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Preface

« ERh bien, Monsieur, que
pensez-vous des x et desy ?»
Je lui ai répondu :

« Cest bas de plafond. »

V. Hugo [Hugh1]

The term “quantum groups” was popularized by Drinfeld in his address to
the International Congress of Mathematicians in Berkeley (1986). It stands
for certain special Hopf algebras which are nontrivial deformations of the
enveloping Hopf algebras of semisimple Lie algebras or of the algebras of
regular functions on the corresponding algebraic groups. As was soon ob-
served, quantum groups have close connections with varied, a priori remote,
areas of mathematics and physics.

The aim of this book is to provide an introduction to the algebra behind
the words “quantum groups” with emphasis on the fascinating and spec-
tacular connections with low-dimensional topology. Despite the complexity
of the subject, we have tried to make this exposition accessible to a large
audience. We assume a standard knowledge of linear algebra and some
rudiments of topology (and of the theory of linear differential equations as
far as Chapter XIX is concerned).

We divided the book into four parts we now briefly describe. In Part I
we introduce the language of Hopf algebras and we illustrate it with the
Hopf algebras SL,(2) and U, (sl(2)) associated with the classical group
SL,. These are the simplest examples of quantum groups, and actually the
only ones we treat in detail. Part II focuses on two classes of Hopf algebras
that provide solutions of the Yang-Baxter equation in a systematic way. We
review a method due to Faddeev, Reshetikhin, and Takhtadjian as well as
Drinfeld’s quantum double construction, both designed to produce quan-
tum groups. Parts I and II may form the core of a one-year introductory
course on the subject.

Parts IIT and IV are devoted to some of the spectacular connections
alluded to before. The avowed objective of Part III is the construction of
isotopy invariants of knots and links in R?, including the Jones polynomial,
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from certain solutions of the Yang-Baxter equation. To this end, we intro-
duce various classes of tensor categories that are responsible for the close
relationship between quantum groups and knot theory. Part IV presents
more advanced material: it is an account of Drinfeld’s elegant treatment of
the monodromy of the Knizhnik-Zamolodchikov equations. Our aim is to
highlight Drinfeld’s deep result expressing the braided tensor category of
modules over a quantum enveloping algebra in terms of the corresponding
semisimple Lie algebra. We conclude the book with the construction of a
“universal knot invariant”. This is a nice, far-reaching application of the
algebraic techniques developed in the preceding chapters.

I wish to acknowledge the inspiration I drew during the composition of
this text from [Dri87] [Dri89a] [Dri89b] [Dri90] by Drinfeld, [JS93] by Joyal
and Street, [Tur89] [RT90] by Reshetikhin and Turaev. After having become
acquainted with quantum groups, the reader is encouraged to return to
these original sources. Further references are given in the notes at the end
of each chapter. Lusztig’s and Turaev’s monographs [Lus93] [Tur94] may
complement our exposition advantageously.

This book grew out of two graduate courses I taught at the Department
of Mathematics of the Université Louis Pasteur in Strasbourg during the
years 1990-92. Part I is the expanded English translation of [Kas92]. It is a
pleasure to express my thanks to C. Bennis, R. Berger, C. Mitschi, P. Nuss,
C. Reutenauer, M. Rosso, V. Turaev, M. Wambst for valuable discussions
and comments, and to Raymond Séroul who coded the figures. I owe special
thanks to Patrick Ion for his marvellous job in preparing the book for
printing, with his attention to mathematical, English, typographical, and
computer details.

Christian Kassel
March 1994, Strasbourg

Notation. — Throughout the text, k is a field and the words “vector
space”, “linear map” mean respectively “k-vector space” and “k-linear
map”. The boldface letters N, Z, Q, R, and C stand successively for the
nonnegative integers, all integers, the field of rational, real, and complex
numbers. The Kronecker symbol ¢, is defined by é,; = 1 if ¢ = j and is
zero otherwise. We denote the symmetric group on n letters by S,,. The
sign of a permutation o is indicated by (o).

The symbol O indicates the end of a proof. Roman figures refer to the
numbering of the chapters.
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Chapter 1

Preliminaries

The goal of this first chapter is the construction of polynomial algebras
GL(2) and SL(2) modelling the 2 x 2-matrices with invertible determinant
[resp. with determinant equal to 1]. The multiplication of matrices induces
an additional structure on these algebras. This structure is one of the basic
ingredients of what will be called a Hopf algebra in Chapter III. We com-
plete the chapter with various concepts of ring theory to be used in the
sequel. The ground field is denoted by k.

I.1 Algebras and Modules

We recall some facts on algebras and modules.

An algebra is a ring A together with a ring map 7, : £ — A whose image
is contained in the centre of A. The map (A, a) — n4(A)a from k£ x A to A
equips A with a vector space structure over & and the multiplication map
ta:AxA— Ais bilinear.

A morphism of algebras or an algebra morphismis aringmap f: A — B
such that

fong=ng- (1.1)

As a consequence of (1.1), f preserves the units, i.e., we have f(1) = 1.
The linear map 7, : k — A is a morphism of algebras. If i : A — B is an
injective algebra morphism, we say that A is a subalgebra of the algebra B.

Let us denote by Hom ), (A, B) the set of algebra morphisms from A to
B. In general, this set has no further structure. Nevertheless, we shall soon
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see how to put a group structure on Hom,, (A, B) when A and B satisfy
some additional hypotheses.

We give a few examples of algebras that will be used frequently in this
book.

1. Given an algebra A, we define the opposite algebra A°P as the algebra
with the same underlying vector space as A, but with multiplication defined
by

Haoe = [1a©Ta A (1.2)

where 74 4 is the flip switching the two factors of A x A. In other words,
Paon(a,a’) = d'a. (1.3)
An algebra A is commutative if and only if
Paop = Ha- (1.4)
2. The centre Z(A) of an algebra A is the subalgebra
{a€ Alad =daforalad € A}

We have Z(A) = Z(A®P).
3. If I is a two-sided ideal of an algebra A, i.e., a subspace of A such that

pall x A) C 15 pa(AxT),

then there exists a unique algebra structure on the quotient vector space
A/I such that the canonical projection from A onto A/I is a morphism of
algebras.

4. We endow the product set A = [[..; A; of a family (A,),c; of algebras
with the unique algebra structure such that the canonical projection from
A to A, is an algebra morphism for all ¢ € I. The algebra A is called the
product algebra of the family (A,);c;-

5. Given an algebra A we can form the algebra Alz] of all polynomials
>oieo @zt where n is any non-negative integer and the algebra Az, 7Y
of all Laurent polynomials Z?:m a;z" where m,n € Z.

6. For any positive integer n we denote by M, (A) the algebra of all
n X n-matrices with entries in A.

7. The space End(V) of linear endomorphisms of a vector space V' is an
algebra with product given by the composition and unit by the identity
map idy, of V.

Given an algebra A, a left A-module or, simply, an A-module is a vector
space V together with a bilinear map (a,v) — av from A x V to V such
that

a(a'v) = (aa’)v and lv=v (1.5)
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for all a,a’ € A and v € V. One similarly defines a right A-module using
a bilinear map from V' x A to V. A right A-module is nothing else than a
left module over the opposite algebra A°P. Therefore we need only consider
left modules which shall for simplicity be called modules in the sequel.

If V and V' are A-modules, a linear map f : V — V' is said to be
A-linear or a morphism of A-modules if

flav) = af(v) (1.6)

forallae Aandv e V.
An A-submodule V' of an A-module V is a subspace of V with an A-
module structure such that the inclusion of V' into V is A-linear.
The action of A on an A-module V defines an algebra morphism p from
A to End(V) by
pla)(v) = av. (1.7)

The map p is called a representation of A on V.
Given A-modules V], ..., V,, the direct sum V; ®---®V,, has an A-module
structure given by

a(vyy ..., v,) = (avy, ..., av,) (1.8)

wherea € A,v; € Vy,...,v, € V,. These definitions lead us to the following
ones.

Definition I.1.1. An A-module V is simple if it has no other submodules
than {0} and V. It is semisimple if it is isomorphic to a direct sum of
simple A-modules. It is indecomposable if it is not isomorphic to the direct
sum of two non-zero submodules.

In the language of representations, a simple module [resp. a semisimple
module] is an irreducible representation [resp. a completely reducible repre-

sentation]. The following well-known proposition will be used in Chapters
V-VII.

Proposition 1.1.2. The following statements are equivalent.

(i) For any pair V' C V of finite-dimensional A-modules, there exists
an A-module V" such that V 2V @ V".

(ii) For any pair V' C V of finite-dimensional A-modules where V' is
simple, there exists an A-module V"' such that V 2 V' & V",

(iii) For any pair V' C V of finite-dimensional A-modules, there erists
an A-linear map p: V — V' with p* = p.

(iv) For any pair V' C 'V of finite-dimensional A-modules where V' is
simple, there exists an A-linear map p:V — V' with p? =p.

(v) Any finite-dimensional A-module is semisimple.



6 Chapter I. Preliminaries

PROOF. Clearly, (i) = (ii) and (iii) = (iv). We also have (i) = (iii): it
suffices to define p as the canonical projection from V' & V" onto V'
Similarly, (ii) = (iv).

Assertion (iii) = Assertion (i). Let V" = Ker (p); it is a submodule of V.
The relations v = p(v) + (v — p(v)) and p* = p prove that V is the direct
sum V' and V". Similarly, (iv) = (ii).

Assertion (ii) = Assertion (v). Assuming (ii), we have to prove that
any finite-dimensional A-module V is semisimple. We may also assume
that dim(V) > 0. Consider a non-zero submodule V; of V' of minimal
dimension; it has to be simple. By (ii) there exists a submodule V1 such
that V = V, @ V! and dim(V*') < dim(V). Iterating this procedure, we
build a sequence (V,,),,s¢ of simple submodules and a sequence (V"), - of
submodules such that

vrey, eVt and  dim(V") < dim(V™).

Since the dimension of V™ is strictly decreasing, there exists an integer p
such that VP = {0}. The module V is a direct sum of simple modules:
VEV®--- 8V,

It remains to be shown that Assertion (v) implies Assertion (i). Let
V' C V be a pair of finite-dimensional A-modules. By (v)

V=P
i€l
is a direct sum over a finite index set I of simple submodules V;. Let J be
a maximal subset of I such that

Vin(@v, =10} (1.9)

jeJ
If ¢ ¢ J, then
vin(v,e @ v, #{o},
jeJ
hence
v.n(V'+@Pv;) # {0}
jeJ

Since V; is simple, this implies that
v.cV'+ @V
jeJ
for all 7 ¢ J. This holds also for all ¢+ € J. Consequently, for the sum V of
all V; we must have
V=v'+V, (1.10)
jeJg
As a consequence of (1.9-1.10), we get V = V' & V" where V" is the
submodule ®;¢ ; V;. |



1.2 Free Algebras 7
1.2  Free Algebras

Let X be a set. Consider the vector space k{X} with basis the set of all
words z;, STy in the alphabet X, including the empty word #. A word
will be called a monomial. Define the degree of the monomial z; ...x; as
its length p. Concatenation of words defines a multiplication on k{X} by
(;, ...30%)(361-?)rl STy ) =Ty T T T (2.1)

tn

Formula (2.1) equips k{ X } with an algebra structure, called the free algebra
on the set X. The unit is the empty word: 1 = {). In the sequel we shall
mainly consider free algebras on finite sets. If X = {z{,...,z,} we also
denote k{X} by k{zy,...,z,}.

Free algebras have the following universal property.

Proposition 1.2.1. Let X be a set. Given an algebra A and a set-theoretic
map f from X to A, there exists a unique algebra morphism f : X} — A
such that f(z) = f(z) for allx € X.

PROOF. It is enough to define f on any word of X. For the empty word we

set f(0) = 1. Otherwise, if T;,,---,T;, are elements of X, we define

flag o)) = fzy,) . flzg,)-
The rest of the proof follows easily. a

An equivalent formulation of Proposition 2.1 is: There exists a natural
bijection

HomAIg(k{X}, A) & Homg,, (X, A) (2.2)

where Homg,, (X, A) is the set of all set-theoretic maps from X to A. In

particular, if X is the finite set {zy,...,z,}, then f — (f(zy),..., f(z,))
induces a bijection

HomAlg(k‘.{‘/L‘l? et w?),}? A) g An- (23)

Any algebra A is the quotient of a free algebra k{X}. It suffices to take
any generating set X for the algebra, A (for instance X = A). Consequently,
A = k{X}/I where I is a two-sided ideal of k{X}. In this case, for any
algebra A’ we have the natural bijection

Hom,, (k{X}/I, A') = {f € Homg,, (X, A") | f(I) = 0}. (2.4)

Example 1. Let I be the two-sided ideal of k{z,,...,z,} generated by all
elements of the form z;z; — z;2; where 7, j run over all integers from 1 to
n. The quotient-algebra k{x,,...,z,}/I is isomorphic to the polynomial
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algebra k[z,,...,z,] in n variables with coefficients in the ground field k.
As a corollary of (2.4) we have

Homy, (k[z,, ..., z,], A) = {(ay,...,a,) € A" | a;a; = a;a; for all (i,7)}
(2.5)
for any algebra A.
In the next sections we shall see more examples where families of elements
subject to “universal” algebraic relations are represented by quotients of
free algebras.

1.3 The Affine Line and Plane

Let us restrict to commutative algebras. As a consequence of (2.5) we have
the following proposition.

Proposition 1.3.1. Let A be a commutative algebra and f be a set-theoretic
map from the finite set {z,...,z,} to A. There exists a unique morphism
of algebras f from k[z,,...,z,] to A such that f(z;) = f(z;) for all i.

In other words, giving an algebra morphism from the polynomial algebra

klzy,...,z,) to a commutative algebra A is equivalent to giving an n-tuple
(ay,...,a,) of elements of A:
Hom yy, (k[zy, ..., 2,], A) = A™. (3.1)

Let us consider the special case n = 1 of (3.1). For any commutative
algebra A the underlying set A is in bijection with the set Hom 4, (k[z], A):

Hom y;, (k[z], A) = A. (3.2)

The algebra k[z] is called the affine line and the set Homy,, (k[z], A) is
called the set of A-points of the affine line. Now A has an abelian group
structure. We wish to express it in a universal way using the affine line
k[x]. The abelian group structure of A consists of three maps, namely the
addition + : A> — A, the unit 0 : {0} — A, and the inverse — : A — A,
satisfying the well-known axioms which express the fact that the addition
is associative and commutative, that it has 0 as a left and right unit and
that
(ma)+a=a+(—-a)=0

for all a € A. These laws do not depend on the particular commutative
algebra A. It will therefore be possible to express them universally.
To this end, let us introduce the affine plane k{z’, 2"] with the bijection

Homy,, (k[z',2"], A) = A? (3.3)
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obtained from (3.1) for n = 2. An element of Homy;, (k[z’, z"], A) is called
an A-point of the affine plane. The set Hom ,,(k, A), reduced to the single
point 74, will be denoted by {0}.

Proposition 1.3.2. Let A : kjz] — k[z',z"], € : k[z] — k, S : k[z] — k[z]
be the algebra morphisms defined by

Alz)=12"+2", e(x)=0, S(z)=-=.

Under the identifications (3.2-3.3), the morphisms A, € and S correspond
to the maps +, 0 and — respectively.

PROOF. Left to the reader. O

The morphisms A, £ and S are subject to further relations which express
the associativity, the commutativity, the unit and the inverse axioms of an
abelian group. They equip the affine line k[z] with what will be called a
cocommutative Hopf algebra structure in Chapter II1.

In order to illustrate better the phenomenon we have just observed, we
give another example. For any algebra A denote by A* the group of in-
vertible elements of A. We represent the set A by an algebra as above.
Consider the ideal I of k[z,y] generated by zy — 1. For any commutative

algebra A we have
Hom ,, (k[z,y]/1, A) = A™. (3.4)

The set {z¥},cz is a basis of the vector space k[z,y]/I. We denote this
algebra by k[z, z~!]; it is the algebra of Laurent polynomials in one variable.
One defines similarly the algebra

klz' 2" 2’1 2" = k[, 2y (2'y — 1,2y~ 1)
of Laurent polynomials in two variables. We have a bijection
Hom y, (k[z', 2"~ 2", 2" 7], A) = AX x A, (3.5)
Define algebra morphisms
A klz, a7 - k22’72 2" Y, e klz,aT] — k,

S:klr,z ] — klz, 27

by
A(z) =2'2", e(x)=1, S(z)=z"" (3.6)

Then the morphisms A, € and S correspond respectively to the multipli-
cation in A*, to the unit 1 and to the inverse under the identifications
(3.4-3.5). Here again, the morphisms A, ¢, S equip k[z,z '] with a cocom-
mutative Hopf algebra structure.
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I[.4 Matrix Multiplication

For any algebra A we denote by M,(A) the algebra of 2 x 2-matrices with
entries in A. As a set, M,(A) is in bijection with the set A* of 4-tuples of
A. By (3.1) we have a natural bijection

Hom,, (M(2), A) = My(4) (4.1)

for any commutative algebra A where M (2) is defined as the polynomial
algebra k[a, b, ¢, d]. This bijection maps an algebra morphism f : M(2) — A

to the matrix
( fa)  f(b) )
fle) f(d) )

The multiplication of matrices is a map My(A) x My(A) — My(A) we
wish to represent universally on M (2), in the spirit of Section 3. The set
M,(A) x M,(A) being in bijection with A%, we introduce the polynomial
algebra

M(2)%% = k[d',a” 0/, V' ¢, " d,d"]. (4.2)

Proposition I1.4.1. Let A : M(2) — M(2)®? be the algebra morphism
defined by

A(a) =d'a" +b'c", A(b) = d'b" +b'd",
Alc) =cdd" +d' ", A(d)=cb" +dd".
Then for any commutative algebra A, the morphism A corresponds to the

matriz multiplication in My(A) under the identifications (4.1-4.2).

The proof is easy and left to the reader. It is convenient to rewrite the
formulas for A in Proposition 4.1 in the compact matrix form

a b\ [ Al@) AWB) Y _[(d V a v
A( c d ) N < Ale) Ad) )\ ¢ d dd ) (4.3)
.5 Determinants and Invertible Matrices
We keep the notations of the previous section. We now consider the group
GL,(A) of invertible matrices of the matrix algebra M,(A). When A is

commutative, we know that a matrix is invertible if and only if its deter-
minant is invertible in A:

GLy(A) = {< : g ) € M,(A) such that aé — By € AX}.

Define SL,(A) as the subgroup of GL,(A) of matrices with determinant
ab—py=1.
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Proposition 1.5.1. Define the commutative algebras
GL(2) = M(2)[t]/((ad — be}t — 1)

and

SL(2) = GL(2)/(t— 1) = M(2)/(ad — bc — 1).
For any commutative algebra A there are bijections
HomAlg(GL(Z),A) = GLy(A) and Homyy,(SL(2),A4) = SLy(A) (5.1)

sending an algebra morphism f to the matriz

(4o 1o,

fley f(d)

PROOF. We give it only for GL(2). Similar arguments work for SL(2). Let
< a g > be a matrix in GL,(A). Since A is commutative, there exists a

v 6
unique algebra morphism f : M(2)[t] = A such that

fl@y=a, fO)=8, fle)=7 [fd=§ and f(t)=(ad~pG7)""

flad=bet=1) = (f@f(d)—fBF))FD) - FO)

= (ab—By)(ab—py) -1
= 0.

This implies that the morphism f factors through the quotient algebra
GL(2). The rest of the proof is easy. a

The next lemma follows from a straightforward computation using the
morphism A of Proposition 4.1.

Lemma 1.5.2. We have A(ad — bc) = (a’'d’ — b'd)(a”d" — V'").

We now lift the group structures of GL,{A) and of SL,(A) to the algebras
GL(2) and SL(2). Consider the commutative algebras

GL(2)®% = M(2)®%[t',t"]/((a'd —b' ) —1,(a"d" ="V 1)
and
SL(2)%? = GL(2)®%/(t'~1,t"-1) = M(2)®?/(a'd =¥/’ ~1,a"d"—b""~1).

Proposition 1.5.3. The formulas of Proposition 4.1 define algebra mor-
phisms

A:GL(2) — GL(2)®? and A :SL(2) — SL(2)%°.
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ProOOF. The formulas of Proposition 4.1 define an algebra morphism A
from M (2)[t] to GL(2)®? provided we set A(t) = ¢'t”. In order to show
that A factors through GL(2) we have to check that A((ad — bc)t — 1)
vanishes. Now, by Lemma 5.2 and by definition of GL(2)®?, we have

A((ad —bc)t —1) = (d'd =) (a"d" —b"")'t" -1
1.1-1=0.
The proof for SL(2) is similar. m|

In Section 4 we checked that the map A corresponded to matrix multi-
plication under the above identifications. Let us exhibit the algebra maps

€:GL(2) -k and e:SL(2)—k

corresponding to the units of the groups GL,(A) and SL,(A) and the
algebra morphisms

S:GL(2) — GL(2) and S:SL(2) — SL(2)

corresponding to the inversions in the same groups. They are defined by
the formulas

e(a) =¢e(d) =¢e(t) =1, e(b) =e(ec) =0,
S(a) = (ad — bc)~' d, S(b) = —(ad — bc)™' b,
S(c) = —(ad — bc) ', S(d) = (ad — bc) " a,

and S(t) = t7! = ad — be. We rewrite them in the more compact and
illuminating form

e(‘é Z):(é ?)ands(‘; 2):(ad—bc)1<_dc _ab>

(5.2)

[.6 Graded and Filtered Algebras

The remaining sections of this chapter are devoted to some concepts of ring
theory.

Definition 1.6.1. An algebra A is graded if there exist subspaces (A;);en
such that
A=A, and A-AjCA
iEN

for alli,j € N. The elements of A, are said to be homogeneous of degree 7.
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We always assume that the unit 1 of a graded algebra belongs to A,.

Example 1. TFree algebras are graded by the length of words, i.e., the
subspace A; of A = k{X} is defined as the subspace linearly generated by
all monomials of degree i. The elements of X are of degree 1.

Proposition 1.6.2. Let A = @, A; be a graded algebra and I be a two-
sided ideal generated by homogeneous elements. Then

1= In4,

i>0
and the quotient algebra A/I is graded with (A/I), = A,/(INA,) for alli.

PROOF. It suffices to show that I = @,., I N A;. First observe that the
sum has to be direct since the subspaces A; form a direct sum. Therefore,
it remains to be checked that I =3, INA;. The ideal I is generated by
homogeneous elements z; of degree d,. Consequently, if z € T then

x:g a;z,;b;
i

for some a;,b,€A. Now, a;, = 3 _; ag and b, = Zj bg, where a{ and bg are

)

homogeneous elements of degree j. It follows that

— J o bk
x—E a;x;b;

.9,k

is a sum of homogeneous elements of degree d, + j + k in /. This implies
that I is a subspace of >°,o, I N A;. The converse inclusion is clear. O

Example 2. The polynomial algebra k[z4,...,z,] is graded as the quotient
of the free algebra A = k{z,,...,z,} (graded as in Example 1) by the ideal
I generated by the degree-2 homogeneous elements z;z; —z,x; where i and
J run over all integers between 1 and n. The generators z,...,x, are of

degree one.

The algebras M(2) and M (2)®? of Section 4 are graded as polynomial
algebras. On the contrary, the ideals defining the algebras GL(2) and SL(2)
are not generated by homogeneous elements. Though not graded, GL(2)
and SL(2) are filtered algebras in the sense of the following definition.

Definition 1.6.3. An algebra A is filtered if there exists an increasing se-
quence {0} C Fy(A) € ... C F,(A) C ... C A of subspaces of A such
that
A= F(A) and F(A)-F;(A) C F.;(A).
i>0

The elements of F;(A) are said to be of degree < i.
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For any filtered algebra A there exists a graded algebra S = gr(A) defined
by
S; = Fy(A)/F;_,(A).

We give a few examples of filtered algebras.

Example 3. Any algebra A has a trivial filtration given by F;(A) = A for
all <.

Example 4. We filter any graded algebra A = 69120 A; by
Fi(4) = EB 4;
0<j<i
for all ¢ € N. We have gr(A) = A.

Example 5. Let AD ... D F,(A) D Fy(A) be a filtered algebra and I be a
two-sided ideal of A. The quotient-algebra A/I is filtered with

F,(A/T) = F,(A)/F;(A) N1
In this case we have

gr(A/1) = P F(A)/(F,y(A) + F(A) N I).

i>0

As a special case, consider the algebra SL(2). It is filtered as the quotient
of the graded algebra M (2). We have

gr(SL(2)) & kla, b, ¢, d,]/(ad — be).

1.7 Ore Extensions

Let R be an algebra and R[t] be the free (left) R-module consisting of all
polynomials of the form

P=a, t"+a, "'+ +ayt’

with coefficients in R. If a,, # 0, we say tha: the degree deg(P) of P is
equal to n; by convention, we set deg(0) = —oo. The aim of this section is
to find all algebra structures on R[t] compatible with the algebra structure
on R and with the degree. We need the following definition.

Let a be an algebra endomorphism of R. An a-derivation of R is a linear
endomorphism ¢ of R such that

5(ab) = a(a)d(b) + 6(a)b (7.1)
for all a,b € R. Observe that (7.1) implies 6(1) = 0.
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Theorem L.7.1. (a) Assume that R[t] has an algebra structure such that
the natural inclusion of R into R[t] is a morphism of algebras, and we have
deg(PQ) = deg(P) + deg(Q) for any pair (P, Q) of elements of R[t]. Then
R has no zero-divisors and there exist a unique injective algebra endomor-
phism a of R and a unique a-derivation 6 of R such that

ta = afa)t + 6(a) (7.2)

for alla € R.

(b) Conversely, let R be an algebra without zero-divisors. Given an injec-
tive algebra endomorphism o of R and an a-derivation 6 of R, there exists
a unique algebra structure on R[t] such that the inclusion of R into R[t] is
an algebra morphism and Relation (7.2) holds for all a in R.

The algebra defined by Theorem 7.1 (b), denoted R[t, &, 8], is called the
Ore extension attached to the data (R, «,§).

PROOF. (a) Let a,b be non-zero elements of R, hence of degree 0 in R[t].
We have deg(ab) = deg(a) + deg(b) = 0, which implies that ab # 0. Conse-
quently, R has no zero-divisors.

Let us now prove the existence and the uniqueness of the endomorphisms
«a and 6. Take any non-zero element a of R and consider the product ta.
We have deg(ta) = deg(t) + deg(a) = 1. By definition of R][t] there exist
uniquely determined elements a(a) # 0 and §(a) of R such that

ta = ala)t + 6(a). (7.2)

This defines maps « and é in a unique fashion. The left multiplication by
t being linear, so are « and §. Furthermore, o has to be injective. Let us
expand both sides of the equality (ta)b = t(ab) in R[t] using (7.2). Here a
and b are elements of R. We get

a(a)a(b)t + ala)b(b) + 6(a)b = a(ab)t + 6(abd). (7.3)
Relation (7.3) implies that
a(ab) = ala)a(b) and 6(ab) = a(a)é(b) + 6(a)b. (7.4)

Applying (7.2) to t1 =t yields (1) = 1 and 6(1) = 0. It follows that « is
an injective algebra endomorphism and ¢ is an a-derivation.

(b) It clearly suffices to know the product ta for any a € R in order to
determine the product on R[t] completely. Thus, (7.2) defines the algebra
structure on R[t] uniquely.

Let us now prove the existence of the algebra structure. To this end, we
shall embed R[t] into the associative algebra M consisting of all infinite
matrices (f;); j>1 With entries in the algebra End(R) of linear endomor-
phisms of R such that each row, as well as each column, has only finitely
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many non-zero entries. The unit of M is the infinite diagonal matrix
with identities on the diagonal. Given an element a of R, we denote by
@ € End(R) the left multiplication by a. The hypotheses made on a and 6
translate into the relations

—

ad = a(a)a and 6@ = a(a)s + 6(a) (7.5)

in End(R). Now, consider the infinite matrix

6 0 0 O
a 6 0 0
0 a 6 O
T= 0 0 a ¢
0 0 0 «

in M. Tt allows one to define a linear map ® : R[t] — M by

n

@(‘i a,.t") =3 @nr. (7.6)

i=0 i=0
Lemma 1.7.2. The map ® is injective.

PROOF. For any integer i > 1, let e, be the infinite column vector whose
entries are all zero, except for the i-th one which is equal to the unit 1 of
R. We may apply the matrix T of endomorphisms to e;. Since §(1) = 0 and
a(l) =1 we get

T(e;) = €ipy (7.7)

for all i > 1. Now, let P = >_"' , a,t" be an element of R[t] such that
®(P) = 0. We wish to show that all elements ag,...,a, are zero. Apply
®(P) to the vector column e;. By (7.7) we get

n n
i _ ~
0= E (a;1)T"(eq) = E ;€41
=0 i=0

The set {e;},>, being free, we have @; = 0 for all <. Since R has a unit, we
get a, = 0 for all 1. Hence, P = 0. O

Relations (7.5) imply the following relation in M for all a € R.

Lemma 1.7.3. We have T'(al) = (a(a )I)T+ (6(a )I)

We now complete the proof of Theorem 7.1 (b). Let S be the subalgebra
of M generated by the elements T' and al where a runs over R. By Lemma
7.3 it is clear that S is the image of R[t] under the map ®. Since the latter
is injective, it induces a linear isomorphism from R][t] to the algebra S. This
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allows one to lift the algebra structure of S to R[t]. Relation (7.2) holds in
R[t] in view of Lemma 7.3. o

We draw a few consequences. First, we wish to give a general formula
for the product in R[t,,8]. Consider P = Y7, a;t" and Q = > 1o, b;t".

Set PQ = Z?jom c;t'. Let S, be the linear endomorphism of R defined

as the sum of all ( Z ) possible compositions of k copies of § and of n —k

copies of a.

Corollary 1.7.4. Under the hypotheses of Theorem 7.1 (b), the following
holds.
(a) For alli with 0 <4 < m+n we have

i D
G = Z Gp Z Sp ke (bimpir) (7.8)
p=0 k=0

and for all a € R and n € N we have in R[t, o, 8]
t"a = Z S, x(a) =k, (7.9)
k=0

(b) The algebra R[t, o, 8] has no zero-divisors. As a left R-module, it is
free with basis {t'},cn-

(c) If o is an automorphism, then R[t,«, 8] is also a right free R-module
with the same basis {t'};cn-

PrROOF. (a) Relation (7.9) follows from (7.2) by induction on n. It implies
(7.8).

(b) This is a consequence of the existence of the degree and of the defi-
nition of R[t].

(¢) Let us first prove that the set {t'},~, generates R[t,c, 8] as a right
R-module. This means that any element P of R[t,, 6] can also be written
under the form P = """  t'a’ where qy,...,a, € R. Let us prove this by
induction on the degree n of P. For n = 0, it is clear. For higher n we use
the relation

at™ = "« "(a) + lower-degree terms (7.10)

which makes sense once @ is assumed to be invertible. It remains to be
proved that the set {t'},~, is free. Suppose it is not. Then there exists a
relation of the form

t"a, +t"ta, ; + - +tag +ay=0
with a,, # 0. Using (7.10) once again, we get another relation of the form

a(a,)t" + lower-degree terms =0,
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which, by Part (b), implies that a™(a,) = 0. The map « being an isomor-
phism, we get a,, = 0, hence a contradiction. O

Example 1. Consider the special case a = idp. If 6 = 0, then the Ore
extension R[t,id, 0] is clearly isomorphic to the polynomial algebra RJ[t].
In case of a general derivation 8, the algebra R[t,idp,6] is an algebra of
polynomial differential operators (see Exercise 8). When R = k[z] and 6
is the usual derivation d/dx of polynomials, then R[t,idp,6] is the Weyl
algebra which is generated by two variables z and 6 subject to the well-
known Heisenberg relation éx — zé6 = 1.

[.8 Noetherian Rings

Proposition 1.8.1. Let A be a ring. The following two statements are
equivalent.

(i) Any left ideal I of A is finitely generated, i.e., there exist ay,...,a
in I such that I = Aay + -+ Aa,.

(ii) Any ascending sequence I, C I, C I; C ... C A of left ideals of A is
finite, i.e., there exists an integer r such that I, ; = I for all i > 0.

n

PROOF. Let us first show that (i) implies (ii). Consider an ascending se-
quence I; C I, C I3 C ... of left ideals of A. The union of these ideals is
a left ideal I which, by (i), is generated by a finite number a4,...,qa, of
elements of A. By definition of the union there exists an integer r such that
@y, .- -,a, all belong to the ideal I,.. It follows that I C I, C I,,; C I for
all 4 > 0.

We now establish the converse. Let I be a left ideal that is not finitely
generated and a, be an element of I. The left ideal I} = Aa, is contained
in I and I, # I. Therefore, we can find an element a, € I\ Aa;. We have
I, C I, = Aay + Aa, C I and I, # I, # I. Proceeding inductively, we find
an infinite strictly ascending sequence I, C ---I, C I, C ---1 of left
ideals. m]

Any ring A satisfying the equivalent conditions of Proposition 8.1 is said
to be left Noetherian. The ring A is right Noetherian if the opposite ring A°P
is left Noetherian. It is Noetherian if it is both left and right Noetherian.

Example 1. Any (skew-)field K is Noetherian, the only ideals being {0}
and K.

The property of being Noetherian is preserved by quotients and Ore
extensions, as will be seen next.

Proposition 1.8.2. Let ¢ : A — B be a surjective morphism of rings. If
A is left Noetherian, then so is B.
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PROOF. Let J be a left ideal of B. The left ideal I = ¢_,(J) of A is
generated by elements a,...,a,. Therefore, J = p(p_,(J)) is generated

by ¢(a;), ..., ¢(a,). 0

The following theorem is a non-commutative version of Hilbert’s basis
theorem.

Theorem 1.8.3. Let R be an algebra, o be an algebra automorphism and é
be an a-derivation of R. If R is left Noetherian, then so is the Ore extension
R[t,a, 6]

As a consequence of Proposition 8.2 and Theorem 8.3 applied to the case
o =1id and 6 = 0, we have

Corollary 1.8.4. If R is left Noetherian, then so is R[X,,...,X,]/I for
any ideal I.

Proof of Theorem 8.3. Let I be a left ideal of the Ore extension R[t,«, é].
We have to prove that I is finitely generated. Given an integer d > 0, define
I, as the union of {0} and of all elements of R which appear as leading
coefficients of degree d elements of I. One checks easily that I; is a left
ideal of R.

On the other hand, if a is the leading coefficient of some polynomial P,
then a(a) is the leading coefficient of ¢P. Consequently, a(I;) is included
in I;,,. We therefore have the ascending sequence

I,coY(I)ca X)) C...Cca™,) Ca ™I )C...

of left ideals in R. Since R is left Noetherian, there exists an integer n such
that I, , = a'(I,) for all i > 0.

For any d with 0 < d < n choose generators a,,,...,a04, of I;. Let
P, ; be a degree d element of I whose leading coefficient is a4 ;. The set
{Py:}o<d<ni<i<p is finite. Let us prove by induction on the degree that
any polynomial P in I belongs to the ideal I' = 3=, R[t,@, 6] P, ;. This
will imply that I = I’ is finitely generated, hence establish the theorem.

The induction hypothesis clearly holds in degree 0. Suppose we have
proved that any element of degree < d in I is in I’. Let P be a degree d
element of I.

(a) If d < n, the leading coefficient a of P is of the forma = } o, 704
where g, ... ,T, are elements of R. Consequently, Q@ = P — Zogigp TPy
is an element of I of degree < d. By induction, @, hence P, belong to I'.

(b) If d > n, the leading coefficient a of P belongs to I; = (). It
can be written a = > o<, riad_"(ad’i) for some g, ..., 7, in R. Consider
the polynomial

Q=P- > rt""p,

0<i<p
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The coefficient of t¢ in Q is

a= Y ratTMag,) =0,

which shows that the degree of @ is < d. We can therefore apply the
induction hypothesis and conclude as above. O

I.9

1.

Exercises

(Schur’s lemma) Prove that any A-linear map between simple A-
modules is either zero or an isomorphism. Deduce that the A-linear
endomorphisms of a simple A-module form a skew-field.

Let p = p? be an A-linear idempotent endomorphism of an indecom-
posable A-module V. Show that p =0 or p = id,,.

Let A, A, be algebras. Let V| be an A;-module and V, be an A,-
module. Establish that (ay,a5)(vy,vy) = (@91, a90,) (Where a; € A,
ay € Ay, vy € Vi, vy € V) defines an A; x A,-module structure on
Vi x V,. Prove also that any A, x A,-module is of this form.

Let A be a filtered algebra and gr(A) the associated graded algebra.
Prove that if gr(A) is Noetherian without zero-divisors, then so is A.

(Rees algebra) Let A D ... D F, D F, be a filtered algebra. Define
the Rees algebra R(A) as the subalgebra

R(A)=)_ F,t"
n>0
of the polynomial algebra A[t]. Prove that

(i) there are algebra isomorphisms
R(A)/(t-1)= A, R(A)/(t) = er(4), RAR]= AR,

(ii) if the algebra gr(A) is generated by homogeneous elements a,, . . .,
a, of respective degrees dy,...,d,, then R(A) is generated by the
elements t, a;t%, ... a,t% where a, is a lift of @, in F} for all 4.

(Poincaré series of a graded algebra) Let A = 0, A, be a graded
algebra such that the vector spaces A, are all finite-dimensional. De-
fine the Poincaré series of A as the formal series

P(A) =) dim(4,)t".

i>0
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Prove that

P(k{zy,...,z,}) =

and P(klz,,...,z,]) =

1—nt

Compute the Poincaré series of the graded algebra associated to the
filtered algebra SL(2).

(Leibniz formula) Let 6 be an a-derivation of an algebra R. Prove
that if a;,...,a, are elements of R, then
6(ay ... an) =6(aj)ay...a,
+ Zz 2 afay ‘ai—l)é(ai)ai-kl coa, +alay...a, )0(a,)
and

*(aqa5) ZS 6" F(ay) .

for n > 1. The endomorphisms Sn,k were defined in Section 7.

Let R be an algebra with an algebra automorphism « and an a-
derivation é. Establish that éa~! is an o~ !-derivation of the opposite
algebra R°P and that we have an algebra isomorphism

R[t,a,8]°P = R°P[t,a™ !, —6a™!].
Deduce that R[f, o, 8] is right Noetherian if R is.

(Algebra of differential operators) Let R be an algebra over a field
of characteristic zero and let 6 be a derivation of R. The algebra of
differential operators associated to § is the Ore extension R[t,id g, ¢],
which we simply denote by R[t, 8].

(a) Prove that for any integer n > 0 and any element a of R we have

ks

t"a=Y_ ( Z ) 85 (a)tn*.

k=0

(b) Show that any trace on R[t,6], i.e., any linear map 7 on R[t,d]
such that 7(xy) = 7(yz) for any pair (z,y) of elements of R[t, 4], is
Z€ro.

(Algebra of pseudo-differential operators) Keep the hypotheses and
the notations of the previous exercise. Show that the formula

(Z at') (Z bt') = Z ot
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where

pp—1)...(p—k+1)
G = E : k! ap 6k(bi7p+k:)7
keEN, peZ

defines an algebra structure on the vector space R[t, 6][[t~!]] of formal
series of the form 3°7" _a,;t". Check that R[t, ] is a subalgebra. De-
fine the non-commutative residue as the linear map from R[t, 8][[t™!]]
to R/([R, R] + 6(R)), sending the formal series > ;. ___ a;t' to the
class of the coefficient a_;. Prove that the non-commutative residue

is a trace on the algebra RJ[t, ¢][[t~*]] of pseudo-differential operators.

1.10 Notes

Ore extensions were introduced by Ore in [Ore33]. They are also called
“skew polynomial rings” in [Coh71] [MR87] (see also [Cur52]). One of Ore’s
motivations was to find a large class of non-commutative algebras that
are embeddable into a skew-field. As is well-known, this is possible for
any commutative integral domain, but not for a general non-commutative
algebra. Ore proved that any algebra obtained from a skew-field by iterated
Ore extensions can itself be embedded into some skew-field (see Proposition
0.8.4 in [Coh71]). For more details on Noetherian rings, we refer the reader
to [Lan65] and [MR87]. The examples given in [MR87], 2.11 show that the
non-commutative version of Hilbert’s basis theorem is no longer true if the
endomorphism « is not assumed to be bijective.
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Tensor Products

This chapter is devoted to a few facts on tensor products of vector spaces
and of algebras that will be needed in the sequel. We fix a field k once and
for all.

II.1 Tensor Products of Vector Spaces

Given vector spaces U and V', we denote by Hom(U, V') the space of linear
maps from U to V. In particular, define End(V) = Hom(V, V), the space
of linear endomorphisms of V. If W is a third vector space, we denote by
Hom'? (U, V; W) the space of bilinear maps from U x V to W.

The tensor product U ® V of two vector spaces can be characterized as
follows.

Theorem II.1.1. Given vector spaces U and V there exist a vector space
U®V and a bilinear map ¢y : U xV — U @V such that, for all vector
spaces W, the linear map

Hom(U ®@ V, W) — Hom® (U, V; W)

giwven by f — f oy, is a linear isomorphism. The vector space U @ V 1s
called the tensor product of U and V. It is unique up to isomorphism.

For any u € U and v € V, set u ® v = @y(u,v). Since ¢y is bilinear, the
following relations hold in U @ V:

(u+u)@v=u®v+u v, (1.1)
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u@+v)=uR®u+uv, (1.2)
AMu®v) = (M) Qv =u®(\v) (1.3)

where u,u’ € U, v,v" € V and A\ € k. Moreover, as we shall see in the
subsequent proof, any element of U ® V' is a finite sum of the form

P
Z ’U/i ® vi (1'4)
i=1

where uy,...,u, belong to U and vy, ...,v, belong to V.

Proor. We indicate the proof. Consider the vector space k[U x V] whose
basis is the set U x V. We define U ® V as the quotient of k[U x V] by the
subspace generated by the elements

(U’ + ul7v) - (u7 1}) - (ul7v)7 (u7v + vl) - (u7 v) - (u7 vl)7

Au,v) — A(u,v),  (u, \v) — A(u,v)

where u,u’ € U, v,v" € V and X € k. The class of (u,v) €U xV inUQV
is denoted ¢(u,v) = u ® v. By construction, the canonical map ¢, from
U xV to U®YV is bilinear. The rest of the proof follows easily. For details,
see [Bou70], Chap. 2 and [Lan65]. O

Corollary I1.1.2. For any triple (U,V,W) of vector spaces there is a
natural isomorphism

Hom(U ® V,W) = Hom(U, Hom(V, W)) .

PRroOF. If ¢ is a bilinear map from U x V to W and u is any vector of
U, then ¢(u,—) is a linear map from V to W. This sets up the desired
isomorphism. O

The proof of the following easy proposition is left to the reader.

Proposition 11.1.3. Let U, V, W be wvector spaces. There are isomor-
phisms
UV)eW2U (VeW)

determined by (u @ V) QW — U ® (VO w),
kVEVEVRE

determined by AQ vi— v andv— v ® 1, and
VeWw=zweV

given by the flip vy, defined by 7, (v @ W) = w R v.
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The tensor product also commutes with the direct sum of spaces. Let
(U;)ier be a family of Vector spaces indexed by a set I. Recall that there
exists a vector space ;. ; U, called the direct sum of the family (U;), and
linear maps ¢; : U; — @,; U, such that for any vector space V, the linear

map
Hom(EP U,, V) — [[ Hom(U,, V) (1.5)
i€l i€l

given by f — (f o g,); is an isomorphism.

Proposition I1.1.4. We have

EPuyev=PHu V). (1.6)

iel i€l

Proor. By Corollary 1.2 and (1.5) we have the chain of isomorphisms

Hom(((P U)) @ V,W) = Hom(EP U,, Hom(V,W))
a 11 HoLl:ll(Ui, Hom(V, W))
ﬁHom(Ui RV, W)
gém(@ (U, @ V), W).

el

1%

Il

12

These hold for any vector space W. A classical argument given in full detail
in the second proof of Proposition 5.1 (¢) allows one to conclude. 0

Recall also the notion of a direct product of vector spaces. Let (V;)¢;
be a family of vector spaces indexed by a set I. There exists a vector space
[Tic; Vi, called the direct product of the family (V;);c;, and linear maps
p; : [Lie; Vi = V; such that for all vector spaces U, the map

Hom(U, [[ Vi) = [] Hom(U, V3) (1.7)
i€l el

given by f — (p; o f), is an isomorphism. As a set, [[,., V; may be real-
ized as the vector space of all families (v;),c; such that v; € V; for all 7.
The direct sum @,.; V; is then the subspace of [[,; V; consisting of the
families (v;);c; where all but finitely many v; are zero. When the indexing
set I is finite, the direct product coincides with the direct sum. Otherwise,
the direct sum is a proper subspace of the direct product.

Corollary I1.1.5. Let {u;};c; be a basis of the vector space U and {v;} ¢,
be a basis of V. Then the set {u; ® v;}; jerxs 5 o basis of the tensor
product U ® V. Consequently, we have dim(U ® V') = dim(U) dim(V').
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PRrooF. By definition of the direct sum, we have

U= @ ku, and V& @ kv,. (1.8)
i€l jeJ
Applying Propositions 1.3-1.4 and using k ® k = k, we get
veve @ ko).
(i.)E€IxJ

O

Let us define the notion of a free module over an algebra A using the
tensor product. It is a module of the form A® V where V is a vector space
and A actson A®V by

a(a’ ®@v) =ad @v

for a,a’ € A and v € V. A basis of an A-module M is a subset {z,},; of
M such that the map
(a;)ier — Z a; Ty

i€l
from the direct sum €,.; A to M is an isomorphism. By Propositions
1.3-1.4,
Pa=PUer=Acv
i€l i€l

where V = @, k. It follows that an A-module has a basis if and only if
it is free.

I1.2  Tensor Products of Linear Maps

Let f: U — U’ and g : V — V' be linear maps. We define their tensor
product fRg:U®V - U @V’ by

(fog)(uev) = fu)@g(v) (2.1)
for all w in U and v in V. This gives rise to a linear map
A : Hom(U,U’) ® Hom(V, V') — Hom(V @ U, U’ @ V') (2.2)

defined by
(Mo 9)wew = fuw e gv). (2:3)

The reasons for the switch of U and V in (2.2) will become apparent in
II1.5.2 and in Chapter XIV. The main result of this section is the following.



11.2 Tensor Products of Linear Maps 27

Theorem I1.2.1. The map X\ is an isomorphism provided at least one of
the pairs (U, U"), (V,V") or (U, V) consists of finite-dimensional vector
spaces.

PROOF. Assume that U and U’ are finite-dimensional. We wish to show
that the map X of (2.2) is an isomorphism. We shall do this by reducing A to
simpler maps. We can write U = @,; ku; where {u,},c; is a finite basis of
U. As a consequence of the isomorphism (1.5-1.6), the map A turns into a
map from ([[; Hom(ku,;,U')) ® Hom(V, V') to [, Hom(V ® ku,, U’ @ V).
The set I being finite, we may replace [[, by €,. Applying (1.6) again, it
remains to prove that the map

A : Hom(ku,;, U’) @ Hom(V, V') - Hom(V ® ku;, U’ @ V')

is an isomorphism in the special case U = ku,.
Since ku,; is one-dimensional, this amounts to checking that the map

X U ' @Hom(V, V') - Hom(V, U’ @ V') (2.4)
defined by
N('® f)(v) =v' & f(v)

is an isomorphism. By assumption, we also have U’ = @, , ku; for some
finite basis {u;};c;. We again use (1.6-1.7) and the fact that the direct
product over the finite set I’ is the same as the direct sum. We get

U’ @ Hom(V, V') = P kuj ® Hom(V, V")
iel’

and
Hom(V, U’ ® V') 2 ] Hom(V, kuj ® V).
iel’

This allows us to break X into the direct product of the maps
N ¢ kv, @ Hom(V, V') — Hom(V, ku; @ V).

In this special case, X is given by X' (u} ® f)(v) = v ® f(v), which is clearly
an isomorphism. Hence, so is the map A’ of (2.4), which concludes the proof.
There are similar arguments in the remaining two cases. 0O

We deduce two corollaries involving the dual vector space V* = Hom(V, k)
of a vector space V. For the first one, we specialize Theorem 2.1 by taking
U=V =k

Corollary I1.2.2. The map X : U*@V* — (V. QU)* is an isomorphism
provided U or V are finite-dimensional.

For the second corollary, we take U = V' = k in Theorem 2.1.
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Corollary 11.2.3. The map Ay y : VU™ — Hom(U, V) given foru € U,
veVandacU* by

Ay (v ® @) (u) = afu)v (2.5)

is an isomorphism if U or V are finite-dimensional. In particular, if V s
a finite-dimensional vector space, the map Ay, is an isomorphism

Ve V"= End(V).

We now wish to express the general map A of (2.2) in terms of the special
maps A defined in Corollaries 2.2-2.3 and of the flip. This is done in the
following lemma which will be useful later. Note that the map Ay ¢ ® Ay
is invertible when either U or U’, and either V or V' are finite-dimensional.

Lemma I1.2.4. The following diagram commutes:
UeU eV eV —2UWV  gon@,u') @ Hom(V, V')
lid@TU*’V/®id
UeVeU eV lx
id@id®A
UeVe(VeU)r Hom(V @ U,U' ® V')
ProoF. Easy. O

>‘V®U,U’®V’

There is another important operation on linear homomorphisms that we
have not yet discussed. It is the composition (g, f) — g o f of two linear
maps. This operation is bilinear and leads, for any triple (U, V, W) of vector
spaces, to the map

Hom(V, W) @ Hom(U, V)~ Hom(U, W).

Under some finite-dimensionality conditions, we can express the composi-
tion in simpler terms again involving the special maps A of Corollary 2.3
as well as the evaluation map

evy V'V —k
which is defined as usual, namely by
evy (@ ®v) =< a,v >= av) (2.6)
for any linear form « and any vector v of V.

Lemma I1.2.5. The square
id®evv ®id
_ve

WV @VeU* wWeU*
Av,w @Au,v Av,w
Hom(V, W) ® Hom(U, V) = Hom(U, W)

commutes.

Proor. Easy. O
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I1.3 Duality and Traces

All vector spaces considered in this section are assumed to be finite-dimen-
sional. If V is such a vector space, we denote a basis of V' by {v,}, using
the corresponding lower-case letter for vectors. The dual basis in the dual
vector space V* is denoted {v'},. Using these bases, the evaluation map
can be redefined by

evv(vi®vj):<vi,vj >=6, (3.1)

Let us express the isomorphism Ay, : VU™ = Hom(U, V) of Corollary
2.3 in terms of bases. Let f : U — V be a linear map. Using bases for U

and V', we have
u,) = Z fiv, (3.2)
for some family ( f})w of scalars. It is easily checked that
=2 (3 fiv o). (3.3)
tj
In particular, taking for f the identity of V, we get
idy = Ay (D v @), (3.4)

This allows us to define the coevaluation map of any finite-dimensional
vector space V as the linear map 6y, : k — V ® V* defined by

&y (1) = Ay (dy) = Z v; @' (3.5)

By its very definition, the map &y, is independent of the choice of a basis. We
now record some relations between the evaluation and coevaluation maps.
These relations will turn out to be fundamental when we define duality in
categories in Chapter XIV.

Proposition I1.3.1. The composition of the maps
V Sy ®idy V® V* ®V idv®evv V
is equal to the identity of V. Similarly, the composition of the maps

idy*®6 ev,, Qidy =
V*1V®V V*®V®V* Vv \4 v*

is equal to the identity of V™.

PRrRoOOF. Immediate. O



30 Chapter II. Tensor Products

Let us recall the operation of transposition. For a linear map f : U — V,
define its transpose f* : V* — U™ as the linear map defined for all o € V*
and all v € U by

< fa)u>=<af(u)>. (3.6)

In other words, f* is the unique linear map such that the square

V*®U f*®idU U*®U
|iav-os [evo (3.7)

er

VeV — k

commutes. The transposition may be recovered from the evaluation and
coevaluation maps as shown in the following result whose proof is left to
the reader.

Proposition I1.3.2. Let f: U — V be a linear map. Then the transpose
[ is equal to the composition of the maps

evy, ®idy«
_—

V* idy*Q®6y V* ® U ® U* idy*® fRidy V* ® V ® U* U*
Observe that if (3.2) holds, then
Fr) =" flu. (3.8)

We thus see that transposition amounts to exchanging upper and lower
indices. We generalize this as follows. Let f be a linear map from V @ W
to X ® Y. Using bases on these spaces, we define the partial transposes

T X*@W-=V*®Y and f*: VY —=XeW*

by
! ®w;) Z fie vk®y£ (3.9)
and
(v; ®y7) Z i, @wt (3.10)
if
flo,@w;) =Y fiz @y, (3.11)
k2

Lemma I1.3.3. The definitions of f* and f* are independent of the choice
of bases. We also have

)y =)=

PRroOF. Left to the reader. O
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The isomorphism Ay, of Corollary 2.3 allows one to define the trace of
an endomorphism in a finite-dimensional vector space V. The trace tr :
End(V) — k is defined as the composition

—1

A T * v
End(V)=25V @ v X5y o v, (3.12)

Proposition I1.3.4. Let f and g be endomorphisms of a finite-dimension-
al vector space V.
(a) The trace satisfies the relation

tr(fog) =tr(go f). (3.13)
(b) If (f;)zj is the matriz of f in a basis of V', then

te(f) = fi (3.14)

(c) We also have
tr(f*) = tr(f). (3.15)

PROOF. (a) By linearity, it suffices to prove (3.13) for
f=XAy®a) and g=A\,,(wdp)

where v,w € V and a, 8 € V*. We have fog = Ay (a(w) v®f3) by Lemma
2.5. Consequently, tr(f o g) = a{w) B(v), which clearly equals tr(g o f).
(b) From Relations (3.2-3.3) we derive

tr(f) :Z f; < vl >:Z fr
ij i

(c) Relation (3.15) follows from (3.8) and (3.14). O

The next result expresses the trace in terms of the evaluation and co-
evaluation maps and of the flip.

Proposition I1.3.5. The trace of f : V — V s equal to the composition
of the maps

Ky gy LBdve,

VeV Xlyr o v,

We close these generalities with the partial traces of an endomorphism f
of U®V. By Theorem 2.1 the map f®g — A(f@g)OTU,V is an isomorphism
X from End(U) ® End(V) onto End(U @ V). We define tr; and tr, by the
following commutative diagram.

tro

End(V) R End(U @ V) 2z, End(U)
Tg Tx Tg (3.16)
tr ®id id®tr
E®End(V) «—— End(U)®End(V) —— End(U)®k
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Lemma IL.3.6. If f(u; ®v;) =), fi]j-z u, @ v, on some bases of U and
V', then

try (F)(v;) = > fifv, and  try(F)(w) =D £ uy. (3.17)
¥4

j.k
We also have try (try(f)) = try(try (f)) = tr(f).

PROOF. Left to the reader. O

1.4 Tensor Products of Algebras

Given algebras A and B, we put an algebra structure on the tensor product
A® B by

(a®b)(a’' @b") = ad’ @ bY (4.1)
where a,a’ € A and b,b' € B. We call A® B the tensor product of the
algebras A and B. Its unit is 1 ® 1. Defining i 4 (a) =a®1and iz(b) = 1®b,
we get algebra morphisms iy : A — A®B and iz : B - A®B. The
following relation holds in view of (4.1):

ia(a)ip(b) =ip(blis(a) =a®b (4.2)

for all a € A and b € B. The tensor product of algebras enjoys the following
universal property.

Proposition I1.4.1. Let f : A— C and g : B — C be algebra morphisms
such that, for any pair (a,b) € Ax B, the relation f(a)g(b) = g(b)f(a) holds
in C. Then there exists a unique morphism of algebras fQ®g: AQB — C
such that (f®g)oi, = f and (f®g)oig=g.

We can rephrase Proposition 4.1 by saying that Hom,, (A® B,C) is
the subset of Hom,, (4, C) x Homy,, (B, C) consisting of all pairs (f, g) of
morphisms whose images commute in C. In particular, if C'is commutative
we have

Homy;, (A® B, C) = Homyy, (A, C) x Homy, (B, C). (4.3)

PROOF. Any element of A® B is a finite sum of elements of the form a ® b.
Therefore, by (4.2), f ® g (if it exists) has to be of the form

(feg)(a®b) = (f@9)(ia(a)(f ®9)(ig(b)) = f(a)g(b).

This proves the uniqueness assertion. As for the existence of the map f®g,
one checks that the previous formula defines an algebra morphism. This



I1.4 Tensor Products of Algebras 33

uses the commutativity assumption as follows:

(fog(a®b)(fog)(d ) fla)g(b) f(a')g(t)
= fla)f(a")g(b)g(d)
= f(aa")g(bd")

We apply Proposition 4.1 to a situation encountered in Chapter I.

Proposition I1.4.2. Let A = k{X}/I be a quotient of the free algebra on a
set X. Take two copies X' and X" of X. Let I’ and I" be the corresponding
ideals in k{X'} and k{X"}. Then the tensor product algebra A ® A is
isomorphic to the algebra

A®2 — k{X/ L X”}/(I’,I”,X’X” _ XIIX/)

where X' U X" denotes the disjoint union of the two copies and where
X'X" - X"X' is the two-sided ideal generated by all elements of the form
'z’ —x'c witha' € X' and 2" € X",
PRroOOF. For any & € X we denote the corresponding copy in X’ [resp. in
X"] by x' [resp. by z”]. Setting ¢’(z) = 2’ and ¢"(z) = «” defines algebra
morphisms ¢’, " 1 A — A®2. Since 2'y” = y"2’ by definition of A®?,
we have ¢'(z)¢" (y) = ¢"(y)¢'(x) for any pair (x,y) of elements of X. By
Proposition 4.1 there exists an algebra morphism ¢ : A® A — A®? such
that p(z®y) = z'y".

Conversely, we get an algebra morphism 1 from A®?2 to A® A by setting
P(z') =z ®1 and ¥(z”) = 1@z where 2’ € X' and 2" € X”. One easily
checks that ¢ and ¥ are inverse of each other. 0

We retain from the previous statement that one passes from A%? to
A ® A by replacing the copy z’ of by 2 ® 1 and the copy " by 1 ® x and
vice versa. Let us apply this recipe to the constructions of 1.4-5. Denoting
M(2), GL(2) or SL(2) by G, we see that in all three cases the algebra G®?2
defined in I.4-5 is isomorphic to the tensor product algebra G ® G. We can
thus rewrite the map A of Proposition 1.4.1 as the algebra morphism from
G to G® G determined by

Ala)=a®a+b®c, AD)=a®b+b®d,

Ale)=c®@a+d®e, Ald)=c®b+dx®d.
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We rewrite these four relations in the compact matrix form

(2 )38 #)-(2 D)=(22) w

Lemma 1.5.2 implies that
A(ad — bc) = (ad — bc) @(ad — be). (4.5)

I1.5 Tensor and Symmetric Algebras

Let V be a vector space. Define T°(V) = k, T'(V) =V and T"(V) = V®"
(the tensor product of n copies of V') if n > 1. The canonical isomorphisms

T"(V)@T™(V) = T™(V)

induce an associative product on the vector space T'(V) = @, T" (V).
Equipped with this algebra structure, T'(V') is called the tensor algebra of
V. The product in T'(V) is explicitly given by

(2,®..92,)(2, 1 ®..0%,,,)=2,®..02,0T,,,®...0T,
(5.1)
where xy,...,2,,%, 1, T, , are elements of V. The unit for this prod-
uct is the image of the unit element 1in k = T°(V). Let 4, be the canonical
embedding of V = T*(V) into T'(V). By (5.1) we have

T ®...0x, =iy, (z))...ly(x,), (5.2)
which allows us to set
Ty L, = R...0%, (5.3)
whenever z,,...,z, are elements of V.

Proposition IL.5.1. (a) The algebra T(V) is graded such that T™(V) is
the subspace of degree n homogeneous elements.

(b) For any algebra A and any linear map f : V. — A, there exists a
unique algebra morphism f : T(V) — A such that foi,, = f. Consequently,
the map f v f o1y is a bijection

Hom y, (T(V), A) = Hom(V, A). (5.4)

(c) Let I be an indexing set for a basis of the vector space V. Then the
tensor algebra T'(V') is isomorphic to the free algebra k{I}.

PROOF. Part (a) is clear. Let us prove Part (b). If f exists, it has to be of
the form

f(xl""rn) :f(‘r1>f(‘rn)
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in view of (5.3). This proves the uniqueness of f. As for its existence, one
checks immediately that the previous formula defines an algebra morphism
from T'(V) into A.

(¢) By Corollary 1.5, if {€;},c; is a basis of V, then {e; ...e; };  , <718
a basis of the vector space T™ (V). When n runs over the set of non-negative
integers we get a basis of T(V) which is clearly in bijection with a basis of
k{I}. This bijection induces an isomorphism between both vector spaces.
The product on T(V) corresponds to the concatenation in k{I'} under this
isomorphism.

Let us give another, less pedestrian, proof of Part (¢). By (1.5), (1.8},
(5.4) and (1.2.2) we have the following chain of natural bijections:

Homy, (T(V),A) = Hom(V,A)
= Hom(@ ke;, A)
el
H Hom(ke,, A)
el
Homg,, (I, A)
HomAlg(k{I},A).

12

1%

12

Let o be the composition of these bijections. First, take A = T(V) and
define ¢ = a(idrp(y); this is an algebra morphism from k{I} to (V). Now
take A = k{I} and define ¥ = a_l(idk{l}); this is an algebra morphism
from T'(V') to k{I'}. We claim that ¢ and 9 are isomorphisms between T'(V)
and k{I}. First, observe that the bijection « is natural, which means that
for any algebra morphism f: A — A’ we have

foa(w)=a(fow)

for any w € Hom, (T'(V), A). Let us now compose ¢ and ¢. On the one
hand, we get

whereas on the other hand, we have
alpoy) =poa(y) = poidyyy =,

whence g o) = a () = dgyy- -

Let us define symmetric algebras. If V' is a vector space, the symmetric
algebra S(V) is the quotient S(V) = T(V}/I(V} of the tensor algebra T'(V)
by the two-sided ideal I(V') generated by all elements xy — yx where x and
y run over V. If z,,...,z, are elements of V, we again denote by z; ...z,
the class of z, ...z, in S(V). The image of T"(V) under the projection
of T(V) onto S(V) is denoted S™(V). Let i, be the canonical map from
V =TYV) to S(V).
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Proposition I1.5.2. (a) The algebra S(V) is commutative, and is graded
such that S™(V') is the subspace of degree n homogeneous elements.
(b) For any algebra A and any linear map f:V — A such that

for any pair (x,y) of elements of V, there exists a unique algebra morphism
f:8(V) — A such that foiy = f.

(¢) If I is an indezxing set for a basis of V, then the symmetric algebra
S(V) is isomorphic to the polynomial algebra k[I] on the set I.

(d) If V' is another vector space, we have an algebra isomorphism

SVaeVH)=sSV)eSWV). (5.5)
Part (b) implies that the map f — f o iy, is a bijection
HomAlg(S(V)7 A) = Hom(V, A) (56)

when the algebra A is commutative.

PROOF. We leave (a)—(c) as an exercise. Let us give a short proof of (d).
Using (1.5), (4.3) and (5.6), we have the chain of natural bijections

Hom , (S(Va® V'), A)

11

Hom(V @ V', A)

Hom(V, A) x Hom(V', A)

Homy,, (S(V), A) x Hom ,, (S(V'), A)
Hom 4, (S(V) ® SV, A).

1R

14

We then successively take A to be S(V @& V') and S(V) ® S(V'), which
produces isomorphisms between these algebras, as in the second proof of
Part (¢) of Proposition 5.1. O

1.6 Exercises

1. If f and f’ [resp. g and g'] are composable linear maps, show that
(ffef)@(gog)=(f'®g)o(f@g).

2. Prove that if f is a surjective linear map, then so is f ® idy, for any
vector space V. What about the kernel of f ® idy?

3. Prove that the map X of (2.2) is injective.

4. Let U,V be finite-dimensional vector spaces, f [resp. g] be an endo-
morphism of U [resp. of V]. Show that tr(f ® g) = tr(f) tr(g).
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5 Let A=@,;5, A, and A" =@, A; be graded algebras. Show that
the tensor product algebra A @ A’ is graded with

(A A, @ A, © AL

i+ji=n

6. (Exterior algebra) For any vector space V we define the exterior alge-
bra (or Grassmann algebra) A(V') as the quotient A(V) = T(V)/I'(V)
of T(V') by the two-sided ideal I’(V') generated by the elements r ® x
where x runs over V. If z,,...,z, are elements of V', denote by
zyA... Az, theclassof 2, ®...®z,, in A(V). The subspace of A(V)
generated by the elements z; A ... Az, is denoted A™(V). Let iy,
be the canonical map from V = T1(V) to A(V). Prove the following
statements.

(a) The algebra A(V) is graded such that A™(V') is the subspace of
degree n homogeneous elements.

(b) For any algebra A and any linear map f : V — A satisfying
f (z)> =0 for all z € V, there exists a unique algebra morphism
f:A(V) — Asuch that foiy, = f.

(¢) Let I be an ordered set indexing a basis {e;};.; of V. Then the
set {e; AN...Ae; }i < <ierisabasis of A"(V).

(d) Assume V of finite dimension d. Prove that

> dim(AM(V)) 1" = (1+ )%

n>0

7. (Symmetric and antisymmetric tensors) The symmetric group S,, has
a left action on T (V') given by

U(m1®®mn) :330.;1(1)@...@1}'0__1(”)

where o € S, and z,,...,2, € V. Define two endomorphisms ¥ (the
symmetrization operator) and A (the antisymmetrization operator)
of T™(V') by

Y(a) = Z o(a) and A(a)= Z g(o)o(a)

o&Sn ocES,

where £(c0) is the sign of the permutation o. A tensor o of T™(V) is
symmetric [resp. antisymmetric] if o(o) = a [resp. o(a) = (o) ()]
for any permutation . The subspace of symmetric [resp. antisym-
metric] tensors of T"(V') is denoted S;, (V') [resp. A7, (V))]. Prove that

(a) (T"(V)) € §,(V) and A(T™(V)) C A (V),
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(b) if n! is invertible in the field k, the previous inclusions are equal-
ities and the composition of the inclusion S}, (V) — T™(V) [resp.
of the inclusion A/,(V) — T™(V)] with the canonical projection
T"(V) — S™(V) [resp. with the projection T™(V) — A™(V)] is
an isomorphism.

8. Let ARV be a free A-module. Prove that the space of A-linear maps
from A ® V to any A-module W is isomorphic to Hom(V, W).

I11.7 Notes

For more details on the tensor, symmetric and exterior algebras as well as
on the subspaces S;,(V) and A],(V) of Exercise 7, see [Bou70], Chap. 3.



Chapter III
The Language of Hopf Algebras

In this chapter we introduce the fundamental concepts of coalgebras, bial-
gebras, Hopf algebras and comodules which we shall use extensively in the
sequel. We shall also prove that the algebras GL(2) and SL(2) of Chapter
I are Hopf algebras.

ITI.1  Coalgebras

The concept of a coalgebra is dual to the concept of an algebra in the
following sense. Paraphrasing the definition of an algebra in I.1, we can say
that an algebra is given by a triple (A4, p, ) where A is a vector space and
h:AQA — Aand n: k — A are linear maps satisfying the following
axioms (Ass) and (Un).

(Ass): The square

AcAvA +2Y Aga
|iaen [ (1.1)
A A LN A
commutes.
(Un): The diagram
koA 129 Apa BT Agk
AN lu = (1.2)
A

commutes.
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The axiom (Ass) expresses the requirement that the multiplication u is
associative whereas Axiom (Un) means that the element n(1) of A is a left
and a right unit for p. The algebra A is commutative if, in addition, it
satisfies the axiom

(Comm): The triangle

TAA

ARA -“5 A®A

| # | . (1.3)

commutes, where 74 4 is the flip switching the factors: 74 4(a®a’) = o’ ®a.
A morphism of algebras f : (A, u,n) — (A',u',7’) is a linear map f from
A to A" such that

pWo(f@f)=fou and fon=qn" (1.4)
We now get the definition of a coalgebra by systematically reversing all

arrows in the previous diagrams.

Definition II1.1.1. (a) A coalgebra is a triple (C, A, €) where C is a vector
space and A . C — CQ C and € :: C — k are linear maps satisfying the
following azioms (Coass) and (Coun).

(Coass): The square

c 2, cec
lA . lM®A (1.5)

CeC Cerladl

commutes.
(Coun): The diagram

koC <29 cgo 9%, owk
N [a = (1.6)
C

commutes. The map A 1is called the coproduct or the comultiplication while
€ 1s called the counit of the coalgebra. The squares (1.5-1.6) express that
the coproduct A is coassociative and counital.

If, furthermore, the triangle (Cocomm)

C
o N A (1.7)

TC,C

celC — CC

commutes, where T ¢ is the flip, we say thal the coalgebra C' is cocommu-
tative.

(b) Consider two coalgebras (C,A,e) and (C',A',¢'). A linear map f
from C to C' is a morphism of coalgebras or a coalgebra morphism if

(fofloA=A'of and e=¢of. (1.8)
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It is easily checked that the composition of two morphisms of coalgebras
is again a morphism of coalgebras.
Let us give a few examples of coalgebras.

Example 1. (The ground coalgebra) The field k has a natural coalgebra
structure with A(1) = 1® 1 and (1) = 1. Moreover, for any coalgebra
(C,A¢€), the map € : C' — k is a morphism of coalgebras.

Example 2. (Opposite coalgebra) For any coalgebra C' = (C, A, ¢) set
AP =71550A. (1.9)

Then (C,A°P ¢) is a coalgebra which we call the opposite coalgebra and
denote by C°P.

The next result relates algebras and coalgebras.
Proposition I11.1.2. The dual vector space of a coalgebra is an algebra.

PROOF. Let (C, A, g) be a coalgebra. Recall the map A : C*@C* — (C®C)*
of Corollary 11.2.2. Set A = Ao T o+ Define A = C*, p = A* o X and
n = &* where the superscript * on a linear map indicates its transpose.
Then (A, u,n) is an algebra (use the commutative diagrams (1.1-1.2) and
(1.5-1.6)). O

Example 3. (Coalgebra of a set) Let X be aset and C = k[X] = @ . x kz
be the vector space with basis X. We put a coalgebra structure on C by
defining

Alz)y=z®z and e(z)=1 (1.10)

where z € X. The dual algebra C* is the algebra of functions on X with
values in k. Indeed, a linear form f on C is determined by its values on the
basis X. Let f’ be another linear form. Then

(ff)(@) = p(f ® f)(z) = Mf ® [)(A2) = f(2)f (x)-

Finally, the unit of the algebra C” is given by the constant function ¢.
We shall later return to this example when X has, in addition, a group
structure.

In general, the dual vector space of an algebra does not carry a natural
coalgebra structure. Nevertheless, we have the following result in the finite-
dimensional case (see also Section 9).

Proposition II1.1.3. The dual vector space of a finite-dimensional alge-
bra has a coalgebra structure.

PROOF. Let (A, u,n) be a finite-dimensional algebra. Then the map A from
A* ® A* to (A® A)* is an isomorphism, which allows us to define A by
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A=X "o w*. We also set € = n*. Using the commutative diagrams (1.1-
1.2) and (1.5-1.6), one checks that (A*, A, ¢€) is a coalgebra. O

Example 4. (The matriz coalgebra) Let A = M, (k) be the algebra of n x n-
matrices with entries in k. Denote by E;; the matrix with all entries equal
to 0, except for the (¢, 7)-entry which is equal to 1. The set of matrices
E;; (1 <4i,j < n)is a basis of M, (k). Let {z;;} be the dual basis. Then
A* is the coalgebra defined by

Afzy;) = Zmik ®zy; and  e(zy;) = 6;;. (1.11)
k=1

Indeed, we have
5(%’;’) = Ty (n(1)) = %j(z Ey) = Z bixbrs = Oy
k k

and

:u*(xij)(EkZ ® Emn) = xij (/L(Ekl ® Emn))
6€mxij (Ekn)
= 5lm5ik6jn

= Z 6ik6€p6pm6jn
p

= inp(EkZ)mpj(Emn)

D
= X(Z Ty ® fvm) (Ere ® )
p

Il

Example 5. (Tensor product of coalgebras) The tensor product C ® C’
of two coalgebras (C, A, e) and (C’, A’,€’) has a coalgebra structure with
comultiplication (id ® 7 o ®id) o (A ® A") and counit ¢ ® €’

We return to Example 3.

Proposition II1.1.4. Let X and Y be two sets and X x Y be the product
set. There ezxists an isomorphism of coalgebras

k[X] ® k[Y] = k[X x Y].

PROOF. The isomorphism is given on the basis {z ® y}, ,jexxy ©of the
tensor product k[X] ® k[Y] by

P(z @y) = (z,y). (1.12)
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It is clear that
(oY) (iderid)(A®A)z®y) = (2,y) ® (2,y) = AY(z Q@ y)

and e(r ® y) = 1 = e(x)e(y), which shows that ¥ is a morphism of
coalgebras. m]

We shall also need the following concept.

Definition III.1.5. Let (C,A,¢) be a coalgebra. A subspace I of C is a
coideal if A1) CI®C+C®I ande(l) =0.

When I is a coideal, then A factors through a map A from C/T to
CC/I®C+Ce)=C/I®C/I

Similarly, the counit factors through a map € : C /I — k. Then clearly, the
triple (C/I,A,€) is a coalgebra. It is called the quotient-coalgebra. We shall
give examples later.

Notation 1.6. We now present Sweedler’s sigma notation which we shall
use continually in the sequel. If z is an element of a coalgebra (C, A, ¢), the
element A(x) of C @ C is of the form

Alz) =)z @], (1.13)

In order to get rid of the subscripts, we henceforth agree to write the sum
(1.13) in the form

Alz) =) o' @2’ (1.14)
(z)

Using (1.14) we may express the coassociativity of A, i.e., the commuta-
tivity of the square (1.5), by

Z(Z(w')' ® (iv’)") R’ =) 2'® (Z(x")' ® (x")"). (1.15)
() (2') (2) (z")

By convention again, we identify both sides of (1.15) with

Z:c'@x”@x’”, (1.16)
()

also written Z(x) ) @ 23 @ 3. If we apply the comultiplication to
(1.16), we get the following three equal expressions

ZA(:E/) ®x// ®l‘”l, Zzl ® A(.Z'”) ® l,///, Zx/ ®:1)N ® A(:I}”l)
(z) (z) (z)
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which we agree to write

Y red" " 0" (1.17)
(@)

or Z(I) M @ 2? @23 @ z* . More generally, let A(™ . ¢ — ¢®M+1)
be defined inductively on n > 1 by A = A and
A = (A®idgsm-1) 0 A" = (idpem-1 ® A) o AN (1.18)

Then by convention, we write

AM () ="M @ . @a"t), (1.19)
(@)

These conventions and the coassociativity of A imply for instance that

(idC QAR idC®2) (Z x(l) ® 213(2) ® $(3) ® .’E(4))
(z)

_ 1) 2 @ 2@ @ @ @ 2
Zm" ©2? @2 @@ |

Using the conventions (1.14), the condition (1.6) for counitality may be
reformulated for any x € C as

Zs(z’)x" == Zw’s(w"). (1.21)
(=) (=)
As a consequence of (1.21) and of (1.19), we get identities such as
Z ZIJ(l) ®€(.’E(2)) ® ZIJ(J) ® .’E(4) ®$(5) — Z .’E(l) ®$(2) ®$(3) ® 1—(4)' (122)
(z) (=)
Indeed, the left-hand side may be rewritten as
Z 2 ® (e @1d)(Az?)) @ 2 @ 2.
(z)

Then apply (1.21).
The coalgebra C' is cocommutative if

Zw’@x":Zw”@x' (1.23)
(=) (z)

forall z € C.
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The left Relation (1.8) defining a coalgebra morphism can be reformu-

lated as
Y fEhe )= f@) o f2)". (1.24)
(z) (f(=z))
The comultiplication of the tensor product C ® C' of the coalgebras C
and O’ (see Example 5) is given for z € C and y € C' by

Alz®@y) = Z (rey) @@Ey) = Z (oY) (@ 2y"). (1.25)
(z®y) (=)(y)
We invite the reader to play with Sweedler’s sigma notation in order to
acquire some familiarity with this most useful convention.

I1T1.2 Bialgebras

Let H be a vector space equipped simultaneously with an algebra structure
(H, u,m) and a coalgebra structure (H, A, ¢). Let us discuss two compati-
bility conditions between these two structures. We give H ® H the induced
structures of a tensor product of algebras (see I1.4) and of a tensor product
of coalgebras (see Section 1, Example 5).

Theorem II1.2.1. The following two statements are equivalent.
(i) The maps pu and n are morphisms of coalgebras.
(ii) The maps A and & are morphisms of algebras.

PROOF. It consists essentially in writing down the commutative diagrams
expressing both statements. The fact that p is a morphism of coalgebras is
equivalent to the commutativity of the two squares

H®H LR H HoH =25 kok
l(id@r@id)(A@A) lA l# lid
(HoH)® (HoH) 2% HeH H = &

whereas the fact that 1 is a morphism of coalgebras is expressed by the
commutativity of the two diagrams

k , H P L H
lid lA Nid e o
kok 2 HoH k

Observe that these four commutative diagrams are exactly the same as the
following four diagrams whose commutativity express the fact that A and
¢ are morphisms of algebras:

HeH 222, (HeH)®(H®H) k 5 H
lu l(u@u)(idt@'r@id) lid lA
H A, HoH kok 22 HeoH
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and cqe n
HH — kQk k — H
lu lxd Nid e
H LN k k

This leads to the following definition.

Definition I11.2.2. A bialgebra is a quintuple (H, u,n, A, &) where (H, p, 1)
is an algebra and (H, A, €) is a coalgebra verifying the equivalent conditions
of Theorem 2.1. A morphism of bialgebras is a morphism for the underlying
algebra and coalgebra structures.

In the sequel, we shall mainly use Condition (ii) of Theorem 2.1 to define
a bialgebra structure. Using the conventions of 1.6, we see that the condition
A(zy) = A(z)A(y) is expressed for any pair (z,y) of elements in a bialgebra
by
Doy e@y) =Y oyey" (2.1)
(zy) (2)(y)

We also have
A =1©1, elzy) =e(@)e(y), (1) =1L (2.2)
The following proposition is easy to check.

Proposition 111.2.3. Let H = (H, u,n, A, ) be a bialgebra. Then
Hop = (H7 ,J,Op7n7 A? 6)7 Hcop = (H7 :Ll/? n7 A0];)7£~)7
and HOP P = (H, u°® n, A°P &) are bialgebras.

Example 1. By Propositions 1.2-1.3 the dual vector space H* of a finite-
dimensional bialgebra H has a natural bialgebra structure.

Example 2. In Example 3 of Section 1 we associated a coalgebra k[X] to
a set X. Assume now that X comes with a unital monoid structure, i.e.,
with an associative map g : X x X — X having a left and right unit e.
The map p induces an algebra structure on k[X] with unit e. We have

Alzy) =ry@zy = (r®2z)(y ®y) = Az)A(y)

and g(zy) = 1 = e(z)e(y), which implies that the maps A and e are
morphisms of algebras. Thus k[X] becomes a bialgebra.

If, in addition, X is a finite set, then the dual of k[X] also is a bialgebra.
We have already observed that the algebra structure of the dual is the
usual algebra structure of the space of k-valued functions on X. An easy
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computation shows that the comultiplication and the counit on the algebra
of functions are given by

Alf)c@y) = flzy) and e(f) = f(e). (2.3)

Example 3. (The bialgebra M(n)) Let M(n) = k[z,q,...,%,,] be the
polynomial algebra in n? variables {$ij}1gi,jgn~ For all 7, 7, set

A(mij) = Z Ty ® Ty;  and 5(:(:”-) = 0y (2.4)
k=1

These formulas define morphisms of algebras A : M(n) — M(n) ® M(n)
and ¢ : M(n) — k equipping M (n) with a bialgebra structure. When n = 2,
one recovers the bialgebra M(2) of 1.4.

We now endow the tensor algebra with a bialgebra structure.

Theorem III.2.4. Given o vector space V, there exists a unique bialgebra
structure on the tensor algebra T(V) such that A(v) =1®v+v® 1 and
e(v) =0 for any element v of V. This bialgebra structure is cocommutative
and for all vy,...,v, € V we have

e(vy...v,)=0 (2.5)

and A(vy ... v,)

n—1
= 1®’U1 . U"+Z Z Uo'(l) e ’Uo.(p) ®UG(]J+1) . ’Uo_(n) +'U1 e 'Un®1 (26)
p=1 o

where o runs over all permutations of the symmetric group S,, such that
oc(l)<o(2)...<a(p) and op+1)<olp+2)...<oa(n).

Such a permutation ¢ is called a (p,n — p)-shuffle.

PRrROOF. By universality of the tensor algebra, there exist unique algebra
morphisms A : T(V) — T(V) @ T(V) and ¢ : T(V) — k such that their
restrictions to V' are given by the formulas of the theorem. Now consider
several elements v,,...,v, in V. Formula (2.5) is a trivial consequence of
the multiplicativity of e.

Let us now compute A(v; ...v,). We shall do this by induction on n.
Formula (2.6) holds for n = 1 by definition. Suppose it holds up ton—1 > 1.
Then we have the series of equalities
Avy...v,)

= A(Ul .. .Un_]_)A(Un)



48 Chapter III. The Language of Hopf Algebras

= A(vy...v,_1)1®v,+v,®1)

= (]. RUy... VU, 1+ Z Z Vo(1) -+ - Vo (p) ® Vo(p+1) * - Vo(n—-1)

p=1 o

+v1...vn,1®l)(l®vn+vn®1)

=1 ® V...V + Z Z UU(I) e Ua(p) ® 1)0.(1)_1_1) e va(n_l)vn
p=1 o

‘v .oV, 1 RV, +U, QU ...V, 4

+ Z Z Vo(1) -+ Vo(p)Un ® Vp(pt1) -+ Vo(n—1) T V1--- Uy ®1
p=1 o

where ¢ runs over all (p,n — 1 — p)-shuffles of S,,_;. Let us rewrite the last
sum in the form

1@vy...v, + ZZ Up(1) +++ Yp(p) © Vp(p+1) * + Up(n—1)Vn
p=1 p
+ V.V ®U, F U, QU U,

+ Z Z UT(I) N 'UT(p_l)'Un % UT(p) .. 'UT(TLAI) + Ul .. .'Un 3¢ 1

p=2 T

where p runs over all (p,n — 1 — p)-shuffles of S,,_; and 7 runs over all
(p — 1,n — p)-shuffles permuting the set {1,...,n}\ {p}. Now observe that
if o € S, is a (p,n — p)-shuffle, then either o(n) = n, hence the restriction
pofotoS, ;isa(p,n—1—p)-shuffle, or o(p) = n, hence 7 = o acting on
{1,...,n}\{p} is a (p — 1,n — p)-shuffle. This completes the proof of (2.6).

It remains to prove the coassociativity, the counitality and the cocom-
mutativity of A. The counitality results from an easy computation using
(2.5) and (2.6). The cocommutativity is a consequence of the fact that the
permutation

1 2 ... p p+1 p+2 ... n
p+1 p+2 ... n 1 2 R )

switches (p,n— p)-shuffles and (n — p, p)-shuffles. As for the coassociativity,

one may check it directly using (2.6). But, we rather observe that A :

T(V) - T(V)®T(V) is induced by the diagonal map 6(v) = (v,v) from V/

into V @ V. The coassociativity of A then results from the obvious relation

(6®id)ob = (Id®¥) 0 é. i
We now introduce the concept of a primitive element.

Definition I11.2.5. Let (C,A,e) be a coalgebra. An element x of C is
primitive if we have
Az)=10z+z®1.
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We denote by Prim(C) the subspace of all primitive elements of C.

Proposition II1.2.6. If = is a primitive element of a bialgebra, then we
have e(z) = 0. If y is another one, then the commutator [x,y] = vy — yz
18 primitive too.

PROOF. By definition of the counit and of a primitive element we have
z=¢e(l)z+e(z)l =z +e(x)l.
The vanishing of £(z) follows immediately. As for the second assertion, we
have
Alzy) =(1@z+z)(1oy+y®l)=1Qey+2z@y+y®@c+zy®l.
We deduce
Alz,y]) =1@ [z, 9] + [z, 9] © 1,
which implies that [z,y] is primitive. O

The generators v € V of the tensor algebra T(V') are primitive by The-
orem 2.4. Let H be a bialgebra and z,...,x, be primitive elements of H.
Consider a vector space V with basis {v;,...,v,}. There is a unique alge-
bra morphism f from the tensor algebra T(V) to H such that f(v,) = x;
for all <.

Proposition I11.2.7. The map [ : T(V) — H is a morphism of bialge-
bras.

PRrROOF. We have to check that

e(f(§) =e(§) and (f® AE) =A(f(E)) (2.7)

for all £ € T(V). Since all maps involved in (2.7) are algebra maps, it is
enough to check (2.7) when £ = v € V. In this case (2.7) holds because z;,

is primitive and we have Proposition 2.6. O
As a consequence of Proposition 2.7, we see that for any set {z,...,z,}
of primitive elements in a bialgebra, A(zy,...,%,) is given by Formula

(2.6) of Theorem 2.4 after replacing v, by ;.

III.3 Hopt Algebras

Given an algebra (A, u,n) and a coalgebra (C,A,¢) we define a bilinear
map, the convolution, on the vector space Hom(C, A) of linear maps from
C to A. By definition, if f,g are such linear maps, then the convolution
f * g is the composition of the maps

Cc2000t%% A0 A5 A. (3.1)
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Using Sweedler’s sigma notation of 1.6, we have

(f *xg)(z Z f=z (3.2)

for any element x € C'. The convolution is clearly bilinear.

Proposition II1.3.1. (a) The triple (Hom(C, A),x,no¢) is an algebra.

(b) The map A\ 4 : A® C* — Hom(C, A) of Corollary 11.2.3 is a mor-
phism of algebras where A @ C* is the tensor product algebra of A and of
the algebra C* dual to the coalgebra C'.

PROOF. (a) By (3.2), by the associativity of the product in A and by the
coassociativity of the coproduct in C we have

(Fxg)=h)@) =" flag@ ") = (f*(g=m))(@).
()

This proves that the convolution is associative. The map noe¢ is a left unit
for the convolution in view of

()= (@) = Y e@) (") = £(D e@ha") = f(a),
() ()

which results from (1.21). One proves similarly that 7o € is a right unit.
(b) Let a,b € A and «, 3 € C*. Then for z € C we have

()‘C,A(a(g)a)*)‘C,A(b@/B))(m) — Z a(m/)ﬁ(x//) ab
@
= (ap)(z)ab

= (Aealad@ap))(@).

This proves that A\s 4 preserves the product. As for the unit, we have

(Mea(l @) (@) = (@)1 = (o)),
O

Example 1. When A = k the algebra structure (Hom(C, k),*,n0¢) on the
dual space C* is the same as the one defined in Proposition 1.2.

When (H, p,n, A, €) is a bialgebra we may consider the case C = A = H
and thus define the convolution on the vector space End(H) of endomor-
phisms of H.

Definition I11.3.2. Let (H,u,n,A,e) be a bialgebra. An endomorphism
S of H is called an antipode for the bialgebra H if

Sxidy =idyg xS =noe.
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A Hopf algebra is a bialgebra with an antipode. A morphism of Hopf alge-
bras is a morphism between the underlying bialgebras commuting with the
antipodes.

A bialgebra does not necessarily have an antipode. But if it does, it has
only one. Indeed, if S and S’ are antipodes, then

S=8x(me)=9*(idy*S)=(Sxidg) xS =(ne) xS’ = 9".

A Hopf algebra with an antipode S will be denoted by (H, i, 1, A, g, S).
Using Sweedler’s convention 1.6, we see that an antipode satisfies the

relations
> a'S@@") =e(x)1 =) S@)a” (3.3)
(x) ()

for all x € H. In any Hopf algebra we have relations such as

Z M @2? @5z @z® @a® = Z eV @e(®)@z® @@
(=) (=)
= Z M @@ g @,
(z)
The first equality follows from (3.3), i.e., by definition of the antipode
while the second one follows from (1.21), i.e., from the Axiom (Coun).

Such computations will be performed later without further explanations.
We state the counterpart of Example 1 of Section 2.

Proposition I11.3.3. Let H be a finite-dimensional Hopf algebra with an-
tipode S. Then the bialgebra H* is a Hopf algebra with antipode S*.

PRrROOF. The endomorphism S* of H* is the transpose of S. Let us prove
the first equality in (3.3). For all & € H* and = € H we have

(Z O/S*(Oé”)> (:L‘) — Z Ozl(l‘l)S* (Oz")(l‘”)
(o) (o)(z)
— Z Oél(CI?/)Oz”(Sl‘”)
() (z)
= a(Z ;E'(S:U”))
(z)
a(ne(z))
e (a)(z).

One shows similarly that 3° ,y S*(a/)a” = e™n"(a). O

Example 2. Let G be a monoid and k[G] the bialgebra of Section 2, Example
2. Then k|G| has an antipode if and only if any element z of G has an
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inverse, i.e., if and only if G is a group. Indeed, if .S exists, by definition of
A we must have

zS(z) = S(z)x =e(z)l =1
for any = € G. This implies that S(z) = ™! for z € G.
We state a few important properties of the antipode.

Theorem I11.3.4. Let (H,p,n, A, e,S) be a Hopf algebra.
(a) Then S is a bialgebra morphism from H to HPP, i.e., we have

S(zy) = S(y)S(z), S(1)=1 (3.4)
for allz,y € H and
(S®S)A =A%PS, coS=c. (3.5)

(b) The following three statements are equivalent:
(i) we have S* = idy,
(ii) for all x € H we have 3, S(z")z’ = ()1,
(iii) for all x € H we have 37,y 2" 5(z") = e(z)1.
(¢) If H is commutative or cocommutative, then S* = idy;.

The left relation in (3.5) can be reformulated under Sweedler’s convention

1.6 as

Y S@)eS@)" =) SE")eSE). (3.6)
(S(=)) ()

PROOF. (a) Let us start with (3.4). Define maps v, p in Hom(H ® H, H) by

viz®y) =S(y)S(z) and plz@y)=S(zy)

where x,y € H. We have to show that p = v. It is enough to prove that
p*p = p*xv =ne. Now, by (1.21), (2.1) and (3.2)

prwzey) = Y pllzey))u(=zey)")

(z®y)

= Y @@y )u" 0y")
(@)(y)

— Z S(:c’y’)a:”y”
(@) ()

= Y S((y))(@y)"
(zy)

= ne(zy).
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On the other hand, we have

> wlzey))v(ey))
(z®y)
— Z z'y’S(y")S(z")
(@) (y)
— Z ' (Z y’S(y”))S(x”)
(z) (y)
= 3 2e(y)S@")
(z)
= ne(x)ne(y)
= 775(333/)’

(n*xv)(zx@y)

which is the same.

Applying (id x S)(z) = ne(z) to = 1, one gets S(1) = 1. This proves
(3.4).

Let us deal with (3.5). It is equivalent to prove AoS = (S®S5)o A°P. We
set p = AoS and v = (S®S5)oA°P. These are linear maps from H to HQ H.
We wish to show that p = v. This will follow from px A = A*xv = (n®n)e,
which we prove now. On the one hand, by (1.21)

(pxA)@) = D ASE)AE") =A(D S@)")
(=) (%)
= Ane(z)) = ((n@n)e)(z)
for all x € H. On the other hand, we have
(Axv)@) = Y AE)((S©S)A"E")
(z)

= Y@ e (S@") @ s@E")
()

— Z .rlS(IHH) ® :EHS(:EH/)
(z)

= Z 7' S(x") @e(x")1
(z)

= Z 2'e(z")S(z") ® 1
(z)

= Z Z'S@")®1
(z)
()1

= (nen)(e(z))
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The fourth and seventh equalities follow from (3.3), the sixth one from
(1.21).
We also derive

e(8(2) =(S(Y e(@)a") =¢(} e(@)8(a")) = elne(a) = £(a)
() (z)
from (1.21). This completes the proof of (3.5).
(b) Let us prove that (ii) implies (i). By uniqueness of the inverse, it is
enough to show that S? is a right inverse of S for the convolution, just as
is id ;. Now, using (3.4) and Condition (ii), we get for all z € H

(SxS?)@) = 3 S@@)S*") = S(Z S(ac”)x’)
(2) (=)
= S(e(z)1) =e(z)S(1) = e(x)1.
This implies that S x S? = ne, hence S? = idy. Let us prove the converse
implication: if $? = id;; we have

ZS(Z‘H)Z‘/ = (ZS )
(z) (z)
- S s
(55
= S(e(x)n)
= ¢(z)l

I
N

One proves that (i) is equivalent to (iii) in a similar fashion.
(c) Recall Relations (3.3): we have

Z 2’ S(x") = ne(z) = Z S(z")z"
(=) (z)

for all z € H. When H is commutative, the first equality becomes
Z S(z")x' = ne(x),
(z)

which implies S? = idj; by Part (b) (ii). When H is cocommutative, the
second equality becomes
— Z S(:L‘”):L‘,
()

which again implies S? = idy in view of Part (b) (iii). a

As an immediate consequence of Theorem 3.4, we have the following.
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Corollary I11.3.5. Let H = (H,pu,n,A,2,5) be a Hopf algebra. Then
Hopcop = (H7 :Ll'op7 ”77 AOP? 67 S)

is another Hopf algebra and S : H — HPP is a morphism of Hopf
algebras. If, moreover, S is an isomorphism with inverse S™1, then

HOI) = (H’NOP’,’?,A,g,S—l) and HCOp = (Haﬂ’naAOp,&Sfl)

are tsomorphic Hopf algebras, the isomorphism being given by S.

An endomorphism T of a bialgebra H such that

Z T(z")z =e(z)l = Z z"T(z") (3.7)
() (z)

for all z € H is sometimes called a skew-antipode for H. Alternatively, a
skew-antipode for H is an antipode for the bialgebras H°? and H°P. By
Corollary 3.5 the inverse (if it exists) of an antipode is a skew-antipode.

It is not always easy to check the defining Relations (3.3) of an antipode
for every element of a bialgebra, but it may be simpler to check only for
some generators. It is convenient to have the following lemma.

Lemma II1.3.6. Let H be a bialgebra and S : H — HP be an algebra
morphism. Assume that H is generated as an algebra by o subset X such

that
Z 7'S(z") =¢e(x)l = Z S(z")z"

() (@)
forallz € X. Then S is an antipode for H.

PROOF. It is enough to check that if (3.3) holds for  and y, then it holds
for the product zy. Now, by (3.3-3.4)

> @y)S(y)) = D 2'y'S@"y”)
(zy) (=) (y)

= Y (X vswn)se)

(x) (y)
= (X o's")ew)
(x)

e(z)e(y)
= e(zy).

One proves 3 S((zy))(zy)" = e(zy) similarly. O

zy)
Use the previous lemma to show that the following provide examples of
Hopf algebras.
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Example 3. The tensor bialgebra H = T(V) is a Hopf algebra with an
antipode determined by S(1) =1 and for all v, v,,...,v,, € V by

S(vvy...v,) = (=1)"v, ... v50;.

Example 4. (The symmetric bialgebra S(V)) Let I be the kernel of the
projection of T'(V) onto the symmetric algebra S(V). Let us show that I
is a coideal for the coalgebra structure put on T'(V') in Theorem 2.4. Any
element of I is a sum of elements of the form z[v, w]y where z,y € T(V)
and v, w € V. By Theorem 2.4 we have

Aalo,wly) = 3 (o, uly’ @ 2"y + 2’y @ 2" v, uly")
(z)(y)

which belongs to I @ T(V) +T(V) ® I and

e(z[v, wly) = e(@)[e(v),e(w)]e(y) = 0,

which proves that I is a coideal. It follows that the bialgebra structure of
T (V) induces a bialgebra structure on S(V') for which the elements of V' are
primitive. One checks that S(V') has an antipode which is the multiplication
by (=1)™ on S™(V).

Another useful concept is the concept of a grouplike element of a coalge-
bra (H,A,¢), i.e., an element z # 0 such that

Alz)=z®x. (3.8)
The set of grouplike elements of H will be denoted by G(H).

Proposition I11.3.7. Let H be a bialgebra. Then G(H) is a monoid for
the multiplication of H with unit 1. If, furthermore, H has an invertible
antipode S, then any grouplike element  has an inverse in G(H) which is
S(z). Consequently, G(H) is a group.

PrOOF. The first assertion is clear. As for the second, observe that (3.6)
and (3.8) imply A(S(z)) = S(z) ® S(z). It follows that S(x) belongs to
G(H). To complete the proof, one checks that ¢(z) = 1 when z is grouplike,
and one uses the computation in Example 2 in order to show that S(z) is
the inverse of x. a

Example 5. If k[G] is the Hopf algebra associated to a group G as in
Example 2, then the elements of G are the only grouplike elements of k[G].
In other words, we have

G(k[G)) = G. (3.9)
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III.4 Relationship with Chapter I. The Hopf
Algebras GL(2) and SL(2)

The aim of this section is to show that the algebras M(2), GL(2) and
SL(2) defined in 1.4 and 1.5 are bialgebras. We use Proposition 11.4.2 in
order to identify M (2)®? with M (2)® M(2), GL(2)%? with GL(2) ® GL(2)
and SL(2)®? with SL(2)® SL(2). Let us show that the morphisms A of .4
and € of 1.5 equip these algebras with a cocommutative bialgebra structure.
Recall (I.4.4): we have

Ala) AB) Y (a b a b
< Ale) Ad) )=\ e da)® e d (4.1)
and A(t) = t ®t. In order to prove that A is coassociative, it suffices to

check this on the generators a, b, ¢, d, and ¢, which results from the fact
that ¢ is grouplike and from the matrix equality

(2 a)elta))e(ta)
(e a)e((a)e(2)

Similarly, the counit axiom follows from £(¢) = 1 and from the matrix
equalities

(L) )-(Ea)-G)(0a) e

The algebra morphism S defined in (I.5.2) is an antipode for the bial-
gebras GL(2) and SL(2) which become Hopf algebras in this way. Indeed,
by Lemma 3.6, it is enough to check Relations (3.3) for the generators
a,b,c,d,t. For a, b, ¢, d it follows from

a b S(a) Sb) \_[ S(a) S(O) a b\ _[ ela) eb)
< c d )( S(e) S(d) >_< S{e) S(d) )( ¢ d >_< g(e) 5(d)(4)3)'
As for t, we have tS(t) = S(t)t = &(t) = 1 since S(t) = t~! = ad ~ be. .
The antipode is an involution due to the fact that GL(2) and SL(2) are

both commutative. This can also be checked directly on Formula (I.5.2)
defining S.

IT1.5 Modules over a Hopf Algebra

Let A be an algebra. The tensor product U @ V of two A-modules is an
A ® A-module by
(a®ad)(u®v)=au®adv (5.1)
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where a,a’ € A, u € U and v € V. Now, if A possesses a bialgebra structure
(A, pu,m, A, €), then the algebra morphism A : A — A ® A enables us to
equip the A ® A-module U ® V with an A-module structure by

a(u®@v) =Ala)(u®v) = Z a'u®av. (5.2)
(a)

The counit € equips any vector space V with a trivial A-module structure
by
av = e(a)v (5.3)

where a € Aand v € V.
The following is the natural extension of Proposition 11.1.3 to the frame-
work of A-modules.

Proposition I11.5.1. If A is a bialgebra, U,V and W are A-modules and
k is given the trivial A-module structure, then the canonical isomorphisms
of Proposition 11.1.3

UeV)eW=2Ue(VeW) ad kaV2V2Vek

are A-module isomorphisms. If, furthermore, A is cocommutative, then the
fip v VOW ZW RV is an isomorphism of A-modules.

PROOF. The proof is easy and is left to the reader. ]

Let us show how an antipode allows us to give a natural A-module struc-
ture to the vector space Hom(V, V') of linear maps from V to V' when V
and V' have A-module structures. We first observe that

(@@ a)f)(w) = af(a'y) (54)

puts an A ® A°?-module structure on Hom(V, V’). Indeed, we have

(@ea)pe)f)© = (o))
= abf(ba'v)
a((b@v)f)(a')
= (@ea)(@en)n)©
for a,a’,b,’ € A, v €V and f € Hom(V,V’). Now, if A is a Hopl algebra
with antipode S, then the map (id® S) o A is a morphism of algebras from
A to A® A°P. Pulling (5.4) back along this morphism, we get an A-module

structure on Hom(V, V’). Explicitly, if a € A, v € V and f € Hom(V, V"),
the action of A on Hom(V,V"’) is given by

(af)(v) =) d'f(S(a")v). (5.5)
(a)
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In particular, if V' = k is given the trivial A-module structure, then (5.5)
induces an A-module structure on the dual vector space V* which becomes

(af)(v) = £(S(a)v). (5.6)
Indeed, by (5.5) and (1.21), we get
(@f)(w) = 3 e(@)f(S(a")) = £(S(X e(a)a")v) = £(S(a)o).
(a) (a)

Proposition I11.5.2. Let (A, u,n,A,¢,S) be a Hopf algebra and U,U', V
and V' be A-modules such that, either U or U’, and, either V or V', are
finite-dimensional vector spaces. Then the linear map

A : Hom(U,U’") ® Hom(V, V') — Hom(V @ U,U’ ® V')

of (I1.2.2) is A-linear if, in addition, the flip 7. v, : U @ V' — V' @ U*
is A-linear. In particular, the maps

MU RV = (VeU)" and My :V@U" — Hom(U,V)
are A-linear.

PROOF. (a) Let f: U - U',g: V-V ueU,veV and a € A. Let us
first compute A(a{f ® g)) using (11.2.2), (5.2) and (5.5). We have

z, = (Mafog)veu

= (z): Md'f®a"g)(veu)

= (z): (a'f)(u) ® (a"g)(v)

- (Z): (") £(S((a)")u) @ (a”) g(S((a”)")v)
- ; a'f(S(a")u) ® a” g(S(a"")v)

using Sweedler’s sigma notation. On the other hand, eA(f ® g) is given by

7, = (feg)veu

S @A @ g)(S(@”) (v ® u)
(a)

= Y dAf © )5 v e S(a")"w)
(a)
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- (z): a'A(f ® g)(S((a")")v & S((a") )u)
= ; dAf ©g)(S(a")v ® S(a")u)
- (2): @ (F(8(a"u) @ g(S(@")0))
= ; (a') f(S(a")u) & (a')"g(S(a"")v)
- (z): a'f(S(a”")u) @ a”g(S(a"")v).
We used (3.6) for the fourth equality. Observe that Z, # Z, in general.

(b) Let V' = k be given the trivial action. Replacing a” in Z, [resp. a”
in Z,] by e(a’’) [resp. by €(a”)] and using (1.21), we get

Zy=1Zy=Y_ df(S(a")u)®g(S(a" ),
(a)

which proves that A : Hom(U,U’) ® V* — Hom(V ® U,U’) is A-linear. We

get the two special cases of Proposition 5.2 with U’ = k and with U = k.
For the general case, we use Lemma I1.2.4 which expresses A in terms of

the special maps A and of the flip 7. . ]

As a corollary of Proposition 5.2, we see that the general map A of
Theorem II.2.1 is A-linear when A is cocommutative. This happens, for
instance, when A is a group algebra or an enveloping algebra.

As for the evaluation and the coevaluation maps, we have the following
result.

Proposition I11.5.3. Let V be an A-module. Then the evaluation map
evy : V' ®V — k is A-linear. If, moreover, the vector space V 1is finite-
dimensional, then the coevaluation map 6, : k — V ® V* of I1.3 and the
composition

Hom(V, W) ® Hom(U, V)~= Hom(U, W)

are A-linear too.

PROOF. (a) Let a € A, v € V and a € V*. Then

evy(a(a®v)) = Z evy (d'a®a’v)



II1.6 Comodules 61

by the rightmost relation (3.3) and by (5.6). This implies that the evalua-
tion map is A-linear.

(b) The coevaluation map &y, is A-linear as the composition of the unit
n:k — End(V) and of A;,},. The latter is A-linear by Proposition 5.2. So

2

is the map 71 : £k — End(V) following
(an(1))(v) = (aidy)(v)
= Z a'idy (S(a")v)
(@)

= Z a'S(a")v
(a)
ela)v

(n(a1))(v)

for all v € V and a € A. Here we used the leftmost relation (3.3).
(c) For the composition map, one uses Lemma I1.2.5. ]

II1.6 Comodules

Algebras act on modules, coalgebras coact on comodules. This section is
devoted to the definition of the latter concept. Let A be an algebra. Recall
that an A-module is a pair (M, p,,) where M is a vector space and piy; :
A®M — M is a linear map such that the following axioms (Ass) and (Un)
hold.

(Ass): The square

AoAoM 294 AgM
lid@uM luM (6.1)
A M LN M

commutes.
(Un): The diagram

koM 229 AgMm
\ MM (6.2)
M

commutes.
A morphism of A-modules f : (M, u,,) — (M', pyy) is a linear map f
from M to M’ such that

pap o (iId® f)=Fopy. (6.3)
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The definition of a comodule over a coalgebra is obtained by reversing
all arrows in the diagrams above.

Definition IT1.6.1. Let (C,A,¢e) be a coalgebra.

(a) A C-comodule is a pair (N,Ay) where N is a vector space and
Ay : N — C®N is a linear map, called the coaction of C on N, such that
the following axioms (Coass) and (Coun) are satisfied.

(Coass): The square

N A, C®N

lAN lM®AN (6.4)
Agid
CON —— C(CQC®N

commutes.
(Coun): The diagram

koN <29 ceoN

\E TAN (6.5)

commutes.
(b) Let (N,Ay) and (N',Ay,) be C-comodules. A linear map f from N
to N' is a morphism of C-comodules if

(id®f)oAy =Ap o f. (6.6)

(c) A subspace N' of a C-comodule (N,Ay) is a subcomodule of N if
Ay(N)YcC®N'.

Actually, the comodules we have just defined are left comodules. One
similarly defines a right C-comodule N, using a map N ® C' — N subject
to relations parallel to (6.4-6.5). A right C-comodule is the same as a (left)
comodule over the opposite coalgebra C°°P.

The composition of two morphisms of comodules is another morphism
of comodules. Similarly, the inclusion of a subcomodule into a comodule is
a morphism of comodules. Let us give a few examples of comodules.

Example 1. Let C be a coalgebra. Then (C, A) is a C-comodule.

Example 2. Let C be a coalgebra and C* the dual vector space equipped
with the dual algebra structure of Proposition 1.2. If (N,Ay) is a C-
comodule, then the dual vector space N* has the structure of a right C*-
module given by the composition of the maps

N*®C*25(C o N 25 N, 6.7)
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Example 3. Let A be a finite-dimensional algebra and A™ be the dual vector
space with the coalgebra structure given by Proposition 1.3. If (M, 11,,) is
a right A-module, then the dual vector space M™* has a structure of A™-
comodule given by the composition of the maps

MM (M @ A2 AT @ M (6.8)

In order to put a structure of comodule on the tensor product of two
comodules, we need a bialgebra structure as in Section 5.

Example 4. (Tensor product of comodules) Let (H, i, m, A, ) be a bialgebra
and M and N be H-comodules. We define Ay, n by

Ayon = (B ®idygy)(dy ® Ty g ®idy) (A ® Ay). (6.9)

The map A, endows the tensor product M ® N with an H-comodule
structure.

Example 5. (Trivial comodule) Let (H, p, 1, A, €) be a bialgebra and V be
a vector space. The linear map

Vekev P gev (6.10)

equips V with an H-comodule structure. Such a comodule is called a trivial
comodule.

Example 6. (Free comodule) Let (C,A ) be a coalgebra. The free C-
comodule on a vector space V is the comodule (C' ® V,A ®id,,/). This is a
generalization of Example 1.

Proposition 5.1 has the following counterpart for comodules. The proof
is left to the reader.

Proposition II1.6.2. If H is a bialgebra, M, N, P are H-comodules and
k is given the trivial H-comodule structure of Example 5, then the canonical
isomorphisms of Proposition 11.1.3

MIN)@P2XM@(N®P) and kM=M=MQk

are 1somorphisms of H-comodules. If, in addition, the bialgebra H is com-
mutative, then the flip Ty v +: M @ N = N ® M s an isomorphism of
H -comodules too.

Notation 6.3. It is often convenient to use for comodules the same kind
of notation as was introduced for coalgebras in Section 1. Let (C, A, g) be
a coalgebra and (N, Ay) be a C-comodule. By convention we shall write

Ay(r) =Y zc®ay (6.11)
(2)
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for any = € N. Relation (6.4) is equivalent to

Z (zc) @ (zc)' @ay = Z e ® (n)e ® (Tn)N (6.12)
(x) (z)

for all z € N. Relation (6.5) is equivalent to

Z e(zo) @y = (6.13)
()

A linear map f: N — N’ is a morphism of C-comodules if

> we® flzy) Zf 2)e ® f(z (6.14)
@)

II1.7 Comodule-Algebras. Coaction of SL(2) on
the Affine Plane

The aim of this section is to define a coaction of the bialgebra SL(2) on
the affine plane of Chapter 1. Before doing so, we introduce the following
concept.

Definition IIL.7.1. Let (H, pig, g, Ap,€p) be a bialgebra and (A, pig,14)
be an algebra. We say A is an H-comodule-algebra if

(a) the wvector space A has an H-comodule structure given by a map
Ayt A—-H®A, and

(b) the structure maps gy : AQ A — A and ny : k — A are morphisms
of H-comodules, the tensor product AQ A and the ground field k being given
the H-comodule structures described in Section 6.

We note the following useful characterization of comodule-algebra struc-
tures.

Proposition II1.7.2. Let H be a bialgebra and A be an algebra. Then A
is an H-comodule-algebra if and only if

(a) the wvector space A has an H-comodule structure given by a map
Ay:A—-H®A, and

(b) the map A, : A — H® A is a morphism of algebras.

PRrOOF. It is similar to the proof of Theorem 2.1. We first express the fact
that u, is a morphism of H-comodules with the commutative square

AR A £4, A

lu lm (7.1)

QA0 A4) 24, HeA
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where u = (py ®id®id)o (Id®@ T4 y ®id) o (A4 ® Ay). The fact that n,y
is a morphism of H-comodules is equivalent to the commutativity of the

square
k LN A
l% lAA (72)
Eok MO HeA

Now, Diagrams (7.1-7.2) are exactly the same as Diagrams (7.3) below
which express the fact that A, is a morphism of algebras:

A A 24224, (HeA)e(HeA) k — kok
luA lv lnA l"lH@’ﬂA (7.3)
A 24, H® A A %S HeoA
where v = (g ® piy) o (id ® 74 y ®1id). Indeed, we have
(i[dR®us)ou=vo (A, ®Ay,).
Cl

Using the conventions of Sections 1 and 6, we can rewrite Condition (b)
of Proposition 7.2 as A 4(1) =1® 1 and

D (ab)y ® (ab)y = Y apby ©azby, (7.4)
(ab) (a)(b)
for all a,b € A.

