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PREFACE

This book aims to present to first and second year graduate students a
beautiful and relatively accessible field of mathematics—the theory of singu-
larities of stable differentiable mappings.

The study of stable singularities is based on the now classical theories of
Hassler Whitney, who determined the generic singularities (or lack of them)
for mappings of R* — R™ (m > 2n — 1) and R® — R2, and Marston Morse,
who studied these singularities for R* — R. It was René Thom who noticed
(in the late *50’s) that all of these results could be incorporated into one
theory. The 1960 Bonn notes of Thom and Harold Levine (reprinted in [42])
gave the first general exposition of this theory. However, these notes preceded
the work of Bernard Malgrange [23] on what is now known as the Malgrange
Preparation Theorem—which allows the relatively easy computation of
normal forms of stable singularities as well as the proof of the main theorem
in the subject—and the definitive work of John Mather. More recently, two
survey articles have appeared, by Arnold [4] and Wall [53], which have done
much to codify the new material; still there is no totally accessible description
of this subject for the beginning student. We hope that these notes will
partially fill this gap. In writing this manuscript, we have repeatedly cribbed
from the sources mentioned above—in particular, the Thom-Levine notes
and the six basic papers by Mather. This is one of those cases where the
hackneyed phrase “if it were not for the efforts of . . ., this work would not
have been possible” applies without qualification.

A few words about our approach to this material: We have avoided
(although our students may not always have believed us) doing proofs in the
greatest generality possible. For example, we assume in many places that
certain manifolds are compact and that, in general, manifolds have no
boundaries, in order to reduce the technical details. Also, we have tried to
give an abundance of low-dimensional examples, particularly in the later
chapters. For those topics that we do cover, we have attempted to “fill in
all the details,” realizing, as our personal experiences have shown, that this
phrase has a different interpretation from author to author, from chapter to
chapter, and-—as we strongly suspect—{rom authors to readers. Finally, we
are aware that there are blocks of material which have been inclulled for
completeness’ sake and which only a diehard perfectionist would slog through
—especially on the first reading although probably on the last as well. Con-
versely, there are sections which we consider to be right at the “heart of the
matter.” These considerations have led us to include a Reader’s Guide to
the various sections.

Chapter I: This is elementary manifold theory. The more sophisticated reader
will have seen most of this material already but is advised to glance through
it in order to become familiar with the notational conventions used elsewhere
in the book. For the reader who has had some manifold theory before,
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vi Preface

Chapter I can be used as a source of standard facts which he may have
forgotten.

Chapter I1: The main results on stability proved in the later chapters depend
on two deep theorems from analysis: Sard’s theorem and the Malgrange
preparation theorem. This chapter deals with Sard’s theorem in its various
forms. In §1 is proved the classical Sard’s theorem. Sections 2-4 give a
reformulation of it which is particularly convenient for applications to
differentiable maps: the Thom transversality theorem. These sections are
essential for what follows, but there are technical details that the reader is
well-advised to skip on the first reading. We suggest that the reader absorb
the notion of k-jets in §2, look over the first part of §3 (through Proposition
3.5) but assume, without going through the proofs, the material in the last
half of this section. (The results in the second half of §3 would be easier to
prove if the domain X were a compact manifold. Unfortunately, even if we
were only to work with compact domains, the stability problem leads us to
consider certain noncompact domains like X x X — AX.) In §4, the reader
should probably skip the details of the proof of the multijet transversality
theorem (Theorem 4.13). It is here that the difficulties with X x X — AX
make their first appearance.

Sections 5 and 6 include typical applications of the transversality theorem.
The tubular neighborhood theorem, §7, is a technical result inserted here
because it is easy to deduce from the Whitney embedding theorem in §5.

Chapter III: We recommend this chapter be read carefully, as it contains
in embryo the main ideas of the stability theory. The first section gives an
incorrect but heuristically useful “proof” of the Mather stability theorem:
the equivalence of stability and infinitesimal stability. (The theorem is
actually proved in Chapter V.) For motivational reasons we discuss some
facts about infinite dimensional manifolds. These facts are used nowhere in
the subsequent chapters, so the reader should not be disturbed that they are
only sketchily developed. In the remaining three sections, we give all the
elementary examples of stable mappings. The proofs depend on the material
in Chapter 11 and the yet to be proved Mather criterion for stability.

Chapter IV gives the second main result from analysis needed for the stability
theory: the Malgrange preparation theorem. Like Chapter II, this chapter is
a little technical. We have provided a way for the reader to get through it
without getting bogged down in details: in the first section, we discuss the
classical Weierstrass preparation theorem——the holomorphic version of the
Malgrange theorem. The proof given is fairly easy to understand, and has
the virtue that the adaptation of it to a proof of the Malgrange preparation
theorem requires only one additional fact, namely, the Nirenberg extension
lemma (Proposition 2.4). The proof of this lemma can probably be skipped
by the reader on a first reading as it is hard and technical.

In the third section, the form of the preparation theorem we will be using
in subsequent chapters is given. The reader should take some pains to under-
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stand it (particularly if his background in algebra is a little shaky, as it is
couched in the language of rings and modules).

Chapter V contains the proof of Mather’s fundamental theorem on stability.
The chapter is divided into two halves; §§1-4 contain the proof that infinitesi-
mal stability implies stability and §§5 and 6 give the converse. In the process
of proving the equivalence between these two forms of stability we prove
their equivalence with other types of stability as well. For the reader who is
confused by the maze of implications we provide in §7 a short summary of
our line of argument.

It should be noted that in these arguments we assume the domain X is
compact and without boundary. These assumptions could be weakened but
at the expense of making the proof more complicated. One pleasant feature
of the proof given here is that it avoids Banach manifolds and the global
Mather division theorem.

Chapters VIand VII provide two classification schemes for stable singularities.
The one discussed in Chapter VI is due to Thom [46] and Boardman [6]. The
second scheme, due to Mather and presented in the last chapter, is based on
the ““local ring” of a map. One of the main results of these two chapters is a
complete classification of all equidimensional stable maps and their singu-
larities in dimensions < 4. (See VII, §6.) The reader should be warned that the
derivation of the “normal forms” for some stable singularities (VII, §§4 and 5)
tend to be tedious and repetitive.

Finally, the Appendix contains, for completeness, a proof of all the facts
about Lie groups needed for the proofs of Theorems in Chapters V and VI.

This book is intended for first and second year graduate students who
have limited—or no—experience dealing with manifolds. We have assumed
throughout that the reader has a reasonable background in undergraduate
linear algebra, advanced calculus, point set topology, and algebra, and some
knowledge of the theory of functions of one complex variable and ordinary
differential equations. Our implementation of this assumption—i.e., the
decisions on which details to include in the text and which to omit—varied
according to which undergraduate courses we happened to be teaching, the
time of day, the tides, and possibly the economy. On the other hand, we are
reasonably confident that this type of background will be sufficient for
someone to read through the volume. Of course, we realize that a healthy
dose of that cure-all called ““mathematical sophistication™ and a previous
exposure to the general theory of manifolds would do wonders in helping the
reader through the preliminaries and into the more interesting material of the
later chapters.

Finally, we note that we have made no attempt to create an encyclopedia
of known facts about stable mappings and their singularities, but rather to
present what we consider to be basic to understanding the volumes of
material that have been produced on the subject by many authors in the past
few years. For the reader who is interested in more advanced material, we
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recommend perusihg the volumes of the *““Proceedings of Liverpool Singu-
larities™ [42, 43], Thom’s basic philosophical work, ““Stabilité Structurelle
et Morphogenese” [47], Tougeron’s work, “Ideaux de Fonctions Differenti-
ables” [50], Mather’s forthcoming book, and the articles referred to above.

There were many people who were involved in one way or another with
the writing of this book. The person to whom we are most indebted is John
Mather, whose papers [26-31] contain almost all the fundamental results of
stability theory, and with whom we were fortunately able to consult fre-
quently. We are also indebted to Harold Levine for having introduced us to
Mather’s work, and, for support and inspiration, to Shlomo Sternberg, Dave
Schaeffer, Rob Kirby, and John Guckenheimer. For help with the editing of
the manuscript we are grateful to Fred Kochman and Jim Damon. For
help with some of the figures we thank Molly Scheffe. Finally, our thanks
to Marni Elci, Phyllis Ruby, and Kathy Ramos for typing the manuscript
and, in particular, to Marni for helping to correct our execrable prose.

Cambridge, Mass. Martin Golubitsky
August, 1973 Victor W. Guillemin
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Chapter 1

Preliminaries on Manifolds

§1. Manifolds

Let R denote the real numbers and R™ denote #-dimensional Euclidean
space. Points of R" will be denoted by n-tuples of real numbers (xy, .. ., x,)
and R™ will always be topologized in the standard way.

Let U be subset of R”. Then denote by U the closure of U, and by Int (U)
the interior of U.

Let U be an open set, /- U— R, and x € U. Denote by (&f/0x,)(x) the
partial derivative of / with respect to the ith variable x; at x. To denote a
higher order mixed partial derivative, we will use multi-indices, i.e., let
o« = (aq, ..., «,) be an n-tuple of non-negative integers. Then

olal plal
x%7 T Bxq%1 Oxgta- - - Oxpln

and f: U —> R is k-times differentiable (or of class C*, or C¥) if (8'*/f]ox*)(x)
exists and is continuous for every n-tuple of non-negative integers « with
|¢| < k. (Note that when « = (0, .. ., 0), @*f/0x“ is defined to be f.) f is real
analytic on U if the Taylor series of fabout each point in U converges to fin a
neighbourhood (nbhd) of that point.

Suppose ¢ : U— R™ where U is an open subset of R* and f'is some real-
valued function defined in the range of ¢; then ¢ * /= f - ¢ (where - denotes
composition of mappings) is called the pull-back function of f by ¢.

Definition 1.1. Let ¢: U— R™, U an open subset of R™.

(a) ¢ is differentiable of class C* if the pull-back by ¢ of any k-times
differentiable real-valued function defined on the range of ¢ is k-times differ-
entiable.

(b) ¢ is smooth (or differentiable of class C*) if for every non-negative
integer k, ¢ is differentiable of class C*.

(c) ¢ is real analytic if the pull-back by ¢ of any real analytic real-valued
Junction defined on the range of ¢ is real analytic.

Let ¢: U— R™ be C* differentiable in U and x, a point in U. Then by
Taylor’s theorem there exists a unique linear map (d¢é).,: R* — R™ and a
function p: U — R™ such that

f(x) = f(x0) + (dh)xo(x — Xo) + p(¥)

for every x in a nbhd V of x,, where

f where o] =+ oy

Lim ’P(x)' = 0-
x> lx el xo}

1



2 Preliminaries on Manifolds

Note that we will use |x] to denote the Euclidean norm (3 x;2)*/2. Let
(d$).,: R* — R™ be the Jacobian of ¢ at x,; it is given with respect to the

coordinates x,,..., x, on R® and y,,..., v, on R™ by the m x n matrix
3¢i l1gism
(5‘;1 (xo))
1<j7<n

where ¢': R" — R(1 < i < m) are the m coordinate functions defining ¢.

The chain rule holds, of course. That is, if ¢ : U - R™and ¢s: V —> R? are
both C* differentiable where U < R™ and ¥ < R™ are open and V > ¢(U),
then d(+¢)x, = () pexy) *(dh)s, for every x, in U.

Theorem 1.2. (Inverse Function Theorem). Let U < R" be open and p be a
point in U. Let ¢: U-—>R" be a C¥* differentiable mapping. Assume that
(dd), : R® — R is invertible. Then there exists an open set V in R contained in
the range of ¢ and a mapping s : V — U, differentiable of class C¥, such that
b f(x) = x for every x in V, and i+ ¢(x) = x for every x in y(V).

Proof. See appendix of Sternberg; or Lang. []

Definition 1.3. A local homeomorphism of R* is a homeomorphism of
some open subset of R™ onto another. (So the domain of a local homeomorphism
need not be all of R™.)

Let ¢ be a mapping. Denote by dom ¢ the domain of ¢. Also, if U < dom ¢
denote by ¢| U the restriction of ¢ to U. If X is a set, then idx : X — X denotes
the identity mapping on X.

Definition 1.4. A pseudogroup on R" is a collection T of local homeo-
morphisms on R™ with the following properties:

(a) idgr is in T,

(b) if ¢ and s are in T with dom = range of ¢ then - isin T, ie., T is
closed under composition for all pairs of elements for which this operation makes
sense.

(c) ifpisin T, then ¢~ isin I" (where ¢ 1 denotes the inverse function of ¢)

(d) ifdisin ' and U is an open subset of dom $, then ¢|U is in T, and

() if {Uyteer ( some index set) is a collection of open subsets of R*, ¢ is a
local homeomorphism of R™ defined on U = | Jyer U,, and ¢| U, is in T for every
«inl, then ¢ isin I'.

Some examples of pseudogroups are:

(a) (diff)* = the set of all local homeomorphisms on R* (n fixed) which are
differentiable of class C*.

(b) (diff)* = the set of local homeomorphisms of R" (n fixed) which are
smooth.

(c) (dift)® = the set of all local homeomorphisms of R" ( fixed) which
are real analytic.
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To show that (a) and (b) satisfy the conditions of the definition you need
to use only the chain rule, the inverse function theorem, and the local charac-
ter of differentiability. For (¢) you need the strengthened versions of the
above theorems for analytic functions.

A more general class of pseudogroups can be given as follows:

(d) Let G be a group of linear mappings of R” — R™ Then the pseudo-
group T'G* is the set

{¢ € (diff )* | Vx € dom ¢, (dp), € G}

(i) G = all linear maps on R" with positive determinant. Then I';* =
(diff)% consists of orientation preserving C* mappings.
(ii) G = all linear maps on R™ with determinant equal to 1. Then I'G*
consists of all volume preserving C* mappings.
(iii) Let (,) be an inner product on R™ Let G be the group of orthogonal
matrices relative to (, ); namely, 4 € G iff (x, y) = (4x, Ay) for every x, y
in R". Then I';* consists of all C¥ isometries in R™,

Definition 1.5. Let I’ be a pseudogroup on R™ and X a Hausdorff topo-
logical space which satisfies the second axiom of countability. Let A be a subset
of all local homeomorphisms of X into R", i.e., homeomorphisms which are
defined on an open subset of X and whose range is an open subset of R". Then

(i) A is a I'atlas on X if

(@) X = Upcadom ¢
(b) if ¢, are in A, then ¢~ *{$p(dom ¢ N dom ) is in I,
(ii) The elements of A are called charts on X.
(iii) Two U-atlases A, and A, on X are compatible if ¢ ~1|d(dom ¢ N
dom ) is in " whenever ¢ is in A; and ) is in A,.
(iv) A Hausdorff space X together with an equivalence class of compatible
-atlases is called a T'-structure on X.

Note. 1If X has a I'-structure, then X is locally compact, since it is locally
Euclidean.

Definition 1.6. Let X have a I'-structure.

@) If T = (diff)*and k > 0, then X is a differentiable manifold of class C*.

(b) If T' = (diff)°, then X is a topological manifold.

(¢) If I' = (diff)*=, then X is a smooth manifold or a manifold of class C*.

(d) Ify ' = (diff)®, then X is a real analytic manifold.

(e) If I' = (diff)s and k > O then X is an oriented C* differentiable mani-
fold. Any differentiable manifold which has a (diff)§ structure in which the
charts are elements of the original (diff)! structure is orientable.

Examples

(1 S * = {x = (Xy,..., X)) €R"

i x;2 = 1}~
i=1

Let N=(,0,...,0and S=(—1,0,...,0).
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Let ¢y:{S""! — {N}}—>R"! be stereographic projection via N, i.e.,
du(xe, .., x,) = /(1 — x) DX, ..., x,) and ¢g: {S*" 1 — {§}} R~ be
stereographic projection via S, i.e., dg(x1, . .., x,) = (1/(1 + x1)) (xg, ..., Xp).
Then ¢g -y~ R*"1 — {0} — R"~+ — {0} is given by y — y/|»|? for all y in
R™~1 — {0}. Since (¢sdy 1) (s by~ 1) = id we see that det (dps-dy~ 1), =
+1. Evaluate at y = (1,0, ..., 0) to see that, in fact, det (dps-¢y~1) = —1.
To show that S™~! is an oriented analytic manifold we can change the last
coordinate of ¢ to —x,/(1 — x,) thus changing the determinant to +1.

(2) P" = real projective n-space.

To define P* we introduce the equivalence relation ~ on R**! — {0}:

(xg, . - ., Xp) ~ (x0, - - -, xp) iff there is a real constant ¢ such that x; = cx;
for all i.

P" = R**! — {0}/~ is the set of these equivalence classes.

Let w:R**? — {0} — P™ be the canonical projection. P* is given the
standard decomposition space topology and note that with this topology
7 is an open mapping. To show that P* has a manifold structure it is necessary
to produce local homeomorphisms of P* into R™ which overlap properly.

Let V; = R**! — {hyperplane x; = 0} for 0 < i <n. V; is open in
R"*1 — {0}, hence =(V;) = U; is open in P" Clearly P* = U, U..--U U,.
Define ¢;: U; — R" by

i) = E (..

Xy
and ~ indicates that coordinate is to be omitted. Using the equivalence rela-
tion defining P* and the fact that p is in U;, one sees that ¢, is a well-defined
homeomorphism onto R".

vy Xy, X)) Where p = w(x,, ..., Xn)

¢(U; 0 U;) = R* — {hyperplane y; = 0} (i >
é(U; N U;) = R* — {hyperplane y;,; = 0} (i<
where we assume y, ..., y, are the coordinates on R™ So for i < j

bi+¢;,~1: R* — {hyperplane y;,; = 0} — R — {hyperplane y; = 0}.
A computation yields for i < j
—1)it7
bty O s ) = D
Yi+1
which is a real analytic mapping so P" becomes a real analytic manifold.
Another computation yields

Vi Vo Yiva Vi LVis1s oo 5 Vo)

1
Yis1
from which we see that real projective space in any odd dimension
(P?"*1 5 > 0) is orientable. It can be proved that P2" is not orientable.

n+1
) (_ 1)(n«1)i+(n+1):‘

(3) Gk., = Grassmannian space of k-planes through the origin in
R™.
= set of all k-dimensional subspaces of Euclidean n-space.
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Note that G, ,,; = P™
We will give G, , a decomposition space topology. Let W = all ordered
k-tuples P = (P, ..., P,) of k linearly independent vectors in R*. W is an
open subset of
R*"D --D R

Define an equivalence relation ~ on W as follows:

P~Q if {P,....,P3 and {Qi,..., O}

span the same k-dimensional subspace of R™

Clearly Gy, can be identified with W/~ as sets so we may give Gy, the
topology induced by this identification. We now give Gy, an analytic struc-
ture. Equip R* with an inner product (, ). Then given a subspace V" of R",
there is an orthogonal projection 7 of R™ onto V. Suppose V is a k-dimen-
sional subspace of R" Let my, = restriction of =, to U. Let W, =
{Ue€ G, | my.v is a bijection onto V}.

Let V* = the orthogonal complement of V in R" Define

py: Wy — Hom (V, V)

as follows: Let U e W,. Then py(U) = =y y1-7yy € Hom (V, V). We leave
it to the reader to check that p, is a homeomorphism. Now make the identi-
fication Hom (V, F*) >~ R¥"~% {0 get a chart ¢, : Wy — R*®~F) Again
it is left to the reader to check that py« py. =1 : R =% —» R¥" 9 ig real analytic.
Hence G, , is a real analytic manifold of dimension k(n — k). Note that for
k = 1 this is the same atlas that we constructed for P*~*.

Definition 1.7. Let X and Y be C¥ differentiable manifolds of dimension
n and m, respectively. Then X x Y can be made into a C* differentiable mani-
fold of dimension n + m in the following natural way. Let Ax and Ay be atlases
onXand Y.Letd e Ax, pc Ay. Thend x : dom ¢ x dom —R" x R™ =
R™*" s given by ¢ x P(x, ) = (¢(x), J{(»)) x€ X, ye Y. ¢ x ¢ is clearly
a local homeomorphism of X x Y =R ™ Then Axxy = {¢ X ¢ | pe Ay,
€ Ay} is an atlas for X x Y.

Applications
(1) The r-Torus,

St x.--x St
———
r —times

is a smooth manifold of dimension r.
(2) If X and Y are oriented manifolds, then so is X x Y.

Definition 1.8. Let X be a topological n-manifold, and p a point in X. A
set of local coordinates on X based at p is a collection of n real-valued func-
tions {¢s, ..., .} defined on an open nbhd U of p, (i.e., ¢,: U—R) so that

$(p) = 0(1 < i < n)yandp: U—>R"defined by $(q) = ($2(q), - . ., $u(q)) is a
chart in the manifold structure on X.
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Clearly if ¢ is a chart of X based at p (i.e., ¢ is defined on a nbhd of p and
#(p) = 0) then the coordinate functions of ¢ define a system of local co-
ordinates on X based at p.

The common domain of a set of local coordinates based at p is a coordinate

nbhd of p.

§2. Differentiable Mappings and Submanifolds

Definition 2.1. Let Y be a C*-differentiable manifold of dimension m.

(@) Let [ Y— R be a function. [ is C*-differentiable if for every chart
¢:dom ¢ — R™, f.d~1:ranged —> R is a CP-differentiable mapping. [ is
smooth if fis C*-differentiable for every k.

(b) Let X be a C*-differentiable manifold. Then ¢ . X — Y is C*-differ-
entiable if for every C*-differentiable function f: Y — R, the pullback f+¢ is
C*-differentiable. ¢ is smooth if ¢ is C*-differentiable for every k.

(c) We will use differentiable to mean C*-differentiable for k at least 1.

Remark. Supposethat ¢: X — Y is a mapping with pin X and g = &(p)
in Y. Let U and ¥ be coordinate nbhds of X and Y based at p and g respec-
tively, and assume that #(U) < V. Suppose p: V— R™ and 7: U — R" are
charts. Then ¢ is C*-differentiable iff p-¢p-7~*: range r = R* — R™ is C*-
differentiable. This shows that differentiability of a function between mani-
folds is a local question and is independent of the particular local representa-
tion used.

Definition 2.2. Let X and Y be differentiable manifolds of dimension n
and m, respectively. Let ¢ : X — Y be differentiable. Let p be in X, p a chart
on X with p in dom p, and = a chart on Y with $(dom p) < dom 7.

Then (dr+¢+p~ 1), : R" — R™ is a linear mapping. Define rank of ¢ at p
to be rank (dr+¢+p~1) yip-

Note. The definition of rank does not depend on which charts are se-
lected. Let p’, 7' be charts with the above properties. Then on a nbhd of p

and f(p),
rank (dr'-¢+(p) "D ppy = rank (dr’er7 7o p™ e po(p) )y
= rank (dr+¢-p ™) i)
by the chain rule and the fact that 7.7~ and p+(p’)~?* are in (diff)*.
Definition 2.3. Let X and Y be differentiable manifolds. Let ¢: X — Y

be a differentiable mapping. Suppose that at the point p in X, ¢ has the maximum
possible rank. Then

(a) if dim X < dim 7, ¢ is an immersion at p,

(b) if dim X = dim Y, ¢ is a submersion at p,

(c) if for every p in X, ¢ is an immersion (submersion) at p, then ¢ is an
immersion (submersion).
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(d) if dim X = dim Y = n, ¢ is bijective, and the rank of ¢ is n at every
point of X, then ¢ is a diffeomorphism.

(e) if ¢: X — Y is an immersion and a homeomorphism (into), then it is an
embedding.

() if there exists a diffeomorphism of X — Y, then X and Y are diffeo-
morphic.

Note. If¢: X — Yisadiffeomorphism, then¢~1: ¥ — Xis well-defined

and is as differentiable as ¢ is by the inverse function theorem (Theorem 1.2.) ,

We will show that locally immersions “look like” linear injections, sub-
mersions ‘“‘look like” projections, and diffeomorphisms “look like™ the
identity mapping. (The notion of ““looks like” will be made precise in 2.5
and 2.6.) To do this we need the implicit function theorem.

Let U; = R¥ and U, < R' be open sets. Let ¢: U; x U, — R be differ-
entiable. Define (d,#)(x,.v) = (b )y, Where xoin Uy, yoin Usand ¢, 1 Uy —
R!is given by ¢, (¥) = ¢(x,, y) for all y in U..

Theorem 2.4. (Implicit Function Theorem). Suppose ¢: U, x U, —Rlis
Ce-differentiable and $(xo, ¥o) = Yo. If (dyP)cx,.vy IS Of ¥ank I, then there exist
open sets U{ < U, and Uy <= U,, with xq in Uy and yy in Us, and a Cs-differ-
entiable function 4. Uy x U, — U, such that ¢(x, Y(x, ¥)) = y for every x in
Ui and y in Uj. Moreover i can be chosen so that $(x,, yo) = Yo-

Proof. Defined: U, x U, — R* x R'tobethegraphof¢,i.e., d(x, y) =
(x, ¢(x, y)) for all x e U,, y € Uy. In the standard coordinates x,, ..., x; on
R¥and y,,...,y, on R

0 (dys‘b)mw)

where I, is the & x k identity matrix. The assumption on (d,¢).,.,, implies
that the rank of (dq!?)(xo,yo) is k + 1, e, (dq@)(xo,yo) is invertible. Apply the
inverse function theorem to find Uj, Uj so that = UL x Usis Co-
differentiable. Let i(x, y) = (d1(x, ¥), #o(x, ¥)) be in R x R Since ¢+ =
idy; « vs, We have that

(x5, ») = $E(x, 1)) = (@ha(x, 3), s (x, ¥), Palx, 1))
Hence 4,(x, y) = x and y = ¢(x, ¥o(x, »)). Take = f,. [J

Corollary 2.5. Let U <= R™ be open, x, in U, and ¢ : U — R™ an immer-
sion at x,. Then there exists an open set U’ in U with xoin U’, an open set V in
R™ with (U") < V, and a map +: V — R™ which is a diffeomorphism onto its
image so that A = 7+¢ is the standard injection of R™ — R™ x R™™" re-
stricted to U. (Thus by a change of coordinates in the range, ¢ can be linearized
locally )

™
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Proof. Since (d$),, has rank n, there is an n x r minor which is non-
singular. Let ¢4, ..., ¢, be the coordinate functions defined by ¢. Then

Opy Oy O
0x; 0Oxg ox,,
dh)xy = | ¢ : :
Ofn  Ofn il
0x;  Ox, 0xp,
The appropriate minor is determined by » columns 7y, .. ., i,.

Let 7, be a linear isomorphism of R™ which maps &, +>¢; (1 < j < n)
where ¢, is the unit vector along the jth coordinate. Then 7,-¢ has the
property that (dr,-$)., has rank » and the appropriate n x n minor which is
nonsingular is given by the first n-columns. By including =, in the definition of
= we assume that ¢ has this property.

Write R™ = R* x R where / = m — n and R" is given by the first
n-coordinates xi,...,x, and R' by the last /lcoordinates yi,..., .
¢:U—R" x R'is given by ¢ = ¢; + ¢ where ¢,: U —R", ¢,: U — R},
and (d¢,)., has rank n.

Since U is in R*, we may construct ¢: U x R'— R" x R given by
(x, ¥) — ¢(x) + (0, y) where x is in U and y is in R%

Then

(d¢1)x0 O
* 1

(d‘;g)(xo,y) = (

which has rank n. By the inverse function theorem, there exists a differentiable
inverse = to ¢ on a nbhd of (x,, 0). Let A(x) = 7-d(x, 0) = (x, 0). Then
A:R*—R" x R = R™ is given by A(x) = (x, 0) which is a linear map of
rank n. []

Corollary 2.6. Let U < R" be open, x, a point in U, and ¢: U —R™ a
submersion at x,. Then there exists a nbhd U’ of x, in U, a diffeomorphism
o: U — R* (onto its image), and A a linear mapping of rank m so that ¢ = Ao
on U'. (In fact, X can be taken to be the standard projection of R™ x R~ ™ —»
R™. Thus by a change of coordinates in the domain, ¢ can be linearized.)

Proof. Let R™ = R™ x R' with coordinates x;,...,x, on R™ and
Y1, ..., ¥y on R By an appropriate choice of bases on R*, this decomposition
can be done so that (d,¢)., has rank m.

Define ¢: U — R™ x R! by é(x, ¥) = (¢(x), ). Then

(dxb)xy | *
1,
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which has rank n. By the inverse function theorem & is locally a diffeomor-
phism. Let o = ¢ and A:R™ x R'—R™ be given by A(x,y) = x. Then
Ad(x, ¥) = M(x), p) = $(x). [

Definition 2.7. Let X be a C*-manifold of dimension n. Let Y be a subset
of X. Then Y is a submanifold of X of dimension m if for every point p in Y,
there exists a chart ¢ : dom ¢ — R™ of the differentiable structure on X so that
é~1(V) = Y ndom ¢ where

V= {(xl)-"5xn)ERnlxm+l == Xy :0}
and x., . .., x, are the canonical coordinates on R".

Note. 1If Y is a submanifold of a CF*-differentiable manifold, then it
itself is a C*-differentiable manifold. Give Y the induced topology from X.
(Warning: There are weaker definitions of submanifold in which Y does not
bear the subspace topology. See Definition 2.9.) For each p in Y, let ¢, be
the chart on X, given in the definition of submanifold. ¥ N dom ¢ is an open
set of Yand ¢,/ Y: Y N dom ¢ — R™ is a local homeomorphism. The set of
mappings {¢,| Y },ey give ¥ a C*-differentiable structure of dimension m.

Theorem 2.8. Let X and Y be CF-differentiable manifolds of dimensions
n and m respectively withn > m. Let ¢: X — Y be a C¥-mapping. Then

(D) If ¢ is a submersion, then $(X) is an open subset of Y. In fact, ¢ is an
open mapping.

(2) Let Z be a submanifold of Y. If ¢ is a submersion at each point in ¢~ Z),
then ¢~1(Z) is a C* submanifold of X with codim ¢~1(Z) = codim Z where
codimZ = dim ¥ — dim Z.

Proof.

(1) Let U be an open set in X and " an open set in ¥ with (U) < V and
yoin V. Let ¢ : U~ R™and p: V' — R™ be charts. Choose x, in U N ¢~ 1(y,).
All of this is possible since ¢ is continuous.

Now p+dep~: U’'— R™ is a submersion where U’ = (U) is open in
R™, By Corollary 2.6 there exists a nbhd U” of 4i(x,) in U’ and a diffeomor-
phism o: U”" — o(U”) < R* and a linear mapping A of rank m so that
pedp™r = Xeo on U”. Let ' = o-. 4y is a chart on X with x, in dom ¢’
and p+¢-(16)~ = A. Since A: R™ — R™ has rank m, it maps open sets to open
sets. Choose W an open nbhd of x, in X so that 4'(W) < U”. Then A(¥'(W))
is open in R™ and p = Y(A(H' (W) = (W) is open in Y. So ¢(X) is open in Y.

(2) Note that A: R* x R*"™ — R™ can be given by A(x, y) = x. Let p be
a chart which makes Z into a submanifold, i.e., one for which p(Z N dom p)
is a hyperplane in R™. Now A-J'(dom ¢’ N ¢~ Z)) < pd+dp Y (Z) < p(Z) =
hyperplane by the choice of p. Thus ¢'(¢~1(Z) N dom ") = A~ *(hyperplane)
= hyperplane, since A is linear. Thus ¢’ is a chart near x, making ¢~1(Z)
into a C*-submanifold of codimension = codim Z. []

Example. Let ¢: R"— R be given by &(xy, ..., x,) = x:2 +- -+ x,%
This is a submersion on S~ ! = ¢~1(1). Thus S*~'is an n — 1 dimensional
submanifold of R".
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Note. Let X be a differentiable manifold, ¥ a set, and f: X — Y a
bijection. Then there is a natural way to make Y into a differentiable mani-
fold. First declare that the topology on Y is the one which makes f'a homeo-
morphism. Then define the charts on Y, to be the pull-backs via /= of the
charts on X.

Definition 2.9. The image of a 1-1 immersion, made into a manifold in the
manner just described, is an immersed submanifold. (Warning: this definition
of immersed submanifold is not the same, in general, as that of a submanifold.
In particular, the topology of the immersed submanifold need not be the same
as the induced topology from the range.)

Proposition 2.10. Let ¢: X — Y be an immersion. Then for every p in X,
there exists a nbhd U of p in X such that

) U U—HU) is a homeomorphism where $(U) is given the induced
topology from Y and
(2) $(U) is a submanifold of Y.

Proof. Given p in X, there exist open nbhds U of p in X and V of ¢(p) in
Y with ¢(U) < V, charts p: U-—+R" and 7: V—R™ and a linear map
A:R™ — R™ of rank # so that the diagram

¢

U-——>V

|

R* —— R"

commutes. This is possible by Corollary 2.5.

Now (1) follows since A: R* — R™ is a homeomorphism onto its image.
For 7(¢4(U)) is homeomorphic to ¢(U) with the induced topology since 7 is a
local homeomorphism defined on V. 7(¢(U)) < Im A since the diagram com-
mutes, thus A~ 1(+(¢(U/))) is homeomorphic to ¢(U) with the induced topology
from Y. Finally p~ A"} (r(¢(U)))) = ¢~ 1H(U) = U is homeomorphic to
¢(U) with the induced topology from Y.

To see that #(U) is a submanifold, use the chart =. Decompose R™ into
AR™) x R™™" Then 7|(U): (U) —R™ x {0}. []

Notes. (1) Proposition 2.10 is only a local result since not every immer-
sion is 1 :1. For instance, the mapping of R — R? given pictorially by

Y

is an immersion (when drawn smoothly enough!).
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(2) The image of an immersion need not be a submanifold even if the

immersion is 1:1. For example, consider
> O

P

where P = Lim,_, , ¢(z). The induced topology on 4(R) from R? is not the
same (near P) as the induced manifold topology on ¢(R). The following
corollary is left as an exercise.

Corollary 2.11. Let ¢: X — Y be an immersion. Then

(1) For every y in Y, ¢~*(») is a discrete subset of X.
(2) ¢(X) is a submanifold of Y iff the topology induced on ¢$(X) from its
inclusion in Y is the same as its topology as an immersed submanifold.

Clearly, in the second example above, open nbhds of ¢(P) in the two
relevant topologies on ¢(R) are different.

Definition 2.12. Let X and Y be topological spaces with ¢: X — Y
continuous. Then ¢ is proper if for every compact subset K in Y, ¢~*(K) is a
compact subset of X.

Theorem 2.13. Let¢: X — Y beal:1 proper immersion. Then ¢(X) is a
submanifold of Y.

Proof. Using Corollary 2.11 (2) we see that ¢(X) is a submanifold iff
¢ : X — ¢(X) is a homeomorphism where ¢(X) is given the topology induced
from Y. Clearly ¢: X — ¢(X) is continuous and bijective, so we need only
show that ¢~ is continuous. Let yy, s, . . . be a sequence in ¢(X) converging
to y in $(X). Let x; = $7%(y;) and x = ¢~ (p). It is enough to show that
Lim,, , x; = x. Let K be a compact nbhd of y in Y. Since #(X) has the topol-
ogy induced from Y, K N ¢(X) is a nbhd of y in ¢(X) and we may assume,
without loss of generality, that each y; is in K. Since ¢ is proper, ¢ ~*(K) is
compact and ¢|¢ " UK): ¢ HK) — ¢(X) N K is a homeomorphism. Thus
Lim;_ , x; = x by the continuity of ¢~ *|#(X) N K. [

Note. A 1:1 immersion can be a submanifold even if the immersion is
not proper. Consider the spiral of R* — RZ given pictorially by

and analytically by f{r) = (r cos (1/r), r sin (1/r)). Clearly, fis a 1-1 immer-
sion and fis not proper since f~1(B;) = [1, co) where B, is the closed disk of
radius 1 centered at the origin. But the two possible topologies on f(R*) are
the same so f(R™") is a submanifold of R2.
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Exercises:

(1) Let f: R® — R? be defined by
(X1 oo X)) > (02 -+ X2 X2 = (4 %)
(a) For which x in R™ is f a submersion at x?
(b) Let f; and f, be the coordinate functions of f. For which r, s in
R is f;~4(r) N f57(s) a smooth submanifold of R™.
(2) Let M, be the set of n x nreal matrices. Let M,* be the set of matrices
in M, of rank k. Prove that M,* is a submanifold of M, and compute its

dimension. (Hint: Let S = (’é lB;) be in M, where 4 € M, *. Show that

SeMFiff D — CA*B = 0.)

§3. Tangent Spaces

Definition 3.1. Let X be a differentiable n-manifold.

(1) Let ¢: R — X be differentiable with ¢(0) = p. Then ¢ is a curve on X
based at p.

(2) Let ¢, and ¢, be curves on X based at p. Then c, is tangent to ¢y at p if
for every chart ¢ on X with p in dom ¢,

*) (dg-c1)o = (d-Ca)o.
This makes sense since ¢-¢; and ¢-c, are mappings of open nbhds of 0
in R into R".)
Lemma 3.2. If (*) holds for one chart ¢, then it holds for every chart.
Proof. Let 4 be another chart defined near p. Then

(dfc1)o = (dipd ™ bec1)o
= (df+¢™Dowldp-c1)o
= (A Dom(dd-ca)o = (dif-c2)o ¥

Definition 3.3. Let S,X denote the set of all curves on X based at p, p a
point in X. Let ¢;, co € S, X. ¢; =~ ¢y if ¢, is tangent to cy al p. ~ is clearly an
equivalence relation. The set T,X = S, X[~ is called the tangent space to X at
p- If ¢, is in S, X, let ¢, denote the equivalence class of ¢, in T, X.

Let ¢ be a chart on X with p in dom ¢. Note that ¢ (t) = ¢~ H(p) + tv)isa
curve on X based at p where v is some vector in R". Define A,*: R* — T,X by
A(bp(y) = él"

Lemma 3.4. Let X be a differentiable n-manifold, p a point in X. Let ¢ be
a chart on X near p. Then A,* : R* — T, X is bijective.

Proof.

(@) A, is 1:1. Let vy, v, € R* and A,”(v;) = A,%(vp). Then ¢, and c¢,, are
tangent at p; i.e., (dp-c,)o = (dp-c,,)o. Now

(dp-co)o = (db$ () + tv1))o = (d($(P) + 101))o
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but 7+ ¢(p) + tv, has derivative at 1 = 0 equal to v,. Similarly for v,, so
Ul = Ug.

(b) A,”is onto. Let « be in T, X. Let ¢ be a curve representing the equiva-
lence class «. Let v = (dé+c), be a vector in R". By the calculation in part (a),
(dp-c,)o = vso (dp-c,)o = (dp-c), which implies that ¢ and ¢, are tangent at
p. Stated differently, AP(v) = é, = ¢é = a. []

Proposition 3.5. There exists a unique vector space structure on T, X such
that for every chart ¢ on X with p in dom ¢, the mapping A,? : R* > T, X is a
linear isomorphism.

Proof. Let ¢, ¢ be charts with p in dom ¢ N dom . Then
(*) AP T1AP = (difd™ Do - R* —R™
Assuming this formula, it is clear that if A,? is linear for some chart ¢, then

A,? is linear for any other chart . Let the vector space structure on 7,X be
the one induced by A,? from R", i.e., if « and B8 are in 7, X, then

a+ B = (A7) ") + (A7) H(B)]
We now prove the formula (*). Let v be in R* and let A = (¢~
Then
(dg-c,)o = (dp(p) + tv)o = v
= A7 v = (dp),-d(b~(b(p) + 1Av))o
Therefore A,7(v) = A,”(Av), which is what was to be shown. [

Definition 3.6. Let f: X — Y be a differentiable mapping with p in X
and q = f(p). Then f induces a linear map (df),: T,X — T,Y called the
Jacobian of f at p as follows: Let ¢ be in S,X; then f-c is in S, Y. To induce a
map from T, X — T, Y we need to know that if c; ~ ¢, in S, X, then fec; ~ fecy
in S, Y. Let ¢ be a chart on X near p and s a chart on Y near q. Then ¢, ~ cy
implies that (dp-cy)e = (dp-cz)o. Hence

(dp-frcr)o = (@S Dowm(dp-c1)o
= (df-f ™ Dowldb-ca)o = (dif+fC2)o
using the chain rule. So by definition, f-c, ~ f+cq. This defines (df),: T,X —
T, Y. To check that (df), is linear, we have the following formula:
**) df)o = N[+ DoA™ 71
Let ¢ be in T,X. Then we may take c(t) = ¢~ Hd(p) + tv) for some v in R™.

Now
AU @ o™ Dom(Ae?) 71¢ = AU df+ ™ )pmy(V)

which is equal to the equivalence class of the curve

ex(t) = 7 (g + 1@ S ™ Dawm(V))-

Thus (df),(¢) is the equivalence class of the curve

caot) = f+67HH(p) + w).
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To see that ¢, and c, are tangent at q, we compute

(df-c1)o = (@S~ Do)

and
(difca)o = (dhf+d™ VoA (P(p) + 10))o = (dib S+ ) (V).

Remark. Using (**) and the fact that A,¢ and A,” are isomorphisms we
have that /'is an immersion at p if rank (df), = dim X and that fis a sub-
mersion at p if rank (df), = dim Y.

Definition 3.7, Let X be a differentiable manifold. Then
TX = U T,X = tangent bundle to X

peX

Let = : TX — X denote the natural projection.

Proposition 3.8, Let X be a C*differentiable n-manifold (k > 0). Then
TX has, in a natural way, the structure of a C*~* manifold of dimension 2n.

Proof. Let p be a point in X, U an open nbhd of p in X, and ¢ a chart
with domain U. Let TyX = »~Y(U). Define ¢:TyX — $(U) x R* by
Fe) = (p-m(),(1,") ")) for every « in Ty X. & is bijective. We claim that
if {¢,} is an atlas on X, then 7X can be topologized so that {¢,} is an atlas on
TX. Note that

$ohHa, v) = ($-47Ha), (A" "4, (1))
= (-4 @), (dp-™Na(v))

where g = ~'(a), by using the formula (*) in Proposition 3.5. Now
¢ R"— R* is Ck-differentiable and (df-¢~1): U x R*— U x R" is
C¥-1-differentiable since it is given by a matrix whose coefficients are first
partial derivatives of ¢ =1 on U. Define the topology on TX so that all the
&, are homeomorphisms. Then 7X has the structure of C*~-differentiable
manifold. [J

Notes. (1) Let V be a (finite dimensional) vector space with p in V.
It is obvious that there is a canonical identification of ¥ with 7,V given by
v ¢ where ¢(t) = p + tv.

(2) Let V be a vector space and let G(k, V') be the Grassmann manifold of
k-dimensional subspaces of V. Let W be in G(k, V). (We shall view W both
as a point in G(k, V) and a subspace of V.) We show that there is a canonical
identification of 7Ty G(k, V) with Hom (W, V/W). Choose a complementary
subspace .S to Win V. Let C(¢) be a curve in G(k, V') based at W. Define
Ay W— VW by A(w) = =(s,) where 7 : V — V' /W is the obvious projection
and w = s, + ¢; where ¢, € C(t) and s, € S. (Note that for ¢t small, writing
w = s, + ¢, 1S always possible.) First show that if C(¢) and C’(¢) are two
curves on G(k, V') tangent at W, then

dA, _d4;
FACINEE I
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as mappings of W — V'/W. Thus we have a linear mapping ¢ : TGk, V) —
Hom (W, V/W) given by

FO—~Zm]|

Next show that ¢ is, in fact, an isomorphism. Finally show that ¢ is indepen-
dent of the choice S. Hint: Let .S’ be another complementary subspace to W
in V. Then s, — s; = ¢; — ¢, is in C(¢). Thus there is an «; in C(¢) such that
s; — 8; = te,. Now show that

d(4,

2wl =0

t=0

§4. Partitions of Unity

Manifolds are geometric objects that locally ““look like” Euclidean space.
It would then be convenient to be able to do whatever analysis or calculus
that we have to do locally; i.e., in Euclidean space. The use of partitions of
unity is the technique to accomplish this goal.

Definition 4.1. Let X be a topological space.

(D) {U,}ger (I some index set) is a covering of X if each U, is contained in
Xand X = Uper U

(2) Let {U}ue; and {V g} se; be coverings of X. Then {V},c; is a refinement of
{UVwer if for every B in J, there is an « in I so that V; < U,.

(3) Let {Vy}ses be a covering of X. Then {V;}sc; is locally finite if for every
p in X, there is a nbhd U of p in X so that UNV, = & for all but a finite
number of B’s in J.

(4) X is paracompact if every open covering of X has a locally finite refine-
ment.

Proposition 4.2. Let X be a topological space which is locally compact
and satisfies the second axiom of countability. Then X is paracompact. In
particular, all manifolds are paracompact. (Recall that X satisfies the second
axiom of countability if the topology on X has a countable base.)

Proof. We first construct a sequence of compact sets K, K,, ... such
that
(1) K; < Int(K;,,) for all i, and
@ x=JK.
i=1

Since X is locally compact and second countable, we may choose a se-
quence of open sets Ny, N, ... each of which has compact closure and such
that the N,’s cover X. Let M, = \J¥., N,. Let K; = M,. Since K, is compact
there exists A, ..., M, so that K, < M; U---U M, . Let K, = M, U---
U M,. Thus K, is compact and K, < Int (K,). Proceed inductively.
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Now let {W,},.; be an open covering of X. We construct a locally finite
refinement, For each /, let W, % ..., W;ki be a finite subcovering of the
compact subset K; — Int(K;_,). Let Vi} = W, N Int(K;.; — K;_;). Then
the collection {V}} is a locally finite refinement of the covering {W,}. [

Corollary 4.3. Let X be a differentiable manifold and let {U,},.; be an
open covering of X. Then there is a locally finite refinement {V;}se; 0of {U, ver
such that

(a) for every B in J, there is a chart ¢5: Vy — By which is onto, and
(b) the sets V' = ¢, (By) form an open covering of X, where B, =
{xeR"| |x| < r}

Proof. Choose K;, K,, ... as in the proof of Proposition 4.2. For each
pin K; — Int (K; ;) choose an open nbhd ¥,? of p so that

@) Vi< Int(K;.; — K;_s) N U? where UP is some open set in the
covering {U,}.e; containing p, and

(i1) ¥, is the domain of a chart ¢,': V' — B; which is onto and satisfies
#,(p) = 0. Let W' = (¢,7) ~X(B,). These sets cover X, — Int (K;_,). Choose
a finite subcover W, ", ..., W}, . Then the sets {V,}12i<7, give the required
locally finite cover. []

Definition 4.4.

(1) Let X be a topological space and let f: X — R be continuous. Then the
support of f denoted supp (f) = closure of the set {x € X | f(x) # O}

(2) Let X be a C*-differentiable manifold. Then a C*-partition of unity on
X is a collection {f,},; (I some index set) of C*-differentiable functions mapping
X into R such that

(@) {supp (f)}eer is a locally finite covering of X,
(b) fu{p) = O for every a € I and p € X, and
(©) Suctfe(P) = 1 for every p € X. Note that condition (a) ensures that
this is a finite sum.
(3) A partition of unity {f,}eer on X is subordinate to a covering {Us}se; if
Jor every « in I, there exists a B in J for which supp (f,) < U,.

Lemma 4.5. Let B be an open ball of radius r centered at x, in R™. Then
there exists a smooth function positive on B and zero off B.

Proof. It is enough to show that there exists a smooth function
v: R-— R such that y(s) = 0 for s = 1 and y(s) > O for s < 1. If y exists,
then consider p:R"™— R defined by p(x) = v(|]x — x,|%/r?). Clearly p is
smooth and has the desired properties. Now just define

0 ifs = 1
y(s) = (1 )2 . )
exp( (s—l)) ifs <1

We leave it to the reader to check that y is indeed smooth. [J
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Theoremn 4.6, Let X be a C* differentiable manifold and let {U},; be an
open covering of X. Then there exists a partition of unity {pz}sc; on X subordinate
to the covering {U,}oe;. Moreover, if I is countable, then we may let J = I and
assume that supp p, < U, for all o in 1.

Proof. Let {V,}sc; be the locally finite refinement of {U,},.; whose exis-
tence is guaranteed by Corollary 4.4. Define g;: X — R by

2(p) = {y(vﬁa(p)) ifpeV

0 otherwise

where v : R® — R is a smooth function which is positive on B; and zero off
B, (using Lemma 4.5). Let i{(p) = >sc; g4(p). Then h is well-defined (i.e.,
the sum is finite), and C* since {V};.; is a locally finite covering for X. Also
h(p) > O for all p. Let p; = (1/h)gs. Then {ps}se; is a partition of unity sub-
ordinate to the cover {U,},.;. For the moreover part, let Uy, U,, ... be the
covering and let f; = >,.; ps where B is in J; if supp p; < U; and supp
pp & U;forj<i. [J

Corollary 4.7. Let X be a C* differentiable manifold. Let U and V be open
subsets of X with U < V. Then there is a C* differentiable function f: X — R

such that
1 ifxeU
Sx) = {0 ifx¢V

0<f(x) <1 otherwise.

Proof. Let {fi,fo} be a partition of unity subordinate to the cover
{V, X — U} given by Theorem 4.6, Take f = f;. Certainly suppf < V and
f=lonUsincef; =0o0on U. []

We present the following Proposition just to indicate the great number of
smooth functions which exist (as compared to, say, analytic functions).

Proposition 4.8. Let C be a closed subset of R™; then there exists a smooth
Sfunction f: R* — R such that f > 0 everywhere and C = f~(0).

Proof. Cover R* — C by a countable sequence of open balls By, B, . ..
each contained in R* — C. Let f; be a smooth function zero off B; and posi-
tive on B;. (Use Lemma 4.5.) Let

delf,
M, = .
= sup (ZF)

(M; is well-defined since each 0!*!f;/0x* is compacilly supported.) Let



18 Preliminaries on Manifolds

converges uniformly. Using a standard theorem from advanced calculus (see
Dieudonné, Foundations of Modern Analysis, 8.6.3, p. 157), 81%/f/ox® exists
and is continuous for each «, so that f is smooth. Thus f is the desired
function. [J

Exercise:

Let X be a smooth compact manifold. Show that there exists a 1:1
immersion of X into some Euclidean space, and thus conclude that any
compact manifold can be realized as a submanifold of R¥ for some large N.

§5. Vector Bundles

Definition 5.1.

(1) Let E and X be smooth manifolds and w: E — X a submersion. Let
Ey = 7n~Y(U) for any subset U of X. Then E is a family of vector spaces over
X of dimension k if for every p in X, E, is a real vector space of dimension k
whose operations (addition and scalar multiplication) are compatible with the
topology on E, induced from E. Let k be denoted by dimy E.

(2) A section of E is a smooth mapping s: X — E such that w-s = idy.
C*(E) denotes the space of smooth sections of E.

(3) Let wp: E— X and np: F— X be families of vector spaces over X.
Then ¢ : E — F is a homomorphism from E to Fif

(@) 7mpedp = mg
(b) ¢ is smooth
(c) For everype X, ¢: E, — F, is a linear map.

¢ is an isomorphism if ¢ is a diffeomorphism and a homomorphism.

Example. Let V be a vector space (finite dimensional), X a smooth
manifold, and £ = X x V. Let w: £ — X be a projection on the first factor.
Then EZ, X is a family of vector spaces known as a product family. A
family of vector spaces F over X is frivial if it is isomorphic to some product
family.

Definition 5.2. Let EZ, X be a family of vector spaces over X. E is a
vector bundle over X is every point p in X has an open nbhd U, so that the
Jamily of vector spaces Ly, is trivial (i.e., a vector bundle is a locally trivial
Jamily of vector spaces). Note that dim E = dim X + dimy E.

Example. Let X be a smooth manifold. Then TX (the tangent bundle
over X) is a vector bundle with dimy 7X = dim X. The charts that were
constructed in Proposition 3.8 to show that TX is a manifold also show that
it is a locally trivial family of vector spaces.

When working with a vector space V, it is often useful to consider certain
associated spaces such as the dual space V'*, the space S?(V'*) of symmetric
bilinear forms on V, etc. In a similar fashion, when given a vector bundle E
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over X, it is sometimes useful to construct associated vector bundles over X.
For instance, one should be able to replace E, by E;* (the dual space to E,)
for each p in X and make the new set into a vector bundle. One could ailso
replace E, by S?(E¥) (the space of symmetric bilinear forms on E,), etc. The
following will show how to formalize such a process to yield new vector
bundles.

Let T be a covariant functor which takes (finite dimensional) vector
spaces into (finite dimensional) vector spaces, (i.e., T': Vector spaces — Vector
spaces and if ¥ and W are vector spaces, then

T:Hom (V, W) — Hom (T'(V), T(W)).

This latter map has the property that if f: V— W and g: W —Z, then
T(g-f) = T(g)-T(f). Note that Hom (V, W) denotes the set of linear
mappings from V to W and is vector space isomorphic to R™" where n =.
dim ¥V and m = dim W.)

Definition 5.3. T is smooth if for every pair of vector spaces V and W,
the mapping
T:Hom (V, W) — Hom (T(V), T(W))

is smooth. (Note that the above isomorphism of Hom (V, W) with R™" gives
Hom (V, W) the structure of a smooth manifold.)

Proposition 5.4. Let E be a vector bundle over X and T be a smooth
covariant functor defined on (finite dimensional) vector spaces. Then T(E) =
Upex T(E,) (disjoint union) has the structure of a vector bundle over X.

Proof. Let E be a set, X a smooth manifold, and =: E— X a map.
Assume that F, is a vector space for each p in X. To put a vector bundle
structure on F is to make E into a smooth manifold so that E becomes vector
bundle over X with projection map =. Suppose F is a vector bundle and
¢ : E — Fis a bijection which is linear on the fibers and for which = = 7;-¢.
Then there is a unique way to put a manifold structure on F'so that E becomes
a vector bundle and ¢ an isomorphism.

(1) We note that if ¢: E — F is a homomorphism, then there is a map
T($): T(E) — T(F) which is linear on fibers. T(¢$)(e) = T(¢,)(e) where
¢, = |E,: E, — Fyforpe Xande € E,.SoT(¢) : Upex T(E,) — Upex T(Fy).

(2) Suppose that £ = X x Vis a product family where V is some vector
space. Then T(E) = U,x T(V) = X x T(V), the last equality being an
obvious bijection. Give T(E) a vector bundle structure by making this
identification an isomorphism.

(3) Next assume that E is a trivial bundle. Then there exists an iso-
morphism ¢: E— X x V = F. As noted in (1), T(¢) : T(E) — T(F). Since
T(F)is a vector bundle (by (2)), we can give T(F) a vector bundle structure so
that T'(¢) is an isomorphism.

It is necessary to check that this vector bundle structure is independent
of the choice of ¢. So let ¢ : F-— G be an isomorphism where G = X x W.
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Then ¢ X x V— X x W is an isomorphism and can be identified
with A: X — Hom (V, W) given by A(p) = ¢ (p x V): V— W. Then
T H: X x T(V)— X x T(W) can be identified with 7-A. Since
-1 is smooth, A is smooth and since 7 is a smooth functor 7+ A is smooth.
Hence T()-$~1) is smooth and an isomorphism. The diagram

T(E) ﬁL» T(F)

idl jT(</f-¢‘1)

T(E) SACINN T(G)

commutes and implies that the identity map on T(E) is smooth as a map
between the two possible vector bundle structures. Thus the two structures
are the same.

(4) Let E be an arbitrary vector bundle. For each p in X, there is an
open nbhd U, so that Ey is a trivial bundle. By (3), T(£y,) has a unique
structure as a vector bundle. Suppose U, N U, # @. Then T(Ey,~y,) has
two structures as a vector bundle, namely T(Ey )y, ~v, and T(Ey, )y, ~v,. The
uniqueness of the structures on 7T'(E,) and T(E,) gives that these two struc-
tures are the same. So we have a unique way of making T'(¥) into a vector
bundle. 0

Note. A similar proposition clearly holds when 7 is contravariant or
when T is a functor of several variables, some covariant and some contra-
variant.

Examples.

(1) T(V) = V*—the dual vector space to V. T:Hom (V, W) —
Hom (W*, VV*) is given by A +> A*¥—the adjoint of 4. T is a continuous
linear map and hence smooth. So E* = T'(E) is a vector bundle. In particular,
if £ = TX, then T(E) is denoted 7*X and is the cotangent bundle of X.

(2) T(Vla Vz) =V,® V..

T:Hom (V, W) x Hom (V,, Wy) — Hom (V, @ V,, W, D W)

is given by T(f, g) — f @ g. T is continuous and bilinear, hence 7T is smooth.
Given two vector bundles E and F over X, T(E, F) is denoted by E® F
and is called the Whitney sum of FE and F. Note that (F@® F), = E, D F,
for every p € X. Hence dimy (E @ F) = dimyx E + dimy F.

3) T(V) = S3(V*)—the vector space of symmetric bilinear forms on V.
T:Hom (V, W)— Hom (S%(W*), S¥(V*)) is defined as follows. Let
AeHom (V, W), Be S((W*), and vy, v, € V. Then T(A4)(B) is a symmetric
bilinear form on V given by T(A)(B)Xv,, vs) = B(Avy, Avs). T is continuous
and linear, hence 7 is smooth. If £ is a vector bundie over X, then T(E) =
S2(E*) is a vector bundle over X. dimy S*(E*) = n(n + 1)/2 where n =
dimy E.
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(4) There is one more vector bundle which we shall need later. Let Gy,
be the Grassmann manifold of k-planes in n-space. Let p be in G, and let £,
be the k-dimensional subspace of R" associated with p. Then E = e, , Ep
is a vector bundle over Gy, called the canonical bundle. Let p be the obvious
projection. Recall from Example (3) after Definition 1.6 the chart nbhds‘:
W, of Gy n;ie., W, = {g€ Gin | 75z, is a bijection onto E,} where =g 5,
is given by the restriction to E, of orthogonal projection of R* — E,. The
mappings ¥,: Ewy, = W, x E, defined by vi> (p(v), 7g,,,z,(v)) give the
vector bundle structure to E. Check the details.

It is customary to give sections of certain vector bundles special names.

Definition 5.5. Let X be a smooth manifold.

(1) A section of TX is called a vector field.

(2) A section of T*X is called a 1-form.

(3) A section s: X — S2(E*) is a metric on E if s(p) is a positive definite,
symmetric, bilinear form for each p in X.

(4) A metric on TX is called a Riemannian metric.

Locally the above sections have standard coordinates representations.
and ¢: U— R" the corresponding chart. Equipping R™ with the standard
coordinates x, . . ., X,, we may define

17

2 = -1 <

oy o (qu )¢(p)(axi tb(p))
can be viewed as a vector field on R™.) Then (6/8¢,)|, € T,X and /é¢;: U—Ty X
is a locally defined section on X. The vectors
are linearly independent at each p in U; so if s is a vector field on U, then
2 c
s(p) = Z a(p) g

Let U be a coordinate nbhd on X with ¢,, ..., ¢, the system of coordinates
0
where (0/6x))|, is the unit vector in the x;-direction based at q. (Thus ¢/ox;
o n
{67# p}i:l
i=1

»
We note that s: U—> TX is smooth iff ¢;: U — R is smooth for 1 < i < n.
So locally a vector field is a linear combination (over smooth functions) of the
coordinate vector fields 8/0¢,, . .., 8/6d,.

If {d$,, ..., dd,} is the dual basis to 8/0¢,, . .., 0/0$, at each point of U,
then every 1-form s can be written locally as s = >7.; a; dé;. Also,s: U— T*X
is smooth iff a;: U— R (1l < i < n) is smooth. Finally, if s is a Riemannian
metric, then locally s = D7, .1 a;; db; dp;, i.e., if £, 7€ T,X, then

n

sEm) = O a(p)db)u(£)db;)(n).

i,7=1
Here agains: U-—> SHT*X)issmoothiff g;;: U—Rissmoothforl < i,j < n.
Note that since s is symmetric a;; = a; for all 7, j and that since s is positive
det (a;(p)) # O for each p in U.
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Proposition 5.6. Every vector bundle =: E — X has a metric.

Proof. Let E= X xV be a product bundle. Then S%E*) =
X x S%(V*) is also a product bundle. Now let B be any positive definite
symmetric bilinear form on V. Then define s: X — X x SZ(V*) by s(p) =
(p, B). s is smooth and a metric on S?(E*). If £ is a trivial bundle then there
exists an isomorphism ¢: E - X x V (for some product bundle X x V).
¢ induces an isomorphism ¢@ : S3((X x V)*) — SHE*). If 5 is a metric on
X x V, then ¢®.S is a metric on FE.

Finally, let E be an arbitrary vector bundle. For each p in X, choose an
open nbhd U, of p so that Ey is trivial. Let {}/;};2; be a countable locally
finite refinement of {U,},cx. Let {p;};2, be a partition of unity subordinate to
the cover {V;}/2, of X. (See Theorem 4.5.) Let s; be a metric on Ey,. Define
51 X — S%E*) by
- pi(p)s{p) forallpe V;
5(p) _{ 0 otherwise;

then §; is a smooth section. Let s = >2; §,. This sum makes sense since for
each p in X, only finitely many p;(p) are not zero. Let v € E,. Then

s(P)@, v) = > pP)s(p)(®, 1) > p(p)si(p)(, v)

where i is chosen so that pd(p) > 0. Thus s(p) is positive definite
since s{p)(v, v) #0, and s is a metric on E. []

Given a Riemannian metric s: X — S%(7T*X) where X is a connected
manifold, then there is a natural way to define a metric d: X x X — R so
that (X, d) is a metric space. (There is, unfortunately, no way to change the
fact that the word “metric”’ has two different though related meanings!)
We show how to define d.

Let p and ¢ be points in X and ¢ : R — X a (continuous, piecewise smooth)
curve with ¢(0) = p and ¢(1) = ¢. By piecewise smooth, we mean that the
curve is infinitely differentiable except at a finite number of points. Let
(d/dr)],, be the tangent vector in T R defined by the curve ¢+>1, + t of
R — R. Then ¢ — (d/dr)|; is the canonical vector field on R. Define f/: R — R

by
0 - Jel o @) @)

fis a piecewise smooth function and ¢ = f; f(t) dt makes sense. Note that ¢
is just the arc-length of the curve ¢ relative to the Riemannian metric s.
Define d(p, g) to be the infimum of ¢ where ¢ ranges over all piecewise smooth
curves connecting p to q.

