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Preface to the First Edition

This book is an exposition of the theoretical foundations of hyperbolic
manifolds. It is intended to be used both as a textbook and as a reference.
Particular emphasis has been placed on readability and completeness of ar-
gument. The treatment of the material is for the most part elementary and
self-contained. The reader is assumed to have a basic knowledge of algebra
and topology at the first-year graduate level of an American university.

The book is divided into three parts. The first part, consisting of Chap-
ters 1-7, is concerned with hyperbolic geometry and basic properties of
discrete groups of isometries of hyperbolic space. The main results are the
existence theorem for discrete reflection groups, the Bieberbach theorems,
and Selberg’s lemma. The second part, consisting of Chapters 8-12, is de-
voted to the theory of hyperbolic manifolds. The main results are Mostow’s
rigidity theorem and the determination of the structure of geometrically
finite hyperbolic manifolds. The third part, consisting of Chapter 13, in-
tegrates the first two parts in a development of the theory of hyperbolic
orbifolds. The main results are the construction of the universal orbifold
covering space and Poincaré’s fundamental polyhedron theorem.

This book was written as a textbook for a one-year course. Chapters
1-7 can be covered in one semester, and selected topics from Chapters 8-
12 can be covered in the second semester. For a one-semester course on
hyperbolic manifolds, the first two sections of Chapter 1 and selected topics
from Chapters 8-12 are recommended. Since complete arguments are given
in the text, the instructor should try to cover the material as quickly as
possible by summarizing the basic ideas and drawing lots of pictures. If all
the details are covered, there is probably enough material in this book for
a two-year sequence of courses.

There are over 500 exercises in this book which should be read as part of
the text. These exercises range in difficulty from elementary to moderately
difficult, with the more difficult ones occurring toward the end of each set
of exercises. There is much to be gained by working on these exercises.

An honest effort has been made to give references to the original pub-
lished sources of the material in this book. Most of these original papers
are well worth reading. The references are collected at the end of each
chapter in the section on historical notes.

This book is a complete revision of my lecture notes for a one-year course
on hyperbolic manifolds that I gave at the University of Illinois during 1984.
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viii Preface to the First Edition

I wish to express my gratitude to:
(1) James Cannon for allowing me to attend his course on Kleinian

groups at the University of Wisconsin during the fall of 1980;
(2) William Thurston for allowing me to attend his course on hyperbolic

3-manifolds at Princeton University during the academic year 1981-82 and
for allowing me to include his unpublished material on hyperbolic Dehn
surgery in Chapter 10;

(3) my colleagues at the University of Illinois who attended my course
on hyperbolic manifolds, Kenneth Appel, Richard Bishop, Robert Craggs,
George Francis, Mary-Elizabeth Hamstrom, and Joseph Rotman, for their
many valuable comments and observations;

(4) my colleagues at Vanderbilt University who attended my ongoing
seminar on hyperbolic geometry over the last seven years, Mark Baker,
Bruce Hughes, Christine Kinsey, Michael Mihalik, Efstratios Prassidis,
Barry Spieler, and Steven Tschantz, for their many valuable observations
and suggestions;

(5) my colleagues and friends, William Abikoff, Colin Adams, Boris
Apanasov, Richard Arenstorf, William Harvey, Linda Keen, Ruth Keller-
hals, Victor Klee, Bernard Maskit, Hans Munkholm, Walter Neumann,
Alan Reid, Robert Riley, Richard Skora, John Stillwell, Perry Susskind,
and Jeffrey Weeks, for their helpful conversations and correspondence;

(6) the library staff at Vanderbilt University for helping me find the
references for this book;

(7) Ruby Moore for typing up my manuscript;
(8) the editorial staff at Springer-Verlag New York for the careful editing

of this book.
I especially wish to thank my colleague, Steven Tschantz, for helping

me prepare this book on my computer and for drawing most of the 3-
dimensional figures on his computer.

Finally, I would like to encourage the reader to send me your comments
and corrections concerning the text, exercises, and historical notes.

Nashville, June, 1994 John G. Ratcliffe



Preface to the Second Edition

The second edition is a thorough revision of the first edition that embodies
hundreds of changes, corrections, and additions, including over sixty new
lemmas, theorems, and corollaries. The following theorems are new in the
second edition: 1.4.1, 3.1.1, 4.7.3, 6.3.14, 6.5.14, 6.5.15, 6.7.3, 7.2.2, 7.2.3,
7.2.4, 7.3.1, 7.4.1, 7.4.2, 10.4.1, 10.4.2, 10.4.5, 10.5.3, 11.3.1, 11.3.2, 11.3.3,
11.3.4, 11.5.1, 11.5.2, 11.5.3, 11.5.4, 11.5.5, 12.1.4, 12.1.5, 12.2.6, 12.3.5,
12.5.5, 12.7.8, 13.2.6, 13.4.1. It is important to note that the numbering
of lemmas, theorems, corollaries, formulas, figures, examples, and exercises
may have changed from the numbering in the first edition.

The following are the major changes in the second edition. Section 6.3,
Convex Polyhedra, of the first edition has been reorganized into two sec-
tions, §6.3, Convex Polyhedra, and §6.4, Geometry of Convex Polyhedra.
Section 6.5, Polytopes, has been enlarged with a more thorough discussion
of regular polytopes. Section 7.2, Simplex Reflection Groups, has been
expanded to give a complete classification of the Gram matrices of spher-
ical, Euclidean, and hyperbolic n-simplices. Section 7.4, The Volume of a
Simplex, is a new section in which a derivation of Schläfli’s differential for-
mula is presented. Section 10.4, Hyperbolic Volume, has been expanded to
include the computation of the volume of a compact orthotetrahedron. Sec-
tion 11.3, The Gauss-Bonnet Theorem, is a new section in which a proof
of the n-dimensional Gauss-Bonnet theorem is presented. Section 11.5,
Differential Forms, is a new section in which the volume form of a closed
orientable hyperbolic space-form is derived. Section 12.1, Limit Sets of Dis-
crete Groups, of the first edition has been enhanced and subdivided into
two sections, §12.1, Limit Sets, and §12.2, Limit Sets of Discrete Groups.

The exercises have been thoroughly reworked, pruned, and upgraded.
There are over a hundred new exercises. Solutions to all the exercises in
the second edition will be made available in a solution manual.

Finally, I wish to express my gratitude to everyone that sent me correc-
tions and suggestions for improvements. I especially wish to thank Keith
Conrad, Hans-Christoph Im Hof, Peter Landweber, Tim Marshall, Mark
Meyerson, Igor Mineyev, and Kim Ruane for their suggestions.

Nashville, November, 2005 John G. Ratcliffe
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§11.2. Poincaré’s Theorem . . . . . . . . . . . . . . . . . . . . . . 516
§11.3. The Gauss-Bonnet Theorem . . . . . . . . . . . . . . . . . 523
§11.4. Simplices of Maximum Volume . . . . . . . . . . . . . . . . 532
§11.5. Differential Forms . . . . . . . . . . . . . . . . . . . . . . . 543
§11.6. The Gromov Norm . . . . . . . . . . . . . . . . . . . . . . 555
§11.7. Measure Homology . . . . . . . . . . . . . . . . . . . . . . 564
§11.8. Mostow Rigidity . . . . . . . . . . . . . . . . . . . . . . . . 580
§11.9. Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . 597

12 Geometrically Finite n-Manifolds 600
§12.1. Limit Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
§12.2. Limit Sets of Discrete Groups . . . . . . . . . . . . . . . . 604
§12.3. Limit Points . . . . . . . . . . . . . . . . . . . . . . . . . . 617
§12.4. Geometrically Finite Discrete Groups . . . . . . . . . . . . 627
§12.5. Nilpotent Groups . . . . . . . . . . . . . . . . . . . . . . . 644
§12.6. The Margulis Lemma . . . . . . . . . . . . . . . . . . . . . 654
§12.7. Geometrically Finite Manifolds . . . . . . . . . . . . . . . 666
§12.8. Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . 677

13 Geometric Orbifolds 681
§13.1. Orbit Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 681
§13.2. (X, G)-Orbifolds . . . . . . . . . . . . . . . . . . . . . . . . 691
§13.3. Developing Orbifolds . . . . . . . . . . . . . . . . . . . . . 701
§13.4. Gluing Orbifolds . . . . . . . . . . . . . . . . . . . . . . . . 724
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CHAPTER 1

Euclidean Geometry

In this chapter, we review Euclidean geometry. We begin with an informal
historical account of how criticism of Euclid’s parallel postulate led to the
discovery of hyperbolic geometry. In Section 1.2, the proof of the indepen-
dence of the parallel postulate by the construction of a Euclidean model of
the hyperbolic plane is discussed and all four basic models of the hyper-
bolic plane are introduced. In Section 1.3, we begin our formal study with
a review of n-dimensional Euclidean geometry. The metrical properties of
curves are studied in Sections 1.4 and 1.5. In particular, the concepts of
geodesic and arc length are introduced.

§1.1. Euclid’s Parallel Postulate

Euclid wrote his famous Elements around 300 B.C. In this thirteen-volume
work, he brilliantly organized and presented the fundamental propositions
of Greek geometry and number theory. In the first book of the Elements,
Euclid develops plane geometry starting with basic assumptions consisting
of a list of definitions of geometric terms, five “common notions” concerning
magnitudes, and the following five postulates:

(1) A straight line may be drawn from any point to any other point.

(2) A finite straight line may be extended continuously in a straight line.

(3) A circle may be drawn with any center and any radius.

(4) All right angles are equal.

(5) If a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the two straight lines, if
extended indefinitely, meet on the side on which the angles are less
than two right angles.

