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Pretace

This book is based on a first-year graduate course given regularly by
the first author at the University of Chicago, most recently m the
autumn quarters of 1991, 1992, and 1993. The lectures given in this
course were expanded and prepared for publication by the second
author.

The aim of this book is tc provide a concise yet thorough treat-
ment of some topics from group theory and representation theory
with which every mathematician should be well acquainted. Of
course, the topics covered naturally refiect the viewpoints and in-
terests of the authors; for instance, we make no mention of free
groups, and the emphasis throughout is admittedly on finite groups.
Qur hope is that this book will enable graduate students from every
mathematical field, as well as bright undergraduates with an interest
in algebra, to solidify their knowledge of group theory.

As the course on which this bock is based is required for all in-
coming mathematics graduate students at Chicago, we make very
modest assumptions about the algebraic background of the reader.
A nodding familiarity with groups, rings, and fields, along with some
exposure to elementary number theory and a solid knowledge of lin-
ear algebra (including, at times, familiarity with canonical forms of
matrices), should be sufficient preparaticn.



vl Preface

We now give a brief summary of the book’s contents. The first four
chapters are devoted to group theory. Chapter 1 contains a review
(largely without proofs) of the basics of group theory, along with
material on automorphism groups, semidirect products, and group
actions. These latter concepts are among our primary tools in the
book and are often not covered adequately during one’s first exposure
to group theory. Chapter 2 discusses the structure of the general
linear groups and culminates with a proof of the simplicity of the
projective special linear groups. An understanding of this material
1s an essential (but often overlooked) component of any substantive
study of group theory; for, as the first author once wrote:

The typical example of a finite group is GL(r, g), the
general linear group of n dimensions over the field
with ¢ elements. The student who is introduced to

the subject with other examples is being completely
misled. (3, p. 121]

Chapter 3 concentrates on the examination of finite groups through
their p-subgroups, beginning with Sylow’s theorem and moving on
to such results as the Schur-Zassenhaus theorem. Chapter 4 starts
with the Jordan-Hélder theorem and continues with a discussion of
solvable and nilpotent groups. The final two chapters focus on finite-
dimensional algebras and the representation theory of finite groups.
Chapter 5 is centered around Maschke’s theorem and Wedderburn's
structure theorems for semisimple algebras. Chapter 6 develops the
ordinary character theory of finite groups, including induced charac-
ters, while the Appendix treats some additional topics in character
theory that require a somewhat greater algebraic background than
does the core of the book.

We have included close to 200 exercises, and they form an integral
part of the boock. We have divided these problems into “exercises”
and “further exercises;” the latter category is generally reserved for
exercises that introduce and develop theoretical concepts not in-
cluded in the text. The level of the problems varies from routine
to difficult, and there are a few that we do not expect any student to
be able to handle. We give no indication of the degree of difficulty
of each exercise, for in mathematical research one does not know in
advance what amount of work will be required to complete any step!
In an effort to keep our exposition self-contained, we have strived to
keep references in the text to the exercises at a minimum.

Preface vil

The sections of this book are numbered continuously, so that Sec-
tion 4 is actually the first section of Chapter 2, and so forth. A cita-
tion of the form “Proposition Y” refers to the result of that name in
the current section, while a citation of the form “Proposition X.Y”
refers to Proposition Y of Section X.

We would like to extend our thanks to: Michael Maltenfort and
Colin Rust, for their thought-provoking proofreading and their many
constructive suggestions during the preparation of this book; the stu-
dents in the first author’s 1993 course, for their input on an earlier
draft of this book which was used as that course’s text; Efim Zel-
manov and the students in his 1994 Chicago course, for the same rea-
son; and the University of Chicago mathematics department, fc:-rr con-
tinuing to provide summer support for graduate students, as without
such support this book would not have been written in its present
forrn. We invite you to send notice of errors, typographical or oth-
erwise, to the second author at bell@math.uchicago.edu.

In remembrance of a life characterized by integrity, devotion to

family, and service to community, the second au!:hur would like to
dedicate this book to David Wellman (1953 1995).
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1
Rudiments of Group Theory

In this introductory chapter, we review the elementary notions of group
theory and develop many of the tools that we will use in the remaining
chapters. Section 1 consists primarily of those facts with which we assume
the reader is familiar from some prior study of group theory; consequently,
most proofs in this section have been omitted. In Section 2 we introduce
some important concepts, such as automorphism groups and semidirect
products, which are not necessarily covered in a first course on group the-
ory. Section 3 treats the theory of group actions; here we present both
elementary applications and results of a more technical nature which will

be needed in later chapters.

1. Review

Recall that a group consists of a non-empty set (G and a binary
operation on G, usually written as multiplication, satisfying the fol-
lowing conditions:

¢ The binary operation is associative: (zy)z = x(yz) for any
x,y,z€ G.

e There is a unique element 1 € G, called the identity element
of G, such that z1 = x and lx = x for any =z € GG.
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¢ For every x € G there is a unique element 27! € G, called the
inverse of x, with the property that zz ' =1 and 7'z = 1.

Associativity allows us to consider unambiguously the product of any
finite number of elements of & group. The order of the elements in
such a product is critically important, for if = and y are elements of
a group G, then it is not necessarily true that zy = yz. If this hap-
pens, then we say that x and y commute. More generally, we define
the commutator of x and y to be the element [z,y] = zyz—ly !,
so that = and y commute iff [x,4] = 1. (Many authors define
|z, y] = 7'y 'zy.) We say that G is abelian if all pairs of elements
of G commute, in which case the order of elements in a product is
irrelevant; otherwise, we say that G is non-abelian. The group oper-
ation of an abelian group may be written additively, meaning that
the product of elements = and y is written as = +y instead of zy, the
inverse of xr is denoted by —z, and the identity element is denoted
by 0.

If z is an element of a group G, then for n € N we use z”
(resp., 7") to mean the product z - - -z (resp., 7' - - - 27!} involving
n terms. We also define 2% = 1. (In an abelian group that is written
additively, we write nz instead of z” for n € Z.) It is easily seen that
the usual rules for exponentiation hold. We say that z is of finite
order if there is some n € N such that 2™ = 1. If z is of finite order,
then we define the order of z to be the least positive integer n such
that " = 1. Clearly, x is of order n iff 1, z, 2%, . .. , " ! are distinct
elements of G and 2™ = 1.

A group G is said to be finite if it has a finite number of elements,
and snfinite otherwise. We define the order of a finite group G,
denoted |G|, to be the number of elements of G; we may also use |5
for the cardinality of any finite set S. Every element of a finite group
is of finite order, and there are infinite groups with this property;
these groups are said to be periodic. However, there are infinite
groups in which the identity element is the only element of finite
order: such groups are said to be torsion-free.

A subset H of a group G is said to be a subgroup of G if it forms
a group under the restriction to H of the binary operation on G.
Equivalently, H C G is a subgroup iff the following conditions hold:

e The identity element 1 of G lies in H.
o If 7.,y ¢ H, then their product xy in & lies in H.
e If z ¢ H, then its inverse = ! in (3 lies in H.

1. Review 3

Clearly G is a subgroup of itself. The set {1} is also a subgroup
of G: it is called the irwial subgroup, and for the sake of simplicity we
denote it by 1. Every subgroup of a finite group is finite; however, an
infinite group always has both finite and infinite subgroups, namely
its trivial subgroup and itself, respectively. Similarly, every subgroup
of an abelian group is abelian, but a non-abelian group always has
both abelian and non-abelian subgroups. If H is a subgroup of G,
then we write H £ (' if H is properly contained in &, then we call H
a proper subgroup of G, and we may write H < G. (This notational
distinction is common, but not universal.} If K € H and H € G,

then evidently K £ G.

ProPOSITION 1. If H and K are subgroups of a group G, then
80 is their intersection H N K. More generally, the intersection of

any collection of subgroups of a group is also a subgroup of that
group. B

The following theorem gives important information about the na-
ture of subgroups of & finite group.

LAGRANGE’S THEOREM. Let (7 be a finite group, and let H £ G.
Then |H| divides |G]. W

If X is a subset of a group &, then we define <X > to be the in-
tersection of all subgroups of & which contain X. By Proposition 1
< X > iz a subgroup of G, which we call the subgroup of ¢ generated
by X. We see that <X > is the smallest subgroup of & which con-
tains X, in the sense that it is contained in any such subgroup; hence
if X < G, then <X>=X. If X = {z}, then we write <z>> in lien
of < X >; similarly, if X = {z1,... ,2,.}, then we write <z,,... ,2,>
for <X>.

PROFPOSITION 2. Let X be a subset of a group G. Then <X>
consists of the identity and all products of the form z7* - - - 2% where
reN ;e X,ande; =41 forall:z. R

A group ( is zaid to be cyclic f G = <g> for some g € G; the
element g is called a generator of G. For example, if G is a group
of order n having an element ¢ of order n, then G — <g> since
g,...,¢" 1, ¢g" = 1 are n distinct elements of G. By Proposition 2
we have <g> = {g" | n € Z}, and consequently we see via the ex-
ponentiation relations that cyclic groups are abelian; nonetheless,
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we will generally write cyclic groups multiplicatively instead of ad-
ditively. If g is of order n, then <g>= {1,g,... ,¢" '}, and hence
|<g> =mn. If g is not of finite order, then <g> is a torsion-free in-
finite abelian group. Any two finite cyclic groups of the same order
are “equivalent” in a sense that will be made precise later in this
section, and any two infinite cyclic groups are equivalent in the same
sense. The canonical infinite cyclic group is Z, the set of integers
under addition, while the canonical cyclic group of order  is Z/nZ,
the set of residue classes of the integers under addition modulo 7.

Suppose that G is a finite group and ¢ € G is of order n. Then
<g> 18 a subgroup of G of order n, so by Lagrange’s theorem we see
that n divides |G|. Thus, the order of an element of & finite group
must divide the order of that group. Consequently, if |G| is equal
to some prime p, then the order of each element of G must be a
non-trivial divisor of p, from which it follows that G is cyclic with
every non-identity element of G being a generator.

If X and Y are subsets of a group G, then we define the product
of X and Y mGtobe XY = {2y |z X,y Y} CG. Wecan
extend this definition to any finite number of subsets of G. We also
define the inverse f X CG by X ' ={z"" |2 X} CG. If H is
a non-empty subset of G, then H < G HH =H and H ! = H.

PROPOSITION 3. Let H and K be subgroups of a group G. Then
HK isasubgroupof Gif HK =KH. W

Observe that if H and K are subgroups of G, then their product
HK contains both H and K; if in addition K < H, then HK = H.
(These properties do not hold if H and K are arbitrary subsets of G.)
If G is abelian, then HK = K H for any subgroups H and K of G,
and hence the product of any two subgroups of an abelian group is
a subgroup.

We can now describe the subgroup structure of finite cyclic groups.

THECREM 4. Let G = <g> be a cyclic group of order n. Then:

(1) For each divisor d of n, there is exactly one subgroup of & of
order d, namely <gd>.
(ii) If d and e are divisors of n, then the intersection of the sub-
groups of orders d and e is the subgroup of order ged(d, ).
(1i1) If d and e are divisors of n, then the product of the subgroups
of orders d and e is the subgroup of order lcm(d,e). B

1. Review 5

If H < G and z € G, then we write «H instead of {z}H; the set
zH is called a left coset of H in (G. Similarly, we write Hz instead
of H{z}, and we call Hx a right coset of H in G. In this book we
shall use left cosets, and consequently from now on the word “coset”
should be read as “left coset.” Qur use of left cosets instead of right
cosets is essentially arbitrary, as any statement that we make about
left cosets has a valid counterpart involving right cosets. Indeed,
many group theory texts use right cosets where we use left cosets.
There is a bijective correspondence between left and right cosets of
H in G, sending a left coset zH to its inverse (xH) ' = Hz .

Let H be a subgroup of G. Any two cosets of H in G are either
equal or disjoint, with cosets zH and yH being equal iff y 'z € H.
Consequently, an element z € G lies in exactly one coset of H,
namely zH. For any z € G, there is a bijective correspondence
between H and zH: one such correspondence sends h ¢ H to zh.
We define the indez of H in G, denoted |G : H|, to be the number of
cosets of H in G. (If there is an infinite number of cosets of H in G,
then we could define |G : H| to be the appropriate cardinal number
without changing the truth of any statements made below, as long as
we redefine |G| as being the cardinal number |G : 1|.) The cosets of
H in G partition G into |G : H| disjoint sets of cardinality |H|, and
hence we have |G| = |G : H||H|. (This cbservation proves Lagrange’s
theorem; however, it is possible to prove Lagrange’s theorem without
reference to cosets by means of a simple counting argument.) In
particular, all subgroups of a finite group are of finite index, while
subgroups of an infinite group may be of finite or infinite index. We
denote the set of cosets (or the coset space) of H in G by G/H.

We can now give a complete description of the subgroups of infinite
cyclic groups. We invite the reader to restate Theorem 4 in such a
way so as to make the parallelism between Theorems 4 and 5 more

explicit.
THEOREM 5. Let G — <¢>> be an infinite cyclic group. Then:

(1) For each d € N, there is exactly one subgroup of ¢ of index d,
namely <g¢°>. Furthermore, every non-trivial subgroup of G
is of finite index.

(i) Let d,e € N. Then the intersection of the subgroups of in-
dices d and e is the subgroup of index lcmi(d, €).

(iii) Let d,e € N. Then the product of the subgroups of indices d
and e is the subgroup of index ged(d,e). B
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The following resuit generalizes Lagrange’s theorem and shall be
referred to as “factorization of indices.”

THEOREM 6. H K < H < G, then [G: K|=|G:H||H:K|. m

Let H be a subgroup of a group G, and let T be an indexing set
that is in bijective correspondence with the coset space of H in G.
A subset T = {t; | ¢ € T} of G is said to be a (left) transversal for H
(or a set of (left) coset representatives of H in G) if the sets £, H are
precisely the cosets of H in G, with no coset omitted or duplicated.

Let N be a subgroup of a group G. We say that N is a normal
subgroup of G (or that N is normal in G) if :N = Nz forall z € G,
or equivalently if tNz~™' C N for all x € G. If G is abelian, then
every subgroup of G is normal. The subgroups 1 and G are always
normal in G; if these are the only normal subgroups of G, then we
say that G is simple. For example, a cyclic group of prime order
is stmple. (A group having only one element is by convention not
considered to be simple.} If N is normal in G, then we write N 4 G ;
if N is both proper and normal in G, then we may write N < G.
{Once again, many authors do not make this distinction and instead
use N < (7 to mean simply that N is normal in G.) If H < @ and
K < H, then it is not necessarily true that K <1 G ; we will provide

a counterexample momentarily. However, it is clearly true that if
K<dGand K< H<G, then K 4 H.

PROPOSITION 7. Let H and K be subgroups of a group G. If
K 4G, then HK < Gand HNK < H; if also H <4 G, then
HK AGand HNK<AG B

PROPOSITION 8. Any subgroup of index 2 is normal.

PROOF. Let H < G, and suppose that |G : H| = 2. Then there
are two left cosets of H in G; one is H, and thus the other must
be &G — H. Similarly, H and G — H are the two right cosets of H
in GG. It now follows that z € H if xH = H = Hz, and z ¢ H iff
eH =G -H=Hz;hence H4G. R

Normal subgroups are important because they allow us to create
pew groups from old, in the following way:

THEOREM 9. If N < G, then the coset space G/N forms a group
under the binary operation defined by (N )(yN) = (zy)N. R

1. Review T

If N < G, then we call G/N with the above binary operation the
quutiemt_ group of G by N. The identity element of G/N is N , and
the inverse of tN € G/N is z~'N. If G is abelian, then G/N is also
abelian. _

Let = and g be elements of a group G. The conjugafe of x by g
is defined to be the element grg~' of G. (Some authors define the
conjugate of = by g to be g~'zg. The notations *z and z9 are some-
times used for grg~! and g~ ‘xg, respectively.) Two elements z and ¥
of G are said to be conjugate if there exists some g € G such that
y = grg . No two distinct elements of an abelian group can be
conjugate. A subgroup N of G is normal iff every conjugate of an
element of N by an element of ¢ lies in V.

Let X be a set. A permutation of X is a bijective set map from
X to X. The set of permutations of X, denoted Xk, forms a group
under composition of mappings. If X = {1,... ,n} for some n € F:ﬂ,
then this group is called the symmetric group of degree n and is
denoted ¥,. (Many authors denote this group by S, or &,..) The
group X, is finite and of order n! =n{n —1)---2-1. _

An element p of I,, is called a cycle of length r (or an r-cycle) if
there are distinct integers 1 < a4,. .. ,a, < nsuch that p(a;) = (ui'_"l)
for all 1 < i < r, pla,) — a1, and p(b} — b for any 1 < b < n which
is not equal to some ;. If the cycle p is as defined ab_ﬂve, then we
write p = (g, --- a,). Of course, this can be donenr different ways;
for example, (1 2 4), (2 4 1), and (4 1 2) denote the same 3-cycle
in ¥,. The cycle p as defined above is said to move each o and ﬁ:c
every other number. Two cycles are said to be disjoint if there is
po number that is moved by both cycles. The product of two cycles
(@, --- a,)and (b --- b,)is written (@ --- ap)b: - b,,-); ifa, = b:,;:
then this product moves b;_; to a,;;. (We read from “right to liEF.t
in this manner because we think of the cycles as being functions
on {1,...,n}, and so the product of two cycles cnrrespnnc!s to a
composition of functions, which we choose to perform from rlgl_lt_ to
left in the usual fashion. In many group theory texts, composition
is performed from left to right.) _

Every element of X, can be written as a product of disjoint cy-
cles; such an expression is called a disjoint cycle decumpﬂsatinfl of
the permutation. Any two disjoint cycle decompositions of a given
permutation must necessarily include the same cycles, but possibly
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m some different order. Therefore we can associate, in a well-defined
way, a collection of positive integers whose sum is n to each element, p
of X,; this partition of n consists of the lengths of the cycles that
appear in 3 disjoint cycle decomposition of p and is called the cycle
structure of p. For example, the cycle structure of an r-cycle in X,
is the partition (r,1,...,1) having n - r ones; the cycle structure
of (1 2 4X3 5) in X4 is the partition (3,2,1}). We generally omit
1-cycles when writing a permutation as a product of disjoint cycles.
As usual, we will use 1 to denote the identity element of ¥, whose
disjoint cycle decomposition consists solely of 1-cycles.

PROPOSITION 10. Let n € N. Then two elements of 3., are con-
jugate iff they have the same cycle structure. W

For a proof, see (24, pp. 46-7).