It should be noted that d(p, q) is always defined and finite. Define an
equivalence relation ~ on X by p ~ q if there exists a piecewise smooth curve
of finite length connecting p to ¢. Since X is locally Euclidean, the equivalence
classes are open. Since X is connected there is only one nonempty equiva-
lence class. All steps in showing that d is a metric are easy except showing that
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if d(p, q) = 0, then p = ¢g. This will be proved later. In any case, d is a
pseudometric.

Example. Let x4, ..., x, be the standard coordinates of R™ s = >7_, dx;?
is a metric and induces the standard metric on R* Let ¢: R — R" be a curve
with ¢(t) = (c4(2), .. ., ¢,(1)). Note that

d
@),
' d d WAL
St((dC)t(Et‘ L)a (dC)t (Zﬁ 't)) = 12:1 (@—t) *
6c1 ac,\2
which is just the standard arc-length in R". As is known from Euclidean

geometry of R™ the shortest distance between two points is the straight line
distance, so this metric on R" is just the standard one.

Hence

So

Lemma 5.7. Let 5 = 3}, a,dxdx; be a Riemannian metric on R". Let
d be the induced pseudo-metric on R™ Then on a given compact set K there
exist positive constants L and M so that Md(p,q) = d(p,q) = Ld(p, q) for
every p and q in K where d is the standard metric on R".

Proof. Let c: R — R" be a curve. As noted above

d o d¢, O
@) = 25

Et((dc)i(%

dc; 0cy.
) (de )‘(a’t')) “zl %3t ot

Let v = (0c,/ot, . .., 8c,/0t) and 4 = (a;). Then s = v*Av where ' is
the transpose of v. Now 7+ |A(¢)| is a continuous function and hence is
bounded above by a constant M on the compact set K.

Thus s = v(4v) < |A|v'v < Muvtv = M|v|?. Thus ¢ < (length of ¢ in
the standard metric) x M which implies that d(p, q) < Md(p, q). Since 4
is a positive definite, symmetric matrix at each point we also have that
v*Av = Ljv|? and the rest of the proof follows as above. {]

Thus

We can now prove the following:

Proposition 5.8. Let s be a Riemannian metric on a connected manifold X.
Let d be the corresponding pseudo-metric on X. Then d is a metric and the
topology induced by d on X is the same as the original topology on X.

Proof. Fix p in X. For this proof we will call an open set in the topology
induced by d on X, d-open. Then, it is sufficient to prove that every open nbhd
of p contains a d-open nbhd of p and, conversely, that every d-open nbhd of
p contains an open nbhd of p.
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Let U be an open nbhd of p. Choose U’, also an open nbhd of p, so that

(a) The closure of U’ is compact and is contained in U, and
(b) SHT*X)|U’ is locally trivial.

Hence there exists a chart ¢ :U’ — R™ and a bundle homomorphism ¢ so
that the diagram

SAT*X)|U' . $(U") x SAR™)

| |

4

U —————— (U

commutes, where n = dim X. Let B be an open ball in #(U") of radius r
centered at #(p). (Note B is open in R™) Let ¢: R — X be a curve centered
at p, i.e., ¢(0) = p. Suppose that ¢([0, 1]) does not lie entirely within ¢ ~(B).
We claim that this curve has length at least N for some constant N not de-
pending on c. If this last statement is true, then B(p, N) = {ge X | d(p,q) <
N} is contained in U’. Also this statement completes the proof that d is a
metric. For if p, g€ X and p # ¢, then take U’ small enough so that p e U’
and g ¢ U’. Then the length of any curve connecting p to ¢ is greater than N
and d(p, qg) # 0.

To prove the claim, we note that ¢~(¢~1(B)) is open in R, so that there
exists a smallest 7 in (0, 1) for which c(¢) ¢ $~*(B). ¢ = length of ¢ is >
length of ¢([0, ¢]). Let s’ = §-s:¢~". Then s’ is a Riemannian metric on
#(U’) = R" and the length of ¢([0, ¢]) under the metric s is the same as the
length of (é:¢)([0, ¢]) under the metric s'. Using Lemma 5.7, we see that for
some constant L the length of (¢.¢)([0, t]) under s’ is = L x length of
(¢-0)([0, t]) using the standard metric on R™, since ¢(U’) is compact.

Now we note that since X is Hausdorff ¢(¢) is in U’. For if ¢(¢t) ¢ U’, then
there exists an open subset V of X such that c¢(¢) e Vand VN ¢~ Y(B) = @.
Also ¢~1(V) is open and contains ¢. Hence ¢~ (V)N e *(¢~YB)) # &, a
contradiction. Thus ¢-¢[0, £] is a curve connecting p with some point outside
of B. Hence the length of ¢+c[0, ¢] is >r, but length of ¢-¢[0, ) = length of
¢+c[0, ¢]. Thus length of cis =L-r = N.

For the converse we suppose that U is some d-open nbhd of p. Make the
same construction as above for U’, ¢, &, s, r, and B. Let ¢(q) € B. Then the
straight line, ¢, from ¢(p) to ¢(g) has length < r. By Lemma 5.7, the length of
¢ in the metric s’ is < Mr where M is a constant depending only on ¢(U’).
Thus the length of ¢ '-¢, a curve connecting p to ¢ in X is < M-.r and
q € B(p, Mr) = the ball in X of radius Mr about p. By choosing r small
enough B(p, Mr) = U since U is d-open and B(p, Mr) is a basic d-open set.
But the above says that ¢~*(B) < B(p, Mr) and ¢ ~*(B) is an open nbhd of

p. 0
Lemma 5.9. Any differentiable manifold is metrizable.
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Proof. Let X,, X,, ... be the components of X and let d, be a metric on
X; making X; into a metric space. (Use Proposition 5.8.) Define d: X x X —
R by
min {d,(x, y), 1}  ifx,ye X,
d(x,y) = - C
1 ifxeX,ye X;,,and i # j.
Then d is a metric on X compatible with the original topology. [i

We need the following two results to show that X can be made into a
complete metric space.

Lemma 5.10. Let (X, d) be a metric space and f: X — R be a continuous
proper function. Then d': X x X—R defined by d'(p,q) = d(p,q) +
| fp) — f(g)| for every p, q in X is a complete metric on X which is compatible
with the given topology on X.

Proof. That d’is a metric is clear. Let T be the topology on X induced by
d and T’ the topology induced by d”. Since d’ is continuous in the topology 7,
we have that T’ = T. Conversely, let U be in T and let p be in U. Choose ¢
so that B'(p,e) = {xe X|d'(x,p) < & < B(p,e) = U. Thus U is in T’
and T = T’. Finally we show that d’ is complete. Let {x,};°-; be a Cauchy
sequence in the d’ metric. Thus there exists a constant L > 0 so that
d'(xy, x,) < L for all positive integers n. Hence | f(x;) — f(x,)| < Lforalln,
and

{adaz < U G0) — L, f(x) + LD

Since fis proper this later set is compact and the sequence {x,} -, has a limit
point in X and thus converges. []

Proposition 5.11. There always exists a smooth proper function on a
smooth manifold X. In particular, any differentiable manifold can be made into
a complete metric space.

Proof. Let K,, K., ... be a sequence of compact subsets of X such that
K, cInt(K;,)fori=1,2,...and X = U2, K;. Let L, = K; — Int (K;_,)
with L; = K;. Then U2, L; = U2, K; = X. Define smooth functions
pi ¢ X — R such that

1 on L;
pi =10 on K; o U (X — K1)
0<p=xl on X.

Then let f = >, ip;. This sum is locally finite and hence is a smooth func-
tion. We claim that f'is, in fact, proper. First note that if p € L;, then i < f(p)
< 3i since f(p) = (i — Dpi_1(p) + ip(p) + (i + Dp;1(p). Then to show
that f'is proper we need only show that f~*([4, B]) is compact where A, B € R.
Given a p in L; such that f(p) € [4, B], we have the inequalities i < B and
3i > A, or that i e [4/3, B]. Thus f~'[4, B] < {; L; where i € [4/3, B] and
is then a closed subset of a compact set and hence compact.

The last assertion of the proposition follows immediately from Lemma'f

32. [



26 Preliminaries on Manifolds

We now define what we mean by subbundles of a vector bundle and give
one way to construct them.

Definition 5.12. Let E be a vector bundle over X with projection =. F is a
subbundle of E if F is a smooth submanifold of E and =|F: F— X is a vector
bundle where, for each x in X, F, has the vector space structure induced from
E..

Definition 5.13. Let E— X and F — Y be vector bundles. ¢ : E— Fis a
homomorphism if

(1) there exists a smooth function f: X — Y called the base mapping, so
that

4,

A

i

o I

commuies.
(2) ¢ is smooth.
(3) ¢,: E, — Fyp, is linear where ¢, = $|E,.

Example. Let f: X — Y be a smooth mapping. The Jacobian of fis a
map (df),: T, X — T;,, Y for each pe X. So (df): TX —TY defined by
(df)|T,X = (df), is a mapping which is linear on the fibers. Locally, 7X and
TY are trivial and via trivializations are just U x R™ and V' x R™ where
n=dmX, m=dim Y and U < R", V< R™ are open. (df): U x R* —
V x R™ is given by (p, v) +— (f(p), (df,)v) which is a smooth mapping. So
(df) is smooth and with this extended definition of a homomorphism be-
tween vector bundles, (df) is 2 homomorphism.

Proposition 5.14. Let E— X and F — Y be vector bundles and ¢ : E— F
be a homomorphism with base mapping f. Suppose ¢, has constant rank for all
pin X. Then Ker ¢ = {,ex Ker ¢, is a subbundle of E.

Proof. The problem of showing that Ker ¢ is a smooth manifold is a
local one. By using trivializations we may assume that & < R* and VV < R™
are open subset with /: U—V, ¢: U x R®*— V x R! and with the appro-
priate diagram commuting where s = dimy E and ¢t = dimy F. Fix p in U
and choose W, a vector space complement to Ker ¢, in R® Note that
ép: W—f(p) x Rtis 1:1. Since ¢ is continuous and dim (Ker ¢,) is constant
throughout U, there exists an open nbhd U’ of p on which ¢,:q x W —
flg) x Rtis1:1forallgin U’,i.e., Wis a vector space complement to Ker ¢,,
for all g in U’. Let W be a vector space complement to ¢,(#) < f(p) x R
We can then restrict U’ to U”, also an open nbhd of p on which W is a vector
space complement to ¢, (W) in R for all ¢ in U”". Let o: V x Rt — R’ be
projection on the second factor and 7:R!— Z = RY/W be the natural
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projection. Then g = 7-0-¢: U’ x R*—>Z is a smooth mapping. Note that
Te0-d(q, v) = T-0(f(q), (1)) = 7(¢,(v)) and that 7(,(v)) = 0 iff $e(v) =0
iff (¢, v) € Ker ¢,. So g=1(0) = Ker (¢|U").

If we show that g is a submersion, then by Theorem 2.8 Ker ¢ N (U” x R%)
is a submanifold of U” x R*® and thus a submanifold of E. To show that g
is a submersion, it is sufficient to show that if (¢, v) in U" x R®, r = g(g, v),
and ¢: R — Z is a (smooth) curve based at r, then there is a (smooth) curve
¢: R~ U"x R®based at (g, v) with g+.¢ = ¢. Let ¢ be such a curve. Note that
7 (W) —>Z, o:f(q) x (W) —>(W), and ¢,: W— (W) are iso-
morphisms so that ¢,"teo~te77 ec: R —¢g x Wis a smooth curve. Define
¢ by

&(t) = (ro0-¢) " -c(t) + v — (720-¢g) "+ c(0)

¢:R—qg x W< U” x Wisasmooth curve based at (¢, v) and g-¢ = ¢. [

Proposition 5.15. Let F be a subbundle of E. Then there exists another
subbundle G of E with F @ G = E. G is called a complementary subbundle to
F.

Proof. Choose a metric s: X — F as given by Proposition 5.6. Let
. E— E be given by orthogonal projection onto F using s, i.e., on each
fiber (=,),: E, — F, is orthogonal projection. =, is a homomorphism and
G = Ker =, is a subbundle of E by Proposition 5.11. Ateach pin X, F, ® G,
=E,soE=FDOG. [

§6. Integration of Vector Fields

There is a close relationship between vector fields and smoothly param-
etrized families of curves which we shall explore now.

Definition 6.1. A one parameter group on X is a smooth mapping
b X x R— X satisfying ¢o = idgx and ¢y = b+, for all s, t in R where
¢t(x) = ¢(~x: t)'

Notes. (1) Let ¢ be a one-parameter group on X. Then ¢, is a diffeo-
morphism on X for each . In fact, ¢_, = (¢,) 1.

(2) Let £, be the tangent vector at ¢ = 0 to the curve p — ¢,(p). Then the
mapping p > {, defines a vector field on X called the infinitesimal generator
of ¢. (The joint smoothness of ¢ in p and ¢ guarantees that { is a smooth
section.) We call a curve ¢: I, — X an integral curve for {if (do)((d[dp)l,) =
Lo for all r. The following lemma shows that the infinitesimal generator of ¢
is the vector field for which the curves 7+ ¢,(p) are integral curves. (Note
I, = (—e¢e) = R)

Lemma 6.2. Let { be a vector field on a manifold X with p in X. Then
there is a nbhd U of p in X, an ¢ > 0, and a unique smooth function
¢: U x I, — X satisfying;

(a) The curves t — ¢(q) are integral curves of { for all q in U;
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(b) ¢y = sy, on the domain ¢(U) N\ U whenever |s|, |t], and |s + ¢|
are < e; and

(©) ¢o = idy.

Proof. Thisis, in reality, a theorem about first order systems of ordinary
differential equations. First we transport the problem to R" Let V be a chart
nbhd of p with chart #: V-~ R™ Choose another nbhd U of p with U compact
and contained in V. Let , = he({|V); 1€, ng = (dM)p-1(Ln-1cq)- 1 1S a vector
field defined on an open set in R™ and can be written in the form » =
>, m(8/ex;) where 7, are smooth functions on A(V). Let U’ = h(U). Then
for every x in U’, we can consider the differential equations

dy;
™) o

y(O) = (y1(0)9 R yn(O)) = X.

By standard theorems on the existence and uniqueness of solutions to a
system of o.d.e. [see, for example, Hurewicz, Lectures on Differential Equa-
tions, p. 28], there exists a smooth function : U’ x (—e, ¢) — R" given by
(x, t) = y(t) where y is the solution to (*) at x. If e is chosen sufficiently
small, we can assume that Im y < A(V). Note that (x, 0) = y(0) = x so
that ¥, = idy . Next we claim that i, -3, = ;, , when both sides are defined.
For ;. and ;-3, are both solutions to dy/dt = n(y) with initial values
(x) when r = 0. By the uniqueness theorem for the initial value problem
these must be identical.

Finally let ¢, = A~1+¢y,+h. Then ¢: U x (—e, &) — X is well-defined and
satisfies (b) and (c¢). The uniqueness of ¢ follows from the local uniqueness of
¢s once (a) has been satisfied. To prove that  is the infinitesimal generator of
¢ we apply the following lemma. []

= n{(y) with initial conditions

Lemma 6.3. Let h: X — Y be a diffeomorphism and ¢, a one parameter
group on X with infinitesimal generator {. Then hy{ is the infinitesimal generator
of the one parameter group , = h+¢,h~1,

Proof.  For each ¢ in Y, (hx)q = (dM)n-1(Ln-1¢)). Now t+—> $(h~(q))
is a curve representing -1, so that 7 — h-¢,(h~(g)) is a curve representing

(dn-1qln1@)- O

Theovem 6.4. Let { be a compactly supported vector field on a manifold X;
i.e., L is zero outside of some compact subset of X. Then there exists a unique
one parameter group ¢ for which { is the infinitesimal generator.

Proof. Let U be an open subset of X with U compact such that { = 0
off U. Applying Lemma 6.3 we can find for each point p in U an open nbhd
U, of p, a real number ¢, > 0, and a unique smooth function ¢,: U, x
(— &y, &,) — X satisfying (a), (b), and (¢) of the last lemma. Choose a finite
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subcover of U by U,,, ..., Uy, and let ¢ = min, <,y &, Define for |z| < e,
¢¢: X—> X by
bo (D5 1) for all p in U,

_ k
¢dp) = p forall pin X — U Uy,
i=1

¢, is well-defined and unique by the uniqueness part of Lemma 3.2. Note that
¢0 = idy.

Finally, define ¢ : X x R — X by ¢, = (dny)" Where n is an integer large
enough so that |t/n| < e. This is well-defined for if m is another such integer,
then

(‘f’t/m)m = ((¢t/mn)n)m = (¢t/mn)"'m = ((¢t/mn)n)m = (¢t/n)"-

It is now easy to check that ¢ is a one parameter group whose infinitesimal
generator is . []

Notes. (1) On a compact manifold there is a 1:1 correspondence be-
tween vector fields and one parameter groups.

(2) Forpin X, ¢, = 0iff ¢(p) = p for all ¢. Clearly if ¢(p) = p for all ¢,
then ¢, = (dé,/dt)(p)|;=o = 0. Conversely, assume that , = 0. If we can
show that ¢(p) = p for all # in some nbhd of 0, then by the arguments in
Theorem 6.4 we see that ¢,(p) = p for all ¢. Thus this question is a local one
and we may assume that X is an open nbhd of 0 in R" and that p = 0. Now
as in Lemma 6.2 ¢,(0) = 3(z) where y(t) = (y.(t), ..., ya(t)) is the solution
to the system of ordinary differential equations dy;/dt = n;(y) with initial
condition y;(0) = 0 where { = >7-; 7;(0/0x;). Since {, = 0, n;(0) = 0. Thus
y(t) = 0 is a solution to this system of equations. The uniqueness of such a
solution guarantees that ¢,(0) = 0 for small ¢.

Corollary 6.5. Let X be a manifold and let { and n be two vector fields on
X. Suppose that { is compactly supported and that v is the infinitesimal genera-
tor of a one parameter group. Then { + v is the infinitesimal generator of a one
parameter group.

Note. By taking n = 0 we see that this Corollary is a slight generaliza-
tion of the last Theorem.

Proof. The proof is essentially the same as that of the last theorem. The
only difference is in the definition of ¢. Let 4 be the one parameter group
associated with » and define

oD, 1) for all p in U,
— k
$d(p) = Hp, t) forpin X — U U,
i=1

The rest of the proof proceeds as before. [J



Chapter 11

Transversality

§1. Sard’s Theorem

In order to state and prove Sard’s Theorem we need to know some e¢le-
mentary (Lebesgue) measure theory.

Let a = (ay,...,a,) and b = (by, ..., b,) be points of R" with a; < b,
(1 < i < n). Denote by C(a, b) the open cube

{1, .- t)ER |y < t; < b, 1 < i < n.

Define the volume of C(a, b) to be
vol [C(a, B)] = (b1 — a1)+ -+ +(bn — a,)

Definition 1.1.

(1) Let S be a subset of R". Then S has measure zero if for every ¢ > 0,
there is a covering of S by a countable number of open cubes Cy, C,, ... 5O
that 52, vol [Ci] < =.

(2) Let X be a differentiable n-manifold and let S be a subset of X. Then S

is of measure zero if there exists a countable open covering U, U, ... of S
and charts ¢;: U; — R" so that $,(U N S) is of measure zero in R*.

To see that ‘““measure zero’’ is well-defined on a manifold, we need the
following two resulits:

Lemma 1.2, A countable union of sets of measure zero in R™ is of measure
zero.

Proof. Let S, S,, ... be sets of measure zero in R™. Given e <0, cover
each S; by open cubes whose total volume is less than (¢/2¢*1). Then the
union of all of these cubes covers S = | J2, S; and has total volume less
thane. [J

Recall that if 4: R® — R" is a linear map, then

| 40|
A = Ecdh
I l veli}‘lP{O) ll)l
Also, if I, , denotes the line between two points x and y in R", then for any
C*-differentiable function f: R* — R™
76 = )] = 1x = 31 sup |l

(This is just a corollary to the Mean Value Theorem.)

Proposition 1.3. Let f: R"-—>R" be Cl-differentiable and let S be a
measure zero subset of R". Then f(S) has measure zero.

30
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Proof. Without loss of generality, S can be assumed to be contained in
some large open cube. On this cube |(df),| is bounded by some constant K, so
that if x, y e S, then |/(x) — f(3)] < K|x — y|. Given & > 0, cover S by

open cubes C, whose total volume is less than &/(vVn K)". We note that

f(C) is contained in a cube whose volume is (Va K)* vol (C;) using the
above inequality. (To see this assume C; has equal length sides with length a.
Let p be the center of C,. Then f(C;) is contained in the sphere of radius

(KV'n/2)a centered at f(p) which is, in turn, contained in a cube centered at

f(p) all of whose sides have length KVn-a.) Thus the total volume of cubes
containing f(S) is less than e. []

This generalizes immediately to a statement of manifolds.

Corollary 1.4. Let X and Y be differentiable n-manifolds, let f: X — Y
be a Ct-differentiable, and let Z be a measure zero subset of X. Then f(Z) has
measure zero in Y.

Proof. Let 4 be a chart on Y with domain V. Cover f~*(V) by a count-
able open covering U;, U,, ... each of which is the domain for a chart
¢, : U, — R™ and for which f(U)) is contained in V. Since Z is of measure zero
in R", ¢,(Z N U,) has measure zero in R™. Now ¢-f+¢,~* is C* on its domain
in R By Proposition 1.3 ¢-f+p; "1 (Z N U)) = H(f(Z) N U,) has measure
zero in R™ Hence %, $(f(Z N U)) = H{f(Z) N V) is of measure zero in
R™. So f(Z) has measure zero in Y. {]

Lemma 1.5. Let X be an n-dimensional submanifold of a differentiable
m-manifold Y with n < m. Then X is of measure zero in Y.

Proof. Wefirst claim that an n-dimensional plane, R®, in R™ is of measure
zero. R” can be subdivided into a countable number of unit n-cubes so it is
sufficient to show that the unit n-cube in R™ is of measure zero. Let ¢ > 0 be
given. The unit n-cube can be covered by (2/e)" cubes each of volume £™.
Then the total volume of the cubes is ¢™(2/¢)* = 2"™~" which converges to
zero as ¢ — 0 since m > n. Since X is a submanifold of Y, there exists a
countable covering Uj, U,, ... of Y with charts ¢;: U; — R™ such that
L (U, N X) is contained in a fixed n-plane in R™ Hence #(U; N X) has
measure zero in R™ and X has measure zero in Y. [J

Proposition 1.6. Let X and Y be differentiable manifolds of dimensions n
and m respectively with n < m. Let [: X — Y be Cl-differentiable, then f(X)
has measure zero in Y.

Proof. Let s =m — n. Define f/: X x R®°— Y by f(p, a) = f(p) for
every pin X and ¢ in R%. X x {0} is a submanifold of X x R®and, by Lemma
1.5, has measure zero in X x R®. By Corollary 1.4 f(X x {0}) = f(X) has
measure zero in Y. []

We need one more result before coming to Sard’s Theorem, namely
Fubini’s Theorem for measure zero sets.
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Let i,: R*""! - R x R""! = R" be the embedding given by i,(x) =
(a, x) where a is in R.

Theovem 1.7. Let A be a compact subset of R". Suppose that for every
acR, i,7Y(A) has measure zero in R*~ Then A is of measure zero in
R™

Let I be a closed interval in R. Suppose 1 is covered by subintervals
[as, b1l . . ., [am, bl Then the cover is minimal if the covering minus any one
element of the covering is no longer a covering.

Lermma 1.8. Let I = [a, b] be a closed interval in R. Then the sum of
the lengths of any minimal covering of I (by closed intervals in 7) is less
than 2(b-a).

Proof. Order the intervals of a minimal covering [a,, b], ..., (@, D]
so that a; < a, <--- < a,. Then the minimality implies that b; < by < - - -
< b,,. Moreover, [a., b.] N [rio brio] = @ for 1 < k < m — 2. Other-
wise o < b and [agi1, brr1] © [ag, bl Y @iy 9, by 2] since @, < ay 4y
and b, .1 < b, .. Hence the sum of the lengths of [a,, b,], [as, b5, [as, bs],. ..
is less than & — q. Similarly for [a,, b,], [as, 4], .. .. 0

Lemma 1.9. Suppose the set i, 1(A) is covered by open sets {U,, ..., U}
of R*~1. Then there exists an open interval I, about a such that {U, ..., U}
covers i,”*(A) for every t in I,.

Proof. If there were no such interval, then there would exist a sequence
{t;}i2 1 of real numbers with Lim;,_, ., #; = a and a point x; € #;, “'(4) such that
x; is in the complement of U; U - - U U,. Since (t;, x;) is in 4 and A4 is com-
pact, there exists a subsequence of the x;’s which converges to some point
X in R"~! and for which (a, X) is in 4. Since ., U, is open, x ¢ (JF-, U,
But (a, X) € A implies that X € /,7(A4) and the fact that {U,, ..., U,} covers
i,~(A) gives a contradiction. {]

Proof of Theorem 1.7. Since A is compact and hence bounded, there is a
closed interval I such that 4 < I x R™~1. By hypothesis i, ~*(4) has measure
zero for each a in 1. Thus, given ¢ > 0, there is a cover of i, ~*(A4) by open
cubes in R*7 %, {C,%, ..., Cy,% such that >7¢, vol (C*) < . By Lemma 1.9,
there exists an open interval /, in I about a so that C,%,..., Cy,* covers
i, 1(A) for every ¢ in I,. Hence the collection of open sets {I, x C;*} covers 4.
Thus there is a finite subcover {I, x C;#}15}=Ye where B is some finite set.

Let J, = I,. The finite collection {J,},.5 covers I and can be assumed to
form a minimal covering of I. Then >72, vol [J, x C;®] < evol [J,]. Hence

Ng
> > vol[J, x C < & > length (J,) < 2¢ length (J).
aeB i=1 acB
Since vol [I, x C?] = vol [J, x C;*], the total volume of the covering of 4
by {I, x C415#=¥= can be made arbitrarily small, 4 has measure zero in
R 1
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Since all of the results given in this section have been about measure zero
sets, it is instructive, perhaps, to show at this time the following obvious but
surprisingly complicated result.

Proposition 1.10. Let S be a nonempty open subset of R". Then S is not
of measure zero.

Proof. Every open set S contains a nonempty open cube C whose
closure is contained in S. Let {C;}2 ; be an open covering of .S by open cubes.
Since C is compact in R", there is a finite subcover of C by Cy, ..., C,. We
claim that vol [C] < 2"_, vol [C,]. If this is true then we are done since
S ivol [C] = S, vol [C)] = vol [C] > 0. So the sums of the volumes
of cubes in a covering of S are bounded away from zero and S does not have
measure zero. To prove the claim, let N, = number of integer lattice points
of R™ (i.e., points of R" all of whose coordinates are integers) which are con-
tained in C,. Now C, = C(a%, b%) where a%, b* € R". Let a* = (a,%, ..., @,%)
and b = (b,%, ..., b,%). Then for each j there are at most »,* — g, + 1 and
at least /,* = max {b,* — a4 — 1, 0} integers in [a,%, b,%]. Hence

H[]}Z S Na S Hl(b]‘a - a]‘a + l).
i=1 i=

Similarly let N = number of integer lattice points in C = C(a, b) and
obtain similar bounds on N. Certainly N < >, N, since {C,}*., covers C.
Hence

(b — a” + 1).
1

For A in R sufficiently large, let C* = C(Xa, Ab) and C,*(Aa®, Ab%). Apply the
above argument to C* and C,* to obtain

[T —2a, — 1) < > [T — Aa* + 1)
j=1 a=1ji=1

Hence

n

I_I(b]_aj—l_) SZ H(b]d_aja+_l_)_
i=1 A a=1j=1 /\

Taking the limits of both sides as A — oo we get

n m

(b — a) = > vol [C,]. i
1

=1

Vol[C]:ﬁ(bj~aj)§ i A

Definition 1.11. Let X and Y be differentiable manifolds and f: X — Y
a CY-mapping. Then

(1) corank (df), = min (dim X, dim Y) — rank (df),.
(2) a point p € X is a critical point of f if corank (df), > 0. Denote by
C[f1, the set of critical points of f.
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(3) a point g € Y is a critical value of fif g € f(C[fD.

(4) a point p € X is a regular point of fif p ¢ C[f].

(5) a point q € Y is a regular value of f if it is not a critical value of f. So,
in particular, a point not in Image f is a regular value.

Theorem 1.12. (Sard’s Theorem.) Let X and Y be smooth manifolds.
Let f: X — Y be a smooth mapping. Then the set of critical values of [ has
measure zero in Y.

Notes. (1) Sard’s Theorem can be generalized as follows: Assume that
k > max (dim Y - dim X, 0). If fis a C*-differentiable mapping, then the
measure of the set of critical values is zero. Since we will be using only smooth
mappings in later chapters we will prove only the more restricted version
here.

(2) If dim X < dim Y then Sard’s Theorem follows directly from
Proposition 1.6 and the fact that the image of a subset of measure zero has
measure zero.

Sard’s Theorem is in reality a local theorem and follows from:

Proposition 1,13, Let f: U— R™ be smooth where U is an open set in R™.
Then the set of critical values of [ is of measure zero in R™.

The proof of Theorem 1.12 proceeds from Proposition 1.13 precisely as
the proof of Corollary 1.4 proceeded from Proposition 1.3. The details are
left for the reader.

The proof of Proposition 1.13 will be done by induction on n. Start the
induction at n = 0. R% is, by convention, just a point and the proposition is
trivial in this case.

By induction, we assume that Sard’s Theorem holds for all smooth
mappings of R*~! — R™, where m is arbitrary.

Lemma A. Let f: U— R™ be smooth, where U is an open subset of R".
Let fi,...,fm: U—>R be the coordinate functions given by f. Assume that
Silxe, .., X)) = xy for all (x4, ..., x,)€ U. Let C = critical point set of f.
Then f(C) has measure zero in R™,

Proof. The proposition is trivial for n = 1, so we may assume n > 1,
Givenae R, recall thati, : R*~! —>R" by /(X) = (a, ¥) where X = (xa, . . ., X,).
Define g (%) = (fila, X), . . ., fu(a, X)). Then the following diagram com-
mutes.

where U, = i,~(U).
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Note that

(df)(a.fa) =

(dgu)<

Hence rank (df)..z, = rank (dg,)z + 1; i.e,, ¥ is a critical point of g, iff
(a, X) is a critical point of f. So the critical point set of g, is i, (C).

By the induction hypothesis g.(i,”(C)) is of measure zero in R™~1,
Since 7,7 1(f(C)) = g.(i,~Y(C)) we may conclude by Theorem 1.7 that f(C)
has measure zero. (Note that C is a closed set, which is a countable union of
compact sets. Thus f(C) is a countable union of compact sets so that 1.7

applies.) 0

Let f: U->R™ be smooth. Let C = C[f] be the critical point set of f.
Denote by

lai
C,-={peC 2—x5f,(p)=0 whenever 0 < |¢] < i and ISlSm}-

i=12,...)
The outline of the rest of the proof of Sard’s Theorem is:
Lemma B. f(C — C,) has measure zero.
Lemma C. f(C; — C;.,) has measure zero for i > 1.
Lemma D. For some i, f{(C;) has measure zero.

Proof of Lemma B. Let p be in C — C,. Then there exists some partial
derivative of f at p which is not zero. Assume that (9f1/dx,)(p) # 0. Let
h: U~—R" be defined by A(x,, ..., x,) = (fi(xy, - .., X3), Xo, .. ., X;). Then
at p

(dh), =

which is invertible. By the Inverse Function Theorem, there exists open sets
U < Uand V < R"so that 4: U’ — Vis a diffeomorphism. Let g: ¥ — R™
be given by g = f+h~*, then f(C[f]1 N U") = g(ClgD. Now gi(y1, ..., yu) =
fih Y (yy, ..., ¥n) = ¥1. So we can apply Lemma A to g, and get that
2(C[g] has measure zero in R™ []

Proof of Lemma C. On C; — C;,, all ith partial derivatives vanish but
not some (i + 1)st partial derivative. We may assume that g is an appropriate
ith partial derivative so that (8g/6x,)(p) # 0. Let h: U — R™ be defined by
A(x) = (g(x), xs, . .., x,). Then (dh), is non-singular, so that 4 restricted to
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U, = U is a diffeomorphism, where U, is an open nbhd of p. Let V' = h(U}).
By definition g(C)) = 0, so M(C; N U;})) < {0} x R*"1in R™ Let k: R""1 —
R™ be defined by f+A~1 restricted to V' n ({0} x R*~1),

Finally we note that f(C; n U,;) < k(C[k]) and that by the induction
hypothesis k(C[k]) has measure zero. Hence for each p in C; — C; ., there is
a nbhd U, of p for which f(C; n U,) has measure zero. We can choose a
countable number of the U,’s to cover C; — C;,;. So f(C, — Cj.,) has
measure zero in R™.

Proof of Lemma D. Without loss of generality, we may assume that U
is an open cube with sides of length b, since U may be covered by a countable
union of such sets, and that fis defined on a nbhd of U. By Taylor’s Theorem,
if x € Cy, and y € U, then (*) | f(¥) — f(x)| < K|x — »{**! where K is some
constant independent of y. Let r be a large integer. Subdivide U into subcubes
with sides of length b/r denoted by By, . .., By where N = r™ Now f(C, N By)
is contained in a ball D of radius K(b/r)**! using (*), so the circumscribed
cube has volume (2K(b/r)**1)y™ Thus f(C,) is contained in the union of
cubes whose volume is

mk +1) mpymk +1)
werr(Z)" - e

7 FmEEm—n

When k& > (n/m) — 1, mk + m — n > 0. Therefore, as r — o0, the volume
of the cubes containing f(C,) — 0. So f(C,) has measure zero in R™. [

Corollary 1.14. (Brown). The set of regular values of a smooth mapping
Jf: X — Yis dense in Y. (Recall from 1.11 that a point in Y which is not in
Im fis.a regular value of f.)

Proof. Points of Y are either critical values or regular values for f. If the
set of regular values is not dense, then there is a nonempty open set in ¥
consisting entirely of critical values. We have shown in Proposition 1.10 an
open set of R™ does not have measure zero; this clearly extends to nonempty
open subsets of Y, by using charts. Thus the set of critical values of f'does not
have measure zero, a contradiction to Sard’s Theorem. Hence the regular
values of fare dense in Y. [J

Exercises

(1) Let f: X —>R™ be a 1:1 immersion and let n = dim X. Let v # 0
be in R™ and let =, : R™ — R™~! be the orthogonal projection whose kernel
is the subspace (v). Show that if m > 2n + 1, then there exists a vector v so
that 7,«f: X — R™" ! is a 1:1 immersion. Hint: Consider the composite
mapping g defined by

TX — {O-section} > TR™ = R™ x R™ 22> R» — {0} L Pr-1

where =, is projection on 2nd factor and i is the standard projection of R™
onto projective (m — 1)-space. Show that g is well-defined ;i.e., 0 ¢ Im =5+ (df)
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and that m,-f is an immersion iff ¢ Im g where & is the point in P™~1
corresponding to the subspace (v) in R™ Next consider the composite map-
ping / defined by

Xx X - AX-LsRr — (0} —s Pt

where f(p, q) = f(p) — f(g). Show that m, o fis 1:1 iff 5 ¢ Im A.

(2) Use Exercise (1) above and the Exercise of 7, §4 to conclude that any
compact n-manifold can be realized as a submanifold of R2"*1.

(3) Observe that the immersion part of the proof of Exercise 1 is valid
when m > 2n. Thus show that there exists an immersion of any compact
n-manifold into R2",

(4) Does there exist a smooth function /: R* — R" such that /~(a) is an
uncountable set for each g in R*?

§2. Jet Bundles

Definition 2.1. Let X and Y be smooth manifolds, and p in X. Suppose
f. g X — Y are smooth maps with f(p) = g(p) = q.

(1) f has first order contact with g at p if (df), = (dg), as mapping of
T, X—~T,Y.

(2) f has kth order contact with g at p if (df): TX —TY has (k — 1)st
order contact with (dg) at every point in T,X. This is written as f~, g at p.
(k is a positive integer.)

(3) Let JX(X, Y), , denote the set of equivalence classes under “~ at p” of
mappings : X — Y where f(p) = q.

4) Let J(X, Y) = Uw.pexxv JX, Y),.o (disjoint union). An element o
in J*(X, Y) is called a k-jet of mappings (or just a k-jet) from X to Y.

(5) Let o be a k-jet, then there exist p in X and q in Y for which o is in
JX, Y)p.q P Is called the source of o and q is called the target of o. The
mapping o« J*(X, Y) — X given by o> (source of o) is the source map and
the mapping B:J*(X, Y) — Y given by o > (target of o) is the target map.

Note that given a smooth mapping f: X — Y there is a canonically
defined mapping j5/: X — J*(X, Y) called the k-jet of f defined by j*f(p) =
equivalence class of fin J*( X, Y), ;o for every p in X. We will also show that
J*f(p) is just an invariant way of describing the Taylor expansion of f at p
up to order k£ and that j*fis a smooth mapping.

Note that J°(X, Y) = X x Y, so fhas ~ contact with g at p iff f(p) =
g(p), and j%(p) = (p, f(p)) is just the graph of 1.

Lemma 2.2 Let U be an open subset of R* and p be a point in U. Let
/. g U—R™ be smooth mappings. Then f~ g at p iff

lelf, o dlelg,
PG (p) = e (»)




38 Transversality

Jfor every multi-index o« with |a| < k and 1 < i < m where f; and g, are the
coordinate functions determined by f and g, respectively and x, ..., x, are
coordinates on U.

Proof. We proceed by induction on k. For k = 1, f~, giff (df), = (dg),
iff the first partial derivatives of f at p are identical with the first partial
derivatives of g at p.

Assume the Lemma is true for k& — 1. Let y,, ..., ¥, be the coordinates of
R*inU x R* = TU.Then (df): U x R"—R™ x R™ = TR™is given by

(x, ¥) = (f(x), 1), - o, SN

where

Feen = 3 L o
Similarly for (dg).

By assumption (df) ~,_1 (dg) at every point (p, v) € {p} x R™ By induc-
tion, the partial derivatives of (df) at points (p, v) € {p} x R™ are equal to
the partial derivatives of (dg) at these same points. Let o be an n-tuple of
non-negative integers with |«| < k — 1, then

r\a—
a1z,

olelg
2 (p0) = 2 (., 0),

Evaluate at v = (0, ..., 1,..., 0) with the 1 in the jth coordinate. Then we
have that

olel gﬁ olal agi

axeox, P) = Txwax, O

Clearly all partial derivatives of fand g of order < k are obtained this way.
To obtain the converse, just note that the partial derivatives of (df) of order <
k — 1 are determined by knowing the partial derivatives of fof order < k. [

Corollary 2.3. fand g: U — R™ have kth order contact at p iff the Taylor
expansions of [ and g up to (and including) order k are identical at p.

Lemma 2.4. Let U be an open subset of R" and V an open subset of R™.
Let fi, fo: U—V and g, g5 V — R’ be smooth mappings so that g,-f, and
go+fs are defined. Let p € U and suppose that fi~, f, at p and g,~, g, at

q = f1(p) = fop). Then g,-f1~ g2f2 at p.

Proof. Again proceed by induction. For k = 1, this is just the chain
rule, i.e.,

d(g1/1)p = ([dg)(df 1) = (dg2)o(df2)p = d(82"/2)y-

Assume true for £ — 1. Then again apply the chain rule, using the inductive
assumption that

(dgy)-(df) ~ (dgo)+(dfz)  atall(p,v)in{p} x R [

Proposition 2.5. Let X, Y, Z, and W be smooth manifolds.
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(1) Let h: Y — Z be smooth; then h induces a mapping hy : J(X, Y) —
JH(X, Z) defined as follows, Let o be in J*(X, Y),.,and let f: X — Y represent
o. Then hy(o) = the equivalence class of h+f in J*(X, Y)p nw-

(2) Let a:Z—> W be smooth. Then ay-h, = (a-h), as mappings of
JHX, Y)—JNX, W) and (idy)s. = idyx.y. Thus if h is a diffeomorphism,
hy is a bijection.

(3) Let g: Z — X be a smooth diffeomorphism; then g induces a mapping
g¥:JuX, Y)—=JNZ, Y) defined as follows: let v be in J(X, Y),., and let
f: X — Yrepresent v. Then g*(1) = equivalence class of f+g in J*(X, Z)y-1).q-

(4) Let a: W — Z be a smooth diffeomcrphism. Then a*g* = (g-a)* as
mappings of JNX, Y) —JHW, Y) and (idx)* = idyx v, so that g* is a bijec-
tion.

Proof. A simple application of Lemma 2.4 shows that 4, and g* are
well-defined mappings. The rest of the proposition is equally easy. [

Let A4, be the vector space of polynomials in n-variables of degree < k
which have their constant term equal to zero. Choose as coordinates for 4,*
the coefficients of the polynomials. Then A4,* is isomorphic to some Euclidean
space and is, in this way, a smooth manifold. Let BE ,, = (P, 4,5 BE ,, is
also a smooth manifold.

Let Ube an open set in R® and f/: U — R be smooth. Define 7. f: U — A4,*
by T.(f)(x,) is the polynomial of degree k given by the first k terms of the
Taylor series of f at x, after the constant term.

Let ¥ be an open subset of R™ Then there is a canonical bijection
Tyv:J5U, V)— U x V x BF, given by

TU,V(O') = (XO’ Yo, kal(xo)a ceey T'Icfm(xo))
where

xo = afc) = source of o,
¥o = B(o) = target of o,
f: U— Vis smooth and represents o,
and
fi: U—R (1 < i < m) are the coordinate functions associated to f.

By Corollary 2.3, Ty v is well-defined; i.e., independent of the choice of f,
and injective. That T,y is onto is clear. []

Lemma 2.6. Let U and U’ be open subsets of R™ and let V and V' be open
subsets of R™. Suppose h:V — V' and g: U — U’ are smooth mappings with
g a diffeomorphism. Then

Ty v(g VT :Ux V x BY U x V' x B,
is a smooth mapping.

Proof. Let D = (xy, Yo, [1(x), .. . f(X)) with fie 4,* (1 <i < m).
Define f: U — R™ by f(x) = yo+(fi(x — Xo), . . ., fa(X — Xo)). Then f(xo) =
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Yo and let ¢ = equivalence class of f in J*(U, V). up» Lu,v(6) = D. Now
(&™) *hs(o) = j*(h-f-&~ ) (x0).

So
Ty v g V*hTg (D) = Ty v (j*(h-f+g~ ) X0))
= (g(x0), (o) Te((h-f+g ") (8(X0)), - - -» Til(h-f*g ™ Dm)(g(x)))

where (4-f+g~1),: U’ — R are the coordinate functions of 4-f-g~1: U’ —R™,
To show that this mapping is smooth we need only show that the mapping of
Ux V x BE, — A given by D — T, ((h-f-g~*))(g(x0)) is smooth.

Let ¢ = h-f-g~2. Then

olel ;
TNee) = > TP (glax — gleo))”
1<|al=k

To show that D +> T ($)(g(x,)) is smooth it is enough to show that D~
(01916, /0x%)(g(xo)) mapping U x ¥V x BY, — R is smooth for each multi-
index « for which |«| < k. This is done by the chain rule and induction on
! = |of.

In fact, one can show by induction that (0!*!¢,/0x*)(g(x,)) is sums and
products of terms of the form

oh; df; 74
7y, Yo), ¥, ), ox, (g(x0))
where y4, ..., y, are coordinates on R™ and #;, g; are the coordinate functions

determined by % and g respectively. Each of these terms vary smoothly with
D; hence (8'°1¢,/0x*)(g(x,)) varies smoothly with D. []

Theorem 2.7. Let X and Y be smooth manifolds with n = dim X and
m = dim Y. Then
(1) JXX, Y) is a smooth manifold with

dimJ*X, Y) = m + n + dim (B% ).

2) «:JYX, Y)—>X,B:TJ(X, Y)Y, and e« x B:J¥X, Y)—> X x Y
are submersions.

B If h: Y—Z is smooth, then hy:J* (X, Y)—=>J¥X,Z) is smooth.
If g: X — Y is a diffeomorphism, then g*:J*(Y,Z) —J*X, Z) is a diffeo-
morphism.

@) If g: X — Y is smooth, then j¥g: X — J¥X, Y) is smooth.

Proof.

(1) Let U be the domain for a chart ¢ on X and V be the domain for a
chart s on Y. Let U’ = H(U) and V' = (V). Then (¢~ *y : J(U, V) —
JHU', V'Y and 7yy = Ty (p " D¥ (U, V) - U’ x V' x BE . Give
J*(X, Y) the manifold structure induced by declaring that =, is a chart.
To see that this structure is well-defined we need only check to see what hap-
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pens on overlaps. Let ¢4, 4y, Uy, Vy, Ui, V] be the data for another chart
Ty,,v,- Then note that

TU1,V1'(TU,V)—1 = TU1’,V1'(¢1_1)*(¢1)*(¢*)“1¢*T5,}V,
= TUL'!Vl’(‘ﬁl_1'¢)*’(¢1'¢_1)*T5'}V'

since lower *’s and upper *’s commute. This last mapping is smooth by
Lemma 2.6.
(2) In local coordinates « has the form

pro 7o (D) = bras(by) "1 * T lyAD) = procej5 (1S )b~ (x0)

where fis defined in Lemma 2.6. Thus ¢-«-755(D) = x, since «-j*g = idy
for any mapping g. So « is a smooth mapping and a submersion. Similarly
peBerg(D) = hBji(p™ fb) ¢ Hx0)
= heihp™ e fod 7 Hxo) = f(x0) = ¥o

since B-j*g = g for any mapping g. Thus § is also a smooth mapping and a
submersion. Since 7, (X X Y) 2 T, X DT, Y, a x B:J(X,Y)> X x ¥
is a submersion.

(3) is obvious from the calculations in (1).

(4) jkg: X —J*(X, Y). Suppose g: R* — R™ Then j*g : R* —J¥R", R™)
= R" x R™ x Bk  and is given by

J¥g(xe) = (xo, 8(x0), (T*g)(X0), - - -, (T*gn)(x0))

where g, ..., g, are the coordinate functions of g. Now T%g; is a smooth
function being only the sum of partial derivatives of the g;’s. So in the local
situation j*g is a smooth function. With the standard use of the charts given
above, one can see that j¥g is smooth as a mapping of X —J*(X, ¥). 0O

Remarks.

(1) J¥(X, Y) is, in general, not a vector bundle since there is no natural
addition in J¥(X, Y), ,. However, if ¥ = R™, then J*(X, Y) is a vector bundle
over X x R™ where the addition of jets in J*(X, R™), ,is given by the addition
of functions representing these jets.

(2) JY(X, Y) is canonically isomorphic to Hom (7X, TY) where the iso-
morphism ¢ is given as follows: Let o be a 1-jet with source p and target g,
and let f: X — Y represent o. Then (o) = (df), in Hom (7, X, 7,Y). As an
exercise show that ¢ is well-defined and a diffeomorphism. Also note that
« X B = w3 where = is the projection which makes Hom (7X, 7TY) into a
vector bundle over X x Y. Using this identification we can think of J1(X, Y)
as a vector bundle over X x Y.

(3) Although J¥(X, Y) is not a vector bundle, it does have more structure
than just the fact that it is a manifold would indicate. We isolate that struc-
ture with the following Definition.

Definition 2.8. Let I, X, and F be smooth manifolds and let w: E—> X
be a submersion. Then E is a fiber bundle over X with fiber F and projection =
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if for every p in X, there exists a nbhd U of p and a diffeomorphism ¢y . Ey; —
U x F where Ey; = 7~ Y(U) such that the diagram commutes

du

Ey —%> Ux F

S

where my is the obvious projection.

Notes. (1) E, is diffeomorphic (under ¢,) with F for all p in X.

(2) Clearly every vector bundle of dimension # over X is a fiber bundle
with fiber F = R™ But not every fiber bundle with a Euclidean space as
fiber is a vector bundle. (Consider J¥(X, Y) — X x Y1)

Exercises

(1) There is an obvious canonical projection =, ,: J*X, ¥) —JY(X, Y)
for k > [ c... "ed by forgetting the jet information of order >/. Show that
J¥(X, Y) is a iiber bundle over J(X, Y) with projection =, ; and identify the
fiber.

(2) Let JY(X, R}, . be the set of all 1-jets whose target is 0.

(a) Show that J*(X, R)x . is a vector bundle over X whose projection
is the source mapping.

(b) Show that J(X, R)x, is canonically isomorphic (as vector
bundles) with 7*X.

§3. The Whitney C* Topology

Definition 3.1. Let X and Y be smooth manifolds.

(i) Denote by C*(X, Y), the set of smooth mappings from X to Y.

(ii) Fix a non-negative integer k. Let U be a subset of J¥(X, Y). Then

denote by M(U) the set
{feC=(X, V) |j*f(X) = U}

Note that M(U)Y N M(V) = M(UN V).

(iii) The family of sets {M(U)} where U is an open subset of J*(X, Y) form
a basis for a topology on C*(X, Y). This topology is called the Whitney C*
topology. Denote by W, the set of open subsets of C (X, Y) in the Whitney C*
topology.

(iv) The Whitney C* topology on C*(X, Y) is the topology whose basis is
W = UF_o We. This is a well-defined basis since W\, = W, whenever k < L
To see this use the canonical mapping ;' : J(X, Y) —JYX, Y) which assigns
to o in JUX, Y) the equivalence class of f in J*(X, Y) where [ represents o.
Then M(U) = M((=)}) ~1(U)) for every open set U in J¥*(X, Y).
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In order to develop a feeling for these topologies we will describe a nbhd
basis in the Whitney C¥ topology for a function fin C*(X, Y). Choose a
metric d on J¥(X, Y) compatible with its topology. This is possible since all
manifolds are metrizable by (1,5.9). Define &s

Bi(f) = {ge C>(X, Y) | Vxe X, d(j*(x), j*g(x)) < 8(x}}

where 8 : X — R™ is a continuous mapping. We claim that B,(f) is an open
set for every such 8. For consider the continuous mapping A : J*(X, ¥) - R
defined by o > 8(a(0)) — d(j*f(c(a)), o). Let U = A~1(0, o0). Then U is open
inJ*(X, Y)and Bs(f) = M(U). Now let W be.an open nbhd of fin C*(X, Y),
let ¥ be an open set in J¥(X, Y) so that fe M(V) < W, and let m(x) =
imf {d(o, j*(x)) | o e a~Hx) N (J¥(X, Y) — V)}. Note that m(x) = o« if
a~1(x) © V.Let6: X — R™ be any continuous function such that 8(x) <m(x)
for every x in X. It is possible to choose such a 8 since m is bounded below on
any compact subset in X by a positive constant. Then, by using a partition of
unity argument, one may construct a § globally. With this §, B,(f) < W.
Finally, let ¥ and & be continuous functions mapping X into R*. Define
7n(x) = min {a(x), 8(x)} and note that »: X — R* is continuous and that
B.(f) = B,(f) N B,(f). Thus the collection {B,(f)} forms a nbhd basis of fin
the Whitney C* topology on C®(X, Y). We may think of B,(f) as those
smooth mappings of X — Y all of whose first k£ partial derivatives are 3-close
to f.

On a compact manifold, we may find a countable nbhd basis of / by taking
B,(f) = Bs (f) where é,(x) = 1/n for all x in X. Clearly this is a nbhd basis
since if § : X — R ™ is continuous and X is compact, then & is bounded below
by 1/n for some large n. So C*°(X, Y) satisfies the first axiom of countability
if X is compact. From the above, one may prove easily that a sequence of
functions f,, in C*(X, Y) converges to f (in the Whitney C* topology) iff
Jj*f, converges uniformly to j*f. Thus, in the local situation, f; and all of the
partial derivatives of f, of order <k converge uniformly to f.

On noncompact manifolds, convergence of f, > f is a concept stronger
even than uniform convergence, since one has as much ““control at infinity”’
as is wanted. Said precisely, the sequence of mappings f, converge to f
(in the Whitney C* topology) iff there is a compact subset K of X such that
J¥f» converges uniformly to j¥f on K and all but a finite number of the f,’s
equal f off K. The “only if” part is clear, and we shall prove the “if”’ part by
contradiction. Assume f, converges to f and that there does not exist a
compact set K with the above property. Let K;, Ky, ... be a sequence of
compact subsets of X such that K; < Int(K;,,) and X = (U2, K;. We now
define 8 : X — R* so that infinitely many £, are not in B,(f). There is a func-
tion f;, in the sequence such that f;, # f. Thus there is an x; such that
d(j*f,(x1), J*f(x1)) = a; > 0. Choose m; so that x; isin K,, and let § = a,

on K, . Assume inductively that we have chosen functions f, ..., f;, with
I, <---<I; a compact set K,,.; a continuous positive-valued function 8
defined on K, ; and points x, . . ., x;in K,,_so that for every 7 < s

d(j,(x:), J*(x)) > 8(xy).
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Now choose f;,,, where /., > [; so that f; ,, # foff K, ... Let x,,, be a
point not in K, 41 where d(j*f;,,,(x;+1), /*f(xs+1)) = as4+1 > 0. Then choose
M. SO that x,,, isin K, ... Extend 8§ to be a continuous positive-valued
function on K,,,,, whichis =a,,.; on K, ., — K, .. Inthis way we construct
a subsequence 1, f,, - . . and a continuous positive-valued function & defined
on X so that for every j, f;, ¢ Bs(f). Thus f, does not converge to f/ and we
have a contradiction. Finally we note that for a noncompact manifold X,
C=(X, Y) in the Whitney C* topology does not satisfy the first axiom of
countability. To see this, let W, W,, ... be a countable nbhd basis of fin
C=(X, Y). Then choose for each m a continuous function 8,: X — R* so
that B, (f) < W, and a sequence of points x;, X,, ... with no limit point.
Now construct a continuous function 8 so that 8(x,,) < 8,.(x,) for every m.
Since W,, W,, ... is a nbhd basis of f, there is an m such that W, < B,(f)
which implies that B, (f) < B,(f) which is a contradiction.

Thus we see that there is a great qualitative difference in the Whitney C*
topology on C*(X, Y) depending on whether or not the domain X is com-
pact. If X is compact then we get a standard type of topology. If, on the other
hand, X is not compact we have defined a very fine topology on C*(X, Y),
one with many open sets. In either case, though, a theorem which asserts that
a given set is dense in C *(X, Y) is saying that this set is indeed quite large and
is a rather strong result.

Definition 3.2. Let F be a topological space. Then

(a) A subset G of F is residual if it is the countable intersection of open
dense subsets of F.
(b) F is a Baire space if every residual set is dense.

Proposition 3.3. Let X and Y be smooth manifolds. Then C*(X, Y) is a
Baire space in the Whitney C* topology.

Proof. For each integer k choose a metric d, on J¥()X, Y) which makes
J*(X, Y) into a complete metric space.

Let Uy, U,, . .. be a countable sequence of open dense subsets of C*(X, Y)
and let ¥V be another open subset of C*(X, Y). We must show that
VN (2, U; # @. Since V is open in the Whitney C* topology, there is an
open subset W in J¥o(X, ¥) such that M(W) < V and M(W) # o. It is
clearly enough to show that M(W) N 2, U, # ©.

To do this we inductively choose a sequence of functions fi, fz, ... in
C*(X, Y); a sequence of integers ky, ko, . . .; and for each i an open subset
W, in J¥(X, Y) satisfying:

(4) fieM(W)n (21 M(W;) 0 U
(B) M(W)) < U, and f, e M(W))
(C) (> 1) djfi(x); j5fi_(x) < 1/2¢ forallxin Xand 1 < s < i.

We first show that by choosing the above data we can prove the theorem.
Define g%(x) = Lim,_, ,, j*fi(x). This makes sense since d, is a complete metric
and for each x the sequence j*fi(x),j*fs(x),... is a Cauchy sequence in
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J(X, Y) by (C). Note that j°f(x) = (x, fi(x)), so we can define g: X — Y
with g%x) = (x, g(x)). We claim that g is smooth. If so, we are done.
Indeed, each f; is in M(W) by (A) and thus g = Lim,_ ,, f; is in M(W).
Now, by (B), W, was chosen so that M(W#,) < U, and by (4) each f;fori > s
was chosen to be in M(W,). Thus g = Lim,_.., f; is in M(W,). Since s is
arbitrary g e M(W) N (N2, U, and we are done.

We will now show that g is smooth. This is a local question, so choose x
in X and compact nbhds K of x and L of g(x) with g(K) < L. By choosing K
and L small enough we may assume that they are contained in chart nbhds
and then via these charts that K and L are subsets of R* and R™ respectively.
Since the metric d; is compatible with the topology on J5(X, Y), conditions
(C) translate, in the local situation, to the fact that j*f; converge uniformly to
g°® on K. Using local coordinates we see that the coordinate functions of
J%; are just 8'8!f;/ox® for [B| < s. Thus locally &'1f;/6x*? converges uniformly
on K. Using a classical theorem (Dieudonné 8.6.3, p. 157),

8
aau;l{i = (—/al—x%g on K  forall |B] <s.
Since s is arbitrary all partial derivatives of g exist at x, in fact g5(x) = jsg(x)
and g is smooth.

Finally we will show that one can choose the f;, k;, and W, inductively
satisfying (A4,), (B;), and (C;). Choose f; in M (W) n U,. This is possible since
M (W) is open and nonempty while U, is dense. Thus (4,) is satisfied. Since
U, is open and f'is in U; we may choose k; and dn open set W, in J*(X, Y)
so that f; € M(W,) and M(W,) < U,. Thus (B,) is satisfied. (C,) is vacuous.
Now assume inductively that the data is chosen for all j < i — 1. We will
choose f; satisfying (4,) and (C;) and then we can easily choose W, and k;
so that (B;) holds. Consider the set

D, = {ge C=(X, Y) | di(j°g(x), jFi-1(x)) < 515

for 1 <s < iandforall xin X}~

If D, is open, then E; = M(W) N (i21 M(W;) N D; is open. It is easy to
check that f,_, is in E; using the inductive hypotheses (4;_,) and (B;_,) and
the definition of D,. Since U, is dense and F; is open and nonempty we may
choose f; in U; N E;. By the definition of E;, (4,) is satisfied, and by the defi-
nition of D,, (C)) is satisfied. So the proof of the Theorem reduces to showing
that D; is open in C*(X, Y). Let

Fs = {ge Cw(X, Y) I ds(jsg(x)’js.ﬁi—l(x)) < %V.XE X}

Since D; = F, N---N F, it is enough to show that F, is open in C*(X, Y).
Now define B, = o~ (x) N B(1/2% j*f;_ 1(x)) where «:JS(X, Y) — X is the
source mapping and

B ii-a)) = {o 08, 1) | Ao 711 <
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Let G = | ex B, Itiseasy to see that F; = M(G), so that we need only show
that G is an open subset of J3(X, Y). Let ¢ be a point in G and x = «fo).
Note that the mapping ¥ : X — R defined by g+ d,(j*f; -1(q), j*fi -1(x)) is
continuous. Thus H = o~ W ~1(—§/2, §/2) is an open subset of J5(X, Y)
where & = 1/2! — d(o, j5f_1(x)). (Note that 8 > 0 since o is in G.) Clearly
H N B(8/2, o) is open and contains o so that if H N B(8/2, o) < G, we are
done. Let r€ H N B(8/2, 0). To show that e G, we need to show that

di(r. ji-ale7)) < 1/2% But
di(r,ji-+() = dir, @) + dio, [Fir()
, , 8 1 3 1
Ao < 5+ (55— 8) + 3= 50

Proposition 3.4. Let X and Y be smooth manifolds. The mapping
JEIC2(X, Y)— C*(X, J¥X, Y)) defined by f+j*f is continuous in the
Whitney C* topology.

Proof. Let U be an open subset of J(X, J*(X, Y)). Then M(U) is a
basic open set in C*(X, J*(X, Y)). It is sufficient to show that (j*)~ (M (U))
is an open subset of C*(X, Y). First we define a mapping

e JETHX, YY) - JUX, JNX, Y))

as follows: let o be a (k + )-jetinJ**(X, Y) withsource x and let f: X — Y
represent o. By Theorem 2.6 (4), j*f: X — J*(X, Y) is a smooth mapping.
Define o, (o) = j'(j*f)(x). That « (o) is well-defined, i.e., does not depend
on the choice of representative f, can be seen from Corollary 2.3, and the
fact that j!(j*/)(x) depends only on the partial derivative of f at x of order
<k + I. For the same reasons, it is clear that «,, is a smooth mapping.
(In fact, it is an embedding.)

Thus ez }(U) is an open subset of J**(X, ¥). We claim that
Mz 1 (U)) = (j5)"Y(MU)) and thus (j*)~Y(M(U)) is an open subset of
C*(X, Y). The claim follows trivially from the fact that e« ,-j**'f = ji.j5f
as mappings of X —JY(J¥X, Y)). 0O

Proposition 3.5. Let X, Y, and Z be smooth manifolds. Let ¢: Y — Z be
smooth. Then the mapping ¢y : C*(X, Y)— C*(X, Z) given by fr>¢+fis a
continuous mapping in the Whitney C* topology.

Proof. Let Ube an open set in J¥(X, Z). M(U) is then a basic open set of
C*(X, Z). Recall from Theorem 2.6 that there is a differentiable mapping
byt JHX, ¥) = J¥X, Z) defined by o = j¥f(x) > j¥(¢-f)x). Thus ¢, ~(U)
is an open set in J*(X, Y). Itis easy to check that ¢, ~*(M(U)) — M (.~ (U))
so that ¢, is continuous. []

We shall now investigate the properties of C“(X, R) which is a vector
space over R. It would be nice if C°(X, R) were a topological vector space,
but alas, scalar multiplication viewed as a mapping of R x C*(X, R) —
C (X, R) is not continuous unless X is compact. For if X is not compact and
f: X—R is a smooth function with noncompact support, then y;: R —
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C*(X, R) defined by r > rf would be continuous. Thus Lim,_, fir = 0.
But this cannot happen unless there is some compact set K off of which each
function f/n is zero which contradicts the assumption on the support of f.
Addition and multiplication of functions fare better.

Proposition 3.6. Let X, Y, and Z be smooth manifolds. Then C*(X, Y) x
C>(X, Z) is homeomorphic (in the C* topology) with C*(X, Y x Z) by using
the standard identification (f, g) v f x g where f x g(x) = (f(x), g(x)).

