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Preface

This book presents the basic theory of fields, starting more or less from the
beginning. It is suitable for a graduate course in field theory, or independent
study. The reader is expected to have taken an undergraduate course in abstract
algebra, not so much for the material it contains but in order to gain a certain
level of .mathematical maturity

The book begins with a preliminary chapter (Chapter 0), which is designed to be
quickly scanned or skipped and used as a reference if needed. The remainder of
the book is divided into three parts.

Part 1, entitled , begins with a chapter on polynomials. ChapterField Extensions
2 is devoted to various types of field extensions, including finite, finitely
generated, algebraic and normal. Chapter 3 takes a close look at the issue of
separability. In my classes, I generally cover only Sections 3.1 to 3.4 (on perfect
fields). Chapter 4 is devoted to algebraic independence, starting with the general
notion of a dependence relation and concluding with Luroth's theorem on
intermediate fields of a simple transcendental extension.

Part 2 of the book is entitled . Chapter 5 examines Galois Theory Galois theory
from an historical perspective, discussing the contributions from Lagrange,
Vandermonde, Gauss, Newton, and others that led to the development of the
theory. I have also included a very brief look at the very brief life of Galois
himself.

Chapter 6 begins with the notion of a Galois correspondence between two
partially ordered sets, and then specializes to the Galois correspondence of a
field extension, concluding with a brief discussion of the Krull topology. In
Chapter 7, we discuss the Galois theory of equations. In Chapter 8, we view a
field extension  of  as a vector space over .

Chapter 9 and Chapter 10 are devoted to finite fields, although this material can
be omitted in order to reach the topic of solvability by radicals more quickly.
Möbius inversion is used in a few places, so an appendix has been included on
this subject.
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Part 3 of the book is entitled . Chapter 11 covers theThe Theory of Binomials
roots of unity and Wedderburn's theorem on finite division rings. We also
briefly discuss the question of whether a given group is the Galois group of a
field extension. In Chapter 12, we characterize cyclic extensions and splitting
fields of binomials when the base field contains appropriate roots of unity.
Chapter 13 is devoted to the question of solvability of a polynomial equation by
radicals. (This chapter might make a convenient ending place in a graduate
course.) In Chapter 14, we determine conditions that characterize the
irreducibility of a binomial and describe the Galois group of a binomial. Chapter
15 briefly describes the theory of families of binomials—the so-called Kummer
theory.

Sections marked with an asterisk may be skipped without loss of continuity.

Changes for the Second Edition
Let me begin by thanking the readers of the first edition for their many helpful
comments and suggestions.

For the second edition, I have gone over the entire book, and rewritten most of
it, including the exercises. I believe the book has benefited significantly from a
class testing at the beginning graduate level and at a more advanced graduate
level.

I have also rearranged the chapters on separability and algebraic independence,
feeling that the former is more important when time is of the essence. In my
course, I generally touch only very lightly (or skip altogether) the chapter on
algebraic independence, simply because of time constraints.

As mentioned earlier, as several readers have requested, I have added a chapter
on Galois theory from an historical perspective.

A few additional topics are sprinkled throughout, such as a proof of the
Fundamental Theorem of Algebra, a discussion of ,casus irreducibilis
Berlekamp's algorithm for factoring polynomials over  and natural and
accessory irrationalities.

Thanks
I would like to thank my students Phong Le, Sunil Chetty, Timothy Choi and
Josh Chan, who attended lectures on essentially the entire book and offered
many helpful suggestions. I would also like to thank my editor, Mark Spencer,
who puts up with my many requests and is most amiable.
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Chapter 0

Preliminaries

The purpose of this chapter is to review some basic facts that will be needed in
the book. The discussion is not intended to be complete, nor are all proofs
supplied. We suggest that the reader quickly skim this chapter (or skip it
altogether) and use it as a reference if needed.

0.1 Lattices

Definition A  or  is a nonempty set , togetherpartially ordered set poset( )
with a binary relation  on  satisfying the following properties. For all , ,

,
1) ( )reflexivity

2) ( )antisymmetry

,

3) ( )transitivity

,

If, in addition,

,  or 

then  is said to be . totally ordered

Any subset of a poset  is also a poset under the restriction of the relation
defined on . A totally ordered subset of a poset is called a . If  andchain

 for all  then  is called an  for . A upper bound least upper

bound for , denoted by  or , is an upper bound that is less than orlub
equal to any other upper bound. Similar statements hold for lower bounds and
greatest lower bounds, the latter denoted by , or . A glb maximal

element in a poset  is an element  such that  implies . A
minimal element in a poset  is an element  such that  implies



2 Field Theory

. A top element  is an element with the property that  for all
. Similarly, a   is an element with the property thatbottom element

 for all . Zorn's lemma says that if every chain in a poset  has an
upper bound in  then  has a maximal element.

Definition A  is a poset  in which every pair of elements ,  has alattice

least upper bound, or , denoted by  and a greatest lower bound, orjoin

meet, denoted by . If every nonempty subset of  has a join and a meet
then  is called a . complete lattice

Note that any nonempty complete lattice has a greatest element, denoted by 
and a smallest element, denoted by .

Definition A  of a lattice  is a subset  of  that is closed under thesublattice

meet and join operation of . 

It is important to note that a subset  of a lattice  can be a lattice under the
same order relation and yet not be a sublattice of . As an example, consider the
coll
  of all subgroups of a group , ordered by inclusion. Then  is a subset of the
power set , which is a lattice under union and intersection. But  is not a
sublattice of  since the union of two subgroups need not be a subgroup.
On the other hand,  is a lattice in its own right under set inclusion, where the
meet  of two subgroups is their intersection and the join  is the
smallest subgroup of  containing  and .

In a complete lattice , joins can be defined in terms of meets, since  is the
meet of all upper bounds of . The fact that  ensures that  has at least
one upper bound, so that the meet is not an empty one. The following theorem
exploits this idea to give conditions under which a subset of a complete lattice is
itself a complete lattice.

Theorem 0.1.1 Let  be a complete lattice. If  has the properties
1)
2   , ) ( )Closed under arbitrary meets

then  is a complete lattice under the same meet.
Proof. Let . Then  by assumption. Let  be the set of all upper
bounds of  that lie in . Since , we have . Hence,  and is

. Thus,  is a complete lattice. (Note that  need not be a sublattice of 
since  need not equal the meet of all upper bounds of  in .) 

0.2 Groups

Definition A  is a nonempty set , together with a binary operation ongroup

, that is, a map , denoted by juxtaposition, with the following
properties:



Preliminaries 3

1    for all , , ) ( )Associativity

2   There exists an element  for which  for all) ( )Identity

3   For each , there is an element  for which) ( )Inverses

.
A group  is , or , if , for all , .abelian commutative

The identity element is often denoted by . When  is abelian, the group
operation is often denoted by  and the identity by .

Subgroups
Definition A   of a group  is a subset of  that is a group in itssubgroup

own right, using the restriction of the operation defined on . We denote the
fact that  is a subgroup of  by writing .

If  is a group and , then the set of all powers of 

is a subgroup of , called the . A group  iscyclic subgroup generated by

cyclic if it has the form , for some . In this case, we say that 
generates .

Let  be a group. Since  is a subgroup of itself and since the intersection of
subgroups of  is a subgroup of , Theorem 0  implies that the set of.1.1
subgroups of  forms a complete lattice, where  and  is
the smallest subgroup of  containing both  and .

If  and  are subgroups of , it does not follow that the set product

is a subgroup of . It is not hard to show that  is a subgroup of  precisely
when .

The  of  is the setcenter

 for all 

of all elements of  that commute with every element of .

Orders and Exponents
A group  is  if it contains only a finite number of elements. Thefinite

cardinality of a finite group  is called its  and is denoted by  or .order

If , and if  for some integer , we say that  is an  of .exponent

The smallest positive exponent for  is called the  of  and isorder

denoted by . An integer  for which  for all  is called an
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exponent of . (Note: Some authors use the term exponent of  to refer to the
smallest positive exponent of .)

Theorem 0.2.1 Let  be a group and let . Then  is an exponent of  if
and only if  is a multiple of . Similarly, the exponents of  are precisely
the multiples of the smallest positive exponent of . 

We next characterize the smallest positive exponent for finite abelian groups.

Theorem 0.2.2 Let  be a finite abelian group.
1   If  is the maximum order) ( )Maximum order equals minimum exponent

of all elements in  then  for all . Thus, the smallest positive
exponent of  is equal to the maximum order of all elements of .

2  The smallest positive exponent of  is equal to  if and only if  is)
cyclic.

Cosets and Lagrange's Theorem
Let . We may define an equivalence relation on  by saying that 
if  (or equivalently . The equivalence classes are the left

cosets  of  in . Thus, the distinct left cosets of  form
a partition of . Similarly, the distinct   form a partition of . Itright cosets

is not hard to see that all cosets of  have the same cardinality and that there is
the same number of left cosets of  in  as right cosets. (This is easy when 
is finite. Otherwise, consider the map .)

Definition The  of  in , denoted by , is the cardinality of theindex

set  of all distinct left cosets of  in . If  is finite then 
.

Theorem 0.2.3 Let  be a finite group.
1   The order of any subgroup of  divides the order of .) ( )Lagrange

2  The order of any element of  divides the order of .)
3   If  is a) ( )Converse of Lagrange's Theorem for Finite Abelian Groups

finite abelian group and if A  then  has a subgroup of order .

Normal Subgroups
If  and  are subsets of a group , then the   is defined byset product

Theorem 0.2.4 Let . The following are equivalent
1  The set product of any two cosets is a coset.)
2  If , then)
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3  Any right coset of  is also a left coset, that is, for any  there is a)
 for which .

4  If , then)

5   for all , .)

Definition A subgroup  of  is  in , written , if any of thenormal

equivalent conditions in Theorem 0.2.4 holds. 

Definition A group  is  if it has no normal subgroups other than simple

and . 

Here are some normal subgroups.

Theorem 0.2.5 

1  The center  is a normal subgroup of .)
2  Any subgroup  of a group  with  is normal.)
3  If  is a finite group and if  is the smallest prime dividing , then any)

subgroup of index  is normal in 

With respect to the last statement in the previous theorem, it makes some
intuitive sense that if a subgroup  of a finite group  is extremely large, then
it may be normal, since there is not much room for conjugates. This is true in
the most extreme case. Namely, the largest possible proper subgroup of  has
index equal to the smallest prime number dividing . This subgroup, if it
exists, is normal.

If , then we have the set product formula

It is not hard to see that this makes the quotient  into a group, called the
quotient group index of  in . The order of  is called the  of  in 
and is denoted by .

Theorem 0.2.6 If  is a group and  is a collection of normal subgroups of
 then  and  are normal subgroups of . Hence, the collection of

normal subgroups of  is a complete sublattice of the complete lattice of all
subgroups of . 

If  then there is always an intermediate subgroup  for which
, in fact,  is such an intermediate subgroup. The largest such subgroup

is called the  of  in . It isnormalizer
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Euler's Formula
We will denote a greatest common divisor of  and  by  or .gcd

If , then  and  are . The   isrelatively prime Euler phi function

defined by letting  be the number of positive integers less than or equal to 
that are relatively prime to .

Two integers  and  are , written  , if congruent modulo mod
is divisible by . Let  denote the ring of integers 0  under
addition and multiplication modulo .

Theorem 0.2.7 Properties of Euler's phi function ( )
1  The Euler phi function is multiplicative, that is, if  and  are relatively)

prime, then

2  If  is a prime and  then)

These two properties completely determine .

Since the set  is a group of order  under
multiplication modulo , it follows that  is an exponent for .

Theorem 0.2.8  If  and , then( )Euler's Theorem

mod

Corollary 0.2.9  If  is a prime not dividing the integer ,( )Fermat's Theorem

then

mod

Cyclic Groups
Theorem 0.2.10

1  Every group of prime order is cyclic.)
2  Every subgroup of a cyclic group is cyclic.)
3  A finite abelian group  is cyclic if and only if its smallest positive)

exponent is equal to . 

The following theorem contains some key results about finite cyclic groups.

Theorem 0.2.11 Let  be a cyclic group of order .
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1  For ,)

In particular,  generates  if and only if .
2  If , then)

  , where 

Thus the elements of  of order  are the elements of the form ,
where  and  is relatively prime to .

3  For each , the group  has exactly one subgroup  of order  and)
 elements of order , all of which lie in .

4   If a finite) ( )Subgroup structure charactertizes property of being cyclic

group  of order  has the property that it has at most one subgroup of
each order , then  is cyclic.

Counting the elements in a cyclic group of order  gives the following
corollary.

Corollary 0.2.12 For any positive integer ,

Homomorphisms
Definition Let  and  be groups. A map  is called a group

homomorphism if

A surjective homomorphism is an , an injective homomorphism isepimorphism

a  and a bijective homomorphism is an . Ifmonomorphism isomorphism

 is an isomorphism, we say that  and  are  and writeisomorphic

.

If  is a homomorphism then  and . The  of akernel

homomorphism ,

ker

is a normal subgroup of . Conversely, any normal subgroup  of  is the
kernel of a homomorphism. For we may define the natural projection

 by . This is easily seen to be an epimorphism with
kernel .
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Let  be a function from a set  to a set . Let  and  be the
power sets of  and , respectively. We define the induced map

 by  and the  byinduced inverse map

. (It is customary to denote the induced maps by
the same notation as the original map.) Note that  is surjective if and only if its
induced map is surjective, and this holds if and only if the induced inverse map
is injective. A similar statement holds with the words surjective and injective
reversed.

Theorem 0.2.13 Let  be a group homomorphism.
1) a) If  then .
 b) If  is surjective and  then .
2) a) If  then .
 b) If  then . 

Theorem 0.2.14 Let  be a group.
1   Let  be a group homomorphism) ( )First Isomorphism Theorem

with kernel . Then  and the map im  defined by
 is an isomorphism. Hence im . In particular,  is

injective if and only if .ker
2   If  and  then ) ( )Second Isomorphism Theorem

and

3   If  with  and  normal in) ( )Third Isomorphism Theorem

 then  and

Hence .

Theorem 0.2.15  Let  and  be groups and let . Then

Theorem 0.2.16 The   Let  and let  be the( )Correspondence Theorem

natural projection . Thus, for any ,

I

1  The induced maps  and  define a one-to-one correspondence between)
the lattice of subgroups of  containing  and the lattice of subgroups of

.
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2   preserves index, that is, for any , we have)

3   preserves normality, that is, if  then  if and only if)
, in which case

Theorem 0.2.17

1  An abelian group  is simple if and only if it is finite and has prime order.)
2  If  is a maximal subgroup of , that is,  and if  then)

 or , and if  is normal then  is cyclic of prime
order.

Sylow Subgroups
Definition -group If  is a prime, then a group  is called a  if every element
of  has order a power of . A   of  is a maximal -Sylow -subgroup

subgroup of .

Theorem 0.2.18 Properties of -groups( )
1  A finite group  is a -group if and only if  for some .)
2  If  is a finite -group, then the center of  is nontrivial.)
3  If ,  prime, then  is abelian.)
4  If  is a proper subgroup of , then  is also a proper subgroup of its)

normalizer .
5  If  is a maximal subgroup of  then  is normal and has index .)

For finite groups, if  then . The converse does not hold in
general, but we do have the following.

Theorem 0.2.19 Let  be a finite group.
1   If  is divisible by a prime  then  contains an) ( )Cauchy's Theorem

element of order .
2   If  is a prime and ,) ( )Partial converse of Lagrange's theorem

then for any   of , there is a subgroup  of , normalSylow -subgroup
in  and of order .

Here is the famous result on maximal -subgroups of a finite group.

Theorem 0.2.20  Let  have order  where .( )Sylow's Theorem

1  All Sylow -subgroups of  have order .)
2  All Sylow -subgroups are conjugate and hence isomorphic .) ( )
3  The number of Sylow -subgroups of  divides  and is congruent to)

 .mod
4  Any -subgroup of  is contained is a Sylow -subgroup of . )
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0.3 The Symmetric Group

Definition The   on the set  is the group ofsymmetric group

all permutations of , under composition of maps. A  is atransposition

permutation that interchanges two distinct elements of  and leaves all other
elements fixed. The   is the subgroup of  consisting ofalternating group

all even permutations, that is, all permutations that can be written as a product
of an even number of transpositions. 

Theorem 0.3.1

1  The order of  is .)
2  The order of  is 2. Thus,  and A .)
3   is the only subgroup of  of index .)
4   is simple no nontrivial normal subgroups  for . ) (

A subgroup  of  is  if for any  there is a  for whichtransitive

.

Theorem 0.3.2 If  is a transitive subgroup of  then the order  is a
multiple of .

0.4 Rings

Definition A  is a nonempty set , together with two binary operations onring

, called  (denoted by ), and  (denoted byaddition multiplication

juxtaposition), satisfying the following properties.
1   is an abelian group under the operation .)
2    for all   .) ( )Associativity

3   For all   ,) ( )Distributivity

and

Definition Let  be a ring.
1   is called a  if there exists an element  for which) ring with identity

, for all . In a ring  with identity, an element  is
called a  if it has a multiplicative inverse in , that is, if there exists aunit

 such that .
2   is called a  if multiplication is commutative, that is, if) commutative ring

 for all .
3  A  in a commutative ring  is a nonzero element  such) zero divisor

that  for some 0. A commutative ring  with identity is called
an  if  contains no zero divisors.integral domain

4  A ring  with identity  is called a  if the nonzero elements of ) field

form an abelian group under multiplication.

It is not hard to see that the set of all units in a ring with identity forms a group
under multiplication. We shall have occasion to use the following example.
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Example 0.4.1 Let  be the ring of integers modulo .
Then  is a unit in  if and only if . This follows from the fact that

 if and only if there exist integers  and  such that , that
is, if and only if . The set of units of , denoted by , is a groupmod
under multiplication. 

Definition A  of a ring  is a nonempty subset  of  that is a ring insubring

its own right, using the same operations as defined on . 

Definition A  of a field  is a nonempty subset  of  that is a field insubfield

its own right, using the same operations as defined on . In this case, we say
that  is an  of  and write  or . extension

Definition Let  and  be rings. A function  is a  if,homomorphism

for all , ,

 and 

An injective homomorphism is a  or an , amonomorphism embedding

surjective homomorphism is an  and a bijective homomorphism isepimorphism

an . A homomorphism from  into itself is an  andisomorphism endomorphism

an isomorphism from  onto itself is an . automorphism

Ideals
Definition A nonempty subset  of a ring  is called an  if it satisfiesideal

1   implies .)
2  ,   implies   and . )

If  is a nonempty subset of a ring , then the  by  is definedideal generated

to be the smallest ideal  of  containing . If  is a commutative ring with
identity, and if , then the ideal generated by  is the set

Any ideal of the form  is called a .principal ideal

Definition If  is a , thenhomomorphism

ker

is an ideal of . 

If  is a ring and  is an ideal in  then for each , we can form the coset

It is easy to see that  if and only if , and that any two
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cosets  and  are either disjoint or identical. The collection of all
(distinct) cosets is a ring itself, with addition and multiplication defined by

and

The ring of cosets of  is called a  and is denoted by .factor ring

Isomorphism theorems similar to those for groups also hold for rings. Here is
the first isomorphism theorem.

Theorem 0.4.1 The   Let  be a ring. Let( )First Isomorphism Theorem

 be a ring homomorphism with kernel . Then  is an ideal of  and
the map  defined by  is an isomorphism. Henceim

im . In particular,  is injective if and only if .ker

Definition An ideal  of a ring  is  if  and if whenevermaximal

 for any ideal , then  or . An ideal  is  ifprime

 and if  implies  or . 

It is not hard to see that a maximal ideal in a commutative ring with identity is
prime. This also follows from the next theorem.

Theorem 0.4.2 Let  be a commutative ring with identity and let  be an ideal
of .
1   is a field if and only if  is maximal.)
2   is an integral domain if and only if  is prime. )

Theorem 0.4.3 Any commutative ring  with identity contains a maximal ideal.
Proof. Since  is not the zero ring, the ideal  is a proper ideal of . Hence,
the set  of all proper ideals of  is nonempty. If

is a chain of proper ideals in  then the union  is also an ideal.
Furthermore, if  is not proper, then  and so , for some ,
which implies that  is not proper. Hence, . Thus, any chain in 
has an upper bound in  and so Zorn's lemma implies that  has a maximal
element. This shows that  has a maximal ideal. 
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The Characteristic of a Ring
Let  be a ring and let . For any positive integer , we define

 terms

and for any negative integer , we set .

The   of a ring  is the smallest positive integer  forcharacteristic char
which  (or equivalently,  for all ), should such an integer
exist. If it does not, we say that  has characteristic . If  then char
contains a copy of the integers , in the form . If
char , then  contains a copy of .

Theorem 0.4.4 The characteristic of an integral domain  is either  or a
prime. In particular, a finite field has prime characteristic.
Proof. If  is not  and if , where  and  are positive integers,char
then  and so one of  or  is equal to . But since 
is the smallest such positive integer, it follows that either  or . Hence,
 is prime.

If  is a field, the intersection of all of its subfields is the smallest subfield of 
and is referred to as the  of .prime subfield

Theorem 0.4.5 Let  be a field. If , the prime subfield of  ischar
isomorphic to the rational numbers . If  is prime, the prime fieldchar
of  is isomorphic to .
Proof. If , consider the map  defined bychar

This is easily seen to be a ring homomorphism. For example

Now,  if and only if  in , and since , we seechar
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that  and so  is a monomorphism. Thus, the subfield  is isomorphic
to . Clearly, any subfield of  must contain the elements , where 
and therefore also the elements  and so  is the prime subfield of .

Now suppose that  is a prime. The map  defined bychar
 is a ring homomorphism and is also injective since . Hence,

 is a subfield of  isomorphic to . Since any subfield of  must contain
, this is the prime subfield of .

The following result is of considerable importance for the study of fields of
nonzero characteristic.

Theorem 0.4.6 Let  be a commutative ring with identity of prime
characteristic . Then

Proof. Since the binomial formula holds in any commutative ring with identity,
we have

where

But  for 0 , and so  in . The binomial formula
therefore reduces to

Repeated use of this formula gives . The second formula is
proved similarly.

These formulas are very significant. They say that the Frobenius map

 is a surjective ring homomorphism. When  is a field of
characteristic , then  is an isomorphism and .

0.5 Integral Domains

Theorem 0.5.1 Let  be an integral domain. Let , .
1  We say that    and write  if  for some . If  and) divides

 are nonunits and  then   .properly divides

 a) A unit divides every element of .
 b)  if and only if .
 c)  properly if and only if .
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2  If  for some unit u then  and  are  and we write .) associates

 a)  if and only if  and .
 b)  if and only if .
3  A nonzero element  is  if  is not a unit and if  has no) irreducible

proper divisors. Thus, a nonunit  is irreducible if and only if 
implies that either  or  is a unit.

4  A nonzero element  is  if  is not a unit and whenever ) prime

then  or .
 a) Every prime element is irreducible.
 b)  is prime if and only if  is a nonzero prime ideal.
5  Let , . An element  is called a ) greatest common divisor

(gcd) of  and , written  or , if  and  and ifgcd
whenever ,  then . If  is a unit, we say that  and gcd
are . relatively prime The greatest common divisor of two elements, if it
exists, is unique up to associate. 

Theorem 0.5.2 An integral domain  is a field if and only if it has no ideals
other than the zero ideal and  itself. Any nonzero homomorphism  of
fields is a monomorphism. 

Theorem 0.5.3 Every finite integral domain is a field. 

Field of Quotients
If  is an integral domain, we may form the set

, , 0

where  if and only if . We define addition and multiplication
on  in the “obvious way”

It is easy to see that these operations are well-defined and that  is actually a
field, called the  of the integral domain . It is the field of quotients smallest
field containing , in the sense that if  is (actually, an isomorphic copy of )
a field and  then . The following fact will prove useful.

Theorem 0.5.4 Let  be an integral domain with field of quotients . Then any
monomorphism  from  into a field  has a unique extension to a
monomorphism .
Proof. Define , which makes sense since  implies

. One can easily show that  is well-defined. Since  if and
only if , which in turn holds if and only if , we see that  is
injective. Uniqueness is clear since  (  restricted to ) uniquely determines

 on . 
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0.6 Unique Factorization Domains

Definition An integral domain  is a   ifunique factorization domain ufd( )
1  Any nonunit  can be written as a product  where  is)

irreducible for all . We refer to this as the  for .factorization property

2  This factorization is  in the sense that if ) essentially unique

 are two factorizations into irreducible elements then  and
there is some permutation  for which  for all . 

If  is not irreducible, then  where  and  are nonunits. Evidently,
we may continue to factor as long as at least one factor is not irreducible. An
integral domain  has the factorization property precisely when this factoring
process always stops after a finite number of steps.

Actually, the uniqueness part of the definition of a ufd is equivalent to some
very important properties.

Theorem 0.6.1 Let  be an integral domain for which the factorization
property holds. The following conditions are equivalent and therefore imply that

 is a unique factorization domain.
1  Factorization in  is essentially unique.)
2  Every irreducible element of  is prime.)
3  Any two elements of , not both zero, have a greatest common divisor. )

Corollary 0.6.2 In a unique factorization domain, the concepts of prime and
irreducible are equivalent. 

0.7 Principal Ideal Domains

Definition An integral domain  is called a   ifprincipal ideal domain pid( )
every ideal of  is principal. 

Theorem 0.7.1 Every principal ideal domain is a unique factorization
domain.

We remark that the ring  is a ufd (as we prove in Chapter  but not a pid1)
(the ideal  is not principal) and so the converse of the previous theorem is
not true.

Theorem 0.7.2 Let  be a principal ideal domain and let  be an ideal of .
1   is maximal if and only if  where  is irreducible.)
2   is prime if and only if  or  is maximal.)
3  The following are equivalent:)
 a)  is a field
 b)  is an integral domain
 c)  is irreducible
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 d)  is prime. 

0.8 Euclidean Domains

Roughly speaking, a Euclidean domain is an integral domain in which we can
perform “division with remainder.”

Definition An integral domain  is a  if there is a functionEuclidean domain

 with the property that given any , , , there exist
 satisfying

where  or . 

Theorem 0.8.1 A Euclidean domain is a principal ideal domain and hence also(
a unique factorization domain .)
Proof. Let  be an ideal in the Euclidean domain  and let  be minimal
with respect to the value of . Thus,  for all . If  then

where  or . But  and so the latter is not possible,
leaving  and . Hence, . 

Theorem 0.8.2 If  is a field, then  is a Euclidean domain with 
deg . Hence  is also a principal ideal domain and a unique
factorization domain.
Proof. This follows from ordinary division of polynomials; to wit, if 

, then there exist  such that

where . deg deg

0.9 Tensor Products

Tensor products are used only in the optional Section 5.6, on linear disjointness.

Definition Let ,  and  be vector spaces over a field . A function
 is  if it is linear in both variables separately, that is, ifbilinear

and

The set of all bilinear functions from  to  is denoted by . A
bilinear function , with values in the base field , is called a
bilinear form on . 
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Example 0.9.1

1  A real inner product ,  is a bilinear form on .)
2  If  is an algebra, the product map  defined by )

is bilinear. 

We will denote the set of all linear transformations from  to  by
. There are many definitions of the tensor product. We choose a

universal definition.

Theorem 0.9.1 Let  and  be vector spaces over the same field . There
exists a unique vector space  and bilinear map  with
the following property. If  is any bilinear function from 
to a vector space  over , then there is a unique linear transformation

 for which

This theorem says that to each  function , therebilinear
corresponds a unique  function , through which  can belinear
factored (that is, . The vector space , whose existence is
guaranteed by the previous theorem, is called the  of  and tensor product

over . We denote the image of  under the map  by u .

If ,  is the image of the tensor map  thenim
the uniqueness statement in the theorem implies that  spans . Hence,
every element of  is a finite sum of elements of the form 

finite

We establish a few basic properties of the tensor product.

Theorem 0.9.2 If  is linearly independent and
 then

 for all 

Proof.  Consider the dual vectors  to the vectors , where .j ,

For linear functionals , we define a bilinear form  by

Since there exists a unique linear functional  for which 
, we have
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j

Since the  are arbitrary, we deduce that  for all . 's

Corollary 0.9.3 If  and , then . 

Theorem 0.9.4 Let  be a basis for  and let 
be a basis for . Then   is a basis for .
Proof.  To see that the  is linearly independent, suppose that

,j j

This can be written

,

Theorem 0.9.2 implies that

,

for all , and hence  for all  and . To see that  spans , let,

. Since , and , we have

Since any vector in  is a finite sum of vectors , we deduce that 
spans . 

Corollary 0.9.5 For finite dimensional vector spaces,

dim dim dim

Exercises

1. The relation of being associates in an integral domain is an equivalence
relation.

2. Prove that the characteristic of an integral domain is either  or a prime, and
that a finite field has prime characteristic.



20 Field Theory

3. If char , the prime subfield of  is isomorphic to the rational
numbers . If char  is prime, the prime field of  is isomorphic to

.
4. If  show that  and  must have the same characteristic.
5. Let  be a field of characteristic . The Frobenius map  defined

by  is a homomorphism. Show that . What
if  is a finite field?

6. Consider the polynomial ring  where . Show that2

the factorization process need not stop in this ring.
7. Let . Show that this integral

domain is not a unique factorization domain by showing that  has
essentially two different factorizations in . Show also that the irreducible
element  is not prime.

8. Let  be a pid. Then an ideal  of  is maximal if and only if 
where  is irreducible. Also,  is a field if and only if  is irreducible.

9. Prove that  and  are both prime ideals in  and that  is
properly contained in .

10. Describe the divisor chain condition in terms of principal ideals.



Part I—Field Extensions



Chapter 1

Polynomials

In this chapter, we discuss properties of polynomials that will be needed in the
sequel. Since we assume that the reader is familiar with the basic properties of
polynomials, some of the present material may constitute a review.

1.1 Polynomials over a Ring

We will be concerned in this book mainly with polynomials over a field , but
it is useful to make a few remarks about polynomials over a ring  as well,
especially since many polynomials encountered in practice are defined over the
integers. Let  denote the ring of polynomials in the single variable  over

. If

where a  and 0 then  is called the  of , written degree deg
or deg  and  is called the  of . A polynomial isleading coefficient

monic if its leading coefficient is . The degree of the zero polynomial is
defined to be . If  is a ring, the units of  are the units of , since no
polynomial of positive degree can have an inverse in . Note that the units in

 are the units in .

In general, if  is a polynomial over a ring
 and if  is a ring homomorphism, then we denote the polynomial

 by  or by  and the function
that sends  to  by , that is,

We may refer to  as the  of  to . It is easy to see that  is alsoextension

a ring homomorphism.

One of the most useful examples of ring homomorphisms in this context is the
projection maps , where  is a prime in , defined by

. It is not hard to see that  is a surjective ring
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homomorphism, and that  is an integral domain. The maps  are also
referred to as .localization maps

Note that the units of  are the units of .

Definition Let  be a ring. A nonzero polynomial  is irreducible

over  if  is not a unit and whenever  for 
, then one of  and  is a unit in . A polynomial that is not

irreducible is said to be . reducible

We can simplify this definition for polynomials over a field. A polynomial over
a field is irreducible if and only if it has positive degree and cannot be factored
into the product of two polynomials of positive degree.

Many important properties that a ring  may possess carry over to the ring of
polynomials .

Theorem 1.1.1 Let  be a ring.
1  If  is an integral domain, then so is )
2  If  is a unique factorization domain, then so is .)
3  If  is a principal ideal domain,  need not be a principal ideal domain.)
4  If  is a field, then  is a principal ideal domain.)
Proof. For part 3), the ring  of integers is a principal ideal domain, but  is
not, since the ideal  is not principal.

1.2 Primitive Polynomials and Irreducibility

We now consider polynomials over a unique factorization domain.

Content and Primitivity
If  is a polynomial over the integers, it is often useful to factor out the
positive greatest common divisor of the coefficients, so that the remaining
coefficients are relatively prime. For polynomials over an arbitrary unique
factorization domain, the greatest common divisor is not unique and there is no
way to single one out in general.

Definition Let  where  is a unique factorization domain. Any
greatest common divisor of the coefficients of  is called a  of .content

A polynomial with content  is said to be . Let  denote the set ofprimitive

all contents of . Thus,  is the set of all associates of any one of its
elements. For this reason, one often speaks of “the” content of a polynomial.

A content of  can be obtained by factoring each
coefficient  of  into a product of powers of distinct primes and then taking
the product of each prime  that appears in any of these factorizations, raised to
the  power to which  appears in all of the factorizations.smallest
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There is no reason why we cannot apply this same procedure to a polynomial
over , the field of quotients of . If , then each coefficient of

 can be written as a product of integral powers of distinct primes.

Definition Let , where  is the field of
quotients of a unique factorization domain . Let  be a complete list
of the distinct primes dividing any coefficient  of . Then each coefficient

 can be written in the form

where . Let  be the smallestmin
exponent of  among the factorizations of the coefficients of . The element

is a  of , and so is any element , where  is a unit in . The setcontent

of all contents of  is denoted by . A polynomial  is  ifprimitive

.

Note the following simple facts about content.

Lemma 1.2.1 For any  and 

It follows that
1   is a content of  if and only if , where  is primitive)

in .
2  If  is primitive, then .)
3   if and only if .)

We now come to a key result concerning primitive polynomials.

Theorem 1.2.2 Let  be a unique factorization domain, with field of quotients
.

1   The product of primitive polynomials is primitive.) ( )Gauss's lemma

2  If  then .)
3  If a polynomial  can be factored)

where  is primitive and  then, in fact, .
Proof. To prove Gauss's lemma, let  and suppose that  is
not primitive. Then there exists a prime  for which . Consider the
localization map . The condition  is equivalent to , that is,
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 and since  is an integral domain, one of the factors must
be , that is, one of  or  must be divisible by , and hence not primitive.

To prove part 2), observe that if  is a content of  and  is a content of
 then  and , where  and  are primitive over . Hence,

by Gauss's lemma, if  is the set of units of , then

As to part 3), we have

and since , so is , whence . 

Irreducibility over  and 
If , then it can also be thought of as a polynomial over . We
would like to relate the irreducibility of  over  to its irreducibility over .
Let us say that a factorization  is over a set  if  and 
have coefficients in .

The relationship between irreducibility over  and over  would be quite
simple were it not for the presence of irreducible constants in , which are not
irreducible over .

To formulate a clear description of the situation, let us make the following
nonstandard (not found in other books) definition. We say that a factorization of
the form , where  and , is a deg deg degreewise

factorization degreewise reducible of  and that  is .

Now, if

is a degreewise factorization over , then it is also a degreewise factorization
over . Conversely, if this is a degreewise factorization over , then we can
move the content of  to the other factor and write

where  is primitive. Theorem 1.1.1 implies that  is also in  and
so this is a degreewise factorization of  over . Thus,  has a
degreewise factorization over  if and only if it has a degreewise factorization
over . Note also that the corresponding factors in the two factorizations have
the same degree.
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It follows that  is irreducible over  if and only if it is degreewise
irreducible over . But degreewise irreducibility over a field  is the only kind
of irreducibility.

Theorem 1.2.3 Let  be a unique factorization domain, with field of quotients
. Let .

1   is degreewise irreducible over  if and only if it is irreducible over)
.

2  If  is primitive, then it is irreducible over  if and only if it is)
irreducible over .

1.3 The Division Algorithm and its Consequences

The familiar division algorithm for polynomials over a field  can be easily
extended to polynomials over a commutative ring with identity, provided that
we divide only by polynomials with leading coefficient a unit. We leave proof
of the following to the reader.

Theorem 1.3.1 ( )Division algorithm  Let  be a commutative ring with identity.
Let  have an invertible leading coefficient which happens if  is(
monic, for example . Then for any , there exist unique )

 such that

where . deg deg

This theorem has some very important immediate consequences. Dividing 
by , where  gives

where . Hence,  is a root of  if and only if  is a factor of 
over .

Corollary 1.3.2 Let  be a commutative ring with identity and let .
Then  is a root of  if and only if  is a factor of  over .

Also, since the usual degree formula

deg deg deg

holds when  is an integral domain, we get an immediate upper bound on the
number of roots of a polynomial.

Corollary 1.3.3 If  is an integral domain, then a nonzero polynomial
 can have at most  distinct roots in .deg
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Note that if  is not an integral domain then the preceding result fails. For
example, in , the four elements  and  are roots of the polynomial

.

From this, we get the following fundamental fact concerning finite
multiplicative subgroups of a field.

Corollary 1.3.4 Let  be the multiplicative group of all nonzero elements of a
field . If  is a finite subgroup of , then  is cyclic. In particular, if  is a
finite field then  is cyclic.
Proof. If , then every element of  satisfies the polynomial .
But  cannot have an exponent , for then every one of the  elements of

 would be a root of the polynomial , of degree less than . Hence, the
smallest exponent of  is the order of  and Theorem 0.2.2 implies that  is
cyclic.

Polynomials as Functions
In the customary way, a polynomial  can be thought of as a function
on . Of course, the zero polynomial is also the zero function. However, the
converse is not true! For example, the nonzero polynomial  in

 is the zero function on .

This raises the question of how to decide, based on the zero set of a polynomial,
when that polynomial must be the zero polynomial.

If  is an integral domain, then Corollary 3.3 ensures that if  has degree1.
at most  but has more than  zeros, then it must be the zero polynomial. The
previous example shows that we cannot improve on this statement. It follows
that if the zero set of  is , then  must be the zero polynomial. Weinfinite
can make no such blanket statements in the context of finite rings, as the
previous example illustrates.

Now let us consider polynomials in more than one variable. We can no longer
claim that if a polynomial  has an infinite zero set, then it must be
the zero polynomial. For example, the nonzero polynomial  has
the infinite zero set .

It is not hard to prove by induction that if  is infinite and  is the
zero function, that is,  has zero set , then  is the
zero polynomial. We leave the details to the reader. Again, we cannot strengthen
this to finite rings, as the polynomial  in  shows.

However, we can improve upon this. There is a middle ground between “an
infinite set of zeros” and “zero set equal to all of ” that is sufficient to
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guarantee that  is the zero polynomial. This middle ground is “an
infinite  worth of zeros.”subfield

Theorem 1.3.5 Let  be a polynomial over  and let , where
 is infinite. If  for all , then  is the zero

polynomial.
Proof. Write

where . Let  be a basis for  as a vector space over . Then

,

for  and so,

,

,

Hence, the independence of the 's implies that the polynomial

,

in  is the zero function on . As we have remarked, this implies
that  for all  and . Hence,  for all ,

and  is the zero polynomial.

Common Divisors and Greatest Common Divisors
In defining the greatest common divisor of two polynomials, it is customary (in
order to obtain uniqueness) to require that it be monic.

Definition Let  and  be polynomials over . The greatest common

divisor of  and , denoted by  or , is thegcd
unique monic polynomial  over  for which
1   and .)
2  If  and  and  then . )

The existence of greatest common divisors is easily proved using the fact that
 is a principal ideal domain. Since the ideal
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is principal, we have , for some monic . Since
, it follows that  and . Moreover,

since , there exist  such that

Hence, if  and  then  ,  and so
gcd .

As to uniqueness, if  and  are both greatest common divisors of 
and  then each divides the other and since they are both monic, we conclude
that .

Greatest Common Divisor Is Field Independent

The definition of greatest common divisor seems at first to depend on the field
, since all divisions are over . However, this is not the case.

To see this, note that for any field  containing the coefficients of  and
, the ideal

is principal and so , where  is the gcd with respect to the
field . But if , then  and so . This implies two
things. First,  because  generates  and second,

 because  is the  common divisor of greatest  and 
in . Hence, .

Thus, if  is the smallest field containing the coefficients of  and ,
then  is the same polynomial as , for any field  containing the
coefficients of  and . In other words, the gcd can be computed using
any field containing the coefficients of  and . This also shows that the
gcd of  and  has coefficients in the field .

Theorem 1.3.6 Let . Let  be the smallest field containing
the coefficients of  and .
1  The greatest common divisor  of  and  does not depend on the)

the base field .
2  Hence,  has coefficients in .)
3  There exist polynomials  such that)

This result has a somewhat surprising corollary: If  have a
nonconstant common factor in   of , then  isany extension gcd
nonconstant and so  and  have a nonconstant factor over  fieldevery
containing the coefficients of  and .
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Corollary 1.3.7 Let  and let . Then  and 
have a nonconstant common factor over  if and only if they have a
nonconstant common factor over . 

Now we can make sense of the notion that two polynomials are relatively prime
without mentioning a specific field.

Definition The polynomials  and  are  if they have norelatively prime

nonconstant common factors, that is, if . In particular, gcd
and  are relatively prime if and only if there exist polynomials  and

 over the smallest field containing the coefficients of  and  for
which

Roots and Common Roots
It is a fundamental fact that every nonconstant polynomial  has a
root in  field.some

Theorem 1.3.8 Let  be a field, and let  be a nonconstant
polynomial. Then there exists an extension  of  and an  such that

.
Proof. We may assume that  is irreducible. Consider the field

The field  is isomorphic to a subfield of , by identifying  with
. Under this identification,  is a root of  in .

Thus, we have shown that  can be  in a field  in which  (withembedded
its coefficients embedded as well) has a root. While this is not quite the
statement of the theorem, it is possible to show that there is a “true” extension of

 that has a root of , using simple techniques from the next chapter.

Repeated application of Theorem  gives the following corollary.1.3.8

Corollary 1.3.9 Let . There exists an extension of  over which
 , that is, factors into linear factors.splits

Corollary 1.3.10 Two polynomials  have a nonconstant
common factor over some extension of  if and only if they have a common root
over some extension of . Put another way,  and  are relatively prime
if and only if they have no common roots in any extension .
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Since distinct irreducible polynomials are relatively prime, we get the following
corollary.

Corollary 1.3.11 If  and  are distinct irreducible polynomials over 
then they have no common roots in any extension  of . 

1.4 Splitting Fields

If a polynomial  factors into linear factors

in an extension field  that is, if , we say that   in ., splits

Definition Let  be family of polynomials over a field . A
splitting field for  is an extension field  of  with the following properties:
1  Each  splits over , and thus has a full set of  roots in ) deg
2   is the smallest field satisfying  that contains the roots of)

each  mentioned in part 1 .)

Theorem 1.4.1 Every finite family of polynomials over a field  has a splitting
field.
Proof. According to Corollary .9, there is an extension  in which a1.3
given polynomial  has a full set of roots . The smallest subfield
of  containing  and these roots is a splitting field for . If  is a finite
family of polynomials, then a splitting field for  is a splitting field for the
product of the polynomials in . 

We will see in the next chapter that any family of polynomials has a splitting
field. We will also see that any two splitting fields  and  for a family of
polynomials over  are isomorphic by an isomorphism that fixes each element
of the base field .

1.5 The Minimal Polynomial

Let . An element  is said to be  over  if  is a root ofalgebraic

some polynomial over . An element that is not algebraic over  is said to be
transcendental over .

If  is algebraic over , the set of all polynomials satisfied by 

is a nonzero ideal in  and is therefore generated by a unique monic
polynomial , called the  of  over  and denoted byminimal polynomial

,  or . The following theorem characterizes minimalmin
polynomials in a variety of useful ways. Proof is left to the reader.
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Theorem 1.5.1 Let  and let  be algebraic over . Then among all
polynomials in , the polynomial  ismin
1  the unique monic irreducible polynomial  for which )
2  the unique monic polynomial  of smallest degree for which )
3  the unique monic polynomial  with the property that  if and)

only if .
In other words,  is the unique monic generator of the ideal .min

Definition Let . Then ,  are said to be  over  if theyconjugates

have the same minimal polynomial over . 

1.6 Multiple Roots

Let us now explore the issue of multiple roots of a polynomial.

Definition Let  be a root of . The  of  is the largestmultiplicity

positive integer  for which  divides . If , then  is a simple

root multiple root and if , then  is a  of . 

Definition An irreducible polynomial  is  if it has noseparable

multiple roots in any extension of . An irreducible polynomial that is not
separable is . inseparable

We should make a comment about this definition. It is not standard. For
example, Lang defines a polynomial to be separable if it has no multiple roots,
saying nothing about irreducibility. Hence,  is not separable under this
definition. Jacobson defines a polynomial to be separable if its irreducible
factors have no multiple roots. Hence,  is separable under this definition.
However, van der Waerden, who first proposed the term “separable”, gave the
definition we have adopted, which does require irreducibility. Hence, for us, the
question of whether  is separable is not applicable, since  is not
irreducible. The only inconvenience with this definition is that we cannot say
that if  is separable over , then it is also separable over an extension  of

.  Instead we must say that the irreducible factors of  are separable over

.

Although, as we will see, all irreducible polynomials over a field of
characteristic zero or a finite field are separable, the concept of separability (that
is, inseparability) plays a key role in the theory of more “unusual” fields.

Theorem 1.6.1 A polynomial  has no multiple roots if and only if
 and its derivative  are relatively prime.

Proof. Over a splitting field  for , we have
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where the  are distinct. It is easy to see that  and  have no's
nontrivial common factors over  if and only if  for all .

Corollary 1.6.2 An  polynomial  is separable if and only ifirreducible
.

Proof. Since  and  is irreducible, it follows thatdeg deg
 and  are relatively prime if and only if . 

If char  then  for any nonconstant . Thus, we get the
following corollary.

Corollary 1.6.3 All irreducible polynomials over a field of characteristic  are
separable.

What Do Inseparable Polynomials Look Like?
When char , inseparable polynomials are precisely the polynomials
of the form  for some . After all, if  is inseparable (and
therefore irreducible by definition), then , and this can happen only if
the exponents of each term in  are multiples of the characteristic . Hence,

 must have the form . But we can say more.

Corollary 1.6.4 Let . An irreducible polynomial  over char
is inseparable if and only if  has the form

where  and  is a nonconstant polynomial. In this case, the integer 
can be chosen so that  is separable, in which case every root of  has
multiplicity . In this case, the number  is called the  ofradical exponent

.
Proof. As we mentioned, if  is inseparable then , which
implies that  for all , which in turn implies that  for all  such that

. Hence, .