We now show that the affine plane kfz,y] defined in 1.3 possesses an
comodule-algebra structure over the bialgebras M (2) and SL(2).

Theorem II1.7.3. There exists a unigque M (2)-comodule-algebra struc-
ture and a unique SL(2)-comodule-algebra structure on the affine plane
A = klz,y] such that

T a b x
aa(y)=(ea)e(y):
This matrix notation is short for the two relations

Auz)=a@z+b®y and AL (y)=cRz+dOy. (7.5)

PROOF. We use Proposition 7.2. First observe that Formulas (7.5) define a
morphism of algebras A 4 : k[x,y] — M (2)®k[z, y]. The projection of M (2)
onto SL(2) being an algebra morphism too, so is the resulting composition
klz,yl — SL(2) ® klz,yl.

It remains to be checked that A , defines a comodule structure, i.e., that
for all z € k[z,y] we have

(1d®A L) oA, (2) = (A®id)oA,(z) and (s®id)oA,(z) =1®z (7.6)
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where A and ¢ are as in 1.4-1.5. As both sides of each equality to be proved
consist solely of algebra morphisms, it suffices to check (7.6) only for z =z
and z = y. The above matrix notation allows us to do this simultaneously.
We have

(oanoa)(2) = (¢ a)e(ea)e(y)
(@ewes)(})

in view of (4.1). On the other hand, using (1.5.2) we get

comnae(5)-()e((1) ()

I

a
Let us compute A 4(z'y?) in M(2) ® k[z,y].
Lemma II1.7.4. For alli,j > 0 we have
i g . .
AA(ziyj) — ZZ ( :ﬂ ) ( i ) aTHTTES IS @ g Syt
7=0 5=0
PROOF. Since A 4 is an algebra morphism, we have
Ay(riy?) = A (2)' A (y)Y = (a@z+bRy) (c@r+dxy).
Next, apply the binomial formula. 0O

Let us denote by k[z,y], the subspace of homogeneous polynomials of
total degree n in A = k[z,y]. Lemma 7.4 implies that k[z,y],, is a subco-
module of the affine plane due to the fact that

AA(k[l'7 y]n) c M(2) ® k[l'v y]n'

Actually, the M (2)-[resp. SL(2)-]comodule k[z,y] is the direct sum of the
comodules k[z,y],,.

According to Section 6, Example 2, the dual vector space k[x,y]), of the
comodule k[z, y],, has a module structure over the algebra SL(2)*, the dual
of the coalgebra SL(2). We shall identify this module in V.7.

I11.8 Exercises

1. (Tensor product of coalgebras) Let (C, A, g) and (C’, A’,€") be coalge-
bras. Show that the linear maps 7 : C®C’ — Cand ' : C®C’' — '
defined by m(c® ¢') = &'(c')c and 7'(c ® ') = £(¢)c’ are morphisms
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of coalgebras and that the coalgebra C ® C’ satisfies the following
universal property: for any cocommutative coalgebra D and any pair
f:D — Cand f : D — C' of coalgebra morphisms, there exists
a unique morphism of coalgebras f® f' : D — C ® C' such that
mo(f@f)=fandr o (f®[)=f.

. (Divided powers) Consider the vector space C' = kft| of polynomials
in one variable. Prove that there exists a unique coalgebra structure
(C,A,¢) on C such that

At"y= Y @t and e(t") =5,

pHg=n

for all n > 0. Show that C becomes a bialgebra when given the
product
Pt = ( ptq > tp+¢1_
p

Find an antipode.
. (Tensor coalgebra) Let V be a vector space.

(a) Show that the canonical isomorphisms V&(M+m) o= y@n g yem
endow T'(V) = @, -, V®" with a coalgebra structure, called
the tensor coalgebra of V.

(b) Let py, be the canonical projection of T'(V') onto V. Prove that
for any coalgebra C and any linear map f : C' — V, there exists

a unique morphism of coalgebras f : C — T'(V) such that
f= Py © f .

(¢) Using the notation of Chapter IT, Exercise 7, define the subspace
(V) = By SuV) [resp: N(V) = Bz AL (V)] of T'(V)
generated by all symmetric [resp. antisymmetric] tensors. Show
that S'(V) and A’(V) are subcoalgebras of T"(V).

(d) Let C be a cocommutative coalgebra and f be a linear map from
C to V. Prove the existence and the uniqueness of a coalgebra
morphism f : C — §’(V) such that f =py, o f.

. (Graded dual) The graded dual vector space of a graded vector space
V = @,>0 V,, is the graded vector space V, = @, Viy- Let

@n>0 W,, be another graded vector space Show “that there
is a grading on the tensor product V' ® W such that

Vew),= P view,.
i+j=n

Prove that V. @ W, = (V@ W)g,. it V,, is finite-dimensional for each
n > 0.
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. (Graded coalgebra) Keep the notation of the previous exercise. A coal-

gebra (C, A, ¢) is graded if there exist subspaces (C,,),o of C such
that C =@, 5o C,, and A(C,) C D, -, C;®C; for all n > 0 and
e(C,) = {0} for all n > 0.

(a) Prove that the graded dual vector space of a graded coalgebra
carries a natural graded algebra structure.

(b) Let A=8p,,~o A, be a graded algebra whose summands A,, are
all finite-dimensional. Prove that the graded dual vector space
of A carries a natural graded coalgebra structure.

(c) Check that the coalgebra C of Exercise 2 is the graded dual
vector space of the polynomial algebra k[t].

(d) (Shuffle bialgebra) Let V be a finite-dimensional vector space.

Show that the tensor coalgebra T"(V) of Exercise 3 is the graded
dual of the tensor algebra T'(V'). Deduce that T'(V') has a bial-

gebra structure whose multiplication is given by

(v1®“'®vp)(vp+l®”'®Up+q):Zva(1)®.'.®va(p+q)

where vy, ..., v are elements of V' and where o runs over all
1 p+q
(p, q)-shuffles of the symmetric group S, .

(e) Under the same hypotheses as before, show that S’(V) and
A'(V) are subbialgebras of T'(V) whose graded duals are the
bialgebras S(V') and A(V) respectively.

6. (Convolution algebra) Let G be a finite group. Equip the vector space

C(G) of complex-valued functions on G with the convolution product

(Ff)@) =D ) f (v o)

yeG

where z € G and f, f’ € C(G). Show that C(G) has a Hopf algebra
structure such that the linear map f +— 3 . f(z)z is a Hopf algebra
isomorphism from C(G) to the group Hopf algebra C[G]. Determine
the unit, the comultiplication, the counit and the antipode of C(G).

. (An example of a non-commutative, non-cocommutative Hopf alge-

bra) Let H be the quotient of the free algebra k{t,z} by the two-
sided ideal generated by t? — 1,22, zt 4 tz. Prove that H is a four-
dimensional vector space and that

Al)=t®t, Ax)=1Rz+z®t,
et)=1, ex)=0, Sit) =t S)=tz

endow H with a Hopf algebra structure whose antipode is of order 4.
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8. (Convolution and composition) Consider a morphism of algebras f :
A — A’ and a morphism of coalgebras g : C' — C. Prove that the
map h — fohog from Hom(C, A) to Hom(C’, A") is a morphism of
algebras for the convolution .

9. Use the previous exercise to show that a morphism of bialgebras
between two Hopf algebras is necessarily a morphism of Hopf algebras
(Hint: prove So f = fo S by applying left and right convolution with
f=foid=ido f).

10. Let H = (H,p,n, A, g, S) be a Hopf algebra.

(a) Set ¥9 = ne, and Y" = id}; (convolution of n morphisms all
equal to the identity of H) if n > 0 and 9™ = S* if n < 0.
Prove that each map %" is an endomorphism of algebras [resp.
of coalgebras] when H is commutative [resp. cocommutative]
and that, in both cases, we have ™ o ™ = ™™ for any pair
(n,m) of integers.

(b) Let H = k[G] be a group. Show that 4" is the coalgebra endo-
morphism given by ¥™(g) = ¢" (¢ € G).

(c) Let H = S(V) be a symmetric algebra. Then ¥™(z) = n'z for
any z € S4(V).

(d) Show that if H = SL(2), then the algebra endomorphism " is
determined by the matrix identity

(Wl w0 )=(2a)  nwo
and by

(5 98)-(% 2) oo

11. Let H be a Hopf algebra, A be a commutative algebra and C be a
cocommutative coalgebra. Prove that the set Hom Alg(H , A) of algebra
morphisms (resp. the set Homg,, (C, H) of coalgebra morphisms) is
a group for the convolution, the inverse of a morphism f being given
by fo S [resp. by So f].

12. Let A be a commutative algebra.

(a) Let V be a finite-dimensional vector space. Consider the sym-
metric algebra S(V) with the Hopf algebra structure described
in Section 3, Example 4. Prove that the group Hom 4, (S(V), 4)

is isomorphic to the additive group underlying Adim{V)
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(b) Show that Homy,, (k[Z], A) is isomorphic to the group of invert-
ible elements of A where k[Z] is the Hopf algebra of the group
of integers.

(¢) Let C be the Hopf algebra of Exercise 2. Determine the group
Hom,, (C, A).

13. Let (C, A, ) be a coalgebra and (C®V, A®idy,) be a free comodule
(see Section 6, Example 6). Prove that for any comodule N the map
f— (e®idy ) o f is a linear isomorphism from the space of comodule
maps from N to C ® V to the space Hom(N, V).

14. Let C be a coalgebra and (N, Ay) be a C-comodule. Prove that Ay
is an injective morphism of comodules from N to the free comodule
(C®N,A®idy).

15. Let {x,},c; be a basis of a C-comodule (N, A ). Define elements ¢
of the coalgebra (C, A, ¢) by Ay(z;) =3 ;¢; cjz; foralli e I.

(a) Prove that A(c]) = Sker ®c and e(c)) = 6;; foralld,jel.
(b) Show that the subspace C of C linearly generated by the

elements (c]); ;c; is the smallest subspace C' of C' such that
AN(N) C C'® N. Check that Cy is a coalgebra.

(c) Assume that N is finite-dimensional. Prove that the element
tn =D ;eq ¢ of Cy is independent of the basis {z;},c;-

16. Prove the structure theorem for bimodules over a Hopf algebra as
stated in Section 9.

II1.9 Notes

The concept of a Hopf algebra was developed by algebraic topologists ab-
stracting the work of Hopf [Hop41] on manifolds admitting a product (such
as Lie groups). A basic reference is the famous article [MM65] by Milnor
and Moore. Hopf algebras also came up in the representation theory of Lie
groups and algebraic groups (see [Abe80] [DG70] [Hoc81] [Ser93]). For ab-
stract Hopf algebras, we refer to Abe’s and Sweedler’s monographs [Abe80]
[Swe69].

All examples of bialgebras given in this chapter turn out to be either
commutative or cocommutative, except for the Hopf algebra of Exercise 7
which is due to Sweedler. Not many examples of non-commutative, non-
cocommutative bialgebras were known before the “quantum group” era
(nevertheless, see [Par81], [Rad76], [Swe69], pages 89-90, [Taf71], [TW80]).
This has dramatically changed in the 1980’s with the appearance of quan-
tum groups. For details on the order of the square of the antipode of a Hopf
algebra, see [Rad76][Taf71][TW80].
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(Restricted dual) We saw in Section 1 or in Exercise 5 how to put a
coalgebra structure on the dual of an algebra A = (A, p, ) which is either
finite-dimensional or graded. In the general case one can proceed as follows.
We know that the map A : A" ® A" — (A® A)* of Corollary 11.2.2 allows
to identify A* @ A* with a subspace of (A ® A)*. Define

A% ={a € A" |p*(a) € A" ® A*}.

If the algebra is finite-dimensional, then A is an isomorphism and A° = A*.
One can show that A° is the subspace of linear forms whose kernel contains
an ideal of finite codimension in A. The vector space A° enjoys the following
property: the embedding A induces an isomorphism

A’® A° = (A A)°.

Consequently, p*(a) belongs to A° ® A° whenever « is in A°. Tt results
that (AO,,u'*AU ") defines a coalgebra structure on A°. If, in addition, A
has a bialgebra [resp. a Hopf algebra] structure, then so has A°. For more
details, read [Abe80] [Swe69] [Tak85].

(Restricted dual of a Hopf algebra and representations) Let H be a
Hopf algebra. Its restricted dual H° also has a Hopf algebra structure.
It has the following alternative definition based on representations. Let
p: H — End(V) be a representation of H on a finite-dimensional vec-
tor space V. Consider the transpose map p* : End(V)* — H*. Its image
Im (p*), called the coefficient space of the representation p, sits in the re-
stricted dual H°. Then the restricted dual may also be defined as the sum
of the coefficient spaces of all finite-dimensional representations. In the case
when all finite-dimensional H-modules are semisimple, H° is the direct sum
of the coalgebras Im {p;) where p, runs over all finite-dimensional simple
H-modules up to isomorphism. (see [Abe80] [Ser93] [Swe69]).

(Bimodules) Let H be a bialgebra. Let M be a vector space equipped
with an H-module and an H-comodule structure given by maps

ppyHOM - M and Ay M—-HOM.

Give H ® M the induced module and comodule structures. Then p,, is a

morphism of comodules if and only if A,, is a morphism of modules. If

these equivalent conditions are satisfied, we say that M is an H-bimodule.
Given such a bimodule M, define the subspace

N={meM|Am)=1Qm}.

Tt turns out that N is a subcomodule, but not a submodule of M. Put the
induced comodule structure on the free H-module H ® M. Then H @ M
becomes a bimodule. The structure theorem for bimodules can be stated
as follows: if H is a Hopf algebra, then the map z ® m — xm from H @ N
to M is an isomorphism of H-bimodules. For details, see [Abe80] [Swe69)].



Chapter IV

The Quantum Plane and Its
Symmetries

In Chapter I we defined the affine plane as the algebra freely generated by
two variables = and y subject to the trivial commutation relation yz = zy.
This corresponds to our classical perception of plane geometry. In this
chapter, we consider a modified commutation relation depending on a pa-
rameter g, namely

Yyr = q Ty.

This new relation defines the quantum plane. In Section 2 we derive a few
identities well-known to combinatorialists and to the experts in the theory
of linear ¢-difference equations. Next, investigating the self-transformations
of the quantum plane, we build a bialgebra M (2) and Hopf algebras GL,(2)
and SL,(2), which are one-parameter deformations of the bialgebras M(2),
GL(2), and SL(2) defined in Chapter I. The bialgebras obtained in this
way are our first examples of quantum groups. They have the peculiarity
of being neither commutative nor cocommutative.

IV.1 The Quantum Plane

Let ¢ be an invertible element of the ground field k, and let /, be the two-
sided ideal of the free algebra k{z,y} generated by the element yr — qry.
We define the quantum plane as the quotient-algebra

klz,y] = k{z,y}/1,. (1.1)
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When ¢ # 1, the algebra k, [,y] is non-commutative. If we give the free
algebra k{z,y} its natural grading, then the ideal I, is generated by a
homogeneous degree-two element. It follows that the quantum plane has a
grading such that the generators z and y are of degree 1. We denote by
k,[x,y], the vector subspace of all degree-n elements of k,[z,y].

Proposition IV.1.1. (a) If « is the automorphism of the polynomial ring
k[z] determined by a(x) = qx, then the algebra k,{x,y] is isomorphic to
the Ore extension klz]ly,a,0]. Thus, k,[z,y] is Noetherian, has no zero
divisors, and the set of monomials {xiyj}i’jzo 18 a basis of the underlying
vector space.

(b) For any pair (i,7) of nonnegative integers, we have

Yyt =gty (1.2)
(¢) Given any k-algebra R, there is a natural bijection
Homy, (k,[z,y], R) 2 {(X,Y) € Rx R|YX = ¢XY}. (1.3)

A pair (X,Y) of elements of R subject to the relation Y X = ¢XY will
be called an R-point of the quantum plane.

PROOF. (a) We use the theory of Ore extensions as presented in 1.7-8.
Define an algebra morphism ¢ : k{z,y} — k[z]ly, o, 0] by ¢(z) = z and
©(y) = y. Since

oy)p(x) — qo(x)e(y) = yz — qry = a(x)y — qzy = 0,

the morphism ¢ vanishes on the ideal [ o thus defining a morphism of
algebras, still denoted ¢, on k, [, y]. The morphism ¢ is surjective because
the Ore extension k[z]ly,a,0] is generated by = and y. In order to show
that ¢ is an isomorphism, we only have to construct a linear map 1 from
klz]ly, @, 0] to k,[z,y] such that ¥ o ¢ = id. We define 3 on the basis
{xiyj}i’jzo of klz][y,a, 0] by ¥ (z'y’) = z'y’. The rest of the proof of (i)
follows from 1.7 and 1.8.

Part (b) is proved by an easy induction. Part (c) is a consequence of the
universal property (I1.2.4) and of the definition (1.1). a

We give an example of an R-point of the quantum plane.

Example 1. Let A be the algebra of smooth complex functions on C\ {0}
and let ¢ be a complex number different from 0 and from 1. Consider the
linear endomorphisms 7, and ¢, in R = End(A) defined by

_ _ flgz) - f(=)

@) = Jlaz) wd 5,(H(a) = LELE

The pair {7,,6,} is an R-point of k [z,y]. The “limit” of the operator 6,
when ¢ tends to 1 is the usual derivative d/dx.
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IV.2 Gauss Polynomials and the ¢g-Binomial
Formula

We fix an invertible element ¢ of the field k. For future applications, we
need to compute the powers of 4y in the quantum plane k[, y]. To this
end, we introduce the so-called Gauss polynomials which are polynomials
in one variable ¢ whose values at ¢ = 1 are equal to the classical binomial
coefficients.

Let us start with some notation. For any integer n > 0, set

q" —1

(n)q=1+q+~-~+q"_1:q_1. (2.1)
Define the g-factorial of n by (0)!, = 1 and
()l = (1),(2)y - (n), = e=Dle =1 (¢" =1 (2.2)

(=1

when n > 0. The g-factorial of n is a polynomial in ¢ with integral coef-
ficients and with value at ¢ = 1 equal to the usual factorial n!. We define
the Gauss polynomials for 0 < k < n by

( n ) N O S (2.3)
ko), (B)ly(n—k),
Proposition IV.2.1. Let 0 < k < n.
(a) ( Z ) is a polynomial in q with integral coefficients and with value
q

at ¢ = 1 equal to the binomial coefficient ( Z )

(b) We have
(1) (),

(¢) (g-Pascal identity) We also have
ny\ (n-1 [ n—1 [ n—-1 nk [ n—1
(i) = Cemd ) e () - O e (G5),
q a q q

PROOF. Relations (2.4-2.5) follow from easy computations. For Part (a),
one proceeds by induction on n using (2.5). ]

We return to the quantum plane of Section 1 and prove the g-binomial
formula.
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Proposition IV.2.2. Let © and y be variables subject to the quantum
plane relation yx = qry. Then for all n > 0 we have

(x+y)" = Z (Z ) akyn=k,
0<k<n q

PRrROOF. Because of the universal property of the quantum plane, it suffices
to prove the statement in k, [z, y]. Expanding (z+y)" and using (1.2), we see
that the monomials in the expansion are all scalar multiples of monomials
of the form z*y"~*. We therefore have

@+y)"= Y (Z)/x’“y”"“

0<k<n
!

where ( Z ) is a polynomial with integral coefficients in ¢. Let us prove

by induction on n that we have

(1) - (%), 5

Relation (2.6) clearly holds for n = 1. It thus suffices to check that the
!
coefficients ( Z ) satisfy (2.5). Using (1.2), we have

5 <Z>/xkynk - (a:+y)< > (n;l >lxkyn_1k>

0<k<n 0<k<n—1

!
_ Z <n;1>xk+1yn~1vk
0<k<n-1
n—1 !
n Z qk< . >xkyn—k

0<k<n—1

! !
— n—1 k( n-1 k,n—k
_Z<<k‘1>+q< k ))xy .
0<k<n
We get (2.5) in view of the linear independence of the monomials {z*y" %}, .

d

We now derive a few g-identities from the g¢-binomial formula. These
identities will not be needed in the sequel. The first one is the g-analogue
of the Chu-Vandermonde formula.

Proposition IV.2.3. For m > p < n, we have

mAn oy (m=k)(p=k) [ T n
(") =% e ) (o0 )
7 0<k<p 1 a
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PROOF. Expand both sides of the identity (z +y)™*" = (z 4+ y)™(z +y)"

using Proposition 2.2 and identify the terms corresponding to zPy™*" P,
O

We introduce a g-variant of the exponential. Let z be a variable (com-
muting with ¢). We define the g-ezponential as the formal series

()= (S% (2.7)

n>0 q

Observe that this series is well-defined provided ¢ is not a root of unity,
which we assume until the end of this section.

Proposition IV.2.4. Let x and y be variables such that yr = qry. Then
eq(@+y) = e (x)e,(y).

PrROOF. By application of Proposition 2.2, we have

ok ¢ (n)!q
Ea) e - o (X wne)

k>0 q n>0 k+f=n q
-3 (z+y)"
= ()l

The g-exponential is an invertible formal series, but, in contrast to the
case ¢ = 1, we have eq(z)“1 # e,(—2). In order to compute the inverse
of e (z), we consider the algebra of formal series k[[z]] and the algebra
End(k[[2]]) of linear endomorphisms of k[[z]]. Define two elements Z and
7, of End(k[[2]]) by (Zf)(2) = 2f(2) and (7,f)(2) = f(gz). An easy com-
putation shows that (Z,7,) is an End(k[[2]])-point of the quantum plane,
which is to say we have the following lemma.

Lemma IV.2.5. We have 7,Z = q Z7, in End(k[[z]]).

If for any scalar a of the field k£ we apply the endomorphism ((a — Z)7,)"
to the constant formal series 1, we get

(a- Z)Tq)"(n —(a—2)(a—gz)...(a—q" '2). (2.8)
In particular, for a = 0 we have
(~27,)"(1) = (~1)7 "=/ 2n, (29)

Proposition IV.2.6. The inverse of e, (2) is given by

e ()1 = 1 nqn(n—l)/2 2" .
™ =) o
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ProOF. Lemma 2.5 implies (—Z7,)Z = qZ(—Z7,). Using Proposition 2.4,
we get the following identity in End(k[{z]]):

e(Z(1—=1,)) = e, (Z)ce,(~ZT,). (2.10)

q q

Let us apply both sides of (2.10) to the constant formal series 1. On the
one hand, we have e (Z(1 — 7,))(1) = 1 because (1 — 7,)(1) = 0. On the
other hand, by (2.9) we get

e(2)(e,(~27) (1)) = e, () (3 (—1)r g2 i)

= (n)!,

Here are two more general g-identities.

Proposition IV.2.7. For any scalar a we have

n

(= 2a=gz).o =) = 30 () g

k=0

and

>0

1 n—

e,(a) = eq(z)(z ) (a—2)a—qz)...(a—q 1z)>
n=0 aq

PROOF. One proceeds as in the proof of Proposition 2.6, but now with the

operator identity (a7,)(—Z7,) = q(—Z7,)(a7,). By Propositions 2.2 and

2.4, we get

and
e,(la=2)1,) =e,(~Z7,) 0e,(a)

q

in End(k[[z]]). Applying again these identities to the constant formal series
1, we get the desired relations in view of e (—Z7,)(1) = €,(z) ", which was
proved above. 0O

IV.3 The Algebra M,(2)

From now on, we assume that ¢> # —1. Let us define a g-analogue of the
algebra M(2) of I.4. In addition to variables z, y subject to the quantum
plane relation yz = qzy, consider four variables a, b, ¢, d commuting with
x and y. Define 2, ¢/, ", and 3" using the following matrix relations

()= G) = ()-G )6

o 2
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Theorem IV.3.1. Under the previous hypotheses, there is an equivalence
between

(i) the two relations y'z’ = g’y and y'z" = qz"y", and

(ii) the siz relations

ba = qab, db = qbd, (3.2)
ca = qac, de = qcd, (3.3)
be=ch, ad—da=(qg"'—q)be (3.4)

PROOF. Let us check that (i) implies (ii). By (3.1) we have
(cx + dy)(az + by) = g (az + by)(cz + dy).
Identifying the coefficients of 2%, y2, and of zy, we obtain
ca = qac, db=gbd, cb+ qda = qad+ ¢*be. (3.5)
Dividing the latter by q yields
ad — da = q~*¢cb — gbe. (3.6)

Using z” and y" in a similar fashion leads to three more relations obtained
from (3.5-3.6) by exchanging b and ¢, namely

ba = gab, dc=qcd, ad—da=q ‘bc— gcb. (3.7)

From (3.6-3.7) we derive (¢7! + ¢)(bc — ¢b) = 0, which is equivalent to
be = cb since ¢ # —1. We have proved that (i) implies (ii). The converse
implication follows from similar straightforward computations. O

Definition IV.3.2. The algebra M, (2) is the quotient of the free algebra
k{a,b,c,d} by the two-sided ideal J, generated by the siz relations (3.2-3.4)
of Theorem 3.1.

When ¢ = 1, the algebra Mq(2) is clearly isomorphic to the algebra
M (2) of L.4. Since the ideal J, is generated by quadratic elements, the
natural grading of the free algebra induces a grading on M, q(2) such that
the generators a, b, ¢, d are of degree 1.

Given an algebra R, we define an R-point of M,(2) to be a quadruple
(A, B,C, D) € R* satisfying the relations

BA =gAB, DB =¢4BD, (3.8
CA = qAC, DC = qCD, (3.9)
BC =CB, AD-DA=(¢'~q)BC. (3.10)

By the very definition of M, (2), the set of R-points of M, (2) is in bijection
with the set Homy,, (M,(2), R) of algebra morphisms from M,(2) to R. It
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will sometimes be convenient and more enlightening to write an R-point
(A, B,C, D) of M,(2) in the matrix form

( a9 ) (3.11)

Theorem 3.1 can be paraphrased using the language of R-points as follows:
a quadruple < é IB; ) of elements of an algebra R is an R-point of M q(2)

if and only if the following pairs (X', Y”) and (X", Y”') are R'-points of the
quantum plane, where X', Y', X" Y" are matricially defined by

X'\ (A B\(X 4 (X' \N_ (A (X
v )= \c b y ) * Yy" )=\ B D Y
and where R’ is the tensor product algebra
R =R® k[X,Y] = R{X,Y}/(YX — ¢XY).
We now introduce the quantum determinant det, as the following ele-

ment of the algebra M, (2).

Proposition IV.3.3. The element det, = ad — g tbe = da — gbe of M,(2)
is central.

PRrROOF. It suffices to show that det, commutes with the generators a, b, c,
d. Now, by (3.2-3.4) we have

(ad — ¢~ *bc)a = a(da — gbc), (ad — g~ bc)b = blad — g~ be),
(ad — g tbc)e = clad — ¢~ *be), (da — gbe)d = d(ad — g~ tbe). m

A B

Given an R-point m = < C D

) of M,(2), the element

Det,(m) = AD — q"'BC = DA — ¢BC
of R is called the quantum determinant of m.

Proposition IV.3.4. Let R be an algebra and

(A B i (A B
m=\{c b anamo=\ o pr

be two R-points of Mq(2) such that the elements A, B, C, D commute with
the elements A', B', C', D'.
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(a) The element m'm defined by the matriz product

A" B" A B A B
m,m:<cu DII>:<CI D/)(C D)
is an R-point of M (2).
(b) We have Det,(m'm) = Det,(m’) Det (m) in R.

(¢) The quadruple
D —qB
—¢lc A

is an R-point of M,—1(2) and an R°P-point of M,(2).

PROOF. (a) We use the reformulation of Theorem 3.1 stated a few lines
ahead of Proposition 3.3. Let R’ be the tensor product algebra

R = R®k,[X,Y] = R{X,Y}/(YX — gXY).
Define X', Y', X", Y" by

X' A B X X" A X

v )"\ ¢ D y ) ®d Ly )= B D» Y )
By definition, the elements X,Y of R’ commute with the other variables A,
A’ etc. Tt results from Theorem 3.1 that the pairs (X’,Y’) and (X", Y")
are R'-points of the quantum plane. Now, by hypothesis, the elements A’,

B', C', D' of R' commute with X’ and Y’ and the elements A, B, C, D
commute with X" and Y”. By a second application of Theorem 3.1,

A/ BI X/ B Al/ BII X
Cl DI Yl - Cl/ DII Y
A C XII _ AII C/I X
B D YI/ - BII DII Y

are R’-points of the quantum plane. It follows that m'm is an R-point of
M,(2).

(b) This follows from computations we leave to the reader. A more con-
ceptual method is suggested as an exercise at the end of this chapter.

(c) Define A’ = D, B’ = —¢B, 0’ = —¢"*C, and D' = A. Then Relations
(3.8-3.10) imply

and

A/BI:qBIAI, BID/:qDIB,,
Alcl — quA/, CID/ — qchl,
CIBI — B/CI, DIAI _ A/D/ — (q—l __ q) B,C/,

which means precisely that (4’, B',C’,D’) is an R-point of M,-1(2) or an
R°P-point of M,(2). a
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IV.4 Ring-Theoretical Properties of M,(2)

The aim of this section is to show that the algebra M, (2), though non-
commutative, retains certain properties of the commutative algebra M (2).
We freely use the notations and the results of 1.7-8.

Theorem 1V.4.1. The algebra M (2) is Noetherian and has no zero divi-
sors. A basis for the underlying vector space is given by the set of monomials
{awckde}i,j,k,ezo :

We shall prove this theorem by building a tower
Ay=kCA CACA;CAy=M/(2)

of algebras such that each A is an Ore extension of A, ;. As a consequence
of Corollary 1.7.2, we conclude that the set {a(a)ia(b)ja(c)ka(d)z}iij k050
is also a basis of M (2) for any permutation o of the set {a,b, c,d}. Define
the algebras A, = k[a], A, = k{a,b}/(ba — qab), and

Aq = k{a,b,c}/(ba — gab, ca — qac, cb — be).

The algebra A, is trivially an Ore extension of A,. Let o be the automor-
phism of A; determined by o, (a) = ga.

Lemma IV.4.2. There is an isomorphism belween A, and the Ore exten-
sion A;[b, ay,0]. Furthermore, the set {a't'}, ;5 is a basis of A,.

Observe that the algebra A, is isomorphic to the quantum plane k_ [z, y]
(the isomorphism sends a onto z and b onto y).

PROOF. Let us define ¢, : Ay — A;[b,a1,0] by ¢,(a) = a and ¢,(b) = b.
Since

©1(b)p(a) — qpi(a)p, (b) = ba — gab = o, (a)b — qab = 0,

¢, defines a morphism of algebras. This morphism is surjective since the
algebra A,[b, «, 0] is generated by a and b. In order to show that it is an
isomorphism, we only have to build a linear map ¢, : A;[b,a;,0] — 4,
such that ¥, o, = id. We define ¢, on the basis {a’t’}, ;¢ of A, [b, 0]
by ¥, (a't!) = a'b. O

Tt is easy to check that as(a) = ga and a,(b) = b define an automorphism
o, of the algebra A,. We have the following result whose proof follows the
same lines as the proof of Lemma 4.2.

Lemma IV.4.3. The algebra A, is isomorphic to the algebra A,lc, oy, 0];
the set {ailﬂck}i’j’kzo is a basis of As.
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The last step consists in building A, out of As;. This is the only step
involving a non-zero derivation. First, one checks that

az(a) =a, ag(b) =gb, as(c)=qc

define an algebra automorphism of A;. We define another endomorphism
6 of A5 on the basis {azb]ck}m’kzo by 6(b/c*) = 0 and by

_ 42 .
Sab'e) = (g a7 L a o (4.1)

if i > 0. The proof of the following result is left to the reader.
Lemma IV.4.4. The endomorphism 6 is an as-derivation of A,.
We use this result to prove the next one.

Lemma IV.4.5. The algebra A, = M (2) is isomorphic to the Ore exten-
sion Asld, aq,0], and {aibjckd(}ivj’k’gzo 18 a basis of A,.

PROOF. Set @, (a) = a, ¢, (b) = b, p,(c) = ¢, p4(d) = d. This defines a sur-
jective morphism of algebras ¢, from A, onto the Ore extension As[d, as, 6],
provided we check that (¢4(a),¢,(b), ¢4(c), p,(d)) is an Agld, o, 6]-point
of M, (2). This implies checking the six relations (3.8-3.10). Now the three
relations not involving d already hold in A;. As for the three remaining,
namely

db = gbd, dc=qcd, da=ad+ (qg—q ')be,

they hold in Aj[d, ay, 6] by the very definition of a5 and of 6. To complete
the proof, one constructs a linear map 1, such ¢, o p, = id as in the proof
of Lemma 4.2. d

Theorem 4.1 is now a consequence of Lemmas 4.2, 4.3 and 4.5, of Corol-
lary 1.7.2, and of Theorem 1.8.3.

IV.5 Bialgebra Structure on M,(2)

We now endow the algebra M, (2) with a bialgebra structure. The comul-
tiplication and the counit will be the same as the comultiplication and the
counit put on M (2) in 1.4 (see also II1.4).

Theorem IV.5.1. There exist morphisms of algebras
A Mq(2) — Mq(2) ® Mq(2) and €: Mq(2) — k
uniquely determined by

Ala) =a®a+b®c, Ab)=a®b+b®d, (5.1)
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Ale)=c®a+d®c, Ald)=c®@b+d®d, (5.2)

gla) =¢e(d) =1, &(b)=c¢e(c)=0. (5.3)

Equipped with these morphisms, the algebra M (2) becomes a bialgebra that
18 neither commutative nor cocommutative. Furthermore, we have

A(det,) = det, @ det, and e(det,)=1. (5.4)

We may rewrite Relations (5.1-5.3) in the abridged matrix form

2(ea)=(a)eea) me(2a)-(od):

5.5)

PrOOF. In order to show that A is a morphism of algebras, it suffices to
check that (A(a),A(b), Alc), A(d)) is an M, (2) @ M (2)-point of M_(2).
This follows from Proposition 3.4 (a). A simple computation shows that
((a),e(b),e(c),e(d)) is a k-point of M, (2), thus proving that ¢ also defines
an algebra morphism.

We now have to check the coassociativity and counit axioms. Let us start
with

(A®Id)A = (id® A)A. (5.6)

Since both sides of (5.6) are morphisms of algebras, it is enough to verify
it on the generators a, b, ¢, d. Using the matrix form, we have

(ema) (2 5) = (¢ a)e(ea))e=(sd)
- (ca)e((ea)=(2))
((id@A)A)(Z Z)

A similar argument shows that the counit axiom follows from the matrix
identity

(o) n)-(ea)-Gan)(ea)

As for the computation of A(det,), it results from Proposition 3.4 (b). O

IV.6 The Hopf Algebras GL,(2) and SL,(2)

We proceed by analogy with 1.5. Using the quantum determinant det, of
Proposition 3.3, we define the algebras

GL,(2) = M,(2)[t}/(t det, — 1)
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nd
’ SLq(Z) = Mq(2)/(detq -1)= GLq(Q)/(t - 1).

Given an algebra R, we define an R-point of GL,(2) [resp. of SL,(2)] as
an R-point m = (A, B, C, D) of M,(2) whose quantum determinant

Det,(m) = AD — ¢ 'BC

is invertible in R [resp. is equal to 1]. Denoting GL,(2) and SL,(2) by
G,, we see that the set of R-points of G, is in bijection with the set
Homy,, (G, R) of algebra morphisms from G to R.

Theorem IV.6.1. Relations (5.1-5.3) defining the comultiplication A and
the counit € of M, (2) equip the algebras GL,(2) and SL,(2) with Hopf
algebra structures such that the antipode S is given in matriz form by

S(a) S(b) \ _ —1 d —gb
< S(e) S(d) )= det, gl a . (6.1)
PROOF. (a) We first have to show that A and ¢ are well-defined on GL,(2)
and on SL,(2). For SL,(2) this results from the following computations:

by (5.4)
A(det, — 1) = (det, — 1) @ det, + 1 @ (det, — 1)

and e(det, —1) = 0. A similar argument works for GL,(2) provided we set
Alt)=t®t and () =1 (6.2)

The coassociativity and counit axioms hold for GL,(2) and for SL,(2) since
they already hold for M, (2).
(b) It remains to check that GL,(2) and SL,(2) have antipodes. Set

S'(a)=d, S'(b)=—gb, S'(c)=-qtc, S'(d)=a. (6.3)
By Proposition 3.4 (c), the quadruple (S'(a), S'(b), S'(c), S'(d)) is a M, (2)°P-
point of M, (2). Consequently, S’ defines a morphism of algebras from

M,(2) to M, (2)°P. Next, we extend S’ to GL,(2) and to SL,(2) by setting
S’(t) = t. This is a well-defined algebra morphism because

S'(£)S' (det,) = (S'(d)s’(a) - q—ls'(c)s’(b)) S'(t) = (ad — ¢~ 'be) t = 1.

Since the quantum determinant is invertible and central in G, = GL,(2)
and SL,(2), it is possible to define an algebra morphism S from G, to Gg?
by S(t) =t"! and

(50 50 )= (50 50 ) =a( e ).



IV.7 Coaction on the Quantum Plane 85

Finally, to check that S is an antipode, it suffices to work with the
generators a, b, ¢, d, according to Lemma II1.3.6. Relations (I11.3.3) are
equivalent to the matrix identities

a b d —qb _ d —qb a b
c d —q e a o ¢ ¢ a c d
1 0
= det, ( 0 1 >
O

In contrast to the inversion in a group and to the antipode of GL(2)
and of SL(2), the antipode S of GL,(2) and of SL,(2) is in general not
involutive. Indeed, from (6.1) we derive

( S§%"(a)  S%™(b) > ( qh%nc qu )

S2n(e)  S2(d) 7 )
(5 2% &)

for any positive integer n. Fix such an n and let ¢ be a root of unity of
order exactly n. Then we obtain two examples of Hopf algebras for which
the square of the antipode has order n. For results on the order of S?
previous to the quantum group era, see [Rad76] [Taf71] [TW80].

1l

IV.7 Coaction on the Quantum Plane

We saw in II1.7 that the affine plane k{z,y] was a comodule-algebra over
either one of the bialgebras M(2) and SL(2). We now develop a quantum
version of this.

Theorem IV.7.1. There exists a unique Mq(2)—comodule-algebm struc-
ture and a unique SLq(2)—com0dule—algebm structure on the quantum plane
A =k,[z,y] such that

As(z)=a®@z+bRy and Ayly)=c@z+d@y.
We rewrite these formulas in the matrix form
T a b T
AA(y>_(C d>®<y>. (7.1)

PROOF. We use Proposition II1.7.2. We first check that (7.1) defines an
algebra morphism A4 from A to M,(2) ® A. It is enough to verify that

As)A () = g A, (@)A 4(y)
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in M,(2) ® A. Now, by (3.2-3.4), we have

Aum)du(z) = (c®z+dRY)(a®@z+bRY)
= qac® z* + (be + qda) ® zy + gbd ® y*
= q(ac®x2+(q_1bc+ad)®wy+bd®y2)
= q(aRz+bRy)(c®zr+doyY)
= qA,(x)A4(y)
Since the projection of M, (2) onto SL,(2) is a morphism of algebras, the
resulting map A — SL, (2) ® A is an algebra morphism too.

It remains to check that A 4 defines a comodule structure on the quantum
plane. This is done as in the proof of Theorem III.7.3. O

We record the following quantum version of Lemma II1.7.4.

Lemma IV.7.2. Fori,j > 0 we have

i g . .
AA(dliyj) — ZZ q(i—r)s ( :. ) ( .; ) aTb TSI ®$T+Syi—|—j7']‘73'
a? a?

r=0 5s=0

PRrROOF. We first observe that A ,(z'y?) = A4 (z)'A4(y)’ since A, is an
algebra morphism. Next, we have

by (aor)=¢¢(a@z)(bey) and (dey)(c®a)=q¢"(c®a)(d®y)

in the algebra M, (2) ® A. This allows us to apply Proposition 2.2 to both

Au(z) =(a@z+b®y)’ and A,(y) =(c®a+d®y). O

Denote by k,[z,y], the subspace of degree n elements of A = k, [z, y].
As a consequence of Lemma 7.2, we see that k, [%,v],, is a subcomodule of
the quantum plane. Actually, the quantum plane is the direct sum of the
comodules k,[x,y],,. By I11.6, Example 2, the dual vector space k, [z, y]r is
a module over the algebra SL,(2)* dual to the coalgebra SL,(2). We shall
identify this module in VIL5.

IV.8 Hopf x-Algebras

The standing assumption in this section is that the ground field k& is the
field of complex numbers. Given a complex number z, we denote its complex
conjugate by Z. Recall that an R-linear map u : V — V' between complex
vector spaces is said to be antilinear if u(Av) = Av for all A\ € Cand v € V.
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Definition IV.8.1. Let (H,u,n,A,¢,8) be a complex Hopf algebra. We
say that H is a Hopf x-algebra if there exists an antilinear involution * on
H satisfying the two conditions

(i) the map * is an antimorphism of real algebras, i.e., an algebra mor-
phism from H into H®P, as well as a morphism of real coalgebras, and

(i) we have S(S(x)*)" =z for allz € H.

Two Hopf *-algebra structures *; and x5 on H are equivalent if there
exists a Hopf algebra automorphism ¢ of H such that p(z*') = @(x)*? for
all x in H.

We wish to show that the Hopf algebras GL (2) and SL,(2) have natural
Hopf x-algebra structures given by matrix transposition. We shall need the
following equivalent formulation.

Lemma IV.8.2. A Hopf algebra H has a Hopf x-algebra structure if and
only if there exists an antilinear automorphism v of H such that

(i) the map v is a morphism of real algebras and an antimorphism of real
coalgebras, and

(ii) we have v2 = (Sv)* = idy.

PROOF. Suppose we have an involution * as in Definition 8.1. Define v by
y(z) = S7Y(z*) for all z € H. It is clear that v is an antilinear algebra
automorphism. It is an antimorphism of coalgebras because so are the an-
tipode S and its inverse by Theorem II1.3.4 (a). We have Sy = #, which
shows that S+ is an involution. Finally, v is an involution too, as can been
seen from

12— (5712 = (k) = idg = idyy.

The second equality follows from * being an involution while the third
one follows from Definition 8.1 (ii). Conversely, define * = Sv from an
automorphism v as in Lemma 8.2. It is an involution by Lemma 8.2 (ii).
Let us check Condition (ii} of Definition 8.1. We have

(+8)> = (975)* = (SN 1 (S1)*y ™ =772 =idy. 0
We now present the main result of this section. We freely use the notation
of the previous sections. Recall the inverse ¢ of the element det, = ad—q be

of GL,(2). In SL,(2) we have { = 1.

Theorem IV.8.3. There exist unique Hopf x-algebra structures on the
Hopf algebras GL,(2) and SL,(2) such that

a* =td, b =-—qte, ¢ =—qh d"=ta, t"=t""1
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d
is an M, (2)-point of M, (2). Consequently, there exists a unique antilinear
algebra endomorphism v of M, (2) defined by the matrix identity

v(a) ~(b) a c
(30 3@ ) =08 &) 5
Since transposition is involutive, so is . The map v is an antimorphism
of coalgebras in view of the formula (5.5) giving the comultiplication on
M, (2) and of the fact that matrix transposition reverses products.

We now extend v to GL,(2) by 7(t) = t. Since y(tdet, — 1) = tdet, —1, it
defines an antilinear algebra automorphism both on GL,(2) and on SL,(2).
Let us check that Sv is an involution. It is enough to verify this on the
generators a, b, ¢, d, and t. For ¢, this is clear. For the remaining generators,

PRrROOF. By Theorem 3.1, the transpose ( Z 2 ) of the matrix ( Ccl b )

we have
a b\ d —qc
(S’Y)(C d)—“t(—qub a )
Therefore,
2f @ b _ d —qc
s (4 n) = e by ) e
o a b —1
=1 < c d ) t
_ a b
B c d )
We conclude the proof by recalling that * = S. |

IV.9 Exercises

1. (Gauss) Show that

Y (F ( Z )q = { (1—q)(1— q3()),,,(1 —¢" Y EZ iZ fon.

0<k<n

2. (Gauss) Show that

n+m+1 B s [ m+Ek
() -z (),
4  0<k<n q
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3. Let F be a finite field of order g.

n
k

spaces of a n-dimensional vector space over F.

(a) Show that ( ) is equal to the number of k-dimensional sub-
q

(b) Prove Relations (2.4-2.5) using the previous assertion.

4. (q-differentiation) Consider the linear endomorphisms Z, 7, and o, of
the polynomial algebra k[z] and of the algebra k[[z]] of formal series,
defined by

fla2) = $(2)

(2@ =21G), (D)) = 1), @GN ===

(a) Check that

6yTg = ATy, 621 =17,, 6,2 —qZb,=1.

(b) Prove that 7, is an algebra automorphism and that 6, is a 7,-
derivation.

(c) Show that any 7 -derivation ¢ of k[z] is of the form ¢ = P§, for
some polynomial P. If, moreover, 67, = ¢7,6, then P has to be a
constant.

(d) Assume that ¢ is not a root of unity. Check that
n n—1

‘5q((:mq) - (nzf 1,

for all n > 1. Deduce that the g-exponential e (z) is, up to a mul-
tiplicative constant, the only formal series solution of the equation

6,(f) = 1.
5. Let A [, n] be the algebra k{¢, n}/(€%, 0%, €n + qnE). Set

&N _(a b 3

) \ec d U
where a,b,c and d are variables commuting with £ and 7. Assume
that ¢ # —1.

(a) Prove that Assertions (i) and (ii) of Theorem 3.1 are equivalent
to the relations

yo' =g’y and ¢&° =n*=¢n+qnE=0.

(b) Check that (a€ + bn)(cf 4+ dn) = det, &n. Deduce Part (b) of
Proposition 3.4.

(¢) Find a M, (2)-comodule-algebra structure on A/[¢, 7).
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6. Show that the centre of M, (2) is the subalgebra generated by det,
when ¢ is not a root of unity.

7. (Basis of SL,(2)) Show that the set {aibjck}iijkzoU{bicjdk}i,jzovbo
is a basis of SL,(2).

8. Let ¢ be a root of unity of order d > 1. Prove that yz = qzy implies
(+y)!=a?+yt

9. Let H be a complex Hopf x-algebra whose counit is denoted €. Show

that e(z*) = e(x) for all elements x of H.

IV.10 Notes

The content of Section 2 on g-identities, as well as Exercises 1-3, is classical.
We borrowed it from [And76], Chap. 3 and from [Cig79].

The g-exponential is an example of a g-hypergeometric series or basic
hypergeometric series, i.e., of a formal series ) ., a,2" such that each
quotient a,,, ,/a,, is a rational function of ¢" (where q is a complex param-
eter different from 0 and from 1). Basic hypergeometric series first appeared
in a note published by Heine [Heid6] in 1846. Since, g-analogues of most
classical functions and identities have been found. F.H. Jackson [JaclO]
introduced the g-differentiation operator ¢, and its inverse which is the g-
integration. Nowadays, g-series appear in combinatorics, in number theory,
in statistical mechanics, and in the theory of Lie algebras. There are many
monographs on this vast subject, e.g., [GR90] [Sla66].

The operator 7, introduced in Section 2 is fundamental in the theory of
linear ¢-difference equations with polynomial coefficients. Such an equation
is a functional equation of the form

> Pi(2)f(qd'z) = Q(2)
=0

where Py(z),..., P,(z),Q(z) are polynomials and f(z) is a function. Using
the operator 7,, one can rewrite the equation above as (3_;_, PTH(f) = Q.
The articles by Adams [Ada29] and by Trjitzinsky [Trj33] are two classical
references on the formalism of the ¢-difference equations.

Sections 3, 5 and 6 are taken from Manin’s book [Man88]. With Section
3 we entered the heart of the subject of Part I of this book. The bialge-
bras M,(2), GL,(2), and SL,(2) of Sections 5-6 depend on one parameter.
There also exist two-parameter versions such as the algebra M, , (2) gen-

erated by four generators a, b, ¢, d and the six relations



IV.10 Notes 91

ba = pab, db = gbd,

ca = qac, dc = pcd,
be=pqlch, ad—da= (¢ ' —p)ch.

It has the same bialgebra structure as M (2). With the additional relation
ad —p~'be = 1, one gets the Hopf algebra SL, (2) of [AST91].

In higher dimension n > 2, Faddeev, Reshetikhin, Takhtadjian [RTF89]
defined the bialgebra M, (n) generated by the generators (Tij)lgngn and
the relations

k m
TOTE =g AT, TPT = g TP

m k m _—
T Tj = TJszm’ TikTJm - Tj Tik = (q - CI) TZmTJk
for ¢ < j and k < m. The comultiplication and the counit are given by
ATH=Y"TF9T] and e(T7) =4,
k=1

The algebra M, (n) is an iterated Ore extension and, like M, (2), it possesses
a remarkable grouplike central element that is

dety = > (—q)~@ 7Y .TI™),
gES,

where ¢(o) is the length of a minimal decomposition of the permutation
o in product of transpositions. The quantum determinant det, allows one
to construct GL,(n) and SL,(n) as in the case n = 2 discussed in this
chapter. The bialgebra M, (n) has two interesting comodule-algebras: the
first one

Ag'o =k{zy,...,2,}/(z;2; — qz;z; fori < j)

generalizes the quantum plane whereas the second one

generalizes the algebra A [€, 7] of Exercise 5.

Both algebras Aglo and ASI” are examples of quadratic algebras, i.e., of
quotients of free algebras by ideals generated by degree-two homogeneous
elements. For authors like Manin, quadratic algebras form the starting point
of the theory of quantum groups. Manin assigns to every quadratic alge-
bra a universal Hopf algebra over which the given quadratic algebra is a
comodule-algebra. When applied to the quantum plane, Manin’s construc-
tion yields GL,(2). For further reading, see [Man87] [Man88].

We have just mentioned the quantum groups SL (n). There exist quan-
tum groups for all classical Lie groups and supergroups. For instance,
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Takeuchi [Tak89] constructed quantum versions of the symplectic and or-
thogonal groups.

Woronowicz exhibited Hopf *-algebra structures on quantum groups in
the framework of C*-algebras. See [Wor87b| [Wor87a] [Wor88].

The reader will find more examples of and more details on quantum
groups in [AST91] [Mal90] [Mal93] [Man89] [PW91] [Res90] [Sud90]
[Tak92c].



Chapter V
The Lie Algebra of SL(2)

In this chapter we investigate the enveloping Hopf algebra U = U(sl(2)) of
the Lie algebra sl(2) of traceless two-by-two matrices. This Hopf algebra
is in duality with SL{2). We also describe the finite-dimensional repre-
sentations of U. Chapter V prepares for Chapters VI-VII where we shall
construct a g-deformation U, of U and study its finite-dimensional repre-
sentations. The statements and proofs for U, will essentially be copied from
those of the present chapter. We start by recalling the classical concepts of
Lie algebras and enveloping algebras. As usual, we denote the ground field
by k.

V.1 Lie Algebras

Definition V.1.1. (a) A Lie algebra L is a vector space with o bilinear
map [,]: L x L — L, called the Lie bracket, satisfying the following two
conditions for all x,y,z € L:
(i) (antisymmetry)
[9572/] = _[yax]a

(ii) (Jacobi identity)
[II}, [y7z]] + [y’ [Z,.’E]] + [Z, [w,y]] =0.

(b) A Lie subalgebra L' of a Lie algebra L is a subspace L' of L such
that for any (z,y) € L' x L' we have [z,y] € L. An ideal I of a Lie algebra
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L is a subspace I of L such that for any element (x,y) € L x I we have
[z,y| € 1.

(c) A morphism of Lie algebras f from the Lie algebra L into the Lie
algebra L is a linear map f : L — L' such that f([z,y]) = [f(z), f(y)] for
dlz,yel.

(d) A Lie algebra is abelian if its Lie bracket is zero.

Let us give a few examples of Lie algebras.

1. If I and L' are Lie algebras, we equip the direct sum L & L' with a
Lie bracket given by

[(z,2"), (v, 9)] = ([=,9], [2",¥'])

for x,y € L and 2/, € L. The canonical injections of L and L' into L& L'
and the canonical projections of L @ L' onto L and L' are morphisms of
Lie algebras.

2. Given a Lie algebra L, we define the opposite Lie algebra L°P as the
vector space I with Lie bracket [—, —]°P given by

[I’, y]op = [y,$] = —[.CE,y].

The linear map op(z) = —z is a Lie algebra isomorphism from L to L°P.

3. Let I be an ideal of a Lie algebra L. There exists a unique Lie al-
gebra structure on the quotient vector space L/I such that the canonical
projection from L onto L/I is a morphism of Lie algebras.

4. Let f : L — L' be a morphism of Lie algebras. Its kernel Ker (f) is
an ideal of L, the image f(L) is a subalgebra of L', and the induced map
L/Ker (f) — f(L) is an isomorphism of Lie algebras.

5. Let A be an (associative) algebra. Set [a,b] = ab — ba for a,b € A. It
is easy to show that this bilinear map is antisymmetric and satisfies the
Jacobi identity. We also have [a, bc] = [a, b]c+ b[a, c] for all a,b, ¢ € A. This
Lie algebra will be denoted by L(A).

For any vector space V, we denote the Lie algebra L(End(V)) of all
endomorphisms of V by gl(V). When V is of finite dimension n, then gl(V')
is isomorphic to the Lie algebra gl(n) = L(M,,(k)) of n x n-matrices with
entries in the field k. It is clear that the commutator of two matrices with
zero trace is of trace zero. Consequently, the vector space sl(n) of traceless

n by n matrices is a Lie subalgebra of gl(n).

V.2 Enveloping Algebras

To any Lie algebra I we assign an (associative) algebra U(L), called the
enveloping algebra of I, and a morphism of Lie algebras i; : L — L(U(L)).
We define the enveloping algebra as follows. Let I(L) be the two-sided



V.2 Enveloping Algebras 95

ideal of the tensor algebra T(L) generated by all elements of the form
xy — yx — [x,y] where z,y are elements of L. We define

U(L) = T(L)/I(L).

The above generators of (L) are not homogeneous for the grading of T'(L)
defined in IL.5. Therefore there is no grading on the enveloping algebra
compatible with the grading of the tensor algebra. Nevertheless, U(L) is
filtered as a quotient algebra of T'(L).

We define a map i; as the composition of the canonical injection of L
into T(L) and of the canonical surjection of the tensor algebra onto the
enveloping algebra. By definition of i, we have i, ([z,y]) = zy — yz, which
shows that 7, is a morphism of Lie algebras.

Example 1. If L is an abelian Lie algebra, then U(L) coincides with the
symmetric algebra S(L). In particular, if L is the zero Lie algebra {0}, then
U({0}) = k. We also have U(L°?) = U(L)°P.

We now state the universal property of U(L).

Theorem V.2.1. Let L be a Lie algebra. Given any associative algebra
A and any morphism of Lie algebras [ from L into L(A), there exists a
unique morphism of algebras ¢ : U(L) — A such that poi; = f.

If we denote by Hom; (L, L) the set of morphisms of Lie algebras from
L into L', we can express Theorem 2.1 by a natural bijection

Homy; (L, L(A)) = HomAJg(U(L)» A).

PROOF. By definition of the tensor algebra, f extends to a morphism of
algebras f from T(L) to A defined by f(z,...z,) = f(zy)... f(z,) for
£y,...,x, in L. The existence of ¢ follows from f(I(L)) = {0}. In order to
prove this fact, we only have to show that f(xy — yx — [, y]) vanishes for
any pair (z,y) of elements of L. Now,

Flay —yz — [2,9]) = f(@)f () = F(w) f(@) — f([z,9]),

which is zero since f is a morphism of Lie algebras.
The uniqueness of ¢ is due to the fact that L generates the algebra T'(L),
hence U(L). O

We derive two corollaries from Theorem 2.1.

Corollary V.2.2. (a) For any morphism of Lie algebras f : L — L,
there exists a unique morphism of algebras U(f) : U(L) — U(L') such that
U(f)oip =iy o f. We also have U(idy) = idypy-

(b) If f': L — L" is another morphism of Lie algebras, then

U(f e fy=U(f) o U)
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PROOF. (a) Apply Theorem 2.1 to A = U(L') and to the morphism of Lie
algebras iy, o f.
(b) We have

U(f)eU(f)oiy=U(f)oigof =iguof of =U(fof)oi.

One concludes by appealing to the uniqueness of U(f’ o f) proved in Part
(a). The uniqueness assertion also implies that U(id;) is the identity of
U(L). O

Corollary V.2.3. Let L and L' be Lie algebras and L & L' their direct
sum. Then
ULseL)2U(L)U(L).

PROOF. We first construct an algebra morphism ¢ from U(L & L') to the
algebra U(L) @ U(L'). For any z € L and ' € L', set

flz,2) =i (z) @1+ 1®i.(x).

This formula defines a linear map f from L& L’ into U(L) @ U(L'). Let us
show that f is a morphism of Lie algebras. For z,y € L and z’,y’ € L' we
have

[f(z,2), f(y,y)] = (o) @1+ 1@ (2")((y) @ 1+1®15(y))
— (i) @1+1®i5(y)(iL(z) ® 1+ 1L (z))
= [ig(@),ip()] @1+ 1@ [ig ('), ip (y)]
ig([zy]) @ 1+ 1@ ([, y])

[z, ) [2, ') = F((z,2), (v, 9)])-

Applying Theorem 2.1, we get an algebra morphism ¢ from U(L & L') to
U(L)® U(L").

We now use the universal property of the tensor product of two algebras
in order to build a morphism of algebras ¢ : U(L) ® U(L') — U(L ® L).
The compositions of the canonical injections of L and of L' into L ® I’ and
of the map i 4, are morphisms of Lie algebras. By Theorem 2.1 there exist
morphisms of algebras ¢, : U(L) — U(L& L") and ¢, : U(L') — U(L& L)
such that, for any z € L and 2’ € L', we have

I

V1(2) = ipgr (,0) and Yy(z') =ipgp (0,2").

By Proposition I1.4.1, the formula 1(a ® a’) = ¥, (a),(a’) defines an al-
gebra morphism v from U(L) ® U(L') into U(L & L') provided we show
that 1, (a)yy(a’) = y(a’)hy(a) for all @ € U(L) and o’ € U(L'). We prove
the latter by observing that it is enough to check that v, (a) and ,(a’)
commute when a =z € L and o/ =2’ € L'. Now,
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(@), (@] = fier (@ 0)ipeL (0.2")
= iz (((2,0),(0,2))
= ipep([2,0],[0,27)
= 0.

We claim that the morphisms ¢ and v are inverse of each other. Let
us consider the composition ¥ o ¢. It is an endomorphism of the algebra
U(L @ L) restricting to the identity on the image of L @ L’. Indeed, for all
x€Landz' €L’

(e(z,2') =9 1) +¥(1 @) = iLep ((2,0) +(0,27)) = iLg (z,2).
Consequently, 1 o ¢ = id. A similar argument shows that ¢ o ¥ = id. 0O

Corollaries 2.2 and 2.3 allow us to put a Hopf algebra structure on the
enveloping algebra U(L). Indeed, a comultiplication A on U(L) is defined
by A = poU(§), where § is the diagonal map x — (z,z) from L into L& L
and ¢ is the isomorphism U(L @ L) — U(L) ® U(L) that was built in the
proof of Corollary 2.3. The counit is given by € = U(0) where 0 is the zero
morphism from L into the zero Lie algebra {0}. Finally, the antipode is
defined by S = U(op) where op is the isomorphism from L onto L°P of
Example 1.2.

Proposition V.2.4. The enveloping algebra U(L) is a cocommutative Hopf
algebra for the maps A, €, and S defined above. Forx,,...,x, € L, we have

n—1
A(l’ll'n) = 1®$1"'zn+zzIo‘(l)"'za(p)®‘To(p+1)""ra'(n)

p=1 o
+r,...2,®1

where o runs over all (p, q)-shuffles of the symmetric group S,,, and
S @y...x,) = (=), ... 27

PRoOF. The coassociativity axiom (I11.1.5) is satisfied as a consequence of
the commutativity of the square

C — LaL
lé lid@é

LoL 22 rererl

the counit axiom (IT1.1.6) because of the commutativity of the diagram

0kid ide0
— —

L L

AN T(s S
L

0¢ L La0
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and the cocommutativity (I11.1.7) thanks to the commutativity of the tri-

angle
L

V) N6
LelL -~ L&l
The formula for A results from Theorem I11.2.4. The definition of S and
Lemma II1.3.6 imply that S is an antipode for U(L). |

For the sake of completeness, we give two additional important properties
of enveloping algebras.

Theorem V.2.5. Let L be a Lie algebra.

(a) The algebra U(L) is filtered as a quotient of the tensor algebra T(L)
(graded as in 11.5) and the corresponding graded algebra is isomorphic to
the symmetric algebra on L:

grU(L) = S(L).

Hence, if {v;},c1 is a totally ordered basis of L, {v; ... v; }; < <i el neN
is a basis of U(L).

(b) When the characteristic of the field k is zero, the symmetrization
map n: S(L) — U(L) defined by

1
T](Ul ’Un) = E Z va’(l) ...Ua(n) (21)
© 0ESn
forwvy, ... v, € L, is an isomorphism of coalgebras.

Part (a) of the statement is known as the Poincaré-Birkhoff- Witt The-
orem. For a proof of Theorem 2.5, we refer to [Bou60] [Dix74] [Hum?72]
[Jac79].

We end this section by a few remarks on the representations of Lie al-
gebras. By definition, an L-module is a U(L)-module in the sense of 1.1,
which is the same as a morphism of algebras p : U(L) — End(V). In view
of the universal property of U(L) stated in Theorem 2.1, it is equivalent to
a morphism (still denoted p) of Lie algebras p: L — gl(V'). For z € L and
v €V, set zv = p(z)(v). We observe that (z,v) — zv is a bilinear map
from L x V to V such that

[z,ylv = z(yv) — y(zv) (2.2)

for z,y € L and v € V. Conversely, any bilinear map from L x V to V such

that Relation (2.2) holds for all z,y € L and v € V, defines an L-module.

The L-module V is trivial in the sense of II1.5 if we have zv = 0 for all

z € L and v € V. By definition of the coproduct in the enveloping algebra,

the structure of L-module on the tensor product of two L-modules V' and
V' is given by

z(vV) =20@ v +v® 1 (2.3)
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forz € L, v € V, and v/ € V'. According to IIL5, the Lie algebra acts on
Hom(V, V') by
(2f)(v) = zf(v) — f(zv), (2.4)

which can also be expressed as p(z)(f) = [p(z), f] for f € Hom(V,V’). In
particular, if V' is the trivial module k, then L acts on the dual vector
space V* = Hom(V, k) by

(xf)(v) = —f(zv). (2.5)

Finally, L acts on itself by the so-called adjoint representation which is
given for z,2’ € L by
zz' = [z,2']. (2.6)

V.3 The Lie Algebra sl(2)

To simplify matters, we assume for the rest of this chapter that the ground
field k is the field of complex numbers. The Lie algebra gl(2) = L(M,(k)) of
2 x 2-matrices with complex entries is four-dimensional. The four matrices

=(00) =(V5)
(o 5) =0 1)

form a basis of gl(2). Their commutators are easily computed. We get
[X,Y]=H, [H,X]|=2X, [HY]=-2Y,

and
[,X)=[,Y]|=[,H]=0. (3.1)

The matrices of trace zero in gl(2) form the subspace s[(2) spanned by
the basis {X,Y, H}. Relations (3.1) show that s[(2) is an ideal of gl(2) and
that there is an isomorphism of Lie algebras

gl(2) 2sl(2) B kI,

which reduces the investigation of the Lie algebra gl(2) to that of sl(2).
The enveloping algebra U = U(s(2)) of s[(2) is isomorphic to the algebra
generated by the three elements X, Y, H with the three relations

X,Y]=H, [H X]=2X, [HY]=-2Y. (3.2)

We prove some relations in U.
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Lemma V.3.1. The following relations hold in U for any p,q > 0:
XPH? = (H —2p)iXP?, YPH?=(H+ 2p)Y?,
(X, YP)=pYP""(H —p+1) =p(H +p—- 1)Y?,
[XP,Y]=pXP " (H+p-1)=p(H—-p+1)X""".
PROOF. One proves the first two relations by an easy double induction on
p and q using the relations XH = (H — 2)X and YH = (H + 2)Y, which
is another way of expressing the commutation relations (3.2).

We prove the third relation by induction on p. It trivially holds for p = 1.
When p > 1, we have

[(X,Y?] (X, YP Y + YP X, Y]
(p—1)YP2H-p+2)Y +YP'H
= v (p-DH-p) +H)

= pYP"'(H —p+1).

We conclude by letting Y?~! jump over H according to the second relation.
As for the last relation, it can be obtained from the third one by applying
the automorphism o of sl(2) defined by

oX)=Y, o)=X, o(H)=-H (3.3)
O
Proposition V.3.2. The set {X'YIH*}, | is a basis of U(sl(2)).

PRrROOF. It is a consequence of the Poincaré-Birkhoff-Witt Theorem 2.5.
Another proof can be given, using Ore extensions, along the lines of the
proof of Proposition VI.1.4. O

We close this section by a few remarks on the centre of U. Let us consider
the Casimir element defined as the element

H2

of the enveloping algebra U.
Lemma V.3.3. The Casimir element C belongs to the centre of U.

PROOF. It is enough to show that the Lie brackets of C with H, X, Y
vanish. Now,

[H,C [H,X]Y + X[H,Y]+ [H,Y]X +Y[H, X] + % [H, H?]

2XY —2XY -2YX +2YX =0.

I
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We also have

1 1
X.C] = XIXY)+ [X.YIX + S [X, HJH + 5 HIX, H]
= XH+HX-~-XH-HX =0.

One shows [Y, C] = 0 in a similar fashion. =

Harish-Chandra constructed an isomorphism of algebras from the centre
of U to the polynomial algebra k[¢]. This isomorphism sends C to the
generator ¢ (see for instance [Bou60], Chap. 8 or [Dix74], Chap. 7). As a
consequence, the Casimir element generates the centre of the enveloping
algebra. We shall give full details in the quantum case (see VI1.4).

V.4 Representations of sl(2)

We now determine all finite-dimensional U-modules. We start with the
concept of a highest weight vector.

Definition V.4.1. Let V be a U-module and X be a scalar. A vector v # 0
in V is said to be of weight X\ € k if Hv = Mv. If, in addition, we have
Xv =0, then we say that v is a highest weight vector of weight .

Proposition V.4.2. Any non-zero finite-dimensional U-module V has a
highest weight vector.

PROOF. Since k is algebraically closed and V is finite-dimensional, the
operator H has an eigenvector w # 0 with eigenvalue o: Hw = aw. If
Xw = 0, then w is a highest weight vector and we are done. If not, let us
consider the sequence of vectors X" w. By Lemma 3.1, we have

H(X™w) = (a+ 2n)(X"w).

Consequently, (X" w),,»¢ is a sequence of eigenvectors for H with distinct
eigenvalues. As V is finite-dimensional, H can have but a finite number of
eigenvalues; consequently, there exists an integer n such that X" w # 0 and
X" 1w = 0. The vector X™w is a highest weight vector. a

Lemma V.4.3. Let v be a highest weight vector of weight A\. For p € N,
set v, = % YPy. Then

Hv, = (A=2p)v,, Xv,=(A-p+1v Yu,=(p+1)v,4,

p—1

PROOF. The third relation is trivial; the first two result from Lemma 3.1.
Od

We now state the theorem describing simple finite-dimensional U-modules.
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Theorem V.4.4. (a) Let V be a finite-dimensional U-module generated
by a highest weight vector v of weight X. Then

(i) The scalar X is an integer equal to dim(V) — 1.

(ii) Setting v, = 1/p!YPv, we have v, = 0 for p > X and, in addition,
{v =1y,vy,...,0,} 1s a basis for V.

(iii) The operator H acting on'V is diagonalizable with the (A+1) distinct
eigenvalues {\, X —2,..., A —2X = =}

(iv) Any other highest weight vector in V is a scalar multiple of v and is
of weight A.

(v) The module V is simple.
(b) Any simple finite-dimensional U-module is generated by a highest weight
vector. Two finite-dimensional U-modules generated by highest weight vec-
tors of the same weight are isomorphic.

PROOF. (a) According to Lemma 4.3, the sequence {v, },,>( is a sequence of
eigenvectors for H with distinct eigenvalues. Since V' is finite-dimensional,
there has to exist an integer n such that v,, # 0 and v, ; = 0. The formulas
of Lemma 4.3 then show that v,, = 0 for all m > n and v,, # 0 for all
m < n. We get n = X since we have 0 = Xv,,, = (A —n)v, by Lemma
4.3. The family {v = v,,...,v,} is free, for it is composed of non-zero
eigenvectors for H with distinct eigenvalues. It also generates V; indeed,
the formulas of Lemma 4.3 show that any element of V', which is generated
by v as a module, is a linear combination of the set {v;};. It results that
dim(V) = A+ 1. We have thus proved (i) and (ii). The assertion (iii) is also
a consequence of Lemma 4.3.

(iv) Let v' be another highest weight vector. It is an eigenvector for the
action of H; hence, it is a scalar multiple of some vector v,. But, again by
Lemma 4.3, the vector v, is killed by X if and only 7 = 0.

(v) Let V' be a non-zero U-submodule of V and let v’ be a highest weight
vector of V. Then v’ also is a highest weight vector for V. By (iv), v’ is a
non-zero scalar multiple of v. Therefore v is in V’. Since v generates V', we
must have V C V', which proves that V is simple.

(b) Let v be a highest weight vector of V; if V is simple, then the submod-
ule generated by v is necessarily equal to V. Consequently, V is generated
by a highest weight vector.

If V and V'’ are generated by highest weight vectors v and v" with the
same weight \, then the linear map sending v, to v, for all i is an isomor-
phism of U-modules. O

Up to isomorphism, the simple U-modules are classified by the nonnega-
tive integers: given such an integer m, there exists a unique (up to isomor-
phism) simple U-module of dimension n+ 1, generated by a highest weight
vector of weight n. We denote this module by V(n) and the corresponding
morphism of Lie algebras by p(n) : s{(2) — gli(n+ 1).

For instance, we have V(0) = k and p(0) = 0, which means that the
module V(0) is trivial, as is also the case for all modules of dimension 1.
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More generally, any trivial U-module is isomorphic to a direct sum of copies
of V(0).

Observe that the morphism p(1) : s1(2) — gl(2) is the natural embedding
of 5l(2) into gl(2) and that the module V(2) is isomorphic to the adjoint
representation of sl(2) via the map sending the highest weight vector v,
onto X, v, onto —H and v, onto Y.

As for the higher-dimensional module V(n), the generators X, Y, and
H act by operators represented by the following matrices in the basis

{vg, V1, 0, }:

0 n 0 0
0 0 n—-1 0
p(n)(X) = :
0 O 1
0 O 0 0
o 0 --- 0 0
1 0 0 0
pm)(Y)=| 0 2 0 0 |,
0 0 n 0
and
n 0 0 0
0 n—-2 0 0
p(n)(H) = : i . : :
0 0 e 420
0 0 0 —n

Let us determine the action of the Casimir element on the simple module
V(n).

Lemma V.4.5. Any central element of U acts by a scalar on the sim-
ple module V(n). In particular, the Casimir element C' acts on V(n) by
n(n+2)

multiplication by the scalar ===, which is non-zero when n > 0.

PROOF. Let Z be a central element in U. It commutes with H which decom-
poses V(n) into a direct sum of one-dimensional eigenspaces. Consequently,

the operator Z is diagonal with the same eigenvectors {v = vy, ...,v,} as
H. In particular, there exist scalars «,...,q, such that Zv, = a,v, for
all p. Now

a, Yo, =a, 0+ Vv, = @+ 1) 2y, =2Yv, =YZv, = a,Yu,

Consequently, all scalars a;, are equal, which shows that Z acts as a scalar.
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In order to determine the action of the Casimir element on V(n), we
have only to compute C'v for the highest weight vector v. By (3.4) and by
Lemma 4.3 we get

H? n®>  n(n+2)

C’szYv+YXv+TU:nv+7v— 5

v.

O

We finally show that any finite-dimensional U-module is a direct sum of
simple U-modules.

Theorem V.4.6. Any finite-dimensional U-module is semisimple.

ProOOF. By Proposition 1.1.3, it suffices to show that for any finite-di-
mensional U-module V and any submodule V' of V, there exists another
submodule V' such that V is isomorphic to the direct sum V' & V”. Set
L =sl(2).

1. We shall first prove the existence of such a submodule V" in the
case when V' is of codimension 1 in V. We proceed by induction on the
dimension of V.

If dim(V’) = 0, we may take V" = V. If dim(V') = 1, then necessarily
V' and V/V’ are trivial one-dimensional representations. Therefore there
exists a basis {v; € V', v,} of V such that Lv; = 0 and Lv, C V' = kv,.
Consequently, we have [L, L]v, = 0 for ¢ = 1, 2. Formulas (3.2) show that
the action of L on V is trivial. We thus may take for V" any supplementary
subspace of V' in V.

We now assume that dim(V’) = p > 1 and that the assertion to be proved
holds in all dimensions < p. We have the following alternative: either V' is
simple, or it is not.

1.a. Let us first suppose that V' is not simple; then there exists a sub-
module V; of V' such that 0 < dim(V;) < dim(V') = p. Let 7 be the
canonical projection of V onto V = V/V;. The module V' = =(V’) is a
submodule of V of codimension one and its dimension is < p. This allows
us to apply the induction hypothesis and to find a submodule V" of V such
that V = V7 @ V”. Lifting this isomorphism to V, we get

V=V 4+ (V7).

Now, since dim(V”) = 1, the vector space V] is a submodule of codimension
one of 7~ (V""). We again apply the induction hypothesis in order to find a
submodule V" of 771 (V") such that 7= (V") = V,; @ V". Let us prove that
the one-dimensional submodule V" has the expected properties, namely
V 2 V'®V”. Indeed, the above argument implies that V = V' +V; + V",
now V; is contained in V', which shows that V is the sum of V' and of
V", The formula dim(V) = dim(V’) +dim(V") implies that this is a direct
sum.
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1.b. If the submodule V' is simple of dimension > 1, then Lemma 4.5 im-
plies that the Casimir element C acts on V' as a scalar o # 0. Consequently,
the operator C'/a is the identity on V'. Now V/V" is one-dimensional, hence
a trivial module. Therefore C sends V' into the submodule V', which means
that the map C/a is a projector of V onto V'. As C/a commutes with any
element of U, the map C/« is a morphism of U-modules. By Proposition
1.1.3, the submodule V" = Ker (C/a) is a supplementary submodule to V.

2. General case. We are now given two finite-dimensional modules V' C V
without any restriction on the codimension. We shall reduce the situation
to the codimension-one case by considering vector spaces W’ C W defined
as follows: W [resp. W’] is the subspace of all linear maps from V to V'
whose restriction to V' is a homothety [resp. is zero]. It is clear that W' is
of codimension one in W. In order to reduce to Part 1, we have to equip
W and W’ with U-module structures. We give Hom(V, V') the U-module
structure defined by Relation (2.4). Let us check that W and W' are U-
submodules. For f € W, let o be the scalar such that f(v) = av for all
v € V'; then for any z € L, we have

(@f)(v) = 2f(v) — f(@v) = 2(av) — alav) = 0.

A similar argument proves that W’ is a submodule. Applying Part 1, we
get a one-dimensional submodule W such that W = W' & W”. Let f be
a generator of W”. By definition, it acts on V’ as a scalar o # 0. It follows
that f/« is a projector of V onto V'. To conclude, it suffices to check that f
(hence f/«) is a morphism of modules. Now, since W" is a one-dimensional
submodule, it is trivial. Therefore, we have zf = 0 for all € L, which by
(2.4) translates into zf(v) — f(zv) =0 for allv e V. O

V.5 The Clebsch-Gordan Formula

Given two finite-dimensional U-modules, we consider their tensor product
equipped with the module structure given by Relation (2.3). By Theorem
4.6 it can be decomposed in simple modules. By the distributivity of the
tensor product with respect to direct sums and by Theorems 4.4 and 4.6,
it is enough to decompose V(n) ® V(m) into simple modules. This is the
object of the next assertion known as the Clebsch-Gordan formula.

Proposition V.5.1. Consider two nonnegative integers n > m. Then
there exists an isomorphism of U-modules

Vin)@V(m) 2 Vin+m)oVintm—-2)&---&V(n-m+2)oV(n—m).

Proor. It is enough to prove that, for all p with 0 < p < m, the module
V(n)®V (m) contains a highest weight vector of weight n+m—2p. In effect,
if so, there exists a non-zero morphism of modules from V(n+m — 2p) into
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V(n)®V(m). The module V(n+m— 2p) being simple, the kernel of such a
morphism has to be zero, which means that the morphism is an embedding
of V(n+m—2p) into V(n) ® V(m). The submodules V (n +m — 2p) being
simple and of distinct highest weights, their sum in V(n) ® V(m) is direct.
Thus, the right-hand side of the Clebsch-Gordan formula embeds into the
left-hand side. To conclude, it suffices to check that both sides have the same
dimension. Now the dimension of V(n+m)@®V(n+m—-2)®---dV(n—m)
equals

i(n+m—2p+1) = (n+1)(m+1)
p=0

= dim(V(n))dim(V(m))
= dim(V(n) ® V(m)).

Proposition 5.1 will then be a consequence of the following lemma. |

Lemma V.5.2. Letv be a highest weight vector of V(n) and v’ be a highest
weight vector of V(m). Define v, = 5 YPv and v, = S YP' forp > 0.
Then

i i m P+ ’L) ( 7’)' !

(m —p)n! Vi ® Vp—i

p
=0

is a highest weight vector of V(n) ® V(m) of weight n +m — 2p.
PROOF. Set

m—p+i)l(n—1)!
(m — p)in!

P
—_ /
and w—g 00 @y,
i=0

0; = (-1

It is enough to check that Xw = 0 and Hw = (n + m — 2p)w. The latter
holds because the tensors v; ® v)_; all are of weight n + m — 2p. Indeed,
by Lemma 4.3, we have

p—1

H(v;®wv, ;) =H(v;) ®v,_; +v;,® H(v,_;) = (n+m —2p) v, ® vp_j-

Let us compute Xw. By Lemma 4.3 again, we have

P
Xw = Za pl—l—Zav@X —:)
=0
p
= Za n—i+1) l1®vp1+z (m—p+i+1)vy;Qu, ,;
i=0 i=0

p
= Z (ai(n —i+1)+ao_(m—p+ z)) V1 ® Uy

i=1
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Now,

oa;(n—i+1)+o,_(m—p+i)
(m—p+i)(n—1)!

= (-1 RO (n—i+1)
+(=1) (m—p —1—(;—_11))!)(!2!— i+ 1)! (m—p+1)

O

Remark 5.3. (a) One deduces from Proposition 5.1 that the adjoint repre-
sentation V(2) is related to V(0) and V(1) by

V(1)®? = V(2) e V(0).

(b) The dual module V(n)* is isomorphic to the simple module V (n)
(prove it). Consequently, we have the U-linear isomorphisms

Hom(V(n),V(m)) X V(m)® V(n)" < V(im)® V(n).

V.6 Module-Algebra over a Bialgebra. Action of
s[(2) on the Affine Plane

We now introduce a concept that formalizes nicely many situations where
an algebra acts on another one.

Definition V.6.1. Let H be a bialgebra and A an algebra. We call A a
module-algebra over H if

(a) the vector space underlying A is an H-module, and

(b) the multiplication p: A® A — A and the unitn : k — A of A are
morphisms of H-modules, the tensor product A®@ A and the ground field k
being given the H-module structures described by Relations (I11.5.2-5.3).

In the literature, module-algebras over a bialgebra H are also called H-
algebras. By making explicit Condition (b) of Definition 6.1, we see that A
is a module-algebra over H if the action of H on A satisfies the following
two compatibility relations with the product and the unit of A:

z(ab) = Z (z'a)(z"b) (6.1)
()

and
zl =¢(z)l (6.2)
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where z is an element of H and a,b are elements of A. Here we used
Sweedler’s sigma notation (see I11.1.6). The map € is the counit of the
bialgebra H while 1 is the unit of A.

It is not always convenient to check Relation (6.1) for all elements x of
H. The following result shows that it is enough to check it for a set of
generators.

Lemma V.6.2. Let H be a bialgebra and A be an algebra with a structure
of H-module such that Relation (6.2) holds. Assume that H 1is generated
as an algebra by a subset X whose elements x satisfy Relation (6.1) for all
elements a and b in A. Then A is a module-algebra over H.

PRrROOF. It suffices to check that if Relation (6.1) holds for z and y in H,
then it also holds for their product zy. Now, for all a,b € A, we have

(sy)(ab) = alyab))
= (X waw'y)

(y)

= ¥ (¢w@) (="' o)

(=)(y)

= Y (@v)a)(@"y"e)

(@) (y)

= 3 (@yya) (@y)"s).

(zy)

O

The following examples show that module-algebra structures appear in
a number of situations.

Example 1. Let ¢ be an automorphism of an algebra A. Consider the
algebra k[Z] of the group of integers with the bialgebra structure described
in II1.2, Example 2. If k[Z] acts on A by sending a generator of Z on ¢,

then A becomes a module-algebra over k[Z].

Let us describe module-algebras over enveloping algebras.

Lemma V.6.3. Let L be a Lie algebra. An algebra A is a module-algebra
over U(L) if and only if A has an L-module structure such that the elements
of L act on A as derivations.

PROOF. From Section 2 we know that a U(L)-module is an L-module and
conversely. Assume that A is a module-algebra over U(L). If z € L we have
A(z) =2z ®1+1® z. For such an z, Relation (6.1) becomes

z(ab) = z(a)b + az(b)
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for all a,b € A, which shows that x acts as a derivation. The converse
statement results from Lemma 6.2. O

We now return to the Lie algebra s[(2) and show how the affine plane
becomes a module-algebra over the enveloping algebra U(s{(2)).

Theorem V.6.4. Define an action of the Lie algebra s1(2) on the polyno-
mial algebra k|z,y] by

oP OP oP oP
w@y’ Yoz Y ox yay
where P denotes any polynomial of k[z,y].
(a) Then k[z,y] becomes a module-algebra over U(sl(2)).
(b) The subspace k[z,y], of homogeneous polynomials of degree n is a
submodule of k|x,y] isomorphic to the simple sl(2)-module V (n).

We have thus succeeded in packing into a single module all simple finite-
dimensional U (s(2))-modules, thanks to the notion of module-algebra.

PRrOOF. (a) We shall first check that the above formulas define an action
of sI(2) on k[z,y]. We have

0 oP 0 OP
XYIP = g (vg,) ~vg (o)
or 8P oP 9P
oz T Vayar Yoy Yooy
= HP.

One similarly shows that [H, X]P = 2XP and [H,Y]P = —2YP.

In order to conclude that we have a module-algebra structure, it is enough
in view of Lemma 6.3 to check that the generators X, Y, H act on k[z, y]
as derivations, which is clearly the case.

(b) Fix a non-negative integer n and set v = z™ € k[z,y|,,. Clearly, v is
a highest weight vector of weight n. For all p > 0 we have

1

v,=—=YPu= < n ) A T
p! p

if p <n and v, = 0 if p > n. Since the monomials {v,}, generate k[z, Yl

the latter is a s{(2)-module generated by a highest weight vector of weight
n. Hence, by Theorem 4.4, it is isomorphic to the simple module V(r). O

V.7 Duality between the Hopf Algebras U (sl(2))
and SL(2)

The main objective of this section is to relate this chapter to Chapter I by
building a duality between U = U(s1(2)) and the Hopf algebra SL(2) de-
fined in 1.5. We start with the following definition due to Takeuchi [Tak81].
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Definition V.7.1. Given bialgebras (U, p,n,A,e) and (H,p,n, A, &) and
a bilinear form < , > on U x H, we say that the bilinear form realizes a
duality between U and H, or that the bialgebras U and H are in duality, if
we have

<uv,m>:Z <u,z' >< v,z >, (7.1)
(x)
< u, Ty >:Z <,z ><u’,y >, (7.2)
(u)
<1,z >=¢(x), (7.3)
and
<u,l>=-¢e(u) (7.4)

for allu,v e U and x,y € H.
If, in addition, U and H are Hopf algebras with antipodes S, then they
are said to be in duality if the underlying bialgebras are in duality and if,

moreover, we have
< Su),z>=<u,S(z) > (7.5)

forallue U and x € H.

Let us motivate this definition. Let ¢ be the linear map from U to the
dual vector space H* defined by

ou)(z) =< u,z>.

Similarly, ¥(z)(u) =< u,z > defines a linear map from H to U*. From
Proposition III.1.2 we know that the dual spaces U* and H* carry natural
algebra structures. If, in addition, the vector space H is finite-dimensional,
then the dual space H* has a natural bialgebra structure induced by the one
on H (see II1.2, Example 1). We are now ready to state a characterization
for duality between bialgebras.

Proposition V.7.2. Given bialgebras U and H and a bilinear form < , >
on U x H, the bilinear form realizes a duality between U and H if and only
if the linear maps @ and 1 are morphisms of algebras.

If, moreover, H is finite-dimensional, then the bilinear form realizes a
duality if and only if v is a morphism of bialyebras.

We shall say that the duality between U and H is perfect when both
maps ¢ and 1 are injective. In case U and H are finite-dimensional, a
perfect duality between them induces isomorphisms of bialgebras between
U and H* and between H and U*.

PROOF. Let us express that ¢ is a morphism of algebras. Recall that the
unit of H* is equal to the counit ¢ of H and that the product of two linear
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forms « and § of H* is given by

(@B)(z) = a(z')B(x")
(z)

for all x € H. Then the relations ¢(1) = 1 and p(uv) = p(u)p(v) imply
<l,z>=p()(z) =¢e(z) and

<uv,z> = pw)(@) = (p(u)p(v))(z)

= Z o(u)(@)p(v)(z") = Z <u,z’ ><v,z" >.
(z) (z)

It results that Relations (7.1) and (7.3) of Definition 7.1 are equivalent
to the fact that o is a morphism of algebras. By symmetry, we see that
Relations (7.2) and (7.4) are equivalent to the fact that ¢ is a morphism
of algebras.

Now assume that H is finite-dimensional. Then the dual space H* is
a bialgebra. We have already expressed the fact that ¢ is a morphism of
algebras. Let us express that it is a morphism of coalgebras. On one hand,
the relation ep = ¢ expressing that ¢ preserves the counit reads

e(u) = (ep)(u) = p(u)(1) = <u,1>.

On the other hand, if ¢ preserves the comultiplication, we have

<uzy > = pu)(zy) = Alp(u)(z®y)
= Y o) (@)p")(y)
()

Y o<uiz><uy>.
(u)

Il

Thus, the map ¢ is a morphism of coalgebras if and only if Relations (7.2)
and (7.4) are satisfied. O

We return to the enveloping algebra U = U(sl(2)). We wish to set it
in duality with the Hopf algebra SL(2). Our first task is to construct a
morphism of algebras 1 from the algebra M(2) = k{a, b, ¢, d] (introduced in
1.4) to the dual algebra U*. We shall deduce a bilinear form on U x M(2)
defined by < u,z >= ¥(z)(u) and satisfying Relations (7.2) and (7.4).
Now, building 1 is equivalent to giving four pairwise commuting elements
A,B,C, D of U*.

The definitions of A, B,C, and D use the simple U-module V(1) with
the basis {vg, v;} described in Section 4. Given an element u in U, we set

o= (50 2
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where p is the representation p(1) corresponding to V(1). This defines four
linear forms on U, hence four elements A, B, C, D of the dual space
U*. The comultiplication of U being cocommutative, the dual algebra U*
is commutative. Therefore, the quadruple (A4, B,C, D) defines a unique
morphism of algebras ¢ : M(2) — U™ such that

Pla)=A, () =B, ¢P(c)=C, 9(d)=D. (7.6)

Proposition V.7.3. The bilinear form < u,z >= (z)(u) realizes a du-
ality between the bialgebras U and M(2).

PROOF. It remains to check Relations (7.1) and (7.3). We start with (7.3).
The identity p(1) = 1 yields

(b ariz) =8 m)-(o 1)

_ [ cla) (b
-(5 (7
by definition of the counit in M (2). Now, from Relation (7.2) we get

<lL,bzy>=<l,z><1l,y>.

Both maps z — < 1,z > and ¢ are morphisms of algebras and they coincide
on the generators a,b,c,d of M(2) by (7.7). Therefore, they have to be
equal, which proves Relation (7.3).

We now turn to the proof of Relation (7.1). Let us denote by C(z) the
following condition on an element x of M (2): For any pair (u, v) of elements
of U, we have

<uv,x >= Z <u,z’ ><v,z” >.
(z)
Let us first show that C(1) is satisfied. Indeed, from (7.4) we get

<ww,1 >=¢g(w) =e(u)e(v) =< u,1 ><v,1>.

We next prove that Conditions C(a), C(b),C(c), C(d) hold. By definition,

we have
(u) = u u <u,a> <u,b>
) = C(u) D(u) <u,c> <u,d> )’
Let us express that p(uv) = p(u)p(v). We have

<uv,a > < uv,b>
<uv,c> <uv,d>

_ <u,a> <u,b> <wv,a> <uv,b> (7.8)
T\ <u,ec> <u,d> <wv,c> <v,d> )’ )
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Expanding this matrix product, we get exactly the four desired conditions
since, as we know from Chapter I, the coproduct on M (2) is defined by the

matrix relation
a b a b a b
A(c d>_<c d>®<c d)'

In order to conclude the proof of (7.1), we need to check Condition C(z)
for an arbitrary element z of M(2). To this end, we first observe that if
C(z) and C(y) are verified, then so is C(Az + y) for any scalar }; second,
we use the following lemma, which completes the proof of the proposition.

O

Lemma V.7.4. If Conditions C(z) and C(y) hold, then so does C(zy).

PRrOOF. Relation (7.2), and Conditions C(z) and C(y) imply that

<uw,xY > = Z < (w),z >< (w)",y >

(uv)

I

Z <u'v,z >< Uy >

(u)(v)

= Z <u ' >< v,z <y >< oy >
(u)(v)(x)(y)

They also yield

Z <u, (zy) ><v,(zy)" >
(zy)
= Z <u,z'y ><v,x"y" >
(z)(y)
= Z <,z ><u’y >< o2 >< oy >
(w)(v) (=) (y)
= <uv,xy > .
O

The duality between M(2) and U is not perfect: the morphism 1 is not
injective as the following lemma shows.

Lemma V.7.5. We have y(ad — bc) = 1.

Equivalently, < u,ad — bc >= &(u) for all elements u of U.

PROOF. Lemma 1.5.2 as rephrased in (11.4.5) means that the element ad—bc
is grouplike. Consequently, by (7.1) we have

< uv,ad — be >=< u,ad — bc >< v,ad — bc >
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for any pair (u,v) of elements of U. On the other hand, by (7.3) we have
<1l,ad —bec>=c¢(ad —bc) = 1.

This implies that the linear map u — < u,ad — bc > is a morphism of
algebras from U to k. To show that this morphism coincides with the
counit ¢, it suffices to check that both maps have the same values on the
generators X, Y and H. Now we have

< X,ad — bc >
= gla)< X, d>+< X,a>¢e(d) —e(b) < X,c>—- < X,b>¢(c)
= 0=¢(X).
Similarly, we get < Y,ad — bc >= 0 = £(Y). Finally,
< H,ad — bc >

= gla)< H,d>+ < H,a>¢e(d)—¢e(b) <H,c>— < H,b>e¢(c)
= —-1+1=0=¢(H).
O

As a consequence of the previous lemma, the morphism of algebras 1 :
M(2) — U* factors through SL(2) = M(2)/(ad — bc — 1). We still denote
by % the induced morphism of algebras from SL(2) to U* and by < , >
the corresponding bilinear form.

Theorem V.7.6. The bilinear form < u,z >= ¥(z)(u) realizes a duality
between the Hopf algebras U and SL(2).

PROOF. We already know that ¢ is a morphism of algebras. By Proposition
7.2 we are left with showing that ¢ : U — SL(2)* is a morphism of algebras
too. Now, the projection from M(2) onto SL(2) dualizes to an injective
morphism from SL(2)* into M (2)*. It is clear that, when composing the
latter with ¢, we get the morphism of algebras ¢ : U — M (2)* investigated
earlier. Consequently, ¢ : U — SL(2)" is a morphism of algebras. This
shows that we have a duality between bialgebras.

It remains to examine the antipodes and to check Relation (7.5). Let us
start with the generators. In the abridged matrix form we have

<50, (95 )> = ASE0) = o)

C

One proceeds similarly with Y, H, and 1.
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For arbitrary elements of U and SL(2), we use the following result. O
Lemma V.7.7. Let u,v be elements of U. If
<Suw),z>=<uSx) > and <Sw),z>=<wvS5()>

for all x € SL(2), then < S(wv),x > = < uv, S(x) >. Similarly, let z,y be
elements of SL(2). If

< Su),z>=<u,S(z)> and < Su),y>=<u,Sy) >
forallu e U, then < S(u),zy > = < u, S(zy) >.
PROOF. Theorem I11.3.4 (a) and Definition 7.1 imply that

< S(wv),z > = < 8)S(u),z>
= Z <Sw),z >< S(u),z" >
()

= Z <u,S(z") >< v, S(z') >
(z)

= > <uS@ ><vS@)" >
(S(z))
= <uv,S(z)>.

The proof of the second assertion is similar. O

To the duality between U and SL(2) corresponds a duality between U-
modules and SL(2)-comodules. We now investigate this. In IT1.7 we showed
that the vector space k[z, y],, of homogeneous polynomials of total degree n
had a natural SL(2)-comodule structure. By duality, the dual vector space
k[z,y]: has a module structure over the algebra SL(2)*, hence over the
algebra U via the morphism ¢ : U — SL(2)*. The following result gives
the structure of k[z,y]; as a U-module.

Theorem V.7.8. The U-module k[z,y]}, is simple with highest weight n.

In other words, the SL(2)-comodule k[z,y], corresponds by duality to
the U-module V(n).

PROOF. We shall show that the linear form on k[z, y],, defined by
f(mlyn-l) - 6ni

is a highest weight vector with weight n of the U-module k[, y];,, which will
imply that k[z,y] contains a submodule isomorphic to the simple module
V(n). Since

dim(V(n)) =n + 1 = dim(k[z, y],),

we get klz, |l = V(n).



116 Chapter V. The Lie Algebra of SL(2)

In order to prove that f is a highest weight vector, we need the identity
(uf)(zty""?) = < u,a’c" " > (7.9)

for all u € U and for all i such that 0 < ¢ < n. Indeed, by definition of f,
by I11.6, Example 2 and by Lemma II1.7.4 we have

(uf)(a'y" ™)

1nz
n —

<u rbi—rcsdn—i—s > f(mr—i-syn—r—s)

-
(n >< THTe A0 > §
)

:O s=0

> (;
.l
;

M

n,7+8

T

i n—it
r=0 s=0

= <u,adc

A
) N I u,a"b T dM T > 6,6

n—i,s

7

Let us apply Relation (7.9) to H. A straightforward computation using
(7.2-7.3) and the definition of the bilinear form yields

< H,a'd >=ib,

Consequently, we have (H f)(z'y" ") = né,,;, which implies that Hf =nf.

It remains to prove that X f = 0. This is a consequence of Relation (7.9)
applied to X and of the fact that < X, a’c¢’ >= 0 for all i and j. Let us
prove the latter. First, we have < X,1 >= ¢(X) = 0. Next, if i > 0, we
have by (7.2-7.3)

<X,a'> = ¢ela)< X, 0P >+ < X,a>e(a )
= <X, d"l'>=...=<X,a>=0.

Similarly, if 7 > 0 we get
<X, >=¢c)< X, d' >+ < X,e>e(d7)=0.
Consequently,

< X,d'd >=¢a) < X,dd >+ < X,d" >¢e(d) =0.
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V.8 Exercises

1. Let L be a Lie algebra. Show that [L, L] is an ideal of L and that the
quotient Lie algebra L = L/[L, L] is abelian. Prove that if f is a
morphism of Lie algebras from L to any abelian Lie algebra V', then
there exists a unique linear map f2® from L®® into V such that f is

the composition of f2” and of the canonical projection from L onto
Leb.

2. For any Lie algebra L determine the group of grouplike elements of
the Hopf algebra U(L).

3. Let A be an algebra and Der(A) the vector space of all derivations
of A. Show that the commutator of any two derivations is again a
derivation and that Der(A) is a Lie subalgebra of gl(A).

4. Show that any algebra A is a module-algebra over the enveloping
algebra of the Lie algebra Der(A) and over the bialgebra k[G] where
(7 is the group of algebra automorphisms of A.

5. Let L be a Lie algebra and p : L — gl(V) a finite-dimensional repre-
sentation of L. Define a symmetric bilinear form on L by

<w,y >, =tr(p(z)p(y))

where tr denotes the trace of endomorphisms.
(a) Prove that this form is invariant, i.e., we have
<[zyl,z >,=<=,[y,2] >,

for all z,y,z € L.

(b) Let {z;};<;<4 be a basis of L. Assume the form <, >, non-
degenerate. Define a new basis {z'}; ;<4 of L by requiring that
< z;,2 >, = 6,;. We get an element C, = 3, z,z' of
U(L). Show that C, belongs to the centre of the enveloping
algebra and that tr(p(C,)) = d = dim(L).

(¢) (Whitehead Lemma) Let f : L — V be a linear map satisfying
the relation

fllz,y]) = =f(y) — yf(z)

for all z,y € L. Assume that the form <, > is non-degenerate
and that C, is well-defined. Show that we have

Cf) =a( Y wfah).
1<i<d

Deduce that, when p(C,) is invertible, there exists a vector v in
V' such that f(z) = xv for all z in L.
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10.
11.

12.

13.

14.

15.

Chapter V. The Lie Algebra of SL(2)

Find all invariant symmetric bilinear forms of s{(2) (as defined in the
previous exercise; assume that the field k is of characteristic zero).

Show that the enveloping algebra U(sl(2)) is Noetherian and has no
divisors of zero. Find its centre (Hint: proceed by analogy with VI.4).

Assume that k is a field of characteristic zero. Show that the Lie
algebra s[(2) has no ideals but {0} and the algebra itself. Deduce
that s1(2) = [s[(2),s(2)].

. Show that the dual of the U-module V(n) is isomorphic to V(n).

Determine all Hopf algebra automorphisms of U(sl(2)).

Check that there is an antiautomorphism T of algebras of U(sl(2))
such that T(X) =Y, T(Y) = X, and T(H) = H. Prove that T is a
morphism of coalgebras. Find all non-degenerate symmetric bilinear
forms ( , ) on the simple module V (n) such that (zv,v") = (v, T'(z)v")
for all z € U(sl(2)) and v,v" € V(n). Show that the basis of V(n)
consisting of the vectors vy, . .., v, (defined in Section 4) is orthogonal
for such a form.

(Bialgebra structure on the quantum plane) (a) Show that the formu-
las

Alz)=z®z, Aly)=zy+y®l, e@)=1 £y =0

equip the free algebra k{z,y} and the quantum plane &, [z, y] with a
bialgebra structure.

(b) Prove that an algebra R is a module-algebra over the bialgebra
k{z,y} [resp. over k,[z,y] | if and only if R possesses an algebra
endomorphism 7 and a 7-derivation é [resp. 7 and § such that the
relation 67 = ¢76 holds].

(c) Find all k,[z, y]-algebra structures on the polynomial algebra k[z]
(consider only the ones for which 7 is an automorphism). In par-
ticular, show that, when 7 is the algebra automorphism 7, of k2]
considered in V.2, then § is necessarily a scalar multiple of ¢, (see

Exercise 4 in Chapter IV).

Show that any antilinear involution % on a complex Lie algebra L
such that [z,y|* = [y*,z"] for all z,y € L induces a Hopf *-algebra
structure on U(L).

Prove that there exists a unique Hopf x-algebra structure on U(s[(2))
such that X* =Y, Y* =X, and H* = —H.

Find all Hopf *-algebra structures on U(sl(2)) up to equivalence,
assuming that the ground field is the field of complex numbers.
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V.9 Notes

There exist numerous textbooks on the theory of Lie algebras. See, for
instance, [Bou60][Dix74][Hum72][Jac79][Ser65|[Var74]. The content of this
chapter is essentially taken from these sources. We found the proof of The-
orem 4.6 in Serre’s book [Ser65]. As for Definition 7.1, we took it from
[Tak81]. Let us supplement the content of this chapter with the following
remarks.

(Free Lie algebras) Let X be a set. Consider the smallest Lie subalgebra
L(X) of the free algebra k{X} containing X. Denote by iy the injection
of X into £(X). The free Lie algebra £(X) enjoys the following universal
property: For any set-theoretic map f from X into a Lie algebra L, there
exists a unique morphism of Lie algebras f : £(X) — L such that f = foi .
It follows from this universal property, from Proposition 1.2.1, and from
Theorem 2.1 that there is an isomorphism of algebras

U(L(X)) = k{X}.

A description of bases for £{X) may be found in [Bou60], Chap. 2. See also
[Reu93].

(Primitive elements of the enveloping bialgebra) Any Lie algebra L is
contained in the Lie algebra of primitive elements of its enveloping algebra.
In characteristic zero, this embedding is an equality:

L = Prim(U(L)).

When applied to free algebras, one gets £(X) = Prim(k{X}) (see [Bou60],
Chap. 2).

(Real forms) A real form of a complex Lie algebra L is a real Lie subal-
gebra Ly of L such that the embedding of the complexification Ly ®iLy
into L is an isomorphism of complex Lie algebras. Here 7 denotes a square
root of —1. To any real form of L, one associates its conjugation, which is
the antilinear involutive endomorphism of Lie algebras ¢ given by

olz +iy) =z — iy

for all z,y € Ly. Conversely, given any such involution of L, we obtain a

real form by
Lp={zreL|o(x)=x}

For any real form of L with conjugation o, we define a Hopf *-algebra
structure on the enveloping algebra U(L) by * = SoU(c). In other words,
we have 1* =1 and

(zy...2,)" = (~1)"0(z,)...0(z,)

for all z,,...,z, € L. Conversely, suppose we have a Hopf *-algebra struc-
ture on the enveloping algebra U(L). Since * is a coalgebra morphism, it
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preserves the Lie subalgebra of primitive elements, which is L (we are in
characteristic zero). It is easy to check that the subspace of all elements
2 of L such that z = —z* is a real form of L. We thus see that the real
forms on a complex Lie algebra L are in one-to-one correspondence with
the Hopf *-algebra structures on U(L).

For instance, the real Lie subalgebra su(2) of 2 x 2-matrices M in sl(2)
such that M = —'M is a real form of s[(2). The vectors A = (X —Y),
B =1(X+Y),iH form a real basis of su(2) such that

[A,B]=C, [B,C]=A, [C,A]=B.

This proves that su(2) is isomorphic to the Lie algebra so(3) of real anti-
symmetric 3 x 3-matrices.

(Duality) Theorem 7.6 asserts the existence of a Hopf algebra morphism
from SL(2) to U(sl(2))*. This morphism is actually an isomorphism from
SL(2) to the restricted dual U(sl(2))°. This holds, more generally, for
any simply-connected algebraic group in characteristic zero (see [Abe80]
[Hoc81] [JS91b] [Swe69]).



Chapter VI

The Quantum Enveloping Algebra
of s[(2)

The aim of Chapters VI-VII is to construct a Hopf algebra U, = U, (sl(2))
which is a one-parameter deformation of the enveloping algebra of the Lie
algebra s[(2) investigated in Chapter V, and which is in duality with the
Hopf algebra SL (2) defined in Chapter 1V. It will be our second main
example of a quantum group. When the parameter ¢ is not a root of unity,
the algebra U, has properties parallel to those of the enveloping algebra
of 5[(2). In the present chapter we classify the simple finite-dimensional
modules of U, and determine its centre. We close the chapter with a few
considerations on the case when ¢ is a root of unity.

We assume throughout this chapter that the ground field k& is the field
of complex numbers.

VI.1 The Algebra U,(sl(2))

Let us fix an invertible element g of k different from 1 and —1 so that the
fraction q_é,l is well-defined. We introduce some notation.
For any integer n, set

n

9" —q
[n] = — 1
qa—4q
These g-analogues are more symmetric than the ones defined in IV.2, as
shown by the relations

— qn—l _|_qn~3 + _”_‘_q—n+3 +q—n+1- (11)

[-n] = —[n] and [m+n]=q¢"[m]+q " n] (1.2)
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Observe that, if g is not a root of unity, then [n] # 0 for any non-zero
integer. This is not so when ¢ is a root of unity. In that case, denote by d
its order, i.e., the smallest integer > 1 such that ¢¢ = 1. Since we assume
¢ # 1, we must have d > 2. Define also

e:{ d ifdis odd (1.3)

d/2 when d is even.

Let us agree that d = e = 0o when ¢ is not a root of unity. Now it is easy
to check that
[n] =0 <= n = 0 modulo e. (1.4)

We also have the following versions of factorials and binomial coefficients.
For integers 0 < k < n, set [0]' =1,

(k]! =[1][2] . ..[k] (1.5)
if kK > 0, and
n| [n]!
B = (1
These g-analogues are related to those of IV.2 by

= g~ ()0, [ = g7 2(m) (L.7)

q?>

Hern(3),

With this new notation we can rewrite Proposition IV.2.2 as follows. If z
and y are variables subject to the relation yz = ¢?zy, then we have (n > 0)

and

(x+y)" = Z gk [ Z } T (1.9)

Definition VI.1.1. We define U, = U,(sl(2)) as the algebra generated by
the four variables E,F, K, K~ with the relations

KK '=K'K =1, (1.10)
KEK™'=¢*E, KFK~!'=q?F, (1.11)
and )
K—-K~
q—9q

The rest of the section is devoted to a few elementary properties of U,.
The following lemma has an easy proof left to the reader.
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Lemma VI.1.2. There is a unique algebra automorphism of U, such that

wE)=F, w(F)=E, wkKk)=K"

The automorphism w is sometimes called the Cartan automorphism. We
now state a g-analogue of Lemma V.3.1.

Lemma VI.1.3. Let m > 0 and n € Z. The following relations hold in
U, :
q
EmKn — q—2mn K'nEm, FmKn — q2mn KnFm7

—(m—l)K _ qm—lel

E,F™ = [m]Fme
5,57 = |m) 4
m-1lg —(m—l)K—l
= [mZ 1_ Frel
q9—9q
—(m—l)K — g™ 1K1
m q q m—
[E™ F] = [m] = gt
3 qm—lK _ q—(m—l)KAl
q

PROOF. The first two relations result trivially from Relations (1.11). The
third one is proved by induction on m using

K-K™!

[E,F™ = [E,F™" '|F + F" ' [E,F] = [E,F"Y|F + F™~!
q—q!

as in the proof of Lemma V.3.1. Applying the automorphism w to the third
relation, one gets the fourth one. O

We now describe a basis of U, by showing that U, is an iterated Ore
extension. We refer to 1.7-8 for information concerning Ore extensions.

Proposition V1.1.4. The algebra U, is Noetherian and has no zero divi-
sors. The set {EiFjKZ}iVjeN; ez 18 a basis of U,.

PROOF. Define A, = k[K, K !]. We shall construct two Ore extensions
A, C A, such that A, is isomorphic to U,. First, observe that the algebra
Ag has no zero divisors and is Noetherian as a quotient of a (Noetherian)
two-variable polynomial algebra. The family {K Z} sz is a basis of A,.

Consider the automorphism «; of A, determined by o, (K) = ¢*K and
the corresponding Ore extension A, = Ay[F, aq,0]: the latter has a basis
consisting of the monomials {FjKZ}jeN,zez An argument analogous to
the one used to prove Lemma [V.4.2 shows that A, is the algebra generated
by F,K,K~! and the relation FK = ¢*KF.
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We now build an Ore extension A, = A;[FE, ay, 6] from an automorphism
a; and an «;-derivation of A;. The automorphism «; is defined by

o (FIKY = ¢ **FIK*". (1.13)

Let us take as given for a moment that there exists an a;-derivation é such

that L
K—-K~

Then the following relations hold in A,:
EK = a,(K)E+6(K)=q *KE

and
K—-—K!

-1 -

EF = a,(F)E + §(F) = FE +

From these one easily concludes that A, is isomorphic to U,. It then re-
sults from Corollary 1.7.2 and from Theorem 1.8.3 that U, has the required
properties. O

It remains to prove the following technical lemma in order to complete
the proof of Proposition 1.4.

—1

Lemma VI1.1.5. Denote by 6(F)(K) the Laurent polynomial %, and
set 6(K*) =0 and

S(FIK*Y) = :\i FI7Y8(F) (¢ K)K* (1.14)
=0

when j > 0. Then é extends to an ay-derivation of A;.

PROOF. We must check that, for all j,m € N and all £,n € Z, we have
S(FIK F™K™) = a,(FIKY§(F™K™) + §(FP KO F™K™.  (1.15)

Let us compute the right-hand side of (1.15) using (1.11), (1.13), and (1.14).
We have

o, (FIKSS(F™K™) + §(FI K4 F™K™
m—1

— q—2€ F]K(FmAlé(F) (q~21K)K’n

j—1
+ Y FITS(F) (¢ K)K P K™

=0
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m—1
— q-2£—2€(m~1) Fj+m~16(F)(q—21K)Ké+n
=0
7j—1
+ Z q—%m Fm+j—15(F) (q—2z’-2mK)K€+n
=0
m—1
— q—2€m Fm+j—1(5(F) (q—2iK)K£+n
=0
j+m-—1
+ Z q~22m Fm+j_1(5(F) (q—2iK)KZ+n
j+m—1
_ q-%m ( Z Fj+m_1(5(F) (q—2iK)KZ+n)
=0

— q—2€m6(Fj+mKZ+n)
= S(F'K* F™K™).

V1.2 Relationship with the Enveloping Algebra of
sl(2)

One expects to recover U = U(sl(2)) from U, by setting ¢ = 1. This is
impossible with Definition 1.1. So we first have to give another presentation
for U_.

q

Proposition VI.2.1. The algebra U, is isomorphic to the algebra U,; gen-
erated by the five variables E, F, K, K1, L and the relations

KK '=K1'K=1, (2.1)

KEK'=¢*E, KFK!'=q7?F, (2.2)

{EaF]:Iﬁ (q_q-_l)L:K_Kil’ (23)
([L,E]=q(EK +K'E), [L,F]=—-¢ ' (FK+K 'F). (2.4)

Observe that, contrary to U, the algebra U; is defined for all values of
the parameter ¢, in particular for ¢ = 1. In some sense, it would have been
better to proceed through the whole theory of the quantum enveloping
algebra of s[(2) with U; rather than with U, but the simpler presentation
given in Section 1 is sufficient for our purposes.

PROOF. Set
e(E)=E, @F)=F, ¢K)=K
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and

Y(E)=E, ¢(F)=F ¢K)=K, o()=[EF]
It is clear that ¢ gives rise to a well-defined morphism of algebras from U,
to U, . Let us show that ¢ : U, — U, is well-defined too. It suffices to check
that the images under v of the defining Relations (2.1) hold in the algebra
U,. This is clearly true for Relations (2.1-2.2) and for [E, F] = L. For the
remaining relation in (2.3) we have

(g—q (L) =(q—q YHE,F]=K—-K %
For the first relation in (2.4) we get

w(L).9(B)] = [BFLE] = - _1q_1 K - K1, B]
(P -1D)EK+(?-1)K'E
B qg—q!