To prove this proposition we need the following Lemma on topological
spaces.

Lemma 3.7. Let A, B, and P be Hausdorff spaces. Suppose that P is
locally compact and paracompact. Let w,: A — P and g : B — P be continuous.
Set

A xpB=1{@a,b)eA x B|wia) = wz(b)}

and give A x » B the topology induced from A x B. Let K = Aand L < B be
subsets such that =4 K and =5| L are proper. Let U be an open nbhd of K x p L
in A X p B. Then there exists a nbhd V of K in A and a nbhd W of L in B such
that V- xp, W< U.

Proof. First note that if X and Y are Hausdorff spaces with Y locally
compact and if /1 X — Yis continuous and proper, then fis a closed mapping.
For let Z be a closed subset of X and y be a point in f(Z). Let yi, ya, . . .
be a sequence of points in f(Z) with Lim, ., y; = y. Since Y is locally com-
pact, there is a compact nbhd V of y. We may assume that y; in V for all 7.
Choose xj, X3, ... so that f(x;) = y;. Since f is proper f (V) is compact.
Thus by restriction to a subsequence we may assume that the sequence
X1, Xg, ... converges. Suppose Lim; ., x; = x. Then x is in Z since Z is
closed and by the continuity of £, f(x) = y. So yisin f(Z) and f(Z) is closed.

Now consider 7, x mz: A x B— P x P. Note that Ap, the diagonal of
P x P, is closed and that A xp B = (74 x 7)Y Ap). So E=Ax B —
Ax pBisopen. Foreachpin P, let K, = KN (7)Y p)and L, = L N (75) "*(p).
Note that K, x L, = K, xp L, = U and that UU E is open in 4 x B.
Since 74| K and mg| L are proper, K, and L, are compact. Thus there is an
open nbhd V, of K, in 4 and W, of L, in B such that V,, x W, < UU E.
To see this, choose for each (k, /) in K, x L, open nbhds V*! of k in 4 and
Wkt of [ in B such that V%! x W¥*! < U U E. For a fixed k, the collection
{W* 1, is an open covering of L,. Since L, is compact, there is a finite
subcovering W&h ..., Wkl Set V¢ = Vehn...n Von and Wk =
Wil U. ..U Wels and note that V* x Wk < UuU E. The collection
{V* ek, is an open covering of K,. So, by compactness, there is a finite
subcovering V¥, ..., V¥, Set W, = W n-.-A W and V, = Vi U. ..
U V.

To continue with the proof of the lemma, note that 74K and =| L satisfy
the hypotheses of the first paragraph; thus = oK — V,) and =g(L — W) are
closed in P and P, = P — 7K — V,) — ms(L — W,) is open. Moreover,
p is in P,. Thus the collection {P,},.p is an open covering of P and since P is
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paracompact there is a locally finite refinement {P,}. For each « choose «(p),
a point in P, so that P, < P, Let V, = Vo, Yy (P — P and W, =
Wy Y g™ (P — P,). Let V=, V, and W = N, W,. To complete the
proof, we need to show that K< V, L < W, V and W are open, and
VxpWc U

(a) K < V. Itis clearly enough to show that K < ¥V, for each «. So assum-
ing that k is in K, we must show thatk e V,,, ork e w=,~ (P — P,). But this is
trivial, since if k& ¢ Vi, then m (k) & Py

(b) L = W. Just the same as (a).

(c) Vis open. Let v be a point in V. Since {P,} is locally finite, there exists
a nbhd U of =,(v) and finitely many P,’s; namely, P, , ..., P,, for which
UNP, #a.Let U =7, (U)nV, Nn---NV, and note that U’ is an
opennbhd of v. f UNP, = g, then U' <« w~ (P - P) < V,. IfUNP, #
&, then « = o; for some i and U’ < V,. So U’ < V and FV is open.

(d) W is open. Just the same as (c).

(&) VxpWac U. Choose (v, w)e V xp W and set p = m4(v) = mz(w).
Choose an « such that p is in P,. Thus ve V, — m, Y (P — P,) < Vypy.
Similarly w is in W,,. Hence (v, w) € Vypy X Wop © U U E. Since my(v) =
m5(w) (u, v) ¢ E, thus V x ;W< U. [J

Proof of Proposition 3.6. The projections #y: Y x Z— Y and
w0 Y x Z—Z induce continuous mappings (my)s: C®°(X, Y x Z)—
C?(X,Y) and (mp)s: C*(X, Y x Z) - C*(X,Z) by Proposition 3.5.
Since the identification of C*(X, ¥ x Z) with C*(X, Y) x C*(X,Z) is
given by (7y)x X (77)4, it is continuous. To show that the identification is a
homeomorphism we need only show that it is an open mapping.

To do this we let (f; g) be in C*(X, Y x Z). Choose an open set W in
J¥X, Y x Z) so that (f, g) is in M (W). Now notice that

JNX, Y x Z) = J%X, Y¥) xx J%X, Z)

where A =J¥X, Y), B=J%X,Z), P= X, and =,:J* X, Y)— X and
mg: J¥(X,Z) —> X are the respective source mappings. Applying Lemma 3.7,
there are open sets U in J¥(X, Y)and VinJ*(X, Z) suchthat U x 3V < W.
Finally we note that M(U) x M(V) < (mp)x X (mz)«(M(W)), so that this
identification is an open mapping. []

Corollary 3.8. Addition and wmultiplication of smooth functions are
continuous operations in the C® topology, i.e., C°(X,R) x C*(X, R) —
C=(X, R) given by (f, g) —f + g or (f, g — f+g is continuous.

Proof. +:R x R—R given by (x,»)+>x + py is continuous so
(+)x: C*(X, R x R) = C®(X, R) is continuous by Proposition 3.5. Thus
via the homeomorphism of C®(X, R x R) with C*(X,R) x C*(X, R)
given by Proposition 3.6 (f; g) — f + g is continuous. The proof for multi-
plication is similar. []

For completeness sake, we make some further remarks about the Whitney
C = topology on C*(X, Y).
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Proposition 3.9. Let X, Y, and Z be smooth manifolds with X compact.
Then the mapping of C*(X, Y) x C*(Y,Z)— C*(X, Z) given by (f, g) >
g-f is continuous.

Remark. This proposition is not true if X is not compact although if we
replace C*(X, Y) by the open subset of proper mappings of X into Y, then
the conclusion is still valid.

Proof. Let D be the fiber product J¥(X, Y) xyJ*¥( Y, Z) described in
Lemma 3.7, where 4 =J¥%X,Y), B=J%Y,Z), P=Y,w, =§ (the
target mapping), and =y = « (the source mapping). The mapping
y: D—J¥X,Z) defined by (o, 7) > 7+0 is continuous. (Note 7.0 =
J*(g+f N «(o)) where f represents o in J*(X, Y) and g represents = in J*( ¥, Z)).
To prove the proposition it is enough to show that if fis in C*(X, Y), if g
isin C*(Y, Z), and if S < J*(X, Z) is open with g-fin M(S), then there are
open sets V< J¥X,Y) and W < J¥Y,Z) with y(V xy W) < S. Then
if f"isin M(V) and if g’ is in M(W), g’-f” will be in M(S). Thus composition
will be a continuous mapping in the Whitney C* topology for arbitrary k
and thus continuous in the C* topology.

First we note that j*(g-f N X) = y(j*(X) xy j*e(Y))
ie., J(X) %y jee(Y) < y~1(U).

We now apply Lemma 3.7 with K = j*f(X), L = j*g(Y), and U = y~1(S)
to show the existence of the desired " and W. That Lemma 3.7 is applicable
follows from the facts that U is open (since y is continuous), m,| K is compact
(since X and thus K are compact), and =] L is proper (since wy-j¥g = idy). [

Notes. (1) Let f: X — Y be smooth; then = induces f*: C*(Y, Z) —
C*(X, Z) given by g+~ g-f. The Remark after this last proposition shows
that if fis not a proper mapping then this “nice” functorially defined map-
ping is not continuous. In particular, if X is an open subset of Y and f is
just given by inclusion then #* is not continuous; i.e., the restriction mapping
of C*(Y,Z)— C®(X, Z) given by g ~>g| X is not continuous.

(2) An easy consequence of the proof of Proposition 3.9 is that f* is
continuous if f'is proper. The only use that was made of the compactness of
X was to show that = 4| K is proper; this statement is still true if fis proper.

For future reference we make one last comment about the continuity of
these types of functorial mappings. If X is a set, let X' = X x---x X.

Proposition 3.10. Let X and Y be smooth manifolds. The mappings
8,: C(X, Y)—C=(X', YY) given by (fi,....f)—=f1 x- - x fi where
(fa X % f)xe, .05 x) = (f1(x1), . . ., fx))) is continuous.

Proof. We assume that [ = 2 as the proof for general / is essentially the
same. First we claim that the mappingy : J*(X, ¥) x J*X, Y) — J5( X2, Y?)
given by (o, 7) > o x 7{(where «{c x 1) = (f0), a(7)), Blo x 7) = (B(o), B(7)),
and if f represents o and if g represents =, then f x g represents ¢ x 7) is con-
tinuous. To see that this claim is sufficient, let ¥ be an open nbhd inJ*(X 2, ¥?)



50 Transversality

with f % g in M (W). Since v~ *(W) is open in J*(X, Y)? and contains j*f(X)
x jEg(X), there exist open sets U/ and V in J*(X, Y) so that j¥/(X) x j¥g(X)
cUx Vay i(W). Thus f x ge M(U) x M(V) < 8, Y (M(W)) and &,
is continuous.

To see that y is continuous (in fact, a smooth embedding), look in local
coordinates. In these coordinates for fixed sources and targets y is just a
linear injection which varies smoothly with X x X x Y x Y. []

§4. Transversality

Definition 4.1. Let X and Y be smooth manifolds and f. X — Y be a
smooth mapping. Let W be a submanifold of Y and x a point in X. Then f
intersects W transversally at x (denoted by f ™7, W at x) if either

(@) f(x) ¢ W, or

(b) f(x) e W and Ty Y = TioyW + (df) (T X). If A is a subset of X,
then f intersects W transversally on A (denoted by {1 Won A if f [ Wat x
Jor all x € A. Finally, f intersects W transversally (denoted by f'iy W) if
R Won X.

Examples.
(D) Let X=R =W, Y=R? and f(x) = (x, x%). Then /7§ W at all
nonzero x.

Y

Notice that f can be perturbed ever so slightly to be transversal to W; e.g.,
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(2) Suppose that X, ¥, I are as in (1) and that f'is given by the graph

N ‘/\/\'T
V4

Then f does not intersect W transversally on the segments within the brackets
and does elsewhere.

3 If X =R = Wand Y = R?®, then if fis any mapping of X — Y, it is
transversal to W only if f(X) N W = @. Notice that here too a nontrans-
versal mapping can be approximated closely by a transversal mapping, since
in 3-space f can avoid W by just *‘ going around” it. Moreover, f doesn’t have
to move far to accomplish this task. This will be made precise shortly.

In any case, it becomes apparent quickly that the relative dimensions of
X, Y, and W play an important part in determining what transversality
means in a particular instance. Also, for any trio X, Y, and W, the set of
transversal mappings is quite large. In fact, the Thom Transversality Theorem
is just this observation formalized.

Before discussing this theorem, we will give some consequences of the
property that a mapping is transversal.

Proposition 4.2, Let X and Y be smooth manifolds, W < Y a submanifold.
Suppose dim W + dim X < dim Y (i.e., dim X < codim W). Let f: X = Y
be smooth and suppose that f f W. Then f(X) "W = .

Proof. Suppose f(x) € W. Then

dim (Tyo, W + (d) T2 X)) < dim Ty W + dim T, X
= dim W + dim X < dim Y = dim Ty, Y.
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So it is impossible for T W + (df)(TX) = Ty, Y. Hence if F'§ W at x,
Soew. [

Lemma 4.3. Let X, Y be smooth manifolds, W < Y a submanifold, and
f: X — Y smooth. Let p € X and f(p) € W. Suppose there is a nbhd U of f(p)
in Y and a submersion ¢ : U — R¥(k = codim W) such that W N U = ¢~ %(0).
Then fF W at p iff $f is a submersion at p.

Remark. Such a nbhd U always exists. For there exists a chart nbhd U
of f(p), a chart «: U—>R™ (m = dim Y) and a decomposition of R™ =
R* x R™ *sothat WN U = «~ 30 x R™7%), Let 7 : R® — R* be projection
on the first factor, then let ¢ = =-c.

Proof. One can show easily that Ker (dé);,, = Trn,y W. So f 'y Watp

iﬁ‘ Ty Y = TiiyW + (df )T X)
iff Ty Y = Ker (dh);p + (df)(THX)

Since (dé);, is onto we see that (dé-f), is onto iff this last equality holds.
Thus ¢-fis a submersion at p iff £/ Watp. [

Theovem 4.4. Let X and Y be smooth manifolds, W a submanifold of Y.
Letf: X — Y be smooth and assume that f & W. Then f~1(W) is a submanifold
of X. Also codim f~*(W) = codim W. In particular, if dim X = codim. W,
then f~Y(W) consists only of isolated points.

Proof. 1t is sufficient to show that for every point p e f~1(W), there
exists an open nbhd ¥ of p in X so that V' n f~ (W) is a submanifold. Choose
U and ¢ as in Lemma 4.3. Choose V" a nbhd of p so that /() < U. By Lemma
4.3 ¢-fis a submersion at p. Thus, by contracting V if necessary, we assume
that ¢.f is a submersion on V. Thus f~X W) NV = (¢-(f|V))~*(0) is a
submanifold, by (I1,2.8). [J

Proposition 4.5. Let X and Y be smooth manifolds with W a submanifold
of Y. Let Ty ={fcC(X, Y)|f & W} Then Ty is an open subset of
C>(X, Y) (in the Whitney C*, and thus, C*, topology) if W is a closed sub-
manifold of Y.

Proof. Define a subset U of J1(X, Y) as follows: let ¢ be a 1-jet with
source x and target y and let /: X — Y represent o. Then o ¢ U iff either
) yéWor (i) ye Wand T, Y = T,W + (df).{TX). Recall that M(U) =
{fe C*(X, ¥)| (GYNX) = U} Itis clear that Ty, = M(U), so that if we can
show that U is open, then so is Ty.

We show that V' = JX(X, Y) — Uisclosed. Let oy, 05, . . . be a convergent
sequence of I-jets with o; in ¥ for all i. Let o = Lim,_ ,, o;, we will show that
oisin V. Let p = source o and ¢ = target of o. Since the targets of o; are in
W for all i and W is closed, ¢ is in W. Let f: X — Y represent . Choose
coordinate nbhds U of pin X and V of g in Y so that f(U) = V. Assume that
the chart defined on V takes W onto a subspace of dimension k. Via these
charts we may assume that X = R*, x =0, ¥ = R™, and W = R* < R™
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Let ¢: R™ — R™/R¥ = R™~* be projection. By applying Lemma 4.3 we see
that £/ W at Qiff ¢-fis a submersion at 0 iff ¢-(df), ¢ F where

F={4eHom (R", R""%*) | rank 4 < m — k}.
Consider the mapping
R" x W x Hom (R*, R™) < JY{R", R™) 7, Hom (R", R™~%¥)
given by (x, w, B) > ¢« B. Since F is closed and » is continuous %~ *(F) is
closed in R* x W x Hom (R*, R™) which, in turn, is a closed subset of
JYR", R™). Now V = »~I(F) since 7 = (x, y, (dg),) is in V iff y is in W and

g does not intersect W transversally at O iff n(7) is in F. Since ¥ is closed in
this local situation o isin V. []

Note that Proposition 4.5 does not hold if W is not assumed to be closed.
As an example take X = S' Y =R® and W ={10,0)|0 < 1 < 1}
Transversality in these dimensions means that f(X) N W = @. Let f: S —
R® be given by f(x, ) = (x + 1, »,0) where S* < R? is thought of as the
unit circle centered at the origin. Then ff W but arbitrarily small perturba-
tions of f given by fi(x, y) = (x + 1 — &, », 0) intersect ¥ and are thus not
transversal to W.

Lemma 4.6. Let X, B, and Z be smooth manifolds with W a submanifold
of Z. Let j: B— C*(X, Y) be a mapping (not necessarily continuous) and
define ®: X x B— Y by O(x, b) = j(b)x). Assume that ® is smooth and that
DK W. Then the set {b e B | j(b) (N W} is dense in B.

Proof. let Wy = @~ YW). Since ® [ W, Wy, is a submanifold of
X x B.(Apply Theorem 4.4.) Let = be the restriction to Wy of the projection
of X x B->B. First note that if b¢Imm, then jOYX)N W =2 so
j(b) ® W. Now if dim Wy < dim B, then #»(W5) has measure zero in B by
Proposition 1.6 and for a dense set of » in B; namely B — Im =, j(b) § W.
Thus, in this case, the Lemma is true and we may assume that dim Wy >
dim B. We claim that if 4 is a regular value for =, then j(b) [y W. If this claim
is true, then the lemma is proved for we may apply Sard’s Theorem (actually
Corollary 1.14) to =.

To prove the claim let b be a regular value for = and let x be in X. If
(x, b) ¢ Wy, then j(b)(x) ¢ Wand j(b) § W at x. So we may assume that (x, b)
is in Wy. Since b is a regular value for 7 and dim W, > dim B, we have that
Ty X X B=ToepyWo + Tie.nX x {b}. Apply (d®)..1, to both sides and
obtain

dD)e, Tixe iy X X B = TjsW + (dj(0)).A T X).
Now we assumed that ® 7 W so
Tow, Y = TownW + (@) on(Te,nX x B).
Combining these two equalities we have that
Ty Y = TinyoW + (di(B) (T X).
Thus j(b) § Watx. [I
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Remark. Tfwelet G: X x B— Y be a B-parameter family of mappings
of X — Y where G,(x) = G(x, b) and we let j: B— C*(X, Y) be given by
Jj{b) = Gy, then ® = G. Assume G [y W, then the set {be B| G, [y W} is
dense in B. This remark is the basic fact about transversality; that is, if a
parametrized family of mapping intersects a given submanifold transversely,
then for a dense set of parameters the individual mappings also intersect this
submanifold transversely.

In the same spirit, we have the following:

Corollary 4.7. Let G: X x B— Y be a smooth mapping. Let ®(x, b) =
JE*G(x) Assume that © [ W where W is a submanifold of J¥(X, Y). Then the
set {b e B|j*G, [ W} is dense in B.

Proof. Define j: B— C*(X, J*X, Y)) by b+ j*G, and apply Lemma
4.6. 0

Definition 4.8. Let X and Y be smooth manifolds with f: X — Y a smooth
mapping. Let W be a submanifold of ¥ with W' a subset of W. Then f [y W on
W' if for every x in X with f(x)in W', f i War x.

Theorem 4.9. (Thom Transversality Theorem). Let X and Y be smooth
manifolds and W a submanifold of J¥(X, Y). Let

Ty = {fe C™X, V)| & W}
Then Ty, is a residual subset of C*(X, Y} in the C* topology.

Proof. We need to show that Ty is the countable intersection of open
dense subsets. To construct the sets which will go into this countable inter-
section, we first choose a countable covering of W by open subsets Wy, W, . ..
such that each W, satisfies

(a) the closure of W, in J*(X, Y) is contained in W,

(b) W, is compact,

(c) there exist coordinate nbhds U, in X and V, in Y such that «(W,) <
U, x V, where «: J¥(X, Y) — X x Y is the projection mapping, and

(d) U, is compact.

This choice is possible since around each point w in W, we may choose an
open set W, satisfying (a), (b), (¢), and (d), since W is a submanifold of
J*¥(X, Y). Since W is second countable we may extract a countable sub-
covering from {W, },.w. Let

Ty ={fe C*(X, Y)|f T Won W}

It is clear that Ty = ()2, Tw,. Thus the proof reduces to showing that each
Tw, is open and dense in C*(X, Y).

Define T, = {ge C(X,J¥X, Y)) | g & W on W,}. The proof of Propo-
sition 4.5 can be easily adapted to show that 7, is open since W, is closed and
contained in W. Since j*: C*(X, Y) — C*(X, J¥X, Y)) is continuous (by
Proposition 3.4), Ty, = (j*)~'(T;) is open.

We now continue with the harder part of the Theorem, that is, to show
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that Ty, is dense. Choose charts ¢ : U, — R"* and %: ¥, — R™ and smooth
functions p: R"— [0, 1] < R and p': R™ — [0, 1] < R such that

_ {1 on a nbhd of -a(7,)
P70 off (U,

and

. {l on a nbhd of 5-p(W,)
P=0 off n(Vy)

where n = dim X, m = dim Y, « is the source map, and S is the target
mapping. The choice of p and p’ are possible since ¥, is compact.

We will use Corollary 4.8 to show that f can be perturbed slightly to be
transversal to W,. The perturbation will be accomplished locally using the
data defined in the previous paragraph. Let B’ be the space of polynomial
mappings of R" — R™ of degree k. For b in B’, define g,: X — Y by

2 () = Jx) if x¢ U, or f(x) ¢ V,
o 77 Hp((x))p ( f()D(H(X)) + 1/ (x)) otherwise.

The choice of p and p’ guarantees that g, is a smooth function from X to Y
and is just a polynomial perturbation of f done locally and smoothed out so
that it is equal to f off the domain of interest. Define G: X x B"— Y by
G(x, b) = g,(x). By inspection of the formula defining g,, one sees that G is
smooth.

Define ®(x, b) = j¥g,(x). In order to apply Corollary 4.8, we need to
know that ® 7} W on W,. Now it is not necessarily true that the transversality
condition holds on all of X x B’, but we will find an open nbhd B of 0 in B’
so that ®: X x B—J*(X, Y) will i W on some nbhd of W,. We can then
apply the Corollary on X x B rather than X x B’. Assuming that this
transversality condition holds, then given f: X — Y we can find a sequence
by, bo, ... in B converging to 0 so that j*g, | W on W,. Since g, = fand
g, = foff U,, Lim;_ gy, = fin C*(X, Y) and Ty, is dense in C*(X, Y).

Let e = 4 min {d(supp p’, R™ — n(V})), d(B(W,), (p') [0, 1)). Set B =
{be B | |by(x)] < eVx esupp p}. So Bis an open nbhd of 0 in B'. Suppose
that (x, b) is in X x B and that ®(x, b) is in W,, then we will show that
®: X x B—J(X,Y) is locally a diffeomorphism. If true, ® would
satisfy any transversality condition. Since @(x, b) € W,, we have that
x € a(W,) and gy(x) € B(W,). Then s = d(nf(x), ng,(x)) < e since

n8(X) = p((x)p’(nf(x)b((x)) + 7f(x).
So

, < |bp(x)] <& if(x) esuppp

5 = pppnf b1 { = | s oupp s
Using the definition of ¢ we observe that n/(x) is in Int (p") ~*(1) since g,(x)
is in B(¥,). Recall that p = 1 on a nbhd of ya(W,) so that ng,(x) = by(x) +
nf(x) and that g,(x") = (b + nf)(x’) for all x’ in a nbhd of x. Clearly
this argument also holds for all »” in some nbhd of 5 in B. It now follows that
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D: X x B—J¥X,Y) is locally a diffeomorphism near (x, b). For let o
be in J¥X, Y) near ®(x, b), let x’ = «(s), and let b’ be the unique poly-
nomial mapping of degree <k such that o = j¥(n(b'-4y + n+-f))(x). Then
o — (b', x") is a smooth mapping and is the inverse of ®. []

Corollary 4.10. For each integer i, let W, be a submanifold of J*(X, Y).
Then the set of smooth mappings [ X — Y for which j*f § W, is dense in
C2(X, Y). If the number of W 's is finite and each W, is closed, then this set is
open as well.

Proof. Follows immediately from Theorem 4.9 and the fact that
C>(X, Y) is a Baire space. []

Corollary 4.11. Let X and Y be smooth manifolds and W a submanifold
of JH(X, Y) such that «(W) is contained in an open subset Uof X. Letf: X — Y
be a smooth mapping and V an open nbhd of fin C*(X, Y). Then there exists a
smooth mapping g in V such that j*g '\ Wand g = f off U.

Proof. This is really a corollary to the proof of the Thom Transversality
Theorem. Under the assumptions of the corollary it is clear that for each W,
«(W,) = U. Thus we can choose U, so that U, = U. Then note that the per-
turbation g, = f off U,, and thus off U, for each b in B. So the constructed
transversal mapping does in fact equal foff U. [

Corollary 4.12. (Elementary Transversality Theorem). Let X and Y be
smooth manifolds with W a submanifold of Y. Then

(a) the set of smooth mappings of X to Y which intersect W transversally is
dense in C*°(X, Y) and if W is closed, then this set is also open.

(b) let U, and U, be open subsets of X with U, < U,. Let fbe in C=(X, Y)
and V be an open nbhd of f in C*(X, Y). Then there is a smooth mapping
g: X—>YinVsuchthat g = fon U and g §§ W off U,.

Proof.

(a) Note that J°(X, ¥) = X x Y and j%(x) = (x, f(x)). The projection
B: X x Y- Y is a submersion so B~ W) is a submanifold of X x Y. If
JU R BY(W) at x, then f 'y W at x. For either j°f(x) ¢ 8~ *(W) in which case
J(x) ¢ Wor j%(x) e B~(W) and

TeeosoonB 7 TW) + ()T X = Tix,s00(X X Y).
Apply (dB)x. sy to each side to obtain
TiowW + ()T X) = Tyry Y.

Thus /[y W at x. Since the set of transversal mappings to W contains the set
{fe Co(X, Y)|j° H& B (W)} which is dense by Theorem 4.9, we are done.
Note that the last part of (a) is just Proposition 4.5.

For (b) note that W’ = B~ (W) N (X x Y — «*(U,)) is a submanifold
of X x Ysince X x Y — a~'(U,) is an open subset of X x Y. Also «(W")
is contained in the open set X — U, so by Corollary 4.11, there exists
g: X — Yin Vsuch that g = fon U, and j°% "§ W’. This latter condition is
the same as j% T, B~X(W) off U,. Thus g i Woff U, asin (a). []
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We now present a generalization of transversality in jet spaces to trans-
versality in multijet spaces which is useful for studying the injectivity, or
alternately, the self-intersections of smooth mappings.

Let X and Y be smooth manifolds. Define

X8 = X x.--x X (stimes)and
XO = {(xg,...,x) X | x;%# x; for 1 <i<j<s}

Let «:J*X, Y) — X be the source map. Define «: J¥(X, Y)* — X* in the
obvious fashion. Then JF(X, Y) = () "X (X)) is the s-fold k-jet bundle. A
multijet bundle is some s-fold k-jet bundle. X is a manifold since it is an
open subset of X*. Thus J(X, Y) is an open subset of J¥(X, Y)* and is also
a smooth manifold. Now let /: X — Y be smooth. Then we can define
J&E X — J KX, Y) in the natural way; i.e.,

JSCres, oo x) = (G (x0), -, 7T (X))

Theorem 4.13. (Multijet Transversality Theorem). Let X and Y be smooth
manifolds with W a submanifold of J}(X, Y). Let

Ty ={feC>(X, V) | /S & W}

Then Ty is a residual subset of C (X, Y). Moreover if W is compact, then Ty
is open.
First we need a lemma.

Lemma 4.14. Let W be a submanifold of JF(X, Y) with W' a compact
subsetof W.Then Ty, = {fe C*(X,Y)|j*f N Won W'} isopenin C°(X,Y).

Proof. Let x = (xq,..., x,) be in X®. Choose disjoint open nbhds U;,
of x; in X. Then choose open nbhds V; of x; with V, € U,. Let U* = X3., U;
and V* = X3i., Vi. Note that V'~ is a closed subset of X*. Let 7, =
{feC=(X, V) |jFfHh W on W Nn(«)~1(V*)} where a:JX, Y)— X is
the source map. Suppose 7, is an open subset of C*(X, Y). Since the collec-
tion {Int V*} where x is in «(W’) is an open covering of «(W¥’) and
«®(W') is compact, we may extract a finite subcover indexed by x*, ..., x%
Noting that Ty, = (-1 T we see that Ty is open.

To show that T, is open we consider the mapping A: C*(X, ¥) —
C*(X% J* X, Y)°) defined by (j*f)® and the set

T={geC(X5JX, Y)y)|gd Won W' N (5 (V)

Since V'* is bounded away from the generalized diagonal in X* by U* we see
that j5f 7 h W on W' N (e«)"X V) iff (5 ) H W on W’ N ()~ (V).
Thus T, = A~-Y(T) and it is sufficient to show that T is open and that A4 is
continuous. Since W' = («f)~1(V'*) is closed we may apply Proposition 4.5
(or more precisely the adaptation of this Proposition mentioned in Theorem
4.9) to conclude that T is open. Next we observe that 4 = §,-/¥ where
8,: C~(X, Y)— C=(X5, Y?) is given by f+>f5. Now j* is continuous by
Proposition 3.4 and &, is continuous by Proposition 3.10, so 4 is continuous. [
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Remark. 1f W.is a submanifold of J*(X, Y) such that «®(W) is a com-
pact subset of X, then Ty, is open in C*(X, Y).

Proof of Theorem 4.13. The moreover part follows immediately from
Lemma 4.14. The idea of the main part of this Theorem is the same as that

I’ for the Thom Transversality Theorem. Thus we shall just indicate what

changes need to be made in the proof of Theorem 4.9 in order to prove this
Theorem.

Choose open sets W, in W satisfying (a), (b), and in place of (c¢) and (d)
(c’) there exist coordinate patches U, ;,..., U,;in Xand V, ,,..., V,;in ¥
such that {U, ;}{~; are mutually disjoint and #(W,) < U,; x -+ x U, x
Vi1 x---x V., where =, : JH(X, Y)— X® x ¥ (not Y®) is the obvious
projection, and
(d) U, is compact for 1 < i < s.

Let
TW, = {fECw(X’ Y) Ifm W on Wr}

Since Ty = (/%1 Tw,, the proof reduces to showing that each Ty_is open and
dense. Since W, is compact we apply Lemma 4.14 to show that Ty, is open.

To prove the density of Ty, we wish to make a polynomial perturbation
on each U,,; which is smoothed to equal f off of U, ;. The only technical
point is that these perturbations be done simultaneously. Choose charts
gt Uy, ; — R™ and »;: V,; — R™ and smooth functions p;: R* - [0, 1] and
pi: R™ — [0, 1] such that

_ {l on a nbhd of ;- (W)
P70 off (U

and

, {1 on a nbhd of 7;-B(W,)
0 off ni(Vr,i)

where «; and B; are the source and target maps onto the ith component of X
and Y in X® and Y?, respectively. Let b = (b4, ..., b)) € (B')*. Then define
g: X— Yby

@) = 77 Hpio () pion S ()b p(x) + i f(x))  ifxe U, ;and f(x) e V;,
v 7(x) otherwise

Again g, is a smooth function. Let
e = 3 min {d(supp pj, R™ — 7(V5,1)), d(n:B(W,). (o) [0, 1))

Set B, = {be B'l|bf(x)| < ¢;Vx esupp p;}and set B = B, X --- x B,. Define
G(x, b) = g,(x). Then G: X x B— Y is a smooth mapping. Since U, ; was
chosen so that {U, ;}{ ., is disjoint we can show that H: X® x B~ JMX, Y)
is locally a diffeomorphism where H(x, b) = j*g,(x). This is similar to the
proof in Theorem 4.9.

To complete the proof we invoke the following Lemma.
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Lemma 4.15. Let X, Y, and B be smooth manifolds. Let W be a sub-
manifold of JJ(X, Y). Let W' be an open subset of W such that W' < W. Let
G: X X B— Y be a smooth mapping. Define H: X® x B—JM X, Y) by
H(x, b) = jF(Gu)(x) and assume that H X W on W'. Then the set

{beB|jrG, & Won W'

is dense in B.

Proof. Let X = X©, Z =JMX, Y) and j: B— C*(X*, J/(X, Y)) be_
given by j(b) = j,*G,. Apply Lemma 4.6. [J

Exercises

(1) (a) Let X and Y be smooth manifolds with ¥ a submanifold of Y.
Assume that dim X = codim W. Let p be in X and let f: X — Y be smooth.
Assume that /(p) in W and f [ W at p. Then there exists a nbhd N of f'in
C>(X, Y) (in the C* topology) and an open nbhd U of p in X such thatif g
is in N, then g=*(W) n U consists of one point g and g & W at ¢. (Hint:
Use Lemma 4.3 and note the similarity with Theorem 4.4.) ‘

(b) Assume that X'is compact. Let f": X —= Y {; W. Show that there is
an open nbhd N of fin C*(X, Y) such that the number of points in f~ (W)
is equal to the number of points in g~ (W) for any g in N.

(2) Let f: X — X be smooth with p in X a fixed point for f.

Definition: p is a non-degenerative fixed point iff (df),: T,X — T,X does
not have 1 as an eigenvalue.

Let Diff (X) be the group of smooth diffecomorphisms on X and give
Diff (X)) the relative topology as a subset of C*(X, X).

(a) Show that {f< Diff (X) | fixed points of f are nondegenerate} is
open and dense in Diff (X), and
(b) Show that nondegenerate fixed points are isolated.

Hint: Consider what it means for j% 'y AX at p in X where AX is the
diagonal in X x X = JoX, X).

(3) Let {W },e; be a family of submanifolds of J*(X, Y) where [ is some
index set. Let

Tw ={fe C*(X, Y)|Vael, j* { W

Suppose that | J,; W, is closed in J¥(X, Y). Then show that Ty is an open
subset of C*(X, Y).

§5. The Whitney Embedding Theorem

Let X and Y be smooth manifolds. We want to show that if dim Y is
large enough relative to dim X, then the set of immersions of X into Y is
dense in C*(X, Y). The idea of this proof of the Whitney Immersion Theo-
rem will be to translate the fact that f'is an immersion into (a finite number of )
transversality conditions.
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Let o be in JX(X, Y); then o defines a unique linear mapping of T,X —
T,Y where p is the source of o and ¢ is the target of o. Let f'be a representative
of ¢ in C*(X, Y). Then (df), is that linear mapping. Define rank ¢ =
rank (df), and corank ¢ = ¢ — rank o where ¢ = min (dim X, dim Y). Let

S, = {oeJYX, Y) | corank o = r}.

We will show that S, is a submanifold of J*(X, Y). The significance of the
submanifolds S, is illustrated by the following obvious lemma.

Lemma 5.1. f: X — Y is an immersion iff jY(X) N (U,208) = @.

One also observes the following:

Lemma 5.2. Let S be an m X n matrix where S = (21‘ g) where A is
a k x k invertible square matrix. Then rank S = kiff D — CA~*B = 0.

Proof. The matrix

L 0
r= (—CA* Imﬂk)

is an m X m invertible matrix. So

A B
rank § = rank 7S = rank (0 D — CA‘lB)'

Clearly this latter matrix has rank = k iff D — CA'B = 0. []

Let V and W be vector spaces of dimension n and m respectively. Let
g = min {n, m}. Let S:V - W be linear, then define corank (S) =g —
rank (S). Define L'(V, W) = {S € Hom (V, W) | corank S = r}.

Proposition 5.3. L'(V, W) is a submanifold of Hom (V, W) with
codim L'(V, W) =(m — g + r)(n — q + r).

Proof. Let S be in L'(V, W) and let k = g — r = rank (S). Choose
bases of V and W so that the matrix of S = (é g) where A isa k x k
invertible matrix. Choose an open nbhd U of S in Hom (V, W) so that if S’
.. , (4 B
isin U and §" = (C’ D’
the smooth mapping f: U-— Hom (R* "%, R""¥) given by f(S) = D —
C'(A")~1B'. fis a submersion since if we fix 4, B, C, then

g:Hom (R*~F R™"%) » Hom (R"~%* R™ %)

given by g(D) = f(g g) = D — CA~'B is a diffeomorphism. (In particu-

lar (dg), = identity, so (df)s is surjective.) By Lemma 5.2 f~%0) = L(V, W)
N U which is a submanifold since fis a submersion. Moreover

codim L'(V, W) = dim Hom (R""%, R" %) = (n — k)(m — k). []

) then 4’ is a £k x k invertible matrix. Consider



5. The Whitney Embedding Theorem 61

Theorem 5.4. S, is a submanifold of JY(X,Y) with codimS, =
(n—q+rym—gq+r). In fact, S, is a subfiber-bundle of JX(X, Y) with
fiber L'(R™, R™).

Proof. Let U< X and V < Y be coordinate charts. Then JX(X, Y)yxy
~ U x V x Hom (R, R™) and under this isomorphism S, ~ U x V x
L'(R*, R™). Applying Proposition 5.3, S, is then a submanifold. []

Let Im (X, Y) be the subset of immersions in C*(X, Y).
Lemma 5.5. Im (X, Y) is an open subset of C*(X, Y).

Proof. Sy is an open subset of J1(X, Y). M(S,) = Im (X, Y) by Lemma
51. 0

Theorem 5.6. (Whitney Immersion Theorem). Let X and Y be smooth
manifolds with dim Y > 2-dim X. Then Im (X, Y) is an open dense subset of
C*(X, Y) (in the Whitney C* topology).

Proof. Codim S, = —qg+ r}(m —q+ r) where m =dim Y, n =
dim X, and ¢ = min (m, n) = n. Thus if r > 1

codim S, =r(m —n+r)y=r(n+r)y=n-+ 1.

v

For these relative dimensions j*/ & S, iff j*/(X) N S, = @ whenr = 1. Thus
the Thom Transversality Theorem (4.8) and Lemma 5.1 imply the result. []

Theorem 5.7. (Whitney 1:1 Immersi;on Theorem). Let X and Y be smooth
manifolds. Assume that dim Y > 2 dim X + 1. Then the set of 1:1 immersions
of X into Y is a residual set and hence dense in C*(X, Y).

Proof. Since the set of immersions is open and dense, we need only
show that the set of 1:1 mappings of Xinto Y is a residual set. First note that
[ X—Y is 1:1 iff /.00 X@ = J,%X, Y) does not intersect W where
W = (8%)~(AY). Note that W is a submanifold since p2:J,°(X, ¥) — Y2
is a submersion. Since codim W = codimAY =dim Y > 2.dim X =
dim X2 we have that j,Of i W iff L./ (X )N W =gz. So fis 1:1 iff
7°f h W and the result follows from the multijet transversality theorem. []

Proposition 5.8. Let X and Y be smooth manifolds with X compact. Then
the set of 1:1 immersions is open in C*(X, Y).

Lemma A. Let . X — Y be smooth and an immersion at p in X. Then
there is a nbhd U, of p in X and a nbhd of W; of fin C*(X, Y) so that if g is in
W, then g|U, is a 1:1 immersion.

Proof. Let U be a nbhd of p and ¢: U — R" a chart. Assume that U is
small enough so that there exists a chart nbhd V of f(p) with chart: V— R™
such that f(U) < V and #-f-¢ % is a linear injection. This is possible since f
is an immersion at p. Choose an open nbhd U, of p so that U, is compact
and contained in U. Suppose that g: X — Y so that g(U,) < V. Then define



62 Transversality

g =g HU)—R" Let p' = $(p) and let M = infi.1 [(df),(¥)]-
Note that M > 0 since (df), is 1:1. Let

W, = {ge C*(X,Y)|gU,) <V and
@y = @] < 5 Vx e 4T}

W, is an open nbhd in C*(X, Y) since the first condition is a C° open one
and the second one is C! open. Using the triangle inequality in R™ we have
that

|@)rx2) — @) < 18Cx) — 86| i
1@ — D)) — (@) — Y]

Now if g is in W}, then
(@) — &)x1) — () — &)(x2)|
< @@y ~ 2Nl 1y — 36l = 5 |3 — 2

where the first inequality is given by the Mean Value Theorem for some x in
#(U,). Thus for g in W,

N - M M
lg(xl) - g(x2)l = M|x1 - x2\ Y |x1 — Xy = 3 le — X

and g is 1:1. Since the set of immersions of X into Y is open we are done. [J

Proof of Proposition 5.8. Let f: X — Y be a 1:1 immersion. First we
show that there is a nbhd Z of AX in X x X and an open nbhd W’ of fin
C>(X, Y) such that for every g in W’ g is an immersion and g2(Z — AX) N
AY = & where g%: X? — Y2 is given by g x g. For every p in X, choose U,
and W,” as guaranteed by Lemma A. Since X is compact we can choose
Pi,...»Ps s0 that U, ,. .., U, cover X. Let W' = i, W;» and Z =
Ui-1 (U, x U,). Let g be in W’. Then g|U,, is an immersion for each i,
s0 g is an immersion. Also if (p,q) is in Z — AX then (p,q)e U,, x U,
for some 7 and thus g(p) # g(g) since g|U,, is 1:1.

Now suppose that there does not exist an open nbhd of f consisting entirely
of 1:1 immersions. Since the set of immersions is open, there does not exist
a nbhd of f consisting of 1:1 mappings. Since X is compact and C (X, Y)
satisfies the first axiom of countability, there is a sequence of functions f,
converging to f each of which is not 1:1. We may assume that each f, is in
W’'. Let (p,,q,) be in X x X — AX such that f,(p,) = f.(¢,). The pair
(Pn> q2) exists since f;, is not 1:1. By the choice of W', (p,, q,) is not in Z.
X x X — Z is compact so we may assume that Lim, _, ., (p,, g,) exists and is
(p, q). Since (p, q) ¢ Z, p # q. Also Lim, ., fu(py) = f(p) and Lim,_ ., fo(q,)
= f{q). Since with an appropriate choice of metric on Y f, converges uni-
formly to f, f(p) = f(g) contradicting the fact that fis 1:1. [

Proposition 5.9. (Whitney Embedding Theorem). Let X be a smooth mani-
Jfold of dimension n. Then there exists an embedding f of X into R#"+1,
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Proof. By Theorem 5.7 the set of 1:1 immersions of X — R#"*! ig

dense. We showed in the first paragraph of Lemma 3.7 that the image under a < .

continuous proper mapping is closed. Thus if there is a 1:1 proper immersion
of X — R#+1 the result is proved. The following lemma is thus sufficient.

Lemma 5.10. Let X be a smooth manifold. Then the space of smooth
proper mappings of X — R™ is nonempty and open in C*(X, R™) (in the C°
topology).

Proof. By 1,5.11 there exists a proper mapping of X — R. Compose this . *.

mapping with any linear injection of R — R™ to obtain a proper mapping of
X — R™. To show that the set of proper mappings is open, let /: X — R"
be proper and let V, = {y e R™ | d(y, f(x)) < 1}. Let V = Urex Vx in
J(X,R™ = X x R™ The continuity of f guarantees that } is open and
clearly fis in M (V). Now let g be in M (V'), then g is proper for g~ %(B,(»)) <
S Y(B, .+ (). Since fis proper g~ *(B,(»)) is a closed subset of a compact set
and thus compact. [}

§6. Morse Theory

In the last section we used transversality to analyze what “most” map-
pings of a manifold X into some high dimensional manifold Y look like.
We now use the same technique to analyze the other extreme: that is, to
determine the structure of most mappings of X into R. In particular, the
Whitney Theorem shows that a generic mapping is as nice as possible in the
differentiable sense, namely, the Jacobian always has the maximum rank
possible. With Morse Theory we will show that, in general, the Jacobian is
not of maximal rank; in other words, the mapping has singularities, but these
singularities must be of a particular type.

Since the dimension of R is 1, the only non-empty submanifolds of
JHX, R) of the type S, (see §5) are S, and S;. Thus p in X is a singularity
(or critical point) for f: X — R iff j1f(p) is in S;.

Definition 6.1.
(a) Let p be a singularity of f: X — R. p is nondegenerate if jf § S: at p.
(b) fis a Morse function if all of the singularities of f are nondegenerate.

Theorem 6.2. Let X be a smooth manifold. Then the set of Morse func-
tions is an open dense subset of C*(X, R).

Proof. Apply the Thom Transversality Theorem. []

Proposition 6.3. Let f: X — R be a smooth function with a nondegenerate
critical point p. Then there exists a nbhd V of p in X such that no other critical
points of f are in V, i.e., nondegenerate critical points are isolated.

Proof. Note that codim S; = dim X (see 5.4) and apply Theorem 4.4
(or, more precisely, Exercise (1)(a) of §4). [
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Now that we know that nondegenerate critical points are isolated and
that they represent a generic situation for functions, we wish to analyze
their character locally.

Proposition 6.4. Let U be an open subset of R™ and f: U — R be smooth.
Then [ has a nondegenerate critical point at p iff the Hessian of f at p =
((6%f|ox; ox;)(p)) is nonsingular.

Proof. JYU,R)~ U x R x Hom (R*, R). Note that the projection
o JY U, R) — Hom (R", R) is a submersion and =~ *(0) = S;. Now apply
1+ Lemma 4.3; that is, j'f & S) at p iff 7-j'fis a submersion at p. But w-j'f at x
is

 ox,

@)= (L@ )

in the standard coordinates on Hom (R™, R). Thus #-jfis a submersion at p
iff the mapping of R" — R" given by

x—»(d—if—l (x),...,ai;i(x))

is a submersion at p iff ((6%//éx; &x;)(p)) is nonsingular. []

We shall now give an invariant definition for the Hessian of a function at
a critical point. To do so we need the concept of intrinsic derivative.

Let £ be a vector bundle over X. E always has a distinguished global
section called the zero section i, : X — E which is defined by io(p) = 0 in E,.
Let 7: E— X be the projection mapping. Then it is clear that

Ker (dm)igm N (dio)(TpX) = {0}

and that T, ,E, = Ker (dn); oy so that T, ,E = T, ,E, ® T,X. Now
TiymE, =~ E, in a canonical way since E, is a vector space. Finally let
o: TiymE — E, be the obvious projection,

Definition 6.5.

(a) Let i: X — E be a section such that y(p) = 0. Then define (Dy),: T, X
— E, by (D),(v) = o+(dp) (v). (D, is called the intrinsic derivative of ¢ at
the zero p.

(b) Let f: X — R be smooth with a critical point at p. The 1-form
df: X —T*X has a zero at p. Define (d%f),(v, w) = {(D(df)),v, w> where
v, we T, X. Then (d*f), is a bilinear form on T, X called the Hessian of f at the
critical point p.

We leave the following two Lemmas as exercises.

(A) Let U be an open subset of R™ and f: U-— R be smooth with a
critical point at p. Then with the standard identifications

@ (] =) = 2% o

p OX;
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(B) Let ¢ : X — Y and f: Y — R be smooth. Suppose that ¢ is a critical
point for fand p € ¢ ~*(g). Then p is a critical point for ¢ * fand (d2¢ *f), =
(b * (d%)), where ¢ * (d°f),(v, w) = (d°f)((d),0, (db),w) Vv, w e T, X.

(Hint: Compute both lemmas by using local coordinates.)

Proposition 6.6. Let [: X -+ R be smooth with a critical point at p.
Then (d*f), is a symmetric bilinear form on T, X and is nondegenerate iff p is a
nondegenerate critical point of f.

Proof. Let Ube anbhd of pin X and ¢ : U — R" a chart ceéntered at p.
Let U = (U) and g = f-¢~1. By Lemma (B) above 0 is a critical point of.
g and (d%¥), = (d*$ * g), = ¢ * (d%g),. By Lemma (A), (d%g), is symmetric.
Hence (d?%f), is symmetric. By Proposition 6.4, 0 is a nondegenerate critical
point of g iff (d%g), is a nondegenerate bilinear form iff (d2f), is a nondegen-
erate bilinear form since (dé), : T, X — ToR™ is an isomorphism. Finally the
diagram

Jl(U, R) _(_96.*.);_..) Jl(Ul, R)

J'lfI Ij‘g
v —*
commutes and ¢ * (S; nJHU', R)) = S; NnJYU, R) so that jlg ' {y S; at O

if jYf & S, at p. Thus 0 is a nondegenerate critical point of g iff p is a non-
degenerate critical point of £. []

We recall the following proposition from Linear Algebra.

Proposition 6.7. Let B be a symmetric, nondegenerate, bilinear form on a
real vector space V of dimension n. Then there is an integer k < n and a basis
ULy -+ .5 Uy Of V such that B(v;, v;) = s,8;; where

—1 ifi <k

=1 ifi > k.

k is called the index of B.

Definition 6.8. Let p be a nondegenerate critical point of f: X — R. Then
the index of f at p is the index of (d?f),.

Theorem 6.9. (Morse Theorem). Let g:R"™ R be given by
g(xls---sxn) =Cc — (X12 4+t x}cz) =+ x%+l +"'+xn2

where ¢ is some constant. Then

(a) g has a nondegenerate critical point of index k at the origin and has no
other singularities.

(b) Let f: X — R be smooth with a nondegenerate critical point of index k
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at p. Then there is a nbhd U of p and a chart «: U — R" centered at p such that

v L R

I

commutes where ¢ = f(p).

A simple calculation gives the proof of (a). We shall need a sequence of
Lemmas to prove (b). Note that in the coordinates oy, . . ., «, defined by «, f
has the “normal form™ f(x) = f(p) — (e13(x) + - + «*(x)) + o (%) +
-+ ++ e,%(x) for all x in a nbhd of p. Thus the behavior of a function in the
nbhd of a non-degenerate critical point is determined.

Lemma 6.10. Let U be an open convex subset of R*,ae U, andf: U— R
smooth. Then there exist g4, ..., g.: U— R all smooth so that for every x in U

1) = f@ + 3 8

Moreover g(a) = (9f/ox;)(a).

Proof. Fix x in U and let ¢(¢t) = f(a + t(x — a)). This is well-defined
for ¢ in [0,1 ] by convexity. Then

£ = @)y = 41y = 40) = | G
and

D0 = > L@t~ s — a)
by the chain rule. Let

g = |

Jo

1

;—)J;(a + t(x — a)) dt. 0

Lemma 6.11. Let f be a smooth function on an open convex subset U of
R™. Let a be a critical point for f. Then there are smooth functions g;;: U — R
(A < i,j < n) such that

(@) g = &u;
(0) /() = @) + 2 gl = a)x, = @) ¥xe Us
and ,

Proof. From Lemma 6.10 there are functions g,,..., g, such that

J) = @) + 2i-1 &(x)(x; — a) and gi(a) = (9f/ox)(a) = 0 since a is a
critical point of £. Now apply Lemma 6.10 to each g;(x) to insure the existence
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of smooth functions /;;: U— R so that g{x) = >7_; h(x)(x; — a;). This
is possible since g,(@) = 0. Let g;; = $(h;; + h;). Then we have written

) = f@) + 3 g — a)x; — @) Ve U

and g;; = g, To see that g;;(a) = L(&%f/0x; Ox;)(a) differentiate both sides of
the above equation with &%/0x; dx; and observe that the only terms on the
right-hand side which do not disappear when evaluated at a are g;,(¢) and
gi(a). 1

Lemma 6.12. Let U be an open convex nbhd of 0 in R". Let f: U >R be
a smooth function with a non-degenerate critical point at 0. Assume that
(03 |0x; 0x,)(0) = +8,;. Then there exists a nbhd V of O contained in U and
smooth functions h;: V. — R (1 < i < n) satisfying

oh;
a) 7(0) = 0 and —— (0) = +38;;;
() h(0) o

(b) /(x) = fla) + (£h*x) £+ b x) Vxe V.

Proof. The Lemma will be proved by induction on r. The induction hy-
pothesis for each r with 0 < r < »n is that there exist smooth functions
h:V.,—>R (1 <i<nand g;:V,—>R (r+1<1ij=<n) where V, is a
nbhd of 0 contained in V, satisfying

@) gy = gu;

®) g0 = 277 (0)

20x ox;

(¢") A(0) = 0 an d 1(0) = 43;;;

and

n

@) f(x) = fla) + (£h,%(x) £ £ b2 X)) ii > 1gij(x)hi(x)hj(x)'
=7+
The Lemma is proved by taking r = n.

For r = 0, let h(x) = x; and use Lemma 6.11 to obtain the g;;’s which
satisfy (a”) through (d") on V, = U.

Assume that the induction hypothesis is true for r — 1, giving the exis-
tence of smooth functions &, (1 < i < myand v, (r < i,j < n)of V,_; into R.
By (b)), v,(0) = $(8%f/ox,2)(0) # 0. Thus there is a nbhd V, of 0 contained
in V,_; on which v,, is nowhere zero. Let i; = u,|V, for i # r and define

() = VI (100 + 5 2 o).

TT(x) i=r+1

h, s well-defined and smooth on V,. A straight-forward calculation will show
that (¢) holds. Now let 6 = sign (v,,(0)). From the induction hypothesis (d")
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we know that

J(x) = f0) + (A %(x) £ - - £+ b1 3(x)) + s(x)
where s(x) = >, _, v,(X)us(x)u,(x). Let gi; = vy; — vyoqfv,forr+ 1 < 6,7 < n.
Then (a’) and (b") hold. Finally to see that (d’) is true, compute

n n Uil s
() 82 = vu,2 + 2 Z Uyl + z = uu;

F=r+1 i, j=r+1 Uy
and
() > guhhy = 8h? + 5.
i,Jj=r+1
Then
S =f@) + (£h2(x) -+ By(x) — 8h2x) + > guh(0Oh(x). [

i,Jj=r+1
Proof of Theorem 6.9 (b). Let U be a coordinate nbhd of pand: U — R*

a chart. Then (d?(f-y~1)) is a symmetric, nondegenerate, bilinear form on
T,R™ Choose a matrix 4 which diagonalizes this form, i.e.

where [ is the s x s identity matrix. Let » = A ™1+, 5 is also a chart on U.
Now g(x) = f(n~'(x)) — f(p) satisfies the conditions of Lemma 6.12 and
g(0) = 0. Thus there exist smooth functions /4, ..., h, defined on a nbhd
V of 0 in R" so that g(x) = +h%(x) + - -+ h,%(x) where 4(0) = 0 and
(8hiJox;)(0) = +£8,;. Now define H: V—R" by H(x) = (h(x), ..., h(x)).
H is a diffeomorphism on a nbhd of 0. Let « = H+xn be a chart defined on a
nbhd U’ of p in X. Then define g(x) = +x,%2 + --- + x,? where the signs in
the definition of g are the same as those in the representation of g above.
Hence g-H = fon~* — f(p) and g-a = f— f(p) or f(q) = f(p) + g(«(q)).
Let «y,...,«, be the coordinates with the chart «, then f(q) = f(p) +
(£*(q) + -+ & «,(¢q)). Finally

+2 0

(d%)p = (@2 Doy = (d78)o =
0 +2

Since (d?f), has index k, so does (d?g),. Thus by a simple reordering of the
o;’s we may assume that f(g) = g(a(g)). 0

Having analyzed the structure of a function in the nbhd of a nondegener-
ate critical point, we can now make a statement about the critical values.

Proposition 6.13. Let X be a smooth manifold. The set of Morse functions
all of whose critical values are distinct form a residual set in C*(X, R).

Proof. let § = (S, x S) NJHX, R)N (8% (AR). We claim S is a
submanifold of the multijet bundle J,'(X, R). Let U be an open coordinate
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nbhd in X diffeomorphic to R™ In these local coordinates J;*(U, R)
(R x R* — AR™) x (R x R) x Hom (R, R)> and S =~ (R" x R* — AR")
% (AR) x (0,0) which is clearly a submanifold. Moreover codim S =
2n + 1 where n = dim X.

Apply the Multijet Transversality Theorem (4.13) to conclude that the *.~

set of mappings f: X — R for which j,}f § S is residual. Transversality in
these relative dimensions means that j,1/(X x X — AX) N S = g. Thus if
p and q are critical points of £ (jf(p), /1 (g)) € S1 x S1 N J*(X, R). The fact
that j,*f(p, ¢) ¢ S means that f(p) # f(g), i.e., f has distinct critical values.
Thus the proposition is proved. [I

§7. The Tubular Neighborhood Theorem

Definition 7.1. Let X be a submanifold of the smooth manifold Y. A
tubular neighborhood of X in Y is an open subset Z of Y together with a
submersion = Z — X such that

(@) ZZ> X is a vector bundle, and

(b) X = Z is the zero section of this vector bundle.

Theorem 7.2, Let X be a submanifold of Y, then there exists a tubular
nbhd of X in Y.

We prove some preliminary results first.

Proposition 7.3. Let Y and Y' be smooth manifolds with X < Y and
X' < Y' submanifolds. Let f: Y — Y' be smooth and satisfy:

(a) fIX: X X' is a diffeomorphism.

(b) (d)y: T Y — Ty Y' is an isomorphism for every x in X.

Then there is an open nbhd V of X in Y such that f(V') is open in Y’ and
SV is a diffeomorphism.

Proof. 1f X is a point, then Proposition 7.3 is just the Inverse Function
Theorem. In any case, since X is second countable, there is a countable
covering of X by open sets Uy, U,, ... in U so that f; = f|U; is a diffeo-
morphism; i.e., £ is a diffeomorphism on a nbhd of U,. Moreover, since X’
is paracompact, there is a locally finite covering of X’ by open sets Wy, W, . ..
in Y which is a refinement of the open covering fi(U,), fo(Us), ... By re-
placing U, with f;~Y(W,), where W, = U,, we may assume that W, = f,(U)).
Let W =%, W, and

F={yeW|ifye W,n W,, then f~'(3)=/f;,""(»)}

clearly contains X. Moreover, we claim that F contains an open nbhd G of X in
Y. For each x in X, there is an open nbhd G, which intersects only finitely many
Ws, say Wi, ..., W, since the covering { W} is locally finite. By making G,
even smaller we may assume that x is in W, n---N W, Now f; ~* is a local
inverse for f near x. Thus there is an open nbhd of x, A, such that
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fi, " HH =---= f;,"'|H using the uniqueness of inverse functions and the
fact that f;, '(x) =---= f;,"(x). Then G, = H N G, is an open nbhd of x
in Yand G, < F. Let G = Uyex G

Now define g: G~ Y by g(p) = f, "Hy) if y is in W,. g is well-defined
since G < Fand smooth since locally g = f;~! for some i. Also f-g = id; so
g is a diffeomorphism. Let V' = g(G). [

Lemma 7.4. Let EZ. X be avector bundle. Let V be an open nbhd of the
zero section in E. Then there exists a diffeomorphism h: E — V (into) such that

weh = .

Proof. Choose a metric ¢ on E. The sets B(a) = {ve E, | t(x)(v, v) < a}
form a nbhd basis of 0 in E, where aisin R*. Since V' N E, is an open nbhd
of 0 in E,, there is an a > 0 for which B,(a) < V' N E,. Since ¢t is smooth we
may choose, by a partition of unity argument, a smooth function 8: X —
(0, 1) such that B,(8(x)) < ¥V for all x in X. The mapping h(v) =
S)w/(1 + 1(x)(v, v))*'%2 where x = #(v) is a diffeomorphism of E into V
whose inverse is given by w i 8(x)w/(8%(x) — t(x)(w, w))*? where x =
a(w). [

Combining the last two results we have:

Proposition 7.5. Let E™, X be a vector bundle and let U be an open
nbhd of the zero section X, in E. Suppose that X is a submanifold of a smooth
manifold Y and that f: U— Y is smooth and satisfies:

@) f|Xo: Xy — X is a diffeomorphism.

(b) (df)y: ToE — Ty, Y is an isomorphism for every x in X,. Then there is
a tubular nbhd of X in Y.

Proof. By Proposition 7.3, there is an open nbhd V of X, such that
flV:V— Y is a diffeomorphism into. Let 2: E— V be a diffeomorphism
guaranteed by Lemma 7.4. Then Z = f-A(F) is a tubular nbhd of X in ¥
with projection mapping =’ = foh-m-(f-h)~*. [

Lemma 7.6. Let X be a n-submanifold of R?, then there is a tubular nbhd
of X in R”.

Proof. Equip R? with the standard inner product. Let E,, be the (p — n)-
plane of normal vectors to X at x. The plane through the origin E, — x has
a vector space structure which we giveto E,. Let £ = | J,ox E,. Then E is a
vector bundle over X, since, in effect, £ is just the complementary subbundle

o toTX in TxR? = X x RP. (See I, 5.12). The explicit construction of E gives

" a smooth mapping f: E— R® such that f|X, = f|X = idx. To show the
existence of a tubular nbhd we will apply Proposition 7.5. So we must show
that (df).: Tx E — T, R” is an isomorphism for all x in E. Since dim T.E =
dim 7 ,R” we need only show that Ker (df), = 0. Let v e Ker (df),. Since
T.ExT.XDTLE, v=1v, + vy, where vy e T, X and v, € T, E,. (df),v =0
implies that »; = 0 since f|X = idy. Represent v, by a curve ¢ in E.. f+c is
then just the curve ¢ in E, when E, is thought of as in R”. Thus (df),(vy) = 0
implies that v, = 0. [J
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Proof of Theorem 7.2. Using the Whitney Embedding Theorem (Proposi-

tion 5.9), we may assume that ¥ < R® for p = 2dim ¥ + 1. Thus X is a = |

submanifold of R* and by Lemma 7.6 there is a tubular nbhd of X in R?
which we call Z'. Let E, be the set of vectors normal to X and tangent to Y
at x for x in X and let £ = (,cx E,. E 1s a vector bundle over X since it
is just the complementary subbundle to 7X in 7% Y. As in Lemma 7.6, this
explicit construction of E gives a smooth mapping f: £ — R” such that
f|Xo = f|X = idx. Let Z” be a tubular nbhd of ¥ in R” with projection
map =", Then U = f~Y(Z’' N Z") is an open nbhd of X, in E. Consider
w"+f: U~ Y which is a smooth mapping. #"-f|X = idy since X = Y and
7| Y = idy. We wish to apply Proposition 7.5 to obtain the desired result. In
order to do so we need to know that (dn”+f), : T,.E —T;, Y is an isomorphism
for all x in X. Since dim E = dim Y we need only show that Ker (d="-f),
= {0}. Now T, F =T, X&ET.E, Since n"-f|X = idx we have to show
that if v is in T.E, and (dn"-f).(v) = 0, then v = 0. Let ¢ be a curve in E,
representing v, then f-c is a curve in R? whose tangent at 0 is tangent to Y
at x. Since »"| Y = idy, n"+f+c is a curve in ¥ whose tangent at 0 is the same
as the tangent to f-¢ at 0. Thus (d="+f)(v) = 0 implies that v = 0. []

Remark. 1f one traces through the proof of the Tubular Nbhd Theorem,
one sees that the tubular nbhd Z is always isomorphic (as vector bundles)
to a complementary subbundle of TX in TY|X. Such a complementary
subbundle is always isomorphic to the quotient bundle N where N, =
T.Y /T X for each x in X. N is called the normal bundle to X in Y and N, is
called the normal space to X in Y at x. Thus a tubular nbhd is a realization of
the normal bundle as an open nbhd of X in Y.



