (mod 2').

This means that if b, and b, are odd integers such that
0<by <by <2,

then
b} # b3 (mod 2",

and so every odd integer is congruent to a cube modulo 2'. This completes the
proof.

Lemma 2.3 If
r > 10648 = 223,

then there exists an integer d € [0, 22] and an integer m that is a sum of three
squares such that
r=d*+6m.

Proof. If the nonnegative integer m is not the sum of three squares, then there
exist nonnegative integers s and ¢ such that

m =48t +7),
and so

0 (mod 96) ifs>2
72 (mod 96) ifs =1
42 (mod 96) ifs=0andrt iseven
90 (mod 96) ifs =0 and: isodd.

6m=6-48r+7) =

It follows that if m is a positive integer and

6m=h (mod 96)
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for some
h e H={6,12, 18, 24, 30, 36, 48, 54, 60, 66, 78, 84},

then m is the sum of three squares. The following table lists, for various h € H
and

deD={0,1,2,3,4,56,7,8,9,10,11, 13, 14, 15, 17, 18, 22},
the least nonnegative residue in the congruence class
d*+h (mod 96).

The elements of H are listed in the top row, and the elements of D are listed in the
column on the left.

6 12 18 24 30 36 48 54 60 66 78 84
6 12 18 24 30 36 48 54 60 66 78 84
7 13 19 25 31 37 49 55 61 67 79 85
14 20 26 32 38 44 56 62 68 74 86 92
33 39 45 51 57 63 75 81 87 93 9 15
70 76 82 88 94 4 16 22 28 34 46 52
35 41 47 53 59 65 77 83 89 95 11 17
42 72 90
73 91 43
50 80 2
69 21 27
1058 64 10
1y 5 23 7

VOO WNHEWN —~O

Every congruence class modulo 96 appears in this table. Since 0 < d < 22 for
alld € D, it follows that if r > 223, then there exists an integer d € D such that
r — d? is nonnegative and » — d> = h  (mod 96) for some h € H. Therefore,
r —d>? = 6m, where m is the sum of three squares. This completes the proof.

Lemma 24 [f1 < N < 40, 000, then
(i) N is a sum of nine nonnegative cubes;

(ii) if N %23 or 239, then N is a sum of eight nonnegative cubes;
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(iii) if N » 23 or 239 and if N is not one of the following fifteen numbers:

15 22 50 114 167
175 186 212 231 238
303 364 420 428 454

then N is a sum of seven nonnegative cubes;

(iv) if N > 8042, then N is a sum of six nonnegative cubes.

Proof. Lets(N) denote the least integer & such that N is the sum of £ nonnegative
cubes. Von Sterneck computed s(N) for all N up to 40,000. The four statements in
the lemma are obtained by examining von Sterneck’s list of values of s(N). Using a
computer, one can quickly verify (and extend) von Sterneck’s list (see Exercise 8).

Theorem 2.1 (Wieferich-Kempner) Every nonnegative integer is the sum of nine
nonnegative cubes.

Proof. We shall first prove the theorem for integers
N > 80,
Let
n= [Nl/3] )
Then
210 <n< 2.8k+l.
There exists an integer k > 3 such that
8-8% < N < 8.8,
Let
Nj =N —i3
Fori =1,...,n we have
di =Ny —Ni=i>—(i—1P°=3i2-3i+1
3. 82k+3
<3i2 <3N < —
Choose i so that
Niyy <8-8% <N,
Then i > 1. Since k > 3, we have
N, =N -n?
<m+1P-n*-1
= 3n%+3n
< 6n?
<3. 821\'+3

< 8.8%*,
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Therefore, i < n — 1. It follows that

N;i < Ni_y = (Nic1 = N))+(N; = Nis)) + Ny
=d; +dis1 + Niy
<3.8%348.8%
<11.8%,
Since N;_, — N; = d; is odd, exactly one of the integers N; and N;_; is odd. Choose

a € {i —1,i}suchthat N, = N —a* is odd. By Lemma 2.2, there is an odd integer
b € [1, 8% — 1] such that

N -a*>=b> (mod 8%).

Then
7.8%a8.8% 8% < N—-a®-b <N, <11.8%

and

N —a® - b’ =8,
where

7-8% <q<11.-8%,
Let

r=q—6-8%*

Then

22° < 8% <8%* < r <5.8%,
It follows from Lemma 2.3 that r can be written in the form
r=d>+6m,

where 0 < d < 22 and m is a sum of three squares. Let

A =8
Then o’
m< % < 2-68— < A%
Let
c=2d.
Then

N =a’+b’+8q
=a’+b>+8(6-8% +r)
=a’+b*+8(6-8% +d°+6m)
=a’+b* +(2'd)’ + 8°(6 - 8% + 6m)
-a®+ b+ +6A(A% + m).
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By Lemma 2.1, 6A(A? + m) is a sum of six nonnegative cubes, so N is the sum of
nine nonnegative cubes.

Now let
40,000 < N < 8'°,
Then
a = [(N —10,000)'*] > 30,000' > 31,
SO
d=@+1)P —a’>=3a*+3a+1 < 4a® < 4N?3,
Therefore,

N—-(@+1P®<10,000<N—-a*=N—(a+1>+d < 10,000 + 4N?/3.

If N —a® < 40, 000, then N —a?® is a sum of six nonnegative cubes by Lemma 2.4.
If N — a3 > 40, 000, then we choose the integer

b =[(N - a* - 10,000)'] > 31,
and obtain
N —a®=(b+1)’ < 10,000 < N —a’® — b* < 10,000+ 4N — a*)?/>.

If N —a® — b® < 40, 000, then N — a® — b? is a sum of six nonnegative cubes by
Lemma 2.4. If N — a3 — b® > 40, 000, then we choose the integer

c=[(N —a® - b*-10,000)'"*] > 31
and obtain
N-a®-b—(c+1)
< 10, 000
< N-a*-b-¢3

< 10,000+4 (N —a® — %)

2/3
< 10,000 + 4 (10,000 + 4 (10,000 + 4v*%))

23 2/3 2/3
510,000+4(10.000+4(1o,000+4(s'°) ) )
< 20, 000.

Thus, if 40,000 < N < 80, then there exist three nonnegative integers a, b, and
c such that
10,000 < N —a* — b* — ¢* < 40, 000.

By Lemma 2.4, N — a®> — b* — ¢3 is the sum of six nonnegative cubes. This
completes the proof.
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2.3 Linnik’s theorem

Let G(3) denote the smallest integer s such that every sufficicntly large integer is
the sum of s nonnegative cubes.

Theorem2.2 IfN = +4 (mod 9), then N is not the sum of three integral crbes.
In particular,
G@3) > 4.

Proof. Since every integer, positive or negative, is congruent to 0, 1. or 1
modulo 9, it follows that every sum of three cubes belongs to onc of the seven
congruence classes, 0, +1, £2, £3 (mod 9). Therefore, if N = 14 (mod 9).
then N cannot be the sum of three cubes, so G(3) > 4.

Lemma 2.5 Let n be a positive integer. If there exist distinct primes p, 4. r such
that

p=g=r=-1 (mod§6), 2.0
r <q < 1.02r, 2.2)
3p%q' < n < p°q's, (2.3)
4n = p*r'® (mod ¢9%), (2.4)
2n = p3q'®  (mod r9), (2.5)
n=3p (mod 6p), (2.6)

then n is the sum of six positive integral cubes.

Proof. It follows from (2.2) and (2.3) that

p3(4q18 +2’.18) < 6p3q18
< 8n
< 8p3q|8
< p’(4¢" +4(1.02r)')
< p3(4qls +8r'®),
Thus,
P (49" +2r'%) < 8n < p*(4q'® + 8r'%). 2.7)
Congruences (2.6), (2.4), and (2.5) imply that
8n =2p°r'® = p’(4q"® +2r'®) + 18pg®r® (mod ¢°),
8n = 4p°q'® = p3(49'% +2r'®) + 18pg®r® (mod r°),
8n=0=p3 49" +2r'%) +18pq°r® (mod p),

)
8n = p3 (49" +2r'%) + 18pg®r® (mod pq®rS). 2.8)
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It follows from (2.1) and (2.6) that
n=3p=-3=3 (mod6),

so
8n =24 (mod 48). (2.9)
By (2.1), the primes p, g, r are odd; hence

pP’P=¢*=r*=1 (mod8)

and

n

p3 (2418 +r18) +9Pq6r6
Therefore,

2+p+p=4p=4 (mod 8).

P’(4g'8 +2r'®) +18pq®r® =8 (mod 16).
Similarly, since p=q =r = —1 (mod 3), we have
p3(4q|8 +2r18) + 18pq6r6 =0 (mOd 3)

SO
P*(49'* +2r'®) + 18pqSr® = 24 (mod 48). (2.10)

Since (pqr, 48) = 1, we can combine (2.8), (2.9), and (2.10) to obtain
8n = p3(4q'8 +2r'%) +18pqg®r® (mod 48pq®rS).
Therefore, there exists an integer u such that
8n = p3(4g'® +2r'®) + 18 pq®r® + 48 pqSréu
= p*(49'% + 2r'®) + 6 pg®ro(8u + 3).
It follows from (2.7) that
0 < 6pqSro(8u +3) < 6p°r',

)
0 <8u+3< plq~tr'2.

By Theorem 1.5,
8u+3=x2+y2 422,

where x, y, z are odd positive integers less than pq~3rS, that is,
max{q’x, ¢y, ¢*z} < pré. (2.11)
Therefore,
8n = p3(dg'® +2r'®) + 6pg°ré(x? + y? + 2%)
= (pg® +r’x)’ + (pg® — r’x)’ + (pg® + r’y)’
Hpg® — rPyy +(pr + 4’2 + (pr® - ¢°2)’.
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Since each of the six integers p, q,r, x, y, z is odd, it follows that each of the
six cubes in the preceding expression is even. Moreover, each of these cubes is
positive, since, by (2.2) and (2.11),

0 <r’x < g’ < pr® < pqS,

0< r3y < q3y < pr6 < pq6,
and
0<qg’z< pré.

pqb +rix 3 pq® —rix pqt+riy 3
+ + =7
- (P57) ( ] (757)
-3y} 6 4+ 6 — a3\ >
. pq y P qz + 14 q 2
2 2 2

is a sum of six positive cubes.

Therefore,

Theorem 2.3 (Linnik) Every sufficiently large integer is the sum of seven positive
cubes, that is,
G3) <1

Proof. Let k and ¢ be integers such that k > 1 and (k, £) = 1. We define the
Chebyshev function for the arithmetic progression £ modulo k by

Bk, &)= D logp.
p-t’f!:lxl()

The Siegel-Walfisz theorem states that for any A > 0 and forall x > 1,

X X
l’(X k, 8)- m"’O((]ogX)A), (2.12)

where @(k) is the Euler p-function, and the implied constant depends only on A.
It follows that, for any § > O,

5x x
(1 +8)x; k, &) — 3 (x;k, &) = o(k) +0 ((logX)A) '

Letk =6,£=—1,8 =1/50, and x = (50/51)(log N)2. For any integer N > 2,

> logp

($0/S xtog N2 < pibog A2
pe—1 (mod 6)

= 9((log N)% 6, —1) — 9((50/51)(log N)*; 6, — 1)

(log N)? (log N)?
w02 *° ((log log N)A ) '
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Since
D> logp<) logp<logh,
pIN pIN
pm—1 (mod 6)

it follows that, for N sufficiently large, there must exist at least two prime numbers,
q and r, such that
g=r=-1 (mod®6),

(. N)=(r,N) =1,
and

50 S1r
—(l 2 2 < =1.02.
51(ogN) <r<q<(logN)<50 1.02r.

The multiplicative group of congruence classes relatively prime to g is cyclic of
order ¢(q%) = g3(g — 1). Since g = —1 (mod 6), it follows that (p(g%). 3) = 1,
so every integer relatively prime to ¢° is a cubic residue modulo ¢°. Similarly,
every integer relatively prime to r® is a cubic residue modulo r®. Since

(2Nr,q)=(2Ngq.r)=1,
there exist integers « and v such that

Ww,q)=(,r)=1,
4N = u’r'®  (mod ¢°),

and
2N = v3ql8 (mod r°).

The numbers 6, g%, and r® are pairwise relatively prime. By the Chinese remainder
theorem, there exists an integer € such that

E=u (mod g%,
¢=v (modr®,
= -1 (mod 6).
Then
4N = r™®  (mod ¢°)
and
2N = £3¢"®  (mod r%).
Let
k = 6q°r°.
Then
(k, &) = (6¢°%r%, &) = 1.
Let

x=N'3g¢.
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Since g < (log N)?, we have, for N sufficiently large,
1 1 1
logx = SlogN ~6logg > 3 logN — 12loglog N > ZlogN

and
k = 64 < 6(log N)* < 6(4logx)>* < (log x)*.

By the Siegel-Walfisz theorem with A = 25 and § = 1/50,

?((51/50)x; k, €) — O(x;k, €) = 50:(k) +0 ((logxx)”)

> 2 +0 ad )
= 50k (logx)®
X X
> (log x)%* +0 ((log x)”)
> 0.

Therefore, if N is sufficiently large, there exists a prime p such that
Slx
— = 1.02x
xX<p< 50

and
p=£ (mod 6q6r°).

The primes p, q, r are distinct because (g, £) = 1. Since p = —1 (mod 3),
every integer is a cubic residue modulo 6 p, and there exists an integer s such that

s>=N-3p (mod 6p).
By the Chinese remainder theorem, there exists ¢ such that
’=N-3p (mod 6p),
t=0 (modq?r?),

and
1<t< 6pq2r2.
Let
n=N-1

Then

4n=4N — 4 = 4N = £ = p>r"®  (mod ¢°),

2n=2N =20 =2N = £3¢" = p3¢"® (mod r%),

n=N-t3=3p (mod 6p).

Finally,

n-N—-13<N-x3ql8<p3q'3
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and

n=N-1
> x3q|8 _ 2]6p3q6r6
> (1.02)3pqg" - 216p3q12

3 3
- zp3q'8 + (((1.02)"3 - 2) q® - 2]6) p’q"

33 18
> 3P4
for N sufficiently large. Thus, the integer n = N — > and the primes p, g, r satisfy
conditions (2.1)-(2.5) of Lemma 2.5, so N — > is a sum of six positive cubes.
Since 1 is positive, we see that N is a sum of seven positive cubes. This proves
Linnik’s theorem.

2.4 Sums of two cubes

The subject of this book is additive bases. The generic theorem states that a certain
classical sequence of integers, such as the cubes. has the property that every non-
negative integer, or every sufficiently large integer, can be written as the sum of
a bounded number of terms of the sequence. In this section, we diverge from this
theme to study sums of two cubes. 2 This is important for several reasons. First, it
is part of the unsolved problem of determining G(3), the order of the set of cubes
as an asymptotic basis and, in particular, the conjecture that every sufficiently large
integer is the sum of four cubes. Second, the equation

N=x3+y} (2.13)

is an elliptic curve. If r3 2(N) denotes the number of representations of the integer
N as the sum of two positive cubes, then r3 2(N) counts the number of integral
points with positive coordinates that lie on this curve. Counting the number of
integral points on a curve is a deep and difficult problem in arithmetic geometry,
and the study of sums of two cubes is an important special case.

If N = x>+ y3and x o y, then N = y3 + x3 is another representation of N as a
sum of two cubes. We call two representations

N =xi+y =x3+y;
essentially distinct if {x), y,} # {x2. y2}. Note that N has two essentially distinct

representations if and only if r3 2(N) > 3.

2This section can be omitted on the first reading.
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Here are some examples. The smallest number that has two essentially distinct
representations as the sum of two positive cubes is 1729. The representations are

1729 = 1’ + 12} = 9 + 10°.
These give four positive integral points on the curve
1729 = X3 + y*,

SO
ry2(1729) = 4.

The smallest number that has three essentially distinct representations as the sum
of two positive cubes is 87,539,319. The representations are

87539319 = 167° + 436>
= 2283 + 4233
=255% + 4143,

The cubes in these equations are not relatively prime, because
(228, 423) = (255,414) = 3.

The smallest number that has three essentially distinct representations as the sum
of two relatively prime positive cubes is 15,170,835,645. The representations are

15, 170, 835, 645 = 2468> + 517°
= 24563 + 7093
=21523 + 17333,

The smallest number that has four essentially distinct representations as the sum
of two positive cubes is 6,963,472,309,248. The representations are

6.963, 472, 309, 248 = 2421° + 19, 083*
= 5436° + 18, 948°
=10, 200° + 18, 0723
= 13,3223 + 16, 630°.

It is an unsolved problem to find an integer N that has four essentially distinct
representations as the sum of two positive cubes that are relatively prime.

In this section, we shall prove three theorems on sums of two cubes. The first is
Fermat'’s result that there are integers with arbitrarily many representations as the
sum of two positive cubes, that is,

lim suprj 3(N) = co.
N=—00
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Next we shall prove a theorem of Erd6s and Mahler. Let C,(n) be the number of
integers up to n that can be represented as the sum of two positive cubes. Since
the number of positive cubes up to n is n'/3, it follows that C,(n) is at most n?/3.
ErdGs and Mahler proved that this is the correct order of magnitude for C(n), that
is,

Cy(n) = Z 1> n?3,

320N

However, numbers with two or more essentially distinct representations as sums
of two cubes are rare. Erdos observed that the number C;(n) of integers up to n
that have at least two essentially distinct representations as the sum of two cubes
is o(n2/3). More precisely, we shall prove a theorem of Hooley that states that

C;(n) & n(5/9)+€.

This implies that almost every integer that can be written as the sum of two positive
cubes has an essentially unique representation in this form.

Theorem 2.4 (Fermat) For every k > 1, there exists an integer N and k pairwise
disjoint sets of positive integers {x;, y;} such that

N=x+y]
Jori=1,..., k. Equivalently,

lim supri 2(N) = oo.

N—oo

Proof. The functions 3 3
x(x” +2y°)
fy) =—5—=~

X" =y

and , ,

y(2x° +y°)
gx,y) = 3

x?—y

satisfy the polynomial identity

fO,y)? —glx, ) =x* +y>

If
u(’ — 2v3)
F(u,v) = B e f(u, —v)
and , ,
v(2u” — v°)
Gu,v) = S s e —g(u, —v),
then

F(u,v)* + Gu, v)’ = fu, —v)® - g(u, v =+ (—v)P =’ - v



52 2. Waring's problem for cubes

Let
1
0 ~.
< E< 4
Let x; and y, be positive rational numbers such that

0<ﬂ<£.

X1
We define
U= f(xl ) )'l).
V= g(xl’ )’l)-
Then u and v are positive rational numbers such that

W -vP=x}+yl>o0.

Moreover,

u x(x}+2y}) x ( 1+2p3 )
vy} +y)) 2n \1+p%2)°
where p = y,/x; € (0, 1/4). Since

1 3 3 3
< *+20 =]+ 30 < l+3i,
1+ p3/2 2+ p3 2
it follows that
u x;  3xpP 3x (y. 3 3 /m\t 3¢?
<-=-—x< =——=) === < —
v 2y 4y, 4y \x 4\ x 4
and |
u X)
- —_— — > 2. 2.14
v g 2y, g 2¢ Z (19
Next, we define
xy = F(u,v),
y2=G(u,v).

Since u > 2v, it follows from the definition of the functions F(u, v) and Gu. v)
that x, and y, are positive rational numbers. Moreover,

+ys=ud - =x)+yl,

Leto = v/u. Then
O<o<2<1/2
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by (2.14) and
x2  u(u® —2v3)
y2  vQud —v3)
u 1 -203
2v \1—-03/2
u 303
2v 2-03
u 3uo? o
2v 2v \2-o3
u v o
2v 2u\2-g3
Since
o
0< =93 <o < 7
it follows that
0 u X2 v o v < 3¢
2v y; 2u\2-9o3 4u
Thus,
X2 X1 X2 u 1 |u X1 < 3¢ + 382 <2
Yy 4n| " ly: 2v| 2|v 2y 2 8 !
and so ) i
X2 X1
—_ > —=2 — =2 — > 0.
y2>4yl €>4€ €>83>
This proves that if x, and y, are positive rational numbers such that
0< N £ <1/4,
X)

then there exist positive rational numbers x; and y, such that
3,3 2,3, 3

Y2

0 < — <8¢,
X2
and 4
X X
2. 8¢.
»2 N

If 8¢ < 1/4, then there exist positive rational numbers x3 and x4 such that

3 3 3 3
X3+y;3 =x3+Yy,,

53
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0<£<82£,

X3
and 4
x X
22« 82¢.
Y3 2

Similarly, if K > 2 and

1
gk-2 -
0< £ <

then there exist positive rational numbers x;, yi, X2, y2, . - ., Xk, Y% such that

3,.3_ .3, .3 3,3
Xtyp=xpty; ==X+,

0<2 <8'e fori=1,... k

Xi
and 4
Xt Xl o ge  foriml,....k—1.
Yisl Yi

Let & = 8%, We shall prove that the k sets {x;, y;} are pairwise disjoint. Since

Yxioj ¥ 'xinj
i _ i

‘ <4/ .8t e =gl 3207
Yi+j Yisj-1

for j=1,...,k —i,it follows that

Axive  xi |V ¥
Yist Yil 75T Yisj Yisj-1
¢
<8e) 327
j=1
< 832%

forl <i <i+€<k.lfxj=xi, andy; =y forsome > 1, then

Xivt  Xi

Yi+t Yi

and
Hoc@-nE.
Yi Yi

t
Fxive X

Yist Yi

3 < 832% (&)
X;

8%-132¢¢2
g%¢?

< 8'32%.

It follows that

A

A

-l‘
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which is absurd. Therefore, {x. y(}, ..., {xx. yx} are k pairwise disjoint sets of
positive rational numbers. Let d be a common denominator for the 2k numbers x;,
e X Y1y oo Yioand let N = (dx;)® + (dy))>. Then {dx,, dy}, ..., {dxi. dyi)
are pairwise disjoint sets of positive integers, and

@x;)* + (@) = dx2)* + (dy2)’ = - = (dx)* + @y)’ = N,

that is, r3 2(N) > k. This proves Fermat’s theorem.
Next, we shall prove the Erdos—-Mahler theorem. This requires four elementary
lemmas.

Lemma 2.6 Leta and b be positive integers such that
a<b.
Let r(a, b) denote the number of pairs (x, y) of integers such that
x3+(a —x)3-=y3+(b—y)3 (2.15)
and
a b
0<x<§ and 0<y<§. (2.16)

Then
r(a, b) < 5a*3.

Proof. The function

falx) = x3 +(a — x)* = 3ax? - 3a%x +a*
is strictly decreasing for 0 < x < a/2. Letr = r(a,b) > 1. Let (x;, ), ...,
(x;, yr) be the distinct solutions of equation (2.15) that satisfy inequalities (2.16),
and let
a
O<xy<---<x < =.

2

Then

b b 3

T - fb ("2‘) < fo(y1) = fa(xl) < fa(0)=a’,
and so

a<b<4a <2a. (.17
Fori=1,...,r — 1 we have
Fo(yin) = fa(xin)) < fa(xi) = fo(yi),

and so

O<y<---<y <=

2
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Moreover, the point (x;, ¥;) is a solution of equation (2.15) if and only if (x;, y;)

lies on the hyperbola
a\? b\?
a(x—-i) —b(y—i) =c,
where 3 s
b’ —-a
- 0.
c 3 >
Fori=1,...,r, let
a
u,--z——xi
and
vml
i=3 Yi.
Then
a
0<u,<-~~<u|<5,
0<v,<~-<v1<-2—.

and (u;, v;) is a point in the first quadrant of the uv-plane lies on the hyperbola
au’ —bv? =c.
Since the hyperbola is convex downwards in the first quadrant, it follows that

Visl — Vi Vi — Vi)
>

Uisy — U; Ui —uj
fori =2,...,r — 1, and so the r — 1 fractions

Visl — Vi Yiet — i
-
Uis) — Ui Xis] — X;

are distinct fori = 1, ..., r — 1. If r; is the number of points (x;, y;) such that

al’3
Xiv) — X > -5
then
a*r  a
2 72
and so
rn < 02/3.

Similarly, if r; is the number of points (x;, y;) such that

al/3

Yislt = Yi > T
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then

1/3

a’'’r b

by (2.17), and so
r, < 2a%3,

Let r3 be the number of points (x;, y;) such that

a'?
1 <xiyy—xi < -

and
a3
1 <yi—y < -
Since the fractions
Yiel — )i
Xisl — Xi

are distinct, and the numerators and denominators are bounded by a'/3/2, we have
(@ 13\? 23

r —_— ) =—.

=\ 2 4

Therefore,

2/3

a
r@@b)y<ri+r+ri+l <3a2/3+—4—+l < 5a*3.

This completes the proof.
Lemma 2.7 Let x and y be positive integers, (x, y) = 1. If the prime p ¥ 3 divides

3+’
x+y

then
=1 (mod 3).

Proof. Let p ¥ 3 be a prime such that

3+y3

2 =0 (mod p).
y

, X
XS —xy+y'=

If p divides y, then p also divides x, which is impossible because (x, y) = 1.
Therefore, (p, y) = 1. Since

(2x — y)*!+3y*=0 (mod p),
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it follows that —3 is a quadratic residue modulo p. Let (%) be the Legendre
symbol. By quadratic reciprocity, we have

(3)-&-

ifandonlyif p=1 (mod 3). This completes the proof.

In the proof of the next lemma, we shall use some results from multiplicative
number theory. Let w(x; 3, 2) denote the number of primes p < x such that
p = 2 (mod 3). By the prime number theorem for arithmetic progressions,
m(x;3,2) ~ x/(2logx). Moreover, there exists a constant A such that

11 1
— = —logl A+O0| —).
> "2 oglogx + A + (logx)

pex
pm2 (mod 3)

This implies that

1 1 1 1
— = 5loglogx — - loglog x'”" + 0 (@)

A0 cpes
pm2 (mod 3)

11 1
- log — — ).
2 % 10+0(logx)

Lemma 2.8 For any positive integer a, let h(a) denote the largest divisor of a
consisting only of primes p =1 (mod 3), that is,

h(a) = n pr. (2.18)
Abo

pmi  (mod 3)

Let H(x) denote the number of positive integers a up to x such that h(a) < a'/'°
and a is not divisible by 3. There exists a constant 8, € (0, 1) such that

H(x) > &x
forallx > 2.

Proof. Let Ho(x) denote the number of positive integers a < x of the form
a = pb, where p = 2 (mod 3) is a prime such that p > x'¥!!" and b is an
integer not divisible by 3. An integer a has at most one representation of this form.
Moreover,

h(a) = h(b) < b = a . X1 < pl/10 < G110,
p
It follows that every number of the form pb is counted in H(x), and so

Ho(x) < H(x).
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Also, Hy(2) = H(2) = 1. Let g(x) denote the number of positive integers up to x
not divisible by 3. Then

x) > Z 1
x — —
8 3
and
X
Ho(x) = Y g(—)
T p
pel (mod 3)
2x
= = (5)
‘ll)/llﬂ,sl 3p
pm? (mod 3)
2x 1
> ) - -n(x32
3 0N pee
pw2 (mod 3)
2x (1 11 1 x
= —|=log—=+0 o\ —
3 (2 o8 10+ (logx))+ (logx)
X 11 X
- glogﬁ ++0 (_logx)
> x.
This completes the proof.

Lemma 2.9 Let ¢(d) be the Euler ¢-function, and let 0 < § < 1. There exists a
constant ¢, = ¢,(8) > O such that, if n is a positive integer and t > &n, and if

ag<---<a<n
are any t positive integers, then
!
2
w(a;) > cn”.
i=l

Proof. For any p > 7, we have

(-5) -3

N
<
~
~ |7
2

L

]
[

SN SN SN L
+

A
|

]
—_
|
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Since the infinite product

converges, we have

where
O<cy <1

Since ¢(d) =d npld (l - %) and n! > (n/e)", it follows that

Floo- F1T1(-)

d=l d=1 ‘pd p

. ]_l (] _ l)wm

p

Choose ¢3 > 0 so that

Let

Suppose that there exists a set D C [1, n] such that |[D| = m + 1 and ¢(d) < c3n
for alld € D. Since ¢(d) <d < nforalld < n, we have

ﬁ p(d) = H ¢(d) ﬂ ¢(d)
i

d=] =1
deD
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n n
<[Ten]]r
da

del
deD d¢D

< (CSn)m*l”n-m—l
- cgn-rlnn

5n/2
< 03"/ n"

can\"
<(5)
e
which is impossible. It follows that there exist at most m integers in [1, n] with
©(d;) < c3n. In particular, among the ¢t > &n integers a;, there must be at least

. > &n én S én
— m — — —
- 2172
integers for which ¢(a;) > c3n, and so
;¢(ai) > (7) csn = —-n"=cn’,
where ¢, = ¢35/2. This completes the proof.

Theorem 2.5 (Erdos-Mahler) Let C;(n) denote the number of integers not ex-
ceeding n that can be written as the sum of two positive, relatively prime integral
cubes. Then

Cy(n) > n*>.

Proof. Let
hay= [] ¢
Mla
pml  (mod 3)
and let

a<---<a <n’

be the integers in [1, n!/3] not divisible by 3 such that
h(a;) < a,.”'o.
Then h(1) = h(2) = 1 and so a; = 2. By Lemma 2.8, we have
t=H(@n'3) > §n'3.
Let x and y be positive integers such that

xX+y=a; forsomei=1,...,1.

Then

x3+y3<(x+y)3-a,-35n.
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Moreover, (x, y) = 1 if and only if (x.a;) = (y.a;) = 1. Therefore, the number
of pairs x, y of positive integers such that x + y = g;,x < y, and (x,y) = 1l is
p(ai)/2.

Let r(m) denote the number of representations of m in the form

m=x>+y*

where x and y are relatively prime positive integers such that (x, y) = 1 and
x + y = a; for some i. Then

R = Zr(m) - Zw(al) > cgn?/

me=l 1-2

by Lemma 2.9.
Let R, be the number of ordered quadruples (x, y. u, v) of positive integers such

that

x4y mud 40

ai=x+y<u+v=a; fori, j € [1,1],
(x,y)=(u,v) =1,
X<y and u<wv.

Note that if x3 + y3 = 43 + v3, then x + y = u + v if and only if {x, y} = (i, v}

(Exercise 7). Then
n-5(7)
m=1
Let (x, y, u, v) be a quadruple counted in R,. Since
x3+ y i u e+’

W)y ae ’)h(a,) u+v

h(ai) x

and a; and a; are not divisible by 3, it follows from (2.18) that a;/h(a;) and
a;/ h(a;) are products of primes p =2 (mod 3). By Lemma 2.7,

x3+y3 uw+ 03
p =\p =1
X+y u+v

if p=2 (mod 3). Therefore,

a; a;

h(a;) - h(a;)

Fix the integer a;. Since

0< (h( ))h(a,)-a, <n's
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and
a; 9/10
—>a’',
h(a;) !
it follows that
1/3
1< h(aj) < —5710°
a.

1

Therefore, to each a; there correspond fewer than

nl/3

9/10
a,-/

different integers a;. By Lemma 2.6, the number of quadruples (x, y, u, v) such

that x + y = a; and u + v = a; is smaller than 3a,.2/ 3. Therefore, the number R, ; of
quadruples (x, y, u, v) such that x + y = g; satisfies

1/3 1/3

Ry <3 pn” 3P

2i <98 5 = 530
a; a;

and so
t
R; = z Ry
im]
(13
n
<32 %
i=1 G;

1
1/3
D> 7%

1<i<n'/3
< 3n I/J(n 1/3)23/30
- 30 /3-(7/90)

Let C}(n) count the number of integers m up to n of the form m = x> + y3, where
x and y are relatively prime positive integers. Since

<l+ (r
r

- 2
for all integers r, we have

Ry = i r(im) < i 1+ i (r(;n)) < C3(n) + R,.

m-} me=| me-l
rim)>1 rim)> 1 rimyzt

Therefore,
Cé(n) >R — R, > n23 — p@/3)-@1/9%0) > n?/3,

This completes the proof.
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The Erdos—Mahler theorem states that many integers can be written as the sum
of two positive cubes. Hooley showed that very few numbers have two essen-
tially distinct representations in this form. To prove this, we nced the following
result of Vaughan-Wooley [130, Lemma 3.5] from the elementary theory of binary
quadratic forms.

Lemma 2.10 Let ¢ > 0. For any nonzero integers D and N, the nionber of
solutions of the equation
X*-Dy*=N
with
max(|X|, |Y|) € P

is

<« (DN P)’,
where the implied constant depends only on ¢.

Proof. See Hua [63, chapter 11] or Landau [78, part 4].

The following lemma on “completing the square” shows how to transform
certain quadratic equations in two variables into Pell’s equations.

Lemma 2.11 Let a, b, ¢ be integers such thata % 0 and D = b* — dac 0. Let
(x, y) be a solution of the equation

ax’+bxy+cy’+dx+ey+ f =0. {2.19)
Let
X = Dy — 2ae + bd
and
Y =2ax + by +d.
Then (X, Y) is a solution of the equation
X2 - DyY?=N,
where
N = (4af — d*)D + (2ae — bd)>. (2.20)

Moreover, this map sending (x, y) to (X, Y) is one-to-one.

The number D = b? — 4ac is called the discriminant of equation (2.19).
Proof. Multiplying equation (2.19) by 4a, we obtain

4a’x* + dabxy + dacy® + dadx + 4aey + 4af

= (2ax + by)? — Dy* + 2d(2ax + by) + 2(2ae — bd)y + daf
= (2ax + by +d)? — Dy* +2(2ae — bd)y + (4af — d?)

= Y% — Dy? +2(2ae — bd)y + (4af — d*)

- 0,
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where
Y =2ax + by +d.

Multiplying by — D, we obtain

D?y? — 2(2ae — bd)Dy — DY? — (4af — d*)D
= (Dy — 2ae + bd)* — DY? — (4af — d*)D — (2ae — bd)?
= X* — DY? — ((4af — d*)D + (2ae — bd)?)
- X2-DY?’-N
=0,
where
X = Dy — 2ae + bd
and
N = (4af — d*)D + (ae — bd)*.
The determinant of the affine map that sends (x, y) to (X, Y) is

0 D

on b |=—28D#0

since a ¥ 0 and D ¥ 0, and so the map (x, y) — (X, Y) is one-to-one. This
completes the proof.

Lemma 2.12 Let P > 2,andleta,b,c,d, e, f be integers such that

max{lal, ..., |fl} € P2

Let D = b* — 4ac, and define the integer N by (2.20). Let W denote the number
of solutions of the equation

ax>+bxy+cy’ +dx+ey+ f =0
with max(|x|, ly|) < P. Ifa, D, and N are nonzero, then
W < |PYf
for any € > 0, where the implied constant depends only on €.

Proof. By Lemma 2.11, to every solution (x, y) of the quadratic equation (2.19)
there corresponds a solution of the equation

X?-DY*=N,

where
D = b* — 4ac « P*

and
N = (daf — d*)D + (2ae - bd)* « P:.
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Moreover,
X = Dy —2ae +bd « P%ly| < P*

and
Y =2ax +by +d & P(x| +|y)) € P*

if max(|x|, |y|) <« P. It follows from Lemma 2.10 that
W « (DN P?) « P'* « P*.
This completes the proof.

Theorem 2.6 (Hooley-Wooley) Let D(n) denote the number of integers not ex-
ceeding n that have at least two essentially distinct representations as the sum of
two nonnegative integral cubes. Then

D(n) «, n®%*.
Proof. If N has at least two essentially distinct representations as the sum of

two nonnegative cubes, then there exist integers x;, x7, x3, x4 such that

x}+x3=x3+x}=N

and

0<uax3 <X|5X25X4SN”3.

For any number P > 2, let S(P) denote the number of solutions of the equation

X} +x3 = x3 +x} (2.21)
that satisfy
0<x3<x3<x3<x4<P. (2.22)
Then
D(n) < S(n'?). (2.23)

If the integers x,, x3, x3, x4 satisfy (2.21) and (2.22), then x; + x; ¥ x3 + x4 by
Exercise 7, and so
X)+ X2 =X3 +Xx4+h,

where
1 <|h| <2P.

Let T(P, h) denote the number of solutions of the simultaneous equations

X} X3 =x3+x3
and
X1 +Xx2 -X3+X4+h
with

0<x; <P fori=1,...,4.
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Choose the integer € so that
20 <2P <2,
Then
S(Py< ). T(P.h)

1<|h|<2P

<Y ) T(h

0<i<t 2 <jh|<2*!

<e¢max{ > T(P.h)}

O<i<t | . .
= 215|h|<2nl

T(P, h)l .

< log P max [
VSHS2P | g m<an

Since x3 is the smallest of the four integers x|, x2, x3, x4, we have

2xs+h > X3+ Xg+h=x+x3>0.

For fixed h, we can use x,, ..., x4 to define four positive integers u,, u,, u3, and
y as follows:

Uy =x) +x2

U =xy; — X3

Uz = X2 — X3

y-2x4+h,

where
1 <u; <2P fori=1,2,3

and

1 <y<4P.
Moreover,

Uy+uz+u3 =2(x1+x2 —x3)=2(xg+h)=y+h

and

h (3y* +h?) = h (3(2xs + h)? + h?)
= h(12x2 + 12x4h + 4h?)
= 4(3x2h + 3x4h* + h®)
= 4((xs +h)’ — x3)
=4((x) +x — x3)° —x} — x5 +x3)
- lZ(x,zxz +.t,x§ - x%x; + x2x§ - x,2x3 +x,x§ — 2x1x2X3)
= 12(x; + x2)(x) = x3)(x2 — x3)
= l2u|u2u3,
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Conversely, the numbers u), u2, u3, and y determine x, .. ., x4 uniquely. It follows
that

T(P,h) <U(P,h),
where U(P, h) denotes the number of solutions of the equations
u|+u2+u3-y+h (224)

and
12u uzus = h(3y* + h?) (2.25)

in positive integers u; < 2P and y < 4P. If u; = h for some i, say, u3 = h, then
Uy+u = h and

12uyuz = 3y* + h* = 3u} + 6uyuz + 3uj + h*.

This implies that
3(“1 — uz)z + hz =0,

which is impossible since h # 0. Therefore, u; # h for all i = 1,2,3. Let
uy, uz, u3, h be a solution of equations (2.24) and (2.25) counted in U(P, h).
Let

(u3, h) = max{(u;, h):i=1,2,3},

where (a, b) denotes the greatest common divisor of a and b. We define

dsy = (u3, h),
= (1. )
2 u2,d3 ,
h
4= (0 )

dy = max{d,, dz, d3}

Then

and d,d,d3 divides h. Let

h
8= ddrdy’
and
vi=S forim=1,2,3
t d,’ ) ) .
Then
2P .
(vi,g@)=1 and 1<y < T fori=1,2,3. (2.26)
i

It follows from (2.25) that

12v;v,03 = g(3y? + h?),
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and so g divides 12, that is,

fe=12

for some integer f. Therefore, |h| = |gd\d2d3| < 12d3, and so

ds > |h|'7. .27
Since u3 « h, it follows that

vy ¥ gdid,. (2.28)
We can rewrite equation (2.25) in terms of the new variables v;, d;, f, g. Since

h = gd1d2d3
and

y= d,v, +d2v2 +d3!)3 -— h,
we have
12u|u2u3 - fgd1d2d301 VU3 = fhv, VU3 = h(3y2 + hz),

and so

fuivav3 = 3(dy vy +dav; +d3vs — h)? + k2. (2.29)
If we fix the integers di, d3, d3, f, g, v3, then equation (2.29) becomes a quadratic
equation in vy, vy:

3d|21)f + (6d|d2 - fv;)v,vz + 3d§v§ + 6d|(d3v3 - h)v,

+6da(d3v3 — h)vy + 3(d3vs — h)? + h? = 0. (2.30)

The discriminant of this quadratic is

D = ((6d\d, — fus3)* — 36d}d?
- fzv§ - 12d|d2fv3
= f2v} — didz f2gv3
= fv3(vs — d\dag)
70
by (2.28). Similarly, the integer N defined by (2.20) is nonzero, because
N = (4-3d? (3(d3v3 — h)* + h?) — (6d\(d3vs — h))*) D
+(2-3d} - 6dy(dy — v3h) — (6dvdy — fu3) - 6di(ds — v3h))’
= 124}h>D + (6d) fv3(d3v3 — h))’
= 124}h? f2v3(v3 — ddag) + 36d] f2v}d} (vs — didzg))?
= 12d}d; f2v3(v3 — d\dag) (d1d28)’ — 3d1dagvs + 3v})
= 3d}d3 f2uy(vs — dydag) ((d1d28)” + 3 (d1drg — 2v3)2)
#0.



70 2. Waring’s problem for cubes

Let W(P, d,, d3, ds, f, g, v3) denote the number of solutions of equation (2.30) in
integers vy, v, satisfying (2.26). Since the coefficients of this quadratic equation
are all < P2, it follows from Lemma 2.12 that

W(Pvdlvd2| d3v f'gv v3) << PF-
Therefore,

S(P) <L log P lsn’liasxp Z T(P,h)
H<|h|<2H

< log P max Y UP.h)
H<lh|<2H

« log P max

1<H<2P

H<|h|<2H fg=12 sdydrdz=h
dy2maady.dy)

Z W(P,dlvdZvd3‘f'g'v3)

1<e3<2P/dy
raved dy

<<logPlSn,1’aS)§P Z z Z Z P¢

H<\h|<2H fgm12 sdidydy=h 1=eys2P/dy
dyzma(d).dy)  vyvdedd;

Pl+e
<« P max z Z Z

VSHS2P | R<2H fg=12  rayiyays ds
dy2mand) .dy)
1
< P"*¥ max —.
1<H<2P d;

H<|h|<2H sd1d2d3=h
dy2maxd|.dy)

Since the number of factorizations of 4 in the form h = gd\d>ds is < |h|*, and
since
dy > |h|'?

by (2.27), we have

1 1 2/3+¢
;3- < ZHhI/S-—E <H ’

H<|h|<2H 2dydydzr=h H<h<2

dyzmaad,.d3)
and so

S(P) < Pl+2€ I n’.liaxzp H2/3#£ &« P5/3+3€'

Therefore, by (2.23), we have
D(n) < S(n'”) « n*%*.
This completes the proof.

Theorem 2.7 (Erdos) Almost all integers that can be represented as the sum of
two positive cubes have essentially only one such representation.
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Proof. This follows immediately from the remark that there are greater than cn?/3
integers that can be represented in at least one way as the sum of two nonnegative
cubes, but there are no more than ¢’n*** = o(n?/?) integers that have two or more
essentially distinct representations as the sum of two cubes.

2.5 Notes

Wieferich's proof [ 144] that g(3) = 9 appeared in Mathematische Annalen in 1909.
In the immediately following paper in the same issue of that journal, Landau [75]
proved that G(3) < 8. Dickson [24] showed that 23 and 239 are the only pos-
itive integers not representable as the sum of eight nonnegative cubes. An error
in Wieferich’s paper was corrected by Kempner [70]. Scholz [108] gives a nice
version of the Wieferich-Kempner proof.

Linnik’s proof [81] of the theorem that G(3) < 7 is difficult. Watson [139]
subsequently discovered a different and much more elementary proof of this result,
and it is Watson'’s proof that is given in this chapter. Dress [25] has a simple proof
that G(3) < 11.

Vaughan [126] obtained an asymptotic formula for r3 g(n), the number of repre-
sentations of an integer as the sum of eight cubes. It is an open problem to obtain
an asymptotic formula for the number of representations of an integer as the sum
of seven or fewer cubes.

It is possible that every sufficiently large integer is the sum of four nonnegative
cubes. Let E(x) denote the number of positive integers up to x that cannot be written
as the sum of four positive cubes. Davenport {17) proved that E4 3(x) « x29/30+,
and so almost all positive integers can be represented as the sum of four positive
cubes. Briiddern [6] proved that

E4.3(X) << x37/42+t.

There are interesting identities that express a linear polynomial as the sum of
the cubes of four polynomials with integer coefficients. Such identities enable us
to represent the integers in particular congruence classes as sums of four inte-
gral cubes. See Mordell [85, 86], Demjanenko [20], and Revoy [101] for such
polynomial identities.

Theorem 2.5 was first proved by Erdés and Mahler {31, 35). The beautiful
elementary proof given in this chapter is due to Erdés [31]. Similarly, Theorem 2.6
was originally proved by Hooley [57, 58]. The elementary proof presented here is
due to Wooley [149]. For an elementary discussion of elliptic curves and sums of
two cubes, see Silverman [115] and Silverman and Tate [116, pages 147-151).

Waring stated in 1770 that g(2) = 4, g(3) = 9, and g(4) = 19. The theorem that
every nonnegative integer is the sum of 19 fourth powers was finally proved in
1992 in joint work of Balasubramanian [2] and Deshouillers and Dress [21].
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2.6 Exercises

1.

Prove that
P+4+5=6°

is the only solution in integers of the equation

x=3P+x -2 +(x—-1)P>=x

. Let s(N) be the smallest number such that N can be written as the sum of

s(N) positive cubes. Compute s(N) for N =1, ..., 100.

. Prove that 5(239) = 9, that is, 239 cannot be written as a sum of eight

nonnegative cubes.

Show that none of the following numbers

15 22 50 114 167
175 186 212 231 238
303 364 420 428 454

can be written as a sum of seven nonnegative cubes.

. Show that none of the following numbers

79, 159. 239, 319, 399, 479, 559
can be written as a sum of 18 fourth powers.

Let v(3) denote the smallest number such that every integer can be written
as the sum or difference of v(3) nonnegative integral cubes.

(a) Prove that
4 <v(3) < g03).

(b) Prove that
v(3) <5.

Hint: Use the polynomial identity
6x =(x +1° +(x — 1)> -~ 2x3
and the fact that x = (N — N3)/6 is an integer for every integer N.

Itis an unsolved problem to determine whether v(3) = 4 or 5. This is called
the easier Waring's problem for cubes.

. Letx, y, u, v be positive integers. Prove thatif x + y = v+vand x> + y’ =

u3 + 03, then (x, y} = {u, v}.
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(Von Stermeck [136]) Using a computer, calculate s(n) for n up to 40,000.
Verify the results of Lemma 2.4.