A transposition in ¥, is a 2-cycle. Every element of £,, can be
written as a (not necessarily disjoint) product of transpositions in
many different ways. However, it can be shown that any two ex-
pressions of a given permutation as a product of transpositions use
the same number, modulo 2, of transpositions. (See (24, pp. 8-9].)
Hence we can say that a permutation is even (resp., odd) if it can
be written as a product of an even (resp.. odd) number of transpo-
sitions, for a permutation is either even or odd, but never both. For
example, since an r-cycle can be written as a product of r — 1 trans-
positions, we see that a cycle is an even permutation iff its length
is odd. The subset of X, consisting of all even permutations 1s a
subgroup of index 2, and hence is normal in %y by Proposition 8; it
i8 called the alternating group of degree n and is dencted A,.

Consider H = {1, (1 2)3 4), (1 3Y2 4),(1 4)2 3)} C A4,. One can
show that H 4 A;. (In fact, H is normal in 2. This group H is
historically called the Klein four-group.) Let K = {1,{(1 2)3 4)}.
Then K is a subgroup of H with |H : K| = |Hl/|K|=4/2 =2, and
hence K < H by Proposition 8. However, by conjugating (1 2)X3 4)
by the even permutation (123), we see that K is not normal in A,.
This provides the counterexample referred to on page 6.

Let G and H be groups. A homomorphism is a map o: G- H
with the property that p(zy) = p(x)p(y) for all 2,y € G: that is,
a homomorphism is a map between groups which preserves the re-
spective group structures. If  is 8 homomorphism, then (1) = 1,
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and p(z~') = p(z)~! for any element z. The trivial hﬂmﬂmf:fphi.?m
from G to H is the map sending every element of G to the identity
element of H. If a homomorphism ¢ is injective, then we call ¢ a
monomorphism, and if ¢ is surjective, we call ¢ an epimorphism,
we say that ¢ is an isomorphism if  is bijective. (Recall that :a.
set map f: X — Y is called injective if f(z) = f(2') forces z = ',
surjective if for any ¥ € Y we have f(r) = y for some z € X , and
bijective if it is both injective and surjective.) I.f p is an isomor-
phism, then so is ¢ ': H — G. A homomorphism 50:‘6’ — G 18
called an endomorphism of G; a bijective endomorphism is called an
automorphism.

If G and H are groups and there is an isomorphism ¢: G — H ;
then we say that G and H are isomorphic, or that (5 is isnmnf'phm
with H, and we write ¢ = H. The notion of isomorphism is an
equivalence relation on groups; that is, it is reflexive (G = G), sym-
metric (G =2 H implies H = G), and transitive (G = H a.nd;H =K
together imply G = K). Therefore, we can speak of the ' “Isomor-
phism class” to which a given group belongs. Isomorphic groups
are to be thought of as being virtually identical, in the sense t.hm.
any statement made about a group is true {after making appr:}}:'-rlate
identifications) for any other group with which 1t is _isnmnrphm. If
we say that a group having certain properties 18 “unique,” then we
often mean that it is “unique up to isomorphism,” by which we mean
that any two groups having the specified properties are isomorphic.

We now consider some standard examples.

e Let G = <g> and H = <h> be two cyclic groups of order n.
We define a map ¢: G — H by setting ¢(g*) = h* for every
0 < a < n. This map ¢ is an isomorphism. Consequently,
a.n; two finite cyclic groups of the same order are isumﬂ!'-
phic. In particular, any cyclic group of order » is isomorphic
with Z/nZ, and there is a unique group of order p for each
prime p. We will use Z,, to denote a cyclic group of order n,
written multiplicatively. We can similarly show that any two
infinite cyclic groups are isomorphic; we will use Z to denote
an infinite cyclic group, written multiplicatively.

e Let G be a group, let H € G, and let g € G. The conjugate
of H by g 1s the set gHg ' = {ghg ! | h € H} consisting
of all conjugates of elements of H by g. It is easily verified
that gHg™' € G. We say that K € G is a conjugate of H
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in G, or that K and H are conjugate in G, if K — gHg !
for some g € G. Given H £ G and ¢ € G, we define a map
w: H — gHg " by p(h) = ghg™' for h € H. We see easily
that ¢ is an isomorphism; hence conjugate subgroups are
isomorphic. However, it is not true that any two isomorphic
subgroups of a group G are conjugate in G. For example,
the Klein four-group has three subgroups of order 2 which
are necessarily isomorphic but which, being subgroups of an
abelian group, cannot be conjugate.

o Let X = {z,... ,z,} and let £y be the group of permuta-
tions of X. We defineamap ¢: I, — Xx by p(p)(z:) = 2,4
for p € X, and 1 < % < n. The map ¢ is easily seen 10 be an
isomorphism.

e Let G be a group and let N <4 G. There is an obvious map
from G to the quotient group G/N, namely the projection
n: G — G/N defined by n(z) — =N for = € G. We see easily
that this map # is an epimorphism. We shall refer to 7 as
the natural map from G to G/N.

If ¢: G — H is a homomorphism, then we define the kernel of ¢ to
be the subset kery = {g € G | p(g) = 1} of G, and the émage of ¢ to
be the subset imy = {p{g) | g € G} of H. We also use the notation
@(G) for the image of ¢, and @(K) for the set {p(g) | g € K} for
any K € G. For example, if N 9 GG and : G — G/N is the natural
map, then we have kern = N and n(K) = KN/N for any K € G.
(Observe that n(K) = K/N if K contains N.)

PROPOSITION 11. Let G and H be groups, and let ¢: G — H

be a homomorphism. Then kery 9 G, and ¢(K) < H for any
K<G. B

The following theorem is the cornerstone of group theory.

FUNDAMENTAL THEOREM ON HoMoMORPHISMS. If G and H are
groups and ¢: G — H is a homomorphism, then there is an isomor-
phism ¥: G/K - () such that ¢ = 2 o, where K = ker ¢ and
n: & — G/K is the natural map; moreover, the map % is uniquely
determined.

(Many authors refer to this result as the “first isomorphism theo-
rem;” these authors give appropriate renumbering to the other iso-
morphism theorems below.)
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PROOF. If 2K = yK for some z,y € G, then ¢y~ 'z € K; this gives
1 = ply'x) = ©(y) 'wlz) and hence ¢(y}) = w(z). It is therefore
possible to define a map o: G/K — ©o(G) by letting ¢(zK) = ¢(z)
for K € G/K. We leave it to the reader to verify that ¢/ has the
indicated properties. W

As a consequence of the fundamental theorem, we see that any
homomorphism w: G — H can be regarded as the composition of
an epimorphism (of G onto (G)) with a monomorphism (of ¢(G)
into H).

The final three results of this section are also of primary impor-
tance.

FirsT ISOMORPHISM THEOREM. Let G be a group. If N < G
and H < G, then HN/N=Z H/HNN.

(Note that HN < G and HNN < H by Proposition 7, since N < G.)

ProoF. Apply the fundamental thecrem, taking ¢ to be the re-
striction to H of the natural map n: G = G/N. B

The proof of the next result is straightforward, but somewhat
tedious.

CORRESPONDENCE THEOREM. Let G and H be groups, and let
¢: G — H be an epimorphism having kernel N. Then there is a
bijective correspondence given by ¢ between the set of subgroups of
G that contain N and the set of subgroups of H. If K is a subgronp
of G containing N, then this correspondence sends K to ¢(K); if
L is a subgroup of H, then the subgroup of & sent to L under this
correspondence is ¢ (L) = {& € G | ¢(z) € L}. Moreover, if K;
and K are subgroups of &G containing &, then:

o K; £ K, iff p(K;) € (K;), and in this case we have
| Ky - K| = oK) @ oK)

o Ky, 4 K, iff o(K;) 4 p(K;), and in this case the map from
K /K, to p(K,}/p(K:) sending K, to p(z)p{K;) is an iso-
morphism. W

As a special case of the correspondence theorem, we have the fol-
lowing useful fact: If G is a group and N < G, then every subgroup of
G/N is of the form K/N for some subgroup K of G that contains N.
(Here we take ¢ to be the natural map from G to G/N.)
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SECOND IsOMORPHISM THEOREM. Let H and K be normal sub-
groups of a group G. If H contains K, then G/H = (G/K)/(H/K).

PROOF. Apply the correspondence theorem, taking ¢ to be the
natural map from G to G/K. &

EXERCISES

. Prove, or complete the sketched proof of, each result in this section.

2. We say that a group G has ezponent € if e is the smallest positive
integer such that z® = 1 for every # € G. Show that if G has
exponent 2, then G is abelian. For what integers e is a group
having exponent ¢ necessarily abelian?

3. Let G be a finite group, and suppose that the map ¢: G — G
defined by {z) = z? for * € G is a homomorphism. Show that
if 3 does not divide |G|, then & must be abelian. (See 2] for a
generalization. )

4. Let g be an element of a group G, and suppose that |G| = mn
where m and n are coprime. Show that there are unique elements
z and y of G such that 2y = ¢ = yz and 2™ = 1 = ¢*. (In the
case where m is a power of some prime p, we call = the p-part of ¢
and y the p'-part of g; more generally, if 7 is a set of primes which
includes all prime divisors of m and no prime divisors of n, then =
and y are called the m-part and n’-part, respectively, of g.)

5. Let r, 5, and { be positive integers greater than 1. Show that there
is & finite group G having elements > and y such that = has order r,
¥ has order s, and ry has order t.

6. Let X and Y be subsets of a group G. Are <X> N <¥Y> and
<X MY > necessarily equal? Are <<X> U <¥>> and <XU¥Y>
necessarily equal?

7. Let G be a finite group and let H £ . Show that there is a
subset T' of G which is simultaneously a left transversal for H and
a right transversal for H.

8. Suppose that C is a family of subsets of a group G which forms
a partition of G, and suppose further that gC' € C for any ¢ € G
and ¢’ € C. {Recall that a partition of a set § is a collection 8
of subsets of S with the property that every element of S lies in
exactly one member of §.) Show that C is the set of cosets of some
subgroup of (.

9. Suppose that C is a family of subsets of a group G which forms a

partition of &, and suppose further that XY € C forany X,Y € C.

Show that exactly one of the sets belonging to C is a subgroup of G,

that this subgroup is normal in (¢, and that C consists of its cosets.

i
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10. Prove the following generalization of Proposition 8: H G is a finite
group and H € G is such that |G : H| is equal to the smallest
prime divisor of |G|, then H < G.

FURTHER EXERCISES

If K <« H <G, then H/K is called a section of G. We say that two
sections H,/K; and H;/K> of G are incident if every coset of Ky in H,
has non-empty intersection with exactly one coset of K3 in Hg, and vice
versa. (In other words, two sections are incident if the relation of non-empty
intersection gives a bijective correspondence between their elements.)

11. Show that incident sections are isomorphic.
12. (cont.} Suppose that N 4 G and H € G. Show that HN /N and
H/H NN are incident. (Exercises 11 and 12 provide an alternate

proof of the first isomorphism theorem.}

If L/M is a section of G and H < G, then the projection of H on L/M
ig the subset of L/M consisting of those cosets of M in L which contain

elements of H.

13. {cont.) Show that the projection of H on L/M is the subgroup
(LN HYM/M of L/M.

Let H,/K, and H;/K; be sections of a group .

14. (cont.) Show that the projection of K; on H;/K) is a normal
subgroup of the projection of Hy on Hy /K,. The quotient group
obtained thereby is called the projection of Hy /K3 on Hy /K, .

15. (cont.} Show that the projection of Hy/K; on Hz/Ks and the
projection of Hy /K5 on H, /K, are incident. Deduce the following
result:

THIRD [soMORPHISM THEOREM. Let Hy, H: € G, let Ky < H,,
and let Ks <1 H,. Then

(Hyn H)K, /(H 0 KoKy = (Hyn H)K /(K N H ) K. W

(This result is also called the fourth isomorphism thecrem, or
Zassenhaus’ lemma (after its discoverer, who proved it as a stu-
dent at the age of 21), or even the butterfly lemma. This last
name refers to the shape of the diagram showing the inclusion re-
lations between the many subgroups involved in the statement of
this result; such a diagram appears in [22, p. 62].)
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2. Automorphisms

The set of automorphisms of a group G is denoted Aut{G). If
¢ and p are automorphisms of (&, then their composition ¢ © p is
also an automorphism of GG, and hence composition of mappings is a
binary operation on Aut(G). This operation gives a group structure
on Aut(G); the identity element is the trivial automorphism sending
each element to itself, and the inverse of an automorphism ¢ is its
inverse ¢! as a set map. We call Aut{() with this binary operation
the automorphism group of (G, and we may write p in lieu of wop
for v, p € Aut(G).

Every element ¢ of a group G defines a conjugation homomor-
phism @,: G — G by ¢ (z) = grg '. (Observe that we indeed
have @, (zy) = w.(zhp,(y)} and w,(z7') = ¢,(z)~".) Each such
map ¢, is actually an automorphism of G, for given £ € G we have
T = (g zg), and if ¢ (x) = ¢, (y) then we obtain £ = ¥ by can-
cellation. These maps are called the inner automorphisms of G. We
have @5 = . for any g, h € G, since glhach™'}g~" = (gh)z(gh)*
for any # € G; consequently, there is a homomorphism from G to
Aut(G) sending ¢ € G to ¢,. The image of this homomorphism is
called the inner automorphism group of G and is denoted Inn(G),
while the kernel is called the center of G and is denoted Z(G). Ob-

serve that

Z(G)={g € G| py(z}) =z for all z € G}
={g e G| gx = zg for all z € G},

and hence that Z((G) consists of those elements of G which commute
with every element of G. Clearly, G is abelian iff Z(G) = G.

If o € Aut{G) and v, € Inn(G), then it is easily verified that
0P,0 " = Ya(y- This shows that Inn(G) < Aut(G); the quotient
group Aut(G)/Inn(G) is called the outer automorphisn group of G
and is denoted Out((G). However, the term “outer automorphism”
usually refers not to elements of Out(G} themselves, but rather to
automorphisms of G which are not inner and which hence have non-
irivial image in Qut((G) under the natural map. If G is abelian, then
all non-trivial automorphisms of (¢ are outer in this sense, since in
iLhis case we have Inn(G) = 1.

Given a group, we may wish to determine the structure of its
automorphism group. This is often a difficult problem. We will now
consider, in some detail, the auntomorphism groups of cyclic groups.
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Let G =<z>= 4, and let ¢ be an automorphism of . Then
() must generate G; but the only generators of G are = and 7.
Thus ¢ either fixes each element or sends each element to its inverse,
and hence we have Aut(G) = Zs.

Now let n € N and let ¢ =<z>= Z,. Suppose that ¢ is an
endomorphism of G. We have p(z} = =™ for some 0 < m < n; it
follows that ¢ sends every element of ¢ to its mth power. Hence
we see that G has exactly n endomorphisms, namely the mth power

maps o,, for 0 < m < n.

PROPOSITION 1. Let G =<x>= 7, for n € N, and for each
0 < m < n let o,, be the endomorphism of G sending = to ™.
Then Aut(G) consists precisely of those o, for which m # ( and
ged(m,n) = 1. Furthermore, Aut(G) is abelian and is isomorphic
with the group (Z/nZ)* of units of the ring Z/nZ.

ProoF. The map o has trivial image and hence is not an auto-
morphism. Now let 1 < m < n, and consider o,,. If gced(m,n} =1,
then there exist integers ¢ and b such that am + bn = 1, and hence
Om(2®) = 2°™ = ' = z(z")"® = z, showing that o, is surjec-
tive. Since G is finite, a surjective map from G to G must also be
injective; therefore o,, € Aut(G). Conversely, if o,, € Aut(G), then
T = o,(2%) — 2* for some a € Z; since z°™~! = 1, we must have
am — 1 = bn for some b € Z, which forces ged(m,n) = 1. The first
assertion now follows.

Given 1 € m;,m: < n, we have 0,,,0,,, = 0; = 0,,,0,,,,, Where
1 <t < n is such that mym; = ¢t (mod n}); therefore Aut(G)
is abelian. Since (Z/nZ)* = {m+nZ |1 <m < n, gcd{m,n) = 1},
we easily see that the map sending o, to m+ nZ is an isomorphism
from Aut(G) to (Z/nZ)*. &

We define the totient of n € N to be the number of positive in-
tegers that are both less than n and coprime to n. (This number
I8 also referred to as the value at n of the Euler phi-function.}) If
we write n = p7' --- p® where the p; are distinct primes, then the
totient of n is (p{* — pi*~')--- (p? - p?—'). We see immediately
from Proposition 1 that the order of Aut(Z,) is the totient of . In
particular, | Aut(Z,)| = p — 1 when p is prime.

PROPOSITION 2. Let p be a prime. Then Aut(Z,) = Z,_;.



16 1. Rudiments of Group Theory

PrOOF. Let F' be the field having p elements. By Proposition 1,
Aut(Z,) is isomorphic with the multiplicative group F* of non-zero
elements of F'. For each divisor d of p- 1, let f; be the number of
elements of order d in F*, and let z; be the number of elements of
order d in Zy_4.

Let d be a divisor of p - 1. If z € F* is an element whose order
divides d, then x must be a root of X?~1 € F|X], which has at most
d roots. Consequently, if z is of order d, then the powers of = are the
only elements of F* that are roots of X¢ — 1, and therefore every
element of F* of order d must be contained in <x>= Z4. Hence
either f; = 0, or f; is equal to the number of elements of order d
in Zd -

Using Theorem 1.4, we see that if d is any divisor of p — 1, then all
elements of order d in Z,_; are contained in a single cyclic subgroup
of order d; therefore, z; is equal to the number of elements of order d
in Zy. The above paragraph now implies that f; < z, for every
d|(p— 1). But we have

Yo fa=F=p-1=|Zgal= ¥ 2z,

d|(p-1) d|(p—1)

which forces f; — 24 for every d | (p  1}). In particular, we have
Je-1 = 2y > 0, and therefore F* =2, ;. &

Let G =<z>= Z, for n € N and consider the mth power auto-
morphism ¢,, of GG, where 1 < m < n and ged(m.n) = 1. A simple
induction argument shows that {0,,)*(z) = ™ for any k € N; thus
the order of &, is the least positive integer k such that g™ = x,
or equivalently the smallest k € N such that m* =1 (mod ). If the
order of o,, is equal to the totient of n, then we say that m is a prim-
ittve root modulo n. (This terminology comes from classtcal number
theory.) Clearly, Aut(Z,,) is cyclic iff there exists a primitive root
modulo 7.