Chapter 111

Stable Mappings

§1. Stable and Infinitesimally Stable Mappings

Definition 1.1.
(a) Let fand f' be elements of C*(X, Y). Then fis equivalent to f' if there
exist diffeomorphisms g: X — X and h: Y — Y such that the diagram

commutes.
(b) Let f be in C*(X, Y). Then [ is stable if there is a nbhd W; of f in
C=(X, Y) such that each ' in W; is equivalent to f.

In other words f is stable if every nearby mapping f’ is identical to f,
after suitable changes of coordinates, both in the domain and the range of /.

We now describe an alternative formulation of stability of mappings.
Recall that a group G acts on a set A if there is a function G x 4 - A,
written as (g, a) — g-a, with the properties that (gg')-a = g-(g’-@) and
e-a = afor every g, g’ € G and a € A where e is the identity in G. The orbit of
a in A is the set

Ga={becA|b=g-a forsome gin G}

In the case at hand, let G = Diff(X) x Diff(Y) where Diff(X) (resp.
Diff( Y)) is the group of all diffeomorphisms on the manifold X (resp. Y)
and let A = C*(X, Y). Then there is a natural action of G on 4 defined by
(g. W)+f = h-f+g~! (ie, change of coordinates) where ge Diff(X), he
Diff(¥), and fe C*(X, Y).

Lemma 1.2. Let f be in C*(X, Y). Then f is stable iff the orbit of f in
C*(X, Y) under the action of DIff(X) x Diff(Y) is an open subset.

We recall the following:

Lemma 1.3, Let X and Y be smooth manifolds with g X — X a diffeo-
morphism. Then g* : C*(X, YY)~ C*(X, Y) given by i+ f-g is continuous.

Proof. Since g is proper, Note (2) after 11,3.9 applies. [
72
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Proof of Lemma 1.2. Let g be in Diff(X) and 4 be in Diff(Y). Let
Yo' C°(X, Y) = C=®(X, Y) be induced by the action of Diff(X) x
Diff(Y) on C*(X, Y). Thus y,.n = (A)«(g~H* and is continuous by the
above Proposition and 11,3.5. Moreover vy, is a homeomorphism since
Yot Yo = o= v

Now observe that /' is in the orbit of fiff /” is equivalent to f. Also the
orbit of f is open iff there is an open nbhd of C*(X, Y) contained in the
orbit of £ (since any such nbhd can be translated by an element of Diff(X) x
Diff(Y); i.e., ye.m» to an open nbhd around any other point in the orbit).
These two facts taken together immediately yield the proof. [I

This definition of stability proves difficult to apply in practice. However,
using a criterion suggested by René Thom, John Mather has produced a
theorem which provides a truly computable method for determining whether
or not a mapping is stable. We now present that criterion.

Definition 1.4. Let f: X — Y be smooth.
(a) Let my: TY — Y be the canonical projection, and let w: X —TY be
smooth. Then w is a vector field along f if the diagram

TY

commutes. Let CP(X, TY) denote the set of vector fields along f.
(b) f is infinitesimally stable if for every w, a vector field along f, there is a
vector field s on X and a vector field t on Y such that

(*) w = (df)-s + t-f
where (df ) : TX — TY is the Jacobian mapping of f.

Remark. Vector fields along f can be identified with sections of a certain
vector bundle. Let £ be a vector bundle over Y. Define f*E = Upex Ermy
(disjoint union) and let = : f*E - X be the obvious projection. We claim that
f*E can be made into a vector bundle over X, the pull-back bundle of E by f,
as follows. Let V be an open nbhd of Y such that E|V is trivial, say E|V ~
V x R¥. Then make f*E into a smooth manifold by demanding that
SfHE|f~YV) ~ f~YV) x R*. That the transition functions are smooth fol-
lows from the fact that E is a smooth vector bundle over Y. Now let s be a
section of f¥(TY). Then s(x) e f*(TY), = Ts Y so s may be thought of as a
smooth mapping of X — T'Y such that =y-s = f, (i.e., can be identified with
a vector field along f). The converse is also clear. Thus we can identify
CP (X, TY) with C*(f*(TY)).

Theorem 1.5. (Mather). Let X be a compact manifold and f+ X — Y be
smooth. Then f is stable iff f is infinitesimally stable.
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Note. 1t is sufficient to assume that f'is a proper mapping and to drop
the assumption on X.

The proof of this theorem will be given in Chapter V. For the moment we
will content ourselves with explaining what originally motivated the intro-
duction of the concept of infinitesimal stability. This will require a sketchy
development of the theory of Frechet manifolds.

Definition 1.6. Let V be a topological vector space, i.e., a vector space
with a topology in which addition and scalar multiplication are continuous.
Let || : V— R be continuous and satisfy for all x and y in V:

(@ [x] =0

) |x]=0iff x=0

© |x + [ < [x| + [yl

(d) |x| = |—x]| (not |Ax] = |X||x]| for arbitrary A € R).

We can now define a metric d on V by setting d(x, y) = |x — y|. If V is com-
plete with respect to this metric, then it is a Frechet space.

Notes. (1) The norm on a Banach space satisfies axioms (a) through (d),
so every Banach space is a Frechet space.

(2) Let ¥, and ¥V, be Frechet spaces. Then L(Vy, V,), the set of all con-
tinuous linear mappings of V; into ¥V, is a Frechet space if we define |f] =
SUP|x =1 | f(x)]. (This is well-defined by the linearity and the continuity of ||

and f.)

Definition 1.7. Let V, and V, be Frechet spaces and U an open subset of
Vi. Let f: U~ V, be continuous and p be a point in U. Then fis differentiable
at p iff there is a linear mapping A,: Vi — V; such that

{t]—0

for every v in V.

Note that the linear mapping A4, is unique if it exists. Thus we may define
(df), = A, when fis differentiable at p.

S 1s differentiable on U if f is differentiable at p for every p in U. fis k-
times differentiable it (df): U— L(Vy, V) defined by (df)(p) = (df), is
(k — 1)-times differentiable. fis smooth if fis k-times differentiable for every
k.

We note that the chain rule holds for differentiation on Frechet spaces.

Definition 1.8. Let X be a Hausdorff topological space. Then X is a
Frechet manifold if

(a) there is a covering {Uy}qer 0f X by open sets.

(b) for each o in I there exists a homeomorphism h,: U, — V, with V,
an open subset of some Frechet space. (The h,’s are called charts.)

(c) for every o, Bel, hy+hy~ 1 is smooth where defined.

If 'V, is contained in a Banach space, then X is called a Banach manifold.
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As in the ordinary manifold case, it is possible to define the tangent space
to a point p on a Frechet manifold X. Let S,(X) be the set of smooth curves
¢: R — X such that ¢(0) = p. (Note that smooth mappings between Frechet
manifolds are defined exactly as in the finite dimensional case.) Define ¢;
is tangent to ¢, at p if for every chart h,, (dh,-c1)o = (dh,-¢3)e. Since the chain
rule is valid, “is tangent to” is a well-defined concept. Finally, let 7, X = set
of equivalence classes of S,(X) under the equivalence relation ““is tangent
to.”” As in the finite dimensional case 7,.X is a vector space.

Note that a smooth map /: X — Y between Frechet manifolds induces a
well-defined linear mapping (df),: TpX —> Ts» Y just as in the familiar case
of Chapter I.

The following proposition will present our basic examples of Frechet
spaces.

Proposition 1.9. Let X be a compact finite dimensional manifold. Then

(a) C*(X, R) is a Frechet space,

(b) if E is a vector bundle over X, then C*(E) is a Frechet space, and

(c) let f: X — Y be smooth, then CF(X, TY)—the set of vector fields
along f—is a Frechet space.

It is understood that in each case the topology induced by the Irechet
“norm” is the Whitney C* topology.

Proof.
(a) Cover X be a finite number of open sets U, where U, is contained in
a coordinate patch. This is possible since X is compact. Let g: X — R be

smooth. Define
o181
8x§ (u)l }

Then define | g|, = >, |glxY« and, finally, define

|l = sup{ »

‘LLEUa 18l <%

_ < | gl .
el = 2, F Tl
It is now an easy exercise to check that C*(X, R) is a Frechet space with ||
defined in this way.
(b) Choose the U,’s so that E|U, is trivial. Then let the Frechet norm
|+].Y« be the supremum over the Frechet norm of the coordinate functions.
Then continue as in (a).

(¢) Since CP(X, T'Y) can be identified with C*(f*TY), the result follows
from (b). (See the Remark after 1.4.) []

We note that one gets different metrics on C*(E) for different choices of
U, but the underlying topology is the same, and that this underlying topology
is just the one induced on C*(E) from the Whitney C © topology on C °(X, E).

Proposition 1.10. Let X be a smooth manifold. Then DIff(X) is an open
subset of C*(X, X) and hence a Frechet manifold. (For simplicity in the proof,
we assume that X is compact.)
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Proof. By 11, Proposition 5.8 there is a nbhd of f which consists of 1:1
immersions. Let g: X' — X be a 1:1 immersion and X° a connected com-
ponent of X. g(X°) is closed since X is compact, while it is open since g is a
submersion. So g(X°) is a connected component of X. We claim that
g: X% — g(X°) is a diffeomorphism; this is enough to prove the proposition,
Now (g]X°)~* exists since g is 1:1. Also, at each point of g(X°), (g| X%~ !is
smooth by the Inverse Function Theorem. So g is a diffeomorphism. []

The following theorem shows our basic reason for studying Frechet
manifolds.

Theovem 1.11. Let X and Y be smooth manifolds with X compact. Then
C>(X, Y) is a Frechet manifold.

Proof. 1t is easy to check that C®(X, Y) is a Hausdorff space. Let / be
in C*(X, Y). We wish to produce an open nbhd of f, U,, which is homeo-
morphic to an open subset V;, of a Frechet space. We do this via tubular
nbhds. Let X; = graph(f) < X x Y. X, is a submanifold of X x Y
so we may apply the tubular nbhd theorem (II, 7.2) to find a tubular nbhd Z
of X, with projection 7. V; will be an open nbhd of the zero section in C*(Z).

Since 7:Z - X, is smooth =, : C*(X,2Z) - C*(X, X;) is continuous
(11, Proposition 3.5), so that (m,) ~}(Diff( X, X)) is an open subset of C (X, Z).
(Apply Proposition 1.10.) Since C ®( X, Z) is an open subset of C*(X, X x Y)
= C*(X,J°(X, Y)) we see that U; = (j) " (my) " }(Diff(X, X;)) is an open
nbhd of fin C=®(X, Y). To define V; we let mx: X x Y -— X be projection.
The mapping (7x)s : C*(Z) — C*(X,, X) given by s > 7.5 is continuous
since the topology on C®(Z) is the topology induced from C*(X,, Z).
(Again apply II, Proposition 3.5.) Thus V; = (7x) ~*(Diff(X,, X)) is an open
nbhd of the O-section in C*(Z).

Next we define h,: U, — ¥, by h(g)(x, f(x)) = jog-(m-j°) " (x, [(x)).
Note that =-j°%: X — X, is a diffeomorphism since g is in U, so that
hi(g): X; — Z is well-defined. Since =-h,(g) = idx,, h,(g) is actually a section
of the vector bundle Z. Finally =x+/,(g) = (7-j°)~! which is in Diff(X;, X)
so that 7,(g) is in V,. To see that A, is a bijection, define k;: V; — U, by
ki(s)(x) = my-s+(mxs) " (x) where ny: X x Y— Y is projection. Since
mjO%(s) = (mx-s)~! we see that k,(s) is in U,. It is an easy exercise to show
that k;, = h,~ L.

Since our reason for introducing Frechet manifolds was just to motivate
the criterion of infinitesimal stability, we will leave the details of showing that
h; is a homeomorphism and that /,-h4,7 ! is smooth (where defined) to the
“interested” reader. [

Now suppose that the Implicit Function Theorem were true for smooth
functions between Frechet manifolds. Then consider the mapping

v, : Diff(X) x Diff(¥) — C*(X, ¥)

given by (h, g) —g-f~h~*. Im y, is the orbit of fin C*(X, Y) under the
action of Diff(X) x Diff(Y), so a reasonable criterion for the stability of f
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would be that y; be a submersion. (Using Lemma 1.2.) In fact we would need
to know only that y, is a submersion at the identity e = (idy, idy), since then
Im y, would contain an open set and, as we saw in the proof of Lemma 1.2,
this would imply that Im y, is itself open. We claim that f is infinitesimally
stable iff (dy;), is onto. To see this we need to identify the spaces

T(Diff(X) x Difi(¥)) and T,C*(X, Y).

Lemma 1.12. Let t v f, and t —> g, be smooth curves in C*(X, Y) with
fo = go. Then f, and g, are tangent at t = O iff for each p in X, the curves in Y
t — f(p) and t > g(p) are tangent at t = Q.

Proof. Let h = f, =g, and X, = graph{(h) = X x Y. Let Z be a
tubular nbhd of X, in X x Y. As we saw in the Proof of Theorem 1.11,
nearby functions to f can be identified with sections in C*(Z). So for ¢ small
we can think of 7 +> f; as a smooth curve of sections in C*(Z). The Frechet
derivative of ¢t +— f; at t = 0 is given by

@) = (Lim Bl gy = i L2 =P,

7] 7]

So (df),(1) = (df,}dt(p))|,-o. Writing the same for g concludes the proof of
the Lemma. []

Proposition 1.13.
(@) T,C*(X, Y) > C(X, TY)
(b) Tia, DIff(X) = C=(TX).

Proof. (b) follows immediately from (a) since
T4, Diff(X) = Tiq, C™(X, X) @ CE(X, TY) = C*(TX).

To prove (a) let w be in T,C (X, Y) and let t — f; be a curve representing w.
Define w': X —TY by w(p) = (dfy/d{(p))|;=o- By the last Lemma, this
definition is independent of the choice of curves f;. Using the identification of
functions f; with sections of C*(Z) we see that wy-w’ = f, so w' is in
CP(X, TY). The smoothness of w’ is left as an exercise. Lemma 1.12 also
shows that w — w’ is 1:1. To show that this map is onto, it is sufficient to
work locally. Let w’ be in C/°(X, TY). For each p in X choose a curve
t — fi(p) which represents w'(p) and do this so that f,(p) is jointly smooth in
p and t. (This can be done by integrating the vector field. See I, §6.)

The curve ¢+ f; generates a section w in 7,C*(X, Y). Linearity of this
mapping of CFA(X, TY) — T,C*(X, Y) follows from Lemma 1.12 and the
pointwise linearity of vectors in TY. []

Thus (dy;), : TL(Diff(X) x Diff(Y)) — 7,C*(X, Y) can be identified
with a mapping o; @ B,: C*(TX)D C*(TY)— CP(X,TY).

Theorem 1.14. In the notation above, «;: C*(TX) — C#(X, TY) is given
by s+> —(df):s and B;: C(TY)— CP(X, TY) is given by t+>t-f. Thus
infinitesimal stability reduces to the following criterion: for every vector field w
along g, there exist vector fields s on X and t on Y suchthatw = (df)+s + t-f.
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Proof. Let s be in C*(TX). Let &: Diff(X) — C*(X, Y) be given by
hi>foh=*; so (d&),, = o Let t—h, be a curve in Diff(X) based at idy
representing s. Then o (s) = (d&);4.(s) is represented by the curve ¢+ f+h,~ .
Thus

d 1 . dh,~1
Ei(.f’ht )lt:O*(af)' dr lizeo

by the chain rule and the pointwise definition of dh,~'/dt given by Lemma
1.12. To compute (dh, ~/dt)|,_ o, we consider the mappings A : R — R? given
by t+ (f,¢) and I": R — X given by I'(u, v) = Ak, *(p) where p is some
fixed point in X. Clearly I"-A(z) = p for all ¢. Using the chain rule we see
that

T &r dn, dh,
0_571;(0’0)+51;_(0’0)_ dt (P) t=0+ dr (p) o

since hy = ho ™t = idx. Thus (dh,~/dt)|;=o = —s and a:(s) = —(df)+s. The
computation of B, is similar and is left as an exercise. ]

To summarize, Mather’s criterion for stability of a mapping, namely,
infinitesimal stability, arises naturally when C*(X, Y) is viewed as a Frechet
manifold. Unfortunately, it is known that the Implicit Function Theorem is
not true for Frechet manifolds, so the equivalence of stability and infinitesimal
stability cannot be proved along these lines, although it can be proved.

For a counter-example to the Implicit Function Theorem on Frechet
Manifolds see J. F. Marsden, Hamiltonian Mechanics, Infinite Dimensional
Lie Groups, etc., Berkeley Notes December 1969, p. 50.

John Mather has given a correct proof of this fundamental theorem. We
will give a slightly modified version of his proof in Chapter V.

Exercises

(1) Identify all infinitesimally stable mappings of R — R. (Hint: Look at
Example B of the next section for inspiration.)

(2) Show that the mapping of R? — R? given by (x, ») > (x, ¥?) is infini-
tesimally stable.

§2. Examples

In this section we always assume that X is a compact, smooth manifold.

A. Submersions

Proposition 2.1. Let [ be a submersion of a manifold X to a manifold Y.
Then f is infinitesimally stable (and hence stable).
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Proof. We will show that C*(TX) — C(X, TY) given by s +> (df )-s is
onto, which trivially implies that fis infinitesimally stable. Since fis a sub-
mersion, (df).: T.X — Ty, Y is onto for every x in X. Hence Ker (df), has
constant dimension and forms a subbundle of TX by I, Proposition 5.11.
By I, Proposition 5.12 there exists a subbundle H complementary to Ker (df)
in TX. Clearly (df), : H, — T, Y is an isomorphism (onto) and thus induces
an isomorphism on sections, i.e., C*(H) — C*(TY). [I

Note. Proposition 2.1 gives no information about stable mappings in
C*(X, R), since a submersion of X into R would be a map without critical
points, but every differential function defined on a compact manifold achieves
a maximum and hence has a critical point.

B. Morse Functions

Proposition 2.2. Let f be in C*(X, R) where X is a compact manifold.
Then f is stable iff [ is a Morse function all of whose critical values are distinct
(i.e., if p and q are distinct critical points of [ in X, then f(p) # f(q)).

Proof. Let fbe stable. Then there is a nbhd W, of fin C*(X, R) in which
each function is equivalent to f. However, by 11, Proposition 6.13, Morse
functions g whose critical values are distinct form a dense subset of C *(X, R),
so W; must contain such a function g. Hence f is equivalent to g, but it is
easy to see that any function equivalent to a Morse function with distinct
critical values is itself such a function, so fis such a function.

To prove the converse we will use infinitesimal stability. Let f: X —> Rbe a
Morse function all of whose critical values are distinct. Let w: X — TR =
R x R be a vector field along f. Then w(x) = (f(x), W(x)) for every x in X
where w is in C*(X, R). Let s be a vector field on X. Then df+s(x) =
(J(x), (d)(s(x))) = (f(x), s[fI(x)) where s[f] is just the directional derivative
of the function 7 in the direction s. Let ¢ be a vector field on R. Then #(r) =
(r, #(r)) for all ¥ in R, where 7 is in C*(R, R). So ¢-f(x) = (f(x), {(f(x))) for all
x in X. The condition of infinitesimal stability reduces in this case to the
following: for every w in C*(X, R) there exists a vector field s in C*(TX)
and a function 7 in C*(R, R) so that

*) w = s[f]+ 1.

With the given assumptions on f'we show how to solve (*). Since f'is a Morse
function and X is compact, there is only a finite number of critical points of /.
Choose ¢ so that 7-f(x) = w(x) for every critical point x of f. This is possible
since the critical values are distinct. For instance use the Lagrange Inter-
polation Formula. To solve (*), it is sufficient to solve

(**) w = s[f]

for any w in C*(X, R) where w(x) = 0 whenever x is a critical point of f.
(Since the w in (**) can be taken to be w — ¢+f from (*).) Given such a w
we construct the vector field s.
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Around each point p in X, choose an open nbhd U, as follows:

(a) If p is a regular point, choose U, so small that (df), # O for every ¢
in U,. Choose a vector field s? on U, such that (df)(s”) # 0 on U,.

(b) If p is a critical point, then choose U, to be a coordinate nbhd with
coordinates xj,...,x, so that f|U, is given by ¢ + &x;,2 + - + &,x,2
where ¢; =---= ¢, = 4 1. (See II, Theorem 6.9.)

The collection {U,},.x forms an open covering of X. Since X is compact,
there exists a finite subcovering Uy, ..., U, corresponding to p,, ..., pp.
Let py, ..., pn be a partition of unity subordinate to this covering. Choose
vector fields s on X (1 < i < m) as follows:

(a) if p; is a regular point, then let

() ()5 ()
() =4 LI on Us,
0 off U,

(b) if p; is a critical point, then w(p;) = 0 and pyw = 7., h;x, for selected
smooth functions /; in the coordinates on U, given above. (See II, Lemma
6.10.) Moreover, the A;’s are compactly supported functions in U; since p;w is.

Let

& gy O
§; = = — on U
' 121 2 ax;i '
and extend it to be zero off U,.

Finally, define s = s; + - + §,,. Then s[f] = s1[f] + -+ s.[f]
In case p; is a regular point,

silf1 =4 s7l/]
0 off U; 0 off U,

)
M on Ui wp; on Ui
= = pw

since p; is zero off U,.
In case p; is a critical point,

S &y 6
silf1 =< 7/=% 2 ox;

(¢ + e1x12 + -+ &,%,7) on U,

0 off U;
_ Z e2hx; onlU; Z hix; on U,
= 4i=1 =44=1

0 off U; 0 off U;

= pw.
Therefore s[f] = piw + -+ ppw=w2r,p=w. [

Notes. (1) By definition stable mappings in C*(X, Y) always form an
open subset; Proposition 2.2 tells us that in the case of C (X, R) the stable
mappings also form a dense set. A natural question is ““ Are stable mappings
dense in C*(X, Y) for an arbitrary manifold Y?” The answer is unfortu-
nately ““no.” In Chapter VI we will give a counter-example. The general
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answer turns out to depend on the relative dimensions of X and Y of which
more will be said later.

(2) The stable functions in C *(X, R) have a particularly nice form, since
they are just the classical Morse functions. We see that such functions take on
only a certain type of singularity (i.e., have only non-degenerate critical points).
Moreover they are determined by this, and a certain condition on the set of
critical points (i.e., have distinct critical values). In general, it is true that
stable mappings take on only certain types of singularities; again, more will
be presented on this point in the sixth chapter.

C. Immersions (1:1)

Proposition 2.3. If X is compact and [ X — Y is a 1:1 immersion, then
fis stable.

Proof. We show that f is infinitesimally stable. With the given assump-
tions, Im f'is a submanifold of Y. A vector field w along f can be identified
with a vector field w on Im f, since f: X — f(X) is a diffeomorphism. Let ¢
be any smooth extension of # to all of Y. (To see that #w has a smooth exten-
sion, construct it locally and use a partition of unity argument on f(X).)
Then t+f = wef = w. So w = (df¥0) + ¢-f and hence f is infinitesimally
stable. []

Proposition 2.4. Let X be compact and assume that dim Y = 2.dim X +
1. Then f: X — Y is stable iff fis a 1:1 immersion.

Proof. We first note that any mapping equivalent to a 1:1 immersion is
also a 1:1 immersion. If fis stable, then there is an open nbhd W, of f in
C>(X, Y) in which each mapping is equivalent to f. By the Whitney Em-
bedding Theorem, there exists a 1:1 immersion in W,;. Hence fis a 1:1
immersion.

The converse is given by the last proposition. []

It is easy to see that not all immersions are stable.
(a) Consider S* — R2 given by

O L QD

This can be perturbed slightly to f”: S — R?2 pictorially represented by

O L. QD

or



82 Stable Mappings

It is clear that /" and f” are not equivalent to f since the number of self-
intersections is an invariant of equivalence. So the first problem is that the
self-intersections of f are not transversal.

(b) Consider S — R? given by the trefoil

OE™

Perturb f slightly to f": S* — R? given by

O— %

The number of self-intersections does not change (when counted with the
proper multiplicity) but still f'is not stable since the number of points in the
image where there are crossings changes. Note, however, that each self-
intersection of f is transversal.

So we find that even when dim X < dim Y and f: X — Y has no singu-
larities, there are still problems. It turns out that we need precise information
on how the image of X under f sits inside Y.

§3. Immersions with Normal Crossings

Note that we are still assuming that X is compact.

Definition 3.1. Let f: X — Y be smooth and [ : X® — Y* the restric-
tionof f X ---x f: X°— Y®to X®. (See 11, §4 for the notation.) Let AY*® =
{(y,...,y)e Y| ye Y}. Then [ is a mapping with normal crossings if for
everys > 1, f® F AYS.

It is easy to see that the two examples at the end of the last section are not
immersions with normal crossings, while the small perturbations are.

Proposition 3.2. The set of mappings of X into Y with normal crossings
is dense in C*(X, Y).

Proof. Let f: X — Y be an immersion. Let 8°:J%X, Y) — Y be the
multijet target mapping. Since f° is a submersion W* = (85)~1(AY®) is a
submanifold of J.°(X, Y). It is easy to check that fis a mapping with normal
crossings iff j°f ' W?*. So fis a mapping with normal crossings iff f satisfies
a countable number of multijet transversality conditions. Applying the
multijet transversality theorem and the fact that C°(X, Y) is a Baire space,
we have the result. [J
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Corollary 3.3. Immersions with normal crossings are dense in the set of all
immersions.

Proposition 3.4. Iff: X — Y is an immersion which is stable, then f is an
immersion with normal crossings.

Proof. Any mapping equivalent to an immersion with normal crossing
is an immersion with normal crossings. []

We shall now proceed to prove the converse of this proposition, but first
we need some preliminaries.

Definition 3.5. Let V be a vector space and let H,, . .., H, be subspaces
of V. Then H, . . ., H, are said to be in general position if for every sequence of
integers iy, ...,lswithl <i; <---<ig<r.

codim (H;, N---N H,) = codim (H},) + - - - + codim (H,).

Note. In the case r = 2, then H, and H, are in general position iff
H, +~ H, = V. For

dim (H, + H,) = dim H, + dim H, — dim (H, 0 H,)
= n — (codim H, + codim H, — codim (H,; N H.,)).

So dim (H; + H) = n iff codim (H, N H,) = codim (/) -+ codim (H).

Lemma 3.6. Letf: X — Y be an immersion with normal crossings. Choose
qgin Y. Let f~Y(q) = {p1, . . ., p;} all distinct points. (f~1(q) is finite since f is an
immersion and X is compact.) Then the spaces (df ), (T, X), ..., {df ), (T, X)
are in general position as subspaces of T,Y.

Proof. Choose a sequence of integers 7y, ..., 7#; such that 1 < i, <-.--
<ig<r Let H = (df)pl_j(Tpin) (1 <j<s) Now p=(py,....p,) is a
point in X® and f(p) =g =1(g,...,q) is in AY®. By the transversality
condition of normal crossings of f, we have that

T,V = (df)OT,X® + T;AYS = Hy ®---@ Hy + TAYS
Therefore

sedim ¥ = dim 7,Y*
=dmH, D --®H)+dmY — dim(H, D---P H,NTAY)

So codim H; +---+ codim H, = codim (H; @ - - @ H, " T;AY?). But
HO®  -©OHNT,AY =H,Nn---NH. []

Lemma 3.7. Let H,, ..., H. be subspaces of V in general position. Let
D = H,N---n H, Then there exist subspaces Fy, ..., F, of V satisfying

@V=DOF®@ OF

(b) Hi=D®D 2,4 F;

(© V=F®H.
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Proof. Let D; = (;,; H;. Choose a complementary subspace F; to D
in D; (I <7 < r). First note that dim F; = codim H,, since

dim F; = dim D; — dim D
= dim ¥ — codim (ﬂ H,) — dim ¥ + codim (H, N---N H)
it
= codim (H))
since the H,’s are in general position.
So

dim D +dim F;, +---+ dim F, = dim D + codim H; + ---+ codim H,
= dim D + codim (H, N---N H,)
(by general position)
= dim V (since D = Hy 0---N H).

Thus to show (a) we need only show that the sum D + F; +---+ F, is
direct. Suppose d + f5 + -+ -+ f, is in F; where f; in F; for 2 < j < r. Note
that each f; is in D; — D;so fyisin H; for i # j. Hence d + f5 + - - -+ f; is
in H. Now fFfi< D, — D=H,n---N"NH, — H Nn---Nn H,. Hence F; N
Hy, =0and thusd + fo +---+ 7. =0.

Suppose d + f1 +---+ f, = 0; then d + f, +---+ f, € F; and by the
above equals 0. By a simple induction argument we know that each f; = 0
(1 < i < r) and thus that d = 0.

To show (b) we just note that D < H; and that F;, < H, for i # j. So
H, > D®>;., F. But codim (D@ 2, F;) = dim F;, = codim H;. (¢)
follows from (a) and (b). [

We need two more preparatory lemmas, but first some definitions: let X,
be a submanifold of X.

(a) An X vector field s on X, is a section of TX | X,.

(b) s is tangent to X, if for every p in X, s(p) € T, Xy, = T,X.

Lemma 3.8. Let H,, ..., H be subspaces of R" in general position.
Regard each H; as a submanifold of R*. Let t; be an R™ vector field on H;
(1 < j < r). Then there is a vector field t on R™ such that for every j, t — t;
(restricted to H,) is tangent to H;.

Proof. Choose Fy, ..., F, as in Lemma 3.7. Choose an inner product on
R" so that D, F,,..., F, are mutually orthogonal subspaces. Define
m;: R" — H; to be orthogonal projection. View ¢, as a map of H, into R".
Let 7; be the vector field on R” given by 7, = ¢;+=;.

Let {;, =1, — m;+f; (1 < j < r). {; is the normal component of 7, to H,.
Indeed, #;{; = =;f; — =%, = 0. since 7> = =;. So Im ({;) is in F;. Define
t =10 + .-+ L. We claim that ¢|H; — ¢; is tangent to H;. It is sufficient
to show that #»,(r — t,) = t — t; on H,. Note that #,({)) = {, for i % j since
Im (§) © F, © H;and 7;|H; = idy,. Hence on H,

m(t — ) =t —{ — mi,
=1t — 1 + mf; — mi;
=1t —t
since t; = #; on H;. [}
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Definition 3.9. Let Y be a manifold with submanifolds Y.,..., Y,.
Suppose ge Yo, n---NY,. Then Y4,..., Y, are in general position at g if
T,Y1, ..., 1,Y, are in general position in T Y.

Lemma 3.10. Assume that the submanifolds Y, ..., Y, of Y are in general
position at a point q. Then there exists a nbhd W of qin Y, a chart ¢ : W — R"*
and subspaces H,, ..., H, such that Y, W = ¢"*(H)) (1 < i < r) where
n = dim Y.

Note. This lemma says that in a nbhd of a point of general position,
the submanifolds Y3, ..., ¥, can be simultaneously linearized.

Proof. Let m; = codim (Y;) in Y. There is a nbhd W* of g and functions
ﬁ,l’ . "ﬁ'mi such that

}’iﬁ Wt = {pEW’]ﬂ,l(p) ="'=ﬁ,mi(P) =0}

since ¥;is a submanifold of Y. Let W = M-, W'. By general position, we
know that

codim (T, Y, N---NT,Y,) = codim (7,Y;) +- - -+ codim (7, Y;)

=my +:--+ m < n.

Let/=n —~m; —---— m, Consider the functions {f; ;} <i<na<jsmy- The
number of such functions is m; + -- -+ m,. We claim that (df;), form a
linearly independent set in T} Y. Clearly the subspace of 7,Y annihilated by
all the (df;,;), is just T,Y; n---N T,Y, which has dimension m; + - - -+ m,.
Since there are exactly that many (df; ;),, they must be linearly independent.

Now choose functions g,, ..., g, defined on U so that (dgy),, - - -, (dg),
(df..;), form a basis of T} Y. Consider ¢ : W — R" given by

D = (fl,l(p)a .. -aﬁ,m,@): gl(p)a MRS ] gl(p))

By construction the Jacobian of this map is nonsingular at g. Choose W a
nbhd of g, W < W on which ¢ is a diffeomorphism. In terms of this chart
Y, N Wis given by the linear equations f;; = 0 (1 <j < my). []

Theorem 3.11. Let f: X — Y be an immersion. Then f is stable iff f has
only normal crossings.

Proof. We assume that f has only normal crossings and prove that f is
infinitesimally stable. The converse has already been shown in Proposition
34. Letge Y and {py, ..., p,} = f~(g).- We claim that there exists a nbhd
W, of g in Y and nbhds U; of p; in X (1 < i < r) satisfying

@ UNU, =02 l<si<j=r

(b) f|U; is a 1:1 proper immersion.

© f(U) < W,

@ W) = Ui-1 Us

(e) W, can be chosen as small as desired.
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It is easy to choose V; satisfying (a) and (b). Also, there is a nbhd W, of ¢
such that f~Y(W,) < j-1 V;. W, can be chosen as small as wished, for if not,
there is a sequence of points X;, X5, ... in X — {JJ-; V; such that f(x;) con-
verges to ¢. Since X — |Jj_; V; is compact we can assume that {x;} con-
verges to some point p not in f~(g). The continuity of f guarantees that
f(p) = g, acontradiction. Let U; = VN f~}(W,). Now ¥; = f(U)(1 =i <
r) are submanifolds of ¥ since f|U;is a 1:1 proper immersion. By Lemma 3.6
Y., ..., Y, are in general position at g since f'is assumed to have only normal
crossings. Choose W, small enough so that it satisfies the conditions of
Lemma 3.10, i.e., Y,, ..., Y, are simultaneously linearized in W,.

The collection {W },.y form an open covering of Y. Hence f~ () is an
open covering of X. By the compactness of X, there is a finite subcover of X,
given by f~Y(W,,), ..., f (W, ). Choose a partition of unity p, (1 < i < m)
subordinate to this covering. Let w be a vector field along f. Then p;w is also
in CP(X,TY). Since w = >, pw, it is sufficient to show that the criterion
for infinitesimal stability holds for vector fields along f whose support lies
in a given f~Y(W,). So let w e C(X, TY) with supp w < f~1(W,) for some
fixed gq.

In W,, we have the submanifolds Y; = f(U,). Define ¢, a vector field on
Y; by t; = w+(f|U;)~*. This is possible since f|U;: U;— Y, is a diffeomor-
phism. Moreover each ¢; is compactly supported. By the general position
of Yq,..., Y, at ¢ and Lemmas 3.8 and 3.10, there exists a vector field 7 on
W, (which is compactly supported since each ¢ is compactly supported) such
that ¢#|f(U;)) — ¢ is tangent to Y. Extend ¢ to a vector field on Y by setting
t =0 off W, Consider o = w — ¢-f. " has the property that for every
pin U, o'(p) = o(p) — t(f(p)) is tangent to f(U;) at f(p). So there exists a
unique vector field s; on U, such that (df)-s; = «’ since fis a 1:1 immersion
from U, - f(U,). Moreover s, is compactly supported so there exists a vector
field s = s, 0on U, and s = 0 off £~ (). By construction w = (df)-s + t-f. [

Proposition 3.12. Let dim Y = 2dim X, X compact. Then f: X — Y is
stable iff [ is an immersion with normal crossings.

Proof. By the Whitney Immersion Theorem (Theorem II, 5.6) the
immersions of X -+ Y are open and dense, so stable mappings must be im-
mersions. Using Corollary 3.3 any stable map is an immersion with normal
crossings. The converse is given by Theorem 3.11. [

Having settled the question of stability for mappings without singularities
(i.e., submersions and immersions) we will now focus our attention on map-
pings with singularities. As our study of Morse functions suggested, in order
to understand singularities it is useful to describe the behavior of a function
in a nbhd of a given singularity by a fixed ““normal form.” In the next section
of this chapter we will investigate the stability of a class of mappings similar
to Morse functions and in doing so again demonstrate the usefulness of
normal forms.
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Exercise. Interpret what it means for an immersion of X — Y to have
normal crossings when dim ¥ = 2 dim X in terms of the number of self-
crossings.

In general show that if f: X — Y is a stable immersion then the number
of points in f~(g)—for any g in Y—is bounded by dim Y/(dim ¥ — dim X).

4. Submersions with Folds

Let X and Y be smooth manifolds with dim X = dim Y. Let k =
dim X — dim Y. Let /. X — Y satisfy j}f § S; where S; is the submanifold
of JI(X, Y) of jets of corank 1 as defined in I1, §5. Applying 11, Theorem 4.4,
we see that S,(f) = () 1(S,) is a submanifold of X with codim S,(f) =
codim S; = k + 1 (I, Theorem 5.4). Note that at a point x in S,(f),
dim Ker (df). = k + 1; that is, the tangent space to S;(f) and the kernel of
(df),. have complementary dimensions.

Definition 4.1. Let f: X — Y satisfy j*f & Si. Then x in Si(f) is a fold
point if T,.S.(f) + Ker (df), = T, X.

Definition 4.2. (a) A mapping f X — Y is a submersion with folds if the
only singularities of | are fold points. (Note that a submersion with folds, f,
satisfies j*f ' Sy.)

(b) Let f: X — Y be a submersion with folds. Then S,(f) is called the fold
locus of f.

Example. 1In the case Y = R, the set of submersions with folds is pre-
cisely the set of Morse functions on X.

The first obvious fact to observe about submersions with folds is:

Lemma 4.3. Let . X — Y be a submersion with folds, then f restricted
to its fold locus is an immersion.

The main theorem for this section describes a simple criterion to deter-
mine when a submersion with folds is stable.

Theorem 4.4. Let f: X — Y be a submersion with folds. Then f is stable
iff £181(f) is an immersion with normal crossings.

Notes. (1) The criterion that f restricted to its fold locus is an immersion
with normal crossings in the case that f is a Morse function is just the cri-
terion that f has distinct critical values.

(2) We shall actually prove Theorem 4.4 with ‘““stable” replaced by
“infinitesimally stable’” and appeal to the as yet unproved Theorem 1.5 of
Mather to obtain the desired result.
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Example. The following is an example of the necessity of this criterion

Figure 1

X is a sphere dented at the equator, Y is R?, and f: X -~ Y is the pro-
jection of R® onto R?, restricted to X. The singular set is a curve of fold points
consisting of the three circles S, S’, and S” while the image forms two circles
T and T". fis obviously not stable. For example, we can perturb the picture
above so that the image of § and S’ intersect transversely at isolated points.

Proof of Theorem4.4. Necessity. We know that f|S,(f) is an immersion
and—with the assumption that f is infinitesimally stable—we show that
f181(f) has normal crossings. Applying Theorem 3.11 it is enough to show
that f|.S,(f) is infinitesimally stable.

Let 7 be a vector field along g = f|5,(f). Extend = to a vector field 7
along f. (Check that this can be done locally and use a partition of unity
argument.) Since f is infinitesimally stable there exist vector fields { on X
and n on Yso that 7 = (df)({) + 7 + f. On Sy(f), we have r = (dg)(Z|S.()) +
n - g. Now {|S(f) = { + { where { is a vector field on S;(f) and ¢’ is in
Ker (dg) since by the definition of fold points 7X|S:(f) = T S,(f) @ Ker (dg).
Thus = = (dg)() + 4 - g and g = f|S1(/) is infinitesimally stable. []

Before proving the sufficiency part of Theorem 4.4 we shall need a normal
form theorem for the local behavior of a submersion with folds near a fold
point similar to II, Theorem 6.9 for Morse functions.

Theorem 4.5. Let f: X — Y be a submersion with folds and let p be in
S1(f). Then there exist coordinates x., ..., x, centered at p and y., ..., Vn
centered at f(p) so that in these coordinates f is given by

X1y oo X)) F> (X1, ooy X1, X2 F 00 £ X,9).
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Remark. From this local normal form we see the reason for the nomen-
clature “fold point.” Take the particularly simple example of 2-manifolds.
In this case the normal form is given by (x;, x5) —> (xy, x52). This map is
depicted in Figure 2. We first map the (xi, x;)-plane onto the parabolic
cylinder x; = x,2 in (x;, x,, x3) space by the map (xi, x3) > (xy, x5, X52)
and then follow this by the projection onto the (x,, x3) plane.

X3

$:()

Xg
Figure 2

Proof of Theorem 4.5. First choose coordinates y4, ..., y, centered at
f(p) so that the image of S;(f) under f is described by the equation y,, = 0.
Since f|S,(f) is an immersion the image is locally an m — l-dimensional
manifold so this choice of y’s is possible. (See I, Theorem 2.10.) Since
f:Sy(f)—>{yn = 0} is a diffecomorphism locally near p, we can choose
coordinates x;,...,x, near p so that x; =y, ffor 1 <i<m — 1 and
S1(f) is defined near p by the equations x,, =--- = x, = 0. In those coor-
dinates f has the form (x;, ..., X,,) > (X, . . ., X _1, f(X)). Of course S.(f)
is also described by the equations &f,,/éx; = 0 (m < i < n). So these partial
derivatives vanish when x, =.--= x, = 0. Now f,, itself vanishes when
X, == x, = 0 since the equation y,, = 0 describes the image of S,(f).
These two facts imply that

) = D hy(x)xx;
i,Jjzm

where h,(x) are smooth functions. (This is similar to II, Lemma 6.10).
Suppose that {#;(0)} is a nonsingular (#n — m + 1) x (n — m + 1) matrix.
The rest of the proof is similar to the proof of II, Theorem 6.9 about Morse
functions. In particular, using arguments as in II, Lemma 6.11 show that by
a change of coordinates in (x,, ..., x,) we can assume that f;, has the form
szi"'i xn2_ 0

We prove the supposition in the following lemma and in doing so empha-
size that point in the proof where the transversality hypothesis is used.

Lemma 4.6. The matrix h;(0) is nonsingular.

Proof. Suppose it were singular. Then we could make a linear change
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of coordinates in the variables x,, ..., x, so that this matrix is in diagonal
form with entries + 1 and 0 along the diagonal and at least one of the diagonal
entries is zero. Thus we could assume that f has the same 2-jet at 0 as the map

(*) (xla'"axn)%(x1>-°-’xm~1axm2i"'i xr2)

where r < n. Now the condition that jf ' {y S, at p is a condition on jf{(p)
and (djYf),, i.e., on the 2-jet of fat p. Thus if the transversality condition is
satisfied by jf at p it is satisfied by any other map with the same 2-jet at p
as f. For the mapping (*) the set S;(*) is given by the equations x,, = --
= x, = 0 and thus has codimension r —m + 1 <n —m + 1. If the
transversality condition were satisfied it would have codimensionn — m + 1;
so we have a contradiction and the matrix is nonsingular. []

We now isolate the main step in the proof of the sufficiency part of Theorem
4.4 with the following:

Lemma 4.7. Let p be a fold point of f and let v be a vector field along f
defined on some nbhd U of p such that |(S1(f) © U) = 0. Then there exists a
vector field { defined on a nbhd V = U of p such that + = (df () on V.

Proof. Choose coordinates xq, ..., x, centered at p and coordinates
Y1 . .., ym centered at f(p) satisfying Theorem 4.5. In these coordinates =
is just an m-tuple of smooth functions 7 = (7q, ..., 7,) (that is 7(x) =
>m o m(xX8/oy;) and a vector field { is given by an n-tuple of functions
({4, - - -5 o). Given the normal form of f in these coordinates solving the
equation = = (df )({) is equivalent to solving the system

Ti=Ci ISiSm——l
and
Tm:xm§m+"'+xn€n-

The first equations are trivially solvable and the last equation is solvable
providing that =, = 0 on the points x,, =--- = Xx, = 0. But these equations
describe the fold locus S,(f) N U and by assumption 7,, = 0 on this set. []

Proof of Theorem 4.4. Sufficiency. We assume that f is a submersion
with folds and that f|S;(f) is an immersion with normal crossings. We will
show that f'is infinitesimally stable. To do this let = be a vector field along f;
we must find vector fields { in X and % on Y so that = = (df)({) + 7 - f.
Since g = f]S;(f) is an immersion with normal crossings, g is infinitesimally
stable so there exist vector fields £ on S;(f) and » on Y so that 7|Si(f) =
(dg)(@) + n - g. Extend { to a vector field { on X and consider a new = =
7 — (df)(&) — 7 - f. This new + has the property that =|S,(f) = 0.

Applying Lemma 4.7 we can assume that around each point p in S;(f)
there is a nbhd ¥V of p and a vector field { on V so that » = (df)({) on V.
At points p not in S;(f) there exists a nbhd of p such that /| V' is a submersion.
On these nbhds the equation + = (df)({) is clearly solvable. Using a partition
of unity argument we obtain a global solution by patching. []



Chapter 1V

The Malgrange Preparation Theorem

§1. The Weierstrass Preparation Theorem

In this chapter we will prove a technical theorem about smooth functions
which will be used to prove Mather’s Theorem about stable mappings and to
establish the existence of normal forms for singularities of certain stable
mappings. In order to make the theorem palatable, we first state and prove
the corresponding but less complicated result for analytic functions of several
complex variables.

Theorem 1.1. (Weierstrass Preparation Theorem). Let F be a complex-
valued holomorphic function defined on a nbhd of 0 in C x C" satisfying:

(a) F(w,0) = whg(w) where (w,0)eC x C* and g is a holomorphic
function of one variable in some nbhd of 0 in C, and

(b) g(0) # 0.
Then there exists a complex-valued holomorphic function q defined on a
nbhd of 0 in C x C™ and complex-valued holomorphic functions XA, ..., A1

deﬁnedm nbhd of O in C™ such that

) (gF)(w, z) =W+ SkZd At for all (w, z) in some nbhd of O in
C x C™ and

(i) ¢(0) # 0.

Remark. The reader may well ask what such a theorem is good for.
Before we proceed we point out one trivial consequence. Given a nonzero
holomorphic function F of n + 1 complex variables, we may assume (by a
linear change of coordinates) that F = F(w, z) is in the form above. Then the
Weierstrass Preparation Theorem states that the zero set of F equals the
zero set of the function

k=1
wh 4+ z A(z2w
i=0o
which is just a ‘‘branched covering surface” over the z hyperplane.

We will actually prove a more general result.

Theovem 1.2. (Weierstrass Division Theorem). Let F, g, and k be as above
and let G be any complex-valued holomorphic function defined on a nbhd of 0
in C x C™ Then there exist complex-valued holomorphic functions q and r
defined on a nbhd of 0 in C x C" such that

(1) G =qF + r, and
(i) r(w, z) = DE=¢ row' for all (w, z) in some nbhd of 0 in C x C”

where each r, is a holomorphic function defined on a nbhd of 0 in C".
(iii) g and r are unique (on some nbhd of 0).

91
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Proof that Theorem 1.2 = Theorem 1.1. Let G(w, z) = w* and apply
Theorem 1.2. Setting A; equal to r; proves (i). To show that g(0) # 0, consider

w* = g(w, 0)F(w, 0) + r(w, 0)
= 4Ov. O)wig(n) + > r(O)w

Since both sides are analytic functions of w, we may use power series tech-
niques to conclude that ¢(0)g(0) = 1 and thus ¢(0) # 0.

Proof of Theorem 1.2 (iii). Uniqueness. Suppose
G=qgF +r=q,F+r,.

Then (g — g,)F = r;, — r. Fix z in C"; then r; — r is a polynomial of degree
<k — 1 in w and has at most & — 1 roots (including multiplicity). We shall
show that there is a nbhd of 0 in C" such that for every z in this nbhd
(¢ — g,)F has at least k zeroes when viewed as a function of w. Thus we can
conclude that r; = r and ¢ = ¢, (since F # 0 on a nbhd of 0).

It is clearly enough to show that F(-, z) has k zeroes. Let F(w) = F(w, 0).
Since the zeroes of a nonzero complex analytic function of one variable are
isolated, and F(0) = 0, there is a constant 8 > 0 for which F(w) # 0 when-
ever 0 < |w| < 8. Let e = infy,, -, |F(w)|. Since F is continuous there is a
constant ¢ > 0 for which [F(w,z) — F(w)| < ¢ whenever |z;| < o for
Jj=1,...,n where z = (z;,..., z,) and |w| = 3. Choose such a z and let
w) = F(w, z). Since

[h(w) — F(w)| < e < |F(w)] when [w]| =38

we can apply Rouché’s Theorem [see Ahlfors, Complex Analysis, p. 152]
and conclude that # and F have the same number of zeroes in the disk
|w| < 8. Since F(w) = wFg(w) on a nbhd of 0, we know that F has k-zeroes
(counting multiplicity) in this disk. [J

Definition 1.3. Let P,,: C x C™ x C¥ — C be the polynomial P,(w, z, A)
= wk + SE-L Awi where A = (Ao, . . ., Ag_1).

The heart of the proof of the Division Theorem lies in proving the theorem
for the polynomials P,.

Theorem 1.4. (Polynomial Division Theorem). Let G(w, z) be holomorphic
on a nbhd of 0 in C x C". Then there exist holomorphic functions q(w, z, X)
and r(w, z, ) defined on a nbhd of 0 in C x C" x C¥* satisfying:

@) Gw, z) = g(w, z, DP(w, ) + r(w, z, N), and

@) r(w, z, A) = w* + ¥4 ri(z, W' where each r; is a holomorphic
Sfunction defined on a nbhd of 0 in C* x CF¥.

Proof that Theorem 1.4 = Theorem 1.2. Let F and G be as in the hy-
potheses of the Division Theorem. Using Theorem 1.4 choose holomorphic
function gz, gz, gg, and rg satisfying

™ F=gqeP. +rr and G = qgPy + rs.
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Also rp(w, z, ) = >k=4 rF(z, A)w'. First we note that »,7(0) = 0and ¢(0) # 0;
for

Wkg(w) = F(W> 0) = qF(W’ O)Pk(W, 0) + VF(W, 0)
= gp(w, O)w* + El (O

Now apply a simple power series argument to both sides, recalling that
g(0) # 0.

Next let fi(A) = r7(0, A). We claim that det ((8f;/0A;)(0)) # 0. For let
z = 0, then

weg(w) = F(w, 0) = qpPy + 15
k-1 k-1
= q;(w, 0, /\)(w" + > /\iw") + > AW
i=0 i=0
Differentiate both sides with respect to A; and evaluate at A = 0 to obtain

k—1 aﬁ

_ % k j Y i
0= B, (w, O)w* + ge(w, )W’ + oA, Oyw'.

Matching coefficient on w! for i < j we see that (8£;/01)(0) = 0 and also
(8f;/oA;)(0) = —gy(0). So the matrix ((¢f;/2A,)(0)) is lower triangular and has
determinant equal to (— 1)*gz(0) ¢ 0 (shown above).

We now apply the Implicit Function Theorem (for holomorphic func-
tions) [10, p. 17] to insure the existence of holomorphic functions 6(z)
(0 <i=<k—1)satisfying

(@) r;7(z, 0(z)) = 0 where 0(z) = (0y(2), . . ., 0,_1(2)),
and

(b) 6(0) = 0 (since r,7(0) = 0).

Define g(w, z) = gr(w, z, 8(2)), and P(w, z) = P(w, 6(2)). Then

F(w, 2) = ge(w, z, 82))P(w, 6(z)) + re(w, z, 6(2))
= g(w, z)P(w, z).

Moreover G(0) = gr(0) # 0, so P(w, z) = F(w, 2)/g(w, z) on a nbhd of 0
inC x C™,
From the second equation in (¥*) we obtain

G(w, 2) = qo(w, 2, 0(2)P (2, Xz)) + re(w, z, 0(2))
= q(w, 2)F(w, 2) + r(w, 2)

where
qG(Wa Za 9(2))
w, z) = o
9 2) =56 2)
and
k-1

r(w, 2) = re(w, z, 0(2)) = > r(z, )W'.

i=0

Finally let r(z) = 1%z, 6(z)). 0
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Proof of Theorem 1.4. Given a holomorphic function G(w, z) we must
produce ¢ and r so that

G(w, 2) = q(w, z, )P (w, A) + r(w, z, A)

where r is of the form w* + S¥-4 ri(z, Iwi. We recall the following form of
the Cauchy Integral Formula:

G(W, Z) f (G(n7 Z)

where y 13 a simple closed curve in the complex plane with w in the interior
of y. Now note that for appropriately defined holomorphic functions s;,(w, ),

Pl ) = Por N = (= w) > s,

or

P~(77’ A) P;C(W', /\) < i
* K — ki
*) S Ty e T2 s o
Thus

1 G(”% Z) Pk(’?’ /\)
Gon D =5 ), o= WP v
(Using (*))

. 1 G(n, z)
= (5, s ) P

(L[ G2
- i=zo (Z;vymsi(% A) dn)w

if the appropriate integrals are in fact well-defined. Thus we should like to
set

1 G(, 2)
q0w, 2, ) = f Pl Ny — ) 7
and

N = 5 ,%&—ngi(n, N

But these integrals give well-defined functions as long as the zeroes of Py(n, A)
do not occur on the curve y for A near 0 in C*. Such a y is easily chosen. []

2. The Malgrange Preparation Theorem

The proof given in §1 of the Weierstrass Preparation Theorem can be
adapted to a corresponding theorem about real smooth functions, the
difficulties in the adaptation appearing in the Polynomial Division Theorem
(1.4). Our proof follows Nirenberg [41].
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Theorem 2.1. (Mather Division Theorem). Let F be a smooth real-valued
function defined on a nbhd of 0 in R x R™ such that F(t,0) = g(t)t¥ where
g(0) # 0 and g is smooth on some nbhd of 0 in R. Then given any smooth
real-valued function G defined on a nbhd of 0 in R x R", there exist smooth
Sfunctions q and r such that

(1) G =gF + ronanbhd of 0in R x R*, and

@Gi) r(t, x) = D¥z¢ r(x)t for (1, x) e R x R* near 0.

Notes. (1) The Malgrange Preparation Theorem which states that
there exists a smooth g with ¢(0) # 0 such that (gF)(z, x) = t* + >F=d L0t
follows from 2.1 in precisely the same way that Theorem 1.1 follows from
Theorem 1.2.

(2) In the complex analytic theorem g and r are unique; this is not
necessarily true in the real C* case. As an example, let F(f, x) =t — x
and G(¢, x) = 0. Theng; = 0 = r; and

— 2
e~ Ux* x

r2(t7 x) = 0 x

IV IA

are two pairs of g and r which satisfy the conclusions of the Division Theorem.
This is not surprising when one realizes that the proof of the uniqueness part
of the Weierstrass Division Theorem used methods that depended crucially
on complex variable theory (of one variable). It is possible to state a division
theorem for formal power series algebras and in this setting uniqueness also
holds. [See Zariski and Samuel; Commutative Algebra, Vol. I1, p. 139].

(3) For the case when k = 1, however, ¢ and r are unique; in fact, the
Mather Division Theorem follows from the Implicit Function Theorem.
By the Implicit Function Theorem (I, 2.4) there exists a unique real-valued
smooth function (z, x) such that F{)(t, x), x) = ¢t and $(0) = 0. Suppose
that G = gF + r, then

G2, x), x) = q((z, x), X)t + r(x).

Setting ¢ = 0, we see that #(x) = G@(0, x), x) is uniquely determined. Now
suppose that G = ¢, F + r also, then (¢ — ¢,)F = 0 and, in particular,
H((t, x), x)t = 0 where H=g¢g — q,. Now (¢, x) — (4(, x), xX) maps a
nbhd of 0 in R x R" onto a nbhd of 0 in R x R" so that H# = 0 on a nbhd
of 0 and g is also uniquely defined.

It is now easy to see how to prove the Malgrange Theorem in this special
case. Choose s as above and define r(x) = G((0, x), x) and ¢ = (G — r)/F.
We leave the verification that ¢ is a smooth function as an exercise.

(4) For the case of one variable ¢t (n = 0) the Malgrange Theorem is
trivial and g and r are uniquely defined. This is left as an exercise—use Taylor
expansions of order k.

(5) The proof of the Division Theorem given by Mather [26] yields a
somewhat more general result; namely, the choice of ¢ and r can be made to
depend linearly and continuously (in the Whitney C® topology) on F and G.
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This proof can be used to modify and extend Nirenberg’s proof [32] to
obtain these extra results. For our purposes the Division Theorem as stated is
sufficient.

(6) Mather also proves a global division theorem not just a local one [26].

As in the complex analytic case, the crucial theorem is the following:

Theorem 2.2 (Polynomial Division Theorem). Let G(t, x) be a complex-
valued function defined and smooth on a nbhd of 0 in R x R" Then there exist
smooth, complex-valued functions q(t, x, A) and r(t, x, A) defined on a nbhd of O
in R x R* x R satisfying:

) G, x) = q(t, x, /\)Pk(t A+ (2, x, A), and

@iy r(t, x, Ay = 1% + YF5 rix, N)t' where each r; is a smooth function
defined on a nbhd of 0 in R* x R,

Moreover if G is real-valued then q and r may be chosen to be real-valued.

Nore. The “moreover” part is obtained by equating the real parts of
both sides of equation (i) since Py is real-valued. Also each r; is easily seen
to be real-valued.

Proof that Theorem 2.2 = Theorem 2.1. This proof is word for word the
same as the proof that Theorem 1.4 = Theorem 1.2 with the single exception
that smooth is substituted for holomorphic throughout. []

We shall use the same idea to prove 2.2 as we used to prove 1.4 but first
we need an analogue of the Cauchy Integral Formula. This is provided by
Green’s Theorem from Advanced Calculus.

Let z = x + iy be a complex coordinate on R2 Then we can solve for x
and y in terms of z and Z (= x — iy); namely, x = 4(z + Z) and y =
(1/2i)(z — 2). Let f: C — R and define df/0Z so that the chain rule holds;
that is,

YT, Ly (T2
0z ox0z oyozr 2 oy

Now suppose that F: C— C is given by f + ig where f, g: C — R. Then

oF _of  .og ‘of  og of
%k = — A=A
) oz T lez 2((6x oy +’ay+ox
Thus dFjoz = 0 iff F satisfies the Cauchy-Riemann Equations iff F is holo-
morphic. It is easy to check that the standard rules of differentiation work

when differentiating with respect to z. We also make the convention that
dz A dZ = —2idx A dy.

Lemma 2.3. Let F:C — C be a smooth function (when viewed as a
mapping of R — R?). Let v be a simple closed curve in C whose interior is D.
Then for win D

F(w) = Q%;’ify ZF(Z) 2mff az( 2) dz A dz
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Note. If Fis holomorphic in D, then this formula reduces to the Cauchy
Integral Formula.

Proof. Let w be in D and choose ¢ less than the distance from w to y.
Let D, = D — (disk of radius ¢ about w) and y, = boundary D,. Now
recall Green’s Theorem for R2. Let M, N: D, — R be smooth and con-
tinuous on vy,, then
; ON oM
J de+Ndy—.U(§x—~ )

D¢

Ye

dx A dy.

Note that the formula still holds if M and N are complex-valued since we
integrate the real and imaginary parts separately. Apply Green’s Theorem and
(*) above to F' = f + ig and obtain

(*%) f Fdz :Jv (f + ig)dx + i dy) Zi”‘a—Fdx A dy

I

—H—dz/\d;

Finally, apply (**) to F(2)/(z — w). Since 1/(z — w) is holomorphic on D,,
9 ( F() \ _ (@F[oz)2)
oz -

zZ—Ww zZ—Ww

Thus
() _JJ__()dz/\w:J‘y _F(z) dr — ‘ F(Z)d J 7_1'?_(_2%‘;(!2

w z—w -
De
where S, is the circle of radius £ about w. Using polar coordinates centered

at w, one obtains

f F(Z) d J . F(w + zei)i do.

]
So letting ¢ — 0, we see that the RHS of (***) goes to

{ ZF——@TV dz — 2miF(w)

while the LHS converges to

oF , . dz A dZ
_[ = (@ —
D
(Note this last limit exists since 0F/9z is bounded on D and 1/(z — w) is
integrable over D.) Thus taking (***) to the limit proves the lemma. [J

Proof of Theorem 2.2. Let G(t, x) be a smooth complex-valued function
defined on a nbhd of 0 in R x R"; we need to show that for appropriate
choices of g and r, G = gP,, + r. Let G(z, x, ) be a smooth function defined
on a nbhd of 0 in C x R*® x C¥ so that G is an extension of G, that is,
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G(t, x, \) = G(t, x) for all real t. Then G = qP, + r (on C x R* x C¥)
where

1 [ G, x, ) dy (0G102)(n, x, ) dy A diy
q(w, x, 4) = 2mJ P N o — W) sz BN o —w

and

_ L[ Gax N L [[ el x ]
oo N = 5 | T s N+ | [ SRR s, N A d
D

if these integrals are well-defined and yield smooth functions. (This follows
from Lemma 2.3 as the calculations in Theorem 1.4 follow from the Cauchy
Integral Formula.) The first integral in the definition of both ¢ and r is well-
defined and smooth for the same reasons as for the corresponding integral
in Theorem 1.4. [

The problem lies with the second integrals since D may contain zeroes of
P,. But if it is possible to choose a smooth extension G of G so that 8G/éz
vanishes on the zeroes of P, and for real z, then we will have g and r well-
defined. Yet this is not enough, since ¢ and » must be smooth functions. Since
the integrands are bounded we can differentiate under the integral sign and
then quickly see that an appropriate condition for insuring that ¢ and r are
smooth is the existence of a smooth extension G of G such that 8G/8Z vanishes
to infinite order on the zeroes of P, and for z real. Thus the last detail—in
fact, the crucial detail—is to show the existence of such an extension. This
we shall now do.

Proposition 2.4. (Nirenberg Extension Lemma). Let G(t, x) be a smooth
complex-valued function defined on a nbhd of 0 in R x R". Then there exists a
smooth complex-valued function G(z, x, X) defined on a nbhd of 0 in C x R"™ x
C¥ satisfying

M) G, x, N = G(t, x) for all real t,

(2) G0z vanishes to infinite order on {Im z = 0}, and

(3) 8G|az vanishes to infinite order on {P,(z, }) = O}

As a first step in proving the Nirenberg Extension Lemma we recall a
more elementary extension lemma due to Emile Borel.