1



2 1. Euclidean Geometry

α

β

Figure 1.1.1. Euclid’s parallel postulate

The first four postulates are simple and easily grasped, whereas the fifth
is complicated and not so easily understood. Figure 1.1.1 illustrates the
fifth postulate. When one tries to visualize all the possible cases of the
postulate, one sees that it possesses an elusive infinite nature. As the sum
of the two interior angles α + β approaches 180◦, the point of intersection
in Figure 1.1.1 moves towards infinity. Euclid’s fifth postulate is equivalent
to the modern parallel postulate of Euclidean geometry:

Through a point outside a given infinite straight line there is
one and only one infinite straight line parallel to the given line.

From the very beginning, Euclid’s presentation of geometry in his Ele-
ments was greatly admired, and The Thirteen Books of Euclid’s Elements
became the standard treatise of geometry and remained so for over two
thousand years; however, even the earliest commentators on the Elements
criticized the fifth postulate. The main criticism was that it is not suffi-
ciently self-evident to be accepted without proof. Adding support to this
belief is the fact that the converse of the fifth postulate (the sum of two
angles of a triangle is less than 180◦) is one of the propositions proved by
Euclid (Proposition 17, Book I). How could a postulate, whose converse
can be proved, be unprovable? Another curious fact is that most of plane
geometry can be proved without the fifth postulate. It is not used until
Proposition 29 of Book I. This suggests that the fifth postulate is not really
necessary.

Because of this criticism, it was believed by many that the fifth postulate
could be derived from the other four postulates, and for over two thousand
years geometers attempted to prove the fifth postulate. It was not until
the nineteenth century that the fifth postulate was finally shown to be
independent of the other postulates of plane geometry. The proof of this
independence was the result of a completely unexpected discovery. The
denial of the fifth postulate leads to a new consistent geometry. It was
Carl Friedrich Gauss who first made this remarkable discovery.



§1.1. Euclid’s Parallel Postulate 3

Gauss began his meditations on the theory of parallels about 1792. After
trying to prove the fifth postulate for over twenty years, Gauss discovered
that the denial of the fifth postulate leads to a new strange geometry, which
he called non-Euclidean geometry. After investigating its properties for over
ten years and discovering no inconsistencies, Gauss was fully convinced of
its consistency. In a letter to F. A. Taurinus, in 1824, he wrote: “The
assumption that the sum of the three angles (of a triangle) is smaller than
180◦ leads to a geometry which is quite different from our (Euclidean)
geometry, but which is in itself completely consistent.” Gauss’s assumption
that the sum of the angles of a triangle is less than 180◦ is equivalent to the
denial of Euclid’s fifth postulate. Unfortunately, Gauss never published his
results on non-Euclidean geometry.

Only a few years passed before non-Euclidean geometry was rediscovered
independently by Nikolai Lobachevsky and János Bolyai. Lobachevsky
published the first account of non-Euclidean geometry in 1829 in a paper
entitled On the principles of geometry. A few years later, in 1832, Bolyai
published an independent account of non-Euclidean geometry in a paper
entitled The absolute science of space.

The strongest evidence given by the founders of non-Euclidean geome-
try for its consistency is the duality between non-Euclidean and spherical
trigonometries. In this duality, the hyperbolic trigonometric functions play
the same role in non-Euclidean trigonometry as the ordinary trigonometric
functions play in spherical trigonometry. Today, the non-Euclidean ge-
ometry of Gauss, Lobachevsky, and Bolyai is called hyperbolic geometry,
and the term non-Euclidean geometry refers to any geometry that is not
Euclidean.

Spherical-Hyperbolic Duality

Spherical and hyperbolic geometries are oppositely dual geometries. This
duality begins with the opposite nature of the parallel postulate in each
geometry. The analogue of an infinite straight line in spherical geometry
is a great circle of a sphere. Figure 1.1.2 illustrates three great circles on
a sphere. For simplicity, we shall use the term line for either an infinite
straight line in hyperbolic geometry or a great circle in spherical geometry.
In spherical geometry, the parallel postulate takes the form:

Through a point outside a given line there is no line parallel to
the given line.

The parallel postulate in hyperbolic geometry has the opposite form:

Through a point outside a given line there are infinitely many
lines parallel to the given line.
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C

A B

Figure 1.1.2. A spherical equilateral triangle ABC

The duality between spherical and hyperbolic geometries is further ev-
ident in the opposite shape of triangles in each geometry. The sum of the
angles of a spherical triangle is always greater than 180◦, whereas the sum
of the angles of a hyperbolic triangle is always less than 180◦. As the sum
of the angles of a Euclidean triangle is 180◦, one can say that Euclidean
geometry is midway between spherical and hyperbolic geometries. See Fig-
ures 1.1.2, 1.1.3, and 1.1.5 for an example of an equilateral triangle in each
geometry.

A B

C

Figure 1.1.3. A Euclidean equilateral triangle ABC
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Curvature

Strictly speaking, spherical geometry is not one geometry but a continuum
of geometries. The geometries of two spheres of different radii are not met-
rically equivalent; although they are equivalent under a change of scale.
The geometric invariant that best distinguishes the various spherical ge-
ometries is Gaussian curvature. A sphere of radius r has constant positive
curvature 1/r2. Two spheres are metrically equivalent if and only if they
have the same curvature.

The duality between spherical and hyperbolic geometries continues. Hy-
perbolic geometry is not one geometry but a continuum of geometries. Cur-
vature distinguishes the various hyperbolic geometries. A hyperbolic plane
has constant negative curvature, and every negative curvature is realized
by some hyperbolic plane. Two hyperbolic planes are metrically equivalent
if and only if they have the same curvature. Any two hyperbolic planes
with different curvatures are equivalent under a change of scale.

For convenience, we shall adopt the unit sphere as our model for spherical
geometry. The unit sphere has constant curvature equal to 1. Likewise,
for convenience, we shall work with models for hyperbolic geometry whose
constant curvature is −1. It is not surprising that a Euclidean plane is of
constant curvature 0, which is midway between −1 and 1.

The simplest example of a surface of negative curvature is the saddle
surface in R3 defined by the equation z = xy. The curvature of this surface
at a point (x, y, z) is given by the formula

κ(x, y, z) =
−1

(1 + x2 + y2)2
. (1.1.1)

In particular, the curvature of the surface has a unique minimum value of
−1 at the saddle point (0, 0, 0).

There is a well-known surface in R3 of constant curvature −1. If one
starts at (0, 0) on the xy-plane and walks along the y-axis pulling a small
wagon that started at (1, 0) and has a handle of length 1, then the wagon
would follow the graph of the tractrix (L. trahere, to pull) defined by the
equation

y = cosh−1
(

1
x

)
−
√

1 − x2. (1.1.2)

This curve has the property that the distance from the point of contact
of a tangent to the point where it cuts the y-axis is 1. See Figure 1.1.4.
The surface S obtained by revolving the tractrix about the y-axis in R3 is
called the tractroid. The tractroid S has constant negative curvature −1;
consequently, the local geometry of S is the same as that of a hyperbolic
plane of curvature −1. Figure 1.1.5 illustrates a hyperbolic equilateral
triangle on the tractroid S.
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1
x

y

Figure 1.1.4. Two tangents to the graph of the tractrix

C

A B

Figure 1.1.5. A hyperbolic equilateral triangle ABC on the tractroid
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§1.2. Independence of the Parallel Postulate

After enduring twenty centuries of criticism, Euclid’s theory of parallels was
fully vindicated in 1868 when Eugenio Beltrami proved the independence
of Euclid’s parallel postulate by constructing a Euclidean model of the hy-
perbolic plane. The points of the model are the points inside a fixed circle,
in a Euclidean plane, called the circle at infinity. The lines of the model
are the open chords of the circle at infinity. It is clear from Figure 1.2.1
that Beltrami’s model has the property that through a point P outside a
line L there is more than one line parallel to L. Using differential geometry,
Beltrami showed that his model satisfies all the axioms of hyperbolic plane
geometry. As Beltrami’s model is defined entirely in terms of Euclidean
plane geometry, it follows that hyperbolic plane geometry is consistent if
Euclidean plane geometry is consistent. Thus, Euclid’s parallel postulate
is independent of the other postulates of plane geometry.

In 1871, Felix Klein gave an interpretation of Beltrami’s model in terms
of projective geometry. In particular, Beltrami and Klein showed that the
congruence transformations of Beltrami’s model correspond by restriction
to the projective transformations of the extended Euclidean plane that
leave the model invariant. For example, a rotation about the center of
the circle at infinity restricts to a congruence transformation of Beltrami’s
model. Because of Klein’s interpretation, Beltrami’s model is also called
Klein’s model of the hyperbolic plane. We shall take a neutral position and
call this model the projective disk model of the hyperbolic plane.

The projective disk model has the advantage that its lines are straight,
but it has the disadvantage that its angles are not necessarily the Euclidean
angles. This is best illustrated by examining right angles in the model.

P

L

Figure 1.2.1. Lines passing through a point P parallel to a line L
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P

L

L′

Figure 1.2.2. Two perpendicular lines L and L′ of the projective disk model

Let L be a line of the model which is not a diameter, and let P be the
intersection of the tangents to the circle at infinity at the endpoints of L
as illustrated in Figure 1.2.2. Then a line L′ of the model is perpendicular
to L if and only if the Euclidean line extending L′ passes through P . In
particular, the Euclidean midpoint of L is the only point on L at which the
right angle formed by L and its perpendicular is a Euclidean right angle.
We shall study the projective disk model in detail in Chapter 6.