If  has no multiple roots, we are done. If not, then we may repeat the
argument with the irreducible polynomial , eventually obtaining the
equation ., where  is separable

For the converse, suppose that Let  be a field for some . 
in which both  split. Thus, and 

for  and so
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Since  splits in , there exist roots  for each of the factors ,

and so . Hence,

    

This shows that  is inseparable. Finally, if , where  is
inseparable, then the 's above are distinct and so are the 's. Hence, each root
of  has multiplicity .

We can now prove that all irreducible polynomials over a finite field are
separable.

Corollary 1.6.5 All irreducible polynomials over a finite field are separable.
Proof. First, we show that a finite field of characteristic  has  elements,
for some . To see this, note that  is an extension of its prime subfield 
and if the dimension of  as a vector space over  is , then  has 
elements.

It follows that the multiplicative group  of nonzero elements of  has order
 and so  for all . In particular, any element of  is a th

power of some other element of . Thus, if  is not separable, then
. Hence

is not irreducible.

The next example shows that inseparable polynomials do exist.

Example 1.6.1 Let  be a field of characteristic  and consider the field  of
all rational functions in the variable . The polynomial  is2 2

irreducible over , since it has no linear factors over . However, in2 2

 we have  and so  is a double root of . 2

1.7 Testing for Irreducibility

We next discuss some methods for testing a polynomial for irreducibility. Note
first that  is irreducible if and only if  is irreducible, for

. This is often a useful device in identifying irreducibility.
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Localization
Sometimes it is possible to identify irreducibility by changing the base ring. In
particular, suppose that  and  are rings and  is a ring
homomorphism. If a polynomial  is degreewise reducible, then

where  and . Applying  givesdeg deg deg deg

and since the degree cannot increase, if , then we candeg deg
conclude that  is degreewise reducible over . Hence, if  is
degreewise irreducible, then so is . This situation is a bit too general, and
we take  to be a field.

Theorem 1.7.1 Let  be a ring and let  be a field. Let  be a ring
homomorphism. A polynomial  is degreewise irreducible not the(
product of two polynomials of smaller degree  over  if)
1) deg deg
2   is irreducible over .)

The following special case is sometimes called . Recall that if  is alocalization

ring and  is a prime, then the canonical projection map  is
defined by . This map is a surjective ring homomorphism.

Corollary 1.7.2   Let  be a principal ideal domain and let( )Localization

be a polynomial over . Let  be a prime that does not divide . If 
is irreducible over , then  is degreewise irreducible over .

Example 1.7.1 Let . Since  has degree ,
it is reducible if and only if it has an integer root. We could simply start
checking integers, but localization saves a lot of time. By localizing to , we
get , and we need only check for a root in .
Since none of these is a root,  and therefore , is degreewise
irreducible. But since  is primitive, it is just plain irreducible.

It is interesting to point out that there are polynomials  for which  is
reducible for  primes , and yet  is irreducible over . Thus, the methodall
of localization cannot be used to prove that a polynomial is .reducible

Example 1.7.2 Let , for . We claim that 
is reducible for all primes . If , then  is one of the following
polynomials
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or , each of which is reducible modulo . Now assume that . In the field
, let  satisfy , in which case , which can be

written in any of the following ways

Each of these has the potential of being the difference of two squares, which is
reducible. In fact, this will happen if any of  and  is a
square modulo .

Since the multiplicative group  of nonzero elements of  is cyclic (a fact
about finite fields that we will prove later), we can write . Note that the
group homomorphism  has kernel  and so exactly half of the
elements of  are squares, and these are the even powers of . So, if 
and  are nonsquares, that is, odd powers of , then their product

is a square, and therefore so is  modulo .

Now, we can choose  and  so that  is irreducible over . For example,
 is irreducible over .

Eisenstein's Criterion
The following is the most famous criterion for irreducibility.

Theorem 1.7.3 ( )Eisenstein's criterion  Let  be an integral domain and let
. If there exists a prime  satisfying

 for , , 2

then  is degreewise irreducible. In particular, if  is primitive, then it is
irreducible.
Proof. Let  be the canonical projection map. Suppose that

 where  and . Sincedeg deg deg deg
 for all , it follows that

Since , this implies that  and  are monomials of positive
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degree (since  is an integral domain). In particular, the constant terms  and
 are  in , that is,  and  and therefore , which is a

contradiction. Hence,  is degreewise irreducible.

Eisenstein  criterion can be useful as a theoretical tool.'s

Corollary 1.7.4 Let  be an integral domain that contains at least one prime.
For every positive integer , there is an irreducible polynomial  of degree

 over .
Proof. According to 's  the primitive polynomial Eisenstein  criterion,

 is irreducible, where  is a prime.

Exercises

1. Prove that if  is an integral domain, then so is .
2. ( )Chinese Remainder Theorem  Let  be pairwise

relatively prime polynomials over a field . Let  be
polynomials over . Prove that the system of congruences

mod

mod

has a unique solution modulo the polynomial .
3. Let  be fields with . Prove that if  is a

factorization of polynomials over , where two of the three polynomials
have coefficients in , then the third also has coefficients in .

4. Let  be a unique factorization domain. Prove that 
for any  and .

5. Prove that if  then the ring  is not a principal ideal
domain.

6. Verify the division algorithm (Theorem 3 ) for commutative rings with1. .1
identity. : try induction on .Hint deg

7. Let . Prove that there exist polynomials , 
 with  and  for whichdeg deg deg deg

if and only if  and  are not relatively prime.
8. Let  be the multiplicative group of all nonzero elements of a field . We

have seen that if  is a finite subgroup of , then  is cyclic. Prove that if
 is an infinite field then no infinite subgroup  of  is cyclic.

9. Prove Theorem 5 .1. .1
10. Show that the following are irreducible over .
 a) 
 b) 
 c) 
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 d) 
11. For  prime show that  is irreducible over2

. : apply Eisenstein to the polynomial .Hint
12. Prove that for  prime,  is irreducible over .2

13. If  is an infinite integral domain and  is a polynomial in
several variables over , show that  is zero as a function if
and only if it is zero as a polynomial.

14. Let  be a prime. Show that the number of monic irreducible polynomials
of degree  over  is .

15. There is a simple (but not necessarily practical) algorithm for factoring any
polynomial over , due to Kronecker. In view of Theorem 2.3, it suffices1.
to consider polynomials with integer coefficients. A polynomial of degree 
is completely determined by specifying  of its values. This follows
from the Lagrange Interpolation Formula

Let  be a polynomial of degree  over . If  has a
nonconstant factor  of degree at most , what can you say about the
values  for ? Construct an algorithm for factoring 
into irreducible factors. Use this method to find a linear factor of the
polynomial  over .

16. Prove that if , where each rational expression is in
lowest common terms (no common nonconstant factors in the numerator
and denominator) then  and .

17. Let  be a polynomial over  with multiple roots. Show that there is a
polynomial  over  whose distinct roots are the same as the distinct
roots of , but that occur in  only as simple roots.

Reciprocal Polynomials
If  is a polynomial of degree , we define the  byreciprocal polynomial

. Thus, if

then

If a polynomial satisfies , we say that  is .self-reciprocal

18. Show that  is a root of  if and only if  is a root of .
19. Show that the reciprocal of an irreducible polynomial  with nonzero

constant term is also irreducible.
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20. Let . Prove that if  is a prime for which
 for ,  then  is irreducible.

21. Show that if a polynomial  is self-reciprocal and irreducible,
then  must be even. : check the value of .deg Hint

22. Suppose that , where  and  are
irreducible, and  is self-reciprocal. Show that either

 a)  and  with , or
 b)  and  for some .



Chapter 2

Field Extensions

In this chapter, we will describe several types of field extensions and study their
basic properties.

2.1 The Lattice of Subfields of a Field

If  is an extension field of , then  can be viewed as a vector space over .
The dimension of  over  is denoted by  and called the  of degree

over .

A sequence of fields  for which  is referred to as a tower

of fields, and we write

The fact that dimension is multiplicative over towers is fundamental.

Theorem 2.1.1 Let . Then

Moreover, if  is a basis for  over  and  is
a basis for  over , then the set of products  is a
basis for  over .
Proof. For the independence of , suppose that . Then,

, ,

and the independence of  over  implies that  for all , and the,

independence of  over  implies that  for all . Hence,  is,  and 
linearly independent. Next, if  then there exist  such that 

. Since each  is a linear combination of the , it follows that  is a's
linear combination of the products . Hence  spans  over . 
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The Composite of Fields
If  and  are subfields of a field , then the intersection  is clearly a
field. The   of  and  is defined to be the smallest subfield of composite

containing both  and . The composite  is also equal to the intersection of
all subfields of  containing  and .

More generally, the composite  of a family  of fields, all of
which are contained in a single field , is the smallest subfield of  containing
all members of the family.

Note that the composite of fields is defined only when the
fields are all contained in one larger field. Whenever we form
a composite, it is with the tacit understanding that the relevant
fields are so contained.

A  over a family  of fields with  is simply amonomial

product of a finite number of elements from the union .

The set of all finite sums of monomials over  is the smallest subring  of 
containing each field  and the set of all quotients of elements of  (the
quotient field of ) is the composite . Thus, each element of  involves
only a finite number of elements from the union  and is therefore contained
in a composite of a finite number of fields from the family .

The collection of all subfields of a field  forms a complete lattice  (under set
inclusion), with meet being intersection and join being composite. The bottom
element in  is the prime subfield of  (see Chapter 0) and the top element is

 itself.

2.2 Types of Field Extensions

Field extensions  can be classified into several types, as shown in Figure
2.2.1. The goal of this chapter is to explore the properties of these various types
of extensions.



Field Extensions 43

Algebraic

Finitely generated algebraic

(= finite)

Simple algebraic

Base field F

Transcendental

Finitely generated transcendental

Simple transcendental

Figure 2.2.1

It is worth noting that some types of extensions are defined in terms of the
individual elements in the extension, whereas others are more “global” in
nature. For instance, an extension  is  if each element  isalgebraic
algebraic over . Other characterizations involve properties of the field  as a
whole. For instance,  is  if  is the splitting field of a family ofnormal
polynomials over .

Let us begin with the basic definitions (which will be repeated as we discuss
each type of extension in detail). Recall that , then aif n element  is
said to be  over  if  is a root of some nonzero polynomial over .algebraic

An element that is not algebraic over  is said to be  over .transcendental

I f  is a subset of , the smallest subfield of  containing both f  and i
and  is denoted by . When  is a finite set, it is
customary to write  for .

Definition Let . Then
1   is  over  if every element  is algebraic over .) algebraic

Otherwise,  is  over .transcendental

2   is  over  if , where  is a finite set.) finitely generated

3   is a  extension of  if , for some . In this case, ) simple

is called a  of .primitive element

4   is a  of  if  is finite.) finite extension

To save words, it is customary to say that the   is algebraic,extension
transcendental, finitely generated, finite or simple, as the case may be, if  has
this property as an extension of .

The reader may have encountered a different meaning of the term  inprimitive
connection with elements of a finite field. We will discuss this alternative
meaning when we discuss finite fields later in the book.
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Note that a transcendental extension may have algebraic elements not in the
base field. For example, the transcendental extension  has many algebraic
elements, such as .

In later chapters, we will study two other extremely important classes of
extensions: the  and the  extensions. Briefly, an algebraicseparable normal
element  is  over  if its minimal polynomial is separable andseparable
an extension  is separable if every element of  is separable over .
When ll algebraic extensions arechar  or when  is a finite field, a
separable, but such is not the case with more unusual fields. As mentioned
earlier, an extension  of  is normal if it is the splitting field of a family of
polynomials. An extension that is both separable and normal is called a Galois
extension.

Distinguished Extensions
We will have much to say about towers of fields of the form . Let
us refer to such a tower as a 2-tower intermediate field, where  is the ,

 is the ,  is the  and  is the lower step upper step full

extension.

Following Lang, we will say that a class  of field extensions is distinguished

provided that it has the following properties

1) The Tower Property

For any 2-tower , the full extension is in  if and only if the upper
and lower steps are in . In symbols,

 and 

2) The Lifting Property

The class  is closed under lifting by an arbitrary field, that is,

 and 

provided, of course, that  is defined. The tower  is the  oflifting

 by .

Note that if  is distinguished, then it also has the following property:

3) Closure under finite composites

If  is defined, then

 and 

This follows from the fact that  can be decomposed into
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and the first step is in , the second step is in  since it is the lifting of 
by , and so the full extension is in .

Figure 2.2  illustrates these properties..2

EK

F

E

K

F

E K

EK

F

E K

Tower Lifting Composite

Figure 2.2.2

Consider a tower  of field extensions

We say that the tower  is in , or has property , if all extensions of the form
, where , are in . To illustrate the terminology, an algebraic tower

is a tower in which each extension , where , is algebraic.

If a class  has the tower property, then the following are equivalent for a finite
tower :

1)  is in 
2) The full extension is in 
3) Each step  is in .

If a class  of extensions has the property that

for any family  of fields (provided, as always, that the composite is
defined), we say that  is closed under arbitrary composites. This property
does not follow from closure under  composites.finite

Here is a list of the common types of extensions and their distinguishedness. We
will verify these statements in due course.

Distinguished

Algebraic extensions
Finite extensions
Finitely generated extensions
Separable extensions



46 Field Theory

Not Distinguished

Simple extensions (lifting property holds, upper and lower steps simple)
Transcendental extensions
Normal extensions (lifting property holds, upper step normal)

2.3 Finitely Generated Extensions

If  and if  is a subset of , the smallest subfield of  containing  and
 is denoted by . When  is a finite set, it is customary to

write  for .

Definition Any field of the form  is said to be finitely

generated finitely generated over  and the extension  is said to be .
Any extension of the form  is called a  extension and  issimple

called a  in . primitive element

The reader may have encountered a different meaning of the term  inprimitive
connection with elements of a finite field. We will discuss this alternative
meaning when we discuss finite fields later in the book.

Note that for ,

and so a finitely generated extension  can be decomposed
into a tower of simple extensions

It is evident that  consists of all quotients of polynomials in the
's:

The class of finite extensions is our first example of a distinguished class.

Theorem 2.3.1 The class of all finitely generated extensions is distinguished.
Proof. For the tower property, if  is a 2-tower in which
each step is finitely generated, that is, if  and  are finite sets, then since

, the full extension is finitely generated by  over .

Also, if , where  is finite, then since , the upper
step is , which is finitely generated by . However, the proof that the
lower step  is finitely generated is a bit testy and we must postpone it
until we have discussed transcendental extensions in the next chapter.
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For the lifting property, if , where  is finite and if , with 
defined, then

and so the composite  is finitely generated over .  by 

2.4 Simple Extensions

Let us take a closer look at simple extensions .

Simple Extensions Are Not Distinguished
The class of simple extensions has all of the properties required of distinguished
extensions  that the lower and upper steps being simple does not implyexcept
that the full extension is simple. That is, if each step in a 2-tower is simple

this does not imply that the full extension is simple.

Example 2.4.1 Let  and  be independent variables and let  be a prime. In the
tower

each step is simple but the full extension is not. We leave proof of this as a
(nontrivial) exercise.

On the other hand, if the full extension is simple , then the
upper step is , which is simple. Also, the lower step is simple, but the
nontrivial proof requires us to consider the algebraic and transcendental cases
separately, which we will do at the appropriate time.

As to lifting, if  is simple and , then the lifting is ,
which is simple. Thus, the lifting property holds.

Simple Algebraic Extensions
Suppose that  is a simple extension, where  is algebraic over . We
have seen that the minimal polynomial  of  over  is themin
unique monic polynomial of smallest degree satisfied by . Also,  is
irreducible.

Now,  is the field of all rational expressions in 

but we can improve upon this characterization considerably. Since , it
follows that  and the irreducibility of  implies that
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. Hence,  and  are relatively prime and there exist
polynomials  and  for which

Evaluating at  gives

and so the inverse of  is the  . It follows thatpolynomial

Moreover, if , thendeg deg

where  or . Hence,deg deg

Thus,

deg deg

In words,  is the set of all polynomials in  over  of degree less than the
degree of the minimal polynomial of , where multiplication is performed
modulo .

The map  defined by

mod

is easily seen to be a surjective ring homomorphism. In fact, it is the
composition of two surjective ring homomorphisms: the first is projection
modulo  and the second is evaluation at .

The kernel of  is the ideal  generated by , since

ker mod

It follows that

This has a couple of important consequences. First, if we restrict attention to
polynomials of degree less than , then  can be treated as andeg
“independent” variable. Also, if  are conjugate (have the same minimal
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polynomial) over , then the substitution map  defined by

is an isomorphism from  to .

Let us summarize.

Theorem 2.4.1 Let  and let  be algebraic over .
1  Then)

deg deg

where multiplication is performed modulo .
2  Moreover,)

3  The extension  is finite and)

deg

In fact, the set  is a vector space basis for  over .
4  If the elements  are conjugate over  then .)

We have seen that a simple extension , where  is algebraic, is finite.
Conversely, if  is finite and simple, then for any , the
sequence  is linearly dependent and so  is algebraic. Hence, all
elements of  are algebraic and so  is an algebraic extension.

Theorem 2.4.2 The following are equivalent for a simple extension 
1   is algebraic)
2   is algebraic)
3   is finite.)
In this case, deg min .

Characterizing Simple Algebraic Extensions

Simple algebraic extensions can be characterized in terms of the number of
intermediate fields.

Theorem 2.4.3 Let  be finitely generated over  by
algebraic elements over 
1  Then  for some algebraic element  if and only if there is)

only a finite number of intermediate fields  between  and .
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2  In this case, if  is an infinite field, then  where  has the form)

for .
Proof. Suppose first that  for some algebraic element . For
each intermediate field , the minimal polynomial  ismin
also a polynomial over  and is satisfied by . Hence, .min min
But  has only a finite number of monic factors. Therefore, this part ofmin
the proof will be complete if we show that there is only one intermediate field
with minimal polynomial min .

Suppose that  and  have the property that

min min

Then the coefficients of  lie in . Since  is irreducible over , it
is also irreducible over  and so

min min min

But  and so

deg

which implies that  and so . Similarly, 
and so . This shows that  is uniquely determined by the polynomial
min  and so there are only finitely many intermediate fields

.

For the converse, if  is a finite field, then so is , since it is finite-dimensional
over  and so the multiplicative group  of nonzero elements of  is cyclic. If

 generates this group, then  is simple. Now suppose that  is an
infinite field and there are only finitely many intermediate fields between  and

. Consider the intermediate fields , for all . By hypothesis,
 for some . Hence, 

, implying that

and

Hence, . The reverse inclusion is evident and so
. Hence,
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We can repeat this process to eventually arrive at a primitive element of the
desired form.

In view of the previous theorem, it is clear that if , where  is
algebraic, then the lower step  is also simple. (Note that  is a
finite extension and therefore finitely generated by the elements of a basis for 
over , whose elements are algebraic over .)

Simple Transcendental Extensions
If  is transcendental over , then  is the field of all rational expressions in

:

The fact that  is transcendental implies that there are no algebraic dependencies
in these rational expressions and  is, in fact, isomorphic to the field of
rational functions in a single variable.

Theorem 2.4.4 Let  and let  be transcendental over . Then 
is isomorphic to the field of all rational functions  in a single variable .
Proof. The evaluation homomorphism  defined by

is easily seen to be an isomorphism. To see that  is injective, note that
 implies , which implies that , since otherwise 

would be algebraic.

Simple transcendental extensions fail rather misreably to be distinguished. For
example, the lifting of the transcendental extension  by  is

, which is algebraic. Also, in the tower , the
upper step is algebraic.

Let  be the field of rational functions in two independent variables. Then
each step in the 2-tower

is simple, but the extension  is not simple. The proof is left as an
exercise. (Intuitively speaking, we cannot expect a  rational function in single
and  to be able to express both  and  individually.)

On the other hand, the lower step  of a transcendental extension
is simple and transcendental (provided that . This result is known as
Luroth's theorem and will be proved in the next chapter.
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Thus, simple transcendental extensions fail to be distinguished on every count
except that the lower step in a simple transcendental extension is simple and
transcendental.

More on Simple Transcendental Extensions

The fact that the upper step in the tower  is algebraic is not
an isolated case. Suppose that  is transcendental. Then any

 is a nonconstant rational function in 

where we can assume that  and  are relatively prime. It turns out that  carries
with it the full “transcendental nature” of the extension . To be more
precise, consider the polynomial

Then  is a root of  and so  is algebraic over . In other words, the
upper step in the tower

is algebraic and finitely generated (by ) and therefore finite, by Theorem 2.4.2.
As to the lower step, if it were also algebraic, it would be finite and so by the
multiplicativity of degree,  would be finite and therefore algebraic.
Since this is not the case, we deduce that  is transcendental, which
means that  does not satisfy any nonzero polynomial over .

We can now show that  is irreducible over . Since  is transcendental
over , we have , where  is an independent variable. It follows
that  and so it is sufficient to show that the polynomial

is irreducible over . However, this follows from the fact that  is
irreducible as a polynomial over the ring , that is, as a polynomial in

. To see this, note that any factorization in 
has the form

where  and  are over . But  and  are relatively prime
and so  must be a unit in , which implies that  is irreducible over

.
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Hence,  is irreducible over  and

deg deg degmax , 

Theorem 2.4.5 

1  Consider the extension , where  is transcendental over . Let)

be any element of , where  and  are relatively prime. Then
in the tower

the lower step is transcendental and so  is transcendental over  and the( )
upper step is algebraic, with

max deg deg,

2  If  is transcendental over , then  is algebraic over any intermediate)
field  other than  itself.

Proof. Part 1) has already been proved. As to part 2), if  where
, then let . In the tower , we know that

 is algebraic and simple and thus finite. It follows that  is
also finite, hence algebraic.

We should note that this theorem does not hold for nonsimple extensions.
Specifically, just because an extension  is generated by transcendental
elements does not mean that all of the elements of  are transcendental. For
example, the extension , where  is  istranscendental over ,
generated by transcendental elements  and , but some elements of

 are algebraic over . We will have more to say about this in
Chapter 3.

2.5 Finite Extensions

If  and  is finite, we say that  is a  of  or thatfinite extension

 is .finite

Theorem 2.5.1 An extension is finite if and only if it is finitely generated by
algebraic elements.
Proof. If  is finite and if  is a basis for  over , then 

 is finitely generated over . Moreover, for each , the sequence
 over powers is linearly dependent over , and so  is algebraic

over . Thus,  is algebraic.

For the converse, assume that , , where each  is algebraic
over . Each step in the tower
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is simple and algebraic, hence finite by Theorem 2.4.2. It follows that  is finite
over . 

Suppose that  is finitely generated by algebraic elements 
over  and consider the tower

Our results on simple algebraic extensions show that any element of  is a
polynomial in  over . Further, any element of  is a polynomial in

 over , and hence a polynomial in the two variables  and .
Continuing in this way, we conclude that  is the set of all polynomials over 
in .

Theorem 2.5.2 The class of finite extensions is distinguished. Moreover, if  is
a finite basis for  over  and if , then  spans  over , in
particular,

Proof. The multiplicativity of degree shows that the tower property holds. As to
lifting, let  be finite, with basis  and let . Then 

, , where each  is algebraic over  and so also over . Since
,  is finitely generated by elements algebraic over , it is a

finite extension of .

For the statement concerning degree, let  be a basis for  over
. If , then the lifting is  and each  is

algebraic over t follows that  is the set of polynomials over  in. I
. However, any monomial in the  is a linear combination (over 's

of  and so  is the set of linear combinations of  over .
In other words,  spans  over .

We will see much later in the book that if  is finite, and also normal and
separable, then  actually divides .

Note that if  is a splitting field for  then  is generated by the set,
of distinct roots  of . Thus  is finitely
generated by algebraic elements and so is a finite extension of , of degree at
most , where .deg

2.6 Algebraic Extensions

We now come to algebraic extensions.
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Definition An extension  of  is  over  if every element  isalgebraic

algebraic over . Otherwise,  is  over . transcendental

Theorem 2.6.1 A finite extension is algebraic.
Proof. As we have said before, if  is finite and  then the sequence,
of powers  is linearly dependent over  and therefore some2

nontrivial polynomial in  must equal , implying that  is algebraic over . 

Corollary 2.6.2 The following are equivalent for an extension 
1   is finite)
2   is finitely generated by algebraic elements)
3   is algebraic and finitely generated.)

Theorem 2.6.3 Let . The set  of all elements of  that are algebraic
over  is a field, called the .algebraic closure of  in 

Proof. Let . The field  is finitely generated over  by
algebraic elements and so is algebraic over , that is, . This
implies that ,  and  all lie in , and so  is a subfield of . 

Theorem 2.6.4 The class of algebraic extensions is distinguished. It is also
closed under the taking of arbitrary composites.
Proof. For the tower property, let . If the full extension  is
algebraic then so is the lower step . Also, since any polynomial over  is
a polynomial over , the upper step  is also algebraic. Conversely,
suppose that  and  are algebraic and let  have minimal
polynomial  over . Consider the tower of fields

Since  is algebraic over  and each , being in , is algebraic
over , we deduce that each step in the tower is finite and so

 is finite. Hence,  is algebraic over .

For the lifting property, let  be algebraic and let . Let
, where  is the algebraic closure of  in . Then since each

 is algebraic over  it is lgebraic over  and so . a fortiori a
Clearly,  and so  is algebraic over .. It follows that 

Finally, if  is a family of fields, each algebraic over , then so is ,
since an element of  is also an element of a composite of only a finite
number of members of the family. 

The algebraic closure of the rational numbers  in the complex numbers  is
called the field  of . We saw in the previous chapter thatalgebraic numbers

there is an irreducible polynomial  of every positive degree .
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Hence,  is an infinite algebraic extension of , showing that the converse of
Theorem 2.6  does not hold: algebraic extensions need not be finite..1

Note that if  is an algebraic number, it also satisfies a polynomial over the
integers. Thus, the algebraic numbers can be defined as the set of complex roots
of polynomials over the integers. The subfield of all complex roots of monic
polynomials over the integers is called the field of .algebraic integers

We note finally that if  is algebraic and if  for some 
then each element of  is a polynomial in finitely many elements from . This
follows from the fact that each  is a rational function in finitely many
elements of  and so there exists a finite subset  such that .
Hence, our discussion related to finitely generated algebraic extensions applies
here.

2.7 Algebraic Closures

Definition A field  is said to be  if any nonconstantalgebraically closed

polynomial with coefficients in  splits in . 

Note that an algebraically closed field  cannot have a nontrivial algebraic
extension , since any  is algebraic over  and its minimal
polynomial over  must split over , whence .

Theorem 2.7.1 Let  be a field. Then there is an extension  of  that is
algebraically closed.
Proof. The following proof is due to Emil Artin. The first step is to construct an
extension field  of , with the property that all nonconstant polynomials in

 have a root in . To this end, for each nonconstant polynomial
, let  be an independent variable and consider the ring  of all

polynomials in the variables  over the field . Let  be the ideal generated
by the polynomials . We contend that  is not the entire ring . For if it
were, then there would exist polynomials  and 
such that

This is an algebraic expression over  in a finite number of independent
variables. But there is an extension field  of  in which each of the
polynomials  has a root, say . Setting  and
setting any other variables appearing in the equation above equal to  gives

. This contradiction implies that .

Since , there exists a maximal ideal  such that . Then
 is a field in which each polynomial  has a root, namely

. (We may think of  as an extension of  by identifying  with
.)
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Using the same technique, we may define a tower of field extensions

such that each nonconstant polynomial  has a root in . The
union  is an extension field of . Moreover, any polynomial

 has all of its coefficients in  for some  and so has a root in ,
hence in . It follows that every polynomial  splits over . Hence

 is algebraically closed. 

Definition Let . Then  is an  of  if  isalgebraic closure

algebraic and  is algebraically closed. We will denote an algebraic closure of
a field  by . 

We can now easily establish the existence of algebraic closures.

Theorem 2.7.2 Let  where  is algebraically closed. Let 
where  is the algebraic closure of  in . Then  is the only algebraic
closure of  that is contained in . Thus, any field has an algebraic closure.
Proof. We have already seen that  is an algebraic extension of . By
hypothesis, any  splits in  and so all of its roots lie in . Since
these roots are algebraic over , they are also algebraic over  and thus lie in

. Hence  splits in  and so  is algebraically closed.

As to uniqueness, if  with  an algebraic closure of , then since
 is algebraic, we have . But if the inclusion is proper, then there is

an . It follows that  does not split over , a contradiction tomin
the fact that  is algebraically closed. Hence, . The final statement of the
theorem follows from Theorem 2.7 ..1

We will show a bit later in the chapter that all algebraic closures of a field  are
isomorphic, which is one reason why the notation  is (at least partially)
justified.

Here is a characterization of algebraic closures.

Theorem 2.7.3 Let . The following are equivalent.
1   is an algebraic closure of .)
2   is a maximal algebraic extension of , that is,  is algebraic and if)

 is algebraic then .
3   is a minimal algebraically closed extension of , that is, if )

where  is algebraically closed, then .
4   is algebraic and every nonconstant polynomial over  splits over)

.
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Proof. To see that 1) implies 2), suppose that  is an algebraic closure of  and
 is algebraic. Hence, any  is algebraic over . But min

splits over  and so  contains a full set of roots of . Hence, ,min
which shows that . Thus,  is a maximal algebraic extension of .

Conversely, let  be a maximal algebraic extension of  and let .
Let  be the splitting field for  over . Thus,  is an algebraic
tower, since  is generated over  by the finite set of roots of . Hence, the
maximality of  implies that , and so  splits in , which says that 
is algebraically closed and therefore an algebraic closure of .

To see that 1) implies 3), suppose that  where  is algebraically
closed. Since  is algebraic, it follows that . Conversely, suppose
that  is a minimal algebraically closed extension of . Let  be the algebraic
closure of  in . Thus, , with  algebraic. If  is not
algebraically closed, then there is a polynomial  over  that does not split
over . But  is also a polynomial over  and therefore splits over .
Hence, each of its roots in  is algebraic over  and therefore also over , and
so lies in , which is a contradiction. Hence,  is algebraically closed and so
the minimality of  implies that , whence  is an algebraic closure of .

Finally, it is clear that 1) implies 4). If 4) holds, then  is algebraic and if
 is algebraic, then let  have minimal polynomial 

over . This polynomial splits over  and so , which implies that
, whence  is a maximal algebraic extension of  and so 2) holds.

2.8 Embeddings and Their Extensions

Homomorphisms between fields play a key role in the theory. Since a field 
has no ideals other than  and , it follows that any nonzero ring
homomorphism  from  into a ring  must be a monomorphism, that
is, an  of  into .embedding

A bit of notation: Let  be a function.
1) The restriction of  to  is denoted by .
2) The image of  under  is denoted by  or by .
3) The symbol denotes an embedding. Thus,  signifies that  is

an embedding of  into .
4) If  and if  is an embedding, the polynomial

 is denoted by  or .

Definition Let  be an embedding of  into  and let .
Referring to Figure 2.8.1, an embedding  for which  is called
an  of  to . An embedding of  that extends the identity mapextension

 is called an embedding , or an .over embedding-
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F (F)

E

L

(E)

Figure 2.8.1

The set of all embeddings of  into  is denoted by . The set of allhom
embeddings of  into  that extend  is denoted by  and the set ofhom
all embeddings over  is denoted by . hom

Embeddings play a central role in Galois theory, and it is important to know
when a given embedding  can be extended to a larger field , and
how many such embeddings are possible. We will discuss the former issue here,
and the latter issue in the next chapter.

The Properties of Embeddings
Embeddings preserve many properties. For example, an embedding maps roots
to roots and preserves composites.

Lemma 2.8.1

1) ( ) If  andEmbeddings preserve factorizations and roots

, then  if and only if .
Also,  is a root of  if and only if  is a root of .

2) ( ) If  and ifEmbeddings preserve the lattice structure

 is a family of subfields of  then

and

3) ( ) If  and if  and Embeddings preserve adjoining

then

4) ( ) Let   and let  beEmbeddings preserve being algebraic

algebraic. If  is an extension of , then  is algebraic.
5) ( ) Let   and let  be anEmbeddings preserve algebraic closures

algebraic closure of . If  is an extension of , then  is an
algebraic closure of .

Proof. We leave the proof of parts 1), 4) and 5) to the reader. For part 2), since
 is injective, it preserves intersections. But

 for all 
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and so

 for all 

 for all 

For part 3),  contains  and  and so it contains the smallest field
containing these two sets, that is . On the other hand, if  is a
field for which  and , then  and ,
whence , and so . In other words,  is contained
in any field containing  and , including the composite .

Even though the next result has a simple proof, the result is of major
importance. If  is algebraic and  over , then since  permutes
the roots of any polynomial over  and since every element of  is a root of a
polynomial over , it follows that every element of  is the image of some
element of , that is, the embedding  must be surjective, and hence an
automorphism.

Theorem 2.8.2 If  is algebraic and  over , then  is an
automorphism of . In symbols,

hom Aut

Proof. Let  and let  be the set of roots of the minimal polynomial
min  that lie in . Then  is a permutation on  and so there is a 
for which . Hence,  is surjective and thus an automorphism of .

Extensions in the Simple Case
Consider the case of a simple algebraic extension. Suppose that ,
where  is algebraically closed. Let  be algebraic over . We can easily
extend  to , using the minimal polynomial  of  over .

The key point is that any extension  of  is completely determined by its value
on  and this value must be a root  of , where . In fact,min
we must have

for any . Moreover, it is easy to see that this condition defines an
isomorphism  over .

Theorem 2.8.3 Let  and let  be algebraic over , with minimal
polynomial . Let , where  is algebraically closed.
1  If  is a root of  in , then  can be extended to an embedding)

 over  for which .
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2  Any extension of  to  must have the form , as described in part 1 .) )
3  The number of extensions of  to  is equal to the number of distinct)

roots of  in .min

The previous theorem shows that the  of  dependscardinality hom
only on  through its minimal polynomial, and furthermore, that it does not
depend on either  or ! We will explore this issue further in the next chapter.

Extensions in the Algebraic Case
The simple case, together with Zorn's lemma, is just what we need to prove that
if , with  algebraically closed and if  is algebraic, then there
is at least one extension of  to .

Theorem 2.8.4 Let  be algebraic.
1  Any embedding , where  is algebraically closed, can be)

extended to an embedding .
2  Moreover, if  and  and  is a root of ,) min

then we can choose  so that . See Figure 2.8.2.( )
Proof. Let  be the set of all embeddings  for which hom
and  where . Since  can be extended to an embedding of

 into  in such a way that , it follows that  is not empty.

The set  is a partially ordered set under the order defined by saying that
 if  and  is an extension of . If 

 is a chain in , the map  defined by the condition
, is an upper bound for  in . Zorn  lemma implies the existence of a's

maximal extension . We contend that , for if not, there is an
element . But  is algebraic over  and so we may extend  to

, contradicting the maximality of .

F (F)

E

L

(E)

F( ) F( )

Figure 2.8.2

As a corollary, we can establish the essential uniqueness of algebraic closures.

Corollary 2.8.5 Any two algebraic closures of a field  are isomorphic.



62 Field Theory

Proof. Let  and  be algebraic closures of . The identity map  can
be extended to an embedding . Since  is algebraically closed so is

. But  is an algebraic extension of  and so . Hence,  is an
isomorphism. 

Independence of Embeddings
Next, we come to a very useful result on independence of embeddings. We
choose a somewhat more general setting, however. A  is a nonempty setmonoid

 with an associative binary operation and an identity element. If  and 
are monoids, a  of  into  is a map  such thathomomorphism

 and .

Definition Let  be a monoid and let  be a field. A homomorphism
, where  is the multiplicative group of all nonzero elements of 

is called a  of  in . character

Note that an embedding  of fields is a character, when restricted to
.

Theorem 2.8.6 ( ). Artin  Any set  of distinct characters of  in  is linearly
independent over .
Proof. Suppose to the contrary that

for  and , not all . Look among all such nontrivial linear
combinations of the  for one with the fewest number of nonzero coefficients's
and, by relabeling if necessary, assume that these coefficients are .
Thus,

(2.8 ).1

for all  and this is the “shortest” such nontrivial equation (hence 
for all ). Note that since , we have  for all . Hence,

.

Let us find a shorter relation. Since  is a character,  for all .
Multiplying by  gives

On the other hand, replacing  by  in (2.8.1) gives,

Subtracting the two equations cancels the first term, and we get
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Now, since , there is an  for which  and we
have a shorter nontrivial relation of the form (2.8.1). This contradiction proves
the theorem.

Corollary 2.8.7 ( )Dedekind independence theorem  Let  and  be fields. Any
set of distinct embeddings of  into  is linearly independent over . 

2.9 Splitting Fields and Normal Extensions

Let us repeat a definition from Chapter 1.

Definition Let  be a family of polynomials in . A
splitting field for  over  is an extension field  of  with the property that
each  splits in  and that  is generated by the set of all roots of the
polynomials in . 

The next theorem says that splitting fields not only exist, but are essentially
unique.

Theorem 2.9.1 Existence and uniqueness of splitting fields( ) Let  be a
family of polynomials over .
1  In any algebraic closure  of , there is a unique splitting field for .)
2  If  and  are algebraic, where  is the splitting)

field for  in  and  is the splitting field for  in  then any
embedding  over  maps  onto .

3  Any two splitting fields for  are isomorphic over .)
Proof. For part 1), if  is a family of polynomials over , then every member
of  splits in  and so  contains the field  generated over  by the roots in

 of the polynomials in , that is,  contains a splitting field for . It is clear
that this splitting field is unique in , because any splitting field in  must be
generated, in , by the roots of all polynomials in .

For part 2), if  is the family of roots of  contained in  then  and
so

But  is precisely the set of roots of  in  and so  is the splitting
field for  in , that is, . Part 3) follows immediately
from part 2).

-Invariance and Normal Extensions
Speaking very generally, if  is any function on a set  and if 
has the property that , then  is said to be , or invariant under -

invariant. This notion occurs in many contexts, including the present one,
although the term “invariant” is seldom used in the present context.
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Suppose that  is algebraic and that  is an embedding
over  of  into the algebraic closure . Then  is -invariant if .
However, since  is algebraic, any embedding of  into itself is an
automorphism of  and so  is -invariant if and only if , that is, if
and only if  is an  of .automorphism

Suppose that  is -invariant for  embeddings  over . Then it isall
not hard to see that any irreducible polynomial  over  that has one root 
in  must split over . For if  is also a root of  in , then there is an
embedding  for which . Hence, the -invariance of hom
implies that . Put another way, we can say that  is the splitting field for
the family

MinPoly min

Thus, for  algebraic, we have shown that 1) 2) 3), where

1)  is -invariant for all embeddings  over 
2) If an irreducible polynomial over  has one root in , then it splits over .
3)  is a splitting field, specifically for the family MinPoly .

On the other hand, suppose that  is a splitting field of a family  of
polynomials over . Thus, , where  is the set of roots of the
polynomials in . But any embedding  over  sends roots to roots
and so sends  to itself. Hence,

Since  is an embedding of  into itself over  and  is algebraic, it
follows that  is an automorphism of . Thus, 1)-3) are equivalent.

Theorem 2.9.2 Let , where  is an algebraic closure of . The
following are equivalent.
1   is a splitting field for a family  of polynomials over .)
2   is invariant under every embedding  over . It follows that) (

every embedding of  into  over  is an automorphism of .)
3  Every irreducible polynomial over  that has one root in  splits in .)

Definition An algebraic extension  that satisfies any and hence all  of( )
the conditions in the previous theorem is said to be a  and wenormal extension

write . We also say that  is  . normal over

Corollary 2.9.3 If  is a finite normal extension, then  is the splitting
field of a finite family of irreducible polynomials.
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Proof. Let . Since , each minimal polynomial
min  splits in . Clearly,  is generated by the roots of the finite family

min  and so  is the splitting field of . 

Note that the extension  is normal, sin nconstant ce  noany
splits in .

Normal Extensions Are Not Distinguished
As it happens, the class of normal extensions is not distinguished, but it does
enjoy some of the associated properties.

Example 2.9.1  It is not hard to see that any extension of degree  is normal.
The extension  is not normal since  contains exactly two of
the four roots of the irreducible polynomial . On the other hand,

has each step of degree  and therefore each step is normal.

Here is what we can say on the positive side.

Theorem 2.9.4

1   Let . If) ( )Full extension normal implies upper step normal

 is normal then .
2   If  and  then) ( )Lifting of a normal extension is normal

.
3   If ) ( )Arbitrary composites and intersections of normal are normal

is a family of fields, and  then  and .
Proof. Part  follows from the fact that a splitting field for a family of1)
polynomials over  is also a splitting field for the same family of polynomials
over .

For part 2), let  be a splitting field for a family  of polynomials over  and
let  be the set of roots in  of all polynomials in . Then . Hence,

, which shows that  is a splitting field for the family ,
thought of as a family of polynomials over . Hence, .

For part 3), let  over . Then  is an embedding when restricted to
each  and so , whence

and so  is an automorphism of . Similarly, if  over  then
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Normal Closures
If  is not normal, then there is a  extension  of  (in a givensmallest
algebraic closure ) for which  is normal over . Perhaps the simplest way to
see this is to observe that  is normal and the intersection of normal
extensions is normal, so

  and 

Definition Let . The  of  over  in  is thenormal closure

smallest intermediate field  for which . The normal closure is
denoted by .nc

Theorem 2.9.5 Let  be algebraic, with normal closure .nc
1  The normal closure  exists and is equal to) nc

  and 

2)

nc
hom

3   is the splitting field in  of the family) nc

MinPoly min

4  If , where , then  is the splitting field in  of the) nc
family

MinPoly min

5  If  is finite, then  is also finite.) nc
Proof. We prove only part 2), leaving the rest for the reader. Let 
with . Since  is algebraic, any embedding hom  can be
extended to an . embedding  over Since ,  is an
automorphism of . It follows that  and so . On the other
hand, if , then  since if  then ,  runs over allhom
elements of  as  does and shom o

Hence,  and  is the smallest normal extension of  in , that is, 
nc .

Exercises

1. Prove that .
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2. Prove that if  is an algebraic extension of the real field  and , then
 is isomorphic to the complex numbers .

3. Prove that every finite field  of characteristic  is a simple extension of its
prime subfield .

4. Let . Suppose that  is finite, where  is a subset of . Is it
true that  for some finite subset  of ?

5. If  and  is algebraically closed, is  necessarily an algebraic
closure of ?

6. Suppose that  and that . Let . Prove that ifchar
min  has only one distinct root in , then  and the multiplicity
of  is . What can be said if ?char

7. Let  be a , that is, an extension of degree .quadratic extension

Show that  has a basis over  of the form  where .2

8. a) Find all automorphisms of .
 b) Is there an isomorphism  over  for which

?
 c) Is there an isomorphism  over  other than the

identity?
9. Show that the automorphism  over  that sends 

to  is not continuous.
10. Prove that if  is algebraic and has only a finite number of

intermediate fields, then  is a finite extension.
11. Let  be an integral domain containing a field . Then  is a vector space

over . Show that if  then  must be a field. Find a
counterexample when  is a commutative ring with identity but not an
integral domain.

12. If  is algebraic and  is a ring such that , show that  is
a field. Is this true if  is not algebraic?

13. Let  and  be finite extensions and assume that  is
defined. Show that , with equality if 
and  are relatively prime.

14. Let  and let . Show that  is -linear if and only if
 for all .

15. Find an extension  that is algebraic but not finite.
16. The algebraic closure of  in , that is, the set of all complex roots of

polynomials with integer coefficients, is called the field  of algebraic

numbers. Prove that  is algebraic and infinite by showing that if
 are distinct primes, then

Hint: use induction on .
17. Prove that any extension of degree  is normal.
18. Let  be a finite Galois extension and let  have degrees 

and  over , respectively. Suppose that .
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 a) Show that if  is a conjugate of  and  is a conjugate of , then
there is a  such that  and . Hence, the
conjugates of  are .

 b) Show that if the difference of two conjugates of  is never equal to the
difference of two conjugates of  then .

19. Let  be an infinite field and let  be an algebraic extension. Show
that .

20. Let  where  is an algebraic closure of  and let Aut  be
the group of all automorphisms of  fixing  pointwise. Assume that all
irreducible polynomials over  are separable. Let

fix  for all 

be the fixed field of  under . Evidently . Prove thatfix
fix .

21. (For readers familiar with complex roots of unity) Let  be a prime and let
 be a complex th root of unity. Show that min

. What is the splitting field for  over ?
22. Let  be a field of characteristic  and let . Show that the

following are equivalent: a) , b) , c) 
where .

23. Let  be a finite normal extension and let  be irreducible.
Suppose that the polynomials  and  are monic irreducible factors
of  over . Show that there exists a Aut  for which 

.
24. Show that an extension  is algebraic if and only if any subalgebra 

of  over  is actually a subfield of .
25. Let . Can  automorphisms of  be extended to an automorphism ofall

?
26. Suppose that  and  are fields and  is an embedding. Construct

an extension of  that is isomorphic to .
27. Let  be algebraic.
 a) Finish the proof of Theorem 2.9.5.
 b) Show that any two normal closures  and

, where  is an algebraic closure of  are
isomorphic.

28. With reference to Example 2.4.1, let  and  be independent variables and
let  be a prime. Show that, in the tower

each step is simple but the full extension is not.
29. Consider the field  of rational functions in two (independent)

variables. Show that the extension  is not simple.
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Constructions
The goal of the following series of exercises is to prove that certain
constructions are not possible using straight edge and compass alone. In
particular, not all angles can be trisected, a circle cannot be “squared” and a
cube cannot be “doubled.” The first step is to define the term .constructible

Definition We assume the existence of two distinct points  and  in the
plane and take the distance between these points to be one unit. A point, line or
circle in the plane is said to be  if it can be obtained by a finiteconstructible

number of applications of the following rules:
1   and  are constructible.)
2  The line through any two constructible points is constructible.)
3  The circle with center at one constructible point and passing through)

another constructible point is constructible.
4  The points of intersection of any two constructible lines or circles are)

constructible.

30. Show that if a line  and point  are constructible, then the line through 
perpendicular to  is also constructible.

31. Show that if a line  and point  are constructible, then the line through 
parallel to  is also constructible.

32. Taking the constructible line through  and  as the -axis and the point
 as the origin, the -axis is also constructible. Show that any point 

with integer coordinates is constructible.
33. Show that the perpendicular bisector of any line segment connecting two

constructible points is constructible. Show that the circle through two
constructible points  and  with center equal to the midpoint of  and 
is constructible.

