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of lecture notes rather than as a detailed and scholarly monograph.
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numerous corrections, which substantially improved the presentation.
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Introduction

Descriptive set theory is the study of “definable sets” in Polish (i.e., sep-
arable completely metrizable) spaces. In this theory, sets are classified in
hierarchies, according to the complexity of their definitions, and the struc-
ture of the sets in each level of these hierarchies is systematically analyzed.

In the beginning we have the Borel sets, which are those obtained from
the open sets, of a given Polish space, by the operations of complementation
and countable union. Their class is denoted by B. This class can be further
analyzed in a transfinite hierarchy of length w; (= the first uncountable
ordinal), the Borel hierarchy, consisting of the open, closed, F, (count-
able unions of closed), G (countable intersections of open), F,s (countable
intersections of Fy), Gs, (countable unions of Gjs), etc., sets. In modern
logical notation, these classes are denoted by =2, ITY, for 1 < £ < wy,

where 0 o
3} = open, IT; = closed;

2= {|J Au: Anisin g, for &, < £};
neN '
I = the complements of X sets.
(Therefore, 3 = F,, II$ = G5, £} = Gss, 113 = F,5, etc.) Thus B
ramifies in the following hierarchy:
20 59 =y =0
nmy g g )

where £ < 0 < wy, every class is contained in any class to the right of it,
and



xvi Introduction

B=J == g
§<w §<w

Beyond the Borel sets one has next the projective sets, which are those
obtained from the Borel sets by the operations of projection (or continuous
image) and complementation. The class of projective sets, denoted by P,
ramifies in an infinite hierarchy of length w (= the first infinite ordinal),
the projective hierarchy, consisting of the analytic (A) (continuous images
of Borel), co-analytic (CA) (complements of analytic), PCA (continuous
images of CA), CPCA (complements of PCA), etc., sets. Again, in logical
notation, we let

%! = ‘analytic, IT] = co-analytic;
i
o,

all continuous images of II} sets;

the complements of X, ,, sets;

so that in the following diagram every class is contained in any class to the
right of it:
3} . T
B .
o m m, o,

p=J= = Jm.

One can of course go beyond the projective hierarchy to study trans-
finite extensions of it, and even more complex “definable sets” in Polish
spaces, but we will restrict ourselves here to the structure theory of Borel
and projective sets, which is the subject matter of classical descriptive set
theory.

Descriptive set theory has been one of the main areas of research in
set theory for almost a century now. Moreover, its concepts and results are
being used in diverse fields of mathematics, such as mathematical logic,
combinatorics, topology, real and harmonic analysis, functional analysis,
measure and probability theory, potential theory, ergodic theory, operator
algebras, and topological groups and their representations. The main aim
of these lectures is to provide a basic introduction to classical descriptive
set theory and give some idea of its connections or applications to other
areas.

and



About This Book

These lectures are divided into five chapters. The first chapter sets up the
context by providing an overview of the basic theory of Polish spaces. Many
standard tools, such as the Baire category theory, are also introduced here.
The second chapter deals with the theory of Borel sets. Among other things,
methods of infinite games figure prominently here, a feature that continues
in the later chapters. In the third chapter, the theory of analytic sets, which
is briefly introduced in the second chapter, is developed in more detail. The
fourth chapter is devoted to the theory of co-analytic sets and, in particular,
develops the machinery associated with ranks and scales. Finally, in the
fifth chapter, we provide an introduction to the theory of projective sets,
including the periodicity theorems.

We view this book as providing a first basic course in classical descrip-
tive set theory, and we have therefore confined it largely to “core material”
with which mathematicians interested in the subject for its own sake or
those that wish to use it in their own field should be familiar. Throughout
the book, however, are pointers to the literature for topics not treated here.
In addition, a brief summary at the book’s end (Section 40) describes the
main further directions of current research in descriptive set theory.

Descriptive set theory can be approached from many different view-
points. Over the years, researchers in diverse areas of mathematics—logic
and set theory, analysis, topology, probability theory, and others—have
brought their own intuitions, concepts, terminology, and notation to the
subject. We have attempted in these lectures to present a largely balanced
approach, which combines many elements of each tradition.

We have also made an effort to present a wide variety of examples
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and applications in order to illustrate the general concepts and results of
the theory. Moreover, over 400 exercises are included, of varying degrees of
difficulty. Among them are important results as well as propositions and
lemimas, whose proofs seem best to be left to the reader. A section at the
end of these lectures contains hints to selected exercises.

This book is essentially self-contained. The only thing it requires is fa-
miliarity, at the beginning graduate or even advanced undergraduate level,
with the basics of general topology, measure theory, and functional analy-
sis, as well as the elements-of set theory, including transfinite induction and
ordinals. (See, for example, H. B. Enderton [1977], P. R. Halmos [1960a]
or Y. N. Moschovakis [1994].) A short review of some standard set theo-
retic concepts and notation that we use is given in Appendices A and B.
Appendix C explains some of the basic logical notation employed through-
out the text. It is recommended that the reader become familiar with the
contents of these appendices before reading the book and return to them
as needed later on. On occasion, especially in some examples, applications,
or exercises, we discuss material, drawn from various areas of mathematics,
which does not fall under the preceding basic prerequisites. In such cases,
it is hoped that a reader who has not studied these concepts before will at
least attempt to get some idea of what is going on and perhaps look over a
standard textbook in one of these areas to learn more about them. (If this
becomes impossible, this material can be safely omitted.)

Finally, given the rather informal nature of these lectures, we have
not attempted to provide detailed historical or bibliographical notes and
references. The reader can consult the monographs by N. N. Lusin [1972],
K. Kuratowski [1966], Y. N. Moschovakis [1980], as well as the collection
by C. A. Rogers et al. [1980] in that respect. The Q-Bibliography of Mathe-
matical Logic (G. H. Miiller, ed., Vol. 5, Springer-Verlag, Berlin, 1987) also
contains an extensive bibliography.



CHAPTER I

Polish Spaces

1. Topological and Metric Spaces

1.A Topological Spaces

A topological space is a pair (X,7), where X is a set and T a collection
of subsets of X such that §, X € T and 7T is closed under arbitrary unions
and finite intersections. Such a collection is called a topology on X and its
members open sets. The complements of open sets are called closed. Both
0, X are closed and arbitrary intersections and finite unions of closed sets
are closed.

A set of the form (), .y Un, where Uy, are open sets, is called a G5 set,
and a set of the form |J,cy Fn, where F,, are closed sets, is called an F,
set.

A subspace of (X,T) consists of a subset Y C X with the relative
topology T|Y = {UNY : U € T}. (In general, for a set X, a subset
Y C X, and a collection A of subsets of X, its restriction to Y is defined
by AIY = {ANY : A€ A})

A basis B for a topology 7T is a collection B C T with the property that
every open set is the union of elements of B. (By convention the empty union
gives 0.) For a collection B of subsets of a set X to be a basis for a topology,
it is necessary and sufficient that the intersection of any two members of
B can be written as a union of members of Band |J{B: Be B} =X. A
subbasis for a topology 7T is a collection S C 7 such that the set of finite
intersections of sets in S is a basis for 7. For any family S of subsets of
a set X, there is a smallest topology 7 containing S, called the topology
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generated by S. It consists of all unions of finite intersections of members of
S. (By convention the empty intersection gives X.) Clearly, S is a subbasis
for 7. A topological space is second countable if it has a countable basis.

If X is a topological space and z € X, an open nbhd (neighborhood)
of z is an open set containing x. A nbhd basis for = is a collection U/ of
open nbhds of x such that for every open nbhd V of o there is U € U with
vcv.

Given topological spaces X,Y, a map f: X — Y is continuous if the
inverse image of each open set is open. It is open (resp. closed) if the image
of each open (resp. closed) set is open (resp. closed). It is a homeomorphism
if it is a bijection and is both continuous and open. Finally, it is called an
embedding if it is a homeomorphism of X with f(X) (given its relative
topology). A function f : X — Y is continuous at z € X (or z is a point of
continuity of f) if the inverse image of an open nbhd of f(x) contains an
open nbhd of x. So f is continuous iff it is continuous at every point.

If (Y:).er is a family of topological spaces and f; : X — Y;, a family of
functions, there is a smallest topology 7 on X for which all f; are contin-
uous. It is called the topology generated by (f;):;c; and has as a subbasis
the family S = {f7(U) : U C Y;, U open, i € I}. If S; is a subbasis for
the topology of Y;, we can restrict U/ to S; here.

The product [];.; X; of a family of topological spaces (X;):c; is the
topological space consisting of the cartesian product of the sets X; with the
topology generated by the projection functions (z;).cs + x, (j € I). It has
as basis the sets [], U;, where U; is open in X; for all i € I, and U; = X;
for all but finitely many ¢ € I. If B; is a basis for the topology of X;, the
sets of the form [], U;, where U; = X; except for finitely many i for which
U, € B;, form a basis for the product space. Note also that the projection
functions are open. If X; = X for all i € I, we let X' =[], X:.

The sum @, X; of a family of topological spaces (X;);¢; is defined (up
to homeomorphism) as follows: If we replace X; by a homeomorphic copy,
we can assume that the sets X; are pairwise disjoint. Let X = |J,¢; Xi. A
set U C X is open iff U N X; is open in X; for each i € I.

1.B Metric Spaces
A metric space is a pair (X, d), with X aset and d : X2 — [0, 00) a function
satisfying:

i) d(z,y) =0z =y
ii) d(z, y) = d(y, z);
iii) d(z, y) £ d(z, 2) + d(2,y).

Such a function is called a metric on X.
The open ball with center x and radius r is defined by

B(z,r)={ye€ X :d(z,y) <r}.
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(The corresponding closed ball is denoted by
Ba(z,r)={ye X :d(z,y) <r}.)

These open balls form a basis for a topology, called the topology of the
metric space.

A topological space (X, T) is metrizable if there is a metric d on X so
that 7 is the topology of (X,d). In this case we say that the metric d is
compatible with 7. If 7 is metrizable with compatible metric d, then the
metric

is also compatible and d’ < 1.

A subset D C X of a topological space X is dense if it meets every
nonempty open set. A space X admitting a countable dense set is called
separable. Every second countable space is separable (but the converse does
not hold). If X is metrizable, then X is separable iff X is second countable,
so we use these terms interchangeably in this case.

A subspace of a metric space (X,d) is a subset Y € X with the in-
duced metric d|Y (i.e., d|Y(z,y) = d(z,y) for any z,y € Y). The topology
of (Y,d|Y) is then the relative topology of Y. Thus a subspace of a metriz-
able topological space is metrizable. Moreover, a subspace of a separable
metrizable space is separable.

A function f : X — Y between metric spaces (X,dx), (Y,dy) is
an isometry if it is a bijection and dx(z,,z2) = dy(f(z1), f(z2)). Every
isometry is clearly a homeomorphism. We call f an isometric embedding if
f is an isometry of X with f(X).

The product of a sequence of metric spaces (X, dr)), en I8 the metric
space (I],, Xn,d), where

o0

a1 Gn(Tn,Yn)
_ n=1_%n\*n,Jn;
d(x7y) - ZQ 1 +dn(a:n7 yn)'

n=0
with £ = (2,,), ¥ = (y»)- The topology of this metric space is the product of
the topologies of ((X., dn)). Thus the product of a sequence of metrizable
topological spaces is metrizable. Moreover, the product of a sequence of sep-
arable metrizable spaces is also separable. The sum of a family ((X;, d"))ie !
of metric spaces is defined (up to isometry) as follows: By copying the met-
ric of each X; on a set of the same cardinality, we can assume that the sets
X; are pairwise disjoint. Let X = |J,c; Xi. We define a metric d on X by
letting d(x,y) = di(z,y),ifz,y € X;,and d(z,y) =1,ifz € X; and y € X
with ¢ # j. The topology of this metric space is the sum of the topolocrles
of ((Xi,d;)). Thus the sum of metrizable topological spaces is metrizable,
and the sum of a sequence of separable metrizable spaces is separable.
We recall here the following important metrization theorem. A topo-
logical space X is called T if every singleton is closed and is called regular
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if for every point z € X and open nbhd U of z, there is an open nbhd V
of z with V. C U (where, as usual, A denotes the closure of A, i.e., the
smallest closed set containing A).

(1.1) Theorem. (Urysohn Metrization Theorem) Let X be a second count-
able topological space. Then X is metrizable iff X is Ty and regular.

We conclude with two basic results (the first of which is a special
case of the second) concerning the existence of continuous real functions on
metrizable spaces.

(1.2) Theorem. (Urysohn’s Lemma) Let X be a metrizable space. If A,B are
two disjoint closed subsets of X, there is a continuous function f:X — [0,1]
such that f(z) =0 forx € A and f(z) =1 for z € B.

(1.3) Theorem. (Tietze Extension Theorem) Let X be a metrizable space.
If AC X is closed and f:A — R is continuous, there 1s f:X — R which is
continuous and extends f. Moreover, if f is bounded by M, i.e., |f(z)| < M
for all x € A, so is f
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2. Trees

2.A Basic Concepts

The concept of a tree is a basic combinatorial tool in descriptive set theory.
What is referred to as a tree in this subject is not, however, the same
notion as the one used either in graph theory or combinatorial set theory,
although it is closely related. On the rare occasion that we will use the
graph theoretic notion, we will refer to it as a “graph theoretic tree”.

Let A be a nonempty set and n € N. We denote by A™ the set of finite
sequences s = (s(0),...,8(n — 1)) = (sg,..., sn—1) of length n from A. We
allow the case n = 0, in which case A° = {0}, where @ denotes here the
empty sequence. The length of a finite sequence s is denoted by length(s).
Thus length(@) = 0. If s € A™ and m < n, we let s|m = (so,...,5m-1).
(So 5|0 = 0.) If s,t are finite sequences from A, we say that s is an initial
segment of ¢ and ¢ is an extension of s (in symbols, s C ¢) if s = ¢|m,
for some m < length(¢). Thus @ C s, for any s. Two such finite sequences
are compatible if one is an initial segment of the other and incompatible
otherwise. We use s L ¢ to indicate that s, are incompatible. Finally, let

A<N — A"

be the set of all finite sequences from A. The comcatenation of s =
(8i)i<cn: t = (£;);<m is the sequence st = (sp....,50-1,20,--.1tm-1). We
write s”a for s”(a), if a € A.

Let AN be the set of all infinite sequences * = (z(n)) = () from
A Ifz € AN and n € N, let z|n = (xq,...,2n_1) € A" We say that
s € A" is an initial segment of x € AN if s = z|n. We write s C z if
s is an initial segment of z. Also, for s € A<N and z € AN, we let the
concatenation of s,z be the infinite sequence s"z = y, where y(i) = s(i)
if ¢ < length(s) and y(length(s) + i) = z(i). The (infinite) concatenation
507517 82" ... of s; € AN is the unique z € ANUA<N such that z(i) = s0(3),
if 7 < length(sp); z(length(so) + i) = (%), if ¢ < length(s,); and so on.

(2.1) Definition. A tree on a set A is a subset T C A<N closed under initial
segments; ie., ift €T and s Ct, then s € T. (In particular, D e T if T is
nonempty.) We call the elements of T the nodes of T. An infinite branch
of T is a sequence x € AN such that z|n € T, for all n. The body of T,
written as [T}, is the set of all infinite branches of T, i.e.,

[T] = {= € AN : Vn(z|n € T)}.

Finally, we call a tree T pruned if every s € T has a proper extension
t2s,teT.

We visualize trees as follows (Figure 2.1):
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(a/a) (6.¢) T
® (b.ef" 2"
bef ) (7]

FIGURE 2.1.

The bold line represents an infinite branch (b,¢’, f”,...) € [T]. The tree in
Figure 2.1 is not pruned. The full binary tree {0, 1} <N pictured in Figure 2.2
is, of course, pruned.

0,1 (1,0 (1,1)

FIGURE 2.2.
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2.B Trees and Closed Sets

We can view a set A as a topological space with the discrete topology, i.e.,
the topology in which every subset of A is open. This is metrizable with
compatible metric §(a,b) = 1, if a # b. Therefore AV, viewed as the product
space of infinitely many copies of A, is metrizable with compatible metric:
d(x,y) =271 if z # y and n is the least number with z, # yn.

(2.2) Exercise. A metric d is an ultrametric if
d(z,y) < max{d(z,z), d(y,2)}.

Show that the above metric is an ultrametric.

The standard basis for the topology of AN consists of the sets
Ny={zeAV:sCz},

where s € A<N. Note that s Ct & N, 2 N,and s L t & N,n N, = 0.

(2.3) Exercise. i) Show that if U C AN is open, then there is a set S C A<N
such that: 5,6 € S, s #t = s L ¢, and U = J,c g Ns.

ii) Let U = U, p Ns, with D € A<M closed under extensions. Show
that U is dense in AN iff D is dense in A<V, i.e., Vs € A<N3It € D(s C ¢).

iii) Let ",z € AN, Show that " — z iff Vi(z™(i) = z(i), for all large
enough n).

iv) Show that (AN)* (n > 1), (AN)N are homeomorphic to AN.

(2.4) Proposition. The map T — [T is a bijection between pruned trees on
A and closed subsets of AN, Its inverse is given by

F—Tpr={z|n:z €F, neN}.
We call Tr the tree of F.
The proof is evident.

For later reference we introduce the following notation. If T is a tree
on A, then for any s € A<N,

T,={te AN:steT}

and
Tiq = {t € T : t is compatible with s} .

Thus [Tj5] = [T] N N, forms a basis for the topology of [T]. Note that Tjy
is a subtree of T, but T; in general is not.

(2.5) Definition. Let S,T be trees (on sets A,B, resp.). A map p:S — T is
called monotone if s C ¢ implies (s) C ¢(t). For such ¢ let
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D(p)={z € [9]: lim length(p(z|n)) = oo} .

For x € D(yp), let
¢"(z) = Jo(zln) € (T].

We call ¢ proper if D(p) = [S].

(2.6) Proposition. The set D(yp) is Gs in [S] and ¢*:D(p) - [T] is contin-
uous. Conversely, if f:G — [T is continuous, with G C [S] a Gs set, then
there is monotone ¢:S — T with f = ¢*.

Proof. We have © € D(y) < VnIm(length(p(z|m)) > n), so D(p) =
N, Un, with U, = {z : 3m (length(p(x|m)) > n)} open. To see that ¢* is
continuous, note that the sets [T] N N, = V; form a basis for the topology
of [T] and (¢*)~Y(V}) = U{Ns N D, : s € S, ¢(s) 2 ¢t} is open in D,,.

Now, given G, a Gs set in [S] which we can assume is nonempty (oth-
erwise take ¢(s) = 0), and f : G — [T] continuous, define ¢ : $ — T as
follows: Let (U,) be a decreasing sequence of open'sets in [S], with Uy = [S5],
such that G = [, Uy,. For any s € S, let k(s) € N be defined as follows:
k(s) = the largest k < length(s) such that N, N [S] C Uy. Now set o(s) =
the longest u € T of length < k(s) such that f(N;NG) C N, if N,NG # 0,
otherwise ¢(s) = (s|m), where rn < length(s) is largest with N,,,NG # 0.
(Note that if NN G # 0, and f(Ns; N G) C Ny, N N, then u and v are
compatible:) Clearly, s C s’ = k(s) < k(s') and ¢(s) C p(s).

If z € G, then lim, k(z|n) = oo because z € Uy for each N, and
thus there is n > N with N, N [S] € Un, and so k(z|r) > N. Also
lim,, length(p(z|n)) = oc since for each N there is n with k(z|n) > N
such that @ # f(Ngn N G) € Ngyn, so f(z)|N C o(z|n). This also
shows that G C D(p) and f(z) = ¢*(z) for z € G. Finally, if z € D(y),
then lim, k(z|n) = oo, so for each N there is n with k(z|n) > N; thus
z € Nyn N [S] C Un. Therefore, z € G and G = D(p). m]

(2.7) Exercise. Let ¢ : S — T be monotone. We call o Lipschitz if
length(xo(s)) = length(s). Show that in this case d(¢*(z),¢*(¥)) < d(z,¥y)
for any z,y € D(yp), where d is the usual metric on sequences (see remarks
preceding 2.2).

A closed set F in a topological space X is a retract of X if there is a
continuous surjection f : X — F such that f(z) =z for z € F.

(2.8) Proposition. Let FF C H be two closed nonempty subsets of AN. Then
F is a retract of H.

Proof. Let S, T be pruned trees on A such that [§] = F and [T] = H. We
will define a monotone proper ¢ : T — S with ¢(s) = s for s € S (note -
that S C T). Then f = ¢* shows that F is a retract of H. We define ¢(t)
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by induction on length(t). Let ©(@) = 0. Given ¢(t), we define ¢(t"a) for
ac€Aand t"a €T as follows: If t"a € S, let p(t"a) =t a. If t"a & S, let
¢(t"a) be any ¢(t)"b € S, which exists since S is pruned. o

2.C Trees on Products

We will sometimes have to deal with trees T on sets A which are products of
the foorm A = BxC or A = Bx(C x D, etc. When, for example, A = BxC,
a member of T is a sequence s = (s;);<n with s; = (b;,¢;), b; € B, ¢; € C.
It is more convenient in this case to identify s with the pair of sequences
(¢t,u) with t; = b;, u; = ¢; and to view T as being a subset of B<N x o<R
with the property that (¢,u) € T implies that length(t) = length(u), and
(t,u) € (t',u') (ie, t Ct' and u C o), (t',u’) € T imply that (t,u) €
T. With this convention [T] is the set of pairs (z,y) € BN x CN with
(z|n, y|n) € T for all n. The meaning of T} u, Tjs,. for (¢,u) € BN x C<N
with length(t) = length(u) is also self-explanatory.

According to 2.4, applied to (B x C)N, which we identify with BN x CN,
the closed subsets of B¥ x CN are exactly those of the form [T, for T a
pruned tree on B x C.

If T is a tree on B x C and x € BN, consider the section tree T(z) on
C defined by

T(z) = {s € C<N: (z|length(s),s) € T} .
Note that if T is pruned it is not necessarily true that T'(z) is pruned. Also,
(z,y) €[T] &y € [T(2)]-

Similarly, for s € BN, we define T(s) = {t € C<N : length(t) <
length(s) & (s|length(t),t) € T'}.

2.D Leftmost Branches

We will now discuss the concept of the leftmost branch of a tree. Let T be a
tree on a set A and let < be a wellordering of A. If [T] # 0, then we specify
the (<-) leftmost branch of T', denoted by ar, as follows. We define ar(n)
by recursion on n:

ar(n) = the <- least element a of A such that [T(qpjn)-a] # 0.

Ifforz # y € AN, or z # y € A™ (for some m), we define the (<-)
lexicographical ordering <)ey by  <jex ¥ < for the least n such that z(n) #
y(n), we have z(n) < y(n), then it is clear that ar is the lexicographically
least element of [T]. When T is pruned, ar is also characterized by the
property that for each m, ar|m is the lexicographically least element of
TNA™.
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2.E Well-founded Trees and Ranks

If a tree T on A has no infinite branches, i.e., [T] = 0, then we call T
well-founded. This is because it is equivalent to saying that the relation
5 <t & 52t restricted to T is well-founded. (See Appendix B.) On the
other hand, if [T] # 0, we call T ill-founded. If T is a well-founded tree, we
denote the rank function of < restricted to T by pr. Thus

pr(s) = sup{pT(t) +1:teT, tgs},
for s € T. An easy argument shows that we also have
pr(s) = sup{pr(sa) +1:s"a€T}.

Also, pr(s) = 0 if s € T is terminal, i.e., for no a, s"a € T. We also
put pr(s) = 0 if s ¢ T. The rank of a well-founded tree is defined by
o(T) =sup{pr(s) +1:s €T} Thusif T # 0, p(T) = pr(®) + 1.

If S,T are trees (on A, B, resp) amap ¢ : § — T will be called
strictly monotone if s G ¢ = ¢(s) G (1), i.e., if ¢ is order preserving for the
relation 2. Then if T is well-founded and ¢ : S — T is strictly monotone,
we have that S is well-founded and ps(s) < pr(p(s)), for all s € S, so in
particular p(S) < p(T). But we also have the converse here. If S, T are well-
founded and p(S) < p(T'), then there is a strictly monotone ¢ : S — T'. We
define ¢(s) by induction on length(s) for s € S, so that pg(s) < pr(p(s)).
First let ¢(@) = 0. Assuming that «(s) has been defined, consider s"a € S.
Then pg(s”a) < ps(s) < pr(p(s)), so there is some b with ¢(s)"b € T and
ps(s”a) < pr(p(s)°d). Let p(s"a) = ¢(s)"b. We have therefore shown the
following fact.

(2.9) Proposition. Let S, T be trees on A, B, respectively. If T is well-
founded, then S is well-founded with p(S) < p(T) iff there is a strictly
monotone map ¢:S — T.

(2.10) Exercise. Given a relation < on X, we associate with it the following
tree on X:

(.’L‘(),...,.'Bn_l) ET.© Tp) <X Tp_2 <+ <1 <Ip.

(By convention, when n = 1, (x9) € T4 for any 2o € X.) Show that
< is well-founded iff T is well-founded, and in this case for any z € X
and any x,...,Z,—) With £ < ,—) < -+ < &1 < 9, we have p_(z) =
1. ((zo,.. ., Zn-1,z)). (We allow the case where n = 0 here, ie., p<(z) =
pr.((x)).) Conclude that p(<) = pr_(0).
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2.F The Well-founded Part of a Tree

Even if a tree T is ill-founded, we can define a rank function on its well-
founded part WF7, which is defined as follows:

s € WFr & s € T & T, is well-founded.

Note that if s € WFr and s C ¢ € T, then t € WFr. Also, the relation
< = 2 is well-founded on WF 7, and so we can define the rank function pr
on WFr by
pr(s) = sup{pr(t) +1:¢t €T, ¢t 2 s}
= sup{pr(s”e) +1:s5"a € T},
for s € WFr. Note that any terminal s € T belongs to WFz and pr(s) = 0.
For a tree T on A, it is also convenient to define
pr(s) = 0o = the smallest ordinal of cardinality > max{card(A4),No},

for s € T\ WFr, so that pr(t) < pr(s) if t € WFr, s ¢ WFr. (Hence,
if A is countable, py(s) = w).) Finally, we can extend pr to all of A<N by
letting pr(s) = 0 if s ¢ T. Again, we let

p(T) = sup{pr(s) +1:s € WFr},
so that pr|WFr maps WFr onto {o : a < p(T)}.

(2.11) Exercise. For each tree T on A, let T* = {s € T : 3a(s"a € T)} and
by transfinite recursion define:

T® =T,
Tlatl) — (T("))*,

T = (1) T, if Ais limit.
a<

Let ag be the least ordinal a such that T(® = T(2+1) apd let T(>) =
T{@), Show that WF = T\ T(>) and so T is well-founded iff T(>) = 0.
Additionally, show that for s € WFr,

pr(s) = the unique o with s € T(®) \ T(*+1),

2.G The Kleene-Brouwer Ordering

Now let (A, <) be a linearly ordered set. We define the Kleene-Brouwer
ordering <gxp on A<V as follows: If s = (sg,...,5m-1), £ = (f0y ..y n-1),
then
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s <gpt< (s 2t)or (I <min{m,n}(Vj <i(s; = t;) & s; <t;)].

It is easy to check that <k p is a linear ordering (extending the partial
ordering 2).

(2.12) Proposition. Assume that (A, <) is a wellordered set. Then for any
tree T on A, T is well-founded iff the Kleene-Brouwer ordering restricted
to T is a wellordering.

Proof. If T is ill-founded and = € [T, clearly z|(n + 1) <gp zjn for each
n, 80 <gp is not a wellordering on T. Conversely, let (s,) be an infinite
descending chain in <gp restricted to T. Then s4(0) > 5,(0) > 52(0) > ---,
so eventually s,(0) is constant, say s,(0) = s¢ for n > ng. Thus s,(1)
exists for all n > ng and spo41(1) = Spo42(1) = - --. Therefore, for some
ny > No, Sn(1) is constant, say s,(1) = s,, for n > n,, and so on. Then
(s0,51,-..) € [T], i-e., T is ill-founded. |
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3. Polish Spaces

3.A Definitions and Examples

Let (X,d) be a metric space. A Cauchy sequence is a sequence (z,) of
elements of X such that lim,, ,, d(:,,, z,) = 0. We call (X, d) complete if
every Cauchy sequence has a limit in X. Given any metric space (X,d),
there is a complete metric space (X,d) such that (X,d) is a subspace of
(X, d) and X is dense in X. This space is unique up to isometry and is
called the completion of (X, d). Clearly, X is separable iff X is separable.

(3.1) Definition. A topological space X is completely metrizable if it admits
a compatible metric d such that (X ,d) is complete. A separable completely
metrizable space is called Polish.

(3.2) Exercise. Consider the open interval (0,1) with its usual topology.
Show that it is Polish although its usual metric is not complete.

The following facts are easy to verify.

(3.3) Proposition. i) The completion of a separable metric space is Polish.
it) A closed subspace of a Polish space is Polish.

ii) The product of a sequence of completely metrizable (resp. Polish)
spaces is completely metrizable (resp. Polish). The sum of a family of com-
pletely metrizable spaces is completely metrizable. The sum of a sequence
of Polish spaces is Polish.

EXAMPLES
1) R, C,R",C", RN, and CN are Polish; the unit interval
I=10,1],
the unit circle
T={zeC:|z| =1},
the n-dimensional cube I™, the Hilbert cube IN, the n-dimensional torus
T", and the infinite dimensional torus TN are Polish.

2) Any set A with the discrete topology is completely metrizable, and
if it is countable it is Polish.

3) The space AV, viewed as the product of infinitely many copies of A
with the discrete topology, is completely metrizable and if A is countable it
is Polish. Of particular importance are the cases A =2 = {0,1} and A= N.
We call

c=2N

the Cantor space and
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N=nNN
the Baire space.

(3.4) Exercise. i) The Cantor (1/3 -) set is the closed subset Ey/3 of I
consisting of those numbers that have only 0’s and 2’s in their ternary
expansion. Show that C is homeomorphic to Ej/3.

ii) Denote by Irr the space of irrationals (with the relative topology as
a subset of R). Show that the continued fraction expansion gives a homeo-
morphism of Irr N (0, 1) with (N {0})N, and therefore Irr is homeomorphic
to M.

4) The topology of any (real or complex) Banach space is completely
metrizable and for separable Banach spaces it is Polish.

Beyond the finite dimensional spaces R",C", examples of separable
Banach spaces that we will occasionally consider are the ¢7 spaces (1 <
p < o), in particular the Hilbert space £2; ¢o (the space of converging to
0 sequences with the sup norm); the LP(u) spaces (1 < p < c0), where p is
a o-finite measure on a countably generated o-algebra; C(X), the space of
continuous (real or complex) functions on a compact metrizable space X
with the sup norm.

5) Let X,Y be separable Banach spaces. We denote by L(X,Y) the
(generally non-separable) Banach space of bounded linear operators T :
X — Y with norm ||T|| = sup{||Tz|| : z € X, ||z|]| < 1}. If X =Y, we let
L(X) = L(X, X). Denote by L (X,Y) the unit ball

Li(X,Y)={T € L(X,Y) : ||IT|| < 1}

of L(X,Y). The strong topology on L(X,Y) is the topology generated by
the family of functions f;(T) = Tz, f, : L(X,Y) - Y, for z € X. It has
as basis the sets of the form

Vai,ozmeT = {S € L(X,Y) 1 ||Sz) —Tx1|| <¢,...,||Szn — Tz,|| <€},

forz),...,zn€ X, €¢>0, T € L(X,Y).

The unit ball L) (X,Y) with the (relative) strong topology is Polish. To
see this, consider, for notational simplicity, the case of real Banach spaces,
and let D C X be countable dense in X and closed under rational linear
combinations. Consider YP with the product topology, which is Polish,
since D is countable. The map T — T'|D from L,(X,Y) into Y ? is injective
and its range is the following closed subset of Y'2:

F={feYPVz,ye DVp,qeQf(rz +qy) =pf(z)+af ()]
& Yz € D(||f(2)Il < I=I])}-

It is easy to verify that this map is a homeomorphism of L, (X,Y) and F,
thus L) (X,Y’) with the strong topology is Polish.
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(3.5) Exercise. Show that the following is a complete compatible metric for
the strong topology on L,(X,Y) :

o0

d(S,T)=Y_27"||(S - T)(za)ll,

n=0

where (z,) is a dense sequence in the unit ball of X.

3.B Extensions of Continuous Functions
and Homeomorphisms

Let X be a topological space, (Y, d) a metric space, AC X,and f: A— Y.
For any set B C Y, let

diam (B) = sup{d(z,y): =,y € B}

(with diam(@) = 0, by convention), and define the oscillation of f at z € X
by
oscs(z) = inf{diam(f(U)) : U an open nbhd of z}

(where it is understood that f(U) = f(ANU)). Note that if z € A, then z is
a continuity point of f iff oscs(x) = 0. Letting Ac = {z € X : oscy(z) < €},
note that A, is open and {z : oscs(x) = 0} =), A1/(n+1) is a Gs set. Thus
we have shown the following proposition.

(3.6) Proposition. Let X be a topological space, Y a metrizable space, and
f:X — Y. Then the points of continuity of f form a Gs set.

Let us also note the following basic fact about metrizable spaces.

(3.7) Proposition. Let X be a metrizable space. Then every closed subset of
X is a Gg set. '

Proof. Let d be a compatible metric for X. Forz € X, 0 # A C X define
d(z, A) = inf{d(z,y) : y € A}.

Note that
|d(z, A) — d(y, A)| < d(z,y).

Thus the e-ball around A, B(A,¢) = {z : d(z, A) < €} is open. It follows
that if F C X is closed (nonempty without loss of generality), then

F=(\B(F,1/(n+1)),

and so F is a Gg. 0
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We will use the preceding ideas to prove the following basic extension
theorem.

(3.8) Theorem. (Kuratowski) Let X be metrizable, Y be completely metriz-
able, A C X, and f:A — Y be continuous. Then there is a G5 set G with
A C G C A and a continuous extension ¢:G — Y of f.

Proof. In the preceding notation, let G = AN {z : oscy(x) = 0}. This is a
G set and since f is continuous on 4, A C G C A.

Now let = € G. Since x € A, find z, € A, z, — z. Then
lim, (diam(f({Zn+1, Tnt2,...}))) = 0, so (f(zn)) is a Cauchy sequence
and thus converges in Y. Let

9(z) = lim f(z,).

It is easy to check that ¢ is well-defined, i.e., it is independent of the choice
of (z,), and extends f. To see finally that g is continuous on G, we have to
check that oscy(z) =0, for all z € G. If U is open in X, then g(U) € f(U)
so diam(g(U)) < dlam(f(U)), thus osc,(z) < oscp(z) =

The following is an important application.

(3.9) Theorem. (Lavrentiev’s Theorem) Let X,Y be completely metrizable
spaces. Let AC X, B CY, and f:A — B be a homeomorphism. Then f
can be extended to a homeomorphism h:G — H where G D A, H D B and
G, H are G5 sets.

In particular, a homeomorphism between dense subsets of X,Y can be
extended to a homeomorphism between dense Gs sets.

P?‘OOf. By 3.8, let fl : Gl — Y, a Hl — X, where Gl 2 A, Hl 2B
are G sets, be continuous extensions of f, f~! respectively. Let R =
graph(f,), S = graph™"(g1) = {(z,9) : = = 91(¥)}. Let G = projx(RN
S), H = projy(RNn S), so that A C G € G, B C H C Hy, and
reG e alhE) =1 yeHs Hlnily)) = y. Also, h = f1|G is a
homeomorphism of G with H. It is enough, therefore, to show that G, H
are G sets. Consider, for example, G: The map m(z) = (z, f1(x)) is con-
tinuous from G, into X x Y and G = n~!(S). But S is closed in X x H,,
so it is a G5 in X x Y. Thus, since inverse images of G sets by continuous
functions are Gg too, G is Gs in G, s0 G is Gg in X. |

(3.10) Exercise. Let X be a completely metrizable space and A C X. If f :
A — A is a homeomorphism, then f can be extended to a homeomorphism
h:G — G, where G D A is a G set.
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3.C Polish Subspaces of Polish Spaces

We will characterize here the subspaces of Polish spaces which are Polish
(in the relative topology).

(3.11) Theorem. If X is metrizable and Y C X is completely metrizable,
then Y is a Gs in X. Conversely, if X is completely metrizable andY C X
is a Gs, then'Y is completely metrizable.

In particular, a subspace of a Polish space is Polish iff it is a Gs.

Proof. For the first assertion, consider the identity idy : ¥ — Y. It is
continuous, so there is a G5 set G with Y C G € Y and a continuous
extension g : G — Y of idy. Since Y is dense in G, g =idg,s0 Y =G.

For the second assertion, let Y = (), Uy, with U, open in X. Let
F, = X\U,. Let d be a complete compatible metric for X. Define a new
metric on Y, by letting

d(z,y) =d(z,y) + 2”"{2_“_1’ |d(x,1Fn) - d(y,an) |} '

It is easy to check that this is a metric compatible with the topology of Y.
We show that (Y, d) is complete.

Let (y;) be a Cauchy sequence in (Y,d’). Then it is Cauchy in (X , d).
So y; — y € X. But also for each n, llm”_.oo|7——rj 7;;,1_5',,}' =

y1 n
for each n, 3_5 converges in R, so d(y;, F,) is bounded away from 0.
Since d(y;, F.) — d(y, Fr), we have d(y, F;,) # 0 for all n, so y ¢ F, for all
n, ie., y €Y. Clearly, y; — v in (Y, d'). 0

(3.12) Exercise. Let 0 = 0...0 (n times). Show that the map f(z) =
0% 10%t 10%2..., where £ = (z,), is a homeomorphism of A with a co-
countable G set in C. Identify f(N).
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4. Compact Metrizable Spaces

4.A Basic Facts

A topological space X is compact if every open cover of X has a finite
subcover, i.e., if (U;)ier is a family of open sets and X = J;¢; Ui, then
there is finite Ip C I such that X = {J;c, U:. This is equivalent to saying
that every family of closed subsets of X with the finite intersection property
(i.e., one for which every finite subfamily has nonempty intersection) has
nonempty intersection.

Recall also that a topological space X is Hausdorff if every two distinct
points of X have disjoint open nbhds. Metrizable spaces are Hausdorff.

Here are some standard facts about compact spaces.

(4.1) Proposition. i) Compact (in the relative topology) subsets of Hausdorff
spaces are closed.

i) A closed subset of a compact space is compact.

itt) The union of finitely many compact subsets of a topological space
is compact. Finite sets are compact.

iv) The continuous image of a compact space is compact. In particular,
if f:X — Y is continuous, where X is compact and Y is Hausdorff, f(F)
is closed (resp. F,) in Y, if F is closed (resp. F,) in X.

v) A continuous injection from a compact space into a Hausdorff space
is an embedding.

21) (Tychonoff’s Theorem) The product of compact spaces is compact.

vii) The sum of finitely many compact spaces is compact.

For metric spaces we also have the following equivalent formulations
of compactness.

(4.2) Proposition. Let X be a metric space. Then the following stotements
are equivalent:

i) X is compact.

it) Every sequence in X has a convergent subsequence.

i1i) X is complete and totally bounded (z e., for every € > 0, X can be
covered by finitely many balls of radius < ¢).

In particular, compact metrizable spaces are Polish.

Remark. A compact subset of a metric space is bounded (i.e., has finite
diameter). So compact sets in metric spaces are closed and bounded. This
characterizes compact sets in R™,C", but not in general.

(4.3) Exercise. Show that the unit ball {z € £2: ||z|| < 1} of Hilbert space
is not compact.
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(4.4) Exercise. If X is compact metrizable and d is any compatible metric,
(X, d) is complete.

Concerning continuous functions on compact metric spaces, we have
the following standard fact.

(4.5) Proposition. If (X ,d) is compact metric, (Y,d') is metric, and f:X —
Y is continuous, then f is uniformly continuous (i.e., Ve36 [d(z,y) < § =

& (f(z),f()) < €)).

Finally, metrizability of compact spaces has a very simple characteri-
zation.

(4.6) Proposition. Let X be a comnpact topological space. Then X is metriz-
able iff X is Hausdorff and second countable.

4.B Examples

1) The finite or infinite dimensional cubes I”, N, and tori T*, TN are com-
pact (but R™, C", £2, etc. are not). The Cantor space C is compact.

2) Let X be aseparable Banach space. The dual X* of X is the Banach
space of all bounded linear functionals z* : X — K, where K = R or C is the
scalar field, with norm ||z*|| = sup{|(z,=*)| : z € X, ||z|| < 1}, where we
let (z,z*) = z*(x). In other words, X* = L(X,K). For X = ¢!, X* = ¢,
which is not separable. Consider now the strong topology on X*, i.e., the
one generated by the functions * — (z,z*), € X, which in this context is
called the weak*-topology of X*. Let B, (X*) (= L1(X,K)) be the unit ball
of X*. Asin Example 5) of Section 3.A, B;(X*) with the weak*-topology is
Polish, but actually in this case it is moreover compact. This is because in
the notation established there, F C [],<p[—|1zll,||z|]] (we are working with
R again) and [],<p(=Ilzll, ||z} is compact. We summarize in the following
theorem.

(4.7) Theorem. (Banach) The unit ball B,(X*) of a separable Banach space
X is compact metrizable in the weak*-topology. A compatible metric is given
by

=)
d(z",y") = 3 27" (@, 2) = (an,y")]
n=0

for (x,) dense in the unit ball of X.

(4.8) Exercise. Show that B;(£*) = [—1,1]N and that the weak*-topology
on B, (£>) is the same as the product topology on [—1,1]N. (For the complex
case replace [—-1,1] by D = {z € C: |z| < 1}, the unit disc.)
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(4.9) Exercise. Let X,Y be separable Banach spaces. The weak topology
on L(X,Y) is the one generated by the functions (from L(X,Y’) into the
scalar field)

T~ (Tz,y*) ; z€ X, y* €Y.

Show that if Y is reflexive, L1(X,Y) with the weak topology is compact
metrizable. Find a compatible metric.

(4.10) Exercise. A topological vector space is a vector space X (over R or
C) equipped with a topology in which addition and scalar multiplication are
continuous (from X x X into X and Kx X into X, resp., where K = R or C).
So Banach spaces and their duals with the weak*-topology are topological
vector spaces. A subset K of a vector space is called convex if for every
z,y€e Kand 0 <A <1, dx+ (1 — Ay e K. A point z in a convex set K
is extreme (in K) if z = Ay + (1 = M)z, with 0 < A < 1, y,z € K, implies
y = z (= x). Denote by 3.K the extreme boundary of K, i.e., the set of
extreme points of K. Show that if K is a compact metrizable (in the relative
topology) convex subset of a topological vector space, then the set 9. K is
Gs in K, and thus Polish. In particular, this holds for all compact convex
subsets of B)(X*), for X a separable Banach space. What is 9. (B) (¢°))?

(4.11) Exercise. If T is a tree on A, we call T finite splitting if for every
s € T there are at most finitely many a € A with s"e € T. Show that if T
is pruned, [T] is compact iff T is finite splitting. In particular, if K C A is
compact, there is x € A such that for all y € K, y(n) < z(n) for every n.
Conclude that A is not a countable union of compact sets.

(4.12) Exercise. (Konig's Lemma) Let T be a tree on A. If T is finite
splitting, then [T] # @ iff T is infinite. Show that this fails if T is not finite
splitting.

(4.13) Exercise. (The boundary of a graph theoretic tree) An (undirected)
graph is a pair ¢ = (V, E), where V is a set called the set of vertices,
and E C V? with (z,y) € E & (y,z) € F and (z,z) ¢ E. If (z,y) €
E, we say that (z,y) is an edge of G. A path in G is a finite sequence
(zo,Z1,...,%n), n > 1, with (z;,2;41) € E for ¢ < n and where the x; are
distinct except possibly for zo and z,,, when n > 3. A closed path, i.e., one
in which 29 = z, is called a loop. A graph G is connected if for every two
distinct vertices x, y there is a path (zy,...,z,) withzo =z and z,, = y. A
graph theoretic tree is a connected graph with no loops. This is equivalent
to saying that for any pair (z,y) of distinct vertices there is a unique path
(z0,...,x,) with z = 29 and y = zp,.

The two-dimensional lattice in Figure 4.1 is an example of a connected
graph that is not a graph theoretic tree. Figure 4.2 depicts a graph theoretic
tree,
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FIGURE 4.1.

4t
_+_

FIGURE 4.2.

A rooted graph theoretic tree is a graph theoretic tree with a distin-
guished vertex, called its root. A tree T on a set A can be viewed as a
rooted tree with 0 as the root, vertices the nodes of T, and edges all pairs
(s,s"a) or (sa,s) for s,s"a € T. Conversely, every rooted graph theoretic
tree G = (V, E) gives rise to a tree T (on V) as follows: Identify each v € V'
with the sequence (v, vy, ..., %), which is the unique path from vy =root
to the vertex v, = v. (By convention, the root corresponds to 0.)

A graph theoretic tree G is locally finite if every vertex v has finitely
many neighbors (i.e., u for which (v,u) € E).

Given a tree G, an infinite path through G is a sequence (zy,x,,...)
such that (z;,z:41) € F and z; # x; for each i # j. Two infinite paths

(%), (y:) are equivalent if InIMVi(Tnii = Ym+i). See, for example, Fig-
ure 4.3:
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FIGURE 4.3.

An end of G is the equivalence class of an infinite path. Denote the set
of ends by 8G. This is called the boundary of G. We define a topology
on 3G by taking as basis the sets of the form [zo,...,z,] = {e € G :
Ipt1,Tns2, - - . (T, Z1,...) € e} with (zg,...,Zn) a path in G.

If zg € V, then for each end ¢ € 3G, there is a unique infinite path
z = (zg,Z),...) with g € e. We call z the gkodesic from zg to e and denote
it by [zo, €]. Thinking of zy as a root of G, we can view G as a tree T on
V. Show that the geodesic map e — [zo, €] is a homeomorphism of dG with
[T]. In particular, G i locally finite iff T is finite splitting and in this case
G is compact.

4.C A Universality Property of the Hilbert Cube

(4.14) Theorem. Every separable metrizable space is homeomorphic to a
subspace of the Hilbert cube IN. In particular, the Polish spaces are, up to
homeomorphism, exactly the G subspaces of the Hilbert cube.

Proof. Let (X, d) be a separable metric space with d < 1. Let (z,,) be dense
in X. Define f : X - IN by f(z) = (d(z,z,)). Clearly, f is continuous and
injective. It remains to show that f~!: f(X) — X is also continuous. Let
f(z™) — f(z),ie., d(x™,zn) — d(z,z,) for all n. Fix € > 0 and then let n
be such that d(z,z,) < €. Since d(z™,z,) — d(z,z,), let M be such that:
m> M= d(z™,z,) <e. Thenif m > M, d(z™,z) <2.80z™ —z. O

It follows that every separable metrizable (resp. Polish) space X can
be embedded as a dense (resp. Gs) subset of a compact metrizable space
Y.
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(4.15) Definition. If X is separable metrizable, a compactification of X is‘a
compact metrizable space Y in which X can be embedded as a dense subset.

(4.16) Exercise. Show that C and I are both compactifications of N.So
compactifications are not uniquely determined up to homeomorphism.

4.17) Theorem. Every Polish space is homeomorphic to a closed subspace
(fRN
9 .

Proof. The proof is similar to that of 3.11. We can assume that the given
Polish space is a G5 set G C IN. Let (Uy,) be open with G = N, Un. Let
F, = \U,. Define f : G — RN by letting f = (fn) with

Jon+1(2) = zq, if z = (21),

1

fon(z) = FIENAY

where d is a compatible metric on IV, Clearly, f is injective and con-
tinuous. We check now that f(G) is closed and f~! : f(G) — G is
continuous: If f(z") = y® — y € RN, then 2" — z € IN and also
1/d(z™, F;) converges for each i, so (d(z", F;)) is bounded away from 0,
thus d(z, F;) = lim,, d(z™, F;) # 0 and = ¢ F; for each i, so z € G. Clearly,
f(z)=y. (]

Remark. It has been proved by R. D. Anderson that RN is homeomorphic
to the Hilbert space £2; see J. van Mill [1989).

4.D Continuous Images of the Cantor Space

(4.18) Theorem. Every nonempty compact metrizable space is a continuous
image of C.

Proof. First we show that IV is a continuous image of C. The map f(z) =
Yoo 0 ®(n)27""! maps C continuously onto I, so (z,) — (f(z,)) maps
CN, which is homeomorphic to C, onto IV, Since every compact metrizable
space i3 homeomorphic to a compact subset of IV, it follows that for every
compact metrizable space X there is a closed set F C C and a continuous
surjection of F' onto X. Using 2.8 our proof is complete. a

We will discuss next two important constructions of Polish spaces as-
sociated with compact spaces and sets.
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4.E The Space of Continuous Functions on a Compact Space

Let X be a compact metrizable space and Y a metrizable space. We denote
by C(X,Y) the space of continuous functions from X into Y with the
topology induced by the sup or uniform metric

d.(f,9) = sup dy (f(z), 9(x)),
x€X

where dy is a compatible metric for Y. A simple compactness argument
shows that this topology is independent of the choice of dy. When Y = R
or C, we write just C(X) when it is either irrelevant or clear from the
context which of the two cases we consider. In this case C(X) is a Banach
space with norm ||fllee = Sup,ex |f(2)l, and du(f,9) = || = glloo is the
associated metric.

(4.19) Theorem. If X is compact metrizable and 'Y is Polish, then C(X,Y)
is Polish.

Proof. Let dy be a compatible complete metric for Y and let d, be as
above. If (f») is Cauchy in C(X,Y), then sup,cx dy (fm(2), fa(z)) — 0 as
m,n — oo. In particular, (f,.(z)) is Cauchy for each z, so f(z) = lim fp(z)
exists in Y. It is easy now to check that f € C(X,Y) and f, — f. So
C(X,Y) is complete.

We now prove separability. Let dx be a compatible metric for X and let
Cmn = {f € C(X,Y) : Vz,yldx(z,y) < 1/m = dy(f(z), f()) < 1/n]}.
Choose a finite set X,, C X such that every point of X is within 1/m from
some point of X,,. Then let D, ,, € Cp, » be countable such that for every
f € Cp,n and every € > 0 there is g € Dy, n with dy(f(y),9(y)) < e for
y € Xm. We claim that D = |J,, , Din,n is dense in C(X,Y). Indeed, if
f€C(X,Y)and € > 0, let n > 3/e and let m be such that f € Crupn
(which is possible since f is uniformly continuous). Let g € D, , be such
that dy(f(y),9(y)) < 1/n for all y € X,,. Given z € X, let y € X, be
such that dx(z,y) < 1/m. Then dy (f(z),9(z)) < €. So du(f,9) <e. O

4.F The Hyperspace of Compact Sets

Let X be a topological space. We denote by K(X) the space of all compact
subsets of X equipped with the Vietoris topology, i.e., the one generated
by the sets of the form

(K € K(X): KCU},
(KeK(X): KnU #0},

for U open in X. A basis for this topology counsists of the sets
{(KeK(X):KCU& KNU, #0& ... S KNU, #0}
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for Uy, Us,...,Un openin X.

(4.20) Exercise. i) A point z in a topological space is isolated if {x} is open.
Show that @ is isolated in K(X).

ii) Show that if X is a topological subspace of Y, K(X) is a topological
subspace of K(Y).

Now let (X, d) be a metric space with d < 1. We define the Hausdorff
metric on K(X), dy, as follows:

dy(K,L)=0,if K=L =0,
= 1, if exactly one of K, L is 0,
= max{6(K, L),8(L, K)}, if K,L # 0,

where
§(K,L) = max d(z,L).

Thus we have for nonempty K, L € K(X),
dy(K,L)< e KC B(L,e) & L C B(K,¢).

(4.21) Exercise. Show that the Hausdorff metric is compatible with the
Vietoris topology.

(4.22) Theorem. If X is a metrizable space, so is K(X). If X is separable,
so is K(X).

Proof. If D C X is countable dense in X, then Ky(D) = {K C D :
K is finite} is countable dense in K(X). 0

Next we will study convergence in K(X). Given any topological space
X and a sequence (K,) in K(X), define its topological upper limit,
Tlim, K,,, to be the set

{z € X : Every open nbhd of = meets K, for infinitely many n},
and its topological lower limit, T lim K, to be the set
{z € X : Every open nbhd of = meets K, for all but finitely many n} .

Clearly, Tlim,K, € Tlim,K,, and both are closed sets. If they are
equal, we call the common value the topological limit of (K,), written
as Tlim, K,,. Finally note that if X is metrizable and K, # 0, then the
topological upper limit consists of all = that satisfy:

Iz, )[Tn € Kn, for all n, and for some subsequence (zn,), Tn, — ],

and the topological lower limit consists of all z that satisfy:
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I(zn)[zn € Ky, for all n, and z, — 2].

(4.23) Exercise. Let (X, d) be metric with d < 1. Show that for nonempty
K, K, € K(X):

i) 6(K,K,) = 0= K C Tlim, Kp;

ii) 6(Kn, K) = 0= K 2 Thm,K,.
In particular, dy(Kn, K) — 0 = K = Tlim K,. Show that the converse
may fail.

(4.24) Exercise. Let (X, d) be compact metric with d < 1. Then for K, # 0,
i) if Tlim,, Ky, # 0, then §(Tlim, K,, K,) — 0;
ii) 6(Kn, Tlim, K,) — 0.

So if K = Tlim, K, exists, dg(Kn, K) — 0.

(4.25) Theorem. If X is completely metrizable, so is K(X). Hence, in par-
ticular, if X is Polish, so is K(X).

Proof. Fix a complete compatible metric d < 1 on X. Let (K,,) be Cauchy
in (K(X),dpy), where without loss of generality we can assume K, # 0.
Let K = Tlim, K,. We will show that X € K(X) and dy(K,,K) — 0.

Note first that X = (), (U;2, K;) and that K is closed and nonempty.

Claim 1. K is compact: It is enough to show it is totally bounded. For
that we will verify that for each n there is a finite set F,, C X with K C
Uzer, B(z,27™) or even that for L, = U2, Ki, Ln € U,ep, B(z,277).
To see this, let F} be finite with K; C Users B(z,27"7}). Let p > n be

such that dy(K;, K;) <27"~! for i, > p. Finally, let F, = Un<i<p Fa-

Claim 2. dy(Kn,K) — 0: Fix € > 0. Then find N with: 7, > N =
du(Ki. K,) < ¢/2. We will show that if n > N, dy(K,,K) <e.

i)Ifz € K, let z,, € K,,,, o, — x. Then for large i, n; > N and
d(n;, ) < ¢/2. For such i, let y, € K, be such that d(z,,,y.) < ¢/2. Then
d(z,yn) < €, and therefore 6(K, K,) < e.

il) Now let y € K,. Find n = k; < ky < k3 < .- such that
du(Ki;, Km) < 2797 for all m > k;. Then define zx, € Ky, as fol-
lows: Let xx, = y and zj,,, be such that d(zs,,,,zx,) < 277 'e. Then
(zx;) is Cauchy, so zx; — z € K, d(y,z) <e, and finally, §(K,,K) <e. O

(4.26) Theorem. If X is compact metrizable, so is K(X).

Proof. It is enough to show that if d is a compatible metric for X,d < 1,
then (K(X),dy) is totally bounded. Fix € > 0. Let F C X be finite with
X =U,cr B(x,¢). Then K(X) = Ugcy B(S,¢€) (the open ball of radius e
around S in dy). o



4. Compact Metrizable Spaces 27

(4.27) Exercise. Let (X,d) be a metric space with d < 1. Then z — {z} is
an isometric embedding of X in K(X).

(4.28) Exercise. Let X be metrizable and K, € K(X), Ko 2 Ky 2 -+ .
Then lim, K, = (), K». In particular, if K, is the union of the 2" many
closed intervals occurring in the nth step of the construction of the Cantor
set Ey/3, Kn — Ey3.

(4.29) Exercise. Let X be metrizable.

i) The relation “z € K” is closed, ie., {(z,K) : * € K} is closed in
X x K(X).

ii) The relation “K C L” is closed, i.e., {(K,L) : K C L} is closed in
K(X)2.

iii) The relation “K NL # @” is closed.

iv) The map (K,L)+— K UL from K(X)? into K(X) is continuous.

v) For K € K(K(X)), let UK = U{K : K € K}. Show that UK €
K(X) and U : K(K(X)) = K(X) is continuous.

vi) If f: X — Y is continuous, where Y is a metrizable space, then
the map f”: K(X) — K(Y) given by f”(K) = f(K) is continuous.

vil) If Y is metrizable, then the map (K, L) — K x L from K(X)xK(Y)
into K(X x Y) is continuous.

viii) Find a compact X for which the map (K,L) — K N L is not
continuous.

(4.30) Exercise. Let X be metrizable. Show that the set
Ks(X)={K € K(X): K is finite}
is F, in K(X).

(4.31) Exercise. A topological space is perfect if it has no isolated points.
Let X be separable metrizable. Show that

K,(X)={K € K(X): K is perfect}

is a G5 set in K(X).

(4.32) Exercise. View a tree T on N as an element of oN=® by identifying
it with its characteristic function (note that T C N<N), Let Tr C gN<*
denote the set of trees and PTr C oM™ denote the set of pruned trees.
Show that if 2¥°" is given the product topology with 2 = {0,1} discrete
(so that it is homeomorphic to C), Tr is closed and PTr is a Gs. Now let
Try, C 22" denote the set of trees on 2 and PTr» C 22<" denote the set of
pruned trees on 2. Show that they are both closed and that K — Tk is a
homeomorphism of K(C) with PTr;.
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Show that the sets Try of finite splitting trees on N and PTry of fi-
nite splitting pruned trees on N are not Gs and that K — Tk is not a
homeomorphism of K(N) and PTxy.
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5. Locally Compact Spaces

A topological space is locally compact if every point has an open nbhd with
compact closure. Clearly, compact spaces and closed subspaces of locally
compact spaces are locally compact. Products of finitely many locally com-
pact spaces are locally compact, but a product of an arbitrary family of
locally compact spaces is locally compact iff all but finitely many of the
factors are compact. The sum of locally compact spaces is locally compact.

For example, all discrete spaces, R® and C" are locally compact, but
RN and A are not.

(5.1) Definition. Given a locally compact Hausdorff space X, its one-point
compactification X is constructed as follows: If X is compact, X =X.
Otherwise, let 00 ¢ X. Let X = X U {o0}, and define the topology of X by
declaring that its open sets are the open sets in X together with all the sets
of the form X\K for K € K(X).

Clearly X is open in X and X is compact Hausdoiff.

For example, the one-point compactification of R is (up to homeo-
morphism) T; the one-point compactification of (0,1] is [0,1]; and the
one-point compactification of R™ is S™, the n-dimensional sphere (i.e.,
{z € R™ ¢ |jzf| = 1))

(5.2) Definition. A set A in a topological space X is Kg if A = |, K.
where Kn € K(X).

(5.3) Theorem. Let X be Hausdorff and locally compact. Then the follouring
statements are equivalent:

i) X is second countable;

it) X is metrizable and K,;

i1i) X is compact metrizable;

iw) X is Polish;

v) X is homeomorphic to an open subset of a compact metrizable space.

Proof. i) = iii): By 4.6, it is enough to show that X is second countable.
Fix a countable basis {U,} for X. Then {U, : U, is compact} is also a
basis, so we can assume that U, is compact for each n. If (X\K) with
K € K(X) is an open nbhd of oo, then K C UnEF . for some finite F,
$0 {Va} = {Nnep(X\Uy) : F finite} is a countable nbhd basis for co. Then
{Ur} U {V,} is a basis for X.

ili) = v): Obvious since X is open in X.

v) = iv): Open subspaces of Polish spaces are Polish.

iv) = ii): As in the first part of i) = iii).

i) = i) Let X = |, K, with K, compact. We will define in-
ductively a sequence (Un) of open. sets in X with U,, compact and
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Um € Untry UnUn = X, as follows: For m = 0, let Up be open
with Ug compact and Ko C Up. In general, let U, be open such that
Um-1U K C U, and Uy is compact.

Since Uy is second countable, so is Up,, and thus let {Um n}nen be a
basis for Uy,. Then {Um n}m.nen is a basis for X. |
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6. Perfect Polish Spaces

6.A Embedding the Cantor Space in Perfect Polish Spaces

A limit point of a topological space is a point that is not isolated, i.e., for
every open nbhd U of = there is a point y € U, y # . A space is perfect if
all its points are limit points. If P is a subset of a topological space X, we
call P perfect in X if P is closed and perfect in its relative topology.

For example, R*, RN, C™, CN, IN, C, A are perfect. If X is perfect, so
is K(X)\{0} (0 is an isolated point of K (X)). The space C(X), X compact
metrizable, is perfect.

(6.1) Definition. A Cantor scheme on a set X is a family (As),cocn of
subsets of X such that:

i) As-o N Agy =0, for s € 2<N;

@) Agi C A, for s €2<N i e {0,1}.

(See Figure 6.1.)

FIGURE 6.1.

(6.2) Theorem. Let X be a nonempty perfect Polish space. Then there is an
embedding of C into X .

Proof. We will define a Cantor scheme (U,)sc2<n on X so that
i) U, is open nonempty;
ii) diam(Us) < 2—length(3);
iii) Us~; C U, for s € 2<N, i € {0,1}.

Then for z € C, (), Uzjn = ), Uz is a singleton (by the completeness
of X), say {f(z)}. Clearly, f : C — X is injective and continuous, and
therefore an embedding.
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We define U, by induction on length(s). Let Uy be arbitrary satisfying
i), ii) for s = 0. Given Us, we define Us-9,Us-) by choosing z # y in U,
(which is possible since X is perfect) and letting Us-o, Us-; be small enough
open balls around z, y, respectively. O

(6.3y Corollary. If X is a nonempty perfect Polish space, then card(X) =
2%, In particular, a nonempty perfect subset of a Polish space has the car-
dinality of the continuum.

6.B The Cantor-Bendixson Theorem

A point z in a topological space X is a condensation point if every open
nbhd of z is uncountable. (Note that in a metrizable space a limit point is
one for which every open nbhd is infinite.)

(6.4) Theorem. (Cantor-Bendixson) Let X be a Polish space. Then X can
be uniquely written as X = P U C, with P a perfect subset of X and C
countable open.

Proof. For any space X let
X* = {z € X : z is a condensation point of X}.

Let P = X*, C = X\P. If {Uy,} is an open basis of X, then C is the union
of all the U,, which are countable, so C is countable. It is evident that P is
closed. To show that P is perfect, let x € P and U be an open nbhd of z in
X. Then U is uncountable, so it contains uncountably many condensation
points, and U N P is thus uncountable.

To prove uniqueness, let X = P, UC; be another such decomposition.
Note first that if Y is any perfect Polish space, then Y* = Y. This is because
ify € Y and U is an open nbhd of y, then UNY is perfect nonempty Polish,
thus having cardinality 2%°. So we have P} = P, and thus P, C P. Now if
x € C), then, since C; is countable open, x € C and so C; C C. It follows
that P= P, and C = (). a

(6.5) Corollary. Any uncountable Polish space contains a homeomorphic
copy of C and in particular has cardinality 2%°.

In particular, every uncountable Gs or F, set in a Polish space ¢ontains
a homeomorphic copy of C and so has cardinality 2%, i.e., the Continuum
Hypothesis holds for such sets.

(6.6) Exercise. In the notation of 6.4, show that P is the largest perfect
subset of X.
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(6.7) Definition. For any Polish space X, if X = PUC, where P is perfect
and C is countable with P NC =0, we call P the perfect kernel of X.

6.C Cantor-Bendixson Derivatives and Ranks

We will next give an alternative proof of the Cantor-Bendixson Theorem
and a more informative construction of the kernel. First we need a gen-
eral fact about monotone wellordered sequences of closed (or open) sets in
second countable spaces.

(6.8) Definition. We denote by ORD the class of ordinal numbers:
0,1,2,. ..,w,w+1,....

An ordinal o is successor if & = 8+ 1 for some ordinal 3 and limit if it is
not 0 or successor. As usual, every ordinal is identified with the set of its
predecessors: a = {B:8 < a}, so1 = {0},2={0,1},..., w = {0,1,2,...},
etc.

(6.9) Theorem. Let X be a second countable topological space and (Fy),,
a strictly decreasing transfinite sequence of closed sets (i.e., @ < 8 =
Fy 2 F). Then p is a countable ordinal. This holds similarly for strictly in-
creasing transfinite sequences of closed sets (and thus for strictly decreasing
or increasing transfinite families of open sets).

Proof. Let {U,} be an open basis for X. Associate to each closed set F C X
the set of numbers N(F) = {n: U, N F # @}. Clearly, X\F = | J{U,,: n &
N(F)}, so F — N(F) is injective. Also, F C G = N(F) C N(G). Thus for
any strictly monotone (i.e., decreasing or increasing) transfinite sequence
(Fa)a<p:s (No) = (N(F,)) is a strictly monotone transfinite sequence of
subsets of N, so obviously p is countable. a

(6.10) Definition. For any topological space X, let
X'={z € X : zisalimit point of X}.

We call X' the Cantor-Bendixson derivative of X. Clearly, X' is closed
and X is perfect iff X = X'.

Using transfinite recursion we define the iterated Cantor-Bendixson
derivatives X, @ € ORD, as follows:

X° =X,
Xf!-l-l = (Xa)l’

X = ﬂ X, if \is limit.
a<
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Thus (X),corp 5 @ decreasing transfinite sequence of closed subsets of
X.

(6.11) Theorem. Let X be a Polish space. For some countable ordinal
ag, X* = X for all a > wg and X0 is the perfect kernel of X.

Proof. It is easy to see by induction on a, that if P is the perfect kernel of
X, P C X (note that P’ = P). If ¢ is now a countable ordinal such that
X = X for a > ay, then (X*°) = X0+l = X0 g5 X is perfect,
therefore X* C P. O

(6.12) Definition. For any Polish space X, the least ordinal ag as in 6.11 is
called the Cantor-Bendixson rank of X and is denoted by | X|cp. We also

let
X>® = XXler = the perfect kernel of X.

Clearly, for X Polish,
X is countable & X =0.

Note also that if X is countable compact, then X = @, and so by com-
pactness, if X is nonempty, |X|cp = a + 1 for some a. In this case it is
¢ustomary to call a (instead of a + 1) the Cantor-Bendixson rank of X. To
avoid confusion, we will let | X|% g = a in this case. (We also let |0|;;5 = 0.)

(6.13) Exercise. For each countable ordinal o, construct a closed countable
subset of C, K, such that |K,|;g = a.

(6.14) Exercise. Let T be a tree on A. We call T perfect if
VseT3Hu(tDs & uds & t,ueT & t Lu),

i.e., every member of T has two incompatible extensions in T. If T is a
pruned tree on A, show that T is perfect iff [T] is perfect in AN.

(6.15) Exercise. For any tree T on A we define its Cantor-Bendixson deriva-
tive T' by

T'={seT:(ueT(t2s & u2s & tLu)}.

Recursively, we then define its iterated Cantor-Bendixson derivatives by
T =T, To+! = (T¢), T* = (), T%, if A is limit. Show that for some
ordinal ag of cardinality at most max{card(A4),Re}, T* = T* for all o >
ap. We call the least such o the Cantor-Bendixson rank of T, written as
IT|cp. Let T>® = TITles, For A = 2 or N show that [T°] is the perfect
kernel of [T, i.e., [T°°] = [T)>. However, construct examples on A = 2 to
show that [T*] may be different from [T']* even for pruned trees T. How
are [T%] and [T']” related? How about |T|cg and |[T]|ca?
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7. Zero-dimensional Spaces

7.A Basic Facts

A topological space X is connected if there is no partition X =U UV, UN
V = @ where U,V are open nonempty sets. Or equivalently, if the only
clopen (i.e., open and closed) sets are § and X. For example, R", C" are
connected, but C, A are not.

At the other extreme, a topological space X is zero-dimensional if it
is Hausdorff and has a basis consisting of clopen sets.

For example, the space AN is zero-dimensional since the standard basis
{Ns}sea<n consists of clopen sets.

(7.1) Exercise. Let (X, d) be a metric space, where d is actually an ultra-
metric. Show that

i) d(z,2) # d(y,2) = d(z,y) = max{d(z, 2), d(y, 2)}.

ii) B(x,r) is clopen, and thus X is zero-dimensional.

iii) y € B(z,r) = B(z,r) = B(y,r) (and similarly for the closed balls).
iv) If two open balls intersect, then one is contained in the other.

v) (z,) is Cauchy iff d(%pn,T,41) — 0.

(7.2) Exercise. Let X be a second countable zero-dimensional space. If
A, B C X are disjoint closed sets, there is a clopen set C separating A and
B,ie, ACC, BNC =40

Notice that subspaces, products, and sums of zero-dimensional spaces
are zero-dimensional. Finally, 2.8 is valid also for any separable metrizable
zero-dimensional space (see K. Kuratowski [1966], Ch. II, §26, Cor. 2).

(7.3) Theorem. Let X be separable metrizable. Then X is zero-dimensional
iff every nonempty closed subset of X is a retract of X.

7.B A Topological Characterization of the Cantor Space

(7.4) Theorem. (Brouwer) The Cantor space C is the unique, up to home-
omorphism, perfect nonempty, compact metrizable, zero-dimensional space.

Proof. 1t is clear that C has all these properties.

Now let X be such a space and let d be a compatible metric. We will
construct a Cantor scheme (C;) c2<v on X such that

i) Cp = X;

ii) C, is clopen, nonempty;
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ili) Cs = Cs~q U Cs-1;

iv) lim, diam(C;,) = 0, for z € C.

Assuming this can be done, let f : C — X be such that {f(z)} =), Czn-
Then f is a homeomorphism of C onto X (by iii) ).

Construction of (Cs),eo<n: Split X into X = X; U...U X,, where
X;iNX; =0if i # j and X; is clopen of diameter < 1/2. Let Cp:~y = Xiy
if0<i<n-—1, Cpn-1 = Xp,and Cps = X; 1 U.. . UX,, for0<i<n-1
(here @’ = aa...a (j times)). (See Figure 7.1.)

FIGURE 7.1.

Now repeat this process within each X;, using sets of diameter < 1/3, and
so on by induction. m]

7.C A Topological Characterization of the Baire Space

(7.5) Definition. A Lusin scheme on a set X is a family (As) ,cn<n of subsets
of X such that

i) AN Ay =0,if se NN i#jiinN;
i) Ag-i C Ag, if s e NN e N,
(See Figure 7.2.)

If (X,d) is a metric space and (A;),cn<n 18 a Lusin scheme on X, we
say that (As),cn<n has vanishing diameter if lim, diam(A;,) = 0, for all
z € N. In this case if D = {x € N:(), Agjn # 0}, define f:D — X by
{f(2)} =N, Agjn. We call f the associated map.

(7.6) Proposition. Let (Ag),cn<n be a Lusin scheme on a metric space (X ,d)
that has vanishing diameter. Then if f:D — X is the associated map, we
have
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FIGURE 7.2.

i) f is injective and continuous.
ii) If (X ,d) is complete and each A, is closed, then D is closed.
iii) If As is open, then f is an embedding.

Proof. Part i) is straightforward. For ii), note that if z, € D, z, — z, then
(f(z»)) is Cauchy since, given € > 0, there is N with diam(A;n) < € and
M such that z,|N = z|N for all n > M, so that d(f(z,), f(zm)) < € if
n,m > M. Thus, f(z,) — y € X. Since each A, is closed, y € Ay, for
all n, so that z € D and f(z) = y. Finally, iii) follows from the fact that
f(N,n D) = f(D) N A, o

Recall that the interior, Int(A), of a set A in a topological space X is
the union of all open subsets of A.

(7.7) Theorem. (Alexandrov-Urysohn) The Baire space N is the unique,
up to homeomeorphism, nonempty Polish zero-dimensional space for which
all compact subsets have empty interior.

Proof. Clearly, N has all these properties (recall 4.11 here).
Now let X be such a space. Fix a compatible complete metric d < 1.
We will construct a Lusin scheme (C;),ecn<x on X such that

i) Cp = X, C; # 0 for all s e N<N,
it) C; is clopen;

ﬁi) Cs = UieN Cs-i;

iv) diam(C;) < 2 lensth(s),

Let f: D — X be the associated map. By i) - iv) D = N, f(D) = X, and
so by ii) and 7.6 iii) f is a homeomorphism.
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For the construction it is enough to show that for any nonempty open
set U C X and any € > 0, there is a partition U = |J;cnU; into clopen
nonempty sets of diameter < €.

Since a compact set in X has empty interior, it follows that the closure
of U in X is not totally bounded, thus there is 0 < ¢ < ¢, so that no
covering of U by finitely many open sets of diameter < €' exists. If we
write U = |J; .y Vj, where Vj are pairwise disjoint clopen sets of diameter
< € (which we can certainly do as X is zero-dimensional), we have that
infinitely many V; are nonempty. ]

7.D Zero-dimensional Spaces as Subspaces of the Baire Space

(7.8) Theorem. Every zero-dimensional separable metrizable space can be
embedded into both N' and C. Every zero-dimensional Polish space is home-
omnorphic to a closed subspace of N and a G subspace of C.

Proof. The assertions about C follow from those about N and the fact that
N is homeomorphic to a G subspace of C (see 3.12).

To prove the results about N, let X be as in the first statement of the
theorem and let d < 1 be a compatible metric for X. Then we can easily
construct a Lusin scheme (C;);en<m on X such that

i) Ca = X;
it) C, is clopen;
iii) Cs = U'l Cs"i;
iv) dian(C,) < 27 length(s),
(Some C; may, however, be empty.) Let f : D — X be the associated map.

By iii) f(D) = X, so by 7.6 iii) f is a homeomorphism of D with X, and
by 7.6 ii) D is closed if d is complete. O

7.E Polish Spaces as Continuous Images of the Baire Space

(7.9) Theorem. Let X be a Polish space. Then there is a closed set F C N
and a continuous bijection f:F — X. In particular, if X is nonempty, there
is a continuous surjection goN — X extending f.

Proof. The last assertion follows from the first and 2.8.
For the first assertion fix a compatible complete metric d < 1 on X.
We will construct a Lusin scheme (Fs),en<s on X such that

i) Fp = X;
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ii) Fs is an Fy set;
iii) F, = U,’ Fyi = Ui Fsi 5
iv) diam(Fs) < 2—length(3).

Then let f: D — X be the associated map. By iii) f(D) = X, so by 7.6
i) fisa continuous bijection of D onto X. It is thus enough to show that
D is closed. If £, € D, z, — z, then, as in the proof of 7.6 ii), (f(z»)) is
Cauchy, so f(zn) = y € X and y € ), Fyjn = (), Fyn (by iii) above), so
z€ Dand f(z)=1y.

To construct (F}) it is enough to show that for every F,, set F C X and
every € > 0, we can write F' = U;en Fi, where the F; are pairwise disjoint
F, sets of diameter < € such that F; C F. For that let F = U;yCi,

where C; is closed and C; C Ciy). Then F = |J;n(Cis1\Ci). Now write
Ci+1\Ci = Ujen EJ(.’), where E; are pairwise disjoint F,, sets of diameter

<€ Then F=J;; B\ and E{Y C Ciy1\Ci € Cipa C F. 0

7.F Closed Subsets Homeomorphic to the Baire Space

Theorem 6.2 shows that every uncountable Polish space contains a closed
subspace homeomorphic to C, and, by 3.12, a G5 subspace homeomorphic
to . We cannot replace, of course, Gs by closed, since A is not compact.
However, we have the following important fact (for a more general result
see 21.19).

(7.10) Theorem. (Hurewicz) Let X be Polish. Then X contains a closed
subspace homeomorphic to N iff X is not K,.

Proof. If X contains a closed subspace homeomorphic to A/, thenr X cannot
be K, since A is not K, (by 4.11).

Assume now that X is not K,, and fix a compatible complete metric
d < 1. We will find a Lusin scheme (F;),en<n such that

i) Fp= X, F, # 05

ii) Fy is closed;

lll) Fs ¢ K;;

iv) for each n and each x € X there is some open nbhd U of z such
that F, NU # @ for at most one s € N*;

v) diam(F,) < 2-length(s).

Then let f: D — X be the associated map. By i), ii), and v), D = V.
We check next that f(D) is closed. Let z € f(D). Then, for each n, let
U, be the open nbhd of z given by iv). We can assume that U,y C U,.
Since U, N f(D) # @, U, intersects some F,n». Similarly, each nbhd U C U,
intersects some Fsg, 80 by the uniqueness of s*, s = s Thus z € Fyn
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and s® C s™*+1, 50 there is y € N with z € ), Fyn, i, z € f(D). Finally,
to see that f is a homeomorphism, it is enough to verify that F; is open in
f(D) (by applying 7.6 iii) to A, = f(D)NF,). But iv) immediately implies
that F, is open in |J{F: : length(t) = length(s)}, thus in f(D) as well.
We construct F, by induction on length(s) = n. For n = 0, taking
Fp = X clearly works. Assume F; has been defined for s € N" satisfying
i) - v). We will define Fs~, for k € N. Let H; = {x € F, : V nbhd U of
z (UNF,isnot K,;)}. Then H, is closed and is nonempty since Fy is not
K,. Moreover, H, cannot be compact for the same reason, since F,\H,
is contained in a K,. It follows that we can find a sequence of distinct
points (z¢), zx € H,, with no converging subsequence. Then let Uy be an
open nbhd of z; of diameter < 27"~%-1 with U, N U, = 0 if k # m. Put
F;-, = Ui N F,. This clearly works. 0

(7.11) Exercise. Show that if X is zero-dimensional, so is K(X). Conclude
that K(C)\{0} is homeomorphic to C.

(7.12) Exercise. (Sierpinski, Fréchet) Show that Q (the space of rationals
with the relative topology as a subspace of R) is the unique, up to homeo-
morphism, nonempty, countable metrizable, perfect space. Prove that every
countable metrizable space is homeomorphic to a closed subspace of Q.

(7.13) Exercise. Let X C R be G5 and such that X, R\X are dense in R.
Show that X is homeomorphic to A. Prove that the same fact also holds
when R is replaced by a zero-dimensional nonempty Polish space. Show
that it fails if R is replaced by R2.

(7.14) Exercise. A Souslin scheme on aset X is a family (A;),en<n of subsets
of X. If (X,d) is a metric space, we say again that (A,) has vanishing
diameter if diam(A,},) — 0 as n — oo, for all z € /. Again, in this case,
let D = {z: ), Azjn # 0} and for x € D, {f(z)} = ), Azjn- We call
f: D — X the associated map.

i) Show that f is continuous.

ii) If (X, d) is complete and each A, is closed, then D is closed in N.

iii) If each A, is open and A, C |J; A,-; for all s G)N<N, then f is
open.

iv) If X is nonempty separable, show that there is a Souslin scheme
(Us) with Uy = X, U, open nonempty, Uy-; C Us, U, = |, Us~, and
diam(U,) < 27length(s) jf 5 # . Conclude that if X is nonempty Polish,
there is a continuous and open surjection f : N = X. (In R. Engelking
[1969] it is shown that X can also be obtained as a continuous and closed
image of NV.)

(7.15) Exercise. Let X be a nonempty Polish space. Then X is perfect iff
there is a continuous bijection f : N — X.
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8. Baire Category

8.A Meager Sets

Let X be a topological space. A set A C X is called nowhere dense if its
closure A has empty interior, i.e., Int(4) = 0. _(This means equivalently
that X \A is dense.) So A is nowhere dense iff A is nowhere dense. A set
A C X is meager (or of the first category) if A =,y An, where each A,
is nowhere dense. A non-meager set is also called of the second category.
The complement of a meager set is called comeager (or residual). So a set
is comeager iff it contains the intersection of a countable family of dense
open sets.

For example, the Cantor set is nowhere dense in (0,1}, a compact set
is nowhere dense in AV, and so a K, set is meager in /. A countable set is
meager in any perfect space, so, for example, Q is meager in R. Notice also
that if X is second countable with open basis {Unr}, then F = |, (Ux\Un)
is meager F, and Y = X\F is zero-dimensional.

An ideal on a set X is a collection of subsets of X containing @ and
closed under subsets and finite unions. If it is also closed under countable
unious it is called a a-ideal. The nowhere dense sets in a topological space
form an ideal, and the meager sets form a c-ideal. Being a o-ideal is a
characteristic property of many notions of “smallness” of sets, such as being
countable, having measure 0, being meager, etc.

8.B Baire Spaces

(8.1) Proposition. Let X be a topological space. The following statements
are equivalent:

i) Every nonempty open set in X is non-meager.
i1) Every comeager set in X is dense.
ii1) The intersection of countably many dense open sets in X is dense.

The proof is straightforward.

(8.2) Definition. A topological space is called a Baire space if it satisfies the
equivalent conditions of 8.1.

(8.3) Proposition. If X is a Baire space and U C X is open, U is a Baire
space.

Proof. Let (Uy) be a sequence of dense sets open in U and thus open in X.
Then U, U (X\U) is dense open in X, so (), (Un U (X\T)) = (N, Un) U
(X\U) is dense in X, so N, Un is dense in U. 0

(8.4) Theorem. (The Baire Category Theorem) Every completely metriz-
able space is Baire. Every locally compact Hausdorff space is Baire.
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Proof. Let (X, d) be a complete metric space. Let (U,) be dense open in X
and let U C X be a nonempty open set. We will show that (), UnN U # 0.
Since U NUj # 0, let By be an open ball of radius < 1/2 such that By C
U N Uy. Since Bo NU, # 0, let B, be an open ball of radius < 1/3 such
that By C By N1, etc. Let x; be the center of B;. Then (z;) is a Cauchy
sequence, 50 z; = T € (), Bn =, B. € (N, Un)NU.

If X is Hausdorff locally compact, then for every point z and open
nbhd U of z there is an open nbhd V of z with V' compact and V C U. We
can now use the same argument as above, but with B; open such that B;
is compact, so that again (), B, # 0. 0

(8.5) Definition. Let X be a topological space and P C X. If P is comeager,
we say that P holds generically or that the generic element of X is in P.
(Sometimes the word typical is used instead of generic.)

In a nonempty Baire space X, if P C X holds geuerically, then, in
particular, P # §. This leads to a well-known method of existence proofs in
mathematics: In order to show that a given set P C X is nonempty, where
X is a nonempty Baire space, it is enough to show that P holds generically.
Also in such a space, it cannot be that both P and X\ P hold generically.

(8.6) Exercise. Show that the generic element of C([0, 1]) is nowhere differ-
entiable. (So there exist nowhere differentiable functions.)

(8.7) Exercise. Let X be a perfect Polish space. Let @ C X be countable
dense. Show that @ is F, but not Gs.

(8.8) Exercise. i) Let X be a Polish space. Recall from 4.31 that
K,(X)={K € K(X): K is perfect}

is Gs in K(X). If X is also perfect, K,(X) is dense. In particular, the
generic element of K(X) is perfect.

ii) Let X,Y be Polish and f : X — Y continuous. Show that if f(X)
is uncountable, there is a homeomorphic copy K C X of C such that f|K
is injective. In particular, there is a homeomorphic copy of C contained in

F(X).

(8.9) Exercise. Show that if G C 2N is comeager, then there is a partition
N=A4,U A4, 40N A, =0 and sets B; C A;, 1 € {0,1}, such that for
A C N, if either AN Ay = By or AN A; = By, then A € G. (Here we
identify subsets of N with their characteristic functions so we view them as
members of 2N.)
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8.C Choquet Games and Spaces

(8.10) Definition. Let X be a nonempty topological space. The Choquet
game Gx of X is defined as follows: Players I and II take turns in playing
nonempty open subsets of X

I Uo Ul

I Vo Wi

sothatUg D2 Vo 2U 2 Vi 2 ---. We say that II wins this run of the game

if N Va (=N Un) #0. (Thus Twins if (), Un (=, Vo) =0.)
A strategy for I in this game is a “rule” that tells him how to play, for

each n, his nth move Uy, given II’s previous moves Vj, ... ,Vo_1. Formally,
this is defined as follows: Let T be the tree of legal positions in the Choguet
game Gx, i.e., T consists of all finite sequences (Wy,... Wy), where W;

are nonempty open subsets of X and Wog D W, D --- D W,. (Thus T is a
pruned tree.on {W C X:W is open nonempty}.) A strategy for I in Gx is
a subtree ¢ C T such that

i) o is nonempty;

ii) if (UoVo,...,Un) € 0, then for all open nonempty V;, C Uy, (Up,
VO’ A ’Un’V".) e a;

iit) f (Un,Vo,-...Un=1,Va=1) € o, then for a unique Uy, (Uy.Vo,...,
Un—lsV —l~Un) €o0.

Intuitively, the strategy o works as follows: I starts playing Uy where
(Us) € o (and this is unique by iii)); II then plays any nonempty open Vo C
Uy, by i) (Up,Vy) € 0. Then I responds by playing the unigue nonempty
open Uy C Vy such that (Up,Vo,Uy) € o, ete.

A position (W, ...,Wy) € T is compatible with o if (Wy,...,W,) € 0.
A run of the game (Uy, Vo, U1 Vi, ...) is compatible with o if (UpVp,...)
€ [o]. The strategy o is a winning strategy for I if he wins every compatible
with o run (Up,Vp,...) (i.e., (U Vo,...) €[o] =N Un (=N, Va) =0).

The corresponding notions of strategy and winning strategy for II are
defined mutatis mutandis.

(8.11) Theorem. (Oxtoby) A nonempty topological space X is a Baire space
iff player I has no winning strategy in the Choquet game Gx .

Proof. <=: Assume X is not a Baire space, and let Uy be a nonempty open set
in X and (G,,) be a sequence of dense open sets with (),, GnNUp = 0. Player
I starts by playing this Up. If II then plays Vy C Uy, we have Vo NGy # 0,
so I can play U, = Vo N Gy C V. II plays next V) C U, and I follows by
Uz = ViNnGy C W, ete. Clearly, NUn €N,.GaN Us = 0, so we have
described a winning strategy for I.
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=: Suppose I now has a winning strategy o. Let Ug be Is first move ac-
cording to 0. We will show that Uj is not Baire. For this we will construct a
nonempty pruned subtree S C o such that for any p = (U, V4, ..., U,) € S
the set Uy, = {Un41 : (Up, Vo, ... Un, Va,Uny1) € S} consists of pairwise
disjoint (open) sets and |JU, is dense in U,. If we then let W, = |J{U, :
(Uo, Vi, - .., Up) € S}, it follows that W, is open and dense in Uy for each
n. We claim that (), W, = 0. Otherwise, if € [, W,, there is unique
(Uo, Vo, U1, V1,...) € [S] with z € U, for each n, so ), U, # 0, contradict-
ing the fact that (Up, Vy,...) € [0} and o is a winning strategy for 1.

To construct S we determine inductively which sequences from o of
length n we put in S. First 0 € S. If (Up,Vo,...,Un-1,Va-1) € S, then
U, Vo -+, Un—1, Va=1,Uy) € S for the unique U, with (Up, Vy,...,Upn_,
Va-1,Urn) € o. If now p = (Up,Vp,...,Un) € S, notice that for any
nonempty open V,, C U, if V; = U, is what ¢ requires I to play next,
we obviously have that U,y is a nonempty open subset of V;,. Let, by
an application of Zorn’s Lemma (or by a transfinite exhaustion argument),
V, be a maximal collection of nonempty open subsets V;, C Uy, such that
{V;; : Vi € V,,} is pairwise disjoint. Put in S all (Up, Vi, ..., Un, V4, V) ) with
Va €V, Then Uy = {Ungr : (Vo....,Un, Vi,Uns1) € S} = (Vi 1V, €V}
is a family of pairwise disjoint sets and |JU, is dense in U,, by the maxi-
mality of V,, since if Vo, CU, is nonempty open and disjoint from (J4,,
then V, U {V,,} violates the maximality of V. Q

(8.12) Definition. A nonempty topological space is a Choquet space if player
II has a winning strategy in Gx.

Since it is not possible for both players to have a winning strategy in
Gy, it follows that every Choquet space is Baire. (The converse fails even
for nonempty separable metrizable spaces, using the Axiom of Choice.)

(8.13) Exercise. Show that products of Choquet spaces are Choquet. Also,
open nonempty subspaces of Choquet spaces are Choquet. (It is not true
that products of Baire spaces are Baire. See, however, 8.44.)

8.D Strong Choquet Games and Spaces

(8.14) Definition. Given a nonempty topological space X, the strong Cho-
quet game G is defined as follows:

I z0,Up z1,0h

II Vo Vi
Players I and II take turns in playing nonempty open subsets of X as in
the Chogquet game, but additionally I is required to play a point z, € Un
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and II must then play Vi, C Uy, with z, € V,. So we must have Uy 2 Vg 2
0 2‘/1 2"-,$1L€Un,$n € V.
Player II wins this run of the game if (|, Vo (=), Un) # 0. (Thus I

wins if N Un (=Np Vo) = 0.)
A nonempty space X is called a strong Choquet space if player II has
o winning strategy in G%. (The notion of strategy is defined as before.)

(8.15) Exercise. Any strong Choquet space is Choquet. (The converse turns
out to be false.)

(3.16) Exercise. i) Show that all nonempty completely metrizable or locally
compact Hausdorff spaces are strong Choquet.

ii) Show that products of strong Choquet spaces are strong Choquet.

iii) Show that nonempty G5 subspaces of strong Choquet spaces are

strong Choquet.
iv) If X is strong Choquet and f : X — Y is a surjective continuous
open map, then Y is strong Choquet.

8.E A Characterization of Polish Spaces

(8.17) Theorem. Let X be a nonempty separable meltrizable space and Xa
Polish space in which X is dense. Then

i) (Oxtoby) X is Choquet <> X is comeager in X
i) (Choquet) X is strong Choquet & X is G5 in X < X is Polish.

This has the following immediate applications.
(8.18) Theorem. (Choquet) A nonempty, second countable topological space
is Polish iff it is T, regular, and strong Choquet.
Proof. By 8.17 and 1.1. ]
(8.19) Theorem. (Sierpiniski) Let X be Polish and Y separable metrizable.

If there is a continuous open surjection of X onto Y, then'Y is Polish.

Proof. Exercise. ]

Remark. Vainstein has shown that 8.19 remains true if “open” is replaced
by “closed” (see, e.g., R. Engelking [1977), 4.5.13).

Proof. (of 8.17) i) <=: This is easy, since X contains a dense G5 set in X.

=: Let & be a winning strategy for II in Gx. Fix also a compati-
ble metric d for X. As in the proof of 8.11, we can build a nonempty
pruned tree S consisting of sequences of the form (U, Vo, Uy, Vi, ..., Uy)
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or (UO,%,UI,IA/I,...,U,;,IA/,L)A, where U; are nonempty open in X and
V, are nonempty open in X, V 2 V§ 2 -, and f V; = VN X
(so that V; are nonempty open in X), then (Up,Vy,Uh,Wi,...,Uxn) or
(Uo, Vo,U1, W1, ..., Un, V3) are compatible with o, and moreover S has the
following property If p = (U, Voroo o Un_1, Vn_l) €S (allowmg the empty
sequence t00), and V, = {V, : (Uo, Voro oy Ve 1, Un, Vi) € S}, then Vp is
a family of pairwise disjoint open sets w1th UV, dense in V,—; (in X if
p = 0) and such that diam(V,,) < 27" for all V,, € V.

Let W, = U{V,. : Wo,V,...,Us,V,) € S}. Then W, is dense open
in X. We claim that (), W, C X Indeed, if z € ), Wk, there is unique
(Uo» Vo, U, Vi,...) € [S] such that = € Ny Vn. Since dlam(f/n) <27, we
actually have then that {z} = (), V». But, as (U, Vp,...) € [0], we have
N Va)NX =N, Va#0,50z€X.

ii) <: By 8.16.

=: We need the following general lemma.

(8.20) Lemma. Let (Y, d) be a separable metric space. Let U be a family of
nonempty open sets inY . ThenlU has a point-finite refinement V, i.e., V is
a family of nonempty open sets with JV = YU, VYW € VaU e U(V C V),
andVy e Y({V € V : y € V} is finite). Moreover, given ¢ > 0 we can also
assume that diam(V) <, YV € V.

Proof. Since Y is second countable, let (U,,) be a sequence of open sets such
that |, Un = UUY and ¥n3U € U(U,, C U). Furthermore, given ¢ > 0 we

can always assume that diam(Un) < e. Next let Un = U, ey Un ) w1th U

open, UL C UP*Y, and UP) C Uy. Put Vi, = Unn\ Up < Us™. First
we claim that U, Vo = U, Un: Indeed, if z € |J, Un and m is least with
z € U,,, then z € Vj,,. Clearly, V,,, C U,,. Finally, if x € Uy, then z € P
for some p,sox ¢ V,,, if m > p,n. Let V= {V;, : V,, #0}. |

Now fix a compatible metric d for X and a winning strategy o for Il in
G%. Using the preceding lemma we can now construct (as in the proof of
8.11 again) a tree S of sequences of the form (zo, (Vo, Vo) xl,(Vl,Vl),
z,) or (zo, (Vo, VO),xl,(Vl,Vl), s Zn: (Vo V), where V; is open in X, V
lsopenlnX z; € Vio lﬂX(wn;th = X), z, € V;, V.nX ¢
K, ‘/0 2 ‘/l 2 B} and ((.’IJO,X) ‘/Ov(zl)‘/o nX) ‘/l) ) is Compatlble
with o, such that S additionally has the fgllowing property: For each p =
(g, (Vu, %),x}, V1, V1), Zn-1, (Va-1,Va-1)) € S (including the empty
sequence), if V, = {V;, : (xo,(%,Vo),wl, o (Va=1,Va1),2n, (Va, V) €
S}, then X NV,_; C UVp, dlam(V y<2 " forall V, e V . and for every
teX there are at most finitely many (z,, (Va, V) with (a:o, Ve, %), ..
(Vn—lr n—l),xn;(Vn,V )) €Sandze€ V

Let W, = U{Vx : (zo, (Vo,Vh),. x,,,(v,,,v,,)) € S}. Then W, is
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open and X C W, (as we can see by an easy induction on n). It remains to
show that ), Wrn C X: Let & € [),, W,,. Consider the §ubtree S; of S con-
sisting of all initial segments of the sequences (zo, Vo, Vh), . .., n, (Va, Vi)
e § for which & € V. Since £ € (), Wy, S; is infinite. By the pre-
ceding conditions on S, it is also finite splitting. So, by Kénig’s Lemma
4.12, [S:’i:] ;é,\ 0. Sa’y (x07 (‘/07 ‘/0)! e ) € [Si] Then ((.’BO,X), VQ’ (xlr Vo N
X), Vi, (z2, ViNX),...) is arun of G compatible with 7,50, VaNX # 0,
thus, since diam(V,) < 27", ¢ € X. m]

8.F Sets with the Baire Property

Let Z be a o-ideal on a set X. If A/ B C X we say that A,B are
equal modulo Z, in symbols A =7 B, if the symmetric difference AAB =
(A\B) U (B\A) € I. This is clearly an equivalence relation that respects
complementation and countable intersections and unions.
In the particular case where T is the o-ideal of meager sets of a topo-
logical space, we write
A="B

if A, B are equal modulo meager sets.

(8.21) Definition. Let X be a topological space. A set A C X has the Baire
property (BP) if A=>U for some open set U C X.

Recall that a o-algebra on a set X is a collection of subsets of X
containing @ and closed under complements and countable unions (and
thus under countable intersections).