Lemma 2.5, Let fy(x), fi(x),... be a sequence of smooth functions de-
fined on a given nbhd of 0 in R"™. Then there is a smooth function F(t, x) defined
on a nbhd of 0 in R x R" such that (¢'Fot")(x, 0) = fi(x) for all 1.

Proof. Let p: R— R be a smooth function such that

Set

*) F(t, x) = E 7 ()

8
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where the u’s are an increasing sequence of real numbers such that
Lim,_. ., p, = c0. We will choose the y,’s so that F(z, x) is smooth on a nbhd
of 0 in R x R™ First observe that the RHS of (*) is well-defined for all ¢
(since for any given ¢ only finitely many terms are nonzero) and is a smooth
function of ¢ when ¢ # 0 (since for ¢ # 0 only finitely many terms are not
identically zero on a nbhd of r). Next choose a compact nbhd K of 0 in R”
contained in the common domain of the f;’s and let M, = sup..x | f(x)].
Now differentiate the terms on the RHS of (*) s times with respect to ¢; the
resulting series is dominated in K by

C Z (l )’ P(H’Zt)f“l Ml

where C, is some constant depending on p and its first s derivatives. Since
p(iyt) = 0 as soon as |7| > 1/u,, this series is itself dominated by

M,
C, z pp+s"
p=0 Mp+sD:

which will converge for all s if the g,’s tend toward infinity rapidly enough.
This shows that if the RHS of (*) is differentiated with respect to ¢ termwise
(s-times) the resulting series converges uniformly on R x K. The correspond-
ing result obtained by differentiating with respect to the x-variables is clear.
Suppose that you want to show that the series for (8/2¢%)(¢/0x,)f converges
uniformly. Let

Ialf

M"‘—sup

().

and proceed as before. Finally to do this for all possible mixed partials
simultaneously we use the diagonal trick of I, Proposition 4.8. That is, let

)|

Proceed as above choosing the u;’s and note that now the series for each
partial derivative converges uniformly on K and that this f is smooth on a
nbhd of 0. [J

Note. One can use Lemma 2.5 to show that for any power series about
0 in R™ there exists a smooth C® real-valued functions whose Taylor series
expansion at 0 is this given power series.

We will need another elementary extension lemma which is, in fact, a
special case of the Whitney Extension Theorem. [59]

Lemma 2.6. Let V and W be subspaces of R" such that V + W = R
Let g and h be smooth functions defined on a nbhd of 0 in R™. Assume that for all
multi-indices «

olal olel
Gax;g’ x) = o —(x) forall xin Vo W.
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Then there exists a smooth function F defined on a nbhd of 0 in R™ such that for
all o

o'l IR
Sl p 8x§ (x) ifxisinV

oxe lely
o' . ..
—a—);;(x) if xisin W

Proof. We observe first that it is sufficient to prove the lemma for

= (. For let F, be the extension for g — 4 and 0, then F = F, + h is the
required extension for g and 4. So we do assume that 2 = 0.

Next choose coordinates y;, ..., ¥, on R so that V is defined by the

equations y; =---= y, = 0 and W is defined by the equations y,,; =---
= y, = 0. This is possible since V' + W = R" Then set
© 1 6|¢z| 7
F(y) = 2 JL' F 5(0,.-.,O,yj+1,-.-,yn)p(ma| Zyiz)
1 =0 a0y =1
X=(a1, .. as0,..., o)

where p is the same smooth functions which appeared in the proof of the last
lemma and the sequence {y,};2 , is increasing to infinity. As in the last lemma
the u,’s can be chosen to increase rapidly enough to infinity to insure that F
is a smooth function on a nbhd of 0 in R™

We need only check that F has the desired properties. If y = (y4,..., ¥,)
is in W, then y,,, =---= y, = 0 and every term of (0¥ F/8y%)(y) contains
a factor of the form (8'"'g/oy")O0, ..., 0, ¥is15---» V). Since (0,...,0, yi,1,
...y 1Is In VN W that factor equals zero by assumption. Thus
(08 F|9y*)(y) = 0. On the other hand, if yisin ¥, theny, = .- =y, =0

and
8“" 1 y=0
‘/ P(/“‘Ial z Yi ) vy =my,=0 = {0 v ~ 0

o= 3 (555 0)
al 9y*

Thus

vy ==y, =0

Let B = (by,..., by). It is easy to see that if b, # a; for some / < j, then the
given term in the series is 0. In fact, the only nonzero term is (8'%g/ay*)(»).
So Fis the desired extension. []

Finally we need to solve formally an “initial value” problem for certain
partial differential equations.

Lemma 2.7. Let f(x) be a smooth complex-valued function defined on a
nbhd of 0 in R™ and let X be a vector field on R™ with complex coefficients.
Then there exists a smooth complex-valued function F defined on a nbhd of 0 in
R x R" such that

(a) F(O, x) = f(x) for all x in R*, and

(b) 0F|ot agrees to infinite order with XF at all points (0, x) in R x R™
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Proof. An obvious candidate for such a solution is the formal expression
o tX N tk k
F(t,x) = ¢ fz;oH X*f.

In fact, by differentiating the LHS of this equation term by term and evaluat-
ing at = 0 we see that (b) holds. Clearly (a) holds. The only problem is
that F need not be smooth. Now by the Borel Theorem (Lemma 2.5) we may
choose a smooth function F of the form

o ¢
F= }ZO 71 Pl XS

having the same power series expansion as F at ¢ = 0. This F will solve our
“initial value’” problem. [}

Proof of Proposition 2.4. The proof will be done by induction on k.
When k = 0, P(z) = 1, so we need only show that there exists a smooth
function G(z, x) such that G(¢, x) = G(t, x) for real ¢t and (8G|éz)(t, x)
vanishes to infinite order for real ¢. Let z = s + it. Then

.0 o .0

and the existence of such a G follows from the last lemma by taking X =
—i(0/0s).

We now assume that the case & — 1 has been proved and attempt to
prove the proposition for k. In particular, we will show that there exist
smooth functions E(z, x, A) and F(z, x, A) satisfying

(i) E and F agree to infinite order on the set {P,(z, A) = 0}

(ii) Fis an extension of G

(ili) 0F/oz vanishes to infinite order on {Im z = 0}

(iv) Let M = F|{Py(z, A) = 0}. Then 0M/0z vanishes to infinite order on
{0P,J0z)(z, A) = O}and

(v) 0F |0z vanishes to infinite order on {P,(z, A) = 0}.

First we show that the existence of £ and F is sufficient to prove the
proposition. Set u = P(z, A) = Pi(z, A), and let X' = (A4, ..., A_1). Then
consider the change of coordinates (z, Ag, A') > (z, 4, X’y on C x C x C*-1,
Recalling that P(z, ) = z¥ + 2 Az' we see that dufo)r, = 1 so that this is
a legitimate change of coordinates. In these new coordinates the hyper-
surface {P,(z, A) = 0} is given by the simple equation u = 0. The coup de
gréce is then administered by Lemma 2.6. By this lemma there exists a func-
tion G which agrees to infinite order with £ on u = 0 and to infinite order
with F on Im z = 0. (Note that ¥ = 0 and Im z = 0 are subspaces of R%*+2
which intersect transversely. Along with (i) this guarantees that Lemma 2.6
is applicable.) Properties (ii), (iii), and (v) then imply that G is the desired
extension of G.

Now to show the existence of E and F. First we assume the existence of F
and construct E. Consider again the coordinates (z, u, A) and notice that in
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these coordinates the vector field &/0z has the form 0/0z 4 (0P [0z)(9]ou).
Similarly, ¢/0z becomes ©/0z + (0P/0z)(0/éi). So our problem in these
coordinates is to find E(z, x, u, ') such that

(a) E = F to infinite order on {u = 0}, and

(b) (¢/6z + (0P|oz)(0[e#)E) = 0 to infinite order on the set {u = 0}.

Let X = —(0P/oz)~1(0]0zZ). (We will deal with the problem of the zeroes
of 0P[0z in a moment.) Then this problem can be reformulated in a form
analogous to Lemma 2.7, i.e. find a smooth function E satisfying (a) and

(b") 0EJ0Z = XE to infinite order on {u = 0}.

This admits the same sort of formal solution as Lemma 2.7; namely,

*) £ = > G salax MG,

where p is the same bump function used before. Now since dM/[0Z = O to
infinite order on the set {(0P[0z)(z, A) = 0} (assumption (iv)) we see that
X'M is a smooth function in z, x, and A’ for all /. Hence we can choose y;’s
which increase to infinity rapidly enough to guarantee that the RHS of (¥)
is a smooth function of z, x, v, and A. Thus the zeroes of 0P/éz cause no
problem and this E is then the desired function.

Thus to complete the proof we need to construct a smooth function F
satisfying (in the z, x, u, A’ coordinates)

(i) F(t, x, u, X') = G(t, x) for all real ¢,

(iii) ©F|0z = XF to infinite order on {Im z = 0}, and

@iv) Let M =F|{u =0} Then 9oM/0z =0 to infinite order on
{eP, oz = 0}.

Consider the hyperplane u = 0 and the change of coordinates A =
(A, oo X)) = (A /1, ..., Ac_1/k — 1) = X”. These conditions translate to
finding a smooth function M(z, x, A"} (which will be F restricted to {u = 0})
satisfying

(1) M(t, x, \") = G(t, x) for all real ¢,

(2) &M [z vanishes to infinite order on {Im z = 0}, and

(3) 0M oz vanishes to infinite order on {P,_(z, A") = 0}.

By our induction hypothesis such a smooth function M of the variables
z, x, and A” exists and we can view M as a smooth function of z, x, and A".
Finally we define F using M and (*); that is,

Fexwd) = 5 B amxime, x, x).

=0
Again since oM [0Z vanishes to infinite order when (0P/8z)(z, \') = 0 =
Py _1(z, A"), X'M is smooth in z, x, and X'. Thus the y;’s can be chosen so that
F is a smooth function satisfying (ii) and (iii). Also on {u = 0} F = M so
0F [0z vanishes to infinite order and F satisfies (iv). []

Thus we have proved the Nirenberg Extension Lemma and the Malgrange
Preparation Theorem.
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Exercise. Let /: R — R be a smooth even function. Show that there
exists a smooth function g: R — R such that f(x) = g(x?). Hint: Use the
trick used to prove Lemma 2.5.

§3. The Generalized Malgrange Preparation Theorem

Our purpose is to generalize the Malgrange Preparation Theorem to a
statement about certain local rings. We will only discuss rings which are
commutative and have a multiplicative identity.

Definition 3.1. Let X be a smooth manifold and let p be a point in X.

(a) Two smooth real-valued functions f and g, defined on nbhds of p, are
equivalent near p if f = g on some nbhd of p.

(b) Let f: U— R be a smooth function where U is some nbhd of p. Then
[f], = germ of f at p is the equivalence class of [ in the equivalence relation
defined in (a). Let C(X) be the set of all germs of smooth, real-valued func-
tions defined on a nbhd of p.

(¢) A local ring is a ring with a unique maximal ideal.

Lemma 3.2. C(X) is a local ring if the ring operations are given by
[f1, + (g, = [f + g1y and [f),+[g], = U], where f + g and fg are assumed
to be defined on domfndomg which is a nbhd of p. Let M(X) =
{Ifl, € C2(X) | f(p) = 0} Then M, (X) is the unique maximal ideal.

Proof. 1t is easy to convince oneself that these operations are well-
defined and that C°(X) is a commutative ring with multiplicative identity.
It is also a trivial exercise to see that .Z,(X) is an ideal in C;*(X). As for
unique maximality, let .# be any other ideal in C;°(X). Suppose [f], € 4 —
A X). Then [1/f], is defined since f(0) % O and therefore [1/f1,-[f], =
[M,e# So # = CP(X). Thus #J(X) is the unique maximal ideal in
X))

Note. We will sometimes omit the brackets when discussing germs,
and use the same symbols as for functions. The context should allay any
possible confusion.

Lemma 3.3. Let #,2(X) be the ideal generated by germs of the form fg
where f, g € M(X). Then LX) A,2(X) is a vector space (over R) canonically
isomorphic with T;* X. This isomorphism is induced by the mapping  : M (X) —
Ty X given by [f1, v (df )(p).

Proof. The facts that #,(X)/#,%(X) is a vector space and that i is well-
defined and linear are easy to verify. Equally easy to see is that i/ is onto.
For let x,, . .., x, be local coordinates on X based at p, and V be a cotangent
vector in 77X, so that v = (vydxy + -+ -+ Vdx,)|xzp I we let f(x) =
>, v;x; which is defined on a nbhd of p, then (df)(p) = v. Finally we show
that Ker ¢ = #,2(X). It is an easy calculation to show that .#,%(X) < Ker #.
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So let [f],€Kery. Since f(0) =0, f(x) = >k xfi(x) where f(0) =
(of/ox)(0) by 1I, Lemma 6.10. Since (df)(p) = 0, fi(0) = 0. Thus [f], is
in #2(X). 0

Lemma 3.4. Let ¢: X — Y be a smooth mapping with q = ¢(p). Then ¢
induces a ring homomorphism ¢* : C2(Y) — C(X) given by [f], — [f-¢],.
Moreover ¢ is locally (near p) a diffeomorphism iff $* is an isomorphism.

Proof. It is easy to see that ¢* is well-defined. To show that ¢* is a ring
homomorphism and that if ¢ is a local diffeomorphism then ¢é* is an iso-
morphism is also easy. (Note that (¢*)~! = (¢~1)*.) So we assume that ¢*
is an isomorphism. Clearly ¢* induces an isomorphism of A Y)/#2(Y) —
M X)|A,A(X) so that by Lemma 3.3 dim ¥ = dim X. Choose local co-
ordinates xi, ..., x, on X based at p corresponding to the chart 5. Let
[xi], = ¢*[A;], for some smooth functions 4;. Define

H:(dom hy N---N dom A,) — R

by H(y) = (hy(), ..., h(¥)). H is smooth and » = H-¢ on a small nbhd
of p. Applying the chain rule, we have (dn), = (dH),(d$),. Since (dy), is
invertible (dé), is 1:1. Apply the Inverse Function Theorem to see that ¢ is
a local diffeomorphism. [

Let % be a ring (commutative with identity) and 4 an abelian group
(with the group operation denoted by +). Then we recall that 4 is an %-
module if there is a mapping of Z# into the set of homomorphisms on A.
We denote the action of r in Z on a in A by ra and demand that the following
relations hold for all ry, 7, in # and a in A: (ry + ro)a = ria + raa,
(ryrg)a = r(rqa), rla, + ay;) = ra, + ra,, and 1-a = a. Note that if # is a
field, A4 is simply a vector space over #. Recall also that an Z-module 4 is
finitely generated over Z if there is a finite number of elements a,, ..., a,
in A such that each element ¢ in 4 can be written as a linear combination
a = ria, +---+ r,a, for some r’s in #. (Warning: In an arbitrary module
the linear combination need not be unique, even if the generating set
{ay, ..., a,} is minimal.)

We assume in what follows that the reader is familiar with such elemen-
tary notions as submodules, quotient modules, module homomorphism, etc.

We will need two lemmas about Z-modules.

Lemma 3.4. (Nakayama). Let # be a commutative local ring with
identity and let M4 be the maximal ideal in R. Let A be an R-module. Assume
that

(i) A is finitely generated, and

(ii) A = MA (= the set of sums of elements of the form ra with r e M

andae A.)
Then A = {0}.
Proof. Lete,,..., e, be a finite set of generators for 4 over #Z. We will

show that each e, = 0. First we may write ¢, = »,a, + - - - + w2,a, where
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each #; is in .# since A = # A. But since e, . . ., e, are a set of generators
we may also write a; = >}, ri;e;, Thus e, = X7, s.,e; where s;; =
>5-1 mry; is in . Using the Kronecker delta we have that 7., (8,; — si,)e;
= 0 for each k. This is a system of r linear equations in » unknownse, . . ., e,.
Now note that if the matrix (8;; — s;;) is invertible then the system of equa-
tions has only the trivial solution e; =---= e, = 0. Now a matrix D (over a
commutative ring with unit) is invertible iff det (D) is invertible in the ring.
(To review the theory of determinants of matrices over a commutative ring
with identity, see Chapter V of Hoffman and Kunze, Linear Algebra.) Now
by using the standard expansion of det (8;; — s;;) by permutations it is easy to
see that det (6;; — s;;) = 1 + s where s is in .#. Also, in a local ring, the
maximal ideal is precisely the set of noninvertible elements: Suppose ¢ is in
# ; then t is not invertible. For if ¢ were invertible then 1 = = would be
in .. Conversely if ¢ is not in .#, then ¢ is invertible, for the ideal generated by
¢ is not contained in .# so it must be all of #. Thus there is ¢’ in % such
that 7##" = 1. From this we may conclude that 1 + s (which is not in .#)
is invertible and, therefore, ¢; =---=¢, = 0. []

Remark. A more sophisticated way of formulating the last half of the
above argument is that the quotient ring #/.# is a field.

Corollary 3.5. Let A be a finitely generated #-module. Then A|.# A is a
Jinite dimensional vector space over the field Z#| M. Let ¢: A — A|H# A be the
natural projection and vy, . . ., v, a basis for this vector space. Choose e, . . ., e,
in A so that ¢(e)) = v;. Then e, ..., e, form a set of generators of A over .

Proof. Since the action of Z on A clearly induces an action of Z/.#
on A/# A we see that A/.# A is a module over the field #/.4; i.e. a vector
space. To show that dimg, , A/#A < o, let ay,...,a, be a set of
generators of 4 over # and let v be in 4/.#A. Choose a in A so that
¢(a) = v and choose r; in # so that ¢ = ria; +---+ ra,. Then v =
[rilé(ay) + - - - + {r.lé(a,) where [r;] denotes the equivalence class of r; in
R|A. Thus ¢(a,), ..., #(a,) form a set of generators of 4/.# A.

Conversely et vy, ..., v, be a basis for A/.#ZA with ey, ..., e, chosen as
in the statement of the corollary. Let B be the submodule of 4 generated by
e, ..., e, and let C be the quotient module 4/B. Since A is finitely generated
over #, C is finitely generated over #. Now A = B + .#A. Forif aisin 4,
then #(a) = [ryJv; +-- -+ [ralv,. SO0 a = rieq +---+ r,e, + 5 where 5 is in
MA. Thus C = A/B = (B + #A)B = .#(A|B) = #C. Use arguments
about cosets to check these equalities. Finally apply Nakayama’s Lemma to
show that C = O and thus 4 = B. [

Returning to our local ring of interest, suppose that 4 is a C°(X) module
and that ¢: X — Y with ¢ = ¢(p) is 2 smooth mapping. The induced ring
homomorphism ¢* allows us to view A as a C;°(Y) module. More specifically
ifaisin A and [f],isin CP(Y), then we define [f],a = ¢*[f1,a. We now state
the local ring generalization of the Malgrange Preparation Theorem.
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Theorem 3.6. (Generalized Malgrange Preparation Theorem). Let X
and Y be smooth manifolds and ¢ : X — Y be a smooth mapping with (p) = q.
Let A be a finitely generated C2(X)-module. Then A is a finitely generated
Cr(Y)-module iff A|#(Y)A is a finite dimensional vector space over R.

Notes. Consider the mapping of C°(X) — R given by [f], — f(p) to
see that

D) R CRX)AM(X) = CP(Y)|MLY) so that A/ #(Y)A is a real
vector space.

(2) As we noted in Corollary 3.5, the fact that 4 is finitely generated over
CF(Y) automatically implies that 4/.#,(Y)A is a finite dimensional vector
space.

(3) We will now prove that Theorem 3.6 is, in fact, a generalization of
the Malgrange Preparation Theorem (2.1). Let X = R x R", Y = R*, and
7: R x R"™— R"™ be given by #(¢, x) = x. Also let p = 0 = ¢. Let [F], be in
C&(R x R™ and assume that F(z, 0) = r*g(z) where g(0) # 0. Let [G], be a
germ of some other smooth function in CP(R x R*). We must find [q],
and [r], satisfying the appropriate conditions for the Malgrange Theorem.

Let 4 = C&(R x RY/(F) where (£) is the ideal in C&?(R x R") generated
by [F],. A is clearly a C(R x R™)-module and is finitely generated. (In fact,
it is generated by the image of [1], in 4.) The vector space A/ #,(R")A =
CP(R x RY/I(F, x1,...,x,) since M(R™) = (xy,...,x,) where (,...,)
indicates the ideal generated by germs of the indicated smooth functions.
(Cousider the mapping of 4 — C(R x RY/(F, x4, ..., x,) given by [glo +

(F)r>1[glo + (F, x4, ..., x,) to obtain the above identification.)
We will show that 4/.#Z,(R™)A is a finite dimensional vector space. First
we claim that (F, xy,..., x,) = (t¥, x4, ..., x,). Let A: R — R be given by

h(s) = F(t, sx) where (¢, x) is fixed in R x R"™ Then

F(t, x) — F(1,0) = k(1) — h(0) = f ' g-’ (s) ds

——flzn:xa—F(t sx)ds—ix (t, x)
= . A i@xi , ——i=1 187,

where g,(f, x) = f; OF|[ox; (1, sx) ds. Thus F(t, x) = t*g(z) + r where r is in
(xy5 . .-, x,). Since g(0) # 0, [g], is invertible and we obtain (F, x4, . . ., X,) =
(t*, x4, ..., x,). Thus a basis for the vector space C§(R x RM/(F, X1, ..., x;)
is given by the images of [1]o, [t]o, ..., [ ']o. Applying the Generalized
Malgrange Preparation Theorem, we deduce that A is a finitely generated
Cs?(R") module. By Corollary 3.5 the images of [1]o, [f1o ..., [£¥7%]o
generate 4 as a Cg°(R™)-module. Thus

[Glo = [rololllo + [rilolt)e + -+ [ri—1lolt* e + V
where V is in (F). Let V = [¢F],, and then, on a nbhd of 0 in R x R,

G(t, x) = q(t, X)F(t, x) + ro(x) + ri(xX)t + -+ + rp_ )k 0
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The proof of 3.6 will be given in two special cases, immersions and sub-
mersions, and then done in general.

Lemma 3.7. Letw: X — Y beasubmersionwithdim X =n=dim Y + 1
and g = w(p). Let A be a finitely generated C2(X)-module. If V = A|H#(Y)A
is a finite dimensional vector space over R then A is a finitely generated C2(Y)-
module (via m*).

Proof. Since this is a local result, we may assume, with a proper choice
of charts, that X = R", ¥ = R"™*, p =0 =g, and =: R* — R" ' is given

by (xy,..., X)) > (Xg, ..., x,). Let s: 4 — ¥ be the canonical projection
and choose ey, .. ., e, in 4 so that {i(e,), . . ., ¥(e,)} is a basis for V.
Step 1: ey, ..., e, generate A as a C5°(R™)-module. To see this note that

MR ) © MR so that there is a natural surjection y : A/ Ay (R ~1)4 —
A|M(RYA. Thus neip(e,), ..., n(e,) is a set of generators for A4/ #(R")A
and Step I follows from Corollary 3.5.

Step 11: All elements of A4 have the form >7., (c;e; + fie;) where ¢; is a
scalar in R and f; is in .#,(R"~ 1) Cs°(R"). Since i(ey), . . ., ¥(e,) is a basis for V,
we see that if a is in 4, then a = >, ¢ie; + & where € is in #(R*~*)A. Thus
€ = 27, g;a; where g; is in .#,(R"" ') and a; is in 4. But by Step [ g, =
>ty he; where A, is in C°(R™). Thus € = >7., (371 ghy)e; and by letting
fi = 271 gihy. Step 11 is proved.

Now we prove the Lemma. By Step II, x,e, = 37, (¢;; + fi,)e; with ¢
and f;; in the appropriate places. Using the Kronecker delta we obtain the

n-linear equations in n-unknowns ey, ..., e,
n
* Z (x18y5 — ¢y — fie; = 0.
i=1
Let P(xy, ..., x,) be the determinant of the matrix (x,8;; — ¢;; — fi;). By

Cramer’s Rule Pe; = O for each i. Now note that f,(x;,0,...,0) = 0 since
fii is in AR HCE(RMY. Therefore, P(xy, 0,...,0) = det (x,8;; — ¢;;)
which is a polynomial in x, of degree <n. Hence there exists & < n such that
P(x1,0,...,0) = x,%¢(x;) and g(0) #£ 0. By Step II, if ¢ is in A4, then a =
>t.1(¢e; + fie). Apply the Malgrange Preparation Theorem to f; and P to
obtain

k—1
fi= 0P+ > Rifxs ..., X)xi0.
i=0

Since Pe; = 0, we have that fie;, = S¥-¢ R;;x,’e; and
n k-1 )
a= Z (ciei + z Rijxl’ei).
i=1 j=1

Thus A is generated by the nk elements e, . . ., e,, x1€1,.. ., X1€,, ..., X;"e, as
a module over C5°(R™~1) since R;; is in CP(R*™1). []

Lemma 3.8. Let ¢: X — Y be an immersion with q = $(p). Let A be a

Jinitely generated C;°(X)-module. Then A is a finitely generated CZ(Y)-
module.
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Proof. ¢*: CP(Y)— Cr(X) is onto, since there is a nbhd U of p in X
such that ¢|U is a 1:1 immersion and ¢(U) is a submanifold of Y. Clearly,
using the definition of submanifold, every smooth function on ¢(U) can be
extended to be a smooth function on a nbhd of ¢(U) in Y. (Since we are
working locally we can assume that ¢(U) is small enough to be made a k-
plane in R™ by one chart on Y.) The surjectivity of ¢* implies the stated
result. []

Proof of Theorem 3.6. Define ¢: X— X x Y by &(x) = (x, ¢(x)).
Using charts, we may assume that X = R and thatp = 0. Let7,: R* x Y —
Ri-1 x Ybegivenby(xy, ..., x;, ¥) — (xa, ..., x;, ¥). Then¢ = sryo-- - - T
(locally). Since ¢ is an immersion Lemma 3.8 applies and 4 is a finitely
generated CF ,(R™ x Y)-module. Now assume that A/.Z(Y)A is a finite
dimensional vector space. Since H , ,(R"™' x Y)A > #[(Y)A, there
is a natural surjection of A/ M (Y)A —> A|#, »(R*™! x Y)A so that the
latter space is finite dimensional. Thus the hypotheses of Lemma 3.7 are
satisfied for =, and we may conclude that A4 is a finitely generated
C3 »(R"™1 x Y)-module. A simple induction argument implies that 4 is a
finitely generated C;°(Y)-module. []

Examples

(A) Let f: R — R be a smooth even function; then there exists a smooth
function g: R — R satisfying f(x) = g(x?). This is easy to prove if f is
assumed real or complex analytic near 0 (using Taylor series) but is not quite
so obvious in the stated case. (This fact was first proved by Hassler Whitney—
Duke Journal of Mathematics, volume 10, 1943.)

Proof. Letp = 0in the domain and ¢ = 0 in the range. Let 4 = CZ(R)
which is clearly a finitely generated module over C°(R). Let ¢(x) = x2.
Then via ¢, C°(R) becomes a C;°(R)-module, the module action being
given by (ba)(x) = b(x®a(x) where a is in C°(R) and 4 is in CP(R). Ob-
serve that #Z,(R)C(R) = (x?) and that the images of 1 and x span the vector
space C;2(R)/ A (R)C?(R). Apply Theorem 3.6 and Corollary 3.5 to see that
f(x) = g(x?) + xh(x*®). Since f is even, A(x%) = 0 and f(x) = g(x?) on a
nbhd of 0. It is easy to see how to make this equality a global one. [

(B) Let g,,...,2, be the n elementary symmetric polynomials in n-
variables; that is,

gi(xy, . ., X)) =x +- -+ x,
8oX1, . Xp) = XyXg + - XX, o+ XX,
GalX1s ooy Xp) == X1 - < Xp.
Let f(xy,..., x,) be any smooth symmetric function; that is if o is any

permutation on n-letters, then f(xy, ..., x,) = f(X5a) - - -» Xomy). Then there
exists a smooth function /4 : R” — R satisfying

J(x) = h(g.(x), . . ., g(x)).

This global result was proved originally by Glaeser [9]. We shall only
prove the corresponding local result. Define g:R"-—R* by g(x) =
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(g1(x), . .., g.(x)). Using the same convention concerning p and ¢ in (4) we
see that via g CX(R™) is a C2(R*)-module. Let B be the set of multi-indices
B =B ..., Bn-1,0) where B; < n. Then the set of nomomials {x* | B € B}
is a generating set for the vector space C*(R")/.#(R")C2(R™). (To see this
note that

(x—x) (x—x)=x"4+ g(xg, ..., x)x"" T+ o+ gi(xy, . -5 X0

Substituting x; into this polynomial we have that x;® is in the submodule
HRHCIRY. Also x, = —xy — -+ — X,_1 modulo Z(R"NCZ(RY).)
Applying Theorem 3.6 and Corollary 3.5 we see that

) = h(g®) + > h(g())x".
BeB
Since f is symmetric and x, is not a factor of any of the monomials we see
that each 2,(g(x)) = 0 and that f(x) = A(g(x)). [

In all of our applications of the Malgrange Theorem we shall be dealing
with modules of smooth functions. The most obvious problem in dealing
with such functions (as distinct from analytic functions) is that the Taylor
series about a point does not necessarily converge to the given function.
Thus, in order to show that a module is finitely generated it would be nice to
show that the prospective generators need only generate the module in
question up to some finite order, thus eliminating the problem of what hap-
pens to the smooth functions ““at the tail”’. We now show that this is, in fact,
the case.

Define inductively a sequence of ideals .#,*(X) in C2(X) by letting .#,*(X)
be M ,(X), and #,(X) be the vector space generated by germs of the form fg
where fis in #,(X) and g is in 4, X).

Lemma 3.9. H#J(R™ consists precisely of germs of smooth functions [
whose Taylor series at O begin with terms of degree k, i.e., 0°f]0x*(0) = O for
le| <k — 1. Thus C5*(R™)/AM*(R™) can be identified with the vector space of
polynomials in n variables of degree <k — 1.

The proof of this Lemma is a simple induction argument based on II,
Lemma 6.10 and is left to the reader.

Theorem 3.10. Let A be a finitely generated C7(X)-module. Let ¢: X —
Y be smooth withq = §(p) and let ey, . . ., e, be elements of A. Thene,, ..., e,
generate A as a C(Y)-module iff v(e,), . . ., n(ey) generate A| M+ (X)A as a
Cr(Y)-module where n: A — A M (X)A is the obvious projection.

Proof. Theforward implication is obvious, so assume that y(e;), . . ., n(ey)
generate A/ 4, Y (X)A as a C2(Y)-module. Let

B = AJ( M} (X)A + ML Y)A).

Note that #,(Y) acts trivially on B; thus we may consider B as a module over
CE(Y)|#LY) = R, i.e., a real vector space. Since the images of e, ..., ¢
generate B, dimyp B < k. Consider the sequence of vector spaces B =
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MMNX)B DD MFETH(X)B = 0. There are k + 2 vector spaces in
this decreasing sequence. Applying the ““pigeon-hold principle” we see that
there must be / < & such that #(X)B = #,"Y(X)B. Thus #,(X)A +
MAYYA = M H(X)A + M YA, since M FTUX) < M UX) © HHX).
Finally consider the C;°(X)-module C = A/.#,(Y)A and note that .#,(X)C
= M HX)YC = M (X)HH(X)C. Thus we may apply Nakayama’s Lemma
and deduce that .#Z,(X)C = 0. (Note that as a C*(X)-module .#,(X)C is
finitely generated. This follows since .#,(X) is a finitely generated ideal in
C(X) and C is a finitely generated module.) But C = A/.#/(Y)A, so
MHX)A < M(Y)A for some i < k. Since the images of ey, . . ., e, generate
AT X)A, nley), ..., n(e,) must generate A[#(Y)A as a CF(Y)-
module and thus as a CJ2(Y)/.#[(Y) = R-module. Said differently,
dimp A/ 4 ,(Y)A < k. We can now apply the generalized Malgrange Prepara-
tion Theorem to conclude that A is a finitely generated C;°(Y)-module and
Corollary 3.5 to conclude that e, . . ., e, generate 4. []

The usefulness of Theorem 3.10 is illustrated by the following:

Corollary 3.11. If the projections of es,..., e, form a spanning set of
vectors in the vector space A|(M " (X)A + M Y)A), then ey, . .., e, forma
set of generators for A as a CP(Y)-module.



Chapter V'
Various Equivalent Notions of Stability

§1. Another Formulation of Infinitesimal Stability

In this section we have three objectives: to show that

(1) Infinitesimal stability is locally a condition of finite order; i.e., if the
equations can be solved locally to order dim Y then they can be solved for
smooth data.

(2) Infinitesimal stability is globally equivalent to a multijet version of
local infinitesimal stability.

(3) Infinitesimally stable mappings form an open set.

We won’t be able to achieve our last objective just yet; but, at least, we shall
be able to give a sufficient condition for the existence of a neighborhood of
infinitesimally stable mappings around a given infinitesimally stable mapping.

Let X and Y be smooth manifolds with p in X and ¢ in Y. Denote by
C*(X, Y), , the germs at p of mappings of X — Y which also map p to q.
Recall that a germ at p is an equivalence class of mappings where two map-
pings are equivalent if they agree on a neighborhood of p. (We shall use the
symbol [/], to indicate the germ of f: X — Y at p—at least at those times
when pedagogy overwhelms natural instincts.)

Let E be a vector bundle over X. Denote by C*(£), the germs of smooth
sections of E at p. Since sections are mappings of X — E this makes sense
according to the above prescription. In particular, we can speak of germs of
vector fields along fas germs of sections of f*(7TY) using the identification of
CP(X, TY) with C*(f*(TY)) discussed in III, §1 after Definition 1.4.

Definition 1.1. Letf: X — Y, let p bein X, and let q = f(p) in Y.

(a) the germ [ f, is infinitesimally stable if for every germ of a vector field
along f, [7],, there exist germs of vector fields [{], in C*(TX), and (5], in
C=(TY), so that

(*) [7], = [ )D], + [l
(b) fis locally infinitesimally stable at p if [f], is infinitesimally stable.

It is clear that if /: X — Y is infinitesimally stable, then f is locally
infinitesimally stable.

Choose coordinates x4, ..., x, on X based at p and coordinate yy, ..., ¥,
on Y based at g. We will compute equation (*) in these coordinates. If 7 is a
vector field along f, then we can write 7(x) = >7; 7(x)(9/9y;). So equation
(*) becomes

IA
IA
=

() n= S S

111
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where

Z Yo, f)x Z o 8y@

and f1, .. ., f, are the coordinate functions of f.

Equations (**) can be solved to order £ if for each set of germs =, ..., 7,
in C°(R"), there exists germs {y,..., {, in Cg(R") and germs 7, ..., 9,
in C&(R™) so that

I\

Theorem 1.2. Letf: X— Ywithpin X,q = f(p)in Y,andm = dim Y.
Then [f], is infinitesimally stable iff equations (**) can be solved to order m.

CJ + p(f1, - ) + O(x]FT).

Proof. We shall use the Generalized Malgrange Preparation Theorem.
First note that C*(f*7Y), = (Pl-y CR(X) since +(x) = 21, 7(x)(&/dy)
(locally). Thus C*(f*TY), is a finitely generated C;°(X) module. Let 4 =
{dO | LeC™(TX),}. A is a submodule of C*(f*TY), so that M,? =
C>(f*(TY)),/A is a finitely generated C°(X)-module. Via f* we can view
M as a CP(Y)-module. Let ¢; be the projection of f*(&/0y,) in M,*. We first
observe that [f], is infinitesimally stable iff e,, ..., e, generate M,? as a
Ce(Y)-module. Recall that Z,™*(X) consists of germs of functions at p
whose Taylor series start with terms of order m + 1 or greater (IV, Lemma
3.9). Now apply 1V, Theorem 3.10 to see that [f], is infinitesimally stable
iff the module M 2/.Z,""*(X)M” is generated over C°(Y) by the pro-
jections of ey, ..., e,. This last statement is easily seen to be equivalent
to solving equations (**) to order m, for if [r], is in C*(f*TY),, then
7= >", (n-fe + (df)({) + g where { and 7 are defined as usual and g is
in A" X)C(TY),; 1e., gis O(jx[™tY). 1[I

Theorem 1.2 makes it clear that whether or not f is infinitesimally stable
at p is determined by j™*!f(p). We shall formalize this notion. Let £ be a
vector bundle over X and let J*(E) = {c € J*(X, E) | o is represented by a
section of E} = k-jet bundle of sections of E. Let = : E — X be the projection.
Then 7y : J¥(X, E) — JX X, X) is a submersion. Let I be the submanifold of
J¥(X, X) given by {c €| o is represented by idy}. Then J¥(E) = (m4)~HI)
and is thus a submanifold of J*(X, E). The source map «:J*X, E) —> X
restricts to a map of J¥(E) — X. It is not hard to see that this is a fiber map.
Let J¥(E), = fiber of J¥(E) at p. This has a natural vector space structure.
In fact, given two elements of J¥(E), we can find sections that represent them.
Add these sections and take the k-jet of the sum. We let the reader check
that this operation is well-defined; i.e. independent of the choice of sections
and that this gives J¥(E) a vector bundle structure over X. Hint: Do this
first for the trivial bundle whose sections are just maps of X — R™

The following is just a restatement of Theorem 1.2.
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Corollary 1.3. Letf: X— Ywithpin X,q = f(p)in Y,andm = dim Y.
Then f is locally infinitesimally stable at p iff

IMfFTY)p = (df)pJ™(TX)p + f*I™(TY),

where (df), and f* are the obvious mappings into J™(f*TY), induced by the
action of (df’y and f* on vector fields.

We wish to obtain conditions analogous to those in Corollary 1.3 which
will be equivalent to infinitesimal stability. We have local conditions but
these are not sufficient; for what happens at the self intersections of a func-
tion is not taken into account. In particular, the choice of » in J™(T'Y), might
be forced in two different ways at two different pre-image points. We shall
extend our results to take care of these cases.

Letf: X — Ybesmoothandletgbein Y. Let S = {py,..., prt = F X q)-
Define C°(X) = (PF.; C2(X) and note that C¢°(X) is a ring where the
operations are done coordinatewise. Since f induces a ring homomorphism
f¥:CP(Y) — CR(X) for each i, it induces a ring homomorphism of C;°(Y)
— C£(X) which we also denote by f*. So if 4 is a CL(X)-module, then via
f* A becomes a C°(Y)-module. We reformulate the Generalized Malgrange
Preparation Theorem so that it is applicable to these modules.

Lemma 14. Let A; (1 < i < k) be a finitely generated C;2(X) module.
Then A = A, ®--- @D A, is a finitely generated CS(X) module (where the
action of C;2(X) on A, for i # j is zero). Let ey, . .., e, be in A so that the
projections of the e’s in A|.#[Y)A span this vector space. Then e, ..
generate A as a C°(Y) module.

Proof. Since A| M YA = (A,]MH(Y)A) D - D (Ay/ ALY)A,) we can
apply the Malgrange Theorem (IV, 3.6) coordinatewise. []

Remark. Let M(X) = M, (X) B -® H,(X). Then it is enough to
know that the projections of ey, .. ., e, span the vector space

ANMLVA + M+ X)A).

Just apply III, Corollary 3.11 in the above Lemma instead of III, Theorem
3.6.

Let E be a vector bundle over X and let J™(E)y = P¥F., J™(E),,. Now
S X — Y induces mappings f*: J(TY), — J"(f*TY),, and thus a mapping
SEIMTY)q—I™(f*TY)s given by f*[nly = ([n - flpys - -5 [0 - fIp)- Also
J induces (df):J™TX),, —J™(f*TY),, and thus induces a mapping
df): I™(TX)s —T™(f*TY)s.

Let f: X— Y be smooth and S ={P,,...,P.} < f~*g). Then f is
simultaneously locally infinitesimally stable at p., ..., p, if given germs of
vector fields along f [7,],,,..., [74]s,, there exist germs of vector fields
[Zilpss - - -5 [Ei)p, and [n], such that

(@), + [+ flo, = 7y,

"em

for all i.
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Note. The “simultaneously” is to emphasize that one vector field germ
of Y is being chosen along with the k vector field germs on X to solve the
equations of infinitesimal stability for & germs of vector fields along f.

Proposition 1.5. Letf: X — Y besmoothand S = {p,, ..., ps} < f~q)-
Then f is simultaneously locally infinitesimally stable at p,y,...,p. iff
JMf*TY)s = (df)I™TX)s + fFI™(TY),.

Proof. For S consisting of a single point this result is given by Corollary
1.3. The proof for general S is exactly as in the single point case except that
we substitute Lemma 1.4 and the subsequent remark for the Generalized
Malgrange Preparation Theorem. In particular choose coordinates on X at
D1y - - . P (with disjoint domains) and coordinates on Y at ¢ and write down
the equations generalizing (**) to solve the local infinitesimal stability
condition simultaneously to order m at p,..., p, Let M/ = (Pf.; M.
Continue as before—except for the substitution of Lemma 1.4 and its sub-
sequent remark. [

Theorem 1.6. Let f: X — Y be smooth. Then f is infinitesimally stable iff
(f) for every g in Y and every finite subset S of f~*(q) with no more than
(m + 1) points

INfETY)s = d)IT(TX)s) + [H(ITY)y).

The necessity part of this theorem is obvious. Before proving the suffi-
ciency we need some preparatory lemmas.

Lemma 1.7. Let H, ..., H, be subspaces of a finite dimensional vector
space V. Then Hy, . .., H, are in general position (see 111, Definition 3.5) iff
(*) given vy, ..., v, in V, there exists h; in H, and z in V such that v, = z + h
for all i.

Proof. Let m: V — V|H; be the natural projection and let
7 V—V/H ® @ V[H,

be given by #(v) = (#.(v), ..., m(v)). Clearly Ker # = H; N---N H, so that
the sequente

0> H, N -NH ~V A VIH®  -&V/H,

is exact. Now = is onto iff codim (H, n---N H) = >k, dim V/H, iff
H,, ..., H, are in general position. But clearly = is onto iff given v4, .. ., v,
in V, there exists z in V such that =,(z) = v;, i.e. there exists &; in H, so that
v; = z + h;. So 7 is onto iff condition (*) holds. [J

Lemma 1.8. Letf: X Y satisfy (t) and let S = {p,, .. .. p} = f~ ).
Let Hy = (df), (T, X) for 1 <i < k.Then H,, ..., Hy, are in general position
as subspaces of T, Y.

Proof. Lletzy, ...,z bein T,Y. By Lemma 1.7 we must show that there
exist #; in H; and y in 7,Y so that z; = ki, + y for all /. Choose a vector field
+ along f'so that 7(p;) = z;,. By (f) choose vector fields £ on X and 5 on Y so
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that 7 = (df)({) + f*y on a neighborhood of S. (Use Proposition 1.5.) Let
hi = (df)pt(ét) and Yy =14 [

For our current purposes we shall call p in X a critical point of [+ X — Y
it (df), : T, X — Ty, Y is not onto. Thus a critical point is either a singularity
in case dim Y > dim X or an arbitrary point if dim X < dim Y.

Lemma 1.9. Let f: X — Y satisfy (1), let m = dim Y, and let q be in Y.
Then the number of critical points in f~X(q) is <m.

Proof. We shall argue by contradiction. Suppose S = {p1, ..., Pn+1}
consists of distinct critical points of fin /'~ '(g). Let H, = (df),(T, X). The
last lemma states that H,, ..., H, ., are in general position as subspaces of
T,Y. Thus m = codim (H, n---N H, ;) = >t codim H; = m + 1. The

last inequality holds since if p is a critical point codim (df),(7,X) = 1. []

Proof of Theorem 1.6. Sufficiency. We assume that f satisfies (1). Let
2 be the critical point set of fin X and let £, = X N f~(g). By the last
lemma X, is a finite set with <m points. Let = be a vector field along X. To
prove that f is infinitesimally stable we need to show that there exist vector
fields £ on X and n on Y so that = = (df)({) + f*n. We first show that this
equation can be solved on a neighborhood of X.

We claim that there exist open sets Uy, ..., Uyin X, Vy, ..., Vyin Y, and
Wi, ..., Wyin Y; and vector fields {; on U, and »; on V| satisfying

@ f(Z) = UL, W

(&) f(U) =V,

(©) 7= (dN&) + [ on U

@/ (W)nx< U,and

(&) W= V.

One need only construct U, V, W, {, and » for a given g in f(X) (i.e., W must
be a neighborhood of g) satisfying (b)-(e). Since f() is compact, the necessary
N will exist. By Proposition 1.5 we may choose open neighborhoods U of £,
in X and ¥ of g in Y, and vector fields { on U and » on ¥V so that (b) and
(c) are satisfied. Next we choose W satisfying (d). Since Z, = f~Y{g) N Z <
U, there is a small open neighborhood W so that f~ W) N 2 < U,. If not
there would exist a sequence of critical points x, x5, ... with Lim,_ ., f(x;) =
g and x; ¢ U; for all i. Since X is compact we may asume that x; — x. By
continuity f(x) = ¢ and x is a critical point. Thus x is in £,. A contradiction
since x isin X — Uand (X — U) N X, = . By shrinking W we may assume
that /-~ (W) N2 < U and that W, = V.

Next choose a partition of unity py,..., py on W = J¥, W, with
supp p; © W,. Choose an open neighborhood Z of X such that /(W) N Z <
U.. (This is possible. Otherwise there exists a sequence xj, X, . . . converging
to x in X with x; in /=YW N (X — U). Since both f~4W,) and X — U
are closed x is in f~(W,) and x is not in U. Contradiction.) Choose a smooth
function p: X — R such that supp p < Z and p = 1 on a neighborhood of Z.
Let ¢ = > pf*(p)¢. This is well-defined on X since supp pf*(p;) <



116 Various Equivalent Notions of Stability

Y W) N Z < U, Nextlety = S pm;. Then calculate that - = (dfF) Q) +
f*n on a neighborhood of .

Thus we may assume that + = 0 on a neighborhood U of £ in X. If
dim X < dim Y, then we are finished for ¥ = X. In case dim Y > dim X,
then fis a submersion on X — X. Thus there exists a vector field {on X — X
so that (df)({) = . Use 111, Proposition 2.1 which states that all submersions
are infinitesimally stable. (Note the fact that X is compact was not used in
that proof.) Choose a smooth function p: X — R which is zero on X and 1
off U. Then p{ is globally defined on X and (df )(p{) = = since supp r =
X-U 0

We now attack the last of our three objectives.

Proposition 1.10. Letf: X — Y be infinitesimally stable. Then there exists
a neighborhood W of f such that every g in W is locally infinitesimally stable.

Proof. Let p be in X and let g = f(p). Since f is infinitesimally
stable JYf*TY), = (df)J™(TX), + f*J™(TY), Now consider the mapping
FrI™TX), DINTY),— J"(f*TY), given by (df) + f*. This is just a linear
mapping between vector spaces. In particular, if we choose chart neighbor-
hoods U of p and V of ¢ such that f(U) < V, then in these local coordinates
fis a linear mapping of BZ, @ B . — B, where B, is the vector space of
polynomials of degree <k from R* — R™. Now clearly fdepends continuously
on p and f (in fact on j™*'f). Thus there is an open neighborhood U, of p
and an open neighborhood W, of f such that if g is in W, then g(U) < V
(a C° condition) and if p’ is in U, then § is onto at p’. Thus g is infinitesimally
stable at p’ using Corollary 1.3. Since X is compact there is a finite covering of
X by U,’s. The intersection of the corresponding 1,’s is an open neighborhood
of f with the desired properties. []

We would like to prove a corresponding theorem for (global) infinitesimal
stability ; unfortunately there are some difficulties. We have the global result
given in Theorem 1.6 to use instead of Corollary 1.3 but the proof above will
not work for X® is not compact (even though X is compact). To avoid these
difficulties for the moment we make the following definition.

Definition 1.11. An infinitesimally stable mapping f: X — Y satisfies
condition O if for every p in X, there exists a neighborhood U, of p and a
neighborhood W, of f such that if g is in W, and if S = {p1,...,ps < U, N
g~ q), then J™(g*TY)s = (dg)J™(TX)s + g*J™(TY),.

The object of this definition is to finesse—for the moment—the question
of what happens in X® near the generalized diagonal. This is shown by the
following.

Lemma 1.12. If f: X — Y is an infinitesimally stable mapping satisfying
condition O, then there exists an open neighborhood W of f which consists of
infinitesimally stable mappings.
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Proof. We will prove the lemma by applying Theorem 1.6. In order to
make the notation a little easier to follow we shall prove that there is a neigh-
borhood W, of fsuch that each g in W, satisfies (}) for every finite subset S
consisting of two points. A similar proof will yield an open neighborhood
W, of f consisting of mappings satisfying (1) for all sets S consisting of
points. The desired W is then given by (N W, where W, is given by Propo-
sition 1.10.

Let (p,?) be in X x X. We will choose neighborhoods U, of p, V; of ¢,
and W, of fsuch that if g is in W, ,, x isin U,, and y is in ¥V, with g(x) =
g(») = ¢, then J™(g*T¥) vy = (@I (TX)ey + g*I™(TY),. If p = 1, then
the relevant data (with V, = U,) is given by condition 0. If p # ¢t and
f(p) # f(¢), then we may choose U,, V;, and W, , so that g(U,) N g(V})) = @
for every g in W, .. Finally if p # ¢ and f(p) = f(t) = g, we may choose
disjoint neighborhoods U, and V; and a neighborhood W, , so that TX|U,
and TX|V; are trivial and g(U,) U g(V;) = Z, where Z, is an open neighbor-
hood of ¢ in Y with TY]Z, trivial for every g in W, ;. Since fis infinitesimally
stable f: J™MTX ).y D I™TY)y = J™(f*TY )4 is onto where f is the linear
mapping between these finite dimensional vector spaces given by (df) + f*.
Since TX|U,, TX|V,, and TY|Z, are trivial we may identify f with a mapping
of B, ® B, ® B ., — B, which depends continuously on p, r and f as
long as the perturbation of f'is in W, ;.

Now the sets U, x V; cover X x X which is compact. So there exists a
finite subcover given by the U, x V’s. Intersecting the corresponding W, ;’s
gives the desired open neighborhood W, of £. []

Exercises

(1) Consider the mapping f: R% — R? defined by (x, ) = (x, xy — »°).
Try showing that fis infinitesimally stable using only the definition of infini-
tesimal stability. In doing so you should get to a functional equation which is
rather difficult to solve on a nbhd of the origin, i.e., for every pair of smooth
functions 74, 75 : R? — R there exist smooth functions &;, £,, 7, and n, : R?2 —
R such that

(*) [71 = 51 + m f
s = y& + (x = 33E +mp - S

Use Theorem 1.2 to show that [f], is infinitesimally stable by solving equa-
tions (*) to order 2. Try showing that f is infinitesimally stable by applying
Theorem 1.6. (Since f'is proper the theorem is still valid even though X = R2
is not compact.)

(2) Letf: R? — R® be given by f(x, ¥) = (x, xy, ¥?). Show that f'is locally
infinitesimally stable at 0.

(3) It is possible to reduce even further the calculations needed to com-
pute local infinitesimal stability using the following observation due to
Arnold. Let f: R® — R™ and assume that f(0) = 0. Say that f satisfies con-
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dition (Z) if for every germ ¢ € C§(R™) there exists an n x m matrix H of
germs in Cg(R™) and an m x m matrix K of germs in C§°(R™) such that

L, = (@HH + K- f.
where 1, is the m x m identity matrix.

(a) Show that condition (Z) holds (to order m) at O iff equations (*¥*)
hold (to order m) at 0.

Hint: For (**) = condition (Z). Let 7' = (0, ..., ¢, ..., 0) where ¢ is in
the Ith position for I </ < m. Using (**) obtain +* = (df)(&) + n' o f.
Let H = {1 and K = {5} where & = (&' ..., &) and o' = (0, .. ., 7).
For condition (Z) = (**), let = (74, ..., 7y} and solve v, = (df)H + Ko f.
Let & = >7.,my; and », = STy k;; where H = (4;;) and K = (k;;). Then
let &€ = (gl’ e gn) and n = (7715 tes nm)'

(b) Show that if condition (Z) can be solved for ¢, and ¢, in C5°(R™),
then condition (Z) holds for ¢ = ¢,6,.

Hint: Choose Hy, K, for ¢, and H,, K, for ¢,. Let H = ¢, H, + H K,
and let K = K, K.

(¢) Proposition 1.13. Let f: X— Y be smooth and let p be in X.
Choose coordinates xy, ..., x, on X at p. Then f is locally infinitesimally
stable at p iff equations (**) are solvable to order m for =% = (0,...,
X ..., 0) where the x, appears in the /th position for 1 </ < m and
l<k=<n

(4) Let f:R*"—R" be given by (xi,..., x) > (X1, ..., X5 1, X1X, +
XoXn2 + o4 Xp_o1x," "1 + x,”*1). Show that f is locally infinitesimally
stable at O.

§2. Stability Under Deformations

Our intention in this chapter is to prove (under the assumption that the
domain is a compact manifold) that stability is equivalent to infinitesimal
stability. To accomplish this task it seems necessary to introduce several
other notions of stability—all of which are, in fact, equivalent to the ones
just mentioned. The most natural of these is the concept of stability under
deformations introduced by Thom and Levine.

Definition 2.1. Let f: X — Y be smooth and let I, = (—e&, ¢). Then
(a) let F: X x I, — Y x I, be smooth. F is a deformation of f if
(i) for eachsin(—e, ), F: X X {s} = Y x {s}. Denote by F, the map-
ping of X+ Y defined by F(x, s) = (F{x), s).
(i) Fo = 1.
(b) Let F: X x I.— Y x I, be a deformation of f. Then F is trivial if
there exist diffeomorphisms G X X I;—> X x Iy and H: Y x I;— Y %X I;



§2. Stability Under Deformations 119

(where 0 < 8 < &) such that G and H are deformations of idx and idy, re-
spectively, and such that the diagram

X x I, Y x I,

Gl lH

X x [ —— Y x I,
fxid,b

commutes.
(c) f is stable under deformations (or homotopically stable) if every
deformation of f is trivial.

Remarks. (1) In a trivial deformation F of f each F; is equivalent to f.
Also, if f'is stable then for a given deformation F each F; (for ¢ small enough)
is equivalent to f. Unfortunately, this is not enough to show that F is trivial,
since the conjugating maps need not vary smoothly.

(2) By viewing a deformation of f as a mapping of I, > C*(X, Y) we
can equate deformations of / with curves in C (X, Y) based at /. Recall that
in Chapter III, §1 we motivated the definition of infinitesimal stability in
terms of Frechet manifolds. In particular, we showed that f'is infinitesimally
stable iff (dy,);4 is onto where vy, : Diff(X) x Diff(Y) — C=(X, Y) is defined
by y{g, h) = h-f-g~*. Certainly (dy,);s is onto if for every curve 7 — F, in
C*(X, Y) where F, = f, there is a curve f > (G,, H,) in Diff(X) x Diff(Y)
so that y,(G,, H;) = F; for all small ¢; i.e., for small ¢ the diagram

£y

commutes. But this is just the condition that the deformation F be trivial.
So it should come as no surprise that we will show that homotopic stability
implies infinitesimal stability. In fact, they are equivalent notions and this also
will be shown later.

(3) As for the relationship between stability under deformations and
stability, the only fact which can be immediately proved is the following:

Lemma 2.2. Let f: X — Y be stable under deformations. Suppose there
exists an open nbhd W of f'in C*(X, Y) such that each g in W is stable under
deformations, then f is stable.

Proof. By shrinking, if necessary, we can assume that W is “‘arc-wise
connected”’; that is, for each g in W, there is a deformation F: X x [—1, 1]
— Y x [—1,1] of fso that F; = g and F,isin W forall ¢in [—1, 1]. (In 111,
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Theorem 1.12 we identified functions in a nbhd U of f with sections of a
tubular nbhd of graph (f) in X x Y. For functions in U the deformation is
obvious. Thus by “shrinking” we mean replacing W by W N U.) Now let g
be in W and choose such an F. Consider the equivalence relation on [— 1, 1]
defined as follows: s ~ ¢ if F, is equivalent to F; as mappings of X — Y.
The assumption that each mapping in W is homotopically stable along with
Remark (1) implies that each equivalence class is open. Since [—1, 1] is
connected there is only one equivalence class and thus g is equivalent to f. [

So if we know that infinitesimally stable maps form an open set and that
infinitesimal stability is equivalent to homotopic stability, then we would
know that infinitesimally stable mappings are stable. Recall that in the last
section we showed (in Lemma 1.12) that if every infinitesimally stable map-
ping satisfies condition ¢ then the set of infinitesimally stable mappings is
open. We now generalize the concept of homotopic stability and show that a
mapping which is both infinitesimally stable and satisfies this generalized
homotopic stability criterion also satisfies condition ¢.

Definition 2.3. Letf. X — Y be smooth and let U be a nbhd of 0 in R".
(@) Let F: X x U-> Y x U be smooth. F is a k-deformation of f if
(i) for each v in U, F: X x {v} — Y x {v}. Denote by F, the mapping
of X — Y defined by F(x, v) = (Fy(x), v).
(i) Fo = 7.

(b) Let F: X x U— Y x U be a k-deformation of f. Then F is trivial if
there exist diffeomorphisms G: X x V—>Xx Vand H: Y x V—=Y x V
where V is an open nbhd of O contained in U such that G and H are deformations
of idx and idy respectively, and such that the diagram

XxV—F——*YxV

c;l lH

V —— Y%V
X x fx idy,

commutes.
(c) f is stable under k-deformations if every k-deformation of f is trivial.

Remarks. (1) Stability under 1-deformations = homotopic stability.

(2) If fis stable under k-deformations, then fis stable under / deformations
for I < k. In particular, fis homotopically stable.

Before giving our discussion of condition ¢ we make some preparatory
lemmas. If g : R* — R is smooth and K is a compact subset of R", then define

8'“'g
ox% (X) ‘

lgls¥ = max
XEK
o<|al<s
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Lemma 2.4. Let p be in a convex compact subset K of R™ and let
g:R"* — R be smooth. Let
g = D alr—ptt > g - o)
Osioi=r 1Bl=r+1
be the Taylor expansion with remainder term of order r + 1. Then if gl ¥ < e,
then |ggll¥, -1 < eforr < sand |B] =r + L

Proof. Without loss of generality we may assume that p = 0. We pro-
ceed by induction on r. For r = 0, g(x) = g(0) + >7-; x;g(x) where g(x) =
J; (0g/ox;)(tx) dt. (See 11, Lemma 6.10.) Thus

ol%lg, 1] glal og
‘ e (x) SL 8x"‘5~x_i(tx) di <& for |of <s—1

since [¢| + 1 < s and |g].¥ < s (Note that 7x is in K since K is convex.)
So |lg.l5, < e
For the general case just note that if
g(x) = Z aaxa + z hB(x)xﬂa
o<glaj<r-1 1B8l=r

then by expanding h,(x) = h,(0) + >7_, g,.(x)x;, we get the Taylor expansion
of g to order r. Apply induction and the r = 0 case to obtain the desired
result. []

Let A, be the vector space of polynomials of R* — R of degree </.

Lemma 2.5. Let r = 0 and s > 0 be integers and let K be a compact
convex nbhd of 0 in R". Let Z be an open nbhd of 0 in A,! where l = (r + 1)%.
Then there exists an ¢ > 0 so that if py,...,p; are in K and if g: R* =R is
smooth and satisfies ||g|%, .1, < e, then there exists a polynomial v in Z such
that

olely

la|
2 ) =%T§(pi) for 1<i<sand0 < |o| <r.

Proof. We prove the lemma by induction on s. Let s = 1 and let p = p;.

By Taylor’s Theorem
g0 = > adx—pr+ D (x = p)rgdr)
oglalsr lel=r+1

where each g, is a smooth function. Let v = D2 qi<r de{x — p)*. Since p is
assumed to vary within the compact set K, the coordinates of p are bounded
by some constant. It is then easy to see that the coefficients of v are bounded
by some constant multiple of ¢ (where the constant depends on K but not on p)
since |a,] < [(0'%'g/6x*)(p)| < e. Thus by making ¢ small enough we can
guarantee that v is in Z. (Note that deg v < r so that v is in 4,%)

Assume that the lemma is true for s — 1 and let py, ..., p; be distinct
points in K. Again apply Taylor’s Theorem to g and obtain

g(.X) = Z aa(x - ps)a + Z goz(x)(x - ps)a'

oOg|aj<r lol=7r+1
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If g% 1, < & then g & 1,0 .1, < e by Lemma 2.4. So by induction we may
choose polynomials v, with deg v, < (# + 1)*~! 50 that

%1y, (p

Toxp WPV T 8x‘i
Moreover we know that we may assume that the coefficients of v, are smaller
than some constant (depending on K) multiple of e. Let

v= > afx —p)t+ D (X — p)a

o<la[sr lal=r+1

(p) for 1 <i<s—1landO < |B <r

Note that degv < degv,-(r + 1) < (r + 1)¥ so that v is in A4,%. Clearly the
coefficients of v are smaller than some constant multiple of & since p,, .. ., p;
are assumed to be in K, and the coefficients of v, are bounded by a constant
times . Thus by choosing ¢ small enough we can guarantee that v is in Z.
Finally, we note that

) =55 ( > alx—p)t > (x - pmga(x))

ozlat=sr fel=r+1

l8lp
OxP (p

forl < i < sand 0 < |B] < rsince the middle term of this equality depends
only on py, ..., ps, a, (Je| < r), and (0''g,/0x")(p) (y < B) and the RHS of
the equation depends in exactly the same way on these parameters. Thus the
induction is proved. []

Proposition 2.6. Suppose that f is infinitesimally stable and that f is stable
under k-deformations for k large. Then [ satisfies condition O.

Proof. Let p be in X. Choose coordinate nbhds U of p in X and V of
J(p)in Y such that f(U) = V. Let W be a C° open nbhd of f'such that if g is
in W, then g(U) = V. Choose an open nbhd U, of p such that U, is convex,
compact, and contained in U. (By convex, we mean convex in the coordinates
chosen on U.) Note that if g is in W, then g| U can be thought of as a mapping
of R*— R™ Define |g|l.% = max,<j<n [l&]."» where gy,..., g, are the
coordinate functions of g. Let p: X — R be a smooth function which is 1
on a nbhd of U, and 0 off U. Let r and s of Lemma 2.5 both equal m + 1
so that / = (m + 2)y"*1. Let B} ,, be the polynomial functions of R* — R™;
ie., B, = P, Al Let k = dim B} .