34. If ,  and  are constructible points and  is a constructible line through
 then a point  can be constructed on  such that the distance from  to
 is the same as the distance from  to . (Thus, given distances can be

marked off on constructible lines.)

Constructible Numbers

Definition A real number  is  if its absolute value is the distanceconstructible

between two constructible points. 

35. Show that any integer is constructible.
36. Prove that a point  is constructible if and only if its coordinates  and

 are constructible real numbers.
37. Prove that the set of numbers that are constructible forms a subfield of the

real numbers containing . Hint: to show that the product of two
constructible numbers is constructible or that the inverse of a nonzero
constructible number is constructible, use similar triangles.
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38. Prove that if 0 is constructible, then so is . Hint: first show that a
circle of diameter , with center on the -axis and going through the
origin  is constructible. Mark off  units along the -axis and draw the
perpendicular.

The two previous exercises prove the following theorem.

Theorem C1  If the elements of a field  are constructible, and if ,
then  is constructible. 

Theorem C2  Let  be a subfield of  and let  be a quadratic extension.
Then  for some .
Proof. Exercise. 

It follows from the two previous theorems that if  is constructible and if
 is a  then  is constructible.quadratic extension, that is, ,

Any tower , where each extension has degree  is a
quadratic tower. f  is a quadratic tower, thenThus, i
every element of  is constructible.

The converse of this statement also happens to be true.

Theorem C3  The set of constructible real numbers is( )Constructible numbers

the set of all numbers that lie in some quadratic tower

with base . In particular, the degree of a constructible number over  must be
a power of .
Proof. Exercise. 

Constructible Angles

Now consider what it means to say that an angle of ° is constructible.
Informally, we will take this to mean that we may construct a line  through the
origin that makes an angle of  with the -axis. Formally, the angle (real
number)  is constructible if the real number  is constructible.cos

39. Show that such a line  making angle  with the -axis is constructible if
and only if the real number cos  is constructible. (This is an informal
demonstration, since we have not formally defined angles.)

40. Show that a ° angle is constructible.
41. Show that a ° angle is not constructible. : Verify the formulaHint

cos cos cos3

Let cos ° and show that  is a root of
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3

Show that  is irreducible over  and so .
42. Prove that every constructible real number is algebraic over . Assuming

that  is transcendental over , show that any circle with a constructible
radius cannot be “squared,” that is, a square cannot be constructed whose
area is that of a unit circle.

43. Verify that it is impossible to “double" any cube whose side length  is
constructible, that is, it is impossible to construct an edge of a cube whose
volume is twice that of a cube with side length .



Chapter 3

Embeddings and Separability

3.1 Recap and a Useful Lemma

Let us recall a few facts about separable polynomials from Chapter 1.

Definition An irreducible polynomial  is  if it has noseparable

multiple roots in any extension of . An irreducible polynomial that is not
separable is .inseparable

Definition If , then an algebraic element  is  if itsseparable

minimal polynomial  is separable. Otherwise, it is . Also,min inseparable

the  of  over  is the radical exponent of . radical exponent min

Theorem 3.1.1

1  An irreducible polynomial  is separable if and only if .)
2  If  is a field of characteristic , or a finite field, then all irreducible)

polynomials over  are separable.
3  Let . An irreducible polynomial  over  is) char

inseparable if and only if  has the form

where  and  is a nonconstant polynomial. In this case, the integer
 can be chosen so that  is separable and then every root of  has

multiplicity , where  is called the  of . radical exponent The radical
exponent of can be characterized as the  integer  for whichlargest

.
4  Let . If  has radical exponent  then  is separable) char

over , and is the smallest power of  for which  is separable over .
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In Chapter 2, we considered the problem of extending the domain of an
embedding of  to a larger field  that is algebraic over . Here is a brief
summary of what we discussed.

Theorem 3.1.2

1   Let  and let  be algebraic over , with) ( )Simple extensions

minimal polynomial . Let , where  is algebraically closed.
 a) If  is a root of  in , then  can be extended to an embedding

 over  for which .
 b) Any extension of  to  must have the form .
 c) The number of extensions of  to  is equal to the number of

distinct roots of  in .min
2   Let  be algebraic. Any embedding) ( )Algebraic extensions

, where  is algebraically closed, can be extended to an
embedding . Moreover, if ,  and min
is a root of , then we can choose  so that .

A Useful Lemma
Before proceeding, we record a useful lemma. If  is a field and  then 
denotes the set .

Lemma 3.1.3 Let  be algebraic with  and let .char
1   holds for some  if and only if it holds for all .)
2   holds for some  if and only if it holds for all .)
Proof. For part 1), suppose that  holds for some . Since

it follows that . Now, since , we have for any

and so

[ ]

Hence, , for all .

For part 2), we observe that

and so  holds for some  if and only if , which holds if and
only if  for all . 
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3.2 The Number of Extensions: Separable Degree

According to Theorem 2.8.3, the number of extensions of an embedding
 to , where  is algebraically closed, is equal to the number of

distinct roots of . Hence, as we remarked earlier, the size ofmin
hom  does not depend on either  or . The same is true for
extensions of  to any algebraic extension.

Theorem 3.2.1 If  is algebraic and , where  is algebraically
closed, then the cardinality of  depends only on the extensionhom

 and not on  or . In other words, if , with  algebraically
closed, then

hom hom

as cardinal numbers.
Proof. We refer the reader to Figure 3.2.1. Since for any hom , the
image  is contained in an algebraic closure of , we may assume that 
is an algebraic closure of , and similarly, that  is an algebraic closure of

.

Since  is an isomorphism and  is algebraic, the map
 can be extended to an embedding of  into  Since  is algebraic,

so is its image under , which is , and since  is algebraically
closed, we have , implying that  is an isomorphism.

Now, if then the map  is an embedding of  intohom ,
 extending  on . This defines a function from  to hom hom

given by . Moreover, if  are distinct, then there is ahom
 for which  and since  is injective, , which

implies that the map  is injective. Hence,

hom hom

By a symmetric argument, we have the reverse inequality and so equality
holds.
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F
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(F)(F)

= -1

Figure 3.2.1

In view of Theorem 3.2.1, we may make the following definition.

Definition Let  be algebraic and let , where  is algebraically
closed. The cardinality of the set  is called the  ofhom separable degree

 over  and is denoted by .

This new terminology allows us to rephrase the situation for simple extensions.

Theorem 3.2.2 Simple extensions( ) Let  and let  be algebraic
over , with minimal polynomial . Let , where  is algebraically
closed. Then
1  If  is separable then)

2  If  is inseparable with radical exponent , then)

In either case,  divides .hom

Properties of Separable Degree
Like the ordinary degree, the separable degree is multiplicative.

Theorem 3.2.3 If  is algebraic then

as cardinal numbers.
Proof. The set  of extensions of the inclusion map  to anhom
embedding  has cardinality . Each extension

hom  is an embedding of  into  and can be further extended to
an embedding of . Since the resulting extensions, of which there are into 

, are distinct extensions of  to , we have
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On the other hand, if  is the extension of  to ,hom  then 
hence an element of . Since  is an extension of  to , we seehom
that  is obtained by a double extension of  and so equality holds in
the inequality above. 

3.3 Separable Extensions

We have discussed separable elements and separable polynomials. it is now time
to discuss separable extensions.

Definition An algebraic extension  is  if every element separable

is separable over . Otherwise, it is .inseparable

The goal of this chapter is to explore the properties of algebraic extensions with
respect to separability. It will be convenient for our present discussion to adopt
the following nonstandard terminology.(not found in other books) 

Definition An algebraic extension  is  ifdegreewise separable

. An algebraic extension  is  ifseparably generated

 where each  is separable over . 

Simple Extensions
According to Theorem 3.2.2, if  and , then  is separable if and
only if

Hence,  is separable if and only if  is degreewise separable.
Moroever, if  is degreewise separable, and if , consider the
tower

The separable degree and the ordinary (vector space) degree are multiplicative
and, at least for simple extensions, the separable degree does not exceed the
ordinary degree. Hence,  implies that the same is true
for each step in the tower, and so

which shows that  is separable over . Thus,  is a separable
extension. Of course, if  is separable, then  is separable.

Thus, the following are equivalent:

1)  is separable over ;
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2)  is degreewise separable;
3)  is a separable extension.

It is an extremely useful general fact that if

then the minimal polynomial of  over  divides the minimal polynomial of 
over , that is,

min min

This tells us that if  is separable over , then it is also separable over any
intermediate field .

In particular, if  is separable over , then it is separable over an intermediate
field of the form

where . But  satisfies the polynomial

over , which implies that and so  divides min

min

Hence, , or equivalently, .

For the converse, suppose that  for some . Then Lemma
3.1.3 implies that this holds for all , in particular, , where

 is the radical exponent of . But  is separable over  and therefore so is
the element .

We can now summarize our findings on simple extensions and separability.

Theorem 3.3.1 Simple extensions and separability  Let  be algebraic over( )
, with . The following are equivalent.char

1   is separable over .)
2   is degreewise separable; that is,)

3   is a separable extension.)
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4  There is a  for which)

in which case  for all .
If  is inseparable with radical exponent , then

Finite Extensions
Now let us turn to finite extensions . It should come as no surprise that
the analogue of Theorem 3.3.1 holds for finite extensions.

If  is separable, then it is clearly separably generated. If 
is separably generated by , then , where  is
a finite subset of . Thus,

where  is separable over . But  is also separable over 
, since the minimal polynomial of  over  divides the

minimal polynomial of   over . Hence, each simple step above is separable
and therefore degreewise separable, which implies that  is degreewise
separable.

Finally, if  is degreewise separable and , then in the tower

the lower step is simple and degreewise separable, hence separable. It follows
that  is separable over  and so  is separable. Thus, as in the simple
case, separable, separably generated and degreewise separable are equivalent
concepts.

As to the analogue of part 4) of Theorem 3.3.1, let , where  is a
finite set. If  is separable, then any  is separable over  and so

for any . Thus, , for any . Conversely, if
 for some , then Lemma 3.1.3 implies that
 for all . Since  is a finite set, we can take  to be the

maximum of the numbers , where  varies over all radical exponents of the

elements of , in which case each  is separable, and so  is separably
generated, and therefore separable.
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Theorem 3.3.2 Finite extensions and separability  Let . Let( ) char
 be finite. The following are equivalent.

1   is separable.)
2   is degreewise separable; that is,)

3   is separably generated.)
4  If  for a finite set , then  for some , in)

which case  for all .
If  is not separable, then

for some integer .

Algebraic Extensions
For arbitrary algebraic extensions , we have the following.

Theorem 3.3.3 Algebraic extensions and separability  Let ( ) char
and let  be algebraic.
1   is separable if and only if it is separably generated.)
2  If  is separable and , then  for all .)
Proof. For part 1), if  is separable then  is separably generated (by
itself) over . For the converse, assume that  where each  is
separable over  and let . Then  for some finite subset .
Since  is finitely generated and algebraic, it is finite. Thus, Theorem
3.3  implies that  is separable. Hence  is separable over  and so.2

 is separable. As to part 2), we have for any  and 

which implies that  and so .

Existence of Primitive Elements
We wish now to describe conditions under which a finite extension is simple.
The most famous result along these lines is the theorem of the primitive element,
which states that a finite separable extension is simple. We want to state some
slightly more general results, and to improve the statements of these results, we
need to make some further observations about separable extensions. (These
remarks will be repeated and elaborated upon later in the chapter.)

Suppose that  is a finite extension. Let  be the set of all elements of 
that are separable over . By analogy to algebraic closures, we refer to  as the
separable closure of  in . Note that if , then the extension
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 is separably generated and therefore separable. Hence, every
element of  is separable over  and so  is a field.

We claim that the extension  has no separable elements. For if 
is separable over , then for the tower

we have

and so  is separable over , which is false. On the other hand, for any
, there is a positive integer  for which  is separable. It follows

that  and so  divides . Thus, min min
has only one distinct root. This implies that , since anyhom

hom  must map  to itself, for all .

Hence,  and so

We have shown that any finite extension  can be decomposed into a
tower

in which the first step is separable and has the same separable degree as the
entire extension. Now we can state our theorem concerning simple extensions.

Theorem 3.3.4

1  Any extension of the form)

where  is separable over  and  is algebraic over  is a simple
extension. Moreover, if  is infinite, this extension has infinitely many
primitive elements, of the form

where .
2  For any finite extension , there exists a  such that)

If  is infinite, there exist infinitely many such elements .
3  If  is finite and separable, say) ( ) Theorem of the primitive element

where  is separable over  then  is simple. If  is infinite, there
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exist infinitely many primitive elements for  over  of the form

where .
4  If  has characteristic  or if  is a finite field then any finite extension of)

 is simple.
Proof. If  is a finite field, then so is  , since  is finite. Hence
is cyclic and so  is simple. Let us now assume that  is an
infinite field.

For part 1), we show that if , with  separable over  and 
algebraic over , then , where  is algebraic over . The argument
can be repeated to obtain a primitive element in the more general case.

Let min min and  and suppose that the roots of 
are  and the roots of  are . Since  is
separable, the roots of  are distinct. However, the roots of  need not be
distinct. We wish to show that for infinitely many values of , the elements

 are primitive. To do this, we need only show that , for
then .

The polynomial  has coefficients in  and has
 as a root, and similarily for . Thus,  and  have the common factor

 in some extension of . Moreover, since  is separable,  is a simple
root and so no higher power of  is a factor of . Therefore, if we can
choose  so that  and  have no other common roots in any extension of

, it follows that , which must therefore be a polynomialgcd
over . In particular, , as desired.

The roots of  are the values of  for which  and we need
only choose  so that none of the roots  satisfy this equation, that is,
we need only choose  so that

for  and .

Part 2) follows from part 1) by considering the separable closure  of  in .
Since  is separable, with , we can apply part 1) to the
separable extension . Part 3) is a direct consequence of part 1), as is part
4).

Example 3.4.1 Consider the extension . Here we have

min
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and

min

and so  and  and . According to
the previous theorem,  is primitive provided that

In particular, we can choose any nonzero .

Separable Extensions Are Distinguished
We may now establish that the class of separable extensions is distinguished.

Theorem 3.3.7 

1  The class of separable extensions is distinguished.)
2  It is also closed under the taking of arbitrary composites.)
3  If  is separable, then so is , where  is a) nc nc

normal closure of  over .
Proof. For the tower property, if the full extension in  is separable,
then so is . As to , for any , we have

min min

and so  separable over  implies  separable over . Hence,  is
separable. Suppose now that  and  are separable and let .
Let  be the set of coefficients of . Then min
min  and so  is separable over . It follows that each step in the
tower  is finite and separable, implying that  is
separable over . Hence,  is separable.

For the lifting property, let  be separable and let . Since every
element of  is separable over  it is also separable over the larger field .
Hence  is separably generated and is therefore separable.

The fact that separable extensions are closed under the taking of arbitrary
composites follows from the finitary property of arbitrary composites. That is,
each element of an arbitrary composite involves elements from only a finite
number of the fields in the composite and so is an element of a finite composite,
which is separable.

Finally, a normal closure  nc is a splitting field in  of the family

MinPoly min

and so is generated over  by the roots of these minimal polynomials, each of
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which is separable over . Hence,  is separably generated over  andnc
is therefore separable over .

3.4 Perfect Fields

Definition A field  is  if every irreducible polynomial over  isperfect

separable.

It is clear from the definitions that if  is perfect then any algebraic extension of
 is separable. Conversely, suppose that every algebraic extension of  is

separable. If  is irreducible and  is a root of  in some
extension of  then  is algebraic and so  is separable over , that is,

 is separable. Thus,  is perfect.

Theorem 3.4.1 A field  is perfect if and only if every algebraic extension of 
is separable over . 

Theorem 3.4.2 Every field of characteristic  and every finite field is perfect. 

Theorem 3.4.3 Let  be a field with . The following arechar
equivalent.
1   is perfect.)
2   for some .)
3  The Frobenius map  is an automorphism of , for some .)
If this holds, then 2  and 3  hold for all .) )
Proof. Suppose  is perfect. Let  and consider the polynomial 

. If  is a root of  in a splitting field then  and so

Now, if  is an irreducible factor of  over , then it must be
separable and so . Thus , that is,  and so .
Since the reverse inclusion is manifest, we have . Then 2) follows from
Lemma 3.1.3.

Now assume that 2) holds. Then Lemma 3.1.3 implies that . Suppose
that  is irreducible. If  is not separable, then

contradicting the fact that  is irreducible. Hence, every irreducible
polynomial is separable and so  is perfect. Thus, 2) implies 1). Since the
Frobenius map is a monomorphism, statement 2), which says that  is
surjective, is equivalent to statement 3).

We can now present an example of a nonperfect field.
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Example 3.4.2 Let  be a prime. Since , the field  is perfect.
However, if  is an independent variable, then the field  of all rational
functions over  is not perfect. We leave proof to the reader.

While it is true that any algebraic extension of a perfect field is perfect, not all
subfields of a perfect field need be perfect.

Theorem 3.4.4

1  If  is algebraic and  is perfect then  is perfect.)
2  If  is finite and  is perfect then  is perfect.)
Proof. Part  follows from Theorem 3.4.  and the fact that every algebraic1) 1
extension of  is an algebraic extension of .

For part 2), let  and suppose first that  is simple. Thus,char
 is perfect and  is algebraic over  is perfect, we have. Since 

. Consider the tower

If  is the minimal polynomial of  over , then

and so . It follows that in the tower above,
, that is, , whence  is perfect. Since  is finitely

generated by algebraic elements, the result follows by repetition of the previous
argument. 

Note that we cannot drop the finiteness condition in part 2) of the previous
theorem since, for example,  is algebraic and  is perfect even if  is
not.

3.5 Pure Inseparability

The antithesis of a separable element is a  element.purely inseparable

Definition An element  algebraic over  is  over  if itspurely inseparable

minimal polynomial  has the form  for some . Anmin
algebraic extension  is  if every element of  ispurely inseparable

purely inseparable over . 

It is clear that for a purely inseparable element , the following are equivalent:
(1)  is separable, (2)  and (3) . In particular, for extensions of
fields of characteristic  or finite fields, there are no “interesting" purely
inseparable elements.
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For , since the coefficient of  in  is , it follows that min
must be a multiple of , that is,char

min

But , where  is separable and  is the radical exponentmin
of  over . Hence,  and we can write

min

which implies that , which is separable if and only if
 and . Thus,

min

where  is the radical exponent of  over .

Example 3.5.1 Let . If  is transcendental over , then  is purelychar
inseparable over , since its minimal polynomial over  is 

.

Example 3.5.2 Here we present an example of an element that is neither
separable nor purely inseparable over a field . Let  and let char
be nonzero. Let  be transcendental over  and let

According to Theorem 2.4.5  is algebraic and has degree equal to
. Since  is a root of the monic polynomial

of degree  over , this must be the minimal polynomial for  over .
Since , we deduce that  is not separable over . On the other
hand, if  were purely inseparable over , we would have

which would imply that , which is not the case. Hence,  is neither
separable nor purely inseparable over . 

Definition Let  be finite. Since , we may write

where  is the  or  of  overinseparable degree degree of inseparability

.
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Note that while the separable degree is defined for infinite extensions, the
inseparable degree is defined only for finite extensions.

Theorem 3.5.1 Let  be a finite extension with .char
1  If  then .)
2   is separable if and only if .)
3  If  then , where  is the radical exponent of .)
4   is purely inseparable if and only if , or equivalently,)

5   is a power of .)
Proof. The first three statements are clear. Part 4) follows from the fact that  is
purely inseparable if and only if its minimal polynomial has only one distinct
root. But this is equivalent to saying that  has cardinality . Parthom
5) follows from the fact that  is finitely generated and the inseparable
degree is multiplicative. We leave the details to the reader. 

We next characterize purely inseparable elements.

Theorem 3.5.2  Let . Let  be( ) charPurely inseparable elements

algebraic over , with radical exponent  and let . Themin
following are equivalent.
1   is purely inseparable over .)
2   is a purely inseparable extension)
3   for some .)
Furthermore,  is the smallest nonnegative integer for which .
Proof. If 1) holds and , then in the tower  the
inseparable degree of the full extension is equal to the degree, and so the same
holds for the lower step. Hence,  is purely inseparable over  and 2) holds.
Clearly, 2) implies 1).

If 1) holds, then , which implies 3). If 3)min  and so 
holds, then min  and, as we have seen,  is purely
inseparable.

Note that part 3) of the previous theorem, which can be written , is
the “antithesis” of the corresponding result  for  separable.

The following result is the analogue of Theorem 3.2.4.

Theorem 3.5.3  Let  be algebraic. The( )Purely inseparable extensions

following are equivalent.
1   is ; that is, generated by purely) purely inseparably generated

inseparable elements.
2   is , that is, .) degreewise purely inseparable
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3   is a purely inseparable extension.)
Proof. ppose that  where all elementsTo prove that 1) implies 2), su ,
of  are purely inseparable over . Any embedding  over  is
uniquely determined by its values on the elements of . But if  then  is
a root of the minimal polynomial  and so . Hence  must bemin
the identity and .

To show that 2) implies 3), let  and suppose that  is a root of min
in . Then the identity on  can be extended to an embedding , for
which . Since , we must have  and so . Thus,
min  has only one distinct root in  and so  is purely inseparable. It is
clear that 3) implies 1).

Purely Inseparable Extensions Are Distinguished
We can now show that the class of purely inseparable extensions is
distinguished.

Theorem 3.5.4 The class of purely inseparable extensions is distinguished. It is
also closed under the taking of arbitrary composites.
Proof. Let . Since pure inseparability is equivalent to degreewise
pure inseparability and  if and only if  and

, it is clear that the tower property holds. For lifting, suppose that
 is purely inseparable and . Since every element of  is purely

inseparable over , it is also purely inseparable over the larger field . Hence
) is purely inseparably generated and therefore purely inseparable.

We leave proof of the last statement to the reader. 

*3.6 Separable and Purely Inseparable Closures

Let . Recall that the algebraic closure of  in  is the set  of all
elements of  that are algebraic over . The fact that  is a field is a
consequence of the fact that an extension that is generated by algebraic elements
is algebraic, since if  then  and so  and

.

We can do exactly the same analysis for separable and purely inseparable
elements. To wit, if  are separable over  then  is separable,
over . It follows that , and  are separable over . Hence, the set
of all elements of  that are separable over  is a subfield of . A similar
statement holds for purely inseparable elements.

Definition Let . The field
sc  separable over 

 for some 
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is called the  of  in . The fieldseparable closure

ic  is purely inseparable over 
 for some 

is called the  of  in . When the context is clear,purely inseparable closure

we will drop the subscript and write  and .sc ic

The separable closure allows us to decompose an arbitrary algebraic extension
into separable and purely inseparable parts.

Theorem 3.6.1 Let  be algebraic.
1  In the tower  the first step is separable and the second step is) sc

purely inseparable.
2  Any automorphism  of  over  is uniquely determined by its restriction)

to .sc

Proof. For part , if  has radical exponent , then  has a1)
separable minimal polynomial and is therefore in . Thus, Theorem 3.5.2sc

implies that  is purely inseparable over . We leave proof of part 2) to thesc

reader.

Corollary 3.6.2 Let  be finite. Then  and sc

sc .

Perfect Closures

Let  and let  be an algebraic closure of . Suppose thatchar
, where  is perfect. What can we say about ?

If , then  is separable over  and therefore cannot be purely inseparable
over . In other words, the purely inseparable closure  is contained in .ic

On the other hand, we claim that  is perfect. For if , then .ic ic

Now, the polynomial  has a root  in some extension and so
. But then  and so . It follows that ic ic

and so , that is,  is perfect.ic ic ic

Thus, we have shown that the purely inseparable closure of  in  is the
smallest intermediate field  that is perfect. This field is also calledic

the perfect closure of  in .

More on Separable and Inseparable Closures
The remainder of this section is somewhat more technical and may be omitted
upon first reading.
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Part 1 of Theorem 3.6.  shows that any algebraic extension can be decomposed1
into a separable extension followed by a purely inseparable extension. In
general, the reverse is not possible. Although  is purely inseparable, theic

elements of  need not be separable over ; they are simply not purelyic ic

inseparable over . However, it is not hard to see when  is separable.ic

Theorem 3.6.3 Let  be algebraic. Then  is separable if and onlyic

if .sc ci

Proof. If  is separable then so is the lifting . But sincei ic sc c

sc sc c sc c is purely inseparable, so is the lifting . Thus .i i

Conversely, if  then , being a lifting of a separablesc c c sc ci i i

extension , is also separable. sc

We can do better than the previous theorem when  is a normal extension,
which includes the case . Let Aut  be the set of all
automorphisms of  over . Since ,  is also the set of all embeddings of

 into  over . We define the  of  in  byfixed field

 for all 

Theorem 3.6.4 Let . Let  and let  be the fixed field ofAut
 in . Then . Furthermore, in the tower , the firsti ic c

step is purely inseparable and the second step is separable.
Proof. Let . If  is a root of  then there existsmin
an embedding  over  for which . But  and so .
Hence  has only one root and so . On the other hand, if min ic

ic then any  must map  to itself, since it must map  to a root of
min . Hence . This proves that .ic

Now let  and , . Let  where min
 is the set of  roots of  in . Since any  is adistinct

permutation of , we deduce that  and so the coefficients of 
lie in . Hence  and  is separable over . 

Corollary 3.6.5 If  then  is separable and .ic sc ic

Let us conclude this section with a characterization of simple algebraic
extensions. If  is a simple algebraic extension of  and if  is the
radical exponent of , we have seen that  is the smallest
nonnegative power of  such that  is separable over , or equivalently, such
that . It turns out that this property actually characterizes simplesc

algebraic extensions. Before proving this, we give an example where this
property fails to hold.

Example 3.6.1  Let  and  be transcendental over  with .char
Let  and . It is easily seen that  is purely
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inseparable with . However,  implies  and so
.

Theorem 3.6.6 Let  be a finite extension with . Then
 is simple if and only if  is the smallest nonnegative integer for which

sc.
Proof. We have seen that if  is simple then  is the smallest such
nonnegative integer. For the converse, note first that if  is a finite field then so
is , implying that  is cyclic and so  is simple. Let us assume that  is
an infinite field and look at the second step in the tower . This stepsc

is purely inseparable. Since  is finite, we havesc

sc

If for some , we have  for all , then , contrary tosc sc

hypothesis. Hence one of the , say , satisfies's

sc sc  for 

It follows that

sc sc sc

Since , we have  and since thesc sc sc sc

extensions involved are purely inseparable, we get .sc sc sc

Hence, .sc

Our tower now has the form  where  is purely inseparablesc sc

over . In addition,  is finite and separable and therefore simple.sc sc

Thus there exists  such that  and the tower takes the formsc sc

 where  is separable over  and  is purely inseparable
over . By Theorem 3.3.4, the extension  is simple. 

Note that Theorem 3.6.6 implies that the extension  of Example 3.6.  is1
not simple.

Exercises

1. Find an infinite number of primitive elements for .
2. A  extension is an extension of degree  of the formbiquadratic

 where  and  have degree  over . Find all the proper
intermediate fields of a biquadratic extension.

3. Show that all algebraically closed fields are perfect.
4. If  is transcendental over  and , then  is not perfect.char
5. If  and  is not perfect, show that .char ic

6. Let  be algebraic over , where  and let  be the radicalchar
exponent of . Show that  is separable over  if and only if .
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7. Let  and  be distinct primes. Then  is finite and
separable and therefore simple. Describe an infinite class of primitive
elements for this extension. Find the minimal polynomial for each primitive
element.

8. Let  be separable over an infinite field . Prove that
there is an infinite number of -tuples  for which 

.
9. Show that the class of purely inseparable extensions is closed under the

taking of arbitrary composites.
10. Prove that for  finite, .sc

11. If  is algebraic prove that any automorphism  of  over  is
uniquely determined by its restriction to .sc

12. Show that lifting an extension by a purely inseparable extension does not
affect the separable degree. That is, show that if  is algebraic and

 is purely inseparable then .
13. Let  be finite separable and  be finite purely inseparable.

Prove that  is separable and . In fact, if  is a
basis for  over , prove that it is also a basis for  over .

14. Show that if  is finite and  is finite separable then
.

15. Let  be a finite extension and let  be algebraic over . Let 
be the set of embeddings of  into  over . The elements of  permute
the roots of . Let  be a root of . Show thatmin

Hence, the multiset  contains  copies of each root
of .

16. Let  be a finite extension that is not separable. Show that for each
 there exists a subfield  of  for which  is purely

inseparable and .
17. Prove that if  then the extension  is infinite.pcl pcl



Chapter 4

Algebraic Independence

In this chapter, we discuss the structure of an arbitrary field extension .
We will see that for any extension , there exists an intermediate field

 whose upper step  is algebraic and whose lower step
 is there is no nontrivial polynomialpurely transcendental, that is, 

dependency (over ) among the elements of , and so these elements act as
“independent variables” over . Thus,  is the field of all rational functions
in these variables.

4.1 Dependence Relations

The reader is no doubt familiar with the notion and basic properties of linear
independence of vectors, such as the fact that all bases for a vector space have
the same cardinality. Independence is a common theme, which applies in the
present context as well. However, here we are interested in algebraic
independence, rather than  independence. Briefly, a field element  islinear
algebraically independent of a subset  if there is no nonconstant
polynomial , with coefficients in , for which  is a root. Put another
way,  is algebraically dependent on  if  is algebraic over .

Many of the common properties of linear independence, such as dependence
(spanning sets) and bases, have counterparts in the theory of algebraic
independence. However, these properties depend only on the most general
properties of independence, so it is more “cost effective” to explore these
properties in their most general setting, which is the goal of this section.

Definition Let  be a nonempty set and let  be a binary
relation from  to the power set of . We write  read:  is ( dependent

on  for ,  and  when  for all . Then  is a)
dependence relation if it satisfies the following properties, for all ,  and

:
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1) ( )reflexivity

2) ( )compactness

 for some finite subset  of 

3) ( )transitivity

,

4) ( )Steinitz exchange axiom

If  we say that  is  . independent of

Definition A subset  is  if there is an  for whichdependent

. Otherwise,  is . The empty set is independent.  independent ( )

The reader should have no trouble supplying a proof for the following lemma.

Lemma 4.1.1

1  If  then  for any superset  of .)
2  Any superset of a dependent set is dependent.)
3  Any subset of an independent set is independent.)
4  If  is a dependent set, then some finite subset  of  is dependent.)

Equivalently, if every finite subset of  is independent, then  is
independent.

Theorem 4.1.2 If  is independent and  then  is independent.
Proof. Let . If  then since , the exchange
axiom implies that , a contradiction. Hence .
Furthermore, by hypothesis . Thus,  is
independent.

Definition A set  is called a  if  is independent and . base

Theorem 4.1.3 Let  be a nonempty set with a dependence relation .
1   is a base for  if and only if it is a maximal independent set in .)
2   is a base for  if and only if  is minimal with respect to the)

property that .
3  Let , where  is an independent set possibly empty  and) ( )

. Then there is a base  for  such that .
Proof. For part , assume  is a base. Then  is independent. If 1)
then  implies that  is not independent, that is,  is maximal
independent. For the converse, if  is a maximal independent set and 
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then  is independent, which is not the case. Hence,  and  is a
base.

For part 2), if  is a base, then . Suppose that some proper subset  of
 satisfies . If  then , contradicting the

independence of . Hence  is minimal. Conversely, suppose that  is minimal
with respect to the condition . If  is dependent then 
for some , a contradiction to the minimality of . Hence  is independent
and a base for .

For part 3), we apply Zorn's lemma. The set  of all independent sets  in 
satisfying  is nonempty, since . Order  by set inclusion. If

 is a chain in , then the compactness property implies that the union
 is an independent set, which also lies in . Hence, Zorn  lemma implies's

the existence of a maximal element , that is,  is independent,
 and  is maximal with respect to these two properties. This

maximality implies that  and so , which implies that  is a
base.

To prove that any two bases for  have the same cardinality, we require a
lemma, which says that we can remove a particular element from a dependent
set and still have a dependent set.

Lemma 4.1.4  Let  be a finite dependent set and let  be an independent
subset of . Then there exists  for which .
Proof. The idea is simply to choose  from a maximal independent set
containing . In particular, among all subsets of , choose a maximal one

 for which  is independent. Then  is a proper (perhaps empty) subset
of . If  then  and so

.

Theorem 4.1.5

1  If  is a finite set for which  and if  is independent in  then)
.

2  Any two bases for a set  have the same cardinality.)
Proof. For part 1), let . Choose . The set 

 satisfies the conditions of the previous lemma (with )
and so, after renumbering the  if necessary, we deduce that's

For any , the set  satisfies the
conditions of the lemma (with ) and so, again after possible
renumbering, we get

2
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Continuing this process, we must exhaust all of the elements of  before
running out of elements of , for if not, then a proper subset  of  would
have the property that , in contradiction to the independence of .
Hence, . Note that this also shows that  is finite. If  and  are
bases, we may apply the argument with the roles of  and  reversed to get

.

Let us now assume that  and  are both infinite bases. Thus,
. For each , we have  and so there is a finite subset 

such that . This gives a map  from  to the set of finite
subsets of the index set . Moreover,

for if  then, for any , we have

and so , which contradicts the independence of . Hence,

Reversing the roles of  and  shows that . 

4.2 Algebraic Dependence

Now that we have the basic theory of dependence, we can return to the subject
matter of this book: fields. We recall a definition.

Definition Let . An element  is  over  if  is nottranscendental

algebraic over , that is, if there is no nonzero polynomial  such
that . 

Recall that if  is transcendental over  then  is the field of all rational
functions in the variable , over the field .

Definition Let  and let . An element  is algebraically

dependent on  over , written , if  is algebraic over . If  is not
algebraically dependent on  over , that is, if  is transcendental over 
then  is said to be  and we writealgebraically independent of  over 

.

Note that the relation depends on , so we really should write . However,
we will not change the base field  so there should be no confusion in
abbreviating the notation.
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The condition  is equivalent to stating that  is algebraic.
Thus, if  and , then  if and only if  is
algebraic for all . But the class of algebraic extensions is closed under
arbitrary composites and so this is equivalent to  being
algebraic. In short,  if and only if  is algebraic over .

Now let us show that algebraic dependence is a dependence relation.

Theorem 4.2.1 Algebraic dependence is a dependence relation.
Proof. Since any  is algebraic over  we have reflexivity: . To,
show compactness, let  and let  be the set of coefficients of
min . Since each  is a rational function over  in a finite number
of elements of  there is a finite subset  of  for which . Hence ,
is algebraic over , that is, .

For transitivity, suppose that  and tower. Then the 

is algebraic and so  is algebraic over , that is, .

Finally, we verify the exchange axiom. Suppose that  and .
Then there is a finite set  for which  and . Let

. Then  and . Our goal is to show that
, which will follow if we show that .

Note that  is independent, for if  is algebraic over  then  is algebraic
over  and so the tower  is algebraic,
in contradiction to . Thus, according to Lemma 4.1.4, we may
remove elements of  until the remaining set is independent, and yet  is
still algebraic over this set. Hence, we may assume that  is algebraically
independent. Write .

If min , then

where  and  are polynomials.

Multiplying by the (nonzero) product

of the denominators gives
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where  and

are polynomials over  and . Setting  gives

Now, if the polynomials  and  are constant with
respect to , then we have

in contradiction to . Hence, the polynomial

is a nonconstant polynomial in  over  satisfied by , whence

as desired.

We may now take advantage of the results derived for dependence relations.

Definition Let .
1  A subset  is  if there exists ) algebraically dependent over 

that is algebraic over , that is, for which  is
algebraic.

2  A subset  is  if  is transcendental) algebraically independent over 

over  for all . The empty set is algebraically independent(
over .  )

Note that if  is algebraic, then certainly  is algebraically dependent
over , since   is algebraic over , let alone over . Theevery
converse, of course, is not true. For example, if  is transcendental over  then
the set  is algebraically dependent. In fact,  is algebraic over 
and  is algebraic over . However,  is far from being
algebraic.
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Lemma 4.2.2

1  Any superset of an algebraically dependent set is algebraically dependent.)
2  Any subset of an algebraically independent set is algebraically)

independent.

Theorem 4.2.3 If  is algebraically independent over  and  is
transcendental over  then  is algebraically independent over . 

Algebraic Dependence and Polynomial Relationships
A subset  of a vector space is linearly dependent if there is a nontrivial linear
relationship among the vectors of . A similar statement holds in the present
context.

Definition Let . A subset  has a nontrivial polynomial

relationship over  if there is a nonzero polynomial  over  for
which , for distinct . This is equivalent to saying that
some  is algebraic over the   of polynomials in .ring

To see that the two statements in the definition are equivalent, suppose that
 for distinct , where  is a nonzero

polynomial over . If , then this simply says that  if and only if
 is algebraic over . For , we may assume that  do not enjoy a

similar polynomial dependency and hence that

where  and . Then the nonzero polynomial

satisfies , showing that  is algebraic over .

Now, to say that  is algebraically dependent is to say that  is algebraic over
 for some . This is to say that  is algebraic over the field of

rational functions in . But this is equivalent to saying that  is algebraic
over the ring of polynomials in . One direction is clear, since a
polynomial is a rational function. On the other hand, if  satisfies a polynomial

 of degree  over   has the form then

where . Multiplying by the product  of the denominators
gives a polynomial satisfied by  and whose leading coefficient is not zero.
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We have proved the following.

Theorem 4.2.4 Let . A subset  of  is algebraically dependent over 
if and only if there is a nontrivial polynomial relationship in .

4.3 Transcendence Bases

We can now define an analogue of a (linear) basis for a vector space.

Definition Let . A  for  over  is a subset transcendence basis

that is algebraically independent over  and for which  is
algebraic.

Since algebraic dependence is a dependence relation, we immediately get the
following two results.

Theorem 4.3.1 Let . A subset  is a transcendence basis for 
over  if and only if it satisfies either one of the following.
1   is a maximal algebraically independent subset of  over .)
2   is a minimal set satisfying , that is,  is minimal for the property)

that  is algebraic. 

Theorem 4.3.2 Let .
1  Any two transcendence bases for  over  have the same cardinality,)

called the  of  over  and denoted by .transcendence degree

2  Suppose  where  is algebraically independent over )
and  is algebraic. Then there exists a transcendence basis  for

 over  satisfying . In particular, . 

While the vector space dimension is multiplicative over a tower of fields, the
transcendence degree is additive, as we see in the next theorem.

Theorem 4.3.3 Let .
1  If  is algebraically independent over  and  is algebraically)

independent over  then  is algebraically independent over .
2  If  is a transcendence basis for  over  and  is a transcendence basis)

for  over  then  is a transcendence basis for  over .
3  Transcendence degree is additive, that is,)

Proof. For part 1), consider a polynomial dependence of  over , that is,
a polynomial

for which , where  are distinct and  are
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distinct. Write

where  and where the monomials  are distinct and, for each
such monomial, the monomials  are distinct. Consider the
polynomial

over . Since  is algebraically independent over , it follows that

However,  is algebraically independent over  and so . Thus,  is
the zero polynomial and  is algebraically independent over .

For part 2), we know by part  that  is algebraically independent over .1)
Also, since  and  are algebraic, each step in the tower

 is algebraic and so  is algebraic. Hence,
 is a transcendence basis for  over . Part 3) follows directly from part

2).

Purely Transcendental Extensions
When one speaks of the field of rational functions  in the
“independent” variables , one is really saying that the set

 is algebraically independent over  and that . We
have a name for such an extension.

Definition An extension  is said to be  if purely transcendental

 for some transcendence basis  for  over . 

We remark that if  is purely transcendental over  then  for some
transcendence basis , but not all transcendence bases  for  over  need
satisfy . The reader is asked to supply an example in the exercises.

The following is an example of an extension that is neither algebraic nor purely
transcendental.

Example 4.3.1 Let  and let  be a field with char . Let  be
transcendental over , let  be a root of  in some splitting
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field and let . Clearly,  is not algebraic over . We contend that
 is also not purely transcendental over . Since  is algebraically

independent and  is algebraic, the set  is a
transcendence basis for  over  and so . If  were purely
transcendental over  there would exist a transcendental element  over  for
which . Let us show that this is not possible.

If  then

and

where  and  are polynomials over . Hence

or

This can be written

for nonconstant polynomials  and , which we may assume to be
pairwise relatively prime. Let us assume that , in whichdeg deg
case . We now divide by  and take the derivativedeg deg
with respect to  to get (after some simplification)

Since  and  are relatively prime, we deduce that . But this
implies

deg deg degdeg deg

which is not possible for . Hence,  is not purely
transcendental.

Purely transcendental extensions  are 100% transcendental, that is, every
element of  is transcendental over .

Theorem 4.3.4 A purely transcendental extension  is 100%
transcendental, that is, any  is transcendental over .
Proof. Let  be a transcendence basis for  over . Since , it
follows that  for some finite set , and we can
assume that . Letting , we have

 where  is a simple transcendental extension of .
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Hence, transcendental over , and thereforeTheorem 2.4.5 implies that  is 
also over .

The following result will prepare the way to finishing the proof (promised in
Chapter 2) that the class of finitely generated extensions is distinguished.

Theorem 4.3.5 Let  and suppose that  is algebraic. If
 is algebraically independent over , then  is also algebraically

independent over . In other words,  remains algebraically independent over
any algebraic extension of the base field.
Proof. We have the picture shown in Figure 4.3.1

K(T)

F

F(T)K

algebraic

algebraic

Figure 4.3.1

Since  is algebraic , so is the lifting . Now,

and so

which shows that  must be a transcendence basis for  over .

For an alternative proof, if  is not algebraically independent over , there
exists  that is algebraic over . Since  is algebraic, the
lifting  is also algebraic, and so the tower

is algebraic, whence  is algebraic over , in contradiction to the
algebraic independence of  over . 

Finitely Generated Extensions Are Distinguished
We are now in a position to finish the proof that the class of finitely generated
extensions is distinguished. Note how much more involved this task is than
showing that finite or algebraic extensions are distinguished.
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Theorem 4.3.6 Let . If  is finitely generated over  then  is
also finitely generated over . Thus, the set of finitely generated extensions is
distinguished.
Proof. Let  be a transcendence basis for  over . Then the
second step in the tower  is algebraic and  is finitely
generated over . Hence, if we can prove the theorem for algebraic
intermediate fields, we will know that  is finitely generated over  and
therefore also over , since  is a finite set.

Thus, we may assume that  with  algebraic and show that
 is finite. Let  be a transcendence basis for  over .

Our plan is to show that

(see Figure 4.3 ) by showing that any finite subset of  that is linearly.2
independent over  is also linearly independent over  as a subset of .,
Since  is finitely generated and algebraic,  is finite and the
proof will be complete.

E

F

F(T)K

finite

algebraic

 Figure 4.3.2

 Let  be linearly independent over uppose that and s

where . We wish to show that .

By clearing denominators if necessary, we may assume that each 
is a polynomial over . Collecting terms involving like powers of the  gives's

,

where  is the coefficient of  in . Since,

Theorem 4.3.5 implies that  is algebraically independent over , it follows
that  does not satisfy any polynomial relationships over  and so
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,

Then the linear independence of  over  gives

,

and so  for all . This shows that  is linearly independent
over , as desired. 

*4.4 Simple Transcendental Extensions

The class of purely transcendental extensions is much less well behaved than the
class of algebraic extensions. For example, let  be transcendental over . Then
in the tower , the extension  is purely2

transcendental (and simple) but the second step  is not2

transcendental at all.

In addition, if  is purely transcendental and , it does not
necessarily follow that the first step  is purely transcendental. However,
this is true for simple transcendental extensions. The proof of this simple
statement illustrates some of the apparent complexities in dealing with
transcendental extensions.

Theorem 4.4.1 ( )Luroth's Theorem  Let  be transcendental over . If
 and  then  for some .

Proof. Let us recall a few facts from Theorem 2.4.5. Since , Theorem
2.4.5 implies that for any , the tower  is algebraic.
Theorem 2.4.5 also implies that if  where  and  are
relatively prime polynomials over , then

max deg deg

Now, we want to find an  for which ,
showing that . Of course, .

Let

min

where . Since  is not algebraic over , are relatively prime
not all of the coefficients of  can lie in . We will show that for any
coefficient , we may take

To this end, consider the polynomial
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Since , we have . But  and so  over . In
other words, there exists  such that

or

Multiplying both sides of this by

gives

(4.4 ).1

where

Now let  be the greatest common divisor of the coefficients on the right-
hand side of this equation. Since  divides the first coefficient , it
must be relatively prime to each  and so

for all . Factoring out  gives

where , ,  is , that is,  is not divisible by anyprimitive in 
nonconstant polynomial in .

Note, however, that for each , the polynomial  appears in the coefficent of
. Also, for each , we have

It follows that the degree of ,  with respect to  satisfies

 , (4.4.2)-deg max deg deg

Thus, (4.4 ) can be written.1
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(4.4.3)

Next, we multiply both sides of (4.4.3) by a polynomial  that will clear all of
the denominators of , giving

where . Since  is -primitive, we must have
 and so the other factor  must

divide , that is, there exists a polynomial  for which

(4.4.4)

Now, the degree of the left-hand side of this equation is at most-

max deg deg

and by (4.4.2), the degree of the right-hand side is at least .-
Hence, the degree of either side of (4.4.4) is  and (4.4.2) implies-
that , that is,-deg

(4.4.5)

where . Since the right side of (4.4.5) is not divisible by any
nonconstant polynomial in , neither is the left side. But the left side is
symmetric in  and , so it cannot be divisible by any nonconstant polynomial in

 either. Hence,  is not divisible by any nonconstant polynomial in
, implying that , that is,

(4.4.6)

where . Finally, since the degree and degree of the left side of (4.4.6)- -
agree, this is also true of the right side. Hence by (4.4.2),

- -deg deg

Thus, , and the proof is complete. 

It can be shown that Luroth's theorem does not extend beyond simple
transcendental extensions, but a further discussion of this topic would go
beyond the intended scope of this book.