(Mahler [82]) Prove that 1 has infinitely many different representations as
the sum of three cubes. Hint: Establish the polynomial identity

Ox* +BGx = x> +(1 -9 =1. (2.31)
Prove that
Om*?® + 3mn® — 9m** + (n* — 9m>n)® = n'2.

Let r3 3(N) denote the number of representations of N as the sum of three
nonnegative cubes. Prove that if N = n'? for some positive integer n, then

r33(N) = 971ANVE,

Note: This is Mahler’s counterexample to Hypothesis K of Hardy and Lit-
tlewood [49].

(Elkies and Kaplansky [27]) Verify the following polynomial identities:
8(x? +y? — 2%) = (2x +2y)* + (2x — 2y)* - (22)°,

Zx+1-(x3—3x2+x)2+(x2—x— 1?2 — (x2 = 2x)°,
22+ ) =2x° = 2x —x)2 = (@ —4x? —x + 1) — (22 - 2x - 1)°,
A2x+ D)= +x+22+ (2= 2x — D2 - (x2+ 1)

Show that every integer N, positive or negative, can be written uniquely in
the form

N=892"Cm+1),

where ¢ > 0,r € {0, 1,2}, and m € Z. Prove that every integer N can be
written in the form

N =a*+b* - ¢,
where a, b, c are integers.
Let a be a positive rational number. Consider the equations
a=x>+y’+73
a=(x+y+2z’ =3(y+2)z+x)x+y)
8a = (u+v+w)’ — 24uvw.

Prove that if any one of these equations has a solution in positive rational
numbers, then each of the three equations does.
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12. Leta be arational number. Let r be any rational number such that r # 0 and

13.

a
t-mf—l.

For any rational number w, let

( 24¢2 1
“C\ary )"’

( 241 )
AT A

) 3
(u+v+w)® — 24uvw = 8a L .
rit+1)

Prove that

Let w = r(¢ + 1). Prove that there exist rational numbers x. y. & such that

U=y+z
vmz4x
w=x+y
and
a=x’+y>+2.

This proves that every rational number can be written as the sum of three
rational cubes.

Let a be a positive rational number. Show that it is possible to choose » in
Exercise 12 so that
a=x3+y +23,

where x, y, z are positive rational numbers. This proves that cvery positive
rational number can be written as the sum of three positive rational cubes.
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The Hilbert—Waring theorem

Nous ne devons pas douter que ces considérations, qui permettent ainsi
d’obtenir des relations arithmétiques en les faisant sortir d’identités
ol figurent des intégrales définies, ne puissent un jour, quand on en
aura bien compris de sens, étre appliquées a des problémes bien plus
étendus que celui de Waring. !

H. Poincaré [96]

3.1 Polynomial identities and a conjecture of Hurwitz

Waring’s problem for exponent k is to prove that the set of nonnegative integers
is a basis of finite order, that is, to prove that every nonnegative integer can be
written as the sum of a bounded number of kth powers. We denote by g(k) the
smallest number s such that every nonnegative integer is the sum of exactly s kth
powers of nonnegative integers. Waring’s problem is to show that g(k) is finite;
Hilbert proved this in 1909. The goal of this chapter is to prove the Hilbert—Waring
theorem: the kth powers are a basis of finite order for every positive integer k.
We have already proved Waring’s problem for exponent two (the squares) and
exponent three (the cubes). Other cases of Waring’s problem can be deduced from

'We should not doubt thai [Hilbert’s} method, which makes it possible to obtain arith-
metic relations from identities involving definite integrals, might one day, when it is better
understood, be applied to problems far more general than Waring’s.
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these results by means of polynomial identities. Here are three examples. We use
the notation

(x :l:x2:|:~~:|:xh)" - Z (xy +£2x2+-~+e;.x;.)".

Theorem 3.1 (Liouville)

1
(2 +x2+x2+x2) = Z (x,+x,)‘+g Y - xp?

l<c‘<j54 I<i<j=<4

is a polynomial identity, and every nonnegative integer is the sum of 53 fourth
powers, that is,

g(4) < 53.
Proof. We begin by observing that
(x) ﬂ:Xz) = (xl +Xﬂ) +(x) -~ x2) - 2x4 + le,xz +2x;.

and so

Yo o iExpt= Y irx)t+ Y (- xp?

1si<)<6 1si<j=4 1si<)j<é
= Z (2xf +12x2x2 + 2x7)
1<i<j<4
4
=6) xt+12 Y xix?
i 1si<)j<a

-6(x,2+x§+x§+x§)2.

This proves Liouville’s identity.
Let a be a nonnegative integer. By Lagrange’s theorem, a = x7 + x3 + x2 + x2
is the sum of four squares, and so

6a% = 6 (x2 + x2 + x2 + x2)’

= Y mExpt+ Y @i—xp?

1<i<j<4 1<i<j<4

is the sum of 12 fourth powers. Every nonnegative integer n can be written in the
formn = 6q +r, where ¢ > 0 and 0 < r < 5. By Lagrange’s theorem again, we
have g = a}+---+a2, and so 6g = 6a? + - - - + 6a2 is the sum of 48 fourth powers.
Since r is the sum of 5 fourth powers, each of them either 0* or 14, it follows that
n is the sum of 53 squares. This completes the proof.

The proofs of the following two results are similar.
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Theorem 3.2 (Fleck)
(¥} +x2+x2 -&»,\'3)3
1 6 |
-%K 3y ‘(x;:hxj:txk) +%l Z ) (i £ x)) +—124x
Si<j<k< <i<y< <i<

is a polynomial identity, and every nonnegative integer is the sum of a bounded
number of sixth powers.

Theorem 3.3 (Hurwitz)

(xF+x2+x}+ ,1:3)4

1 1 8
- m (x; £x; £ x3 :’:X4)8 + 5—643 l<i<l§<k<s4(2x,' :I:xj :txk)
+8—-4 E (X,’ :hxj) +§4—0 E (2x,)

I<i<j<4 1<i<4

is a polynomial identity, and every nonnegative integer is the sum of a bounded
number of eighth powers.

Suppose that

(ki 4.4+ x4 Z a; (biax? +b;2x} + b 3x3 + b,;.,x})u 3.1
iw]

for some positive integer M, integers b, ;, and positive rational numbers a;. Hurwitz
observed that this polynomial identity and Lagrange’s theorem immediately imply
that if Waring’s problem is true for exponent k, then it is also true for exponent 2k.
Hilbert subsequently proved the existence of polynomial identities of the form (3.1)
for all positive integers k, and he applied it to show that the set of nonnegative
integral kth powers is a basis of finite order for every exponent k. This was the first
proof of Waring’s problem. In the next section, we obtain Hilbert’s polynomial
identities.

3.2 Hermite polynomials and Hilbert’s identity
For n > 0, we define the Hermite polynomial H,(x) by

Hy(x) = (—_—2—1-)" e‘z% (e"‘z) .

The first five Hermite polynomials are

Ho(x) =]
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H\(x)=1x
1
Hy(x) = x? - 3
3
Hi(x) = x} = Ex
3
Hy(x) =x*—3x%+ 7

Since

H'(x) = (‘7') 4 ( & (e-x’))
() oo £ )2 () )

-= ZXH,,(X) - 2Hn+l(x)v

the Hermite polynomials satisfy the recurrence relation
1
Hni(6) = x Hy () = 5 H,(x). (32
It follows that H,(x) is a monic polynomial of degree n with rational coefficients
and that H,(x) is an even polynomial for n even and an odd polynomial for n odd.
Lemma 3.1 The Hermite polynomial H,(x) has n distinct real zeros.

Proof. This is by induction on n. The lemma is clearly true forn = Qand n = 1,
since H (x) = x. Let n > 1, and assume that the lemma is true for n. Then H,(x)
has n distinct real zeros, and these zeros must be simple. Therefore, there exist
real numbers

Bn<--<Ba<h
such that
Hn(ﬂj) =0
and
H,(B))#0
for j = 1,...,n.Since H,(x) is a monic polynomial of degree n, it follows that
lim H,(x) = oo,
X—=00
and so

H,(B1) > 0.

Since the n — 1 distinct real zeros of the derivative H, (x) are intertwined with the
n zeros of H,(x), it follows that

(=1)/*'H)(B)) >0
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for j = 1, ..., n. The recurrence relation (3.2) implies that

1 1
Hn+l(ﬁj) = ﬂan(ﬂj) - EH':(ﬂj) = ‘_EH,:(ﬂj)y

and so _
j (_1)14-] ,
(=) Hpui(Bj) = > H,(B;) >0
for j = 1,..., n. Therefore, for j =2, ..., n, H,.(x) has a zero B; in each open

interval (B;, B;-1). Since lim,_, oc Hy.1(x) = 00 and H,. (B1) < 0, it follows that
H,,\(x) has a zero B] > . If n is even, then H,,(B,) > 0. Since n + 1 is odd,
H,.1(x) is a polynomial of odd degree, and so lim,_, .o, Hy.1(x) = —00. It follows
that H,,,(x) has a zero B;,, < B,. Similarly, if n is odd, H,,1(B.) < 0 and the

even polynomial H,,(x) has a zero B, < B,. Thus, H,.(x) has n + 1 distinct
real zeros. This completes the proof.

Lemma 3.2 Letn > | and f(x) be a polynomial of degree at most n — 1. Then

/ > e H,(x)f(x)dx =0.

o0
Proof. This is by inductionon n.) If n = 1, then H,(x) = x and f(x) is constant,
say, f(x) = ag, so

oo

/ e"‘zH,,(x)f(x)dx - aof e *'xdx = 0.

oo —00

Now assume that the lemma is true for n, and let f(x) be a polynomial of degree
atmost n. Then f’(x) is a polynomial of degree at most n — 1. Integrating by parts,
we obtain

00 1\ poc gn+l s
f e—"Hm(x)f(x)dx-(—l) f T () fds

. 2 oo dxn!

_ ( —71)' f: d:i"n () r'wdax

B (—TI)/ e H,(x) f'(x)dx
=(.

This completes the proof.

Lemma 3.3 Forn >0,

1 [ _. = ifniseven
-— ~ong ] T )
Cn ,/: e xdx [ 0 ifn is odd. 33
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Proof. This is by induction on n. For n = 0, we have
o
[ e Vdx = /7

o

and so co = 1. For n = 1, the function e™* x is odd, and so

had 2
/ e xdx=0
-0

and ¢y = 0. Now letn > 2, and assume that the lemma holds for n — 2. Integrating
by parts, we obtain

l oo

N
n—'l l o —x?_n=2
() [
n—1 c
) n=2.

If n is odd, then ¢,_, =0 and so ¢, = 0. If n is even,

n—1
cn-( ) )cn—Z

(n - l) (n-2)
“\"2 )22 (n - 2)2)

—2
Ch = e ' x"dx

n!
S22y
This completes the proof.
Lemma 34 Letn > 1,let By, ..., B, be n distinct real numbers, and let cy, c;,
.+ Cn—1 be the numbers defined by (3.3). The system of linear equations
iﬂij-ck fork=0,1,...,n—1 (3.4)
j=l

has a unique solution py, . .., p,. If r(x) is a polynomial of degree at mostn — 1,

then
[+ <]

Z r(Bj)p; = «/— e~ r(x)dx.

j=1

Proof. The existence and uniqueness of the solution p,, ..., p, follows imme-
diately from the fact that the determinant of the system of linear equations

x o+ X2 +---+ X, = Co
Bixi +  Bxa +---+  Buxn =
Bix; +  Bixg 4+ 25, =

-1
T x o+ By Txg +---

+

ﬂ,’:—lxn = Cp-]
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is the Vandermonde determinant

o1

OO

ﬂl ﬁz Tt n - l—[ (ﬂj - ﬂ,) 7(0

E E I<i<j<n
B BT B

Let r(x) = }:2_'0' ayx*. Then

n n n-1
D orBe; =YY aBlp;

el j-l k=0
- Zak Y 8o,
Jj=1
n-1
= Zakck
k=0
l n-1 o0 .
-— akf e xtdx
W2
1 o0
-— r(x)dx
NZ 3

This completes the proof.

Lemma 3.5 Letn > 1, let By,..., B, be the n distinct real roots of the Her-
mite polynomial H,(x), and let py, ..., p, be the solution of the system of linear
equations (3.4). Let f(x) be a polynomial of degree at most 2n — 1. Then

Z f(ﬁj)pj J— ““:f(x)dx.

Jj=1

Proof. By the division algorithm for polynomials, there exist polynomials g(x)
and r(x) of degree at most n — 1 such that

f(x) = Hy(x)g(x) + r(x).
Since H,(B;) =0for j =1,...,n, we have
f(Bj) = Hy(Bj)q(B)) +r(B;) =r(B;).

and so, by Lemma 3.4 and I.emma 3.2,

Zf(ﬂj)ﬁj =Y r(Be;

j=1 Jj=1
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IR b
J— -0
-— / e Hy(x)q(x)dx + —= / “r(x)dx

e"‘zr(x)dx

] \'
e f(x)dx.
J_
This completes the proof.
Lemma 3.6 Letn > 1,let By, ..., B, be the n distinct real roots of the Hermite

polynomial H,(x), and let p, ..., p, be the solution of the linear system (3.4).
Then

pi >0 fori=1,...,n
Proof. Since
n
Hy(x) =[x = 8

j=1

it follows that, fori = 1,...,n,

fix) (" ("’) [ -7

I“

is a monic polynomial of degree 2n — 2 such that f;(x) > 0 for all x. Therefore,

1 bad 2
—ﬁ / e fi(x)dx > 0.
—00
Since f;(8;) > 0 and f;(B;) = O for j # i, we have, by Lemma 3.5,

fiBoi =Y fi(B)p;

j=1

1 ®
= —J_J—; e~ fi(x)dx
> 0.

This completes the proof.

Lemma 3.7 Letn > 1,and letcy, c, ..., Cn-1 be the rational numbers defined
by (3.3). There exist pairwise distinct rational numbers 87, ..., B, and positive
rational numbers py, ..., p; such that

n
Y Bo; =k fork=0,1,...,n—1.

j=1
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Proof. By Lemma 3.4, for any set of n pairwise distinct real numbers 8,, . .., B,,
the system of n linear equations in n unknowns

n
Zﬁfx,-ck fork=0,1,...,n—1

j=t

has a unique solution (py, ..., p,). Let R be the open subset of R" consisting
of all points (B, ..., B,) such that B; « B; fori # j,andlet & : R — R" be
the function that sends (8, ..., By) to (o1, ..., p,). By Cramer’s rule for solving
linear equations, we can express each p; as a rational function of 8, ..., B,, and
so the function

¢(ﬂ|"°"ﬂn)-(p|""'pn)

is continuous. Let R} be the open subset of R” consisting of all points (x;. ..., x,)
such thatx; > Ofori = 1,...,n. By Lemma 3.6, if B,, ..., B, are the n zeros of
H,(x),then (B, ..., Bs) € R and

¢(ﬂl'---'ﬂn)'(Plv--»an)ER'L

Since R is an open subset of R", it follows that ®~'(R”) is an open neighborhood
of (B1, ..., Bx) in R. Since the points with rational coordinates are dense in R, it
follows that this neighborhood contains a rational point (8}, ..., ;). Let

0}, o) =B}, .... B € RL.

Since each number p can be expressed as a rational function with rational co-
efficients of the rational numbers 87, ..., B;, it follows that each of the positive
numbers p; is rational. This completes the proof.

Lemma 3.8 Letn > 1,letcy,cy,...,Cn-) be the numbers defined by (3.3), let
Bi. ..., Ba be n distinct real numbers, and let py, ..., p, be the solution of the
linear system (3.4). For every positive integer r and form = 1,2, ....n — 1,

m/2 m
Cm (X} 4+ +x2) Z th - pj, (Bjixi + -+ + Bjx,)
Jr=l Jr=t
is a polynomial identity.

Proof. The proof is an exercise in algebraic manipulation and the multinomial
theorem. We have

Z Z pj, - ﬂhx‘ +eo ﬂjrx’)m

Ji=1 Je=1
" n
-Zij‘p, '—_.(ﬂhxl)# (ﬂj,xr)“'
jl-‘ j,-l )& ity -, l‘l'

20
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n n My H,

=m!Z---Z Z alle (“'ph).--%—!(ﬁz’pﬁ)

jl'l j,_] Hystiiy = l‘L

u, 20
M,
-m ¥ 3 S T ()
M =l el e :
My
=m! 3 ]'[( > p,)
ulouo,ao-m jm] j-l
r My
=m! Sed

wpeonrem jmy M
120

By Lemma 3.3, ¢, = 0 if mis odd. If m is odd and p; +--- + i, = m, then p;
must be odd for some i, and so

Z Zp/l pll ‘Bllx‘ +- +ﬂjlx’)m =0.
Jir=1 Je=1

This proves the lemma for odd m. If m is even, then we need only consider parti-
tions of m into even parts u; = 2v;. Inserting the expressions for the numbers c,
from (3.3), we obtain

Z Zpll " Pj, ﬂlxxl +: +ﬂj,xr)m

Ji=1 Jr=)
2 5
4 c2v,x,' i
= m! Z ]-[ ]
Tepeadipam ja] (2vi)!
¥ 20
2y,
(2Qv)! x;*
e I SR VEN PAVDL
v; 20

';7! Z l_[xi.v

Ve =mi? el Vi
¥ 20

r 2
= 27(m /2)'('"/2)' > 5 )

ooy em/2 jm)

vi20

men X DLy

sy eavpm/2 l'
v 20
2 2\m/2
=Cwm (X7 +---x2)"".

This proves the polynomial identity.
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Theorem 3.4 (Hilbert’s identity) For every k > 1 and r > 1 there exist an

integer M and positive rational numbers a; and integers b; j fori = 1,..., M and
j=1,...,r suchthat
o2+ Za, (biax) + -+ +bi,x,) . 3.5)

t=l

Proof. Choose n > 2k, and let 8}, ..., B, pf. ..., p; be the rational numbers
constructed in Lemma 3.7. Then 87, ..., B are pairwise distinct and pf, ..., p;
are positive. We use these numbers in Lemma 3.8 with m = 2k and obtain the
polynomial identity

2 2%
cu (xf+--+x Z ij‘ P (Brxi -+ BLx)T
Ji=1 jeml
Let g be a common denominator of the n fractions 7, ..., ;. Then qB; is an

integer for all j, and

(Fe s =3 Zpﬂ qp" (985 %1+ +aB} %)

J1=1 Je=)
is a polynomial identity of Hilbert type. This completes the proof.

Lemma 3.9 Let k > 1. If there exist positive rational numbers a,, . .., ay such
that every sufficiently large integer n can be written in the form

M
n = Z a; y¥, (3.6)

i=]

where x,, ..., xpy are nonnegative integers, then Waring’s problem is true for
exponent k.

Proof. Choose ng such that every integer n > ng can be represented in the
form (3.6). Let g be the least common denominator of the fractions a,, ..., ay.
Thenga; € Zfori = 1,..., M, and gn is a sum of Z,-x qa; nonnegative kth
powers for every n > ny. Smcc every integer N > gng can be written in the form
N =gn+r,wheren > ngand 0 < r < g — 1, it follows that N can be written as
the sum of Z," 1, qa; + g — 1 nonnegative kth powers. Clearly, every nonnegative
integer N < gng can be written as the sum of a bounded number of kth powers,
and so Waring's problem holds for k. This completes the proof.

The following notation is due to Stridsberg: Let Z:,_, a;x¥ be a fixed diagonal
form of degree k with positive rational coefficients ay, . .., ay. We write n = 3_(k)
if there exist nonnegative integers x,, ..., xy such that

M
n= Za,-xf. 3.7
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We let (k) denote any integer of the form (3.7). Then }_(k) + 3 (k) = > (k)
and Y _"(2k) = }_(k). Lemma 3.9 can be restated as follows: If n = }"(k) for every
sufficiently large nonnegative integer n, then Waring's problem is true for exponent
k.

Theorem 3.5 [f Waring's problem holds for k, then Waring's problem holds for
2k.

Proof. We use Hilbert’s identity (3.5) for k with r = 4:

M
2k
(x]2+...+x§)k-za,' (b,“lx,+--.+bi.4x4) .

i=l
Let y be a nonnegative integer. By Lagrange’s theorem, there exist nonnegative
integers x,, x2, x3, x4 such that

y=xt+xd+xd+xl,

and so
M
Yt = Ea;z,?‘k. 3.3
i=
where
Zi = bj1x; + - +bjaxg

is a nonnegative integer. This means that

Y= (2k)

for every nonnegative integer y. If Waring’s problem is true for k, then every
nonnegative integer is the sum of a bounded number of kth powers, and so every
nonnegative integer is the sum of a bounded number of numbers of the form ) _(2k).
By Lemma 3.9, Waring's problem holds for exponent 2k. This completes the proof.

3.3 A proof by induction

We shall use Hilbert’s identity to obtain Waring’s problem for all exponents k > 2.
The proof is by induction on k. The starting point is Lagrange’s theorem that every
nonnegative integer is the sum of four squares. This is the case where k = 2. We
shall prove that if k > 2 and Waring’s problem is true for every exponent less than
k, then it is also true for k.

Lemma 3.10 Letk > 2 and O < £ < k. There exist positive integers By, B ¢,
..., B¢ ¢ depending only on k and € such that

€1
AT ) By x® T =) (2k)
i=0
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for all integers x and T satisfying
xt<T.
Proof. We begin with Hilbert’s identity for exponent k + £ with r = 5:

M,
(xll +... +x52)k“ - Za’ (b,-‘|x| +- .- +b.:5x5)

i=1

2k+2¢

where the integers M, and b, ; and the positive rational numbers a; depend only
on k and ¢. Let U be a nonnegative integer. By Lagrange’s theorem, we can write

U=xt+x?+xi+x?
for nonnegative integers x;, x,, x3, x4. Let xs = x. We obtain the polynomial
identity
M,
@O =Y a (bix + o)™, (3.9
iw
where the numbers M., a;, and b; = b; s depend only on k and £, and the integers
ci =bi\xy+---+b;4xs depend on k, £, and U. Note that 2¢ < k + € since € < k.
Differentiating the polynomial on the left side of (3.9) 2¢ times, we obtain (see
Exercise 6)
2

£
d_u ((x2 + U)k+l) - z Aj.(xﬁ(xz + U)k—i,
dx i=0

where the A, , are positive integers that depend only on k and £. Differentiating
the polynomial on the right side of (3.9) 2¢ times, we obtain

4% M,
Z a; (b,~x + ¢ )del

dx*

i=)

M,
= 2k + 1)(2k +2)- - (2k + 20)bYa;(bix +c;))*

i=]

M,
- Za{(b,x +c)*

iml
M,
=Y ay?,
i=l
where y; = |b;x + ¢;| is a nonnegative integer and
a) = (2k + 1)(2k +2) - - - (2k + 2€)b*

is a nonnegative rational number depending only on k and £. It follows that, if x
and U are integers and U > 0, then there exist nonnegative integers yy, ..., y,

such that
M,

4
DA UYT =Y alyP
i=0

iml
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Let x and T be nonnegative integers such that x> < T. Since A, is a positive
integer, it follows that x> < A,,T, and so

U= AL(T -x2

is a nonnegative integer. With this choice of U, we have
‘ ¢
Y AxEE U =Y Anx¥ (A T
i=0 i=0
e .
- Z A,‘_[A::;’xziTk-i
i=0
¢
- A:,—tm ZAi.tAf;i_lxm T
i=0

4
- A:;l#l Z Bi,lxm Tk—l ,
i=0

where Bt.l = | and .
By = Ai.tAf]'-l

is a positive integer fori = 0,...,€ — 1. Let

1

’ an’

a‘ bl T 1
k-t+1
Al L

Then o y
hd ¢
P S Z By x¥ T = Za{y}" - Z(Zk).
i=0

i=]

This completes the proof.

Theorem 3.6 (Hilbert—Waring) The set of nonnegative kth powers is a basis of
finite order for every positive integer k.

Proof. This is by induction on k. The case k = | is clear, and the case k = 2
is Theorem 1.1 (Lagrange’s theorem). Let k > 3, and suppose that the set of £th
powers is a basis of finite order for every £ < k. By Theorem 3.5, the set of (2€)-th
powers is a basis of finite order for £ = 1,2, ..., k — 1. Therefore, there exists an
integer r such that, for every nonnegative integer n and for £ = 1, ...,k — 1, the
equation

2

ne=xt e+ x¥

r

is solvable in nonnegative integers x, ¢, .. .. x,.. (For example, we could let r =
max{g2¢): ¢=1,2,...,k-1}.)
Let T > 2. Choose integers C}, ..., Ci-, such that

0<C/<T for€=1,...,k—1.
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There exist nonnegative integers x;,for j = 1,...,rand€=1,...,k — 1 such
that

x12(+..‘+xr2( =Cy . (3.10)
Then

szv‘( < ijzlf <Ci¢<T
j=1
forj=1,...,r,€=1,....,k—1,andi =1, ..., ¢. By Lemma 3.10, there exist
positive integers B; , depending only on k and ¢ such that

-1
KT+ B X T =y 2k = ) (k). @3.11)
i=0

Summing (3.11) for j = 1, ..., r and using (3.10), we obtain

-1 r
CiceTFE 4y B (TF' ) x*
14 £ j.t

i=0 j=1

(-1 r
- Ck—ka_( + Tk—fﬁ'l Z Bi.(Tt_|—' ijzf[
i=0 j=1
= Ck-tTk-( + Dk—-[#l Tk—f+|

= K,

[l r

e-1-i 2

Dy_¢41 = Z B T'"'7 ) x%,
i=0 jml

where

for€=1,...,k — 1. The integer D;_,., is completely determined by k, €, T, and
C-¢ and is independent of C;_; fori « €. Let

B* =max{B;;:€=1,...,k—1landi=0,1,...,¢—1}.
Then

0 < Coei T "+ Dy_ g TH 8!

£-1 r
- C/(__(Tk—[ + Z B,’_(Tk—‘ ZX%“C
i=0 j=1

-1
< B! (Tk—(#l +er+sz—i+l)

i=]

-1
- B- er + Tk—f+l Z Tl)
( i=0

k+1
< B |rT*+ T
T-1

< (r+2)B*'T*,
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since T/(T —1)<2forT > 2. Let

Ci=D,=0.
Then
k-1 k
Y (CeeeTH 4+ Dign THY) = 3 (Ce+ DT =Y (k)
t=1 t=1
and

k
0< Z(c, +D)T! < (k= 1)(r +2)B*T* = E*T*,

=1

where the integer
E* = (k — 1)(r +2)B*

is determined by k and is independent of T. If we choose
T =>E",
then

k
0< Z(C‘ +D)T! < E*T* < T*,
=1

and so the expansion of Zf,, (C¢+ D¢) T to base T is of the form

k

Y (C+DYT = ExT 4+ B T + E T, (.12)
=1

where
O<E <T fori=1,..., k-1

and
O<E,<E".

In this way, every choice of a (k — 1)-tuple (C\, ..., Ci_) of integers in {0,
1, ..., T — 1} determines another (k — 1)-tuple (E,,..., Ex_;) of integers in
{0, 1, ..., T — 1}. We shall prove that this map of (k — 1)-tuples is bijective.

It suffices to prove it is surjective. Let (Ey,..., Ex-)) be a (k — 1)-tuple of
integers in {0, 1,..., T — 1}. There is a simple algorithm that generates inte-
gers Cy,Ca,...,Ckoy € {0, 1,..., T — 1} such that (3.12) is satisfied for some
nonnegative integer E; < E*.Let C, = E, and I; = 0. Since D, = 0, we have

(Cy+ D))T = E\T + I, T?.

The integer C; determines the integer D,. Choose C; € {0, 1,..., T — 1} such
that

Cy+ Dy + Ib=E, (modT).
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Then
C2+D2+12-Ez+13T

for some integer I3, and

2 2
Y (Ce+ DT =) E T+ ;T
f=] {=]

The integer C, determines D;. Choose C3 € {0, 1,..., T — 1} such that
Ci+ D3+ 13 =E; (mod T).
Then
Ci+Dy+13=E3y+ 4T

for some integer /4, and

3 3
Y (Ce+DIT = Y EcT¢ + LT,
t=l (=]

Let2 < j < k — 1, and suppose that we have constructed integers /; and
C],...,Cj_l 6(0.1....,T— l}
such that

j—1 j-1
Y (Ce+ DYT" = Y E T+ LT
{=1 (=1

There exists a unique integer C; € {0, 1, ..., T — 1} such that
Cj+Dj+leEj (mod T).
Then
Cj+Dj+lj - Ej+lj,|T

for some integer /.1, and

J Jj
Y (Ce+ DOT =Y E(T + LT
£=1 f=l

It follows by induction that this procedure generates a unique sequence of integers
C,Cy...,Chy € {0, 1,...,T — l}suchthat

k-1

k=1
3 (Ci+ DOT" = EcT* + I, T .
b= £=1

Since C; = 0 and C;_, determines D;, we have

k k-1 k
0<) (Ce+DOT" = Y ET +(Dy + I)T* = Y ET! < E'TY,
=] f=] =]



92 3. The Hilbert—-Waring theorem

where D, + I, = E;. Since
k=1
0< Y ET <T,
=1

it follows that
O0<E<E*
and
k-1
ZEJ‘-&-E‘T" < (1+E%T* <2E*T*. (3.13)
=]

Recall that ) )
Y ET = (Co+ DT =) (k).
(=1 t=1

Since E* depends only on k and not on T, it follows that
(E* = EQT* = ) _(k),

and so

k=1
Y ET+ET =3 (k) (3.14)

[

for every (k — 1)-tuple (Ey, ..., Ei_) of integers E, € {0, 1, ..., T — 1}. Choose
the integer Ty > SE* so that

AT +1)f <sT* forall T > Tp.

We shall prove that if T > Ty and if (Fo, F\, ..., Fi—1) is any k-tuple of integers
in{0,1,..., T — 1}, then

Fo+ FiT +-- + B T+ 4E*T* = ) (k).

We use the following trick. Let Ej € {0, 1, ..., T — 1}. Applying (3.13) with T +1
in place of T, we obtain

ENT + 1)+ EXT +1)* < (T + 12+ EX(T +1)*
<(1+E*)T + 1)
< 2E%(T + - (3.15)

Applying (3.14) with T + 1 in place of T, we obtain
EyT + 1)+ EXT + 1) = ) (k). (3.16)
Adding equations (3.14) and (3.16), we see that for every choice of k integers

E(’).Eh...,Ek_] E{O,I,...,T—”,
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we have

F* = (E\T 4+ + E T + E*TY) + (E((T + 1)+ E*(T + 1))
k=1
k
= (Eg+E*)+(E\ + Eg+kE")T + ) (Ei + (e) E‘) T!+2E°T*

(=2
- Z(k).

Moreover, it follows from (3.13) and (3.15) that
0< F* <4EX(T+1) <SE'T* <T*!
since 4T + 1) < 5T*and T > Ty > SE*. Given any k integers
Fo,F,.... Fk.y €{0,1,..., T =1},
we can again apply our algorithm (see Exercise 7) to obtain integers F; and
Ey,E\,Ey,....Ex1€{0,1,...,T =1}
such that

Fo+ AT +---+ F, /T ' + R TX
=ET+ -+ E\T" "+ E*T* + Ey(T + 1)+ EX(T + 1)*

- b,
where F; is an integer that satisfies
0< F, <5E".
After the addition of (SE* — F;)T* = 3 (k), we obtain
Fo+ FiT +-- 4 F,T' +SE*T* = ) (k)

for all T > Ty and for all choices of Fy, Fy, ..., Fy_, € {0,1,...,T — 1}. This
proves that n = 3 (k) if T > T, and

SE*T* <n < (SE*+ 1T*.
There exists an integer T} > T, such that
SEXT+ 1) < (SE*+1)T*  forallT > T,.
Thenn =3 (k)if T > T; and
SE*T" <n < SE*(T + 1)\ (3.17)

Since every integer n > SE‘T," satisfies inequality (3.17) for some T > T, we
have
n=Y (k) foralln>SE*T}.

It follows from Lemma 3.9 that Waring’s problem holds for exponent k. This
completes the proof of the Hilbert—Waring theorem.
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3.4 Notes

The polynomial identities in Theorems 3.1, 3.2, and 3.3 are due to Liouville {79,
pages 112-115], Fleck [40], and Hurwitz [65], respectively. Hurwitz's observa-
tions [65] on polynomial identities appeared in 1908.

Hilbert [56) published his proof of Waring’s problem in 1909 in a paper ded-
icated to the memory of Minkowski. The original proof was quickly simplified
by several authors. The proof of Hilbert’s identity given in this book is due to
Hausdorff [52], and the inductive argument that allows us to go from exponent &
to exponent k + 1 is due to Stridsberg [120]. Oppenheim [94] contains an excellent
account of the Hausdorff-Stridsberg proof of Hilbert's theorem. Schmidt [105]
introduced a convexity argument to prove Hilbert's identity. This is the argument
that Ellison [28] uses in his excellent survey paper on Waring's problem. Dress [25]
gives a different proof of the Hilbert—Waring thcorcm that involves a clever ap-
plication of the easier Waring’s problem to avoid induction on the exponent k.
Rieger [102] used Hilbert’s method to obtain explicit estimates for g(k).

3.5 Exercises

1. (Euler) Let [x] denote the integer part of x, and let
3\
()]

gk)>2*+q -2
Hint: Consider the number N = 2% — 1.

Prove that

2. Verify the polynomial identity in Theorem 3.2, and obtain an ¢xplicit upper
bound for g(6).

3. Verify the polynomial identity in Theorem 3.3, and obtain an explicit upper
bound for g(8).

4. (Schur) Verify the polynomial identity

22, 680(x? + x2 + x2 + x2)°
=9 (2x)'+180) (xi £ x)'0+ D 2x; £ x; £x0)'
+9Y (x1 %2y x5 £ x4)".

5. Show that every integer of the form 22, 680a’ is the sum of 2316 nonncgative
integral 10th powers.
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6. Letk, ¢, and U be integers such that 0 < € < k. Let
) =02+ UM

Show that there exist positive integers Ag, A1, ..., A; depending only on k
and £ such that
f 2.2 ki
—i
m - ; A,‘X (X + U) .
t

7. Letk > 1, T > 2, and D, E; be integers fori =0, 1, ...,k — 1. Prove that
there exist unique integers Cy, . .., Cx—) and I such that
0<Ci<T fori=0,1,...,k-1
and

k=1 k~1
3 (Ce+DOT =Y E T  + LT
=0 (=0

8. Thisis an exercise in notation: Prove that }_(2k) = (k) but } (k) o 3_(2k).






4
Weyl’s inequality

The analytic method of Hardy and Littlewood (sometimes called the
‘circle method’) was developed for the treatment of additive problems
in the theory of numbers. These are problems which concern the rep-
resentation of a large number as a sum of numbers of some specified
type. The number of summands may be either fixed or unrestricted; in
the latter case we speak of partition problems. The most famous ad-
ditive problem is Waring’s Problem, where the specified numbers are
kth powers . ... The most important single tool for the investigation
of Waring’s Problem, and indeed many other problems in the analytic
theory of numbers, is Weyl’s inequality.

H. Davenport [18])

4.1 Tools

The purpose of this chapter is to develop some analytical tools that will be needed
to prove the Hardy-Littlewood asymptotic formula for Waring’s problem and other
results in additive number theory. The most important of these tools are two in-
equalities for exponential sums, Weyl’s inequality and Hua’s lemma. We shall also
introduce partial summation, infinite products, and Euler products.

We begin with the following simple result about approximating real numbers
by rationals with small denominators. Recall that [x] denotes the integer part of
the real number x and that {x} denotes the fractional part of x.
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Theorem 4.1 (Dirichlet) Let o and Q be real numbers, Q > 1. There exist
integers a and q such that

1<¢g=<Q, (a,q)=1,

a 1
- = < —.

q! qQ

Proof. Let N = [Q]. Suppose that {ga} € [0, 1/(N + 1)) for some positive
integer ¢ < N.If a = [ga], then

0<{ga}=qa —[qu]=qa —a <

N+1’
and so
‘a a - 1 1 1
q q(N+I) Q q?

Similarly, if {ga} € [N/(N + 1), 1) for some positive integer ¢ < N and if
a =[ga]+ 1, then

<{qa}=qa—a+1 <1

N+1"~
implies that |
lq =N+l
and so
‘a_‘l < ot _1
gl " qN+1) qQ "~ ¢?
If

1N )
@O T N

forallg = 1, ..., N, then each of the N real numbers {ga} lies in one of the N — 1

intervals ) "
L2 ) fori=1,.. N-L
N+1 N+1

By Dirichlet’s box principle, there exist integersi € [1, N—1]and gy, q; € [1, N]
such that
1<q1<q@=<N

and
i i+1
{q1a}, {q2a) € [NH N”)
Let
9=q@2—q1 €[1,N -1]
and

a = [ga] - [g].
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Then

1

1
lga ~ a| = |(q2¢ — [q2]) — (1 — [q1@])] = [{g2} — {qrx}} < N1 °© ik

This completes the proof.

4.2 Difference operators

The forward difference operator A, is the linear operator defined on functions f
by the formula

Ba(f)x) = f(x +d) — f(x).
For ¢ > 2, we define the iterated difference operator Ay, 4, ,.....q, bY
Dddpy...dy = Ba 0By, . .d = B4 084,008y
For example,
Bapa(f)X) = By, (84,(S)) (1)

= (84,(f)) (x +d2) — (84,()) (%)
=f(x+dy+dy)— f(x+dy) — f(x +dy) + f(x)

and

Daydya, (f)(X) = f(x +d3+dy +dy) — f(x +d3+dy)
—f(x+d3s+d) — f(x+dy +dy)
+f(x +d3) + f(x +dr) + f(x +d)) — f(x).

We let A be the iterated difference operator A, withd; = 1 fori =1,...,¢.

Then

AQ(f)(x) = f(x +2) = 2f(x + 1) + f(x)
and

AC(f)(x) = f(x +3) =3f(x +2)+3f(x + 1) = f(x).
Lemmad4.1 Letl > 1. Then

£
AO(f)(x) =Y (-1 (e.)f(x +J)-
i J

Proof. This is by induction on £. If the lemma holds for ¢, then

AYD(f)(x)
= A (A9()) (x)
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¢ /e
- (Z(—D“’ ( .)f(x +j>)
/=0 J

£
=D—1>‘—J( )A(f)(x+1)

Jj=0

3 7
-Z(—l)”’( )f(x+j+ |)+z( ‘*'“J(,)f(nj)

=0 J

t+l 7

( )f(x+j)+Z(—1)‘*"f(.)f(x+j)
Jj=0 J

’Z(—l)(“ J
; T e
= fx+lr)+ ) (=) ((1 ~ 1) + (1)) FO+ )+ (=D o

i=1
j1

This completes the proof.
We shall compute the polynomial obtained by applying an iterated difterence
operator to the power function f(x) = x*.

Lemma 4.2 Letk > land 1 < € < k. Let A,
operator. Then

4, be an irerated difference

k!
By,...a,(x*) = Z —-.—,“fd{' -dj*x! 4
1201 21

=d,---dipi-e(x),

where pi_¢(x) is a polynomial of degree k — € and leading coctficicnt k(k —
1)---(k — €+ 1). Ifdy,...,d; are integers, then p;_,(x) is a polynomial with
integer coefficients.

Proof. This is by induction on ¢. For £ = 1, we have

Ay (x*) = (x +dy) — x*

Jj=0
-y K gy
] ]
Jper=t J!.ll
120521

Let ] < ¢ < k — 1, and assume that formula (4.1) holds for £. Then

A, d,...a,(xY)
= Ag,., (Ba,...a, "))
k! .
= —dll dih Ad;.,(xm)
Jie egg emek m'.’l J

@204y gz
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k! i m! »
= L mggadt ot 2 i

e Je! W Jlent!
myp.oge2) 120,041 21
k! i i
- LY el
ti .. g! I +
Jeergemet gearerem JJVI JE 41
mogpge2l 1200421
k!
j) je gJjeet j
= E ) d d d€+l :

I RN ]!-“ ]i ]l"’]

J20.1 e 2!

Since the multinomial coefficients k'/j!j,!--- j ! are integers, it follows that if
d,, ..., d; are integers, then the polynomial p;_(x) has integer coefficients. This
completes the proof.

Lemma 4.3 Letk > 2. Then
Bap.a ) = dy .. diy k! (x + w) .

Proof. This follows immediately from Lemma 4.2.

Lemma 4. 4 Let € > 1 and Ay, 4, ,...q4, be an iterated difference operator. Let
f(x) = ax* + - be a polynomial of degree k. Then

..... (X)) =dy---de (k(k = 1)---(k — €+ Dax* " +..)

ifl <€ <kand
Agdpy.dy()X)=0
if € > k. In particular, if ¢ =k — 1 and d, - - -di_, # 0, then

Ddyyoa()X)=dy---di_klax + B
is a polynomial of degree one.

Proof. Let f(x) = Zﬁ_, (v} ,-xf , where a; = a. Since the difference operator A
is linear, it follows that

k
Dyt () =D 0Dy, a(x7)
Jj=0

d---d ! =ty
1 ¢ (k — e)!ax DRI I
This completes the proof.

Lemmad4.S Letl <¢ <k.If
_Psdlv'-'vd(yxspv

then
Ag,...q,(x*) < P,

where the implied constant depends only on k.
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Proof. It follows from Lemma 4.2 that

: k! . o
lAdl ..... d)(x‘)| S Z -_— PJ"'"""/("‘.I
VNSRS /AYE j!-’l! v 'Jt'!

FECN TR

k!
=< — Pt
Z.. Jtate- et

= (£+ 1) P*
< (k+1)pP*
« P

This completes the proof.

4.3 Easier Waring’s problem

Here is a simple application of difference operators.

Waring’s problem states that cvery nonnegative integet can be written as the
sum of a bounded number of nonnegative kth powers. We can ask the iollowing
similar question: |s it true that every integer can be written as the sum or difference
of a bounded number of kth powers? If the answer is “yes.” then far every & there
exists a smallest integer v(k) such that the cquation

n-:ﬁxf:tx'z"--:tx,'f(k) 4.2

has a solution in integers for every integer n. This is called the casicr Wuring's
problem, and it is, indeed, much easier to prove the existence of {4 than to prove
the existence of g(k). It is still an unsolved problem, however, t¢ determine the
exact value of v(k) for any k > 3.

Theorem 4.2 (Easier Waring’s problem) Let k > 2. Then v(k) exists, and
' k!
v(k) < 2"+ 7

Proof. Applying the (k — 1)-st forward difference operator to the polynomial
f(x) = x*, we obtain from Lemma 4.1 and Lemma 4.3 that

k-1 —
A(k—l)(xk)-k!x+'n_Z(_])k—-l-—[(k l)(x-f-E)k.
£= ¢

where m = (k — 1)!(). In this way, every integer of the form k!x +m can be writicn
as the sum or difference of at most

()

£=0
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kth powers of integers. For any integer n, we can choose integers g and r such that
n—m=klqg+r,

where

Since r is the sum or difference of exactly |r| kth powers 1, it follows that n can be
written as the sum of at most 2¢~! + k!/2 integers of the form +x*. This completes
the proof.

4.4 Fractional parts

Let [] denote the integer part of the real number « and let {«} denote the fractional
part of . Then [x] € Z, {«) € [0, 1), and

a=[a] +{a).
The distance from the real number « to the nearest integer is denoted
e}l = min(jn — | : n € Z) = inf({a}, | — {a}).

Then [la|i € [0, 1/2], and
a=nz|a

for some integer n. It follows that
|sinma| =sinm)al|
for all real numbers «. The triangle inequality

la + Bl < llall + 1Bl (4.3)

holds for all real numbers « and 8 (see Exercise 2).

The following two very simple lemmas are at the core of Weyl’s inequality for
exponential sums, and Weyl's inequality, in turn, is at the core of our application
of the circle method to Waring’s problem. Recall that exp(r) = ¢’ and e(t) =
exp(2mit) = &2,

Lemmad4.6 If0 <a < 1/2, then
2 < sina < ma.

Proof. Let s(a) = sinra — 2a. Then 5(0) = s(1/2) = 0. If s(a) = 0 for some
a € (0, 1/2), then s'(a) = r cos ma — 2 would have at least two zeros in (0, 1/2),
which is impossible because s’(«) decreases monotonically from 7 — 2 to —2 in
this interval. Since s(1/4) = (+/2 — 1)/2 > 0, it follows that s(a) > O for all
a € (0, /2). This gives the lower bound. The proof of the upper bound is similar.
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Lemma 4.7 For every real number a and all integers Ny < N,,

N,
Y e(an) < min(N, — Ny, flal ™).

n=N;+1

Proof. Since |e(an)| = 1 for all integers n, we have

N, N,
Y e@n)|< ) 1=N,-N.
naN +1 ne=N,+1

Ifa & Z, then ||a] > 0and e(ar) # 1. Since the sum is also a geometric progression,
we have
Ny=N, -1

e@Ni+1)) Y e(@)

n=0
_ el =N -1 I
e(a) -1
2
€ —_—
~ le(er) — 1]
_ 2
le(a/2) — e(—a/2)|
2

N,

Z e(an)

"-Nr‘-l

- |2i sinwe|
1
| sin rree]
-
sin(rr |lce|)
1

< —.
2|ee]]

This completes the proof.

Lemma 4.8 Let a be a real number, and let q and a be integers such thatq > 1
and(a,q)=1.If

a < 1
a - = - -‘
q|” ¢*
then :
— K qloggq.
o Tl gq

Proof. The lemma holds forg = 1,
1

1r=qr ol
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Therefore, we can assume that ¢ > 2. For each integer r, there exist integers
s(r) € [0, /2] and m(r) such that
=3+ (— - m(r))
q

)
q

Since (a, g) = 1, it follows that s(r) = O if and only if r = 0 (mod g), and so

s(r)e(1,q/2]ifr e [1,4q/2). Let

ar

q

0
-_7'

Q8
R

where —1 <6 < 1. Then

where
0’} =|—] <161 <1
It follows from (4.3) that
flarll = || — - —"
r
= m@r) £ Q "
s(r)
q
|7 Il |
zw__
9 29
1
> —.
2q
Let 1 <ry <r; <gq/2. We shall show that s(r) = s(r;) if and only if r} = ry. If
ary ary
q q
then
+ (ﬂ - m(n)) -t (ﬂ - m(rz))
q q
and so

ary = xar, (mod q).
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Since (a,g)=1and 1 <r, <r, <q/2, we have
ry==r, (mod q)

and so
ry =rj.