(8.22) Proposition. Let X be a topological space. The class of sets having
the BP is a o-algebra on X . It is the smallest o-algebra containing all open
sets and all meager sets.

Proof. Notice that if U is open, U\U is closed nowhere dense and so is
meager. Similarly, if F is closed, F\Int(F) is closed nowhere dense. Thus
U="T and F =* Int(F).

Now if A has the BP, so that A =* U for some open U, then X\ A =*
X\U =" Int(X\U), so X\ A has the BP. Finally, if each A, has the BP, say
An =" Uy, with Uy, open, then |J, An =" U, Un, so |,, An has the BP.

The last assertion follows from the fact that if A =* U, where U is
open, then with M = AAU, M is meager, and A = MAU. ]

-In particular, all open, closed, F,, and G5 sets have the BP.

(8.23) Proposition. Let X be a topological space and A C X. Then the
following statements are eguivalent:
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i) A has the BP;
#) A= GUM, where G is Gs and M is meager;
iti) A= F\M where F is F, and M is meager.

Proof. By 8.22, ii) = i) and iii) = i). For i) = ii), let U be open and F a
meager F, set with AAU C F. Then G = U\F is Gs and G C A. Also,
M = A\G C F is meager. To prove i) = iii), use ii) for X\ A. O

(8.24) Example. There is a subset A C R not having the BP.

Proof. Using the Axiom of Choice, one can show that there exists a Bern-
stein set A C R, i.e., a set such that neither A nor R\ A4 contains a nonempty
perfect set. To see this, let (Pg)¢<2ro be a transfinite enumeration of the
nonempty perfect subsets of R and find by transfinite recursion on £ < 2%
distinct reals ag,b; with ag,be € Pe. Then let A = {ag : £ < 2%} If 4
has the BP, since either A or R\A is not meager, one of them contains a
non-meager G set (by 8.23), which must therefore be uncountable and so,
being Polish, must contain a homeomorphic copy of C, a contradiction. O

8.G Localization
We localize the previous notions to open sets in a topological space.

(8.25) Definition. Let X be a topological space and U C X an open set.
We say that A is meager in U if ANU is meager in X. (Note that this is
equivalent to saying that ANU is meager in U with the relative topology.)
Then A is comeager in U if U\A is meager, which means that there is a
sequence of dense open in U sets whose intersection is contained in A. If
A is comeager in U, we say that A holds generically in U or that U forces
A, in symbols
‘ UlFA.

Thus A is comeager iff XIFA.

Note that
UCV,AC B= (VIFA=UIB).

We now have the following important fact.

(8.26) Proposition. Let X be a topological space and suppose that A C X
has the BP. Then either A is meager or there is a nonemply open set
U C X on which A is comeager (i.e., XIF(X\A) or there is nonempty open
U C X, with Ul A). If X is a Baire space, exactly one of these alternatives
holds.
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Proof. Let AAU = M, with U open and M meager. If A is not meager,
then U # 0 and A is comeager in U since U\A C M. O

A weak basis for a topological space X is a collection of nonempty
open sets such that every nonempty open set contains one of them. It is
clear that in the previous result U can be chosen in any given weak basis.

We can now derive the following formulas concerning the forcing rela-
tion UIFA. For convenience we put for A C X,

~A=X\A.

(8.27) Proposition. Let X be a topological space.
i) If A, € X, then for any open U C X,

Uk} 4n & VR(UIFA,) .
n

) If X is a Baire space, A has the BP in X and U varies below over
nonempty open sets in X, and V over a weak basis, then

Uk ~ A& YV CU(VIKA)
(where VI A iff it is not the case that VIFA).

Proof. Part i) is straightforward. For ii), note that if U C X is open, then
ANU has the BP in U, so this follows by applying 8.26 to U. O

(8.28) Exercise. If X is a Baire space, the sets A, C X have the BP, and
U below varies over nonempty open sets in X, and V, W over a weak basis,
then
Ulk| JAn & VYV CUIW C VIn(WiF4,).
n

Next we compute a canonical open set equal modulo meager sets to a
given set with the BP.

(8.29) Theorem. Let X be a topological space and A C X. Put
U(A) =|J{U open: UIFA}.

Then U(A)\A is meager, and if A has the BP, A\U(A), and thus ADU(A),
is meager, so A =" U(A).

Proof. Let (U;)ic; be a maximal pairwise disjoint subfamily of {U open:
Ulr A} Let W = U,c; Ui, so that W is dense in U(4), i.e., U(A) CW.
Then U(A)\W C W\W is meager. Since A is comeager in each U; and
these sets are pairwise disjoint, it follows that A is comeager in W. So
U(ANA C (U(A)\W) U (W\A) is meager.
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To prove the second assertion, let U be open with A =* U. Then U\ 4
is meager, so UIFA, i.e., U C U(A). Thus, A\U(A) C A\U is meager too.
]

We can express this also by the following formula. Let X be a topo-
logical space, and suppose A C X has the BP. Then for the generic x € X,

z € A © 3 open nbhd U of z(UIFA).

(8.30) Exercise. A set U in a topological space X is called regular open if
U = Int(U). (Dually, a set F is regular closed if ~ F is regular open or
equivalently F = Int(F).) Let A C X. Show that U(A) is regular open,
Moreover, if X is a Baire space and A has the BP, then U(A) is the unique
regular open set U with A =*U. Thus U(4) =* Aand A=* B U(A) =
U(B), i.e.. U(A) is a selector for the equivalence relation =*, on the sets
with the BP.

Let BP(X) denote the g-algebra of subsets of X with the BP and let
MGR(X) denote the o-ideal of meager sets in X. Let [A]= {B: B =* A}
be the =*-equivalence class of A, and BP(X)/MGR(X) be the quotient
space {[A] : A € BP(X)}. If we let RO(X) denote the class of regular
open subsets of X, the preceding shows that we can canonically identify
BP(X)/MGR(X) with RO(X), for Baire spaces X.

(8.31) Exercise. Assume X is a second countable Baire space. Show that the
o-ideal MGR(X) has the countable chain condition in BP(X), i.e., there is
no uncountable subset A C BP(X) such that A ¢ MGR(X) for any A € A,
and AN B € MGR(X) for any two distinct A, B € A.

(8.32) Exercise. Let X be a topological space. Equip the quotient space
BP(X)/MGR(X) with the partial ordering

[4] < [B] & A\B € MGR(X).

Show that this is a Boolean ¢-algebra, i.e., a Boolean algebra in which
every countable subset has a least upper bound. (For the basic theory of
Boolean algebras, see P. R. Halmos [1963].) If, moreover, X is a Baire space,
show that it is a complete Boolean algebra, i.e.. one in which every subset
has a least upper bound. This is called the category algebra of X, denoted
as CAT(X). Show that it is uniquely determined up to isomorphism if X
is nonempty perfect Polish.
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8.H The Banach-Mazur Game

We will characterize meagerness in terms of games.

Let X be a nonempty topological space and let A C X. The Banach-
Mazur (or **-game) of A, denoted as G**(A) (or as G**(4, X) if there is a
danger of confusion) is defined as follows:

Players I and II choose alternatively nonempty open sets with Up 2
I U U

II Vo 12
Player II wins this run of the game if (), V, (=, Ur) C A.

(8.33) Theorem. (Banach-Mazur, Oxtoby) Let X be a nonempty topological
space. Then

i) A is comeager < II has a winning strategy in G**(A).

i) If X is Choquet and there is a metric d on X whose open balls are
open in X, then A is meager in a nonempty open set & I has a winning
strategy in G**(A).

Proof. i) =: Let (W,) be a sequence of dense open sets with (), W, C A.
Let Il play V, = U, NW,. «: Exactly as in the proof of 8.11.

ii) =: If A is meager in the nonempty open set Uy, let (W,) be dense
open in Uy with (), W,, € ~ A. Since Uy is Choquet, I has a winning
strategy in the game

I U, U,

II Vo Vi

U2V 20U, 2 ---; Ui, V; open nonempty; I wins iff (), U, # 0. (Note
that II starts first here.) Call such a strategy o. We describe now a strategy
for I in G**(A): He starts by playing Us. Then II plays Vo C Up. Let Vg =
Wy N Vy. Player I responds by playing the unique U, so that (Vy,U)) € 0.
Next II plays V} C U,. Let V{ = V; N W). Player I responds by playing
the unique U; such that (Vy,Uh, V{,Uz2) € o, etc. Then (), Un # 0 and
NUn=N, Ve CNW.C~A4,50N,UnZA,ie.,I wins.

<=: Let & be a winning strategy for I in G**(A). Denote by Uy the first
move of [ according to 0. We claim that we can find a new winning strategy
o’ for I such that o' also starts by Uy and if in the nth move it produces
U, then diam(U,) < 27", for all n > 1 (diameter here is in the metric d).
We describe o’ informally: I starts by playing Uy. If IT next plays Vy C Uy,
choose Vj C Vp of diameter < 2! and respond by o, pretending that II
has played V{, to produce Uy C Vy. Thus U, C V; and diam(U,) < 271
Next II plays Vi C U,. Let V{ € Vi have diameter < 272 and respond by
o, pretending that II has played V{, V/ in his first two moves, to produce
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Us C V{. Thus Uz C Vj and diam(U>) < 272, etc. Using ¢’ instead of ¢ one
now guarantees that (), Uy is a singleton and thus is contained in ~ 4, i.e.,
N, Urn €~ A. Asin i) (and 8.11), it follows now that A is meager in Uy. O

(8.34) Definition. A game is determined if at least one of the two players
has a winning strategy.

(8.35) Exercise. Assume X is as in 8.33 ii). Let A C X. Show that A has
the BP iff for all open U the game G**(~ AU U) is determined.

(8.36) Exercise. Let X be a nonempty topological space. Consider the vari-
ant of the Banach-Mazur game G**(A) in which players play open sets in
some fixed weak basis instead of arbitrary nonempty open sets. Show that
this variant is equivalent to G**(A). (Two games G, G’ are equivalent if |
(resp. IT) has a winning strategy in G iff I (resp. II) has a winning strategy
in ')

Use this to show that for X = AN, the game G**(B) for B C X is
equivalent to the following gaine:

I So 82

II 81 83

s € AN 5. £ 0; Il wins iff s5"51”... € B.

8.1 Baire Measurable Functions

(8.37) Definition. Let X,Y be topological spaces. A function f:X — Y is
Baire measurable if the inverse image of any open set in Y has the BP in
X.

If Y is second countable, it is clearly enough to consider only the inverse
images of a countable basis of Y.

For example, every continuous function is Baire measurable. If Y is
metrizable, any function that is a pointwise limit of a sequence of continuous
functions is Baire measurable.

(8.38) Theorem. Let X,Y be topological spaces and f:X — Y be Baire
measurable. IfY is second counlable, there is a set G C X that is a countable
intersection of dense open sets such that f|G is continuous. In particular,
if X is Baire, f is continuous on a dense Gs set.

Proof. Let {U,)} be a basis for Y. Then f~1(U,) has the BP in X, so let
V, be open in X and let F,, be a countable union of closed nowhere dense
sets with f~Y(U,)AV,, C F,. Then G, = X\F, is a countable intersection
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of dense open sets and so is G = (), Gn. Since f~'(U,) NG = V,.NG, f|G
is continuous. O

(8.39) Exercise. Let X be a nonempty perfect Polish space, Y a second
countable space, and f : X — Y be injective and Baire measurable. Then
there is a homeomorphic copy of C contained in f(X).

8.J Category Quantifiers

It is sometimes convenient to use the following logical notation: When A C

X we let
Alz) oz e A.

We view A here as a property, with A(x) meaning that = has property A.
(8.40) Notation. Let X be a topological space and A C X. Let

V*rA(x) & A is comeager,

I*zA(x) & A is non-meager.
Similarly for U C X open, let

V*z € UA(z) & A is comeager in U,
I*z € UA(x) & Ais non-meager in U .

Thus (denoting negation by —)
-V'z € UA(z) & F*z € U ~ A(x).

We read V*x as “for comeager many” z and 3*z as “for non-meager many ”
z.

With this notation, 8.27 (under the appropriate hypotheses) reads:
i) V*2¥nA,(z) © VnvV*zA,(z),
ii) V’'z € UA(z) & VV C Uz € VA(x)

(we switched A and ~ A here).

8.K The Kuratowski- Ulam Theorem

We now consider sets in product spaces.

(8.41) Theorem. (Kuratowski-Ulam) Let X.Y be second countable topolog-
ical spaces. Let AC X x Y have the BP. Then

) V'z(A; = {y:A(z,y)} has the BP in Y). Similarly, V*y(4¥ =
{z:A(z,y)} has the BP in X).



54 1. Polish Spaces

i) A is meager © V*z(A; is meager) & V*y(AY is meager).

i) A is comeager & V*z(A is comeager) & V*y(AY is comeager)
(i.e., V*(z,y) Az,y) & VaV*'yA(z,y) & V'YV zA(z,y)).

Proof. First we need the following lemma.

(8.42) Lemma. Let X be any topological space and Y a second countable
space. If F.C X x Y is nowhere dense, then V*x(Fy is nowhere dense).

Proof. We can assume that Y # @ and F is closed. Let U = (X x Y)\F. It
is enough to show that V*z(U, is dense). Let {V,} be a basis for Y, V;, # 0.
Then Un, = projx(U N (X x V3)) is dense open in X, since if G C X is
nonempty open, then UN(G x V,,) # 0. If x € (), Un, then U, NV, # 0 for
all n, i.e., U, is dense. ]

It follows immediately that if M C X x Y is meager, then V*z(M, is
meager).

Let A C X xY now have the BP, so A = UAM, with U open, M
meager. Then A, = U, AM,, so V*z(A, has the BP). Thus we have proved
i) and =) of ii). (Clearly, ii) < iii).)

(8.43) Lemma. Let X, Y be second countable. If A C X, BCY, then Ax B
is meager iff at least one of A, B is meager.

Proof. If A x B is meager, but A is not meager, there is x € A with
(A x B); = B meager (by (=) of ii)). Conversely, if A is meager and
A =, Fn, with F, nowhere dense, then A x B = |J,(F x B), so it is
enough to show that F,, x B is nowhere dense. This is clear since if G is
dense open in X, G x Y is dense open in X x Y. O

Finally, let A € X x Y have the BP and be such that V*z(A, is
meager). If A = UAM, U open, M meager, and A is not meager, U is
not meager, so there are open G C X, H C Y with G x H C U and
G x H not meager (since X,Y are second countable). So by 8.43, G, H
are not meager. So there is £ € G with A, meager and M, meager. Since
H\M, CU\M, CU,.AM, = A;, we have H C A, U M,, so H is meager,
which is a contradiction. 0

Theorem 8.41 fails if A does not have the BP. For example, using the
Axiom of Choice, there exists a non-meager A C [0,1)? so that no three
points of A are on a straight line.

(8.44) Exercise. Show that if X,Y are second countable Baire spaces, so is
XxY.

(8.45) Exercise. Let X,Y be topological spaces and f : X — Y be open
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and continuous. Then the inverse image of a dense set is dense and of
a comeager set is comeager. In particular, this applies to the projection
function projx : X xY — X.

8.L Some Applications

(8.46) Theorem. (First topological 0-1 law) Let X be a Baire space and G
a group of homeomorphisms of X with the following homogeneity property:
IfU,V are nonempty open sets in X, there is g € G such that g(U)nV #0.
Let A C X be G-invariant (i.e., g(A) = A for g € G). If A has the BP,
then A is either meager or comeager.

Proof. If this fails, there are nonempty open sets U,V with UlF A, VIF ~ A.
Let g € G besuch that W = g(U)NV # 0. Since g(A) = A and g(U)l-g(4),
we have WIFA and Wk ~ A, so W is meager, which is a contradiction. O

Given a sequence (X;) of sets, a subset A C [],, X» is called a tail set
if (z,,) € A and if y, = z, for all but finitely many n implies that (y,,) € A.

(8.47) Theorem. (Second topological 0-1 law) Let (X,) be a sequence of
second countable Baire spaces. If A C [],, Xn has the BP and is a tail set,
then A is either meager or comeager.

Proof. Assume A is not meager. Then for some n and nonempty open sets
U, C X;, 0 <i<n—1, we have that A is comeager on l'];:ol U; x[152,, X
Let Y = H;:nl X, Z =TI;2, Xi, so that X =Y x Z under the obvious
identification of z = (x;) with (y,2), where ¥ = (Z:)icn, 2 = (Zi)i>n.
To show that A is comeager in X it is enough, by the Kuratowski-Ulam
Theorem, to show that V*yv*zA(y,z). Fix z; € U; (0 < i < n) with
V*2A((Z:)i<n, z), which.is possible, since A is comeager in H?;OI U, x Z,s0
vy € [Ticy Ui V*2A(y, 2), and [[7=,) U, is Baire, by 8.44. Since A is a tail
set, this shows that YyV*2A(y, z), and thus we are done. O

(8.48) Theorem. Let X be nonempty, perfect Polish. Let < be a wellordering
of X. Then < C X? does not have the BP.

Proof. Assume < has the BP. If < is meager, then V*z(<, and <* are
meager), so for some z, <, and < are meager and X =<, U <% U{z} is
meager, a contradiction.

So < is not meager. Then for some z, <* is not meager and has the
BP. Let z9 be the <- least such. Put ¥ = <™ and <’=< |Y (= < NY?).
Since <'=< N (X xY)N(Y x X) and X x Y, Y x X have the BP (by
8.43), clearly <’ has the BP. By the minimality of zg, V*z((<’) is meager).
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Thus <’ is meager and V*z(<, is meager). So there is z € Y with <, (<)*
meager. Then Y =</ U (<’)* U {z} is meager, a contradiction. u]

(8.49) Exercise. Let X be a Polish space. Let (I, <) be a wellordered set
and (A;);c7 a family of meager sets in X. Let A = |J,_; 4;. Consider the
relation £ <* y defined by:

i€l

z,y € A & (the <-leasti withz € A;) < (the <- least j with y € A)).

If <* has the BP (in X?), then A is meager. (Note that this is a strength-
ening of 8.48.)

(8.50) Exercise. For any set X, Pow(X) denotes its power set:
Pow(X)={A: AC X}.

An ultrafilter on X is a set ¥ C Pow(X) such that &/ # 0 and i) A €
U BDA=Bel i) ABeU=ANBel;ii) A¢U o ~Acl,
An ultrafilter is principal if for some z € X, {z} € U or, equivalently,
U={A:z € A} for some z € X.

Let 2/ now be an ultrafilter on N. View U as a subset of 2N, If U is
non-principal, then show that &/ does not have the BP in 2V,

8.M Separate and Joint Continuity

(8.51) Theorem. Let X,Y,Z be metrizable spaces and f: X xY — Z. As-
sume [ is separately continuous (i.e., forz € X,y €Y, f.:Y — Z given by
fz(¥) = f(zy) and f:X — Z given by f¥(x) = f(x,y) are both continu-
ous). Then there is a comeager set G C X x Y such that for ally e Y, GY
is comeager in X and f 1s continuous at every point of G.

Proof. Let dy,dz be compatible metrics for Y, Z. Let
Fok = {(z,y) : Yu,v € B(y,27")dz(f(z.v), f(z,v)) < 27"]}.

Since f; is continuous for each x, X xY =), U, Fn,x. We claim that F, x
is closed: Let (z;,¥:) € Fn ks (iv¥:) — (2,9). Fix u,v € B(y,27%) and 4
such that for i > 49, u,v € B(y;,27%). For such i, dz(f(x:,u), f(xi,v)) <
27", so, as f*, f are continuous and z; — 7z, dz(f(x,u), f(z,v)) < 27"

Now let
D= UU{(% y):iz€ Ffi,k\lnt(Ff{,k)}.
n k
Then D C U, Up(Fr k\Int(F ), and so D is meager, and D¥ is also

meager for all y. Let G = (X x Y)\D. It is enough to verify that f is
continuous at each (z,y) € G. Let ¢ > 0 and n be such that 27" < e
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Let k be such that (z,y) € Fnx. Then z € FJ \D¥ C Int(F})).
Since fY is continuous, let V be open with z € V C FY, and for
seV, dz(f(x,y),f(s,y)) < €. Then for s € V, t € B(y,27%), we have
dz(f(@, ), F(s,1) < dz(f(2,9), f(5,9)) + dz(f(5,9), f(5,1)) < 2e, since
seFY, and t€ B(y27"). o

I. Namioka [1974] has shown that if, for example, X,Y are also com-
pact, then we can take G to be of the form H x Y for H comeager in

X.
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9. Polish Groups

9.A Metrizable and Polish Groups

A topological group is a group (G, ) together with a topology on G such
that (z,y) — zy~! is continuous (from G? into G).
First we have the following metrization theorem.

(9.1) Theorem. (Birkhoff, Kakutani) Let G be a topological group. Then
G is metrizable iff G is Hausdorff and the identity 1 has a countable nbhd
basis. Moreover, if G is metrizable, G admits a compatible metric d which
is left-invariant: d(zy,z2) = d(y,2).

Similarly, of course, a metrizable group admits a right-invariant metric,
However, in general it may not admit a (two-sided) invariant metric. A
necessary and sufficient condition for that is the existence of a countable
nbhd basis {U,} at 1 such that gU,g™! = U,, for all g € G, n € N.
Groups that admit compatible invariant metrics include the abelian and
the compact groups (see E. Hewitt and K. A. Ross [1979], (8.6)).

If d is a left-invariant compatible metric on G, cousider the new metric

p(.’II, y) = d(:l:, y) + d(x_l’ y_l)’

It is easy to see that it is also compatible (but not necessarily left-invariant).
If (G, p) is the completion of (G, p), then the group multiplication extends
uniquely to G so that G becomes a topological group (with compatible met-
ric p). Thus every metrizable topological group can be densely embedded in
a completely metrizable one (see C. A. Rogers et al. [1980], pp. 352-353).

(9.2) Definition. A Polish group is e topological group whose topology is
Polish.

Every separable metrizable group is thus densely embedded in a Polish
group. Also, every Hausdorff, second countable, locally compact group is
Polish.

A Polish group admits a compatible complete metric, but it may not
admit a left-invariant compatible complete metric.

9.B Examples of Polish Groups

1) All countable groups with the discrete topology.

2) (R, +), (R* = R\{0},), (T,-), and (X, +), where X is a separable
Banach space.

3) If (X,) is a sequence of Polish groups, so is [, X». An example
is ZY (which is topologically the same as C), the so-called Cantor group.
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Identifying = € ZY with the subset of N, of which it is the characteristic
function, we have T + y = zAy.

4)Let K=Ror C. Any set S of n x n matrices will be considered as a
subspace of K™’ . Let GL(n,K) be the group of no§21~singula.r n x n matrices
over K. Then GL(n,K) is an open subspace of K™, so it is a Polish locally
compact group. Let SL(n, K) be the subgroup of GL(n,K) cons;isting of all
matrices with determinant 1. This is a closed subspace of K", and so is
also a Polish locally compact group. _

For an n x n matrix A, denote by A* = (A)* its adjoint matrix. The
unitary group U(n) consists of all A € GL(n,C) with AA* = A*A =1
Viewing C"* as an n-dimensional Hilbert space, we can view U(n) as the
group of linear isometries of C™. The orthogonal group O(n) is defined sim-
ilarly using R instead of C. The groups SU(n) and SO(n) are also defined
analogously to SL(n,K). Thezgroups U(n), O(n), SU(n), and SO(n) are
closed bounded subsets of K™, so they are Polish compact groups.

5) More generally, all (second countable) Lie groups are Polish locally
compact.

6) Let H now be a separable, infinite-dimensional Hilbert space, such
as ¢2. Let L(H) be the algebra of bounded linear operators T : H — H.
For T € L(H) its adjoint T* : H — H is the bounded linear operator
defined by (z,T*y) = (Tz,y). An operator T for which TT* =T*T =1 is
called unitary. This is the same as saying that T is a linear isometry of H.
Unitary operators form a group called the unitary group, U(H), if H is a
complex space and the orthogonal group, O(H), if H is a real space. This
group is a subspace of the unit ball L,(H) of L(H), and it turns out that
the strong topology (see Example 5 in Section 3.A) and the weak topology
(see Exercise 4.9) agree on U(H) and O(H). With this topology U(H) and
O(H) are Polish groups (as they are G5 subsets of L,(H) with the strong
topology). A compatible complete metric is

d($,T) =Y 27" N(|ISzn — Taall + 1" 2w — T*2nll),

n=0

where {z,,} is dense in the unit ball of H.
(9.3) Exercise. Show that U(H) and O(H) are not locally compact.

7) Let S, be the group of permutations of N. With the relative
topology as a subset of A, it is a topological group and it is a Pol-
ish group since S, is a Gs set in N. A compatible complete metric is
P(z,y) = d(z,y) +d(x~!,y~ "), where d is the usual metric on ' = NN (see
Section 2.B). Again, S, is not locally conpact.

More generally, consider a structure A = (A4, (R:)ie1, (f;)jeJ, (k) kek)
(in the sense of model theory) consisting of a set A4, a family of relations
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(Ri)ier, operations (fi);cs, and distinguished elements (cx)rck on A. As-
sume A is countably infinite. Let Aut(.A) be the group of automorphisms
of A. Thinking, without loss of generality, of A as being N, Aut(A) is 3
closed subgroup of S, so again Polish. (The group S is just the group
Aut(A), where A = (N), the trivial structure on N.)

8) Let X be a compact metrizable space. Let H(X) be the group
of homeomorphisms of X. Then H(X) C C(X, X), and with the relative
topology it is a topological group. Since H(X) is G in C(X, X), it is a Po)-
ish group. A compatible complete metric is p(f, 9) = du(f. 9)+du(f~1, g7 1),
where d,, is the sup metric on C(X, X). Again, H(X) is in general not lo-
cally compact, for example, for X = [0, 1].

9) Let (X, d) be a complete separable metric space. Denote by Iso( X, d)
the group of its isometries. Put on Iso(X, d) the topology generated by the
functions f — f(x), for z € X. This is a Polish group with a compatible
complete metric given by

5(f,g)=§2_n_l< d(f@n)y9(@n)) | AU @n),97 (@n) )
n=0

1+d(f(zn),9(zn)) ~ 1+d(f~"(2n), 971 (zn))
where {z,} is dense in X.

(9.4) Exercise. If (X, d) is a compact metric space, show that Iso(X. d) is a
compact subgroup of H(X).

(9.5) Exercise. Let G be a graph theoretic tree (see 4.13). If G is locally
finite, then Aut(G) is locally compact.

(9.6) Exercise. Let H be a Polish group and G C H a subgroup of H. Show
that if G is Polish (in the relative topology, that is, a Gs set in H), then G
is closed in H.

(9.7) Exercise. Let Z be an ideal on N. View Z as a subset of 2N identifying
a set with its characteristic function. Show that if 7 is G5, then it is closed.
Show that the Fréchet ideal, Zp, = {A C N: A is finite}, is F, but not Gs.

9.C Basic Facts about Baire Groups and Their Actions

A topological group is Baire if it is Baire as a topological space. Such groups
have a number of interesting properties, which therefore also hold for all
Polish groups.

(9.8) Proposition. Let G be a topological group. Then G is Baire iff G is
non-meager.
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Proof. Assume G is not meager. Let U be a nonempty open set. If U is
meager, so is gU for any ¢ € G, so G is a union of a family of open meager
sets. Since for U meager open, U|- 0, it follows from 8.29 that U(0) = G,
so G is meager. O

(9.9) Theorem. (Pettis) Let G be a topological group. If A C G has the
Baire property and is non-meager, the set A'A (= {z7'y: z.y € A})
contains an open nbhd of 1.

Proof. Let U be nonempty open with AAU meager. By the continuity of
zy~!, let g € G and V an open nbhd of 1 be such that gVV-1 CU. So
gV CUNUh, forh € V. We will now show that V C A~! A, by showing that
for all h € V, ANAh # 0. Indeed, if h € V, we have (UNUR)A(AN AR) C
(ULA)L ((UAA)R), so (UNUR)A(AN Ah) is meager. If AN Ah is empty,
then (U NUk) is meager, and then so is gV, a contradiction to the fact that
G is Baire (by 9.8). 0

(9.10) Theorem. Let G,H be topological groups and ¢:G — H a homomor-
phism. If G is Baire, H is separable, and ¢ is Baire measurable, then ¢ is
continuous.

Proof. It is enough to show that ¢ is continuous at 1. Fix an open nbhd U of
1 € H.Let V be an open nbhd of 1 € H such that V-V C U. Let {h,} be
dense in H, so that, in particular, J,,(h.V) = H. Thus |J,, o~ (h.V) = G,
so for some n, p~!(h,V) is non-meager. By 9.9, (¢~ 1(h,V)) o~ (h V)
contains an open nbhd of 1 € G. But clearly, (¢~ (h,V)) '~ (A, V) C
e (VT'V) C ™' (U). o

(9.11) Exercise. Let G be a topological group. Let H C G be a subgroup
that has the Baire property and is not meager. Show that H is clopen.
Show also that every proper subspace of a Banach space which has the
Baire property is meager.

(9-12) Exercise. Let f : R — R be Baire measurable and satisfy the func-

tional equation f(z +y) = f(z) + f(y). Show that for some a € R, f(x) =
az.

(9.13) Definition. Let G be a group and X a set. An action of G on X is a
map (9,z) € G x X — g.x € X such that 1.z = z, (gh).x = g.(h.x).

Thus for each g € G, the map x v« g¢.x is a bijection of X with itself
with inverse x — ¢~ '.x. The map that sends g to v ¢.x is a homomor-
phism of G into the group of permutations of X.

If G,X are also topological spaces, the action is continuous if it is
continuous as a function from G x X into X . In this case we have a homo-
morphism of G into the group of homeomorphisms of X .
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(9.14) Theorem. Let G be a group with a topology that is metrizable and
Baire, such that for each g € G the function h v gh is continuous. Let
X be a metrizable space and (g,x) — g.x an action of G into X which is
separately continuous (i.e., the maps g+ g.x forz € X,z — g.x forg e G
are continuous). Then the action is continuous.

Proof. Fix (go,z9) € G x X. By 8.51 the map (g,z) — g.r is continuoug
at (g,z0) for comeager many g. So let hy be such that (g9,2) — g.2 is
continuous at (kg o). Since 9.z = (gohg').(hogy '¢.x), the map (g, z)
g.x is continuous at (gg, Zo)- O

{(9.158) Corollary. Let G be a group with a topology that is metrizable and
Baire. Assume g — g~} is continuous and (g,h) — gh is separately contin-
uous. Then G is a topological group.

Proof. Let G act on itself by (g, h) — gh. Q

Remark. In 9.15, if the topology is Polish one can drop the hypothesis
that the inverse is continuous (see 14.15). It can also be shown that this
hypothesis can be dropped if the topology is Hausdorff locally compact (see
C. A. Rogers et al. [1980], pp. 350-352).

(9.16) Exercise. i) Let G be a group with a metrizable Baire topology
in which multiplication is separately continuous and let X be separable
metrizable. Let (g, ) — g.z be an action of G on X, which for each ¢ is
continuous in x and for each x is Baire measurable in ¢g. Show that this
action is continuous.

ii) Let G, H be groups with metrizable topologies in which multiplica-
tion is separately continuous. Assume G is Baire and H is separable. Then
any homomorphism ¢ : G — H that is Baire measurable is continuous.

(9.17) Theorem. (Miller) Let G be a topological group such that G and all its
closed subgroups are Baire, X a T\ second countable space, and (g,z) — g.z
an action of G on X. Assume that for a given x € X, the map g — g.x
restricted to any closed subgroup H C G is Baire measurable on H. Then
the stabilizer G, = {g € G:g.x = z} is closed.

Proof. Clearly, G, is a subgroup of G as is its closure H = G,. By our
hypothesis, if we restrict the action to H it has the property that A — h.z
is Baire measurable on H for any z € X. So, replacing G by H if necessary,
we can assume that G, is dense in G. From this we want to conclude that
G, =G.

If G, is non-meager, we are done by 9.11 (since G, has the BP, as points
are closed in X). So assume G is meager. Let {V,,} be an open basis for
X and note that, since X is T}, {V,} separates points in X (i.e., for each
z,y € X with z # y, there is n with z € V,,, y ¢ V,,). Let f(g9) = 9.z, and
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put An = f~Y(V4), so that A, has the BP in G. Moreover, 4,h = A, if
h € G;. Since gz = h.x & f(g)=f(h) ®Vn(g€ A, & h € A,), we have
ren ={An:9 € A, }. By applying 8.46 to the group of homeomorphisms
of G induced by right multiplication by elements of G, we have that each
A, is either meager or comeager. Since ¢G; is meager, there is n with
g € A, and A, meager. So G = {4, : A, is meager}, so G is meager,
which is a contradiction. 0

9.D Universal Polish Groups

We have seen in 4.14 that the Hilbert cube IN has an important universality
property: Every Polish space is a subspace of IN (up to homeomorphism).
We prove here that the Polish group of homeomorphisms H(IV) of IN has
a similar property among all Polish groups.

Given two topological groups G, H, we call them isomorphic if there
is an algebraic isomorphism 7 : G — H that is also a homeomorphism.

(9.18) Theorem. (Uspenskii) Every Polish group is isomorphic to a (nec-
essarily closed) subgroup of H(IN).

Proof. For a separable Banach space X, let LIso(X) be the group of linear
isometries of X. This is a closed subgroup of Iso( X, d), where d is the metric
induced by the norm of X, so it is Polish.

Now let G be an arbitrary Polish group. First we will find a separa-
ble Banach space X such that G is isomorphic to a (necessarily closed)
subgroup of LIso(X).

Let d be a bounded left-invariant mettic compatible with the topol-
ogy of G. Given g € G, associate with it the bounded continuous map
fo : G — R given by fy(h) = d(g,h). Let C,(G) be the Banach space
of bounded continuous real-valued functions on G with the sup norm
[Ifllco = sup{|f(z)| : z € G}. (It is not necessarily separable.) Let X be the
closed linear subspace of Cp(G) generated by the functions {f, : ¢ € G}.
Then X is separable. Every g € G determines a linear isometry T, : X — X
given by To(f)(h) = f(g~'h). It is easy now to check that g — T, is an-
isomorphism of G with a closed subgroup of Llso(X).

Now let K = By(X*) be the unit ball of the dual X* of X with the
weak™-topology. By 4.7,- K is compact metrizable. For § € LIso(X), let
S* € Llso(X*) be its adjoint, i.e., (z,S*z*) = (Sz,z*). Then S*|K €
H(K). For T € LIso(X), let h(T) = (T~")*|K € H(K).

Claim. The map h is an isomorphism of LIso(X) with a (necessarily closed)
subgroup of H(K).

Proa.f. It is easily an algebraic isomorphism. We will show next that it is
continuous. If T,, — T and d is the metric on K given in 4.7, we will verify
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that d(h(T,)(z*), A(T)(z*)) — O uniformly on z* € K, or equivalently
Yom 2T (@ m), %) — (T (%m),2*)| — 0 uniformly on z* € K,
where {z,,} is dense in the unit ball of X. But this is easy, since T,,(z,,) —
T (xm), for all m.

Finally, we check that h™? is continuous. Let h(T;,) — A(T) (in H(K)),
so that d(h(T,)(z*), h(T)(z*)) — O uniformly on z* € K. In particular,
KT Y (xm), ) — (T~ H(@m),z*)| — O uniformly on z* € K, for any m. To
see that T,, — T, or equivalently T, — T, it is enough to check that
T Y (xm) = T~ @m), for all m, ie., ||(T7' =T~ 1) (zm)|| = 0, for all 1. But
T =T @) | = ST (5m), 3%) — (T~ (5m), 27| ° € K} — 0
for any m.

We use now the following result in infinite-dimensional topology (see
C. Bessaga and A. Pelczyniski [1975)).

(9.19) Theorem. (Keller’s Theorem) If X is a separable infinite-dimensional
Banach space, B\(X*) with the weak”-topology is homeomorphic to the
Hilbert cube IV.

If X is infinite-dimensional, we are done. Otherwise, X is finite-
dimensional, so K = B,(X™) is homeomorphic to I" for some n. Then
G is isomorphic to a subgroup of H(I"™), which is easily isomorphic to a
subgroup of H(IV), and the proof is complete. 0



CHAPTER I1
Borel Sets

10. Measurable Spaces and Functions

10.A Sigma-Algebras and Their Generators

Let X be a set. Recall that an algebra on X is a collection of subsets of X
containing @ and closed under complements and finite unions (so also under
finite intersections). It is a o-algebra if it is also closed under countable
unions (so also under countable intersections). Given £ C Pow(X), there is
asmallest o-algebra containing £, called the o-algebra generated by £ and
denoted by o(£). Also, £ is called a set of generators for ¢(£). A o-algebra
is countably generated if it has a countable set of generators.

(10.1) Theorem. Let X be a set.

i) For any £ C Pow(X), o(€) is the smallest collection of subsets of
X containing 0, £, and ~ € (= {~A:A € €}) and closed under countable
intersections and unions.

.ii)- Let A C Pow(X) be an algebra on X. Then o(A) is the small-
est monotonically closed class of subsets of X containing A, where M C
Pow(X) is monotonically closed if for any decreasing (resp., increasing)
sequence (A,), where A, € M, [, An € M (resp., U, An € M).

ii) (The m — X theorem) Let P C Pow(X) be closed under finite inter-
sections (a w-class). Then o(P) is the smallest A\-class containing P, where
‘£ C Pow(X) is a A-class if it contains X and is closed under complements
and countable disjoint unions.
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w) Let & C Pow(X). Then o(£) is the smallest class of subseis of
X containing 0, £, and ~ £ and closed under countable intersections and
countable disjoint unions.

Proof. i) Let S be the smallest such class. Clearly, S C o(€). Let S’ = {A
X : A~ A€ S}. Then &' is a o-algebra containing £, so 6(£) C S’ C S,

ii) Let M be the smallest monotonically closed class containing A. [t
is enough to verify that if A, B € M then A\ B,AU B € M. Indeed,
if this holds, M is closed under complements and countable unions, since
Un A, = Un(Ao U---UA,-).

For AC X, let M(A)={B:A\B,B\A,AUB € M}. Then M(A) is
monotonically closed. If A € A, then A C M(A), so M C M(A). Thus if
B e M, B € M(A), so A€ M(B). Therefore, A C M(B) for all B e M
(i.e., M C M(B) for all B € M), and we are done.

iii) Let £ be the smallest A-class containing P. We will show that it
is an algebra. It will then follow that it is a o-algebra, since |, A, =
U, (Au\Uic, 4:) and the latter is a pairwise disjoint union.

For any A C X, let £(A) = {B: AN B € L}. Then L£(A) is a A-class
for any A € L since if ANB € £, then A\ B= ~ ((~ A)U(ANB)) € L. So
ifAeP, PCL(A),so L.C L(A). Thusif Be L, A€ L(B),soP C L(B)
and therefore £ C £(B). It follows that if A,B € £, then ANB € L.

iv) Let R C Pow(X) be the smallest class containing @, £,~ £ and
closed under countable intersections and countable pairwise disjoint unions.
Let " = {Ae€ R:~ A€ R} Then £ C R/, and R’ is closed under
complements. So it is enough to show that R’ is closed under countable
unions. Since |J, An = Un(An\U;cn 4i), it is enough to show that R’
is closed under finite unions. Let A,B € R’. Then AUB = (A\ B)U
(B\ A) U (AN B) and this is a disjoint union, so AU B € R. But also
~(AUB)=(~A)N(~B)e R,s0 AUBEeR' 0

10.B Measurable Spaces and Functions

A measurable (or Borel) space is a pair (X,S), where X is a set and § is
a g-algebra on S. The members of S are called measurable.

A subspace of (X,S) consists of a subset Y C X with the relative
o-algebra S|Y = {ANY : A € S}. Notice that if S = g(£), then S|Y =
a(EY).

Let (X,S),(Y,.A) be measurable spaces. A map f : X — Y is
called measurable if f~1(A) € S for any A € A. If £ generates A, it is
enough to require this for A € &, since f~1(0(£)) = o(f~1(€)) (where
YD) = {f~Y(4) : A € D} for D C Pow(Y)). A (measurable) isomor-
phism between X,Y is a bijection f : X — Y such that both f, f~! are
measurable. If such an isomorphism exists, we call X, Y (measurably) iso-
morphic. A (measurable) embedding of X into Y is an isomorphism of X
with a subspace of Y.
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If X is a set, ((Yi, Si))ier a family of measurable spaces, and f; : X —
Y. are maps, there is a smallest g-algebra S on X such that all f; are
n;easura.ble. We call it the o-algebra generated by (f;). If £, is a set of
generators for i, then {f7MA): ACY;, A&, i€} generates S.

Let ((Xi,Si))ier again be a family of measurable spaces. The product
measurable space ([]; X;, []; Si) is that generated by the projection maps
(z:)ier & Tj (j € I). Equivalently, it is generated by the sets of the form
I1, Ai» where A; € S; and A; = X; except perhaps for at most one i (or
eqilivalently except for finitely many 3). If £; is a set of generators for S;,
then the sets of the form []; A;, where A; = X; except perhaps for at most
one i for which A; € &, form a set of generators for the product space.

The sum (P; Xi, P; Si) of a family of measurable spaces ((X;,S;)):ier
is defined (up to isomorphism) as follows: Replacing X; by an isomorphic
copy, we can assume that the sets X; are pairwise disjoint. Let X = Uier X
A set AC X is measurable if AN X, € S; foreachie I.

(10.2) Exercise. Let X, Y be measurable spaces. If A C X xY is measurable
(in the product space), then for each z € X, A; is measurable in Y.
Similarly if X,Y, Z are measurable spaces and f : X xY — Z is measurable,
then for each £ € X the function f; : Y — Z is measwrable. Generalize
these to arbitrary products.
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11. Borel Sets and Functions

11.A Borel Sets in Topological Spaces

Let (X,7) be a topological space. The class of Borel sets of X is the 4.
algebra generated by the open sets of X. We denote it by B(X,T) (or
by B(X) or B(7T), when appropriate). We call (X, B(X)) the Borel space
of X. If £ is a countable subbasis for X, then clearly B(X) = 0(£), so
B(X) is countably generated when X is second countable. Note also that
if Y is a subspace of X then (Y,B(Y)) is a subspace of (X,B(X)) (i,
B(Y) = B(X)|Y). It is obvious that B(X) contains all open, closed, F,,
and G; sets in X.

By applying 10.1 to the class of open sets in X, we see the following:

(a) B(X) is the smallest collection of subsets of X containing the open
as well as the closed sets and closed under countable intersections and
unions,

(b) B(X) is the smallest collection of subsets of X containing the open
sets and closed under complements and countable pairwise disjoint unions;

(c) B(X) is the smallest collection of subsets of X containing the open
as well as the closed sets and closed under countable intersections and
countable pairwise disjoint unions.

Note also that if (X5) is a sequence of second countable spaces, then

(X B(] X)) = (] X, [ B(Xw)).

By standard terminology, if (X, S) is a measurable space and Y a topo-
logical space, we call a function f : X — Y measurable if it is measurable
with respect to (X,S), (Y,B(Y)). If {V,,} is a countable subbasis for Y, it
is enough to require that f~1(V,) € S for each n.

11.B The Borel Hierarchy

Assume now that X is metrizable, so that every closed set is a G5 set. Let
w1 be the first uncountable ordinal, and for 1 < £ < w; define by transfinite
recursion the classes £2(X), II(X) of subsets of X as follows:

=Y(X) ={U C X : U is open},
3(X) = ~ £Y(X),
ZUX)={{JAn: An €I (X), &u <& n €N}, if £ > L.

n
In addition let
AY(X) = BYX) NIIY(X)

be the so-called ambiguous classes.
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Traditionally, one denotes by G(X) the class of open subsets of X, and
by F(X) the class of closed subsets of X. For any collection £ of subsets of

aset X’ let
£ ={JAn:An €€, neNy},
n

gé={nAn:An.€g, TLGN}.

Then we have £{(X) = G(X), I}(X) = F(X), Z§(X) = (F(X)), =
£ (X), M(X) = (G(X)); = Gs(X), B/(X) = (Gs(X)), = Gs0(X),
m(x) = (Fo(X)); = Fos(X), etc. (Also, AYX)={AC X :Ais
clopen}.) In general, an easy transfinite induction shows that

TUX) UTI(X) € A2, (X),

so in particular
22+1(X) = (HQ(X))a-

Finally, it is easy to see that
B(X)= |J =22 = Y myx) = |J adx),
£<un E<in E<uwy

which gives us the following picture,

=9 =9 =2 =0
A Al N .
m g e mo
B

where £ < 77 and any class is contained in every class to the right of it. This
gives a ramification of the Borel sets in a hierarchy (of at most w, levels),
the Borel hierarchy. We will study it in some detail in Section 22.

EXAMPLES

1) A number z in the interval (0,1) is normal (in base 2) if its non-
terminating binary expansion = 0.byb2bs3. . . is such that

C<n b=
lim card({t <n:b; =1}) _

n—=o0 n

1/2.

Let N be the set of normal numbers. We claim that it is Borel. To see this,
let d, be the following step function on (0,1) : d,, = 0 on (0,1/2"], d,, =
lon (1/2%,2/2%], dn = 0 on (2/2™,3/2"),.... Then z = £2,dn(z)/2" is
the non-terminating binary expansion of z. Let Q* be the set of positive
rationals. Then for z € (0,1) we have:

x € N & Ve e QtInvm > n(|(2§';1di(x))/m -1/2|< e).
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Now X% ,d;(z) is constant on each dyadic interval (k/2™,(k + 1)/2™), so
the set A, = {z: |(Z2,di(z))/m — 1/2 |< €} is a finite union of such

intervals. Since
N=UN 4me

e€Qt n m>2n
it follows that N is Borel in (0,1).

2) Let X = C([0,1]) and denote by C* the class of continuously differ-
entiable functions in C([0,1]). (At the endpoints we take one-sided deriva.
tives.) Then for f € X, f € C" iff for all e € Q* there exist rational open
intervals Iy, ..., In—y covering [0,1] such that for all j < n:

Va,b,c,d € I; N [0,1] with a # b,c # d(’f(“zzg(b) - f(czzﬁ(d)’ < e),

So if for an open interval J and ¢ > 0, we put A;. = {f € C([0,1)) :
Va,b,c,d € JN[0,1] with a # b,c # d, | £2={O) _ LS | < ¢} we have
that A; . is closed in X and

=NU U N4

€@+ 1 (Io,.,Juo1) <

where (Io,...,I,—,) varies over all n-tuples of rational open intervals with
Uicn fi 2 [0,1). Thus C* is Borel.

3) Let X = IN and consider Cy = N X = {(x,) € X : T, — 0}. Then

we have for (z,) € X :
(z.) € Cy & Ve € QY InVm > n(z, <),

so Cy is Borel.

4) Let f € C([0,1]). Put Dy = {z € [0,1] : f'(x) exists} (at endpoints
we take one-sided derivatives). Then for z € [0,1] :

r€ Df & Vee Qt35€ Q*vp,qe [0,1]NQ:
(Ilp—zllg-z|<é=

10) - 1(z) _ fl@) - i@ .
p— qg—z -

)
so again Dy is Borel.

(11.1) Exercise. Show that all of the preceding examples are actually IT3.

11.C Borel Functions

Let X,Y be topological spaces. A map f : X — Y is Borel (measurable)
if the inverse image of a Borel (equivalently: open or closed) set is Borel.
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If Y has a countable subbasis {V.}, it is enough to require that f~Y(V},) is
Borel for each n. We call f a Borel isomorphism if it is a bijection and both
f,f) are Borel, ie,for ACX, AeB(X)& f(A)eB(Y). IfX =Y, we
call fa Borel automorphism.

It is clear that continuous functions are Borel.

(11.2) Exercise. i) Let (X,S) be a measurable space and Y a metriz-
able space. Let fn : X — Y be measurable. If f, — f pointwise (i,
lim,, fa(z) = f(x) for each z), then f is also measurable.

ii) Call a function f M [O, l] — R a derivative if there is F : [O, 1] -
R differentiable such that F’ = f (again at endpoints we take one-sided
derivatives). Show that derivatives are Borel functions.

iii) Let X be a topological space and f : X — R a lower (resp., upper)
semicontinuous function, i.e., {z : f(x) > a} (resp., {z: f(z) < a}) is open
for every a € R. Show that f is Borel.

(11.3) Exercise. Let X,Z be metrizable with X separable and Y a topo-
logical space. Let f : X x Y — Z be such that f¥: X — Z is continuous
forall y € Y and f; : Y — Z is Borel for a countable dense set of z € X.
Show that f is Borel.

(11.4) Exercise. Let X be a Polish space.

i) Show that the family of sets {K € K(X): K C U}, U open in
X, generates B(K(X)). Prove the same fact for the family of sets {K €
K(X):KNU #0}, U open in X.

ii) Show that the map K — K’ (= the Cantor-Bendixson derivative
of K) on K(X) is Borel. Show also that the map (K,L) — K N L from
K(X) x K(X) into K(X) is Borel. If Y is compact metrizable and F C
X x Y is closed, show that £ — F, is Borel.

The following obvious fact is important, as it allows us to apply the
theory of Section 8 to Borel sets and functions.

(11.5) Proposition. Every Borel set has the Baire property, and every Borel
function is Baire measurable.

The Borel sets are generated from the open sets by the operations of
complementation and countable union. We will now see that real-valued
Borel functions are generated from the continuous functions by the oper-
ation of taking pointwise limits of sequences. (We will prove an extension
and a more detailed version of this result in 24.3, but the present form will
suffice in the meantime.)

(11.6) Theorem. (Lebesgue, Hausdorff) Let X be a metrizable space. The
class of Borel functions f:X — R is the smallest class of functions from
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X into R which contains all the continuous functions and is closed under
taking pointwise limits of sequences of functions (i.e., if fa:X - R belong
in the class and f(z) = limy, fo(z) for each x, then f is in the class too).

Proof. Denote by B the smallest class of real-valued functions containing
the continuous functions and closed under the operation of taking pointwise
limits of sequences of functions. It is easy to see that B is a vector space,
ie,ifr,seRand f,g € Bthenrf + sg € B.

We claim first that the characteristic function x4 of any Borel set
A C X is in B. To see this we use 10.1, iii). Since x~a = 1 — x4 and
X an = limy, (x4, + - +Xa4.), if (An) are pairwise disjoint, it is enough
to show that Xu € B for any open U. Let U = J,, F, with F, closed and
F, C Fn4- By Urysohn’s Lemma 1.2, let f, : X — R be continuous with
0< fu<1, fa=1lonFy, fo=0o0n~U. Clearly, fn — xu pointwise, so
xu € B.

Let now f : X — R be a Borel function. We will show that f € B.
Now f = f* — f~ with f+ = UL ¢~ = U2 Clearly |f), 7+, 7~
are also Borel, so it is enough to conslder non-negative f For such f,
let forn =1,2,3,...and 1 <i < n2* A,; = Y&, %)) and put

= 22/ (i—1)/2" - xa, .- Then, since A, ; is Borel, f, € B. But f, — f
pomtvvlse so f € B.

Since the class of Borel functions contains the continuous functions
and is closed under taking pointwise limits of sequences of functions, our
proof is complete. 0

(11.7) Exercise. Show that 11.6 holds when R is replaced by any of the
following: R®, C* (n =1,2,...), an interval J C R or J™. In particular, the
class of bounded Borel functions f : X — R is the smallest class of real-
valued functions containing the bounded continuous functions, which is
closed under taking bounded pointwise limits of sequences of functions (i.e.,
if f, are in the class, with |f,| < M for some M, and f, — f pointwise,
then f is in the class).
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12. Standard Borel Spaces

12.A Borel Sets and Functions in Separable Metrizable Spaces

We characterize first the Borel spaces of separable metrizable spaces.

(12.1) Proposition. Let (X,S) be a measurable space. Then the following

are equivalent:
i) (X,S) is isomorphic to some (Y, B(Y)), where Y is separable metriz-

able;

i) (X,S) is isomorphic to some (Y ,B(Y)) for Y C C (and thus to
some Y C Z for any uncountable Polish space Z);

i1i) (X,S) is countably generated and separates points (i.e., if z,y are
distinct points in X, there is A€ S withx € A,y & A).

Proof. i) = i) = iii) are trivial. We will prove now that iii) = ii). Let
{An} generate S. Define f: X — C by f(z) = (xa,(z)). where x4 = the
characteristic function of A. Then f is injective, since { A, } separates points.
It is also measurable, since f(z)(n) =1 z € An, Let Y = f(X) C C.
Since f(4n) = {y € C : y(n) = 1} NY, f~! is also measurable (i.e.,
(X,8), (Y,B(Y)) are isomorphic). 0

For measurable spaces (X,S) satisfying the equivalent conditions of
12.1, we will usually denote S by B(X) and call its elements the Borel sets
of X, when there i3 no danger of confusion. We will also call measurable
maps between such spaces Borel maps.

The following is an analog of 3.8.

(12.2) Theorem. (Kuratowski) Let X be a measurable space and Y be
nonempty Polish. If Z C X and f:Z — Y is measurable, there is a mea-
surable function f:X — Y extending f.

Proof. It is enough to find a measurable set Z* C X, Z* O Z and a
measurable function f* : Z* — Y extending f.

Let {V,,} be a basis of nonempty open sets for Y. There are measurable
sets B,, in X with f~1(V,) = ZNB,,. Thusfor z € Z, z € B, & f(2) € Vi.
Put Z* = {xr € X : Iy € YVn(z € B, & y € V,,)}, and for z € Z*, let
f*(z) = y, where {y} = N{V» : z € B,}. Clearly, Z C Z*, f* extends f
and f*:Z* — Y is measurable since (f*)~*(V,) = B, N Z*. It remains to
show that Z* is measurable.

Let (n,z) € B & z € B, so that B* = {n:z € B,}. Then z € Z* iff
{Va : n € B} is the family of basic open nbhds of some point in Y, so that
z € Z* iff the three following conditions hold:

(1) B* #9,
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(2) Vk¥n € B*Vm € B3t € B*(V; C Vo NV, & diam(Ve) < 1/(k + 1)),

3) vaVm(m e B* & V,, C V,, = n € B¥).

Conditions (1) and (2) guarantee, by the completeness of Y, that
N,.cp= Vn consists of a unique point, say y, and then condition (3) guarap.
tees that B* = {n:y e V,}. .

Letting

(k,¢,m,n) € C & V; CV, NV, & diam(Ve) < 1/(k +1),
(mmn)eDeV,CV,,

we have
z € Z2* © In(z € B,) & VkVnVYm|z € B, & z € B, =
I(x € By & (k,¢,m,n) € C)| &
vnvm(z € B,, & (m,n) € D = z € B,],
so that Z* is measurable (see Appendix C). a)

We have also the analog of Lavrentiev’s Theorem 3.9.

(12.3) Exercise. Let X,Y be Polishand AC X, BCY.If f:A— Bisa
Borel isomorphism, then show that there exist Borel sets A* C X, B* CY
with A C A*, B C B* and a Borel isomorphism f* : A* — B* extending
f. Formulate and prove an analog of 3.10.

There is a basic connection between the measurability of functions and
their graphs.

(12.4) Proposition. Let (X,S) be a measurable space, Y a separable metriz-
able space, and f:X — Y a measurable function. Then graph(f) C X xY
is also measurable (with respect to S x B(Y)).

Proof. We have
f@)=yeVn(y eV, = f(z) e V,),
where {V,,} is a basis for Y. 0

The converse is also true when X,Y are Polish (see 14.12).

12.B Standard Borel Spaces

(12.5) Definition. A measurable space (X,S) is a standard Borel space if it
is isomorphic to (Y B(Y)) for some Polish space Y or equivalently, if there
is a Polish topology T on X with & = B(T).
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The product and sum of a sequence of standard Borel spaces are stan-
dard. We will also see later (see 13.4), that if (X, S) is standardand Y C X
is in S, then (Y, 8|Y) is also standard. Finally, from 12.1 it follows that a
countably generated and separating points (X,S) is a subspace of a stan-
dard Borel space (and conversely of course).

12.C The Effros Borel Space

We will now discuss an important example of a standard Borel space.
Given a topological space X we denote by F(X) the set of closed
subsets of X. (When X is metrizable, we also use ITY(X) for this set, but
we will retain the classical notation F(X) in the context of the Effros Borel
structure.) We endow F(X) with the o-algebra generated by the sets

(FEF(X):FNU #0},

where U varies over open subsets of X. If X has a countable basis {Uy,},
it is clearly enough to consider U in that basis. The space F(X) with this
o-algebra is called the Effros Borel space of F(X).

(12.6) Theorem. If X is Polish, the Effros Borel space of F(X) is standard.

Proof. Let X be a compactification of X. Then the map F € F(X) — F €
K(X) (F denotes the closure of F in X) is injective, since F = F N X.
We claim now that G = {F : F € F(X)} is Gs in K(X). Indeed, for
Ke KX), K€ G& KnX isdense in K, so if X =, U, where U,
is open in X, and letting {V;,} be a basis for X, we have by the Baire
Category Theorem:

K € G V(K NU, is dense in K)
SVVm(K NV, #0= KN (Vi NUR) # 0).

Thus G is Polish. Transfer back to F(X) its topology via the bijection
F — F, to get a Polish topology 7 on F(X). We have to verify that the
Borel space of this topology is the Effros Borel space. By 11.4 i), the sets
{K € K(X): KNU # @} for U open in X generate the Borel space of
K(X), so the sets of the form {F € F(X):FNU # 0} generate the Borel
space of T. But {F € F(X) : FNU # 0} = {F € F(X): FN(UNX) # 0},
50 these are exactly the generators of the Effros Borel space. 0

Let d be a compatible complete metric on the Polish space X. G. Beer
[1991] has shown that the topology on F(X)\ {0} generated by the maps
Fd(z,F), z € X,is Polish and that the Effros Borel space on F(X)\ {0}
is the Borel space of this topology.

(!2‘.7 ) Exercise. Let X be Polish locally compact. Consider the Fell topology
on F(X), which has as a basis the sets of the form {F € F(X): FNK =
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Q& FNU, #0& -+ & FNU, # 0}, where K varies over K(X) ang
U; over open sets in X. Show that the Fell topology is compact metrizabje
and its Borel space is exactly the Effros Borel space. (For X compact, thjs
is the Vietoris topology.)

(12.8) Exercise. Let X be separable metrizable. If X is K, then the Effrog
Borel space on F(X) is standard.

(12.9) Remark. J. Saint Raymond [1978] has shown that for separable
metrizable X, the Effros Borel space on F(X) is standard iff X is the
union of a Polish space and a K.

(12.10) Exercise. Let X = A. View a tree on N as an element of 28"
identifying it with its characteristic function. Recall from 4.32 that the set
of pruned trees PTr is G5 (thus Polish) in 2N <" _Show that the Effros Bore]
space of F(N) is exactly the one induced by its identification with PTyr via
the map F — T (see 2.4).

(12.11) Exercise. Let X be Polish.

i) Show that K(X) is a Borel set in F(X). Moreover, the Borel space
of K(X) is a subspace of the Effros Borel space. (In particular, if X is
compact, the Effros Borel space on F(X) = K(X) is the Borel space of
K(X), which also follows from 12.7.)

ii) Show that the relation “F, C Fy” (in F(X)?) is Borel and that
the function (Fy,F2) — F} U F; (from F(X)? into F(X)) is also Borel.
In particular, F(Y) is Borel in F(X), if Y is closed in X. If Z is also
Polish, show that the function (Fy, F3) — Fy x F, (from F(X) x F(Z) into
F(X x Z)) is Borel and if f : X — Z is continuous, the map F +— f(F)
(from F(X) into F(Z)) is also Borel.

iii) Let RF(X) be the class of regular closed sets in X. Show that
RF(X) is Borel in F(X).

(By 8.30 and 8.32 the category algebra CAT(X) can be identified with
RO(X) and, by taking complements, with RF(X'). So by 13.4 we can view
CAT(X) as having a standard Borel structure.)

(12.12) Remark. In general, the operation (F}, F;) — Fy N F, is not Borel
(see 27.7). Also for U open in X, {F : F C U} is in general not Borel (see
also 27.7). For F C X x Y closed, the map z — F; is also in general not
Borel (see 15.5).

The following is a basic fact about the Effros Borel space.
(12.13) Theorem. (The Selection Theorem for F(X)) (Kuratowski-Ryll

Nardzewski) Let X be Polish. There is a sequence of Borel functions
dn:F(X) — X, such that for nonempty F € F(X), {dn(F)} is dense in F-
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Proof. Assume that X # 0 and fix a compatible complete metric for X.
et (Us) be a Souslin scheme on X with Up = X, U, open nonempty,
772 C Us, Us = U, Us~s, and diam(U,) < Q- length(s) if s £ @ For z € N, let
,;(;)—} =), Usin- Then f: N — X is a continuous (and open) surjection
ESee 7.14). Given nonempty F € F(X),let Tp = {s e NN : FnU, # 0}
\nd note that Tr is a nonempty pruned tree on N. Denote by ar (= arp)
ts leftmost branch (see Section 2.D). Let d(F) = f(aF) so that d(F) € F.
Define also d(#) = zo, some fixed element of X. Now the function g :
F(X)\ {0} — N given by g(F) = ap is Borel, since given a basic open set
N,, s € N*, we have

g(F)EN, & FNU; #0 &Vt € N*(t <jex s = FNU, = 0),

where <jex is the lexicographical ordering on N™. So d is Borel as well.

Fix now a basis {V,,} of nonempty open sets in X. By the above argu-
ment, we can find, for each n, a Borel function d;, : F(X) — X such that
$(F) e FNVL it FOV, # . Finally, let

_Jdu(F), fFNV, #0;
d"(F)_{d(F), if FOV, =0

]

(12.14) Exercise. Let X be a measurable space and Y a Polish space. Show
that a function f : X — F(Y) is measurable iff f~!({0}) is measurable and
there is a sequence of measurable functions f, : X — Y such that {f.(z)}
is a dense subset of f(z) when f(x) # 0.

12.D An Application to Selectors

(12.15) Definition. Lzt X be a set and E an equivalence relation on X.
A selector for E is a map s:X — X such that zEy = s(z) = s(y)Ex.
A transversal for E is a set T C X that meets every equivalence class in
ezactly one point.

If 5 is a selector for E, then {z: s(z) = z} is a transversal for E. If T
i a transversal for E, then s : X — X, given by {s(z)} = TN [z]g, is a
selector for E (here [x]g is the equivalence class of x).

For aset A C X its (E-) saturation [A|g is defined by

[Alg = {z € X : 3y € A(zEy)}.

The following is a basic result on Borel selectors. (See also 18.20 iv) for a
stronger theorem.)
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(12.16) Theorem. Let X be a Polish space and E an equivalence relation,
such that every equivalence class is closed and the saturation of any opep
set is Borel. Then E admits a Borel selector (and thus a Borel transversal).

Proof. Consider the map = +— [z]g from X to F(X). We claim that it ig
Borel. Indeed, if U C X is open, then

Uﬂ[:l:]g?é@(i)xG[U]E.

By 1213, let d : F(X) — X be Borel with d(F) € F if F # 0. Then
s(z) = d([z]g) works. o

An important special case is the following:

(12.17) Theorem. Let G be a Polish group and H C G a closed subgroup.
There is a Borel selector for the equivalence relation whose classes are the
(left) cosets of H. In particular, there is a Borel set meeting every (left)
coset in exactly one point.

Proof. It is clear that every (left) coset gH is closed. Let now U C G be
open. Then the saturation of U is the set UH = |J,,c y Uh, which is open.
So by 12.16 we are done. )

(12.18) Exercise. Show that in 12.16 the condition that the saturation of
open sets is Borel can be replaced by the condition that the saturation of
closed sets is Borel.

12.E Further Examples

1) Every Polish space is homeomorphic to a closed subspace of RN by 4.17.
So we can view F(RN) as being a representation (up to homeomorphism) of
all Polish spaces, and by giving it the Effros Borel structure we can endow
the class of Polish spaces with a standard Borel structure. We can call this
the Borel space of Polish spaces. For example, the set of compact Polish
spaces is Borel. (This means that {F € F(RN): F is compact} is Borel.)

2) Similarly we can identify, by 9.18, the Polish groups, with the closed
subgroups of Go = H(IV). Let Subg(Go) = {F € F(Gy) : F is a subgroup}.
Then Subg(Gy) is a Borel set in F(Gy), since if (d,) is as in 12.13,

F € Subg(Go) & 1 € F & Vn¥m(dn(F)dm(F)~' € F).
So we can endow the class of Polish groups with the relative Borel space

on Subg(Gy). It is standard, as it follows from 13.4. We can call this the
Borel space of Polish groups. (See also here C. Sutherland [1985].)



12. Standard Borel Spaces 79

(12.19) Exercise. Show that the classes of abelian Polish groups and of
Polish locally compact groups are Borel.

3) Let X now be a separable Banach space. Let Subs(X) = {F €
F(X):Fisa closed (linear) subspace of X}. Then Subs(X) is a Borel set
in F(X). To see this, notice that if (d,) is as in 12.13, then for F € F(X):

F e Subs(X) & 0 € F & VnV¥mVp, ¢ € Q|pd.(F) + qd.n(F) € FJ.

(We consider here the case of real Banach spaces. One replaces Q by Q+iQ
for the complex ones.)

It is a basic result of Banach space theory that every separable Banach
space is isometrically isomorphic to a closed subspace of C(2N ), i.e., there is
a linear isometry between the given space and a closed subspace of C(2V).
(To see this, consider the unit ball By(X™*) of X* with the weak*-topology.
It is compact metrizable, so let ¢ : 2N — B,(X™*) be a continuous surjection
by 4.18. For @ € X, let 9, € C(2) be defined by 9. (y) = ¢(y)(x). Then
z+ VP is a linear isometry of X with a closed subspace of c(2vy.)

So identifying separable Banach spaces with the closed subspaces of
c@2V), ie., with Subs(C(2V)), we can endow the class of separable Banach
spaces with the relative Borel space of Subs(C(2V)), which again is standard
by 13.4. We can call this the Borel space of separable Banach spaces.

(12.20) Exercise. Show that the set of finite-dimensional Banach spaces is
Borel.

4) Again let X be a separable Banach space and X* its dual. Let
B.-(X™) be the class of Borel sets in X* in the weak*-topology. We claim
that (X*, B,~(X*)) is standard. To see this, notice that the closed balls
B.(X*) = {z* € X* : ||lz*|] £ r} are closed in the weak*-topology, so if
Sn = Bpy1(X*)\Bn(X™), then X* is the disjoint union of the {S,}, S, €
B.-(X*) and thus (X* By, (X*)) is the direct sum of (Sy, By~ (X*)|Sn).
But B, (X*)|S,, are just the Borel sets of S,, in the relative weak*-topology.
Since S, is open in the weak*-topology of B,+1(X*), therefore Polish in
the weak*-topology, B, (X*)|S, is standard and so is (X*, By (X*)).

(12.21) Exercise. If X* is separable, show that B.,. (X*) coincides with the
class of Borel sets in the norm-topology (which is of course Polish).

5) Now let H be a (complex) separable infinite-dimensional Hilbert
space and let L(H) be the non-separable Banach space of bounded linear
operators on H. We have already seen, in Example 5) of Section 3 and
in 4.9, the definition of the strong and weak topologies on L(H). There is

another important topology on L(H), called the o-weak topology, defined
as follows.
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An operator T € L(H) is compact if T({z € H : ||z|]| < 1}) C g
has compact closure. We denote by Lo(H) the class of these operators, |
is a closed subspace of L(H). Although L(H) is not separable, Lo(H) ig
separable. An operator T € L(H) is positive if (Tz,z) > 0forall x ¢
For such an operator we define its trace by tr(T) = Zn(Ten, €,), where { en}
is an orthonormal basis for H (this definition is independeut of the choice
of such a basis). Thus 0 < tr(T) < co. Now for any T € L(H), there is 5
unique positive operator .S, usually denoted by |T|, such that ||Tz|| = || Sz|
for all z € H. Denote by L!(H) the set of trace class operators (i.e., those
T € L(H) for which tr(|T|) < o0). They form a separable Banach space
under the norm ||T||; = tr(|T]). It turns out that Lo(H)* = L'(H) anq
L}(H)* = L(H). (Compare this with c§ = ¢!, (£')* = €*.) So L(H) is
the dual of a separable Banach space and its weak *-topology is called the
o-weak topology.

It turns out that on Ly(H) = {T € L(H) : ||T|| < 1}, the weak and
o-weak topologies coincide and it is easy to see that on L)(H) the strong,
weak, and o-weak topologies have the same Borel space, which is standard
by Example 5) of Section 3 or 4.9. Then, as in the preceding Example 4),
the Borel space of the strong, weak and o-weak topologies on L(H) is the
same and standard. We will denote it by B(L(H)). It turns out that the
usual operations like ST, T* are Borel. (Actually, T — T* is continuous in

.the weak and o-weak topology, but not in the strong one. The operation
(S,T) — ST is not continuous in any of these topologies, but is separately
continuous. It is continuous in the strong topology on L(H).)

6) (Effros) A von Neumann algebra is a subalgebra A C L(H) closed
in the weak (equivalently in the strong) topology and such that I € A and
T € A= T" € A. Since 4 is comnpletely determined by A = AN L(H), we
can identify A with A. Clearly, A € K(L1(H)), and it can be easily checked
that VN = {A : A is a von Neumann algebra} is Borel in K(Ly(H)), where
L\(H) is given the weak topology, so that it is compact metrizable. So
we can endow the class of von Neumann algebras with the relative Borel
space of VN, which is standard by 13.4. It is called the Borel space of von
Neumann algebras on a separable Hilbert space. It turns out that the basic
notion of factor, and the classification into types (I, II, III, etc.) define Borel
subsets of this space (see O. A. Nielsen [1980] or E. A. Azoff [1983)]).

(12.22) Exercise. Let X,Y be separable Banach spaces. Generalize the pre-
ceding Examples 4) and 5) to show that the Borel spaces of the weak
(see 4.9) and strong (see Example 5) of Section 3.A) topologies on L(X,Y)
are the same and are standard.

12.F Standard Borel Groups

(12.23) Definition. A standard Borel group is a standard Borel spuce G
where G is a group and (z.y) — zy~! is Borel (from G? into G).
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If G is a standard Borel group, it is not necessarily true that there exists
Polish topology T giving its Borel space such that (G, T) is a topological
:Toup. However, if such a topology exists it must be unique.

12.24) Proposition. Let G be a standard Borel group. There is at most one
Polish topology T giving its Borel space so that (G,T) is a topological group.

Proof. Let T, T’ be two such topologies. Then idg; : (G, T) — (G, T') is a
Borel, therefore Baire measurable, homomorphism. Consequently, by 9.10
it is continuous, i.e. 7' € 7. Similarly, T C T soT =T 0

(12.25) Definition. A standard Borel group G is Polishable if there is a
(necessm‘ily unique) Polish topology T giving its Borel space, so that (G,T)
is a topological group.

(12.26) Exercise. Consider the compact metrizable group TN and the sub-
group G € TN consisting of the sequences (z,) such that x, = 1 for all
large enough n. Show that G is Borel in TN and (G, B(G)) is a standard
Borel group. Show that G is not Polishable.

(12.27) Exercise. Consider the Polish group RN and the subgroup ¢2 C RN.
Show that (¢2, B(€2)) is a standard Borel group that is Polishable.
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13. Borel Sets as Clopen Sets
13.A Turning Borel into Clopen Sets

The following is a fundamental fact about Borel sets in Polish spaces.

(13.1) Theorem. Let (X,T) be a Polish space and A C X a Borel set. Thep,
there is a Polish topology T4 2 T such that B(T4) = B(T) and A is clopen
n TA.

Proof. We need the following two lemmas, which are interesting in thejr
own right.

(13.2) Lemma. Let (X,T) be Polish and F € X closed. Let Tr be the
topology generated by T U {F}, i.e., the topology with basis TU{UNF .
U € T}. Then Tg is Polish, F is clopen in Tp, and B(Tp) = B(T).

Proof. Note that Tr is the direct sum of the relative topologies on F and
~ F g0, by 3.11, T is Polish. o

(13.3) Lemma. Let (X, T) be Polish and let (Tn)nen be a sequence of Polish
topologies on X with T C T,, n € N. Then the topology To, generated by
U, T= is Polish. Moreover, if T, C B(T), B(Ts) = B(T). (As we will see
in 15.4, T, C B(T) is implied by T C T,,.)

Proof. Let X, = X for n € N. Consider the map ¢: X — [],, X, given by
o(z) = (z,z,...). Note first that ¢(X) is closed in [],,(X».7%). Indeed, if
(zn) ¢ ©(X), then for some ¢ < j, z; # x;, so let U,V be disjoint open in
T (thus also open in T;, 7; resp.) such that x; € U, z; € V. Then

(zn) € Xox - x Xy xUx Xig1 X x Xjoa XV x X, 41 %+ C ~ o(X).

So ¢(X) is Polish. But ¢ is a homeomorphism of (X, 75, ) with ¢(X),
so (X, 7T ) is Polish.

If T, C B(T) and {U{}ien is a basis for T,,, then {U{™}; nen is a
subbasis for T, s0 Too C B(7) as well. D

Consider now the class S of subsets A of X for which there exists a
Polish topology T4 2 T with B(T4) = B(7) and A clopen in T4. It is
enough to show that 7 C S and S is a o-algebra. The first assertion follows
from 13.2. Clearly, S is closed under complements. Finally, let {A,} € S.
Let T, = T4, satisfy the above condition for A,,. Let T, be as in 13.3.
Then A = |J,, A, is open in T, and one nore application of 13.2 completes
the proof. D

(13.4) Corollary. Let (X,S) be a standard Borel space and Y C X be in S.
Then (Y,S|Y) is also standard. (Note that S|Y = {A C Y:A € S}, since
YeS)
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Proof. We can assume that X is Polish and & = B(X). Since Y is Borel,
we can assume without loss of generality, by 13.1, that Y is clopen and
therefore Polish. Since B(X)|Y =B(Y), (Y,B(X)|Y) is standard. ]

(13.5) Exercise. Let (X,7) be Polish and (4,) a sequence of Borel sets.
Show that there is a Polish topology T "on X withT C 7', B(T) =B(T")
and Ay, clopen in T ’ for all n. Show, moreover, that 7’ can be taken to be
gero-dimensional.

The following application of 13.1 solves the cardinality problem for
Borel sets in Polish spaces.

For convenience we will say that a subset C of a topological space is a
Cantor set if it is homeomorphic to the Cantor space C.

(13.6) Theorem. (The Perfect Set Theorem for Borel Sets) (Alexandrov,
Hausdorff) Let X be Polish and A C X be Borel. Then either A is countable
or else it contains a Cantor set. In particular, every uncountable standard
Borel space has cardinality 2%.

Proof. By 13.1 we can extend the topology 7 of X to a new topology Ta
with the same Borel sets in which A is clopen, so Polish (in the relative
topology.) By 6.5, if A is uncountable, it contains a homeomorphic (with
respect to Tx) copy of C. But since T C T, this is also a homeomorphic
copy with respect to 7. 0

13.B Other Representations of Borel Sets

The following are useful representations of Borel sets.

(13.7) Theorem. (Lusin-Souslin) Let X be Polish and A C X be Borel.
There is a closed set F C N and a continuous bijection f:F — A. In par-
ticular, if A # 0, there is also a continuous surjection g:N — A extending

f

Proof. Enlarge the topology 7 of X to a Polish topology T4 in which A
is clopen, thus Polish. By 7.9, there is a closed set F C A and a bijection
[+ F — A continuous for T4|A. Since T C Tx, f: F — A is continuous
for T as well. The last assertion follows from 2.8. 0

(13.8) Exercise. Derive 13.6 using 13.7 and 8.39.

(13.9) Theorem. Let X be Polish and A C X Borel. Then there is a Lusin
scheme (A,), cnen such that

i) As is Borel;

i) Ag= A, A; =, Agn, s € N<N,
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iii) ifz € N and Agjn # 0 for alln, then Az =, Azjn 15 a singletor,
{z*} and for any x, € Ap, Tn — x*.

Moreover, if d is a compatible metric for X, we can make sure thys
diam(A,) < 27'eneth(s) | 4f 5 £

Proof. Let T4 be a Polish zero-dimensional topology extending the topology
T of X with B(74) = B(7) and A clopen in T4 (by 13.5). Let d4 be 5
compatible metric for T4, and note that d)y = d + d4 is also a compatible
metric for T4, so we can assume that d < da. Now it is easy to defipe
recursively on length(s), As, so that A; is clopen in T4 and satisfies i), ii),
and iii) of the statement, and diam(A4,) < 2~1en&th(s) for 5 # @, 0

(13.10) Exercise. Let X be Polish and A C X Borel. Show that there is 5
closed set F C X x A such that

(%) z€ A& Jy(r,y) € F o Ny(x,y) € F,

where “31” abbreviates “there exists unique”. Similarly, there is G C X x
C, G a G set satisfying (x). Show that G cannot in general be taken to be.
F,in X xC.

13.C Turning Borel into Continuous Functions

Finally, we derive some consequences concerning Borel functions.

(13.11) Theorem. Let (X,T) be a Polish space, Y a second countable space,
and f:X — Y a Borel function. Then there is a Polish topology Ty 2 T
with B(T;) = B(T) such that f:(X,Tf) —» Y is continuous.

Proof. Let {Uy,} be an open basis for Y. Consider the sets f~*(U,,) and use
13.5. 0

(13.12) Exercise. i) Let (X,Tx), (Y, Ty) be Polish and f : X — Y a Borel
isomorphism. Show that there are Polish topologies Ty 2 Tx, Ty 2 Ty
with B(7y) = B(7x), B(Ty) = B(Ty) such that f : (X,Tx) — (¥, Ty) is
a homeomorphism.

ii) Formulate and prove versions of 13.11 and part i) of this exercise
for a countable sequence of functions.
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14. Analytic Sets and the Separation Theorem

14.A Basic Facts about Analytic Sets

(14.1) Definition. Let X be a Polish space. A set A C X is called analytic
¢ there is a Polish space Y and a continuous function fiY — X with
f(Y)=A4. (The empty set is analytic, by taking Y = 0.)

By 7.9, we can take in this definition Y = A if A # 0. The class of
analytic sets in X is denoted by

=HX).

(The classical notation is A(X).)
It follows from 13.7 that

B(X) € ={(X).
This inclusion is proper for uncountable X.

(14.2) Theorem. (Souslin) Let X be an uncountable Polish space. Then
B(X)EZH(X).

Proof. Let T be a class of sets in arbitrary Polish spaces (such as open,
closed, Borel, analytic, etc.). By I'(X) we denote the subsets of X in I
IfU C N x X, we call U N-universal for ['(X) if U is in [NV x X) and
rX)={U,:ye N}.

First notice that there is an N-universal set for £¢(N). Indeed, enu-
merate N<VN in a sequence (s,) and put (y,z) € U & z € U{N,, : y(i) = 0}.

Since M2 is homeomorphic to N, it follows that there is an A~ universal
set for £9(N?), and by taking complements there is an. A-universal set F
for IY(NV?). We now claim that A = {(y,z) : 32(y,z,2) € F} is N-
universal for $}(A). Since projection is continuous, A and all sections A,
are 3], Conversely, if A C N is X}, there is closed F C A and continuous
surjection f : F — A (F could be empty). Let G = graph(f)~}, so that G
is closed in A2 and z € A & 3z(z, 2z) € G. Let y € N be such that G = F,.
Then A = A,.

Now A cannot be Borel, since then ~ A would be too, so A = {z :
{z,z) ¢ A} would also be Borel and thus analytic, so for some 39, A = Ayo
(ie, (z,2) ¢ A & (yo,7) € A). Let x = yo, to get a contradiction.

Since every uncountable Polish space X contains a homeomorphic copy
of N, it follows that B(X)SE}(X) as well. 0

The following exercise gives another representation of analytic sets.
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(14.3) Exercise. Let X be Polish and let A € X. Then the following g,
equivalent:

i) A is analytic.

ii) There is Polish Y" and Borel B C X x Y with A = projx(B).

iii) There is closed F C X x A with A = projx (F).

iv) There is G5 G C X x C with A = proj x(G).

Here are some additional basic closure properties of the analytic setg,

(14.4) Proposition. i) If X is Polish and A, C X are analytic, then
U, 4x, N, An are analytic.

) If X,Y are Polish and f:X —'Y is Borel, then for A C X analytic
and B CY analytic, f(A), f~Y(B) are analytic.

Proof. i) Let Yy be Polish and f, : Y;, — X ‘continuous with f,(Y,) =
A,. We can assume that the spaces Y,, are disjoint and thus |J, f, maps
continuously the direct sum of (Y,) onto |J,, A, so |, 4, is analytic.
Now let Z = {(yn) € [I,, Yn : fo(¥n) = fm(¥m), for all n,m}. Then Z
is closed in [], Yn, and so is Polish. If f : Z — X is defined by f((z,)) =
fo(zo), f is continuous and f(Z) =1, An, so [, A, is analytic.
il) We have

y€ f(A) ®z(z e AL f(z) =y)
& Jx(y,x) € F

(where (y,z) e F oz € A & f(z) = y), ie, f(A) = projy(F). Since
projection is continuous and, obviously, continuous images of analytic sets
are analytic, it is enough to show that F is analytic. By 12.4, {(y,x) :
f(z) = y} is Borel, so it remains to check that {(y,z): € A} =Y x A is
E1(Y x X). Let Z be Polish and g: Z — X be continuous with g(Z) = A.
Then g* : Y x Z — Y x X given by g*(y, 2) = (¥, 9(2)) is continuous and
(Y x2Z)=Y x A
Finally, note that

ze fY(B)® W(f(z)=y&ye B),
so we are done as before. D

(14.5) Definition. If X is a standard Borel space and A C X, we say that
A is analytic if there is a Polish space Y and a Borel isomorphism f:X —
Y such that f(A) is analytic in Y. (By the preceding proposition, this is
independent of the choice of Y,f.) We will again denote by X}(X) the
class of analytic subsets of X.

(14.6) Exercise. Show that for any standard Borel space X, Z}(X) ={AC
X : for some standard Borel space Y and Borel f : Y — X, f(Y) = A} =
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{AC X : for some standard Borel space Y and Borel BC X xY, A =
proj x(B)}-

14.B The Lusin Separation Theorem
The following result is of fundamental importance.

(14.7) Theorem. (The Lusin Separation Theorem) Let X be a standard
Borel space and let A,B C X be two disjoint analytic sets. Then there is a
Borel set C C X separating A from B, i.e., ACC andCNB=0.

Proof. We can assume of course that X is Polish. Call two subsets P, Q of
X Borel-separable if there is a Borel set R separating P from Q.

(14.8) Lemma. IfP=U,, Pm, Q@ =U, @Qn, and Pn,,Qn are Borel-separable
for each m;n, then P,Q are Borel-separable.

Proof. If Rm,n separates P, Qn, then R = J,, (), Rm » separates P,Q. O

Assuming now, without loss of generality, that A, B are nonempty, let
f:N = A, g: N — B be continuous surjections. Put 4, = f(N,), B; =
g(N,). Then A; = J,, As*m, Bs = U, Bs'n. If A,B are not Borel-
séparable, toward a contradiction, then by repeated use of Lemma 14.8
we can recursively define z(n), y(n) € N such that A;,, By» are not Borel-
separable for each n € N. Then f(z) € A, g(y) € B, so f(z) # g(y). Let
U,V be disjoint open sets with f(z) € U, g(y) € V. By the continuity of
f, 9, if n is large enough we have f(N,,) C U, g(Nyn) €V, so U separates
Ay from By, a contradiction. O

The following extension is immediate.

(14.9) Corollary. Let X be a standard Borel space and (A,) a pairwise
disjoint sequence of analytic sets. Then there are pairwise disjoint Borel
sets B, with B, D A,.

14.C Souslin’s Theorem

(14.10). Definition. Let X be a Polish space and let A C X. We call A
co-analytic if ~ A is analytic and similarly when X is a standard Borel
space. We denote by TI}(X) the class of co-analytic subsets of X. (The
classical notation is CA(X).) The bi-analytic sets are those that are both
analytic and co-analytic. Their class is denoted by A} (X), i.e., AN(X) =
ZHX) NI} (X).
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(14.11) Theorem. (Souslin’s Theorem) Let X be a standard Borel space.
Then B(X) = A}(X).

Proof. Take B = ~ A in 14.7. O

One final application provides a converse to 12.4 in standard Borel
spaces.

(14.12) Theorem. Let X,Y be standard Borel spaces and f:X — Y. Then
the following are equivalent:

i) f is Borel;

it) graph(f) is Borel;

ii) graph(f) is analytic.
In particular, if f is a Borel bijection, then f is a Borel isomorphism (i.e.,
f~! is also Borel).

Proof. It is enough to show that if graph(f) is analytic, f is Borel. Let A
be Borel in Y. Then

(D) z€ fY(A) e Wfz)=y&ye A]
2 & Vylf(z) =y =y € A]

It is clear by (1) that f~!(A) is analytic and by (2) that f~'(A) is co-
analytic (since the negation of (2) is y[f(z) =y & vy ¢ A]), so f~1(A) is
in A}(X) = B(X). ]

(14.13) Exercise. (The Perfect Set Theorem for Analytic Sets) (Souslin)
Let X be a Polish space and let A C X be analytic. Show that either A is
countable or else A contains a Cantor set. In particular, every uncountable
analytic set in a standard Borel space has cardinality 2%°. (This extends
13.6 and solves the cardinality problem for analytic sets in Polish spaces.)

(14.14) Exercise. Let X be a standard Borel space. Let E be an analytic
equivalence relation on X (ie., E € £}(X?)). Let A,B C X be disjoint
E-invariant analytic sets. (A set A C X is E-invariant if z € A and zFy
imply y € A.) Show that there is an E-invariant Borel set C separating A
from B.

(14.15) Exercise. Let G be a group with a Polish topology in which multi-
plication is separately continuous. Show that G is a topological group.

(14.16) Exercise. (Blackwell) Let X be a standard Borel space and (A,)
a sequence of Borel sets in X. Consider the equivalence relation zEy <
Vn(z € A, & y € Ay). Show that a Borel set A C X is E-invariant iff it
belongs to the o-algebra generated by {4, : n € N}.
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15. Borel Injections and Isomorphisms

15.A Borel Injective Images of Borel Sets

Although the continuous image of a Borel set need not be Borel, we have
the following basic fact.

(15.1) Theorem. (Lusin-Souslin) Let X,Y be Polish spaces and f:X — Y
be continuous. If A C X is Borel and f|A is injective, then f(A) is Borel.

Proof. By 13.7 we can assume that X = A and A is closed. Let B, =
f(ANN,) for s € N<N, Then, since f|4 is injective, (B,) is a Lusin scheme,
By = f(A), Bs = U, Bsn, and B, is analytic. So by 14.9 we can find a
Lusin scheme (B;), with B; Borel, such that By =Y, B, C B;. We finally
define by induction on length(s) Borel sets B}, such that (B}) is also a
Lusin scheme, as follows:

B = By,
ano) = ano) 0 B(ny)»
an()yu-;"k) = BZno,..,,nk) N B* nk—1) n B(nOy'uynk)‘

Then we can easily prove by induction on k that By, .. ,) € B, o) =

B(n,,....n)- We claim now that

=N U B

k seNk

which shows of course that f(A) is Borel.

Ifz € f(A), let a € A be such that f(a) = z, so that z € (), By, and
thus z € (), Bj ;. Conversely, if z € (), U,enx B3, there is unique a € A
such that « € (), B;,. Then also z € ), B,k so in particular By # 0
for all k and thus AN N, # 0 for all k, which means that a € A since A
is closed. So f(a) € (), B,jx- We claim that f(a) = z. Otherwise, since f is
continuous, there is an open nbhd Ny, of a with f(Ng,) € U, where U
is open such that x ¢ U. Then z ¢ f(N,k,) 2 Bajk,, a contradiction. O

(15.2) Corollary. Let XY be standard Borel spaces and f:X — Y be Borel.
If AC X is Borel and f|A is injective, then f(A) is Borel and f is a Borel
isomorphism of A with f(A).

Proof. First we can clearly assume that X,Y are Polish. Then we can apply
15.1 to the projection of X x Y onto Y and the set (4 x Y)Ngraph(f). O

(15.3) Exercise. Show that the Borel sets in Polish spaces are exactly the

injective images by continuous (equivalently Borel) functions of the closed
subsets of AV.
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(15.4) Exercise. i) Let (X,T), (X,7T’) be Polish with 7 C B(7’). Then
B(7T) = B(T'). (In particular, T C 7’ implies that B(T) = B(T")).

ii) Let (X, S) be a standard Borel space. Let £ C S be countable and
assume & separates points. Then S = ¢(&).

Remark. Notice that 15.1 implies the more general version in which Y is
allowed to be just separable metrizable, since we can view Y as a subspace
of a Polish space. Similarly, in 15.2 we can allow Y to be just countably
generated and separating points (by 12.1).

(15.5) Exercise. Show that there is a closed set FF C A such that the map
z +— Fp, from N to F(N), is not Borel.

15.B The Isomorphism Theorem

The next result classifies standard Borel spaces up to isomorphism.

(15.6) Theorem. (The Isomorphism Theorem) Let X,Y be standard Borel
spaces. Then X,Y are Borel isomorphic iff card(X) = card(Y). In partic-
ular, any two uncountable standard Borel spaces are Borel isomorphic.

Proof. It is enough to show that if X is an uncountable Polish space, then
X is Borel isomorphic to C. By 7.8, 7.9 and 14.12, there is a Borel injection
f:X — C. (As B. V. Rao and 5. M. Srivastava point out, this can be also
seen in a more elementary way as follows: By 3.12 and 3.4 ii), C and I are
Borel isomorphic and thus so are C and IN. But X is homeomorphic to a
subspace of IN by 4.14.) By 6.5 there is a continuous, thus Borel, injection
g :C — X. So it is enough to prove the following fact, which is important
in its own right.

(15.7) Theorem. (The Borel Schréder-Bernstein Theorem) Let X,Y be
standard Borel spaces and f:X — Y, ¢ — X be Borel injections. Then
there are Borel sets A C X, B C Y such that f(A) = Y\B and g(B) =
X\A. In particular, X and 'Y are Borel isomorphic.

Proof. Define inductively X,,,Y;, as follows: Xg = X, Yo =Y, Xnyy =
9f(Xn), Yn4r = f9(Yn) Let Xoo =), Xn, Yoo =), Ya. Then f(X) =
Yoo and f(Xn\g(¥n)) = f(Xn)\Yas1, 9(¥a\f(Xn)) = 9(¥a)\Xns1. Finally
let A=X,UU,(Xn\9(Ya), B=U, Y\ f(Xr)). All these sets are
Borel by 15.2. O

0

Notice that, by the same proof, 15.7 holds more generally when X,Y
are measurable spaces, f is an isomorphism of X with a measurable sub-
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space of Y, and ¢ is an isomorphism of Y with a measurable subspace of
X.

(15.8) Exercise. Let X,Y be standard Borel spaces and A C X, BCY
Borel sets. Show that there is a Borel isomorphism f : X — Y with f(A4) =
B iff card(A) = card(B) and card(X\A) = card(Y\B).

15.C Homomorphisms of Sigma-Algebras Induced by Point
Maps

The Isomorphism Theorem is often used to reduce a problemn from arbitrary
standard Borel spaces to a particular one that is appropriately chosen for
the problem at hand. Let us consider an example of this.

Let (X,S) be a measurable space and Z C S a o-ideal in S (i.e., 7
is closed under subsets that are in S and countable unions). As usual, we
let for A, B € S: A=z B AAB € T and [A] = {B : B =1 A}. Let
S/T = {[4] : A € S}. With the partial ordering [A] < [B] & A\B €
Z, S§/T as a Boolean o-algebra. In general, in a Boolean og-algebra we
denote by —a the complement of a and by V,a, the supremum of {a,},
also called the countable join of {a,}. In the case of S/ we have —[A4] =
[~ A] and V,[4,] = [U, Ar]- A map between Boolean o-algebras is a
o-homomorphism if it preserves complements and countable joins.

(15.9) Theorem. (Sikorski) Let (X,S) be a measurable space, ZC S a o-
ideal in S, and Y a nonempty standard Borel space. If ®:B(Y) — S/T is
a o-homomorphism, then there is a measurable map p:X — Y such that
®(B) = [p~*(B)] for any B € B(Y). This ¢ is uniquely determined modulo
T (i.e., if ¥ is another such map, then {z:9o(z) # ¥(z)} € I).

Proof. By the Isomorphism Theorem we can assume that Y = [0,1]. (The
case where Y is countable is straightforward.)

For p € QN [0, 1] we can choose B, € § with [B,] = ([0, p]) such that
B, =

For z € X, now let o(z) = inf{p : z € B,}. Then p : X — [0,1] and
{z:p(z) <a} = L_J,,< .Boforae (0,1],s0¢is measurable. If § : B(Y) —

S/Z is given by &(B) = [¢~(B)], then & is also a s-homomorphism and
&,  agree on the intervals [0,p), p € QN[0, 1]. Since the class {B € B(X) :
®(B) = ®(B)} is a o-algebra, we have ® = &, which completes the first
part of the proof.

For the uniqueness, suppose that 1 is another such map and, say,
{z : p(z) < Y(x)} ¢ Z. Then, since Z is a o-ideal, there is a rational
pwith A = {z : o(z) < p < ()} = ¢ 1((0,p])\¥~"((0,7]) ¢ Z. But
e~ 1([0,p])] = ®([0,p]) = [¥~'([0,p])], so A € Z, a contradiction. 0
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This result in turn has the following consequence.

(15.10) Theorem. Let XY be standard Borel spaces and T C B(X), J C
B(Y) be o-ideals in B(X), B(Y), respectively. Then ®:B(X)/Z — B(Y)/J
is an isomorphism (of the corresponding Boolean algebras) iff there are
Borel sets Xo C X, Yo C Y with~ Xg € I, ~ Yy € J and a Borel
isomorphism ¢:Yp — Xo such that ®([4]) = [¢~ (AN Xo)]. Such a ¢ is
uniquely determined modulo J. If both T and J contain uncountable sets,
then we can actually take Xo = X and Yo =Y.

Proof. By 15.9, let ¢ : Y — X be Borel with ®([4]) = [¢~!(A4)] and
¥ : X — Y be Borel with ®~!([B]) = [y='(B)]. Then ¢ o ¢ = idy modulo
J and @ o ¥ = idx modulo Z. So there are Borel sets X C X, Yo C Y
with ~ Xo € Z, ~ Yy € J such that ¢ = @|Yp : Yy — Xj is a Borel
isomorphism.

The last assertion is evident, since any two uncountable standard Borel
spaces are Borel isomorphic. D

(15.11) Exercise. Let X be a standard Borel space and Z C B(X) a o-
ideal in B(X). If ® is an automorphism of B(X)/Z, then there is a Borel
automorphism ¢ of X such that ®([4]) = [¢~!(4)].

(15.12) Exercise. Recall the category algebra of 8.32. Since every set
with the BP is equal to a Borel set modulo meager sets, it follows that
CAT(X) = BP(X)/MGR(X) = B(X)/(B(X) " MGR(X)) under the ob-
vious identifications. Show that if X is perfect Polish, any automorphism
of CAT(X) is induced by a homeomorphism of a dense G5 in X (i.e., if @
is an automorphism, there is a dense G5 set G C X and a homeomorphism
¢ of G onto itself with ®([4]) = [¢~1(4ANG))).