For composite n, the determination of the structure of Aut(Z,)
lies more in the domain of number theory than group theory. The
following result, which we shall not prove, characterizes those n for

which Aut(Z,) is itself cyclic.

THEOREM 3. Aut(Z,) is cyclic iff n = 2 or 4, or n = p* or 2p* for
some odd prime pand scme k€ N. Wl
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A proof of the equivalent result about the existence and non-existence
of primitive roots modulo n is given in [9, Section 8.3]. |

Let © be an automorphism of a group G, and let H be a subgroup
of G. Then ¢ maps H isomorphically to a subgroup ¢(H) of G; we
say that H is fired by ¢ if ¢(H) = H. In this case, the restriction
of ¢ to H is an automorphism of H. If L is a subgroup of Aut(G),
then we say that H is fired by L if H is fixed by every ¢ € L. With
this terminology, we see that H is normal in G iff H is fixed by
Inn((7). We say that H is a characieristic subgroup of G (or that
H is characteristic in G) if H is fixed by Aut(G). (Some authors
denote this by H char G.) For example, the center Z(G) is always
a characteristic subgroup of G, for if ¢ € Z(G) and ¢ € Aut(G),
then we have w(z)y = p(ze™'(y)) = (¢ (y)x) = yp(z) for any
y € G, showing that p(x) € Z((G) as required. It is clear that
characteristic subgroups are normal, but the converse is not true. In
fact, an infinite abelian group need not have any non-trivial proper
characteristic subgroups; see Exercise 5.

We observed in Section 1 that being normal is not a transitive
property of subgroups. However, being characteristic is transitive:

LEMMA 4. If K is a characteristic subgroup of H and H is a
characteristic subgroup of G, then K is a characteristic subgroup

of G5

PROOF. If ¢ € Aut((G), then the restriction of ¢ to H lies in
Aut(H) since H is characteristic in G, and hence the restriction of
@ to K lies in Aut{K) since K is characteristic in H. Therefore, any
automorphism of G fixes K, as required. #

The reason that normality is not transitive stems from the fact
that if N < G, then the restriction to N of an element of Inn(G)
surely lies in Aut(/N) but need not lie in Inn{N).

Recall that if z and y are clements of a group G, then the com-
mutator of z and y is the element [z,4] = zyz 'y '. We define
the derived group of G to be the subgroup G’ of G generated by
the set of all commutators in G; that is, G' = <{[x,y] | z,y € G}>.
Clearly, G is abelian iff G' = 1; it is equally clear that if H < G, then
H' £ . It is imporfant to remember that, in general, G contains
more than just the commutators of elements of G. Since for any ele-
ments z and y we have [z, y] " = (zyz 'y 1) =yt Lofy,g),

B! BL‘C}TE\:{E A 'T'
G. PEAR );-
0 /f
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we see via Proposition 1.2 that an arbitrary element of G’ is a finite
product of commutators of elements of G.

LEMMA 5. Let G be a group. Then G’ is characteristic in G.

PROOF. Let ¢ € Aut(G). We have ¢([z,y]) = [p(z), p{y)] for any
z,y € G. If g € G', then we have seen that g is a product of com-
mutators; therefore the same is true for ¢(g), and hence w(g) € G'.
Thus ¢(G’) € G'; but the same argument gives ¢ (G’) £ G’ and
hence G' = (™ (G")) € ¢(G'). Therefore (G') = G, completing
the proof. W

The derived group has the following important property:

PROPOSITION 6. Let G be a group, and let N << G. Then G/N
is abelian if G’ < N.

PROOF. For any x,y € G, we have [2G', yG'| = [1,9]|G' = G
consequently, the derived group of G/G’ is trivial, and so G/G' is
abelian. Let N 4 G. If G’ € N, then by the second isomorphism
theorem, G/N is isomorphic with a quotient of the abelian group
G/G' and hence is abelian. Conversely, if G/N is abelian, then for
any x,y € G we have (zN)(yN) = (yN)(zN) and hence [,y € N,
which shows that G' < N. B

We shall complete this section with an important application of
attomorphism groups, namely the construction of semidirect prod-
ucts. Before that, we shall review the more familiar notion of direct
products.

Let n € N, and let GGy, ... , G,, be groups. We form their Cartesian
product G, % ... X G, and we give this set a binary operation by
defining (g1,...,80)(g1,--- ,6n) = (§161,- - - , 9ng.). We call this op-
eration “componentwise multiplication,” and it gives the Cartesian
product a group structure; the identity element is (1, ... ,1), and the
inverse of an arbitrary element (gy,... ,g.)is (g7", ... , 9. ). Wecall
G\ x...xG,, with this binary operation the {external) direct product
of Gry,... ,G,. The order of the factors is irrelevant, for we easily
see that Gy X ... X G, 2 Gy X ... x Gy forany pe I,

We observe that G = G, x ... x G,, has the following properties:

e For each ¢, G has a normal subgroup H; that is isomorphic
with Gy; specifically, H; = {(1,... ,g:,...,1) | g; € G}}
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{where g; appears in the ith place). Moreover, G/H; is iso-
morphic with the direct product of the remaining G;.

e Every g € G has a unique expression g = h, --- h,, where
hie Hy; if g = (gr,...,9,), then by = (1,...,g;,....1) for
each ¢ {where again g; appears in the ith place). Conse-
quently, if the groups G,,... ,G, are each finite, then we
have G! = |Gy|--- |Gyl

Now suppose that & is a group having subgroups H,, ... , H,, such
that the following conditions hold:

(1) H;<iGforeach 1 <i <n.
(2) Every g € G has a unique expression ¢ = hy - - - h,, where
hi E H:' fﬂr Eﬂ-ﬂh 'i;

Conditions (1) and (2) imply the following:

(3 G=H,---H,.

(4) H, ﬁHl "'Ht'—lHi-l—l o ‘Hn = 1 for each 2.

(5) If ¢ # j, then elements of H; commute with elements of H;.

6) If g = hy---h, and ¢ = h{---h’, where b,k ¢ H, for
each i, then gg' = (hyh!)---(h, k).

Under these circumstances, we see that there is a unique isomor-
phism from G to the external direct product H, x ... x H,,, sending
H; to1lx...x H;x...x1. Consequently, we call G the (inter-
nal) direct product of its subgroups H,,... , H,, and we may write
G = H, x...x H, (although this is a slight abuse of notation). It is
important to note that if (1) holds, then (2} holds iff both (3) and (4)
hold; hence to determine that a given group is a direct product, it
suffices to verify either (1) and (2) or (1), (3), and (4). (Note that
(4) reduces to H, N H, = 1 when n = 2.)
We now present some useful facts concerning direct products.

LEMMA 7. Let G be a group having normal subgroups H and K
such that G = HK. Then G/HNK = H/HNK x K/HN K.

PROOF. Note first that L — H N K is normal in G by Proposi-
tion 1.7. We see from the correspondence theorem that H/L and
K/L are normal subgroups of G/L, and clesrly (H /LY N (K/L) is
trivial. Hence it remains only to show that G/L = (H/L}{ K /L).
Let g € G; then g = hk for some h € H and k € K since G = HK.
and thus gL=hkL — hLkL € (H/L)}(K/L) as required. B
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LEMMA 8. Let n € N, and write n = pi'---p where the p;
are distinct primes and the g; are positive integers. Then we have
Zo =2 X .. X digee.

PROOF. Let P, =<z;> = Zp:- for each 1 < ¢ < r. We see easily

that the order of (z,,... ,2z,} € Py x ... x P.is p7" -- - p?~ = n and
hencethat P, < ... x P.=2Z,. @

This result has the following immediate consequence:
COROLLARY 9. If gcd(a,b) = 1, then Za, £ Z, x Zy,- W

PROPOSITION 10). Suppose that a finite group & is the direct
product of its subgroups H,, ... . H,,, where the orders |H;| are pair-
wise coprime. Then any subgroup L of G is the direct product of
LnH,..., LNH,.

Proor. We consider the case n = 2, from which the general case
follows easily by induction. Write H = H, and K = H,, s0 that we
have G = H x K and gcd(|H|,|K!} = 1. Let L € G. Observe that
we have LN H S L INK AL, and (LN H)N(LNK) = 1; therefore
we can, inside I, construct the direct produet (L M H) x (LN K).
Everv element g of I can be written as ¢ = hk for some h € H
and k € K, and to show that L = (LN H) x (LN K) it suffices
to show that h,k € L. Since A and k& are commuting elements of
coprime order, the order of hk equals the product of the orders of A
and k. Corollary 9 now gives <h> x <k> = <hk>. As we already
have < g> = <hk> < <h> x <k>, we now see that h.k € <g>< L
as required. W

Let G be a group. Suppose that G has a subgroup H and a
normal subgroup N such that ¢ — NH and N N H = 1; then we
call G the (internal) semidirect product of N by H, and we write
G = N x H. (This notation 1s common, but not standard; other
possible notations include N x H and H % N, and some authors do
not adopt a notation.) If in addition we have H < G, then G is
the direct product of N and H. As an example, if we take G = X,
N = Az, and H = <(1 2)>>, then we see easily that G = N x H;
however, H is not normal in G, so (G is not the direct product of N
and H.
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We now make some observations about semidirect products. Sup-
pose throughout that G = N x H.

e We have H = H/(NNH) = NH/N = G/N by the first
isomorphism theorem. Consequently, if & is finite, then we
have |G| = |N||G : NI = |N||H]|.

e Since G = NH, each x € (G can be written as ©r = nh for
some n & N and A € H. Suppose that this could be done
in two different ways; that is, suppose that nh;, = nah,
for some n,,715 € N and hy,h. € H. Then we would have
ﬂ;lﬂl — hghl_l e NNH= 1, fﬂfﬂiﬂg T — Tin and hl = hi.
Hence each # € G has a unique expression x = nh where
nelNand he H.

e Let z,y € 7, and write z = n h; and ¥ = nxh, as above.
We know that the element oy of G can be written as n'h’
for some unique n" € N and &' € H; explicitly, we have
zy = nihinah' - hihse, where ' — n hinzhT! € N (since
NAG)and ¥ =hh, € H.

o Let h € H. Since N is normal in 7, conjugation by £ maps N
to NV; consequently, we can define a map ¢,: N — N by
wn(n) = hnh™! for n € N. It is easy to show that ¢, is an
automorphism of N, and also that ¢, o @y = e for any
k' € H. Therefore, we have constructed a homomorphism
w: H — Aut(N), where w(h) = ,; we call @ the conjugation
homomorphism of the semidirect product G. We now see that
we have (n hy H{nohs) = myw{hy)(ng) -hihy for any ny,no € N
and Ay, hy € H, and thus the group operation of & can be
expressed in terms of the group operations of N and H and
the homomorphism .

¢ Suppose that the homomorphism ¢: H — Aut(N) defined
above were the trivial homomorphism. Then we would have
nhn™! = ne(h)(n " 1Yh = nn~'h = h for any n € N and
h € H, and consequently H <I G; therefore G = N x H.
Conversely, if G = N x H, then elements of H commute
with elements of N, and thus the homomorphism ¢ must be
trivial.

e If the conjugation homomorphism ¢: H — Aut{N) is non-
trivial, then the group GG must be non-abelian, for there must
be some h € H and n € N such that hnh™' = p(h)(n) # n,
in which case A and n do not commute.
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These observations suggest that if G is the internal semidirect
product of N by H, then the behavior of G is governed by the struc-
tures of N and H and by the interaction between N and H inside G
as determined by the conjugation homomorphism from H to Aut{N).
Hence if we wish to develop a notion of an external semidirect prod-
uct, it would seem prudent to take as our starting point two groups
N and H along with a given homomorphism ¢: H — Aut(N), and
then construct somehow a group that behaves as if it were an inter-
nal semidirect product N x H having  as its conjugation homomor-
phism.

With this in mind, let N and H be groups, and let ¢ be a given
homomorphism from H to Aut(N). We define a binary operation
on N x H by (n,, h)(ne, ha) = (niw(h;)(n2), hihs). This definition
gives N x H a group structure; the identity element is (1,1) and
the inverse of (n,h) is (w(h !)(n™"),h™!). We call this group the
(ezternal) semidirect product of N by H corresponding o y, and we
denote it by G = N x, H. (Again this notation is common but not
standard; other common notations include N x, H and H, x N.)
This group structure on the set N x H generally differs from the
direct product group structure; in the direct product, elements of
1 x H commute with elements of IV x 1, but that will not be the case
here whenever ¢ is non-trivial.

The group G = N %, H has subgroups N = Nxland H =1xH
that are isomorphic with N and H, respectively. For (z,1) € A and
(n,h) € G, we have

(n, h)(x, 1}(n, B)™" = (np(h)(z), B)(p(h™ ") (n™"), k1)
= (np(h)(x)p(h)(e(h™ ") (n 1), hh")
= (np(h){z)n ',1) e N,

and hence N < G. Since we have (n, h} = (n@(1)(1), k) = (n, 1){1, h)
for any (n,h) € G, we see that G = N'H; since N' "N H consists only
of the identity element of G, we see that G is the internal semidirect
product of &' by H. Furthermore, given (n,1) ¢ A and (1,k) € H,
we have (1,h)(n,1)(1,h) ' = (p(h)(n),1), and hence the conjuga-
tion homomorphism from H to Aut(AN) of G = N x H corresponds,
after identifying N with N and H with H in the natural ways, with
our original homomorphism ¢: H — Aut(N).

We conclude that given groups N and H and a homomorphism
w: H — Aut(N), we can construct a new group, namely N x H,
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which is the internal semidirect product of a subgroup isomorphic
with ¥V by a subgroup isomorphic with H. By identifying N with
N and H with H, we can write N x, H = {nh | n € N,h € H},
where multiplication is defined by (nih: )(n2hs) = nyp(hy)(ng)- hihs.
Observe that in this instance we have Anh™' = p(h)(n). As noted
above, this group will be non-abelian whenever ¢ is a non-trivial
homomorphisi.

If ¢ and %) are distinct homomorphisms from H to Aut{N), then
the groups N %, H and N x, H are by no means necessarily isomor-
phic. However, we are able to obtain a few results in this direction
that will be useful in later sections.

PRrOPOSITION 11. Let H be a cyclic group and let N be an ar-
bitrary group. If ¢ and 7/ are monomorphisms from H to Aut(N)
such that @(H) = ¢'(H), then we have N x, H = N %, H.

PROOF. Let H = <z>. Since ¢(H) = ¥(H) by hypothesis, we see
that ¢(z) and 9/(x) generate the same cyclic subgroup of Aut{N).
Hence we can find a,b € Z such that ¢(2)* = ¥(z) and 1(z)® = p(z).
As H is cyclic, we will have ¢(h®} = ¥(h} and ¥(h*) — ©(h) for any
h € H. Now define 7: N xy, H — N x, H by 7(nh) = nh®. Then

T(rihnghz}) — T(m(hy ) (n2)hy hs)
= 119 (h)(n2) (Ao k)"
= nyp(hT ) hihy
= nihinghl = 7(n hy )r{nghs),

which shows that 7 is a homomorphism. We can similarly show that
the map A: N x, H — N x, H defined by A(nh) — nh? is also a
homomorphism. To complete the proof, it suffices to show that the
maps 7 and A are mutually inverse. The map 7oA sendsnh € N1 H
to nh*. But ¢(z) = ¥(z)* = (p(x)*)® = p(z**), and ¢ is injective:
therefore =°° = x, and hence h*®* — hfor all h € H. Thus 7o X is the
identity map on N x, H, and similarly Ao 7 is the identity map on
N %, H, as required. ©

PROPOSITION 12. Let N and H be groups, let P: H — Aut(N)

be a homomorphism, and let f € Aut{N). If f is the inner automor-
phism of Aut(/N) induced by f, then N Wi H = Nxy H.
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PROOF. Define 8: N x, H — N x; , H by #(nh) = f(n}h. We
have

8(nihinshz) = 8(ny(hy J(ng ) hs)
= fln} f(¥(hy){n2) ) he
= f(m) - (foy(h)o f~' o f)(nz) - hahe

= f(n1) - (f e ) (h)(f(n2)) - iks
= fln)hif(n2)hs = 6(n,h,}8(nzh;),

which shows that # is a homomorphism. But the homomorphism
sending nh € N x; , H to f~'(n)h € N x  H is inverse to 6, and
therefore # is an isomorphism. W

As an example of a semidirect product, let N = Z,, for any n € N,
let H = Zq, and let o: H — Aut(N) be the map that sends the
generator h of H to the automorphism sending each element of N
to its inverse (so that w(h) = o,_: in the notation given earlier in
this section). The group N %, H is called the dihedral group of
order 2n and is denoted by D,,. (Some authors denote this group
by D,.) I is non-abelian whenever n > 2; when n = 2, ¢ 1s the
trivial homomorphism, and hence Dy = Z, x Zg. The group Ds,
has a geometric interpretation as the symmetry group of a regular
n-gon; the generator of N corresponds to rotation by 27 /n radians,
and the generator of H corresponds to reflection through some fixed
axis. There is also the infinite dihedral group D, = N x, H, where
N =2Z and H and  are as above.

We close this section with an illustration of how dihedral groups
arise naturally in group theory.

PrRoPOSITION 13. Let 5 and ¢ be elements of order 2 in a group G.
(Such elements are called tnvolutions.) Then <s,t> is a dihedral
group; 1n particular, <s,{> = <st> x <8>.

ProOOF. Let L = <s,t>, N =<st>, and H = <s>. To show that
L =N xH, we must show that L = NH, that NN H = 1, and
that N < L; to further show that L is dihedral, we must show that
conjugation by s sends each element of N to its inverse. We have
s(st)s ! = sfts =ts =1"'s7! = (st)”', and so this latter condition
is satisfied. We similarly have t(st)t~! = (st)~!, and hence N < L.
Using Proposition 1.2, we find without difficulty that any element
of L can be written as either (st)", (st)"s, (ts)™, or (£s)"t for some
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non-negative integer n. The latter two of these four forms can be
reexpressed as (st} ™ and (st) """, respectively: it now follows that
L = NH. Finally, if s = (st)" for some 7, then we see easily that
8 = (st)"*, and from this we can conclude that NN H =1. W

For a discussion of the importance of this particular result in the
study of finite simple groups, see [7, Section 45|.

EXERCISES

1. Let H be a subgroup of a cyclic group G. Show that every auto-
morphism of H is the restriction to H of an automorphism of G.

2. Show that Aut{Zg) = 22 x Zq.

3. Show that Aut(Zpa) = Zya_p, for p a prime. (HinT: Let m be
a primitive root modulo p, and show that either m or m + p is a
primitive root modulo p?.)