The Conformal Disk Model

There is another model of the hyperbolic plane whose points are the points
inside a fixed circle in a Euclidean plane, but whose angles are the Eu-
clidean angles. This model is called the conformal disk model, since its
angles conform with the Euclidean angles. The lines of this model are the
open diameters of the boundary circle together with the open circular arcs
orthogonal to the boundary circle. See Figures 1.2.3 and 1.2.4. The hy-
perbolic geometry of the conformal disk model is the underlying geometry
of M.C. Escher’s famous circle prints. Figure 1.2.5 is Escher’s Circle Limit
IV. All the devils (angels) in Figure 1.2.5 are congruent with respect to the
underlying hyperbolic geometry. Some appear larger than others because
the model distorts distances. We shall study the conformal disk model in
detail in Chapter 4.

The projective and conformal disk models both exhibit Euclidean rota-
tional symmetry with respect to their Euclidean centers. Rotational sym-
metry is one of the two basic forms of Euclidean symmetry; the other is
translational symmetry. There is another conformal model of the hyper-
bolic plane which exhibits Euclidean translational symmetry. This model
is called the upper half-plane model.
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Figure 1.2.3. Asymptotic parallel lines of the conformal disk model

A B

C

Figure 1.2.4. An equilateral triangle ABC in the conformal disk model
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Figure 1.2.5. M. C. Escher: Circle Limit IV
c©2006 The M.C. Escher Company - Holland. All rights reserved.

The Upper Half-Plane Model

The points of the upper half-plane model are the complex numbers above
the real axis in the complex plane. The lines of the model are the open rays
orthogonal to the real axis together with the open semicircles orthogonal
to the real axis. See Figures 1.2.6 and 1.2.7. The orientation preserving
congruence transformations of the upper half-plane model are the linear
fractional transformations of the form

φ(z) =
az + b

cz + d
with a, b, c, d real and ad − bc > 0.

In particular, a Euclidean translation τ(z) = z + b is a congruence trans-
formation. The upper half-plane model exhibits Euclidean translational
symmetry at the expense of an unlimited amount of distortion. Any mag-
nification µ(z) = az, with a > 1, is a congruence transformation. We shall
study the upper half-plane model in detail in Chapter 4.
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Figure 1.2.6. Asymptotic parallel lines of the upper half-plane model

C

A B

Figure 1.2.7. An equilateral triangle ABC in the upper half-plane model
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The Hyperboloid Model

All the models of the hyperbolic plane we have described distort distances.
Unfortunately, there is no way we can avoid distortion in a useful Euclidean
model of the hyperbolic plane because of a remarkable theorem of David
Hilbert that there is no complete C2 surface of constant negative curvature
in R3. Hilbert’s theorem implies that there is no reasonable distortion-free
model of the hyperbolic plane in Euclidean 3-space.

Nevertheless, there is an analytic distortion-free model of the hyperbolic
plane in Lorentzian 3-space. This model is called the hyperboloid model of
the hyperbolic plane. Lorentzian 3-space is R3 with a non-Euclidean ge-
ometry (described in Chapter 3). Even though the geometry of Lorentzian
3-space is non-Euclidean, it still has physical significance. Lorentzian 4-
space is the model of space-time in the theory of special relativity.

The points of the hyperboloid model are the points of the positive sheet
(x > 0) of the hyperboloid in R3 defined by the equation

x2 − y2 − z2 = 1. (1.2.1)

A line of the model is a branch of a hyperbola obtained by intersecting
the model with a Euclidean plane passing through the origin. The angles
in the hyperboloid model conform with the angles in Lorentzian 3-space.
In Chapter 3, we shall adopt the hyperboloid model as our basic model of
hyperbolic geometry because it most naturally exhibits the duality between
spherical and hyperbolic geometries.

Exercise 1.2

1. Let P be a point outside a line L in the projective disk model. Show that
there exists two lines L1 and L2 passing through P parallel to L such that
every line passing through P parallel to L lies between L1 and L2. The two
lines L1 and L2 are called the parallels to L at P . All the other lines passing
through P parallel to L are called ultraparallels to L at P . Conclude that
there are infinitely many ultraparallels to L at P .

2. Prove that any triangle in the conformal disk model, with a vertex at the
center of the model, has angle sum less than 180◦.

3. Let u, v be distinct points of the upper half-plane model. Show how to
construct the hyperbolic line joining u and v with a Euclidean ruler and
compass.

4. Let φ(z) = az+b
cz+d

with a, b, c, d in R and ad − bc > 0. Prove that φ maps the
complex upper half-plane bijectively onto itself.

5. Show that the intersection of the hyperboloid x2 − y2 − z2 = 1 with a
Euclidean plane passing through the origin is either empty or a hyperbola.
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§1.3. Euclidean n-Space

The standard analytic model for n-dimensional Euclidean geometry is the
n-dimensional real vector space Rn. A vector in Rn is an ordered n-tuple
x = (x1, . . . , xn) of real numbers. Let x and y be vectors in Rn. The
Euclidean inner product of x and y is defined to be the real number

x · y = x1y1 + · · · + xnyn. (1.3.1)

The Euclidean inner product is the prototype for the following definition:

Definition: An inner product on a real vector space V is a function from
V × V to R, denoted by (v, w) �→ 〈v, w〉, such that for all v, w in V ,

(1) 〈v, 〉 and 〈 , w〉 are linear functions from V to R (bilinearity);

(2) 〈v, w〉 = 〈w, v〉 (symmetry); and

(3) if v �= 0, then there is a w �= 0 such that 〈v, w〉 �= 0 (nondegeneracy).

The Euclidean inner product on Rn is obviously bilinear and symmetric.
Observe that if x �= 0 in Rn, then x · x > 0, and so the Euclidean inner
product is also nondegenerate.

An inner product 〈 , 〉 on a real vector space V is said to be positive
definite if and only if 〈v, v〉 > 0 for all nonzero v in V . The Euclidean inner
product on Rn is an example of a positive definite inner product.

Let 〈 , 〉 be a positive definite inner product on V . The norm of v in V ,
with respect to 〈 , 〉, is defined to be the real number

‖v‖ = 〈v, v〉 1
2 . (1.3.2)

The norm of x in Rn, with respect to the Euclidean inner product, is called
the Euclidean norm and is denoted by |x|.

Theorem 1.3.1. (Cauchy’s inequality) Let 〈 , 〉 be a positive definite inner
product on a real vector space V . If v, w are vectors in V , then

|〈v, w〉| ≤ ‖v‖ ‖w‖
with equality if and only if v and w are linearly dependent.

Proof: If v and w are linearly dependent, then equality clearly holds.
Suppose that v and w are linearly independent. Then tv − w �= 0 for all t
in R, and so

0 < ‖tv − w‖2 = 〈tv − w, tv − w〉
= t2‖v‖2 − 2t〈v, w〉 + ‖w‖2.

The last expression is a quadratic polynomial in t with no real roots, and
so its discriminant must be negative. Thus

4〈v, w〉2 − 4‖v‖2‖w‖2 < 0.
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Let x, y be nonzero vectors in Rn. By Cauchy’s inequality, there is a
unique real number θ(x, y) between 0 and π such that

x · y = |x| |y| cos θ(x, y). (1.3.3)

The Euclidean angle between x and y is defined to be θ(x, y).
Two vectors x, y in Rn are said to be orthogonal if and only if x · y = 0.

As cos(π/2) = 0, two nonzero vectors x, y in Rn are orthogonal if and only
if θ(x, y) = π/2.

Corollary 1. (The triangle inequality) If x and y are vectors in Rn, then

|x + y| ≤ |x| + |y|
with equality if and only if x and y are linearly dependent.

Proof: Observe that

|x + y|2 = (x + y) · (x + y)
= |x|2 + 2x · y + |y|2

≤ |x|2 + 2|x| |y| + |y|2

= (|x| + |y|)2

with equality if and only if x and y are linearly dependent.

Metric Spaces

The Euclidean distance between vectors x and y in Rn is defined to be

dE(x, y) = |x − y|. (1.3.4)

The distance function dE is the prototype for the following definition:

Definition: A metric on a set X is a function d : X × X → R such that
for all x, y, z in X,

(1) d(x, y) ≥ 0 (nonnegativity);

(2) d(x, y) = 0 if and only if x = y (nondegeneracy);

(3) d(x, y) = d(y, x) (symmetry); and

(4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The Euclidean distance function dE obviously satisfies the first three
axioms for a metric on Rn. By Corollary 1, we have

|x − z| = |(x − y) + (y − z)| ≤ |x − y| + |y − z|.
Therefore dE satisfies the triangle inequality. Thus dE is a metric on Rn,
called the Euclidean metric.
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Definition: : A metric space is a set X together with a metric d on X.

Example: Euclidean n-space En is the metric space consisting of Rn

together with the Euclidean metric dE .

An element of a metric space is called a point. Let X be a metric space
with metric d. The open ball of radius r > 0, centered at the point a of X,
is defined to be the set

B(a, r) = {x ∈ X : d(a, x) < r}. (1.3.5)

The closed ball of radius r > 0, centered at the point a of X, is defined to
be the set

C(a, r) = {x ∈ X : d(a, x) ≤ r}. (1.3.6)

A subset U of X is open in X if and only if for each point x of U , there
is an r > 0 such that U contains B(x, r). In particular, if S is a subset of
X and r > 0, then the r-neighborhood of S in X, defined by

N(S, r) = ∪{B(x, r) : x ∈ S}, (1.3.7)

is open in X.
The collection of all open subsets of a metric space X is a topology on

X, called the metric topology of X. A metric space is always assumed to be
topologized with its metric topology. The metric topology of En is called
the Euclidean topology of Rn. We shall assume that Rn is topologized with
the Euclidean topology.

Isometries

A function φ : X → Y between metric spaces preserves distances if and
only if

dY (φ(x), φ(y)) = dX(x, y) for all x, y in X.

Note that a distance preserving function is a continuous injection.