= ¢(EK+ K 'E).

One derives the last relation in a similar fashion.
The reader may now verify that ¢ and @ are reciprocal algebra mor-
phisms by checking the necessary relations on the generators. O

The relationship with the enveloping algebra U is given in the following
statement.

Proposition VI1.2.2. If g =1, we have
U, 2U[K]/(K*~1) and U=U{/(K-1).

PROOF. It suffices to prove the first isomorphism. Now U] has the following
presentation: it is generated by E, F, K, K~!, L and Relations (2.1-2.4) in
which ¢ has been replaced by 1, namely

KK *'=K'K=1, (2.5)

KEK '=E, KFK !'=F (2.6)

[E,F]=L, K—-K'=0, (2.7)

[L,E] = (EK + K~'E), [L,F]=—(FK+ K 'F). (2.8)

Relations (2.5-2.6) imply that K is central. Relation (2.7) yields K? = 1,
which allows one to rewrite the Relations (2.8) as

[L,E] =2EK, [L,F]=—2FK. (2.9)

We then get an isomorphism from Uj to U[K]/(K? — 1) by sending E to

XK, FtoY, KtoK,and Lto HK. O

In particular, the projection of Uj onto U is obtained by sending E to
X,FtoY, K tol,and L to H. One may use this projection to rederive
certain relations in U (for instance, Lemma V.3.1) from their g-analogues
in U’.

q
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VI.3 Representations of U,

We assume in this section that the complex parameter ¢ is not a root of
unity. Our aim is to determine all finite-dimensional simple U -modules
under this assumption by closely following the methods of Section V .4.

For any U -module V' and any scalar A # 0, we denote by VA the subspace
of all vectors v in V such that Kv = Av. The scalar A is called a weight of
V if VA # {0}.

Lemma VI.3.1. We have EV> C VI and FV> ¢ V4 X,

PROOF. For v € V* we have
K(Ev) = ¢*E(Kv) = ¢’ XEv and K(Fv) =q *F(Kv) = ¢ 2\ Fu.
O

Definition VI1.3.2. Let V be a U -module and A be a scalar. An element
v # 0 of V is a highest weight vector of weight X if Ev = 0 and if Kv = Av.
A U, -module is a highest weight module of highest weight \ if it is generated
by a highest weight vector of weight .

Proposition VI.3.3. Any non-zero finite-dimensional U -module V' con-
tains a highest weight vector. Moreover, the endomorphisms induced by E
and F' on 'V are nilpotent.

PRroOF. Since £ = C is algebraically closed and V is finite-dimensional,
there exists a non-zero vector w and a scalar « such that Kw = aw. If
Ew = 0, the vector w is a highest weight vector and we are done. If not,
let us consider the sequence of vectors E™w where n runs over the non-
negative integers. According to Lemma 3.1, it is a sequence of eigenvectors
with distinct eigenvalues; consequently, there exists an integer n such that
E™w # 0 and E™" 1w = 0. The vector E™w is a highest weight vector.

In order to show that the action of F on V is nilpotent, it suffices to check
that 0 is the only possible eigenvalue of E. Now, if v is a non-zero eigen-
vector for E with eigenvalue X # 0, then so is K™v with eigenvalue ¢~2" \.
The endomorphism F would then have infinitely many distinct eigenvalues,
which is impossible. The same argument works for F. O

Lemma VI1.3.4. Let v be a highest weight vector of weight A. Set vy = v

and v, = ﬁ FPy for p > 0. Then

—(p=1)y _ gp—1)\!
- q q
Kv, = \q 2pvp, Ev, = = vy, Fv, 1 =[plv,.

PROOF. These relations result from Lemma 1.3. O

We now determine all finite-dimensional simple U -modules.
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Theorem VI.3.5. (a) Let V be a finite-dimensional U,-module generated
by a highest weight vector v of weight A\. Then

(i) The scalar A is of the form A = £ ¢" where e = =1 and n is the integer
defined by dim (V) = n + 1.

(ii) Setting v, = FPv/[p]!, we have v, = 0 for p > n and, in addition,
the set {v = vy, vy,...,v,} is a basis of V.

(iii) The operator K acting on V is diagonalizable with the (n+1) distinct
eigenvalues {eq",eq" 2, ... eq "% eq7"}.

(iv) Any other highest weight vector in 'V is a scalar multiple of v and is
of weight X.

(v) The module V is simple.

(b) Any simple finite-dimensional U,-module is generated by a high-
est weight vector. Two finite-dimensional U-modules generated by highest
wetght vectors of the same weight are isomorphic.

PRrROOF. (a) According to Lemma 3.4, the sequence {vp}pZO is a sequence of
eigenvectors for K with distinct eigenvalues. Since V is finite-dimensional,
there has to exist an integer n such that v, # 0 and v,,,; = 0. The formulas
of Lemma 3.4 then show that v,, = 0 for all m > n and v, # 0 for all
m < n. By Lemma 3.4, we also have

q—n)\ _ qn)\—l

0=FEv, ;= i

U, -
Hence, ¢""\ = ¢"A~!, which is equivalent to A = #¢". The rest of the
proof of (i)—(iil) is as in the classical case (see Theorem V.4.4).

(iv) Let v" be another highest weight vector. It is an eigenvector for the
action of K; hence, it is a scalar multiple of some vector v,. But, again by
Lemma 3.4, the vector v, is killed by E if and only i = 0.

(v) Let V' be a non-zero U, -submodule of V and let v’ be a highest
weight vector of V. Then v’ also is a highest weight vector for V. By (iv),
v’ has to be a non-zero scalar multiple of v. Therefore v is in V'. Since v
generates V', we must have V C V', which proves that V is simple.

(b) The proof is the same as for Theorem V.4.4 (b). O

Theorem 3.5 implies that, up to isomorphism, there exists a unique sim-
ple U -module of dimension n+1 and generated by a highest weight vector
of weight £¢". We denote this module by V, ,, and the corresponding mor-
phism of algebras U, — End(Vs,n) by p. - Observe that the formulas of
Lemma 3.4 may be rewritten as follows for V,

(3.1)

n—2
Kv, =¢eq"" P,
Ev,=¢en-p+1v, 4, (3.2)

and
Fu, 4 = [plv,. (3.3)
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As a special case, we have V_ ; = k. The morphism p, ; is given by

ps,O(K) =g, ps,O(E> = IOE,O(F) =0.

We shall see in VIL.1 that p, ; may be identified with the counit of a Hopf
algebra structure on U,. It will imply that the module V ; is trivial and
that any trivial U, - module is isomorphic to a direct sum of copies of Vi o-
On the other hand, the module V_;  is not trivial.

On the (n + 1)-dimensional module V., the generators E, F and K act

e,mn?

by operators that can be represented on the basis {vy, vy,...,v,} by the
matrices
0 [n] 0 - 0
0 0 [n—1 --- 0
IOE,TL(E):E ’
0 0 ' 1
0 0 0 0
o 0 - 0 0
10 - 0 0
pE TL(F) = O [2] 0 O ?
0 0 n] 0
and
"0 0 0
0 ¢"? 0 0
Pen(K) =¢ ‘ :
0 0 q~n+2 0
0 0 0 qg "

So far, we have built U -modules generated by highest weight vectors
whose weights A had special values. Let us now show that there exist highest
weight modules with arbitrary highest weights.

Let us fix a scalar A # 0. Consider an infinite-dimensional vector space
V(A) with denumerable basis {v;};en- For p > 0, set

Kvp:)\q’m’vp, K~ v =A"1¢%v (3.4)
A= PN
oy = Ty, o=l (39)

and Ev, = 0.

Lemma VI.3.6. Relations (3.4-3.5) define a U, -module structure on V().
The element v, generates V(\) as a U, -module and is a highest weight vec-
tor of weight \.
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PROOF. Immediate computations yield

—1,. _ -1 _
KK v, = Ups K™ Kuv, =0,
-1, _ .2 -1 _ -2
KEK v, = qEvp, KFK v, =¢ Ffup.

‘We also have

g PA— "N g PN — PN
B, Flu, = ([p+1] qg—q* -l q—q! )vf’
q—2p/\ . qZp)\fl
- g—q1 "
K- K1
- ﬁvp'

This proves that Relations (3.4-3.5) define a U -module structure on V().

Next, we have Kvy = Avy and Evy = 0, which means that v, is a highest
weight vector of weight A. Finally, (3.5) implies that v, = FPv;/[p]! for all
p, which proves that V() is generated by vj. |

By analogy with the classical case, the highest weight U, -module V(N
is called the Verma module of highest weight A. It enjoys the following
universal property.

Proposition VIL.3.7. Any highest weight U,-module V' of highest weight
X 1s a quotient of the Verma module V(X).

PRroor. Let v be a highest weight vector generating V. We define a linear
map f from V(X) to V by f(v,) = 1/[p]! FPv. Lemma 3.4 implies that f is
U,-linear. Since f(vy) = v generates V, the map [ is surjective. a

In particular, the simple finite-dimensional module V ,, described above
is a quotient of the Verma module V(eq™). As a consequence, the module
V(A) cannot be simple when X is of the form £¢" where n is a nonnegative
integer.

V1.4 The Harish-Chandra Homomorphism and
the Centre of U,

Our next objective is to describe the centre Z, of U, in case ¢ is not a root
of unity. We assume this throughout this section.

We start by introducing a special central element of U,. It is sometimes
called the quantum Casimir element.
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Proposition V1.4.1. The element

—1 -1 —1g—1
K K K K

7 =~ +f]12 :FE+q +qf12
(g—q71) (g—qY)

belongs to the centre of U,-

C,=EF +

Proo¥. It suffices to check that €, commutes with the generators K, , F.

The commutation with K is clear from KEFK™! = EF. As for E, we
have

gK+q 'K ¢'K+gK™!
EC, =FFE4+ E~—*——=FFE+ ——"——F=CF.
! (g—q1)? (g—q1)? ‘
Similar argument gives the result for F. ]

Let UqK be the subalgebra of U, of all elements commuting with K.

Lemma VI.4.2. An element of U, belongs to UqK if and only if it is of
the form

> F'PE (4.1)

>0
where Py, P, ... are elements of k[K, K 1].
ProOF. This is a consequence of the fact that {F'K*E’}, . ez is a
basis of U, and that K(F'K*E/)K ™" = ¢*0=" FIK‘E7. o
Let us consider the left ideal I = U EN UqK of UqK .
Lemma VL.4.3. We have I = FU,NUS and U = k[K, K~ '@ I.

PROOF. Let u =Y., F'P,E" be an element of UqK. If u also lies in U E,
then P, = 0. Hence, u belongs to FU, N UqK and conversely. Since the form
(4.1) is unique for any element of UqK , we get the desired direct sum. O

It results from I = F Uq N UqK that I is a two-sided ideal and that the

projection ¢ from UqK onto k[K, K~!] is a morphism of algebras. The map
¢ is called the Harish-Chandra homomorphism. It permits one to express
the action of the centre Z, on a highest weight module.

Proposition VI.4.4. Let V' be a highest weight U, -module with highest
weight A. Then, for any central element z of U, and any v € V, we have

z2v = @(z)(A)v.
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Recall that ¢(2) is a Laurent polynomial in K and that ¢(z)()) is its
value at A.

PROOF. Let v, be a highest weight vector generating V and z a central
element of U,. The element z can be written in the form

2=p(2) + ) F'PE"
i>0
Since Ev, = 0 and Kv, = Avy, we get zvy = ¢(2)(N)y,. If v is an arbitrary
element of V', we have v = zv, for some z in Uy; hence,

20 = zavy = x2vy = o(2)(N)zvy = ¢(2)(A)v.

O
Example 1. The definition of the central element C; shows that
qK _ q—lK—l
olC)="——— 4.2
(Co) (¢—q')? (42

Consequently, € acts on a highest weight module of highest weight A as
the multiplication by the scalar

A4 g a7t
Ca (4.3)

(g—q")

Let us now prove that the restriction of the Harish-Chandra homomor-
phism to the centre Z, is injective.

Lemma VI.4.5. Let z € Z,. If p(z) = 0, then z = 0.

PROOF. Let z be an element in the centre such that ¢(z) = 0. Assume
z non-zero; it can be written as z = Ef:k F'P,E' where 0 < k < £ are
integers and Py, ..., P, are non-zero Laurent polynomials in K. Consider
a Verma module V()A) whose highest weight is not a power of g. Then
Relations (3.4-3.5) show that Ev, = 0 if and only if p = 0. Let us apply
z to the vector v, of V(A). On the one hand, Proposition 4.4 implies that
zv, = @(2)(A)v, = 0; on the other, we get

ka = FkPkEkvk =cC Pk(A)'Uk,

where ¢ is a non-zero constant. It follows that P, (A\) = 0. As a consequence,
we have a non-zero polynomial P, with infinitely many roots; hence a
contradiction. a

Verma modules will also allow us to prove a symmetry relation for the
polynomials ¢(z). Before we state this, let us introduce the following nota-
tion. For any Laurent polynomial P in k[K, K '], denote by P the poly-
nomial defined by the change of variable

P(A) = P(g™'\).
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Lemma VI1.4.6. For any element z in the centre Z,, we have

p()(N) = p(z)(A71).

PROOF. For any integer n > 0, consider the Verma module V(¢"™'). By
(3.5) we have

—(n—1) n—1 _ ,n-1_—(n—1)
B, =2 q ¢ 4 v, = 0.

" g—q!

n—1-2n

Thus, v,, is a highest weight vector of weight ¢ = ¢ "1 By Propo-
sition 4.4, a central element z acts on the module generated by v, as the
multiplication by the scalar ¢(z)(¢~""'); but, since v, is in V(¢""!), the
element z also acts as the scalar ¢(2)(¢"!). In other words, we have

0(2)(@™) = ¢(z)(@™").

One concludes by observing that the powers of ¢ form an infinite sequence
of distinct scalars. a

We pause to record the following lemma.

Lemma VI.4.7. Any Laurent polynomial of k[K, K™'] satisfying the re-
lation P(\) = P(A\™Y) is a polynomial in K 4+ K™1.

PrOOF. We proceed by induction on the degree of the polynomial. If the
degree is 0, the statement holds trivially. Let us suppose that the lemma is
proved for all degrees < n and let P be a Laurent polynomial of degree n
such that P()\) = P(A™'). Then we may write P in the form

P(K)=c(K"+ K™")+ (terms of degree < n).

Now,
K'+ K" =(K+ K hH™+ (terms of degree < n).

One concludes by applying the induction hypothesis. a

We are ready to state the main theorem.

Theorem VI.4.8. When q is not a root of unity, the centre Z, of U, 1is
a polynomial algebra generated by the element C,. The restriction of the
Harish-Chandra homomorphism to Z, is an isomorphism onto the subalge-

bra of k[K, K] generated by gK + q 'K .

PrROOF. We already know that the restriction of ¢ to the centre is injective.
We are left with determining its image. By Lemmas 4.6 and 4.7, the latter
is contained in the subalgebra of k[K, K™ '] generated by ¢K + g 'K L
Consider the central element € defined above. By (4.2) we know that

1

- - —1 g1
SD(Cq) - (q _ q_1)2 (qK+ q K )7
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which proves that the image of Z, is the whole subalgebra and that C,
generates the centre. The latter is a polynomial algebra because the powers
of gK + ¢ 'K ~! are linearly independent for obvious reasons of degree.

O

V1.5 Case when ¢ is a Root of Unity

Our next aim is to find all finite-dimensional simple U, q—modules in the case
when the complex parameter g is a root of unity # 1. As we shall quickly
see, the situation is much more complicated than in the generic case when
q is not a root of unity. Define the order d of ¢ and the integer e as in (1.3).
Recall that [e] = 0.

The following theorem asserts that the simple U -modules of sufficiently
low dimensions are the same as in the generic case.

Proposition VI.5.1. Any simple non-zero U, -module of dimension < e
is isomorphic to a module of the form V,_ ,, wheree = +1 and0 <n <e—1.

The modules V, ,, have been described in Section 3.

PRroOOF. The proof is exactly the same as the proof of Theorem 3.5. One
uses the fact that 1,¢%,...,¢*" are distinct scalars when n < e. O

The first big difference with the generic case appears in the following
statement.

Proposition VI.5.2. There is no simple finite-dimensional U -module of
dimension > e.

Before we prove this proposition, we state two lemmas. The first one
implies that the centre of U, is much bigger when ¢ is a root of unity than
when it is not. The second one is a special case of a general statement on
finite-dimensional modules.

Lemma VL.5.3. The elements E¢, F*°, and K¢ belong to the centre of U,,.

PRrROOF. This is a consequence of Relation (1.1) and of Lemma 1.3. Indeed,
E° commutes with K because ¢%¢ = 1 and with F because [e] = 0. Similar
arguments can be applied to F¢ and to K°. o

Lemma VL.5.4. Let z be a central element of U,. Then z acts on any
finite-dimensional simple U -module V' by multiplication by a scalar.

PROOF. Let u be the endomorphism induced by the action of z on V: it
is U, -linear because z is central. Since V is finite-dimensional, the endo-
morphism u has an eigenvalue A. Consider the U -linear endomorphism
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u — Aidy,. Its kernel K is a submodule of the simple module V. Since
K # {0}, we must have K = V. O

Proof of Proposition 5.2. Let us assume that there exists a simple finite-
dimensional module V' of dimension > e. We shall prove that V has a
non-zero submodule of dimension < e. Hence, a contradiction.

(a) Suppose there exists a non-zero eigenvector v € V for the action
of K such that Fv = 0. We claim that the subspace V' generated by
v, Ev,..., E° v is a submodule of dimension < e. It is enough to check
that V' is stable under the action of the generators E, F, K. This is clear
for K. Let us check that V' is stable under E. The vector E(EPv) = EP*ly
belongs to V' if p <e—~ 1. If p=¢e — 1, we have

E(E°19) = E% = cyv

where ¢, is a scalar in view of Lemmas 5.3 and 5.4. Finally, V' is stable
under F' thanks to F'v = 0 and Lemma 1.3.

(b) Now, suppose there is no non-zero eigenvector v € V for the action of
K such that F'v = 0. Let v be a non-zero eigenvector for the action of K. We
have Fv # 0. We claim that the subspace V" generated by v, Fv, ..., F¢ ty
is also a submodule of dimension < e. Again, V" is clearly stable under K.
It is also stable under F since the vector F(FPv) = FPT!y belongs to V"
ifp<e—1.1f p=e—1, we have

F(F 1) = F = cyv

where ¢, is another scalar, again in view of Lemmas 5.3 and 5.4. The scalar
¢, is not zero; otherwise, there would exist an integer p < e such that FPv
would be an eigenvector for K killed by F, which would contradict our
assumption.

In order to check that V” is stable under £, we use the central element
C, defined in Section 4. By Lemma 5.4, it acts on V' by multiplication by
a scalar c3. By definition of C we get for p >0

E(FPy) = EF(FP~l)
-1 -1
¢ K+¢gK -1
= (o, - =25 )
( o (g—qt)? ( )
-1 -1
_ q K +g¢K 1
= g Frly - (FPly),
3 (q . q,1)2 ( )
which shows that E(FPv) sits in V. When p = 0, we use the same argu-
ment after observing that v = c; ' Fv. O

It remains now to find the simple U, -modules in dimension e. We shall
content ourselves with their descriptions, omitting proofs. First, we give
two families of e-dimensional modules.
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The first one depends on three complex numbers A, a, and b. We assume
that A\ # 0. Consider an e-dimensional vector space equipped with a basis
{vg, -+ sVe_1}. For 0 <p<e—1,set

Kv, = )\q72p7)p, (5.1)
_(APA=gPA !

Eq}p—‘,—l = (T*q*:l— [p —+ 1] + ab) 'Up, (52)

Fv,=wv,4, (5.3)

and Evy = av,_{, Fv,_; = byy, and Kv, | = )\q*2(°’_1)v671. These formu-
las endow this vector space with a U, -module structure, denoted V(A a,b).
The second family depends on two scalars u # 0 and ¢. We let E, F, K

act on a vector space with basis {vy,...,v,_;} by
Kuv, = uq2p7)p, (5.4)
—p -1 D
g u =4
Fo,p.=———=—[Pp+1y, (5.5)
q9—4q
Ev, =v,, (5.6)

if0 <p<e—-1andby Fy, =0, Ev,_; = cvy, and Kv, ;| = Mq_Zve_1
otherwise. These formulas determine another U -module, denoted V(p,c).

The following theorem which we admit without proof closes the list of
all simple finite-dimensional U -modules when ¢ is a root of unity.

Theorem VI1.5.5. Any simple U,-module of dimension e is isomorphic to
a module of the following list:

(i) V(A a,b) with b # 0,

(ii) VX, a,0) where X is not of the form +¢' ! for any 1 <j<e—1,

(iii) V(&g 7, c) withc#0 and 1 < j <e—1.

It should be added that all modules V(\, a,b) and V(u, c), including the
ones that are not in the list of Theorem 5.5, are indecomposable.

In the situation under investigation, the algebra U, possesses an inter-
esting finite-dimensional quotient-algebra.

Definition VI.5.6. The algebra Uq is the quotient of the algebra U, by
the two-sided ideal generated by the central elements E°, F®, and K® — 1.

It is not difficult to convince oneself that a finite-dimensional Uq—module
is simple [resp. indecomposable] if and only if it is simple [resp. indecom-
posable] as a U,module. Therefore, in order to have a complete list of all
simple finite-dimensional Uq—modules, it is enough to determine the simple
finite-dimensional U -modules on which E¢, F'® and K — 1 act by 0. This
is done without any difficulty using Theorem 5.5 and Relations (5.1-5.6).
We get the following:
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Theorem VI1.5.7. Any non-zero simple finite-dimensional Uq—module 18
1somorphic to a module of the form

() V,,, with0<n<e—1, or V(g71,0,0) if d = e is odd,

(ii) Vi, , withn even < e—1ifd and e are even,

(ili) V) ,, withn even < e—1, or V_, , withn odd < e—1, or V(—q™',0,0)
if d is even and e is odd.

We shall need the following proposition in IX.6.
Proposition VI1.5.8. The finite set {EiFjKZ}OSi,j,ZSe—l is a basis oqu.

PROOF. Thanks to the commutation relations between the generators,
we are reduced to showing that {FJKZEl}OSiMSe_l*iS a basis of U,.
By Proposition 1.4 it is clear that this set generates U ¢+ It remains to
check that it is free. To this end, we introduce an intermediate quotient-

algebra U defined by U = U,/(E® F°) and we show first that the set
{FJKeEl}OSi’jge_l;gez is a basis of Uq. Let us prove this claim. Again, it
is enough to prove that the set is free.

Let us consider a linear relation of the form

Z = > a;; FIK'E' = 0. (5.7)

0<,j<e—1;r<€<s
We let it act on the vectors v,, of the canonical basis of the module V'(A, 0, 0)
(check that this module is killed by £ and F*¢, but in general not by K¢—1).

We assume that A is neither zero, nor a root of unity. Since Ev, = 0, we
have

N ¢
Zvy = Z a0 FI A vy = Z Qe Av; = 0.
0<i,j<e—1;r<f<s 0<d,j<e—1;r<€<s
(5.8)

Since vy, ..., v,_; are linearly independent, Relation (5.8) implies that

§—r
2

=0

for all j. Writing (5.9) for s — r 4+ 1 distinct complex numbers A, we get a
linear system whose determinant is a non-zero Vandermonde determinant.
Consequently, agje = 0 for all j and £. Next, we apply Z to the vector
vy. The hypothesis made on A implies that Fv, is a non-zero multiple of
vg; hence we get ay;, = 0 for all j and ¢ by the same argument as above.
Applying Z successively to the vectors v, up to v._;, one shows that all
coefficients o, vanish.

Now that we have secured a basis for Uq, we prove Proposition 5.8. We
consider a linear relation of the form

> ey FPKE =0 (5.10)
0<i,j,6<e—1
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in Uq. Denoting by Z the element of U o represented by the left-hand side of
(5.10), we see Z belongs to the two-sided ideal of U, generated by K — 1.
Hence, we have Z = (K® — 1)Y where Y =3 1, . 1. 4e7 ﬁingjKeEi.
Since K€ is central, we get -
Z = > Byl K eE — Y By FIK'E . (5.11)
0<i,j<e—1;¢€Z 0<i,j<e—1;4€Z
Assume Z # 0, hence Y # 0. Denote by d(Z) [resp. by (5(% )] the degree in

K [resp. the degree in K '] of the non-zero element Z of U, written in the
above-mentioned basis. Relation (5.11) implies that

d(Z)=d(Y)+e and 6(Z)=6(Y). (5.12)

Now, by definition of Z, we have
0<6(2)<d(2) <e. (5.13)
Combining (5.12-5.13), we get d(Y') < 0 < §(Z) = 6(Y). This is impossible;
hence, Z = 0. O

V1.6 Exercises

1. Compute [E*, F7] in U,.
2. (Simple Verma modules) Assume that ¢ is not a root of unity. Show

that the Verma module V() is simple if and only if A is not of the
form A = £¢™ with n € N.

3. Prove Theorem 5.5.
4. Prove Theorem 5.7.

5. Assume that ¢ is of finite order d > 2. Let A be a non-zero scalar.
Consider the Verma module V(). Show that F°v, generates a highest

weight submodule of weight A and that the quotient V() of V(\) by
this submodule is a simple U, ,module of dimension e.

6. Under what conditions on A, a, and b is the module V(A a, b) of Sec-
tion 5 a highest weight module?

VI.7 Notes

The algebra U, = U, (s1(2)) is due to Kulish and Reshetikhin [KR81]. Drin-
feld [Dri85][Dri87) and Jimbo [Jim85] independently generalized this con-
struction by defining an algebra U (g) for any complex semisimple Lie
algebra (more generally, for any symmetrizable Kac-Moody Lie algebra) g.
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A complex semisimple Lie algebra is determined by its so-called Cartan
matrix (a,;);<; ;<, (see [Bou60], chap. 8, [Hum?72], [Ser65]). In case g is
of type A, D or E, the Cartan matrix (a;;);<; j<, is symmetric, positive
definite with integral coefficients such that a;; = 2 and a;; =0, -1 if ¢ # j.
Then Drinfeld-Jimbo’s algebra U, (g) can be presented as follows: it is the

algebra generated by (E;, F;, K,, K;l)lsig and the relations
KK'=K'K =1 KK,=KHK,
K,E,K;'=q"E;,,  KF;K '=q “F
K,— K[!
Yog—q!
E,E; = E;E;, and FF;=FF ifa;; =0,

b

[Eij] =6

E?E; ~ 2] E,E;E; + E,E} =0 and F}F; - [2] F;,F;F, + F;F} =0,

if a;; = —1. When a;; = 0if [i = j[ > 1 and a;; = 1 if ¢ —j] =1, we
obtain U, (sl(£+1)). A presentation of U,(g) corresponding to the algebra
U, was given by Lusztig [Lus89].

The algebra U, (g) possesses a Poincaré-Birkhoff-Witt-type basis ([Lus90a]
[Lus90b] [Ros89] [Yam89]) and a quantum Casimir element (see [Jim85}).
Lusztig [Lus88] and Rosso [Ros88] proved that, when g is not a root of
unity, any finite-dimensional simple g-module could be deformed into a
finite-dimensional simple U, (g)-module. A quantum Harish-Chandra ho-
momorphism was constructed by [CK90] [JL92] [Ros90] [Tan90].

Numerous authors have investigated the algebras U (g) and their re-
presentations when ¢ is a root of unity, for instance, [CK90] [CKP92]
[DIMM91] [Lus89] [Lus90b] [RA89] [Sal90] (see also [Ros92]). We refer to
[CK90] [CKP92] for a description of the centre of U,: it is a finite extension
of the polynomial subalgebra generated by E¢, F® and K°. Contrary to the
generic case, there is a bound for the dimension of the finite-dimensional
simple U, -modules. For g = s[(2), this bound is e (see Proposition 5.2).

We owe the treatment of Section 5 (including statements and proofs) to
R. Berger.



Chapter VII

A Hopf Algebra Structure on
Uqg(s1(2))

We assume in this chapter that the field & is the field of complex numbers
and that ¢ is not a root of unity. We now equip the algebra U, = U, (s1(2))
defined in Chapter VI with a Hopf algebra structure. Then we prove that
any finite-dimensional U -module is a direct sum of the simple modules de-
scribed in VI.3. We show later that U, o acts naturally on the quantum plane
of IV.1 and that it is in duality with the Hopf algebra SL (2) of Chapter
IV. We shall also build scalar products on the simple finite-dimensional
U,modules. We describe the quantum Clebsch-Gordan formula and give
the main properties of the quantum Clebsch-Gordan coefficients.

VII.1 Comultiplication

We resume the notation of the previous chapter. Set

AE)=1E+E®K, A(F)=K'®F+F®]1, (1.1)
AK)=K®K, AK H=K 'K, (1.2)
e(B)=¢e(F)=0, eK)=¢K ") =1, (1.3)

and
S(E)=—-EK™', S(F)=-KF, S(K)=K™' S(K*')=K. (14)

Proposition VIL.1.1. Relations (1.1-1.4) endow U, with a Hopf algebra
structure.
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PROOF. (a) We first show that A defines a morphism of algebras from U,
into U, ® U,. It is enough to check that

A(K)AK™H = A(KHA(K) =1, (1.5)
AK)AB)AK™) = PAE), (1.6)
AK)AR)AGK ) = 2 A(F), .7)

am),ar) - 2 e (1.8)

Relations (1.5) are clear. As for (1.6), we have

AK)A(B)A(K™) = (KK)(1E+EQK) (K '@K™1)
= 1®KEK '+ KEK '@K
= (1 E+EQ®K)
= FA(E).

Relation (1.7) is proved in a similar way. Finally, for (1.8) we have

[A(E), A(F)]

= (IQE+EQK)K '®@F+F®1)
—(K'@F+F1)(1RE+E®K)

= K'QFF+FQ®E+FK 'QKF+EF®K
~-K'QFE-K'EQFK -F®RE-FEQK

= K '®[E F|+[E F©K

K'9K-KHY+(K-KYHYeK
g—qt

A(K) - A(KTY)

qg—q! '

(b) Next, we check that A is coassociative. It suffices to do it on the four
generators. We give a sample calculation for E. On the one hand, we have

(ARIDA(E) = (ARID)(1E+ERK) = 1®91RE+1EQK+EQK QK.
On the other hand, we have
(IdRA)A(E) = (dRA)(1QE+EQK) = 1IQ1IQFE+19EQK+FEFQK®K,

which is the same.
(c) It is easy to check that € defines a morphism of algebras from U, onto
k and satisfies the counit axiom.
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(d) It remains to see that S defines an antipode for U,. We have first to
check that S is a morphism of algebras from U, into U, ;’p, namely that the
following four relations hold:

S(K~HS(K)=S(K)S(K™ ') =1, (1.9)

S(K~YHS(E)S(K) = ¢*S(E), (1.10)

S(K~YS(F)S(K) = ¢ 2S(F), (1.11)
_ -1

(S(F), S(B)] = % (1.12)

We give the computations for (1.10) and (1.12). We have

S(K™YS(E)S(K) = -K(EK )K= —?EK ' = ¢*S(E)

and
[S(F),S(E)] = KFEK™'-EK 'KF=|[F,E|
_ K'-K SK)-SK
 oq-q¢t'  q—qt

To conclude that S is an antipode, we appeal to Lemma I11.3.6. It suffices
to check that the relations

Z ' S(x") = Z S(z")2" = e(x)1
(z) (x)

hold when z is any of the generators E, F, K, K ~!. This verification is left
to the reader. ]

We have thus defined a Hopf algebra that is neither commutative nor
cocommutative. Observe also that the square of the antipode is not the
identity (when ¢ # 1). Nevertheless, it is an inner automorphism, as ex-
pressed by the following statement.

Proposition VIL1.2. We have S*(u) = KuK ™" for any u € U,.
PROOF. In effect, we have

S2(E)=¢*E=KEK™', S*F)=¢?F=KFK™,
and S2(K) = K. O

We thus get, just as in Chapter IV, examples of Hopf algebras whose
antipodes have a finite order 2N for any integer N > 1; it suffices to take
any primitive 2N-th root of unity as the parameter g.
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The algebra U; of VI.2 can be endowed with a Hopf algebra structure
such that the isomorphism ¢ : U, — U, (2 of Proposition VI.2.1 preserves the
Hopf algebra structures. In addition to Relations (1.1-1.4), it suffices to set

A(L)=K'®9L+L®K, eL)=0, S(L)=-L. (1.13)

It follows easily that the isomorphism U(s((2)) & U, /(K — 1) is an isomor-
phism of Hopf algebras. In other words, the Hopf algebra structure of U
extends the Hopf algebra structure of the enveloping algebra U(sl(2)).

We end this section by expressing the comultiplication of U o In the basis
described in Proposition VI.1.4.

Proposition VII.1.3. For alli,j € N and £ € Z we have

i J . .
A(EiFJ'KZ) = ZZ qr(i—r)+s(j—s)—2(i_r)(j_s) [ i ] [ Z ]

r=05=0
% Ei—TFSKZ~(j—s) ® ETFj_sKZ-i_(i_T).

ProOOF. First observe that

A(E'FIKY = A(E)YA(F)AK)*
(19 E+E@K)(K'®F+F®1)Y(K'eK".
Now,
(E®K)(1®E)=¢(1QE)(E®K)
and

(KT'oF)(Fel) = (Fl)(K'QF).
Applying Relation (VI.1.9), we get

7 .
i __ r(i—r) ? i—r T o=
A(E)—Zoq [r]E ®E'K
and ‘
J .
J = s(G—s) | J s f—(i—s) j—s
A(F)—Zoq {S]FK ® FI~s.

One concludes with (VI.1.11). O

VIL.2 Semisimplicity

In this section we shall prove that any finite-dimensional U -module is the
direct sum of simple U, -modules when ¢ is not a root of unity, which we
assume in this chapter. Let us start with a technical lemma on the simple
modules V, ,, of VL3.
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Lemma VIL.2.1. There exists an element C of the centre of U, acting by
0 on V_ o and by a non-zero scalar on V,, , when n is an integer > 0 and
e, e =+1.

PROOF. Define

g+q"
(@—q1)?

where C, is the central element introduced in VI.4. By (V1.4.3), C acts on
Voo by

C’:C’q—s

1 1

qg+q q+q
—€ =0,

—a 0 “q-q )2

and on V_, ,, by
R RN

€ .
(g—q1)? (g—q71)?
We have to show that the latter is not 0. If it were, we would have

q2n+2 _{_:E/qn+2 —€E/qn+ 1= 0,

or, equivalently,
("2 —ee')(¢" —ec’) = 0,

which would be contrary to the assumptions. O

We now state a quantum version of Theorem V.4.6.

Theorem VII.2.2. When q is not a root of unity, any finite-dimensional
U,-module 1s semisimple.

PROOF. We follow the proof of Theorem V.4.6 step by step. Recall that it
is enough to prove that if V is any finite-dimensional U_-module and V"' is
any submodule of V, then there exists another submodule V' such that V
is isomorphic to the direct sum V' & V" as a module.

1. We shall first prove the existence of such a submodule V" in the
case when V' is of codimension one in V. We proceed by induction on the
dimension of V.

If dim(V’) = 0, we may take V" = V. If dim(V’) = 1, then necessarily
V' and V/V' are simple one-dimensional modules of respective weights &,
and €,. If the weights €, and &, differ, there exists a basis {v;,v,} of V in
which K acts diagonally. Since Ev, is an eigenvector for K with eigenvalue
siqz # €, we must have Ev; = 0 for ¢ = 1,2. Similarly, F' acts trivially on
V. Hence, the module V is the direct sum of the submodules V' = kv, and
V" = ku,.

Otherwise, there exists a basis {v,, vy} with V' = kv, such that we have
Kwv, =¢ev, and Kv, = €vy, + av;. Again, Ev, is an eigenvector for K with
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eigenvalue eg® # &, hence it is zero. Let us prove that Ev, is zero too.
Indeed, writing Fv, = Av; + vy, we have

AV +p(evytav,) = KEvy = ¢ EKvy = ¢*E(evy+av,) = e¢* (M, +pv,),

which implies pe(g? — 1) = 0 and Ae(¢? — 1) = pa. Thus, A = y = 0. One
proves in a similar way that I acts as 0 on V. Since [F, F] acts as 0, we
have K = K~' on V. In particular, since K_1v2 = gvy — avy, we have
o = —a, hence o = 0. In this situation K is also diagonalizable and we
reach the same conclusion as before.

We now assume that dim(V’) = p > 1 and that the assertion to be
proved holds in dimension < p. There is the following alternative: either
V' is simple, or it is not.

l.a. If V' is not simple, one uses the same argument as in Part 1.a of the
proof of Theorem V.4.6.

1.b. Suppose now that the submodule V"’ is simple of dimension > 1. The
one-dimensional quotient module V/V' has weight € = +1. Let us consider
the operator C' of Lemma 2.1; it acts by 0 on V/V’. Consequently, we have
CV < V’. On the other hand, C acts on V' as multiplication by a scalar
o # 0. It follows that C/a is the identity on V'. Therefore the map C'/« is
a projector of V onto V'. This projector is U,linear since C is central. By
Proposition 1.1.3, the submodule V" = Ker (C/a) meets the requirements.

2. General case. We are now given finite-dimensional modules V' ¢ V
without any restriction on the codimension. We shall reduce to the codimen-
sion-one case by considering vector spaces W’ C W defined as follows: W
[resp. W] is the subspace of all linear maps from V to V’ whose restriction
to V' is a homothety [resp. is zero]. It is clear that W' is of codimension one
in W. In order to reduce to Part 1, we have to equip W and W' with Uy
module structures. We give Hom(V, V") the U -module structure defined
in II1.5. Let us check that W and W' are submodules of Hom(V,V”). For
f € W, let a be the scalar such that f(v) = av for all v € V'; then for all
z €U, and v € V', we have

(xf)(v) = Z 2 f(S(x" ) = a(z a:’S(x”))v = ae(z)v.
(z) ()

A similar argument proves that W’ is a submodule too. Applying Part 1,
we get a one-dimensional submodule W' such that W = W’ & W”. Let
f be a generator of W”. By definition, it acts on V' as a scalar o # 0. It
follows that f/a is a projector of V onto V' and that V" = Ker(f) is a
supplementary subspace of V'. To conclude, it suffices to check that V" is
a U, -submodule of V. Now, since W” is a one-dimensional submodule, it
is simple of weight +1. Therefore, for all z € U, we have xf =+e(x)f. In
particular, if v belongs to V', we have

K™ f(Kv) = (K7 f)(v) = (K7 f(v) =0,
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which implies f(Kv) = 0. This proves that KV” C V”. Similarly, V" is
stable under K1, On the other hand, we have for v, hence for Kv in V",

0 = *e(B)f(Kv)=(Ef)(Kv
= f(S(E)Kv)+ Ef(K 'Kv) = —f(Ev) + Ef(v).

Consequently, f(FEv) = 0, which implies that V" is stable under the action
of E. A similar computation shows that FV” C V". The subspace V" is
therefore a submodule. O

VIL.3 Action of Uy(sl(2)) on the Quantum Plane

This section is the quantum version of V.6. We start with a few generalities
on skew-derivations of an algebra A. For a € A, denote by a, [resp. a,] the
left [resp. right] multiplication by the element a. If o is an automorphism
of the algebra A, we have

cay, =o(a),oc and oa, =0(a),0. (3.1)

Given two automorphisms o and 7 of an algebra A, a linear endomor-
phism 6 of A is called a (o, T)-derivation if

8(aa’) = o(a)é(a’) + 6(a)7(a’) (3.2)
for all a,a’ in A. Relation (3.2) is equivalent to
bay, = o(a),6 + 8(a),r (3.3)

or to
ba, =7(a).6 +6(a),o. (3.4)

It is well-known that, if 6 is a derivation of a commutative algebra, then
a,6 is a derivation too. In a non-commutative situation, this is no longer
the case. Nevertheless, the following assertion holds.

Lemma VIL.3.1. Let 6 be a (o, 7)-derivation of A and a be an element of
A. If there exist algebra automorphisms o' and 7' of A such that

’_ r_
a,.0 =a,0 and a,7 =a,T,

then the linear endomorphism a,6 is a (o, 7)-derivation and a,.6 is a (o, 7')-
derwation.

PROOF. This follows from straightforward computations. O

We now return to the quantum plane A = k [z, y] of IV.1. Let us consider
its algebra automorphisms o, and o, defined by

o.(x) =qr, o,(y)=y, o,(z)=z, o,y =gy (3.5)
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When ¢ = 1, we have 0, = o, = id. We define g-analogues 9,/dx and
0,/0y of the classical partial derivatives by

0,(z"™y") 8,(e™y")
q m—=1,n q m, n—1
———=Im]z and ——— =[n]zx 3.6
= ) 2™y S =y (36)
for all m,n > 0. Let us describe all commutation relations between the
endomorphisms z,, Z,., Yy, Yps Ty Ty, 9,/ 0z, 0,/0y. We say that a commu-
tation relation between two endomorphisms u and v is trivial if uv = vu.

Proposition VII.3.2. (a) Within the algebra of linear endomorphisms of
k,[z,y], all commutation relations between the above siz endomorphisms
are trivial, except the following ones:

Yoo = dTeYy, LrYr = qYy Ty
OzZpr = 4Lg O OyYer = qYe v 0y
L T S A
Oz * oz’ oy Y Yoy’
13) 17) 9, 9,
a—ye = qyza ) a—yﬂfr = qxra_yv
13) .0 9, !
Gple T4 Ty, T O T ATeg T O,

9, 1 3)

We also have

0 o —_ g1 0 o —o !

q x x q
Tp— = and Y. — = .
tox ~ q—q" "oy q—q7!

. , . o o 8
(b) The endomorphism % is a (o, lay, 0, )-derivation and, similarly, 3y
is a (oy,amagl)—derwation.

PROOF. (a) This part results from easy, but fastidious computations.
(b) First observe that, if Relation (3.3) holds for two elements a, a’ of A,
then it holds for their product aa’. Indeed, we have

§(aad’), = ba,a;
= of(a),ba, + &(a),Tay
= o(a)0(a)6 +0a(a),8(a’),m + 8(a),T(a)er
= c(aa),8 + 6(ad),T.
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We are reduced to checking Relation (3.3) for 9,/0z and 0,/0y in the case
when a = z and a = y. For §,/0x we have

0 0.z 0 0
(07'0) @)z + (2) 0n =0 ezt + 0. = 5E

Ly

by Proposition 3.2(a). We also have

0 0,y 0 0
-1 q q _ 9 _ “q
(05 7)) W)eg, + ((% )e% = Weg, = g
Similar computations can be carried out for 9,/9y. ]

We now show how the “quantum partial derivatives” % and g—; endow

the quantum plane with the structure of a module-algebra (as defined in
V.6.1) over the Hopf algebra U, .

Theorem VIL.3.3. For any P € k [z,y], set

Ep— o,P P a,p
=v gy FP= 5y
KP = (0,0,")(P), K™'P = (0,0, ")(P). (3.7)

(a) Formulas (3.7) define the structure of a U,-module-algebra on k[, y].

(b) The subspace k, [z,y],, of homogeneous elements of degree n is a U,-
submodule of the quantum plane. It is generated by the highest weight vector
x™ and is isomorphic to the simple module V, ,,.

Theorem 3.3 is the quantum version of Theorem V.6.4. It shows that the
quantum plane contains all finite-dimensional simple U -modules.

PROOF. (a) We first show that the formulas (3.7) equip k/[z,y] with a
U,-module structure. In other words, we have to check Relations (VI.1.10-
1.12). We use Proposition 3.2.

Relation (1.10) is trivially verified. For Relation (1.11) we have

0,

KEK™' = o,0 lxeg—o ot
8
= qazeay 8

0
2 q 2
Zay

One proves KFK™! = ¢ 2F in a similar fashion. As for (1.12), we have



VII.3 Action of Uy(sl(2)) on the Quantum Plane 149

0, 0 g, 0

= Sy 24y L 4
[E7 F] - Iéayy'r 5:1: Yy al‘wé 8y
9, 0 9 9, 0 0
_ 1 9 g 9 _ -1 99 _ 4
=0 Ty ae T gy 1 Mgy T Y7oy
0 ?

Ilaya_; - yraa:-a%
Uy(ax - Jm_l) - Ux(ay - 0';1)
q—q!
Ux0;1 - UyJ;I
q—q!
K-K!
g—qt

We now prove that the quantum plane is a U -algebra. By Lemma V.6.2,
it is enough to check that for any u € U, we have

ul = e(u)l, (3.8)
and

K(PQ) = K(P)K(Q), (3.9)

E(PQ) = PE(Q) + E(P)K(Q), (3.10)

F(PQ) = K '(P)F(Q)+ F(P)Q, (3.11)

for any pair (P, Q) of elements of the quantum plane. Relation (3.8) fol-
lows easily from (3.5-3.7) and Relation (3.9) from the fact that K acts as
an algebra automorphism. By Lemma 3.1 and by Proposition 3.2(b), the
endomorphism :Ugg—z is a (id, 0,0, !)-derivation and yT% is a (a;lay, id)-

derivation, which implies Relations (3.10-3.11).
(b) We have Exz" =0, Kz" = ¢"z", and

1 [n]!
— FP(z") =¢q P PP
[p]![n — p]!
Consequently, ™ is a highest weight vector of weight ¢" and generates the
submodule k, [z, ], ]

Observe that [E, F| acts on the quantum plane as the operator

0 7)

l‘zdya—; - yro—ma_z.

Its “limit when ¢ tends to 17 is the operator 8/0x — y0/0y by which the
element I of s[(2) acts on the affine plane (see Theorem V.6.4).
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VII.4 Duality between the Hopf Algebras
U,(s1(2)) and SL,(2)

We now relate this chapter to Chapter IV by showing that U, is in duality
with the Hopf algebra SL (2) defined in IV.6. We use the concept of duality
introduced in V.7.

As in V.7, our first task is to construct an algebra morphism 1 from the
algebra M (2) (defined in IV.3) into the dual algebra U;. We shall deduce
a bilinear form on U, x M, (2) defined by < u,z >= 9(z)(u) and satisfying
Relations (V.7.2) and (V.7.4). Giving the morphism ¢ is equivalent to
giving four elements A, B,C, D in U satisfying the six defining relations
of M,(2) (see IV.3).

The definitions of A, B,C, D use the simple U, -module V; ; of highest
weight ¢ and with basis {v,, v, }. The matrix representations of the gener-
ators E, F and K in this basis have been given in VI.3. Setting p = p, 4,
we have

o =(0 o) se=(10) wm=(8 ) @y

More generally, for any element u of U, define

A(u) B(u
plu) = ( Cgug Dgu; ) . (4.2)
We thus get four linear forms on U, hence four elements A,B,C,D of Uy .
Lemma VIL.4.1. The quadruple (A, B,C, D) is a U -point of M(2).

PRrooOF. This is done by a direct, but laborious checking. First, one has to
compute in Uy the twelve products AB, BA, AC, CA,... formed by all
pairs of distinct elements of the set {A, B, C, D}. Recall that the product
of any two elements z,y of U; is given by

(zy)(u) =Y a(u)y(u"). (4.3)
(w)
It suffices to evaluate (zy)(u) on the basis {E‘FVK*} of U, Let us set

u=E'F/K* When i > 2 or when j > 2, we see from Proposition 1.3 that
in the sum >, v’ ®@u", either u’ or u” contains powers of E or of I with

exponents > 1. Now, by (4.1), p(E*FIK*) = p(E)'p(F)’p(K)* vanishes
when i > 1 or j > 1. Consequently, if z,y € {A, B,C, D}, we have
(ey)(B'F K =0

whenever i > 2 or j > 2. It therefore remains to evaluate the products on
the elements E*F7 K¢ where 0 <i < 2and 0 <j < 2.
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(i) If u = K*, we have A(K*) = K* ® K* and all products evaluated on
u vanish, except that

(AD)(u) = (DA)(u) = 1. (4.4)

(ii) If u = FK*, we have A(FK*) = K71 ® FK* 4+ FK* @ K* and all
products evaluated on u vanish, except that

(CA)(w) = ¢(AC)(u) = ¢** and (DC)(u) =¢(CD)(u) =q. (4.5)
(i) If u = F2K*, we have
A(F?K*) = oy FK* ' @ FK* 4 (terms of degree > 2 in F)

and all products evaluated on u vanish.

(iv) If u = EK’, we have A(EK*) = EK‘ ® K**' + K* ® EK* and all
products evaluated on u vanish, except that

(BA)(u) = q(AB)(w) = ¢ and (DB)(u) = q(BD)(u)=q"*. (4.6)

(v) If u = EFK*, we have

A(EFKY = K“'® EFK'+EFK'@ K™
+ FK'QEK '+ ¢ 2EK'" ' @ FK*!

and all products evaluated on u vanish, except that
(BCO)(u) = (CB)(u) =1, (DA)(u)=g¢, and (AD)(u)=g¢"'. (4.7)
(vi) If u = EF?K*, we have

A(EF?KY = o,(FK' '@ BFK'+ ¢ ?EFK" ! ® FK*T)
+ (terms of degree > 2in F)

and all products evaluated on u vanish, except
(CA)(u) = q(AC)(u) = ay ¢* . (4.8)
(vii) If u = E2K*, we have
A(E’K®) = ay EK* @ EK“T! + (terms of degree > 2in E)

and all products evaluated on u vanish.
(viii) If u = E?FK?*, we have

A(E*FKY = o,(EFK'® EK*"' + ¢ ?EK*"' @ EFK')
+ (terms of degree > 2in E)
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and all products evaluated on u vanish, except
(BA)(u) = q(AB)(u) = a. (4.9)
(ix) If u = E?F?K*, we have
A(E*F?KY) = oy EFK* '@ EF K*'!  (terms of degree > 2 in E and F)

and all products evaluated on v vanish.

In Cases (iii) and (vi-ix) we denoted by «;, oy, g, oy, and oy scalars
that are well-defined, but about which we need not be explicit. From this
case-by-case analysis, it is easy to check that A, B,C, D satisfy the six
defining relations of M q(2). As a sample calculation, we check the most
involved relation, namely

DA—AD = (¢—q ') BC.

From the above observations, we see that it is enough to perform the check-
ing for u = K*, which is trivial, and for u = EFK*. In the latter case, (4.7)
implies
(DA—AD)(u) =q—q ' =(q—q7") (BO)(u).
O

As a consequence of Lemma 4.1 and of IV.3, there exists a unique mor-
phism of algebras ¢ from M (2) into U; such that

Proposition VIL.4.2. The bilinear form < u,x >= 9¥(z)(u) realizes a
duality between the bialgebras U, and M, (2).

PROOF. The comultiplication and the counit of Mq(Z) being the same as
those of M (2), the proof follows along the same lines as in the proof of
Proposition V.7.3. O

The duality between M, (2) and U, is not perfect, just as in the classical
case.

Lemma VIL.4.3. For the quantum determinant det, = da—qbc of M,(2),
we have (det,) = 1.

Equivalently, < u,det, >= ¢(u) for all elements u of U,.

ProOOF. By Theorem IV.5.1, the element detq is grouplike, i.e., we have
A(det,) = det, ® det,. It results that the map u — < u,det, > is a
morphism of algebras from U, to k. To show that this morphism coincides
with the counit ¢, it suffices to check that both maps take the same values
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on the generators F, F, K and K~!. Using (V.7.2-7.3) and (1.1), we get
for E:

< B, det, >
= < Fk,da>—-—q<FE bc>
= eld)<Ea>+<Ed><K,a>
—ge(b) < E,c> —q< E,b>< K,c>
= 0=¢(E).

For K we have

< K,det, > = < K,da>—q< K,bc >
= <K, d><K,a>—-q<K,b><K,c>
= ¢ 'g=1=¢e(K).

Similar computations can be carried out for F and K1, |

As a consequence of Lemma 4.3, the algebra morphism ¢ from M, (2)
to Uy factors through SL,(2) = M, (2)/(det, — 1). We still denote by v
the induced morphism of algebras from SL,(2) into U; and by <, > the
corresponding bilinear form.

Theorem VIIL.4.4. The bilinear form < u,z > = ¢(x)(u) realizes a dual-
ity between the Hopf algebras U, and SL(2).

Proor. We use the same argument as in the proof of Theorem V.7.6. The
only difference lies with the antipodes. We first check Relation (V.7.5) for
the generators. Using the condensed matrix form, we have

<s@), (45 ) >= s =~ = (o )

:<E,( %1 _qb)>:<E,<g(a) S(b)>>.

—-q ¢ a

For F we have

n( e )eeen(3 )-

One proceeds with K and K~ similarly. To conclude, one appeals to
Lemma V.7.7. O
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VIL.5 Duality between U,(s[(2))-Modules and
SL,(2)-Comodules

Exactly as in the classical case considered in V.7, there is a duality between
U,-modules and SL,(2)-comodules. We have seen in IV.7 that the vector
space k, [z,y],, of homogeneous elements of degree n of the quantum plane
has a natural structure as an SLq(Q)—comodule. By duality, the dual vector
space k,[z,y];, has a module structure over the algebra SL (2)", hence
over the algebra U, via the morphism ¢ : U, — SL,(2)*. The following
statement gives the structure of k [z, y];, as a U,-module.

Theorem VIL5.1. The U -module k,[z,y];, is isomorphic to the simple
module V, ,, of highest weight q".

Thus, the SL,(2)-comodule k, [x,y],, corresponds by duality to the Uy
module V, .

PROOF. We shall show that the linear form on k,[z,y],, defined by

f(xiyn_i) = (sni
is a highest weight vector, with weight ¢", of the U -module k, [z, y]r, which
implies that k, [z, y];, contains a submodule isomorphic to the simple mod-
ule V, ,,. Since
dim(V,,)=n+1= dim(kq[x, ylr),
we get k(2,45 2V,
In order to prove that f is a highest weight vector, we need the relation

(uf)(@'y" ™) =< u,a’'c"" > (5.1)

for all u € Uq and for all 7 such that 0 < 7 < n. But this is so since,
by definition of f, by I11.6, Example 2, by Lemma IV.7.2, and using the

abbreviation ' .
_ -ms [ P n-—1i

o=a (1), (731),

q q

to shorten the formulas, we have

@NE'Y") = (e Ay

- ZZ Cp, <u,d’b"cd" 0 > fa"Hy" )

r=0 s=0
i n—i ' |

- ZZ CT,S < u, a’ bt retdr T e > 6n,T+s
r=0 s=0

- ZZ C”'vs < u, a’Tbi_TCSdn—_ihs > 6i,r5nAi,S
r=0 s=0

1,.n—1

= <ua'c" "t >.
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Let us apply Relation (5.1) to K. A straightforward computation yields
<K,d'd >=<K,a>'< K,ce > =6,,q".
Consequently, we have (K f)(z'y"™") = 6,,q¢" = 6,,¢", which implies that
Kf=q"f.

It remains to prove that Ef = 0. This is a consequence of Relation (5.1)
applied to E and of the fact that < F,a'¢” >= 0 for all 7 and j. Let us
prove the latter. First, we have < E,1 >= ¢(E) = 0. Next, if ¢ > 0 we
have by (V.7.2-7.3)

<E,a> = €a)<Ed'>+<Ea><K,ad !>
<Ed '>=...=<Ea>=0.

Similarly, if 7 > 0 we get
<Ed>=¢elc)<E,d'>+<Ec><K, I '>=0.
Consequently,

<E,ddd >=¢la)' < E,d >+ < E,a' >< K,dd >=0.

VIL.6 Scalar Products on U,(sl(2))-Modules

In this section, given any finite-dimensional U -module V', we construct a
scalar product, i.e., a non-degenerate symmetric bilinear form ( ,) on V
such that

(zv,v") = (v, T(x)v") (6.1)

for all z € U, and v, v’ € V. The linear map T is the algebra antiautomor-

phism of U, defined as follows.

Proposition VII.6.1. There ezists a unique algebra antiautomorphism T
of U, such that T(E) = KF, T(F) = EK™! and T(K) = K. The auto-
morphism T is also a morphism of coalgebras.

PRroOOF. Left to the reader. O

By Theorem 2.2, it is enough to construct a scalar product on any simple
U,-module of the form V, . This is done in the following theorem.

Theorem VIL.6.2. On the simple U, -module V, ,, generated by the highest
weight vector v, there exists a unique scalar product such that (v,v) = 1. If
we define the vectors v; for alli > 0 by v, = F'v/[i]!, then they are pairwise
orthogonal and we have

—(n—i—1)i n
(v;,v;) = ¢ (it [ i ]
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PROOF. Let us first assume that there exists a scalar product on V, , such
that (v,v) = 1. Let us show that (v;,v;) is necessarily of the prescribed
form. By definition and by (6.1) we have

(v;,v;) = 1 (F'v,v;) = 1 (v, T(F);) = 1 (v, (EK 1))

A ] T g s
An easy induction on 7 shows that (EK~1)! = ¢?*1) K—E" for any i > 0.
Consequently, the vector T' (F)ivj is a scalar multiple of Eivj which vanishes
as soon as ¢ > j. Therefore (v,, vj) = 0if 7 > j. By symmetry, we also have
(v,v;) =0if i < j.
We need the formula

i ;[ —j +1]!
Ev; =¢" o Y
[n = ]!
to compute (v;,v;). We have
L i —i i
(v v;) = e D (v, KT E',)

TN n|! i
_ Ezqz(z+)Wh(v’K ’U)

i(i+1)—ni | T
= q(+1)n [iJ(vvv)'

This proves the uniqueness of the scalar product. Let us now prove its
existence.
Clearly, there exists a non-degenerate symmetric bilinear form such that

(v v;) = g (T { K ] bij- (6.2)

1

We have to check that it satisfies Relation (6.1). It is enough to check this
for x = E, F, K and K. We shall do this for 2 = E leaving all other
computations to the reader. On the one hand, we have

[n]!
[t —1]![n — ]!

On the other hand, by (VI1.3.1-3.3) and by (6.2), we have
(vi’T(E)vj) = ('UivKF")j)
= 5(]”?2(]*1)[‘7' +1] (vi’vj+1)

(Ev,, v;) =¢eln—i+ 1](vi_1,vj) =eb;_1 g~ (=061

— 56i,j+1 qv(n~z—1)z+n—2(]+1) [] + 1] [TL]

[l — 4!

_ —(n—i)(i—1 [n]!
= &6,,,.14 (n=9)(i )m = (Ev;,v;).
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VIL.7 Quantum Clebsch-Gordan

‘We now prove a quantum Clebsch-Gordan formula for the finite-dimensional
simple U -modules. Since

‘é,n = €,0 ® Vvl,n = Vl,n ® VvE,O’ (71)

we need give this formula only for the modules V; ,,, henceforth denoted
for simplicity by V,,.

Theorem VIL.7.1. Let n > m be two nonnegative integers. There exists
an isomorphism of U,-modules

V@V, 2V, 0V, @OV, _

One proves Theorem 7.1 in the same way as Proposition V.5.1. It suffices
to check that the module V, ®V,, contains a highest weight vector of weight
¢q"T™~2P for any integer p such that 0 < p < m.

Lemma VIL7.2. Let v'™) be a highest weight vector of weight ¢ in V.,
and v'"™ be a highest weight vector of weight ¢™ in V... Let us define

vé”) = ﬁva(") and vém) = [—}’%va(m) for allp > 0. Then,
P .
(n+m~2p) __ 4 [m -p+ Z] [Tl - Z] —i(m—2p+i+1) (”) (m)
v = —1) q &® U —1i
2 ]

is a highest weight vector of weight ¢" ™= ?P in V,@V,.

PROOF. 1t is clear that vgn) ® vz(ffl)- has weight ¢

Let us prove that Ev(»*™~2P) = 0. Recall that A(E) =1 E+ E® K. It
follows that

n—2i+m—2(p—1i) _ qn+m—2p

Ep{ntm—2p)

p . .
_ _pyi o p il =t - 41 () i (™)

[m — pl[n]! '

+
QM’UOA

—i(m—2p+i+1) E’U(n ®K’U(m)

7

im p+i]lfn — ]!
- pllfalt

[m —p+dl[n — ]! g~ im=2p+itD)

(1 fm = potitd] [m — pJ![n]!

-

+
\M’U @

I
o=l

i

m)

()®v ™)

(_1)7: n—i+1] [m —p+d]![n — ]! q—z(m 2p+it+1)+(m—2p+2i)
[m — p]![n]!
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(n)

xo{™ @ o™

p—i
- ij(_l)i<[m—?+i]’[ﬁ*]'i+1]! ~(i=1)(m—2p+)
5 m — p|![n]!
=0
m—p+iln—i+1]' i 1 m—2psi n
e )0 )
!

O

This concludes the proof of Theorem 7.1. We wish to go one step further
and address the following problem. We now have two bases of V,, ® V,,, at
our disposal. They are of different natures: the first one, adapted to the
tensor product, is the set

{UEH) ® Ug(m)}ogign,ogjgm ;
the second one, formed by the vectors

(n+m—2p) _ 1 kg (ntm—2p)

g (k]!

with 0 < p <m and 0 < k < n+m — 2p, is better adapted to the U, -
module structure. Comparing both bases leads us to the so-called quantum
Clebsch-Gordan coefficients

n m n+m-—2p
i g k

defined for 0 <p<mand 0 <k <n+m—2p by
(n+m-—2p) _ nom n+m-=2p | m  (m)
Uy, = Z [z ; 3 ]vi ®v; . (7.2)
0<i<n, 0<j<m

The remainder of this section is devoted to a few properties of these coef-
ficients, also called quantum 3j-symbols in the physics literature.

Lemma VII.7.3. Fizp and k. The vector v,(c"+m“2p) is a linear combina-

f") ® v;’f2+k. Therefore, we have

n m n+m-—2p |
{Z. ; " ]_o (7.3)

tion of vectors of the form v

when i+ j # p+ k. We also have the induction relation

n m n+m-2p| [+ He ™2+ [n m n+m—2p
i G+l k4l |7 [kt 1] i k
(7.4)
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ProOF. This goes by induction on k. The assertion holds for £ = 0 thanks
to Lemma 7.2. Supposing

n+m 2p) _ (n) m)
7] ’U
2 : p i+k?

we get

[k’~|—1] (n+m—2p) — (n+m 2p)

Vk+1
= Z J(E M @ P+ o ool )
= Z o ([P~i+k+1] “n20 ) ™
i

+ i+ 1ol @ v;’f§+k)

=3 o (it B+l O )l @l
The rest follows easily. |
We now prove some orthogonality relations for the quantum Clebsch-
Gordan coeflicients, which will allow us to express the basis {vi(n) ®v§-m)}i7j
in terms of the basis {v,(CnMn_Zp) }p.k- Let us equip V,, and V,, with the scalar
product (, ) defined in Section 6. Consider the symmetric bilinear form on
V, ®V,, given by
(v ®vivv2 ®’U/2) = (vl’vz)(v/hvlz) (7.5)
where v,,v, € V, and v},v) € V,,,.
Lemma VIL.7.4. The symmetric bilinear form (7.5) is non-degenerate
and the basis {v ™ & v(m)} ; is orthogonal. Furthermore, for all x € U,
and all w,w, €V, ® V , we have
(xwh wZ) = (w17 T(x)wz)-
PRrROOF. The first two assertions are clear. Let us prove the last one. If
w, = v; @ v] and wy = v, ® vy, we have

(zwy,wy) = (Alz)(v; ® V1), vy ® vy)

= 2 @)@} )
(=)

= 3 (. T(a')w,) (0, T(a"Yh)
(x)

= Y @0 T(@) u)(0}, ()" 0h)
(T(x))

= (wy, T(x)w,y),
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using the fact that 7 is an automorphism of coalgebras (see Proposition

6.1). |
The second basis of V,, ® V,,, is orthogonal too.

Proposition VIL.7.5. (a) The basis {vl(cn+m72p)}OSpSm,OSkSn-{—m—Z}) 18

orthogonal.
(b) Fiz integers p,q,k,L. We have the following orthogonality relations:

Z q—i(n—i—l)—j(m—j—-l) n m
— i J
1.7

n m n+m-—2p n o m n+m-—2q
x| S
17 k T 7 14

when p#q or k # ¢, and
2
Z q—i(n—ifl)fj(mwj—l) { n ] { m ] [ n.om n+m—2p ]
oy 1 3J i g k

—k(n+m—2p—k—1) [ n+m—2p J .

(c) Given i and j, we have

(n) (m) _ ~i(n—i—1)—j(m—j-1) | T m
noenT e LG
m
J

n n+m-—2p
> f: "+§:2p k(n+m—2p—k—1) i ] k U(n-f-m—?P)
[ n-+m—2p } k '
p=0 k=0 &

PROOF. (a) Arguing as in the proof of Theorem 6.2, one shows that

(v’(€n+m—2p) v(n+m72p)) -0

» Vg
whenever k # £. Let us examine the case when p # ¢. Let us first show
that the highest weight vectors v("t™=2P) and v("*™=24) gre orthogonal.
In fact, Lemma 7.2 implies that (v("T™=2P) 4("+m=20)) can be written

(v(n+m~2p) ,U(n-l—'m—2q)) _ Z aﬁ( (n) (n))(v(m)_ v(m)_)

’ Ui p—i>Vq—j

1.4
3 8,0, u™) (i), 0l

i

I

which is zero because p — i # ¢ — 4. It remains to show that

(vl(cn+m-2p) v(n+7n—2q)) -0

(e

when k, ¢ > 0.
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By symmetry, it is enough to consider the case k > £. We have

(Ul(cn+m72p) , vén+m—2q)> = & (Fk;v(n+m72p)’ Uén+m72q))

_ -2 k, (n+m—2

= 4 (U(n+m p)7 E W" m Q))

for some scalars v and /. Now, if k > £, the vector Ekvé"’+m72Q) is zero or
is a scalar multiple of the highest weight vector v(»*™ 29 which brings us

back to a previous case.

(n+m—2p) (n+m~2q))

(b) Let us compute (v, \Up . It is equal to

Z Z n m n+m-—2p n m n+m-—24q
B i 7 k r s 1
i+j=p+kr+s=qg+£
x (v o) (0™ 0{™)
_ Z n m n+m-—2p n m n-+m-—2q
1] k v 4

x (0, o) (Wi, oi™)

Z q—i(nfi—l)—j(m—j—l) n m n m n+m-—2
7 7 i 7 k

i+j=p+k

{ n m n+m-—2q }
x | .
T 7 14

On the other hand, we have

X —2 n -2 —
(o o) = 6,

k(n+m—2p—k—1) [ n-+m-—2p ]
; .

fi (o) We havTthEﬁ)fQ@ o)™ = o SR T v for some coef-
clents v,,. I'heretore,

3 —2 n -2
,ka(vl(gn+m p),vl(C +m p))

= P @™ o)

1

n m n-+m-—2p (n) (Mg, (m)  (m)
i _7 k (Ui 7vi )(v] ?Uj )

Applying (6.2), one gets the desired explicit expression for . )

For more details on the quantum Clebsch-Gordan coefficients, see [KR89]
[KK89] [Vak89] where they are expressed in terms of ¢-Hahn polynomi-
als, i.e., of certain orthogonal g-hypergeometric series (see also [GR90],
Chap. 7). Koelink-Koornwinder and Vaksman showed that the orthogonal-
ity relations of the ¢-Hahn polynomials were equivalent to the orthogonality
relations of the quantum Clebsch-Gordan coefficients. The corresponding
property for the classical Clebsch-Gordan coeflicients was known already
(see [K0090]).
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VII.8 Exercises

1. Compute S(E'FIK*) in U,

2. Let  be an element of U,. Prove successively that

(a) z is grouplike if and only if x is of the form z = K™;

(b) if A(z) = 1®z+ 2 ® K and e(z) = 0, then z is a linear
combination of F and of KF;

(¢)if A(z) = K'®z+2®1 and e(z) = 0, then x is a linear
combination of F and of EK™};

(d) if A(z) =1®z+2®K™!, then z = 0.

Use Exercise 2 to show that there exists an isomorphism of Hopf
algebras from U, onto U, if and only if ¢ = £¢*', and that any
Hopt algebra automorphism ¢ of U, is of the form

9(B) =B, @(F)=ao"'F, @(K)=K
where « is a non-zero scalar.

(Hopf *-algebra structures on Uq) ‘We use the concepts introduced in
IvV.8.

(a) Prove that U, is a Hopf x-algebra if and only if ¢* is a real
number or ¢ is a complex number of modulus 1.

(b) Check that the following formulas determine five Hopf *-algebra
structures on U :
(i) E*=E,F*=F,and K* =K if |q| = 1;
(ii) B* = KF, F* = EK™ !, and K* = K if g is real > 0;
(i) B* = —KF, F* = ~EK™!, and K* = K if ¢ is real < 0;
) E* =4iKF, F* = {EK™!, and K* = K if ¢ = M\ with )
real > 0;
(v) E* = —iKF, F* = —EK~! and K* = K if ¢ = \i with A
real < 0.

(iv

(c) Show that any Hopf *-algebra structure on U, is equivalent to

one of the previous five ones (Hint: use Exercise 2).

. Given a Hopf x-algebra structure on U, and a U,module V, define a

Hermitian scalar product as a definite positive Hermitian form ( , )
such that (zv,v) = (v,2*V') for all z € U, and v,v" € V. Determine
all Hermitian scalar products on the simple module V_ ,

Prove that there exists a U, -linear isomorphism between the simple
module V, ,, and its dual module.
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VII.9 Notes

The Hopf algebra structure of U, (sl(2)) is due to Sklyanin [Ski85]. The
Drinfeld-Jimbo algebras U, (g) also have a non-commutative, non-cocom-
mutative Hopf algebra structure. In the cases A, D, F considered in V1.7,
it is given on the generators (E;, Fy, K;)i<;<¢ bY

A(B) =1@E+E®K, AF)=K'9F+Fel, AK,)=K®oK,

e(E) =e(F) =0, £(K,)=1,

and
S(Ez) = _EiKi_17 S(Fz) = —-K,F, S(Ki) = Kz'_l-

In this chapter we adopted the conventions of Takeuchi [Tak92c] rather
than those of Drinfeld and Jimbo. In the special case g = s1(2), Takeuchi’s
conventions allow U, to act on the quantum plane of Chapter IV. Following
Drinfeld [Dri87], Takeuchi [Tak92c] [Tak92b] also showed the existence of a
duality between U, (sl(n)) and the Hopf algebra SL (n) of IV.9, embedding
the latter into the restricted dual of U, (sl(n)).

The semisimplicity of the finite-dimensional U -modules is due to Rosso
[Ros88]. We followed his proof closely.

For more details on quantum Clebsch-Gordan coefficients, read [KR&9]
[KK89] [Koo90] [Vak89]. For the Hopf *-algebra structures on U, (deter-

mined in Exercise 4), see [MMN*90].
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Chapter VIII

The Yang-Baxter Equation and
(Co)Braided Bialgebras

Part II is centered around the now famous Yang-Baxter equation whose so-
lutions are the so-called R-matrices. We introduce the concept of braided
bialgebras due to Drinfeld. These are bialgebras with a universal R-matrix
inducing a solution of the Yang-Baxter equation on any of their mod-
ules. This provides a systematic method to produce solutions of the Yang-
Baxter equation. There is a dual notion of cobraided bialgebras. We show
how to construct a cobraided bialgebra out of any solution of the Yang-
Baxter equation by a method due to Faddeev, Reshetikhin and Takhtadjian
[RTF89]. We conclude this chapter by proving that the quantum groups
GL,(2) and SL,(2) of Chapter IV can be obtained by this method and
that they are cobraided.

VIII.1 The Yang-Baxter Equation

Definition VIIL.1.1. Let V be a vector space over o field k. A linear
automorphism ¢ of V. ® V is said to be an R-matriz if it is a solution of
the Yang-Baxter equation
(c®idy)(idy ® ¢)(e®idy) = (idy ® c){c®idy)(idy ® ¢)
that holds in the automorphism group of V@V @ V.
Finding all solutions of the Yang-Baxter equation is a difficult task, as

will appear from the examples given below. Let {v;}, be a basis of the
vector space V. An automorphism ¢ of V ® V' is defined by the family
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(C%)i,j, x.¢ of scalars determined by
c(v; ® v; Z Cii U vy

Then ¢ is a solution of the Yang-Baxter equation if and only if for all
i,7,k, €, m,n, we have

Z
Z (Cp 6kr)( pxcg:)( ;;(szn) - Z (5zpcg;)(cpq6rz)(6x£c;n)7
P,4,TT,Y,2 P,4,7T,Y,2
which is equivalent to
Z Cpq yn Zm . Z cqr Zy mn (1 1)
ij Cak py Cig Cyr - ’
P,ay Y.q,r

for all 4, 4, k, £,m, n. Solving the non-linear equations (1.1) is a highly non-
trivial problem. Nevertheless, numerous solutions of the Yang-Baxter equa-
tion have been discovered in the 1980’s. Let us list a few examples.

Example 1. For any vector space V we denote by 7y, € Aut(V ® V) the
flip switching the two copies of V. It is defined by

Ty (V1 ® vg) = vy ® vy,

for any vy,v, € V. The flip satisfies the Yang-Baxter equation because of
the Coxeter relation (12)(23)(12) = (23)(12)(23) in the symmetry group
Sy.

Here is a way to generate new R-matrices from old ones.

Lemma VIIL1.2. Ifc € Aut(V ®V) is an R-matriz, then so are Ac, ¢!
and Ty 0 co Ty where A is any non-zero scalar.

PROOF. This follows from the identities
(Ac®idy) = AMe®idy), (@dy @ Ac) = A(idy ® ¢),

(c'eidy) = (c®idy)™!, (dy®@c ) =(dy®c)7,
(¢ ®idy,) = o(idy ®c)o™ !, (idy @) = olc®idy)o !,

where ¢’ = Tyy ocoTyy and o is the automorphism of V@V @V defined
by 0(v; @ vy ® V3) = U3 ® Vg @ vy for vy, vy,v5 € V. O

Example 2. Let us solve the Yang-Baxter equation when V =V, =V, , is
the 2-dimensional simple module over the Hopf algebra U, = U, (sl(2)) con-
sidered in Chapters VI-VIL. More precisely, let us find all U -automorphisms
of V; ® V| that are R-matrices. We freely use the notation of the above-
mentioned chapters. Recall that if v, is a highest weight vector of V}, then
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the set {vy,v; = Fuv} is a basis of V. By the Clebsch-Gordan Theorem
VIL.7.1 we have V, ® V, 2V, @ V;. Lemma VIL.7.2 implies that the vectors

wy =1, ®v, and t=v,®v; —q v, @y,

are highest weight vectors of respective weights ¢ and 1. We complete the
set of linearly independent vectors {w, ¢t} into a basis for V®V by setting

1
w) = Fwy=q vy @, + v, ®vy and w, = — F2w, = v, @ v,

2l
where [2] = q+q7".
Proposition VIIL1.3. Any U -linear automorphism p of V, ®V, is dia-
gonalizable and of the form p(w,;) = Aw,; (i =0,1,2) and p(t) = ut where
A and p are non-zero scalars. The automorphism ¢ s an R-matriz if and
only if
A=) (@A + a7 ) (g™ A +qp) = 0.

PROOF. Since ¢ is U -linear, the image under ¢ of a highest weight vector
is a highest weight vector of the same weight. Now, w, and t have different
weights (we still assume that g* # 1); therefore, there exist A and u such
that p(w,) = Aw, and (t) = pt.

As for the remaining basis vectors, we have

g —i fo(wgy) = Aw,
SO(U%):W‘P(FU’O)—[Z.]F‘P( 0) = Aw;

for ¢ = 1,2. This completes the proof of the first assertion in Proposition
1.3.

The second assertion results from tedious computation. Let us give some
details. We first observe that the matrix ® of ¢ with respect to the basis
{vg ® vy, vy ® vy, v ® vy, v ® vy} is given by

A0 0 O
1 0 a v O
® = 0 v 8 0
00 0 A
where . .
ao A g e p Ak
P P 2]

The automorphisms ¢ ® id and id ® ¢ can be expressed, respectively, by
the 8 x 8-matrices ®,, and ®,4 in the basis consisting of the elements
Uy ® Uy RV, Vg @V QU Vg Qv Q Uy, Vg QU1 Uy, U1 @ Uy @V, V3 @V BV,
v, @ v, Qug, and v; Qv @ v, of VRV ®V where
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A0 0 0 0O 0 0 O

0O A0 0 0 O0O0OTUO

0 0o 0Oy 0 0O

& 0 00 a 04 00

2710 0 v 0 8 0 0 0

00 0 ~ 0 B 00

000 00O 0 X O

00 0 00O 0O 0 A

and

A0 0 0 0 O0 OO

0O a v 00 0 0 O

0 00 0 0O

o 00 0OXO0OO0OO0UO

27100 0 0 X0 00O

0 0000 aa v O

0 000 0~ B 0

0 0 0O0O 0O 0 0 X

Now, @1,P53P15 — Py3P,,P5

0 0 0 0 0 0 0 0
0 K —afy 0 0 0 0 0
0 —afy L 0 aBy O 0 0
10 0 0 -K 0 a8y 0 O
I 0 afy 0 M 0 0 0
0 0 0 afy 0 —L afy O
0 0 0 0 0 aBy —-M O
0 0 0 0 0 0 0 O

where K = a((A — a)A — %), L = af(a — B) and M = B(v* + A\(B — ))).
Suppose that we have proved that K, L and M are multiples of a3v. Then
P15Py3P1y — Pg3 P15 Py3 = affy X ¥

where ¥ is a non-zero matrix. It follows that ® is an R-matrix if and only
if afBvy = 0, which would complete the proof of Proposition 1.3.

It remains to show that K,L and M are multiples of afBvy. An easy
computation proves that

A—a=qy, A\=B=q"y, ¢ A—v=qgla, gA-—7=¢p
and 8 — a = (¢ — ¢~ ')7. Therefore,
K=oay(gh\—v) =qapy, L=—(q—q ")apy

and M = By(y —q7'A) = —¢"'apy. 0
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To sum up, the R-matrices of the U ,-module V; ® V; belong to the
following three types depending on a parameter A # 0:
1. If A =y, @ is a homothety.

2. If g\ + ¢ ' = 0, then

qg! 0 0 0
- 0 g'—qg 1 0
P=ar| 1 0 0
0 0 0 ¢!
3. If ¢ A+ qu = 0, then

qg O 0 0
0 0 1 0

-1
®=qA 0 1 g-qgt 0
0 0 0 q

It is clear that Cases 2 and 3 are equivalent within a change of basis after
exchanging ¢ and ¢~!. As we shall see in the next example, the minimal
polynomial of ® is of degree < 2.

Example 3. We now give an important class of R-matrices with guadratic
minimal polynomial. Such R-matrices will be used in Chapter XII to con-
struct isotopy invariants of links in R3.

Let V be a finite-dimensional vector space with a basis {e;,...,ex}. For
two invertible scalars p,q and for any family {Tz'j}lgi,jg w of scalars in k

such that r; = ¢ and r;7;; =p when i # 7, we define an automorphism ¢
of V®V by
cle;®e;) = ge; ey
r..e; e, if i<y
. . = Jv -3 B R
cle; ® ) { rie; Qe +(q—pg e, ®e; if P>

Proposition VIIL.1.4. The automorphism c is a solution of the Yang-
Bazxter equation. Moreover, we have

(c — qidygy)(c+pg~lidygy) =0,
or, equivalently, > — (¢ —pg~")c — pidy gy = 0.

PROOF. (a) We first show that ¢ is an R-matrix. In order to simplify the
proof, let us introduce the following notation. The symbol (ijk) will stand
for the vector ¢; ® e; ® ey, and [¢ > j] for the integer 1 if ¢ > j and for 0
otherwise. Then ¢ can be redefined as

cle; ® ej) =70, Q€+ [i > j]fBe, ® e;

where = q—pg~'.
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An immediate computation yields
(c®id)(id ® ¢)(c @ id)((ijk))
= 7y ki (kJ8) + 1m0 > k]B(5KD)
7yt > 518(kig) + gl > G5 > k6% (ikj)
(> 410 > K+ [ > ) > K]) B(iik)
+(Tjirij [i > k]G +[i > j]lj > k]ﬂj) (ijk)
and

(id ® ¢)(c®id)(id ® ¢)((i7k))
= 1TkiTri (KJE) + 1m0 > KB (ki)
+7i il > J18(kig) + 7yl > k7 > k)3° (jik)
i (1 > Kl > 51+ i > 5115 > k1) 6 (ik3)
+(ryurigli > KB+ (i > 11l > K18°) (igk).

We have to prove that these expressions are equal for all 7,7, k. This is
clearly the case if i = j = k. If 4, §, k are distinct indices, they are equal in
view of relations of the type

[i > jlli > k] = [i > jllj > k] + [i > K][k > j]

which express the fact that for distinct indices, we have ¢ > j and ¢ > k
ifand only if ¢ > 7 > k or i« > k > j. If exactly two indices are equal, say
i = j # k, then the desired equality is equivalent to r?i = Br,, + p, which
holds since r,; = ¢ and § =q — pg~ L.

(b) One computes ¢® — Bc — pidy gy on any vector of the form e; ®e;. If
i # j, one immediately obtains 0. If i = j, one gets (¢> — 8g — p)(e; ® €,),
which is zero because of the value given to . o

Consider the following two special cases:

(i) If p = ¢° and r;; = q for all 7, j, then c is a homothety.

(ii) Take p = 1 and r;; = 1 for i # j. Then c takes the form shown in
Case 3 of Example 2 when V is two-dimensional. Thus, Example 2 turns
out to be a special case of Example 3.

VIIL.2 Braided Bialgebras

The aim of this section is to define the concept of a braided bialgebra. The
importance of this concept comes from the fact proved in Section 3 that
braided bialgebras generate solutions of the Yang-Baxter equation.
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Definition VIIIL.2.1. Let (H,pu,n,A,e) be a bialgebra. We call it quasi-
cocommutative if there exists an invertible element R of the algebra H Q@ H
such that for all x € H we have

A°P(x) = RA(z)R™L. (2.1)

Here A°? = 7 5 o A denotes the opposite coproduct on H. An element
R satisfying this condition is called a universal R-matriz. It is part of the
data of a quasi-cocommutative bialgebra. Any cocommutative bialgebra is
quasi-cocommutative with universal R-matrix equal to R = 1 ® 1. Thus
we can look upon a quasi-cocommutative bialgebra as a bialgebra whose
non-cocommutativity is controlled by its universal R-matrix.

If weset R = ) . s; ®t;, then Relation (2.1) can be expressed, for all

r € H, by
Z s, @ a't, = Z s, @tz (2.2)
(x),i (x),3
using Sweedler’s sigma notation introduced in 111.1. We also define a quasi-
cocommutative Hopf algebra as a Hopf algebra whose underlying bialgebra
has a universal R-matrix.
Convention. The following notation will be used extensively in the sequel.
Let H be an algebra and X =}, :vl(-l) ®... ®m§p) € H® (p > 1). For any
p-tuple (ky,...,k,) of distinct elements of {1,...,n} (n > p), we denote
by X, ., the element of H®" given by

1
Xpoky = We.. oy™
i

where yfkj) = xl(‘j) for any j < p and ygk) = 1 otherwise. For instance, if

R = 27 s; ® t;, then R4, will be the element of H®3 given by

Ry =) t,01®s,

We now introduce the main concept of this section.

Definition VIIL.2.2. A quasi-cocommutative bialgebra (H,u,n, A, R)
or a quasi-cocommutative Hopf algebra (H,p,n, A, e, 5,51, R) is braided
if the universal R-matriz R satisfies the two relations

(A®idy)(R) = Ry3Ryy (2.3)

and
(idH ® A)(R) = Rz, (2-4)
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Braided bialgebras are central in the theory of quantum groups and R-
matrices. In the literature, notably in Drinfeld’s papers [Dri87] [Dri89a]
where this concept was defined for the first time, braided bialgebras are
called quasi-triangular bialgebras. We call them braided because their cat-
egories of modules are braided in a sense that will be explained in Chapter
XIII.

IfR=), s;®t;, Relations (2.3) and (2.4) can be expressed respectively

as
Z () ®(s)" ®t; = Z 5, ®8; Qtt; (2.5)
1,(s4) 2%

and
s @) @) =) 55,0t 0t (2.6)
1,(t:) J

Example 1. Cocommutative bialgebras are braided with universal R-matrix

R=1®1.

Here is a non-trivial example.

Example 2. (Sweedler’s four-dimensional Hopf algebra) Let H be the al-
gebra generated by two elements z,y and relations

=1, 3*=0, yr+ay=0.

The set {1,z,y, 2y} forms a basis of the underlying vector space. There is
a unique Hopf algebra structure on H such that

Alz)=z®uz, e(r) =1, S(z) =z,
Aly)=1®@y+y®=z, £y =0, Sy)=uzy.

Observe that the antipode S is of order 4 and that, for any a € H, we have
S%(a) = raz~"'. Set

1 A
R, = §<1®1+1®x+x®1—x®x) +§<y®y+y®xy+xy®:vy—xy®y)

where A is any scalar. It is easy to show that R, satisfies the conditions
of Definition 2.2, thus endowing H with the structure of a braided Hopf
algebra for any scalar \. Observe that R, ' = T a(Ry)

We now investigate a few properties of universal R-matrices. The follow-
ing lemma will be useful later. It shows how to form new quasi-cocommut-
ative Hopf algebras from a given one.

Lemma VIIL2.3. (a) If (H,pu,n,A,¢,S,S * R) is a quasi-cocommut-
ative Hopf algebra whose antipode S is bijective, then so are

(H,p®,n,A,e,S7H S, R7Y),  (H,p,m, A%, 8, R™Y)

and (Hwﬂl, A0p757 S_lv S? 7_H,H(R))'
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(b) If, furthermore, (H,u,n, A, e, 8,87, R) is braided, then so is
(Ha w1, Aop7 &, S_l, S’ 7—H,H(R))'

PROOF. (a) As a result of Corollary I11.3.5, we see that (H, u°?,n, A, &, S™1)
and (H, u,n, A%, e,87 ) are Hopf algebras. In (H, u°?,n, A, e, S™!), Rela-
tion (2.1) reads A°?(z) = R™'A(z)R, whereas it becomes

A(z) = R7'AP(2)R and A(z) = 7'Hﬂ(R)Ac’p(:c)v'H’H(RY1

in (H,p,n, A%, e, S71), which proves Part (a).

(b) According to (a), the Hopf algebra (H,u,n, AP e, 571 S, 7(R)) is
quasi-commutative. We now have to check Relations (2.3) and (2.4).

Let us start with (A ® idy)(R) = Ry3R45 and let us apply the transpo-
sition (12) to it. We get

(A" ®idg)(R) = Ry3Ry3.

We now use the circular permutation (123) to obtain

; op —

(idgy & AP)(R) = (5. 5(R) (70,6 (R)) .
Similarly, one shows that Relation (2.4) for R implies Relation (2.3) for
TH, u(R). O

Theorem VIIL.2.4. Let (H,u,n, A, e, R) be a braided bialgebra.
(a) Then the universal R-matriz R satisfies the equation

RigRy3Ro3 = Rz Ry Ry (2.7)
and we have
(e®idy)(R) =1=(idy Q@ )(R). (2.8)
(b) If, moreover, H has an invertible antipode, then
(S®idy)(R) = R~ = (idy ® S™1)(R) (2.9)
and
(S®S)(R)=R. (2.10)

Using the above conventions, in any braided Hopf algebra H whose uni-
versal R-matrix is of the form R = ), s, ® t;, Relations (2.7-2.9) are
equivalent to

Z 5xS; ®tys; @t = Z 8;8; @ sit; @ byt (2.11)
4.3,k i,5,k

Yoelsti =) sielt) =1, (2.12)

2 2
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and

ZS ®t*ZS ®S7! (2.13)

PROOF. (a) Relation (2.3) and the definition of R imply

Ri3R 3Ry = R(A®id)(R)
= (A°°®id)(R)R,y
= (tpp@id)(A®id)(R)R,
= (g ®id)(Ri3Ry3) Ry
= RyR)3Ry,.

From (¢ ® id)A = id and from (2.3), we get
R=(e®id®id)(A ®id)(R) = (¢ ®id ® id)(R,3Ry3) = (¢ ®id)(R)e(1)R.

Since (1) = 1 and R is invertible, we obtain (¢ ® id)(R) = 1. Similarly, we
use the relation (id ® €)A = id and (2.4) to derive (id®¢)(R) = 1.

(b) Now suppose that H has an invertible antipode S. We know that the
antipode verifies (S ® id)A(x) = e(z)1 for all x € H. This implies

(k®id)(S®id®id)(A®id)(R) = (¢ ®id)(R) =1
from (2.8). Consequently,
1=(p®id)(S®id®id)(Ry3R,3) = (S®id)(R) S(1)R.

Since S(1) = 1, we get
(S®id)(R) = R~ (2.14)

Replace (H, u,m,A,¢,5,87!, R) by the braided Hopf algebra
(Hv T, Aopa g, S_lv 57 TH,H(R))
of Lemma 2.3 (b). Then Relation (2.14) becomes
(57! ®@id)(ry 5 (R)) = TH,H(R)_lv
which is clearly equivalent to (id ® S™*)(R ~1. Finally, we have
(S®S)(R) = (i )
= (d®S)(R™ )
( )
(
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In Chapter XIII we shall give a categorical interpretation of Relations
(2.3) and (2.4). Here we give another one in terms of algebra and coalgebra
maps. Indeed, with the universal R-matrix R we can build two linear maps
pA and Ap from the dual vector space H™ into H. They are defined by

rMa) =) als)t, and Ag(e) =) salt) (2.15)

) %

where R = >, 5, ® t; and « is any linear form on H. We endow the

dual space H* with its canonical algebra structure and, if H is finite-
dimensional, with its canonical coalgebra structure.

Proposition VIIL.2.5. Let (H, p,n, A, e, R) be a braided bialgebra. Then
A s an algebra map and Mg is an algebra antimorphism. Moreover, if H
is finite-dimensional, then Ap is a coalgebra map and pX is a coalgebra
antimorphism.

PRrROOF. We first prove that pA is an algebra map. Let us compute pA(e).
From (2.12) we get pA(g) =3, €(s;)t; = 1, which shows that X sends the
unit of H* to the unit of H. Now, let o and 3 be linear forms on H. Then
by (2.3), or its equivalent form (2.5), we have

rMaB) = Y (@B)(s)t; =) (a®B)(Als),

K3 k3

= 3" als)B(s;) tit; = pAMa) gAB),

(]

which proves that pA preserves the multiplications. One may show in an
analogous way that Ap is an algebra antimorphism using (2.4).

Now assume that H is finite-dimensional. Then the dual space H* has a
coalgebra structure. Its comultiplication A satisfies

a(zy) = Aa)(z@y) =Y o (z)a’(y).
(@

In order to prove that A is a coalgebra map, we first have to check that
Adp = (AR ® AR)A.
Now, we have

AQg(a) =3 Alsalt,) = (d@ a)(A @ id)(R);

so using (2.5) we get A(Ag(a)) =37, ; a(t;t;) s; ® s;. On the other hand,
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Ar ®Ag)A(e) = Z Ap(@) ® Ag(a”)

(@)

= Z 5,0/ (t;) ® ;0" (t;)
i,5,(e)
Z alt;t;) s; ® s,
4,3
= AQAg(a)).

We next prove that A\ preserves counits. Using (2.12), we get

edpla) = 5((2 sia(ti)> = a(zv s(si)ti) =a(l) = ¢(a).

)i (@),i

One similarly proves that g\ is a coalgebra antimorphism using (2.4). O

VIII.3 How a Braided Bialgebra Generates
R-Matrices

We now prove the existence of a solution of the Yang-Baxter equation on
every module over a braided bialgebra (H, u,n, A, €, R).

Let V and W be two H-modules. The universal R-matrix R in H @ H
allows us to build a natural isomorphism Cﬁ,vv of H-modules between V@W
and W ® V. This isomorphism generalizes the flip 7,15, between the factors
V and W and is defined for all v € V and w € W by

CI\;,W(”‘X’“’):T‘/,W( v®w> th@sv (3.1)
where R =3, 5, ®t;. By (2.13) cV,W is an isomorphism with inverse given
by
(Cg,w)_l(w@)v) v ®w) ZS o tw = st@S Lt w.

(3.2)
The latter two equalities hold only when H has an invertible antipode.

Proposition VIII 3.1. Under the previous hypotheses,
(a) the map cVW is an isomorphism of H-modules, and
(b) for any triple (U, V,W) of H-modules, we have

CU@V,W = (CU,W ®idV)(idU®cV,W)7 cU,V@W = (ldV®cg,W)(cg,V ®ldW)
and
(cfw @idy)(idy ® cff ) (chy ®idy)
= (idy ® cfy)(cfw @ idy)(idy ® cff ).
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PROOF. (a) We have to prove that ¢}y is H-linear. Now, by (2.1), for any
x € H we have

fw@wow) = mw(RA@W© W)
= 1y (AP (@R e w))
= A@nw (R w)
= o(cfwvew).

(b) We prove the second and the last relations, leaving the first one to
the reader. For u € U, v € V and w € W we get using (2.6)

(idy, ® cg’w)(cg’v Qidy)u@vew) = Z tv®tw®s;s,u
i,J

= Z e ) ves

ZA (v w)®su

= cg7V®W(u QU W).
As for the last relation in Part (b) of Proposition 3.1, we have
(et w ©@idy)(idy @cfl ) (el v Ridy) (u@vew) = Z Ll W@ st v®s;s,u
1,5k
and
(1dW®cU V)(CUW®1dV)(1dU®cVW URUOW) z tit, w8,V s,8,u.
45,k

Both right-hand sides are equal in view of (2.11). An alternative proof will
be given in XIII.1. O

Setting U = V = W in Part (b) of Proposition 3.1, we conclude that
cﬁv is a solution of the Yang-Baxter equation for any H-module V. This
efficient way of producing R-matrices explains why the element R is called
the universal R-matrix of H. Observe that if R = 1® 1, then CVW =Tyw
is the flip. We have already remarked in Proposition III 5.1 that the flip
was an isomorphism of H-modules for cocommutative H.

VIII.4 The Square of the Antipode in a Braided
Hopf Algebra

As we observed in Theorem III.3.4, the antipode S of a cocommutative
Hopf algebra is an involution: $* = idy. In the quasi-cocommutative case,
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S? is in general not equal to the identity. Nevertheless, as we shall see in
this section, it is an inner automorphism.

Let (H,p,m, A€, 8,87, R) be a quasi-cocommutative Hopf algebra with
an invertible antipode. Consider the element u of H given by

u:Z%M (4.1)

where R=3Y",5,®t,.Set R™' =Y. 5, ®1,.

Proposition VIIL.4.1. Under the previous hypothesis, the element u is
invertible in H with inverse given by

oY s, (1.2)
i
and for all x € H we have
S?(z) = uzu™t. (4.3)
PROOF. Let us first show that S%(z)u = ux for all z. If y belongs to H® H,
Relation (2.1) implies the equality
(A*® @id)(y)(R®1) = (Re 1)(A®id)(y)
in H® H® H. When y = A(z) for some x € H, we get
Z s, @z't; @2 = Z s, @tz @z,
i,(x) i,(x)

To the latter relation we apply the linear map from H ® H ® H to H which
is idy; ® S ® S? composed with the multiplication from right to left. This

yields
Z Sz /II w ti)x”si — Z SQ (x"')S(ti:v”)siac',
i,(x) 7,(z)
or, equivalently,
> SH@")S(t)S (@ )a"s, = Y §*(a")S(e")S(t;)s ', (4.4)
i,(x) i,(z)

since the antipode is an antiautomorphism of algebra. Let us first evaluate
the left-hand side of (4.4). By definition of tha antipode and of the counit,

we have

ZS " @z Ze(x’)l@x"zl(g)x.

(z) (z)
Hence, 3,y S(z')z" ® S%(z"") = 1® S%(x). Multiplying both sides on the
right by > . s, ® S(t;), we get

ZS Na's; ® S*(z") Zs ® 5%(x)S(t;).
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Consequently, for the left-hand side of (4.4), we have

Z S% (") Vz''s; = Z S*(z = S*(x)u. (4.5)
i.(z)

The relation S?(z)u = uz will then be a consequence of (4.4-4.5) and of

Z S%(2")S(z'")S(t,)s;x’ = uz. (4.6)

Let us prove (4.6).
ZI ® S(z"S(z"") Zx ® S(e(z")1) = Zm'f—:(m”)@S(l):m@l.
()
Multiplying by u ® 1 on the left, we get
> St)sia’ @ S*(a")S(2") =uz @ 1,
i,()

which implies (4.6) after applying the multiplication in H.
It remains to show that v is invertible. Set

v=> S HL)s, (4.7)
where R~! =37, 5, ® t,. Then
uv = Z uS™HE,) 5, = Z S(t,)us;

from the first part of the proof. Consequently,

uy = Z S(t;t;)s;5, = S(1)1 =
%

since 37, 5 8;5;, @ t;t; = R~ 1= 1@®1. It follows that 1 = uv = S?(v)u,
which 1mphes that u is left and right invertible with inverse v. ]

Observe that $%(u) = u and S?(u~ 1) = u L.

Corollary VIIL.4.2. Under the hypotheses of Proposition 4.1, we have
uS(u) = S(u)u. This element is central in H.

PROOF. Let z be any element in H. Applying S to uz = S?(z)u implies
S(z)S(u) = S(u)S*(z). Replacing z by SY(x), we get

zS(u) = S(u)S*(z) = S(u)uzu!,



182 Chapter VIII. The Yang-Baxter Equation and (Co)Braided Bialgebras

hence xS (u)u = S(u)ux. This proves that S(u)u is central in H. For z = u,
this formula leads to uS(u) = S(u)u. O

As we already know, any module V over a Hopf algebra H with invertible
antipode has two duals V* and *V. As vector spaces, both coincide with
the vector space of linear forms on V. However, the H-actions are different:
On V* an element a of H acts on a linear form o by

<aa,—>=<a,S(a)- >
whereas on *V it acts by
<ao,— >=<a,5 Ha)- > .

Using the defining property of the antipode we observe that the evaluation
maps V*®V — k and V ® *V — k are H-linear (notice the precise order
of the tensorands). The element u induces an isomorphism between both
duals as recorded in the next proposition.

Proposition VII1.4.3. If H is a quasi-cocommutative Hopf algebra, then
the map o — a(u?) from V* to *V is an isomorphism of H-modules.

PROOF. By a(u?) we mean the linear form v — a(uv). Set j(a) = a(u?).
The map j is bijective because u is invertible. Let us show that j is H-linear.
For any v € V, Relation (4.3) implies
<jlaa),v> = <a(Sa)u?),v>
= <o, Sa)uv >
= <a,8%S Ya))uv >
= <a,uSa)v>
= <jla),S a)v >
= <aj(a),v>.
0

Define the biduals V** and **V by V** = (V*)* and **V = *(*V). The
reader is invited to prove the following proposition.

Proposition VIIL.4.4. Under the hypotheses of Proposition 4.3, the map
Vi < —,uv > [resp. the map v — < —,u" v >] from V to V** [resp. to
V] is an H-linear injective map.

We now assume that H is braided. Then by (2.13) and by Proposition
4.1, the inverse of u is given by

u™l = Z S7Ht)S(s;) = Z S72(t,)s; (4.8)

In the braided case, we have the following additional relations for u.
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Proposition VII1.4.5. If H is a braided Hopf algebra, then the element
u satisfies the relations

ew) =1, A@) = (RyR) '(uwu) = (u®u)(RyR),
A(S() = (B R) 7 (S(w) © S(u)) = (S(u) © Sw) ) (R B
and for the central element uS(u) we have
AwS(w) = (Rpy B) 2 (uS(w) ® uS(w) ) = (uS(u) © uS(u) ) (R B2

PRrOOF. (a) The relation £(u) = 1 follows from (2.12).
(b) Let us compute A(u). Applying the flip 7 5 to (2.1), we get

Ala) = Ry A% (a)Ry;' (4.9)
for all @ € H. Relations (2.1) and (4.9) imply
A(a)Ry R = Ryy RA(a) (4.10)

for all a € H. In view of (4.10) it is enough to show that A(u)Ry R = u®u.
By (4.10) again and by Theorem 111.3.4 we have

A(u)Ry R = ZA(S<ti))A(Si)R21R

i

Z (S © S)(A(t;)A(s;) Bn R

[

D (5@ S)(AP(t) Ry RA(s)).

1

il

We now let the algebra H®* act on H ® H on the right by
(a®b)- (A®B)=(S®S5)(B)(a®b)A

where a,b € H and A, B € H ® H. We can rewrite the previous equalities
as
A(u)Ry R = Ry, - (RypRygRyg Ry Ryy).

By (2.7) this equals Ry - (RogRy3R15R 4 Ry4), which we now evaluate.
Using Relation (2.13), which gives the inverse of R, we get

Ry - Ry = Z S(t;)t; ® s;8;
(2
= (soi)(3 57t @ 55,)
(3

= (S®id)(R;11R21)
= (S®id)(1e1)
= 1®1.
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Hence,
01 (RosRy3) = (1@ 1)- ng—ZS 5,01 =u®l.
Next,
Ry - (RygRigRyp) = (u®1) Ry = (u® )R
and
Ry - (RyzR3R1,Ryy) = (u®1) (Z 5,5, © S(L,)1,)

= (u®1)(1d®8)(z 5i3j®871(t11)tj)
= (u®1)(id®8)(R;1R)
= @Wo)(ides)(1e1)

Finally, we have
Ryy - (RygRygRip Ry Ryy) = (u®1) Ry = (u®1)(1®u) = u®u,

which is what we wished to prove.

(¢) The formula for A(S(u)) is an easy consequence of the formula for
A(u) and of (S ® S) o A = A°P o S, which was proved in Theorem II1.3.4.
(d) The last relation follows from (b), (c¢) and the centrality of uS(u).

0

VIIL.5 A Dual Concept: Cobraided Bialgebras

Just as braided bialgebras induce R-matrices on their modules, there are
bialgebras inducing R-matrices on their comodules. These are the cobraided
bialgebras which we now define.

Definition VIIL.5.1. A cobraided bialgebra (H, u,n, A, e,r) is a bialgebra
H together with a linear form r on H @ H satisfying the conditions
(i) there exists a linear form ¥ on H ® H such that

(ii) we have
UoP =71k kT, (5.2)

(iii) and

r(p®idy) =rigxry3 and ridy @ p) =73 %7, (5:3)
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where * is the convolution operation on linear forms, and the linear forms
T12: To3 and T4 are defined by

T2 =TRE, To=eQr, Ti3=(O7)(Tyy®@idy).
The linear form r is called the universal R-form of H. A Hopf algebra is
cobraided if the underlying bialgebra is.

This definition is dual to Definition 2.2. More precisely, Relation (5.2)
is dual to Relation (2.1), whereas Relations (5.3) correspond to Relations
(2.3-2.4). Conditions (5.1-5.3) can be reexpressed in the following way. For
any triple (z,y, z) of elements of H we have

(i)

Z r(z' @ y)r(z" @ y") Z ' @y )r(@" ®@y") =e(2)ely), (5.4)
(z)(y) (=)(y)

(i)

I

yr = Z T(:L" ® y’)a:”y”?(x'” ® y///>, (5.5>
(z)}(y)
(iii)
ray@z) = Y r@edely)e@ )y’ e) =) rae)rye:")
(@) (y)(z) (2)

(5.6)

and
reoy) = Y r@ )W) e @y) = 3 ra @2)r @ y).
(z)(y)(2) (z) 57

A bialgebra satisfying only Conditions (i) and (ii) of Definition 5.1 may
be called quasi-commutative by analogy with the quasi-cocommutative case
of Section 2.

We now show how the universal R-form r of a cobraided bialgebra H
induces a solution of the Yang-Baxter equation on any H-comodule. The
map c‘}fﬂw defined in (3.1) for a braided bialgebra H with a universal R-
matrix R and H-modules V, W is the composition of the maps

VoW o neveWw—

idg @7, v@idw HoaVeHoWw Ly Quw V@WTV’WW(X)V

where gy, and - are the actions of i on V' and W respectively and where
we have identified R with the linear map from k to H ® H, sending 1 to R.

Let H be a cobraided bialgebra with universal R-form r. Given the H-
comodules V' and W with respective coactions Ay : V. — H @V and
Ay W — H®@ W, we define the linear map

cyw VW -WeV
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by analogy with the above definition of cﬁw as the composition of the
maps

VoW W o V-2"0l o Wo HoV—
eOrO  HeHeW @ Vo gV (5.8)

(this was obtained by reversing the arrows and interchanging V' and W).
Using the conventions of II1.6 we can rewrite this definition for any v € V
and w € W as

wv®@w) = Z r(wy ® vg) wy @ vy. (5.9)
(v)(w)

Proposition VIIL.5.2. (a) Under the previous hypotheses, the map vw
is an isomorphism of H-comodules.
(b) If U is a third H-comodule, we have

Gevw = (cpw @idy)(idy @ )
and
cuvew = (idy @y )(cpy ®idy ).

Moreover, we have

(cvw @idy)(dy @ e w)(cpy @ idy)
= (idW ® CB,V)(C?],W & idv)(idU ® CQW)'

Setting U =V = W in the last relation, we see that cy, ;, is a solution of
the Yang-Baxter equation.

PROOF. (a) We use Condition (5.1) to prove that cy,y, is invertible. Define
a linear map ¢y, from W@V to V@ W by

Crw(w®v) = Z vy @ wy) vy @ wyy.
(v)(w)
We claim that EQW 1S an inverse to cf/,W. Let us show that it is a left
inverse. We have

(Evw o cyw)(v @ w)

= 3wy ©vg) 7 ((00)r © () 0y)y © (Wi
(v)(w)
= 3 r(wn) @ @y)) r((wn)" ® ()" vy ©wyy
(v)(w)
Z e(wy)e(vy)vy @ wy
(v)(w)
= vQuw.
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The second equality follows from the coassociativity of the coactions while
the third one is a consequence of Relation (5.1) and the last one follows from
the counitarity of the coactions. One proves that ¢,y is a right inverse to
cyw in a similar way.

We now prove that Relation (5.2) implies that ¢y, is a map of comod-
ules, namely we have

r (s r
Awgvocyw = (dy @cy ) o Aygu -

This is equivalent to

rwy @vg) (wy) g (vy) e ® (wy)w @ (vy)y
= Z ""((wW)H ® (UV)H> vgwy @ (wy)w © (vy)y
(v)(w)

for any v € V and w € W. Now by the coassociativity of the coactions, the
previous relation can be rewritten as

> r((wg) ® @n)) (wg)"(vg)” © vy ® vy
(v)(w)

= Doy ) @) ((wg)" © (vy)") ® Wy @ vy
The latter is a consequence of r*u = u°Pxr, which is equivalent to Relation

(5.2) after convolution with 7.
(b) Let us prove that cpqy w = (cpw ®idy )(idy ® cfy ). We have

(cpw ®@idy) <(idU Qcyw)(udve w))

= Z r(wy ® UH)T((“’W)H ® UH) (W )w ® uy @ vy
(u}(v)(w)
Z ""((wH)l ® UH) T((WH)” ® UH) Wy @ uy O vy
(up(v)(w)
= Z T(wH®UHUH)wW®UU®'UV
(u)(v)(w)
= Qeywu@vew).

It

The second equality follows from the coassociativity, and the third one from
Relation (5.7). One proves that c;y gy = (idy ® ey )(cpy ®1dy) in a
similar way.

The last relation of Proposition 5.2 is a consequence of the previous
relations and of the naturality of the maps ¢". We leave the proof to the
reader. A proof in a more general context will be given in XIII.1. a
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VIII.6 The FRT Construction

We have just seen that a cobraided bialgebra gives rise to an R-matrix on
each comodule. Conversely, Faddeev, Reshetikhin and Takhtadjian showed
in [RTF89] that any R-matrix ¢ in Aut(V ® V) on a finite-dimensional
vector space V can be obtained as in Section 5 from a cobraided bialgebra
A(c) coacting on V. The Faddeev-Reshetikhin-Takhtadjian construction
(FRT construction for short) is based on the following theorem.

Theorem VIIL.6.1. Let V be a finite-dimensional vector space and ¢ an
endomorphism of VQV . There exists a bialgebra A(c) together with a linear
map Ay V — A(c) ® V such that
(i) the map Ay equips V with the structure of a comodule over A(c),
(ii) the map c becomes a comodule map with respect to this structure,
(iii) ¢f A’ is another bialgebra coacting on V wvia a linear map A}, such
that Condition (ii) is satisfied, then there erists a unique bialgebra mor-
phism f : A(c) — A’ such that

Ay = (f®idy) o Ay
The bialgebra A(c) is unique up to isomorphism.

The proof will be given in several steps.

L. In the first one, we define A(c) as an algebra. Let {v;}, ;< be a basis
of V and let the coefficients c;;" be defined by

— mn
c(v; ®v;) = E i Uy @ Uy,
1<mn<N

Pick a family of indeterminates Tij , where 7 and j both run over the set
{1,...,N}.

Definition VIII.6.2. The algebra A(c)is the quotient of the free algebra
F' generated by the family (Tf)lSi’jSN by the two-sided ideal I(c) generated
by all elements C7;™ where

cpr= Y Mrrap - N TRTi (6.1)
1<k <N 1<k <N
and i,j,m and n run over the indexing set.
2. We put a bialgebra structure on A(c).

Lemma VIIIL.6.3. There is a unique bialgebra structure on A(c) such that

AT = > TFeT] and eT)) =5 (6.2)

1<k<N

i
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PROOF. It is clear that the above formulas define unique algebra maps
A:F—FQ®F and ¢:F —k.

To check the coassociativity and the counitarity, it is enough to check these
on the generators 77, which is easy and done as in II1.4 and in IV.5. We
also have to prove that I(c) is a coideal, i.e., that

A(l(c)) CI{c) @ F+ F®I(c) and e(I(c)) =0.

‘We have
AlCp™y = > MTiTieTrTr - > TITIQTITIY
k.¢.p,q kt,p,q
_ mmn krd m
- Z Ciqu®Tp Tq + Z T chzz(X)Tp T;
p.q k.£.p.q
mn kém
+ Z TipTJg ® Cpq - Z TipTJg ® Cquk Tin
k.L.p,q
- Y eenT e Y ey
P.q P.q
and
gCcrmy = Z (T Ty =Y e(TFTY) iy
k¢

= ZC bpmOm — Zézkéﬂcké

mn Cmn — O

= Cij i

O

3. We now let A(c) coact on V. Define a linear map Ay from V to
A(c) ® V on the basis {v;};<;<n by

> TV e, (6.3)

1<GEN

It is an easy exercise to check that this endows V with a left comodule
structure over the bialgebra A(c).

4. We prove that the endomorphism ¢ of V ® V is a comodule map for
the coaction we have just defined. The coaction Ay, induces on V ® V' a
coaction Ay, defined by

14
1<k <N
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Then ¢ is a comodule map if and only if

Ayev (C(Ui ® vj)) — (ida() ®©) (AV®V(vi ® 'Uj))
= > Trred,ev, - Y TR e, ®u,

k.4, m,n k,£,m,n

vanishes in A(c) ® V. Now, it is clear that the last expression is equal to

Z Cii™ ® v, vy,

m,n

which is zero by definition of A(c).
5. We now establish the universality of A(c). Let (A’, Aj,) be a pair satis-

fying the conditions of Theorem 6.1. Then there exists a family (w )1<1’ J<N
of elements of A’ uniquely determined by

Z uf ®v]-.