4. Show that if H < @, then any characteristic subgroup of H is
normal in .

0. Let F be a field, and consider F as a group under its additive
operation. Show that F' has no non-trivial proper characteristic
subgroups.

6. Verify the claim made on page 19 that if (1) holds, then (2) holds
iff (3) and (4) hold.

7. Verify the claim made on page 19 that {1) and {2) together imply
(3) through (86).

8. Let (; and G5 be groups, and let H < G x Gy. Define

P] — {.‘L"E Gl | (‘m!yJ e H for some (4] & Gﬂ},
Il = {EEGI I (I,I)EH},

and analogously define subsets P, and I of (5.

(a) Show for i = 1,2 that P, < (7; and I; 4 P,.

(b} Show that there is a unique isomorphism from P,/I, to
Py /I3 sending 1y to yl,, where y is any element of G such
that (z,y) € H.

(c) Prove Goursat’s theorem: There is a bijective correspon-
dence between subgroups of Gy % G and triples (5, 82, @),
where S; isasection of G; (i = 1,2) and : §; + S92 is an
isomorphism. (Recall that a section of a group G is a group
L/M, where M 4 L <€ G.)

9. (cont.) Use Exercise 8 to give a different proof of Proposition 10.
10. Let & = N x H, and suppose that N < K < @. Show that
K=Nx{KnH)
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FURTHER EXERCISES

Let N and H be groups. An exfension of N by H is a group E along
with a moncmorphism i: N — FE and an epimorphism n: £ — H such
that i(N) = kerw (so that N imbeds in F as a normal subgroup, with
the quotient group being isomorphic with H). We shall usually refer to an
extension (F, ¢, 7) simply by the group E; however, the nature of the maps
i and 7 are important in distinguishing between extensions. We identify
N with its image under i, and H with the quotient of £ by N. As an
example, let ©: H — Aut(N) be a homomorphism; then the semidirect
product N x, H is an extension of N by H in an obvious way, taking i to
be the inclusion map sending n € N to (n,1) and 7 to be the projection
map sending (n, h) to h.

1l. We say that an extension F of N by H is a split extension if
there is a homomorphism ¢: H — E {called a splitting map for
the extension) such that ¢ { is the identity map on H, in which
case t(H) will be a transversal for N in FE. Show that E is a split
extension iff it is a semidirect product of ¥ by H.

12. (cont.) Let € be the quaternion group of order 8. {We can consider
) as the set {1, +i, +4, +k} with multiplication given by the rules
# =3 = k% =-landij = k = —ji.) Show that () can be realized
as a non-trivial extension in four ways- thrice as an extension of
Z4 by Zg, and once as an extension of Zg by Zg x Zg—but that
none of these extensions is split. (In other words, @ cannot be
written non-trivially as a semidirect product.)

If F is an extension of N by H, then we cannot expect to find a homo-
morphism t: H — E such that t(H) will be a transversal for N in E, for
if such a ¢ existed then E would be split. However, since H = E/N, we
can always find a set map {: H — E whose image is a transversal for N;
such a map is called a section of the extension. Moreover, we can always
choose 1 so that t(1) = 1, in which case we say that t is normalized. (We
use normalized sections instead of arbitrary sections in order to keep the
notational complexity to a minimum.)

[3. {cont.) Let ¢ be a normalized section of an extension E. Let
¥: E  Aut(F) be the homomorphism sending an element of E to
the corresponding inner antomorphism of E. We shall, for z € E,
regard ¥{z) as being an automorphism of N, which is possible since
N < E. Define set maps f: H x H — N and ¢: H — Aut{N) by

fla, 8) = t{a)t(B)t{aB) 7,
ola) = B(t(0)).
We call (f, ) the factor paér arising from {. Show that {f, ) has
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the following properties:
1 fle,1) = f(l,a) = 1 for every o € H, and (1) is the
identity in Aut(V).
2 pla)p(B) =¥(f(a,B))p(aB) for a,G € H.
3 fla,B)f{aB,7) = p(a)(£(B,7)) f(ex. B7) for @, 8, € H.

14. {cont.) Just as we were able to externalize the notion of semidirect
product, so should we be able to externalize the notion of extension;
that is, given groups N and H and appropriate additional data,
we should be able to construct an extension of N by H. Using
Exercise 13 as a guide, formulate such an external construction
and prove that it works.

We shall return to these ideas in the further exercises to Section 9.

3. Group Actions

Let & be an arbitrary group. A (left) action of G on aset X is a
map from G x X to X, with the image of (g, z) being denoted by gz,
which satisfies the following conditions:

e 1z =z for every z € X.
® (Gi1g2)T = g\(g2z) for every g1, € G and z € X.

(Right actions are defined analogously and are used in lieu of left
actions by many authors; however, in this book virtually all actions
considered will be left actions.) If we have an action of G on X, then
we say that & acts on X or that X is a G-sef. If X is a G-set, then
X is also an H-set for any H < G, as the action of G on X restricts
to give an action of H on X.

For example, let H < G and consider the coset space G JH. We
have an obvious map from G x G/H to G/H, namely the left mul-
tiplication map sending (g, zH) to gz H. This is easily seen to be a
left action of G on G/H. Whenever we refer to a coset space G/H
as being a G-set, it is this action of G on G/ H that we have in mind.

We now provide an alternate perspective on group actions.

PROPOSITION 1. There is a natural bijective correspondence be-

tween the set of actions of G on a set X and the set of homomor-
phisms from G to Xy.
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ProOF. Let X be a G-set. For each g € &, we define a map
0,: X = X by o,(z) = gz for z € X. We see that o, 1+ 0 g, 1s the
identity mapon X, asz — la = (g7 'g)z = g '(gz) = (0,1 00 ) ()
for any = € X, similarly, o, 0 g,-1 is also the identity map. We
conclude that each map ¢, has an inverse, namely ¢,-1, and hence
lies in X y. Furthermore, the second condition in the definition of a
group action ensures that we have o, ,, = 0, 00, forany g;,9, € G.
Consequently, we can define a homomorphism from G to Xy sending
g € G to oy.

Conversely, suppose that ¢: G — X x 1s a homomorphism. We
define a map from G x X to X by sending (g, ) to o{g)(z). One
can easily check that this map is an action of G on X. We leave it to
the reader to verily that these processes are inverse to one another,
which establishes the desired bijective correspondence. W

If G has a proper subgroup H with |G : H| = n, then the action
of G on G/H gives rise, via Proposition 1, to a non-trivial homo-
morphism from G to 3,. This fact is of particular use when G is
assumed to be simple, for in this case such a homomorphism, being
non-trivial, must be injective.

We say that the action of G on a set X is fatthful (or that G acts
foithfully on X') if the homomorphism from & to X x corresponding
to the action is injective. Equivalently, the action is faithful if the
only element g € G satisfving gr = z for every £ € X is the iden-
tity element. If G acts faithfully on X, then we may refer to G as
being a permufation group on X, since in this case G is imbedded
isomorphically in 3> x via its action on X.

CAYLEY'S THEOREM. (G is isomorphic with a subgroup of ¥g; in
particular, if 7 is finite with |G| = n, then G is isomorphic with a
subgroup of %,,.

PROOF. The group G acts on itself by left multiplication; this is
the case H = 1 of the action of G on the coset space G/H discussed
above. If ¢ € G is such that gz = z for all + € G, then taking
= g ! we have g7' = gg~! = 1 and hence ¢ = 1. Therefore, this
action is faithful, and so we have a monomorphism from G to X,
the result is now immediate. W

In theory, Cayley’s thecrem reduces the study of finite groups
to the study of finite symmetric groups and their subgroups. While
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there have been occasions (as in [5]) where this philosophy has proven
to be viable, in general the fact that finite groups are imbedded in
symmetric groups has not influenced the methods used to study finite
groups.

If X and Y are G-sets, then a function ¢: X — Y is said to be
a G-set homomorphism if it commutes with the actions of G, which
is to say that p{gz) = gy(z) for any g € Gand z € X. If ¢ is in
addition bijective, then we say that ¢ is a G-set isomorphism and
that X and Y are isomorphic G-sets, and we write X =2 Y in this
case.

Our present objective is to classify all G-sets up to isomorphism.
In carrying this out, we will develop concepts that are of constant
use in group theory.

Let X be a G-set. For each x € X, we define the orbit of = to be
the subset Gz = {gx | g € G} of X, and we define the stabilizer of =
to be the subset G, = {g € G | gz = z} of G. We easily see that Gz
is itself a G-set under the action induced from that on X, and that
G: is a subgroup of G. A subset of X is a G-set under the action
induced from X iff it is a union of orbits.

LEMMA 2. If X is a G-set, then G,, = ¢G.g7! for any g € G
and z € X.

PROGF. An element w of G stabilizes gz iff g~'ug stabilizes z,
which occurs iff « lies in ¢G,9~'. ®

We say that the action of G on X is tfransitive {or that G acts
transitively on X) if there is some z € X such that G = X, or
equivalently if for any z,,x, € X, there exists some g € G such that
9%, = z3. (Observe that if Gz = X for some z € X, then we must
have Gz = X for every = € X.) A subset of X is a transitive G-set
under the action induced from X iff it, is comprised of a single orbit.
For example, if H < G, then the action of G on G/H is transitive.
since for zH, yH € G/H we have (yz~")zH = yH.

PROPOSITION 3. Any G-set has a unique partition consisting of
transitive G-sets, namely its partition into orbits.

PROOF. We first comment that if X has a partition consisting of
transitive (-sets, then those sets must be the orbits, since the orbits
are the only transitive subsets of X; this proves uniqueness. Since
an arbitrary element z € X lies in the orbit Gz, to show existence
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it suffices to show that any two orbits of X under the action of G
are either equal or disjoint. Let z,y € X and suppose that Gz NGy
is non-empty. Then we have g,z = gy for some g,,¢. € G. But
then y = ¢, 'g17 € Gz, and hence Gy C Gz: by symmetry, we have
Gr C Gy and hence Gr =Gy. W

We now see that in order to describe all G-sets, it suffices to
describe all transitive G-sets. We have seen that coset spaces are ex-
amples of transitive G-sets; what we now show 1s that any transitive
G-set is isomorphic with a coset space G/H for some H <€ G.

PROPOSITION 4. If X is a transitive G-set, then X = G/G, as
(z-sets for any z € X.

PrOOF. Let £ € X, and define ¢: G/G. — X by ¢(gG.) = gz
forge G If gG, = ¢'G, for g,¢' € G, then g '¢' € G, and hence
g 'g'r = x, giving gz = g'z; this shows that ¢ is a well-defined
function, and by reversing the argument we see that ¢ is injective.
We have up(gG.) = ulgr) = (ug)x = ¢(ugG.) = w(u(gG.,)) for any
u € G and gG, € G/G,, showing that ¢ is a G-set homomorphism.
For any y € X, by transitivity there exists some g € G such that
¥y — 9T — plg(.); this shows that ¢ is surjective. Therefore, ¢ is a
(-set isomorphism, as required. W

Proposition 4 yields not only a classification of G-sets, but also the
following useful result, often called the “orbit-stabilizer theorem:”

COROCLLARY 5. Let X be a G-set. Then Gr = G/G, as G-sets
for any x € X; in particular, if G is finite, then |Gz| = |G : G.|.

PROOF. This follows from Proposition 4 since Gz is a transitive
G-set. H

Having shown that an arbitrary G-set is a union of transitive
(-sets, and having determined all transitive G-sets up to isomor-
phism, we will have a good understanding of the structure of arbi-
trary G-sets once we answer the following question: When are two
transitive G-sets isomorphic? We first require a lemma.

LEMMA 6. Let ¢: X — Y be a homomorphism of G-sets, and
let + € X. Then G, € G, and if ¢ is an isomorphism, then
G, = Gw[-’c]'
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PROCF. If ¢ € G., then ¢(z) = ¢(gx) = gp(z); it follows that
G. € Gy If  is an isomorphism, then by considering the G-set
hnmﬂmurphism e Y - X, we have qu{m} % Gw—l[w{z}} = Gi, and
hence G, = Gy, @

PROPOSITION 7. If H and K are subgroups of G, then the G-sets
G/H and G/K are isomorphic iff H and K are conjugate in G.

PROOF. Since G/H and G/K are transitive G-sets, we see from
Lemma 2 that the set of stabilizers of the G-set G/H (resp., G/K )
is precisely the set of conjugates of H (resp., K). f G/H = G/K as
G-sets, then it follows immediately from Lemma 6 that these sets of
stabilizers are equal and in particular that H and K are conjugate.
Conversely, suppose that H — gKg™' for some g € . Then H is
the stabilizer of gK ¢ G/K, and so it follows from Proposition 4
that G/K = G/H as G-sets. W

Let X be a G-set. We say that X is doubly transitive (and that
G acts doubly transitively on X) if whenever (z, z3) and (31,12)
are elements of X x X with =, # z; and 3 # w., there exists
some g € ( such that gry = y; and gz, = y,. For example, the
natural action of ¥, on {1,... ,n} for n > 2 is doubly transitive. A
doubly transitive G-set is clearly transitive. Some authors use the
terminology “2-transitive” instead of doubly transitive since there is
& more general notion of a k-transitive G-set for any k¥ € N. (See
[24, p. 250].)

A proper subgroup H of a group G is said to be mazimal if there
18 no proper subgroup of G that properly contains H. For example,
any subgroup of prime index is necessarily maximal by Theorem 1.6.

PROPOSITION 8. Let G be a group, let X be a doubly transitive
G-set, and let x € X. Then G, is a maximal subgroup of G.

Proor. By Proposition 4, we have X 2 (¢ /G, as G-sets. Suppose
that G, is not maximal, so that G, < K < @ for some subgroup K.
Then there exist g € G and & € K such that g¢ Kand k ¢ G,.
Since G/G. is doubly transitive, there exists some u € G such that
uG, = G, and u(kG.) = ¢gG,. This gives u ¢ (;, and hence vk € K.
We also have g~ 'uk ¢ G, and consequently g € K. We have arrived
at a contradiction; therefore, (7, is maximal. B
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We say that a non-empty subset B of a transitive G-set X is a
biock if B and gB — {gx | * € B} are either equal or disjoint for
every g € (. Observe that X is always a block and that any one-
element subset of X is always a block. We say that the transitive
G-set X is primitive if these are the only blocks.

PrOPOSITION 9. There is a natural bijective correspondence be-
tween the set of blocks of a transitive G-set X which contain a given
element x and the set of subgroups of G which contain G,.

Proor. Let B be a block containing = € X, and consider the set
Hg = {g € G | gz € B}; we wish to show that Hg < G. Clearly,
1 e Hg. Now let ¢, € Hg. Since z and gx both lie in B, we see
that gB M B is non-empty and hence that gB = B. We now have
(gg )z = g{¢’x) € ¢B = B and hence gg' € Hg. Also, for g € Hp
we have gz € B and g~ '(gz) = = € B; thus ¢~ ' BN B is non-empty,
which forces ¢ ' B = B, from which we see that g 'z € B and hence
that ¢! € Hg. Therefore, Hp is a subgroup of G; observe that
G, < Hg since £ € B. Thus, to each block B of X containing x
we can associate a subgroup Hg of G which contains G,.. We must
show that this correspondence is bijective.

Let B and B’ be distinct blocks of X which contain z. Then
without loss of generality there exists some y € X such that y € B
and y € B; since G acts transitively on X, there exists some g € G4
such that gr — y. Now g € Hp but ¢ ¢ Hp, and hence Hg # Hp..
This shows that the correspondence is injective.

Let H be a subgroup of G which contains GG, and consider the
subset C = {hz | h € H} of X. Clearly, C is non-empty; it is equally
clear that if g € H, then gC = C. Let g € G be such that gC 1 C
is non-empty. Then there exist h,, h, € H such that gh,z = h,z;
this gives h, 'gh,z = = and hence h;'gh, € G, < H, and therefore
g € H. Consequently, if g € G is such that gC # C, then as we
must have ¢ ¢ H, we see that gC N C must be empty. Therefore
C is a block. Now Ho = {g € G | gz € C}; clearly H < He. If
g € He, then gz = hx for some h € H; hence h~'gz = z and thus
h 'ge G, < H, giving g € H. Therefore He = H, which shows
that the correspondence is surjective. W

COROLLARY 10. Let X be a transitive {-set. Then X is primitive
iff (7. is & maximal subgroup of G for every z € X.
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PROOF. Suppose X is primitive, and let z € X. By Proposition 9,
we see that the blocks of X which contain = correspond exactly to
the subgroups of G which contain G,. But by hypothesis there are
only two such blocks, namely {z} and X; as we already know of two
subgroups of G containing G, namely G and (7, we see that there
1s no proper subgroup of G which properly contains G,. Therefore,
G, is maximal in G.

Conversely, suppose that every stabilizer is a maximal subgroup.
Then by the same argument we see that an element £ € X lies in
exactly two blocks, namely {x} and X, for if 2 were in some other
block, then G; would not be maximal. Consequently, X can have
no other blocks besides itself and its one-element subsets, and so X
is primitive. B

If X is & transitive G-set, then since all stabilizers are conjugate
by Lemma 2, we see that if GG, is maximal for some = € X, then G,

will be maximal for every = € X; the statement of Corollary 10 can
be modified accordingly.

COROLLARY 11. Any doubly transitive G-set is primitive.

PROOF. This follows from Proposition 8 and Corollary 10. W

In the remainder of this section, we give some elementary appli-
cations of the theory of group actions. As before, ¢ denotes an

arbitrary group.
PROPOSITION 12. If G is finite and H, K < G, then

|H || K|
\HNK|

PROOF. Let X = G/K; we consider X as an H-set under left
multiplication. The orbit of K ¢ G/K under the action of H is
{hK | h € H} = HK, and hence |HK) is equal to K| multiplied
by the number of cosets of K which lie in this orbit. The stabilizer
Hy is easily seen to be H N K, therefore by Corollary 5, the orbit in
question comprises |H : HN K| cosets of K. W

[HK| =

For z € G, we define the centralizer of » in G to be the set
Ce(z) = {9 € G | gx = z9} of elements in G that commute with i
We see easily that Ce(z) < G for any = € G. More generally, if
SCG, thenCo(S)={gecG|gz=zgforalre S5} = ﬁmFSC‘;-;(m)
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is called the centralizer of § in . Observe that Z(G) — C5(G) and
that x € Z(G) iff Cglz) = G.