15.D Some Applications to Group Actions

Let G be a standard Borel group, X a standard Borel space, and (g,z) —
g.xz a Borel action of G on X (i.e., the action is a Borel map of G x X
into X). The orbit of z € X is the set {g.z : ¢ € G}: Any two distinct
orbits are disjoint and thus the orbits give a partition of X. We denote the
equivalence relation on X whose equivalence classes are the orbits by E¢.
Thus for z,y € X,

zEcy & 39 € G(g.z = y).

It is easy to verify that Eg is analytic (in X2). In general, however (see,
e.g., Sections 16.C and 27.D), it is not Borel. Here are two cases where it
is actually Borel.
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(15.13) Exercise. i) Let G be a standard Borel group, X a standard Borel
space, and (g,) — g.x a Borel action of G on X. This action is called free
if for z € X, g # 1, g.x # z. Show that if the action is free, E¢ is Borel.

ii) Let G be a Polish locally compact group, X a Polish space, and
(g9,x) — 9.z a continuous action of G on X. Show that Eg is F,.

We have now the following basic fact concerning orbits of Borel actions
of Polish groups.

(15.14) Theorem. (Miller) Let G be a Polish group, X a standard Borel
space, and (g,£) — g.x a Borel action of G on X. Then every orbit {g.x:g €
G} is Borel.

Proof. By 9.17 the stabilizer G, = {g : g.x = z} of z € X is a closed
subgroup of G. So by 12.17, let T, be a Borel set meeting every left coset of
G in exactly one point. Note that g.x = h.z if h~lg.z = xiff h~1g € G, iff
g € hG, iff g, h belong to the same left coset of G,. Thus the map ¢ — g.x
is a Borel bijection of T, with {g.z : ¢ € G}, so this orbit is Borel. 0

(15.15) Exercise. Let G be a Polish group, H a standard Borel group, and
¢ : G — H a Borel homomorphism. Then ¢(G) is Borel in H.
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16. Borel Sets and Baire Category

16.A Borel Definability of Category Notions

Every Borel set has the BP, and every Borel function is Baire measurable.
We will calculate next the complexity of the property of being meager for
Borel sets.

(16.1) Theorem. (Montgomery, Novikov) Let (X ,S) be a measurable space,
Y a Polish space, and A C X x Y a measurable set (for S x B(Y)). Then
for any open set U C Y,

{z € X : A, is meager in U}

and the corresponding sets with “meager” replaced by “non-meager” or “co-
meager” are measurable.

Proof. If U is empty the result is trivial, so let us assume that U varies over
nonempty open sets. Let {U,} be a basis of nonempty open sets for Y.

Consider the class .A of measurable sets A C X x Y such that the set

Ay ={z € X : A, is not meager in U}
={re X:F'yeU(z,y) € A}

is measurable for every open nonempty U C Y. We will show that A con-
tains all the rectangles S x V with S € S and V open in Y and is closed
under complementation and countable unions. This implies that it contains

all measurable sets in X x Y, and our proof is complete.
This follows immediately from the following properties:

HYIfSeS, VisopeninY, then
(SxV=S,ifUuUnV #£0,

and
(SxVg=0,ifUNnV =0.

ii) (Un An)U = Un(An)U-
iii) (~ Ay =~ nu,.g(j(A)U,,-
Only iii) is not straightforward. We have
z€(~Ay e PyelU~ Az,y)
& 'y e UA(z,y)
& VYU, CUFy e U, A(z, ),

where the last, equivalence follows from 8.27 ii) (see also Section 8.J) since
A, is Borel and therefore has the BP. (]
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Notice that the previous result can be expressed by saying that if A C
X x Y is measurable, then so are

Blz) & V'y € UA(z,y), C(z) & Ty € UA(z,9);

i.e., the category quantifiers V*y € U, 3*y € U preserve measurability. This
is far from true for the usual quantifiers Yy, Jy. (Why?)

We will discuss now some applications to group actions and model
theory.

16.B The Vaught Transforms

Let G be a Polish group, X a standard Borel space, and (g,2) — g.z a
Borel action of G on X.

Let us denote by [A] the saturation of 4, i.e., the smallest invariant
(under the action or equivalently the associated equivalence relation E¢)
set containing A, and by (A4) the hull of A4, i.e., the largest invariant set
contained in A. Then [4] = {z : 3g € G(g9.x € A)}, (A) = {z : Vg €
G(g.x € A)}, and (4) C A C [4].

If A is Borel, then (A) is co-analytic and [4] is analytic.

(16.2) Definition. For A C X, let A* = {2:V*g € G(g.x € A)} and 42 =
{z:3*9 € G(g9.z € A)}. We call A*,A® the Vaught transforms of A. We can
also define the local Vaught transforms of A as follows: For U nonemply
open in G, let A*Y = {z:v*g € U(g.x € A)}, A2V = {z:3*g e U(g.z € A)}.

(16.3) Proposition. i) The Vaught transforms A*,A® are invariant and
(A) C A* C AP C [A]. Thus A is invariant iff A = A* iff A= A2,

#) If A is Borel, so are A*V, AAU . In particular, A*, A® are Borel
inveriant sets sandwiched between the hull and the saturation of A.

Proof. i) Let x € A*, so that {g : g.x € A} is comeager. Then for any
heG, {g:9a¢€ A}h™t = {gh™! : gz € A} = {g : g.(h.z) € A} is
also comeager, i.e., h.z € A*. The proof for A® is similar. The inclusions
(A) CA*C AR C [A] are straightforward.

ii) If Ais Borel, let (z,9) € A < g.z € A, so that A is Borel and note

that A*U = {z : A, is comeager in U}, which is Borel by 16.1 (similarly for
AAU ) 0O

(16.4) Exercise. i) Show that AV = ~ (~ AV, 2z € A*Y & gz €
AU, (N, A0)Y = ,(4n)", and (U, 40)2Y = U, (4n)2Y.

ii) If {U,.} is a weak ba.31s for G and A, A, are Borel, then (~ A)*V =
~ Uy, cv AU and (U, 4.)*Y = nu,»gUUUng, Un (An)*u’
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16.C Connections with Model Theory

(16.5) Definition. Let L be a countable language, which for notational sim-
plicity we assume to be relational, say L = (R;),ie 1> where I is countable,
and R; is an n;-ary relation symbol. Denote by X the space

x. =[]V,

[

which. is homeomorphic to C, if L # 0. We view X as the space of countably
infinite structures for L, since every x = (z;) € X1 can be identified with
the structure Ay = (N, (R{®),;), where RA*(s) & zi(s) =1 for s € N,

The Polish group S, acts in the obvious way on X :

gr=y< Vi[yi(sﬂz e »sng—!) =1ls 134(9_1(80), v 79—1(31)4'—1)) = 1]

In other words, g.z = y iff ¢ is an isomorphism of A, with A,. This action,
called the logic action, is clearly continuous. The associated equivalence
relation is just isomorphism, i.e., g € S(g9.7 = y) iff A;=A, (= denotes
isomorphism of structures). It follows that £ is analytic (but in general not
Borel; see Section 27.D). ‘

We have inunediately from 15.14 the following result.

(16.8) Theorem. (Scott) The isomorphism class {y: A;=A,} of anyx € X
is Borel.

Consider now the logic L., based on the language L. It is the ex-
tension of first-order logic associated with L in which for any countable
sequence () of formulas whose free variables are among vy, . .., vx—; (for
some k independent of ) we can form the infinite conjunction and disjunc-
tion Anipn, Va@n. So every formula has finitely many free variables. For
any structure A = (A, (R;).er) for L, any formula ¢(vg, ..., vk—1) of L0
whose free variables are among v, ..., vx—1, and any ag,...,ax-) € A, the
notation A = ¢[ag, .. .,ar—1] means as usual that A satisfies the formula
@(vo, - .., Vk-1), when v; is interpreted by a;.

(16.7) Proposition. Let ¢(v,- .. ,vk-1) be a formula of L,,,.,. Then the set
A%k - .XL x Nk deﬁned by

(xf 8) € A<p,k g A:l: |= <P[50» sy sk:—l]»

is Borel (in X1 x N* with N discrete).

Proof. By induction on the construction of . If ¢ is atomic, say, for exam-
ple, ¢ is R, (vo, 1) (ip € I), then letting z = (x,) € X we have
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(J:, s) € A%z o Iiio(So,S;) = l,

so this set is clopen. Clearly, A-,x = ~ A, k. (here -y is the negation
of ¥), Arngnk = N Ap..k> etc., for the Boolean connectives, including
the infinitary ones. Finally, if, e.g., ¢ is the formula Jviy(va, . . ., ve—y, vk),
then

(z,5) € Ay & Im(z,5"m) € Ay k41,

50 Apk = U finl(Ay k+1), where fm @ Xp x N8 = X x Nk+1 js the
continuous function f,(z,s) = (z, s"m). 0

Note now that if o is a sentence in L, (i.e., a formula with no free
variables), then A, (= A, = {z : A; |= 0}) is invariant Borel in X (i.e.,
=.invariant). The following is the converse.

(16.8) Theorem. (Lopez-Escobar) The invariant Borel subsets of X are
ezactly those of the form A,, for o a sentence of Ly, ..

Proof. (Vaught) The group S, is topologically a G5 subspace of V. We fix
a particular basis for S, as follows:

Denote by (N)* the set of u € N¥ that are injective (i.e., u; # u; if
i # 7). For u € (N)¥, let

[w ={g € Seo:uC g™}

In particular, for k = 0, [0] = S, Clearly, {[u] : u € (N)*, k€ N} isa
basis for S...
For AC X1, k€N, let

A* ={(z,u):ue (N &ze A*lu]}’
A% = {(z,u) :u e (N)* & z € A2},

The basic fact now follows.

(16.9) Proposition. For each Borel set A C X and k € N, A** is of the
form A, i for some formula pi(vo, ..., v%—1) Of Lu,w-

Granting this, let A C X be Borel invariant and take £k = 0. Then
A* = A is of the form A, for ¢ a sentence of L.

Proof. (of 16.9) We show that the class of A C X, satisfying 16.9 contains
the sets of the form n;!(U) for j € I and U a basic open set in 2V
(here m,((z;)) = #;) and is closed under complementation and countable
intersections.

First, fix j € I and U a basic open set in 2V’ . Then it is easy to check
that 1(U) has the form

A={$€XL:A:1:|=0[01“‘9p_1]}1



98 II. Borel Sets

for some p € N and a formula (v, ..., v,_1) that is a boolean combination
of atomic formulas of L. Then for any k € N,
(z,u) € A** o u e (N)* & V*g € [u](g.z € A)
sue (N)*&V'g e [u(Ays = 0[0,...,p—1])
& ue (N & Vg€ [ul(4s = 60g71(0),...,97 (p— D))

If k > p, then, since g € [u] © u C g™, we have (¢71(0),...,9 7 (p -
1)) = (uo,‘ . ,’ll.p__l), so

(z,u) € A* @ ue (N)* & A, = 0[uo, . .-, up-1]-

Thus A** = A, « with @i (ve,...,vk—1) being the formula A;c,<k(v; #
’v]‘) A8(vo,. .., vp_l).
On the other hand, if k£ < p, notice that

V*g €lu] (As E0lgT(0),--.,97 (P - D)])
& Yw Du, w e (N)? (A; 0w, ..., wp-1]),
since any comeager set in [u] must intersect all [v] with v D u, v € (N)?.
So A** = A,, &, where @i(vo,...,vk—1) is the formula Ajc;jck(vi # vj) A
YorYor41 -+ Vo1 (ANicj<p(vi # v5) = B(vo, . . -, Vp—1))-
For the operation of complementation, let A** = A, ; for k € N and
formulas g (vg, .-, vk—1)- Then, by 16.4 ii),

(z,u) € (~ A)* & z € (~ A)*M
& V> kYw Du,we (N)f(z ¢ A
& V2> kVYw D u,w € (N)((z,w) ¢ Ay,.e)
so (~ A)** = Ay, i with ¥i(ve,...,vk-1) the formula Ajcjcr(vi # v;) A
ALz V0V - Yooy [Aici<e(vi # v5) = —pe(vos .. ., ve-1))

Finally, for countable intersections, note that if A%* = AgryforkeN
and formulas ¢} (v, ..., vk~1), then if A=), A., we have by 16.4 i),

xk __ *k _
AT = nAn = A/\n‘P:("Oy---y”k—l)yk’
n

s0 A** = A, i, where o = A}, n]

Here are some applications to model theory.

(16.10) Corollary. (Scott) For every countable structure A of L there is
a sentence o4 of Ly, such that for any countable structure B of L, B |=
o iff B= A. (Such a sentence is called a Scott sentence of A.)
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Proof. This is straightforward if A is finite. For infinite .A use 16.6 and
16.8. 0

The following is a form of the Interpolation Theorem for L. It is
due to Lopez-Escobar. For sentences p,o of L., we write p =* ¢ if for
any countably infinite structure A for L, A |= p implies A = 0.

(16.11) Corollary. Let R,S be two distinct symbols not in L and let p,o,
respectively be sentences in (LU{R}),, , and (LU{S}), .- If p |=* o, then
there is a sentence T in L., with p|=* 7 and 7 * 0.

Proof. Let A= {z € Xy : A, = IRp}, B = {z € X, : A, = VSo}.
Then A is analytic, B is co-analytic, and A C B. Moreover, A and B are
invariant, so by 14.14 there is an invariant Borel set C with A C C C B.
By 16.8, C = A, for some sentence 7 of L,,,. Thus p|=* 7, T=*0. O

16.D Connections with Cohen’s Forcing Method

The following is a brief and informal introduction to one approach to the
Cohen method of forcing, which illustrates its connections with the cate-
gory methods studied here. Proofs are omitted and some knowledge of the
axiomatics and models of set theory would be desirable.

Let P = (P, <) be an infinite countable, partially ordered set (poset)
with least element denoted by 0. We call the elements of P conditions. If
p < g, we say that g extends p. When there is 7 € P with p < r and g<r,
we call p,q compatible. It p, g are mcompatible we write p 1 ¢g. We will
assume below that P is separative, i.e., if p £ ¢, then thereisr > ¢, r L p.

An ideal in P is a subset G C P such that i) @ # G # P;ii) (q €
G&p<g=>peG);andiii) (pge G=>IreGp<r&qg<r). An
ideal G is called strong maximal if for every p ¢ G there is r € G with
plr.

The ideals of P are in one-to-one correspondence with the equivalence
classes of

P = {(pn) € PY i puyy 2 pa}
under the equivalence relation
(Pr) ~ (gn) & YMmIn(Pm < gn) & YM3n(gn < pu).
If we write [p,] for the equivalence class of (p,), the correspondence is
Pal <= Gipp = {p : 3n(p < pa)}-

Under this correspondence, the strong maximal ideals correspond to the
maximal (p,,) € P®) j.e., those for which Vp € P3n(p <pporp .l p,). Let

Xp = {G C P : G is a strong maximal ideal}.
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We view Xp as a subspace of 2° (= {0, 1}¥, which is homeomorphic to the
Cantor space). Then Xp is easily G5 and thus Polish. The topology of Xp
has as basis the sets

{G € XP ‘Pos- 9y Pn-1 € G$ qos- - s gm—1 ¢G}9

which we denote by Us - (if # = (Po,.--,Pn-1), 4= (g0, " qm-1)). But
if G € Up -3, there are g, L g; such that ¢; € G. Then G € Us-y C Up 5.
Furthermore, if G € Up-, then there is r € G with p;,¢; < r for all ¢, j, so
G € U, C Up~g. So we can take the sets

Up={GeXp:peG}

as basis for Xp. Notice that they are clopen, since if p ¢ G there isr € G
with p L r so that ~ U, = |J,,, Ur. Note also that Uy = Xp, p < ¢ &
U,2U,andplqe U,NU, = 0.
Call D C P open if Vp € DVq > p(q € D), and dense if Vp € PIq €
D(p < ¢). Then U C Xp is open (and dense) iff U = |, p Uy, for D open
(and dense).
For any A C Xp, put

plFA & UFA.

If p IFA we say that p forces A.

Suppose now that M is a countable transitive model of Zermelo-
Fraenkel set theory (ZF) and P € M. Then Cohen has shown that for
the generic G € Xp (i.e., for comeager many G € Xp) there is a smallest
transitive model of ZF containing M as a subset and G as an element, de-
noted by M([G]; M[G] is also countable and has the same ordinals as M. If
M satisfies the Axiom of Choice (AC), so does M|[G].

By choosing PP appropriately, one can make sure that various state-
ments in set theory hold or fail in M[G], thus showing that they are con-
sistent or independent of ZF or ZFC (= ZF & AC). For example, if P is
chosen to consist of all p which are functions with domain a, finite subset of
RM x N (where RY is the second uncountable cardinal in M) and values in
{0, 1}, with ordering p < ¢ & p C ¢, then for the generic G, M[G] |= -~ CH,
where CH is the Continuum Hypothesis (i.e., the assertion that 2% = N,).
On the other hand, if one chooses P to consist of all functions in M with
domain a countable in M ordinal and range included in Pow(N)M (i.e., the
power set of N in M) with the partial order of inclusion, then for the generic
G, M|G] = CH. It follows that the CH is both consistent and independent
of ZFC, which are results of Géodel (with a different proof than the above)
and Cohen, respectively.

We will give a brief sketch of the ideas involved in proving the ba-
sic facts about the so-called generic extension M[G] in order to see the
connection with the category methods discussed here.
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One first sets up a system of “naming” elements of the model M[G]
by elements of M. This is done by defining in the language of set theory a
class function K{(z,y, 2), which has the following properties:

i) K is simply definable and therefore it has the same meaning (i.e., is
absolute) in any transitive model of ZF. (Technically K is AZF.)

ii) Let M be a transitive model of ZF, P € M, and G € Xp. Let M[G] =
{K(G,P,a) : a € M}. Then M(G] is transitive, M C M[G], G € M[G],
and for any transitive model N of ZF with M U {G} C N, M|[G] C N.
Finally, M and M|[G] have the same ordinals.

Thus every element x € M|[G] is of the form Kp(a) = K(G,P,a) for
some a € M. We view a as a name of z.

For a fixed countable transitive M and P € M, the forcing language
(of P over M) is the language of ZF augmented by constant symbols for
elements a € M. A sentence in this language is of the form o(ay, ..., an-1),
where ¢(vg,...,Un—y1) is a formula in the language of set theory and
ag, - .- ,0an—1 € M. We write

M[G] E plao, - - -,an-1) & M(G] = ¢[Kp,c(a0), - - -, Kp,G(an-1)]-

We also define the forcing relation

plkp(ag,...,an-1) & p Ik {G: M[G] k= p(ao, .-, an-1)}-

Put
Ap(an,-.an-1) = {G : M[G] = (a0, - .., an-1)}.

Then one shows, by induction on the construction of ¢, that A (q,.....c._,) IS
Borel in Xp. The only difficulty is when ¢ is atomic, i.e., of the form “a € b”
or “a = b”. The proof is then by induction on max{rank(a), rank(b)} and
uses the particular definition of K, which we have not spelled out here.

From the paragraph preceding 8.30 we have the Truth Lemma: For the
generic G, for all p(ag,...,an—1),

M[G] = ¢(ag, .- -, an-1) & Ip € G(pIF p(ag, . --,an-1))-

(Notice here that there are only countably many such ¢(ag,.-.,an-1).)

Finally, one proves the key Definability Lemma: For every formula
@(vo, - - ., Vn—1) of the language of ZF, we can find a formula ¢*(vg, ..., vn_1,
Up,Un41) such that

plkp(ag,...,an-1) & M = ¢*[ao,...,0.-1,0,P],

which shows that the relation of forcing is definable within M. The proof
of the definability lemma proceeds by induction on the construction of ¢
using the formulas of 8.27.

For example, we have (omitting the ay,...,an—1, when they are un-
necessary)
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DplhpAYp S plrp&pl-y,;
ii) p Ik~ & Vg > p(g ¥ p);
iil) p FYu,p(ag,. .., Gn-1,v) &
Va, € M(pIF ¢(ag, ... an_1,an))

(since M is countable). Again one handles the atomic formulas “a = b”,
“a € b” by induction on max{rank(a), rank(b)} using the definition of K
and the formulas of 8.27.

Once the definability lemma is established, it is used in conjunction
with the truth lemma to verify that all the axioms of ZF (or AC) are true
in M(G] for the generic G, essentially by reducing this verification to the
fact that the corresponding axioms are true in M.

The further development of the technique of forcing requires the fol-
lowing refinement.

The various facts mentioned above are true generically: There is a dense
G set of G’s for which they hold. This means that there is a countable
sequence of dense open sets D, C P such that if G € N, L_Jpe D, Up, then
G has the required properties. Notice that G € L_Jpe p,, Up just means that
G N D, # 0, so if G meets all the Dy, it has the required properties. The
aforementioned refinement is that it is enough to take {D.} to be the
family of dense open sets which are in M. We say that G is M-generic if
G meets all the dense open D € M. All the previous results hold when G
is M-generic.

(16.12) Exercise. i) Show that the Banach-Mazur game G**(A) for A C Xp
is equivalent to the following game:

I po P2

II P P3

Players I and II take turns playing p; € P with pg < p1 < p2 < -+ player
II wins iff (p,) is maximal and Gy, | € A.

ii) The Cohen poset is P = (P, <), where P =N<Nandp<t e pCt.
What is Xp?
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17. Borel Sets and Measures

17.A General Facts on Measures

Let (X,S) be a measurable space. A measure on (X,S)isamap p:S —
[0,00] such that p(0) = 0 and u(lJ, An) = X, p(A4xs) for any pairwise
disjoint family {A,} C S. A measure space is a triple (X,S, ), where
(X, 8) is a measurable space and g is a measure on (X, S). We often write
(X, 1) when there is no danger of confusion.

A measure is called o-finite if X = |J,, Xn, with X, € S, u(Xn) < o0,
finite if 4(X) < 0o, and a probability measure if u(X) =1,

A measure space (Y, A, v) is asubspace of (X, S, p)ifY € S, A=8|Y
and v = p|A (i.e, v(A) = p(A) for ACY, A € S). In this case we write
v=ulY.

A set A C X is called p-null if there is B € § with A C B and
u(B) = 0. We say that a property P C X holds pu-almost everywhere
(p-a.e.) and we write

P(z) p-ae.,

if X\ P is p-null. We denote by NULL,, the class of p-null sets. It is clearly
a o-ideal on X. The o-algebra generated by S U NULL,, which is easily
seen to consist of the sets of the form AU N with A € S and N € NULL,,
is denoted by MEAS,, and its members are called u-measurable sets. The
measure p is extended to a measure i on MEAS,, called its completion,
by (AU N) = u(A). We will also write s for this completion, if there is
no danger of confusion.

An outer measure on a set X is a map p* : Pow(X) — [0, 00] such that
w(0) =0, AC B = p*(4) < u*(B), and p* (U, An) S X, 1" (4n). A set
A C X is p*-measurable if for every E, p*(E) = p*(ENA) + p*(E\ A).
The p*-measurable sets form a o-algebra MEAS,., and u* restricted to
MEAS,,. is a measure,

Every measure p on (X,S) gives rise to an outer measure p* defined
as follows: pu*(A) = inf{u(B) : B € S, B 2 A}. If u is o-finite, then
MEAS, = MEAS,- and (the completion of) x and u* agree on MEAS,,.

A function f : X — Y, where Y is a measurable space, is called -
measurable if the inverse image of a measurable set in Y is y-measurable. If
Y is countably generated, this is easily seen to be equivalent to the assertion
that there is a measurable g : X — Y such that f(z) = g(z) holds u-a.e.

When f: X — R or C, and f is integrable with respect to u, we write
J fdu or [ f(x)du(x) for its integral.

If (X,S, ) is a measure space, (Y,.A) is a measurable space, and f :
X —Y is p-measurable, then the image measure fu (also denoted f,(u))
is defined by

fu(B) = u(f"(B))
for any B € A. Note that
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/ 9d(fu) = / (gof)dp,

in the sense that if one of these integrals exists, so does the other and they
are equal.

Given now o-finite measure spaces (X;, S;, i), i =0,...,n — 1, there
is a unique product measure y = [], ., pi on [], .(X;.S;) such that for

A; €S;
#(I] 40 = T m4s).
i<n i<n
Moreover, i is o-finite.

Consider, for notational simplicity, the case n = 2. Let (X, u), (Y,»)
be o-finite measure spaces. Then the Fubini Theorem asserts that if f is
integrable with respect to p x v then f, is integrable py-a.e., f¥ is inte-
grable v-ae., and [ fd(u x v) = [([ fzdv)du(z) = ([ fYdu)dv(y) (which
implicitly implies also that z — [ fydv, y — [ fYdp are integrable).

Let now ((X,., Sn, tn))nen be a sequence of probability measure spaces.
Then there is a unique product measure o = [], p,, on ([], Xr, [, Sn)
such that u([], ., 4:) = [1;<, #(4:) for A; € S;. (Here [],_, Ai = {(z:) €
[T, X::vi < n(z; € A i)}.) Clearly, u is a probability measure too.

Given measure spaces ((Xn,Sn, #tn)) with X, pairwise disjoint, we de-
fine their sum (P, Xn, D, Sr, D, 1n) by letting @D, pn = p, where

BA) = 3 in(AN X)

for any A € @,,Sn.

(17.1) Exercise. (The 0-1 law) Let (Xn,uyn) be probability measures and
(X,p) = [1.(Xn,ptn). Let A C [, X» be a measurable tail set. Then
w(A) =0or u(A)=1.

(17.2) Exercise. Let (X,S, 1) be a o-finite measure space. Consider the o-
algebra MEAS, and the o-ideal NULL,,. Show that NULL,, has the count-
able chain condition in MEAS,,. (Compare this with 8.31.)

For A,B € MEAS,, let A =, . Be AAB € NULL,, and denote by
(4] the equivalence class of A. Asin 8.32 and 15.C, consider the Boolean
algebra MEAS,, /NULL,, of equivalence classes under the partial ordering
[A] < [B] & A\B € NULL,, (which is clearly the same as S/(NULL, NS))
and show that it is a complete Boolean algebra, called the measure algebra
of u, in symbols MALG,,.

Let p,v be measures on (X,S). We say that. u is absolutely contin-
uous with respect to v, written as yu <« v, if NULL, C NULL,. We say
that p is equivalent to v, denoted as pu ~ v, if g €K v and v € u (ie.,
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NULL, = NULL,). This is an equivalence relation and we denote by [u]
the equivalence class of y, called its measure class.

Two measures u, v as above are orthogonal, in symbols ¢ L v, if there
exists A € S with u(A4) =0, v(X\A) =

(17.3) Exercise. i) If u ~ v, then MEAS, = MEAS, and so MALG, =
MALG,.
ii) If p is non-zero o-finite, there is a probability measure v with p ~ v.

The Radon-Nikodym Theorem asserts that if u,v are o—finite mea-
sures on (X,S), then p<v iff there is measurable f : X — [0,00) with
w(A) = f fdv (= [ fxadv). This f is unique v-a.e and also satisfies
f gdp = j gfdv for all measurable g, which are integrable for p. It is de-
noted by % and called the Radon-Nikodym derivative of 1 with respect to
v. The usual chain rule holds: If A< u<v, then %;} = %ﬁ . %‘5 holds v-a.e.
One can also characterize absolute continuity for finite measures p, v
as follows: u<v iff Ve > 036 > OVA € S(v(A4) < 6 = p(A) <e).

(17.4) Exercise. Let (X,S) be a measurable space such that {z} € S for
all z € X. A measure p on X is called continuous if u({z}) = 0 for all z.
Equivalently this means that 1(A) = 0 for all countable A C X. A measure
p on X is called discrete if u(X\A) = 0 for some countable set A C X;
in other words, u = 3, u({x})8z, where 6, is the Dirac measure at z,
ie., 8:(A) = xa(x) for A € S. (Notations such as u = ), a;; mean that
w(A) = 3, c; aivi(A).) Show that if u is o-finite, there are only countably
many points * € X with p({z}) > 0, and p can thus be uniquely written
in the form g = p¢ + pq, where p. is continuous and g4 is discrete. We call
itc the continuous and p4 the discrete part of u. '

17.B Borel Measures

(17.5) Definition. Let X be a topological space or a standard Borel space. A
Borel measure on X is a measure pu on (X,B(X)).

Let us consider some examples of Borel measures.

1) Let m (= m,, if there is a danger of confusion) be the Lebesgue
measure on R”. It is o-finite, and every bounded Borel set has finite mea-

sure. Also m, = (m;)" (= the product of n copies of Lebesgue measure on
R).

2) Let G be a Polish locally compact group. Then there is a unique
(up to a multiplicative positive constant) o-finite Borel measure g on G
“such that ug(K) < oo if K jis compact, puc(U) > 0if U # 0 is open, and
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t(9A) = pc(A) for any g € G and Borel A. It is called the (left) Haar
measure on (. Similarly there is a unique right-invariant one. These are in
general distinct but equivalent. (They are, however, the same if G is abelian
or compact.) In the compact case, the Haar measure is normalized, making
it a probability measure.

3) Fix 0 < p < 1. Put on the set 2 = {0,1} the measure u({0}) = p,
p({1}) = 1 - p, and let p, be the product measure on 2N = C. Then
tp(Ns) = p*(1 — p)°, where s = (so,...,5n—1) € 2" and a = card({i <n:
s; = 0}), b = n— a. The measure p, , is the Haar measure on the compact
group ZJ (= C). We will denote it by .

4) Let (X, d) be a metric space and p* an outer measure on X. We call
p* a metric outer measure if for any A, B C X with d(A4, B) = inf{d(z,y) :
z € A, y € B} > 0, we have u*(AUB) = p*(A) + p*(B). A standard result
in measure theory asserts that p* is a metric outer measure iff every Borel
set in X is p*-measurable. So in this case p*|B(X) is a Borel measure.

An example of this is the Hausdorff measure. Let (X,d) be a met-
ric space and h : [0,00) — [0,00) a continuous nondecreasing function
with r > 0 = h(r) > 0. For € > 0, let pu(A) = inf{3", h(diam(F,)) :
F, closed with diam(F,) < eand A C |J, Fr}. Then e < € = puj, > uf:
and we put pp(A) = lim._q uj,(A). This turns out to be a metric outer
measure called the h-Hausdorff outer measure. Its restriction to B(X)
is called the h-Hausdorff measure pp. It may not be o-finite. When
h(z) = z*, s > 0, this is called the s-dimensional Hausdorff measure.

Let A be an algebra on X and let i be a countably additive function
p:A—[0,00] (ie., if A, € A are pairwise disjoint and |J,, Ar € A, then
w(A) = 3, u(An)) with () = 0. This is also called a measure on A. It
is o-finite, if X = |J,, An, with A, € A, u(An) < co. Then one has the
following standard extension theorem.

(17.6) Proposition. If A is an algebra on X and pt a o-finite measure on A,
then p has a unique extension to a measure, also denoted by p, on o(A).

(17.7) Exercise. Show that if  : 2<N — [0, 1] satisfies p(f) = 1 and ¢(s) =
©(s70) + ¢(s"1) for all s € 2<N, then there is a unique probability Borel
measure p on C with u(N,) = ¢(s). Show also that all probability Borel
measures on C arise in this way.

(17.8) Exercise. Consider the map f : C — [0,1] given by f(z)
(= o)

oo x(1)27%" 1. Let yic be the Haar measure on C. Show that fuc
m|[0,1].

(17.9) Exercise. Recall the Lebesgue Density Theorem for R: If A C R is
Lebesgue measurable, then
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m(ANI)

lim 710 “m(l)

= xa(z), m-ae.,

where I varies over open intervals containing = and |I| = m(I) = length(7).
Prove a similar result for the Haar measure puc, namely, for all pc-
measurable A C C,

li ’-"C(A N Nw|n)
m —

= X), pc—a.e.
oo ,-I'C(l a:|n) XA( ) H

17.C Regularity and Tightness of Measures

(17.10) Theorem. Let X be a metrizable space and p a finite Borel measure
on X. Then p is regular: For any p-measurable set A C X

w(A) = sup{u(F): F C A, F closed}
= inf{u(U):U 2 A,U open}.

In particular, a set A C X is u-measurable iff there isan F, set FC A
with A\F € NULL,, iff there is a G5 set G 2 A with G\A € NULL,,.

Proof. It is easy to check that the class of sets A C X that satisfy the
above condition contains all the closed sets (since they are Gs) and is closed
under complementation and countable unions. So it contains all Borel sets.
If now A € MEAS,,, let B,C € B(X) and N C C be such that u(C) =
0, A = BUN. First, u(A) = u(B) = sup{u(F) : F C B, F closed} <
sup {#(F) : F C A, F closed} < p(A). Also, given € > 0, let Uy 2 B be
open with u(U)\B) < €/2 and Uz 2 C be open with p(Usz) < €/2. Then if
U=U,UU,, we have U D A and p(U\A) < e. O

For Polish spaces we have the following strengthening.

(17.11) Theorem. Let X be Polish and p a finite Borel measure on X. Then
u s tight, i.e., for any p-measurable set A C X

u(A) = sup{p(K): K C A, K compact}.
In particular, a set A C X is p-measurable iff there is a K, set F C A
with u(A\F) = 0.

Proof. By 17.10 we can assume that A is closed. Then A itself is Polish, so
by considering p | A if necessary, it is enough to show that

#(X) = sup{u(K) : K compact}.



108 II. Borel Sets

Fix a compatible complete metric for X. Let € > 0. For each n pick a se-
quence of closed balls Bi(n) with X = |, Bi(n) and diani(Bl(")) < 27", Since
(Ui BE™) = 1(X) as k — 00, let kn be such that u(X\ Ui, B™) <
€/2"+!. Let K =, U, B™. Then K is closed and totally bounded, and
thus compact. Also, u(X\K) < 3, (X \ U<, B,(n)) <e. O

17.D Lusin’s Theorem on Measurable Functions

(17.12) Theorem. (Lusin) Let X be a metrizable space and p a finite Borel
measure on X. Let Y be a second countable topological space and f:X =Y
a p-measurable function. For every ¢ > 0, there is a closed set F C X with
w(X\F) < € such that f|F is continuous. Moreover, if X is Polish, we can
take F to be compact.

In particular, if Y = R, there is a continuous ¢:X — R with
u({z:f(z) # g(x)}) <e.

Proof. Let {Uy,} be an open basis for Y. Then f~!(U,) is y-measurable,
so let F,,V, be closed, resp. open, such that F, € f~1(U,) € V, and
p(Vo\F,) < ¢/27F1. Let U = |, (Vu\F»), so that U is open and u(U) < e.
Let F = X\U. Then F is closed and f~'(U,) N F = V, N F, thus f|F is
continuous. O

(17.13) Exercise. i) Let G be a Polish locally compact group, u¢ its (left)
Haar measure, A C G a pg-measurable set with pg(A4) < oo, and let
f(z) = pe(zAAA). Show that f: G — R is continuous.

ii) Show that if A C G is pc-measurable and p;(A) > 0, then A71A
contains an open nbhd of 1.

Remark. Notice that this is the analog of 9.9 for measure instead of cat-
egory. For Polish locally compact groups, one can use measure instead of
category in most results in Section 9. (It is instructive to do this as an
exercise.) However, category methods apply to every Polish group.

Mackey has shown that if a standard Borel group G admits even a so-
called (left) quasi-invariant o-finite measure p (i.e., u(A) = 0iff u(gA4) =0
for all g € G, A € B(G)), then it must be Polishable locally compact (i.e.,
Polishable and the unique topology given in 12.25 is locally compact) and
4 is equivalent to fi;.

(17.14) Exercise. Prove the analog of 8.48 for measures: If X is a standard
Borel space, < a wellordering on X, and u a continuous probability Borel
measure on X, then < is not u?-measurable. Formulate and prove also an
analog of 8.49. Using the notation of 8.50, show that I is not uc-measurable.
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(17.15) Exercise. Let X be a Polish space, A C X a Borel set, Y a second
countable space, and f : A — Y a Borel function. If p is a finite Borel
measure on X, then for each € > 0 there is a compact set K C A with
#(A\K) < € and f|K continuous.

(17.16) Exercise. (The Kolmogorov Consistency Theorem) Let ((Xn, S»))
be a sequence of measurable spaces and f, : X, — Xn-1 a surjective
measurable map (for n > 1). Let

lim, Xr, = {(zn) € [[ Xn : ¥ 2 1(fa(®n) = 20-1)},

and let 7, : lim, X, — X,, be defined by mn((x:)) = zn. Thus f, o7, =
Tn—1. Let m;1(Sn) = {n7Y(A4) : A € S,}. Verify that =;!1(S,) C
Trt1(Sne1). Let Seo = U, 77 (Sn). Verify that this is an algebra on
lim, X, and let

lim, Sy, = 7(Soo).

The measurable space (lim,X,,lim,S,) is called the inverse limit of

((Xn,Sn), fn). Show that if (X,,S,) are all standard Borel spaces, so is
their inverse limit.

Now let u, be a probability measure on (Xn,Sn) such that fhu, =
tn—1. Show that if (X,,S,) are standard Borel spaces, there is a unique
probability measure

u= liinnﬂn

on (lim, X,,,lim,S,,) such that m,u = u,,. We call (lim, X,, lim, Sy, limpu,,)
the inverse limit of ((X,, Sy, tin), fn)-

Show that the product of ((Xy,Sn, £r)), where (X,,,S,) are standard
Borel spaces, is a special case of an inverse limit.

(17.17) Exercise. Let T be a pruned tree on N. Show that for every function
¢ : T — [0,1] such that ¢(0) = 1 and ¢(s) = X _,-;cp ¥(579) there is a
unique probability Borel measure p on [T] with u([T] N N,) = ¢(s). Show
that all probability Borel measures on [T arise in this fashion.

17.E The Space of Probability Borel Measures

Let X be a separable metrizable space. We denote by P(X) the set of prob-
ability Borel measures on X and we denote by Cy(X) the set of bounded
continuous real-valued functions on X. We endow P(X) with the topol-
ogy generated by the maps p — [ fdu, where f varies over Cy(X). This
topology has as a basis the sets of the form
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Uperfrrvnfn = {V € P(X): |/fidu— /fidul <e i=1,...,n},

for p € P(X), € >0, f; € Cp(X).
For many arguments we need a more manageable subclass of bounded
continuous real-valued functions, which still defines the same topology.
Fix a metric d compatible with the topology of X, such that the com-
pletion (X, d) of (X, d) is compact. Denote by Uy4(X) the class of uniformly
continuous (for d) real-valued functions on X. Since every f € Uy(X) has
a unique extension f € C(X), it follows that Uy(X) C Cy(X).

(17.18) Proposition. If f € Cy(X), there are fo,gn € Ug(X), with fn 1 f
and gn | f (i.e., (fn) is monotonically increasing and converges pointwise
to f and analogously for (g,)).

Proof. It is clearly enough to find (f5). Put f,(z) = inf {f(y) + nd(z,y) :
y € X}. Then fp < fapa < f. Also |fo(2) — fu(2)|] £ nd(z,2), so in
particular f, is uniformly continuous. It remains to check that f, — f.
Clearly lim, fo(z) < f(z). Fix € > 0. For each n, pick y, with f(y,) <
Fyn)+nd(z,yn) < fn(x)+e. Since f is bounded, y, — z. So f(y.) — f(),
and thus f(z) < lim, fo(z) + €. 0

It follows from this and from the usual convergence theorems of in-
tegration, that in the definition of the topology of P(X) we can replace
Cy(X) by Uu(X).

Consider the vector space Uy(X) with the sup norm || f||__. Since every
f € Uy(X) extends to a unique f € C(X) with ||f||Oo = || f|loo, We have
that (Ua(X), || ||oo) is isometric with (C(X), || ||oo), s0 in particular, Uas(X)
is a separable Banach space. Pick a dense set {f,} in Us(X) with the sup
norm, with f,, not the constant 0 function. It follows immediately that we
can replace Cy(X) by {fn} in the definition of the topology of P(X).

Indu from P(X) into [—1,1]N is an embedding,

The map 4 H(\L_Un“oo)nEN

and so P(X) is separable metrizable with compatible metric

= ndp — [ frd
6(p,v) = Zo g1 LS lr}n”if 4

We summarize all of this in the following result, which also determines
canonjcal countable dense sets.

(17.19) Theorem. Let X be separable metrizable and d a compatible metric,
whose completion is compact. Let { f,} be non-zero and dense in Uy(X) with
the sup norm. Then P(X) is separable metrizable with compatible metric

2 wdpt = [ fad
sy = 3 i LU lf}n”if 4}

n=0



17. Borel Sets and Measures 111

Moreover, if D C X is countable dense, the set of u € P(X) of the
form Y22y axba,, with ax € Q, ax > 0, Y720 ar = 1 and zi € D is
countable dense in P(X).

Proof. It suffices to prove the last assertion.

Note that if z, — zin X, then é,, — §, in P(X) since [ fd(6,) = f(y)
for f € Cu(X). So it is enough to show that the discrete measures of
the form Y ", ! by, With ax € R, ax 20, Y ar =1, and zx € X,
are dense. Smce a discrete probability measure ) .y @ndsz,, where a;, €
R, a, >0, > a, =1,and z, € X, is the limit of the probability measures

Ay

—Zik;a—" it is enough to show that the discrete probability measures
nek "

neN @nfz,, as above are dense in P(X).
Fix u € P(X). For each n, let X = |, Agn) be a (finite or infinite)
partition of X into Borel sets with diam(A{™) < 2=, Pick z{™ € A{™.
Let pn = 3, u(A(n))é - We claim that u, — u. To see this, let

f € Uy(X). Let o™ = lnf(flA(")) B = sup(f|A™). By uniform conti-
nuity, ™ = sup,(ﬁ,‘") al™) = 0asn — 0. 50| [ fdpn — [ fdu | =
| i fam(f = F@™))dp | < €™ 50 asn — . 0

We will prove now a number of important equivalences for convergence
in P(X).

(17.20) Theorem. (The Portmanteau Theorem) Let X be separable metriz-
able. The following are equivalent for pun, € P(X):

1) pn —

@) [ fdpn — [ fdp, for all f € Ch(X), or equivalently all f in any
countable dense subset of Uy(X) with the sup norm, where d is a compatible
metric for X, whose completion is compact;

i4i) limp pn (F) < w(F) for every closed F,

w) lim, pn(U) 2 u(U) for every open U;

v) lim, pn(A) = p(A) for every Borel set A whose boundary 9A ( =
A\ Int(A)) is u-null.

Proof. It is clear that i) < ii) and iii) < iv).

i) = iv): Let U be open, F = X\U and fi(z) = min{l, kd(z, F)}.
Then fi € Cy(X) and 0 < fi 1 xv. So w(U) = [xvdu = limy [ frdp.
Now [ frdp = lim, [ fidpn. In addition, [ frdun < [ xvdin = pa(U), so
limy, [ fedpn < lim, pn(U), and thus p(U) < lim,,pn (V).

iv) = v): We have by iv), and thus iii), u(Int(A4)) < lim, u,(Int(4)) <
lim,u.(4) < im,pn(4) < limp,(4) < p(A). If w(dA4) = 0, then
u(Int(A)) = p(A), so pun(A) — u(4) (= u(4)).

v) = ii): Fix f € Cp(X), say f : X — (a,b), in order to show that
f fdpn — [ fdp. For each z € (a,b) consider the set F, = f~}({z}).
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These sets are pairwise disjoint, so at most countably many of them have
positive y-measure. Fix ¢ > 0 and then find e =) < ) < --- < ¢, = b,
with w(F.,) = 0 and t;4) — t; < e. Let A; = f~"([ti=1,¢;))- Then X =
Unm lA and 04; C F;, ,UF,,, sou(aA ) =0, and thus u,(A;) — u(4,),
fori=1,...,m. Let g = 32, t;_1xa,. Then ||f - g||., < & therefore
Iffdun—ffduISfIf gldun+[1F=gldu+]|] gdun— [ gdul
< 2e+4+ 300 | pn(A) — u(A:) | - | tio1 | Letting n — oo, we have
mlffdl-"n ffd/*‘|<26>q0ffdﬂ'n_’ffd’-" 0

(17.21) Corollary. Let X be separable metrizable. Then for each open U C
X, the function p — p(U) is lower semicontinuous and for each closed
F C X the function p— u(F) is upper semicontinuous.

(17.22) Theorem. If X is compact metrizable, so is P(X).

Proof. Consider the separable Banach space C(X) (= C(X,R)) and its
dual C(X)*. The unit ball B,(C(X)*) with the weak*-topology is compact
metrizable. Let

K={AeB(C(X)): (l,A=1%&
VfeC(X)(f20=(f,A)>0)}.

By the Riesz Representation Theorem there is a bijection A — u between
K and P(X) satisfying (f,A) = [ fdu for f € C(X). It is immediate that
this bijection is 4 homeomorphism of K with P(X). But K, being closed
in B,(C(X)*), is compact metrizable, and thus so is P(X). a

(17.23) Theorem. If X is Polish, so is P(X).

Proof. Let X be a compactification of X. Consider the map y € P(X) —
i € P(X) given by i(A) = u(ANX) for any A € B(X). It is easy to see that
it is an embedding of P(X) into P(X) with range {u € P(X) : p(X) = 1}.
So it is enough to show that this set is G5 in P(X).

Let U, be apen in X with X = (),, Un. Since > u(X) = 1iff Vo(u(Un) =
1), it is enough to show that for any open U C X, {une P(X): u(U) =1}
is G's; or equivalently if FF C X is closed, {u € P(X) : u(F) = 0} is Gs.
Since u(F) = 0 & Vn(u(F) < 277), it suffices to show that {u € P(X) :
u(F) < €} is open, which is immediate from 17.21. o

(17.24) Theorem. Let X be separable metrizable. Then B(P(X)) is gener-
ated by the maps p — p(A), A € B(X), and also by the maps p— [ fdp,
where f varies over bounded Borel real-valued functions.

Proof. Denote by S the o-algebra generated by the maps u — u(A), A €
B(X), and by &’ the o-algebra generated by the maps p — [ fdu for f a
bounded Borel real-valued function. It is clear that S C &’. To prove that
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S’ C &, use “step function” approximations of bounded Borel functions, as
in the proof of 11.6 and the Lebesgue Dominated Convergence Theorem.
Finally, we show that &’ = B(P(X)). Since the basic open sets of
P(X) are in &', it is clear that B(P(X)) C &'. So it is enough to verify
that u— [ fdu is Borel on P(X) for each bounded Borel real-valued f. By
11.7 and the Lebesgue Dominated Convergence Theorem again, it is enough
to verify this for f € C,(X). But by definition p — [ fdu is continuous
when f € Cp(X), so the proof is complete. o

For each standard Borel space X, we denote by P(X) the space of all
probability Borel measures on X equipped with the o-algebra generated by
the maps p — p(A), A € B(X). By 17.23 and 17.24 this is a standard Borel
space and it is also generated by the maps p — [ fdu, where f varies over
bounded Borel real-valued functions on X. We will denote by B(P(X)) this
o-algebra.

The following important computation is the analog of 16.1 for mea-
sures.

(17.25) Theorem. Let (X,S) be a measurable space, Y a separable metrizable
space, and A C X xY a measurable set. Then the map

(z,1) € X x P(Y) — p(Az)

is measurable (for S x B(P(Y))). Sumilarly, if f: X x Y — R is bounded
measurable, the map

(z,p) — / fzdp

is measurable.

Proof. Consider the class A of measurable sets A C X xY such that the map
(z, u) — u(Az) is measurable. We will show that A contains all rectangles
S x U, with $ € S and U open in Y, and is closed under complementation
and countable disjoint unions. By 10.1 iii), this will prove the first assertion.

This follows immediately from the following facts:

)If Se S Uisopenin Y and A = § x U, then u(4;) = p(U),
ifx e S, and p(4;) = 0,if x ¢ S. Since by 1721 u — u(U) is lower
semicontinuous, the proof for rectangles is complete.

if) u((~ A)z) =1 - p(Az).

iii) If (A,) are pairwise disjoint measurable, then p((lJ, Ar)z) =
> n #((An)z)-

The second assertion follows, as f can be expressed as the pointwise
limit of a bounded sequence of linear combinations of characteristic func-
tions of measurable sets (see the proof of 11.6). o

(17.26) Notation. Let (X,u) be a measure space and A C X. Let
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V,zA(z) & X\Ais p-null
& A(z) p-ae.,
J,zA(x) & Aisnot p-null.

So if A is py-measurable, 3;xA(z) & u(A) > 0. If p is a probabil-
ity measure, VizA(z) & u(A) = 1. We call these the measure quanti-
fiers. In this notation and under the appropriate hypotheses, the Fubini
Theorem implies, for example, that V}, ., (z, y)A(z,y) & V2V, yA(z,y) ©
Y, yV,zA(T, ).

It follows from the preceding theorem that if A C X x Y is measur-
able, then so are B(z, u) & V,yA(z,y) and C(z, u) & 3;yA(x,y), i.e, the
measure quantities V;,y, 3,y preserve measurability.

(17.27) Exercise. Let X be separable metrizable. Then z — §, is an em-
bedding of X into P(X).

(17.28) Exercise. Let X,Y be separable metrizable and let f: X — Y be
continuous. Show that the map p — fu from P(X) into P(Y") is continuous.
If f is an embedding and f(X) € B(Y), then u — fu is an embedding.
In particular, if X C Y is in B(Y), then P(X) is homeomorphic to {u €
P(Y): u(X) =1}

(17.29) Exercise. Let X be separable metrizable. Show that
{(n, K,a) € P(X) x K(X) x R: u(K) > a},
{(p, K,a) € P(X) x K(X) xR: u(K) > a},
{(1,K,a) € P(X) x K(X) xR: u(K) < a},

are closed, F,, and Gs, respectively. In particular, for any ¢ € P(X),
NULL, N K(X) is Gs in K(X).

(17.30) Exercise. By 17.7, we can identify P(C) with the set of all  : 2<N —
[0,1] that satisfy (@) = 1 and ¢(s) = ¢(s70) + ¢(s"1). Note that this is
a closed subset of [0,1)2" (which is homeomorphic to the Hilbert cube).
Show that this identification is a homeomorphism.

(17.31) Exercise. (Prohorov) Let X be a Polish space and M C P(X). Then
M has compact closure iff M is (uniformly) tight, i.e., for every € > () there
is a compact set K C X such that u(X\K) < ¢ for all p € M.

(17.32) Exercise. Let X be compact metrizable. Denote by Mg(X) the
dual space C(X,R)* of C(X,R). By the Riesz Representation Theorem the
members of Mg(X) can be viewed as signed Borel measures on X (i.e.,
they have the form y — v for p,v finite Borel measures on X). Similarly,
Me¢(X) = C(X,C)* can be viewed as the space of complex Borel measures
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on X (i.e., those of the form p + iv for u,v signed Borel measures on X).
As we pointed out in the proof of 17.22, P(X) is a closed subspace of
B)(Mg(X)) as well as of By(Mg(X)). So P(X) is a compact convex set in
Mg(X) and M¢(X). What is 9.(P(X))? (Recall 4.10 here.)

(17.33) Exercise. Let X be a compact metrizable space and G a group of
homeomorphisms of X. One can view G as acting on X by ¢g.z = g(z). Let
E¢ be the associated equivalence relation zEgy < 3¢ € G(g.z = y). We
call a measure p € P(X) invariant if gu = p, for all g € G. Denote by
INV; the set of invariant u € P(X). Show that INVg is compact convex
in P(X).

We call p € P(X) G (or Eg)-ergodic if for every invariant Borel set
A C X we have u(A) = 0 or u(A) = 1. For example, if X = Z§ (= C) and
G is the subgroup of ZY consisting of all (z,,) € ZY, which are eventually 0,
acting on ZY by addition (g.z = g+ z if g € G, z € X), then the invariant
sets are exactly the tail sets, so the 0-1 law 17.1 implies that every product
measure g = [],, 4n, where p, are probability measures on {0,1} (= Z3), is
ergodic. (Of course u, has the form p, = ppdo +(1—pn)é) for 0 < p, < 1.)
In particular, the Haar measure ¢ is both invariant and ergodic.

Denote by EINV; the set of ergodic invariant g € P(X). Assuming
that G is countable, show that 9.(INV;) = EINV and therefore EINV;
is a Gs set in P(X).

(17.34) Exercise. Let X be a standard Borel space and p € P(X) and let
Y = X% and v = pZ be the corresponding product measure. Let $: Y — Y
be the shift map S((z.)) = (zn+1). Finally, let G = {S"},¢z be the group
generated by S. Show that v € EINV;.

(17.35) Exercise. (The Measure Disintegration Theorem) i) Let X,Y be
standard Borel spaces and f : X — Y be a Borel map. Let u € P(X)
and » = fu. Show that there is a Borel map y — p, from Y into P(X)
such that Vyy(uy(f~*({y})) = 1) and p = [pydv(y) (i.e., for any Borel
A C X, p(A) = [p,(A)dv(y), or equivalently for any bourided Borel
0: X >R, [odu= [(f pduy)dr(y)). Show also that if y — v, is another
map with these properties, then p, = v, v-a.e.

ii) Apply this to the projection map projx of X xY onto X to show that
any probability Borel measure y on X x Y can be written as an “iterated”
measure, i.e., that there is a Borel map z — u, from X into P(Y) with
p(A) = [ pz(Az)dv(z) for any Borel set A C X x Y, where v = projxp.
(The case pu, = p gives, of course, the product measure v x p.)

Check also the converse: If v is any probability measure on X and
z +— p; is a Borel map from X into P(Y’), then the formula px(A) =
[ pz(Az)dv(z) defines a measure p € P(X x Y) with projxu = v. Show
that the following generalized Fubini Theorem holds: If f : X xY — R is
bounded Borel, then [ fdu = [([ frdp.)dv(z).
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(17.36) Exercise. Let X be a measurable space, Y a separable metrizable
space, and p a o-finite Borel measure on Y. If A C X x Y is measurable,
show that the map z — u(A;) is measurable (from X into [0, 0], viewed
as the one-point compactification of [0,00)). Similarly, show that if f :
X xY — [0, 0) is bounded measurable, the map z — f frdp is measurable.

(17.37) Exercise. Let X be standard Borel. Show that {y € P(X) : p is
continuous} is Borel in P(X).

(17.38) Exercise. Let X be separable metrizable and p € P(X). The
(closed) support of u (denoted by supp(u)) is the smallest closed set of
u-measure 1. Show that this exists. Assume now that X is Polish and show
that the map pu— supp(u) is Borel from P(X) to F(X).

(17.39) Exercise. Let X be standard Borel. Show that 4 < v, p ~ v, and
p L v are Borel (in P(X)?).

(17.40) Exercise. Show that if X,Y are standard Borel, then the map
(u,v) € P(X)x P(Y)— uxv e P(X xY)isBorel. Also,if f: X - Y is
Borel the map p € P(X) — fu € P(Y) is Borel.

17.F The Isomorphism Theorem for Measures

(17.41) Theorem. Let X be a standard Borel space and p € P(X) a con-
tinuous measure. Then there is a Borel isomorphism f:X — [0,1] with
fu=m|[0,1] (= the Lebesgue measure on [0,1]).

Proof. We can, of course, assume that X = [0,1]. Let g(z) = u([0,z]).
Then g : [0,1] — [0,1] is continuous and increasing, with g(0) = 0, ¢g(1) =
1. Also, g = wm, since if y € [0,1] and g(z) = y, we have gu([0.y]) =
1(g~1 ([0, ) = u([0, 2]) = g(z) = y = m([0,y]).

For y € [0,1], let F, = g~'({y}) and note that F, is an interval
which may be degenerate, i.e., a point. Let N = {y : F,, is not degenerate}.
Then N is countable and if M = g—1(N), then u(M) = m(N) = 0. Clearly,
9/([0, 1]\ M) is a homeomorphism of [0, 1]\M with [0,1]\N.Let Q C [0,1\N
be an uncountable Borel set of m-measure 0, and put g~*(Q) = P, so
that u(P) = 0. Then P UM, QU N are uncountable Borel sets, so there
exists a Borel isomorphism h : P UM — QU N. Finally, define f by
fI(PUM) =h, fl([0,1])\(PU M)) = g|([0, 1]\(P U M)). Then f is a Borel
isomorphism of [0, 1] onto itself and fu = mj[0, 1]. 0

(17.42) Exercise. Show that the measure algebra MALG,, of a continuous
probability Borel measure on a standard Borel space is uniquely determined
up to isomorphism. It is called the Lebesgue measure algebra.
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(17.43) Exercise. i) Let X be a standard Borel space and p € P(X). Define
the following metric on MALG,;:

&((P), [Q) = w(PAQ).

Show it is complete separable. (This makes MALG,, a Polish space in this
topology.) Show that if A C B(X) is an algebra that generates B(X), then
{[P] : P € A} is dense. Show that the Boolean operations —[P] = [~
P), [PIA[Q] =[P NQ), and [P] V [Q] = [P U Q)] are continuous. (Here A,
V denote the meet and join operations, respectively.)

ii) Let A € MALG, be a o-subalgebra, i.e., a subset closed under
complements and countable joins. Show that A is closed in MALG,,.

Show also that there is a standard Borel space Y and a Borel map
f: X — Y such that if » = fu and if f* : MALG, — MALG, is given
by f*([Q)) = [f~(Q)), then f* is a (Boolean algebra) isomorphism of
MALG, with A. Thus A is (up to isomorphism) also a measure algebra of
some measure.

If AC B(X) is a o-algebra and if A = {[P]: P € A}, then show that
f above can actually be taken to be measurable with respect to (X, .A).

Remark. Woodin has shown that there is no Polish topology in the category
algebra (of R) in which the Boolean operations are continuous. (See the
Notes and Hints section for a simple proof by Solecki.)

(17.44) Exercise. A measure algebra is a Boolean o-algebra A together with
a strictly positive probability measure v : A — [0, 1], i.e., ¥(a) =0 a =0
and v(Va,) = 3, v(a,) for any sequence of pairwise disjoint elements (a,)
of A. (If a,b € A, we call a,b disjoint if aAb = 0.) The algebras MALG,,,
with v([P]) = p(P), are clearly measure algebras. Show that all measure
algebras are complete (as Boolean algebras).

i) An isomorphism 7 : (A,v) — (A’,V') between measure algebras
is a Boolean algebra isomorphism that also preserves the measure, i.e.,
v(a) = v'(m(a)). Show that 17.42 is also valid in the sense of measure
algebra isomorphisms. Also, 17.43 ii) holds in that sense, where A is viewed
as a measure algebra by restricting the measure to it.

it) If (A,v) is a measure algebra, we define the metric § or A as in
17.43: 8(a,b) = v(aAb), where aAb = (aVb) — (anb). Show that (A,4) is
complete. Show that it is separable iff A is countably generated as a Boolean
o-algebra, (i.e., there is a countable set B C A such that A is the smallest
Boolean ¢-algebra containing B).

ili) An atom in a Boolean algebra A is a non-zero element a € A such
that: b < a = (b = 0 or b = a). Show that any two distinct atoms are
disjoint and also that in a measure algebra there are only countably many
atoms.

iv) A Boolean algebra is atomless if it contains no atoms. Show that
the Lebesgue measure algebra is the unique (up to isomorphism) separable
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(in the sense of ii)), atomless measure algebra. Show also that any sepa-
rable measure algebra is isomorphic to MALG,, for some probability Borel
measure p on a standard Borel space X.

(17.45) Exercise. Let X be a standard Borel space, u € P(X), and
MFUNCT,, be the set of real-valued p-measurable functions. For f,g €
MFUNCT, let f ~ g & f(z) = g(z) p-a.e. This is an equivalence rela-
tion and denote by [f] the equivalence class of f and by M,, the set of
equivalence classes. Define on it the metric

R

Show that this metric is complete and separable. (Thus M, is a Polish
space in this topology.) Prove that [f,] — [f] iff fn — f in measure, i.e.,
for all e > 0, u({z | fu(z) — f(z) |=€}) — 0.

Show that MALG,, is homeomorphic to a closed subset of M,,.

(17.46) Exercise. i) Let X be a standard Borel space and u € P(X). For
S, T Borel automorphisms of X define the equivalence relation: S ~ T &
S(z) = T(x) p-a.e. Denote by [T] the equivalence class of T. (It is cus-
tomary to write often T instead of [T, if there is no danger of confusion.)
A Borel automorphism T of X is (u-) measure preserving if Ty = p. Let
Aut(X, p) be the set of equivalence classes [T] of such measure preserving
automorphisms. It is a group under composition, called the group of mea-
sure preserving automorphisms of . (Notice that this group is independent
of u, if u is continuous.) By 15.11, we can canonically identify Aut(X, u)
with the grolip of measure algebra automorphisms of the measure algebra
MALG,,.

Every T € Aut(X,u) gives rise to a unitary operator Ur € U(L?(X,
1)), given by

Ur(f)=foT™".

Show that T — Ur is an algebraic isomorphism of Aut(X, p) with a closed
(thus Polish) subgroup of the unitary group U(L2(X, 1)). Put on Aut(X, u)
the topology induced by this isomorphism, so it becomes a Polish group.

Define the following metric on Aut(X, p):

p(S,T) =Y 27" (1(S(An)AT(An)) + (S (An) AT (4n))),

where A = {A,} is an algebra generating B(X'). Show that it is complete
and compatible with the topology of Aut(X, u). Also show that Aut(X, p)
is a closed subgroup of Iso(MALG ,, §), where MALG,, is endowed with the
metric é as in 17.43 i).

(We call T € Aut(X,p) ergodic if every invariant under T Borel set
A C X has measure 0 or 1. Halmos has shown that the set of ergodic T is
a dense G set in Aut(X, u).)
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ii) Let X be a standard Borel space and p € P(X). A Borel automor-
phism T of X is (u-) non-singular if Ty ~ u. By 15.11, we can canonically
identify the group of automorphisms of the Boolean algebra MALG,, with
the group, denoted by Aut*(X,u), of all [T] with T non-singular (under
composition). (Again, this group is independent of u, if u is continuous.)

To each T € Aut*(X,u) we can assign the unitary operator Ur €
U(L*(X, ), given by

Ur(f)(z) = (‘“TT;‘—)(@)‘/%(T-%).

Show that T +— Uy is an algebraic isomorphism of Aut* (X, u) with a closed
subgroup of U(L2(X, u)). Put on Aut*(X, u) the topology induced by this
isomorphism so that it becomes a Polish group. Show that Aut(X,pu) is a
closed subgroup of Aut*(X, u). (Choksi and Kakutani have shown that the
set of ergodic T is dense G5 in Aut*( X, p).)

(17.47) Exercise. i) For each Lebesgue measurable set A C (0, 1), let

¢(A) = {z : z has density 1 in A}

s m(ANI)
= e :ell,lll}}—m m(I) 1}
(where I varies over open intervals). Recall (from 17.9) that A =}, ©(A).
We thus have for any two Lebesgue measurable sets A,B: A=} B =
p(A) = p(B) =}, A;30 A — (A) is a canonical selector for the equivalence
relation A =}, B. (Compare this with A — U(A); see 8.30.)

ii) We define a new topology on (0,1) called the density topology, by
declaring that the open sets are those Lebesgue measurable sets A C (0,1)
for which A C ¢(A). Prove that this is indeed a topology and that it
contains the usual topology on (0,1).

iii) Show that for A C (0,1), A is nowhere dense in the density topology
iff A is closed nowhere dense in the density topology iff A is meager in the
density topology iff A has Lebesgue measure 0.

iv) Show that for A C (0,1), A has the BP in the density topology iff
A is Lebesgue measurable.

v) Show that if A C (0,1) is Lebesgue measurable and z € ¢(A4) N A4,
then there is a perfect nonempty set P C A with z € ¢(P)N P.

vi) Show that the density topology is strong Choquet and regular.
However, it is not second countable.
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18. Uniformization Theorems

18.A The Jankov, von Neumann Uniformization Theorem

Given two sets X,Y and P C X x Y, a uniformization of P is a subset
P* C P such that for all z € X, 3yP(z,y) & NyP*(z,y) (where I stands
for “there exists unique”). In other words, P* is the graph of a function f
with domain A = projx(P) such that f(z) € P, for every z € A. Such an
f is called a uniformizing function for P.

‘ :

Y

R_—_—

A
FIGURE 18.1.

The Axiom of Choice makes it clear that such uniformizations exist.
However, our interest here is to find “definable” uniformizations of “defin-
able” sets. We will study here the case when P is Borel.

Given measurable spaces (X,S), (Y,.A) and a function f : X' — Y,
where X’ C X, we say that f is measurable if it is measurable with respect
to the subspace (X', S | X’). As usual, 0(Z}) is the o-algebra generated by
the =1 sets.

(18.1) Theorem. (The Jankov, von Newmann Uniformization Theorem) Let
X,Y be standard Borel spaces and let P C X x Y be X}. Then P has a
uniformizing function that is o(X})-measurable.

Proof. We can assume, of course, that X,Y are uncountable and, since
o(X}) is invariant under Borel isomorphisms, we can assume that X =
Y = N. If P =), there is nothing to prove, so we also assume that P # 0.

Let m : M — X xY be a continuous function with 7(A) = P and define
FC X xN by (z,2) € F< projy(m(z)) = z. Then F is closed. Let A =
projx(P) = projx(F). If f uniformizes F, then g(x) = projy (7(f(z)))
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uniformizes P. Since 7, projy are continuous, if f is o(X})-measurable, so
is g. We can thus assume that actually P is closed.

By 2.C, there is a pruned tree T on N x N such that P = [T). If for
z € N, T(z) is the section tree determined by z, then we have

Py = [T(T)]
So for each £ € A = projx(P), let

f(!l‘) = 47(x)

be the leftmost branch (see 2.D) of T(x) (with respect to the ordering
on N). This is our uniformizing function. We will show that it is o(X})-
measurable. (Its domain A is clearly ¥}.) For that we will check that for
each s e NN, f=Y(N,) = {2 € A: s Capg,} is in 6(2}). We prove this
by induction on length(s). It is clear when s = 0. Assume it holds for s;
now consider ¢ = s”k. Then f~!(NN,) is the intersection of f~!(N,) and the
set of x satisfying the following condition:

Iy{(z,y) € [T) & s"k Cy} & Ve < k-3y{(z,y) € [T) & s" € C y},
so f~}(V,) is in ¢(Z}) (refer to Appendix C). m]

In general, we cannot improve the above result to obtain a Borel uni-
formizing function, even when P is closed and projx (P) = X see 18.17.

(18.2) Exercise. Give an alternative argument for 18.1 as follows: As before,
assume X,Y are Polish and P C X x Y is closed. Let p(z) = P, so that
p: X — F(Y). Verify that p is 0(2})-measurable and then use 12.13.

(18.3) Exercise. Let X,Y be standard Borel spaces and f : X — Y a Borel
function. Show that there is a ¢(X})-measurable function g : f(X) — X
such that f(g(y)) =¥

(18.4) Exercise. Recall the notation of 4.32. Put IF = {T € Tr: [T] # 0}.
Show that IF is £} and that the map T € IF — ar € N (see 2.D) is
o(X})-measurable. Also denote by Tr the set of finite splitting trees on N,
and let IF; = IF N 'Tr;. Show that Tr; is Borel in 2V, IF is Borel, and
Te IFf +— ar is Borel.

Next we will prove results that, under various conditions, allow us to
uniformize Borel sets by Borel functions. They basically fall in two cat-
egories: One applies when the Borel set P has the property that all its
nonempty sections P are “large”. The other applies when all the sections
P, are “small”.
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18.B “Large Section” Uniformization Results

(18.5) Definition. Let X,Y be standard Borel spaces. A function :X —
Pow(Pow(Y')) is called Borel on Borel if for every standard Borel space Z
and Borel set AC Z x X xY the set {(z,2):A; . € ®(z)} is Borel.

We are particularly interested here in the case where to each r € X
we assign a o-ideal ®(z) = Z; of subsets of Y. For example, we could have
a Borel map z — p, € P(Y) and take Z, = NULL,_ . By 17.25, the map
z +— I is Borel on Borel. Also, if Y is Polish and Z, = MGR(Y") (this is
independent of z), then again this is a Borel on Borel assignment, by 16.1.

(18.6) Theorem. Let X,Y be standard Borel spaces and P C X xY be Borel.
Let x — Z; be a Borel on Borel map assigning to each x € X a o-ideal in
Y. If for x € projx(P), P, ¢ I, then there is a Borel uniformization for
P, and in particular projy (P) is Borel.

Proof. We can assume that X,Y are Polish. Consider then a Lusin scheme
(P*)sen<n associated to P according to 13.9 and satisfying i) - iii) of that
theorem. For each z € X, let P = (P*), (= {y : P°(z,y)}). Then
(P$)sen<n satisfies i) — iii) of 13.9 for P,.

For each z € projx(P), let T, = {s € NN : p$ ¢ 7.} so that T}
is a nonempty pruned tree on N. Let 2, be its leftmost branch. By the
properties of (P3), Pg= =), P" s a singleton, say {f(z)}. This is our
uniformizing function. We will show that it is Borel. Let {V,,} be an open
basis for Y.

We have for each open U C Y,

f®)elU s Elk[ﬁ CU&IMVn>mvteN"NT,Ise N*N T,
(8 Siex t& Vi NP} ¢ T,)]
SV, CU&IMVn>mvt e N* (Pt ¢ T, =
s €N (s Siex t & P; ¢ T, & Vi N Py ¢ T,)]},

where <jex is the lexicographical ordering on N™. Since z — Z is Borel on
Borel, f is Borel. O

(18.7) Corollary. Let X,Y be standard Borel spaces and P C X xY be Borel.
Let x — p; be a Borel map from X to P(Y). If for x € proj x(P), p(Pz) >
0, then P admits a Borel uniformization (and so projy (P) is Borel). Sim-
ilarly, this holds if Y is Polish and if for each = € projy(P), P, is non-
meager.

(18.8) Exercise. Show that if X,Y are standard Borel spaces and P C X xY
is ], then there is a uniformization P* C P of the form P* = (), An,
where each A, is a union of a ] and a IT} set.
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Remark. Martin and Steel (see Y. N. Moschovakis [1980], 4F.22) have
shown that P* cannot in general be of the form |J, Ak, with A, an inter-
section of a X} and a IT} set.

(18.9) Exercise. Show that there is a closed set F C N x A such that every
nonempty F,, is uncountable, but F admits no Borel uniformization. Prove
also that if X,Y are uncountable standard Borel spaces and P C X x Y is
Borel, the set {z € X : P, is countable} is not necessarily Borel. Show that
it is IT}.

18.C “Small Section” Uniformization Results

(18.10) Theorem. (Lusin-Novikov) Let XY be standard Borel spaces and
let P C X xY be Borel. If every section P, is countable, then P has a
Borel uniformization and therefore projx(P) is Borel.

Moreover, P can be written as |J,, P, where each P, is a Borel graph
(i.e., if Py(z,y) and P,(z,y') hold, then y=1y').

Proof. (Kechris) We will need the following result, which is interesting in
its own right.

(18.11) Theorem. (The set of unicity of a Borel set) (Lusin) Let XY be
standard Borel spaces and let RC X x Y be Borel. Then

{z € X : My(z,y) € R}
is II3.
We will assume this temporarily and now complete the proof of 18.10.

(18.12) Lemma. Let XY be standard Borel spaces and P C X xY a Borel
set with each section P, countable. Then projy(P) is Borel.

Proof. We can assume that X,Y are Polish. Let F C N be closed and
7: F — X x Y a continuous injection with 7(F) = P. Let @ C X x A be
defined by (z,2) € Q@ & 2 € F & projx(m(z)) = x. Then Q is closed, every
section Q) is countable, and projx(P) = projx(Q). So we can assume that
P is closed to start with.

Since P, is countable closed, it must have an isolated point if it is
nonempty. If {U,} is a basis of open sets for Y and we let

A, = {T : El’y((:r,y) €eP&ye Un)}7

then by 18.11 A,, is IT} and (by our preceding remark) projx(P) = U, An.
Since the IT} sets are closed under countable unions, projx(P) is II} and
thus, since it is clearly ], it is Borel, by Souslin’s Theorem. ]
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To prove 18.10, note that it is enough to show that P C |J,, Pn, where
(Pn) is a sequence of Borel graphs (since then P = J.(P N P,)) and
so, by enlarging P if necessary, we can assume that each section P, is
countably infinite. We will find then a Borel map ¢ : X — YN such that
P, = {e(z)n : n € N} and put P, = {(z.¥) : e(z)n = ¥}

For that purpose, let E C X x YN be defined by

(z,(en)) € E & (e,) enumerates P,
S Vnle, € Pp) &
Yy € PIn(y = e,).

We claim that E is Borel: Clearly, “vn(e, € P;)” is Borel. To see that
“Yy € P,An(y = en)” is Borel, consider its complement

(z,(en)) € R & Jyly € P, & Yn(y # e,))]
© 3y(z,(en).y) €5,

where S is Borel and its sections S, (.,,) are countable, and so by 18.12, R
is Borel.

We finally come down to the problem of finding a Borel uniformization
of E. This will be accomplished using 18.6.

For each z, give P, the discrete topology and then PY the product
topology. Thus PY is homeomorphic to N. Clearly, E, = {(e,) € PN : (e,)
is surjective (i.e., Yy € P,In(y = €,))}. So E, is a dense Gs set in PY.
Then define the following o-ideal Z, on YV :

A eI, & AN E, is meager in PY.

Thus E; ¢ Z,. So if we can show that = — 7, is Borel on Borel, then, by
18.6, F has a Borel uniformization and we are done.

So fix a standard Borel space Z and a Borel set A C Z x X x YN and
consider {(z,%): A, ; € I} = {(2,2) : A, . N E, € Z,} in order to show it
is Borel. We can clearly assume that AC Z x E.

If e = (e,) : N = P, is a bijection, e induces a homeomorphism 7.
between A and P! given by m.(w) = cow. So A, € I, & A, , is meager
in P & 771(A,,) is meager in N & {w € N : eow € A, ,} is meager.
By 16.1, the set

(z,2,) €Q & (z,e) e E&YnVm(n #m = e, # €,,)
& {w € N : (z,z,e ow) € A} is meager
is Borel. But

A, €I, & Je(z,2,2) €Q
< Ve{[(z,e) € E & VnVm(n # m =
en # em)] = (z,x,€) € Q}’
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so {(z,z) : A; € I,} is £} and IT} (see Appendix C), and thus Borel, by
Souslin’s Theorem. 0

Finally, we give the proof of 18.11.

Proof. (of 18.11) (Kechris) We can assume that X =Y = N, and as in the
proof of 18.12, using the fact that R is the injective continuous image of a
closed set in A/, we can assume that R is closed. Let S be a pruned tree on
N x N such that R = [S]. Then we have Jy(z,y) € R & y(y € [S()]).
Since the map z — S(z) is easily continuous (from A to Tr) it is enough
to show that the set
UB = {T € Tr: y(y € [T])}
is IT}. We will prove this by a game argument.
Let Lo, C Tr be defined by
Tel,=vndseN'(seT).
Lo is clearly Borel. For each tree T on N, now consider the following game
GT:
I no z(0) z(1)

II y(0) ¥(1)
Player 1 starts with ng € N, II responds with y(0) € N, then I plays z(0) €
N, II responds by y(1) € N, etc. Player I wins this run of the game iff
Vo> 1(yln € T = z|n € T) & 3n < no(z(n) # y(n)).

(We require that player I play something different than player II before stage

no, in order to make sure that I wins iff a certain condition is satisfied at

each stage of the game, thereby ensuring that the set W below is Gs.)
The main claim is that, for T € L:

) T ¢ UB « I has a winning strategy in Gp.

Granting this the proof is completed as follows. As in 8.10, a strategy for I
in Gt is a nonempty tree ¢ on N such that if s € ¢ has odd length, s"n € o
for all n, and if s € o has even length, s"n € o for a unique =. It is winning
if every run (ng,¥(0),z(0).y(1),2(1)....) € [o] is a win for I. Denote by
Wr C Tt the set of winning strategies for I in Gr.

Define W C Tr x Tr by (0,T) € W & ¢ € Wr. Then we have

(0, T)EW S #0&VmVse N*[(seo &
misodd = Vn(s'nenm)) &
(s € 0 &miseven = Iln(s"n € 9))]
& Vn¥s € N*Vt € N*Vng{ [(n0,t0, 50, - - »tn=1s Sn—1)
€a=>(teT=>s€T)]&(n2no=> ‘
Ji < no(si #:))},
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so W is clearly Gs. Finally, T € UB iff T € L., and I has no winning
strategy in Gr, i.e,

TeUB&Te Ly, & -30(0,T) e W,

so UB is IT}.

(The preceding calculation is a particular instance of 20.11.)

It remains to prove (*).

<: Let T € UB. We will show that II has a winning strategy in G
(and thus I has no winning strategy). Since T' € UB, let y be its unique
infinite branch. Let II play this y, independently of what I does.

=: Now let T ¢ UB. We will show that I has a winning strategy in
Gr.

Case 1. [T] has at least two elements. Let z, # z; be two infinite
branches of T and let n be least with z,(n) # z2(n). Player I starts
by playing ng = n + 1. Then, independently of what II plays, I plays
(z(0),...,z(n = 1)) = z3|n (= z2|n). If II now plays y(n), then for some
i € {1,2}, y(n) # xi(n), and I plays from then on (z(n),z(n +1),...) =
(zi(n),zi(n + 1),...), i.e. z = z;. This is clearly winning for I.

Case 2. [T] = 0. Then the tree T is well-founded, and so let pr be its
associated rank function. Since we are assuming that T € Lo, it follows
easily that pr(0) > w. So pr(@) = A + n, where A is a limit ordinal and
n<w.

The strategy of I is as follows: He starts by playing n¢ = n + 1. To
describe how I plays from then on, let us say that a position of the game
(mo,¥(0),z(0),...,y(k),z(k)) with k < ng is decisive if either: (A) yl|k €
T, z|k € T, y|(k+1) ¢ T, and z(k) # y(k), or (B) y|(k+1) € T, z|(k+1) €
T, and pr(yl(k + 1)) < pr(z|(k + 1)) (so that, in particular, y|(k + 1) #
z|(k + 1)). Notice that if I can reach a decisive position, then in case (A)
he plays from then on z(k + 1), z(k + 2), ... arbitrarily, and in case (B) he
plays (after seeing y(k+1), y(k+2),...) z(k+1), z(k+2),... in such a way
that for any m > k, y|(m+1) € T = (z|(m +1) € T and pr(y|(m+1)) <
pr(z|(m+1))). He can do that inductively on m since, if s, € TNN™*! and
pr(s) < pr(t), then for every p with s”p € T, pr(s"p) < pr(s) < pr(t),
so there is ¢ with t"¢ € T and pr(s"p) < pr(t"¢). In either case, if I plays
from then on this way he wins.

So it is enough to show that I can play, responding to II's moves, in
such a way that he reaches a decisive position. Say II starts with y(0). If
y|1 = (y(0)) ¢ T, then I plays z(0) # y(0), and I has reached a decisive
position. Else y|1 € T. Then I tries to find (0) such that z|1 = (z(0)) € T
and pr(y|1) < pr(z|l). If he can do that he reached a decisive position.
Otherwise, since pr(y|1) < pr(0) = sup{pr((p)) +1: (p) €T} = A +n, it
must be that n > 0 and pr(y|1) = A+n—1. In this case, I plays z(0) = y(0).
Player II next plays y(1). If y|2 ¢ T, II plays any z(1) # y(1) and we are
done. Else y|2 € T. Player I again tries to find z(1) with z|2 € T and
pr(y|2) < pr(z|2). If he succeeds, we are done. Else, as before, we must
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have n > 1 and pr(y|2) = pr(y|]1) = 1 = A+ n — 2, etc. If I has failed
by k = n — 1 to reach a decisive position, we must have z|n = yln € T
and pr(y|n) = pr(z|n) = A+ n — n = A. Then II plays y(n) and we have
pr(¥l(n+1)) < pr(y|n) = A, so there is definitely x(n) with pr(y|(n+1)) <
pr(z|(n + 1)); thus we have reached a decisive position. a

(18.13) Exercise. Show the converse of 18.11: If X is a Polish space and
A C X is IT}, there is a Polish space Y and a Borel set R C X x Y with
A = {z € X : y(z,y) € R}. In fact, show that there is a Polish space ¥V’
and a surjective continuous f : Y — X such that A = {z : y(f(y) = 2)}.

(18.14) Exercise. Let X,Y be standard Borel spaces and f : X — Y a Borel
function, which is countable-to-1 (i.e., f~!({y}) is countable for any y € Y).
Show that f(X) is Borel and there is a Borel function ¢ : f(X) — X with

f(g(¥)) =y for all y € f(X).

(18.15) Exercise. Let X, Y be standard Borel spaces and P C X x Y a Borel
set with countable sections Py for all z € X. Show that there is a sequence
(f») of Borel functions f, : projx(P) — Y such that P, = {fn(z) : n € N}
for all z € projx (P).

Next show that if A, = {z : card(P,) = n} for n =1,2,..., Ry, then
Ay, is Borel and for each n there is a sequence ( fi(n) )i<n of Borel functions
£ . A, — Y with pairwise disjoint graphs such that for € A,, P, =

)

{fi(n)(:c) (i< n}.

(18.16) Exercise. (Feldman-Moore) Let X be a standard Borel space and
E a Borel equivalence relation on X. We say that E is countable if every
equivalence class [z]g of E is countable. Show that if E is countable, there
is a countable group G of Borel automorphisms of X such that zFy <
3g € G(g(z) = ).

(18.17) Exercise. Show that there is a closed set F C A x N whose (first)
prcjection is all of A, but F has no Borel uniformization.

The uniformization theorem 18.10 admits a powerful generalization,
which we will prove later in 35.46.

(18.18) Theorem. (Arsenin, Kunugui) Let X be a standard Borel space, Y
a Polish space, and P C X x Y a Borel set all of whose sections Py, for
z € X, are K,. Then P has a Borel uniformization and so, in particular,
projx (P) is Borel.
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18.D Selectors and Transversals

Problems of uniformization are closely connected with those of selectors for
equivalence relations. Recall here 12.15 for the basic definitions.

A Borel equivalence relation need not have a “nice” selector or transver-
sal, e.g., a transversal having the BP or being measurable (with respect to
some given measure). For example, if E is the Vitali equivalence relation
on [0,1] (ie., zEy & z — y € Q), then F cannot have a transversal that
either has the BP or is Lebesgue measurable.

(18.19) Exercise. Prove the preceding statement.

In the special case when E is a closed (in X?) equivalence relation
on a Polish space X, the map = — E, = [z]g is 6(E})-measurable (see
18.2) and so by 12.13 E has a ¢(X})-measurable selector (and we will see
later in 29.B that o(X])-measurable functions are Baire measurable and
p-measurable, for any probability Borel measure p). But such an E might
not have a Borel selector or equivalently a Borel transversal. To see this,
let F C N x N be closed such that its first projection is X} but not Borel.
Then F clearly has no Borel uniformization. Take X = F and consider the
equivalence relation F on X given by (a,b)E(a’,b') & a = o'. A transversal
for E is just a uniformization of F.

For a special situation when we can obtain a Borel selector for E, recall
12.16.

(18.20) Exercise. Let X be a standard Borel space and E a Borel equivalence
relation on X. We say that E is sinooth if thereisaBorelmap f : X - Y, YV
a standard Borel space, with zEy & f(z) = f(y).

i) Show that F is smooth iff there is a sequence (A,) of Borel subsets of
X with zEy & Vn(zx € A, & y € A,). Show that if F has a Borel selector
or if X is Polish and F is closed, then E is smooth. (Thus smoothness does
not imply the existence of Borel selectors.)

ii) (Kechris) Show that if E is smooth and moreover that z — Z, is
a Borel on Borel map assigning to each « € X a o-ideal of subsets of [z]g
such that zEy = I, =7, and (z]g ¢ Z.. then E has a Borel selector.

iii) (Burgess) Show that if E is smooth and moreover it is induced
by a Borel action of a Polish group G on X (i.e., in the notation of 15.D,
E = E; for a Borel action of G on X), then E has a Borel selector.

iv) (Srivastava) Show that if X is a Polish space and E an equivalence
relation on X such that every equivalence class is Gs and the saturation of
every open set is Borel, then F has a Borel selector.
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19. Partition Theorems

19.A Partitions with a Comeager or Non-meager Piece

Recall the pigeon-hole principle: If N = Py U .--U P_, is a partition of N
into finitely many pieces, then for some ¢ < k, P; is infinite. Ramsey proved
the following important extension: For any set X, let X, [X]"={AC X :
card(A) =n}, n=1,2,.. . If[N]* = PyU---U Px_, is a partition of [N]"
into finitely many pieces, there is infinite H C N such that [H]* C P; for
some ¢ < k. Such an H is called a homogeneous set for the partition.

We will consider here extensions of Ramsey’s theorem involving Polish
spaces instead of N or infinite exponents.

First we consider the case of partitioning with one large piece.

(19.1) Theorem. (Mycielski, Kuratowski) Let X be a metrizable space.
Let U C X™ be a dense open set. For any set A, let (A)" = {(z;) €
Arz; # x5, if @ # j}. Then {K € K(X):(K)" C U} is a dense Gs
in K(X). In particular, if R, C X™ are comeager for i € N, then {K €
K(X)Mi((K)™ C R;)} is comeager in K(X). So if X is a nonempty perfect
Polish space, there is a Cantor set C C X with (C)™ C R; for all i.

Proof. Let D = {(xy,...,z,) € X™ : z; = z; for some i # j}: Then
(K)* CU & K™ CUUD. Now the map K — K" from K(X) to K(X™)
is continuous by 4.29 vii) and UU D is G in X™, from which it follows that
{K:(K)" CU}is Gs in K(X).

We show next that {K : (K)* C U} is dense. Notice first that if
V C K(X) is nonempty open and does not contain @, there is m > n and
nonempty open Uy,...,U, C X such that if x; € U;, 1 <1 < m, then
{z;: 1 <i<m} e V.Itis enough then to show that we can shrink U; to
U! C U,, U] nonempty open, such that for any distinct ,...,i, < m we
have U] x --«x U; CU. This is easily accomplished by repeated (finitely
often) application of the following fact, which holds since U is open and

dense: If G4,...,G, are nonempty open in X, there are nonempty open
sets G; C G; such that G|, x --- x G, CU.
The last statement follows from 8.8. a

(19.2) Exercise. i) Show that there is a Cantor set C C R whose members
are lineatly independent over Q.
ii) Show that there is a Cantor set C C S, that generates a free group.

(19.3) Exercise. Let X be a nonempty perfect Polish space and R C X2 be
a comeager set. Show that there is Cantor set C C X and a dense G, set
GC X withCxGCR.



130 II. Borel Sets

(19.4) Exercise. Let X be a nonempty perfect Polish space and let Y be
second countable. Let f; : X™ — Y be Baire measurable (¢ € N). Then
there is a Cantor set C C X with f;|(C)™ continuous for all i € N.

(19.5) Exercise. Let X be a perfect Choquet space, and assume there is a
metric d on X whose open balls are open in X. Let R C X™ be comeager.
Then there is a Cantor (in the topology of (X, d)) set C C X with (C)" C R.

It is easy to see that if A C X2 is non-meager and has the BP, it is
generally not possible to find a Cantor set C C X with (C’)2 C A. But we
still have the following fact.

(19.6) Theorem. (Galvin) Let X be a nonempty perfect Polish space and
let P C X™ have the BP and be non-meager. Then there are Cantor sets
Cr,.--,.Cn € X with Cy x +++ x Cp, € P. In particular, if X™ = U;cn Pis
where each P; has the BP, then there are Cantor sets C,...,Cpn C X and
ieNwithCyx: --xCp CP,.

Proof. Since P is non-meager and has the BP, let U/,,...,U, be nonempty
open in X with P comeager in Uy x -+ x Uy,. So let G,, be open dense
in Uy x -+ x Up with [),, Gm € P. Thus for any m € N and nonempty

open sets V; C U;, there are nonempty open sets V/ C V; with V{ x - x
V. C G, Using this, we can construct » Cantor schemes (Rg’))s cacrr B =

1, -, n,such that Réi) =U;, Rgi) is a nonempty open subset of U;, Rff.)m -
R, diam(R{") < 2-length(s) (with respect to some complete compatible
metric for X) and for each m, if s,,..., s, are sequences of length m, then

Rg) X+oX jo? C G'm. Then let C; be the Cantor set defined by the scheme

(R,(:)), ie.,
Ci= ﬂ U R{) = U an:')m.
m s€2m ze® m
Then Cy x -+ x Cp, €(),, G C P. 0

19.B A Ramsey Theorem for Polish Spaces

If X is a nonempty perfect Polish space and X = J;cy P; with each P;
having the BP, then one of them will be non-meager, and will thus contain
a non-meager G set and therefore a Cantor set. We need some “regularity”
assumption for the P;, as the Axiom of Choice can be used to show the
existence of partitions R = Py U P, where neither Py nor P, contain a
Cantor set (see the proof of 8.24).

(19.7) Theorem. (Galvin) Let X be a nonempty perfect Polish space and
(X ]2 = PyU: U Pi_ a partition, where each P; has the BP, in the sense
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that Py = {(z,y) € X?%{z,y} € P.} has the BP in X2. Then there is a
Cantor set C C X with [C]® C P; for some i.

Proof. We can clearly assume that the P; are pairwise disjoint and thus
so are the P}. The function f(x,y) = the unique i with {z,y) € P}, if
z # y,(= 0, if z = y) is Baire measurable; by 19.4 there is a Cantor
set Y C X so that this function is continuous on (Y)2. Then if Q; =
PO[Y]? {(z,y) € Y?: {z,y} € Qi} = {(z.9) € (V)*: flz,y) = i} is
open in Y2, So by replacing X by Y, if necessary, we can assume that each
P} is open. Also notice that by induction we can assume that k = 2. So
[X)? = Py U Py, with P§, P} open in X2,

If there is a nonempty open set U C X with (U)2 C P, then any
Cantor set C C U works. So assume that for all nonempty open U, (U)%nN
P; # 0, so by the openness of Py we can find two disjoint nonempty
open sets U',U"” C U such that U’ x U"” C P;. By repeating this, we can
easily construct a Cantor scheme (G;),c2<n With Gg = X, G, nonempty
open, G,; C G5, diam(G,) < 27'eneth(s) (with respect to some complete
compatible metric for X), and Gs-9 x G~y C Pr. If C is the Cantor set
defined by this scheme, [C]? C P;. |

(19.8) Exercise. Let X be a nonempty perfect Polish space, let Y be a
second countable Hausdorff space, and let f : X — Y be Baire measurable.
Then there is a Cantor set C C X such that f|C is either a homeomorphism
or a constant.

(19.9) Exercise. Show that 19.7 fails in general for partitions of [X]? into
infinitely many, even clopen, pieces.

(19.10) Exercise. For distinct z,y € C, let A(z,y) = least n such that
z(n) #.y(n). Let <jex be the lexicographical order on C and identify [C]3
with the set of triples (z,y, z) € C3 such that & <jex Yy <iex 2. Considering
the partition [C]* = Py U P\, where Py = {(z,9.2) € [C]® : A(z,y) <
A(y,2)}, P ={(z,y,2) € [C]* : A(z,y) > A(y, 2)}, show that 19.7 fails in
general for partitions of [X]? into finitely many, even clopen, pieces.

Suppose now that n > 2 and identify again [C]™ with the set of all
lexicographically increasing n-tuples zg <jex 1 <iex< *** <lex Im—1. We
say that (zo,...,Zn-1) has a type if A(z;,zi1) # A(xj,x541) for @ # 7,
and in that case its type is the ordering of {0,...,n -2} given by: i < j &
A(xi, Ti41) < A(zj, zj41). Thus there are (n — 1)! possible types. Theorem
19.7 has been generalized by Galvin (for n = 3) and A. Blass [1981] (in
general) to show that if [C]® = PoU---U Pi_\, with each P; baving the BP,
then there is a Cantor set C C C such that all (zg,...,z,-1) € [C]™ have a
type and if (zo,...,Zn-1)\ (¥0,--.,¥n-1) € [C]™ have the same type, they
belong to the same P; (depending on the type). It follows that if X is a



132 II. Borel Sets

nonempty perfect Polish space and [X]* = Py U --- U Py, with each P,
having the BP, then there is a Cantorset C C X and S C {0,...,k—1} of
cardinality < (n — 1)! such that [C]* C U,cs Bi.

19.C The Galvin-Prikry Theorem

We will consider now an infinitary analog of Ramsey’s theorem. For each
set X, let

[X]Re = {AC X : card(A) = Ro}.

Given a partition [NJ* = Py U.--U Py, is it possible to find an infinite
H C N so that [H|* C P; for some i? It is easy to see that this fails for
“pathological” partitions constructed using the Axiom of Choice. Indeed,
enumerate all infinite subsets of N in a transfinite sequence (Hg)¢< 2% and
by transfinite recursion on { < 2R¢ find distinct infinite subsets of N, A¢, Be,
with A; UBe C He. Let Py = {Ag : £ < 2%}, P, = [NJ*\P,. Clearly there
is no i and infinite H with [H]|X C P,.

However, we will see that for “definable” partitions this extension of
Ramsey’s theoremn goes through.

Consider [N]®¢ as a G5 (so Polish) subspace of C, identifying subsets
of N with their characteristic functions.

(19.11) Theorem. (Galvin-Prikry) Let [N]"® = PyU---U Py_,, where each
P; is Borel. Then there is infinite H C N and i < k with [H ]NO C P,

Remark. We cannot have an infinite partition [N]*° = |,y P;, here, as the
example P; = {A € [N]® : the least element of A is i} shows.

We will actually prove a much stronger result in the next section, which
allows for considerable extensions of 19.11.

19.D Ramsey Sets and the Ellentuck Topology

We will introduce a new topology on [NJ*¢ called the Ellentuck topology.
For distinction we will call the topology of [N]®¢ its usual topology.

Here the letters @, b,c,... vary over finite subsets of N and A, B,C,...
over infinite subsets of N. We write ¢ < A if max(e) < min(A). For a < A4,
let

[a,A]= {Se[N]*:aC S CaUA}.

This notion is motivated by work of Mathias in forcing. Note that [0, A] =
[A]°. The Ellentuck topology on [N]*¢ has as basic open sets the sets of
the form [a, A] for @ < A. Note that there are continuum many of them.

(19.12) Exercise. Show that [a, 4] C [b,B]iffa 2 b, a\bC B, AC B.
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(19.13) Exercise. Show that the Ellentuck topology is strong Choquet but
not second countable. Show also that it. contains the usnal topology of [N]®e,

A set X C [NJ® is called Ramsey if there is A with [0, 4] C X or
[0,4] € ~ X. It is called completely Ramsey if for every a < A there is
B C A with [¢,B]C X or [¢,B]C ~ X.

We now have the main result.

(19.14) Theorem. (Ellentuck) Let X C [N]*°. Then X is completely Ramsey
iff X has the BP in the Ellentuck topology.

Let us see how this implies the Galvin-Prikry theorem.

Proof. (of 19.11 from 19.14) By a simple induction and using the fact that
the increasing enumeration of an infinite set H C N gives a homeomorphism
of [N]®* with [H]®, it is enough to consider the case [N]* = Py U Py, with
Py, P, Borel, PoN P, = 0. Then P, is Borel in the Ellentuck topology, so it
has the BP in this topology; thus it is completely Ramsey by 19.14 and we
are done. o

We give now the proof of 19.14,

Proof. (of 19.14) Everything below refers to the Ellentuck topology.

If X is completely Ramsey, then we claim that ¥ = X\Int(X) is
nowhere dense (so X has the BP). Indeed, if this fails, there is ¢ < A
with [¢,A] C Y. Let B C A be such that [¢,B] C X or [¢,B] C ~ X.
Since [e,B]NY # 0, [a,B] C ~ X is impossible. So, [a,B] C X, thus
[a, B] € Int(X) and [a, B]NY = 0, giving a contradiction.