We now define a k-deformation of F. For v in Bl ,, let Fy(x) = f(x) +
p(x)v(x). Certainly F: X x Bl ,— Y x B} ,is smooth and F, = fso that F
is a k-deformation. Since f'is stable under k-deformations there is a nbhd Z of
0 in B} , on which F is trivial.

Let W, = {geW||g — fll&. ym+ < €. First note that g — f makes
sense since g(U) < V. Next note that W, is an open nbhd of fin the C™**3m+2
topology on C*(X, Y) and thus open in the C*® topology. Now we choose
e > 0 by using Lemma 2.5 as follows: Choose £ so that if p,,..., p; are s
distinct points in U, where s < m + 1 and if g is in W, then there exists a v
in Z for which jm*Yg — f)}(p) = j" w(p) for 1 < i < s.
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Finally we shall show that if g is in W,, then g satisfies (); that is, if
S ={p1,....,ps < U, " g~q), then

JMg*TY)s = (dg)J™(TX)s + g*J™(TY),.

Note that if this statement is true then f satisfies condition @ for the choices
U,and W,. Soletg, py, ..., ps, and g be given satisfying the conditions of ().
Since g is in W, there exists a v in Z so that j™*1g(p,) = j»*1(f + v)p,) for
1l <i<s. Since p=1 on a nbhd of U, j»*'(f + v)(p) = jm* Fyp;) for
I < i < s. Since Fis trivial on Z, F, is equivalent (as mappings of X — Y)
with f and since f is infinitesimally stable so is F,. Thus (1) is satisfied by F,
at the points p,, . . ., p,, g. Now the equations in () depend only on j™**F,(p,)
(1 < i < s) so these same equations must be satisfied by g since jm+1F,(p;) =
J"*g(p). 0

To summarize this discussion we have:

Proposition 2.7, If infinitesimal stability is equivalent to stability under
k-deformations for k large (e.g., k = dim B}, ,, where | = (m + 2)"*1), then
infinitesimal stability implies stability.

Proof. By Proposition 2.6 all infinitesimally stable mappings satisfy
condition ¢. By Lemma 1.12 the set of infinitesimally stable mappings is an

open set. Apply Lemma 2.2 and the hypothesis of this Proposition to see that
infinitesimal stability implies stability. [

§3. A Characterization of Trivial Deformations

Let ¥ be a nbhd of 0 in R* and let £, .. ., 7, be the standard coordinates
on R”,

Definition 3.1, Let f: X — Y be smooth and let F: X x V—Y x V
be a k-deformation of f. Define the vector field along F

where 0/0t; is a vector field on X x V or Y x V as required.

We now establish some notation. Let 7: X x V—Vandp: X x V=V
be the obvious projections. Then 7(X x V) = #*(TX) @ p*(TV). So any
vector £ in T(X x V) can be written uniquely as { = {x + {y where {4 is in
#*(T'X) and {y is in p*(TV). We call {x the X-component of { and ¢, the R”-
component of { and denote {x by #({) and &, by p({).

Lemma 3.2. Let F be a k-deformation of f. Then F = f x idy iff 7' = 0
Jor 1 < i < k. In particular F is independent of t, if 7' = 0.

Proof. If F = f x idy, then
0 ) _ 9
(x,v) 6ti

s &
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So that =, = 0. So assume that 7./ = 0 for all i. Fix (x,, v,) in X x V and
choose coordinates xy, ..., x, near x, in X and yi,..., y, near F, (xy, vp)
in Y. In these coordinates we may write F(x, v) = (Fi(x, v), ..., Fu{x, v), v).
Then

1% _(oF, oF,, o
(dF)(x,v)('a—ti (x,v)) - (E (xs U), ERE 8_fi (X, U)) + a1,

Thus 7, = 0 implies that oF;/ot(x,v) =0 for 1 <j < m. Thus Fix, v)
is independent of f; for all i and F{x, v) = F{x) = f(x) where f =
(f1, - - -»fm) In these coordinates. Since (x,, vy) is arbitrary we find that
globally F(x, v) = f(x). [0

Theorem 3.3 (Thom-Levine). Letf: X — Y be smooth andlet F: X x V
— Y x V be a k-deformation of f. Then F is trivial iff there exists an open nbhd
U of 0 in V and vector fields ' on X x Uandnon ¥ x U (for 1 <i < k)
satisfying

(@) p(f) =0 = p(n), and

(b) 7' = (dF)() + F*(x) on X x U.

Fx,)

Proof. Necessity. Assume that F is trivial, then there exists a nbhd U
and diffeomorphisms G: X x U— X x U and H: Y x U—=Y x U
satisfying Definition 2.3(b). First we note that for any deformation K the
since p+K = p. Thus

R¥-component of
0 0
@n(zl) - 7
0 o
(dK)p(&—L + W(dK)p<6_p

)-7 )
ilp ot ilp

Now, by assumption, F = H-(f x idy)-G~* where all the mappings are
k-deformations. Let p be in X x U and let r = (f x idy)-G~*(p). Then
compute

o wnfz])

0

2 )

= 5 ) + (dH)(df x idU)G_l(p)W(dGﬂ)p( ‘a%

Let &} = (dG)g-1mym(dG 1) ((8/01)|,). Thus {* is a vector field on X x U
and p({) = pw(dG~1)(¢/ot;) = O since G is a deformation and p-7 = 0.
Now insert (dG), " *+(dG)g-1, before 7 in the last term of the RHS of (*)

to obtain
17 0
dF),\ — = —
( )p(ati |p) ot; [ra

_ g
P 8tl

K(p)

K(p)

'y

+ w(dH), (%

N W(dm,(a% l) + (@A) (L.
Thus

¢ o) = @5

o = "D ‘) T+ @R,
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Define 7, = 7(dH)y-1,(8/81)|z-1,) Where g is in ¥ x U. Clearly »' is a
vector field of ¥ x U and the R¥-component of »' is zero. Substituting 5
in (**) we see that 7 (p) = (dF), (L) + nhe,. But H(r) = H-(f+idy)-G~'(p)
= F(p). So 7' = (dF)({) + F*(»"). O

Before proving the sufficiency part of the theorem we make some prepara-
tory calculations.

Lemma 3.4. Let { be a compactly supported vector field on X x R¥ such
that the R*-component of { is zero. Then there is a diffeomorphism g : X x R*¥ —
X x R¥ which is a deformation of idx satisfying

™) (dg)(g~)*(8/ot) = L + 8]t

Proof. Since { is compactly supported and &/o1, has a globally defined
one parameter group, I, Corollary 6.5 guarantees that { + 0/01, has a globally
defined one parameter group ¢: (X x R¥) x R-> X x R¥,

Lete, = (0,...,0, 1) in R*. We claim that ¢,: X X {v} — X X {v + s¢;}.
Let p = (x, v) be in X x {v}. Then

@
) -

(dp>p((c n g)

since the R*-component of { is zero. Since { + (9/ét,) is the infinitesimal
generator of ¢, the curve s+ ¢4(p) is an integral curve for { + 9/0t, and
thus represents the vector ({ + 8/8¢,)| 4, for each s. Thus (d/ds)p(¢(p)) = e,
and p(b(p)) = se, + p(do(p)) = v + se,. This proves the claim.

Next, define g: X x R*— X x R¥ by g(x, v) = ¢, (x, v — ve;) where
v=(0,...,0,). Then g:X x R*— X x R¥ is a smooth mapping
Since g: X x {v} — X x {v} and g(x, 0) = ¢y(x, 0) = (x, 0), g is a deforma-
tion of idy. Note that g|X x {v} is a diffecomorphism since A(x,v) =
¢ (x, v + ve,) is the smooth inverse of g| X x {v}. To see that g is a diffeo-
morphism we need only show that Ker (dg) N p*(TR¥) = {0}. But this is
clear since g is a deformation; i.e., (dg)(0/0t,) = o/ot, + =(dg)(o/ot;) # 0.

Finally we compute (*).

The curve s> (x, v + se,) represents (8/0t,)|..,, sO the curve s+
(%, 0+ 5€,) = by vs(X, 0 — 0,00) = Do (X,  — Be)) = blg(x, v)) repre-

sents
E
<x,v>> - (C * 3_f;c)

Lemma 3.5. Using the same notation as in Lemma 3.4, we have that
() £ = =(dg)(g~Y*(@/oty), and
(i) £ = —(dg)n(dg~1)(0/ery).

Proof. (i) follows trivially from Lemma 3.4 since #(¢/é¢;) = 0. Applying
(dg),~* to both sides of Lemma 3.4 we have that

@, ((c+ %)) - =

p(p)

0
(dgxx,w(a

g(x,0)

g1y
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)

Since the R*-component of {, = 0 so does the R¥-component of (dg~*),({,).
So ”(dg)p_l(gp) = (dg)p_l(Cp)- Apply (dg)g‘l(m to obtain (11) 0

Proof of Theorem 3.3. Sufficiency. Let F: X x V—Y x V be a k-
deformation of f and let ¢* and %' be vector fields on X x V and Y x V
respectively, such that the R*¥-components of ' and »* are zero and ;' =
(dEY) + F*(n') on X x V. We must show that F is trivial. Since X is
compact {* is trivially compactly supported. By shrinking ¥ we may assume
that 7 is compact and that 7' = (df ({) + F*y' on X x V. We can then
damp %' to zero off a compact nbhd of F(X x ¥) and assume that 7' is
compactly supported.

Apply Lemmas 3.4 and 3.5 to show the existence of diffeomorphisms
G:XxV—>XxVand H: Y x V— Y x Vso that

Thus

0

0 W(ﬁ ) = (dg), () + W(dg)p“l(a—ti

ot

g~ (p)

k= ,T(dG)(G“l)*(a%)

and
v = — @)

Let M = H-'.F-G and let p be in X x V with ¢ = G(p) and r = F-G(p).

) )
¢ 1P a[}c T

@, 4 7
+ (dH”l)m(dF)q(g—i \) + (dH ) (dF )q”("G)”(a% ‘)

+ w(dH‘l),<

M (D)

using the fact that H, F, and G are deformations.

So
2
b] Ot

Now 7/5q) = (dF)({;) + »* by assumption. Hence

4 @H( = @] ) ~ @Pe)

e

@, £

M(p)

N

ni(p) = @, 3| ) = (1)

— (dH—l),(— 4(q) + m(dF )4(%

)

e nfi) - (i) - onl)

since



§4. Infinitesimal Stability = Stability 127

Applying Lemma 3.2 we see that V/ is. in reality, a (k — 1) deformation
trivially extended to a k-deformation. Thus if we can show that =,/
(I < i< k — 1) can be written in the form 7,/ = (dM )T} + M*(7') where
{t and 7' are vector fields whose R'-components are zero, then we will be
able to use induction to conclude that F is trivial.

Now note that

) T oG = (dH)rs — (dM)m(dG)(6]0t).
For (dH)(75') = (dH)a(dF)(8/ot)) = =(dH)YdF)(9/ot) since H and F are

deformations. So

(dH)(75)

I

w(dM)(dG)(a%) = w(dM)(a% L) + (dG)(a%)

(dM) (-5'%

G) + (AM)yn(dG) (%)

This proves (*) since m(dMW&/0t)| o) = 7y «G. From (*) we see that to show
that =,/ has the desired form it is sufficient to show that (dH)~,’ has the
desired form.

Finally we compute (dH)(57) = (dHYXAF)({) + (dH)(n|5). Define
Lo = (d&)(E,) and 7, = (dH)y-1¢(n-1). Then { and 7 are vector
fields whose R¥-components equal zero. Moreover,

1 (G(P)) = (dM)eir(low) + Thucwn O

Exercises

It is possible to use the Thom-Levine Theorem to prove that certain
mappings are homotopically stable. For example, show that:

(1) Submersions are stable under deformations and

(2) 1:1 immersions are stable under deformations.

§4. Infinitesimal Stability = Stability

Proposition 4.1. Let f: X — Y be stable under k-deformations; then f is
infinitesimally stable.

Proof. Since fis stable under k-deformations, f'is homotopically stable.
To show that f'is infinitesimally stable we must produce for each vector field
7 along f vector fields { on X and » on Y so that + = (df }({) + f*5. Consider
X; = graph fin X x Y. We can view 7 as a vector field on X, pointing in the
Y-direction as follows: 7, iy = 7 I {0} D T, Y < Ty s X x Y).
Extend 7 to a compactly supported vector field on X x Y. (This is possible
since X, is closed in X x Y and thus has a tubular nbhd Z. Trivially translate
T, 10p along the vector space fiber of Z at (p, f(p)) and damp-out off a
compact nbhd of 0 in this vector space. This can clearly be done smoothly.)
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Nextleté,: X x ¥ — X x Y bethe one parameter group whose infinitesimal
generator is +. Finally define F: X xR-—>Y xR by F(x,1) =
(my+dx, f(x)), t) where ©wy: X x Y — Y is the obvious projection. Clearly
F is smooth and is a deformation of f since F(x,0) = (wy(x, f(x)), 0) =
(f(x), 0). Since f is stable under deformations there exist vector fields £ on
X x I;and 7 on Y x I; (where 8 > 0) whose R-components are zero satis-
fying 7, = (dF)() + F*35 on X x I, by Theorem 3.3. Restrict this equation
to X x {0} to obtain 7z|x.0, = (AN + f*y where {, = {,,q and 7, =
.0 define vector fields on X and Y respectively since the R-components of
{ and 7 are zero. Finally we compute rz|p.0, = m(dF)q.0/((3/00)|0p.00)-
The curve f — (p, t) represents (8/01)|,q, SO that ¢+ wy-d(p, f(p)) repre-
sents 7z .0y NOW

d _
7 7y (D f(PD]i=0 = @m9)w, 1Tl s») = Tp

since 7|, sy points in the Y-direction. Thus 750 = 7p. [

The proof of the fact that stability under deformations implies infinitesimal
stability is a calculation involving nothing deeper than the global integration
of certain vector fields. This is not true for the converse statement. As we
shall see, the proof of this implication uses the generalized Malgrange Prepara-
tion Theorem and is quite similar in spirit to the proof of the formulation of
infinitesimal stability given in §1.

Theorem 4.2. Let f: X — Y be infinitesimally stable, then f is stable
under k-deformations for all k.

Let F: X x V— Y x V be a k-deformation of /. We need to show that
Fis trivial. By applying Theorem 3.3 we see that it is enough to find a nbhd U
of 0 with U < V and vector fields { on X x U and 5 on Y x U such that
the R*-components of { and » are zero and 7, = (dF){) + F¥pon X x V.

First we prove that  and » exist locally.

Proposition 4.3. If [ is infinitesimally stable at p, then there exists germs
of vector fields { and v with R*-components equal to zero such that

[75)p.00 = @),y + [0 00

Proof. Let Nz* = N = {germs of vector fields 7: X x R* - T(Y x R¥)
along F at (p, 0) [ R*-component of 7 = 0}, and let 4;,* = 4 = N/K where
K = {(d)[llp.0 | ¢ is a vector field on X x R* with R* component = 0}.
There is an obvious action of Cg (X x R¥) on N given by multiplication.
Thus N is a module over Cg (X x R¥) and is finitely generated. For if we
choose coordinates x,,...,x, based at p on X and y,,...,y, based at
f(p) on Y, then every vector field along F whose R*-component is zero can
be written as

< 17
Ti(xa Z‘) Oy

F(x,t)
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Thus the vector fields along F, F*(2/dy;) are generators of the module N.
Thus A is a finitely generated module over C3Z (X x R*). Finally we note
that via F*, 4 is a module over C3 (Y x R¥) where ¢ = f(p). We claim that
A is also a finitely generated CZ (Y x R¥) module with a set of generators
given by e; = projection of F*(¢/dy,) in A. It is in proving the claim that we
shall use the fact that f'is infinitesimally stable at p.

First we show that the claim is sufficient to prove the Proposition. In 4,

m 0
l7rlw,0 = 121 [mF* (3_)%)]@,0{

[7r)o.00 = (dF)[L)en,00 + F*LZ K 5%](

where £ has R*-component equal to zero since (dF){{],.0, is in K.

Now 5 = >, n(0/dy;) clearly has R*-component equal to zero so
77 = (dF)(Q) + F*y on the germ level near (p, 0). Apply the obvious local
form of Theorem 3.3 to prove the proposition.

To prove the claim we shall use the Malgrange Preparation Theorem
(IV, Theorem 3.6). Using Taylor’s Theorem write

Thus in N,

»,0)

*) w0 1) = 7olx) + 2, fim(x, 0.

Since T is a vector field along F, 7, is a vector field along f. Since /f'is infini-
tesimally stable, there exist vector fields { on X and » on Y such that =, =
@) + f*n. Extend { and % trivially to be vector fields on X x R* and
Y x R* and apply Taylor’s Theorem again to obtain

**) To(X) — ((dF)() + F*n)(x, 1) = Zl t7i(x, 1).

Substituting (**) in (¥*) we obtain
k
(%) (x, 1) = [dF(Q) + F*nl(x, 1) + > tyri(x, 1)
i=1

Next we consider the vector space 4/(ty, . .., t;)A. The equivalence class
of rin A/(t,, ..., t,)A is F¥n. Now F¥*n = 27, (:-f)(0/2y:)|r since 7 is the
trivial extension of a vector field on Y to Y x R*. So the projections of
F*(0/oyy), . .., F*(0]0y,) generate the vector space A/(ty, ..., t;)A.

Finally consider the vector space 4/.#, (Y x R¥)A. Since (t,, ..., ;) <
Ma.o(Y x R¥) there is a natural projection of A/(ty,...,1,)4 onto
Al My o (Y x R¥)A so that ey, ..., e, generate this last vector space. Now
apply the Malgrange Theorem to obtain the desired result. [

Corollary 4.4. Let [ be infinitesimally stable and let F: X x V—> Y x V
be a k-deformation of f. Let S = {p1, ..., pss < f~Yq). Then there exists a
nbhd U of S x {0} in X x R* and vector fields Lon X x RFandnon Y x RF
such that the R*-components of { and v are zero and vy = (dF)Y{) + F*n on
X x U.
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Proof. 1In the case that S is a single point, this is just Proposition 4.3.
The proof proceeds precisely as the proof of Proposition 4.3 substituting
AFS = A2 @D - @D ApPe for Ag* and using Lemma 1.4 rather than the
Malgrange Preparation Theorem. []

Our next step is to show that r, can be written in the desired form on a
nbhd of the critical point set of f. Let 2, denote the critical points of f in
S Yg) and let £ = | J,ey 2, denote the critical point set of f.

Note. pis a critical point of fif (df),: T, X — T Y is not onto. Recall
Lemma 1.8 which showed that X, is a finite set.

Proposition 4.5. Let X be compact, let f: X — Y be infinitesimally stable,
and let F be a k-deformation of f. Then there exist vector fields { on X x R*
and n on Y x R¥ with the R¥-component of { and v equal to zero on a nbhd B
of £ x {0} in X x R* such that v, = (dF)() + F*n on B.

Proof. We claim that there exist open sets Uy, ..., Uyin X; Vyp, ..., Vy
in Y;and Wy, ..., Wyin Y; and ¢ > O satisfying

@ /) = Uk, W,

(b)y W= v,

(c) for all ve R* with |v] <& F,"" (W) NE < U, where F(x,v) =
(Fy(x), v)

(d) for |v] < &, U, = F," V)
(e) there exist vector fields ; on U; x B, and #; on V; x B, with R*-
components equal to zero (where B, = {v € R¥ | [v| < ¢} so that

e = (dF)(&) + F*p on Ui X B,

We need only verify the choices at each point g in /(X). The finiteness then
follows since f(Z) is compact. Since X, is a finite set we may apply Corollary
4.4 for § = X, and gain the existence of U, V, {, n, and « satisfying (e). Shrink
U so that f(U) = V. Now choose W satisfying (b) and (c) for /' = F,. By
taking e smaller if necessary we may assume that (¢) and (d) hold.

Next choose a partition of unity py, . .., pyon | ¥, W, with supp p;, = W;
and extend p; to be =0 off W;. Now there is a nbhd U of X such that
S YW) n U <= U, for each i since X is compact and U, is open. Choose a
smooth function p on X such that supp p = U and p = 1 on a nbhd of X.
Let £ = >F. ;1 pF*p;{;. (This is globally defined and smooth since

supp (pf™*p;) < supp p N supp F*p; = UN F~Y(W; x B,) < U; x B,.
Hence pf*p;{; can be extended to all of X x RF trivially.) Let n = >N pim,.
(m is globally defined on all of ¥ x R*.) Then calculate

N

@ + £y = @) > PEpL) + 3 Frlpm)

i=1

It

N
> F*p[(dF)(L) + F*y,] on a nbhd of £ x {0}
i=1
= Tp.

Let B be that nbhd. [
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Proof of Theorem 4.2. TIf dim X < dim Y, then £ = X and the last
proposition proves the theorem. So assume dim X = dim Y and let B, ,
and # be given by Proposition 4.5. Choose a nbhd Z of X x {0} so that
Z < B. Let o = 1 — (df)({) — F*y. Then o is a vector field along F whose
R¥-component is zero and which is zero on B. Now f|(X — Z) is a submer-
sion. Thus for v in R* small enough F,[(X — Z) is a submersion. Since F
is a deformation, F'is a submersion on a nbhd D of X x R* — Zin X x R*
Thus T(X x R*¥) = TR* D Ker (dF) @ G on D where G is some comple-
mentary subbundle. Moreover (dF): G —TY is an isomorphism on D.
Since o is a vector field along F whose R¥-component is zero, there exists a
vector field ¢’ on D so that (dF)({') = ¢ on D. Moreover, we can assume that
{’ is a section of G so that the R*-component of {’ is zero. Since o = 0 on B,
we can extend ¢’ to be =0 near the boundary of D and thus extend {' to a
vector field on X x R* whose R¥-component is zero. Then 7, = (dF)({ + ')
-+ F*non anbhd of X x {0}. [

Theorem 4.6. Suppose f: X — Y is smooth and X is compact. If [ is
infinitesimally stable, then f is stable.

Proof. A trivial consequence of Proposition 4.1, Theorem 4.2, and
Proposition 2.6. [ Q.E.D.

§5. Local Transverse Stability

We will show that local infinitesimal stability (see Definition 1.1) is
equivalent to a certain transversality condition. First we must construct the
submanifolds which will appear in this transversality statement. To do this,
consider the action of Diff(X) x Diff(Y) on J*(X, Y) given by (g, i):0 =
JER(g)-o-j"(g~ N g(p)) where o is in J*(X, Y), .. Let &, be the orbit of the
action thru the k-jet o. It is true that &, is a submanifold of J*(X, Y) but,
for our purposes, we shall not need this fact. We shall only prove the follow-
ing.

Theorem 5.1. 2, is an immersed submanifold of J¥(X, Y).

Before proving this result, we need some facts about extending diffeo-
morphisms and damping translations.

Lemma 5.2. Let n:R"— R" be an immersion such that v is a diffeo-
morphism outside of some compact set K. Then v is a diffeomorphism.

Proof. We need only show that n is 1:1 and onto as the Inverse Function
Theorem will imply the result. To show that % is onto we note first that 5 is a
submersion and so Im % is open. Let L. be a compact set with K < Int L.
Then Im v = 7n(L) U n(R™® — Int L). Both sets in the union are closed so
Im 7 is closed. Thus Imn = R™

To show that » is 1:1, define S = {x e R*| Iy e R", y # x, with o(y) =
n(x)}. Since 7 is a diffeomorphism off K, R* — § # @. Thus it is enough to
show that S is both open and closed; for then § = @ and 7 is 1:1. Let x
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be in S and y be in R® — {x} such that 5(x) = n(y) = ¢. Choose nbhds U
of x, Vofy,and Wofgsothat UN V = g and»|U: U— Wand 5| V:V —
W are diffeomorphisms. (This is possible since n is an immersion.) Then
U< Sforifaisin U, thenb = (n|V)~ (9| U)(a) satisfies b # a and n(b) =
n(a). Thus S is open. To see that S is closed let x,, x,, ... be a sequence of
points in § converging to x. Choose an open nbhd W of x so that »|W is a
diffeomorphism. We may assume that each x; is in W. Choose y; # x; so that
n(y;) = n(x;). Clearly the y;’s are not in W since n|W is 1:1. Also, the y’s
are contained in the compact set »~*(n(K)). Thus we may assume that the
¥.’s converge to y in p~Hn(K)) — W. Clearly y # x and the continuity of %
guarantees that 5(x) = 5(»). Thus x is in S and S is closed. [

Proposition 5.3. LetT,: R"* — R" be translation by a in R"—i.e., T,(x) =
x + a. Given an open set B in R, there exists a diffeomorphism n: R* — R"
such that n = T, on B and n = idgr outside of some compact set.

Proof. Choose a smooth function o: R* — R which is 1 on a ball cen-
tered at O containing B and which has compact support. Let p(x) = o(tx)
for some r. Choose ¢ so small that |dp| = t|do| < 1/|a|. By also demanding
that 1 < 1 we see that p = 1 on B. Now consider n{x) = x + p(x)a and
observe that n = 7, on B and n = idg~ off of some compact set. By applying
Lemma 5.2 it is enough to show that 7 is an immersion in order to show that 5
is a diffeomorphism. Now

a
(dﬂ)x=1n+(5)(;7p,...,%) where a = (ay, ..., a,).
1 n
a

n

(A short computation is necessary here.) Thus for v # 0, |[(dy).(v)| =
[v] — |a}+|dp|+|v] > O by the choice of p. Hence % is an immersion. []

The following is left as an exercise.

Lemma 5.4. The connected component of the identity in GL(n, R) is the set
of matrices with positive determinant.

Proposition 5.5. Let ¢ be a local diffeomorphism on R" defined near 0
satisfying $(0) = O and det (db), > 0. Then there is a diffeomorphism
7 : R*— R” such that v = idg» outside of some compact set K and n = ¢ on
some nbhd of 0.

Proof. Since $(0) = 0, ¢ = (dp), + B where B is 0(|x|?) near 0. We first
show that 8 can be damped out off K. Let p: R* — R be a smooth function
such that p = 1 on a nbhd of 0 and p = 0 off K. Consider 7 = (d¢), + pB.
Clearly 7 = ¢ on a nbhd of 0 and = = (d¢), off K. We wish to choose p so that
= will be a diffeomorphism. By Lemma 5.2 it is enough to show that = is an
immersion. Now for v in 7,R" = R", |(d7)(v)| = [d(d$)o(v)| — |(dpB)x] ||
= (¢ — [(dp B)x})|v| where ¢ = |(d$)o~*|. Thus if we choose p so that
I(dp B)| < ¢, then = will be an immersion. Choose o: R*— R such that
o = 1 on a nbhd of 0 and supp o = B(l) = ball of radius 1 centered at the
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origin. Let p(x) = o(rx) for some positive constant . Then p = 1 on a nbhd
of 0 and supp p < B(1/r) = ball of radius 1/r centered at 0. By choosing r
large enough supp p < K. Let M = sup |do|. Then rM = |dp|. Since B is
0(|x}?) and supp p < B(1/r) there exist constants e and f so that |[B(x)| <
e|x[? and |(dB).| < f]x| on supp p. Thus |(dpB)| < |dp|-[B] + |pl-|dB| <
(eM + f)/r. Choose r large enough so that (eM + f)/r < c.

Next we show that given a linear map o with det « > O there exists a
diffeomorphism g so that g = « on a nbhd of 0 and g = idy» outside of K.
If g exists, then n = a~1.g.7 is the desired diffcomorphism where o = (dé),.
(We use the hypothesis that det (d¢), > O here.) Moreover, it is sufficient to
show that there exists a 8 > 0 so that g exists whenever |« — I,| < 3. For
we may choose a curve c¢: R— Gl(n, R) so that ¢(0) = I, and ¢(1) = «
using Lemma 5.4. Also, since [0, 1] is compact there exist points t, = 0 <
ty <---< tp =1 such that |e()+c(t;io)"* — I <6 for 1 <i < k. Let
g: be the diffeomorphism associated with ¢(¢,)-c(f;_y) "', then g = g+-- -+ -8
is the desired diffeomorphism. Let p : R® — R be a smooth function such that
p=1 on a nbhd of 0 and p = 0 off K, then consider g = I, + p(e — I,).
Clearly g = anear 0 and g = I, off K. Using Lemma 5.2 again, we need only
show that g is an immersion to see that g is a diffeomorphism. Indeed

[(d®))| = v} — (1@p)x| + [p(X)) -l — L]+ [0].

Thus if we choose 8 < 1/sup (|dp| + |p|), then whenever |« — I,| < §, the
associated g will be an immersion. []

At this point we shall need some standard facts about Lie groups. We
refer the reader who is not familiar with this topic to the appendix where we
give definitions, examples, and sketch the results that are used here.

Now let p be in X and g be in Y. Let G*(X), and G*(Y), be the invertible
k-jets in J*(X, X),, and J*(Y, Y),, respectively and let G = G*(X), X
G*(Y),. Then G is a Lie group (see Example (4) after Definition A.1) and there
is an obvious action of G on J¥(X, Y), , given as follows: («, B)(¢) = B+0:a™?
where (e, f) is in G and o is in J*(X, Y), ,. Let 0, be the orbit in J*( X, ¥),,
thru the k-jet o. Applying Theorem A.13 we see that @, is an immersed
submanifold. (In fact, @, is a submanifold as it is the orbit of an algebraic
group acting algebraically on a manifold. See Borel, Linear Algebraic
Groups—Proposition 6, 7, p. 180. For our purposes we shall not need this
fact. We also note that the knowledge that @, is a submanifold would be
enough to prove that &, is actually a submanifold of J*(X, Y).) Now let &,
be the connected component of @, containing o. Clearly (3(, is also an immersed
submanifold of J¥(X, Y),. 4.

Proof of Theorem 5.1. Suppose that dim X = n and dim Y = m. Choose
pin X and g in Y with chart nbhds U of p and V of g. Via charts we may
identify U with R®, 7V with R™ p with 0, and g with 0. Consider
T:U XV x J(U, V),.q—J¥U, V)defined by (p’, g, 7) = j*Tyerj*(T, %)
where T, is translation by the vector c¢. (This makes sense using the identifi-
cations above.) T is a diffeomorphism as it is essentially the inverse of a chart
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in the manifold structure of J¥(X, Y). (Identify the domain with R* x R™ x

7~ JER™, R™),., and see TI, Theorem 2.6.) We claim that 7(U x V x 4, =
DYV = connected component of &, N J*(U, V) containing ¢. This will imply
the Theorem as €, is an immersed submanifold since T'is a diffeomorphism; as
long as we also show that Z, N J*(U, V) has at most a countable number of
components. First we show that 7(U x V x (Oa) < 25V . Since U x V x (9

is connected, it is enough to show that 7(U x V x (9(,) < Z,NJEU, V).
Let (p',q, 7y bein U x V x (090. Now &, = G- (using Lemma A.14) and
G = G"(X), x G(Y), where GX), = {ae G*X), | det (da), > O}. Thus
T = Brora”! where « € GO’“(X)p and S € Coik( Y), Now we can represent « and
B by mappings @: X — X and : Y — Y which are diffeomorphism nbhds of
p and g respectively. Using Proposition 5.5 we can insure that @ and B are
globally defined diffeomorphisms. So = = j*(B)¢)-0-j*(E YN(p). Now
T(p'sq'y 7y = j5(Ty)q)- 77T, ~)(p"). By Proposition 5.3, we may assume
that T, : Y- Y and T,.: X — X are globally defined diffeomorphisms. Thus
T(p',q', ™) = (Tp+& Ty+B)-oc €, For the reverse inclusion, let = be in
U7, Let the source of = be p’ and the target be ¢’. Consider p =
FYT =G )7 j¥(T,)(p). Since T, and T, are in Diff(X) and Diff(Y) re-
spectively (Proposition 5.3 again), we see that p is still in Z,. Thus there exist
(y, 8) in DIff(X) x Diff( Y) such that p = j5(8)(q)-c-j*(y~*)(p) and so p is in
0,. So we have shown that 2Y'V <« T(U x V x (,). Also we have shown that
2. NJNU, V)< T(U x V x 0,)sothat Z, (" J*(U, V') has at most a count-
able number of components. Since 7 is a diffeomorphism and 277 is con-
nected we must have that VY < T(U x V x (connected component of @,)).
But certainly o isin 27"V " T(U x V x @o(,) sothat 2YY <« T(U x V x 00(,).
Thus the components of &, N J¥U, V) are a subset of the components of
T(U x V x 0,) and this last set is at most countable. []

Definition 5.6. Letf: X — Y be smoothandletpbein X. Letm = dim Y
and let o = j7f(p). Then f is locally transverse stable at p if jf 1y &, at p.

Notes. (1) The concept of intersecting transversely an immersed sub-
manifold makes sense in an obvious way, since the tangent space to an
immersed submanifold at a point is well-defined. More precisely, let W be an
immersed submanifold of Y and let f/: X — Y. Then /i W at p if cither
fp) ¢ Wor f(p)e Wand Ty, Y = (df ) (T, X) + TyinyW.

(2) Another way of phrasing this definition is that an immersed submani-
fold, W, is the countable union of submanifolds W,, W, ... which are open
subsets of W. Thus f ' fy Wiff f ' {§ W, for each i.

(3) Applying (2) we see that the Thom Transversality Theorem still
applies to immersed submanifolds; i.e., if W is an immersed submanifold of
JYX, Y), then Ty ={feC(X, Y)|j* H W} is a residual subset of
C>(X, Y). (Trivial, since Ty = (;21 Tw, where Ty, is defined in the obvious
fashion.)

A corollary of all this is the following:

Lemma 5.7. Let f: X — Y be stable, then f is locally transverse stable at
pforalpinX.
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Proof. Choose an open nbhd U of fin C*(X, Y) such that all g in U
are equivalent to f. Let o = j™f(p). By the Thom Transversality Theorem
(and Note (3) above), there is a g in U such that j"g § Z,. Choose («, B)
in Diff(X) x Diff(Y) such that f= B8.g-«~'. Then j/ [ &, at p since
J"e N Dsat«(p). [

Let f: X — Y be smooth with p in X and o = j%{(p). Our next goal is to
compute 7,2, as well as a normal subspace in 7,J%(X, Y). The idea is to
compute a jet version of 7,C*(X, Y) = CF(X,TY) = C*(f*TY).

Let w be in J*(f*TY), and let 7: X — TY be a vector field along f
representing w. (We will constantly use the identification of C/°(X, T'Y)
with C*(f*TY).) Let F be a deformation of f satisfying dF,/dt|;., = T.
(The existence of such a deformation can be shown as follows; Consider
graph f as a submanifold of X x Y and identify = as a vector field along
graph falways pointing in the ¥ directions. Since X is compact we may extend
7 to a compactly supported vector field 7 on X x Y. Let ¢, be the correspond-
ing one parameter group and let =y : X’ x Y — ¥ be the obvious projection.
Define Fy(x) = my+-d{x, f(x)). Then the associated F is a deformation of f
with the desired property.) Consider the path ¢ +— j*F,(p) in J*(X, Y) based
at o and define Mo) to be the tangent vector to this path at 7 = 0.

Proposition 5.8. X:J(f*TY), > T,J*X, Y) is a well-defined linear
injection.

Proof. To see that A is well-defined we shall compute a formula for
AMw) which just depends on the k-jet of r. Choose coordinates x, ..., X,
based at p in X and coordinates y,,...,y, based at ¢ = f(p) in Y. Let
fi, ..., fm be the coordinate functions of fin these coordinates. We may write
T=>",gf*0/0y) where g; is a smooth function on X and F, =
(F, ..., F™ where F{! = f; + tg; + O(t?). This last equality follows since
(dF,/dt)|,=o = 7. Thus

@ plal o tal |l
FRO = 2 TR0 = Y X (g—xaﬁ-m) + 1) + 0(t2))

o!

o<k X lel <k
Hence
d . x@ polal
* — JFF(0), o = — — g,(0).
*) i FOleo = 2 T155800)

This sum is completely determined by j%¢(0); that is, the k-jet of 7 at p. Now
suppose that Mw) = 0. Then by (*) (¢*!/0x*)g,(0) = 0 for |«| < k and thus
w = 0in J*(f*TY),; so XA is injective. The linearity of A also follows from

™. 0

Proposition 5.9. Let «:J*X, Y)-—> X be the source map; then the
sequence 0 — J*(f*TY), M\ T,JX, Y) 9% T, X — 0 is exact.

Proof. Since A is injective and « is a submersion we need only show that
Im A = Ker (de),. First we note that (de),-A = 0, since > a-j*F(p) = p
is a curve representing (d«),+A(w) when F; is a deformation defining A(w).
Since this curve is constant (de),+ AMw) = 0. To finish the proof we show that
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dimIm A = dim Ker (do),. Now dimIm A = dimJ¥f*TY) = dim (poly-
nomial mappings of R™ into R™ of degree <k) where n = dim X and m =
dim Y. On the other hand dim Ker (d«), = dim J*(X, ¥) — dim X = dim
(polynomial mappings of R™ into R™ of degree <k). []

There is a natural mapping of C*(7T'Y), — 7,2, given by the action of
Diffi(Y) on J¥(X, Y) where g = target of o. Let n be a vector field on Y
representing [n],. We may assume that » has compact support. Let ¢, be the
one parameter group whose infinitesimal generator is . Consider the curve
c(t) = j*{(q)-o. Clearly this curve lies in Z,. Let (dy)(n) = (dc/dt)|;o.
Thus (dy,): C*(TY), — T,Z, and is just the k-jet version of

(dy;): Ty, DIff(Y) - T,C>(X, Y).
Proposition 5.10. The diagram

d
cury), ), 19,

-

JNTY), —— JHf*TY),

commutes where w7 . C(TY), — JTY), is the obvious projection.

Proof. Letn and ¢ be as above. Then

ME @) = D e NPeco = & 754a) olumo = ()

since a deformation of f corresponding to f*v is given by F, = ¢,-f.

There is also a natural mapping of C*(TX), — T,%Z, given by the action
of DIff(X) on J¥( X, Y) where p = source of o. Let { be a vector field on X
and let ¢, be the one parameter group whose infinitesimal generator is .
Consider the curve c(f) = o+j%f, *(f(p)). Clearly this curve lies in Z,.
Let (dy)(0) = (dejdt)];-o. Thus (dys): C*(TX), — T,2, and is the k-jet
version of (dy;) : T;y, DIff(X) — T,C*(X, Y). []

Proposition 5.11. Let A" = —A-(df) + (dj*f ), mo* where ny: JN(TX),
— JUTX), = T,X is the obvious projection. Then the diagram

d
C(TX), (dya) | T.2,

e

JHTX),

commutes where ;7 is the obvious projection.

Proof. Let { and 4 be as above. Let w = m2(£). We compute A-(df Y(w).
Note that F, = f+3, is a deformation of f satisfying (dF;/dt)|;~o = (df)(D).
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Thus we may use F, to compute A((df)(w)). Now

N(df)w) = d—‘f GEXD)i=o = 7 TGN TP —o

= & PP eco + & oo (P
Thus

A«(df)(w) = (&*)m5 (D) — UJ"’sb {P)i-o

where »§: C*(TX), > T,X = J%TX), is the obvious projection. Since
gy = mo*.m, and ¢ _, = ! we have that

A(df Ww) = (" )y (w) — (dy2)(D)

or
(dyo)(Q) = A -7 (D) 0
Lemma 5.12. (dyy) @ (dy): C*(TX), ® C>(TY),—~ T,%Z, is onto.

Proof. Let v be in T,2, and ¢(t) a curve representing v in Z,. Suppose
there exists a curve of diffeomorphisms 7+ (g, #,) in Diff(X) x Diff(Y)
such that «(z) = j*h(q)-o-j*g,~*(g{p)) then v is in the image (dy,) ® (dy,).
Let

d dh
gt (P)It o and 79, = t(‘l)’t o

Then { and % are vector fields on X and Y respectively. (Since we are only
interested in the germ of % at ¢ we may assume that » has compact support.)
Let ¢, and ¢, be the one parameter groups associated with { and » respectively.
Then the curve é(t) = j*b(q)-a-j*b _($p)) satisfies

| _del
dt -0  dtli-o
since (dc/dt)],~, only depends on (dg,/dt)|; -, and (dh/dt)|,-, but
dgi|  _ db dh | _ di
dt h—o ~ dt ji=o and dt =0~ dt li=o
Thus
dé
(dys) @ dy)(&m) = | =0

Recall that when we proved that £, is an immersed submanifold (see the
proof of Proposition 5.1) we showed that 27V = connected component of
2, N J¥(U, V) containing o is equal to T(U x V x &,) where (9 is the orbit
thru ¢ of the action of the Lie group G = G’C(X)p x G Y), on J5(X, Y)p.o
Since 7,2, = T,2J"Y we may assume that the curve ¢(¢) is in 23J'7. Since T
is a diffeomorphism there is a curve a(t) = (p(t), q(t), 7(¢)) in U x V x &,
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such that T(a(r)) = c(t). Thus c(z) = j*(T )+ 7(1)-i*(T5d). So if we can
show that +(¢) = j*(h(t))-o+j"(g(t)~ 1) then we will be finished by the last
paragraph But 7(t) is a curve in O" Thus there 1s a curve (&), h(t)) in
G’“(X) x G’C( Y), such that i(¢)-o-8(z) " = (¢) since Gis a Lie group.

In local coordinates G"(X) is just polynomial mappings of degree <k
on R" which are diffeomorphisms on a nbhd of 0. Let g(¢) be the unique
polynomial of degree <k such that j*g(¢) = &(¢). Similarly for i(¢) and /(z).
Since det (dg,), > 0 and det (dhy), > 0 we may assume that g, and h, are
globally defined diffeomorphisms on X and Y respectively. (Apply Proposi-
tion 5.5.) Thus we obtain the desired g, and A,. []

We now state and prove the main Theorem of this section.

Theovem 5.13. Let f: X — Y be smooth and let m =dim Y. If [ is
locally transverse stable at p, then f is locally infinitesimally stable at p.

Proof. Assume that f is locally transverse stable at p. By Corollary 1.3
it is sufficient to show that f'satisfies the conditions of infinitesimal stability to
order m. In particular, we need to show that if = is in J™(f*T'Y),, then there
isav; inJ™(TX),and a v, in JN(TY), so that = (df )(vy) + f*(vs). Consider
A(r) in T,J™ X, Y). Since f is locally transverse stable at p there exists w in
T,%, and v in T, X so that A(7) = w + (dj™f),(v). By Lemma 5.12 there exists
{in C*(TX), and » in C*(TY), so that w = —(dy)({) + (dy)(n). Let
v; = m(8) and v, = = (n). Applying Propositions 5.10 and 5.11 we have
that w = A-f*(vy) — A (v,). Thus

M) = A-(d) () — (" )prmd™(w1) + Af*(ws) + (d7f)e(v).
Apply (d«), to both sides and apply Proposition 5.9 io obtain
0 =2v—m"v:).  (Note (do),+(dj™f), = id.)

So A7) = X-(df)(vy) + A+f*(vy). But A is injective (Proposition 5.8), so
7 = (df)(vy) + fFve. D

§6. Transverse Stability

The problem of transferring the result that local transverse stability
implies local infinitesimal stability to a global result is, as usual, at the self-
intersections of the mapping in question. Multijet transversality is again the
tool used to solve the problem.

Let 2,° be the orbit through the s-fold multijet o under the action of
Diff(X) x Diff(Y) on J™(X, Y).

Proposition 6.1. 2, is an immersed submanifold of J(X, Y) for each
s-fold multijet o.

Remarks. (1) 2,° is, in fact, a submanifold for the same reasons that
2, is a submanifold of J*(X, Y).
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(2) We are only interested in s-fold m-jets o = (o4, . . ., o) where target oy
=...= target o, since these jets reflect the problem of self-intersection.
Such multijets are called diagonal elements.

Proof. The proof splits into two cases: namely, whether or not o is a
diagonal element. Suppose ¢ = (o4, ..., 0,) is a diagonal element. Recall
from Proposition 6.1 the diffeomorphism 7: U x ¥V x &, — J¥(U, V). Now
we extend this to an immersion as follows: Let Uy, ..., U, be disjoint chart
nbhds of source (o,) = p4, .. ., source (g,) = p, respectively and V" a chart
nbhd of ¢ = target (o;) = - - - = target (o,). Define T: U; x---x U, xV x
(5(,1 Koo X (EJS%J"(UD Vy x - x JHU,, V) < JHX, Y) as follows:

T(xl’~~ '9xs7y: Tl e v s Ts) = (T(xlay, Tl):- R T(xs5ys Ts))-

Define 2,%U,,..., U, V) = connected component of ¢ in ;N
(J¥(Uy, V) x -+ - x JHU,, V). With arguments similar to those in Proposi-
tion 5.1 one shows thatIm 7' = 2,5(U,, . . ., U,, V) so that &, is an immersed

submanifold. The only catch is that if we have s diffeomorphisms one each
defined on U, that there is a global diffeomorphism on X which is equal to
each on a nbhd of o,. This is possible as long as the diffeomorphisms are
given by translations or have a fixed point where the diffeomorphism has a
Jacobian with positive determinant. But these are the only diffeomorphisms
that are considered in the proof. In other words, the diffeomorphisms
on U, can be damped near the boundary to extend smoothly to the identity
off U,.

Now suppose o is not a diagonal element. For simplicity suppose that
s = 2 so that o = (04, 0,) and target o, # target o,. Then we claim that
2,2 = (2,, x 9,,) N Z where Z is the open set

{(04, 02) € JL™(X, Y) | target o, # target og)

(at least locally). If this is true, then certainly Z,2 is an immersed submanifold.
We shall leave the proof of this claim to the reader as it is not difficult and
we shall not make further use of this fact. Note the case for general s is
similar to s = 2; the details of this observation are also left as an exercise. [

Definition 6.2. Let f: X — Y be smooth and let m = dim Y. Then f is
transverse stable if for every s with | < s < m + | and diagonal element o,

VAV IR
Lemma 6.3. Let f: X — Y be smooth. If f is stable, then f is transverse
stable.

Proof. The proof is the same as the proof of Lemma 5.7 except that we - e
substitute the Multijet Transversality Theorem for the Thom Transversality ’
Theorem. [J

The main result is the following:

Theorem 6.4. Let f: X — Y be smooth. If [ is transverse stable, then f is
infinitesimally stable.
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The proof of Theorem 6.4 is almost identical to that of Theorem 5.13.
We will just give a sketch as the important ideas have already been presented.

Sketch of Proof. We assume that fis transverse stable; we need only show
that condition (1) of Theorem 1.6 is satisfied by f. Solet S = {py,..., pJ <
f~Yq), with 1 < s < m + 1. Define AS:J"(f*TY)s — T,J,"(X, Y) as fol-
lows: At J™(f*TY),, — T, J™(X, ¥)has already been defined in the discussion
before Proposition 5.8. Since J*(f*T'Y)g = @Pi-1 J™(f*TY),, and T,J™(X,Y)
= @i-. T, J™(X, Y) it makes sense to define A° = (i, A. Proposition 5.8
still applies so that AS is a linear injection. Let «® : J™(X, Y) — X® be the
source map. Just as in Proposition 5.9 the sequence

(da(S))g

0 —> J(f*¥TY)s s T,J (X, ¥) L2020 1

is exact.

Next let  be a vector field on Y with compact support represent [n], and
let ¢, be the associated one parameter group. Define (dy,5)(n) by (dc/dt)|;=0
where ¢(?) = jp(q)-o. Then (dy,%) is a mapping of C*(TY),— T,2,".
Just as in Proposition 5.10 the diagram

dv.S
cxrn), A0, 10

|7 [
*

JNTY)q —> J™(f*TY)s

commutes.
Similarly, we can define (dy,%): C*(TX)s — T,2,°. Let [{ily,, - . - [Esln,
be germs of vector fields on X. Since p,, ..., p, are all distinct, there is one

vector field { on X such that [{],, = [{],,. Let ¢, be the one parameter group
associated with . Then define (dy.°)([{1lp,5 . - - [Lslp,) = (defdt)|,-o where
c(t) = o-j"p " '(S). Next define A5 = —A5-(df) + (dj"f)s 7™ where
o™ 1 JMTX)g — Ts X® is the obvious projection. Then just as in Proposition
5.11 the diagram

(dys)
Co(TX), — 2> T,2,°

J™(TX)s

commutes where =7 is the obvious projection.

Finally we note that (dy,%) @ (dy5): C*(TX)s D@ C(TY),— T,2,° is
onto as in Lemma 5.12.

The calculations to show that condition (t) holds for the set S proceed
in an entirely analogous way as the calculations in the proof of Theorem
513. O
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§7. Summary

The following summarizes the work of this Chapter.

Theorem 7.1. Let f: X — Y be smooth and let X be compact. Then the
Sollowing are equivalent:

(a) fis stable;

(b) fis transverse stable;

(©) fis infinitesimally stable;

(d) f is homotopically stable;

(e) [ is stable under k-parameter families of deformations.

Proof

(a) = (b) Lemma 6.3;

(b) = (¢) Theorem 6.4;

{c) < (d) < (e) Theorem 4.2 and Proposition 4.1.

(d) = (a) Proposition 2.6. 0

At this point a few comments about the heuristics of stable mappings
seem in order. It should be clear that “generic” properties have something
to do with stable mappings. This can be made precise as follows. A property
P of smooth mappings of X — Y is generic if it satisfies the following two
conditions. Let W, = {fe C*(X, Y) | f satisfies property P}:

(1) W, contains a residual subset of C*(X, Y). (Preferably W is open
and dense.)

(2) If fis in Wp, then any mapping equivalent to fis in Wp; that is, W5
is an invariant subset under the action of Diff(X) x Diff(Y) on C*(X, Y).

A simple argument shows that with this definition of generic a stable
mapping does satisfy every generic property. Examples of generic properties
were developed in Chapters I1 and I1I. (e.g., Morse functions with distinct
critical values, 1:1 immersions when 2 dim X < dim Y, and immersions
with normal crossings when 2 dim X = dim Y). In these cases we used the
Thom Transversality and Multijet Transversality Theorems to show that the
property in question is valid for a residual set of mappings and is thus a
generic property. John Mather’s Theorem which states that infinitesimally
stable mappings are stable enabled us to show (in Chapter I1I) that (for the
relative dimensions of X and Y under consideration) there are no other
interesting generic properties; i.e., if there were other generic properties they
would be satisfied automatically if the function in question satisfied the generic
properties listed above. The subsequent chapters will be devoted to finding
generic properties for mappings between manifolds of arbitrary dimensions.
One might hope for a list of “interesting” generic properties along with a
result which states that if a mapping satisfies the properties on this list then
it is stable. This turns out not to be possible!

The proof that infinitesimal stability implies stability—in particular, the
notion of transverse stability-—allows us to describe what all of the generic
properties are (at least those generic properties which depend only on the
m-jet of the function for some m). Since the m-jet of a function determines
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whether or not the function is stable (Theorem 1.6 where m = dim Y), this
means that we can describe all of the “interesting’ generic properties. Said
more precisely—to each orbit, @, in JI, 1(X, Y) under the action of Diff(X) x
Diff( Y) there is associated a generic property, Py of mappings of X — Y;
namely, the property that the m-jet extension of the function intersects ¢
transversely. Theorem 7.1 states that a mapping is stable iff it satisfies all
generic properties Py constructed in this fashion. Since the number of orbits
is uncountably infinite it is by no means clear that the set of stable mappings
is dense. Quite the reverse, it seems remarkable that a large subset of mappings
could satisfy all of these properties simultaneously.

The problem with the generic properties Py described in the last paragraph
is that they do not translate easily into more familiar properties of smooth
mappings such as the structure of the singular sets. In the next chapter we
will show how to construct submanifolds of J*(X, Y) (which are unions of
orbits) and which do translate into nice geometric notions. In doing so, we
shall also be able to show that certain of these properties are contradictory
so that stable mappings are not always dense. In fact, there exist manifolds
X and Y for which there are no stable mappings in C (X, Y).



Chapter VI

Classification of Singularities
Part I: The Thom-Boardman Invariants

§1. The S, Classification

For a mapping /: X — Y we can make the following rudimentary classi-
fication of singularities. We say that f has a singularity of type S, at x in X
if (df). drops rank by r; ie., if rank (df), = min(dim X, dim Y) — r.
Denote by S,(f) the singularities of  of type S,. Recall that in the proof of the
Whitney Immersion Theorem we introduced the submanifolds S, of J*(X, Y)
consisting of jets of corank r. (See II, Theorem 5.4.) Clearly S.(f) =
(YY)~ XS,). To prove the Whitney Theorem we showed that if X and Y
have the “right” relative dimensions then generically S,(f) = @ (r > 0) and
f has no singularities; i.e., fis an immersion. Without restricting the relative
dimensions of X and Y we can still say that generically S,(f) is a submanifold
of X and codim S,(f) = codim S, = 2 + er where e = |dim X - dim Y.
This statement follows immediately from the Thom Transversality Theorem
and 1I, Theorem 4.4. In particular, the set of mappings for which j'f ' & S,
(for all r) is residual. Besides the Transversality Theorem, the main fact used
in the proof of this statement is that S, is actually a submanifold of J1(X, Y).
We shall sketch a different proof of this fact in order to motivate the material
in §4.

Given a pair of vector spaces ¥ and W, let L'(V, W) be the set of linear
maps of V into W which drop rank by r. The main fact needed is:

Proposition 1.1. L'(V, W) is a submanifold of Hom (V, W) of codimen-
sion r® + er where e = |dim V - dim W|.

This is just 11, Proposition 5.3, which we shall reprove here using a trick
involving Grassmann manifolds.

Let 5 = r + max (0, dim V — dim W) and let G(s, V) be the Grass-
mannian of s planes in V. Let E be the canonical bundle over G(s, V).
(See Example (4) after 1, Proposition 5.4.) We will denote by Q the vector
bundle with fiber V/E, at p € G(s, V) and by Hom (Q, W) the vector bundle
over G(s, V) whose fiber at p is Hom (Q,, W). (The construction is functorial
and thus yields a smooth vector bundle. See I, Proposition 5.4.) This fiber
contains L°(Q,, W) as an open subset, and L°(Q, W) = {J, L(Q,. W) is an
open submanifold of Hom (Q, W).

Now we claim there is a natural identification (as sets)

(1.2) LAQ, W) =~ L'(V, W).
143
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In fact, for each p € G(s, V) we have a projection »: ¥V — @, and this
induces a transpose map backwards.

(1.3) 7*: Hom (Q, W) — Hom (V, W).

The image of this map is the set of elements in Hom (V, W) of corank >r.
Moreover, =* maps L%(Q, W) bijectively onto the elements in Hom (V, W)
which are precisely of corank r; so =* gives us the identification (1.2) whose
existence we asserted.

We now use (1.2) to provide L'(V, W) with a manifold structure. We will
let the reader compute the dimension of this manifold and check that it
gives the same answer as our computation in Chapter I1. (Hint: It is the same
as the dimension of Hom (Q, W) regarded as a manifold.) This does not yet
show that L'(V, W) is a submanifold of Hom (V, W). Let =*: Hom (Q, W)
- Hom (V, W) be the map described above and let M be the subset of
Hom (V, W) consisting of elements of corank > r. To conclude the proof one
has to show

Proposition 1.4. The map =*: L°(Q, W) —Hom (V, W) — M is a 1:1
proper immersion.

The proof is straightforward but a little tedious. We will not include it here.
(See exercises.) Anyway, given Proposition 1.4, it is easy to prove our asser-
tion about S,(f). Namely, we first observe that Proposition 1.1 is true for
vector bundles as well as vector spaces. Given two vector bundles £ — X
and F— Y denote by L'(E, F) the fiber bundle over X x Y with typical
fiber L'(E,, F,). Then by Proposition 1.1 L'(¥, F) is a subfiber-bundle of
Hom (E, F) of codimension #? + er.

Recall now the canonical identification JYX, Y) = Hom (TX, TY).
(See Remark (2) after II, Theorem 2.7.) Just note that S, is the subfiber-
bundle of JYX, Y) corresponding to L'(TX, T'Y) and we have the desired
conclusion that S, is a submanifold of J1(X, Y).

Definition 1.5. We will say that a mapping f: X — Y is one generic if
JY RS, for all r.

From now on, we will assume all maps are one-generic.

Exercises

(The purpose of these exercises is to supply the reader with an outline
of the proof of Proposition 1.4.)

(1) Show that the map (1.2) is a homeomorphism; i.e., give L'(V, W)
the induced topology and show that the inverse of the map (1.2) is continuous.

(2) Let Z 2, X be a fiber bundle and let p: Z— Y be a map. Let ze Z,
x = o(z), and y = p(z). Show that

0—-12,—-~T,Z2>T,X—0
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is exact, and deduce the existence of a mapping
(1.6) T X — T, Y[(dp)AT.Zy,).

(3) Apply Exercise (2) with the following data: X = G(s, V), x = an s
dimensional subspace K of V, Y = Hom (V, W), y = a linear map A in
Hom (V, W) with Ker 4 = K, Z = L%(Q, W), and z = A-= where = is as in
Proposition 1.4. (Note that V/K is the fiber of Q above x and L(V/K, W) is
the fiber of Z above x.) Let p = #*: L%(Q, W) — Hom(V, W) and let
a: L°%(Q, W)— G(s, V) be the canonical projection. Note that T,Y =
T,Hom (V, W)~ Hom (V, W) and

1.7, =T,,Hom (V/K, W) ¥ Hom (V/K, W)
since Hom’s are vector spaces.

(i) Show that (dp),: T,Z, — T, Y is an injection. In particular show that
the image is all maps containing K in their kernels.
(ii) From (i) conclude that (dp).(T.Z,) ~ Hom (V/K, W).
(iii) Finally conclude that T, Y/(dp)(T.Z,) ~ Hom (K, W).

Moreover, show all these identifications are canonical.

(4) Let x € G(s, V) and let K be the s-dimensional subspace it represents
in V. Recall there is a canonical identification T,G(s, V) =@ Hom (K, V/K).
(See Note (2) at the end of 1, §3.) Show that the map (1.6) of Exercise 2 is
just the map Ay : Hom (K, V/K) — Hom (K, W) given by composition on the
last factor where A is given in Exercise 3.

(5) From 2-4 deduce that the map »* in Proposition 1.4 is an immersion.

(6) Using Exercise 4, prove that N, = T, Hom (V, W)/T,L'(V, W) the
normal space to L'(V, W) in Hom (¥, W) at 4 is canonically isomorphic to
Hom (Ker A, coker A).

(7) Let f:R*—R" be given by f(xy,..., %) = (f1(x), ..., [i(x), Xy 41,

.., X,). Suppose that f(0) = 0 and that f has an S, singularity at 0. Show that
JYR S, at 0 iff the #2 vectors (d gg) where 1 < i,j < r are all linearly
170

independent. Hint: Use the proof of II, Proposition 5.3 to identify
T,L'(R*, R") in coordinates where o = jf(0).

§2. The Whitney Theorem for Generic Mappings between
2-Manifolds

The Thom-Boardman Theory has to do with the behavior of maps
restricted to their singular sets; i.e., if f: X — Y is one-generic, S,(f) is a
submanifold, so f]S,(f) is again a map between manifolds; and we can, for
example, ask whether it has singularities generically. It is this type of question
to which the Thom-Boardman Theory addresses itself. Before we outline
this theory, we will discuss one example in detail-—the Whitney Theory for
maps between 2-manifolds.

Let X and Y be 2-dimensional manifolds and let f: X — Y be a one-
generic mapping. By our computation in §1 S,(f) is of codimension 1 in X
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and S,(f) does not occur since it would have to be of codimension 4. Let p
be in S{(f) and ¢ = f(p). One of the following two situations can occur.

(a) Tpsl(f) ® Ker (df)p =T,X;
(b)  Tp8.(f) = Ker (df),.

Note that if p is a S, singularity satisfying (a), then p is a fold point. (See
11, Definition 4.1.) The first theorem of Whitney for maps between 2-manifold
gives the normal form for fold points.

.0

Theorem 2.2. 1If (a) occurs then one can choose a system of coordinates
(x1, xp) centered at p and (y4, y,) centered at q such that f is the map

*) (X1, X2) = (X1, X27).

This theorem is just a special case of the normal form that we derived for
submersions with folds. (See I1I, Theorem 4.5.)

Now we will suppose that condition (b) holds; i.e., ker (df), = T,S.(f).
This situation is considerably more complicated. Let us choose a smooth
nonvanishing vector field, £, along S;(f) such that at each point of S.(f)
¢ is in the kernel of (df). (Locally this is always possible.) By assumption, ¢
is tangent to S;(f) at p. The nature of the singularity at p obviously depends
on what order of contact & has with S,(f) at p. Let us make this statement more
precise. Let & be a smooth function on X, such that £ = 0 on S;(f) and
(dk), # 0. Consider (dk)(¢) as a function on S;(f). By assumption this has a
zero at p. We let the reader check as an exercise that the order of this zero
does not depend on the choice of ¢ or k. (Hint: for another choice (&', k)
show that ¢ and &’ are nonzero multiples of ¢ and £.)

Definition 2.3. We will say p is a simple cusp if this zero is a simple zero.
The second main theorem of Whitney states

Theorem 2.4. If p is a simple cusp then one can find coordinates (xq, X3)
centered at p and (v, y3) centered at q such that

¥y =x
F¥ye = x1x; + X8

A picture of this map is sketched in Figure 3. Let X be the graph of
X3 = X1Xs + X5° This graph can be viewed as a family of cubic curves in
(x3, x3) depending on the parameter x;. For x; positive these curves are
without critical points. For x; = 0 there is a critical point which is a point
of inflection and for x; < O there are max and min’s. Let f: X — R? be the
projection of X onto the x;xg-plane. There is a natural set of global coordi-
nates on X given by (x;, x5) > (X1, Xg, X1 X3 + X2°). In these coordinates on
X f has the form of Theorem 2.4, The fold curve is the locus of extrema
and the cusp is the inflection point. Note that S,(f) is a parabola twisted in
R® so that any vector tangent to S,(f) at (0, 0, 0) is killed by /. Also note
that the image of S;(f) under fis the cusped plane curve ¢ +—> (—322, —2¢3).
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S = {8 > (=312, —21%)}

| *°

R2

normal/ form for a cusp point

(X1, X8) 1> (xg, Xyxz + x59)
S:(f)

cusp

global coprdinates for X
(X1, X2) % (X1, Xgy X1Xp + Xg?)