The Automorphims of a Simple Transcendental Extension
We conclude with a description of all -automorphisms of a simple
transcendental extension . Let  denote the GL general linear group,
that is, the group of all nonsingular  matrices over . The proof, which is
left as an exercise, provides a nice application of Theorem 2.4.5.
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Theorem 4.4.2 Let  be a simple transcendental extension and let
Aut  denote the group of all automorphisms of  over .

1  For each GL  there is a unique Aut  for)

which

Moreover, all automorphisms of  over  have the form  for some
GL .

2  If GL , then)

and

Also,  if and only if  is a nonzero scalar matrix. In other
words, the map GL Aut  defined by  is an
epimorphism with kernel equal to the group of all nonzero scalar matrices
in GL .

Exercises

1. Find an example of a purely transcendental extension  with two
transcendence bases  and  such that  but  is a proper
subfield of .

2. Let  and . Show that .
3. Let  and let . Show that 

with equality if  is algebraically independent over  or algebraic over .
4. Use the results of the previous exercise to show that if  and

 then .
5. Let  be a field of characteristic  and let  be transcendental over .

Suppose that . Show that  is a purely transcendental
extension by showing that  where .

6. Show that the extension , where  is transcendental over ,
is not purely transcendental.

7. Let  and suppose that  is algebraically independent over
. Prove that  is algebraic if and only if  is algebraic.

8. Prove that the transcendence degree of  over  is uncountable.
9. a) Show that the only automorphism of  is the identity.
 b) Show that the only automorphisms of  over  are the identity and

complex conjugation.
 c) Show that there are infinitely many automorphisms of  over .
10. (An extension of Luroth's theorem) Suppose that  is purely

transcendental. Show that any simple extension of  contained in  (but
not equal to ) is transcendental over .
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11. Prove part 1) of Theorem 4.3.5 by contradiction as follows. Suppose that
 is algebraically dependent over . Then there exists an 

that is algebraic over  for some finite sets  and 
not containing , and we may assume that no proper subset  of  has the
property that  is algebraic over . Prove that . Prove that

 is not empty. If , prove that  is algebraic over
. Complete the proof from here.

12. Prove Theorem 4.4.2.



Part II—Galois Theory



Chapter 5

Galois Theory I: An Historical Perspective

Galois theory sits atop a structure of work began about 4000 years ago on the
question of how to solve polynomial equations algebraically , that is,by radicals
how to solve equations of the form

by applying the four basic arithmetical operations (addition, subtraction,
multiplication and division), and the taking of roots, to the coefficients of the
equation and to other “known” quantities (such as elements of the base field).

More specifically, a polynomial equation  is  ifsolvable by radicals
there is a tower of fields

where  contains a splitting field for  (and hence a full set of roots of
) and where each field in the tower is obtained by adjoining some root of an

element of the previous field, that is,

where .

In this chapter, we will review this structure of work from its beginnings in
Babylonia through the work of Galois. In subsequent chapters, we will set down
the modern version of the theory that has become known as Galois theory.

5.1 The Quadratic Equation

Archeological findings indicate that as early as about 2000 B.C., the
Babylonians (Mesopotamians) had an algorithm for finding two numbers  and
 whose sum  and product  were known. The algorithm is

1) Take half of .
2) Square the result.
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3) Subtract .
4) Take the square root of this result.
5) Add half of .

This results in one of the values  and : the other is easily obtained. This
algorithm can be expressed in modern notation by the formula

for solving the system of equations

The solutions to this system are solutions to the quadratic equation

Thus, except for one issue, it can be said that the Babylonians knew the
quadratic formula, but in algorithmic form.

The one issue is that the Babylonians had no notion of negative numbers!
Indeed, they developed a  algorithm to compute the numbers  and separate
whose  and product were known. This is the solution to the systemdifference

whose solutions satisfy the quadratic equation

Unfortunately, the origin of the Babylonian algorithms appears lost to antiquity.
No texts uncovered from that period indicate who or how the algorithm was
developed.

5.2 The Cubic and Quartic Equations

In the 3500 years or so between the apparent achievement of the Babylonians
and the mid-Renaissance period of the 1500's, not much happened in Europe of
a mathematical nature. However, during the Middle Ages (that is, prior to the
Renaissance, which began in the late thirteenth century), the Europeans did
learn about algebra from the Arabs and began to devise a new mathematical
symbolism, which opened the way for the dramatic advancements of the mid-
Renaissance period.

In particular, solutions to the general cubic and quartic equations were
discovered. As to the cubic, we have the following excerpt from Girolamo
Cardano's  (1545). (Cardano was a highly educated and skilledArs Magna
physician, natural philosopher, mathematician and astrologer.)
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In our own days Scipione del Ferro of Bologna has solved the
case of the cube and first power equal to a constant, a very
elegant and admirable accomplishment. Since this art
surpasses all human subtlety and the perspicuity of mortal
talent, and is a truly celestial gift and a very clear test of the
capacity of men's minds, whoever applies himself to it will
believe that there is nothing that he cannot understand. In
emulation of him, my friend Niccolò Tartaglia of Brescia,
wanting not to be outdone, solved the same case when he got
into a contest with his [Scipione’s] pupil, Antonio Maria Fior,
and, moved by my many entreaties, gave it to me.

The solution of the quartic equation was discovered by one of Cardano's
students, Ludivico Ferrari, and published by Cardano. Let us briefly review
these solutions in modern notation.

Solving the Cubic
1) An arbitrary monic cubic polynomial  can be put in the3

form

3

by replacing  by .
2) Introduce the variables  and  and set . Then  has the form

or, equivalently,

3) If , then we get

Thus, a solution to the pair of equations

provides a solution  to the original cubic equation. Multiplying the
second equation by  and using the fact that  gives

which is a quadratic equation in . If  is a cube root of a solution to this
quadratic, then , so that  is a root of the original cubic.
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Solving the Quartic
1) An arbitrary monic quartic equation can be put in the form

2) Introducing a variable , we have

Using the quartic equation from 1) to replace  on the right, we have

3) If the right side of this equation can be put in the form , then we
can take square roots. This happens if the quadratic on the right has a single
root, which happens if its discriminant is , that is, if

which is a cubic in , and can therefore be solved, as described earlier.
4) Once  is found, we have  and , and so our quartic

is

Hence,

which can be solved for a solution  of the original quartic.

5.3 Higher-Degree Equations

Naturally, solutions to the arbitrary cubic and quartic equations led to a search
for methods of solution to higher-degree equations, but in vain. It was not until
the 1820s, some 300 years later, in the work of Ruffini, Abel and then Galois,
that it was shown that no solution similar to those of the cubic and quartic
equations could be found, since none exists.

Specifically, for any , there is no algebraic formula, involving only the
four basic arithmetic operations and the taking of roots, that gives the solutions
to any polynomial equation of degree . In fact, there are individual quintic (and
higher–degree) equations whose solutions are not obtainable by these means.
Thus, not only is there no  formula, but there are cases in which there isgeneral
no  formula.specific
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5.4 Newton's Contribution: Symmetric Polynomials

It was not until the accomplishments of Vandermonde and, to a larger extent,
Lagrange, in the period around 1770, that a deeper understanding of the work
that led to the solutions of the cubic and quartic equations was revealed.
However, even these fine mathematicians were unable to take the leap made by
Abel and Galois a few decades later.

The cornerstone of the work of Vandermonde and Lagrange is the work of Isaac
Newton on symmetric polynomials. We will go into precise detail at the
appropriate time in a subsequent chapter, but here is an overview of Newton's
contribution in this area.

The  Generic Polynomial
If  are independent variables, the polynomial

is referred to as a  of degree . (Galois would have referredgeneric polynomial

to this as a polynomial with “literal” coefficients.) Since the roots  of
the generic polynomial  are independent, this polynomial is, in some sense,
the most “general” polynomial of degree  and facts we learn about  often
apply to all polynomials.

It can be shown by induction that the generic polynomial can be written in the
form

where the coefficients are given by

These polynomials are called the  in theelementary symmetric polynomials

variables .

Thus, except for sign, the coefficients of  are the elementary symmetric
polynomials of the roots of . Moreover, since this holds for the generic
polynomial, it is clear that it holds for  polynomials.all

Symmetric Polynomials
Intuitively, a polynomial  in the variables  is  ifsymmetric

it remains unchanged when we permute the variables. More carefully,
 is symmetric if
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for any permutation  of .

Of course, each elementary symmetric polynomial , that is, each coefficient of
, is a symmetric polynomial of the roots , in this sense. It follows that any

polynomial (symmetric or otherwise) in the coefficients of  is a symmetric
polynomial of the roots . For instance,

is unchanged by a permutation of the 's.

Isaac Newton realized, sometime in the late 1600s, that a kind of converse to
this holds: Any  polynomial in the roots of  is a polynomial in thesymmetric
coefficients of . Let us state this theorem, known as , firstNewton's theorem
without reference to roots.

Newton's Theorem

1  A polynomial  is symmetric if and only if it is a polynomial in)
the elementary symmetric functions , that is,

Moreover, if  has integer coefficients, then so does
.

2  Let  be a polynomial. Then the set of symmetric polynomials in the)
roots of  is the same as the set of polynomials in the coefficients of

. In particular, any symmetric polynomial in the roots of  belongs
to the same field as the coefficients, so if  is a polynomial over , then
any symmetric polynomial in the roots of  belongs to . Also, if 
has integer coefficients, then any symmetric polynomial in the roots of 
is an integer.

The proof of Newton's theorem will be given in a later chapter. However, it
should be noted that the proof is in the form of an  (howeveralgorithm
impractical) for finding the polynomial .

How can this be used to advantage in the present context? The answer is both
simple and profound: When trying to find the roots of a polynomial , we
can assume not only that the coefficients of  are known (obviously), but
also that any symmetric polynomial in the roots of  is known! The reason is
that an algorithm is known for computing this symmetric polynomial of the
roots that requires knowledge of the coefficients of the polynomial only (and of
other known quantities, such as rational numbers).
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For instance, if  has roots  and , then not only are 
and  known, being the coefficients of , up to sign, but we may also
assume that expressions such as  are known. More to the
point, we cannot assume that  is known, but we  assume that  iscan
known and so we may write

where  and  are known. Hence, . Adding this to the first equation
gives , or

Of course,  and  and so this
becomes the well-known quadratic formula

(Note that there is another solution to , which gives the other root.)

We are very close here to the work of Vandermonde and Lagrange.

5.5 Vandermonde

How can we apply the previous analysis to the cubic equation? The previous
solution to the quadratic can be expressed as

where the solutions are  and . Now let  and  be solutions to a cubic
equation. Again, the sum  is known, being symmetric in the roots.
As to the analogue of the difference, note that the coefficients  and  of

 are the two roots of the equation , that is, they are the square
roots of unity.

In general, the complex  are the roots (in the complex field)th roots of unity

of the equation

As we will see in a later chapter, this equation has  distinct complex roots,
which we denote by . The set  is a cyclic group under multiplication. Any
generator of  is called a  th root of unity. The set of primitive thprimitive

roots of unity is denoted by . Note that if , then
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This fact is used many times.

Now, for the analogue of the difference , we require the two expressions

where  is a primitive cube root of unity. Then

Now, the expressions  and  are not symmetric in the roots, so we cannot
conclude  from Newton's theorem that they are known. However, thedirectly
previous expression can be written in the form

and while the expressions

are also not symmetric in the roots, the expressions  and  are symmetric.

To see this, first note that interchanging  and  has the effect of interchanging
 and , thus preserving both  and . Also, the cyclic permutation

, which sends  to ,  to  and  to , actually fixes both 
and . For example,

Thus, both  and  are known quantities, from which we can compute 
and  using the  formula. It follows that the rootquadratic

is known. Note that there are three possible values for each cube root in this
expression, leading to nine possible value of , of which exactly  are roots of
the cubic. Of course, it is a simple matter (in theory) to determine which of the
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nine candidates are roots. Thus, the solution to the general cubic equation is
reduced to solving a quadratic equation and to the taking of cube roots.

This analysis of the cubic equation is the work of Vandermonde, who presented
it to the Paris Academy in 1770, along with a similar analysis of the quartic and
some additional work on higher–degree polynomial equations. However,
Vandermonde appears not to have pursued this work beyond this point.

Perhaps we can find one reason in the fact that Lagrange's major (over 200
page) treatise , whichRéflexions sur la Résolution Algébrique des Equations
included similar but independent work in more depth on this subject, was
published a few months after Vandermonde's presentation, while Vandermonde
had to wait until 1774 to see his work published by the Paris Academy!

5.6 Lagrange

In his  Lagrange gives a thorough treatment of the quadratic, cubicRéflexions,
and quartic equations. His approach is essentially the same as Vandermonde's,
but with a somewhat different perspective. He also addresses some issues that
Vandermonde did not.

The Cubic Equation
Lagrange also considers the expression

but looks directly at all six quantities obtained from this expression by
substituting the roots  and :

The roots of  are given in terms of the 's and other  quantities byknown

Note that, in the notation of the previous section,  and .
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Now, permuting the roots in any of the 's results in another  and so the
coefficients of the th degree polynomial

are symmetric in the 's and therefore also symmetric in the roots  and ,
and are therefore known quantities. Lagrange called the equation  the
resolvent equation resolvents and the solutions  to this equation .

Lagrange observed that although the resolvent equation is of degree , it is also
a  equation in , due to the relationships among the 's. In particular,quadratic

 can be expressed in terms of  and  only:

Thus, the resolvent equation is easily solved for the six resolvents , using the
quadratic formula, followed by the taking of cube roots—the same operations
required by Vandermonde's approach. It is then a matter of determining which
roots correspond to  and .

Lagrange addresses (or avoids) the latter issue by observing that if  is any
resolvent, we can assume, by renaming the roots  and , that . Then
since it is easily checked that the product  is symmetric in  and 
and therefore known, the three roots of  are given by

Thus, the solutions to the cubic are expressed in terms of any resolvent.

The important points to note here are that

1) Each resolvent  is an expression (polynomial) in the roots of  and
other  quantities.known

2) Conversely, the roots of  can be expressed in terms of a single
resolvent and other  quantities.known

3) Each resolvent can be determined , in this case by solvingin a tractable way
a quadratic equation and taking cube roots.
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The Quartic Equation
Lagrange and Vandermonde each employed their similar lines of analysis with
success for quartic equations. For a quartic , the resolvent expression is

where the 's represent the roots of  and where  is a primitive th root
of unity. It follows that there are  distinct resolvents, satisfying a
resolvent equation of degree . By analogy with the cubic case, one root of the
quartic  is given by

since  and  each appear in all three of the last positions in
 and so have coefficient .

It is possible to proceed in a manner analogous to the cubic case, but Lagrange
and Vandermonde both observed that a simplification is possible for the quartic.
In particular, unlike the case of the cubic (and the quintic), where the degrees
are prime, in the case of a quartic, there is a  th root of unity othernonprimitive
than , namely, .

The resolvent expression with respect to ,

has only  distinct resolvents, which have the form  and .
Moreover, the roots of  are given by

Since the resolvent polynomial in this case is

the resolvent equation, whose coefficients are known, can be solved by solving
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a known  equation . This gives solutions  and , leavingcubic
only an ambiguity of sign in determining the resolvents  and . Lagrange
addressed the issue of how to choose the correct sign, but Vandermonde simply
left the issue to one of trial and error.

The Quintic Equation
The case of the th degree equation stymied both mathematicians, and for good
reason. The Lagrange resolvent equation has degree  and is a th degree
equation in . It seems that both mathematicians doubted that their lines of
analysis would continue to be fruitful. The somewhat ad hoc trick used for the
quartic will not work for the quintic, and it is clear that the Lagrange–
Vandermonde resolvent approach is simply running out of steam.

This is essentially where Lagrange (and Vandermonde) left the situation in his
Réflexions.

5.7 Gauss

We need to say a word about roots of unity with respect to solvability by
radicals. It is an obvious fact that since we allow the taking of roots in
constructing a tower

that shows that  is solvable by radicals, then every equation of the form
 is solvable by radicals, that is, the th roots of unity are obtainable

by taking—well—roots. This is not a very useful statement.

Note, however, that if  is an th root of unity, then  is a root of the
polynomial

which has degree . It would be much more interesting (and useful) to
know that  could be obtained by adjoining roots whose degree is at most

, that is, various th roots, where .

This was Gauss's contribution, published in 1801 in his Disquisitiones
Arithmeticae, when he was only 24 years old. We should mention that while
Gauss is considered by many to be perhaps the greatest mathematician of all
time, in this particular case, the ideas that Gauss used appear not to have
originated with him. Moreover, Gauss seems to leave a gap in his proof, so one
could argue that this was not really a completely Gaussian affair. Let us briefly
outline Gauss's approach, which uses Lagrange resolvents.

First, it is not hard to show that if , where  and  are relatively prime,
then every primitive th root of unity is the product of a primitive th root of
unity and a primitive th root of unity. In symbols,
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Moreover, since  (proof postponed until a later chapter), where ,
we have

and so we need to prove the result only for th roots of unity, where  is a
prime.

A primitive th root of unity  is a solution to the polynomial equation

whose solutions are

These are all primitive th roots of unity, since  is prime. Note that the
exponents of  constitute the cyclic group  of nonzero elements of the field

. Any generator  of this group is called a . For anyprimitive root modulo 

such , we have

(5.7.1)

Now, since the equation  has degree , a Lagrange resolvent for
this equation requires a primitive st root of unity , and the resolvent
expression is

where, as usual, a resolvent is obtained by substituting the roots of  for the
's.

The key idea (which may have been in part Vandermonde's) is to choose a
resolvent in a specific way. In particular, the roots are chosen in the order given
by a primitive root modulo , as shown in (5.7.1). Hence, the resolvent is

Note that for any ,

Accordingly, if we take the sum

the coefficient of  will be , for all . Also, the coefficient of  is
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 and so , that is,

Thus, if it can be shown that the expressions

under the radical signs are known, then  will be known, at least up to
determining the correct st roots. This is where the order of the roots in
the resolvent  is important. (Actually, the issue of which roots to take can
be mitigated considerably, but we will not go into the details here.)

The “hard part” is thus to show that the expressions  are known. Since
we can assume that  is known (being a smaller primitive root of unity), it
suffices to show that  does not depend on . This is done using a result
whose origin is somewhat obscure. Gauss apparently used the result without
proof at one point and then later gave an incomplete proof. In any case, it is not
entirely clear whether Gauss possessed a complete proof of this result, which
can be stated as follows.

Theorem 5.7.1 Let  be a primitive th root of unity and let  be a primitive
st root of unity. Then the powers

are linearly independent over .
Proof. We need the following additional facts about roots of unity, whose
proofs will be given in a later chapter.

1) If  is a primitive th root of unity, then , where  is the
Euler phi function, that is,  is the number of positive integers less than

 and relatively prime to .
2) If  and  are relatively prime, then .
3) If  is a prime, then .

Consider the tower

The lower step has degree  and the upper step, being a lifting of
, has degree . Consider also the tower

The lower step has degree  and if the upper step
has degree , then
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Hence, , which implies that  and , that is,

Hence, the set

is a basis for  over .

Now let us look at how this result can be used to show that

does not depend on . If we replace  by  (recall that  is a primitive root
modulo ), we have

It follows that

In other words,  is invariant under the replacement .

Now,  is a polynomial in  and . Collecting powers of  (which are
linearly independent by Theorem 5.7.1) gives

Then the invariance under  implies that

Equating coefficients of the linearly independent powers of  gives

and so the polynomial expressions , for , are equal. Hence,
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which is independent of , as desired.

Thus, we have shown that a primitive th root of unity  can be expressed in
terms of a primitive st root of unity , using only root of degree at most

. An induction completes the proof that any th root of unity can be
expressed by taking roots of degree at most .

As a very simple illustration, let us compute a primitive cube root of unity .
We begin with a primitive square root of unity  and form the
expressions

Then since , we have

Thus,

and we need only choose the correct combination of signs.

5.8 Back to Lagrange

As we have remarked, Lagrange's (and Vandermonde's) resolvent has three
properties:

1) Each resolvent  is a polynomial in the roots of  and other known
quantities, including perhaps the th roots of unity.

2) Conversely, the roots of  can be expressed in terms of a single
resolvent and other  quantities.known

3) Each resolvent can be determined in a tractable way.

Lagrange doubted that it would be possible to find a resolvent that could be
determined in a tractable way for the quintic, let alone for higher–degree
polynomials. On the other hand, he did spend considerable effort considering
“resolvents” that satisfy only 1) and 2). In fact, the following theorem of
Lagrange, and its corollary, is a cornerstone of Galois theory. The version we
present here appears in Edwards, and is from Lagrange's , Article 104.Réflexions

Theorem 5.8.1 If  and  are any two functions [polynomials] in the roots
 of  and if these functions
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are such that every permutation of the roots  which changes  also
changes , one can, generally speaking, express  rationally in terms of  and

 so that when one knows a value of  one will also know
immediately the corresponding value of ; we say  because ifgenerally speaking
the known value of  is a double or triple or higher root of the equation for 
then the corresponding value of  will depend on an equation of degree  or 
or higher with coefficients that are rational in  and .

If we think of  as a known polynomial of the roots, then this theorem states that
under the conditions of the theorem, the value of , which could simply be a
root of , is expressible as a known function of . Lagrange's theorem has the
following corollary (in slightly more modern notation).

Corollary 5.8.2 Suppose that  has distinct roots, say, . If there
exists a polynomial  with the property that the  values

are distinct, that is, if  is changed by every permutation of the
roots, then any polynomial  in the roots, including the roots
themselves, is a known rational expression in .

We will be able to rephrase this in more modern terms in a later chapter. For the
curious, it is as follows: If  is separable over , with splitting field  and
Galois group  and if  has the property that  for all , then

 and so taking fixed fields gives , that is, every
polynomial in the roots of  is a polynomial in .

A polynomial  as described in the previous corollary is a “resolvent” in the
sense that it satisfies the first two conditions of a Lagrange resolvent:  is a
known function of the (unknown) roots and the roots are a known function of .
Any  with these properties is called a , because Galois was theGalois resolvent

first to recognize that such a resolvent always exists (provided that  has no
multiple roots). He was also the first to realize the importance of such
resolvents.

We can describe Galois resolvents in more modern terms as follows. Let
 be a splitting field for  over . We may assume that 

is the field of “known” quantities. Then  is a Galois resolvent if and only
if , that is, if and only if  is a primitive element of .

Now we see that the existence of Galois resolvents follows from the Theorem of
the Primitive Element. Assuming that  has no multiple roots—an
assumption that Galois also made—the fact that  is finite and separable
implies that it is simple.
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5.9 Galois

It is not hard to place the work of Evariste Galois in time, since he was born in
1811 and died only 21 years later, of a gunshot wound, in 1832. However, it is
much harder to describe the importance of his work, which sparked the
foundations of modern algebra. (Of course, Cauchy, Cayley, Lagrange,
Vandermonde, Newton, Gauss and others had a hand in the foundations of
algebra as well.)

Galois realized that while a (Galois) resolvent might not be able to provide the
actual values of the roots of a polynomial, it does lead the way to a beautiful
theory, now called Galois theory that, among other things, shows that there are
no  resolvents for polynomials of degree  or greater.Lagrange

In his 1831 ,Memoir on the Conditions for Solvability of Equations by Radicals
Galois states a result akin to the corollary of Lagrange given above, without
mention of either Lagrange or his theorem (although he had read Lagrange as a
student). Moreover, Galois' proof is, to say the least, sketchy. In fact, when
Poisson read Galois' memoir, as submitted for publication to the Paris Academy
of Sciences, Poisson remarked

“We have made every effort to understand Mr. Galois' proof.
His arguments are not clear enough, nor developed enough,
for us to be able to judge their correctness .”

Galois' paper was rejected for publication.

In his memoir of 1831, Galois proved the following result (Proposition VIII):

“For an equation of prime degree, which has no
commensurable divisors, to be solvable by radicals, it is
necessary and sufficient that all roots be rational functions of
any two of them.”

In more modern language, this theorem says that if  is irreducible and
separable of prime degree , then the equation  is solvable by radicals
if and only if  is a splitting field for , for  two roots  and  ofany

. Since, for example, any quintic polynomial with exactly two nonreal roots
fails to meet this condition, it cannot be solvable by radicals. This theorem is
covered in detail in the chapter on solvable extensions.

Galois and Groups
Galois' great achievement was not the actual result that polynomial equations of
degree  and higher have no general algebraic solution. Indeed, even the
formulas for cubic and quartic equations are not of much practical use. Galois'
great achievement lies in the  he took to prove this result, in particular, hispath
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discovery and application of the notion of a “Galois-style” group, described
below.

While on the subject of groups, it cannot be said that Galois discovered in its
entirety the modern notion of a group. As we will see, Galois dealt only with
sets of permutations and stated only that these sets must be closed under
composition (although not in these words). The other properties of the definition
of a modern group: associativity, identity and inverses, were not mentioned
explicitly by Galois. (Perhaps he thought them too obvious for explicit
mention.)

When Galois' work was finally published in 1846, the theory of finite
permutation groups had already been formalized by Cauchy, who likewise
required only closure under product, but who clearly recognized the importance
of the other axioms by introducing notations for the identity and for inverses.

Cayley (1854) was the first to consider the possibility of more abstract groups,
and the need to axiomatize associativity. He also axiomatized the identity
property, but still assumed that each group was a finite set, and so had no need
to axiomatize inverses (only the validity of cancellation). It was not until 1883
that Dyck, in studying the relationship between groups and geometry, made
explicit mention of inverses.

It is also interesting to note that Cayley's famous theorem of group theory, to the
effect that every group is isomorphic to a permutation group, completes a full
circle back to Galois (at least for finite groups)!

Galois-Style Groups
Galois' version of a group is as follows (although the terminology is not
necessarily that of Galois). Consider a table in which each row contains an
ordered arrangement of a set  of distinct symbols (such as the roots of a
polynomial), for example

Then each pair of rows defines a permutation of , that is, a bijective function
on . Galois considered tables of ordered arrangements with the property that
the set  of permutations that transform any given row  into the other rows
(or into itself) is the same for all rows , that is,  for all . Let us refer
to this type of table, or list of ordered arrangements, as a .Galois-style group
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It is not hard to show that a list of arrangements is a Galois–style group if and
only if the corresponding set  ( ) of permutations is a subgroup of the
group of all permutations of the set , that is, if and only if  is a permutation
group, in the modern sense.

To see this, let the permutation that transforms row  to row  be . Then
Galois' assumption is that the sets  are the same for all .
This implies that for each  and , there is a  for which . Hence,

and so  is closed under composition. It is also closed under inverses, since for
any , it is true that . Finally, the identity is in , since
it is the substitution associated to the pair of rows .

Conversely, if  is a permutation group, then since

it follows that  for all .

Galois appears not to be entirely clear about a precise meaning of the term
group, but for the most part, he uses the term for what we are calling a Galois–
style group. Galois also worked with subgroups and recognized the importance
of what we now call normal subgroups, although his “definition” is quite
different from what we would see today.

The Galois Group
For a modern mathematician, the Galois group of a polynomial  over a field

 is defined in terms of a splitting field. Galois and his predecessors talked
about the “roots” of a polynomial without regard to considerations of their
existence (much as our students do today) and it was not until Kronecker came
upon the scene, several decades later, that the issue of existence was explicitly
addressed.

In any case, the modern definition of the Galois group of a polynomial 
over  is the group  of all automorphisms of a splitting field  of 
over  that fix  pointwise, in symbols

Aut

Galois would have defined the Galois-style group of a polynomial , with
distinct roots, essentially as follows (but in different terms). Let  be a
splitting field for . Let  be the minimal polynomial of  over  and let

be the conjugates of , that is, the roots of . Note that since  is assumed
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to have only simple roots, the extension  is separable and so  is
separable, that is,  has distinct roots. Also, since  is normal, 
splits over  and so .

Let  be the roots of . Each root  is a polynomial  in the
primitive element  (that is, the Galois resolvent). Consider the list of
arrangements

(5.9.1)

the first row of which is just the set of roots of . We claim (as did Galois, in
a different way) that this is a Galois-style group.

To see this, we make the following observations:
1) Since  is normal,

hom

where .
2) According to Theorem 2.8.3, for each , there is a hom

 that maps  to . Furthermore, each element of  is uniquely
determined by its value on . Hence,

Thus, letting , we can rewrite the previous list of
arrangements as

or

Therefore, in the notation of Galois-style groups used earlier,  and
so this list does indeed represent a Galois-style group.

Of course, Galois did not prove that his list (5.9.1) is a Galois-style group in the
same way we have done. His first task is to show that each row of (5.9.1) is a
permutation of the first row.
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The first step is to show that all of the elements of the table are roots of ,
that is, that  for all  and . For this, Galois considers the
polynomials . Since

it follows that the polynomial  and the  polynomial irreducible
have a common root . Galois knew that this implies that .
Hence, every root of  is a root of , that is,  for all 
and , as desired.

Then Galois reasoned that if two elements  and  of the same row,
where , are equal, then the polynomial  has root  and so, as
above,

which implies that all conjugates  are roots of . In particular,
. But these are roots from the first row of (5.9.1), which are

distinct and so , a contradiction.

For more details on Galois' approach to these issues, we refer to the reader to
Edwards.

Solvability by Radicals
So let us recap: Galois developed the notion of a Galois resolvent, that is, a
primitive element of a splitting field of  and showed that Galois resolvents
always exist. He then used this notion to develop the concept of the Galois-style
Galois group of . The stage is now set for his most famous result, namely,
that the roots of a th or higher degree polynomial equation are not always
solvable by radicals. Galois' approach was to consider the conditions imposed
on the Galois group of a polynomial by the requirement that the polynomial
equation be solvable by radicals. Here is a brief sketch.

Note that since the roots of unity can be considered as known quantities
(obtainable by the taking of roots), once a single root  of a quantity is known,
all other roots of that quantity, being of the form  where  is a root of unity,
are also known.

Since if , then

it follows that an extension  obtained by adjoining a single th root 
can be decomposed into a tower in which each step is obtained by adjoining a
prime root of an element. Hence, a polynomial equation  is solvable by
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radicals if and only if a splitting field  for  over  can be “captured”
within a finite tower of fields

(5.9.2)

where each  is a th root (  a prime) of some element in the previous field of
the tower. Moreover, we may assume that the required roots of unity appear as
necessary, in particular, we may assume that if  is a step in the
tower (5.9.2), then  contains the th roots of unity.

Now let us examine, as Galois did, the Galois groups . It is clear
from the definition that they form a nonincreasing sequence

(5.9.3)

Moreover, if  then, since the taking of Galois groups
reverses inclusion, we have

that is, .

Galois studied the properties of the sequence (5.9.3). In particular, he showed
that each group in (5.9.3) is a  subgroup of its predecessor, and has primenormal
index in its predecessor. A sequence of subgroups in which each group is
normal in its immediate parent is called a , and if the indices arenormal series

prime, then the top group, which in Galois' case is , is called .solvable

Galois proved that if  is solvable by radicals, then its Galois group
 is solvable. He also proved the converse.

Galois used his remarkable theory in his Memoir on the Conditions for
Solvability of Equations by Radicals of 1831 (but not published until 1846), to
show that the general equation of degree  or larger is not solvable by radicals.
It is worth noting that Ruffini, in 1799, offered the first “proof” that the th
degree equation is not solvable by radicals. However, his proof was not
completely convincing and a complete proof was given by Abel in 1826.
Nevertheless, Galois' achievement is not diminished by these facts.

5.10 A Very Brief Look at the Life of Galois

Evariste Galois life was, to say the least, very short and very controversial. Of
course, it would not be the subject of such legend today were it not for his
remarkable discoveries, which spanned only a few short years.

Galois was born on October 25, 1811, near Paris. Apparently, Galois was
recognized at an early age as a brilliant student with some bizarre and rebellious
tendencies.
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In 1828, at the age of 17, Galois attempted to enter the prestigious École
Polytechnique, but failed the entrance exams, so he remained at the royal school
of Louis-le-Grand, where he studied advanced mathematics. His teacher urged
Galois to publish his first paper, which appeared on April 1, 1829.

After this, things started to go very badly for Galois. An article that Galois sent
to the Academy of Sciences was given to Cauchy, who lost it. (Apparently,
Cauchy had a tendency to lose papers; he had already lost a paper by Abel.) On
April 2, 1829, Galois' father committed suicide.

Galois once again tried to enter the École Polytechnique, but again failed under
some rather controversial circumstances. So he entered the École Normale,
considered to be on a much lower level than the École Polytechnique. While at
the École Normale, Galois wrote up his research and entered it for the Grand
Prize in Mathematics of the Academy of Sciences. The work was given to
Fourier for consideration, who took it home, but promptly died, and the
manuscript appears now to be lost.

Galois possessed very strong political opinions. On July 14, 1831, he was
arrested during a political demonstration, and condemned to six months in
prison. In May 1832, Galois had a brief love affair with a young woman. He
broke off the affair on May 14, and this appears to be the cause of a subsequent
duel that proved fatal to Galois. Galois died on May 31, 1832.

On September 4, 1843, Liouville announced to the Academy of Sciences that he
had discovered, in the papers of Galois, the theorem, from his 1831 Memoir,
that we mentioned earlier concerning the solvability by radicals of a prime–
degree equation, and referred to it with the words “as precise as it is deep.”
However, he waited until 1846 to publish Galois' work.

In the 1850s, the complete texts of Galois' work became available to
mathematicians, and it initiated a great deal of subsequent work by the likes of
Betti, Kronecker, Dedekind, Cayley, Hermite, Jordan and others.

Now it is time that we left the past, and pursued Galois' theory from a modern
perspective.



Chapter 6

Galois Theory II: The Theory

6.1 Galois Connections

The traditional Galois correspondence between intermediate fields of an
extension and subgroups of the Galois group is one of the main themes of this
book. We choose to approach this theme through a more general concept,
however.

Definition Let  and  be partially ordered sets. A  on theGalois connection

pair  is a pair  of maps  and , where we write
 and , with the following properties:

1   or  For all  and ,) ( )Order-reversing antitone

 and 

2   For all , ,) ( )Extensive

 and 

Closure Operations
Lurking within a Galois connection we find two .closure operations

Definition Let  be a partially ordered set. A map  on  is ancl
( )algebraic   if the following properties hold for all :closure operation

1) ( )Extensive

cl

2) ( )Idempotent

cl cl cl
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3) ( )Isotone

cl cl

An element  is said to be  if . The set of all closedclosed cl
elements in  is denoted by .Cl

Theorem 6.1.1 Let  be a Galois connection on . Then the maps

and

are closure operations on  and , respectively, and we write  andcl
cl . Moreover,

1 , that is,)

cl cl

2  , that is,)

cl cl

Proof. Since , the order-reversing property of * gives

and so from which part  follows. Part 2) is similar. , 1)

Theorem 6.1.2 The maps  and  are surjective andCl Cl
the restricted maps  and  are inverseCl Cl Cl Cl
bijections.
Proof. Since , we see that  is closed, that is,  maps  into .cl Cl
Moreover,  is surjective since if , then . To see thatCl cl

 is injective when restricted to closed elements, if  and ,Cl
then , that is, . Similar arguments apply to . Finally, since

cl cl cl cl

we see that  on  and similarly,  on .Cl Cl

Theorem 6.1.3  Let  be a Galois connection on a pair  of lattices.
1) If  is a complete lattice, then so is , under the same meet as . ACl

similar statement holds for .
2   hold in  and , that is, for  and) Cl Cl ClDe Morgan's Laws

Cl ,

and
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Proof. For part 1), we apply Theorem 0.1.1 to the subset  of . First,Cl
since  has the property that , it follows that .cl Cl
Suppose that . Then the meet  exists in  and since  forCl
all , we have

cl cl

whence . Since the reverse inequality holds as well, equalitycl
holds and . It follows from Theorem 0.1.1 that  is a completeCl Cl
lattice under meet in . A similar argument can be made for .

For part 2), observe first that  and  imply that 
and , whence . If  and  for 
Cl  then  and , whence . Thus, . It follows
by definition of join that . The other parts of De Morgan's
laws are proved similarly. 

Examples of Galois Connections
Our interest in Galois connections is the famous Galois correspondence between
intermediate fields of a field extension and subgroups of the Galois group of an
extension (to be defined later). However, let us take a look at some other
examples of Galois connections.

Example 6.1.1 Let  and  be nonempty sets and  and 
be the corresponding power sets. Let  be a relation on . Then
the maps

 for all 

and

 for all 

form a Galois connection on .

Example 6.1.2 Let  and let  be a field. Let  be the
set of all subsets of polynomials over  in the variables . Let

 be the set of all subsets of , the set of all ordered -tuples over
.

Let  be defined by

Set of all common roots of the polynomials in 
 for all 
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and let  be defined by

Set of all polynomials whose root set includes 
 for all 

We leave it as an exercise to show that  is a Galois connection on
.

Top and Bottom Elements
In many examples of Galois connections,  and  have both top and bottom
elements.

A top element is closed, since cl  and similarly for . Note also
that a top element is the image of the corresponding bottom element (if it
exists), for  is the image of  and since , the image
of  must be at least as large as , and therefore equal to .

However, a bottom element need not be closed. Indeed, the smallest closed
element of  is  and so  is closed if and only if , for
example. In other words, a bottom element is closed if and only if it is the image
of the corresponding top element.

Indexed Galois Connections
Let  denote the set of positive integers. In the set , we observe
some obvious understandings about , in particular,  for all ,

 for  and  implies .

Definition A Galois connection  on  is  ifindexed

a  For each  with , there exists a number ,)
called the , or  of  over .degree index

b  For each  with , there exists a number ,)
called the , or  of  over .degree index

We generally write  without a subscript to denote the appropriate index.
Moreover, the following properties must hold:
1   If  or  then) ( )Degree is multiplicative

2   If  then) ( ) and  are degree-nonincreasing

If  then
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3  If  or  then) ( ) Equality by degree

If , then  is said to be a  of . If  has a top andfinite extension

bottom element then the  of  is , and similarly forindex index
.

From now on, when we write , it is with the tacit assumption that .

The importance of indexing is described in the next theorem. It says that if a
Galois connection is indexed, then the connection preserves the index of closed
elements and that any finite extension of a closed element is also closed.

Theorem 6.1.4 Let  be an indexed Galois connection on .
1   If  and  then) ( ) ClDegree-preserving on closed elements

. A similar statement holds for .
2   If  and) ( ) ClFinite extensions of closed elements are closed

 then . In particular, if  is closed and  is finiteCl
then all elements are closed. A similar statement holds for .

Proof. For part 1), we have

cl cl

so equality holds throughout.

For part 2), if  and  thenCl

cl cl

and since , we may cancel to get cl , which shows that 
is closed.

Thus, in an indexed Galois connection, the maps are , order-degree-preserving
reversing bijections between the collections of closed sets  and .Cl Cl

A Simple Degree Argument
There is a situation in which a simple degree argument can show that an element
is closed. Referring to Figure 6.1.1,
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p

cl(p)

p*

r

r*

Figure 6.1.1

suppose that . Then  is closed and since , we havecl cl

cl

Now, if

then

cl cl cl

and so , that is,  is closed.cl cl

Theorem 6.1.5 If  and one of the following holds
1  and ) cl
2  and ) cl
then  is closed. In particular, for , if

then  is closed.

When  is Closed

The following nonstandard definition will come in handy.

Definition For a Galois connection on , we say that  is completely

closed if every element of  is closed, and similarly for . Also, the pair 
( )or the connection  is  if all elements of  and all elements ofcompletely closed

 are closed.

We have remarked that the top elements  and , if they exist, are always
closed, but the bottom elements  and  need not be closed.

However, the most important example of a Galois connection, namely, the
Galois correspondence of a field extension , which is the subject of our
investigations, has the property that  is closed. So let us assume that  is
closed and see what we can deduce.
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Since

index index

it follows that if  has finite index, then so does . Hence, if either  or  has
finite index, then  is completely closed. Finally, if  has finite index and  is
also closed, then the connection is completely closed.

Theorem 6.1.6  Let  be a Galois connection on ,( ) is closed

where  and  have top and bottom elements. Assume that  is closed. Then

index index

Also,
1  If  or , then  is completely closed.) index index
2  If  and  is closed, then  is completely closed.) index

6.2 The Galois Correspondence

Now we describe the main theme of the rest of the book.

Definition The  of a field extension , denoted by , isGalois group

the group  of all automorphisms of  over . The group  isAut
also called the Galois group of  over 

Note that when  is algebraic,

Aut hom

and when  is normal,

hom

Let  and let  be the complete lattice of all intermediate fields of ,
ordered by set inclusion. Let  be the complete lattice of all subgroups of the
Galois group , ordered by set inclusion. We define two maps 
and  by

and

fix  for all 

where  is called the  of . These are pictured in Figure 6.2.1.fix fixed field
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E

K

F

GF(E)

GL(E)

GE(E) = { }

L GK(E)

Figure 6.2.1–The Galois correspondence

Theorem 6.2.1 Let . The pair of maps

fix

is a Galois connection on  called the  of theGalois correspondence

extension .
Proof. It is clear from the definitions that both maps are order-reversing, that is,

and

fix fix

Also, any element of  is fixed by every element of , that is,

fix

Finally, any  fixes every element in , that is,fix

fix

Since  and  are complete lattices, Theorem 6.1.3 provides the following
corollary.

Corollary 6.2.2 The set  of closed intermediate fields and the set  ofCl Cl
closed subgroups of  are complete lattices, where meet is intersection. In
particular, the intersection of closed intermediate fields is closed and the
intersection of closed subgroups is closed. 

Note that both partially ordered sets  and  are topped and bottomed (as are
all complete lattices). The top of  is  and the bottom is . The top of  is

 and the bottom of  is the trivial subgroup . Also, the image of the
top  is  and so the bottom of  is closed. Hence, three out of the
four extreme elements are closed. We will spend much time discussing the issue
of the closedness of the bottom element .
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The Plan
Now that we have established that the Galois correspondence is a Galois
connection, our plan is as follows. First, we will show that the Galois
correspondence is indexed, where  is the degree of 
and  is the index of the subgroup  in the group .

Then we will describe the closed intermediate fields and the closed subgroups.
The next step is to describe the connection between intermediate normal
extensions and normal subgroups of the Galois group. (They don't call splitting
fields normal extensions for nothing.) Finally, we describe the Galois group of a
lifting and a composite.

The Galois Correspondence Is Indexed
We would like to show that the Galois correspondence of an extension 
is indexed, where  is the degree of the extension  and

 is the index of the subgroup  in the group . We know that the
degrees are multiplicative and that

The next theorem shows that the map  is degree-nonincreasing.
Recall that if  is finite, then . When  is infinite,
this inequality still holds provided that we interpret it, not as an inequality of
infinite cardinals, but simply as saying that  or .

Theorem 6.2.3 For the tower , we have

as elements of .
Proof. onsider the function  that maps C hom
to its restriction . Then  if and only if  and hom
agree on , that is, if and only if . Hence  is constant on
the cosets of  in  and so induces an injection on ,
whence

im hom

But as elements of , we have .

Showing that fix fix  is a bit more difficult.

Theorem 6.2.4 Let  and let . Then

fix fix
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Proof. First, if  is infinite, then there is nothing to prove, so let us
assume that , that is,  is a finite set. Thus,

 is a complete set of distinct coset representatives for ,
and we may assume that .

Let  denote the set of all functions from  into . Then  is a
vector space over , where if  and , then

Moreover, since the functions  defined by  form a
basis for  over , we have

dim

Thus, we have two vector spaces:  is a vector space over  offix fix
dimension  is a vector space over  of dimensionfix fix  and 

. We wish to show that .dim dimfix

To do this, we will show that if fix  are linearly independent
over , then the evaluation functions fix , defined by

are linearly independent over . (In fact, the converse also holds.)

First, we must show that  is a well-defined function from  to . If
 then  and so

which implies that , that is, . Hence,  is
well-defined.

So assume that fix fix are linearly independent over  and,
by reindexing if necessary, let

be a nontrivial linear combination over  that is shortest among all nontrivial
linear combinations equal to . Thus,  for all . Dividing by  if
necessary, we may also assume that  Thus.

(6.2.1)

Then applying this to  gives

for all . Since the 's are fixed by any element of , and any  has
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the form  for some , we deduce that

(6.2.2)

for all . In particular, if  then

(6.2.3)

which implies, owing to the independence of the , that not all of's over fix
the  can lie in . Let us assume that . Hence, there is a's fix fix

 for which .

We can replace  by  in (6.2.2) to get

Applying  gives

for all  and so

Finally, subtracting (6.2.1) from (6.2.3) gives

whose first coefficient is nonzero. But this is shorter than (6.2.1), a contradiction
that completes the proof. 

Thus, the Galois correspondence of an algebraic extension  is indexed.
We can now summarize our results in a famous theorem.

Theorem 6.2.5 (Fundamental Theorem of Galois Theory Part 1: The

correspondence) The Galois correspondence  of an extension  is
an indexed Galois connection and the bottom group  is closed. It follows that
the restrictions of  and  to closed elements are order-reversing, degree-
preserving inverse bijections as well as lattice anti-isomorphisms, that is, if 
are closed intermediate fields and  are closed subgroups, then

and

fix fix fix fix

We should note that the joins in the previous theorem are joins in the
corresponding lattices. Thus, for instance,  is the smallest closed
subgroup of  containing all of the subgroups , and this need not
be the smallest subgroup of  containing these groups.
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As a result of the closedness of , Theorem 6.1.6 gives the
following.

Corollary 6.2.7 Let  be the Galois correspondence of . Then

Also,
1  If , then  is completely closed.)
2  If , then  is completely closed.)
3  If  and  is closed, then  and  are completely closed.)

6.3 Who's Closed?

We turn our attention to the question of which intermediate fields of an
extension and which subgroups of the Galois group are closed.

We know on general principles that top elements are always closed. Thus, 
and  are closed. Moreover, the bottom group  is also
closed. We also know that any finite extension of a closed element is closed.

Now we require a definition.

Definition A normal separable extension  is called a ,Galois extension

or simply . Galois

The next theorem follows from the relevant properties of normal and separable
extensions.

Theorem 6.3.1 

1   Let . If) ( )Full extension Galois implies upper step Galois

 is Galois then the upper step  is Galois.
2   The class of Galois extensions is closed under) ( )Closed under lifting

lifting.
3   The class of) ( )Closed under arbitary composites and intersections

Galois extensions is closed under arbitrary composites and intersections.