The congugacy class of x € G is the set {gzg™' | ¢ € G} of all
conjugates of x by elements of . With this terminology, Propo-
sition 1.10 asserts that the conjugacy class of an element p of X,
consists of all elements of ¥, having the same cycle structure as p;
the size of this conjugacy class can then be determined by an ele-
mentary combinatorial argument (see 24, p. 47]).

PROPOSITION 13. The conjugacy classes of G form a partition
of G, and if G is finite then an element z € G has |G : Cg(x)|
conjugates in G.

PROOF. Let ¢ act on itself by conjugation, so that g € G sends
z € Gtogrg '. (Verify that this is a left action.) The orbit of z € G
under this action is {gz¢g~"' | ¢ € G}, which is the conjugacy class
of z in G; therefore, the first assertion follows from Proposition 3.
The second assertion follows from Corollary 5 and the observation
that G, =Cg{z) forany z € G. B

A little thought will show that a subgroup of a group G is normal
in G iff it comprises a union of conjugacy classes of G. We see
from the proposition above that such a union is in fact disjoint.
Consequently, the order of a normal subgroup of a finite group G
must be a sum of orders of conjugacy classes of G.

For H <G, let Ng(H)={g€ G |gHg ' = H}; this set is called
the normalizer of H in G. We see easily that Ng(H)} < G and that
H < Ng(H}); indeed, Ng(H) is the largest subgroup of G in which
H is normal, and so in particular we have Ns(H) =G iff H 4 G.

PROPOSITION 14. A subgroup H of a finite group G has exactly
|G : Ng(H)| conjugates in G. In particular, the number of conjugates
of H in & divides [G: H| and is equal to 1 ff H 94 G.

PrROOF. Let P(G) be the set of subsets of G, and let each g € ¢
act on P(G) by sending § € P(G) to gSg~". We easily see that this
defines a left action of G on P(G). The orbit of H € P(G) under
this action is the set of conjugates of H in (. and the stabilizer of H
is Ng(H)}. The result now follows from Corollary 5. W

Let G be a group and let H and K be subgroups of G. A double

coset of H and K in G is a set HeK = {hxk | h € H, k € K} for
some z € (G. Suppose that Hzx K M HyK is non-empty. Then there
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exist h, ' € H and k, k' € K such that hzk = h'yk’; from this we see
that z € HyK and y € Hx K, and consequently that Hx K = HyK.
Therefore, any two double cosets are either disjoint or equal, as is
the case with ordinary cosets.

Onr final result generalizes Proposition 12.

PROPOSITION 15. If GG is finite and H, K < G, then for any z € G
we have

HIK]  |H|K

HzK| = = .
I[HzK] |HNzKz-t | 'HxnK

PROOF. As in the proof of Proposition 12, we consider G/K as
an H-set; then HxK is the union in G of those cosets of K which
lie in the orbit of =K in G/K, and consequently |HzK| is equal
to | K| multiplied by the number of cosets of K in that orbit. The
first equality follows from Corollary 5 once we observe via Lemmma 2
that the stabilizer of 2K under the action of H is HNzKz~'. We
could prove the second equality by a similar argument in which we
consider the right action of K (by right multiplication} on the set
of right cosets of H in G. However, we can also prove the second
equality (and the first, for that matter) using Proposition 12, as
follows:

H 2Kz H|K
HzK|= |HzKz™'| = | . =
| =1 | |HNzKz'| |z "{HNaKz 1)z
|H|K]
x 'HzN K|

(Here we use the fact that g(S N T)g~! — gSg ' NgTg ! for any
ge€eGandany SSTCG.) B

EXERCISES

1. Show that a finite simple group whose order is at least 7! cannot
have a proper subgroup of index r.
2. Show that a group G acts doubly transitively on a set X iff (3, acts

transitively on X — {z} for every x € X. (Here we must assume
that X has more than two elements.)

3. Show directly from the definitions {(that is, without reference to
Propositions 8 and 9} that a doubly transitive G-set is primitive.
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. Let (7 be the subgroup of X5 generated by (1 2 3 4 5), and let

 act on X = {1,2,3,4,5} in the canonical way. Show that this
action is primitive, but not doubly transitive.

Let N <4 G, and let ¥ € N. Show that the conjugacy classof y in &
is a union of conjugacy classes of the group N. Show further that
there is a bijective correspondence between the conjugacy classes
of N which comprise the conjugacy class of y in G and the cosets
of NCe(y} in G.

Let (& be a finite gronp, and let r be the number of conjugacy
classes of G. Show that |{(a,b) € G x G | ab = ba}| = 7|G|.

Show that Cr(gzg™') = gCc{x)g~! for any elements g and x of a
group G.

Let » > 5, and assume that A,, is simple. (A proof of this fact is
outlined in Exercise 7.8.} Use Exercise 1 to show that 3, has no
proper subgroup of index less than n other than A,,.

FURTHER EXERCISES

Let X be a transitive G-set. A system of imprimitsvily of X is a par-
tition of X which is permuted by the action of G. Note that a system of
imprimitivity of a G-set is itself a G-set.

g.

10.

Show that there is a bijective correspondence between the set of
blocks which contain a given element of X and the set of systems
of imprimitivity of X. {Observe that when X is finite, this implies
that any two elements of X lie in the same number of blocks.)
Suppose that the G-set Y is an epimorphic image of a G-set X.
Show that there is a (-set isomorphism between Y and some sys-
tem of imprimitivity of X.

If X is a G-set, we use [X] to denote the isomorphism class of X.

11.

12.

13.

Let G be a finite group, and let S{(} be the set of isomorphism
classes of finite G-sets. Show that we can define sum and product
operations on S(G) by [X]+[¥]=[XUuY]and [X][Y]=[X x Y]
{cont.) Let B(G) be the set obtained from S{G) by adjoining for-
mal additive inverses of isomorphism classes, in the same way that
Z is obtained from N by adjoining the additive inverses of positive
integers. (The additive identity here will be the isomorphism class
of the empty set.) Show that the operations defined abave on S(G)
extend to give a commutative ring structure on B{G). This ring
B(G) is called the Burnstde ring of G.

{(cont.}) Show that any element of B{(G) can be written uniquely as
a Z-linear combination of isomorphism classes of transitive G-sets.
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14. (cont.) Let H < . Show that there is a unique ring homomor-

phisin from B{(G) to Z which sends an isomorphism class [X] to
the number of elements of X fixed by H.

15. (cont.) Show that any non-zero homomorphism from B(G) to Z

arises from the construction in Exercise 14 and that the intersection
of the kernels of all such homomorphisms is zero.

An element ¢ of a ring R is called an idempotent if 2 = e.

16. {cont.) Show that if (¢ has no self-normalizing proper subgroup,

then B(G) has no idempotents other than the additive and multi-
plicative identities. (A subgroup H of G is called self-normalizing
if No(H) = H. We shall see in Section 11 that there is an im-
portant class of groups, namely the nilpotent groups, that have no
self-normalizing proper subgroups. )



2
The General Linear Group

This chapter presents an intensive lock at an extremely important class
of groups, the groups GL(n, F) for F a field. While the material of this
chapter does not play s large role in the remainder of this book, the ideas
introduced here serve as an introduction to the manner in which group
theory arises in modern mathematics. Section 4 defines the Borel and
Weyl subgroups and establishes the Bruhat decomposition of GL(», F).
Section 5 discusses unipotent and parabolic subgroups of GL{n,F). In
Section 6, we shift our attention to the groups SL(», F} and PSL(n, F},
culminating in a proof that PSL({n. F} is simple except when n = 2 and
IF| <3

4. Basic Structure

Let F be a field and let n € N. We denote by M,.(F) the set of
all n x n matrices with entries in the field F. We often write such a
matrix as M = (m;;), where m;; € F denotes the (i, 7)-entry of M
(the entry in the ith row and jth column). We define the general
linear group GL(n, F) to be the subset of M, (F) consisting of all
invertible matrices, or equivalently all matrices that have a non-zero
determinant. GL{n, F) forms a group under matrix multiplication;
we denote the identity element by 1.
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More generally, given a finite-dimensional F-vector space V, we
define the general linear group GL(V) to be the group of all invertible
linear transformations of V; here the group operation is composition
of mappings. If we take V' — F™_ then the resulting group is isomor-
phic in an obvious way with the matrix group GL(n, F}. Since any
n-dimensional F-vector space is isomorphic with F*, we lose nothing
by restricting our attention to the groups GL({n, F).

Recall that if F is a finite field, then F is determined up to isomor-
phism by its order |F|, which must be equal to »* for some prime p
and some ¢ € N. (This result is due to E. H. Moore, founding head
of the Department of Mathematics at the University of Chicago, who
tirst announced it in 1893 at the first World Congress of Mathemati-
cians in Chicago.) Consequently, if g is a prime power, then we can
write GL(n, g) in place of GL{n, F), where F is the unique field of
order gq.

We start with an illustration of the importance of general linear
groups in finite group theory.

PROPOSITION 1. Let F be s finite abelian group of exponent, p,
where p is prime. Then Aut(E} = GL(n,p), where n € N is such
that |E, = p™.

(Recall that the exponent of a group is the least common multiple
of the orders of its elements.)

PROOF. Let F = Z/pZ be the field of p elements. We wish to
give E the structure of an F-vector space. We define addition in E
by £+y = ry. We define scalar multiplication for & € F by az — z°,
where a € Z is such that & = a + pZ; this is well-defined since E has
exponent p. It is easy to verify that £ now has an F-vector space
structure; for example, we have a(x + y) = (zy)* = 2°¢° = az + ay
for v € Fand z,y € E. It now follows that any endomorphism of the

group K is at the same time a linear transformation of the F-vector.

space E, and conversely; therefore, Aut(E) =~ GL(E) = GL(n,p),
where n =dimz E. B

If E is as in the above proposition, and we let {a,,... ,Tn} be a
basis for E as a vector space over the field of p elements, then it
follows that as groups we have E — <x;> x ... x <z,>, where each
group <x;>> is cyclic of order p. We conclude that any finite abelian
group of prime exponent p is isomorphic with a direct product of
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copies of Z,. Such groups are called elementary abelian p-groups.
We define the rank of an elementary abelian p-group E to be n,
where |E| = p". Observe that Aut(Z,) = GL(1,p) = (Z/pZ)* by
Proposition 1; this was previously established in Proposition 2.1.

PROPOSITION 2. Let n € N, and let ¢ be a prime power. Then
|GL(n, @) — [I(¢e" - =¢ 7 (¢"—1)---(g—1).
k=1

PrROOF. To determine | GL(n, g}/, it suffices to count the number
of n X n matrices having entries in the field F of ¢ elements and
whose rows are linearly mndependent over F'. To construct such a
matrix, we can choose any non-gero vector in " as the first row:;
there are ¢" — 1 such choices. For 1 < k < n, the kth row can be any
vector in F™ except for the ¢! linear combinations of the previous
k — 1 rows; hence there are ¢" — ¢* ! choices for the kth row. The
stated formula now follows. W

We now fix a field F' and some n € N, and we write (¢ instead of
GL(n, F).

Let M € M, (F), and write M = (m,;). The main diagonal of M
consists of the entries my; for 1 < ¢ < n. We say that M 1s diagonal
if its only non-zero entries appear on the main diagonal. We say
that M is upper triangular if all entries of M lying below the main
diagonal, namely those m,, for which 7 > j, are zero.

PROPOSITION 3. The set B consisting of all invertible upper tri-
angular matrices is a subgroup of G, called the standard Borel sub-

group.

PROOF. It is easily verified that B is closed under matrix multi-
plication; hence it suffices to show that if M € B, then the inverse IV
of M in G lies in B. Write M = (m,;) and N = (n,;). Since M is
upper triangular, we see that the determinant of M is equal to the
product of the entries on the main diagonal of M. As this determi-
nant 1s non-zero, we must have m;; = 0 for all 2. Now MN =1, so
> k-1 My = 6,; for any i and 5. (Here 6,; is the Kronecker delta
symbol, which takes the value 1 if i = §, and 0 otherwise.) Taking
¢ = n shows that n,,; — 0 for all j < n, since m,; = 0 for & < n and
My, # 0. If we now take i = n — 1, we find that n,_,,; = 0 for all
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3 <mn— L Continuing this process, we find that n,, = 0 whenever
¢ > 7, and hence that N € B as required. B

More generally, a Borel subgroup of G is any conjugate of the
standard Borel subgroup B.

A permutation matriz is a matrix in which every row and column
has a unique non-zero entry and all non-zero entries are equal to 1.
For example, the identity matrix is a permutation matrix, and in
fact every permutation matrix can be obtained from the identity
matrix by switching colummns (or rows). Every permutation matrix
is orthogonal and thus has an inverse that is again a permutation
matrix, namely its transpose. In particular, all n X n» permutation
matrices lie in G.

PROPOSITION 4. The set W consisting of all permutation matri-
ces is a subgroup of G, called the Weyl subgroup.

PROOF. It suffices to show that the product, of two permutation
matrices is a permutation matrix. Let M = (m,;) and N — (n;;) be
permutation matrices, and let MN = P = (p;;). For any ¢ and 4, we
see that p,; = 1 if there exists k such that my = n,; = 1, and that
pi; = 0 otherwise. Given 4, there is a unique k such that my = 1,
and there is a unique j such that n,; = 1. Therefore, we see that
pi; = 1 for one and only one j; similarly, given 4, we see that Pi; =1
for exactly one i. Hence P is a permutation matrix.

Let V,,(F) denote the vector space of n-dimensional column vec-
tors with entries in F, and let vy, ... v, be the standard basis. If
we multiply v; on the left by an n x n matrix M, then we obtain the
ith column of M; we say that M sends v; to the ith column of M.

PROPOSITION 5. W =X, .

PROOF. Observe that any permutation matrix sends each v; to
some vi. Let X = {1,... .n}. For each w € W, we define a majp
plw): X - X by p(w)(i) =k forl1 <i<n, wherel < k < n is
such that vy = wvy. If p(w)(7) = (w)(j) for some ¢ and 7, then the
ith and jth columns of w must be equal; since w is a permutation
matrix, this forces i = 3. The map (w) is thus injective, and hence
bijective (since X is a finite set), for every w € W; consequently, we
have a map ¢: W - Z,.. If p(w) = (w') for some w,w’ € W, then
we have wv; = w'v; for all 1 < ¢ < n; that is, the ith columns of w
and «’ are equal for every 1 < 1 < n, which gives w — w’. Therefore,

4. Basic Structure 43

w is injective. If p € X,,, then p = p(w), where w is the permutation
matrix whose ith column is v, for every 1 < ¢ < n; therefore, ¢
is surjective. We leave it to the reader to verify that ¢ is a group
homomorphism. W

We will often implicitly regard a permutation matrix w as being
the element of X, sending 7 to 7, where v is the ith column of w.
For example, the matrix

=
)
——

[ S
— D

= O OO p
o B e T R

\ /

corresponds to (1 3)2 4) € ¥, and so if w is this matrix then we may
write w(1) = 3, and so forth. One observation about permutation
matrices which will prove useful is that if w(¢) = j, then for any
M € M, (F), the jth row of wM is equal to the ith row of M, and
the ¢th column of Mw is equal to the jth column of M.

Let 1 < 4,7 < n be distinct, and let o € F. We define X;;(«) to
be the n X » matrix whose (k,!)-entry is equal to « if (k,I) = (7, 5)
and equal to dy for all other (k,I}. For example, Xos(a) € M(F)

is the matrix
1 0 0
(U 1 cr) .
0 0 1

These matrices X, (a), and their conjugates by elements of G, are
called transvections. We leave to the reader the verification of the
following properties of transvections:

o=

LEMMA 6. Let o, 5 € F, and let i and 7 be distinct.

(i) Xi;(a) has determinant 1 and hence lies in G.
(ii) If o # 0, then X,;(a) € Biff i < j.
(iii) le(ﬂ)xu{ﬁ) = Xij(ﬂ' + ﬁ), and hence Xij(ﬂ') V= Xij(—ﬂ).
(iv) [ Xii(a), X;:(8)] = Xa(af) whenever 4, 5, k are distinct.
(v) If w ¢ W, then "U.'.?Xij (&)w"l = Awli)w(i} (ﬂ:’)
(vi) Xi;j(a) sends v to vj + av; and fixes vy whenever k # ;.
(vii) If M € M, (F), then the ith row of X, (a)M is equal to the
sum of the ith row of M and a times the jth row of M, and
for k # ¢ the kth row of X;;(a)M is equal to the kth row
of M. B



44 2. The General Linear Group

For distinct ¢ and 7, we define X;; = {X;;(«) | @« € F}; this is a
subgroup of & by parts (i) and (iii) of Lemma 6. The subgroups X,
are called root subgroups of G. (This terminology comes from the
theory of Lie algebras.)

We now come to the main result of this section, in which we obtain
the Bruhat decomposition of the group G. The following lemma
contains the main thrust of the argument.

LEMMA 7. Let M € G. Then there is a product b of upper trian-
gular transvections such that the following property holds: For each
1 <1 £ n, bM has exactly one row, say the k;th row, whose entries
in the first ¢{ — 1 columns are zero and which has a non-zero entry in
the zth column.

PROOF. Let M = (my;) € G. Since M is invertible, the first
column of M must have some non-zero entry; let 1 < k; < n be such
that my,; % 0 and m;; = 0 for all i > k,. For example, if we take
n=>5and k; = 3, then

{# * ok ¥ %

* ¥ * k Kk
M=1% * * =x= =*
0 * *x x =

\D * ¥ % %k

(where the symbol * denotes an arbitrary entry). We premultiply
M by transvections of the form X,. (a), where i < k;, in such a
way that the only non-zero entry in the first column of the resulting
product M’ = (m;) lies in the k;th row. Continuing with the above
example, we have

0 * * =* =#
0 * % % x%
M=l % %= * =x
0  * * x
0 * % * =%

All of the transvections used to obtain M’ from M lie in B, and
hence M'M~! € B. As M’ is again invertible, the second column
of M’ must have a non-zero entry in some row other than the k;th
row. Let 1 < k; < n be such that k; # ki, my, # 0, and m), = 0
for all i > kg, ¢ # k,. Again we premultiply M’ by transvections of
the form X, (o), where i < kg, In such a way that all entries in the
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second column of the resulting product M are zerc except for those
in rows k; and ky. Once again, all of the transvections used to obtain
M’ from M’ lie in B, and so we have M M~! € B. We continue this
process, ultimately obtaining a matrix bA with the desired property,
where b € B is a product of upper tHangular transvections. For
example, if we take n = 5 and (ky, ko, k3, kg, ks) = (3,5,4,1,2), then

0 0 0 % =
(U 0 00 *\
BM = | * * x =
0 0 * =% =
\0 * K kK }
(Of course, the numbers k;,... ,k, are just 1,...,n under some

reordering.) W

BRUHAT DECOMPOSITION THECOREM. (G = BWB.