It follows that
:Isrs‘i]-{s—(r—):l
2 q

ar

3 |

NI

q s
r<zi={-:1<s<
2] {q

1A

q
Therefore,

= Z s(r) _l_

1<r<q/2 Ilarll 1<r<q/2 ¢q

« qlogg.

This completes the proof.

Lemma 4.9 Let a be a real number. If
e-2l<l

q|” q*’
where ¢ > 1 and (a,q) = 1, then for any nonnegative real number V and

nonnegative integer h, we have

q l )
min|V,————— } €« V+glogg.
2 ( la(hg + 1)l 77849

re|

Proof. Let
q q*
where
-1<6<1
Then
h 6
alhqg +r) = ah+‘ir-+9— —;
q q9 9
-ah+£+w+ﬁ

q q q?
ar + [0h] + 8(r)

=ah +
q
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where
or
—1<8(r)={6h}+— < 2.
q
Foreachr =1,..., q there is a unique integer r’ such that
Oh] +6
{athq +r)} = ar +16h1+8() _ r.
q
Let l
O<t<l--.
q
If |
t<f{athg+r)} <1+ r
then
qt <ar —qr' +[0h]+68(r) < qt + 1.
This implies that
ar —qr' < qt —[6h]+1 —&(r) < qt — [6h] +2
and

ar —qr’ > qt — [6h] — 8(r) > qt — [6h] — 2.
Thus, ar — gr’ lies in the half-open interval J of length 4, where
J =(qt — [6h] - 2,qt — [6h] +2].

This interval contains exactly four distinct integers. If | < r; <r, < q and

ary, — qry =ar, — qry,
then

ary =ar, (mod q).
Since (a, g) = 1, we have

ry=ry (modq)

and so
ry =rp.

It follows that for any ¢t € [0, (9 — 1)/q], there are at most four integers r € (1, q]
such that
{athg +r)} € [t, 1+ (1/9)].
We observe that
lle(hg +r)ll € [t, 2 +(1/9)]
if and only if either
{a(hg +r)} € [t,1+(1/q)]
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or
1 — {a(hg +r)} € [t,t +(1/9)].
The latter inclusion is equivalent to

{athg + )}y e [t'. ¢ +(1/9)],

where

1 1
0<t/=1l—--—1<1--.
q

It follows that for any ¢ € [0, (¢ — 1)/q], there are at most eight integers r € [1, q]
for which

lleChg + )l € (1,1 +(1/9)).
In particular, if we let J(s) = [s/q, (s + 1)/g] fors =0, 1, ..., then

la(hg + 1)l € J(s)

for at most eight r € [1, q].
We apply this fact to estimate the sum

Z min (V, ——l-—) .
&2, la(hg + 1)l

If la(hg + r)|| € J(0) = [0, 1/q], then we use the inequality

min (V, -—1——) <V
llae(hg + )i

If |la(hg + r)|l € J(s) for some s > 1, then we use the inequality

min (V ! ) < ! < 9
"llathg + ) ) T llathg+0)I T s
Since ||a(hg + r)|| € J(s) for some s < q/2, it follows that

1
Zmin(V‘——)SSV+8 q
& lathg + D) s
K V+gqglogg.
This completes the proof.
Lemma 4.10 Let a be a real number. If
al _ 1
a——1=—,
91~ ¢*

where q > 1 and (a, q) = 1, then for any real number U > | and positive integer

n we have 1
n n
mn|{-, — | K |-+U+ )lo U.
(k Nakn) (q 7)los24

1<k<U
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Proof. We can write k in the form

k=nhq+r,

where
l<r<g
and U
0<h<—.
q

Then

n 1
S= min{ -, ——
.Skzsu (k ||akn)

n 1
< E min s .
O<h<U/q 1<r<q (hq +r "a(hq + r)")

Ifh=0and 1 <r < gq/2, then Lemma 4.8 gives

L ()= 5

I<r=<q/2 1=r<q/2

K qlogg.
flary < 97084

For the remaining terms, we have

1 2
< )
hg+r (h+1)g

since either h > 1 and
(h+1l)g

2

hq +r > hq >
orh=0,9/2 <r <gq,and

qg (h+1)
ha +r = T2 A
arr=r=3 2

Therefore,

n 1
S < qlogg + min ( ’ ) '
qlogg Z 2 (h+1)q " lle(hg + 1)

O<h<U/q lsr<q

Note that U
—q-+l <U+gq <2max(q,U) < 2qU.

Estimating the inner sum by Lemma 4.9 with V = n/(h + 1)q, we obtain

. n 1
S < qlogg + z z min ((h + ])q’ ll(hq +r)")

O<h<U/q 1<r<q

109

4.4)
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n
< glogg + Z (———+qlogq)
o<h<trg N+ 1A

n | U
L qlogg + - -—+(—+l)qlogq
05&@’”’1 q

U
<<qlogq+£log(—+ l)+Ulogq +qloggqg
q q

< (s +U +q) log2qU.

This completes the proof.

Lemma 4.11 Let a be a real number. If

where ¢ > 1 and (a, q) = 1, then for any real numbers U and n we have

1 U
Z min (n, ——) < (q +U+n+ —n) max{1, log q}.
) ki q

Proof. This is almost exactly the same as the proof of Lemma 4.10. We have

S = Z nﬁn(n.lT&-l—H)

I<k<U

IA

1
> 5 min(n )
0<h<U/q I1<r<q lleeChg + r)]|

glogg+ Y (n+ 3y ‘l)

0<h<U/q 1<s<q/2 ¥

1A

< qlogg + Z (n+gqlogq)
O0<h<U/q

U
<L qlogg + :I_ +1)(n+qlogq)
<<qlogq+Ulogq-|-n-|-gﬁ
q

U
< (q+U+n+ Tn) max{1, logq}.

This completes the proof.
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4.5 Weyl’s inequality and Hua’s lemma

In this section, we denote by [M, N] the interval of integers m such ma_t M<m<
N. For any real number ¢, the complex conjugate of e(t) = e*™" is e(t) = e(—1).

Lemma 4.12 Let Ny, N,, and N be integers such that Ny < N and0 < N, —
Ny < N. Let f(n) be a real-valued arithmetic function, and let

Ny
S(Hy="Y e(f(m).
n=N+1
Then
ISCHOP = Y~ Salh).
|d|<N
where

Sd(f) =Y e(As(f)(n))

nel(d)

and 1(d) is an interval of consecutive integers contained in [N, + 1, N;].
Proof. For any integer d, let
I(d)=[N,+1—d,N, —d]N[N, +1,N,].

Squaring the absolute value of the exponential sum, we get

ISCHI = S(£)S(F)
Ny A
= Y etfem) Y e(f(m)
me=Ny+| naN,+1
Ny N2

=Y Y elfim)— f(n)

n=Nj+1 meN,+1

N; Ng-ll
=Y D e(fn+d)— f(n)
n=N;+l d=N;+1-n

Ng N)—ll
=Y ) e(du(f)n)
n=N,+1 d=N+1-n

Ny—N, -1

= YY) eadH)

d=—(N2—-N,-1)nel(d)

=D Y e(Balf)n)

|di<N nel(d)

=Y Su(f).

di<N

This completes the proof.
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Lemma 4.13 Let Ny, N, N, and € be integers suchthat € > 1. N. . N. and
0 < N; — N, < N. Let f(n) be a real-valued arithmetic function, and let

Ny
S(Hy= Y e(f(n).
n=N+1
Then . ‘
ISCOHF <@ D7 3 Sy a ()
|dy <N |del<N
where
Saa ()= Y e(Bga(H) (45
nel(de....d))

and I(dg, ..., d,) is an interval of consecutive integers contained in | N: ~ 1. .V :].

Proof. This is by induction on £. The case £ = 1 is Lemma 4.12. Now assume
that the result is true for £ > 1. Using the Cauchy-Schwarz inequality, we obtain

s = (1seo)’

2
< ((2~>2“‘"‘ ooy isd,.....d.(fn)

ldy[<N lde| <N

2
- (2N)2""2“2(Z ey |Sd,.‘...:l,(f)|)

di <N de|<N

S @NPTTEIENYE YT 3 1Sa a4 (NI

ld|<N |di|<N

where Sy, ..4,(f) is an exponential sum of the form (4.5). By Lemma 4.12. for
eachd,, ..., d;, there is an interval

I(desr de, ... .dy) S I(de, ..., d)) €[Ny +1.N,)

such that
2

Saa(HE=| Y e(Ag..a(f))

nel(d,...‘.d()

=Y Y e(BuuaaNm)

|desi | <N n€l(de, de.....d\)

- Z S dy....dy ()

deay |<N

and so

SO < @NYTEDT ST Y Sudea ().

|dy|<N de)<N ldea | <N

This completes the proof.
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Lemma 4.14 Letk > 1, K = 2" ande > 0. Let f(x) = ax* +--- be a
polynomial of degree k with real coefficients. If
N
S(f) =) e(f(m),

ne=l

then
KNG

ISCOI* < N¥7! 4 NS5 3" min (N, ma ™),

m=l

where the implied constant depends on k and ¢.

Proof. Applying Lemma 4.13 with £ = k — 1, we obtain

ldil<N i 1l<N

where
St (D)= Y (B, a(H))
nel(d-y.....dy)
and /(di-1, ..., d)) is an interval of integers contained in [1, N). Since |e(t)| = |
for all real 1, we have the upper bound

ISaraOVS D le(Ba,a(N)M)] < N.

nel(di_y.....d\)

By Lemma 4.4, for any nonzero integers d, ....d;-), the difference operator
Ay,_,....q, applied to the polynomial f(x) of degree k produces the linear polyno-
mial

Bay....d ,()X)=dioy---diklax + B =Ax + B,

where
A= dk-l ce dlk!a
and 8 € R. Let I(di_,, ..., dy) = [N, + 1, N;). By Lemma 4.7,
areatn O = | D e(Buydira (S)))
nel(d,-,....d,)
N,
- Z e(An +ﬂ)l
neN)+1
N
=) et
n-N|+l
< :
Al

|
fidioy - - dikle])”
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It follows that

ISd .....a, ()] < min(N, idy - - dy_ ke 7).
Therefore,

ISUONK <@NYH Yo 3 1Sua ()

1d\1<N ldi 1 1<N

S@NFTH YT Y min(N, fid - dikte] ).
|diI<N \di-11<N

Since there are fewer than (k — 1)(2N)*~2 choices of d, ..., ds_, such that
dy ---di_, =0, and each such choice contributes N to the sum, it follows that

ISUOHIX < @NYX*k — DN N
+2N)K—+* Z Z min(N, ||d; - - - d_ k'] )

1<ldi|<N 1<1de-11<N

< k@NY*!
£2INEEN Y min(N, ld) - diec kel
l<d, <N I<di-1 <N
N N
KNV e NKES N min (N, Idy - - diaklall 7Y,
dy=| dy_ =)

where the implied constant depends only on k. Since
1<d - -di_ik! < k!N

and the divisor function t(m) satisfies t(m) <. m* for every € > 0, it follows
that the number of representations of an integer m in the form d, - - - di_ k! is
&« mf « N*. Therefore,

N

N
ISCHX < NETT 4 NEDY "o S min (N, lldeoy - - dikle) ')
dy=1 dy_1=1

k!N
& NV K4 S™ min (N, Ima]) ™),

m=|
where the implied constant depends on k and €. This completes the proof.

Theorem 4.3 (Wey!'s inequality) Let f(x) = ax* +- - - be a polynomial of degree
k > 2 with real coefficients, and suppose that a has the rational approximation
a/q such that
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whereq > 1 and (a,q) = 1. Let

N

S(f)=)_e(f(n).

nal

Let K =2*"'ande > 0. Then

S(f) & Nl+€ (N-l +q—l +N—kq)l/K

where the implied constant depends on k and €.

Proof. Since |S(f)| < N, the result is immediate if g > N*. Thus, we can
assume that
1 <q < N,
and so
logg < logN « N°.
By Lemma 4.14, we have

kNt
ISHIX <« N¥=" 4+ NK5 3™ min (N, [Ima| ™).

m=1

By Lemma 4.11, we have

kINE-! k'Nk
> min (N, Ima)”') < (q +kINFT N+ T) max({1, log g}

m=1

< (q + NE1 4 NTI‘) log N

K N¥(gN*+N~"+g ") N°.
Therefore,

Is(f)lK & NK-l +NK+€ (qN-k+N—l +q—l)
& NK+€ (qN—k +N—l +q—|)‘

This completes the proof.

Theorem 4.4 Let k > 2, and let a/q be a rational number with g > 1 and
(a,g) =1.Then
q
S(@.a)=)_elax*/q) < g'/¥*.

x=1
Proof. Apply Weyl's inequality with f(x) = ax*/q and N = q. We obtain

-k+l)|/K 1-1/K+¢

S(g.a) < q'*(@7"' +q <q

This completes the proof.
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Theorem 4.5 Letk > 2. There exists § > 0 with the following property: If N > 2
and a/q is a rational number such that (a, q) = 1 and

Nl/2 <g< Nk—]/2

then
N

Y elan*/q) < N'*°.

nel
Proof. Applying Weyl’s inequality with f(x) = ax*/q, we obtain

S(f) & NI#S (N-l +q-| +N—A‘q)l/K

NI+ (N-l + N-12 +N—l/2)1/K
N1-1/2K+e

Nl—&

I\

IAN 1A

for any 8 < 1/2K. This completes the proof.

Theorem 4.6 (Hua’s lemma) For k > 2, let

N

T(a)= Z e(an").

n=}
Then l
f IT (@) do « N¥ e,
0

Proof. We shall prove by induction on j that

1 . .
f IT(@)|¥ da « N¥ 7%
0

for j = 1,...,k. The case j = 1 is clear since

1 N N pi
f IT(ot)I2 da = Z Zf e(a(m* —n*))da = N.
0 0

me] ne=l
Let 1 < j < k — 1, and assume that the result holds for j. Let f(x) = ax*. By
Lemma 4.2,
Ag,...a/(f)x)=ad;---dipi_j(x),

where p;_ j(x) is a polynomial of degree k — j with integer coefficients. Applying
Lemma 4.13 with N; =0, N = N, and S(f) = T («), we obtain

IT@P <@NY? Y o 3 3 e(Bg.a(H)

|d\1<N |dj1<N nel(d,.....d)

- N i) Z Z Z e(ad;---dipi_j(n)).

|di)<N |dj1<N nel(d,.....d)
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where I(d}, ..., d)) is an interval of consecutive integers contained in [1, N]. It
follows that

IT@® < N7 " r(d)e(ad), (4.6)
d
where r(d) is the number of factorizations of d in the form
d=d;---dip-;(n)
with |d;| < N andn € I(d}, ..., d)). Since d € N* by Lemma 4.5, we have
rd) < |d|* < N*

for d # 0. Since pi j(x) is a polynomial of degree k — j > 1, there are at most
k — j integers x such that p;_; = 0, and so

r(0) < N’.

Similarly, since

IT@)? = T(@)? ' T(-a)*"

- (ZN: e(—ax* ))k_l (ﬁ: e(cty"))k_l

x=]

Xy=1 .Xl_|-| _\'|-| )'/_|-|

= Z s(d)e(—ad),
d

where s(d) is the number of representations of d in the form

=1 i1
k

i=1 f=l

k

withl <x;,y; < Nfori=1,...,j— 1.Then

Y s@) =T = N¥

d

and, by the induction hypothesis,
1 . o
5(0) = f IT(@))¥ da < N¥ 7/,
0
It follows from (4.6) that

i 1 .
f IT@?" do = f IT@)? 1T@)? da
0 0
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IA

) 1
N2 i / Zr(d’)e(ad')Zs(d)e(—“d)d“
0 d

Wz

NY-i-! Zr(d)s(d)
d

= N¥7'r(@)s(0) + N¥ /'Y " r(d)s(d)
d¥0
&< N2 -i-V NI NY -ive Nll—j—th Z-"(d)
i
& NZ"'-(}H)&: + N2J~j-lNeN2/
& le"-(jflys.

This completes the proof.

4.6 Notes

The material in this chapter is well-known. For the original proofs of Weyl's
inequality and Hua’s lemma, sce Weyl [141] and Hua [62], respectively. Daven-
port [18],Schmidt [106]. and Vaughan [125] are standard and excellent introduc-
tions to the circle method in additive number theory.

The easier Waring’s problem was introduced by Wright [150].

4.7 Exercises

1.

Prove that
lxll =1 — x|l = lln + x|}

for all x € R and n € Z. Let (x) denote the fractional part of x. Graph
fx)=(x)+|Ix| for0 <x < 1.

Prove that
lle + BIl < lleell + 1Bl

foralla, B € R.

Let £ > 1, and let A, denote the iterated difference operator A, . ;. Prove
that

¢ 7
A(f)(x) = Z(—l)‘-f( .)f(x + ).
i J

,,,,, 4, be an iterated difference operator. Find a general formula to
express A4, .4, (f)(x).
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5. Let £ > 2, let o be a permutation of {1,2,..., ¢}, and let Ay,
iterated difference operator. Prove that

d,bean

Ad, ... donr, = Dd,....dy-






5

The Hardy-Littlewood asymptotic
formula

... using essentially the same techniques as Hardy and Littlewood’s
but in a different way and introducing certain additional considera-
tions, we shall derive the same result with incomparable brevity and
simplicity.

I. M. Vinogradov [131]

5.1 The circle method

For any positive integers k and s, let r, ;(N) denote the number of representations
of N as the sum of s positive kth powers, that is, the number of s-tuples (x,, ..., x;)
of positive integers such that

N=xt+.. +xk
Waring’s problem is to prove that every nonnegative integer is the sum of a bounded

number of kth powers. Since 1 = 1* is a kth power, this is equivalent to showing
that

rk“‘(N) >0
for some s and for all sufficiently large integers N. Hilbert gave the first proof of

Waring’s problem in 1909. Ten years later, Hardy and Littlewood succeeded in
finding a beautiful asymptotic formula for r, ;(N). They proved that for s > sp(k),
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there exists § = §(s, k) > 0 such that
1\ -1
re (N) = S(N)T (1 + ;) r (%) NE/R=1 L o(NG/H=1-8y .1)

where "(x) is the Gamma function and G(N) is the “singular series,” an arith-
metic function that is uniformly bounded above and below by positive constants
depending only on k and s. We shall prove that the asymptotic formula (5.1) holds
for so(k) = 2% + 1.

Hardy and Littlewood used the “circle method” to obtain their result. The idea
at the heart of the circle method is simple. Let A be any set of nonnegative integers.
The generating function for A is

f@=) 2"

acA

We can consider f(z) either as a formal power series in z or as the Taylor series
of an analytic function that converges in the open unit disc |z| < 1. In both cases,

oc

F@ =Y ras(Ne®,

N=0

where r4 ;(N) is the number of representations of N as the sum of s elements of
A, that is, the number of solutions of the equation

N=ay+ar+---+a;

with
ay,ay,---,as € A.

By Cauchy’s theorem, we can recover r, ;(N) by integration:

1 f@
(N) = — PASTE
ras(N) 2751 Sy 2 d

for any p € (0, 1).

This is the original form of the “circle method” introduced by Hardy, Littlewood,
and Ramanujan in 1918-20. They evaluated the integral by dividing the circle of
integration into two disjoint sets, the “major arcs™ and the “minor arcs.” In the
classical applications to Waring’s problem, the integral over the minor arcs is
negligible, and the integral over the major arcs provides the main term in the
estimate for r, (N).

Vinogradov greatly simplified and improved the circle method. He observed
that in order to study r, ;(N), it is possible to replace the power series f(z) with

the polynomial
p@2) = Z 2.

aeA
a<N
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Then
sN

pz)’ = er"f,’(m)z"',

mw()

where rf"‘" (i) is the number of representations of m as the sum of s elements of A
not exceeding N. In particular, since the elements of A are nonnegative, we have
rf"t';’(m) =ras(m)form < N and r%’(m) =0 form > sN.If we let

7= e(a) = e2m’a’

then we obtain the trigonometric polynomial

F(a) = p(e(@) = Y _ e(act)

a€A
a<hN

and
sN

F(a)' = Z rf‘ﬁ)(m)e(ma).

m=0

From the basic orthogonality relation for the functions e(na),

1 ifm=n

|
](;e(ma)e(—na)da-{ 0 ifmoin,

we obtain

|
"A.s(N)-/ F(a)'e(—Na)da.
0

In applications, of course, the hard part is to estimate the integral.

To apply the circle method to Waring’s problem, let k > 2 and A be the set of
positive kth powers. Let r; (V) denote the number of representations of N as the
sum of s positive kth powers. Let

P=[NVH].
Then
P
F(a) = Ze(aa) = Ze(an")
o€A ne=]
and

]
’k.x(N)-f F(a)’ e(—aN)da.
0
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5.2 Waring’s problem for k = 1

For k = 1, there is an explicit formula for ry ;(N).

Theorem 5.1 Lets > 1. Then

N -1 Ns-! _
r(N)= (s_ 1) " G- +0 (N*7?)

Jor all positive integers N.
Proof. Let N > 5. We observe that
N=a + - +a;
is a decomposition of N into s positive parts if and only if
N-s=(@-1)+---+(a;—1)
is a decomposition of N into s nonnegative parts. Therefore,
rs(N) =Ry (N —s),

where R, (N) denotes the number of representations of N as the sum of s non-
negative integers.

We shall give two proofs of the theorem. The first is combinatorial. We begin
by computing R, ;(N) for every nonnegative integer N. Let N = a; +--- +a; be
a partition into nonnegative integers. Imagine a row of N +s — 1 boxes. We color
the first a; boxes red, the next box blue, the next a; boxes red, the next box blue,
and so on. There will be exactly s — 1 blue boxes. Conversely, if we choose s — 1
of the N +s — 1 boxes and color them blue, and if we color the remaining N boxes
red, then we have a partition of N into s nonnegative parts as follows. Let a; be the
number of red boxes before the first blue box, a; the number of red boxes between
the first and second blue boxes, and, in general, for j = 2,...,5s — 1, leta; be
the number of red boxes that are between the (j — 1)-st and jth blue boxes. Let
a;, be the number of red boxes that come after the last blue box. This establishes a
one-to-one correspondence between the subsets of size s — 1 of the N +5 — 1 boxes
and the representations of N as the sum of s nonnegative integers. Therefore, the
number of decompositions of N into s nonnegative parts is the binomial coefficient
(V25 1"). It follows that

N -1
FLN) = Ry (N —5) = ( )

s—1
This gives the first proof of the theorem.
There is also a simple analytic proof. The series

= 1

f(z)-ZzN=]—

N=0 -z
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converges for |z| < 1, and

f@F =) R (N
N=Q

We also have
f@’ :
(1-2)
1 ds! 1
s—Dldzr~' \1—¢
] d.t—l ( o0 N)
- — b4
(s — D'dzs! NZ_O
i NN-=-1)---(N=s5s+2) y_.
Nes—1 (s-D! ‘
- Z ( N ) N—s+l
Nus—1
i (N +5 — )
N\ s-—1
Therefore,
N+s—1
Ry s(N) = ( )
s—1
This completes the proof.

5.3 The Hardy-Littlewood decomposition

For k > 2 there is no easy way to compute—or even to estimate-r; ;(N) for large
N. It was a great achievement of Hardy and Littlewood to obtain an asymptotic
formula for r; ((N) for all k > 2 and s > so(k). In this chapter, we shall prove the
Hardy-Littlewood asymptotic formula for s > 2% + 1. For N > 2*, let

P =[N (5.2)
and ,
F(a) = Z e(am*). (5.3)

me=]

The trigonometric polynomial F(x) is the generating function for representing N
as the sum of kth powers. The basis of the circle method is the simple formula

1
res(N) = / F(a)'e(~Na)da. (5.4)
0
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We cannot compute this integral explicitly in terms of elementary functions. By
carefully estimating the integral, however, we shall derive the Hardy-Littlewood
asymptotic formula.

The first step is to decompose the unit interval [0, 1] into two disjoint sets, called
the major arcs I and the minor arcs m, and to cvaluate the integral separately
over both sets. The major arcs will consist of all real numbers o € {0, 1] that can,
in a certain sense, be “well approximated” by rational numbers, and the minor arcs
consist of the numbers @ € [0, 1] that cannot be well approximated. Although most
of the mass of the unit interval lies in the minor arcs, it will follow from Weyl's
inequality and Hua's lemma that the integral of f(a)'e(—Na) over the minor arcs
is negligible. The integral over the major arcs will factor into the product of two
terms: the “singular integral” /() and the “singular series” &(N ). The singular
integral will be evaluated in terms of the Gamma function, and the singular series
will be estimated by elementary number theory.

The major and minor arcs are constructed as follows. Let N > 2*. Then P =
[N'/*] > 2. Choose

O<v<l1/s.
For

1<gqg<P

0<acxg,
and

(a‘q)-l,
we let

. a 1
‘.Dl(q.a)-lae[O. 1]: a—;lgm]

and

q
m=- |J | ma.a.

1<g<pr aod
(o.q)=!l

The interval 9%(q, a) is called a major arc, and 90 is the set of all major arcs. We
see that

93’((1,0)-[0 ! ],

’ Pk-v

1
M(l. 1)- [l bt Fz—_v‘, l]y

a 1 a 1
M@, a)=| - — —, -+ ——
@ [q Pt~y q+P""]

for ¢ > 2. The major arcs consist of all real numbers a € [0, 1] that are well
approximated by rationals in the sense that they are close, within distance P' =,
to a rational number with denominator no greater than P".
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Ifa € Mg, a)NM(q’,a’)and a/q ¥ a’/q’, then |ag’ —a’'q| > 1 and

1 1
—_— K —
PZ\f—qq/
a a
<l--=
q9 49
a a
Sle—=|+ja— =
q q
2
<
= priove

which is impossible for P > 2 and k > 2. Therefore, the major arcs M(q, a) are
pairwise disjoint.

The measure of the set M(1,0) U M(1, 1) is 2P'~*, and, for every g > 2 and
(a, q) = 1, the measure of the major arc M(q, a) is 2P"~*. For every q > 2 there
are exactly ¢(g) positive integers a suchthat 1 < a < g and (g, a) = 1. It follows
that the measure of the set 0t of major arcs is

2 2
_O =5 Y VDS Hm D 4

1<q<P 1<q<Pv

2 PY(P'+1) 2

= Pk-v 2 = Pk~3v’ (5.5)
which goes to zero as P goes to infinity.
The set

m=[0, 1]\ 9

is called the set of minor arcs. This set is a finite union of open intervals and
consists of all @ € [0, 1] that are not well approximated by rationals. The measure
of the set of minor arcs is

ﬂ(m)=1—ﬂ(m)>l—m~

Even though the measure of the set m is large in the sense that it tends to 1 as P
tends to infinity, we shall prove in the next section that the integral over the minor
arcs contributes only a negligible amount to r; ;(N).

5.4 The minor arcs

We shall now show that the integral over the minor arcs is small.

Theorem 5.2 Letk > 2 ands > 2* + 1. There exists 8, > 0 such that
/ F(@)'e(~Na)da = O (ps-k-s,) ’
m

where the implied constant depends only on k and s.
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Proof. By Dirichlet’s theorem (Theorem 4.1) with Q@ = P*~", to cvery real
number « there corresponds a fraction a/q such that
1<q<P  (aq=1,

and

1 ) 1 1
I 5"“"(1’*—“’?)‘
If @ € m, then a & 901(1, 0) UIM(1, 1), so

’ a

1

m<°‘<'_m
and1 <a<q-1.1fqg < P, then
a 1
ad——-| < —
q —Pk—v

implies that
ae€Mg,a) SN =[0,1]\m,

which is absurd. Therefore,

P’ <gq < P¥".
Let
K =21 (5.6)
It follows from Wey!'s inequality (Theorem 4.3) with f(x) = ax* that

Fl@)< P (P +q7' + P*q)"*

& P|+l: (P—l +P '+ P—kPk—v)
& Pl+s—v/K.

/K

Applying Hua's lemma (Theorem 4.6), we obtain

f F(a) e(—na)da f F(e)~? F@)* e(-na)da
m m

IA

f |F(@)F "% | F(a)|* da
m

IA

1
max | F(e)[ "2 / |F(a) da
aem 0

< (Pm-v/x))s—?‘ p? ke
- Px—k—ﬁl

where "
Sl-m%)—(s—2k+l)e>0

if ¢ > 0 is chosen sufficiently small. This completes the proof.
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5.5 The major arcs

We introduce the auxiliary functions

N
wB =Y emeipm)

m=}
and

q
S(g.a)=)_ear*/q).

re]

We shall prove that if « lies in the major arc 90%(q, a), then F(a) is the product of
S(q, a)/q and v(a — a/q), plus a small error term. We begin by estimating these
functions.

Clearly, |S(q, a)| < q. By Weyl’s inequality (Theorem 4.4), we have

S(q.a) & qI-I/KN?
and s
’ a - +
i’q—) < q VK, (5.7
where the implied constant depends only on €.

Lemma 5.1 If|B| < 1/2, then
v(B) <« min(P, |B]7"5).

Proof. The function |
fx)= Exl/k—'

is positive, continuous, and decreasing for x > 1. By Lemma A .2, it follows that

N
B s 3 g

m=1

N
5/ k' x e + £(1)

1
< NV

< P.
If |B| < 1/N,then P < N'/* < |B]="/* and v(B) < min(P, |B|~"/%).
Suppose that 1/N < |B| < 1/2. Then |8 « P.LetM = [Iﬂl"].’l‘hen

1

M —
=3

<M+1<N.
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Let U(t) = 3., e(Bm). By Lemma 4.7, we have U(r) < IIBlI™' = 18/~". By
partial summation (Theorem A.4),

N

mejﬂ %m”""e(ﬂm) = f(NU(N) — f(M)U(M) — ﬁ 'N U@ f'(t)dr
Ml/k—l
YT
< |BI7V*
« min(P, |8]7'"%).
Therefore,
v(p) = X; Lt o(Bm) + Z::I%m"""e(ﬁrn)

<« min(P, |B]7"7%).
This completes the proof.

Lemma 5.2 Let g and a be integers such that 1 < q < P',0 <a < q, and
(a,q) =1.Ifa € M(q, a), then

F(a) = (s(q‘“)) v (a - 3) + O(PY).
q q

Proof. Let 8 = @ — a/q. Then || < P*~* and

Fa) - 299 5
q
-Z ( S((L a) Zk l/k 'e(ﬁm)
mel mel
S
-Z ( ) (ﬁ k) (q a)zk 1/k— )e(ﬂm)
m=1 q m=|
- Zu(m)e(ﬂm).
me]
where
(m) = e(am/q) — (S(q,a)/q) k™ 'm'/*-! if m is a kth power
=N =~ (5@, a)/g) k' m! k! otherwise.

We shall estimate the last sum. Let y > 1. Since |S(q, a)| < q, we have

q
Z e(am"/q)-Ze(ar"/q) Z 1

I<sm<y rm=] tEmsy
mar  (mod q)
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= S(g,a) ( + 0(1))

-y ( @.a )) +0(@).
q

Lett > 1. Since v(8) < P, we have

U(t) = Z u(m)

1sm<t

- k _S(q,a) l 1/k=1
Z e(am” (q) —-—q Z m

1<m<t!/t l<m<t
- (2L2)4 00) - (XL2) 0+ 0ty
q q
= 0(q)-

By partial summation,

N

N
Zu(m)e(ﬁm) = e(BN)U(N) —2m'ﬁ/ e(B)U(t)dt
]

mel
N
- 0(g) - 2nip fl e(BO(g)dt

K q+IBINg

<K (1+18IN)q

&L (1+P*Pp
< P%.

This completes the proof.

Theorem 5.3 Let

sv. 0= 3 3 (S(""”) e(~Na/g)

l <q <Q lﬂa;)l'l

and
Pr—A
J*(N) = / ) v(B) e(—NB)dB.
—pPr-
Let 90t denote the set of major arcs. Then

/m F(d)‘e(—Na)da = G(N' PV)J‘(N) +0 (Ps—k—ﬁz) ,

where 83 = (1 — Sv)/k > 0.

131
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Proof. Let o € M(q, a) and

B=a-— —.

q
Since |S(q, a)| < g, we have |V| <« |v(B)] « P by Lemma5.1. Let F = /(x).
Then |F| < P. Since F — V = O(P%') by Lemma 5.2, it follows that

V-V(a.q.a)-@v(a— El-) -§L‘]q’—‘zlv(ﬂ).

F eV = (F=V)(F'"+F72V 4.4V

< PZI'PS—l
- P"_sz.

Since w(9M) « P¥~* by (5.5). it follows that
f IFt _ V"Ida P P3v—kPx—l+2v - Ps—k—&;'
m
where 8, = 1 — Sv > 0. Therefore,
F(a)'e(—Na)da
o

- | V(a.q.a)e(~Na)da + O (P
fgn (@ q.a) e(— Na)da + O ( )

9
B Z Z/ V(“vaa)"e(—Na)da+O(P-‘*—S:).
m(q.a)

1<g< Py a0
- (u.gr=l

For g > 2, we have

V(a,q,a)’e(—Na)da
[M(q,a)

afg+Pt
-/ V(a, q.a) e(—Na)da
ajlq-Prt

per
-/ ‘ V(B+a/q.q.a)Ye(—N(B +a/q))dB

P

_ (S(q.a)
q

s prt
) -Nai [ wpyec-Npap
- (@) e(~Na/q)J*(N).
For g = 1 we have V(a, 1,0) = v(x) and V(a, 1, 1) = v(a — 1). Therefore,

f V(a,q,a)'e(—Na)da +/ V(a, q,a) e(—~Na)da
M.0) M.y
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prt 1
=/ v(a)'e(—Na)da +/ v(ie — 1)’e(~Na)da
0 1

-y 2 -t
0

- /0 T By e-NBIp+ /

‘ v(B)'e(-~NB)dp

= J*(N).

Therefore,
F(a) e(—Na)da
Jn

q s
=22 (S(q'a)) e(~Na/q)J*(N)+ 0 (P*7%)

s q
IquP ia‘.’q)-l

=G&(N, P*)J*(N)+ O (P**%),

This completes the proof.

5.6 The singular integral

Next we consider the integral

172
J(N) = / v(B) e(—BN)dp.
-172

This is called the singular integral for Waring’s problem.

Theorem 5.4 There exists 55 > O such that
J(N) < P**

and
J*(N)=J(N)+ 0 (P7+%).

Proof. By Lemma 5.1,
1/2
s < [ min(p. 1817y dp
0

1/N 172
= / min( P, |ﬂ|"”‘)‘dﬂ+/ min(P, |B]~"/*)'dB
0 1

/N

/N 172
- f Pdp + B~*'*dp
0

1/N
< Pk

133

(5.8)
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and

J(N) = J*(N) = f v(B) e(~NB)P

Pr-t<(Bi<1/2

1/2

< / lv(B)I'dB
Pr-l
1/2

< B~'*dp
poa

&« pl—eXs/k=1)

- P:—k-&_\

where §; = v(s/k — 1) > 0. This completes the proof.
Lemma 5.3 Leta and B be real numbers such thatQ < B < l und « = f. Then

N-1

_ _ 4 T@r) -
ﬂlN_ al-NcH-ﬂ! ONai,

mz_l'" N —m) rasp TONVT)

where the implied constant depends only on B.

Proof. The function
glx) =xF~Y (N — x)*~!

is positive and continuous on (0, V), integrable on [0, V], and

N N
f g(x)dx-f x#N (N — x)*ldx
0

0
1
-N""""f AN =0 dr
0

- Na-rﬂ—lB(a’ﬂ)
- NO+B-1 I'(@)r'(B)
MNa+pB)’

where B(a, B) is the Beta function and I'(«r) is the Gamma function.

Ifa > 1, then
-1 a-1
F1(x) = g(x) (—~ﬁ _e ) <0
x N —x

and so g(x) is decreasing on (0, N) and

N N-1 N-=1
/ g(x)dx < Zg(x) < / g(x)dx.
0

! ma}
Therefore,

N-1

N
0< / g(x)dx — Z g(m)
0

m=1
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1
< / g(x)dx
0

1
=/ xBY(N = x)* ldx
0

1
< N“"/ xPldx
()}

Na—l
B
If0< B <a<l1,then0 < a+p < 2and g(x) has a local minimum at
L =BN
2-a-p8
Since g(x) is strictly decreasing for x € (0, ¢), it follows that

€ [N/2,N).

and

[c]
PO /1 g(x)dx + g((c))

> fc g(x)dx
1

c Na-l
dx — .
>/(; g(x)dx B

Similarly, since g(x) is increasing for x € (c, N), it follows that

N-1 N
Y glm)< f g(x)dx

ma(c]+]
and
N=1 N-1
> gm = / g(x)dx +g(lc] + 1)
me{c]+] [c)+1
N-1
>/ g(x)dx
c
N NB-
>[ gxydx — ——.
c a
Therefore,
N N-1 -1 B-1 a-1
N¢ N 2N
0</ g(x)dx — g(m) < + < .
0 ,,,Z_, B o B

This completes the proof.
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Theorem 5.5 Ifs > 2, then

1\* s\-!
= - Z s/k-1 (s=1)/k-1
J(N) r(|+k) r(k) N1+ 0 (N ).

Proof. Let 12
J:(N)-f v(B) e(—NB)dp

1/2
for s > 1. We shall compute this integral by induction on s. Since

N
wB =Y amteipm),

mel|

it follows that

N N
V(B =k Y Y (my - omy) K e((my + -+ m)B)

m=1 =1

and so

N N 1/2
LN =k~ Y Y (my ~~-m,)'/*-'f e((my +---+m, — N)B)dp
-172

m=] m,=1

-k Z (ml ”.ms)l/k—-l.

myeemgaN
Ism; <N

In particular, for s = 2, we apply Lemma 5.3 with @ = 8 = 1/k and obtain

N-1
Jz(N) - k-2 Zml/k-l(N _ m)l/k—l
m=1
- (1/k)*T'(1/k)?
r'2/k)
_La+1/kp Nk
I'2/k)

N2/k—l + O(Nl/k—l)

+O(N'* ),

This proves the result in the case where s = 2.
If s > 2 and the theorem holds for s, then

172
Jeni(N) = f v(B)**'e(—NB)dp

172

172
- f (BB e(~Npp

1/

12 N
- [ 3 ey e~ Nprap

172 jpat
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1/2
-z LIy f w(BY e(—(N — m)B)dB

m-l =12

-}: m'“ YJ.(N —m)
m-l
l‘(l+l/k)"$:l

k=1 pr _ o os/k=1
r(s/k) k (N = m)

-]
+0 ml/k I(N m)(t N/k- l)

Applying Lemma 5.3 to the main term (with @ = s/k and 8 = 1/k) and the error
term (witha = (s — 1)/k and 8 = 1/k), we obtain

N-1
l Wk=Vopr _ oos/k=1 (1/k)T'(1/ k)T (s/ k) (s+1)/k=1 s/k—1
> e N = m) FG /b N +0 (N*/%)

nta]

and -
2 Il(m”‘“'(N —m)eVEY (N,/knl).
m=]
This gives
Jon(N) = (/)L /k)C(s/k) T (1 +1/k) NEDE=1 g o (N5/*-1)

F((s+1)/k) IC'(s/k)

I"(I + l/k)”l (s+1)/k =1 s/k—1
FGr D/ +O W)

This completes the induction.

5.7 The singular series

In Theorem 5.3, we introduced the function

SIN,Q) = > Ax@),

I<q<Q
where v
S(q, s —N
=3 (H22) ().

a,g)l

We define the singular series for Waring’s problem as the arithmetic function

S(N) =) An(@).

q=1
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Let |
0 —.
< &< SK

Since s > 2+ 1 = 2K + 1, we have

1
;{-—l—sszl+-i—-se-l+84,
where 1

54-E—ss>0.

By (5.7),

q 1
An(g) K qI/K—_” < ql—«s"’ 5.9

and so the singular series Zq Ax(g) converges absolutely and uniformly with
respect to N. In particular, there exists a constant ¢; = ¢3(k, s) such that

IG(N) < c2 (5.10)
for all positive integers N. Moreover,

G(N)—&(N, P*) = Y An(q)

q>Pr
1
<2 o
q>P
&L PV,

We shall show that G(N) is a positive real number for all N and that there exists
a positive constant ¢, depending only on & and s such that

0<c <6B(N)<c

for all positive integers N. The proof is a nice exercise in elementary number
theory. We begin by showing that A y(g) is a multiplicative function of q.

Lemma 5.4 Let(q,r)=1.Then
S(gr,ar + bq) = S(q, a)S(r, b).

Proof. Since (q,r) = I, thesets {xr : 1 <x <gland{yqg:1 <y < r}are
complete residue systems modulo g and r, respectively. Because every congruence
class modulo gr can be written uniquely in the form xr + yg, where 1 < x < g¢q
and 1 < y < r, it follows that

qr k
(ar + bg)m
S(gr.ar + bq) E e ( ar )

m=l
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(ar + bq)(xr + yq)")

q r
'Z e( a”b")) ( )(xr)‘(yq) )

x=] yel
(((ar+bq)) @xr)* +(yq)") )

N a(xr)* b(yq)*
-2 (M) ()

xm]l ym]

q9 r byk )

= e —

2e()2e(*
- S(q. a)S(r, b).

This completes the proof.

Lemma 5.5 If(q.r) =1, then

Ax(gr) = An(q)An(r),
that is, the function An(q) is multiplicative.

Proof. If ¢ and gr are relatively prime, then ¢ is congruent modulo gr to a
number of the form ar + bq, where (a, q) = (b, r) = 1. It follows from Lemma 5.4

that
qr
Awar) = (S("' C)) (—Cq—';' )

(c.q7 )=

Z": Z’: (S(qr, ar + bq) ’e (ar + bq)N
a=l bel qr qr
(gl (gl

S (5 (52) () ()

{o.q)=t (bw—l

- (59 (D) L (5) ()
;:.( q ¢ q (;.‘ ¢ r

= An(q)An(r).

This completes the proof.
For any positive integer g, we let My (q) denote the number of solutions of the
congruence

~

x{+..+xk=N (mod q)
in integers x; suchthat1 <x;, <gfori=1,...,q.
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Lemma 5.6 Lets > 2* + 1. For every prime p, the series

oc
Xn(p) =1+ An(p") 5.11)
he=l
converges, and
. My(p")
xn(p) = hll>no10 W (5.12)

Proof. The convergence of the series (5.11) fotlows immediately from inequal-
ity (5.9). If (a, ) = d, then

g ax* d (a/d)x*
()£ (25)

x=] x=]
q/d
-d) e (("/d)" ) - dS(q/d, a/d).
x=]

Since

1 9 - 1 ifm=0 (modgq)
€ 0 ifm#0 (modq),

a=]

it follows that for any integers xi, ..., X

L& (aGi+--+x —N)\ [ 1 ifxi+---+xfsN (mod ¢)
¢ 0 ifxf+---+x¥# N (modg)

9 o= q
and so
d 11 & [faGxk+- +xk=N
MN(‘I)'Z‘HZ—Ze((' 1 ))
x =1 x,-lq a=1 q
1 & 4 xk+..4xk—N
"ZZ "Ze(a(l ))
qa-lx.-l xy=l1 q

33 (B) e (%) ()
q P

q q

1

q

5 5 (a/d)N
-—Z 3 dSta/d.ajdye ( <7 )

a=l
d'q (a.gwd
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__Z Z (S(‘I/d a/d)) e(—(a/d)N)
q/d

q d'q . n-)l-d
~¢°"7' Y An(g/d).
diq

Therefore,
Y An(g/d) =q'~*Mn(g)

dlq

for all g > 1. In particular, for g = p" we have
h .
1+ Y An(p/) = Y An(p"/d) = p"" O Mn(p")
jo1 dip
and so

xv(p) = lim (l +ZA~(p’))

Jj=1
= lim p"=OMy(p").
This completes the proof.

Lemma 5.7 Ifs > 2%+ 1, then

&) =[x (p). (5.13)
P

Moreover, there exists a constant c; depending only on k and s such that
0<6(N)<c,
Jor all N, and there exists a prime py depending only on k and s such that

1/2< [] xv(p) <372 (5.14)
P>pPo

forall N > 1.
Proof. We proved that if s > 2* + 1, then

1
Anv(g) K q—m.

where 54 depends only on k and s, and so the series ) ¢ An(q) converges absolutely.
Since the function A y(g) is multiplicative, Theorem A.28 immediately implies the
convergence of the Euler product (5.13). In particular, xy(p) # O for all N and
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p- Since xx(p) is nonnegative by (5.12), it follows that x»(p) is a positive real
number for all ¥ and p, and so the singular series G(N) is positive. Again, by (5.9),

o0
1
0<S(N) < E W-cz<oo
9=l

and
1

pH«S"

h
Ixv(p) =11 < ZMN(P )< Z h(l+84) <

h=1

Therefore, there exists a constant ¢ depending only on k and s such that

[ c
l—p—<Xn(P) “’;’l—ﬂs‘
for all ¥ and p. Inequality (5.14) follows from the convergence of the infinite
products [],(1 £ cp~'~%). This completes the proof.

We want to show that G(N) is bounded away from O uniformly for all N. By
inequality (5.14), it suffices to show, for every prime p, that xy(p) is uniformly
bounded away from 0.

Let p be a prime, and let

k= pTko,
where t > 0 and (p, ko) = 1. We define

] T+l ifp>2
Y=1rt+2 ifp=2

Lemma 5.8 Let m be an integer not dxv:sxble by p. If the congruence xX=m
(mod p”) is solvable, then the congruence y* = m (mod p") is solvable Sfor
everyh > y.

Proof. There are two cases. In the first case, p is anodd prime. Forh > y = 7+1,
we have

(k. p(p") = (kop", (p — 1)p"™") = (ko, p — 1)p* = (k, 9(P")).