1<jSN
The coassociativity and the counitarity of A}, imply that
Aul) = Z uf ®u£ and e(ul) = 8-
1<k<N

Condition (ii) of Theorem 6.1 is equivalent to the vanishing of

Avgy (C(Ui ® Uj)) = (idg() ®¢) (AQ/@)V(% ® Uj))

for all ¢ and j, in other words to the vanishing of

§ ke 2: k, £ _mn
C'U/k’U/e— uuckl

1<k <N 1<k <N

for all 4, j,m and n. From this it is clear that the map f from F' to A
defined by f(T}) = u] for all i and j extends to a bialgebra map factoring
through A(c). Let us check the relation A}, = (f ® idy,)A,,. For any ¢ we
have

(f@idy)(Ay) = > fTHev= Y ul@v,=A4AL@,).

1<j<N 1<j<N

Conversely, the relation A}, = (f®id, )A, necessarily implies f (Tij ) = u{ ,
which proves the uniqueness of f along with the fact that the family (77)
generates the algebra A(c). This completes the proof of Theorem 6.1.
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Theorem VIII.6.4. Assume in addition to the hypotheses of Theorem 6.1
that the endomorphism c of VRV is a solution of the Yang-Baxter equation.
Then there exists a unique linear form r on A(c) ® A(c) turning A(c) into
a cobraided bialgebra such that cy,y, = c. We have

r(T"@T}) =i (6.4)

for alli,j,m and n.

The rest of this section is devoted to the proof of Theorem 6.4.
(a) Suppose A(c) is cobraided with a universal R-form r such that the

automorphism cf, y, coincides with the given R-matrix c. By (5.9) and (6.3)
we have

c(v; ®v;) = Z (T @ T} )v,, ® v,
m,n
On the other hand, we have c(v; ®v;) =3, , ¢ji"v,, ®v,. It follows that
r(T7"®T}') = ;™ for all 4, j, m, n. Relations (5 6-5.7) 1mp1y the uniqueness
assertion in Theorem 6.4.

(b) We now prove the existence of r. We first have to define 7 on the
whole space A(c) ® A(c). Let W be the vector subspace of F' spanned by
the set {T}},<; j<n- We define r : W@ W — k by (6.4). Conditions (5.3)
and ‘ ' _

reT)) =r(T] ®1) = «(T]) = &;
allow one to extend r into a linear form, still denoted r, on FF' ® F'.

In order to prove that r defines a form on A(c) ® A(c), we have to prove

the following lemma.

Lemma VIIL.6.5. We have r(F ® I(c)) =r(I(c) ® F) = 0.
PROOF. First, we observe that
r(l®I(c)) =r{I(c)®1) =e(l(c)) =0.

Using Conditions (5.3), we see that it is now enough to show that the
images (T ® C[;") and r(C;7" ® T}}) vanish for all i, j, m,n,p, q. We have

r(Ti®Co™) = Z (TR TPT) =Y r(TE TFTS) iy
k£
= Z cM (T, @ IT;") r(T} @ Ty")
k4,

= (T @ T)) (T QT

k,lr
_ § kf rn gm ré qk mn
- cz] Clp Chpr — c]p ir Ckt
k4, k4,

which is zero in view of (1.1), i.e., of the Yang-Baxter equation. o
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(c) Now that r is defined, we have to check the conditions of Definition
5.1. This will be done in several steps.

1. Conditions (iii) are satisfied by definition of r.

2. Condition (i): we have to prove that r is invertible with respect to the
convolution, namely that there exists a linear form 7 on A(c) ® A(c) such
that r 7 = 7 xr = ¢. We define 7 on the generators T} by

r(I7 @I = ()" and F1@T") =" @1) =(Ti") = &,

i m

1)nm —1

" are defined in terms of the inverse ¢™~ of ¢

where the coefficients (¢~
by
C_l(vi @ vj) = Z (C—l)g'mvm @ Un-

m,n

Lemma VTIIL.6.6. The above formulas define a unique linear form ¥ on
A(c) ® A(c) such that for all x,y in A(c) we have

rlry ® z) = Z Fly® )z ®2") (6.5)
(2)

and

Tlr®yz) = Z ' @y) 72" ® 2). (6.6)
()

PROOF. The proof is similar to the proof of Lemma 6.5. Use the fact that

¢! is also a solution of the Yang-Baxter equation. o

We now check Relation (5.4). Let us prove that

Y or@@ey) " ®y") = e(x)e(y) (6.7)
(=)(y)

by induction on the degrees of x and y. If x or y is of degree zero, this is
immediate. If both z and y are of degree 1, this follows from the subsequent
computation. For z = T} and y = T7* we have

N r(@@ e THFIT @ T Z = 86 = e(T™e(TT).

p.q

The second equality results from the fact that ¢! is the inverse of ¢. The
general case follows from the next lemma.

Lemma VIIL.6.7. If Relation (6.7) s verified by the couples (z,y), (z, 2)
and (y, z), then it also holds for the couples (z,yz) and (zy, z).
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Proor. We give the proof for the couple (x,yz). The proof for (zy, z) is
similar. In view of Relation (5.7) and Relations (6.6-6.7) we have

Z r(z’ @ y'2)yr(x" @y"2")
(@) (y)(2)
= Z r(z' @ ZYr(z" @ ¢ )F (2" @ y")r(z"" @ 2")

(z)(y)(z)
Z r(z’ @ 2")e(z")e(y)r(z"” ® )
(z)(=)
= Y e(yr@ @) ® )

(@)(2)
= e(yle(z)e(z)

(

e(z
e(yz).

e(z)e(

I

O
The relation 3 ) v 7(2'®@y) r(z” ®@y") = e(z)e(y) is proved similarly.
3. Condition (ii): We have to check that for any z and y in A(c) we have
Z T(xl ® y’)m"y” — Z y’x'r(m” ® y//)‘ (6.8)

(), () (2),(y)

We proceed as for Condition (i), namely we first check (6.8) in case z =1
or y =1 when it is trivial and in case z = T;" and y = T7", then show that
if (6.8) is true for (z,y), (z,2) and (y, 2), then it is for (z,yz) and (zy, 2).
Firstly, we have

YT OTHTIT) = ) STy
p.q p.q
— qp mn
- Z Tj Ti Cap
p.q

= Y TITPr(I; ®T))

b.q

because of the defining relations of A(c).
We continue with the following analogue of Lemma 6.7.

Lemma VIIL6.8. If(6.8) is verified by the couples (x,y), (z, z) and (y, 2),
then it is by the couples (z,yz) and (xy, z).

PROOF. Suppose (6.8) is true for (z,y) and for (z,z). Then for (z,yz) we
have

Z T‘(:C/ ® y/zl)x//yuzn — Z r(a:’ ® Z/)’I"<$” ® y/)x///y//zu
(z)(y)(2) (@} (y)(2)
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= Y @ e e ey
(@) (y)(2)

Z y'r(z' @ 22" 2"'r(x" @ y")
(2)(y)(2)
_ Z y'z’x'r(x” ® Z”) (x/// Ry )
(2)(y)(2)

Z y'z’:v'r LE ®yuzu)
(@) (y)(2)

The other cases are proved similarly. 0

I

This completes the proof of Theorem 6.4.

VIIL.7 Application to GL,(2) and SL,(2)

In this section we show that the bialgebra M, (2) and the Hopf algebras
GL,(2) and SL,(2) defined in Chapter IV are cobraided.

Let V be a two-dimensional vector space with basis {v;,v,} and let ¢
be the automorphism of V' ® V whose matrix with respect to the basis
{v; @ vy, 05 @ Vy,v; ® Vg, v, @y} is

g 00 0
2l 0 g0 0
q 00 0 1 (7.1)

001 g-q!

where ¢'/? is an invertible scalar. This matrix has been displayed in Section
1 where we proved it was an R-matrix. The FRT construction associates
to ¢ a cobraided bialgebra A(c) which we now describe.

Proposition VIIL.7.1. The bialgebra A(c) associated to the R-matriz (7.1)
is isomorphic to the bialgebra M, (2) of Definition IV.3.2.

PROOF. Let T} = a, T2 = b, T} = c and T2 = d. By the FRT construction,
A(c) is the algebra generated by a,b,c,d and the sixteen relations which
can be written in the following compact matrix form

qg 0 O 0 a®> b ab ba

0 g O 0 2 d® ecd de

0 0 0 1 ac bd ad bc

0 01 g—gt ca db cb da
a? v ab ba qg 0 O 0
2 & cd de 0 g O 0
ac bd ad bc 0 0 0 1
ca db cb da 0 01 g—q!
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An easy computation shows that these relations are equivalent to the six
relations

ba = qab, db = gqbd,
ca = qac, dc = gqcd,
cb = b, da—ad = (q—q Ybe,

defining the algebra M, (2). This identifies A(c) and M, (2) as algebras.
The corresponding comultiplications are clearly the same (compare (6.2)
and Theorem IV.5.1). |

From this and from Theorem 6.4, we deduce the following important
result on M (2).

Corollary VIIL.7.2. The bialgebra Mq(2) has a unique structure as a co-
braided bialgebra with universal R-form r determined by

rla®a) r(b®b) ra®b) rbea) g 00 0

rlec®@ce) rded) rced) rdec) | _ \ 0 ¢ O 0

rla®c) r(bed rlaewd rb®c) 001 g—qt

rlc®a) r(d®b) r(c®b) rdea) 0 00 1
where A = ¢~ /2.

It is easy to check that the coaction of A(c) on the two-dimensional vector
space V coincides with the coaction of M_(2) on the elements of degree 1
of the quantum plane k, [z, y] (see TV.7).

We now show that GL,(2) and SL,(2) are cobraided with the same
universal R-form. Since SL,(2) is a quotient of GL,(2), it is enough to
prove this for SL (2). We start with the following lemma.

Lemma VIIL.7.3. For all z € M (2) we have
r(z ® det,) = r(det, ®z) = &(z).

Recall that det, = da — qbc is the quantum determinant introduced in
Chapter IV.

PROOF. Suppose we have proved that the relations in Lemma 7.3 hold for
two elements z and y. Since det, is grouplike by Theorem IV.5.1, we deduce
from (5.6) that

r(zy ® det,) = r(z @ det,) r(y ® det,) = e(z)e(y) = e(zy),

which reduces a proof of Lemma 7.3 to checking it for z = a, b, ¢, d.
For z = a we have

r(a®det,) =r(a®a)r(a®d) +r(b®a)r(d®d)
—gr{a® c)r(a®b) — qr(b® c)r(d ® b)
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since A(a) = a® a + b ® d. Using Corollary 7.2, we get
r(a®det,) = ¢ V%V 40-0-0=1=¢(a).
We leave the other verifications to the reader. O

Corollary VIIL7.4. The Hopf algebras GL,(2) and SL,(2) are cobraided
with universal R-form r.

PROOF. Recall that SL,(2) is the quotient of M (2) by the ideal I generated
by the element det, —1. Now, Lemma 7.3 is equivalent to the statement that

r((det, —1) @ z) = r (z @ (det, —1)) =

for all z € M, (2). Therefore r vanishes on I ® M,(2) and on M, (2) ® I,
which proves that r defines a bilinear form on SL,(2). O

Remark 7.5. The normalization constant ¢~'/? in front of the R-matrix in
(7.1) has been introduced precisely so as to have r vanish on the ideal I
defining SL,(2).

VIII.8 Exercises

1. Consider a matrix of the form

p

o0 8 O
ST o
o O O

0
0
0 q

Show that it is a solution of the Yang-Baxter equation if and only if
the following conditions are satisfied:

adb = adec = ad(a — d) =0,

p?a = pa® + abe, ¢*a = qa® + abe,
p?d = pd® + dbe, ¢*d = qd® + dbe.

2. Consider the Hopf algebra H of Section 2, Example 2. Show that
there exists an automorphism ¢ of the Hopf algebra H such that
(e®p)(R,) = R, if and only if there exists a non-zero scalar u such
that X = p2\.

3. Find all (co)braided bialgebra structures on the group bialgebra of a
finite group.

4. Let H be a finite-dimensional bialgebra and H* be the dual bialgebra.
Show that H* is cobraided if and only if H is braided.
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5. Let H be a cobraided bialgebra with universal R-form r. Show that
Tog ¥T13 ¥ T1g = Tig ¥ Tz * To3.

6. Let (H,pu,n,A,e,8 87, r) be a cobraided Hopf algebra with invert-
ible antipode S.

(a) Show that 7o (n®idg) =710 (idy ® n) = ¢ and
ro(SQidy) =7, Fo(idy®S)=r, ro(S®S)=r

(b) Define a linear form w on H by v = r o (idg ® S) o A°?. Show
that u is invertible as an element of H* and that S? = ux*id,; *@
where @ denotes the inverse of u for the convolution.

7. Let (H,u,n,A,e,7) be a cobraided bialgebra. Define linear maps A
and A, from H to H* by A(z) = r(— ®z) and \.(z) = r(z ® —).
Show that .\ is an algebra antimorphism and A, is an algebra map
and, in case H is finite-dimensional, .\ is a coalgebra map and A, a
coalgebra antimorphism.

8. Let A be the algebra k{s,t,t7'}/(s* st+ts). Show that the following
formulas define a unique cobraided Hopf algebra structure on A:

Ay =t®t, A(s)=s1+t '®s,
et)y=1, e(s)=0, S@t)=t"', S(s)=st,
rt®t)=—-1, r(s@t)=rt®s)=r(s®s)=0.
Check that the antipode S is of order 4.

9. Let ¢ € Aut(V ® V) be a solution of the Yang-Baxter equation and
let ¢’ = 1y, 0coTyy,. Show that we have the following isomorphisms

Alch =2 A(e) and A(c) = A(c)°P.

10. Let ¢ be the R-matrix of Proposition 1.4. Prove that A(c) is the
algebra generated by (T}),<, ;< and the relations

Tnm sznn = qT’znjjzm7 rji ijTim =4q Timij’

’rji Tjnsz =Tnm Timjjjn’ Tji T]mTin “Tmn TinT]m = (q _pq—‘l) TimT;L

where ¢, j,m, n run over all positive integers < N such that ¢ < j and
m > n.

11. Use the description of the universal R-form on SL,(2) to find an
R-matrix on the SL,(2)-comodule k,[z,y] described in IV.7.
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VIII.9 Notes

The Yang-Baxter equation first came up in a paper by Yang [Yan67] as a
factorization condition of the scattering S-matrix in the many-body prob-
lem in one dimension and in work of Baxter [Bax72] [Bax82] on exactly solv-
able models in statistical mechanics. It also played an important role in the
quantum inverse scattering method created around 1978-79 by Faddeev,
Sklyanin, Takhtadjian [Fad84] for the construction of quantum integrable
systems. Attempts to find solutions of the Yang-Baxter equation in a sys-
tematic way have led to the theory of quantum groups (see [Dri87]). Many
papers in the literature are devoted to the construction of R-matrices, e.g.,
[Dri85] [Dri87] [Jim86a] [Jim86b] [KS80], to quote but a few.

The concept of a quasi-cocommutative and of a braided (or quasi-tri-
angular) Hopf algebra is due to Drinfeld [Dri87] [Dri89a]. For a review, see
[Maj90b]. The four-dimensional Hopf algebra of Example 2 of Section 2
is due to Sweedler. The universal R-matrices R, were found by Radford
[Rad93a).

The dual concept of cobraided bialgebras appears in [Hay92] [LT91]
[Maj91b] [Sch92]. Cobraided bialgebras have properties dual to braided
bialgebras. We gave some of them in Exercises 5-7.

The FRT construction is due to Faddeev, Reshetikhin and Takhtadjian
[RTF89]. The bialgebras M, ,(2) and M,(n) of IV.10 can be obtained by
this method (see Exercise 10). In Sections 56 we followed the treatment
proposed by [LT91].

Exercise 1 is taken from [Kau91] and Exercise 2 from [Rad93a]. The
cobraided Hopf algebra of Exercise 8 was found by Pareigis [Par81] before
the advent of quantum groups.



Chapter IX
Drinfeld’s Quantum Double

In the previous chapter we showed that braided Hopf algebras provided
solutions of the Yang-Baxter equation. The problem is now to find enough
such Hopf algebras. Drinfeld [Dri87] devised an ingenious method, the
“quantum double construction”, which builds a braided Hopf algebra out of
any finite-dimensional Hopf algebra with invertible antipode. It is the goal
of this chapter to describe this construction in full detail, and to show how
to apply it to the finite-dimensional quotient of the Hopf algebra U, (s((2))
considered in VI.5. We also give a characterization of the modules over the
quantum double in Section 5.

IX.1 Bicrossed Products of Groups

The quantum double construction is a special case of the bicrossed product
construction. Since the latter is rather involved, we start with an analo-
gous construction for groups, namely the bicrossed product of groups due
to Takeuchi [Tak81]; it generalizes the notion of a semidirect product of
groups.

Let G be a group with subgroups H and K. We assume that for any
element z in G there exists a unique pair (y, z) € H x K satisfying

x = ya2. (1.1)

This allows us to attach to any pair (y,2) € H x K a unique element 2z -y
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in H and a unique element 2¥ in K such that
2y = (z-y) 2Y. (1.2)

Let y,y’ be elements of H and z,z’ be elements of K. Expanding the
associativity relations

(z2")y = 2(z'y) and z(yy') = (2y)y’

gives us the relations

(22" y = z-(2-y) (1.3)
() = 2V, (1.4)
2 (y) = (-9 -y), (1.5)
M = (Y)Y (1.6)
Similarly, we expand z = z1 and y = 1y, which implies
z-1 = 1, (1.7)
21 = g (1.8)
¥ = 1 (1.10)

Relations (1.3) and (1.9) mean precisely that the map o : K x H — H
defined by

O((Z, y) =zY
is a left action of the group K on the set H. Similarly (1.6) and (1.8) mean
that the map 6 : K x H — K defined by

B(z,y) = 2Y

is a right action of the group H on the set K. We make the following
definition.

Definition IX.1.1. A pair (H, K) of groups is said to be matched if there
exist a left action o of the group K on the set H and a right action 8 of
the group H on the set K, such that for all y,y' € H and 2,2 € K we have

(z2')V = 22"¥2'Y, (1.4)

2 (yy') = (2 y)(z" - ¥), (1.5)
21=1, (1.7)

V=1, (1.10)

where a(z,y) = z -y and B(z,y) = 2Y.
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Proposition IX.1.2. (a) Let (H, K) be a matched pair of groups. There
exists a unique group structure, denoted H <1 K, on the set-theoretic pro-
duct H x K with unit (1,1) such that

(v, 2)(y',2) = (y(z - 9), ¥ =)

for ally,y' € H and 2,2’ € K. This group structure is called the bicrossed
product of H and K. Furthermore, the groups H and K can be identified
respectively with the subgroups H x {1} and {1} x K of H a1 K, and every
element (y,z) in H > K can be written uniquely as the product of an
element of H x {1} and an element of {1} x K:

(y,2) = (y, 1)(1,2)

where y € H and z € K.

(b) Conversely, let G be a group and H, K be subgroups of G such that
the multiplication on G induces a set-theoretic bijection from H x K onto
G. Then the pair (H, K) is necessarily matched and the previous bijection
induces a group isomorphism from the bicrossed product H =<1 K onto G.

PROOF. (a) It is easy to check that the above-defined product on H <t K
is associative with (1,1) as unit. Details are left to the reader.

To prove that (y, z) is invertible in the bicrossed product, let us first look
for elements y' € H and 2’ € K such that

(v, 2)(y,2") = (1, 1).
By definition of the product, this is equivalent to the following two relations:
y(z-y)=1 and 2¥2' =1.
From the first one we derive
y' =2 (oY) =2y

and then from the second one we get

Set (v/,2')(y,2) = (Y, Z) where y' and 2’ are given the above values. We
have to show that (¥, Z) = (1,1). Multiplying the last identity by (y, z) on
the left, we get

This implies that

Y=z1(2Y)=2""1=1 and Z=2"2z'=2'2""=1
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Thus, the element (y, z) is invertible with inverse equal to

(y,Z)_l _ (ZAI .y—l’ (Zz
It is easy to check that

(ya 1)(:‘/,’ 1) = (yy,’ 1)’ (l’z)(lvzl) = (LZZ,) and (yv 1)(17Z) = (y’ Z)a

which proves the remaining assertions of Part (a).
For the proof of Part (b), it suffices to review the arguments that led us
to Definition 1.1. i

Example 1. (Product of groups) Let H and K be groups. We let each one
act trivially on the other, which means, using the above notation, that

z-y=y and 2Y=2z

Then (H,K) is a matched pair, and the bicrossed product H > K is
isomorphic to the usual product of groups H x K.

Example 2. (Semidirect product of groups) Let H and K be groups. We
suppose that H acts trivially on K, which means that z¥ = z, and that K
acts on H by group automorphisms, which means that

z-(yy') = (2-9y)(z-y) and z-1=1

for all y,y’ € H and z € K. Then (H,K) is a matched pair and the
bicrossed product H < K is isomorphic to the semidirect product of K
by H. In this case, the identity (1, 2)(y,1)(1,2) " = ((z - y), 1) proves that
H x {1} is a normal subgroup of H <t K and that the action of K on H
corresponds to the conjugation in the bicrossed product.

IX.2 Bicrossed Products of Bialgebras

We observed in Chapter 111 that the algebra of a group has a natural Hopf
algebra structure. The question we raise now is this: Given a matched pair
(H, K) of groups, can we build the algebra of the bicrossed product H <1 K
out of the group algebras k[H] and k[K]? In order to answer this question,
we first give a group algebra version of the action of a group on a set. Let
us consider the case of a group G acting on a set X via a map

a:GxX —X.
Linearizing, we get a morphism of coalgebras

a: kG x X] — k[X]
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for the coalgebra structures introduced in III.1, Example 3. Composing
with the natural isomorphism

kG ® k[X] = k[G x X],

which is a coalgebra isomorphism by Proposition 1I1.1.4, we see that the
group action of G on the set X gives rise to an action of the Hopf algebra
k[G] on the coalgebra k[X] such that the structural map

kG ® k[X] — K[X]

is a morphism of coalgebras. The coalgebra k[X] is thus a module-coalgebra
on the Hopf algebra k[G] in the sense of the following definition.

Definition IX.2.1. Let H be a bialgebra and C be a coalgebra. We say
that C is a module-coalgebra over H if there exists a morphism of coalgebras
H® C — C inducing an H-module structure on C.

We are ready to give the definition of a matched pair of bialgebras.

Definition IX.2.2. A pair (X, A) of bialgebras is matched if there exist
linear maps a: AQX — X and B: A® X — A turning X into a module-
coalgebra over A, and turning A into a right module-coalgebra over X, such
that, if we set

ala®z)=a-z and Bla®z)=a",

the following conditions are satisfied:

a-(zy)= Y (d 2)(a" -y), (2.1)
(@)(@)

a-1=c¢(a)l, (2.2)

(ab)® = > o b’ (2.3)
(b)(=)

1% = e(2)1, (2.4)

Z am;’ ®an Ll = Z a//z” ®a/ oz (2'5)
(a)(=) (a)(x)

foralla,be A and z,y € X.

Observe that Condition (2.5} is automatically satisfied when both bial-
gebras A and X are cocommutative. We also remark that Definition 2.2
is an immediate generalization of Definition 1.1. As a basic example of a
matched pair of bialgebras, we may take the pair (k[H],k[K]) of group
bialgebras where (H, K) is a matched pair of groups.



204 Chapter IX. Drinfeld’s Quantum Double

The maps « and 8 being morphisms of coalgebras, we have

Ala-z) = Z a-2’®ad 2" and e(a-z)=ce(a)e(z)l (2.6)
(a)(z)

in X, and

A®) = Y @™ @d"™" and e(a®) = e(a)e(x)] (2.7)
(a)(z)

in A. We state the main result of this section; it is a natural extension of
Proposition 1.2.

Theorem IX.2.3. Let (X, A) be a matched pair of bialgebras. There exists
a unique bialgebra structure on the vector space X ® A, with unit equal to
1® 1, such that its product is given by

@@ayeb) =Y z(-y)od",
@

its coproduct by

Az®a)= ) (¢/®d)® (" @d"),
(a)(z)

and its counit by
e(z®a) =e(x)e(a)

forall xz,y € X and a,b € A. Fquipped with this bialgebra structure, X @ A
18 called the bicrossed product of X and A and denoted X 1 A. Further-
more, the injective mapsix(z) = z®1 and i (a) = 1Qa from X and from
A into X <t A are bialgebra morphisms. We also have

z®a=(z®1)(1®a)

forae Aandz e X.
If the bialgebras X and A have antipodes, respectively denoted Sy and
S, then the bicrossed product is a Hopf algebra with antipode S given by

S@a)= Y Saa")- Sx(a") ®S,(a')*.
()(a)

PROOF. The above formulas show that we equipped the bicrossed product
with the coalgebra structure of the tensor product of coalgebras X and A.
It is then clear that ¢y and i, are coalgebra morphisms. It remains to be
proved that X 1 A has an algebra structure and that the coproduct and
the counit, as well as the embeddings iy and i 4, are algebra morphisms.
Let us start with the associativity of the product. An easy but tedious
computation using Relations (2.1) and (2.3) and the fact that both « and
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(3 are coalgebra morphisms, shows that if z,y,2 € X and a,b,c € A, then

both
(ceawen)ced mi @oa(won:ed)

are equal to

Z z(a’ . y/) ((a//y” b/) . Z/) ® a///y”’( 2y b///z’”
(a)(b)(y)(z)

For the unit we get, using (2.2) and (2.4),

(1e1)(z®a) = Z (1-2)®1% a = Z ' ®e(z")a = Z t'e(z")®a = z®a
(z) () (x)

and

(z®a)(1®1) Z T a't = Z a)®ad" = Z z®e(a’)a” = r®a.
(a) (a)

Let us prove that the counit is a morphism of algebras. We have to check
that

e((z®a)(y@b)) =c(z®a)e(y ®b) = e(x)e(a)e(y)e(b).
Now the left-hand side is equal to

5( Y a(d-y)ed b) 3 e(@)e(d - y)e(a" )e(b)
(a)(y) (a)(y)
e@e®)( Y =a)e(y)elae(y")
(a)(y)
= e(@)(b)=(@e(y)

in view of (2.6) and (2.7). To conclude, we show that Relation (2.5) implies
that the coproduct is a morphism of algebras. We have

A(QZ ® a)A(y ® b) _ Z $/<CLI . y/) ® a//y”b/ ® x//<a/// . y///) ® a////y””b//’
(z)(a)(y)(0)

and, on the other hand,

A((z@a)(y@b)) _ Z z/(a/.y/)®a///y”’b/®$//(a//_y//)®a////y””b//.
(z)(a)(y)(b)

Both expressions are equal in view of Relation (2.5).
Now suppose that A and X have antipodes. We have to check that the
formula
Sr@a)= 3 Sala) Sx(@") @ Sala)™
()(a)
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defines an antipode on the bialgebra X a1 A. Using the fact that S, and
Sy are antipodes, we get

Z (1_/ ®a’)S(JIH ®a//)
(z)(a)

= Y (@ ®a)(Sal@") - Sx(@") @ S(a”)*x")

Similarly, we have

> S @d)(a" ®a”)
(z)(a)
= Z (S4(a") - Sx (") ® 8 4(a')5* x(z ))(x/// ®a")
(z)(a)
= Z (SA(a///) . Sx(x,//))(SA(CLN)SX(xN) ) x//”)

($)(a) ®SA(aI)SX(x,)z/N”a”N

_ Z SA // X( //)x///)®SA(a/)Sx(z/)z/mam

(z)(a)

= Y @) (84(@") 1) ® 8a(a)x 0
(z)(a)
_ Z E(SA(G,”)) 1® SA(a/)Sx(x/)x”a///
(z)(a)
= &)Y 1®5,(a) a”
(a)
= g(x)e(a)l®1
= e(z®a)l®l.
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We conclude this section with three examples.

Example 1. As already observed, if (H, K) is a matched pair of groups,
then the pair (k[H],k[K]) is a matched pair of bialgebras. Furthermore,
the group algebra of the bicrossed product is isomorphic to the bicrossed
product of the group algebras

K[H > K] = E[H] = K[K].

Example 2. (Tensor product of bialgebras) Let X and A be bialgebras. We
let each one act trivially on the other one by

a-z=¢(a)r and a” =c¢e(z)a

for all a € A and © € X. It is easy to see that these trivial actions satisfy
the conditions of Definition 2.2. In particular, both sides of Relation (2.5)
are equal to x®a. The formulas given in Theorem 2.3 show that in this case
the bicrossed product X < A is isomorphic to the tensor product bialgebra
X ® A

Example 3. (Crossed product of bialgebras) This notion is parallel to the
semidirect product of groups. Let X and A be bialgebras. Suppose firstly
that X acts trivially on A as in Example 2, namely that a® = ¢(z)a for
all a € A and xz € X, secondly that A acts on X via a map « which turns
X not only into a module-coalgebra, but also into a module-algebra, and
thirdly that we have the compatibility relation

Za'@a”-z:Za"@a'-x, (2.8)
(a) (a)

which is satisfied, for instance, when A is cocommutative. Then X and A
are matched bialgebras, and the corresponding bicrossed product is called
the crossed product of A by X. The multiplication in the crossed product
is given by
(z®a)(y®b) = Z z(a' -y) ®a’b. (2.9)
(a)

IX.3 Variations on the Adjoint Representation
Let (H,pu,m,A,£,5) be a Hopf algebra. If @ and z are elements of H, we

set
a-x= Z a'zS(a") and z%= Z S(a)za". (3.1)
(a) (a)

Proposition I1X.3.1. The map (a,x) — a-x endows H with the structure
of a left module-algebra on the bialgebra H. We denote by ,,H the thus
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defined H-module, and we call this action the left adjoint representation
of H. Similarly, the map (z,a) — z* endows H with the structure of a
right module-algebra on the bialgebra H. We denote by H,,; the H-module
defined this way, and we call this action the right adjoint representation of

H.

PROOF. We give the proof for the left adjoint representation. We first check
that (a,z) — a -2z puts an H-module structure on H. Indeed, we have
1-z =z and

b-(a-z)= Z b'a'zS(a")S(b") = Z (ba)'zS((ba)") = (ba) - x
(a)(b) (ba)

for all a,b,x € H. Let us show it is a module-algebra over H. We have

a-1= Z a'S(a") =¢e(a)l
(a)

and

Z (a/ . CIJ)((L” . y) — z a'mS(a”)a’”yS(a'/”)
(a) (a)

= Za’:cs(a")yS(a”')
(a)
= Za’zyS(a”)
(a)
= a-(zy).
0

Example 1. (Conjugacy in a group) Let G be a group and k[G] be the
corresponding Hopf algebra. The left adjoint representation of k[G] is given
by the formula

a-r=ara"?

for a,z € G.

Example 2. (Adjoint representation of a Lie algebra) Let L be a Lie alge-
bra and U(L) be its enveloping algebra equipped with its canonical Hopf
algebra structure (see V.2). The left adjoint representation of U(L) is given
by the formula

a-T =axr —xa
for a,z € L. The corresponding representation of L is called the adjoint
representation of the Lie algebra L.

We now wish to deduce the so-called coadjoint representations of H on
the dual vector space H* from the above-defined adjoint representations.
We use the following lemma.
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Lemma 1X.3.2. Consider a Hopf algebra H with invertible antipode S
and an algebra A that is a left [resp. right] module-algebra over H. Let us
put on the dual vector space A™ the left [resp. right] H-module structure
given by

<a,of >=< 8 Yx)a, f > [resp. <a,fr>=<aS ' (z),f>]
foralla € A, x € H, and f € A*. If A is finite-dimensional, then the
coalgebra (A°P)* is a module-coalgebra over H.

The comultiplication on the finite-dimensional coalgebra (A°P)* is the
opposite comultiplication of the dual coalgebra A*; in other words,

<ab, f>=> <bf ><af’ > (3.2)
(f
whenever a,b € A and f € (A°P)*.

PROOF. Checking that A* is a left H-module is easy. Let us show that the
left action of H on A* defines an H-module-coalgebra structure on A™. 1t
suffices to check that the map from H ® A* to A* which defines the action
of H on A" is a coalgebra morphism. More precisely, we should have

e(zf) = e(@)e(f)
and
S af @) =Y oo (3.3)
(zf) (z)(f)
Now,

e(af) = (=f)(1) = F(S7H@)) = (ST (@) f(1) = e(@)e(f)
since x1 = £(z)1. Let us check (3.3) by evaluating both sides on an element
a®bin A® A. We have
<a®b,Z(xf)’®(xf)”> Z <a,(zf) ><b,(zf)" >
(zf) (zf)
= <ba,xf >
= < S Yz)(ba), f >
= D < (TS (@) "a). f >
()
Y < S @b, M >< 87 aa, £ >
(=)(f)
= Z <a,z'f ><bz"f >
(2)(f)
= <a®b, Z 2f oL f>.
(2)(f)

One proceeds in a similar fashion for the right action. a

I
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As an immediate consequence of Proposition 3.1 and of Lemma 3.2, we
deduce

Corollary I1X.3.3. Let H = (H,p,n, A, &, S,5™1) be a finite-dimensional
Hopf algebra with invertible antipode S. There is a unique left [resp. right]
H-module-coalgebra structure on the dual of the opposite Hopf algebra, that
is, on (H°P)* = (H*, A*,&*, (u°®)*,n*, (S™1)*,S*), given for a,z € H and
feH" by

<a,z-f> = Z < S Y2 ax', f >
(z)
[resp. <a,f*> = Z <z"aS ('), f >
(z)
These actions will be called the left and right coadjoint representations
of H. Applying Corollary 3.3 to the Hopf algebra
(Hcop)* — (H*, (AOP)*ﬁ*aH*,U*a (S—l)*, S*)
and using the natural identification between the bidual H** and H, we get
a right (H°°P)*-module-coalgebra structure on the Hopf algebra

H = (H’ /‘1’7 n’ A’ 6’ S’ S_l)'

By Corollary I11.3.5, the Hopf algebra (H°P)* is isomorphic via the map
S* to the Hopf algebra (H°P)* = (H*, A*,e*, (u°P)*,n*,(S71)*, S*). This
isomorphism induces a right action of (H°P)* on H. We summarize this
with the following statement.

Proposition IX.3.4. Under the hypotheses of Corollary 3.3, there exists
a unique right (H°P)*-module-coalgebra structure on H given for a € H

and f € H* by
af — Z f(Svl(a”/)a/)a”.
(a)
PROOF. Let f,g € H* and a € H. By Corollary 3.3, the action of (H*P)*
on H is given by

<al,g>=) <a f'95*(f)>.
()

Computing in (HP)*, we get
<al,g> = Y <d" f'><d’ g><d,S(f)>
(F)(a)

= Z <S@), f ><ad”, f"><ad", g>
(f)(a)
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Z<<S(' ya", f >a" g >

Z < f(S(a)a")a", g > .
(a)

Therefore, the right coadjoint action of (H°P)* on H is given by

f _ Z f / ///
Composing with (S~1)*, we get a right action of (H°P)* on H given by

a(S_l)*( fOS" Zf / /// o Zf /// / o'

O

We now state the main result of this section. It will allow us to construct
Drinfeld’s quantum double in the next section.

Theorem IX.3.5. Let (H,u,n,A,¢,S,571) be a finite-dimensional Hopf
algebra with invertible antipode. Consider the Hopf algebra

X = (H®)" = (H",A% &, (u*P)*,n,(S7)*, 7).
Leta : H® X — X and 8: H® X — H be the linear maps given by

ala® f)=a-f=3 F(57 ("))
(a)

and
Blaw f)=a =) f(57 (a")a")a"
(a)
where a € H and f € X. Then the pair (H,X) of Hopf algebras is matched
in the sense of Definition 2.2.

PRrROOF. In this proof we systematically use Sweedler’s sigma notation (de-
fined in III.1) as well as the definitions of o and 3, the counitality of ¢ and
relations of the form 3, a’S7(a') = e(a). The question mark ? serves
as a mute variable. Corollary 3.3 and Proposition 3.4 show that « and
endow each Hopf algebra with the structure of a module-coalgebra over the
other one. We yet have to check Relations (2.1-2.5) of Definition 2.2.
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Relation (2.1): For z € H, we have

<z, 3 @)@ ) >

(a)(f)

= Y @)@ g @)
(a)(f)(z)

= Y P Ha®)aV) (57 a)a®) @@ - g) (")
(@)(f) (=)

= Y FSTH@®)a D) (57l )al)g(S 7 (a)a"a?)
(a)(f)(z)

= Z (S a®)a (a(z))w’a(l))g(S*l(a@)x”a(‘*))
(a)(=)

= 3 (@) f(5H(a®)x'aD)g(57H (a)a"a®)
(a)(z)

— Z f //// / )g(Sil(a"/)x”a”)
(a)(z)

which proves Relation (2.1).
Relation (2.2): We have

a-e=Y e(STHa")a)e(a)e =) e(a)e(a")e = e(a)e.
(a) (a)

Relation (2.3): We have to show that

(ab)f — Z ab/-f’ b"f”.
)

Now,

O A S I (O O MV R O T
o ) («g)(? s s

@

= Z ") F(S7H(H")S T (@")a'b )a b

(g) F($710)s™H@"a )"y
@)
S (S (ab)")(ab)' ) (ab)”
(ab
= (a(j) .

I}

Il
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Relation (2.4): We have 17 = f(1) = ¢(f)1.
Relation (2.5): We have to check that

Z a/f/ ® a// . f// — Z a/,f// ® a/ . f/~ (34)
(@)(f) (@)(f)
For the left-hand side of (3.4) we get
Z a/f’ Qa - f// — Z f/(S—l(a///)a/)a// ® f//(S—l(a/////)?a////)
(a)(f) (a)(f)
— Z a' ® f(S—l (a/////)?a////S—l(a///)a/)
(a)

Z s(a”’)a” ® f(Sml(a””)?a/)
(a)

Z a// ® f(S—l(a///)?a/)
(a)(f)

I

whereas for the right-hand side we have

Z a”f” ®d - f/ — Z f”(S_l(a"’”)a’”)a””®f’(S_1(a”)7a’)
a)(f) (a)(f)

— Z a//// ® f(Svl (a/////)a///‘sffl (a//)?a/>
(a)

(

— Z s(a”)a’”®f(S_1(a””)7a’)
(a)

— Z a//®f(5—1(a///)?a/>,
(a)

which proves (2.5). a

[X.4 Drinfeld’s Quantum Double

Let (H, 1,1, A,¢,5,5™!) be a finite-dimensional Hopf algebra with invert-
ible antipode S. Let X = (H°P)* = (H*, A%, &, (11°®)*,n, (S™1)*, S*) be the
dual Hopf algebra. We have just proved that (H, X) is a matched pair of
Hopf algebras.

[X.4.1 The quantum double as a Hopf algebra

Definition IX.4.1. The quantum double D(H) of the Hopf algebra H is
the bicrossed product of H and of X = (H®P)*:

D(H) =X H = (H®)" a H.
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We first give a more explicit description of D(H), then in the next sub-
section we prove that the quantum double is a braided Hopf algebra in the
sense of VIIL.2.

As a vector space, we have D(H) = X ® H. The unit of D(H) is 1 ® 1.
Its counit and its comultiplication are given by

e(f ®a)=e(a)f(1) (4.1)
and
Afea)= ) (f®d)e(f ®d) (4.2)
(@)(f)
where f € X and a,b € H.

Lemma IX.4.2. The multiplication in D(H) is given by

(fea)(gab) =Y fg(S '(d")?)@a"b (4.3)
(a)

where f,g € X and a,b € H.
Here g(S~!(a")?a’) means the map x +— g(S~'(a”")za’).

PROOF. By definition of the bicrossed product, the product of D(H) is
given by

(feageb) =Y fd ¢)ead"D.
(a)(9)
Computing the right-hand side using the formulas of Theorem 3.5, we get

Z fg // ?CL ) ® g//(S l(a/////)alll)allllb
(a)(g)

— Z fg a///// ///S—l(all)?a/) ® a/””b
(a)

_ Z ( ")fg( ( ////) a/)®a///b
(a)

— Z fg /// /) ® a'b.
(a)
O

The quantum double D(H) contains H and X as Hopf subalgebras via
the embeddings iy and iy given by

ig(a)=1®a and ix(f)=f®1L
Formula (4.3) implies that
f@®a=ix(flig(a) (4.4)
forall fe X anda € H.
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We shall use Relation (4.4) in order to simplify our notations and write
fa instead of f ® a = ix(f)iy(a) whenever a is an element of H and f is
a linear form on H. Under this convention, the multiplication in D(H) is
determined by the straightening formula

af = Z f(S7Ha")?a )" (4.5)
(a)

where f € X and a € H.

When H is cocommutative, the bicrossed product construction of the
double of H can be reduced to the crossed product construction of Section
2, Example 3, as shown in the following statement.

Proposition 1X.4.3. Let H be a cocommutative finite-dimensional Hopf
algebra with invertible antipode. Then the quantum double D(H) is iso-
morphic, as a Hopf algebra, to the crossed product of H with (H°P)*, the
first algebra acting on the second one by the left coadjoint representation of
Corollary 3.3.

PrOOF. We first have to prove that we are in the situation of Example 3
of Section 2, namely that (H°P)* acts trivially on H and that (H°P)* is a
module-algebra over H for the left coadjoint representation. The compati-
bility condition (2.8) is trivially satisfied since H is cocommutative.

Resuming the notations of Proposition 3.4 and using the cocommutativ-
ity of H, we have

af = Z f(S_l(a”I)a/)a”
(a)

= Zf(sul(am)a")a’
(a)

= Y f(De(a")d
@
= £(f)a,

which proves that (H°P)* acts trivially on H.
In order to prove that (H°P)” is a module-algebra over H, we have to
check that

a-1=e(a)l and a-(fg)=) (a-f)(a-g)
(a)

for a € H and f,g € (H°?)*. This is left to the reader.
Let us now prove that the multiplication in D(H) coincides with the
multiplication of the crossed product given in (2.9). Fora € H and f € H*,
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we have the following equalities in the quantum double:

af _ Zf(s—l(a///)?a/)a//
(a)

— Zf(S_l(a”')?a”)a'
(a)
= D (@ fd

(a)

— Z(a/'f)a”~

(a)

Here we used the cocommutativity of H in the second and fourth equalities
as well as the definition of the coadjoint representation (see Corollary 3.3).
The last term of this series of equalities is the multiplication formula given
in (2.9) for the crossed product algebra. The coalgebra structures coincide
for both constructions. a

IX.4.2 Description of the universal R-matrix

Let us consider the map Ay 5 : H®X — End(H) defined inI1.2 fora,b € H
and f € X by Ay y(a® f)(b) = f(b)a. Since H is finite-dimensional, the
map Ay g is an isomorphism, which allows us to set

p=Agpglidy) e H®X.
We define the universal R-matrix of the quantum double as the element
R=(ig®ix)(p) € D(H)® D(H).

We get a more explicit formula for R by choosing a basis {e;};-; of the
vector space H together with its dual basis {e'},c; in X. Then

p:Zei(X)ei’ and R:Z(1®e¢)®(ei®l). (4.6)

il icl
We state the main theorem of this section.

Theorem IX.4.4. Under the previous hypotheses, the Hopf algebra D(H)
equipped with the element R =73, (1®e;)® (e'®1) € D(H)® D(H) is
braided.

PRrROOF. We have to prove that R satisfies the conditions of Definitions
VIII.2.1-2.2. More precisely, we must prove

(1) that R is invertible in D(H) ® D(H),

(2) that (A ® id)(R) = R;5R,; and (id ® A)(R) = R3R,,, and
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(3) that for all f € X and a € H, we have

A°P(f ® a)R = RA(f ® a).

(1) We claim that R is invertible with inverse R equal to
R=) (1®e)a (oS ®1).
iel

Consider an element { =0 @u@c®vin H® X ® H® X. Let us pair it
with RR using the duality between H and X. We get

<RRE> = > <(1@ee)@ (08 @1),b0urcuv>
i,jel

= ¢(b)v(1) Z u((Z ei(c’)) (Z ej(S(c”))>eiej>

(e) i€l j€
- a(b)v(l)u(Z c’S(c“))
(c)
= e(b)v(l)e(c)u(l)
= <1®1®1®LE>.

Consequently, RR = 1 ®1®1® 1. One proves that R is a left inverse of R
in a similar way.
(2) We now check that (A ® id)(R) = Ry3R,5 or, equivalently, that
Y 1legelededal=Y 1l el
i€l (e:) ujel

Let us evaluate the left-hand side on an element § = a @ tR XU R cR v
of the tensor product D(H)® D(H) @ D(H). We have

<(AQI(R),0> = < Y 1wl e ®l,i>
icl,(e;)

e@e®o)( Y eeeulel)).

i€1,(eq)

We now remark that

Z ad®ad = Z e'(a)e; ® el (4.7)

(a) (a), i€1,(e:)

by application of the coproduct of H to a = >_,_; €'(a) ¢;. Using (4.7), we

obtain _
S e)tlehulel) = 3t yule).

iel ©
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Therefore,

< (A®Id)(R),6 >=3_ e(a)e(b)o(1)t( yu(c").

On the other hand, we have

< Ri3R,y3,0 >

= e(@e()u(l) Y tleule;)(ee)(c)

i,J€I

= e(a)e(d)o(l) Y t(z e%c’)ei) u(D e (C”)€j>

(c) i€l jel

= e(@)e(®)v(1) Y t(c)u(c")

(o)

= <(A®id)(R),0> .

One checks similarly that (id ® A)(R) = R,3R;,.
(3) Let us evaluate A°’(f ® a)Ron £ =b® u® c ® v. We have

<A®(f®a)R, ¢ >

Yo <(f"®d)(1ee)®(f ®ad) (e ®1),6 >
(a)(f)iel

Z < f”®a”"€i®f’€i(S_l(am)?a/)®a”,§ >
(a)(f),iel

Z f// //// )f'(c')ei(S_l(a”’)c"a’)v(a")
(a)(e)(f), ZGI

Z f bc a" z( (a///)c//a/)ei)v<a//)

(a)(c), i€l

Z f(bcl) a"s— (///) "a')v(a”)
Z e(@")f(bc'Yu(c"a")v(a")

On the other hand, we have
< RA(f®a), &>

Y <o) @d)o o va)E >
(a)(f),iel

Z <f( (l”)76)®ellal®€lf”®a”,§>
(a)(f)iiel,(e:)



IX.4 Drinfeld’s Quantum Double 219

— Z f /// be ) (e//a/)e (c')f”(c”)v(a”)
(a)(e)(f), i€l (e )

Z f //S /// be) (e"a’)ei(c’)v(a”).
(a)(c), €1 (e:)

i

Applying (A ®id;)A to c= Y, ; €'(c)e;, we get

Z doded = Z el(c)e, el @ell’. (4.8)

icl,(eq)

Using (4.8), we obtain

<RA(f®a),£> = Z f( 1t g—1 (&")be ) ("a' Yv(a")
(a)(c)

— Z ( ///)f(bc) ( " ')v(a”)
(a)(c)

= D S )u(c"a)u(a")

(a)(c)
= <AP(fRa)R,E>.

IX.4.3 Quantum double of a group algebra

We end this section by applying the quantum double construction to the

finite-dimensional cocommutative Hopf algebra k[G] where G is a finite

group. By Proposition 4.3 we know that D(k[G]) is a crossed product.
Let {e },cc be the dual basis of the basis {g} g of k[G]. It is easy to

check that the dual algebra (k[G]°P)* is the algebra k¢ with multiplication

given by

(4.9)

€gn = b1, €4

for all g,h € G and with unit deG e, = 1. The comultiplication A, the
counit £, and the antipode S of (k[G]°P)" are defined by

(eg) = Z e, ®e,, cleg) =085, Sle,)=e4 (4.10)

uv=g

for each element g of the group.
The above description of a quantum double shows the set {e h}, nyeaxa
is a basis of D(k[G]). The product of the quantum double is determined by

he, = epgp-1h, (4.11)
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which proves again that D(k[G]) is the crossed product of k[G] by itself,
where the algebra acts on itself by conjugation. Its universal R-matrix is

R= Z g®e,. (4.12)
geG

Despite the fact that the quantum double is not cocommutative when G is
not abelian, its antipode is involutive, which implies that the element

u= Z €g-19 (4.13)

geG
introduced in VIIL4 is central in D(k[G]). We also have
S(u) = u. (4.14)

[X.5 Representation-Theoretic Interpretation of
the Quantum Double

Let H = (H, u,n, A, 5) be a finite-dimensional Hopf algebra with invert-
ible antipode. Again we choose a finite basis {a;};c; of H along with its
dual basis {a'};c;. The purpose of this section is to characterize modules
over the quantum double D(H). In view of Relation (4.5), a D(H)-module
is nothing but a vector space V with a left H-module structure as well as
a left H*-module structure such that foralla € H, f € H*,; and v € V we

have
a(fv) = Z F(S™Ha")?d) (a”v). (5.1)
(a)
‘We wish to rephrase such data purely in terms of H without any reference
to the dual algebra H*. We first introduce the following concept.

Definition IX.5.1. A crossed H-bimodule is a vector space V together
with linear maps py, - H@®V — V and Ay, : V — V @ H such that

(i) the map py [resp. Ay turns V into a left H-module [resp. into a
right H-comodule], and

(ii) the diagram

HeV A, e HeV

ARAYy lidH®HV
HoHQV®H HQV
lidy@‘l‘[—[‘v@idy lTH,V
HRVQH®H VeH

luv p lAv ®idyg

Ve H Mer vy e B H

commutes.
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Set piy(a ® v) = av and Ay (v) = 3, vy @vy forac H andv e V.
Then, according to the conventions set up in I1I.1 and III1.6, the commuta-
tivity of the above diagram is equivalent to

Z a'vy ® vy = Z (a"v)y @ (a"v)y d (5.2)
(a)(v) (a)(v)

where a runs over all elements in H and v over all elements in V.
We state the main result of this section.

Theorem IX.5.2. Let H be a finite-dimensional Hopf algebra with invert-
ible antipode. Any left D(H)-module has a natural structure as a crossed
H-bimodule. Conversely, any crossed H-bimodule has a natural structure
as a left module over the quantum double D(H).

PrROOF. (a) Let V be a left D(H)-module. As we mentioned before, the
space V is a left H-module as well as a left H"-module satisfying Relation
(5.1). We wish to show that V' can be endowed with a crossed bimodule
structure.

Given a basis {a,}; of H and its dual basis {a’};, we use the left action
of H* on V in order to define a map Ay, : V — V ® H by

Ay (v) = Z a'v ® a, (5.3)

for any v € V. Let us show that A, defines a right coaction of H on V. We
have to check that A is coassociative and counitary. Rather than verify
this directly, we observe that A, is the transpose of the associative, unitary
right action V* @ H* — V* of H* on V* given by

<af,v>=<a,fv>

fora e V¥, v €V and f € H*. Indeed, we have

ca®f Ay > = 3 alav)f(a)

_ < (X flajat)o >

= <a,fv>
= <af,v>

since f = 3. f(a;)a". Incidentally, this observation implies that Ay is
independent of the choice of the basis.

In order to complete the proof that V is a crossed H-bimodule, we have
to check Relation (5.2) using (5.1). If a € H, v € V and f € H”, then
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(id® f)( Z a'vy, ® a"vH) = (d®f) (Z d'(a'v) ® a"ai)
(a)(v) (a);t
= Y da)faa)
(@),
= Y [fla)f'(a")d (')
(a)(f)yi
_ Z f//(a//)a/((z f’(ai)ai)v>
(a)(f) i
- Z f”(a”)a' (f'v)
(a)(f)
- Z f”(a””)f’(S‘l(a’”)?a’) (a//v)
(a)(f)
_ Z f(a////S—l(a///)?a/) (a//v)
(a)
_ Z E(a"')f(?a’)(a"v)
(a)
= Z f(?a’)(a"v)
(a)
— Z f/ (a/) f"a”v
(a)(f)
= D, d@v)f"(e)f ()
(a)(f)yi
= Y d'(a"v)f(a;0)
(a) 2
= (id® f) (Z a'(a"v) ® aia’>
(@)1
= (@8 (Y @)y @ @v)ud).
(a)(v)
This, being true for any linear form f, implies (5.2). In the previous series
of equalities, we used the comultiplication on H*, Relation (5.1), the fact
that S~' is a skew-antipode, that ¢ is a counit, and that f =Y, f(a,)a".
(b) Conversely, let V be a crossed H-bimodule. We show that V' can be
given a D(H)-module structure. Observe that if (V,Ay :V -V @ H) is

a right H-comodule, then V becomes a left module over the dual algebra
X =H"by
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idg*Q@Av idg* @1v, g evy ®idv
_

H eV HQVeH HQ@HRV |4

where evy, is the evaluation map. In other words, a linear form f € H*
acts on an element v € V by

f~v:Z < f,vg > vy (5.4)
(v)
In view of this observation, we see that a crossed bimodule has a left H-

action as well as a left H*-action. In order to prove V is a D(H)-module,
it is enough to check Relation (5.1). We have

ST (@) = Y < £,57Ha") (@ )y d > @)y
(a) (a)(v)
Z < f,87Ya")a" vy > d'vy,
(a)(v)
= Z e(d’) < fyvg > d'vy,
(a)(v)
= Z < fyvg > avy
(v)
= a(f-v)
for any a € H, f € H* and v € V. The second equality is a consequence

of Relation (5.2). The third one follows from the fact that S™! is a skew-
antipode. m|

Remark 5.3. Formula (5.3) defining the coaction A, may be rewritten as
Ay(v) =Ry (v®1) (5.5)

where R, is obtained from the universal R-matrix of D(H) by applying
the flip. We shall use Relation (5.5) in order to determine the universal
R-matrix of U, (s[(2)) in XVIL4.

IX.6 Application to U,(sl(2))

We now return to the Hopf algebra U, = U,(sl(2)) studied in detail in
Chapters VI-VII. We wish to show that it has a universal R-matrix using
the quantum double construction of Section 4. However, we only gave this
construction for finite-dimensional Hopf algebras, which is not the case of
U, Therefore we postpone the construction of the universal R-matrix of
U, to Chapter XVIIL Instead, we now work with the finite-dimensional

quotient U, introduced in VL5.
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We assume until the end of this chapter that ¢ is a root of unity of order
d in the field k£ where d is an odd integer > 1. Let us resume the notation
of VI.1. Recall

n

" —q
==
which is defined for any integer n, and the corresponding g-factorials [n]!.

We have [n] # 0 if 0 <n < d and [d] = 0.
In VL5 we defined the algebra U, as the quotient of U, by the two-

sided ideal generated by the three elements E¢, F¢, K% — 1. We proved in
Proposition VI.5.7 that the finite set {EiFjKe}O<i7j’g<d71 was a basis of
the underlying vector space of Uq, We endow the algebra Uq with a Hopf
algebra structure.

Proposition IX.6.1. The algebra Uq has a unique Hopf algebra structure

such that the canonical projection from Uq to Uq 1s @ morphism of Hopf
algebras.

__In other words, the comultiplication, the counit and the antipode of
U, are determined by Formulas (VIL.1.1-1.4) defining the Hopf algebra
structure of U,.

PROOF. The proof proceeds as for Proposition VII.1.1. We still have to
check that
AE)Y =AF)¢ =AK)E-1=0,
e(E) =e(F)? =e(K)*-1=0,
S(E) =S(F)¢=SK)'-1=0.
The only non-trivial computations concern the vanishing of A(E)? and of
A(F)4. Following Proposition VII.1.3, we get

r=d—1
A(E)d — Ed®Kd+ Z q’r‘(d——'r‘) [ f

r=1

} Ed—r®ErKd—r+l®Ed:0

because E% = 0 on one hand and

|7 = i

on the other. One proves that A(F)? = 0 in a similar way. i

The goal of this section is to establish that Uq is a braided Hopf algebra.
To this end, we shall present Uq as a quotient of the quantum double of

a Hopf subalgebra B, of Uq. We define B, as the subspace of Uq linearly
generated by the set {E™ K"}, ,<4_;- Formulas (VIL.1.1-1.4) show that
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B, is a Hopf subalgebra of Uq. The reader may check that, as an algebra,
B, is generated by E and K and the relations

KEK'=¢FE, E%=0, and Ki=1. (6.1)

We now apply the quantum double construction of Section 4 to the
Hopf algebra H = B,. We first determine X = (B;P)" as a Hopf al-
gebra. Consider the linear forms « and n on B, defined on the basis

{EmKn}ogm,ngd—1 by

<o, Em"K" >=6,,,¢"" and <n ET"K">=6,,. (6.2)
Proposition IX.6.2. The following relations hold in the Hopf algebra X :
, 0t =0, ana”t=q7",

Ale)=a®@a, An)=19n+10a,
ela) =1, &(n) =0,
S(a) =a%t,  S(n) = —nal.
Moreover, the set {17icz3'}~()§i7j§(k1 forms a basis of X.
PROOF. We start with the following lemma.
Lemma IX.6.3. For all integers i, j, m,n, we have
<n'ad,E"K" >=46,, (i), g@ ),

ProOF. By Proposition VI1.1.3, if @ and § are linear forms on H, then the
product af in X is given by

T=m
<af, E"K">= Y ( T ) <a,E™TK™ >< B, ETK™T T >
r=0 q?
(6.3)
One uses (6.3) to show that
<, E™K" >=6,,, (i)
by induction on ¢, and that
<o E"K" >=6,,¢""
by induction on j. Then
T=m m . -
<n'ad,EmK" > = ( . ) <n,E™"TTK" >< ol ETK™TT >
r=0 q°

m - ] n—r
- < r >q2 6m—r,i 67"0 (Z>!q2 ng(m+ )

I
n 5
lci)

i (1)1 g2 q¥ ), O
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Let us prove Proposition 6.2.
(1) Using the previous lemma and ¢¢ =1, we get

<o, E"K" >=6_,=<¢,E"K" > .
Therefore, a? = ¢ is the unit of X. Analogously,
<", E"K" >=16,,,(d)!2=0

since (d),. = (¢*¢ —1)/(¢*> = 1) = 0. As for an, we have

r=m

< O‘nvEmKn >= Z ( " ) 2 67”*7”,067'1 q2n = 6m1 q2n'
q

r
r=0
In view of Lemma 6.3 we can write
<no, EM"K" >=0,,, Pt = 2 < an, EM"K™ >,

whence na = ¢?an.

(2) Let us deal with the comultiplication of X. By definition, if « is a
linear form on H, then A(w) is given by A(a)(z®y) = a(yx) for z,y € H.
Therefore

A(o)(E'K? @ EMK™) = ¢ <a,E7FmKIT >
= Oitmpo q2niq2(j+n)
= 8i00moa”q™"
<a®a,EB'K'Q E"K™ >,
which implies that A(a) = a® «a.

Similarly, we have

A(’I])(EzK] ® EmKn) — q2ni < ,’77Ei+ij+n >
— 5i+m71 q2ni
= bi0 b1 + 651 8o 4"

<19n+n®@o,E'K? @ E"K™ > .

Consequently, A(n) =1®n+n® a.
(3) Concerning the counit, we have

e(la) =<a,1>=1 and e(n) =<n,1>=0.

The computation of S(«) and of S(n) is left to the reader.
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(4) Let us prove the last assertion of Proposition 6.2. As the dimension
of X is d?, it is enough to show that the set {n’a’ Yo<ij<d—1 is linearly
independent. Suppose there exists a relation of the form

Z )\ijniaj =0.

0<i,j<d—1

Applying it to the vector E™ K™, we get

Z )‘ijémi(i)!qzq2j(i+n) = (m)!qz ( Z /\qu2j(m+n)> =0.

0<i,j<d—1 0<j<d-1

Letting m fixed and running n over the d integers between 0 and d ~ 1, we
obtain a system of d linear equations with unknowns Ao, A1, -3 Ay, g1
The determinant of this system is the determinant of the matrix (Ay,),
defined by A,, = (¢*™*9)*. It is a Vandermonde determinant which does
not vanish because g2 £ g2 () whenever 0 < £ £ ¢ < d — 1.
Therefore, the system has 0 as its unique solution; in other words, we have
Ay = 0 for all j. d

We now construct the quantum double D = D(B,). By definition, the
set {n'a’ @ EkKe}OSi,j,k,ZSd—l is a basis of D. To simplify notation, we
identify an element z of H = B, with its image 1 ® z in D and an element
« of the dual X with its image a ® 1. Under the convention already set
up in Section 4, the elements of the previous basis can be rewritten in the

form o o
n'ed ® E¥K* = no/ EFK*.

To determine the multiplication of the double D, it is enough to know how
the generators o, n, £, K in D multiply together.

Proposition IX.6.4. The following relations hold in D = D(B,):
Ka=aK, Kn=q?%nK,
Fa=q ?aE, En=—q%1-nE-aokK).

PROOF. By (4.5) the product za in D of x € H of o € X is given by

To = Z (ST Ha") ") 2.
(2)

Let us apply this formula to the generators. First, we have S~ (K) = K~!
and (A®id)(A(K)) = K@ K ® K. Consequently, for any linear form g € X
we have

KB =p(K '7K) K. (6.4)
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Next, S~ (F) = ~K'E and
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(ARI)(AE)=101RE+1QERK+EQK®K.

Hence,

Ef=—-B(K 'E?)+B(K'E+B(K™1?E) K.

(6.5)

Proposition 6.4 is then a consequence of (6.4-6.5) and of the following

lemma. ]
Lemma IX.6.5. We have

a(K17K) = a, ol K7'E?) = 0,

a(K1?) = ¢? o K1?2E) = 0,

nK7K) = ¢ *n, n(K'E?) = q ¢

n(K~1'?) = a2, n(K~17E) = ¢ 2.
PROOF. Left to the reader. O

We now relate the quantum double D(B,) and the Hopf algebra Uq.

Theorem IX.6.6. Let x: D(B,) — Uq be the linear map determined by

q—q"
2

- )ti(i+j)k~i,(i—1) Fipk it

X(niajEkKL]) = ( (6.6)

where 0 < 1,5,k, £ < d—1. Then x is a surjective Hopf algebra morphism.

PROOF. The surjectivity of x follows from the fact that the image of the
basis {n‘a’ E*K*} generates U,

In order to show that x is a map of algebras, it is enough to check that
the images under x of the generators E, K, «,n satisfy the relations of
Proposition 6.4. Observe that (6.6) implies

x(a) = K,
Now, by definition of Uq we have

x(@)x(K),
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Finally, we get

_ 41
X(B)xn) = T~ BFK
= q_q‘lFEK%—i(K KYK
q2 q2
-1

= —q'z(l — x(mx(E) — x(a)x(K))~

This proves that x is a morphism of algebras.

Again, to show that x respects the comultiplication and the antipode, it
is enough to check on the generators. For F, K, and «, this is clear. We
still have to examine the case of 1 for which we have

—1

Alx(m) = q‘q? A(FK)
- qqg (19 FK + FK ® K)
= x(1)® x(n) + x(n) ® x(a)

= (e (am).

Similarly,

We draw the following consequence which was our main goal.
Corollary 1X.6.7. The Hopf algebra Uq is braided.

ProOOF. The Hopf algebra D = D(B,) is braided by Theorem 4.3. Let
R, € D® D be its universal R-matrix. Define the invertible element R of
U,®U, by

R=(x®x)(Rp)- (6.7)
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Since y is a surjective morphism of Hopf algebras, it is clear that R satisfies
Conditions (VIII1.2.1-2.3). O

We shall compute the universal R-matrix R of Uq in the next section.

IX.7 R-Matrices for U,

We keep the hypotheses and the notations of Section 6.

Theorem IX.7.1. The universal R-matriz of Uq s given by

—1\k
B 1 Z (g—q ") k=D /242K(=0) =245 R pci @ [k fed
0<i,j,k<d—1

PROOF. According to Section 4, we have R, = ., e,®¢’ where {e;},c; is

any basis of the vector space B, and {ei}ie ; is its dual basis. Consequently,
by (6.7)

R=Y x(e)®x(e). (7.1)
icl
As above, we take the set {E'K7},; iy 1 as a basis of B,. Denote by
{BY Yo<i j<d—1 the dual basis. By Proposition 6.2 we know there exist
scalars {{1y Yo<i j k.e<a—1 Such that
Bl= 3" whnta (7.2)
0<k,£<d-1

Apply Relation (7.2) to the vector E™K™: using Lemma 6.3, we obtain the
linear system of equations

67m6]n = Z :u’;c]£6k'm( ) 2q 2(k+n)
0<k,£<d—1
= (m)lp ( > w 2“”””)).
0<4<d—1

An argument similar to the one that proved the linear independence of the
family {n'a’}o<; j<4-1 In Prgposition 6.2 shows that w7, = 0 for m # 1.
Computing the coefficients xj that are solutions of the linear system

I s
0<t<d—1 (m)'qz

requires inverting a Vandermonde matrix. We shall not do this since we are
interested in R, not in Rp. Instead, we shall use a simpler and more direct
method.
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Indeed, from the above arguments we know that R is a tensor of the
form

R= Y  plx(E'K)ex(n'a).

0<i,je<d—1

Now x(n'a’) is a scalar multiple of F'K*"*. Therefore, R has the more
precise form
R= Y ¢ B'K'@F'K.
0<4,j,k<d—1

We now determine the coefficients c; ; . Theorem 7.1 will follow from
Lemma 7.2. O

Lemma IX.7.2. For dall i, j, k we have

o = 1(q— g b k(k—1)/2+2k(i~)—2ij
Wk =g R ¢ '

PROOF. (a) We first express c; ; ;. in terms of ¢ = ¢,  ; using the relations
A°P(z)R = RA(x)

for z = F and x = F. We have

A°®(E)R (E®1+K®E)< > ci7j’,€EkKi®F’“Kj>
0<i,j,k<d—1
= Y. o BME @ FFK
0<i,j,k<d—1
+ > e BFKTT @ EFFKY,
0<i,j,k<d—1

and

RA(E) = ( > ci,jykEkKi®FkKj>(1®E+E®K)
0<14,5,k<d—1
= Y ¢¥¢,;, B*K'® F*EK
0<4,5,k<d—1
+ Z q2’i C@j,k Ek+1Ki ® FkKj+1
0<4,5,k<d—1
= Y ¥, BFK'® EFFK

0<i,j,k<d—1

- > [

0<i,j,k<d—1

2j—(k-1) )
q c. . E*K? ®Fk~1KJ+1 +
q— q—l 1,5,k
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+> W

o<ijh<a-1 19
+ § q2i Ci,j,k Ek—f—l[(i ® FkK]Jrl,
0<ijh<d1

2j4+(k—1) . )
¢ EFK @ FFIKT!

Identifying the coefficients of EfKi o EFF* KJ', we get
Cigk = g+ Ci 1,4,k (7.3)

Starting all over again with F, we get

A®(F)R = (F®K‘1—|—1®F)< > ci,j’kEkKi@)FkKj)
0<4,j,k<d—1

— Z q2k Civj,k FEkK’L ® FkKj—l
0<4,j,k<d—1

+ Y e EFKi @ FRKT

0<i,j,k<d—1

= Y e B FK @ FRKI

0<i,j,k<d—1

- Y we

_ 1
o<ijk<d—1 174

2k—(k—1)

q
+Y M
o<igk<d—1 1749

+ Y R EfK @ FMKD
0<i.j,k<d—1

2k+(k—1) ' )
ci,]’Jg Ek71K1+1 ® FkK]—l

ci’j’k EkflK’L——l ® FkKj71

On the other hand, we have

RA(F) = ( DR o F’“Kj) (KT'@F+F®1)
0<i,j,k<d—1
= Y q Ve EFKT @ PR
0<i,j,k<d—1

+ ). ¢ ¥, EFFK @ FFKY,
0<i,j,k<d—1

We identify the coefficients of E¥FK* @ F¥K7—!, which yields
4,51,k (7.4)

and the coefficients of EFK' ® FEYKJ which leads to

= 2(k+1
Gk =4 e
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AR+
- _c. .
— i—1,941,k+1
g—qt J
2(k+1)—k
T Citl 41 ht1- (7.5)

¥ ciige = Cige— k+1]

+[k+ 112

From (7.3) and (7.4) we get
Cijo =0 "egpo=0""ec (7.6)
Combining (7.3) and (7.5), we obtain

, ) Aj~k+2
—2j+2(k~7) Co ]q c. _
1,7,k —1 “i+l,5+1,k+1

q = Cyp— R+l

k42
+[k + 1]q—F Cit1,j+1 k+10

hence

or, equivalently,

9—4q k—4j+1

Ci1,j-1k~1"
Therefore, we get

—1\k
(g—q 1) qk(k+1)/2—4kj+2k(k41)+k c

Cijk = [k]' i—k,j—k,0
_ (g—q¢ " k(k—=1)/2+2k(k=~23) ,—2(i—k)(j—F) ,
————[k]! q q

by (7.6). In other words, we have

—1\k
o ol g ) P (k=1)/242K(i~5)~2ij
0.5,k (k]!

__(b) It is now enough to prove that ¢ = 1/d. From Part (a) we know that
R is of the form

R=c Y q¢*K®K +..
0<4,5<d

where + ... stands for a sum of monomials containing only positive pow-
ers of E or of F. We now use (A ® id)(R) = R;3R,3, which is Relation
(VIIL.2.3). We have

(ARid)R)=c Y, K QK QK +... (7.7)
0<i,j<d
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whereas
E13R23 = 2 Z q—zie—zmj K@ K™ ® K 4 .
0<4,8,m,j<d
= 2 Z q—2ie—2m(j—e) Kt QK™ ® K +...
0<i,f,m,j<d
= 2 Z q—2mj( Z q(zm—zi)z) KioK"® K +....
0<i,m,j<d 0<e<d

Now, Y o« j<d ¢™7 vanishes except when N is a multiple of d, in which case
the sum equals d. Therefore,

RigRy=d® > ¢"K QK QK +.... (7.8)
0<i,j<d

We deduce from (7.7-7.8) that ¢ = dc?. Since R is invertible, ¢ does not
vanish. This implies the announced value for c. a

We conclude this section by deriving a few R-matrices from Theorem 7.1.
Let 0 < n < d. Consider the simple U -module V,, = V; ,, defined in Chap-
ter VI. As a module, it is generated by a highest weight vector 'v(()") of weight

q". Recall that the action of U, on the canonical basis {v(()n), v§") O
of V,, is given by the relations

Kvl(,”) =g vé”), Evz(,") =[n-p+1] vgi)l, Fvl(,”) =[p+1] v;:i)l.

We use them to deduce the form of the R-matrix

By V@V, =V, eV,

obtained from R via the construction of (VII1.3.1). Recall that cgmvm is a
solution of the Yang-Baxter equation.

Corollary IX.7.3. The isomorphism cgmvm V.oV, =V, @V, is the
U ,-linear map determined by

By (o) @ ul™)

_ (=¥ [n—p+Elr + k]!
B Oﬁgd—l (k]! [n—p)![r]!

g (k, @) T @ vl

where a is any integer such that m + ad is even and

qgln(k,a) _ qk:(k:—1)/2+k(m——n)—pm—?"n——2(k—P)(k+7‘)+(m+ad)n/2.
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PROOF. By definition of cgmvm and in view of Theorem 7.1, we have

(i @ v{™)
1 (q—q¢ ) [n—p+k]lr+ K] k(k—1)/2
d ]! -l ¢

X< Qpr (k) vt © vy

Cvn Vin

0<4,j,k<d-1

where

pr

(k) = Z g2~ Dh=2ij+i(n—2p)+j(m=2r)
0<d,5<d

which we can rewrite as

Z;n(k): Z q2ik+i(n72p)< Z q(m72r—2i—2k)j).

0<i<d 0<j<d

Again, Zo<j<d ¢™¥7 vanishes except when N is a multiple of d. Thus,
_ dz q2ik+i(n~2p)
i

where 4 runs over the set of all integers in [0,d — 1] such that
2t =m — 2r - 2k + ad.

As 2 is invertible modulo d, there exists only one integer ¢ satisfying these
conditions. Therefore,

;L;n(k) — dq2ik+i(n—2p) _ dqk(mfn)—pm—rnAQ(kAp)(k+7‘)+(m+ad)n/2. 0

Application 7.4. Consider the case n = m = 1. We may take o = 1.
Corollary 7.3 implies that

CZLVl(UO®U0) Aquy ® vy,
Cﬁ,vl(vo@’vl) = v, ® vy,
Cﬁl*vl (0 ®v) = Alvg®vi+(a— g v ® 1),
oy (v ®v) = Aqu v
where A = ¢ V7%, v = “(()1) and v; = vgl) The reader is invited to

compare these formulas with the R—matrlces of VIIL.1, Example 2.
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IX.8 Exercises

. Let H be a bialgebra and C a coalgebra. Prove that C is a module-

coalgebra over H if and only if there exists an H-module structure
on C such that the comultiplication A : C — C ® C and the counit
¢:C — k of C are H-module maps for the tensor product H-module
structure on C' ® C and for the trivial H-module structure on k.

Let H be a bialgebra and C a coalgebra. Then C is a comodule-
coalgebra over H if there exists an H-comodule structure on C' such
that the coproduct A : C — C®C and the counit e : C — k of C are
morphisms of H-comodules for the tensor product H-comodule struc-
ture on C®C' and for the trivial H-comodule structure on k. Draw the
commutative diagrams expressing an H-coalgebra-comodule struc-
ture on C. Deduce that C' is a comodule-coalgebra over H if and only
if there exists a linear map A, : C — H®C inducing an H-comodule
structure on C and satisfying for all x € H and ¢ € C the relations

Z e ®(co) @ (co)’ = Z e @ (e @ ()e
(c) (c)

and 37,y cpelee) = e(c)l where Ag(c) = 30 ey ® ce-

Let H be a bialgebra and C a coalgebra equipped with a comodule-
coalgebra structure on H. Show that the dual algebra C* can be given
a comodule-algebra structure on H.

Let H be a bialgebra and C a coalgebra equipped with a module-
coalgebra structure on H. Show that if C' is finite-dimensional, then
the dual algebra C* can be given a module-algebra structure on H.

(Adjoint corepresentation) Let H be a Hopf algebra. Define a linear
map A, from H to H ® H by

A, ya) = Z a'S@")®a".
(a)

Prove that A,; endows H with a comodule-coalgebra structure over
itself.

. (Coadjoint corepresentation) Let H be a finite-dimensional Hopf alge-

bra with invertible antipode. Prove that the adjoint corepresentation
induces an H-comodule-algebra structure on the dual vector space
H*.

Let G be a finite group. (a) Show that a left module over the quantum
double D(k|G]) is a left G-module V with a decomposition of the form
V =@@,cc V, such that AV, C Vjg,—1 forall g,h € G.
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(b) Let W = D, e W, be another left D(k[G])-module. Show that

the automorphism ¢ defined in VIII.3 sends V,@W,, to W, @V, g, -1
as the map v ® w — w ® hov.

(Tensor product of crossed bimodules) Use Theorem 5.2 to define the
tensor product of two crossed bimodules.

Compute the central element wS(u) (defined in VIIL4) for Uq.

Determine 052_",2 associated to the simple Uq—module V, under the
form of a 9 x 9 matrix.

(A cobraided Hopf algebra structure on Fnd(H)) Suppose given a
finite-dimensional Hopf algebra (H,u,n,A,¢,S,S™!) with bijective
antipode. Let F = End(H), and identify F ® F with End(H @ H).

(a) Prove that there exists a Hopf algebra structure on E for which
the product is the convolution of I11.3, the unit is 7 o ¢, the
coproduct A’, the counit €', and the antipode S’ are given by

A(Hzey) =) 1oe)Af (") e SE"),
(@)

(f)=e(f(1), S(Hx) =) S@E)NSfS M) a")a"
(x)
for all z,y € H and f € E.

(b) ldentifying F with H® H" via the map Ay  of Corollary 11.2.3,
define maps py : E — H and py. : E — H*®F by

pp(z®@a) =a(l)z and py.(z@®a)=e(x)a

where z € H and o € H*. Prove that py and py. are morphisms
of Hopf algebras such that the composition of the maps

EASE® BRI o gt

is /\;LIH.
(c) Check that the linear form r on E @ E defined by

r(f®g) =<py-(f);pulg) >

for f,g € E equips F with a cobraided Hopf algebra structure.

(d) Show that the dual braided Hopf algebra E* is isomorphic to
Drinfeld’s quantum double D(H).



238 Chapter IX. Drinfeld’s Quantum Double

I1X.9 Notes

The quantum double construction is due to Drinfeld [Dri87]. Our pre-
sentation is inspired from [Maj90a] [Tak81] (see also [RSTS88]). Radford
[Rad93a] proved that the quantum double is a minimal braided Hopf al-
gebra, i.e., it has no proper braided Hopf subalgebras. Conversely, any
minimal braided Hopf algebra is finite-dimensional and is a quotient of the
quantum double of some Hopf algebra. More generally, if H is braided with
universal R-matrix R, consider the subspace A of H generated by all ele-
ments of the form (id;; ® a)(R) where « is any linear form on H. Radford
showed that the subspace A can be given the structure of a Hopf subalge-
bra, and that there exists a map of braided Hopf algebras from D(A) to H
whose image is a minimal braided Hopf subalgebra of H.

In Section 4 we proved that the quantum double of H was isomorphic to
a crossed product when H is cocommutative. This is true more generally
when H is braided. For more details, see [Maj9la].

Exercise 11 presents a construction dual to Drinfeld’s quantum double,
yielding cobraided Hopf algebras. We took it from Takeuchi [Tak92a] where
a dual version of Theorem 5.2 is also given (see also [PW90] [RSTS88]).

The term “crossed bimodule” is due to [Yet90]. It was called a “quantum
Yang-Baxter module” in [Rad93b].

The Hopf algebra U, has been considered in [Lus90a][Lus90b]. A compu-
tation of its universal R-matrix was performed in [KM91] using a different
method. It also appears in work by Reshetikhin-Turaev [RT91] constructing
quantum invariants for 3-dimensional manifolds.
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Chapter X
Knots, Links, Tangles, and Braids

We now embark into a topological digression which will lead us into the
world of knots. The reason for the presence of this chapter in a book de-
voted to quantum groups is the close relationship between the newly dis-
covered invariants of links (such as the celebrated Jones polynomial) and
R-matrices. This relationship will become more precise in Chapter XII. In
this one we proceed to describe several classes of one-dimensional subman-
ifolds of the three-dimensional space R?, such as knots, links, tangles, and
braids. Since there are excellent textbooks on knot theory, we shall not
prove all assertions that can be found elsewhere. Nevertheless, all results
pertaining to the matter of this book, namely those connecting topological
problems with the algebra of quantum groups, will be proved in detail.

After defining knots and links in R3, we recall the classical problem of
their classification up to isotopy. Traditionally, one approaches this problem
by constructing algebraic isotopy invariants. One major step in this direc-
tion was undertaken in the 1920’s by Alexander, who associated a polyno-
mial to each isotopy class of oriented links. The Alexander polynomial was
used to distinguish many links and has been a powerful tool in knot theory
since.

In the summer of 1984 Vaughan Jones found a different one-variable
polynomial which distinguished knots that the Alexander polynomial could
not distinguish [Jon85]. Shortly after, a new invariant appeared, the so-
called Jones-Conway polynomial, which is a two-variable generalization of
both the Alexander and the Jones polynomials. Another aim of this chapter
is to establish the existence and the main properties of the Jones-Conway
polynomial.
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X.1 Knots and Links

Let us start with some vocabulary from general topology. The only topo-
logical spaces considered here are the real Euclidean vector spaces R™ with
their standard topology as well as their subsets and quotients with the
induced topologies.

A continuous map f from a subset U of R™ to a subset X of R"
is piecewise-linear if there exists a finite partition (U;); of U such that
the n components of the restriction of f to any U, are maps of the form
(24,1 2p) V> Gg+ a2y + - - a2, where ag,a,,...,a,, are real numbers.

Let X be a convex topological subspace of the Euclidean space R3. In
the sequel, X will be either R3, R2, R? x [0,1], or R x [0,1]. Given a
finite sequence (M;,...,M,) of points in X, we denote by [M,,..., M,]
[resp. |M,..., M, [ ] their closed [resp. open] convex envelope, i.e., the set
of all points of the form A, M, +- -+, M, where (A;,...,\,) is a sequence

of real numbers > 0 [resp. > 0] such that A\; +---+ X, = 1.

Definition X.1.1. A polygonal arc L in X is the union

n—1
L= U [Mi7Mi+1]
i=1

of a finite number of segments such that |M;, M, [ 0 |M;, M, ,[= 0 if
i # j. The points My,..., M, are called the vertices of the polygonal arc
and the segments [M;, M, ] are its edges. We say that the polygonal arc is
simple if the points My, ..., M, _, are all distinct. The polygonal arc L is
closed if M, = M, ; in this case, we say that the boundary OL is empty. If
M, # M, we set 0L = {M;, M}, the point M, is the origin of the simple
polygonal arc L and M,, is its endpoint.

By ordering the vertices of L we define an orientation on L. It will be
materialized in the figures by arrows on the edges such that on the edge
[M;, M, ] the arrow points to M, ;.

Definition X.1.2. A link L in X is the union of a finite number m of
pairwise disjoint simple closed polygonal arcs in X. The closed arcs are

called the connected components of L. The integer m is called the order of
the link. A knot is a link of order 1.

A link is oriented by giving an orientation to each of its connected compo-
nents. In the sequel we consider only oriented links. Following Reidemeister
[Rei32], we define a combinatorial operation A on links. We assume X to
be R3 until the end of this section.

Definition X.1.3. (a) Let L be a link in X and M;, M, two consecutive
vertices in a connected component of L. Given a point N in X such that
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N ¢ L: M'L ¢ [N7 Mi+1]: Mi+1 ¢ [MwN]; a'nd
[Mi’ N, M1+1] NL= [Mi7 Mi+1]7
we denote by L' the link
L= (L\ [MivMi+1]) U [Mi,N} U [N, Mi—l—l]'

We say that L' is obtained from L by a A-operation.

(b) Two links L and L' are combinatorially equivalent — we write this
L ~, L' — if there exist links L = Ly, Ly,...,L, = L' such that for
all i, one of the two links L, L, , is obtained from the other one by a
A-operation.

The relation ~, is an equivalence relation: it is the equivalence relation
generated by the A-operations.

Figure 1.1. A A-operation

It is also possible to deform links continuously. This leads us to the
concept of isotopy.

Definition X.1.4. (a) An isotopy of X is a piecewise-linear map h from
[0,1] x X to X such that, for any t € I, the mapping h(t, —) is a homeo-
morphism of X, and h(0, —) is the identity of X.

(b) Two links L and L' are isotopic — we write L ~,; L' — if there exists
an orientation-preserving isotopy h of X such that h(1,L) = L'.

Lemma X.1.5. Isotopy is an equivalence relation for links.

PROOF. Let L, L', and L" be links. (a) Set h(t,—) =idy for all t € I. It is
clear that h is an isotopy between L and itself: L ~, L.

(b) Let us suppose that L ~; I/ via an isotopy h. Let h'(t, =) = h(t,—)"
be the inverse homeomorphism. It is an isotopy between L’ and L. Hence

L'~ L.
(c) If, moreover, L' ~; L" via an isotopy h', then
Wiy = A2 ) if 0<t<1/2
) R(2t—1,—)oh(1,-) if 1/2<t<1

defines an isotopy between L and L”. In other words, the relation ~; is
transitive. a

We now have two equivalence relations on links. The following proposi-
tion identifies them with each other.
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Proposition X.1.6. Let L and L' be links in R*. Then
L~ L' < L~ L.

The reader will find a proof of this result in [BZ85], Prop. 1.10. As a
consequence, we shall suppress the subscripts ¢ and ¢ from the symbols ~;
and ~_ and henceforth speak of isotopic or equivalent links.

We end this section with a definition of a trivial link.

Definition X.1.7. A link of order m in R? is trivial if it is isotopic to
the union of m disjoint triangles in a plane. A trivial knot is a trivial link
of order 1.

We denote a trivial link of order m by
0®™ =00---0 (m times).

Trivial links of the same order, but with different orientations, are always
isotopic. Therefore we need not specify the orientation of a trivial link.

X.2 Classification of Links up to Isotopy

The fundamental problem in knot theory is to classify all links in R® up
to isotopy. In particular, one would like to have convenient criteria for two
links to be isotopic or for a link to be trivial. This is a difficult problem.

A classical way of approching this problem is to assign to each link L an
algebraic object I, such that I; = I,, whenever L and L’ are equivalent.
Such a function I is called an isotopy invariant for links. Let us give some
examples.

(a) (The order) It is clear that the number of connected components of
a link is preserved by an isotopy or a A-operation. Therefore the order of a
link, i.e., the number of its connected components, is an isotopy invariant.
However, this invariant is weak since it is clearly insensitive to how much
a link is “knotted”. Indeed all knots have the same order and nevertheless
there exists non-trivial knots such as the right-handed trefoil knot drawn

in Figure 2.1.

Figure 2.1. A right-handed trefoil knot
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(b) (The linking number) This is a more refined invariant which dates
back to Gauss. Let us consider two connected components L; and L, of
a link L. Consider a diagram of L (to be defined in Section 3). It shows
crossings of L, and of L,. We associate to each crossing P’ an integer
e(P) = £1 defined as in Figure 2.2.

<X
e(P)=+1 e(P)=—1

Figure 2.2. The linking number

Then the linking number of the components L, and L, is the integer

(L), L) = 5 O (P)

P

where P runs over all crossings of L; and L,. This number does not de-
pend on the projection and is an isotopy invariant for links of order 2. For
instance, we have lk(OO) = 0 for the trivial link with two components,
and 1k(H) = 1 for the Hopf link H drawn in Figure 2.3. It follows that the

Hopf link is not trivial.

Figure 2.3. The Hopf link

(¢) (The fundamental group of a link) Define n(L) = m,(R*\ L) as the
fundamental group of the complement of the link in R® (the definition
of the fundamental group is given in the Appendix to this chapter). For
the trivial knot, the group 7(0O) is isomorphic to Z. More generally, the
group of the trivial link of order m is isomorphic to the free group F,, on
m generators. By the very definition of isotopy, the fundamental group of
a link is an isotopy invariant. It is a very powerful invariant as one can
see from a theorem of Dehn’s which asserts that a link L of order m is
trivial if and only if (L) = F,,. In general, the group of a link is non-
abelian. Though it is possible to give a presentation of 7(L) by generators
and relations from a plane projection of L, it is very difficult to use this
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presentation, for instance, to decide whether L is isotopic to another given
link. For more details, see [Bir74|[BZ85].

(d) (Alezander and Conway polynomials) In 1928 Alexander [Ale28] con-
structed for each link L a polynomial A, € Z[t,t'] defined only up to + a
power of ¢, which he proved to be an isotopy invariant. This invariant was a
very efficient tool for distinguishing links that were not equivalent. In 1970
Conway [Con70] showed that a suitable normalization of the Alexander
polynomial was of the form A (t) = V,(t —t™') where V(2) is a poly-
nomial, now called the Conway polynomial, in Z|[z]. Moreover, the Conway
polynomial has a simple characterization in terms of the skein relations
that will be described in Section 4.

X.3 Link Diagrams

The simplest way to describe a link in R is to represent it by a planar
diagram. We have already used this technique for the figures of Sections
1-2. We now give a definition of what we mean by a link diagram. We first
need the notion of a regular projection.

Definition X.3.1. (a) A link projection Il is the union of a finite number
of closed polygonal arcs in R? such that no vertex lies in the interior of
any edge. A crossing point of II is a point of the link projection lying in
the interior of at least two edges. The order of a crossing point P is the
number of distinct edges in the interior of which P lies.

(b) A link projection is reqular if each crossing point is of order exactly 2.

It is not difficult to see that a crossing point cannot be a vertex, and that
a link projection has only finitely many crossing points. The ordering of
each component will be represented by arrows on the edges of the projection
of the link following the rule given in Section 1.

Let II be a regular link projection in the plane. Given a crossing point P
we may consider the set Ep consisting of the two edges on which P lies. A
priori, the set Ep is unordered. This brings us to the following definition.

Definition X.3.2. A link diagram is a reqular link projection in R? for
which all sets Ep (indexed by the crossing points P) are ordered. Given a
crossing point P, the first edge of the set Ep with respect to the ordering
is called the overcrossing edge whereas the other edge is called the under-
crossing edge.

Observe that an overcrossing edge for a crossing point may be under-
crossing for another crossing point. Changing the ordering in some sets
Ep will be called a change of crossings. If a regular link projection has
m crossing points, then clearly there are 2™ link diagrams with the same
underlying link projection.
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We represent a link diagram by a drawing of the regular link projection
in which the undercrossing edges are interrupted in the neighbourhood of
the crossings (as in Figures 2.1 and 2.3). From such a picture we observe
that any link diagram defines a link in R? by letting any undercrossing edge
pass under the corresponding overcrossing edge in the neighbourhood of the
crossing point. This link is defined only up to isotopy. There is no reason —
and in general it is false — why two link diagrams differing by a change of
crossings should define equivalent links. Nevertheless, the following should
be noted.

Lemma X.3.3. Any link diagram may be turned after appropriate changes
of crossings into a link diagram representing a trivial link in R>.

PROOF. Consider a link diagram. Pick a vertex and start moving along the
link, leaving a trail of red paint on the edges. At each crossing point, make
the red edge into an overcrossing edge unless the other edge is already red,
in which case the first edge is made into an undercrossing one. Apply this
procedure to each connected component. The resulting link diagram (ob-
tained from the original ones by a series of changes of crossings) represents
a trivial link. o

The obvious question is now: Can any link in R?® be represented by a
link diagram, at least up to isotopy? The answer is yes and provided by
the following proposition where we fix a linear projection m, of the space
R? on the plane R2.

Proposition X.3.4. Any link in R? is equivalent to a link L whose image
mo(L) is a regular link projection.

ProOF. We sketch the proof. For details, see [BZ85]. Let L be a link in
R3. Consider the set S of all possible linear projections of R? onto a fixed
plane. Given a projection m of S, there exists a homeomorphism & of R?
such that my(h(L)) = w(L). It is therefore enough to show that the subset
Sreg of those projections 7 of S such that 7(L) is a regular link projection
is not empty. Now S is in bijection with R?. Therefore we can transport
the topology of R? onto S. What we shall actually prove, is that Seq 18
dense in S for this topology.

Let 7 be an element of S\ S,,. Then in the projection 7(L) we may
have the following singularities: some crossing point may be of order > 3
or some vertex may sit in the interior of some edge. This happens when the
direction of the projection m passes through three edges or when it passes
through a vertex and an edge. In the first case, the direction sweeps over a
portion of a quadric; this projects to a part of a conic. In the second case,
it determines by projection a segment of the plane. Identifying S with R2,
we see that S\ S, is contained in a finite number of straight lines and
conics of the plane. Therefore S, is dense in S. ad
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Having expressed the problem of classification of links in R? in purely
two-dimensional terms, we now ask: When do two link diagrams represent
isotopic links? Before we answer this important question, let us again fol-
low Reidemeister by introducing the four transformations on link diagrams
shown in Figures 3.1-3.4. These transformations are also called Reidemeis-
ter moves.

Figure 3.1. Reidemeister move (0)

il

Figure 3.2. Reidemeister move (1)

\ /

) (

/ \

Figure 3.3. Reidemeister move (II)

Figure 8.4. Reidemeister move (III)

Applying Transformation (0) to a link diagram means that one modifies it
locally by substituting one of the drawings of the figure of Transformation
(0) by another one without touching the rest of the link diagram. Similarly
for the other Transformations. Figures 3.5-3.8 show that Transformations
(0), (I), (II), and (III) are obtained by projection of A-operations. Conse-
quently, applying these transformations to link diagrams does not change
the isotopy class of the link in R3.
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Figure 3.5. (0 projected)

Figure 3.6. (I projected)

Figure 8.7. (II projected)

Y

NN

Figure 8.8. (III projected)

Reidemeister Transformations are sufficient in a sense we shall make
precise below after we defined the following additional concepts. Two link
diagrams TI,II' are isotopic if there exists an isotopy h of R? (see Defi-
nition 1.4) such that h(1,11) = II'. By this we mean that the underlying
projections are isotopic in the plane and that the orders of the sets Ep are
preserved in the course of the isotopy. Two isotopic link diagrams represent
isotopic links in R?.

Introducing the height as the second projection of R? onto R, we define a
generic link diagram to be a link diagram for which any two distinct vertices
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have different heights. In particular, a generic link diagram cannot have a
horizontal edge, i.e., an edge parallel to R x {0}. A generic isotopy between
two generic link diagrams II, 11’ is an isotopy of R? such that h(1,11) = IT’
and such that h(f,1I) is a generic diagram for all ¢ € [0,1]. The following
statement is a criterion for generic diagrams to be isotopic as diagrams.

Lemma X.3.5. Two generic diagrams are isotopic if and only if they are
obtained from one another by a finite number of operations belonging to the
following set:

(A) a generic isotopy,

(B) an isotopy interchanging the order of the vertices with respect to the
height,

(C) a Reidemeister Transformation (0), and

(D) an isotopy in the neighbourhood of a local mazimum as depicted in
Figure 3.9 and its images under reflection in the plane of the page, in a
horizontal line and in a vertical line.

RN

Figure 8.9. An isotopy in the neighbourhood of a local mazimum

We replace Transformation (D) of the previous lemma by another set of
operations that will turn out to be more adequate in Chapter XIIL.

Lemma X.3.6. Two generic diagrams are isotopic if and only if they are
obtained from one another by a finite number of the following operations:

(A) a generic isotopy,

(B) an isotopy interchanging the order of the vertices with Tespect to the
height,

(C) a Reidemeister Transformation (0), and

(E) an isotopy in the neighbourhood of a crossing point as shown in
Figure 3.10 and its images under reflection in the plane of the page.
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AP X
X

Figure 8.10. An isotopy in the neighbourhood of a crossing point

PROOF. It is clear that the operations in (E) are obtained by isotopies of
diagrams. By Lemma 3.5 they follow from (4), (B), (C), and (D).

It remains to prove that Transformation (D) is a consequence of Trans-
formations (A), (B), (C), and (E). Figures 3.11-3.12 below give a proof of
this fact for the two operations represented in Figure 3.9.

N

Figure 8.11.

In Figure 3.11 the first operation is of type (C), the second one of type (A)
and (B) while the third one is of type (E).

AR

Figure 3.12.

In Figure 3.12 the first and fourth operations are of type (E), the second
one of type (C), and the third one of type (A) and (B). Reflecting the
previous transformations with respect to the plane of the paper or with
respect to a vertical line takes care of their images under these reflections.
As for the reflections with respect to a horizontal line (they involve local
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minima), our assertion follows from the set of operations of Figure 3.13
where the first and last ones are Transformations (C), the middle one is

authorized by Figure 3.11, and the remaining ones are of type (A) and (B).
O

DN R

Figure 3.13.

We return to the problem of representing links in R® by (generic) link
diagrams. Since moving vertices up and down locally allows us to turn any
link diagram into a generic one, we see that Proposition 3.4 implies that
any link in R? is equivalent to a link L whose projection 7 (L) is a generic
diagram.

Reidemeister [Rei32] proved the following important theorem which ex-
presses isotopy classes of links in R?® in terms of purely two-dimensional
link diagrams.

Theorem X.3.7. Two generic link diagrams represent equivalent links in
R3 if and only if one is obtained from the other by a finite sequence of
Reidemeister Transformations (1), (II), (II1), and of isotopies of diagrams.

X.4 The Jones-Conway Polynomial

We now construct the Jones-Conway polynomial. This is an isotopy invari-
ant of oriented links satisfying what knot theorists call “skein relations”. In
order to formulate these relations, we introduce the concept of a Conway
triple. This concept already appears in [Ale28] p. 301, but Conway [Con70]
was the first one to observe that it could characterize knot invariants such
as the Alexander or the Conway polynomials.

Definition X.4.1. A triple (L, L_, L) of oriented links in R? is a Con-
way triple if they can be represented by link diagrams D, D _, D, which
coincide outside a disk in R? and which are respectively isotopic to X, X
and |} inside the disk.

The diagrams X, and X_ are represented in Figure 4.1.
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\ /
\ /

X, X
Figure 4.1.

We now state the main theorem of this chapter.

Theorem X.4.2. There erists a unique map L — P, from the set of all
oriented links in R3 to the ring Z[a:,a:fl,y,y_l] of two-variable Laurent
polynomaals such that

(i) of L ~ L', then P, = Py,

(ii) the value of P on the trivial knot is 1, and

(iii) whenever (L, L_,Ly) is a Conway triple, we have

TPy, — 7P, = yPr,- (4.1)

The invariant P; is called the Jones-Conway polynomial, or the two-
variable Jones polynomial, or the Homfly polynomial (after the initials of
the six authors of [FYH85]) of the link L. Relations (4.1) are called skein
relations. The polynomial V; € Z[z] that Conway [Con70] devised as a
variant of the Alexander polynomial is characterized by Properties (i)—(ii)
of Theorem 4.2 along with the skein relation

VL+ - VL_ = ZVLU. (42)

Similarly, the polynomial V; € Z[t'/2,¢t7'/2] which was discovered in
1984 by Vaughan Jones [Jon85][Jon87] is characterized by Properties (i)-
(ii) and by the skein relation

1
NG

As a consequence of Theorem 4.2, the Conway polynomial and the Jones
polynomial exist, and they are related to the two-variable Jones-Conway
polynomial by

TV =tV = <\/i— )VLO- (4.3)

V,(z) =P (1,2) and V(t) = P, (t7,¢¥/2 —t71/2),

The Jones-Conway polynomial can help distinguish a link L from its
mirror image L, i.e., its image under a reflection with respect to a plane in
R3. Theorem 4.2 has the following corollary.

Corollary X.4.3. We have P;(z,y) = P (z7Y, ~y).
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PROOF. The mirror image of the Conway triple (L, ,L_, L) is the triple
(L_,L_,Lgy). Consequently, we have

—1 o -
X PZ_ — .TP’E+ = -’yPLO.

One concludes by appealing to the characteristic properties of P. O

Let us prove Theorem 4.2. Consider the ring A = Z[z,z 1, y,y 1], the
set K of equivalence classes of all oriented links in R?, and A[K] the free
A-module generated by K. We denote by Y the quotient of A[K] by the
A-submodule generated by

[l ] =27 L ] - y[L] (4.4)

where (L, L_, L) runs over all Conway triples of K. The A-module T is
called the skein module of R3.

Proposition X.4.4. Let Q : A — Y be the A-linear map sending 1 on the
class [O] of the trivial knot. Then Q is an isomorphism.

Consequently, the skein module T is a free A-module of rank one gen-
erated by [0]. Proposition 4.4 implies Theorem 4.2. Indeed, let L be an
oriented link and [L] its class in Y. Set

PL = Q_l([L]) € Z[$,$_1,y,y71].

It is clear that P satisfies all three conditions of Theorem 4.2. It remains
to establish Proposition 4.4. The proof of the latter divides into two parts
consisting in proving successively that the map @ is surjective, then injec-
tive.

Surjectivity of Q. This is purely topological and is essentially independent
of the nature of the ring A. It is enough to check that the A-module Y is
generated by the class [O] of the trivial knot. This will be shown in two
steps.

Lemma X.4.5. The A-module Y is generated by the family {[O®™]},~,
of isotopy classes of all trivial links.

PRrOOF. Let T,, be the A-submodule generated by the isotopy classes of
links representable by link diagrams with < m crossing points. Clearly, T,
maps to T, ; and T is the union of all T, . It is therefore enough to prove
Lemma 4.5 for each T,,. This is done by induction on m. The case m =0
holds by definition of trivial links. Suppose the assertion is proved for all
integers < m. Let [L] be the class of a link L in Y. It may be represented
by a link diagram with m crossing points. Consider one of them. Then
there exists a Conway triple (L,,L _,Ly) such that L = L, or L = L_
and the diagram L, has less than m crossing points. It follows from (4.4)
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that [L,] = z7?[L_] modulo Y,,_;. In other words, a change of crossings
changes the class of L modulo Y,, ; by multiplication by an invertible
element of A. By Lemma 3.3 this implies that the class of L belongs to
the submodule generated by the trivial links and Y,,_;. The latter is also
generated by trivial links in view of the induction hypothesis. O

The second step in the proof of the surjectivity of @ is the following
lemma which, incidentally, shows the necessity for y to be invertible (unless
x = =+1 as in the case of the Conway polynomial).

Lemma X.4.6. For any integer n > 1, we have

0°7] = (—‘—) 0]

Y

PROOF. Figure 4.2 implies that (O®™, O®™ 0®"*1) is a Conway triple for
all n > 1. By definition of T we get
r—z7!

0] = T=E— 0%,

One concludes by induction on n. ]

KX

Figure 4.2. A Conway triple

Injectivity of Q. This part of the proof is algebraic in contrast with the
surjectivity part. We use the following proposition whose proof will be
given in Chapter XII.

Proposition X.4.7. Let g # 0 be a complex number that is not a root of
unity and let m be an integer > 1. There exists a unique map @, . from
the set of all oriented links in R3 to the field C of complex numbers such
that

(i) if L~ L', then @, (L) =®,, (L),

(ii) the value of ®,, , on the trivial knot is

" —q "
o, (0)=-——7— #0,
g—gq*

(iii) and, whenever (L, ,L_, Ly) is a Conway triple, we have

qmq)m q(L+) - q_m(I)m,q(L—) = (q - q_l)q)m,q(L0>'

)
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Assuming Proposition 4.7 and using the ring map ¢, ,, : A — C defined
by (ym(z) = ¢™ and ¢, (y) = g¢—q ', which furnishes C with a A-module
structure, we see that @, = extends by linearity to a unique A-linear map
@/ from A[K] to C. Now for any Conway triple (L, ,L_, L), we have

m,q

@, 4 (#lL4] = 27 L] — ylLo))
= Cq,m(x)ém,q(L-l—) - Cq,m(x_l)q)m,q(Lf) - (q,m(y)q)m,q(LO)

= qm¢m,q(L+) - qﬁmq)qu(L_) - (q - q_1)¢m,q(LO)
0

by Proposition 4.7. Consequently, @;n’q factors through a unique A-linear
map, denoted @, , from T into C such that &, ([L]) = ®,, ,(L) for any
oriented link L.

We are now ready to prove the injectivity of the map @ from A into T,
which will complete the proof of Proposition 4.4, hence of Theorem 4.2.

Let f(x,y) € A be a two-variable Laurent polynomial chosen such that
Q(f(z,y)) = f(z,y)[O] vanishes in Y. Then, using the above-defined map
®” T — C, we have

m,q

0=}, (@ 9)0]) = fla" 0~ 471)2,,4(0)

for any integer m > 1 and any complex number ¢ that is not a root of
unity. Since ®,, (O) # 0, we have f(¢™,q— ¢ 1) = 0. Since this is true for
an infinite number of distinct powers of ¢, the polynomial f is divisible by
the polynomial y — (¢ — ¢~ '). The latter assertion holds for infinitely many
complex numbers ¢, which is possible only if the polynomial f is zero. This
proves the injectivity of Q. O

Application 4.8. We end this section with the computation of the Jones-
Conway polynomial of the right-handed trefoil knot K and of the Hopf
link H. Figures 4.3-4.4 show that (H,00, O) and (K, O, H) are Conway

Figure 4.3.
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Figure 4.4.

By (4.1) we have

-1
1=

Y

Py =2 'Ppp +yPy =a~ +y.

Hence,
Py= (@t =2yt +aly

A similar computation yields
Py =227 — x4 17 %>

for the right-handed trefoil knot. By Corollary 4.3, we see that the Jones-
Conway polynomial of the mirror image K is given by

P = 227 — ot + 2%y # Py.

This proves that the trefoil knot is not isotopic to its mirror image, a fact
already observed by Dehn [Dehl4] in 1914.

X.5 Tangles

This section is devoted to the concept of tangles which generalizes the no-
tion of links. Tangles will be used extensively in Chapter XII, in particular
for the proof of Proposition 4.7.

For any integer n > 0, we set [n] = {1,2,...,n}. When n = 0, we agree
that [0] is the empty set. We denote by [ the closed interval [0, 1] and by
R? the real plane.

Definition X.5.1. Let k and £ be nonnegative integers. A tangle L of type
(k,£) is the union of a finite number of pairwise disjoint stimple oriented
polygonal arcs in X = R? x I such that the boundary L of L satisfies the
condition

OL = L1 (R? x {0,1}) = (K] x {0} x {0}) U ([€] x {0} x {1}).
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The boundary condition in Definition 5.1 means that the tangle intersects
the two boundary planes of R? x I transversally. Observe that a link in
R? x I is a tangle of type (0,0). Figure 5.1 shows an example of a tangle

that is not a link.
\//\\\

Figure 5.1. A tangle

Given a tangle L of type (k,£), we define two finite sequences s(L) and
b(L) consisting of + and — signs. If k¥ = 0, then s(L) = 0 is the empty set
by convention. Similarly if £ = 0, we set b(L) = ). In the general case, we
define

s(L) = (eq,...,&,) and b(L)=(ng,...,m)

where ¢, = + [resp. i, = + ] if the point (¢,0,0) [resp. the point (7,0, 1)]
is an endpoint [resp. an origin] of L. We have ¢; = — and 7, = — in the
remaining cases.

Let us give a few examples of tangles that shall be used in the sequel.
1. We denote the polygonal arcs [(1,0,1),(1,0,0)] and [(1,0,0), (1,0, 1)] by
| and 1 respectively. We have s(]) = (+), b(]) = (+), s(1) = (), and
b(1) = (-).

2. The tangles X, and X _ of Figure 4.1 can be defined by

Xi:[Mlszi]U[M2i7M3]U[N1aN2i]U[N2i7N3] (5~1)

where M, M, My, Ny, Nif, N, are the points whose coordinates in R? x I
are

Ml = (27071)7 Nl = (1,0,1),
M = (3/2,F1,1/2), NE = (3/2,41,1/2),
M3 = (17070)7 N3 = (2,0,0)

We have s(X ) =b(X,) = (+,+).
3. The tangles N and 7 of type (2,0) are defined by

N

Il

[(1,0,0), (3/2,0,1/2)] U [(3/2,0,1/2), (2,0,0)] (5.2)

and
-

A =1(2,0,0),(3/2,0,1/2)] U[(3/2,0,1/2),(1,0,0)]. (5.3)
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We have s(N) = (—,+), b(N)
Figure 5.2).

0, s(M) = (+,~), and b(N) = 0 (see

ANERVAN

Figure 5.2. The tangles N and 7

4. Similarly, we define tangles U and U of type (0, 2) by
=1[(1,0,1),(3/2,0,1/2)] U [(3/2,0,1/2),(2,0,1)] (5-4)

and
=[(2,0,1),(3/2,0,1/2)] U [(3/2,0,1/2),(1,0,1)]. (5.5)

We have s(U) = 0, b(U) = (+,-), s(U) = 0, and b(T) = (=, +) (see

Figure 5.3).

Figure 5.3. The tangles U and T

We have the same equivalence relations for tangles as for links. Let us
adapt their definition to the case of tangles. We start with the combinatorial
relation ~ .

Definition X.5.2. (a) Let L be a tangle in X and M;, M, | be two con-
secutive vertices of L. We are also given a point N in R2 x]0, 1] such that
N¢L, M ¢[N, 1+1] M, ¢ [M;, N}, and

[M;, N, M; 1] N L = [M;, My ).
We define L' as the tangle
L (L \ [ z+1]) U [Mz?N] [N Mz-‘rl]

We say that L' is obtained from L by a A-operation.

(b) Two tangles L and L' are combinatorially equivalent — we write this
L ~, L' - if there exist tangles L = Ly, Ly, ..., L, = L’ such that for all i,
one of the tangles L;, L;_ , is obtained from the other one by a A-operation.
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Clearly, if L and L' are combinatorially equivalent, they have the same
boundaries and are of the same type. Isotopies are defined as follows.

Definition X.5.3. (a) An isotopy of X = R? x I is a piecewise-linear
map h : I x X — X such that for all t € I, the mapping h(t,—) is a
homeomorphism of X restricting to the identity map on the boundary 0X =
RZ x {0,1} and such that h(0,—) is the identity of X.

(b) Two tangles L and L' are isotopic — we write L ~; L' — if there exists
an isotopy h of X such that h(1,L) = L.

Again if L and L’ are isotopic, they have the same boundaries and are
of the same type. The isotopy is shown to be an equivalence relation for
tangles in the same way as it was for links (see Lemma 1.5). We have the
following counterpart of Proposition 1.6.

Proposition X.5.4. Let L and L’ be two tangles. Then
L~ L' < L~ L.

As for links, we shall suppress the subscripts ¢ and ¢ from the symbols
~; and ~_ and we shall henceforth speak of isotopic or equivalent tangles.

Tangles can also be represented by planar diagrams. We adapt the fol-
lowing concepts and results from Section 3 without bothering to give un-
necessary details.

Definition X.5.5. (a) A tangle projection II is the union of a finite num-
ber of (not necessarily closed) polygonal arcs in R? such that no vertex sits
in the interior of any edge and such that the boundary 011 of Il satisfies
the condition

Ol = 1N (R x {0,1}) = ([K] x {0}) U ([£] x {1}).

A crossing point of I1 is a point of the tangle projection sitting in the interior
of at least two edges. The order of a crossing point P is the number of
distinct edges in the interior of which P sits.

(b) A tangle projection is reqular if each crossing point is of order exactly
2.

Let II be a regular tangle projection in the plane. Given a crossing point
P we may again consider the unordered set Ep consisting of the two edges
on which P sits.

Definition X.5.6. A tangle diagram is a regular tangle projection in R x 1
for which all the sets Ep (indexed by the crossing points P) are ordered.
Given a crossing point P, the first edge of the set Ep with respect to the
ordering is called the overcrossing edge whereas the other edge is called the
undercrossing edge.
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Replacing R? by R x [0, 1], one defines the concepts of isotopy of tangle
diagrams, of generic tangle diagrams, and of generic isotopy as for links.
Similar results hold. We record here the counterpart of Lemma 3.6.

Lemma X.5.7. Two generic tangle diagrams are isotopic if and only if
they are obtained from one another by a finite number among the following
operations:

(A) a generic isotopy,

(B) an isotopy interchanging the order of the vertices with respect to the
height,

(C) a Reidemeister Transformation (0), and

(E) an isotopy in the neighbourhood of a crossing point as shown in
Figure 3.10 and their images under reflection in the plane of the page.

As in the case of links, any (generic) tangle diagram defines a tangle in
R? x I which is unique up to isotopy. Fix a linear projection 7, of the space
R? x I on the strip R x I.

Proposition X.5.8. Any tangle in R*x I is equivalent to a tangle L whose
projection m,(L) is a generic tangle diagram.

When do two tangle diagrams represent isotopic tangles? The answer to
this question is the same as in the case of links. It uses the Reidemeister
moves already defined in Section 3.

Theorem X.5.9. Two generic tangle diagrams represent equivalent tan-
gles in R? x I if and only if one is obtained from the other by a finite
sequence of Reidemeister Transformations (1), (I1), (II1), and of isotopies
of diagrams.