Let  be algebraic. We wish to show that an intermediate field  is closed
if and only if the extension  is Galois.

First, suppose that  is closed and let . Then the finite extension
 of  is also closed and so

Let  be a complete system of distinct coset representatives for
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. Each element of  gives a distinct value on , that is, a
distinct root of , for if , then , which ismin
not possible for ,. Hence, the  roots of  are min
which are distinct and lie in . Thus,  is separable and  splits in ,min
implying that  is a Galois extension.

For the converse, suppose that  is Galois. If ,cl fix
has minimal polynomial , then  can have no roots othermin
than . For if  is a root of  in some extension, then there is an embedding

 over  for which . But since , it follows that
 and so . Thus  has only one distinct root. Since

 is separable, it must be linear, which implies that . Thus,
cl  and  is closed.

Let us summarize, with the help of Theorem 6.2.7.

Theorem 6.3.2 (Fundamental Theorem of Galois Theory Part 2: Who's

closed?) Let  be algebraic and consider the Galois correspondence on
.

1   The closed intermediate fields are precisely the fixed fields,) ( )Closed fields

that is, the fields of the form  for some .fix
 a  An intermediate field  is closed if and only if  is Galois.)
 b  Any extension of a closed intermediate field is closed. In particular, if)

 is closed, then  is completely closed.
 c  If  and) cl

then  is closed. In particular, if

then  is closed.
2   The closed subgroups of  are precisely the Galois) ( )Closed groups

groups of , that is, the subgroups of the form , for some
intermediate field .

 a  Any finite extension of a closed subgroup is closed.)
 b   is closed and so any  subgroup of  is closed.) finite
 c  When  is finite, so is  and so  is completely)

closed.
3  If  is a finite Galois extension, then the correspondence is completely)

closed.

As the next example shows, in the general algebraic case, not all subgroups
need be closed.



150 Field Theory

Example 6.3.1 For this example, we borrow from a later chapter the fact that
for any prime power , there exists a finite field  of size  and

 if and only if .

Referring to Figure 6.3.1, let  and let . Since  is a
finite field, it is perfect and so  is separable. Since  is algebraically
closed, . Hence  is a Galois extension and therefore  is closed.
The extension  is not finite, however, since  and

 for all .

E=Zp

GF(pq)

F=GF(p)=Zp

GF(E)

GE(E) = { }

H=< p>GF(pq )
2

P
(GF(E):H)>1?

[E:P]>1

GP(E)

Figure 6.3.1

Let  be the subgroup of  generated by the Frobenius map
. The fixed field  is the set of all  for which , infix

other words, the roots in  of the polynomial . But  has 
roots in  and so . It follows thatfix

cl fix

Hence, all we need do is show that  to conclude that  is not
closed. The key is that  for some any  has the form  and so the
fixed set of  is

which is a finite set. Thus, we need only show that there is an element of 
that fixes infinitely many elements of .

To this end, let  be a prime and consider the field

Then  is a proper subfield of , since it does not contain, for instance, the
subfield . Hence  and since  is Galois, the group

 is not trivial. But if , then  fixes the infinite field .
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Starting with a Field  and a Subgroup of Aut

The Galois correspondence begins with a field extension  and the
corresponding Galois group . Referring to Figure 6.3.2, we may also
begin with a field  and a subgroup  of . Then we can form the fixedAut
field

fix  for all 

and consider the Galois correspondence of the extension fix , which we
assume to be algebraic. The Galois group  contains , but thefix

containment may be proper.

E

F=fix(G)

Gfix(G)(E)

{ }

G

Figure 6.3.2–Starting with a field  and a subgroup  of Aut

Since  is algebraic and the base field fix fix  is closed, it follows that
fix fix is a Galois extension. Moreover, if , then the
correspondence is completely closed (all intermediate fields and all subgroups
are closed).

We emphasize that  may be a proper subgroup of , as inits closure fix

Example 6.3.1. However, this does not happen if  is finite, since finite
subgroups are closed.

Theorem 6.3.3 Let  be a field and let  be a group of automorphisms of .
1 If  is algebraic, then it is Galois and all intermediate fields are) fix

closed.
2 If  is finite, then all intemediate fields and all subgroups are) fix

closed.
3 If  is closed which happens if  is finite , then  is the top) ( ) fix

group of the correspondence.

More on Closed Subgroups: Closure Points
Let  be algebraic. The closure  of a subgroup  of the Galoiscl
group  can be characterized in a useful way. The following nonstandard
definition will help.
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Definition Let  be algebraic. Let  be a subgroup of the Galois group
. A function  is a  of  if for any  setclosure point finite
, we have , that is,  agrees with some member of  on .

Let  denote the set of closure points of .

First, note that a closure point  of  is a member of the Galois group ,
in fact,  is in the closure of , that is,

fix cl

Indeed,  is a homomorphism because it agrees with a homomorphism on
any finite set in  and it fixes each element of  because every member offix

 fixes .fix

We claim that . Since , the result would follow if cl cl
were closed, but of course, it may not be. However, given any finite set ,
we need only work with the  extension , whosefinite fix fix
Galois group is . In this case, all subgroups are closed. Thefix fix
problem is that we want  to be in the Galois group and this requires that
fix  be normal. No problem really: we just pass to a normal closure.

Consider the extension

fix nc fix

which is finite, normal, contains  and has Galois group . Since allfix

subgroups are closed,  is a closed subgroup of the Galois group .fix

Hence, in the Galois correspondence on , we havefix

cl fix

It follows that any  agrees with a member of  on . But iffix

cl fix , then

fix fix

and so  agrees with a member of  on , that is,  agrees with a member
of  on . Thus, , as desired.cl

Theorem 6.3.4 Let   be algebraic and let  be a subgroup of the Galois
group . Then  is the set of closure points of . More specifically,cl
the following are equivalent:
1) cl
2  For any finite set , we have .)
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Consequently, a subgroup  of  is closed if and only if it contains all of
its closure points. In particular, any subgroup of the form  contains all
of its closure points.

*The Krull Topology
For those familiar with elementary topology, we can make this discussion a bit
more topological.

We begin by extending the definition of closure point to apply to any set of
functions in , not just subgroups of the Galois group. In particular, a function

 is a  of  if for any finite set , we haveclosure point

.

It is not hard to show that the operation  is an  closurealgebraic
operation, in the sense defined earlier in the chapter. In addition, we have 
and

To see the latter, note that if , then for any finite subset , the
function  agrees with an element of  on . But if , then there is a
finite set  for which  does not agree with any element of  on .
Similarly, if , then there is a finite set  for which  does not agree
with any element of  on . However,  is a finite set and so there
must be some element  that agrees with  on , and therefore
on   and , that is,  on  and  on . But  or ,both
either one of which provides a contradiction.

It follows that the operation  is also a  closure operation.topological
Hence, the set of all complements of closed elements forms a toplology on .
This topology is actually quite famous.

Definition Let  be the set of all functions from  into . The finite topology

 on  is defined by specifying as subbasis all sets of the form

,

where , . Thus, a basis for  consists of all sets of the form

where , . 

To show that the topology obtained from closure points is the finite topology, let
 be any subset of . If  is in the closure  of  under the finite

topology, then any basis set that contains  also contains an element of . It
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follows that for any finite set , there is a  for which , that
is, . In other words,  is a closure point of . Thus .

On the other hand, if , then  agrees with some element of  on any finite
set and so any basis element containing  must intersect , showing that

. Thus, .

Since the set of closed sets is the same in the topology of closure points and in
the finite topology, these topologies are the same. Moreover, the Galois group

 is closed in the sense of closure points and so it is closed in the finite
topology. Thus, the induced (subspace) topologies are the same and, in view of
Theorem 6.3.4, we can state the following.

Theorem 6.3.5 Let  be algebraic. Then the Galois group  is
closed in the finite topology on . Moreover, a subgroup  is
closed in the Galois correspondence if and only if it is closed in the finite
subspace topology on .

The subspace topology of the finite topology inherited by  is called the
Krull topology on . We may phrase the previous theorem as follows: A
subgroup of Galois-closed if and only if it is  is Krull-closed.

Note that we do  say that the set of Galois-closed subgroups of is thenot
set of closed sets for a topology. We say only that these closed subgroups are
closed in the Krull topology. There are other subsets of  that are Krull-
closed, for example, sets of the form  which in general are not
even groups.

6.4 Normal Subgroups and Normal Extensions

We now wish to discuss intermediate fields  and their Galois
groups . We begin with a result concerning the conjugates of a Galois
group.

Definition Let . If there is a  for which ,
then  and  are said to be .conjugate

Theorem 6.4.1

1  If , then for any ,) hom

2  If , then for any ,) hom
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3  If  with , then for any ,) hom

4  Let , with  Galois. Then  and  are conjugate if)
and only if the Galois groups  and  are conjugate.

Proof. For part 1), l t . Then e  is an automorphism of .
Moreover, since  fixes , we have for ,

and so . Hence

For the reverse inclusion, let , where . Then  is an
automorphism of  and if , then  and so

which shows that .

Part 2) follows from part 1), since when  then any hom
satisfies . Part 3) is similar. For part 4), if , then part 1)
implies that

Conversely, if  then part 1) implies that 
 and taking field fields gives .

Now,  is normal in  if and only if

for all . According to the previous theorem,

and so  if and only if

If , then  and so . For the converse, if
 then taking fixed fields gives

cl cl

Thus, if  is closed, then  for all  and if, in addition,
, then  for all , that is,  is normal.hom
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Note that when  is normal, the restriction map
hom  defined by

is a homomorphism, whose kernel is none other than the normal subgroup
. Hence, the first isomorphism theorem of group theory shows that

Moreover, if  is normal, then  is surjective, since any  can
be extended to an embedding of  into  over , which must be an element of

. Hence, if , then

Now we are ready to summarize.

Theorem 6.4.2 ( )Fundamental Theorem of Galois Theory Part 3: Normality

Let . Let  be the restriction maphom

1  If  then  and  induces an embedding)

which is an isomorphism if the full extension  is normal.
2  If  and in addition,  and  is closed that is, ) (

is Galois , then  and  induces an isomorphism)

3  If  is Galois, then  if and only if .)

An Example
Now that we have a complete picture of the Galois correspondence, let us
consider a simple example: the Galois correspondence of a splitting field  for
the polynomial  over . Of course,  is finite and Galois.
Hence, the Galois correspondence is completely closed.

The roots of this polynomial are  and  and so any member of
the Galois group  is a permutation of these roots. As to degree, we have
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where the lower step has degree  since , by Eisenstein'smin
criterion. The upper step has degree at most , but cannot be  because

, which does not contain . Hence, the upper step has degree  and
.

One way to help find the Galois group is to look for an intermediate field  that
is normal, because the elements of  are precisely the restrictions of the
members of . Since any extension of degree  is normal, we have .
The elements of  are the identity  and the map .

Since , we have  and so each of themin
automorphisms  and  can be extended to an element of  by sending  to any
of the roots of . This gives

1)  ( )
2)
3)
4)

and

5)
6)
7)
8)

which constitute the  elements of .

Could  be cyclic? Of course, one can tell this simply by checking  for an
element of order . A more elegant way is the following: If  were cyclic, then
all of its subgroups would be normal and so all of the intermediate fields would
be normal extensions of . But  is not normal, since  does not
contain all of the roots of .min

Thus, all nonidentity elements  have order  or , and this is determined
by whether or not . In particular,  and all  have order  and  and

 have order . Thus,  has a normal cyclic subgroup 
where , and  is the dihedral group  of symmetries of the square.

All nontrivial subgroups of  have order  or . The subgroups of order 
correspond to the elements of order :

1)
2)
3)
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4)
5)

The subgroups of order  are the cyclic subgroup  and the subgroups
isomorphic to . A computation shows that

6)
7)
8)

The lattice of subgroups is shown in Figure 6.4.1.

{ , 2}{ , 1} { , 2} { , 3} { , 4}

{ , 2, 3, 4}{ , 2, 1, 2} { , 2, 3, 4}

{ }

G

Figure 6.4.1

Of course, the lattice of intermediate (fixed) fields is a reflection of this. To
compute fixed fields, we use the fact that  is a basis for  over  and

 is a basis for  over  and so the products form a basis for
 over . Hence, each  has the form

Thus for instance,  if and only if , that is,fix

Equating coefficients of the basis vectors gives  for all . Thus,

fix

As another example, note that  fixes both  and  and so

fix

(see Example 3.4.1). Moreover,  is a normal subgroup of  and so
 is a normal extension of degree . In fact, the roots of the

polynomial  are  and  and so  is a
splitting field for this polynomial.
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More generally, the normal subgroups of  correspond to the normal extensions
of . These subgroups are , , the subgroups of order  (index ) and

.

6.5 More on Galois Groups

We now examine the behavior of Galois groups under lifting and under
composites. As usual, we assume that all composites mentioned are defined.

The Galois Group of a Lifting
Let  be normal and let . Any , the Galois group of
the lifting, is uniquely determined by what it does to  (since it fixes ) and so
the restriction map  is an injection. Since  is normal, it follows
that . But  may fix more than : It also fixes every element of

 that is fixed by , that is,

fix cl

Note also that the restriction map is a homomorphism, and hence an embedding
of  into . We will show that this embedding is actually ancl

isomorphism and

cl

Note that if  is Galois, then  is Galois and so  is closed,
which simplifies the preceding to

Theorem 6.5.1 The ( )Galois group of a lifting  Let  be normal and let
. The restriction map

cl

where , defined by  is an isomorphism andcl fix

cl

Proof. We have already proved that  is an embedding. It remains to show that
 is surjective. To avoid confusion, let us use the notation  for the fixedfix

field with respect to the Galois correspondence on , and  for thefix
fixed field with respect to the Galois correspondence on . Then

fix im im

fix

  for all 
  for all 
  for all 

Now, if we show that  is a closed subgroup with respect to the Galoisim
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correspondence on , it follows by taking Galois groups (of ) that

im fix

and thus  is surjective, completing the proof. If  is finite, then all
subgroups of the Galois group  are closed, and we are finished.

When  is not finite, we must work a bit harder. We show that im
is closed by showing that  contains all of its closure points. So suppose that

. To show that , we must find a  for which .
But any  in  is completely determined by its action on  and so this
completely determines , that is, if it exists. To this end, note that every

 has the form

where  and . Define a function  by

To see that  is well-defined, let

where  and . Then since , there exists a  that
agrees with  on the elements , and so

Thus,  is well-defined. Clearly,  fixes  and agrees with  on .

Next, we show that  is a closure point of . Then, since  is
closed, it will follow that , and the proof will be complete.

First note that  on . Since , it agrees with some element of  on any
finite set . Hence,  agrees with some element of  on any finite subset  of

, and so also with some element of But on any finite subset  of . 
 also fixes  and so agrees with  element of any  on . Thus, 

agrees with some element of  on any finite subset of . But any
finite subset  of  has the form

,

where is a finite subset of  and so  agrees with some
element of , as desired. on . Thus, 

For a Galois extension , the previous theorem simplifies a bit.
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Corollary 6.5.2 The ( )Galois group of a lifting  The lifting  of a
Galois extension  by an arbitrary extension  is Galois. Moreover,
the restriction map  defined by  is an
isomorphism and

Also,
1   implies .)
2  If  is finite, then  implies .)
Proof. We have proved all but the last two statements. Statement  is clear. As1)
to statement 2), since all is finite, we have  and the result
follows by taking fixed fields. 

Corollary 6.5  yields a plethora of useful statements about degrees, all of which.2
can be read from Figure 6.5 . We leave details of the proof to the reader..1

EK

F

E K

E Kfinite
Galois

Figure 6.5.1

Corollary 6.5.3 Suppose that  is finite Galois and . Then
1   and so .)
If  is also finite then
2  .)
3   divides , with equality if and only if .)
More generally, if  is finite Galois for  and  is
finite then. letting  when , we have

4)

5   if and only if  for all .)

The Galois Group of a Composite
We now turn to the Galois group of a composite. Let  and . Then
any  is completely determined by its action on  and , that is,
by its restrictions  and , or put another way, by the element
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Indeed, the map  is an embedding of groups.
Moreover, as we will see, in the finite case, if the fields enjoy a form of
independence ( ), then the embedding is an isomorphism.

The following theorem gives the general case.

Theorem 6.5.4 The ( )Galois group of a composite

1 Let  be a family of fields, with  normal for all )
. Let  be the direct product of the Galois groups 

and let  be projection onto the th coordinate. Then the
map

defined by

is an embedding of groups. Hence,  is isomorphic to a subgroup
of .

2 If  is a finite family of finite Galois extensions, then the)
map  is surjective and

 if and only if

for all .
Proof. Since , Theorem 6.4.1 implies that each individual restriction map

is a surjective homomorphism from  onto , with kernel
. Hence,  is a homomorphism from  into .

As to the kernel of , if , then

and so  on each , which implies that . Hence,  and ker
is an embedding.

When  is a finite family of finite Galois extensions, all Galois groups are finite
and all subgroups and intermediate fields are closed. Since  is injective, we
have
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im

and also

Hence  is surjective if and only if  and Corollary 6.5.3
gives the desired result. 

If  is a finite Galois extension whose Galois group is a direct product
, then we may wish to find intermediate fields 

whose Galois groups (over ) are isomorphic to the individual factors  in the
direct product.

Corollary 6.5.5 Suppose that  is a Galois extension with Galois group of
the form

If

where  is in the th coordinate and if

fix

then
1   is Galois, with Galois group .)
2  .)
3   for all .)
Proof. Since , it followsfix  is closed and  is normal, 
from Theorem 6.4  that  and.2

In addition,  is Galois and since

taking fixed fields gives . Hence,

and Theorem 6.5.4 implies that  for all . 
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The Galois Group of the Normal Closure
We next wish to consider the Galois group of a normal closure, which is a
special composite of fields.

Theorem 6.5.6 Let  be separable.
1  If)

nc

then  is isomorphic to a subgroup ofnc

hom hom

2  If, in addition to the conditions of part 1),  is finite, then the direct)
product given above is a finite direct product.

Proof. Let nc , the join being over all hom .
Then

hom

Since  is Galois, so is  and Theorem 6.5.4 implies that
 is isomorphic to a subgroup of . The rest of part 1)

follows from Theorem 6.4.1. For the second statement, if  is finite, then

hom

and so the direct sum is a finite sum.

6.6 Abelian and Cyclic Extensions

Extensions are often named after their Galois groups. Here is a very important
example.

Definition A Galois extension  is  if its Galois group  isabelian

abelian and  if the Galois group  is cyclic. cyclic

The basic properties of abelian and cyclic extensions are given in the next
theorem, whose proof is left as an exercise. Note that abelian and cyclic
extensions are  (quite) distinguished.not

Theorem 6.6.1 

1   If  are abelian, then  is) ( )Composite of abelian is abelian

abelian.
2   If  is abelian cyclic) ( ) ( )Lifting of abelian/cyclic is abelian/cyclic

and , then  is abelian cyclic .( )
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3   If  with) ( )Steps in an abelian/cyclic tower are abelian/cyclic

 abelian cyclic , then  and  are abelian cyclic .( ) ( )

Abelian and cyclic extensions fail to be distinguished because, and only because
if the steps in a tower are abelian (cyclic), this does not imply that the full
extension is abelian (cyclic). What does it imply?

Suppose that

is a tower in which each step  is abelian (cyclic). Taking Galois
groups gives the series

Consider the subtower . Since the lower step is normal, it
follows from Theorem 6.4.2 that  is a normal subgroup of its parent

 and that

Since the latter is abelian (cyclic), so is the former. Thus,

where each quotient group is abelian (cyclic). In the language of group theory,
this series of subgroups is an abelian series. (When the groups are finite, the
cyclic case and the abelian case are equivalent.) A group that has an abelian
series is said to be .solvable

Theorem 6.6.2 If

is a tower of fields in which each step  is abelian, then the Galois
group  is solvable.

*6.7 Linear Disjointness

If  and  are finite extensions, the degree  provides a
certain measure of the “independence” of the extensions. Assuming that

, we have

The “least” amount of independence occurs when , or
equivalently, when  and the “greatest” amount of independence occurs
when
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(6.7. )1

We have seen (Corollary 6.5.3) that if one of the extensions is Galois, then
(6.7. ) holds if and only if . For finite extensions in general, we1
cannot make such a simple statement. However, we can express (6.7. ) in a1
variety of useful ways. For instance, we will show that (6.7. ) holds for1
arbitrary finite extensions if and only if whenever  is linearly
independent over  and  is independent over  then  is also
independent over .

To explore the situation more fully (and for not necessarily finite extensions), it
is convenient to employ tensor products. (All that is needed about tensor
products is contained in Chapter 0.) The multiplication map 
defined by  is bilinear and so there exists a unique linear map

 for which .

Note that the image of  is the -algebra  of all elements of the
form

for  and . Hence, if  or  is algebraic, say  is
algebraic, then  and so the map  is surjective.

If  is a field, we use the term  to mean linearly independent-independent

over .

Theorem 6.7.1 Let  and suppose that  and  are intermediate fields.
Then  and  are  over  if any of the following equivalentlinearly disjoint

conditions holds.
1  The multiplication map  is injective.)
2  If  is -independent, then it is also -independent.)
3  If  and  are both -independent, then  is also -)

independent.
4  If  is a basis for  over  and  is a basis for  over , then)

 is a basis for  over .
5  There is a basis for  over  that is -independent.)
Moreover,
6   and  are linearly disjoint if and only if  and  are linearly disjoint,)

for all  extensions  and .finite
7  If  and  are linearly disjoint then)

Proof. 1 2  Let  be -independent and suppose that 
for . Since  is injective and
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we have

Theorem 0.9.2 now implies that  for all .

2 3  Let  and  be -independent. If

,

with  then since  is also -independent, the coefficients of  must
equal , that is,

for all . Since the  are also -independent, we get  for all , .'s

3 4  This follows from the fact that if  spans  over  and  spans
 over  then  spans  over .

4 1  The map  sends a basis  for  to a basis  for
 and is therefore injective.

Thus, each of  to 4) is equivalent, and by symmetry we may add the1)
equivalent statement that any -independent subset of  is also -independent.
It is clear that 2) implies 5).

5 1  Let  be a basis for  over  that is -independent. Let  be a
basis for  over . Then  is a basis for  over , for if

,

with  then since  is -independent, we have

for all . Since the  are also -independent,  for all , . Finally, 's
takes the basis  to the basis  and so is injective.

As to 6), it is clear that multiplication  is injective if and only
if each map  is injective. Alternatively, if  and  are
linearly disjoint, then so are  and , for if  is -
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independent, then it is -independent and hence also -independent.
Conversely, if  were -independent but failed to be -independent,
then some finite subset  would be -dependent as well, say

for , not all . Let  and . Since
 is -independent, it must also be -independent by the

linear disjointness of  and . Thus,  for all , a contradiction.

For 7), suppose that  and  are linearly disjoint and . Then we
have  and  where  is a finite intermediate
field in each case. It follows from part 6) that  is linearly disjoint with
itself. Therefore, if  is a basis for  over , it is also a basis for  over

 and so , that is,  and . Thus, .

Corollary 6.7.2 Linear disjointness in the finite case  ( ) Let  and
suppose that  and  are intermediate fields of finite degree over .
1   and  are linearly disjoint if and only if)

2  If one of  or  is Galois, then  and  are linearly disjoint if)
and only if

Proof. For part 1), if  and  are linearly disjoint, then part 4) of Theorem 
6.7.1 implies that the degree condition above holds. Conversely, if this degree
condition holds, and if  is a basis for  over  and  is a basis for 
over , then since the set  spans  and has size , it must also
be a basis for . Hence,  and  are linearly disjoint.

Alternatively, we have remarked that the multiplication map 
is surjective and so it is injective if and only if , whichdim dim
by Corollary 0.9.5 is equivalent to

dim dim dim

Part 2) follows from part 1) and Corollary 6.5.3. 

Exercises

1. Find the Galois group of the polynomial  over . Find the subgroups
and intermediate fields.

2. Prove that a pair of order-reversing maps  between
partially ordered sets is a Galois connection if and only if
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for all  and , where  and .
3. Let . Prove that .fix

4. If  is an order-reversing bijection between two lattices, verify
that  and . : first show that  isHint
also order-reversing.

5. If  and  where  is algebraic and  and
 are Galois. Show that  is a Galois extension.

6. If  is abelian, show that for every intermediate field  we
have .

7. Let  and  be Galois extensions. Let  be the join
of  and  in the lattice  of all subgroups of  and let

 be the join in the lattice  of all  subgroups ofclosed
. Show that  is finite if and only if  is

finite, in which case .
8. Let  be finite. Let . Show that

fix fix

9. Let  and let  and  be intermediate fields with  and
. Show that  need not have degree a power of . :Hint

The group  has subgroups  and 
. Consider the generic polynomial

where  are independent variables over .
10. Find an example of an infinite algebraic extension whose Galois group is

finite.
11. Let  be independent transcendentals over  and consider the

generic polynomial

Suppose that  has coefficients . Then  is algebraic over
 and so  is algebraic. Show that

the extension is Galois. Show that the degree of the extension is at most .
Show that the Galois group of this extension is isomorphic to the symmetric
group .

12. Prove Corollary 6.5.3.
13. Let  be finite and Galois. Let  be a prime for which ,

with . Show that for any , there is an intermediate field 
for which .
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14. Let  be a perfect field. Define the  of a positive integer  to be the-order

largest exponent  for which . Suppose that  is a finite
extension and that  is a prime. Suppose that  has -order . Show
that for any ,  has an extension  whose degree has -order .
Show also that if  is not a power of , then  is not a power of

.
15. Let  be a finite Galois extension and let . Then 

divides . Use the following to show that the assumption that 
be Galois is essential. Let  be the real cube root of , let  be a cube
root of . Let ,  and .

16. Prove the following statements about abelian and cyclic extensions.
 1) If  and  are abelian, then  is abelian.
 2) If  is abelian (cyclic) and , then the lifting  is

abelian (cyclic).
 3) If  with  abelian (cyclic), then  and 

are abelian (cyclic).
17. Let  with roots  in . Let . We can

consider the splitting field  of  over  as well as
the splitting field  of  over . Note that .
Let us examine the Galois groups  and .

 a) If , show that , where

fix fix

 b) Let  be defined by . Show that  is an
isomorphism.

18. Referring to Theorem 6.5.4, show that if  is an arbitrary family then the
map

defined by

is an isomorphism if

  for all 

19. Prove that  is a topological group under the Krull topology. Show
that  is totally disconnected.

20. a) Show that in every Galois extension , there is a largest abelian
subextension , that is, ,  is abelian and ifab ab ab

 with  abelian then .ab

 b) If  is a group, the subgroup  generated by all commutators

, for , is called the
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commutator subgroup. Show that  is the smallest subgroup of 
for which  is abelian.

 c) Let . If the commutator subgroup  of a Galois group
 is closed, that is, if  for some ,

then .ab

21. Let . Show that the separable closure  of  in  and the purelysc

inseparable closure  of  in  are linearly disjoint over . Moreover, ific

 and if  and  are linearly disjoint over  then  isic

separable.
22. Let  and suppose that  is a set of elements that are algebraically

independent over . Then  and  are linearly disjoint over .
23. Let  and let . Assume that  and  are contained in a

larger field. Then  and  are linearly disjoint over  if and only if  and
 are linearly disjoint over  and  and  are linearly disjoint over .

24. The following concept is analogous to, but weaker than, that of linear
disjointness. Let  and  be extensions, with  and  contained
in a larger field. We say that  is  if whenever free from  over 

is a finite set of  independent elements over , then  is alsoalgebraically
algebraically independent over .

 a) The definition given above is not symmetric, but the concept is. In
particular, show that if  is free from  over , then 

. Let  be a finite -algebraically independent set of elements
of . Show that  is algebraically independent over .

 b) Let  and  be field extensions, contained in a larger field.
Prove that if  and  are linearly disjoint over , then they are also
free over .

 c) Find an example showing that the converse of part b) does not hold.



Chapter 7

Galois Theory III: The Galois Group of a
Polynomial

In this chapter, we pass from the highly theoretical material of the previous
chapter to the somewhat more concrete, where we apply the results of the
previous chapter to some special Galois correspondences.

7.1 The Galois Group of a Polynomial

The   isGalois group of a polynomial , denoted by ,
defined to be the Galois group of a splitting field  for  over . If

is a factorization of  into powers of distinct irreducible polynomials over ,
then  is also a splitting field for the polynomial .

Moreover, the extension  is separable (and hence Galois) if and only if
each  is a separable polynomial. To see this, let  be the splitting field for

 satisfying . Then if  is separable, so is the lower step
 and therefore so is . Conversely, if each factor  is separable

over , then  is separably generated over  and so  is separable.

Note that each  is uniquely determined by its action on the roots of
, since these roots generate , and this action is a permutation of the roots.

In fact, if  and  are roots of , then there is a  that sends  to
. Hence, the Galois group  acts  on the roots of .transitively

However, not all permutations of the roots of  need correspond to an
element of . Of course,  must send a root of an irreducible factor of

 to another root of the same irreducible factor, but even if  is itself
irreducible, not all permutations of the roots of  correspond to elements of
the Galois group. Thus, the Galois group  is isomorphic to a transitive
subgroup of the symmetric group , where .deg
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Let  where  and let  be the splitting field fordeg
 over  and  the splitting field for  over . We clearly have

 and  and so Theorem 6.4.2 implies that 
and

or, in another notation,

Theorem 7.1.1 Let  where . The Galois groupdeg
of  is isomorphic to a quotient group of the Galois group of 

where  is a splitting field for .

7.2 Symmetric Polynomials

In this section, we discuss the relationship between the roots of a polynomial
and its coefficients. It is well known that the constant coefficient of a
polynomial  is the product of its roots and the linear term of  is the
negative of the sum of the roots. We wish to expand considerably on these
statements.

The Generic Polynomial and Elementary Symmetric Functions
If  is a field and  are algebraically independent over , the
polynomial

is referred to as a  over  of degree . Since the rootsgeneric polynomial

 of the generic polynomial  are algebraically independent, this
polynomial is, in some sense, the most general polynomial of degree .
Accordingly, it should (and does) have the most general Galois group , as we
will see.

It can be shown by induction that the generic polynomial can be written in the
form
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where the coefficients  are given by

and are called the  in the variables .elementary symmetric polynomials

As an example of what can be gleaned from the generic polynomial, we deduce
immediately the following lemma.

Lemma 7.2.1 Let . The coefficients of  are, except for sign, the
elementary symmetric polynomials of the roots of . In particular, if

has roots  in a splitting field, then

Since the extension elementary is algebraic, the 
symmetric polynomials  are also algebraically independent over ,
that is, there is no nonzero polynomial over  satisfied by .

Theorem 7.2.2 The elementary symmetric polynomials  are
algebraically independent over .
Proof. Since , where the upper step is
algebraic, Theorem 4.3.2 implies that  contains a
transcendence basis for  over . But  is a transcendence
basis and so : . Hence,  is a transcendence basis. 

The Galois Group of the Generic Polynomial
Let us compute the Galois group  of  over . Since

 is a splitting field for  over , and since  has
no multiple roots, the extension

is finite and Galois and so

We claim that  is isomorphic to the symmetric group . Let . For any
, define a map  by

Since the 's are algebraically independent over , this is a well-defined
automorphism of  over , which fixes the elementary symmetric
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polynomials  over. Thus,  is an automorphism of 
, that is, , where

for any .

Moreover, each  is distinct, since if , then  for all  and so
. It follows that  is isomorphic to  and

Theorem 7.2.3 Let  be algebraically independent over  and let
 be the elementary symmetric polynomials in .

1  The extension  is Galois of degree , with)
Galois group  isomorphic to the symmetric group .

2  , that is, any rational function in  that is) fix
fixed by the maps  is a rational function in .

3  The generic polynomial  is irreducible over .)
Proof. To prove part 3), observe that if  where were equal to 
deg  and , then the Galois group of deg
would have size at most . Hence  is irreducible. 

Symmetric Polynomials
Now we are ready to define symmetric polynomials (and rational functions).

Definition A rational function  is  insymmetric

 if

for all permutations , that is, if , where  isfix
the Galois group of the extension .

A famous theorem of Isaac Newton describes the symmetric .polynomials

Theorem 7.2.4 ( ) Newton's Theorem Let  be algebraically
independent over  and let  be the elementary symmetric polynomials
in .
1  A polynomial  is symmetric in  if and)

only if it is a polynomial in , that is, if and only if

for some polynomial  over . Moreover, if  has
integer coefficients, then so does .

2  Let . Then the set of  polynomials over  in the roots) symmetric
of  is equal to the set of polynomials over  in the coefficients of .
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In particular, any symmetric polynomial over  in the roots of  is an
element of .

3 Let  be a polynomial with integer coefficients. Then the set of)
symmetric polynomials over  in the roots of  is equal to the set of
polynomials over  in the coefficients of . In particular, any symmetric
polynomial over  in the roots of  is an integer.

Proof. Statements 2) and 3) follow from statement 1) and Lemma 7.2.1. If
 has the form , then it is clearly symmetric. For the

converse, the proof consists of a procedure that can be used to construct the
polynomial . Unfortunately, while the procedure is quite
straightforward, it is recursive in nature and not at all practical.

We use induction on . The theorem is true for , since . Assume
that the theorem is true for any number of variables less than  and let

 be symmetric. By collecting powers of , we can write

where each  is a polynomial in . Since  is symmetric in
 and  are independent, each of the coefficients  is

symmetric in . By the inductive hypothesis, we may express each 
as a polynomial in the elementary symmetric polynomials on . If
these elementary symmetric polynomials are denoted by , then

(7.2 ).1

where each  is a polynomial in , with integer coefficients if  has
integer coefficients.

Note that the symmetric functions  can be expressed in terms of the symmetric
functions  as follows

(7.2.2)

These expressions can be solved for the 's in terms of the 's, giving

3 3 3
3

and from the last equation in (7.2.2),
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(7.2.3)

Substituting these expressions for the 's into (7.2.1) gives

where each  is a polynomial in  and , with integer coefficients if
 has integer coefficients. Again, we may gather together powers of , to get

where each  is a polynomial in , with integer coefficients if  has
integer coefficients. If , we may reduce the degree in  by using (7.2.3),
which also introduces the term . Hence,

(7.2.4)

where each  is a polynomial in , with integer coefficients if  has
integer coefficients.

Since the left side of (7. .4) is symmetric in the 's, we may interchange  and2
, for each , to get

valid for all . Hence, the polynomial

has degree (in ) at most  but has  distinct roots , whence it
must be the zero polynomial. Thus,  for  and 

, as desired. 

Example 7.2.1 Let  be a polynomial with
roots  in a splitting field. For , the polynomials

are symmetric in the roots of , and so Theorem 7.2.4 implies that the 's
can be expressed as polynomials in the elementary symmetric polynomials

 of the roots. One way to derive an expression relating the 's to the
's is by following the proof of Theorem 7.2.4. In the exercises, we ask the

reader to take another approach to obtain the so-called Newton identities

for . These identities can be used to compute recursively the 's in terms
of the 's. 
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7.3 The Fundamental Theorem of Algebra

The Galois correspondence can be used to provide a simple proof of the
fundamental theorem of algebra.

As an aside, the history of the fundamental theorem is quite interesting. It seems
that attempts to prove the fundamental theorem began with d'Alembert in 1746,
based on geometric properties of the complex numbers and the concept of
continuity, which was not well understood at that time.

In 1799, Gauss gave a critique of the existing “proofs” of the fundamental
theorem, showing that they had serious flaws, and attempted to produce a
rigorous proof. However, his proof also had gaps, since he suffered from the
aforementioned lack of complete understanding of continuity. Subsequently, in
1816, Gauss gave a second proof that minimized the use of continuity, assuming
a form of the intermediate value theorem.

It was not until Weierstrass put the basic properties of continuity on a rigorous
foundation, in about 1874, that d'Alembert's proof and the second proof of
Gauss could be made completely rigorous.

We will also assume a form of the intermediate value theorem, namely, that if
 is a real polynomial, and if  and  have opposite signs, for ,

then there is a  for which . From this, one can deduce that any
odd degree real polynomial must have a real root and is therefore reducible over

. It follows that any nontrivial finite extension of  must have even degree,
since it must contain an element whose minimal polynomial has even degree.

We also require some knowledge of complex numbers, namely, that every
complex number has a complex square root, which can be seen from a
geometric perspective:  implies . Hence, no complex
quadratic  is irreducible over , since the method of completing the square
shows that the roots of  lie in . It follows that  has no extensions of
degree .

Theorem 7.3.1 The   Any nonconstant( )fundamental theorem of algebra

polynomial over  has a root in , that is,  is algebraically closed.
Proof. We first show that it is sufficient to prove the theorem for real
polynomials. Let  be nonconstant. Consider the polynomial

, where the overbar denotes complex conjugation of the
coefficients. Then  is a real polynomial and  has a complex root if and
only if  has a complex root. Hence, we may assume that .

Now consider the tower , where  is a splitting field for
 over . Since  divides , we conclude
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that , for some  with  odd. Our goal is to show that
, showing that  splits over .

Let  be a -Sylow subgroup of . Then  and so

fix

Since  has no nontrivial extensions of odd degree, we deduce that  and
 is a -group of order .

Thus, we have the tower

in which . Therefore, according to Theorem 0.2.19,
 has a subgroup of any order dividing . But  cannot have

a subgroup of order  that is, index 

because then

fix fix fix

which is not possible. Hence,  and so , which implies
that , whence .

7.4 The Discriminant of a Polynomial

We have seen that the Galois group  of a polynomial of degree  is
isomorphic to a subgroup of the symmetric group  and that the Galois group
of a generic polynomial is isomorphic to  itself. A special symmetric function
of the roots of , known as the , provides a tool for determiningdiscriminant
whether the Galois group is isomorphic to a subgroup of the alternating group

.

Let  be a polynomial over , with roots  in a splitting field E. Let

The  of  is , which is clearly symmetric in the roots.discriminant

Note that  if and only if  has no multiple roots.

Let us assume that . Then  is the product of distinct separable
polynomials, implying that  is a Galois extension. Hence,

fix

Since  for all Newton's, we deduce that . (
theorem also implies that .)
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Each transposition of the roots sends  to , and so for any ,

where  is  if  is an even permutation and  if  is an odd permutation.
Thus, the location of  can give us some information about the parity of the
permutations in the Galois group.

If , then  for all  and so  is always in the basechar
field . This is not very helpful. But if  fixes char , then 
if and only if  is an even permutation. Put another way,

fix  if and only if  contains only even
permutations, that is, .

If  must contain an odd permutation.  then It is not hard to show
that if a subgroup of  contains an odd permutation then the subgroup has even
order and exactly half of its elements are even.

Hence, if  then  has even order and , that
is,

Since all groups are closed, it follows that

fix

Since  and fix , we have

fix

Thus,  is the fixed field of the subgroup of even permutations in .
Let us summarize.

Theorem 7.4.1 Let  have degree  and splitting field . Let 
be any square root of the discriminat  of .
1   if and only if  has multiple roots in .)
2  Assume that  and .) char
 a   if and only if  is isomorphic to a subgroup of .)
 b   if and only if  is isomorphic to a subgroup of )

that contains half odd and half even permutations. In this case,

fix

3  If  and , then  but  need not be) char
isomorphic to a subgroup of .
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Proof. For part 3), recall that the generic polynomial 
has Galois group  over .

The usefulness of Theorem 7.4.1 comes from the fact that  can actually be
computed without knowing the roots of explicitly. This follows from the
fact that  is the Vandermonde determinant

Multiplying this by its transpose gives

where . Newton's identities can then be used to
determine the 's in terms of the coefficients of the polynomial in question (see
Example 7. .1 and the exercises). We will see some examples of this in the next2
section.

7.5 The Galois Groups of Some Small-Degree Polynomials

We now examine the Galois groups of some small-degree polynomials.

The Quadratic
Quadratic extensions (extensions of degree ) hold no surprises. Let

be a quadratic over , with splitting field . To compute the discriminant,
observe that  and

Hence

a familiar quantity.

Multiple Roots

If  then  has a double root  and,
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The root  will lie in  for most well-behaved base fields . In particular, if
char char, then  implies . If  and  is perfect a
finite field, for example) then  must be reducible over  and so

.

However, the following familiar example shows that  may have a multiple
root not lying in . Let  where  is transcendental over  and let

Since , this polynomial is irreducible over , but has a multiple
root .

No Multiple Roots

If  then  has distinct roots and there are two possibilities:,

1) The roots lie in ,  is reducible and  is trivial.
2) The roots do not lie in ,  is irreducible and  is

generated by the transposition  of the roots.

Thus, when , we can tell whether the roots lie in  by looking atchar
the discriminant: If , then  and possibility 2)
obtains. Of course, this is also evident from the quadratic formula

If , then Hence the roots lie in  if and only if.
. (We can now rest assured that what we tell our children about

quadratic equations is actually true.)

Theorem 7.5.1 Let  have degree .
1  If  then  has a double root . If  or  is) char

perfect, then . In any case,  is trivial.
2  If  then  has distinct roots and there are two possibilities:)
 a  The roots lie in ,  is reducible and  is trivial.)
 b  The roots do not lie in ,  is irreducible and  is)

generated by the transposition  of the roots.
 When , we can distinguish the two cases as follows: Case 1)char

holds if  and case 2) holds if .

Let us turn now to a more interesting case.
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The Cubic
Let

3

have splitting field . Then  is irreducible if and only if none of its roots lie
in .

If  splits over  then  and its Galois group is trivial. If  is
reducible but does not split, then it can be factored over :

where  is irreducible over . Hence,  and the
Galois group is isomorphic to .

Now let us assume that  is irreducible. A lengthy computation gives

If hen  has multiple roots and since each root must have the same, t
multiplicity, we are left with  andchar

Hence, the extension  is purely inseparable of degree  and the
Galois group is trivial.

If  then  has no multiple roots and is therefore separable. Hence,,
 is Galois and

which leaves the possibilities  and .

We can now give a complete analysis for the cubic. Note that when
char , knowledge of irreducibility and the value of  determine the
Galois group and the splitting field.

Theorem 7.5.2 The cubic  Let  have degree , with splitting field( )
 and Galois group . Then there are four mututally exclusive

possibilities, each of which can be characterized in four equivalent ways:
1  a  ) )
 b   is the splitting field for )
 c  )
 d  For   is reducible and .) ( char )
2  a  ) )
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 b   is reducible and  is a splitting field for , where  is)
a root not in .

 c  )
 d  For   is reducible and .) ( char )
3  a) ) 
 b   is irreducible and  is the splitting field for , for any)

root
 c  )
 d  For   is irreducible and .) ( char )
4  a) ) 
 b   is irreducible and  is the splitting field for ,)

for any root 
 c  )
 d  For   is irreducible and .) ( char )
Proof. We leave proof to the reader.

We know that . For , we can learn more about the roots of a cubic
by looking at the sign of . A cubic  over  has either one reat root  and
two nonreal roots  or three real roots  and . In the former
case,

and so . In the latter case, .

Theorem 7.5.3 The cubic over  ( ) Let  have degree . Then
1   if and only if  has exactly one real root)
2   if and only if  has three real roots.)

Example 7.5.1 Let  over . Any rational root of 
must be  (Theorem 1 ) and so  is irreducible. The discriminant is.2.3

,  has three real roots. Since , we have so 
 and . has splitting field , for any root 

On the other hand, for any prime , the polynomial  is irreducible
over  and has discriminant , whose square root is not in .
Hence, the Galois group of  is has one real root and two nonreal roots, 
isomorphic to  and . has splitting field 

*The Quartic
Since the Galois group of an irreducible quartic polynomial is isomorphic to a
transitive subgroup of , we should begin by determining all such subgroups.
Theorem 0.3.2 implies that if  is a transitive subgroup of  then
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 or 

Here is a list.

1) ( ) The cyclic group  occurs as a subgroup of .Order : cyclic group

The elements of  of order  are the -cycles .
The three subgroups of  isomorphic to  are

3

2) ( ) The   occurs as aOrder : Klein four-group Klein four-group
subgroup of . In particular, let

, , , 

which is isomorphic to . We leave it to the reader to show that  is
normal in . Note also that . This and the previous case exhaust all
nonisomorphic groups of order . The group  contains other isomorphic
copies of the Klein four group, such as

However, suppose that such a subgroup  is transitive. Every nonidentity
element  has order  and so is a product of disjoint -cycles
(transpositions). Hence,  is a transposition or a product of two disjoint
transpositions. But a transposition links only two elements of 
together and a product of disjoint transpositions links two pairs of elements
together. Since there are  pairs that must be linked, we deduce that

 contains no transpositions and therefore must be .
3) ( ) T of symmetries of theOrder : dihedral group he dihedral group 

square, thought of as permutations of the corners of the square, occurs as a
subgroup of  of order . These subgoups are Sylow subgroups

, , 
, , 
, ,

Note that , for each .
4) ( ) The alternating group  is the onlyOrder : alternating group

subgroup of  of order .
5) ( ) Of course,  is the only subgroup of  ofOrder : symmetric group

order .
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Now let

be an irreducible quartic over  and assume that . This willchar
insure that , that that all irreducible cubic is separable and 
polynomials that we may encounter are separable.

Replacing  by  will eliminate the cubic term, resulting in a polynomial
of the form

which is often referred to as the The polynomialsreduced polynomial for . 
 and  have the same splitting field and hence the same Galois group,

and their sets of roots are easily computed, one from the other. Let  be the
splitting field of , let  be the roots of in  and let 

 be its Galois group.

For convenience, we identify  with its isomorphic image in . For example,
the permutation  interchanges  and .

To analyze the quartic , we want to find a strategically placed intermediate
field. One way to do this is to find a strategically placed subgroup of the Galois
group, one that has nice intersection properties with the candidates listed above..
The alternating group  immediately springs to mind, but this may be too
large. In fact, if  then  is a subgroup of . So let us try the Klein
four group , which gives us a subgroup  of , as shown in Figure 7.5.1.