The congruence classes modulo p” that are relatively prime to p form a cyclic
group of order ¢(p") = (p — 1)p"~!. Let g be a generator of this cyclic group,
that is, a primitive root modulo p”. Then g is also a primitive root modulo p”. Let

¥ =m (mod p”). Then (x, p) = 1, and we can choose integers r and u such

that

x=g" (mod p")
and

m=g" (mod p").
Then

ku=r (mod ¢(p”)),
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and so
r=0 (mod (k,(p")))

and
r=0 (mod (k, p(p")).

Therefore, there exists an integer v such that
kv=r (mod ¢(p").

Lety = g". Theny* =m (mod p").

In the second case, p = 2 and so m and x are odd. If r = 0, then k is odd.
As y runs through the set of odd congruence classes modulo 2", so does y*, and
the congruence y* = m (mod 2") is solvable for all A > 1.If t > I, then k
isevenand m = x* = 1 (mod 4). Also, x* = (—x)*, and so we can assume
that x = 1 (mod 4). The congruence classes modulo 2" that are congruent to
1 modulo 4 form a cyclic subgroup of order 2"~2, and 5 is a generator of this
subgroup. Choose integers » and « such that

m=5(mod 2"

and
x=5 (mod2").

Then x* =m (mod 27) is equivalent to
ku=r (mod?2”?),

and so r is divisible by (k,27) = 27 = (k,2"72). It follows that there exists an
integer v such that
kv=r (mod 2"’2).

Lety = 5'.Then y* = m (mod 2"). This completes the proof.

Lemma 5.9 Let p be prime. If there exist integers ay, . .., a;, not all divisible by
p. such that
ai+---+a*=N (mod p¥),
then .
x‘\l(p) 2 —p)/T——V) > 0.

Proof. Suppose thata; #0 (mod p). Leth > y.Foreachi =2, ..., s there
exist p" " pairwise incongruent integers x; such that

x; =a; (mod p").
Since the congruence
(mod p”)

ko ek Lk
xN=N-x X,
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is solvable with x; = a; # 0 (mod p), it follows from Lemma 5.8 that the
congruence
xi=N-x3 - —x' (mod p").
This implies that
MV(Ph) > p()h—y)(.t—l),

and so
My(p") 1

> >
ph(s—l) = prt-v

x~n(p) = lim 0.
h—soc
This completes the proof.
Lemma 5.10 Ifs > 2k for k odd or s > 4k for k even. then
xv(p) = pr'™ > 0.
Proof. By Lemma 5.9, it suffices to prove that the congruence
al+---+a- =N (mod p’) (5.15)

is solvable in integers a; not all divisible by p. If N is not divisible by p and the
congruence is solvable, then at least one of the integers a; is prime to p. If N is
divisible by p, then it suffices to show that the congruence

ai+--+a'_ +1¥=N (mod p”)
has a solution in integers. This is equivalent to solving the congruence
k k
a+---+a,_,=N-1 (mod p”).

In this case, (N — 1, p) = 1. Therefore, it suffices to prove that, for (N, p) = 1,
the congruence (5.15) is solvable in integers for s > 2k — 1 if p is odd and for
s > 4k — 1 if piseven.

Let p be an odd prime and g be a primitive root modulo pY. The order of g is
o(p’) = (p— 1)p*~' = (p — 1)p*. Let (m, p) = 1. The integer m is a kth power
residue modulo p” if and only if there exists an integer x such that

x*=m (mod p).

Letm =g" (mod p*). Then m is a kth power residue if and only if there exists
an integer v such that x = g* (mod p*) and

kv=r (mod(p— 1)p").
Since k = ko p* with (kg, p) = 1, it follows that this congruence is solvable if and

only if
r=0 (mod (ko. p — p"),
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and so there are
ppr)  __p-1
(ko, p—Dp* (ko,p—1)

distinct kth power residues modulo p?. Let s(N) denote the smallest integer s
for which the congruence (5.15) is solvable, and let C(j) denote the set of all
congruence classes N modulo p¥ such that (N, p) = 1 and s(N) = j. In particular,
C(1) consists precisely of the kth power residues modulo p*. If (m, p) = 1 and
N’ = m*N, then s(N’) = s(N). It follows that the sets C(j) are closed under
multiplication by kth power residues, and so, if C(j) is nonempty, then |C(j)| >
(p — 1)/(ko, p —1). Let n be the largest integer such that the set C(n) is nonempty.
Let j < n and let N be the smallest integer such that (N, p) = 1 and s(N) > j.
Since p is an odd prime, it follows that N — i is prime to p fori = 1 or 2, and
s(N—i)<j.Since N=(N—=1)+1¥and N = (N — 2) + 1* + 1%, it follows that

J+1 <s(N)<s(N-i)+2<j+2

and so s(N — i) = j or j — 1. This implies that no two consecutive sets C(j) are
nonempty for j = 1,..., n, and so the number of nonempty sets C(j) is at least
(n + 1)/2. Since the sets C(j) are pairwise disjoint, it follows that

4 n+l p-—1
- hHp' =e(p") = IC =z —— 7.
(p-1p =p(p ; Nz =5 =
Cm
and so
n<2kop,p—Dp-—1<2k—-1.
Therefore, s(N) < 2k — 1 if p is an odd prime and N is prime to p.
Let p = 2. If k is odd, then every odd integer is a kth power residue modulo 27,

so s(N) = 1 for all odd integers N. If k is even, then k = 27ky with t > 1, and
y =t +2. Wecanassumethat] < N <2V - L. If

s=2"—1=24.2" - 1<4k -1,
then congruence (5.15) can always be solved by choosinga; = 1 fori=1,..., N
anda; = 0 fori = N +1,....s. Therefore, s(N) < 4k — 1 for all odd N. This

completes the proof.

Theorem 5.6 There exist positive constants ¢, = c¢(k, s) and c; = c3(k, s) such
that

c) < 6(N) < c,.

Moreover, for all sufficiently large integers N,

S(N, P')=G(N)+ O (P™*%).
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Proof. The only part of the theorem that we have not yet proved is the lower
bound for S(N). However, we showed that there exists a prime pg = py(k, s) such
that

1/2< [] xvp) <372

p>po
for all N > 1. Since
xv(p) = pr' >0

for all primes p and all N, it follows that
1 1 -
e =[[xv@) > 5 [Tav 2z 5 [[ P =cr > 0.
P P<po PP

This completes the proof.

5.8 Conclusion

We are now ready to prove the Hardy-Littlewood asymptotic formula.

Theorem 5.7 (Hardy-Littlewood) Letk > 2ands > 2% + 1. Let ry ;(N) denote
the number of representations of N as the sum of s kth powers of positive integers.
There exists § = 8(k, s) > O such that

1\’ _/s\-! ‘ 1
re.s(N) = G(N)I (1 + ;) r (;) NG/R-1 4 O(N(x,k) 1 8)‘

where the implied constant depends only on k and s, and G(N) is an arithmetic
Sunction such that
1 <6(N) <c

for all N, where ¢, and c; are positive constants that depend only on k and s.

Proof. Let &, = min(l, §,, 2, 83, vé4). By Theorems 5.2-5.6, we have

|
ris(N)= / F(a)e(—aN)da
0

-[ F(a)"e(—aN)da+/ F(a) e(—aN)da
m m

= &(N, P')J*(N)+ O (P*™*~%) + 0 (P*~*~%)

= (8(N)+ 0 (P™*%)) (J(N)+ O (P+75)) + O (P+7%)
+0 (P*%)

=S(N)J(N)+ O (P~+%)

_ 1\’ sy~! s/k=1 (s=1)/k=1
G(N)l‘(1+-,;) F(E) N* e 0 (N )
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+0 (Ns/k—-l-&)/k)

- 1y SNV k-1 s/k—1-8
G(N)F(l+;) F(E) N*/A=1 4 0 (NS/5-179),

where 8 = 8o/ k. This completes the proof.

5.9 Notes

The circle method was invented by Hardy and Ramanujan [50] to obtain the asymp-
totic formula for the partition function p(N), which counts the number of unordered
representations of a positive integer N as the sum of any number of positive inte-
gers. The circle method was also applied to study the number of representations of
an integer as a sum of squares. See, for example, Hardy [45], and the particularly
important work of Kloosterman [71, 72, 73].

In a classic series of papers, “Some problems of ‘Partitio Numerorum’,” Hardy
and Littlewood [47, 48] applied the circle method to Waring’s problem. Vino-
gradov [131, 134, 135] subsequently simplified and strengthened their method.
This chapter gives the classical proof of the Hardy-Littlewood formula for s >
so(k) = 2+ 1. There is a vast literature on applications of the circle method to War-
ing’s problem as well as to other problems in additive number theory. The books
of Davenport [18], Hua [64], Vaughan [125], and Vinogradov [135] are excellent
references.

There have been great technological improvements in the circle method in re-
cent years, particularly by the Anglo-Michigan school (for example, Vaughan and
Wooley [126, 127, 128, 129, 130, 147, 148]). In particular, Wooley [146] proved
that

G(k) < k(logk +loglogk + O(1)).
Another interesting recent result concerns the range of validity of the Hardy-
Littlewood asymptotic formula. Let G(k) denote the smallest integer so such that

the Hardy-Littlewood asymptotic formula (5.1) holds for all s > so. Ford [41]
proved that

G(k) < k*(logk + loglog k + O(1)).

For other recent developments in the circle method, see Heath-Brown [54, 55],
Hooley [59, 60, 61], and Schmidt [107].

5.10 Exercises

1. Show that for k = | the Hardy-Littlewood asymptotic formula is consistent
with Theorem 5.1.
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5. The Hardy-Littlewood asymptotic formula

2. Let k > 2. Show that the number of positive integers not exceeding x that

can be written as the sum of k nonnegative kth powers is x/k!+ O (x*~1V/¥),
Show that
Gk)>k+1.

Hint: If n < x is a sum of k kth powers, then

n=al+al+ ... +af,

where

0<aj<ay<---<a <x'*

and the number of such expressions is given by a binomial coefficient.
Let f(x) be a polynomial of degree k > 2 with integral coefficients, and let

q

Sy(g.a) =Y _e(af(r)/q).

ral

Prove that if (g, r) = 1, then

Sy(gr.ar +bq) = S;(q,a)S,(r, b).

. Let R, ;(N) denote the number of representations of an integer N as the

sum of s nonnegative kth powers. State and prove an asymptotic formula
for Ry s(N).
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The Goldbach conjecture






6

Elementary estimates for primes

Brun'’s method is perhaps our most powerful elementary tool in num-
ber theory.

P. Erd6s [34]

6.1 Euclid’s theorem

Before beginning to study sums of primes, we need some elementary results about
the distribution of prime numbers.

Let s = o + it be a complex number with real part o and imaginary part ¢. To
every sequence of complex numbers a,, a, . .. is associated the Dirichlet series

o0
Fis)=Y 2.
ne=1

If the series F(s) converges absolutely for some complex number so = agg + ifo,

then F(s) converges absolutely for all complex numbers s = o + it with R(s) =

o > agp = R(sp), since

an| _lasl _ lasl
na - ndn

Qn

ns nfo

If we leta, =1 for all n > 1, we obtain the Riemann zeta-function

c(s)=Z;,l;.

ne=]
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This Dirichlet series converges absolutely for all s with R(s) > 1.

Theorem 6.1 Let f(n) be a multiplicative function. If the Dirichlet series

F(s) = i f(:t)

nel n

converges absolutely for all complex numbers s with R(s) > oy, then F(s) can be
represented as the infinite product

) . (P )
F(s) = (1+—+—+--- .
l:[ ps pZ:
If f(n) is completely multiplicative, then

-1
F(s)-n(l —f(—f)) :
p p
This is called the Euler product for F(s).

Proof. If f(n) is multiplicative, thensois f(n)/n*.If f(n)is completely multi-
plicative, then so is f(n)/n°. The result follows immediately from Theorem A.28.

Because the Riemann zeta-function converges absolutely for M(s) > 1, it
follows from Theorem 6.1 that ¢ (s) has the Euler product

00 -1
o-£5-110-3)

n=] P

for all s with R(s) > 1, and so ¢(s) ¥ O for R(s) > 1. From the Euler product, we
obtain the following analytic proof that there are infinitely many primes.

Theorem 6.2 (Euclid) There are infinitely many primes.

Proof. For 0 < x < 1 we have the Taylor series

—log(1 -x)-ix"

n=} n

Ifo > 0,then¢(l1+0)> 1and

1 1
SIS )y

P n=2
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Since - -
1 1
0< —_—— < —- < 00, 6.1
z,,:;np"““’) ;,,X.;P" = p(p—l) @D
it follows that |
log;(l+a)=ZpTo-+0(l). 6.2)
P

Let0 < o < 1. Then

1 ® 1 Sl | 1
|<'--l x]—wdx<§(l+a)<1+l xl—wdx-;+l

g
and so
1
0 <log— <log¢(l+0)
(o4
1 1
< log (—- + I) =log — +log(l + o)
o4 g
1 1
<log—+0 <log—+1.
o4 o4
Therefore,

1
logZ(l +a)-log; +0(1). (6.3)
Combining (6.2) and (6.3), we obtain

log—-z:—+0(l)

for 0 < o < 1. If there were only finitely many prime numbers, then the sum on
the right side of this equation remains bounded as o tends to 0, but the logarithm
on the left side of the equation goes to infinity as o tends to 0. This is impossible,
so there must be infinitely many primes.

6.2 Chebyshev’s theorem

The simplest prime-counting functions are

Jr(x)-ZI,

pP=x

P(x) = Z log p,

P=x

and

Y(x)= Y logp.

ptsx
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¥(x) and Y (x) are called the Chebyshev functions. Chebyschev proved that the
functions ¥(x) and ¥ (x) have order of magnitude x and that 7 (x) has order of
magnitude x/ log x. Before proving this theorem, we need the following lemma
about the unimodality of the sequence of binomial coefficients.

Lemma 6.1 Letn > land| <k <n.Then

n n\ . . el
(k—l)<(k) ifand only ifk < "3,

n n : : n+l
(k— l) > (k) ifand only ifk > -,

(k n 1) = (Z) ifand only ifn is odd and k = 3.

Proof. This follows immediately from observing the ratio

(:) - k!(:—-!_k)! _ k=D'n—-k+1)! _n —k+1

2) Ty ktn — k)t k

Lemma 6.2 Letn > 1and N = (*'). Then
N < 2% < 2aN.

Proof. Since (%) is the middle, and hence the largest, binomial coefficient in
the expansion of (1 + 1)?, it follows that

N = (2:) <(1+ 1) =2"
xn n) Zn—l(n)
<2+(@2n-— 1)(2") < 2n(2")
n n

= 2nN.

This completes the proof.

For any positive integer n, let v,(n) denote the highest power of p that divides
n. Thus, v,(n) = k if and only if p*|In. In this case, p* < n and so v,(n) <
logn/log p.

Lemma 6.3 For every positive integer n,

© rp llogn/logpl
v,,(n!)-Z[?]- > [?]' (6.4)

k=1 k=]
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Proof. Since v,(mn) = v,(m)v,(n) for all positive integers m and n, we have

vp(n!)-X”:v,,(m)-Xn:Zl-ZZl-Z[—-].

mel mm=] phim k=l mel k=1
(]

This proves the formula.

Theorem 6.3 (Chebyshev) There exist positive constants ¢, and c; such that

ax < ¥(x) < Y(x) < m(x)logx < cox

for all x > 2. Moreover.

?
lim inf _(x_) = lim inf —— = lim inf
=00 x X—00 x X—00

> lo

yx) .. . _m(x)logx
X

and

o(x) . ¥(x)

lim sup —— = lim sup —— = lim sup
X—00 X X—00 X X—00

(x)logx

Proof. Let x > 2. If p* < x, then k < [log x/ log p], and so

B(x)=) logp < y(x)= ) '°g”'z[1og ]

p=x pr<x pP=x

< Z logx = m(x)logx.

p<x
Therefore,
timinf 2% < liminf .V’( < lim jnf F108
x—00 X .,_,w 4‘_'00 ‘—'_—x
and s |
timsup 2% < tim sup ¥ < tim sup ZXL108X
X=00 X X—00 x =00 x
Let
0<éd<l.
Then

B(x)> Y logp

x!-3<p<x

Y a-#logx

x'Y<p<x
= (1 -8 (r(x) — m(x"?)) log x
> (1 = 8)m(x)logx — x'®log x,

< 4log

g2

2.

(6.5)
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and so
¥(x) S (1 —8)m(x)logx logx
x - x ¥
It follows that . |
timinf 22 > (1 - ) lim inf ZX1%8%
X—00 x 00 o

This holds for all § > 0, and so

9 1
timinf 2% > fim inf TF108%

X—0C X X—00 X
Similarly,

v !
lim sup dl, > lim sup M.
x—=00 X x—00

Therefore,

lim inf LAC lim inf v _ lim inf m(x)log x
X—=00 x X—00 x g ——x

lim sup M = ]im sup w

x—0c X x—00 X x—00

Letn > 1, and let
N (Zn) 2n(2n — 1)2n—=2)---(n+1)

n n!

(6.6)

and
p m(x)logx

= |im su

6.7)

Then N is an integer, since it is a binomial coefficient, and
22n

Z_<N<2*

2n

by Lemma 6.2. If p is a prime number such that
n<p<2n,

then p divides the numerator but not the denominator of N. Therefore, N is
divisible by the product of all these primes, and so

l—l p<N <2,
n<ps<n

In particular, if » > 1 and n = 2"~!, then

]_[ p<N<2%.

2 l<p<?

It follows that, forany R > 1,

l—l p-ﬁ ]—[ p<l£l22' <22

p<2® ral 27-'<p<2 rel
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For any number x > 2, there is an integer R > 1 such that

2R-1 o & < 2R,

Then ,

nps l—[ p<22" < 2%,

p=x p<2f
and so

B(x)= Y log p = log (]'[ p) < (4log2)x.

p=x psx

Thus, .
lim sup —(——2 < 4log2.

X—00

To obtain the lower limit, we use Lemma 6.3 to express N explicitly as a power

of primes:
2n 2n)! @n)—20,(n)
N-(n)- n!zﬂnp% e
p<2n
where 5
n n
son-su- 5 ([2]-4[3])
ceemz \LP P
Since [2t] — 2[t] = 0 or 1 for all real numbers ¢, it follows that
log 2n
2 2
Up(2n) — 2vp(n) < logp "
By Lemma 6.2,
221: '_°lk
— <Nw= l—[ p"r(z") 2vp(n) < l—[ Wi < l—[ 2n -(2n)"‘2")
psan p<2n p<2n

or, equivalently,
nw(2n)log2n < 2nlog2 — log2n.

Let n = [x/2]. Then
2n<x<2n+2

and
nw(x)logx = m(2n)log2n > 2nlog2 — log2n
> (x —2)log2 —logx = xlog2 —logx —2log2.
It follows that | | 2 log2
m(x)logx > log2 — ogx +2log

X
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and so |
lim inf T2 108 %
X =00

> log2.

Since #(2) > 0, we have #(x) > c;x for some ¢; > O and all x > 2. This
completes the proof.

Theorem 6.4 Let p, denote the nth prime number. There exist positive constants
c3 and c4 such that
csnlogn < p, < csnlogn

foralln > 2.
Proof. By Chebyshev’s inequality (6.5),

1P < (pa)=n < 2P

log pn log pn
and so

c;'nlog p, < pa < c;'nlog p.
Since
logn < log pn,

we have

Pn Z cz"n logn = c3nlogn.
For n sufficiently large,
log p. < logn +loglog p, +logc;’
< logn + 2log log p,
< logn +(1/2)log pa,
SO
log p, < 2logn

and
Pn < c;'nlog p, < 2c;'nlogn.

Therefore, there exists a constant c4 such that p, < c4nlogn for all n > 2. This
completes the proof.

6.3 Mertens’s theorems

In this section, we derive some important results about the distribution of prime
numbers that were originally proved by Mertens.
Lemma 6.4 For any real number x > 1 we have

OSZlog(E) < X.

n<x
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Proof. Since the function h(r) = log(x/¢) is decreasing on the interval [1, x], it

follows that
Z log (%) < log x +/;x log (;—)d:

I<n<x

= xlogx — f log tdt

1
= xlogx —(xlogx —x+1)
< x.

This completes the proof.
The function A(n), called von Mangoldt’s function, is defined by

_ ] logp ifn=p"isaprime power
Alm) { 0 otherwise.

Then
Yx)= Y Alm).

I<m<x
Theorem 6.5 (Mertens) For any real number x > 1, we have
A
> —'(11) = logx + O(1).
n<x

Proof. Let N = [x]. Then

N
0< Zlogi- = Nlogx — Y logn = xlogx ~ log N! + O(log x) < x

n<x n=1

by Lemma 6.4, and so
log N! = xlog x + O(x).

It follows from Lemma 6.3 and Theorem 6.3 that

logN! = Z v,(N)log p

PN
Z lloxfilfxl’l [ N]
- — |logp
p<N kel pt
> [ﬁ]logp
k
PN p
X
'Z —< |'o8pP
PP
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=Y (5 +0m) Ay

n<x

A(n)
x 2 —= 0 (§ A(n))

Zﬂww( »

-x Z AM L o).
Therefore, -
A(n
X Z — + O(x) = xlogx + O(x)

n<x

Zﬁ— = logx + O(1).
n

n<x

and

This completes the proof.
Theorem 6.6 (Mertens) For any real number x > 1, we have

1
3" 2E2 Clogx+ 0O(1).

p<x

Proof. Since

0< ZA(") Zl_og_p

n<x p<x p

-y lep

it follows from Theorem 6.5 that

Yy EP '°g” -y 2 2%, (1) = logx + 0.

p=<x n<x
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This completes the proof.

Theorem 6.7 There exists a constant by > 0 such that

1 1
Z; = loglogx +b; + O (I gx)

psx
Jorx > 2.

Proof. We can write

Z Loy oer b s uypm,

Pz P logp
where o4z iy o
u(n) = { g otherwli)se
and |
f@) = YT

We define the functions U(t) and g(¢) by
lo
Uny=Y utmy =3y % = log 1 + g(1).
n<t p<t

Then U(t) = 0 fort < 2 and g(t) = O(1) by Theorem 6.6. Therefore, the integral
157 g(8)/(t(log 1)*)dt converges absolutely, and

/°° g()de 0 ( 1 )
« t(logt)? logx /)~
Since f(r) is continuous and U (r) is increasing, we can express thesum > _ 1/p

as a Riemann-Stieltjes integral. Note that U(t) = O for t < 2. By partial summa-
tion, we obtain

2 — =Y u(n)f(n)

p<x n<x

-—+/ f@)du@)
2 ),

'.f(x)U(x)—f2 U@df

- M). - / U(t)f,(l)dl
log x 2

1 *logt +g(1)
=]4+0 e 2 °
¥ (logX) +f2 t(logt)? a
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“l > g Ry {Q) 1
- dt dr — —_— 1
/2 tlogt +/2 t(log1)? ! _/, t(logt)de- +0 (log.t)
log log x — log lo, 2+'/‘°’a 8() di+1+0 !
£ 108 £ 08 2 t(logt)? log x

1
= log log x +b.+0( )
log x

where
8(r)

fllog 12 8)

oo
by=1- loglog2+f
2

This completes the proof.
From the Taylor series for log(1 — x), we see that

O<l°g(1 )—_-;np gp p(p—l)'

It follows from the comparison test that the series

bz-Z(log(l—-;-)“ )-Zp:g ! 6.9)

r

converges.

Lemma 6.5 Let by and b, be the positive numbers defined by (6.8) and (6.9).
Then
b] + b2 -y

where y is Euler’s constant.

Proof. Let 0 < 0 < |. We define the function F(o) by

1
F(o)=log¢{(1+a) =Y e

4

= Z Z ,,pn<l+a)

P n=2

By (6.1) and the Weierstrass M-test, the last series converges uniformly foro > 0
and so represents a continuous function for o > 0. Therefore,

lim F(o) = ba. (6.10)

We shall find alternative representations for the functions log¢(l + o) and
Y, p~'7°. Since
2 o2

o
l1-0+— T <l-0+—
% <€ < 5
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for0 < o < 1, it follows that

| o 1—-e° 1 o
2" "o 2

nd l+a <1+ g < d 1+ 1+

— < .

2e 2e—0 1-ev ' T2_4 9
Therefore, :

0<logo +log(l1—€e°) <o

and so

1
log == log(1 — e )" + 0(0).
By (6.3), we have

log ¢(1 + o) =log ;l— + 0(o)
log(l - e-°)-' +0(0)

ne=|

By Theorem A.S,

L(x)-E%-logx+y+O(£—)

n<x

for x > 1. Let f(x) = e~°*. By partial summation, we have

log¢(l1+0)= Z & +0(0)

ne=l

= [ f(x)dL(x) + O(o)
0
- —f L(x)df(x)+ O(o)
0
-0 /-oo e ?*L(x)dx + O(0).
0

By Theorem 6.7,

1
S(ix) = E ; =loglogx +b, + O (logx)

psx

for x > 2. Let g(x) = x~°. Again, by partial summation we have

1 o 00
Z o Z §(p) =/ g(x)dS(x) = —/ S(x)dg(x)
» P 7 P 1 1

163
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* S(x)dx

xl+o

=0

oC
=a/ e °*S(e")dx.
0

Since |
S(e*)=logx +b,+ 0 (;)
and ,
L(x)=logx+y +0 (-) ,
X

it follows that

L(x)—S(e")-y—b1+0(])-y—b1+0(—]—])

x X+
for x > 1. We also have

Lx)-Se')=y—-b+0 (%)

X +

for 0 < x < 1. Therefore,

1
F(a)-log;(l+o)—2;]—;

14

- a[ e ""(L(x) — S(e"))dx + O(o)
0

ot 1
—o/ e 7" (y -b+0 (—)) dx + O(o)
0 x+1
oc o0 -0X
-(,,_b,)o/ e“’~‘dx+o(a/ ¢ dx)+0(a)
0 0 x+1

o -Oxd
-y—b|+0(of ¢ x)+0(o).
0 x+1

/oo e dx /l/o e dx /-oo e~ %%dx
< +
0 x+1 0 x+1 /o X
1/o X ,-¥
- /‘ dx +/ e Ydy
0 x+1 ] y
1
= log (— + 1) +0(1)
g

1
< log(;«r—l),

Since
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F(a)cy—b1+0(alog(cl’+])).

By (6.10), we have
by = lin& F(o)=y — b).
o—0"

it follows that

This completes the proof.
Theorem 6.8 (Mertens’s formula) Forx > 2,
1 -1
I1 (1 - —) = e’ logx + O(1),
psx p
where y is Euler’s constant.

Proof. We begin with two observations. First,

D)IFLEDD

p>x kw2 P p>x P(P - ])

Second, since exp(t) = 1 + O(¢) for ¢ in any bounded interval and O (1/logx) is
bounded for x > 2, it follows that

exp(O(L))-H-O( ! )
log x log x
Therefore,

(-3 gel-))

psx psx

DRI

p<x k=l

-Z-+ZZ

p<x p p=sx k-2
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1 1
=loglogx+b;+O| — | + b, — E —_
glo8 : (logx ? p>x k=2 kpk

1
-Ioglogx+y+0( ),
log x

since by + b, = y by Lemma 6.5, and so
1\

l_[ (l - —) = ¢” log x exp (O
14

p<x (
=e” 1+0
erionx (1+0 (1))

=e” logx + O(1).

This is Mertens’s formula.
The following result will be used in Chapter 10 in the proof of Chen’s theorem.

Theorem 6.9 For any ¢ > 0, there exists a number u, = u,(¢) such that
log z

-1
[1 (1—1) <(l+8)—=
14 logu

usp<z

foranyu, <u <z
Proof. Let y be Euler’s constant, and choose § > 0 such that
y+4é

y_

<l+e.

By Theorem 6.8, we have
l -|
]_[ (l - —) ~ ylogx,
p<x p

and so there exists a number 4, such that

-1
(y —8)logx < l_[ (l - lp) <(y+8)logx

p<x

for all x > u;. Therefore, if u; < u < z, we have

D
TL0-5) n—g_;—

(y —8)logu

< (1 +s)-l°—g—£.
log u

This completes the proof.
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6.4 Brun’s method and twin primes

There is a structural similarity between the twin prime conjecture and the Goldbach
conjecture. The twin prime conjecture states that there exist infinitely many prime
numbers p such that p + 2 is also a prime number or, equivalently, there exist
infinitely many integers k such that k(k + 2) has exactly two prime factors. The
Goldbach conjecture states that every even integer n > 4 can be written as the sum
of two primes or, equivalently, there exists an integer k suchthat 1 <k <n — 1
and k(n — k) has exactly two prime factors. We begin the study of sieve methods
with a simple proof of the theorem that the twin primes are sparse in the sense that
the sum of the reciprocals of the twin primes converges. This contrasts with the
result (Theorem 6.7) that the sum of the reciprocals of all of the primes diverges
like log log x.

Lemma 6.6 If¢ > 1and0 <m < ¢, then

()= ()

Proof. This is by induction on m. It is easy to check that the equation is true for
m=0,1,2.If | <m < £ and the equation holds for m — 1, then

g(—l)" (ﬁ) = tz_:(—l)‘ (,f) +(=1)" (,i)
() s
-0 () - (1))

m €—1
(')
m
This completes the proof.
The following combinatorial inequality, a version of the principle of inclusion—
exclusion, is the simplest form of the Brun sieve.

Theorem 6.10 (The Brun sieve) Let X be a nonempty, finite set of N objects,
andlet Py, ..., P, be r different properties that elements of the set X might have.
Let No denote the number of elements of X that have none of these properties.
For any subset I = {i\,...,i,} of {1,2,....r}), let N(I) = N(iy, ..., i;) denote
the number of elements of X that have each of the properties P;,, P, ..., P,. Let
N(@) = |X| = N.If m is a nonnegative even integer, then

No < Z( D' > N, (6.11)

1=k
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If m is a nonnegative odd integer, then

No > Z(—l)" Z N(D). (6.12)
k=0

11| =k

Proof. Inequalities (6.11) and (6.12) count the elements of X according to the
various properties that each element possesses. We shall calculate how much each
element of X contributes to the left and right sides of these inequalities.

Let x be an element of the set X, and suppose that x has exactly £ properties
P;. If £ = 0, then x is counted once in Ny and once in N (@), but is not counted
in N(I) if I is nonempty. If £ > 1, then x is not counted in Np. By renumbering
the properties, we can assume that x has the properties Py, P»,..., P,. Let I C
{1,2,...,¢...,r}. Ifi € I for some i > ¢, then x is not counted in N(I). If
1 C{l1,2,...,¢},then x contributes 1 to N(/). Foreachk =0, 1, ..., ¢, there are
exactly (:) such subsets with |I| = k. If m > ¢, then the element x contributes

: €
(—1)"( ) =0
2.0

to the right sides of the inequalities. If m < ¢, then x contributes

> -1t (i)
k=0

to the right sides of inequalities (6.11) and (6.12). By Lemma 6.6, this contribution
is positive if £ is even and negative if £ is odd. This completes the proof.

Lemma 6.7 For x > 1 and for any congruence class a (mod m), the number
of positive integers not exceeding x that are congruent to a modulo m is x/m + 6,
where |6] < 1.

Proof.If x/m = g € Z, thentheset {1, . .., gm} contains exactly x/m elements
in every congruence class modulo m.

Suppose that x/m ¢ Z. Let [x] and {x} denote the integer and fractional parts
of x, respectively, and let [x] = gm + r, where 0 < r < m. Then

gm<x=gqm+r+{x}<gm+(m-1)+6 <(q+1)m,

and so x
g<—<q+1. (6.13)
m

The positive integers up to x can be partitioned into g + 1 pairwise disjoint sets such
that g of these sets are complete systems of residues modulo m, and the remaining
set is a subset of a complete system of residues modulo m. It follows that there are
either g or g + | integers in the congruence classa (mod m). The lemma follows
from inequality (6.13).
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Lemma 6.8 Letx > 1,andlet p;,, ..., p;, bedistinct odd primes. Let N(i,, . . .,
i) denote the number of positive integers n < x such that

nin+2)=0 (mod p;, ---p;,). (6.19)

Then

2k x

N(i,,...,ik)-e+2‘9,

i|...p“

where 16| < 1.
Proof. If p is an odd prime and n(n +2) =0 (mod p), then either
n=0 (mod p)

or
n=-2 (mod p).

Moreover, 0 # —2 (mod p) since p > 3. If the integer n satisfies the congru-

ence (6.14), then there exist unique integers u,, ..., u; € {0, =2}
n = u; (mod p;)
n = u; (mod py)
(6.15)
n = wu (mod py).
By the Chinese remainder theorem, for each of the 2% choices of u;, . .., u; there

exists a unique congruence classa (mod p; - -- p;) such that n is a solution of
the system of congruences (6.15) if and only if

n=a (mod p;p;--- p).

By Lemma 6.7, this congruence has

——  +6(a)
PPz Pk

solutions in positive integers not exceeding x, where |6(a)| < 1. Therefore,

2kx

NG, ... ig) = ———— +2'6,

RN p“
where |6} < 1. This completes the proof.

Theorem 6.11 (Brun) Let ,(x) denote the number of primes p not exceeding x
such that p + 2 is also prime. Then

x(log log x)?

m(x) K (ogx)?
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Proof. Let 5 < y < x. Let r = m(y) — 1 denote the number of odd primes
not exceeding y. We denote these primes by py, ..., p,. Let m2(y, x) denote the
number of primes p suchthaty < p < xand p+2isalsoprime.lfy < n <x
and both n and n + 2 are prime numbers, thenn > p; fori = 1,...,r, and

n(n+2)#0 (mod p;)

for all i. Let No(y, x) denote the number of positive integers n < x such that
n(n+2)#0 (mod p;)

foralli=1,...,r. Then

m(x) <y +ma(y, x) <y + No(y, x).

We shall use the Brun sieve to find an upper bound for Ny(y, x).

Let X be the set of positive integers not exceeding x. For each odd prime
pi < y,welet P; be the property that n(n +2) is divisible by p;. For any subset / =
{i1,...,ix} contained in {1, ..., r}, we let N(I) be the number of integers n € X
such that n(n + 2) is divisible by each of the primes p;,, ..., p;, or, equivalently,
such that n(n + 2) is divisible by p;, - - - p;,. By Lemma 6.8, we have

k
N() = N ... ig) = —22— 4 2%,
iy * P

Let m be an even integer such that 1 < m < r. By inequality (6.11), we have

No(y, %) < Z( YN

1=k

. k 2x k
s e B (2500 ’)

k=0 {ireeigJE(1....
m ( 2)& m . )
=% X + Z( 1) 0(2 )
k=0 {iy....it}S(1.....7} Pi, * - Piy
- (-2
k=0 {iy,....ie}JS{)....r} Pi, - Pi

r (_2)k m r .
=Y Y 2 o3 ().
kom1 {if.misle(l....r} Piv """ Py o \k

We shall estimate these three terms separately. By Theorem 6.8,

r

Sy el (1-3)

k=0 (i1....it]1S(1..... pi, 2<psy p
1\?
< x ]_[ (l — —-)
2<p<y p
X
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Let si(x),...,x,) be the elementary symmetric polynomial of degree k in r
variables. For any nonnegative real numbers x,, ..., x, we have

Sk(Xpy 00, xp) = Z Xj, c X,

_ (s10xq, ..., x )
k!
< (E)k s1(x x )k
k ]’ sy r
since (k/e)* < k!. Therefore,
- (-2

kmm#1 {it.it)l)..r) P07 Pia

=y oy I

kem#1 {iy...ic)ll....r} Pit " Pis

4 2 2
< i DU Bl
B xk§;| li......igg:n.....r) (P"-) (Pit)

4 2 2
- X Z Sk (—,...,—)
kmm+1 1 pr

where c is an absolute positive constant. If we choose the even integer m so that
m > 2cloglog y,

then

\ (cloglogy\"* 1 x
xZ(-——-—m )SXZ'z—k'<'27".

kmm+1
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Since r is the number of odd primes less than or equal to y, it follows that 2r < y,

and we get the following estimate for the third term:
m r m
kz-.; (k)z“ < g(zr)" L @™ < y™.
Combining these three estimates, we obtain

n

X
+‘2—m+y .

x X m X
T Gogyr T2 T gy

where the implied constant is absolute, y is any real number satisfying
S<y<x,
and m is any even integer such that
m > 2cloglogy.

Let ¢’ = max{2c, (log2)~'}, and let
log x '
- 2 ) = x¥iogtrr
y =exp (3(." log log x) x

and
m = 2[c' loglog x].

(6.16)

6.17)

(6.18)

The number y satisfies conditions (6.17) and (6.18) for x sufficiently large. We

estimate the three terms in (6.16) with these values of y and m. Since

logy = log x ‘
3¢’ loglog x
we obtain the main term
X x(log log x)?
(log y)? (log x)?

Next, since ¢’ > (log 2)~! and
m = 2[c"loglogx] > 2c’loglog x — 2,

we obtain
X 4x 4x ax

om < 27loglogx (log x)% &2 = (logx)?’

Finally,
ym < y24" loglogx _ exp (2(.' log Ing logx) - x2/3'
- 3¢’ log log x
Combining these three estimates, we obtain

x(log log x)?

ma(x) K (og x7?

This completes the proof.
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Theorem 6.12 (Brun) Let py, pa, ... be the sequence of prime numbers p such
that p + 2 is also prime. Then

i(l+ 1 )
S \Pn pat2

(l+l+ l+l)+(l+] + l+] +
3°5 s 7 11 13 1719 '

< OQ.

Proof. Theorem 6.11 implies that

m2(x) K x
? (log x )72

for all x > 2. Therefore,

Pn < Pn
(log pa)¥? ~ (logn)3/2

n =m(pn) K

forn > 2, and so

It follows that the series
=1 1 &1 1
— < -+ — <L -+ —
“~p, "3 Z pn 3 z n (log n))*/?

converges. This completes the proof.

6.5 Notes

Dickson [22, vol. I, pp. 421-424] contains a brief account of early results con-
cerning the Goldbach conjecture. Sinisalo [117] has verified the Goldbach con-
jecture by computer for all even integers up to 4 - 10!''. Wang’s book Goldbach
Conjecture [137] is an anthology of classic papers on this subject.

Brun [7] obtained the first significant result concerning the Goldbach conjecture
in 1920. By means of the combinatorial method known today as the Brun sieve, he
proved that every sufficiently large even integer can be written as the sum of two
integers, each of which is the product of at most nine primes. Brun also obtained
the first nontrivial results concerning the twin prime conjecture. In addition to
Theorem 6.11 and Theorem 6.12, he also proved that there are infinitely many
integers n such that both n and n + 2 are the products of at most 9 primes. The
application of the Brun sieve to the twin prime conjecture follows Landau [78].

By Theorem 6.12, the sum over the reciprocals of the twin primes converges.
The sum of this infinite series is called Brun's constant, its value is estimated to be
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1.9021604 + 5 x 10~7 (see Shanks-Wrench [112] and Brent [5]). It is a difficult
computational problem to determine Brun’s constant to high precision. In the
process of trying to improve the estimates for Brun's constant, Nicely discovered
a defect in Intel’s Pentium computer chip (see [15]).

A popular game among computational number theorists is to find explicit ex-
amples of twin primes. On October 18, 1995, Harvey Dubner announced over the
Internet that p and p + 2 are prime numbers for

p=570,918,348 .10 — 1 =22.3%.7.11.13.5281 10> — 1.

The prime p has 5129 digits. This established a new record for the largest twin
prime.

For other elementary results about the distribution of prime numbers, see Ellison
and Ellison [29], Hardy and Wright [51], Ingham [66], and Tenenbaum [121].
Rosen [104] has generalized Mertens’s Theorem 6.8 to algebraic number fields.

6.6 Exercises

1. Let n be a positive integer. Prove that

logn = Z A(d)

din
and
An) == u(d)logd.

d\n

2. Let w(n) denote the number of distinct prime divisors of n. Let n > 2 and

r > 0. Prove that
Y md<0s Y ud).

din din
WAd)<2r o) Wd)<2r

3. With the notation of Theorem 6.10, prove that
!
No=Y (-1} >N,
k=0 11|=k
This formula is often called the inclusion—exclusion principle.
4. Use the inclusion—exclusion principle to prove that
1 u(dy
n)=n l——)=n —_—,
14 !l-[ ( p) Z d

where ¢(n) is the Euler ¢-function.
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. Let ®(x, y) denote the number of positive integers n < x that are not
divisible by any prime p < y. Prove that

1 . !
d(x,y)=x l_[ (] - ;) +270 « é; +270),

psy

. Prove that
r 1
I1 (1 - —) < -
r<p<x p (IOgX)
. Prove that
X \k P

Z (log ;) =k'x + O ((log x)") .

n<x
. Prove that

(o)) o)






7
The Shnirel’man—Goldbach theorem

Das allgemeine Problem der additiven Zahlentheorie ist die Darstell-
barkeit aller natiirlichen Zahlen durch eine beschriankte Anzahl von
Summanden einer gegebenen Folge von natiirlichen Zahlen, z. B. der
Primzahlfolge oder der Folge der p-ten Potenzen.'

L. G. Shnirel’man [114)

7.1 The Goldbach conjecture

In a letter to Euler in 1742, Goldbach conjectured that every positive even integer
n > 2 is the sum of two primes. Euler replied that he believed the conjecture
but could not prove it. It is still unproven, but it has been confirmed by computer
calculations for even integers up to 4 - 10!,

In 1930, Shnirel’man proved that every integer greater than one is the sum of
a bounded number of primes. This is a great theorem, the first significant result
on the Goldbach conjecture. Shnirel’man used purely combinatorial methods: the
Brun sieve and a theorem about the density of the sum of two sets of integers.
We shall prove Shnirel’man’s theorem in this chapter. Instead of the Brun sieve,
however, we shall use a sieve method due to Selberg, which is also completely

"The general problem in additive number theory is the representation of the natural
numbers as the sum of a bounded number of terms from a given sequence of natural numbers,
e.g. the sequence of prime numbers or the sequence of p-th powers.
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elementary but more elegant and in many cases more powerful than Brun’s original
sieve argument.

7.2 The Selberg sieve

Lemma 7.1 (Cauchy-Schwarz inequality) Let ay, ..., a, by, ..., b, be real

numbe’ S. ]hen
(Z g i) = (Z i ) (z i) )
i=l i=] i=]

Ifa; # 0 for some j, then

(B2 - (£4) (57)

if and only if there is a real number t such that b; = ta; foralli =1, ..., n.

Proof. Since
0< z (a,~bj —a,-b,-)z
I<i<j<n
= Y (@} —2aia;bb; +a’b})
I<i<j<n
- Za‘? be - (Zaibi)z.
i= j=1 iml
we have
n 2 n n
im) i=] i=]
Moreover,
n < n n
iml i=l im
if and only if

a,~bj -ajbi

for all i o j. In this case, if a; # 0 for some j, lett = b;/a;. Then

b,' = (ﬁ) a; = ta;
aj

fori =1, ..., n. This completes the proof.
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Lemma 7.2 Leta,,...,a, be positive real numbers and by, . .., b, be any real
numbers. The minimum value of the quadratic form

2 2
Q(ylv BRI yn) =a\y)+---+ay,
subject to the linear constraint

biyi+---+byy, =1 (7.1)

n b2 =1
m=(;a—‘i) ,

and this value is attained if and only if

is

foralli=1,...,n.

Proof. Let y,,...,y, be real numbers that satisfy (7.1). By the Cauchy-
Schwartz inequality, we have

and so
n n bz !
2 i
a > £ =
Sz (L) -
i=] i=]
Moreover,
n
>artem
i=
if and only if there exists a real number ¢ such that, foralli =1,...,n,
th;
qy: = —
Jaiyi T
or, equivalently,
th;
Yi=—.
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This implies that
b2
t

I-Zb,y,-t —-;.

i=l iwl a

and so
t=m
and
mb,
Yi=—
ai

Conversely, if y; = mb; /a; for all i, then 3"\, b;y; = 1 and Q(y1, ..., yn) = m.
This completes the proof.

Theorem 7.1 (Selberg sieve) Let A be a finite sequence of integers, and let |A|
denote the number of terms of the sequence. Let P be a set of primes. For any real
number z > 2, let

P@)=[]r
pep
The “sieving function”
S(A,P,2)

denotes the number of terms of the sequence A that are not divisible by any prime
p € P such that p < z. For every square-free positive integer d, let |A4| denote
the number of terms of the sequence A that are divisible by d. Let g(k) be a
multiplicative function such that

0<gp) <l forall p € P,

and let g,(m) be a completely multiplicative function such that g,(p) = g(p) for
all p € P. Define the “remainder term” r(d) and the function G(z) by

r(d) =|Aql — g(d)|A|

and
G@)= Y. g&ilm).
Then
S(A.P.2) < 5(—) + 2 349\ (d)l, a2

le( )

where w(d) is the number of distinct prime divisors of d.

Proof. Since g is a multiplicative function, we have, by Theorem A.7,

8([d, d2))g((dy, d2)) = g(d)g(d2)

for all positive integers d; and d>.
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Let z > 2. For every divisor d of P(z), we shall choose a real number A(d)
subject only to the conditions that

A(l)y=1

and
Ad)=0 forall d>z.

2
( Z k(d)) >0
dl(a.P(2))

for all nonnegative integers a and

2
( Z A(d)) =1 if(a, P(2)) =1,

di(a.P(2))

Since

it follows that
S(A,P.2)= Y 1

agA
. P()=1

2
sz( 3 W))
a€A \di(a.P(2))

=Y 3 MdAd)

aeA dila  da
&yiPG) dplP()

= Y Mdrd) )1

dy.dy| P(2) Id:.f!;lla
- 2 AdDA(@)I A, 4y

d\.d2|P(z)

- Z A(d)A(d2) (g(ld1, d2))IA] + r((d), d2]))
d1.d31P(2)

= 1Al ) gldi. d&DAADA@) + D Md)A(d2)r((dy, d2))

dy.dy|P(2) di.d2|P(2)

- 141 Y . d))g(d.)x(dl)g(dz)x(dz)

dy.dy <
dy.dy1 P2

+ Y MA@ (dr. o))

dydy<z
d).da1 P

= |A|Q + R,
where

1
o=y mg(dl)l(dl)g(dz)l(dz)

dy.dy<:
dy.dy(PL2)
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and

R= )" Md)Md)r((dy. d)).