We will show now that every set with the BP is completely Ramsey.

(19.15) Lemma. Let U be open. Then U is completely Ramsey.

Proof. Call [a, A] good if for some B C A, [a,B] C U; otherwise call it
bad. Call [a, A] very bad if it is bad and for every n € A, [a U {n}, A/n] is
bad, where A/n. = {m € A :m > n}. Notice that: [a, A] is (very) bad and
BC A= [a,B] is (very) bad.

We claim now that if [a, A] is bad, there is B C A with [a, B] very
bad. Indeed, if this fails, let ng € A be such that [a U {ng},A/no] is good,
so there is By C A/no with [a U {ng}, Bs] C U. Since [a, Bo] is not very
bad, let ny > ng, n, € By be such that [a U {ni}, Bo/n1] is good, so there
is By C Bp/my with [aU {n,},Bi] C U, etc. Let B = {ng,ny,...}. Then
[, B] C U, so [a, A] is good, which establishes a contradiction.

Suppose now [a, A] is given. If it is good, we are done. So assume
it is bad." We will then find B C A with [a,B] C ~ U. To do this, use
repeatedly the preceding claim to find a decreasing sequence A D By 2
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B, D -, with n; = min(B;) strictly increasing, such that for any b C
{ng,.-.,mi_1}, [aUb, B;] is very bad and thus [a U, B;/n,] is bad for all
b C {no,...,n;}. Then let B = {ng,ny,...}. We claim that [¢,B] C ~ U.
Otherwise, since U is open, there is [a’, B’] C [a, B] such that [a/,B’] C U.
Then for some i, a’ = aUb with b C {ny,...,n;} and B'/n; C B;/ni, so,
since [aUb, B’ /n;] C U, we have that. [¢Ub, B;/n;] is good, a contradiction.

0

(19.16) Lemma. If X is nowhere dense, then for any a < A, thereis BC A
with [a,B] C ~ X.

Proof. By 19.15, X is completely Ramsey. So there is B C A such that
[a,B] € ~ X C ~ X or else [¢,B] C X. Since Int(X) = 0, the second
alternative fails. O

(19.17) Lemma. If X is meager, then for every a < A, there is B C A with
[a,B] C ~ X.

Proof. Let X = J,, Xn, with X, nowhere dense. Let ap = ¢ and let 49 C A
be such that [29, Ag] € ~ Xo. Put np = min(Ay). Let a; = ap U {no}
and choose A; C Ag/no such that [a Ub, 4,] C ~ X, for any b C {ne}.
Let n; = min(4,). Let a2 = a; U {n;} and choose A2 C A,/n, such that
[aub, As] € ~ X, for any b C {ng,m1}, etc. Put B = {ng,ny,...}. m]

We can complete now the proof: Let X have the BP. Thus X = UAY,
with U open, Y meager. Given a < A, let B C A besuch that [¢,B]C ~ Y.
Let then C C B be such that [¢,C] C U or [a,C] C ~ U.'In the first case,
[2,C] € X, and in the second, [a¢,C] C ~ X m]

(19.18) Exercise. A set X C [NJ* is Ramsey null if for any a < A there is
B C A with [a, B] € ~ X. Show that X is Ramsey null iff X is meager in
the Ellentuck topology iff X is nowhere dense in the Ellentuck topology.

(19.19) Exercise. Let f : [N]** — X, with X second countable, be a Borel
function. Then there is infinite H C N with f | [H]® continuous. (Here
“Borel” and “continuous” refer to the usual topology of [H]®?.)

19.E An Application to Banach Space Theory

Let X be a real (for simplicity) Banach space with norm || ||. Given a
sequence (z,) in X we say that (z,) is equivalent to the unit basis of ¢! if
there are positive constants a, b such that for any n € N and ¢p,...,cn-1 €

R,
n-1 n—1 n-1
ad lel S| D el <5y leil.
1=0

=0 i=0
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Then the map (¢;) € €' — Y ;2 ¢iz;, which exists by the preceding in-
equalities, is an embedding of #! into X.

For each nonempty set S, denote by ¢>(S) the Banach space of
bounded real-valued functions on S with the sup norm || ||, = sup{}f(z)| :
z € S}.

(19.20) Theorem. (Rosenthal) If (fy) is a bounded sequence in £°(S), there
is a subsequence (fn, ) such that either (f,,) is pointwise convergent or else
(fny) is equivalent to the unit basis of €.

(19.21) Corollary. If X is a real Banach space, then the following are equiv-
alent:

i) BEvery bounded sequence (x,,) in X has a weakly Cauchy subsequence
(zn,) (i.e., for any x* € X*, (£*(T,,)) converges).

it) &' does not embed in X.

Proof. (of 19.21 from 19.20) i) = ii): If e, is the nth unit vector in £! (i.e.,
en is the infinite sequence with exactly one 1 in the nth position), then
(er) has no weakly Cauchy subsequence, because if (en,) was such, then
for z* € (€')* = € given by z*(i) = 1 if ¢ = ny for some k, and by
z*(i) = 0 otherwise, we have z*(en,) = Y_z*(i)en, (1) = z*(ni).

il) = i): Immediate from 19.20, since every element z of X can be
viewed as a function on S = B;(X*), namely z(z*) = z*(x). Note that
izl = llz]l- o

Proof. (of 19.20; see J. Diestel [1984]) Given 4, B C S, we say that (A, B) is
disjoint if AN B = . A sequence ((An, By,)) of disjoint pairs is independent
if for any two finite disjoint subsets F,G C N,

() 4n 0 () Bn #0.

neFr neG

(19.22) Lemma. For rationalsr < s, let A, = AD* ={z: fo(z) <71}, By =
Br® = {x: fo(x) > s}. If ((An, Br)) is independent, then (f.,) is equivalent
to the unit basis of £'.

Proof. Since for some b, || f, ||, < b < oo for all n, clearly || S e fill, <
b3 |es)- So it suffices to show that

n—1

n-1
1Y el 2(757) S b

=0

Let F={i <n:c¢ >0}, G= { <n:c <0} By independence, let
z € ier AiNNieg Bis ¥ € i Ai N icr Bi- Then

e=> i@ 2y lels =Y lelr

i<n €F i€G
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and
d=Ycfi@) <Y lalr =3 leds,
i<n iE€F 1€G
soc—d>(s—7)>;c, lcl, and the proof is complete. 0

We say that a sequence ((A,,By)) of disjoint pairs is convergent if
Vz[(for all but finitely many n, = ¢ A,) or (for all but finitely many
n, T ¢ By)].

(19.23) Lemma. If for all rationals r < s ((A;*, By®)) is convergent, then
(fn) converges pointwise.

Proof. Otherwise, let r < s be such that for some z € S, limf.(z) <r <
s < limfyp(x). Then for infinitely many n, x € A”;* and for infinitely many
n, ¢ € B, which gives a contradiction. O

So the proof can be easily completed using the following lemma and a
simple diagonal argument.

(19.24) Lemma. Every sequence ((An, B.)) of disjoint pairs contains a con-
vergent subsequence or an independent subsequence.

Proof. Let P C [N]®® be defined by:

{noym,..} €P&VE[ [ A0 (] Ba #0],

i<k,i even i<k,i odd

where ng < n; < ---. P is clearly closed, so there is infinite H C N such
that [H|Xe C P or [H|" C ~ P.

Case I. [H® C P. We will show that if H = {mq,m,,...}, with my <
my < --, then ((Amg,yys Bmaiy,)) is independent. To see this, it is enough
to show that if ,G C {0,...,k—1}, FNnG=0, FuG={0,...,k—1},
then (V;cp Amayiyy NNicg Bmayy # 0. But it is easy to see that there is
I = {ng,my,...} C H, with ng < n, < -, such that (;cp Amgy, N

niec By, 2 nz‘<z,i even Ani O ni<t‘,i odd Bn; # 0 (for some £ > k), so we
are done.

Case II. [H]* C ~ P.If H = {my,m,,...}, we show that ((4Am,,Bm.))
converges. Otherwise, there is 2 and infinite I, J such that I = {m; :
z € Ay}, J = {m; : x € By, }. Note that N J = 0. So we can find
K = {ng,my,...} C H, with ng <ny < :--, such that {ng,nz,...} C I and
{n1,ns,...} € J. Then K € P, which is a contradiction. |

0
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20. Borel Determinacy

20.A Infinite Games

Let A be a nonempty set and X C AN. We associate with X the following
game;

I a as

I1 a) as

Player I plays ag € A, II then plays a, € A, I plays a; € A, etc. I wins iff
(an) € X. (Thus X is the payoff set.)

We denote this game by G(4, X) or G(X) if A is understood. A strat-
egy for Iis amap ¢ : AN — A<N such that length((s)) = length(s) + 1
and s C t = (s) C (t). Intuitively, if o(0) = (a0), w((m)) =
(a0, a2), ¢((a1,a3)) = (ao,az,a4),..., then I plays, following ¢, ag,az,aq,
..., when II plays a,,as,....

Equivalently, a strategy for I can be viewed as a map ¢ : AN — 4
with I playing ap = ¢(0), a2 = ¢((a1)), a4 = ¢((a1,a3)), when II plays
dy,33,y:.5

Finally, we can also view a strategy for I as a tree ¢ C A<N such that

i) o is nonempty and pruned;

i) if (a0, a1,...,a2;) € o, then for all azj1y, (ao,...,a2;,a2;541) € 0;

iii) if (ag,a1,...,a2,-1) € o, then for a unigue azj, (ag,...,a2;-1,a2;)
€o0.

Again, this is interpreted as follows: I starts with the unique ao such
that (ag) € o. If II next plays a,, then (ag,a,) € o, so there is unique a2
with (a9, a1,a2) € o, and this is I’s next move, etc.

We define the notion of a strategy for player II mutatis mutandis.

A strategy for I is winning in G(A, X) if for every run of the game
(ao,ay,az2,...), in which I follows this strategy, (an) € X. Similarly, we
define a winning strategy for player II. Note that it cannot be that both I
and II have a winning strategy in G(A, X). We say that the game G(4, X),
or just the set X, is determined if one of the two players has a winning
strategy.

It is easy to see again, using the Axiom of Choice, that there are
“pathological” sets X C 2V that are not determined. For example, if X C 2N
is a Bernstein set (see the proof of 8.24), then X is not determined (why?).
However, we expect “definable” sets to be determined. We will prove this
below for Borel sets.

It is often convenient to consider games in which the players do not
play arbitrary ag, aj,... from a given set A, but have to obey also certain
rules. This means that we are given A and a nonempty pruned tree T C
A<N_ which determines the legal positions. For X C [T consider the game
G(T, X) played as follows:
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I a as

I1 ay as
I, II take turns playing ag, a,,... so that (ay,...,an) € T for each n. I wins
iff (a,,) € X.

Thus if T = A<N and X C 4, G(A<N, X) = G(4, X) in our previous
notation.

The notions of strategy, winning strategy, and determinacy are defined
as hefore, So, for example, a strategy for I would now be a nonempty pruned
subtree ¢ C T satisfying condition ii) before, as long as az;, is such that
(ao,...,a2),a2;+1) € T, and iii). It will be winning iff [0] C X.

Note that all the games we considered earlier in Section 8 are particular
instances of this general type of game. Note also that the game G(T, X) is
equivalent to the game G(A, X'), where X' = {x € AN : Bn(zln ¢ T) &
(the least n such that z|n ¢ T is even)] or (z € [T] & z € X)}, where two
games G, G’ are equivalent if I (resp. II) has a winning strategy in G < [
(resp. II) has a winning strategy in G’. Thus the introduction of “games
with rules” does not really lead to a wider class of games.

20.B Determinacy of Closed Games

As usual AN will be given the product topology with A discrete and (T], a
closed subset of AV, the relative topology. We have first the following basic
fact.

(20.1) Theorem. (Gale-Stewart) Let T be a nonempty pruned tree on A.
Let X C [T] be closed or open in [T). Then G(T,X) is determined.

Proof. Assume first that X is closed. Assume also that II has no winning
strategy in G(T, X). We will find a winning strategy for L.

Given a position p = (ag,ay,...,a2,-1) € T with I to play next, we say
that it is not lesing for I if II has no winning strategy from then on, i.e., II
has no winning strategy in the game G(Tp, X;,), where T, = {s : p"s € T'}
and X, = {x:p"z € X}. So 0 is not losing for I.

The obvious, but crucial, observation is that if p is not losing for I,
there is ag,, with (a2,) € T, such that for any @z, with (azn,@2,41) €
Ty, p"(azn,a2n41) is not losing for I too.

We use this to produce a strategy for I as follows:

I starts by choosing an ag, with (ag) € T, such that for all a; with
(ag,01) € T, (ap. ay) is not losing for L. II then plays some a, with (ag,a,) €
T. I responds by choosing some a3, with (ag,a;,az2) € T, such that for all
ag with (ag,ay.a2,a3) € T, (a9, a,,a2,a3) is not losing for I, etc.

We claim that this strategy is winning for L. Indeed, if (ag,04,...) is a
run of the game in which I followed it, then (ag,q,,...,a2,-,) € T is not
losing for I, for all n. If (a,,) ¢ X, then, as ~ X is open in [T, there is
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such that Niu,....az._ ) N[T] € ~ X. But then (aq,...,a2x_1) is losing for I,
as II has a trivial winning strategy from then on (i.e., she plays arbitrarily).

The case when X is open is essentially the same, switching the roles of
I and II. The only difference is that II plays second, but this is irrelevant
in the previous argument, O

(20.2) Exercise. Let T be a nonempty pruned tree on A and let X C [T] be
closed. Thus X = [S] for S a subtree of T. Define by transfinite recursion
S¢ C T as follows:

PE Sy @p=(ao,.u,(12n_1) GT\S,
p€S¢+1 ©p=(a0,...,a2n_1) eT&
Vazn[p“azn € T = o2n41(p"a2n " azn41 € Se)l,
P €Sy & I < A(p€ S), if Ais limit.

Show that II has a winning strategy in G(T, X) iff € |, S.

Note that because of the single-valuedness condition iii) in the defini-
tion of strategy (see Section 20.A), 20.1 requires in general the Axiom of
Choice.

(20.3) Exercise. Show that in fact 20.1 is equivalent (in ZF) to the Axiom
of Choice.

Without the Axiom of Choice, we can still prove a form of 20.1, by
introducing the notion of quasistrategy, which is useful apart from these
comments about choice.

Let T be a nonempty pruned tree on A. A quasistrategy for I in
T is a pruned nonempty subtree & C T such that if (ag,...,a2;) € &

and (ag,...,a25,a2,+1) € T, then (aq,...,a25.a2j41) € X. Note that
since ¥ is pruned, if (ag,...,a2j—1) € X then there is some az; with
(a0,...,a2;-1,02;) € I, but this may not be unique. Similarly, we define

quasistrategies for IL. If X C [T is given, we say that a quasistrategy T for
I is winning in G(T, X) if [Z] € X (similarly for II). Note that if 5 C T
is a winning quasistrategy for I (II) in G(T, X), then there is a winning
strategy o C X for I (II) in G(T, X), using the Axiom of Choice.

Remark. Tt follows, using the Axiom of Choice, that both players cannot
have winning quasistrategies in a game. Actually, one only needs for that
the Axiom of Dependent Choices, which is the assertion that any nonempty
pruned tree on a set A has an infinite branch. Conversely, it is trivial to
see that if T is a nonempty pruned tree on A with [T] = 0, then in the
game G(T,0), T itself is a winning quasistrategy for both players. Thus
the Axiom of Dependent Choices is equivalent to the assertion that in all
such games-it cannot be that both players have winning quasistrategies.
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We can call a game G(T, X) quasidetermined if at least one of the
players has a winning quasistrategy. Then the proof of 20.2 shows that
every closed or open game is quasidetermined without using the Axiom of
Choice.

(20.4) Exercise. Using the notation of 20.2, show that if § € |J, S¢, then
one can explicitly describe (without using the Axiom of Choice) a winning
quasistrategy for player II in G(T', X), while one can do the same for player

Lif 0 ¢ U Se.

Independently of these remarks about choice, it will be important in
the sequel to isolate the quasistrategy for the “closed” player that arises
in the proof of 20.1. So let T be a pruned tree and X C [T] a closed set
for which I has a winning strategy in G(T, X). Call a position p € T of
arbitrary length (not necessarily even) not losing for I if IT has no winning
strategy from then on. If p = (ao,..., a2,-,), this means the same thing
as in the proof of 20.1. If p = (aq, ..., a2n-1,a2n), it means that II has no
winning strategy in the game G(T}, Xp), with the convention that II starts
first in this game. Let ¥ = {p € T : p is not losing for I}. Then ¥ is a
winning quasistrategy for I in G(T, X), called the canonical quasistrategy
for Iin G(T, X).

20.C Borel Determinacy

(20.5) Theorem. (Martin) Let T be a nonempty pruned tree on A and let
X C [T] be Borel. Then G(T,X) is determined.

The idea of the proof of this (and many other determinacy results)
is to associate to the game G(T, X) an auxiliary game G(T™, X*), which
is known to be determined, usually a closed or open game, in such a way
that a winning strategy for any of the players in G(T™*, X*) gives a win-
ning strategy for the corresponding player in G(T, X). Most often, in the
game G(T*, X*) the players play essentially a run of the game G(T, X) but
furthermore they play in each turn some additional objects, part of whose
role is to make sure that the payoff set becomes simpler, such as closed or
open. So, in particular, there is a natural “projection” from T* into T.

In our case the above general ideas are captured in the concept of
covering of a game.

Let T be a nonempty pruned tree on a set A. A covering of T is a
triple (T, 7, ), where

i) T is a nonempty pruned tree (on some A).

ii) 7 : T — T is monotone with length(m(s)) = length(s). Thus =
gives rise to a continuous function from [T7] into [T] also denoted here by
m: [T] = [T].
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iii) ¢ maps strategies for player I (resp. II) in T to strategies for player
I (resp. II) in T, in such a way that ¢(&) restricted to positions of length
< n depends only on & restricted to positions of length < n, for all n.

More precisely, we view here strategies as pruned trees as in Section
20.A. Letting for any tree S, S|n = {u € S : length(u) < n}, this condition
means that for each strategy & (for I or II) on T, ¢(&)|n depends only
on G|n. In other words, ¢ is really defined on partial strategies #|n in a
monotone way (m < nn = ¢(6|lm) = ¢(a|n)lm) and ¢(5) is defined by
¢(8)|n = ¢(&|n) for each n.

iv) If & is a strategy for I (resp. II) in T and z € [T is played according
to p(5) (i.e,, € [¢(G)]), then there is & € [T] played according to &
(i.e., % € [0]) such that n(z) = z.

It is clear that if (T, , ) is a covering of T and X C (T],_then the
game G(T, X) can be “simulated” by the auxiliary game G(T, X), where
X = n~Y(X) (a run # € [T] giving rise to the run 7(&) € [T]). If 6 is a
winning strategy for I (resp. IT) in G(T, X), then () is a winning strategy
for I (resp. II) in G(T, X). Indeed, otherwise there is = € [p(5)] withz ¢ X
(resp. € X). But, by iv), we can find £ € [§] with (%) = z. Then z € X
(resp. £ ¢ X), so x € X (resp. ¢ X), which is a contradiction.

For technical reasons we will also need a strengthening of the concept
of covering. For k € N, we say that (T', 7, ) is a k-covering if it is a covering
such that T|2k = T2k and 7|(T|2k) is the identity. Intuitively, this means
that in the auxiliary game G(T', X) the first k moves of each player are
identical to those of G(T, X). Note that if (T, 7, ¢) is a k-covering, then for
any strategy & in T (for either player), we have that ¢(5)|2k = 5|2k, This
is because by iv) we have that ¢(5)|2k C 5|2k, so since T|2k = T'|2k and
@(5)|2k, 5|2k are both partial strategies for the same player in T', we must
have ¢(6)|2k = &|2k.

Finally, we say that a covering (T, 7, ) unravels X C (T] if 7~!(X) =
X is clopen (in [T).

It is clear then that if (T, 7, ¢) unravels G(T, X), then, by the Gale-
Stewart Theorem G(T, X) is detexmined and thus, by the preceding re-
marks, G(T, X) is determined. So 20.5 will follow from the following:

(20.6) Theorem. (Martin) IfT is a nonempty pruned tree on A and X C [T]
is Borel, then for each k € N there is a k-covering of T which unravels X.

The reason for proving 20.6 for k-coverings (although we need it only
for coverings to prove determinacy) is so that we can carry out an inductive
argument. The two main lemmas that we need are given next.

(20.7) Lemma. Let T be a nonempty pruned tree and let X C [T be closed.
For each k € N there is a k-covering of T that unravels X.
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(20.8) Lemma. (Existence of inverse limits) Let k € N. Let (Ti41,mMi41,0i41)
be a (k + i)-covering of T;, i = 0,1,2,.... Then there is a pruned tree T,
and Moo iy Poos SUCh that (Too Moo isPoo,i) 15 @ (k + i)-covering of T; and
Ti41 © Moo,itl = Moo,is Pi+l O Pooi+l = Pooyi-

Granting these two lemmas, 20.6 can be proved as follows:

Recall from Section 11.B the Borel hierarchy on [T]. (Note that AN
and thus [T] are metrizable.) We will prove by induction on 1 < § < w
that for all T, k € N and X C [T] in Z([T]) there is a k-covering of T that
unravels X.

Notice that if a k-covering unravels X it also unravels ~ X, so by
20.7 this is true for £ = 1. Assume now that it holds for all n < £. So for
each T, each Y € II)([T]), n < &, and for each k there is a k-covering
that unravels ~ Y, thus also Y itself. Let X € $2((T]) and k € N. Then
X = Uien Xi, with X; € II2 ([T]), & < €. Let (T1,7r1,<p1) be a k-covering
of Ty = T that unravels Xo. Then 7y }(X;) is also in IT, ((Th]) for i > 1,
since it is easy to check that 22, IT? are closed under continuous preimages.
By recursion define now (T; 4. T;41,i+1) to be a (k+1)-covering of T; that
unravels 7, Yom L 0. oy (X;). Let (Too,woo ir@Po0.i) be as in 20.8. Then
(Tooy Mo0,05 P0,0) unravels every X;. Thus m_ (X) ; w;{O(Xi) is open
in [Two]. Finally, let (T, m, ) be a k-covering of Tw, that unravels w;{O(X )
(by 20.7). Then (T, w0 gom, 0,0 0¢) is a k-covering of T that unravels X.

We now prove the two lemmas.

Proof. (of Lemina 20.8) Note that for any finite sequence s, if 2(k + ¢) >
length(s), then whether s € T; or not is independent of i. So put

s € Ty & s € T, for any ¢ with length(s) < 2(k +1).

It is easy to see that T is a pruned tree (on soine set). It is also clear that
Too|2(k + ©) = T3|2(k + 1).

We next define mo i If length(s) < 2(k + i), then 7 i(s) = s. If
length(s) > 2(k + 1) and 2k +7) > length(s) we put Moo i(8) = My ©
Tig2 © -+ m;(s). Notice again that this is independent of j.

Finally, we define ¢ ;. If 0o is a strategy for T, let ¢ ,-(aoo)|2(k +
i) = 0xo|2(k + 1), and for § > i, Yoo i(000)|2(k + 7) = Qi1 0 Pig20---0
9 (0c|2(k + 7)). (Note that since T;|2(k + 7) = Twol2(k + 7), 0oo|2(k +])
is a partial strategy for T} as well.)

It remains to verify condition iv) of the definition of covering. Sup-
pose 0 is a strategy for T, and let z; € [Px0i(0s0)]- Let ziy1 €
[P0,i+1(F0)], Tiv2 € [Pooit2(0s0)],- . come from condition iv) for the
coverings (Tiq1, Mig1, @ig1), (Tit2, Mig2,@it2)s .. together with the fact
that ©;41(Poo,j41(00)) = Poo,j(00) for any j > 1, so that mj41(2j41) = z;
for any j > i. Since 7;4) is the identity on sequences of length < 2(k + 5),
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it follows that (zi,z;4+1,Zi42,...) converges to a sequence T, defined by
ZToo|2(k + 7) = x;|12(k + 7) for j > i. Now 04 and @ j(0) agree on se-
quences of length < 2(k + 7) so, as z; € [pso,j(0s0)] for § > i, we have that
Too € [0o]. Finally, it is clear that e i(To0) = . O

Proof. (of Lemma 20.7) Recall that for a tree S, S, = {v:u"v € S} and
for Y C[S], Yu={z:u"z €Y}, sothat Y, C [S,].

Fix k,T, X and let Tx be the tree of the closed set X, i.e, s € Tx &
JxreX(sCx). Thus Tx CT.

The game G(T, X) has the form

I =z T2

I1 T T3

(z0y---,xi) € T for all ¢, and I wins iff (z,,) € X.

The k-covering (T, m, ) that we will define is a way of playing an
auxiliary game in which players I and II, beyond the moves zo, z,,...,
make also some additional moves. First we informally describe this auxiliary
game. Its legal moves define the tree T.

In the games on T players start with moves xg,z1,...,Z2k—2.Tox—1,

I x Tok-2

I1 k) T2k-1

which must be such that (zo,...,2;) € T for i £ 2k — 1. In her next move
I plays (:sz, 21)

I =z ZTok—2 (z2k, Z1)

II z) ZT2k_1

where (2o,...,%2¢) € T and X is a quasistrategy for [ in Tiz,,  z,,), With
the convention that II starts first in games on T, z,,)- In her next move
II has two options:

Option 1. She plays (z2x41,u),

I Zo Tok—2 (z26, Z1)

II T T2k—1 (T2641,u)

where (2g,...,Z2r4+1) € T and u is a sequence of even length such that
u€ T(a:,_.,...,mzk.,.l) and u € (21)(322:;“) \ (TX)(mo,---,zzk“)'

If II chooses this option, from then on players I and II play z2x42,
Z3k+43, ... SO that (zg,...,z;) € T for all § and moreover we have u C
(T2k42, T2k +3; . - ), 1.€., these moves are consistent with .

Option 2. She plays (x2x41, 211),
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Iz Tok—2 (z2%, Z1)

I z, Tok— (T2k41, Z11)

where (Zo,...,T2x+1) € T and Zy is a quasistrategy for II in (Z1)(z,,.,)
with Ty € (TX)(a:o,...,xzk“)-

If II chooses this option, from then on players I and II play xux42,
T2k43 -+ - 50 that (Tops2, Takys, ..., Te) € T, for all £ > 2k +2.

Thus, formally, T consists of all finite sequences of the form

(1) (xO) e L2k—1,y (.’sz, 21)1 (x2k+17 (17 u)),$2k+2, e ,.’L'g)
or
(2 (T0y - - -y T2k—1, (T2k, B1), (T2 415 (2, Z11)), T2kt 2, - - -5 Tg)

such that (zrg,...,z;) € T for all £ < € Ij is a quasistrategy for I in
T(z,,....x5,) 2nd for the sequences of type (1), v € T(u,,  as.,,) has even
length, ¥ € (Z1)(2z041) \ (TX )(zo,....02041)» a0 (T2k42, ..., T¢) is compatible
with u, while for the sequences of type (2), Xy is a quasistrategy for II
in (21)(37%-;-1) with £y C (TX)(a:o,....mzk.,.;)’ and ((l:gk,,,z,.‘ .,.’L‘g) € Yy (It
is understood here that ¢ could be < 2k + 1, in which case some of these
conditions will be vacuous.) _

It is easy to check that T is pruned, i.e., that every player has a legal
move at each turn.

The map 7 is also straightforward:

(X0, .+« y T2k—1, (£2k, @), (T2k+15®), T2k 42, . . . Tg) = (To,. .., Te)-
Notice also that
#en Y (X) & £(2k + 1) is of the form (z2k41, (2, Z11))

(i-e., IT chose option 2), so that 7=(X) is clopen.

It remains to define . We will informally describe how to play, given
a strategy & on T, the strategy ¢ = ¢(6) on T in such a way that for any
run z € o] there is a run # € [5] with 7(Z) = z. It will be clear from our
description that ¢|n depends only on &|n.

Case I. & is a strategy for I in 7.

For the first 2k moves, o just follows &. Next & provides I with (z2x, X1).
I plays zox by o.
Then II plays in T z2r4+1. We have two subcases now.

Subcase 1. I has a winning strategy in

G((zl)(mzk+1)’ [(21)($2k+1)] \ X(fl-'o,"',mzk+1))‘

Then o requires I to play this strategy. After finitely many moves, a
shortest position u of even length is reached for which u ¢ (T'x ) (s,

e ®B2R41)?
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say u = (T2k42,-..,%2¢-1)- Then (zo,...,T2k-1, (T2k, Z1), (T2k41, (1, )),
Tok42, .-+, T2¢—1) is a legal position of T, and o requires I from then on to
play just following &.

Subcuse 2. II has a winning strategy in

G((zl)(mzkn)’ [(21)(12k+1)] \ X(30,<--,32k+l))'

Let i1 be her canonical quasistrategy in this game (recall here that
the set X(,,, . 22,41) 1S closed). In particular, 1 C (Z1)(s,,,,)- From then
on I plays, according to o, just following &, assuming that in the game on T
II plaved (2241, (2, Zn)) in her appropriate move. I can do that as long as
II collaborates and plays her moves afterward so that (z2x42,...,%2¢-1) €
(Z0)(zo,....w2x +1)» Since then we have legal positions in T. But if for some ¢
with 2¢—1 > 2k+2, II plays (in the game on T) so that (z2k42,. . .,Z2e-1) &
(Z11)(zo,...,w2x41)> then by definition of Ty it follows that I has a winning

strategy in G((zl)(32k+h---»-”:2£—l)’[(21)(x2k+1»---1372£—1)] \ X(mo,---,xze—l))° But
then I can continue by ¢ as in Subcase 1.

Case II. G is a strategy for Il in T'.

Again for the first 2k moves o just follows &. Next I plays z.x (in the
game on T). Put & = {I; : ¥ is a quasistrategy for [in T(,, . .,,)} and
U = {(w2k41) "t € T(4,... 25y * ¥ has even length, and there is 3j in S such
that & requires II to play (Z2x41, (1,%)) when I plays (z2k, Z1)}. Then

U= {:IJ € [T(mm----mzk)] : 3(z2k+l)Au € U(.’II 2 (x2k+l)ﬂu)}

is an open set in [T(g,,  z,0)]-

Consider the game on Tz, x5,),
I T2k+2
II rokys T2k+3

where II plays first and wins iff (Z2k41, T2k42....) €U,
Subcase 1. II has a winning strategy in this game.

Then (in the game on T') ¢ follows after z2; this winning strategy for
II, until (x2k41,T2k42.- .- ,Z2¢—1) € U. Let u = (242, - . ,T2¢—1) and, by
the definition of U, let ¥; witness that this sequence is in U. It is clear
that from then on (i.e., for (z3¢,...)) Il can play o by just following 6 on
(T, - -, T2k—1, (T2k, Z1), (T2k415 (1, 0)), T2k 42, - - -, T20-1).

Subcase 2. I has a winning strategy in this game.

Call Xy her canonical winning quasistrategy. (This game is closed for
I.) Then if I played in the game on T, (z2x, 1), 6 cannot ask II to play
something of the form (%ox+1,(1,u)). Because then (z2x41) v € U and, by
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the rules of T, (Z2k41)"u € Xy, contradicting the fact that no sequence in
31 can be in U,

So if I played in the game on T, (z2k,%1), 0 asks II next to play
(Z2641,(2,Z11)). So II plays according to o this T2x4)1 and continues to
play by o just following & on (zo,...,Z2k—1,(Z2k, Z1); (T2k41, (2, Z11)),
Tok42y--- ,.'32() as long as I collaborates so that (:L‘2k+2,. .. ,.'Bze) € .
If for some € > k + 1, I plays x50 with (z2x42,...,%2¢) € Zi1, then, since
Zn is a quasistrategy for II in (Zy)s,,,, so that I's moves are unrestricted
as long as they are in Iy, it follows that (z2x42,...,%2¢) € (T1)(2ss,,) and
we are back in Subcase 1 again. )

Notice that in order to unravel a closed game in which the moves are in
{0,1} (i.e., T = 2<N), we need to play in the preceding proof a game whose
moves are essentially from Pow(N) (quasistrategies are subsets of 2<N which
can be “identified” with N by some enumeration). Tracing then the proof
that Borel games on {0,1} are determined, we see that one uses there the
existence of Pow¢(N), the {th iterated power set of N, for all £ < w). Thus
one uses set theoretic objects of very high type (natural numbers have type
0, sets of natural numbers have type 1, etc.). A metamathematical result
of H. Friedman [1971] shows that this is necessary for any proof of Borel
determinacy. In other words, to establish the validity of Borel determinacy
for games on {0, 1}, which is a statement about simply definable subsets
of the Cantor set, requires the existence of quite large sets, certainly much
bigger than the reals, the sets of reals, etc. This turns out to be a typical
phenomenon in descriptive set theory.

(20.9) Exercise. Give a direct proof that £ games are determined as fol-
lows: Let X C A" be =3, so that X = |J,, Fr, F,, C AN closed. Let T, be a
pruned tree with F,, = [T},]. Define by transfinite recursion Wé C A<N by:

s € W% & length(s) is even & 3n(I has a winning strategy in (Fy),)-
If W7, n < &, have been defined, let

g €CP" & Veven k(zlk € | JWUT,),
n<g
and put
s € W& & length(s) is even &
3n(I has a winning strategy in (C*™),).

(Note that C" is closed.) Show that: 1) s € J, W¢ = I has a winning
strategy in X,; and 2) @ ¢ U, W = II has a winning strategy in X.
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20.D Game Quantifiers

Let X C AN. Then the statement “I has a winning strategy in G(4, X)”
can be abbreviated naturally as

JagVai3asVas - - - (a,) € X.
Similarly,
Vag3da1Vaz3da, --- ~(an) € X
abbreviates the statement that II has a winning strategy in G(4, X). Thus
the determinacy of G(A, X) can be expressed as
=3agVay - - (an) € X & VagIa; -+ ~(an) € X.

So determinacy can be thought of as an infinitary analog of the basic rule
of logic
—JagVa1 - Qan—1X (a9, *,an-1) &

Va03a1 o -Qan_lﬂX(ao, (A ,an_l),

where Q = Jor V and Q (= the dual of Q) is V or 3. Notice that this logical
rule asserts the determinacy of the finite game

I ag az An—2
II Q) as Qn-)
I wins iff X(ao,...,an—1), where we took n to be even for definiteness.

Thus this infinitary rule is valid if X is a Borel set in AN, but not. for
arbitrary X even in 2V, using the Axiom of Choice. As we will discuss later
(see 26.B), it is one of the basic strong axioms of modern set theory that all
“definable” games with moves in A, where A is a standard Borel space, are
determined, so this rule is valid if X is a “definable” set in AN, A standard
Borel.

(20.10) Exercise. Define explicitly a game with moves in A = Pow(2N) which
is not determined. (Remark: It is easy to define such a game explicitly and
then show that it is not determined using the Axiom of Choice. In 21.4 we
will ask for another example, where the Axiom of Choice can be avoided,
even in the proof that the game is not determined.)

For any nonempty set A the game quantifier G, is defined by
GayP(x,y) & JagVa1JazVay - - - P(x, (an)),
where P C X x AN, The dual game quantifier G4 is defined by
gAyP(x, ¥) © VapIa;Vaz3daz .- - Pz, (as)).

So if all games G(A, P;) are determined, then
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-GayP(z.y) © Ga—P(z,y).

(20.11) Exercise. Show that the sets of the form GnyF(z,y), where F C
N x N is closed, are exactly the X} subsets of M. Show that the sets of
the form GnyC(z,y), where C C N x N is clopen, are exactly the Borel
subsets of A.



21. Games People Play 149

21. Games People Play

21.A The *-Games

Let X be a nonempty perfect Polish space with compatible complete metric
d. Fix also a basis {V,, } of noneinpty open sets for X. Given A C X, consider
the following *-game G*(A):

0) 17(0 1 1

I @ U™ o)

IT io g
U™ are basic open sets with diam(U{™) < 2-", U™ nU™ =0, i, €
{0,1}, and UV uU{™Y c UM, Let ¢ € X be defined by {z} =
N, U, Then I wins iff z € A.

Thus in this game I starts by playing two basic open sets of diameter
< 1 with disjoint closures and II next picks one of them. Then I plays
two basic open sets of diameter < 1/2, with disjoint closures, which are
contained in the set that II picked before, and then II picks one of them,

ete. (So this is a version of a cut-and-choose game.) The sets that II picked
define a unique x. Then I wins iff z € A.

(21.1) Theorem. Let X be a nonempty perfect Polish space and A C X.
Then

i) I has a winning strategy in G*(A) iff A contains a Cantor set.

it) II has a winning strategy in G*(A) iff A is countable.

Proof. i) A winning strategy for I is essentially a Cantor scheme (Us),c2<r,
with U, open, U, UU,~; C Us, diam(U,) < 27'ensth(s)+1 if 5 £ @ such
that for each y € 2V, if {z} =, Uy},.. then z € A. So A contains a Cantor
set.

Conversely, if C C A is a Cantor set, we can find a winning strategy for
I as follows: I starts with (a legal) (Uc(,u), Ul(o)) such that Ui(o) NC # 0, for
i € {0,1}. Next II chooses one of them, say Uc(,o) for definiteness. Since C is
perfect, I plays (a legal) (US", U{") such that U 0 C # 0, for i € {0,1},
etc. Clearly, this is a winning strategy for I.

ii) If A is countable, say A = {zq,z,,...}, then a winning strategy for
Il is defined by having her choose in her nth move Ui(n) so that z,, ¢ Ut.(n)
(i.e., plays i, =1).

Finally, assume ¢ is a winning strategy for II. Given z € A, call a
position

p=((U", U)oy, (UF" ™, U™ ), i)

good for z if it has been played according to o (i.e., p€ o) andz € Ui(:_—ll).
By convention, the empty position @ is good for z. If every good for z
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position p has a proper extension that is also good for z, then there is a
run of the game according to . which produces x € A, so player I won,
giving a contradiction.

So for each © € A there is a maximal good p for z. If p is as just
defined, then

zeA={ye U,-(:_'ll) ¥ legal (U™, U™, if
i is what o requires II to play
next, then y ¢ Ui(")}.

Thus, A C U,¢,

if yo # 1 belong to A, and I plays (a legal) (Uc(,n), U™) with y; € Ui(n), we
have a contradiction to the fact that y; € A,. The tree of legal positions in
G*(A) is countable and thus so is ¢, being a subtree of it. So A is countable.

a

Since the map that sends a run of G*(A), ((Uc(,o) Ufo)),io, ...) to z,
where {z} =), Ui(:), is clearly continuous (from [T] into X, where T is
the tree of legal positions of this game), this shows that if A C X is Borel,
this game is determined, so we have one more proof that an uncountable
Borel set in a Polish space contains a Cantor set. (If the space X on which
we are working is not perfect, replace it by its perfect kernel.) Recall that
in 14.13 we proved that this so-called perfect set property also holds for all
analytic sets. We can, in fact, prove this extension by using a further trick,
called unfolding, which actually allows us to use only the determinacy of
closed games.

21.B Unfolding

Ap. Now notice that A, contains at most one point, since

Suppose now X is a perfect Polish space, and let F* C X x A. Consider
then the unfolded *-game G,(F):

1 y0), U, v y(1), (U, U)

II ) i1
I and II play moves as in the *-game, but additionally I plays y(n) € N in
her nth move. If z is defined as before, then I wins iff (x,y) € F.

(21.2) Theorem. Let X be a perfect Polish space, F C X x N, and A =
projx (F). Then

i) I has a winning strategy in G, (F) = A contains a Cantor set.

it) II has a winning strategy in G (F) = A is countable.

Proof. 1) If I has a winning strategy in G7(F), then it is immediate that
(by ignoring the y(n)’s) I has a winning strategy in G*(A), so A contains
a Cantor set.



21. Games People Play 151

ii) If now II has a winning strategy ¢ in G,(F), let z € A and choose a
“witness” yo with (z.y9) € F. As in 21.1 there must exist a maximal good
for (z,yo) position

= ((4(0), U, UM, io, ..., (o(n = 1), U™V, ULD)), ino1),
where good means that p € o and = € U;". So if a = yo(n), we have that
7€My q=(z UL : Viegal (a, (U3, U™)),

if ¢ is what o requires II to

play next, then z ¢ U,-(")}.

S0 A C Upe,aen4pa and, as in 21.1, A4}, , contains at most one element.
So A is countable. a

In particular, if A C X is analytic and (by 14.3) we choose F C X x N
closed with projx(F) = A, we have that G},(F) is a closed game for I, so
determined. Thus, either A is countable or contains a Cantor set, so we
have another proof of 14.13.

(21.3) Exercise. For A C 2V consider the following game

I So S
II 'io il
sn €2<N 4, € {0,1}. Let £ = 59”40 5,"4," -+ -. Then I wins iff z € A.

Show that this game is equivalent to G*(A4). (So it is also usually
denoted G*(A).) Study its unfolded version as well.

(21.4) Exercise. Define explicitly a game on A = Pow(2V) and show, without
using the Axiom of Choice, that it is not quasidetermined. (Recall 20.10.)

21.C The Banach-Mazur or **-Games

Let X be a nonempty Polish space and d a compatible complete metric on
X. Also let W be a countable weak basis for X and let A C X. We define
the **-game G**(A) as follows:

I U U,

II Vo Wi

U;,V; € W, diam(Un),@am(Vn)f 277 Ug 2 Vo 2Uh1 2V D+ . Let z
be such that {z} =), Un =), V. Then II wins iff z € A.
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This game is a variant of the Banach-Mazur game G**(A) as defined in
8.H, but it is easy to see (compare, e.g., 8.36) that it is actually equivalent
to it, so there is no danger of confusion. From 8.33 we have:

i)  has a winning strategy in G**(A4) < A is meager in some nonempty
open set.

it) IT has a winning strategy in G**(A) & A is comeager.

We can also consider the unfolded version of this game which allows
us to show that all analytic sets have the BP.
Let FF C X x N, and define the unfolded **-game G*(F) as follows:

I U U

I and II play Up, Vg, . . . as in the **-game, but additionally II plays y(n) € N
in her nth move. If z is defined as before, II wins iff (z,y) € F.

(21.5) Theorem. Let X be a Polish space, F C X x N, and A = projx(F).
Then
i) I has a winning strategy in G%*(F) = A is meager in some nonempty
open sel.
it) IT has a winning strategy in G3,)(F) = A is comeager.
Proof. ii) If II has a winning strategy in G%*(F), she also has one in G**(4).
i) Let Up be DI’s first move by a winning strategy . We will show

that A is meager in Uy. Given £ € AN Uy, choose a witness yo € N with
(z,y0) € F. Call a position

= (Uo, (%(0), W), ..., Un-1, (¥o(n - 1), Va-1),Un)

good for (z,yo) if p € o and z € U,. Again it is clear that not every good
position has a proper good extension, so let p be a maximal good for (z, yn)
position. If a = yp(n) and p is as defined above, then

z € Fp, ={z€U,:Vlegal (a,V,), if
Un41 is played next by I
following o, then z ¢ Upnyy }.

Clearly, F, 4 is aclosed in Uy, set and has no interior, since if V,, is a set in the
weak basis with V;, C F}, ; and diam(V,) < 27", and II plays (e, V},) in her
nth move, then I, following o, plays U.4; C V,, with Un41NF}, o = 0, which
is a contradiction. So F;, , is meager and since ANUy C L_JpEa,aEN F, a4, AN
Up is meager too. O

In particular, if we take A to be analytic and choose F to be closed, so
that the game G;*(F) is closed too, and thus determined, we obtain that
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i) or ii) of the theorem holds, in particular that G**(A) is determined. But
then, by 8.35, it follows that all analytic sets have the BP. Thus we have
the following result.

(21.6) Theorem. (Lusin-Sierpinski) Let X be a Polish space. Then all an-
alytic sets have the BP.

It also follows that all sets in #(X}) have the BP, so by 18.1 every
analytic set has a Baire measurable uniformizing function.

(21.7) Exercise. Consider the game defined in the second part of 8.36. For
countable A, analyze its unfolded version.

21.D The General Unfolded Banach-Mazur Games

The proof of 21.5 makes use of the existence of a countable weak basis
for X. Actually, one can prove a much more general version of this fact
which avoids such countability assumptions and therefore applies to such
topologies as the Ellentuck and the density with further applications.

We will consider nonempty topological spaces X that are Choquet and
have a metric whose open balls are open in X (see 8.33 ii)). Fix a weak basis
W for X. As before, it is easy to see that for A C X the Banach-Mazur
game G**(A), as defined in 8.H, is equivalent to the following:

I U, U

II Vo 2

Ui,Vz‘ EW, U2V 22U D2V 2+, dlam(U,),dlam(V,) < 27% II wins
i 1),V (=, Un) C A

Suppose now F C X x N, and let A = projy(F). Consider the
unfolded Banach-Mazur game G.*(F)

I Uy U,

I y(0), Vo y(1), W

Un,V; EW, Uy 2 Vo 2U 2 Wi 2+, diam(U;),diain(V;) < 27*. II wins
iff N, Vo x {y} C F.

Note that in both games if a player has a winning strategy then, since
X is Choquet, she can guarantee, by modifying her winning strategy, also
that (), V. (=, Ur) is nonempty, thus a singleton (see the proof of 8.33
ii)).

We now have the next theorem.

(21.8) Theorem. Let X be a nonempty Chogquet space that admits a metric
Awhose open balls are open in X. Let F C X x N and A = projx(F). Then
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i) I has a winning strategy in G.'(F) = A is meager in a nonempty
open set.
it) II has a winning strategy in G.*(F) = A is comeuager.

Proof. ii) is clear, since if II has a winning strategy in G*(F), II clearly
has a winning strategy in G**(A).

i) Let o be a winning strategy for I. Let Us be her first move by o. We
will show that A is meager in Up.

Fix a finite sequence u € N<N of positive length. We say that a finite se-
quence (Uy, Vo, U1, Wr,...,Up), with n < length(u), or (Ua, Vo, ..., Un, Vi)
with n < length(u), is compatible with o,u if (U, (x(0), Vo), U1, (u(1), V1),
..., Up), respectively (U, (u(0),Vo),...,Un,(u(n),Vy)), is in o. It is easy
now (see, e.g., the proof of 8.11) to construct for each u a tree T, of com-
patible with &, u sequences such that:

a) For any (Uy, Vs, ...,Un) € Ty, the family U = {Upn4 : (Up, Vo, ...,
Un, Vo, Uny1) € T,} is pairwise disjoint and (JU dense in U, if n+1 <
length(u).

b) If 4 C «’, then T, is the restgiction of T,/ to the sequences as above
with n < length(u), respectively n < length(u).

Then let W, = U{Ulength(u) : (Uo, Vo, ... »Ulength(u)) € Tu}. Thus W,
is open densec in Uy for each u € N<N. Let G = (), W,,. Then G is comeager
in Uy, so it is enough to check that G C ~ A (i.e, if x € G then Vy €
N(z,y) ¢ F). Fixy € N. Since z € (), Wy, in particular z € (), Wy, and
so by a) and b) there is unique (Up, Vo, ...,Un,Vu,...) such that z: € Uy,
for each n and (U, (¥(0), Vo), Uy, (¥(1),WV1),...) € [o]. So (z,y) ¢ F and we
are done. O

Now consider a Polish.space (X,7) and let 7" O 7 be another topol-
ogy on X which is Choquet. Let d be a compatible complete metric for
(X, T). The preceding result clearly applies to (X, 7”). Actually, it is more
convenient to work in this context with the following equivalent variant of
G**(A). Fix a weak basis W for 7'. Consider then the game

I Uy Wi
II Vo Wi

Ui, Vie W, Us 2 Vo 2U1 DV, D -+, diam(U;), diam(V;) < 2. II wins
if z € A, where {2} =), V: =N U:), with T~ = the closure of U in
7.

We define the unfolded games G2*(F) for F C X x N. Note here that
if F is closed in (X,T) x N, then G3*(F) is determined, being a closed
game.

We can apply this to the Ellentuck and density topologies.
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(21.9) Theorem. (Silver) Let S C [N]“" be analytic. Then S is completely
Ramsey.

Proof. Let [a, A] be any basic open set. in the Ellentuck topology. Note that
[a, 4] is closed in the usual topology of [N]¥. By applying Theorem 21.8
and the preceding remarks to X = [a, A], 7 = the usual topology, 7’ =
the Ellentuck topology, we have that either S is comeager in [a, A] or there
is [b, B] C [a, A] with S meager in (b, B].

In order to show that S is completely Ramsey, it is enough, by 19.14,
to show that S has the BP in the Ellentuck topology; for the latter, it is
enough to show by 8.29 that S\ U(S) is nowhere dense. Otherwise, there
is [a, A] € S\ U(S), where closure is in the Ellentuck topology. If S is
comeager in [a, A, then by definition [a, 4] C U(S), contradicting the fact
that [a, A]N (S\ U(S)) and thus [e, A]\ U(S) is nonempty. There must be
therefore [b, B] C [a, A] with S meager in [b, B], so by 19.17 there is [b, B']
with B’ C B such that [b,B’] C ~ S. Since [b,B’'] C [b,B] C [a, 4], we
have that [b, B'| N (S\ U(S)) (and thus [b, B'] N S) is nonempty, which is a
contradiction. O

A set A C X, where X is a standard Borel space, is called univer-
sally measurable if it is y-measurable for any o-finite Borel measure g4 on
X. A function f : X — Y between standard Borel spaces is universally
measurable if it is y-measurable for any o-finite Borel measure p.

(21.10) Theorem. (Lusin) Let X be a standard Borel space. Every analytic
set S C X is universally measurable.

Proof. Let p be a o-finite Borel measure on X. We will show that S is u-
meaéurable. Since p is equivalent to a probability measure, we can assume
that p is actually a probability measure. By separating p into its continuous
and discrete parts, we can assume, without loss of generality, that u is
continuous. Then by 17.41 we can assume that X = (0,1) and that y is
Lebesgue measure.

Let P = ~ S and . (P) = sup{u(A) : A C P, A Borel}. Clearly,
ps(P) = pu(A) for some Borel A C P. Let P’ = P\ A. Then g, (P') =0 and
P’ € ). If P/ has y-measure 0, then P’ C B for some Borel set B of p-
measure (), so AC P C AUB and i A) = p(AUB); thus P is y-measurable,
and so is S. Therefore it is enough to show that P’ has y-measure 0.

As in the proof of 21.9, but working now with the density topology
(see 17.47), we see that either ~ P’ is comeager or else ~ P’ is meager in
a nonempty open set in this topology. In the first case, by 17.47, P’ has
measure 0 and we are done. In the second case, let U be nonempty open in
the density topology so that U \ P’ is meager. Thus U/ \ P’ has measure 0,
so U\ P’ C G, where G is Borel of measure 0. Then U\G C P’ and U\ G is
measurable of positive measure, thus p.(P’) > 0, which is a contradiction.

]
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In particular, every set in ¢(X}) is universally measurable. Thus it
follows (from 18.1) that every analytic set admits a universally measurable
uniformizing function.

(21.11) Exercise. Given X C [N]*°, consider the following game:
I (ao, Ao) (a2, A2)

II (a1, Ay) (a3, A3)

a; € U IN?, A; € [NJ*, a; < A;, a1 2 a4, @i\ a; C A, Ay C
A;, card(a;) > i+ 1. Let A=\, a. € [N]*. II wins iff A € X.

Show that this game is equivalent to the Banach-Mazur game for the
Ellentuck topology (and similarly, for the unfolded version).

(21.12) Exercise. For A C (0,1) consider the following game:
I F Fy

II R Ey

F;C(0,1), Ficlosed, p D F} D F» D ---, diam(F;) < 27}, m(F;) >0 (m
is Lebesgue measure). Let {z} =, Fr. Il wins iff z € A.

Show that this game is equivalent to the Banach-Mazur game for the
density topology (and similarly, for the unfolded version).

21.FE Wadge Games

(21.13) Definition. Let XY be sets and AC X,B C Y. A reduction of A
toBisamap f:X - Y with f7'(B)=A,ie,1€ A& f(x) e B. IfX,Y
are topological spaces, we say that A is Wadge reducible to B, in symbols
A <w B, if there is a continuous reduction of A to B. (Strictly speaking,
we should write (X,A) <w (Y,B), but XY are usually understood.)

This gives a notion of relative complexity of sets in topological spaces.
If A <w B, then A is “simpler” than B. It is easy to see that <y is re-
flexive and transitive (i.e., a partial preordering) which is called the Wadge
(pre)ordering. We will study here the Wadge ordering on Borel sets in
zero-dimensional Polish spaces.

From now on we will consider sets A in nonempty zero-dimensional
Polish spaces X. By 7.8 we can view X as a closed subspace of A/, thus
X = [T for a nonempty pruned tree on N.

(21.14) Theorem. (Wadge's Lemma) Let ST be nonempty pruned trees
on N, and A C [S], B C [T] be Borel sets. Then either A <w B or
B<w~A(=[5\4).
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Proof. Consider the Wadge game W G(A, B),
I z(0) z(1)

I y(0) y(1)

z(i),y(¢!) €N; z|n € S, yln € T for all n. Il wins iff (r € A & y € B).
Since A, B are Borel, this is clearly a Borel game, so determined.
Suppose first that II has a winning strategy. We can view this strategy

as a monotone map ¢ : S — T such that length(p(s)) = length(s) (a

Lipschitz map; see 2.7). Thus ¢ gives rise to a continuous map ¢* : [S] —

[T]. Since ¢ is winning for II, z € A & ¢*(z) € B,so A <w B.

Notice that I wins the above game if (x ¢ A & y € B). So, as above,
if I has a winning strategy, then B <y~ A. ]

For sets A, B as above, let
A=sw B A<w B& B <w A.
This is an equivalence relation, whose classes
A =[Alw

are called Wadge degrees. We denote by WADGE the set of Wadge degrees
and by WADGEg the set. of Wadge degrees of Borel sets. Let also,

A<B& A<w B,
so that (WADGE, <) is a partial ordering. For each A define its dual A by
A=~ Al

Note that A< B & A <B.

It is possible that A = A. For example, take X = 2N, A = Napy={z€
2N : £(0) = 0}. It is also possible that A # A. Take, for instance, A = 0 or
for a more interesting example, A = Q = a countable dense subset of 2.
When A # A, the Wadge degrees A, A are clearly not (<-) comparable.
Wadge’s Lemma asserts that, for Borel sets, these are the only incomparable
pairs of Wadge degrees, in fact, for any given A, B with B # A, A we must
have B<A,Aor A A <B.

We can define then a coarser equivalence relation by identifying A, A.
Let

A=l B& A=w BorA=w~ B,
and let )
A’ =[AlwU(~ Alw = AUA.

We call A* the coarse Wadge degree of A and denote the set of these coarse
degrees by WADGE* (WADGE} if we look at Borel sets only). Again, we
can define an ordering on it by
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A*S*B*ﬁASWBOIASWNB.

Thus Wadge’s Lemma says that (WADGE}, <*) is a linear ordering.
We will next show that it is actually a wellordering.

First note though that if A C [T, then there is B C AV with A=w B.
To see this, fix a continuous surjection f : N — [T] with f being the identity
on [T] (see 2.8). Put B = f~}(A) C N. Then B <y A. But the identity
map from [T) into A also shows that A <y B. Thus, when studying Wadge
degrees, we can work just with subsets of A

(21.15) Theorem. (Wadge, Martin) The ordering (WADGE}, <*) is a well-
ordering.

Proof. (Martin-Monk) It is enough to show that there is no infinite de-
scending chain - - <* A§ <* A} < A}, with Borel 4; C V. If such existed,
toward a contradiction, then player I would have a winning strategy, say o2,
in WG(A,, Anyr) (since A, Zw A,41) and I would also have a winning
strategy, say o}, in WG(Ap,~ Any) (since A, €w~ Anq1).

I J6(0) },l(O) JQ(O) %(0) },4(0)
x(0)
00 (l)/ (l)/ ( )/ (l)/
I 3 7
A py Al o
I J6(1) },l(l)</ J&(l)</ Jé(l)</ },4(1)
x(1)
oX S S S S/
2) 2, 2,
I /;lx)( ) /; e /;]}'2(2) a 22
I J6(2) yl(2)</ JQ(Z)</ %(2) % 2)
sza) / / / /
1| 3) }i(.") (3) 3
A P A P
I J6(3) },l(.’:)(/ J&(3)</ 33(5/ },4(3)
03’“3’ / / / /
I @ 59 29 @
:/ib 2 2 j’%
FIGURE 21.1.

Fix z € 2N. Consider the diagram in Figure 21.1. I plays yé,n) in the nth
game following o2™  This fills the first column. Then II copies as shown
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to play y((,""'l) in the nth game. This fills the second column. I responds by

z(n)

following ¢07'™ in the nth game to play y{™. This fills the third column,
etc. Let yo(x) = (yi"))keN. Then

(*) Yn(2) € An © yoyi(z) € A7),
where A% = A,,, Al =~ A,. Let
X={ze2N:y(x) e A}

Since x — y,(z) is continuous, X is Borel and thus has the BP. Notice
now that if z,Z € 2V and z, # differ at exactly one point, say z(n) = #(n)
for n # k, but z(k) # Z(k), then z € X & T ¢ X. To see this, note that
yn(z) depends only on z(n), z(n + 1),..., 50 ye(x) = y¢(%) if £ > k. Then,
by (¥), wi(a) ¢ Ak & 1 (2) € ALY & v (@) € ALY & v (3) ¢
A:Sﬁ) & yi(Z) € Ag. Finally, since z(n) = Z(n) for n < k, it follows from
(*) again that yo(z) € Ag © ¥0(T) ¢ Ao.

We will now derive a contradiction by showing that X does not have
the BP. Otherwise, by 8.26, there is n € N and s € 2", so that X is
either meager or comeager in N;. Let ¢ : Ng = N, be the homeomorphism
given by o((x:)) = (zo,...,Tn-1,1 = Tn,Tny1,...). Then z € X & p(z) ¢
X, so (X N N,) =~ X N Ny, which is a contradiction. O

We call a Wadge degree A self-dual if A = A. The following facts
have been proved by Steel-Van Wesep (see R. Van Wesep [1978]). If A is
a self-dual (resp., not self-dual) degree and B* is the successor of A* in
(WADGE%, <*), then B is not self-dual (resp., is self-dual). Moreover, it
is easy to see that the least element of this ordering is [0]lw U [M]w. At a
limit stage A in the wellordering (WADGE%, <*) we have a self-dual degree
if cofinality()\) = w, and a non-self-dual degree if cofinality(A) > w. Finally,
the ordinal type of (WADGE}, <*) is a limit ordinal 8, where wy < 8 < ws.
Thus we have the following picture of the partial ordering of Wadge degrees
(and by identifying a degree with its dual, of the wellordering of coarse
Wadge degrees) of Borel sets:

[ ] [ ] * [ ]

o O @ @ (W) W+ (w1)

Thus the Wadge ordering <y imposes an (essentially wellordered) hi-
erarchy on the Borel sets, called the Wadge hierarchy. Since the classes
£, 17 are closed under continuous preimages, these classes are initial seg-
ments of the Wadge hierarchy. The Wadge hierarchy gives a very detailed
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hierarchical analysis of the Borel-sets, much finer than that given by the
classes 22, m.

(21.16) Exercise. Show that [0lw = {0}, [NM]w = {N'} occupy level 0 of
the Wadge hierarchy. Show that the clopen sets that are # 0, occupy
level 1 of this hierarchy. Show that level 2 consists of U,F, where U is
open, not closed, and F is closed, not open. Show that level 3 consists of
A = [U® Flw, where U, F are as aboveand U F = {i"z : (1even& z €

U) or (i odd & z € F)}. (It can be shown that level w; is occupied by A, A,
where A is F, but not Gs.)

(21.17) Exercise. Show that if Q@ C 2N is countable dense, then A <w Q
for any AC N in F,.

21.F Separation Games and Hurewicz’s Theorem

Let S,T be nonempty pruned trees on N and let A C [S] and By, By be
subsets of [T] with ByN By = 0. The following generalization of the Wadge
game, which is also due to Wadge, is called the separation game of A, By, B,
denoted as SG(A4; By, By),

I z(0) z(1)

I y(0) y(1)

z(i),y(?) € N; zjn € S,yln € T. Il wins iff (r € A = y € By) and
(x ¢ A= y € B)). In particular, SG(A4; B,~ B) = WG(4, B).

As in the proof of 21.14, if  has a winning strategy, there is a continuous
function f : [T] — [S] induced by this winning strategy such that (y € B, =
f(y) € A) and (y € By = f(y) ¢ A), so f~*(A) separates By from By. If,
on the other hand, II has a winning strategy, there is a continuous function
g : [S] — [T] induced by her winning strategy such that g(4) C By and
9(~ A) C By.

We will use such games to prove Hurewicz’s Theorem 7.10 and, in fact,
much stronger results. Let us first state the original form of Hurewicz’s The-
orem, of which 7.10 is a special case. (For the following results it is relevant
to recall the fact that every countable dense subset of C is homeomorphic
to Q (see 7.12) and that its complement is homeomorphic to A/ (see 7.13).)

(21.18) Theorem. (Hurewicz) Let X be a Polish space and A C X an
analytic set. If A is not F,, then there is a Cantor set C C X such that C\ A
is countable dense in C, so that CN A is a relatively closed subset of A that
is homeomorphic to N'. Therefore, if B C X is co-analytic, then either B
is Gs (i.e., Polish) or else B contains a relatively closed set homeomorphic

to Q.
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Let us mention some corollaries.

(21.19) Corollary. (Same as 7.10) Let X be Polish. Then X contains a
closed subspace homeomorphic to N iff X is not K.

Proof. (of 21.19 from 21.18) If X is K,, it clearly cannot contain a closed
set homeomorphic to AV, since N is not K,. Conversely, if X is not K, and
X is a compactification of X, then X is not F, in X, so it contains a closed
set homeomorphic to AV. m]

Recall that every Polish space is Baire and so is every closed subspace of
it (also being Polish). We call a topological space completely Baire if every
closed subspace of it is Baire. Is every separable, metrizable, completely
Baire X a Polish space?

(21.20) Exercise. Use the Axiom of Choice to show that there exists A C R
that is completely Baire but not Polish (i.e., Gs).

However, for “definable” X the answer to the question preceding 21.20
turns out to be positive. Below, call a separable metrizable space co-analytic
if it is homeomorphic to a co-analytic set in a Polish space.

(21.21) Corollary. Let X be a separable metrizable co-analytic space. Then
X is Polish iff it contains no closed subset homeomorphic to Q iff it is
completely Baire.

Proof. (of 21.21 from 21.18) We can assume that X C Y, where Y is Polish
and X is I} in Y. If X is not Polish, then X is not Gs in Y, so there is a
closed subspace of X homeomorphic to Q. But Q is not Baire. O

We will now prove 21.18 by actually proving a stronger “separation”
result.

(21.22) Theorem. (Kechris-Louveau-Woodin) Let X be a Polish space, let
A C X be analytic, and let B C X be arbitrary with AN B = Q. If there
is no F, set separating A from B, then there is a Cantor set C C X such
that C C AU B and C N B is countable dense in C. In particular, CN B is
homeomorphic to Q and C N A is homeomorphic to N.

Hurewicz’s Theorem 21.18 follows by taking B = ~ A.

Proof. (of 21.22) First we will verify that it is enough to prove the theorem
for X =C.

It is clear that we can replace X by a compactification X, so we may
as well assume that X is compact. Then let 7 : C — X be a continuous
surjection and put 4’ = 7~'(A4), B’ = #~!(B). Then A’ is analytic, A’ N
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B’ = 0 and if an F, set F’ separates A’ from B’, then, as it is actually
K,, m(F') is also K, and separates A from B. So if the result holds for
C, there is a Cantor set H C C with H C A’ U B’ and H N B’ countable
dense in H. Then K = wn(H) is a closed subset of X, K € AU B, and
Kn A, KN B are disjoint dense subsets of K, with K N B countable.

In particnlar, K is perfect. It is easy now to construct a Cantor set C C
K having the same properties. Just construct a Cantor scheme (Cj),e2<n,
where C; is open in K, diam(C,) < 27'¢"8th(s) C_-; C C,, together with
points z; € Cs N B such that x5 = z, for all s. Then the set C =
U.ec Ny Cxn has all the required properties.

In fact, from the preceding argument, we see that it is actually enough
to prove the following:

Let A, B C C, A analytic, and ANB = (. If there is no F, set separating
A from B, then there is a closed set K C C with K CAUB, KNA,KNB
dense in K and K N B countable.

To prove this, consider the separation game SG(Q; B, A), where Q C C
is a countable dense set. We note first that player I cannot have a winning
strategy in this game, because a winning strategy would induce a continuous
function f : C - Csuchthat (ye A= f(y) € Q)and (y € B= f(y) ¢ Q).
But then f~!(Q) is F, and separates A from B, a contradiction.

So, if this game is determined, II has a winning strategy, which again
induces a continuous function g : C — C such that ¢(Q) € B and ¢(~ Q) C
A soif K=¢g(C), KC AUB, KNA KNB are dense in K and KN B
is countable, so we are done. However, it is not clear how to prove that
this game is determined since, among other things, B is arbitrary (not even
necessarily “definable”).

So we will work instead with an appropriate “unfolded” game. Denote
by my : C x C — C the projection to the first coordinate. By 14.3, let
G C CxC be Gs so that m (G) = A. Put Ug = J{U open in CxC : 7 (UNG)
can be separated by an F, set from B}. Clearly, G\ Uy = Gy # 0 since
the union of countably many F, sets is F,. Also, G is Gs. Fix a basis of
nonempty open sets {W,} for Gy (in the relative topology). We claim that
m (W,)NB # 0. Indeed, otherwise, letting U,, be open with U, NGy = W,
we have that m (U, NG) C m(Wr)Um(UsNG) C m(W,)Um(UsNG),
which can be separated by an F, set from B. Thus U}, C Uy, and so W,, = 0,
which is a contradiction.

Therefore choose z,, € m(W,) N B. Let By = {z,, : n € N}. Then
Go, By x C are disjoint and there is no F, set (in C x C) separating Gy
from Bg x C. To see this, let, toward a contradiction, F,, be closed with
Go € U, Fn and (J, Fn) 0 By x C = 0. Then by the Baire Category
Theorem (applied to the Polish space Gy), there are m, n with W,,, C Fj,, so
T (W) C mi(Fy) since my(Fy,) is closed, being compact. So ., € m(Fyr),
and thus F,, N (By x C) # @, which is a contradiction.
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Consider the game SG(Q; By x C, Gp). (To pnt it in the proper form as
described in the beginning of this section, we can think of C x C as identified
with C via the homeomorphism (z,y) = (z(0),y(0),z(1),y(1),...).) The
payoft of this game is now a Boolean combination of G sets, so it is Borel,
thus determined. Since there is no F, set separating G from By x C, player
I cannot have a winning strategy as before. So II has a winning strategy,
which again gives a closed set K’ with K’ C GoU (Bg xC), K' NGy, K' N
(Bo xC) dense in K’ and K'N(Bg xC) countable. Then K = m(K’) clearly
works. O

Let us finally notice one more corollary of 21.22. Compare this with
the perfect set theorem for analytic sets (see 14.13 and Section 21.B).

(21.23) Corollary. (Kechris, Saint Raymond) Let X be Polish and A C X
be analytic. Either there is a closed set F C X homeomorphic to N which
is contained in A or else A is contained in a K, subset of X (and exactly
one of these alternatives holds).

Proof. Consider a compactification X of X and let B = X \ X. If there is
an F, set separating A from B, then clearly A is contained in a K, subset
of X. Otherwise, there is a Cantor set C C X such that C C AU (X \ X)
and F=CNA=CnX is closed in X and homeomorphic to NV. 0

(21.24) Exercise. i) Recall that a tree T is perfect if every s € T has
an extension t D s in T with at least two distinct immediate extensions
t"a,t"b € T (a # b). We call T superperfect if every s € T has an extension
t O s in T with infinitely many distinct immediate extensions in T

Show that if T is a nonempty superperfect tree, then there is a closed
subset of [T'] which is homeomorphic to N,

ii) Call A C NV o-bounded if it is contained in a K, subset of N
(eqnivalently, if there is a countable set {z,} C A such that Vz € A3n(z <
z,), where z < y & 2(f) < y(¢), ¥i). Show that if F C A is closed, then
F can be written uniquely as F = PUC, with PNC =0, P = [T] with T
superperfect (we call P itself superperfect in this case) and C o-bounded
(which is an analog of the Cantor-Bendixson Theorem). In particular, a
closed set in A contains a closed subset homeomorphic to A iff it contains
a nonempty superperfect set. _

iii) For A C N consider the game G(A):

I 80 81

II ky ko
s; € NN\ (D}, k; € N, 5;(0) > k;. I wins iff 59”5, 52"+ € A.
Show that

a) I was a winning strategy in G(A) & A contains a nonempty super-
perfect set.



164 II. Borel Sets

b) II has a winning strategy in G(A) & A is o-bounded.

Consider also the unfolded version of this game, and use it to show
that for analytic A C N, either A contains a nonempty superperfect set or
A is o-bounded. (This is another proof of 21.23 for X = V)

21.G Turing Degrees

Recall from 2.7 that every continuous function f : G — N, where G C N in
G5, has the form f = ¢* for some monotone ¢ : N<N — N<N, We call such
a ¢ recursive (or often computable) if there is an algorithm that for each
s € N<N computes the value ¢(s). Note that there are only countably many
such ¢. Given x,y € N, we say that x is recursive in y, in symbols z <7 y,
if there is recursive ¢ as above with ¢*(y) = z. Intuitively, this means that
x is computable relative to y. Since the identity is computable and if ¢, ¥
are recursive, so is ¢ o, the relation <r is reflexive and transitive. Define
the Turing equivalence relation £ =7 y by

z=ryerry&yrz.

Its equivalence classes
x = [z]r
are called Turing degrees, and their set is denoted by D. On D we define
the partial ordering
x<yez<ry

The study of the structure of (D, <) occupies a large part of recursion (or
computability) theory. This structure is very complex, but here are some
elementary facts:

i) (D, <) has a least element denoted by 0. It is defined by 0 = (0],
where 0 = (0,0,...). Clearly, O consists of the recursive = € N, i.e., those
functions x : N — N that can be computed by algorithms.

ii) The initial segments I, = {b : b < a} are countable, but D has
cardinality 2%,

iil) (D, <) is not linearly ordered. This can be seen as follows: Notice
first that the relation <r is £ (in A xN). If {¢,,} enumerates the recursive
monotone maps, then

% <r y & Inflim length(pn(ylk)) = oo
& Vk(pa(ylk) € 2))

So <7 has the BP. Now {z :  <r y} is countable and thus meager. By
8.41, <r is meager, hence for comeager many z, {y: ¢ <p y} is meager.
Then if z <7 y or y <7 z holds for any z,y, NN must be meager, which is
a contradiction.
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iv) Any two x,y € D have a least upper bound x V y = [(z(0), y(0),
z(1),y(1),..)]r (but in general not a greatest lower bound).

v) Any sequence Xg, X3, ... in D has an upper bound (but not neces-
sarily a least one). Indeed, fix a recursive bijection () : Nx N — N and let
z({m,n)) = T, (n). Then x; < x, for each 3.

vi) (D, <) has no maximal element. Indeed, given y, the set {x : x <y}
is countable, so let z € D be such that z £ y. Then if y* =y V 2, we have
that y < y*.

The cone of an element x € D is the set
Cx={yeD:y>x}.

We have now the following important fact about (D, <).

(21.258) Theorem. (Martin) Let A C D be Borel, in the sense that A* =
{z € N:x € A} is Borel. Then for somex € D,Cy C A or Cx C ~ A.

Proof. Consider the game G(A4*):
I a(0) a(2)

II a(l) a(3)

a(é) € N. I wins iff a € A*.

This game is Borel, so determined. Say I has a winning strategy. (The
argument in the other case is similar.) We will view this strategy as a map
¥ : NN - N (see 20.A). Fix now a recursive bijection ¢ : N — N<N
and let £ = 9 o ¢ so that x € . We claim that Cx C A. Let y € Cx
so that z is recursive in y. Consider the run of the above game in which
II plays (a(1),a(3),...) = y and I responds by ¢ to play (a(0),a(2),...).
Then y <r a, so y < a. But also, a <r (y¥(0),2(0),y(1),z(1),...), so
a<yVx=y, thusa=y. Sincea€ A, y € A, and we are done. O

Consequently, in any Borel partition of D into two pieces, one (and
by iv) above, exactly one) of the pieces contains a cone. We define the
Martin measure on the Borel subsets of D by asserting that such a set
has measure 1 if it contains a cone, and measure 0 otherwise. Since, by
v), the intersection of countably many cones contains another cone, this
is a countably additive {0,1}-valued measure on the Borel subsets of D.
(Note that the only such measures on a standard Borel space are the Dirac
measures. )

(21.26) Exercise. Show that if A C D is Borel and cofinal (i.e., vx € D3y €
A(x <y)), then A contains a cone.

Call y € D a minimal cover if there is x < y so that y is minimal
above x, i.e., there is no z with x <z <y. A theorem of G. E. Sacks [1963]
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shows that for any x € D there is y € D minimal above x. Use this to show
that there is a cone consisting solely of minimal covers.

(21.27) Exercise. Let AC D be Borel and let A* = {z e N :x€ A}, A' =
{x € C: x € A}. Show that A* (and A’) is meager or comeager. Show that
if s is the usual product measure (Haar measure) on C (see Example 3) in
17.B), then pc(A’) = 0 or 1. (This shows that category and measure also
provide countably additive {0,1}-valued measures on the Borel subsets of
D)
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22. The Borel Hierarchy

22.A Universal Sets

For any metrizable space X recall the definition of the Borel hierarchy
TA(X), MR(X), AY(X) in Section 11.B. Without repeating it explicitly, in
this notation we always assume that 1 < ¢ < w,.

Note that if X C Y, then Z2(X) = B(Y)|X = {ANX : A€ YY)}
and similarly for II?. But this fails in general for Ag(X ). Consider, for
example, @ C R and let A C Q be such that A,Q\ A are dense. Then
A € AY(Q), but there is no B C R in AY(R) with BN Q = A. It is true,
however, for £ > 2 and X Polish, as it follows easily from 22.1 for £ > 3
and from 22.27 for £ = 2.

Let us note the following simple closure properties of the classes
2, I, and A2

22.1) Proposition. For each £ > 1, the classes £¢,I1Y, and A? are closed
(3 13

under finite intersections and unions and continuous preimages. Moreover,

22 is closed under countable unions, Hg under countable intersections, and

Ag under complements.

Proof. By induction on &. O

There is a partial converse to closure under continuous preimages; see
24.20.

The classes 32, T2, and A? provide for each Polish space X a hierarchy
for B(X) of at most w, levels. We will next show that this is indeed a proper
hierarchy, i.e., all these classes are distinct, when X is uncountable. This is
based on the existence of universal sets for the classes 2, and ITQ.

(22.2) Definition. Let " be a class of sets in various spaces (such as $2,II¢,
Borel, 21, etc.). We denote by ['(X) the collection of subsets of X which are
inT'. We say that a set U C Y x X is Y-universal for I'(X) if U € ['(Y xX)
and {Uy,y € Y} = I'(X). (Thus in the proof of 14.2 we have shown that
there exists a set that is N -universal for £}(N).) Such a universal set
provides a parametrization (or coding) of the sets in I'(X), where we view
y as a parameter (or code) of U,.

For any class of sets I, we denote by I its dual class
MX)=~T(X)={X\A: AeT(X)}
and by A its ambiguous part
AX)=T(X)NT(X)={AC X: A, ~AecT(X)}.
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(22.3) Theorem. Let X be a separable metrizable space. Then for each § > 1,
there is a C-universal set for £Y(X) and similarly for TI}(X).

Proof. We proceed by induction on &. Let {V,,} be an open basis for X. Put
(pr)eUeyelC&kzeX&
zTE U{V" y(n) = 0}.

Then U € £J(C x X) and {U, : y € C} = TY(X), so U is C-universal for
=)(X).

l Note next that if U is Y-universal for I'(X), then ~ U is Y-universal for
the dual class I'(X). In particular, there exists a C-universal set for ITJ(X),
and if there is a C-universal set for £2(X), there is also one for IT}(X).

Assume now that C-universal sets U, for II(X) are given for all n < &.
Let , < &, n € N, be such that 5, < np4) and sup{n, +1:n € N} = £,
For each y € C, let (y)n € C, n € N, be defined by (y)n(m) = y({n,m)),
where () is a bijection of N x N with N. Then y — (y), is continuous and
for any sequence (y,,) € CN there is y € C with (y),, = yn, Vn € N. Put

(y,x) eU & 3In((Y)n,x) € Uy, .
Then U is C-universal for £Y(X). m]

(22.4) Theorem. Let X be an uncountable Polish space. Then for each &,
2UX) # IYAX). Therefore AY(X) & 2AX) G A2 (X), and similarly
for m(X).

Proof. Since X is uncountable, we can assume that C C X. So if 22()( )=
ITY(X), then T(C) = ZYX)IC = MX)|C = Hﬁ(C) Let U be C-universal
for £Y(C). Puty € A& (y y) ¢ U. Then A € IT}(C) = BY(C), so for some
yo € C, A = Uy,, which is a contradiction. ]

(22.5) Exercise. Show that if X is an uncountable Polish space and A is a
linit ordinal, then

U =2x) (= Y mx) = |J ax)) ¢ AX).

E<A E<A E<A

(22.6) Exercise. Show that if X,Y are Polish and Y is uncountable, then
there exists a Y -universal set for £2(X), and similarly for II}(X).

(22.7) Exercise. A class I' is called self-dual if it is closed nnder complements
(ie, I'= f‘). Show that if ", a class of sets in metrizable spaces, is closed
under continuous preimages and is self-dual, then for any X there cannot
be an X-universal set for ['(X). Conclude that the classes A2(X) cannot
have X-universal sets.
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(22.8) Exercise. Show that for any uncountable Polish X, 2(X) is not

closed under either complements or countable intersections. AlbO mY(X) is
not closed under either complements or countable unions and, for 5 >2or
& =1 and X zero-dimensional, Ag(X ) is not closed under either countable
unions or intersections.

22.B The Borel versus the Wadge Hierarchy

We discuss here the relationship between the Borel and the Wadge hierar-
chies.

If A € 3} (resp., l'l°) and B <w A, then B € X (resp., IT9). So =
and l'I° are nutlal segments of <. We will next see that all the sets m
20 \ l'I° are maxima in <y among all £ sets (and similarly switching X7
and I )

(22.9) Definition. Let I be a class of sets in Polish spaces. If Y is a Polish
space, we call A C Y I'-hard if B <w A for any B € I'(X), where X
is a zero-dimensional Polish space. Moreover, if A € I'(Y), we call A T'-
complete.

Note that if I" is not self-dual on zero-dimensional Polish spaces and
is closed under continuous preimages, no I'-hard set is in I. Note also that
if A is -hard (I-complete), then ~ A is I-hard ([-complete). Finally, if
A is I'-hard (I'-complete) and A <y B, then B is I-hard (I'-complete, if
also B € I'). This simple remark is the basis of a very common method for
showing that a given set B is I'-hard: Choose an already known I'-hard set
A and show that A <y B.

(22.10) Theorem. (Wadge) Let X be a zero-dimensional Polish space. Then
AC X is T2-complete iff A is in =\ IIY. Moreover, a Borel set AC X is
£¢-hard iff it is not IIY and similarly interchanging £¢ and LY.

Proof. If A is £-hard, it cannot be ITg, since TY(N) # IYN). If now A
is Borel and A ¢ l'[ Y is zero-dlmensmnal and BCVYis 2 then by
Wadge’s Lemma 21.14, A <w~ B or B <w A. The first alternative fails,
so B <w A. Thus A is £-hard. o

Recall from 21.16 that every clopen (= AY) set A, with § # A # N,
is AY-complete. We will see in 22.28 that there is no A2-complete set for
& > 2. So for M we have the following picture of the Wadge degrees:
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(22.11) Exercise. Show that if £ < 2 and X is an arbitrary Polish space,
then every A C X, A € £\ I is £3-complete (similarly, interchanging
=2 and IIY).

It turns out that 22.11 holds (for any Polish space) for any £ > 1; see
24.20.

(22.12) Exercise. Let Y be Polish and U be Y-universal for 22(,/\/'). Show
that U is E2-complete and similarly for IT?.

(22.13) Exercise. Let X be Polish and let Ag, A € X be Borel sets with
Ag N A, = 0 and assume there is no 22 set separating A, from A,. Let
B C C be any Hg set. Show that for X = C there is a continuous function
f:C— X with f(C) C AgU Ay and B = f~1(A,).

Again this holds for any Polish space X and & > 1; see 24.20. Finally,
26.12 and 28.19 are also relevant here.

22.C Structural Properties

(22.14) Definition. Let I" be a class of sets. We say that " has the separation
property if for any X and A.B € I'(X) with ANB =0, there is C € A(X)
separating A from B.

We say that I' has the generalized separation property if for any se-
quence A, € I'(X) with [, An = 0 there is a sequence B, € A(X) with
A, C B, and (), B, = 0.

A class T’ has the reduction property if for any A,B € I'(X) there are
A* B* € I'(X) such that A* C A,B*C B,A*UB*=AUB, A*nB*=0.
(We say then that A*,B* reduce A,B.)

We say that I' has the generalized reduction property if for any se-
quence A,, € I'(X) there is a sequence A}, € I'(X) with A}, C A, A;NAL, =
0 forn#m and |, An = U, 4;.



22. The Borel Hierarchy 171

Finally, T' has the number uniformization property if for any R C
X xN, R e I'(X x N), there is a uniformization R* C R also in I'(X x N).

Let us note the following simple facts concerning these structural prop-
erties of a class. For convenience, let us call a class I reasonable if for any
sequence (A,) with 4, C X, A, € I'(X) for all n iff A € I'(X x N),
where (z,n) € A & z € A,,. Notice that if T, a class of sets in metrizable
spaces, contains all clopen sets and is closed under continuous preimages
and finite unions and intersections, and either I' or I is closed under count-
able unions, then I' is reasonable. This is because the projection functions
(z,m) — z, (z,m) — m as well as the functions  — (z,n) are continuous,
while if (Ar), A are as above, A = J,, An X {n}, ~ A=, .(~ 4n) x {n}
and A, x {n} = B,, N Cp, where B, = A, x N={(z,m) :z € A,}, Cn =
X x {n} = {(z,m) : m =n}.

In particular, 52 and IT{ are reasonable.

(22.15) Proposition. Let I' be a cluss of sets in metrizable spaces.

i) If T has the reduction property, I has the sepuration property.

i1) IfT is closed under countable unions and has the generalized reduc-
tion property, I' has the generalized separation property.

i1i) IfT is reasonable, then T’ has the generulized reduction property iff
I’ has the number uniformization property.

i) IfT is closed under continuous preimages and there is a C-universal
set for I'(C), then T’ cannot have both the reduction and separation proper-
ties.

Proof. i) To separate A, B reduce ~ A, ~ B.

i) Let 4, € I'(X), N, A~ = 0 and consider C, = ~ A,. By gen-
eralized reduction let C; € I'(X), C;; C Cu, C;;NC;, =0 ifn #m
and U,Cir = U,Crn = X. Then {C;} is a partition of X and so
Cr =~ Upmsn Cm thus C;, € A(X), as T is closed under conntable unions.
Now let B, = ~ C;,. Clearly, A, C B, and [),, B, = 0.

iii) Let I" have the number uniformization property, 4, € I'(X), and
(z,n) € A & x € A,. Then, since I is reasonable, A € I'. Let A* C A be
a uniformization of A that is in I'(X). Set = € A}, & (z,n) € A*. Again,
Ay e I'(X) and A}, C A,, A NA;, =0if n # m, while J, 4r = U, 45.
So I' has the generalized reduction property.

For the converse, let A C X xNbein'(X xN). Put z € A, & A(z,n).
Then A, € I'(X) and by the generalized reduction property, let 4}, € I'(X)
satisfy the above properties and put (z,n) € A* & = € A},. This easily
works as before.

iv) Let U C C xC be C-universal for I'(C). Put (y,z) € U° & ((y)o,) €
U, (y,z) eU! & ((y)h,z) € U, where (y)o(n) = y(2n), (¥)1(n) = y(2n+1).
Then (U°,U") is a universal pair, i.e., if A, B € I'(C) there is y € C such that
), = A, (U*), = B. By the closure of I" under continuous preimages,
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Ut ut er.

Assume now that I" has both the reduction and separation properties.
Then let U%,U* € T reduce U°,U* and let V € A separate i°,U". Then it
is easy to check that V is C-universal for A(C), violating 22.7. o

(22.16) Theorem. In metrizable spaces and for any & > 1, the class =3
has the number uniformization property, and thus the generalized reduction
property, but it does not have the separation property. The cluss Hg has the
generalized separation property but not the reduction.property.

This also holds if £ = 1 for zero-dimensional spaces.

Proof. It is enough to show that 22 has the number uniformization property.

Let R C X x N be in 2? (¢ > 1) and write R = UieNRi= R; €
o, & <& So (z,n) € R & 3i(z,n) € Ri. Put Q(z.k) & (z,(k)) €
Rk),, where k — ((k)o, (k)y) is a bijection of N with N x N. Let

(k) € Q" & (z,k) e Q& VE < k(z,£) ¢ Q

and finally let (z.n) € R* & 3Ji(z,(5,n)) € Q*. Clearly, R* uniformizes R.
Notice now that R* = |J; S;, where S; = {(z.n) : (z.(i,n)) € Q*}, so it is
enough to show that S; € 22. Since 22 is reasonable, it is enough to check
that for each k, (Q*)* = {z : (z,k) € @} is £ or, since T is closed
under finite intersections, that Q¥, (~ Q)* are in 2. But this is clear, as
each QF is in IT), for some 7 < &.

For £ = 1 and X zero-dimensional, write R = |J; R; with R; clopen
and repeat the above proof. (]

The above result allows to distinguish structurally the classes 22 from
the classes TTI? by the fact that exactly one of them has the number uni-
formization (and reduction) property and the other has the (generalized)
separation property. Then we have the following picture:

=)
¢ m I )
where the boxed classes are those that have the number uniformization

property (in zero-dimensional spaces if £ = 1) and the others have the
generalized separation property.

(22.17) Exercise. (Kuratowski) Given any sequence of sets (4,), A, C X
let
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lim, A, =ﬂ U A

n m2n

= {x : = belongs to infinitely many A,};

li_mnAn =U n Am

n m2n

= {z : belongs to all but finitely many A,}.

It is clear that lim,, A,, C lim, A,. If they are equal, let lim,, A, = lim, A, =
lim, A,,.
Show that for £ > 1,

Ais Ag_,_l s A= lirl;n A,,, for some sequence (A,,) with A, € Ag.

This is also true for £ = 1, in zero-dimensional spaces.
Show also that if A is a limit ordinal,

Ae A?\_H &S A= lirrln A, for some sequence (Ap) with 4, € U A?,.
n<A

22.D Additional Results

We will discuss here level-by-level versions of results that we proved for
Borel sets in earlier sections. Additional such results will be given in Sec-
tion 24.

The following is a refinement of results in 13.A.

(22.18) Theorem. (Kuratowski) Let (X,T) be a Polish space and A, C X be
Ag(X ,T). Then there is a Polish topology T' 2 T such that T' C 22()( )
and A, € AYX,T") for all n.

Proof. By 13.3, it is enough to prove this for a single set A € A ¢ (X, T).
The proof is by induction on £ > 1. For { = 1 take T’ = T. For £ =2
both A and ~ A are Gs, so Polish in the relative T-topology. Put on X
the direct sum 7' of these relative topologies. So U € T' if UN A,U \ A
are open in A,~ A respectively. This is clearly Polish, and A is A? in 7".
Also, T' C AYX,T) C =%(X,T).

Let now £ be a limit ordinal. Then A = |J,, An = (), Ba, with A, B, €
A° (X, T), & <& Let T, T, be topologies that work for A,, B, resp.
Let T’ be the topology generated by |J, (7, UT,). By 13.3 it is Polish and
clearly A € AY(X,T’). Since every set in T, U T, is in 2€(X T), clearly
T C X, T).

Finally, let £ = 5+ 1 > 3 be successor. Then, by 22.17, A =
lim, A,, A, € AJ)X,T). Let T* 2 T be Polish with 7* C 2°(X 7)
and A, € A°(X T*) for all n (also using 13.3). Then again by 22.17,
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A € AYX,T*). Apply now the case £ = 2 to (X, 7T*) to obtain 7/ 2 T*
with A € AYX,T') and T’ C EY(X,T*) C £2,,(X,T) = BUX,T). O

(22.19) Exercise. Using the notation of 22.18, show that if £ > 1 is successor
and A € A%(X, T), there is a Polish topology 7' 2 T with 7' C AY(X,T)
and A € AY(X,T).

(22.20) Exercise. Using the notation of 22.18, show that if £ > 1 and
A, € AYX,T), there is a Polish topology 7' 2 T such that 7" C
22()( ,T), A, € AYX,T') for all n, and 7" is zero-dimensional.

The next result refines 13.9.

(22.21) Theorem. Let X be a Polish space and A € 22()( ). If € > 1, then
there is a Lusin scheme (As) cn<n such that

i) A, € AYX), if s#0;

i) Ag=A, A, =, A5 ns

i) ifx € N and Ay # 0 for alln, then Ay =), Ay 15 a singleton
{z*} and for any x, € Ay, T — ™.

Moreover, if d is a compatible metric for X, we can make sure that
diam(A,) < 27leneth(s) jf 5 £ (.

The same result holds for £ = 1 if X is zero-dimensional.

Proof. First assume that X is zero-dimensional and that A4 € $9(X). Write
A =J, An, with A, clopen of diameter < 1/2. Put A,) = A,. Since 4, is
clopen, it is easy to find a Lusin scheme (A7) ,cn<n satisfying all the above
properties for A,, and £ = 1, additionally with diam(A?) < 2-lensth(s)-1 for
s # 0. Then forn > 2and s € N*, s = (sg,...,8n-1), let A, = A:glw,sn_l).

Now let £ > 1 and A € Z(X). Let T be the topology of X. Write
A=U, An, with A, € AXAX,T) and let T’ be as in 22.20. Let d < d’ be
a compatible metric for 7’. Now apply the case £ = 1 to 4 € (X, T")
(and the metric d') to find (A,)sen<n, which clearly works, as AY(X,T') C
AYX,T). u ]

The next exercises provide refinements of results given in Sections 16
and 17.

(22.22) Exercise. (Montgomery) Let X,Y be Polish, AC X xY be 22 and
let U C Y be open. Show that {z : A, is non-meager in U} is £2. Show the
same for Hg if “non-meager” is replaced by “comeager”. (Compare with
16.1.)

(22.23) Exercise. Let G be a Polish group, X a Polish space, and (g,z) —
9. a continuous action of G on X. Recall the definition of the Vaught
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transforms in 16.B. Show that if A is X2, so is A%U and that if A is I,
so is A*Y.

(22.24) Exercise. (Vaught) Using the notation of 16.C, define the 2, IT]
formulas of L, as follows: The XY formulas are those of the form V,6,,
where 8, is of the form Ju; --- Jvg, p,, with p, quantifier-free. The Hg
formulas are the negations of X formulas. The £ formulas for £ > 1 are
those of the form Vv,68,, where 8, is of the form Jv; - -+ v pn, with p, a
Hgn formula, &, <&.

Prove the following refinement of 16.8: An invariant subset of X is
TE(ILY) iff it is of the form A, for o a S2(IIY) sentence.

(22.25) Exercise. (Montgomery) Let X,Y be Polish spaces. f A C X x Y
is £2, then {(s,z,7) € P(Y) x X x [0,1] : u(Az) > r} is £. (Compare
with 17.25.)

22.E The Difference Hierarchy

We will finally study a method of constructing the class Ag 41 from the
class 22, which leads to the so-called difference hierarchy. (There is also
a corresponding construction and ramification of the classes A}, ) limit
from U, » A2 which we will not discuss here.)

Every ordinal 6 can be uniquely written as 8 = A + n, where X is limit
or 0 arid n < w. We call # even (resp., odd) if n is even (resp., odd).

Now let (A4,),<¢ be an increasing sequence of subsets of a set X with
6 > 1, Define the set Dy((An)y<s) € X by

z € Dp((An)n<s) & z € | J A, & theleastn < fwithz € 4,
n<é

has parity opposite to that of 8.

So Dy((Ao)) = Ao, D2((Ao,Ar)) = A1\ Ao, D3((Ao, A1, A2)) = (A2\
Al) U AO: ey Dw((An)n<w) = Un(A2n+1 \ A2n)1 Dw+l((An)n$w) = AO U
Un(A2n+2 \ A2n+l) U (Aw \ Un An)y' .

For 1 < ¢£,8 < wy, X metrizable, let

Do(£)(X) = {Do((An)a<s) : Ay € {(X), 1 < 6}.

(22.26) Exercise. i) Show that D9(22) is closed under continuous preimages
and is reasonable.

ii) Show that if X C Y, then Da(Eg)(X) = Do(zg)(Y)LX ={ANnX:
Ae Dy(ZQ)(Y)}.
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iii) Show that for each separable metrizable space X, there is a C-
universal set for Dg(E2)(X). Conclude that Dg(E2)(X) # De(E2)(X), for
any uncountable Polish space X, where D9(2°) is the dual class of D9(2°)

iv) Show that for 4, C X, X'\ Do((A,,),,<9) = Doy1((Ap)n<e” X)
Conclude that Dg(2§) U Do(E) € Dgy1(E9)-

A. Louveau and J. Saint Raymond [1988] have shown that Dy(E?) has
the number uniformization property (in zero-dimensional spaces if £ = 1),
which gives us the following picture

22=) [Di(EY] [D=(ZD) [Ds(=9)] [D4(2D)]
Ol=) Dy(SYH Du(xY Dy(£9) D,(P)

where 8 < 7, every class is contained in every class to the right of it, and the
boxed classes are exactly those that have the number uniformization prop-
erty and the others have the separation property (again in zero-dimensional
spaces if £ = 1).

We establish now the main result.

(22.27) Theorem. (Hausdorff, Kuratowski) In Polish spaces and for any
1 S & <wy,
A= U Do(=d.

1<0<w,

Proof. Clearly, Dy(2) C =2,,, and by 22.26 iv) D(53) C Doy1 (), so
Us <o<un Do(Z¢) € A§+1

For the other inclusion, we claim that it is enough to proveit for§ = 1:
Let (X,T) be Polish and A4 € Ag_,_l(X, T). Then there are A, € Ag(X, ),
with A = lim,, An, by 22.17. By 22.18, let 7’ 2 T be a Polish topology
so that A, € A)X,T') and T’ C 2°(X T). Then A € AYX,T") (by
22.17 again), so A e Dp(Z)(X,T") for some 6 by the £ = 1 case. Since
2U(X,T)=T'C (X T), clearly A € D9(2§)(X 7).

Consequently, we only have to prove that A C |J, Ds(%9?).