Definition: An isometry from a metric space X to a metric space Y is a
distance preserving bijection φ : X → Y .

The inverse of an isometry is obviously an isometry, and the composite
of two isometries is an isometry. Two metric spaces X and Y are said to
be isometric (or metrically equivalent) if and only if there is an isometry
φ : X → Y . Clearly, being isometric is an equivalence relation among the
class of all metric spaces.

The set of isometries from a metric space X to itself, together with
multiplication defined by composition, forms a group I(X), called the group
of isometries of X. An isometry from En to itself is called a Euclidean
isometry.
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Example: Let a be a point of En. The function τa : En → En, defined
by the formula

τa(x) = a + x, (1.3.8)

is called the translation of En by a. The function τa is an isometry, since
τa is a bijection with inverse τ−a and

|τa(x) − τa(y)| = |(a + x) − (a + y)| = |x − y|.

Definition: A metric space X is homogeneous if and only if for each pair
of points x, y of X, there is an isometry φ of X such that φ(x) = y.

Example: Euclidean n-space En is homogeneous, since for each pair of
points x, y of En, the translation of En by y − x translates x to y.

Orthogonal Transformations

Definition: A function φ : Rn → Rn is an orthogonal transformation if
and only if

φ(x) · φ(y) = x · y for all x, y in Rn.

Example: The antipodal transformation α of Rn, defined by α(x) = −x,
is an orthogonal transformation, since

α(x) · α(y) = −x · −y = x · y.

Definition: A basis {v1, . . . , vn} of Rn is orthonormal if and only if

vi · vj = δij (Kronecker’s delta) for all i, j.

Example: Let ei be the vector in Rn whose coordinates are all zero,
except for the ith, which is one. Then {e1, . . . , en} is an orthonormal basis
of Rn called the standard basis of Rn.

Theorem 1.3.2. A function φ : Rn → Rn is an orthogonal transformation
if and only if φ is linear and {φ(e1), . . . , φ(en)} is an orthonormal basis of
Rn.

Proof: Suppose that φ is an orthogonal transformation of Rn. Then

φ(ei) · φ(ej) = ei · ej = δij .

To see that φ(e1), . . . , φ(en) are linearly independent, suppose that
n∑

i=1

ciφ(ei) = 0.

Upon taking the inner product of this equation with φ(ej), we find that
cj = 0 for each j. Hence {φ(e1), . . . , φ(en)} is an orthonormal basis of Rn.
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Let x be in Rn. Then there are coefficients c1, . . . , cn in R such that

φ(x) =
n∑

i=1

ciφ(ei).

As {φ(e1), . . . , φ(en)} is an orthonormal basis, we have

cj = φ(x) · φ(ej) = x · ej = xj .

Then φ is linear, since

φ

(
n∑

i=1

xiei

)
=

n∑
i=1

xiφ(ei).

Conversely, suppose that φ is linear and {φ(e1), . . . , φ(en)} is an or-
thonormal basis of Rn. Then φ is orthogonal, since

φ(x) · φ(y) = φ

(
n∑

i=1

xiei

)
· φ

⎛⎝ n∑
j=1

yjej

⎞⎠
=

(
n∑

i=1

xiφ(ei)

)
·

⎛⎝ n∑
j=1

yjφ(ej)

⎞⎠
=

n∑
i=1

n∑
j=1

xiyjφ(ei) · φ(ej)

=
n∑

i=1

xiyi = x · y.

Corollary 2. Every orthogonal transformation is a Euclidean isometry.

Proof: Let φ : Rn → Rn be an orthogonal transformation. Then φ
preserves Euclidean norms, since

|φ(x)|2 = φ(x) · φ(x) = x · x = |x|2.
Consequently φ preserves distances, since

|φ(x) − φ(y)| = |φ(x − y)| = |x − y|.
By Theorem 1.3.2, the map φ is bijective. Therefore φ is a Euclidean
isometry.

A real n×n matrix A is said to be orthogonal if and only if the associated
linear transformation A : Rn → Rn, defined by A(x) = Ax, is orthogonal.
The set of all orthogonal n×n matrices together with matrix multiplication
forms a group O(n), called the orthogonal group of n × n matrices. By
Theorem 1.3.2, the group O(n) is naturally isomorphic to the group of
orthogonal transformations of Rn.

The next theorem follows immediately from Theorem 1.3.2.
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Theorem 1.3.3. Let A be a real n × n matrix. Then the following are
equivalent:

(1) The matrix A is orthogonal.

(2) The columns of A form an orthonormal basis of Rn.

(3) The matrix A satisfies the equation AtA = I.

(4) The matrix A satisfies the equation AAt = I.

(5) The rows of A form an orthonormal basis of Rn.

Let A be an orthogonal matrix. As AtA = I, we have that (detA)2 = 1.
Thus detA = ±1. If detA = 1, then A is called a rotation. Let SO(n) be
the set of all rotations in O(n). Then SO(n) is a subgroup of index two
in O(n). The group SO(n) is called the special orthogonal group of n × n
matrices.

Group Actions

Definition: A group G acts on a set X if and only if there is a function
from G × X to X, written (g, x) �→ gx, such that for all g, h in G and x in
X, we have

(1) 1 · x = x and

(2) g(hx) = (gh)x.

A function from G × X to X satisfying conditions (1) and (2) is called an
action of G on X.

Example: If X is a metric space, then the group I(X) of isometries of X
acts on X by φx = φ(x).

Definition: An action of a group G on a set X is transitive if and only if
for each x, y in X, there is a g in G such that gx = y.

Theorem 1.3.4. For each dimension m, the natural action of O(n) on
the set of m-dimensional vector subspaces of Rn is transitive.

Proof: Let V be an m-dimensional vector subspace of Rn with m > 0.
Identify Rm with the subspace of Rn spanned by the vectors e1, . . . , em. It
suffices to show that there is an A in O(n) such that A(Rm) = V .

Choose a basis {u1, . . . , un} of Rn such that {u1, . . . , um} is a basis
of V . We now perform the Gram-Schmidt process on {u1, . . . , un}. Let
w1 = u1/|u1|. Then |w1| = 1. Next, let v2 = u2 − (u2 · w1)w1. Then v2 is
nonzero, since u1 and u2 are linearly independent; moreover,

w1 · v2 = w1 · u2 − (u2 · w1)(w1 · w1) = 0.
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Now let

w2 = v2/|v2|,
v3 = u3 − (u3 · w1)w1 − (u3 · w2)w2,

w3 = v3/|v3|,
...

vn = un − (un · w1)w1 − (un · w2)w2 − · · · − (un · wn−1)wn−1,

wn = vn/|vn|.
Then {w1, . . . , wn} is an orthonormal basis of Rn with {w1, . . . , wm} a basis
of V . Let A be the n × n matrix whose columns are w1, . . . , wn. Then A
is orthogonal by Theorem 1.3.3, and A(Rm) = V .

Definition: Two subsets S and T of a metric space X are congruent in
X if and only if there is an isometry φ of X such that φ(S) = T .

Being congruent is obviously an equivalence relation on the set of all
subsets of X. An isometry of a metric space X is also called a congruence
transformation of X.

Definition: An m-plane of En is a coset a+V of an m-dimensional vector
subspace V of Rn.

Corollary 3. All the m-planes of En are congruent.

Proof: Let a+V and b+W be m-planes of En. By Theorem 1.3.4, there
is a matrix A in O(n) such that A(V ) = W . Define φ : En → En by

φ(x) = (b − Aa) + Ax.

Then φ is an isometry and

φ(a + V ) = b + W.

Thus a + V and b + W are congruent.

Characterization of Euclidean Isometries

The following theorem characterizes an isometry of En.

Theorem 1.3.5. Let φ : En → En be a function. Then the following are
equivalent:

(1) The function φ is an isometry.

(2) The function φ preserves distances.

(3) The function φ is of the form φ(x) = a+Ax, where A is an orthogonal
matrix and a = φ(0).
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Proof: By definition, (1) implies (2). Suppose that φ preserves distances.
Then A = φ − φ(0) also preserves distances and A(0) = 0. Therefore A
preserves Euclidean norms, since

|Ax| = |A(x) − A(0)| = |x − 0| = |x|.
Consequently A is orthogonal, since

2Ax · Ay = |Ax|2 + |Ay|2 − |Ax − Ay|2

= |x|2 + |y|2 − |x − y|2 = 2x · y.

Thus, there is an orthogonal n × n matrix A such that φ(x) = φ(0) + Ax,
and so (2) implies (3). If φ is in the form given in (3), then φ is the
composite of an orthogonal transformation followed by a translation, and
so φ is an isometry. Thus (3) implies (1).

Remark: Theorem 1.3.5 states that every isometry of En is the composite
of an orthogonal transformation followed by a translation. It is worth
noting that such a decomposition is unique.

Similarities

A function φ : X → Y between metric spaces is a change of scale if and
only if there is a real number k > 0 such that

dY (φ(x), φ(y)) = kdX(x, y) for all x, y in X.

The positive constant k is called the scale factor of φ. Note that a change
of scale is a continuous injection.

Definition: A similarity from a metric space X to a metric space Y is a
bijective change of scale φ : X → Y .

The inverse of a similarity, with scale factor k, is a similarity with scale
factor 1/k. Therefore, a similarity is also a homeomorphism. Two metric
spaces X and Y are said to be similar (or equivalent under a change of
scale) if and only if there is a similarity φ : X → Y . Clearly, being similar
is an equivalence relation among the class of all metric spaces. The set
of similarities from a metric space X to itself, together with multiplication
defined by composition, forms a group S(X), called the group of similarities
of X. The group of similarities S(X) contains the group of isometries I(X)
as a subgroup. A similarity from En to itself is called a Euclidean similarity.