Let D be the set of all positive divisors of P(z) that are strictly less than z, that
is,
D={k|P(z):1 <k <z}
Then D is a divisor-closed set of square-free integers. If k € D, then0 < g(k) < 1
since 0 < g(p) < 1 for all primes p € P. For k € D, we define the function f(k)
by

u(d)
f(k)-ng(k/d) g(k)Z wu(d)g(d) = (k)]"[(l—g(p» (1.3)

dlk plk

Then f(k) > 0 and f(kiky) = f(ki)f(kz) if ki, k2 € D and (k;, k;) = 1. By
Mobius inversion (Theorem A.19), we have

f(d). (7-4)
(k) ;

Then

1
- ————g(d\)A(d))g(dr)A(d:
o= > @y B MA@

d,.d,eD

= D ) f(k)g(d)Ad)g(d)A(dy)

d,.d1€D 4,
kidy

=> f) Y gld)A(d)g(d)A(dr)

keD d) d7€D
tid) kdy

2
=Y fk) (Z g(d)x(d))

keD deD
kid

=3 fyr,

keD

where

Yo=Y gdArd).

deD
kld

Thus, Q is a quadratic form in the variables y;.
The set D is finite and divisor-closed. By Mobius inversion (Theorem A.22),
we have

gdAd) =) ( ) e =u(d) Y )y (7.5)

keD teD
dik dik
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In particular, for d = 1 we obtain

D uby=1.

keD
We define
1
F(z) = —_—
keD fk)

By Lemma 7.2, the minimum value of the quadratic form

Q=) flkn}

keD

subject to the linear constraint (7.6) is

(Z u(k)z)"' ) (Z _1_)" 1
2 F o 27k TF

and this minimum is attained when

_ u(k)
F2)f(k)

We insert these values of y; into (7.5) to compute A(d) as follows:

u(d)
AMd) = — k) y;
(d) g(d);#( )y

d
- ’g‘—fd—)) Y u@dya

d P

u(d) ( u(de) )
=22 doy [ ————2
2(d) z” WO\ Foruo

Yk

I C)) I
"~ f(d)gd)F(2) 2 ITG)

__H@F()
f(d)gd)F(2)’
where ,
F@= 2, 7oy

deipe)

183

(7.6)

In the preceding calculation, we used the fact that if d¢ divides P(z), then d and ¢
are relatively prime since P(z) is square-free. We shall use this fact again to prove
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that [A(d)| < 1. Let d be any positive divisor of P(z). Then

1
F@2) = -
keD f(k)

"2 f(k)

¢ld AeD
()=t

"L X Fam f(em)

tm<s
tid tm|P(2)
(Um.d)=t

-y L 1 1
O = fm)

Ud
tm|P(2)
(m.d/t)=|

1 1
,Zk,:f<e> Z fm)

nll/'( )
(m.d)=l

-2 7% (e) = f(m)

(ld
dm|P(2)

1
Z:f(f) 2, Fem f(m)

td m<z/d
dm|P(2)

=Py — f(e)

€d

Fq(2)

- d/e
@ e.zdf( /)

k@
f(d)g(d)

by (7.4), and so

Fy(2) <]
fdg@dF@@) ~
By Exercise 1, for any square-free integer d there are exactly 3“¥) ordered pairs of
positive integers dy, d such that [d;, d;] = d.If d,, d; < z,thend = [d,, d3] < Z2.
If d) and d, divide P(z), thend = [d), d] is a square-free number that also divides
P(2). Therefore,

1A(d)| =

IRI=| D" Mdp)Ad)r(ldr, da))

dy.dy<:
d).d31P(2)

< Y Ir(ld, da))

d).dy<:
d).da1P2)
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< Y 3@,
b

and so

To obtain the upper bound (7.2) for the sieving function S(A, P, 2), it is enough
to prove that F(z) > G(z). Let g, (k) be a completely multiplicative function such
that

gi1(p) =g(p)  forall primes p € P.

By (7.3),
1
F(2) = kZD 7®

=Y el ]]a-emn
keD plk

=Y a0 -aey™
keD plk

=Y a]] ig.(m'
keD plk r=0

=Y aw][[XY_ e
keD plk r=0

=) ) Y &®
kED pll;lpll

=Y > aike
kD Do

- Z Z gi(m)
kep '(N?E;Lm

=Y am| > 1
mei g

> 3 am| 31

kim
plm/h=>plk
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> Z g1(m)

m<:
pim=peP

= G(2),

since, in the last inner sum, we can always choose k to be the “square-free kernel”
of m, that is, the product of the distinct primes dividing m. This completes the
proof of the theorem.

7.3 Applications of the sieve

In this section, we shall obtain an upper bound for the number of representations
of an even integer as the sum of two primes. We also derive an upper bound for the
number of representations of an even integer N as the difference of two primes,
that is, an upper bound for the number of primes p < x such that p + N is also
prime.

Theorem 7.2 Let N be an even integer, and let r(N) denote the number of
representations of N as the sum of two primes. Then

r(N) << ( )
gN )2 !;[v
where the implied constant is absolute.

Proof. The representation function r(N) counts the number of primes p < N
such that N — p is also prime. Let

a, =n(N — n).
Then

A = {a, }::l.)

is a finite sequence of integers with |[A| = N terms. Let P be the set of all prime

numbers. Let
2<z< vN.

The sieving function S(A, P, z) denotes the number of terms of the sequence A
that are divisible by no prime p < z. If

~/-IV<n<N—~/N.

andifa, =0 (mod p)forsome prime p < z,theneithern or N —n is composite.
This implies that
r(N) <2v/N +S(A, P, 2). M)

We shall use the Selberg sieve to obtain an upper bound for S(A, P, z). We continue
to use the notation of Theorem 7.1.
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Let g(m) be the completely multiplicative function defined by

2(p) = { 2/p  if p does not divide N 78)

1/p if p divides N.
Then g,(m) = g(m) for all m. Since N is even, 2 divides N and

0<glp) <l

for all primes p. Also,
a,=n(N-n)=0 (mod p)

if and only if
n=0 (mod p) or n=N (mod p).

If p does not divide N, then N # 0 (mod p) and these two congruences are
distinct. If p divides N,then N =0 (mod p) and these two congruences are the
same. Let

d=pi---pq1---qe

be a square-free integer, where the primes p; divide N and the primes g; do not

divide N. Then .

2
g(d) = 7

Sincea, =0 (mod d)ifandonlyifa, =0 (mod p)forevery prime p dividing
d, it follows from the Chinese remainder theorem that there are exactly 2¢ pairwise
distinct congruence classes modulo d such thata, =0 (mod d) if and only if n
belongs to one of these 2¢ classes. Therefore,

[Aal = |Alg(d) +r(d),

where
Ir(d)] < 2° <29 (1.9)
By the Selberg sieve,
S(4,P,0) < 1AL L 37 300y,
B G(Z) al<.’z
P
where
G(2) = g(m)

and w(d) is the number of distinct prime divisors of d. Let

k £
m=[Tr ]

i=1 j=1
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where the primes p; divide N and the primes ¢; do not divide N. Then

k 1\" 4 2\% 21+ +5c
so-T1G) 1) ==

Let dy(m) denote the number of positive divisors of m that are rclatively prime to
N.Then

4 L m
dy(m)=d (nq;;) - n(‘i )< nz.;,. -

Jj=1 j=1 je=1

Therefore,

dy(m)
g(m) > ot

and so

G@) =) gm=)_ dnim)

m<z m<g m

(-3 -3
PIN p p:l:'pm t'

Since

it follows that

plr=2pl¥

=me§:$

m< t=1
Ple=>pIN

-Yam Y L

mic
pl(w/m)=pIN

=2 o X dvem

m<z

miw
pltu/m)=e pIN

21 Y duem.

w<y miw
Pl(w/m)=p|N

k [4
w=[]r[]a}

i=] jel
and

k 3
m=[1r/[]a}

i=] Jj=1
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where the primes p; divide N and the primes g; do not divide N. Since m divides
w, it follows that 0 < r; < u; foralli,0 <s; < v forall j, and

_-np "I—lqvl -‘i.

im] Jj=l1

Since every prime divisor of w/m divides N, it follows that no prime g; divides
w/m, and so s; = v; for all j. Therefore,

m-ﬂp nq

i=] Jj=1

and
¢

dy(m) = [ Jov; + .

Jj=1

For each integer w, the number of such divisors m is

(4
[ Jwi+1).

im]

It follows that for every positive integer w < z, we have

2 dyim)= Y I'[(v,+1)-]'[(ui+1)I'[(v,~+1)-d(w),

i=l Jj=1
Pl w/n)-plN pl(w/m)-plN

where the divisor function d(w) counts the number of all positive divisors of w.
Let
z= N8,

From Theorem A.13 we obtain

l—[ (1 — %) G(z) > E >> (log2)> > (log N)>.

pIN w<z

Equivalently,

1Al 1)"
G(2) (logN)z,l,,_,!( P
1\ 1
(log,,,)zl_l( ?) !,-,!(“F)

< TI(+2)
IogNY sy \ " p
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since the infinite product []72, (1 — p2) converges.
To find an upper bound for the remainder, we use (7.9) to obtain

R= Z 3“’(‘”|r(d)| < Z Jedd)uld) < Z 64D,

le( ) -ﬂl‘( ) d(’z
Since
2“’(d) < d
and
6“4 o (za;(d))1°86/l°32 < §'086/1082 _ 206/ logz’
it follows that

R< Zz2bg6/log2 < ZZ+2log6/logZ < Z7.2 - N9/l0

d<z?
since z = N'/2, Then
S(A, P,z << ( >+N9/'° L —— ( )
( ) N)2 l_[ (log N)2 ,1,11

and so

r(N) < 2v/N + S(A, P, 2) <7 N)2 ’];! ( p)

This completes the proof.

Theorem 7.3 Let N be a positive even integer, and let 7t y(x) denote the number
of primes p up to x such that p + N is also prime. Then

) < o] ( )

pPIN
where the implied constant is absolute.
Proof. The proof is similar to the proof of Theorem 7.2. It starts as follows. Let
A={a,:1<n<xj
be the finite sequence of integers
a,=n(n+N).
Then |A| = [x]. Let P be the set of all prime numbers. For any z satisfying
2<z<Vx,

we let S(A, P, z) denote the number of terms of the sequence A that are divisible
by no prime p < z. If
n>Jx
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anda, =0 (mod p) for some prime p < z, then either n or n + N is composite.
This implies that
JrN(I) < \/; + S(A' Pv Z).

We again use the Selberg sieve to obtain an upper bound for S(A, P, z). Let

dupl.-.pkq‘...q(

be a square-free integer, where the primes p; divide N and the primes g; do not
divide N. Let |A4| denote the number of terms of the sequence A that are divisible
by d. For every square-free integer d,

[A|
|Adl 77) +r(d),

where g(d) is the completely multiplicative function defined by (7.8), and
Ir(d)] < 2 < 29

Then

S(A,P,2) < m + Z 34Dr(d)),

dIPI )

where

G(2) = E

The proof continues exactly as above.
In the case where N = 2, we obtain the following improvement of Brun’s
Theorem 6.11.

g(m)

Theorem 7.4 Let w2(x) denote the number of twin primes up to x. Then

Ta(x) & ——
2 Qlog

7.4 Shnirel’man density

Let A be a set of integers. For any real number x, let A(x) denote the number of
positive elements of A not exceeding x, that is,

AQ) = Z 1.

aeA
I<a<:

The function A(x) is called the counting function of the set A. For x > 0 we have

0<A(x)=<[x]=x
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and so

The Shnirel’man density of the set A, denoted o (A), is defined by

A
o(A)= inf ﬂ
n=123.. n
Clearly,
0<o(A) <1
for every set A of integers. If 0(A) = «, then
A(n) > an

foralln=1,2,3,....1f 1 & A, then A(1) =0 and so g (A) =0.
If A contains every positive integer, then A(n) = n foralln > l andsoo(A) = 1.
If m ¢ A for some m > 1, then A(m) < m — 1 and

sy 2 oLy
m m
Thus, 0(A) = 1 if and only if A contains every positive integer.

If A and B are sets of integers, the sumset A + B is the set consisting of all
integers of the form a + b, wherea € Aand b € B.If Ay, ..., A, are h sets of
integers, then

Aj+Ar+---+ A,

denotes the set of all integers of the form a, + a> + - - - + a,, where a; € A; for
i=1,2,...,hIfA;,=Afori=1,2,...,h, welet

hA=A+---+A.
——————
h times

The set A is called a basis of order h if h A contains every nonnegative integer, that
is, if every nonnegative integer can be represented as the sum of 4 not necessarily
distinct elements of A. The set A is called a basis of finite order if A is a basis of
order h for some h > 1.

Shnirel’man density is an important additive measure of the size of a set of
integers. In particular, the set A is a basis of order A if and only if o(hA) = 1, and
the set A is a basis of finite order if and only if 6(hA) = 1 for some 7 > 1.

Shnirel’man made the simple but extraordinarily powerful discovery that if A
is a set of integers that contains 0 and has positive Shnirel’'man density, then A is
a basis of finite order.

Lemma 7.3 Let A and B be sets of integers such that0 € A,0 € B.Ifn > 0 and
A(n)+ B(n) > n,thenn € A+ B.
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Proof.Ifn € A,thenn=n+0¢€ A + B. Similarly,ifn € B,thenn=0+n €
A+B.
Suppose that n ¢ A U B. Define sets A’ and B’ by

A={n-a:aeA l<a<n-—-1)

and
B'={b:be B, 1<b<n-1}.

Then |A’| = A(n) since n ¢ A, and |B’| = B(n) since n ¢ B. Moreover,
AUB C[l,n-1].

Since
|A’| + |B'| = A(n) + B(n) > n,

it follows that
A'NB #0.
Therefore,n —a = b forsomea € Aandb € B,andson=a+b € A+ B.

Lemma 7.4 Let A and B be sets of integers such that 0 € A and 0 € B. If
o(A)+0(B) > 1,thenn € A+ B for every nonnegative integer n.

Proof. Let 0 (A) = and 6(B) = 8. If n > 0, then
A(n) + B(n) > (¢ + B)n = n,
and Lemma 7.3 implies thatn € A + B.

Lemma 7.5 Ler A be a set of integers such that 0 € A and 6(A) > 1/2. Then A
is a basis of order 2.

Proof. This follows immediately from Lemma 7.4 with A = B.

Theorem 7.5 (ShnirelI’man) Let A and B be sets of integers such that 0 € A and
O€ B.Leto(A)=a and o (B) = B. Then

c(A+B)>a+ 8 —af. (7.10)
Proof. Letn > 1. Let ap = 0 and let
l<ay<---<a<n

be the k = A(n) positive elements of A that do not exceed n. Since 0 € B, it
follows thata, =g, +0 € A+ Bfori=1,...,k.Fori=0,...,k—1,let

1 <b <"'<b’, <ajqg—a —1
be the r; = B(a;,1 — a; — 1) positive elements of B less than g;,; — a;. Then

a; <a; +b <--~<a,~+b,, < Qj4)
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and
a,~+bj€A+B

forj=1,...,r.Let
l<b <:---<b, <n-—a
be the r, = B(n — ay) positive elements of B not exceeding n — a;. Then
a <ar+b <---<a +b, <n
and
ar+b;jc A+B
for j=1,...,r It follows that

k-1
(A+B)(n) 2 A(n)+ ) Baisi —a; = 1)+ B(n — &)
i=0

k-1
> A()+BY (@i —ai = 1)+ Bn — ar)
i=0

k-1
= A(n)+ B Z(Gm —a;)+ B(n —a;) — Bk
i=0

= A(n) + fn — Bk

= A(n) + Bn — BA(n)
= (1 = B)A(n) + Bn
> (1 — B)an + Bn

=(a+pB —af)n
and so (A + B)(n)
— >a +8 —aB.
Therefore,
og(A+ B)"_il?sz S_A++0(n) >a+ B —af.

This completes the proof.
Inequality (7.10) can be expressed as follows:

l-0(A+B)<(1 —a(A)(1 —o(B)). (7.11)

The following theorem generalizes this inequality to the sum of any finite number
of sets of integers.

Theorem 7.6 Leth > 1,andlet A,, ..., A, be sets of integers such that 0 € A;
fori=1,...,h Then

h
I—o(Ar+--+ Ay = [Ja - a(a.

i=]
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Proof. This is by induction on h. Let 0(A;) = a; fori=1,...,h. Forh = 1,
there is nothing to prove, and for h = 2 it is inequality (7.11).

Let h > 3, and assume that the theorem holds for h — 1. Let A;, ..., A, be h
sets of integers such that 0 € A; forall i. Let B = A; + - - - + Ay. It follows from
the induction hypothesis that

h
1-0(B)=1-0(Ay+---+Ay) < [](1 - a4,
i=2

and so
l—0(Ay+---+Ap) =1-0(A1+B)
< (1 -o(A))1 - a(B))
h
s -o@)]]a -o(a

i=2
h
= [Ja - oca.
i=l
This completes the proof.

Theorem 7.7 (ShnireI’'man) Let A be a set of integers such that 0 € A and
0(A) > 0. Then A is a basis of finite order.

Proof. Leto(A) =a > 0.Then0 < 1 —a < 1, and so
0<s(l-a)f<1/2
for some integer £ > 1. By Theorem 7.6,
1-a(tA) < (1 —a(A) =1 -a) <1/2,
and so
o(LA) = 1/2.

Let h = 2¢. It follows from Lemma 7.5 that the set £A is a basis of order 2, and so
A is a basis of order 2¢ = h. This completes the proof.

7.5 The Shnirel’man—Goldbach theorem

We shall apply Shnirel’man’s criterion for a set of integers to be a basis of finite
order to prove that every integer greater than one is a sum of a bounded number of
primes. We begin by proving that the set consisting of 0, 1, and the numbers that
can be represented as the sum of two primes has positive Shnirel’man density. To
do this, we need estimates for the average number of representations of an integer
as the sum of two primes.
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Lemma 7.6 Let r(N) denote the number of representations of the integer N as
the sum of two primes. Then

2

r(N)>» ——
g (log x)*’
Proof. If p and g are primes such that p, ¢ < x/2, then p + ¢ < x. Therefore,
2 2 2
(x/2) > X
(log(x/2))* = (logx)?

Z r(N) > m(x/2)* >

N<x
by Chebyshev's theorem (Theorem 6.3).
Lemma 7.7 Let r(N) denote the number of representations of N as the sum of
two primes. Then
3

(logx)*’

Y orN? <«

N<x

Proof. By Theorem 7.2, if N is even, then

'(N’«(lgN)zn( ) aogN)de

This inequality also holds for odd integers, since an odd integer N can be written
as the sum of two primes if and only if N — 2 is prime, in which case r(N) = 2.
In the following calculation, we use the fact that

(d.d>) = > (didy)"%.

d, dz)
Then

2

N2 1

> rN? <) -
N<xr( N<x (IOg N)4 (dIN d)

x? 1
-—— Y — 3
(log x)* did; 4

= 1d).da 1N
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2
x- 1 X

< ——
- (]ogx)“ d\d, [d,, d,]

dy.dy<x

<
- (Iogx)‘ dz d3/2d3/2

dy<x
2
< —
(log x)* d;x a3
< X
(log x)*’

This completes the proof.

Theorem 7.8 The set

A={0,1}U{p+q:p,q primes}
has positive Shnirel’man density.

Proof. Let r(N) denote the number of representations of N as the sum of two
primes. By the Cauchy—Schwarz inequality, we have

2
(Z ’(N)) < Y 1Y RN < AW Y (N

N<x V<a N<x N<x
N2

By Lemma 7.6 and Lemma 7.7,

AW _ 1(Evar )
x x Z:Ns,rr(N)2

X‘
1 (log .r)z

I

(log P
> 1.

This means that there exists a number ¢; > 0 such that A(x) > ¢;x for all x > xp.
Since 1 belongs to the set A, it follows that there exists a number ¢; > 0 such that
A(x) > cax for 1 < x < xg. Therefore, A(x) > min(c, cz)x forall x > 1, and so
the Shnirel’man density of A is positive. This completes the proof.

Theorem 7.9 (Goldbach-Shnirel’man) Every integer greater than one is the sum
of a bounded number of primes.

Proof. We have shown that the set

={0,1}U{p+q: p,q primes}
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has positive Shnirel’man density. By Theorem 7.7, there exists an integer / such
that every nonnegative integer is the sum of exactly & elements of A. Let N = 2.
Then N — 2 > 0, so for some integers k and £ with k + £ < h there exist ¢ pairs
of primes p;, g; such that

N—-2=1++1+pr1+q)+ - +(pe+q0)
k

Letk =2m +r,wherer =Qor 1. If r = 0, then

N=2+---+2H+Hp1+q))+---+(pe +qe).
m+|
If r = 1, then
N=2+---+243+(p1+q1)+---+(pe +qo).

In both cases, N is a sum of
20+m+1<3h

primes. This completes the proof.

Theorem 7.10 Let Q be a set of primes that contains a pasitive prapartion of the
primes, that is,

0(x) > n(x)

for some 0 > 0 and all sufficiently large x. Then every sufficiently lurge integer is
the sum of a bounded number of primes belonging 10 Q.

Proof. We shall first show that the set
AQ={0,1}U{p+q:p,q € Q)

has positive Shnirel’man density. Let r(N) denote the number of representations
of N as the sum of two primes, and let r,(N ) denote the number of representations
of N as the sum of two primes belonging to Q. Then

x2

(logx)?’

Y ro(N) 2 (Q(x/2)* 2 B (x)? >

N<x
By Lemma 7.7,
3
S roNR < 3 (NP & —

N<x N<x (logx)4.

It follows exactly as in the proof of Theorem 7.8 that the set A(Q) has positive
Shnirel’man density. Therefore, A(Q) is a basis of finite order. It follows that there
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exists a number h; such that every nonnegative integer is the sum of 4, elements
of QU {0, 1}.

Choose two primes p;, p» € Q. By Exercise 3, there exists an integer no =
no(py, p2) such that every integer n > ng can be written in the form

n==£(n)py + &2(n)p2,
where £€,(n) and £,(n) are nonnegative integers. Let
hy = max{€,(n) + €2(n) : n =ny, ..., ng+ hy},
and let
h =h, +h;.

If N > ny, then N — ng can be written as the sum of at most 4, elements of QU {1},
that is,
IV—IIQ-1-0-'~~+]+p,'l + - Dis
k
where
k+¢€ < hy.
Then
no+k = ¢, (n)py + €2(n)p2,

where £,(n) + €2(n) < h,, and so
N=no+k+pi+--pi
=£1(n)p) + €2(n)p2 + pi, + - - p;,

is a sum of
8+8,(n)+€2(n) < h] +h2 =h

primes belonging to the set Q. This completes the proof.

7.6 Romanov’s theorem

Let a be an integer, a > 2. We investigate how many numbers N up to x can be
written in the form
N = p +a*, (7.12)

where p is a prime and k is a positive integer. Let r(N) be the number of repre-
sentations of N in this form. Since the number of positive powers of a up to x is
« log x and the number of primes up to x is 7(x) < x/ log x, it follows that

r(N)=|{p+a* <x}| «lo x(L)-
NZ I{p <« logx (o ) =
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Let
A={p+ad*:pprimeandk > 1},

and let A(x) be the counting function of the set A. In this section, we shall prove
a remarkable theorem of Romanov that the lower asymptotic density of the set A
is positive, that is, there exists a constant ¢ > 0 such that

A(x) > cx

for all sufficiently large x. This means that a positive proportion of the natural
numbers can be represented in the form (7.12).

Lemma 7.8 Let a be an integer, a > 2. For every integer d > 1 such that
(a,d) = 1, let e(d) denote the exponent of a modulo d, that is, the smallest integer
such that

a?® =1 (mod d).

Z de(d)

0. 4)—!
wldyel

Then the series

converges.

Proof. If (@, d) = 1 and e(d) = k, then

a =1 (mod d),

and so d divides a* — 1. Since a* — 1 has only finitely many divisors, it follows
that there are only finitely many numbers d such that e(d) = k. For x > 2, let

D =Dx) =[] (a* -1).

k<x
and let n = (D) be the number of distinct prime divisors of D. Let

Ew-Y Y ;

k<x t(dH

1(4.-1

The number d appears in this double sum at most once, and if d appears, then d
divides a* — 1 for some k < x, so d divides D. It follows that

E(x) < Zm: —-]'[(1+ ) [‘[(n%),

where py, pa, ..., p, are the first n prime numbers. Since

2" = 2D <D= n(ak _ l) < ]_lak < a*E*2 axZ’

k<x k<x
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loga , 2
n< (Iog2)x L x°.

By Chebyshev (Theorem 6.4),

it follows that

log p, < logn < logx,

and so, by Mertens’s formula (Theorem 6.8),

E@ <[] (1+%)

P<pPn

CHE

1230
< log pn
< logx.

By partial summation,

1 E(x) T E®)
Sil D il 52 e

k<x e(d)=k
(0.dr1
2
log x lo t
< i / 28!
1
< 1,
and so the series
=1 1 > 1
Li| 2" 2 z@
(a.d)=t ta.dr1
uwr=l u3idr=1

converges. This completes the proof.

Lemma 7.9 Let a be an integer, a > 2, and let r(N) denote the number of
solutions of the equation
N = p +a*,

where p is a prime and k is a positive integer. Then

Y r(N? <« x.

N<x

Proof. Since r(N)? is equal to the number of quadruples (p,, p2, ki1, k2) such

that
P1 +a* = D2 +a* = N,
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it follows that 3~ r(N)? is equal to the number of quadruples (py, p2. k1, k2)
such that
p1+a" = py+d* < x.

This does not exceed the number of solutions of the equation

p2—pi=a" —a"

with p;, p, < x and k), k; < logx/loga.
Choose positive integers k; # k5, and let

h=a* —a*.
Then h is a nonzero, even integer. The number of solutions of the equation

po—p=a" —ad*=h

with py, p, < x is at most the number of primes p; < x such that p; + h is also
prime. By Theorem 7.3, this is

X 1
mh(x) K ml;’!(l-#;)

If k; > k;, then
h=a" (ahh - 1)

D(+3)-T10+5) T (1+7)

pla pl(at2~t -1)

1 1
= 1+ —) (I + —)
l/:t:!( P pl(a‘ll-‘-‘['—l) P

< ]I (l+l),
p@t-n s P

where the implied constant depends on a. Similarly, if ky > k3, then

and

h = —a* (a"“"z -1)

E’! (] + %) < n (l + %) = ,,|(a::l,_-:l,._,) (l + %) .

pl(a1-t2~1)

Finally, if k; = k;, the number of solutions of the equation

P2 — Pi =ab — gl =0
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with p), pp <xand 1 <k; <logx/loga s
m(x)logx
loga
It follows that

YN gx+2 ) I1 (1+l)

N<x sk <ky< 2 pl(at2=t1-1) P

< x +logx Z n (I+%)

1<k<Eﬁ pl(n‘—l)

<L x+logx Z Z -
1<‘<‘_°.L 1ot - x)

ndra1

To estimate the last term, we observe that

d|(a* 1)
if and only if
a*=1 (modd)
if and only if
e(d)|k.
Then

Zr(N)2 <L x+logx Z Z

N=<x 1<k<2L‘ it - |)

ulidrt
(a drl

log x
< x+l
x+logx Z de(d)loga

lAz(db-l
(@.dy=l

< x+(logx)* )~

udidyl
(a.d)=!

de(d)
Lx

since the infinite series converges by Lemma 7.8.

203
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Lemma 7.10 Let a be an integer, a > 2, and let r(N) denote the number of
solutions of the equation
N = p+d*,

where p is a prime and k is a positive integer. Then

Zr(N) > x.

N<x
Proof. If p < x/2and a* < x/2, then p +a* < x,so0

> r(N) > m(x/2)log(x/2) > x.

N<x
This completes the proof.

Theorem 7.11 (Romanov) Let a be an integer,a > 2. Let
A={p+a*: pprimeandk > 1},

and let A(x) be the counting function of the set A. There exists a constant ¢ > 0
such that
A(x) > cx

for all sufficiently large x.

Proof. We use the Cauchy—Schwarz inequality. By Lemma 7.10 and Lemma 7.9,
there exist positive numbers ¢, and ¢, such that, for x sufficiently large,

2
(c1x)* < (Zr(N))

N<x

< A(x) Y r(NY < cxA(x)

N<x

and so
A(x) > cx.

7.7 Covering congruences

Choosing a = 2 in Romanov’s theorem, we see that a positive proportion of the
natural numbers can be written in the form p + 2*. The only even numbers of this
form are 2 + 2¥, and they constitute a very sparse subset of the even integers, a
subset of density zero, so almost all of the integers of the form p + 2 are odd.
We shall prove that there exists an infinite arithmetic progression of odd natural
numbers, none of which can be written in the form p +2*. To do this, we introduce
the concept of covering congruences for the integers.
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Let

l<m<mp<---<m

be a strictly increasing finite sequence of integers, and let a;, ..., a; be any in-
tegers. Then the £ congruence classes a; (mod m;) form a system of covering
congruences if, for every integer k, there exists at least one i such that

k=a; (mod m;). (7.13)

This means that the congruence classes a; (mod m;) cover the integers in the
sense that

¢
Z-|JtkeZ:k=a; (modm,).
i=l
It is an essential part of the definition of covering congruences that the moduli

m; are pairwise distinct integers greater than one. Here is a simple example of a
system of covering congruences.

Lemma 7.11 The six congruences

0 (mod 2)
0 (mod 3)
1 (mod 4)
3 (mod 8)
7 (mod 12)
23 (mod 24)

form a set of covering congruences.

Proof. First, we show that each of the 24 integers 0, 1, ..., 23 satisfies at least
one of these six congruences. Every even integer k satisfies k =0 (mod 2). For
odd integers, we have

=1 (mod4)
3=0 (mod 3)
S=1 (mod4)
7=7 (mod 12)
9=0 (mod 3)
11=3 (mod 8)
13=1 (mod 4)
15=0 (mod 3)
17=1 (mod 4)
19=7 (mod 12)
21=0 (mod 3)

23 =23 (mod 24).
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For every integer k, there is a unique integer r € {0, 1, ..., 23} such that
k=r (mod 24).

Choose i so that
r=a; (mod m;),

where a; (mod m;) is one of our six congruences. Each of the six moduli 2, 3,
4, 6, 12, and 24 divides 24, so m; divides 24 and

k=r (mod m;).

Therefore,
k=a;, (mod m;).

This completes the proof.

Theorem 7.12 (ErdGs) There exists an infinite arithmetic progression of odd
positive integers, none of which is of the form p + 2.

Proof. We shall use the system of covering congruences a; (mod m;) con-
structed in Lemma 7.11. For each of the six moduli m; in this system, we choose
distinct primes p; such that

2™ =1 (mod p;),

as follows:
22=1 (mod 3)
22=1 (mod7)
2*=1 (mod 5)
22=1 (mod 17)
22=1 (mod 13)
2% =1 (mod 241).
Let
€ = max{p;} = 241
and

m=2.3.7.5.17-13.24].

By the Chinese remainder theorem, there exists a unique congruence class r
(mod m) suchthatr =1 (mod 2!) and r = 2% (mod p;) fori = 1,...,6.
This means that

r=1 (mod 2%

r=2° (mod 3)
r=2° (mod7)
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r=2' (modS)
r=2 (mod 17)
r=2" (mod 13)
r=22 (mod 241),

where the exponents in the powers of 2 are the least nonnegative residues a; in
the six congruence classes in the system of covering congruences. Since r is odd
and the modulus m is even, it follows that every integer in the congruence class r
(mod m) is odd.

Let N be an integer in the congruence class r (mod m) such that

N>2t+e.

Let k be a positive integer such that 2 < N. There is a congruence class a;
(mod m;) in the system of covering congruences such that

k= a; (mod m;)

so k = a; + m,u; for some integer ;. Since

2" =1 (mod p;),
we have
2t =2%2m4 = 2% (mod p;).
Since
N=r (mod P:)
and

r=2% (mod p;),

it follows that

N=r=2"=2" (mod p)),

and so
N-2"+p,~v

for some positive integer v. If k < ¢, then
piv=N-2x>N—2¢> ¢ =max{p;} > pi
fori=1,...,6,andsov > 1.If k > ¢, then
N-2*=N=1 (mod2)

and so
pv=N—-2=1+2w>2'>¢>p

and v > 1. In both cases, N — 2* is composite. This completes the proof.
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7.8 Notes

Shnirel’man’s fundamental paper was published first in Russian [113] and then
expanded and published in German [114]. By Shnirel’man’s constant we mean the
smallest number h such that every integer greater than one is the sum of at most
h primes. Using the Brun sieve, ShnireI’man proved that this constant is finite.
The best estimate for Shnirel’man’s constant is due to Ramaré [100], who has
proved that every even integer is the sum of at most six primes. It follows that
Shnirel’man’s constant is at most seven. The Goldbach conjecture implies that
Shirel’man’s constant is three.

In this chapter, I use the Selberg sieve instead of the Brun sieve to prove the
Goldbach-Shnirel’man theorem. See Hua [63] for a nice account of this approach.
Landau [76, 77] gives Shnirel’man’s original method. Theorem 7.10, the general-
ization of the Goldbach-Shnirel’man theorem to dense subsets of the primes, is
due to Nathanson [90].

Selberg introduced his sieve in a beautiful short paper [109]. I use Selberg’s
original proof of the sieve inequality (7.2). See Selberg’s Collected Papers[110,
111] for his papers on sieve theory. Prachar [97] contains a nice exposition of the
Selberg sieve, with many applications. The standard references on sieve methods
are the monographs of Halberstam and Richert [44] and Motohashi [87].

Romanov’s theorem appears in the paper [103]. Romanov also proved that, for
a fixed exponent k, the set of integers of the form p + n* has positive density.
The proof of Theorem 7.8 of Romanov’s theorem was simplified by Erdos and
Turan [30] and Erdos [33].

Erdos [32] invented covering congruences and used them to construct the infinite
arithmetic progression of odd positive integers not of the form p +2*, as described
in Theorem 7.12. Crocker [16] proved that there exists an infinite set of odd positive
integers that cannot be represented as the sum of a prime and two positive powers
of 2. Crocker’s set is sparse. It is an open problem to determine if there exists an
infinite arithmetic progression of odd positive integers not of the form p +2% +2%2,

There are many unsolved problems concerning covering congruences. It is not
known, for example, whether there exists a system of covering congruences all of
whose moduli are odd. Nor is it known whether, for any number M, there exists
a system of covering congruences all of whose moduli are greater than M. The
best result is due to Choi [12], who proved that there exists a system of covering
congruences with smallest modulus 20.

7.9 Exercises

1. Prove that for any square-free integer d there are exactly 3*“) pairs of
positive integers d,, d; such that [d, d;] = d.
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. Let w(n) denote the number of distinct prime divisors of n. Let n > 2 and
r > 0. Prove that

D M) <0< ) u).

dn d'n
and1<2r el A2

. Leta,; and a; be relatively prime positive integers. Prove that there exists an
integer no = no(a,, az) such that every integer n > ng can be written in the
form

n = ¢;(n)a; + &2(n)a;

for some nonnegative integers €,(n), £2(n).

. Construct a system of covering congruences whose moduli are 2, 3, 4, 6,
and 12.

. Letus call an integer n exceptional if n — 2* is prime for all positive integers
k < logn/log?2. Find all exceptional numbers up to 105. Erdds [32] has
written that “it seems likely that 105 is the largest exceptional integer.”

. Let{a; (mod m;) : i =1,...,k} be a system of covering congruences.
Prove that
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Sums of three primes

The method which I discovered in 1937 for estimating sums over
primes permits, in the first instance, the evaluation of an estimate for
the simplest of such sums, i.e. a sum of the type:

z :e2m'ap.

p<N

This estimate in combination with the previously known theorems
concerning the distribution of primes in arithmetic progressions . ..
paved the way for establishing unconditionally the asymptotic for-
mula of Hardy and Littlewood in the Goldbach ternary representation
problem.

I. M. Vinogradov [135, page 365]

8.1 Vinogradov’s theorem

Vinogradov proved that every sufficiently large odd integer is the sum of three
primes. In addition, he obtained an asymptotic formula for the number of rep-
resentations of an odd integer as the sum of three prime numbers. Vinogradov’s
theorem is one of the great results in additive prime number theory. The princi-
pal ingredients of the proof are the circle method and an estimate of a certain
exponential sum over prime numbers.
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The counting function for the number of representations of an odd integer N as
the sum of three primes is
r(N= )L

p1+pr+py=N

The following is Vinogradov’s asymptotic formula for r(N).

Theorem 8.1 (Vinogradov) There exists an arithmetic function G(N) and positive
constants ¢, and c; such that

ci < S(N) <ca
Jor all sufficiently large odd integers N, and

N? loglog N
r(N)= G(N)—z(Iog Ny (l +0 (—IogN )) .

The arithmetic function G(N) is called the singular series for the ternary
Goldbach problem.

8.2 The singular series
We begin by studying the arithmetic function

N
&(N) = Z %—), @.1)
q=1

where
9

cg(N)= Y eaN/q)

a=]
(q.a)=)

is Ramanujan's sum (A.2). The function G(N) is called the singular series for the
ternary Goldbach problem.

Theorem 8.2 The singular series G(N) converges absolutely and uniformly in
N and has the Euler product

1 1
G(N)alzl(w(p—1)3)1_[(I B p2—3p+3)'

pIN

There exist positive constants ¢y and c, such that
ca<B(N)<c

Jor all positive integers N. Moreover, for any ¢ > 0,

S(N.Q)= Y “(")(C")ﬁ ) eV +0 (079, 8.2)
9=Q

where the implied constant depends only on €.
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Proof. Clearly, c,(N) < ¢(q). By Theorem A.16,

0(@)>q'"
for ¢ > 0 and all sufficiently large integers g, and so
1(g)cy(N) 1 1
‘13 2 < 2-¢"
v(q) v@) q
Thus, the singular series converges absolutely and uniformly in N. Moreover,
SN -6IN.O)K Y — ( R <€ Z e QH
0¥ >0
By Theorem A.24, c,(N) is a multiplicative function of g and

p —1 if pdivides N
cp(N) I -1 if p does not divide N.
Since the arithmetic function
1(q)cqg(N)
v@q)

is multiplicative in ¢ and u(p’) = 0 for j > 2, it follows from Theorem A.28 that
the singular series has the Euler product

mm-ﬂO+ZfWWMM)

o ey

- l‘[ (I - C”(N))
o(p)?

'ﬂ( w-W)HO_G%W)
(0 5=w) (- 5w3):

and so there exist positive constants ¢; and ¢, such that

c; < 6(N) < c;

for all positive integers N. This completes the proof.

8.3 Decomposition into major and minor arcs

As in the proof of the Hardy-Littlewood asymptotic formula for Waring’s problem,

we decompose the unit interval {0, 1] into two disjoint sets: the major arcs 9 and
the minor arcs m.
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Let B > 0 and
Q = (log N)5. (8.3)
For
l<gqg=<0,
0<a=<g,
and
(a,q)=1,

the major arc M(q, a) is the interval consisting of all real numbers a € [0, 1] such
that
Qo

a——-|<=.

q N
fa € M(q,a)NM(q’,a’)anda/q ¥ a’/q’, then |ag’ — a’q] > | and

a

[ ’
L L lg-dq _|a_a
Qo qq’ qq 9 q
o2
<2_al+le-2 <22
q q N

or, equivalently,
N <2Q° =2(log N)*8.

This is impossible for N sufficiently large. Therefore, the major arcs 9(q, a) are
pairwise disjoint for large N. The set of major arcs is

Qe 9
m=-J U M@.a)c01]

q-l l«..,q-)o-l
and the set of minor arcs is
m=[0, 1]\ 9.

We consider a weighted sum over the representations of N as a sum of three
primes:
R(N)= )" logpilog p; log p.

Pr+pr+py=N

Vinogradov obtained an asymptotic formula for R(N), from which Theorem 8.1
will follow by an elementary argument. We can use the circle method to express
the representation function R(N) as the integral of a trigonometric polynomial
over the major and minor arcs. Let

F) =} _(log ple(pa). (8.4)

psN
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This exponential sum over primes is the generating function for R(N), and

1
R(N) = Z log p) log p2 log p3 = / F(a)’e(—Na)da
Pr1+py+ps=N 0

- / F(@)’e(-Na)da + / F(a)e(~Na)da.
m m

The main term in Vinogradov's theorem will come from the integral over the major
arcs, and the integral over the minor arcs will be negligible.

8.4 The integral over the major arcs

Just as in the Hardy-Littlewood asymptotic formula, the integral over the major
arcs in Vinogradov’s theorem is (except for a small error term) the product of the
singular series G(N) and an integral J(N). In this case, the integral J(N) is very
easy to evaluate.

Lemma 8.1 Let
N

u(B) = _ e(mp).

m=]
Then
1/2 NZ
J(N) = / u(B)’e(—NB)dp = 5t O(N).

=172

Proof. By Theorem 5.1, the number of representations of N as the sum of three
positive integers is

172
J(N)-[ u(Bye(—NB)dp

172 N N N
/ 33" ettmy + my +m3 — N)B)AB

1/2 my=1 my=1mz=]

2
N2
= T + O(N)

This completes the proof.

In the next lemma we shall apply the Siegel-Walfisz theorem on the distri-
bution of prime numbers in arithmetic progressions. A proof can be found in
Davenport [19].
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Theorem 8.3 (Siegel-Walfisz) Ifq > 1 and (q,a) = 1, then, for any C > 0.

x x
Pixig.a)= 3, logp= v *C ((lomc)

pss
pma (mod q)

for all x > 2, where the implied constant depends only on C.

Lemma 8.2 Let
Fe(e) = ) (log pe(pa).

e

Let B and C be positive real numbers. If 1 < q < Q = (log M)" and (¢. @) = 1.

then @) ON
e,
Fralay="Cy*+ 0 ((logzv)(')

for 1 < x < N, where the implied constant depends only on B and C.

Proof. Let p =r (mod g). Then p divides g if and only if (. ¢) > 1, and s

Z > (logp)e(pa/q>-Zj(logp)e(pa/q) < Zlog p < logyg.

p<x
1q;,l pmr  (mod g)

Therefore,

205 T wene(2)

r=l
pwr  (mod @)

- Z Y (og p)e( )+ O(logq)

rel psx
{r.q»=) pmr (modgq)

9
-3 ¢(2) X toen+onog0)

(r.qrl pwr (mod q)

-Z (%) 2wiq.+ 000 0

X
- Z ( ) («a(q) +o (aogx)‘f)) +00og )

4 =)
v(q) x+0 ((logx)c +0(log 0)

u(q) ON
TR (aog N)C) '

since, by Theorem A.24, ¢,(a) = u(a) if (g.a) = 1.
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Lemma 8.3 Let B and C be positive real numbers with C > 2B. Ifa € M(q, a)
and B=a —a/q, then

ne) Q’N
e = 280+ (e

N C). ( 02N’ )
Fle tp(q)’u(ﬂ) +0 (log N)¢ )"

where the implied constants depend only on B and C.
Proof. If @ € 91(q, a), thena = a/q + B, where |8] < Q/N. Let

logp if m=pisprime
Am) = I 0 otherwise.

If1 <x < N,then

Fla) - 249 f";um)-zfglogpe(pa)— (‘”‘L'; e (mB)
p< me
N
-Zx(m)e(ma)—“(‘”z (mp)
mm=] m-l

=Zx(m)e(——+ ﬂ) Z‘;E—Z;e( B

mel mm=l

"Z(*( Je (”’") “(‘”) e(mp).
m=1 ‘P(q)
By Lemma 8.2, we have

ma u(q))

A(x) = A oy 24

« ,<,,,z<,( (m)e( q ) v(q)
ma u(q) ( 1 )
- A - = ol —
an;x (me ( ) </J(¢1)x+ v(q)

-Fx(g)_M +0(])
q C)

ON
-0 ((logN)C)'

By partial summation, we obtain

K(q)

F(a) —
(@) "

N
u(p) = A(N)e(NB) —2nip f A(x)e(xp)dx
1
K |A(N)| +|BIN max{A(x): 1 <x < N}
QN
(log N)¢~

<
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Clearly, |u(B)| < N. Since C > 2B, we have

0*N N

= N
(og N)C ~ (log N)C—28 =

and the estimate for F(a)® follows immediately. This completes the proof.

Theorem 8.4 For any positive numbers B, C, and € with C > 2B, the integral
over the major arcs is

N? N? N?
3,0 = -
/ F(a)’e(—Na)da = G(N) 2 +0 ((log N)(|_p)[g) +0 ((log N)C—SB) ’

where the implied constants depend only on B, C, and ¢.

Proof. We note that the length of the major arc 9(q, a) is Q/N if g = 1 and
2Q/N ifq > 2. By Lemma 8.3,

s ug) (_g)’ _
[EDI( (o)’ — e )3u « 7 e(—Na)da

-y q / Fay - 9, (a— 3>3 e(—Na)da
g<Q M(g.a) ‘P(q)3 q

@.q)=1

Q2N3
Ty
qgg a-O m(q a) (Iog N)C

Q3N2
«2 2 . tair (og N)C

(a. ll)-l
QS N2
~ (log N)¢
N2
f —.

Ifa=a/q+pB € M(q,a),then |B| < Q/N and

Z Z #(9) ( - g>3fz(—N01)d01
¢(@q)® JM.a) q

q9<Q

(n v)-

q

a/q+Q/N 3
= z z u(q) u (a - 2) e(—Na)da
q<Q a=1 ¢P(¢I) alq-Q/N q

q Q/N
- (,‘)‘((;’))3 3 e(~Na/q) f u(BYe(~NB)dB
q9<Q a=1

(a.q)=1
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Zu(‘l)‘-'q( N) [foN
= e@? Jogw

Q/N
-8V, 0) f u(B) e(~NB)B.

u(B)’e(—NB)dp

By Lemma 4.7, if | 8| < 1/2, then

uB) < 1BI™!
and
1/2 1/2
f u(BYe(—NB)B < f u(B)1*dp
Q/N Q/N
1/2
< B3dp
Q/N
N2
< _é—z
Similarly,
—-Q/N NZ
[ wpre-npwp < .
12 0
By Lemma 8.1,
Q/N
f LB eNB)p - / u(BYe(~NB)IP + ON?Q™?)
2 2
- N— +O0ON)+O0 (Qz)
N2 N?
70 (Q’)
By Theorem 8.2,
1
S(N, Q) = &(N)+ O (Ql s).
Therefore,

/zm F(a)e(—Na)da

Q/N 3 NZ
= &(N, Q)-/-Q/N u(B)'e(—NB)dp + O (W)

N2 NZ NZ
"6 +0 (Q‘ ) +o ((log N)HB)

N? N?