We close this section by defining a partial binary operation on tangles.
Consider the piecewise-linear mappings a,,a, from the topological space
R? x [ into itself defined by

ai(p,z) = (p,2/2) and ay(p,2) = (p,(2+1)/2)
where p € R? and z € I. When L and L' are oriented tangles such that

b(L) = s(L'), then
L'oL=a;(L)Uay(L)

is an oriented tangle with
s(L'oL)=s(L) and b(L' oL)=>b(L").

The tangle L' o L is called the composition of L and L'. It is obtained by
placing L’ on top of L, by glueing their middle ends together and by squeez-
ing the whole into R? x [0, 1]. Let us prove that composition is compatible
with the equivalence of tangles.
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Lemma X.5.10. Let Ly, Ly, Ly, L, be oriented tangles with b(L,) = s(L,)
and b(Ls) = s(Ly).

(a) If Ly ~ Ly and Ly ~ L, then Lyo Ly ~ Lyo L.

(b) If, furthermore, b(Ly) = s(L), then (Lyo Ly) oLy ~ Lyo(Lyo Ly).

PROOF. (a) Use Reidemeister Transformations.

(b) The tangles (Lg o L,) o Ly and Lg o (L, o L;) are isotopic through
the isotopy h(t,p,z) = (p,,(z)) where p € R?, t,z € [0,1] and ¢ is the
continuous mapping from I x [ into I defined by

z(1-14) if 0<2<1/2,
o (z) =4 z—% if 1/2<2<3/4,
(1+t)z—t if 3/4<z2<1L.

O

The composition has partial left and right units up to isotopy. Indeed, for
any finite sequence € of + signs of length n, define the tangle id, as the union
of the n intervals {1,...,n} x {0} x [0, 1], their origins and endpoints being
uniquely determined by the requirement s(id,) = b(id,) = €. If the sequence
€ is empty, take idy to be the empty tangle. An immediate application of
A-operations proves the following lemma.

Lemma X.5.11. For any tangle L, we have

idb(L) OL ~ L ~ LOidS(L).

X.6 Braids

We now consider a special class of tangles, called braids. Fix an integer
n>1.

Definition X.6.1. A braid L with n strands is a tangle of type (n,n) such
that

(1) S(L) = B(L) = (+,+,- -, +),

(ii) L contains no closed arc, and

(iii) for all z € I, the intersection of L with theplane R? x {z} consists
of exactly n distinct points.

In other words, a braid with n strands is the union of n pairwise disjoint
simple polygonal arcs, relating the set [n]x {0} x {1} to the set [n]x{0} x {0}
and having no local maximum or minimum with respect to the “height”
projection R? x I — I. Figure 6.1 shows a braid with 5 strands.
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= :

Figure 6.1. A braid

By definition, two braids are equivalent if they can be obtained from
each other by a finite sequence of A-operations performed within the set
of braids. Up to equivalence, a braid with n strands can be represented by
what may be called a braid diagram, i.e., a tangle diagram such that for all
z € T the intersection of the diagram with R x {z} consists of exactly n
distinct points. There is also a notion of isotopy of braid diagrams which
is the restriction to braid diagrams of the corresponding notion for tan-
gle diagrams. Braid diagrams are isotopic if and only if they are obtained
from each other by moving vertices up and down. Concerning Reidemeister
moves, Transformations (0) and (I) are clearly forbidden for braid dia-
grams. Only Transformations (II) and (I1I) may occur. They are sufficient
to generate the braid equivalence, as witnessed by the following proposition
whose proof is similar to (and simpler than) the proof of the corresponding
Theorem 5.9 for tangles.

Proposition X.6.2. Two braid diagrams represent equivalent braids if and
only if they are obtained from each other by a finite sequence of Reidemeis-
ter Transformations (I1), (III), and of isotopies of braid diagrams.

X.6.1 The braid group B,

In Section 5 we defined the composition L’ o L for tangles L, L’ such that
b(L) = s(L"). We see from the definitions that the composition of two braids
with n strands is still a braid with n strands. A special braid with n strands
is id, (as defined at the end of Section 5) where ¢ is the sequence consisting
of n signs +. We denote its equivalence class by 1,,. Given a braid L we
define the inverse braid L~ as the image of L under the reflection through
the plane R? x {1/2}.

Denote the set of equivalence classes of braids with n strands by B,,.
The set B, has one single element, namely the empty braid. Restricted to
braids, Lemma 5.10 implies that the composition of braids is compatible
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with braid equivalence. Therefore the composition induces a product on
B, . As a matter of fact, we have the following result.

Proposition X.6.3. The composition of braids induces a group structure
on B, with 1,, as a unit.

PROOF. Associativity of the product follows from Lemma 5.10 (b) whereas
Lemma 5.11 implies that 1,, is a left and right unit for the product on B,,.
Repeated use of Reidemeister Transformation (II) shows that

LtoL~1,~LoL™}
which implies that the equivalence class of L™ is an inverse for the equiv-
alence class of L. m|

The group B,, was introduced by E. Artin [Art25]. It is called the braid
group (on n strands). The groups B, = B, are isomorphic to the trivial

group {1}.
We now give a presentation by generators and relations of B,,. First, we
define special elements o,,05,...,0,_, in B,,. A braid diagram of the braid

o, is shown in Figure 6.2.

-

Figure 6.2. The braid o;

Using the tangle X, of Section 5, we see that o, is equivalent to the
braid

Lol X L]
exchanging the i-th and the (i 4+ 1)-st strands and leaving the other ones
untouched. Its inverse o, ! is equivalent to the braid

Lorl X L]
with the opposite crossing (see Figure 6.3).

1 i 1+ 1 n

/o
/N

Figure 6.8. The braid o] "
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Lemma X.6.4. (a) The group B, is generated by oy,...,0,_;.
(b) Whenn >3 and 1 <1, <n —1, we have the following relations in
the braid group B,,:
0,0, = 0,0, (6.1)

if |t — 4] > 1 and
0:0i410; = 014100441~ (6.2)

Relations (6.1-6.2) are called the braid group relations .

PROOF. (a) Represent a braid by a braid diagram. Move crossing points
up or down so that one can find 0 < ¢; < ... <t. <1 such that for all ¢
there is only one crossing point in R x [t;,¢;,;]. This means that the braid
is equivalent to a braid whose restriction to R x [t;,¢;,] is equivalent to
some o, or its inverse. Using the definition of the product in the braid
group, we see that the given braid can be expressed in B, as the product
of the elements o, and their inverses.

(b) If |i = j| > 1, then clearly 0,0, and 0,0, are equivalent (draw a
picture). Both sides of Relation (6.2) are represented in Figure 3.4. One

passes from one diagram to the other by Reidemeister Transformation (III).
O

We now state an important theorem due to E. Artin [Art25] [Art47].

Theorem X.6.5. Given a group G and elementscy,...,c,_; (n>2) such
that for all i, j we have c;c; = c;c; if |i — j| > 1 and

CiCiy1C = Cip1CiCiqns
then there exists a unique group morphism from B,, to G mapping o, to c;.

Corollary X.6.6. The group B,, is isomorphic to the group generated by
01,09, ...,0,_1 and the braid group relations (6.1-6.2).

PROOF. Let G be the latter group. By Theorem 6.5, there exists a unique
group morphism p : B, — G such that p(o;) = o, for all <. Now by
definition of a group given by generators and relations, there exists a unique
group morphism p’ : G — B,, sending o, onto o, for all <. Then p’ is inverse
to p. O

Proof of Theorem 6.5. The uniqueness of the group morphism follows from
the fact proven in Lemma 6.4 (a) that oq,...,0,_; generate B,,.

Now, let us establish the existence of a group morphism p : B,, — G such
that p(o;) = ¢; fori = 1,...,n—1. We sketch a geometric proof. Consider a
braid L represented by a generic diagram as in the proof of Lemma 6.4 (a),
namely for which two different crossing points have different heights. To
such a diagram we can assign a unique braid word w in the generators o;
and their inverses as in the proof of Lemma 6.4 (a). Define p(w) to be the
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element of G obtained by replacing o; by c; and o, U by c; Lin the word
w. Let us show that p(w) depends only on the initial braid.

According to Proposition 6.2, we have to check that p(w) does not change
when we perform an isotopy of diagram or Reidemeister Transformations
of type (II) and (III). In the first case, moving crossing points up and
down amounts to changing the braid word by products of commutators
of the form oiojoi_loj_l for |7 — j| > 1. This leaves p(w) unchanged be-
cause ¢;c;c; 1cj_l =1 for |¢ — j| > 1. Under a Reidemeister Transforma-
tion (II), braid words differ by 0,0, or by o, ‘o, whose images under
p is 1. Under a Reidemeister Transformation (III), braid words differ by
0,0; +1aiai”+llaf 10;11 or its inverse. Their images under p again is 1 because
of the relation c,c;,,¢; = ¢;  ¢;¢; 1. O

We still have to investigate the case of braids with two strands. An adap-
tation of the proofs of Lemma 6.4 and Theorem 6.5 proves the following.

Proposition X.6.7. The group B, is generated by o, and is isomorphic
to the group Z of integers.

X.6.2 Braid group representations from R-matrices

We show how Theorem 6.5 allows us to construct braid group representa-
tions from any solution of the Yang-Baxter equation.

Let V be a vector space, ¢ a linear automorphism of V® V, and n > 1
an integer. Then for 1 <4 < n - 1, define a linear automorphism ¢, of V®"
by

C ® idv@(n~2) lf ‘L = 1,
c; = idV®(i_1) Rec® idV@(n-—i—l) if 1<i<n-— 1, (63)
idv@(n—z) ® C lf ’L =N — 1

Clearly c;c; = c;c; if |1 — j| > 1. It is easy to check the following lemma.

Lemma X.6.8. Under the previous hypothesis, we have

CiCit16 = Ci1CiCign
for all © of and only c is a solution of the Yang-Bazter equation.
The Yang-Baxter equation of VIII.1 can be expressed with the present

notation as the equation ¢,cyc; = ¢5¢¢, holding in Aut(V @ V ® V). The
following is a consequence of Theorem 6.5 and Lemma 6.8.

Corollary X.6.9. Let ¢ € Aut(V ® V) be a solution of the Yang-Bazter
equation. Then, for any n > 0, there exists a unique group morphism py,
B,, — Aut(V®™) such that pS(o,) =¢; fori=1,...,n— 1.
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Consequently, by this procedure, any linear automorphism c of V@ V
that is a solution of the Yang-Baxter gives rise to a representation of the
braid group B,, on the tensor power V®" where n is any integer > 2.

X.6.3 Relation with the symmetric group S,

Civen a braid L, there exists a unique permutation o(L) of the set {1,...,n}
such that for all k € {1,...,n} the endpoint (k,0,0) lies in the same con-
nected component as the origin (o(k),0,1). The permutation o(L) is called
the permutation of the braid L.

Lemma X.6.10. The map [ — o(f) induces a surjective morphism of
groups from the braid group B, onto the symmetric group S,,.

PRrOOF. First it is clear that equivalent braids have the same permutation.
Thus the map factors through B, . It is a morphism of groups because we
have ¢(L' o L) = o(L') o o(L), o(1,) = id, and o(L™') = o(L)™!. The
permutation of the braid o, is the transposition (i,¢ 4 1). The surjectivity
of the map follows from the fact that such transpositions generate the
symmetric group S,,. |

This lemma is not surprising in view of Moore’s theorem which gives the
following presentation in terms of generators and relations for the symmet-
ric group S,,: it is generated by the n — 1 transpositions s; = (i,4 + 1) and
by Relations (6.1-6.2) where o, has been replaced by s, as well as by the
additional relations s? = 1 for i = 1,...,n — 1.

One big difference between symmetric groups and braid groups is that
the former are finite groups while the latter are infinite groups when n > 1.
Moreover, the group B, has no torsion, that is to say, all elements # 1,
have infinite order.

X.6.4 Representing braids as loops

We end this section by giving a function-theoretic definition of braids. Let
n be an integer > 1. Consider the set

Y”:{(Zl""’zn)ecn|i7'éj:>zi7ézj}

endowed with the subset topology of C™. The symmetric group S, acts on
Y, by permutation of the coordinates. Let X, = Y, /S, be the quotient
space with the quotient topology. The space X, is the configuration space
of n distinct points in C. Consider the following set p = {1,2,...,n} of n
distinct points in X,.

Definition X.6.11. A loop in X, is a piecewise linear map

f:<f1>f2>"'afn):I:[Ovl]'_)cn
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such that for all t € I we have f,(t) # f;(t) whenever i # j and

F00)=(1,2,...,n) and {f,(1),f2(1),....[,(D}={1,2,...,n}.

Loops in X, and braids with n strands in R? x [0, 1] are equivalent
notions after we have identified C with R?. Indeed, given a loop f =
(f1, fas---s f,) in X,,, the union of the graphs of the maps f; is a braid
with n strands. Conversely, for any braid L with n strands, we define f,(z)
to be the projection onto R? = C of the intersection of the plane R? x {z}
with the connected component of L ending at the point (4,0, 0). This defines
aloop f=(fy,fa.--s fn)in X,,.

For any loop f = (fy,..., f,) in X,,, define the permutation o(f) of the
set {1,...,n} by o(f)(k) = f.(1) for all k. Check that, if f is the loop
corresponding to a braid L, then o(f) = o(L).

The equivalence of braids can be expressed on loops in X, as follows.
Two loops f = (fy, fa,---, f,) and g = (91,95, - - -, ¢,,) in X, are homotopic
in X,, — we write f ~ g — if there exists a piecewise linear map, called an
1sotopy,

H=(H,H,,. . H) IxI—C"

such that for all (s,t) € I x I and i # j we have H,(s,t) # H,(s,t), for all
se I and k with 1 <k <n we have

Hy(5,0) = f.(0) = g,(0) and Hy(s,1) = f.(1) = g, (1),
forallt € I and 1 < k < n we have
Hk(ovt) = fk(t) and Hk(lvt) = gk(t)

Proposition X.6.12. Two braids with n strands are equivalent if and only
if the corresponding loops are isotopic in X,.

We can transpose the composition of tangles on the level of loops. Let f
[resp. f’] be the loop in X, corresponding to a braid L [resp. L']. It is easy

to see that the loop ff' = ((ff’)l, ces (ff’)n> corresponding to the braid

L’ o Lx, composed in the sense of tangles, (see Section 5) is given for all
by

, £.(20) it 0<t<1/2,
(ff)i(t)m{f[’,(i)(%—l) it 12<t<1

where o = o(f) is the permutation of f. The loop ff’ is called the product
of the loops f, and f’. We have o(ff’) = o(f") o o(f).

Given a loop f = (f,..., f,) corresponding to a braid L, the loop f~!
defined by

fi ') = forn(1—2),

where again ¢ = o(f), corresponds to the inverse braid L~'. The loop
corresponding to the braid 1,, is the constant map z — (1,2,...,n).
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We have the following lemma which is the counterpart for loops of Lem-
mas 5.10-5.11.

Lemma X.6.13. Given loops f,f', f",9,9" in X,,,
(a) if f ~ g and f' ~ g, then ff" ~ gg’,
(d) (FENV"~ S,
(¢) 1, f~f~fl,, and
(d) fft~1, ~

PROOF. See the Appendix to this chapter. m|

We have the following important result as a consequence of the presen-
tation of braids by loops and of the definitions of the Appendix.

Proposition X.6.14. The braid group B, is isomorphic to the fundamen-
tal group of the configuration space X,, of n distinct points in C:

B, = m(X,,p)

n

where p is the set {1,...,n}.

X.7 Exercises

1. (Centre of the braid group) Let n be an integer > 2. Show that the cen-
tre of the braid group B,, is generated by the element (o, ...0,_;)".

Yn-—1

2. For an integer n > 1 let F,, be the free group generated by z,,...,z
Define automorphisms X,,...,X,,_, of F,, by

n

$¢$i+1$¢_1 if j=41,
Xi(mj): x; if j=i+1,
T, it j#4Li+1

J

Prove that there exists a morphism X of the braid group B,, into the
group of automorphisms of F, such that X(o,) = X, for all 1.

3. (Burau representations) (a) Let n > 1 be an integer and {v,,...,v,}
be a basis of a free Z[t,t~!]-module V,, of rank n. For any i such that
1 <4 < n—1 define an automorphism §; of V,, by 8;(vy) = v, if
k#1,i+ 1, and

Bi(v) = (1= tv; + vy and  Fi(vy,) = tv;.

Show that there exists a unique morphism (3 of the braid group B,
into the group of automorphisms of V,, such that 8(o;) = g, for all i.
(b) Let {e,...,e, 1} be a basis of a free Z[t,t™']-module V,,_; of
rank n— 1. For any i such that 1 < i < n—1 define an automorphism
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B, of V., | by B,(ey) = e, if k # i and Bi(e;) = te, 1 —te; + e, 1
with the convention e, = e, = 0. Show that there exists a unique
morphism B of the braid group B,, into the group of automorphisms
of V., such that 3(c;) = B, for all i. Prove that

H(ior. o)) =,

(¢c) When n = 3 and ¢t = —1, prove that 3 induces a surjection of
groups from Bj; onto the group SLy(Z) of integral 2 x 2-matrices
with determinant one.

4. Define the pure braid group P, as the kernel of the map f — o(f)
from the braid group B, to the symmetric group S,,. Show that P, is
isomorphic to the fundamental group of the space Y,, defined in 6.4.

5. (Kauffman’s bracket) Show that the Kauffman bracket as defined in
Section 8 is invariant under Reidemeister Transformations (0), (I’),
(I1) and (III) (Transformation (I') is the variant of Transformation
(I) defined in Section 8).

X.8 Notes

Classical references on knot theory are [Bir74][BZ85][Kau87a|[Rei32][Rol76].
The Jones polynomial V; was defined in [Jon85] [Jon87]. Its two-variable
extension P; appeared in a number of papers written almost simultane-
ously [FYH'85] [Hos86] [LM87] [PT87] (see also [HKW86] [Kau9l]). For
Theorem 4.2 we followed the proof given by Turaev in [Tur89].

(Smooth tangles) There is a version of tangles and isotopies where piece-
wise-linear maps are replaced by C'° maps and the boundary condition
of Definition 5.1 is replaced by a transversality condition. Such smooth
tangles project to smooth tangle diagrams. It may be shown that smooth
isotopy classes of smooth tangles are in bijection with isotopy classes of
tangles as defined in Section 5 (see [BZ85]).

(Framed tangles) Let us define a normal vector field on a smooth tangle L
as a C'™ vector field on L that is nowhere tangent to L and that is given by
the vector (0, —1,0) at all points of the boundary dL. One may suggestively
think of a tangle with a normal vector field as a tangled ribbon defined as
follows: one edge of the ribbon is the tangle itself whereas the other one
is obtained from the first one by a small translation along the vector field.
A framing of the tangle L is a homotopy class of normal vector fields on
L where two normal vector fields are said to be homotopic if they can be
deformed into one another within the class of normal vector fields. One can
extend the concept of isotopy from tangles to tangles with framings. Isotopy
classes of tangles with framings are called framed tangles or ribbons. We
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shall see in Chapter XIV that ribbons give rise to an interesting categorical
structure, the so-called ribbon categories.

Framed tangles can be represented by tangle diagrams in the sense of
Section 5 just as ordinary tangles are. Take a tangle diagram. By defini-
tion, it represents the following framed tangle: the underlying tangle is the
tangle represented by the diagram and the framing is determined by the
constant normal vector field (0, —1,0) that is perpendicular to the plane of
the diagram and points to the reader. Any framed tangled may be repre-
sented by a planar diagram in such a way. We already know this for the
underlying unframed tangle. To represent a general framed tangle with a
vector field whirling around it, it is enough to know how to represent a ver-
tical tangle around which the vector field turns by an angle of 27 or of —27.
The corresponding ribbons appear in Figure 8.1 and may be represented
by the diagrams of Figure 8.2.

j

Figure 8.1.

(

Figure 8.2.

There is an analogue of Reidemeister theorem for framed tangles. For this
we need a variant (I') of Reidemeister Transformation (). It is depicted in
Figure 8.3. Two tangle diagrams represent isotopic framed tangles if and
only if they can be obtained from one another by a finite sequence of
Reidemeister Transformations (I'), (IT), (III), and of isotopies of diagrams.
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RS

f

Figure 8.3. Reidemeister move (I’)

(Kauffman’s bracket) Shortly after Vaughan Jones’s discovery of the link
polynomial V;, Louis Kauffman [Kau87b] found an isotopy invariant, now
called the Kauffman bracket, for framed links. It is with values in the ring
Z[z,z '] of Laurent polynomials. The Kauffman bracket < L > can be
characterized as follows. Take any diagram representing the framed link
L. Single out a crossing. Define L, [resp. L] to be the diagram where
the crossing has been replaced by || [resp. by z ]. Then the bracket is
determined by the rules

<L>:m<L0>+x‘1<Loo>

and < O%" >= (=1)""}(2? 4+ 27?)"'. The Jones polynomial can be
recovered from the Kauffman bracket (see [Kau87b]).

(Braid groups) The braid groups were defined by E. Artin in [Art25].
Their presentation, as in Corollary 6.6, is also due to him [Art25][Art47].
The representations described in Exercise 3 were found by Burau in 1936
[Bur36]. The Burau representation is faithful for the braid group Bj. It has
long been conjectured that the general Burau representation was faithful
too. This was disproven recently by J.A. Moody [Moo91]. It is still an open
question whether the braid groups B, (for n large) have faithful finite-
dimensional representations at all.

Figure 8.4. Closure of a braid

(Closure of a braid) For any braid o € B,, define a link o by

5=0olJ U( [(k,0,0), k,l,l/Z)]U[(k,l,l/Q)],(k,O,l)]).
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The link o, called the closure of o, is isotopic to the one represented in
Figure 8.4. Alexander [Ale23] showed that any link in R® was equivalent
to the closure of some braid. Non-equivalent braids may have equivalent
closures. Define an equivalence relation ~ on the set of all braids by: o ~ ¢’
if ¢ and ¢ have equivalent closures. Then Markov’s theorem ([Mar36]; for
a proof, see [Bir74]) states that = is the equivalence relation generated by
conjugation in the braid groups and by relations of the form o = in(a)afl
where ¢ € B,, and 4,, is the morphism of B, to B, defined by i, (o) = 0,
fori=1,...,n—1. As a consequence, any family (f, : B, — C),,-¢ of set-
theoretic maps with values in a set C such that for all n and all 0,7 € B,

Falror™) = fo(0) and  fo(0) = frpi(in(0)or?h),

gives rise to a unique C-valued isotopy invariant f of links in R® defined by
f(L) = f, (o) when L is equivalent to the closure of the braid o € B,,. This
approach was used by V. Jones to construct the polynomial V; in [Jon85]
[Jon&7]. 1t is to be observed that the approach using Markov’s theorem is
less elementary than the one by Reidemeister moves.

X.9 Appendix. The Fundamental Group

We briefly recall the definition of the fundamental group of a topological
space. Set I = [0, 1].

Let X be a topological space with a distinguished point x. A Joop in X
at the point % is a continuous map f : I — X such that f(0) = f(1) = .
Denote the set of such maps by £, X. Given elements f, ¢ in £, X we define
their product fg by

. F(2t) if 0<t<1/2,
(fg)(t):{ g(2t—1) if 1/2<t<l.

The constant loop e is given by e(t) = %. The inverse f~' of f is defined
by f7Yt) = f(1—¢t)fort e I.
A homotopy from f to ¢ is a continuous map h : I x I — X such that

hO, =)= f, h(l,—)=g9, h(s0)=n"h(s1)=%*

for all s € I. If such a homotopy exists, we write f ~ g. Homotopy is an
equivalence relation. Indeed, it is

(a) reflexive because (s,t) — f(t) is a homotopy from f to itself;

(b) symmetric: if & is a homotopy from f to g, then A(l —s,—) is a
homotopy from g to f;
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(c) transitive: if h; and h, are homotopies from f; to f; and from f; to
f5 respectively, then

L | hy(2s,-) if 0<s<1/2,
(5,=) = hy(2s—1,—) if 1/2<s<1

is a homotopy from f; to f,.
We define 7, (X, ) as the set of homotopy classes in £, X. We have the
following lemma.

Lemma X.9.1. Let f, f', ", g,9" be elements of L, X. Then

(a) f~g and '~ g" imply ff" ~gg',

(b) (FFV" ~ F(F 1),

(c) fe~ f~ef, and

(d) ff e~ [N
PROOF. (a) If h [resp. /'] is a homotopy from f to g [resp. from f’ to ¢'],
then (s,t) — (h(s,—)h/(s,—))(t) is a homotopy from ff’ to gg'.

(b) A homotopy from (ff")f" to f(f'f") is given by

) if 0<t< “’11,
h(s,t) =< fl(4t—s—1) if =t << 42,
J(EE=2) if Sf <t<L
(c) The map
— f(sfl) if OStSSjZLl’
h(s’t)—{* if  =$l<p<i

is a homotopy from fe to f. One can also exhibit a homotopy from ef to f.
(d) A homotopy from e to ff~! is given by

f(2t) if 0<2t<s,
h(s,t) =< f(s) if s<26<2—35,
f7fet—-1)  if 2—-s<2t<2

Exchange f and f~' to get an homotopy from e to f'f. a

As a consequence, we see that the product uf loops equips ; (X, x) with
the structure of a group in which the unit is the homotopy class of the con-
stant loop e. This group is called the fundamental group of the topological
space X at the point *.

In the above definitions one may replace continuous maps by piecewise-
linear or by C™ maps when X is an open subset of R? or a quotient space
of it. One gets a piecewise-linear or a smooth version of the fundamental
group. These variants are isomorphic to the fundamental group defined
above.
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Tensor Categories

This is our first chapter on tensor categories. As will become apparent in
the sequel, tensor categories form the right framework for representations
of Hopf algebras as well as for the topological objects of Chapter X. They
provide a bridge between quantum groups and knot theory.

XI.1 The Language of Categories and Functors

We start with a few elementary definitions from category theory.

X1.1.1 Categories

Definition XI.1.1. A category C consists
(1) of a class Ob(C) whose elements are called the objects of the category,
(2) of a class Hom(C) whose elements are called the morphisms of the
category, and

(3) of maps

identity  id : Ob(C) — Hom(C),

source s : Hom(C) — Ob(C),

target b : Hom(C) — Ob(C),
composition o : Hom(C) Xqpey Hom(C) — Ob(C),

such that



276 Chapter XI. Tensor Categories

(a) for any object V € Ob(C), we have
s(idy) = b(idy) =V,
(b) for any morphism f € Hom(C), we have
idypy o f = foidyp =1,

(¢) for any morphisms f,g,h satisfying b(f) = s(g) and b(g) = s(h), we
have
(hog)of=ho(gof).

Here Hom(C) X gp,(c) Hom(C) denotes the class of couples (f,g) of com-
posable morphisms in the category, i.e., such that b(f) = s(g). The conven-
tional notation for the composition of f and g is g o f or gf. The object
s(f) is called the source of the morphism f and b(f) is its target. For the
identity morphism of an object V we write id,,. We denote by Hom,(V, W)
the class of morphisms of the category C whose source is the object V' and
whose target is the object W. If f € Hom,(V, W), we write

f:V—-W or v-Lw.

A morphism from an object V to itself is called an endomorphism of V.
The class of all endomorphisms of V is denoted End(V). A morphism f
from V to W in the category is an isomorphism if there exists a morphism
g: W — V such that go f =idy, and f o g =idy,.

Everybody knows (or at least uses) the category Set of sets and the
category Gr of groups. We have already made use of the category Vect(k)
[resp. of Vect, (k)] consisting of vector spaces [resp. of finite-dimensional
vector spaces| and of linear maps over a field k. In Chapter I we used the
category Alg of algebras and the category A-Mod of left A-modules where
A is an algebra. We have also considered the category Cog of coalgebras.

We define the product of two categories C and D as the category C x D
whose objects are pairs of objects (V, W) € C x D and whose morphisms
are given by

Hom V, W), (V',W")) = Hom,(V, V') x Homp (W, W’).
CxD C

A subcategory C of a category D consists of a subclass Ob(C) of Ob(D)
and of a subclass Hom(C) of Hom(D) that ere stable under the identity,
source, target, and composition maps in D.

Let us present two examples of categories that are groupoids, i.e., cate-
gories in which all morphisms are isomorphisms.

Example 1. (Category associated to a family of groups) Let (G;);c; be a
family of groups indexed by a set I. We consider the category G defined by
Ob(G) = I and
0 ifi £y,
Homg (i, ) ‘{ G, ifi=j

2
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the composition on Homg(7,7) being given by the multiplication of the
group G;:
hog=gh
where g, h € GG,. Note that any morphism g in G is an isomorphism whose
inverse morphism is g~ !.
As a special case, consider a set I reduced to a single element 0. We get
a groupoid G with one object and with G as the set of morphisms.

Example 2. (Category of isomorphisms in a category) Let C be a category.
If we set Ob(C;,) = Ob(C) and define Hom(C,,) as the subclass of isomor-
phisms of C, then C,, is a category called the groupoid of isomorphisms
of C.

XI.1.2 Functors and natural transformations

Definition XI.1.2. A functor F : C — C' from the calegory C to the
category C' consists of a map F : Ob(C) — Ob(C') and of a map F :
Hom(C) — Hom(C') such that

(a) for any object V € Ob(C), we have F(idy ) = idpy),

(b) for any morphism f € Hom(C), we have

s(F(f)) = F(s(f)) and b(F(f)) = F(b(f)),

(c) if f,g are composable morphisms in the category C, we have
F(go f) = F(g) o F(f).

It is clear that if F': C — €' and G : C' — C" are functors, then the
composition GF is a functor from C to C”. For any category C, there exists
a functor id., called the identity functor of C, which is the identity on the
objects and on the morphisms in C. The inclusion of a subcategory in a
category is a functor.

Definition XI.1.3. Let F, G be functors from the category C to the cate-
gory C'. A natural transformationn from F to G — we writen : F' — G —
is a family of morphisms n(V) : F(V) — G(V) in C' indezed by the objects
V of C such that, for any morphism f:V — W in C, the square

n(V)

rv) — G()
lF(f) G(f)
Fow) ™™ gw)

commutes.
If, furthermore, n(V) is an isomorphism of C' for any object V in C, we
say that n: F — G is a natural isomorphism.
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If n: ' — @ is a natural isomorphism, then the collection of all mor-
phisms 7(V)~! defines a natural isomorphism n~! from G to F. We next
define the important concept of an equivalence of categories.

Definition X1.1.4. Let F : C — D be a functor. Then F' is an equivalence
of categories if there exist a functor G : D — C and natural isomorphisms

n:idp = FG and 0:GF —ide.

We now give a useful criterion for a functor F': C — D to be an equiva-
lence of categories. Let us first say that a functor £ : C — D is essentially
surjective if, for any object W of D, there exists an object V of C such that
F(V) 2 W in D. It is said to be faithful [resp. fully faithful] if, for any
couple (V,V’) of objects of C, the map

F :Hom,(V,V') — Homp(F(V), F (V"))
on morphisms is injective [resp. bijective].

Proposition XI.1.5. A functor F': C — D is an equivalence of categories
if and only if F is essentially surjective and fully faithful.

PROOF. (a) Suppose that F' is an equivalence. Then there exist a functor
G : D — C and natural isomorphisms 7 : idp, — FG and ¢ : GF — id,.
The first isomorphism shows that W = F(G(W)) for any object W of
D. In other words, F' is essentially surjective. Now consider a morphism
f:V — V’'in C. The square

arv) 2y
GF(f) lf
/ o(v’) ’
cr(vy 2y

commutes. It results that if F(f) = F(f'), hence GF(f) = GF(f'), then
we have f = f'. Therefore, the functor F' is faithful. Using the natural
isomorphism 7 in a similar way, we prove that G is faithful too. Now con-
sider a morphism g : F(V) — F(V'). Let us show that ¢ = F(f) where
f=0(0V")oG(g)o0(V) . Indeed,

(VYo GF(f)o0(V) L= f=0V")oG(g)o(V)™ "

Therefore GF(f) = G(g). As G is faithful, we get g = F(f). This proves
that F' is fully faithful.

(b) Let F be an essentially surjective and fully faithful functor. For any
object W in D, we choose an object G(W) of C and an isomorphism n(W) :
W — FG(W)inD.If g: W — W' is a morphism of D, we may consider

n(W')ogon(W)™!: FG(W) — FG(W').
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Since F is fully faithful, there exists a unique morphism G(g) from G(W)
to G(W') such that

FG(g) =n(W')ogon(W) ': FGW) — FGW').

One checks easily that this defines a functor G from D into C and that
7 :idp — FG is a natural isomorphism. In order to show that I and G
are equivalences of categories, we have only to find a natural isomorphism
6 : GF — id,. We define (V) : GF(V) — V for any object V € Ob(C) as
the unique morphism such that F(6(V)) = n(F(V))~'. It is easily checked
that this formula defines a natural isomorphism. O

Corollary XI.1.6. Let C be a category and C' a subcategory of C such
that any object of C is isomorphic to an object of C' and such that we have
Hom,, (V, V") = Hom(V, V') for all V,V' € Ob(C'). Then the inclusion of
C’ into C is an equivalence of categories.

We deduce the following examples of equivalent categories.

Example 3. (The groupoid GL(k)) Let GL, (k) be the group of invertible
matrices of order n with entries in a field k. Set GLy (k) = {1}. By Example
1 we can associate to the family (GL, (k)), >, & groupoid denoted GL(k).
By the previous corollary, the category GL(k) is equivalent to the groupoid
(Vect(k)),s of all finite dimensional k-vector spaces whose morphisms are
the linear isomorphisms.

Example 4. (The groupoid 8) Let S,, be the symmetric group of all per-
mutations of the finite set {1,2,...,n}. Set S, = {1}. Again by the con-
struction of Example 1, we get a groupoid S. The category S is equivalent
to the groupoid (Setf)is of finite sets whose morphisms are bijective.

XI1.1.3 Adjoint functors

We end these preliminaries on categories with the concept of adjoint func-
tors. As we may observe from Proposition 1.8, as well from the examples of
this section and the exercises of this chapter, the concept of adjoint func-
tors is nothing but the categorical translation of the idea of a universal

property.

Definition X1.1.7. Let FF : C — D and G : D — C be functors. Then
F is right adjoint to G or G is left adjoint to F if there exist natural
transformations n : idp — F'G and 8 : GF — id, such that the composite

maps
F(0(v))
BRASAMEYN

F) 2 (paRy V) F(V)

and
G(n(W)) 0(G(W))

GW) (GFG)(W) GW)
are identity morphisms for all objects V of C and W in D.
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The following characterizes adjoint functors in terms of natural bijec-
tions.

Proposition XI1.1.8. Let F':C — D and G : D — C be functors. Then F
is Tight adjoint to G if and only if for all objects V in C and all objects W
in D there exists a natural bijection

®(V, W) : Hom.(G(W),V) — Homp(W, F(V)),

i.e., such that, for all morphisms f in C and all morphisms g in D, the
diagram

Home (GOW'), V) U0 Homp (W', F(V))
Hom(G(g),V) Hom(g,F(V))
B(V,W)
Hom,(G(W),V) ———% Homgy(W,F(V))
Hom(G(W),f) Hom(W,F(f))

(VW)
_—

Hom,.(G(W), V") Homp (W, F(V"))

commutes where V = s(f), V' =b(f), W = s(g) and W' = b(g).

PRrROOF. The vertical maps of the above diagram are the obvious maps
obtained by composition with f, F(f), g, and G(g). We sketch the proof
of this proposition. For details, see [Mac71], Chapter IV.

(a) Let F be a right adjoint to G. Set ®(V, W)(f) = F(f)on(W) for any
morphism f: G(W) — V, and ¥(V,W)(g) = 6(V)oG(g) for any morphism
g : W — F(V). Using the definition of adjoint functors, one checks that
the map ®(V, W) is bijective with inverse ¥(V, W).

(b) Suppose given the bijections ®(V, W). We have to construct natural
transformations 7 : idp, — F'G and § : GF — id,. They are defined by

n(W) = &(GW),W)(idgu)) and (V) =@~ (V,F(V))(idp ).
The reader will easily check that n and 8 are natural transformations. O

An equivalence of categories is always left and right adjoint to another
equivalence. We give two examples of adjoint functors already encountered
in this book.

Example 5. (Free algebra on a set) Let X be a set and k{X} be the free k-
algebra associated to X as in I1.2. Then X +— k{X} is a left adjoint functor
to the forgetful functor which assigns to any algebra its underlying set.

Example 6. (Tensor products) Any vector space V determines two functors
F, G from the category of vector spaces into itself: F/(U) = Hom(V,U) and
G(U) =U ® V. The natural isomorphism

Hom(U @ V,W) = Hom(U, Hom(V, W))

of Corollary II.1.2 shows that G is left adjoint to F.
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X1.2 Tensor Categories

X1.2.1 Definitions

Let C be a category and ® be a functor from C x C to C. This means that
(a) we have an object V @ W associated to any pair (V, W) of objects of
the category,
(b) we have a morphism f ® g associated to any pair (f, g) of morphisms
of C such that

s(f®g)=s(f)®@s(g) and b(f®g)=">b(f)®bg),

(c) if f and ¢’ are morphisms such that s(f") = 6(f) and s(g’) = b(g),
then
(f@gd)e(feg) =("cfl®(deg), (2.1)
(d) and
idy g = idy ® idyy. (2.2)

Relation (2.1) implies that

f®g=(f@idyy) o (idyy) ®g) = (idy ) @ g) o (f ®idyy)- (2.3)

Example 1. Let C = Vect(k) be the category of vector spaces over a field
k. Then the tensor product of vector spaces (see 11.1-2) defines a functor
from C x C to C.

Any functor ® : C xC — C will be called a tensor product by analogy with
Example 1. Let C be a category with a tensor product ®. An associativity
constraint for ® is a natural isomorphism

a:®(® xid) - ®(id x ®).

This means that, for any triple (U, V, W) of objects of C, there exists an
isomorphism

agyw  U@V)oW U (VeWw) (2.4)
such that the square
UeoView XX Uo(VeWw)
(fog)@h Lot (2.5)

Ay’ v w!
_

U eV w U'g(V oW

commutes whenever f, g, h are morphisms in the category.
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The associativity constraint a satisfies the Pentagon Aziom if the pen-
tagonal diagram

ay,v,w®idx

QwMV®W»®X QU®W®WQ®X
J/GU®V,W,X
au,vew,x UeV)eo(WeX) (2.6)

laU,V,W®X

U®(V®(W®X))

idu®av,w,x

U®((V®W)®X)

commutes for all objects U, V, W, X of C.
Fix an object I in the category. A left unit constraint [resp. a right unit
constraint] with respect to I is a natural isomorphism

[:®( xid) —id [resp.r: ®(id x I) — id].

This means that for any object V of C there exists an isomorphism

ly:IQV -V J[resp.ry,: V®I—V] (2.7)
such that
Iev M v verl 1%
Jid1®f lf [resp. lf@idf lf} (2.8)
oV M v Vel v

commutes for any morphism f.

Given an associativity constraint a, and left and right unit constraints
1,7 with respect to an object I, we say that they satisfy the Triangle Azxiom
if the triangle

vVehew LMY ve(IeW)
\‘ v Qidw / idy @lw (29)
Vew

commutes for all pairs (V, W) of objects.

Definition XI.2.1. A tensor category (C,®,1,a,l,7) is a category C which
s equipped with a tensor product @ : C x C — C, with an object I, called the
unit of the tensor category, with an associativity constraint a, a left unit
constraint | and a right unit constraint r with respect to I such that the
Pentagon Aziom (2.6) and the Triangle Aziom (2.9) are satisfied.

The tensor category is said to be strict if the associativity and unit con-
straints a,l, are all identities of the category.

Examples of tensor categories will be given in Section 3.
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X1.2.2 Properties of the unit

Let (C,®,1,a,l,7) be a tensor category. We state a few properties of the
unit 1.

Lemma X1.2.2. The triangles

IeV)ew LYY 19V eWw)
N\, lv®idw S vew
Vew
and “
Veow)el X Veo(Wel)
\TV®W /idv@TW
VeoWw

commute for any pair (V,W) of objects of C.

ProOF. Consider the diagram

(U®(I®V))®W

/" a®idw N id
((U®I)®V)®W (U®(I®V))®W
ety
UeV)ew
U (VeWw)
T id
/id\ijgw lV®Ulé®W'\
UeoheVew) iy ®lew U@((I@V)@W)
\, a / idy®a

U@(I@(V@W))

Here we dropped the subscripts of the associativity constraint a for sim-
plicity. The outside hexagon commutes by the Pentagon Axiom (2.6). The
naturality (2.5) of a implies the commutativity of the two middle squares
whereas (2.9) implies the commutativity of the top square and of the lower
left triangle. Consequently, the lower right triangle commutes as well. Set-
ting U = I, we get

This relation, together with the naturality of the left unit constraint (2.8)
and the fact that [ is an isomorphism, implies [y, 0a = I, ®idy,, which ex-
presses the commutativity of the upper triangle in the statement of Lemma
X1.2.2. A similar proof works for the other triangle. ]
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Lemma X1.2.3. Let I be the unit of a tensor category. For any object V
we have

PROOF. By naturality (2.8) of [, we have Iy, o l;g, = ly, o (id; ® Iy,). Since
[, is an isomorphism, we get the first equality of the lemma. The second
one is similarly a consequence of the naturality of r.
Let us prove that [; = r;. By Lemma 2.2 and the first equality of Lemma
2.3, we have
l;®id; = ljgroa= (id; ®I;)oa.

From (2.9) we get r; ®id; = (id; ® ;) o a. Combining both relations yields
l; ®id; = r; ® id;. This implies {; = r; in view of the fact that r is a
natural isomorphism. O

We are now ready to prove the main result of this subsection.

Proposition XI1.2.4. The set End(I) of endomorphisms of the unit object
I is a commutative monoid for the composition. Moreover, for any pair
(f,g) of endomorphisms of I, we have

feg=ga f=r7'o(fog)or,=r; o(gof)or,.

In other words, if we identify / ® I with I via r; = [;, then the tensor
product of morphisms coincides in End(I) with their composition.

PROOF. The composition equips End(I) with the structure of a monoid
whose unit is id;. Let us prove that it is commutative. By (2.8) we have

f®id; =r;lofor, and id,®g=1I"ogol,.
Combining r; = [; of Lemma 2.3 with Relation (2.3) implies that
fog=rito(foglor,=rr'o(goflor,=g®f.

It follows that fog=go f. a

XI1.3 Examples of Tensor Categories

In this book we shall be concerned with two main types of tensor cate-
gories. The first type is built on vector spaces and their tensor products as
introduced in Chapter II. The second one uses the 1-dimensional objects of
Chapter X such as links, tangles and braids. We shall connect both types
in Chapter XII.
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X1.3.1 Tensor categories of vector spaces

The most fundamental example of a tensor category is given by the category
C = Vect(k) of vector spaces over a field k. The latter is equipped with a
tensor structure for which ® is the tensor product (defined in II.1) of the
vector spaces over k, the unit object I is the ground field k itself, and the
associativity and unit constraints are the natural isomorphisms

a((u@v)@w):u@(v@w) and l(lgv)=v=r(vel) (3.1)

of Proposition I1.1.3. The pentagon and triangle axioms are clearly satisfied.
There are some important examples of subcategories of Vect(k) preserv-
ing the tensor structure. For instance, if G is a group, then the category
k[G]-Mod of representations of G over k, or, equivalently, of k£[G}-modules,
is a subtensor category of Vect(k) where the tensor product U ® V of two
G-modules and the field k are given the following G-structures:

guuv)=gu®gv and gA=A

forgeG,uelU,veVand A €k.

We know from Chapter III that the group algebra k[G] is an associative
algebra over k with a comultiplication and a counit. We now investigate
such types of algebras. Let A be an associative unital k-algebra with a
morphism of algebras A : A — A® A, called the comultiplication, and a
morphism of algebras € : A — k, called the counit. Let us denote by A-
Mod the category of left A-modules (alias, representations of A). If U,V
are left A-modules, the tensor product U ® V is a left A ®@ A-module. The
comultiplication allows to pull back this A ® A-module structure into an
A-module structure. It is given by

a(u®@v) = Ala)(u @ v) (3.2)

for o € A, v € U and v € V. We endow k with an A-module structure
given by
aX = e(a)A. (3.3)

It is now clear that the tensor product in Vect(k) restricts to a functor
® : A-Mod x A-Mod — A-Mod

for which I = k is a unit. The following characterizes bialgebras in terms
of their categories of modules.

Proposition X1.3.1. Let A = (A, A, e) be an algebra with comultiplica-
tion and counit as above. It is a bialgebra if and only if the category A-Mod
equipped with the tensor product described above and the constraints a,l,r
of Vect(k) is a tensor category.
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PROOF. Let (4, p,n, A, €) be a bialgebra. It follows from Proposition I11.5.1
that (A-Mod, ®,I = k,a,l,r) is a tensor category.

Conversely, let (A, p,n,A,e) be an algebra with comultiplication and
counit. Suppose that (A-Mod,®,I = k,a,l,r) is a tensor category. Let us
prove that A is coassociative and that ¢ is a counit in the sense of Definition
II1.1.1.

Let us start with the coassociativity of A. Consider the associativity
constraint ay 4 4. By hypothesis, it is A-linear, which means that for
a,u,v,w € A we have

aAA,A(a((u@v)@w)) :aaAvAvA((u®v)®w).

By definition of the associativity constraint, this can be reexpressed as
(A®id)(Aa)(u® (vew)) = (id ® A)(A(a))(u® (v@ w)).
Settingu=v=w=1¢€ A, we get
(A ®id)(A(a)) = (id ® A)(A(a)).

Similarly, 1, is A-linear if and only if (¢ ® id)(A(a)) = a, and r, is
A-linear if and only if (id ® €)(A(a)) = a for all a € A. O

XI.3.2 Tensor categories built on groups

We now give examples of strict tensor categories. Let (G;);cn be a family
of groups indexed by the monoid N of nonnegative integers. We may form a
category G as in Section 1, Example 1. Suppose that G, = {1}, and for any
pair (n,m) of integers we have a group morphism p,, ,,, : G, xG,, = G, ..
We now define a tensor product on the category G by n ® m = n + m and,
ifge G, and h € G, we set

g®h= pn,m(gv h) € Gn+m'

Check that (G,®,I = 0,a = id,l = id,r = id) is a strict tensor category
provided the morphisms p,, ., are subject to the relations

pn+m,p ° (pn,m ® ide) = pn,m+p © (idGn ® pm,p) (34)

and pg ,, = p, o = idg  after natural identification. This construction can
be apphed to the followmg families of groups.

(a) Consider the groupoid GL(k) of Section 1, Example 3 built from the
family of groups (GL,,(k)). Define maps p,, ,,, by

pum(@ )= (&} ) € CLun(b)
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Relations (3.4) are satisfied. The category GL(k) becomes a tensor category
in this way.

(b) A family of subgroups {G,,},, of GL, (k) preserved by the maps p,, ,,
gives also rise to a strict tensor category. For instance, take the family of
symmetric groups S,,, the latter being realized as a subgroup of GL,, (k) via
the permutation matrices. The resulting category S is a tensor category.

XI.4 Tensor Functors

Definition XI.4.1. (a) Let C = (C,®,1,a,l,7) and D = (D,®,1,a,l,7)
be tensor categories. A tensor functor from C to D is a triple (F,pq, ps)
where F' : C — D is a functor, ¢, is an isomorphism from I to F(I), and

o (U V) : FU)QF(V) > FU®V)

is a family of natural isomorphisms indexed by all couples (U, V') of objects
of C such that the diagrams

Ap(U).F(V),F(W)

(F(U) ®F(V)) ® F(W) FlU)® (F(V) ®F(W))

| 2@ vrgidra, |ar@eavim)
FURV)® F(W) FU)@ F(VeW)
| e wavam) | wvew)
F(USV)eW) Flovvw) FU®(VeW))
o, (4.1)
TeFU) I9  pE)
l‘ﬂo@idF(U) TF(lu) (4.2)
F(heFU) 22 pugu)
and e
FU)® I FU)
|4rur @ [ 7o) (4.3)
FO)oF(1) Y0 puen

commute for all objects (U, V,W) in C. The tensor functor (F,¢q,py) is
said to be strict if the isomorphisms ¢, and @, are identities of D.

(b) A natural tensor transformation n : (F,¢q,0,) — (F',¢4,95) be-
tween tensor functors from C to D is a natural transformation n: F — o
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such that the following diagrams commute for each couple (U, V') of objects
mn C:

F(I) FYeFWv) 29 pwev)
/| Po
I [0 and |nwrenv) |nwsv)
N\ @0 oL (UY)
F(I) FU)eFv) 29 puev)
(4.4)

A natural tensor isomorphism is a natural tensor transformation that is
also a natural isomorphism.

(c) A tensor equivalence between tensor categories is a tensor functor
F : C — D such that there ezist a tensor functorNF' : D — C and natural
tensor isomorphisms 1 : idp—FF' and § : F'F—1id,.

In case there exists a tensor equivalence between C and D, we say that
C and D are tensor equivalent. Observe that if (F, g, ps) and (F', ¢g, ¢5)
are tensor functors, then so is the composition (F'F, F'(¢q)¢p, F' (05)eh).
The identity functor is a strict tensor functor.

We denote by Tens(C, D) [resp. Tens,,, (C,D]) the category whose objects
are the tensor functors [resp. the strict tensor functors] from C to D and
whose morphisms are the natural tensor transformations.

Example 1. Let A be a bialgebra. The forgetful functor associating to an
A-module its underlying vector space is a strict tensor functor.

Example 2. Let f: A, — A, be a map of bialgebras. Given an A,-module
V we can equip V with a A,-module structure given by a - v = f(a)v for
a € A, and v € V. This construction yields a strict tensor functor f* from
Ay-Mod to A;-Mod.

We shall encounter our first examples of non-strict tensor functors in
Chapter XV devoted to quasi-bialgebras.

XI.5 Turning Tensor Categories into Strict Ones

Since the tensor product in a tensor category is associative only up to iso-
morphism, one has to keep track of parentheses very carefully. This is rather
fastidious and should be avoided as much as possible. We now indicate a
way out of this problem: given a tensor category C = (C,®,I,a,l,r), we
construct a strict tensor category C*% which is tensor equivalent to C. This
is done as follows.

Let S be the class of all finite sequences S = (V;,...,V}) of objects of C,
including the empty sequence {). The integer k is by definition the length
of the sequence S = (V}, ..., V,). The length of the empty sequence is 0 by
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convention. If § = (Vi,...,V,) and S’ = (V. 41,...,V}y,,) are nonempty
sequences of S, we denote by S * S’ the sequence

S*S’:(Vl,...,Vk,Vk+1,~~-7Vk+n) (51)

obtained by placing S’ after S. We also agree that S0 =S =0 S. To
any sequence S of §, we assign an object F(V') of C defined inductively by

Fy=1, F(V))=V, FS*x(V)=FS)aV.
In other words,
F(Vi, Vo, ... Vi, Vi) = (- (Ve W) e )e VeV, (52)

where all opening parentheses are placed on the left-hand side of V.

We are now ready to define the category C*%: its objects are the elements
of §, i.e., the finite sequences of objects of C, and its morphisms are given
by

Homcm-(s, S/> = H()Il’lc(F‘(S»7 F(SI>)

This defines a category whose identities and composition are taken from C.
The rest of the section is devoted to the proof that C* is a strict tensor
category equivalent to C.

Proposition XI.5.1. The categories C*% and C are equivalent.

PRrROOF. The map F defined above on the objects of C*" extends to a
functor F' : C** — C which is the identity on morphisms, hence fully
faithful. As any object in C is clearly isomorphic to the image under F of a
sequence of length one, we see that F' is essentially surjective. This proves
the proposition in view of Proposition 1.5. Observe that G(V') = (V) defines
a functor G : C — C* which is the inverse equivalence to F. Indeed, we
have F'G = id; and 8 : GF — idgw via the natural isomorphism

6(S) = idpg) : GF(S) — S.
O

We now equip C with the structure of a strict tensor category. Defining
the tensor product on objects of C*7 is easy: we set S® 8" = S x §'. It is
clearly associative on objects.

In order to define the tensor product of two morphisms of C%, we first
construct a natural isomorphism

0(S,8): F(S)® F(S") — F(Sx5")

for any pair (S, S’) of objects in C°. This isomorphism is defined by in-
duction on the length of the sequence S’. First, we set (0, S) = Ig and
©(S,0) = rg. Next,

(S, (V) =idpg)gv : F(S)@V = F(S@ (V)
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and )
0(8,8" % (V) = (p(5,5") ®idy) o Ap(s) F(S1).V" (5.3)
The following lemma will be used in the proof of Theorem 5.3.
Lemma X1.5.2. If S,S",S" are objects on C*™, we have
@(S, 5" % 8") o (idg ® 0(5',5")) 0 ap(s) r(s),P(s)
= SO(S * S/, SN) o} ((p(S, Sl) [029] ids//).
PROOF. We proceed by induction on the length of S”. If S” = (), we have
©(8,8")(idg ® ¢(5',0)) ap(sy,r(s),1
= ¢(8,8)(idps) ®Tr(s)) Ar(s),F(s),1
o(S,8") TF(S)®F(S")

TF(S*S) (‘p(Sv S/) ® 1dI)
= o(S*S,0)(p(S,S) ®id;).

The first and last equalities are by definition, the second one by Lemma
2.2, and the third one by naturality of r.

Let V be an object of the category. Let us prove that the equality of
Lemma 5.2 for the triple (S, S, S”) implies the equality for (.S,5’, 5" «(V)).
We have

@(8,8" 8"+ (V))(idg ® p(S', 8" * (V) ap(sy,r(s/),F(s7+(v))
- (@(5, S % 8") ® idv) Al pisies v (ids ® (S, 8") idv)
(ids ® Qg sy v) Or($),F(5),F(sMEV
= (go(S, S xS") @ idv) (ids ®p((8,58")® idv) AE{($), F(SYBF(S").V
(ids ® agig pismy.v) AR(S),F(S),F(S")@V
(w(s, §'x 8" ® idv) (ids ® (S, 8" ® idv)

. 1
(@p(s),p(s,p(sm) @1Av) Qpis)ars m(sm),v
(SO S * Sl S// ® ldv) (SD(S, S/) ® idS// ® 1dv> a;‘(ls)®F(S/)7F(SH),V

= (@(8+8,8") @idy) opls.s pomy (905 © idg @ idy )
= (p(S * S/, SN ( ))((,O(S, S ) ® ldS”*(V))'

The first and last equalities follow from (5.3), the second and fifth ones
from the naturality of the associativity constraint, i.e., from Relation (2.5),
the third from the Pentagon Axiom (2.6), and the fourth one from the
induction hypothesis. 0O
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We can now define the tensor product fx* f’ of two morphisms f: S — T
and f': S" — T" of C*. By definition, f is a morphism from F(S) to F(T')
and f’ is another one from F(S’) to F(T") in C. We define the tensor
product f g in C*" by the commutative square

F(S) o F(s) 295 prss s
lf@f’ ) lf*f’ (5.4)
FTerT) 2C170 prsT)y.

Theorem XI1.5.3. Equipped with this tensor product C°% is a strict tensor
category. The categories C and C* are tensor equivalent.

ProOF. It is easy to check that the above-defined * is a functor. This
functor is strictly associative by construction. Therefore C*% is a strict
tensor category.

In order to prove that it is tensor equivalent to C, we have to exhibit
tensor functors and natural tensor isomorphisms. We first claim that the
triple (F,id;, ¢) is a tensor functor from C5% to C where ¢ is the natural
isomorphism defined above. Indeed, Lemma 5.2 is a reformulation of Rela-
tion (4.1) while Relations (4.2-4.3) follow from the definition of ¢(S, @) and
of ¢(0,5). The functor G of the proof of Proposition 5.1 is a strict tensor
functor. Finally, the natural isomorphism 6 is a natural tensor isomorphism.

O

Theorem 5.3 implies Mac Lane’s coherence theorem which states that
in a tensor category any diagram built from the constraints a, [, r, and
the identities by composing and tensoring, commutes. In other words, the
commutation of all such diagrams is equivalent to the commutation of the
pentagon (2.6) and of the triangle (2.9).

XI1.6 Exercises

1. Let I be a pre-ordered set, i.e., a set with a binary relation < such
that z < z, and (z < y and y < 2) = 2 < z. Set Ob(J) = I,
Hom(7) = {(z,y) € I x Ilz < y}, s(z,y) = z, b(z,y) = y, and
(y,2) o (x,y) = (z,2). Show that these data define a category J.

2. Prove that the class of all categories form a category Cat whose ob-
jects are the categories and whose morphisms are the functors.

3. Prove that the class of functors form a category Funct whose objects
are the functors and whose morphisms are the natural transforma-
tions between functors.

4. Express in terms of adjoint functors the following natural bijections:
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(a)
Hom , (k[G], A) = Homg, (G, A™)

where G is a group, k a commutative ring, A an algebra, and
A the group of invertible elements in A.

Hom 4, (U(L), A) = Homy, (L, L(A))

where Lie is the category of Lie algebras, L an object of Lie,
A an algebra, L(A) the underlying Lie algebra, and U(L) the
enveloping algebra of L (see V.2).

Hom,, (K[X], €') = Homg, (X, G(C))

where X is a set, k[X] the corresponding coalgebra (see III.1,
Example 3), and G(C) the set of grouplike elements of C.

Let I be a set and Vect! the category whose objects are families
(U;)ier of vector spaces indexed by I. The set of morphisms in Vect!
from (U;); to (V}), is the product set [],., Hom(U,, V;). For any vec-
tor space U, we set A(U) = (U,); where U; = U for all ¢ € I. Show
that A defines a functor from Vect to Vect! and that the direct
sum € and the direct product [] of vector spaces define functors
@D, ] : Vect! — Vect. Prove that the diagonal functor A is right
adjoint to the functor € and left adjoint to the functor [].

Let R be the category of commutative rings without zero divisors and
F the category of fields. Show that the correspondence assigning to
any ring in R its field of fractions is a functor from R into F' which
is left adjoint to the “forgetful” functor.

Let G be a group and G be the corresponding category (as in Section
1, Example 1). For any x € G define a functor Ad, from G to itself
by Ad,(g) = zgr . Show that there exists a natural isomorphism
from the functor Ad, to the identity functor.

Let Vect,.(k) be the category of nonnegatively graded vector spaces
over a field k£ with linear maps of degree zero. Equip it with the graded
tensor product (see Chapter III, Exercise 3). Define constraints a, [, r
by

a((u®v) @ w) = alm,n,plu® (v w),

I(1®v)=An)v, rv®l)=pnv

where u, v, w are homogeneous vectors of respective degrees m,n,p
and where a, A, p are functions on N with values in &\ {0}. Show
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that these constraints satisfy the Pentagon and the Triangle Axioms
if and only if o, A, p satisfy the functional equations

a(n,p,q)a(m+n,p,q) " a(m,n+p,q)a(m,n,p+q) " a(m,n,p) =1
and a(m,0,p) = p(m)A(p) " for all integers m,n,p, q.

9. Show that the subcategory Vect(k);, of all finite-dimensional vector
spaces of Vect(k) with their isomorphisms is tensor equivalent to the
tensor category GL(k) of 3.2.

XI.7 Notes

Tensor categories were introduced in 1963 by Bénabou [Bén63]. See also
[Mac63] where constraints as well as the Pentagon and the Triangle Axioms
were defined. Tensor categories are also called monoidal categories in the
literature. Our terminology is taken from Joyal and Street [JS91a] {JS93].
Lemma 2.2 is due to Kelly [Kel64]. For a proof of Mac Lane’s coherence
theorem, see [Mac63] [Mac71]. Exercise 8 was taken from [Kel64].



Chapter XII
The Tangle Category

The aim of this chapter is to set up a categorical construction of isotopy
invariants of links. To this end, we build a strict tensor category 7 out of
the tangles defined in X.5. Any strict tensor functor from 7 to a category of
finite-dimensional vector spaces gives rise to an isotopy invariant. Using a
presentation of 7 by generators and relations, we shall reduce in Section 4
the construction of such a functor to an algebraic data, called an enhanced
R-matrix, consisting of a finite-dimensional vector space, an R-matrix, and
a compatible automorphism. We shall apply this method in Section 5 to
exhibit explicit isotopy invariants that will allow us to complete the proof
of Theorem X.4.2 asserting the existence of the Jones-Conway polynomial.

We start with the notion of a presentation of a strict tensor category by
generators and relations.

XII.1 Presentation of a Strict Tensor Category by
Generators and Relations

One of the most efficient way of comprehending a group G is to present it
by generators and relations. Recall the following facts: Let F' be a subset
of G and R be a set of pairs of words in the alphabet F. Then (F,R) is a
presentation of the group G if the two following conditions are satisfied:
(i) the subset F' generates G, and
(ii) two words a and b in the alphabet F represent the same element in G
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if and only if one may pass from a to b by operations replacing any subword
of the form ¢ by a subword of the form d where (¢, d) belongs to R.

Example 1. The abelian group Z* has a presentation (F, R) where

F={z,y} and R={(zy,yz)}.

As an application of group presentations, we see we can define a group
morphism by its restriction to a generating subset. In fact, let (F, R) be a
presentation of a group G. Suppose we have a map f, : ' — H with values
in another group H. It extends to a multiplicative map, still denoted f,,,
from the set of words in the alphabet F' to H. Then there exists a unique
morphism of groups f : G — H restricting to f, on F if and only if
fole) = fo(d) for any element (c,d) in R.

A similar formalism works for tensor categories. Its description is the
main objective of this section.

Let (C,®,1) be a strict tensor category and F be a collection of mor-
phisms of C. We wish to define certain symbols which we shall call words
in F. Any word a will possess subwords and will be assigned a morphism
@ of C. We say that the word a represents the morphism @ of C.

By definition, a word of rank 1 is a symbol of the form [f] where f is an
element of F or of the form [id;,] where V is an object of C. We define the
morphism of C represented by such symbols by m = f and h_dﬂ = idy,.
By definition, a subword of a word of rank 1 is the word itself.

Suppose defined all words of rank < n where n > 1, the morphisms they
represent and their subwords. Define a word of rank n + 1 as a symbol of
the form a o b or of the form a ® b where a and b are words of rank < n.
We define the corresponding morphism by setting

aob=dob and a®b=a®b (1.1)

where the symbols o and & in the right-hand sides denote the composition
and the tensor product in the tensor category C respectively. The subwords
of a o b and those of a ® b consist of the word itself, the subwords of a and
those of b.

The class of words in F is the union of all words of positive rank. We
introduce an equivalence relation on words.

Definition XII.1.1. Two words a and a’ in F are equivalent if there exist
words ag = a,ay,...,a;, = a such that for all i, the word a;, is obtained
from a, by replacing a subword x of one of them by a subword y of the other
where © and y are the two sides of any of the following relations:

([F1o{g) o [A] ~ [f] o ([g] o [A]), (1.2)

[idb(f)] olfl~1[fl, I[fle [ids(f)] ~[fl, (1.3)
idy] o [idy ] ~ [idy], (1.4)
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(1@ lg)) @ [r] ~ [fI® (lg] @ [A]),
lid @ [f] ~ [f],  [fl@lid,] ~[f],
lidy] @ [idy] ~ [idygw],
(fle o (f1®lgD ~ (flolfD®(gelg])
where V,W are objects of C and f, f',g,9',h are elements of F.

We write a ~ b if a and b are equivalent words. Observe that if a ~ b,
then @ = b holds for the corresponding morphisms in C. The following
lemma gives examples of equivalent words.

Lemma XI1.1.2. (a) If f,g € F, then

([f] ® lidy(g)]) o (fidg( )] ® [9]) ~ ([idy( ) @ [9]) o ([f] © [idg)])-
(b) If f1, faren ey fi € F are morphisms such that b(f;) = s(f; 1) for
all i, then
(idy] @ [fi] ® [idy]) o ([idy] ® [f5] @ [idy]) o -+~ o ([idy] @ [f3] @ [idy])

is equivalent to [idy] ® ([fi] o [fa) o - o [fi]) ® [idy ]
(c) Any word in F is equivalent to a word of the form [idy/| or of the
form

(lidy, ] @ [fi] © lidyy, 1) o ([idy,] @ [fo] ® [idyy,]) 0~ o ([idy, ] @ [fi] @ [idyy, ])-

PROOF. (a) By (1.3) and (1.8) we have the equivalences

(f1@[idygy)) o (idg pl @ 1))~ ([f] o idsp))) ® ([idy(g] o [9])
[f1®g]

(lidy 9] o [1) @ (lg] e [idgg])

([ldb(f)] [g) o ([fl® [lds(g 0k

(b) We proceed by induction on k. For k = 1, the statement is clear. For

k > 1 the induction hypothesis, Relations (1.2), (1.4), (1.8), and Part (a)
imply that

(hdv] ® [£,]
~ (lidy]

~
~

~

liduw]) © ([idy] @ [£,] © fidy]) o+ o ([idy] @ [fy] © [idyy )
(fi) o lfal o+ [fima)) @ lidw]) o (idy] @ (] © fidyy )

(IfiJe el o+ L)) @ liduy] ) o ((idy] @ []) @ [iduy])

[
(If1)olfo o o lfea])) o (fidy] ® [fk-,])) ® ([idy] o idy])
~ [fidy] @ ([filo[fal oo [fi]) ® [idy].
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(c) We prove the assertion by induction on the rank of words. When a
word is of rank 1, then it is [f] where f =1idy, or f € F. In both cases it is
equivalent to [id;] ® [f] ® [id;]. Suppose the assertion proved for all words
of rank < n. Let a be a word of rank < n+ 1. If a = bo ¢, then, by the
induction hypothesis, the words b and ¢ are equivalent to identities or to a
word of the above form. In both cases, a is equivalent to an identity or to
a word of the desired form.

Now consider the case when a = b ® c. Let us restrict to the interesting
case where b and ¢ are not equivalent to identities. Then,

b~bjo...0b, and c~cjo...0¢

where the words b, ...by,c,...,¢, are of the form [idy] o [f] o [idy,] for
some f € F. Set S = s(b,) and T = b(¢;). Then by (1.3) and Part(a) we
get

a=b®c ~ (bolidg]®®) ® ([id]°* o c)
~ (by @ [idp])o... o (b ® [idy]) o (idg] ®¢y) 0. o ([ids] @ ¢p),

which is equivalent to the desired form in view of
b; ® [idg] ~ [idy] o [f] o idwer] and [idg] ®c; ~ [idggy] o [f] o [idy]
for some f, f' € F. The last two equivalences follow from (1.7). O

Composing and tensoring words are operations that are compatible with
the above-defined equivalence relation. Denote by M(F) the class of equiv-
alence classes of words in F. We define a strict tensor category C(F) as
follows. The objects of C(F) are the objects of C whereas M(F) is the
class of morphisms in C(F). The identity, source, and target maps for C(F)
are given by

idy, = [id], s(a) =s(@), bla)=">b(a).

The composition and the tensor product of words have already been de-
fined.

The map sending a word a to the morphism @ of C is a strict tensor
functor from C(F) to C. When this functor is an equivalence of categories,
we say that the strict tensor category C is free on the class F. In view of
Proposition XI.1.5, this is equivalent to

a~b <> a=b

for any pair (a, b) of words in F.

We also say that F generates the strict tensor category C if any morphism
in C can be obtained from morphisms in F and from identities of C by
applying finitely many times the operations of composing and tensoring.
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If F generates C, then any morphism of C is of the form @ where a is an
element of M(F).

We now wish to introduce further relations on M(F). In addition to F,
we also choose a collection R of pairs (c,d) of words in F such that & = d
in C. Using R we may put a new equivalence relation on M (F). Given two
elements a,a’ of M(F), we say that a and o’ are congruent modulo R —
we write a ~p o' — if there exist words ay = a,ay,...,a; = a’ such that
for all 4, a;,, is obtained from a; by replacing a subword ¢ of one of them
by a subword d of the other one where (¢, d) is an element of R.

We are now ready to define the presentation of a strict tensor category
by generators and relations.

Definition XII1.1.3. The strict tensor category C is generated by F and
by the relations R if

(a) the set F generates C, and

(b) for any pair (a,a’) of elements of M(F) we have the equivalence

a~pad << a=d.

The main interest of this definition lies in the following proposition stat-
ing under which conditions one can define a functor on C by its restriction
to the generating set F.

Proposition XII.1.4. Let C be a strict tensor category generated by the
family of morphisms F and the relations R. Suppose given a strict tensor
category D, a map Fy : Ob(C) — Ob(D) such that Fy(I) =1 and

F(VeV')=Fy(V)® Fy(V')

for all couples (V, V') of objects of C, and a morphism g; from Fy(s(f)) to
Fy(b(f)) for any morphism f € F. Then there exists a unique strict tensor
functor F : C — D such that we have F(V) = Fy(V) for any object V of
C and F(f) = gy for any morphism [ in F, if and only if for any couple
(¢,d) of R we obtain equal morphisms in D after replacing any subword [f]
(f € F) of c and d by g;, and any subword lidy | by idg, (vy-

Proor. The implication = is clear since the words ¢ and d represent the
same morphism in C. Therefore their images under F' obtained after per-
forming the substitutions indicated above are identical.

Let us prove the reverse implication. The uniqueness of F' follows from
the fact that the family F generates C. It remains essentially to define F'
on the morphisms of C. Now any morphism in C can be represented by an
element a € M(F). We define F|(a) by replacing any subword [f](f € F)
of the word a by g; and any subword [id/] by idg, (). By definition of
the presentation of C, the words a and a’ represent the same morphism in
C if and only if a and a’ are congruent modulo R. The substitution law
stated in Proposition 1.4 implies that, if @ and a’ are congruent modulo R,
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then F)(a) = F,(a’). Setting F(a) = F;(a) defines F' unambiguously on
the morphisms of C. a

Proposition 1.4 will be used as an essential tool in Section 4. We end this
section with a technical result. Suppose that the strict tensor category C is
generated by a set F and the relations R. Suppose also that there exists
a subset F’ of F such that any f € F' is congruent modulo R to a word
a(f) in M(F,) where F, = F \ F'. Denote by R, the collection of pairs
(¢,d) of words in F, obtained by replacing any f € F' by the word a(f) in
all pairs of words of R.

Lemma XI1.1.5. Under the previous hypothesis, the tensor category C is
also generated by the set Fy and the relations R,.

Proor. Clearly, the set F,, generates the category, and if a,a’ € M(F) are
congruent modulo R, then they are congruent modulo R, which implies
@ = a'. Conversely, if @ = a/, then by definition ¢ and a’ are congruent
modulo R. Now we may replace any f € F' by a(f) € M(F,) in these

congruences, which yields congruences in R, between a and a’. O

XII.2 The Category of Tangles

We defined the concept of tangles and of isotopy classes of tangles in X.5.
The reason why we introduced these one-dimensional objects is that tangles
form a strict tensor category 7 as follows. By definition, the objects of 7
consist of finite sequences of + signs, including the empty sequence @, and
the morphisms of 7 are the isotopy classes of oriented tangles. For any
oriented tangle L, the sequences s(L) and b(L) defined in X.5 will be the
source and the target of L respectively. The identity id : Ob(7") — Hom(7)
is defined by the following rules: id; is the empty set (; if ¢ is a finite
sequence of length n in Ob(7), we define id, as the isotopy class of the
tangle L formed by the union of intervals {1,2,...,n} x {0} x [0,1]. The
orientation of these intervals is determined by the rule s(id,) = b(id,) = .
The composition of tangles introduced in X.5 defines the composition in 7.
Recall that L'oL is obtained by placing L’ on top of L. Lemmas X.5.10-5.11
imply that 7 is a category with identity maps id,.

We equip 7 with a tensor product. It is defined on objects by concatena-
tion of sequences, i.e., if e = (,,...,6;) and &’ = (g,,4,...,¢,) are objects
of 7', then their tensor product is given by

!
eE@E =(1, € Epqrrr-»Ep)-

We also set d ® ¢ = ¢ = ¢ ® 0. This operation is clearly associative. Let
us now define the tensor product on the morphisms of 7. If L and L’ are
isotopy classes of oriented tangles, L ® L’ is the isotopy class of the oriented
tangle obtained by placing I’ to the right of L as in Figure 2.1.
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Le V=1L L

Figure 2.1. The isotopy class L ® L'

This operation is well-defined up to isotopy, is associative on isotopy
classes of tangles and defines a functor from 7 x 7 to 7. This is summarized
in the next proposition.

Proposition XII.2.1. The tangle category T equipped with the tensor
product defined above is a strict tensor category in which the unit I is
the empty set ().

Observe that the endomorphisms of the unit object @) are exactly the
tangles without boundaries, i.e., the links in the space R*x]0, 1[. This ob-
servation will be crucial in Sections 4-5.

We now state the main theorem of this section. It involves the “ele-
mentary” tangles defined by (X.5.1-5.5). We shall also use the following
conventions: |=id. and 1= id_,, and XY is short for X ® Y when X
and Y are elements of the generating set below.

Theorem XII1.2.2. The strict tensor category T is generated by the six
morphisms
-
U, u,n, N, Xy, X,

and the relations

(1nol)=l=(71)o(T), (2.1)
(1 M) (TUN=t=(N1e(TV), (22)

(N1 o (TN LT e (1T Xu o (TTLuT) o (1T V)
=M Mo AN X Mo T L (T 1), (23)
X,0X_=X_oX, =|l, (2.4)
(X, Dol X))o (X, =X (X, Do(lXy),  (25)
(1 Mo (XyNo(lu)=l, (2.6)
(NN ot X Do(MlU)o (1L Mo (T Xy Do (T IN=I1, (27
(LMo (XL Do (T INo(nih)e (T Xz Do (tLu)=1L. (28
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The proof of Theorem 2.2 will be given at the end of Section 3. Figures
2.2-2.9 illustrate Relations (2.1-2.8).

A~ A
v v v

Figure 2.2. Relation (2.1) Figure 2.3. Relation (2.2)

Figure 2.4. Relation (2.3)
\ / \ \
CEl R
A A NN
Figure 2.5. Relation (2.4) Figure 2.6. Relation (2.5)

p|-

Figure 2.7. Relation (2.6)

J )
J) \

Figure 2.8. Relation (2.7)

~ ~

{ I

Figure 2.9. Relation (2.8)

A
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These relations are valid in the tangle category as a consequence of Lemma
X.5.7 and Theorem X.5.9. More precisely, Relations (2.1-2.3) follow purely
from isotopies of diagrams, Relation (2.4), Relation (2.5), and Relation (2.6)
follow from isotopies of diagrams and from Reidemeister Transformations
(IT), (II), and (I), respectively, whereas Relations (2.7-2.8) follow from
isotopies of diagrams and from Reidemeister Transformation (II).

XII.3 The Category of Tangle Diagrams

In order to prove Theorem 2.2, we introduce a strict tensor category D of
tangle diagrams and give a presentation of it by generators and relations.
The category D is defined as the tangle category 7 of Section 2, but with
tangles in R? x [0, 1] replaced by tangle diagrams in R x [0, 1]. More pre-
cisely, the objects of D are the same as the objects of 7, namely finite
sequences of + signs. The morphisms of D are isotopy classes of tangle
diagrams in R x [0,1] as defined in Chapter X. Identity, source, target,
composition, and tensor product are defined as for the tangle category. We
thus obtain a strict tensor category D. The tangle category 7 is, roughly
speaking, the quotient of D by the Reidemeister Transformations (I-III).

Let us introduce more “elementary” tangle diagrams as in Figure 3.1.
They differ from the tangles X, only by their orientations.

KA XX XX
Vi Yo Zy Z_ T, T
Figure 3.1. Siz elementary tangle diagrams

Lemma XI1.3.1. The following relations hold in the category D:

Vo=l 7)o X, 1) (U L), (3.1)

T, =i XL o (TlV), (3.2)

Zy=(NMNo (NNt XL Mo (MTbune(1Tu),  (33)
Zy=MM)eMANeMXL Mo U UN(T M. (34

For a proof, see Figure X.3.10. The following statement gives a presen-
tation by generators and relations of the category of tangle diagrams.

Proposition XI1.3.2. The strict tensor category D is generated by the
twelve morphisms U, U,N, N, X, X_,Y,,Y_,Z,Z_,T, and T_, and the
Relations (2.1), (2.2), (3.1), (3.2), (3.3) and (3.4).
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PROOF. (a) Let F be the set of morphisms listed in Proposition 3.2. We
first have to prove that F generates D. Let II be a generic tangle diagram.
Draw a horizontal line through any vertex of II that is not a local maximum
or minimum. This divides R x [0, 1] into strips such that the restriction of II
to each of them involves only a crossing or a local maximum or minimum,
ie., it is of the form id ® f ® id where f belongs to the set F. In the
category D the diagram II is the composition of these restrictions. This
presentation of II is unique, i.e., to any generic diagram II we can assign
a unique word ap; in the alphabet F such that @y = II. Since by X.5 any
tangle diagram is isotopic to a generic one, we conclude that F generates
the diagram category.

(b) According to Definition 1.3, we have to check that, given any pair
(a,a’) of words in F, we have a ~p @’ < @ = a’ where R is the set of
relations in Proposition 3.2. By the results of Chapter X, we already know
that equivalent words (as defined in Definition 1.1) represent isotopic tangle
diagrams. Similarly, Relations (2.1-2.2) and (3.1-3.4) give rise to isotopic
diagrams (see Figure 2.2 and Figure X.3.10).

Let now (a,a’) be a pair of words in F such that @ = o’. By Lemma
1.2 (c¢) we may suppose that a and a’ are of the form

(idg,] @ [f1] @ [idp,]) o ([idg,] @ [fo] ® idgp,]) 0 -+ o ([idg, ] ® [fi] ® [idp, ])-

Geometrically, this means that @ = II and o’ = II' are generic tangle dia-
grams and that a = ap; and a’ = ay, where we use the notation introduced
in Part (a) of this proof. By assumption, II and IT’ are isotopic diagrams.
Thus, they can be obtained from each other by a finite sequence of oper-
ations taken from the Transformations (A), (B), (C), and (E) of Lemma
X.5.7. In order to show that the words ay and ap. are congruent modulo
R, it is therefore enough to check that the above-mentioned transforma-
tions do not change the congruence class of words. Let us verify this case
by case.

(A) If II and II' are generically isotopic, then ag; = ay.

(B) If IT and II differ by a Transformation (B), then ay ~ ap, in view
of Relation (1.8).

(C) If I differs from II' by a Reidemeister Transformation (0), then
ap ~z o thanks to (2.1-2.2).

(E) This case is taken care of by Relations (3.1-3.4). m

Corollary XI1.3.3. The strict tensor category D is generated by the siz
morphisms U, U,ﬂ,(ﬁ,XJF,X_, and Relations (2.1), (2.2), (2.3).

Proor. By Lemma 3.1, D is generated by the previous set of six morphisms.
We now apply Lemma 1.5 to Proposition 3.2: Relations (3.1-3.2) vanish
whereas Relations (3.3-3.4) give rise to Relation (2.3). O
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Proof of Theorem 2.2. It will be similar to the proof of Proposition 3.2.
Since any tangle may be represented up to isotopy by a generic tangle
diagram, Corollary 3.3 implies that 7 is generated by the set 7 of the six
morphisms listed in Theorem 2.2.

Let a and @’ be words in F such that @ and a’ are isotopic tangles. By
Theorem X.5.9 one can pass from @ to a’ by a finite number of operations
consisting of isotopies of diagrams and Reidemeister Transformations (I),
(IT), and (IIT). Corollary 3.3 implies that isotopies of diagrams do not af-
fect the congruence class modulo (2.1-2.3) of a word. In order to complete
the proof of Theorem 2.2, it is therefore enough to check that Reidemeis-
ter Transformations (I), (IT), and (III) also leave the congruence classes
unaltered.

Let us start with Transformation (II): It suffices to check that words of
type L, o L. are congruent to || with the right orientation where L is of
the form X,Y,Z,T. When L = X, this follows from Relation (2.4). When
L = Z, it follows from the operations performed in Figure 3.2: the first
and last ones are isotopies of diagrams, the second one is the Reidemeister
Transformation (IT) represented by Relation (2.4).

*x / A A A A

( >

\

Figure 3.2. Congruence when L = Z

When L =Y or T, it follows from Relations (2.7-2.8) as shown in Fig-
ure 3.3.

\I‘\/
N(N - -

/ ) /

Figure 8.3. Congruence when L =Y orT

We now deal with Transformation (IIT): When all strands are oriented
downwards, it follows from Relation (2.5) and its inverse. In the remaining
cases, one proceeds by reducing to the previous case as for Transformation
(IT) above. For details, see [Tur94], 1.4.5.
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Let us take care of Transformation (I). If the diagrams representing this
transformation are oriented downwards, then the desired conclusion fol-
lows from Relation (2.6). We are therefore left with the same diagrams
oriented upwards and we have to check that the corresponding words are
congruent modulo the relations (2.1-2.8). This follows from the operations
performed in Figure 3.4: the first, third, fifth, and seventh ones are iso-
topies of diagrams, the second one is the Reidemeister Transformation (I)
already considered, the fourth one is a Reidemeister Transformation (IIT),
the sixth one is a Reidemeister Transformation (II) applied twice. ]

o
ATy

Figure 8.4. Proof for Transformation (I} “upwards”

XII.4 Representations of the Category of Tangles

In X1.5 we constructed a strict tensor category C** from any tensor category
C. Applying this construction to the category Vect f(k) of finite-dimensional
vector spaces over a field k, we get a strict tensor category V.

We define a representation of the tangle category T to be a strict tensor
functor F from the tangle category 7 into the strict tensor category V. The
main interest of this concept comes from the fact that each representation
F of T produces an isotopy invariant for oriented links with values in
the field k. Indeed, let L be an oriented link in R*x]0, 1] (this space is
diffeomorphic to R?). As we observed in Section 2, we may consider L as
an endomorphism of the unit @ of the tangle category. Therefore, the image
F(L) of L under the strict tensor functor F' is a k-linear endomorphism
of the unit of the category V, which is the ground field k. In other words,
F(L) is the multiplication by a scalar. By definition of the tangle category,
this scalar depends only on the isotopy class of L.

This method of producing isotopy invariants of links is interesting in so
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far as we can construct representations of the tangle category in a system-
atic way. This will be achieved in this section using the presentation of 7°
given in Theorem 2.2.

Definition XI1.4.1. Let V be a finite-dimensional vector space. An en-
hanced R-matriz on 'V is a pair (c, u) where ¢ is an automorphism of V@V
satisfying the Yang-Bazter equation and p is an automorphism of V' such
that

c(pep) = (Lo pe, (4.1.a)
try (1 (idy ® u)) =id,, (4.1.b)
(r¢™)* (idy. ® p) ()T (idy. @ pt) = idy.gy (4.1.0)

where T = Ty v/

Here we made use of the partial transpose and of the partial trace defined
in 11.3. We shall also use the evaluation maps evy,, evy.. and the coevalu-
ation maps 6y, 6y,. of I1.3 where we identify any finite-dimensional vector
space with its bidual. We are now ready to state the main theorem of this
section.

Theorem XI1.4.2. Given an enhanced R-matriz (c, ) on a finite-dimen-
sional vector space V', there exists a unique strict tensor functor F' from
the tangle category T to V such that F((+)) =V, F((—)) =V", and

F(X,)=¢, FU)=6,, F(U)=(dy.®p ")by.. (4.2.a)
Then we necessarily have

F(X_)=c', F(N)=evy, F(N)=evy.(u®idy.).  (4.2.b)

There is a converse statement to Theorem 4.2 so as to have a bijective cor-
respondence between representations of the tangle category and enhanced
R-matrices. We shall not formulate it.

PROOF. Let F be a strict tensor functor from 7 to V. Set F((+)) = V,
F((=)) =W, and

FW=b:k—-VeoWw, FU) =bV:k-WaV, (4.2.¢)
FN)=d:WaV—k FMN)=d:VoW -k, (4.2.d)
F(X,)=c=c", F(X_)=c :VQV VeV (4.2.€)

By Theorem 2.2, the above six linear maps are related by the relations
obtained by applying F to (2.1-2.8), namely we have

(idy ® d)(b®idy) = idy, = (d' ®idy)(idy ® '), (4.3.a)
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(idy ® &)V ®idy,) =idy, = (d ®idy, ) (idy, @ b), (4.3.b)
(d®idygw)(idy © d®idygwew) (i[dyew © ¢ @idygw)

(dyeweyv ®b®idy )(idy gy ®b)
= (idygw @ d)(dyowey ® d ®idy)(idyew ® ¢ @idya)

(dy @V @idygwew) ' Qidyew), (4.3.¢)

cfem =c ¢t =idygy, (4.3.d)

(c®idy)(idy ® ¢)(c®idy) = (idy ® ¢)(c ®idy,)(idy, ® ¢), (4.3.¢)
(idy ® d)(c* ®idy,)(idy ® b) = idy,, (4.3.)
gh=1dygy, and hg=idygy (4.3.g)

where the linear maps g - WV - VW and h: VW — W RV are
defined by

9= (d@idygy)(idy ® T ®idy)(idygy © b) (4.3.h)

and
h=(idygy ®d)(idy ® & @idy ) (Y ®idygu)- (4.3.)

The data (V, W, b,V ,d,d’, c,c™) where V, W are finite-dimensional vector
spaces and b,b’,d, d’, c,c” are linear maps satisfying Relations (4.3.a—1) will
be called a representation data for the tangle category 7.

Conversely, by Proposition 1.4 and Theorem 2.2, any representation data
(V,W,b,b',d,d',c,c™) for T gives rise to a unique tensor functor ' : 7 — V
such that F'((+)) = V, F((—)) = W, and such that Relations (4.2.c—e)
hold.

These considerations imply that Theorem 4.2 is a consequence of the
following proposition. O

Proposition XI1.4.3. Let (c,u) be an enhanced R-matriz on a finite-
dimensional vector space V. Define b,b',d,d’,c,c” by

b=6y, bV =(idy. @u oy, d=evy, d=evy.(p®idy.),
andc¢™ = ¢~ Then (V,V*,b,b,d,d c,c™) is a representation data for T.

There is a converse statement whose formulation and proof are left to
the reader. Before we prove Proposition 4.3, we give a corollary to Theorem
4.2, and we state two lemmas which will be used in the proof of Proposition
4.3 (they may also be used to establish the converse statement).

Let (e, 1) be an enhanced R-matrix on a finite-dimensional vector space
V and F be the unique strict tensor functor from 7 to V satisfying Relations
(4.2.a-b). Let o be a braid with n strands. Since o is a tangle, we may
evaluate F on 0. We get an automorphism F(c) of V", Similarly, F can
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be evaluated on the link & which is the closure of the braid o (see X.8).
We get an endomorphism F(o) of the ground field &, i.e., a scalar. In the
following corollary, we express the automorphism F(o) and the scalar F'(c)
in terms of the representation pf, of the braid group B, associated to the
R-matrix ¢ in Corollary X.6.9.

Corollary XI1.4.4. With the previous notation, we have
F(o) = p(0) and F(3) = tr(u®" o (o)) (4.4)
for any braid o of B,,.

PROOF. (a) It suffices to prove the first statement for the generators o4, ...,
0,1 of B,,. Using the notation of X.6, we have

in the tangle category. Applying the tensor functor F', we get by X.6.2 and
by (4.2.a)
F(UZ) =idysu-1n ®c® idV@(?L*i*l) = pZ(U).
(b) We first express the closure ¢ in the tangle category. We have

5:(ﬁno(aT...T)oUn

where

Ap=To(NNo.col... LA T...7)
and

U,=(...lUl...7)o...o...(lUT)ouU.
Therefore

F@) =F(0,) o0 (F(0) ®idy.sn) o F(U,).
Now, it is easy to check that (4.2.a-b) imply that
F(U,) =6pen  and F(T,) = evy.gn o(u®" @idy.en).
Consequently,
F(5) = evyeon o((,u‘g’” o F(0)) ® idv*@,n)évm,

which is the trace of p®" o F(o) by (11.3.12). |

Let V and W be finite-dimensional vectur spaces equipped with re-
spective bases {vy,...,v,,} and {wy,...,w,} and respective dual bases
{v!, ..., o™} and {w',...,w"}. Suppose also we are given four linear maps
b:k— VW,V : k-WV,d: WRV -k andd : VW — k.
Define matrices B, B, D, D’ by

b(1) = Z Bjv,@w;, V()= Z B w; ® v,
.7 ()

d(w; ® v;) = Dy, d'(v; ®w;) = Dj;.
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Lemma XII.4.5. Under the previous hypotheses and with the previous
notation, we have

(idy @ d)(b®idy,) =idy, <= BD =1, (4.5.a)
(d®idy )(idy, ®b) =idy, <= DB =1, (4.5.b)
(d ®idy)(idy ®¥') =idy, < D'B’' =1, (4.5.¢)
(idy, @ &) (V' ®idy,) =idy, < B'D' =1 (4.5.d)
where 1 represents various matrix units.
PROOF. Simple calculation. ]

Now define linear maps a: W* -V and §: V* — W by
Z B;;v; and B(v?) Z B

In the following lemma we assume that o and § are isomorphisms, which
is equivalent to assuming B and B’ to be invertible matrices. We also take
it that the inverse matrices of B and B’ are D and D’ respectively. Recall
that 7 stands for the flip.

Lemma XII1.4.6. Let f be an endomorphism of V@V. Under the previous
hypotheses, we have

(d®idygu)(idy ® d®idygwew)(dwew © f @idyew)
(idwewev @b @idy)(dyew @ b)
= 7l @a)f ("t ®@a )T, (4.6.a)

(idyow ® d)(idygwey ® d @idy)(idyew ® f @idygw)
(idy @V @idygwew )b @idygw)
= (BB (B es Y, (4.6.b)

(idy ® &)(f ® idy ) (idy @ b) = tr ( Fidy © u)) (4.6.¢)
where p = a(B71)*,
(dRidy gy ) (idy @ f@idy )(idiy ey ®b) = (dOQ) (ry,y f)*Ty. v (@7 @1d)",

(idyy gy @d) (idy @ f ®idy, ) (b ®idy gy ) = (B@1dy )Ty - (fryv) ™ (idy®8~
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PROOF. Tedious, but easy computations. ]

Proof of Proposition 4.3. Let (¢, u) be an enhanced R-matrix on the finite-
dimensional vector space V. In order to apply Lemmas 4.5-4.6, we set
W =V*, a =idy, and 8 = (p*)"'. Pick a basis {v;,...,v,,} of V along
with its dual basis {v',...,v™}. Define a matrix B’ by

Bv') = Z By v’

Since p and 3 are isomorphisms, the matrix B’ is invertible. Let D’ be its
inverse. By definition of b,V',d, d’ we have

B =Y v, B =3 By oo,
[ 1,7

d(v' ® v;) = b4,
Let us now prove Relations (4.3.a-g).
Relations (4.3.a—b) follow from Lemma 4.5 in view of the fact that the
matrices B and D are identity matrices.
Relation (4.3.c): Relation (4.1.a) implies that f(u ® p) = (n @ p)f for
f = ¢*. Taking transposes, we get

(W @u)f = fr(w ®u),

d'(v; ® ') = Dj;.

which is equivalent to

T =Tt @ ut) T (@ p)T
The latter implies (4.3.c) in view of Relations (4.6.a-b), and of o = idy,
and = (i) L.

Relation (4.3.d) holds by definition of ¢~ whereas Relation (4.3.e) ex-
presses the fact that c is a solution of the Yang-Baxter equation. Relation
(4.3.f) follows from (4.1.b) in view of (4.6.c).

Relation (4.3.g): In view of (4.6.d—e) and since the expressions in brackets
below are isomorphisms, it is equivalent to show that

(B&idy )Ty (1) (idy @B 1) || (1[d@a”) (ryycT) Ty v (@7 @idy. )"

is equal to idy . g . Replacing o and § by their values, we are reduced to
proving

((H*)_l ® idv)Tv,v*(Ci”fv,v)X (idy, ®ﬂ*)(TV,VCq:)XTV*,V =idy.gy- (4.7)
Relation (4.7) is equivalent to
(idy ® (N*)_l)(CiTV,V)X (idy @ p*)(1y,ycT) ™ =idygy-- (4.8)

Taking transposes and using Lemma, I1.3.3, we see that (4.8) is equivalent
to (4.1.c). a
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XIL.5 Completion of the Proof of the Existence of
the Jones-Conway Polynomial

The aim of this section is to prove Proposition X.4.7 as a consequence of
Theorem 4.2. Let k be a field and ¢ be an invertible element of k. Fix an
integer m > 1. Let V,,, be a vector space over k of dimension m, equipped

with a basis {vq,...,v,,}. Define a linear endomorphism ¢,, of V,, ® V,, by
Ay qU; ® if 1 =7,
m(vi®vj): A V5 ® 1 if i< j,
A0 @ U+ A (g —q ) v, ®v; if i >3

where A, is a non-zero scalar. The map c,, is a special case of the R-
matrices described in Example 3 of VIIIL.1. Proposition VIII.1.4 implies
that ¢,, is a solution of the Yang-Baxter equation satisfying the additional
quadratic relation

>‘m m )‘ Cm (q - qil) idetX)Vm' (51)
Define an automorphism g, of V,, by u,,(v;,) = A\t 2 v,. Observe
that . .
I ¢ —q
tr(s,,) = -7 5.2
() = o o (52)

Lemma XIL.5.1. If \,, = ¢ ™, the pair (c,,, it,,) i an enhanced R-
matriz on V,,.

PRrROOF. We have to check Relations (4.1.a—c). The first one is automatically
verified because of the simple form of u.
Relation (4.1.b): An immediate computation shows that

tr2<cm(id®um))(vi) — ( —2(i— 1)_|_ Zq 20— 1)

7<i
- (_2(1 V41— 1)>vizvi'

Therefore, try(c,,(id ® p,,)) = idy, . We have to check that the same re-
lation holds when we replace c,, by its inverse. Taking advantage of (5.1),
we get

tr, (114 @ 11,,))

= At (Cm(id ® um)) A Mg —q7Y) try(id ® pyy)
V(1= Mg = a7 tray) Jidy,
N1 —g ™™ - q‘m))idvm

= A2qmidy, =idy,

since A, = ¢~™ and by (5.2).
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Relation (4.1.c) is proved by a direct computation left to the reader. a

As a corollary of Theorem 4.2 and of Lemma 5.1, we get

Proposition XI1.5.2. Let A, = ¢~ ™. There ezists a unique strict tensor
functor F,, from the tangle category T into the strict tensor category V
associated to Vect (k) such that F,, ((+)) =V,,, F,, ,((=)) =Vy,, and

m

Fm,q(u)(l) = Z Ui ® Ui? Fm,q(ﬁ)(l) = Z q2i—1—m ’Uli ® Ui
i=1

=1

and F,, (X,) = c,,. We also have

Q" Fp o(X4) = ¢ Ey o(X) = (g a7 ) Fp o (1)), (5.3)

and the value of F,,, , on the trivial knot O is given by

qm_q—m
F, (0) =tr(y,) = ———. 5.4
WO =0lu) = —— = (5-4)

ProOF. We apply Theorem 4.2 to the pair (c,,, i4,,) of Lemma 5.1. Rela-

tions (4.2.a) imply the desired forms for F,,, ,(U) and for F,, , (U). Relation
(5.1) translates immediately to

0" (X)) = ¢ Fy, o (X0) = (¢~ 07 ) Fy (L))

For the trivial knot, we observe that it is the closure of the trivial braid in
B,. We may then appeal to Corollary 4.4, which yields F,, (O) = tr(u,y,)-
We conclude with (5.2). a

We end this section by proving Proposition X.4.7, which completes the
proof of Theorem X.4.2 on the existence of the Jones-Conway polynomial.

Proof of Proposition X.4.7. It is an application of Proposition 5.2 where
k = C is the field of complex numbers and ¢ # 0 is a complex number that
is not a root of unity. We fix an integer m > 1.

Let us denote by F' the restriction of the tensor functor F,,  to oriented

links in R? x ]0,1[. Since oriented links are endomorphisms of @ in the
tangle category, F' takes its values in the endomorphism ring End(C) which
is canonically isomorphic to the field C of complex numbers. Using this
isomorphism, we see that F(L) is a complex number for any oriented link
Lin R?x]0, 1[. Moreover, by definition of the tangle category, F/(L) depends
only on the isotopy class of L. By Proposition 5.2, the value of F' on the

trivial knot is - B
Floy=4 "9

T
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Suppose for a moment that we have proved
q"F(Ly) — ¢ "F(L2) = (qa— ¢ )F(Ly) (5.5)
whenever (L,,L_, L) is a Conway triple. Then the composition ®,, , of

m,q
F with a diffeomorphism of R? onto R? x ]0, 1[ produces a complex-valued
map on the oriented links in R3, satisfying the conditions of Proposition
X.4.7. Therefore, the proof will be complete once we have checked Relation
(5.5). Now, by definition of a Conway triple (L, L_, L), there exist tangles

L, (1 <4 < 4) such that
Ly=L0o(Ly®X, ®Lz)oLy, L_=Lio(Ly®X_ ®Lg)olLy,
and Ly =L; o (Ly® || ®Lg) o L,. Since F,, , is a tensor functor, we get

q"F(Ly)—q "F(L_) — (g~ q_l)F(Lo)
P g (D) (Frng(L2) © 8 © Fry (L)) Fr (L)

where

S=q"F, (X,)—q "F, (X )= (qg—q¢ ")F, ().
The latter vanishes by (5.3). This proves Relation (5.5). a

XII.6 Exercises

1. Consider the strict tensor category whose objects are the nonnegative
integers and whose morphisms are the isotopy classes of all braid
diagrams in R x [0,1]. Show that it is generated by the morphisms
X,, X_ and the relations X, o X = X_oX =id

2. Let ¢ € Aut(V; ® V}) be an R-matrix as in VIIL.2, Example 2. Find
all automorphisms y of V; such that (¢, ) is an enhanced R-matrix.

3. Compute the trace of the automorphism (u,, ®u,,, )¢, where (¢,,, th,,)
is the enhanced R-matrix of Lemma 5.1. Deduce the value of the
functor £, . of Proposition 5.2 on the trefoil knot and on the Hopf
link (Hlnt use Corollary 4.4 and (5.1)).

XII.7 Notes

The results of this chapter are essentially due to Turaev [Tur89] whose
exposition we followed closely, and to Yetter [Yet88]. Enhanced R-matrices
already appear in [Tur88], though in a slightly different form.

In XIV.5.1 we shall build a strict tensor category R out of framed tangles
or ribbons (defined in X.8). A presentation of R by generators and relations
is given in [FY89] [Tur89].



Chapter XIII
Braidings

We define the important concept of a braided tensor category due to Joyal
and Street [JS93]. This concept has been introduced to formalize the char-
acteristic properties of the tensor categories of modules over braided bial-
gebras as well as the idea of crossing in link and tangle diagrams. After
defining braided tensor categories, we show that braids form a braided ten-
sor category that is universal in some precise sense. We also give the “centre
construction” which is the categorical version of Drinfeld’s quantum dou-
ble.

XIII.1 Braided Tensor Categories

XIII.1.1 Definitions and main properties

Let C be a category with a tensor product ® : CxC — C and an associativity
constraint a. Denote by 7 : C x C — C x C the flip functor defined by
7(V,W) = (W, V) on any pair of objects of the category. A commutativity
constraint ¢ is a natural isomorphism

c: R — Q7.

This means that, for any couple (V, W) of objects of the category, we have

an isomorphism
cyw  VRIW WV (1.1)
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such that the square

cv,.w

Vew — WeV
if@g lg@f (1.2)

vVew XY wev
commutes for all morphisms f, g.
The commutativity constraint ¢ satisfies the Hezagon Aziom if the two
hexagonal diagrams

(H1)
UeVew) 2B  (VeW)eU
/‘ ay,v,w \ av,w,u
UeV)eW Ve (Wel) (1.3)
\ cy, v Qidw / idv Qcy,w
Vel)ew X2 yve((UW)
and (H2)
UeView 2% WwWeUeV)
/! al‘],lv,W N “;V%U,v
UV eWw) WeU)eV (1.4)
N\, du®cv,w /" cu,w®idy

UeWeV) %%  (WeWw)eV

committe for all objects U, V, W of the category.

Observe that the hexagon (H2) can be obtained from (H1) by replacing
the isomorphism ¢ by its inverse ¢~*. The following definition is due to
Joyal and Street. It is central in the theory of quantum groups.

Definition XIII.1.1. Let (C,®,1,a,l,7) be a tensor category.

(a) A braiding in C is a commutativity constraint satisfying the Hezagon
Aziom, i.e., (1.3-1.4).

(b) A braided tensor category (C,®,1,a,l,7,c) is a tensor category with
a braiding.

Note that if ¢ is a braiding in C, then so is the inverse ¢~ *. When the ten-
sor category C is strict, the commutativity of (H1) and (H2) are equivalent
to the relations

cuvew = (idy ® cpw)lcyy ®idy) (1.5)

and
cugvw = (Cyw ®idy)(idy ® ey )- (1.6)
Let us investigate the relationship of the braiding with the unit con-
straints.
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Proposition XIIL.1.2. For any object V of a braided tensor category with
unit I, we have

ly o Cyy =Ty, TyocCry= ly, and Cry = c‘_,ll
When the category is strict, these relations simply become
CI,V = CV,I == ldv. (1.7)
PROOF. Consider the diagram

VeheoWw X Veo(leoW) - (IeW)eV

\ rv Qidw J/idv@lw llw@idv \ a
c®idw VoW s WeV IeWeV)
/7 ly®idw Tlmw le‘gv /id

IeoV)eWw - IeoVeWw) 225 JeWeV)

The outside heptagon commutes by the commutativity of (1.3), the top
square by the naturality of the braiding, the bottom square by the nat-
urality of [, the upper left triangle by the Triangle Axiom (XI.2.9) and
the lower left and the right triangles by Lemma XI1.2.2. Consequently, the
middle left triangle commutes, which means that

ry ®@idy, = (ly ®idy) o (cy; ®idy) = (ly o ¢yp) @ idy.

Set W = I. Applying the naturality of r, we get r, = Iy, o ¢, [, which is
the first equality to be proved. Replacing ¢ by its inverse, we see that the
commutativity of (1.4) implies the second relation in a similar way. The
last relation is an immediate consequence of the other two. O

XIIT.1.2 Relation with the Yang-Baxter equation

One of the main properties of a braided tensor category is stated in the
following theorem which may be considered as the categorical version of
the Yang-Baxter equation.
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Theorem XII1.1.3. Let U, V., W be objects in a braided tensor category.
Then the dodecagon

UeV)eW
/ cuv®idw N\, ev.v.w
VeU)eWw Uk (VW)
lav,u,w lidu®cv,w
Ve UeW) U (WeV)
lidv®cuvw la{"lw’v
Ve (WeU) UW)eV
la‘_"lw"’ lCU,W®idv
(VeW)eU WeU)gV
lCV,w®idU law,u,v
WeV)eU WeUeV)
N\, oW VvU /dw®cu,v
We((Vel)

commutes.

If the category C is strict, then the commutativity of the dodecagon is
equivalent to the relation

(cyw ®@idy)(idy ® ey w)eyy @ idy)
= (idy ® ey v )epw ®idy)(idy @ cyy).  (1.8)

This implies that the natural isomorphism ¢, y, is a solution of the Yang-
Baxter equation for any object V' of a braided tensor category.

PROOF. We cut the dodecagon into two hexagons of type (H2) and a square.
According to (1.4), the clockwise composition of the morphisms in the
dodecagon starting from (U @ V) @ W and ending at W @ (U ® V) is equal
to ¢y w Similarly, the counterclockwise composition of the morphisms
from (V@ U)®@W to W® (V®U) is equal to cy gy - It remains to check
the commutativity of the square

UeView 2% weoUeV)
j/cuv@idw lidW®CU,V
Veol)oW 2% WwWeo(VeU).

But this is a special case of the commutative square (1.2) (expressing the
functoriality of the braiding) where f is replaced by ¢;;,, and g by idy,.
O

We give a few examples of braidings.
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XII1.1.3 Braided categories of vector spaces

Example 1. (The flip) The flip 7 is clearly a braiding in the tensor category
Vect(k). Tt is also a braiding in the category k[G]-Mod of representations
of a group G and, more generally, in the tensor category A-Mod of modules
over a cocommutative bialgebra A (see Proposition I11.5.1).

The following result relates the notions of a braided tensor category and
of a braided bialgebra as defined in VIII.2 and justifies the name given to
the latter.

Proposition XII1.1.4. Let (H,u,n,A,e) be a bialgebra. The tensor cat-
eqory H-Mod is braided if and only if the bialgebra H is braided.

PROOF. Let (H,u,n,A,e,R) be a braided bialgebra with universal R-
matrix R. In VIII.3 we defined isomorphisms cl‘}W from VoWtoWV
by

chw(v®w) =y (R o w))
where v € V and w € W. Proposition VIII.3.1 implies that the family ¢ is
a braiding.

Conversely, let (H,u,n, A, ¢) be a bialgebra. Suppose that there exists a
braiding ¢ in the tensor category H-Mod. Define an invertible element R
in H ® H by

R=r1y yleg g(1®1)). (1.9)
Let us show that R is a universal R-matrix for H.

If v, w are elements of H-modules V', W, the naturality of the braiding

implies the commutativity of the square
CH,H

H®H —/— H®H

l@@m lw@j
cv,w
VoW —m WV

where ¥ : H — V and w : H — W are the H-linear maps defined by
9(1) = v and @w(1) = w. This implies that

cvpw (Vo) = (@) (e 5 (101)) =ryp (000)(R)) =Ty (Rvow)).
(1.10)
We express the H-linearity of cy p: for each a € H we have

acgp(1®1) =cy gla(1®1)).
By (1.10) we get A(a)Ty g(R) =Ty i (RA(a)). This is equivalent to
A°P(a)R = RA(a)

foralla € H.



XIII.1 Braided Tensor Categories 319

The commutativity of the hexagons (1.3-1.4) implies the relations
(id® A)(R) = Ryj3R;; and (A®id)(R) = Ry3Ry

respectively. This proves that R satisfies Relations (VII1.2.1) and (VIIL.2.3-
2.4) defining a braided bialgebra structure on H. ]

Under the correspondence set up in this proof, the commutativity of the
dodecagon in Theorem 1.3 is equivalent to the equation

R12R13R23 = R23R13R12
of Theorem VIIL.2.4 (a).

XIII.1.4 Crossed G-sets

Given a group G we may form a strict braided tensor category as follows.
Define a (right) crossed G-set as a set X with a right action X x G — X
of the group G and a set-theoretic map | | : X — G such that

lzgl = 97 |zlg

for all z € X and g € G. A morphism f : X — Y of crossed G-sets is a
map f from X to Y such that f(zg) = f(z)g and |f(z)| = |z| forall z € X
and g € G. Crossed G-sets and their morphisms form a category X(G).

We equip this category with a tensor product as follows. Given crossed
G-sets X and Y, we define X ® Y as the set-theoretic product X x Y with
G-action given by (z,y)g = (zg,yg) and with map X ® Y — G given by
l(z,y)| = |z||y|. It is easy to check that X ® Y belongs to X (G). Similarly,
given morphisms f and g, we define f ® g = f x g. Then X(G) becomes
a strict tensor category with unit I equal to the crossed G-set {1} with
1] = 1.

For any pair (X,Y’) of crossed G-sets, definecxy : X ®Y — Y ® X by

cxy(zy) = (y, zly]) (1.11)

where z € X and y € Y. The proof of the following result is left to the
reader.

Proposition XII1.1.5. The maps cx y are morphisms of crossed G-sets
and form a braiding for the strict tensor category X (G).

Let X = G with the group acting on itself by conjugation, so that
(z,9) — g 'zg. Then X = G is a crossed G-set with || = id,. Conse-
quently, G®" = G™ is a crossed G-set with |(g(,...,9,)] = 91 ...9, (for
n > 0). The full subcategory of X(G) with objects {1, G, G®* G®% ..}
forms a braided subcategory X,(G) of X(G) with braiding given by

- -1
conam (@12 Gngm) = Gnits 2 G0 919559 9,9)  (1.12)

where g = g, .1+ Gnim:
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XIII.1.5 Symmetric tensor categories

Braided tensor categories generalize the classical concept of a symmetric
tensor category introduced earlier by category theorists. A tensor category
is symmetric if it is equipped with a braiding c such that

Cwy ©Cyw = idyguw (1.13)

for all objects V, W in the category. If (1.13) holds, we call the braiding ¢ a
symmetry for the category. Notice that the commutativity of the hexagon
(H1) and the commutativity of the hexagon (H2) are equivalent in a sym-
metric tensor category.

We give two examples of symmetric tensor categories.

Proposition XIIL.1.6. The strict tensor categories GL and S of X1.3.2
are symmetric.

PROOF. We define automorphisms s,, ,, € GL,, (k) :n®m — m®n as
follows. If {e,,..., e, is the canonical basis of the vector space k"™, we
set s, m(e;) =€, if1 <i<n,ands, , (e)=¢,_,ifn+1<i<n+m.
The matrix of s, ,,, in the canonical basis of k"*™ is the (n +m) x (n+m)

matrix
0o 1,
1, 0

where 1, is the unit n x n matrix. This holds when n > 0 and m > 0.
Otherwise, we have s, ,, = idgn = s, ¢-

We claim that the family (s, ,,,) is a braiding for GL. We have to check
the functoriality and Relations (1.5-1.6). The functoriality is equivalent to
the relation

Spnm © (g ® h) = (h’ ® g) O Sn,m

for all ¢ € GL, (k) and all A € GL,, (k). This follows from the matrix
relation

(o &) (8 0)-(5)-(6 )00 %)

Relation (1.5) is a consequence of the relation

o 1, O ,, 0 O 0 1, O
0o 0 1, | = 0o 0 1, 1, 0 0
1, 0 0 0o 1, O 0o 0 1,
Observe that s,, s, ,, = id,g,,. Therefore Relation (1.6) is also verified,

which proves that (s, ,,,) is a braiding endowing GL with the structure of
a symmetric tensor category.

Since the matrix of s, ,, is a permutation matrix, the same formulas
define a symmetry on the category S. a
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XIII.2 The Braid Category

In X.6 we defined braids as a special case of tangles. When composing
or tensoring two braids as we did for tangles in XII.2, we get another
braid. This proves that braids form a strict tensor category B in which the
objects are finite sequences of + signs. We identify such a finite sequence of
length n with the integer n under the convention that the empty sequence
corresponds to the integer 0. Henceforth, we shall consider the set N as the
set of objects of the strict tensor category B. The purpose of this section is
to show that the braid category is a strict braided tensor category.

In order to put a braiding on the braid category, we have to define
isomorphisms ¢, ,, :n®m — m®n for any couple (n,m) of non-negative
integers. This is done as follows: ¢ ,, = id,, = ¢,, o, and for n,m > 0 we set

Cnm = (O-mo-mfl L 01)(0m+10m e 02) e (O-m+nv10-m+n—2 ce OTL) (21)

where oy, ..., Opmin—1 are the generators of B

m+n defined in X.6. The braid
c is represented in Figure 2.1. Observe that the permutation of the braid

n,m
Cy.m 18 the permutation s,, ,, of Proposition 1.6.