ProorF. Let M < G, and define the numbers &, and the matrix
b € B as in the statement of Lemma 7. Let w € W be the permuta-
tion matrix whose k;th column is v; for each i. Then the ith row of
wbM is equal to the k;th row of bM for every i, and hence wbM is up-
per triangular. Thus wbM € B, giving M € b w'BC BWB. W

We have now expressed GG as a union of the double cosets Bw B, as
w ranges through W. We will now show that this union is disjoint.
Again we first need a lemma.

LEMMA B.  w;,w, € W and b € B are such that w,bw, € B,
thﬁﬂ Uy = ‘H..?ql_l.

PROOF. Let 1 < j < n be given, and let 1 be such that w, (i) = 7;
then the jth row of ;b is equal to the ith row of b. Let k be such
that wo(k) = 4; then the kth column of w,bw, is equal to the ith
column of v b. Consider the (i,¢)-entry 3 of b. We see that 3 # 0
gsince b € B, and that 3 is the (j,i)-entry of w,b and hence is also
the (7, k}-entry of w bw,. As wibw. € B, this forces 7 < k. We now
have a matrix wy'w;* e W which, for each 1 < j < n, sends Vj
to vy, where j < k < n. The only permutation matrix having this
property is the identity matrix; therefore w;'w, ' — I which proves
the result. W
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COROLLARY 9. If w and w' are distinct elements of W, then BwB
and Bw'B are disjoint; consequently, (G is the disjoint union as w
runs through W of the n! double cosets BuwB.

PROOF. Suppose that w,w’ ¢ W are such that BwB N Bw'B is
non-empty. Since two double cosets are either disjoint or equal, we
have BwB = Bw'B. In particular, we have v’ — bwbd’ for some
bt € B, and hence w 'b v’ € B; by Lemma 8, this shows that
w™' is inverse to w’, and hence that w = w’. This proves the first
assertion, and the second now follows from the Bruhat decomposition
theorem. M

The following somewhat technical observation, which we shall
need in the next section, is an immediate consequence of what we
have done.

COROLLARY 10. Let M € @G, and let w be the unique element
of W such that M € BwB. Then w sends v; to vy, for each i,
where the numbers k; are as defined in the statement of Lemma 7.
In particular, if M sends v, to oy vy +. .. +apvi where o, # 0, then
wesendsvytovy. W

We close this section with a result giving a smaller generating set
for GG than that given by the Bruhat decomposition. Once again, we
start with a lemma.

LEMMA 11. Let b € B. Then there exists a product ¢ of trans-
vections such that b is a diagonal matrix having the same main
diagonal entries as b.

PROOF. Let b € B, and recall that the diagonal entries of b
are non-zero. Here we adopt a procedure similar to that used in
Lemma 7, except in order to preserve the entries along the main
diagonal, we start at the last column instead of the first. We pre-
multiply b by transvections X;,(a) so that the only non-zero entry
of the nth column of the resulting matrix lies in the nth row. The
nth diagonal entry of the resulting matrix is the same as that of b,
and the (n — 1)th diagonal entry is non-zero. We now premultiply
this matrix by transvections X;.,_)(e) to obtain a matrix having a
2 x 2 diagonal block in the bottom right corner, with the diagonal
entries in that block being equal to those in the corresponding block
of b. By continuing this process, we obtain a diagonal matrix whose
diagonal entries are the same as those of 5. H

4. Basic Structure a7

THEOREM 12. (5 is generated by the set consisting of all invertible
diagonal matrices and all transvections.

PRoOOF. Since & = BW B by the Bruhat decomposition theorem,
it suffices to show that B and W are contained in the subgroup of &
generated by the diagonal matrices and the transvections. It follows
directly from Lemma 11 that B has this property.

As W = 3, by Proposition b, we see that W is generated by the
permutation matrices that correspond to the transpositions; these
are precisely the matrices obtained from the identity matrix by trans-
posing two columns. Let ¢ and j be distinet. We need to show that we
can, by means of diagonal matrices and transvections, construct the
matrix which sends v; to v;, sends v; to v;, and fixes every other vy.
We find that the matrix X;;(1)X;;(—1)X;,(1) sends v; to vy, sends
v; to —v;, and fixes all other v.. To obtain the permutation matrix
that sends each of v; and vy to the other and fixes all other vy, we
premultiply this matrix by the diagonal matrix whose (7, i)-entry is
equal to —1 and whose other non-zero entries are equal to 1. This
proves that W lies within the group generated by diagonal matrices
and transvections. W

EXERCISES

. Show that GL{2,2) = ¥.,.

2. {cont.) Construct a monomorphism ¢: GL(1,4) — GL(2,2) that
corresponds to the inclusion of A5 in 5. (Recall that the field Fy
of 4 elements can be written as {0, 1, &, o}, where & 1 1 = o and
A+ X =0 for all A € Fy.) Show further that the extension of ¢
to a map from Fy to Ma(IF2), where Fo = {0,1} is the field of 2
elements, is a monomorphism of rings.

3. {cont.) Construct an explicit monomorphism from GL{n,4) to
GL{2n,2) for any n Cc N.

4. (cont.) More generally, show for any n € N and any prime power g

that GL(2n,¢) has a subgroup that is isomorphic with GL(n, ¢°).

Will GL(n, ¢™) always have a subgroup isomorphic with GL{mn, ¢

for any m,n € N and any prime power g7

Show that GL{4,2) = As.

Let J be a non-trivial automorphism of the ficld F. Use 8 to

construct an outer automorphism of GL(n, F'). Do all outer auto-

morphisms of GL{n, ¥') arise in this way?

[

o o
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FURTHER EXERCISES

7. A maftrix is sald to be monomial if each row and column has ex-
actly one non-zero entry. Let /V be the subset of G = GL{n, F}
consisting of all monomial matrices. Show that N < G, that
I = BN N is the subgroup of & consisting of all diagonal ma-
trices, that N = Ng(T'), and that N =T x W.

Let G be a group. Suppose that G has subgroups B and N of G satisfying
the following conditions:

e (7 is generated by B and N.

e T = BN is a normal subgroup of N.

o W = N/T is generated by a finite set .S of involutions {elements
of order 2). In addition, if for each w € W we choose some W € IV
such that «T = w, then we must have

e $Bw C BuBU BsoB for any s € S and w e W,
e 3sB5sZ B for any s € 5.

In this case we say that B and NV form a BN -patr of G, or that (G, B, N, §5)
is a Tits system (after Jacques Tits). We call B the Borel subgroup of G,
and W = N/BN N the Weyl group associated with the Tits system. The
rank of the Tits system is defined to be |S].

8. (cont.) Let G = GL{n, F}, let B be the standard Borel subgroup
of &, let N be the subgroup of G consisting of all monomial matri-
ces, and let T = BN N. By Exercise 7 above, we know that we can
regard W = N/T as being imbedded in G as the group of permu-
tation matrices. (By making this identification, we can replace
by w in the above formulas.) Let § be the subset of W consisting
of those permutation matrices that are obtained from the identity
matrix by switching two adjacent columns. (In other words, if we
identify W with 32, as in Proposition 5, then S corresponds to the
set {(12},(23),...,{n—1n)}.) Show that (G,B,N,5) is a Tits
system of rank n — 1.

9. (cont.} Let G be a group with a BN-pair. Verify that, for w € W,
the set BwB is independent of the choice of # € N such that
wT = w. Show that we have a Bruhat decomposition

¢= |J BuB
wEW

in which the union iz disjoiot, where BwB is taken to mean BuwBRB
for any 1w € N with w7 = w.
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5. Parabolic Subgroups

In this section we again let G = GL(n, F') for some field F and
some n € N, and we let V(F'} be the vector space of column vectors
of length n having entries in F. We will often consider an element of
G 88 being the matrix, with respect to the standard basis vy, ... , vy,
of an invertible linear transformation of V,,(F).

A complete flag on V,,(F) is a sequence of subspaces

ocVicV,c...cV,,CcV,= V. (F).

We will use the notation (Vi, ... ,V,) for the above flag. As we use C
to denote proper containment, we must have dimg V; = ¢ for each :.
The standard flag is defined by V, = Fvy & ... D Fv; = V,_, & Fv
for each i (where by convention V, = 0).

There is a natural action of G on the set of complete flags on
Vu(F); namely, if (V1,... ,V,,) is a complete flag and ¢ € G, we de-
fine g(Vy,...,V,) = {(gV}, ... . gV,), where we view ¢ as an invertible
linear transformation of V,,(F). (Each gV; is a subspace of dimen-
sion i, and the gV; retain the containment relations among the V;,
so that (gVy,...,gV,) is again a complete flag.} It is easily seen
that this definition gives a group action. Now let (Vi,... V) be
the standard flag. We wish to show that every complete flag lies in
the orbit of the standard flag and hence that the G-set of complete
Hags is transitive. If (W,,...,W,) is a complete flag, then there are
Wi1,...,Wn € V,(F) such that w; € W; — W, _; for each i (where
again W; = 0). Let g be the matrix whose ¢th column is w; for
each i; then g is invertible, since {wy,... ,wy,} is a basis for V,,(F).
As gvy = w; for each i, we see that (Wy,... ,W,)} = g(Vi,...,V,),
proving our claim.

The stabilizer of a complete flag (V1,... , V,) under this action is
the set of g € G such that (gVi,...,gV,) = (Vi,...,V,), or equiv-
alently such that gV, = V; for each 2. It is not hard to see that the
stabilizer of the standard flag is exactly the standard Borel subgroup
B of G. (This argument could be used to prove that B is a subgroup
of G.) Since the G-set of complete flags is transitive, we now see
via Lemma 3.2 that the Borel subgroups of G, being by definition
the conjugates of B, are exactly the stabilizers of the complete flags
on V,(F).

An upper triangular matrix is said to be upper unitriangular if all
of its entries on the main diagonal are equal to 1, or equivalently if
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it is upper triangular and its only eigenvalue is 1. By imitating the
proof of Proposition 4.3, we can show that the set U consisting of
all invertible upper unitriangular matrices is a subgroup of B. If we
let T" denote the subset of G consisting of all diagonal matrices, then
weseeeasily that T < Band UNT = 1.

ProrosiTion 1. B=UxT.

PROOF, We need only show that U < B and B = UT. Let
w: B — T be the map sending a matrix to the diagonal matrix hav-
ing the same main diagonal. It is easily verified that ¢ is a homo-
morphism, and the kernel of ¢ is evidently U, showing that U/ < B.
If b € B, then since the restriction of ¢ to T is the identity map,
we have bp(b)~" € ker p = U, and hence & € Uyp(b) C UT; therefore
B = UT. (Observe that if n > 1, then T is not normal in B, and
hence B is not the direct product of U and 7.) B

Consider the action of U and T on the standard flag (V4,...,V,).
An element of 7 sends each v; to the sum of v; and some element
of V,_,; conversely, any mairix having this property lies in . There-
fore, U consists of the matrices that stabilize each V; and that in-
duce the identity transformation on each quotient V;/V,_,. On the
other hand, T consists exactly of the matrices that stabilize each of
Fvy, ..., Fvy,; we say that T i1s the common stebilizer of the Fv,.

An element of (7 is said to be unipotent if its characteristic poly-
nomial is (X — 1)". We see, using Jordan form, that any unipotent
element of & is conjugate to an clement of V. We say that a subgroup
of &G is unipotent if all of its elements are unipotent. For example,
U is a unipotent subgroup, and in fact U/ comprises all unipotent
elements of B, since the roots of the characteristic polynomial of an
upper triangular matrix are the entries on the main diagonal.

KOLCHIN'S THEOREM. Any unipotent subgroup of (G is conjugate
with a subgroup of U.

PRrOOF. Let H be a unipotent subgroup of G. Suppose that H
stabilizes some complete flag on V,,(¥). Then H is contained in some
Borel subgroup of ¢+, and hence H is conjugate with a subgroup of B.
Since all unipotent elements of B lie in I/, we see that this subgroup
of B with which H is conjugate is m fact a subgroup of U. Thus 1t
suffices to show that H stabilizes some complete flag on V,,(F).
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We use induction on »; the case n = 1 is trivial. Suppose we can
show that H stabilizes some one-dimensional subspace W of V,,(F).
Then H induces a group of unipotent transformations on the quo-
tient V,(F)/W. By induction, H stabilizes some complete flag on
this quotient; by pulling this flag back to V,,(F) and adding W, we
obtain a complete flag on V,,(F') which is stabilized by H. Therefore,
it suffices to show that there issome 0 # v € V,(F) such that v = v
for all x ¢ H. This fact will be established in Proposition 13.28. B

We now move on to the more general situation. A flag on V, (F) is
a nested sequence of non-zero subspaces of V,,(F) which terminates
in V.(F} and has no repeated terms; in other words, a flag is a
sequence (W, ... , W, ) of subspaces of V,,(F'), where

OCcW, cW,c...Cc W, 1CW,~=VH{F).

Since C denotes proper containment, we have r < n; a complete
flag is simply a flag for which r = n. As before, the set of all flags
on V,(F) is a G-set. However, it is not transitive. More precisely,
two flags (Wy,... ,W,) and (W{,... ,W!} lie in the same orbit iff
r = s and dimp W; = dimy W for all 7, a condition we summarize
by saying that the flags have the same dimension sequence.

We say that a subgroup of & is a parebolic subgroup if it is the
stabilizer of some flag on V,(F). Let (Wy,... ,W,) be a flag, and
let P be the parabolic subgroup that is the stabilizer of this flag.
Choose subspaces Y; so that W; = W;_, @ ¥, for each 7. The unipo-
tent radical of P is the subgroup Up of P consisting of those matrices
that induce the identity transformation on each W, /W;_,; for exam-
Ple, Us = UU. A Levi complement of Up is the subgroup Lp of P
that is the common stabilizer of the Y. We observe that a Levi
complement is isomorphic with GL(y,, F) x ... x GL{v,., F), where
¥i = dimg Y; = dimg W, — dimp W,_; for each i. (In particular, any
two Levi complements of Up are isomorphic.) For example, if we take
Y. = Fv; for each i, we have Ly = T, which is clearly isomorphic
with a direct product of n copies of GL(1, F) = F*.

The following result, which the reader is asked to prove in the
exercises, generalizes Proposition 1 to arbitrary parabolic subgroups.

PROPOSITION 2. If P is & parabolic subgroup of (G, then we have
P = Up % Lp, where Up is the unipotent radical of P and Lp is a
Levi complement. of Up. Furthermore, P = Ng(Up). W
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By a subflag of the standard flag (V;,...,V,), we mean a flag
(Wi,...,W,) in which each W, is equal to some V;; there are 2"
such subflags. A staircase group is a parabolic subgroup of G that
is the stabilizer of some subflag of the standard flag.

The terminology “staircase group” arises from the appearance of
the matrices in these groups. For example, the stabilizer of the
subflag 0 C V5 € V3  V; of the standard flag on Vs(F'} consists of
all matrices in G = GL(6, F') of the form

(x % % x % %
X % % ¥ x K
0 0 * x % x
00 0 % x =%
0O 0 0 * % =
0 0 0 » * x

(Imagine a “staircase” separating the zero entries from the arbitrary
entries.) The unipotent radical of this staircase group consists of all
matrices in & of the form

L D % % x )
0 1 % % * *
0 0 1  x =%
0 0010 0}
006 001C
0 00D O 1

and the Levi complement of this staircase group corresponding to
the canonical choices Y; = Fvg and V; = Fv, & Fvg & Fvg consists
of all matrices in &G of the form

(# x 0 0 0 O
* » 0 0 0 ¢
0 0 = 0 0 O
0 0 0 = * =x
00 0 % * =

kﬂ 0 0 * % =*

and hence is isomorphic with GL{2, F) x GL(1, F) x GL{3, F). In
general, the unipotent radical of any staircase group is contained
in B.

From our earlier remarks, we see that the G-set of all flags is par-
titioned into the orbits of the subflags of the standard flag, since
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any flag has the same dimension sequence as, and hence lies in the
orbit of, some subflag of the standard flag. Therefore, we see us-
ing Lemma 3.2 that the parabolic subgroups of G are exactly the
conjugates of the staircase groups.

We will close this section by showing that there are exactly 271
subgroups of & containing the subgroup B of upper triangular ma-
trices, these subgroups being precisely the staircase groups. The
following lemma will serve as our starting point in attempting to
classify those subgroups containing B.

LEMMA 3. The only non-zero subspaces of V,,( F) left invariant by
B are the subspaces V,... ,V, that appear in the standard flag.

ProOF. We first observe that B fixes each of the spaces V;. Now
let V' be a non-zero subspace of V,,(F'} that is stabilized by B. As we
clearly have VV C V, for some ¢, there is a minimal 1 < k < n such
that V C Vi and V € Vi_;. By the minimality of k, V' contains an
element of the form E;;l o;vj, Where the a; lie in F and oy, # 0.
This element is sent to vy by b=, where

(1 0 ... oy ... DOV

1 ... gy ... 0

b= X ... 0
\ 1

Since 4! € B and B stabilizes V, this shows that v, € V.

Now let Z;“ ; &;Vy be an arbitrary element of Vi,  Vi_,. This
element is the image of vy under the matrix b defined as above and
hence lies in V. Thus V contains Vi — V;_,, and hence Vi. We
conclude that V =1,. B

THEOREM 4. The only subgroups of G that contain B are the
staircase groups.

PrRoOOF. Suppose that B < H < G. By Lemma 3, the only sub-
spaces of V;(F') that H could leave invariant are those that comprise
the standard flag (V3,... ,V.). Suppose that the subspaces of V.(F)
left invariant by H are V,,,... ,V, ,where 1 < q, < ... < a, = n.
We wish to show that H is in fact equal to the staircase group that
is the stabilizer of the flag (V.,,... .V, ). Instead of giving a formal
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proof of the general case, we will prove the special cases r = 1 and
r = 2; after this, we will briefly discuss the general case, which is
not any more concepiually difficult than the special cases but which
can be notationally unwieldy.