This completes the proof.

219
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8.5 An exponential sum over primes

To estimate the integral over the minor arcs, we shall apply Vinogradov’s estimate
for the exponential sum F(a). The proof is based on a combinatorial identity of
Vaughan.

Theorem 8.5 (Vinogradov) If

where a and q are integers such that 1| < q < N and (a, q) = 1, then

N
F(a) € (;]—”—2 + N5 4+ N'/Zq'/z) (log N)*.

The proof is divided into a series of lemmas. The first is an identity involving
arithmetic functions of two variables and truncated sums of the Mdbius function.

Lemma 8.4 (Vaughan's identity) Foru > 1, let

M, (k)= u(d).

dik
d<u

Let ®(k, €) be an arithmetic function of two variables. Then

Yoo+ Y ) Mdk, =) Y D ud)ddm, o).

u<t<N u<ksNy<e<? dsuycf<Smek

Proof. We shall evaluate the sum

N
S=) Y M(dk 0

k=l u<t5%

in two different ways. Since

1 ifn=1
%u(d) = I 0 otherwise,

it follows that
1 ifk=1
M"(")=I 0 ifl<k=<u.

Therefore,

S= ) o(Lo+ Y > M)dk,0).

u<t<N u<k5N,,<(5'_:.'
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On the other hand, interchanging summations and letting k = dm, we obtain

N
S=Y" Y > wdok, o

k=l ycecd db

dew

=ZZ > WOk, 0

d<u ‘-kl u<[<-

=22 D wddEmo

d<u m<¥ <X
= m_du<l_3—;l

=33 > wdd@m,e).

dsuy<t<ims<¥
Lemma 8.5 Ler A(£) be the von Mangoldt function. For every real number a,

F(@) =5, — S — S3+ O(N'?),

where
Si= Y 2 Z u(d)A(@e(adtm),
d<N3¥3s z<— m<-
Si= D D Y wdA®e(adtm),
dSNZ/S (5~2/5 '"55
and

S3= Y. Y Myus(k)A(De(@k).

k>NS NYS<(<N/fk

Proof. We apply Vaughan's identity with
u =N

and
Ok, ) = A(Q)e(akl).

The first term in Vaughan'’s identity is

D00, 0= Y A(®e(l)

u<tl<N NS <t<N

N
=Y A@e@t) - Y A0)e(at)

=1 (<NS
= ) (log p)e(ap*) + O (N** log N)
PN

- Z(log ple(ap) + Z (log ple(ap*) + O (N**log N)
p=<N AN
122



222 8. Sums of three primes

= F(a)+ 0 Z logp | + O (N**logN)
pk <N

k22

=F(a)+ 0

(

log N

[°g ]logp +0 (N¥Slog N)
PPN

\ log p
= F(a)+ O (1(N'/*)1og N) + O (N** log N)
= F(@)+ O (N'?),

since
172

N
N|/2
m( ) K log N

by Chebyshev (Theorem 6.3).
The second term in Vaughan'’s identity is simply

Z Myus(K)A(L)e(akl) = S;.

NYS<ksN NUS<g<k
The third term in Vaughan’s identity is

Y ) w@A@e(adem)

<NUS NUS o<
AN NUS<f<Dm<f

=Y Y > wdA©e(adem)

NS geB meh
d=N*P <G msg

- Z Z Z#(d)A(Z)e(adEm)

dsNz/s ESN"’ '"5%

=S5 - 8.

This completes the proof.
In the next three lemmas, we find upper bounds for the sums §;, S, and S5.

Lemma 8.6 If
a
a — —

1
< —_—
q —_— 2‘

q

where 1 < q < N and (a,q) = 1, then
N 2/5 2
1$1] < ;+N +q | (log N)%.

Proof. Let u = N*, Since ), A(€) = logr, we have

S = Z Z Z w(d)A()e(adtm)

d<u N N
SHE<G s
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- Z Z u(d)A(€)e(adtm)

d<u {m<N/d

=2 D wldeladr) ) A®)

d<ur<N/d Lr

- Zp,(d) Z e(adr)logr

d<u r<N/d

<)

d<u

Z e(adr)logr

r<N/d

We compute the inner sum by writing the logarithm as an integral and interchanging
summations:

z e(adr)logr = ’E e(adr) ‘/l-r d_xx_

r<N/d <N/d

(N/d) r s dx
- ewtnd [ =

ra2 sm2 V51
(N/dV{N/d] a5 d
X
-2 [ ew@in®
sm2  res s—1 x

N/d}) s [IN/d]
- z / (Z e(adr)) _d_x
s=1 res X

s=2

By Lemma 4.7, the geometric progression inside the integral sign is bounded above

by
[N/d}

N
Z e(adr) < min {7, IIUdII—l] )

and so N
Y e(adr)logr < min (7. lladll“) log N.

r<N/d

By Lemma 4.10, we have

N N
> min (7, ||ad||") < (— + N3 +q) log N.
q

d<u

Therefore,

N
S < Zmin (7, ||ad||") log N

d<u
N 2/5 2
< ;+N +q ) (log N)~.

This completes the proof.
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Lemma 8.7 If
a2

1
= =
q

q

where 1 < q < N and (a, q) =1, then
N 4/5 2
1S2] « 7 + N +q ) (log N)*.

Proof. If d < N¥5 and £ < N?/3, then d¢ < N*/5. Making the substitution
k = d¢, we obtain

=Y. D Y udA(@e(adtm)

d<NS {<NUS "le;i,

-y (Z e(akm)) D WA

k<N¥$ \m<N/k

Since

Y wDAO < Y AW <Y A(®) =logk < log N,

kedt Ladt £ ‘
d.esNS PRET A l

it follows again from Lemma 4.10 that

Sy < logN > > e(akm)

k<N¥Sm<N/k

N
< Z min (;. Ilak||") log N

k<NY3S
N 4/5 2
< -;+N +q ) (log N)".

This completes the proof.

Lemma 8.8 If
a — .a_

]
ql~ q%

q

where 1 < q < N and(a,q) =1, then

N
183] € (W +N¥ 4 N'/zq'/z) (log N)*.

b= log N .
Slog?2

Proof. Let u = N%/5 and
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Then N'/3 < 2" < 2N'3 and h « log N. If i < h,then 2'u < 2N¥3 « N.If
N5 < ¢ < N/k, then

k <N/t < N¥ =Ny <2y,

and so
Si=Y ) MA@©e(ke)
k>NUS NYS<l<N/k
h
=Y Y Mk D A®ekd)
iml 2-ly<k<2u u<t<N/k
h
'Zss.i.
im]
where

Si= Y M) ) A©e(ake).

2i-lu<k<2u u<€<N/k
By the Cauchy-Schwarz inequality,

ISP ) M Y

2 lu<k<2u 2i-lu<k<2u

2

Z A(Q)e(akt)

u<l<N/k

8.5)

We shall estimate these sums separately.
To estimate the first sum in (8.5), we observe that

Z u(d)

di
dsu

IMu(k)l -

<Y 1 <dk),

d<u

where d(k) is the divisor function. It follows from Theorem A.14 that

Yo M s Y dk)?

2-lu<k<2'u 2i-Vy<k<2u
&« 2'u (log2'u)’
& 2'u(logN)*.

Next, we estimate the second sum in (8.5). We have

2

2V y<k<u

- Z Z Z A@A(m)e(ak(€ — m))

2-lu<k<2uu<€<N/ku<ms<N/k

= > Y A@AMm) Y e@k(e —m)),

u<l<;—é’r; u<m<“-’_!|: kel(t.m)

2

Z A()e(ake)

u<l<N/k
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where /(€, m) is the interval of consecutive integers k such that

2"y < k < min (2‘.4’ ﬂ, ﬂ) )
&' m

Clearly,
(€, m)| <27 'u,

and so
Y e(ak(e — m) < min (2, lla(e — m)| 7).

kel(t.m)
Since 0 < A(€), A(m) < log N for all integers £, m € (1, N], we have
2

Z A(@)e(ake)

u<l<N/k

2 luck<2u
< ) Y A@ACm)min (2w, (e —m)| ™)
u<l<N/Q2'u)u<m<N/(2"'u)

<(logN? Y Y min(27u ¢ —m) ).

u<l<N/2 u)u<m<N/{(Q2~"u)

Let j =€ —mwithu < €,m < N/(2"'u). Then | j| < N/2~'u, and the number
of representations of an integer j in this form is at most N /2'~'u. By Lemma 4.10,
we have

2

2

Z A(&)e(ake)

2i-lyu<k<2u lu<€<N/jk
N . mie -
«(ogNyom= 3 min (27w, flaji”)
u 1<j<N/2u
N . (N -
< (logN)zz,._I Y min (—.‘Iloull ')
u 1<j<N/2 -y J

N N N
‘ —+ = log N)*.
<55 (5 + 50 +9) Goe)

Inserting this into inequality (8.5), we obtain

183012 < (2'u(log N)? L N
2l—|u

3
p + T +q> (log N)

11
<« N%(log N)® (3 ‘o %) .

Therefore,

A ] q'?
183.i] < N(log N) (;ﬁ NIV NI/Z)'
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Since h « log N, we have

h
N
$3=Y $1; < (log N)* (q—I/Z + N3 +q’/2N"2) .

i=]

This completes the proof.

Finally, we obtain Vinogradov's estimate for the exponential sum F(a) by in-
serting our estimates for the sums S, S,, and S3 into Lemma 8.5. This completes
the proof of Theorem 8.5.

8.6  Proof of the asymptotic formula

We can now estimate the integral over the minor arcs.

Theorem 8.6 For any B > 0, we have
3 2
/;11 F(a)'e(—aN)da « W'

where the implied constant depends only on B.

Proof. Let « € m = [0, 1] \ 9. By Dirichlet’s theorem (Theorem 4.1), for
any real number « there exists a fraction a/q € [0,1] with ] < ¢ < N/Q and
(a, q) = 1 such that

By Theorem 8.5,
N
F(o) < (F +N¥3 4 N'/zq'/2> (log N)*

N 4/5 1/2 N "2 4
<4 W +N +N (]Og N)H (log N)

N
< (log N)(If;‘z)—‘t'

Since #(N) =3 _ log p < N by Theorem 6.3, we have

1
|F(a)]?da =) (logp)* <logN ) logp « NlogN,
fo > D log

PN PN
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and so

/ |F(a)Pda <« sup{|F(a)|: @ € m) / |F(a)*da
m

2
e L
N2
< GogNyEms"
This completes the proof.

Theorem 8.7 (Vinogradov) Let G(N) be the singular series for the ternary
Goldbach problem. For all suffciently large odd integers N and for every A > 0,

N2 N2
R(N) = G(N)T +0 (W) ,

where the implied constant depends only on A.

Proof. It follows from Theorem 8.4 and Theorem 8.6 that, for any positive
numbers B, C. and ¢ with C > 2B,

1
R(N) = / F(a)’e(—Na)da
0

= / F(@)’e(-Na)da + f F(a)e(—Na)da
m m

N? N2
=55+ (oo

N2 N2
0 ((log N)C-SB) +0 ((log N)(B/”-S) ‘

where the implied constants depend only on B, C, and ¢. For any A > 0, let
B=2A+10andC = A+ 5B.Lete = 1/2. Then

min((1 —€)B,C —5B,(B/2)-5)= A,

N? N?

and so

This completes the proof.
We can now derive Vinogradov’s asymptotic formula for r(N).
Proof of Theorem 8.1. We get an upper bound for R(N) as follows:

R(NY= Y logpilog p2log ps
Pir+pr+p3=N
<(ogN) Y 1
pr+pa+py=N
= (log N)*r(N).
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For0 < § < 1/2, let rs(N) denote the number of representations of N in the form
N = p; + pa + p3 such that p; < N'~3 for some i. Then

rs(N) < 3 Z 1

pyepyepy=N
prent-d

< Y ( > 1)
PI<N'= \pr+py=N-p,
> (2
pIENI-8 \p2<N

T (N3 (N)

N2-—8

(log N)?

IA

IA

<

We can now get a lower bound for R(N):

R(N)> )" logpilog p; log p3

prepyepyN
ry.p2.py>N' "3

> (1-8°UogN>® > 1

P1oP1ePy=N
Py.p2.py-N'~4

> (1 —8)’(log N)*(r(N) — rs(N))

3 3 N3
> (1 —6)(log N) (r(N)— m) .

Therefore,
(log N)*r(N) < (1 = 8)3R(N) + (log N)N?°.

If0<8<1/2,thenl/2 <1-6 < 1and

_ —_ 583
-%58(1-(1-3)3)&46.

By Theorem 8.7, R(N) <« N? and so

0<(1-873-1

0 < (log N)*r(N) = R(N) < ((1 —8)™> = 1) R(N) + (log N)N*™3
&K 8R(N) + (log N)N**
&K 8N? + (log N)N?8
= N2 (5 + log_N) .
NB

This inequality holds for all § € (0, 1/2), and the implied constant does not depend
on §. Let
5 2loglog N

log N
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Then
8+IogN 210glogN+ log N loglog N
N$ log N (log N)? log N
and so )
N¢loglog N
0 < (log N)’r(N) — R(N) « ——2 87
log N
Let A > 1. By Theorem 8.7,
N2loglog N
log N)*r(N) = R(N —_— =
(log N)’r(N) ()+0( log N )
N? N2 N?loglog N
=6(N)— +0 o\ ————
™70 (Gogmr) * O (Troan )

N2 loglog N

Dividing by (log N)*, we obtain

N? loglog N
0= o0z (10 (Segv))

This completes the proof.

8.7 Notes

For Vinogradov’s original papers, see [132, 133]. Vaughan [124] greatly simplified
Vinogradov’s estimate for the exponential sum F(a) (Theorem 8.5), and it is
Vaughan's proof that is given in this book. There are many good expositions of
Vinogradov's theorem. See, for example, the books of Davenport [19], Ellison [29],
Estermann [38], Hua [64],Vaughan [125}, and Vinogradov [135].

Vinogradov’s theorem implies that almost all positive even integers can be writ-
ten as the sum of two primes. This was observed independently by Chudakov [14],
van der Corput [123], and Estermann [37]. Let E denote the set of even integers
greater than two that cannot be written as the sum of two primes. The set E is called
the exceptional set for the Goldbach conjecture. Let E(x) denote the number of
integers in E not exceeding x. The theorem of Chudakov, van der Corput, and
Estermann states that E(x) «4 x/(logx)* for every A > 0. Montgomery and
Vaughan [84] proved that there exists § < 1 such that E(x) « x%. Of course, if
the Goldbach conjecture is true, then E(x) = O for all x.

8.8 Exercise

1. Let h > 3. Find an asymptotic formula for the number of representations of
a positive integer N = h  (mod 2) as a sum of A prime numbers.
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The linear sieve

9.1

In the next chapter, we shall prove Chen's theorem that every sufficiently large
even integer can be written as the sum of a prime and a number that is the product
of at most two primes. The proof will require more sophisticated sieve estimates

We often apply, consciously or not, some kind of sieve procedure
whenever the subject of investigation is not directly recognizable. We
begin by making a long list of suspects, and then we sort it out gradu-
ally by excluding obvious cases with respect to available information.
The process of exclusion itself may yield new data which influences
our decision about what to exclude or include in the next run. When no
clue is provided to drive us further, the process terminates and we are
left with objects which can be examined by other means to determine
their exact identity. These universal ideas were formalized in the con-
text of arithmetic back in the second century B.C. by Eratosthenes,
and are still used today.

H. Iwaniec [68]

A general sieve

than those obtained from the Selberg sieve in Chapter 7.

We begin by generalizing our concept of a sieve. Let A = {a(n)}3°

nm=}

arithmetic function such that

a(n) >0 for all n
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and
o0
1Al = a(n) < oo. (9.2)
n=1
Let P be a set of prime numbers and let z be a rcal number, z > 2. The set P is
called the sieving range, and the number z is called the sieving level. Let

P& =]]e.

peEP
pe<2

The sieving function is

S(A.P,= ) aln).
(n.P(2))=1

The goal of sieve theory is to obtain “good” upper and lower bounds for this
function.

Forexample. let A be the characteristic function of a finite set of positive integers,
that is, a(n) = 1 if n is in the set and a(n) = O if # is not in the set. Then | Al is
the cardinality of the set. The sieving function S(A. P, 2) counts the number of
integers in the set that are not divisible by any prime p € P. p < 2. This special
case is exactly the sicving function for which we obtained. in Chapter 7. an upper
bound by means of the Selberg sieve.

Using the fundamental property of the Mobius function, that

l 1 ifm=1

(ep)m) =3 pd) =1 o jer T

dim

where 1 denotes the arithmetic function such that 1(n) = 1 foralln > 1, we obtain
Legendre’s formula

S(A,P,))= Y. an)
(1. P(2))=1

=) am) ) ud)

d|(n.P(2)

=Y @) aln)
)

d1P(: din

= Y w@dlAdl,

d|P(2)

|Aal =) a(n)

din

where the series

converges because of (9.1) and (9.2).
We shall assume that, for every n > 1, we have a multiplicative function g, (d)
such that
0<gup) <1
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for every prime p € P. Then
0<gid) =<1
for every integer d that is the product of distinct primes p € P. For such integers
d, the series
Y a(n)g.(d)
converges, and we can define the remainder r(d) by

|Adl =Y a(n)ga(d) +r(d).

Inserting this into Legendre’s formula, we obtain

S(A.P, )= Y u(d)lAdl

d\P(z)
=) wd (Za(n)g,,w) * r(d))
diP(:)
= zam) Y udignd)+ Y udyrd)
diP() d|P(z)
- }:a(n) [10 =8N+ ) udr@
pIP(2) diP(2)
=) amVa(@ + RG2),
where
Va@ = [] (1 = gnlp)
PIPR)
and

R(z) = Z u(d)r(d).

diP(2)

If P(z) has a large number of divisors, the remainder term R(z) in Legendre’s
formula may be too large to give useful estimates for S(A, P, z). For example, let
A be the characteristic function of the set of all positive integers not exceeding x,
and let P be the set of all prime numbers. Let

1
gn(d) - 2

for all n. Then |
Vo =[] (1 - —)
pet\ P
for all n > 1. Moreover. foralld > 1,

0<|’(d)l'¥—|i\d]--[;—]—[£]<l,
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and so

IR@I < Y Ir@)] < 27€.

diP(2)

It follows from Legendre’s formula that the number of integers up to x divisible
by no prime less than z is

S(A,P,2) =I[x] l—[ (] - %) +0 (211(:)) .
By Mertens’s formula (Theorem 6.8),

p<z
1 -y 1
ﬂ(l-—)-e—(no(—)), ©9.3)
pe: P logz logz
and so the remainder term will be larger than the main term unless z is very small
compared to x.

The sieve idea is to reduce the size of the crror term by replacing the Mobius
function with carefully constructed arithmetic functions A*(d) and X (/) such that

A=A =1 9.4
and, for every m > 2,
(1xA")(m) =) A" d) 20 (9.5)
dim
and
(1 A7)(m) =} A" <0, 9.6)
d\m

Let A*(d) and A~ (d) be arithmetic functions that satisfy (9.4), (9.5), and (9.6). If
D is a positive number such that A*(d) = 0 for all d > D, then the arithmetic
function A*(d) is called an upper bound sieve with support level D . Similarly, if
D is a positive number such that A~ (d) = O for all 4 > D, then the arithmetic
function A~ (d) is called a lower bound sieve with support levet D.

If P is a set of primes such that A*(d) = 0 whenever 4 is divisible by a prime not
in P, then A*(d) is called an upper hound sieve with sieving range 'P. Similarly,
if A~(d) = 0 whenever d is divisible by a prime not in P, then 4 “(d) is called a
lower bound sieve with sieving range P.

The following result is the basic sieve inequality.

Theorem 9.1 LerL*(d) be an upper bound sieve with sieving range P and support
level D, and let >~ (d) be a lower bound sieve with sieving range P and support
level D. Then

00 oc
Y a(mGn(z, A7)+ R™ < S(A,P.2) < Y _a(m)Ga(z. A") + R*,

n=1 ne=}
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where

Gu(z.A%) = Y A*(d)gu(d)

d|P(2)
and
=y A dyr).

d.P)
d=D

Proof. Since the arithmetic function A*(d) is supported on the finite set of
integers | <d < D, it follows that the series

Za(n) z A*(d)

di(n.P(2))

converges. By conditions (9.4) and (9.5), the inner sum is 1 if (n, P(z)) = 1 and
nonnegative for all n. Therefore,

S(A,P,2) = z a(n)

(n. P())=1
<Y am Y A@
di(n.P(2))
- Z A’(d)Za(n)
diP(2) din
= > @Al
d|P(2)
- ) 2@ (Z a(n)g,(d) +r(d))
diP(2)
-y A*(d)Za(n)g,,(d)+ > A dyr@)
d|P(2) d\P(2)
=Y am) Y A(d)gald) + Y AT (dr(d)
n diP() d1P)

<0

= > a(mG,(z,A*) + R*.

The proof of the lower bound is similar.
The following result shows how to extend the sieving range of upper and lower
bound sieves by any finite set of primes.

Lemma 9.1 Let Af(d) be upper and lower bound sieves with sieving range P,
and support level D. Let Q be a finite set of primes disjoint from Py, and let Q be
the product of all primes in Q. Every positive integer d can be written uniquely in
the form

d = dyd,,

where d is relatively prime to Q and d, is a product of primes in Q. Define

AE(d) = AE(d))(dy). ©.7)
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Then the function 1*(d) (resp. A~ (d)) is an upper bound sieve (resp. lower bound
sieve) with sieving range

P=PUQ

and support level D Q.
Let g be a multiplicative function, and let

G(z,A*) = Y A*(d)g(d)

d|P(2)

and
Gz, A¥)= D A¥(d)gdy).
di|Pi(2)
Then
Gz, A*) = G@z. AP [] (1 —g@).
q1Q@)

Proof. Clearly, A*(1) = A=(1) = 1. Every positive integer m factors uniquely
into a product m = m;m,, where m; is relatively prime to Q and m; is a product
of primes in Q. We have

Y =) Y Adidy)

d|lm dylmy dylm;

=Y X)) ud) 20

dy|my dy|m;

since ¢
)1 ifmp=1
D uldy) = [ 0 ifmy>2.

dr|lm;

Similarly, if m = mym, > 1, then

YA =D AT@d) Y ud) <0

d|m dy|m, dy|m;

since either mm, > 1 and

D H(dy) =0,

drlm)

or my = |, which implies that m, > 1, and so

D M) <o

dy|m,

Thus, the arithmetic functions A*(d) satisfy conditions (9.4), (9.5), and (9.6).
Since A¥(d) = 0 if d is divisible by some prime not in P, it follows that the
functions A* have sieving range P.
Let d = d,d,, where d, is relatively prime to Q and d, is a product of primes
in @.Ifd = d\d, > DQ, then either d; > D and kf(d.) =0,ord, > @, which
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implies that d; is divisible by the square of some prime ¢ € Q, and so u(d2) = 0.
In both cases, A*(d) = 0. Therefore, the functions A*(d) = 0 have support level
DQ.

Finally, since P(z) = P,(2)Q(2),

G(z, A%) = Y A%(d)g(d)
diP(2)

= Y D 2 did)g(digp)

d\|1P(2) d21Q()
= D D A@)gd)udg(dr)

A [Pi(2)d:1Q(2)

= D Ad)gd) Y wdgldy)

diiP () d1Q()

=Gz, AP) [T (1 -sa(q).
q1Q(2)

This completes the proof.
Combining Theorem 9.1 and Lemma 9.1, we obtain the following result, which
is an important refinement of the basic sieve inequality.

Theorem 9.2 Let Af(d ) be upper and lower bound sieves with sieving range P)
and support level D. Let lkf(d)l < 1 foralld > 1. Let Q be a finite set of primes
disjoint from Py, and let Q be the product of the primes in Q. Let P = P, U Q.
For eachn > 1, let g,(d) be a multiplicative function such that

0<gup) <1 forall p € P.

Let
Gz AD) = D AF(d)gn(d).
d|Pi(2)
Then
S(A,P,2) <Y a(m)Ga(z, 1) [] (1 - 84(q)) + RDQ, P, 2)
nel qlQ)
and
S(A,P,2) = ) _a(mGa(z.A) [] (1 - gnl@) - RIDQ. P, 2),
nel 91Q()
where

R(DQ,P.2)= Y Ir(d).

diP()
d<Q
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It often happens in applications that the arithmetic functions g, (d) satisfy one-
sided inequalities of the form

-1 logz\*
[T0 - g.e» sK(logu).

peP

uspe<l

where K > 1and « > 0 are constants that are independent of n, and the inequality
holds for all n and | < u < z. In this case we say the sieve has dimension . The
case k = | is called the linear sieve. The goal of this chapter is to obtain upper
and lower bounds for the linear sieve that were first proved by Jurkat and Richert
(Theorem 9.7). This is the only sieve inequality that is needed for Chen’s theorem.

9.2 Construction of a combinatorial sieve

In a combinatorial sieve, we reduce the size of the error term in Legendre’s formula
by replacing the Mobius function with its truncation to a finite set of positive
integers. This idea goes back to Viggo Brun [7]). We construct these truncated
functions in the following theorem.

Theorem 9.3 Let 8 > 1 and D > Q be real numbers. Let D* be the set consisting
of | and all square-free numbers

d=p\p2---pi

such that
pk<--<pp<p<D

pn< ()
P1P2- " Pm

forall odd integers m. Let D~ be the set consisting of 1 and all square-free numbers

and

d-plpz-..pk

such that
pp<--<pp<p<D

D 1/8
Pm < <—)
pPiP2- - Pm

Jor all even integers m. Then the sets D* and D~ are finite sets of square-free
positive integersd < D. Let P be a set of primes. and let P(D) denote the product
of all of the primes in P that are less than D. Define the arithmetic functions A*(d)
and A= (d) as follows:

A*(d) = u(d) ifd € D* and d|P(D)
0 otherwise

and
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and
_ u(d) ifd e D™ and d|P(D)
A (d)= .
0 otherwise.

Then A*(d) and A~ (d) are upper and lower bound sieves with sieving range P and
support level D.

Proof. The condition

D 1/8
o< (-—)
PiP2: " Pm

PPz Prorpa? < D.
Letd = p;--- p, € D*. If k is 0odd, then

is equivalent to

d'Pl"'Pk-—lPk <Pl"'Pk—lP:¢ﬂ<D-

If k is even, then k — 1 is odd. Since p; < px—; and 8 > 1, we have
d'Pl"'Pk—lPk < pl...pf_l <p|pkl:,: < D.

Therefore, 1 <d < D foralld € D*.

Similarly, ifd = p)---p, € D" andk > 2, thenl <d < D.Fork = |, we
have d = p; < D, that is, D~ contains all primes strictly less than D. Therefore,
1 <d< Dforalld e D".

The arithmetic functions A*(d) and A~ (d) are truncations of the Mobius function
w(d) to certain subsets of the sets D* and D, respectively. Since both sets contain
1, we have

AT = A (1) =p(l) = 1.

Let m > 2. We must prove that

ZA'(d) <0< Z A*(d). 9.8)

dim d\m

Since the functions A*(d) are supported on divisors of P(D), we may assume that
m divides P(D). Let w(m) denote the number of distinct prime divisors of m. The
proof is by induction on k = w(m). If k = 1, then m = p < D for some prime
p € P,and som € D~. We have

DM@ =p()+u(p) =0

dim

and

oM@ =p()+r (21— 1=0.
dim

This proves the lemma in the case k = 1.
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Now let k > 1, and assume that inequalities (9.8) hold for all positive integers
m with k distinct prime divisors. If w(m) = k + 1, then we can write m in the form

m=qoq gk,

where
qr < Qx—1 <---<q <qo <D,

90, 41, - - -, qx are prime numbers in P, and qq is the greatest prime divisor of m.

Let
m

ml = —— =q|...qk.
q0
Since m, is a divisor of P(z) with k prime factors, it follows from the induction

hypothesis that
Y M@ <0<) 2.

dim, dim,

Every divisor of m is of the form d or god, where d is a divisor of m,. Therefore,

Do) = Y oM@+ ) A (qod)
d|m djm, dlm,
> ) A*(qod)
dim,

= D u(god)

dim,
qpdeD*

== D u.

dim)
qpdeD*

DA s= ) ud).

dim dim)
qodeD™

Similarly,

If d is a divisor of m,, then
d=p--- Pj»
where py, ..., p; are primes in P such that

pj<--<p1<q <q<D.

Let Dy = D/qo > 0, and let D} and D; be the sets of integers constructed from g
and D). Let A7(d) and A} (d) be the M6bius function truncated to the sets D} and
Dy, respectively. Then god € D* if and only if

D 1/8
qo < (—)
q0
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) <( D )1//’:( D, )l/ﬂ
' qopr - Pm Pr Pm

for all even integers m. If
D\
qo = (—) )
90

D ud)=0

domy
quueD*

D\ /A
qo < (—) s
qo

then god € D* ifand only if d € D; , and

Do ud) =) ud)=) A (d)<0

dmy dim,
qndeD* deD]

and

then god ¢ D" and so

since the sum is empty. If

by the induction hypothesis. Therefore,

Z A*(d) > 0.

dlm

Similarly, god € D~ if and only if d € D7, and so

Do wd =) ud =) A =0

dmy d oy d|m,
ydeD deDy

This proves that A*(d) and A~ (d) are upper and lower bound sieves with sieving
range P and support level D.

Lemma 9.2 Let P be a set of primes, and let g(d) be a multiplicative function
such that
0<g(p) <1 forall p € P.

Let
V=[]0 -gen= )" udg@.

pe? PIP()
pez

Then V (2) is a decreasing function of z,
0<V(@<I1

forall z, and
Y (V) = V(w) - V() 9.9)

PP

foralll <w <z
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Proof. It follows immediately from the definition that V(z) is decreasing and
V(z) € (0, 1} for all z.

The proof of the combinatorial identity (9.9) is by induction on the number & of
primes p € P that lie in the interval [w, z). If k = 0, then V(w) = V(z) and

Y apvipy=o.

pev
wrLp<l

If k > 1, let p; be the largest prime in the interval. Then
Y&V = Y g(P)V(p)+e(p)V(p)

PeP repP
wEpar wgp<py

=V(w) - V(p)+g(p)V(p1)
=V(w)—- (1 -gp)V(p)
= V(w) — V(2).

Lemma 9.3 Let P be a set of primes. For > land2 < z < D, let

D /8
)'M‘)'m(ﬁvDJ’l,---oPm)'( ) .
Pr- " Pm

Let A*(d) be the upper and lower bound sieves constructed in Theorem 9.3, and
let

Gz A%) = Y A*(d)g(d).

d|P(2)
Let
T.(D,z2) = > g(p1 -+ )V (pa).
Py Pn€P
e o
Then o
G, A =V@+ Y TuD,2) 9.10)
nml n(-r:xod 2
and o
Gz A)=V@ - Y. T«D,2). ©.11)
nu0 "(-v:ml 3]
Moreover,
T.(D,z) > 0

foralln > 1, and
G(z,A7) = V(2) < G(z.A").
If
log D
B = log 2

S,

then
7,(D,z)=0  forn<s-—8.
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Proof. It follows from the construction of the sets D* and the sieves A% (d) that

G(z,A") = Y u(d)gi(d)

dIP(2)
deD*

= ) (=Deprp)

Py% <pyui.pi &P
pm<im¥Ymml (mod 1)

and

G(z, A7) = ) u(d)gn(d)

dIP()
deD™

- Y (=Delprpo)

pr < <py<i.pj€P
Pm<smYmald (mod 2)

We expand the function V(z) to obtain a partition of G(z, A*) as a sum of nonneg-
ative functions:

V@)= Y udgd)

diP(2)

= Y (=D'eprpi)

Py <py <t
repP

- ) =Depi-po)
pr<<py<ip €P
Pm<ymV¥mm| (mod 2)

+ Y (=Deprpo)

pp<<py=i.pieP
Inml (mod 21 5o SPm

=G@AY+ Y. (=D'gpipo)
PL<- <p)<i.p,€P
Imml (mod 2):3m <pm

oo
=Gz AN+ Y. Y Depi-po
a=l PL< <Py <i.pi€P
aml (mod2) p..<,..,v..:‘n;;:l (mod 2)
=G(z,2%)
00
+ ) S CWapip) Y (D g(pi - pavt)
-l SnSpn<e<pp< Pt < <Ppa) <Pn
nml (mod 2) P €P pi €
o a3
00
-Gz A) - Y. Y &P pIV(PY)
n=l R<pu a2 p)<.p€P
nal (mod 2) Pm <SmV¥m<n,
mul (mod 2)
o0
=Gz, A~ ) Tu«D,2),
Ll

wel (mod 2)
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where
T.(D,2) = Y. & p)Vpn) 2 0.
A A
Therefore,
o0
G, A =V(@)+ Y Tu(D,2)= V()
nal n\-r:lml b}
Similarly,
o0
Gz A)=V@ - Y. T.(D,2)<V(@.
oo e
If
Y Pn<:-<p1 <7 (9.12)
then

D<pi - ppl <

Let D = z*. Since T,(D, z) is a sum over integers p; - - - p,; that satisfy incqual-
ity (9.12), it follows that T,(D, z) = 0 unless s < n + g. This completes the
proof.

9.3 Approximations

For the rest of this chapter, we shall consider only the case
=2

in the construction of the sets D* and the upper and lower bound sicves A £(d).

Then
D 172
ym'(_—) \
pl By -pm

and the functions T,,(D, z) satisfy the following recursion relation.
Lemma 9.4 Let z > 2 and D be real numbers such that

_IogD> 1 ifnisodd,
logz ~ 2 ifniseven.

Then
Ty(D, z) = V(D'?) - V(2). (9.13)

Letn > 2. Ifniseven,orifnisoddands > 3, then

D
I,(D,z) = Zg(p)Tn_n (;, p)- {9.14)

peP
pe.
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Ifnisoddand 1 <s < 3, then

D
T.(D,2)= ) g(p)Tu- (;,p)~ 9.15)

pepP
pen!i}

Proof. Since y, = (D/p;)"/?, it follows from Lemma 9.2 that

Y ep)Vip)

p1EP
M Epp <l

Y Ve

pyeP
l)‘/-‘sp, LN

=V(D'?) - V(2.

T\(D, 2)

If n is even, then

T.(D,2) = Y. epi PV

pn~ <py<ipeP
1d] m,p}zu

Py oPmpm D
Ym<nman (mod )

= Zg(pl) Z g(PZ"'Pn)V(Pn)

P1EP pn< <p).p,€P
< 2 ,
prss Py Pnpazhip)
P pmp?,,<l);p|V25m<u.
m-lmn=1 (mod 2)

D
= z g(p)T, - (— Pl) .
14}

pLeP
Py~

Letnbeodd, n > 3.1f py <y, =(D/p;)"/? and p, < z = D'/*, then

D'? ifl<s<3

. 173 pl/sy =
p1 < min (D', D'*) IZ ifs >3

and the argument proceeds exactly as in the case of even integers n. This completes
the proof.

We shall now construct a sequence of continuous functions f;,(s) that will be
used later to approximate the discrete functions 7,,(D, z). Fors > 1, let R,,(s) be
the open convex region of Euclidean space consisting of all points (1), ..., ,) € R"
such that

O<tp <---<t) <—,
s
Hh+-+t,+21,>1,
and

h+---+1,+21, <1 ifm<nandm=n (mod 2). (9.16)
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Forn > 1 and s > 1, we define the function f,(s) by the multiple integral

d'n
n - 9.17
Sf (S) / /R.(s) (’I ’n)’n ( )

The function f,(s) is nonnegative, continuous, and decreasing, since R,(s;) €
Rn(sy) for 51 < s53. If fo(s) > O, then R,(s) is nonempty, so R,(s) contains a
point (¢, ..., t,). This point satisfies

n+2
l<ti+---+1,+2t, < (n+2)) < —,
s

and so ) .
< < -. (9.18)
n+2 s

It follows that
fa(s) =0 fors > n+2. 9.19)

Itiseasy tocompute f(s)and f>(s). We have f)(s) = Ofors > 3.Forl <s < 3,
we have

Ra(s) = (1/3,1/s)
and so

1/s
sfi(s) = / d—;‘ =35 (9.20)
1/3 '|

Similarly, f>(s) =0 fors > 4. For2 < s < 4, we have

1 1 1—1t¢
Ras)={(t.0): = <t < - and —'<t2<r,l
4 s 3

1/ dn dn
sz(S)-/ /-l.)/3 tz h
[ )%
s \1=n n/ n
s 3 3 1
(2o
1/4 1—-4 ¢4 H

=s—3log(s —1)+3log3 — 4.

and so

The functions f,(s) satisfy the following recursion relation.

Lemma 9.5 Letn > 2. Ifnisevenands > 2,orifnisoddands > 3, then

sfal(s) = f oot = Dyt 9:21)

Ifnisoddand 1 < s <3, then

5fa(s) =3 f2(3) = ‘/; St = 1)t 9.22)
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Proof. If n is even and s > 2, or if n is odd and s > 3, then, from (9.18), we

have
t---dt,
sfn(s)-/.../ dl—
Rau(s) ('1 e 'n)’n

/'/’ / dty---dt, | dy
1/(n+2) e, (eta)ta | 0

1)+l Um <1 -1
Vicm<nmmn (mod 2)

In the inner integral, we make the change of variables
ti=(l —t)u;i_y
fori =2,...,n.Let

n h

Since t; < 1/s, it follows thats; > lifnisevenands > 2,and s, > 2if n is odd
and s > 3. We obtain

/ dty ---dt,
e SN (Y |

Ne-Hmedm <=1
Yi<m<nman (mod 2)

f duy---du,_,

-

O<mp_ | <o M-

o (L= 0)(uy - up—yJUn -

CIRSR Py P |
Vicmcrm-lan-1 (mod2)

1 du. v du,,-l
l —_ tl O<uyy | < <ugl/sy

IR TS DN | (ul M un—l)un—l
MY bty W2y <]
Vi<m<u.m-Imn-1 (mod 2)

1 f duy---dup_,
1=t Jr, sy (W1 Un—1)lp-1

"1 f'] fraa1(s1)

1 1
e (a B ')'

Setting ¢ = 1/1,, we obtain

s 1 dt,
sfu(s) -/ — fn- (— - ]) —_—
" 1/(n+2) N1 f- n 1]

s

=— | faaa(t =1t
n+2
n+2

- Ja1(t = Ddt

- foo Sar(t — Ddt,



248 9. The linear sieve

since f,_(t —1)=0fort — 1> (n—1)+2by(9.19).

Let n > 3 be an odd integer. If (1}, ...,1,) € R,(s), thent; < 1/s. Also, it
follows from inequality (9.16) withm = 1 thatt; < 1/3,and so¢t; < 1/ max(s, 3).
Therefore, if 1 <s < 3, then

R’l(s) = Rn(3)
and
sfn(s)"/"'f (tp--t,,)"l[;'d;l .o dty,
Ra(s)
f f 17\t - - dt,
R.3)
=3/.(3).
This completes the proof.

We construct the function h(s) for s > 1 as follows:
e‘2 forl <s<?2
h(s) = - for2<s<3 (9.23)
3s“ =S fors > 3.
It is easy to check (Exercise 8) that
h(s — 1) < dh(s) fors > 2.
For s > 2, let
oo
H(s)-/ h(t — 1)dt.

Both h(s) and H(s) are continuous, positive, and decreasing functions on their
domains. Let

_HQ) _JHQ L 3 [~

-1 —+—— t dr.
T2 " 2 22"2), "¢
We can express a in terms of the exponential integral

Ei(x) = f e't™'dt
-0
since o
/ ~'t7'dt = —Ei(—3) = 0.013048 ..
3

We can obtain this number with technology, such as Maple, or without technology,

either by estimating the integral directly or by looking it up in old books, such as
Dwight’s Mathematical Tables[26, page 107]. We find that

a = 0.96068. ... (9.24)
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Lemma 9.6
H(s) < ash(s) fors >2 (9.25)

and
H(3) < ash(s) forl1 <s <3 (9.26)

Proof. If s > 3, then h(s — 1) < ¢'~* and

[o 0]
H(s) < f e dt = = “';(s) < ash(s).
s

For2 <s <3,let
Hy(s) = ash(s) — H(s).

We have
s—l=l+(s-2)<e?
and so
(1 —s)e* > —e2
Then

Hy(s) = ah(s) + ash'(s) — H'(s)
=a(l -s)e*+h(s-1)
> (1-a)e?
> 0,

and so Hy(s) is increasing for 2 < s < 3. Since
Ho(2) =0
by the definition of «, it follows that
HQ3) < H(s) < ash(s) for2 <s <3.
Let 1 <s < 2.Since @ < 1, it follows that h(2) > H(2)/2 and

H3)=HQ)—e =H@2)-h(?2) < %2) =ah(2) < ash(2) = ash(s).

This completes the proof.
Lemma 9.7 Ifnisoddands > 1, orifn is «venand s > 2, then
fa(s) < 2e%a" ' h(s).
Proof. This is by induction on n. For n = 1, we shall show that

sfi(s) < 2e%sh(s).
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For1 < s < 3, we have sfi(s) =3 —s by (9.20). If 1 < s < 2, then h(s) = e~
and
sfi(s) =3 — s < 2 =2e2h(s) < 2e*sh(s).

If2 <5 <3, then h(s) = e~* and
sfi(s) =3 —s <1 < 4€h(s) < 2e*sh(s).
If s > 3, then f(s) = 0 and
sfis)=0< 2e%sh(s).

This proves the case n = 1.
Now letn > 2, and assume that the lemma holds for n — 1. By (9.21) and (9.25),
if niseven and s > 2, orif n is odd and s > 3, then

Sfu(s) = /- Sa1(t = ydt

o0
<2e*a"? / h(t — 1)dt
k)

= 2¢%a""2H(s)
< 2¢*a" %ash(s)
< 2¢%a""'sh(s).

By (9.22) and (9.26), if n isodd and 1 < s < 3, then

sf,,(s)-/3 fao1(t = 1)dt

oo
<222 [ h(t — 1)dt
3

<2e%a"2H(@3)
< 2¢*a" 2ash(s)
< 2¢*a" " sh(s).

This completes the proof.

Theorem 9.4 For s > 1, the function

F@) =1+ Y fuls) 9:27)

nel
nal (mod 2)

is continuous and differentiable, and

F(s)=1+0(e™).
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For s > 2, the function
oC
fO=1=" 3" fus)
nu0 ":mod 2)
is continuous and differentiable, and
f)=1+0(e).

Proof. By Lemma 9.7,

0 < fu(s) < 2e%a"'h(s) < 2¢%a" "

fors > (3 + (—1)")/2. Therefore,
oc
Z fn(s) < e’
ne=|

The theorem follows immediately from this inequality.

9.4 The Jurkat—Richert theorem

251

(9.28)

From now on, we shall consider only arithmetic functions g(d) that satisfy the

linear sieve inequality (9.29).

Lemma 9.8 Letz >2and1 < w < z. Let P be a set of primes, and let g(d) be

a multiplicative function such that
0<glp) <1 forallp € P

and
[ - ston < k222
log u

peP
aspss

for some K > 1 and all u such that 1 < u < z. Let

V) =[] - e,

peP
P

and let ® be a continuous, increasing function on the interval [w, z]. Then

o)

pPEP
weps

3" e pV(pd(p) < (K - HV (@) - KV(Z)/ d(u)d

9.29)
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Proof. The step function

Sw) =Y g(p)V(p)

peEP
a<p<:

is nonnegative and decreasing. By Lemma 9.2 and inequality (9.29),
S(u) = V(u) — V(2)

V(u)
(7o)

- ( [Ta-sen - 1) V(@)

agpas

1
< (K—"ﬁ - 1) V().
logu

Let
WS Py <Prg—) <+ <P1<Z
be all the primes in P that lie in the interval [w, z). Then S(px) = S(w), S(py) =

g(pV(p1), and S(u) = 0 for p; < u < z. By partial summation and integration
by parts of the Riemann—Stieltjes integral,

k
Y eV@O(p) = Y 2(p)V(P®(p)

peP (=]
w<p<l

k
= > (5(p)) — S(Pi_)V(p:) + S(P1)D(p1)
i=2

k k=1
= Z S(pi)®(p:) — Z S(pi)®(pis1)

i=] i=]
k-1
= S(PI®(P) + Y S(p) (D(p)) — (pisr))

im]

= S(w)®(w) + S(p) (P(px) — P(w))

k-1
+ Z S(pi) (®(pi) — ®(pis1))

= S(w)P(w) + fpl S(u)d d(u)

uw

= S(w)d(w) + fz S(u)d®(u)

w

= 5(2)®(2) — f D(u)d S(u)

w

< 1
< (K — DV(2)®@) - KV(2) / du)d (I—"g—z) .
w og u
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This completes the proof.

Theorem 9.5 Let z > 2, and let D be a real number such that D > z for n odd
and D > 72 for n even, that is,

s logD){l ifnis odd

- logz ~ | 2 ifniseven.
Let P be a set of primes, and let g(d) be a multiplicative function such that
0<g(p)<l forallp e P

and

log z
| I 1 — -1 —°°
1 ( gp)~ =< Klogu

usp<l

Sfor all u such that 1 < u < z, where the constant K satisfies

1<K <1+ %0.
Then .
T.(D,z) < V2) ( fuls)+(K — 1) (%) e‘°“‘). (9.30)

Proof. We define the number
T=a+5K ~1)+1le?

and the functions
ha(s) = (K = 1)t"e'%h(s) 9.31)

for n > 1. Note that

a <1 < 0.9607 +0.0250 + 0.0037 = 0.9894 < %

We shall prove that
T.(D. 2) < V(@) (fu(s) + hn(s)). (9:32)

This immediately implies (9.30) since h(s) < e™* forall s > 1.