Figure 2.1. The braid cq,m

Theorem XII1.2.1. The family of isomorphisms (c
ing in the braid category B.

n.,m)n.,mzo is a braid-

PROOF. We have to prove that the family (¢, ,,,),,.m>0o 18 functorial with
respect to all morphisms in B and satisfies Relations (1.5) and (1.6).

Let us start with the functoriality. Since any morphism in B is an element
of a braid group, it is enough to check the functoriality with respect to the
generators o,. More precisely, we must prove that for all 4,7 such that
I1<i<n-—1land1<j7<m-—1we have

Cn,m © (01 ® Uj) = (Uj ® 02’) © CTL,m'

Both sides of this relation are represented by the braid diagrams of Figure
2.2. It is clear that one can pass from one braid diagram to the other
by repeated applications of the Reidemeister Transformation (III), which
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proves the equality. The reader may replace this topological proof by an
algebraic one using the braid relations of Lemma X.6.4.

Figure 2.2.

As for Relation (1.5) [resp. Relation (1.6)], a graphical proof is given in
Figure 2.3 [resp. in Figure 2.4]. O

Figure 2.4. Proof of Relation 1.6

Observe that we have the relation
o, =id® "V g €1 ® igPn—imh (2.2)

in the braid category B.

XIII.3 Universality of the Braid Category

In this section we derive two universality properties for the braid category.
They imply that B is a model for all other braided tensor categories.
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XII1.3.1 Yang-Baxter operators

We introduce Yang-Baxter operators following Joyal-Street [JS93].

323

Definition XIII.3.1. IfV is an object of a tensor category (C,®,1I,a,l,r),
an automorphism o of V®V s called a Yang-Baxter operator on V if the

dodecagon

commutes.

VeV)eVv

/ o®idy

Vev)eV
lawuv
Va(Vev)
lmv®a
Ve Ve
[
Vev)eV

la@idv

(Veov)eV

N, eV v

Ve (VeV)

\, ev.v.v
Ve VeV)
lmV®o
Ve(VeV)
[e7en
(VeV)eV
la®mv
(VeV)eV
lawwv
Ve (VeV)
/idy®o

The commutativity of this dodecagon is equivalent to

(id ® o)alo @ id)a" (id ® 0)a = a(c @ id)a "1 (id ® 0)a(c @ id)

(3.1)

where a = ay y y, and id = idy,. In any braided tensor category, the braiding
cyy 1s a Yang-Baxter operator. This follows from Theorem 1.3. Here is a
way to generate Yang-Baxter operators.

Lemma XII1.3.2. Let (F,@,,¢0,) : C — D be a tensor functor between
tensor categories. If o € Aut(V ® V) is a Yang-Bazxter operator on the
object V in C, then

o' =@, (V,V) Lo F(o) o, (V, V)

is a Yang-Bazter operator on F(V).

(3.2)

PRrROOF. Clearly ¢’ is an automorphism of F(V) ® F(V). It is enough to

check Relation (3.1). In other words, if we set

u=(id® o’')a(0’ ®id)a™*(id ® 0')a
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and
v=a(c’ ®id)a"'(id ® 0')a(o’ ®id),

we have to prove that v = v. Now, by Definition XI.4.1 we have
a=(id® p;")py F(a)py(py ®id). (3.3)
Relations (3.2-3.3) imply that

u=(id®p;")(id ® F(0))py Fla)py(F(0) @ id)
3 Fla )y (id ® F(0))py ' Fla)py(pp @ 1d)
where ¢, = ¢o(V,V). Now ¢, is a natural isomorphism. Therefore the
squares

FVeV)eFv) -2V o pvev)ev)

lF(a)@idF(V) lF(U®idv)

FveW e rwv) -2V . p(vev)eV)

and
FW e FVev) 20U o pye v eV))

lldp(v)@p(cf) lF(ldv@U)

FV)eFvev) 22U, pyvevev))
commute. We rewrite them in the form
o (F(0)®id) = F(o®id)p, and (id®F(0))p;' = ¢, ' F(id®o). (3.4)
Plugging (3.4) into u, we get
u = (id®p; ), 'Fid®o)F(a)F(o ®id)

F(a ) F(id ® 0)F(a)py(p, ®id)
= ([d@p; e 'F((Id® o)alo @id)a™ (id @ 0)a)p,(p, @ id).

Similarly, we have
v=(d® @gl)wglF(a(o ®id)a ' (id ® 0)a(o ® id))goz(go2 ®1id).

The equality u = v results from the fact that o satisfies Relation (3.1). D

We now define a new category YB(C) out of the Yang-Baxter operators
on the tensor category (C,®, I, a,l,r). The objects of YB(C) are pairs (V, o)
where V is an object of C and ¢ : V@V — V®V is a Yang-Baxter operator
on V. A morphism f : (V,0) — (V',¢') in YB(C) is a morphism f : V — V'
in C such that the square
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Vvev - VeV
lf@f lf@f (3.5)
V/ ® V/ L V/ ® V/
commutes. The identity of (V, o) in YB(C) is idy,.
Let us relate the category of Yang-Baxter operators to the braid category
B. Suppose that (F, ¢y, ¢,) : B — C is a tensor functor from B to the tensor
category C. By Theorems 1.3 and 2.1 we know that the automorphism

c;1 =07 0of 1®1 =2 is a Yang-Baxter operator on the object 1 in B. It
follows from Lemma 3.2 that the automorphism

o= ‘PElF(Cl,l)@z (3.6)

is a Yang-Baxter operator on F(1) in the category C. This defines an object
(F(1),0) in YB(C), which we denote by ©(F').

We claim that © extends to a functor T'ens(B,C) — YB(C). Let us check
that, if 7 : (F,¢g, 03) — (F', ¢}, ¢h) is a natural tensor transformation,
then n(1) : F(1) — F'(1) is a morphism in the category YB(C). In other
words, we have to show that 7(1) satisfies the following relation

(n(1) @n(1))o = o’ (n(1) ®n(1)) 3.7)

where o’ = ¢y 7 F'(c; )ph. We have

(n(1) @ n(1))3 " Fler1)es

= oy 'N(2)F(cy ),
SDQAlF/(Cl,1)W(2)<P2

= @y F (e )en(n(1) @ (1))

= o'(n(1) ®n(1)).

The first and last equalities follow by definition of ¢ and ¢’, the second
and fourth ones by definition of a natural tensor transformation (Definition
XI.4.1), and the third one by Definition XI.1.3.

We can state the first universality property of B.

(n(1) @ n(1))o

Theorem XII1.3.3. For any tensor category C the functor, defined above,
@ : Tens(B,C) — YB(C) is an equivalence of categories.

PROOF. By Proposition XI.1.5 it suffices to check that the functor © is
fully faithful and essentially surjective.

In order to establish that © is fully faithful, we have to show that ©
induces a bijection on morphisms. We build a map inverse to the map
1 — n(1) considered above.

Let f : (F(1)7<P51F(01,1)<P2) - (F’(l),cpé_lF’(c1’1)§p§) be a morphism
in YB(C) where (F, @y, ¢y) and (F', ¢, ¢h) are tensor functors from B to
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C. We wish to construct a natural tensor transformation 7, from (F, ¢y, ¢,)
to (F', g, h) such that n,(1) = f. We proceed as follows. If n = 0,1, we

set n;(0) = wopy ' and n,(1) = f. If n > 1 we define 7;(n) inductively by

np(n) = h(F@nptn = 1))z (3.8)

Lemma XII1.3.4. The family (ns(n)),>q is a natural tensor transforma-
tion.

PRrROOF. We have to check that

F'(g)ns(n) = ns(n)F(g) (3.9)

for any integer n > 0 and any element g of the braid group B,,, that
n4(0)¢y = ¢q (this holds by definition of 14(0)), and that for all n,m >0

np(n® m)py = @} (1(n) ® mp(m)). (3.10)

It is enough to check Relation (3.9) when g is a generator o, of B,. A
computation left to the reader shows that Relation (3.9) for g = o, is a
consequence of Relations (2.2) and (3.8), of the Pentagon Axiom (XI.2.6),
and of the definition of tensor functors.

As for Relation (3.10), one proceeds by induction on m as in the proof
of Lemma XI.5.2. |

The full faithfulness of © follows from (1) = f and from 7,4y = 7.
The first relation holds by definition. Let us check the second one. We shall
prove

M1y (n) = n(n) (3.11)

by induction on n. This is clear for n = 0,1. If n > 1, we use the fact that
n and 7,y are natural tensor transformations to write

Ty () = nyu(n-1)®1)
= ¢ (777,(1)(” -1) ®71n(1)(1)) 2
= ¢h(ntn -1 @n())e,

= n(n-1)®1)
= 7n(n).

=

This proves (3.11), hence the full faithfulness of ©.

In order to complete the proof of Theorem 3.3, it remains to check that ©
is essentially surjective. By Theorem XI.5.3 we may assume that the tensor
category C is strict. Then the essential surjectivity of © is a consequence
of the following lemma. |
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Lemma XII1.3.5. Let C be a sirict lensor category and (V,o) an object
of YB(C). Then there exists a unique strict tensor functor F : B — C such
that F(1) =V and F(c,,) = 0.

PROOF. If such a functor F exists, then (2.2) implies F(n) = V®" and

Flo) = Fid?" " Vee, 0idd" ) =idd" Voooidd™ "V

K3

for 1 < ¢ < n — 1. This proves the uniqueness of F' in view of the fact that
01,09,...,0,_, generate B, as a group.

Let us prove the existence of F. Set F'(n) = V®™. Define automorphisms
C1yeesCyq of F(n) by

¢, =id®0 Y g ¢ @id®—i-1)

when 1 <7 < n—1. The automorphism o being a Yang-Baxter operator, the
automorphisms ¢; satisfy the braid group relations (X.6.1-6.2). It follows
from Theorem X.6.5 that there exists a unique morphism of groups F' from
the braid group B,, to Aut(F(n)) such that F(o,) = ¢, for all i. The functor
F'is a strict tensor functor from B into C and we have F(c, ;) = ¢; = 0.

O

XII1.3.2 Braided tensor functors

In order to state the second universality property of the braid category, we
have to introduce the concept of a braided tensor functor.

Definition XII1.3.6. A tensor functor (F, @y, ¢,) from a braided tensor
category C to a braided tensor category D is braided if, for any pair (V, V')
of objects of C, the square

FV)o F(V') 2 FVeV')
JCF(V%F(V’) J/F(CV,V’) (3.12)
FVHY®FV) & FV' V)
commautes.

We denote by Br(C, D) the category whose objects are the braided ten-
sor functors from C to D and whose morphisms are the natural tensor
transformations.

Theorem XIIL.3.7. For any braided tensor category C the functor @' :
Br(B,C) — C defined by ©'(F) = F(1) is an equivalence of categories.

PROOF. By Proposition XI.1.5 again it is enough to prove that ©' is fully
faithful and essentially surjective.
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Full faithfulness of ©'. First, we claim that if C is a braided tensor category
and F, F' are braided tensor functors, then

HomYB(C)(@(F)7 O(F')) = Hom (&'(F), ©'(F")).

Tt is clear that the left-hand side sits inside the right-hand side. We have
to prove the opposite inclusion. Let f : F(1) = V — F'(1) = V' be an
element of Hom(©'(F),©'(F’)). We wish to prove that f is a morphism
in the category YB(C), which means that the square (3.5) has to commute
with o = o5 'F(cy 1), and ' = @y " F'(¢; 1)y We have

(Fofle = (f&Ne Fle)e
= (f®fleyy
= cyy(f®f)
= ‘P/2A1F1(01,1)<P§z(f®f)
= d(fef).
The second and fourth equalities follow from (3.12) whereas the third one

follows from the naturality of the braiding ¢ in C.
Now ©’ is fully faithful in view of the isomorphisms

HOInBT(B,C) (F7 F/) = HomTeus(B,C) (F7 F/)
= HOIHYB(C)(@(F), o(F"))
— Hom,(0'(F),0'(F")

where the first one follows by definition, the second one from the full faith-
fulness of © (Theorem 3.3), and the last one has just been proved.

Essential surjectivity of ©'. Let V be an object of C. Since C is braided, the
automorphism ¢y y, is a Yang-Baxter operator by Theorem 1.3. According
to Theorem 3.3, the functor © is essentially surjective, which means that
there exists a tensor functor (F, ¢y, ¢,) : B — C along with an isomorphism
a:V — F(1) such that

SoglF(Cl,l)‘PQ(a ®a)=(a® a)CV,V' (3.13)

In order to prove that ©' is essentially surjective, it is enough to prove
that the functor F is braided, i.e., that for any pair (n,m) of nonnegative
integers the square (C, ,,)

n,m

F(n)® F(m) 2 F(n+m)
lcF(n),F(m) lF(Cn,m) (3~14)
F(n)® F(m) 2% F(n+m)

commutes. We shall check this by induction on n and m.
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The commutativity of (Cy ), (C; o) and (C ;) is left to the reader. Let
us first check that (C; ;) commutes. We have

F(C1,1)802 =py(a® a)cV}V(a_l ® ail) = P2 Cp(1),F(1)

by Relation (3.13) and by naturality of the braiding e.
We now prove that the commutativity of (C,, ;) and of (C,, ,,) implies
the commutativity of (C,, ,, ). We have

F(Cn,m+1)<p2 = F(ld & Cn,l)F(cn,m ® id)(p2
= Y2 <1d®F(cn,1))<p51<p2 <F(cn,m) ®1d)302_1(p2
= 9(id ® 93) (I ® Cp(ny p(1)) (1 ® 03 3 !
P2 (@2 ® id)(CF(n),F(m) ® ld)(@gl ® ld)(pgl(pQ
= pa(Id ® y)(id & cp(ny p(1)) @ (CR(n), F(m) ®1d)
(07! @id)e; e,
= 2(ld ® 93)Cp(n) Famyora) @ (¥2 T ®id)py v,
= PaCp(n), F(m+1)(1d ® @5) a (p7 ' ®@id); 'y

= SDQCF(TL),F(’"L+1)'

The first equality is a consequence of the fact that (c,, ), ,, is a braiding
for B, the second one follows by the naturality of ¢,, the third one by the
commutativity of (C,, ;) and (C,, ,,), the fourth one by Relation (X1.4.1),
the fifth one by Relation (1.3), the sixth one by naturality of the braiding
in C, the seventh one again by Relation (XI1.4.1).

A similar computation shows that the commutativity of (C ,,) and of
(Cy..n) implies the commutativity of (C,, 4, ,,). This is enough to prove
that all squares (C,, ,,) commute. Therefore the functor F' is braided and
the proof of Theorem 3.7 is complete. |

We may interpret Theorem 3.7 as saying that, given any object V in
a braided tensor category C with braiding ¢, the tensor power V™ of V
(whatever parenthesizing is used) is naturally a module over the braid group
B,,. If, moreover, ¢y, y is an involution, i.e., of square one, then the action
of B, factorizes through the symmetric group S,,.

The proof of the essential surjectivity of ©’ shows that the following more
precise result holds for any strict braided tensor category.

Corollary XIII.3.8. LetV be an object of a strict braided tensor category
C. Then there exists a unique strict braided tensor functor Fy, from the braid
category B to C such that Fy,(1) = V.
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XIII.4 The Centre Construction

We now give a construction which assigns to any strict tensor category
(C,®,I) a braided tensor category Z(C), called the centre of C. When C
is the tensor category A-Mod of modules over a finite-dimensional Hopf
algebra A with an invertible antipode, then Z(A-Mod) is tensor equivalent
to the braided tensor category D(A)-Mod of modules over the quantum
double D(A) of A, as described in Chapter IX. In other words, this “centre
construction” is the categorical version of the quantum double construction.

Definition XIIIL.4.1. An object of Z(C) is a pair (V,c_ ) where V is an
object of C and c_ y, is a family of natural isomorphisms

cx v XQV-VReX
defined for all objects X in C such that for all objects X,Y in C we have

cxgyy = (cxy ®idy)(idx ® ¢y v ). (4.1)

A morphism from (V,c_ ) to (W,c_ y,) is a morphism f:V — W in
C such that for each object X of C we have

(f ®idy)ex v = cx wlidx ® f). (4.2)
The naturality in Definition 4.1 means that the square

XV X% vex
lf@idv lidv®f (4.3)
YoV 2% vevy

commutes for any morphism f: X — Y in C.

It is clear that the identity id;, is a morphism in Z(C) and that if f,g
are composable morphisms in Z(C) then the composition go f in C is a
morphism in Z(C). Consequently, Z(C) is a category in which the identity
of (Vie_ ) isidy.

We now state the main theorem of this section.

Theorem XIIL.4.2. Let (C,®,1) be a strict tensor category. Then Z(C)
1$ a strict braided tensor category where

(i) the unit is (I,1d),

(ii) the tensor product of (V,c_ ) and (W,c_ y) is given by

Viey)® Wie_ w) = (VOW,c_yow)

where cx yow : X @V W — VW ® X is the morphism of C defined
for all objects X in C by

exvew = (idy ® cx w)(ex v ®idy), (4.4)
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(iil) and the braiding is given by
cyw  (Viey) @ Wie_w) = Wl ) ® (Ve v).

PROOF. 1. Let (V,c_ /) and (W, c_ y ) be objects in Z(C). We claim that
the pair (V @ W,c_ ygu ) defined in Theorem 4.2 (ii) is an object of Z(C).

Indeed, it follows from the properties of (V,c_ /) and (W, c_ ) that
¢x vew 18 an isomorphism in C and that cy y gy is natural in X. We have
to check Relation (4.1) for ¢_ gy . For all objects X, Y of C we have

cxoyvew = (dy @cxgyw)(Cxgy,y ®idy)
= (dy ® cx w ®@idy)(idygx ® ey w)
(cxy ®@idygw)(idy ®cyy ®idy)
= (dy ®@cyw ®idy)(cx y @idygy)
(dxgy ® cyw)(idyx ® ey ®idy,)
= (cxvew ®@idy)(idy ® ey yow)-
The first and fourth equalities follow from (4.4), the second one from (4.1),
and the third one by (XI1.2.3), i.e., by the naturality of the tensor product.
2. Let f: (Vie_y) = (Wye_ ) and f': (Ve yi) — (W'ic_ y) be
morphisms in Z(C). We claim that so is f ® f’. Let us check Relation (4.2)
for f ® f'. We have

(f®f idx)ex vy = (f®idy, ®idy)(idy © f' ®idy)

(idy ® cx v)(cx,y ®idy)
(f ®idy, ®idx)(idy ® cx )

(idy ®@idx ® f)(cx,y ®idy)
(idy ® cx ) (f ®@idx ®@idy.)

(ex v ®idy)(idx ®idy ® f
= (idy ® cx o )lex,v ®@idy)

(idy ® f ®idy,)(idy ®idy ® f)

= CX,W@W’(idX ®fef).

The first and fifth equalities follow from (4.4) and from (XI.2.3), the second
and fourth ones from (4.2), and the third one from (XL.2.1).

Now it is clear that the tensor product is well-defined on the objects and
on the morphisms of Z(C). It is functorial and satisfies all the required
axioms because it already does so in the original category C. Thus, the
category Z(C) is a strict tensor category. We next show that it is braided.

3. Let us start by proving that ¢y is a morphism in Z(C). We have to
check Relation (4.2) for cy y, namely

(cvw ®@idx)ex vew = cxwevidy ® cyw)



332 Chapter XIII. Braidings
for all objects X in C. We have

(cyw @idx)ex vew = (cyw @idx)(idy @ cx w)lex y ®@idy)

cyoxw(cx v @idy)

i

(dw ®@cx v)exevw
= (dy @ cxy)lex w @idy)(idx ® ey )
= cxwev(idy ®cyy).

The first and last equalities result from (4.4), the second and fourth one
from (4.1), and the third one from the naturality of c_ .

4. The morphism ¢y, y is invertible by definition and it is natural with
respect to all morphisms of C, hence to those belonging to Z(C). In order
for ¢y to qualify as a braiding, it has to satisfy both Relations (1.5) and
(1.6). Now (1.6) follows from the hypothesis (4.1) and (1.5) from (4.4).
Therefore the tensor category Z(C) is braided with braiding cy, y. |

We give a universal property of the construction Z. For any strict tensor
category C the functor IT: Z(C) — C given by

M(V,e_y) =V (4.5)
is a strict tensor functor. It is universal in the following sense.

Proposition XII1.4.3. Let F' be a strict tensor functor from a strict
braided tensor category C to a strict tensor category C'. Suppose that F
is bijective on objects and surjective on morphisms. Then there exists a
unique strict braided functor Z(F) : C — Z(C') such that F =110 Z(F).

PROOF. Let us first prove the existence of Z(F'). For any object V of C we
set

Z(F)(V) = (F(V)vc—,F(V))
where ¢_ (v is defined for all objects X in C'by ex rvy = Flep-1x),v)-
Here c_ y, is the braiding in C. Relation (4.1) is satisfied because I is a
tensor functor. Therefore Z(F)(V) is an object in Z(C’).

If f:V — V'is amorphism in C, set Z(F)(f) = F(f). Relation (4.2)
is satisfied because of the naturality of the braiding in C. This proves that
Z(F) is a functor. Clearly, IT o Z(F') = F. Let us now check that Z(F) is
a braided tensor functor. It preserves tensor products because of (1.5) and
(4.4). Tt also respects braidings. Indeed, we have

Z(F)(Cv,w) = F(CV,W) = CR(v),F(W)

which is the braiding of Z(C’).
The uniqueness of Z(F) is a consequence of the fact that it preserves
braidings. O
Applying Proposition 4.3 to the identity functor of a braided tensor cat-
egory, we get the following result.
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Corollary XIII.4.4. For any strict braided tensor category C there exists
a unique braided tensor functor Z from C to Z(C) such that 1o Z =1id..

XIIT.5 A Categorical Interpretation of the
Quantum Double

We relate the centre construction of Section 4 to the quantum double con-
structed in Chapter IX. This will give us a simple categorical description
of the quantum double.

Let A = (A, u,m,Ae,S) be a finite-dimensional Hopf algebra with in-
vertible antipode S. Under this hypothesis, we constructed a braided Hopf
algebra D(A) in IX.4. Let us recall that we have D(A) = A" ® A as a
vector space, that the Hopf algebras A and (A°P)* are Hopf subalgebras of
D(A), and that the universal R-matrix is given by R = 3", a, ® a* where
{a,}, is a basis of A and {a'}, is the dual basis. Finally, in Theorem IX.5.2
we proved that a module structure over D(A) is equivalent to a crossed
bimodule structure over A.

We are ready to state the main theorem of this section.

Theorem XII1.5.1. For any finite-dimensional Hopf algebra A with in-
vertible antipode, the braided tensor categories Z{A-Mod) and D(A)-Mod
are equivalent.

We defined the centre construction only for strict tensor categories. But
there is no difficulty in extending it to A-Mod. We start with two prelimi-
nary results before embarking into the proof of Theorem 5.1.

Lemma XIIL5.2. Let (V,c_ ) be an object of Z(A-Mod) and Ay be
the map from V to V ® A defined for allv € V by Ay, (v) = ¢4 (1 R v).
Then the map Ay, endows the left A-module V with a crossed A-bimodule
structure.

PROOF. Let Ay, : V — V ® A be defined as above. By convention, we write

Ay(v)=> v, Qv €eVRA (5.1)
()

for any v € V. We call A, the coaction of A on V.

The naturality of c_ | allows us to express cx y in terms of the coaction
Ay, for any A-module X. Indeed, given z in X and Z: A — X the unique
A-linear map sending 1 to x, we have the following commutative square:

CAV

ARV —— VA
li@idv lidv@(i)
Xev 2% veXx.



334 Chapter XIII. Braidings

It implies that for any v € V and x € X we have
cxy(r®v) =A,0)(1®z) = Z Uy @ V4. (5.2)
(v)

Let us show that the coaction Ay, is coassociative. By (4.1) we have

Cxgy,v(T®Y®U) = Z vy @ (vy)' 2@ (v4)"y
(v)

= (cx,y ®idy) ((idx Qeyy)(z®Y® U))

= Z (vy)y ® (vy) 42 @V Y-
(v)

Setting X =Y =Aand x =y =1, we get

Z vy ® (vh) ® (v4)” Z (vy)y ® (vy)a @ vy,
(v) (v)
which proves the coassociativity of Ay,.

We also have ¢, y, = idy, because k = I is the unit of the tensor category
of k-modules. This implies cy(1®v) =3, elvg)vy =vioraloveV.
This means that the coaction Ay is counitary. So far we have proved that
the coaction Ay, equips V with a structure of right A-comodule.

Let us now express the fact that cy i, is A-linear. For a € A,v € V and
z € X we have

ack y(z®v) =cx y(a(z ®v)).

Replacing cy y, by its expression in Ay, we get

Ala)Ay (V)1 ® 1) = (Z Ay (a"v)(1 ®a))(1®x).
(a)

Setting X = A and z = 1, we obtain
Z avy ®a"v, = Z (a"v)y ® (a"v) 4 a, (5.3)
(a)(v) (a)(v)

which is Relation (5.2) of Chapter IX expressing that V is a crossed A-
bimodule. m]

By Theorem IX.5.2, we know that a crossed A-bimodule is a left D(A)-
module. Let R = )", a;®a’ be the universal R-matrix of D(A). We express
the braiding in the braided tensor category Z(A-Mod) in terms of R.

Lemma XIIL.5.3. Under the previous hypotheses, if (V,c_ y) is an ob-
ject of Z(A-Mod) and X is an A-module, then the isomorphism cx y is
determined by

cxv(z®@v)=7xy (R(m ® U))
forallz € X andveV.



XIIL.5 A Categorical Interpretation of the Quantum Double 335
PROOF. By Relations (5.2) and (IX.5.4) we have
cxy(@®u) = Z Uy ®UaT
(v)

= Z <a'uy > vy ® a;2
(v),d

= g a'-v®a;r

()i
= Txy (R(a: ® v))
0

We prove Theorem 5.1 in five steps.

1. We first define a functor F from Z(A-Mod) to D(A)-Mod. Let (V,c_ /)
be an object of Z(A-Mod). By Lemma 5.2 and Theorem IX.5.2, the vector
space F'(V,c_y) = V is a left D(A)-module. Recall from IX.5 that the
action of D(A) on V is determined by

(ac)v = Z <@,vuy > avy (5.4)
(v)

wherea € A, a € A", and v e V.

If f is a map in Z(A-Mod), then Relation (4.2) implies that f is a map
of A-comodules, hence of A*-modules. Consequently f is D(A)-linear. This
defines F as a faithful functor.

2. Let us show that F is a strict tensor functor. The tensor product of
(Vie_y)and of (W,e_ ) is (VOW, c_ ygu ) where c_ y gy is determined
by cpvew = (idy ®ca w)(ca,y ®idy,). Therefore the coaction on V @ W
is given by

Aygw(v@w) = Z Uy @ Wy @ W4y,
(v)(w)
By (5.4) the action of a linear form « on a tensor v @ w in V @ W can be
expressed as

a-(Vw)= Z <, W4 > Vy Q Wy,
(v)(w)

which by definition of the comultiplication A of A* (see IX.4) is equal to
Z < Aa),vy @w,y > vy @ wy, = Aa) - (v Q@ w).
(v)(w)

Therefore the D(A)-action on V ® W is given for a € A and o € A* by

(aa)(v @ w) = Aa)(A(a) - (v@w)) = Alaa)(v @ w),



336 Chapter XIII. Braidings

which is exactly the action given by the comultiplication in the quantum
double D(A).

3. By definition of the braiding in Z(A-Mod), Lemma 5.3 can be rein-
terpreted as stating that

Fleyw) (v @ w) = 14 (R © w)),

which is the braiding in the category of D(A)-modules. Thus, the tensor
functor F' is braided.
4. Suppose that V is a left D(A)-module. For any A-module X define

Cx,v by
exy(ev) =14y (R(x ® U))

where v € V and z € X. Let us show that (V,c_ ) is an object of
Z(A-Mod).

The map cy i is a natural isomorphism because R is invertible. Let us
prove that it is A-linear. For a € A we have

cxplo@@n) = ryy(RAW@E @)
= Txy <A°p(a)R(az ® v))
= Ala)ryy (R(m ® v))
= acyy(@®v)

in view of Relation (VIII.2.1).
We also have to check Relation (4.1), namely

cxavy(E@YE) = (exy ®idy)((idy @ oy y)@ @y ©0)).

The left-hand side is equal to

TX®Y,V ((A ®idy)(R)(z@y® v))

whereas the right-hand side is equal to Tx gy y (R13/3(z ® y ® v)). Both
are equal in view of (VIIL.2.3). Therefore G(V) = (V, ¢y, _) is an object in
Z(A-Mod).

Let f : V — W be a map of D(A)-modules. We have to check that
G(f) = f is a morphism in Z(A-Mod). First, it is A-linear since it is
D(A)-linear. Next, we have

(FRidy)exy)@@) = myw((idy @ RES)
= ew(R@e fw))
= (exy(dy ® f))(z®v)
for all z € X and v € V. This proves (4.2).
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5. Clearly, FG = id. The equality GF = id follows from Lemma 5.3.
This establishes the equivalence of Z(A-Mod) and of D(A)-Mod.

Theorem 5.1 is thus proved. Observe that the same arguments work if
we restrict to finite-dimensional modules.

Remark 5.4. The natural embedding A C D(A) of Hopf algebras induces
a tensor functor D(A)-Mod — A-Mod. Tt is easy to check that the latter
corresponds to the functor II : Z(A-Mod) — A-Mod of (4.5) under the
equivalence of Theorem 5.1.

XIII.6 Exercises

1. Let H be a braided bialgebra with universal R-matrix R. Show that
the category H-Mod is symmetric if and only if 7y 4 (R) = R7L.

2. Let C be a strict tensor category. Show that one gets a definition for
a braiding equivalent to Definition 1.1 if one replaces the hexagons
(H1) and H(2) by the square

cu,v®idxgy

UVeXeY VealUaoXeY
idugv®cx,y ' lidV®U®Cx,Y
UeVeYgXx —ovdlex  yveoUgyeX

for all objects U, V, X, Y.

3. Resume the notation of Exercise XL.8. Define a commutativity con-
straint ¢ by c(v@w) = y(n, p)(w®wv) where v and w are homogeneous
vectors of respective degrees n and p, and where v is a function with
values in &\ {0}. Show that c is a braiding if and only if the functional
equations

y(m,n +p) = a(n,p,m)~v(m, p)a(n,m,pyy(m,n)a(m,n,p) ™"
and
v(m +n,p) = a(p,m,n)y(m, p)a(m,p,n) " y(n,p)a(m, n, p)
are satisfied for all integers m,n,p.

4. Given a tensor category C, define the reverse category C*¥ as the
category C with tensor product given by V ®,,, W =W @ V. Prove

that, if C is braided with braiding ¢, then (id, ¢, = id, ¢, = ¢) is a
tensor functor between C and C™.

5. Let C be a braided tensor category. Show that one can equip the
strict tensor category C° of XI.5 with a braiding such that the tensor
equivalences constructed in XI.5 between both categories are braided
functors.
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6. (Presentation of the braid category) Show that the strict tensor cat-
egory B is generated by the morphisms o,, o7 ' of B, and by the
relations 0,07 ' = o7 'o; = id, and

(0y ®id,)(id; ® 0y)(0; ®id;) = (id; ® 0)(0y ®1d,)(id; ® 7).

XIII.7 Notes

Braided tensor categories were introduced by Joyal and Street [JS91a]
[JS93]. They generalize the concept of a symmetric tensor category which
appeared in the 1960’s in the work of Bénabou [Bén64] and Mac Lane
[Mac63], and was extensively studied in relation to algebraic geometry and
algebraic topology (see, e.g., [Del90] [DM82] [KL80] [Mac63] [SR72]).

The content of Section 3 is taken from [JS93]. Lemma 3.5 is the analogue
of Theorem XII.4.2 for braids. We found the example of crossed G-sets in
[FY89]. Exercise 4 is from [JS93].

The centre construction of Section 4 is due to Drinfeld (unpublished), to
Joyal and Street [JS91c], and to Majid [Maj91b].



Chapter XIV

Duality in Tensor Categories

In the previous chapter we defined braided tensor categories modelled on
the category of braids. We now introduce a class of tensor categories mod-
elled on framed tangles or ribbons. These are the so-called ribbon cate-
gories. Their definition requires the concept of duality. However, when du-
ality is involved, formulas quickly tend to become obscure and complex. To
overcome this difficulty, we present a graphical calculus in which coloured
tangle diagrams represent morphisms of tensor categories.

XIV.1 Representing Morphisms in a Tensor
Category

We discuss a technique of presenting morphisms of a strict tensor cate-
gory by planar diagrams. Let C be a strict tensor category. We represent
a morphism f : U — V in C by a box with two vertical arrows oriented
downwards as in Figure 1.1. Here U and V are treated as the “colours” of
the arrows and f as the “colour” of the box.

lV
v
Figure 1.1. A morphism f: U -V
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The picture for the composition of f : U — V and of g : V — W is
obtained by putting the picture of g on top of the picture of f, as shown
in Figure 1.2. From now on the symbol = displayed in the figures means
that the corresponding morphisms are equal in C. The identity of V will
be represented by the vertical arrow lV directed downwards.

w1
god] = -
U f

lu

Figure 1.2. Composition of morphisms

The tensor product of two morphisms f and g is represented by boxes
placed side by side as in Figure 1.3.

egl = [ F ][9]

Figure 1.3. Tensor product of morphisms

If we represent a morphism f : U, ®---QU,, — V|®:--®V,, asin Figure 1.4,

Figure 1.4. A morphism f: U1 ® - QU - V1 ®---®Vy
then we have the equality of morphisms of Figure 1.5.
L M LA L

[ feg | =] f ]9
lv v lv v

Figure 1.5.

|

The pictorial incarnation of the identity (X1.2.3)
feg=(foid)®(idog) = (ido f) ® (g 0id)

is in Figure 1.6.
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R

Figure 1.6. The identity (X1.2.3)
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This leads to the following “partial isotopy principle”: for any figure pre-
senting a morphism of C, the part of the figure lying to the left (or to the
right) of a vertical line may be pushed up or down without changing the
corresponding morphism in C. We shall use this principle frequently and

without any further explanation in the sequel.

Assume now that the tensor category is braided with a braiding c. For
any pair (V,W) of objects in C we represent cy y, and its inverse C(,IW

respectively by the pictures in Figure 1.7.

K X
v W W1V

cv,w “vow

Figure 1.7. cv,w and its inverse

Figure 1.8 follows from the definitions.

/ \

¢ > -
N /

v w VW W Vv WYV
Figure 1.8. Invertibility of cv.w

The naturality of ¢y, y, is expressed in Figure 1.9.

/

E

S
Ealieala

l S~
\
w Vv w

X

<(_—H
Q
@

Figure 1.9. Naturality of cv.w

It implies the naturality of c‘_,lw shown in Figure 1.10.
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Figure 1.10. Naturality of c;lw

Figure 1.11 is a graphical proof of Theorem XIII.1.3.

V® U Ve U
! O

<\ -W /:Vi \\

Vv W UV W vev w U Vv w
Figure 1.11. Proof of Theorem XII1.1.3

XIV.2 Duality

We now abstract the notion of duality introduced in II.3.

Definition XIV.2.1. Let (C,®,I) be a strict tensor category with tensor
product ® and unit I. It is a tensor category with left duality if for each
object V' of C there exist an object V* and morphisms

by I —-VV* and dy V'V =1
in the category C such that

We proceed to give a graphical description of Relations (2.1) using the
conventions of Section 1. Represent the identity of V* by the vertical arrow

v directed upwards. More generally, we use vertical arrows oriented up-
wards with the convention that the morphism involves not the colour of the
arrow, but rather the dual object. For example, a morphism f: U* — V*
may be represented by the four pictures of Figure 2.1.
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v TV lv* TV

] =[] =
U | v

Figure 2.1. A morphism f:U" -V~

|

|
|
|

f
Tu

The morphisms by, : I — V@ V™ and dy, : V¥ @ V — I are respectively
represented by the pictures of Figure 2.2.

NI N\ v
by dy
Figure 2.2. The morphisms by and dv

Relations (2.1) take the graphical form of Figure 2.3.

V Vv

\%4 1%

v v

Figure 2.3. Relations (2.1)

The above data are enough to extend duality to a functor and to derive
adjunction formulas of the type proved in Chapter II.
Let us first define the transpose f* : V* — U”* of a morphism f: U —» V
in C by
[ =(dy ®idy.)(1dy. @ f ®idy.)(idy- ® by). (2.2)
With our graphical conventions we can represent the transpose f* of a
morphism f : U — V as in Figure 2.4.

1%
Figure 2.4. The transpose f*

We record a few f)roperties of left duality in the following proposition.

Proposition XIV.2.2. Let C be a strict tensor category with left duality.
() If f: V — W and g : U — V are morphisms of C, then we have
(fog)*=g"of*, and (idy)* = idy. for any object V.
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(b) For any family U, V,W of objects of C, we have natural bijections
Hom(U ® V, W) & Hom(U,W @ V")

and
Hom(U* @ V, W) = Hom(V,U @ W).
(c) For any pair V,W of objects of C, (V @ W)* and W* ® V* are
isomorphic objects.

This proposition implies that the map V + V* can be extended to a
functor from the category C to the opposite category and that the functor
~®V [resp. the functor V* ® — | is left adjoint to the functor —@V™ [resp.
to the functor V ® — ].

PROOF. (a) Use the graphical calculus.
(b) Let f € Hom(U ® V,W) and g € Hom(U, W ® V*). Define elements
f* € Hom(U,W ®@ V*) and ¢* € Hom(U ® V, W) by

ff=(f®idy.)(idy ®b,) and ¢ = (idy ® dy)(g @ idy).

Relations (2.1) imply that (f)* = f and (¢°)f = g. A similar proof works
for the other adjunction formula. We invite the reader to give a graphical

proof.
(c) We define a morphism Ay : W* @ V* — (V@ W)* by

2.3
and a morphism /\‘_/1W (VW) - W V* by

/\;}W = (dygw @ idygy-)([dvew) ey ® by ® idy.)(idygw)- @ b(v)-)
2.4

The morphisms Ay, and /\QIW are represented by the pictures of Figure
2.5.
Ve Ww wv

A

idyew idygw

WV vew
Av,w Aviw

Figure 2.5. The morphisms Av,w and /\‘_,}W

Figures 2.6 and 2.7 show that Ay y is an isomorphism from W* ® V*
onto (V ® W)* with inverse given by )\‘_,1W
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—
<
<)
z
>

[UWV W Vv W Vv

Figure 2.6. Proof of A\;,lw odvw = idwrgv+
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Vew

/\ Vew /\ VoW

v 154
|4
idvow |
Ve N Vow
/\ VoW VoW Vow
v %%
Vew \/
Figure 2.7. Proof of Av,w o /\‘—/11”/ = idvew)*
Note that Figures 1.6 and 2.3 are used in these graphical proofs. 0

There is a similar notion of right duality: a strict tensor category (C, ®, I)
is a tensor category with right duality if for each object V of C there exist
an object *V and morphisms

yiI—=VeV and d, V'V I
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in the category C such that
(d, ®idy)(idy, ® b)) =idy, and (id.y, @ dy)(by ®id.y) = id.y. (2.5)

Here again V +— *V may be extended to a functor by defining the mor-
phism *f : *W — *V for any f: V — W by

f = (idey @ diy)(idey ® f © idagy ) (B © ideyy). (2.6)

Right duality has properties analogous to the ones stated for left duality
in Proposition 2.2. We leave their formulation to the reader. In particular,
right duality implies that the functor V' ® — [resp. the functor — @ *V] is
left adjoint to the functor *V & — [resp. to the functor — ® V.

In general, right duality is different from left duality unless we add extra
hypotheses on C. Nevertheless, it may happen that C is autonomous, i.e.,
it has left and right duality. In this case, there are isomorphisms

for any object V. We refer to [JS93] for a proof. Hint: the first isomorphism
is a consequence of the following natural isomorphisms

Hom(U,* (V") @ W) Z Hom(V* @ U, W) 2 Hom(U,V @ W),

the first one being implied by the right duality and the second one by the
left duality.

Example 1. Let A be a Hopf algebra with antipode S. The category A-
Mod of left A-modules that are finite-dimensional over the ground field &
is a tensor subcategory of A-Mod. For any left A-module, endow the dual
vector space V* = Hom(V, k) with the A-action given by

<af,v>=<f,S(a)v > (2.7)

where a € A, v € V and f € V*. For a finite-dimensional A-module V
define maps by, : k= V®V*andd, : V*®V — k by

by (1) = Z v; @v' and dy (v* ®v;) =< vi,vj > (2.8)

where {v,}, is any basis of V and {v'}, is the dual basis in V*. The map b,
is the coevaluation map and the map dy is the evaluation map of I1.3. It was
proved in Proposition 111.5.3 that by, and dy, are A-linear. By Proposition
I1.3.1 they satisfy Relations (2.1), endowing A-Mod; with the structure of
a tensor category with left duality.

Suppose, furthermore, that the antipode S is invertible. For any left A-
module V, denote by *V the same dual vector space now equipped with
the left A-action given for all a € A, v € V and all linear forms f on V by

<af,v>=<f,8 Y a)v >. (2.9)
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For a finite-dimensional V define maps b, : k — *V®@V and dy, : V®*V —
k by

by ( Zv ®v, and di,(v; @) =<v’,v, > (2.10)

i

using the same conventions as above. One checks that by, and di, are A-
linear and that they satisfy Relations (2.5), endowing A-Mod; also with
the structure of a tensor category with right duality. In other words, the
category A-Mod is autonomous when A is a Hopf algebra with invertible
antipode.

XIV.3 Ribbon Categories

Let C be a strict tensor category. Suppose that it is braided and has left
duality at the same time. Let ¥V and W be objects of the category. The
following expresses the braiding cy. y, for the dual object V* in terms of
the braiding ¢y, .

Proposition XIV.3.1. Under the previous hypothesis, we have

ey = (dy ®idygy)(idy. ® ey ®idy.)(idy.gw ® by)-

By convention, we represent cy. y, and its inverse by the pictures in

Figure 3.1.
/ W\

Cy*w CV*

Figure 8.1. cy+~w and its inverse

The pictorial transcription of Proposition 3.1 is then in the next figure.

Figure 3.2. The equality of Proposition 3.1

A graphical proof of it is then:
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Figure 8.8. Proof of Proposition 3.1

The first equality follows from (2.1), the second one from Figure 1.8, and
the last one from the naturality of the braiding c_ y .
We go one step further by introducing the concept of a ribbon category.

Definition XIV.3.2. Let (C,®,I) be a strict braided tensor category with
left duality.

(a) A twist is a family 6y, : V — V of natural isomorphisms indezed by
the objects V of C such that

Ovew = (Oy ® Oy )ew veyw (3.1)
and
Oy, = (6y)" (3.2)
for all objects V,W in C.

(b) A ribbon category is a strict braided tensor category with left duality
and with a twist.

The naturality of the twist means that for any morphism f:V — W
we have 8y, f = f6,.. Using the graphical conventions of Sections 1-2,
Relations (3.1-3.2) may be represented as in Figures 3.4 and 3.5.

[Gvon]

| 2

Ve w v w

Figure 8.4. Relation (3.1)

v V*
Figure 3.5. Relation (3.2)



350 Chapter XIV. Duality in Tensor Categories

The following gives alternative expressions for Relation (3.1).

Lemma XIV.3.3. (a) Given objects V and W of C we have
Ovew = cwycyw Oy ®Oy) = ey (O @ Oy )y - (3.3)
(b) We also have 8; = id;.

PROOF. (a) See Figure 3.6. All equalities follow by naturality of the braiding
and of the twist.

Figure 8.6. Proof of Lemma 3.3 (a)

(b) Using Relation (3.1) when V =W =1I, we get

0101 = (0r ®@0r)c rer 1

Since ¢; ; = id; (by Proposition XIII.1.2) and by naturality of the identi-
fication of V' ® I with I, we get 0;o; = 0; ® id; = 6; ® 67, which implies
the statement. O

Example 1. Let Vect (k) be the category of finite-dimensional vector spaces
over a field k. As we know, it is braided by the flip and it has left duals
given by (2.7-2.8). This category is a ribbon category with trivial twist
Oy =idy, .

Example 2. Any symmetric tensor category C with left duality is a ribbon
category with twist given by 6y, = id;, for any object V. In this class falls
the category A-Mod g of finite-dimensional modules over a cocommutative
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Hopf algebra or over a braided Hopf algebra A with universal R-matrix R
such that 74 4(R) = R™! (see Exercise 1 in Chapter XIIT).

Using the braiding and the twist, we define morphisms b}, : [ - V" @V
and di, : V. ® V* — I for any object V of the ribbon category C by

and
dy = dycy vy (Oy ® idy.). (3.5)

We shall agree to represent by, and dy, as in Figure 3.7.

v
by dy

Figure 3.7. The morphisms by, and di,

Let us prove that the morphisms b}, and di, equip C with the structure
of a category with right duality, where *V = V*. Before we give a precise
statement, we shall prove the following technical lemma.

Lemma XIV.3.4. For any object V of a ribbon category, we have
0,7 = (dy ®idy)(idy. ® C\_/,lv)(cv,v*bv ®idy)
= (dyeyy. ®@idy)(idy ® ey yaby)
= (idy @ dycyy-)(epy ®idy.)(idy © by).

PrOOF. The equalities of this lemma are represented in Figure 3.8.

Figure 8.8. The equalities of Lemma 3.4

It is clear from the pictures that the naturality of the braiding implies the
last two equalities. So it is enough to prove the first one.
By naturality of the twist and by Lemma 3.3 (b), we get

Let us denote by f the second term of the equalities in Lemma 3.4. Figure
3.9 shows that the right-hand side of (3.6) is equal to (6% f ® idy. )by, .
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Ovev- by

Figure 3.9. Proof of Oygv+by = (0% f @ idy=)by

Therefore, applying Relations (2.1) twice, we get
idy = (idy ® dy)(by ®idy) = (idy @ dv)<(6'%,f ®idy. )by ® idv) =0y f.

Therefore, we have f = 6‘72, as desired.

As for Figure 3.9, the first equality follows from (3.1), the second one
from Proposition 3.1 and from (3.2), the third one from the naturality of
the tensor product, the fourth one from (2.1), and the last one from the
naturality of the braiding. 0O

Proposition XIV.3.5. Under the previous hypotheses, we have
(dy, ®idy,)(idy, ® b},) = idy, (3.7)

and ’
(idy. ®dy ) (b, ®idy.) = idy .. (3.8)
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PROOF. (a) By (3.4-3.5) and the naturality of the tensor product, we have
(dy, ®idy)(idy ® by,)
= (dvcw*(ev ®idy.) ® idv) (idv ® (idy. ® GV)CV’V*bv)
= Oygby

where g is the third term of the equalities in Lemma 3.4. Consequently, we
have
(dy ®idy)(idy @ by) = 8y,63,°0y, = idy,.
(b) The proof of (3.8) is in Figure 3.10.

. TV &

Vv

L)
(X

Figure 3.10. Proof of Relation (3.8)

The first equality is by definition, the second one by (2.1), the third one
by naturality of the braiding, the fourth one by Lemma 3.4, the fifth one
follows from Figure 1.8, and the last one from (2.1). m]

It follows from Proposition 3.5 that a ribbon category is autonomous
with *V = V* in the sense of Section 2.

Corollary XIV.3.6. Any object V of a ribbon category is isomorphic to
its bidual V™ = (V*)".

PROOF. We saw in Section 2 that V = *(V*) in any autonomous tensor
category. O
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The pictures in Figure 3.11 represent isomorphisms between V and V**.

TV Vv
vV %

Figure 8.11. Isomorphisms between V and V**

XIV.4 Quantum Trace and Dimension

By analogy with I1.3 we define the concept of trace in a ribbon category.

Definition XIV.4.1. Let C be a ribbon category with unit I. For any ob-
ject V' of C and any endomorphism f of V, we define the quantum trace
tr,(f) of f as the element

tr, (f) = dy (f ® idy. )by = dycyy 0y f @ idy- )by,
of the monoid End(I), i.e., as the composition of the morphisms
1y @ v I8Ny gy My g v 2

This notion coincides with the usual trace when C is the category Vect (k)
(see Proposition I1.3.5). Graphical representations of tr,(f) are given in

Figure 4.1.
1% ? 14 1%

Vv Vv
L -

g

Figure 4.1. The quantum trace of f

The first equality is by definition, the second one by naturality of the
braiding, the third one by naturality of the twist, and the last one by
definition of bf,.

The quantum trace enjoys the usual properties of the trace in linear
algebra.
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Theorem XIV.4.2. Given endomorphisms f and g in a ribbon category,
we have
(a) try(fg) = tr,(9f) whenever f and g are composable,
(b) tra(f  g) = tr,(f) tr, (g), and
() try(f) = tr (f” ) in the monoid End(I).
(

PROOF. (a) The proof of the first relation is in Figure 4.2.

Oy 1%
= = 1%
9| ;
14 1% %
7 1%
- ol ) -
by 9
f f
1% 1% 1% 1%

Figure 4.2. The proof of trg(fg) = tra(gf)

The first equality is by definition, the second one by (2.1), the third
one by naturality of the braiding, the fourth one by (2.1), the fifth one by
naturality of the braiding, the sixth one by naturality of the twist, and the
last one by definition.

(b) We know from Proposition XI1.2.4 that the composition in End(I)
coincides with the tensor product. Therefore, it is equivalent to prove that
tr,(f ® g) = tr,(f) ® tr,(g). The proof of the latter is in Figure 4.3. The
first and last equalities in that diagram on the next page follow from the
definition, the second one from (3.1), the third one from (2.1), the fourth,
sixth, and seventh ones by naturality of the braiding.

(c) The proof of tr,(f) = tr,(f*) is in Figure 4.4 two pages on.
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Vew

7))

\%4
Figure 4.3. The proof of trq(f ® g) = trq(f) @ tre(g)
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[15:
P v
{ 4 by
) = By - | B
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-
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idy«

\%4
f
0 !
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Figure 4.4. The proof of trg(f) = try(f*)
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The first equality in the diagram on the previous page follows by defini-
tion, the second one by (3.2) and by Proposition 3.1, the third one by (3.8),
the fourth one by naturality of the braiding, the fifth and the sixth ones
by (2.1), the seventh one by definition of di,, the eighth one by naturality
of the twist, the ninth one by Lemma 3.4. O

As in the classical case, we can derive a concept of dimension from the
trace.

Definition XIV.4.3. Let C be a ribbon category with unit I. For any ob-
ject V' of C we define the quantum dimension dim (V') as the element

dim (V) = tr,(idy) = dy by
of the monoid End(T).

The quantum dimension of V' is represented in Figure 4.5.

Figure 4.5. The quantum dimension of V

As an immediate consequence of Theorem 4.2, we have

Corollary XIV.4.4. Let V,W be objects of a ribbon category. Then

dim,(V @ W) = dim, (V) dim (W) and dim, (V") = dim (V).

XIV.5 Examples of Ribbon Categories

XIV.5.1 Ribbons

In X.8 we defined the concept of a framed tangle, also called a ribbon,
and we explained how ribbons could be represented by tangle diagrams.
We now wish to show that ribbons allow one to build a ribbon category
‘R which is universal for ribbon categories, as the category B of braids is
universal for braided tensor categories.

The category R of ribbons is defined in the same way as the category
7T of tangles in XIL.2: the objects of R are the same as the objects of 7
the morphisms of R are isotopy classes of framed tangles. Composition,
identity, tensor product, and unit are defined as in 7. The braiding of the
braid category B (see XIII.2) clearly defines a braiding in R.

Let us endow the strict braided tensor category R with a left duality. Let
¢ be an object of R, namely a finite sequence (g, ...,¢,) of & signs. Define
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a dual object £* by the sequence (—¢,,,...,—&;). The maps b, : § — e Q¢e*
and d, : " ® ¢ — { are the framed tangles represented in Figure 5.1, the
orientation of the strands being uniquely determined by the sequence of
signs in .

Figure 5.1. The framed tangles be and d.

It is easy to check that the maps b, and d, satisfy Relation (2.1), thus
equipping R with the structure of a strict braided tensor category with left
duality. Observe that the transpose L* of a ribbon L is isotopic to the ribbon
obtained by rotating L through an angle 7 around an axis perpendicular
to the plane of projection.

We define a twist on R as follows: 6, is the left ribbon of Figure X.8.1
oriented downwards (also represented by the left tangle diagram of Figure
X.8.2). The right ribbon of Figure X.8.1 oriented downwards defines the
inverse of 6 (it is represented by the right tangle diagram of Figure
X.8.2). To define the twist for an arbitrary object, we use Relations (3.1-
3.2). Check that, if € is of length n, then 6. is obtained by twisting by an
angle of 27 the plane containing n vertical flat ribbons.

Quantum trace and quantum dimension are defined in the ribbon cat-
egory R by the formulas of Section 4. One can check using Reidemeister
Transformations (I) and (II) that if L is a ribbon with s(L) = b(L), then
its quantum trace tr (L) is the closure of L drawn in Figure 5.2. Quantum
dimensions are trivial links with the framing pointing to the reader.

Figure 5.2. The quantum trace trq(L)

The category R has two universal properties similar to the ones given for
the category B in XIII1.3. For the first one which corresponds to Theorem
X11.4.2, we refer to [JS91¢] [Tur89]. We state the second one paralleling
Corollary XI1I1.3.8.
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Theorem XIV.5.1. Let C be a ribbon category and V be an object of C.
Then there exists a unique strict tensor functor Fy, from R to C preserving
the braiding, the left duality and the twist, such that Fy,(+) =V.

A proof of Theorem 5.1 can be found in several places: [FY89] [JS93]
[RT90] [RT91] [Shu90] [Tur94]. This theorem produces isotopy invariants
for framed links with values in the endomorphism monoid of the unit object
I. Indeed, let L be a framed link. It can be viewed as an endomorphism of
the unit @ of the category R. Its image Fy, (L) is an endomorphism of /. The
isotopy invariant F,(L) can be computed using the following algorithm:
take a planar diagram representing the framed link L and colour each
connected component with the object V. In the category R, the framed link
L is obtained by composition and tensor product of |, T, X, , U, N, the twist,
etc. Then one gets Fy,(L) by replacing the above diagrams respectively by
idy,, idy«, ¢y v, by, dy, Oy, ete. in the categorical expression for L.

The category 7 of tangles is also a ribbon category. The only difference
with R lies with the twist: we have 6y, = id(y in 7. The twist of a general
object of 7 can be defined from (3.1-3.2). There is a statement similar to
Theorem 5.1 for the category 7. It suffices to replace R by 7 and to add
the hypothesis 8y, = idy, to the category C.

XIV.5.2 Crossed G-sets

In XTII1.1.4 we considered a category X (G) of crossed G-sets where G is a
group. Assume G is finite. We construct a ribbon category Z[X(G)] out
of X;(G). Its objects are the same as for X(G), namely the denumerable
set of crossed sets {1, G, G®2,...}. A morphism G®" — G®™ in Z[X;(G)]
is an integral matrix M indexed by all elements (z,y) € G™ x G™ such
that M,, =M, , forall g€ G and M, , =0 if [z] # |y|. Composition is
defined by multiplying matrices. The category Z[X(G)] is a strict tensor
category. Observe that the monoid End(1) is the ring Z. The braiding of
X;(G) extends linearly to a braiding on Z[X4(G)].

Define the duality as follows: the dual of G®" has the same underlying
G-set as G®", but || is replaced by ||~'. The maps bgs. and dge. are
defined by

bG®"(1): Z (glv"'7gnvglv"'vgn)
g1,--,9n €G

and
dgon g1y -y GnsPese s hy) = g1k "5gn.,hn'

Relations (2.1) are satisfied. A twist 0. is defined inductively on n by
(3.1) and its initial value 0; = idgg). One checks that the quantum di-
mension of an object is its cardinality:

dim, (G®") = card (G)".
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Apply Theorem 5.1 to the ribbon category Z[X;(G)] and to the object
G. We get an endomorphism F (L) of the unit object {1}, i.e., an integer
for any (framed) link L. We invite the reader to use the algorithm described
above to compute this isotopy invariant for a few simple links. For instance,
Fg(L) is equal to the number of couples (g4, g5) € Gx G with g,9, = g5, if
L is the Hopf link, and with g, 9,97 * = g5 ', 95 if L is the trefoil knot. Freyd
and Yetter [F'Y89] proved for a general link L that F, (L) is the number of
group homomorphisms from the fundamental group of L to G.

XIV.6 Ribbon Algebras

‘We conclude this chapter by giving examples of ribbon categories consisting
of modules over braided Hopf algebras (defined in VIIL.2). Let D be a
braided Hopf algebra with universal R-matrix R =3, s,®t, € D®D. Set

u= Z S(t,)s,. (6.1)

We showed in VIII.4 that © was an invertible element of D with inverse

u = Z t;5%(t;) = Z STt S(s:), (6.2)

that uS(u) = S(u)u was central in D, and that we had
e(w)=1 and A(u)=(RyR) ' (u®u). (6.3)
Moreover, the square of the antipode is given for any x in D by
S%(x) = uzu~t. (6.4)

Definition XIV.6.1. A braided Hopf algebra D is a ribbon algebra if there
exists a central element 6 in D satisfying the relations

A) = (RyR)'0®0), £0)=1, and S(0)=0. (6.5)
Ribbon algebras produce ribbon categories.

Proposition XIV.6.2. For any ribbon algebra D, the tensor category D-
Mod; is a ribbon category with twist 0y, given on any D-module V' by the
multiplication by the inverse of the central element 6.

Conversely, if D is a finite-dimensional braided Hopf algebra and the
braided category D-Mody with left duality is a ribbon category, then D s
a ribbon algebra.

PRrROOF. (a) Let D be a ribbon algebra with the distinguished central ele-
ment 6. Braiding and duality in D-Mod; are given as in XII1.1.3 and XTIV .2,
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Example 1. Define a twist 6y, for any D-module V by 6, (v) = 6~ ! v where
veV.

The endomorphism 6y, is a D-linear automorphism since the element
is central and invertible. Let us prove Relations (3.1-3.2) using (6.5). We
have

Oy @Oy )ewyveyw(v®w) = (071 @67 ) (Ry R) (v @ w)
= A(0"Hvew)
Oy ow (v ® w).

As for (3.2), we have for any v € V and a € V*

<(By)(a),v> = <a,byv) >
= <o, 'v>
= <a,860 N>
= <0 la,v>
= <Oy.a,v>.
(b) We now assume that D is finite-dimensional and that D-Mod; is a
ribbon category. By Proposition XIII.1.4, we know that D is braided. Since
D is assumed to be finite-dimensional, we consider the left D-module D

and the corresponding twist 6,,. Define § = 8,(1)~!. Then by functoriality
of the twist, we have for any finite-dimensional D-module

Oy (v) =0p(1)v=0""v.

The D-linearity of 6 implies that 6 is central. From Relation (3.1) we
conclude that
A7) = (07" @07 ")(Ry R)

whereas Relation (3.2) implies S(#~!) = 6~!. Finally, (§) = 1 follows from
Lemma 3.3 (b). O

Corollary XIV.6.3. The central element 6% of a ribbon algebra acts as
uS(u) on any finite-dimensional module.

As a consequence, we see that 62 = uS(u) if D is finite-dimensional.

PRrROOF. By Proposition 6.2 we know that 6% acts as 9‘72 on V. Now by
Lemma 3.4 we have in any ribbon category

It is therefore enough to compute the action on V' of the right-hand side of
this equality. Let {v,}, be a basis of V and {v'}; be the dual basis. Then,
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using (VII1.3.1-3.2), (6.1), and (6.4), we have for any v € V
(idy ® dyeyy.)(eyy ®idy.)(idy @ by)(v)

= Z < tkvi,sktjv > 5(s;)v;
5,k

= Z < ’Ui,S(tk)sktjU > S(’S])v’b

ik

= Z S(s;)S(ty)syt; v
= ZS Jut, v

- Z 5(s,)8

= SJ<Zj: S(t))s, Juv

= Suwuv=uS(u)v.
O

Quantum trace and quantum dimension are given in the category of
modules over a ribbon algebra by

Proposition XIV.6.4. LetV be any finite-dimensional module over a rib-
bon algebra D. We have

tr,(f) = tr(v — 0_1uf(v))

for any endomorphism f of V. In particular, dim, (V) is equal to the trace
of the multiplication by 0~ u on V.

PrOOF. Using the definitions of dj, and of u as well as Proposition 6.2, we
immediately get

v (v®a) Z<ta 0 Ly >= Z<aS )s,0” Ww>s=<a,uf™?!

Therefore,
tr,(f) = diy (f @idy )by =Y < 0", 07 uf(v,) >

which is the trace of the linear endomorphism v — 8 'uf(v). O
We end with two examples of ribbon algebras.

Example 1. (Sweedler’s four-dimensional Hopf algebra) Consider the Hopf
algebra H of Example 2 in VIII.2. It is braided. An immediate computation
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shows that the element u, corresponding to the universal R-matrix R, is
independent of the parameter A and is given by u, = « = S(u, ). Therefore
uyS(uy) = 2% = 1. One checks that H is a ribbon algebra with 6 = 1.

Example 2. This is due to Reshetikhin and Turaev [RT91]. It deals with the
Hopf algebra U, i.e., the finite-dimensional quotient of U, (s[(2)) considered
in VL.5 for ¢ a root of unity. In IX.6-7 we proved that Uq was a braided Hopf
algebra and we computed its universal R-matrix. We resume the notation
and conventions of Chapter IX. In particular, we assume that g is a root
of unity of odd order d > 1.

Proposition XIV.6.5. The Hopf algebra Uq is a ribbon algebra for which
=K 'u=uK""

PROOF. The centrality of 6 follows from (6.4) and from the fact that we

also have
S%(z) = Kz K™!

forallz € Uq. It is immediate to check that £(f) = 1. As for A(#), we have
A(f) = AKHA@) = (K@K ) (u@u)(Ry R) ™! = (00 0)(Ry )™

It remains to check that S(#) = 6. This is equivalent to K'S(u) = K *u.
Now this can be verified directly using the formula given in IX.7 for the
universal R-matrix for Uq. Alternatively, there is an argument in [Dri89a],
Section 5 which goes roughly as follows: let V, be a highest weight module
with highest weight X\. Then K'S(u) = S(uK ') = S(K!u) acts like K ~'u
on the dual module V. But the latter is isomorphic to V. Therefore K S(u)
acts like the central element K ~'u on V,. A general argument (see [RT91])
extends this to any module. |

Let V,, =V, ,, be the simple Uq—module of VL.5. Its quantum dimension
is given by
. q
dim, (V) = [n+ 1] = p——
In effect, by Proposition 6.4 it is given as the trace of the multiplication
by 8 'u. Here  'u = K. Now K acts diagonally on V, with eigenvalues
{g",q"2,...,q" "2 ¢ "}. Therefore,
qn+1 _ qfnvl

dimg(V,) = ¢" +¢" 2+ -+ ¢ "+ ¢ = q—q*
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XIV.7 Exercises

1. For any braided Hopf algebra D, define an algebra D(8) as the quo-
tient of the polynomial algebra D[] by the two-sided ideal generated
by 6% — uS(u). Show that D(6) has a unique Hopf algebra structure
such that the natural inclusion of D in D(6) is a Hopf algebra map
and that A(9) = (R, R)™1 (0 ®6), £() = 1, and S(0) = 6. Prove
that D(#) is a ribbon algebra.

2. Under the hypotheses of the previous exercise, show that the category
of left D(6)-modules is equivalent to the category whose objects are
pairs (V,0y,) where V is a left D-module and 6, is a D-linear auto-
morphism of V such that for all v in V we have 0;,*(v) = uS(u) v,
and whose morphisms (V,8y,) — (W,8,) are the D-linear maps f
from V to W such that f0y, =6y f.

3. Using the definitions and the notation of 5.2, compute ¢ for n > 1.

4. Given a finite abelian group A and a commutative ring K, let K(A) be
the commutative K-algebra of K-valued functions on A. It has a basis
{€,}qca over K such that the multiplication is given by e e, = 6, ,
for all a,b € A.

(a) Show that there is a unique Hopf algebra structure on K (A4) such
that for all ¢ € A we have

A(ea) = z €y ® €a—b» E(ea) = 6(1,07 S(ea) =€ _4-
beA

(b) Let R =3}, 1.4 cla,b) e, ® e, where cis a function with values

in the group K> of invertible elements of K. Prove that R equips
K(A) with the structure of a braided Hopf algebra if and only if

cla+a,b) =cla,b)c(a’,b) and c(a,b+b) = c(a,b)c(a,b)
for all a,a’,b,b' € A.
(c) We assume that K(A) with R as defined in (b) is a braided Hopf
algebra. Let x be a group homomorphism from A to K* such that
x(a)? =1 for all a € A. Show that 6 = Y ., x(a)c(a,a)e, endows
K (A) with the structure of a ribbon algebra.
(d) Check that the quantum dimension of the K(A)-module e, K (A)
is equal to x(a).

5. (Coribbon algebras) Let H = (H, i, m, A, e, S,r) be a cobraided Hopf
algebra with universal R-form r (see VIIL5). It is a coribbon algebra
if there exists an invertible central element ¢ of the dual algebra H*
such that

Cop=7xry x(CRC), ¢(1)=1, and (oS=S
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where 7 is the inverse of r for the convolution * in (H ® H)* and
where 7y, = 7 o Ty . Prove that the category of finite-dimensional
H-comodules is a ribbon category.

6. Show that the cobraided Hopf algebra SL,(2) is a coribbon algebra
with central linear form ¢ determined by

Cla) = ¢(d) = q*? and ¢(b) = () =0

XIV.8 Notes

The graphical calculus described in Section 1 was advocated in many pa-
pers, e.g., [FY89] [FY92] [JS91a] [Kau9l] [RTI0] [RTI1].

The concept of duality in a tensor category appeared in the classical
references quoted in Chapter XIII. The examples presented in this book
require distinguishing carefully between left and right duality. In Section 2
we followed Joyal and Street’s treatment of duality as proposed in [JS93]
(see also [FY89]). There Joyal and Street also introduced the concept of
a twist in a strict braided tensor category and the concept of a ribbon
category. Actually, they called the latter tortile tensor categories. The name
used here was coined by Turaev [Tur92].

Definition 4.1 is due to Turaev [Tur92] generalizing previous definitions
of [KL80] and [FY89]. We devised a proof of Theorem 4.2 highlighting the
power of the graphical calculus of Section 1 (a different proof can be found
in [Tur94)).

Ribbon algebras were invented by Reshetikhin and Turaev [RT90] who
also showed that the quantum groups of Drinfeld and Jimbo gave birth to
ribbon algebras.

The construction of the ribbon algebra D(8) of Exercise 1 is taken from
[RT90]. Exercise 4 is due to Turaev: this example does not produce any
interesting isotopy invariant. Exercise 5 is from [JS91b]. Exercise 6 is due
to the author.

There exists an elaboration of the centre construction of XIIL.4, to be
found in [KT92], which assigns to any strict tensor category C with left
duality a ribbon category D(C). It is related to the quantum double of
a finite-dimensional Hopf algebra A with inertible antipode and to the
construction of Exercise 1 by the equivalence of ribbon categories

D(A—Mod,) = D(A)(6)—Mod,-.

By colouring framed tangle diagrams with objects and morphisms of a
strict tensor category C, we may construct a ribbon category R(C) with
the following property: the construction C — R(C) is functorial and is
left adjoint to the forgetful functor from the category of ribbon categories
to the category of strict tensor categories. In other words, given a ribbon
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category C’, there is a natural bijection between the set of strict braided
tensor functors preserving duality and twist from R(C) to C’' and the set of
strict tensor functors from C to C’. In particular, if C is a ribbon category,
then the identity functor of C corresponds to a functor F, : R(C) — C
preserving tensor products, braidings, duality and twists. For more details
on the category R(C), see [FY89] [JS93] [RT90] [RT91] [Tur92] [Tur94)].
The existence of the functor F,, allows one to find isotopy invariants for
framed links with values in the endomorphism monoid of the unit object
of the ribbon category C. Proceed as at the end of 5.1. The main difference
is that we are now permitted to colour the connected components of a link
with different objects of the category rather than with one single object.



Chapter XV
QQuasi-Bialgebras

The aim of this chapter is to present Drinfeld’s concepts of (braided) quasi-
bialgebra and of gauge transformation. These concepts will be needed to
express the main results of Part IV. The definitions given here are based
on the formalism of tensor categories and tensor functors introduced in
Chapters XI and XIII. In Section 4 we construct braid group representa-
tions for any braided quasi-bialgebra and we show that equivalent braided
quasi-bialgebras give rise to equivalent representations.

We shall make frequent use of the convention of VIIL.2 regarding sub-
scripts.

XV.1 Quasi-Bialgebras

In XI.3.1 we introduced the notion of an algebra (A4, A, ¢) with comultipli-
cation and counit: it is an associative unital k-algebra A with a morphism
of algebras A: A — A® A (the comultiplication) and a morphism of alge-
bras € : A — k (the counit). We observed that the classical tensor product
on Vect(k) restricted to a tensor product on the category A-Mod of left
A-modules, for which I = k is a unit.

Definition XV.1.1. Let A = (A, A,¢) be an algebra with comultiplication
and counit. It is a quasi-bialgebra if the category A-Mod equipped with the
tensor product of Vect(k) is a tensor category.
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In other words, (A4, A, ¢) is a quasi-bialgebra if there exists an associa-
tivity constraint a, a left unit constraint [, and a right unit constraint r
satisfying the Pentagon Axiom (XI.2.6) and the Triangle Axiom (XI1.2.9).
When these constraints are the usual ones of Vect(k), then A is a bialgebra
by Proposition XI.3.1. We now give a characterization of quasi-bialgebras,
which actually is Drinfeld’s original definition in [Dri89b].

Proposition XV.1.2. Let (A, A,¢) be an algebra with comultiplication
and counit as above. It is a quasi-bialgebra if and only if there exist an
invertible element ® in A® A @ A and invertible elements I,v in A such
that

(id ® A)(A(a)) = @((A@id)(A(a)))fIﬁl, (1.1)

(e®id)(Aa)) =1"'al, (d®e)(Ala)) =r"tar (1.2)
foralla € A,

(d@id @ A)(®) (A R®id®id)(P) = Pygy (Id R A ®1d)(P) D15y,  (1.3)

and
(d®e@id)(®)=rel™ (1.4)

Here ®,,, = ® ® 1 and ®y3, = 1 ® ® according to the conventions of
VIIL.2. When ® = 1®1®1 and [ = r = 1, we recover the usual definition of
a bialgebra. From Proposition 1.2 we see that the main difference between
a bialgebra and a quasi-bialgebra lies in the fact that the comultiplication
of a quasi-bialgebra is no longer coassociative. Nevertheless, Relation (1.1)
shows that it is almost. This situation is reminiscent of braided bialgebras
whose non-cocommutativity is also controlled (see VIII.2).

The elements ®,! and r are part of the definition of a quasi-bialgebra.
Therefore, we shall denote such a quasi-bialgebra by (A, A e, ®,1, 7). The
element ® is sometimes called the Drinfeld associator of A.

PrROOF. (a) Let ®,! and r be elements satisfying Relations (1.1-1.4). For
any triple (U, V, W) of A-modules, define an associativity constraint by

aU_’V_’W((u(X)v) ®w> = <I><u® (v®w)) (1.5)
for u € U,v € V and w € W), and unit constraints
ly(l®v) =1l and 7,(v®1)=rv. (1.6)

The maps a, [, and r are isomorphisms because ®, [, and r are invertible.
They are A-linear thanks to Relations (1.1-1.2). Relations (1.3) and (1.4)
imply the Pentagon and the Triangle Axioms respectively.

(b) Conversely, suppose that A-Mod is a tensor category with associa-
tivity and unit constraints a, [, and r. From the associativity constraint
define an element ® in A @ A® A by

P=ay4,(101x1). (1.7)
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Similarly, from the unit constraints we get elements
I=1,1®1) and r=r,u(1®1) (1.8)

of A. Let us check that ®,] and r satisfy the conditions of the proposi-
tion. First, these elements are invertible because the constraints are iso-
morphisms.

We next prove Relation (1.2). This is done as in the proof of Proposition
XII1.1.4: by functoriality of the associativity constraint, forallu € U,v € V
and w € W, we have the commutative square

AR A) @A 224 Ag(A®A)
l(ﬁ@a)@m lﬂ@(f}@u’))
UeV)ew X% Ue((VeoW)

where for any element u of an A-module U we denote by % the unique
A-linear map from A to U sending 1 onto u. Hence

ayv.w ((u@v) ®w) = (a@ (17®u‘)))(¢') = <I><u® (v®w)>. (1.9)

Let us express the A-linearity of a1y On one hand we have

B (a((u ®0)® w)) - <I>((A ® id)(A(a))) (u ®W® w)).

On the other hand, we get

a<aU7V’W<(u®v)®w)) = a(@(u@(v(@UJ)))
- ((id ® A)(A(a))‘P) (“ ®e “’)>‘

Setting u = v = w = 1 € A yields Relation (1.1). Similarly, the functoriality
of the unit constraints implies that

ly1®v)=Ilv and 7y (v®1)=rv. (1.10)

The A-linearity of [, and of r, implies (1.2).
It remains to check Relations (1.3-1.4). By the Pentagon Axiom (XI.2.6)
we have

ApAA0ACGagaaa=(1ds®ay 44)004 aga,a° (aq 4.4 ®@idy).

Applying both sides of this equation to 1 ® 1 ® 1 ® 1 and using (1.9), we
get Relation (1.3). A similar proof shows that the Triangle Axiom implies
Relation (1.4). O

We shall see examples of quasi-bialgebras that are not bialgebras later.
All of them will have trivial unit constraints, i.e., | =7 = 1.
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We also need the following concept: a morphism of quasi-bialgebras
a: (A, A e, ®,1r)— (ALA @ 1,7
is a morphism of algebras between the underlying algebras such that
(a@a)A=Aa, (a®a®a)(®)=9, ol)=10, afr)=7r" (1.11)

It is an isomorphism of quasi-bialgebras if, in addition, it is invertible.

XV.2 Braided Quasi-Bialgebras

We now define the counterpart of braided algebras (VIII1.2) in the context
of quasi-bialgebras.

Definition XV.2.1. A quasi-bialgebra (A, A,e,®,1,1) is braided if the
corresponding tensor category A-Mod is braided.

We characterize braided quasi-algebras (also called quasi-triangular quasi-
bialgebras in the literature) as we did for quasi-bialgebras in Proposition
1.2,

Proposition XV.2.2. (a) A quasi-bialgebra (A, A, 2, ®,1,7) is braided if
and only if there exists an invertible element R in AQ A, called the universal
R-matriz, such that for all a € A we have

A°P(a) = RA(a)R™Y, (2.1)
(id @ A)(R) = (Pyz1) ' RigPoaRyp(Pra3) ", (2.2)

and
(A®Id)(R) = Byg1pR13(P135) "' Ryg @105 (2:3)

(b) Moreover, the tensor category A-Mod is symmetric if and only if
Relations (2.1-2.3) are satisfied together with the additional relation

Ry =R (2.4)

As in Section 1, we shall consider R as part of the data of a braided
quasi-bialgebra and write (4, A, e, ®,1, 7, R).

PROOF. We proceed as in the proofs of Proposition 1.2 and Proposition
X1I1.1.4. First, given a braided quasi-bialgebra A with a universal R-matrix
R, we define a braiding on the tensor category A-Mod by

cvw (0@ w) =y (R @ w)) (2.5)
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where v and w belong to the A-modules V' and W respectively. As in the

proof of Proposition VIIL.3.1, Relation (2.1) implies that ¢,y is A-linear

whereas Relations (2.2-2.3) imply the Hexagon Axiom (XIII.1.3-1.4).
Conversely, if A-Mod is braided with braiding c, set

R=74, (CA7A(1 ® 1)). (2.6)

The naturality of the braiding implies that for any pair V', W of A-modules,
the braiding ¢y, y, is of the form (2.5). As a consequence of the A-linearity
of ¢y 4, we get AP(a)R = RA(a) for all a € A, which is equivalent to
Relation (2.1). The commutativity of the hexagons (H1) and (H2) in XIII.1
implies Relations (2.2) and (2.3), as follows from an easy computation
using (2.5).

By (XIIL.1.13) the category A-Mod is symmetric if ¢y, iy ¢y = idy gy
for all V and W. Now

ewyeyw (V@ w) = (Ry R)(v @ w).

Therefore, the category is symmetric if and only if R,y R = 1, which is
equivalent to R,; being the inverse of K. a

Corollary XV.2.3. In a braided quasi-bialgebra, the universal R-matriz
satisfies the relation

Ryy®515 R 5(P135) T Roz® 193 = Papy Rog(Po3)) ™' Ryz Py Ry

PROOF. This counterpart of Theorem VIII.2.4 (a) follows from (1.9), (2.5),
and from Theorem XIII.1.3. m|

Later we shall need the following definition: a morphism of braided quasi-
bialgebras o : (A, A,e,®,1,m,R) — (A", A',&',®",I',r7', R’) is a morphism
of the underlying quasi-bialgebras such that

(@®a)(R) =R’ (2.7)

XV.3 Gauge Transformations

For simplicity, all quasi-bialgebras (A, A, e, ®,1,r) considered in the sequel
will verify [ = r = 1. In other words, the unit constraints of A-Mod will be
the same as the unit constraints of Vect(k). We shall henceforth drop any
reference to [ and r.

The purpose of this section is to introduce an equivalence relation on
quasi-bialgebras such that the categories of modules of two equivalent
quasi-bialgebras are tensor equivalent.
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Definition XV.3.1. Let A = (A, A,e,®) be a quasi-bialgebra. A gauge
transformation on A is an invertible element F of A such that

(e@id)(F) = (d®@e)(F) =1L (3.1)

Using a gauge transformation F on A, we can build a new quasi-bialgebra
Ap as follows. Define an algebra morphism Ap: A — A® A by

Ap(a) = FA(@)F™! (3.2)
for any a € A, and a new Drinfeld associator @ by
®p = Fou(id @ A)F)P(ARIA)(F HFL € Av A A (3.3)

Proposition XV.3.2. For any quasi-bialgebra A = (A, A, e, D) and any
gauge transformation F € A® A on A, the algebra Ap = (A, Ap,e,Pp) is
a quasi-bialgebra.

Observe that that if A happens to be a bialgebra (i.e., with ® = 1),
then Ap is not in general a bialgebra. This procedure provides non-trivial
examples of quasi-bialgebras.

PROOF. We must check Relations (1.1-1.4) for Ap.
Relation (1.1): We have

(id ® Ap)(Ap(a)®p

Fos(id ® A)(FA(a)F~") Fg' Fys(id ® A)(F)B(A @ id)(F 1) !
= Fp(id® A)(F)(id @ A)(Aa))®(A @id)(F ™) k!
= F(id® A)(F)2(A®id)(A(e)(A@id)(F)F5!

( )

(

= Fou(id@ A)(F)®(A @id)(F 1) F' Fio(A ®id)(FA(a)F ) F!
= Pp(Ap ®id)(Ap(a)).
The first and last equalities follow by definition, the third one from Relation

(1.1).

Relation (1.2): For all a € A we have

(e ©id)(Ap(a)) = (¢ @ id)(F) ((5 ® id)(A(a))) E@id)(F ) =a
in view of the counit axiom and of Relation (3.1). We similarly obtain
(id®e)Ap =idy.
Relation (1.3): We have to verify the pentagonal relation

(i[d2id@A ) (P p) (A p@id®id)(Pr) = (Pp)ozs (IdOA p®Id) (D) (@F()éQj)-
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Now,
(d®id © Ap)(@p) (Ap ®id ® id)(®f)
= F,GdeideA) (F23(id ® A)(F)B(A® id)(F—l)F;;)F?;l
Flo(A®id ® id) (F23(id ® A)(F)B(A® id)(F—l)Flgl)F;;
= Fu(ideide A)(F)(deide A)((de A)(F))(deid o A)(®)
(AQAYF NFL FL FloFyy (A ® A)(F)

(A ®id ®id)(®)(A @ id ® id) (A®1d )
(A ®id @id)(F3!)Fi3!

= Fu,(id®id® A)(Fy)(id®id® A) <ld®A )1d®id®A)(<I>)
(A ®id ®id)(®)(A ® id ® id) <(A®1d )
(A®id®id)(F," ) Fry'

= Fu(id®id@ A)(Fy) @y (id @ A @ id)((id® A)(F))
Ot (Id ®id @ A)(P)(A ® id ® id)(P)P1os
(id® A @id) ((A ® id)(F—l)) s(A ®id ®id)(F5L)FG
= Fy(d@id@ A)(Fy)®y(id @ A id)((id® A)(F))
(id ® A ®id)(®)(id ® A @ id) ((A ® id)(F—l))
P53 (A®id ®id)(Fp, )F1_2
= F3(id®id @ A)(Fa)Po4(id ® A @ id) (£ )F2731
Fyaid @ A @id) (Fyslid @ A)(F)(A @ id) (F) Py ) '
Flg(id © A @ id)(Fyp)®155(A @ id @ id) (Fpp') Fry'
= (Pp)oga ([d@ AR @1d)(Pp) (Pr)123s

which proves (3.4). The first and last equalities follow from (3.2-3.3), the
second and sixth ones from the fact that A is an algebra morphism, the
third one holds because Fj, and Fy, commute, the fourth one follows by
applying (1.1) to a = F and F~', and the fifth one from (1.3).

Relation (1.4): Using the definition of &5 and Relations (1.4) and (3.1), we
immediately get (id® e ®id)(®) = FF ! =1®1. O

When F is an gauge transformation on A, then so is F~! and we have
(Ap)p-1=A= (AF—I)F- (3.5)

If F’ is another gauge transformation, then so is the product F'F’ and we
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have
(Ap)p = App:- (3.6)

Definition XV.3.3. Two quasi-bialgebras (A, A, e, ®) and (A', A’ &', ®")
are equivalent if there exist a gauge transformation F on A’ and an iso-
morphism o : A — A of quasi-bialgebras.

Relations (3.5-3.6) imply that this is an equivalence relation. We now
prove that equivalent quasi-bialgebras have equivalent tensor categories of
modules. We start with a preliminary result. Let A = (A, A,e,®) be a
quasi-bialgebra and F' € A ® A be a gauge transformation. Define

VI vow)=F 1 (vew) (3.7)
where v and w belong to the A-modules V and W respectively.

Lemma XV.3.4. Under the previous hypothesis, the triple (id,id, p3) is
a tensor functor from the tensor category A-Mod to the tensor category
Ap-Mod.

PROOF. Recall Definition XI.4.1. We have to check Relations (XI.4.1-4.3),
namely ¢, (k, V) = p,(V, k) = idy, and

ea(U, VW) (idy @V, W) afs = agy 92UV, W) (a(U, Viaid)

(3.8
where a!" is the associativity constraint induced by ®p. The first set of
equalities follows from (3.1) and (3.7). Let us prove (3.8). For all u € U,
v eV and w € W we have

(02U, V & W)(idy @ 0o(V, W) afyy ) (4@ v 2 w)
= ([dRA)(F NP (uev@w)
= AQINF HFF (u®v®w)
= (apyw e2(U 2 V.W)(@o(UV) @ idy) (w80 0 w).

The first and last equalities follow from (1.5) and (3.7), and the second one
from the definition of ® . O

We state the first main result of this section. Let A and A" be equivalent
quasi-bialgebras with a gauge transformation F on A" and an isomorphism
a: A — A’ of quasi-bialgebras. The map « induces a strict tensor functor
(a*,id,id) from Ax-Mod to A-Mod as explained in Example 2 of XI.4.
Since « is an isomorphism, a” is a tensor equivalence.

Theorem XV.3.5. The tensor functor (*,id, @} ) is a tensor equivalence
between A'-Mod and A-Mod.
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PROOF. Replacing F by F~! which is another gauge transformation, we
get a tensor functor (id,id, % _1) from A’z-Mod to A’-Mod which turns
out to be an inverse to (id,id,p}). The tensor functor (a*,id, %) is the
composition of the tensor equivalence (id,id, @) : A’-Mod — A’p-Mod
and of the tensor equivalence (a*,id,id). a

We now extend the gauge transformations to braided quasi-bialgebras.
Consider a braided quasi-bialgebra (A, A, g, ®, R) with a universal R-matrix
R. For any gauge transformation F on A, define Ay and @ as above. Also
set

Rp = Fy RF™% (3.9)

Proposition XV.3.6. The algebra Ap = (A, Ap, &, Pp, Ry) is a braided
quasi-bialgebra.

PROOF. One may check Relations (2.1-2.3) directly for Rp. Alternatively,
one may also proceed as follows. Let ¢ be the braiding of A-Mod corre-
sponding to the universal R-matrix R. Define C\}ZW VoW WV by
chw (v @ w) = 7y w(Rp(v ® w)). An immediate computation using (3.9)
shows that

C\F/,W = (o5 (VW) 'o Cy,w © 5 (V,W).

One then checks that ¢! is a braiding on A z-Mod as in the proof of Lemma
XII1.3.2. Finally, apply Proposition 2.2. O

Let (A, A,e,®, R) again be a braided quasi-bialgebra and F' be a gauge
transformation on A.

Lemma XV.3.7. Under this hypothesis, the tensor functor (id,id, <sz) is
a braided tensor equivalence from A-Mod to Ap-Mod.

PROOF. In view of Theorem 3.5, it is enough to show that (id,id,¢%) is
braided in the sense of Definition XIII.3.6. We must check that we have
@5 ocliy =cyy ows . The latter is equivalent to F~H(Rp)y; = (RF 1)y,
which follows from (3.9). O

We adapt Definition 3.3 to braided quasi-bialgebras.

Definition XV.3.8. The two braided quasi-bialgebras (A, A, e, ®, R) and
(A", A e, @ R') are equivalent if there exist a gauge transformation F on
A" and an isomorphism a : A — A’ of braided quasi-bialgebras.

Suppose we are in the situation of equivalent braided quasi-bialgebras A
and A’ with F and « as in the previous definition." As a consequence of
Theorem 3.5 and Lemma 3.7, we get the second main result of the section.

Theorem XV.3.9. In the situation just considered, the tensor functor
(a*,id, 9L is a braided tensor equivalence between the braided tensor cat-
egories A'-Mod and A-Mod.
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XV.4 Braid Group Representations

Let (A, A, e, @, R) be a braided quasi-bialgebra with trivial unit constraints,
V a left A-module, and n an integer > 1. We recall from Chapters X and
XIIT how to define a representation of the braid group B,, on V®". Since ®
is not necessarily trivial, we have to make precise what we mean by V®".

Let us place ourselves in the general situation where we have a braided
tensor category C with associativity constraint a and braiding c. In XI.5 we
constructed a strict tensor category C** which is tensor equivalent to C. The
tensor product of C°7 is denoted *. By definition, we set V" = V*" which
means that V" is equipped with the unique system of parentheses opening
only at the extreme left. For instance, we have V& = (Ve V) V)® V.
Define automorphisms ¢, ,...,c,_; of V¥ = V*™ in C*" by

C;, = idvk(i—n * CV,V * idv*(n—i—l).

By Theorem XIII.1.3 and Corollary X.6.9 we know that there exists a
unique morphism of groups pfl : B, — Aut(V®") sending the generator o,
of B, to ¢; for any i = 1,...,n — 1. The representation p< will be called
the braid group representation associated to the braided tensor category C.
We now make ¢; explicit in terms of the original category C.

Lemma XV.4.1. We have
¢ = (a\;g(i—l)’v’v ® idg(”—i—l)) (idv®<i*1) Qcyy ® id%(n—if1)>

(OJV®(1‘~1)7V’V ® idg(n‘i_1)> -

ProOF. This follows from Relation (XI.5.4) which expresses the tensor
product of morphisms in the strict category C*" in terms of the tensor
product of morphisms and of the associativity constraint in C. We also use
Relation (X1.5.3) in the following special cases:

¢(S,(V)) =idpggy and @(S,(V,V)) =ap(s) vy
d
When C = A-Mod is the braided category of left modules over the braided
quasi-bialgebra A, the braiding ¢ is given by

CV,V(U1 ®vy) = (R(Ul ® Uz))21~
Consequently, by Lemma 4.1 we have

a0 ® ®v,) = (Rl ©0v,)) (41)

and if ¢ > 1

(o ®8,) =0 (R @) 0 @0,))  (42)
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where we used the subscript convention of VIII.2 and where
o, = A(i+1)(¢>) ® 1®((n—i=1)

is the invertible element of A®™ expressed in terms of the map AG+D .
A®3 5 A®E+D) defined inductively by A®) = id 4¢s and by the relations
ACHD) = (A@idf(i_l))A(i). The corresponding representation p;? = pAA-Mod
will be called the braid group representation associated to the braided quasi-
bialgebra A.

Let A" = (A, A',¢’, ®', R') be another braided bialgebra. We assume that
A and A’ are equivalent braided quasi-bialgebras in the sense of Definition
3.8, i.e., there exist a gauge transformation F on A’ and an isomorphism
a:A— (A")p of braided quasi-bialgebras. In particular, we have

F, R'F™!' = (a®a)(R). (4.3)

Let V be a left A’-module. By a it becomes an A-module. For any integer
n > 1 we have two braid group representations p;?, p;? : B, — Aut(V®™)
associated to A and A’ respectively and acting on the same space. The main

result of this section asserts that these representations are equivalent.

Theorem XV.4.2. Let A and A’ be equivalent braided quasi-bialgebras.
With the previous notation, we have

P (9)(w) = Fig' pit (9) (Fip w)
for all g € B,, and w € V®".

PRrROOF. By Theorem 3.9, we know that both braid group representations
are equivalent. It is therefore enough to compute the equivalence on one
special element of the braid group. We choose the generator o,. By (4.1)
and (4.3) we have for vy,...,v, €V

Pf},(cﬁ)(m ® - Qu,) (R/u(vl ®'“®vn))21
= <(F2—11(a ®a)(R)Fp)(v, @ @ v”))zl
= F1_21 ((05@01)(R)(F12(v1 ®'“®v”))>

Fﬁlpﬁ(%)(FH(W - ®Un))-

21

0O

It should be clear that the statement of Theorem 4.2 depends on the way
we put parentheses on V®". Other systems of parenthesizing give rise to
different, but equivalent braid group representations.
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XV.5 Quasi-Hopf Algebras

For the sake of completeness we introduce quasi-Hopf algebras as defined
by Drinfeld [Dri&9b]. As above, all quasi-bialgebras considered here have
trivial unit constraints, i.e., { =r = 1.

Definition XV.5.1. A quasi-bialgebra (A, A,e,®) is a quasi-Hopf alge-
bra if there exist an invertible anti-automorphism S of the algebra A and
elements o and B8 of A such that for all elements a in A we have

Z S(aaad" = e(a)a, Z a'BS(a") = e(a)B, (5.1)
(@)

and

ZXﬂS YaZ, =1, ZS )oY, 35(Z,) = (5.2)

where ® =Y, X, @Y, ®Z, and @' =Y, X, ® Y, ® Z,. A quasi-Hopf
algebra is braided if the underlying quast-bialgebra is.

We shall write (A, A, e, ®, S, a, ) to express the complete data of a quasi-
Hopf algebra. As in XIV.2 consider the category A-Mod; of left A-modules
that are finite-dimensional vector spaces over the ground field k. Equip it
with the tensor category structure induced by A and ®. For any object V' of
A-Mod consider the objects V* and *V as defined in Example 1 of XIV.2.
We define maps by, : k = VRV*, dy, : V*QV -k, b, : k> V@V, and
dy V"V —k by

by (1) = Z B, @', dy(v' ®u,) =<' av; >,

= Z V'@ STH B, diy (v, ®0v7) =< STHa)v;, vl >

where {v,}, is a basis of V and {v'}, the corresponding dual basis.
Proposition XV.5.2. The maps by, dy,, b}, and dy, are A-linear and the
compostte maps

1d®dy

Vepgv e, (V@V*)@V-LV@(V*@V) VekxV

VeVt g Yy g (Ve V) L (Vi e V) g VR kg v 2 v

' ®id
Veve -y e tVev) oW e V) ev-Y2 vy
Ve ke VLV o V)0 VL o (Ve V)N oy g ke Y

are all identities.
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PROOF. The first statement follows from Relations (5.1), and the second
one from Relations (5.2). a

Consider the braided tensor category A-Mod s associated to the quasi-
Hopf algebra A as well as the strict braided tensor category (A-Mod f)S“.
Proposition 5.2 can be interpreted as follows: the strict braided tensor
category (A-Mod f)s” is autonomous, i.e., has left and right dualities given
by the maps by, dy,, by, and di, .

We end this section with an example of a non-trivial braided quasi-Hopf
algebra close to the quantum double of the algebra k[G] of a finite group
G. Suppose given a normalized 3-cocycle on the group G, i.e., a function
w:GxGxG— k\ {0} such that

w(z,y, 2)w(tz,y, 2) " w(t, 2y, 2)w(t,z,y2) ot z,y) = 1 (5.3)
for all ¢t,z,y,2z € G, and such that w(z,y,z) = 1 whenever z, y, or
z = 1. Consider a finite-dimensional vector space D“(G) with a basis
{eg2}(g.s)eaxc indexed by G x G. Define a product on D¥(G) by

(eg2)(eny) = 8y sny-10(9,2,y) €,(zy) (5-4)

where 0(g, z,y) = w(g, z, y)w(z,y, (zy) L gzy)w(z, 2~ gz, y) "t It is easy to
check that this product is associative and has the element 1 = geG gl
as a left and right unit. Observe that when the cocycle w is trivial, i.e.,
w(z,y,z) = 1 for all z,y,z, then D¥(G) is isomorphic to the quantum
double D(k[G]) (see IX.4.3). In contrast to the trivial case, the map sending
T t0 ) cq €,2 is not a morphism of algebras from k[G] to D¥(G) in
general, but the map e, — e 1 is, which will allow us to identify e,1
with €.

We define morphisms of algebras A : D*(G) — D¥(G) ® D¥(G) and

e: DY(G) — k by

Ale,r) = Z Y(z,u,v)e,x®@e,xz and e(e,z) =6, (5.5)

uv=g

where v(z,u,v) = w(u, v, r)w(r, 2" vz, " vr)w(u, z,z tvz) " . Set also

¢ = Z w(x,y,z)_lem®ey®ez, R:Zeg®(z en)g, (5.6)

z,y,2€G geG h

a=1,and g = deG w(g,gﬁl,g)eg. We define an anti-automorphism S
of the algebra D¥(G) by

Slegz) =0(g~ 2,2 )T (2,9,971) T epmagpr (5.7)

Then (D¥(G),A,e,®, S, a, ) is a braided quasi-Hopf algebra with univer-
sal R-matrix R in the sense of Definitions 1.1, 2.1 and 5.1.
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XV.6 Exercises

1. Let (A,A,¢,5) be a Hopf algebraand F =3, f,®g, € AR Abea
gauge transformation such that

Fyylid, © A)(F) = Fip(A ®1d,)(F).

Consider the element = = ), f,S(g;) of A. Show that it is invertible
and that (A, Ap,e,Sg) is a Hopf algebra where Sg(a) = 2S(a)z™!
for all a € A.

2. Show that if (4, A, e, ®) is a quasi-bialgebra each of (AP, A, e, &™),
(A, A% £, (®4,,) 1) and (AP, A°P ¢, ®,,,) is a quasi-bialgebra.

3. Let A= (A A, ®I,7)and A’ = (4, A",¢, 9", I',r") be quasi-bial-
gebras. Let o : A — A’ be a morphism between the underlying al-
gebras. Suppose that the induced functor o : A’-Mod — A-Mod
extends to a tensor functor (a”,id, y,). Show that there exists an
invertible element F in A’ ® A’ such that vy(u ® v) = F~ (u ® v).
Prove that necessarily e = €',

(a®a)A(a)F = FA'(a(a)), ® Fiy(Aid)(F) = Fy (id9A)(F)a(®),
I'=a()(e ®id)(F), and 7' =a(r)(id®)(F).

4. (Gauge transformation of a quasi-Hopf algebra) Let (A, A, e, ®, S, «, 3)
be a quasi-Hopf algebra and F' = ), f,®g, be a gauge transformation
on A with inverse F~! = 3. f, ® g;. Set

Ap = Z S(ﬁ)agi and fp= Z f.85(g,)-

Prove that (A, Ag,e,®5, S, ap, 5r) is a quasi-Hopf algebra.

5. Let (A, A2, 9,5, a, 3) be a braided quasi-Hopf algebra with universal
R-matrix R. Suppose that ® ' =Y, X,®Y,®Z, and R = 225 8;®t;.
Set

u=>Y_ S(Y,p5(2,))S(t;)as;X,.
i
Prove that u is an invertible element in A such that e(u) = 1 and
S?2(a) = uau~* for all a € A.

XV.7 Notes

Quasi-bialgebras, quasi-Hopf algebras, and gauge transformations were in-
vented by Drinfeld [Dri89b][Dri90][Dri89c| in relation with his treatment
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of the monodromy of the Knizhnik-Zamolodchikov equations (to be con-
sidered in Chapter XIX). Drinfeld used the term “quasi-triangular quasi-
bialgebra” for a braided quasi-bialgebra. In [Dri89b], Section 1, Drinfeld
showed that one always could reduce a general quasi-Hopf algebra to a
quasi-bialgebra with [ =r = 1.

Altschuler and Coste [AC92] proved (see Exercise 5) that in any braided
quasi-Hopf algebra the square of the antipode is an inner automorphism
(just as for braided Hopf algebras, c.f. VIII.4). They also defined ribbon
quasi-Hopf algebras generalizing the ribbon algebras of XIV.6. The braided
quasi-Hopf algebra D¥(G) of Section 5 is due to Dijkgraaf, Pasquier, and
Roche [DPRY0] and was shown in [AC92] to be a ribbon quasi-Hopf algebra.
Let us remark that when the 3-cocycle w is changed by a coboundary, then
D*¥(G) is changed by a gauge transformation, so that the tensor category
of modules of D¥(G) depends on the cohomology class of w.

Exercise 1 is taken from [Res90] while Exercise 4 is from [Dri89b].
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Chapter XVI

Generalities on Quantum
Enveloping Algebras

In order to state the main results of Part IV, we need the concept of a
quantum enveloping algebra. This requires the use of formal series and of
h-adic topology. The chapter is completed by an appendix on inverse limits.

XVI.1 The Ring of Formal Series and h-Adic
Topology

Consider the complex algebra K = C[[h]] of complex formal series in one
variable h. Any element of K is of the form

F=Ya,h" (1.1)

n>0

where (ag,ay,...) is a family of complex numbers indexed by the set N
of non-negative integers. If f' = ano a, h™ is another formal series, then
the sum f + f' and the product ff’ of f and f’ in K are given by

f+r= Z (a, +ay)h" and ff = Z ( Z apa;>h”. (1.2)

n>0 n>0 pt+qg=n

Any polynomial in h may be considered as an element of K. In particular,
the constant polynomial 1 is an element of K where it acts as a unit for
the product as can easily be seen from (1.2). The following characterizes
invertible elements in K.
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Lemma XVI.1.1. A formal series f =Y., <, a,h" is invertible in C[[h]]
if and only if ay # 0 in C. B

PROOF. The formal series f is invertible if and only if there exists another
series ¢ = > .~o b A" such that fg = 1. From (1.1) we see that this
is equivalent to the existence of an infinite family (bg,b;,...) of complex
numbers such that ayb, = 1 and

aObn+a1bn—1+"'+an—1bl +anb0 :0 (1.3)

for all n > 0. The relation ayb, = 1 shows that the invertibility of a, is a
necessary condition for f to be invertible. This condition is also sufficient
since the family (b,,by,...) can be determined inductively from b, = a;*
and Relations (1.3). O

Lemma 1.1 may be interpreted as saying that the ring K is a local ring
whose maximal ideal is the ideal (h) generated by h.

For any integer n > 0 consider the algebra K, = C[h]/(h"™) of truncated
polynomials obtained as the quotient of the algebra of complex polynomi-
als in one variable by the ideal generated by h"™. There is a morphism of
algebras 7, from K to K, sending a formal series f = > ., a,h" to the
class of EZ;& a,h¥ modulo (A™). This map is surjective and its kernel is
the ideal A" K generated by A" in the ring of formal series. Consequently,
T,, induces an isomorphism of algebras

Cl[n]]/(n™) = C[h]/(h"). (1.4)

‘For n > 0 there is also a surjective morphism of algebras p,, from K, to
K, induced by the inclusion of ideals (h™) C (h"~!). Consider the inverse
system of algebras (K,,,p,,), and its inverse limit lim K, as defined in the

n
Appendix. We have p,, om,, = m,,_ for all n. It follows from Proposition 9.1
that there exists a unique morphism of algebras 7 from K to lim K, whose

n
composition with the projection of the inverse limit onto K, equals 7.

Proposition XVI.1.2. The map 7 : C[[h)] — lim C[h]/(h™) is an iso-
morphism of algebras. "
Proor. The map 7 is injective since its kernel, which is the intersection of
all ideals (h™), is zero in view of (1.2).

In order to prove the surjectivity of = we construct a right inverse to it as
follows. Let (f,,),,~o be an element of the inverse limit (see the Appendix for
a definition). By definition f,, belongs to K,,, which allows us to represent

it as .
fn = Z a’(‘:n) hk,
k=0



XVIL1 The Ring of Formal Series and h-Adic Topology 387

and we have p,,(f,,) = f,_, for all n > 0. Hence agﬁn) = agcnhl) for k running
from 0 to n — 2. We can therefore define a formal series f = }_, -, a,h"
by a, = al**? = o("*3) = ... We have 7(f) = (f,),- ]

Proposition 1.2 allows us to equip K with the inverse limit topology
described in the Appendix. This topology is called the h-adic topology.
By definition, the family of subsets 7, *(U,,), where n > 0 and U,, is any
subset of K, is a basis of open sets of K. Since {0} is a family of open
neighbourhoods in the discrete set K, the family 7, (0) = (h") is a family
of open neighbourhoods of 0 in K for the h-adic topology. From this it is
easy to see that the h-adic is a metric topology where the metric may be
defined as follows. For any non-zero formal series f = 3" ., a,h", let w(f)
be the unique non-negative integer such that Q) # 0 and a, = 0 for all
k < w(f). When f =0, set w(0) = +co. Extend the natural order of N to
N U {400} by requiring that +oco > n for all n € N. We see that

(h”):{feKlw(f)>n-1}. (1.5)
As a consequence, we get
() (x") = {0}, (1.6)
n>0

a trivial fact already used in the proof of Proposition 1.2. We also have

w(f +g) > min(w(f),w(g)) (L.7)

for all f,g € K. Define a map | | from K to the set of non-negative real
numbers by
|| =274 (1.8)

if f#0and [0] =0 if f = 0. The next result is an immediate consequence
of the previous considerations.

Lemma XVI.1.3. For all f and g in K we have
fl=0=f=0, |=fl=Ifl, If+g] <max(|f]]g]).

As a corollary we get a distance on K.

Corollary XVI.1.4. Define d(f,g) = |f — g| for any f,g € Cl[[h]]. Then
d is an ultrametric distance on C[[h]], i.e., we have

(i) d(f,9)=0= f=y,

(i) d(f. g) = d(g, f), and

(iii) d(f, h) < max(d(f, g),d(g, h)) for any triple (f,g,h) of formal se-

71€8.

The distance d puts a metric on C[[h]]. From its definition and from (1.5)
it is clear that the family of ideals (h™) is also a set of open neighbourhoods
of 0 for the metric topology. Therefore the latter is equivalent to the h-adic
topology.
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XVI.2 Topologically Free Modules

Let M be a left module over the algebra K = C[[h]]. Consider the family
(h" M), -, of submodules and the canonical K-linear projections

p, M, = M/h"M — M,_, = M/h" ' M.

They form an inverse system of K-modules, and we may consider the in-
verse limit

M =lim M, (2.1)
n

which has a natural structure as a K-module. The inverse limit M has a
natural topology, the inverse limit topology, for which it is easy to see as
in Section 1 that the family of submodules (h"M),, is a family of open
neighbourhoods. The module M is called the h-adic completion of M.
The projections i,, : M — M, induce a unique K-linear map i : M — M

such that m,, o4 = i,, for all n. The kernel of i is given by

Ker (i) = (] h"M.
n>0

Definition XVI.2.1. A K-module M 1is separated if [)
It is complete if the map i is surjective.

nso B"M = {0}.

For any module M the module M/((,., h"M) is separated and the
completion M is complete. Indeed, consider the projection m,, : M — M, .
Its kernel is h™ M, which implies the isomorphism of modules

M /h"M™ = M/h"M. (2.2)

Taking inverse limits, we get M=M , which proves that M is complete.
Any separated, complete K-module will be equipped with the topology,
called the h-adic topology, coming from the inverse limit topology on M
via the isomorphism M = M.
We now describe an important class of separated, complete K-modules.
It includes K itself, viewed as a K-module by left multiplication. Take any
complex vector space V. Define V[[h]] as the set of all formal series

Z v, h" (2.3)

n>0

where (vg,vy,...) is an infinite family of elements of V. Using Formulas
(1.2) we can put a left K-module structure on V[[h]]. Any left K-module
of this form will be called a topologically free module. We recover K by
taking V = C.
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Proposition XV1.2.2. Any topologically free module is separated and com-
plete.

PRrOOF. From the definition we see that the submodule h"V[[h]] is the set
of all elements »° ., v,h" such that vy = --- =9, _; = 0. It follows that
the intersection of all submodules A"V [[h]] is zero. This implies that V[[A]]
is separated.

It is also complete: a proof parallel to the proof of Proposition 1.2 shows

V[h]} isomorphic to the inverse limit of the family (V[[h]]/h"V[[h]]) o

As in the case V = C, the h-adic topology on V[[R]] induced by the
inverse limit topology can be defined by a metric built in the same way as
for CJ[h]] (see Section 1).

A topologically free module V[[h]] has the following additional properties.

Proposition XVIL.2.3. (a) Let {e;},c; be a basis of the vector space V.
Then the K-submodule generated by the set {e;},o; ts dense in V[[h]] for
the h-adic topology.

(b) For any separated, complete K-module N, there is a natural bijection

Hom g (VI[h]], N) = Hom(V, N)
where Homy denotes the space of K-linear maps.

Observe that a K-linear map f : M — N between separated, complete

K-modules is always continuous for the h-adic topology since f(h"M) is
contained in A" N by K-linearity.
PROOF. (a) Let W be the submodule of V[[A]] generated by the set {e;},;-
Take any element f =5 -, v,h" of V[[h]]. We have to show that for any
integer n > 0, there exists an element f, € W such that f — f, belongs
to h"V|[h]]. The element f, is constructed as follows: f, = Z;é v h*.
Clearly, the difference f — f,, lies in A"V][h]]. It remains to check that f,
belongs to W. Indeed, since {e;};c; is a basis we have

= S (S A = 3 (D e e w
k=0 iel el k=0

where )\Em is a family of complex numbers, all but finitely many equal to
Z€ro.

(b) Let f be a continuous K-linear map from V[[h}] to N. Considering
V as the space of constaiit formal series in V[[A]], we may restrict f to a
C-linear map from V to N. Conversely, let g be a K-linear map from V to
N. Extend it to a K,,-linear map g,, from V[[r]]/h"V[[h]] to N/A"N by

n—1

n—1
gn(z v h*) = Z g(vy)h*  mod h™N.
k=0 k=0
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Taking inverse limits yields a K-linear map g, between the corresponding
inverse limits. Since V[[h] and N are separated and complete, we get a
map, still denoted g, from V[[h]] to N. This map restricts to g on V. 0O

Topologically free modules can be characterized in a simple way. Recall
that a K-module M is torsion free if hm # 0 when m is any non-zero
element of M.

Proposition XVI1.2.4. A left K-module is topologically free if and only if
it is separated, complete, and torsion-free.

PRrOOF. By Proposition 2.2 we know that any topologically free module is
separated and complete. It has no torsion in view of (1.2).

Conversely, let M be a separated, complete, and torsion-free module. We
have to show that M is of the form V[[A]]. Choose a vector subspace of M
which is supplementary to hM . Because of the torsion-free assumption, we
get h"M = h™V @ Rt M for all n > 0. Hence,

M/R"M =V &RV & --- & h" "'V = V[[h]]/A"V[[h]].

Taking inverse limits and using the fact that M and V[[h]] are separated
and complete, we get

M = lim M/h"M = lim V{[A]}/h"V[[] = V[h]].

n n

]

We end with a caveat. We have V[[h]] 2 V @ C[[h]] only if V is a finite-
dimensional vector space. There is no such isomorphism when V is infinite-
dimensional, in which case V[[h]] is strictly bigger than V @ C[[h]]. Indeed,
take an infinite family (e,,),cn of linearly independent vectors; then the
element ) ., e,h™ of V[[h]] does not belong to V & C[[A]].

XVI.3 Topological Tensor Product

Let M and N be left modules over the algebra K = C[[h]]. Consider the
K-module M ® N obtained as the quotient of the vector space M @ N by
the subspace spanned by all elements of the form fm ®@mn —m® fn where
f belongs to K, m to M, and n to N.

Definition XVI.3.1. The topological tensor product M&N of M and N
is the h-adic completion of M @y N:
MEN = (M@ N) = lim (M &, N)/h"(M @ N).
n>0
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Since it is defined as a completion, the topological tensor product of two
modules is always complete. Given m € M and n € N we denote by men
the image of m ® n under the natural maps M QN — M Qp N — M®N.
The subspace of the topological tensor product spanned by all elements
of this form is dense in M®N. The usual associativity and commutativity
constraints induce the following K-linear isomorphisms

(M@N)®P = MR(NRP), (3.1)
M®N =~ N®M. (3.2)

We also have N . N
KM = M= MK, (3.3)

which means that K serves as a unit for completions.

The topological tensor product is functorial as can be seen from the
definition: if f : M — M’ and g : N — N’ are K-linear maps, then there
exists a K-linear map

f®g: MON — M'@N’
enjoying the formal properties of the algebraic tensor product.

Proposition XVI.3.2. If M and N are topologically free modules, then
so is M@RN. More precisely, we have

V{ReW (k] = (V & W){[A]].
PRrooF. For any K-module M, the natural maps
Mg K, > M@, K/W"K — M/h"M

are isomorphisms, where the first one is induced by (1.4) and the second
one is given by m® f — fm (the inverse map being induced by m — m®1).
Applying this to M @, N where M = V[[h]] and N = W][h]] we get

(Mg N)/W" (M@ N) 2 (Mg N)ogK,
o (M@KKTL)@QKH <N®KKTL)

> M/R"M ® N/h"N
= (V®Kn) R, (W@Kn)
> VeW)eK,

1

(V- ow)[[al/n"(V @ W)[h].

Passing to the inverse limit yields the desired result. O
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XVI.4 Topological Algebras

We extend the definitions of algebras, quasi-bialgebras, etc. to the setting
of C[[h]]-modules. This is done by replacing the algebraic tensor product
of 1.1 by the topological tensor product of Section 3.