) .
o (
7

S8:(f) (in coordinates)

={x;=—3x.%
X2

Figure 3: The Simple Cusp

The proof we will give of Theorem 2.4 is due to Morin and uses the
Malgrange Preparation Theorem. Whitney gives a more elementary but
slightly more complicated proof in [58].

Proof. Let us choose coordinates (x;, x3) centered at p and (yy, vs)
centered at g such that / has the form
)]

S =x

F¥ya = h(xy, x9).
origin  (df)e = [1 0

Since f has rank 1 at p this is possible. We can also assume that at the
0 0

] in this coordinate system; i.e., (9h/0x)(0) =
(©hjox,)(0) = 0. We note, however, d(¢h/éx,), # 0, otherwise f would not
be one-generic. (Proof. Suppose

oy ()
ox, \0x,) — oxg \Oxy)
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at 0. Let « = 1(6%h/0x,2)(0) and compare f with the map

(D (X1, X2) = (1, 0x;?).

They have the same 2-jet at 0, but (1) is of rank 1 everywhere, so it is not
one-generic.)

The set S;(f) is defined by the equation &k/0x, = 0; so at each point of
S,(f) the kernel of (df) is spanned by &/@x,. This means that we can take
Oh/0x, to be the function k and 0/0x, to be the vector field £ of Definition 2.3.
The condition for the origin to be a cusp is that (8%4/8x,2)(0) = 0; and for it
to be a simple cusp, (8%h/0x,%)(0) # 0. Therefore, at the origin, we have

oh %h 3h
= —5}_2 == a_ng =0 and Wzs # 0.

The Generalized Malgrange Preparation Theorem allows us to write
x5 = 3ay(xy, Wx® + ai(xy, h)xy + ao(x;, h)

where a,, a;, and a; are smooth functions of y, and y, vanishing at 0. (To see
this recall that f is given by f(x,, X2) = (x5, #(x1, x3)). Then via £ C(R?)
becomes a module over itself; i.e., a-b(xy, x;) = a(f(x;, x3))b(x;, x;) where
a is in the ring C§(R?) and b is in the module C§(R?). By the Malgrange
Theorem (1V, Corollary 3.11) this module is generated by 1, x,, and x,2? if
the vector space C*(R?)/((x1, h) + #H(R?)*) is generated by 1, x,, x,2 The
assumptions on A guarantee that this is so.)
Now the equation above can be written in the form

*) (s —aP + b(x; —a)=c

(with @ = a,, and b and ¢ new functions of (y;, ¥,) vanishing at 0.) If we set
x; = 01in (*) we see that the left hand side is of the form x,® + - - -, the dots
indicating terms of order >3 in x,. Since 4(0, x;) = x,® + - - -, the right and
left hand sides of (*) can be equal only if (6c/8y,)(y:, y2) # 0 at 0. The leading
term in the Taylor series of /4 is a nonzero multiple of x,x,; so, comparing
the linear and quadratic terms on the right and left hand sides of (*), one
easily sees that dc/oy, = 0 and 8b/dy; # O at the origin. This means that the
following are legitimate coordinate changes:

{Xl = b(x;, h)

X3 = X5 — a(xy, h)

{yl b(y1, y2)
Y2 = c(y1, ¥a).

In these coordinates we have

l

f*)71 =X
[¥P2 = %% + %1%,

which is Whitney’s canonical form. [

Finally, Whitney proved that the singularities described above are
generically the only singularities that can occur for maps between 2-manifolds.
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Theorem 2.5. Let X and Y be 2-manifolds. Then there is a residual set in
C*(X, Y) such that if f belongs to this set, its only singularities are folds and
simple cusps.

This is not hard to show directly, but we prefer to deduce it from a more
general result. We defer the proof to §4 below. (See §4, Exercise 4.)

§3. The Intrinsic Derivative

In this section we will develop a technique due to Porteous for differ-
entiating maps between vector bundles. This is the intrinsic derivative, and it
plays a rather important role in the Thom-Boardman theory (a special case
of the intrinsic derivative was introduced in Chapter I, Definition 6.5).

We will first of all give a pedestrian (and uninvariant) definition of this
notion, then later a more sophisticated (invariant) definition.

Let X be a manifold and let £E = X x R¥ and F = X x R’ be product
bundles over X. Let p: E — F be a vector bundie homomorphism. We may
view p as a mapping of X — Hom (R¥, R!). Then for p in X, (dp),: T, X —
T,y Hom (R¥, RY) = Hom (R*, R") makes sense. Let K, = Ker p(p) and
let L, = Coker p(p). Then we define the intrinsic derivative, (Dp),, in this
local situation by the composite map

T,X — Hom (R*, R") — Hom (X, L,)

where this second arrow is given by “restricting and projecting”’.

We claim that the intrinsic derivative does not depend on which choices
of trivializations of E and F are made. More precisely, let 4: £E— E and
B: F — Fbe vector bundle isomorphisms. We may view 4 and B as mappings
of X — Hom (R*, R¥) and X — Hom (R}, RY} respectively. With these
trivializations p has the form 5 where p(x) = B(x)-p(x)-A(x)~ . Let K, =
Ker p(p) and L, = Coker p(p). Clearly A(p) and B(p) induce isomorphisms
of K, — K, and L, — L, respectively. Thus the different trivializations give a
natural mapping é: Hom (K,, L,) — Hom (K, L,) defined by &(C) =
B(p)-C-A(p)~ 1. Our statement of invariance reduces to showing that the
diagram

D
T,X —(——&+ Hom (X, L,)

(MA l‘ﬁ
Hom (K, L,)

commutes. First note that if 4 and B are linear changes of trivializations—
ie., A =idy x a and B = idy x b where a: R*—R¥ and b: R' - R! are
linear isomorphisms—then the computation that the diagram commutes is
trivial. In the general case, we may, by using linear changes of trivializations,
assume that A(p) = idg~ and B(p) = idg:. By doing so we see that K, = K,
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and L, = L,; so we need only show that (Dp), = (Dp), as mappings of
T,X — Hom (K,, L,). First compute

d(ﬁ)p = d(B'P'A_l)p
= (dB)yp(p)-A(p)~* + B(p)+(dp)p-A(p)~* + B(p)-p(p)-(dA~1),
= (dB),-p(p) + (dp), + p(p)-(dA™1),.

(Note that we use the product rule and not the chain rule in the computation
since we are differentiating the product of matrices whose coeflicients depend
smoothly on the parameters x.) When we ““restrict and project” the first and
third terms vanish. Thus, (Dp), = (Dp),.

In general, let £ and F be vector bundles over X and let p: E— Fbea
vector bundle homomorphism. Fixing p in X and defining K, and L, as
above, we may define the intrinsic derivative of p at p, (Dp)y: Ty X —
Hom (X, L,), by choosing trivializations of £ and F on a nbhd of p and
computing as in the local situation. The last paragraph implies that this
mapping is independent of the choice of trivializations.

To prepare the reader for our other definition of the intrinsic derivative,
we need to look again at some elementary properties of the manifold
L' (V, W) < Hom (V, W) discussed in §1.

Let 4 be in L'(V, W) and let K, = kernel 4, L, = cokernel 4. Let N,
be the normal space to L'(V, W) in Hom (¥, W) at the point represented by
A, ie., Ny = T,Hom (V, W)|T,L(V, W). We will show that there is a
canonical identification Hom (K, L,) ~ N,.

Since 7, Hom (V, W) is canonically isomorphic with Hom (V, W) there
is a canonical surjective linear map

3.0 T, Hom (V, W) — Hom (K, L,)
given by “restricting and projecting.”

Lemma 3.2. The kernel of the mapping (3.1) is the tangent space to
LV, W)at A.

Proof. We can choose linear coordinates in V" and W so that 4 has the
0
—} where m = rank 4.

form
In
0|0

If we define L'(V, W) in a nbhd of A4 as the pre-image of 0 with respect to the
map

sl
3.3 (——l») k> V — US™'T,
ulv

(see I1, Proposition 5.3), then T = U = 0 at A, so the derivative of (3.3) at
A is just the map (3.1). [

Corollary 3.4. Themap (3.1) induces an isomorphism N, =~ Hom (K, L,).
(For a more elegant proof, see Exercise 6 at the end of §1.)
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This result is true of vector bundles as well as vector spaces. Let £ — X
and F— X be vector bundles, and let o be in the fiber of L'(E, F) above x.
Since we are dealing with fiber bundles, the normal space to L'(E,, F,) in
Hom (E,, F.)at oisidentical with the normal space to L'(E, F) in Hom (E, F);
so just as in the case of vector spaces we have a canonical identification
N, ~ Hom (K,, L,).

Now let p: E — F be a vector bundle map. For the moment we will view
p as a map p: X — Hom (E, F). Let ¢ = p,, assume o is of corank r (i.e.,
o L'(E, F)), and let N, be the normal space to L'(E, F) in Hom (£, F).
Then we get a sequence of maps

(3.5 T, X 222, T Hom (E, F) — N, ~ Hom (K,, L,).
An easy result, whose proof we leave to the reader, is:

Proposition 3.6. The composite of the maps (3.5) is identical with the
intrinsic derivative.

(Hint: The intrinsic derivative was defined in terms of a trivialization, so
prove the assertion for trivial bundles.)
This proposition immediately provides us with the following:

Proposition 3.7. Suppose o = p, is of corank r. Then the following two
assertions are equivalent.

(a) (Dp).: T.X — Hom (K,, L,) is surjective.
(b) p K L'(E, F) at x where p is viewed as a mapping of X — Hom (E, F).

Exercises

To become familiar with this definition, the reader ought to try computing
some special cases. One good case to look at is the following. Let f: X — Y
be a smooth map. Let £ = TX and F = f*TY and let p: E-— F be (df).
(Note that we use f*7T'Y which is a bundle over X rather than 7Y which is
not.)

(1) Compute the intrinsic derivative

D), : T X - Hom (K, L,)
where K, = ker (df), and L, = coker (df),.

(Hint: Trivialize the tangent bundles by choosing coordinate systems
(x4, ..., x,) centered at x and (y4, ..., y,) centered at y. Moreover, choose
these coordinates so that (df), has the form

L] 0),
00

In terms of these coordinates the last m — s coordinate functions of f can be
written in the form:

n

(3.8) fo = i aix.x; + Zs z b xpx; + 2": cPxpx,

i,j=1 j=18=s+1 B,y=s+1
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plus terms of order O(|x|?). Show that the intrinsic derivative can be viewed
as a map

3.9) D(f)s: ToX @ K — L..

Moreover, show that this map is just the map defined by the last two terms
of (3.8) (providing one uses the linear coordinates x4, .. ., X, in K, and the
linear coordinates y;, 1, ..., ¥ in L,).)

(2) Show that the intrinsic derivative D(df), is determined by the 2-jet
of fat x (Hint: Use Exercise 1.)

(3) Show that the map (3.9) when restricted to K, ® K, is in fact a
symmetric map; i.e., D(df).(ky, ks) = D{df).(kq, k,). Thus D(df), induces a
mapping

(3.10) 8%f: Kyo Ky — Ly,

(where K, o K, denotes the symmetric product of K, with itself). (Hint: Use
Exercise 1.)

(4) Let f be a real valued function and let x be a critical point of f. Then
K, =T,X and L, = R. Show that

8%, T, X o T X — R

is just the Hessian of fat x. (In Chapter I1, Definition 6.5.)

§4. The S, Singularities

Let 1 X — Y be one-generic. We will denote by S, ((f) the set of points
where the map f: S.(f) — Y drops rank s. Note that codim S,(f) > dim X —
dim ¥ by Proposition 1.1, so .dim S,(f) < dim Y. Therefore, x € S, (f)
if and only if x € S,(f) and the kernel of (df), intersects the tangent space to
S (f) in an s dimensional subspace. For example, for maps between 2-mani-
folds the points Sy o(f) are fold points and the peints S, ;(f) are cusps.
(See §2.)

Our goal in this section is to show that the S, J(f) are generically manifolds
(just like the sets S,(f)) and to compute their dimensions. The idea of the
proof will be to construct universal S, ’s in J?(X, Y) (analogous to the S,’s
described in §1) such that

X & Sr,s(f) < j¥(x) € ST.S'

To begin, recall the identification: S, >~ L(TX,TY). Given o€ S,
with source at x and target at y we now can attach to o the vector spaces
K, = ker o and L, = coker ¢ in T, X and T, Y respectively. This defines for
us vector bundles on S, which we denote by K and L. As we saw in §3, the
normal bundle to S, in J'(X, ¥) is canonically isomorphic to Hom (X, L).
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Now let S, be the pre-image of S, in J2(X, Y). By Exercise 2 at the end of
§3 the intrinsic derivative gives us a map of fiber bundles:

4.1 S® — Hom (Ko K, L)
Sy

Moreover, the top arrow is surjective. (This is clear from Exercise 1 in §3.
The last two terms on the RHS of (3.8) are completely arbitrary except for
the symmetry condition.) We will construct our universal S, /s from the
diagram (4.1). The main step in the construction is a theorem about vector
spaces similar to Proposition 1.1 of §1. Let ¥ and W be vector spaces,
let Vo ¥V be the symmetric product of ¥ with itself, and let ¥ A ¥ be the
space of alternating tensors. Recall the standard algebraic fact that V@ V =
Vo V)D(V A V),sothat thereis a canonical projectionz: V@ V— Vo V
whose kernel is V' A V. Consider the map

(4.2) Hom (Vo V,W)—Hom(V® V, W)— Hom (V, Hom (V, W))

where the first arrow is given by A4 +—> 4.7 and the second arrow is given by
B+ ¢ where ¢(v)(v") = B(v ® v'). Let Hom (Vo V, W), be the pre-image
under (4.2) of L(V, Hom (V, W)). (Note that Hom (Vo V, W) is not the
same as Ls(V o V, W).)

Proposition 4.3. Hom (Vo V, W), is a submanifold of Hom (Vo V, W)
of codimension

(4.4) ék(k+1)—%(k—s)(k—s+1)-—s(k—s)

where k = dim V and ! = dim W.

Proof. We use the “Grassmannian trick”’ used to prove Proposition 1.1.
Let G(s, V) be the Grassmannian of s planes in V. Let E be the canonical
bundle over G(s, V) and let Q be the vector bundle over G(s, V') whose fiber
at pis V/E,. Let Hom (Q o Q, W) be the vector bundle over G(s, V') whose
fiber at p is Hom (Q, o Q,, W). The set Hom (@, o Q,, W), is an open sub-
set of this fiber (being the inverse image under the continuous map (4.2) of
an open set), and

Hom (Q o Q, W), = UP Hom (@, ~ Q,, W)o
is an open subfiber-bundle of Hom (Q - Q, W).

The map #,: V— Q, induces amap 7, Qm, : VR V—> 0, ® Q,. It is
easytoseethat m, Q m,: Vo V— O, 0 @, and is onto. Just as in §1, this map
induces a transpose map #*: Hom (Q o @, W) — Hom (Vo ¥V, W) whose
image is the set (J,., Hom (Vo V, W), Moreover, its restriction to
Hom (Q - O, W), maps this set bijectively onto Hom (V' o V, W),; so there
is a canonical isomorphism (of sets)

(4.5) Hom (Q o Q, W), = Hom (Vo V, W),.
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The left hand side is a manifold; so we can define a manifold structure on
Hom (Vo V, W), by requiring (4.5) to be a difftomorphism. To prove that
Hom (Vo V, W), is a submanifold of Hom (V o V, W) requires a little more
work. We will need, in fact, the following proposition.

Proposition 4.6. Let M, = | J,., Hom (V o V, W),. The map
7% Hom (Q - Q, W), —Hom (Ve V, W) — M,
is a 1:1 proper immersion.

The proof of this is almost identical with the proof of Proposition 1.2,
For the details of that proof see the Exercises at the end of §1.

Finally we have to compute the dimension of Hom (Vo V, W),. This is
the same as the dimension of Hom (Q o O, W). The fiber dimension of Q
is k — s; so the fiber dimension of Hom (@ - Q, W) is(k — s)(k - s + DI/
2. The dimension of the base space (i.e., G(s, V)) is s(k — s); therefore, the
total dimension is (k — s)(k — s + 1)//2 + s(k — s); and the codimension
is as asserted in Proposition 4.3. [

Proposition 4.3 is valid for vector bundles as well as vector spaces. Given
two vector bundles F— X and F— X let Hom (£ ¢ E, F), be the fiber
bundle whose fiber at p in X is Hom (£, o E,, F,),. Then by Proposition
4.3 Hom (E ¢ E, F), is a fiber subbundle of Hom (£ o E, F), and its codimen-
sion is given by (4.4) with k the fiber dimension of E and / the fiber dimension
of F.

Let us now go back to the map (4.1) described earlier in this section.
Hom (K- K, L), is a submanifold of Hom (K- K, L), so its pre-image is a
submanifold (of the same codimension) in S, (since (4.1) is a submersion).
We will denote this manifold by S, ;. Our main result of this section is

Theorem 4.7. Let f: X — Y be one-generic. Then x € S, (f) = j#(x) e
Ay

Proof. Let jiYf(x) = o in S,. The normal space to S, in JY(X, Y) at o is
Hom (K,, L,); and the map

(@) TuX — T, JHX, T)

induces a map:
4.8) T.X — Hom (K,, L,)
which is, as we saw in the last section, the intrinsic derivative of (df). This
map is surjective since j'f 1y S, by assumption, and its kernel is the tangent
space to S(f) at x. If x is in S, ((f) the kernel of (4.8) intersects the kernel,
K, of (df), in an s dimensional subspace; that is, the restriction of (4.8) to

K, has an s dimensional kernel. This means j2/(x) is in Hom (K, o K, L,)s.
The converse is equally easy to see, and this proves Theorem 4.7. []

Corollary 4.9. Let f: X — Y be smooth. If j3f '} S,.., then S, (f) isa
submanifold of S,(f) whose codimension is given by the formula (4.4) where
[=dim Y — dim X + k and k = r + max (dim X — dim 7, 0).
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Thus S, (f) is a submanifold of X and dim S, (f) = dim X — r® — er —
(codim S, ((f) in S(f)) where e = |dim X — dim Y.

The Transversality Theorem says that the condition j2f 7§ S, is satisfied
by a residual set of mappings. A mapping for which this condition is satisfied
for all r, s will be called 2-generic.

Exercises

(1) Show that the condition j2/ ' S, at x is a condition on the three jet
of fat x.

(2) Let Xand Y be 2-manifolds and f: X — Y a 2-generic map. Show that
dim Si(f) = 1 and dim S, ;(f) = 0.

(3) Let X and Y be two manifolds and let f/: X — Y be one-generic.
Let x in X be a cusp point. Show that if x is nor a simple cusp there exist
coordinates (x;, x,) centered at x, coordinates (y,, y;) centered at y = f(x),
and a mapping of the form

(4.10) (x1, Xg) = (x4, XXy, X2))

with the same 3-jet at 0 as f. Hint: Use the coordinates in the proof of Theo-
rem 2.2. In these coordinates /' is of the form (x,, x,) — (xy, A(x;, x2)); and
at a cusp point which is not simple

ch o%h a3h
T Ox,  Oxp2 0x°

= 0.

(4) Let X and Y be 2-manifolds and f: X — Y be a 2-generic mapping.
Show that its only singularities are folds and simple cusps. (Hint: Show that
for the map (4.10) S, ; is the whole x, axis. Now use Exercise 1 and Exercise
2.)

(5) Show that for 2-generic maps of » manifolds into » manifolds S,
occurs for the first time in dimension 7 and S, ; occurs for the first time in
dimension 10.

(6) Let 4 be an element of Hom (Vo V, W),. Using (4.2) A is associated
with a linear mapping A of ¥ — Hom (V, W) of corank s. Let K = ker A
and let L = coker 4. Since K < V, there is a natural mapping

(4.11) K* @ V* > K* @ K*

given by restriction; i.e., k* ® v¥ — k* ® (v*|K). Since Hom (V, W) is
naturally identified with V* & W, we can regard L as a quotient space of
V# & W and obtain a natural map

(4.12) KEQV* @ W—K*@ L

given by id @ = where = is the obvious projection of V* @ W— L. Let
K* o V* be the pre-image of K* « K* with respect to (4.11), and let K* o L
be the image of (K* o V'*) @ W with respect to (4.12). Finally let N, be the
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normal space of the point 4 to Hom (Vo V, W), in Hom (Vo V, W). Show
that there is a canonical identification

Ny~ K*o L.

(Hint: Use the same argument as in Exercise 6 of §1.)

(7) Letf: X — R?be a 2-generic mapping where X is a compact manifold.
Show that S;(f) is a disjoint union of a finite number of circles and that
S1..(f) is a finite collection of points. Also show that no other types of
singularities aside from fold points and simple cusp points occur.

(8) Let f: X — X be 2-generic. How large must dim X be to allow the
existence of an S3 singularity ? Similarly for an S, ; singularity?

§5. The Thom-Boardman Stratification

It is clear, in principle anyway, how to define higher order versions of
the S;;’s. If /1 X — Y is 2-generic, S; ; () is defined to be the set of points
in S; ;(f) where the map

f: Si,}'(f) - Y

drops rank by k. This definition makes sense because, as we know from the
previous section, S; ,(f) is a submanifold of X. If, by chance, S;; .(f) turns
out to be a manifold, we can define S; ;. (/) similarly. Thom conjectured
that for a residual set of maps this process could be continued indefinitely.
This conjecture was proved by Boardman in his 1.H.E.S. paper [6]. Specifi-
cally what Boardman proved is the following.

Theorem 5.1. For every sequence of integers vy = ro > --- = r, = 0 one
can define a fiber subbundle, S, . . of JYX, Y) (relative to the fibration
JHX, Y)— X x Y) such that if jif is transversal to all the manifolds S,
where | < k, then S, . (f) is well-defined and

..... £

.....

X €Sy, ) = JS () €S e

Boardman’s proof of this depends on characterizing the S, .
“Jacobean extensions” (A short description of Jacobean extensions can be
found in Arnold’s survey article [4].) Analternative proof was given by Michael
Menn in [34]. His proof is based on the Grassmannian trick of propositions
1.1 and 4.3. (The enterprising reader might try, as an exercise, to construct
the S;; .’s by the Grassmannian trick, taking as his starting point Exercise 6
of the previous section.)

Remark. Though we won’t attempt to prove the Boardman theorem
here, we will prove in the next chapter that for maps f: X — Y between
equidimensional manifolds the S,,...,; singularities occur generically as
codimension k submanifolds of X. These singularities are in some sense the
most frequently encountered of the Thom-Boardman singularities. For
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example, they are the only singularities that occur in dimensions <6 except
for Sy, (Sz,; occurs for the first time in dimension 7.)

Assuming the Boardman Theorem we will call a mapping f/: X — Y whose
k jet extension j*f is, for all k, transversal to the S, ,’s a Boardman map.
It is clear from the Thom transversality theorem that Boardman maps are a
residual subset of C*(X, Y). In particular if a map is stable it is a Boardman
map. We might ask whether the converse is true ? It turns out the converse is
false, even locally (for rather subtle reasons which we will go into in the
next section.) However, it is easy to see why it can’t be true globally: Consider
the submersion with folds depicted in Figure 1 of II1, §4. It is clear from this
example that for a Boardman map f: X —> Y to be stable the restriction

f: Sfl ..... T'k(.f‘)_+ Y

must have “normal crossing’ properties similar to those described in
Chapter I1T §§3-4. We will now make this condition precise.

Condition NC. Let f: X — Y be a Boardman map, and let I3, ..., I; be
multi-indices (not necessarily distinct). Let x,, . . ., x; be distinct points of X
with x; in S;(f) and

JOe) == f(x5) = y.
Let H, be the tangent space to S;(f) at x;. Then the subspaces

@), Hys - - ., (df ), Hs

are in general position in 7, Y.
The condition NC implies among other things that the maps

f: Srl,...,rk_l,o(f)'_> Y

are immersions with normal crossings and that the images of these immer-
sions intersect transversally as immersed submanifolds.
We will now prove

Theorem 5.2. The set of Boardman maps satisfying the condition NC is
residual in C*(X, Y) (so, in particular, stable maps have to satisfy this con-
dition).

For the proof we will need:

Lemma 5.3. Let X and Y be manifolds and let Z, and Z, be submanifolds
of YwithZ, < Z,. Let f: X — Y be transversal to Z,, and let X, = f~Y(Z,).
(Because of the transversality, this is a submanifold of X). Then f: X — Y is
transversal to Z, iff f: X, — Z, is transversal to Z,.

Lemma 5.4. Let the diagram



158 Classification of Singularities Part I

commute, and let = be a submersion. Then f is transversal to Z < Y iff g is
transversal to =~ (Z).

The proofs of both these lemmas are elementary, and are left to the
reader.

With some future applications in view, we will formulate the NC condition
a little more generally: Let 7T4,..., 7, be submanifolds of J*(X, ¥) (not
necessarily distinct). Suppose each 7; has the property that the target map:
T, — Y is a submersion. By the transversality theorem there is a residual set
of maps, f: X — Y, such that j*f'{ T, for j = 1,...,s. For the moment
just consider such maps, and let T/(f) = (j*/)~"T)). (The transversality
assumption assures that the 7;(f)’s are submanifolds of X.) Consider the
following normal crossing condition, relative to 77, ..., Ty:

Let x4, ..., x, be distinct points of X with x; in T,(f) and

JGx) == flx) = ».
Let H; be the tangent space to T;(f) at x;. Then
(5.5) @ )eyH1s - - o (A ) s

are in general position in 7, Y.
We will prove:

Proposition 5.6. The above normal crossing condition relative to the T;'s
is satisfied for a residual set of maps f: X — Y.

(Note that Theorem 5.2 is a corollary of this proposition: just take the 7,’s
to be the §;’s.)

Proof. The target map B:7; X---x T,— Y x---x Y is a submer-
sion, so the pre-image S~ *(AY) where AY is the diagonal in ¥ x .- x ¥
is a submanifold of 7, x --. x T,. By the multi-jet transversality theorem
there exists a residual set of maps f: X' — Y such that the multi-jet extension
J¥f is transversal to B~ *(AY). It is easy to see that if the usual k jet extension
Jj*fis transversal to T} for j = 1, ..., s then j/*f'is transversal to T} x --- x T
and vice-versa. Suppose both these transversality conditions are satisfied.
The pre-image of T, x - - - x T, with respect to j*f is just the set 77(f) x - - -
x T f) with the generalized diagonal X deleted. Call this set 1¥. By Lemma
5.3 the map:

JSf W —Ty x-+-x Ty
is transversal to 8~(AY); so, by Lemma 5.4, the map
fx-xfiW=Yx.---xY

is transversal to AY. We showed, however, in Chapter III, §3 that this is the
same as the normal crossing condition. [

Let’s now go back to the conjecture we made earlier (with the normal
crossing condition added).

Conjecture. f: X — Y is stable < fis a Boardman map satisfying NC.
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We will see in the next section that this conjecture is false for maps between
9-manifolds. (In fact it is false for maps between » manifolds of dim > 3
though in dimensions 4-7 it is “nearly right”.) Nevertheless, let’s attempt to
give a proof of it. If : X — Y is a Boardman map we can partition X into a
disjoint union of subsets consisting of the nonsingular points: X — {J S; (f)
and the Boardman sets S,, ... (f) with r, = 0.

The map

.....

fiX = US>

is an immersion or a submersion depending on whether dim X < dim Y or
dim X > dim Y; and if r, = O the map

fi8n,..n (=Y

is an immersion. This partition of X that we have just described is called the
Thom-Boardman stratification. It has the property that £, restricted to each
“stratum,” is a particularly simple kind of stable map (either a submersion or
an immersion with normal crossings). How do the various strata fit together,
i.e., how do the closures of the higher dimensional strata intersect the lower
dimensional strata ? Obviously the story is quite complicated; but because of
the transversality theorem, they might be expected to fit together in the same
way that the universal strata S, ,, fit together in J*(X, Y). Hence, if we
perturb f, the Thom-Boardman stratification of the perturbed map should
look like the Thom-Boardman stratification of the unperturbed map. This
suggests a way to prove the conjecture: construct an isotopy of X carrying the
first stratification into the second, and then adjust it so that it conjugates the
first mapping into the second.

This “proof” is unfortunately based on an erroneous assumption, namely
that if we know the stratification and know that on each stratum fis either
an immersion or submersion, then we have enough data at our disposal to
describe fin the large. In fact, this data doesn’t even describe the C° structure
of the mapping; e.g., compare the two Morse functions (x, y) > x* + y? and
(x, p) = x% — y2. ‘

One might suppose that if we know £, the Thom-Boardman data give us
enough information to determine the structure of small perturbations of f;
but even this isn’t true as we will see in the next section.

Our “proof”” does however have an intriguing air of plausibility about it,
and we might ask whether some refined conjecture is true. It turns out that
if we just restrict ourselves to the C° stability problem (two maps being
equivalent if they can be conjugated, one into the other, by homeomorphisms
of the source space and target space) then there is a finer stratification of the
jet space than the Thom-Boardman stratification for which the “proof™
above can be made rigorous. Thom is able to conclude from this that for
all X and Y the C° stable maps form a residual subset of C*(X, Y). A care-
ful proof of this can be found in a forthcoming book of John Mather [33].
See also [48]. In the next section we will see that the usual stable maps don’t
always form a residual subset of C*(X, Y) or even a dense subset.
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§6. Stable Maps Are Not Dense

We have seen that immersions with normal crossings are stable; so stable
maps are dense in C*(X, Y) if dim Y > 2 dim X. Stable maps are also
dense in C2(X, Y)if dim ¥ = 1 (Morse theory) and if dim X = dim ¥ = 2
(the Whitney theory sketched in §2). For a time it was conjectured that stable
maps are always dense in C*(X, ¥). Thom and Levine proved in [18] that
this is not the case. In fact, they showed that for maps of 9 manifolds into 9
manifolds, stable maps are not dense. In this section we will give their
demonstration of this fact. We will first prove:

Proposition 6.1. Let X and Y be manifolds of dimension n®. Then there
exists a one-generic map f: X — Y such that S,(f) is nonempty.

Proof. 1t is enough to prove that a map f exists taking on an S, singu-
larity transversely at a single point, say x,, because we can always find a
nearby mapping which is one-generic. If this mapping is close enough to f
it must also take on an §, singularity at a point close to x, by Exercise | of I1,
§4.

Let N = dim X = dim Y. With choices of coordinate on X and Y we can
identify C*(X, Y),., with C*(R¥, R¥), ,; so to exhibit a map of X into Y
taking on an S, singularity transversely it is enough to construct a map germ
S (R¥Y, 0) — (RY, 0) with this property. To do this we will need the following
lemma.

Lemma 6.2 Let V and W be vector spaces and let K be a subspace of V.
If dim V > dim K-dim W, there exists an element A in (V* o K*) Q W such
that the map

(6.3) V>K¥QW
associated to A is onto. (For noiation, see Exercise 6 of §4.)

Proof. The requirement that 4 be in (V'* o« K*) ® W means simply that
A, regarded as a map of K ® K into W, is symmetric, otherwise 4 can be
arbitrary. In particular, if H is a complement to K in V' we can define 4 so
that (6.3) is completely arbitrary on H. Since dim H > dim (K* Q W) —
dim K it is enough to show that there exists a B in (K* « K*) ® W such that
the map

6.3) K—K*Q@ W
associated to B is injective. Let W, be a one dimensional subspace of W.

One can already construct a B in (K* o« K*) @ W such that the induced map
K — K* ® W, is injective. (Just take a nondegenerate bilinear form.) [

To prove Proposition 6.1, choose f as in Exercise 1 of §3 and identify 4
with the last two terms of expression (3.8). If 4 is chosen as in the lemma,
then jf 7 S, at O by Proposition 3.7. []

We will now prove



§6. Stable Maps Are Not Dense 161

Proposition 6.4. Let X and Y be manifolds of dimension n®. Letf: X — Y
be one-generic. If S,(f) is nonempty and n > 2 then f is not stable.

Combined with Proposition 6.1 this shows that stable maps are not dense
in C*(X, Y)whendim X = dim ¥ = »n? n > 2.
For the proof of Proposition 6.4 we will need

Lemma 6.5. Let X and Y be manifolds and W an open subset of C*(X, Y).
Then the set Ay = {oceJ™X, Y)|3fe W and x € X with o = j*f(x)} is open
inJ¥X,Y).

Proof. Let o = j*f(x) be in Ay. Choose coordinate nbhds U and V
about x and f(x) such that f(U) = V and let p be a function which is 1 near x
and has support in U. Consider the set of maps g defined by

_ { f+ ph inU
E=r inXxX-—U
where 4 is a polynomial map of degree <k. If the coefficients of / are suffi-
ciently small this is well-defined (i.e., g(U) < ¥) and is in W. The set j*g(3)
for y near x and 4 with coefficients small define an open nbhd of J*(X, Y)
inAg. 0O

Now let us go back to the diagram (4.1) of §4.
S, ®» ——> Hom (K- K, L)

N~

The groups Diff(X) and Diff(Y) act on S, and on S, in obvious ways as
subsets of JX(X, Y) and J2(X, Y). They also act on the bundles K and L in
the following simple way. If o in S, has source at x and target at y we can
think of ¢ as an element of Hom (T, X, T, Y). Then by definition K, = kernel
o and L, = cokernel o. If g is in Diff(¥) then g acts on ¢ by sending it to
o' = (dg),-o; so (dg), maps the cokernel of ¢ onto the cokernel of ¢ and
leaves the kernels fixed. Thus Diff(Y) acts on K trivially and on L by the
tangent bundle action. Diff(X) acts similarly; i.e., by the tangent bundle
action on K and trivially on L.

Lemma 6.7. The mappings in the diagram 6.6 commute with the respective
actions of Diff(X') and Diff( Y).

A proof is sketched in the exercises.

We will now prove Proposition 6.4. Let f: X — Y be one-generic. By the
dimension formula in Proposition 1.1 dim S,(f) = 0, so S,(f) consists of a
countable number of isolated points, say Xxo, X1, Xz, . ... Let ey = j2f(xo),
o, = j2f(x,), etc.

Now suppose [ is stable. Then the orbit, W,, of fin C*(X, Y) is open;
so by Lemma 6.5, the set

(6.8) Ay, ={ceJ¥X,Y)|3ge W, and xeX with o = j*g(x)}

is open in J2(X, Y). If « is in the set 4w, and is also in S, then it must
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be conjugate to one of the «’s. This means that the open set 4y, N S,
in S, is covered by a countable number of orbits of the action of the
group Diff(Z) x Diff(Y). Let o = jYf{(x,). Since the top arrow in (6.6) is
surjective, this means there is an open set in Hom (K, » K, L,) covered by
a countable number of orbits of the group GL(K,) x GL(L,). Suppose all
these orbits were of dimension less than the dimension of Hom (K, o K, L,).
Since they are immersed submanifolds they would have to be of measure
zero by I, Lemma 1.5; and so would their union. We conclude that one of the
orbits has to be open. We will show this is impossible by showing:

Lemma 6.9. Let V and W be vector spaces of dimension n. Let G be the
group GL(V) x GL(WY) acting on the space Hom (V o V, W) by its standard
representation. (The action is given as follows: let C be in Hom (Vo V, W)
and let (4, B) be in G, then (A, B)-C(8) = C+B-A~(%) for © in Vo V. Note
that A(v, ® vy) = Avy, ® Av, and Vo V' is an invariant subspace of V& V
under this representation.) Then G has an open orbit only when n < 3.

Proof. The dimension of Hom (Vo V, W) is n%(n + 1)/2 and the
dimension of G is 2r2. Note that an orbit of G is diffeomorphic to some homo-
geneous space G/H. So the dim (orbit) = dim ¢ — dim A < dim G. (See
Theorem A.13).

Clearly #%(n + 1)/2 < 2n? only when n < 3; so if » > 3, the dimension
of G is less than the dimension of Hom (Vo V, W), and the assertion is
trivial. When n = 3 the dimensions are equal; but G contains a one-dimen-
sional subgroup which acts trivially on Hom (Vo V, W) namely
{(c idy, % idy)}, ¢ a nonzero real number; so the orbits are at least one
dimension less than dim G. [

This concludes the proof of Proposition 6.4.

One can prove a slightly stronger result by the same technique; namely,
one can show that stable maps are not dense in C*(X, Y) when dim X =
dim Y > 9. John Mather has recently proved a much more striking result
using his theory of stable mappings. He has shown that if the two-tuple
(dim X, dim Y) occurs inside the region 4 of Figure 4 or on its boundary
then stable maps are not dense in C*(X, Y); if it occurs outside this region
they are. For the proof of this result see [31].

Let X be a compact # manifold and f/: X — R" a one-generic mapping.
Let Z be a submanifold of X of dimension = codim S,(f) = /%, such that
S{f) H Z. One can show that the number of points in the intersection
Si(f) N Z is, modulo 2, a topological invariant of the pair (X, Z). (In fact
this invariant doesn’t even depend on /) It can be computed using the theory
of characteristic classes. (See [46] and [13]).

Now one can considerably weaken the hypotheses of Proposition 6.4.
One can show that if X and Y are n manifolds, then in the dimension range,
i? < m < % — 1)/2, a stable map, /: X — Y cannot take on an S; singu-
larity. This means that if in this dimension range one can find a pair of
manifolds (X, Z) for which the topological invariant described above is
nonzero there will exist no stable maps of X into R". (A case when this happens
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is X = P'® and Z = P*%, viewed as a subspace of P!°, Therefore, there are
no stable maps of P!® into R*®!)

In fact, the stable maps of X* — Y™ are dense iff the pair (n, m) satisfies
any of the following where ¢ = m — n

(@) m<Tg+ 8 when g > 4

(b) m<ig+9 when 3>¢g =0
(c) m<38 when ¢ = —1
(d) m<6 when ¢ = —2
(&) m<17 when g < —3
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Figure 4: The region where stable maps are not dense is the shaded region including the boundary.
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Exercises

(1) Let E, F, and G be vector bundles. Let p: E— F be a vector bundle
morphism, and let 7: E-> G be a vector bundle isomorphism. Prove the
chain rule formula for the intrinsic derivative:

D(T'P)x = 71'(DP)x

where #: Hom (ker p, coker p) — Hom (ker p, coker 7p) is the obvious map

induced by 7.

(2) Determine the corresponding formula for a vector bundle isomor-
phism acting on the left.

(3) Let f: X — Y be a smooth map, and g: Y — Y a diffetomorphism.
Show:

8%(g-f) = (dg)s* (3% )

(For notation, see Exercise 3 in §3.)

(4) Derive a similar formula for composition by a diffeomorphism on the
left.

(5) Prove that the mappings in the diagram (6.6) commute with the
action of Diff(X) x Diff(Y).



Chapter VII

Classification of Singularities
Part II: The Local Ring of a Singularity

§1. Introduction

The Thom-Boardman theory gives us a way of breaking up a map into
simple constituent pieces; however, from the Thom-Boardman data alone
we usually cannot reassemble the constituent pieces and see what the map
itself looks like. Consider for example the maps

FSiRZ=>R,  (x;, X2) = X, + xo?
and
g:RZ R, (x1, X3) = x12 — x52

fand g have isolated S, singularities at the origin and are regular everywhere
else. However, their map germs at the origin are not equivalent, even under
homeomorphisms of R? and R, since f has an extremum at 0 and g does not.
From the Thom-Boardman data alone there is no way of computing the
Hessian of f at 0; and, of course, it is the signature of the Hessian which
distinguishes f from g. (See Il, Theorem 6.9.)

In this chapter, we will be concerned with a more subtle invariant of a
singularity—its local ring. To define this we recall some notation from Chap-
ter IV, §3. If x is a point in a manifold X then C® = CZ(X) denotes the ring
of germs of smooth functions at x. This is a local ring and its maximal ideal,
M, = M (X), is the ideal of germs of functions vanishing at x. A map germ
fi (X, x)— (Y, y) induces a map f*: C;° — CZ by pull-back; and this is a
morphism of local rings.

Definition 1.1. Let f: (X, x) = (Y, y) be a map germ. The local ring of f
is the quotient ring: CT|CLf*M,,.

This ring will be denoted #; and its maximal ideal s, If f: X — Y is a
map, not just a map germ, then at each point x in X we get the local ring of the
germ of f which we will denote #,(x) and call the local ring of f at x.

Example 1 (Immersions). If f: (X, x) — (Y, ») is the germ of an immer-
sion, we can choose coordinates centered at x and y so that fis the immersion

vy, = x i=1,...,n
f*y, =0 i=n+1,....,m
where n = dim X and m = dim Y. Then %, = f*.#, and Z, = R.
Example 2 (Submersions). If f: (X, x) — (Y, y) is the germ of a sub-
mersion we can choose coordinates so that f is the canonical submersion
f*yl=xi i=i,...,m.
165
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Then C2f*.#, is the ideal generated by (xy, ..., x,) and Z; is the ring
of germs of smooth functions in the remaining variables x,, (4, . . ., Xy

Example 3 (Morse functions). If f: X — R is a Morse function with
critical point at x, the product operation in the local ring #; induces a linear
map

(1.2) wng|me® R ang|ons® v om0 on .

The kernel of the map (1.2) turns out to be one-dimensional, and is, in
fact, all scalar multiples of the Hessian. (See Exercise 5 below.) Therefore up
to scalar multiple the Hessian can be computed from #,.

Example 4 (Generic maps between 2 manifolds). At a fold, we can
write such a map in the form (x, xg) > (xy, x32). If we divide Cg° by the
ideal (x;, x5?) we get the truncated polynomial ring Rfx,]/(x2%), so %, =
R[71/(#%).

At a simple cusp we can choose coordinates so that the mapping is
(x1. Xp) > (X1, x1%, + x5%). If we divide C§ by the ideal (x, x;x3 + X5°)
(which is just the ideal (x, x,%)), we get the truncated polynomial ring
R[x,]/(x5%). Hence #, =~ R[t]/(¢3).

We recommend that you try a few other examples on your own. The ring
2, has been around a long time in algebraic geometry. For example, if
f: X — Y is a morphism between schemesf, %, is in a natural sense the
“fiber”” of f at x. From the algebraic geometer’s point of view, Z;(x) is a
much more natural invariant to attach to a singularity than, say, its Boardman
data. Its use in differential geometry is fairly recent, however; and is mainly
due to Malgrange, Mather, and Tougeron. Its importance is indicated by the
following theorem of Mather. (See [29].)

Theorem 1.3. Let f, g: (X, x) = (Y, y) be germs of stable maps. Then f
and g are equivalent if and only if Z, and %, are isomorphic as rings. Note that
fand g are equivalent if there exist germs of diffeomorphisms h: (X, x) — (X, x)
and k: (Y, y) — (Y, y) such that g = k-f-h™* near x.

The proof of this theorem is beyond the scope of this book. We will,
however, see it corroborated by the simple examples we are going to discuss
in the following sections.

Exercises

(1) Let f:(X,x)—(Y,y) be map germs. Then f induces a map
fECR A CRl %Y for each k. Let g: (X, x) = (Y, y) be another
map germ. Show that j*f(x) = j¥g(x) iff /* = g* Thus f* is the k-jet of fat
x in algebraic disguise. (Hint: Let (4, .. ., ¥») be coordinates centered at y
and ¥, ..., ¥, be the associated elements of the quotient ring. Show that

f*7y, is the k-jet of the ith coordinate function of f.)

T Whatever that means.
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(2) Lety: CPlMFY — C2 )M F+! be a ring homomorphism. Show that
y = f* for some map germ f.
(3) From Exercises 1 and 2, deduce an isomorphism (of sets)

JUX, Y,y = Hom (CP [ A, C2 AT

(Hom meaning homomorphisms of rings).

(4) Identify #,/.#,2 with the cotangent space of Y at y. Compare with
IV, Lemma 3.3. Show that f*: .4,/ #2 — ./ #2 is just the transpose of
d.: T.X—T,Y.

(5) Let f: R* — R be the Morse function given by (x4, ..., x,) > x;2 +
x;2 + .-+ x,2 Show that at the origin w,/»2,2 is just the space of linear
functions in x4, . . ., x,; and »:,?/»¢® is the space of quadratic functions with
X2 + x2 +--- 4 x,2identifled to zero. Conclude that the kernel of the map
(1.2) is the one-dimensional space spanned by x; ® x; + -4 x, ® X,,.

(6) Verify that nonconjugate map germs can have the same local ring.
(Hint: Try (xy, xg) = (X1, X1Xo + x5%) and  (xy, x3) > (x4, x2%).) Why
doesn’t this contradict Mather’s theorem ?

(7) Prove that the dimension of »i;(x)/m*(x) is equal to the dimension of
Ker (df),: TxX — Ty, Y. (Hint: Use Exercise 4.)

§2. Finite Mappings

Let f: X — Y be a smooth map. We say that f is finite at x if:
2.1) dimy Z#(x) < co.

f is finite if it is finite at every point. Note that if dim X > dim Y, then
dimg Z,(x) = o0, (i.e., even formally the functions fi, . . ., f, cannot generate
an ideal of finite codimension in the formal power series ring R[[xy, . . ., x,]]
if m > n. See [61].) Therefore, in talking about finite maps, we are implicitly
assuming dim X < dim Y. “Finiteness’” implies among other things that the
map fis locally “finite-to-one” at x. In fact, we have

Proposition 2.2, If fis finite at x, and a = f(x) then there exists an open
nbhd U of x such that x is the only point in U mapping onto a. (In particular,
if fis finite, it is ** finite-to-one” on compact subsets of X.)

Proof. We can assume that X and Y are R* and R™ respectively and that
x =a=0.Let fi,..., /s be the coordinate functions of f. The assumption
(2.1) means that some power of the maximal ideal in C§° is contained in the
ideal (fi, ..., f»). Therefore, there exists an open set U and an integer N
such that on U, x¥ = 2™, a;;f;, the a;;’s being smooth functions on U.
Therefore, if the f;’s vanish on U so do the coordinate functions x;. In other
words, zero is the only pre-image of zero. [J

Remark. The converse is not true. The map f: R — R, given by ¢t —
exp (—1/¢2) is “finite-to-one” but dim #Z;(0) = 0.
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Suppose f'is finite at x. Let p4, . . ., p; be elements of C2 projecting onto a
basis of #,(x) over R. Then the Malgrange Preparation Theorem says that
D1, .- -, Pr generate CF as a module over C;°. Conversely, if p;,..., px
generate C as a module over C;” it is clear that they project onto a spanning
set of vectors for #,(x) viewed as a vector space over R. We will use this to
prove

Proposition 2.3. dimyp Z,(x) is an upper semi-continuous function of x.
In particular, if f is finite at x, it is finite near x.

Proof. Letx,,...,x,beacoordinate system centered at x, and yy, . .., Yn
a coordinate system centered at the image point. We can assume that the
functions py, ..., p, above are polynomials in x;’s of degree <N. We will
show that there exists a fixed open set, U, about x such that on U every poly-
nomial in the x;’s can be written as a linear combination of the p;’s with
smooth functions of the y;’s as coeflicients. First note that this statement is
true for some U and for all polynomials of degree < N. (Note that for any
monomial we can find an open set U since the statement is true for germs at
x. Thus we can find an open set U/ which works for all monomials of degree
< N. By linearity U works for all polynomials of degree < N). Now consider
a polynomial of the form x% where degp = N. x“p can be written as a
linear combination of the x*p;’s and, hence, by induction as a linear combina-
tion of the p”s themselves. Thus U works for all polynomials of degree >N
as well.

This proves that for all x" in U, C2 is formally generated by the p;’s as a
module over C2. Therefore, by the Malgrange Preparation Theorem, it is
actually generated by them. [

In some sense, dimg #Z(x) measures the multiplicity of the point x as a root
of the equation f(x) = a. Over the complex numbers this vague statement
can be made precise (see Remark 1 below), but over the reals we have to
content ourselves with:

Proposition 2.4. Let dimy #(x) = k. Then there exists a neighborhood,
U, of x such that every y sufficiently close to f(x) has at most k pre-image points
in U.

Proof. Choose U and py, ..., p, as in the proof of Proposition 2.3. Let
X1, ..., X; be pre-image points of yin U,and let § = {xy,..., x,}. Let C&° =
@i-1 C be germs of C* functions on S, and let Z,(S) be the quotient ring
CICSf* A, CS is a finitely generated module over C,;° with generators
D1, - - -» P (by the same reasoning as in the proof of Proposition 2.3), so Z,(S)
is a finite dimensional vector space over R with the images of py, ..., p, as
spanning vectors. On the other hand, the restriction map Z«(S) +—
211 %(x;) is bijective; so r < dimg Z,(S). [

Remark 1. If X and Y are complex manifolds of the same dimension,
and f: X — Y a holomorphic mapping satisfying (2.1) then a much sharper
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form of Proposition 2.4 is true. Namely, there exists an open nbhd U of x
such that for every y close to f(x) the sum

2.5) Z dime Z4(z;)
over the pre-image points of y contained in U is constant. (See [38].)

Remark 2. 1n the complex analytic category the converse of Proposition
2.4 is true; namely, if /: X — Y is locally “finite-to-one” then dim¢ Z,(x) <
oo. (See [14].)

We conclude this section by mentioning a result of Tougeron:

Theorem 2.6. If dim X < dim Y the finite maps are a residual subset of
C*(X, Y).

In fact, Tougeron proves they are much larger than just a residual set.
The complement is, in a sense which we won’t try to make precise, of “in-
finite codimension” in C*(X, Y). (See [51].)

Exercises

(1) Consider the Whitney map given by f: (X3, x2) — (X1, X1X5 + $x5%)
of R? into R2. Given a in R? what values can the sum

(2.7) > dimg Z(p),

pef~La)

take on?

(2) Consider the analogous problem for the complex Whitney map
I (xg, Xg) — (X1, X1X5 + 3x,%) of C2into C2.

(3) Call dimy Z(x) the multiplicity of the point x (with respect to the
mapping f: X — Y). Prove Proposition 2.4, counting pre-image points
with multiplicity. (Hint: Confirm that we did prove this stronger result in the
text.)

(4) Prove Tougeron’s Theorem 2.6 for maps between two-manifolds
using the Whitney theory.

(5) Let X and Y be manifolds of dimension » and let f: (X, x) = (Y, »)
be a map exhibiting an S, singularity. Show that dimg %, > i(i + 1)/2.
(Hint: Choose coordinates x, . . ., x, centered at x and y, .. ., y, centered at
y such that f has the form

f*yi=1i J=i
f*yi=x;  j>1i
where the leading term of f; is quadratic. Show that %/, is the space of all

quadratic polynomials in xy,..., x; with the quadratic terms of fi, ..., f;
identified to zero.)
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§3. Contact Classes and Morin Singularities

We shall now attempt to give some insight into the geometric content of
the local ring %,(p) defined in §2. This will be accomplished through the
notion of contact equivalence.

Let Z be a manifold with p in Z. There is an obvious way to define a
submanifold germ of Z near p; namely, two submanifolds are equivalent if
they are identical in a nbhd of p and a submanifold germ is one of these
equivalence classes. (Clearly we may think of a submanifold germ as a small
piece of a submanifold.)

Definition 3.1. Let A, B,, and B, be equidimensional submanifold germs
of Z near p. Then B, and B, have the same contact with A4 if there exists a germ
of a diffeomorphism ¢ : (Z, p) — (Z, p) such that $|A = id, and $(B,) = B,.

Next we define the local ring associated with the contact of two manifold
germs A and B of Z near p. Define

S(B) ={ge CP(2)|g(B) = 0}
Let i, : A — Z be the canonical inclusion map. Define .%,(4, B) to be the ideal

i5(F(B)) where if: C2(Z)— C2(A) is the ring homomorphism induced
by i,. Finally, let

‘%A,B = CSO(A)/'ﬂp(A’ B)-
It is clear that #, ; is an invariant of the contact of B with A.

Definition 3.2 2,y is called the local ring of the contact of B with A.

Theorem 3.3 Let A, By, and B, be equidimensional submanifold germs of
Z near p. Then B, and B, have the same contact with A iff R, 5, = R4 5,

First we present three lemmas.

Lemma 3.4. There exists a trivial tubular nbhd U of A in Z such that
both By and B, intersect the fiber of U at p transversely.

Proof. We can choose a tubular nbhd U of 4 in Z which is a trivial
vector bundle since A4 is a submanifold germ. Thus by choosing coordinates
we may assume that U = R* x R! where k = dim 4, [ = codim 4, A is
identified with R* x {0}, and p is identified with 0. In this local situation it is
clear that we can rotate the R’ factor of U so that both B, and B, intersect
{0} x R!transversely. [

Lemma 3.5. Let G and H be linear maps of R* — R!. Then there exists a
linear map F:R' — R such that K = F(I, — GH) + H is invertible.

Proof. Choose subspaces V and W of R* so that V@ Ker H = R’ and
HV)® W = RL Choose F so that F(V) = 0 and F:Ker H—> W is an
isomorphism. It is now easy to check that with these choices, Ker K = 0. [J
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Lemma 3.6. Let b:(R*,0)— (R,0) be a map germ where b(x) =
(bi(x), ..., b(x). (We assume that the coordinates on R* are x and the co-
ordinates on R' are y.) Then S, o (R¥ x {0}, graph b) = (b, ..., b)) where
R* x {0} and graph b are submanifold germs of R* x R* near (0, 0).

Proof. The functions b;(x) — y; clearly vanish on graph b; in R* x R’
Also ik 0y(bx) — ) = bi(x). So S o(R* x {0}, graph b) = (by, . .., b).
Conversely, suppose that f: R* x R'— R vanishes on graph b. Then we
may write f(x, ) = (b:(x) — »)fi(x, ) + -+ (b(x) — y)fi(x,y) where
each f; is a smooth function. (To see this, let g(z) = f(x, (1 — )y + tb(x))
for ¢ in R. Then f(x, y) = g(0) — g(1) = ﬁ dg/dt(t) dt. Expanding dg/dt by
the chain rule gives the desired result.) Thus (ifx, o,/ }x) = b (x)fi(x, 0) +
-+ b{(x)fi(x, 0) and is in the ideal (b,,..., 5). [

Proof of Theorem 3.3. As noted above, it is easy to see that contact
equivalent submanifold germs give rise to identical local rings. So we assume
that %, 5, = %4 5,. Choose a tubular nbhd U = R* x R! of 4 = R* x {0}
as in Lemma 3.4. The transversality assumptions imply that we can find
smooth maps »* and 5% : R* — R! so that B, = graph (¥ (near p, of course).
Let b, ...,b' be the coordinate functions of b'. Then J,(4, B) =
(b4, ..., b by Lemma 3.6.

Now the assumption that #,, = %, ,, implies that £, (4, B)) =
F (A4, By). Thus the calculation that /,(A4, B) = (b}, ..., b}) implies that
there exist smooth functions g,; and Az, where 1 < «, 8,y < [ so that

i ]
(%) bt = > gub,® and b2 = > hgbt
B=1 y=1

Let G and H denote the matrices (g,;) and (/15,). We claim that we may choose
the /,,’s so that H(x) is invertible for all x near 0. Using Lemma 3.5, there
exists a matrix F whose entries are smooth functions (smoothness is obtained
by looking at the proof of Lemma 3.5 and noting that the choices which are
made can be made smoothly) such that the matrix K = F(I — GH) + H is
invertible for all x near 0. A simple computation shows that b;% =
2ho1 kgb,t so we may replace H by K. Now define ¢: U = R* x R'—= U
by é(x,¥) = H(x)y. By (%), ¢: B, — B,. Since ¢ is linear on fibers of U,
#|lA = ¢|R* x {0} = idp¥. (o;. Finally, ¢ is a diffeomorphism on a nbhd of p
since H(0) is invertible. The mapping ¢ shows that B, has the same contact
with 4 as B,. [

We now specialize this construction of contact equivalence to obtain
results on Z,(p) where f: (X, p) — (Y, q).

Lemma 3.7. #{p) = (N*Px v wr.grapn s Where f: X —graphf is the
canonical map and the ambient manifold Z is taken to be X x Y.

Proof. Choose coordinates x;,...,x, near p and y,,..., y, near q.
Then Lemma 3.6 states that

'ZP,Q)(X X {q}: graphf) = (fl: .. -af‘m)a
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where f3, ..., f,,,~ are the coordinate functions of f (having identified X with
X x {g})-Sincef*(f1, . . s fm) = (J15 .. s Sw)and Z(p) = C,°RY/(f1, - - -, f)

the lemma is proved. [
We now make the obvious definition.

Definition 3.8. Two map germs f, g: (X, p) — (Y, q) are contact equiva-
lent if graph f and graph g have the same contact with X x {q} as submanifold
germs of X x Y near (p, q).

Notes. (1) Theorem 3.3 says that fand g are contact equivalent as germs
near p iff Z,(p) = #,(p). We thus have a geometric interpretation of what it
means for two map germs at a point to have the same local ring.

(2) We would like to generalize the definition of contact equivalence so
that we can interpret what it means for two map germs to have isomorphic
local rings. For example, we could weaken the definition of contact equiva-
Ience to allow germs of diffeomorphisms ¢ which leave A4 invariant and not
demand that |4 = id,. It is then easy to see that if graphf is ‘‘contact
equivalent™ to graph g with respect to X x {g} with this new definition, then
Z,(p) is isomorphic to Z,(p). The problem is in the converse statement.
Suppose that Z,(p) =~ %, p), then what we would like to know is whether
there exists a germ of a smooth diffeomorphism ¢:(Z, p) — (Z, p) such
that ¢* induces the isomorphism between Z,(p) and Z%,(p). The thrust of the
proof of Theorem 3.3 is, of course, the construction of such a ¢. Let us
spend a moment to reflect on the problem. Suppose that there is no obstacle to
lifting the isomorphism of %,(p) — Z,(p) to an isomorphism ¢: C2(X) —
C2(X). With a choice of coordinates we may assume that ¢: CF(R") —
CPRY. Question: Is ¢ = ¢*? Since we know what (x,), ..., $(x,) are,
there is only one possibility for ¢, namely, ¢(x) = b(xy), ..., $(x,). It is
easy to show that ¢* = 4 on any analytic function. The problem is that ¢ is
not uniquely defined on flat functions, so ¢* does not have to equal ¢. But
we are saved by the Malgrange Preparation Theorem and Mather’s Theorem
(V, Theorem 1.2) that a stable map germ is determined by only a finite portion
of its Taylor series. Thus to circumvent our problem we need only “jetify”
our result and work with the local ring Z,(p)/.#,*(X) (for some appropriate
k). 1t should be clear that any isomorphism between these finite dimensional
local rings is induced by a smooth mapping.

We introduce some terminology. A k-jet of a submanifold at p of a mani-
fold Z is an equivalence class of submanifold germs at p where two germs 4
and B are equivalent if every smooth function of Z — R which when re-
stricted to 4 vanishes to kth order at p also, when restricted to B, vanishes to
kth order at p. To analyze submanifold k-jets at p, we can assume by choosing
coordinates that Z = R" and p = 0. Let H, be the set of k-jets of /-dimen-
sional submanifolds of R" at 0. First we claim that two equidimensional
submanifold germs at 0, 4 and B, are in the same 1-jet equivalence class iff
ToA = ToB < R™ This is clear since a function : Z — R vanishes to first
order at p in the A4 (respectively, B) directions iff (d))o(ToA4) = 0 (respectively,
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(@)o(ToB) = 0). Thus we may identify HT, with the Grassmann manifold of
I-planes in n-space by assigning, to each 4 in H},, TyA4 in G, ,. In this way
H?p, is a manifold. In fact, we have the following:

Lemma 3.9. H},is a smooth manifold. Moreover, H} ; £ G, , given by
p(Ad) = ToA makes Hf , into a fiber bundle over G, , whose typical fiber is the
Jiber F of the bundle J*(R', R" 1), o —>J*(R!, R* ™) 6.

Proof. Recall how the manifold structure of G, , is obtained. We assume
that R" comes equipped with an inner product. Then a nbhd of V in G,,
is given by Oy = {WeG,, | mn,: W— V is a bijection} where =, : R*—V
is just orthogonal projection. We then identify Hom (V, V1) with O by the
mapping 4 +> graph 4. We claim that we can identify p~Y(0y) with O, x F
{(where V' = R! in the definition of F). Given a submanifold germ A, there
exists a unique germ of a smooth map f: Ty4 — (TyA4)* such that 4 =
graph /. Now just note that two submanifold germs 4 and B which are
tangent at O yield the same submanifold k-jet iff the corresponding f and g
satisfy j*f(0) = j¥g(0). (Note that since 4 = graphf and B = graph g,
FY(0) = j'g(0) = 0.) The ““iff”” is clear since ¥ :R" — R vanishes to kth
order at O when restricted to A iff j*(-£)(0) = 0, but j*(-f)0) = j*(s-g)(0)
iff j5f(0) = j*g(0). Now let 4 be in p~*(0,). Then the maps =y : ToA — V and
ayLt (ToA)t — V* are bijections. The map o: p~1(0y) — O, x F given by
A > (TyA, projection of j*(myi+f+my~1)0) into F) where A = graph f is a
bijection. We topologize Hj, by demanding that all such ¢ be homeomor-
phisms and give A, a manifold structure by demanding that all such o are
diffeomorphisms. We leave it to the reader to check that everything works
right on overlaps. [

Definition 3.2'. Let A, By, and B, be equidimensional k-jet submanifold
germs of Z near p. Then B, and B, are contact equivalent with respect to 4
if there exists a germ of a diffeomorphism ¢ : (Z, p) — (Z, p) such that $(4) =
A and $(B,) = B,.

Let Z% 5 = Cr(A)/(FA(A, B) + ME+1(A)). Then we have
Theorem 3.3'. The k-jets of submanifolds B, and B, are contact equiva-
lent with respect to A iff #% g, is isomorphic with R p,.

Definition 3.7'. Two k-jets of maps j*f(p) and j*g(p), both with target q,
are contact equivalent iff graph f and graph g are contact equivalent with
respect to X x {q} as k-jet submanifolds of X x Y at (p, q).