E = split(p(x))

fix(V G) = split(r(x))

e =2 or 4

d = 1: [r(x) splits over F]

d = 2: [r(x) has one root in F]
d = 3 or 6: [r(x) irred. over F]

GF(p(x)) = G

F

e =2 or 4

V G

d = 1: [r(x) splits over F]
d = 2: [r(x) has one root in F]

d = 3 or 6: [r(x) irred. over F]

Figure 7.5.1

Comparing with the candidates for , we have

1)
2)
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3)
3) , , , 
4) , for 
5)
6)

Thus,

1)  or 
2)  or 
3)

We next determine the fixed field element of  fixesfix . Each 
the expressions

and so . By checking each permutation in , it is not hard to
see that no permutation outside of  fixes ,  and . Thus,

Taking fixed fields gives  and so

fix

We would like to show that  is the splitting field for the cubic polynomial

over , but this requires that the coefficients of  lie in .

The coefficients of are the elementary symmetric polynomials of the roots
 and  and since every  permutes ,  and , it follows that any

symmetric function of ,  and  is fixed by  and so lies in . Thus,  is the
splitting field for the cubic . Hence,

 or 

as shown in Figure 7.5.1.

Definition The polynomial  is called the
resolvent cubic of .

The Coefficients of the Resolvent Cubic

Now let us determine the coefficients of the resolvent cubic irst note that. F
since  has no cubic term, it follows that . Then if we
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write

then   and . Now write  as a product of
quadratic polynomials over , say

where the linear coefficients are negatives of each other since  has no cubic
term, and where the roots of the first factor are  and . Then  and so

Multiplying out the expression for  and equating coefficients gives the
equations

Solving the first two for  and  and substituting into the third gives

and so  satisfies the polynomial

and  satisfies the polynomial

But we can repeat this arguement, factoring  into a product of quadratics for
which the roots of the first quadratic are  and , say

and so  and . The same algebra as before leads to the fact
that . Similarly,  and so  is the resolvent cubic of .

Final Analysis of the Quartic

The first thing to note is that the discriminants of  and  are equal:
. We leave verification of this as an exercise. Let  be the Galois

group of  and let  be the Galois group of . The following can be
gleaned from Theorem 7.5.2.

1) If  is reducible and  (in which case  splits over ), then
 and so . Hence, .

2) If  is reducible and  (in which case  has a single root in
), then  and there are two possibilities. If
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 then  and so  for  or , or . But
 is not possible, so . Note that in this case, since  is the

splitting field for  over  and  the polynomial  must
have an irreducible quadratic factor over . If  then 
and , for  or . In this case,  is irreducible over .

3) If  is irreducible and , then  and . Hence
, which implies that  and so 

. Thus .
4) If  is irreducible and , then  and  is not a

subgroup of . Hence . and so  or
. But  and so .

Theorem 7.5.4 The quartic  Let( )

be an irreducible quartic over a field , with . Let  be thechar
splitting field for  over . Let

be obtained from  by substituting  for  and let

be the resolvent cubic of . Let  be the Galois group of  and let  be
the Galois group of . Then .
If  is reducible over  then
1  If , then .)
2  If , there are two possibilities. Let .) fix
 a)  and , for  or which occurs if and only

if  is reducible over , in which case  has an irreducible
quadratic factor over . In this case, .

 b)  and , for  or , which occurs if and only
if  is irreducible over . In this case,  and

.
If  is irreducible over  then
3  If , then .)
4  If , then .)

The Quartic 

Consider the special quartic

and let
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If we denote the roots of  in  by , in this order, then 
 and

The roots  and  of  are given by

The square root of the discriminant of  is

and since  is invariant under each , it must lie in the
base field . Hence,  if and only if , or equivalently, 

.

Let us also note that  is fixed by every possible choice of . For
instance,  sends  to  and 
sends  to . It follows that fix .

The irreducibility of  over  can be determined as follows. Certainly if
 is reducible over , then so is . On the other hand, if  is

irreducible then its roots  and  do not lie in , whence  cannot have a
linear factor over  and, if so reducible, must have the form

where, as seen by equating coefficients, . However, if  then

which gives

contradicting the irreducibility of . Thus,  and . We can
summarize as follows:

1  If  then , and therefore , is reducible.
2  If  then  is reducible if and only if it has the form

where  and .
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For example, let  over . Then .
From 2 , we have  and

,

and since the latter has no solutions in , we see that  is irreducible over .

Let us now assume that  is irreducible. It follows that  is also
irreducible and . Recall also that  if and only if

, and that .fix

The resolvent cubic for  (which is already in reduced form) is

which is definitely reducible. Hence, Theorem 7.5.4 tells us the following.

1) If , then .
2) If , there are two possibilities. Let fix .
 a)  and , for  or which occurs if and only

if  is reducible over , in which case  has an irreducible
quadratic factor over . In this case, .

 b)  and , for  or , which occurs if and only
if  is irreducible over . In this case,  and

.

Case 1) above is straightforward. Referring to case 2), we have  and
. But in both cases,  and so . Also, it appears

that we could use some more information about when  is irreducible over
.

Lemma 7.5.5 Assume that  is reducible and . Then 
and
1   is irreducible over  if and only if  is irreducible over .)
2   is irreducible over  if and only if .)

Proof. For part 1), if  is reducible over , then clearly  is
reducible over . Conversely, suppose that  is reducible over 
and

where . If , then  and so , contrary to
assumption. Thus  and
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which implies that  is reducible over . If  has a linear factor
over , then we can assume that  and so

which shows that  is irreducible over .

Finally, it is clear that the quadratic  is reducible over  if and only if
. But under the assumption that , we have

For if  then squaring gives

and since , we must have . But  since  and
so , whence  and so . Conversely, if

 then .

We can now give a complete analysis for this quartic.

Theorem 7.5.6 The irreducible quartic   Let( )

be a quartic over a field , with . Let  be the splitting field forchar
 over  and let  be its Galois group.

1  If  then  splits over  and .)
2  If , then there are two possibilities:)
 a) If , then  has an irreducible quadratic factor

and , for  or .
 b) If , then , for  or .

Exercises

1. Prove that part 4a) and part 4b) of Theorem 7.5.2 are equivalent.
2. Let  be a prime. Let  be an irreducible polynomial of degree 

with exactly two nonreal roots. Prove that the Galois group of  is .
Hint: Recall that  is generated by a -cycle and a transposition. Use
Cauchy's theorem on . What is the transposition?

3. Let  where  are algebraically
independent over . Show that  is irreducible over ,
separable and its Galois group is isomorphic to . Thus, if the roots of

 are  then  are algebraically independent over  if
and only if  are.
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4. If  is a quartic polynomial with resolvent cubic  then
.

5. Find the Galois groups of the following polynomials over :
 a) 
 b) 
 c) 
6. Suppose that  is irreducible over  and that  is

isomorphic to . What are the possible degrees of ?
7. Suppose that  is irreducible of degree  and let  be a root of

 in . What are the possibilities for , expressed in terms of
?

8. If  has roots  then .
9. Let , where  and  are algebraically

independent over . Let  be the elementary symmetric
polynomials on ,  and . Show that  but the Galois
group of  over  is isomorphic to .

10. Let

be the generic polynomial with algebraically independent roots .
Let . Since the 's are symmetric polynomials in
the roots of , Theorem 7.2.4 implies that they can be expressed as
symmetric polynomials in the elementary symmetric polynomials

.  areNewton's identities

valid for , where  and  for . Note that for ,
this reduces to

Prove these identities as follows:
 a) For , consider the sum .
 b) For , consider the sum .
 c) For , proceed by induction on . Let

and write the coefficients of  as . Then Newton's identites are

Denote the left side of this by . Show that
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Hence, . Show that . Is
this possible?

 d) Let . Find the values of  and find the
discriminant of .

11. This exercise concerns the issue of when a value that is expressed in terms
of nested radicals

where  ( ) can be written in terms of at most twochar
unnested radicals. For instance, we have

but the number  cannot be so written. Note that  is a root of

the quartic

Assume that  is irreducible over . Show that  for
some  and  in  if and only if



Chapter 8

A Field Extension as a Vector Space

In this chapter, we take a closer look at a finite extension  from the point
of view that  is a vector space over . It is clear, for instance, that any

 is a linear operator on  over . However, there are many linear
operators that are not field automorphisms. One of the most important is
multiplication by a fixed element of , which we study next.

8.1 The Norm and the Trace

Let  be finite and let . The multiplication map  defined
by  is an -linear operator on , since

for all  and . We wish to find a basis for  over  under
which the matrix of  has a nice form.

Note that if , then  for all  and so  as
an element of  if and only if  is the zero operator on . Hence, the set of
polynomials over  satisfied by  is precisely the same as the set of
polynomials satisfied by . In particular, the minimal polynomial of  in the
sense of fields is the same as the minimal polynomial of the linear operator .

The vector subspace  of  is invariant under the linear operator , since
. If  is an ordered basis for 

over  and if

,

then the matrix of  with respect to  is . If  is an,

ordered basis for  over  where , then the sequence of
products
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is an ordered basis for  over . To compute the matrix of  with respect to ,
note that

,

and so each of the subspaces  is also invariant under
. Hence, the matrix of  is also equal to , and the matrix of  with respect

to the ordered basis  has the block diagonal form

(8. )1.1

It follows that if the characteristic polynomial of  is , then the
characteristic polynomial of  is

The well-known  implies that  andCayley–Hamilton theorem
therefore . But  is monic and has degree 
deg min min,  whence .

Theorem 8.1.1 Let  be finite and let . If  is the -linear
operator on  defined by , then the characteristic polynomial of  is

min

We recall from linear algebra that if  is a linear operator on a finite–
dimensional vector space  over , the  of  is the sum of the eigenvaluestrace
of  and the  ( ) of  is the product of the eigenvalues of , innorm determinant
both cases counting multiplicities. Recall also that (as with all symmetric
polynomials in the roots of a polynomial) the trace and the norm lie in the base
field . We are motivated to make the following definition.

Definition Let  be finite and let . The  of  over ,trace

denoted by , is the trace of the -linear operator  and the  of Tr norm

over , denoted by , is the norm of .

Note that the trace and norm of  depend on the extension field , and not just
on the element  itself.

Since the trace of a linear operator is the sum of the roots of its characteristic
polynomial and the norm is the product of these roots, Theorem 8.  allows us1.1
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to express the trace and norm in terms of the roots of the minimal polynomial of
 on the subfield . Let  be finite, let  and let

min

have roots  in a splitting field. It follows from Theorem 8.  that1.1

Tr

and

We remark that many authors simply define the trace and norm of  directly
from these formulas.

In terms of , then each of these rootsdistinct roots of , if these are 
has multiplicity , where  is the radical exponent of 
(Theorem 3.5 ) and so.1

Tr

and

We can also express the trace and norm in terms of embeddings. Let

hom

where . If  and , then  is amin
list of the roots of  in . However, each distinct root appears 
times in this list, since this is the number of ways to extend an embedding of

 to an embedding of , and each such extension has the same value at .
Hence,

and
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These formulas will provide another expression for the norm and the trace. Let
us summarize.

Theorem 8.1.2 Let  be finite and let  with min
.

1  If  has roots  and distinct roots  then)

Tr

and

2  If  then) hom

Tr
if  is separable

if  is inseparable

and

Proof. As for the first statement in part 2), if  is inseparable, then
, , whence char Tr and .

Theorem 8. .2 can be used to derive some basic properties of the trace and the1
norm.

Theorem 8.1.3 Let  be finite.
1  The trace is an -linear functional on , that is, for all  and)

,

Tr Tr Tr
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2  The norm is multiplicative, that is, for all ,)

Also, for all ,

3  If  then)

Tr and

4  If  are finite and if  then)

Tr Tr Tr and

Proof. We prove part 4), leaving the rest for the reader. Let 
and let

hom

and

hom

Extend each  to an embedding  and consider the products , each
of which is an embedding of  into  over , that is,

hom

Note that these embeddings are distinct, for if , then 
fixes  and so , that is, , which implies that .
Hence, .

Moreover, since

hom

hom hom

it follows that

hom

Now, for the norm statement, we have from Theorem 8.1.2,
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Proof of the statement about the trace is similar.

*8.2 Characterizing Bases

Let  be finite and separable. Our goal in this section is to describe a
condition that characterizes when a set  of vectors in  is a (vector
space) basis for  over .

Bilinear Forms
In order to avoid breaking the continuity of the upcoming discussion, we begin
with a few remarks about bilinear forms. For more details, see Roman,
Advanced Linear Algebra.

If  is a vector space over , a mapping  is called a bilinear

form if it is a linear function of each coordinate, that is, if for all  and
,

For convenience, if , we let

A bilinear form is  if  for all . A vector spacesymmetric

together with a bilinear form is called a .metric vector space

Definition Let  be a metric vector space.
1 A vector  is  if it is orthogonal to all vectors in ) degenerate

( )including itself , that is, if

2 The space  is  or  if it contains a nonzero) ( )degenerate singular

degenerate vector. Otherwise, it is  or .nondegenerate nonsingular( )
3 The space  is  or  if every vector in) ( )totally degenerate totally singular

 is degenerate, that is, if the form is the zero function
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for all .

If  is an ordered basis for  over he , t matrix of the form

 with respect to  is

The proof of the following theorem is left to the reader.

Theorem 8.2.1 

1  Let  be the matrix of a bilinear form on , with respect to the ordered)
basis . If  then

where  is the coordinate matrix for  with respect to .
2  Two matrices  and  represent the same bilinear forms on , with)

respect to possibly different bases, if and only if they are , that is,congruent
if and only if  for some invertible matrix .

3  A metric vector space is nonsingular nondegenerate  if and only if any,) ( )
and hence all, of the matrices that represent the form are nonsingular.

Characterizing Bases
As mentioned earlier, for a finite separable extension , we wish to
describe a condition that characterizes when a set  of vectors in 
is a basis for  over .

Suppose that  are vectors in , where  and let

hom

We will show that  is a basis for  over  if and only if the following matrix
is nonsingular:

Our plan is to express this matrix in terms of the matrix of a bilinear form. To
this end, observe that for any vectors  and  in ,
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,

Tr

and so

Tr

In particular,

Tr

We can now define a symmetric bilinear form on  by

Tr (8.2 ).1

This form has a rather special “all or nothing” property: If  contains a nonzero
degenerate vector , then for any , we have

and so  is totally degenerate. In other words,  is either nondegenerate or else
totally degenerate.

We have assumed that the extension  is finite and separable. Of course, if
we drop the separability condition, then the matrix  is no longer square
and therefore cannot be invertible. However, the bilinear form (8.2.1) still
makes sense. As it happens, this form is nonsingular precisely when  is
separable.

Theorem 8.2.2 Let  be finite. The following are equivalent:
1   is separable)
2   is nondegenerate.)
When  is separable, the matrix

is nonsingular if and only if  is a basis for  over .
Proof.  is inseparable, then If part 2) of Theorem 8.1.2 shows that the
trace is identically , whence  is totally degenerate. Thus, if  is
nondegenerate, then  is separable.

For the converse, since  is finite and separable, it is simple, that is,
. If , then ,  is an ordered basis for 

over  and
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Tr

But

is a Vandermonde matrix, for which it is well known that

det

Moreover, since each  is uniquely determined by its value onhom
the primitive element , the elements  are distinct and so .det
Hence  is also nonzero and  is nondegenerate.det

For the final statement, suppose first that f is nonsingular. I

for  gives, then applying 

where  and  is the th column of . Hence,  and
the nonsingularity of  implies that , that is,  for all . Hence,  is
linearly independent and therefore a basis for  over .

For the converse, if  is an ordered basis for  over , then the
matrix of the form (8.2.1) is

Tr

and since  is nonsingular because  is nondegenerate, the matrix
 is also nonsingular.

The Algebraic Independence of Embeddings
Let  and  be fields. Recall that the Dedekind independence theorem says that
any set  of distinct embeddings of  into  is linearly independent
over . To put this another way, let  and consider the linear polynomial

Then the Dedekind independence theorem says that if  is the zero
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map, then  is the zero polynomial. Under certain circumstances, we
can strengthen this result by removing the requirement that . be linear

Let  be finite and separable of degree  and let

hom

I ,f  is a polynomial with coefficients in  then  is a
function from  into , defined by

For example, if  then

(Note that we are not composing embeddings, but rather taking products of
values of the embeddings.)

Definition Let . A set  of distinct -embeddings of  into a
field  is  over  if the only polynomialalgebraically independent

 over  for which  is the zero function is the zero
polynomial.

Theorem 8.2.3 Let  be an infinite field, let  be finite and separable of
degree . Then

hom

is algebraically independent over , and therefore so is any nonempty subset of
hom  .
Proof. Suppose that  is a polynomial over  for which

 for all . Let  be a basis for  over .
Then  and so

where  and . However, Theorem
8.2.2 implies that  is invertible and so any vector in  has the form , for
some , which shows that  is zero on the infinite subfield 
of . Theorem 1.3.5 then implies that  is the zero polynomial.

*8.3 The Normal Basis Theorem

Let  be a finite Galois extension of degree . Since  is finite and
separable, there exists a  such that . As we know, the set
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 is a basis for  over . This type of basis is called a
polynomial basis normal basis. A  for  over  is a basis for  over 
consisting of the roots of an irreducible polynomial over .

We wish to show that any finite Galois extension has a normal basis. Theorem
8.2.2 can be reworded for finite Galois extensions as follows.

Theorem 8.3.1 If  is finite and Galois, with  then
 is a basis for  over  if and only if .det

Now, if  is finite and Galois, it is simple and so . Moreover,
the roots of  aremin

Theorem 8.3.  implies that this set is a (normal) basis for  over  if and only1
if det . To find such an element onsider the matrix, c

For each , the product  runs through  as  runs through ,
and so each row of  is a distinct permutation of . The same applies
to the columns of . Thus, we may write

where for each , the row indices  form a distinct permutation
of  and for each , the column indices  form a
distinct permutation of . Let  be independent variables and
consider the matrix

We claim that the polynomial  is nonzero.det

Each row of  is a distinct permutation of the variables  and similarly
for each column. Thus ,  is a , that is, each rowpermutation matrix
and each column of ,  contains one  and the rest . Since's



208 Field Theory

permutation matrices are nonsingular, we have

, ,  det

Hence, .

If  is an infinite field, Theorem 8.2.3 implies that the distinct embeddings
 of  into  are algebraically independent over  and so there exists a

 for which

det det

Thus, we have proven the following.

Theorem 8.3.2 If  is an infinite field, then any finite Galois extension 
has a normal basis. 

This result holds for finite fields as well. The proof will be given in Chapter 9.

Exercises

1. Let  be finite. Prove that for all , ,

Tr Tr Tr

and

2. Let  be finite. Prove that if , then

Tr

and

3. If  are finite and if  show that

Tr Tr Tr

4. Let  be finite and let . If  prove thathom

State and prove a similar statement for the trace.
5. Find a normal basis for the splitting field of  over .
6. If  is finite and Galois, with , prove without

appeal to Theorem 8.2.2, but rather using the Dedekind independence
theorem, that if  is a basis for  over  then .det
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7. Let  be a finite separable extension, with . Let 
min  have degree . Show that

2

8. Let  be finite and separable with form (8.2.1) and let  be a basis
for  over . The   to  is a basis with the property thatdual basis

Tr ,

where  if  and  otherwise. In matrix terms,  and  are,

dual bases if

A basis for  over  is called a  if it has the formpolynomial basis

 for some . Any simple algebraic extension 
 has a polynomial basis. Let  be finite and separable, with

polynomial basis . Let

min

Prove that the dual basis for  is

9. If  is a vector space, let  denote the algebraic dual space of all linear
functionals on . Note that if  is finite then .dim dim dim

 a) Prove the Riesz Representation Theorem for nonsingular metric vector
spaces: Let  be a finite-dimensional nonsingular metric vector space
over  and let  be a linear functional on . Then there exists a
unique vector  such that  for all . Hint: Let

 be defined by , . Define a map  by
. Show that  is an isomorphism.

 b) Let  be finite and separable, with form (8.2.1). Prove that for
any linear functional  there exists a unique  for which

Tr  for all .



Chapter 9

Finite Fields I: Basic Properties

In this chapter and the next, we study finite fields, which play an important role
in the applications of field theory, especially to coding theory, cryptology and
combinatorics. For a thorough treatment of finite fields, the reader should
consult the book , by LidlIntroduction to Finite Fields and Their Applications
and Niederreiter, Cambridge University Press, 1986.

9.1 Finite Fields Redux

If  is a field, then  will denote the multiplicative group of all nonzero
elements of . Let us recall some facts about finite fields that have already been
established.

Theorem 9.1.1 Let  be a finite field.
1   has prime characteristic . Theorem 0.4.4) ( )
2   is cyclic. Corollary 1.3.4) ( )
3  Any finite extension of  is simple. Theorem 2.4.3) ( )
4   is perfect, and so every algebraic extension of  is separable and the)

Frobenius map  is an automorphism of , for all .
( )Theorem 3.4.3  

Lemma 9.1.2 If  is a finite field and  then .
Proof. If  is a basis for  over , then each element of  has a
unique representation of the form , where . Since there
are  possibilities for each coefficient , we deduce that .

Since a finite field  has prime characteristic , we have  and so Lemma
9. .2 gives1

Corollary 9.1.3 If  is a finite field with , then  has  elementschar
for some positive integer . 
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From now on, unless otherwise stated,  will represent a prime number, and 
will represent a power of .

9.2 Finite Fields as Splitting Fields

Let  be a finite field of size . Then  has order  and so every element
 has exponent , that is, . It follows that every element of 

is a root of the polynomial

Since , this polynomial has no multiple roots and so  is precisely
the set of roots of  in some splitting field. In fact, since  is a field, it is a
splitting field for  over the prime subfield . In symbols,

Roots Split

This has profound consequences for the behavior of finite fields.

Existence
We have seen that every finite field of characteristic  has  elements for
some . Conversely, let . If  is the set of roots of , then  is
actually a field. For if , then  and , whence

and

Thus . It follows that  is a field and hence a splitting field for
.  has no multiple roots,  has size . Thus, forFurthermore, since 

every prime power , there is a field of size .

Of course, since each finite field of size  is a splitting field for  over ,
we know that all such fields are isomorphic.

It is customary to denote a finite field of size  by , or . (The symbol
 stands for , in honor of Evariste Galois.)Galois Field

Theorem 9.2.1

1  Every finite field has size , for some prime  and integer .)
2  For every  there is, up to isomorphism, a unique finite field )

of size , which is both the set of roots of  and the splitting
field for  over . 
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Let us refer to the polynomial  as the defining polynomial of the finite
field . In view of this theorem, we will often refer to  finite fieldthe

.

An immediate consequence of the splitting field characterization of finite fields
is that any extension of finite fields is normal.

Corollary 9.2.2 The extension  is a finite Galois extension.
Hence, in the Galois correspondence for , all intermediate
fields and all subgroups are closed.

9.3 The Subfields of a Finite Field

We wish to examine the subfields of a finite field . Note that if  and 
are positive integers and  for , then

Hence,  divides  if and only if  divides .
Repeating this shows that  divides  if and only if 
divides , that is, if and only if . In other words,

(9.3.1)

over the prime subfield .

Theorem 9.3.1 Subfields of   The following are equivalent:( )
1)
2  The defining polynomial of  divides the defining polynomial of)

, that is,

over the prime subfield .
3)
Put another way, the following lattices are isomorphic under the obvious(
maps :)
a   divides , under division)
b   divides , under division)
c  Subfields of , under set inclusion.)
Moreover,  has exactly one subfield of size , for each .
Proof. Two applications of (9.3.1) show that

and so 1) and 2) are equivalent. Moreover,

Roots Roots
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and so 2) and 3) are equivalent. For the last statement, if  has two
distinct subfields of size , then the polynomial  would have more than

 roots in . 

9.4 The Multiplicative Structure of a Finite Field

Since  is cyclic, Theorem 0.2  implies the following theorem..11

Theorem 9.4.1 There are exactly  elements of  of order  for each
 and this accounts for all of the elements of . 

It is customary to refer to any element of  that generates the cyclic group
 as a  of . However, this brings us into conflictprimitive element

with the term  as used earlier to denote any element of a field thatprimitive
generates the field using  field operations (addition and multiplication).both
Accordingly, we adopt the following definition.

Definition Any element of  that generates the cyclic group  is
called a  of . In contrast, if , then anygroup primitive element

element  for which  is called a  of field primitive element

over .

Roots in a Finite Field
If , we may wish to know when  has a th root in , that is,
when the equation

(9.4 ).1

has a solution in . This question has a simple answer in view of the fact
that  is cyclic. If  is a group primitive element of  then 
for some  and so (9.4 ) has a solution  if and only if.1

for some integer , that is, , which holds if and only if ,
that is,

for some integer . But this holds if and only if

gcd

Thus, equation (9.4 ) has a solution for all if and only if.1  
gcd , that is, if and only if  and  are relatively prime.
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Theorem 9.4.2 

1  Let  be a group primitive element of . Then  has a th root in)
 if and only if

gcd

2  Every element of  has a th root if and only if )  and  are
relatively prime, in which case every element has a  th root.unique

3  The function)

is a permutation of  if and only if  and  are relatively prime.
In this case,  is called a .permutation polynomial

9.5 The Galois Group of a Finite Field

Since the extension  is Galois, if  is the Galois group of
 over  then

The structure of  could not be simpler, as we now show.

Theorem 9.5.1 The Galois group  of  over  is cyclic of order
, generated by the  .Frobenius automorphism

Proof. We have seen that the Frobenius map  is an automorphism of .
If  and so  fixes  and is therefore in, then 
the Galois group . Moreover, the  automorphisms

are distinct elements of , for if  then  for all  and
so , which implies that . Finally, since , we see
that . 

9.6 Irreducible Polynomials over Finite Fields

Some of the most remarkable properties of finite fields stem from the fact that
every finite field  is not only the splitting field for the polynomial

, but is also the  of roots of . This applies to theset
properties of irreducible polynomials over a finite field.

Existence of Irreducible Polynomials
As to existence, if  is a finite field and  is a positive integer, then there
is an irreducible polynomial of degree  over . This follows from the fact
that the extension  is simple and so  for
some . Then the minimal polynomial  ismin
irreducible of degree .
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The Splitting Field and Roots of an Irreducible Polynomial
Let  be irreducible over  of degree . Let  be a root of . Since

 is normal, it follows that  splits in  and so
 is a splitting field for . Thus, .

Moreover,

and so the degree  can be characterized as the smallest positive integer for
which .

Since the Galois group is the cyclic group , the roots of  are

Note that  can also be characterized as the smallest positive integer for which
.

The Order of an Irreducible Polynomial
Since none of the roots of  is zero, the roots belong to the multiplicative
group . Moreover, since each root is obtained by applying an
automorphism to a single root , all roots of  have the same multiplicative
order. Let us denote this order by . Thus,  if and only if .

The common order  of the roots is referred to as the  of the irreducibleorder

polynomial  and is denoted by . Note that this definition makes sense
only for irreducible polynomials.

As an aside, if the order of  is , then each root of  is group
primitive, and we say that  is . primitive Primitive polynomials play an
important role in finite field arithmetic, as we will see in the next chapter.

The Relationship Between Degree and Order
The relationship between the degree  and the order  of  can be gleaned as
follows. First, note that

mod

and since  is the smallest positive integer for which the former holds, it is also
the smallest positive integer for which the latter holds, that is, the  of order
modulo .

It happens that this relationship between order and degree actually characterizes
irreducibility. That is, if  is a polynomial with root  of order  and if

deg  is equal to the order of  modulo , then  must be irreducible
(in which case all roots have order ).  is reducible, then  is a rootFor if 
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of an irreducible factor of , with degree . Hence,  is the order of
 modulo .

Summary
Let us summarize.

Theorem 9.6.1 For every finite field , and every positive integer , there
exists an irreducible polynomial  of degree  over . Let  be
irreducible of order  and let  be a root of  in some extension field. Let

 denote the order of  in .
1   The splitting field of  is .) ( )Splitting Field

2   if and only if .)
3   The roots of  in a splitting field are) ( )Roots

and so  is the smallest positive integer for which .
4   All roots of  have order the same order , called the) ( )Order of Roots

order of .
5   The degree  of  is the smallest positive integer  for which) ( )Degree

, or equivalently, .
6) ( )Relationship between degree and order characterizes irreducibility

Let  be a polynomial over  with order  and degree . Then
 is irreducible if and only if

Computing the Order of a Polynomial
To compute the order  of an irreducible polynomial  of degree , we can
use the fact that

and

Let

where the 's are distinct primes. Then

where  and, for each ,
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if and only if , that is, if and only if .
Thus,  is the smallest  integer for whichnonnegative

Example 9.6.1 Consider the irreducible polynomial  over
. Since , we have

Let . Then  is the smallest nonnegative integer for which

Division shows that

and so . For , division gives

and so . Thus, Thus , showing that  is primitive over
.

As another example, the polynomial   is also
irreducible over . If , then

and so . Also,

7 7

and so . Thus,  Note that both of these polynomials have.
degree  but they have different orders. This shows that the degree of an
irreducible polynomial does not determine its order. 

*9.7 Normal Bases

Since any extension  is simple, there is an  for
which . Moreover, the set  is a basis for

 over . This type of basis is called a .polynomial basis

Since the  roots of an irreducible polynomial  of degree  over  are
distinct, it is natural to wonder whether there is an irreducible polynomial 
whose roots form a basis for  over . Such a basis is referred to as
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a . In short, a normal basis is a basis of roots of an irreduciblenormal basis

polynomial.

We saw in Chapter 8 that if  is a finite Galois extension and  is an
infinite field, then  has a normal basis over . This is also true for finite fields
and stems from the fact that the members of the Galois group are linearly
independent.

Let  be irreducible of degree  over . Then  is the splitting
field of  and the Galois group of  is

where  is the Frobenius automorphism. But since these automorphisms are
distinct, the Dedekind independence theorem tells us that they are linearly
independent.

This implies that as a linear operator on , the automorphism  has
minimal polynomial , for no polynomial of smaller degree can be
satisfied by . But the characteristic polynomial of  is monic, has degree 
and is divisible by the minimal polynomial (this is the Cayley–Hamilton
theorem), and so it is also equal to .

The following result from linear algebra, which we will not prove here, is just
what we need.

Theorem 9.7.1 Let  be a linear operator on a finite-dimensional
vector space  over a field . Then  contains a vector  for which

,

is a basis for  if and only if the minimal polynomial and characteristic
polynomial of  are equal. 

This theorem implies that there is an  for which

Roots

is a (normal) basis for  over .

Theorem 9.7.2 There exists a normal basis  for  over
.

*9.8 The Algebraic Closure of a Finite Field

In this section, we determine the algebraic closure of a finite field . Since
 is algebraic for all positive integers , an algebraic closure of

 must contain all of the fields .
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Since , it follows that

and so the union

is an extension field of  that contains , for all . Moreover, if
 is a field for which  for all , then , that is,  is the

smallest field containing each .

Theorem 9.8.1 The field  is the algebraic closure of .
Proof. Every element of  lies in some , whence it is algebraic over

. Thus  is algebraic over . Now let  be an irreducible
polynomial over  of degree . Then the coefficients of  lie in some

 and so . Hence, the is irreducible as a polynomial over 
splitting field for  and so  is  splits over .

Steinitz Numbers
We wish now to describe the subfields of the algebraic closure . Recall that
a field  is a subfield of  if and only if  where . The
set  of positive integers is a complete lattice where  andgcd

lcm . If we denote by  the set of all finite fields or more
properly the set of all isomorphism classes of finite fields) that contain ,
then  is also a complete lattice where  and .

Theorem 9.8.2 The map  defined by  is an order-
preserving bijection. Hence, it is an isomorphism of lattices, that is,
1   if and only if )
2)
3)
Proof. Left to the reader. 

It is clear that the lattice of intermediate fields between  and  is
isomorphic to the sublattice of  consisting of all positive integers dividing .
In order to describe the lattice of intermediate fields between  and ,
we make the following definition.

Definition A  is an expression of the formSteinitz number
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where  is the th prime and . We denote the set of all
Steinitz numbers by . Two Steinitz numbers are equal if and only if the
exponents of corresponding prime numbers  are equal. 

We will denote arbitrary Steinitz numbers using uppercase letters and reserve
lowercase letters strictly for ordinary positive integers. We will take certain
obvious liberties when writing Steinitz numbers, such as omitting factors with
exponent equal to . Thus, any positive integer is a Steinitz number. We next
define the arithmetic of Steinitz numbers.

Definition Let  and  be Steinitz numbers.
1  The  and  of  and  are defined by) product quotient

 and 

where .
2  We say that    and write  if  for all . ) divides

It is clear that  if and only if  for all positive natural numbers
. Also,  if and only if  and .

Theorem 9.8.3 Under the relation of “divides” given in the previous definition,
the set  is a complete distributive lattice, with meet and join given by

min max and 

Moreover, the set of positive integers is a sublattice of . 

Subfields of the Algebraic Closure
We can now describe the subfields of . Let  denote the lattice of all
subfields of  that contain .

Definition If  is a Steinitz number, let

where, as indicated by the lowercase notation,  is a positive integer.

If  then  for some  and  for some
. Thus  where . It follows that  is alcm

subfield of  containing .
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Theorem 9.8.4 The map  defined by  is an
order-preserving bijection. Hence, it is an isomorphism of lattices, that is,
1   if and only if ,)
2  ,)
3  .)
In addition,  is finite if and only if  is a positive integer.
Proof. We begin by showing that  if and only if . One
direction follows immediately from the definition: if  then

. Suppose that . Let  be a field
primitive element of  over . Then  and so 

 for some . Hence , which
implies that , whence .

Since  if and only if , it follows that  if and only if

that is, if and only if .

To see that  is injective, if , then each field is contained in
the other and so  if and only if , which implies that .

To see that  is surjective, let . We must find an  for
which . For each prime , let  be the largest power of  for
which

(9.8 ).1

where  if (9.8 ) holds for all positive integers . Let.1

We claim that

(9.8.2)

The second equality is by definition and the first field is clearly contained in the
second. Also, if , then

where  and so
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It follows that (9.8.2) holds. This implies that

For the reverse inclusion, if  then  for some . If

then

and so  for all , by the maximality of . Hence  and so
. This shows that . Hence 

and so  is surjective. We leave the rest of the proof to the reader. 

Since the largest Steinitz number is

this corresponds to the largest subfield of , that is,

Exercises

1. Determine the number of subfields of  and .
2. Group primitive elements of ,  prime, can often be found by

experimentation and the fact that if  and  and
 then . For instance, if , then by checking

some small primes, we see that  and , whence
 and so  is group primitive for .

 a) For , show that  and . Find an element of
order  to pair with .

 b) If  is group primitive for ,  an odd prime, then what is
?

 c) Prove If  is an odd prime thenWilson's theorem

mod

Hint: The left side is the product of all nonzero elements in .
Conisder this product from the point of view of a group primitive
element .

3. Show that except for the case of , the sum of all the elements in a
finite field is equal to .

4. Find all group primitive elements of .
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5. Show that the polynomial  is irreducible over .
Is it primitive?

6. Let  be an arbitrary field. Prove that if  is cyclic then  must be a finite
field.

Find the order of the following irreducible polynomials.
7.  over .
8.  over .
9.  over .
10.  over .
11.  over .
12.  over .
13.  over .
14.  over .

15. Show that every element in  has a unique th root, for 
.

16. If , show that exactly one-half of the nonzero elements of  have
square roots.

17. Show that if  and  is a positive integer, then 
divides .

18. Find a normal basis for  over . : Let  be a root of theHint
irreducible polynomial .

19. Show that .
20. Let  be any strictly increasing infinite sequence of positive integers.

Prove that .
21. Show that .
22. Let  be a field  satisfying . Show that all the proper

subfields of  are finite if and only if  is finite or  where
 for some prime .

23. Show that  has no maximal subfields.
24. Show that  is not finite for any proper subfield .
25. Show that  has an uncountable number of nonisomorphic subfields.
26. Let . Show that  is finite if and only if  is

finite, in which case the two numbers are equal.
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Finite Fields II: Additional Properties

10.1 Finite Field Arithmetic

There are various ways in which to represent the elements of a finite field. Since
every finite field  is simple, it has the form  for some 
and so the elements of  are polynomials in  of degree less than .deg
Another way to represent the elements of a finite field is to use the fact that

 is cyclic, and so its elements are all powers of a group primitive
element.

It is clear that addition is more easily performed when field elements are written
as polynomials and multiplication is more easily performed when all elements
are written as a power of a single group primitive element. Fortunately, the two
methods can be combined to provide an effective means for doing finite field
arithmetic.

Example 10.1.1 Consider the finite field  as an extension of .
The polynomial

is irreducible over . To see this, note that if  is reducible, it must
have either a linear or a quadratic factor. But since  and , it
has no linear factors. To see that  has no quadratic factors, note that there
are precisely four quadratic polynomials over , namely,

and it is easy to check that no product of any two of these polynomials equals
.

Thus, letting  be a root of , we can represent the elements of  as
the  binary polynomials of degree  or less in , as follows:
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Constant:  , 
Linear:   
Quadratic:   , , 
Cubic:   ,

,

Addition of elements of  is quite simple, since it is just addition of
polynomials, but multiplication requires reduction modulo , using the
relation . On the other hand, observe that

5

+

+

and so . Since  and , we conclude that  is group
primitive and

4

With this representation, multiplication is all but trivial, but addition is
cumbersome.

We can link the two representations of  by computing a table showing
how each element  can be represented as a polynomial in  of degree at most

. Using the fact that , we have

and so on. The complete list, given in Table 10. , is known as a  for1.1 field table

. As is customary, we write only the exponent  for , and 
for the polynomial .
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Table 10.1.1

Computations using this table are quite straightforward; for example,

0 9 9

Thus, the key to doing arithmetic in a finite field is having a group primitive
element, along with its minimal (primitive) polynomial. In general, the task of
finding primitive polynomials is not easy. There are various methods that
achieve some measure of success in certain cases, and we mention one such
method at the end of Section 1 2. Fortunately, extensive tables of primitive1.
polynomials and field tables have been constructed.

Let us use the primitive polynomial  and the field table for  to
compute the minimal polynomial over  for each element of . We
begin by computing sets of conjugates, using Theorem 9.6  and the fact that.1

6 ,

Conjugates of : 
Conjugates of : 
Conjugates of : 
Conjugates of : 

Letting  be the minimal polynomial for , we have, for example

+
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The field table for  gives

and since , we have

The other minimal polynomials are computed similarly. The complete list is

6

Being able to factor polynomials of the form  is important for a variety of
applications of finite field theory, especially to coding theory. Since the roots of

 over  are precisely the elements of , we have

Of course, in order to obtain this factorization, we worked in the splitting field
. Let us turn to a method for factoring polynomials over 

that does not require working in any extension of .

Factoring over : Berlekamp's Algorithm

Berlekamp's algorithm is an algorithm for factoring polynomials over .
Suppose that  is a polynomial over  of degree . Let us first show that we
can reduce the problem of factoring  to one of factoring a polynomial with
no repeated factors.

We know that  has a repeated factor if and only if  and  have a
common factor. Write

gcd
gcd

Let . If  then  has no repeated factors. Ifgcd
 then  and so

and we can factor  (or repeat the process). Otherwise,  is a nonconstant
polynomial with degree less than that of  and  has no repeated
factors. Thus, we can consider the polynomials  and  separately.
For the former polynomial, we can repeat the above argument until the factoring
problem reduces to one of factoring polynomials with no repeated factors.
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So let us suppose that  is the product of distinct irreducible factors.
(Actually, the factoring algorithm that we are about to describe does not require
this restriction on , but the formula for the number of irreducible factors
that we will present does.)

Suppose that we can find a nonconstant polynomial  of degree less than 
for which

Since  is the set of roots of , we have

and so

Also, if in general, , where  are pairwise relatively prime,
then

gcd gcd

Hence, since the polynomials  are pairwise relatively prime for
, we have

gcd gcd gcd

Note that the degree of each of these factors is at most  and so thisdeg
factorization of  is nontrivial. Note also that the Euclidean algorithm can be
used to find the  of the pairs of polynomials in the previous factorization andgcd
so if we can find such a polynomial , then we will have an algorithm for
finding a nontrivial factorization of .

A polynomial  for which  is called an -reducing

polynomial. We are interested in nonconstant -reducing polynomials with
degree less than the degree of , since these polynomials provide
factorizations of .

To find such an -reducing polynomial , write

Then since we are working over a field of characteristic , and since 
modulo , it follows that  and so
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Now suppose that , where . Thendeg
 is divisible by  if and only if

but since the right hand sum has degree less that that of , this is equivalent
to

and this is equivalent to a system of linear equations. To express this system in
matrix form, suppose that . Then the
previous equation is equivalent to the system

for . In matrix terms, if ,  and

is the row matrix of coefficients of , then this system is

Example 10.1.1 Consider the polynomial

over . First, we find the polynomials  by dividing  by , to get
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Hence,

and our system is

whose solution is

 arbitrary; ; 

The only nonconstant solution is

where . It follows that

and so, using Euclid's algorithm for the , we get the factorizationgcd

gcd gcd

gcd gcd

The Number of Irreducible Factors

Knowledge of the number of irreducible factors of  would help us
determine when the factorization algorithm has produced a complete
factorization of  into irreducible factors. Suppose that

where the  are distinct monic, irreducible polynomials over .

Let  be the set of -reducing polynomials with degree less than that of ,
including the constant polynomials. Note that  is isomorphic to the null space
null  of the matrix  of the Berlekamp algorithm.



232 Field Theory

If , then

and since the polynomials on the right are relatively prime, each  divides
precisely one of these polynomials, say . This is a system of
congruences

mod

mod

and since the 's are relatively prime (this is where we use the fact that the
 are distinct), the Chinese remainder theorem tells us that there is a unique

solution  modulo , that is, a unique solution of degree less than that of
. In other words, there is at most one -reducing polynomial  for each

-tuple . But if  is a solution to this system, then

for all  and so , whence . It follows that
there is precisely one -reducing polynomial for each -tuple  in

. Hence,

dim null rk

that is, the number of distinct irreducible factors of  is

rk

Example 10.1.2 The matrix  from Example 10.1.1 has rank , which can
be determined by applying elementary row operations to reduce the matrix to
echelon form. Hence, the nullity is  and so the factorization in that
example is complete.

*10.2 The Number of Irreducible Polynomials

Of course, if  is a finite field, then there is only a finite number of polynomials
of a given degree  over . It is possible to obtain an explicit formula for the
number of irreducible polynomials of degree  over  by using Möbius
inversion. (See the appendix for a discussion of Möbius inversion.) First, we
need the following result.

Theorem 10.2.1 Let  be a finite field, and let  be a positive integer.
Then the product of all monic irreducible polynomials over , whose
degree divides  is

Proof. According to Theorem 9.6 , an irreducible polynomial  divides.1
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 if and only if . Hence,  is a product of irreducibledeg
polynomials whose degrees divide  and every irreducible polynomial whose
degree divides  divides . Since no two such irreducible polynomials
have any roots in common and since  has no multiple roots, the result
follows.

Let us denote the number of monic irreducible polynomials of degree  over
 by . By counting degrees, Theorem 10.2  gives the following..1

Corollary 10.2.2 For all positive integers  and , we have

Now we can apply Möbius inversion to get an explicit formula for .
Classical Möbius inversion is

    (10.2.1)

where the Möbius function  is defined by

 if 
 if  for distinct primes 

 otherwise

Corollary 10.2.3 The number  of monic irreducible polynomials of
degree  over  is

Proof. Letting  and  in (10.2.1) gives the result.

Example 10.2.1 The number of monic irreducible polynomials of degree 
over  is

2

2

The number of monic irreducible polynomials of degree  over  is

as we would expect from the results of Example 10. .1.1
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Möbius inversion can also be used to find the of all monic irreducibleproduct
polynomials of degree  over . Let us denote this product by .
Then Theorem 10.2  is equivalent to.1

Applying the multiplicative version of Möbius inversion gives the following.

Corollary 10.2.4 The product  of all monic irreducible polynomials of
degree  over  is

   

Example 10.2.2 For  and , we get

6 4

6 5
2 9

*10.3 Polynomial Functions

Finite fields have the special property that  function from a finite field  toany
itself can be represented by a polynomial. As a matter of fact, this property
actually  finite fields from among all commutative rings (finite andcharacterizes
infinite)

Since  has size , there are precisely  functions from  to itself.
Among these functions are the   where polynomial functions

. We will denote this polynomial function by  as well. If  and
 are polynomial functions on  then  as functions if and

only if  for all , which holds if and only if

Thus, two polynomials represent the same function if and only if they are
congruent modulo . Since every polynomial is congruent modulo 
to precisely one polynomial of degree less than  (namely, its remainder after
dividing by , and since there are  polynomials of degree less than ,
we have the following theorem. (Proof of the last statement in part 2 of the
theorem is left to the reader.)

Theorem 10.3.1 

1  Two polynomials over  represent the same polynomial function on)
 if and only if they are congruent modulo .
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2  Every function  is a polynomial function, for a unique)
polynomial of degree less than . In fact, the unique polynomial of degree
less than  that represents  is

(The representation of  given in part 2) above is the Lagrange interpolation
formula as applied to finite fields.) Part 2) has a very interesting converse as
well.

Theorem 10.3.2 If  is a commutative ring and if every function  is a
polynomial function, that is,  for some , then  is a
finite field.
Proof. First, we show that  is finite. Suppose that . The number of
functions from  to itself is  and the number of polynomials over  is the
same as the number of finite sequences with elements from , which is .
Since distinct functions are represented by distinct polynomials, we must have

, which happens only when  is finite. Thus,  is a finite set.

Now let  with . Define a function  by

if
if

By hypothesis, there exists a polynomial  for which

and

, for 

Setting  gives  and so

Thus, we conclude that for any  and any , there is a  for which
. In other words, the map  defined by  is surjective.

Since  is a finite set,  must also be injective. Hence, ,  implies
that  and so  has no zero divisors. In addition, since  is surjective,
there exists a  for which , that is, . If  then 
and since  is commutative and has no zero divisors, we may cancel  to get

. Thus  is the multiplicative identity of . Hence  is a finite
integral domain, that is, a finite field. 
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*10.4 Linearized Polynomials

We now turn to a discussion of linear operators on  over . We
will see that all such linear operators can be expressed as polynomial functions
of a very special type.