A topological algebra is a triple (A, u,n) where A is a module over the
ring K = C[[h]], p : A®A — A and  : K — A are K-linear maps such
that

po (p@idy) = po (id ;@) (4.1)
and
po (n®id,) =id, = po (id,@n). (4.2)

As in the algebraic case, we use the convention
ad’ = p(a®a’) (4.3)

for the product of two elements a, a’ of a topological algebra (A, u,n). We
also write 1 for the image under n of the unit element 1 of K.

Let (A, p,m) be a topological algebra and f(h) =", -, ¢,h" be a formal
series with complex coefficients. For an element a € A, the formula

f(ha) = Z c,a"h" (4.4)

n>0
defines a unique element in the inverse limit A = lim A/h™A. Therefore if

n
A is separated and complete, it defines an element, still denoted f(ha), in
A = A. This procedure can be applied to the classical exponential function

el = > >0 %, yielding elements of the form

=3 ¢ h (4.5)

n!
n>0

in any separated complete topological algebra A. If @’ is another element
in A commuting with a, then

ghagha’ — ghlata’) (4.6)

As a consequence, we see that ¢"® is invertible in A with inverse equal
to e,

A morphism [ : (A,pu,n) — (A, 1/, n") of topological algebras is a K-
linear map f : A — A’ such that

fop=p'o(f®f) and fon=1' (4.7)
Using the convention of (4.3), Relations (4.7) can be rewritten as
flayag) = flay)f(ay) and f(1)=1 (4.8)

where a; and a, are elements of A.
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Example 1. Let A = K = C[[h]]. We identify K@K with K. Then we see
(K,idg,idg) is a topological algebra. Moreover, the map n: K — A is a
morphism of topological algebras for any topological algebra (A, u, 7).

Example 2. Let (A4, u,n) and (A, 1/, 7) be topological algebras. Then so
is

(ARA', (uB) 0 (1d 48T 4y @id ), n@1)
where T4 4 A®RA" — A'®A is the flip. In other words, the product in the
tensor product algebra A®A’ is given by

(aléa/l)(%éaé) = a1a2®a’1a’2 (4.9)

and the unit is 1®1.

A topological quasi-bialgebra s a sextuple (A, p,m, A e, ®) where (A4, p, 7)
is a topological algebra, A: A — ARA and e: A — K are K-linear maps,
and ® is an invertible element of the tensor product algebra AQ AR A such
that

(10, ®A)(A(a)) = @((Aid)(A(a)) )@ (4.10)
for all a € A,
(e@id4)A = id 4 = (id ,®e)A, (4.11)
(id , ®id ,®A)(P) (ARid 4, Did 4 )(®) = By, (id ,OARId 4 )(P) @125, |
4.12
and
(id ,®e®id 4 )(®) = 1 ® 1. (4.13)

When ® = 1Q1®1, we call A a topological bialgebra.

A morphism i (A p,n,0,e,®) — (A, u/, 7/, A €', ®") of topological
quasi-bialgebras is a morphism f between the underlying topological alge-
bras such that

(fRHA=A"f and (fRfDf)(®) =& (4.14)

A topological quasi-bialgebra (A, u,n,A,e,®) is a topological braided
quasi-bialgebra if there exists an invertible element R of the tensor product
algebra A® A such that

A°P(a) = RA(a)R™, (4.15)
(idAéA)(R) - (@231)*1R13<I>213R12(@123)“1, (4-16)

and N
(A®Id4)(R) = @y15Ry13(Pr32) " Rog®1os. (4.17)

As before, R is called the universal R-matrix of A. It is part of the data of
a topological braided quasi-bialgebra. A morphism of topological braided
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quasi-bialgebras is a morphism of the underlying topological quasi-bial-
gebras sending the universal R-matrix of the first one to the universal
R-matrix of the second one.

We also need the concept of a gauge transformation on a topological
quasi-bialgebra A: it is an invertible element F' of A®A such that

(e®idy)(F) = (id ,®e)(F) = 1. (4.18)

From a topological (braided) quasi-bialgebra A and a gauge transformation
F one can form a new topological (braided) quasi-bialgebra A by (XV.3.2-
3.3) and (XV.3.9).

Example 3. Let Ay = (A, tgs M, Do o> Py, Ry) be a braided quasi-bial-
gebra over the field C of complex numbers. Using Proposition 2.3 (b) and
Proposition 3.2, one may define the topological braided quasi-bialgebra

Aol[R]] = (Ao[[A], ks A, e, @, Ry)
on the space of formal series with coeflicients in A, where u, n, A and ¢
are the unique K-linear maps such that n(f) = fn,(1) = f1 for all f € K,
u(a®d) = pyla®a’), Ala) = Ayla), e(a) =gola)
for all a,a’ € Ay. We call Ay[[h]] the trivial topological braided quasi-
bialgebra associated to A,.

Example 4. Let A = (A,,u,nN,A,E,Q,R) be a topological braided quasi-
bialgebra. Since (A®A)/h(ARA) = A/hA ® A/hA, the K-linear maps
1, m, A, € induce C-linear maps

ii:A/hA® AJhA — AJhA, 7:C — AJhA,
A:A/hA— AJhA® AJhA, &:A/hA — C.

Define ® as the class of ® modulo (A/ hA)®3_and R as the class of R modulo
(A/hA)®?. Then A = (A/hA, i, 7, A, & ®, R) is a braided quasi-bialgebra.
Another concept we need to adapt is the concept of a topological A-

module M over a topological algebra A = (A4, u,n). It is a left K-module
with a K-linear map p,, : AQ M — M such that

par o (u®idyy) = ppy 0 ([da@ppy) and  pyy 0 (N®idy,) = idy,.  (4.19)

We shall write u,,(a@m) = am for a € A and m € M. The definition of a
morphism of topological A-modules is left to the reader.

Let M and N be topological A-modules. Then their topological tensor
product M®N is a topological A®A-module. If A has a comultiplication
A: A — ARA, we can pull back the A®A-module structure on MN to
a topological A-module structure given by

a(m@n) = A(a)(m®n) (4.20)

foralla € A, min M, and n in N.
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If A is a topological braided bialgebra with universal R-matrix R, then
for any topological A-module M the K-linear automorphism c£; ,, defined
as in VIIL3 by '

ey e (my @my) = (R(m1®m2))21 (4.21)
is a solution of the Yang-Baxter equation in MOM®M.

Proceeding as in XV.4, we can show that the universal R-matrix of a
topological braided quasi-bialgebra gives rise to a representation of the
braid group B,, on the topological A-module M®" where n is any integer >
1 and M is any topological A-module. Theorem XV.4.2 can be reformulated
in the present context.

Mimicking IX.5, we say that a topological A-module M over a topological
bialgebra A = (A, u,n, A, €) with left action p,, : ARM — M is a topolog-
ical crossed A-bimodule if there exists a K-linear map A,, : M — M®A
such that

(i, ®A)A = (A, ®id)A,,,  (idy,Qe)A,, =idy, (4.22)
and

(NM éu) (idA ®7~'A,M éidA) (AéAM)
= (idMéu)(AMé)idA)FA,M(idAéluM)(AéidM)' (4.23)

XVL5 Quantum Enveloping Algebras

Let g be a complex Lie algebra. In V.2 we defined its enveloping algebra
U(g) and proved that it had a natural bialgebra structure determined by

Alz)=1®z+z®1 and e(z)=0

for all  belonging to g. We equip it with a trivial braided quasi-bialgebra
structure with ? =1® 1@ land R=1® 1.

Definition XVL.5.1. A quantum enveloping algebra (QUE) for the Lie al-
gebra g 1is a topological braided quasi-bialgebra A = (A, p,n, A, e, ®, R) such
that A is a topologically free module, the induced braided quasi-bialgebra
A = (A/hA, 0,7,A,6,®,R) as in Example 4 of Section 4 coincides with
the trivial braided quasi-bialgebra structure of U(g) and the map 1 is triv-
ially extended from 7.

Let us be more explicit about this definition. First, a QUE is topologically
free. This means that A = (A/hA)[[h]] as a left K-module. By hypothesis,
we also have A/hA = U(g).
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Therefore
A=U(g)l[rl] (5.1)
as a K-module. From Proposition 3.2 we derive
4% = (u(e)®)[n]] (5.2)

for all n > 0. By Proposition 2.3 (b) we know that the maps y, n, A and
¢ are determined by their restrictions to U(g) ® U(g), C, U(g) and U(g)
respectively. For elements a,a’ € U(g), we have

pla®a) =3 ()" (53)
n>0

where (f1,,),,>0 is a family of linear maps from U(g) ® U(g) to U(g) such
that p, is the product in the enveloping algebra. Similarly,

Ala) = A, (a)h" (5.4)

n>0

where (A,,),>q is a family of linear maps from U(g) to U(g) ® U(g) such
that A, is the comultiplication of the enveloping algebra described above.

We also have
(@)=Y e,(a)h” (5.5)
n>0
where (g,,),>0 is a family of linear maps from U(g) to C such that ¢, is
the counit of the enveloping algebra. The last part of Definition 5.1 means
that the unit n of A is given by

n(f)=r1 (5.6)
for all f € CJ[h]]. Finally, by Proposition 3.2 again, the elements ® and R
can be written
o= ®,h" (5.7)
n>0
and
R=>"R,h" (5.8)
n>0

where (®,),,>0 and (R,,),,, are families of elements of U(g)®* and U (g)®?
respectively such that

¢, =191®1 and R,=1®1. (5.9)

It is clear from Lemma 1.1 that (5.9) ensures the invertibility of ® and R.
By definition, a quantum enveloping algebra A is associated to a Lie
algebra g. One recovers g from A by

g:{xeA/hA ’ Ao(a):l®a+a®l} (5.10)
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in view of the fact (stated in V.9) that the subspace of primitive elements
in U(g) is g provided that the ground field is of characteristic zero.

We now associate another invariant to a QUE A. If R is its universal
R-matrix and R, is the image of R under the flip, the formula

Ry R=1®1+ht mod h? (5.11)

defines a unique element ¢ € U(g) ® U(g). Expressing ¢ using (5.8), we get
t =R, + (R,)s;, which immediately proves that

ty =t. (5.12)

Proposition XVI1.5.2. The element t is an invariant symmetric element
of g® g, i.e., we have ty, =t and [A(z),t] = 0 for all z € g. It remains
unchanged under any gauge transformation.

The element ¢ € g® g will be referred to as the canonical 2-tensor of the
quantum enveloping algebra A. Drinfeld calls the pair (g,t) the classical
limit of A and the quantum enveloping algebra A a quantization of the

pair (g, t).
PROOF. We have already observed that ¢ is symmetric. Let us prove that it
belongs to the subspace g ® g. We again use the fact that g is the sub-

space of primitive elements in the enveloping algebra. Let us compute
(A®id 4)(Rq R) using (4.16-4.17). We have

(A®id4)(Ry, R)

((,82)(R))  (ABid,)(R)

= TRy Py Ry1 (P510) 7 Pa1aRig(P30) T Ry @
Identifying the coefficients of h, we get
(A ®1d)(t) = t15 + tos. (5.13)

Now write ¢t = >, =; ® y; where (y;); is a family of linearly independent
elements of U(g). Thus (5.13) becomes

Y AE)ey =) (r,0l+10z) 0y, (5.14)

which implies that Ay(z;) = z; ® 1+ 1®z; for all 7. Since the element z; is

primitive for the comultiplication A, of U(g), it belongs to g. Consequently,

t belongs to g ® Ug. Relation (5.12) implies actually that ¢t isin g® g.
Let us check the invariance of t. By (4.15) applied twice, we get

A(a)Ry R = Ry; RA(a) (5.15)

for all a € A. Identifying the coefficients of h, we obtain Ay (z)t = tAy(x)
for all x € g.
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Finally, let us apply a gauge transformation F to A. Then by (XV.3.9)
we have

(Rp)y  Rp = FRy F5,'Fy)RF™" = FR, RF 1. (5.16)
Taking the coefficients of h, we get ¢, =t where t is the canonical 2-tensor
of the QUE A obtained from A by the gauge-transformation F'. a

At this point, the only explicit quantum enveloping algebras for a given
Lie algebra g we know are the trivial QUE U(g)[[h]] constructed from U(g)
as explained in Example 3 of Section 4 and their gauge-transforms. Since
the universal R-matrix of such a QUE is 1®1, the corresponding canonical
2-tensor vanishes: ¢t = 0.

We now present an example of a QUE with a non-zero canonical 2-tensor.
We shall see more non-trivial examples in Chapters XVII and XIX.

Example 1. (A quantum enveloping algebra associated to the Heisenberg Lie
algebra) We consider the 3-dimensional Lie algebra g with the set {z,y, 2}
as a basis and with Lie bracket determined by

[z,y] =2 and |[z,2]=][y,2]=0.

The symmetric 2-tensor t = 2 ® z is invariant because z is central in the Lie
algebra. We claim that there exists a QUE whose classical limit is (g, ¢).
Indeed, take the trivial bialgebra A = U(g)[[h]] as in Example 3 of Section
4, except that we set R = e"/? and ® = 1®1®1. In order to make sure that
A is a topological braided bialgebra, we have to check Relations (4.15-4.17).
The first one follows from the fact that ¢ is invariant. Relations (4.16-4.17)

with ® = 1®1®1 are equivalent to
ehltia+tia)/2 — ghtia/2ht12/2 g oh(tiattaa)/2 = ohtaa/2ehtas/2 (5 17)

Relations (5.17) hold because the elements t,5, t;5 and ¢, commute with
one another, due to the centrality of z. Now,
Ry R=eM=1®1+ht modh?

shows that t = 2 ® z is the canonical 2-tensor of A.

XVI.6 Symmetrizing the Universal R-Matrix

The aim of this section is to prove that the universal R-matrix R of a
quantum enveloping algebra will always satisfy R = R,; after a suitable
gauge transformation. We start with the following technical result.

Lemma XVI1.6.1. Let A be a topological algebra which is a topologically
free module. Given an element a € A, there exists a unique family (c,,),o
of complex numbers such that

(1 +3 cna"h")z =1+ah. (6.1)

n>0
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PROOF. Any formal series 1 + 3 ., c,a™h" of the above form defines an

element of the inverse limit 4 = lim A/h™A, hence of A since A = A by

hypothesis. Equation (6.1) is equivalent to the system of equations

n—1

2¢; =1 and 2¢c, + Z CpCpep =0 (6.2)

P
p=1

if n > 1. This system has a unique solution as can be seen by an easy
induction. a

The unique element 1+3 ¢, ah" satisfying (6.1) is called the square
root of the element 1+ ah and is denoted by (1 + ah)l/z. Its inverse will be
denoted by (1 4 ah)~1/2.

Proposition XVI1.6.2. Let g be a complex Lie algebra and A be a quan-
tum enveloping algebra for g. Then there exists a gauge transformation
F € ARA with F = 1® 1 modulo h such that, if we set R = Fy RF™!,
then Ry, = R'. Moreover, if A is cocommutative, there exists such an F
satisfying the additional relation FA(a) = A(a)F for all a € A.

PROOF. For any element u € A®A, define T = u,,. If R = FRF™!, then

R = Fﬁgl. We look for an element F such that R’ = R'. In other words
we must solve the equation

FRF ' =FRF, (6.3)
which can also be written in the form
RR=F 'FRF'FR = (FT'FR)*. (6.4)

We claim that "
F= (R(RR)—V?) (6.5)

is a solution of (6.4) where we use the notation defined after Lemma 6.1.
The element F' is invertible and congruent to 1 ® 1 modulo h since R is.
In order to prove the claim, we observe that R(RR) = (RR)R implies
R(RR)" = (RR)"R for all n > 1, hence

Rf(RR) = f(RR)R (6.6)
for any complex formal series f in the variable &; in particular, we have
R(RR)"Y? = (RR)"'/*R. (6.7)
Let us compute F2F?2. By (6.7) we have

F?F? = R(RR)"Y?R(RR)"'/? = (RR)"'?RR(RR)"'/? = 1@ 1.
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Consequently, F2 = F~2. By uniqueness of the square root, we obtain
F = F~!. Using (6.7) again, we derive

(F'FR)? = (F?R)* = (R(RR)""?R)? = (RR(RR)/*)* = RR,

which proves that (6.4) has a solution. This takes care of the first part of
the proposition.

As for the second one, observe that Relation (XV.2.1) and the cocommu-
tativity of A imply that A(a) commutes with R and with R for all a € A.
Consequently, A(a) commutes with F in view of (6.5). O

XVI.7 Exercises

1. Show that L (2 — )1
w _1\yn—1 n—9):,n
L g+ ) (F) g h
n>2
is a square root of 1+ h in the algebra C[[h]] of formal series where

(2n — ) = [IZ; (2k — 1).

2. Let M = V]h]] and N = W][[h]] be topologically free modules.
Show that Hom ;. (M, N) is a topologically free module isomorphic to
Hom(V, W)[[h]]. Deduce that if P is a third topologically free module,
then

Hom (M®N, P) = Hom (M, Hom (N, P)).

3. Let g be a Lie algebra and t € g® g such that [ty9,t;5] = [t13,1035] =0
in U(g)®3. Consider the gauge transformation F' = e". Show that
(Ug[[h]]) 7 is a topological bialgebra.

4. Show that the inverse systems of abelian groups and the maps of
inverse systems form a category Inv such that lim is a functor from

n
Inv to the category Ab of abelian groups. Prove that lim is left adjoint

i3
to the functor assigning to each abelian group A the constant inverse
system (A,,,p,) where A, = A and p,, =id, for all n.

5. Let (C,),,>o be a denumerable family of abelian groups. Consider
the inverse system (A,,p,) where A, = Cy x --- x C,, and p,, is
the natural projection. Prove that the inverse limit of this system is
isomorphic to the direct product of all groups C,,.

6. Let (A,,,p,) be an inverse system of abelian groups. Use the fact that
its inverse limit can be expressed as the kernel of an endomorphism
of [],, A, to prove that for any abelian group C there is a natural
isomorphism

Hom(C,lim A,) = lim Hom(C, A4,,).
n

i3
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7. (The ring of p-adic integers) Given a prime p consider the inverse sys-
tem of rings (Z/p™Z) equipped with the natural projections induced
by the inclusions of ideals (p™) C (p"~!). Show that the inverse limit
Z, is a ring with a unique maximal ideal. Prove that the inverse limit
topology on Z,, can be defined by an ultrametric distance and that
the ring of natural integers Z forms a dense subring of Z,, in which
all integers prime to p are invertible.

XVI.8 Notes

The material of Sections 1-4 is standard. For details on h-adic topology
and completions, read [Bou61], III and [Mat70], Chap. 9. The concept of
a quantum enveloping algebra and the content of Sections 56 are due to
Drinfeld (see [Dri87] and [Dri89b], Section 3). Exercise 3 is taken from
[Enr92].

XVIL9 Appendix. Inverse Limits

An inverse system of abelian groups (A,,,p,) is a family (A,), N of abelian
groups and of morphisms of groups (p, : 4, — A,_1)n>o- Given such a

system we can define its inverse limit lim A, by
n

h_I_];,l An - {(xn)TLZO € H An

n>0

p,(z,) =z,  for alln > 0}. (9.1)

The inverse limit has an abelian group structure as a subset of the direct
product [], -, A, whose group structure is defined component-wise. The
natural projection from [], ., 4, to A, restricts to a morphism of groups
T, : lim A, — A,. It is defined by my((x,),) = z;. If all maps p, are

n
surjective, then so are the maps .
By definition of the inverse limit, we have

PpOoTy = Th_1 (92)

for all n > 0. The inverse limit has the following universal property.

Proposition XVI1.9.1. For any abelian group C and any given family
(fn: C = A,), 5o of morphims of groups such thal p, o fo = foy for all
n > 0, there exists a unique morphism of groups

f:C —lim A,

n

such that w7, o f = f, for alln > 0.
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PrOOF. The family (f,,),, defines a unique morphism of groups f from C
into the direct product of all groups A,. The hypothesis p,, o f,, = f,_1
implies that the image of f lies in the subgroup lim A, . This proves the

n
existence of f. The condition 7, o f = f,, implies its uniqueness. g

The inverse limit is functorial. Define a map from the inverse system
(A,,,p,) to the inverse system (A’,,p,) as a family (f, : A, — A}),>¢ of
morphisms of groups such that p!, o f, = f,_; op,, for all n > 0.

Proposition XV1.9.2. Under the previous hypothesis, there ezists a
unique morphism of groups

f=lim f, :lim 4, — lim A,
n n n

such that 7, o f = f, om, for alln > 0.

PROOF. The family (f, o, : lim A, — A}), satisfies the hypothesis of

n

n
Proposition 9.1. It follows that there exists a unique morphism f such that
7, o f = f, om, for all n. ]

For composable maps of inverse systems, we have
(tim £,) o (tim g,,) = tim (£, ©9,)-
n n n

The inverse limit of any inverse system (A4,,, p,,) possesses a natural topol-
ogy called the inverse limit topology. 1t is obtained as follows. Put the dis-
crete topology on each A, , i.e., the topology for which each subset is an
open set. The inverse limit topology on lim A, is the restriction of the di-

n
rect product topology on [],,~q A4,. In other words, a basis of open sets of
the inverse limit is given by the family of all subsets 7, '(U,,) where n runs
over the non-negative integers and U,, is any subset of A,,. By definition of
this topology, the structural maps 7, from lim A, to A, are continuous.

n
Moreover, a map f from a topological set to lim A, is continuous with

respect to the inverse limit topology if and only Tilf the map 7, o f into A4,
is continuous for all n > 0.

One may replace the word “abelian group” by “ring”, “module”. .. in the
above definition. The statements of the Appendix remain true in this case, a
fact we have consistently used in this chapter without further explanation.
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Drinfeld and Jimbo’s Quantum
Enveloping Algebras

In Part I we have investigated at length the quantum enveloping alge-
bra of s{(2). In this chapter we give a brief presentation of the algebras
U, (g) associated by Drinfeld [Dri85][Dri87] and Jimbo [Jim85] to the other
semisimple Lie algebras g. The algebras U, (g) provide non-trivial examples
of quantum enveloping algebras as defined in XVL5 as well as examples
of isotopy invariants of links. We shall also need U, (g) in Chapter XIX
to state the Drinfeld-Kohno theorem on the monodromy of the Knizhnik-
Zamolodchikov systems. Finally, in Section 4 we shall determine an explicit
universal R-matrix for the quantum enveloping algebra of s[(2), using the
crossed bimodules of I1X.5.

XVII.1 Semisimple Lie Algebras

Before we present Drinfeld and Jimbo’s quantum enveloping algebras, we
recall a few facts from the theory of complex semisimple Lie algebras.

Let g be a finite-dimensional complex Lie algebra. For any finite-dimen-
sional representation p of g, we can define a bilinear form on g by

<z,y >,=tr(p(z)p(y)) (1.1)

where z, %y are elements of g. From the properties of the trace, we immedi-
ately see that this bilinear form is symmetric and invariant, i.e., we have

<y,x>,=<z,y>, and <[z,yl,z>,=<=,y,2] >, (1.2)
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for all elements z, y, and z of g. When p = ad is the adjoint representation
of g, the bilinear form <, >, is called the Killing form of g.

A semisimple Lie algebra is a finite-dimensional complex Lie algebra
whose Killing form is non-degenerate. For any basis {z,}, of g, there exists
a unique basis {z'}, called the dual basis of {z,}; and determined by

< a:i,a:j >ad= §ij
for all 7, j. Define linear forms a;; and 3;; on g by
[z;,x] = Z @;;(7)z; and [z%,z] = Z B, (z)x?. (1.3)
J J
Lemma XVIL1.1. We have §;; = —ay; for all i,j.
PROOF. Applying (1.2) to the Killing form, we get
<[z x], 27 > 4=<x;,[z,77] >4 - (1.4)

Expanding the left-hand side of (1.4) gives < [z;,z], 27 >,4 = a;;(x) whereas

we have <z, [z,27] >,4 = —0;;() for the right-hand side. O

We now define the Casimir element C of g as the element
C= Z z,x’ (1.5)

of the enveloping algebra U(g).

Proposition XVII.1.2. The Casimir element C is independent of the ba-
sis {z;}; and belongs to the centre of U(g).

PRroOF. The first assertion follows from a well-known fact in linear algebra:
if {y;}; is a basis related to the basis {z,;}; by y; = >_; A;;z; where the
scalars (4,;);; form an invertible matrix A, then the dual basis {y'}; of the
basis {y, }, is related to {z'}, by

y' =) B’
J
; 1s the inverse of the matrix A. Now,

Douy = ) (Z Bkz‘Aia‘)%xk
i 7.k i
= Z éijj:z:k
7,k
= Z xja:j =(C,
J

which proves that C is independent of the choice of bases.

where B = (B,;),
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In order to prove that C is central, it suffices to check that C commutes
with any element z of g. We have

> [zt a]

Z frz[flfz,ﬂj] + Z [xi,x]xi
2 (8, @2’ + oy (@)e,0)

= 0

[C, ]

by Lemma 1.1. O

Using the comultiplication A of the enveloping algebra, we derive the
element

t= (1.6)

A«DA1®CL4?®1_§:mN@ﬂ+x%a@
2 B 2

of g® g. This element will play a central role in Chapter XIX. It enjoys the
following properties.

Proposition XVIIL.1.3. The element t is a symmetric g-invariant ele-
ment of g R g, i.e., we have

tyy =t and [A(z),f]=0 (1.7)
for all z € g, where ty; =7, (¢).

PROOF. The symmetry of ¢ is clear from its definition. As for the g-
invariance, it is enough to prove that A(z) commutes with A(C') and with
10 C+C®&1. For the first condition, we have [A(z), A(C)] = A([z,C]) =0
since A is a morphism of algebras and C' is central. We also have

A2),10C+C@1]=1%[z,C]+ [z,Cl®1=0

again because C is central. O

Example 1. Consider the 3-dimensional simple Lie algebra s1(2) of Chap-
ter V. It is easy to check that its Killing form is non-degenerate, and that the
dual of the basis {X,Y, H} considered in V.3 is the basis {Y/4, X/4, H/8}.
Consequently, for s{(2) we get

1 HoH
= . 1.
t AX®Y+Y®X+ 5 ) (1.8)
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Elie Cartan characterized every semisimple Lie algebra by its Cartan
matriz, which is a square matrix A = (a;;)1<; j<, With the following prop-
erties:

(i) its coefficients a;; are non-positive integers when ¢ # j, and a;; = 2,

(ii) there exists a diagonal matrix D = diag(dy,...,d,) with entries,
called the root lengths, in the set {1,2,3} such that the matrix DA is
symmetric positive definite.

According to a theorem of Serre’s [Ser65], the enveloping algebra U(g) of
g is isomorphic to the algebra generated by 3n generators {X,,Y;, H; }1<i<p
and the relations o

[H,H;] =0, [X,;,Y;]=¢6;H, (1.9)
[Hi,Xj] =a;;X;, [H”YJ] = —a;;Y;, (1.10)
and if i # j
1=ai; 1—a..
> <—1>’“( k ) XFX X7 =0 (1.11)
k=0
and
g 1—a,,
> <—1>’“( k ) A0 AR ) (1.12)
k=0

The Cartan matrix for s{(2) is the 1 x I-matrix A = (2) with D = (1).
In this case, the presentation above reduces to the formulas (V.3.2).

We end this summary by a few words on the representation theory of a
semisimple Lie algebra g. Any finite-dimensional g-module is semisimple,
i.e., is the direct sum of simple modules. The finite-dimensional simple g-
modules are classified by the set of dominant weights: a dominant weight is a
linear form A on the subspace §j of g spanned by Hy, ..., H,, such that A(H,)
is a non-negative integer for all ¢ = 1,...,n. For every dominant weight A,
there exists a unique finite-dimensional simple g-module V, generated by
an element v,, called a highest weight vector, such that

H,v, = AM(H,)vy, and X,v, =0 (1.13)

foralli =1,...,n. All finite-dimensional simple g-modules are of this form.
The Casimir element C' acts by a positive scalar on every simple g-module
V, of dimension > 1, i.e., with A # 0. We have proved these facts for s[(2)
in Chapter V. In the case of s[(2) the set of dominant weights is in bijection
with N, the dominant weight A corresponding to the integer n being defined
by A(H) = n.

XVII.2 Drinfeld-Jimbo Algebras

Before we describe the quantum enveloping algebra U}, (g) attached by Drin-
feld and Jimbo to any complex semisimple Lie algebra g, we introduce the
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notion of a topological algebra presented by generators and relations. Recall
the notation K = C[[h]] and K, = C[h]/(h"™) from XVI.1.

Given a set X, we define the topologically free algebra generated by X as
the algebra of formal series over the free complex algebra generated by the
set X:

K(X) = (C(X))[[h]]-

We equip K(X) with the h-adic topology. It has the following universal
property which is the topological counterpart of Proposition 1.2.1.

Proposition XVIL.2.1. Let f : X — A be a map from a set X to a
separated complete K-algebra A. Then there exists a unique continuous K-
linear map f: K(X) — A such that f(z) = f(x) for all z € X.

Proor. Clearly, f extends to a unique K, -linear algebra morphism
fu: Kn<X> — A/h"A.

We then take the inverse limit of the maps f,,. The uniqueness of f results
from the fact that the K-subalgebra generated by X is dense in K(X). O

Definition XVII.2.2. Let X be a set and R be a subset of the topologically
free algebra K{(X) generated by X. A K-algebra A is said to be the K-
algebra topologically generated by the set X of generators and the set R of
relations if A is isomorphic to the quotient of K{X) by the closure (for the
h-adic topology) of the two-sided ideal generated by R.

As an immediate consequence of Proposition 2.1 and of Definition 2.2,
we see that the space of morphisms of K-algebras from A to a separated
complete K-algebra A’ is in bijection with the set of maps f : X — A’ such
that f vanishes on R.

We also recall the definition of the following symbols already considered
in VI.1. We added a subscript ¢ in order to stress the dependence on the
parameter g. For any invertible element ¢ and any integer n, define

" —q "
n), = ———.
7l q—q!

If 7 is a non-negative integer, set [0],! =1 and if r > 0

[n],ln—1],...[n—r+1],
[r],!
We now turn to the definition of the Drinfeld-Jimbo algebra U, (g). Let

g be a complex semisimple Lie algebra and A = (a;;),<; j<,, be its Cartan
matrix, with the diagonal matrix D = diag(d,,...,d,) of root lengths.

i, = (11,12, - [n], and “L:
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Definition XVIIL.2.3. The algebra U,(g) is defined to be the K-algebra
topologically generated by the set of generators {X;,Y;, H;} <<, and the
relations

sinh(hd,; H,/2)
H,H|= X, Y, ]=6,——————, 2.1
[Hs, ]] 0, X, J] Y sinh(hd,/2) (2.1)
[HivXj] =a;; X, [HWYJ] = ‘ainj (2.2)
and if i £ j
1-as; 1
k=0 qi
and
].Aaq',j 1 _a. 1 _—
ST [T [
k=0 qi
where q; = eMdi/2 qnd where sinh is the formal series
et e % $2n+1
inh(z) = —— = .
sinh(z) 2 2n 1 1)

n>0

Note that, although sinh(hd,/2) is not invertible, it is the product of h
with a unique invertible element, so that sinh(hd,H,/2)/sinh(hd;/2) is a
well-defined element of K{({X,,Y,, H;},;<,). We have

[ RN 2

sinh(hd; H,/2)

=H, d h.
sinh(hd,/2) i MO

Observe also that Relations (2.2) imply that
e)\hHin — e)\ainje)\hHi, and e)\hHiyj — e—)\aijy"je)\hHi (25)

for all 4,7 and any complex number .
We now state the main result of this section.

Theorem XVIIL.2.4. The topological algebra U, (g) is a quantum envelop-
ing algebra

(Un(9); s M Ds €y Py By
for the Lie algebra g with ®, = 1®1®1 and comultiplication A, and counit
ey, determined by

Ay(H) =H;©1+1® H, (2.6)
AL(X) = X, @ ehdifi/t g emhdili/d g X, (2.7)
AL () =Y, @ hditli/t 4 gmhdii/t gy, (2.8)

and
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We refer to [Dri87] for a proof. Let us make a few remarks. First, if we
set h = 0 in Relations (2.1-2.4) and (2.6-2.9), we recover the enveloping
algebra of g in Serre’s presentation. In other words, we have an isomorphism
of algebras

Un(g)/hUy(g) = U(g)- (2.10)

The fact that U, (g) is a topologically free K-module is not straightforward.
It can be proved by constructing a Poincaré-Birkhoff-Witt-type basis. One
has also to check that (2.6-2.9) define morphisms of algebras A, and ¢,.
For A, this follows from (2.5) and the g-binomial formula of Proposition
Iv.2.2.

The topological bialgebra U, (g) has an antipode S, determined by

Sh(Hi) = _Hia Sh(Xi) = “ehdiﬂXia Sh(Yz‘) = ’“eghdipyi- (2~11)

Note that the comultiplication of U, (g) is not cocommutative and that the
antipode is not involutive. Nevertheless, for all a € U, (g) we have

S2(a) = eMPaehr (2.12)

where p = Z?:l w; H,, the scalars u;, being determined from the inverse
A™" of the Cartan matrix by p; = Y27_, (A7) ;,d;.

More importantly, Theorem 2.4 implicitly states that U, (g) has a uni-
versal R-matrix, which we denote by R,. Drinfeld proved that R, is of the
form

ML+ L(H®1-1QH )
R,=) e ( 1 o P, (2.13)
LEN™
where H, = zl§€<n 0,H, for £ =(4y,...,¢,), t, is the element

to= >  (DAS'H,®H, (2.14)

1<i,j<n

of g® g, and P, is a polynomial in the variables X; ® 1,..., X, ® 1 and
in1®Y,...,1®Y, (homogeneous of degree ¢; in X; ® 1 and 1®Y;). We
have P;=1® 1 and

R,=1®1 modh. (2.15)

The polynomials P, can be determined by induction on £ using Relations
(XVI1.4.15-4.17). Explicit expressions for R;, can be found in [KR90] [LS90]
[Ros89] [Ros92].

The representation theory of Uy, (g) is parallel to that of the Lie algebra g.
Indeed, for any dominant weight X of g, there exists a unique topologically
free U, (g)-module V, satisfying

Vy/hVy =V, (2.16)



410 Chapter XVII. Drinfeld-Jimbo Quantum Enveloping Algebras

and generated by an element v,, called a highest weight vector, such that
Hyu, = AH)v, and X,v, =0 (2.17)

for all 4 = 1,...,n, as in the classical case. Rosso [Ros88| proved that any
topologically free U, (g)-module W with dim(W/hW) < oo was a direct
sum of modules of the form v; We shall give an explanation of this fact
in XVIIT.4.

XVIIL.3 Quantum Group Invariants of Links

We now show how to construct an isotopy invariant @ out of any com-
plex semisimple Lie algebra g and of any finite-dimensional simple g-module
V.

Consider the category U, (g)-Mod , of finite-rank topologically free U, (g)-
modules, i.e., of topological modules of the form V[[h]] where V is a finite-
dimensional vector space. This category is a tensor category for the topo-
logical tensor product ® of XVI.3, the associativity and unit constraints
being the canonical isomorphisms (XVI.3.1) and (XVL.3.3). Actually, the
category U, (g)-Mod #r is a braided tensor category with left duality: the
braiding is induced by the universal R-matrix Iz, while the duality is given
on objects by V[[h]]* = V*[[h]]. The structure maps b and d of duality
are C[[h]]-linearly extended from the evaluation and coevaluation maps of
11.2-3.

We claim that U,,(g)-Mody, is a ribbon category. To sustain the claim,
it suffices to exhibit a twist as defined in XIV.3. We proceed as in XIV.6.
Let u be the invertible element of U, (g) defined by Formula (VIIL.4.1),
which still makes sense in the present context. We have u = 1 modulo h.
By Proposition VIII.4.1 and by (2.12), we get

S2(a) = uau™! = e"ae "
for all a € U, (g). This implies that
0 =e Py =ue (3.1)

belongs to the centre of Uy, (g).

Proposition XVIL.3.1. The central element 0 satisfies the relations
A(0) = (Ry)nRy) 1 (0®0), €(0)=1, S(6)=09.
PROOF. We claim that

0? = uS(u) = S(uw)u. (3.2)
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Then Proposition 3.1 follows from Proposition VIII.4.5 and from the fact
that 4.S(u) has a unique square root whose constant term is 1.
Relation (3.2) is reduced in [Dri89a], Proposition 5.1 to showing that

both terms have the same action on all modules of the form ?/\ It is
enough to evaluate the central elements S(u)u and 6° = e 2*u? on a

highest weight vector of f/} Since u can be expressed in such a way that
the generators X, killing the highest weight vector appear to the right of
Y;, we see that the actions of S(u)u and of 6% are the same as the actions
of the elements obtained from the part of R, corresponding to £ = 0 in
Formula (2.13). A simple computation shows then that S(u)u and of 82 act

by the same scalar on /V: For more details, see [Dri89al, Section 5. O

Combining Propositions 3.1 and XIV.6.2, we conclude that the action
by 7! induces a twist on the category U, (g)-Mod ,., thus turning it into
a ribbon category.

By Section 2, any finite-dimensional simple g-module V' gives rise to a
unique object V of U,,(g)-Mod, such that V/hV V. Applying Theorem

X1IV.5.1 to our ribbon category and to the object V7 we get a tensor functor
Fy; from the category R of framed tangles to Uy, (g)-Mody,, sending the

object (+) to V. Restricting F; to framed links yields an isotopy invariant
Qv for framed links with values in C[[h]]. It is easy to check that

Qg (L) =dim(V)? modh (3.3)

for any link of order d. Since Uy (g)-Mod,, is a ribbon category, we have
a quantum dimension for any object. Actually, by definition of the functor
F; above, dim, (V') coincides with the value of ¢ v on the trivial knot. Let
us explain how one may determine dim, (V') when V' =V, for a dominant
weight A. By Proposition XIV.6.4, dimq(f/;) is the trace of the action of
0~y = e on ‘7; Since V;\ has the same weight decomposition as the g-
module V, = ?;/h‘//j\ and since " acts on a vector of weight p by e?<H*>

we may compute dimq(f/:) as follows. Use Weyl's character formula to

determine the character
V) => d,e" (3.4)
o

of the simple module V, (as defined, e.g., in [Bou60], Chap. 8, §9) where u
runs over the weights of V. Then

dim, ( VA Zd eh<hp> (3.5)

When h = 0, we recover the dimension of V. Therefore, the quantum
dimension of V, may be viewed as a g-analogue of the dimension of V.
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We end this section by stating a special property of the universal R-
matrix R, of U, (g). In the next chapter (see Corollary XVIII.4.2) we shall
establish the existence of a unique isomorphism of topological algebras «
from the centre of U),(g) to the algebra Z(g)[[h]] of formal series over the
centre Z(g) of U(g) such that a = idz ;) modulo h. The Casimir element
Cin Z(g) C Z(g)[[h]], as defined by (1.5), can be pulled back to a unique
central element, the quantum Casimir element,

C, =a *0) (3.6)
of U, (g) satisfying
C,=C modh. (3.7)
Proposition 5.1 of [Dri89a] asserts that

g = ehCn/2, (3.8)

This is proved along the same lines as Proposition 3.1 above. In order to
determine the action of C), on Vj, it is enough to evaluate the action of the
classical Casimir operator C on V,, which is well-known.

Combining (3.8) and Proposition 3.1, we get the following property for
the universal R-matrix of U, (g).

Proposition XVIL3.2. The universal R-matriz Ry, of Uy, (g) satisfies the

relation
(Rp)a By, = Ah(ehoh/2)((fhch/2 ® e-hCh/Q)'

As an immediate consequence, we see that the canonical 2-tensor of U}, (g)
(as defined in XVL5) is the symmetric invariant 2-tensor ¢ of (1.6).

XVIL4 The Case of sl(2)

When the Lie algebra g is the three-dimensional Lie algebra s[(2), then
Definition 2.3 implies that U, = U, (s(2)) is the K-algebra topologically
generated by the three variables X,Y, H and the relations

[H,X]=2X, [HY]=-2v (4.1)
and : hH/2 hH/2
X,Y] = SlI'lh(hH/2) _e€ —e . (4.2)
sinh(h/2) eh/2 — e=h/2

The following relates the Hopf algebra U, = U, (sl(2)) of Chapters VI
and VII with U,,. We assume that the ground field k£ on which U, is defined
is the field of fractions of the algebra K of complex formal series.
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Proposition XVIIL.4.1. There exists a map of Hopf algebras i : U, — U,
such that

i(B) = XeM/4 i(F) =e My, i(K) =M (KT = e M2
(4.3)
and i(q) = e"/2,

The proof is left as an exercise (use Relation (2.5) among others). Ac-
tually, the map 7 is injective, which allows one to identify U, with the
subalgebra of U, generated by ¢ = eh? B = X/t o= g~hH/Ay
K =¢e"/2 and K1 = ¢ M1/2,

We now describe the universal R-matrix R;, of the topological braided
bialgebra U, .

Theorem XVII1.4.2. The element

—1\¢
R, = emg_@ (Z (g—q ) qé(e—1)/2 (E(€®F£)>

=

—1y¢
Z (¢g—-aq7) q—e(4+1)/2e%(H§H+%(éH®1—1®eH)> (X! @V

= 4,

of U,®U, is a universal R-matriz for U, (sl(2)).

Observe that it is because of the factor ¢”—+ — that R, is not well-
defined on the subalgebra U, thus preventing U, from being a braided
Hopf algebra in the purely algebraic sense of VIIL.2.

PROOF. The second equality is easy: it follows from the definitions of £
and F'. We leave it to the reader and concentrate on the first one. There are
several proofs for it. The first one follows from a direct checking of Relations
(XV1.4.15-4.17). Another method consists in adapting Drinfeld’s theory of
the quantum double (as developed in Chapter IX) to the topological setting
and then in proceeding along the lines of the proof of Theorem 1X.7.1. This
second method has been used by Rosso in [Ros89]. We shall sketch a third
way using topological crossed bimodules as defined at the end of XVI.4.
This proof goes as follows. As in IX.6 we start by defining a subbialgebra
By, of U,. It is the closure of the K-submodule of U, generated by the
linearly independent set { H™E"}, , -, where E/ = XelH/4 a5 above. From
(4.1) and (4.3) it is clear that B, is closed under the product and the
coproduct in U, and that the multiplication in B, is determined by the
relation
[H,E] =2E, (4.4)

and the comultiplication by

AH) =1 H+H®1 and AE)=10F+E®K (4.5)
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where K = ¢M1/2_ Observe also that

KE = ¢*EK (4.6)

h/2

for g = e"/%. We now characterize topological crossed B;,-bimodules.

Proposition XVI1.4.3. Let M be a topological crossed By, -bimodule with
coaction A,,. Then for any element x € M we have

qn(nfl)/2 mAmN o IT™M I
Ay (z) = §> —*——m![n]q! (AT'AR) (z)H™E
m,n>0

where Ay and A, are h-adically locally nilpotent K -linear endomorphisms
of M such that

[Alv A2] = WgA% (4-7)
[H, A =0, [HA)]=-2A,, (4.8)
[E,A] = —%E, [E,A,] = K — €221, (4.9)

A K-linear endomorphism A of M is said to be h-adically locally nilpotent
if for all z € M there exists an integer n such that A*(z) C hM for all
i > n. The h-adic local nilpotence condition on A; and A, ensures that
the infinite sum in the statement above converges in the h-adic topology.
We identified E, H, and K with their actions on M in Relations (4.7-4.9).
Proposition 4.3 will be proved later.

Let us denote by D,, the K-algebra topologically generated by I, H, Ay,
A, and Relations (4.4) and (4.7-4.9). Proposition 4.3 can be interpreted as
saying that a topological crossed Bj-bimodule is the same as a topological
D) -module with an h-adic local nilpotence condition. The algebra D), can
be considered as a kind of quantum double for B; in view of Theorem
I1X.5.2.

The next step in the proof of Theorem 4.2 is the following.

Proposition XVI1.4.4. There exists a morphism of topological algebras
x : Dy, — U, such that

h -
X(E):E’ X(H):H’ X(AI)ZZH’ X(AZ):(q_q 1)F'
Observe that x(4A;) = x(A;) = 0 mod h. Consequently, x(4A;) and
X(A,) are also h-adically locally nilpotent.

PROOF. It is essentially enough to check that x(E), x(H), x(A;) and x(A,)
satisfy Relations (4.4) and (4.7-4.9). This is straightforward, except possi-
bly for the second formula in (4.9).
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Let us check it: we have

X(E),x(A5)] = (g—q¢ DIE,F]
= K-K
_ K _ e—hH/2
= X(K —e 8.

O

The final step of the proof of Theorem 4.2 goes as follows: By Propo-
sitions 4.3-4.4 we know that any topological U,-module becomes a topo-
logical crossed Bj,-bimodule via x. In view of Relation (IX.5.5) a universal
R-matrix for U, is given by

qn(n~1)/2 =
Ry = Y = X(H"E")®x(AT'AR). (4.10)
o m.[n]q.
By definition of x we get
_ ,—1\n hm
Rh — Z (qm'[il] ') qn(n—l)/2 FHmEn Q H™E"
m,n>0 UHe”
h™ 4=q )" nn- n o g
- (Z 4mm! Hm@Hm)(Z ( [n] ') q VRN F )
m>0 ) n>0 q’

(g—q )"
6h(H®H)/4<Z ' qn(n—l)/2 E" @ Fn)
= [n]q

We now prove Proposition 4.3.

Proof of Proposition 4.3. For any x in M, the element A, (z) is of the form

Apy(z)= Y AR"P(@)H™E" mod hP (4.11)

m,n>0

for all p > 0. In the inverse limit the family (A};™?), assembles to form a

K-linear endomorphism AY;™ of M. Now the sum in (4.11) is finite, which
implies that AY,"(z) vanishes modulo h for m and n large enough.

The counitarity of A,, yields Ag’do = id,, whereas the coassociativity
gives

. . ] y t 7 — . .
aagt =) S G (T agm @y
qZ

n 2t¢! 1
>0

for all 4, j,m,n after using the classical binomial formula as well as the
¢-binomial formula of Proposition IV.2.2. Here we agree that A" = 0
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when m or n < 0. Set A, = A} and A, = A(I)\}Il. By (4.12) and (VI.1.7)
we get

1 1
A;n/[,o _ —'(Al 0) EAT{”’ (413)
n(n—1) n{n—1)/2
A0 _ PN [ S—— (4.14)
M el M T
00 qn(nfl)/Q
AT = AYAY = WAl Aj. (4.15)

From (4.12) and (4.15) we derive

h

ht h
AyA, = Z _Al o A}\}Il + §A071 =47, + §A2>

2t¢!
t>0

which is equivalent to Relation (4.7).

Let us prove that A; and A, are h-adically locally nilpotent. Indeed,
we know that for any € M we have ATY%(z) = 0 modulo h for m large
enough. Now, AT%(z) = AT'(z). Therefore, AT'(z) C hM for m large
enough. The h-adic local nilpotence of A, is proved similarly.

So far we have expressed the fact that M is a comodule. Now we deal
with Relation (XVI1.4.23). Lengthy, but easy, computations using

EH™ =(H—-2)"E and E"H = (H —-2n)E"

show that (XVI.4.23) is equivalent to the two relations

ATH = HATY™ 4 2n A" (4.16)
and
M+ _
m,n m,n—1 m—t,n m+r,n—1
ATE 4 ATTUR = ZM'EA +Y (- < . >AM
t>0 >0
(4.17)

for all m,n > 0. Specializing the exponents m and n to 0 and 1 in (4.16)
gives Relations (4.8) whereas setting m = 1 and n = 0 in (4.17) gives
[E,A,] = —2E. When we set m = 0 and n = 1 in (4.17), then necessarily
t =0 and we get

ME+K =EA + ) (=2)"A}.
>0

Therefore,
AT
(B, 8y =K = (-2) = = K — 7%,

rrl

which is the second formula in (4.9). This completes the proof of Proposi-
tion 4.3. 0
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We end this section by an explicit description of the topologically free U, -
modules extending the simple U -modules V'(n) of V.4. For any nonnegative
integer n, consider a (n + 1)-dimensional complex vector space V(n) with
a basis {vy,...,v,} and the free K-module 17; =V@n)h] =V o K.
Consider the three (n+ 1) x (n 4 1)-matrices

0 [n], 0 - 0
0 0 [n-1, - 0
)= | 5o
0 0 . 1
0 O 0 0
0 0 0 0
1 0 0 0
0 0 [n], O
and
n 0 0 0
0 n—-2 0 0
pn(H) = N . . N .
0 0 e o —n+2 0
0 0 0 —n
where ¢ = €"/? and [n], = % The matrices p,(X), p,(Y), and

0, (H) satisfy Relations (4.1-4.2) and, hence, define a topological U}, -module
structure on V,,. Observe that

V,/hV, =V(n) (4.18)

as g-modules and that, when viewed as a U -module via the injection 7 of
Proposition 4.1, X//\; is isomorphic to the simple U -module V; , of VI.3.
Let us check by a direct computation that the quantum dimension of V,,

as defined in Section 3 is given by

dim, V,, = [dim(V(n))], = [n+ 1], (4.19)

q

where ¢ = €2, Indeed, the element p defined in Section 2 is p = % in the

case of s[(2). By Section 3, dim,(V},) is equal to the trace of the action of
hp
e’
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Therefore,
dlmq(‘//vn) _ enh/2 + e(n—2)h/2 4t e—(n~2)h/2 + e—nh/Z
— qn + qn—2 NS qﬁ(n—2) + q—n
qn+1 _ q-n—l
=l

The elements X and Y, and hence, £ and F' act nilpotently on ‘7; S0
that it makes sense to apply the universal E-matrix R, to it. This allows
us to build a K-linear automorphism c,, by

(v ®vy) = (Rh(”1 ®vz))21

where vy,v, € Vn as in VIIL.3. The automorphisms c, are solutions of
the Yang-Baxter equation. In the case of /‘Z, an immediate application of
Theorem 4.2 shows that ¢; is defined in the basis consisting of the vectors
Vg ® Vg, V1 @ vy, Uy @ vy, V; ® vy by the matrix

g 0 0 0
—12 0 ¢ O 0
q 00 0 1 , (4.20)
0 01 g—qt

an R-matrix already encountered in VIIL.7 where it allowed us to define
the bialgebra M, (2) and its quotient SL,(2) using the FRT construction.

This completes our study of the “quantum groups” associated to SL(2)
and of their relations to the R-matrix of (4.20).

XVIL.5 Exercises

1. Compute P, in Formula (2.13) for R, when ¢ = (0,...,1,...,0) where
1 occurs exactly once.

2. Show that U, (sl(2)) is topologically free.

3. Let g = sl(2) and V = V/(1). Relate the isotopy invariant @, to the
invariant <I>27q of Proposition X.4.7.

XVIL.6 Notes

A full account of the theory of semisimple Lie algebras can be found, for
instance, in [Bou60][Dix74][Hum72][Jac79][Ser65][Var74]. See [Bou60] for
the complete list of Cartan matrices.
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The presentation we gave in Section 2 for U}, (g) as an algebra over C|[h]]
is due to Drinfeld [Dri85] [Dri87]. The version considered by Jimbo in
[Jim85] is the algebraic variant U, (g) already discussed in VL.7. The latter

can be viewed as the Hopf subalgebra of U, (g) generated by ¢ = "/, X,
Y, K, = eMdiHi/2 and Ki_1 fori=1,...,n.

In the special case g = s1(2), the algebra U}, (sl(2)) had previously been
constructed by Kulish and Reshetikhin [KR81] with the Hopf algebra struc-
ture found by Sklyanin [Skl85].

Drinfeld devised the quantum double construction precisely in order to
find a universal R-matrix for U, (g). This method was applied by Drinfeld
[Dri87] himself to give an explicit form of R, in the case s{(2) and by Rosso
[Ros89] in the case sl(n). Expressions of the universal R-matrix in the
general case are due to Kirillov-Reshetikhin [KR90] and to Levendorsky-
Soibelman [L.S90).

The representation theory of U, g was elucidated by Lusztig [Lus88] and
Rosso [Ros88].



Chapter XVIII

Cohomology and Rigidity
Theorems

In this chapter we prove two rigidity theorems, both needed in Chapter
XIX. The first one is classical: it asserts that any formal deformation of the
enveloping algebra of a semisimple Lie algebra is trivial. The proof is based
on the vanishing of certain cohomology groups. The second rigidity result is
due to Drinfeld [Dri89b] [Dri90]. It states that if A and A" are quantum en-
veloping algebras with the same underlying cocommutative bialgebras and
the same universal R-matrices, then there exists a gauge transformation
from A to A’. The proof again relies on some cohomological considerations,
this time involving the cobar complex of a symmetric coalgebra.
The ground field is assumed to be the field of complex numbers.

XVIIL.1 Cohomology of Lie Algebras

Let g be a Lie algebra and M be a left g-module, i.e., a vector space with
a bilinear map g x M — M such that

[z,ylm = z(ym) — y(zm) (1.1)

for all x,y € g and m € M. It was shown in V.2 that a left g-module is the
same as a left module over the enveloping algebra U(g) of g.

For n > 0, let C™(g, M) = Hom(A"g, M) be the space of all antisym-
metric n-linear maps from g to M. An n-linear map f is antisymmetric
i f(To1ys s Tomy) = €(0)f(z1,...,2,) for all zy,...,z, € g and all
permutations o of the set {1,...,n}. If n = 0, we set C"(g, M) = M.
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For f € C™(g, M) we define a (n + 1)-linear map 6f by

(0f) (1, s mpyiy)
= Z (—1)i+jf([ajz-,3:j],x1,...,@,...,fj,...,zn+1)

1<i<j<n+1

+ Z (D) flmy, o T Tgy) (1.2)
1<i<n+1

o~

for all #),...,z,,; € g. The hat on a letter means that it has been
omitted. If f belongs to C%(g, M) = M, we set (6f)(z) = zf. A classical
computation using the Jacobi identity and the definition of a g-module
gives the following.

Lemma XVIIL1.1. If f isin C"(g, M), then 6f is in O™ (g, M). More-
over, 606 = 0.

Let us denote the kernel and the image of 6 in C™(g, M) by Z™(g, M)
and B"(g, M) respectively. An element of Z"(g, M) is called an n-cocycle
whereas an element of B"(g, M) is called a n-coboundary. Lemma 1.1 im-
plies that B™(g, M) is a vector subspace of Z"(g, M). This allows us to
consider the quotient space

H"(g, M) = 2"(g, M)/B" (g, M) (1.3)

which is called the n-th cohomology group of the Lie algebra g with coeffi-
cients in the g-module M.
Let us describe H" (g, M) in degree n = 0,1,2. In degree 0 we have

H%g, M) =2"g,M)={meM|gm=0}.
A linear map f : g — M is a 1-cocycle if and only if
fll,y)) =z f(y) —yf(z) (1.4)

for all z,y € g. In other words, a 1-cocycle is a derivation from g to M. It is
a 1-coboundary if and only if it is an inner derivation, i.e., there exists an
element m in M such that f(z) = am for all z in g. Thus, the cohomology
group H'(g, M) classifies all derivations up to inner derivations.

In degree 2 an antisymmetric bilinear map f : g x g — M is a cocycle if
and only if

zf(y. 2)+yf(z 2)+zf (@, y)= [z, 9l 2) = f(ly, 2], 2) = f([2, 2], ) = O (1.5)

for all z,y, z € g. It is a coboundary if and only if there exists a linear map
o : g — M such that for all z,y we have

flz,y) = zaly) — ya(z) — o[z, y]). (1.6)
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We shall see in the next section that 2-cocycles appear when we “deform”
Lie algebras and their enveloping algebras.

The second cohomology group H 2(g,M ) has also an interpretation in
terms of extensions of g. These are defined as follows. Let g be a Lie algebra
and M be a left g-module. An extension of the Lie algebra g with kernel
M is a Lie algebra g together with a surjective morphism p : g — g of Lie
algebras such that

(i) the kernel of p (which is a Lie ideal in g) is M, and

(ii) for any z € g and m € M, we have

[, m] = —[m, z] = p(x)m. (1.7)

Such an extension is split if there exists a morphism s : g — g of Lie
algebras such that p o s = id;. The following relates extensions of g to
cohomology.

Proposition XVIIL.1.2. If H*(g, M) = 0, then any extension of g with
kernel M is split.

PROOF. Let us decompose the vector space g as g€ M. By definition of
an extension, the Lie bracket on g = g @ M is necessarily of the form

[, m), (g )] = ([, 9], 2n = ym + () (L8)

where z,y € g, m,n € M, and f is a bilinear map from g x g into M. Since
a Lie bracket is antisymmetric, f has to be antisymmetric. The Jacobi
identity for the bracket (1.8) forces another condition on f which is nothing
else than Relation (1.5). In other words, f is a 2-cocycle with values in M.
By hypothesis, f is a 2-coboundary, which means that there exists a linear
map « : g — M such that (1.6) holds. Define the linear map s = (id, —«)
from g to g = g€P M. We have pos = id,. Let us check that s is a morphism
of Lie algebras, which will show that the extension is split. We have

[s(z),s(y)] = [(fﬂ,
= ( ,—zaly) + yalx) + f(x, y))
(

a([z, y]) )

,y])
We used (1.6) in the third equality. O

In the next section we shall need the following corollary to Proposition
1.2. Let us consider a Lie algebra g and a U(g)-bimodule M, i.e., a vector
space M with a left and a right action of U(g) such that (u;m)uy = u; (mu,)
for all u;,u, € U(g) and m € M. We denote by M the vector space M
equipped with the left g-module structure defined by z - m = zm — mx for
allz € gand m € M.
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Corollary XVIIL.1.3. Let f : U(g) x U(g) — M be a bilinear map such
that for all z,y,z in U(yg), we have f(1,z) = f(z,1) =0 and

Then, if H*(g, M) = 0, there exists a linear map o : U(g) — M such that
a(l) =0 and
fz,y) = zaly) — alzy) + a(z)y (1.10)

for all z,y € U(g).
PrOOF. We define a product on U(g) 9 M by

(x,m)(y,n) = (my,xn—i—my + f(a:,y)) (1.11)

where z,y € U(g) and m,n € M. Relation (1.9) implies that this product
is associative. It has a unit which is (1,0). We get a Lie bracket on the
same space by taking the commutator

[(z,m), (y,n)] = (z,m)(y,n) — (y,n)(z,m)
= ([x, yl,xn — nx +my —ym + f(z,y) — f(y, w))-

The subspace g = g M is a Lie subalgebra of U(g) @ M. The first pro-
jection p from g onto g is a surjective morphism of Lie algebras. An easy
computation shows that the kernel of this extension is the g-module M.
Since H*(g, M) = 0, we know by Proposition 1.2 that the extension g — g
is split. Thus, there exists a morphism of Lie algebras s : g - g such
that p o s = id,. Composing it with the inclusion of g into U(g) P M,
we obtain a morphism of Lie algebras s’ : g — U(g) @ M which, when
composed with the first projection, is the inclusion of g into its enveloping
algebra. By Theorem V.2.1, s’ extends to a morphism of algebras o from
U(g) into U(g) @ M splitting the first projection. This map is necessar-
ily of the form ¢ = (id, —a) where « is a linear map from U(g) to M.
Let us express the fact that o is a morphism of algebras. First, we have
(1,0) = o(1) = (1, —(1)), which implies that (1) = 0. Next,

o@)oly) = (z,-a@)y,—a))
= (o, —zaly) - alely + f(z,v))

o(zy)
= (CL’y, —(X(Iy)),

from which we derive f(z,y) = za(y) — a(zy) + a(2)y. O
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XVIII.2 Rigidity for Lie Algebras

We now use the cohomology groups introduced in Section 1 to derive two
classical theorems on topological algebras. The first one is a uniqueness
theorem.

Theorem XVIIL.2.1. Let g and g be Lie algebras. Suppose given two
morphisms o and o of topological algebras from U (g)[[h]] to U(g')[[R]] such
that o = o modulo h. If H (g,U(g)) = 0, there exists an invertible element
F e U(g)[[h]] with F = 1 modulo h such that o/ (z) = Fa(z)F~" for all

z € U(g)[hl]-

The class modulo 4 of a (and of o) is an algebra morphism «;, from U(g)
to U(g'). We give U(g') a left g-module structure by setting z-u = [0 (), u]
where z € g and u € U(g’). The cohomological condition in Theorem 2.1
refers precisely to this module structure.

PROOF. Since « is C[[h]]-linear, it is determined by its restriction on U(g).
Write the latter in the form

a(z) = Z a, ()™ (2.1)

n>0

where (a,,),, is a family of linear maps from U(g) to U(g'). The map «
preserves the unit, which implies that a(1) = 1 and «,,(1) =0ifn > 0. It
also preserves the product, which is equivalent to the relations

ag(zy) = ag(z)ag(y) (2.2)
and
auley) = D ap(@)ay(y) (2.3)
p+q=n
if n > 0. In particular, we have
oy (zy) = ag(z)ay (y) + o (z)eg (). (2.4)

Suppose now that = and y are elements of g. Then Relation (2.4) implies
that
ay([z, y]) = [ag(@), o1 ()] — [erg (), o ()] (25)
In view of our definition of the g-action on U(g’) and of (1.4), we see that
a, is a 1-cocycle of g with values in U(g'). Since H'(g,U(g’)) = 0, the map
«a is a 1-coboundary, which means that there exists an element u; € U(g')
such that
oy (z) = [ag(@), uq) (2.6)

for all z € g. Set

aW(z) = (1 +uh)a(z)(1 +ugh)? (2.7)
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where z € U(g). This extends C][h]]-linearly to a new morphism of topo-
logical algebras from U(g)[[]] to U(g’)[[R]]. Modulo h?, we have

oV (z) = ay(x) + (u00(2) — ag(e)uy +ay(2))h = g (x)

in view of (2.6-2.7). This holds for all z € g. Since o, and o(!) are algebra
morphisms defined on U(g), it holds for all elements of the enveloping
algebra. Set ol = 2 n>0 alMA™. The previous computation shows that

oz(()l) = o and a(ll) =0.

Now apply (2.3) to o' and n = 2. We have

1 1 1
o3 (ay) = og(w)o” (v) + 0"
which shows that the restriction of a(zl) to g again is a l-cocycle with
values in U(g'). For the same reasons as above, there exists an element
u, € U(g') such that aél)(a:) = [ay(x),uy) for all z € g. Set oD (z) =
(1 + uyh?)aV(z)(1 4 uyh?) L. A computation as above shows that

() (),

o® =q, mod A’ (2.8)

Proceeding by induction, we similarly construct elements ug, uy, . .. in U(g")
such that

U,a(2)U; ' = ag(z) mod A" (2.9)

for all » > 0 and all z € U(g). Here U, is defined by
U, =(1+u,h™)(14u, A" .. (1+uh).

When we pass to the inverse limit, we see that the family (U,,),, defines an
invertible element U € U(g')[[h]] such that U =1 modulo h and

alz) = U ey (z)U (2.10)

for all z € U(yg).

Now let us prove Theorem 2.1. Proceeding as for «, we get an element
U’ in U(g")[[h]] such that U’ = 1 modulo h and &(z) = U’ ay(z)U’.
By hypothesis, af, = ¢. From this and from (2.10) we need only to set
F =U'"1U in order to complete the proof. O

We now consider a topological algebra (A, u,n), as defined in XVI.4,
satisfying the following conditions:

(i) as an algebra, A/hA is the enveloping algebra of a complex Lie alge-
bra g:

A/hA =U(g), (2.11)
(ii) as a C[[h]]-module, A is topologically free, i.e.,
A= U(g)[[All; (2.12)

(iii) the unit n(1) of A is equal to the constant formal series 1 in U(g)[[A]]
under the identification (2.12).
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The second theorem of this section is an existence theorem. Since it states
that any such topological algebra is isomorphic to the trivial topological
algebra associated to U(g), Theorem 2.2 is called a rigidity theorem.

Theorem XVIIL.2.2. Under the previous hypotheses, if H?(g,U(g)) is
zero, there exists an isomorphism o : A — U(g)[[h]] of topological algebras
inducing the identity A/hA — U(g) modulo h.

Here g acts on U(g) by the adjoint representation.

PROOF. We first proceed as in XVIL.5 by identifying the C[[h]]-module A
with U(g)[[h]] and by expanding in a formal series the C[[h]]-linear map p
from A®A = (U(g) ® U(g))[[A]] to A = Ul(g)[[A]], ie.,

p= ph" (2.13)

n>0

as in (XVI.5.3), where (i,,),, is a family of bilinear maps from U(g) x U(g)
to U(g) such that p, is the multiplication of the enveloping algebra of g.
Condition (iii) above can be reformulated as

,u'n(17x) :.u'n(xvl) =0 (214)

for all z € U(g) and all n > 0. The associativity of the product u is
expressed by

,u(,u(:v,y),z) = /L(.T, ,u’(y’z)) (215)

for all z,y,2z € U(g). Expanding g with (2.13), we obtain the equivalent
system of equations

D7 iy ), 2) = D (s pg(y, 2) (2.16)

p+g=n p+g=n

for all z,y,z € U(g) and all n > 0. Let N be the smallest integer n > 0
(if it exists) such that p, # 0. If no such integer exists, we have p = pqg,
which means that A coincides with U(g)[[h]] as a topological algebra and
the theorem is proved. If N exists, let us rewrite (2.16) for n = N. Using
the customary notation for the product in U(g), we get

pn(@y, z) + py(2,9)2 = py (2, y2) + Tiy (Y, 2) (2.17)

for all z,y,z € U(g). In other words, u, satisfies Condition (1.9) of Corol-
lary 1.3 with M = U(g). Since H?(g,U(g)) vanishes, we may apply Corol-
lary 1.3, which yields a linear endomorphism « of U(g) with oy (1) =0
and

tn(z,y) = zay(y) — ay(zy) + ay(z)y (2.18)

for all z,y € U(g). Define a C[[h]]-linear automorphism « of U(g)[[h]] by

a=id + ayh,
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its inverse being given by 3, -, (—=1)"a%h™¥. We have a(1) = 1. Define a
new product ' =37 5o pp,h"™ on A by

(z,y) = a(pla™(2), a7 (). (2.19)

Since a = id mod kY, we have i’ = y mod k¥ . Let us compute x' modulo
RN T Relation (2.18) implies that

plz,y) = zy+ ,uN(x y)hY
= (id+anh™) (o + pxh™) (@ — ay (@)Y, y — ay(y)h"Y))
= ay+ (an(zy) +pn(z,y) — ay(@)y — zay(y)p"

= zy mod VL

Consequently, py = pg is the multiplication of U(g) whereas

By == py =0, (2.20)

We use this procedure to construct an isomorphism of algebras between
A and U(g)[[h]]. In effect, applying the above considerations to the case
N = 1, we get an isomorphism of the form id + o, A' from the algebra A to
A equipped with a new product p* such that ,u(ll) = 0. Applying now to
pY and N = 2, we get an isomorphism id + a,h? from (4, p(M) to (4, u'?)
where 1(?) is a product with ,u(z) ugz) = 0. Repeating this infinitely many
times and composing all the isomorphisms, we get an isomorphism « from
A to A endowed with a product x> satisfying ,u(°°) =0 foralln>0. In
other words, 11(°) = p, is the usual product of U(g)[[h]]. O

XVIIL.3 Vanishing Results for Semisimple Lie
Algebras

We shall use Theorems 2.1 and 2.2 in Section 4 in case g is a finite-
dimensional complex semisimple Lie algebra. To apply them, we have to
prove the vanishing of H*(g,U(g)) for i = 1,2. We start with the following
result.

Proposition XVIIL.3.1. If g is a finite-dimensional complex semisimple
Lie algebra and M is a finite-dimensional non-trivial simple left g-module,
then H™(g, M) =0 for alln > 0.

Here non-trivial means that A/ is not the one-dimensional g-module on
which the Lie algebra acts by zero.

PROOF. We need the Casimir element C = Y, ;2" defined by (XVILL1.5).
We know that C acts on any finite-dimensional non-trivial simple g-module
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by a non-zero scalar. In order to prove the proposition, we construct for all
n a map h: C™(g, M) — C™" (g, M) such that

Cf = 6hf + hof (3.1)

for all f € C"(g, M). By Cf we mean the n-linear map defined by

(CHW- 1) = C(F - 92)

where y;,...,y, belong to g. Let f be an n-cocycle with values in M, i.e.,
such that §f = 0. By (3.1) we get Cf = 6(hf), which means that Cf is a
n-coboundary. Since C acts by a non-zero scalar on M, we see that f too
is a coboundary. This proves the vanishing of H" (g, M).

We are left with building a map h satisfying (3.1). Given f € C™(g, M)
with n > 0 and the Casimir element, we define an antisymmetric (n — 1)-
linear map hf with values in M by

(hf)(yh ce 7?/71,—1) = Z $kf($k,y1, e 7yn—1) (32)

k

for all y;,...,y,_; € g. If f € C%(g, M), set hf = 0. Using (3.2) and (1.2),
we get

(Ohf +hof) Wy ¥n) = CFf (Y- ¥p) + Z (‘1)121'

1<i<n

where

Z’i, - Z <[xk7yi]f(xk7y1""7:&\1'7"'7yn)+xkf([xk7yj]ay17"'7@71',7"‘7yn)>'
k

Relation (3.1) will be proved if we show that all Z, vanish. Using the linear
forms oy, and B, of XVIL.1, we get

Zi = Z(akf(yi)mff(xkvyla“'ag\w“wyn)

k,l

+18k5(yi)xkf(xe7y17'"7@7;7"'7yn)>'

Exchanging k and £ in the second summand, we obtain

Z; = Z (O‘kz(%) +ﬂ1€k(@/i)) T F(@, Y1 T ),

k0

which vanishes in view of Lemma XVII.1.1. 0
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As a consequence, we get the so-called “Whitehead lemmas”.

Corollary XVIIL.8.2. If g is a semisimple Lie algebra and M 1is any
finite-dimensional left g-module, then H'(g, M) = H?(g, M) = 0.

PrOOF. We know that any finite-dimensional module M over a semisimple
Lie algebra is a direct sum M = @, M, of simple modules M;. Since the
complex C*(g, M) is the direct sum of the subcomplexes C*(g, M;), we
have H"(g, M) = @, H"(g, M;). In view of Proposition 3.1, it is enough
to prove Corollary 3.2 when M is the trivial one-dimensional g-module C.

(a) We first prove the vanishing of H'(g, C), which will imply the vanish-
ing of H'(g, M) for all finite-dimensional modules M. Let f be a 1-cocycle
with values in the trivial module C. Relation (1.4) reduces to f([z,y]) =0
for all z,y € g. Now Serre’s relations (XVII.1.9-1.10) show that the ele-
ments [z,y] span the vector space g. Therefore f = 0 on the whole space g.

(b) The argument for the vanishing of H?(g, C) is slightly more involved.
We first claim that if f is a 2-cocycle with values in C, then the linear map
f given by f(z)(y) = f(z,y) for all z,y € g, is a l-cocycle of g with
values in the dual vector space g*. Such a statement presupposes that we
have defined a left action of g on g*. This is done by taking the coadjoint
representation given by

(za)(y) = [y, z]) (3.3)

where z,y € g and o € g*. Indeed, if f is a 2-cocycle with values in C, we
have by (1.5)

Flz,u))(2) = F) (2 2]) — F@)([z,9])
for all z,y,z € g. Reformulating this with (3.3), we get

Flz.y) = 2f(y) — yf(=),

which shows that f is a 1-cocycle with values in the finite-dimensional g-
module g*. By the first part of Corollary 3.2, the cocycle f is a coboundary,
i.e., there exists a linear form « € g* such that f(z) = za. We thus get

fla,y) = f(@)(y) = (za)(y) = ally,2]) = —a(lz.y))-

In other words, the 2-cocycle f is the coboundary of a.. This completes the
proof of the vanishing of H?. Observe that, incidentally, we proved that
H?(g,C) = H'(g,9"). O

Let us equip U(g) with the adjoint representation of g for which the Lie
algebra acts on U(g) on the left by z-u = zu —uz = [z, u| where x € g and
weU(g). fu=umx, ...z, withz,,...,z, belonging to g, an easy induction
shows that

n
z'“:Z xl"‘xi—l[m>xi]xi+1"'xn- (3.4)
i=1
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We record the following corollary.

Corollary XVIIL.3.3. Let g be a finite-dimensional complex semisimple
Lie algebra acting on U(g) as above. Then H'(g,U(g)) = H?(g,U(g)) = 0.

PROOF. We use the symmetrization map 7 : S(g) — U(g) defined in V.2
by .
n(zy...x,) = 1 Z To(1y - To(n)
" o€Sn

where z,...,z, € g. We know that 7 is a linear isomorphism. Moreover,
if we equip S(g) with the left g-module structure given by

ac'(acl...:cn):Zxl...xi_l[x,wi]wiJrl...wn (3.5)

the map 1 becomes an isomorphism of g-modules. Now, as can easily be
seen from (3.5), the action of g respects the decomposition of S(g) into its
homogeneous components S”(g). We thus obtain an isomorphism

U(g) = EP S™(s)

n>0

of g-modules. Consequently, for i = 1,2 we have

H'(g,U(g)) = P H'(g,5™(9) =0

n>0

by application of Corollary 3.2 to the finite-dimensional modules S™(g).
O

XVIIL.4 Application to Drinfeld-Jimbo Quantum
Enveloping Algebras

Let g be a finite-dimensional complex semisimple Lie algebra and let U, (g)
be the Drinfeld-Jimbo quantum enveloping algebra of XVII.2. The first
three sections of this chapter culminate in the following result.

Theorem XVIIL.4.1. There exists an isomorphism o : Uy (g) — U(g)[[h]]
of topological algebras which is congruent to the identity modulo h. If o' is

another such isomorphism, there exists an element F in U(g)[[h]] such that
F =1 modulo h and o/ (a) = Fa(a)F~! for all elements a of Uy (g).

PrOOF. The first statement is a direct consequence of Theorem 2.2 and of
the vanishing of H?(g, U(g)) proved in Corollary 3.3.

As for the second one, observe that o/ o o' and the identity are two
automorphisms of the topological algebra U(g)[[h]] inducing the identity on
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U(g). By Theorem 2.1 and by the vanishing of H'(g,U(g)) (see Corollary
3.3), there exists an element F = 1 mod h in U(g)[[h]] such that we have
(o o a™1)(u) = FuF~? for all u € U(g)[[h]]. Replacing u by a(a) yields
the conclusion. a

Since conjugated morphisms restrict to the same map on the centre, we
get the following important result which we have already used in XVIIL.3
in order to define the quantum Casimir element C}, in the Drinfeld-Jimbo
algebra U, (g).

Corollary XVIII.4.2. There exists a unique isomorphism o of topological
algebras from the centre of Uy (g) to the centre of U(g)[[h]] such that o = id
modulo h.

We may use the isomorphism a between Uy (g) and U(g)[[h]] to assign a
topologically free U, (g)-module to any finite-dimensional g-module. Indeed,
let V be such a g-module. We equip V[[h]] with the extended U(g)[[h]]-
module structure. Define V as V[[h]] equipped with the U, (g)-module
structure given by a - v = a(a)v where a € U,(g) and v € V([[h]]. Since
o is congruent to the identity modulo h, we see that ‘7/ RV is isomorphic
to V as a g-module. It can be shown that, when V, is the simple g-module
associated to the dominant weight A, then VA is the highest weight U} (g)-
module alluded to at the end of XVIL2.

XVIIL.5 Cohomology of Coalgebras

In order to prove the second rigidity theorem of the chapter, we set up
a cohomology theory for coalgebras. Let (C,A,e,1) be a coalgebra over a
field k& with an element 1 in C such that A(1) =1 ® 1 (which implies that
g(1) = 1). Clearly, any bialgebra satisfies these conditions with 1 equal to
the unit of its multiplication.

We set T(C) = C®" if n > 0 and T°(C) = k. Define linear maps
89,...,6"F! from T™(C) to T"T(C) by

52(3;1@...@1-“) — 1®x1®...®wn7

5Z+1(w1®...®$n) 2, Q- @1, 1,

Sy ®-®z,) = 1,9 Qz,_ ;1 9A(z,)®z,,,® -z,
if 1 <i<n Ifn=0,weset§(1) = &5(1) = 1.

Lemma XVIIL5.1. We have 6Z+16; = 8% 167" for all integers i,j such
that 0 <1 < j<n+2.

Proor. If j > 1+ 2, this is straightforward. Let us concentrate on the case
j=i+1.If1 <4 <n, we have

5;1116;(371@' S QT,) =000, ®(dg®A)(A(z) @z, O -,
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On the other hand, we have
i 18 (1@ ®T,) =2,® Oz, ®(ARId:)(A(2,)®T; 1 ® QL.
Both are equal in view of the coassociativity of A.
If ¢ = 0, we have
5:4100(z,® - ®z,) = AQ)®z,® @,
= bz, @ Q).

Similar computations prove the desired relations in the remaining cases.
O

As a consequence we can equip 7*(C) with a differential of degree +1.

Corollary XVIIL5.2. Define the differential § : T™(C) — T™(C) by
§ =" (1)L, Then §06=0.

The cochain complex (T*(C),6) is called the cobar complex of the coal-
gebra C.

PROOF. In degree n, we have

n+2n+1

§ob = Y > (-1)"*8) 6,

=0 i=0
= Y (-1 8+ > (1)L

1<J 7<i

= Z( 1)1+]<6£L+161 _5;+15%_1>

i<j
= 0
by Lemma 5.1. O

The natural isomorphisms 77(C) @ T™(C) = T™"™(C) induce an asso-
ciative graded product on T(C) = @,,~, T"(C). This product is compati-
ble with the differential § in the following sense. ’

Lemma XVIIL.5.3. Ifw € T"(C) and o' € T™(C), then
Slww') = §(w)w' + (—=1)"wb(w") (5.1)
for the product ww' in T"t™(C).

We shall use the term differential graded algebra for a graded algebra
with a differential satisfying Relation (5.1). It follows from Lemma 5.3
that the product on T*(C) induces an associative graded product on the
cohomology H®(T*(C),6) of the cobar complex.
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PROOF. This results from the relations &), , ,, (ww’) = 6. (w)w" if i < n, from
6y mlww’) = wé’ (W) if i > n+1, and from
S W =welew =ws) (W).
O

Suppose that C possesses an involution z — z such that 1 = 1 and
A(z) = A°P(Z), e.g., C is a cocommutative coalgebra with involution equal
to the identity. Then we can put an involution on the complex (7°*(C), d)
as well. Define an automorphism o, of T"(C) by o, = id, and by

o (2,0 ®z,)= (—1)nn+b)/2 I, Q9 (5.2)

if n > 0. The automorphism o, is an involution.

Lemma XVIIL5.4. We have 60, = o, 6.

PROOF. It is enough to prove that 60, = (—1)""to, 60t~ If i = 0,
we have

800, (z, @ ®a,) = ()" P 1ge, 07,

On the other hand,

(n+1)2<n+2) —(n+1)

()" o6t @ @9 e,) = (1) 197,® - ®1,

which is the same since (iﬂ)z(ﬂ ~(n+1) = n(L;Q If1<i<n, we
have
8o (21 @ @ T,)
= (_1)n(n+1)/2 T, ® & A@m—l—i) @RI
= (_1)(”+1)(”+2)/2—(n+1) T,0 - QAP(z, 4 )® QT

= (_1)n+10‘n+162+17i(ml ® ®mn)

The second equality holds by the assumption on A. O

As a consequence of Lemma 5.4, the cochain complex (T*(C'),6) is the
direct sum

T*(C) = T3(C) & T*(C) (53)
of the subcomplexes (T'$(C),8) and (T*(C)_, ¢) defined for all n by

TL(C) = {w e T"(C) ] 0o(w) = #w}. (5.4)
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XVIIL.6 Action of a Semisimple Lie Algebra on
the Cobar Complex

We return to the situation of a cocommutative coalgebra (C, A, &) with an
element 1 such that A(1) = 1 ® 1. Assume we also have a Lie algebra g
acting on C such that, if we denote by z - ¢ the action of an element z € g
on an element ¢ € C, we have z -1 =0 and

A(zc) :A(x) A(C) :Z (QC-C/®CH+C/®.T'CN) (61)
(e)
in Sweedler’s sigma notation. The examples we have in mind are the coal-
gebras U(g) and S(g), on which g acts by the adjoint representation.

Equipping the tensor powers of C' with the induced g-module structures,
we get the following result.

Lemma XVIIL.6.1. The cobar complex (T*(C),6) is a complex made up
of g-modules.

ProoF. It suffices to check that the maps &, of Section 5 are maps of

g-modules. Let ¢q,...,c, be elements of C' and = be in g. For 69, we get
5g(x-(cl®...®cn)> = Z 0, ®..9T¢,®...0¢,)
k=1

n
= ) 18¢0®..87-¢,8...9¢,
k=1

= 2:8(,®...9¢,)

since x - 1 = 0. There is a similar proof for 52“. If 1 <4 <n, we have

5;(x-(cl®...®cn)) = Z&;(cl®...®x-ck®...®cn)
k=1

= > ®..07.48...0A()®...0c¢,
ki
+¢®..9Ax ¢)®...Qc¢,
= x~(cl®...®A(ci)®...®cn)
= z-6(c;®...®c,)
by (6.1). m

Observe also that the subcomplexes (175 (C), 6) are preserved by the g-
action where C is equipped with the identity involution.

We next restrict to the case when g is a finite-dimensional semisimple
Lie algebra acting on C such that C is a direct sum of finite-dimensional
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g-modules. This is the case for C = S(g) and, hence, for the isomorphic
coalgebra U(g). For any g-module V, we define a g-submodule V¢ by

Vi={veV|z-v=0 Vzeg}.

Elements of V¢ are called g-invariant. The linear span gV of the elements
z - v where z runs over g and v over V is also a g-submodule of V.

Proposition XVIIL.6.2. Under the previous hypotheses, each of the com-
plezes (T3(C), ) is the direct sum of the respective subcomplexes (T'3(C)*?)
and gT'$ (C):

T2(C) = TL(C)® @ 6TL(C).

PROOF. Since the constructions V +— V? and V +— gV are functorial, it is
clear that T2(C)% and gT2(C) are subcomplexes of T3 (C). Therefore, in
order to prove the proposition, it suffices to check that

V=VqgV (6.2)

for all g-modules V that are direct sums of finite-dimensional g-modules.
Since g is semisimple and Equality (6.2) is preserved by the direct sum of
g-modules, it is enough to check (6.2) when V is finite-dimensional and
simple. If V is the trivial one-dimensional module, then g acts by zero,
which implies that V = V¢ and gV = 0. If V is a non-trivial simple
module, it corresponds to a dominant weight A # 0. Let v be a highest
weight vector for V. Since A # 0, there exists an element H; of g such that
H, -v = \H,)v # 0. Consequently, v does not belong to V% and V¢ # V.
Since V is simple, the submodule V# has to be zero. On the other hand,
the same relation shows that gV # 0. We again appeal to the simplicity of
V, now obtaining gV’ = V. In both cases, we get (6.2). ]

XVIIL.7 Computations for Symmetric Coalgebras

We assume in this section that k& is a field of characteristic zero. We now
compute the cohomology of the complexes (7*(C), §) and (T3 (C),d) in the
special case when C is the symmetric bialgebra C = (S(V), A, ¢) where V
is a finite-dimensional vector space over k and

Av)=v®1+1®v and e(v) =0 (7.1)
for any element v of V.

Theorem XVIIL.7.1. Under the previous hypotheses,
(a) there exists a unique map p : (T*(S(V)),8) — (A*(V),0) of differ-
ential graded algebras where the exterior algebra A*(V) is given the zero
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differential, such that the restriction of p to T*(S(V)) = S(V) is the pro-

jection onto the direct summand S*(V) = V = A'(V), and the induced

map p® : H*(T*(S(V)),6) — A*(V) on cohomology is an isomorphism.
(b) The antisymmetrization map o : A"(V) — T"(S(V)) given by

alvy AL AY,) = Z £(0)V1) @+ @ Vg
ogESh

for all vy,...,v,, is a map of complexes, i.e., 6 o a = 0. Furthermore, we

have p(a(w)) =nlw for allw € A™(V).
(c) The map p induces isomorphisms

H*™ (T (S(V)),6) 2 A*™(V), H>™ T, (S(V)),6) =0,
and

H>™(T_(S(V)),8) 20, H>™ Y T_(S(V)),8) = A 1(V)

in cohomology for all n > 0.

The rest of the section is devoted to the proof of Theorem 7.1. The idea
is to dualize the complex (T*(S(V)), ) and to compute the homology of
the dual complex. For a definition of the exterior algebra, see I, Exercise 6.

We first need the concept of a graded dual vector space: if V=P, ., V,
is a vector space with a positive grading, we define the graded dual vector

space of V' by
=P (7.2)

n>0

We can apply this to the vector spaces T'(V), S(V), A(V) and T(S(V))
with their natural gradings. f V. = @, 5, V,, and W = @, ., W,, are
vector spaces with gradings, we may consider their tensor product V @ W
graded by

Vew),= @ v,ow, (7.3)

p+g=n

Lemma XVIIL7.2. Suppose V = D,5, V,, and W = D,,5, W, have
gradings for which V, and W_ are finite- dzmensional for all n. Then there
s a canonical isomorphism

VoW =(VeWw);.
PROOF. This is straightforward. It uses the fact proved in I1.2 that this
isomorphism holds for finite-dimensional vector spaces. m|

Let (C,A,e,1) be a graded coalgebra with unit, meaning that the under-
lying vector space C' = ,,~, C,, has a grading, that A and ¢ are graded
maps (we equip k with the trivial grading concentrated in degree zero),
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and that 1 belongs to C,. If C), is finite-dimensional for all n — which we
assume henceforth —, then it is clear that A = 7}, is an algebra graded by
A, = C}, with multiplication given by the transpose A* of A, with unit
given by £*, and with a map of algebras ¢ : A — k defined by e(a) = a(1).
The map ¢ will be called the augmentation of A.

From the formula for §, we see that the complex (T*(C), §) of Section 5
is a complex with a grading. Applying Lemma 7.2, we get

TC), = TH(CY) = TH(A). (7.4)
Lemma XVIIL.7.3. The transpose d = 6" of § is given by

dla; ® - ®@a,) =c(a)a,® - ®a,

n—1
+ Z (e, ® - ®a; a0, R0, - Ra,
i=1
+(__1)7La1 @ ® anfla(an)
for all elements a,,...,a, of A.

The chain complex (T*(A), d) is called the bar complex of the augmented
algebra A.

PRrROOF. Apply both sides to z; & --- ® z,, where z,...,z, belong to C.
|

Lemma XVIIL.7.4. Under the previous hypotheses, the cohomology of
(T*(C), 8) is the graded dual of the homology of (T*(A),d).

ProOF. This is a consequence of the fact that the duality functor is exact
and that biduality is a natural isomorphism on finite-dimensional vector
spaces. O

In order to prove Theorem 7.1, it therefore suffices to compute the ho-

mology of the chain complex (T*(S(V);,), d). We first identity the algebra
S(V)g-
Lemma XVIIL7.5. IfV is a finite-dimensional vector space over a field
k of characteristic zero, then the graded dual of the graded coalgebra with
unit S(V) is the graded augmented algebra S(W) where W = V™ is the
dual vector space of V.

PROOF. Let {v;,...,vy} be a basis of V. Then {vi" ... o3}, 4. can=n
is a basis of $™(V'). We define a basis {w( ... wi" }o, ... yan=n Of ST (V)"
by

3 —
<witwi oo > =6, 8, Oy 01 oyt (7.5)
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The product map % : S*(V)* ® S™(V)* — S"*™(V)* on S(V)j, is by
definition the transpose of the comultiplication A. We have

ai an B1 BNY 1 TN
< (Wit wi) x (Wit wlY ), vt oy >
a a 1 BN "1 YN
= <wl. wP ew . wy AR oY) >

= <w‘f‘1...wf\‘,”®w11..,ng,(v1®1+1®vl)71...

(Wy ®1+1®@vy)™ >

= Z (71>~~<7N)<w‘f‘ﬂ..wj’(,”,v§1...v}'\1,">

i i
i1yenin N1 N
—i —i
<w N TR T >

—_ 131 ! |
= §a1+51’71 .. '6C¥N+5N7’YN aq !B oan!By!

o+ 61\ [(on+ BN
oy QA
= 60[1+ﬁ1771'"6C\tN+ﬁN,'yN(alv+ﬁl)!"‘(aN+ﬁN)!

_ a1 +f1 an+BN 71 TN
= <w LWy Ui up >

This proves that
(W W) (WY = T NN (7.6)

which shows that the product on S(V);, is the product of the symmetric

algebra S(V™*). The rest of the proof is left to the reader. d

We next compute the homology of the chain complex (T°(S(W)),d).
Define a linear map « from A*(W) to T*(S(W)) by

alwy AL Aw,) = Z E(O)Wy(1) @ - @ Wy (7.7
oEeS,
where wy,...,w, € W and (o) is the sign of the permutation o.

Proposition XVIIL.7.6. We have d o« = 0 and also that the induced
map oy : A"(W) — H,(T*(S(W)),d) is an isomorphism for all n > 0.
If p : S(W) — W is the natural projection onto the direct summand
W = SY W) and p is defined as the composite map

s T SW) 2 wen y an (W),

then w is a chain map. We have (u o a)(w) = nlw for all elements w
belonging to A™(W).

PRrOOF. We proceed in six steps using the terminology and the results of
the Appendix.
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1. We first observe that the bar complex (T*(A4),d) is obtained from a
complex (T.(A),d’) of left A-modules by

T*(A) =k®, Ti(A) and d=id, ®,d (7.8)

where T/ (A) = A® A®™ and the left A-linear differential d' is given by

|
N

n

d(ag® - ®a,) =) (~1)ay® - Qa,_; ®a0,4, Qa5 - Qay,

I
=)

+(-1)"ay @ -+ ® a,_,e(a,) (7.9)

for ay,...,a, € A. The reader may easily check that d’ o d =0.
2. We claim that the complex (T'(A),d’) is a resolution of k by free left
A-modules. It suffices to prove that the complex

Ly ()L (AT (A Sk - 0
is acyclic. Define s : T, (A) — T, (A) by
slag®---®a,) =1Qa®---Qa, (7.10)
and s: k — Tj(A) by s(1) = 1. An easy computation shows that
d's + sd =id (7.11)

on all T!(A), which proves the acyclicity of (T"(A),d’).

3. In case A is the symmetric algebra S(W), there is another resolution
of k by free left A-modules: it is the Koszul resolution (K,(W),0) defined
by K, (W)= S(W)® A™*(W) and

n
3(a®w1A---/\wn):Z(—l)iﬂawi@wl/\--~/\wAZ-/\-~~/\wn (7.12)
i=1

where a € S(W), wy,...,w, € W and where the hat on w, again means
that we omit this element. Check that 0o 9 = 0.

We claim that (K,(W),0) is a resolution of k. This again is due to the
existence of a homotopy: define a map h: K, (W) — K, (W) by

h(wl...wm®w):Zwl...@-...wm@)wi/\w (7.13)
i=0
where wy,...,w,, in W and w in A"(W). Then we have
(Oh + hO)(P®w) = (m+n)(P ®w) (7.14)

for all P in S™(W) and w in A™(W). Relation (7.14) shows the acyclicity
of the Koszul resolution in degree > 0. As for degree 0, observe that the
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cokernel of the map 8 : K;(W) — K, (W) given by 0(a ® w) = aw is
isomorphic to k.

Since e(w) = 0 for all w € W, (k®gw K (W),id, @g(w) 9), the in-
duced complex, is isomorphic to the complex A®*(W) with zero differential:

(k @gw) Ko(W),idy, @gpry 9) = (A*(W),0). (7.15)
4. We compare the resolutions (K,(W),d) and (T,(S(W)),d).

Lemma XVIIL7.7. The map idgy, ® a : K, (W) — Ty(S(W)) is a
chain map over the identity.

Proor. We have to prove that
d o (idgy) ® @) = (idgy) @ @) 0 0. (7.16)

All maps in (7.16) being S(W)-linear, it is enough to check this relation on
elements of the form 1 ® w; A --- A w,, where w,,...,w, belong to W. By
definition, we have

d,((idS(W) Qa)(l®@w; A+ A wn)) =2+ 2y + 23

where
4 = Z E(0)Wo1) ® @ Wo(ry,
o€Sy
n-—1
Zy= Z(“l)z Z E(O)Wy(1) @ ® Wy (i) Wo(i1) @ @ Wy
=1 o€Sy
and

ZS - (_1)n Z E(U)wo(l) ® & ’LUU(”_l)E(’on(”)).
oc€Sy

Let us first deal with Z,. We have

Z, = Z Z £(0)w; @ Wy(z) @ -+ @ Wy(p)-

i=1 oc€Sy
o(1)=t
By applying the permutation (12...7) of sign (—1)**!, we get
n
Z, = (dgmw)®a) (Z (=)™ w; @ wy A AWA A wn)

i=1
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by (7.12). Relation (7.16) will be proved once we have checked the vanishing
of Z, and of Z;. Concerning Z,, we have

Z E(O)Wo(1) @ @ Wiy Wo (1) @ @ Wy

veS,
= Z E(O)Wr(1) @+ ® Wy Wo(ia1) @+ @ Wy
o(i)a<ej?{+1)
Y 0wy @ R Wy W) O B W,
a(iiel)sz&(i)

By exchanging i and i+ 1, we see that the second summand is the opposite
of the first one. This proves the vanishing of

Z (0 Wo1) @ O Wo(yWo(ip1) @+ B Wy
ag€S,

hence of Z,. Eventually, Z; = 0 because ¢(w) = 0 for all w € W = S*(W).

O

5. By Corollary 11.2, there exist S(W)-linear maps 3 : T, (S(W)) —

K, (W), hy = TL(S(W) — Ty (S(W)), and hy + K, (W) — K, (W)
such that 838 = gd’,

(idguny @ @)B =id +d'hy + hyd" and  F(idgyy © a) = id + dhy + hy0.

(7.17)
Tensoring both resolutions on the left with k over S(W), we see that

idy D5 (idgmy ® ) = a: (A*(W),0) = (T*(S(W)), d)

induces an isomorphism in homology: indeed, by (7.17) the chain maps
ao (idy ®gpy 6) and (idy ® gy B) 0 a are homotopic to the identities.

6. It is easy to check that p is a chain map, i.e., it annihilates all elements
of the form

n—1
€<a1)a2®"'®an+z<-1)ial QB0 ® a4 By @ R0y
=1

+H-1)"a @ ®a, g(ay)-
The rest of Proposition 7.6 is obvious. a

We now prove Theorem 7.1.

Proof of Theorem 7.1. (a—b) Dualize Proposition 7.6 using Lemmas 7.3—
7.5. We still have to prove that the map u : T*(S(W)) — A™(W) is the
transpose of the antisymmetrization map « : A™(V) - T™(S(V)). Indeed,
let us check that

<puX),w>=< X, a(w) > (7.18)



442 Chapter XVIII. Cohomology and Rigidity Theorems

for all homogeneous X € T"(S(W)) and w € A™(W). If X belongs to
SUW) @ - @ 8% (W) where (dy,...,d,) # (1,...,1), then both sides of

'

(7.18) vanish. If X = w;, ®--- ®w, wherew, ,...,w;, € W, then

<p(w, @ @w ), v A Ay >=<w A AW v Al A >

vanishes when (i,...,%,) is not a permutation of (jy,...,7,). If it is, the
right-hand side is equal to the sign of this permutation. On the other hand,

<w, ®...Qw ,a(v; A...Av; ) >

= Y e0) <wy, @ QW Uy @ BV >
oES,

yields the same result. This proves (7.18).
(c) Using 4 and «, we determine the action of the involution o on the
cohomology of (T*(S(V)),6). By (5.2) we have

(Hoopoa)(vy A Ay) = (1" e(0) vy @ - @ vp)
cES,

= (_1)77’(n+1)/2 Z 5(0) Vs (n) ARRERA Us(1)-
oESH

Apply the change of variables effected by o = o’7 where 7 is the permuta-
tion (1,n)(2,n — 1) --- with sign (—1)"™~1/2_ 1t follows that

(poo,oca)(vy A---Av,) = (=1)"nlv, A+ Av,. (7.19)

From Parts (a—b) of Theorem 7.1 and from (7.19), we conclude that o,
acts as the identity on the cohomology while oy, ,; acts as —id. O

XVIIL.8  Uniqueness Theorem for Quantum
Enveloping Algebras

In this section we deal only with a quantum enveloping algebra whose
underlying quasi-bialgebra is the trivial topological bialgebra U(g)[[h]] of
formal series over the enveloping algebra of a finite-dimensional complex
semisimple Lie algebra g. We state the second rigidity theorem.

Theorem XVIII.8.1. Assume we have A = (U(g)[[h]], A,e,®, R) and
A" = (U(g)[[h]], A, e, ', R) which are quantum enveloping algebras for the
same finite-dimensional semisimple Lie algebra g and have the same uni-
versal R-matriz R satisfying the conditions Ry, = R, R = 1® 1 modulo
h and R = A(u)V, where u € U(g)[[h]] and V is a central element of
(U(g) @ U(g))[[h]]. Then there exists a gauge transformation F in the al-
gebra (Ug @ Ug)[[h]] with Fyy = F, F =1®1 modulo h, and [F, A(a)] = 0]
for all a € A such that A’ = Ap.
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The data A and R remain unchanged under a gauge transformation F
verifying the properties of Theorem 8.1. Indeed, by definition of A (see
XV.3) and by the last condition on F, we have Ap(a) = FA(a)F~" = A(a)
for all @ € A. As for R, by (XV.3.9) we have R = F,,RF~' = FRF ™.
Now, in view of the third assumption on R, we have

[R, F] = [AQ)V, F] = [Aw), FIV + A@u)[V, F] = 0.

Consequently, Rp = R.

Observe that we may (and shall) apply Theorem 8.1 to the case when
R = e"/% where t is the 2-tensor in (XVIL1.6). Indeed, we have Ry = R
and R =1 ® 1 modulo h. Moreover, (XVII.1.6) implies that

R= A(ehC/4) (eth/4 ® e—hC/4).
Before we prove Theorem 8.1, we establish the following lemma.

Lemma XVIIL.8.2. Let (A, A,e, P, R) be a cocommutative quantum en-
veloping algebra such that Ry = R and R = 1 ® 1 modulo h. Then
Dy =271

PRrROOF. We first claim that
Riy(A @1d)(R) = ®g9, Ry3(id ® A)(R)®. (8.1)
Indeed, we have

Ru(A Y id)(R) - R12‘I’312R13(¢)132)_1R23‘I)
= @321R23(¢’231)#1R13‘I)213R12
= By Ry3(id © A)(R)®.

The first and last equalities follow from Proposition XV.2.2 while the mid-
dle one foliows from Corollary XV.2.3. Next, apply the involution 7,5 to
A® A® A. Since A = A°? and R = R,,, Relation (8.1) becomes

Rys(id ® A)(R) = R, (A @ id)(R) D4y, (8.2)
Combining Relations (8.1-8.2), we get
(Rua(a@id)(B) = & Ryglid @ A)(R)(Byz1) ™ By Rglid @ A)(R)
= ¢! (R23(id ® A)(R))2<I>.

By uniqueness of the square roots of elements congruent to the unit mod-
ulo A, we get

R, (A®id)(R) = ® ' Ry3(id ® A)(R)®. (8.3)

Comparing (8.1) and (8.3), we conclude that ®4,, = @' O
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Proof of Theorem 8.1. We have to show that we can find a gauge transform-
ation taking ® to ®'. Suppose ® and ®’ are equal modulo A" for some n > 1.
This always holds for n = 1 since ® and ®’ are congruent to 1®1®1 modulo
h. Define p € U(g)®® by

® =®+ h"p modulo A",
Let Ant(yp) be the element

Ant(p) = @ — Po13 — P132 — P3o1 + P31 + Para (8.4)

of U(g)®>. The first step in the proof of Theorem 8.1 is the following lemma
with the same hypotheses.

Lemma XVIIL.8.3. The element ¢ is g-invariant and satisfies the rela-
tions @s9; = —p, Ant(p) =0, and

1oy —-(Avideid)(p) +(do A®id)(p) - ([d@id®A)(p)+ (p@1) = 0.

ProOF. (a) Since A is coassociative, Relation (XV.1.1) may be rewritten
in the form

(A ®id)(A(z)),®] =0

for all z € g, which means that ® and &' are g-invariant, namely that they
belong to the subspace (U(g)®3)9[[h]]. Consequently, ¢ is g-invariant too.
(b) Lemma 8.2 implies that

Bhgy = Py + W g9 = ()1 = (@ +h"p) T =@ — A

modulo ™", Tt follows that sy, = —¢.
(c) We now prove that Ant(p) = 0. Consider Relation (XV.2.3) for &
and ®”:

(A®id)(R) = @315 Ry5(Pr35) ™ Rog® = Bf1p Ry5(Ph35) " Rog®'.
Reducing the latter modulo A"*! implies that
P12 — Y132 T = 0. (8.5)
Since 34, = —, Relation (8.5) yields
—P213 T Pa31 — 321 = 0. (8.6)
Adding Relations (8.5-8.6), we get

Ant(p) = © — Po13 ~ P132 — Pao1 + Paz1 + P312 = 0.
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(d) Using the pentagonal relations (XV.1.3) for ® and @', we get
1) (ideA®id)(®) (P ©1)(Axid®id)(®) ' (ideid® A) (@)t

= (189)(1deARid)(®)(?®1)(A®id®id)(®) ' (Id2id@A)(®) ™! = 1.

Reducing these equalities modulo "1, we obtain the desired 5-term func-
tional equation for . O

The next step is the following one.

Lemma XVIIL.8.4. There exists a g-invariant element f € U(g) ® U(g)
such that

=1 f—(Aid)(f)+{dA)f)—fR]1 and fy =Ff.

ProOF. Using the cohomological language of Section 5, we can paraphrase
Lemma 8.3 by saying that ¢ is a g-invariant element of U(g)®? satisfying

8(p) =0, o4(¢)=—p, and Ant(p)=0. (8.7)

The first two relations in (8.7) mean that ¢ is a 3-cocycle in the co-
bar complex (T°*(U(g)),6). We claim that ¢ is a coboundary. Using the
isomorphism 7 : S(g) — U(g) of coalgebras, it suffices to check that
Yv=m"'en ey 1) (p)is a coboundary in (T*(S(g)), ). We also have
Ant(¢) = 0. By Theorem 7.1 (c) we have H*(T*(S(g)),8) = A*(g), the
isomorphism being induced by the map . It is therefore enough to check
that p(v) = 0. Now Ant(¢) = 0 implies Ant((t@pQu)(¥)) = 0. An imme-
diate computation shows that a(u(v)) = Ant((p @ p @ p)(v)). Therefore,
by Theorem 7.1 we have

u() = & () = ¢ wAn((n® @ p) () =0,

6
which tells us that the cohomology class of 1 is zero.
Since the 3-cocycle ¢ is a coboundary, there is an element f € T?(U(g)),
i.e., an element f € U(g)®? with f,; = f such that ¢ = §(f), i.e.,

p=10f—(A@id)(f)+(deA)(f) - fel (8.8)

We have so far proved Lemma 8.4 up to the fact that we can choose f to
be g-invariant.

This last fact is a consequence of Proposition 6.2 applied to the coalgebra
U(g) on which g acts by the adjoint representation (this is where we use
the assumption that g is semisimple). Since (T*(U(g)),6) splits into the
direct sum of (T (U(g))?,8) and of (g7 (U(g)), ) and since ¢ belongs to
T3 (U(g))?, then f necessarily belongs to T2 (U(g))®. O
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From the element f whose existence is asserted by Lemma 8.4, we deduce
the gauge transformation

F=1®1+h"f. (8.9)

The g-invariance of f implies that [F, A(z)] = 0 for all z € U(g). We also
have F,; = F. We already know that A and R remain unaffected by such
a gauge transformation. Let us compute @ modulo h™*1. From (8.8-8.9)
and from (XV.3.3) we get

o —d,=h"(p— (18 f - (Aeid)(f) + (e A)(f) - fo 1) =0,
which can be reexpressed as ® = @, modulo A""'. We now define an
element ¢, of U(g)®* by

®' =&, +h""p, modulo A"?

and start the whole procedure all over again. By composing all the gauge
transformations obtained in this way, we obtain a gauge transformation
between the quasi-bialgebras A and A’. This completes the proof of Theo-
rem 8.1. O

XVIIL.9 Exercises

1. Compute H?(g, C) for all complex Lie algebras of dimension < 3.

2. Show that the space of primitive elements of a coalgebra C' can be
realized as the cohomology group H'(T*(C), §).

3. Give a direct proof of Theorem 7.1 when V is one-dimensional.

4. Let n > 2 be an integer. Consider the algebra A = k[t]/(t™ — 1). Let
N be the element N =1+t +---t""! of A. Show that

R LY/ ALYy EARY I oy’

is a resolution of k£ by free left A-modules.

5. Prove the assertions of the Appendix.

XVIIL.10 Notes

The content of Sections 1-7 is classical. The cohomology of Lie algebras
was introduced by Chevalley and Eilenberg in [CE48] following ideas of E.
Cartan. See [Ger64] for a general deformation theory for algebras.
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The cobar complex appeared independently in papers by Adams [Ada56]
and Cartier [Car57]. Theorem 7.1 is due to the latter. The reader is advised
to take a look at Cartier’s elegant proof using resolutions of comodules in
[Car57]. We gave here a more pedestrian proof based on Eilenberg and Mac
Lane’s bar complex [EM53] (see also [SC56]). Drinfeld gives a third one in
[Dri89b], Prop. 2.2 and Prop. 3.11.

The content of Section 8 is entirely due to Drinfeld (see [Dri90], Sec-
tion 3). Observe that Theorems 4.1 and 8.1 are non-constructive. It would
be interesting to find an explicit isomorphism « : U, (g) — U(g)[[h]] and
an explicit gauge transformation F, even in the case g = sl(2).

XVIIL.11 Appendix. Complexes and Resolutions

We recall some facts from homological algebra. For details and proofs, see,
e.g., Cartan-Eilenberg’s book [CE56].

Let A be an algebra. A chain complex of left A-modules (C,, d) is a family
(C,) >0 of left A-modules together with A-linear maps d : C,, — C,,_4,
defined for all n > 1, such that d o d = 0. The last condition implies that
the image of d sits inside its kernel. We can therefore define the homology
groups H,(C,,d) of the chain complex by

Ker(d: C, —C,_;)
Im(d:C, ., —C,)

H,(C,,d)= (11.1)
A chain complex is acyclic if all its homology groups vanish.

One similarly defines a cochain complex of left A-modules (C®,d) as a
family (C™),,>¢ of left A-modules with A-linear maps 6 : C"" — C™**! such
that § o § = 0. The cohomology groups H*(C*,d) are defined by

~ Ker(d: C" — O™
~ Im(d: 01— Cn)

H™(C",d) (11.2)
In both cases, we agree that C_; = C™! = 0.

Let M be a left A-module. A resolution of M by free left A-modules is
a chain complex (C,,d) of free left A-modules together with an A-linear
map € : C; — M such that the chain complex

L ING RN o RN I (11.3)

is acyclic. Any A-module has a resolution by free left A-modules.

A chain map f : (C,,d) — (C,,d") between chain complexes of A-
modules is a family (f,, : C,, — C},),>o of A-linear maps such that

food=d'of, (11.4)

for all n. A chain map f induces a map f, : H,(C,,d) — H,(C,,d) between
the corresponding homology groups.
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A homotopy h between two chain maps f, f' : (C,,d) — (C,,d') is a
family (h,, : C, = C},1),>¢ of A-linear maps such that

fn_f;l:d’ohnmn,lod (11.5)

for all n (by convention h_, = 0). If there exists a homotopy between f
and f’, we say that the two chain maps are homotopic. Homotopy is an
equivalence relation. Homotopic chain maps f, f’ induce the same map on
homology: f, = f..

One of the basic results in homological algebra is the following compar-
ison theorem for resolutions.

Theorem XVIIL.11.1. Let (C,,d) [resp. (C.,d’)] be a resolution of an
A-module M [resp. of M'] by free left A-modules. Suppose we also have an
A-linear map f_, from M to M'. Then there exists a chain map f from
(C,,d) to (CL,d") over f_y, i.e., such that f_joe =€'of_ ;. If f’ is another
chain map over f_,, then f and f’ are homotopic.

Corollary XVIII.11.2. Let (C,,d) and (C.,d") be resolutions of an A-
module M by free left A-modules. There exist chain maps

f:(Cq,d) = (Co,d) and g:(C,,d") — (C,,d)
such that go f and f o g are homotopic to the identities.

Proor. Applying the above theorem to f_; = id, we get chain maps f,g¢
such that ¢ = ¢’ o f; and ¢’ = £0g,. Now go f is a chain map from (C,, d)
to itself with € o (g, o f;) = €. So is the identity on C,. By the second part
of the theorem, we see that g o f is necessarily homotopic to the identity.
A similar argument works for f o g. a



Chapter XIX

Monodromy of the
Knizhnik-Zamolodchikov Equations

The purpose of this chapter is twofold:

(i) For any complex Lie algebra g and any invariant symmetric 2-tensor
t € g®g, construct a quantum enveloping algebra Agﬂf for g whose canonical
2-tensor is t.

(ii) Give Drinfeld’s reformulation and proof of an important result of
Kohno’s which asserts that, if g is semisimple, the monodromy of a cer-
tain system of differential equations, called the Knizhnik-Zamolodchikov
system, is equivalent to the braid group representation provided by the
universal R-matrix of the quantum enveloping algebra U, (g) introduced in
Chapter XVII. In terms of categories, Drinfeld’s proof amounts to show-
ing that the braided tensor category Uj,(g)-Mody, of modules over the
Drinfeld-Jimbo algebra (as defined in XVII.3) is equivalent to a braided
category of modules over the trivial deformation U(g){[h]], equipped with
a non-trivial associativity constraint.

‘We shall use some elementary differential geometry in this chapter, but,
as was the case with knot theory earlier in this book, we shall focus on
Drinfeld’s ideas and therefore skip the details that are not essential to
their understanding.

XIX.1 Connections

We assume some standard knowledge of differential geometry. Let us never-
theless recall a few facts. For more details, the reader may consult [KN63].
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Let X be a complex analytic variety of dimension n and p: £ — X be
a complex analytic vector bundle of rank d over X. If z is a point of X,
we denote by F, the fibre at z: F,, = p~'(z). A connection on E is a linear
map V from the space I'(X, F) of sections of the vector bundle E into the
space Q' (X, E) of differential 1-forms with values in E such that for any
section s and any complex analytic function f on X we have

V(fs) = (df)s+ FV(s). (1L.1)

If V| and V, are two connections on E, then the difference V; — V, is
O(X)-linear, where O(X) is the ring of complex analytic functions on X.
Locally, we can write a section s in the form

s= fie; +--+ faeq (1.2)

where f;,..., f; are complex analytic functions on X and {ey,...,e;} isa
basis of the fibre. Any connection V on F can be written locally as

Vs=ds—Ts (1.3)

where d is the de Rham differential and I' is a differential 1-form on X with
values in the endomorphism ring of E.