Let Z5(p) = ZAp)] A=+ X). If o is a k-jet with source at p, then define
R, = R*(p) where j*f(p) = o. Then the following is immediate.

Proposition 3.10. Let o and r be in J*(X, Y), .. Then o and = are contact
equivalent iff Z, ~ X..
Definition 3.11. Let X be a local ring. The contact class Sg < J*(X, Y)
is given by
Sw = (o€ JXX, ¥) | 2, = @,
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Remarks. (1) Let o and 7 be equivalent k-jets, then clearly %, ~ %,
so ¢ and 7 are contact equivalent. Thus the contact class of a singularity is
an invariant of that singularity type.

(2) John Mather has proved that two stable k-jets are equivalent (with
k = dim Y) iff they are contact equivalent. This result clearly demonstrates
the importance of contact classes. (For the details see [29].)

In the Thom-Boardman Theory one of the crucial technical tools is given
by showing that the sets S, ;  , are in fact submanifolds of the appropriate
jet bundle. The same is true for contact classes.

Theorem 3.12. Let % be a local ring. The contact class Sz is an im-
mersed submanifold of J¥(X, Y).

Note. In fact, Sy is a submanifold but, as before, we shall not need this
fact.

Proof. As in previous theorems of this type, the crucial part of the proof
is in showing that S NJ* X, Y),, is a submanifold since Sg is clearly a
subfiber bundle of J¥(X, Y) over X x Y. For this purpose, we may choose
coordinates so that X = R*, ¥ =R™ and p =g = 0.

Now there is a natural action of the Lie group G*(R"), (=invertible k-
jets on R™ at 0) on HJ',. Let (j*¢), be in G*(R™), and let 4 be in H ;. Then
$(A) is a submanifold germ of R™ at 0 in H},. This gives a well-defined
smooth action. Similarly, the action of G¥(R* x R™)¢,0, on HE}™ is a smooth
action. Let G be the isotropy subgroup of this action whose fixed point is the
submanifold germ R™ x {0}. By Theorem A.7 in the Appendix, G is also a
Lie group.

It is now a tautology to see that the orbits of G acting on H}, consist
precisely of those k-jets which are contact equivalent. See Definitions 3.2°
and 3.7. [

The other crucial data needed in our analysis of the Thom-Boardman
singularities was the codimensions of the submanifolds S; , . .. Here, too,
that is the case. In general, it is a difficult combinatorial problem to compute
the codimensions of the contact classes. To complete this section, we analyze
one important class of examples.

The simplest local rings of finite dimension over R are the truncated
polynomial rings R[t]/(**'). A smooth map f: X — Y has a Morin singu-
larity at p if Zp) =~ R[t]/(t**") for some k. We denote by S;, the contact
class in J¥(X, Y) determined by the ring R[z]/(¢**'). The main results about
these singularities are due to B. Morin [39] and H. Levine [20, 21]. We will
not discuss their results in complete detail, but will confine ourselves to the
equidimensional case: dim X = dim Y.

We denote by S, (f) the points where f takes on a Morin singularity of

type k; ie., S1,(f) = () 1(S1y)-

Proposition 3.13. S,, is a submanifold of J*(X, Y) of codimension k.
(Assuming that dim X = dim Y.)
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Corollary 3.14. For a residual set of maps f, S, (f) is a submanifold of X
of codimension k.

Proof. Just apply the Thom Transversality Theorem. [

Proof of Proposition 3.13. Ttis enough to prove that S;, N J*(X, Y), ,is a
codimension k& submanifold of J¥(X, Y), ,. Moreover, we can assume that
X = Y= Rrand p = g = 0. Given oy in §;, with source and target at O we
will show that a nbhd of oy in S;, N J*(R?, R"),, is a codimension k sub-

manifold. Clearly, we can assume o, has the form (x,..., x,) — (f{x),
Xas - -+, Xu). Then a4 in Sy, is equivalent to the condition

" /A A i S

*) 2O =550 ==750=0

Now let =3 R* — R*"1 be the submersion #(xy, ..., X,) = (X, ..., Xy,)
which induces a fiber mapping my: J¥(R", R%)o,o — J*(R™, R* ")y . Let U be
the open subset of J¥(R", R*~ 1), , consisting of all k-jets of maps of the form
1y - ooy Xa) = (fa(3), . . ., f2(x)) having the property that dx;, dfs, . . ., df, are
linearly independent at 0. This is an open subset of J¥(R", R"~ 1), , containing
the image of o,. To each o in U we can associate an invertible k-jet & in
JH(R"™, R,y o—namely the k-jet of the map (x4, . . ., X,) > (X1, f25 . - -, fo)-

Let X be the vector space of all polynomials of degree <k in x4, ..., x,
with zero constant term. X is the ““typical fiber” of the fibration =,.

We will show that the fibration =y is trivial over U by constructing an
explicit trivialization

T:35 x U~ (wg) "YU

Given p in I let k, be the k-jet of the map (xq, ..., x,) (P, Xo, . . ., Xz).
Then we define 7(p, 0) = k,-6 for p in 2 and o in U. It is easy to see that
this is a diffeomorphism between X x U and () " *(U).
ke
Let %,, be the set of p in X satisfying @ 0 == ,8 pk (0) = 0. These
0x, ox;
conditions are independent so X, is a codimension k subspace of X. We let
the reader check that 7 gives us a smooth identification

2

i

x U~ () Y (U) N Sy, Hint: use (*) [
—_

Finally we shall show that the Morin singularities are actually singu-
larities of the type studied in Chapter VI. We recall that for a map f: (X, p) —
(Y, q), pisin S,(f)iff fhas corank 1 at p and that p is in S ,(f) iff /]S,(f) has
corank 1 at p (assuming—naturally—that S;(f) is a submanifold). We can

k

continue this inductive construction of S7/ 3(f) as long as at each stage

.....

k-1
ST3(f) is a submanifold of X. The Boardman Theorem states that this is the
case for a residual set of /. We will prove this theorem in the special case of
the Morin singularities by proving the following.
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Proposition 3.15. If j5FW Sy, for all k < dim X + 1, then S1(f) =

Proof. We need only prove this locally. Let p be in S, (f). By choosing
coordinates on X based at p and on Y based at f(p) we may assume that
p = f(p) = 0 and that f(x,, ..., x,) = (i(x), xg, .. ., x,) Where 0°4/0x,%(0) =
0 for s < k. In fact, Sy (f) is given by the equations 0h/0x; = ... = O*h/ox,"
= 0. (Recall the proof of Proposition 3.13.) We proceed by induction. In
case k =1, Si(f) = S,,(f) as both are given by the equation dh/0x; = 0.
The transversality hypothesis guarantees that S;(f) is a submanifold. Now

assume inductively that S”’H(f) Sy, _,(f) and that this set is a submani-

k
fold. Let g be in S, (f). We claim that ¢ is in S{3(f) iff 9/ox4],
is in T,S;,_(f) since Kerd(f|S1,_,(f), = Ker(df), N T,S;,_,(f) and

k
Ker (df), = (8/0x,],)- The proof is complete if we can show that ST/ 3(f) =

.....

Versahty hypothesis guarantees that these are submanlfolds Define
H: R R~Y by H(q) = (0h/ox(q), ..., 0*~th/oxk~1(g)). Then clearly
H-Y0) = S;,_,(f). Moreover H is a submersion at the points in H ~(0).
This follows from the transversality hypothesis and the way S;, _, is defined
locally as a submanifold of J¥~3(R", R*). (Again see the proof of Proposition
3.13 and apply II, Lemma 4.3.) Since H is a submersion 7,5, ,(f) =
Ker (dH),. It is a trivial calculation to see that &/0x,|, is in Ker (dH), (for g
in H-Y(0)) iff o%h/ox(g) = 0. [

Exercises
(1) Prove that the mapping of R® — R?® is defined by the equations:

Y1 = X1Xa + X:%x5 + x,*
Yo = Xa
Ya = Xa.
has a generic S;, singularity at the origin.
(2) In Exercise 1, what are the equations for the fold surface S,(f) and
the locus of cusps, S, :(f)? Draw a sketch of them.
(3) For the map in Exercise 1 show that the image of S;(f) has the appear-
ance of a ““swallow’s tail.” (See Figure 5.)
(4) Show that the map f: R* — R" given by f(x1,..., X, = (f1(x), xa,
.., X,) takes on an S;, singularity transversely at 0 if

@Lo-=2Lo-0

and(b)d( )(0),..., (”f)(())

are linearly independent. Hint: Look at the proof of Proposition 3.15.
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[~

Figure 5; The Swallow’s Tail

§4. Canonical Forms for the Morin Singularities

We will show that two Morin singularities are equivalent provided they
are displayed transversally (i.e., provided the hypotheses of Proposition 3.5
are satisfied) and provided their local rings are isomorphic. We will prove
this by showing that a Morin singularity which is displayed transversally has
a simple canonical form. As in §3 we will just consider the equidimensional
case: dim X = dim Y (though we will discuss one non-equidimensional
example at the end of this section.)

Theorem 4.1. Iff: X — Y satisfies the transversality condition: j*f & S1,,
and x, € Sy, (f), then there exist a coordinate system x, . . ., x, centered at x,
and a coordinate system y., ..., y, centered at f(x,) such that f has the form

F¥y1 = XXy + 0o+ X607+ xFH
4.2) F*ys = X3

f*n=xn-

The result is due to B. Morin (See [39]). Note that in dimension 2 it gives
both Whitney canonical forms of Chapter VI, §2.

Proof. Wecanchoose coordinates xy, . . ., x, centered at xoand y3, .. .,
centered at f(xy), so that f(xy,..., x,) = (A(x), xg, . . ., x,). Since x, is an
Sy, singularity the local ring Z,(x,) is generated as a vector space over R
by 1, x4,..., x;*. By the Malgrange preparation theorem every germ of a
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function at x, can be written as a linear combination of 1, xq, ..., x;* with
smooth functions of the y’s as coefficients; so in particular, we can write
(4.3) x = f*ay + (f*adxy + - -+ (fFap s )%,

or

(4.3 fra, = —(fFaz)x, —-- - — (f*ap )% + xF41

the @;’s being smooth functions of y. Furthermore we can assume a,.,.; = 0
(Proof: replace x; by x; + (1/k)f*a, ., and leave x,, . . ., x, fixed.) By com-
paring the two sets of (4.3) we see that ¢;(0) = a,(0) = - - = 4,(0) = 0.

Let us now set x; == Xx, = Yy =---= 3, = 0 in (4.3) and expand
both sides in powers of x;. By assumption f*y, = A(x;,0,...,0) =
ex, k¥t 4+ ... ¢ being a nonzero constant and the dots indicating terms of
degree >k + 1 in x;. Therefore, if the x;**! terms in (4.3) are to be equal,
we must have ,(».,0,...,0) = (1/c)y; +---. In particular da;/cy, # O.
This means that the map:

(yla RN} yn) = (a1(J’), Yas - yn)

is a legitimate coordinate change in y space. In other words we can assume to
begin with that our x;’s and y;’s satisfy:

[¥y1 = fFagx, + -+ fFapx, 7t + x,F1
4.4)
f*yi=xi i=2,...,n

(We have changed a; to —a; to make the first line more visually appealing.)
Since the map f has the form of Exercise (4) of §3, the transversality

condition says that
of*y oS *y
d( o )(0), ety d( G 0)

are linearly independent. This implies that

(dx:10), d(f*az)(0), . . ., d(f*ax)(0)
are linearly independent. So this means that the differentials of the functions
02(0, Yo, .o yn)3 s akz(o> Yas oo yn)
are linearly independent at 0. Permuting, if necessary, the y,’s we can assume

the matrix

oa, ) .,
— (0 2<ij<k
(Zo J
is nonsingular. Therefore the mappings

(xl, L] xn) = (xl,f*a2, v -’f*ak, X+1s o+ xn)
and

(yla .. 'yyn) *—>(J’1, a29' CRE ) ak’yk:+l9- LN} yn)
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are legitimate coordinate changes. With respect to the new coordinates f has
the form (4.2). (I

Morin obtained canonical forms for all the “Morin” singularities of §3,
not just the equidimensional ones. Here we shall confine ourselves to dis-
cussing one nonequidimensional example, the ““cross-cap” for maps of n
manifolds into 2n — 1 manifolds. This canonical form is due to Whitney [57],
though the derivation we will give of it is due to Morin. First of all we need:

Definition 4.5. Let X be annmanifold, Y a2n — 1 manifold, andf: X =Y
a smooth map. A point x, in S1(f) is called a cross-cap if jf ', S, at x,.

Note that for these dimensions, codim S; = n (See VI, Proposition 1.1)
so cross-caps occur as isolated points of X.
Whitney’s result is:

Theorem 4.6. If f: X — Y has a cross-cap at x,, there exists a coordinate
system X, . .., x, centered at xo and ., . . ., Yan -1 centered at f(x,) such that
f has the form:

[y = %2
(4-7) f*yi=.xi i=2,...,n
S Vnas = X1%; j=1,...,n— 1.

Proof. We can choose coordinates xi,...,x, centered at x, and
Y1s - - -» YVan—1 centered at f(x,) such that f*y, = x; for i = 2,..., n. The set
S.(f) is the locus of points for which

a_fi . 8f‘n—kl _ — a.f2n—1
(4.8) 3x1 axl 3x1 0

where f; = f*y;. We let you check that the transversality assertion is equiva-
lent to the assertion that

49) a(Z), d(af_) a( %)

axl 3x1 Y axl ,

are linearly independent at the points where (4.8) holds. (Hint: Use the
“D — BA~1C” lemma of Chapter II, Lemma 5.2. See also Exercise (7) of
VI, §1.) This means in particular that one of the differentials (4.9) must be
nonzero when evaluated on ¢/0x;. By a linear transformation of the y co-
ordinates we can arrange:

% &fi _ :
(4.10) ax12 # 0, éx—‘lz =0 for i>n.

It is clear from (4.10) that the local ring Z(x,) is generated by 1 and x;.
By the Malgrange preparation theorem we can write

(4.11) x:? = fFay + (f*az)xs,
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a, and a, being smooth functions of the y variables. If we make a change of x
variables, substituting x; + f*a,/2 for x, and leaving the other x;’s fixed,
we can make a; = 0 in (4.11); that is, we can assume

.11y fra; = x,%

Now let us set x, =---=x, = y, =---= y, = 0 and expand the left
hand side of (4.11)" in powers of x;. By (4.10), f; = f*y;, = ¢x,2 +--- and
fix1,0,...,0) = 0(x,® for s>n with ¢#0, so we must have
ay(y1,0,...,0) = (1/¢)y,. In particular, da,/dy, # 0, so the map

(y19~ BRE) y2n—l) H(al(y)a Yas oo s y2n—1)

is a legitimate coordinate change. Replacing the old y coordinates by the
new y coordinates, we have f*y, = x;? and we continue to have f*y, = x,
for 2 < i < n. The remaining coordinate functions f; = f*y, i > n, can be

written in the form (using the Malgrange Theorem)
f; = gi(xlzy Xgy v vy xn) + xlhi(x129 Xo, o0 vy xn)'

If we replace y, by i — g(yy,.. . ) fori=n+1,...,2n — 1 and
leave the other y;’s as before, we obtain the system of equations

[ = x,®
*y = x i=2,...,n
S ¥ Vs = xlhn+j(x12> Xos o ooy Xp) j=1L...,n—1

This is almost the form we want. In fact if we can show that the following are
legitimate changes of coordinates:

(-xls RS xn) b= (xls hn+1(x12: LR xn)s LR ) h2n—-1(x12’ ] xn))a
and
L T L B o O 20, ST §7) MY PHRY %) N A PN £ i) |

then we will have precisely the set of equations (4.7). To show this we must
go back to the transversality condition (4.9). At x; = 0 this reduces to the
condition that

dhn+1(x12’ LR 4 xn)a RS dh2n—1(x127 ] xn)
be linearly independent at 0, or, in other words, that the matrix

(ahi)n+lsi52n—1

3x,~ 2=<j=<n

be nonsingular. This however is precisely what is needed to make the changes
of coordinates above legitimate. [J

Remark. We showed in Chapter 11 that for every » manifold X we can
find an immersion f: X — R?", Cross caps arise as obstructions to lowering
the dimension of this immersion by 1. In [60] Whitney proved that every n
manifold can be immersed in R* ™!, the idea of the proof being to delete
cross caps, two at a time, from a generic mapping. Pictures of cross-caps in
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R? can be found in classical books on topology in connection with the prob-
lem of immersing P2 topologically in R® (See exercise 3.)

Exercises

(1) Let f: X — R?" be an immersion of the n manifold X. Let v be a
regular value of the induced map

df): TX —R*™

and let = : R® — R?"~! be a surjective linear map with v in its kernel. Show
that =/ has no singularities except cross-caps (Compare with II, §1, Exer-
cise 1.)

(2) Describe the image of the map (x;, x3) = (x;%, X3, X1 X5). What are
the images of the curves x, = const and x, = const. Show that this map is
1-1 except along the “double line”” x, = 0 (See Figure 6).

Xg

X3

Figure 6: The Cross Cap

(3) Construct a topological immersion of P2 into R® whose image is a
“cross cap”. (See Figure 7.)

P
e
=

Figure 7: The Topological Cross Cap
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§5. Umbilics

From Exercise 5 of §2 we know that S, singularities cannot occur with
multiplicity 1, 2, or 3. An S, singularity which occurs with multiplicity 4 is
called an umbilict. Umbilics are the simplest S, singularities, and are the only
ones that can occur stably in dimensions <6. We will begin our study of
them by showing that for singularities of multiplicity 4, the only local rings
that are allowable are those on the following list:

(5.0 R[z]/(z%)

(5.2) R[x, yJ/(x* — y* xy)

(5.3) R[x, y1/(x*, y®

5.4 R[x, y1/(x%, xp)

(5.5) R[x, y, z}/(x%, ¥?, 22, xy, xz, yz).

In fact we will prove

Proposition 5.6. Let Z be a local ring over R with dimg # = 4. Then %
is isomorphic to one of the rings on the above list.

Proof. Let .# be the maximal ideal of Z. Suppose first that dimg #/.#?
= 1. Let ¢t be an element of # — 42 A* = {ct'} + #**1, so the mapping of
R[¢] into Z is onto. The kernel is generated by a polynomial p(t), which we
can write as t*g(t), q(¢) having a nonzero constant term. The image of g(t)
in Z is invertible, so the kernel is also generated by #*. Hence # is isomorphic
to R[z]/(¢%). Since dimg # = 4, k = 4. Next suppose dimy /[ H% = 2.
We note that

(5.7) dimg # = dimg #| M4 + dimg | M2 + - - -

by Nakayama’s lemma. (If .#* = .#'*! then .#* = 0.) Therefore if Z is 4
dimensional, dim .#2%/.#° = 1 and .#* = 0 for i > 2.
Consider now the bilinear map

MNP D MM > M

induced by the product operation on the local ring. We will, for the moment,
fix a basis vector in .#? and regard this as a map:

(5.8) MM R MM > R

i.e., as a symmetric bilinear form on .#/.#2. This form cannot be identically
zero otherwise .#?2 = 0; therefore there are three possibilities for it: it can be
nondegenerate and definite, nondegenerate and indefinite, or degenerate.
We will show that if the first is the case then # is isomorphic to the ring
(5.2). In fact if (5.8) is definite we can find a basis for .Z/.#? such that x-x =

1 Because the “‘umbilical points” of a surface in R® are the points where its
normal bundle map exhibits this kind of singularity.
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yey and x.y = 0. Therefore, # is isomorphic to the polynomial ring in two
variables divided by the ideal of relations (x2 — y?, xy). A similar argument
shows that if (5.8) is nondegenerate and indefinite then £ is the ring (5.3) and
if (5.8) is degenerate, Z is the ring (5.4). Finally if dim #|.#% = 3, #? =0
by (5.7) and £ is the ring (5.5). 0

¢

(5.1) is the local ring of an S;, singularity (a ““swallow’s tail””). In the
equidimensional case, which is the only case that we shall consider here, the
local ring (5.5) cannot occur (by Exercise 5 of §2.) (5.2) (5.3) and (5.4) are all
possible candidates for umbilics.

Definition 5.9. An umbilic is called hyperbolic if its local ring is (5.3),
elliptic if its local ring is (5.2) and parabolic if its local ring is (5.4). So the
name for an umbilic is given by the name of the associated quadratic form (5.8.)

Our main theorem about umbilics will be that two generic umbilics are
equivalent (as map germs) if and only if they are of the same type. For sim-
plicity we shall just prove this for the elliptic and hyperbolic umbilics. (The
parabolic case will be treated in the exercises.) Specifically, we will prove:

Theorem 5.10. Let X and Y be n dimensional manifolds, n > 4. Let
[+ X — Y be a smooth map exhibiting either an elliptic or hyperbolic umbilic at
xo in X. Suppose jif '§ Ss at x,. Then we can find coordinates, xy, ..., X,
centered at x, and yy, . . ., y, centered at f(x,) such that f has one of the follow-
ing two canonical forms:

Hyperbolic case

[ = x4 xax,
SEps = x2° 4 x4x;
.11 S*ys = x5

f *yn = Xn
Elliptic case

¥y = %12 — X% + XaX; + XeXo
S¥Ye = X1Xa + XoX3 — XXy
(5.12) S¥ys = X3

f*yn = Xn

Note that the assumption n > 4 is essential. The transversality condition

cannot be satisfied in dimensions <4.
In the proof of (5.11) we will need the following
Lemma 5.13. Let

(5.14) axi? + 2bxix, + cxy?
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be a quadratic form whose coefficients are smooth functions of a set of param-
eters: z = (zq, ..., Zy). Suppose that when z = 0 (5.14) is equal t0o x,% — x,°.
Then one can find a rotation,
s
S = (511 12>’
S21  Sag,

whose coefficients are smooth functions of z, such that S(0) is the identity, and
such that in the rotated coordinate system (Xy, Xp) (i.e., X, = §;1X%;1 + S12%0,
Ko = Sq1Xy + XopXo) (5.14) has the form ax,® + bx,? where a(0) = 1 and b(0)

= —1.
Proof. Solve for the eigenvalues of the matrix 4 = [Z z] Since A4
is close to [(l) _01] for z small the eigenvalues are distinct and are close to 1

and — 1. Moreover they depend smoothly on z. For the eigenvalue close to 1
we can find an eigenvector (1, 7) with = a smooth function of z and +(0) = 0.
Since A4 is symmetric the other eigenvector will be (— 7, 1). Let S be the
rotation

1 ( 1 7').
Vigal-r 1
Note that @ and 5 are the eigenvalues of 4. []

We will now derive the normal form (5.11). Since x, is in S, we can choose

a coordinate system Xxy,...,x, centered at x, and y;,..., y, centered at
f(x,) such that f has the form
(5.15) (x1, « o5 X0) = (f2(X), fo(x), X, - - -, Xn)

where the linear terms in f; and f;, vanish and the quadratic terms are of the
form

f‘1=x12+...
(5.16) BT

the dots indicating quadratic terms like x3xy, x3%, etc. and higher order terms
in all the x’s. Therefore the local ring will be generated over R by 1, x;, xa,
and x,x,. By the Malgrange preparation theorem every germ of a function at
0 can be written as a linear combination of 1, x;, x5 and x;x, with smooth
functions of y as coefficients. In particular we can write:

x1% — x27 = f*ay + f*bix; + fFeixy + f*dixi%x,, and

(5.17) x:12 4+ Xg2 = f¥*a, + fF¥byxy + f*eoxg + f*dpx1Xs

where the a’s, b’s etc. are smooth functions of y vanishing at y = 0. Replacing
x; by x; + f*d,/2 and leaving the other coordinate fixed we can arrange that
d, = 0. Applying the lemma to x;? — x,% — f*d,x,x; we can also arrange
that d; = 0. Note that since the change of coordinates (x;, x;) — (X3, X2)
is given by a rotation we have that x;2 + x,2 = X,%2 + X,2. Dropping the
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~’s on X; and X, and using the fact that @(0) = 1 and 5(0) = —1 we may
solve for x,2 and x,2 to get

X2 = fFoy + f5Bix1 + fFyixs
and
X92 = f¥ag + f*Baxs + fFyax,

the o’s, B’s and s being functions of y. One last simplification is possible.
Replacing x, by x; + f*B,/2 and x, by x; + f*y,/2 we can assume 5, and y,
are zero. Therefore, with y = —v; and 8§ = —f,, we have

S*ay = x2 + fFyx,

5.18

( ) f*OC2 — x22 +f*Bx1

We continue, of course, to have f*y, = x; for i > 2 since we have not made
any changes in these coordinates. Now we will set x3 = y3 =-- - = x, = y, =

0 in (5.18). Comparing the quadratic terms on both sides and using (5.16) we
see that:

(Y1, Y2, 0,...,0) =y +---
oY1 25 0y oo, 0) = yg + -+

the dots indicating terms of degree >1in y; and y,. (Now in the coordinate
changes above X; = x; +--- and ¥, = x5 + - - - where - - - stands for higher
order terms so that (5.16) is still applicable.) This implies that the map

(yla DS ] yn) = (al(y)’ 062(}1), Yas o yn)

is a legitimate coordinate change. In the new coordinates we have

[Eyr = x® + fFyx,

F*y2 = x% + f*Bx;
(5.19) S5 = X,

f*yn = Xp.

This is nearly the canonical form we want. In fact if we can show that

(xla ceey Xp) b (xl’ x2’f*7af*ﬁs X5y e v vy Xn)
and

(yl’ . '-5yn)_9(yb Yas V> lgsyfn .. -9yn)

are legitimate coordinate changes, then in the new coordinates (5.19) will have
the form (5.11). We will show that these coordinate changes are allowable
precisely because of the transversality hypotheses. In fact letting 4,(x) and
hy(x) denote the right hand terms on the first two lines of (5.19), the set Sy(f)
is defined by the set of 4 equations

(5.20) h 9z 9 TRz
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Use exercise 7, VI, §1 to show that the transversality hypothesis reduces
to the assertion that on the set defined by (5.20) the differentials

ohy % Shy %
(5.21) d(@xl)’ d(@xl)’ d(8x2 s d o,
are linearly independent. When we replace 4, and h; by x;2 + f*yx, and
X2 + f*Bx, this condition reduces to the condition that

dxy, dxs, d(f*B), d(f*e)

be linearly independent at O which is precisely what is needed to legitimatize
the above coordinate changes.

This concludes our proof for the hyperbolic case of Theorem 5.10. The
derivation of the canonical form (5.12) for the elliptic case is similar. We
will indicate what changes need to be made in the proof above:

(1) Lemma 5.13 has to be replaced by the following ““elliptic”” analogue:
Lemma 5.22. Let
(5.23) a(x12 - x22) + bx22

be a quadratic form whose coefficients are smooth functions of a set of param-
eters, z. Suppose that for z = 0 (5.23) is just the form x,® — x,2. Then there
exists a function A depending smoothly on z such that \(0) = 1 and such that
with respect to the coordinates %, = Ax;, X5 = (1/X)xy (5.23) has the form
a(x,2 — %,9).

Proof. This is much easier than Lemma 5.13. Just take A to be

(af(a — b))+
(2) Now choose the coordinates (5.15) such that

fi=x2—x? +---
f‘2=x1x2+...

and show that the local ring is generated over R by x;, x; and x,2.
(3) Using the Generalized Malgrange Preparation Theorem show that
X% = X% = f¥ay + fHbyixy + fFoxe + frdixs?
and
XXy = f¥ag + [¥boxy + f¥egxs + fHdyxs?
where the a;’s, b’s etc. are smooth functions of y vanishing at 0. Replace
x;, by x; + f*d,x, to make d, = 0 and apply the lemma to make d; = 0.

(4) By a linear change of coordinates makes ¢; = by and b; = ca.
The rest of the proof is as before. [

Exercises

(1) Show that over the complex numbers there are just 4 local rings with
dimg Z = 4.
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(2) Let z and w be complex numbers. Show that the map of C2 into C?
defined by
(5.24) G wyr> (22 + Zw, w)
has an elliptic umbilic at 0 when viewed as a map of R* — R*. (Hint: Com-
pare with the canonical form (5.12).) For w fixed and real sketch the curve:
u = z? + Zw, |z| = const., in the v plane. Show that it has the appearance
indicated in Figure 8.

N A

|z| = const <I¥l |z} = =] |z} = const > Iw]
2 2 2
(a) (b) (c)
Figure 8

(3) Show that for the map (5.24) the image of S; in the 3 dimensional
plane: Im w = O has the appearance of the cusped surface depicted in

Figure 9: The elliptic Umbilic
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Figure 9. (Hint: Show that S, is given by the equation |z| = |w|/2. Use the
identity

Ouy Gug
g O0xy x4 ou |2 Sy |2
et = | -
uyouy | 1021 102
8x2 aXQ

where u = u; + iug and z = x; + ix,. Now look at Figure 8(b).
(4) Let f: R* — R* be the mapping

(5.25) (X1, Xg, X3, X4) > (X127 + X3Xg, X% + XaXy, X, Xy).

(Compare with 5.11.) Sketch the images of some of the lines x, = const.,
xg = const., x, = const., and of some of the lines x, = const., x; =
const., x, = const.

(5) Show that for the map (5.25) the image of S, in the 3 dimensional
plane y, = 0 has the appearance of the surface depicted in Figure 10.

Figure 10: The Hyperbolic Umbilic



§5. Umbilics 189
(6) Let f: R* — R" be the mapping
(15 v o o5 Xn) > (21X, f2(%), X35« v oy Xp)
where
JS1 = (g, xg) + -
and
Jo = ag(xy, Xg) + -

the dots indicating quadratic terms in x;xg, x3%, etc. plus higher order terms
inxy, ..., X, o and «, are assumed to be homogeneous quadratic polynomials
in x; and x, alone. Show

(a) 0 is a parabolic umbilic < ¢; and «, have a common linear factor.

(b) 08,1 = o = ¢i(s1x1 + s2x2)%, 1 =1, 2.

(©) 0eSy o= 0y =ay = 0.

(7) Let Q be the vector space consisting of all pairs («;, o;) Where o
and «, are homogeneous quadratic polynomials in (x;, x,). Let P be the subset
of Q consisting of all (e, a;) for which «; and «, have a common linear
factor. Let U be the subset of P consisting of all («;, o) for which «; and «,
have a common quadratic factor (i.e., are constant multiples of each other.)
Let W be the subset U consisting of all (e, «y) for which

o = ¢i(§1x; + 52%5)2 i=1,2.

Prove:
(a) P — U is a submanifold of Q of codimension 1.
(b) U — W is a submanifold of Q of codimension 2.
(¢) W — {0} is a submanifold of Q of codimension 3.

(An elegant way to do this exercise is to define these sets using the result-
ant, R(oy, o), of the polynomials ¢, and «,. See van der Waerden, [52],
Vol. 1, Chapter 1V, §27.)

(8) Let Z be the local ring:

Rixy, x2]/(%12, X323, x1%%2, X1%27%).

If X and Y are n dimensional manifolds show that the contact class, Sz,
inJ3(X, Y)is a submanifold of codimension 7. If f: X — Y has the property:
JY R Sa, show that x € Sy 1(f) <= j?f(x) € S». (Hint: Use Exercises 6 and 7,
and the same kind of trick as in the proof of Proposition 3.13.)

(9) Let # be the local ring:

Rixy, x23/(x:3, X1%%2, X1%5%, X2°).

If X and Y are n dimensional manifolds show that the contact class Sg
in J3(X, Y) is a submanifold of codimension 10. If f: X — Y has the prop-
erty: jY R Sz, show that x €S, o(f) < j%f(x) € Sg. Hint: Use exercises 6
and 7, and the same kind of trick as in the proof of Proposition 3.13.

(10) Show that the map f: R* — R* by

(%1, Xg, X3, X0) —> (12 + X%, X1X5 + XpX4, Xg, Xa)
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has an S, , singularity at the origin and satisfies the transversality condition
FY R S.. Show it is not an umbilic. Hint. Use Exercise 7, VI, §1.

Also show by an example that a small perturbation of f will yield an
umbilic at 0.

(11) Let X and Y be n manifolds. Show that if n < 6, the set of maps,
f: X — Y, which exhibit only Morin singularities and umbilics, is residual.
(Hint: Show that the phenomenon illustrated by exercise 10 occurs generically
only in dimensions >6. Use part (b) of Exercise 7, and the same sort of
trick as in the proof of Proposition 3.13.)

(12) Let Sg, Sy and S be the contact classes in J2(X, Y) associated with
the rings (5.2), (5.3) and (5.4) respectively. Show that the codimension of the
submanifolds S;; and Sy in J3(X, Y) is 4 and that S, is a submanifold of
codimension 5. (Hint: For Sp, use part (a) of Exercise 7.)

(13) Prove the following:

Theorem 5.26. If f: X — Y has a parabolic umbilic at x, and j2f K Sp
at x,, then there exist a system of coordinates x., . .., x, centered at x, and
V1, - - .5 Yp centered at f(xo) such that f has the canonical form:

SE = %1% + xoxs + X2%x,
S*ys = X1X3 + XaXs
(5.27) S*ys = X3

f*yn = Xnp.
(Note that for the transversality condition to hold the dimension of X must be
>5.)
Hint: Assume fis in the form (5.15) with
fi = x12 4o
fo = X1Xg +---
the dots indicating terms in xgx;, X,Xo, X352 etc. and higher order terms. Show
that the local ring is generated over R by 1, x;, x,, and x,2. Using the
Malgrange Preparation Theorem show that
X2 = f*ay + f*bix1 + f¥eixg + fHdixg®
and
X1Xg = f*ay + [*bax1 + f¥coxy + [*daXo®
the a’s, b’s etc. being smooth functions of y vanishing at 0. Use algebraic
tricks to make b, = b; = d;, = 0, and finally make a coordinate change in
¥1, Yo 8O that f has the form
Sy = xi® + f¥Bxa + f*Ox,7
S*ys = X1Xa + [Fyx,
S*ys = X3

f* n = Xnp.
Finally use the transversality condition to show that 8, § and y can be
introduced as new coordinates in place of yg, y, and ys.
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§6. Stable Mappings in Low Dimensions

Using the results of this chapter it is not hard to get a picture of what
stable mappings look like in low dimensions. For simplicity we will restrict
ourselves to the equidimensional case: dim X = dim Y. We will first make
a list of the kinds of “nonremovable’ singularities that can occur in dimen-
sions <4. (By “nonremovable” we mean they can occur transversely, and
therefore cannot be eliminated by small perturbations.)

dim 1 S, (folds)

dim 2 81, 81, (folds, cusps)
(6.1) dim 3 Sl, S12, Sls
Sln Slza Slaa Sl4

dim4 4 clliptic and hyperbolic umbilics (Ss.o)

That the S;, singularities which we have listed are the only ones that can
occur is clear from Corollary 3.14. In §5, exercises 11 and 12, we indicated
how to prove analogous results for the S, singularities on the list above.
S3 singularities are, of course, removable as long as dim X < 9.

In particular, for dimensions <4, a stable map can only exhibit the above
singularities; and, being stable, it must exhibit them transversely. Sum-
marizing we have:

Proposition 6.2. In dimensions <4, for a map germ to be stable it is
necessary and sufficient that it exhibit only singularities on the list (6.1), and
that it exhibit these singularities transversely.

Remark. 1t is instructive to verify directly from Mather’s criterion that
the canonical forms described for the singularities in the list (6.1) which are
given in Theorems 4.1 and 5.10 do indeed represent infinitesimally stable
germs. For example, we verify this criterion for the Morin singularities
where f(x1, ..., x,) = (f1(x), X2, . .., x,) and fi(xy, ..., x,) = Xox; + ... +
XX %1 4+ x,%*1, Locally the equation 7 = (df () + » «f translates to the
system of functional equations

Ty = (xz "‘I‘ 2x1x3 + e + (k - l)xlk_zxk + (k + l)xlk)gl
+x 8+ X - f
(*) 72f§2+"72’f

Tn=€n+"]n'f

where we must solve for the functions {;(x) and #,(y) given the functions =(x).
By V, Theorem 1.2, we need only solve the equations (*) to order # and by
Arnold’s criterion (V, Proposition 1.13) we need only solve equations (*) when
7, = xsand 7, = Ofori# . When! > 1,let{, = x,,{;, =0i# ,and», = 0
for all i to solve (*). So we assume that ; = x;, and =, = 0 for i > 1. If
7, =x, thenletly=1,m=—-1,{ =0 =---={,=0,and yy = 53 =
ovo=1q, =0, If r, = x, for s > 1 then let 7,(») = y,(so that n,-f(x) = xy),
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{, =-+=10,=0,and 9y, =---= 7n, = 0. We leave it to the reader to check
that umbilics are infinitesimally stability.

We will now try to find global criteria for stability. We made a tentative
investigation of this problem in §5 of Chapter VI. We will apply our con-
clusions there to maps in low dimensions. There are at most six distinct types
of singularities on the list (6.1); so for a map f: X — ¥, with dim X =
dim Y < 4, we can partition the set of singularities of f into six disjoint
subsets: Xi,..., Xg. We showed in VI, §5 that for / to be stable it must
satisfy the following ‘‘normal crossing” condition.

Condition NC. Given distinct points x; in X; r = 1,..., k such that
fCa) =+ = f(x,) = y then the subspaces

(df)x,,(Tx,,)(i,) for r=1,...,k

of T, Y are in general position.

(See VI, Proposition 5.2.) Inter alia, this condition implies that f, re-
stricted to each “stratum” X;, is an immersion with normal crossings, and
that the images of these strata intersect transversely. For example it implies
that a point cannot simultaneously be the image of an umbilic and of an S;
singularity.

Theorem 6.3. Letdim X = dim Y < 4dandletf: X — Y be a map which
exhibits only the singularities on the list (6.1) and exhibits these transversely.
Then a necessary and sufficient condition for f to be stable is that it satisfy the
condition NC described above.

We will deduce this from a slightly more general result.

Theorem 6.4. Let X and Y be n dimensional manifolds, and f: X — Y a
map which is of rank =n — 1 everywhere. Then f is stable if and only if it
satisfies the transversality conditions of Morin:

PSES, k=1,...,n4+1

and, in addition, satisfies the condition NC, for the stratification, X;; = S (f),
k=1....,n+ 1.

Proof. The necessity is obvious. To prove the sufficiency we only have
to show that Mather’s criterion for infinitesimal stability is true on the multi-
jet level. (V, Theorem 1.6.)

The specific result we are going to prove is the following *‘canonical
form” lemma.

Lemma 6.5. Letf: X — Y be amap satisfying the hypotheses of Theorem
6.4. Let pq, ..., ps be points of X such that p; is in Slri(f) fori=1,...,8
and such that f(p,) = -+ = f(p,) = q. Then we can choose a coordinate system
Vi, ..., Vu centered at q and coordinate system x,, ..., x,¥ centered at each
of the p;’s such that f has the canonical form (4.2) simultaneously in each of
these coordinate systems.
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Proof. For simplicity we will just consider the case s = 2 (to spare the
reader rather than the authors; the general case is not any harder, but there
are more indices to keep track of.) Let p = p; and p’ = p,; and for the
moment let us just consider fin the vicinity of p. If p is an S, singularity we
can choose coordinate systems centered at p and at g such that f has the
canonical form (4.2). Let x, be the first coordinate function in the coordinate
system at p, and y, .. ., y, the first k coordinate functions in the coordinate
system about ¢. Then the tangent space to S;,(f) at p is characterized by the
equations

dx; = df*y, =---=df*y, =0
(Compare with §3, Exercise 4) and the image space by the equations
(6.6) dy, = dys =-+-=dy, = 0.

If we make a similar choice of coordinates relative to p’ and g, then the
tangent space to S,.(f) at p’ is characterized by the equations

dxy = df*yy =+ = df*yi =
and the image space by the equations
(6.6)' dy, =---=dy;, = 0.

By assumption the subspaces (6.6) and (6.6)’ are in general position. This
means that the differentials dy,, ..., dy, dy1, . .., dyy are linearly indepen-
dent at g, and, therefore, that y,, ..., Vi, ¥1, - - -.» ¥i- can be introduced as the
first k£ 4+ k’ coordinate functions of some coordinate system. In this coor-
dinate system we will simultaneously have the Morin canonical form for an
S,, singularity at p and the Morin canonical form for an §;, singularity
atp’. [

From this it is easy to prove Theorem 6.4. One merely checks that the
multijet conditions of (1) in V, Theorem 1.6 are satisfied using the multijet
canonical forms given in Lemma 6.5. The details are similar to the argument
in the remark following proposition 6.2 and we leave them to the reader.
To prove Theorem 6.3 we observe that since the condition NC is satisfied
no multi-germ can have a source consisting of an umbilical point and another
singular point since the umbilics occur as isolated points (in dimension 4) or
not at all (in dimension <4). Therefore, to verify the multi-jet criterion for
stability we only have to verify it for multi-jets involving singular points of
type Sy, ; so we are back in the situation of Theorem 6.4. []
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§A. Lie Groups

The theorem that we need states that the orbits-of a Lie group action are
immersed submanifolds. First we define and sketch some facts about Lie
groups.

Definition A.1. Let G be both a group and a smooth manifold. Then G is a
Lie group if the mapping of G x G — G given by (a, b) —> ab~*' is smooth.

Examples

(a) R" where the group operation is addition.

(b) S where the group operation is addition of angles.

More generally 7% = St x -.- x S§! = n-torus is a Lie group where the
group operation is coordinate-wise addition.

Note. The only abelian connected Lie groups are R* x T™ (no proof!).

(¢) All matrix groups. For example GL(n, R) = group of n X ninvertible
real matrices, 0(n) = group of n x n orthogonal matrices, and SL(n, R) =
group of n x n real matrices with determinant equal to 1. All of these groups
are submanifolds of R**. (See Theorem A.7.) Also GL(n, C) = groupofn x n
invertible matrices with complex entries. Here we view GL(n, C) as a sub-
manifold of R @ R™.

(d) Let X be a manifold with p in X. Let o be a k-jet (kK > 0) in
J¥(X, X)p.,. Then o is invertible if any representative of ¢ is a diffeomorphism
on a nbhd of p. The invertible k-jets form a group under composition and
a manifold since they are an open subset of J*(X, X), ,. We shall denote
the set of invertible k-jets at p by G*(X),. To see that G*(X), is a Lie group,
we choose coordinates near p and inspect G¥(R"),. Further we may identify
JE(R™, R™), o with polynomial functions from R" — R" of degree <k mapping
0 to 0. Under this identification G*(R"), is the open subset of polynomial
mappings f for which (df’), is nonsingular. Here we see that the group opera-
tion is given by composition of the polynomial mappings but throwing away
all terms in the composition of degree > k. This is clearly a smooth operation.
It is also not hard to see that the mapping b — b~1 in G*(R"), is a smooth
operation.

The tangent space to a point in a smooth manifold is always locally
diffeomorphic to the manifold (using chart mappings). On a Lie group, G,
there is a naturally defined identification exp: 7,G — G which is a diffeo-
morphism on a nbhd of 0. We shall construct this mapping.

Let v be in T,G. Then v along with the group action defines a vector field
on G. Forain G let L,: G — G be defined by L,(g) = a-g. Clearly L, is a

194
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diffeomorphism. Define {,* = (dL,).(v). The smoothness of the group action
guarantees that {” is a vector field on G. Also £ satisfies (dL,),(,” = (5., for all
a, bin G,

Definition A.2. A vector field { satisfying (ALY, = C for all a in G is
called left invariant.

Lemma A.3. Let { be a left-invariant vector field on G. Then [ is the
infinitesimal generator of a globally defined one parameter group.

Proof. Lety,: U— G (|t| < &, U a nbhd of e in G) be a locally defined
one parameter group near e in G as given by I, Lemma 6.2. As we saw in the
case that G is compact (I, Theorem 6.5), the trick in showing that there is a
globally defined one-parameter group is to show that ¢, is globally defined on
G for |t| < e. Now since { is left-invariant (dL,){ = {. Thus (d/dt)gfa) =
(d/dt)p(ga) for all g, a, and ga in U. Hence (*) g(a) = #(ga). In particular,
J(g) = giu(e) for g in U. Thus we can clearly extend ¢, to be globally defined
and smooth on G. The left invariance of { guarantees that o, (|¢| < &) is still
a one-parameter group for { on all of G. []

Remark. Given a vector v in T,G, let ¥ be the left invariant vector field
that it generates. Let ¢* be the globally defined one parameter group whose
existence is assured by the last Lemma. We can think of  as a mapping of
(T.G) x G x R— G given by (v, g, t) > ¢:°(g). Thus we have the following:

Proposition A.4. The mapping i is smooth and satisfies

(1) ¥:°(ga) = gh"(@), and

() 7 = .

Proof. For fixed v, 4 is just a one-parameter group and is thus smooth.
Varying v just varies the initial conditions to the first order system of ODE’s
which define ¢*. Since solutions to such a system vary smoothly with the
initial conditions, i is a smooth mapping. Note that (1) is just a restatement of
(*) in the proof of Lemma A.3. For (2), note that /" and ,,* are both one-
parameter groups on G for fixed ¢ and v. Now 4/ has infinitesimal generator
£ and

d v, — d K/ — A v
G| =g ==

Thus the infinitesimal generator of " is also . Applying the fact that one-
parameter groups are unique we have ¥ = ;. [l
Define exp: T,G — G by exp (v) = ,°

Theorem A.5. exp:T.G— G is smooth and is a diffeomorphism on a
nbhd of 0. In fact (d exp), = identity. (Note: we identify To(T.G) with T.G.)

Proof. Clearly exp is smooth. Using (2) in the last Proposition, we have

d v —_ 7
= gi¢‘t (e) - ge

t=0

v.

(dexp)0) = % (exp )| = £ 41"

t=0

So (d exp)e = idrg,. [
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Exercise: We may identify T,GL(n, R) with M(n, R) = vector space of
n x n real matrices. Using this identification show that exp 4 = Exp 4
where A4 is in N(n, R) and
Exp A4 = iZo 7T
Corollary A.6. Let Vand W be subspaces of T,G suchthat V@ W = T,G.
Define v: T,G — G by y(v, w) = expuv-expw forvin Vand win W. Then ¢
is a diffeomorphism on a nbhd of O in T,G with a nbhd of e in G.

Proof. Certainly y is smooth. Moreover (dy)o|V = (d exp)o|V = idy by
Theorem A.5. Similarly for W. So (dy), is invertible. []

Definition A.5. Let G be a Lie group. Then H < G is a Lie subgroup if
(i) H is a subgroup of G;
(ii) H is an immersed submanifold of G, and
(iil) H is a Lie group with the group operation assumed in (1) and the mani-
fold structure assumed in (ii).

Note. Lie subgroups are nof, in general, submanifolds. For example,
let G = T? viewed as the decomposition space R?/Z? where Z2 = the sub-
group of integer lattice points in R2. Let H’ be a line in R? through the origin
with irrational slope and let H = «=(H’) where =: RZ — T2 is the obvious
projection. Then #|H' is a 1:1 immersion so that H is an immersed sub-
manifold and a Lie subgroup. But H is not a submanifold of 72 since H is
dense.

One of the more interesting facts about Lie subgroups which indicates
the strong connection between the geometry and algebra on a Lie group is
the following.

Theorem A.7. Let H be a subgroup of the Lie group G which is a topo-
logically closed subset. Then H is a Lie subgroup.

Remark. The content of this theorem is that any closed subgroup of a
Lie group is an immersed submanifold and thus a submanifold.
First some lemmas.

Lemma A8. Let || be a norm on T,G. Suppose that v, vs, ... is a
sequence of nonzero vectors in T,G such that Lim,, , v; = 0, exp v; € H for all
i, and Lim;_, o (1/|vi))v; = . Then exp tv € H for all t in R.

Proof. Lim,.., (t/|v,|)v;, = . Choose integers k; so that ki|u| >t
Then exp (k;v,) — exp (). But

exp (kiv)) = $.%%(€) = Ps*(e) = (1" () = (exp v))
is in H, using Proposition A.4. Since H is closed exp (¢7) is in H. []

Lemma A.9. LetV = {veT,G|VteR,exp (w)e H}. Then V is a vector
subspace of T,G.
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Proof. Clearly V is closed under scalar multiplication so we need only
show that V'is closed under addition. Let » and w be in V" and suppose v + w
# 0. Consider exp (¢v)-exp (tw) which is in H. Using Theorem A.S5, we see
that for all small ¢ there exists a unique f(¢) such that exp (fv)-exp (tw) =
exp f(t). Moreover f is a smooth curve in G.

Using Proposition A.4,

exp (tv)-exp (tw) = $1"(e)- " (e) = %(e) -, "(e) = (P *(e)).
So

=0v+ W
t=0

g

d d .y
= ©XP (tv)-exp (tw) 't=0 =7 P"(e)

t =

Now

ﬂex tlw + w =v+w
a &P t=0 ’

So in local coordinates near e, exp (f(¢)) — exp t(v + w) = 0(¢). Since exp
is a diffeomorphism near 0, Lim,_¢ f(#)/t = v + w. Apply Lemma A.8 with
v; = f(1/i) and & = (v + w)/|v + w| to show that v + wisin V. []

Proof of Theorem A.7. Let W be a vector space complement to the V'
of Lemma A.9 in T.G. Consider the local diffeomorphism y: 7T,.G— G as
in Corollary A.6: We claim exp (V) is a nbhd of e in H. Suppose not. Then
there exists a sequence h,, Ay, ... of points in H with Lim;_ . 4 = e such
that &; ¢ exp (¥). Choose points v; in ¥ and w; in W such that exp v;<exp w; =
h;. Thus exp w; is in H for all 7 and by restricting to a subsequence we may
assume that w;/|w;] —w in W. Apply Lemma A.8 to show that wis in V.
But then we V' W = {0} and |w| = 1 is a contradiction. Thus exp V' is a
nbhd of 0 in H. Hence there is an open nbhd of 0 in ¥ mapped diffeomor-
phically onto an open nbhd of e in H by exp. exp~* is then a chart for the
manifold structure of H near e. Via the translations L, we can obtain an atlas
of charts.for H and H is a manifold. The inclusion mapping of H— G is
clearly an immersion. [

We need one more Theorem before getting to the result mentioned in the
beginning of this appendix. Let H be a closed subgroup of G. Then the space
of cosets G/H has a natural Hausdorff topology—namely, the weakest
topology which makes the obvious projection 7: G — G/ H continuous. Since
H is also a Lie subgroup we can say more.

Theorem A.10. Let H be a closed subroup of a Lie group G. Then G/H
is a smooth manifold withdim G/H = dim G — dim H. Moreover m: G — G|H
is smooth and for each q in G|H, there exists a nbhd Q of q and a smooth
mapping 7. Q — G such that w7 = id,.

Proof. Let W be a vector space complement to T, H in T,G. Let U be a
nbhd of 0 in TG such that exp Uis a diffeomorphism. Then #w-exp: U N W —
G/H is a local homeomorphism. Certainly =-exp (U N W) is open in G/H.
It is easy to compute (w+exp | U n W)~ and to check continuity. This is a
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chart for G/H near the identity coset. Use the translation L, to move this chart
to the coset gH. In this way G/H is a manifold and dim G/H = dim W =
dim G — dim H. Moreover = is smooth. The smooth mapping
exp (meexp | U N W)~ is the desired local “section”. [

Definition A.11. Any manifold of the form G[H with the differentiable
structure as given in Theorem A.10 is called a homogeneous space.

Example. let G = GL(n,R) and fix a k-plane V in R" Let H =
{4eGL(n, R) | A(V) = V). Clearly H is a closed subgroup of G. So G/H
is a differentiable manifold. In fact, G/H = Gy, ,—the Grassmann manifold of
k-planes in n-space.

Definition A.12. Let X be a smooth manifold and let G be a Lie group.

(a) An action of G on X is a homomorphism: +: G — Diff(X) such that
the mapping G x X — X given by (g, x) — 7(g)(x) is smooth.

(b) Let p be in X. Denote by 0, = {7(g)(p) | g € G} the orbit (of the action
of G on X) through p.

(¢) Let H, = {ge G| 7(g)(p) = p} = the isotropy subgroup at p.

Note. H, is a closed subgroup of G and thus a Lie subgroup of G.

Example. Let X be a compact manifold. Let { be a vector field on X and
let ; be the corresponding globally defined one parameter group on JX.
Then the mapping ¢ > ¥, defines an action of R on X. The orbits of this action
are just the integral curves of the vector field. Conversely, an action of R on
X is just a one-parameter group.

Theorem A.13. Let G be a Lie group acting on a manifold X. Then the
orbits of the action of G on X are immersed submanifolds of X.

Proof. Denote the action of G on X by p and let p be in X. Consider the
mapping o: G — X given by o(g) = p(g)(p). Clearly Im ¢ = ¢,. Moreover
o is constant on cosets of G/H, and so induces a 1: 1 onto mapping A: G/H, —
0,. Locally A = o-7 where 7 is the local ““section” given in Theorem A.10.
So Ais a 1:1 smooth mapping of the manifold G/H, onto @,. We claim that A
is an immersion and thus that @, is an immersed submanifold of X. It is
enough to show that (dA), is 1:1 where é = eH, in G/H,, since the mapping
L,: G— G induces a smooth mapping S,: G/H,—> G/H, and (dA); =
(dp(g))p*(dN)e(dS,); ™.

Let w be in T,G/H, such that (dA),(w) = 0. Then (do).(v) = O where
v = (dr).(w) € T,G, since A = o+7 near €. Let 3,(q) = p(°(e)). Then 7, is a
one-parameter group on X since 7 (e) = ¢ (e)%(e) using Proposition
A.4. Let { be the infinitesimal generator of ;. Since n,(p) = o({%(e)), we see
that

= )|, = Gebe@| | = @ = o.

| % Applying Note (2) after I, Theorem 6.4, we see that n(p) = p for all . Thus
¢(t) is in H, for all ¢ and v = (dv)(w) is in T,H.
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So w = (dn).(d7)s(w) = 0 and (dA), is injective. ]

Note. An orbit is not, in general, a submanifold of X. For example, it is
easy to construct an action of R on 7% whose orbit through (0, 0) is dense.

If G is a Lie group, let G denote the connected component of e in G.
Clearly G is a Lie subgroup of G.

Lemma A.14. Let G be a Lie group acting on a manifold X and let p be in
X. The connected component of O, containing p is G-p = {+(g)(p) | g € G}
where T denotes the action.

Nore. We speak of the topology on @, induced from G/H, by A, not the
topology induced on @, by X.

Proof. Clearly G- -pis connected If G’ is any other connected component
of G, then G'-p N G- p = & or G-p So G- -p is both open and closed in ¢, and
is thus a component of 0,. Clearly p isin G-p. [
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SYMBOL INDEX

glel

;_x”‘ higher order partial derivatives, 1

W transversal intersection, 50

AXs diagonal in X, 82

Crkor C* classes of differentiability, 1

Ccr complex n-space

C*(X,Y) smooth mappings of X — Y, 42
C*(X,Y)p.q germs of maps from (X, p) — (Y, ¢q), 111
Cr(X)or Cy germs of functions of X — R at p, 103, 165
C*(E) sections of the vector bundle E, 18
CP(X,TY) vector fields along £, 73

codim codimension

coker cokernel,

df)» Jacobian of fat p, 2, 13

d?), Hessian of fat p, 64, 65

(Dp) intrinsic derivative of p at p, 64, 150
Diff(X) group of smooth diffeomorphisms on X, 72

(diff)*, (diff)*,
(diff) =, (diff)k various pseudogroups, 2, 3

dom f domain of f; 2

D, 131

D, 138

dim dimension

f* pull-back function or homomorphism via f, 1, 104
f*E pull-back bundlie of E via f, 73

f(s) fles’ 57

Gyn or Gk, V) Grassmann Manifolds, 4, 14
GL(n, R) or GL(V) general linear group, 194
G*(X), invertible k-jets on X at p, 194

Hom(V, W) linear maps of V—> W, 19
Hom(Voe V, W), 153

JYX, Y)p,q k-jets of mappings of (X, p) — (Y, q), 37
JHX,Y) k-jet bundle over X x Y, 37

J*f k-jet extension of f, 37

JHX,Y) s-fold k-multijet bundle, 57

Jf s-fold k-multijet extension of f, 57

JE) k-jet bundle of sections of E, 112

JH(E), fiber of J5(E) at p, 112
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Ker or ker kernel

LV, w) linear maps of V' — W of corank r, 60, 143
MU) basic open set in C* topology, 42

s (X) maximal ideal in Z,(x), 165

M(X) or M, maximal ideal in C7’(X), 103, 165

nbhd neighborhood

O, 133

Pr real projective n-space, 4

R" real n-space, 1

Ri(x) or Ay local ring of f at x, 165

Ry local ring of the k-jet o, 173

supp(f) support of £, 16, 28

Sy universal set of singularities of corank r, 60
S(f) singularities of f of type S,, 87, 143

S5 OF Si, universal singular sets of Boardman type, 154, 156
Srs(H) singularities of type S, of f, 152

Sy contact classes for Morin Singularities, 174
S.(f) Morin singularities of f, 174

Sa contact class of type 2, 173

S V)yor VeV symmetric 2-tensors on V, 20, 153

T, X tangent space to X at p, 12
TX tangent bundle to X, 14
T*X cotangent bundle of X, 20
V dual space to ¥V, 20

Vo Vor SAV) symmetric 2-tensors on V, 20, 153

X* 57
X® 57



Baire space, 44
Boardman map, 157
Borel Extension Lemma, 98

Canonical bundle, 21
Chart, 3, 74
C* topology, 42
Condition NC, 157
Condition 0, 116
Contact class, 173
Contact equivalence
germs, 172

k-jet submanifold germs, 173

k-jets, 173
Coordinate neighborhood, 5
Corank, 33, 60
Cotangent bundle, 20
Covering, 15
Critical point, 33, 115

non-degenerate, 63

critical value, 34
Cross cap, 179, 181
Curve, 12
Cusp, 146

simple, 146, 147

Deformation, 118, 120

Diffeomorphism, 7

Differentiable, 1, 6
class C*, 1, 6

Embedding, 7
Equivalent mappings, 72
exp, 195

Family of vector spaces, 18
Fiber bundle, 41

Finite mapping, 167

Fold locus, 87

Fold point, 87, 146
Frechet space, 74

P-atlas, 3
I’-structure, 3

INDEX

Generic property, 141
Germs
function, 103
mapping, 111
submanifold, 170
Generalized Malgrange Preparation
Theorem, 106
General position, 83, 85
Grassman manifold, 4

Hessian, 64, 132
Homogeneous space, 198
Homotopic stability, 119

Immersed submanifold, 10
Immersion, 6
Implicit Function Theorem, 7
Infinitesimal generator, 27
Infinitesimal stability

local, 111

mappings, 73

germs, 111
Index

bilinear form, 65

non-degenerate critical point, 65
Intrinsic derivative, 64, 150, 151
Inverse Function Theorem, 2
Isotropy subgroup, 198

Jacobian, 2, 13
Jet bundie, 37
of sections, 112
Jets
mappings, 37
submanifolds, 172

k-deformation, 120
kth order contact, 37

Lie group, 194
action, 198
subgroup, 196
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Local coordinates, 5
Local homeomorphism, 2
Local infinitesimal stability, 111
Local ring, 103

of contact, 170

of germs, 173

of k-jets, 173

of mappings, 165
Local transverse stability, 134

Manifold, 3
Banach, 74
class C=, 3
differentiable, 3
Frechet, 74
orientable, 3
real analytic, 3
smooth, 3
topological, 3
Mather Division Theorem, 95
Measure zero, 30
Metric, 21
Riemannian, 21
Module, 104
finitely generated, 104
Morin singularity, 174
Morse function, 63
Multijet bundle, 57

Multijet Transversality Theorem, 57

Multiplicity, 168, 169

Nakayama’s Lemma, 104
Nirenberg Extension Lemma, 98
Non-degenerate fixed point, 59
Normal bundle, 71

Normal crossings, 82, 157
Normal space, 71

1-form, 21

1-generic, 144

One parameter group, 27
Orbit, 72, 198

Paracompact, 15
Partition of unity, 16
Product family, 18
Proper mapping, 11, 25

Pseudogroup, 2
Pull-back bundle, 73
Pull-back function, 1

Rank, 6
Refinement, 15
locally finite, 15
Regular point, 34
Regular value, 34
Residual, 44

Sard’s Theorem, 34
Section, 18, 21
s-fold k-jet bundle, 57
Singularity, 143
contact class, 173
critical point, 33
cross cap, 179, 181
cusp, 146
elliptic umbilic, 183, 187
fold, 87, 88, 146
hyperbolic umbilic, 183, 188
Morin, 174
Morse, 63
multiplicity, 168, 169
non-degenerate, 63
parabolic umbilic, 183, 190
simple cusp, 146, 147
swallow’s tail, 176, 177
type S,, 143
type S, 5, 152
umbilic, 182
Smooth
function, 1, 6
functor, 19
manifold, 3
Source, 37
Stability, 72
homotopic, 119
infinitesimal, 73
local infinitesimal, 111
local transverse, 134
mappings, 72
transverse, 139
under deformations, 119
under k-deformations, 120
Subbundle, 26
complementary, 27
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Submanifold, 9 hyperbolic, 183, 188

immersed, 10 parabolic, 183, 190
Submersion, 6

with folds, 87, 88
Support

functions, 16

vector fields, 28
Symmetric function, 108

Vector bundle, 18
base mapping, 26
canonical bundle, 21
cotangent bundle, 20
homomorphism, 18, 26
isomorphism, 18
jet bundle, 41
normal bundle, 71
pull-back bundle, 73

2-generic, 155
Tangent, 12, 75

bundle, 14 tangent bundle, 12, 75

space, 12 .
Target, 37 trivial bundle, 18

’ . . tubular neighborhood, 69
Thom-Boardman stratification, 159 g
. Vector field, 21
Thom Transversality Theorem, 54
along f, 73

Transversality, 50, 54

Transverse stability, 139

Trivial deformation, 118, 120
family of vector spaces, 18

compactly supported, 28
left invariant, 195

k-deformation, 120, 124 Weierstrass Division Theorem, 91
vector bundle, 18 Weierstrass Preparation Theorem, 91
Tubular neighborhood, 69 Whitney
Tubular Neighborhood Theorem, 69 C* Topology, 42

C>* Topology, 42
Embedding Theorem, 62
Umbilic, 182 Immersion Theorem, 61
elliptic, 183, 187 sum, 20
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