Example: Let k > 1. The function µk : En → En, defined by µk(x) = kx,
is called the magnification of En by the factor k. Clearly, the magnification
µk is a similarity with scale factor k.

The next theorem follows easily from Theorem 1.3.5.
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Theorem 1.3.6. Let φ : En → En be a function. Then the following are
equivalent:

(1) The function φ is a similarity.

(2) The function φ is a change of scale.

(3) The function φ is of the form φ(x) = a+ kAx, where A is an orthog-
onal matrix, k is a positive constant, and a = φ(0).

Given a geometry on a space X, its principal group is the group of all
transformations of X under which all the theorems of the geometry remain
true. In his famous Erlanger Program, Klein proposed that the study of a
geometry should be viewed as the study of the invariants of its principal
group. The principal group of n-dimensional Euclidean geometry is the
group S(En) of similarities of En.

Exercise 1.3

1. Let v0, . . . , vm be vectors in Rn such that v1 −v0, . . . , vm −v0 are linearly in-
dependent. Show that there is a unique m-plane of En containing v0, . . . , vm.
Conclude that there is a unique 1-plane of En containing any two distinct
points of En.

2. A line of En is defined to be a 1-plane of En. Let x, y be distinct points of
En. Show that the unique line of En containing x and y is the set

{x + t(y − x) : t ∈ R}.

The line segment in En joining x to y is defined to be the set

{x + t(y − x) : 0 ≤ t ≤ 1}.

Conclude that every line segment in En extends to a unique line of En.

3. Two m-planes of En are said to be parallel if and only if they are cosets
of the same m-dimensional vector subspace of Rn. Let x be a point of En

outside of an m-plane P of En. Show that there is a unique m-plane of En

containing x parallel to P .

4. Two m-planes of En are said to be coplanar if and only if there is an (m+1)-
plane of En containing both m-planes. Show that two distinct m-planes of
En are parallel if and only if they are coplanar and disjoint.

5. The orthogonal complement of an m-dimensional vector subspace V of Rn is
defined to be the set

V ⊥ = {x ∈ Rn : x · y = 0 for all y in V }.

Prove that V ⊥ is an (n − m)-dimensional vector subspace of Rn and that
each vector x in Rn can be written uniquely as x = y + z with y in V and z
in V ⊥. In other words, Rn = V ⊕ V ⊥.
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6. A hyperplane of En is defined to be an (n − 1)-plane of En. Let x0 be a
point of a subset P of En. Prove that P is a hyperplane of En if and only
if there is a unit vector a in Rn, which is unique up to sign, such that

P = {x ∈ En : a · (x − x0) = 0}.

7. A line and a hyperplane of En are said to be orthogonal if and only if their
associated vector spaces are orthogonal complements. Let x be a point of
En outside of a hyperplane P of En. Show that there is a unique point y in
P nearest to x and that the line passing through x and y is the unique line
of En passing through x orthogonal to P .

8. Let u0, . . . , un be vectors in Rn such that u1 − u0, . . . , un − u0 are linearly
independent, let v0, . . . , vn be vectors in Rn such that v1 − v0, . . . , vn − v0

are linearly independent, and suppose that |ui − uj | = |vi − vj | for all i, j.
Show that there is a unique isometry φ of En such that φ(ui) = vi for each
i = 0, . . . , n.

9. Prove that Em and En are isometric if and only if m = n.

10. Let ‖ ‖ be the norm of a positive definite inner product 〈 , 〉 on an n-
dimensional real vector space V . Define a metric d on V by the formula
d(v, w) = ‖v − w‖. Show that d is a metric on V and prove that the metric
space (V, d) is isometric to En.

§1.4. Geodesics

In this section, we study the metrical properties of lines of Euclidean n-
space En. In order to prepare for later applications, all the basic definitions
in this section are in the general context of curves in a metric space X.

Definition: A curve in a space X is a continuous function γ : [a, b] → X
where [a, b] is a closed interval in R with a < b.

Let γ : [a, b] → X be a curve. Then γ(a) is called the initial point of γ
and γ(b) is called the terminal point. We say that γ is a curve in X from
γ(a) to γ(b).

Definition: A geodesic arc in a metric space X is a distance preserving
function α : [a, b] → X, with a < b in R.

A geodesic arc α : [a, b] → X is a continuous injection and so is a curve.

Example: Let x, y be distinct points of En. Define α : [0, |x − y|] → En

by
α(s) = x + s

(
(y − x)/|y − x|

)
.

Then α is a geodesic arc in En from x to y.
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Theorem 1.4.1. Let x, y be distinct points of En and let α : [a, b] → En

be a curve from x to y. Then the following are equivalent:

(1) The curve α is a geodesic arc.

(2) The curve α satisfies the equation

α(t) = x + (t − a)
(y − x)
|y − x| .

(3) The curve α has a constant derivative α′ : [a, b] → En of norm one.

Proof: Suppose that α is a geodesic arc and set 
 = b − a. Define a curve
β : [0, 
] → En by

β(s) = α(a + s) − x.

Then β is a geodesic arc such that β(0) = 0 and |β(s)| = s for all s in [0, 
].
After expanding both sides of the equation

|β(s) − β(
)|2 = (s − 
)2,

we see that
β(s) · β(
) = s 
 = |β(s)| |β(
)|.

Therefore β(s) and β(
) are linear dependent by Theorem 1.3.1. Hence
there is a k ≥ 0 such that β(s) = kβ(
). After taking norms, we have that
s = k
, and so k = s
−1. Hence β(s) = sβ(
)/
. Let t = a + s. Then we
have

α(t) − x = β(t − a) = (t − a)
(y − x)
|y − x| .

Thus (1) implies (2).
Clearly (2) implies (3). Suppose that (3) holds. Then integrating the

equation α′(t) = α′(a) yields the equation α(t) − α(a) = (t − a)α′(a).
Hence, for all s, t in [a, b], we have

|α(t) − α(s)| = |(t − s)α′(a)| = |t − s|.

Thus α is a geodesic arc, and so (3) implies (1).

Definition: A geodesic segment joining a point x to a point y in a metric
space X is the image of a geodesic arc α : [a, b] → X whose initial point is
x and terminal point is y.

Let x, y be distinct points of En. The line segment in En joining x to y
is defined to be the set

{x + t(y − x) : 0 ≤ t ≤ 1}.

Corollary 1. The geodesic segments of En are its line segments.
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A subset C of En is said to be convex if and only if for each pair of
distinct points x, y in C, the line segment joining x to y is contained in C.
The notion of convexity in En is the prototype for the following definition:

Definition: A metric space X is geodesically convex if and only if for each
pair of distinct points x, y of X, there is a unique geodesic segment in X
joining x to y.

Example: Euclidean n-space En is geodesically convex.

Remark: The modern interpretation of Euclid’s first axiom is that a
Euclidean plane is geodesically convex.

Definition: A metric space X is geodesically connected if and only if each
pair of distinct points of X are joined by a geodesic segment in X.

A geodesically convex metric space is geodesically connected, but a
geodesically connected metric space is not necessarily geodesically convex.

Theorem 1.4.2. Let [x, y] and [y, z] be geodesic segments joining x to y
and y to z, respectively, in a metric space X. Then the set [x, y] ∪ [y, z] is
a geodesic segment joining x to z in X if and only if

d(x, z) = d(x, y) + d(y, z).

Proof: If [x, y] ∪ [y, z] is a geodesic segment joining x to z, then clearly

d(x, z) = d(x, y) + d(y, z).

Conversely, suppose that the above equation holds. Let α : [a, b] → X and
β : [b, c] → X be geodesic arcs from x to y and y to z, respectively. Define
γ : [a, c] → X by γ(t) = α(t) if a ≤ t ≤ b and γ(t) = β(t) if b ≤ t ≤ c.
Suppose that a ≤ s < t ≤ c. If t ≤ b, then

d(γ(s), γ(t)) = d(α(s), α(t)) = t − s.

If b ≤ s, then
d(γ(s), γ(t)) = d(β(s), β(t)) = t − s.

If s < b < t, then

d(γ(s), γ(t)) ≤ d(γ(s), γ(b)) + d(γ(b), γ(t))
= (b − s) + (t − b) = t − s.

Moreover

d(γ(s), γ(t)) ≥ d(γ(a), γ(c)) − d(γ(a), γ(s)) − d(γ(t), γ(c))
= d(x, z) − (s − a) − (c − t)
= d(x, y) + d(y, z) − (c − a) + (t − s)
= (b − a) + (c − b) − (c − a) + (t − s) = t − s.
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Therefore d(γ(s), γ(t)) = t−s. Hence γ is a geodesic arc from x to z whose
image is the set [x, y]∪[y, z]. Thus [x, y]∪[y, z] is a geodesic segment joining
x to y.

Definition: Three distinct points x, y, z of En are collinear, with y be-
tween x and z, if and only if y is on the line segment joining x to z.

Corollary 2. Three distinct points x, y, z of En are collinear, with y be-
tween x and z, if and only if

|x − z| = |x − y| + |y − z|.

A function φ : X → Y between metric spaces locally preserves distances
if and only for each point a in X there is an r > 0 such that φ preserves the
distance between any two points in B(a, r). A locally distance preserving
function φ : X → Y is continuous, since φ is continuous at each point of X.

Definition: A geodesic curve in a metric space X is a locally distance
preserving curve γ : [a, b] → X.

A geodesic arc is a geodesic curve, but a geodesic curve is not necessarily
a geodesic arc.

Definition: A geodesic section in a metric space X is the image of an
injective geodesic curve γ : [a, b] → X.

A geodesic segment is a geodesic section, but a geodesic section is not
necessarily a geodesic segment.

Geodesic Lines

Definition: A geodesic half-line in a metric space X is a locally distance
preserving function η : [0,∞) → X.