A section s of the bundle is horizontal for the connection V if Vs = 0,
i.e., if locally s is a solution of the system

ds =Ts. (1.4)

Let v : [0,1] — X be a smooth path in X from z, = v(0) to z; = v(1). We
may pull back the matrix I' of differential forms on X along v to a matrix
A(#)dd = +'T of differential forms on the interval [0, 1]. By the theory of
ordinary differential equations, there exists a unique smooth map A, from
[0,1] into the group of linear automorphisms of the fibre bundle such that
A, (0) = id and w(f) = A, (0)w(0) is a solution of the differential equation

dw(0)
5 = A(0)w(H). (1.5)

The automorphism A, (1) defines a linear isomorphism 7, : F, — F, ,
called the parallel transport along the path 7. When +' is a path from
x, to T, we may consider the composed path 7', as in the Appendix
to Chapter X. The uniqueness theorem on systems of first order linear

differential equations implies that
T, =T,0T,. (1.6)

The holonomy group at x is defined as the subgroup of Aut(F, ) gen-
erated by T, for all loops v based at z;, at X. In general, the holonomy
depends on the local as well as on the global structure of X. In other words,
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T, may change as ~y varies (even infinitesimally). Let us give a condition
on the connection V under which the parallel transport depends only on
the homotopy class of the path.

We need the notions of covariant derivative and of curvature of a connec-
tion. It is not difficult to show that the connection V extends to a unique
endomorphism of degree 1, still denoted V, and called the covariant deriva-
tive, of Q*(X, E) such that

V(ww'") = (dw)w’ + (—=1)PwV (W)
for any pair (w,w’) of differential forms where p is the degree of w.
Lemma XIX.1.1. The curvature K = V oV is O(X)-linear.
PROOF. Let w be a differential form and f be a function on X. We have
K(fw) = V((d)w+ V(W)= (o~ (df)V(w) + (d)V(w) + fK(w)
= [fK(w)
since d? f = 0. O
Locally, the curvature can be expressed in terms of I" by

K(s) =d(ds ~Ts) —T'(ds -T's) = (—dl' + T AT)s,

which leads to the formula
K=—-dI' +T'AT. (1.7)

When K = 0 we say that the connection is flat. In this case, Q*(X, E)
becomes a cochain complex with differential V.

Proposition XIX.1.2. Given a connection V, we have T, =T, for any
pair (v,7') of homotopic paths in X if and only if the connection is flat.

This statement implies that, if K = 0, then for any point z, in X the
parallel transport induces a group morphism 7" from the fundamental group
(X, 2y) to Aut(F, ). It is called the monodromy representation of the
fundamental group acting on the fibre. We shall not prove Proposition 1.2
for which we refer to the classical literature.

XIX.2 Braid Group Representations from
Monodromy

We apply the generalities of Section 1 to the following situation. Suppose
given a finite-dimensional complex vector space W, an integer n > 1 and a
family {A;;};<;<;j<n of endomorphisms of W satisfying the conditions

[Aiijkl] =0 (2.1)
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whenever i, 7, k, £ are distinct integers < n, and

[A;., A,

370 4

kAl = (A, Ay + Ayl =0 (2.2)

whenever i, j, k are distinct integers. Consider the differential system

A..
_ Y .
dw = g D — (dz; = dz;)w. (2.3)
1<i<j<n ¢ J

According to Section 1, this defines a connection V = d — I" on the trivial
bundle Y, x W where

A,
_ J
I'= g D (dz; — dz;) (2.4)
1<i<j<n ¢ J

and Y, is the complex variety

Yn = {(Z17' . .,Z,,L) eCc"

t#j= 2z # zj}
already considered in X.6.

Proposition XI1X.2.1. The connection V =d — T is flat.

PrOOF. By Proposition 1.2 it suffices for us to show that the curvature
K = —dI' + I' AT vanishes. Since the endomorphisms A;; do not depend
on the variables zy,...,z,, we have dI' = 0. It is therefore enough to check
that ' AT = 0. Set

dz;, — dzj
i Jj
We have
TAT = Y A Auu; Aug. (2.5)

i<, k<t

The right-hand side of (2.5) is equal to K, + K4 + K, where

Kp = E A’LjAk:Z U,L] /\ukg,
i<j, k<t

the set of indices {i < j,k < ¢} C {1,...,n} running over all such subsets
of cardinality p. We now show that K,, K4 and K, vanish separately due
to Relations (2.1-2.2). For K, this results from u,; A u;; = 0. Let us deal
with K,: exchanging (i, ) and (k,£), we get

K4 = E AMAU Uy /\u”
1<g, k<4
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The right-hand side is equal to —K, because uy, A u;; = —uy;; A ug, and
A Age = AgAyj, the latter following from (2.1). Consequently, 2K, = 0,
which proves the vanishing of K,.

Before we prove that K4 = 0, we record the following well-known lemma
(sometimes called Arnold’s lemma):

Lemma XIX.2.2. For any triple (i,7,k) of distinct integers, we have
Uyy N Ujgo + g N Uy + g Ay = 0.

PROOF. Let i, j, k be distinct indices. Then

(dz; — dz;) A (dz; — dzy)

(2 — Zj)(zj - 2)

Uy A Usp + U A Upg + Upg AUy = ?{

where the symbol § means that we take the sum of the term under the
integral with the other two obtained by circular permutations of the indices.
We have

Lhs = % dz; Ndz; +dz; Ndzy, + dz, Ndz;
(2 = 2j)(2; — 2)

1
= (% (z, — 2,)(z, — zk))(dzi /\dz]- —l—dz]- Adzy, + dz, A dz;)
K3 §i 7

(7{( dz; Ndz; + dz; ANdzy, + dz Nz,
= 2k T % )

J o (2 — Zj)(zj — ) (% — %)

O

Let us resume the proof of Proposition 2.1. We still have to prove that
K5 = 0. We break the sum K into three smaller pieces Ky = Ky + K+ K.
The first piece is

Ks= ) AyAyug Augy,
i<j#k

Exchanging j and k, we get

Ky = Z (A5 Al wij Ay

i<j<k
Similarly,
Ke = Z A Ay wige Ny, = Z (A Al g, Ay
ity <k i<j<k
The last piece is
K = Z (Ai.iAJ'k g Ay, + Agp Ay g A Uij)

i<j<k

37 Ay Agd g Ay

i<j<k
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Therefore Ky =3 71, where

i<j<k “1

Ziie = [Ayy A gy A gy + [Ags A i AN ugy + [A

ig» Al ugg Ay

ij>
Using Lemma 2.2, we get

Zie = Ay Audugy N + [Ages A wig A ugy,
FA s Age] (ugge A wgg +ug; A ug)
= (A A+ Ayl ug Mg + [Ag + Ay, A g Ay

= 0

K

by (2.2). This implies the vanishing of K5 and completes the proof of Propo-
sition 2.1. 0

Since the connection associated to the differential system (2.3) is flat,
there exists a monodromy representation of the fundamental group of Y,
on the vector space W.

Remark 2.3. Tt can be proved that the fundamental group of Y, is the
pure braid group P, defined as the kernel of the natural surjection of the
braid group B, onto the symmetric group S,. Let p,, be the Lie algebra
generated by a set {X;;};<;;<, of generators and Relations (2.1-2.2). A
p,-module W is nothing but a vector space W with a family (4;;)i<;<j<n
of endomorphisms satisfying (2.1-2.2). For any such module, the connec-
tion corresponding to the differential system (2.3) is flat, therefore inducing
a monodromy representation of the group P, . It thus makes sense to view
the Lie algebra p, as the analogue of the Lie algebra of a Lie group for
the pure braid group P, and monodromy as the analogue of integrating
a representation from the Lie algebra to the Lie group. For these reasons,
Relations (2.1-2.2) are sometimes called the infinitesimal braid group rela-
tions. For more details on the relationship between P, and p,,, see [Aom78§]
[Hai86] [Koh85).

What we actually would like to have is a monodromy representation of
the full braid group B,,, not only of the subgroup P,. This can be achieved
as follows. Suppose we have a left action of the symmetric group .S,, on the
vector space W. Then there exists a right action of S, on the trivial vector
bundle Y,, x W given by

(21, 2y W0 = (za(l), o Zg(n)) o lw) (2.6)
foro €S, (2,...,2,) €Y., and w € W. The composition

factors through the quotient space E = (Y, xW)/S,, of S, -orbits on Y, xW.
The topological space E thus becomes a non-trivial vector bundle over X,
with fibre W. In the space F we have

(2152 2530W) = (25(1)5 -+ -+ 20 (n)} W)- (2.7)
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Now, if the differential system (2.3) is invariant under the action of S,,,
then the connection V = d — I descends to a connection on E. If Rela-
tions (2.1-2.2) are satisfied, then it has a monodromy representation on the
fundamental group of X, which, by Proposition X.6.14, is the full braid
group B,,.

XIX.3 The Knizhnik-Zamolodchikov Equations

We consider a differential system that is a special case of the systems con-
sidered in Section 2 and that depends on the following data:

(i) a finite-dimensional complex Lie algebra g,

(ii) an invariant symmetric 2-tensor t on g, i.e., an element t = 3 z,Qy,
of g ® g such that

ty; =t and [A(z),t]=0 (3.1

for all z € g,

(iii) a complex parameter h,

(iv) an integer n > 1, and

(v) a finite-dimensional g-module V.

Definition XIX.3.1. The Knizhnik-Zamolodchikov differential system as-
soctated to the above data is the system

h ;s
dw = ——— Z I—(dz, — dz;)w (KZ,,)
2w/ —1 <ici<n 2 = %
where w = w(zy,...,2,) 18 o function on Y, with values in W = Ve and

where t,; is the element of U(g)®™ defined for alli # j by

=3 a0 @ @al
T

where i) = z,, 29 =y, and z{® =1 otherwise.

Lemma XIX.3.2. The elements (t;;)1<;< <, induce endomorphisms of
V& satisfying Relations (2.1-2.2).

PROOF. Relations (2.1) hold by definition of ¢,;. Relations (2.2) follow from
the g-invariance of t. We show this when ¢ = 1, j = 2, and kK = 3. We have

[t127t13+t23] = Z[xr®yr®l’xs®1®ys+l®xs®ys]

r, 8

- Y [E e eities] ey,

S8

= Z [t, A(xs)} RYs = 0

k]

by (3.1). O
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Lemma 3.2 and Proposition 2.1 imply that the system (KZ, ) defines a
flat connection on the trivial bundle over Y, with fibre V" and, conse-
quently, determines a monodromy representation

pR% (V) — Aut(VE™).

n

Let us prove that this monodromy can be extended to a representation
of the full braid group B,,. As explained at the end of Section 2, we have
to specify a left action of the symmetric group S,, on the space W = V®".
We choose the action given by

0'(’(11 ®®vn) = Vs-1(1) ®"'(X)va*l(n) (32)

for o € S, and vy,...,v, € V. The 2-tensor ¢ being symmetric by hypoth-
esis, we have t,; = t;; for any pair (i,7) of distinct integers. Consequently,
we can rewrite the system (KZ,)) as

h ty

1<i#j<n J

dw

Tt is clear from (3.3) that the system is invariant under the action of the
symmetric group. We thus obtain a monodromy representation

pE% . B, =7, (X,,p) — Aut(VE"). (3.4)

Here we take the point p = (1,2,...,n) as the base-point of X, and we
identify the fibre of the bundle E = (Y, x V®")/S, at the point p with
yen,

The main objective of this chapter is to compute the monodromy rep-
resentation pITfZ as explicitly as possible from the above data. This is a
difficult task. To begin with, let us consider the following special cases.

(a) Case when h = 0: the differential system reduces to dw = 0 which
has constant solutions over Y,,. The corresponding monodromy is the rep-
resentation of B, on V®" coming from the action (3.2) of the symmetric
group.

(b) Case when n = 2: the system (KZ,) reduces to

_h t

Comy/—1 Zy — Zy
In order to determine its monodromy, we represent the generator o, of the
braid group B, by the loop z(s) = (2,(s), 25(s)) where s varies in [0, 1] and

1 1
z1(s) = 5(3-67r 1) and  2,(s) = 5(3—1—67r “lsy,

dw (dzy — dzo)w. (3.5)

We have z(0) = z(1) = (1,2) = (2,1) in X,. Pulling back (3.5) along this
loop leads to the ordinary differential equation

dw Bt (3.6)

ds 2
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whose unique solution is given by

w(s) = eM$/2(0), (3.7)

hts/2 : : : : hts/2 __ h"t"s™ :
where e is the classical entire series e = ano “Sen converging

in Aut(V ® V) for all values of the complex parameter h. We get the
monodromy action of the generator o, by setting s =1 in (3.7), namely

P00y @ vy) = Ty ("2(0, @ 0,)) (3.8)
for all v, vy € V. The flip appears in (3.8) as a consequence of the equality
(2,10 ®@vy) = (1,250, ®vy)

in the non-trivial bundle E = (Y, x V®2)/S,.
(c) Suppose that n > 2 and that the condition

[tijv tké] =0 (3'9)
holds for all 4, j, k, . We claim that in this case the monodromy action of
B, is given for each of the generators o,...,0,_; by

P o) @ @) =7 (M P @ @u,))  (310)

where 791 = idyec-1 @7y y ®idyem-i-1. To prove the claim, represent
the generator o, of the braid group by the loop z(s) = (z,(s),...,2,(s))
where

1 1
z;(8) = 5(22’—}— L—e™71%) 2,0 (s) = 5(2@ +1+4e™V s (3.11)

and zj(s) = j for 7 # i,i + 1. Then the system obtained by pulling back
(KZ,,) along this loop can be solved as in Case (b) because the ¢,; commute
with one another.

We end this section with some observations based on the three special
cases we have just considered. Firstly, in all cases above, the monodromy is
an analytic function in the complex parameter h viewed as a variable. This
holds for any (KZ)-system by the general theory of ordinary differential
equations: the differential system depending linearly on h, its solutions are
analytic in h. We shall henceforth consider the monodromy as an analytic
function in A or rather, as a formal series in the variable h. Denote by
(U(g)[[h]], A, £) the trivial topological bialgebra associated to the bialgebra
(U(g), A, ¢) as in Example 3 of XVI.4. For any g-module V, put on V[[A]]
the U(g)[[h]]-module structure induced from the action of U(g) on V. Recall
that (V[[h]])®™ = V®"[[h]] by Proposition XVI.3.2. We can then express
the analytical dependence on h of the monodromy of (KZ,) by a group

morphism
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From Case (a) we see that pXZ is congruent modulo A to the representation
coming from the symmetric group action (3.2).

We next observe that the monodromy is independent of the g-module V.
This again holds in full generality because the system has coefficients in the
tensor powers of U(g). One can prove this using Chen’s theory of formal
connections and formal monodromy [Che73] [Che75] [Che77a).

The last remark is the following: in Case (c) above, the monodromy can
be derived from a topological braided bialgebra structure. Indeed, assume
that (U(g)[[h]], A, €) is the trivial topological bialgebra as above. Set R =
e"*/2 When t satisfies Relations (3.9), the element R of U(g)[[h]]@U(g)[[h]]
satisfies Relations (XVI.4.15-4.17) with & = 1®1®1. The proof of this
claim is similar to the one used in XVI.5, Example 1. Therefore,

Ay, = U@)A], A, @ = 18181, R = e"/?)

is a topological braided bialgebra whose universal R-matrix is symmetric:
R, = R. The g-module V extends to the A, ,-module V/[[1]] defined above.
The universal R-matrix R gives rise to a representation

P By, — Autgyy (VE™([R])

of the braid group B,, following the procedure explained in XV.4. A com-
parison with (3.10) gives the following.

Proposition XIX.3.3. When t satisfies (3.9), the monodromy of the sys-
tem (KZ,) coincides with the braid group representation induced by the
universal R-matriz R = /2 of the topological braided bialgebra A_,, i.e.,
we have

g,t7

Pl = pr-

In the next section, we shall extend this result to the case of an arbitrary
invariant symmetric 2-tensor £ in spite of the fact that Ag,t may no longer
be a topological braided bialgebra.

XIX.4 The Drinfeld-Kohno Theorem

In addition to the hypotheses of Section 3, we assume that the Lie algebra g
is semisimple. In this situation, there exists a topological braided bialgebra

(Un(9), Ap, e, @) = 10181, Ry,)

quantizing the enveloping algebra of g (see XVIIL.2). Any finite-dimensional
g-module V' can be extended to a canonical U,(g)-module V such that
IN// RV = V. Indeed, if V = V, is the simple g-module associated to a
dominant weight A, then we define ?)\ as the U, (g)-module whose existence
is asserted in XVIL2. If V = @, V, is a direct sum of simple g-modules,
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we define V to be V = @, V, (see also XVIIL4). The universal R-matrix
R;, induces a morphism of groups

pir: B, — AUtC[[h]](V®n> = Aut gy (VE[[AI) (4.1)

into the automorphism group of V®" with formal series coefficients. On the
other hand, the monodromy of the system (KZ,,) is a morphism of groups

pn’ B, — Autgpy (VER]). (4.2)
‘We now state the Drinfeld-Kohno theorem.

Theorem XIX.4.1. If g is a semisimple Lie algebra and t € g® g is
the invariant symmetric 2-tensor given by (XVIL.1.6), then the braid group
representations pffz and pf’l are equivalent for anyn > 1 and any g-module
V. In other words, there ezists a C[[h]]-linear automorphism u of V®"[[h]]
such that

prZ(g) = upfr (gu

for all elements g of the braid group B,,.

The rest of this chapter is devoted to the proof of this important the-
orem which expresses a geometrical problem in terms of quantum groups
and produces an explicit expression for the monodromy of the Knizhnik-
Zamolodchikov equations in the semisimple case.

Drinfeld’s proof of Theorem 4.1 relies on two main ideas. The first one
is to consider the trivial topological bialgebra (U(g)[[h]],A,c) equipped
with the invertible element Ry, = e"/2 € U(g)®?[[h]] as at the end of
Section 3. In general, Ry, does not induce a topological braided bialge-
bra structure on U(g)[[h]]. Nevertheless, it does induce the structure of a
topological braided quasi-bialgebra, making U(g){[h]] into a quantum en-
veloping algebra. Moreover, this structure contains all the information on
the monodromy of all (KZ,,)-systems. These assertions are summarized in
the following theorem which generalizes Proposition 3.3.

Theorem XIX.4.2. For any complex Lie algebra and any element t of
g ® g satisfying Conditions (3.1), there exists an element

03 ®3

Biez € U)* (1] = (U(0)[1A]))

with Pz =1® 1R 1 mod h such that
(i) the topological (quasi-)bialgebra

Age = (V@A) A5 Oz, Bicy = 7?)

s a quantum enveloping algebra, and

(ii) for any integer n > 1 and any g-module V', the monodromy represen-
tation pX% of B, on V[[h]]®™ coincides with the braid group representation
pfRz induced by the universal R-matriz Ry, = eht’2 as in XV 4.
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Since (Ryyz)o; Riz = € = 1® 1+ ht mod h, we see that the canonical
2-tensor of Ag,t coincides with ¢. Thus, Ag,t provides a solution to the quan-
tization of (g,t). Notice that this solution is obtained without deforming
the multiplication or the comultiplication of the enveloping algebra. This
is the first major property of the QUE A_ ,

The second one is expressed in Part (11) of Theorem 4.2: loosely speak-
ing, it means that the algebra A, is universal for the monodromy of all
Knizhnik-Zamolodchikov differential systems. Observe also that the solu-
tion of (KZ,) as given by Formula (3.8) forces the universal R-matrix of
A, ; to be equal to eht/2,

Drinfeld’s second idea for the proof of Theorem 4.1 can be expressed as
follows.

Theorem XIX.4.3. If, furthermore, the Lie algebra g is semisimple and
t 1s the 2-tensor considered in Theorem 4.1, then there exist a gauge trans-
formation F € A; ,®A, , and a C[[h]]-linear isomorphism

a:U,(g) — (Ag’t)F
of topological braided quasi-bialgebras.

As a consequence of Theorem 4.3 and of Theorem XV.3.9, we get the
following important categorical interpretation of Drinfeld-Jimbo’s algebras.
A more precise statement can be found in Corollary XX.6.2.

Corollary XIX.4.4. The tensor functor (a*,id, %) is a braided tensor
equivalence from a braided tensor category of topologically free U(g)[[h]]-
modules equipped with associativity constraint induced by Py, and braiding
induced by Ry, to the category Uy, (g)-Mod,, of XVIL3.

Theorem 4.3 will be proved in the next section as a consequence of results
of Chapter XVIII. The construction of Ag,t and an indication of the proof
of Theorem 4.2 will be given in Sections 7-8. We now prove the Drinfeld-
Kohno theorem.

Proof of Theorem 4.1. Tt follows immediately from Theorem 4.2, Theorem
4.3 and Theorem XV.4.2. The latter implies, furthermore, that the auto-
morphism u is given by the action of the element F}, of U(g)®"[[h]].
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XIX.5 Equivalence of Uy(g) and Ag;

We start with a semisimple Lie algebra g and the 2-tensor
CAC)-10C-Co1
B 2

associated to the Casimir element C of U(g). The aim of this section is to
prove Theorem 4.3. We shall do this in three steps.

(5.1)

Step 1. Since g is semisimple, we may apply Theorem XVIIL.4.1. It gives us
a C[[h]]-linear isomorphism of algebras « : Uy, (g) — U(g)[[h]] with a = id
modulo A, sending the Drinfeld-Jimbo QUE to the trivial deformation of
U(g). Using o, we may transfer all structure maps of Uy, (g) to U(g){[h]]. In
particular, define

= (a®a)A,at and &l =g (5.2)

The map o becomes an isomorphism of topological braided bialgebras from
Uh (g) to

(U(g)[[r]], AR, ef, (@ @ a)(Ry)).
The maps Ay and A are algebra morphisms, both congruent to A modulo
h. Recall from V.2 that U(g) ® U(g) = U(g x g). Now apply Theorem
XVIIL.2.1 with g’ = g x g. We get an invertible element F’ in (Ug®Ug)|[h]]
such that 7' =1 ® 1 modulo A and

Mz)=F 'Adx)F (5.3)
for all z € U(g)[[h]].
Lemma XIX.5.1. We have ¢}, =¢.

PROOF. Since ¢, is a counit for A, it follows that €} is a counit for A7,
Therefore
id = (e ®id)AY = (e¥ @ id)(F' "' AF"),

which means that
(6% ®id)A(z) = bzl (5.4)

where ¢ = (eff ® id)(F"). Using Sweedler’s sigma notation, we get

@) = (D o)

()

= ¢ (Z 5%(3:'):5”)

()

by the counit axiom and (5.4). O
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We have proved so far that the QUE (U, (g),Ap,e,,1 @ 1® 1, Ry,) is
isomorphic to the topological braided quasi-bialgebra

(U(o)[[R]], F''AF 6,1®1® 1, (0 ® a)(Ry,)). (5.5)

Using F’ as a gauge transform, we get the following, which concludes
Step 1.

Proposition X1X.5.2. The QUE (U, (g), Ay €, 1Q1®1, Ry,) is isomor-
phic to the gauge transform by F' of the topological braided quasi-bialgebra
(U(9)[[R]], A e, ®, R) where

®=(ide A)(F)(1® F)(F'e1)(A®id)(F' 1)
and
R = Fy(a®a)(R))F'".
Observe that since A is coassociative, ® has to be g-invariant, i.e.,
[(A®id)A(z),®] =0

for all € g. Similarly, R is g-invariant since A is cocommutative.

Step 2. We apply the symmetrization procedure of XVI.6. By Proposition
XVIL.6.2, there exists a gauge transformation F” on U(g)®?[[h]] such that
[A(z), F"] = 0 for all 2 € g and such that, if we set R = Fj} RF"~!, then
R,, = R’. We make the following capital claim.

Lemma XIX.5.3. Under the previous hypotheses, we have R = eht/2,
Proor. By Proposition 5.2 we have
R/2 — I21RI
= F'Flla® a)((Rh)21)F,511F/1511FN21F2/1(0‘®a)(Rh)F,_1FH_1
= F'Fa®a)(Ry)n Ry F""

Now by Proposition XVIIL.3.2 and by Relations (5.2-5.3) and (XVIL.3.6)
we have ‘

R12 _ FIIF/(a ® a) (Ah(ehch/Q)(e—hch/Q ® e*hch/Q))F/—lFl/—l
_ F//F/Ag(eha(ch)/Z) <6—ha(Ch)/2 ® e—ha(Ch)/Q) p1pr—1

— F//F/F/-lA(ehC/Z)F/(e-hC/Q ® e—hC/2)F/—1F//A1
_ F//A(ehC/2)F//—1(e—hC/2 ® eth/Q)
A(ehC/2)(6*hC/2 ® e*hC/Q)
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since C is central and F"' is g-invariant. Finally, in view of the relationship
between the Casimir element and the 2-tensor ¢, and of the centrality of C,
we get

R/2 — ehA(C)/2(6~h0/2 ® e—hC/Q)
—  MAQ)-18C-Co1)/2
= e,
Since R = 1® 1 mod h, it follows that R = /2. m|

Remark 5.4. The only property peculiar to Uy, (g) used so far in this proof
is the one stated in Proposition XVIL.3.2. Drinfeld [Dri90] actually proves
more: if A is any QUE for a complex semisimple Lie algebra g, then A
is necessarily isomorphic to the gauge transform of a topological braided
quasi-bialgebra of the form (Ug[[h]],A,e,®, R) where R = R, = '%/2
for some invariant symmetric 2-tensor 6 on g. The trivial deformation
(Ugl[R]], A, g, 18181, 1®1) corresponds to § = 0. This concludes Step 2.

Step 3. Summing up Steps 1 and 2, we see that Drinfeld and Jimbo’s
QUE U, (g) is isomorphic as a topological braided bialgebra to the gauge
transform of a topological braided quasi-bialgebra of the form

(V@A A, R = e/2), (5.6)

Now the QUE A ; of Theorem 4.2 is of the same form, except that &' may
differ from the element @y, of A ,. This discrepancy is taken care of by
Theorem XVIII.8.1 which implies the existence of a gauge transformation
F" on U(g)®?[[h]] such that

(V@) A e, R = e2) = (4,,) (5.7)

Fr

Setting F = F'(F")"'F"", we obtain an isomorphism between U, (g) and
(Ag ¢) > which proves Theorem 4.3.

XIX.6 Drinfeld’s Associator

In order to construct the element ®, of Theorem 4.2, we investigate the
linear differential equation

_h <A B
Comy/—1
where G(z) is a formal series in two non-commuting variables A and B

with coeflicients which are analytic functions in the complex variable z. As
above, h is a formal parameter.

G'(2) )G(z) (6.1)

z 21
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Equation (6.1) has a singularity at 0 and 1. Changing z into 1/z shows
that it also has a singularity at oo. These singularities are regular or Fuch-
sian. The theory of such equations is classical (see [Was87]).

Let C’ be the simply-connected, connected complement of the union
of the real half-lines | — 00,0] and [1, +oo[ in the complex plane. By the
fundamental theorem of linear differential equations, Equation (6.1) has a
unique analytical solution on C’ with specified value at any given point in
C'. Since the equation depends linearly on the parameter h, the solutions
have an analytic dependence on h. They can thus be considered as formal
series in h. Observe that, when h = 0, the equation reduces to G'(z) = 0
whose solutions are constant.

We first examine the asymptotic behaviour of the solutions of Equation
(6.1) at the singularities 0 and 1. Set h = #?1

Proposition XIX.6.1. There exist unique solutions G, and G, of Equa-
tion (6.1) such that

Gy(2) ~ysg 2™ and Gy(2) ~,_y (1 2)"E.

By this we mean that G(2)z~ " [resp. G;(2)(1—2)""P ] has an analytic
continuation in a neighbourhood of 0 [resp. of 1] with value at 0 [resp. at 1]
equal to 1. Here 2" and (1—2)"B are well-defined on the simply-connected
subspace C'.

PRrROOF. We shall give the proof for GG;,. Let us look for a solution of the

form B
Gy(z) = P(2)z" (6.2)

with P(2) =3, ., P.2". Suppose we can find such a series, that it is con-
vergent, and that P(0) = P, = 1. Then the function G, satisfies the require-
ments of Proposition 6.1. The uniqueness property follows by uniqueness
of the solutions.

Let us now prove that there exists a family (P,),s, such that P, =1
and G(z) is a formal solution of (6.1). We have B

_ AN A B 3
1 _ / Y, hA - hA
Gy(z) = (P (z)—f—hP(z)Z)z h(z + Zﬁl)P(z)z .
This can be rewritten under the form
_ _ P
2P'(2) — h[A, P(2)] = —hB%(ZZ). (6.3)

Expanding (6.3) in powers of z, we get [A, Py] =0, and, for r > 0,

rP.—h[A,P,] = —hB(Py+---+ P._,). (6.4)
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Equations (6.4) have a solution. Indeed, take Fy = 1; then P, is uniquely

T

determined by P, ..., P._; due to the fact that the operator rid — had(A)

1t r—1
is invertible with inverse equal to

The convergence of P(z) results from the general fact that a formal solution
of a regular singular equation is necessarily convergent. We refer to [Was87],
I1.5 for details.

Similarly, one proves that there exists an analytic function Q(z) defined
in a neighbourhood of 0 such that

Gi(2) = QL ~2) (1~ 2)*F (6.5)

when 2z is close to 1. O

Since G, and G are both non-zero solutions of Equation (6.1), they have
to differ by an invertible element.

Definition XIX.6.2. We define ®(A4, B) by G,(z) = G,(2)®(A4, B).

The element ® = ®(A, B) is by definition an element of the algebra S
of formal series in the non-commuting variables A and B with coefficients
in C[[h]] (the variable h commuting with A and B). It is called Drinfeld’s
associator, a term which will be justified by the results of Sections 7-8 and
of XX.6.

We end this section by giving an expression for @ in terms of the iterated
integrals and the multiple zeta values defined in the Appendix to this chap-
ter. For any real number a such that 0 < a < 1, let G,(2) be the unique
solution of Equation (6.1) such that G,(a) = 1. The element ® is related
to the solutions G, as follows.

Lemma X1X.6.3. We have

®(A,B) = lirr%) a"BBGa(l —a)at.

PROOF. Let a be a positive real number sufficiently close to 0 so that P(a)
in (6.2) is defined. Since G, and G, are both solutions of Equation (6.1),
they differ by a constant which one gets by evaluating both solutions at
z = a. We have

Go(2) = Go(2)Gya) ™! = Go(z)a™ " P(a)~! (6.6)

a

for all z. When z is close to 1, we have, by (6.5),

Gy(2) = Q(1—2)(1—2)"E. (6.7)
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Setting z = 1 — a and using (6.6-6.7) and Definition 6.2, we get

a"BG,(1—a)a = a*EBGO(l —a) a"_lAP(a)”laﬁA
= a_;‘BQ(a) a"B @ af’_lAP(a)‘la’_lA.
When a tends to 0, then Q(a) and P(a) tend to 1. Consequently, the right-
hand side of the last equation tends to ®. a

Let b €]0, 1[. By Picard’s method of approximation (see Appendix), the
value G, (b) of the solution G, can be computed in terms of iterated inte-
grals. More precisely, we have

G, =1+ (/b Q(M))M (6.8)
—\Ja

where M runs over all monomials in A and B and f: Q(M) is the iterated
integral obtained by replacing each occurrence A in M by the 1-form hS),
and each occurrence B by h{2; where

1 ds 1 ds
Q = Y oand Q= —— Y
0T o/ 1 s R IT o s 1

By (11.15) of the Appendix we know that, if the monomial M starts with
A and ends with B, i.e., is of the form AP*B? ... AP B%  the limit

l1-a
lim Q(M)
a—0 a
exists and is equal to
1—a
iig%) hPrtotax 91071Q<111 o .ngQ(ilk — hm+~~~+qk7.(pl7 Qus- s Pry qk)
a
(6.9)
where the complex numbers 7(py, 4y, - - - , Pk, ¢x) have been defined and com-

puted in the Appendix in terms of multiple zeta values. If the monomial M
begins with B or ends with A, then the integral falfa Q(M) diverges as a
tends to 0. In order to get rid of such “diverging” monomials, we consider
the CJ[[h]]-submodule S of formal series in S spanned by all monomials be-
ginning with A and ending with B. Let 7 : § — S be the projection which
is the identity on S and sends the “diverging” monomials to 0. Clearly,
7(G,(1 —a)) has a limit I" in S when a tends to 0. By (6.8-6.9) we get the
following explicit expression for the limit I', namely

= 1+Z Z hP Tt (p gy, Dy, q) AP BY AP BIF
: k>1 p1,q1,-.-,Pk,qk>1

(6.10)
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We now compute ® in terms of I'. Consider the algebra S|a, 3] of polyno-
mials in two commuting variables a and 8 with coefficients in .S. Any mono-
mial in S[a, 8] can be written uniquely as S¥Ma? where M is a monomial
in S. Define a C[[h]]-linear map f’ : S|, 8] — S by f'(8PMa?) = BP M A9.
This allows us to build a C[[h]]-linear endomorphism f of S by the formula

f(U(A, B)) = f(T(A—a,B- ) (6.11)

where T'(A, B) is any element of S. Observe that if M is a “diverging”
monomial in S, i.e., starting with B or ending with A, then f(M) = 0.
Moreover, if M is any monomial of S, then f(M) = M+ N where N is a sum
of “diverging” monomials killed by f. Therefore f? = f is an idempotent
endomorphism of S. The following result gives an explicit expression for
® = P(A, B) in terms of the multiple zeta values of the Appendix.

Proposition XIX.6.4. We have
®(A,B) = f(I)

=1+ > RPY kT (py,qy, .. Dy, @) F(APT BT . APS BIK),

k>1 p1,q1,..-,Pk.qr 21

PROOF. Applying f to both sides of the relation in Lemma 6.3, we get
F(®) = f(nm a~"BG, (1 a) aEA).
a—0
Since f(BM) = f(MA) =0, we have
1(@) = f(lim G,(1-a)) = £(I).

In order to complete the proof, it suffices to check that f(®) = ®. Let H,,
[resp. H,| be obtained from the solution G, [resp. from G,] of (6.1) by
replacing A by A — a [resp. by replacing B by B — g]. Clearly, H, and H,
are solutions of the differential equation

_h (A —-a B-p
Comy/—1

h(A-a)

G'(z) )G(z). (6.12)

z z—1

Moreover, H,, is asymptotic to 2 in a neighbourhood of 0. Now the
function 27"*(1 — 2) "M G (2) is another solution of Equation (6.12) with
the same asymptotic behaviour as H,. By uniqueness, we get

Hy(z) = 271 = 2) Gy (2). (6.13)
Similarly, one has

Hy(z) = z7"(1 = 2)""G (2). (6.14)
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It follows from (6.13-6.14) that
®(A-a,B-B)=H'H,=G{'G, = ®(A,B).
Therefore,

f(®(A,B)) = f(®(A—-a,B—-f)) = f(®(4,B)) =2(4,B). O

As a consequence of Proposition 6.4 and of Formulas (11.21-11.23) of the
Appendix, we get the following expression for the first terms of ®(A4, B).

Corollary XIX.6.5. Modulo h* we have

_ <@ 2, SB)
®(A4,B) =1-——=[A,B]h"+ -
(2mv=-1)? RCNSIE
Here ¢ is Riemann’s zeta function. By Euler’s formula ¢(2) = 72/6, we
see that the coefficient of h* in the expansion of ®(A, B) is 5[4, B].

Remarks 6.6. (a) If AB = BA, any monomial M # 1 in (6.10) can be
rewritten in the form of a “diverging” monomial, hence is killed by f. It
follows that ®(A, B) = 1 in this case.

(b) In [Dri90], §2, Drinfeld showed that ®(A, B) was the exponential of
a Lie series. He obtained the following formula for the logarithm In ® of
®(A, B) modulo L"” = [[L, L], [L, L]] where L is the completion of the free
Lie algebra generated by A and B, namely

m®= " ¢,ad(B)ad(A)*4,B|A**+? mod L". (6.15)
k>0

(114, B1, BI-[4, 4, B] ) *

The complex numbers ¢, are given by the generating function

2 _ - C(?’L) n n n
1+k%;0 ckguk+1’l) +1 = exp (7;2 n—(m(’d +v° = (’LL+’U) ))
: (6.16)

From (6.16) we get ¢y = ¢ and ¢ = cop = —C(k + 2)/(2my/~1)*2 for
all k > 0.

XIX.7 Construction of the Topological Braided
Quasi-Bialgebra Ag;

In order to construct A, ,, we have to find an element ® = @y, in U(g )23([A]]
verifying Relations (XVI1.4.10-4.13) and Relations (XVI1.4.15-4.17) with
R = Ry, = e"/?. The element &y, we are looking for has also to in-
duce the monodromy representations of the (KZ)-systems. We proceed as
in [Dri89b], pp. 1453-1455, [Dri90], Section 2, and [Dri89c].
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We observed in Section 3 that the universal R-matrix Ry, = "t/ of Ayt
was forced upon us by the monodromy of the system (KZ,). The element
Py, will now come out of the system (KZ3). In Section 6 we introduced a
formal series ®(A, B) in two non-commuting variables A and B. We use it
to define ®y.

Definition XIX.7.1. We set @y, = ®(t15,153).

We claim that @y, € U(g)®?[[h]] satisfies all requirements for

Ay = (V@A A&, @i, Bigy = €/2) (7.1)
to be a topological braided quasi-bialgebra. The proof of this claim will be
sketched in Section 8. We also claim that A;, provides the monodromy
of all Knizhnik-Zamolodchikov systems. We have already checked this for
(KZ,) in Section 3.

Consider a solution w(zy,...,2,) of the system (KZ, ). By definition, it
satisfies the system of partial differential equations

B n t..
aw—hz U p(zyy..nz,)  (=1,...m)  (72)

Oz, 2 — 2
i j=lg#i 4 %

where h = h/(27y/—1).

Lemma XIX.7.2. If w(zq,...,2,) s a solution of (7.2), then it also sat-
1sfies the relations

"\ Ow "L dw
. a—Zi:O and Zzigz—i: Z tig w2y, 2,)-
i=1 i=1 1<i<j<n
PROOF. This follows from (7.2) using ¢,; = ¢;,. O
As a consequence of this lemma, a solution w of (7.2) depends on n — 2
variables. In particular, a solution w(z,, 2, z3) of (KZj) depends on one
variable z. Let us from now on focus on (KZ;) and make the change of
variables B
w(2y, 29, 25) = (25 — 2y) M2 T THIG () (7:3)

where z = (25 — 21)/(23 — 2;)-
Lemma XIX.7.3. With the above notation, w(zy, 24, 25) is a solution of

(KZy) if and only if G(2) is a solution of the ordinary differential equation

@ (z) = h(% +=BG(2). (7.4)
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PRrROOF. Relation (7.3) and

0 - t t
5% :h( 12 i3 )w(zl,zz,z3)
22 2y T2 % %3
imply that
7
(23 _ ZI)B(t12+tz3+t13) G (Z)

Z3 — 21

- t t 3
_ h( 12 + 23 )(23 _ zl)h(t12+t23+tl3)G(z).
29— 2] 29— 23

Since (zy — 23)/(23 — 21) = 2z — 1, we get

(23 . Zl)ﬁ(t12+tzs+t13) (G/(Z) _ E(tl_z + _t23_)G(Z)) = 0.
z z—1
Consequently, G(z) satisfies Equation (7.4). Conversely, one checks easily
that, if G(2) is a solution of (7.4), then w(z, 25, 23) is a solution of (7.2).
O

Equation (7.4) has been studied at length in Section 6. Let G(z) and
G4 (2) be the solutions of (7.4) obtained from the solutions G;(2) and G ()
of (6.1) by replacing A by t;, and B by t,5. From Proposition 6.1 we get
unique solutions of (7.2)

Wiz, 2, 23) = (25— 2)M 0240906, (2) - (i=0,1)  (7.5)
whose asymptotic behaviours are given by

W21, 29, z3) ~ (25 — 21)Et12(23 - Zl)B(t23+t13) (7.6)

when |z, — z;| < |23 — 21|, 1.e., when |z, — 2;|/|z3 — #;| tends to 0, and
Wi(z1, 25, 25) ~ (25 = 2)5% (2 — )02 (7.7)

when |z, — 23] < |27 — 23|. In view of Definitions 6.2 and 7.1, W, and W,
are related by
Wi (21, 29, 23) = W12y, 25, 23) Pz (7.8)

Let us determine the monodromy of (KZ). The change of variables (7.3)
has the following property: z; is close to z, if and only if z is close to 0.
Similarly, z; is close to z; or to z, if and only if z is close to oo or to 1
respectively. Now consider the generator o, of the braid group B, with the
parametrization given by (3.11). An immediate computation shows that

_z(s) - z(s) 2" -
#s) = z1(s) = 23(s) C 34 erVls (7.9)
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In particular, z(0) = 1/2, 2(1/2) = (1 + 3v/~1)/5 and 2(1) = —1, which
shows that under the change of variables, the generator o, corresponds to
a counterclockwise half-turn around 0 in the complex plane. Similarly, the
generator o, of By corresponds to a counterclockwise half-turn around 1.
Choose a base-point in the configuration space X; corresponding under
the change of variables to a point close to 0 in the complex plane. By
definition of the solution G(2), it is multiplied by €"*? when z makes a
complete positive turn around the singularity 0. Consequently, the value of
the monodromy of (KZ;) on the generator o, is e™12/2, As for o, we first
have to move from a neighbourhood of 0 to a neighbourhood of 1 with the
help of &, then turn around the singularity 1 and come back to a vicinity
of 0. This sets the value of the monodromy for o, at ®ys e12/2 dy.;. These
are the values of the monodromy exactly predicted by Formula (XV.4.2).
These considerations prove Part (ii) of Theorem 4.2 when n = 3.

We leave the remaining cases n > 3 to the reader. Let us only note that
pulling back the general system (KZ,,) along the loop o, of B,, parametrized
by (3.11) leads to the linear differential equation

dw _ Dwdy | 0w dz,
ds 0z ds 0z, ds
71'\/—_15
= —<zz+1+ Z ( ]—Z —1—|—€7T\/_1$ z]
JFLi+1

nv/=Ts
- ¢ i1 ) w(s).
2(j —4) — 1 —emV=TIs T

This equation can be solved in terms of iterated integrals using Picard’s
method of approximation recalled in the Appendix.

XIX.8 Verification of the Axioms

In order to complete the proof of Part (i) of Theorem 4.2, we are left with
showing that A, is a topological braided quasi-bialgebra. Set & = @,
and R = Ry,. We have to check Relations (XV1.4.10-4.13) and (XVI.4.15-
4.17). Let us write down the as yet unproved relations, namely

(id ® A)A(a) = B(A ®1id)A(a)®™! and A°P(a) = RA(a)R™! (8.1)
for all a € A, , = U(g)[[h]],
(doe®id)(®) =1®1, (8.2)

(A®id)(R) = B3y R13(P130) Ryy @, (8.3)
(id ® A)(R) = (Py31) ' Ry3Py13R100 7, (8.4)



472 Chapter XIX. Monodromy of the Knizhnik-Zamolodchikov Equations

and
(i[dRid® A)(?) (A®id®id)(®) = (1©®?) ((d® A®id)(®) (P®1). (8.5)
Relations (8.1). Since the comultiplication A is coassociative and cocom-

mutative and since the Lie algebra g generates A_,, Relations (8.1) are
equivalent to the relations

g,t?

[A®(z),®] =0 and [A(z),R] =0 (8.6)

for all z € g, where A® = (A ®id)A = (id ® A)A. By hypothesis, A(z)
commutes with the 2-tensor t. By the following special case of Leibniz’s
formula, we have

[A(z),t"] = [A(), "1t + " A=), 1],
which implies [A(z),t"] = 0 by induction on n. Consequently,

hn
2!

[A(z), R] = [Az), "% = [A(z), "] = 0.

n>0

This proves the second relation in (8.1).
Let us deal with the first one. We claim that

[A(z)(l’)vtu] = [A(Z)(x),t23] =0 (8.7)
for all € g. Indeed, for any element = of g, we have
A (@) =A), +10102=2010 1+ A(x)y,
implying
(AP (2),1,,] = [A(z), ]+ 1@ 1] @z =0.

One shows that A(z)(x) commutes with t,5 in a similar way. Now, by re-
peated application of the Leibniz rule to (8.7), we see that A®)(z) com-
mutes with all (non-commutative) monomials in the variables t,, and t,.
In particular, A®(z) commutes with ® in view of Proposition 6.4 and
Definition 7.1. This proves Relations (8.1).

Relation (8.2). The element ¢ € g is annihilated by id ® ¢ and ¢ ® id.
Therefore
(id®e®id)(t15) = (i[d® e ®id)(ty3) = 0. (8.8)

Since id®e®id is a C[[h]]-linear morphism of algebras, it kills all non-trivial
monomials in ¢, and t,4. Therefore, again by definition of ®, we have

(i[d®e®id)(®) = (([dee@id)(10191) =101
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Relation (8.3). We shall be sketchy. For more details, see [Dri89b}, Section
3. Recall the solutions W, and W, of the system (KZ;) described with their
asymptotic behaviour in (7.5-7.7). By permuting z,, z5, 23 we get four other
solutions W,, W5, W, Wy of (KZ;), uniquely determined by the following
asymptotic behaviour:

Wo(zy, 2, 2'3) ~ (2y — Zg)ﬁt% (29 — Zl)ﬁ(tlﬁtw) when |23 — 25| < |25 — 24],

Wi (21, 29, 2'3) ~ (Z3 - Zl)ﬁtls (25— 21)H(t12+t23) when |23 — 2| < |23 — 2],

Wiz, 29, 23) ~ (2, — Zs)ﬁm(zz - 33)h(t12+t23) when |23 — 2| < |25 — 23],
W5(317 29, 23) ~ (29 — 21);“512(22 - Zs)ﬁ(tlﬁt%) when |z; — 25| < |29 — 25].

We observe that W, is obtained from W, by exchanging z, and z,. Letting
23 pass in front of z, following the loop ¢, of the braid group By yields

W, =W, eM2/2 = W,R,,. (8.9)

We next remark that W, and Wj are solutions of (KZ3) where ¢, and ¢,
have been exchanged. Therefore, by definition of ®, we have

Wy = W, ®,. (8.10)

Similarly, W, has been obtained from W; by having 24 pass in front of 2.
Consequently,
W, =W, eM3/2 = W, R, (8.11)

An argument analogous to the one applied to W, and W5 shows that
Wy = W5 @55 (8.12)
Relations (7.8) and (8.9-8.12) imply
Wo =W <1>312R13(<I>132)“1R23<I>. (8.13)

Finally, Wy is obtained from W, by letting z; pass in front of z; and of z,.
Hence,
W, = Wyehtatts)/2 — W (A @ id)(R) (8.14)

since t3 + ty3 = (A ® id)(t). By uniqueness of the solutions, Relations
(8.13-8.14) imply Relation (8.3). Figure 8.1 on the next page summarizes
the movements of z;, z, and 2z, considered in the previous argument.
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<1 22 23 Wo

P

Wa

W3
Wy
Ws

T

21 22 23 Wo

Figure 8.1. The movements of z1, z2, and z3

Relation (8.4). One may proceed as for (8.3). An alternate proof consists
in first showing that ®5,; = &~ !, which is done by replacing z by 1 — 2
in Equation (6.1). Then, as in the proof of Lemma XVIIL.8.2, apply the
involution 7,5 to Relation (8.3) and use the fact that A = A°? and R = Ry,
to derive Relation (8.4).

Relation (8.5). In order to prove the “pentagonal” relation we now consider
the system (KZ,). The following lemma is due to Drinfeld [Dri90], Section
2, to which the reader is referred for a proof.

Lemma XIX.8.1. There exist solutions X, X,, X4, X, and X, of (KZ,)
uniquely determined by

Xy (2,7, 23, 24) ~ (2 = )12 (2 — 20)M0H10) (5 — )iz ioe),
Xo(zy, 29, 23, 24) ~ (25 = )58 (2 — 29) M2 09 (2 — )M Ha o),
X3(21, 29, 23, 24) ~ (23 — 23) itz (24 — ZQ)B t24+t34)(z4 - Zl)ﬁ(t12+t13+t14)
Xy(21, 29,25, 24) ~ (24 — Za)ﬁt34(z4 22) t23+t24)(z4 —2) (t12+t13+tl4)
and
X5(21, 29,23, 24) ~ (29 — 21)Bt12(z4 - Z3)Bt34 (24 — Zl)h(tlsﬂlﬁmﬂﬂ)-

For X, the sign ~ means that there exists an analytic function f(u,v)
such that f(0,0) =1 and
X (21529, 23, 24) = f(ua’U)(ZQ—Zl)MlZ(Za‘zl)ﬁ(tlsﬂx)(Z -z )E(t14+t24+t34)
where u = (25 — 21)/(24 — 2;) and v = (25 — 21)/(24 — 2;). The reader will
be able to give a precise meaning to ~ in the remaining cases.

The “pentagonal” relation (8.5) is an immediate consequence of the fol-
lowing lemma. This completes the proof of Part (i) of Theorem 4.2.
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Lemma XIX.8.2. Under the previous hypotheses, we have
Xi=X0@el), X=X1deAgid)(?), X;=X,19),
X,=X,(idoideA)(®Y), X;=X;(Axideid)(®™).

PROOF. (a) We start with the proof of the first relation X; = X,(® ® 1).

Set

Vi(2y, 295 23, 24) = X (21, 29, 23, 24) (24 — 21)_h(t14+t24+t34)

and
Vy(2y, 2, 23, 24) = Xg(21, 29, 25, 24) (B © 1) (24 — 2) H{brattaattos),
Tt is enough to prove that V; = V,. By Lemma 3.2 we have
[t1gs tia +tog + t5a] = [t1as b1 + tog] + [t12, t3a] = 0.

A similar computation shows that t,; commutes with ¢,, 41,4 +1t3,. Hence,
®®1, which is a formal series in ¢,, and in t,3, commutes with £,,+1o,+734.
Therefore, V, can be rewritten as

Vo215 25, 23, 24) = Xo(21, 22, 23, 24) (24 — Zl)vh(hﬁb“t“)(@ ®1).

A simple computation shows that V; and V, both satisfy the following
system of partial differential equations:

ov - ty;
_hz LV (21, 2, 2, 24) + RV (21, 29, 23 24)

oV _ tg +tag T 134
0z ’

PO f4 T2
(8.15)
ov - 127 .
8—zi = hz Zi —J2~V(21’22’Z3’Z4) for i = 2, 3, (8.16)
J# J
and
v oo tas _ brig oy +1
v =h 4 V(zy, 29, 23, 24) — hV(zl,22,23,24)m.
0z, TR 24— 2
(8.17)

We set z, = oo in Equations (8.15-8.16) (this is possible since the equations
are actually defined on the complex projective line). Then V, (2, 2y, 23,00)
and V,(2, 25, 25, 00) become solutions of the system (KZj). Moreover, by
Lemma 8.1, V, (2, 2y, 23, 00) and V, (21, 25, 23,00)(® 7! ® 1) have the same
asymptotic behaviour as the solutions W, and W, of (KZ3) respectively.
By uniqueness of these solutions, we get

VI(ZDZQaZB,OO) = W0(21,22,23) ®1

and
VQ(Zl’ZQ’ 23, OO) = (Wl(zla 29, 23)(1)) ® 1.
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By definition of ®, this implies that
‘/1(2’1,22,23,00) :‘6(21722723700) (8'18)

for all 2y, 25, 23. Relation (8.18) and Equation (8.17) imply that V; and V,
coincide everywhere.

(b) To prove the second relation of Lemma 8.2, it is enough to check that
the functions U; and U, coincide when we set

Uy (21, 29, 23, 24) = X (21, 25, 23, 24) (23 — 25) 72

and

Uy(21, 22,23, 24) = X3(21, 25, 23, 24) (id @ A @ 1d)(®) (25 — ZQ)JL%-
The element (id ® A ® id)(®) is a formal series in the variables

(i[d® A®id)(ty5) =t13 +t13 and  ([d® A®@id)(ty) = tog + tay-

By Lemma 3.2 again, ty, + t5, commutes with t,5. Therefore U, can be
rewritten as

Us(21, 29, 23, 24) = X3(21, 29, 23, 24) (23 — 22)_?“523 (id® A ®id)(P).

Both U; and U, are solutions of the system

ou - Ly
— = hz YUz, 29, 23, 24) fori=1,4, (8.19)
0z, e
0 - 2% = [tys, U
67 = h > ijz U(Zla 29, Z37 Z4) + h[ ki (21’_2227 23’ 24)] ’ (820)
2 jA2s P2 T F %2 T %3
and

ou - ls; =~ [tos, U2y, 29, 23, 24)]
—— =h J —h 23 1092) %31 °4)] 9
Z 23— 2 U2y, 29, 23, 24) 7 — 25 (8.21)

When z, = 2z, we claim that
Uy (21, 29, 29, 24) = Us(21, 22, 25 24)

for all zy, z,,z4. Define T;(zy, 29, 24) = U;(24, 29, 29, 24) for i = 1,2. Equa-
tions (8.19-8.21) imply that T} and T, are solutions of the system

or _ B(t12+t13

t
0—21 4+ 14 )T(zl,22,24), (8.22)

Z1 — 2 21 T2y

or _ B(t12 Tl oy T s

e, )T(zl, 29, 2), (8.23)

g T 2y Rg T 2y
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and
OT(21,29,24) 7( tis oy +lay
=h T . 8.24
Oz, <z4 z N Z4 — 29 ) (21,2, 24) ( )
Now,
tig T3 = (id ®A® id)(tm)a by = (id @AR® id)(tlii)
and

log +134 = (id ®AQ id) (t23>~

Therefore Equations (8.22-8.24) imply that T} and T, are solutions of the
system (KZ3) in which the coefficients ¢,; have been replaced by new coef-
ficients (id ® A ®id)(t,;). By the results of Section 7, there exist solutions
H, and H, of this modified (KZ;)-system such that

Ho(z1, 29, 24) = Hy (21,23, 24) (1d ® A @ 1d)(®) (8.25)
with the asymptotic behaviour
Hy(21,29,24) ~ (22 — Zl)ﬁ(tm“m)(% - Z1)E(tl4+t24+t34)
when |z, — 71| < |z4 — 2;| and
Hi (21, 29, 24) ~ (24 — Zz)ﬁ(tzﬁt“)(% - Z1)E(t12+t13+tl4)

when |z, — 24| € |27 = z,|. It follows from this, from Lemma 8.1, and
from the fact that t,3 commutes with &5 + 13, 14 + toq + 134, tog + 134
and with t,, + t,5 + t,,, that T} and T,(id ® A ® id)(®) ! have the same
asymptotic behaviours as H, and H, respectively. Consequently, T} = H,
and T,(id ® A ®id)(®)~! = H,. Combining these relations with (8.25), we
conclude that T and T}, coincide. Therefore,

U1(31722722v24) = Uy (21, 29, 29, 24) (8.26)

for all 2, 2y, z,. Relation (8.26) and Equation (8.20) imply that the func-
tions U, and U, coincide everywhere.

(¢) The remaining relations of Lemma 8.2 are proved in a similar fashion:
in the case of the third relation, we send z; to co whereas for the last two,
we have to identify z; with z,, and z; with z,, respectively. The movements
of zy, 2, z3 and z, in this proof can be represented as a system of four
particles moving as in Figure 8.2. m]
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'Zl 'ZQ .Zg =Z4 Xl
. s - Xo
- - — X3
- » *—o- X4
—eo o X5
—e . - X1
21 Z9 23 24

Figure 8.2. Five configurations of four particles

Remark 8.3. Let us consider variables (Z;;);<;< ;<4 satisfying the infinites-
imal braid group relations (2.1-2.2). Reviewing the proofs of Relations
(8.1-8.5), we see that we have actually established the existence of a for-
mal series ®(A, B) in two non-commuting variables A and B with constant
term 1, belonging to the algebra S of Section 6 and satisfying the three
relations

B(tyg,tgg +1og)P(t13+tass tay) = Pltas, t34)P(t1o +113,L0s + t34)<I>(t12(, t23))7
8.27

e (tatta) = (ty3, t12)eh%1& D(ty3, 1523)flehL2231 D(t19,t03), (8.28)

e (tisttiz) ®(tys, 1513)—18%lé D(ty,, tls)eit_zﬁ Dty tyy) L. (8.29)

Relation (8.27) is the translation of (8.5) while Relations (8.28-8.29) cor-
hit;;
respond to (8.3-8.4) in view of R;; = 2 for 1 <i<j<3and of

(A®id)(R) = e3™3+123)  and  (id ® A)(R) = e%(hathiz),

An element ®(A, B) of S, with constant term 1 and satisfying Relations
(8.27-8.29), will be called a Drinfeld series. Drinfeld’s associator @y is the
only explicit Drinfeld series constructed so far. Drinfeld actually established
the existence of a Drinfeld series with rational coefficients (see [Dri90],
Theorems A, A’, A”). Tt would be interesting to have a description of it,
especially in view of the constructions of XX.6-7. In case the elements ¢,; all
come from the invariant symmetric 2-tensor ¢ of a semisimple Lie algebra,
Drinfeld also showed in [Dri89b], Theorem 3.15 that ® was unique up to
gauge transformation by a symmetric invariant element F'.
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XIX.9 Exercises

1. Let g be a semisimple Lie algebra and ¢ € g ® g be the 2-tensor
(XVI1.1.6). Show that [ty5,t5] # 0.

2. (a) Compute Drinfeld’s associator ®(A, B) in the case that A and
B commute with the commutator [A, B].

(b) Show that ®(A, B) is the exponential of a Lie series (Hint: prove
that A® = & @ ).

3. Prove that the projector f defined by (6.11) coincides with the con-
volution vy xid*v,4 where v, and vy are the algebra endomorphisms
of S determined by

vi(A)=—A, vy (B)=0, vg(A)=0, vy(B)=-B.

4. Prove that there exists an analytic function V'(z) defined in a neigh-
bourhood of [0, 1] such that 24 (1—2)"5V(z) is a solution of Equation
(6.1). Show that ®(A, B) = V(1)V(0)~'.

5. Let vy, ...,v, beanalytic functions. Consider the differential equation
G'(z) = (Z Aiui)G(z) (9.1)

i=1
where A,,..., A, are non-commuting variables and u; = v;/v, for
i=1,...,n Set V(z) = v " ... 0] **G(2) where G(z) is a solution

of Equation (9.1). Establish that V{(z) is a solution of the equation
V'(2) = Q(2)V(z) where

Q= wuyadn) yed) (v;_af“‘i—l) Loy edAn 1)(Ai).

XIX.10 Notes

The material in Sections 1-2 is standard. For more on the configuration
space X,,, see [Aom78] [Hai86] [Koh83].

The equations (KZ, ) were introduced by Knizhnik and Zamolodchikov
[KZ84] in connection with the Wess-Zumino-Witten model in conformal
field theory.

Theorem 4.1, which is the main result of this chapter, first appeared
in [Koh87] [Koh88]. For the proof we followed Drinfeld [Dri89b] [Dri90]
[Dri89c| closely. As a matter of fact, most results of Sections 4-8 are due
to Drinfeld. There is an exception in Section 6 where Proposition 6.4 is
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due to Le and Murakami [LM93b]. We also used [LM93a]. As was shown
in Section 8, Drinfeld’s proof that A, is a braided quasi-bialgebra relies
on the asymptotic behaviour of certain solutions of the systems (KZ;) and
(KZ,). Kapranov [Kap93] discussed the asymptotic zones used by Drinfeld
and related them to all possible bracketings of the permutations of a finite
set of letters.

In the Appendix we collected several facts on iterated integrals which
we found in [Aom78] [Che61] [Che73] [Che75] [CheT77a] [Che77b] [Gol80]
[Lap53] [Ree58] [Reud3] [Was87] [Zag93].

XIX.11 Appendix. Iterated Integrals

Let wy,...,w, be complex-valued differential 1-forms defined on a real in-
terval [a,b]. We have w; = f,(s)ds where f,..., f,, are complex functions.

Define the iterated integral ff w; . ..w, inductively by

/abwl :/ab fi(s)ds (11.1)
/abwl...wn:/abfl(S)(/:wz...wn)ds (11.2)

if n > 1. Iterated integrals enjoy the following formal properties:

b a
/ wl...wn:(—l)"/ Wy oWy, (11.3)
a b .

c b n—1 b c c
/wl...wn:/wl...wn—l—i /wl...wk/wk+l...wn—|—/ Wy ... Wy
a a k=1 Yo b b

(11.4)

and

for a < b < ¢, and

b b b
/ wl...wn/ Woile Wnam = Z / We(1) - Wo(ntm) (11.5)
a a o a

where o runs over all (n, m)-shuffles of the symmetric group S, ..
Iterated integrals occur in the solution of certain linear differential equa-

tions. Let us consider an equation of the form
dy
— = A(8)Y 11.
7 (s)Y(s) (11.6)

where Y (s) is a differentiable function defined on the real interval [a,b],
with values in the endomorphism ring of some complex vector space and
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where A(s) is a linear endomorphism for each s € [a,b]. The differential
equation (11.6) has a unique solution Y (s) such that its initial value Y (a)
is the identity. Picard’s method of approximation leads to the following
formal expression for Y (s):

Y(s) =id + Q(s) + Qy(s) + - (11.7)

where the family (Qp)p>0 is defined inductively by ¢y = id and for p > 0
by B

Q) = [ 4(6)Q (s1) dsy. (118)
Equivalently, @, can be defined as an integral over the real p-simplex
A (a;8) = {(51,...,sp) ' 828 285228, Za}
by
Q,(s) = /Ap(a;s) A(sy)A(sg) ... A(s,) dsydsy ... ds,,. (11.9)
We now wish to apply Picard’s method to the differential equation

dY <= A Y(s)

— = ! (11.10)
ds o5y
where A,, ..., A, are constant linear endomorphisms and a, . .., a,, are dis-

tinct complex numbers lying outside the real interval [a, ). By (11.1-11.2)
and (11.7-11.9) the unique formal solution Y (s) of (11.10) with Y (a) = id
is given by the formal series

Y(s)=id+> > Llay,...,a;l8) A, . A, (1L11)

where the complex functions L,(a;, .., a;, |s) are defined as the following
iterated integrals
o ds ds
L(a;,....a;|s)= . 11.12
ooy = [ (11.12)

Functions of this kind already appeared in [Poi84], II1 and were investigated
at length by Lappo-Danilevsky in [Lap5b3], Mémoire II under the name
“hyperlogarithms”.

We now concentrate on the hyperlogarithms built on the particular 1-

forms
1 ds 1 ds

Q, = — d O =—rek—.
O ory/—1 s an L or/—1s—1

(11.13)
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Iterated integrals of €, (or of Q) are easily computed. For instance, by
induction on k, we get

[ o= G teet) (11.140)

and
1-b

/ab o = (27r\/;_1)kk:! (108 = a)k (11.14)

when 0 <a<b< 1.
Now, as in (11.11-11.12) we wish to consider “mixed” iterated integrals

fol Wy .. .w, where each of wy,...,w, may be either Qy or Q;. If w; =Q,

. . 1 .
or if w,, = £, the integral [; w; ...w, does not converge. However, it does
in the remaining cases. Set

1
(D1 Qus - - > Pio di) -——/ Qo ok (11.15)
0

where py, ¢y, ..., Py, g are integers > 0. We shall now compute the iterated
integrals (11.15) in terms of series reminiscent of Riemann’s zeta function.
To this end, we introduce the convergent series

my

. . T
L(zl,...,zk;x) = Z W (1116)
0<my < - <my My .- My
where iq,...,7, are positive integers, x is a real number such that 0 <
z < 1, and mq,...,m; run over the set of positive integers. The special

case L(n;z) is the n-th polylogarithm which appears in number theory,
geometry and algebraic K-theory. When n = 1, we have

L(liz) =) % = —log(l—x) = —27r\/fi/1 Q,. (11.17)
o<m 0

Taking the derivative of L(iy,...,1;_1,%;2), we get

dL(iy, .. yip_q,0552) Ly, ...y d .0 — 1;2)

dr T

when ¢, > 1. Hence,

T L(igy. e yip_qyip — 1
L(il,...,z‘k_l,ik;x):/o (i Z’“Sl i = Lis) o (11.18)

If i, = 1 we have

mk—l

dL(iy, ... i, 15z) Z z
dz - i1 tg—1"
0<my <-<mg_1<mp T - Mg
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Set m =m;, —m;_; —1>0. Then

AL(%y, . i1, 15) _ Z o Z .asm"‘l.
dz m>0 0<my <--<mp—1 mi' '-'m;ck:ll
_ L(z’l,...,ik_l;a:).
11—z
It follows that
L(iy, o yip_y: ;@) :/Ox L(Zl"l"_’z(:‘“s)ds. (11.19)

We define the multiple zeta value ((iy,...,4;) by

Clig, e vip) = Lliy, .o igs )= > ~———. (11.20)

11 k
0<my <<k my "'mk

The special case ((i;) coincides with the value of Riemann’s zeta function
at the positive integer ;. An easy induction using (11.15-11.20) expresses
the mixed iterated integrals 7(py,qq, .- ., Pk:q,) in terms of multiple zeta
values. To be precise, we get

(_1)‘11+"'+Qk
(QW\/__l)p1+q1+--~+pk+qk

T(Prs oo i Og) =

xC(,...,L,p,+L 1., L,p,_+1,...,1,...,1,p,+1)

(11.21)
where the first set of 1’s is of length g;, — 1, the second one of length g, _; —1,
. and the last one is ¢; — 1 long. In particular, if g; = -+ = g, = 1, we get

an expression for the multiple zeta values in terms of the mixed iterated
integrals (11.15), namely

Cligy i) = (=DFQry/=1) T T (i, — 1,10, — 1, 1,...,4 — 1,1).
(11.22)
As a consequence of (11.3), we get the inversion formula

p1+qi+-+pr+qk T(

T(pl,qlw",p}g?(b‘;):(_l) qkapk""7qlap1)' (1123)

Relations (11.21-11.23) imply ¢(1,2) = ¢(3). We used the last equality to
derive Corollary 6.5.



Chapter XX

Postlude. A Universal Knot
Invariant

In Section 1 we present the concept of a knot invariant of finite type and
prove that all quantum group invariants are of finite type. Then we con-
struct a universal knot invariant Z(K) of finite type, with values in a com-
mutative algebra built on pairs of points on a circle. We also show that the
quantum group invariants of XVIL3 can be recovered from Z(K) in a sim-
ple combinatorial way. The proof of this fact, as well as the construction of
Z(K), use the formalism of the KZ-equations and Drinfeld’s results stated
in XIX.4.

These new, fascinating developments have now reached a state of clarity
and simplicity which allows us to conclude this book with a brief account.

XX.1 Knot Invariants of Finite Type

We start with singular knots. Consider an immersion f of the circle S! into
the 3-dimensional oriented Euclidean space R®. Assume that for any m in
the image of f, the cardinality of f~!(m) is 1 or 2. If it is 1, the point m
will be called an ordinary point; if it is 2, the point m will be called a double
point. We restrict to immersions with finitely many double points, and such
that locally at any double point both branches meet transversally. We also
assume that the image of f comes with an orientation. These conditions
define a singular knot. If the singular knot is equipped with a framing (as
defined in X.8), we say that the singular knot is framed. Singular links and
framed singular links are defined as immersions of a finite number of circles
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with similar restrictions on the singularities. Singular knots and links are
represented by planar singular knot and singular link diagrams defined in
the same way as ordinary knot and link diagrams are (see X.3). One also
has an obvious notion of isotopy generalizing the one introduced in X.1.

Now any double point in a singular link diagram can be “desingularized”
by locally replacing the pattern X formed by the double point and the two
downwards oriented branches, by the patterns X, and X_ described in
X.4. This observation allows us to extend any isotopy invariant of links to
any singular link. Indeed, let P be such an invariant with values in some
complex vector space V. Then the rule

P(L) = P(L,) ~ P(L.) (L.1)

defines the invariant P on the set of isotopy classes of all singular links
with one double point. Here L is a link diagram with one double point and
the ordinary link diagrams L, and L_ are obtained from L by replacing
a neighbourhood X of the double point by X, and X _, respectively. By
induction on the number of double points we may extend P to an isotopy
invariant for all singular links (with a finite number of double points).

Definition XX.1.1. Let m be a non-negative integer. An isotopy invari-
ant of oriented links is an invariant of degree < m if it vanishes on all
singular links with more than m double points.

There is a similar definition for framed links. Observe that an invari-
ant P is of degree 0 if and only if we have P(L,) = P(L_) on all link
diagrams, which means that the invariant P does not distinguish between
undercrossings and overcrossings. Therefore it depends only on the number
of connected components of the link. In particular, P is constant on the
space of all ordinary knots.

The first question we wish to address is the following: Are there any
non-trivial examples of finite-degree invariants of higher degree? Before
we answer this question, let us say that a (framed) link isotopy invariant
P(L) = ¥ ,.50 Pn(L)R™ with values in V[[h]], where V is a complex
vector space, is of finite type if, for all m > 0, the V-valued invariant P,, is
of degree < m. We now state the main source of invariants of finite type.

Proposition XX.1.2. Let P be a link isotopy invariant with values in
VI[h]] where V is a complex vector space. If, for any link L, we have
P(L,) = P(L_) modulo h at any crossing point of a link diagram of L,
then P is of finite type.

PROOF. Define V-valued invariants P, by P(L) = > ., P,(L)h™. We
have to show that each P, is of degree < m. Let L be a singular link
diagram with one double point. By Relation (1.1) and by the assumption
on P, the series P(L) is divisible by k. An easy induction on m shows that
P(L) is divisible by A™*1 whenever L is a singular link with m + 1 (or
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more) double points. Consequently, the coefficient P, (L) is zero on such a
singular link. ]

As a consequence of Proposition 1.2, all quantum group invariants are
of finite type. Recall from XVIIL.3 that a quantum group invariant is asso-
ciated to any semisimple Lie algebra g and any finite-dimensional simple
g-module V.

Corollary XX.1.3. The isotopy framed link invariant @,y of XVIL3 is
of finite type.

ProoOF. By construction of Qg,V? the congruence R;, = 1 ® 1 implies that
Qq4v(Ly) = Q,y(L_) modulo h at any crossing point (one may also use
(XVIL.3.3)). Then use Proposition 1.2. a

Proposition 1.2 may also be applied to the Jones-Conway polynomial and
hence to the Alexander and the Jones polynomials which are specializations
thereof. Recall from X.4 that the Jones-Conway polynomial satisfies the

skein relation
zP(L,) -2 'P(L_) = yP(L,) (1.2)

for any Conway triple (L, ,L_, L,). Replace = and y by formal series x(h)
and y(h) in h such that

z(h)—1=y(h)=0 mod h.

Then Relation (1.2) simplifies to P(L,) = P(L_) modulo h, which allows
us to apply Proposition 1.2. In particular, using Taylor expansions, we
see that the m-th derivative of the Jones polynomial [resp. of the Conway
polynomial] at the point 1 [resp. at the point 0] is an invariant of degree
< m. The invariants ®,, , of Proposition X.4.7 give also rise to invariants
of finite degree.

For some open questions on finite-degree invariants, see [BN92], Section 7
and [Bir93], Section 8.

XX.2 Chord Diagrams and Kontsevich’s Theorem

Let us restrict to knots in this section. Given a complex vector space V
and a non-negative integer m, we denote by V(m)(V) the vector space of
all knot invariants of degree < m with values in V. Since

vy =vimegy (2.1)

where V(™ = V(™) (C), it is enough to consider complex-valued invariants.
We have the following inclusion of vector spaces

VO cv® o cvimD cyim -
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One similarly defines the vector space V;T) of complex-valued framed knot

invariants of degree < m. In this section we shall show that the spaces v
and V}T) are all finite-dimensional and give a combinatorial description of

the quotients V™ / V=1 and V;T)/V;T_l).

To this end, we need the notion of a chord diagram on a circle: it is a
finite set of unordered pairs of distinct points on the circle considered up to
homeomorphisms preserving the orientation. To specify a pair one draws
a dashed line, called a chord, between the two points. Given 2m distinct

points there are
2m—-1)=1-3-5---(2m—1)

different ways to pair them. Indeed, given one point among 2m, we may
pair it with (2m — 1) points. Take another point among the remaining
(2m — 2); it may be paired to (2m — 3) other points, etc.

There is a relationship between invariants of finite degree and chord
diagrams on a circle which we explain now. Let D be a chord diagram
on the circle with m chords (i.e., with 2m points paired two by two). By
an embedding of D into R® we mean any singular knot f : St — R3? with
exactly m double points such that f(s) = f(s’) if and only if s = s’ or s and
s’ are the two endpoints of a chord in D. There always exists an embedding
Kp, of D. If K, is another embedding of D, then it can be obtained from
K, by a series of operations consisting in replacing an undercrossing by an
overcrossing and vice-versa. Suppose we are given a complex-valued knot
invariant P of degree < m. Since P vanishes on singular knots with at least
m+1 double points, P remains constant by Rule (1.1) under the operations
transforming K, into K, which means that P(K,) is independent of the
embedding of D chosen to compute it.

Define E,, as the complex vector space with a basis given by all chord
diagrams on the circle with m chords. The dimension of £,, is finite and
< (2m — 1), Then the evaluation of an invariant of degree < m on an
embedding of a chord diagram with m chords gives rise to a pairing

<,>:ViWeE —C. (2.2)

Suppose that < P, D > =0 for all chord diagram with m chords. Since any
singular knot with m double points can be represented as an embedding
of a chord diagram, we see that P vanishes on all singular knots with m
double points, which means that P is an invariant of degree < m — 1.
Consequently, the map P — < P, — > induces an injection

Y, : Vi v _ Hom(E,,, C) (2.3)

of the quotient V(™) /V(m‘l) into a finite-dimensional space. A similar
(m—1

argument works for V}T) /V r ). We get the following result.

Proposition XX.2.1. The spaces V™ and V;T) are finite-dimensional.
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ProOOF. We have already noted that knot invariants of degree 0 are con-
stant. Therefore, V(0 = V(fg) = C, which proves the assertion for m = 0.
The rest follows by an easy induction on m using the injection (2.3). O

Actually, the proof of Proposition 2.1 shows that the dimensions of V(™)
and V(fT) are bounded by 1+ > ;" (2m — 1)L

What we next aim to, is to restrict the size of the image of the map
Y,,. More precisely, we shall show that any linear form in the image of Y, ,
satisfies an important four-term relation. Let D be a chord diagram with
m — 2 chords. Consider the four pictures in Figure 2.1 involving each 2
chords.

Figure 2.1. The chord diagrams defining the four-term relation

Denote by D, D,, D4 and D, the chord diagrams obtained by adding to
D successively the pictures of Figure 2.1 at the same place (the vertical lines
in the pictures represent portions of the circle carrying the chord diagram).
We claim the following.

Proposition XX.2.2. (a) If P is an element of VU™ or ofViff), we have
<P,D;>-<PDy,>+<PDy>—-<PD;>=0 (2.4)

for any chord diagram D with m — 2 chords.

(b) Any element P of VU™ wanishes on any chord diagram with an
isolated chord, i.e., a chord that does not intersect any other one in the
diagram.

Relation (2.4) is called the four-term relation for invariants of finite de-
gree.

PRrOOF. (a) Let K, K,, K5 and K, be singular knots differing locally by
the pictures in Figure 2.2. They are embeddings of chord diagrams D, D,,
D4 and D, as described above.

,\X/ //\ /\ AN

/

Figure 2.2. The local differences of K1, Ko, K3, and K4
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Then the left-hand side of (2.4) equals
P(K,) = P(K,) + P(K3) — P(K,). (2.5)

To compute (2.5) we apply Relation (1.1) to all double points in Figure
2.2. Then (2.5) becomes a sum of 16 terms where all 2° = 8 possible
configurations of three crossing points occur twice with opposite signs.

(b) Let K be an embedding of the chord diagram D. Let us focus on
the double point of K corresponding to the isolated chord. It separates the
knot into two distinct unrelated parts. From this we see that K| and K_
are isotopic. It follows from Relation (1.1) that

P(K) = P(K,)— P(K_)=0. 0

The argument in Part (b) of the proof above does not work for framed
knot invariants since K and K_ are not necessarily isotopic as framed
knots.

The relations in Proposition 2.2 appear as universal relations satisfied by
all invariants of finite degree. We may wonder whether there are more such
relations. The answer is negative. In order to make this more precise, we
define a vector space A, as the quotient of £, by the subspace generated
by all elements of the form

Dy —Dy+Dy—D, =0 (2.6)

where D is any chord diagram on the circle with m — 2 chords and Dy, D,,
D;, D, have been defined above. If m = 0,1 we set A, = E,_ . Moreover,
we define A, as the quotient of A, by all chord diagrams with isolated
chords.

As a consequence of this definition and of Proposition 2.2, we see that
Y, embeds Vi /v in Hom(A,,,C) and also embeds V(™) /v(m=1)
in Hom(4,,, C). The following deep theorem due to Kontsevich [Kon93]
signifies that A, and A, capture all universal relations for knot invariants
of finite degree.

Theorem XX.2.3. The mapsY,,

V;T)/V;T_l) — Hom(A4,,,C) and vim pyim=1 _, Hom(A4,,, C)

are isomorphisms.

Let us explain Kontsevich’s proof of Theorem 2.3. Define

A= @ A, and A= @ A, (2.7)

m>0 m>0
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We also need the direct products

A=T] A and A= ] 4. (2.8)

m2>0 m2>0

We shall treat an element of A or of A as a formal series Ym0 Dm R

where D, belongs to A, or to Zm. With this notation fixed, Kontsevich
[Kon93] assigns to each framed knot K an element

Z(K)=> Z,(K)hme A (2.9)

m>0

with the following properties:
(i) the map K — Z(K) is a framed knot invariant of finite type, i.e., Z,,
is of degree < m for all m > 0.
(ii) for each chord diagram D with m chords and each embedding K,
of D, we have
Z(Kp) = Dh™ mod h™t. (2.10)

The invariant Z(K) and its image Z(K) in A are called the Kontse-
vich universal (framed) knot invariants. We now use Z(K) to prove Theo-
rem 2.3.

Proof of Theorem 2.3. We assume the existence of such an invariant Z. Let
w be a linear form on A,,. By Property (i) above, P, (K) = w(Z,,(K)) is
an element of V(m) Define a map X, from Hom(A ,C) to V(m)/V(m 2

by composing w — P, with the projection onto V /VfT b . By (2.10),
we have

Y,oX, )w)(D) = <P,D>
= Pw(KD)
= w(Z,(Kp)) =w(D)

for any linear form w on A,, and any chord diagram D with m chords.
This shows that Y, o X,, = id. Consequently, Y,, is surjective. We already
know it is injective. Therefore, both Y, and X, are isomorphisms. There
is a similar proof for (unframed) knot invariants. O

As a consequence of the proof of Theorem 2.3, we see that X, oY, =id,
which means that, if P is any framed knot invariant of degree < m, then
there exists a unique linear form w =Y,,(P) on A,, such that P -wo Z
is an invariant of degree < m — 1. It follows by induction that

P=w,o0Z, +w, 10Z, 1+ +wyoZ

for a unique family of linear maps (w; : A; — C)y<;<p,- Consequently, for
any framed knot invariant P =3 ., P,,h™ of finite type, with values in
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the formal series algebra C[[h]], there exists a unique linear map w from A
to C[[h]] such that
P(K) = w(Z(K))

for all framed knots K. The bijection set up by Z(K) between framed
knot isotopy invariants of finite type and linear maps defined on A justifies
the qualifier “universal” for Z(K'). We have a similar formulation for knot

invariants after replacing A by A and Z (K) by Z(K). In particular, any
quantum group invariant can be obtained in this way (we shall give details
in Section 8).

Kontsevich’s original definition of the universal knot invariant Z(K') used
complicated multiple integrals depending on the realization of the knot as
a smooth curve in the three-dimensional space. In Section 7 we shall give a
combinatorial construction of Z(K') using a planar diagram of the knot and
category theory in the spirit of what we did in Chapters X, XII, XIV.5.1
and XVIL3. The combinatorial construction is due to Cartier [Car93], Le-
Murakami [LM93c| and Piunikhin [Piu93].

XX.3 Algebra Structures on Chord Diagrams

We extend the notion of a chord diagram. Let T be an oriented (framed)
tangle as defined in X.5. A chord diagram on T is a finite set of unordered
pairs of distinct points of T\ T (where 9T is the boundary of the tangle).
Again, as in the previous section, the pairs, called chords and represented
by dashed lines, are considered up to homeomorphisms preserving each
connected component and the orientation of the tangle.

Let E(T) be the complex vector space with a basis given by all chord
diagrams on T. The vector space E(T) has a grading

E(T) = @ E,.(T) (3.1)

m2>0

where E, (T') is spanned by all chord diagrams with m chords. The sub-
space Ey(T) is the one-dimensional subspace spanned by the unique chord
diagram without chords. If f : T — T’ is a homeomorphism of tangles,
then f sends any chord diagram on T to a chord diagram on 7", thus in-
ducing an isomorphism E(T) = E(T”). In particular, since any tangle is
homeomorphic to an “unknotted” tangle, the isomorphism class of E(T)
depends only on the number of circles and segments composing 7.

Let T and T’ be tangles such that s(T') = b(T”) in the notation of X.5
and XII.2. Under this condition, the composition 7o T” is defined. Placing
a chord diagram of T" on top of a chord diagram of 7”, we get a chord



492 Chapter XX. Postlude. A Universal Knot Invariant

diagram of T'o T". This construction extends to a linear map
E(T)®E(T') — E(ToT') (3.2)

sending E,,(T) ® E,,,(T') into E,, ,.,(T o T").

We now define the vector space A(T) as the quotient of E(T') by the four-
term relation (2.6) that already served us to define A, in Section 2. Here
again the pictures in Figure 2.1 have to be understood as local modifications
of a chord diagram with the vertical full lines representing portions of the

tangle. The graded structure of F(T) passes to A(T") and we have

AT) = P A,(T) (3.3)

m>0

where m counts the number of chords.
Similarly, one defines A(T) = @,,~¢ A, (T) as the quotient of A(T)
by all chord diagrams with isolated chords. When T is a circle, we have

isomorphisms
A (T)=A, and A, (T)x=A

m

(3.4)

Since the four-term relation is local, the composition (3.2) induces linear
maps

m*

AT) @ A(T') — A(ToT') and A(T)@AT')— AT oT'), (3.5)

defined when s(T') = b(T"). The maps (3.5) preserve the gradings.

Next put a graded algebra structure on the vector space A = @, A,,-
Consider the braid 1, with n > 0 vertical segments oriented downwards
(defined in X.6). In the tangle category, 1, is the identity of the sequence
consisting of n +-signs. Since 1, 01, = 1 the maps (3.2) and (3.5) yield
algebra, structures on F(1,), A(1,) and A(1,) whose units are the chord
diagrams without chords.

We use these algebra structures to produce a family of elements of A(1,)
satisfying the infinitesimal braid group relations (XIX.2.1-2.2). For integers
1 <i%#j<mn,lett be the unique chord diagram on 1, with a single
chord between the i-th and the j-th strands. We have t/¢ = " by definition.
Using the algebra structure of E(1,,) we also have

n

£, tR0) = (P he — ghtgid — ¢ (3.6)

whenever i, 7, k, ¢ are distinct. In view of the definition of the product on
E(1,) and on A(1,,), and of the four-term relation (2.6), we have

in the quotient algebras A(1,,) and A(1,)) when i, 7, k are distinct integers.
Consequently, the classes of the elements ("), ;<,, satisfy the infinites-

imal braid group relations in A(1,) and in A(1,)).
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The algebras A(1,)) and A(1,) also have bialgebra structures. The co-
multiplication A is given by the formula

AD)= > DD (3.8)
PCD'CD

where D’ runs over all subdiagrams of D including the chordless diagram
and D" is the subdiagram complementary to D’ in D. The counit is zero
on all chord diagrams with at least one chord and is 1 on the chordless
diagram . The reader may check that the comultiplication and the counit
are well-defined on A(1,) and A(1,,) and satisfy all the required axioms.
Observe that A is cocommutative. Actually, these bialgebras are Hopf al-
gebras as are all graded bialgebras whose zero-th part is equal to C. The
antipode S is defined inductively on the number of chords by S(0) = @ and

S(D)=-D- > SD)D" (3.9)
§#D'#£D

We now consider the special case n = 1 and denote A(1,) and A(1y) by
A(]) and A(]) respectively. The following lemma holds in A(]).

Lemma XX.3.1. Let D be a chord diagram on |= 1; with at least two
chords. Let p be the highest point of D and {p,q} be the corresponding
chord. Let p' be a point of | not in D and lower than all points of D.
Define a new chord diagram D' by D' = (D\{p,q}) U{p’,¢}. Then D and
D' define the same element in A(]).

PRrROOF. We first reformulate the four-term relation (2.6). Let D be a chord
diagram on | with at least one chord a = {y, 2z} and let ¢ be a point of |
not in D. Define four points x;, z,, T3, T, by their heights ht(z,) as follows:

ht(z,) = hi(y) +&,  hi(z,) = ht(y) —<,

ht(zs) = ht(z) + ¢, ht(z,) =ht(z) —¢

where ¢ is a positive, small enough, real number. Consider the diagrams
D% = DU{q,z,} fori = 1,...,4. With this notation the four-term relation
(2.6) translates into the relation

DY — Dy + D3 — D39 = 0. (3.10)
The proof of the lemma now follows from (3.10) and {rom the equality

D_D = Z (D?,q ~ Do Do Dz&)

where the sum is taken over all chords a of D = D\ {p,q}. m]
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Corollary XX.3.2. (a) The algebra A(l) is commutative.
(b) Closing the braid | induces an isomorphism

A(l) 2 A= D50 A

PROOF. (a) This results from a repeated application of Lemma 3.1.

(b) Let D be a chord diagram on the circle. By slitting the latter at some
point distinct of the endpoints of the chords of D we get a chord diagram
on 1;. Lemma 3.1 shows that this is independent of the place where the
circle is slit. a

We already know that A(]) has a cocommutative Hopf algebra structure.
It is also commutative by the previous result. We use the isomorphism of
Corollary 3.2 to transport this structure on A. Now, by a well-known re-
sult of Milnor and Moore [MM65], any commutative cocommutative Hopf
algebra A over a field of characteristic zero is a symmetric algebra over the
subspace Prim(A) = @,,~, Prim(A),, of primitive elements. This applies
to the isomorphic Hopf algebras A and A(|). Despite the fact that the al-
gebras A and A(|) are polynomial algebras, not much is known about their
generators, not even d,, = dim(Prim(A),,), which is the (finite) number
of generators of A in degree m. The dimension d,, has been computed in
degrees up to m = 8. According to [BN92], Section 6 we have the following
table for d,,.

m |0 1 2 3 4 5 6 7 8
d,|1 1 1 1 2 3 5 8 12

m

A final observation is in order: denote by C the image in A of the unique
chord diagram with one single chord and by (C) the two-sided ideal it
generates. We have A = A/(C) and A = A[C].

XX.4 Infinitesimal Symmetric Categories

Let S = (S8,®,I) be a strict tensor category whose sets of morphisms
Homg (V, W) are all complex vector spaces and where the composition and
the tensor product of morphisms are C-bilinear maps. We assume that S
is symmetric with an involutive braiding (oy.y )y w -

Definition XX.4.1. Under the previous hypotheses, define an infinitesi-
mal braiding on S as a family of functorial endomorphisms in S

tyw VoW VoW, (4.1)

defined for all pairs (V,W) of objects of S, such that

oyw °lyw = twy © v, (4.2)
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and

tyvew =tyy ®idy +(oyy ®idy,) " o (idy ®tyw)o(oyy ®idy,) (4.3)

for all objects U,V,W in S.
A symmetric category as above equipped with an infinitesimal braiding is
called an infinitesimal symmetric category.

Observe that in view of (4.2), Relation (4.3) is equivalent to

tyevw = idy @ty + (idy ®UV,W)_1 oty w®idy)o(idy®oy ). (4.4)

Relations (4.3-4.4) are infinitesimal versions of the relations (XIII.1.5-1.6)
defining a braiding in a braided tensor category. Indeed, suppose we have
a braided tensor category in which the morphisms depend on a formal
parameter & and, in particular, the braiding cy,y, is of the form

Cyw = Oyw (idV®W + hty w + terms of higher degree in h)

for some symmetry oy y,. An immediate computation shows that if ¢y,
satisfies Relations (XIII.1.5-1.6), then the endomorphisms t, - satisfy Re-
lations (4.3-4.4).

If, in addition, the infinitesimal symmetric category S has a left duality
V + V* with structure maps b : I — V@ V* and d% : V*®V — I (as
defined in XIV.2), then the infinitesimal braiding is of the form

1 . .

where (Cy, : V — V), is a natural family of endomorphisms of S defined
by

Cy =— (idv ® (d% o tv*,v)) o (by, ®idy). (4.6)

Let us give an example of an infinitesimal braiding. We know that if H =
(H,A,&,5) is a cocommutative Hopf algebra, then the category H-Mod of
H-modules is a symmetric tensor category, with the flip as symmetry. Let
Prim(H) be the vector space of primitive elements in H. We have the
following characterization of infinitesimal braidings on H-Mod.

Proposition XX.4.2. (a) Let t be an element of Prim(H) ® Prim(H)
satisfying the conditions ty; = t and [A(a),t] = 0 for all @ € H. For any
pair (V,W) of H-modules define the endomorphism ty, v, of V@ W by

(0 @ W) =t S w) (A7)

where v € V and w € W. Then (ty )y, is an infinitesimal braiding on
the category H-Mod.

(b) Conversely, any infinitesimal braiding (ty y )y w on H-Mod is of
the form (4.7) with t = ty y(1® 1) € H ® H. The element t belongs to
Prim(H) ® Prim(H) and satisfies the two conditions of Part (a).
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PROOF. Part (a) follows by direct checking. To prove Part (b) we proceed as
in the proof of Proposition XII1.1.4. The functoriality of the infinitesimal
braiding forces it to be of the form (4.7) with t = ty 5(1 ® 1). The H-
linearity of the infinitesimal braiding implies that [A(a),t] = 0 for all a
in H. Conditions (4.2) and (4.3) yield t5; =t and (id ® A)(t) = ty5 +t13
respectively. The fact that ¢ belongs to the subspace generated by primitive
elements follows from an argument already used in the proof of Proposition
XVI5.2. |

Let us restrict to the subcategory H-Mod, of finite-dimensional H-
modules. It has left duality. If H-Mod has an infinitesimal braiding induced
by the element ¢t =, z;®y,; where x;, y; are primitive, then the endomor-
phisms C,, of (4.6) are induced by the action of a single element, namely
C =3, z;y; € H. This follows from (4.6) and the fact that the antipode
of a primitive element is equal to its opposite.

We may apply Proposition 4.2 to the enveloping algebra I = U(g) of
a semisimple Lie algebra g with t € g ® g being equal to the symmet-
ric invariant 2-tensor (XVIIL.1.6). In this case, C is the Casimir element
(XVIIL.1.5).

We shall need the following result in Section 5.

Lemma XX.4.3. IfU,V,W are objects of an infinitesimal symmetric cat-
egory with symmetry (o w )y and infinitesimal braiding (ty,w)v,w, then
we have ’

[ty ®idy, 07 (tyw ®idy)o +idy @ty ] =0 (4.8)

where 0 = idy @ oy -

PrOOF. The square

UsVew 2% UgVeWw
ltu,v‘@idw ltu,v@)idw
UeVvew Y. UgvVeWw

commutes by functoriality of the infinitesimal braiding. In other words, we
have

(ty,y @idw, tygrw] = 0.
Replacing t;qy y by its expression in Relaticn (4.4) yields (4.8). |

XX.5 A Universal Category for Infinitesimal
Braidings
We now construct an infinitesimal symmetric category AB of special inter-

est. The objects of the category AB are the objects of the braid category
B of XIII.2, namely nonnegative integers. A morphism in AB is an element
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of the complex vector space A" (T) for some braid T where A" (T) has
the same definition as A(T') (see Section 3), except that we allow only hor-
izontal chords. The source [resp. the target] of such a chord diagram is the
sequence s(T') [resp. the sequence b(T")] defined in X.5. The composition of
morphisms is given by the map (3.5). The identity of an integer n is the
chordless diagram on the braid 1, (defined in X.6).

We put the same tensor product on AB as the one we put on the braid
category, namely, we have n ® m = n + m on objects while the tensor
product of morphisms is defined by placing chord diagrams side by side.
The tensor product is well-defined and strictly associative with unit 7 = 0.

The braiding (XIII.2.1) of the braid category induces a braiding on the
category AB: it suffices to take the chordless diagrams on the correspond-
ing braids. Since we are considering braid chord diagrams up to homeo-
morphisms, we see that this braiding is symmetric in AB although it is not
in the braid category.

Given objects n, m of AB, define an endomorphism ¢, ,, of n®@m = n+m
as follows. If n or m = 0, set t,, ,,, = 0. Otherwise, set

by = i}n—: gty (5.1)

i=1 j=1

where ¢ is the chord diagram (already defined in Section 3) with a unique
chord between the i-th and the j-th strands.

Proposition XX.5.1. The family (tn,m)n,mZO 18 an infinitestmal braiding
on the category AB.

PROOF. Relations (4.2-4.3) are easy to check. It remains to prove that the
family (¢, ,,),.m is functorial with respect to all morphisms of AB. Since
the category is symmetric, it is enough to show that the square

nem e o om
lf@dm lf@idm (5.2)

¢
nem —5 nem

commutes for all morphisms f. Now the endomorphisms of n in AB are
clearly generated by the generators o, ..., 0, _; of the braid group B,, and
by the chord diagrams (tij)ISKan of Ahor(1 ). Therefore, it suffices to
check the commutativity of (5.2) when f is of type o, and when it is of
type t¥. This is easy in the first case. In the second case, using Relations
(4.3-4.4), we see it is enough to consider the case n = 2,m = 1 and f = t*.
We have
ty 0 (t2®id;) = §18412 | 423412

and 4
(t'? @id,) oty = "2t + 1124,
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Consequently, the commutativity of (5.2) in this special case is equivalent

to the relation
[t12, 413 + 23] = 0. (5.3)

The latter follows from (3.7). O

This proof shows that the four-term relation is imposed by the naturality
of the family (t,, ,,,), m>o in the category AB. We now state a universality
property for AB which is the infinitesimal analogue of Corollary XIII.3.8.

Proposition XX.5.2. Let S be an infinitesimal symmetric category with
symmetry (o w)y,w and infinitesimal braiding (ty,w)y,w- For any object
V of S there exists a unique braided strict tensor functor Fy, : AB — S
such that

Fy(1)=V and F,(t?:101-10@1) =ty,. (5.4)

PROOF. One proceeds as for Lemma XI111.3.5. Define F, on the generators
(t7)1<icj<n DY

Fy(t9) = (67) Midys-n @ tyy @ idyem-i-1)0? (5.5)

where 0¥ = idy g ®0V®(j,i_1)’v®idv®<nfj). ‘We have to check the relations
defining the morphisms of AB, including (3.6-3.7). Relation (3.6) is clear
while Relation (3.7) follows from (4.8). O

Using Proposition 5.2, one may derive an equivalence between the cat-
egory S and a category of braided tensor functors preserving infinitesimal
braidings from AB to S.

XX.6 Formal Integration of Infinitesimal
Symmetric Categories

We review a categorical construction due to Cartier [Car93]. Let ® be a
Drinfeld series as defined in Remark XIX.8.3, for instance Drinfeld’s asso-
ciator ®y5.

Given an infinitesimal symmetric category & with symmetry (av W)VW
and infinitesimal braiding (ty.y)y,w, we construct a braided tensor cate-
gory S|[[h]] as follows. The objects of S [[h]] are the same as the objects of
S. A morphism from V to W in S[[h]] is a formal series y -, f,h" where
fos f1 f2, - - . are morphisms from V to W in S. The composition in S[[h]]
extends the composition in § and the multiplication of formal series. The
identity of V in S[[h]] is the constant formal series idy,.

Theorem XX.6.1. Under the previous hypotheses, there exists a unique
structure of braided tensor category on S[[h]] such that the tensor product on
objects and the unit are the same as in S, the tensor product on morphisms
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extends C[[h]]-linearly the tensor product in S, the associativity constraint
a is given by

agvw =ty v, tvw)s (6.1)
and the braiding c is given by
Cyw = Oy 0 €MV, (6.2)

PRrROOF. We have to check the Pentagon Axiom (XI.2.6) and the Hexagon
Axioms (XIII.1.3-1.4). Now this follows from Relations (XIX.8.27-8.29)
satisfied by ®. a

Applying this construction to the category & = AB of Section 5, we
get a braided tensor category AB[[h]]. Choose the object 1 in it. Then by
Corollary XIII.3.8 there exists a unique strict braided tensor functor Z
from the braid category B to the category AB[[h]] which sends 1 to 1 and,
therefore, is the identity on objects. Restricting to the endomorphisms of
n in B, namely to the braid group B,,, we get a group morphism

Z:B, — 8, x (1 + >0 Al )
m>1

which by Lemma XV.4.1 is defined on the generators of the braid group by

Z(oy) = Ulehtlz/g (6.3)
and
— (1 : 1®(n—i—1) Rttt /2 v - 1®(n—i—1)
Z(o;) = Qyaiyy ®idy o€ ayai-n yy @ldy
(6.4)

when 2 < ¢ < n — 1. The associativity isomorphisms Ayoe-1) vy have
to be computed from the Drinfeld series ® using (6.1) and (4.3-4.4). The
composition of Z with the projection onto S, is the surjection sending each
braid to its permutation. In the next section, we shall extend the map Z
to all tangles.

Let g be a semisimple Lie algebra and ¢ € g®g be the invariant symmetric
2-tensor given by (XVII.1.6). Consider the infinitesimal symmetric category
U(g)-Mod ;. We can reformulate precisely Drinfeld’s Theorem XI1X.4.3 and
Corollary XIX.4.4 as follows.

Corollary XX.6.2. In case & = ®yy, there is a braided tensor equiva-
lence between the braided tensor category Uy (g)-Mod, of XVIL3 and the
braided tensor category (U(g)-Mod )[[h]].

XX.7 Construction of Kontsevich’s Universal
Invariant

We first state a complement to Theorem 6.1 in the case when the infinites-
imal symmetric category S has a left duality V +— V* with structure maps
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b(‘)/ I - V®V*® and d(‘)/ :V*®V — I. In Section 6 we constructed a
non-strict braided tensor category S[[h]]. Let S[[R]]*" be the strict braided
tensor category associated to S[[h]] by the procedure of XI.5. We keep the
notations of Section 6.

Theorem XX.7.1. Under these hypotheses, the strict braided tensor cat-
egory S[[R]]*™ is a ribbon category with twist 6y, given by

0, = ehCv/? (7.1)

and with left duality defined as follows: for any object V' the dual object V*
is the same as in the category S; the structure maps by, and d,, are defined
by

by =8 and dy =dY) o (Al ®@idy) (7.2)

where Ay« is the automorphism of V* defined by
Ap- = (dY ®idy.) 0 Bty by ye) o (idy- @ bY). (7.3)

Ribbon categories were defined in XIV.3 and the endomorphisms Cj,
by (4.6).

PROOF. The axioms (XIV.2.1) for the duality follow from a computation
and the axioms (XIV.3.1-3.2) for the twist essentially from Relation (4.5).
0

The importance of this theorem lies in the fact explained in XIV.5.1
that, by colouring links with any object of S, the ribbon category S[[h]]**
provides us with a framed link invariant with values in the endomorphism
ring Endg(I)[[h]] of the unit object I in S[[k]]*"". This fact will now be used
to construct Kontsevich’s universal invariant. From now on, we assume that
the Drinfeld series we want Theorems 6.1 and 7.1 to work with is Drinfeld’s
associator ®y,.

We first define an infinitesimal symmetric category A with left duality. It
is built in the same way as the category AB of Section 5, except that braids
are now replaced by framed tangles and chords are no longer assumed to
be horizontal. More precisely, the objects of the category A are the objects
of the tangle category 7, namely finite sequences of + and —, including the
empty sequence #. A morphism in A is an element of the complex vector
space A(T') for some framed tangle T' (as defined in Section 3). Its source
[resp. its target] is the sequence s(T') [resp. the sequence b(T)] defined in
X.5. The composition of morphisms is given by the map (3.5). The identity
of a sequence S is the chordless diagram on the tangle idg.

We define a strictly associative tensor product on A as on AB. Its unit is
the empty sequence: I = (). Remember that the monoid of endomorphisms
of { in the framed tangle category is the set of all isotopy classes of framed
links in R?x]0, 1[. Here, the monoid of endomorphisms of §) in the category
A is a complex associative algebra since the sets of morphisms are complex
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vector spaces. This algebra is bigraded by the number of chords and the
number of connected components of the link. We have

Endy(I)= P A4,,(0°" (7.4)

m,n>0

where O®" denotes the disjoint union of n circles.

The symmetry and the infinitesimal braiding of the category AB de-
fine a symmetry and an infinitesimal braiding on .A. The latter also has a
left duality induced by the left duality of the category R of ribbons (see
XIV.5.1).

The category A satisfying the hypotheses of Theorem 7.1, we get a ribbon
category A[[R]]*"". Take the object (+) in it. By Theorem XIV.5.1 there
exists a unique strict braided tensor functor

Z:R— Al

preserving the duality and the twist, sending the object (+) of the category
R of ribbons to the object (+) of A[[h]]*"". Consequently, the functor Z is
the identity on objects. The restriction of Z to braids is the morphism
defined by (6.3-6.4).

Let K be a framed link. It can be viewed as an endomorphism of the unit
object in the category R. Its image Z(K) is an isotopy invariant living in

EndA[[h]]““'(w> = @ A(On)
n>0

When K is a framed knot, the invariant Z(K) lies in A = L0 Am:
This is the universal invariant we are after. Indeed, by the definition of the
braiding (6.2) in A[[A]], the invariant Z(K) = > ., Z,,(K)h™ satisfies
the hypotheses of Proposition 1.2. It results that Z is an invariant of finite
type. In order to check Relation (2.10), we have to extend the invariant
Z to singular knots. This is done using (1.1). At each double point of a
singular knot, we have for Z a local contribution of the form cg ¢ — cgyls,.
By (6.2) this looks like

ehtss /2 _ gmhts s/2 = htg g/ + terms of degree > 1. (7.5)

Relation (7.5) and an induction on the number of double points imply
Relation (2.10).

Remarks 7.2. (a) Le and Murakami [LM93c] showed that Z(K) coincided
with the invariant originally constructed by Kontsevich with multiple in-
tegrals. The reader is advised to read [LM93¢] where Z(K) is defined in a
slightly different way using the concept of quasi-tangles.

(b) The appearance of @y, in the definition of Z(K) makes it difficult
to compute for any framed knot. Nevertheless, the first terms of the formal
series Z(K') may be determined using Corollary XIX.6.5.
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XX.8 Recovering Quantum Group Invariants

The aim of this section is to show how one recovers the quantum group
invariants of XVIL.3 from Kontsevich’s universal invariant Z. We first state
a universal property for the category A of Section 7, parallel to Proposi-
tion 5.2.

Proposition XX.8.1. Let S be an infinitesimal symmetric category with
left duality, with symmetry (oy v )y w and infinitesimal braiding (tyw)vw-
For any object of S there exists a unique functor Fy, from the category A
to the category S such that

Fy(S©8)=F/(S) @Ry (S), Fp@0) =1, Fy(+)=V, Fy(-)=V",

(8.1

Fy(og.s) = 0py(s),rvsy  Fvibs) = by sy, Fyvlds) =dpy(s) (8.2
and

Fy(tss) = tp,(s),m (s (8.3)
for all objects S and S’ of S.

PROOF. One proceeds as for Proposition 5.2. The main difference lies in the
existence of general chord diagrams in A. In order to show that Relation
(8.3) determines Fy, on any chord diagram, we observe that any chord may
be arranged so as to be horizontal after possibly adding some maxima and
minima to the diagram. O

We wish to illustrate Proposition 8.1 in the case when & = H-Mod,
where H = (H,A,¢) is a complex Hopf algebra along with an element
t =3, 7 ®y,; in Prim(H)®Prim(H) such that t5 =t and [t,Aa)] =
0 for all @ € H. By Proposition 4.2 we know that S is an infinitesimal
symmetric category with left duality, the symmetry being the flip and the
infinitesimal braiding given by (4.7). Fix a finite-dimensional left H-module
V. By Proposition 8.1, there exists a well-defined functor Fy, : A — H-
Mod, such that Fy,(+) = V. Consequently, if D is a chord diagram on
l=1id,, then Fy,(D) is an H-linear endomorphism of V. We now determine
this endomorphism.

Let D be a chord diagram on | with m > 0 chords. Define an element C,
of H by the following combinatorial rule. Running down along the strand
|, write z; whenever you come across the k-th upper endpoint of a chord
and write y; when you meet its lower endpoint. In this way one gets a
word wp,. Suppose the word is

Wp = T %5535 Yj2 T 53Y 51 Y54 T 55 Yia Yiis
(here m = 5). Then the element C}, is by definition

CD:(_l)m Z T T3 53 Y5205, Y5 Y54 %5 Y5 Y- (8'4)
J1,--5J5
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Proposition XX.8.2. For any chord diagram D on |, the element Cp, is
central in H and depends only on the class of D in A(]). Moreover, the
endomorphism F, (D) is the action of the central element Cp of H on V.

Proor. We first deform D into a chord diagram whose chords are hori-
zontal. We claim that (8.1-8.3) imply that Fy, (D) is equal to the action
of Cp on V. Now F, is defined on the equivalence classes of chord dia-
grams. Therefore C'f, depends only on the equivalence class of D. Finally,
the endomorphism Fy, (D) being H-linear, Cp is central.

Let us prove the claim in the special case when D is the unique chord
diagram on | with two intersecting chords. This diagram can be expressed
as

D=(d, ®d)(t, ®id,)(id, @t )b, ®id,) (8.5)

in the category A. Its image under the functor £, is the endomorphism
Fp(V) = (idy @ dy ) (ty v« @idy)(dy @ty ) (by ®@idy,). (8.6)

Let v be an element of V and {v;}; be a basis of V. We denote the dual
basis by {v'};. We have

I

F, (D)(v) Z z,v; < yja:kvj’,ykv >

0,5,k

= Z z;v; < vi,S(ijk)ykv >
ik

— } : i
= Z;0; <w » LYY >
4,4,k

= (Z x.jmkyjyk)”
5k

= Cpo.

The third equality follows from S(y,z;) = S(z,)S(y;) = (_1)237/@2{7', which
holds because z;, and y; are primitive elements of H. a

Proposition 8.2 provides an interesting way of constructing central el-
ements of H. For instance, if H is the enveloping algebra of a complex
semisimple Lie algebra g with its canonical 2-tensor ¢, then we recover the
Casimir operator (XVIIL.1.5) C = (', from the chord diagram D with one
chord. Tt would be interesting to characterize the subspace of the centre of
U(g) spanned by all elements Cp,.

We are now ready to indicate how one recovers the quantum group in-
variant ¢}, i, from Kontsevich’s universal invariant Z. Recall that @y is
defined for a semisimple Lie algebra g and a finite-dimensional simple g-
module V. To the data (g, V'), we associate a linear map wy , on the space
of all chord diagrams as follows. Let D be a chord diagram on the circle. To
it corresponds a uniquely defined chord diagram, still denoted D, on the
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line |. By Proposition 8.1 we know how to build a central element Cp, of
U(g). Since V is simple, C}, acts as a scalar pp, on V. We define w /(D)
as

wy v (D) = pip. (8.7)

The relationship between the quantum group invariant Qg,V and Kont-
sevich’s universal knot invariant Z is given by the following statement.

Theorem XX.8.3. Under the previous hypotheses, for all framed knots K

we have
Qq.v (K) = dim,( Zw Z, (K))h™ (8.8)

m>0
where dimq(‘7) is the quantum dimension defined in XVIL.3.

PROOF. Applying Proposition 8.1 to S = U(g)-Mod; and to the given
simple module V, we get a functor Fy, from A to U(g)-Mod; with Fy, (+) =
V. By Theorem 7.1, Fy, extends to a ribbon functor Fy from A[[h]"" to
(U(g)-Mod ;)[[h]]*" such that Fy(+) = V. By a ribbon functor, we mean a
strict braided tensor functor preserving left duality and twist. Composing
F,, with the functor Z of Section 7, we get the ribbon functor Fy o Z
from the category R of framed tangles to (U(g)-Mod)[[h]]*" such that
(Fy o Z)(+) = V. Now by Corollary 6.2, the latter category is equivalent
to the category Uy, (g)-Mod,, of XVIL3 via a strict braided tensor functor
E sending the simple g-module V to the topologically free U, (g)-module
V. Actually, the equivalence E preserves also the duality and the twist (see
[Dri89b]). Therefore, Eo Fy,0Z is a ribbon functor from R to Uy, (g)-Mod o
sending (+) to V. By the uniqueness statement in Theorem XIV.5.1, we
have ~

EolyoZ=F; (8.9)
where Fy; is the ribbon functor introduced in XVIL.3. Let K be a framed
knot. By construction of the invariant Q y,, we get

Quv(K) = (E o Fy)(Z(K)). (8.10)

Let us evaluate E oﬁv on a chord diagram D on the circle. By Proposition
8.2, by (8.2-8.3), (8.7) and by XIV.4, we have

(Eo ﬁv)(D) = E(trq(cmv)) = HKp E(dimq(V))
= up dim (E(V)) = dim (V) w, (D) (8.11)

where the quantum trace and dimension are taken first in the ribbon cat-
egory (U(g)-Mod,)[[h]]"", then in the equivalent category Uy (g)-Mody,.
Combining the last set of equalities with (8.10) yields Theorem 8.3. o
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XX.9 Exercises

1. Find all primitive elements of degree < 4 in the Hopf algebra A of
Section 3.

2. Let O(N) be the framed trivial knot whose framing twists the knot by
27 N. Compute its Kontsevich invariant Z(O(N)) modulo h*. (Hint:
use Corollary XI1X.6.5.)

3. Compute the Kontsevich invariant of the closure of the braid o2V *!

of B, modulo h*.

XX.10 Notes

The concept of a knot invariant of finite degree (also called “Vassiliev in-
variant” in the literature) was introduced by Gusarov [Gus91] and Vas-
siliev [Vas90] [Vas92] around 1989-90. Vassiliev’s approch was based on
the theory of singularities. Soon after, a number of mathematicians made
substantial contributions to this new theory such as D. Bar-Natan, J. Bir-
man, P. Cartier, M. Kontsevich, Le T.Q.T., X.S. Lin, J. Murakami, S. Pi-
unikhin, T. Stanford (see [BN92| [Bir93] [BL93] [Car93] [Kon93] [LM93b]
[LM93a] [LM93c] [Lin91] [Piu92] [Piu93] [Sta92] [Sta93]). One will find a
review of their results in [Vog93]. A major step forward was undertaken by
Kontsevich who constructed the universal knot invariant Z(K) and proved
Theorem 2.3. Kontsevich’s definition of Z(K) used complicated multiple
integrals. It was proved by Cartier [Car93], Le-Murakami [LM93c| and Pi-
unikhin [Piu93] that it could be defined in a simpler way using tangle
diagrams. Theorems 6.1 and 7.1 are due to Cartier [Car93].

The contents of Sections 5 and 8 seem to be new. For a generalization,
see [K'T94].
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