It will be actually convenient to work with decreasing sequences of
closed sets as opposed to increasing sequences of open sets. It is easy to
verify that the sets in |J, Do(X?) are exactly those of the form

A=U(F11\Hn)
n<e
for some 6 < wy, where iy, 2 Hy 2 I 2 H, 2 --- 2 F, 2

H, 2 --- are closed sets. To see this note that any set of that form
is equal to Dy.((A¢)e<o), where 6 = A+ 2n if 6 = X + n, and
Apesak = ~ Foevk, Avtt2rer = ~ Hogqr are open. Conversely, if
A = Dy ((Ay)y<o+), where by 22.26 iv) we can assume that 6* = A + 2n
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is even, and we define F,, H, for n < 6 = A + n by the previous formulas,
then A =UJ, o(F, \ Hy).
Now let X be Polish, and A C X and F C X be closed. Put

Or(A)=(ANF) N (~ANF)
= the boundary of AN F in F.

Define by transfinite recursion

FO = X’
Fo41 = 0k, (4),
Fy= () F,, if Xis limit.
n<A

This is a decreasing sequence of closed sets, so let § < w) be least such that
Fo = Fo+1.

Claim. 1f A € AY, then Fp = 0.

Proof. Note that if Z is nonempty Polish and C C Z is AY, then the
boundary of C cannot be equal to Z, since otherwise both C and ~ C
would be dense G sets.

If now Fy # 0, Fp is Polish nonempty and A N Fy is AJ(Fy). Also
Or,(A) = boundary of AN Fy in Fy, and Op,(A) = Fp4y = Fp, which is a
contradiction.

Now let H,, = (NA)ﬂF,, ifn<8 Thus D H 2R 2H 2---2
F, D H, 2 ---. Finally, we claim that if A € AJ, then A = Un<o(Fn \ Hy):

If £ € A, let 7 be such that x € F;, \ F,,. If x € H,, then z €
(~A)nF, n (ANF,) C Fy41, which is a contradiction. So z € F;, \ H,,.
Conversely, if z € F, \ H, for some 7, but z ¢ A, thenz € (~ A)NF, C
(~ A)N F, = H,, a contradiction. o

(22.28) Exercise. Show that for any { > 2 there is no Ag-complete set.

(22.29) Exercise. Show that | J
containing the X2 sets.

D, () is the smallest Boolean algebra

n<w

(22.30) Exercise. Let X be Polish and A, B C X be such that AN B = 0.
Define for any closed set F C X,

dr(A,B)=ANFNBAF.

Use dp and the argument in 22.27, to show that if there is no A9 set
separating A from B, there is a Cantor set C C X with ANC, BNC dense
in C (and the converse is also trivially true).
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Use this also to show directly that any two disjoint G5 sets A, B can
be separated by a set in U, ., Dg(X9) (which also follows from 22.16 and
22.27).

(22.31) Exercise. Let (A,)y<s, (By)n<s, where 8 < w,, be two transfinite
sequences of subsets of a set X. For z € |, Ay, let pa(z) = least n(z €
A,) and for z ¢ U, 4 Ay let pa(z) = w,. Similarly define pg. Put

Do((An)y<o, (By)n<e) = {z : pa(z) < pp(z)}-

(Thus if = € Do((Ay)n<e, (By)g<s), then z € U,y A,.) For 6 = A +n, let
6" = A+2n. Define C,, 1 < 6", recursively, by Cx = U s AeU Ugn BeU
By, Cxyor = Cayok—-1 U Bayr, and Cyyzr-1 = Cryor—2 U Axyi—
if A' < X is limit or 0 and £ > 0. Show that D((Ay)p<er (By)y<s) =
Dg+((Cp)y<e-) and

U Do) = U {Do((An)a<sr (Bo)n<s) : Ay, By € T2

1<0<w) 1<6<w;
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23. Some Examples

23.A Combinatorial Examples

Recall from 22.11 that any X3 \ T3 set is £3-complete and similarly inter-
changing =3, IT3. It follows that if X is a perfect Polish space and Q C X
is countable dense, then Q is £3-complete and its complement N = X \ Q
is I13-complete.

(23.1) Exercise. Prove directly that any countable dense Q C C is X3-
complete, by showing that player II has a winning strategy in the Wadge
game WG(A, Q) for any A € TY(N).

Let us abbreviate as follows:
V*nP(n) & {n € N: P(n)} is cofinite,
3*°nP(n) & {n € N: P(n)} is infinite.
Then it follows from the above that the sets

Q2 = {z € C ¥*®n(z(n) =0)},

Nz = {z € C :3%n(z(n) = 0)},

N3 ={z eC:3n(z(n) =0) &

I®n(z(n) =1)},

are respectively $3-, IT3-, IIJ-complete.
Now let

P3 = {z € 2N . vmvy®n(z(m,n) = 0)}.

(This is the set of all NxN 0-1 matrices, every row of which is eventually 0.)
We claim that it is II3-complete. Indeed, let X be Polish zero-dimensional
and A C X beII3. Then A =, Am, with A, € BY(X). Let fi: X = C
be continuous such that x € A,, & fm(z) € Q2. Define f : X — 2M<N by
f(x)(myn) = fm(z)(n). Then f is continuous and z € A & Vm(fm(z) €
Q2) & f(z) € Ps.

It follows that the set

Ss = {z € 2VN : ImI®n(z(m,n) = 0)}

is 23-complete.

Below one should keep in mind the remarks following 22.9: One method
for showing that a given set A in some class I is I'-complete is to choose
judiciously an already known I'-complete set B and reduce it continuously
to A (i.e., show B <y A).

(23.2) Exercise. Show that the set
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Cs={zreNV; li}lna:(n) = oo}

is IT}-complete, and thus the set
D3 = {z € NN : lim,, z(n) < oo}
is $J-complete. Show also that the set
P; = {z € 2N . 3®myn(z(m, n) = 0)}
is II3-complete, and thus the set
83 = {z € 2VN . v°m3n(z(m,n) = 0)}

is X3-complete.

(23.3) Exercise. For each £ < w;, show that if theset A C Cis 22-complete,
then the set A’ = {z € 2N : vm(z,, € A)} is 12, ,-complete, where
Zm(n) = x(m,n). More generally, show that if the sets A, C X,, are 22-
complete, where X, are Polish spaces, then [], 4. C I, Xn is Hg e
complete.

(23.4) Exercise. We saw in 9.7 that every ideal on N which is IT3 (in 2V) is
actually IT and the Fréchet ideal is $3 but not IT3 and so X3-complete.
Show that for every £ > 3 there is an ideal Z on N which is E2-complete,
and similarly for ITJ.

(23.5) Exercise. For each F C Pow(N), define the Hausdorff operation
FnA, on sequences (A,) of subsets of a set X by

FrAn={z:{n:z € A} € F}.

For example, if F = {N}, Fodnp = (), An; if F = {A CN: A #
0}, Fodn = U, An; if F = {A C N: Ais cofinite}, F,An = lim, Ay;
and if F = {A C N: A is infinite}, FpoA4, = lim,A,. Usually F is mono-
tone (i.e., A€c F& B2 A= B € F), but this is not required in the above
definition.

For any class I of sets in metrizable spaces, let

FT = {FnrA, : A, € I(X), X metrizable}.

Also let
v>® = {A C N: Ais cofinite},

3*° = {A C N: Aisinfinite}.
i) Show that if X is separable metrizable, then for any £ > 1,
I*I(X) = g,5(X),
VeEYUX) = 42(X).
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ii) For each metrizable space X, show that
B(X) = | {F=}(X) : F Borel }.
Show that for £ > 1 there is Borel F; such that

B2(X) = Fe2)(X).

(23.6) Exercise. Consider the sets

Py = {z € 2N . 3°m3%n(z(m,n) = 0)},
8, = {z € 2VN . vomy®n(z(m,n) = 0)}.

Show that they are respectively IT}-, £3-complete.

(23.7) Exercise. (Ki-Linton) i) For a subset A C N we say that A has density
z if lim,, 29AM0n1) — 4 Ghow that {A C N : A has density 0} in
IT3-complete (in gN)

ii) Show that the set of normal (in base 2) numbers (see Example 1 in
11.B) is IT3-complete.

23.B Classes of Compact Sets

(23.8) Exercise. Let X be a perfect Polish space. Show that the set
Ki(X) = {K € K(X) : K finite} is £3-complete (and so Koo(X) = {K €
K(X).: K infinite} is IT13-complete). Show that for each n, {K € K(X):
card(K) = n} is in D2(XY), but not in X} or IT9.

(23.9) Exercise. i) Let X be a perfect compact metrizable space. Show that
the set {K € K(X): K is meager (i.e., nowhere dense)} is IT3-complete.

ii) Let X be compact metrizable. Show that if u € P(X) is continuous,
then {K € K(X): u(K) = 0} is IT3-complete.

(23.10) Exercise. The following class of closed subsets of T is of interest in
harmonic analysis:
H = {K € K(T) : 3 an open interval (arc) I in T
Ing < ny <nz<---Vze KVi(nix ¢ I)},
where if z = ¢ € T, then nz = €. For example, show that K = {¢* :

6/2m € E, 3} is in H, where E) /3 is the Cantor set (see 3.4). Show that H
is 9. (T. Linton [1994] has shown that H is actually $3-complete.)
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The Cantor-Bendixson analysis of closed sets provides examples of
classes of compact sets occupying higher levels of the Borel hierarchy. Con-
sider K(C), and recall 6.12 and the notation introduced in the comments
following it. For a < w, let

Ko.(C)={K € K(C): |K|cp < a}
= {K € K(C): K* = 0}.

D. Cenzer and R. D. Mauldin [1983] have shown that K, is £3,,-complete
if n < w, and that K, is £3,,,-complete if A is limit and n < w.

Let AR, = {K € K(R"): K is an AR (absolute retract)} and
ANR, = {K € K(R"): K is an ANR (absolute nbhd retract)}. (See
J. van Mill [1989] for these basic topological concepts.) It was shown in
R. Cauty, T. Dobrowolski, H. Gladdines and J. van Mill [1997] that AR,
is T13-complete and ANR; is D, (X3)-complete, while T. Dobrowolski and
L. R. Rubin [1997] prove that AR,, ANR,, are I13-complete for n > 3. (For
n = 1 these classes are X9.)

23.C Sequence Spaces

(23.11) Exercise. Consider the Hilbert cube IN. For 0 < p < oo let
L, = {(za) eV : (z4) € P}.
Also let N
Co = {(Tn) er: (Tn) € ¢ (i'e-7 Iy — O)}v
C = {(zs) € IV : (z,,) converges}.

Show that L, is X3-complete and that Cp,C are II3-complete. Show, in
fact, that there is no X3 set S with Cop C S C C.

(23.12) Exercise. (Becker) A sequence (z,) in ¢y converges weakly to = € ¢y
if (Zn,z*) — (z,2*) for any z* € (cp)* = &' (i.e., (||zx|]) is bounded and
Zn(t) — (i) for each i). Let X = B)(co) be the unit ball of ¢y. Show that
the set

W = {(2,) € XV : (z,) is weakly convergent in ¢}

is IT-complete.

23.D Classes of Continuous Functions
A function f € C(T) is in C*°(T) if it is infinitely differentiable (viewed as
a 2m-periodic function on R). It is analytic if it can be expressed as a power

oo
series Y an(z — zo)" in an open nbhd of every point zo,. We denote the

n=0
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class of such functions by AN(T). Finally, we denote by C™(T) the class of
n-times continuously differentiable functions.

It is known from Fourier analysis (see Y. Katznelson [1976]) that for
fec(),

f € C(T) & VkIMVn € Z(| f(n)| < Mlal™%),

i.e., the Fourier coefficients ( f(n))nez, where f(n) = L 021r Ft)e~intdt,
converge to 0 “faster than polynomially”. It is also known that for f € C(T)

f € AN(T) & 3IM3a > O0Vn € Z(|f(n)| < Me~M),

i.e., (f(n)) converges to 0 “exponentially”.

(23.13) Exercise. Show that C™(T), C*°(T) are all IT3 and that AN(T) is
9-complete.

(23.14) Theorem. The sets C*(T),C=(T) are II3-complete.

Proof. We prove the result for C°°(T). The proof for C*(T) is similar and
can be left as an exercise.
We will need the following simple lemma.

(23.15) Lemma. For any closed interval  C R, anye > 0 and any k > 1
there is a C™-function in I which is 0 in open nbhds of the endpoints of I
and || f*)|| oo = €.

Proof. Say I = [a,b]. Pick a < ¢ < d < b. Let g(z) = e~1/(z=9)* . g=1/(z=d)*
when z € (¢,d), and g(z) = 0, in [a, ]\ (c,d). Then g € C=. Let ||¢‘¥|| = 6.
Put f = (¢/d)g. 0

Consider the IT3-complete set P3 given in 23.A. We will construct a
continuous function z — f; from 2¥*N into C(T) and show that z € P3 &
fz.€ C=(T).

Start with the interval I = [0,2n] and split it into the subintervals
Iy, Iy, ... as in Figure 23.1.

0 A z L Lo

° ! . P

FIGURE 23.1.

Thus |I,| = 27 - 2=+ (|I| = length of F). Split each also I,, into subin-
tervals I,g, Inj,... by the same subdivision process, so that |l x| =
|I,] - 2=(k+1)_ By the lemma, let f,x be a C™-function that is non-zero
only in an open concentric interval properly contained in the interior of
I,.,‘k, and

1785 lloo = 2727,
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For z € 2N*N et
fr= Zx(n, k) fr k.
.k
Since || fn.klloc < |Ink|: this is a uniformly convergent series, so f, € C(T)
(by extending f, with 2n-periodicity to R; note that f,(0) = f.(2r) = 0).
It is easy also to check that z — f, is continuous (from 2V*N into C(T)):
Given ¢ > 0, choose N so that 3 -y, || frklloc < €/2 and then K such

that 3,y ks i || faklloo < €/2. Thenif z(p, q) = y(p,q) forp < N, ¢ < K,
we have || f. — Fyllee <e.

First let = € P3. Clearly, f, € C(T) and f;(0) = f;(27) = 0. Assume
inductively that f{™ exists and £ (0) = £ (2n) = 0. Clearly, £"" ()
exists for y € (0,2n). Also, the right derivative of fgE ™ at 0 is 0. It is then

enough to show that the left derivative of f(") at 27 is also 0. Let a € I,
where £ > n. Then

(n)(a) (n)(27l') ” ("')“co
a-2n s 9—(¢+1) —
2
W e 272

T~ oy % asf— oo
So fi™Vir) =0
If now z ¢ Pj3, let n be such that for infinitely many k, x(n,k) = 1.
Consider f{"*Y . Clearly, fi"t9 = f("+l) in the interior of I, ; if z(n, k) =
1. So, for each k with z(n, k) =1, plck ak, by € I, ;. with

|70 @)l = 2727, £+ (be) = 0.

This shows that f; (n+1) cannot be continuous at the right endpoint of I,
so f. ¢ C=(T). 0

Of course it is well known that AN(T) & C*°(T), but the preceding
fact shows that there is an interesting “definability” distinction between
the classes.

It is also known (again see Y. Katznelson (1976]) that if f € C(T)
and Y |n|P|f(n)] < oo, then f € CP(T), while if f € CP(T), then

neL

f(n) € O(|n|~P). Notice that conditions of this form cannot exactly char-
acterize CP(T), since otherwise they would give XY definitions of CP(T).
So, for example, there exists f € C(T) with f(n) € O(|n|~?), but for which
f ¢ CP(T) (while on the other hand, for such f, f € CP~?(T)). This is an
analysis result proved by definability methods. It is a typical use of clas-
sification results to prove existence theorems: If A C B are sets and A, B
have different “definable complexity”, then A G B in particular, i.e., there
exists an element of B that is not in A.
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23.E Uniformly Convergent Sequences

Let X be a separable Banach space and let
UCx = {(zn) € XN : (2,) converges (in X)}.

(23.16) Exercise. Show that UCx C XM is IT3-complete. In particu-
lar, for X = C(T) show that UC = UCqm = {(fn) € C(DV :
(fr) converges uniformly} is TI3-complete. Show also that UCo = {(f.) €
C(T)N : f, — 0 uniformly} is IT3-complete.

> - .
For f € C(T),let 3 f(n)e’™* be its Fourier series. We denote by

n=—o0

Sn(f) its partial sums: Sy (f)(z) = lzvj f(n)e'™*, N =0,1,2,.... Wesay
N

n=-—

o0 ~ .
that > f(n)e'™* converges (uniformly) iff the sequence of partial sums
n=-—oo

(Sn(f)) converges (uniformly). Now let

UCF = {feC(T): Z f(n)e™™* converges uniformly}

n=—o0

be the class of functions with uniformly convergent Fourier series. (Note
that if f € UCF, Y f(n)e*®® = f(z) uniformly.)

(23.17) Exercise. Show that UCF is ITJ. (Ki has shown that it is IT3-
complete.)

23.F Some Universal Sets

Let X be a Polish space and f = (fn) a sequence of continuous functions
fn: X = R. Let

Cr={z € X: (fa(2)) converges}.

(23.18) Theorem. (Hahn) Let X be Polish. A subset A C X is I3 iff it is of
the form Cj for some sequence of continuous functions f = (fn), fn:X —

In particular, if X is compact, the set
U= {(ﬁ z) € C(X)N x X : (fn(z)) converges}

is C(X)N-universal for IY(X).
Proof. If f, : X — R, then
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(fa(x)) converges & Vm3INVE,£ > N(|fi(z) — fe(z)l < 1/(m +1)),

so Cris IT3, and if X is compact metrizable, U is IT3 since the map (f,z) €
C(X) x X — f(z) € R is continuous.

It remains to show that if A C X is [T}, then 4 = Cj for some f.

We claim first that it is enough to show that if A C X is X3, then
there exists a sequence f,, : X — [—1,1] of continuous functions such that
A = Cy and moreover fu(z) — 0, Vz € A. Indeed, if A is a IT] set and
A =, Am with A, € Y, let ( £, en work as above for A, with
1™ loo < 1/(m + 1). Rewrite (fS™)mn as a single sequence (fi)ien.
Clearly, fi(z) — 0 for all z € A, since for each ¢ > 0, |f,(lm)(:1:)| < € for
all but finitely many m, and for these m, | f,(lm)(a:)l < ¢ for all but finitely
many 7. On the other hand, if z ¢ A, so that z ¢ A,, for some m, then
( f,(lm)(a:)) diverges as n — 00, so (f;(z)) diverges too.

So it is enough to prove the above fact about X sets. For that we use
a basic result about semicontinuous functions.

Recall that an extended real-valued function f : X — [—00, o0] is lower
semicontinuous if for each a € R, {z : @ < f(x)} is open. Then we have:

(23.19) Theorem. Let X be a metrizable space. Let f : X — [—o00,00] be
bounded from below. Then f is lower semicontinuous iff there is an increas-
ing sequence fo < fi < fo £ -+ of continuous functions f : X — R such
that f(z) = sup, fu(z).

Proof. If f is the sup of an increasing sequence of continuous functions, it
is clearly lower semicontinuous.

For the converse, we can assume that f is not identically oo, since
otherwise we can take f, = n. Let d be a compatible metric for X. Put

fa(z) = inf{f(y) + nd(z.y) : y € X}.

Then fn : X = R and fa(z) < far1(z) < f(z). Also, |fu(2) = fa(y)| <
nd(z,y), so f, is continuous. We will now show that f,(z) — f(z). Fix ¢ >
0. For all n, let y,, € X be such that f(y.) < f(yn) + nd(2,yn) < folz) +e.
If M is a lower bound for f, then d(z,yn) < M# If fu(z) — oo,
then f(z) = oo and we are done. So we can assume that ( f,(z)) is bounded
and thus that y, — z. By the lower semicontinuity of f, f(z) < lim,, f(yx)-
Thus f(z) < lim,, f(y,) < L, (fo(x)+€) = lim, fo(x)+e, ie, lim, fo(z) =
f(z). 0

Say now A € 29, A =, >, Fn, with F,, closed and F; C F, C ---.
Consider the function f: X — [—00, 0] given by

f(z)=1on FA; f(z) =non F,\ F forn > 2; f(z) =ocoon ~ A.
Then for a € R,
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{z:f(x)>a}=Xifa< ]
{z:f(z)>a}=~F,iffn<a<n+l,n>1

So f is lower semicontinuous. By 23.19, let ¢, : X — R be continuous with
@1 < @2 < -+ and supapa(z) = f(z).

For any two real-valued functions f, g let f A g(z) = min{f(z), ()},
fvg(z) = max{f(z),g(x)}. Clearly, if f, g are continuous, so are fVg, fAg.

By replacing ¢, above by (¢, V 1) A n, we can assume also that 1 <
¥n < n. Finally, since @n4+1 —¢n < n, we can interpolate between ¢, ¢n+1
the functions ¢, + ék;l(cpnﬂ —y) for k=0,...,2n, sothat by renumbering
we can assume that 1 = ¢q < ¢ < -+ and @n41 — @n < 1/2. Finally put

fn(z) = sin(mpn(z)).

Then f, : X — [—1,1] is continuous and f,(z) — 0 for z € A, as p,(x)
converges to an integer. On the other hand if z ¢ A, then p,(z) — oo
and since ¢n+1(2) — Yn(z) < 1/2, for each k there is at least one n with
©a(z) € [k + 1/4,k + 3/4], so (=1)* sin(mpn(z)) > sin(r/4) and (fn(z))
diverges. 0

(23.20) Exercise. Show that 23.18 remains valid if Cy, U are respectively
replaced by C%-= {z : fu() — 0} and U® = {( fi2): fa(z) — 0}.

(23.21) Exercise. Show that for X compact metrizable the set
U={(f,z) e C(X)N x X : inf,, fn(z) > 0}
is C(X)N-universal for Z(X).

(23.22) Exercise. Prove the following uniform version of 23.18: Let X,Y be
compact metrizable. Show that for any A C Y x X, A € I3, there is a
continuous function F : Y — C(X)N such that 4, = Cry):

Consider now f € C([0,1]). Let
Dy = {z € [0,1] : f'(z) exists}.

(At endpoints we consider one-sided derivatives.)

Zahorski (see, e.g., A. Bruckner [1978], p. 228) has shown that the sets
of the form D; are exactly those that can be written as AN B, with A € £
and B € I with m(B) = 1 (where m is Lebesgue measure).

(23.23) Exercise. Show that the set D = {(f,z) € C([0,1])x[0,1] : = € Dy}
is ITY. Let X be a Gs subset of (0,1) with m(X) = 0. Show that

U={(fz)eC(0,1]) x X: f'(z) exists}
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is C([0, 1])-universal for II3(X).
A set E C T has logarithmic measure 0 if for every € > 0 there is a

sequence (I,,) of intervals (arcs) in T with £ C |J,, I, and }_ 1/|log| ;|| < e.
For any f € C(T), let

Cr={zeT: Z f(n)e™™ converges}

={zeT: Z f(me™ = f(x)).

Sladkowska (see, e.g., M. Ajtai and A. S. Kechris [1987]) has shown
that if B C T is a X3 set of logarithmic measure 0 and A C B is £3, then
there is f € C(T) with A= ~ Cy.

(23.24) Exercise. Show that the set C = {(f,z) € C(T) x T: z € Cy} is

IT). Show that if X C T is AJ of logarithmic measure 0, the set
U={(fz) e C(T)x X :z € Cy}

is C(T)-universal for IT}(X).

23.G Further Examples

We now discuss a couple of examples related to logic.

(23.25) Exercise. Call a function f : N®* — N arithmetical if its graph is
definable by a formula of first-order logic on the structure of arithmetic
(N, +,). It is known that there is a bijection A : N<N _, N such that the

functions
f(s) = length(h™!(s))

and
(s,i) = the ith element of h=1(s), if 1 < f(s);
g\% 0, otherwise.

are arithmetical. Let X be the set of sentences in first-order logic for the
language {+,-,U}, U a unary relation symbol. Then ¥ is countable, so we
can view it as a discrete Polish space. Show that the truth set

TR = {(x4,¢) €C x T : (N, +,, A4) = ¢}

is in A but not in |J,, A% (in the space C x I).

Consider next the language L = {R}, consisting of one binary relation
symbol R and the space X = ONxN a5 in 16.5. For a < wy, let
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\?‘YO@‘ ={ze2™N: A, = (N, RA%)is
a wellordering of order type < a} C Xi.

J. Stern [1978] has shown that WO<*" is 3 -complete (@ > 1) and if
w® < B <w®, then WO<F is AY ., but not 3, ,.

In conclusion, we would like to mention that we do not know of any
interesting “natural” examples of Borel sets in analysis or topology which
are in one of the classes £2 or I for £ > 5, but not in a class with lower
index.
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24. The Baire Hierarchy

24.A The Baire Classes of Functions

(24.1) Definition. Let XY be metrizable spaces. A function f:X — Y is of
Baire class 1 if f~1(U) € ZY(X) for every open setU C Y. IfY is separable,
it is clearly enough in this definition to restrict U to any countable subbasis
forY. Recursively, for 1 < £ < w) we define now a function f:X — Y to be
of Baire class £ if it is the pointwise limit of a sequence of functions f,: X —
Y, where f,, is of Baire class &, < §. We denote by B¢ (X,Y) the set of Baire
class & functions from X into Y. As usual, B¢(X) = Be(X K), where K = R
or C (the context should make clear which case we are considering).

Clearly, continuous C B, C B, C---C B, C--- C B, C:--, for any
§§n<w1

(24.2) Definition. Given a class ' of sets in metrizable spaces, we say that
f:X — Y is T-measurable if f~Y(U) € T for every open set U C Y. If
I is closed under countable unions and finite intersections, it is enough to
restrict U to any countable subbasis for Y, when Y is separable.

Thus X?-measurable = continuous and X3-measurable = Baire class
1. The following is an extension and refinement of 11.6.

(24.3) Theorem. (Lebesgue, Hausdorff, Banach) Let XY be metrizable
spaces, with Y separable. Then for 1 < € <wy, f:X Y isin B¢ iff f is
22 +1-measurable. In particular, |, B is the class of Borel functions.

Proof. =: By induction on £. It is clearly true for £ = 1. Next notice that
if fp — f pointwise, U C Y is open and we write U = U By, =U,, B
with By, open balls, then f~'(U) = U,,U.Ni>n fi YB). If f, is in
Bt,, &n < &, then f7(B,,) € I, C I, 50 N5, fr '(Bm) € M2 and
thus f~'(U) e =2, ,.

<=: Again, the proof is by induction on &. It is obvious for £ = 1. So
let &£ > 1.

We first prove the result in case f : X — {0,1} is a characteristic
function f = x4 for A C X. To say that f is 22 +1-Ineasurable just means
then that A is AE +1- I & =1 + 1 is successor, then by 22.17 A = lim, A,
with A, € A? = AY,,. Then x4, is in B, by induction hypothesis, and
since x4 = lim, x4,, X4 is in B,,.,.l B:. If now ¢ is limit, then by 22.17
A = lim, A,, where A, € |, . A}, say A, € A, with 7, < & Then
Xa, isin B, ,s0 xa is in Bg

The preceding argument easily extends to the case f X — Y, with
Y finite. For this, note that if A; = lim, An fori=1,...,k, where X =
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AU+ -UAy is a partition of X and AY = A\, ; A%, then AP, ..., 4D
are pairwise disjoint and still A; = lim, A

Notice also that if Y is finite with a metric d and if f,g: X — Y are
such that d(f(z),g(x)) < a for all z and fn,gn are 2°-measurable with

fn = f, gn — g pointwise, then we can find g, — ¢ also ¥ -measurable
with d(f.(z), 9/.(z)) < o for all z. For that just define

gn(z) = {gn(m)’ if d(fa(z),9n(2)) < a;

fa(x), otherwise.

Let Y now be an arbitrary separable metrizable space and, by consid-
ering a compactification of Y, find a compatible metric d for Y such that
for any € > 0 there are finitely many points yg,...,yn—1 € Y with ¥ C
U;<n B(¥i,€). Then for each k, let Y(¥) = W, .. ,y,(l'fc) 1} €Y be such
that Y C U, B(w®,27%) and Y® C Y(*+1) Then f-1(Bu{",27%)) €
$241, S0 by the reduction property 22.16, since U, ,,, f ‘(B(y(k) 27k)) =
X, we can find A eA?,, with A" C f-1(B(1",27%)) such that X =
AP ..U A®_ s a partition of X. Then £ : X — {5{,...,y®_}
given by f®(z) = y; @ z € AP is £2,,-measurable, and so by the finite

case we just proved, let f(k) : {y(k) o y,(l'? 1} be functions in B, ,

for some nn k< & with f39 5 fk) p01ntw18e Since d(f(z), f¥)(z)) < 27%,
so that d(f (k) (z), f*+1(x)) < 2-27%, we can also assume, by the preceding
remark, that d(J3¥ (z), f5*V(x)) < 2- 2. Let fi = f"" Then f* is in
B, for some & < & and fix — f pointwise, so f is in B;. 0

<ny

(24.4) Exercise. In this exercise spaces are separable metrizable.

i) Let d be a compatible metric for Y. If f, : X — Y is in B; and
fa — f uniformly with respect to d, then f is also in B;.

ii) Show that the two possible compositions of a function in B, and a
continuous function are in B.

iii) Show that if f is ©7-measurable and g is = -measurable then go f
is £, ,- measurable.

(24.5) Exercise. Let (X,7), Y be Polish spaces and f : X — Y. Show that
[ is in B iff there is a Polish topology 7’ 2 7 with 7' C 22_,_1()(, T) such
that f:(X,7’) = Y is continuous.

(24.6) Exercise. Let X,Y be Polish. For each £ show that there is a Borel
function F¢ : C x X — Y such that B¢(X,Y) C {(F¢), : @ €C}.

(24.7) Exercise. Let X,Y be Polish and A C X x Y be X2. Then the .
function (,z) € P(Y) x X — pu(A;) is in B.
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(24.8) Exercise. Show that if X,Y are Polish andif AC X xY is 22 and
such that for some fixed 1 € P(Y), A, # 0 = p(A;) > 0, then A has a
uniformizing function in B¢ (projx(A4).Y) for £ > 1 (and for £ = 1 if X,Y
are zero-dimensional). Prove the same result in case A, # 0 = A, is not
meager. (Recall 22.22 and 22.25 here.)

(24.9) Exercise. (Cenzer-Mauldin) Consider the space K(C) and the map

®: K(C) — K(C) given by D*(K) = K = the ath iterated Cantor-
Bendixson derivative of K (see 6.10). Show that D is in By for k < w and
D>*% is in Byyox if A is limit and k < w. Use the result of Cenzer-Mauldin
mentioned at the end of 23.B to show that this estimate is best possible,
i.e., D* is not in Bax—; and D * is not in Byyox—1.

24.B Functions of Baire Class 1

We will conclude with a study of the important class of Baire class 1 func-
tions.

It is easy to check that the pointwise limit of a sequence of continuous
functions is in B,. The converse fails in general. (Take, for example, f :
R — {0,1} to be any non-constant function in By, e.g., x[o,1)-) However, we
have the following result.

(24.10) Theorem. (Lebesgue, Hausdorff, Banach) Let XY be separable
metrizable and f:X — Y be in By. If either X is zero-dimensional or else
Y =R, then f is the pointwise limit of a sequence of continuous functions.

Proof. The case of X zero-dimensional is exactly as in the proof of 24.3,
using the fact that 22.17 goes through for £ = 1 as well in this case.

Consider now the case Y = R. Fix a homeomorphism & : R — (0, 1). If
fisin By, sois ho f: X — R. If the result holds for g : X — R in B, with
g(X) € (0,1), then h o f = lim, g,,, where g, : X — R are continuous; by
replacing g, by (9, V1/n) A (1~ 1/n), we can assume that g, : X — (0,1).
Then f, = h~!0g, — f. So it is enough to prove the result for f: X — R
in By with f(X) C (0.1).

For N>2,i=0,...,N -2, let AN = f~Y((i/N, (i + 2)/N)). Then
AV is 29 and UN -2 AN X. So by the reduction property for =9 (see
22.16) we can find BN C A sothat BY is A} and X = Bn -UBY_,

is a partition of X. Then xpgv is in By and if gy = Z,_O (i/N )x BN, then
gn — f uniformly. So the result follows from the next two lemmas.

(24.11) Lemma. Let each p, : X — R be the pointwise limit of a sequence
of continuous functions. Then if p, — p uniformly, p is also the pointwise
limit of a sequence of continuous functions.
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(24.12) Lemma. Let A C X be AY. Then x4 is the pointwise limit of a
sequence of continuous functions.

Proof. (of 24.11) It is enough to show that if each ¢, : X — R is the
pointwise limit of a sequence of continuous functions and ||g.}|ec < 277,
then ) gn is the pointwise limit of a sequence of continuous functions. So
let ¢{™ be continuous with ¢\ — g, as i — co. Clearly, we can assume
2 3 ¥
that ||q§")||co <27™M Sor =30, q(n) is continuous and it is enough
to show that r; — > ¢,. Fix £ € X and ¢ > 0. Find N so that for all
i, |2 v @M@ < €/3 and | T2 vyy ¢al(@)] < /3. Then |ry(a) —
Y gn(z)| < 26/3+Z£’=0 |q,(n) (z) — gn(z)|. So for all large enough i, |ri(z)—
3" ga(z)| < ¢, and thus r; — 3 gn. 0

Proof. (of 24.12) Let A = U, Fn, ~ A = U, Hn with F,,, H,, closed,
F, C Fh41, Hn € Hpyy. By Urysohn’s Lemma 1.2, let A, : X — R be
such that hp(z) =1 on F, and h,(x) = 0 on H,. Then h, — xa. 0

(]

(24.13) Exercise. Show that 24.10 holds when Y is an interval in R, ¥ =
C,Y=R*orY =C"

The following result shows that Baire class 1 functions have many
continuity points.

(24.14) Theorem. (Baire) Let XY be metrizable, with Y separable, and
f:X = Y be of Baire class 1. Then the set of points of continuity of f is a
comeager G5 set.

Proof. Fix an open basis {V,} for Y. We then have
f is not continuous at z & Infz € F~1(V;,) \ Int(F~1(V,))],

ie., {z : f isnot continuous at =} = U, f71(Va) \ Int(f~'(V,)). Now
f1(Va) is £, thussois f~1(V,,)\Int(f~}(V,,)). Say it is equal to |, Fk, Fi
closed. Clearly, Fy has no interior, so the set of points of discontinuity of
is a countable union of closed, nowhere dense sets. 0

This leads to the following, final characterization of Baire class 1 func-
tions.

(24.15) Theorem. (Baire) Let X be Polish, Y separable metrizable, and
f:X = Y. Then the following are equivalent:
i) f is of Baire class 1;
it) f|F has a point of continuity for every nonempty closed set F C X;
it1) f|C has a point of continuity for every Cantor set C C X.
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Proof. i) => ii) follows from 24.14 since every such F is Polish and f|F is
of Baire class 1 too. ii) = iii) is trivial. So we will prove iii) = i).

Let U be open in Y in order to show that f~}(U) is £9. Put U =
U, Fn, with F, closed. Then f~'(F,), f~'(~ U) are disjoint. If we can
show that they can be separated by a AJ set D,, then clearly f~}(U) =
U, D» € 29, and we are done.

Assume therefore, toward a contradiction, that this fails for some n.
Then, by 22.30, there is a Cantor set C C X with f~!(~ U)NC, f~1(F,)NC
dense in C. By iii), let = € C be a continuity point for f|C. If z,, € f~}(~
U) N C is such that z,, — z, then f(z,,) — f(z) and f(z,,) € ~ U, so
f(z) € ~ U. Similarly, if y, € f~1(F,) N C is such that y,, — z, then
flym) = f(z) and f(ym) € F,, so f(z) € F,, a contradiction. O

(24.16) Exercise. Let X be metrizable. Recall that a function f: X —» R is
lower (upper) semicontinuous if {z : f(z) > a} ({z : f(z) < a}) is open for
any a € R. Show that all such functions are in B;.

(24.17) Exercise. Let X be Polish and f : X — R have only countably
many discontinuities. Then f is in B,. In particular, all f : [0,1] — R that
are monotone or of bounded variation are in B;.

(24.18) Exercise. Let F : [0,1] — R be differentiable (at endpoints we take
one-sided derivatives). Then its derivative F' is in B;.

There are many interesting relationships between derivatives and B,
functions on [0, 1]. First, recall that derivatives have the Darboux property,
that is they send intervals to intervals. Denote by DB, the class of functions
on B; that have the Darboux property. Also, denote by A the class of
derivatives F' of differentiable functions. So A C DB, . Although A # DB,,
one has the following facts (see, e.g., A. Bruckner [1978], and A. Bruckner,
J. Mafik and C. E. Weil [1992]):

i) (Maximoff) A function f : [0,1] — R is in DB iff there is a homeo-
morphism A of [0,1] with foh € A.

ii) (Petruska-Laczkovich) Let H C [0,1]. Then m(H) = 0 iff for every
f € B, there is g € A with f|H = g|H.

iii) (Preiss) A function f : [0,1] — R is in B, iff f = g + hk, where
g hked.

Finally, Preiss has shown that f : [0,1] — R is in B iff it is the
pointwise limit of a sequence of derivatives.

(24.19) Exercise. Show that if X is Polish and if fe : X - R, £ <w, is a
pointwise increasing (i.e., fp(z) < fe(z), when n < £) transfinite sequence
of Baire class 1 functions, then for some a < w1, f¢ = f, for all £ > a.
Conclude that if (A¢)e<w, is an increasing or decreasing sequence of A)
sets, then (A¢) is eventually constant. (Compare with 6.9.)
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(24.20) Exercise. (Saint Raymond) Let X,Y be compact metrizable spaces,
Z a separable metrizable space, f : X — Y a continuous surjection, and
g : X — Z a Baire class £ function. Show that there is a Baire class 1
function s : Y — X so that s(y) € f~!({y}) and g o s is also of Baire class
€. Conclude that if X,Y are compact metrizable spaces, f : X — Y isa
continuous surjection, and A C Y is such that f~1(A) is 32 (resp., ITY),
then A is 2 (resp., ITY).

Use this to prove also that 22.11 and 22.13 are valid for any Polish
space X and any £ > 1.



CHAPTER III
Analytic Sets

25. Representations of Analytic Sets

25.A Review

Let X be a Polish space. Recall that a set A C X is analytic if it is the con-
tinuous image of a Polish space. We denote by £1(X) the class of analytic
subsets of X.

The analytic sets contain all the Borel sets and are closed under count-
able intersections and unions as well as images and preimages by Borel
functions. In particular, they are closed under projections (i.e., existential
quantification over Polish spaces).

In 14.3 the following basic equivalent formulations of analyticity were
established. Given X Polish and A C X, the following statements are equiv-
alent:

i) A is analytic.

i1) For some Polish Y and Borel B C X x Y, A = projx(B).

iii) For some closed set F C X x N, A = projy(F).

iv) For some G5 set G € X x C, A = projx(G).

(25.1) Exercise. Let X, Y be Polish spaces with X C Y. Show that £}(X) =
SIMX (={AnX:AeZ}Y)})={ACX: A€ ZTV)}.

Given a standard Borel space X we call A C X analytic if for some (all)
Borel isomorphisms 7 : X — Y, with Y Polish, the set 7(A) is analytic.
Equivalently, by 14.6, A is analytic if it is the Borel image or projection of
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a Borel set. We use again the notation X1(X) for the class of analytic sets
in X.

We can also extend the definition of analyticity to arbitrary separable
metrizable spaces X by calling A C X analytic (or £](X)) if for some
Polish Y 2 X and analytic B C Y, A = BN X. This is easily equivalent to
saying that A = projy(F) for some closed F C X x N (or A= projx(G)
for some Gg set G € X xC). A subset A C X such that both A and X\ A are
analytic is called bi-amalytic or A}(X). It is not true that for any separable
metrizable X we have A}(X) = B(X) (see the remarks following 35.1), so
a A} set A may not be of the form BN X, where B is in A}(Y) = B(Y)
for some Polish space Y D X.

Finally, the following concepts are of interest. A separable metrizable
space is called amalytic if it is homeomorphic to an analytic set in a Polish
space (with the relative topology), or equivalently if it is a continuous image
of a Polish space. Also, a measurable space is called analytic or usually an
analytic Borel space if it is isomorphic to (X, B(X)) for some analytic set
(or space) X.

25.B Analytic Sets in the Baire Space

In the Baire space N we can represent analytic sets in a simple combina-
torial fashion using trees.
Given a tree T on a set A = B x C, recall that for z € BN, T(z) =
{s € C<N: (z|length(s),s) € T} is the section tree.
Let :
p[T] = {z: T(z)isill-founded}
={z: [T(z)] # 0}
={z: y(z,y) € [T]}
be the projection of [T] € BN x CN on BY.

(25.2) Proposition. Given A C N, the following statements are equivalent.
i) A is analytic.
i) There is a (pruned) tree T on N x N with A = p[T).
ii4) There is a (pruned) tree T on Nx 2 withz € A & 3y € N(z,y) €
[T), where N = {z € C:3%°n(z(n) = 1)}.

Proof. The equivalence of i) and ii) is clear since .all the closed subsets of
N x N are of the form [T] for a (pruned) tree on N x N and the analytic
subsets of A are just the projections of closed sets in N'x A . The equivalence
with iii) follows from the same remark plus the fact that N is homeomorphic
to N (see 3.12). 0

(25.3) Exercise. Let X be Polish and A C X. Then the following statments
are equivalent:
i) A is analytic.



198 III. Analytic Sets

ii) There is a closed F C X x N with z € A & GnyF(z,y), where Gn
is the game quantifier (see 20.D).

25.C The Souslin Operation

(25.4) Definition. Let (Ps),cn<n be a Souslin scheme on a set X, i.e, a
family of subsets of X indexed by N<N. The Souslin operation A applied to
such a scheme produces the set

AsPs = U anIn'

ZEN n

Given any collection I’ of subsets of a set X we denote by AL the class
of sets AsPs, where P, C X are inT.

(25.5) Exercise. i) A Souslin scheme (Ps) is regular if s C ¢t = P; 2 P;.
Show that if (P,) is a Souslin scheme and Qs = (),c, P, then (Q;) is regular
and A, P; = A,Q;. -

ii) Denoting by I';,I's the class of sets that are respectively countable
unions or countable intersections of sets in I', show that if X € I, then
I',uls C Al

The following is an important stability property of the operation A.

(25.6) Proposition. Let X be a set and I' C Pow(X). Then AAT = AT.

Proof. Tt is trivial that for any ', I' C AI'. So it is enough to show that
AAl C AT. Let A = A,P,, with P, € A", so that P, = A,Q,: with
Qs+ €. Then

z € Ae Iye Nvm(z € Pyn)
& Iy € NVm3Iz € NVn(z € Qyim,zjn)
& Jy € N3(2m) € NNmVn(2 € Qym 2 n)-
Fix now a bijection {m,n) of N x N with N, so that m < {(m,n) and
(» < n= (mp) < (mn)) (eg. (mn) = 2™(2n + 1) — 1). Let also for
k € N, (k)o, (k)1 be such that ((k)o,(k)1) = k. Then encode (y,(z2m)) €
N xNN by w € N given by w(k) = (y(k), 2(x), (k)1))- This gives a bijection
of N x NN with N. Note that knowing w|(m,n) determines y|m and zm|n,
by the above properties of { ) (i.e., there are functions ¢, : NN — N<N
such that if w encodes (y,(2)m) and s = w|(m,n), then ¢(s) = yjm and
¥(8) = z|n). It follows that
z € As Jwe NVEk(x € Ryk)
&z € AR,
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where R, = Py(s),y(s) isin . a
The next result gives a basic representation of analytic sets.

(25.7) Theorem. Let X be a Polish space and d a compatible metric. For
any A C X the following statements are equivalent:

i) A is analytic.

it) A = A F, with F; closed.

i) A = A Fs, with Fy closed and (Fs) regular of vanishing diameter
(i-e., diam(Fy,) — 0,Vz € N), and F, # 0 if A # 0.

w) A = A,P,, with P, analytic, Pp = A, Ps = U, Ps-n, (Ps) of
vanishing diameter and (), Py, # 0, VZ EN, if A#£ 0.

Proof. Clearly, iii) = ii). Also iv) = i) and ii) = i), since if A = A4,P; with
P; analytic, then A = projy(P), with P C X x N given by (z,y) € P &
Vn(z € P,,), and so P is analytic. We prove next i) = iii). Let A C X
be analytic and, without loss of generality, assume that A # (. Then there
is a continuous function f : N = X with f(NV) = A. Put F, = f(N,).
Clearly, (F;) is regular. Since f is continuous, (F;) has vanishing diameter.
Note now that if € [, Fy, then for each n there is z, € f(Ny,) with
d(z,z,) < 27" Let y, 2 y|n be such that f(y.) = z,. Then y, — y, so
fyn) = za = f(y), ie, 2 = f(y). So {f(¥)} = N, Fyn- Thus AFs =
A. Finally, to prove i) = iv), take P, = f(N,) and apply the preceding
argument. a

Thus Z1(X) = AIIY(X), for any Polish space X. In particular, we
have:

(25.8) Corollary. Let X be a Polish space. Then AZ1(X) = T}(X).

(25.9) Exercise. Show that 25.7 i) < ii) and 25.8 are valid in any separable
‘metrizable space.

(25.10) Exercise. Let X be a set and (P;) a regular Souslin scheme on X.
For z € X put
T,={seNN:2 e P}

Show that T is a tree on N and if A = A,P,, then
zT€EAST,)#0.

(25.11) Exercise. Using the notation of 25.7, fix a countable open basis
{Us.} for X containing @, X. Show then that in ii) one can take (F;) to be
regular, with each F, of the form U, with diam(F,) < 27'eneth(s) jf 5 £ ¢,

25.12) Exercise. Let (P,) be a Lusin scheme on X. Then show that
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AP,=( U P

n seN™

so that if P; is closed, AP, is IT§ (for X metrizable).
The following is also an important representation of analytic sets.

(25.13) Theorem. Let X be a Polish space and A C X be analytic. Then
there is a regular Souslin scheme (P;) with A = AsP; such that:

i) Py is analytic,

i) Pp= AP, =J, Ps-n and also Py-ry C Py if m < m;

iit) for eachy € N, Py =, Py is compact;

w) if U C X is open and P, C U, then for some n, Py, CU.

Proof. For each s € N<N let NI = {y € N : Vi < length(s)(y(i) < s(4))}.
Then for y € N, let

N} = nNgln = {2z € N': z < y pointwise},
n

so that Ny is compact in V.
If A =0, we can clearly take P, = 0, s0 assume A #@. Let f <N — X
be continuous with f(N) = A. Put

Ps=f(N.:)'

Since N; =J, NJ-, and N}., C N} if m < n, i), ii) are clear. To prove

s m =

iii) and A = A, P,, it is enough to check that
FIND) = F(N3).
n

Clearly, f(Ny) €N, f(N;'n). Conversely, let z € [, f(N,,) so that for
each n there is y, € N, with f(yn) = z. Since yn(?) < y(i), Vi < n, it
follows that there is a subsequence (yy,) of (y,) converging to some 2 < y.
Then f(ym) = f(z)=z¢€ f(Ng;)

Finally, let P, C U with U open. If for all n, Py, N (X \U) # 0,
let yn € Nj,, be such that f(yn) € X \ U. As before, some subsequence
(yn;) of (yn) converges to a z < y and so f(yn,) — f(2) € X \ U, thus
f(z) € P,n (X \U), which is a contradiction. o

Comparing 25.7 and 25.13, we see that 25.7 (and its proof) give a
representation A = A;F,, where actually i) F; is closed, iil) Fy =, Fyn
is singleton or empty, and iv) of 25.13 is true as well. However, ii) does not
necessarily hold.

(25.14) Exercise. Let Y be a topological space, X a metrizable space, and
f:Y = K(X). We call f upper semicontinuous if for any open U C
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X,{y: f(y) C U} is open in Y. So 25.13 implies that if X is Polish and
A C X is analytic, then the map f(y) = P, from N into K(X) is upper
semicontinuous and A = |J, ¢ Py. Show that if Y, X are Polish spaces and
y+— K, from Y into K(X) is upper semicontinuous, then it is Borel and so
in particular, A = |J, K, is analytic. If Y = N/, show also that A = A, F;,

with Fy = U,en, Ky-

(25.15) Exercise. Let (P;) be a regular Souslin scheme.

i) Put Rs = U, pr N, Ps~zjn- Show that R, is a regular Souslin scheme,
Ry = A;Ps = A;R;, and R, = J, Rs-n.

ii) Put for any sequences s,t € N, s < t & Vi < n(s(i) < t(3)). Let

for s € N*,
Qs= U anli-

z,zxln<s

Show that Q° is regular, @® = AP, = A4,Q°, @* =, Q°™, and Q*™ C
Q* ™ if m < n. Let also for s € N*,

Qs = U F;.

teNm t<s

Then Q; is regular, Q° C Q;, and A,Q, = A, P;.

25.D Wellordered Unions and Intersections of Borel Sets

Although, as we saw in 14.2, there are analytic non-Borel sets, we will see
now that analytic sets can be expressed both as intersections and unions of
w1 Borel sets in a canonical fashion.

(25.16) Theorem. (Lusin-Sierpiniski) Let X be a standard Borel space. If
AC X is B}, then A= U, Ae¢ = Neco, Be with Ag,Be Borel sets.

Proof. (Sierpiriski) We can assume without loss of generality that X = N.
So, by 25.2, let T be a tree on N x N with A = p[T] and put C = N \ A.
For £ < wi, s € NN et

Cé={zeN: Pr(z)(s) < €}

(Recall here the notation of 2.F; the tree T(z) may be ill-founded).
Since
z € C & T(x) is well-founded

& 3¢ <wi(pr(x)(0) <€),
clearly C = |, ,,, C¢, where C; = Cg ={z: pp(z)(#) < €}. Soif Be = ~

C¢, then A = )¢ B¢. We claim now that each C¢ (and thus C¢) is Borel.
For this notice that
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C? = {z € N': s € T(x) is terminal or s ¢ T(z)}
= {x € N : Vn(z|(length(s) + 1),s"n) ¢ T'}

is closed and

ci=NJcr,. ife>o,

n n<g
so by induction on £, each C§ is Borel.
Now let
Ae = {z : T(z) is ill-founded and p(T'(z)) < £}.

Then clearly, A = Uﬁ <w; A¢, 50 1t is enough to show that A¢ is Borel. For
this note that

Ag = {z: pT(x)(ﬂ) > é} N{z:Vse N<N(pT(x)(s) # é)}

This is true because if x € Ag, then pr;)(#) = oo > £, and we cannot
have pr(;)(s) = &, since then s € WFr(,y and £ < p(T'(x)). Conversely,
if p1(z)(0) > € and pr(s)(s) # £ for all s, then T(z) is ill-founded and
p(T(z)) < &, since otherwise, there would be some s with pp(;)(s) = €.

Thus
~Ag=Cju |J @€\,
sEN<N n<g

s0 Ag is Borel. Q

(25.17) Exercise. (Sierpiniski) Let (P;) be a regular Souslin scheme on X and
(as in 25.10) let T, = {s € N<N: 2 € P,}. Define by transfinite recursion on
¢ < w Souslin schemes (P$) by P? = P,, P§+' =|J, P..,. P} = Ne<r PS5

for A limit. Show that if T§ = {s € NN : z € P}, then T = T&¥) (in the
notation of 2.11).
Show that

T € AP & [T] #0
& VE < w) (TS # 0)
S <wn(TE=TEN & TS #0),

and use this to show that if I' is a class of subsets of X and A € AT, then
A =Uecu, A¢ = Necu, Be, Where Ag, B € o(T).

25.F Analytic Sets as Open Sets in Strong Choquet Spaces

The following result can be viewed as an analog of 13.1 and 13.5 for analytic
sets.
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(25.18) Theorem. Let X be a nonempty Polish space, (An) a sequence of
analytic sets in X. Then there is a second countable strong Choguet topology
T, extending the topology of X and consisting of analytzc sets, such that
each A, is open in T.

Proof. We can clearly work with X = A. So, by 25.2 fix a sequence of trees
(R») on N x N such that A, = p[R.,].

For any two trees S,7 on N x N, let ST be the tree on N x N defined
by

(s,u) € S*T < ((s0,--.,8m—-1), (uo,u2,...,Uz(m-1))) €S &

((s0,--+»8m—1), (u1,u3,...,u2m—1)) €T,

where m is the largest number with 2m — 1 < length(s) (= length(u)).
Then note that p[S * T] = p[S] N p[T)]. Recall also that if (s, u) € N* x N?,
then Sj, ) = {(t,v) € §: (t,v) is compatible with (s,u)}.

Fix now a countable set S of nonempty trees on N x N such that
{R.:n € N} C S, {(t,v) : length(t) = length(v) & t is compatible with
s} CSforallse NNif ST arein S, s0is §+T, and if S is in S, then
for all (s,u), S(s.u] € S. Let T be the topology with basis {p[S] : S € S}.
Clearly, T consists of analytic sets, is second countable, and contaius all A,
and N,, and thus the topology of N. It remains to prove that 7 is strong
Choquet.

It is clear that the strong Choquet game for this topology (see 8.14) is
equivalent to the following:

1 120,50 ~'L'1,Sl

II To T,

S, Ti'€ S; p[So] 2 p[To] 2 p[S1] 2 p[Ti] 2 -+ Tn € PSn), on € p[Th].
Player II wins iff (), p[Sa] (= N, 2[Tx]) # 0.

We describe a winning strategy for II in this game: I starts with
75,50 Since zo € p[Sy), fix (sé,o),uf)o)) € N! x N! with (s(()o),ué,o)) €
So and ¢ € p[(So)[sgo)’u[()o)]]. II plays Tp = (So)[ © 0 Next I plays
z1,5). Since 7, € p[S) C p[To), let (s$?,u{?) € N2 x N2 be such
that (s(o) (0)) (s(o) uy ) € Sp and z, € p[(So)[q(o) (0)]] Also let
(s(()l),uo )) € N? x N2 be such that (sf)l),uo Ye S and z; € p[(Sl)[sa) (1)]]
Then II plays T, = (So) (© o) * (Sl)[ w0 If I next plays 122,52,
then zo € p[S;] C p[(So)[s(o) (0)]]ﬂ p[(Sl)[su) m]] N p[Sz), so find
(sgo),ugo)) € N? x N% in Sy extending (s(lo),u1 )) (s(l) (l)) e N¥ x N3
in S) extending (sf)l),u(l)) and (s u) € N3 x N* in S, such that
Iz € P[(SO)[sgo)’uéo)]] N p[(Sl)[sil),ul(.l)]] N p[(S2)[sl(,2),u$2)]]' Then II answers
by playing
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T = ((SO)[sgu),ugJ)] * (Sl)[s(ll),ufl)]) * (52)[332)#32)],

etc. It is clear from the definition of sgn) that s = sg_)l = sf_)2 =--.=

.s(()n) = Zn|(n + 1), so let z = limz,. Also, there are yy, ¥, ... such that

ugn) C yn for all n,4, and so (x,y,) € [Sy] for all n, thus = € (N, p[S»] and
the proof is complete. 0o

(25.19) Exercise. (Becker) Show conversely that if X is nonempty Polish,
and 7 is a second countable strong Choquet topology extending the topol-
ogy of X, then T C Z1(X).

Remark. If in the proof of 25.18 one chooses the family S to consist of
all trees recursive in a given £ € N (see 21.G), one obtains a much more
canonical topology 7 that has a lot of remarkable properties. This topol-
ogy, called the Gandy-Harrington topology (relative to z), has become,
through the use of the methods of “effective descriptive set theory” (which
are beyond the scope of these lectures), one of the most powerful tools in
descriptive set theory (see A. Louveau [1997)).
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26. Universal and Complete Sets

26.A Universal Analytic Sets
For any class I of sets in Polish spaces and each Polish space Y, let
3T = {projx(B): Be I'(X xY), X Polish}.

Thus from 25.A we have
T =V
=3¥m,
for any uncountable Polish space Y.
Note now that if Y CY x X x Z is Y-universal for I'( X x Z), then

V= projy,x(U)
is Y-universal for 32T'(X). So from 22.6 we have the next result.

(26.1) Theorem. Let XY be Polish spaces with Y uncountable. Then there
exists a Y -universal set for $1(X).

As in the proofs of 14.2 and 22.4, we now have the following.

(26.2) Corollary. For each uncountable Polish space X, B(X) (= A}(X)) &
ZHX).

Similar facts hold, of course, for standard Borel spaces.

26.B Analytic Determinacy

We discuss next X1-complete sets (see 22.9). Clearly, if U is Y-universal for
Z1(N), U is B}-complete. In fact, by the argument in the proof of 22.10,
every set in X1 \IT} in a zero-dimensional space is }-complete. This proof,
which is based on the argnment in Wadge’s Lemma 21.14 cannot be carried
through within the framework of classical set theory that is codified in the
standard ZFC (Zermelo-Fraenkel with the Axiom of Choice) axioms. It
requires the determinacy of games that are Boolean combinations of X}
sets and these, as it can be shown, cannot be proved determined in ZFC
alone. (The determinacy of Borel games is the best possible result provable
in ZFC.)

Following extensive studies in the foundations of set theory in the last
25 years, there is now overwhelming evidence of the validity of the “Princi-
ple of Definable Determinacy”, or just “Definable Determinacy”, originally
proposed by Mycielski and Steinhaus (see J. Mycielski and H. Steinhaus
[1962], and J. Mycielski [1964, 1966]) which asserts the determinacy of all
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“definable” games on A, where A is a standard Borel space, i.e.. the games
G(A, X), with X C AN “definable”. This evidence comes on the one hand
from the structural coherence of the theory of “definable” sets in Polish
spaces developed on the basis of this principle and on the other hand on
the deep connections of this theory with that of the so-called “large cardi-
nals” in set theory; see Y. N. Moschovakis [1980], J. Mycielski [1992], and
D. A. Martin [1997].

We will be freely using various instances of “Definable Determinacy”
as needed in the sequel. In this and the next chapter we will only need that
all Boolean combinations of ] games on N are determined.

(26.3) Definition. We will abbreviate by
3]-Determinacy

the principle that all games G(N,X), where X C NN is in the Boolean
algebra generated by the analytic sets, are determined.

The name “S1-Determinacy” is justified by a result of Harrington and
Martin (see D. A. Martin [1997]) according to which this principle is equiv-
alent (in ZFC) to the determinacy of all games G(N, X), with X C NV
analytic.

In the last chapter we will make use of a stronger instance of “Defin-
able Determinacy,” namely “Projective Determinacy,” which is the princi-
ple that all projective games on N are determined. This principle (and so
in particular X}-Determinacy) can be proved outright from the existence
of sufficiently large cardinals (see D. A. Martin and J. R. Steel [1989]).

26.C Complete Analytic Sets

From now on we will explicitly indicate theorems whose proof depends on
some instance of determinacy.

(26.4) Theorem. (X}-Determinacy) Let X be a zero-dimensional Polish
space. If A € V(X)) \ II}(X), then A is T}-complete (similarly switching
zim).

Proof. Let B be a £} subset of a zero-dimensional space Y. Assuming, as we
can without loss of generality, that X =Y = N, consider the Wadge game
WG(B, A). This is a game on N whose payoff set is a Boolean combination
of X} sets, so it is determined, thus, as in the proof of 21.14, either B <y A
and we are done, or else A <y~ B and so A is IT}, which is a contradiction.

0

Remark. L. Harrington [1978] has shown that the above statement is actu-
ally equivalent (in ZFC) to X}-Determinacy.
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(26.5) Exercise. (X}-Determinacy) Show that 26.4 is valid in any Polish
space X.

In fact, show the following result, which is reminiscent of Hurewicz’s
Theorem 21.18: Fix any set S € £}(C) \ IT}(C). Let X be Polish and
A, B C X be disjoint sets that are in IT}, X}, respectively. If there is no £}
set separating A from B, then there is a continuous function f : ¢ —» X
with f(C) C AU B and f~}(B) = S. (See also 26.12.)

(26.6) Exercise. (X!-Determinacy) Let X be a Polish space and A C X be
a Boolean combination of analytic sets. If A is not I}, then it is $1-hard.

(A more general result can be proved for “definable” A if “Definable
Determinacy” is used.)

(26.7) Definition. Given a class I' of sets in standard Borel spaces and a
subset A C X, where X is standard Borel, we say that A is Borel I'-hard
if for any standard Borel space Y and B € I'(Y) there is a Borel function
fY = X with B = f~1(A). If, moreover, A € I'(X), we say that A is
Borel I'-complete.

These notions are similar to the ones we used in Polish spaces except
that we use Borel instead of continuous reductions. It turns out (although
we will not prove it here) that if X is Polish, then for A C X, A is Borel
1-hard (complete) iff A is ¥]-hard (complete), and so these two notions
coincide in the context of Polish spaces (similarly for IT}, of course).

26.D Classification up to Borel Isomorphism

In 15.6 we classified Borel sets up to isomorphism. We do this here for
analytic sets.

(26.8) Theorem. (Steel) (X1-Determinacy) Let X,Y be standard Borel
spaces and let A C X, B C Y be analytic. If A,B are not Borel, then
there is a Borel isomorphism f:X — Y with f(A) = B.

Proof. We can of course assume that X =Y = C. So from 26.4 we have
that there are continuous functions g,h : C — C with g7}(B) = A and
h™Y(A) = B. If g, h are injective, then, by the Borel Schréder-Bernstein
Theorem 15.7, it follows that there is a Borel isomorphism f : X — Y with
f(A) = B.

So it is enough to show that we can find such g, h that are injective.
We do this for g, the other case being similar. The following argument is
due to Harrington.

For any set C C C define the set_é' C C as follows: If x € C is eventually
0, z € C. If z is eventually 1, z ¢ C. If z has infinitely many 0’s and 1’s,
view r as a sequence of blocks of 0’s separated by 1’s. (Two consecutive 1’s
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determine the empty block.) Let Z € C be defined as follows: Z(n) = 0 iff
there is an even number of 0’s in the nth block in z. Then we put x € C iff
zeC.

If it is easy to check that A'is also 1. So by 26.4 there is a continuous
function § : C — C with A = (§)~!(B). Our proof is complete then from
the following lemma.

(26.9) Lemma. Let A C C, X be Hausdorff and § : C — X be continuous
such that §(A)Ng(~ A) = 0. Then there is a continuous functionp:C — C
such that A = p~1(A) and g = j o p is injective.

Proof. By 2.6, we will view continuous functions on C as being of the form
¢*, where ¢ : 2<N — 2<N is proper monotone. »

We will then define a proper monotone i so that p = ¢* works as
above. We define ¢(s) recursively on the length of s so that it has the
following properties:

i) () = 0;

ii) the last value of ¢(s) is 1;

i) if s € 2™, then ¢(s) has exactly m blocks of 0’s separated by 1’s, and
s(i) = 0 iff there is an even number of 0’s in the ith block of ¢(s), Vi < m;

iv) g(N¢(sh0)), g(N¢(s~1)) are disjoint.

Then clearly, § o ¢* is continuous, injective, and for any z € C, ©*(z)

has infinitely many 0’s and 1's. Also, ¢*(z) = z, 50 z € A & ¢*(z) € A.
To construct ¢, assume (s) is defined for s € |J,,,,, 2™ and satisfies
i), ii) and iii) above, as well as iv) provided that length(s) < n. Given s € 2"
we will define ¢(s°0), ¢(s"1) satisfying i) - iv). Let z = ¢(s)"000-.-, y =
(s)"111.--. Then z € A, y ¢ A, thus §(x) # §(y). So let k be large
enough, so that §(Ny k). §(Nyu) are disjoint. Then let ¢(s°0) = z|k u
where u € 2<V is chosen so that ii), iii) are satisfied and similarly define
¢(s"1) = y|lk"v for an appropriate v. ]
]

(26.10) Corollary. (Z1-Determinacy) Let X.Y be analytic Borel spaces. If
X,Y are not standard, then they are Borel isomorphic.

(26.11) Exercise. Let I' contain X9 U IT$ and be closed under continuous
preimages and finite unions and intersections (e.g., 22, Hg for ¢ > 3 or
=}, I0}). If X is Polish and A C X, then 4 is I-hard iff for every B € I'(C)
there is an embedding f : C — X with f~1(A) = B.

(26.12) Exercise. Strengthen 26.5 by showing that f can be taken to be an
embedding. Additionally, strengthen 22.13 by showing that f can again be
taken to be an embedding when £ > 3.
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27. Examples

27.A The Class of Ill-founded Trees

The following is perhaps the archetypical X}-complete set. Recall from 4.32
that Tr is the space of trees on N (viewed as a closed subspace of 2N<N).

Let
IF ={T € Tx:T isill-founded}

={T € Tr:[T] # 0}.
(27.1) Theorem. The set IF of ill-founded trees on N is T} -complete.

Proof. Since T € IF & 3z € NVn(z|n € T), clearly IF is 1. Now
let A C N be E}. Then A = p[T)], with T a pruned tree on N x N (by
25.2). Then the section map z — T(z) is continuous from N to Tr and
z € A& T(z) €lF, so IF is Ll-complete. 0

(27.2) Exercise. (Lusin) Consider the space X = (N\ {0})" (which is home-
omorphic to N) and the set L C X defined by

z€LS3kyg<ki<kp<:-- (z(kt) divides z(k‘i.,.l)).

Show that it is 1-complete.

If instead of trees on N we look at trees on 2 = {0, 1}, it is easy to see
that the class of ill-founded trees IF2 on 2 is a G5 subset of Try (the space
of trees on 2 as in 4.32). This follows from Konig’s Leinma 4.12.

There is still, however, an analog of 27.1 for trees on 2.

(27.3) Exercise. Let N C C be the set of all binary sequences with infinitely
many 1’s. Put

IF; = {T € PTry: 3z € N(z € [T])}.
Then IF} is X}-complete.

27.B Classes of Closed Sets
It is clear that 27.3 can also be formulated in the following form. The set
{KeK(C): KNN #0}

is 1-complete (see 4.32 again). There is a corresponding fact for [0, 1] and
indeed for general Polish spaces.

(27.4) Exercise. (Hurewicz) i) Show that the set { K € K([0,1]) : K contains
an irrational} is 3}-complete.
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ii) More generally, show that if X is Polish, and G C X is IT) but not
£, then {K € K(X) : KNG # 0} is T1-complete.

The following is also a fundamental example of a $1-complete set.

27.5 eorem. urewicz) Let a Polish space. Then
7.5) Th H icz) Let X be a Polish Th
{K € K(X): K is uncountable}

is B} and if X is uncountable it is T} -complete.
Similarly, {F € F(X): F is uncountable} is X1 and if X is uncount-
able it is Borel $1-complete.

Proof. By the Cantor-Bendixson Theorem 6.4, for any F € F(X), F is
uncountable & 3IH € F(X)(H C F & H is nonempty perfect).

Now the set {H € F(X) : H is perfect} is Borel in F(X), since if {V,,}
is an open basis for X, we have

H is perfect & Vk{V,NnH #0 =
30Im[Ve N Vi = 0 & Vo U Vi C Vi
&VinH #0& Vi NH # 0]},

So it is clear that {F € F(X) : F is uncountable} and {K € K(X) :
K is uncountable} are X}.

To prove the completeness result, notice that it is enough to work with
X =C, since C embeds in any uncountable Polish space (by 6.2).

Recall the set N from 27.3. Define f : C — K(C) by f(z) = {y € C:
y < z pointwise}. Then f is continuous and (z € N = f(z) is perfect
nonempty), while (z ¢ N = f(z) is finite). For K € K(C) now let g(K) =
U f(K). Then, by 4.29, g is continuous and

K NN # 0 & g(K) is uncountable,

and so the set {K € K(C) : KN N # 0} (see the first paragraph of 27.B)
is Wadge reducible to {K € K(C) : K is uncountable}, so this set is X}-
complete. 0O

The preceding argument illustrates again a very common method for
showing that a given X! set A is Z}-complete: Choose an already known
X l-complete set B and show that B <w A.

Let H now be an infinite-dimensional separable Hilbert space (e.g., £2).
Let By(H) = {z € H : ||z|]| <1}, S$i(H) = {z € H : ||z|]| = 1} be its unit
ball and sphere, respectively. These clearly are closed subsets of H.

(27.6) Theorem. (Christensen) The set
{F e F(B\(H)): FNS\(H) # 0}



27. Examples 211

is Borel 3} -complete.

Proof. It is enough to find a Borel map f : Tr — F(B)(H)) such that
TelF & f(T)NSi(H) #0.
Fix an orthonormal basis (ém n)mnen for H. For s € N*, let

1 1 1
Vs = —=€0.s(0) + —==C1.5(1) +* F ———€n_1.s(ne1)-
E] \/i 0,5(0) (\/5)2 1,s(1) (\/i)n n—-1,s(n—1)

Clearly, ||vs]| < 1. For T € Tr let
f(T) ={vs : s € T} € F(B\(H)).

It is easy to check that f is Borel. We next verify that T € IF & f(T)n
Si1(H) # 0.
IfT €1IF, let z € [T]. Then vzjn41 = Vsjn = 75erren.z(n)> 50 [[Vapns1 =

Vapull = ?\/—E;_H,T and vy, converges to some v € By (H). Also
1
vzl = Z 5 1= |lv]|?.
1<i<n

So v € f(T)N S1(H).

Conversely, let v € f(T) N S (H). Find {s; : ¢ € N} C T with vs;, — v.
Since for each n and s € N*, |[us|]® = ¥, ;e & < 1, it follows that
length(s;) is unbounded. So, by going to a subsequence we can assume that
length(s;) > i and ||vs, — vs,,, |[* < 27*~1. Notice next that if s,¢ € N<N
and s(¢) # t(i), then ||Jv, — v,||> > 27%"!, and s0 sy|n = sp+1|n. Thus there
is z € N with z|n = sy|n for all n. Then z € [T],so T € IF. ]

(27.7) Exercise. Using the notation of 27.6, show that the operation
(FA, F2) = Fy N F, is not Borel in F(B,(H)). Also find open U in B,(H)
such that {F € F(B\(H)) : F C U} is not Borel. (Compare with 12.12
here.)

Show that {F € F(N) : Fn{z € N : V even n(z(n) = 0)} # 0} is Borel
Tl-complete. Conclude that for any Polish space X that is not K, there
is a closed set Fy C X with {F € F(X): F N Fy # 0} Borel £i-complete.
On the other hand, verify that if X is Polish K, then (F\,F2) — Fi N F;
is Borel on F(X).

(27.8) Exercise. i) Show that {F € F(N) : F' # 0}, where F' is the Cantor-
Bendixson derivative of F, is Borel }-complete.

ii) Let X be an uncountable Polish space. Show that the map that
sends F € F(X) to its perfect kernel is not Borel.

(27.9) Exercise. Let X be a Polish space that is not K,. Show that
{F € F(X) : F is not contained in a K, set}
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is Borel Z1-complete. Show also that there is no analytic set A with {F €
F(X): F is countable} C A C {F € F(X) : F is contained in a K, set}.

(27.10) Exercise. Consider F(A)" and its Borel subset
D={(F)eFWNN: R2F 2 -}

For (Fn) € D, let
(Y(Fn) =()Fn € F(N).

Show that (F,) — N(F,) (from D into F(N)) is not Borel.

An important example of a X}-complete set was discovered in the
1980’s in the theory of trigonometric series. A subset A C T is called a
set of uniqueness if every trigonometric series Znez cne™™* (where ¢, €
C, z € R) that converges to 0 (i.e., limy z:f:_ N Cn€™® = 0) outside A is
identically 0. (We view here A as a subset. of [0, 27) identifying z € [0,27)
with e** € T.) Otherwise it is called a set of multiplicity. Denote by UNIQ
the class of closed sets of uniqueness and by MULT the class of closed
sets of multiplicity. (Thus UNIQ, MULT C K ('I[') ) Kaufman and Solovay
(independently) (see R. Kaufman [1984] A. S. Kechris and A. Louveau
[1989]) have shown that MULT is a El-complete set. One proof of the
hardness part of this result is based on the following facts:

i) There is a continuous function f : [0,1] — K(T) such that: z ¢ Q &
f(z) e MULT.

ii) (Bary) The union of countably many closed sets of uniqueness is a
set of uniqueness.

(27.11) Exercise. i) Use these facts to complete the proof that MULT is
Tl-hard.

i) Use only the fact that MULT is not Borel, and the easy fact that
every closed set of positive measure is in MULT, to show that there is
a trigonometric series Y c,e™® that converges to () a.e. (with respect to
Lebesgue measure), but is not identically 0. This is a classical theorem
of Menshov and should be contrasted with the fact that a Fourier series
3" f(n)e™™® that converges to 0 a.e. is identically 0.

We will return to this example in 33.C.

27.C Classes of Structures in Model Theory

Let L be the language containing one binary relation symbol R. Consider
X = 2%, the space of structures of this language with universe N, as in
16.C. Put

LO ={z € X : A, is a linear ordering},
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so that LO is a closed subspace of Xy. Put

WO = {z € LO: A, is a wellordering},
NWO = LO\ WO.

The following result is closely related to 27.1.

(27.12) Theorem. (Lusin-Sierpinski) The set NWO is i-complete.

Proof. Recall from 2.G the concept of the Kleene-Brouwer ordering <xp
on N<N (with N given its usual ordering). Given a tree T on N, define
2(T) € LO as follows: Fix a bijection A : N — N<N and put

z(T)(m,n) =1 & (h(m),h(n) € T & h(m) <gp h(n)) or
(h(m) e T & h(n) ¢ T) or
(h(m),h(n) € T & m < n).

Thus z(T) is a linear ordering on N isomorphic (via h) to the ordering of
N<N in which all elements of T precede those of N<N \ T, the elements
of T are ordered by <gp, and the elements of N<N \ T are ordered by
h=1(s) < A='(t). It is clear then (using 2.12) that

T €IF & z(T) e NWO.

Since T — z(T) is continuous from (Tr to LO), we are done. o

(27.13) Exercise. Identify Pow(Q) with 2@ (which is homeomorphic to C).
Show that the set {A C Q: The ordering of Q restricted to A is not a
wellordering} is 1-complete.

27.D Isomorphism

Consider now the relation of isomorphism = between elements of Xy, L =
{R}, R binary, i.e.,
Ty A, = A4,.

It is clearly £} (in Xy x X). It can be shown (see H. Friedman and L.
Stanley [1989]) that it is also X{-complete, but the only proof we know
that can be carried in ZFC uses methods of effective descriptive set theory,
which we do not develop here. However, using a result that we will prove in
Section 31, it is much easier to show that = is not Borel and then use 26.4
to conclude, using ¥}-Determinacy, that it is £1-complete. This is a typical
situation: The use of X}-Determinacy often allows to find simpler proofs of
results that can be also proved in ZFC by more difficult arguments.

To see that = is not Borel, note that if it was X2, for some ¢ < w,
toward a contradiction, then all its equivalence classes would also be 22,
thus, in particular, for every a < w
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WO® = {z € WO : A; has order type < a}

would be Eg. This violates 31.3. (See also the results of Stern mentioned
in 23.G.)

‘We will see also in 33.26 that the isomorphism relation on separable
Banach spaces is Borel $1-complete (in X2, where X is the standard Borel
space of separable Banach spaces as in Example 3) of 12.E).

(27.14) Exercise. Let G be a Polish group, X a standard Borel space and
(9,7) — g.z a Borel action of G on X. If G, is the stabilizer of z, then,
by 9.17, G, is a closed subgroup of G. Show that the map = — G, from
X into F(G) is o(2})-measurable. Show also that if it is Borel, then the
equivalence relation zEgy < 3¢ € G(g9.z = y) is Borel.

Notice that for the logic action of S, on Xy (see 16.C) the stabilizer
G, for x € X, is just the automorphism group Aut(A;) of the structure
A,. Show that the map z — Aut(A;) is not Borel on LO.

27.E Some Universal Sets
Poprougenko has shown that if we let

Ri={yeR: 3z e0,1(f'(z) =9}

for f € C([0,1]), then the sets of the form R are exactly the £} subsets
of R. It follows that the set

U(f,z) & fe C(0,1)) & z € Ry

is C([0,1])-universal for $1(R).

Let L(co) = L(co,co) be the space of bounded linear operators on cy.
By 12.22 its Borel structure in either the weak or strong operation topology
coincides and is standard. So, by putting a Polish topology that generates
this Borel structure, we will view L(cp) as being Polish itself.

Given a separable Banach space X and T € L(X), its point spectrum
op(T) is the set

7(T) = {A € C: 3z # O(T(z) = Az)}.

This is a ! subset of C that is bounded, since it is contained in the
spectrum of T.

Kaufmen has shown that every bounded £} subset of C is of the form
op(T) for some T € L(cp). It follows that the set

U ={((Ta), X) € L(co) x €: X € | Jop(Ta)}

is (L(co))N-universal for }(C).
Our last example is due to Lorentz and Zeller.
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A summability method is an infinite matrix A = (a;),i € N,j € N,
of real numbers. Given a (formal) series 3" °_, unm, of real numbers, we say
that it is A-summable to s € R if the numbers vy, = 3 °_ | Gnmtim exist
and Y oo vn = 5. (If A = (6i;), where &;; is the Kronecker delta, then A-
summability is ordinary summability.) In this case, we write A->_~_ o um =
s. A rearrangement of a series ) ,-_, um is any series 3 >°_; t(m) Where
m is a permutation of N. The A-rearrangement set of ) u,, is the set of
real numbers R (3 um, A) given by

o0 o0
{A- Z Un(m) : T a permutation of N & A- Z Un(m) €Xists}.

m=0 m=0

By a classical theorem of Riemann, if A = (§;;), the A-rearrangement set
of 3" upm is either @, a singleton, or R.

Clearly, R(3_ um, A) is an analytic set. Conversely, Lorentz and Zeller
showed that if P C R is analytic, then there is A such that R(Y_ e, A) = P,
where em =€ +0+e* +0+e¥ +0+ . It follows that the set

U(Az) &z €R(D_ em, A)

is R¥ -universal for S1(R).

27.F Miscellanea

(27.15) Exercise. Let X be a Polish space. Consider the set
CS = {(xn) € XV : (z) has a convergent subsequence}.

Show that CS is £} and that if X is not K,, it is £}-complete.

(27.16) Exercise. Consider the Polish space [N]*¢ of infinite subsets of N as
in 19.C. For F C [N]®, let F* = {H € [N]* :3H’ € F(H' C H)}. Find a
closed set F for which F* is Z}-complete. ’

Woodin has shown that the set of all f € C(([0, 1]) which satisfy Rolle’s
Theorem (i.e., those f for which for all & < b in [0,1], if f(a) = f(b), there
is ¢ € (a,b) with f/(c) = 0) is }-complete.

(27.17) Exercise. Show that this set is indeed X1.

Humke and Laczkovich have shown that {fo f : f € C([0,1])} C
C([0,1]) is =} but not Borel (but it is not known how to prove in ZFC that
it is $}-complete).

R. Kaufman [1989] has shown that the class of Wiener sets (a subset
of 2z) is X}-complete, where A C Z is a Wiener set if there is a continuous
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complex Borel measure on T with |a(n)] > 1, Vn € A, where fi(n) =
Jp e~*tdu(t) (we identify here T again with [0, 27)).

P. Erd6s and A. H. Stone [1970] have shown that there is a closed set
A C R and a G set B C R with A + B (analytic but) not Borel. (Note
that if A, B are F;, then A+ B is F,, too.)

L. Dubins and D. Freedman [1964] have shown that there is a G subset
of ¥ whose convex hull is (analytic but) not Borel.

(27.18) Exercise. (Sierpitiski) Show that there is a G5 set H C R? such that
the distance set D(H) = {|x —y| : z,y € H} is (analytic but) not Borel.

Finally, several other examples will be discussed in Section 33.
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28. Separation Theorems

28.A The Lusin Separation Theorem Reuvisited
We first recall the Lusin Separation Theorem (14.7).

(28.1) Theorem. (The Lusin Separation Theorem) Let X be a standard
Borel space and let A, B C X be two disjoint analytic sets. Then there is a
Borel set C C X separating A from B.

We will give two (related) proofs of this result. The first one is es-
sentially the proof of 14.7, but it is expressed in the language of Souslin
schemes, which is convenient for the further results that we will prove in
this section. This is formulated as a proof by contradiction. The second
proof is instead a “constructive” one.

Proof. (I of 28.1) We can assume that X is Polish. Let d be a compat-
ible metric for X. Taking A, B to be nonempty, without loss of gener-
ality, let (Ps),(Q:) be Souslin schemes for A,B as in 25.7 iv). Call a
pair (s,t) € N<N bad if P,,Q, cannot be separated by a Borel set. So
assume toward a contradiction that (#,0) is bad. Now if (s,t) is bad,
there are m,n such that (s"m,t"n) is bad: Otherwise, every Ps-,, can
be separated from every Q:-, by a Borel set, say R, ,. Then, since
Ps=U,, Psm,Qt =, Qt-n. U,,.N,, Rm,» is Borel and separates P;,Q,.

So, by recursion, define z,y € N such that (z|n,y|n) is bad for all n.
Let {P} = nn len) {Q} = nn len- Thenp € A,q€ B,sop # q.Let U,V be
disjoint open sets with p € U,q € V. Then for large n, Pojn CU,Qyn CV
(by the vanishing diameter condition), so U separates P,), from Qyn, a
contradiction. a

Proof. (II of 28.1) It clearly suffices to prove the result for X = N. So let
A, B C N be pairwise disjoint X) sets. By 25.2 let T4, Tg be trees on Nx N
such that A = p[T4), B = p[Tg]. Form the separation tree T on Nx N x N
as follows:

(s,u,v) € T & length(s) = length(x) = length(v) &
(S, u) €T & (S,’U) €Ts.

Since AN B =@, T is well-founded. Thus (see Appendix B) we can define
functions f on T recursively by specifying the values of f at the terminal
nodes of T, and then, assuming f(s',u’,v') is known for all (¢',4/,v') 2
(s,u,v), (s',u,v") € T define f(s,u,v) in terms of them. (Here (s',%’,v) 2
(s,u,v) means that s’ 2 s,u' 2 u,v' 2 v.) For s,t,u,v € NN let

(Ta)s,u) = {(s',0') : (s',4') € Ta & (5', ') is compatible with (s,u)},
(TB)j,0) = {(t',v') : (t',0") € Tg & (t',v') is compatible with (z,v)},
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and
Asu =2 [(Ta)s,u)] » Bew =2 [(TB) ] -
Thus
Ago = A, By = B,
and

Ais,u = UAs“k,u“lv
k,l

Bt,v = U Bt"m,v“n-
mn

It will be enough to define for each (s, u,v) € T a Borel set Cs ., », sepa-
rating A, ,, from B; .. Then Cy g ¢ separates A from B. To define C 4 ., it is
enough to define Borel sets C; . v;k,1,m,» S€parating As- .-t from Bs-m v n,
since then

(*) U n Cs,u,v;k,l,m,n = C's,u,v

k! mn
separates A, from B, ,.

If £ # m, let Cs,u,v;k:l,m,n = N;-. If k = m, we define Cs,u,v;k,l,k,n
recursively on (s,u,v) € T (for all k,1,n).

Case 1. (s,u,v) € T is terminal: Then (s k,u"l) ¢ T4 or (s"k,v"n) ¢ Tp.
In the first case, As-kut = 0, so take Cyp ik tk,n = 0. In the second,
Bskvn = @, so take ngu,v;k,l,k,n =N.

Case 2. Assume (s, u,v) € T is not terminal, and Cy 4 'k 1’ m’ n’ has been
defined for all (s',%',v") 2 (s,u,v) with (s',%’,') € T and all ¥',V',m/,n’.

If (s"k,u"l,v"n) € T, then Cy-k u"10°n, as defined by (), separates
As g ut from B~y yopn. So take Cs o vk ikn = Cs ku v n- If, on the other
hand, (s"k,u"l,v"n) ¢ T, proceed as in Case 1. ]

(28.2) Exercise. Show that 3} does not have the reduction property.

(28.3) Exercise. Recall from 25.A the definition of an analytic Borel space.
If (X,S) is an analytic Borel space, a subset A C X is called analytic (or
1) if there is an isomorphism 7 of (X,S) with (Y,B(Y)), where Y is
an analytic set in some Polish space Z, such that 7(A) is analytic. Show
that A C X is analytic iff A = A;P;, where P, € S. Show that the Lusin
Separation Theorem goes through in any analytic Borel space and thus so
does the Souslin Theorem 14.11.
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28.B The Novikov Separation Theorem

(28.4) Exercise. Let I',I" be two classes of subsets of a set X such that
for any two disjoint sets A, B € I" there are disjoint sets A’, B’ € I’ with
A C A, B C B'. Assume that I, I are closed under finite unions and
intersections and that if ~ A € I, B €T, then AN B € I'. Show that for
any A,,...,A, € T with A, N---N A, =0, there are B,,...,B, € ' with
A,- - B,’ and Bl n"-an =0

Conclude that for any standard (or even analytic) Borel space and any
>} sets Ay,..., A, with Ay N---N A, = 0, there are Borel sets B; 2 A,
with BynN---NB, =4§.

We extend this to infinite sequences.

(28.5) Theorem. (The Novikov Separation Theorem) The class of T} sets
in standard Borel spaces has the generalized separation property, i.e., for
a standard Borel space X and any sequence (A,) of L} sets in X with
N, An = 0, there is a sequence of Borel sets B, 2 A, with (), Bn = 0.

Equivalently, if X is a standard Borel space, (B,) is a sequence of IT}
sets with X = |J,, B,, thus there is a sequence (C,) of pairwise disjoint
Borel sets with Cy, C B, and X =J,, Ca.

Still equivalently, if X is a standard Borel space and B C X x N is
I1! such that Vz3InB(z,n), there is a Borel function f : X — N with
B(z, f(2)), Vz.

Thus I} satisfies a weaker version of the generalized reduction (or
number uniformization) property. We will actually see in 35.1 that it satis-
fies the full generalized reduction (or equivalently the number uniformiza-
tion). property.

Proof. (Mokobodzki) We can assume of course that X is Polish. Again let

(Ps(i)) be a Souslin scheme for A; as in 25.7 iv). We can assume again that
A; #0,VieN.

Call an infinite sequence (so, $),...) of elements of N<N bad if the
conclusion of the theorem fails for (Ps(f) ). So assume, toward a contra-
diction, that (8,0,...) is bad. Since P = U... PY if (80, 81,--.) is

s°m

bad, then for every n there is m with (Sg,81,..., 801,82 "M, 8n41,...)
also bad. So recursively, we can define zo,z1,... € N such that for each
n, (o|n, z1|n,...,Z4|n,0,9,...) is bad.

Let {p:} = N, Pi:in Since p; € A; and (), A; = 0, there are

i < j with p; # p;. Let U;,U; be open disjoint with p; € U;, p; €
U;. Thus find m > 4,5 such that Pz(fim c U, Pgl)m C U;. Then
X,....,.X, U, X,....X,U;,X,...) shows that (zo|m,z1|m,...,2Tm|m,0,
@,---) is not bad, which is a contradiction. 0
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(28.6) Exercise. Show that the Novikov Separation Theorem goes through
in any analytic Borel space.

28.C Borel Sets with Open or Closed Sections

The following is an important application of the Novikov Separation The-
orerm.

(28.7) Theorem. (Kunugui, Novikov) Let X be a standard Borel space, Y
a Polish space, and A C X x Y a Borel set such that every section A, is
open. Then if {V,} is any open basis for Y, A = {J,, (Bn x V,,), with B,
Borel in X.

Proof. If (z,y) € A, then for some n, y € V,, C A;. So A ={J,(Xn x Vp),
where X, = {z € X : V, C A;}. Clearly, X,, is a IT} set. If Z, = X,, X Vp,
then Z, is I}, and A = |J,, Z,,, so by 28.5, there is a sequence (A,.) of Borel
sets with A = J,, A, and A, C Z,. Let S, = projy(As) C X,. Then S,
is 1, so by the Lusin Separation Theorem (applied to S,, ~ X,) there is
a Borel set B, with S, C B, C X,,. Then A, C B, xV, C X,, xV,, = Z,,
and so A = |J,(Bn x Va). 0

The preceding result completely determines the structure of Borel sets
in product spaces whose sections are open and therefore, by taking comple-
ments, those whose sections are closed. Applying this to the particular case
of Borel sets with compact sections, we obtain the following result, which,
in particular, proves a special case of 18.18.

(28.8) Theorem. Let X be a standard Borel space, Y a Polish space, and
A C X xY a Borel set, all of whose sections A, are compact. Then the map
z— A, (from X to K(Y')) is Borel. Equivalently, a map f:X — K(Y) is
Borel iff the set F(z,y) < y € f(x) is Borel. In particular, if A is as above,
A has a Borel uniformization (and so projx A is Borel).

Proof. We can first assume that Y is compact, by replacing it by a com-
pactification if necessary. By 28.7, ~ A = J, (B, x V3.), where {V,,} is an
open basis for Y and each B, C X is Borel. Thus

yEA eVn(z e B, =y ¢ V).

Put Y\V, =K, b(z) = {n:2 € B,}. Then b: X — 2" is Borel and
A = ﬂne b(z) K,.. The proof that = — A, is Borel is then clear from the
following.

Claim. The map S — (5 Ka, from 2V into K(Y) is Borel.

Proof of Claim. By 11.4 it is enough to show that if F C Y is closed, then
P={Se2™:N,cs Kn N F # 0} is Borel. Put
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R(S,z) eVn(neS=>ze€ K,) &z eF.
Then R C 2V x Y is closed, so compact, and P = projqs(R) is compact too.

The final assertion about uniformization follows immediately now from
12.13. 0

(28.9) Exercise. Let X be a standard Borel space and A C X XN a Borel set
all of whose sections A, are closed. Show that there is a Borel map =z — T,
from X into Tr such that [T,] = A,, Vz € X. Show that, in general T
cannot be taken to be always pruned, even when projx (A) =

There is a general version of 28.7 for Borel sets with 22 sections. Given
a standard Borel space X and a Polish space Y, consider the following
classes of sets in X x Y, where {V,} is an open basis for Y,

=Y =0 = {Ax V,: A€ B(X), ne N}
Y = {UAn An e IDY, G <€, neN} €2 15
n

MY ={~A: ATV}, if€> 1.

Then we have this result.

(28.10) Theorem. Let X be a standard Borel space, Y a Polish space, and
AC X xY a Borel set all of whose sections Ay are 22. Then A € 2? v

This is 28.7 for £ = 1, it is due to J. Saint Raymond (1976a)] for £ = 2,
J. Bourgain [1980,1980a] for £ = 3, and A. Louveau [1980,1980a] in general.
We will prove in 35.45 the case £ = 2 and use it also to prove 18.18.

Note that 28.10 can be also formulated in the following equivalent form:

If X is standard Borel, Y Polish, and A C X x Y is Borel all of whose
sections A, are 22, then there is a Polish topology 7 on X giving its Borel
structure such that A is ¢ in (X,7) x Y.

28.D Some Special Separation Theorems

We will next prove two special separation theorems and use them to produce
“generation” results for Borel sets.
Consider first the space Pow(N), which we identify with 2. The Borel
sets in this space form the smallest class containing the sets of the form
U,={xCN:nez},
U,={zCN:n¢z),

which is closed under countable intersections and unions. To see this, notice
that the basic open sets Ny (s € 2<V) of 2V are finite intersections of
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sets of the previous form. The Borel sets obtained from the sets U, only
by countable intersections and unions (i.e., the sets in the smallest class
containing the U,, and closed under these operations) are called positive
Borel sets (since the variable “z” is used only positively in their definitions).
If A C Pow(N) is positive Borel, then it is clearly monotone (i.e., z €
A& y D z =y € A). The converse turns out to be true as well.

(28.11) Theorem. For every Borel set A C Pow(N), A is monotone iff A is
positive.

This result will be proved by actually establishing, as usual, a stronger
separation theorem.

(28.12) Theorem. (Dyck) Let A,B C Pow(N) be disjoint X} sets with A
monotone. Then there is a positive Borel set C separating A from B.

Proof. Let (Ps),(Q:) be Souslin schemes for A, B as in 25.7 iv). Call a
pair (s,t) € N<N x N<N pad if P, cannot be separated from Q; by a pos-
itive Borel set. So assume, toward a contradiction, that (,0) is bad. As
in proof I of 28.1, if (s,t) is bad, then for some m,n, (s"m,t n) is also
bad. So by recursion define z,y € N with (z|n,y|n) bad for all n. Let
{r} =N, Pzjn, {a} =N, Qyjn- Since p € A, q ¢ A and A is monotone, and

sopZqletnep né¢q(ie,pels g€ Un). Now find k large enough
so that Py C Un, Qyx € Un. Then U, separates Py from Qyx, which is
a contradiction. O

We look next at convex Borel sets in R™. We need the following stan-
dard fact.

(28.13) Proposition. If K C R™ is compact, its convex hull (i.e., the smallest
convex set containing it) is also compact.

Proof. Let H(K) be the convex hull of K. Then by Caratheodory’s theorem,

n+1 n+1
H(K) = {Zaﬂi : Zai =1,4a; >0, z; € K}.
i=1 i=1

So H(K) = projga(L), where L C R™ x (R™)"+! x R**! i3 given by

(z,21,22,...,Tnt1,01y- .- Q1) EL S 1, ., 21 EK & a; 20&
n+1 n+1

Za,;= 1&z= Zziai.
i=1 =1

Thus, L is compact and so is H(K). (]
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Notice now that the intersection of a family of convex sets is convex and
so is the union of an increasing sequence of convex sets. So we call a Borel
set in R™ convexly generated if it can be obtained from the compact convex
sets by the operations of countable intersection and increasing countable
union (i.e., it belongs to the smallest class of sets containing the compact
convex sets and closed under these operations). Note that in this definition
we could have used “open convex” instead of “compact convex” (using 28.13
and the simple fact that if A is a convex set, so is {z : d(z, A) < €}, where
d is the usual Euclidean distance in R™).

Clearly, the convexly generated Borel sets are convex. The following is
the converse.

(28.14) Theorem. Given a Borel set A C R™, A is convex iff A is convezly
generated.

Again this is a corollary of the following separation theorem.

(28.15) Theorem. (Preiss) Let A,B C R™ be disjoint £} sets with A convex.
Then there is a convexly generated Borel set C separating A from B.

Proof. We will use now also the representation of analytic sets given in
25.13. Let (P;) be a Souslin scheme for A as in 25.13 and (Q;) a Souslin
scheme for B as in 25.7 iv). Call (s,t) bad if P, cannot be separated from
Q: by a convexly generated Borel set. So assume (§,0) is bad, toward a
contradiction. We claim again that if (s,¢) is bad, then there are m,n
with (s"m,t"n) bad: Otherwise, each P;-,, can be separated from each
Q:-n by a convexly generated Borel set Cy n. Since Py~ C Ps-(my1), the
set Dy = (V5>m [ )y Cin is convexly generated and separates Ps-n, from
U, @tn = Q. Clearly, Dy, C Dpta, so D = |J,,, Dm is also convexly
generated and separates J),,, Pi-n = Ps from Q, which is a contradiction.

Thus define z,y € N recursively such that (z|n, y|n) is bad for all n. Let
K =1, Pyn and {q} = (), Qyn- Then K C A and K is compact, so the
convex hull H(K) of K is compact and H(K) C A since A is convex. Hence
q ¢ H(K). Then for some ¢ > 0, the e-nbhd U = {p : d(p, H(K)) < €} of
H(K) is convex open, and thus convexly generated, and is disjoint from
some open nbhd V of ¢. Now choose n with P, C U, @, €V, to obtain

a contradiction. )

(28.18) Exercise. Show that the class of convexly generated Borel sets in R™
is the smallest class containing the compact convex sets and closed under
increasing countable unions and decreasing countable intersections.
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28.E “Hurewicz- Type” Separation Theorems

Recall first the following two results that we proved in 22.30 and 21.22,
respectively.