Definition A polynomial of the form

with coefficients  is called a , or a linearized polynomial -

polynomial, over . 

The term  comes from the following theorem, whose prooflinearized polynomial
is left to the reader.

Theorem 10.4.1 Let  be a linearized polynomial over . If
 and , then

Thus, the polynomial function  is a linear operator on
 over . 

The roots of a -polynomial in a splitting field have some rather special
properties, which we give in the next two theorems.

Theorem 10.4.2 Let  be a nonzero -polynomial over , with
splitting field . Then each root of  in  has the same
multiplicity, which must be either  or else a power of . Furthermore, the roots
of  form a vector subspace of  over .
Proof. Since , if  then all roots of  are simple. On the
other hand, suppose that  but . Then since

, we have

and so

which is the th power of a linearized polynomial with nonzero constant term,
and therefore has only simple roots. Hence, each root of  has multiplicity

. We leave proof of the fact that the roots form a vector subspace of 
to the reader. 
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The following theorem, whose proof we omit, is a sort of converse to Theorem
10.4 . (For a proof of this theorem, and more on -polynomials, see the book.1
by Lidl and Niederreiter (1986).)

Theorem 10.4.3 Let  be a vector subspace of  over . Then for
any nonnegative integer , the polynomial

is a -polynomial over . 

If  is a -polynomial, then as a function, we have

where  is the Frobenius automorphism. Thus, as an operator

Since  we may reduce the expression for  to a polynomial in  of
degree at most In fact, adding  coefficients if necessary, we can say that.
every -polynomial function on  has the standard form

for .

There are  such -polynomial functions on , and this happens also to
be the number of linear operators on  over . Moreover, since the
maps  are linearly independent over , we deduce that each -
polynomial in standard form represents a unique linear operator. Thus, we have
characterized the linear operators on  over .

Theorem 10.4.4 Every linear operator on  over  can be
represented by a unique -polynomial in standard form

for some . 
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Exercises

1. Construct two distinct finite field tables for  over .
2. Factor the polynomial

over
3. Factor

over
4. Factor  over .
5. Calculate .
6. Show that

and

2
2

Hence, . Finally, show that .2

7. Show that the unique polynomial of degree less than  that represents the
function  is

8. Prove that a linearized polynomial over  is a linear operator on
 over .

9. Prove that the roots of a -polynomial over  form a vector subspace
of the splitting field  over .

10. Prove that the greatest common divisor of two -polynomials over 
is a -polynomial, but the least common multiple need not be a -
polynomial.



Chapter 11

The Roots of Unity

Polynomials of the form , where , are known as .binomials

Even though binomials have a simple form, their study is quite involved, as is
evidenced by the fact that the Galois group of a binomial is often nonabelian. As
we will see, an understanding of the binomial  is key to an understanding
of all binomials.

We will have use for the following definition.

Definition The   of a field  is defined toexponent characteristic expchar
be  if  and  otherwise.char char

11.1 Roots of Unity

The roots of the binomial  over a field  are referred to as the th roots

of unity over . Throughout this section, we will let  be a field with 
expchar ,  a splitting field for  over  and  the set of th roots of
unity over in . Note that if  then, located 

and so the th roots of unity are the same as the th roots of unity, taken with a
higher multiplicity.  .Thus, from now on, we assume that

Theorem 11.1.1 The set  of th roots of unity over  is a cyclic group of
order  under multiplication. Moreover, if  then

mn

where the product  of groups is direct.
Proof. Clearly  implies . Hence,  is a finite subgroup
of the multiplicative group  of nonzero elements of the field . By Corollary 
1.3.4,  is cyclic. Since , we have
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showing that  is separable, and so .

For the second part, if  then  and since 
there exist  such that , whence

which shows that . Hence, the  products in the group 
are distinct and since , it follows that . 

Definition An element  of order , that is, a generator of , is called a
primitive th root of unity over . We shall denote the set of all primitive th
roots of unity over  by  and reserve the notation  for a primitive th root
of unity. 

Note that a primitive th root of unity , being a group primitive element, is
also a field primitive element of , that is

However, in general,  has field primitive elements that are not primitive th
roots of unity.

Theorem 11.1.2 

1  If  then)

and . Hence, there is a bijection from  onto the abelian but(
not necessarily cyclic  group  of all elements of  that are relatively)
prime to , that is, to the group of units of .

2  If  then .)
3  If  then .)
Proof. Part  follows from the fact that if  then  if and only1)
if . For part 2), if  then

and so . Thus . For the reverse inclusion, since  has
order , the set

consists of  distinct roots of unity of order  and so . But each

element of  belongs to , since
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and so .

For part 3), since

lcm

we have  and so . Now, since the products in 
are distinct, so are the products in . Hence

which shows that .

11.2 Cyclotomic Extensions

The term cyclotomy is the process of dividing a circle into equal parts, which is
precisely the effect obtained by plotting the th roots of unity over  in the
complex plane.

Definition Let  be a field. A splitting field  of  over  is called a
cyclotomic extension of order  of . 

Since

for  is the splitting field of a separable polynomial, it follows that 
is a finite Galois extension and

deg min

Now, any  is uniquely determined by its value on a fixed ,
and since  preserves order,  must be one of the  primitive roots of unity
in , that is,

where . Since

it follows that

mod

and so the map  is a homomorphism. Since  implies
that , the map  is a monomorphism and thus  is isomorphic to a
subgroup of .
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Theorem 11.2.1 If  is a cyclotomic extension of order , then  is
isomorphic to a subgroup of , the group of units of . Hence,  is
abelian and . 

Since the structure of  is clearly important, we record the following theorem,
whose proof is left as an exercise.

Theorem 11.2.2 Let , where the 's are distinct primes. Then

Moreover,  is cyclic if and only if  or , where  is an odd
prime.

Corollary 11.2.3 A cyclotomic extension  is abelian and if ,  or
, where  is an odd prime, then  is cyclic. 

Cyclotomic Polynomials
To investigate the properties of cyclotomic extensions further, we factor the
polynomial . Since each root of this polynomial is a primitive th root of
unity for some , we define the th  to be thecyclotomic polynomial

polynomial whose roots are precisely the primitive th roots of unity. Thus, if
 is a primitive th root of unity, then

It follows that  anddeg

since each side is the product of the linear factors , as  varies over all th
roots of unity. Note that cyclotomic polynomials are not necesssarily
irreducible, and we will explore this issue as soon as we have recorded the basic
properties of these polynomials.

Note also that the cyclotomic polynomial  is defined only for 
where .expchar

Theorem 11.2.4 Let  be the th cyclotomic polynomial over .
1  .) deg
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2  The following product formula holds:)

( )11.2.1

3   is monic and has coefficients in the prime subfield of .)
4  If  then the coefficients of  are integers.)
5  The cyclotomic polynomials are given by)

where  is the Mobius function, defined by¨

if
if  for distinct primes 
otherwise

Note that some of the exponents  may be equal to , and so a little
additional algebraic manipulation may be required to obtain  as a
product of polynomials.

Proof. Parts 3) and 4) can be proved by induction, using formula (11.2.1). In
particular, let  be the prime subfield of . It is clear from the definition that

 is monic. Since , the result is true for . If  is a
prime then

2

and the result holds for . Assume that 3) and 4) hold for all proper divisors
of . Then

By the induction hypothesis,  has coefficients in , and therefore so does
. Moreover, if , then  has integer coefficients and since 

is monic (and therefore primitive), Theorem 2  implies that  has integer1. .2
coefficients. Möbius inversion. (See the appendix for aPart 5) follows by 
discussion of Möbius inversion.)

Example 11.2.1 Formula (11.2.1) can be used to compute cyclotomic
polynomials rather readily, starting from the fact that

and

2
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for  prime. Thus, for example,

6

and

5

5

5

This gives us, for instance, the following factorization of  into
cyclotomic polynomials:

The Möbius inversion formula gives

Part 4) of Theorem 11.2.4 describes a factorization of  within the prime
subfield of . In general, however, this is not a prime factorization since 
is not irreducible. For instance, comparing Examples 11.2  and 10.  shows.1 1.1
that  is reducible over .5

When Is the Galois Group as Large as Possible?
We have seen that if  is a cyclotomic extension of order , then  is
isomorphic to a subgroup of  is, which has order . Thus, 
isomorphic to the full group  if and only if

that is, if and only if the cyclotomic polynomial  is irreducible, in which
case .min

Theorem 11.2.5 Let  be the splitting field for  over . Then  is
isomorphic to  if and only if the th cyclotomic polynomial  is
irreducible over , in which case .min
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The Irreducibility of Cyclotomic Polynomials
With regard to the irreducibility of cyclotomic polynomials, we have the
following important results. In particular, if  is irreducible, then so is

 for . Also, over the rational numbers, all cyclotomic polynomials are
irreducible.

Note that since the Galois group of  is isomorphic to a subgroup of
, which has order , it follows that the degree of  divides

.

Theorem 11.2.6 Let  be irreducible over  and let , where
. Then  is also irreducible over . As usual, we assume that

char .
Proof. Let  be a prime and consider the tower

The first step has degree  and the second step has degree , since
. But  irreducible implies that the degree of the full

extension is  and so

with  and .

If  then  and we have

with  and . It follows that . If  then 
and so  is irreducible. If  then , which does not
divide  for . If , then , where  is odd. It follows
that  and so

and so  is irreducible.

Finally, if  then  and so

with  and . Hence,  and again  is irreducible.

Thus, we have shown that if  with  prime, then  is irreducible.
Suppose that , that is, . Then repeatedly applying the
argument above shows that  is irreducible.
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Theorem 11.2.7 All cyclotomic polynomials  over the rational field  are
irreducible over . Therefore,  and .
Proof. Suppose that , where we is a nontrivial factorization
may assume that both factors are monic and have integer coefficients. Assume
that  is irreducible and that  is a root of . We show that  is
also a root of , for any prime . For if not, then  must be a root
of . Hence,  is a root of , which implies that  and

where  is monic and has integer coefficients. Since  mod , for any
integer , we have  mod  and so taking residues gives

mod

or, in a different notation

in  and  have a common root in some extension. It follows that 
of . However, , which has no multiple roots in any
extension. This contradiction implies that  is a root of .

Thus, if  is a root of  then so is , where . If  is a prime and,
, the same argument applied to  shows that  is also a root of

. In fact, for any , that is, all, it follows that  is a root of 
roots of  are roots of , and so , whence  is
irreducible over . 

Finite Fields
If the base field  is a finite field, then we know that the cyclotomic
extension  is also a finite field and the Galois group  is
cyclic with generator :

Since the order of  is , Theorem 9.6.1 implies that

From this, we also get a simple criterion to determine when a cyclotomic
polynomial is irreducible.

Theorem 11.2.8 Let  be the splitting field for  over , where
. Then

1)
2)
3   is isomorphic to the cyclic subgroup  of .)
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4  The following are equivalent)
 a) 
 b) 
 c) The cyclotomic polynomial  is irreducible over .

Let us consider an example.

Example 11.2.2 Since

the polynomial  is irreducible over  and has degree . Since

the polynomial  of degree  is not irreducible over .

Types of Primitivity

There are three types of elements in the splitting field  of  over a finite
field  that are referred to as : field primitive elements, groupprimitive
primitive elements and primitive roots of unity. Since each type of primitive
element is field primitive, that is, , each type of primitive element has
degree . However, the orders of each type of primitive element differ.

If  is field primitive, that is, , then
1) deg
2)

If  is group primitive, that is, , then
1) deg
2)

If  is a primitive th root of unity, that is, , then
1) deg
2)

Given a group primitive element  of , we can identify from among its powers

which are the primitive th roots of unity. In fact,  is a primitive th root of
unity if and only if

In general, the equation
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is equivalent to , or

which holds if and only if  where . In this case, 
 and we have the following.

Theorem 11.2.9 Let  be a group primitive element of the cyclotomic extension
 of order . Then  is a primitive th root of unity if and only if

where  and . 

More on Cyclotomic Polynomials

If  is monic and irreducible over  and has order , then each root of
 has order  and thus . Since every monic irreducible factor of

 has order , and since these factors have no common roots, we conclude
that  is the product of all monic irreducible polynomials of order .
According to Theorem 9.6.1, the degree of any such factor  is . Hence,
the number of monic irreducible polynomials of order   is .

Theorem 11.2.10 Let  be a positive integer.
1  The cyclotomic polynomial  over  is the product of all monic)

irreducible polynomials of order  over .
2  The number of monic irreducible polynomials over  of order  is)

, where  is the order of  mod .

Let us mention that the roots of the -st cyclotomic polynomial 
have order  and so are group primitive elements of .
In other words, the monic irreducible factors of  are precisely the
primitive polynomials of  over . Thus, one way to find primitive
polynomials is to factor this cyclotomic polynomial.

Example 11.2.3 We have at our disposal a number of tools for factoring
polynomials of the form  over , for :

1)

2)
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3) For  prime,

2

4)

5)  is irreducible over  if and only if .
6) Over , the polynomial  is the product of all monic irreducible

polynomials of order  over .
7) A polynomial over  is irreducible if and only if its order is .
8) Let . Then  is irreducible if and only if  is

irreducible. Moreover, if  and  are roots of an irreducible polynomial
, then  is also irreducible and

Hence, translation by an element of the base field  preserves the
property of being conjugate (that is, being roots of the same irreducible
polynomial).

To illustrate, consider the polynomial . Over , we have

A small table of order/degrees is useful:

This table shows that  and  are irreducible, but that  is not.

However, since the roots of  have order , the degree  of any
irreducible factor of  must satisfy . Thus,  factors
into a product of two irreducible quartics, which are primitive polynomials for

.

To find the quartic factors of , we can proceed by brute force. The
quartic factors must have the form
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where . Since , we must have , which
implies that either  or exactly one of  or  is .

If , then , which is not a factor of , because
the orders are not equal. Hence, exactly one of  or  is equal to . If ,
then

which is not irreducible. Hence, we are left with only two possibilities, and

where the factors are irreducible over .

Another approach is to observe that  is irreducible and so therefore is

and since  does not divide  or , its roots have order 
and so .

Once we have factored , we can find a group primitive element of its
splitting field, which is . In particular, a group
primitive element  has order , and so is a root of . So let  be a root
of the irreducible polynomial  over . Then

where . Note that  is also a primitive th root of unity, the other
primitive th roots being , where .

*11.3 Normal Bases and Roots of Unity

Recall that a normal basis for  is a basis for  over  that consists of the
roots of an irreducible polynomial  over . We have seen that in some
important cases (especially ), the cyclotomic polynomials  are
irreducible over , which leaves open the possibility that the primitive th roots
of unity  might form a normal basis for  over . Indeed, if  is
irreducible then  and somin

deg

and since the roots of  are distinct, there is the right number of primitive
th roots of unity and they will form a basis for  over  if and only if they

span  over .
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Theorem 11.3.1 Let  be a field with the property that  is irreducible
over  for all . Then  is a normal basis for the cyclotomic extension 
if and only if  is the product of distinct primes.
Proof. First, let  be prime and . Consider the extension

Since  is irreducible, it follows that  is irreducible over  and
so the powers

form a basis for  over . But

and so the set  over is a normal basis for 
.

Now we can proceed by induction on . We have just seen that the result is true
for  prime. Suppose that , where . Then by the inductive
hypothesis, we may assume that  is a normal basis for  over . Then
the product  is a basis for  over . But  and so  is a
normal basis for  over .

For the converse, let  for . Since

(an exercise) the coefficient of  in  is , whence the sum of the
roots of , that is, the sum of the primitive th roots of unity, is , showing
that these roots are linearly dependent. Hence, they cannot form a basis for 
over . 

*11.4 Wedderburn's Theorem

In this section, we present an important result whose proof uses the properties of
cyclotomic polynomials.

Theorem 11.4.1 ( )Wedderburn's Theorem  If  is a finite division ring, then
 is a field.

Proof. Let the multiplicative group  act on itself by conjugation. The
stabilizer of  is the centralizer

and the class equation is
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where the sum is taken over one representative  from each conjugacy class
 of size greater than  If we assume for the purposes.

of contradiction that , then the sum on the far right is not an empty
sum and  for some .

The sets

 for all 

and

are subrings of  and, in fact,  is a commutative division ring; that is, a
field. Let . Since , we may view  and  as
vector spaces over  and so

and

for integers . The class equation now gives

and since , it follows that .

If  is the th cyclotomic polynomial over , then  divides .
But  also divides each summand on the far right above, since for ,

, we have

and  divides the right-hand side. It follows that  On the.
other hand,

and since  implies that , we have a contradiction. Hence
 and  is commutative, that is,  is a field. 
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*11.5 Realizing Groups as Galois Groups

A group  is said to be  over a field  if there is an extension realizable

whose Galois group is . Since any finite group of order  is isomorphic to a
subgroup of a symmetric group , we have the following.

Theorem 11.5.1 Let  be a field. Every finite group is realizable over some
extension of .
Proof. Let  be a group of order . Let  be algebraically independent
over  and let  be the elementary symmetric polynomials in the .'s
Then  is a Galois extension whose
Galois group is isomorphic to . (See Theorem 7.2.3.) We may
assume that  is a subgroup of  and since  is closed in the Galois
correspondence, it is the Galois group of .fix

It is a major unsolved problem to determine which finite groups are realizable
over the rational numbers . We shall prove that any finite abelian group is
realizable over . It is also true that for any , the symmetric group  is
realizable over , but we shall prove this only when  is a prime.

Realizing Finite Abelian Groups over 
We wish to show that any finite abelian group is realizable over the rational
field . Since all cyclotomic polynomials are irreducible over the rationals, the
extension

has Galois group , which is finite and abelian. For any subgroup

we have the corresponding tower of fields

fix

and since the extension  is Galois and all subgroups are normal, the
quotient  is the Galois group of the extension fix .

Hence, it is sufficient to show that any finite abelian group  is isomorphic to a
quotient , for some . Since  is finite and abelian, we have

where  is cyclic of degree . If we show that  is isomorphic to a
quotient of the form , where the 's are distinct odd primes, then if 

 and , it follows that
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as desired.

Now, if  is an odd prime, then  is cyclic of order  and so all we need
to do is find distinct odd primes  for which , because a cyclic group
of order  has quotient groups of all orders dividing .

Put another way, we seek a set of distinct primes of the form , for
. It is a famous theorem of Dirichlet that there are infinitely many

primes of the form  provided that  and so the case  is
what we require.

First a lemma on cyclotomic polynomials.

Lemma 11.5.2 Let  be a prime and let . Let  be the
polynomial obtained from  by taking the residue of each coefficient
modulo . Then  is the th cyclotomic polynomial over .
Proof. L If  is a prime thenet  be the th cyclotomic polynomial over . 

 and  are all equal to

2

and so the result holds for  prime. Let  and suppose the result holds for
all proper divisors of . Since

taking residues modulo  gives

over . But

over  and since  for all , , it follows that 
.

Theorem 11.5.3 Let  be a positive integer. Then there are infinitely many
prime numbers of the form , where  is a positive integer.
Proof. Suppose to the contrary that  is a complete list of all primes of
the form  Let . Let  be the th cyclotomic.
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polynomial over  and consider the polynomial . Since  has
integer coefficients,  is an integer for all . Since  can
equal ,  or  for only a finite number of positive integers , there exists a
positive integer  for which  Let  be a prime dividing ..
Since , we have

which implies that , hence  for . To arrive at a
contradiction, we show that  has the form .

If  is the th cyclotomic polynomial over , then  and the
previous lemma imply that

in , where the overbar denotes residue modulo . Thus,  is a primitive th
root of unity over Z , that is,  has order  in . Hence,

and so , that is, . has the form 

We can now put the pieces together.

Theorem 11.5.4 Let  be a finite abelian group. Then there exists an integer 
and a field  such that , where  and such that

.

Realizing  over 

We begin by discussing a sometimes useful tool for showing that the Galois
group of a polynomial is a symmetric group.

Let  be the Galois group of an irreducible polynomial , thought of over 
as a group of permutations on the set  of roots of . Then  acts
transitively on . Let us define an equivalence relation on  by saying that

 if and only if either  or the   is an element of  Ittransposition .
is easy to see that this is an equivalence relation on . Let  be the equivalence
class containing .

Suppose that  contains a transposition . Then for any , we have

In other words, if  then  and so . It follows that  and
 have the same cardinality and since  acts transitively on , all

equivalence classes have the same cardinality.
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Hence, if  has a prime number of roots, then there can be only one
equivalence class, which implies that  for all . Since  is in 
contains every transposition, it must be the symmetric group on . We have
proved the following.

Theorem 11.5.5 If  is a separable polynomial of prime degree 
and if the Galois group  of  contains a transposition, then  is
isomorphic to the symmetric group . 

Corollary 11.5.6 If  is irreducible of prime degree  and if 
has precisely two nonreal roots, then the Galois group of  is isomorphic to
the symmetric group .
Proof. Let  be a splitting field for Complex conjugation over . 

 is an automorphism of  leaving  fixed. Moreover, since  is
normal, . Since  leaves the  real roots of  fixed,  is a
transposition on the roots of . Thus, the theorem applies. 

Example 11.5.1 Consider the polynomial , which is
irreducible over  by Eisenstein  criterion. A quick sketch of the graph reveals's
that  has precisely  real roots and so its Galois group is isomorphic to

.

Corollary 11.5.6 is just what we need to establish that  is realizable over .

Theorem 11.5.7 Let  be a prime. There exists an irreducible polynomial 
over  of degree  such that  has precisely two nonreal roots. Hence, the
symmetric group  is realizable over .
Proof. The result is easy for  and , so let us assume that . Let  be a
positive integer and  be an odd integer. Let  be distinct even2

integers and let

2

It is easy to see from the graph that  has  relative maxima.
Moreover, if  is an odd integer, then

Let . Since the relative maxima of  are all greater than 
and since  and , we deduce that  has at least

 real roots.

We wish to choose a value of  for which  has at least one nonreal root ,
for then the complex conjugate  is also a root, implying that  has two
nonreal roots and  real roots. Let the roots of  in a splitting field be
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. Then

Equating coefficients of  and  gives

and

and so

If  is sufficiently large, then  is negative, whence at least one of the roots
 must be nonreal, as desired.

It is left to show that  is irreducible, which we do using Eisenstein's
criterion. Let us write

In the product , each coefficient except the leading one is
divisible by . Hence, we may write

Multiplying by  gives

Taking  to be even, we deduce that all nonleading coefficients of  are
even. In addition, the constant term of  is divisible by  since . It
follows that  is monic, all nonleading coefficients are divisible
by , but the constant term is not divisible by . Therefore  is
irreducible and the proof is complete. 

Exercises

All cyclotomic polynomials are assumed to be over fields for which they are
defined.
1. Prove that if  where  then .
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2. When is a group primitive element of the cyclotomic extension  also a
primitive th root of unity over ?

3. If , how many th roots of unity are there over ?
4. What is the splitting field for  over ? Find the primitive th

roots of unity in this splitting field. Do the same for the th roots of unity
over .

5. If  are the th roots of unity over  show that
 for . What about when ?

6. If , prove that  is irreducible
over  if and only if  is prime and  is irreducible.

7. Show that if  is a prime, then .
8. Show that  if .

Verify the following properties of the cyclotomic polynomials. As usual,  is a
prime number.
9.  for .
10.  for all .
11.
12. If  is the decomposition of  into a product of powers of

distinct primes, then

13.  for .
14.  for .
15. Evaluate .

On the structure of .

16. If  where  are distinct prime powers then

17. Let  be prime and let .
 a) Show that .
 b) Show that  has an element of order . : consider an elementHint

 of order  modulo , which exists since  is a field.

Compute the order of  as an element of .
 c) Show that  has order . : Show that if  thenHint

where . Then consider the powers , etc.
 d) Show that  is cyclic.
 e) Show that  is cyclic if and only if  or .
 f) Show that  is cyclic if and only if ,  or .
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18. Prove that if  then there exists an irreducible polynomial of degree 
over  whose Galois group is isomorphic to , the cyclic group of order

.
19. Find an integer  and a field  such that  with 

8, the cyclic group of order . Here  is a primitive th root of unity over
.

20. Calculate the Galois group of the polynomial .
21. Let  be transcendental over ,  prime. Show that the Galois group of

 is isomorphic to .

More on Constructions
The following exercises show that not all regular -gons can be constructed in
the plane using only a straight-edge and compass. The reader may refer to the
exercises of Chapter 2 for the relevant definitions.

Definition A complex number  is  if its real and imaginary partsconstructible

are both constructible. 

22. Prove that the set of all constructible complex numbers forms a subfield of
the complex numbers .

23. Prove that a complex number  is constructible if and only if the real
number  and the angle  (that is, the real number cos  are constructible.

24. Prove that if  is constructible, then both square roots of  are constructible.
Hint: use the previous exercise.

25. Prove that a complex number  is constructible if and only if there exists a
tower of fields , each one a quadratic extension of the
previous one, such that .

26. Prove that if  is constructible, then  must be a power of .
27. Show that the constructibility of a regular -gon is equivalent to the

constructibility of a primitive th root of unity . Since the cyclotomic
polynomial  is irreducible over the rationals, we have 
deg .

28. Prove that  is a power of  if and only if  has the form

where  are distinct Fermat primes, that is, primes of the form

for some nonnegative integer . Hint: if  is prime then  must be a
power of . Conclude that if  does not have this form, then a regular -gon
is not constructible. For instance, we cannot construct a regular -gon for

,  or . Gauss proved that if  has the above form, then a regular
-gon can be constructed. See Hadlock (1978).
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Cyclic Extensions

Continuing our discussion of binomials begun in the previous chapter, we will
show that if  is a splitting field for the binomial , then 
where  is a primitive th root of unity. In the tower

the first step is a cyclotomic extension, which, as we have seen, is abelian and
may be cyclic. In this chapter, we will see that the second step is cyclic of
degree . and  can be chosen so that min
Nevertheless, as we will see in the next chapter, the Galois group  need
not even be abelian.

In this chapter, we will also characterize cyclic extensions of degree relatively
prime to expchar , as well as extensions of degree , but we will not
discuss extensions of degree  for , since this case is not needed and is
considerably more complex.

12.1 Cyclic Extensions

Let  be a field with , let  and let be a splittingexpchar
field for the binomial  over . Note that  has , where 
distinct roots in .

If  is a root of  in  and  is a primitive th root of unity over 
then the roots of  are

(12. )1.1

and so . In words, all th roots of  can be obtained by first
adjoining the th roots of unity and then adjoining any single th root of .
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The extension  can thus be decomposed into a tower

where the first step is cyclotomic.

For the second step, it will simplify the notation to simply assume that .
Hence,

is finite, Galois and the base field  contains all the th roots of unity.

As to the Galois group  of , each  is uniquely determined by its
value on  and

for some . In fact, the map  is an embedding of  into ,
and so  is isomorphic to a subgroup of  and is therefore cyclic of degree

. This follows easily from the assumption that  contains the th roots of
unity, for if , , then

and so .

Definition Let An extension  is  of  expchar . pure type

if  is a root of a binomial  over , that is, if .

Note that if  is pure of type  and if , then  is also pure of
type .

We can now provide a characterization of cyclic extensions when the base field
contains the th roots of unity.

Theorem 12.1.1 Let Suppose that  contains the thexpchar .
roots of unity and let . Then the following are equivalent:
1   is pure of type .)
2   is cyclic of degree .)
In this case,  is a root of  for some  if and only if

min

for some .
Proof. We have seen that a pure extension of type  is cyclic of type . For
the converse, assume that  is cyclic of degree , with Galois group
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We are looking for a field primitive element  that is a root of a binomial
of the form , for . The roots of any polynomial  have the form

and the roots of the binomial  have the form

where  is a primitive th root of unity. Hence, if we can find an  for
which , then

min

Since the product of these roots

is in , we have  and so . Hence,  is pure ofmin
type , and therefore also of type .

Thus, we are left with finding an  for which  is a primitive th root
of unity. This is the content of Hilbert's Theorem 90, which we prove next. We
leave proof of the final statement of this theorem as an exercise.

Theorem 12.1.2 ( )Hilbert's Theorem 90  Let  be a finite cyclic extension
of degree , with Galois group . An element  has the form

for some nonzero  if and only if

In particular, if the base field  contains a primitive th root of unity , then
 and the previous statement applies.

Proof. If , then  and so

For the converse, suppose that . We seek an element  for

which , that is, an element  fixed by the operator , where  is
multiplication by . This suggests looking at the elements
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for , which have the property that

for . Hence, the sum

is a promising candidate, since applying  shifts each term to the next, except
for the last term. But since , we have

and so applying  wraps the last term to the first. Hence, , as
desired.

However, there is a problem. We do not know that  is nonzero. Accordingly, a
change in the definition of  is in order. Let

with , where  is an as yet undetermined element of . Then the
previous analysis still applies. In particular,  and if

then since

we again have . But now, since the automorphisms  are
distinct, the Dedekind independence theorem implies that the linear combination

is nonzero, and so there must be a nonzero  for which  is nonzero.
This is our .

For the last statement, if  is a primitive th root of unity, then since
, we have



Cyclic Extensions 265

and the previous statement applies.

12.2 Extensions of Degree Char

There is an “additive” version of Theorem 12.  deals with cyclic1.1 that
extensions of degree equal to , where the role of the binomialchar

 is played by the polynomial .

Suppose that  is a field of characteristic . Let  and suppose that
 is a root of the polynomial

for . Since  for all , we have

and so the  distinct roots of  are

Hence,  is a splitting field of . (In contrast to the previous case, we
need no special conditions on  such as containing roots of unity, to ensure,
that if an extension of  contains one root of , it contains all the roots of

.)

If  then  splits in . If hen  has degree, t min
, with roots

where  The sum of these roots is , for some integer ,.
and since this number lies in  but since , it follows that , whence,

min  is irreducible. In short,  either splits in  or is
irreducible over  with splitting field , for any root  of .

Since  is a splitting field for the separable polynomial ,
it follows that  is Galois. If  is irreducible over  and 

, there exists a  for which  Since , it.
follows that  is the cyclic group generated by .

Definition An extension  of degree  is  of char pure type

 if  is a root of an  binomial  over .irreducible
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Theorem 12.2.1 ( ) charArtin–Schreier  Let . The polynomial

either splits in  or is irreducible over . An extension  is cyclic of
degree  if and only if it is pure of type .
Proof. We have seen that an extension that is pure of type  is cyclic of type .
Suppose that  is cyclic of degree , with Galois group 

. If  has the property that , then the roots of
min  are

Moreover, since

it follows that  and so . To find suchmin
an element, we need the additive version of Hilbert's Theorem 90.

Theorem 12.2.2 ( )Hilbert's Theorem 90, Additive Version  Let  be a
finite cyclic extension with Galois group . An element  has the
form  for some  if and only if .Tr
Proof. Assume that Let  and consider the mapTr . 

It is easy to verify that  and so if Tr
for then

Tr

Thus,  is the desired element. (Since the trace map is the sum of the
automorphims in the Galois group, it is not the zero map and so there is a 
for which .) Proof of the converse is left to the reader.Tr

In this section and the previous one, we have discussed cyclic extensions of
degree  where  or . A discussion ofexpchar char
cyclic extensions of degree  for  is quite a bit more involved and
falls beyond the intended scope of this book. The interested reader may wish to
consult the books by Karpilovsky (1989) and Lang (1993).

Exercises

1. Assume that  contains the th roots of unity and suppose that .
Show that  is a root of a binomial  over  if and only if it is a
root of an irreducible binomial  over , where .
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2. Let  be a finite cyclic extension, with Galois group . Show
that if  has the form  for some , then
Tr .

3. Let  be cyclic of degree  where  is a prime. Let  with
 cyclic of degree  where . Let  and suppose that

. Show that .
4. Let  and let  be cyclic of degree  over ,char

where . Show that  where min
and .

5. Let  be a field and let  be the extension of  generated by the th roots
of unity, for all . Show that  is abelian.

6. Let  be a field and let  be an automorphism of  of order . Suppose
that  has the property that  and . Prove that there exists
an  such that .

7. Let  be a field and let  be an automorphism of  of order . Show
that there exists an  such that .

8. Let  be finite and abelian. Show that  is the composite
of fields  such that  is cyclic of prime-power degree. Thus, the
study of finite abelian extensions reduces to the study of cyclic extensions
of prime-power degree.

9. Let  be a field containing the th roots of unity. We do  assume thatnot
expchar . Let  be an algebraic closure of . Show that if 

 is separable over  and if  is a root of the binomial  with ,
then  is cyclic of degree .
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Solvable Extensions

We now turn to the question of when an arbitrary polynomial equation 
is . Loosely speaking, this means (for ) that wesolvable by radicals char
can reach the roots of  by a finite process of adjoining th roots of existing
elements, that is, by a finite process of passing from a field  to a field ,
where  is a root of a binomial , with . We begin with some basic
facts about solvable groups.

13.1 Solvable Groups

Definition A  in a group  is a tower of subgroupsnormal series

where . A normal series is  if each factor group  isabelian

abelian, and  if each factor group is cyclic. cyclic

Definition A group is  or  if it has an abelian normal series.solvable soluble( )

Theorem 13.1.1 The following are equivalent for a nontrivial finite group .
1   has an abelian normal series.)
2   has a cyclic normal series.)
3   has a cyclic normal series in which each factor group  is cyclic)

of prime order.
Proof. It is clear that 3) 2) . Thus, we need to prove only that 3).1) 1)
Let  be an abelian normal series. We wish to refine this series by inserting
subgroups until all quotients have prime order. The Correspondence Theorem
says that the natural projection  is a normality-preserving
bijection from the subgroups of  containing  to the subgroups of

. Hence, by Cauchy  Theorem, if a prime  divides  then's
 has a subgroup of order , which must have the form  for

.
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Since  is abelian,  and so . Thus,
. Finally, since  is abelian, the Third Isomorphism

Theorem implies that

is also abelian.

Thus, we have refined the original abelian normal series by introducing ,
where  has prime order. Since  is a finite group, we may continue the
refinement process until we have an abelian normal series, each of whose
quotient groups has prime order. 

The next theorem gives some basic properties of solvable groups. The proofs of
these statements, with the possible exception of 2), can be found in most
standard texts on group theory.

Theorem 13.1.2 

1  Any abelian group is solvable.)
2   Any finite group of odd order is solvable.) ( )Feit–Thompson

3  Any subgroup of a solvable group is solvable.) ( ) Subgroups

4   If  is solvable and , then  is solvable.) ( )Quotients

5   If  then  and  solvable imply that  is) ( )Lifting property

solvable.
6  The direct product of a finite number of solvable) ( ) Finite direct products

groups is solvable.
7  The symmetric group  is solvable if and only if . )

13.2 Solvable Extensions

Although our results can be proved in the context of arbitrary finite extensions,
we shall restrict our attention to separable extensions. As the reader knows, this
produces no loss of generality for fields of characteristic  or finite fields.
Moreover, if  is an inseparable polynomial, then

where  is separable. Thus, with respect to the solution of polynomial
equations, the restriction to separable extensions is not as severe as it might first
appear.

Definition A finite separable extension  is  if the finite Galoissolvable

extension  has solvable Galois group, where  is thenc nc
normal closure of  over .

Theorem 13.2.2 The class of solvable extensions is distinguished.
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Proof. Speaking in general, consider a finite separable tower of the form

Since the first step is normal, we have

Now, if the Galois groups  and  of each step are solvable, then the
quotient  is solvable as well. Hence, by the lifting property of
solvability, the Galois group  of the full extension  is solvable.

On the other hand, if the full extension has solvable Galois group , then
the Galois group  of the lower step, being isomorphic to a quotient of

 is solvable and the Galois group  of the upper step, being a
subgroup of  is solvable.

Thus, in such a tower, solvability of the Galois groups has the “tower property.”
Note also that the implication  solvable implies  solvable does not
require that the lower step  be normal.

Now we can get to the business at hand. Suppose first that

where the full extension  is solvable. The lower step is finite and
separable, and we have the tower

nc nc

where the full extension has solvable Galois group, and therefore so does the
lower step. That is,  is solvable.

As to the upper step , it is finite and separable. Consider the tower

nc nc

Since the full extension has solvable Galois group, so does the full extension

nc nc

(which is an upper step of the previous tower). Hence, the lower step has
solvable Galois group, that is,  is solvable. We have shown that if the
full extension is solvable, so are the steps.

Suppose now that each step  and  solvable and consider Figure
13.2.1. Since all extensions are finite and separable, we will have no trouble
there.
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nc(K/F)
nc(E/K)

K

F

E

N=nc(K/F)nc(E/K)

nc(N/F)

Figure 13.2.1

Since

nc nc

it is sufficient to show that nc  is solvable.

To this end, Theorem 6.5.6 implies that nc  is isomorphic to a
subgroup of the finite direct product

hom

Since this is a finite direct product and since each conjugate is isomorphic to
, it suffices to show that  is solvable.

Consider the tower

nc

The group nc  is solvable since  is solvable. As to the Galois
group nc  of the upper step, it is a subgroup of the Galois group

. Thus, it is sufficient to show that  is solvable. But  is the
Galois group of a composite and is therefore isomorphic to a subgroup of the
direct product of the Galois groups nc nc and , both of
which are solvable, precisely because the lower and upper steps in the tower are
solvable.

For the lifting property, if  is solvable and  is arbitrary, then

nc

Lifting gives

nc

and the full extension is finite and Galois, and

nc nc ncnc

and since the latter is solvable, so is the former. 
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13.3 Radical Extensions

Loosely speaking, when , an extension  is char solvable by
radicals if it is possible to reach  from  by adjoining a finite sequence of th
roots of existing elements. More specifically, we have the following definitions,
which also deal with the case .char

Definition Let  and let . A  for  is aexpchar radical series

tower of fields

such that each step  is one of the following types:
Pure of Class 1

  where  is an th root of unity, where we may assume
without loss of generality that .

Pure of Class 2

  where  is a root of , with  and
.

Pure of Class 3

 For  only   where  is a root of , with( )
.

For steps of classes 1 and 2, the number  is the  or  of the step.exponent type( )
The  of a class 3 step is . A finite separable extension  that hasexponent

a radical series is called a .radical extension

If , we may assume that the exponent in a class 1 extension ischar
relatively prime to  is an th root of unity where  and, for if 

, then  is also an th root of unity.

Note that lifting a radical series gives another radical series with the same class
of steps, for if , where  is a root of , then

where  is a root of .

For convenience, we write

or

to denote the fact that  is a radical series for the
extension .
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Theorem 13.3.1 Properties of radical extensions( )
1  If  is a radical extension and , then the lifting) ( ) Lifting

 is a radical extension.
2  If , where  and) ( ) Each step implies full extension

 are radical extensions, then so is the full extension .
3  If  and  are radical extensions, then so is the) ( ) Composite

composite extension .
4  If  is a radical extension, then so is) ( ) Normal closure

nc .
Proof. For 1), let . Lifting the series by  gives the
radical series

and so  is a radical extension.

For part 2), if  and , then lift the series  by :

and append it to the end of  to get

and so  is a radical extension.

For part 3), if  and  are radical extensions, then so is the lifting
 of  by  and so is the full extension .

For part 4), isthe normal closure 

nc
hom

Since  is a finite separable extension, hom  is a finite set. Hence,
the composite above is a finite one. We leave it as an exercise to show that if

, then . Hence,  is a radical extension, and
therefore so is the finite composite nc .

13.4 Solvability by Radicals

We are interested in extensions  where  is contained in a radical
extension .

Definition A finite separable extension  is  ifsolvable by radicals

, where  is a radical extension.

Theorem 13.4.1 

1 The class of extensions that are solvable by radicals is distinguished.)
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2 If  is solvable by radicals then so is . In fact, if) nc

where  is a radical extension, then

nc nc

where  is a normal radical extension.nc
Proof. Let

If  is solvable by radicals then

with  radical. Hence, the lower step  is solvable by radicals. For
the upper step,  radical implies  is radical and so  is
solvable by radicals.

Now suppose the steps in the tower are radical.

RE/K

K

F

E
RK/F

KRK/F

Figure 13.4.1

Referring to Figure 13.4.1, we have

and

where  and  are radical extensions. Lifting  by
 gives the radical extension  and so the tower

is radical. It follows that the full extension is radical and so  is solvable
by radicals.
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As to lifting, if  with  radical, the lifting by  gives

and since  is radical,  is solvable by radicals.

The second part of the theorem follows from the fact that if  with
 is radical, then

nc nc

with  radical.nc

13.5 Solvable Equivalent to Solvable by Radicals

Now we come to the key result that links the concepts of solvable extension and
solvability by radicals. Here we employ the results of Chapter 12 on cyclic
extensions, taking advantage of the fact that we may assume that all appropriate
roots of unity are present.

Theorem 13.5.1 A finite separable extension  is solvable by radicals if
and only if it is solvable.
Proof. Suppose that  is solvable. We wish to show that  is
solvable by radicals. By definition, nc  is solvable and if we show
that  is also solvable by radicals, then the lower step  isnc
also solvable by radicals. Thus, we may assume that  is normal.

As to the presence of roots of unity, let . If  does not contain a
primitive th root of unity , then we can lift the extension  by adjoining

 to get

which is also solvable and normal. If we show that this extension is solvable by
radicals, then so is the tower

since the lower step  is solvable by radicals (being pure of class 1).
Hence, the lower step  is also solvable by radicals.

Note that since  is finite and Galois, Corollary 6.5.3 implies that

Hence,  contains a primitive th root of unity, where .

Thus, we may assume that  is normal and contains a primitive th root of
unity, where . It follows that if  is any prime dividing , then

 contains a primitive th root of unity.
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Since  is finite, Galois and  is solvable, there is a normal
series decomposition

(13.5. )1

where  and  is cyclic of prime order  dividing 
. Taking fixed fields gives a towerfix

(13.5.2)

Let us examine a typical step  in this series. The relevant piece of the
Galois correspondence is shown in Figure 13.5.1.

E Gi+1

{1}

Fi
Gi

Fi+1

Figure 13.5.1

Since  is finite and Galois, the Galois correspondence is completely
closed, that is, all intermediate fields and subgroups are closed. Thus, since 
is normal in , it follows that  is normal (and hence Galois) and
that

which is cyclic of degree . Hence,  is a cyclic extension whose
base field  contains the th roots of unity.

Now, if char , then Theorem 12.2  implies that  is pure of.1
class 3. On the other hand, if  then char expchar,  and
Theorem 12.  implies that  is pure of class 1 or class 2. Thus,1.1

 is solvable by radicals, as desired.

For the converse, suppose that  is solvable by radicals, with 
where  is a radical extension. Then Theorem 13.4.1 implies that the full
extension in the tower

nc nc

has a radical series

nc

Let  be the product of the types of all the steps in this series. Lift the tower by
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adjoining a primitive th root of unity , to get the radical series

nc

which contains . Note that if  is of class 1, then the step
 is trivial, and we may remove it. Thus, we may assume that

all steps in the lifted tower are pure of class 2 or class 3.

It follows from Theorems 12.  and 12.2 and1.1 .1 that these pure steps are cyclic 
so Theorem 6.6.2 implies that the Galois group  is solvable.nc
We have seen in the proof of 13.2.2 that since

nc nc nc

where the full extension has solvable Galois group, so does the lower step.
Hence, nc  is a radical extension, which implies that  is
solvable by radicals.

13.6 Natural and Accessory Irrationalities

Let us assume that  and suppose that  is finite, normal andchar
solvable by radicals. Let  and assume that  contains the th roots
of unity.

Then, by definition, there is a radical series of the form

(13.6.1)

where . A typical step in this series has the form ,
where . Elements of the form , for , might reasonably
be referred to as irrationalities, at least with respect to  (or ).

Kronecker coined the term  for those irrationalities of natural irrationalities
that lie in  and  for those irrationalities of  that doaccessory irrationalities
not lie in .

Given a radical series  containing , it is natural to wonder whether(13.6.1)
there is another radical series

that contains only natural irrationalitites, that is, for which the top field  is 
itself.

We begin by refining the steps in (13.6.1) so that each has prime degree.
Consider a step . Since the steps in the series are cyclic, every
subgroup of the Galois group  of  is normal, and so all lower steps

 are normal. If  where  is prime, then  has a
subgroup  of index  and so  is cyclic of degree .fix
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Hence, any step  of (13.6.1) can be decomposed into a tower
, where the lower step  is cyclic of prime degree. The

upper step has the form  and is cyclic of degree . We may
repeat this decomposition on the upper step until each step is decomposed into a
tower of cyclic extensions of prime degree.

So, let us assume that each step in (13.6.1) is cyclic of prime degree. Consider
the tower obtained by intersecting each field in (13.6.1) by 

(13.6.2)

We wish to show that each step in (13.6.2) is also cyclic of prime degree. This is
the content of the following theorem. It will follow that  has a radical
series that starts at  and ends precisely at .

Theorem 13.6.1 Let . Let , where  is Galois ofchar
prime degree . Let  be finite and normal. Then  is
either trivial or Galois of degree .
Proof. Figure 13.6.1 shows the situation.

A

B=A( )
E

E

E=(A E)( )

normal
prime deg

Figure 13.6.1

We first show that  is normal by showing that it is closed in the
Galois correspondence of , that is,

fix

(the reverse inclusion is clear). The plan is as follows. Let

fix

Since  is normal, if we show that  for any , it will
follow that  and so , as desired.fix

But it is sufficient to show that  implies ,
since then

To this end, since ) is finite and separable, it is simple, say
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where . If , then the extension is trivial, so assume . We
need to show that if  then , since then 

.

In the tower

the entire extension has prime degree  and the lower step is nontrivial. Hence,
.

Since  is normal, the minimal polynomial  splitsmin
over  and so its roots  lie in . Also, since

min min

each  is a root of  and since  is normal (being anmin
upper step of , it follows that  for all . Hence,

But each  sends  to a conjugate  of , and so . This
is what we needed to prove and shows that  is normal.

Finally, we must show that . To see this, note that 
is the lifting of  by . Since  is
Galois, the Galois group of the lifting satisfies

and so .

Theorem 13.6.2 The  Let .( ) chartheorem on natural irrationalities

Let  be finite and normal. Let  and assume that  contains
the th roots of unity. If  is solvable by radicals, then there is a radical series
starting with  and ending with .

We remark that the requirement that  contain the appropriate roots of unity is
necessary. An example is given by the casus irreducibilis, desscribed in the
exercises.