Suppose that the only subspaces of V,,(F) that are left invariant
by H are 0 and V,,(F); we are to prove that H = . The subspace
of V,,(F) spanned by {hvy | h € H} is left invariant by H and hence
must equal all of V, (F). In particular, there is some h € H such
that Avy = ayvy + ... + @, Vy,, where a,, # 0. We know from the
Bruhat decomposition theorem that h € BwB for some w € W, and
by Corollary 4.10 we see that w sends v, to v,. Since B < H, this
element w lies in H. Now let 1 < j < n be such that w sends v,
to vi. Then X,; € B < H, and since w(l) = n and w(j) = 1, we
see from part (v} of Lemma 4.6 that X, = wX,,w™! < H. We
now wish to show that each root subgroup X;,; lies in H; since the
diagonal matrices lie in B and hence in H, it would then follow from
Thecrem 4.12 that H = . We know already that X,.; < H and
that if i < 7 then X;; £ B < H. Now for any o € F and any
distinct 1 < i,7 < n, we see by using part (iv) of Lemma 4.6 that
Xnjla) = [ X {a), X1;(1)] € H; Xy(a) = [Xin(a), Xn(1)] € H; and
Xij(e) = [Xal(a), Xy;(1)] € H. Therefore, X;, € H for all 4,7, as
required.

Now suppose that H leaves invariant not only 0 and V,,(F}, but
also exactly one other subspace, namely V,, for some 1 < m < n. Let
P be the staircase group that is the stabilizer of the flag
0CVn CV,; we know that H <€ P, and we wish to show that
H — P. By Proposition 2, P ig the semidirect product of its unipo-
tent radical Up by a Levi complement Lp, and we have already
observed that Up < B since P is a staircase group. Hence it suffices
to show that Lp < H. We can choose Lp to be a direct product of
subgroups K; = GL{m, F) and K, = GL(n ~ m, F'), where elements
of K, (resp., K;) have their only non-zero entries in the first m (resp.,
last n —m} rows and columns. Using Theorem 4.12, we see that K,
(resp., K3) is generated by the diagonal matrices and the root sub-
groups X, for distinct 1 < 4,7 < m (resp.,, m+1 < 1,7 <mn). The
diagonal matrices lie in B and hence in H, so in order to show that
Lp < H, it suffices to show that these particular root subgroups he
in H. Since H stabilizes V,,, and no non-zero proper subspace thereof,
we see by considering the subspace spanned by {hv, | k € H} that
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there must be some h € H sending vy to o, vy + .. . 4+ @, Vyy, Where
., # 0. If w e W is such that h ¢ BwB, then w sends vy to v,
by Corollary 4.10, and as in the previous paragraph we can conclude
from this that X,,,; € H. Calculations with commutators can now be
used to show that X,; < H for all distinct 1 < ¢, j < m. Similarly, by
considering the subspace spanned by {hvmy3 | & € H}, we see that
there is some A’ € H that sends v,y to Givy + ... + §,v,,, where
B # 0; Corollary 4.10 can now be used to show that if w’ € W is such
that h' € Bw'B, then w' sends v,,,1 to vo. (Since b stabilizes V., in
the notation of Corollary 4.10 we have {k),... ,k,.} = {1,... ,m},
and some thought will show that we must then have k,,,, = n.) The
same argument 8s before now shows that X, /.., 1) € H, from which
we can conclude via commutator calculations that X;; < H for all
distinct m + 1 < ¢, 3 < n. Therefore ff — P.

In the general case where H leaves invariant the flag (V, ,... .V, )
whose stabilizer is the staircase group P, to show that H = P it suf-
fices to show that a Levi complement Lp lies in H. The group Lp is
a direct product of r general linear groups, and so by Theorem 4.12
it suffices to show that H contains certain root subgroups; by ap-
propriate choice of Lp, the subgroups in question become all X;; for
distinct a1 < ¢, < ay for some k (taking a; = 0). We accomplish
this by first showing that each X, .., ,;1y € H, and then by using
commutaior arguments as above. B

EXERCISES
Let G = GL{n, F}, where n. > 2.

1. Suppose that ¢ € G fixes some 0 # v € V,,(F) and induces the
identity transformation on V,(F)/Fv. Show that g is conjugate
with an element of the root subgroup X;.

2. We say a basis B of V,,(F) belongs to a complete flag (V;,... ,V,.)
if each V; contains exactly one element of B that is not in V;_ 1.

(a) Show that if (Vy,...,V,) and (W,,... ,W,) are complete
flags on V,,(F’), then there is a basis of V,,{F) that belongs
to both Haps.

(b} Use part (a) to give a different proof of the Bruhat decom-
position theorem.

3. Let P and ¢ be distinct parabolic subgroups of & containing the
standard Borel subgroup B of & (so that, by Theorem 4, P and Q
are staircase groups}.



56 2. The General Linear Group

(a) Show that P and @ are not conjugate in G.

{b) If Lp and Ly are corresponding Levi complements, find con-
ditions on P and (} that determine when Lg and Lo will be
conjugate in G.

[

. Prove Proposition 2.

Prove the following generalization of Lemma 3: If P is a parabolic
subgroup of & which is the stabilizer of the flag (W1,... ,W.), then
the W; are the only subspaces of V,,(F'} left invariant by P.

6. {coni.) Using Exercise 5, show that any parabolic subgroup of G
is self-normalizing.

Complete the cutlined proof of Theorem 4.

Assume that the case # = 1 of Theorem 4 holds; we sketch an
alternate proof of the general case of Theorem 4. We use induc-
tion on n, where & = GL(n, ). Let H be a subgroup of G which
contains B, and suppose that H stabilizes V., where 1 < m < n.
Let 5 be the stabilizer of V,; observe that H < §. We can write
S =U » (K| x K3}, where the elements of Ky = GL{m, ¥} have
their only non-zero entries in the first m rows and columns, and
where K3 is a direct product of general linear groups whose ele-
ments have their non-zero entries concentrated in the last n — m
rows and columns. Since UV € B € H, by Exercise 2.10 we have
H =U » @ for some Q < K, x Ky. Use Goursat’s theorem (Ex-
ercise 2.8), Exercise 6, and the induction hypothesis to analyze Q
and thereby conclude that H is a staircase group.

&

oo =~

6. The Special Linear Group

The special linear group is the subgroup SL(n, F) of GL(n, F)
consisting of all matrices having determinant 1. In other words.
SL(n, F} is the kernel of the homomorphism det: GL(n, F) — F*,
and hence SL(n, F)) <1 GL(n, F).

PROPOSITION 1. Let n € N, and let ¢ be a prime power. Then

n—1
|SL(n,q)| = ] (""" ~¢*)=¢ 7 (¢"—1)---(¢*—1).
k—1
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PROOF. The homomorphism det is clearly surjective, and so we
have F* = GL(n, F)/SL{n, F) for any field F by the fundamental
theorem on homomorphisms. In particular, if F| = ¢, then we have
| GL(n,q) : SL{n,q) = ¢ — 1; the result now follows from Proposi-
tion42 B

We showed in Theorem 4.10 that GL(n, F) is generated by the
root. subgroups and the diagonal subgroup. We now establish the
analogous result for SL{n, F).

PROPOSITION 2. SL(n, F') is generated by the root subgroups X;;.

PROOF. We first remark that by part (i) of Lemma 4.6, every
transvection lies in SL{n, F'). The result will follow from the follow-
Ing statements:

(I} An element of SL(n, F) can be premultiplied by transvections
to obtain an upper triangular matrix.

(2) Anupper triangular element of SL(n, F) can be premultiplied
by transvections to obtain an upper unitriangular matrix.

{(3) An upper unitriangular matrix can be premultiplied by trans-
vections to obtain the identity matrix.

We will sketch (1) and (2); (3) follows immediately from Lemma 4.11.

By Lemma 4.7, we can premultiply any element of SL(n, F) by
transvections to obtain a matrix with the following property: For
each i, there is exactly one row of the matrix whose entries in the
first ¢ — 1 columns are zero and that has a non-zero entry in the ith
column. We can premultiply this matrix by matrices of the form
X;i(1)Xi;(—1)X (1) to obtain an upper triangular matrix. This
proves (1).

Let a,b,c € F, with ac # 0. We observe that the matrix (2?),
when premultiplied by X5 (—1)X,2(1 — ¢~ ") X5 (¢), gives the matrix
(% “"F'). Now consider an upper triangular matrix in SL(n, F)
baving A;,..., A, as its entries on the main diagonal. Using the
above observation, we find that we can premultiply this matrix by
transvections to obtain another upper triangular matrix in SL(n, F)

whose main diagonal entries are Xy, ... ,),_,, A, 1An, 1. By repeat-
ing this process, we obtain an upper triangular matrix in SL(n, F)
whose main diagonal entries are X, - - A,,1,...,1; but this matrix

has determinant 1, so we must have X, - -- An = 1, and hence the
matrix is upper unitriangular. This proves (2). W
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PROPOSITION 3. The subgroups X;; are conjugate in SL{#n, F).

PROOF. Consider two root subgroups X;; and X;.;.. Let w be a
permutation matrix sending v; to vy and vy to vy; then we have
wX;;(a)w ' = Xiy{a) for any &« € F by part (v} of Lemma 4.6.
Since the inverse of w is its franspose, we see that the determinant
of wis £1. If detw = 1, then w € SL(n, F) and we are done. (Note
that if n > 3, then by transposing columns if necessary we can always
choose w such that det w = 1.) Now suppose that detw = —1, and
let d be the matrix that differs from the identity matrix only by
having -1 instead of I in the (1, 1)-entry. Then dw € SL(n, F), and
dwX,;(a)(dw)y ' = dX,; (e)d™ = X, (+a) for any o € F, which
completes the proof. W

Let Z be the subgroup of GL({rn, F') consisting of the multiples of
the identity matrix by elements of F'*. The elements of 2 are called
the (non-zero) scalar matrices. We clearly have Z = F*.

ProrosSITION 4. The center of GL(n, F) is Z, and the center of
SL(n, F) is ZNSL(n, F).

Proor. If n =1, then GL{(1, F) = F* = Z, and the result holds:
hence we assume that n > 1. Let G = GL{(n, F) or SL(n, F'). We
observe that Z M G is contained in Z((); therefore, it suffices to
show that any element of G that commutes with all elements of
SL{n,F) lies in ZNG. Let M = () be such a matrix. Let
1 < 2,7 < n be distinct, and consider X;;{1); by hypothesis we have
MX,;(1) = Xi;(1)M. By calculating and comparing the (,i)- and
(i,7)-entries of MX,,(1) and X,;(1)M, we find that m;; = 0 and
My = my,. We conclude that m;; — m,.4;; for any 2 and j, and
hence that M € Z N G. (The same argument shows that the set of
elements of M,,(F) which commute with all elements of M, (F) is
el |l F}=ZU{0}.) ®

The group GL(n, F')/Z is called the projective general linear group,
and the group SL(n, F')/Z N SL(n, F') is called the projective special
Linear group. We denote these groups by PGL(#n, F') and PSL{n, F'},
respectively. (Observe that the first isomorphism theorem implhes
that PSL(n, F) = ZSL(n, F}/Z < GL(n,F)/Z = PGL(n, F).} As
Z = F*, we have | PGL{n, g)| = |SL(n,q)! for any prime power g;
however, to determine |PSL(n,g)| we must be able to count the
number of nth roots of unity in the field of g elements.
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PROPOSITION 5. Let g be a prime power. Then

¢ —q if 2| g,
PSL{2, =
(2.9) {1 S g) if24g

Al

PROOF. Any matrix in Z N SL(2,¢) must be of the form al,
where a is a square root of unity in the field of g elements. Such
an element o is a root of the polynomisl X? — 1, which has two
distinct roots (namely 1 and —1) in any field whose characteristic is
not equal to 2. Therefore, if 21{ ¢, then |Z N SL{2, ¢}| = 2. However,
if 2 | ¢, then X? -1 = (X —1)? has only one distinct root, and hence
|Z NSL(2,qg)| = 1. The result now follows via Proposition 1. W

Our main objective in this section is to show that PSL{n, F) is
simple whenever n > 2, except when n — 2 and |F| = 2 or 3. This
result dates back to L. E. Dickson, another of the early architects of
the mathematical tradition of the University of Chicago, who estab-
lished it in his 1896 Ph.D. thesis for F & finite field; in 1893 E. H.
Moore had established the result for F a finite field and n = 2, while
in 1870 Camille Jordan had established the result for F a finite field

of prime order and n arbitrary. We first need two lemmas.

LEMMA 6. If n > 2, then every transvection X,;(a) is a commu-
tator of clements of SL{n, F'}, except when n = 2 and |F| =2 or 3.

PROOF. If n > 2, then we have X;;(a) = [Xu(a), Xi;(1)] by
part (v) of Lemma 4.6, where k is unequal to either i or j. Now
let n = 2. For any 3,7 € F with # # 0, we observe that the

commutator of (‘g ;1) and ([ 7) is (é fﬁz;”" ) Therefore, X:2(cx)

will be expressible as a commutator in SL(n, F) as long as there are
g€ F* and v € F such that a = (5% — 1)v. If |F| > 3, then there
is always some 3 € F* such that 82 # 1, and we can then take
Y=o’ - 1)7'. The X5 () case is similar. W

Observe that Lemma 6 and Proposition 2 together imply that,
except when n = 2 and |F| = 2 or 3, SL(n, F) is its own derived
group and is consequently also the derived group of GL(n, F).

LEMMA 7. If n > 2, then the action of SL(n, F) on the one-
dimensional subspaces of V,,(F) is doubly transitive.
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PrROOF. Let Vi, Vo, W,, and W, be one-dimensional subspaces of
VL.(F), where V] # V, and W, # W5, which are generated respec-
tively by ¢3,ca,d;y, and da. Then ¢; and ¢g are linearly indepen-
dent, as are d; and dj, and consequently we can find cg,... ,c,
and dg,... ,d, such that {¢;,... ,ca} and {d4,... ,d,} are bases
for V,,(F'). Let C (resp., D) be the n x n matrix whose ¢th column
is ¢ (resp., d;) for each 1 < i < n; clearly, C and D are matrices
of rank n and hence lie in GL{n,F}). Let € = det D/ det C, and
let ¥ be the matrix differing from the identity matrx only by hav-
ing e instead of 1 in the (1, 1)-entry. Then det DE-'C~! =1, and
DE 'C ' sends ¢y to e~ 'd, and ¢ to da: hence we have found an
element of SL(n, F') sending V) to W, and V; to W5, as required. B

THEOREM 8. If n > 2, then PSL(n, F') is simple, except when
n=2and |F| =2or3.

Proor. Let S — SL(n, F), and let P < S be the stabilizer of Fv,
under the action of S on the one-dimensional subspaces of V,(F).
By Lemma 7 and Proposition 3.8, P is a maximal subgroup of S. Let
K be the set of upper unitriangular matrices whose only non-zero
entries outside of the main diagonal occur in the first row. We find
that K is an abelian normal subgroup of P.

Let N < S. By the correspondence theorem and the definition
of PSL(n, F'), it suffices to show that N is comprised of scalar ma-
trices. Suppose first that N < P. Then N stabilizes F'v,, and hence
N = sNs™! stabilizes s(¥vy) for any s € § by Lemma 3.2. Since
the action of § on the one-dimensional subspaces of V,.( F') is transi-
tive by Lemma 7, this shows that N stabilizes every one-dimensional
subspace of V,,(F). In particular, N stabilizes each Fv;, which shows
that the elements of N are diagonal matrices. But N also stabilizes
each F{v; + v;), which shows that the elements of N must be scalar
matrices. :

Now suppose that N  P. Then we have P < PN < §, which
forces PN = 8 since P 15 maximal in S. Let #: § — S/N be
the natural map. We have n(P) = PN/N — §/N — n(S) and
nK)=KN/N=7nKN). As K 4 P, it follows that n{K) < n(P),
and hence that n(KN) < 7n(5): the correspondence theorem now
gives KN < 5. Observing that K is the group generated by the root
subgroups Xi2,. .., X1, we see that all conjugates in S5 of these root
subgroups lie in K IN. But we see via Proposition 3 that these conju-
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gates inchude all of the X;; as the X;, generate S by Proposition 2,
we have KN — 5. By the first isomorphism theorem, we now have
S/N=KN/N = K/KnNN, and since K is abelian it follows that
S/N 15 also abelian. Therefore, all commutators of elements of § lie
in V by Proposition 2.6, and in particular all matrices X;;(a) lie in
N by Lemma 6. Thus N contains every X,;, and Proposition 2 now
imphlies that N = S, which is a contradiction. W

EXERCISES

1. Let B be the standard Borel subgroup of GL{n, F'). Determine all
subgroups of SL{n, F') which contain BN 8SL(n, F).

2. Show that PSL(2,2) = X3 and PSL(2,3) = A4, and that these

groups are not simple.

Show that PSL(2,4) and PSL{2,5) are both isomorphic with As.

Show that PSL{2,7) = GL(3,2).

Show that PSL{2,9) = Ag.

By Exercise 3 and Theorem 8, the group As is simple. Attempt

to prove this fact directly by mimicking the proof of Theorem 8§,

with Ay in place of §, A4 in place of P, and the Klein four-group

in place of K.

R

FURTHER EXERCISES

Let F be a field, and let V = F2. We define an equivalence relation
on V — {0} by v ~ w iff v =aw for some a € F*. The set of equivalence
classes under this relation is called the one-dimensional projective space (or
projective line) over F' and is denoted by P*(F). We write elements of V
a8 column vectors, and the element of P1{F') that is the equivalence class
of (3} shall be written as [§].

7. Show that there is a well-defined action of PSL{(2, F} on P(F)
given by

a b\ |x| |ar+by
(c d) [y‘ B [cz*+dy
and that this action is doubly transitive. {Here (g 5) denotes the
image in PSL(2, F) of (2 %) € SL(2, F).)
8. (cont.) Determine the proper definition of n-dimensional projective
space P*(F) for arbitrary n, and show that PSL(n 1 1, F) acts
doubly transitively on F*(F).

§. Let I be the field of 7 elements. For 0 < ¢ < 6, let i represent
[!] € P!(F); denote the remaining element [¢] of PL{F) by oc.
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View L3 as being the group of permutations of {0,0,1,2, 3,4, 5,6},
and let : PSL{2,7) — %3 be the monomoerphism arising (as in
Proposition 3.1) from the action of PSL({2,7) on P*(F). Show that
the image of i is the subgroup of Ag generated by (0123 4 5 6),
(142)356), and (co 0)1 3X2 5)4 6). (HinT: Show first that
PSL{2,7) is generated by the images under the natural map of the
elements {(19),(29), and (93) of SL{2,7).) For the relevance of

this exercise, see Exercises 7.13-17.

Recall the definition of a BN-pair from the further exercises to Section 4.
10. Let G = GL(n, F'). Let B be the standard Borel subgroup of G, let

11.