(28.17) Theorem. Let A,B be two disjoint (arbitrary) subsets of a Polish
space X. Then A,B can be separated by a AY set iff there is no Cantor set
CC X with ANC,BNC dense in C.

(28.18) Theorem. Let A,B be two disjoint subsets of a Polish space X, with
A analytic. Then A,B can be separated by a 39 set iff there is no Cantor
set C C AU B with C N B countable dense in C.

A. Louveau and J. Saint Raymond [1987] have proved extensions of
28.18 for ¢, when A, B are 1.

(28.19) Theorem. (Louveau-Saint Raymond) Let & > 3 and let A,B C X be
disjoint analytic subsets of a Polish space X. Let H¢ be any Hg \ 22 subset
of C. Then A,B can be separated by a 22 set iff there is no embedding
9:C — X with g(C) € AU B and g(C) N A = g(H¢). (Compare this with
22.18 and 26.12.)

We will give only a simple proof of 28.19, using ¥1-Determinacy, in
the case when X is zero-dimensional:

Let T be a pruned tree on N and A, B C [T] be disjoint X} sets.
Consider the set ﬁ& as in the proof of 26.8. Since £ > 3, it is easy to see that
Hy is also Hg. Consider then the separation game SG(Hg; A, B) as in 21.F.
It is a Boolean combination of £1 games, so it is determined. If player I has
a winning strategy, then there is a continuous function f : [T] — C such that
f~1(~ H;) separates A from B, which is impossible because f~1(~ Hy) is
22. So player II has a winning strategy, and there is a continuous function
§:C — [T) with §(He) C A, §(~ H¢) C B. By 26.9 there is a continuous
function p : ¢ — C with H; = p‘l(fIg) and g = gop an embedding. Clearly,
9(C) C AU B and g(C) N A = g(Hy).

(28.20) Exercise. (¥1-Determinacy) Let X be a separable metrizable ana-
lytic space. Then X is Polish iff it contains no closed set homeomorphic to
Q iff it is completely Baire. (Compare this with 21.21. More generally, from
“Definable Determinacy” one can see that this holds for any “definable”
separable metrizable space X.)

(28.21) Exercise. Provide the details for the following different proof of
21.22 (=28.18) for the case where A, B C C are analytic sets. The proof
uses only closed games as opposed to the more complicated ones used in
the proof of 21.22. This proof is due to A. Louveau and J. Saint Raymond
[1987], and later we will see other applications of it (see 35.48 and 39.24).
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Let A = p[S], B = p[T)] be disjoint, where S, T are trees on 2 x N.
Let @ C C be the set of all eventually 0 binary sequences, and consider
the following game SG'(Q; B, A), which we can think of as some sort of
unfolded version of SG(Q; B, A).

I €0) (1)

I (0), y(0) z(1),y(1)

(i), z(z) € {0,1}; y(¢) € N. II wins iff for each n the position (¢|n, z|n, y|n)
is good, i.e., the following hold:

i) Ife(n—1) =0 and k < n is least with e(k) = e(k+1) = ... =
e(n — 1) = 0, then (z|(n — k), (y(k),...,y(n—1))) € T.

i) Ife(n—1)=1and 4o <% < --- < i—1 = n — 1 are those integers
i < n for which (z) = 1, then (z|l, (y(%), - .., y(ti-1))) € S.

So this game is closed for II. Show first that if II has a winning strategy
7 (which we view here as a continuous function from € into C xC) and we let
7(€) = (f(€), g(€)), then f is continuous and f(C) C AUB, f(C)NA, f(C)NB
are dense in f(C) and f(C) N B is countable, so, as in the proof of 21.22,
there is a Cantor set C C AU B with C' N B countable dense in C.

So assume I has a winning strategy o, which we view here as a function
from |J,,(N™ x N*) into {0, 1}. For z € C, we say that u € N is z-good if II
plays z|n, u in his first n moves, I plays according to ¢, and the positions
(elk, |k, ulk), k < n, are good. By convention, § is z-good. Let

C ={z €C :3In3u € N*[(u is z-good &
forn >0, o(z|(n—-1),ul(n-1))=1) &
Vo 2 u(v is z-good = o(z|length(v),v) = 0)]}.

Check that C is £9 and then show (arguing by contradiction) that C sep-
arates A from B.
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29. Regularity Properties

29.A The Perfect Set Property

The following basic fact has been proved by various means in earlier sections
(see 8.8 ii), 14.13, 21.2 and the remarks following it).

(29.1) Theorem. (The Perfect Set Theorem for Analytic Sets) (Souslin)
Let X be a Polish space and A C X an analytic set. Either A is countable
or else it contains a Cantor set.

(29.2) Exercise. (Solovay) Fill in the details in the following alternative
proof of the Perfect Set Theorem.

First, argue that it is enough to consider the case X = N, So let T be
a tree on N x N such that p[T] = A. Define a derivative S +— S} for trees on
N x N (reminiscent of the Cantor-Bendixson derivative of 6.15) by letting
S be the set

{(s,u) € §:3(¢,v),(r,w) € S[(t,v) 2 (s,u) & (r,w) D (s,u) &t L 7]}

By transfinite recursion define T{ = T, Tt = (Tf)} and T} = Ny IF
if X is limit. Let g be least such that T = T for o > ag. Put T7° = T,
So (Tt°); = T7°. Show that if T7° = §, then A is countable, while if
T° # 0, A contains a Cantor set.

A result having the same general flavor as 29.1 is the following, which
we proved in 21.23.

(29.3) Theorem. Let X be a Polish space and A C X an analytic set. Either
A is contained in o K, set or else A contains a closed set homeomorphic

toN.

(29.4) Exercise. Use an idea similar to that of 29.2 to give another proof of
29.3 for X = N. (See 21.24.)

29.B Measure, Category, and Ramsey

The following result was proved in 21.6.

(29.5) Theorem. Let X be a Polish space and A C X an analytic set. Then
A has the BP.

(29.6) Exercise. Let G, H be Polish groups and ¢ : G — H a Borel ho-
momorphism. Then if ¢(G) is non-meager, ¢ is open (and continuous by
9.10).
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Given a standard Borel space X, we call a subset A C X universally
measurable if for any o-finite (equivalently: probability) Borel measure p
on X, A is y-measurable. Sets having this property form a o-algebra con-
taining B(X). We have now by 21.10:

(29.7) Theorem. (Lusin) Let X be a standard Borel space and A C X an
analytic set. Then A is universally measurable.

Finally by 21.9 we have:

(29.8) Theorem. (Silver) Let A C [N]"° be analytic. Then A is completely
Ramsey.

If X,Y are standard Borel spaces, we say that a function f: X - Y
is universally measurable if f is y-measurable for any o-finite (equivalently,
probability) Borel measure on X. We extend this definition to apply to
functions f: X' — Y, where X’ C X is universally measurable.

From 18.1 we have also the following:

(29.9) Theorem. (Jankov, von Neumann) If XY are standard Borel spaces
and P C X xY is T}, then P has a uniformizing function that is o(})-
measurable and thus universally measurable. If X is Polish, it is also Baire
measurable.

(29.10) Exercise. Show that universally measurable functions are closed
under composition. (This is not generally true for u-measurable functions.)

29.C A Closure Property for the Souslin Operation

We will prove now the results in 29.B by a different general method, which
is based on a key property of the operation A.

Let (X,S) be a measurable space. Given A C X, an S-cover of Ais a
set A € S with the following properties:

i) AC A R

ii) if A C B € S, then every subset of A\ Bisin S.

If every A C X has an S-cover, we say that (X, S) admits covers. The
main examples of such measurable spaces are given next.
(29.11) Theorem. Let X be a topological space and BP(X) the o-algebra of
subsets of X that have the BP. Then (X,BP(X)) admits covers.

Proof. For any A C X consider the closed set E(A) = ~ U(~ A). Then
A\ E(A) is meager, so A\ E(A) C W, where W is an F, meager set. Put
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A = E(A)UW, which is also F,. So A € BP(X). Now let A C B € BP(X).
Clearly, E(A) C E(B),so A\ B = (W\ B)U(E(A)\ B) C WU(E(B)\B).
But, by 8.29, as B has the BP,

E(B)AB =U(~ B)A(~ B)

is meager. So A \ B is meager, thus every subset of it is also meager, and
therefore has the BP. 0

(29.12) Theorem. Let X be a standard Borel space and p a o-finite Borel
measure on X. Then (X, MEAS,) admits covers.

Proof. We can clearly assume that y is a probability measure. For A C X,
let
p*(A) = inf{u(B): Be B(X)& AC B}

be the associated outer measure. Then there is A e B(X), AC Asuch that
p*(A) = u(A). IfAC B ¢ MEAS,,, then u(A\ B) = 0, since otherwise
there is a Borel set C C A\ B C A\ A with p4(C) >0, which is impossible.
So every subset of A\ B is in NULL,,, and so in MEAS 0

‘We have now the following basic fact.
(29.13) Theorem. (Szpilrajn-Marczewski) Let (X,S) be a measurable space

admitting covers. Then S is closed under the Souslin operation A.

Proof. Let (P;) be a Souslin scheme with P, € S. As in 25.5 i) we can
assume that (P;) is regular. Let

P =A,P..
We will show that P € S. For s € NN, Jet

PP= |J (PunCP..

€N, s N

Then P? = Pand P* = |J,, P*"". Let P* be an S-cover for P*. Since P, € S
and P* C P, we can intersect P° with P, to obtain another S-cover for
P?, and so we can assume that P* C P,. Put

Qs = P \U]’js'n.

Since P* =J, P*'™ C U, P*™", it follows that every subset of Q, is in S
and every subset of Q = {J, Q, is also in S.

Claim. PP\ PC Q.

Granting this, P°\ P € S, so P = P?\ (P?\ P) € S (recall that
P D> P* = p).
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Proof of claim. Let z € P?\ Q in order to show that z € P. Notice that if
z € P*\ Q, then z ¢ Q, and so z € |J,, P*™™; thus for some n, z € P*'",
So by recursion we can define y € A such that z € P¥" for all n. But
PY" C Pyn,s0 2 €, Pyn C P. D
(29.14) Corollary. (Nikodym) The class of sets with the BP in any topo-
logical space is closed under the operation A.

(29.15) Corollary. (Lusin-Sierpiniski) Let X be a standard Borel space and
u a o-finite Borel measure on X. Then the class of u-measurable sets is
closed under the operation A and so is the class of universally measurable
sets.

There is also a version of 29.15 for outer measures (which are not
necessarily o-finite).

(29.16) Theorem. (Saks) Let X be a set and pu* an outer measure on X.
Then the class MEAS,,- of u*-measurable sets is closed under the Souslin
operation A.

Proof. Let (Ps) be a regular Souslin scheme of u*-measurable sets and
define (Q*),(Qs) as in 25.15. Let P = A,P,. We have to show, for every
set A C X, that u*(A) > u*(ANP)+u*(A\ P). We can assume, of course,
that p*(A) < occ.

For every set B, let

uy(B) = inf{u*(ANC): B CC, Cisu*-measurable}.

Clearly, this infimum is attained. Also, for any increasing sequence (B,),
p* (AN, Bn) < pi(U,, Bn) = lim, % (B,). (This follows easily from the
fact that p*(AN,, Dn) = ¥, u*(AND,), when (D,,) is a pairwise disjoint
sequence of u*-measurable sets.)

Now fix € > 0. Using these facts we can define z € N recursively so that
£ (QEO) > pu*(ANP) —e = 2, and p (Q7I"*Y) > u3 (Q7I") —e = 27F?
if n > 1. Then for n > 1, p* (AN Qyun) = pi(Q*™) > u*(ANP) —¢, as
Qzin 2 Q%™ and Q) is u*- measurable. So, for n > 1,

p(A) = p (A0 Qzjn) + 1 (A\ Qapn) 2 (AN P) + 1" (A\ Qqin) — €.

Since (Qqn) is decreasing and (), Qzjn € AsQs = AsP; = P, we have
that (~ Qgs) is increasing and |J,, ~ Qqzn 2 ~ P, 50 p*(A\ Qqn) —
1 (AU, (~ Qaia)) > 4" (A\P), and thus u*(A) > u*(ANP)+u*(A\P)—e.
Since ¢ is arbitrary, we are done. 0O
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29.D The Class of C-Sets

Let X be a topological space or a standard Borel space. A subset A C X
is called a C-set if it belongs to the smallest o-algebra of subsets of X
containing the Borel sets and closed under the operation 4. We denote by
C(X) the class of C-sets in X. In general, this class is much bigger than
the o-algebra o(2}) generated by the analytic sets.

(29.17) Exercise. For each Polish space X and each uncountable Polish
space Y show that there is a Y-universal set for AIT}(X). Also show that
a(Z1)(X) C AI}(X). Conclude that when X is uncountable,

o(ZN(X) § Al{(X) G C(X).

It follows from 29.13 that if X is a topological space, every set in C(X)
has the BP, and that if X is a standard Borel space, then every set in C(X)
is universally measurable,

By 29.9, X! sets admit uniformizing functions that are o(X})-measur-
able. But this class of functions is not very useful since it is not closed under
compositions. However, the C-measurable functions have this important
closure property. (If X,Y are standard Borel spaces, a function f: X —» Y
is C-measurable if the inverse image of any Borel set in Y is in C(X).)

(29.18) Exercise. i) Show that the C-measurable functions on standard
Borel spaces are closed under composition.

i) Show that if X is a standard Borel space, and if S is a o-algebra on
X containing £}(X) which has the following property:

(AeZ}(X) & f: X — X is S-measurable) = f~!(4) € S,
then AS C S.

Thus, in particular, C is the smallest class I' of sets in standard Borel
spaces containing the X} sets and closed under complements and count-
able unions, for which the class of I-measurable functions is closed under
composition.

29.E Analyticity of “Largeness” Conditions on Analytic Sets

Given standard Borel spaces X,Y and A C X x Y, as well as some notion
of “largeness” for subsets of Y, consider the set {z : A, is “large” }. We will
show that when A is analytic, this set is also analytic for various standard
notions of “largeness”. The simplest example of a “largeness” property is of
course “being nonempty”. Then {x : A, is nonempty} = {z : Jy(z.y) € A}
is obviously analytic.
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(29.19) Theorem. (Mazurkiewicz-Sierpiniski) Let X,Y be standard Borel
spaces and A C X x Y be analytic. Then

{z : A, is uncountable}

is also analytic.

Proof. We can assume of course that X,Y are Polish. Our proof is based
on the following fact, which is important in its own right.

(29.20) Theorem. Let Z,W be Polish spaces and H C Z x W be closed. If
= projz(H) is uncountable, there is a Cantor set K C H with projz
injective on K (so that in particular projz(K) is also a Cantor set).

Proof. By 8.8 ii). 0

So if B C Y is analytic and H C Y x N is closed with projy(H) = B,
we have that B is uncountable iff

3K € K(Y x N)[K C H & projy(K) is nonempty perfect).

Let F C X xY x N be closed with projxxy (F) = A so that for any
z € X, Ay = projy(F;)and F; CY xN is closed. Then A, is uncountable
iff
3K € K(Y x N)[K C F, & projy(K) is nonempty perfect).

Now
R(z, Ky KCF, & {z}xKCF

is closed (in X x K(Y xN)), K — projy (K) is continuous (from K (Y xN)
into K(Y)), and {L € K(Y) : L is perfect} is G5 (see 4.29 and 4.31), so
{z : A, is uncountable} is analytic. 0

(29.21) Exercise. Let X be Polish. Show that A C X is analytic iff there is
a closed set F C X x N such that

TEASF. #0
& F, is uncountable.

We next consider “largeness” in the sense of category.
t=)

(29.22) Theorem. (Novikov) Let X be a standard Borel space, Y a Polish
space, and AC X xY an analytic set. For any nonempty open U CY we
have that the sets

{z € X : A, is not meager in U}

and
{z € X : A is comeager in U}
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are analytic.

Proof. The first assertion follows from the second, since if {W,} is a basis
of nonempty open sets for Y, we have

A, is not meager in U & In(W, C U & A, is comeager in W,,).
Also, by replacing Y by U if necessary, it is enough to show that
{z: A; is comeager}

is analytic. Finally, we can of course take X to be Polish as well.

Let F C X xY x N be closed with A = projy,(F). Then, by 21.5
A, is comeager < II has a winning strategy in G.*(Fy).

For the argument below, it would be convenient to use the following
equivalent variant of G3*(H), H C Y x N (see the comments following
21.8): Fix a complete compatible metric d for Y and a countable basis of
nonempty open sets W for Y.

1 U, U,

II 2(0), Vo 2(1), %

U ,V,eW, Up 2V DU, 2V, 2 -+, diam(U;), diam(V;) < 27%. II wins
iff (v, 2) € H, where {y} = ,,Va (=N, Tn).

Consider the tree T of legal moves in these games. The tree T is clearly
countable, so we can view it as a pruned tree on N. Given s € T, say of even
length, it corresponds to a position (Uy, (2(0), Vo), Un,. . ., (2(n), V,,)) of the
game. Put f(s) = Vi x N(3(0)....2(n))- Similarly, we define f(s) for s of odd
length. Then f: T — F(Y xN)\ {0} and s,t € T & s Ct = f(s) 2 f(t).
Moreover, for any b € [T], (), f(bln) is a singleton, say {f(b)}, where
f(b) = (y,2) is the outcome of the run corresponding to b € [T]. Finally,
if w, € f(bln) for all n, then w, — f(b). So, now viewing strategies as
subtrees of T', we have, letting

W(o,z) & o C T is a winning strategy for Il in G},'(Fy),
that

W(o,z) & o C T is astrategy for Il & Vb € [0](f(b) € F)
& o C T is a strategy for I & Vs € a(f(s) N Fx # 0),

so clearly W is £} (in TrxX). Since A, is comeager & oW (o,z), {z :
A, is comeager} is also X} . o

This result can be also expressed by saying that if A(z,y) is analytic,
so are B(z) & V*y € UA(z,y) and C(z) & 'y € UA(z,y), i.e., that the
category quantifiers preserve analyticity.
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(29-23) Exercise. In the notation of 16.B, show that if A is analytic, so are
its Vaught transforms A*Y, ARV,

(29.24) Exercise. Give a proof of 29.19 similar to that of 29.22 by using
unfolded *-games (see 21.B).

(29.25) Exercise. Show that if X is standard Borel, Y Polish, and A C X xY
is analytic, then so is {z : A, is not contained in a K, }.

We conclude with a result about measures.

(29.26) Theorem. (Kondo-Tugué) Let XY be standard Borel spaces and
AC X xY an analytic set. Then the set

{(s,2,7) e P(Y) x X xR : u(Az) > r}
is analytic.

Proof. We can assume that XY are Polish. We have now the following
basic fact.

(29.27) Theorem. Let Z,W be Polish spaces and H C Z x W be closed. If u
is a Borel probability measure on Z and for some a € R, u(proj;(H)) > a,
then there is a compact set K C H such that p(projz(K)) > a.

Proof. Let f : projz(H) — W be a o(Z1)-measurable function uniformizing
H. In particular, f is y-measurable. Since projz(H), being analytic, is u-
measurable, by regularity there is a closed set C C proj,(H) with u(C) > a.
By Lusin’s Theorem 17.12 applied to f|C and y|C, there is a compact set
L C C with u(L) > a and f|L continuous. Then K = {(z, f(2)): z € L} is
a compact subset of H and projz(K) = L, so u(projz(K)) > a. 0O

Soif FC X xY x N is closed with projx xy (F) = A, then
w(Az) >r e 3K € K(Y x N)(K C F; & u(projy(K)) > r).

Since the function (u,L) € P(Y) x K(Y) = u(L) is Borel (by 17.25) our
proof is complete. 0O

Again, from 29.26 it follows that the measure quantifiers (see 17.26)
V., 3;, preserve analyticity.

(29.28) Exercise. Show that if X,Y are standard Borel spaces and p is a
o-finite Borel measure on Y, then for any analytic set A C X x Y the set
{(z,7) : u(Az) > r} is also analytic.

(29.29) Exercise. Give a proof for 29.22 similar to that of 29.26.
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30. Capacities

30.A The Basic Concept

We will present here a short introduction to Choquet’s theory of capacities
and its relationship with the theory of analytic sets.

(30.1) Definition. Let X be a Hausdorff topological space. A capacity on X
is a map v: Pow (X) — [0,00] such that:

i) AC B=(A) <v(B);

"’) AO c Al c--= (’Y(An) - '7( Un A’n))v

i) for any compact K C X, y(K) < oo; and if v(K) < r, then for
some open U 2 K, y(U) < r.

(30.2) Exercise. Consider the following condition:

ifi)’ For any compact K C X, v(K) < oc;and if Ko 2 K, D --- are
compact, then v(Ky) — v(N),, Kn)-

Show that i), ii), iii) = i), ii), iii)’, but not conversely. Show that i),
ii), and iii) are equivalent to i), ii), and iii)’ in compact metrizable X.

Two capacities 7,7’ on X are called equivalent if v(K) = +/(K) for
any compact K C X.

30.B Examples

1) Outer measures and capacities. Let X be a Polish space and p a finite
Borel measure on X. Let u* be the outer measure associated to u, i.e.,
u*(A) = inf{u(B) : B € B(X),B 2 A}. Then it is easy to verify that u*
is a capacity.

More generally, if v : B(X) — [0, oc] satisfies i) - iii) on B(X) and we
define v* from 4 as above, then 4* is a capacity.

(30.3) Exercise. Verify that u*,v* are indeed capacities.

2) Lifting. Let X,Y be Hausdorff topological spaces and f: X =Y
a continuous function. If v is a capacity on Y and we define

11(4) = 1(£(4)),

then it is routine to verify that v is a capacity on X. A typical example
of this is the case where X =Y x Z and f = projy.

3) Capacities alternating of order co. Let X, Y be compact metrizable.
Let K C X x Y be compact. For aiy capacity v on X define the capacity
vk on'Y by

Tk (A) =7 (projx ((X x A) N K)).
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A capacity v is called alternating of order oc if it satisfies the fol-
lowing conditions: For compact sets K, Ly, Lo, ... let A)(K; L)) = v(K) —
’Y(K U L]), An+1(K;L1,. .. ,L", Ln+1) = An(K, Ll, ey Ln) - An(K U
La+1;L1y--.,Ly). Then for all n > 1, A, £ 0. The capacity vx meets
these criteria if v = u* with y a finite Borel measure on X.

(30.4) Exercise. Let Y be a compact metrizable space and u a probability
Borel measure on K(Y). Define for ACY,

Y(A) = p*({K € K(Y): KNA#0)).

Show that this is a capacity on Y. In fact, show that if X = K(Y), K =
{(L,z):z € L}, then v = (u*)k in the preceding notation. A theorem of
Choquet asserts that every capacity v on Y alternating of order oc with
~(8) = 0 is equivalent to one of that form for a uniquely determined p.

4) Strongly subadditive capacities. Let X be a Hausdorff space and
p: K(X) — [0,00) a function such that:

i) K C L= p(K) < p(L);

ii) o(KUL)+ p(KNL) < p(K)+p(L) (i-e., p is strongly subadditive);

iii) p(K) < r = for some open U 2 K and all compact L C U we have
o(L) <.
Then p can be extended to a capacity v on X as follows:

Y(U) = sup{p(K) : K compact, K C U}
for U open, and
v(A) = inf{y(U) : U open, U 2 A}
for arbitrary A.

(30.5) Exercise. i) For p,v as above show that v satisfies i), iii) of Definition
30.1 and v extends p. Show also that v is strongly subadditive, i.e., for all
A, B C X we have 7(AU B) + (AN B) < v(A) + v(B).

ii) Show that if A, C B; € X, i = 1,...,n, then y(U=, B;) +
Z?:l ’Y(Az) S ’Y(U:;l Ai) + Z?:l ’Y(B'L)

iii) Show that « is a capacity.

Remark. Note that for a monotone function p : K(X) — [0,00) strong
subadditivity is equivalent to the condition A; < 0, where A, is defined as
above (with p instead of ).

The classical example of a capacity constructed in this fashion is the
Newtonian capacity on R3 defined as follows: For a finite Borel measure
in R3 define the potential function U,(y) = f (). Then for a compact

[|E=IN
subset K of R3, let
p(K) = sup{u(K) : p is a finite Borel measure on K, with U,(y) < 1, Vy}.
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It turns out actually that the Newtonian capacity is moreover alternating
of order oc.

5) Capacities induced by compact families of measures. Let X be a
compact metrizable space and let P,(X) be the compact convex subset of
By (Mg(X)) (see 17.32) consisting of all positive Borel measures y on X
with u(X) < 1. Also, let C € P,(X) be a compact subset of P,(X). Put

Yc(A) = sup,ecp®(A).
Then ¢ is a capacity on X.

(30.6) Exercise. i) Prove the following minimax principle: If Y is a compact
space and f, : Y — R are upper semicontinuous with fo > fi > fo > -+,
then
inf,, sup, fn(y) = sup, infafn(y).
ii) Verify that ¢ is indeed a capacity.

It turns out that if v < 1 is a strongly subadditive capacity on a
compact metrizable space X, then

C={pu€ P(X):VL € K(X)(u(L) < (L))}
is compact convex (in P,(X)) and v,7c are equivalent. However, not all
~c, for C C P1(X) compact, are strongly subadditive (Preiss).

6) Capacities associated to Hausdorff measures. Let (X, d) be a com-
pact metric space. Recall the definition of h-Hausdorff outer measure given
in Example 4) of 17.B. The functions u, uf, defined there may not be ca-
pacities. Now let )

ll'}olo — ”:mm(x )
be uf, for € = diam(X), in other words, with no restriction on diam(F,).
Then it can be shown that uf° is a capacity.

(30.7) Exercise. Show that for any A C X, un(A) = 0iff u5°(A4) =0.
(30.8) Exercise. What is yy, if h =17

7) The separation capacity. Let X be a Polish space and let 7, T
be the two projection functions of X x X. Define for AC X x X

0, if m(A),m2(A) can be
7(A) = separated by a Borel set;
1, otherwise.

Then ~ is a capacity.

(30.9) Exercise. Verify this statement.
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30.C The Choquet Capacitability Theorem

(30.10) Definition. Let v be a capacity on the Hausdorff topological space
X. We say that A C X is «y-capacitable if v(A) = sup{y(K):K compact,
K C A}. We call A universally capacitable if it is v-capacitable for every

.

(30.11) Exercise. Let X be a Polish space and u a finite Bore] measure on
X. If v = u*, then A is y-capacitable iff A is p-measurable.

(30.12) Exercise. Show that if X,Y are Hausdorff topological spaces and
f : X — Y is continuous, then if A C X is universally capacitable, so is

f(A).
The main fact about capacitability follows.

(30.13) Theorem. (The Choquet Capacitability Theorem) Let X be a Pol-
ish space. Then every analytic subset of X is universally capacitable.

Proof. Let A C X be analytic and (P;) a Souslin scheme for A as in 25.13.
Let v be a capacity on X. Let v(A) > r. We will find a compact set K C A
with y(K) > r.

Since A = |J,, P(n) and P(ny € P(n) for m < n, let ng be such that
'Y(P(no)) > r. Since Py = Un P(n,,n) and Plng,m) S Ping,n) for m < n,
let n1 be such that y(P(nyn,)) > 1, etc. Thus we can find y € N with
¥(Py}n) > r for all n. We claim that if P, =1, Py}, then ¥(P,) > r, which
completes the proof because P, is compact by 25.13 iii). If this fails (i.e.,
v(P,) < r), then there is open U with P, C U and v(U) < r. However,
by 25.13 iv) there is large enough n with Py, C U, so y(P,,) < r, a
contradiction. O

(30.14) Exercise. i) Use Example 7) in 30.B and 30.13 to give another proof
of the Lusin Separation Theorem.

ii) We will prove in 35.1 iii) that there are two disjoint IT} sets in C
which cannot be separated by a Borel set. Use this to show that not all IT}
sets are universally capacitable. (On the other hand, Busch, Mycielski and
Shochat have shown, using X1-Determinacy, that all IT} sets in compact
metrizable spaces are y-capacitable for any capacity -y, with y(#) = 0, which
is alternating of order oc; see 36.22.)

(30.15) Exercise. Show that if  is a capacity on a metrizable space X, the
set

{(K,r): Ke K(X)&reR&y(K)<r}

is open in K(X) x R (and so {K € K(X) : v(K) = 0} is Gs). Also show
that the set
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{((K.r): Ke K(X)&reR&y(K)>r}
is F,.

(30.16) Exercise. Generalize 29.27 and 29.28 as follows:

i) Let Z,W be Polish spaces and H C Z x W be closed. If v is a
capacity on Z and v(projz(H)) > r, then there is a compact set K C H
with y(projz(K)) > r.

ii) Let X.Y be Polish spaces and A C X x Y an analytic set. Then
for any capacity v on Y, the set

{(z,r) e X xR:v(Ag) > r}

is analytic.

(30.17) Exercise. Let X be a Hausdorff topological space and 4 C X be
universally capacitable. Then for any capacity v, ¥(A) = inf{y(B): B €
B(X), B2 A}.

(30.18) Exercise. Let X be a Polish space and o € P(X). For any Polish
space Y, let v be the following capacity on X x Y : 4(A) = u*(projx(A)).
Show that for A C X x Y, A is y-capacitable iff for every € > 0, there is a
Borel set B C projy (A) with v(A) < u(B)+¢,and a Borelmap f : B—Y
that uniformizes A N (B x Y). Show also that B can be taken here to be
compact.

(30.19) Exercise. Give proofs of 28.12 and 28.15 by introducing appropri-
ate capacities (reminiscent of the separation capacity) and applying the
Choquet Capacitability Theorem.
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31. Analytic Well-founded Relations

31.A Bounds on Ranks of Analytic Well-founded Relations

If < is a well-founded relation on a standard Borel space X and p(<)
its rank (see Appendix B), then p(<) < card(X)* < (2%)*+. Moreover,
sup{p(<) :< is a well-founded relation on N’} = (2%)*. However, when
< is “definable” one can expect to find better upper bounds for p(<). We
prove this here for analytic well-founded relations.

(31.1) Theorem. (Boundedness Theorem for Analytic Well-founded Re-
lations) Let X be a standard Borel space and < an analytic well-founded
relation. Then p(<) is countable.

Proof. (Kunen) We can clearly assume that X = N. As in 2.10 associate
with < the tree T4 on N given by

(2051 Tn=1) ET< & Tno1 < Tp_2 <+ <T1 <

(when n = 1, by convention, (z¢) € T« for all zo € X).

As shown in 2.10, T is well-founded and p(<) = pr (0). So it is
enough to show that p(T<) < w;. This will be done by proving that there
is an order preserving map from (T \ {0}, 2) into (W, <,), where <, is a
well-founded relation on a countable set W. Then (see Appendix B again)
p(T<) < p(<4) +1 <uwn.

Let S be a tree on N x N x N such that

z<ye 32(z,y,2) €9).
Let W consist of all sequences of the form

w= ((SOptO'; u0)7 vy (sn—latn—l, un—l)),

where (s;,%:,u;) € S and s; = t;4) for all i < n — 1. (We allow also w = §
here.) For w, w' as above let w' <, w be defined by

length(w) < length(w') & Vi < length(w) [(s;, t;,u;) 2 (si, 84, us)].

We claim that the relation <, is well-founded. Otherwise, let w, =
((s3:t5,ug)s---+ (8f —1oth —1» R, 1)) be such that wny) <. wy. Then
kn 1 oo and if I, = length(s?) (= length(t?) = length(ul), for i < k),
also I, 1 oc, and there are zo, z1,... in N and 2y, 21,. .. in A’ such that for
all n, t§ C xo, sp = tT C 71, s =15 € x2,... and uy C 20, uT C 21,....
Thus (z1, 20, 20) € (5], (z2,21,21) € [5],..., that is, 1 < 20,22 < Z1,-..,,
which is a contradiction.

We will find now an order preserving map from (T \ {0},2) into
(W, <,). For this, note that if z < y, the section tree S(z,y) = {s € N<N:
(z|length(s), y|length(s), s) € S} is not well-founded, so let h, 4, € [S(z, )]
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(for example, its leftmost branch). Consider the map f : T< \ {#} - W

given by
f(($0)) = 0)
and for n > 2,
f(zo, -, Zn1) = (21|, 20|, b, 20 |0), (z2|m, 21|72, Bgy 2y |7),

tees (zn—l|n7$’n—2|n’ hxn—hl'n—zln))'

Then f(zo,-..,Zn-1,%n) <+ f(Zo....,Z,—1) for any n > 1, so our proof is
complete. O

Recall from 27.1 that the set IF of ill-founded trees on N is £}-complete
and therefore the set

WF = {T € Tr: T is well-founded}

of well-founded trees on N in IT}-complete. To each T € WF we associate its
rank p(T). It is easy to see that {p(T") : T € WF} = {a+1: a <w}U{0}.

(31.2) Theorem. (The Boundedness Theorem for WF) Let A C WF be
analytic. Then sup{p(T):T € A} < w.

Proof. Consider the following relation < on TrxN<N:
(S,8)<(Tt)&S=TcA&kstcT&s2t.

Clearly < is analytic and well-founded. So p(<) < w;. Butif T € A, the map
t € T+ (T.t) is order preserving from (T, 2) into <, so p(T') < p(<) < wr.
0

(31.3) Exercise. (Lusin-Sierpiniski) Consider the set WO (of wellorderings
on N) as in 27.C. For z € WO, let |z| = the order type of A, < w,. Clearly,
{lz] : 2 € WO} =) \w.

From 27.12 WO is IT}-complete. Show that if A C WO is analytic,
then sup{|z| : z € A} <w1. ‘

Use this to show that if X is a standard Borel space and A C X is
Borel, then there is a Borel function f : X — LO and a < w; such that
A= f7! (WO®), with WO* = {z € WO: |z| < o} (similarly with X zero-
dimensional Polish and f continuous). Use this to justify the argument in
27.D that 2 is not Borel.

(31.4) Exercise. Give a different proof of 31.1 using the fact that WF is not
3} and using 2.9.
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31.B The Kunen-Martin Theorem

Let X be a Polish space and Y any set. A set A C X is called Y-Souslin
if A= projy(F), where F is a closed set in X x YN (with Y discrete).
Usually, Y is an ordinal number . So N-Souslin (= w-Souslin) = analytic.
The following generalizes 31.1.

(31.5) Theorem. (The Kunen-Martin Theorem) Let X be a Polish space,
& an infinite ordinal, and < a well-founded k-Souslin relation on X. Then
p(<) < &*.

The proof is identical to that of 31.1, so we will not repeat it. In fact,
that proof is essentially Kunen's proof of 31.5. (Martin’s independent proof
was somewhat different and used forcing.) For another (earlier) proof of
31.1, see 31.4.



CHAPTER IV
Co-Analytic Sets

32. Review

32.A Basic Facts

Given a Polish (or standard Borel) space X, a set A C X is co-analytic if

~ A is analytic. We denote by IT1(X) the class of co-analytic subsets of X.
If X C Y are Polish (or standard Borel) spaces, clearly IT}(X) =

MY)X={AnX:AceI}(Y)}={ACX: Aecm(Y)}.

More generally, a subset A of an arbitrary separable metrizable space
X is co-analytic (or IT}(X)) if ~ A is analytic. We also call a separable
metrizable space co-analytic if it is homeomorphic to a co-analytic set in
a Polish space. Finally, a co-analytic Borel space is a measurable space
isomorphic to (X, B(X)) for some co-analytic set (or space) X.

The co-analytic sets contain all the Borel sets and are closed under
countable intersections and unions and Borel preimages. They are also
closed under co-projection (or unmiversal quantifiers) over Polish spaces:
If X,Y are Polish spaces and A C X x Y is co-analytic, so is B C X given
by B = ~ projx(~ A), i.e.,

z € B & Vy(z,y) € A.

They are not closed under continuous images or the Souslin operation .A.
For each Polish X,Y, with Y uncountable, there is a Y-universal set
for TI}(X), so for each uncountable Polish X, B(X) = A}(X) G IT}(X).
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Moreover, assuming X}-Determinacy, any IT}(X)\ £}(X) in a Polish space
X is ITl-complete (see 26.5) and any two such sets are Borel isomorphic
(see 26.8).

32.B Representations of Co-Analytic Sets

From 25.A we have that for each Polish space X and A C X, the following
statements are equivalent:

i) A is co-analytic.

ii) For some Polish Y and Borel BC X x VY, z € A & Vy(x,y) € B.
iii) For some open G C X x N, z€ A & Vy(z,y) €G.

iv) For some F,set FC X xC, z € A& Vy(z,y) € F.

From 25.B we have that the following are equivalent for A C N:

i) A is co-analytic.
ii) For a (pruned) tree T on N x N, z € A & T(z) is well-founded.

More generally, if WF = Tr \ IF is the class of well-founded trees and
WO the class of wellorderings on N, then by 27.1 and 27.12, WF and WO
ar¢ IT}-complete. So the following are equivalent for any Polish space X
and AC X:

i) A is co-analytic.

ii) There is a Borel function f : X — Tr such that z € A & f(x) €
WF.

iii) There is a Borel function f : X — LO such that z € A & f(2) €
WO.

(Note also that by 26.11 and 15.6 one can take f in ii), iii) here to be
injective.)

Also, from 25.3, we have the following: For any Polish space X and
A C X, the following are equivalent:

i) A is co-analytic.

ii) For some open G C X x N, z € A & GnyG(z,y).

Next recall 18.11 and 18.13. For any Polish space X and A C X the
following are equivalent:

i) A is co-analytic.

ii) For some Polish space Y and Borel (equivalently: closed) F C
X xY, z€ Ae yF(z,y).

iii) For some Polish space Y and continuous surjection f : Y — X, z €
A« y(f(y) = ).

‘We have, moreover, the following representation, using 29.21. For any
Polish space X and A C X, the following are equivalent:

i) A is co-analytic.
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ii) For some closed set F C X x N, £ € A & F, is countable.
iii) For some closed set F C X x N, z € A & F, is countable
S F.=40.

Finally, from 25.16, we have that every co-analytic set is both the union
and the intersection of w; Borel sets.

(32.1) Exercise. The dual Souslin operation A is defined by
AsPs = As("" Ps)

= (Y UPann

zeN n

Show that the co-analytic sets in a Polish space X are those of the form
A G,, with G, open, and that IT] is closed under A.

32.C Regularity Properties

We saw in Section 29 that all co-analytic sets in Polish spaces have the
BP and are universally measurable and that in [N]®o they are completely
Ramsey. Concerning the Perfect Set Property we have the following:

(32.2) Theorem. (The Perfect Set Theorem for Co-Analytic Sets) (Z}-
Determinacy) Let X be a Polish space and A C X a co-analytic set. Fither
A is countable or else it contains a Cantor set.

Proof. We can assume that X is perfect. This follows then from 21.1, since
the game G*(A) is IT}. 0

(32.3) Exercise. (X}-Determinacy) Let X be Polish and A C X be co-
analytic. Then either A is contained in a K, set or else it contains a closed
set homeomorphic to N.

As we pointed out in 30.14, not all co-analytic sets are universally
capacitable (but they are capacitable for any capacity v with 4(@) = 0
alternating of order oc; see 36.22).

The following are analogs of 29.22, 29.23, 29.26 and 29.28.

(32.4) Exercise. i) Let X be a standard Borel space, Y be a Polish space,
and A C X x Y be co-analytic. Then for any nonempty openset U C Y
the sets {z : A, is not meager in U} and {z : A, is comeager in U} are
co-analytic.

ii) In the notation of 16.B, if A is co-analytic, so are A*Y, AAU.

ili) If X,Y are standard Borel spaces and A C X x Y is co-analytic,
then the set {(u,z,7) € P(Y)x X xR : u(Az) > r} is co-analytic. The same
holds, if u is a o-finite Borel measure on Y, for the set {(z,r) : u(A;) > r}.
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33. Examples

33.A Well-founded Trees and Wellorderings

Let WF C Tr be the set of well-founded trees on N. Then WF is ITj-
complete (see 32.B). Also, by 27.3, the set WF3 = Tr, \ IF; of all pruned
trees on 2 which have no infinite branch in N is IT]-complete. Recall also
from 32.B that the set WO of wellorderings on N is IT}-complete.

(33.1) Exercise. i) Let UB = {T' € Tr : T has a unique infinite branch}.
Show that UB is IT}-complete.

ii) Let C = {T € PTx; : [T)] is countable}. Show that C is IT}-
complete.

iti) Let Wy = {T € Tr: Il has a winning strategy in the game
G(N, [T])}. Show that Wy is IT}-complete.

(33.2) Exercise. A linear ordering (4, <) is scattered if there is no order
preserving map of (Q, <) into (A4, <). For example, N,Z are scattered.
Consider the following subset of LO:

z € SCAT & z € LO & A, is scattered.
Show that SCAT is IT}-complete.

33.B Classes of Closed Sets

For any Polish space X and A C X, let K(A) be the set of all compact
subsets of A, i.e, K(A) = {K € K(X): K C A}.

If Ais ITJ, then it is immediate that K(A) is IT3 too (in K(X)).
However, from 27.4 ii), we have that if F C X is X3\ II3, then K(F) is
IT}-complete. (In general, it is easy to see that if A is IT}, so is K(A).)

Now let

Ky, (X) = {K € K(X): K is countable},

and
Fyo(X) = {F € F(X): F is countable}.

Then from 27.5 we have the following result of Hurewicz:

For any uncountable Polish space X, Ky,(X) is IT}-complete and
Fy,(X) is Borel IT}-complete.

Also, from 27.9 we have that for each Polish X that is not K, the set
{F € F(X): F is contained in a K,} is Borel IT}-complete.
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33.C Sigma-Ideals of Compact Sets

If X is a Polish space, a subset I C K(X) is called a o-ideal of compact
sets if i) I is hereditary on K(X) (ie., K€ K(X)& KCLelI=Kel)
and ii) I is closed under countable unions that are compact (i.e., K, €
I& U, K. =K € K(X)= K € I). For example, K(A) and Ky,(X) as
defined in 33.B, are o-ideals of compact sets.

(33.3) Theorem. (The Dichotomy Theorem for Co-Analytic o-Ideals)
(Kechris-Louveau-Woodin) Let X be a Polish space and I C K(X) a co-
analytic o-ideal of compact sets. Then either I is G5 or else it is TI1-
complete.

Proof. Assume I is not Gs. Then by 21.18 there is a Cantor set C C K(X)
such that @ = C' N1 is countable dense in C. For K € K(C) C K(K (X)),
let as usual YK = |J{K : K € K}. By 4.29 v), K — |JK is continuous
from K(C) into K(X). Moreover,

KkceelJkel,

since @ is countable and I is a o-ideal of compact sets. So K(Q), which
is TTI}-complete by 33.B, is reduced to I by a continuous function, so I is
IT}-complete. 0

For any probability Borel measure p on a Polish space X, we denote
by I, (= NULL, N K(X)) the o-ideal of compact sets of u-measure 0.
More generally, let 4 be a capacity that is subadditive on compact sets
(i.e., KULY<Y(K)+~(L)if K,L € K(X)) and let I, = {K € K(X):
v(K) = 0}. Then I, (and so I,) is a o-ideal of compact sets and it is G
by 30.15. '

(33.4) Exercise. Let X be a Polish space. Show that Ivgr = {K € K(X):
K is meager (i.e., nowhere dense)} is a G5 o-ideal of compact sets.

On the other hand Ky, (X) is a IT}-complete o-ideal of compact sets,
when X is uncountable.

(33.5) Exercise. Let X be a Polish space and A C X a co-analytic set. Then
the following are equivalent:

i) A is Polish;

i) K(A) is Polish;

iii) K(A) is not IT}-complete.

Remark. It has been shown in A. S. Kechris, A. Louveau and W. H. Woodin
[1987) that every analytic o-ideal of compact sets is actually IT3.
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We revisit next an example that we introduced in 27.B. Recall that
we denote by UNIQ the class of closed sets of uniqueness in T. As we
mentioned there the union of countably many closed sets of uniqueness is
a set of uniqueness; in particular, UNIQ is a ¢-ideal of compact sets in T.

(33.6) Theorem. (Kaufman, Solovay) The o-ideal UNIQ of closed sets of
uniqueness in T is IT-complete.

Proof. We will omit the proof that UNIQ is IT}, which requires some knowl-
edge of harmonic analysis (see A. S. Kechris and A. Louveau [1989)]). To
show that it is ITi-complete, by 33.3, it is enough to show that UNIQ is
not ITJ. For that we will find a continuous function f : [0,1] — K (T) such
that z € Q & f(z) € UNIQ.

Forng=0<m < -+ <y <1, put £ =1— n and assume that
€ < mig1 — s for all i < k. Construct a perfect set E(§;m,...,n) as
follows (in [0, 27] or, equivalently, T): For each interval [a,b] withl =b—a
consider the disjoint intervals [a + In;,a + In; +1€], i =0,...,k and let E
be their union (see Figure 33.1).

a & 1€ 1& 15 &
— o — o — o — o
a+ln, a+ln, a+in,
FIGURE 33.1.

We say that E results from [a, ] by a dissection of type (&;m,. .., 7).
Starting from Ep = [0, 27], define closed sets Ey 2 E)} 2 E; D --- by
performing a dissection of type (£;71,...,7) to each interval of E,, to
obtain Epy 1. Finally, let E(&m,..., %) =, En.

We have here the following remarkable characterization.

(33.7) Theorem. (Salem-Zygmund) The set E(&;m, ... m%) ts in UNIQ iff
0 = 1/¢ is o Pisot number, i.c., an algebraic integer > 1 all of whose
conjugates have absolute value < 1, and 1. .., € Q(6).

Note now that all integers > 1 are Pisot numbers. Let

f(z) = E(1/4;3/8 + z/9,3/4).
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(33.8) Exercise. Show that the class of perfect sets of uniqueness in T is
IT}-complete in the G, thus Polish, space of perfect subsets of T.

A classical problem concerning the theory of uniqueness sets is the
so-called Characterization Problem: To find necessary and sufficient con-
ditions for a perfect set in T to be a set of uniqueness. Although this is a
vague problem, it appears that its intended meaning was to find somewhat
explicit structural conditions that will characterize among perfect sets those
that are sets of uniqueness (such as those in 33.7 that provide such a char-
acterization in a special case). By 33.8 no such characterization is possible,
which can be expressed by conditions that lead to a Borel definition of the
perfect sets of uniqueness. This can be viewed as an important negative
implication concerning the Characterization Problem. (For more on this,
see A. S. Kechris and A. Louveau [1989].)

33.D Differentiable Functions

The following is one of the earliest examples of a IT}-complete set in’ anal-
ysis.

(33.9) Theorem. (Mazurkiewicz) The set DIFF of differentiable functions
in C([0,1]) is IT}-complete.

Proof. As usual, at the endpoints we consider one-sided derivatives.

From 23.23, we see that DIFF is IT}. To show it is I1}-complete, we
will reduce WF by a continuous function to DIFF.

Given a closed interval I = [a,b] C [0,1], let ¢(z;I) be the following
function on [0, 1],

16(z—a)?(x—b)* .

0, otherwise.

(See Figure 33.2.)
Now define for each s € N<N_ an open interval J, and a closed interval
K, such that: :

i) K, C J, is concentric in J; and |K,| < 27®)(|J,| - |K,]), where |J|
is the length of the interval J and () is a bijection of N<¥ with N;

ii) Jon C K = the left half of K. (Denote also by K the right
half of K,.);

i) Jyon N Ty =0, if 0 # m.

Note then that all the K§R) are pairwise disjoint and for each z €
Ly . .
N, Mo Jzin = N Kzpn =N Kilrz is a singleton.
Given now a tree T on N, let
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FIGURE 33.2.

Fr(z) =) oz KP).
seT

Since 0 < o(z; KR) < |KP| < 2=, clearly Fr € C([0,1]). Moreover,
T — Fr is continuous from Tr into C([0,1]), since if the trees S,T agree
for all s with (s} < N, then

|Fs(z) — Fr(z)l < Y (o K§P) + oz K{P) < Y 2741,
(s)2N i>N

Now let
ér= Ny
y€[T) n
-N U &
n  seTNN»
Then

TeWF< Gr=40,

and so, to complete the proof, it is enough to show that
z ¢ Gt & Fp(z) exists.

If 2 € Gr, let y € [T] be such that = € K}, for all n. Let cy be the

midpoint of K ;ﬁz and let 2/, = |K,5f§,)| (see Figure 33.3).
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x c,
———o— —o—
L L ]
r 2, — 4, —+— —
- J

Y

K
yin
FIGURE 33.3.

Then Fr(z) = 0, as = ¢ KﬁR) for any s. Also Fr(c, + 1) = 0,

Fricn+in)=Fr(z) _ FT(Cn)_FT!x! 2 _— 2 [N
SO J?m_%—- = 0. Moreover, | o=z | > ﬁ': = 3 Since
CnsCn + ly = z, Fr(x) does not exist.

Now let z ¢ Gr. Find N so that for s € T and (s} > N, = ¢ J,. Fix
such an s. (See Figure 33.4.)

J,
A
s A
K
A
- N
X
—e— o —o - . °
K(R)
5
FIGURE 33.4.

It is easy then to see that

oK) - pa + AnKP) | lo(n + A k)|

Az |Az|
(R)
< 2|Ks™| <2~
|Js| — 1K |

Thus, if for n > N we let
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FRz) = Y oz ED),

s€T,(s)<n
we have
Fr(z) - Fr(z + Az)  Fp(z) - FR(z + Az) < i 2-™ < 97 m,
Az Az m=n+1

But as Az — 0, M (F") (x),s0 llmAa:—»o Fr(z)- i’r!x+Aa:)
limag o MA_Q: < 27"+l and letting n — oo, we see that
M converges as Az — 0, which means that Fp(z) exists. O

(33.10) Exercise. Show that the set of differentiable functions with deriva-
tive bounded in absolute value by 1 is IT}-complete (in C([0, 1])).

33.E Everywhere Convergence
Consider now the space C([0, 1))N and the sets

CN = {(fn) € C([0,1))V : (f») converges pointwise},
CNo = {(f.) € C([0,1))N : f,. — 0 pointwise}.

(33.11) Theorem. The sets CN,CN,, of pointwise convergent, respectively to
0, sequences of continuous functions are II} -complete.

Proof. From 23.18 we know that CN,CNy are IT}. We will next reduce WF
to CN,CNj by a continuous function.
Let I, J; be closed subintervals of [0, 1] such that:

i) Iy=1(0,1]);

il) Js is a proper concentric subinterval of I;
ii‘i) Ishn g JS a'nd Is‘m n Is‘n = 0 if m # n;
iV) |Is| < 2—length(s).

Also let 0 < fs < 1in C([0,1]) be equal to 1 on J,, and 0 outside I.
Fix also a bijection h of N with NN, and for n € N and T € Tr let
T € C([0,1)) be equal to 0 if h(n) ¢ T and to fu(s) if h(n) € T. The
function T — (f7) from Tr into C([0,1))Y is clearly continuous, and we
claim that
T e WF & (ff)eCN

& (fT) € CNo.

Given any z € [0, 1) we have for each n at most one s € N* with z € I,.
Thus, if T € WF, there are at most finitely many s € T with z € I,. So for
all but finitely many n, fX(z) =0 (i.e., f1(z) — 0).
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Conversely, if T ¢ WF, let y € [T). Then let {z} =, Iyjn = N, Jyn-
So there are infinitely many k for which fI(z) = 1 and also infinitely many
k for which fT(z) =0 (i.e., (fT(z)) diverges). m]

(33.12) Exercise. Show that the following sets are IT}-complete:

{(f2) € C([0,1))" : Vz3n¥m > n(fm(x) = 0)},
{(f2) € C([o, IJ)N 10 < fo <1 & Va(inf(f.(z)) > 0)}.

Consider now C(T) and the set
CF ={feC(T): Z f(n)e'™ converges everywhere}
={feC(T): f(z) = ) _ f(n)e™, for all z € T}

of continuous functions on T with everywhere convergent Fourier series.
Then we have the next result.

(33.13) Theorem. (Ajtai-Kechris) The set CF of continuous functions with
everywhere convergent Fourier series is I} -complete (in C(T)).

33.F Parametrizing Baire Class 1 Functions

The set CN can be used to encode or parametrize Baire class 1 functions
on [0,1) as follows:
Associate to each f = (f,) € CN the following function in B, ([0, 1)):

bi(z) = lim fn ().

By 24.10, {b; : f € CN} = B,([0,1)). We view f as a code or parameter
of bs.

sting this parametrization, we can also classify sets of B, functions
descriptively. Given a class I of sets in separable metrizable spaces, and a
set C C B,([0,1]), we say that C is in T (in the codes) if C = {f : b; € C}
is in the class I'(CN). For example, if A is the set of derivatives, then A is
in IT} (Ajtai) but not in X} (Dougherty-Kechris); see R. Dougherty and A.
S. Kechris [1991].

For each f € A denote by ¢(z) = fox f its unique primitive with
value 0 at 0. Then it turns out that the operation f — ¢ has a graph
that is both =} and IT} in A x C([0,1]) (Ajtai) but not Borel (Dougherty-
Kechris). In fact {f € A : s bj > 0} is both £}(A) and I}(A) but not
B(A). This has interesting implications concerning the so-called Classical
Problem of the Primitive and the role of transfinite constructions in the
process of antidifferentiation; see R. Dougherty and A. S. Kechris [1991]. It
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also provides a natural instance of failure of the Souslin Theorem B(X) =
Al(X) for the co-analytic space X = A. Abstractly, one can see that
the Souslin Theorem fails in general for co-analytic spaces X, by taking
X = AU B, where A, B are II} disjoint subsets of some Polish space Y
which are not separable by a Borel set; see 35.1 and the remarks following it.
Recall from 28.3 that Souslin’s Theorem goes through for analytic spaces.

33.G A Method for Proving Completeness

We will give now a different proof that CN (see 33.11) is IT}-complete. This
proof illustrates a powerful technique for proving such completeness theo-
rems. It can be applied to many other examples discussed in this section.
Let A C C be a IT} set. From 32.B we have that there is an F, set
B C C x [0,1] with
r€ A& Vy(z,y) €B
< B, =[0,1)

(recall here that C can be viewed as a closed subset of [0,1]). From 23.22
there is a continuous function F : ¢ — C([0,1])N with B, = Cpzy- S0

z € Ae F(z) e CN,

and thus CN is IT}-complete.

Similarly, we can use the fact that Zahorski’s Theoremm (mentioned
in the paragraph preceding 23.23) holds uniformly, to give another proof
of 33.9. More precisely, to take a particular case, one can show that if
B C N x[0,1) is X9, there is a continuous function F : N — C([0,1)) with
B; = Dp(z). Then, exactly as in the previous example, if A C N is IT} and
B EN x[0,1] is Y with

z € A& Vy(z,y) € B,

we have
ze A& B, =(0,1)
=< Dp(,;) = [0, 1]
& F(z) € DIFF,

so DIFF is IT}-complete.

(33.14) Exercise. The result of Kaufman inentioned in 27.E admits a uni-
form version: Let A C I3 be analytic. Then there is a Borel function
f : 1 — L(cp) such that for all z, A, = op(f(x)). Use this to show
that {T € L(co) : 0p(T) = 0} and {T € L(co) : 0,(T) € T} are Borel
II}-complete.
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33.H Singular Functions

(33.15) Theorem. (Mauldin) Let NDIFF be the set of functions in C([0,1))
that are nowhere differentiable. Then NDIFF is Borel IT} -complete.

Proof. (Kechris) The idea of the proof is the following:

To each K € K((0,1)) we will associate in a Borel way a function fx €
C([0, 1)), which is differentiable at exactly the points of K, and a function
gk € C([0,1)]), which is differentiable exactly at the points outside K N Q.
Then let hx = fx + gk. Clearly, K — hg is Borel and if @ = QN (0,1),
then for K € K((0,1)),

K C Q & hkg € NDIFF.

Since {K € K((0,1)) : K C @} is IT}-complete (see 33.B), we are done.

Construction of gx: Since the map K — K N Q from K((0,1)) to 22 is
Borel, it is enough to show that we can associate in a Borel way to each
P C Q a function gp € C([0,1]), which is differentiable exactly outside P.
This is done as follows:

Let Q = {q1,¢2,.--} be an enumeration without repetitions and let
Ip = {n € N: g, € P}. Fix now a continuous function ¢ on R such that

¢(0) =0, ’39—(2—:512’ <1 for £ # y, and ¢ has no one-sided derivative at 0
but has a derivative at every other point. Thenlet gp(z) = 3, ;. 27" p(z—
qn) for z € [0,1). (If P =0, let gp = 1.)

Construction of fx: We can uniquely write (0,1) \ K as a pairwise disjoint
union of intervals (a,b) with a,b € K, ora = 0,b € K,or a € K,b =
1. These are called the contiguous intervals of K. Clearly, there are only
countably many of them.

(33.16) Lemma. There is a Borel function

C : K((0,1)) = ((0,1)" & P([0,11*)"

n2>1

such that C(K) = ((aX,bX)) is an enumeration without repetitions of the
contiguous intervals of K.

Proof. Consider the set R C K((0,1)) x [0,1)? given by

R(K,(a,b)) & (a,b) is an interval contiguous to K
& (a,b€e K &a<b)or
(a=0&b>0&beK)or(aeK&a<1&b=1))
& -3c(a<c<b&ceK).
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R is clearly Borel. Moreover, for each K, Rk is countable, so by 18.15 we
are done. 0

Let now f be continuous on [0,1] with ||f|lc < 1, but having no
derivative at any point of (0,1). For 0 <a <b < 1, let

_J f@)(xz—a)*(z—b)? ifz € (a,b);
fan(@) = {0 if z €[0,1)\ (a,b).

Note that || fa5]lc £ b—a, fap hasno derivative in (a, b) and has derivative
0 at a,b. Also

fu,b(z)

T—a

fa,b(z)

(*) =1

<b-a.

b

If a = 0 < b, define f, 3 to have similar properties in (a,b) and at b, but no
right derivative at 0 and analogously for a < b = 1.

Finally, put
fk = Z fa,’f,b,’f'
n

Since 3 (bX —aX) < 1, fx is continuous. It is easy to see that fx has
no derivative at any point outside K and (using (*)) it has derivative 0 at
every point of K. o

The above method can be also used to show the following result of
Mauldin: The class of Besicovitch functions is Borel IT}-complete, where a
Besicovitch function is a continuous function on [0,1] with no one-sided,
finite or infinite, derivative at any point. (Besicovitch first proved that
such functions exist.) Finally, one can show that the class of functions in
LY(T) whose Fourier series diverge everywhere is also Borel IT}-complete
(Kechris). (Kolmogorov first showed that such functions exist.)

33.1 Topological Examples

Given an open set U C R?, we define its components as being the equiv-
alence classes of the following equivalence relation on U: p ~ q iff there is
a path from p to ¢ contained in U (i.e., a continuous map v : [0,1] — U
with v(0) = p, 7(1) = ¢). A Jordan curve in R? is a homeomorphic copy
of T. By the Jordan Curve Theorem, if J is a Jordan curve, then R? \ J
has exactly two components: one bounded and one unbounded. We call the
bounded component the Jordan interior of J, Jint(.J).

We say that a compact set K C R? has no holes if for every Jordan
curve J C K, Jint(J) C K. Denote by NH the class of compact sets with
no holes. We say that K is simply connected if it is path connected (i.e.,
every two points of K are connected by a path contained in K) and has no
holes. We denote their class by SCON.
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(33.17) Theorem. (Becker) The sets NH and SCON are IT} -complete.

Proof. We will only give the proofs that NH is IT}-complete and SCON is
IT}-hard. The proof that SCON is actually IT} is much harder and we will
not give it here.

We compute first that NH € II1. Denote by JC the class of Jordan
curves, JC C K(R?).

(33.18) Lemma. JC is X} and the set {(z,J) € R? x JC : z € Jint(J)} is
clearly open in R? x JC, so it is also ) in R? x K(R?).
Proof. We have
K €JC & 3h e C(T,R?)(his injective & K = h(T)).
Now for h € C(T,R?),
h is not injective & 3z3y(z # y & h(z) = h(y)).

The set
R={(h,z,y) : z # y & h(z) = h(y)}
is F, in C(T,R?) x T?, so since T is compact, {h : 3x3y(h,z,y) € R} is F,
in C(T, R?), thus
{h € C(T.R?) : h is injective}
is Gs. Also if {U,} is an open basis for R?,
K = I(T) & Va(K U, # 0 < h(T) NU, # 0}

and {h : A(T) N U, # 0} is open, so {(h,K) : h(T) = K} is Borel in
C(T,R?) x K(R?), and JC is thus Z}. 0

We now have that
L¢NHeI3IK(KelC&zeJmt(K)&KCL&x¢ L),

so NH is IT}.

We will show now that WF can be reduced by a continuous function
to NH and SCON.

We will use below a standard example of a connected but not path
connected compact set in R?, as in Figure 33.5.

To each tree T on N, we will assign a sequence of compact sets K7 C
R? n > 1, with KL C K% C .-+, so that K7 = J,, K} is also compact,
T — Kr is continuous, and

T € WF & K7 € NH & Kt € SCON.

Construction of K}: K} consists of a horizontal segment [, a verti-
cal segment ly, and a line p from a point r to the left end of I, together
with a “zig-zag curve” as in Figure 33.5 converging to ly (see Figure 33.6).
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FIGURE 33.5.

Moreover, enumerating as 0,1,2,... the local minima of this curve, we
hang down a line segment r(,) below the nth minimum iff (n) € T. The
bottom of this segment is half the distance from 7 to [. (In Figure 33.6,
(n)eT&n=0,2,5,...)

Construction of K% : K% consists of K. together with some additional
“zig-zag curves” and line segments as in Figure 33.7: We add a line /() iff
(n) € T and this line goes from ! to the same height as the bottom of r(,)
and lies vertically between the nth and (n + 1)th local minimum of the
“zig-zag curve” of K}. For exactly these n we also add a “zig-zag curve”
converging to [(,) starting from the bottom of r(,). Finally, we hang a line
segment 7y, ;) from the mth local minimum of the “zig-zag curve” starting
from the bottom of r(, iff (n,m) € T. The bottom of this line segment
is half the distance from [ to the bottom of r(,,). (In Figure 33.7, (0,m) €
Tem=13,...,2mecTem=0,..., 5,meTem=2,...)

We proceed analogously to define K7 recursively. The verification that
Kr =, KT works is straightforward. Notice that K is path connected.
0

38.J Homeomorphisms of Compact Spaces

Let X be a compact metrizable space and h € H(X) a homeomorphism of
X. We call h periodic if for some n, and all z, h"(z) = z (i.e., all orbits of
h have finite cardinality < k, for some k).

(33.19) Exercise. Show that the set of periodic homeomorphisms is X in
H(X).

Let us say now that A € H(X) is quasiperiodic if all orbits of & are
finite.
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r

l
FIGURE 33.6.

(33.20) Theorem. (Kechris) The set QP of quasiperiodic homeomorphisms
of C is I} -complete.

Proof. For h € H(C)
h € QP & VzIn(h"(z) = z),

and so QP is IT}.
Consider now the following set of pruned trees on 2:

S = {T € PTr; : 3z € [T|(for infinitely many n, z|n has a unique
immediate extension z|n"i (= z|(n + 1)) € T)}.



r
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FIGURE 33.7.
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If s € T and there is a unique immediate extension s"¢ € T, then we say

that s is a non-split of T. Thus

S = {T € PTr; : 3z € [T](there are infinitely many non-splits z|n)}.

We will show that S is X}-complete and that it can be reduced by a con-

tinuous function to ~ QP. This will complete the proof.

(33.21) Lemma. S is T1-complete.

Proof. Clearly, S is £]. Recall now the X]-complete set IF} of 27.3. We

~will show that IF; can be continuously reduced to S.
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By a k-tree, we mean a nonempty finite tree t C J,, <k 2" such that
if & € t and length(u) < k, then u has at least one immediate extension
u"t € t. By recursion on k we will associate to each k-tree ¢ a 2k-tree t*
and maps i) u — u* from ¢ to t* such that length(u*) = 2-length(v) and,
ii) v — v, from all even length sequences of ¢* into ¢, such that (u*). = u.
Moreover, if for v € 2<N we let

|u| = number of 1’s in u,
and for any v € t* of even length, say 2!, we let
[lv]l = the number of non-splits of ¢*contained in v|(2! — 1),

i.e., ||v|| is the number of m < 2[ —1 such that v|m has a unique immediate
extension (i.e., v|(m + 1)) in ¢*, then we will also have

lw*I1 2 |ul & |ve| 2 (|0l

so ||u*|| = |u|. Finally, the map t — t* and the associated u*,v. are
monotone: If t < s, in the sense that t = sN Unsk 2™, then t* < s* and
vtCw=>u Cuw',vCz=v, C 2.

If this can be done, for each T € PTry let TF = TN (|, 2") and
put T* = J,(T*)*. If T € IF} and z € [T has infinitely many 1’s, then

= U, (z|k)* is such that there are infinitely many non-splits z*|n, so

T* € S. Conversely, if T* € S and y € [T*] is such that y|n is a non-split
for infinitely many n, and = = y. = |J,(v|2k)., then z has infinitely many
I's,soTe€lF;.S0T e€lF; & T* €S, and T — T* is clearly continuous.

We define now t — t* and the associated maps u — u*, v — v, by
recursion on k.

Basis: k= 0. Let t = {0}, t* = {0}, 0. =0, and 0" = 0.

Induction step: k — k + 1. Assume t — t* and the associated maps have
been defined for all k-trees. Let t; be a k + 1-tree and put ¢t = ¢t; N, ., 2"
so that t is a k-tree. -

We define t} as follows: First, t] N, <o) 2" = t*. Next let v € t* N2%.
We will define the extensions of v in t] by considering cases:

If v is not of the form u* for u € t N 2%, we put all v*i, v"i"j for
i,j € {0,1} in ¢3}.

If v =u* for u € tN 2%, we consider subcases:

Subcase 1. ©"1 € #;. Then we put
v"0,v"1,v°070,v70"1,v"1"0 e t].
Subcase 2. w0 € t),u"1 ¢ t;. Then we put

vii,v'i"j et] foralli,j € {0,1}.
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We now describe the map ) — u] for vy € t). If vy = u € t*, then v*
has been already defined. Else u;, € 2¢+!. Put u = u,|k. Then we define u}
according to the preceding subcases. In Subcase 1, we put (uv"1)* = «*"1°0,
and if ©"0 € ¢, ("0)* = »*"0°0. In Subcase 2, we put (u"0)* = u*"0"0.

It remains only to define (v)). for vy € t}. Again if vy = v € t*, v,
has already been defined. Otherwise, v, € t} N 22+ Put v = v |2k. If
v) is not of the form u} for u, € t; N 2%+ then put (v1). = v, 4, where
v, i is some immediate extension of v, in t;. Otherwise, vy = u] for some
u) € t; N 251! and we let (v)). = u). 0

We will find now a continuous reduction of S to ~ QP. To do this we
need some preliminaries on the so-called Lipschitz homeomorphisms of C.

Given a permutation w of 2", n > 1, and a permutation p of 2™, where
m > n, we write 7 < p if p((zo,...,Zm=1))In = 7((To,...,ZTn=1)). If my is
a permutation of 2" and m; < 712 < ---, then A : C — C given by

(0,21, --.)) = | J (20, .., Zn1)

is a homeomorphism of C called a Lipschitz homeomorphism of C. Note that
() is uniquely determined by h, since m,((Zo, - .., Zn-1)) = (Yo, - - - 1 Yn—1)
iff A(N(zg,...,20-1)) = Nigo,...synor)-

Given a Lipschitz homeomorphism £ as above, we define its orbit tree
Ty, as follows. First notice that for n > 1 and an orbit 8 of 7, on 2" exactly
one of the following happens: When we look at 7, 6 extends to one orbit
or to two orbits as in Figure 33.8. (In particular, card(d) = 2™ for some
m.)

So we can form a binary tree (i.e., a tree in which every node s has at
most two immediate extensions s"a) as follows: The nth level of T}, consists
of the orbits of 7, on 2". Every nth level node has one or two (n + 1)th
level immediate extensions according to the above cases.

For z € C, there is a unique infinite branch e, € [T}] such that z|(n +
1) € az(n). If for all large enough n, a,(n) splits into two orbits as above,’
so that az|(n + 1) has two immediate extensions in T}, then it is easy to
check that the h-orbit of z is finite. On the other hand, if for infinitely many
n, ag|(n + 1) has a unique immediate extension a,|(n + 1)"i = az|(n + 2)
in Ty, then the h-orbit of x is infinite. It follows that h ¢ QP < there is an
infinite branch a € [T}] such that for infinitely many n, a|n has a unique
immediate extension in 7},.

It is easy now to define for each tree T € PTr; a Lipschitz homeomor-
phism Ay of C such that T} is isomorphic (in the obvious sense) to T and
T — h is continuous. Thus

TeS e hr ¢ QP,

and our proof is complete. 0
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FIGURE 33.8.

Concerning classes of homeomorphisms we have also the following re-
sult. Let (X, d) be a compact metric space. A homeomorphisin h of X is
minimal if there is no proper closed subset of X invariant under Ah. It is
distal if for = # y in X, there is € > 0 such that d(h™(z), h"(y)) > €, Vn.
The class of distal minimal homeomorphisms has been studied extensively
in topological dynamics (see H. Furstenberg [1963]). We now have the fol-
lowing result.

(33.22) Theorem. (Beleznay-Foreman) The set MD of minimal distal home-
omorphisms of TV is Borel I} -complete (in H(TV)).

(33.23) Exercise. Show that for any compact metric space the set of minimal
distal homeomorphisms is IT}.

33.K Classes of Separable Banach Spaces

Consider the standard Borel space of separable Banach spaces as in Exam-
ple 3) of 12.E. We will denote it by SB.

A separable Banach space X is called universal if every separable Ba-
nach space is isomorphic to a closed subspace of X. This is equivalent to
saying that C(2V) is isomorphic to a closed subspace of X. A separable Ba-
nach space X has separable dual if X* is a separable Banach space. Denote
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by NU the class of non-universal separable Banach spaces and by SD the
class of separable Banach spaces with separable dual.

(33.24) Theorem. The classes NU of non-universal separable Banach spaces,
and SD of separable Banach spaces with separable dual, are Borel II}-
complete (in SB).

Proof. The main part (i.e., that NU, SD are Borel IT}-hard) uses an argu-
ment due to Bourgain.

Given K € K(C)\ {0}, consider C(K). The dual C*(K) of C(K) is the
space of signed or complex (depending on the scalar field) Borel measures
on K (see 17.32). If K is countable, then C*(K) is isomorphic to [!, if K
is infinite and to K (K = the scalar field) if card(K) = n is finite. So,
clearly, C*(K) is separable if K is countable. On the other hand, if K is
uncountable, C*(K) is non-separable. (Consider, for example, the Dirac
measures &, for z € K. Then ||6; — §,|| = 2 if  # y.) Moreover, in this
case C(K) is universal as can be seen as follows:

Let L C K be a Cantor set contained in K. By 2.8 there is a continuous
surjection f : K — L. Then the map h € C(L) — ho f € C(K) is a linear
isometry, so C(L) is in particular isomorphic to a closed subspace of C(K),
and C(K) is thus universal.

So we have for K € K(C) \ {0},

K is countable < C(K) € NU
& C(K) € SD.

By 33.B it is enough to show that K — C(K) is “Borel” in the sense that
there is a Borel map K — ¢(K) from K(C) \ {8} into SB such that g(K) is
isomorphic to C(K).

By 4.32, we can identify K(C) with PTr,. Given T € PTr, \ {0}, there
is a monotone map ¢r : 2<N — T with length(y7(s)) = length(s) and
pr(s) = s if s € T (see the proof of 2.8). It is easy to check that T — o
from PTr, \ {0} into (2<N)>" (which is homeomorphic to A') is Borel. Let
fr = ¢7 (as in 2.5). Then fr is a continuous surjection of C to [T] and
fr = id on [T]. Thus the map f € C([T]) — fo fr € C(2Y) is a linear
isometry of C([T]) onto a closed linear subspace g(T) of C(2V). It only
remains to show that ¢ is Borel, and for that it is enough to show that
there is a sequence (g») of Borel functions g, : PTr2 \ {8} — C(2V) with
{gn(T)} dense in ¢(T).

Enumerate, in some canonical fashion, { f.(T)}, the set of all continu-
ous functions on [T] which are rational linear combinations of characteristic
functions of the basic nbhds Ns; N [T of [T, and let ¢,(T) = fo(T) o fr.
It is not hard to see that T +— g,(T) is Borel. Clearly, {g.(T)} is dense in
9(T).

It remains to show that NU and SD are IT}.
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For NU: It is enough to show that for any fixed separable Banach
space Xo, the set

{X €SB : Xy is isomorphic to a closed subspace of X}

is £]. We can assume, of course, that X, € SB as well.

Fix a countable dense subset Dy C X, which is also closed un-
der rational linear combinations. Say Dy = {dn}nen. Then, Xp is iso-
morphic to a closed subspace of X & 3(e.) € C(2Y)N[vn(e, € X)
& {en} is closed under rational linear combinations & 3 positive reals
a,b Vn(bllen|| < |ldall < allenll) & dn — e, is a bijection of {d,} with
{en} preserving rational linear combinations], which is clearly X1.

For SD: We will use the following standard fact from Banach space
theory.

(33.25) Exercise. Let X be a separable Banach space. Let B)(X*) be the
unit ball of its dual with the weak *-topology. Then X* is not separable
iff there is € > 0 and an uncountable closed set K C B;(X™*) such that
|lz* — y*|| > ¢, for all z*,y* € K with z* # y*.

So we have
X ¢ SD & Je > 03K € K(B,(X*))[K is uncountable &
vty € K(z* £y" = ||lz* - v*|| > ¢)).
We will express this now as a 3} property. For each X € SB, let {dX} bea
countable dense subset of X closed under rational linear combinations. By
12.13 we can assume that X — (dX) € C(2Y)N is Borel. Put X = [|d¥||. We
will view every element z* € B,(X*) as an element of [—1,1]V identifying
0 g X
it with n — Z@n) (if gX = 0, we define this ratio to be 1). (We work
here with real Banach spaces; the obvious modifications are made for the

complex case.) With this identification B;(X*) becomes a closed subset
of [-1,1]Y, since it consists of all f € [—1,1]" that satisfy the following

condition:

af()I + a2 f(m)ley = f(R)E
for any rationals qi,¢; and any k,m,n with 1dY + gdX = d¥. (Given
such an f, the corresponding z* is defined by z*(dX) = f(n)lX. Note that
|z*(dX)| < ||dX|| = IX.) Moreover, this identification is a homeomorphism
of B)(X*) and this closed subset of [—1,1)N, which we denote by K%.
Finally, if f,g € K and z*,y* are the corresponding elements of By(X*),

then S(aX\ X

llz* = y*ll = sup{|= (4 )l,’fy (dn)l tdy # 0}
sup{|f(n) — g(n)| : X # 0}
sup{|f(n) — g(n)| : n € N}
=1f = glloo-
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So we have

X¢SDe3>03K e K(-1,1M[KC Kx &
K is uncountable &
VigeK(f#g=IIf —gllo > €)).

Now the map X — K% is Borel from SB into K ([—1, 1]V), as it follows
from the fact that the relation “f € K%” is Borel in [-1,1]"x SB and
28.8. Also “K is uncountable” is X! by 27.5. Finally, the negation of the
last condition in the above expression is

3f,9lf.9e K& f#g&|f-gllo <4,

which is a projection of the K, set

{(K.f,9) € K([-1,1]N) x [-1, 1N x [-1, ]V
HIeK& f#g&||f —gllo <€},

so it is K, too. Thus ~ SD is Z1. 0

(33.26) Exercise. Show that the relation of isomorphism between separable
Banach spaces is Borel X}-complete. In fact, show that the set of separable
Banach spaces isomorphic to C(2") is Borel £}-complete. (You might need
to use here the following result of Milutin (see, e.g., P. Wojtaszczyk [1991],
p- 160): If K is uncountable, compact metrizable, then C(K) is isomorphic
to C(2M).)

Show also that the relation of embedding (i.e., being isomorphic to a
closed subspace) between separable Banach spaces is Borel X}-complete.

The following extension of 33.24 has been proved by B. Bossard [1993]:
Denote by REFL, NL, the classes of separable Banach spaces that are
reflexive, respectively contain no closed subspace isomorphic to I!. Thus

REFL C SD C NL, € NU.

Then there is a Borel function f : Tr — SB such that f(WF) C REFL and
f(~ WF) C ~ NU. In particular, REFL, NL, are also Borel IT}-complete.
‘We present now an application of 33.24.
Given a class F of separable Banach spaces, a separable Banach space
X is called universal for F if every Y € F is isomorphic to a closed subspace
of X. An old problem in Banach space theory (Problem 49 in the Scottish
Book, due to Banach and Mazur - see R. D. Mauldin [1981]) asks whether
there is a separable Banach space with separable dual, which is universal
for the class of separable Banach spaces with separable dual. Wojtaszczyk
answered this negatively using methods of Szlenk. Bourgain then showed
~that if a separable Banach space X is universal for the above class it must
be universal (for the class of all separable Banach spaces). We used his
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argument for this in the proof of 33.24. Let us see how it follows from what
we have proved here:

Suppose X was universal for the class of separable Banach spaces with
separable dual. Then {K € K(C) : C(K) is isomorphic to a closed subspace
of Xo} in X} (by 33.26) and contains {K € K(C) : K is countable}, which
is IT} but not £}, so there must be some uncountable K with C(K) iso-
morphic to a closed subspace of Xp, thus C(K) is universal and so is Xo.

33.L Other Examples

First we consider an interesting example of a IT}-complete set of probabil-
ity measures, that is studied in harmonic analysis. Recall from 23.10 the
concept of a (closed) H-set. Denote by H' the set of probability Borel
measures on T which annihilate H, i.e., u € H' & VK € H((K) = 0).

(33.27) Theorem. (Kechris-Lyons, Kaufman) The set HL is II}-complete
(in P(T)).

In 4.10 we saw that the extreme boundary 9. K of a compact metrizable
convex set K (in a topological vector space) is G5 in K. Actually, it can be
shown (see G. Choquet [1969], Vol. II, p. 189, and R. Haydon [1975]) that
every Polish space is homeomorphic to such a 8.K. On the other hand, if F
is a closed, convex bounded set in a separable Banach space, 8. F is easily
a IT} set. In fact we have:

(33.28) Theorem. (Kaufman) Every separable metrizable co-analytic space
is homeomorphic to some 0. F, F a closed convex bounded set in a separable
Banach space.
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34. Co-Analytic Ranks
34.A Ranks and Prewellorderings

Given a set S a rank (or norm or index) on S is a map ¢ : S — ORD.
Such a rank is called regular if ¢(S) is an ordinal, i.e., an initial segment
of ORD.

A prewellordering on a set S is a relation < on S which is reflexive,
transitive, and connected (i.e., z < y or y < z for any z,y € S) and
has the property that every nonempty subset of S has a least element, or
equivalently the strict part z < y @z < y & - y £ z is well-founded. If <
is a prewellordering, consider the associated equivalence relation

z~rySzrzy&y<Le.
Then < induces a relation, also denoted by <, on S/ ~, namely
[zl <lglve <y

Clearly, < on S/ ~ is a wellordering.

To each rank ¢ : § — ORD on S we associate a prewellordering <,
by

T <,y & p(x) < oy)-

Conversely, given a prewellordering < on S, there is a unique regular rank
¢ : S — ORD such that < = <, defined as follows: Let ¢ : S/ ~ —
ORD be the canonical isomorphism of (S/ ~, <) with an initial segment of
ORD and put ¢(z) = ([z]~). Calling two ranks ¢,¢’ on S equivalent if
<y = <y, we see therefore that every rank has a unique equivalent regular
rank.

34.B Ranked Classes

A key property of the co-analytic sets is that they admit ranks with nice
definability properties. Roughly speaking, given a IT} set A in a Polish
space, there is a rank ¢ : A — w such that the initial segments A; = {z €
A: p(z) < €} are Al “uniformly”. We will make this more precise below.

Let T be a class of sets in Polish spaces. Let X be a Polish space and
A C X. Arank ¢ : A — ORD is called a I'-rank if there are relations,
<F,<L C X x X in T, T" respectively such that for y € A:

P(x) < p(y) (& € A& p(x) < 0(y)
sz<ly
ST 55 y.

In other words, the initial segments <¥ are uniformly in ' NI* = A. This
notion is primarily of interest if A itself is in I'. Note that ¢ being a I'-rank
depends only on <,,.



268 IV. Co-Analytic Sets

(34.1) Exercise. Let <, be the strict part of <, i.e.,z <, y © ¢(z) < ¢(y).
Show that if I is closed under continuous preimages, finite intersections and
unions, and A € T, then ¢ : A — ORD is a I'-rank iff there are relations
<$, <£ in I, T respectively such that for y € A:

z<,y(ez€A&P(T) <py)
sz<ly

r
Sz <,y

We give now another convenient reformulation of the concept of I'-
rank. Given A C X and arank ¢ : A — ORD, we extend ¢ to X by letting
for z € X \ A, p(z) = oo = the first ordinal of cardinality bigger than the
cardinality of ¢(z) for all z € A. So p(z) < p(y) if z € A and y ¢ A. Now
define the relations <o <o S X x X by

T,y reA&p(x) <oy)
(rxeAk(y¢ Ao (y€ A&op(z) <p(y)),
r<,yereA&yp()<e(y)
(zeAk(y¢g Aor(ye A& p(z) < p(y)))
& ¢(z) < ¢(y))-
(34.2) Exercise. Assume I' is closed under continuous preimages and finite

intersections and unions. If A € T, then ¢ : A — ORD is a I'-rank iff
<i» <y are both in I'.

(34.3) Exercise. Let I', A, ¢ be as in 34.2. Show that ¢ is a I'-rank iff there
are relations 55, <£ in I such that for y € A,
¢(z) < o(y) (& z € Ak ¢(z) < o(y))
sz<ly,
p(z) < (y) (& z € A& o(z) < @(y))
sz <y

We say now that a class I is ranked or has the rank property if every
A €T admits a [-rank. (Other terminologies used include: normed or has
the prewellordering property.)

34.C Co-Analytic Ranks
A fundamental property of the IT} sets is the following:

(34.4) Theorem. The class IT} of co-analytic sets in Polish spaces is ranked.
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Proof. Tt is enough to show that some IT}-complete set admits a IT}-rank.
We will work with WO (see 33.A).

If € WO, then A; = (N, <,) (where m <z n & z(m,n) = 1) is a
wellordering, so it is isomorphic to a unique ordinal «, = p(<), which is
traditionally denoted by |z|. (Clearly, {|z| : z € WO} = w; \ w.) We will
show that z — |z| is a IT}-rank. By 34.3, it is enough to find relations
52}, <Z1 such that for y € WO:

TeWO&|z| < |yl &z <Ziy,
zGWO&IJ;|<|y|®z<2i y.

Put
z <Ziy o 3f e NVmvn(m <, n= f(m) <, f(n))
and
z <% y & A3f € NNmvn[f(m) <, k &
(m <z n = f(m) <, f(n))].
Clearly, these work. o

Actually, from the preceding proof we have the following additional
information.

(34.5) Corollary. (of the proof) Every I} set A in a Polish space admits
a I} -rank p:A — w).

If p: A — o is a I'-rank, then for each £ < « let
Ac={rx € A:p(x) <&}

Then A isin A=TNT, A¢ C A, if £ <7, and A= J,, A¢. So A'is the
union of an « sequence of sets in A. In particular, we see again that every
IT} set is the union of w; Al (= Borel) sets (see 32.B). Also, if 9 : A — w,;
is a ITl-rank on a IT! but not Borel set, then sup{¢(z) : ¢ € A} = w,.

(34.6) Exercise. i) Show that T — p(T) is a IT}-rank on the IT}-complete
set WF (of well-founded trees on N).

ii) (Solovay) Show that if X is Polish, A C X is II} and E is a X}
equivalence relation on X such that A is E-invariant, then there is a l'I}-
rank ¢ : A — wy such that ¢ is E-invariant (i.e., z,y € A & zFy = ¢(z) =

@(y))-

(34.7) Exercise. Let T be a tree on N x N, A = p[T], and C = ~ A. For
z € C, let (z) = p'(T(x)) = pr(x)(0). Show that ¢ : C — w, is a IT}-rank
-on C. Note that the decomposition C = J ., C¢, where C¢ = {z : ¢(z) <
&}, corresponds exactly to that given in 25.16.
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Remark. Note that the concept of ITi-rank, 34.4 and 34.5 extend in an
obvious way to IT} sets in standard and analytic Borel spaces.

Theorem 34.4 gives us an abstract ranking with nice definability prop-
erties for any given co-analytic set. In many concrete situations, however,
it is important to be able to find a “natural” IT!-rank on a given I} set
which reflects the particular structure of this set. For example, in the proof
of 34.4 and in 34.6 we found such “natural” rankings associated with WO
and WF.

Canonical rankings often arise in practice from transfinite iteration of
derivation processes, such as the Cantor-Bendixson derivative (see 6.10).
We will next discuss rankings associated to such processes and show that
under fairly general conditions they lead to IT}-ranks. We will use this
then to compute canonical ITT}-ranks for some of the IT}-complete sets we
discussed in Section 33.

34.D Derivatives

Let X be a set and D C Pow(X) be a collection of subsets of X closed
under nonempty intersections. Typical examples we have in mind are

i) D= Pow(X); )

ii) X a Polish space and D = F(X) or D = K(X). Note that the
case D = F(X) contains that of i) when X is countable (with the discrete
topology).

A derivative on D is a map D : D — D such that D(A) C A and
A C B= D(A)C D(B).If D is a derivative and A C X, A € D, we define
by transfinite recursion its iterated derivatives as follows:

D°A) = A,
De*(A) = D(D*(4)),
DXA)= () D*(A) if X is limit.

a<A

Note also that
D*(4) = [ D(D?(4)) if a > 0.

A<a

There is a least ordinal a < card(X)* such that D*(A) = D**+1(A) (=
DA(A), VB > a). We call it the D-rank of A, denoted as |A|p. We also
put D®(A) = D42 (A). If z € A\ D®(A), we let |z, A|]p = the (unique)
ordinal a such that z € D*(A) \ D**+!(A) and call |z, A|p the D-rank of
z in A.

We can also define the dual notion of expansion. Let £ C Pow(X) be
closed under nonempty unions. A map F : £ — £ is an expansion if E(A4) 2
A and A C B = E(A) C E(B). We define E*(A), |A|g, E®(A), |z,Ale
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for A € £ by dualizing in the obvious fashion the preceding definitions.
Note that if D : D — D is a derivative, its dual D : D — D, where
D ={~ A: A€ D}, given by D(A) = ~ D(~ A) is an expansion and vice
versa.

‘We now discuss some examples.

1) Let X = AN, D= Pow(X),and D(T) ={s€T:3a € A(s"a €
T)}. If T is a tree on A, so are all D*(T'), and D>°(T') is the largest pruned
subtree of T. So T is well-founded iff D*°(T') = @. This is the same as the
derivative introduced in 2.11, where in that notation T* = D(T), T(® =
D*(T), and T(>) = D*®(T) for a tree T. Also, |s,T|p = pr(s).

2) Let X = AN, D= Pow(X),and D(T)={s €T :3t,ueT(t2
s,u 2 s&t L u)}. If T is a tree, so are all D*(T'), and D*°(T) is the largest
perfect subtree of T'. So, for countable A, [T is countable iff D>°(T) = §.
This is the same as the derivative introduced in 6.15.

3) Let X =N<N, D = Pow(X),and D(T)={s € T:3u € T(u 2
s & for infinitely many n, u"n € T}. Again if T is a tree, so are all D*(T),
and D*°(T) is the largest superperfect subtree of T So [T] is o-bounded iff
D>®(T) = 0. (See also 21.24 here.)

4) Let X = (Nx N)N, D = Pow,(X) and D(T) = {(s,u) € T :
3(t,v), (r,w) € T[(t,v) 2 (s,u) & (r,w) 2 (s,u) &t L r]}. If Tis a tree; so
are all D*(T). Also, p[T] is countable iff D>®°(T) = @ (see 29.2).

5) Let X = T be a nonempty pruned tree on some set A, let £ =
Pow(X), and define the following expansion on £: E(P) = PU{p e T :
length(p) iseven & Va € A[p’a € T = b € A(p’a’be P))}. T SCTisa
subtree and Ps = {p € T : length(p) is even & p ¢ S}, then in the notation
of 20.2, S; = E%(Ps), so player II has a winning strategy in G(T,, [S5]) iff
0e E?°(Ps).

6) Let X be a Polish space and D = F(X) or D = K(X). Given a
hereditary set BC D (ie, A€ B& (B C A, B € D)= B € B), define
the following generalized Cantor-Bendixson type derivative:

Dp(F)={z € F:Vopennhbd U of z (UN F ¢ B)}.

Note here that U can be restricted to a basis of X since B is hereditary.
Put
|Fls = |F|ps, |z, Flg = |z, Flps,

and note that |F|g < w.

The following is a basic fact concerning Dg.

(34.8) Proposition. For any F € D, DP(F) =0 iff F € B,.

Proof. Let DF(F) = 0. Given z € F, let a = |z, F|g. Let {U,} be a basis
for X. Then for some n, ¢ € U, NDZ(F) € B. Since a < |F|p < w1,
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there are only countably many such U, N Dg(F), so F € B,. Conversely,
if F =J, Fn, F, € Bbut DP(F) # 0. by the Baire Category Theorem
there are m, n with

Unm NDF(F) # 0 & Uy N DF(F) C F,.

If z € U, N DF(F) and DY (F) = DE(F), then = ¢ DG (F) = D3(F), a
contradiction. o

If B={{z}: 2z € X}U{0}, then Dg(F) = F' is the Cantor-Bendixson
derivative. If D = F(X) and B = K(X), then Dg is a derivative such that
DP(F)y=0iff Fisin K,.

(34.9) Exercise. Let X = A in Example 6). Define the following derivative
Dy on Pow(N<N) : Di(T) = {s € T : [T}y] (= [T) N N,) ¢ B}. Show that
for a tree T, [Dg(T)] = Dg([T)).

34.FE Co-Analytic Ranks Associated with Borel Derivatives

(34.10) Theorem. Let X be a Polish space and either D = K(X), or X is
also K, and D = F(X). Let D:D — D be a Borel derivative. Put

Qp={F eD:D®(F)=40}.
Then Qp is I} and the map F — |F|p is a I} -rank on Qp.
Proof. We will use the following simple fact about D.

(34.11) Lemma. Let X be a Polish space and D = K(X), or X is also K,
and D = F(X). Then the map () : DN — D, given by ((Fn) =, Fn. is
Borel.

Proof. Let {U,} be a basis of nonempty open sets in X.

If D = K(X) and U is open in X, then UN(,, F») # 0 iff Imvn(T,, C
U&Unn (Ni<n Fi) # 0), so () is Borel since finite intersection is Borel in
K(X) by 11.4"ii).

If X is K, and D = F(X), let X = J,, Kn, Kn € K(X) and note that

UN((Fa) # 0 © Im3i(Un CU & Uy K0 () Fa) # 0).

But for any K € K(X) the map F € F(X) » FN K € K(X) is Borel,
because if X is a compactification of X, then F € F(X) — F € K(X)is
Borel and FNK = FNK (whele F is the closure of F in X). It follows
that (F,...,F,) — KNFN---NF, is also Borel, and we are done as
before. O



34. Co-Analytic Ranks 273

For convenience, we will now introduce a variant of WO and the rank
z — |x|. Denote by LO* the set of z € 2¥%N which encode a linear ordering
on some subset of N, which has as least element 0. In other words, if for
z € 2YN we let D*(z) = {m € N: z(m, m) = 1} and we define m <% n &
m,n € D*(z) & x(m,n) = 1, then by definition

z € LO* & 0 € D*(z) & <} is alinear ordering of D*(x) &

0 <} m, YVm € D*(z).

Clearly, LO* is closed in 2Y%N, We denote by WO* the set of z € LO* for
which <% is actually a wellordering and by |z|* the associated ordinal < w,.
As for WO and = — |z|, we can see that WO* is IT}-complete and z — |z|*
is a IT}-rank on WO*. Note that {|z|* : z € WO*} = w; \ {0}.

To prove the theorein, we claim that it is enough to prove the following:

i) Qp € H%
ii) There are ] relations R, S C LO* x D such that:
a) If FeQp)\ {0}, then

z € WO* & |z|* < |F|p © R(z,F).

b) If x € WO*, then
FeQp &|F|lp =|z|* & S(z, F).
Indeed,. granting these, we have for F € Qp \.{(2)} that

HeQp&|H|p < |Flp & H=0or3z[R(z, F) & S(z, H)),
which is cleatly X}. Also,

HeQp&|H|p <|F|lp& H=0or3z[R(z',F) & S(z,H)),
where z — 2’ is a Borel function from LO* to LO* such that £ € WO" iff
z' € WO, and for £ € WO* we have |z|* + 1 = |2'|*, so that this is also

1. By 34.3, F — |F|p is a ITj-rank.
So it remains to prove i), ii).

For i): We have
F¢Qp< 3HC F[D(H)y=H & H # 0],

30 ~ QD is 2}.

For ii): Put
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R(z,F) < z€LO*&3he DN(h(O) =F&
vm € D*(z) [h(m) £0&

(m£0=h(m) € () D))

n<ym

(where n <} m & n # m & n <}, m). To see that this works, let F €
Qp \ {0}. Direction = of a) is clear. For <, notice first that if 0 # m €
D*(x), then for some a < |F|p we have (.., D(h(n)) & D**'(F).
(Otherwise, for all a < |F|p, 8 # h(m) C N, cm D(h(n)) C D*+1(F), so
D*(F) = Na<|r|p D> (F) # 0.) So put £(0) = 0 and for 0 # m € D*(z):

f(m) = least a < |F|p suchthat (| D(h(n)) ¢ D**'(F).

nym

We claim that m <} p = f(m) < f(p), so f is order preserving from <}
into |F|p, and thus z € WO* & |z|* < |F|p. To see this, note that for
0 # m € D*(x),

) D)) S () D**N(F) = DI (F),
nim a< f(m)
50 B(m) C MNyesm D(h(n)) € D!C™)(F), and thus D(h(m)) C DI™+L(F).
Soif m <3 p, then (., D(h(¢)) € D(h(m)) C Df(m)+1(F) and therefore

f(m) < f(p). The case rn = 0 can be proved easily.
Finally, let

S(z,F) & zeLO" & 3he DN(h(O) =F&
Vm € D*(z) (h(m) £0&
(m#£0=h(m)= [ D(h(n)))) &

.
n<ym

(\ D(h(m)) = 0).

méeD*(x)

Then S is X} by 34.11, and satisfies easily b). o

Rermark. One can show (using, for example, 27.10 and its hint) that in 34.10
and for the case D = F(X) the assumption that X is K, is necessary.

(34.12) Exercise. Let X be Polish and either D = K(X), or X is K, and
D = F(X). Let B C D be hereditary Borel. Show that Dy is Borel and
thus 34.10 holds for Qp, (=D NB,) and F — |F|g.
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(34.13) Exercise. The following parametrized version of 34.10 is very useful
in applications.

Let X,D be as in 34.10, let Y be a standard Borel space and let
D:Y x D — D be Borel such that for each y € Y, D, is a derivative on D.
Put

Qp = {(y, F) : D°(F) = 0}.
Show that Qp is IT} and that the map (y, F) — |Flp, is a ITj-rank on Qp.