Definition: A geodesic ray in a metric space X is the image of a geodesic
half-line η : [0,∞) → X.

Definition: A geodesic line in a metric space X is a locally distance
preserving function λ : R → X.

Theorem 1.4.3. A function λ : R → En is a geodesic line if and only if
λ(t) = λ(0) + t(λ(1) − λ(0)) for all t and |λ(1) − λ(0)| = 1.

Proof: A function λ : R → En is a geodesic line if and only if λ has a
constant derivative of norm one by Theorem 1.4.1.
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Definition: A geodesic in a metric space X is the image of a geodesic line
λ : R → X.

Corollary 3. The geodesics of En are its lines.

Definition: A metric space X is geodesically complete if and only if each
geodesic arc α : [a, b] → X extends to a unique geodesic line λ : R → X.

Example: Euclidean n-space En is geodesically complete.

Remark: The modern interpretation of Euclid’s second axiom is that a
Euclidean plane is geodesically complete.

Definition: A metric space X is totally geodesic if and only if for each
pair of distinct points x, y of X, there is a geodesic of X containing both
x and y.

Example: Euclidean n-space En is totally geodesic.

Definition: A coordinate frame of En is an n-tuple (λ1, . . . , λn) of func-
tions such that

(1) the function λi : R → En is a geodesic line for each i = 1, . . . , n;

(2) there is a point a of En such that λi(0) = a for all i; and

(3) the set {λ′
1(0), . . . , λ′

n(0)} is an orthonormal basis of Rn.

Example: Define εi : R → En by εi(t) = tei. Then (ε1, . . . , εn) is a
coordinate frame of En, called the the standard coordinate frame of En.

Theorem 1.4.4. The action of I(En) on the set of coordinate frames of
En, given by φ(λ1, . . . , λn) = (φλ1, . . . , φλn), is transitive.

Proof: Let (λ1, . . . , λn) be a coordinate frame of En. It suffices to show
that there is a φ in I(En) such that

φ(ε1, . . . , εn) = (λ1, . . . , λn).

Let A be the n × n matrix whose columns are λ′
1(0), . . . , λ′

n(0). Then A
is orthogonal by Theorem 1.3.3. Let a = λi(0) and define φ : En → En

by φ(x) = a + Ax. Then φ is an isometry. Now since φεi(0) = λi(0) and
(φεi)′(0) = λ′

i(0), we have that φ(ε1, . . . , εn) = (λ1, . . . , λn).

Remark: The modern interpretation of Euclid’s fourth axiom is that the
group of isometries of a Euclidean plane acts transitively on the set of all
its coordinate frames.
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Exercise 1.4

1. A subset X of En is said to be affine if and only if X is a totally geodesic
metric subspace of En. Prove that an arbitrary intersection of affine subsets
of En is affine.

2. An affine combination of points v1, . . . , vm of En is a linear combination of
the form t1v1 + · · · + tmvm such that t1 + · · · + tm = 1. Prove that a subset
X of En is affine if and only if X contains every affine combination of points
of X.

3. The affine hull of a subset S of En is defined to be the intersection A(S) of
all the affine subsets of En containing S. Prove that A(S) is the set of all
affine combinations of points of S.

4. A set {v0, . . . , vm} of points of En is said to be affinely independent if and
only if t0v0 + · · · + tmvm = 0 and t0 + · · · + tm = 0 imply that ti = 0 for all
i = 0, . . . , m. Prove that {v0, . . . , vm} is affinely independent if and only if
the vectors v1 − v0, . . . , vm − v0 are linearly independent.

5. An affine basis of an affine subset X of En is an affinely independent set of
points {v0, . . . , vm} such that X is the affine hull of {v0, . . . , vm}. Prove that
every nonempty affine subset of En has an affine basis.

6. Prove that a nonempty subset X of En is affine if and only if X is an m-plane
of En for some m.

7. A function φ : En → En is said to be affine if and only if

φ((1 − t)x + ty) = (1 − t)φ(x) + tφ(y)

for all x, y in En and t in R. Show that an affine transformation of En maps
affine sets to affine sets and convex sets to convex sets.

8. Prove that a function φ : En → En is affine if and only if there is an n × n
matrix A and a point a of En such that φ(x) = a + Ax for all x in En.

9. Prove that every open ball B(a, r) and closed ball C(a, r) in En is convex.
10. Prove that an arbitrary intersection of convex subsets of En is convex.
11. A convex combination of points v1, . . . , vm of En is a linear combination of

the form t1v1 + · · · + tmvm such that t1 + · · · + tm = 1 and ti ≥ 0 for all
i = 1, . . . , m. Prove that a subset C of En is convex if and only if C contains
every convex combination of points of C.

12. The convex hull of a subset S of En is defined to be the intersection C(S) of
all the convex subsets of En containing S. Prove that C(S) is the set of all
convex combinations of points of S.

13. Let S be a subset of En. Prove that every element of C(S) is a convex
combination of at most n + 1 points of S.

14. Let K be a compact subset of En. Prove that C(K) is compact.
15. Let C be a convex subset of En. Prove that for all r > 0, the r-neighborhood

N(C, r) of C in En is convex.
16. A subset of S of En is locally convex if and only if for each x in S, there is an

r > 0 so that B(x, r) ∩ S is convex. Prove that a closed, connected, locally
convex subset of En is convex.
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§1.5. Arc Length

Let a and b be real numbers such that a < b. A partition P of the closed
interval [a, b] is a finite sequence {t0, . . . , tm} of real numbers such that

a = t0 < t1 < · · · < tm = b.

The norm of the partition P is defined to be the real number

|P | = max{ti − ti−1 : i = 1, . . . , m}. (1.5.1)

Let P[a, b] be the set of all partitions of [a, b]. If P, Q are in P[a, b], then
Q is said to refine P if and only if each term of P is a term of Q. Define a
partial ordering of P[a, b] by Q ≤ P if and only if Q refines P .

Let γ : [a, b] → X be a curve in a metric space X and let P = {t0, . . . , tm}
be a partition of [a, b]. The P -inscribed length of γ is defined to be


(γ, P ) =
m∑

i=1

d(γ(ti−1), γ(ti)). (1.5.2)

It follows from the triangle inequality that if Q ≤ P , then 
(γ, P ) ≤ 
(γ, Q).

Definition: The length of a curve γ : [a, b] → X is

|γ| = sup
{

(γ, P ) : P ∈ P[a, b]

}
. (1.5.3)

Note as {a, b} is a partition of [a, b], we have d(γ(a), γ(b)) ≤ |γ| ≤ ∞.

Definition: A curve γ is rectifiable if and only if |γ| < ∞.

Example: Let γ : [a, b] → X be a geodesic arc and let P = {t0, . . . , tm}
be a partition of [a, b]. Then


(γ, P ) =
m∑

i=1

d(γ(ti−1), γ(ti)) =
m∑

i=1

(ti − ti−1) = b − a.

Therefore γ is rectifiable and |γ| = d(γ(a), γ(b)).

Theorem 1.5.1. Let γ : [a, c] → X be a curve, let b be a number between
a and c, and let α : [a, b] → X and β : [b, c] → X be the restrictions of γ.
Then we have

|γ| = |α| + |β|.
Moreover γ is rectifiable if and only if α and β are rectifiable.

Proof: Let P be a partition of [a, b] and let Q be a partition of [b, c].
Then P ∪ Q is a partition of [a, c] and


(α, P ) + 
(β, Q) = 
(γ, P ∪ Q).

Therefore, we have
|α| + |β| ≤ |γ|.
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Let R be a partition of [a, c]. Then R′ = R ∪ {b} is a partition of [a, c]
and R′ = P ∪ Q, where P is a partition of [a, b] and Q is a partition of
[b, c]. Now


(γ, R) ≤ 
(γ, R′) = 
(α, P ) + 
(β, Q).

Therefore, we have |γ| ≤ |α| + |β|. Thus |γ| = |α| + |β|. Moreover γ is
rectifiable if and only if α and β are rectifiable.

Let x and y be distinct points in a geodesically connected metric space
X, and let γ : [a, b] → X be a curve from x to y. Then |γ| ≥ d(x, y) with
equality if γ is a geodesic arc. Thus d(x, y) is the shortest possible length
of γ. It is an exercise to show that |γ| = d(x, y) if and only if γ maps [a, b]
onto a geodesic segment joining x to y and d(x, γ(t)) is a nondecreasing
function of t. Thus, a shortest path from x to y is along a geodesic segment
joining x to y.

Let {t0, . . . , tm} be a partition of [a, b] and let γi : [ti−1, ti] → X, for
i = 1, . . . , m, be a sequence of curves such that the terminal point of γi−1
is the initial point of γi. The product of γ1, . . . , γm is the curve

γ1 · · · γm : [a, b] → X

defined by γ1 · · · γm(t) = γi(t) for ti−1 ≤ t ≤ ti. If each γi is a geodesic
arc, then γ1 · · · γm is called a piecewise geodesic curve. By Theorem 1.5.1,
a piecewise geodesic curve γ1 · · · γm is rectifiable and

|γ1 · · · γm| = |γ1| + · · · + |γm|.

Let γ : [a, b] → X be a curve in a geodesically connected metric space
X and let P = {t0, . . . , tm} be a partition of [a, b]. Then there is a piece-
wise geodesic curve γ1 · · · γm : [0, 
] → X such that γi is a geodesic arc
from γ(ti−1) to γ(ti). The piecewise geodesic curve γ1 · · · γm is said to be
inscribed on γ. See Figure 1.5.1. Notice that 
(γ, P ) = |γ1 · · · γm|. Thus,
the length of γ is the supremum of the lengths of all the piecewise geodesic
curves inscribed on γ.