N be the subgroup of G of monomial matrices, and let T = BN N
be the subgroup of diagonal matrices. Let By — B M 8L(n, F}, let
o = NNSL{n, F), and let Tj = T N SL{n, F) = By N Ny. Show
that Bg and Ny form a BN-pair of SL{n, F'), with the associated
Weyl group Wy = Ny /T being isomorphic with X,,.
Let P = PSL{n, F}, and let By, Ny, and T; be the images in P of
the subgroups By, Ny, and T of SL{n, F'). Show that By and N
form a BN-pair of P (with again the Weyl group Wy = Ny/Tp
being isomorphic with X, ).

3
Local Structure

In many branches of mathematics, it is profitable to study an issue by some-
how “localizing” with respect to a given prime number. In this chapter, we
adapt this doctrine to group theory by studying finite groups through their
subgroups of prime-power order. This notion of looking at the “local struc-
ture” of finite groups has proven to be very powerful. We start in Section 7
with Sylow’s theorem on subgroups of maximal prime-power order. Sec-
tion 8 concentrates on the properties of finite groups of prime-power order.
Section 9 gives an important application, the Schur-Zassenhaus theorem.

7. Sylow’s Theorem

Throughout this section, we let G denote s finite group and p a
prime divisor of |G|. We use |G|, to denote the highest power of
p that divides |G|, so that |G|, = p" where n € N is such that p”
divides |G| but p™' does not.

We say that g ¢ G is a p-element if its order is a power of p. We
say that G is a p-group if |G| is a power of p, and that H <Gis a
P-subgroup of G if |H| is a power of p. Every element of a p-group
18 & p-element. (Indeed, an infinite group is said to be a p-group
iff every element is a p-element.) We say that H < G is a Sylow
p-subgroup of G if H is & p-subgroup of order |G {p, Which is of course
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the maximal possible order of a p-subgroup of G. A subgroup of &
is said to be a Sylow subgroup of G if it is a Sylow p-subgroup for
some prime divisor p of G.

For example, let n € N and let G = GL{n,p). We see from
Proposition 4.2 that |G| = p= T (p* — 1)---(p 1), and hence
that |G|, = pﬂﬂfﬂ‘. Let U be the subgroup of G consisting of all
upper uni-triangular matrices. K is straightforward to show that
U] = p*'p™ 2 p'p = p= 5 = |G|,; therefore U is a Sylow
p-subgroup of G, as is any conjugate of /. Now let & be a non-
trivial p-element of &, so that 7" — I = 0 for some a € N. Since the
entries of z lie in the field Z/pZ of characteristic p, we may rewrite
this equation as (x — I}*" = 0. Thus, the minimal polynomial of z
divides (X — 1)*", and since the minimal and characteristic polyno-
mials have the same irreducible factors, the characteristic polynomial
of = must be (X — 1)". Therefore, all p-elements of &G are unipotent,
and hence any p-subgroup of G is unipotent. By Kolchin’s theorem,
we conclude that any p-subgroup of G is conjugate with a subgroup
of the Sylow p-subgroup U. In particular, any Sylow p-subgroup
of G is conjugate with U.

We just established that GL(n,p) has a Sylow p-subgroup, that
all the Sylow p-subgroups of GL(n,p} are conjugate, and that any
p-subgroup of GL({n,p) is contained in a Sylow p-subgroup. The
following result, which dates back to 1871 and is fundamental to the
study of finite groups, shows that these properties hold in any finite
group G for any prime divisor p of .

Syr.ow’s THEOREM. (i) G has at least one Sylow p-subgroup.
(ii) All the Sylow p-subgroups of G are conjugate.
(iii) Any p-subgroup of G is contained in a Sylow p-subgroup.
(iv) The number of Sylow p-subgroups of & is congruent to 1
modulo p.

ProoOF. Let |G| = p™m, where p* = |G|, and hence p { m. Let
X be the collection of all subsets of G having |G|, elements; X is a
(G-set under left multiplication.

Suppose that there is an orbit O of X such that p . Let Ac O
be such that 1 € A, and let P £ G be the stabilizer of A. Since 1 € A,
we have P C PA = A, and thus [P < |A| = |G|,. We also have
|0| = |G : P| by Corollary 3.5, and hence |G| = | P|{O]; since p { |0,
this shows that |G|, divides |P|. Therefore |P| = |Gi,, and so P is a
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Sylow p-subgroup of G. It follows that A = P and that O is the coset
space G/ P. Conversely, suppose that P is a Sylow p-subgroup of G.
The coset space G/P is a collection of subsets of @ of order |Gl
and hence is contained in X; moreover, G/P is the orbit in X uli}'
P, and p does not divide |G/P| = m. Thus, we have a bijective
correspondence between the set of Sylow p-subgroups of G and the
set of orbits of X whose cardinality is coprime to p, where any such
orbit is the coset space of the corresponding Sylow p-subgroup.

Let X' be the set of elements of X that lie in an orbit whose
cardinality is not divisible by p. Since p must divide | X — X ‘|, we
ha.f.re X, =|X’| (mod p). If S € X', then the orbit of X mntai;ling
S is, as noted above, the set of cosets of a Sylow p-subgroup of G
and hence has cardinality m. If we now let + be the number of Sylow
p-subgroups of G, then since r also equals the number of orbits of X
contained in X', we have rm = [X'| = | X| = (*.7} (mod p). Since
p { m, this implies that the value of r, modulo I;L’?, depends only on
the order of G and not on G itself; that is, any two groups of the
same order have the same number, modulo p, of Sylow p-subgroups.
But we see from Theorem 1.4 that the cyclic group of order phm
has exactly 1 subgroup of order |Gl,. Therefore + = 1 (mod »)
proving (iv), and in particular » > 0, proving (i). |

Now let P be some Sylow p-subgroup of G, and let Q be an arbi-
trary p-subgroup of G. The group Q acts on the set Y of conjugates
of P in G by conjugation; the action of = € @ sends gPg~' € Y to
z(g]f’g' )Je7! = (zg)P(xg)~*. The cardinality of each orbit, being
the index of a subgroup of the p-group Q, is some (perhaps ﬁrivial)
power of p. We have |Y| = |G : Ne(P)| by Proposition 3.14; using
fa_actnnzatmn of indices, we see that |Y| divides |G : P, = m, and
since p { m we must have p4|Y|. Thus, there must be some orbit of
Y containing only one element, as otherwise p would divide Y].

Let {P} be a single-element orbit of ¥ under the action of Q.
Then we have 2Pz~ = P, for all ¢ € Q: consequently QP, = P,Q
and so QP; < G by Proposition 1.3. Clearly [P < 1QF|; but sincé
QP =|P|IQ: Qn P,| by Proposition 3.12, we see that QP must
be a p-group. Therefore (QP,| = |P, |, which forces @ — Q N P, and
hence @ < P,. Since P, is a Sylow p-subgroup of G, this proves (iii)
gl ;:Fi- éliu:rw T;kr  to be al,l Sylow p-subgroup of G, then as Q < Pl'

= |£1|, we must have ¢} = P,: i t 0 i
with B, which proves (1), - ¢ = Py; in particular @ is conjugate
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COROLLARY |. The number of Sylow p-subgroups of G divides
G|/ G,

PrROCQF. Let v be the number of Sylow p-subgroups of &, and
let P be some such subgroup. By part {ii) of Sylow’s theorem, r
equals the number of conjugates of P in & since this number equals
|G : Ne(P)| by Proposition 3.14, we see via factorization of indices
that » divides |G : P| = |G|/|Gl,. ®

Sylow’s theorem immediately implies the following classical result.
CaucHY’s THEOREM. G has an element of order p.

ProoF. By part (i) of Sylow’s theorem, G has a non-trivial Sylow
p-subgroup, and hence G has a non-trivial p-element, some power of
which is of order p. H

(Other proofs of Sylow’s theorem often assume that Cauchy’s theo-
rem is already known, as was the case historically. )

The next result gives a relationship between the Sylow p-subgroups
of a group and those of its normal subgroups and quotient groups.

PROPOSITION 2. Let N <1 G, and let P be a Sylow p-subgroup
of . Then PN /N is a Sylow p-subgroup of G/N,and PNN is a
Sylow p-subgroup of N.

ProoF. We have |G/N : PN/N| = |G : PN| by the correspon-
dence theorem. But since |G : PN/ divides |G : Pland pt |G : P,
we see that p 4 |G/N : PN/N|. Since PN/N = P/PN N by the
first isomorphism theorem, PN /N must be a p-group; it now follows
that PN /N is a Sylow p-subgroup of G/N.

It follows from Proposition 3.12 that |[N : PN N| = |PN : P|; but
since PN is a subgroup of G by Proposition 1.7, and P is a Sylow
p-subgroup of G, we must have p | |PN : P|. Therefore, PN N is a
p-subgroup of N whose index in N is coprime to p, as required. W

If H € G and P is a Sylow psubgroup of GG, then P N H need
not be a Sylow p-subgroup of H; the above proof falls apart here
since PH may not be a subgroup of G. However, if ¢} is a Sylow
p-subgroup of H, then by part (iii) of Sylow’s theorem () is contained
in some Sylow p-subgroup P’ of G, and we must have @ = PN H.
Part (ii) of Sylow’s theorem now implies that £ and F are conjugate
in (. Therefore, there is some g € G such that gPg~* N H is a Sylow

p-subgroup of H.
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In the remainder of this section, we present some tvpical applica-
tions of Sylow’s theorem to the study of finite groups.

PROPOSITION 3. Let p and ¢ be distinct primes, with p > g. If
p # 1 (mod g), then any group of order pg is isomorphic with Zy
If p=1 (mod g), then any abelian group of order pq is isomorphic
with Z,,, and there is exactly one isomorphism class of non-abelian
groups of order pgq.

PROOF. Let & be a group of order pg, let P be a Sylow p-subgroup
of G, and let ¢} be a Sylow g-subgroup of G. Since |P| = p and
Q| = g, we have P = Z, and Q@ = Z,. Lagrange’s theorem gives
PNQ =1, and hence it follows from Proposition 3.12 that G = PQ.

By Sylow’s theorem and Corollary 1, the number of conjugates of
P in G divides |G : P| = ¢ and is congruent to 1 modulo p. But
we have ¢ £ 1 (mod p) since p > ¢; therefore, P must have only 1
conjugate in (7, and hence P <1 G. We can similarly show that Q has
either 1 or p conjugates in G, and that the latter case can only occur
when p =1 (mod g). If @ has only 1 conjugate in G, then Q < G,
and consequently G — P x @ = Z, x Z; = Zp, via Lemma 2.8.
This will be the case if p# 1 (mod g), or if p=1 (mod ¢) and G is
abelian.

Now suppose that @ has p conjugates in G, in which case G is
non-abelian and p = 1 (mod ¢). We have P < G, G = PQ, and
Pri@Q =1, which gives G = Px Q. Let ¢: @ — Aut(P) be the
conjugation homomorphism. If ker ¢ # 1, then as @ is simple we
must have kery = @, in which case ¢ is trivial and hence @ is
abelian. Therefore ¢ must be injective.

We conclude that if p = 1 (mod ¢) and there is a non-abelian
group of order pg, then there is a monomorphism from Z, to Aut( Z,).
Conversely, given a monomorphism ¢: Z, — Aut(Z,), we can con-
struct a non-abelian group of order pq, namely Z, x. Z,. To com-
plete the proof, we must exhibit a monomorphism ¢: Z, — Aut(Z,),
which shows the existence of a non-abelian group of order pg: we
must then show that if ¢: Z, — Aut(Z,) is another such monomor-
phism, then the groups Z, x,, Z, and Z,, x,, Z, are isomorphic.

We see from Proposition 2.2 that Aut(Z,) ~ Z,, ;. Now g | (p—1)
by hypothesis, so from Theorem 1.4 we see that Aut( Z,) has a unique
subgroup K of order ¢g. Using the characterization of Aut(Z,) given
in Proposition 2.1, we see that there is some 1 < r < p such that K is
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generated by the automorphism o, sending every element to its rth
power. We define ¢: Zg — Aut(Zp) by letting  send a generator
of Z¢ to o,. Then ¢ is a moncmorphism with image K, which proves
existence. Now if ¢ Z, — Aut(Z,) is another monomorphism, then
by the uniqueness of K we must have 1(Zg) = K = w{Zy); we now
bave Zp, %, Zq = Zp Xy, Zq by Proposition 2.11, as required. B

We will now demonstrate the use of Sylow’s theorem as a tool in
the study of finite simple groups. One consequence of part (iii} of Sy-
low's theorem which will be of particular use is that every p-element
of G is contained in a Sylow p-subgroup of G this will allow us to use
information about the Sylow p-subgroups of G to count the number
of p-elements of G.

THEOREM 4. A; is simple.

Proor. We have |A;| = 51/2 = 60 = 2%-3-5. We see from Sylow’s
theorem and Corollary 1 that the number of Sylow 3-subgroups of
As divides 60/5 = 12 and is congruent to 1 modulo 5; using the
fact that any 5-cycle generates a Sylow 53-subgroup, we observe that
this number is not 1. Thus As has 6 Sylow S-subgroups. As no two
of these subgroups can have an element of order 5 in common, we
conclude that A; has 6- (5 — 1) = 24 elements of order 5. Similarly,
A: could have 1, 4, or 10 Sylow 3-subgroups, and by inspection
the number of Sylow 3-subgroups exceeds 4; consequently, Ay has
10- (3 — 1) = 20 elements of order 3.

Let 1 < i < 5, let {a,b,¢c,d} be the complement in {1,2,3.4,5}
of {i}, and let V; = {1, (a b)c d}, (a cXb d), (a d)b c)}. We see
easily that each V; is a Sylow 2-subgroup of As and that if 7 # 7
then V; NV, = 1. By inspection, we see that pVp~' = V) for
any p € As. It now follows from part (ii) of Sylow’s theorem that
Vi,..., Vs are the only Sylow 2-subgroups of As. It also follows that
Ag has 5- (4 — 1) = 15 elements of order 2 and that every element of
order 2 in A5 is conjugate with some other element of order 2.

Now suppose that N is a proper normal subgroup of As, and let
n = [N| < 30. Suppose that & | n. Then N contains a Svlow
5-subgroup of As; but as IV is normal in G, N also contains all con-
jugates of that Sylow 5-subgroup and hence all 6 Sylow S-subgroups
of As. In particular, N contains 24 elements of order 9, which forces
n — 30. Now 3 | 30, so N contains 1, and hence all 10, Sylow
3-subgroups of As; thus IV contains 20 elements of order 3, which

7. Sylow’s Theorem 69

13 a contradiction. Therefore 5 ¢ n, which gives n < 12. If 3 | n,
then by the argument just given, N contains 20 elements of order 3,
which is a contradiction; therefore n = 1, 2, or 4. If n — 4, then
N is a Sylow 2-subgroup of A; and hence has 5 conjugates in A,
which contradicts the normality of N. But we observed previcusly
that each element of order 2 in Ag has some conjugate other than
itself; consequently A cannot have a normal subgroup of order 2.
Therefore n = 1, which proves that As is simple. B

THEOREM 5. Any simple group of order 60 is isomorphic with As.

PROOF. Let G be a simple group of order 60. As observed after
Proposition 3.1, if G has a subgroup of index n, then there is a
monomorphism from G to X, associated with the action of G via left
multiplication on the coset space of that subgroup. Since |G| > |E,.
when n < 5, we conclude that G cannot have a proper subgroup of
index less than 5. We shall now show that G does have a subgroup
of index exactly 5 and consequently that G is isomorphic with &
subgroup of ;.

Suppose that & does not have & subgroup of index 5. By Corol-
lary 1, the number of Sylow 2-subgroups of G divides 60/4 = 15;
since this number is equal to the index mm G of the normalizer of
a Sylow 2-subgroup, by our hypothesis and the previous paragraph
it must be 15. Let 5 and S be distinet Sylow 2-subgroups of G,
and suppose that there is some 1 #£ ¢ € §, M S5, Then Cgz(t)| > 4
since Sy and S; are distinct and abelian, and 4 divides [C(t)| since
S1 € Ci(t); hence we must have G : Ce(t)| < 5. Our hypothesis and
the previous paragraph force Cz(t) = G; but this gives t € Z(G).
which contradicts the simplicity of G. Therefore, no two of the 15
Sylow 2-subgroups of G have a non-trivial element in common, and
hence (G has 15- (4 — 1} = 45 elements of order 2 or 4. But G is
simple, so &G must have more than one Sylow 5-subgroup; thus G has
6 Sylow 5-subgroups and therefore has 24 elements of order 5. This
gives a contradiction. Consequently, we can conclude that & does
have a subgroup of index 5, and hence that G is isomorphic with a
subgroup of ¥

We now identify G with its isomorphic copy inside ©.. Since
1Zs : G| = 2, we have G <4 Zg by Proposition 1.8. Suppose that
G # As. Then |GAs| > 60, which forces GA: = X.. Proposition 3.10
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and hence |G : GN As| = 2. Wenow have 1 # GNA; < G by
Proposition 1.8, which contradicts the sumplicity of G. Therefore

G = A;. {Observe that this argument can also be used to show that
As is the only non-trivial proper normal subgroup of 5.} W

CoroLLARY 6. PSL{2,4) = PSL(2,5) = As.

T

G A =

ProoF. We have |PSL(2,4), = |PSL{2,5)] = 60 by Proposi-
tion 6.5; but PSL(2,4) and PSL(2,5) are simple by Theorem 6.8,
and so the result follows from Theocrem 5. W

It is a relatively easy exercise to show that the only simple groups
of order less than 60 are the cyclic groups of prime order, and hence
that A: is the non-abehian finite simple group having smallest or-
der. The non-abelian finite simple group of next smallest order is
PSL(2,7), which has order 168.

EXERCISES
Throughout these exercises, 7 is a finite group and p is a prime divisor

of |(7].

1. Let H € (7 and let P be a Sylow p-subgroup of . Prove, without
reference to Sylow’s theorem, that there is some conjugate of P
whose intersection with H is a Sylow p subgroup of H.

2. {cont.) Use Exercise 1 to give an alternate proof of part (i) of
Svlow’s theorem.

3. Give an alternate proof of parts (ii) and (iii) of Sylow’s theorem
by considering the action of an arbitrary p-subgroup @ of G on the
coset space /P, where P ig a Sylow p-subgroup of G.

4. Prove the following generalization of part (iv) of Sylow’s theorem:
If |G| is divisible by p®, and H < G has order p* where a < b,
then the number of subgroups of G that <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>