(34.14) Exercise. Formulate and prove an analog of 34.10 for expansions.

(34.15) Exercise. Let D be a Borel derivative on Pow(N) (= F(N)). Let
ng € N. Put
Qp ={ACN:ng¢ D®(A)}.
Then QF is IT}, and the map A — |A|® = least « such that no ¢ D*(A)
is a IT}-rank on QF.
Prove a similar result for expansions on Pow(N).

(34.16) Exercise. Let X be Polish and D a derivative on F(X). Assume
that

S(F,H) < F C D(H)
is 3!. Show that Qp (= {F € F(X): D®(F)=0})isIT} andif AC Qp is
%1, then sup{|F|p : F € A} < w;. In particular, show that this applies to
the Cantor-Bendixson derivative and in fact all Dy for B C F(X) hereditary
m}.

34.F Ezamples

1) Cousider Example 1) of 34.D. The set Qp N Tr is clearly the same
as WF and the IT}-rank T — |T|p (restricted to WF) is clearly the rank
T — p(T) discussed in 34.6.

(34.17) Exercise. Define a paramnetrized derivation, as in 34.13, which gives
appropriately the canonical IT1-rank on WO, which was defined in the proof
of 34.4.

(34.18) Exercise. Consider the example discussed in 33.2. Given a linear
ordering (A, <), we define a transfinite sequence of equivalence relations
(Eq) on A as follows. For z < y € A, put [z,y] = {2 : £ < z < y} and, by
abuse of notation, also put [z,y] = [y,z] if z > y. Then let

Eo ={(z,z): x € A},

Eor1 ={(z,y) : 3z, 322+ - Iza(21, ..., 2, € [2,9]
& Vz € [z,y)3i(2Exz;)) },
Ex = | Eo, if Ais limit.

a<A
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Show that Eo C Ey C ---, and if we let Ec = J, Eo, then
(A, <) is scattered iff Eo, = A x A.

Use this to define a canonical rank on the set SCAT and show that it is a
IT!-rank.

2) Consider next the set
Wi = {S € Tr: Il has a winning strategy in the gaine G(N, [S])}.

Let E be the expansion defined in Example 5) of 34.D (for X = N<N),
Using E we can assign the following rank on Wiyy:

|S|ix = the least £ such that § € S¢ (= Eﬁ(Ps))-

By 34.15 we see that Wy; is IT] (and complete by 33.1 iii)) and S — |S|u
is a IT}-rank.

3) Let X be a Polish space, let D = K(X), and let D = Dg, where
B = {{z} : z € X} U {8}, be the Cantor-Bendixson derivative. Since B is
clearly Borel, we have by 34.12 that K — |K|p = |K|cp is a II}-rank on
the IT] set Qp = Ky, (X). If X is also K, and D = F(X), then the same
D shows that F — |F|cp is a IT}-rank on the IT} set Fy,(X).

On the other hand, the Cantor-Bendixson rank is not a IT}-rank on
the TI! set Fi,(X), when X is not K,. To see this, notice that X, since
it is not K, contains a closed subspace homeomorphic to A (see 7.10), so
we can assume that X = N. Now if F — |F|cp was a IT}-rank, the set
A={F e Ry, (N) : |Flcs < 1} = FI(N)\ {F € F(N) : F' # 0} would be
Borel, which contradicts 27.8.

(34.19) Exercise. Use Example 2) of 34.D to find a canonical IT}-rank on
Fy,(N).

We do not know a “natural” IT}-rank on Fy,(X) for a general Polish
space X.

(34.20) Exercise. Let X be a Polish space and consider again Ky,(X).
As is sometimes customary (see comments following 6.12), we associate to
K, instead of the least a (= |K|cg) such that K* = @, which is always
a successor ordinal if K # @, its predecessor |K|pp = a — 1. Clearly,
K — |K|cp and K — |K |t are equivalent ranks on K(X)\ {8}. (We also
let [|&5 =0.)

We define now the Cantor-Bendixson degree of K € Ky,(X) to be the
(finite) cardinality of the compact set K*, where a = |K| 5. Denote it by
d(K). Thus d(K) < w, and d(K) = 0 iff K = §. Put now

IKllce =w - |Klcp + d(X).
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Note that || K||cp is essentially the pair (| K| 5, d(K)) ordered lexicograph-
ically, i.e.,

IKllce < |ILllce < |K|cs < |Llcp or (IK|ep = |Llcs & d(K) < d(L)).
Show that K — ||K]||cp is a IT}-rank on Ky, (X).

4) (A. S. Kechris and W. H. Woodin [1986]) We will now describe
a canonical IT}-rank on the II} set DIFF of differentiable functions in
¢([0, 1]).

For fe C([0,1]) and 0 < z <y <1, let

(w) f@) - fly)
-y

Given a positive rational ¢ > 0 and f € C([0,1]), define the following
derivative on K([0,1]):

Af(z,y) =

D.j(K)={z € K :Vopennbhd U of z
Jrational p < ¢, r < sin U N[0, 1] such that
([P, Q] n [’I‘, S] NK 75 0& |Af(p’ Q) - Af('r’ S')l 2 €)}

It is easily seen that D,y is Borel uniformly in ¢, f, i.e., D(e, f,K) =
D, s(K) is Borel.

(34.21) Exercise. If f € C([0,1]), K € K([0,1]) \ {8}, and Vz € K(f'(x)
exists), then D, ;(K) is nowhere dense in K, so D f(K) G K.

It follows that for f € C([0,1]),
f € DIFF & Ve € Q*(DZ((0,1]) = 0).

Note that it is enough here to restrict € to the numbers 1/n for n € N\ {0}.
Now define
|flpier = sup [[0,1]|p, ,
eeQt

=sup|[0,1)|p,,, ;-
n>13|[ Il 1/n.f

(34.22) Exercise. Show that for f € DIFF, {z € [0,1] : ' is discontinuous
at £} = U.cq+ De,s([0,1]), so that

|flowrr = 1 & f € C'([0,1]).
(34.23) Exercise. Show that if fo(z) = z*sin(1/z) for z # 0, fo(0) = 0,

then | fo|pirr = 2. (One can actually construct examples of f € DIFF with
{f|p1FF an arbitrary countable ordinal > 0.)
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We verify now that f = |f|pirr is a IT}-rank on DIFF.
Consider the space X = @ff:l X, where X, = [0, 1], and the deriva-
tive Dy on F(X) given by

D4(F) = | Dajns(F N Xn).

n=1

Since D(e, f, K) is Borel, it is easy to see that D(f, F) = Ds(F) is Borel
(from C([0,1]) x F(X) to F(X)). Also,

feDIFF & (f,X)eQp
and, since X is K,, we have by 34.13 that
f = |Xlp; = |flpwrr
is a IT}-rank.
The rank |f|pirr can also be described in a different way, which serves
to illustrate another method for defining IT!-ranks.

For f € C([0,1]), ¢ € Q*, define a tree Tf on A = {(p,q) : 0 < p <
g <1, p,q €Q} as follows: § € T§ and

((PI,QI),‘--,(Pan)) € T; < q; = Di S 1/2 &
(lpia) #0 &
i=1

Vi < n{|Af(Piv1,Gi+1) — Bp(pi, @)| 2 €).
Then it is not hard to see that
f € DIFF & Ve € Q*(Tj is well-founded)
& Vn > O(T}/ " is well-founded),
so we can define

|fIbirr = sup{p(T}) : € € Q*}
= sup{p(T}/”) :n € N,n>0}).

It can be shown in fact that except for linear f (for which |f|ppr = 2),
|fIbirr = @ - |f|pIFF-
(34.24) Exercise. For f € C([0,1]), define the following tree:

Sf = {G}U{(n’ (ph‘h), ey (pm, Qm)) :
((P1,1)s- -+ (Pms Grm)) € T}, n > 0}.
Show that
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f € DIFF & S is well-founded

and for f € DIFF
| flpiFr = PSy (9).

Conclude that f — |flp;pr is a IT}-rank on DIFF (without using its
relationship with | f|pirr)-

This “tree description” of the rank |f|pirr can be viewed as a combi-
natorial analysis of it. Abstractly, from the fact that WF is a IT}-complete
set, one can always assign, given a Polish space X and a IT} set A C X,
a tree T, to each z € X such that z — T, is Boreland z € A & T, is
well-founded. Then z — p(T;) is a IT}-rank on A. One often seeks, for a
given IT] set A, to find a “natural” tree assignment x +— T, which reflects
the structure of A. If a “natural” rank ¢ on A can also be described by some
other means, then this tree assignment and the associated rank z — p(T3)
often give an essentially equivalent rank and so provide a “combinatorial”
analysis of .

5) Let X = C([0,1]))N and consider the set CN = {(f1) € X : (fa)
converges pointwise}. A canonical rank for CN comes from work of Z. Zal-
cwasser [1930] and independently from D. C. Gillespie and W. A. Hurwitz
[1930).

Given (f,) € X and K € K([0,1]), = € K, the oscillation of (f,) at =
on K, is defined by

gy K) = juf i sup{1fm(@') = fal@)]:
m>n>pka e K&|z' - 2| <6}
Define for € € Q*, (f») € X the following derivative on K ([0, 1]):
De,(fn)(K) = {1: e K: w(fn)(z, K)> 6}.
It is easily seen that D(e, (fr), K) = D, (4,)(K) is Borel.

(34.25) Exercise. If (f,) € C([0,1)N and K € K([0,1]) \ {0} is such
that Vo € K(f,(x) converges), then D (y,)(K) is nowhere dense in K,
S0 DE)(fn)(K) g K’
It follows that
(fn) € CN & Vee Q*(D?‘j(fn)([o, 1)) = 0).
So for (fn) € CN, define its Zalcwasser rank by

|(fn)lz = sup |[O’1]|D¢.(fn)'
e€Qt
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(34.26) Exercise. Show that for (f,) € CN, |(fr)|z =1 & (f») converges
uniformly (i.e., {(f») € CN : |(fn)|z = 1} = UCx, as in 23.16, for X =
c([0,1]).

(34.27) Exercise. Find (f.) € CN with |(fa)|z = 2. (Again, examples of
(fn) € CN can be constructed with any countable ordinal > 0 as Zalcwasser
rank.)

As in the case of DIFF, it is easy to verify that (f,) — |(fa)lz is a
IT}-rank on CN.

We can also apply this idea to the set CF of f € C(T) with everywhere
convergent Fourier series, to obtain the IT}-rank

1f1z = |(Sn (N2,

where Sn(f)(z) = T%__, f(m)e'™® is the nth partial sum of the Fourier
series of f. In particular, |f|z = 1 ¢ the Fourier series of f converges
uniformly. Thus {f € CF : |f|z =1} = UCF (as in 23.17). It follows fromn
33.13 and the remarks after 34.5, that for every countable ordinal « there
is f € CF with |f|z > « (i.e., there are f € C(T) that can be expanded to
Fourier series but for which their convergence is “arbitrarily bad”).

(34.28) Exercise. Consider the set QP of quasi-periodic homeomorphisms of
H(X), X compact metrizable (as in 33.J). For.h € H(X), let B, = {K €
K(X) : 3nvz € K(h™(z) = z)}. Show that B, is hereditary Borel and if
Dg, = Dy, is the corresponding derivative on K(X), then

heQP & X € (Br)o & X €Qp,,.

Show that if |h| = |X|p,, then h ~ |h| is a IT}-rank on the IT} set QP.
What is {h € QP : |h| =1}?

Canonical IT}-ranks for other examples of ITj-complete sets we dis-
cussed in Section 33 have been studied in the literature, such as for the
class UNIQ of closed sets of uniqueness, using work of Piatetski-Shapiro
(see A. S. Kechris and A. Louveau [1989]) and for the class of minimal
distal homeomorphisms, using the structure theorem of Furstenberg (see
F. Beleznay and M. Foreman [1997)).
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35. Rank Theory

35.A Basic Properties of Ranked Classes

We will first derive some immediate properties of ranked classes, which are
valid in particular for II}.

(85.1) Theorem. Let I" be a class of sets in Polish spaces that contains all the
clopen sets and is closed under continuous preimages and finite intersections
and unions, If T is ranked, then:

i) T has the reduction property and I the separation property; and,
if there is a C-universal set for T'(C), then T fails to have the separation
property and T fails to have the reduction property.

1) IfT is closed under countable intersections, then T’ has the number
uniformization property and the generalized reduction property.

i) If T is closed under countable intersections and unions, then I'
has the generalized separation property.

In particular, §) - iii) hold for T' = ITJ.

Proof. i) Let A,B C X, X Polish, be in I'(X). Put
(z,n)eRe® (n=0&zc A)or(n=1&z€ B).
Then R € I'(X x N), so let ¢ : R — ORD be a I-rank. Put

z€A* & (2,0) <}, (z,1),
z € B & (z,1) < (2,0).

Then A*, B* € I'(X) and reduce A, B.

The fact about the separation property of I' follows from 22.15 i).
Finally, the last statement of i) follows from 22.15 iv).

i) Let R C X xN, X a Polish space, be in '(X xN). Let ¢ : R — ORD
be a [-rank. For each z € projx(R), we will look at the n with (z,n) € R
and choose among them those for which ¢(z,n) is least. There may be
many of them, so we will then choose among them the least oue in the
usual ordering of N. In other words, let

(z,n)eR" o (z,n)€ER&
¢(z,n) = min{p(z,m) : (z,m) € R} (=a) &
n = min{m : (z,m) € R& ¢(z,m) = a}.

Then R* clearly uniformizes R. To see that R* € I note that

(z,n) € B* & (x,n) € R & Vm|(z,n) <, (z,m)] &

vm[(z,n) <, (z,m) or n < m).
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The second statement, about the generalized reduction property, fol-
lows from 22.15 iii) (since I' is reasonable).
iii) Follows from ii) and 22.15 ii). o

Note that from iii) of the preceding theorem we obtain another proof
of the Novikov Separation Theorem 28.5.

It also follows from i) that there are two disjoint IT} sets that cannot be
separated by a Borel set (e.g., in the space C, and thus in any uncountable
Polish space). The union of these sets is an example of a co-analytic space
in which Souslin’s Theorem 14.11 fails.

We will see now some concrete examples of this phenomenon.

(35.2) Exercise. (Becker) For any set A C X x Y, where X,Y are Polish,
put

A= {z e X: Vy(z,y) ¢ A},

A? = {z e X :y(z,y) € A}.

If A is Borel, show that A, A? are IT}. Prove that there is a closed F C
N x N such that F!, F? cannot be separated by a Borel set.

Use this to show that the following two disjoint T} subsets of Tr are
Borel inseparable: WF, UB (see 33.A). Next use the proof of 33.9 to show
that the following two disjoint IT} sets are Borel inseparable: DIFF, {f €
C([0,1]) : f'(z) exists except at exactly one point}. Formulate analogous
results related to 33.11 and 33.13.

Remark. Note that if A,B C X, are IT} sets that are Borel inseparable,
then for any Borel set P with A C P, there is x € PN B, i.e., we have the
following overspill property: Any Borel condition true for all elements of A
must necessarily (overspill and) hold for some element of B.

(35.3) Exercise. Let I contain all clopen sets and be closed under continuous
preimages and countable intersections and unions. Assume I' is ranked.
Then T satisfies the following Principle of Dependent Choices:

If AC X x Nx N, X Polish, is in I" and Va¥Vm3n(z,m,n) € A, then
for each g : X — N with graph in A thereis f : X x N — N whose graph is
in A such that f(z,0) = g(z), (z, f(z,n), f(z,n + 1)) € A for every n,z.

In particular, this holds for I' = IT}.

For completeness let us also state the following fact.

(35.4) Exercise. Show that the classes £, £ > 2, on Polish spaces and the
class X9 on zero-dimensional Polish spaces are ranked.

This gives us the following picture:
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where the boxed classes are ranked and have the number uniformization

and generalized reduction properties, and the others have the generalized
separation property (only in zero-dimensional spaces if £ = 1).

35.B Parametrizing Bi- Analytic and Borel Sets

It is clear (see, e.g., 22.7) that there is no X-universal set for Al(X), for any
Polish space X. The following result. provides however a nice parametriza-
tion of the A] sets.

(35.5) Theorem. Let X be a Polish space. There is a II} set D C C and
S e ZHC x X), P e M}(C x X) such that for d € D, Sq = P4, which we
denote by Dg, and {Dg:d € C} = A}(X).

Proof. By 32.A, let U € C x X be C-universal for IT}(X) and as in the proof
of 22.15 iv) form the universal pair (UY,U"). So for A, B € I1}(X) there is
y € C with (U°%), = A, (U'), = B. By 35.1, let 7,7 be IT} sets reducing
U U! and put

de D & Vz|(da) el or (d,z) U]
(¢ Vz[(d, z) € U° or (d,z) € U")).

Clearly, D is IT}. Let also

P(d,z) & U’ (d, z),
S(d,z) & ~U'(d, ).

Since 170 NI = 0, it is clear that for d € D, P; = S4, which we denote by
Dg. Also, it is clear that Dy € A}(X). Conversely, let A € Al(X) and put
B = ~ A. Then for some d, (U°)y = A, (U')a= B. Since AUB =X, it is
clear also that (170),1 = A, (ﬁl)d = B,andsod € D and Dy = A. o

Such a triple (D, S, P) provides a parametrization (or coding) of
Al(X), viewing d € D as a parameter (or code) of Dy. Note that if
(d,z) € D& z € Dy, then D is Al on D x X. We will see in 35.8 that the
requirement that D € IT}(C) cannot be replaced by D € £}(C).

By Souslin’s Theorem this clearly also provides a parametrization of
the Borel sets. However, there are several natural ways to parametrize Borel
sets directly based on their definition. We describe one next.

Let B C C be defined as follows: Given z € C, let (z)o(n) =
z(3n), (xh(n) = z(3n + 1), and (z)2(n) = z(3n + 2). Fixing a bijection



284 IV. Co-Analytic Sets

() : NN 5 N, we can view (z)o as being the characteristic function of a
subset of N<N_ which we denote by T, and ()1 as the characteristic func-
tion of a set S, € N<N. We can also view (), as a function f, : NN — N|
where we let f;(s) = n iff there is a unique n with (x)2(({s),n)) = 0,
otherwise f;(s) = 0. Let B now be the set of all b satisfying:

Ty is a nonempty well-founded tree & S, = {s € Ty : s is terminal}.

Clearly, B € IT}(C). Fix now an open basis {V,,} for X including 0, X.
For each b € B define a set B, C X as follows: By recursion on the well-
founded relation < = ?: on Tj,, we define a set Bf C X for s € Ty by letting
B§ = Vj,(s if s is terminal, and for s non-terminal, B = |J,-per, BS ™
if length(s) is even, By = (\;-ner, Bf ™ if length(s) is odd. Finally, let
By, = B. 1t is easy to see that {B, : b € B} = B(X).

There is an alternative way to think of B,. For b € B consider the tree
Ty, and given any z € X, let G(b, ) be the following clopen game:

I No N2

II ™ n3

n; € N; Vi[ (no,...,n;—1) € Ty is not terminal = (ng,...,n;) € Tp); [ wins
iff for the unique 7 € N such that s = (no,...,n;—1) € T} is terminal, we
have = € Vy,(5). (If i = 0, s = @ here.) Then we have:

(35.6) Exercise. i) For b € B, x € B, & I has a winning strategy in G(b, z).
ii) There are Q € Z}(Cx X), R € IT}(CxX) such that forb € B, Qp =
R, = B,.

Using these parametrizations one can also prove a “uniform” version of
the Lusin Separation Theorem 14.7 and Souslin’s Theorem 14.11, which is
a version of the so-called Souslin-Kleene Theorem (see Y. N. Moschovakis
[1980]). For simplicity we will consider the case X = A only.

(35.7) Exercise. Let & be C-universal for TI}(N), and (4°,U?) be the corre-
sponding universal pair. Show that there is a continnous function f : ¢ — C
such that if (~ U"),, (~ U"), are disjoint, then f(y) € B and By, sep-
arates (~ U%), from (~ U'),. In particular, if d € D (as in 35.5), then
f(d) € B and Dy = By(q). (For definitiveness, in the definition of B, we fix
{V.} to be an enumeration of {N, : s € NN} u {9}.)

(35.8) Exercise. Show that there is no D’ € $1(C) and $' € Z1(Cx(), P’ €
l;iic x C) such that for d € D', S; = Py (= D)) and {D,:de D'} =
0).
1
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35.C Reflection Theorems

(35.9) Definition. Let X be a Polish space and T' a class of sets in Polish
spaces. If ® C Pow(X), we say that ® is T on T if for any Polish space Y
and any A € (Y x X) the set

Ap={yeY: A, € ®}
is also in T,

For example, if X = N x Z, with Z Polish and ®(B) & |J,, B, = Z,
then ® is IT! on IT}. (Recall that ®(B) « B ®.)

(35.10) Theorem. (The First Reflection Theorem) Let T be a class of sets in
Polish spaces which is closed under continuous preimages and finite unions
and intersections. Assume I' is ranked. Then for any Polish space X and
® C Pow(X) which isT onT, and any A C X in T, we have

&(A) = 3B C A(B € A & ®(B)).

In particular, this holds for T' = IT}.

Proof. Let ¢ : A — ORD be a I'-rank. If ®(A) but forno BC A, B€ A
we have ®(B), then we claim that

r¢ Ao ®({y:y <))

Indeed, if = ¢ A, then {y:y <}, z} = A, while if z € A, then B = {y:
y <p z} isin A and clearly B C A.

By 342, <}, isin[,sosince®is"onT, ~ A €T, and thus 4 € A,
which is a contradiction. a

Sometimes the First Reflection Theorem is formulated in an equivalent
“dual” form:

Let I be a class of sets in Polish spaces, X be Polish, and ® C Pow (X).
We say that & is T on I if for any Polish space Y and any A € ['(Y x X)
the set

Ap={yeY: A, c®}

isin I. Then 35.10 is equivalent to the statement (under the same hypothe-
ses on I') that if ® is T on I’ and ®(A) holds for A € ' then we also have
®(B) for some B 2 A, B € A. To see this, apply 35.10 to ®'(A4) & &(~ A).

(35.11) Exercise. Derive the Novikov Separation Theorem 28.5 from 35.10.
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(35.12) Exercise. Let (A,) be a sequence of X! sets in a standard Borel
space with lim, A, = @. Show that there are Al sets B, 2 A, such that
li_man =9.

(35.13) Exercise. (Analytic sets with countable sections) (Lusin) Let X,Y
be standard Borel spaces and A C X x Y be analytic such that Vz(A, is
countable). Show that there is B 2 A, B Borel with Vz(B, is countable).
In particular, there is a sequence of Borel functions f, : X — Y with
A; C {fa(z) : n € N}. (See also 39.23 here.)

(35.14) Exercise. Let X be a standard Borel space, < a I} partial pre-
orderingon X (ie,z <z & (r<y&y<z=z<2)),and AC X be
3! such that < | A is a linear preordering (i.e., moreover, z < yory < z
for all z,y € A). Show that there is B D A, B € A} such that <|Bisa
linear preordering.

(35.15) Definition. Let X be a Polish space and T" a class of sets in Polish
spaces. If ® C Pow(X) x Pow(X), we say again that ® is T on T if for
any PolishY,Z and any ACY x X, BC Zx X inT, the set

Ap ={(y,2) €Y x Z: ®(Ay, B,)}

is also in T. We say that ® is monotone if ®(A,BY& AC A & BC B' =
®(A',B') for any A,B C X. Finally, we say that ® is continuous downward
in the second variable if ®(A,B,) & B, 2 Bny1 = ®(A,N),, Br)-

(35.16) Theorem. (The Second Reflection Theorem) Let I' be a class of sets
in Polish spaces closed under continuous preimages, countable unions and
intersections, and co-projections. Assume I' is ranked. Then for any Polish
space X and ® C Pow(X) x Pow(X) which is ' on I', monotone, und
continuous downward in the second variable, we have foranyAC X, AeT

®(A,~ A)=3IBC A[Be A & &B,~ B).
In particular, this holds for T =TI},
Proof. Assume A C X is in I’ and ®(A,~ A) holds.

Claim.I_fCQX, CeA and CC A thenthereisCe A, CCCCA
with ®(C,~ C).

Proof of clutm. Let
YD)y CCD&®D.~ ).

Then ¥ is T on T', and \II(A_) holds, as ~ C 2 ~ A and ® is monotone. So
let C C A be in A with ¥(C).

Using this claim, starting from any Cy C A, Co € A we can define
recursively Cp, such that C, C Cpy1 C A, Cp € A, and ®(Crp1,~ Cy)
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holds for any n. Put B =J,, Cn. Then B € A, B C A, and by monotonic-
ity, ®(B,~ C,) holds for each n, so by downward continuity in the second
variable, ®(B,(,, ~ Cv), i.e., ®(B,~ B) holds. ]

Again there is also a “dual” formulation of this reflection theorem: If
@ is ' on I', hereditary (i.e., closed under subsets instead of supersets), and
continuous upward in the second variable, then forany AC X, A€l

&(A,~ A) = 3IB D A[B € A & &(B,~ B)).

(35.17) Exercise. Let X be a Polish space and P C X x X be IT}. Put
®(A,B) & Vz ¢ AVy ¢ B(z,y) € P.

Show that & is IT} on IT}, monotone, and downward continuous in the
second variable.

(35.18) Exercise. (The Burgess Reflection Theorem) Let I" be as in 35.16.
Let X be a Polish space, R C XM x X™ (n € N) bein T, and let

®(A) & Vz € XMy e X" {|Vi(z; ¢ A) &
Vi < n(y; € A)] = R(z,y)}.
Show that if A C X is in I, then
®(A) = 3B C A(B € A & ®(B)).

(35.19) Exercise. (Burgess) Let X be a standard Borel space, E C X?
a X} equivalence relation. If E C A (C X?), where A is IT}, show that
there is a Borel equivalence relation F with E C F C A. Conclude that
E = N¢<o, B¢, where (E¢) is a decreasing transfinite sequence of Borel
equivalence relations.

A theorem of Silver, that we will not prove here, asserts the following:

(35.20) Theorem. (Silver) If X is a Polish space and E C X? a II} equiv-
alence relation, then either E has only countably many equivalence classes
or there is a Cantor set C C X such that if z,y € C, ¢ # y, then ~zEYy.

(85.21) Exercise. i) Show that 35.20 implies the Perfect Set Theorem for
31 sets.

ii) (Burgess) Use 35.19 and 35.20 to show that if E is a £} equivalence
relation on a Polish space X, then either X has at most ¥; many equivalence
classes or there is a Cantor set C C X with z,y € C, z # y = -z Ey. Give
an example of a X! equivalence relation with exactly X, many equivalence
classes for which there is no such Cantor set.
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35.D Boundedness Properties of Ranks

(35.22) Theorem. Let I' be a class of sets in Polish spaces closed under
continuous preimages, finite intersections and unions, and co-projections.
If X is Polish and AC X isin '\ A, then for every I'-rank p:A — ORD
and every BC A in I, there is xo € A with ¢(z) < ¢(zo), Vz € B.

Proof. Otherwise,
zeAﬁay(yeB&zsgy),

so A €T, thus A € A, which is a contradiction. o
We apply this now to ' = IT}.

(35.23) Theorem. (The Boundedness Theorem for IT)-ranks) Let X be a
Polish space, let A C X be a II} set and let p:A — ORD be a regular
IIi-rank, with p(A) = a. Then a < w, and A is Borel iff o < w,.

If y:A — w1 is any IIl-rank and B C A is X}, then sup({¢(z):z €
B}) <wy.

Proof. Let z € A. Then the relation
y<zoyl,r&zs,z&y<,2

is Borel and well-founded, so p(<) = ¢(z) < uwn, by 31.1. So & < w;.
If A is Borel, then the relation

y<' 29,26 Aky<,2

is Borel and p(<’) = a < wy. If @ < wy, A is clearly Borel.
The last statement follows from 35.22. O

(35.24) Exercise. Let X be a Polish space, A C X a IT}-complete set, and
¢ : A — w alIll-rank. Let Y be a Polish space, B C Y a Al set, and
f:Y — X a Borel function withy € Be f(y)e A. Put A, ={z € A:
¢(z) £ a}, o < wj. Show that for some a < wy, ¢ € B & f(z) € A,

(35.25) Exercise. Show that there is no uncountable 3} set A C WO such
that for any two distinct x,y € A we have |z| # |y|. Similarly, assuming
31-Determinacy, show that there can be no such A € IT}. (More generally,
there is no such “definable” A using “Definable Determinacy”.)

There is an even stronger boundedness property of ranks with respect
to well-founded relations, which generalizes 31.1. For its proof we will bor-
row a basic tool from effective descriptive set theory, which is a form of the
so-called Recursion Theorem.
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(85.26) Theorem. (Kleene) Let I' be a cluss of sets in Polish spaces which
is closed under continuous preimages. Assume that for each Polish space
X there is a C-universal set for I'(X). Then for each such X there is a
C-universal set for I'(X), U with the following fized point property: If P C
Cx X isin T, there is py € C with Py, = Uy,

Proof. Let V C C x (C x X) be C-universal for I'(C x X). For p € C, let
(p)o(n) = p(2n),(p)1(n) = p(2n + 1) and put p = (g, ) if ¢ = (p)o, 7 =

(p)1- Define
Up,x) < V((p)o, (P, ).

Clearly, U is C-universal for I'(X). Now given P € I'(C x X), there is go with

V(g0 p,T) & P({p,p), ). So U({go,p),z) & P({p,p) ). Let po = (g0, q0)-
0

(85.27) Theorem. (Moschovakis) Let I' be a class of sets in Polish spaces
containing the Borel sets and closed under Borel preimages, finite intersec-
tions and unions, and co-projections. Assume for each Polish space X there
ts a C-universal set for I'(X). Then if AC X, X a Polish space, is Borel
I-complete and p:A — ORD is a regular I'-rank with ¢(A) = 8, then for
any well-founded relation < in I' we have p(=) <é.

Proof. We can assume that < is a relation on X. Let U be as in 35.26. Let
f:CxX — X be Borel with u € U & f(u) € A. Let ¢(u) = ¢(f(u)).
Clearly, 9 is a I'-rank on i and for u,v € U, u <y v = f(u) <, f(v), so
it is enough to find py € C such that (po,z) € U for all z and z < y =
(po, ©) <y (po,y)- It will follow then that {f(po,z): 2z € X} = Bis a X},
so I subset of A, and by 35.22 there is ao € A with ¢(f(po,z)) < ¢(ao)
for all z. Singe also ¢ < y = (f(po,z)) < @(f(pe,v)), it follows that
(<) < plag), < 6.
To find py, let P C C x X be defined by

P(q,y) & Vz[z < y = (¢, 2) <}, (3, 9))-

Clearly, P € T, so by 35.26 let po be such that P(po,y) < U(po.y). We
claim that (po,y) € U for all y. Otherwise, pick y minimal in < for which
(Po,y) ¢ U. Then —~P(po,y), so let z be such that [z < y & ~(po,z) <},
(vo,9))- Since (po,y) & U, ~(po,z) <y (pn,y) implies that (po,z) ¢ U,
contradicting the minimality of y. Since P(po,y) holds for any y, it is clear
that for any z <y, (po, ) <}, (po.¥), 80 ¥(po, ) < ¥(po, ). a

Here, for a prewellordering < on a set S, we denote by < its strict part:
z<yez<y&y Lz If pis the unique regular rank on S with < = <,
then ¢(S) = p(<).

For each class I of sets in Polish spaces, define

6r =sup{p(<) : < is a A prewellordering}.
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(35.28) Corollary. Let I' be a ranked class as in 35.27. Then

6r = sup{p(<) :< is a T well-founded relation}
= p(<,). for any regular I'-rank ¢ : A — ORD,
on a Borel I'-complete set A.

For I' = ITj, we let 6] = 6rp:. Thus 8} = w;.

(85.29) Exercise. (Moschovakis) Let I" be a ranked class as in 35.27. If X
is a Polish space and ¥ : Pow(X) — Pow(X) is an expansion, we say that
T is T on I if for each A € I'(Y x X), Y a Polish space,

Ay = {(z,y) : 2 € ¥(Ay)}

is in I. Show that if A € I'(X) and ¥ is T on I', then ¥*°(4) =
Ue<s. ¥6(A), ¥°(A) isin T, and if B C ¥*°(A) is in I', there is £ < &p
with B C ¥¢(A). In particular, this holds for I' = IT}.

35.E The Rank Method

Theorem 35.23 is the basis of another method for showing that a given IT}
set is not Borel, which is called the rank method: Given a IT] set A, find a
II}-rank ¢ : A — w; and construct for each & < w; an element = € A with
p(z) > a.

(85.30) Exercise. Use the rank method to show that WF, WO, Ky (X), for
X an uncountable Polish space, DIFF are not Borel.

Note also that 35.23 implies the following overspill property: If A is a
IT} set, o : A — w, is a IT}-rank, and B is a X} set such that Va < w3z €
A(z € B & () > @), then there is € B\ A, i.e., every I} property,
which is true for elements of A of arbitrarily large rank, must “overspill”
and hold for some element outside A. This can be used as an existence
proof method.

(35.31) Exercise. Let X be a separable Banach space. Show that X is uni-
versal iff it contains closed subspaces isomorphic to C(K), for K countable
closed subsets of C of arbitrarily large Cantor-Bendixson rank.
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35.F The Strategic Uniformization Theorem

We will next use boundedness to show that one can define winning strategies
for open games on N “in a Borel way”.

(35.32) Theorem. (The Strategic Uniformization Theorem) Let X be a
standard Borel space and A C X x N a Borel set with open sections. If
player I has a winning strategy in G(N,A;) for all z, then there is a Borel
function op: X — Tr such that VYa(or(z) is a winning strategy for I in
G(N,A.)). (We view strategies here as trees on N.)

Proof. It will be more convenient to show the easily equivalent statement
that if A C X x N is Borel with closed sections, and II has a winning
strategy in G(N, A;) for all z, then there is Borel oy : X — Tr, with
on(z) a winning strategy for II in G(N, A,.) for all z.

By 28.9, let  — S be a Borel map from X into Tr such that A, = [S,].
Thus, in the notation of Example 2) of 34.F, S, € Wy for every z € X.
Now {S; : z € X} is a X} subset of Wy and since S +— |S|i1 is a IT}-rank
on the IT}-complete set Wy, there is an ordinal £ < w, with |S,|i < £ for
all z. It is easy now to read off the strategy oy (z) from 20.2 (see 20.4) and
show that oy is Borel. Q

There is actually a stronger version of 35.32: If X is a standard Borel
space and A C X x N is Borel with open sections, then A* = {z : I has
a winning strategy in G(N, A;)} is a IT] subset of X and there is a IT}-
measurable function o1 on A* (i.e., for open V, o7 (V) is in IT}) such that
Ve € A*(o1(z) is a winning strategy for I in G(N, A;)). For a proof, see
39.22.

(35.33) Exercise. Show that if X is a standard Borel space and A C X x N
is Borel with open sections, then there is a o(X})-measurable function oy
from B = {z : II has a winning strategy in G(N, A;)} into Tr such that for
z € B, on(z) is a winning strategy for II in G(N, A;). Find an example of
such an A for which Vz(II has a winning strategy in G(N, A;)) but there is
no Borel function oy : X — Tr such that Vz(op(z) is a winning strategy
for IT in G(N, Az)).

(35.34) Exercise. Show that if X is a standard Borel space, A C X x N is
3}, and Vz(A, is meager), then there is a sequence (A,) of Borel sets with
closed sections such that A C |J,, A,, and Y2((A,), is nowhere dense).

(35.35) Exercise. In the notation of 35.34, if Vz(A, is o-bounded), there is
a sequence f, : X — N of Borel functions such that YaVy € A;3n(y <
fn(@)). (See 21.24.)
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35.G Co-Analytic Families of Closed Sets and Their Sigma-
Ideals

Let X be a Polish space. A subset F C F(X) is hereditary if F€ F & H €
F(X), HC F = H € F. We will study here IT} (in the Effros Borel
structure) hereditary families of closed sets and the o-ideals they generate.

Examples of such F that we will encounter are F(X), all closed sets
of cardinality < 1, all nowhere dense closed sets, all compact sets, and all
closed subsets of a IT] set A C X.

(35.36) Exercise. Verify that all these examples are indeed IT}.

We denote by F) the o-ideal of subsets of X generated by F, i.e,
AcF, @ 3F) (Face F&ACU,Fn) Soif A€ F,,then A€ F, &
AcF,.

First note the following simple fact.

(35.37) Proposition. Let X be a Polish space and F C F(X) a hereditary
II} family. Then {F € F(X):F € F,} is I1}.

Proof. Consider the derivative Dz on F(X) associated with F as in Ex-
ample 6) of 34.D. Then by 34.16 and 34.8, {F € F(X): Fe F,} = {F €
F(X):DR(F) =0} is II}. o

We generalize this now to X} sets.

(35.38) Theorem. Let Y be a Polish space and F C F(Y) a hereditary IT}
family. Let X be a standard Borel space and AC X x Y a L} set. Then
{z:A, € F}} isTI.

Proof. We can assume, of course, that X is Polish. Let f : NN = X x Y
be continuous with f(N) = A (assuming, without loss of generality, that
A# Q). Let HC X x N be defined by

(z,2) € H & projx(f(z)) = =.
So H is closed. Let £ C F(N) be defined by
FeFfeo projy(f(F)) e F.

As F — projy (f(F)) is Borel (from F(N) into F(Y)), F is hereditary II}.
It is easy now to check that for each z,

A € F, e H e Fy e Hy e F,
Since H is closed, as in the proof of 35.37, we have

H, ¢ F, & DF(H) # 0
& 3F € F(N)(F C H, & DE(F) # 0),
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which is £} by 35.37 and the fact that
(F,z)e Re FC H,
is 31, since if {V,,} is an open basis for Y, then
FCH,&VWFNV,#0= Jy(y eV, &(z,y) € H)).

a

(35.39) Corollary. Let Y be a Polish space and F C F(Y) a hereditary
II family. Let X be a standard Borel space and AC X x Y a I} set. If
Vz(A, € F}), then there is a Borel set B 2 A with Vx(B; € F}).

Proof. By 35.38 and the First Reflection Theorem 35.10. o
Next we prove the following separation theorem.

(35.40) Theorem. Let Y be a Polish space and F C F(Y) a hereditary I1}
family. Let X be a standard Borel space and A,B C X x Y be disjoint £}
sets. If Vz(Ay € F), then there is a Borel set C separating A from B such
that Vz(C, € F).

Proof. Let ® C Pow(X x Y) be defined by
®(P) & Vz(P, e F) & PN B =40.

Then & is IT} on X} since if PC Z x X x Y, Z Polish, is X1, then if {V,,}
is a basis for Y we have
®(P,)eVz(P., € F)& P,NB=10
SVIVF e FYNFC P, .= FeF)&
P.NB=90
e VaeVF e FY)Vn(V,NF #0 =
VaNP . #0)=>FecFl&
P.NB=4¢,
and so
Pq)(z) = @(Pz)
is clearly II}.

Since ®( A) holds, we have, by the First Reflection Theorem, that there
is a A} set D with A C D and &(D). So D, € F and DN B = . Put
E=~D.

Since ~ A is IT} and ~ A, is open for each x, we have

~ A= (@n x Vo),
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where Q, = {z: V, C ~ A;}, and thus @, is I1}. Since EC ~ A, Yw €
E3n(w € @, x V,,). By the First Reflection Theorem again, applied to ¥ C
Pow(N x X) given by

¥(R) & Y(z,y) € En|(n,z) e R& y € V)
(e Vwe E3n(w € R, x V,)),

we can find Borel C), with C] C @, and Yw € E3n(w € Cj, x V,,). Put
~ C = J,(C,, x V). Then C is Borel, C; is closed for all z, and since
EcCU,(ChxVp)=~C,wehave C; C ~ E; =D, C D, € F, s0
C, € F. Finallyy, CC ~E=D,soCNB=0,and ~C C ~ A, so
ACC. a

(35.41) Exercise. State explicitly the applications of 35.40 for the examples
of 35.36.

(35.42) Exercise. Show that if Y is Polish, F C F(Y) is hereditary IT}, X
is standard Borel, A,B C X x Y are disjoint X}, and Vz(A, € F}), then
there is Borel C separating A from B such that Vz(C, € F)).

The following gives the main result concerning Borel sets with sec-
tions in F. It generalizes a result of Saint Raymond, which we will see
immediately after.

(35.43) Theorem. (Burgess, Hillard) Let Y be a Polish space, F C F(Y)
a hereditary T} family. Let X be a standard Borel space and AC X x Y
a 31 set such that Vz(A, € F)). Then A C U, An, with A, Borel and
VnViz((A,), € F). Moreover, if A is Borel and every section Ay is in F,
(so Ay € F5), then we can find A,, Borel with A=J,, An and (A,), € F
for all n,zx.

Proof. We will reduce it first to the special case where X is Polish, Y = N,
and A is closed, in which case we have Borel A, with A = |J,, A, and
(An)z € F for all n,z.

We can clearly assume that X is Polish and A # @. Then let f : N —
X x Y be continuous with f(N) = A. Define H C X x A by

(z,2) € H & projx(f(2)) =z,
so H is closed in X x N. Define F C F(N) as in the proof of 35.38, i.e.,
F € F & proj, (f(F)) € F.

Again, F is hereditary II! and, since A, € F; & H, € F,, we have
Vz(H, € F,), so assuming the special case above, H = |J, Hn, H, Borel

with (H,), € F. Put (z,y) € By, & y € projy(f((Hn)s)), so that B, is
X1, (Bn)s € F,and A=J,, Bn. Put (z,y) € Bn, © y € (B,)s. Then B,
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is £} and (B,), € F. By 35.40, let A, be Borel such that B, C A, and
(An)z € F.

So we have proved the first assertion of the theorem from the special
case. To prove the second assertion, assume additionally that A is Borel
and A, is F, for all z. Then instead of using F as before, we use F, where
F C F(N) is given by

FeFeFeF&f(F)CA

This is again hereditary H}. Since A, € F, for all z, it follows that H, € F,
for all z. So let H = |J, H,,, with H,, Borel, be such that (H,,), € F for
all z. Let (z,y) € D, & y € projy (f((H,)z)). Then D, is =1, (Da)s €
F, (Dn)z € A; for all z, and A = J,, Du. Put Dy(z,y) © y € (Dn)s.
Then D, is B}, (Dn); € F, and A = J,, D,.. Applying 35.40 to D, and
~ A, we get Borel sets A, with D,, C A, C A and (An)z € F, for all z.
Also, A = J, Ay, and we are done. '

So it remains to prove the special case: If A C X x N is closed, F C
F(N) is hereditary IT}, and Vz(A; € F,), then A = |J,, Aa, with A, Borel
and Vz((An)z € F).

Consider the derivative Dr = D associated with F, as in Example 6)
of 34.D. Thus for each z, A; € Qp. We first argue that sup{|A;|p : = €
N} < wy. To see this, notice that {F € F(N) : 3z(F C A,)} is £} and
contained in Qp, and so we are done by 34.16.

The main claim is now the following:

Claim. We can write A = |J,, E,,, where E,, is Borel and for each z, (E,); €
F(N) and D((E,);) = 0.

Granting this, the proof is completed as follows: It is enough to show
that if E C X x N is Borel such that for each z, E, € F(N) and D(E;) = 0,
then E can be written as a countable union of Borel sets with sections in
F.If y € E,, then there is s € N<N such that NN E, € F and y € N,. So
if for s e NN, C, = {z: N,n E; € F}, then E C |J,(Cs x N,), and C; is
H}. By the First Reflection Theorem, we can find Borel sets D, C C, such
that E C |J,(Ds x N,). Hence if E; = (D x Ns)NE, then E = J, E;, E,
is Borel and (E;); = E, NN, € Fifz € D, (C (), while (E;); =0 € F
(as we can clearly assume that F # 0) if x ¢ D;. This completes thie proof
modulo the claim.

Proof of claim. Let F' = {F € F(N) : D(F) = @¢}. Then F' is also
hereditary II}, since

F e F' & VYa(z ¢ D(F))
& VzIse NNz e N, & N,nF € F).

For each a < un, let

(z,y) € A* & y € D*(Ay).
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Then by induction on o we can show that A* is £1. The point is that if
B C X x N is X} with closed sections, then

ye€ED(B,) & (z,9) € B&VseNNye N, =
IF € F(N)(F C N, B, & F ¢ F)),

so “y € D(B,)” is T as well.

We will finally prove by induction on « that if @ C X x A is a Borel
set with closed sections and A* C @, then A\ @ is contained in a countable
union of Borel sets with sections in F'. Since for some o < w,, A* = §,
taking @ = @ we are done.

Case I. a = 1. Then A! C Q. Since Q has closed sections, ~ @
U,en<n(@s x N), with @, Borel by 28.7. Thus A\ Q = U, ((Qs x N5)NA)
U, As, where A; = (Qs x N;) N A is Borel and has closed sections. Also,
(As)s € Az \ AL, s0 D((A,)2) € D(AZ)N(As)s =0, ie., (As)s € F.

Case II. o = X is limit. Let A* C Q. Since A* =, A%, by the Novikov
Separation Theorem there are Borel sets B, 2 A% with [, ., Ba € Q. By
35.40, for F = F(N) we can find Borel sets Q, such that A* C @, C B,
and Q. has closed sections, Yo < . So also [, ., @« € Q. By induction
hypothesis, A \ Q, can be covered by countably many Borel sets with
sections in F' for & < A, and since A\ Q C |, (A \ Qq), s0 can A\ Q.

Case IIl. o = B + 1. Let AP*1 C Q. As in Case I, write A®\ Q = |, A,
with A, now analytic with sections in F’ (note that D(A?) = A%+1). So
by 35.40 again, A® \ Q is contained in a countable union, say M, of Borel
sets with closed sections in F'. Since AP\ Q C M, A® C QU M, and
one more application of 35.40 shows that there is a Borel set Q' 2 Af
with closed sections and @' C QU M. By induction hypothesis, A\ @ can
be covered by a countable union of Borel sets with sections in F'. Since

A\QC (A\ Q) u(Q'\Q) C (A\Q')U M, we are done. ]

(35.44) Exercise. i) State the particular instances of 35.43, corresponding
to the examples of 35.36.

ii) Let Y be a Polish space, F C F(Y) a hereditary II! family. Let X
be a standard Borel space and A,B C X x Y be X} sets such that for all
z, A, can be separated from B, by an F, set. Then we can find Borel sets
C, with (C,,),; € F for all n,z and |, C,, separating A from B.

35.H Borel Sets with F, and K, Sections

(35.45) Theorem. (Saint Raymond) LetY be a Polish space, X a standard
Borel space, and AC X xY a Borel set with A, € F, for allz € X. Then
A=, An, with A, Borel such that (A,), is closed for all x.
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In other words, in the notation of 28.10, A € Y.
Proof. Take F = F(Y) in 35.43. o

(35.46) Theorem. Let Y be a Polish space, X a standard Borel space, and
A C X xY Borel such that A, is K, for all x.

i) (Saint Raymond) There is a sequence of Borel functions K,: X —
K(Y) with Az = U,, Kn(2) for oll z.

i1) (Arsenin, Kunugui) There is a Borel uniformization of A (and so
in particular, projx(A) is Borel).

Proof. i) By 35.43 and 35.36, let A, be Borel with compact sections such
that A = |J,, An. Then, by 28.8, z — (A4,); = K, (z) is Borel.
ii) Note that projx(A) = {z : In(K.(z) # 0)} is Borel and the
function
£ projx(4) — K(Y)

given by
f(z) = Kn@)(2),
where
n(z) = least n such that K,(z) # 0,

is also Borel. Let ¢ : K(Y) — Y be Borel with ¢(K) € K if K # (. Then
g(z) = ¢(f(x)) is a Borel uniformizing function for A. o

(35.47) Exercise. (Hurewicz) Let Y be a Polish space, let X be a standard
Borel space, and let A C X x Y be Borel. Show that for £ < 2,{z: A, is
£} is Iy (Similarly for ITY, if £ < 2, and for K,.)

A. Louveau [1980,1980a) has shown that 35.47 is true for all £ < w,.
Moreover, he has proved the following extension of 35.46 i): Let Y be a
Polish space, X be a standard Borel space and A C X x Y be Borel. Let
B={z:A,is K,} (so that by 35.47 B is ITI}). Then there is a sequence
of functions K, : B — K(Y') each of which is IT}-measurable in B, i.e., for
any open U C K(Y), K;'(U) is II}, and Vz € B(A,; = |J, Kn(z)). (A
proof of this can be given using 28.21 and 39.22.)

(35.48) Exercise. (Louveau-Saint Raymond) Give a proof of 35.45 and 35.46
based on 35.32 and 28.21. In fact, show by this method the following result
of Saint Raymond:

If Y is a Polish space, X is a standard Borel space, and A,BC X xY
are disjoint X} sets such that A,, B, can be separated by an F, set for
each z, then there is a sequence (C,,) of Borel sets with closed sections such
that |J,, Cr separates A from B.

A. Louveau [1980,1980a) has appropriately extended this result to 22
for all ¢ > 2.
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(85.49) Exercise. Let G be a Polish locally compact group, X a standard
Borel space, and (g,z) — g¢.z a Borel action. Show that the equivalence
relation

zEgy e 3ge Glgz=1vy)

is Borel. (Recall also 15.13 ii).)

(35.50) Exercise. Let X be a Polish space and E a Borel equivalence relation
on X. Recall (from 18.20) that E is called smooth if there is a Borel function
f:X =Y, Y standard Borel, with zEy < f(z) = f(y). Show that if F is
smooth, with witness f as above, and E has K, equivalence classes, then
f(X) is Borel and for some Borel g: f(X) — X we have f(g(y)) =y, Yy €
f(X). In particular, E has a Borel selector.
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36. Scales and Uniformization

36.A Kappa-Souslin Sets

We will study in this section the problem of uniformization for co-analytic
sets. We want to find a canonical procedure to select a point from a given
nonempty co-analytic set. (To uniformize a co-analytic set AC X x Y, we
will then apply this procedure to each nonempty section A,.) It is clear
that, without loss of generality, we can work in the Baire space N.

There is a canonical such procedure for the class of k-Souslin sets,
an ordinal (see 31.B), a procedure that we used in the proof of the Jankov,
von Neumann Uniformization Theorem 18.1.

Let A C N be a nonempty «-Souslin set so that for some tree T on
Nxr, A=p[T) = {z € N': 3f(z, ) € [T}

We will first define the leftmost branch (ar, f1') of [T) and then let
a = ar be the canonical point we select from A. The leftmost branch
(ar, fr) of [T] (see also 2.D) is defined recursively as follows: Define first
the ordering < on pairs (k, ) € N x k by

(ko) < (,f)ea<PBor(a=B& k<),

i.e., < is the anti-lexicographical ordering on N x k. (We use this instead

of the lexicographical ordering for technical reasons related to definability

calculations that will become apparent later on - see the proof of 36.8.)
Then let

(ap(n), fr(n)) = the < -least element (k, ) of
N x & such that [To, n k. frln"a) # 0,

where as usual T, = {(¢,v) : (s"t,u"v) € T}. Clearly, (ar, fr) is the
lexicographically least element of [T).

The uniformization problem for co-analytic sets will be solved therefore
by showing that every co-analytic set A can be represented as a x-Souslin
set A =p[T), T a tree on N x x (where actually x will turn out to be wy),
with nice definability properties.

Remark. Note that the notion of x-Souslin set is uninteresting without
some definability or size restrictions on «, as the next exercise shows.

(36.1) Exercise. Using the Axiom of Choice, show that every set A C N is
k-Souslin for some x < 200,

36.B Scales

We will now introduce an alternative viewpoint concerning the represen-
tation of a set as a projection of a tree, that will make more tra.nspa.rent
these definability considerations.
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Let T be a tree on N x k and A = p[T]. For each z € A, let
@T(z) = (¢Z(z)) be the leftmost branch of T(z) (in the usnal ordering
of the ordinals). Thus ¢f : A — & and note that (¢7) has the following
property:

If z; € A, z; = = and also ¢ (z;) = an (for some ordinal a,) for all
n, then = € A. Moreover, @7 (1) <jex (Ctn).

Here we view the ordinals < « as having the discrete topology, so that
«; — o just means that «; = o eventually, and <), is the lexicographical
ordering of k" (see 2.D).

Conversely, if A C N and ¢, : A — « is a sequence of ranks such that
z; € A, z; = z, and ¢,(z;) — «, for all n imply z € A, then we can define
a tree Tz on N x « as follows:

((k(h ey kn—l), (a07 “eey (17,,_1)) € TS':'" Aad
Az € Alz|n = (ko, ..., kn-1) & Vi < n(a; = ¢.(2))),

and easily verify that A = p[Tj].

Given a Polish space X and A C X, a sequence of ranks ¢, : A —
ORD is called a semiscale if z; € A, z; — = and ¢n(1;) — a, for all n,
imply z € A. It is called a k-semiscale if ¢, : A — &.

Thus to each tree T on N x &, with A = p[T], we have associated a
canonical s-semiscale (¢I) and conversely to each k-semiscale @ on A we
have associated a canonical tree Tz on N x &, with A = p[T).

As we noted earlier the semiscale () has an additional important
property: If z; € A, z; — = and @n(T;) — an, then FT(x) <jex (n).
We can make this property more transparent by using the following device.
Given an ordinal x, consider k™ (n > 1) and the lexicographical ordering
on it:

(€0, -+ 0tn—1) <1ex (Bos- - -+ Bnr) & Fi < n[V5 < i(ay = B;) & o < Bi).

This is a wellordering with order type the ordinal «™ (ordinal exponen-
tiation). We denote by {(ao,...,®,—1) the ordinal (< &™) correspond-
ing to (ag,...,@,—1) under the isomorphism of (s, <jex) With &™. So
(QO) R 7an—l> < (,307 ... ).Bn—l> < ((107 . )a’n—l) <lex (ﬁOa s ),Bn.—l)~

Define now from (¢7) a new sequence (%) as follows:
¢Z:($) = (‘Pg(z)i LR ‘P;I:(z))

Then, denoting by f < g the pointwise ordering on sequences of ordinals,

f < g & Vn(f(n) < g(n)), we have for f,g € kN, f <jex g & ((fIn)) <
({g|n)). It follows that (¥T) has the following property:

If z;, € A, z; — z, and ¥T(z;) — a, for all n, then z € A and
$T () < (om).

‘We have thus arrived at the following basic concept due to Moschovakis.
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(36.2) Definition. Let X be a Polish space and A C X. A scale on A is a
sequence pn:A — ORD of ranks such that z; € A, z; — = and pp(z;) — a,
for all n imply that © € A and (pn(z)) < (an). (This last property of scales
is called semicontinuity.)

If pn:A — K, we say that (¢n) is a K-scale.

(36.3) Exercise. Let T be a tree on N x x and A = p[T). We say that T has
pointwise leftmest branches if for each z € A there is a pointwise leftmost
branch of F(z), i.e., 3f € [T(z))Vg € [T(z)](f < g). Show that in this
case the canonical semiscale §7 on A associated to T is actually a scale.
Conversely, if ¢ is a s-scale on A and T is its associated tree on N x &,
then Tz has pointwise leftmost branches.

Given a scale (pn) on A C N, we now have the following canonical way
of selecting an element out of A: Successively minimize @o(z), 2(0), ¢1(z),
z(1),.... More precisely, let A) = {z € A : po(z) is least}, Ao = {z €
Aj : z(0) is least}, A} = {z € Ao : p1(x) is least}, Ay = {x € A} : z(1) is
least}, etc. Then Ay 2 Ap 2 A] 2 A, 2 --- and the properties of a scale
easily imply that (), A, is a singleton {az}, with a5 € A.

(36.4) Exercise. If T"is a tree on N x k, A = p[T], @7 is the canonical
semiscale, and 47T is the canonical scale on A associated to T, show that
agr = ar and fr = @T(ar), i.e., the procedure just described coincides
with that explained in 36.A.

Again we can make this procedure more transparent by defining a new
scale (¢,) from the scale (¢,) as follows:

¥a(z) = (po(2), 2(0), p1(), (1), . .., @n(z), 2(n)).
Note that additionally (¥,) has the following properties:

i) 1/)11(1) < 1/)11('.9) = wm(z) < ¢m(y)> vm < n;
ii) If z; € A and ¢, (z;) — a, for all n, then z; — z for some z € A.

(36.5) Definition. Let X be a Polish space and A C X. A scale (yﬁn) on A
is called very good if:

1) n(2) < @nly) = Ym < (Pm(2) < 0m(Y));
it) Ifz; € A and pp(z;) — a, for alln, then x; — x for some z € A.

Given a very good scale (¢,,) on A C X, we have the following picture
(Figure 36.1) of the prewellorderings <., associated to ¢, i.e., each <,
refines <, _, (n > 1).

For a very good scale ¢, on A, the procedure of selecting an element of
A is now very simple: Just minimize o(z), ¢1(z),..., i.e, let 4o = {z €-
A po(z) is least}, A, = {& € A : p1(z) is least}, Ay = {z € A: pp(x)
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FIGURE 36.1.

is least}, etc. Then Ag 2 A, 2 -+- and ), A, = {z}, with z € A, as it
easily follows from the properties of a very good scale. (If (,) is a scale
on a subset of A and (¢,.) is the very good scale associated to it by the
procedure described just before 36.5, then this procedure applied to (¢1,)
gives exactly the canonical element az € A determined by @.)

If (¢n) is a very good k-scale on A, we can also associate to it a
generalized (x-) Lusin scheme (4,),c.<n s follows:

A, ={z € A:Vi < length(u)(u; = ¢;i(z))}.

Then Ag = A, Ay = U e Aura, and Ay-a NAy-g =D if o # S

In terms of the associated x-Lusin scheme (A, ),cc<v We can describe
this procedure as follows: Suppose first that f € xM is such that Agy,, # @ for
all n. Then Aj|(n41) € Aj) for all n, but [, Af|, may be empty. However,
if £, € Aj)n, then by the properties of a very good scale, z, — = € A and
although we do not necessarily have z € [, Afjn, we have x € [, Agjn
for some g < f. So if f = fo is defined by fo(n) = min{p,.(z) : z € A},
then clearly g < fo = g = fo, so that z € (), Af,}n and {z} =), Asn =
(N, An, is the canonical element of A described before.

36.C Scaled Classes and Uniformization

(36.6) Definition. Let I" be a class of sets in Polish spaces. Let X be a Polish
space, A C X, and (pn) @ scale on A. We say that () is a T-scale if each
rank ¢, is a I'-rank. (Again this notion is primarily of interest if A € I'.)
The class T’ is scaled or has the scale property if every A € I’ admits a
I'-scale.

Clearly, every scaled class is ranked.
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(36.7) Exercise. Show that 22 for £ > 2 (and for £ = 1 in zero-dimensional
spaces) is scaled. In fact, show that each A € 3 admits a T-scale
wn * A — w that has the following stronger continuity (instead of semi-
continuity) property: If z; € A and ¢,(2;) = an, then z;, - £ € A and
¢n(Z) = an, ¥n. (This continuity property does not extend to definable
classes beyond the Borel sets. It is easy to see though, using the Axiom of
Choice, that every set A C X, X a Polish space, admits a scale ¢, : A — «
with this continnity property.)

(36.8) Proposition. Let I" be a class of sets in Polish spaces containing all
Borel sets and closed under Borel preimages and finite intersections and
unions. If A € T admits a I'-scale, A admits a very good I'-scale.

Proof. First let A C X, where X is zero-dimensional, so that we can assume
X = [T, for some pruned tree T on N. Let (¢,) be a I'-scale on A. Define
as usual

¥a(z) = (o(2), 2(0), ... on(z), z(n)),
so that (v,,) is a very good scale. To see that it is a I'-scale, note that for
veA,
T € A& Pa(z) < Yn(y)

holds iff (1 < oy or(z <Ly &y <l =& z(0) < y(0)), or (z < _%
y&y < _% z & z(0) = y(0) & = <‘,1 y), or ..., and similarly using <P‘
so that 1, is a [-rank. (Notice that this works because we first compare
() with @o(y) and then z(0) with y(0), which also explains our use of
the anti-lexicographical ordering in 36.A.)

Let X be arbitrary Polish and A C X be in . Let F C N be closed
and f : F — X a continuous bijection. Put A’ = f~1(A). If (¢,,) is a I-scale
on A, then ¢/, = p, o f is a I-scale on A’. By the special case proved above,
A’ admits a very good I'-scale (¢/). Let 1, = ¢, o f~1. This is easily a
very good I'-scale on A. a

Finally, we have the following basic connection between definable scales
and uniformization.

(36.9) Theorem. Let I' be a class of sets in Polish spaces containing all
Borel sets and closed under Borel preimages, countable intersections and
finite unions, and co-projections. If XY are Polish and AC X xY in D
admits a I'-scale, then A has a uniformization in T

Proof. By 36.8, let () be a very good I'-scale on A. Then y — ¢%(y) =
¢n(z,y) is a very good I'-scale on A,. Let y, be the canonical element
determined by (¢%) on A, if A; # 0, as in 36.B. Put

Az, y) Yy =ys.
We claim that A* € . Indeed,
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A*(z,y) & Vnvz((z,y) <, (2,2)).

]

(36.10) Corollary. (Lusin-Sierpiriski) Fvery Borel set admits a IT} -uniform-
ization.

(36.11) Exercise. i) Let X be an uncountable Polish space. Show that there
is function f: X — X that has IT} graph but is not Borel.

ii) (Kanovei) Show that there are two functions f, g : R — R with IT}
graphs and f(z) < g(z), Vz, but for which there is no Borel set 4 C R xR
such that Vz(A; # 0) and Vy € A (f(z) < y < g(z)).

36.D The Novikov-Kondé Uniformization Theorem

(36.12) Theorem. The class IT} is scaled. In fact. for every Polish space X
and A € IT}(X), A admits a IT}-scale that is also an w -scale.

Proof. As in the argument in 36.8, we can assume that A C N. So let T be
a tree on N x N with z € A & T(z) is well-founded.
For s € N*, define the following linear ordering <5 on {0,...,n — 1}:

i<s] & (ti,tj ¢T(S) &Li< j) or
(ti ¢ T(s) & t; € T(s)) or
(t:,t5 € T(s) & ti <km tj),

where {¢;} is a bijection of N with N<N such that t, = , t; 2t =35 >i,
and length(t;) < ¢, and T(s) = {u : length(u) < length(s) & (s|length(u),
u) € T'}. Thus, identifying ¢; with ¢, <, is the Kleene-Brouwer ordering on
T(s)n{0,...,n— 1} with the rest of {0,...,n — 1} thrown at the bottom
with its natural ordering.

Note now that

i) s# 0 = 0 is the largest element of <,
i) sCt=<sC <ty

since (for i)) to = @ is the largest element of <kp and (for ii)) length(¢;) < i.
Put for z € N,

<z= U <z|n»
n

so that <, is a linear ordering on N with largest element 0. It is just the
Kleene-Brouwer ordering on T'(z) with the rest of N thrown at the bottom
with its natural ordering. So
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z € A & T(z) is well-founded
& <k | T(z) is a wellordering
& <, is a wellordering.

Define now the following tree S on N x w,, called the Shoenfield tree,

(s,u)eSeI(seN* &ueuwl &
u : n — wy is order preserving for <,
ie, for0<i,j<n,i<gj=u<uy;)

Then
r€ As <, isa wellordering

< 3f : N — wy(f is order preserving for <;)
& If(z, f) € [S).

So S shows that A is w,-Souslin.

Next let us note that for each z € A, S(z) has a pointwise leftmost
branch. Since <, is a wellordering, let h, : N — a be its canonical iso-
morphism with a countable ordinal «. Then h; = p._. the rank function
of <z, and so if f : N — w, is order preserving, i.e., f € [S(z)), then
hy(n) < f(n), Vn (see Appendix B). Thus h; € [S(z)] is the pointwise
leftmost branch of S(z).

Put ¢, (z) = hz(n). Then by 36.3 (v,) is a scale on A. It may not be,

“however, a IT}-scale. We will modify it a bit to produce a IT}-scale.

Denote by <7 the restriction of <, to the initial segment of <, deter-

mined by n (ie.,, {m € N: m <, n}). Let

A, = {z :<} is a wellordering},
and for z € A,, let
Pn(z) = the ordinal isomorphic to <7 = p(<%).

Then, as in the proof of 34.4, ¢, is a l'[}-rank on A,.

Note that A = Ap (since 0 is the largest element of <,) and A C A, for
each n. Also for z € A, ¢,(z) = p< (n) = p(<2) = ¢¥n(x). But although
¥ is a I}-rank on A,, ¢, = ¥,|A may not be a IT}-rank on A. So put

(ﬁn(z) = <‘P0($)7 ‘Pn(z»'

Then it is easy to check that (3,) is a scale on A and that it is a IT}-scale
since for y € A,

1 1 1 1
TEALGT) S Paly) & T<plyor (T<pr Y&y et s &z <t y),

and similarly with 1.
Strictly speaking, ($n) is not an w)-scale but rather an w?-scale.
However, if we replace ¢, by the unique regular rank ¢}, equivalent to
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it, then (¢}) is a II}-scale, and if ¢}(z) < ¢ (y) for some y € A,
then @n(z) < Pn(y), thus in particular, @o(r) < @o(y) = «, and so
Pn(T) = p<,(n) < p<,(0) = @o(z) < . It follows that ¢} (y) is count-
able, so (¢}) is an w;-scale. o

In view of this result and 36.7, the picture at the end of 35.A applies
to scales as well.

(36.13) Definition. We say that a class I’ has the uniformization property
if every set in T admits a uniformization inT'.

We have now immediately the next result.

(36.14) Theorem. (The Novikov-Kondd Uniformization Theorem) (Kondd)
The class I} has the uniformization property.

Proof. By 36.12 and 36.9. ]

(36.15) Theorem. (Shoenfield) Every I} set is wy-Souslin.

Proof. This is clear from 36.B and 36.12 for every IT! subset of A. Let
X be any nonempty Polish space and A C X a IT} set. Let p : N’ — X
be a continuous surjection and put p~1(A) = A’. Then A’ is T}, so A’ =
proj(F), with F C N x w} closed. So 2 € A & Jy € N3f € WM (p(y) =
z & (y,f) € F) < 3g € wi(z,9) € H, where H C X x w} is the following
closed set:

(z,9) € H < (90,91) € F & p(g0) = .

where for g € wl, go(n) = g(2n), g1(n) = g(2n + 1) (we view here N = w
as a subset of wy). 0

(36.16) Exercise. (Martin) Show that every IT} well-founded relation has
rank < ws. Construct I1} well-founded relations of rank wy, w)+1, wi+wy.

(36.17) Exercise. (Mansfield) Show that if « is an infinite ordinal and A is
x-Souslin, then A has cardinality < card(x) or else A contains a Cantor set.
In particular, every IT! set has cardinality < R; or else contains a Cantor
set.

Remark. This is the best result that can be proved in ZFC concerning the
cardinality problem of IT} sets. Recall, however, 32.2.

(36.18) Exercise. (Kechris) Show that if « is an infinite ordinal and A C N
is k-Souslin, either A C |, A¢ with each A¢ compact or else A contains
a superperfect set. So every IT} set can be covered by R; compact sets or
else contains a superperfect set. (Recall, however, 32.3.)
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(36.19) Exercise. Generalize 25.16 to x-Souslin sets.

36.F Regularity Properties of Uniformizing Functions

Let X,Y be Polish spaces and A C X x Y a IT] set. Let A* be a I}
uniformization and f: projyx(A) — Y be the corresponding uniformizing
function, f(z) = y & A*(z,y). Even when projx(A4) = X, we cannot
prove in ZFC alone that for every probability Borel measure u, f is p-
measurable or that f is Baire measurable. This is because for any open set
UCY, fFYU)={z: y(y € U & A*(z,y))} is a T} set (i.e., a continuous
image of a II} set) and such sets (which form a class bigger than that of
the =} or IT} sets - see Section 37) cannot be proved to be measurable or
have the BP in ZFC alone. However, they have these regularity properties,
as we can see using X1-Determinacy.

(36.20) Theorem. (X}-Determinacy) Let X be a Polish space and A C X
a 3} set. Then A is universally measurable and A has the BP.

Proof. We prove the second assertion first. Let X be Polish and A C X
be 1. Note that for some IT! set F C X x N, A = projy(F). Indeed,
let f:Y — X, Y a Polish space, be continuous and B C Y be IT} with
f(B) = A. Then let g: N — Y be a continuous surjection (we can assume
of course that Y # @). Then

€A yyeB& fly)=1)
& 32 € Ng(z) € B & f(9(2)) = 7]
& 2(z,2) € F

for some IT} set F C X x N.

Consider now the unfolded game G.*(F) as in 21.5. Since X has a
countable basis, we can view it as a game on N that easily has a II} payoff
set, so it is determined. Thus all Banach-Mazur games G**(A) for A €
21(X), X Polish, are determined, and so by 8.35 (and the obvious fact
that 3} is closed under finite unions) it follows that all 3} sets have the
BP.

We prove now the first assertion. Note that X} is closed under Borel
isomorphisms, so we can work with X = C. Also, by separating a given
probability Borel measure into its discrete and continuous parts, it is enough
to consider only continuous measures; thus, by 17.41 it is enough to show
that if A C C is £} and u = pc is the usual measure on C, then A is
p-measurable.

For any A CC, let

s (A) = sup{u(B) : B C A, B Borel},
u*(A) =inf{u(B) : B 2 A, B Borel}.
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Clearly, u.(A) = u(B) for some Borel B C A. Let A’ = A\ B. Then
ps(A’) = 0, and since (as it is easy to see) T3 sets are closed under finite
intersections, if A € £, thenso is A’. If u*(A’) = 0, then, as p*(A4’) = u(C)
for some Borel C D A’, we have that B C A € BUC and u(B) = p(BUC),
so A is y-measurable.

Thus it is enough to prove the following:

If ACCis 25 and p.(A) =0, then u*(A4) = 0.

Let (since A can be viewed as a subspace of C) F C C x C be I} such
that

r€ A& Jy(zr,y) €F.

Consider then the following “unfolded version” of the covering game due
to Harrington.

Let (G:) be a bijection between N and all finite unions of basic open
sets N, of C. Fix € > 0. The game is defined as follows:

I 2(0),y(0) z(1);y(1)

11 2(0) 2(1)

(3),y(i) € {0,1}; 2(i) € N; pu(G.(;)) < €/2%. Player II wins iff [(z,y) €
F=ze Ui Gz(,)]

This game is clearly X}, and so determined.

If I has a winning strategy, this induces as usual a continuous function
f:N —>CxC, and f(N) C F,s0 B = {z: Jy(z,y) € f(N)} C A and
B is T1. So B is u-measurable and u(B) < p.(A) = 0. Let z then be such
that u(G, ;) < €/2% and B C |J; G,(;)- Then z beats I's winning strategy,
which is a contradiction.

So II has a winning strategy. Let n > 1 and for (s,t) € 2" x 2", G, =
Gu(n-1), where (2(0),...,u(n — 1)), is what II plays following this strategy
when I plays (s(0),¢(0)),(s(1),#(1)),--.,(s(n ~ 1),¢(n — 1)). Clearly, A C
Un Ugs.yeznx2n Gyt 80

@<l U G @Vammg =22 st

n (st)e2nx2n n
Since € was arbitrary, p*(A) = 0 and we are done. i

(36.21) Corollary. (X1-Determinacy) Let XY be Polish spaces and A C
X x Y be II}. Then projx(A) is universally measurable and has the BP.
Moreover, A has a uniformizing function f: projx(A) — Y with I1}-graph
and such that f is universally measurable and Baire measurable.

(36.22) Exercise. Recall from 30.14 ii) that IT} sets are not necessarily uni-
versally capacitable. (Busch, Mycielski, Shochat) Using ¥}-Determinacy,
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show now that if Y is a compact metrizable space and 4 a capacity alter-
nating of order oo with v(@) = 0, then every I} set A C Y is y-capacitable.

36.F Uniformizing Co-Analytic Sets with Large Sections

We will next prove a uniformization theorem for IT! sets with large sections
which extends 18.6.

Let Y be a Polish space and 7 a o-ideal in Y. Given a class I of sets in
Polish spaces we say that 7 is I'-additive provided that for any transfinite
sequence (Aq)a<n (1 some ordinal) of subsets of Y, if A, € T and the
prewellordering on | J,, .. A, defined by

a<n

z <* y & (the least a with z € A,) < (the least 8 with y € Ag)

is in T, then U, ., Aa € T.

If I contains only sets that have the BP and Z = MGR(Y), orif uis a
o-finite Borel measure, I' contains only p-measurable sets and Z = NULL,,
then 7 is I'-additive, by 8.49 and 17.14. Thus the g-ideals of meager sets
and p-measurable sets are IT}-additive.

If X is a Polish space and o — I, is a map from X into the o-ideals of
Y, we say that it is T on I if for every Polish space Zand AC Z x X xY
in T the sets {(2,2): A, ¢ I} and {(2,2) : ~ A,y € I,} are also in I'.
(Note that this agrees with 18.5 for I' = Borel.)

Again, if £ — p, € P(Y) is Borel and I, = NULL,,, or if 7, =
MGR(Y), then z — Z, is I1} on IT} by 32.4.

Finally, if X,Y are Polish spaces, AC X, and f: A— Y, we say that
f is T-measurable if for U open in Y, f~}(U) is " on A (i.e., of the form
AN P with P C X in T'). Notice that if T is closed under countable nnions
and intersections, then I'-measurability is equivalent to I-measurability. To
see this, write U = J,, ~ Uy, with U, open in Y, so that f~'(U) =, ~
F~Y(U,). Clearly, if A € T and I is closed under finite intersections, this just
means that f~!(U) € I'. Also, if A =X and I" = IT}, then IT}-measurable
= Yl-measurable = A]-measurable = Borel.

(36.23) Theorem. (Kechris) Let I’ be a class of sets in Polish spaces con-

taining all clopen sets and closed under Borel preimages and countable in-

tersections and unions. Assume I' is scaled. If t — I, is aT on T map

from X to o-ideals on Y such that each I, is I'-additive, and AC X xY

isinT, then B = {z:A; ¢ I} is in T and there is a I'-measurable function

f:B =Y with f(z) € A, for ullx € B (i.e., f uniformizes AN (B xY)).
In particular, this holds for T’ = II}.

Proof. We can clearly assume that X = Y = N. B is clearly in T, since
z— T, isal on I map.
Let ¢, : A — ORD be a I'-scale and let
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Yn (1:7 y) = (‘PO(J:? y)’$(0)7 y(0)7 ‘Pl(zvy)7$(l)v y(l)7 s v‘Pn(J:? y)7$(n)7 y("))

be the associated very good I'-scale. Then for each z, ¥%(y) = ¥n(z,vy)
is a very good I'-scale on A,. Notice, moreover, that ¢¥%(y) = ¢¥%(z) =
yl(n + 1) = z|(n + 1). For each = € B, we will select an element y, of A,
as follows:

Since ¥% is a I-rank on A,, A; ¢ Z,, and Z, is ['-additive, it follows
that for some a, A2* = {y € A; : Y%(y) = a} is not in Z,. Let a,, be
the least such. Then by I'-additivity again, {y € A; : ¥%(y) < an} € I,.
Since (¥%) is very good, we must have (by the same reasoning) that A2* 2
A}lf 2 Aif 2 ---, and there is a uniquely determined y = y, such that
yz|(n + 1) = z|(n + 1) for any 2z € AL* by the above property of (7). If
yn € ALY, then y, — ¥, so by the properties of scales, y, € A;.

It remains to show that f(z) = y, is I-measurable. So fix s € N*, n >
1. Then for z € B,

f(z) EN; &y €N,
& N,NAVM® ¢ T,

Q=1

4:{yGNs:yeAx&{z:zS,’;,:_ly&ys,*,,:_lz}¢Iz&

~ {2 'y Sfpi_l 2} GIx} ¢ 1.,
so since £ — I, is a I' on T’ map, f~!(N,) is in I and we are done. a

The following results have been proved by G. E. Sacks [1969], H.
Tanaka [1968] for measure, and by P. G. Hinman [1969], S. K. Thomason
[1967] for category.

(36.24) Corollary. Let X,Y be Polish spaces and AC X x Y a I} set. Let
T — uy € P(Y) be Borel and I, = NULL,,_ or else let T, = MGR(Y).
Then {z:A, ¢ I,} is II} and there is a YI}-measurable function f:B —»Y
with f(z) € Ay, Yx € B. In particular, if A; has positive p,-measure for
all z, or if A, is not meager for all z, then there is a Borel uniformizing
Sfunction for A.

(36.25) Exercise. Show that there is an analytic set A C N x N such that
for each z, N\ A; has cardinality < 1, but A has no Borel uniformizing
function.

36.G Examples of Co-Analytic Scales

In 34.F we discussed several examples of canonical IT}-ranks on various IT}
sets. We consider here the question of finding canonical IT}-scales. It turns
out that given a canonical IT}-rank on some IT] set A, a canonical IT}-scale
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can often be obtained from it by a “localization” process, so one can view
such a scale as a “local rank”. We will illustrate this point by discussing
a few examples. Other cases to which it has been applied include the set
DIFF of differentiable functions and the set CF of continuous functions
with everywhere convergent Fourier series.

1) We consider first the set WF of well-founded trees on N. A canonical
IT}-rank on WF is T — pr(0) (= 0 if T = 0). For any given s € N<N, we
can “localize” this to the tree T, = {t : s"t € T’} to obtain

¢s(T) = pr, () = pr(s).

We will verify that this is indeed a scale (viewing () as a sequence via
some enumeration of N<N),

Let T; € WF, T, — T in Tr, and ¢4(T;) — «, for all s. Note that
s € T iff for all large enough i, s € T;. We will show that T € WF and
¢s(T) < a, for all s. To see this it suffices to show that s — «; is order
preserving on T (i.e, s,t € T & s 2 t = a; < a;). Because then for
s €T, ps(T) = pr(s) £ a5, whileif s ¢ T, ¢s(T) = 0 < a,. So fix
s 2t s,t € T. Then s,t € T; for all large enough 4, and so for all large
enough ¢, as = pr,(s) < pr.(t) = .

Now, as in the proof of 36.12, we can obtain a IT}-scale from (¢;) by
letting

@s(T) = ( po(T), ps(T))-

2) Next we look at the set WO of wellorderings on N. In the proof
of 34.4 we associated to it the canonical ITi-rank |z| = p(<;). We can
“localize” this to any » € N to obtain the rank

|zl = p(<3),

where <7 is the initial segment of <, determined by n. Then, as in
Example 1), one can easily check that (|zl|,) is a scale on WO and if
() = (|z|,|zl.), then (p,) is a IT}-scale on WO.

3) (Kechris-Louveau) Consider finally a nonempty Polish space X and
the IT} set Ky, (X) of all countable compact subsets of X. Let K — ||K||cB
be the IT}-rank associated to Ky,(X) in 34.20. Given a basis of nonempty
open sets {V,,} of X, closed under finite intersections with X € {V,,}, we
“localize™ ||K||cp to each U € {V,,} to obtain

eu(K) = [IKNUllcs-

We claim that (after enumerating it in a sequence) this is a scale on
Ky, (X), from which it follows as usual that ¢y (K) = (|| Kl|ce, pu(K)) =
(ox(K), pu(K)) is a ITl-scale on Ky, (X).

So assume K; € Ky,(X), K; — K (in K(X)), and ¢y (K;) = w-ay +
dy (ay < wy, dy <w) for all U € {V,,}. We will show that K € Ky,(X)
and py(K) <w-ay +dy.
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We can clearly assume that K; # @ and |K;|t5 = a (= ax) is constant.
The proof will be by induction on «. So assume this has been proved for
all 8 < . Let U € {V,.}. Then for all large enough i, |K;NU|pp = ay.
Put L; = (K;NU)*. Then L; = {},...,},} for all large enough i.
Since K U |J; K; is compact, by going to a subsequence we can assume
that 2 — z; for j = 1,...,dy. Let L = {z; : j =1,...,dy}. This has
cardinality < dy.

Claim. (KNT)ev C L.

Granting this, we get (letting U = X)) K € Ky, (X) as well as py(K) <
w - ay + dy, so the proof is complete.

Proof of claim. Otherwise, (KNU)*Y € L, solet V € {V,,} be such that
(KNU)*Y NV # @ and VN L = @. Thus (since L; — L) for all big enough
i, (KsnU)* NV =49.

By going to a subsequence if necessary, we can also assume that
K,NnUNV = Fe K(X).Now (K, nUNnV) C(K,n0)> NV =0, s0
|K;NUNVI|tp < ay. Since |K; NU N V(¢ g is eventually constant, namely
B = ayav, we can assume that |K;NUNV|gg = 8 < ay £ a. So by
the induction hypothesis (since K;NUNV — F and pw(K;NUNV) =
HENUNVNWleg = IK;NUNVNAW|lcg = puavaw (K;) converges,
for all W € {V.}) we have F € Ky,(X) and also |F|t.z < B. Since
KnUNV C Fand B < ay, (KNUNV)® C Fo = §. But by an
easy induction on < it can be shown that for M € K(X) and any open
W, MYNW C (MNW)7, so

0A(KNT)vnNVC(KNTUNV)* =(KNUNV)* =,
which is a contradiction.

Since a scale {©,} on a set A gives a form of convergence criterion
for membership in A (if z; € A, z; — = and ¢n(z;) converges for each
n, then = € A), it appears that the determination of canonical scales on
concrete IT} sets like the above examples (and other ones that we have
not discussed here, i.e., DIFF and CF) could be useful in applications to
analysis and topology.



CHAPTER V

Projective Sets

37. The Projective Hierarchy

37.A Basic Facts

For each n > 1 we define the projective (or Lusin) classes X1, IT., A}
of sets in Polish spaces as follows: We have already defined the £} (=
analytic), IT} (= co-analytic) sets. Then we let, in general,
2!, = {projx(A): X Polish, AC X x N, A€ TI}(X x N}
Vi,
., =~3%,, ={X\A: X Polish, A€ Z},,(X)},
Al = zlnml.

Classically, one uses the notation A, CA, PCA, CPCA, ... for the classes
sl B, ...

Since it is clear that £] C 33, it follows easily by induction that
Tlumi CAl,,. Put

P=J=,=Jm =Ja:

The sets in the class P are called the projective sets. So we have the fol-
lowing picture of the projective hierarchy:
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- J/

U4

where every class is contained in any class to the right of it.
We will first state some basic closure properties of the projective
classes.

(37.1) Proposition. i) The classes T, are closed under continuous preim-
ages, countable intersections and unions, and continuous images (in partic-
ular, projections, i.e., existential quantification over Polish spaces).

i) The classes II are closed under continuous preimages, countable
intersections and unions, and co-projections (i.e., universal quantification
over Polish spaces).

iit) The classes A}, are closed under continuous preimages, comple-
ments, and countable unions (i.e., they form a o-algebra).

Proof. By induction on n. We have already proved these for n = 1. Assume
therefore they have been established for n and consider i) for n+1 (clearly,
ii) and iii) then follow).

Closure under continuous preimages is straightforward. Let A; €
B11(X), i e N, say A; = projx(B;), B; € II}(X x N). Then

T€E nAi & Vidy(r,y) € B;

& Jyvi(z, (y):) € B,
where (y);(m) = y((i,m)) with () a bijection of N x N with N. If
(z.y) € B & Vi(z, (y):) € By,

then B € IT;(X x N) by the closure properties of IT., so (), 4; € ZL,,.
Closure under countable unions is straightforward.

Finally, if A € B},,(X) with A = projx(B), B € IT}(X x N), and
f: X — Y is continuous, then

y € f(A) & Iz3z[(z.2) € B & f(z) = y).
Let g : N — X x N be a continuous surjection. Then we have

Y€ f(A)e IweNjg(w)e B&
f(projx (g(w))) = y]
e JweN(y,w) el

for some C' € I} (Y x N) by the closure properties of IT.. So f(A) €
Zia ). o
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It follows that for each n > 1 and any fixed uncountable Polish Y,
=L, = {projx(A): Ae IL(X x Y), X Polish},
={f(A): AeM}(Z), f: Z — X continuous, X, Z Polish}.

(37.2) Exercise. If X C Y are Polish, then Z2(X) =2 (V)| X ={AC X :
A € T} (Y)}, and similarly for IT}, A2.

(37.3) Exercise. Let X,Y be Polish. Show that a function f : X — Y has
! graph iff it has A} graph iff it is Al- (or }- or IT}-) measurable.
Such functions will simply be called Al functions. (The A} functions are
clearly the Borel functions.) A projective function is a function that is A},
for some n.

Show that X}, TI}, and A} are closed under preimages by Al func-
tions, Show also that X} is closed under images by A} functions.

Remark. By 36.11 there are functions with TI} graphs that are not A}

(37.4) Exercise. (Kantorovich-Livenson) Show that £.,ITI}, and A} are
closed under the Souslin operation A4, if n > 2.

(37.5) Exercise. Show that if X,Y are Polish spaces, U is nonempty open
inY,and A C X xY is projective, so are {x : A is countable}, {z: A, is
meager in U}, {z: A, is contained in a K, set}, and (u,z) € P(Y) x X >
©*(Ag).

(37.6) Exercise. Consider the structure R = (R, +,-,Z) in the language
L = {F,G,U} where F,G are binary function symbols and U is a unary
relation symbol. Show that a set A C R™ is projective iff it is first-
order definable with parameters in R, i.e., there is a first-order formula
P(u1,..., up w,. .., Wy) in L and ry,...,r, € R such that

(Z1,.-,Z) EAS RE[TL, ..., Tns 71y, Tm).

We can also define the projective classes X} (X), I} (X), and Al (X)
and P(X) for any standard Borel space X by asserting that A C X isin one
of these classes if for some Polish space Y and Borel isomorphism f: X —
Y, f(A) is in the corresponding class of Y (this is independent of f,Y by
37.1). Also, for any separable metrizable space X and any I' = I}, 1T} | P,
we can define A € X to be in I'(X) iff for some Polish space Y 2 X and
some B e '(Y), A=BnX. Wealso let AL(X) = Z} (X)NII}(X). Again
it is easy to check that one can equivalently define ! (X),II. (X) for any
separable metrizable X by the same inductive process as in Polish spaces.
Finally, we call a separable metrizable space X%, ITI}, Al or projective if it
is homeomorphic to a £} ,TT} A} or projective subset of a Polish space.
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We prove next that the projective hierarchy is indeed a proper hierar-
chy.

(87.7) Theorem. For every Polish spuce X and every uncountable Polish
space Y there is a Y-universal set for $)(X) and similarly for TIL(X). In
particular, AL (X) G ZH(X) G A}, 1(X) for any uncountable Polish space
X.

Proof. By a simple induction on n, noting that if € I'(Y x X) is Y-
universal for ['(X), then ~ U is Y-universal for I'(X), and if U € I'(Y x
X x N) is Y-universal for I'(X x N), then

V= {(y,z):Iz(y,2,2) €U}
is universal for

IVI(X) = {projx(A) : Ae I(X x N)}. o

(37.8) Exercise. Show that for n > 1 and any uncountable Polish space
X, o(BL)(X) G AL, (X). Show also that C(X) (= the class of C-sets of
X) G A}(X) and formulate and prove an analogous result for all A}, n >
2.

37.B Examples

We will discuss here a number of examples of projective sets that are neither
analytic or co-analytic.

1) We can use the method described in 33.G, together with some
uniformities concerning universal sets described in 27.E, to produce several
examples of IT}-complete sets.

Consider first the result of Poprougenko described in 27.E. It can be
shown that it admits a uniform version: Namely, if A C A x R is ],
then there is a continuous function F : N' — C([0, 1]) such that for every
z €N, Az = Rp(s)- Let

§={fec(0,1): vy € Rz € [0,1)(f(z) = y))-

Then S is IT}-complete. To see this, let B C A be IT}. Then find A C A'xR
in X} withz e Bo Vy(z,y)€ A Thent e B A, =R& Rp,) =R &
F(z) € S, so B is reducible to S by a continuous function.

(37.9) Exercise. Show (using the notation of 27.E and 33.14) that {T €
L(co) : 0p(T) = T} and {T € L(co) : 0p(T) has nonempty interior} are
Borel IT3-complete.
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2) Woodin has shown that
MV = {f € C([0,1]) : f satisfies the Mean Value Theorem}

is TTI}-complete, where f € C([0,1]) satisfies the Mean Value Theorem if
for all a < b in [0,1] there is ¢, with @ < ¢ < b, such that f'(¢) exists
and f'(¢) = &%ﬂ. This should be compared with the result of Woodin
mentioned in 27.F that the set of f € C([0, 1]) satisfying Rolle’s Theorem
is X]-complete.

(37.10) Exercise. Show that MV is IT3.

3) Consider compact subsets of R”. Recall that such a set is path
connected if every two points in it are connected by a path contained in K.
Let PCON,, = {K € K(R"): K is path connected}.

(37.11) Theorem. (Ajtai, Becker) For n > 3, the set PCON,, is II}-
complete.

Proof. Consider the construction in the proof of 33.17. Modify it by elim-
inating the path p from K7 C R2. Call the resulting compact set L. For
definitiveness, we will take the point r in Lt to be the origin (0,0) of R2
and the segment ¢, to be parallel to the z-axis. Note that

T ¢ WF & Ly is path counected.
Now let A C A be a IT} set and B C N x C be I} with
z € Ae Vy(z,y) € B.
Let T be a tree on N x 2 x N with
B ={(z,9) : 32(z,,2) € [T]} = {(z,3) : T(x,y) ¢ WF)

(where, as usual, T(x,y) denotes the section tree {s € N<N : (z|length(s),
y|length(s), s) € T}). For each z € N, let P; be now the compact subset of
R2 defined as follows: Identify C with the Cantor set E, /3 C [0,1]. For each
y € C, let Ly, be the set Lr(; ) placed on the plane {(a,b,¢c) : ¢ = y}.
Then let Pp = U, Loy U {(2,9,2) 12 =0, y=0, z € [0,1]}. It is clear
that P, € K (R3) and z — P, is continnons. We will check next that

z€ As P, € PCON3;,
which completes the proof. We have

zeEAe Vy(r,y) € B
& Vy(T(z,y) ¢ WF)
& Vy(Lgz,y is path connected)
& P, is path connected. ]
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For n = 2, Ajtai and (independently) Becker have shown that PCON,
is IT} but not IT}. This is all that is known about the descriptive clas-
sification of this set. (On the other hand, it is not hard to see that
{K € K(R") : K is connected} is closed in K(R™).)

Denote by NH,, the set of compact subsets of R™ with no holes, i.e.,
those K € K(R") such that every continuous map from the unit circle
T into K can be extended to a continuous map of the unit disk D into
K. (For n = 2, this definition agrees with the one we gave in 33.I and so
NH; = NH.) Let SCON,, = PCON,,NNH,, be the set of simply connected
compact subsets of R”. (So SCON,; = SCON as in 33.1.) Becker has shown
that SCON,, is IT}-complete if n > 4 and for n = 3 that it is IT} but not
> or I}.

(37.12) Exercise. (Becker) Let P be a class of compact sets in R™. A compact
set L in some R* generates P if P = {f(L) : f : L — R" is continuous}.
Show that there is no compact set generating PCON,, for n > 3. (This
should be contrasted with the classical Hahn-Mazurkiewicz Theorem ac-
cording to which [0, 1] generates { K € K(R™) : K is connected and locally
connected}.)

4) We discuss next an example of a universal 3} set due to H. Becker
[1987]. Let & C C([0,1))N x C([0,1]) be given by

((fn), f) €U & there is a subsequence ( f,,) converging pointwise to f.

Then U is C([0, 1])N-universal for $3(C([0,1])). Moreover, this holds uni-
formly: If A C N x C([0,1]) is £3, there is a continuous function F : N’ —
C([0,1))N such that A; = Up(z).

(37.13) Exercise. i) Show that I above is indeed 3.

ii) Say that (f,) € C([0,1))N is quasidense in C([0, 1)) if every h €
C'([0, 1]) is the pointwise limit of a subsequence of (f,). Show that the set
of quasidense (f,) € C([0,1))N is IT3-complete.

ili) Show that there is a sequence of polynomials ( P,,) such that letting
pn = Pn|[0,1] we have DIFF (= {f € C([0,1]) : f is differentiable}) =
{f € C([0, 1]): There is a subsequence (pn,) converging pointwise to f}.

Recall now that a sequence (f,,) € C([0,1))N converges weakly to f €
C([0,1]) in the Banach space C([0,1]) iff (f,) is uniformly bounded and
fn — f pointwise. R. Kaufman [1991] has shown that the set

((fu), f) €U & there is a subsequence ( f,,) converging weakly to f

is C([0, 1))N-universal for 3L(C[0, 1]). Again this holds uniformly, and one
can repeat 37.13 in the context of weak convergence.
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5) The work of Becker discussed in Example 4) has been extended by
H. Becker, S. Kahane, and A. Louveau [1993] to provide further examples
of universal and complete 33 sets which, surprisingly, include some classi-
cal classes of thin sets studied in harmonic analysis. The main fact is the
following.

(37.14) Theorem. (Becker-Kahane-Louveau) The set U C C(C x C,2)" x C
defined by

((fn),z) € U & there is a subsequence (fy;)
such that f; — O pointwise

is C(C x C,2)"-universal for £1(C). (Here f*(y) = f(y,x).)

We postpone the proof for a while to see some of the implications of
this result.

(37.15) Exercise. (Becker-Kahane-Louveau) i) Show that the sets {(f,) €
C([0,1))": some subsequence ( f,,) converges pointwise}, {(f.) € C([0,1))N:
some subsequence (f,,) converges pointwise to 0} are Xi-complete. (Using
the method of R. Kaufman [1991] convergence can be replaced by weak
convergence here.)

i) Let m, : C — 2 be defined by m,(z) = z(n). Show that the set
{K € K(C): some subsequence (m,,) converges to 0 pointwise on K} is
1-complete.

The following two classes of thin subsets of T have been studied exten-
sively in harmonic analysis. The first class, denoted by Ny, was introduced
by Salem:

No={KeK(T):3no<m < (Z sin(n;t)
i=0

converges absolutely for all e* € K)}.
The second, denoted by A, was introduced by Arbault:

A={K e K(T): 3np < m < --(sin(n;t)
converges pointwise to 0 for all e € K)}.

Then we have the following result, using 37.15 ii) and some further con-
structions that we will not present here.

(37.16) Theorem. (Becker-Kahane-Louveau) The sets Ng,A are 3 -comple-
te.

We now give the proof of 37.14.
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Proof. (of 37.14) It is easy to check that I is TJ.

Let A C C now be 1. We will find (f,) € C(C x C,2)" such that
z € Ao thereisa subsequence (fn,) such that fi — 0 pointwise.

Since A is 33, there is a IT! set B C C x C such that

z € A& Jy(z,y) € B.

Then, by 25.2, there is a tree T on 2 x 2 x 2 such that (z,y) ¢ B& Iz €
N(z,y,2) € [T), where N ={z€ C:3%n(2(n) =1)}. Soz ¢ A= Vydz e
N(z,y,2) € [T).

Fix first a 1-1 enumeration (s,) of 2<N so that s,,, C s, = m < n. Put
I, = length(s,). We will also look at sequences 7 € (2x2xNx2)"* (n € N),
which we view interchangeably as 4-tuples o = (a, b, ¢, d) € 2" x2" xN"x 2",
For each such sequence o we fix a nonempty clopen subset C, C C such
that

iy cCr=C,20C;;
i) oLTr=Co,NC,=0.