γ(a)

γ(t1)

γ(t2)

γ(t3)

γ(t4)

γ(b)

Figure 1.5.1. A piecewise geodesic curve inscribed on a curve γ
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Euclidean Arc Length

A C1 curve in En is defined to be a differentiable curve γ : [a, b] → En

with a continuous derivative γ′ : [a, b] → En. Here γ′(a) is the right-hand
derivative of γ at a, and γ′(b) is the left-hand derivative of γ at b.

Theorem 1.5.2. If γ : [a, b] → En is a C1 curve, then γ is rectifiable and
the length of γ is given by the formula

|γ| =
∫ b

a

|γ′(t)|dt.

Proof: Let P = {t0, . . . , tm} be a partition of [a, b]. Then we have


(γ, P ) =
m∑

i=1

|γ(ti) − γ(ti−1)|

=
m∑

i=1

∣∣∣∫ ti

ti−1

γ′(t)dt
∣∣∣

≤
m∑

i=1

∫ ti

ti−1

|γ′(t)|dt =
∫ b

a

|γ′(t)|dt.

Therefore γ is rectifiable and

|γ| ≤
∫ b

a

|γ′(t)|dt.

If a ≤ c < d ≤ b, let γc,d be the restriction of γ to the interval [c, d].
Define functions λ, µ : [a, b] → R by λ(a) = 0, λ(t) = |γa,t| if t > a, and

µ(t) =
∫ t

a

|γ′(r)|dr.

Then µ′(t) = |γ′(t)| by the fundamental theorem of calculus.
Suppose that a ≤ t < t + h ≤ b. Then by Theorem 1.5.1, we have

|γ(t + h) − γ(t)| ≤ |γt,t+h| = λ(t + h) − λ(t).

Hence, by the first part of the proof applied to γt,t+h, we have∣∣∣∣γ(t + h) − γ(t)
h

∣∣∣∣ ≤ λ(t + h) − λ(t)
h

≤ 1
h

∫ t+h

t

|γ′(r)|dr =
µ(t + h) − µ(t)

h
.

Likewise, these inequalities also hold for a ≤ t + h < t ≤ b. Letting h → 0,
we conclude that

|γ′(t)| = λ′(t) = µ′(t).

Therefore, we have

|γ| = λ(b) = µ(b) =
∫ b

a

|γ′(t)|dt.
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Let γ : [a, b] → En be a curve. Set

dx = (dx1, . . . , dxn) (1.5.4)

and
|dx| = (dx2

1 + · · · + dx2
n)

1
2 . (1.5.5)

Then by definition, we have ∫
γ

|dx| = |γ|. (1.5.6)

Moreover, if γ is a C1 curve, then by Theorem 1.5.2, we have∫
γ

|dx| =
∫ b

a

|γ′(t)|dt. (1.5.7)

The differential |dx| is called the element of Euclidean arc length of En.

Exercise 1.5

1. Let γ : [a, b] → X be a curve in a metric space X and let P, Q be partitions
of [a, b] such that Q refines P . Show that �(γ, P ) ≤ �(γ, Q).

2. Let γ : [a, b] → X be a rectifiable curve in a metric space X. For each t in
[a, b], let γa,t be the restriction of γ to [a, t]. Define a function λ : [a, b] → R
by λ(a) = 0 and λ(t) = |γa,t| if t > a. Prove that λ is continuous.

3. Let γ : [a, b] → X be a curve from x to y in a metric space X with x �= y.
Prove that |γ| = d(x, y) if and only if γ maps [a, b] onto a geodesic segment
joining x to y and d(x, γ(t)) is a nondecreasing function of t.

4. Prove that a geodesic section in a metric space X can be subdivided into a
finite number of geodesic segments.

5. Let γ = (γ1, . . . , γn) be a curve in En. Prove that γ is rectifiable in En if
and only if each of its component functions γi is rectifiable in R.

6. Define γ : [0, 1] → R by γ(0) = 0 and γ(t) = t sin (1/t) if t > 0. Show that γ
is a nonrectifiable curve in R.

7. Let γ : [a, b] → X be a curve in a metric space X. Define γ−1 : [a, b] → X
by γ−1(t) = γ(a + b − t). Show that |γ−1| = |γ|.

8. Let γ : [a, b] → X be a curve in a metric space X and let η : [a, b] → [c, d]
be an increasing homeomorphism. The curve γη−1 : [c, d] → X is called a
reparameterization of γ. Show that |γη−1| = |γ|.

9. Let γ : [a, b] → En be a C1 curve. Show that γ has a reparameterization,
given by η : [a, b] → [a, b], so that γη−1 is a C1 curve and

(γη−1)′(a) = 0 = (γη−1)′(b).

Conclude that a piecewise C1 curve can be reparameterized into a C1 curve.
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§1.6. Historical Notes

§1.1. For commentary on Euclid’s fifth postulate, see Heath’s translation
of Euclid’s Elements [128]. Gauss’s correspondence and notes on non-
Euclidean geometry can be found in Vol. VIII of his Werke [163]. For a
translation of Gauss’s 1824 letter to Taurinus, see Greenberg’s 1974 text
Euclidean and non-Euclidean Geometries [180]. A German translation of
Lobachevsky’s 1829-1830 Russian paper On the principles of geometry can
be found in Engel’s 1898 treatise N. I. Lobatschefskij [282]. Bolyai’s 1832
paper Scientiam spatii absolute veram exhibens, with commentary, can be
found in the 1987 translation Appendix [54]. Hyperbolic geometry is also
called Lobachevskian geometry.

For the early history of non-Euclidean geometry, see Bonola’s 1912 study
Non-Euclidean Geometry [56], Gray’s 1979 article Non-Euclidean geome-
try – a re-interpretation [172], Gray’s 1987 article The discovery of non-
Euclidean geometry [174], Milnor’s 1982 article Hyperbolic geometry: the
first 150 years [310], and Houzel’s 1992 article The birth of non-Euclidean
geometry [216]. A comprehensive history of non-Euclidean geometry can
be found in Rosenfeld’s 1988 treatise A History of Non-Euclidean Geome-
try [385]. For a list of the early literature on non-Euclidean geometry, see
Sommerville’s 1970 Bibliography of Non-Euclidean Geometry [410].

For an explanation of the duality between spherical and hyperbolic ge-
ometries, see Chapter 5 of Helgason’s 1978 text Differential Geometry, Lie
Groups, and Symmetric Spaces [203]. The intrinsic curvature of a surface
was formulated by Gauss in his 1828 treatise Disquisitiones generales circa
superficies curvas. For a translation, with commentary, see Dombrowski’s
1979 treatise 150 years after Gauss’ “disquisitiones generales circa superfi-
cies curvas” [161]. Commentary on Gauss’s treatise and the derivation of
Formula 1.1.1 can be found in Vol. II of Spivak’s 1979 treatise Differential
Geometry [413]. The tractroid was shown to have constant negative cur-
vature by Minding in his 1839 paper Wie sich entscheiden läfst, ob zwei
gegebene krumme Flächen auf einander abwickelbar sind oder nicht [316].

§1.2. Beltrami introduced the projective disk model of the hyperbolic
plane in his 1868 paper Saggio di interpetrazione della geometria non-
euclidea [39]. In this paper, Beltrami concluded that the intrinsic geom-
etry of a surface of constant negative curvature is non-Euclidean. Klein’s
interpretation of hyperbolic geometry in terms of projective geometry ap-
peared in his 1871 paper Ueber die sogenannte Nicht-Euklidische Geometrie
[243]. In this paper, Klein introduced the term hyperbolic geometry. Bel-
trami introduced the conformal disk and upper half-plane models of the
hyperbolic plane in his 1868 paper Teoria fondamentale degli spazii di cur-
vatura costante [40]. For translations of Beltrami’s 1968 papers [39], [40]
and Klein’s 1971 paper [243], see Stillwell’s source book Sources of Hyper-
bolic Geometry [418]. The mathematical basis of Escher’s circle prints is
explained in Coxeter’s 1981 article Angels and devils [102]. See also the
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proceedings of the 1985 M. C. Escher congress M. C. Escher: Art and Sci-
ence [127]. Poincaré identified the linear fractional transformations of the
complex upper half-plane with the congruence transformations of the hy-
perbolic plane in his 1882 paper Théorie des groupes fuchsiens [355]. For a
translation, see Stillwell’s source book [418]. Hilbert’s nonimbedding theo-
rem for smooth complete surfaces of constant negative curvature appeared
in his 1901 paper Ueber Flächen von constanter Gaussscher Krümmung
[205]. For a proof of Hilbert’s nonimbedding theorem for C2 surfaces, see
Milnor’s 1972 paper Efimov’s theorem about complete immersed surfaces of
negative curvature [315].

§1.3. The study of n-dimensional geometry was initiated by Cayley in
his 1843 paper Chapters in the analytical geometry of (n) dimensions [80].
Vectors in n dimensions were introduced by Grassmann in his 1844 trea-
tise Die lineale Ausdehnungslehre [169]. The Euclidean inner product ap-
peared in Grassmann’s 1862 revision of the Ausdehnungslehre [170], [171].
The Euclidean norm of an n-tuple of real numbers and Cauchy’s inequality
for the Euclidean inner product appeared in Cauchy’s 1821 treatise Cours
d’Analyse [77]. Formula 1.3.3 appeared in Schläfli’s 1858 paper On the
multiple integral

∫
dxdy · · · dz [392]. The triangle inequality is essentially

Proposition 20 in Book I of Euclid’s Elements [128]. The Euclidean dis-
tance between points in n-dimensional space was defined by Cauchy in his
1847 paper Mémoire sur les lieux analytiques [79]. The early history of n-
dimensional Euclidean geometry can be found in Rosenfeld’s 1988 treatise
[385]. For the history of vectors, see Crowe’s 1967 treatise A History of
Vector Analysis [105].