The proof of (9.32) is by induction on n. Let n = 1. By Lemma 9.3 with 8 = 2,
we have T1(D, z) = Ofors > 3. Since the right side of inequality (9.32) is positive,
it follows that the inequality holds for s > 3.If | < s < 3, then fi(s) = (3/s) — 1
and

Ti(D,z) = V(D'?) - V(2)
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by (9.13). It follows that

h(D,2) _ V(D'?)
V(2) V(z)
[T a-een' -

DV<p<:
logz
log D

-1

<3K -1

== 1

S
= (3—1)+3(K—1)
S s
<fi)+3(K-1)
< fi(s) +hi(s)
since h(s) > e >and t > 11e~8%, hence
hi(s) = (K — Dte'®h(s) > (K — Dlle™! > 3(K - 1).

This proves the lemma forn = 1.
Let n > 2, and assume that the lemma holds for n — 1. For n even and s > 2,
or for n odd and s > 3, we define the function

log D log D
() = foo) ( o8 1) +hoey ( B _ 1)
logu logu

for 1 < u < w. The function ®(u) is continuous, positive, and increasing.
Moreover,

D) = fusr(s =D+ hy (s = 1).

It follows from the recursion formula (9.14), the induction hypothesis for n — 1,
and Lemma 9.8 that

D
T.(D,2) = Y g(p)Toy (;. p)

pepP
pes

log D ) (logD ))
v - —1)+h,- -1
<;g(p) (p)(f n( os L e

p<:

=Y e(PV(Pd(p)

peP
pe

= (K = )V (@)d() — KV(z)/ du )d(]o:i)
=(K-DV@Q(fuars =D +h,_1(s = 1))

_KV(@) /: S (logD)
s 1 logu
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= (K = DV@) focis = D)+ Byey(s = 1)
KV(Z)[ facrt = 1) + ooyt — 1)) dt,

+
s

where the last equation comes from substituting ¢ = log D/logu in the integral.
By (9.21), we have

K o
;/ Soor(t = Ddt = K f(s).
Similarly, from the definition of H(s) and (9.25), we have
oc
/ h(t — )dt = H(s) < ash(s)
and so
K oc
;‘f hn—l(’ - ])d’ =< th,,..](S).
Since h(s — 1) < 4h(s) for s > 2, we have
(K = Dhyi(s = 1) < 4K = Dhy_y(s)
and

(K =1 fuoi(s = 1) < (K — 1)2e%a"2h(s — 1)
< 8eX(K — )a""2h(s)

n-1
= 8¢t (‘3) a M (K = 1)e'0r" ' h(s)
T
< 9¢73h,_i(s)

since0 < @ < r anda™! < 9/8. Therefore,

T.(D, 2)
V(z)

By Lemma 9.7 and definition (9.31), we have

< Kfu(s)+ (K +4(K — 1) +9e78) h,_ 1 (s).

(K = D fuls) < (K — 1)2e*a" " h(s) < 2¢78h,_y(s),

and so
Kfu(s) < fuls) +2e%h,_1(s).
Since
cK=K-(1l-a)Kk<K-(1-a)=(K-1)+a,
we have

T.(D,z2)
V()

< fuls)+ (@ +5(K = )+ 11e ) h,_y(s)

= fn(s) + thn—l(s)
= fn(s) + hu(s)'
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Letn > 3beodd,and let 1 < s < 3.1f z = D'/3, then log D/ logz = 3. By the
recursion formula (9.15) and the same argument used above, we obtain

D
T,(D,z) = Z: 8(p)T, - (;s P)

peP
p<Dl/}

< Y &PV(Pd(p)

peP
pDI?

< (/aB)+h. BNV ()
< (fa($) + ha(s)V(2)

since the functions f,(s) and h(s) are decreasing. This completes the proof.

Theorem 9.6 Let z, D,s, P, g(d), and K = 1 + ¢ satisfy the hypotheses of
Theorem 9.5. Let

Gz A% = Y A (@)g(d).

d|P(:)

Then
G(z,1*) < V(2) (F(s) +ee"™)

and
G(z, A7) > V(@) (f(5) — ee'*™),

where F(s) and f(s) are the continuous functions defined by (9.27) and (9.28).
Proof. We note that the sum of the following geometric series satisfies

oa n

Z (%) <5l < é.

ned)
nm0O (mod 2)

By (9.10) and Theorem 9.5,

20
Gz A =V@+ Y. TuD,2)
nl)n(-l:nlh
o0 10—s o0 99 n
<V |1+ Z fu(s) +€e Z 106

< V(2) (F(s) +ee'™).

Similarly, by (9.11) and Theorem 9.5,

Gz A)=V@ - Y. T«D,2)

ey
ne0 (mod 2)
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> V(2) (I - Z fuls) — ce'®* Z (%) )

vl nel
nw® (mod ) nel) (mad )

> V(@) (f(s) —ee'™).
This completes the proof.

Theorem 9.7 (Jurkat-Richert) Let A = {a(n)}32, be an arithmetic function such
that
a(n) >0 foralln

and -
|A| -Za(n) < 00.

n=1

Let P be a set of prime numbers and, for z > 2, let

P& =[]r.

peP
per

oC

S(A,P,2) = Z a(n).

nel

. Plzp=1

For every n > 1, let g,(d) be a multiplicative function such that
0<gnp) <1 forall p e P. (9.33)
Define r(d) by
00 oc
|Adl =Y _a(n) =Y a(n)gn(d) + r(d).

n=1
din

Let Q be a finite subset of P, and let Q be the product of the primes in Q. Suppose
that, for some ¢ satisfying 0 < € < 1/200, the inequality
- logz
[1a-gn! <+e e (9.34)
XA og u

wsp<l

holds for alln and 1 < u < z. Then for any D > z there is the upper bound

S(A,P.2) < (F(s)+ee" " )X + R, (9.35)
and for any D > z? there is the lower bound

S(A,P.2) > (f(s) —ee'"**)X - R, (9.36)
where ) log D

logz’
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f(s) and F(s) are the continuous functions defined by (9.27) and (9.28),

00
X =Y am [0 -epn 9.37)
nel pIP(2)
and the remainder term is
R=Y" Ir@)l.
e

If there is a multiplicative function g{(d) such rthat g,(d) = g(a) for all n. then
X = V(2)|Al, (9.38)

where

V)= []a-sk).

PIP(2)
Proof. Let P, = P\ Q. By Theorem 9.3, there exist upper and lower bound
sieves A*(d) with sieving range P, and support level D. and with ix*(d) < ) for
alld > 1. We define

Ga(z, A%) = Y AF(d)gn(d)
PIPI(2)

and

Va@ = [] (1 - galp))-

PIPi(2)
Since P, and Q are disjoint sets of primes, we have
[T - 8@y = Vat2) [T (1 - gata)).
PIP(2) 910()

By Theorem 9.6,
Gn(z, 1) < Va(2) (F(5) + £e'**)

and
Gn(z, A7) > Va(2) (F(s) — ee'*™).

It follows from Theorem 9.2 that

S(A.P,2) <Y am)Ga(z. AD) [] (1 - galg)) + R

n=1 q1Q(2)
< (F()+ee"™)) amVa(2) [] (1 - eal@) + R
ne=l 91Q(2)
= (F(s)+ee'"*) Y a(m) [] 1 —ga(p))+ R
n=1 PIP@)

= (F(s)+ee" )X + R.

The lower bound is obtained similarly. This completes the proof.
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9.5 Differential-difference equations

In this section, we shall compute initial values for the functions

20

F(s)=1+ Z fuls)  fors>1

n=l
=) tmod 2)

and

fO=1="Y fuls) fors>2.

n=2
nm0 (mod 2)

We shall prove that
14

2
F(s)==— forl<s<3
)
and

2¢” log(s — 1
fsy= B =D <,
S

where y is Euler’s constant. We define f(s) =0forl <s < 2.

Lemma 9.9
sF(s)=3F(3)

forl <s <3.
Proof. Let1 <s < 3. By Lemma?9.5,

sfa(s) =3 £,(3) for all odd n > 3.

Since
s+sfi(s)=3
by (9.20), it follows that
o0
sF(s) =s +sfi(s) + Z sfu(s)
nm] "::wd M
oc
=3+ ) 3£0
nal “(-!:nl b3l
=3F(3),

which completes the proof.
Define the constants A and B by

A=sF(s) forl <s <3

and
B=2f(2).

259
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Lemma 9.10 The functions F(s) and f(s) are solutions of the system of differ-
ential-difference equations

SF@s) =f(s=1) fors>3
Sf) =F(s=1) fors > 2.

Proof. Letn > 2. By Lemma 9.5, for n odd and s > 3, or for n evenand s > 2,
we have

sf,,(s)=/ fur(t = Ddt

and so

(sj;l(s))’ =—fu1(s = 1).

For s > 3, we have sf(s) = 0 and so

(sF(s)) = (s+ > sf,.(s))

oo !
=|s+ Z $fu(s)
nhll”(-l-:‘nll'.'l

o0
=1— ) fials=D
u-l”(-lv‘mll)
00
=1= > fils=D
=f(s—1).

Similarly, for s > 2 we have

(sf () = (s— > sfn(s))

=2

null (mod 2)

=1+ > fials=1

ne=l
n=0 (mod )

00

=1+ Y fuls=1)

n=|
n=l o (menl )

= F(s - 1).

This completes the proof.
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Lemma 9.11 Fors > 2, let

P(s) = F(s)+ f(s)
and
Q(s) = F(s) — f(s).

For s > 3, the functions P(s) and Q(s) are the unique solutions of the differential-
difference equations

sP'(s)=—P(s)+ P(s = 1) (9.39)
and

sQ'(s)=—Q(s)—Q(s - 1) (9.40)
that satisfy the initial conditions

sP(s)=A+B+Alog(s — 1)

and
sQ(s)=A—B—Alog(s—1)

for2 < s < 3. Moreover,
P(s) =2+ 0O(e™’)

and
Q(s) = O(e™).
Proof. Since
sF(s)=A forl <s <3,
it follows that

A
F(s) = — forl <s<3
s

or, equivalently, that

Fis—=1)=

for2 <s <4.
s—

Since (sf(s))’ = F(s — 1) for s > 2, it follows that

fA
sf(s)-2f(2)+f t—]dt-B+Alog(s-l)
) 1 —
for 2 < s < 4. Since
sF(s)=A forl <s <3,

it follows that
sP(s)=A+B+Alog(s—1) (9.41)

and
sQ(s)=A—B—Alog(s—1) (9.42)
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for2 < s < 3. Fors > 3, we have

$PE) = (FE) +(f() = f(s =D+ F(s =)= P(s — ),

and so
sP'(s)=—=P(s)+ P(s — 1).

Similarly,
(sQ@) = (F$) = (f(s) = f(s =)= F(s—1)==-Q(s — 1)

and so
sQ'(s)=—0Q(s)— Q(s — 1).

By Theorem 9.4, we have F(s) = 1 + O(e™*) and f(s) = 1 + O(e™"), and so
P(s) =2+ O(e™*) and Q(s) = O(e™*). This completes the proof.
The differential-difference equations (9.39) and (9.40) are of the form

sR'(s) = —aR(s) — bR(s — 1). (9.43)
Associated with this equation is the adjoint equation
(sr(s)) = ar(s) +br(s +1). (9.44)

To every solution R(s) of equation (9.43) and every solution r(s) of equation (9.44),
we associate the function

{R(s), r(s)) = sR(s)r(s) — b/ R(x)r(x + 1)dx
s—1
for s > 3. Differentiating with respect to s, we obtain

d
s {R(s), r(s))

= R(s)r(s) + sR'(s)r(s) + sR(s)r'(s) — bR(s)r(s + 1) + bR(s — 1)r(s)
= (SR'(s) + bR(s — 1))r(s) + (r(s) + sr'(s) — br(s + 1))R(s)

= —aR(s)r(s) + aR(s)r(s)

=0.

Therefore, {R(s), r(s)) is constant for s > 3.
The equation adjoint to (9.40) is

(sq(s)) =q(s)+q(s + 1)
or, equivalently,
5q'(s) = q(s + 1).

This has the solution
q(s)=s— 1.
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Clearly,
q(s)~s

as s tends to infinity, and
(1) =0.
Since Q(s) = O(e™), it follows that

5Q(s)g(s) = O (s%e™*) = o(1)

fs Q(x)q(x + 1)dx = o(1).
s—1

Therefore,
Jim (0(s). ¢(5)) = 0.

Since (Q(s), g(s)) is constant for s > 3, it follows that

(Q(s), q(s)) =0

263

for s > 3. This implies that B = 0, since (x Q(x))’ = —(x — 1)~! by (9.42), and

0=(003).4(3)
3
-3003)q03) - [z Q(x)q(x + 1)dx

3
=3003)(3) - fz x0()g'(x)dx

3
=3003)9(3) — [xQ(x)g(x));73 + /; (xQ(x)Yq(x)dx

3
=202)9(2) - A f 9% 4
2 X — 1
~(A-B)—A
= B,

Similarly, the equation adjoint to (9.39) is
(sp(s)) = p(s) — p(s + 1)

or, equivalently,
sp'(s) = —p(s + 1).

For s > 0, we introduce the function

P(S)-/ exp(—sx — I(x))dx,
0

(9.45)

(9.46)
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where .
I(x) -/ (1 —e ") dr.
0

Since

1—e'

0< ; <1 fort > 0,
we have
0<I(x)<x forx > 0,

and so

exp(—(s + I)x) < exp(—sx — I(x)) < exp(—sx).
Therefore, the integral converges for all s > 0, and

1 g o0 1
_— -/ exp(—(s+ Dx)dx < p(s) < / exp(—sx)dx = —.
s+1 0 0 s

It follows that
sp(s) ~ 1
as s tends to infinity. Using integration by parts and the observation that

xI'(x)=1—e7",

we obtain

sp'(s) = -—/ sxexp(—sx — I(x))dx
)

= foo (d—d; exp(—sx)) x exp(—1(x))dx
0

& {
= [xexp(—sx — l(,\'))]:c_o - f expl—s.) (%x exp(—l(.\'))) dx
0 -

¢

= —/ exp(—sx)(1 — xI'(x)) exp(—I(x))dx
0

=— / exp(—sx)exp(—x)exp(—1(x))dx
0

= _/ exp(—(s + )x — I(x))dx
0
=—p(s+1).

This proves that p(s) is a solution to the adjoint equation (9.45) for all s > 0.
We shall prove that
pl) =e”.

We need the following integral representation for Euler’s constant:

1 oc
Y -/ (1 —e " 'de —f e 't7\dt (9.47)
0 |
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(see Exercise 16 and Gradshteyn and Ryzhik [42, page 956]). Then

1(x) =/J(1 — ey \dr
0

1 x
=/ (1 —e")t"dz+/ (1—e')'dt
) 1
1 x
=/ (1 —e"')t"d!—/ e't7'dr +logx
0 1
1 oo oo
=/ (1 —e")z"'dt—f e"z"d1+/ e~'t71dt +log x
0 - 1 X
-y+/ e 't~'dt +logx.

It follows that

—sp'(s) = foo sx exp(—sx — I(x))dx
0

[o.°] oo

-e"’/ sexp (—sx—/ e"t"dt) dx
0 X
oo oo

=e"’/ exp (—u—/ e"t"dt) du.
0 uls

o0
limf et 'dt =0,
s—0* u/s

For u > 0, we have

and so

p(1) = lim p(s + 1)
s—0*

= — lim sp'(s)
s—0*
o0 [e ]
=e7” lim f exp <—u —/ e“z"dz) du
=0 Jo uls
oc o0
= e"’/ lim exp (—u —/ e"t"dt) du
0o -0 uls

oc
=e"y/ exp(—u)du
0

=e’ Y.

Since P(s) =2+ O(e~*) and sp(s) ~ 1, it follows that

lim (P(s), p(s)) = lim (sP(s)p(s)+ /s P(x)p(x + l)dx) =2,
s—oc §— 00 s—1

265
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Since (P(s), p(s)) is constant for s > 3, it follows that
(P(s), p(s)) =2
for all s > 3. Letting B = 0 in (9.41), we have
sP(s)=A+Alog(s—1)

and

A
(sP(s)) = —
s—1

for 2 < s < 3. Therefore, 2P(2) = A and
2=(P(3), p(3))
3
=3P(3)p(3) +/ P(x)p(x + 1)dx
2

3
= 3P(3)p(3) - f xP(x)p'(x)dx
2

3
= 3P(3)p(3) — [x P(x)p(x)):3 + /; (x P(x)) p(x)dx

3
=2PQ)p(2) + A f P
2 X - 1

3
=Ap(2)+Af P& 4y
2 x—1

3
= Ap(2) — A/ p'(x — dx
2
= Ap(2) — Ap(2) + Ap(l)
= Ae77.
This proves that
A =2e.
We can now determine the initial values of F(s) and f(s).

Theorem 9.8
pr24
F(s)-T for1 <s<3

and 2e” log(s — 1)
f(s) - L

where y is Euler’s constant.

for2 <s <4,

Proof. Let2 < s < 3,and let A = 2¢” and B =0 in (9.41) and (9.42). Then
sP(s) =2e” +2e" log(s — 1)
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and

sQ(s) = 2e¥ — 2¢” log(s — 1).
Therefore,

sF(s)= w =2et.

By Lemma 9.9, s F(s) is constant for | < s < 3 and so
sF(s)=2e" forl <s <3.
By Lemma 9.10, we have (sf(s))’ = F(s — 1) for s > 2 and so

2e”

sf(s)=2f(2)+‘/” F(t - 1)d:=/s -dt = 2¢” log(s ~ 1)
2 2

for 2 < s < 4. This completes the proof.

9.6 Notes

267

The material in this chapter is based on unpublished lecture notes of Henryk
Iwaniec[68]. See Jurkat and Richert (69] for the original proof of Theorem 9.7.
Standard references on sieve methods are the monographs of Halberstam and

Richert [44] and Motohashi [87].

9.7 Exercises

1. Let P be the product of the primes up to /x. Prove Legendre’s formula

7(x) —mw(/x) + 1

w2l s ) 5

PsJx pr<pi<Jx p1p2 Pr<pr<pr<JT P1p2p3

- puo[3]

d\p

]+

2. Let P be the product of the primes up to /x. Prove Sylvester’s formula

2 - i T ().

Jr<psx dip

3. Let A, = {a;(n)} and A, = {a2(n)} be arithmetic functions such thata,(n) <

az(n) for all n > 1. Prove that

S(A,P,2) < S(A2, P, 2).
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10.

9. The linear sieve

Let A; = {a,(n)) be a nonnegative arithmetic function for € = 1, .
let A = {a(n)} be the arithmetic function defined by a(n) = a,(n)+
for all n. Prove that

k
S(A,P,2)= ) S(Ar, P, 2).
f=1

Let 2 < w < z. Prove Buchstab’s identity:

S(A.P.2)=S(A, P, w)— Y S(A,, P, p).
wLp<z

In particular,
S(A.P,2)=|Al = )_ S(A,, P, p).

p<z

. By iterating the Buchstab identity, prove that, for z; < z,

S(AP.2)SIAl= Y 1Apl+ Y. 1Appl

Pi<z Pr<pr<l
- Z S(Ap\p2pys P. p3)-
py<pir<pi<t

.., k,and
- -+ag(n)

. Let P be a set of primes, and let A*(d) be upper and lower bound sieves with

sieving range P and support level D. Let P, be a subset of P. We define

functions A¥(d) by A¥(d) = A*(d) if d is divisible only by primes

in Py, and

A%(d) = 0 otherwise. Prove that Af(d) are upper and lower bound sieves

with sieving range P) and support level D.

Let h(s) be the function defined by 9.23. Prove that

h(s — 1) < 4h(s) fors > 2.
Use the recurrence relation
o
sz(S)-/ file = Dadt
s

to prove that
sfa(s)=s —3log(s — 1)+ 3log3 — 4
for2 <s <4

Prove that

9
< lOg§

X
=xl
fx)=xlog o7 <

for x > 1. Hint: Show that the function f(x) is decreasing for x > 1.
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12.

13.

15.
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Let Q(s) be a continuous function on the interval [1, 2]. Prove that there ex-
ists a unique continuous function Q(s) defined for all s > 1 that satisfies this
initial condition and that is a solution of the differential-difference equation

sQ'()=-0()— QG- 1)

for all s > 2. Hint: For 2 < s < 3, we must have

sO(s) = — f 0(x — l)dx +20(2).
2

Similarly, for 3 < s < 4, we must have

sQ(s) = — / 0(x — 1)dx +3003).
3

The proof proceeds by induction.

Let Q(s) be the function defined in Lemma 9.11. Prove that

s(s = 1Q(s) = /s xQ(x)dx
s—1

for all s > 3. Prove that

0<sQ(s) s~

Let P, and P, be disjoint sets of prime numbers, and let f; and f, be
arithmetic functions such that f1(d) # O only if d is a product of primes
belonging to P, and f>(d) # 0 only if d is a product of primes belonging to
P,. Let f = fi x f>. Prove that

L f=(1x fi)(1 % f2).

Let A7(d) and A3(d) be upper bound sieves with support levels D, and D,,
respectively, and with disjoint sieving ranges P, and P,. Let A* + (d) be the
convolution of A}(d) and A3(d), that is,

M) = A x A3 (d) = Y AdDA(dy).
d=d,d:
Prove that A* is an upper bound sieve with support level D = D, D, and
sieving range P, U P;.

Let A7(d) and A3(d) be upper bound sieves with support levels D; and D,,
respectively, and with disjoint sieving ranges P; and P,, and let A| (d) and
A (d) be lower bound sieves with support levels D, and D,, respectively,
and with disjoint sieving ranges P, and P,. Prove that

AT(d) = A} % A3(d) — A * A3(d) + AT * A5 (d)

Prove that A~ is a lower bound sieve with support level D = D; D, and
sieving range P, U P;.
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16. In the theory of the Gamma function, it is proved that
x
-y =T'(1) -f e *logxdx.
0

From this formula, use integration by parts to obtain (9.47):

1 [« <]
y-f Q1 —e")t"dt—f e't7'dr.
] 1
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Chen’s theorem

Is it even true that every even n is the sum of 2 primes? To show this
seems to transcend our present mathematical powers. . .. The prime
numbers remain very elusive fellows.

H. Weyl [142)

10.1 Primes and almost primes

In this chapter, we shall prove one of the most famous results in additive prime
number theory: Chen’s theorem that every sufficiently large even integer can be
written as the sum of an odd prime and a number that is either prime or the product
of two primes. An integer that is the product of at most r not necessarily distinct
prime numbers is called an almost prime of order r, denoted P,, and so Chen’s
theorem can be written in the form

N-p+P2

for every sufficiently large even integer N. We shall prove not only that every large
even integer N has at least one representation as the sum of a prime and an almost
prime of order two but that there are, in fact, many such representations.

Theorem 10.1 (Chen) Let r(N) denote the number of representations of N in the
form
N =p+n,
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where p is an odd prime and n is the product of at most two primes. Then

2N
r(N) > G(N)(log_N)z' (10.1)
where | |
p—
S(N) = 1 - . 10.2
( ) ‘],:[2( (P—l)z),m p—2 ( )
st

The number G(N) is called the singular series for the Goldbach conjecture.

The proof has two ingredients. The first is the Jurkat-Richert theorem (Theo-
rem 9.7), which gives upper and lower bounds for the linear sieve. The second
is the Bombieri-Vinogradov theorem, which describes the average distribution of
prime numbers in arithmetic progressions. Throughout this chapter, p and q denote
prime numbers.

10.2 Weights

Let N be an even integer, N > 4. We begin by assigning a weight w(n) to every
positive integer n. Let

z=N'3 (10.3)
and
y=N"3 (10.4)
Then z > 4. We define
1 1
wy=1->Y k-5 Y L (10.5)
2 15q<r 2 Py PIPY=A
atin EPI< EMLPy
Clearly,
wn) <1

for all n, and w(n) = 1 if and only if n is divisible by no prime in the interval [z, y).
Let P be the set of prime numbers that do not divide N. Then 2 &€ P since N is

even. Let
P(z) = ” p-

peP
Let n be a positive integer such that
n<N and (n,N)=(n, P(2))=1.

Then n is divisible only by primes p > z that do not divide N. If n = p;p;---
PrPrsl -+ - Pres, Where

ZSPIS"'SPr<)’SPr+lS“'SPrn,
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then
N”} = }" S Pret o Pres SN < N

and sos =0, 1, or 2. Suppose that w(n) > 0. Since

1 r
EZk=§.

Wn

it follows that r =Qor 1.If r = 1 and s = 2, then n = p, pyp3, where z < p; <
y < p2 < p3, and so w(n) = 0. Therefore, if w(n) > 0, then either r = 0 and
s=0,1,or2,orr =1ands =0or I.In all of these cases, r +s < 2. Therefore,
if (n, N)=(n, P(2)) =1 and w(n) > 0, then either n = 1 or n is an integer of the
form p, or p; p2, where p, and p, are primes > z that do not divide N.
Consider the set
A={N-p:p<N.peP}) (10.6)

Then A is a finite set of positive integers, and | A| = 7(N) — w(N), where w(N)
denotes the number of distinct prime divisors of N. If n = N — p € A and
if (n, N) > 1, then p divides N and so p &€ P, which is absurd. Therefore,
(n, N) =1 for all n € A. We obtain a lower bound for r(N) as follows.

Nz Y

Napen
n€ll.py.pyry ) 222

neA
nell.pyppypy pyopazl

- Z 1

neAd
(LR
nell £y pyp2 pyop222)

Z w(n)

neA
i P
n€ll.py.pypy py.p222l

v

v

> E w(n)
ncA
in Piin=l
] 1
=Y =Y k- >
nCA 2 YA 2 PLPIPA=N
o Pl g EpparEprsm
1
IR EE 1 DI
neA 2 neA B AR
i Pl PO g

1
=1 PR
neA PpIpY=n

(e Pl SEPpNEpIEpy
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We shall express these three sums as sieving functions. If we let A = {a(m)) ),
be the characteristic function of the finite set .4, then the first sum becames simply

Yo 1= ) am=sA,P.2.

ln‘;‘f.::)-l . P)=1

We divide the second sum into two pieces:

2 X"'(Z Z')+ 2 Z<’<-1>4

neA 12q9<y REA  1%q<y¥ neA  Isg<y
(Pl gt (. PE)=1  qn . Pl ghpn
22

The first piece can be expressed as a sieving function as follows: For cvery prime

q.let A, = {a,(n)}72, be the arithmetic function defined by
1 ifne€ . Aandgin

3q(n) = { 0 otherwise.

Since (n, N) = 1 for alln € A, we have g € P if a,(n) = 1, and

2 1= D am

or E TSI PEm
= Y S(A,.P.2).
i=q<y

It is easy to estimate the second piece. Since z = N/ > 4 and

k-1 1
2 R

X
= 9

we have

Y Ye-n=-Y 3 ¥ -

ned  1sq<y :<q<y ned
PNt gkpn iSq<y k=2 o PLodt
£>2 i

< ¥ 3 Ye-n

~<q<\ k=2 n<N

D3 3t

k
ISq<y k=2 q

'NZ 1

— 12
1=q< @-1

A
2

z-2
2N
5_

2z
= 2N,
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For the third sum, we let B be the set of all positive integers of the form

N — pipaps.

where the primes p;, p», ps satisfy the conditions
IEpI<yYy=p2=p3

ppp3y < N
(p1p2p3, N) = 1.
Let B = {b(n)}%, be the characteristic function of the finite set B. An element

n=|

of Bis aprime pifand onlyif p < Nand N — p = p;p,p3 € A, where
Z € p1 <y < p2 < p3. Therefore,

PR L DI

neA P P2Py " PIP2PICA
@ P()=l 1P| =YSPREP) 1Ep <NEPIEPY
SPREDMED
peB pe8 peB
p<y Py

(. POy

=y+ Y b

(n.P(y)=1
= N3+ S(B, P, y).
We now have a lower bound for r(N) in terms of sieving functions.
Theorem 10.2
1 ! 8 1/3
r(N) > S(A,P,2) = 5 D S(Aq.P.2) = 55(B,P.y) —2N"* — N'~,
2Zq<y

We shall obtain a lower bound for S(A, P, z) and upper bounds for 3_, S(A,. P,
z)and S(B, P, y).

10.3 Prolegomena to sieving

In applying the linear sieve to estimate the three sieving functions, we choose the
multiplicative function

1
d)=g,(d) = —
8(d) = g.(d) 2@
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for alln > 1. Since N is even, we have 2 ¢ P and

1
0<g(p)= 7 <1 forall p e P,
p—

so the functions g(d) satisfy (9.33). To establish inequality (9.34), we apply
Theorem 6.9, which says that there exists a number u,(¢) such that

! 1
I (1——) <(1+e/3) 82
uSpe: P log u
for any u,(¢) < u < z. Also, there exists uz(¢) such that

I (p—1)? I ( 1 ) €
—— R l l b
p(p—2) +p(p—2) <i*3

pzuz(e) p>ua(e)

since the infinite product converges. Therefore, for
u > uo(e) = max(u; (), uz(€))
we have

[Ta-emn =] (l—ﬁ)_'

us<p<: u<p<:
(p—1)? l-[ ( l)_‘
S (1
usp<: p(p-2) usp<: p
1
< (1+g/32 8%
log u

|
< +e) 8%
log u

Let Q(¢) be the set of all primes p < uo(e),and let Q = PNQ(e). This gives (9.34).
Let Q(¢) be the product of the primes in Q(¢), and let Q be the product of the
primes in Q. Then Q(¢) depends only on ¢, not on N, and so

0 < Q(e) <logN (10.7)
for all sufficiently large integers N.
Theorem 10.3 Let N be an even positive integer, and let

1
Vo= [Ta-gwn=[] (hﬁ) (10.8)

PIP) o

(PNl

e 1
o= s (140 ()

Then
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where ol
o= ,[[2( (- 1)2) o p-2
Proof. Let |
W(z)-zﬂl,(: (1 - F)‘
Then

V(2) 1 \7!
wo-IL(-55)

PN

-11(-5 )"D('—ﬁ)

PIN PIN

-np”'n( —)-

p>2
PIN pIN

277

Since 1 —x > e % for0 < x < (log2)/2and 1 — x < e™* for all x, we have

(-

p2:
pIN

1 2
=) > e (555)
PIN

—8logN
= exp |~z
8log N
>1 N

V(2) p—1 log N
W 1 -2 (HO(N'/8 ))

To estimate W(z), we see that

w(z)ﬂ( ) n("ﬁ)ﬂ('_%)_l

p<: 2<p<e
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p(p—2)
2n(p—l)z

2<p<z

1
2D,,< ( (P—])z)

'2,,[]2( (,,_,)z)ﬂ(“

Since 1l +x < e’ < 1+2xfor0 < x < log?2, it follows that

1 1
1
,],_[( +p(p-Z)) pkid Ve

By Mertens’s formula (Theorem 6.8), we obtain

vo-211(1-G=) (0 ()10

)

1
Mp—ﬁ>'

1 1 e~Y 1
'2,],1("<p-m)(‘*°(z))@(“"(@

1 eY 1
-2,],:[2(] T (- 1)2) logz (] +o (logN))’

Therefore,

V()-%wu

PN

Y 1
weon (0 k)

p—1 e’Y
gib=r ,],_[2( (p_,)z)@(“o(

log N

)
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10.4 A lower bound for S(A, P, z)

Theorem 10.4

Y
S(A.P.2) > (e ';’g3 +0(£)) NV@)

logN ~

Proof. We shall apply the linear sieve and results about the distribution of prime
numbers in arithmetic progressions to obtain a lower bound for the sieving function
S(A, P, z). We use the prime number theorem in the form

N 1
1 .
og N ( +o (logN))

1Al= )1

p<N
(p.N»=1

= (N) — w(N)
= m(N)+ O(log N)

N 1
- log N (]+0(logN))'

In the Jurkat-Richert theorem, the main term in the lower bound (9.36) is f(s)X,

where :
(10 (x))
N log N
and V(z2) is defined by (10.8).

The remainder term in the Jurkat—Richert theorem is

R=Y"Ir@l,

d4<QD
Py

7r(N)-l

Then

N
X=V@lAl= V(@

where IAI
r(d) = A4l - Za(n)g(d) Adl = 5 (10.9)

We want to obtain

R —_—
< Tog Ny

with D = D(N) as large as possible. We want D large because the function f(s)

in the lower bound of the Jurkat-Richert theorem is an increasing function of

s=logD/logzfor2 <s < 4. We have

|Adl =) a(n)

nel
din
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- Z 1 + O(w(N))

=m(N;d, N)+ O(log N),

where the term w(N ) appears when we include the primes that divide N. Therefore,

[A]
d)=|Ay4| — —
r(d) =1A4| @
. _ n(N)
=x(N;d,N) @ +O(log N)

=§(N;d,N)+ O(log N),

where
m(x)
8(x;d,a)=n(x;d.a) — ——
( ( o)
forx > 2,d > 1, and (d, a) = 1. There are two important results that provide
estimates for 6(x; d, a). The Siegel-Walfisz theorem states that

x

3(x;d,a) € {og 1)

for any positive number A, where the implied constant depends only on A. This
result is useful if the modulus d is not too large, say, d < (log x)*. The Bombieri—
Vinogradov theorem tells us about the average distribution of primes in congruence
classes over a large set of moduli. It states that, for every A > 0, there exists a
positive number B(A) such that

X

Z maxl 6(x;d, a)| <€ (Iog—x)"

d<D(A)'"?

for
12

" (logx)BA”’

D(A)

where the implied constant depends only on A.
We shall apply the Bombieri—Vinogradov theorem with x =a = N and A = 3.
Let
D(3) N2
logN  (log N)BOMI"
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Then D > z2 = N'/%, Since Q < Q(¢) < log N for N > N(g), we have
12

QD< W‘D(3)

and

N2 N
(log N)P®-1 < (log Ny
for N sufficiently large. Therefore,

R =Y Ir@)

d<QD
d1P()

< Y i@l

d<QD
(d.N)y=t

< 3 18(N:d,N)|+ QDlogN
d<QD
(d.N)y=1

N
< |6(N;d, N)| + ——=
,Zm;, ( ) (log N)?

d.Ny)

<«
(log N)*’

Now we apply the Jurkat-Richert theorem (Theorem 9.7) with z = N'/® and N
sufficiently large. We have

s log D 4 8(B(3) — 1))loglog N

QDlogN <

, 4
log z log N €B.4
and so
2e” log(s — 1) e”log3 loglog N e’ log3
f(s) 5 +0 log N 5 + O(e).
Therefore,

S(A,P,2) > (f(s) —ee'* )X - R
N

_epll
> (f(s) —¢ee )V(z)Iog

1 N
N (' +0 (log N)) +0 ((log ~)3)

e’ log3 NV(2)
>( 2 +O(s)) logN

10.5 An upper bound for S(4,, P, z)

Theorem 10.5

e’ log6 NV(z)
S(A;, P, 2) < ( +0(e ))
zsg‘:y q 2 logN *
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Proof. We shall apply the Jurkat—Richert theorem again to get an upper bound
for S(A,, P, z), where g is aprime number suchthatz < g < y.Ifn=N-pe A
and g divides both n and N, then ¢ = p, which is impossible since the prime p
does not divide N. Therefore, |A,| = O if g divides N, so we can assume that
(g, N)=1.

Again we choose g(d) = g,(d) = 1/¢(d) for all n, so inequalities (9.33)
and (9.34) are satisfied. The error term r,(d) is defined by

_ 14
rq(d) = |(Ag)al o)’

Let d divide P(z). Since d is a product of primes strictly less than z, it follows that
(g, d) =1 for every prime number g > z, and so

I(Ag)al =Y _a(n) =Y a(n) = |Agal.

I
an 9din

Then

1441

¢(d)

|A| N Al 14,
p(qd) o¢@d) ¢(d)
r(q)

"(qd)—m

where r(qd) and r(q) are error terms of the form (10.9). Let

re(d) =1Aqal —

=|Agal —

D(4) N2
logN  (log N)B(@+!

and D
Dy = —.
q

Then D, > D/z > z. The remainder term for S(A,, P, z) is

Ry= Y Irg@l < ) Ir(@d)l+r(g) Y o d).

4<QDy d<QDq 4<QD,
diP() d1P@) diP()

From Theorem 9.7, we have the upper bound
S(Aq.P,2) < (F(sy) +ee' ) |A,IV(2) + Ry,

where
log D,

59" Togz
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We do not estimate the main term and the remainder term for individual primes g.
Instead, summing over z < ¢ < y, we obtain

Y S(A,. P < Y (Fis)+ee') A IV@)+ R,

1@<y i<
4. Nl (g. Nl

where

R'=Y R,

1Lq<y

s 2 2 Iradi+ Y@ Y ——
g & g
, 1
< Zo Ir(d")l + Z Ir(9)| ‘IZN: o@D

and QD < D(4). Applying the Bombieri-Vinogradov theorem as in the previous
section, we obtain

S @< Y sVid NI+ Y OogN)

d'<QD d'<DhQ d'<DQ
' Nyt (o’ Nyl W’ Ny)
< N
(log N)*

Since y = N'/> < D < QD for sufficiently large N, we also have

Y @i« N
(log N)*

(q.N)l

By Theorem A.17,

1
— K log N
= e(d) g

and so
, N

R _—
< Qog Ny

Next, we estimate the main term. We have

.- log D/q _ 8log(N'"?/q) _ 8(B(4) + 1) loglog N
7 logz log N log N '

Since N'/8 = 7 < g < y = N'/3, it follows that

8log(N'?/q) _

4
z . 10.10
35 " logh S (10.10)
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and so 1 <5, < 3. By Theorem 9.8, F(s) = 2" /s for 1 < s < 3. Therefore,

2eY e’ log N (log log N )

F TR ——— R ——
(59 s, 4log(N'2/q) log N

and so
e’ log N

14
Flsg)+ee = oo W)

+ 0 (g). (10.11)
Also,

|Agl =m(N;q, N)+ O(log N)
n(N)
v(q)

N 1
" o(@logN (1 +0 (m)) +8(N;q, N).

+8(N;q,N)+ O(logN)

Therefore,

Y (Fisp) +ee')1A,

1<q<y
Q. N1

e’ log N N 1
-2 (4log<~'/2/q) * 0‘”) P@IogN (' +o (logN))

QNI

+ ) (F(sp)+ee')8(N;q, N)

1%q<y
Q.81

- e”N z l
4 ¢(q)log(N'/2/q)

€@ <y
Q@.Nm=I

N ]
(0] -
(logN ) z ¢(q)1og(N'/2/q)

(logN) ; w(_q)+0 (; 8(N;q,N))_

@.NwI q.Nr=1

It is not difficult to evaluate these terms. By the Bombieri-Vinogradov theorem

again, we have
N
8(N;q,N)= —}.
Y s =0 (o)

1<q<r
(@.N)=l

By Theorem 6.7, we have

1

frrr ‘P(q) s 4 1

(q. Nl q€P
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<<Z—

1gq<r
qeP

1
= logl —loglogz+ O | —
oglogy — loglogz (logz)

1
= 0(1).

Using this estimate and inequality (10.10), we have

N 3 1 3 log N
logN = tP(Q)log(N'/z/Q) (lOgN)2 @(q)log(N'/2/q)

1€g<)
.=l (@.N)=I

(IOg N)2 Z rp(q)

1<g<h
(g.N)=l

<«
(log N)?’

Therefore,

" e'N 1 eN
;(F(sq)+ee Al = — Z w(q)log(Nm/q)+o(—-—logN).

W M-l (q.N)=l

We note that

and
1
N ————— <N
; q*log(N'2/q) ~ WZ« qzlogN'/Z/y
_ 6N Z 1
- log N 52 q?
< N
zlogN
NT/8
- logN’
Let | |
S@t) = ——loglogt+B+0( )
qZ; q logt
and

1
T = gy
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The functions S(¢) and f(r) are increasing. We shall estimate the sum

1
:5;,. qlog(N'/?/q)

by using integration by parts twice in Riemann—Stieltjes integrals. We have

l y dS(t) ¥
Z.m'[ Tog(N'72/1) -/: f(dS@)

I=g<y
- F)S0) - f@s@ - [ swar
= f(y)loglog y + B) — f(z)(loglogz + B)
- / “(loglogt + B)df(t)
(f(y)) +0 (/‘ df(t))
logz . logt
¥ 1
-j: f(t)dloglogt'f'O((log—N)z).
We compute the integral explicitly by making the change of variable t = N¢. Then

¥ ¥ dt
log I -
/: (0 loglogs _/ tlogtlog(N‘/z/t)

1/3
logN f/3 a((l/2)
2log6
logN ~
Therefore,
14 e’ log6 N
:L:(F(sq)+ee Al = ( Tt O(e)) eV
and so v NV( )
e’ log b4
2 S(A‘"p“)<( 2 ) logN
1<g<y

10.6  An upper bound for S(B, P, y)

Theorem 10.6

NV -'N
S(B,P,y) < (—+O( )) ] g(;) +0((]ZgN)3)'
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Proof. Recall that

B=(N—-pip2p3:2<p1 <y <p2=<ps,prP2P3 < N,(p1p2p3, N) = 1}.

Before estimating the sieving function S(B, P, y), we shall drop the requirement
that (p;, N) = 1 and relax the condition that p; p,p; < N so that the numbers
p1 and p, p; range over intervals independent of each other. This will produce
a “bilinear form” in p; and p, p;. We shall let the prime p, vary over pairwise
disjoint intervals

€< p1r <(1+e)E,

where £ is a number of the form

2=z(1+¢)
such that z < € < y. Then
1 log N
0<k< B0/  logN (10.12)
log(l +¢) €
Let
BO=(N-pipp3:z2<pi<y<p<ps,
€< p <(1+6)¢,¢tpypy < N,(p2p3. N) = 1} (10.13)
and ;
B=|)BY.
[4
Then

BCBC(N-pipap3:z<pi<y<p2<pspipaps < (1+6)N). (10.14)

Let b(n), b'°(n), and b(n) be the characteristic functions of the sets B, B, and
B, respectively. Since the sets BY) are pairwise disjoint, we have

|B| =Y |BY
[4

and
S(B,P.y) < S(B.P,y)=)_S(BY,P,y).
4

We shall estimate the sieving function S(B®, P, y) by using Theorem 9.7 with
the functions

1
d) = g,(d) = —
8(d) = gq(d) @)

for all n > 1, and with support level

Nl/2
" (log N)*'
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Then

|BY| = Y 1,

PIPPIEN (0wd d)
ISP 4XEPIEpYLEp <Uin N
PPy <N.ip2p3.Ni=l

and the error term r{” is defined by

)
o, _ 1BVl
|BYO) = 03

In the next section, we shall prove that

RO o 7 10 '
;| | < Gog N)4

d1Piy)

(10.15)

With this estimate for the remainder, Theorem 9.7 gives the upper bound

N
(l) , 14 (4]
S(BY, P, y) < (F(s)+ee')|B 'V(y)+0((logN)‘)'

logh 3 IoglogN)
- - — ] €1,
logy 2+0( log N (. 3]

and so, by Theorem 9.8,

deY loglog N
F(s) = T +0 (—logN )

It follows from (10.3) that
V(y) logz ( ( 1 )) 3 ( 1 )
——=——(1+0 =— .
V(z) logy * log N 8 vo log N

S(BY, P, y)

¥ 3 Y go (L)
<( 3 +0(e)) (8+0(logN))lB (V(i)+ 0 (og N)?

e)’
< (? + O(s)) IBOV(Z)+ 0 (

This gives

;)
(log N)* )~

Summing over the sets B, we obtain

l[v
S(B,P,y) < ZS(B“’ P.y) < (7+0(e)) IB|V(z)+ ()( l—\))

since the number of sets B is O (e~ log N) by (10.12).
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Next, we estimate | B|. By the prime number theorem,

x ((l +s)N) - (1+2¢)N
P p2 p1p2log(N/p, p2)

for N > N(e).If py < p2 < ps.and pip2p3 < (1 +&)N, then pip3 < (1 +&)N

and
(1+&)N

Pip2

3 <

It follows from (10.14) that
Bi< ) 1

ISP NVEPISPY
PYPIPA(IFOIN

((l + e)N)
oon
<pyrspy P1p2

’"p%«(l‘l}‘V

1 1
<(1+2)N — e
:5;)' PV e preironypy2 P210B(N/P1P2)

IA

To estimate the inner sum, we introduce the functions
log(N/p\t)
and
(N/u)'? 1
H(u) = —————dloglogt.
w) [ log(N /uny” B8

The function h(t) is positive and increasing for 0 < t < N;/p;. Since y = N'/3,
we have (N/y)'/? = y and so H(y) = 0. Since z = N'/%, we have, with the change
of variable t = N¢,

v7:|6
: I
H(z) = ——____dloglog?
@) /N.,-s Tog(N778/1)“ °8'%8

1 7/16 da
log N /,,3 (7/8) — «
1
=0 .
(logN)

S(:)-Z% -loglogt+B+0(—l—).

ot logt

Recall that

Applying integration by parts to the inner sum, we obtain

Z 1

vsp<ronpyrs PRIOBIN/ P1P2)
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-y e

yEpr<((1+6)N/p))'/? p2
((1+e)N/p))'"?

h(t)dS(t)

((+eIN/p)'2 172
-f ’ h(l)dloglogt+0(h(((]"'e)N/Pl) ))

log y
(N/p)?

————dloglogt
log<~/plz) glog

((1+e)N/p))' 1
+ ———dloglo 1+0(
'[(N/p.)"’ log(N/pit) g8

1
=Hpo+o ((logN)Z)'

The error term is obtained as follows. First,

1
(log N)? )

(L +N/P)') 2

log y log ((l+s)p ) logy
2

log (ZEIYE)T) log y
2

N2
log ((M)) log N1/3

1
< —(log Ny

=<

Second, with the change of variable t = (N/p;)'/2s,

((1+6)N/p)'?
———dloglogt
/(.N/pl)"" log(N/p1t) B

4N/ p)'? 1
-/ L
wspyt?  tlogtlog(N/pir)

(1+£)'/? ds
B fl slog ((N/p1)'/2s) log ((N/py)'/2s~1)

(“,S)I/Z dS
B /1 s(log ((N/p))'7?) + log s)(log ((N/p1)"/2) — log s)

/(I-c-e)‘ ? ds
v s ((togV/p1)'2)” - (logsy?)
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] (1+€)'? ds
< UogNy fl 0

1
-0 ((logN)Z)'

It follows that the outer sum is

H(p)) 1 H(py) ( 1 )
—— 0 — = 0 v
:g-,;y o (5,,2,< pi(log N )2) :5;9. pi " \(ogN)?

where the error term comes from the fact that

1
z : — =loglogy — loglogz + O((logz)™")
1

<Py
=log(8/3) + O((log N)™")
=0().