Finally, we introduce the following crucial for the construction techni-
cal definition:

Let 0 = (a,b,¢,d) have length k + 1 (for some k), n € N. We call o
n-good if the following hold:

i) ¢ e Nk+! is strictly increasing and c(k) = ly;
i) b(k) = d(k) = 1;
iii) if p = card({m < k : d(m) = 1}), then alp = s,|p.

Clearly, for each n there are only finitely many n-good o, since i)
imposes an upper bound on &k and also allows only finitely many such c.
We now define the functions f,;. Put

1, if u € C, for some n-good
_ o = (a,b, ¢, d) of length k + 1 with
2 =9 (alk+1),0,0) € T;
0, otherwise.

By the preceding remark f, is continuous. We will show now that it
works.

Claim 1. If z € A, then there is a subsequence ( f,;‘) with f7 — 0 pointwise.

Proof. Choose y € C with (z,y) € B. Let ng < m»; < --- be such that
yli = sn,. We will show that f7, — 0 pointwise If not, there is u € C and
a subsequence (m;) of (n;) such that f7, (u) = fm,(u,z) =1 for all j. Let
o; be mj-good witnessing that. Since u é Cs;, these g; are all compatible.
Also, lm; = length(sy,,) > j as length(sy,) = i and (m;) is a subsequence
of (n;). So if o, = (a;,b;,¢;, d;) has length k; + 1, then ¢;(k;) = lm; 2> 7,
so k; — 00. Thus there is (¥/,7,7,6) € C x C x N x C such that ¢; =
W'I(k; + 1), 2'|(k; + 1),7|(k; + 1),6l(k; + 1)). Also, (z|(k; + 1),y'|(k; +
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1),2'|(k; + 1)) € T, and thus (z,y',2') € [T]. Finally, 2'(k;) = é(k;) = 1,
so 2 € N and p; = card({m < k, : 6(m) = 1}) — oo. Therefore, since
Y'Ip; = sm;lp; = ylpj, we have y = ¢/. Thus 32’ € N(z,y,2) € [T, so
(z,y) ¢ B, which is a contradiction.

Claim 2. If z ¢ A, then for any subsequence (fn;), (f7,) does not converge
to 0 pointwise.

Proof. Fix x ¢ A, (n;). Going to a subsequence we can assume that I,,, T oo
and for some y € C, sn, converges to y. Clearly, (z,y) ¢ B,sothereisze N
with (z,y, z) € [T). Define & € 2V recursively as follows:

we have y|p = s, |p, forallj >i;

1, if2(¢) =1 and for p = card({m < i:8(m)=1})+1
é(i) =
0, otherwise.

Note that § € N. Because if 6(39) = 1 (or ip = —1) and p = card({m <
ip : 6(m) = 1}) + 1, find the least jo > ip snuch that j > jo = ylp = sn,Ip,
and since z € N, let i) be the least number > jo with z(i;) = 1. Then
6(i) =01if ip < i< 1), and 6(5,) = 1.

Also put v(z) = l,,,. Then note that for j with 6(5) = 1, (y|(5+1), z|(j+
1),71(7 + 1), 6|(§ + 1)) is nj-good. Now let u € [{{C(yjn,z|n,1|n,6ln) : ® € N}.
Then it is obvious that for any j with 6(j) = 1, fn,(»,z) = 1, and the
proof is complete. o
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38. Projective Determinacy

38.A The Second Level of the Projective Hierarchy

Part of the theory of the first level of the does so projective hierarchy (IT}
and X} sets) extends to the second level but does so with an interesting
twist. This is based on the fact that the rank or scale properties are pre-
served under projections.

Recall that for any class I' of sets in Polish spaces, we denote by Ivr
the class

T ={AC X:3BeT(X x N)(A = projx(B))}-

(38.1) Theorem. (Novikov, Moschovakis) Let I" be a class of sets in Polish
spaces which is closed under continuous preimages, finite intersections and
unions, and co-projections. If I' is ranked, so is VT,

Proof. Let A € INT(X) and B € I'(X x N) be such that A = projx(B)
(i.e., z € A& 3y(z,y) € B). Let ¢ be a I'-rank on B. Define the rank
on A by

¥(z) = inf{p(z,y) : (3,9) € B).
Then ¢ is a IVI-rank, since

z <y 2’ e W (z,y) < (2,9),
z <y 2’ & W (z,y) <, (&',).

(Note that IVT is closed under continuous preimages and finite intersec-
tions and unions.) i

(38.2) Corollary. The class £} is ranked. In particular, (Novikov, Kura-
towski) 31 has the generalized reduction property but not the separation
property, and IT} has the generalized separation property but not the reduc-
tion property.

Proof. From 34.4, 35.1 and 38.1. ]
(38.3) Exercise. Show that every £} set A admits a Z3-rank ¢ : A — w).
A similar transfer theorem holds for scales.

(38.4) Theorem. (Moschovakis) Let I' be a class of sets in Polish spaces
containing all Borel sets, which is closed under Borel preimages, finite in-
tersections and unions, and co-projections. If T' is scaled, so is 3VT.,

Proof. Let A C X be in VT and B € I'(X x N) be such that z € A &
Jy(z,y) € B. By 36.8, let (¢n) be a very good I'-scale on B. Then let
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B* be the canonical uniformization of B given in the proof of 36.9. Then
z €A & Jy(z,y) € Be y(z,y) € B*, and for z € A denote by y, the
unique y with (x,y) € B*. Define the following sequence of ranks on A,

Yn () = @nl(T, yz).

We claim first that this is ascale: Let z; € A, z; — x and ¥ (2:) — an, Vn.
Thus @n(z;,Yz,) — an, and so, since (¢r) is a very good scale, y,, — vy,
where (r,y) € B, and ¢,(z,¥) < o,. So x € A. By the definition of
Yzr Yn(T) = @n(T,¥z) < ¢n(2,y) < an, and so we are done. Finally, (¥,)
is a 3V I'-scale, since

z <5, 2 o Wy ((z,y) € B* & (z,y) <5, (2',4)),
z <y z' o WWy((z,y) € B* & (z,y) <, (2',9)].

(38.5) Corollary. The class £} is scaled.

It does not follow immediately from this and from 36.9 that every X3
set has a 3} uniformization, but this can be deduced easily from 36.14 and
the following general fact.

(38.6) Proposition. Let T’ be a class of sets in Polish spaces. If every I' set
has a T uniformization, every IVT set has a IVT uniformization.

Proof. Let A C X xY be in 3VT, so (z,y) € A & 3Iz(z,y,2) € B for
B € T'. Let B* be a I' uniformization of B on (y, z), i.e., B* C B and
Jy3z(z,y,2) € B My, 2) (z,y,2) € B*. Put

(z,y) € A* & 3z2(z,y,2) € B*.

Then A* C A, A* € VT and clearly uniformizes A. 0
(38.7) Corollary. (Kondd) The class ) has the uniformization property.

Since IT, does not have the generalized reduction property or equiv-
alently the number uniformization property, 38.7 fails for IT. However,
assuming X}-Determinacy it can be shown that every IT} set can be uni-
formized by a IT} set (D. A. Martin and R. M. Solovay [1969], R. Mansfield
[1971]). We will prove this result from Projective Determinacy in 39.9. One
cannot prove that IT3 sets admit “definable” uniformizations in ZFC.

In view of the preceding results, we have one more step in the picture
given at the end of 35.A:

= = = 5[5

m m  m e m I
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The boxed classes are scaled and ranked and have the number uni-
formization and generalized reduction properties, and the other classes have
the generalized separation properties (in zero-dimensional spaces if £ = 1).
Notice the flip from the IT to the X class between the first and second levels
of the projective hierarchy. (Can you guess the pattern at higher levels?)

(38.8) Exercise. (Sierpinski) Show that every X3 set is the union of w; Borel
sets.

(38.9) Exercise. i) Show that every £} set admits a E3-scale that is also
an wj-scale.
ii) (Shoenfield) Show that all X} sets are w,-Souslin.

In particular, it follows from 38.8 (or 38.9 ii) and 36.17) that every X}
set either has cardinality < R; or else contains a Cantor set. This is the
best result that can be proved in ZFC. See, however, 38.14 ii) below.

(38.10) Exercise. (Martin) Show that every X3} well-founded relation has
rank < ws.

(38.11) Exercise. Show that the Boundedness Theorem 35.22 fails for I' =
X1 Find a set A C X, in some Polish space X, which is in £} \ A}, a
¥i-rank ¢ : A — ORD, and a closed set B C A such that Yz € Ay €
B(p(z) < ¢(y))-

(38.12) Exerclse. Let 83 = g3 = sup{p(<) : < is a Aj prewellordering}.

Show that 83 = sup{p(<) :< is a T3 well-founded relation} and &2 <
wy. (Compare this with 35.28.) Show, however, that if Ais £} and ¢ : A —
ORD is a Z}-rank, then p(<,) < 8}.

(38.13) Exercise. Show that for any Polish space X andany @ # AC X, A
is Z2(X) iff there is a continuous function f : WO — X with f(WO) = A.

Many regularity properties of the second level projective sets can also
be established using X1-Determinacy.

(38.14) Exercise. (X]-Determinacy) i) Recall (see 36.20) that every X3 and
IT} set in a Polish space is universally measurable and has the BP. Show that
every 31 set has a uniformizing function that is both universally measurable
and Baire measurable.

ii) Show that the perfect set property holds for the X1 sets: Every
uncountable X1 set in a Polish space contains a Cantor set.

iii) Let X be Polish and let A C X be 1. Then either A is contained
in a K, set or else it contains a closed set homeomorphic to N.
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iv) Show that if X, Y are Polish spaces, U C Y is nonempty open, and
AC X xY is E}, then {= : A, is uncountable} is £, {z : A, is not meager
in U} is £}, and similarly with “not meager” replaced by “comeager”. Show
also that {(u,z,7) € P(Y) x X x R: u(A;) > r} is 1. Finally, show that
{z : A; is not contained in a K,} is X3.

38.B Projective Determinacy

In developing the basic theory of sets in the first and second level of the
projective hierarchy, we have used only one instance so far of “Definable
Determinacy”, namely 3}-Determinacy. In developing the theory of higher
level projective sets, however, we will have to tap a stronger form, that of
“Projective Determinacy”. In fact, several properties of second level sets
cannot be established with just X}-Determinacy, such as, for example, the
Perfect Set Property for I} sets.

(38.15) Definition. We will abbreviate by
Projective Determinacy (PD)

the principle that all games G(N.X), where X C NN is projective, are de-
termined.

It is now straightforward to verify that several results that we proved
earlier for the lowest levels of the projective hierarchy carry over immedi-
ately to all projective sets using Projective Determinacy. For example, the
results of 21.E hold for all projective sets, and the ordering (WADGE}R, <*)
is wellordering (P stands for “projective” here). A set A C X, where X is
Polish, is X.-complete iff A € I} \ IT},. Moreover, any two sets in X} \ IT}
are Borel isomorphic (and similarly switching X, II%). Also, the theory of
21.F and 28.E goes through with the obvious modifications. For instance,
a separable metrizable projective space is Polish iff it is completely Baire.
The same applies to 21.G.

For any class I we let

Gn'={AC X: forsome Be'(X xN), r € A& Gyy(z,y) € B}
Thus Gy3¢ = IT}, GIT) = T} (see 25.3 and 32.B).
(38. 16) Exercise. (Projective Determinacy) Show that GyE} = IT}, 31 and

GnII} = X! | for all n > 1. Therefore, GyII} = =}, GAIIl =1}, G =
31, and so on.
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38.C Regularity Properties

It should also be clear by now that all the usual regularity properties can
be established for the projective sets using Projective Determinacy.

(38.17) Theorem. (Projective Determinacy) i) (Davis) The perfect set
property holds for the projective sets; that is, every uncountable projective
set in a Polish space contains a Cantor set.

#) (Mycielski-Swierczkowski, Banach-Mazur) Every projective set in
a Polish space is universally measurable and has the BP. Similarly, every
projective function is universally measurable and Baire measurable.

Proof. See 21.A, 21.C and the proof of 36.20. 0

(38.18) Exercise. (Projective Determinacy) Let X be Polish and let A C X
be projective. Show that A either is contained in a K, set or else contains
a closed set (in X) homeomorphic to .

(38.19) Exercise. It can be shown using only Projective Determinacy (see
L. Harrington and A. S. Kechris [1981]) that all projective sets are com-
pletely Ramsey, but this seems to require more advanced techniques. One
can use, however, a stronger form of “Definable Determinacy”, namely the
determinacy of all games G(A, X), where A is standard Borel and X C AN
is projective, to establish this. It is clear that an equivalent form of determi-
nacy is obtained here by restricting A to be any fixed uncountable standard
Borel space, like A or R. Therefore, this form of “Definable Determinacy”
is called Real Projective Determinacy (PDg).
Use PDg to prove that all projective sets are completely Ramsey.
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39. The Periodicity Theorems

39.A Periodicity in the Projective Hierarchy

As we have seen earlier, many basic structural properties of the projective
sets of the first two levels are consequences of the fact that the classes
IT}, 3} have the scale property. Using Projective Determinacy, we will es-
tablish in this section that this property propagates throughout the projec-
tive hierarchy with a periodicity of order 2, so that we have the following
picture:

= =} Tt
m; m I,

where the boxed classes are scaled (and thus also satisfy the uniformization,
rank, and generalized reduction properties) and the other classes satisfy the
generalized separation property. Thus the basic structure of the projective
hierarchy is periodic of order 2. However, a finer analysis reveals significant
structural differences, for example, between the first and the higher odd
levels (see A. S. Kechris, D. A. Martin, and R. M. Solovay [1983]), that we
will not pursue here.

We will establish first the above periodicity pattern for the weaker
rank property (the First Periodicity Theorem) in 39.B in order to see more
clearly in a simpler context some of the ideas needed in establishing the full
result for the scale property (the Second Periodicity Theorem), which we
will prove in 39.C.

Although the Second Periodicity Theorem can be used to extend a
significant part of the theory of the first two levels throughout the projective
hierarchy, it still leaves out some important results. This gap can be filled
by the Third Periodicity Theorem, which we will prove in 39.D. This result
provides an extension of 35.32 to all odd levels of the projective hierarchy.

The reader shonld note that the game methods employed in this section
can be used to give (in ZFC) alternate proofs of many results for Borel, £1,
and IT} sets, which we proved earlier by different means.

39.B The First Periodicity Theorem

If BC X x N, we denote by VB C X the co-projection of B, defined by
zeVWB e wy(z,y) € B.

For a class I, let

VWI(X) = {V¥VB: B eI(X xN)}.



328 V. Projective Sets

(39.1) Theorem. (The First Periodicity Theorem) (Martin, Moschovakis)
Let T be a class of sets in Polish spaces closed under continuous preimages
and projections. Assume that every game G(N,P), for P C N in A, is
determined.

If X is Polish and B € T(X x N} admits a T-rank, A = V¥ B admits
a YNT-rank. Thus, if T is ranked, so is VVT.

Proof. (Moschovakis) Let ¢ be a I'-rank on B. For each z,y € X consider
the following game G, on N:

I a(0) a(l)

I 5(0) b(1)

a(3), b(¢) € N; II wins iff (z,a) <7, (y,b).

Note that if z,y € A, the winning condition is just ¢(z,a) < ¢(z,b),
since (z,a), (y,b) € B. Note also that G, is determined for any y € A,
since then (z,a) <7, (v,b) & (%,a) € B & ¢(z,4a) < ¢(y,b), which is in A
by the definition of I'-rank.

(This game is called the sup game since a winning strategy for I is a
uniform way of demonstrating that sup{p(z,a) : a € N} < sup{p(y,b) :
b € N'}. Compare this with the inf method used in the proof of 38.1.)

For z,y € A, let

z < y & II has a winning strategy in G .

We will show that < is a prewellordering on A whose associated rank is a
VVT-rank, which will complete the proof.

Claim 1. < is reflexive, i.e., x < z.
This is evident: II copies I's moves in G ;.
Claim 2. < is transitive,ie., c<y&y<z= <z

Proof. Fix winning strategies for Il in G, , and G, ,.

We describe a winning strategy for I in G, in the following diagram
(Figure 39.1).

Player I starts with (0) in G ,; this is copied as I's first move in G y;
IT plays b(0) following his winning strategy in G ,; this is copied as I's first
move in G, .; II then plays ¢(0) following his winning strategy in G, .; this
is copied as II's reply to a(0) in G, ,; etc.

Then ¢(z,a) < p(y,b) < ¢(z,¢), so II wins by this strategy.
Claim 3. < is connected, ie., z <yory < x.
Proof. Assume z < y fails, so fix a winning strategy for I in G, ,. The
diagram in Figure 39.2 shows how to obtain a winning strategy for II in

Gy.z-
Since ¢(z,a) > ¢(y,b), it follows that ¢(y,b) < ¢(z,a).
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I 4(0) a(1)
PAN FaN
xy
I 6(0) 6(1)
0 il
13 U
I 5(0) bQ1)
G
»z
I c(0) c(1)
n
I «(0) a(1)
G,
I c(0) c(1)
FIGURE 39.1.
I a(0) a(1) a(2)
G / M
%y
II 6(0) 6(1) 6(2)
E
I b(@é 6Q1) 6(2)/
G il
1 2(0) 2(1) (2)
FIGURE 39.2.

Claim 4. The strict part < of < is well-founded.

Proof. Assume - -

that from Claim 3 it follows easily that

z < y < [ has a winning strategy in G, -

- < 19 < I < Zg, toward a contradiction. Notice first

Thus fix winning strategies for I in G;, ;,,, and consider the following
diagram (Figure 39.3):
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[ 4/0) 4,(1) 4,(2)
G"o; x

1 4 (0) 4(1)

/ %

I 20 a,(1) 4,(2)
G
*2%

I 4,(0) (1)

y

I 42(0)7 a,(1) 2,(2)
*p*3

I 2,(0) 4,(1)

FIGURE 39.3.

Then ¢(zo, ao) > @(z1, a1) > p(z2, az) > ---, which is a contradic-
tion.

Finally, we have to compute that if ¢ is the rank associated with <,
then v is a ¥V T-rank.

View here strategies as functions ¢ : NV — N (see 20.A). If o is a
strategy for II and II plays b € N by o when I plays a € N, we will denote
b by o * a. Similarly, if 7 is a strategy for I, we will write a = b 7 if I plays
a via 7 when II plays b. Then we have for y € A,

z € A& P(2) < Y(y) & JoVal(z.a) <, (3,0 *a)]
& vr3bl(z,b* 1) <L (3, b)),

the last equivalence following from the determinacy of the games G, ,. O

(39.2) Corollary. (Martin, Moschovakis) (Projective Determinacy) For each
n, M}, 41, Shoyo are ranked.

(39.3) Exercise. Use 39.1 to give an alternative proof that IT} is ranked.

Recall now 35.28 and the notation preceding it. We put 6},,, = ém

2n+l
1 -
and &z,,45 = 031 2
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(39.4) Exercise. (Kechris, Moschovakis) (Projective Determinacy) Show
that

8l <8 <8<by< .

The projective ordinals 6. play an important role in the theory of
projective sets. We have seen that 8} = w; and 8] < ws. It turns out that
all the 8] can actually be “computed explicitly”; see S. Jackson [1989].

(39.5) Exercise. Using the notation from the proof of 39.1, show that

z S;;, Y= V003b0V013b1 T (1:1 (a”n)) S:o (y7 (b’n)))
z <y, y < IVaeInVvas - (z, (a.)) < (¥, (bn))-

We will prove now a generalization of 39.1, whose proof will also be
useful in that of the Third Periodicity Theorem.

For A C X x N, recall that GyA C X is the set defined by z € GyA &
Ony(z,y) € A, and for a class T', GNI'(X) = {GnA : A € (X x N)}. Note
now the following simple fact (generalizing 38.16).

(39.6) Proposition. Let I' be a class of sets in Polish spaces closed under
continuous preimages. Then we have:

i) INTUVNT C G

#) VWICT = GyI'= 3V,

i) if VT C T and all games G(N,A) with A C N in T are deter-
mined, then GyT' = VVT.

Proof. i) Note that for AC X x N,
Jy(z,y) € A< Gnz(z,2) € B,
where (z,2) € B & (z, (2(0),2(2),2(4), ...)) € A. Similarly for vV.
ii) In the notation of the proof of 39.1 and letting (z,y) = (x(0), ¥(0),
z(1),y(1),...) for 2,y € N, we have
Gny(z,y) € Ae 3rvb(z, (b 1,b)) € A).
iii) Note that

Gny(x,y) € A < I has a winning strategy in G(N, A,)
« II has no winning strategy in G(N, A,)
& Vo3a(z, (a,0 xa)) € A

We now have the following result.
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(39.7) Theorem. (Moschovakis) Let I' be a class of sets in Polish spaces
closed under continuous preimages and finite unions and intersections. As-
sume that every game G(N,P), for P C N in T, is determined. If X is
Polish and B € T'(X x N) admits a T'-rank, then A = GyB admits a GyI'-
rank. Thus, if T is ranked, so is GyI'.

Proof. Let ¢ be a I'-rank on B. For z,y € X consider the following game
G2 , on N between two players, whon1 we will call Circle and Square (Figure
39.4):

y / \ // \
Y Y
O H2)
f ‘\‘ A
_____ — —— — —— — e e ——— e —
I/ \ /
\
a(1) \ |aB)
\
X //’ ‘\‘ /
FIGURE 39.4.

Players Circle and Square play successively a(0), a(1), 0), b(1),..., as
shown in the picture. (Thus, in effect, they play simultaneously, and in the
order shown, two rounds, one of the game G(N, B;) and one of G(N, B,).
In the first game Circle plays as player I, but in the second Circle plays as
player II.) Circle wins iff (z,a) <7, (y,b).

Note that G} , is determined for all z,y.

Define for z,y € A,

z <% y & Circle has a winning strategy in G7 .

We will show that this is a prewellordering whose associated rank is a GyI'-
rank.

Claim 1. There are no o, %1,... with £y € A such that Square has a

winning strategy in G7_, . for all n.

Proof. Otherwise fix strategies for Square in all these gamnes and consider
the following diagram (Figure 39.5).

Here Square plays following these strategies and Circle copies as shown
except for a9(0), an(2),.... These are determined by following a winning
strategy for I in G(N, B;,), when II plays in this game ao(1), ao(3),....
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\ &\\ \

a](O) al(2)

4,(2)

FIGURE 39.5.

This ensures that (z9,a9) € B, therefore (z,,a,) € B for all n and
@(zo,a0) > p(r1,01) > @(Z2.a2) > -, which is a contradiction.

Claim 2, <% is reflexive.

Proof, Otherwise for some z € A, - r <% z, meaning that Square has a
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winning strategy in G7 . contradicting Claim 1.
Claim 3. <7* is transitive.

Proof. Let z <t y, y <* z and fix strategies for Circle in G}, G7 .. The

z,y?

diagram in Figure 39.6 describes a strategy for Circle in G ,:

1
z
«0)
______________ S |
A1)
X
1)
z 2y
40)

K

(1)

4(0)
FIGURE 39.6.
Then we have (z,a) <}, (,b) <, (2,¢), s0 (z,a) <, (2,¢) and Circle
wins.
Claim 4. <% is connected.

Proof. If <% is the strict part of <*, then using Clain 1 we can easily see
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that £ <t y & Square has a winning strategy in G; z- It follows that if
-~y <t z, then z < y and we are done.

From Claims 1-4 it follows that <* is a prewellordering on A. Call ¢
its associated rank.

Claim 5. <3, <j, are in GyI', so ¢ is a GyI'-rank.

Proof. We have, as it is easy to see,

z <y, y & Circle has a winning strategy in G';",y

& 3a(0)Va(1)vb(0)3b(1) 3a(2)Va(3)Vh(2)35(3) - - (x,a) <, (3,b),

0 <y, is in Gnr.

To prove the same fact for <3, consider the following game, G

oy be-

tween Circle and Square as in Figure 39.7, where Circle wins iff (z,a) <,
(y, ).
Jy // ““ / \‘\‘
Ho)| K2\
\ /4 \ A
“““““““ _‘r‘._ - = —/# - = -_!\\_— - _—/l—-
\ \
LU P00 Vo3
\\ ‘\
X \‘ / \‘ //
FIGURE 39.7.

We claim now that

z <y, y < Cirgle has a winning strategy in G,
< Vb(0)3b(1)3a(0)Va(1) Vb(2)3b(3)3a(2)Va(3) - - - (z,a) <, (3,b),

which shows that <}, is also in GnI" and completes the proof.

To see this, note that if z € A and y ¢ A, Circle has a winning
strategy in G . and if Circle has a winning strategy in G, then z € A.
So it is enough to prove the above equivalence when z,y € A. In this case,
z <}, y & z <ty & Square has a winning strategy in G} ;. So finally it
is enough to show:

Claim 6. For z,y € A, Square has a winning strategy in G; » € Circle has
a winning strategy in G .
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Proof. <: This follows from the following diagram (Figure 39.8). (Note that
(z,0) <}, (v,0) = - (3,0) <, (2,0).)

K1) H3)
| |
¥y
“0) u2)
G;‘] —-—7F—__’_ At 1L e
«1) a(3)
x 1
0) a(2)
(1) a(3)
X 7 L 94
4(0) a2)
G | L=
1) &3)
¥y
| |
@ W)
FIGURE 39.8.

=: Fix, toward a contradiction, winning strategies for Square in G';J"’x
and also in G7,. Consider then the diagram in Figure 39.9.

Square plays following his winning strategies and Circle copies as
shown, except for ag(0), ao(2),..., which he plays following a winning
strategy for I in B,, when II plays ao(1), ao(3),.... Thus (y,a0) € B
and so (z,a;), (¥,az2), (,a3),... are also in B and ¢(y,a0) > 9(z,a)) >
¢(y,a2) > p(z,a3) > - -, which is a contradiction. o

39.C The Second Periodicity Theorem

(39.8) Theorem. (The Second Periodicity Theorem) (Moschovakis) Let I’
be a class of sets in Polish spaces containing all Borel sets and closed under
Borel preimages, finite intersections and unions, and projections. Assume
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x
,(0)
Gy ———————— — e — —— — — —
(1)
y
2,(0)
y
4,(0)
Gy e —
4,(1)
x
4,(0)
x
,(0)
G, —————————— S ——— — — —
(1)
Yy
4,(0)
FIGURE 39.9.

that every game G(N,P) for P C N in A is determined. If X is Polish and
B e I(X x N) admits a T-scale, A = VN B admits a VNT-scale. Thus, if T
is scaled, so is VVNT.

Proof. We will “localize” the rank construction in the proof of 39.1 to obtain
the scale.

First, by 36.8 let (¢,,) be a very good I'-scale on B. Fix an enumeration
(sn) of NN with sg =@ and s; Cs;= i < j. Foreachn € Nandz,y € X,
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consider now the game Gz , on N:

I «0) a(1)

11 5(0) b(1)

a(i), b(%) € N; IT wins iff (z,8."0a) <5, (v, 8,7b).
Define next for z,y € A,

z <n y < Il'has a winning strategy in G ,,.

As in the proof of 39.1, <,, is a prewellordering on A. Let ¥, be the asso-
ciated rank. Then, if we let for x € A,

1/;11(1:) = (‘/’0(3)1 ¢n($)>,

where as in 36.B («, 8) denotes the ordinal corresponding to («, 3) in the
lexicographical ordering so that

ha(2) < Paly) & Yo(2) < ¥o(y) or (Yo(z) = Yo(y) & ¥a(z) < Yu(y)),

then we can see (by the computations in 39.1) that each 1, is a v -rank
(keep in mind here that sy = @).

It remains to show that (1) is a scale (from which it is immediate
that so is (¥,)).

Solet z; € A and z; — z, ¥, (%;)) — @, in order to show that
z € A and ¢¥n(z) £ ay,. By going to a subsequence we can assume that
Pa(2:) = ap, for all i > n.

Claim 1. = € A.

Proof. Fix a € N in order to show that (z,a) € B. Put alk = s,,,, so that
0 =mng <n <mng <. Let y; = 4, Then ¢, (v;) = ¥n,(Yi+1), thus
Yi+1 <n; Yi, so II has a winning strategy in all G;‘;’+ .,y:+ Fix such strategies
and consider Figure 39.10, where I plays as shown and II follows his winning
strategies.

Let ag = (an(0),a0(1),...), a1 = (a(0),a1(1),...), a2z = (a(0),a(1),
(12(2), . ')’ ..~ Since ?no(y‘))a’o) 2 wnn(y“a’l)’ Py (yl,a'l) 2 ¥n, (y2’a'2)’
... and (¢4) is a very good scale, it follows that n,(y0,a0) = Pno(¥1,01) >
(P7'»u(y2’a2) 2 5 80 <p7lu(y'i>ai) converges, and Slmlla'rly Wnl(yivai) con-
verges, etc., so (vi,a:) — (z,a) € B.

Claim 2. Y,(z) < op.

Proof. We have to show that z <, z,, i.e., Il has a winning strategy in
G% ., - Since i (zk) = Yi () for all m > k, fix winning strategies for II in
all G’,’jm =, for m > k. The diagram in Figure 39.11 then describes a winning
strategy for Il in G7 .

I plays ap in Gg,xn. Let s,, = sp ap, so n; > n. Put y3 = 2,, and

consider G, . . Let I play ao and II answer by his winning strategy to
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A0 1) 1 4&2) 4,(3) a,(4)

712
nyyz \

40) (1) I ,(2) ,(3) a,(4)
Ny
(0) (1) 2(2) 4,(3) 2,(4)

n
1
G’z"l \

L]

«0) 1 a,(1) 4Q2) 4,(3) 4,(4)
R R
0 I 40) a,(1) 4(2) 4/(3)
G,:‘}O
g I 2,(0) a,(1) 2,(2) 2,3)

FIGURE 39.10.

give b(0). This is what II plays in G, answering ay. Next I plays a,
in G, . Let sp, = s, a1 = sn"ap a1, S0 n2 > ny. Put y2 = z,, and
consider G! . Let I play a) and II answer by his winning strategy to
play 51(1). Copy. (1) as I's next move in Gy, , and let II answer by
his w1mnng strategy to play bo(1). This is II's answer in G, to az, etc.
Let o' = s, (ag,a1,...), and by = s,"(bo(0),b0(1), ...), b = sn"ag”
(01(1),51(2), ...), b =sn"a0 a1 (52(2), 52(3), ...),... Then @n(Zn, by) =
@nly1,b1). Pny (1,5)) 2 @n; (y2,b3), - .., s0 as before (y;, b) — (z,a') and
@n(z,a’) < lang @n(ys, b;) < @n(ea, by), so Il wins in G7 . O

Remark. Y. N. Moschovakis [1980], 6E.15, has also proved an analog of 39.7
for scales.

(39.9) Corollary. (Moschovakis) (Projective Determinacy) For each n, the
classes T}, _,_I,Z)%n +2 are scaled and satisfy the uniformization property.

In particular, the class of projective sets has the uniformization prop-
erty.

(39.10) Exercise. Use the proof of 39.8 to give an alternative proof that IT}
is scaled.

(39.11) Exercise. (Moschovakis) (Projective Determinacy) Show that every
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n, I :12
Y iz [ \
5 I 6,(2)
- -
Sn, I o 62(2)
G,T;] \ \
TR | 6,(1) 4,(2)
! n n
3% V5
s 14 6,(1) 6,(2)
N*y \ \
s I £4(0) A £)(2)
! n i n 1
s, 1 a, 4 a,
Gex
s I 6,(0) by(1) 6,(2)

FIGURE 39.11.

=%, 2 set is 6§n+,-Sousliu and every X}, +1 set is k-Souslin for some x <
83,1 (Kunen, Martin) Show that 83,,, < (63,,1)*.

Using Projective Determinacy, Martin has shown that 8} < ws, so
from the preceding we have 8} < wy, and S. Jackson [1989] has shown that’
vr(6) < w,)-

(39.12) Exercise. (Projective Determinacy) (Martin) Use this to show that
every 1 set is the union of a transfinite sequence of w, Borel sets and every
3] set is the union of a transfinite sequence of w3 Borel sets. (Jackson) Show
that every projective set is the union of transfinite sequence of < w,, Borel
sets.

(39.13) Exercise. (Projective Determinacy) i) Show that if X,Y are Polish
spacesand A C X xY is B}, n > 1,s0 are {z : A, is uncountable}, {z : 4;

is not meager in U}, {z : A; is comeager in U} for any nonempty open
UCY, {z: A, is not contained in a K,}, and {(u,z,r) € PY) x X xR:
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u(Ag) >}

ii) (Kechris) Show that if X,Y are Polish spaces, A C X xY is a
I13,,, set,and z — I, isa I3, , on 1}, ,, map from X to o-idealson Y
such that each Z, is I1},,, ,-additive, then B = {z: A, ¢ Z,} is I}, and
there is a I1}, , ;-measurable function f : B — Y with f(z) € A,, Vz € B.
In particular, this holds if Z, = NULL,,, with z — us € P(Y) a A},
map, or if Z, = MGR(Y).

(39.14) Exercise. (Busch, Mycielski, Shochat) (Projective Determinacy)
Show that every projective set A C X, X compact metrizable, is -
capacitable for any capacity v with v(@) = 0 which is alternating of order
00.

We have seen until now that, using Projective Determinacy, the pro-
jective sets have all the usual regularity properties, such as the perfect set
property, universal measurability, BP, etc. and satisfy the uniformization
property. Woodin has conjectured that conversely these properties of the
projective sets imply (in ZFC) Projective Determinacy.

The class of projective sets does not form a o-algebra. However, it is
straightforward to extend the preceding theory to the smallest “projective”
o-algebra.

(39.15) Definition. For each Polish space X, denote by oP(X) the small-
est g-algebra of subsets of X containing the open sets and closed under
projections. We call these the o-projective subsets of X.

(39.16) Exercise. If X is an uncountable Polish space, then P (X) 2 P(X).

(39.17) Exercise. Show that if every game G(N, A) for A C N in oP is
determined (which we abbreviate by o-Projective Determinacy), then all
the sets in P are universally measurable and have the BP and the class
oP has the uniformization property.

(39.18) Exercise. For 1 < £ < wy, define the classes X, IIj, Aé as follows:
Tgn = HNHé’
m -~}
Al =3[NII,
) ={JAn: An € B}, £ < A}if A is limit.
n

Show that T UIT; C A, for any £ < 1 and oP = U, T} =
Ur<e<wr It = Ur<g<o, A¢- Show that these form a proper hierarchy on
any uncountable Polish space, and also show that 2; +1 is closed under
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continuous preimages, countable intersections and unions, and continuous
images. Establish the analogous properties for IT}, ) and A}, ,. Show that
for X limit, X! is closed under all these operations except countable inter-
sections. ’

Assuming o-Projective Determinacy, show that all £}, T}, 5,1
are scaled for any limit ordinal A (or A = 0).

39.D The Third Periodicity Theorem

In the periodicity picture, one often denotes X} = £{ and IT} = IT} and
views X3, TI3, as higher level analogs of X¢, IT]. With this analogy, the
following general Strategic Uniformization Theorem, which is usually called
the Third Periodicity Theorem, generalizes 35.32.

(39.19) Theorem. (The Third Periodicity Theorem) (Moschovakis) Let I’
be a reusonable class of sets in Polish spaces containing all the clopen sets,
and closed under continuons preimages and finite intersections and unions.
Assume I is scaled. Let 't = GyI" and assume also that 't is closed under
Borel preimages. If every game G(N,P), for P C N in T, is determined,
then for any Polish space X and any A C X x N, if we let AT = GnA,
there is a 't -measurable function oy:A* — Tt such that Vz € At (o((z) is
a winning strategy for I in G(N, A;)).

Proof. We claim that it is enough to find £ C X x N<N in 't such that
projx (X) = A* and for each z € A*, ¥, is a winning quasistrategy for
I in A;. To see this, notice that I't contains all clopen sets and is closed
under continuous preimages and countable intersections and unions, so by
39.7 it satisfies all the hypotheses of 35.1 ii), and so it satisfies the number
uniformization property. Using this we can define £" C X x N<N recursively
in 't such that £ D £ D> 5! D 82 D -.. foreach z € A*, ' is a
quasistrategy for I (so it is winning in A;), and if s € 7 has even length
< 2n, then Im(s"m € B}). Then o1(z) =), Z7 clearly works.

Next notice that since I't is closed under Borel preimages, it is enough
to work with X zero-dimensional. Then, by the first part of the proof of
36.8, we can find a very good I'-scale (p,) on A. For z € At let

Tt ={s € NV length(s) is even &
I has a winning strategy in G(N, (A;)s)}.

that is,
s € B} & length(s) is even & Ony(z, 5"y) € A.
Motivated by the proof of 39.7, consider for each n the game G;n;s,t (Figure
39.12).
Players Circle and Square play successively a(0), a(1), b(0),b(1),. .., as
in the picture. Circle wins iff (z,s"a) <3, (z.t"b).
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FIGURE 39.12.

Then if for s,t € &} we put
s <}, t & Circle has a winning strategy in G7 ., ;,

we have, by an a.rgument as in 39.7, that <}, is a prewellordering on X} .
In particular, s <t s for all s € £F. So if s € F, Ja(0)Va(1) (Circle has
a winning strategy in G} | . .a(0), a(l)), where G ,, ta(O) a(1) 18 the game
given in Figure 39.13 in which Circle wins iff (z,s"a) <7, (x,t")). (Here
a(0), a(1) are given a priori, and so Square starts from b(0), etc.)

«(0)
FIGURE 39.13.

Note also that if Circle has a winning strategy in G} sit:a(0),a(1)> then
I has a winning strategy in G(N, (Az)s-a(0)-a(1))- So for all n,

s € T} = 3a(0)Va(1)[s"a(0) a(l) € =} &
Circle has a winning strategy in G} ,, ; ;..(0),0(1))-
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This shows that if for length(s) odd, say equal to 2n + 1, we put

SET, & Vi(s"jelt &
Circle has a winning strategy in G} ,, ;120 sj2n5(2n),5)>

and for length(s) even, s € £, iff (s = @ or s|(length(s) — 1) € £;), then
¥, is a quasistrategy for I and if we let I(z,s) & =z € At & s € T,,
then clearly ¥ is in I't. So the proof will be complete if we can show it is
winning for I in A,. So fix a € [Z,] in order to show that (z,a) € A. Fix
also winning strategies for Circle in all the games G7 ; | 15; 4j2:.0(20) a(2i41)"

Consider Figure 39.14, where Circle always follows his winning strate-
gies and Square copies as shown, except for ag(0), ao(2), ---, which
are played following a winning strategy for I in G(N, A,). Let a}
a(0)"a(1)"a1, ab = a(0)"a(1)"a(2)"a(3)" a2, etc. Then o(z,a})
wo(z, a’O)a <p1($, a’l2) < <P1($, a’ll)a ©+0y SO (.’L‘, a’{n) - (12, a') € A

aQinll

(39.20) Corollary. (Moschovakis) (Projective Determinacy) Let X be Pol-
ishy A C X x N be T}, and let A* = GnA. Then there is a I}, |-
measurable function o;:At — Tr such that Vo € At (o1(z) is a winning
strategy for I in G(N, Ag)).

(39.21) Exercise. Show that the application of 39.19 to T’ = IT},, , , is already
included in 39.9.

(39.22) Exercise. Prove the following generalization of 35.32: Let X be a
standard Borel space and A C X x A a Borel set-with open sections. Then if
A* = GyA, AY is IT} and there is a I1}-measurable function oj : A* — Tr
such that for z € At, o1() is a winning strategy for I in G(N, A,).

(39.23) Exercise. (Martin) (Projective Determinacy) Let X,Y be Polish
spaces and let AC X xY be X},,,. Let B = {z : A, is countable} (so
that B is IT},,, by 39.13). Show that there is a sequence f; : B —» Y of
I1}, . ,-measurable functions with A, C {fi(z) : ¢ € N} for z € B. (Note
that this generalizes and strengthens 35.13. The proof for n = 0 can be
carried in ZFC.) In particular, if A is A}, ., and Vz(A; is countable),
projx (A) is A}, ,, and there is a sequence of A}, ,, functions f; : X — Y
such that A, = {fi(z) : ¢ € N} for z € projx (A). (This generalizes 18.15.)

(39.24) Exercise. (Kechris) (Projective Determinacy) Let X,Y be Polish
spaces and let A C X xY be £}, ,. Let B = {z : A, is meager (resp.,
contained in a K, set)} (which is IT},,; by 39.13). Show that there is
a sequence F; : B — F(Y) of IT}, , |-measurable functions such that for
z € B, F;(z) is nowhere dense (resp., compact) and A, C U, Fi(z).
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(39.25) Exercise. (Moschovakis) (Projective Determinacy) If X, Y are Polish
spaces and A C X x Y is A}, ,,, then {z: 3y(z,y) € A} is T1},,,,. (This
generalizes 18.11.) Also, if f: X —Y is A}, ,, and AC X is A}, such
that f|A is injective, then f(A) is also A}, . (This generalizes 15.2.)
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40), 1), 42), 43)
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FIGURE 39.14.

Y. N. Moschovakis [1980], 6E.14, has also shown that the following
analog of 13.10 goes through, using Projective Determinacy:

Let X be Polish and A C X be A},,,. Then there is a I}, set
B C X x N such that

z€A& Jy(z,y) € B My(z,y) € B.
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40. Epilogue

40.A Extensions of the Projective Hierarchy

The projective sets constitute the traditional field of study in descriptive
set theory, but they only form a part, albeit one that is very important, of
the domain of “definable” sets in Polish spaces. In the last 25 years or so the
range of classical descriptive set theory has been greatly expanded, under
“Definable Determinacy”, to encompass vastly more extensive hierarchies of
“definable sets”, such as, for example, those belonging to L(R), that is, the
smallest model of ZF set theory containing all the ordinals and reals. (The
projective, the o-projective, as well as the more complex hyperprojective
sets belong to this model.) The reader can consult Y. N. Moschovakis [1980]
and the seminar notes A. S. Kechris et al. [1978, 1981, 1983, 1988] on these
developments.

40.B Effective Descriptive Set Theory

In these lectures we have presented a basic introduction to classical descrip-
tive set theory. For a deeper understanding of the subject, the concepts and
methods of effective descriptive set theory are indispensable. In effective
descriptive set theory the classical concept of topology is replaced by that
of an effective topology.

Given a set X and a sequence (U,) of “basic” open sets satisfying
appropriate effectiveness conditions, one defines an effective open set to be
a set of the form |J,, Uy(n), where f : N — N is a computable (or recursive)
function. Starting from this, one defines and studies effective analogs of the
Borel and projective classes. The effective classes are properly contained
in the classical ones, but in turn the classical (non-self-dual) classes can
be obtained by the process of taking sections of sets from the effective
ones. In particular, the results of the effective theory immediately imply
their classical counterparts. In the effective theory new powerful ideas and
methods of computability (or recursion) theory have been nsed to develop
an extensive subject that is of great interest in its own right. In relation to
the classical theory, this leads both to new (often much simpler, once the
basic effective theory is understood) proofs of known results as well as to
new results in the classical context for which no “classical-type” proof has
yet been found. The reader can consult Y. N. Moschovakis [1980] and the
forthcoming A. Louveau [1997] to learn more about this.

40.C Large Cardinals

Beyond the effective theory, the further study of projective and more general
“definable sets” is intrinsically connected with the study of large cardinals
in set theory and their inner models. This uncovers a deep “duality”, where
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these two a priori unrelated subjects are shown to provide equivalent de-
scriptions of an underlying reality. For more on this, see Y. N. Moschovakis
(1980], and the forthcoming A. Kanamori [199?] and D. A. Martin [1997).

40.D Connections to Other Areas of Mathematics

Traditionally, the theory of Borel and analytic sets has been useful in many
areas of mathematics, including measure theory, probability theory, func-
tional analysis, potential theory, group representation theory, and operator
algebras. See, for example, C. A. Rogers et al. [1980], J. Hoffman-Jargensen
[1970], C. Dellacherie [1972], C. Dellacherie and P.-A. Meyer [1978], J. P.
R. Christensen [1974], K. P. Parthasarathy [1967], R. M. Dudley [1989],
D. L. Cohn [1980], D. P. Bertsekas and S. E. Shreve [1978], W. Arveson
[1976], L. Auslander and C. C. Moore [1966], G. W. Mackey [1976], M.
Takesaki [1979], B. R. Li [1992], R. Zimmer [1984], E. Klein and A. C.
Thompson [1984]. More recently, the theory of co-analytic sets provided
the appropriate context for applications of descriptive set theory to the
classical theory of trigonometric series and related areas of harmonic anal-
ysis, such as the study of thin sets and the harmonic analysis of measures
(see, e.g., A. S. Kechris and A. Louveau [1989, 1992], and the references
contained therein). The class of projective (or o-projective) sets has all the
desired regularity properties, like universal measurability, BP, etc., but. it
has, moreover, strong closure properties (projection) and important struc-
tural properties, like uniformization. Therefore, it seems quite probable to
us that the theory of projective sets will prove very useful in providing the
proper framework for applications of descriptive set theoretic methods to
further mathematical theories.



Appendix A. Ordinals and
Cardinals

We denote by ORD the class of ordinals and by < the ordering among
ordinals. As is common in set theory, we identify an ordinal o with the set
of its predecessors, i.e., « = {3 : B8 < a}. Also, we identify the finite ordinals
with the natural numbers 0,1,2,.. ., so that the first infinite ordinal w is
equal to {0,1,2,...} =N.

The successor of an ordinal « is the least ordinal > «. An ordinal is
successor if it is the successor of some ordinal, and it is limit if it is not 0 or
successor. Finally, every set of ordinals X has a least upper bound or supre-
mum in ORD, denoted by sup(X) If (a¢)e<a is an increasing transfinite
sequence of ordinals, with A limit, we write

2121\ ag = sup{ag : £ < A}

The cofinality of a limit ordinal 8, written as cofinality(#), is the small-
est limit ordinal X for which there is a strictly increasing transfinite sequence
(a5)§<;\ with lim5<,\ Qe = 0.

If , 3 are ordinals, then o+ 3, a- 8, and a® denote respectively their
sum, product, and exponential. These are defined by transfinite recursion
as follows: a + 0 = «, &+ 1 = the successor of o, a+ (8+ 1) = (a+ ) +
1, a+ X =limger(a+8)if Aislimit; -0 =0, a-(B+1) =a-B+a, a- A=
limgey(a-B); a® =1, &Pt =P . q, o =limg ) a®.

An ordinal « is initial if it cannot be put in one-to-one correspondence
with a smaller ordinal. Thus 0,1,2,...,w are initial ordinals. For « € ORD,
ot denotes the smallest initial ordinal > «. We define (w4 )acorp by trans-
finite recursion as follows: wy = w, wWe+1 = (Wo)t, wi = limgerwy if A is
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limit. Thus w, = the first uncountable ordinal, ws = the first ordinal with
cardinality bigger than that of w,, etc.

Using the Axiom of Choice, there is a bijection of any set X with
unique initial ordinal ¢, so we identify the cardinality card(X) of X with
this ordinal. When we view the initial ordinal w, as a cardinal in this
fashion we often use the notation R, for w,. So Ry = w, R) = w,, etc. We
denote by 2R° the cardinality of the set of reals (not to be confused with
the ordinal exponentiation 2¢).



Appendix B. Well-founded
Relations

Let X be a set and < a (binary) relation on X (i.e., < C X?). We say
that < is well-founded if every nonempty subset ¥ C X has a <-minimal
element (i.e., Jyo € YVy € Y- (y < 4)). This is equivalent to asserting
that there is no infinite descending chain --- < x2 < 2, < zy. Otherwise,
we call < ill-founded.

For a well-founded relation < on X we have the following principle of
induction: If Y C X is such that

Vy(y <z =>y€Y)=>zx €Y,

then Y = X.

We also have the following principle of definition by recursion on any
well-founded relation < on X: Given a function g, there is a unique function
f with

f(=)=9(f{y:y <=}, 2)

for all z € X. (It is assumed here that g: Ax X —» Y, where A={h: his
a function with domain a subset of X and range included in Y’} for some
set Y.)

Using this, we can define the rank function p of <, p. : X — ORD
as follows:

p<(z) = sup{p<(y) +1:y < z}.
In particular, p<(z) = 0 if z is minimal, i.e., = Jy(y < z). Note that p

maps X onto some ordinal « (which is clearly < card(X)*). This is because
if « is the least ordinal not in range(p<), then by a simple induction on <
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we have p<(z) < « for all z € X. We denote this ordinal by p(<) and call
it the rank of <. Thus p(<) = sup{p<(z) +1: z € X}.

If < = < is a wellordering, then «« = p(<) is the unique ordinal iso-’
morphic to < and p. is the unique isomorphism of < with .

If <x, <y are two relations on X,Y respectively, amap f: X - Y
such that z <x 2’ = f(z) <y f(2’) will be called order preserving. Note
that if <y is well-founded and f: X — Y is order preserving, then <y is
well-founded and p«, () < p<, (f(2)) for all z € X, so that in particular
p(<x) < p(<y). It follows that a relation < on X is well-founded iff there
is order preserving f : X — ORD (i.e, z <y = f(z) < f(y), with < the
usual ordering of ORD). Moreover, if f : X — ORD is order preserving,
then p<(z) < f(2) (i.e., p< is the least (pointwise) order preserving function
into the ordinals).

Note finally that if f : X — Y is a surjection, <y is a well-founded
relation on Y, and the relation <x on X is defined by z <x 2’ & f(z) <y
f(&'), then p(<x) = p(<v).



Appendix C. On Logical Notation

In this book we use the following notation for the usual connectives and
quantifiers of logic:

J

for negation (not)
& for conjunction (and)
or for disjunction (or)
= for implication (implies)
& for equivalence (iff)
3 for the existential quantifier (there exists)
vV for the universal quantifier (for all).

It should always be kept in mind that “P = Q" is equivalent to “-P or Q"
and “P & Q" to ‘(P = Q) & (Q = P)”. The expressions “Jz € X” and
“Yz € X" mean “there exists x in X” and “for all z in X” respectively,
but we often just write 3z,Vz when X is understood. For example, as a
letter such as n (as well as k, !, m) is usually reserved for a variable ranging
over the set of natural numbers N, we most often write just “3In” instead
of “In € N,

For convenience and brevity we frequently employ logical notation in
defining sets, functions, etc., or express them in terms of other given ones.
It should be noted that there is a simple and direct correspondence between
the logical connectives and quantifiers and certain set theoretic operations,
which we now describe.

If an expression P(x), where x varies over some set X, determines
the set A, ie, A = {z € X : P(z)}, and similarly Q(z) determines B,
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then P(z) & Q(z) determines A N B, i.e., conjunction “& ” corresponds
to intersection N. Similarly, disjunction “or” corresponds to union U, and
negation “~” to complementation ~, i.e., if P(z) determines A, then ~P(z)
determines ~ A = X \ A. Also “=”, “&" correspond to somewhat more
complicated Boolean operations via the above equivalences.

Now let P(z,y), where = varies over a set X and y over a set Y (or
equivalently (z,y) varies over X xY'), determine a set A, i.e., A = {(z,y) €
X xY : P(z,y)}. Then 3yP(z,y) determines the projection projx(A) of
A on X, i.e., existential quantification corresponds to projection. Similarly,
since “VyP(z,y)” is equivalent to “~3y—P(z,y)", it follows that VyP(z,y)
determines the (somewhat less transparent operation of) co-projection ~
projx(~ A) of A, i.e., the universal quantifier corresponds to co-projection.
Note here that if Z C Y, then the expression 3y € ZP(z,y) is equivalent
to Jy(y € Z & P(z,y)) and thus determines the set projx(A N (X x 2)),
and Yy € ZP(z,y) is equivalent to Vy(y € Z = P(z,y)) and determines
the set ~ projx((~ 4) N (X x Z)).

One can also interpret the existential and universal quantifiers as in-
dexed unions and intersections. If I is an index set and P(i,z) is a given
expression, where ¢ varies over I and z over X, we can view A = {(i,z) :
P(i,z)} as an indexed family (A;)ics, where A; = {z : (i,z) € A}, and
then 3iP(i,z) determines the set |J;c, A: and ViP(i,z) the set [),c; A;.
This interpretation is particularly common when I = N or more generally
I is a countable index set, such as I = N<N,

If P(z) is a given expression, where = varies over X, which defines
aset AC X,and f:Y — X is a function, then the expression P(f(y)),
obtained by substituting f(y) for z in P, determines the set {y : P(f(y))} =
{y: f(y) € A} = f~1(A), i.e., substitution corresponds to inverse images.
To consider another situation, if an expression P(z,y) defines AC X xY
and f : Z — Y, the expression P(z, f(z)) defines the set g~'(A), where
g: X xZ - X xY is given by ¢g(z,2) = (z, f(z)). Similarly, one can
handle more complex types of substitution as appropriate inverse images.
Also note that if P(z,y) defines A C X x Y and Q(z) defines B C X, then
an expression such as “Q(z) or P(x,y)”, for example, which is the same as
“Q(m(z,y)) or P(z,y)”, with n(z,y) = z, defines 7~ (B)UA = (BxY)UA.

In view of these correspondences between logical connectives and quan-
tifiers and set theoretic operations, we often employ logical notation in eval-
uating the descriptive complexity of various sets, functions, etc., in these
lectures. For example, to show that a set is Borel, it is enough to exhibit
a definition of it that involves only other known Borel sets or functions
(recall that the preimage of a Borel set by a Borel function is Borel) and
-, &, or, =, &, 3i, Vi (i varying over a countable index set). Similarly, if
a set is defined by an expression that involves only other known X1 (resp.,
IT}) sets and &, or, Ji, Vi (i again varying over a countable index set), 3z
(resp. Vz) (z varying over a Polish space), then it is X} (resp., IT}), etc.
The application of such logical notation to descriptive complexity calcula-
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tions is usually referred to as the Tarski-Kuratowski algorithm (see Y. N.
Moschovakis [1980]).

As a final comment, we note that we occasionally also follow logical
tradition in thinking of sets A C X as properties of elements of X and in
writing “A(z)” interchangeably with “z € A”, A(z) meaning that z has
the property A. Similarly, if R C X x Y, we can view R as a (binary)
relation between elements of X,Y and write R(z,y) or sometimes zRy
(instead of the cumbersome R((z,y))) as synonymous with (z,y) € R, and
correspondingly P(z,y,2) if PC X xY x Z, etc.



Notes and Hints

CHAPTER 1

4.32. To show that Tr; and PTry are not G5 use themapz € C — T € Tr,
where T, isdefined by 0 € T, s€ T, = {n:s"n € T;} = {n:z(n) =1},
and the Baire Category Theorem (see 8.4), which implies that {z € C :
z(n) = 1 for only finitely many n} is not Gs.

Sections 7, 9. See the article of F. Topsge and J. Hoffmann-Jgrgensen in
C. A. Rogers, et al. [1980].

7.1. See N. Bourbaki [1966), IX, §2, Ex. 4.

7.2. By taking complements, it is enough to prove Kuratowski’s reduction
property: If A, B C X are open, there are open A* C A, B* C B with
A*UB*=AUB and A*NB* = 0. Write A = J;cy Ai, B = U;en B: With
A;, B; clopen and put A* = Ui(AiﬂﬂK,- ~ Bj), B* = Ui(B,ﬂﬂjSi ~ Aj).

7.10. This proof comes from the article of E. K. van Douwen in K, Kunen
and J. E. Vaughan [1984], Ch. 3, 8.8.

7.12. Show that if X is nonempty countable metrizable and perfect, then
i) it is zero-dimensional; ii) if U C X is clopen, z € U and € > 0, then there
is a partition of U into a countable sequence (U;)ien of nonempty clopen
sets of diameter < ¢ with x € Up. Construct an appropriate Lisin scheme
(Cs) and points z, € C; with z,-9 = z, and z, = the least (in some fixed
enumeration of X) element of C,.

7.15. Let X be nonempty perfect Polish with compatible complete metric
d. Show that for each ¢ > 0 there is a sequence (G, )xen of pairwise disjoint
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nonempty Gs sets with diameter < € such that G = |J,, G» and each G, is
perfect in its relative topology. Use this to construct a Lusin scheme (G,)
with Gy = X, each G a G set that is perfect in its relative topology with
compatible complete metric d;, and (G;-n).cn satisfies the above conditions

relative to G for the compatible complete metric d + > dg); and
€= 2—length(s)‘ 0<i<length(s)

Section 8. For a detailed historical survey of the Banach-Mazur and related
games such as the (strong) Choquet games, see R. Telgarsky [1987]. (Note,
however, that his terminology is sometimes different than ours.)

8.8. ii) Argue that we can assume without loss of generality that f(U) is
uncountable for each nonempty open U C X and in this case show that
{K € K(X): f|K is injective} is dense Gjs.

8.32. For the last assertion, use 7.12 and 3.9 to show that for any
two nonempty perfect Polish spaces X,Y there are dense G5 subsets
A C X, B CY that are homeomorphic.

9.1. For a proof, see S. K. Berberian [1974].

9.16. i) By 9.14, it is enough to check that the action is separately con-
tinuous. So fix = in order to show that g — g¢.z is continuons in g. By
8.38, g — g¢.x is continuous on a dense G; set A. Given g, — g, note that
N, {h:hg, € A}n{h:hge A} #90.

9.17. See D. E. Miller [1977).
9.18. See V. V. Uspenskii [1986].
9.19. See C. Bessaga and A. Pelczyriski [1975].

CHAPTER II

12.A, B. See G. W. Mackey [1957].
12.C. See E. G. Effros [1965] and J. P. R. Christensen [1974].

12.7. Let X = XU{oc} be the one-point compactification of X and consider
the map F — F U {oo} from F(X) to K(X).

12.8. Use the proof of 12.6, but now argue that G is Borel in K(X). Then
use 13.4.

12.13. See K. Kuratowski and C. Ryll-Nardzewski [1965].
14.13. Use 8.8 ii).

14.15. Use 9.14 and 9.15 to show that multiplication is continuous. For
the inverse, show that g — g~! is Borel, and thus must be continuous on a
dense Gg.

14.16. Let f : X — 2N be defined by f(z)(n) = 1 & z € A,. Letting
S = 0({An : n € N}), note that f is (S, B(2"))-measurable (in particular,
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Borel). If A C X is Borel E-invariant, then f(A4), f(~ A) are disjoint
analytic subsets of 2N. Now use the Lusin Separation Theorem.

15.C. See H. L. Royden [1968], Ch. 15.

16.B, C. See R. L. Vaught [1974].

16.D. For an exposition of Cohen’s method of forcing, see K. Kunen [1980).
17.16. See K. R. Parthasarathy [1978], §27.

17.E. See K. R. Parthasarathy [1967].

17.31. See K. R. Parthasarathy [1967], Ch. II, 6.7.

‘17.34. See R. M. Dudley [1989], 8.4.5.

17.35. We can assume that X = C. For any clopen set A C C, define v4 €
P(Y) by va(B) = u(AN f~Y(B)). Then vy << v. Put p,(A) = La(y).
Then use 17.6. This elegant proof comes from O. A. Nielsen [1980], 4.5,
where it is attributed to Effros.

17.39. Work with X =C.
17.F. See P. R. Halmos [1950].

17.43. For ii) argue as follows: Let A C B(X) be a c-algebra and A =
{[P) : P € A}. Choose a sequence (P,), with P, € A, such that {[P,]} is
dense in A (for the wetric §). Define f : X — C by f(z)(n) =1& z € P,.

17.43. (Remark following it) Solecki has found the following simple proof of
this result: If CAT=CAT(R) admitted such a topology, the sets F,, = {a €
CAT : a A u, = 0}, where v, = [V;,] with {V,} a basis of nonempty open
sets in R, would be Borel in this topology. Clearly, |J,, F, = CAT \ {1}; so
for some ng, Fy, is not meager. Each F, is a subgroup of the Polish group
(CAT, +), where a + b = (a vV b) — (a A D), s0 by 9.11 F,, is open, thus has
countable index in (CAT, +). But {a € CAT : a < v, } is uncountable, so
there are a # b < 1,, witha+b € F,,. Then (a +b) Av,, = 0,50 a = b,
which is a contradiction.

17.44. For ii), if D C A is countable dense, show that D generates A. For
the other direction one can use the following approach suggested by Solecki:
Let B C A be a countable subalgebra generating A. Adapting 10.1 ii) in an
obvious way to any Boolean g-algebra, A is the smallest monotone subset of
A containing B. So it is enough to show that B (the closure of B in (4, §))
is monotone. For that use the easy fact that if (a,,) € AN is increasing, then
8(Vnan, a) =lim, 6(a,, a). For iv), see P. R. Halmos [1950], §41.

17.46. i) See P. R. Halmos [1960]. ii) See the survey article J. R. Choksi
and V. S. Prasad [1983).

18.B. The results here are special cases of those in 36.F - see references
therein. The measure case of 18.7 was first proved in D. Blackwell and C.
Ryll-Nardzewski [1963]. See also A. Maitra [1983)].
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18.8. Assuming P # @, let f : N — X x Y be continuous with f(N) = P,
Put P* = f(N,). Then P* is B}, P® = P, Ps = [J, P*", and if a €
N,w, € P" for all n, then w, — w, where w is the unique element of
nn peln

Put P2 = {y : (z,y) € P*}, and note that (P?),cn<v has the above
properties for P, if P, # (. For each z € projyx(P), let T, = {s € N<N .
P: # 0}, so that T; is a nonempty pruned tree on N. Let a, be its leftmost

branch. Put {f(z)} = N, P=*'". Then f uniformizes P.
18.16. See J. Feldman and C. C. Moore [1977].

18.17. For (z,y) € N x N, put {z,y) = (z(0), y(0), z(1), y(1),...) EN,
and if z = (z,y), let (2)o = z,(2)1 = y. As in the proof of 14.2, let F C
N x N be N-universal for IIJ(N?). Define S C N x N by

@) €5 o (i@ au) € F oy # @,
where (@, 7) are (unique) such that (z,2,%,7) € F }

Show that S is B}, so let F C N x N x N be closed with (z,y) € § &
J2(z,y,2) € F. Put (z,u) € F & (z,(u)o,(u)1) € F. Note that F is closed
and Vz3u(z,u) € F. Show that this works, using 13.10.

For another proof, using later material, see the notes to 35.1.

18.20. i) For the case when X is Polish and E is closed, let {U,} be an
open basis for X and notice that if (z,y) € E there are U,V € {U,} with
(z,y) €U xV C ~ E. Now use 14.14.

ii) See A.S. Kechris [1992), 2.5.

iii) See J. P. Burgess [1979). L

iv) See S. M. Srivastava [1979]. Let p(z) = [z]g, p : X — F(X).
Show that p is Borel and zEy & p(z) = p(y), so in particular E is Borel.
Define P C F(X) x X by (F,z) € P & p(z) = F, and for F € F(X),
let Zp = the o-ideal of meager in (the relative topology of) F sets. Verify
that F +— ZIp is Borel on Borel. Then, by 18.6, @ = projpx)(P) is
Borel and there is a Borel function ¢ : @ — X with p(q(F)) = F. It
follows that s(z) = ¢(p(z)) is a Borel selector for E. The verification that
F +— Ip is Borel on Borel is based on the following fact which can be
proved by the same method as 16.1: If (Y,S) is a measurable space, Z a
Polish space, U € Z open, and A C Y x Z x F(Z) is Borel, then so is
Ay ={(y,F) €Y x F(Z) : {z : (y,2,F) € A} is meager in (the relative
topology of) FNU}.

19.1. See J. Mycielski [1973] and K. Kuratowski [1973].
19.11. See F. Galvin and K. Prikry [1973].
19.14. See E. Ellentuck [1974].
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19.E. We follow here a seminar presentation by Todoréevié.
19.20. See H. P. Rosenthal [1974].

20.1. See D. Gale and F. M. Stewart [1953].

20.C. See D. A. Martin [1985].

20.11. For the last assertion, let A C N be Borel and find F, H closed
in N xN withz € A& Ju(z,u) € F, c € A& Jv(z,v) € H. Let
(z,y) € F!' & (z,(y)o) € F, (z,y) € H & (z,(yh) € H, where for
y € N, (y)o(n) = y(2n), and (y)1(n) = y(2n + 1). Let C C N x N be
clopen separating F', H'. Then z € A & GnyC(z,y).

21.A, B. The *-games for X = C in the form given in 21.3 were studied in
M. Davis [1964], which contains the proof of 21.1 for these games.

21.B, C, D. Unfolded games seemed to have been first considered by Solo-
vay, for a measure-theoretic game of Mycielski-Swierczkowski, and later by
Martin for *-games and by Kechris for **-games.

21.4. In the notation of 16.C, let L be the language containing one binary
relation symbol R. Consider Xy = 2N2, put WO = {z € X : A, is a
wellordering}, and for z € WO, let 4, = (N,<;), and |z| = p(<;) be
the unique ordinal isomorphic to <,. Thus {|z| : z € WO} = «; \ w. For
w< a<uwn, let WO, = {x e WO : |z| = a}.

Consider the following game G: I starts by playing either (WQ,,0) for
some a < w; or (X,1) for some X C 2N. If I chooses the first option, from
then on I and II play 0’s or 1’s and if I plays y(0), y(1),..., then I wins
iff y € WO,. If I chooses the second option, then II next plays ¢ € {0,1},
which we view as choosing a side in the game G*(X). Then they play a run
of the game G*(X) with II starting first if she chooses ¢ = 0 and I starting
first if she chooses i = 1. Let = be the concatenation of the sequence of
their moves. Then [ wins iff (i = 0& z & X) or (i = 1 & = € X). Without
using the Axiom of Choice, show that this game is not quasidetermined.
Use the proof of 8.24, which shows that if we can wellorder 2V, then there
is a subset of 2¥ which is uncountable but contains no perfect subset.

21.9. See J. H. Silver [1970].
21.15. See D. A. Martin [1981].

21.22. See A. S. Kechris, A. Louveau and W. H. Woodin [1987). The case
when B is analytic was also proved in A. Louveau and J. Saint Raymond
[1987).

21.23, 24. This was proved independently in A. S. Kechris [1977] for X = N/
in the form given in 21.24, and in J. Saint Raymond [1975] for general X.

21.25. See D. A. Martin [1968].



362 Notes and Hints

22.6. See Y. N. Moschovakis [1980], 1G.11. Let C C Y be a Cantor set. Let
U' C C x X be C-universal for £Z(X). Then let & C Y x X be Z(Y x X)
with N (C x X) = U'. Clearly, U is Y-universal for S2(X).

22.14, 16. The concept of (generalized) reduction is due to Kuratowski,
who also established the generalized reduction property for 22. The (gen-
eralized) separation property for l'Ig is due to Sierpinski.

22.17. Apply the separation property of the l'[g’s.
22.24. See R. L. Vaught [1974].

22.E. For a more detailed exposition of the difference hierarchy, see A.
Louveau [1997).

22.26. For iii), notice that if Dg((Ay)n<e) is defined by the same formula for
any, not necessarily increasing (Ap)n<s, then Do((Ayp)n<e) = Do((Ay)n<s),
where A; = U, ., A¢ (which is increasing).

22.29. See F. Hausdorff [1978).

23.2. For C3, show that P; <y C3 by considering the map z € 2V<N
z’ € N given by z'({m,n)) = (m,n) if z(m,n) = 0; = m if z(m,n) = 1,
where () is a bijection of N x N with N, with {(m,n) > m.

For P, one method is to show that P; <y Pj. An easier method, sug-
gested by Linton, is to show that C3 <w P . Define for each s € N*, s* €
2(n+1)x(n+1) by jnduction on 7, so that if s C ¢, then s* C t* (in the sense
that s* = ¢*[2(n+)x(n+1)) Let §* = (0). Given s* for s € N™, consider
t = s"k. To define t*, enumerate in increasing order ap < -+ < ap— all
the numbers 0 < a < n for which s*(a,b) = 0, for all 0 < b < n. Define
then for 0 < a < n, t*(a,n + 1) = 0 iff a = a; for some i < k, and let
t*(n+1,b) =0 for all 0 < b < n + 1. For each z € NN, let z* = |J,(z|n)".
Show that z € C3 & z* € P;. Finally, a third method is to use 23.5 i)
for X =C, £ = 1 and the fact that any closed but not open subset of C is
IT{-complete.

23.4. Fix a bijection () of 2<N with N so that s G t = (s) < (). For
z €2V, let (z) C N be given by (z) = {{z|r) : n € N}. Note that (z) N (y)
infinite = z = y. For A C 2N, let Z4 = the ideal on N generated by the
sets (z) for x € A. Note that A <y I, via z — (z).

23.5. For i), use the following argument of Solecki: Every Hg +2 Setis a
decreasing intersection of a sequence of 22 +1 sets. If £ > 2, every 22 +1 et
is the union of a sequence of pairwise disjoint Hg sets. For £ = 1, every
39 set is the union of a point-finite sequence (Fy,)ne., of closed sets (i.e.,
{n : x € F,} is finite for each z). This follows easily using the fact that every
metric space is paracompact (see, e.g., K. Kuratowski [1966], p. 236). For ii),
consider iterations defined as follows: A € FxG & {m: {n: (m,n) € A} €
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Gle Fand A€ F+(Gn)nen & {m: {n: (m,n) € A} € G} € F, where
() is a bijection of N x N with N.

23.7. See H. Ki and T. Linton [1997).

23.12. Show that it is enough to prove that W is X9-hard. Then verify
that S5 <w W, where 53 is as in 23.2.

23.25. Show that for every X! set X C 2V, X <y TR. For that prove by
induction on n that for every X C 2V, X € X9, there is B C N and a
sentence o in the language {+,-,U,V}, U,V unary relation symbols, such
that

AeX s (N,+,,A4,B) o

Encode then (A,B) by A®B ={2n:n€ A}u{2n+1:n€B}.Forn=1,
also use the functions f, g.

24.8. Use 22.21, 24.7 and the method of proof of 18.6. To obtain that the
uniformizing function f defined this way is actually X2 +1-neasurable, use
the following argument of Ki: Fix a countable dense set D C Y and find
fo : Projx(A) — Y which are 22 +1-measurable and take values in D, so
that f, — f uniformly. Then use 24.4 i).

24.19. See K. Kuratowski [1966], §24, III, Th. 2".

24.20. See J. Saint Raymond [1976], and for further results and references
see S. Bhattacharya and S. M. Srivastava [1986]. By induction on £, show
that it is enough to consider the case £ = 1. The proof is then a variant of
that of 12.13. Find a Souslin scheme (F;) on X with Fy = X, F; nonempty
cosed, F,-; C F,, Fs = |, Fs~., diam(F;) < 27'8th(*) "and diam(g(F)) <
2~ leugth(s) if 5 £ @), Also use 24.4 i).

CHAPTER III

25.11. See Y. N. Moschovakis [1980]. p. 71.

25.19. It is enough to show that if § # A C X carries a topology S
that extends its (relative) topology and is second countable strong Cho-
quet, then A is analytic (in X). Fix a compatible metric d for X and a
countable basis W = {W,,} for S. Fix a winning strategy o for II in the
strong Choquet game for (A,S). We can assume that in this game the
players play open sets in W and in his nth move II plays a set of diame-
ter < 27" View 0 asatree Ton W x A x W, ie., (Ui, zi,Vi)ica € T iff
((zo,Ua), Vo, - - - s (®n=1,Un—1), Va-1) is a run of the strong Choquet game in
which II follows o. For B C A, denote by T'Z the subtree of T determined by
restricting the z; to be in B. For an infinite branch f = (U;, z;, V;)ien of TE
denote by z; the unique point in (), V;, and let p(TB) = {z; : f € [T®]}.
Show that for some countable B C A, A = p(TB).

27.6 and 27.7. For more general results, see J. P. R. Christensen [1974].
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27.9. We can work with X = N (why?). To each tree T on 2 assign a tree
T* on N as follows: Fix a bijection { ) : 2xN — N and let {(n)o, (n)1} = n.
Put s = (s0,...,8n-1) € T* & ((s0)0,+--,(8n=1)0) € T & Vi < n((si)o =
0 = (s;)1 = 0). If N is as in 27.3, show that [T]N N # @ & [T*] contains a
nonempty superperfect tree (see 21.24).

27.10. For each tree T on N define a sequence of pruned trees (T;,) on N
such that T € IF & ), [T] # 0.

27.E, F. See H. Becker [1992].

27.18. To each set B C [0,1] x [0, 1] assign the set B* = {ze®¥ : (z,y) €
B} C C = R? Note that projp 1)(B) = {|z| : z € B*}.

Section 28. See the article by Rogers and Jayne in C. A. Rogers, et al.
[1980].

28.9. For the last assertion, see 18.17.
28.12. See R. Dougherty [1988], p. 480.
28.15. See D. Preiss [1973).

28.20. See the proof of 21.22.

29.6. Given an open nbhd U of 1 € G, show that there is an open nbhd N
of 1 € H with N C o(U). Let V be an opennbhd of 1 € G with V-1V C U.
Argue that ¢(V) is not meager and then use 9.9.

29.18. ii) It is enough to consider the case X = N. Let (P;),en<n be given
with P; € S. Let f : N' — N be defined by f(z) = (xp,.,(z))nen, Where
h:N — N<N js a bijection. Show that A,P, = f~1(B), with B={zx:3y €
Nn(z(h~! (y|n)) = 1}.

Section 30. The exposition here is based on C. Dellacherie [1972], [1981].
30.17. Use Example 1) of 30.B.

CHAPTER IV

32.2 and 32.3. For stronger results, see 38.14.

33.1. i) Use 18.13. ii) Use 27.5 and recall 4.32. iii) Use one of the repre-
sentations in 32.B.

33.2. For a pruned tree T on 2 consider (T, <kg |T) (see 2.G). Show that
[T] is countable < (T, <kg |T) is scattered.

33.3. See A. S. Kechris, A. Louveau, and W. H. Woodin [1987].
33.13. See M. Ajtai and A. S. Kechris [1987)].
33.H. See R. D. Mauldin [1979] and A. S. Kechris [1985).
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33.1. See H. Becker [1992].

33.20. For more on Lipschitz homeomorphisms, see R. Dougherty, S. Jack-
son and A. S. Kechris [1994]. (Note that the Lipschitz homeomorphisms
are exactly the isometries of (C,d), where d is the usual metric on C = 2N,
given in the paragraph preceding 2.2.)

33.22. See F. Beleznay and M. Foreman [1997].

33.25. Assume X* is not separable. Then it is easy to find uncountable
Y € B;(X*) and € > 0 such that ||z* — y*|| > € for all z* # y* in Y. Work
from now on in the weak *-topology of B)(X*). Fix a compatible complete
metric d for it. We can assume that every point in Y is a limit point of
Y. Build a Cantor scheme (Us) consisting of open sets in B)(X*) with
UsNY # 0, Uy-; C U, and diam(U,) < 271#m&th(s)  having the following

property: If £* € Us-0, y* € U,-1, then ||z* — y*|| > €.
33.27. See A. S. Kechris and R. Lyons [1988], R. Kaufman [1991].
33.28. See R. Kaufman [1987].

34.B. The modern concept of F-rank was formulated by Moschovakis and
can be viewed as a distillation of the crucial properties of ordinal rankings,
like the Lusin-Sierpinski index, that have long played a prominent role in
classical descriptive set theory. See Y. N. Moschovakis [1980], p. 270.

34.6. ii) Show first that it is enough to consider the case X = Tr, A =
WF. Note now that the proof of 31.1 shows the following parametrized
version of 31.2: If Y is Polish and A CY x Tr is £, then there is a Borel
function f4 : Y — Tr such that: Ay C WF = f4(y) € WF & p(fa(y)) >
sup{p(T) : T € Ay}. Define Borel functions f, : Tr — Tr by fo(T) =T
and foy1 = fa,, where A,(T,S) & IT(T' ET & § = f,(T")). Note that
T € WF = Vn(fa(T) € WF) & o(T) = plfo(T)) < p(A(T)) < p(f2(T)) <
-+ Put o(T) = sup, p(fa(T))

34.16. To show that if A C Qp is =}, then sup({|F|p : F € A}) < wy,
use the relation R(z, F) in the proof of 34.10 to show that otherwise WO*
would be £}.

35.1. The generalized reduction property for IT} is due to Kuratowski, and
the non-separation property for IT} to Novikov.

Becker has suggested the following simpler proof of 18.17 using 35.1:
If 18.17 fails, given any two X1 sets A, B C N with AU B = N, thefe are
3! sets A* C A, B* C B with A* N B* =0, A* U B* = N. This implies
that IT! has the separation property.

35.2. See H. Becker [1986). Let U C N xAN? be N -universal for ITS(N?) and
consider U! = {(w, z) : Vy(w,z,y) € U}, U? = {{w,z) : My(w,z,y) € U}.
If U,U? are separated by a Borel set V, argue that V is A/-universal for
B(N). Use 13.10 for that,
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35.7. See proof II of 28.1.

35.10. See A. S. Kechris [1975], p. 286.

35.16. See L. Harrington, D. Marker, and S. Shelah [1988].
35.18, 19. See J. P. Burgess [1979a).

35.20. See J. H. Silver [1980].

35.21. ii) See J. P. Burgess [1978]. The following simplified argument
was suggested by Becker: Write E' = (., B¢, with E¢ decreasing Borel
equivalence relations. By 35.20 we can assume that each E; has only
countably many equivalence classes, say Ben, n € N. Put {A¢}eco, =
{B¢n}e<wi,nen- Thus 2By & V€ < wi(z € A & y € A;). Assume that
E has more than R, equivalence classes. Call A C X big if it meets more
than N, equivalence classes. Note that if A is big, then for some £ < w,
both AN A;, A\ A¢ are big. Using these remarks, 13.1 and 13.3, we can
find a countable Boolean algebra A of Borel sets in X, which contains a
countable basis for the topology of X, such that the topology generated by
A is Polish, say with compatible complete metric d < 1, and for A € A that
is big there is £ < w; with A; € A such that AN A;, A\ A, are big. Then,
also using the obvious fact that if A = |J,, An is big, then for some n, A, is
big, it is easy to construct a Cantor scheme (A;);co<n, wWith A; € A, such
that Ag = X, diam(A,) < 27"t} (in the metric d), each A, is big and
for each s € 2<N there is £, < w such that As;-o C A¢,, Ay C ~ Ag,. If
{£(2)} = N Astn for € 2Y, then & #y = ~f(2)Ef(y).

35.27 and 35.28. See Y. N. Moschovakis [1980], pp. 212-217.

35.29. See Y. N. Moschovakis [1980], 7C.8. Let. I be as in 35.26 and let ¢ :
U — 6r be a I'-rank. Put P(q,z) @z € Aorz € ¥({y: (q,9) <}, (3,2)}).
Then P is in T, so fix po € C with Py, = Up,, ie., U(po,z) & z € Aor
z € ¥Y({y : (po.y) <} (po,x)}). By induction on £ = #(po,z), show that
z € P,, = = € ¥**1(A) and by induction on 7 show that z € ¥7(4) =
z € Py,. So W°(A) = Ug 5, ¥4(A) = Py

35.G. The exposition here is based on Dellacherie’s article in C. A, Rogers
et al. [1980], IV. 4.

35.43. See J. P. Burgess [1979a) and G. Hillard [1979).
35.45. See J. Saint Raymond [1976a).

35.47. For £ = 2 argue first, using 21.18, that it is enough to consider the
case X =Y = C. Then use 28.21.

35.48. See A. Louveau and J. Saint Raymond [1987].
36.1. Use a wellordering of N.
36.B, C, D. The approach here is based on Y. N. Moschovakis [1980], 4E.
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36.7. See 22.21.

36.11. ii) See V. G. Kanovei [1983]. Let f : R — R be as in i). Consider
gn(z) = f(z) +1/2".

36.17. See R. Mansfield [1970]. Use the method of 29.2.
36.18. See A. S. Kechris [1977]. Use the method of 29.4 or 21.24 iii).

36.20. These regularity properties of X3 sets were first established by Solo-
vay (unpublished, but see the related R. M. Solovay [1969], [1970]) from a
large cardinal principle that turns out to be implied by X1-Determinacy.

36.22. See D. R. Busch [1979]. First recall that v is of the form given in
30.4, and thus also of the form given in Example 3) of 30.B. So it is enough
to show that if X,Y are compact metrizable, K C X x Y is compact, u a
probability Borel measure on X, and y(A) = p*(projx ((X x A)N K)) for
A C Y, then every I1} subset of Y is q-capacitable. Then use a version of
30.18 and 36.21.

36.23. See A. S. Kechris [1973].
36.25. See the hint for 18.17.

CHAPTER V

37.4. If (P;) is a regular Souslin scheme with P; € IT2, recall from 25.10
that z ¢ AP, © T, = {s € NN . z € P,} is well-founded & 3w €
WO3f : N<N - Nvs,t € To(s 2 ¢t = w(f(s), f(t)) = 1), so that A, P, is
I} if n > 2.

37.6. The main difficulty is to show that any open set U C R" is defin-
able with parameters in R. Take n = 1 for notational simplicity. Let U =
U, (Pn>@n), With p, < gn in Q. Using the functions h, f, g of 23.25, show
first that there is a definable in R (i.e., having definable graph) surjection
q:N - Q% Let A= {keN:3n(qg(k) = (pn,qn))} (Where we use (pn,qn)
ambiguously here for the interval (p,, ¢,) and the pair (p,, ¢»)). Note that,
assuming without loss of generality that {(pn,¢s) : n € N} is infinite, we
have that A is infinite and co-infinite. So there is a real 0 < r < 1, which is
not a dyadic rational, such that its binary expansion r = rgryry - - - is such
that rp, = 1iff k£ € A. Next, using the functions h, f, g again, show that there
is a definable in R function s : R® — {0,1} such that if 0 < y < 1 is not a
dyadic rational with binary expansion y = yoy1y2 - - -, then s(y, k) = y, Vk.
Thus z € U & 3n(p, < z < ¢,) © Ik(s(r, k) =1 & qo(k) < z < q1(k)),
where g(k) = (qo(k), q1(k)).

37.9. For the second assertion argue as follows: On I? define the following
equivalence relation: (z,y)E(z’,y) @z -2,y —y' € Q. Let A C I be IT}
and find B C I x I? in 3} such that a € A & ¥(z,y) (a,(z,y)) € B. Put
(a,(z,y)) € B' & V(z',y")E(z,y) (a,(z,¥)) € B, so that B is also T}
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and for each a, B C I? is E-invariant. Note now that a € A< B, = I° &
B! =I? & B! has nonempty interior.

37.B. For Example 3), the comments following it, and Exercise 37.12, see
H. Becker [1992].

87.15. Forii) let A C C be =} and, by 37.14, let (f,) be such that A = U;,).
For any z € C, let K, = {z € C: 3y € CVn(2(n) = f.(y,2))}.

38.1, 4. See Y. N. Moschovakis [1980], 4B.3, 6C.2.
38.11. If boundedness holds, argue that every IT} set is 1.
38.12. Use the proof of 31.5.

38.13. Argue that it is enough to show that every nonempty IT} set A C C
is a continuous image of WO. Use the fact that WO is IT}-complete, 26.11
and 7.3.

38.14. For i), see the note for 36.20. For ii), see R. M. Solovay [1969]. For
iii), see A. S. Kechris [1977] for X = N. For iv), see A. S. Kechris [1973]
for measure and category. For the final statement, use the proofs of 21.22
and 21.23.

38.17. See M. Davis [1964] and J. Mycielski and S. Swierczkowski [1964].
38.18. See A. S. Kechris [1977] for X = N.

38.19. See the proof of 21.9.

39.B, C, D. See Y. N. Moschovakis [1980], Ch. 6.

39.4. For 8},,, < 6}, use 35.28. For &;,,, < 8}, 3 show that there
is a 31, 5 well-founded relation < such that p(<) > p(<’) for any £}, ,,
well-founded relation <’, and then use 35.28 again.

39.12. If T is a tree on N x «, where « is a cardinal of cofinality > w, then
PlT) = Ug. . PITIE), where T1€ = {(s,u) € T : u € <N},

39.13. i) The first statement is due to Martin. For measure and category,
see A. S. Kechris [1973].

39.23. Use unfolded *-games; see 21.B. It is convenient to work with X =
Y =C and use 21.3.

39.24. For the K, case use the method of proof of 21.22, but with separation
games if » > 0 and the game in 28.21 if n = 0. For the meager case,
notice first that by considering the complement of the closure of the set
of isolated points of Y, we can assume Y is nonempty perfect and by 8.A,
throwing away a meager F,, we can assume that Y is zero-dimensional,
and so Y = [T for a perfect nonempty tree on N. We can also assume that
X = N. Consider now unfolded Banach-Mazur games (most conveniently
in the form similar to that in 8.36; see 21.7 and 21.5).

39.25. Use 39.23.
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Symbols and Abbreviations

@ (empty set), N (natural numbers), Gs, F, 1

nbhd (neighborhood), [1;c; X:, ;¢ Xi (for topological spaces), X I
B(z,r) 2

B,(z,r), | (restriction), Th 3

A 4

s = (s(0),...,stn — 1)) = (s0,...,5n-1), § (empty sequence), length(s)
slm, s Ct s Lt AN $'t s7a, AN, 2 = (z(n)) = (x,), |7, s' 2,
sos182--» [T) 5

N, Tp, Ty, T[s] 7

D(p), ¢* 8

T(z), T(s), <iex> ar 9

pr (for well-founded trees), p(T), T« 10

WPFr, pr (for any tree), pr(s) = o0, p(T) (for any tree), T*, T(®),
<KB 11

R (real numbers), C (complex numbers), I, T, C 13

N’ El/3’ II'I', epa Co, LP(IJ')’ C(X)’ L(X1 Y)’ L(X)’ LI(X’Y)’ Q
(rationals) 14

diam, oscy, B(A,¢€) 15
graph(f), projx (projection onto X) 16
idy (identity on Y)) 17
X*, By(X*), £°, D 19
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0K 20

G, [zo,. ... xy), [x0, €] 22

C(X,Y), C(X), du, Iflleos K(X) 24

dy(K,L), §(K,L), Tim,K,, Tlim, K,, Tlim, K, 25
UK, f(K), K§(X), Kp(X), Tr, PTx, Trz, PTr, 27
Try, PTr; 28

K, 29

(As)sea<n 31

ORD, w, X', X« 33

X | Xl|cs, | X|tg, T/, T*, T, [Tlce 34

(As)sen<w 36

Int(A) 37

Gx 43

Gy, M

A=7 B, AAB,A=*B,BP 47

I+ 48

~AUA) 49

BP(X), MGR(X), RO(X), BP(X)/MGR(X), CAT(X) 50
G*(A), G*(A, X) 51

Alzy e ze A, V2, 3z, V'zelU,Frel, , A, AY 53
Pow(X), fo, f¥ 56

R*, Z, (integers mod 2) 58

GL(n,K), SL(n,K), A*, U(n), O(n), SU(n), SO(n).

T*, L(H), L,(H), U(H), Sse 59

Aut(A), H(X), Iso(X,d), I, 60

9.z 61
Gy 62
a(&) 65
SlY 66

(Hi Xi, Hi i), (@z Xi, @z Si) 67

B(X,T), B(X), B(T), 22()(), l'[g(X), Ag(X) 68
G(X), F(X), &, €5, card (cardinality), Q* 69
C, Cy, Dy 70

x4 (characteristic function of A) 73

F(X) 75

RF(X) 76
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Al 77

B.(X*), By+(X*), Lo(H) 79

tr(T), |T|, L*(H), VN 80

3! 84

=1, AX) 85

I} (X), CA(X), A}(X) 87

S/I, —a, Vnan 91

Eg 92

(4], (4), A*, A®, A*Y, ALY 95

X, Ag, =, Loy | 96

gA 98

1, PN Xp 99

Uy, \, ZF, M|G), AC, ZFC, CH 100

p-a.e., NULL,, MEAS,, &, u*, MEAS,., [ fdu (= [ f(z)dp(z)),
fu 103

Il ttis I, oy D, ttn. MEAS,, /NULL,,, MALG,, p < v, p~ v

W, o Ly, 2,6, 3, aivi, fic, fds M, My, 4G 105

Hps HC, d(A, B), s Khs o 106

|Z], length(I) 107

l'zt_nan, li‘t_n nSn, lignm., P(X), Co(X) 109

Ua(X), 6(u,v) 110

0A 111

Ve, 35, Me(X), Mc(X) 114

INV¢, EINV;, Z (integers) 115

supp(s) 116

AV, adb 117

MFUNCT,, M,, Aut(X, ), Ur 118

Aut*(X, pu), Ur 119

a(Z)) 120

IF,IF; 121

UB 125

[:I:]E 128

(X7, (A" 129

[X]™, [a, 4] 132

A/n 133

£2(S) 135

104
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G(A, X), G(X), G(T,X) 137

X, 138

Pow,(N) 146

JagVar3azVas - - -, VagIa Vay Jag---, Ga, Ga 147

G*(A) 149

Gi(F) 150

G**(A) 151,153

G:*(F) 152,153

<w 156

WG(A, B), =w, [Alw, WADGE, WADGER, A < B, A, A =} B, A*,
WADGE®, WADGE} 157

A* < B 158

SG(A; By, B)) 160

G(A) 163

<r, =r, [z]r, D, x<y,0,0, I, 164

xVy, Cx 165

I,I(X), [ (=~T),A=Tnl 167

lim,A,, lim,A,, imA, 173

Do((An)n<o), DO(zg) 175

ap 177

Do((An)n<0’ (Bn)n<0) 178

V>, 3%, P3, S5 179

Cs, D3, P}, S3, FrA,, FT 180

Py, Sy, K§(X), Kee(X), H 181

K,(C), L,, C=(T), AR, ANR 182

f(n), AN(T), C™(T) 183

UCx, UC, UCy, Sn(f), UCF, C; 185

fve, fng Cy 187

C;, TR 188

WO<e 189
Be(X,Y), B:(X) 190
DHK) 192

DBy, A 194

oHX) 19

ANX), p[T), N 197
A, AP, AT 198
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3¥r 205
IF,IF, 209
UNIQ, MULT, LO 212
WO, NWO,z =y 213
WO?, 0,(T) 214
bij Aoty R(X U, 4),CS 215
j(n) 216
sV, mEY e
1 T, TP 226

C(X) 230
Tk 234
U, 235

P(X), v, w236

WF, |z| (for z eWO) 240

mi(Xx) 242

A AP, 244

WF, WF3, UB, Wy, SCAT, K (A), Ky (X), Fy,(X) 245
E&m, --,m), Q@) 247

DIFF 248

CN,CN, 251

CF, by, [y f 252

NDIFF 254

LY(T), Jint(J), NH, SCON 255

Jc 256

QP 258
MD,SB 262
NU,SD 263
REFL, NL, 265
HL 266
<o <L, < 267
<er <L, <£, o(x) =00, <5, <, 268

D*(A), |Alp, D*(A), |z, Alp, E*(A), |Alg, E*(A), |z,Alg 270
D, D, Dg, |Fls, |z.Flg 271

Qp 272

LO*, WO*, |z|* 273

Qp, O, A} 275
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m, S|, d(K), ||Kllcs 276
Ag. De g, |flowr, CY[0,1]) 277
Tf, |f |1311?Fv Sf 278
W(ta)s Deray (F)lz 279

Ifz 280
Az 285,286
or 289

&} 290

F; 292

p[T], (aTaf'l')’ Ts.u 299

or = (<P3:), a; = o, Tz, (ag, ..., 0n_1), "/771 =@l),f<yg 300
e, 23 307

¥l mi, AL, A, CA,PCA,CPCA,P 313
MV, PCON,, 317

SCON,,, NH,, 318

Ny, A 319

8 34

PD, Gzl 325

PDg 326

WV, VN 327

& 331

oP(X), T}, I, Aé 341

ORD, w, sup(X), 2121\ O,

cofinality(8), a + 3, - B8, &®, a*, w, 349
card(X), Ry, 2% 350

P< 351

(=) 352

-, &, o1, =, &, 3,V 353



Index

absolute nbhd retract 182
absolute retract. 182
absolutely contimuous 104
action of a group 61
Borel 92
continuous 61
free 92
adjoint operator 59
admits covers 227
Ajtai, M. 252, 317, 318
Ajtai-Kechris [1987] 188, 364
Alexandrov, P. 37, 83
algebra of sets 65
almost everywhere 103
ambiguous 68, 167
analytic
Borel space 197
function 182
set. 85, 86, 196, 197, 218
sets with countable sections
286
(separable metrizable) space
197
Anderson, R. D. 23
anti-lexicographical ordering 299

Arbault, J. 319
arithmetical 188
Arsenin, V. Ya. 127, 297
Arveson, W.

(1976] 347

associated map (of a Lusin or
Souslin scheme) 36, 40

atom 117

atomless Boolean algebra 117

Auslander, L.

Auslander-Moore [1966] 347
Axiom of Choice (AC) 100
Axiom of Dependent Choices 139
Azoff, E. A.

[1983] 80

Baire
Category Theorem 41
class 190
measurable function 52
property (BP) 47
(topological) space 41
space N 14

Baire, R. 193
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ball (around a set) 15
Banach, S. 19, 51, 190, 192, 265,
326
Banach-Mazur (or *x-game) 51,
151
Bary, N. 212
basis (of a topology) 1
Becker, H. 182, 204, 256, 282,
317, 318, 319, 365, 366
[1986] 365
[1987] 318
[1992] 364, 365, 367
Becker-Kahane-Louveau
[1993] 319
Beer, G.
[1991] 75
Beleznay, F. 262
Beleznay-Foreman [1997)
280, 365
Berberian, S. K.
[1974] 358
Bernstein set 48
Bertsekas, D. P.
Bertsekas-Shreve [1978] 347
Besicovitch, A. S. 255
Besicovitch function 255
Bessaga, C.
Bessaga-Pelczyriski [1975)
64, 358
Bhattacharya, S.
Bhattacharya-Srivastava
[1986] 363
bi-analytic set 87, 197
Birkhoff, G. 58
Blackwell, D. 88
Blackwell-Ryll-Nardzewski
[1963] 359
Blass, A.
[1981) 131
body of a tree 5
Boolean o-algebra 50
Borel
action 92
automorphism 71
(measurable) function 70, 73

I-complete set 207
[-hard set 207
hierarchy 69
isomorphism 71
map 70, 73
measure 105
on Borel 122
Schréder-Bernstein Theorem
90
set 68, 73
space 66
space (of a topological space)
68
space of Polish groups 78
space of Polish spaces 78
space of separable Banach
spaces 79
space of von Neumann
algebras 80
Bossard, B.
[1993] 265
boundary
of a graph theoretic tree 22
of a set 111
Boundedness
Theorem for analytic well-
founded relations 239
Theorem for IT}-ranks 288
Theorem for WF 240
Bourbaki, N.
[1966] 357
Bourgain, J. 263, 265
[1980] 221
[1980a) 221
BP 47
Brouwer, L. E. J. 35
Bruckner, A. M.
[1978] 187, 194
Bruckner-Maiik-Weil [1992]
194
Burgess, J. P. 128, 287, 294
[1978] 366
[1979] 360
[1979a) 366
Burgess Reflection Theorem 287



Busch, D. R. 237, 308, 341
(1979] 367

C-measurable 230
C-set 230
canonical quasistrategy 140
Cantor
group Z% 58
scheme 31
set 83
(1/3-) set 14
space C 13
Cantor-Bendixson
degree 276
derivative 33
derivative of a tree 34
rank 34
rank of a tree 34
Theorem 32
capacitable 237
capacity 234
alternating of order oo 235
category
algebra 50
quantifier 53
Cauchy sequence 13
Cauty, R.
Cauty-Dobrowolski-
Gladdines-van Mill
[1997] 182
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