13.7 Polynomial Equations

The initial motivating force behind Galois theory was the solution of polynomial
equations . Perhaps the crowning achievement of Galois theory is the
statement, often phrased as follows: There is no formula, similar to the quadratic



Solvable Extensions 281

formula, involving only the four basic arithmetic operations and the taking of
roots, for solving polynomial equations of degree  or greater over .

However, this is not the whole story. The fact is that for some polynomial
equations there is a formula and for others there is not, and, moreover, we can
tell by looking at the Galois group of the polynomial whether or not there is
such a formula. In fact, there are even algorithms for solving polynomial
equations when they are “solvable,” but these algorithms are unfortunately not
practical.

Let us restrict attention to fields of characteristic . We refer to the four basic
arithmetic operations (addition, subtraction, multiplication and division) and the
taking of th roots as the .five basic operations

Let  be a field of characteristic . We will say that an element  is
obtainable by formula from  if we can obtain  by applying a finite
sequence of any of the five basic operations, to a finite set of elements from .

If  is a pure extension, it is clear that any element of , being
a polynomial in , is obtainable by formula from . Hence, any element of a
radical extension  is obtainable by formula from .

Conversely, if  is obtainable by formula from , then there is a finite set
 and a finite algorithm for obtaining  from , where each step in the

algorithm is the application of one of the five basic operations to elements of
some extension  of . If the operation is one of the four basic operations, then
the result of the application is another element of the field . It the operation is
the taking of a root, then the result will lie in a pure extension of . Thus, all the
operations in the algorithm can be performed within a radical extension of .
Hence,  lies in a radical extension of .

Theorem 13.7.1 Let  be a field of characteristic . An element  can be
obtained by formula from  if and only if  lies in a radical extension of , that
is, if and only if  is solvable by radicals. 

Let us say that a root  of a polynomial  over 
is  if we can obtain  by formula from obtainable by formula

. Thus, a root  of  is obtainable by formula if and only if
 is solvable by radicals. Theorems 13.4.  and 13.5.1 now imply the1

following.

Theorem 13.7.2 Let  and let  be achar
polynomial over . Let  and let  be a splitting field for

 over .
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1  The roots of  are obtainable by formula if and only if the extension)
 is solvable.

2  Let  be irreducible over . One root of  is obtainable by formula)
if and only if all roots of  are obtainable by formula. 

According to Theorem 11.5.7, for any prime number , there exists an
irreducible polynomial  of degree  over  whose Galois group is
isomorphic to . Since the group  is not solvable for , Theorem 13.7.2
implies that if 5, then  of the roots of  can be obtained bynone
formula. Although it is much harder to show, this also holds for any positive
integer  see Hadlock, 1987 . Thus, we have the following.

Theorem 13.7.3 For any , there is an irreducible polynomial of degree 
over , none of whose roots are obtainable by formula. 

As a consequence, for any given , there is no formula for the roots, similar
to the quadratic formula, involving only the four basic operations and the taking
of roots, that applies to all polynomials of degree . More specifically, we have

Corollary 13.7.4 Let  and consider the generic polynomial 
, where  are algebraically independent over .

Then there is no algebraic formula, involving only the five basic operations, the
elements of  and the variables , with the property that for any
polynomial  of degree  over , we can get a
root of  by replacing  in the formula by , for all . 

Exercises

1. Prove that if  then  is solvable if and only if  and  are
solvable.

2. Prove that if  is a radical series, then there is a radical
series that is a refinement of this series (formed by inserting additional
intermediate fields) for which each extension has prime exponent.

3. Prove that if  is solvable by radicals and  thenhom
 is also solvable by radicals.

4. Calculate the Galois group of the polynomial . Is there
a formula for the roots?

5. Prove that if  is a polynomial of degree  over  with Galois group
isomorphic to  then  is irreducible and separable over .

6. While the class of (finite, separable) solvable extensions is distinguished,
show that the class of  solvable extensions does not have the towerGalois
property, and so is not distinguished. : use the Feit–Thompson resultHint
(Theorem 13.1.2) and the proof of Theorem 11.5.1.

7. Prove that a finite separable extension  of characteristic  is solvable
by radicals if and only if there exists a finite extension  with
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 and a radical series  for  in which each step
 is one of the following :classes

 1)  where  is an th root of unity with  prime and
.

 2)  where  is a root of , with ,  prime and
.

 3)  where  is a root of the irreducible polynomial
, with .

8. Prove Theorem 13.7.2. Hint: for part 2), consider the normal closure of
, where  is an obtainable root of .

Casus Irreducibilis
Cardano's formula for the cubic equation  is

This formula does not always yield a “satisfactory” solution, especially to the
interested parties of the 16th century. For instance, the equation 
has only one real solution , but Cardano's formula gives

(which must therefore equal , a handy formula to remember). The most serious
“problem” with Cardano's formula comes when

since in this case, the formula contains the square root of a negative number,
something Cardano referred to as “impossible”, “useless” and whose
manipulation required “mental torture”. For instance, the equation

 has a simple real solution , but Cardano's formula gives

(which is equal to ). Cases where  are known as  andcasus irreducibilis
were the subject of much debate in the 1500s. Efforts to modify the formula for
the solution of a cubic with three real roots in order to avoid nonreal numbers
were not successful, and we can now show why. (Actually, this turned out to be
a good thing, since it sparked the development of the complex numbers.)

9. Let  be an irreducible cubic over  with three real roots. This exercise
shows that no root of  can be obtained by formula if we allow the
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taking of  th roots only, that is, we show that no root of  isreal
contained in a radical series that is completely contained in .

 a) Suppose that a root  of  is contained in a radical series

Let  be the discriminant and let . Show that there is a radical
series

containing  with .
 b) Show that the radical series in part a) can be refined (by inserting more

intermediate fields) into a radical series in which each step has prime
exponent.

 c) Let  be the first index such that a root  of  is in  and
consider the extension . Show that  is a splitting
field for  over .

 d) Since  is pure of prime exponent, we have
, where  is a root of , with  prime and

. More generally, prove that if  is a field,  and  is a
prime, then the polynomial  is either irreducible over  or

. : Suppose that  where Hint deg
and . If  are the roots of  and deg
are the roots of , then

Take the th power of this and use . Then use the fact that
.

 e) Show that  is not possible. (The primitive th roots of unity do
not lie in .) Hence,  is irreducible.

 f) Show that  and .
 g) Show that  is normal. What does that say about the roots of

?

Galois' Result
Galois, in his memoir of 1831, proved the following result (Proposition VIII):

“For an equation of prime degree, which has no
commensurable divisors, to be solvable by radicals, it is
necessary and sufficient that all roots be rational functions of
any two of them.”

In more modern language, this theorem says that if  is irreducible and
separable of prime degree , then the equation  is solvable by radicals
if and only if  is a splitting field for , for  two roots  and  ofany
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. To prove this theorem, we require some results concerning solvable
transitive subgroups of , the group of permutations of .

Any map  defined by , where  with
 is called an  of . Let  be the group of allaffine transformation aff

affine transformations of . Note that  is a subgroup of . Theaff
translations are the affine maps . Let  be the subgroup oftrans
aff  consisting of the translations. Let  be translation by . Two
elements  and  of  are  if there is a  for whichconjugate

.

10. a) Show that  is a normal subgroup of .trans aff
 b) Show that  is the -cycle , that any nonidentity

translation is a -cycle and that an element  is a -cycle if and
only if it is conjugate to .

 c) Within , the nonidentity translations are characterized as havingaff
no fixed points, whereas all elements of  have exactlyaff trans
one fixed point.

 d) Show that  acts transitively on .aff
 e) Show that  and . Hence,  is aaff trans trans

Sylow -subgroup of  and is the only subgroup of  of orderaff aff
.

 f) Show that ,  and  are solvable.trans aff trans aff
11. Prove that if  has the property that , then .aff aff
12. The following are equivalent for a subgroup  of :
 1)  is transitive.
 2)  contains a subgroup conjugate to , that is, , for sometrans

-cycle .
13. The following are equivalent for a transitive subgroup  of :
 1) The only element of  with two fixed points is the identity.
 2)  is conjugate to a subgroup  of .aff

We have proved that for a transitive subgroup  of , the first two statements
below are equivalent. We now add a third.
1) The only element of  with two fixed points is the identity.
2)  is conjugate to a subgroup  of .aff
3)  is solvable.

It is clear that 2) implies 3), since a conjugate of a solvable group is solvable.
The next few exercises prove that 3) implies 1).

14. If  is a transitive subgroup of , show that any normal subgroup
 of  also acts transitively on .
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15. Let  be a transitive, solvable subgroup of . Then  has a normal series
with prime indices

 a) Show that , where  is a -cycle.
 b) Show that the only element of  that has two fixed points is the

identity.

We can now return to Galois' result concerning solvability by radicals for a
prime-degree equation .

16. Prove that if  is irreducible and separable of prime degree , then the
equation  is solvable by radicals if and only if  is a splitting
field for , for  two roots  and  of .any



Part III—The Theory of Binomials



Chapter 14

Binomials

We continue our study of binomials by determining conditions that characterize
irreducibility and describing the Galois group of a binomial  in terms of

 matrices over . We then consider an application of binomials to
determining the irrationality of linear combinations of radicals. Specifically, we
prove that if  are distinct prime numbers, then the degree of

over  is as large as possible, namely, . This implies that the set of all
products of the form

where , is linearly independent over . For instance, the
numbers

and  

are of this form, where , . Hence, any expression of the form

where , must be irrational, unless  for all .

First, a bit of notation. If , then  stands for a particular (fixed) root of
. The set of primitive th roots of unity is denoted by  and  always

denotes a primitive th root of unity.

14.1 Irreducibility

Let us first recall a few facts about the norm. Let  be finite with .
If the minimal polynomial of 

min
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has roots  then

where . Note that . Also, for all  and ,
we have

1) The norm is multiplicative, that is, for all ,

In particular,

for any positive integer . Also, .
2) For ,

and so

3) If  are finite and if  then

Our technique for determining the irreducibility of a binomial 
for  is an inductive one, beginning with the case  prime.

Theorem 14.1.1 Let  be a prime. Then the following are equivalent:
1)
2   has no roots in )
3   is irreducible over )
Proof. It is easy to see that 1) and 2) are equivalent and that 3) implies 2). To
see that 1) implies 3), let  be a root of  in  and assume that

. We wish to show that , which implies that  is
min  and is therefore irreducible. Since , taking the norm 

 gives

where . Now, if  then  and there exist integers  and 
for which . Hence

which is a contradiction. Thus , as desired.
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To generalize this to nonprime exponents, assume that

is a product of not necessarily distinct odd primes. (We will consider the even
prime later.) Let us write  as  and

where .  . ThenLet  be a root of  in  and write

Hence,  is a root of  and  is a root of

and we have the tower

Repeating the process with , if , then

so  is a root of  and  is a root of

over  and we have the tower

Clearly, we can repeat this process as desired to obtain a tower

where , and where each step  has the property that 
is a root of the binomial  of prime degree over .

Now, the binomial  is irreducible if and only if

and this happens if and only if each binomial  is irreducible, which
according to Theorem 14.1.1, is equivalent to the conditions

(14.1.1)

for all . Let us improve upon these conditions.
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First, note that if , that is, if  for , then

Hence, (14.1.1) is implied by the following conditions, which involve
membership in a power of the base field only

(14.1.2)

for . Thus, under these conditions, each binomial  is
irreducible, with root , and so

for . Assuming that all the primes  are odd or that
char , this can be written as

(14.1.3)

for . For , this is

For , we get

and applying the norm and using the case  gives

In general, if , then applying the norm to (14.1.3) gives

Thus,

for  and we can rephrase the conditions (14.1.2) as

for .
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Theorem 14.1.2 If  is a product of not necessarily distinct odd
primes, then the binomial  is irreducible if

for .

Let us now turn to the case where  and write

for . As seems often the case, the even prime  causes additional
problems. To illustrate, if , then for any 

and so the binomial is reducible even though . Thus,
for , we must at least include the restriction that  for any ,
that is, that . It turns out that no further restrictions are needed.

Theorem 14.1.3 Let  be a field and .
1   is irreducible if and only if )
2  For , the binomial  is irreducible if and only if)

 and .
Proof. Part 1) is clear. For part 2), assume that  is irreducible, where

. If  for some , then

is reducible. Hence, . Also, if  for , then

factors as above. Hence,  and .

For the converse, we show that the conditions  and  imply that
 is irreducible for all , by induction on . We have seen that this

holds for . Assume that it holds for all positive integers less than .
Let  be a root of  in a splitting field and write

Hence,  is a root of  and  is a root of

and we have the tower
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The lower step has degree  since . As to the upper step, if 
and , then the induction hypothesis implies that  is irreducible
over , in which case

which implies that 2) holds. Hence, we need only consider the two cases
wherein these hypotheses fail.

If , that is, if , for some , we claim that
 as well. The problem is that  may not be a square in . But

taking norms  gives

where . Hence, . It follows that

So, if either condition fails, then  for some .

We must show that this implies that  is irreducible over .
Applying the norm  gives

where Since , it follows that . In other words, if.
 is a root of  Over , we have the factorization in , then .

 (14. )1.2

If both of the factors on the right side are irreducible over , then 
cannot factor nontrivially over , because each irreducible factor of  over

, being over  as well, would be a multiple of one of the irreducible factors
on the right of (14.1.2) and so would have degree greater than . But two
such factors would then have product of degree greater than . Thus, in this
case,  is irreducible over .

On the other hand, if one of the factors in (14. ) is reducible, the induction1.2
hypothesis implies that one of  or  is in either  or 

. Thus, in either case, one of  or  is in , say

Thus,  and . It follows that , a
contradiction to the hypothesis of the lemma. Hence, this case does not occur.

Now we can prove the main result of this section.
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Theorem 14.1.4 Let  be an integer and let .
1  If , then  is irreducible over  if and only if  for)

all primes .
2  If , then  is irreducible over  if and only if  for)

all primes  and .
Proof. Assume first that  is irreducible. Then for any prime , the
polynomial  is irreducible, for if  is a nontrivial
factorization, then  is a nontrivial
factorization of . Hence, by Theorem 14.1.3,  for any . Also, if

 then the polynomial  is irreducible and so again by Theorem 14.1.3,
. Alternatively, we have a direct factoization

For the converse, assume that  for all primes  and that when ,
we also have . We proceed by induction on . If , the result
follows from Theorem 14.1.3. Assume that the theorem is true for integers
greater than  and less than . If , where , then Theorem 14.1.3
applies. Otherwise,  has an odd prime factor . Suppose that  where

 and .

Let  be a root of . Then  is a root of  and
 is a root of

The induction hypothesis implies that  is irreducible over  and so the
first step in the tower

has degree . If  is irreducible over , then the second step will have
degree , whence  and , which ismin
irreducible.

We apply the inductive hypothesis to show that  is irreducible. Since  is
odd, we need only show that . If  for some  then
taking norms  gives

If  is odd, we get , a contradiction. If  is even then since 
is odd, we have , again a contradiction. Hence, 

 is irreducible over  and  is irreducible over . 
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14.2 The Galois Group of a Binomial

Let us now examine the Galois group of a binomial  over , for 
and  relatively prime to . If  is a root of  and , thenexpchar
all the roots are given by

and so  is a splitting field for  over . Moreover, in the
tower

(14.2 ).1

the first step is a cyclotomic extension, which is abelian since its Galois group is
isomorphic to a subgroup of . The second step is pure of type  and so,
according to Theorem 12.1.1, it is cyclic of degree  and

min

Despite the abelian nature of the lower step and the cyclic nature of the upper
step, the full extension (14.2.1) need not be abelian.

The fact that  and  both satisfy simple polynomials  is the key toover
describing the Galois group . Since any  must permute the
roots of , there exists an integer  for which

Moreover, since  is a normal extension of , the restriction of  to  is
in  and therefore  sends  to another primitive th root of unity, that
is,

where .

Multiplication in  has the following form. For ,

and

There is something reminiscent of matrix multiplication in this. Indeed, let 
be the set of all matrices of the form

Since
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we see that  is a subgroup of the general linear group  of allGL
nonsingular  matrices over . Comparing this product with the action of
the product  shows that the map  defined by

satisfies

and is, in fact, a monomorphism from  into .

Since , where  is the Euler phi function, the map  is surjective
if and only if

But in the tower

we always have  and . Hence  is
surjective (and an isomorphism) if and only if equality holds in these two
inequalities.

Theorem 14.2.1 Let  be a positive integer relatively prime to . Letexpchar
 be the splitting field for  over , where . Let  be a root of

 and . In the tower

the first step is a cyclotomic extension and the second step is cyclic of degree
 with . Also,  is isomorphic to a subgroupmin

of the group  described above, via the embedding

where  and . The map  is an isomorphism and
 if and only if both steps in the tower 14.2.1  have maximum( )

degree, that is, if and only if
1)
2  , or equivalently,  is irreducible over .)



298 Field Theory

A Closer Look
There are two issues we would like to address with regard to the previous
theorem. First, statement 2) is phrased in terms of  and we would prefer a
statement involving only the base field . Second, we would like to find
conditions under which  is abelian.

We will see that for  an odd integer relatively prime to , we canexpchar
replace condition 2) with the condition that  is irreducible over . With
respect to the commutativity of , we will derive a general necessary and
sufficient condition. However, we will first prove a simpler result; namely,
assuming that , then  is abelian if and only if the
second step in (14.2.1) is trivial, that is, if and only if  splits over .

The Prime Case

We first deal with both issues for  prime. Recall that according to
Theorem 14.1.1, the following are equivalent:
1)
2)  has no roots in 
3)  is irreducible over 

Over the base field , which contains all the th roots of unity, we have
 or  and the following are equivalent:

1)
2)
3)  has no roots in 
4)  does not split over 
5)  is irreducible over 

The next lemma ties these two situations together, and strengthens statement 2)
of Theorem 14.2.1 for  prime.

Lemma 14.2.2 Let  be a prime and let . Then  is irreducible over
 if and only if it is irreducible over .

Proof. Certainly, if  is irreducible over , it is also irreducible over
. For the converse, consider the tower

Since  is irreducible over , we have

On the other hand, the first step in the tower has degree at most 
and the second step is cyclic of degree , whence  or . Hence

, which implies that  is irreduciblemin
over . 
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As to the question of when the Galois group  is abelian in the prime case,
since both steps in the tower

are abelian, if either step is trivial, then  is abelian. Thus, if  or if
 then  is abelian. The converse is also true when  is prime.

Lemma 14.2.3 Let  be a prime and let . Let  be a splitting field for
 over . Then the Galois group  is abelian if and only if at least

one step in the tower 14.2.1  is trivial, that is, if and only if either  or( )
 is reducible over .

Proof. As mentioned, if one step is trivial then  is abelian. Suppose now
that  and  is irreducible over . Since , it has a conjugate

 that is also not in . Let  be defined by . Since
 is irreducible over , for each , the map  may be extended to

a map  defined by

For  and , we have

and

and these are distinct since . Hence,  and  do not commute and
 is not abelian.

The General Case

Armed with the previous results for  prime, we consider the general case. We
use the following fact.

Suppose that  splits over  and has a nonabelian splitting field
extension . Then if  is abelian,  cannot split in  because
otherwise, there would be a splitting field  of  satisfying . But

 abelian implies that the lower step  is abelian and since all
splitting fields for  over  are isomorphic, this contradicts the fact that

 is nonabelian.

Theorem 14.2.4 Let  be an odd positive integer relatively prime to
expchar . Let  and suppose that  contains no th roots of unity
other than . Let  be any abelian extension. Then  is irreducible
over  if and only if it is irreducible over .
Proof. Clearly, if  is irreducible over , it is also irreducible over the
smaller field . Suppose that  is irreducible over . Then for every



300 Field Theory

prime , the polynomial  is irreducible over  and therefore also over
, by Lemma 14.2.2. Now, if  were reducible over , then it would

have a root in  and since  is normal,  would split over .

But since  does not contain any primitive th roots of unity, then if  is a root
of  in a splitting field, the tower

has nontrivial steps and so is nonabelian by Theorem 14.2.3. It follows from
previous remarks that  cannot split over the abelian extension . Hence,

 is irreducible over  for all primes  dividing  and so  is
irreducible over .

If , then  cannot contain any primitive th roots of unity for
any , and so it cannot contain any th roots of unity other than . Thus,
since  is an abelian extension, we may apply Theorem 14.2.4 to get
the following strengthening of Theorem 14.2 ..1, for  odd

Corollary 14.2.5 Referring to Theorem 14.2.1, let  be an odd positive integer
relatively prime to . Then  if and only if expchar

 and  is irreducible over .

Since , we have the following corollary.

Corollary 14.2.6 Referring to Theorem 14.2.1, if  and  is an odd
positive integer then  if and only if  is irreducible over

.

Thus, when  has the largest possible degree  (which includes the
important special case , we see that  if and only if 
is irreducible over  is abelian if and only if . We show next that 
splits over , or equivalently, has a root in .

Note that for any positive integers  and , we have

This follows from the fact that since  is a root of  and since
, all the roots of  lie in .

Theorem 14.2.7 Let  be an odd positive integer relatively prime to
expchar . Let  be the splitting field for  over , where .
Suppose that  where . Then the following are
equivalent.
1   is abelian)
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2   has a root in )
3   has a root in  and therefore splits over )
Proof. Clearly, 2) 3) . We must show that 1) implies 2). Suppose that1)

 is abelian and let  be the largest divisor of  for which , that is,
 for some . The proof will be complete if we show that ,

since  implies that  is a root of  in .

If , let  be a prime dividing onsider the tower and c

Note that  is irreducible over , for if not, then  for some
, whence , in contradiction to the definition of .

Hence  and since , we deduce that neither
of the first steps is trivial. Hence, Lemma 14.2.3 implies that the Galois group

 is not abelian. But this is a contradiction to 1).

In the exercises, we ask the reader to provide a simple example to show that
Theorems 14.2.4 and 14.2.7 fail to hold when  is even.

More on When  Is Abelian

We conclude this section by generalizing the previous theorem, in order to
characterize (for  odd), with no restriction on the lower step, precisely when

 is abelian. The proof follows lines similar to that of Theorem 14.2.7, but
is a bit more intricate and since it involves no new insights, the reader may wish
to skip it on first reading. However, the result is of interest since it shows how
the relationship between the th roots of unity and the ground field  play a
role in the commutativity of . We first need a result that is of interest in
its own right. The proof is left as an exercise.

Theorem 14.2.8 Let a and  be irreducible over  and suppose that
 contains a primitive th root of unity. Then  and  have the same

splitting field over  if and only if  for some  and  relatively
prime to . 

Note that if  is a field and  is the group of th roots of unity over , then
 is a (cyclic) subgroup of  and so is , for some .

Theorem 14.2.9 Let  be an odd positive integer relatively prime to
expchar . Let  be the group of th roots of unity over  and let 

. If  is the splitting field for , where , then  is
abelian if and only if .
Proof. Since  is cyclic, it follows that  if and only if .
Suppose first that  for some . Then
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for some integer . (More precisely, given any th root  of  and any th
root  of , there exists a  such that this equation holds.) The field 
is cyclic over , since the latter contains a primitive th root of unity .
Therefore, since the extensions  and  are both
abelian, so is the extension

Finally, since , it follows that  is abelian.

For the converse, assume that  is abelian. Let  be the largest positive
integer such that ,  and , say  for . We need to
show that . Suppose to the contrary that  and let  be a prime
number dividing . Let  be the largest power of  such that . (As an
aside, the hypothesis that  is odd and  in Theorem 14.2.7
implies that , whence .)

The first step is to show that the extension

is abelian. It is clear that the notation is a bit unwieldy, so let us set 
and note that  since  and . To see that this extension is
abelian, we embed it in an abelian extension. Since

we have  for some  and so

Now, since , there is a positive integer  for which , and since
, it follows that

is a positive integer. Hence,

is a root of  that lies in . Hence, all roots of  are
contained in , that is,

Putting the pieces together gives
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Since  and  are abelian (the latter by assumption),
the composite

is abelian and therefore so is

We now propose to arrive at a contradiction by considering the tower

Note that  is irreducible over , since otherwise  for some
, whence , in contradiction to the definition of .

We first take the case , whence . Since  is irreducible over ,
we have

Since , it follows that  and so the lower step  is not
trivial. However, since , the upper step
in the tower is also not trivial. Hence, Lemma 14.2.3 implies that the Galois
group  is not abelian, the desired contradiction.

Now assume that . With regard to the first step in the tower, since  and
 both divide  but  does not, it follows that  and
. Since , the binomial  is either irreducible over  or

splits over . But  is a root of this binomial that is not in  and so  is
irreducible over .

Since the roots of  are

for each , there is a  for which . To show
that  is not abelian, we shall need only  and (the identity)

.

There are two possibilities for the second step in the tower. If  is
irreducible over  then we can extend  and  to elements of

 by defining

, ,,
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and

, ,,

Then

, , ,

and

, , ,

which are distinct since  Hence,  is not abelian, a.
contradiction.

If  is reducible over  then . Thus  for some 
 and so . Since  and  are both irreducible

over , it follows that  and , whence 
. Thus,  and  have the same splitting field over  and

Theorem 14.2.8 implies that

for some . Taking th powers gives, since ,

for , which contradicts the definition of . Thus,  and the theorem is
proved.

*14.3 The Independence of Irrational Numbers

A familiar argument (at least for ) shows that if  is a prime number then
 and so . Our plan in this section is to extend this

result to more than one prime  and to th roots for . Since the case in
which  is even involves some rather intricate details that give no further insight
into the issues involved, we will confine our attention to  odd. (The case 
is straightforward and we invite the reader to supply a proof of Theorem 14.3.2
for this case.) If  is rational, the notations  and  will denote the
real positive th root of . The results of this section were first proved by
Bescovitch 1940  but the method of proof we employ follows more closely that,
of Richards 1974 .

Lemma 14.3.1 Let  be a positive rational number, expressed in lowest
terms, that is, where  and . If  is an integer then
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 if and only if  and  for positive integers  and 

In particular, if  is a prime, then .

Proof. One direction is quite obvious. Suppose that

where  and  are positive integers and . Then  and since
, it follows that , say , and , say . Hence,

, which implies that . It follows that  and ,
whence  and so  and .

Suppose now that  is odd and  is prime. Since  for any prime ,
Theorem 14.1.4 (or Eisenstein's criterion) implies that  is irreducible over

 and so . Let us generalize this to more than one prime.

Theorem 14.3.2 Let  be an integer and let  be distinct primes.
Then

Proof. As mentioned earlier, we confine our proof to the case that  is odd.
Let . Since

it is sufficient to show that

which we shall do by induction on .

Let  be a prime. Since  is irreducible over  and  contains no th
roots of unity other than , Theorem 14.2.4 implies that  is also
irreducible over . Hence,

and the theorem holds for .

Now let us suppose that the theorem is true for the integer  and let  be a
prime distinct from the distinct primes . Let

 and 

If  is not irreducible over  then there exists a prime  such that
. Thus,  is a linear combination, over , of terms of the form
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where  There are two cases to consider..

Case 1: If the linear combination involves only one term, then

where  and not all  are . If , this can be written in the form

This says that the radicand; call it  is a positive rational number and the,
polynomial  has a root in . According to Theorem 14.2.7, 
must also have a root in , which is not possible since  does not have the form

, for relatively prime integers . Hence, this case cannot occur.

Case 2: At least two terms in the linear combination are nonzero. It follows that
one of the primes , which we may assume for convenience is , appears to
different powers in at least two distinct terms. Collecting terms that involve like
powers of  gives

2 (14.3 ).1

where  and where at least two of the  are's
nonzero. Now, since

is a Galois extension (this is why we adjoined  in the first place), the inductive
hypothesis implies that its Galois group  has size . Since any  must
send roots of  to other roots, it must send  to  for some choice
of  Since there are  such choices, all these choices must.
occur.

Thus, there is a  for which  is the identity on  and

Since  for some , applying  to (14.3 ) gives.1

2

We now multiply (14.3 ) by  and subtract the previous equation to get.1
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where at least one of the coefficients  is nonzero. This is a
contradiction to the inductive hypothesis. We have therefore established that

 is irreducible over  and the proof is complete. 

Exercises

1. Let  be relatively prime to . Show that the groupchar

is generated by two elements  and , where ,  and
. What is ?

2. (Van der Waerden) Let  be relatively prime to . Show that thechar
Galois group of  is isomorphic to a subgroup of the group  of
linear substitutions modulo , that is, maps on  of the form 
where , .

3. Let . Show that the following are equivalent:
 a) ,  prime implies 
 b) ,  prime implies  but  where  is the

multiplicative order of  in .
4. Prove the following without using any of the results of Section 14.1. If 

 and  then  is irreducible over  if and only if 
and  are irreducible over .

5. Let  and let  be cyclic of degree , with Galoischar
group . If there exists a  with Tr  show that there
exists an  for which the polynomial  is irreducible
over .

6. Let  and let  where . Show that thechar
Galois groups of

 and

are the same.
7. Let  be a positive integer relatively prime to  and let  be aexpchar

primitive th root of unity over . Let  be the splitting field
for  over , where , . If  and if 2

then  is not abelian.
8. Show that Theorem 14.2.4 and Theorem 14.2.7 fail to hold when  is even.

Hint: , where  is a primitive th root of unity.
9. Prove the following: Let  be a monic irreducible polynomial of degree

 over , with constant term . Let  be an integer for which
,  and , for all primes . Then the polynomial

 is also irreducible over .
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10. Let  be a primitive th root of unity over ,  odd, and let  be a root of
 over . Then  is the splitting field for . Assume

that . In this exercise, we determine the largest abelian
subextension  of .

 a) If  is a group, the subgroup  generated by all commutators

, for , , is called the . Showcommutator subgroup

that  is the smallest subgroup of  for which  is abelian.
 b) If the commutator subgroup  of a Galois group  is

closed, that is, if  for some , then  is
the largest abelian extension of  contained in .

 c) The commutator subgroup of  is

and if  is defined as in Theorem 14.2.1, then

where .
 d) Prove that , and so  is the largest abelian

extension of  contained in .
11. Prove that if  are distinct primes then

by induction on .
12. Show that .
13. Let  and  be irreducible over  and suppose that  contains a

primitive th root of unity. Then  and  have the same splitting
field over  if and only if  for some  and  relatively prime
to . : if the splitting fields are the same, consider how the commonHint
Galois group acts on a root of each binomial.

14. Let  be a finite Galois extension and let  have degrees 
and  over , respectively. Suppose that .

 a) Show that if  is a conjugate of  and  is a conjugate of , then
there is a  such that  and . Hence, the
conjugates of  are .

 b) Show that if the difference of two conjugates of  is never equal to the
difference of two conjugates of  then .

 c) Let  be a prime different from . Let  andchar
 be irreducible over , with roots  and , respectively.

Show that if  then .



Chapter 15

Families of Binomials

In this chapter, we look briefly at families of binomials and their splitting fields
and Galois groups. We have seen that when the base field  contains a
primitive th root of unity, cyclic extensions of degree  correspond to
splitting fields of a single binomial . More generally, we will see that
abelian extensions correspond to splitting fields of families of binomials. We
will also address the issue of when two families of binomials have the same
splitting field.

15.1 The Splitting Field

Let  be a field containing a primitive th root of unity and consider a family 
of binomials given by

where  is the set of constant terms. We will refer to  as the  ofexponent

the family .

If  is the splitting field for , then  is the splitting
field for the family . Since each extension  is Galois, so is  and
Theorem 6.5.4 implies that  is isomorphic to a subgroup of the product

Since each  is cyclic of degree dividing , the group  is the direct
product of cyclic groups of order dividing  and so  is abelian with
exponent . An abelian extension  whose Galois group  has
exponent  will be referred to as an abelian extension with .exponent

Thus, if  contains a primitive th root of unity, the splitting field of any family
of binomials over  of exponent  is an abelian extension of  with exponent

. Happily, the converse is also true.
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Suppose that  is an abelian extension with exponent . Let  be any
field for which  where  is finite. Since  is abelian, so
is . In addition,  is finite and has exponent . Since a finite
abelian group is a direct product of cyclic subgroups, we have

where each  is cyclic with exponent  and hence order . Corollary 6.5.5
implies that  is a composite  where  is cyclic of
order . Since  contains the th roots of unity and  is cyclic,
Theorem 12.  implies that  is the splitting field for1.1

min

where . Hence  is the splitting field over  for the
family

It follows that  is the splitting field for the union , taken over all finite
intermediate fields .

Theorem 15.1.1 Let  be a field containing a primitive th root of unity. An
extension  is abelian with exponent  if and only if  is the splitting field
for a family of binomials over  of exponent . 

Definition Let  be a field containing a primitive th root of unity. An
extension  is a  of exponent  if  is abelianKummer extension

and has exponent . 

Thus, according to Theorem 15. , the Kummer extensions of  of exponent 1.1
are precisely the splitting fields over  of families of binomials of exponent .

15.2 Dual Groups and Pairings

Before proceeding, we need a few concepts from group theory. If  and  are
groups, we denote by  the set of all group homomorphisms from hom
to . Note that  is a group under the producthom

with identity being the constant map  for all .

Lemma 15.2.1 

1  If  and  are abelian groups, then)

hom hom hom
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2  Let  be the group of all th roots of unity over a field . If  is a finite)
abelian group of exponent , then

hom

Proof. We leave it as an exercise to show that the map

hom hom hom

defined by

is an isomorphism, proving part 1 . For part 2), since  can be written as the
product of finite cyclic groups, part  implies that we need only show that1)
hom  when  is cyclic. Suppose that  has order If .
has order , then  maps  into , since for any hom ,
we have

Hence, . Suppose that  and define hom hom
hom  by setting , which is easily seen to define a group
homomorphism. Then

is a cyclic subgroup of  of order . But  hashom hom
size at most  and so  is cyclic of order , whencehom
hom .

Definition If ,  and  are abelian groups, a  of  into  is apairing

map  that is a , that is,bihomomorphism

1  For each , the map  defined by  is a group)
homomorphism.

2  For each , the map  defined by  is a group)
homomorphism.

A pairing is the analogue of a bilinear map between vector spaces (and is
sometimes referred to as a bilinear map). Note that  for all

 and  and . If  and ,
we set

,

(We will write  as  and  as .) The  of aleft kernel

pairing is the set

and the  is defined similarly:right kernel
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It is easy to see that these kernels are normal subgroups of their respective
parent groups.

Note that  for all  if and only if , that
is, if and only if , or equivalently, . Similar
statements hold for the right kernel. Thus, we may define a pairing from

 to  by

and this pairing is , that is, both the left and right kernels are trivial.nonsingular

Theorem 15.2.2 Let  be a nonsingular pairing from abelian
groups  and  into , the group of th roots of unity over a field . Then 
and  both have exponent  and
1   is isomorphic to a subgroup of ) hom
2   is isomorphic to a subgroup of ) hom
Moreover,  is finite if and only if  is finite, in which case
3   and ) hom hom
4  , in particular, .)
Proof. First observe that if  then  for all ,,
and so , whence  and  has exponent . A similar statement
holds for . Now consider the map  defined by ,hom
where . Since

the map  is a group homomorphism from  to . If  ishom
the constant homomorphism then  for all , that is, ,
whence . Hence, the map  is injective and 1) holds. Similarly, 2)
holds.

It follows from Lemma 15.2  that if  is finite, then.1

hom

The dual argument shows that  and so . This also implies
that the monomorphism  is an isomorphism. 

We can now return to binomials.

15.3 Kummer Theory

While each family of binomials gives rise to a unique Kummer extension,
different families may produce the same extension, that is, different families
may have the same splitting field. We seek a collection of families of binomials



Families of Binomials 313

such that there is a one-to-one correspondence between families in the collection
and Kummer extensions.

Let us phrase the problem a little differently, for which we require some
notation. Recall that if , then by  we mean a particular (fixed) root of

. If , we let  denote the set of  th roots of all elements ofall
. Also, if  and  is a nonnegative integer then .

Let  be a field containing a primitive th root of unity. Of course, we may
identify a family  of binomials of a fixed exponent  with
the set  of constant terms. (Since binomials with zero constant term are
not very interesting, we exclude such binomials.) Moreover, the splitting field
for  is .

In seeking a bijective correspondence between sets  of constant terms
(that is, families of binomials) and splitting fields , it is natural to
restrict attention to maximal sets  that generate the given splitting field.
As we now show, if  for some , then

where  is the multiplicative subgroup of  generated by *

and the th powers  of elements of . To see this, note that any element*

of  has the form  for  and * .
The th roots of  have the form

and since each of the factors in this product is in , so is the product.
Hence, nothing new is added to the splitting field by increasing the set of
constants to , that is,*

Thus, for sets of constant terms, we may restrict attention to the lattice  of all
intermediate subgroups  satisfying

Indeed, we will show that the association  is a bijection from 
onto the class  of all Kummer extensions  of  with exponent . We will
also obtain a description of the Galois group  of  in terms of .

For , let  be a Kummer extension with Galois group
, and let  and . If  is a root of  then  is also a

root of  and so

,
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for some th root of unity . We claim that  does not depend on , that
is,  is simply multiplication by an th root of unity. To see this, if  is another
root of , then  where  and so

and so ; that is,  depends only on .

It follows that the map  defined by

, for any  with 

is well-defined (does not depend on  and we may write

(15.2 ).1

without ambiguity. Moreover, the map  is a pairing of  into , that is,
a group bihomomorphism. Specifically, we have  and .
Also,

and

The left kernel of this pairing is

 for all 

Also, since we are assuming that ,

 for all 

fix
fix

It follows that the pairing  given by*

*

is nonsingular. We may thus apply Theorem 15.2.2.

Theorem 15.3.1 Let  be a field containing a primitive th root of unity and let
 be a subset of an extension  of . If , where then* ,
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the pairing
*

given by

*

is nonsingular. Also,
1   and  have exponent ) *

2   is finite if and only if  is finite, in which) *

case
*

and

hom *

The previous theorem not only describes the Galois group of a Kummer
extension, but allows us to show that the map , from  to , is
a bijection.

Theorem 15.3.2 Let  be a field containing a primitive th root of unity. Let
 be the class of all Kummer extensions  with exponent  and let  be

the class of all subgroups of  containing . Then the map *

is a bijection from  onto , with inverse given by .*

Proof. To show that the map in question is injective, suppose that 
, with , . If , then  and so there exists a

finite subset  of  for which . Let  be the*

subgroup generated by  and . Then*

and

Note that  is finitely generated by  over  and hence * *

is finite. Theorem 15.3.1 implies that

*

Let us now adjoin . Let  be the subgroup generated by  and .
Then  and
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Another application of Theorem 15.3.1 gives

* *

and since  we get . It follows that  and since  was
arbitrary, . A symmetric argument gives , whence . This
proves that the map  is injective. We have seen that any Kummer
extension  in  is a splitting field extension for a family  of binomials
with exponent . If  is the set of constant terms and if  is the subgroup of 
generated by  and  then  and so the map is surjective.*

Let  be a Kummer extension with exponent  and let .*

Then  is a subgroup of  containing , that is, . It is clear that*

. For the reverse inclusion, let . Then  for some
, which implies that  is a root of  and so 

. This shows that  and so . Hence, 
*  is the inverse map. 

Exercises

1. Referring to Lemma 15.2.1, show that the map

hom hom hom

defined by

is an isomorphism.
2. Let  be a finite group and let . Show that hom

 if  for all  and  otherwise.
3. Let  be a finite abelian group with exponent . If  satisfies 

 for all  then .hom
4. Let  be a proper subgroup of a finite abelian group  of exponent  and

let . Then there exists  such that  buthom
.

5. Let  be a subgroup of a finite abelian group  of exponent . Let

hom

Show that

hom hom

6. Let  be a subgroup of a finite abelian group  of exponent . Let

hom

Show that .hom
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7. Let  be a family of binomials over  of varying
degrees. Suppose that  for all  and that  contains a primitive

th root of unity. Show that there is a family  of binomials over , each
of which has degree , with the same splitting field as .

8. In this exercise, we develop the analogous theory for families of
polynomials of the form  where .char

 a) Prove that  is abelian with exponent  if and only if  is the
splitting field of a family of the form .

 b) Let  be the map . Let  such
that . Let  be the class of all additive subgroups of  with

. Let  be the class of all abelian extensions  of 
with exponent . Prove the following theorem: The map

 is a bijection between  and . If 
 is in  and has Galois group  then there is a well-defined

pairing  given by  for any 
. The left kernel is  and the right kernel is . The extension

 is finite if and only if  is finite, in which case
 and .



Appendix

Mobius Inversion¨

Möbius inversion is a method for inverting certain types of sums. The classical
form of Möbius inversion was originally developed independently by P. Hall
and L. Weisner, in 1935. However, in 1964, Gian-Carlo Rota generalized the
classical form to apply to a much wider range of situations. To describe the
concept in its fullest generality, we require some facts about partially ordered
sets.

Partially Ordered Sets

Definition A partial order on a nonempty set  is a binary relation, denoted by
 and read “less than or equal to,” with the following properties:

1   For all ,) ( )reflexivity

2   For all ,) ( )antisymmetry

 and  implies 

3   For all ,) ( )transitivity

 and  implies 

Definition A  is a nonempty set , together with a partialpartially ordered set

order  defined on . The expression  is read “  is less than or equal to
.” If , we denote the fact that a is  less than or equal to  by .not

Also, we denote the fact that , but , by .

If there exists an element  for which  for all , we call  a zero

element and denote it by . Similarly, if there exists an element  for which
 for all , then we call  a  and denote it by .one

As is customary, when the partial order  is understood, we will use the
phrase “let  be a partially ordered set.”
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Note that in a partially ordered set, it is possible that not all elements are
comparable. In other words, it is possible to have  with the property
that  and . Thus, in general,  is  equivalent to . Anot
partially ordered set in which every pair of elements is comparable is called a
totally ordered set linearly ordered set or a .

Example A.2.1

1) The set  of real numbers, with the usual binary relation , is a partially
ordered set. It is also a totally ordered set.

2) The set  of natural numbers, together with the binary relation of divides, is
a partially ordered set. It is customary to write  (rather than ) to
indicate that  divides .

3) Let  be any set, and let  be the power set of , that is, the set of all
subsets of . Then , together with the subset relation , is a partially
ordered set. z

Definition Let  be a partially ordered set. For , the closed  interval( )
 is the set

We say that the partially ordered set  is  if every closed intervallocally finite

is a finite set.

Notice that if  is locally finite and contains a zero element , then the set
 is finite for all , for it is the same as the interval .

The Incidence Algebra of a Partially Ordered Set

Now let  be a locally finite partially ordered set, and let  be a field. We set

: 0 if 

Addition and scalar multiplication are defined on  by

and

We also define multiplication by

the sum being finite, since  is assumed to be locally finite. Using these
definitions, it is not hard to show that  is a noncommutative algebra, called
the  of . The identity in this algebra isincidence algebra
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if
if

The next theorem characterizes those elements of  that have multiplicative
inverses.

Theorem A.2.1 An element  is invertible if and only if 
for all .
Proof. A right inverse  of  must satisfy

 (A.2.1)

In particular, for , we get

1

This shows the necessity and also that  must satisfy

1
(A.2.2)

Equation (A.2.2) defines  when the interval  has cardinality , that
is, when . We can use (A.2.1) to define  for intervals  of all
cardinalities.

Suppose that  has been defined for all intervals with cardinality at most
, and let  have cardinality . Then, by (A.2.1), since , we get

But  is defined for  since  has cardinality at most , and so
we can use this to define .

Similarly, we can define a left inverse  using the analogous process. But

and so  is an inverse for .

Definition The function , defined by

if
if

is called the . Its inverse  is called the .zeta function Mobius function¨

The next result follows from the appropriate definitions.
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Theorem A.2.2 The Mobius function is uniquely determined by either of the¨
following conditions:
1   and for ,)

2   and for ,)

Now we come to the main result.

Theorem A.2.3  Let  be a locally finite partially ordered( )Mobius Inversion¨

set with zero element . If  and  are functions from  to the field , then

(A.2.4)

If  is a locally finite partially ordered set with , then

(A.2.5)

Proof. Since all sums are finite, we have, for any ,

    

      

      

The rest of the theorem is proved similarly.

The formulas (A.2.4) and (A.2.5) are called .Mobius inversion formulas¨

Example A.2.2 (Subsets) Let  be the set of all subsets of a finite set
, partially ordered by set inclusion. We will use the notation  for subset and

 for  subset. The zeta function isproper
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if
otherwise

The Möbius function  is computed as follows. From Theorem A.2.2, we have

and

So, for , we have

It begins to appear that the values of  alternate between +  and  and that

Asume this is true for  and let . Then

Now let  be “properties” that the elements of a set  may or may not
possess, that is, . For , let  be the number of
elements of  that have properties  for , . Let  be theand no others
number of elements of  that have  properties , for . Thus, forat least

,

where an empty intersection is defined to be , and

Then
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Hence, by Möbius inversion,

that is,

In particular, if  is the empty set, then

where  is the number of elements of  that have  of the properties.none
Since

and since the first term in the previous expression for  is , we get

For example, if , then

This formula is the well-known , which wePrinciple of Inclusion–Exclusion
now see is just a special case of Möbius inversion.

Classical Mobius Inversion¨

Consider the partially ordered set of positive natural numbers, ordered by
division. That is,  is less than or equal to  if and only if  divides , which we
will denote by . The zero element is .

In this case, the Möbius function  depends only on the ratio / , and is
given by
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if

if  for  primes 
otherwise

distinct

Notice that the “otherwise” case can occur if either  (  does not divide ) or
if   for some prime .2

To verify that this is indeed the Möbius function, we first observe that
. Now let   and

where the  are  primes. Thendistinct

Now, in the present context, the Möbius inversion formula becomes

This is the important classical formula, which often goes by the name Möbius
inversion formula.

Multiplicative Version of Mobius Inversion¨

We now present a multiplicative version of the Möbius inversion formula.

Theorem A.2.4 Let  be a locally finite partially ordered set with zero element
. If  and  are functions from  to , then
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Proof. Since all products are finite, we have, for any ,

      

Example A.2.3 Let , and let  be the field of rational functions in .
Consider the formula

Then, if we let  and , Theorem .2.4 givesA
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