We calculate the main term, as usual, by integration by parts:

H(Pl)

=pi<y

f H(u)dS(u)

- /.\ H(u)d ]oglogu + 0 (M)

log y

¥ 1
= | H(u)dlogl o{——).

/: (o loglogu + ((log ~>z)
To evaluate the integral, we make the change of variables t = N® and u = N%.
This gives
NP (N )
H(u)dloglo u-/ / ————dloglogtdloglogu
/ BIOBH = [ i Iog(N/ p cBloBIaT0B 108

1/3 p(1-8)/2 dadﬁ
]ogN/ ./ @B(l —a - B)

173 log(z 3p)

——d

log N B(1-p8) P

Iog N’
where 3

log(2 - 38)
= ————dB =0.363....
‘ [.,s Ba—p) ¥

Therefore,

. (1+0(@)eN N
Bl < g N *O(aogw)
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and

e’ - e 'N
S(B,P,y) < (? + 0(8)) |BiV(z)+ O ((log N)3)

ce’ NV(2) e 'N
< (—2— + O(e)) log N +0 ((log N)3) .

10.7 A bilinear form inequality

We must still prove inequality (10.15) for the remainder R®. This will be a
consequence of the following theorem.

Theorem 10.7 Let a(n) be an arithmetic function such that |a(n)| < 1 for all n.
Let A be a positive number, let X > (log Y)**, and let

(x Y)l/z
(log Y)A"

-

Then

Z ', (a. d)-l

Z Z a(n) - (d)z Z a(n)

Z<p<Y n<X Zsp<¥
npma (mod d) (np.d)=1

XY(log XY)?

gy (1019

where the implied constant depends only on A.

Proof. Let (a, d) = 1. By the orthogonality property of Dirichlet characters x
(mod d), we have

Z X(a)x(np) = [ ¢(d) if"PE_a (mod d)

x (mod d) otherwise.
This gives
Y Y - Y S ey
X i nex 2oy @) Sy
1
-—— Y @) amx® Y x(p).
‘p( )X (mod d) n<X z<per

The contribution of the principal character xo (mod d) to this sum is

cp(d) 2 2 atm.

n<X Zsp<¥
(np.drel
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It follows that the left side of (10.16) is bounded above by

}:ﬁ > Damxm| | Y xp)|.
d<D* x ;:'::4' n<X Zzp<Y

Every character x  (mod d) factors uniquely into the product of a primitive char-
acter (mod r) and the principal character (mod s), where rs = d. Therefore,
the sum can be written in the form

1
,Zd:, (p(rs)z il ;a(n)x(n) Z;Y x(p) (10.17)
(311 (p.s)el
1 1 *
WP I ZM Z a(m)x (n) f;{x(p) .
XYX0 LR 1 p.t)e

where ) * denotes the sum over primitive characters (mod r). To obtain the last
inequality, we used the fact that the Euler ¢-function satisfies ¢(rs) > @(r)@(s).
We can estimate the character sum ) _ p<y X(P) by means of the Siegel-Walfisz
theorem. We have

Yxms Y x@ Y o1

<y
p<Y a (mod r) e

= Z x@n(Y;r,a)

a (mod r)

n(Y) Y
- (0]
. Z(,,,od,)"(“)(qp(n ¥ ((log Y)B))

< rY
(logY)8

since

Z x@a)=0

a (modr)

for every nonprincipal character x. Since also

rZ < rY
(log Z)? ~ (logY)?’

Y xp) <

p<Z
it follows by subtraction that

ryY

2., X7 < Togry

Zsp<Y
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If we add the condition (p, s) = 1, we remove at most w(s) < logs « log D*
terms from the character sum and so

Y xp <

Z=xp<¥
(p.s)=]

rY
(logY)8

+log D*.

Since ja(n)| < 1, we also have

2 amx(m)| < X.

n<X
{r.simi

Let Dy be “small.” The inner sum in (10.17), restricted to r < Dy, is

1
> %Z",‘::;;’” Y amxmi| Y x(p)

r<D*® neX Z<p<Y
.3yl (p.s)=1
rX rY
L — | ———+10 D‘)
;,0 o(r) ((log r? "8
D}*XY log D*

The rest of the inner sum in (10.17) ranges over Dj < r < D*. We partition this
interval into pairwise disjoint subintervals of the form D} < r < 2D}, where
D} =2*Dj and 0 < k « log D*. This produces partial sums of the form

LS s Y amxm|| Y x(p)

,,105,.:2,)" (p(r) o ne<X Z<p<y
,,8:,(,). {n, syl (p.ap=l
1 r \'?
<— | [ — a(n)x(n)
' n,’;n; Z x#r0 (‘P(")) ;
Dy <r<D* ()=l
F o\
x(p)
(‘P(’)) zszp;r
(p.sy=)
By Cauchy’s inequality, this sum is bounded above by
2\ 172
—1— Z L * o modn Za(n)x(n)
Dy pr<rzapy (1) roe —
N /2
__ Y- > x(p
- 2 lmed r)
Dy<r<2Dy o(r) S Pyt

(p.sh!
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The large sieve inequality [19, page 160] states that

2

L+M L+M
r
Yoo D | ) atx(m)| K (R2+M) Y la(n)?
R o) o T nel+l

for every arithmetic function a(n). Applying this inequality to each of the factors
in the product, and using the condition that Ja(n)| < 1, we obtain

1
— ) a(n)x(n) x(p)
”;;”T ¢(r) Z 1o ; z;r
Dy<r<n® syl (p.s)=1

1
< o (D2 + x)x)'2 (D72 + VyY)'?
1

172
- ((D,‘2+X+Y+-x—);)XY)
Dy
X 1/2
< (D; + X724y 4 %) (xy)'”?
|

(XY)I/Z

< (D‘ + X2y 4
0

)(XY)'/z.

Multiplying this by the number of partial sums, which is O(log D*), and adding
(10.18), we obtain the following upper bound for the left side of (10.16):

1
zmxz Z: x(p)

d<D* (ol ) Z<p<Y
x?10

1 Q—
5 Z:mzb(—r)z xx(:;o:r)

s<D* r<D*

> a(m)x(n)

n<X

> a(mx(n)

nzX
(r.s)=1

Z x(p)

Z<p<Y
(psrl

1 DXY log D*

S 2 o) (og1)?

1 Xxy)'2
+ _— D'+X'/2+Y'/2+—( ) (XY)'?log D*
g
= (s) D(‘,

- DX Y (log D*)?
(logY)®
(XY)'2

+|{D*+ X2 4124
( 5

) (XY)2(log D*)%.
Note that we picked up a factor log D* from the estimate (Theorem A.17)

1
> — «logD*.
s<D* (O(S)
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Choose B = 4A and D} = (log Y)*. Since X > (logY)** and Y > (log ¥ )**, it
follows that the left side of (10.16) is

XY(logD*? ( D 1 1 1 "2
(log¥)* xryz  xatyn’t b XY(log D%

11 1 )
< ( X7+ 7 * g Y)A) XY(log XY)

XY(log XY)?
(log Y)A

This completes the proof.
We can now derive the upper bound (10.15) for the remainder term

(4
R(i) - 2 I’.‘(, )‘.
AP

where z < € < y. From the definition (10.13) of the sets B!, we obtain the
individual error terms

© g0 _ 1 pe
rg =Byl — 7 |BO)|
¢(d)
1
- 1.
:5’|<|S’25’] w(d) <’|<\<"<”
t<py<(borpt tspp<tlae it
2Py <N.Appy.Ny=l lrzn", (P2p3. N}

PIP2PymN  (mad o)

We delete some numbers from the second sum by adding the condition that
(p1p2p3. d) = 1. This is equivalent to (p;, d) = 1, since the condition (p; p:. d) =
1 already follows from the fact that d divides P(y). This additional condition
decreases the second term by at most

< B
(P(d) P1P2P3<tIsIN ¢(d) pldpr: D z¢(d) :¢((1}

piid-py2:

_l_ E l<(l+e)N Z (1+¢e)Nw(d) (N logd

Let a(n) be the characteristic function of the set of numbers of the form n = py ps,
where y < p, < p; and (p2p3, N) = 1. Then we can write the crror term in the

form
(Nlogd
=3, ) am- (d)Z 2 “‘")+O( z0(d) )

nX X
where
X=Njt
Y = min(y, (1 +¢)f)
Z = max(z, {)

a=N.
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Since £ < y, we have

(Xy)'?

(log Y)*
S NY2min(y/e, (1 +¢)'/?
- (log y)*

L 3

NI/Z
> ——
(log N)A
= D.

Similarly,
D* < (XY)"* < (Ny)'? < N.

By Theorem 10.7,

RO = Z | r(l)

d<D
diP(y)

>

d<D*®
diP0y)

= Z
d<D®
diPiy)

Nlogd
+.§f 0( zp(d) )

diPiy)

XY(log XY)? NlogD‘Z 1
+
Z

IA

> X a<n>-@2 D alm

n<X Y4234 n<X Zsp<y
npaa  (mod d) (np.d)=1

(log ¥)* 5. o)
N
N7/8 *\2
< —(IogN)"-z + (log D*)
N7/8 1 2
< (og NY* + (log)
< N
(log N)*

if we choose A = 6. This completes the proof.

10.8 Conclusion

We can now prove Theorem 10.1.
Proof. It follows from the formula for V(z) in Theorem 10.3 that

NV(z) 8e VN 1
log N ()( N)’(Ho(logN))'

297
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Theorem 10.2 gives a lower bound for r(N) in terms of three sieving functions.
Using the estimates for these sieving functions in Theorems 10.4, 10.5, and 10.6,
we obtain

r(N) > S(A, P.2) - % >S4, P.2) - %S(B, P.y)—2N"E - N'?

1sq<y
e'NV(2)
2log3 — —c— RAEARA LA
> (2log3 —log6 — ¢ — O(¢)) Zlog N
o (M) _onm _ i
(log N)?

2N !
> (2log3 —log6 — c — O(¢)) (‘5(N)—(]og Ny (l +0 (logN))

e 'N
o —2N"B - N3,
((log N)’)

2log3 —log6—c=0.042... >0,

Since

we can choose € such that 0 < ¢ < 1/200 and
2log3 —logb —c — O(¢) > 0.

For this fixed value of ¢, we have
e 'N N
0] =0 —).
((IOgN)3) ((Iog N)’)

2N
r(N) >» G(N)W.

This completes the proof of Chen'’s theorem.

Then

10.9 Notes

Chen [10, 11] announced his theorem in 1966 but did not publish the proof until
1973, apparently because of difficulties arising from the Cultural Revolution in
China. An account of Chen’s original proof appears in Halberstam and Richert’s
Sieve Methods [44]. The proof in this chapter is based on unpublished notes and lec-
tures of Henryk Iwaniec [67]. The argument uses standard results from multiplica-
tive number theory (Dirichlet characters, the large sieve, and the Siegel-Walfisz
and Bombieri-Vinogradov theorems), all of which can be found in Davenport [19].
Other good references for these results are the monographs of Montgomery [83]
and Bombieri [3). For bilinear form inequalities, see Bombieri, Friedlander, and
Iwaniec [4].
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Arithmetic functions

A.1 The ring of arithmetic functions

An arithmetic function is a complex-valued function whose domain is the set of
all positive integers. Let f and g be arithmetic functions. The sum f + g is the
arithmetic function defined by

(f +8)n) = f(n)+g(n).
Addition of arithmetic functions is clearly associative and commutative, and every

arithmetic function f has an inverse — f defined by (— f)(n) = — f(n).
The Dirichlet convolution of the arithmetic functions f and g is defined by

(f *8)m) =Y f(d)g(n/d).

din

It is easy to see that Dirichlet convolution is commutative, thatis, f x g = g x f,
and distributes over addition in the following way:

fx(g+h)=fxg+f*h
The following theorem shows that Dirichlet convolution is also associative.

Theorem A.1 If f, g, and h are arithmetic functions, then

[x@xh)y=(f*g)*h.
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Proof. Foranyn > 1,

(f * ) x b)) = Y_(f * )k (5)

din

= D (f *8)d)h(m)

dm=n

=Y flg@h(m)

dmwn kt=d

= > fg@h(m)

kém=n

=Y f) Y g@h(m)

kin {menfk

=" st Y- goh(53)

kin El(n/k)

=" fg«h (%)

kin

= (f * (g x h))(n).

This completes the proof.
We define the arithmetic function &(n) by

| ifn=1,
‘S(")=[ 0 ifn>2

Then for any arithmetic function f we have

(f*8)m) = Y f@8 (5) = fo,

din
and so the set of complex-valued arithmetic functions forms a commutative ring

with identity element §(n). This ring is an integral domain (Exercise 3).
The product f - g of the arithmetic functions f and g is defined by

(f - 8)(n) = f(n)g(n).

Let L be the arithmetic function L(n) = logn. Multiplication by L is a derivation
on the ring of arithmetic functions, that is,

L-(fxg)=(L-f)*xg+ fx(L-g)

(Exercise 11).
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A.2  Sums and integrals

In number theory, we often need to establish asymptotic formulas or at least good
estimates for sums of the form

My(x)=Y fm),

n<x

where f(n) is an arithmetic function. It is sometimes possible to estimate these
“mean values” by integrals.

Theorem A.2 Let a and b be integers witha < b, and let f(t) be a monotonic

function on the interval (a, b). Then

b b
min(f@), f6) < " 10 = [ s < max(fa). fOD.
k=a a

Proof. If f(¢) is increasing on [a, b], then

k+1

fk) =< A f(0)dr

fork=a,a+1,...,b—1,and

k
£l = fk Ftydr

fork=a+1,...,b.Itfollows that

b b-1 b
S sw=3 s+ s® < [ s+ 5oy
k=a k=a a

and

b b-1 b
> fw= Y s+ f@z [ i+ f@.
k=a a

k=a+1

Thus,
b b
f@=Y s~ [ fodr < 1)
ke=a a

Similarly, if f(r) is decreasing, then
b b
16 <Y sw- [ swi < @
k=a a

This completes the proof.
From this result, we get a useful estimate for n!.
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Theorem A.3 For any positive integer n, we have

n n n n
e(—) 5n!_<_en(—) .
e e

Proof. Since the function f(z) = log? is increasing on the interval {1, n], it
follows from Theorem A.2 that

logn!-Zlognsf logtdt +logn =nlogn —n+1+logn
kel 1

and ;
Iogn!zf logtdt =nlogn —n + 1.
1

The result follows from exponentiating these two inequalities.
Partial summation is another simple and powerful tool for computing sums in
analysis and number theory.

Theorem A.4 (Partial summation) Let u(n) and f(n) be arithmetic functions.
Define the sum function
U@®y=_ un).

n<t
Let a and b be nonnegative integers witha < b. Then
b

b-1
Y u)f) = U fb) — U@ fla+ 1) = Y Um)(f(n+1)— fn).

n=a+1 n=a+}

Let x and y be real numbers such that 0 < y < x. If f(t) is a function with a
continuous derivative on the interval [y, x], then

3w ) = U0 = U S ) - /) ‘o,
In particular :f £(t) has a continuous derivative on 1, ], then
2 u(n)f(n) = U(x) f(x) - f| "o s war.
Proof. This is a ;traightforward calculation.
)

Y umfny

n=a+1

b
=Y UM -Un-1)fn

n=a+)

b b—1
= Y UM =Y Umfm+1)

n=a+}

b-1
=U®B)f(b)-U@)f(a+]) - Z Un)(f(n+1) — f(n)).

n=a+
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If the function f(¢) is continuously differentiable on [y, x], then

n+l
fn+1)— f(n) = f(0)de

n

and 1
Um)(fn+1) - f(n) = f UOf (.

Leta = [y] and b = [x]. Then

> um)f(n)

y<n<x

b
=) u(m)fn)

n=a+)

b—1
=U®B) ) -U@)f(a+1)— Z Um)(f(n+1)— f(n)

nea+1

b-1 n+l
=U@fB) -UNf@+D- Y f U@ f'(0ds

n=a+l

=U@X) fx)=UWMSf)—UxNf(x)= fB)=Uy)(fl@a+1)- f(y)
b
- f ‘ U@ f'(t)dt

+

=UX)fx)-UWfy - f U@) f'(e)de.

If f(¢) is continuously differentiable on [1, x], then

Y umfmy=ufD+ Y u@m)f )

n<x l<n<x

=u()fM+U)fx)-UMfQ) - /l U@) f'(n)dt

-U(X)f(X)—/ U@ f'(dr.

This completes the proof.
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Here is an application of partial summation. Recall that every real number x can

be written in the form
x = [x]+{x},

where [x] is the integer part of x and {x} is the fractional part of x.

Theorem A.5 Let
1 /w mdt
Y : 24
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Then0) <y < | and
1 1
Z—-logx+y+0(—).
n x
The real number y is called Euler’s constant .

Proof. Since 0 < {t} < 1 for all ¢, we have

% {t ®
0< udt</ —dt =1,
12 12

and so Euler’s constant y is a well-defined real number in the interval (0, 1).
We apply partial summation with u(n) = 1 for all n and f(¢t) = 1/¢. Then

Uuy=[t1=1t— {1}

and

Y % =Y u()f(n)

<x n<x i
= -[-'-‘—] + [Lzldt
X 1t
X I X
-l—-{ﬂ+/ —dt — {—’Zldt
bd 1t 1t

-log)c+l--/.oo{’—Izl¢11+/c’o{:—z}dt—{—“Yﬂ
1 x

X
-Iogx+y+0(l).
X

This completes the proof.
As another application of partial summation, we obtain the Euler sum formula.

Theorem A.6 (Euler sum formula) Let f(t) be a function with a continuous
derivative on [y, x]. Then

Y fo= f " f(di + R,

y<n<x

where
R= f @+ () () — {x} f(x) = / O £ (Ot +0(y) £ (y) — B(x) f (x),

where 1
6(t) = {t} — 7
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Proof. We apply partial summation with a(n) = 1 for all n. Then A(r) = [1] =
t — {t} and

Y fm

yans<u

- K1F) = 1S () — f () (rdt

= K1f () = VIF () — f tf (e + / ) (@ydr

v

=[x]f(x) = [ylf(y) — (xf(x)— yf(y) —f' f(t)dt> +f' {1} f'(1)dt

- / Fydi + f SO+ () O) - (3.

This completes the proof.
There is a simple expression for partial summation in terms of Riemann-Stieltjes
integrals. If f and g are bounded functions on [y, x] and if f“,‘ fdg exists, then

f_\’.‘ gdf also exists and
/.. fdg+ f gdf = f(0)g(x) — F(g).

This lovely reciprocity law is called integration by paris. (See Apostol [1, chapter
9].) Let u(n) be a nonnegative arithmetic function, and let

U@)= Z u(n).

If f is continuous on [y, x], then
> w s = [ f0du - vesw - vnsm - [ vodre.

If f has a continuous derivative on [y, x], then

/ UMdf() = / U@ f ()t

and we recover the formula for partial summation. Similarly, if we let

U@) = Zu(n)

n<t

and if f is continuous on [y, x], then

3wt fm) = U@ F(x) — UG F(») — f UMdf0). (A

vEn<a v
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A.3 Multiplicative functions

An arithmetic function f(n) is multiplicative if

f(mn) = f(m)f(n)

whenever m and n are relatively prime positive integers. Since f(1) = f(1-1) =
f(1)?, we have f(1) =1o0r0.If f(1) =0, then f(n) = f(n-1)= f(n)f(1)=0
for all n > 1. Therefore, if the multiplicative function f is not identically zero,
then f(1)=1.

If f and g are multiplicative functions, then the Dirichlet convolution f * g is
multiplicative (Exercise 2). An arithmetic function f(n) is completely multiplica-
tive if f(mn) = f(m) f(n) for all positive integers m and n.

Theorem A.7 Let f be a multiplicative function. Then

f(m,n]) f((m, n)) = f(m)f(n).

Proof. Let py, ..., p, be the prime numbers that divide m or n. Then

m=[]pr

i=]

and

r
n;
n= Pi»
i=]

where ry, ..., r., sy, ..., s, are nonnegative integers. Moreover,

r
[m, n] = ]—l p;nax(r..s.)

i=1
and

(m,n) =P

iml
Since
{max(r;, s;), min(r;, si)} = {ri, si}

and since f is multiplicative, it follows that

fm, nl) f(om,n) = [T £ [T £

im] (=]

=[1sG [Tre0
i=] i=1

= f(m)f(n).

This completes the proof.
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The Mobius function p(n) is defined by

1 ifn=1,
un)=4¢ 0 if n is divisible by the square of a prime,
(=1) if n is the product of r distinct primes.

Thus, u(n) « 0 if and only if n is square-free, and
pu(n) = (—1)°™

for square-free integers n, where w(n) is the number of distinct prime divisors of
n. It is easy to check that the arithmetic function p(n) is multiplicative.

Theorem A.8 Let f be a multiplicative function with f(1) = 1. Then
Y uw@df@d=]]a - f).

d\n pin

Proof. This is certainly true for n = 1. For n > 1, let n* be the product of the
distinct primes dividing n. Since u(d) = 0 if d is not square-free, it follows that

Y u@fd) = wdf@d =[]0 - fy.

din d|n*® pin
This completes the proof.
Theorem A.9 Let f(n) be a multiplicative function. If

lim f(p*)=0
pt—o0

as p* runs through the sequence of all prime powers, then

lim f(n)=0.
n—-0o0
Proof. There exist only finitely many prime powers p* such that | f(p*)| > 1.
Let
a= T 1764
fehiz)

Then A > 1.Let0 < ¢ < A. There exist only finitely many prime powers p* such
that | f(p*)| = &/A. It follows that there are only finitely many integers n such
that

1f(P) 2 e/A

for every prime power p* that exactly divides n. Therefore, if n is sufficiently
large, then n is divisible by at least one prime power p* such that | f(p*)| < &/A,
and so n can be written in the form

r+s r+s+i

n=[1rF TP [] P

im] imr+l imres+]
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where p), ..., Pr+s+ are pairwise distinct prime numbers such that
L<|f(pl| fori=1,...,r,

e/JA<|f(Pl <1 fori=r+1,...,r+s,

|f(pf'| <ef/A fori=r+s+1,...,r+s+1,

and
t>1.
Therefore,
Lrl=TTre [T e T 16l < aeray <e.
i=] iwr+] fwr+s+l

This completes the proof.

A.4 The divisor function

The divisor function d(n) counts the number of positive divisors of n. For example,
d(n) =1if and only if n = 1, and d(n) = 2 if and only if n is prime.

Theorem A.10 Let
m= p‘l" v pt'

be a positive integer, where p,, ..., p, are distinct primes and k,, ..., k, are
nonnegative integers. Then

dim)=(ky+1)---(k, + )n.
If m and n are any positive integers, then
d(mn) < d(m)d(n).

If(m,n) =1, then
d(mn) =d(m)d(n),

that is, the divisor function is multiplicative.
Proof. Every divisor d of m can be written uniquely in the form
J jr
d= pl' A p’-_’ s

where
0<ji<k
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fori =1, ..., r.Since there are k; + 1 choices of j; foreachi = 1,..., r, it follows
that

d(m) = ]'[(k,- +1).

i=l
Let n be a positive integer, and let

¢ ‘
"-pl|"'prv

where ¢,, ..., £, are nonnegative integers. Then
d(n) = [Jc&: + 1.
i=l

Since

r
k,+¢,

i=]
and since
ki+&+1 <(ki+1)&+1)

for all nonnegative numbers k; and ¢;, it follows that
d(mn) = [ [tk + & + 1) < [ Jki + 1)(& + 1) = d(m)d(m).
i=] i=
If (m,n) = 1,thenk; =Qor¢; =0 foreachi =1, ..., r. In this case,

k1+£1+l-(k,‘+l)(e,‘+l)

and
dmn) = [ Jtki + & + 1) = [ Jki + D] J(&i + 1) = d(m)d(n).
jm] 1=1 i=)
3] (P

This completes the proof.

Theorem A.11
d(n) &, n°

for every e > 0.

Proof. Let f(n) = d(n)/n*. We shall prove that f(n) = o(1). Since the arithmetic
functions d(n) and n¢ are multiplicative, it follows that f(n) is multiplicative, and
s0, by Theorem A.9, it suffices to prove that

lim f(p*)=0.
pt—oo
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Since (k + 1)/2%¢/2 is bounded for k > 1, we have

. dpt
fh = —;’;)

k+1

This completes the proof.

Theorem A.12

D(x) = Y d(n) = xlogx + 2y — Dx + O(V/x).

n<x

Proof. We can interpret the divisor function d(n) and the sum function D(x)
geometrically. In the uv—plane,

dim)y=Y 1= 1

din n=uv

counts the number of lattice points (#, v) on the rectangular hyperbola uv = n that
lie in the quadrant ¥ > 0, v > 0. Then D(x) counts the number of lattice points in
this quadrant that lie on or under the hyperbola uv = x, that is, the number of points
(u, v) with positive integral coordinates such that 1 < u < xand | < v < x/u.
These lattice points can be divided into three pairwise disjoint classes:

l<u<yx and 1<v<x,

or
l<u<+x and x <v<x/u,

or
VXx<u<x and 1<v<x/u.

The last class consists of the lattice points (u, v) such that
l<v<Jx and x<u<x/v

It follows from Theorem A.S that

b=+ X ([2]-1A)+ ¥ ([£]-1v5)

l<usx Isvs i
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-vale ¥ ([G]-vA)

l<u<Jx u
-2 ¥ [Z]-[vAT
l<u<x
- (“l ) - (V7 - (v3)?
-2x Z [ ] —x+ 0%
|<u<f l<u<f
=2x (logﬁ+y+0 (%)) - x+ O0(Jx)
= xlogx + 2y — Dx + O(Vx).
This completes the proof.
Theorem A.13

‘M - %(Iog)c)2 + O(log x).

n<x

Proof. It follows from Theorem A.12 that

D(x) = Y _d(n) = xlogx + O(x).

n<x

By partial summation, we obtain

Zd(n) . D . / D®
nex n X 1 12
- xlogx + O(x) +/" tlogt-:O(t)d’
X 1 t

X X
-logx+0(l)+/ "’Tg'duo(f ;dt)
1 1

1
- 5(logx)2 + O(logx).

This completes the proof.

Theorem A.14
Y d(n)? « x(logx)’.

n<x

Proof. Since d(ab) < d(a)d(b) for all positive integers a and b, we have

Y dm? =) dm Y1

n<x n<x ne=gb

313
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Z d(ab)

ab<x

Z d(a)d(b)

ab<x

= Zd(a) Z d(b)

a<x b<x/a

- Z_;d(a) ((2) log (2) +0 (z_))
< xlongM+0 (xzﬂa_))

as<x

IA

<« x(logx)*.

This completes the proof.

A.5 The Euler p—function

Let n > 1. We denote by ¢(n) the number of positive integers a < n such that
(a,n)=1.1fa=>b (mod n), then (a, n) = (b, n), and so ¢(n) also counts the
number of congruence classes modulo n that are relatively prime to n. This is
exactly the order of the multiplicative group of units in the ring Z/nZ.

Theorem A.15 The arithmetic function ¢(n) is multiplicative, and
1
w(n)-nl—[(l - -—).
pin p

Proof. Let (im,n) = 1, and let ¢(m) = r and @(n) = s. Letay,...,a, and

by, ..., b, be complete sets of representatives of the congruence classes relatively
prime to m and n, respectively. We shall prove that the rs numbers a;n + b;m
fori =1,...,rand j = 1,...,s form a complete set of representatives of the

congruence classes rclatively prime to mn. If
ain+b;m = an+ben  (mod mn),

then
ain+b;m = an+bn (mod n)

and so
bijm = bim (mod n).

Since (m, n) = 1, we have

bjm = bgm (mod n).
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This implies that j = £. Similarly, we obtain i = k. Thus, the rs integers a;n +b;m
represent distinct congruence classes modulo mn. If (ajn+b;m, mn) > 1 for some
i and j, then some prime p divides mn and a;n+b;m. Since (m, n) = 1, the prime p
divides exactly one of m and n. If p divides m, then p divides a;n, and so p divides
a;. This contradicts the fact that (a;, m) = 1. Therefore, (a;n + bjm, mn) = 1 for
alli and j.

We shall show that every congruence class relatively prime to mn is of this
form. We note that (m, n) = 1 implies that the r integers a;n form a complete set of
representatives of the congruence classes relatively prime to m, and the s integers
b;m form a complete set of representatives of the congruence classes relatively
prime to n. Let (c, mn) = 1. Then (c, m) = 1, and so

c=a;n (mod m)
for some i. Since
(c,n)=(c—ain,n)=1,

it follows that
c—ain=>bjm (mod n)

for some j. Therefore,
c=ain+bjm (mod n)

and

c=ain+bjm (mod m),
hence

c=ain+bjm (mod mn).
Thus,

@(mn) = rs = p(m)p(n).

This proves that ¢ is multiplicative. If p is prime and & > 1, the only integers not
prime to p* are multiples of p, and so

1
o(p*) = p* — pt' = pt (1 - ;) .

Therefore,

1 1
o) = [Top" =[] * (l - —) -nn(l - —).
A Pin p plin p
Az t21)
This completes the proof.
Theorem A.16 Lete > 0. Then

n't <o) <n

for all sufficiently large n.
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Proof. It is clear that ¢(n) < n for all n > 1. We shall prove that
1-¢

lim

n—+o0 @(n)

=0.

Since p/(p — 1) < 2 for every prime number p, we have
m(l—¢) m(1—¢) m(l—¢)
P __Pp __P P < 2
e(p™y p"—pm' p-1 pm pm

Therefore,
pm(l —€)

lim -
= @(p™)
Since the arithmetic function n'~/¢(n) is multiplicative, the result follows from
Theorem A.9.

Theorem A.17

Z— < logx.

n<x

Proof. Let d* denote the square-free part of d, that is,
Then

and so

1 &1
Z:«J(n) Zn d

”<I ”<I :.:
i 1 1
mdon
d*n
1 1
dz_; d ’n;d, d*m
lo
<<dz_; - logx.

The integers of the form dd* are precisely the integers that are square-full in the
sense that if p divides d, then p? divides d for every prime p. We have

i 1 -“(]+i+.]_+...)
dd , p? p3

d=1
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-n( L( _1)")
» p? P
n( p(p— 1))

p
=0(1).

This completes the proof.

A.6 The Mobius function

The fundamental property of the Mobius function is the following.

Theorem A.18 '
Zu(d)-s(n)-[ N A

o ifn>2.

Proof. This is clearly true forn = 1. If n > 2, then

k
n=[]rf"

where k > 1, py, ..., pi are distinct prime numbers, andr; > 1 fori =1, ..

Let 3 denote a sum over square-free integers. Then
q g

Doud) = ) 'ud

din din

- D u@

dlpl"'Pl

Y (=@

dlp' - Py
k k)
- (-1t
% (e
=0.

This completes the proof.
We define the arithmetic function

I(n) =1
for all n. Then Theorem A.18 can be rewritten in the form

uxl=34.

317
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A nonempty set D of positive integers is called divisor-closed if whenevern € D
and d divides n, thend € D. For example, the set N of all positive integers and the
set of positive integers less than a fixed number z are examples of divisor-closed
sets. The set of all divisors of a fixed positive integer is divisor-closed. If f and
g are functions defined on a divisor-closed set D, then their Dirichlet convolution
f * g is also defined on D.

Theorem A.19 Let D be a divisor-closed set, and let f(n) be a function defined
foralln € D. If g is the function defined on D by

gy =Y f(d),
din
then
n
s =3 (5)e@
foralln € D.
Conversely, let g be a function defined on D. If f is the function defined on D
by
n
QORI (5)e@.
then
gm =" f(@
d\n
foralln € D.
Proof. If n € D and d|n, then d € D, since D is divisor-closed. Let
g =) _ f(d)
din
for n € D. Then
g=fx*l,
and so
n
2w (3) @ = e x i)
= ((f *1) % u)(n)
= (f * (1 % p))(n)
= (f *8)(n)
= f(n).
Similarly, if

fmy =Y n (3) g(d) = (g * w)(n),

din
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then

Y f@d =(f % D)

din
= ((g * p) * 1)(n)
= (g * (u * 1))(n)
= (g *x8)(n)
= g(n).

This completes the proof.

Theorem A.20 Let f and g be arithmetic functions. Then

gmy =Y f(d

d|n

ifand only if
fmy =Y u(3)s@.

d\n

Proof. This follows immediately from Theorem A.19 with the divisor-closed
set D equal to the set N of all positive integers.

Theorem A.21 Let f(x)and g(x) be functions defined for all real numbers x > 1.
Then

gx) =Y flx/d)

d<x
if and only if
f@) =" u(d)g(x/d).

d<x
Proof. Let f be a function defined for all x > 1. If
gx) = f(x/d),

d<x

then
Y oudgkx/d) =Y pd) Y f(x/dd")
d<x d<x d’'<x/d

= ) wd fx/dd))

dd'<x

=Y fx/m)y_ ud

m<x dim

= f(x).

The proof in the opposite direction is similar.
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Theorem A.22 Let D be a finite divisor-closed set, and let f and g be functions
defined on D. If
gm =Y f(@

d¢D
nid

foralln € D, then

fy=Y u ( ) g(d)

av

for all n € D. Conversely, if

f)= Zu( )g(d)

“D

foralln € D, then
gm =Y f@d

deD
nld

foralln € D.
Proof. This is a straightforward computation:

Zu( )g(d) 2u( )2f(k)

lCD l(D le

- Z u(h)z £k

nheD ::3

=Y u Y fnhd)
nheD nhteD

=Y fanY um
nreD ":VD

=Y f@n) nk
nreD hir

= f(m).

The proof in the opposite direction is similar.

A.7 Ramanujan sums

Let ¢ and n be integers with g > 1. The exponential sum

9
cm=Y e (f‘qf) (A2)

a=l
(a.q)=1
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is called the Ramanujan sum. These sums play an important role in the proof of
Vinogradov’s theorem (Chapter 8).

Theorem A.23 The Ramanujan sum c,(n) is a multiplicative function of q, that
is, if (q,q') =1, then
Cqq'(n) = cq(n)cy(n).
Proof. Since every congruence class relatively prime to gq’ can be written
uniquely in the formaq’ +a’q withl <a <gq,1 <d’' <q’,and(a,q) =(a’.q") =
1, it follows that if (g, ¢’) = 1, then

q q ’
e £1(2) £

a=l a'=l
(a.g)1 @'l

- q q (aq’+a'q)n)
E Z e( 9’

a=| a'=l
a.qr=l qa’ q'r=1

99’ a’n
-2 ()
a1 qq
@’ .qq’" )1
= Cqq'(n).
Theorem A.24 The Ramanujan sum can be expressed in the form
q
cq(n) = z ul=)d.
di(q.n) (d)
In particular, if (g, n) = 1, then
Cq(n) = u(9).
Proof. Since
d .
én d ifdin
fd(n) = ;:e (7{) = { 0 ifd Vn,

it follows that

q9
wn$(2)

kel

;’ kn
= ze (—) Z u(d)
k=1 97 sk

T (7)

dia P
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-Zu(d)%dj ( )

diq

- Zu(d)fq/d(n)

dlg

=) ulg/d) fa(n)
dlq
= u(g/d)yd

= Y ulg/dy.

d|(n.q)
If (g, n) = 1, then ¢4 (n) = u(q).
Theorem A.25 The Ramanujan sum can be expressed in the form

n(g/(g. n)e(q)
@ =G
Proof. We define
q' =q/@q.n).
If the prime p divides ¢ but not g’, then p|(q, n). It follows from Theorem A.15
that
e@) all,(-1/p)
v@) ~ q'Tlp, (= 1/p)
=@n[Ja-1/p
ple

Pw’

=@.m [[a-1/p).

plig.m)
pu’

Then

RO u(%)d

dl(g.m)

q (q.n))
- n (—— d
d,(zq_;,, (g,n) d

= Y ulgo)d

cd=(q.n)

=) u(q)ued

cd=(q.n)
W)=t

- Z Il-(C)

ﬂl-(q ")
(@'.c)=1
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1(q')(g.n) Z )

fl(‘l ")

)a.m ] ( )
e
LCRUCY
v(@)

This completes the proof.

A.8 Infinite products

This is a brief introduction to infinite products and Euler products.
Let a),a2,...,a,, ... be a sequence of complex numbers. The nth partial
product of this sequence is the number

e =[Ta

If as n tends to infinity, the sequence of nth partial products converges to a limit «
different from zero, then we say that the infinite product [];o, ax converges and

00 n
l-[ak = lim p, = lim l-[ak -q.
kel n—00 n—+0o kel
We say that the infinite product diverges if either the limit of the sequence of partial
products does not exist or the limit exists but is equal to zcro. In the latter case, we
say that the infinite product diverges to zero.
Let
oy =1 +ay.

If the infinite product ﬂ;";,(l + a;) converges, then a; # —1 for all k. Moreover,

llm(1+ak)- lim P =],

k—s0o pr_y

and so

lim Qg = 0.
k=00

Theorem A.26 Let a, > O for all k > 1. The infinite product []2,(1 + ax)
converges if and only if the infinite series Y o, ax converges.

Proof. Let s, = },_, ax be the nth partial sum and let p, = [];.,(1 + ax)
be the nth partial product. Since a, > 0, the sequences {s,} and {p,} are both
monotonically increasing, and p, > 1 for all n. Since

l+x <eé*
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for all real numbers x, we have

0< i:ak < ﬁ(l +a;) < ﬁe"‘ =exp (tak) )
k=l

k=1 k=] k=1

and so
0<s,<p,<e.

This inequality implies that the sequence { p, } converges if and only if the sequence
{s.} converges. This completes the proof.
We say that the infinite product [ 122, (1 +a,) converges absolutely if the infinite

product
o0
[Ta +1a.

n=|

converges.

Theorem A.27 If the infinite product []52,(1 + a,) converges absolutely, then it
converges.

Proof. Let
po=[]01+a)
k=1

and let
Py =[] +lab).
kel
If the infinite product converges absolutely, then the sequence of partial products
{ P,} converges and so the series

00

Z(pn - Pn-l)

ne=2

converges. Since

0 =< |pn - pn—ll
= |a, pn-1l

n—1

a, [ J(1 +ax)
k=1
n—1

< lanl [ (1 + lal)

k=1
= |a| Paoy

=P, - Pn-lv
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it follows that
o0
Z |Pn - pn—ll
n=2

converges, and so

00 n
Y (Pn = pnor) = lim Y "(pe = pecr) = lim (pn — p1)
n=2 n—00 k=2 n—00
converges. Thus, the sequence of partial products {p,} converges to some finite
limit.

We must prove that this limit is not zero. Since the infinite product [pc, (1 +
a) converges absolutely, it follows from Theorem A.26 that the series Y o, lax|
converges, and so the numbers a, converge to zero. Therefore, for all sufficiently
large integers k,

1+ax =1/2

1+ay

S
k=1
converges, and so the infinite product

ﬁ(l_ Iikak)

k=1

and

< 2]a|

It follows that the series
—ay

1+ay

converges absolutely. This implies that the sequence of nth partial products

1 a 1 1 1 1
l—_ - t 3§ m R —
n( l+ak) l—[1+ak [T +a)  pa

k=1 kel

converges to a finite limit, and so the limit of the sequence {p,} is nonzero.
Therefore, the infinite product [];2,(1 + ax) converges.

An Euler product is an infinite product over the prime numbers. We denote sums
and products over the primes by 3, and [, respectively.

Theorem A.28 Let f(n) be a multiplicative function that is not identically zero.

If the series
Y fm

ne=l

converges absolutely, then

Zf(n)-I‘[(1+f(p)+f(p2)+---)-ﬂ(HEf(p*)).
P

n=| 14 k=1
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If f(n) is completely multiplicative, then

Y fon=Ja- sy

nel 14
Proof. If Y72, f(n) converges absolutely, then the series
[}
ap = Z f (Pk)

k=1

converges absolutely for every prime p. Also, the series
o0

P AED M II (D)
P p k=l

=D IDMILC]

00
P k=l
00

<D Ifm)

nel

converges, and so the infinite product

[Ta+en=T] (1 + fjf(p*))
P P

kel

converges absolutely. By Theorem A.27, this infinite product converges.

Let ¢ > 0, and choose an integer Ny such that

Yol <.

n>Ng

For every positive integer n, let P(n) denote the greatest prime factor of n. Then
Y pm<n denotes the sum over the integers all of whose prime factors are less
than or equal to N, and }_,,,. 5 denotes the sum over the integers that have
at least one prime factor strictly greater than N. Since the series Y ;o0 f(7")
converges absolutely for every prime number p, any finite number of these series
can be multiplied together term by term. Let N > Nj. It follows from the unique

factorization of integers as products of primes that

I1 (Hff(p*))- Y fm

p<N k=1 P(n)<N

and so

fj fm-T1 (1 + if(p"))

n=l p<N k=1

ne=|]

Yrm- Y s
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Y. fm

P(n)>N

Y 1f@)l

P(n)>N

<> 1fm

n>N

< Y 1f)

n>Np
<E€.

Therefore,

o0
Zf(n)- lim [] (1 +Zf<p )) I1 (1 +Zf(p*>).
n=| p5 k=] k=1
If f(n) is completely multiplicative, then f(p*) = f(p)* for all primes p and all
nonnegative integers k. Since f(p*) tends to zero as k tends to infinity, it follows
that | f(p)| < 1. Summing the geometric progression, we obtain

1+Zf(p)-1+Zf(p) f()

k=1 k=1
and so
I1 (1 +y f(p*)) =TJa - sy
P k=1 P
This completes the proof.

A.9 Notes

All of the material in this chapter is basic elementary number theory. Compre-
hensive standard references are the books of Hardy and Wright[51] and Hua [63].
Cashwell and Everett [8] proved that the ring of arithmetic functions is a unique fac-
torization domain. Hardy’s book Ramanujan [46] contains a chapter on Ramanu-
jan’s function ¢, (n) and its connection to the problem of representing numbers as
sums of squares.

A.10 Exercises

1. Prove that
Y wlkyd(n/k) =1

kin
foralln > 1.
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2,

10.

Arithmetic functions

Prove that if f and g are multiplicative functions, then the Dirichlet convo-
lution f x g is multiplicative.

. Let f and g be arithmetic functions. Prove that if f x g = 0, then either

f =0or g =0. Thus, the ring of arithmetic functions is an integral domain.

. An arithmetic function f(n) is additive if f(mn) = f(m) + f(n) for all

positive integers m and n such that (m, n) = 1. An arithmetic function f(n)
is completely additive if f(mn) = f(m) + f(n) for all positive integers m
andn.Letn = p{' - - - p;'. We define the arithmetic functions w(n) and (n)
as follows. The arithmetic function w(n) counts the number of distinct prime
factors of n:
w(n) = k.
The arithmetic function £(n) counts the number of prime factors of n with
multiplicities:
Q(’l)-ﬂ +-c+rg.

Prove that w(n) is additive but not completely additive. Prove that Q(n) is
completely additive.

. Letn = p{' --- pi*. Liouville's function A(n) is defined by

A(n) = (—1)F = (=)0,
Prove that A(n) is completely additive.

Let f(n) be an arithmetic function. There exists a unique completely multi-
plicative function f;(n) such that fi(p) = f(p) for all primes p. Show that
p1(n) = A(n).

. Show that the functions w(n), ¢(n), and g, (n) are not completely multiplica-

tive.

. Prove that

d(n) <2%™ < p

for every positive integer n. Prove that if n is square-free, then

d(n) =290 = 29

. Prove that

Y @) > x(log xY?,

n<x

Hint: Apply the Cauchy-Schwarz inequality to 3", _, d(n).

n<x

Let f be an arithmetic function. Prove that f is invertible in the ring of
arithmetic functions if and only if f(1) = 1.



11.

12.

13.

14.

15.

16.

17.
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Let f and g be arithmetic functions. Define the function L by
L(n) = logn.

Prove that pointwise multiplication by L(n) is a derivation on the ring of
arithmetic functions, that is,

L-(fxg)=(L-f)*xg+fx*(L-g).

Let f and g be arithmetic functions with Dirichlet generating functions F(s)
and G(s), respectively. Prove that F'(s) is the generating function for L - f
and that (F(s)G(s)) is the generating function for L - (f * g).

Prove that

q
Sfa(n) = Ze (‘iq'l) = ch(n).

a=] dlg

Use Mobius inversion to deduce Theorem A.24 from this identity.

Let

on)= Zd.

d\n

Prove that
n < o(n) <nlogn+ O(n).

Hint: o(n) =Y, n/d.

Let u(n) be the Mobius function. Prove that

>\ u(n) 1
>EP-T(-5)

foralls > 1.

Prove that the Dirichlet convolution of arithmetic functions is associative,
that is, if f(n), g(n), and h(n) are arithmetic functions, then

(f*xg)*xh=fx(gx*h).

Let L(n) = logn for all n > 1. For any arithmetic function f, define Lf
by Lf(n) = L(n) f(n). Prove that L is a derivation on the ring of arithmetic
functions, that is,

L(fxg)=(Lf)*g+ f*(Lg).
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18. Let f, g, and h be arithmetic functions. Prove that

g(n) = 42.: f(@h(n/d)
if and only if
fln) = ; w(d)g(n/d)h(d).
19. Compute .
!—! ( k(k + 1))

20. Show that the infinite product

00 (_l)k—l)
1+
[0+

converges, but not absolutely.

21. LetO < b, < 1 forall n. Prove thatif } o
converges.

b, converges, then [172,(1 — b,)

nel

22. Let0 < b, < 1 for all n. Prove that if Y oo, b, diverges, then [72, (1 — b,)
diverges to zero.
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