The notion of a metric was introduced by Fréchet in his 1906 paper Sur
quelques points du calcul fonctionnel [149]. Metric spaces were defined by
Hausdorff in his 1914 treatise Grundzüge der Mengenlehre [196]. Orthog-
onal transformations in n dimensions were first considered implicitly by
Euler in his 1771 paper Problema algebraicum ob affectiones prorsus singu-
lares memorabile [134]. Orthogonal transformations in n dimensions were
considered explicitly by Cauchy in his 1829 paper Sur l’équation à l’aide de
laquelle on détermine les inégalités séculaires des mouvements des planètes
[78]. The term orthogonal transformation appeared in Schläfli’s 1855 paper
Réduction d’une intégrale multiple, qui comprend l’arc de cercle et l’aire du
triangle sphérique comme cas particuliers [391]. The term group was intro-
duced by Galois in his 1831 paper Mémoire sur les conditions de résolubilité
des équations par radicaux [159], which was published posthumously in
1846. The group of rotations of Euclidean 3-space appeared in Jordan’s
1867 paper Sur les groupes de mouvements [222]. For the early history
of group theory, see Wussing’s 1984 history The Genesis of the Abstract
Group Concept [458].

All the material in §1.3 in dimension three appeared in Euler’s 1771
paper [134] and in his 1776 paper Formulae generales pro translatione qua-
cunque corporum rigidorum [136]. See also Lagrange’s 1773 papers Nouvelle
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solution du problème du mouvement de rotation [269] and Sur l’attraction
des sphéroides elliptiques [270]. The group of orientation preserving isome-
tries of Euclidean 3-space appeared in Jordan’s 1867 paper [222]. The
group of similarities of Euclidean n-space appeared in Klein’s 1872 Er-
langer Program [245]. For commentary on Klein’s Erlanger Program, see
Hawkins’ 1984 paper The Erlanger Programm of Felix Klein [200], Birkhoff
and Bennett’s 1988 article Felix Klein and his “Erlanger Programm” [50],
and Rowe’s 1992 paper Klein, Lie, and the “Erlanger Programm” [386].
Isometries of Euclidean n-space were studied by Jordan in his 1875 paper
Essai sur la géométrie à n dimensions [224]. For an overview of the devel-
opment of geometry and group theory in the nineteenth century, see Klein’s
1928 historical treatise Development of Mathematics in the 19th Century
[257] and Yaglom’s 1988 monograph Felix Klein and Sophus Lie [460].

§1.4. The hypothesis that a line segment is the shortest path between
two points was taken as a basic assumption by Archimedes in his third
century B.C. treatise On the sphere and cylinder [24]. The concept of
a geodesic arose out of the problem of finding a shortest path between
two points on a surface at the end of the seventeenth century. Euler first
published the differential equation satisfied by a geodesic on a surface in
his 1732 paper De linea brevissima in superficie quacunque duo quaelibet
puncta jungente [129]. For the history of geodesics, see Stäckel’s 1893
article Bemerkungen zur Geschichte der geodätischen Linien [414]. The
general theory of geodesics in metric spaces can be found in Busemann’s
1955 treatise The Geometry of Geodesics [68].

§1.5. Archimedes approximated the length of a circle by the perimeters
of inscribed and circumscribed regular polygons in his third century B.C.
treatise On the Measurement of the Circle [24]. Latin translation of the
works of Archimedes and Apollonius in the Middle Ages and the introduc-
tion of analytic geometry by Fermat and Descartes around 1637 spurred
the development of geometric techniques for finding tangents and quadra-
tures of plane curves in the first half of the seventeenth century. This led
to a series of geometric rectifications of curves in the middle of the seven-
teenth century. In particular, the first algebraic formula for the length of
a nonlinear curve, y2 = x3, was found independently by Neil, van Heuraet,
and Fermat around 1658. In the last third of the seventeenth century, cal-
culus was created independently by Newton and Leibniz. In particular,
they discovered the element of Euclidean arc length and used integration
to find the length of plane curves. For a concise history of arc length, see
Boyer’s 1964 article Early rectifications of curves [62]. A comprehensive
history of arc length can be found in Traub’s 1984 thesis The Development
of the Mathematical Analysis of Curve Length from Archimedes to Lebesgue
[428]. All the essential material in §1.5 appeared in Vol. I of Jordan’s 1893
treatise Cours d’Analyse [227]. Arc length in metric spaces was introduced
by Menger in his 1930 paper Zur Metrik der Kurven [306]. For the general
theory of arc length in metric spaces, see Busemann’s 1955 treatise [68].



CHAPTER 2

Spherical Geometry

In this chapter, we study spherical geometry. In order to emphasize the
duality between spherical and hyperbolic geometries, a parallel develop-
ment of hyperbolic geometry will be given in Chapter 3. In many cases,
the arguments will be the same except for minor changes. As spherical
geometry is much easier to understand, it is advantageous to first study
spherical geometry before taking up hyperbolic geometry. We begin by
studying spherical n-space. Elliptic n-space is considered in Section 2.2.
Spherical arc length and volume are studied in Sections 2.3 and 2.4. The
chapter ends with a section on spherical trigonometry.

§2.1. Spherical n-Space

The standard model for n-dimensional spherical geometry is the unit sphere
Sn of Rn+1 defined by

Sn = {x ∈ Rn+1 : |x| = 1}.

The Euclidean metric dE on Sn is defined by the formula

dE(x, y) = |x − y|. (2.1.1)

The Euclidean metric on Sn is sufficient for most purposes, but it is not
intrinsic to Sn, since it is defined in terms of the vector space structure
of Rn+1. We shall define an intrinsic metric on Sn, but first we need to
review cross products in R3.

Cross Products

Let x, y be vectors in R3. The cross product of x and y is defined to be

x × y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1). (2.1.2)

The proof of the next theorem is routine and is left to the reader.

35
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Theorem 2.1.1. If w, x, y, z are vectors in R3, then

(1) x × y = −y × x,

(2) (x × y) · z =

∣∣∣∣∣ x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣,
(3) (x × y) × z = (x · z)y − (y · z)x,

(4) (x × y) · (z × w) =
∣∣∣∣ x · z x · w

y · z y · w

∣∣∣∣ .
Let x, y, z be vectors in R3. The real number (x × y) · z is called the

scalar triple product of x, y, z. It follows from Theorem 2.1.1(2) that

(x × y) · z = (y × z) · x = (z × x) · y. (2.1.3)

Thus, the value of the scalar triple product of x, y, z remains unchanged
when the vectors are cyclically permuted. Consequently

(x × y) · x = (x × x) · y = 0
and

(x × y) · y = (y × y) · x = 0.

Hence x × y is orthogonal to both x and y. It follows from Theorem 2.1.1
(4) and Formula 1.3.3 that if x and y are nonzero, then

|x × y| = |x| |y| sin θ(x, y), (2.1.4)

where θ(x, y) is the Euclidean angle between x and y.
Let A be in O(3). Then a straightforward calculation shows that

A(x × y) = (detA)(Ax × Ay). (2.1.5)

In particular, a rotation of R3 preserves cross products. Consequently, the
direction of x × y relative to x and y is given by the right-hand rule, since
e1 × e2 = e3.

The Spherical Metric

Let x, y be vectors in Sn and let θ(x, y) be the Euclidean angle between
x and y. The spherical distance between x and y is defined to be the real
number

dS(x, y) = θ(x, y). (2.1.6)

Note that
0 ≤ dS(x, y) ≤ π

and dS(x, y) = π if and only if y = −x. Two vectors x, y in Sn are said to
be antipodal if and only if y = −x.
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Theorem 2.1.2. The spherical distance function dS is a metric on Sn.

Proof: The function dS is obviously nonnegative, nondegenerate, and
symmetric. It remains only to prove the triangle inequality. The orthog-
onal transformations of Rn+1 act on Sn and obviously preserve spherical
distances. Thus, we are free to transform x, y, z by an orthogonal trans-
formation. Now the three vectors x, y, z span a vector subspace of Rn+1 of
dimension at most three. By Theorem 1.3.4, we may assume that x, y, z
are in the subspace of Rn+1 spanned by e1, e2, e3. In other words, we may
assume that n = 2. Then we have

cos(θ(x, y) + θ(y, z))
= cos θ(x, y) cos θ(y, z) − sin θ(x, y) sin θ(y, z)
= (x · y)(y · z) − |x × y| |y × z|
≤ (x · y)(y · z) − (x × y) · (y × z)
= (x · y)(y · z) − ((x · y)(y · z) − (x · z)(y · y))
= x · z

= cos θ(x, z).

Thus, we have that θ(x, z) ≤ θ(x, y) + θ(y, z).

The metric dS on Sn is called the spherical metric. The metric topology
of Sn determined by dS is the same as the metric topology of Sn determined
by dE . The metric space consisting of Sn together with its spherical metric
dS is called spherical n-space. Henceforth Sn will denote spherical n-space.
An isometry from Sn to itself is called a spherical isometry.

Remark: A function φ : Sn → Sn is an isometry if and only if it is
an isometry with respect to the Euclidean metric on Sn because of the
following identity on Sn:

x · y = 1 − 1
2 |x − y|2. (2.1.7)

Theorem 2.1.3. Every orthogonal transformation of Rn+1 restricts to an
isometry of Sn, and every isometry of Sn extends to a unique orthogonal
transformation of Rn+1.

Proof: Clearly, a function φ : Sn → Sn is an isometry if and only if
it preserves Euclidean inner products on Sn. Therefore, an orthogonal
transformation of Rn+1 restricts to an isometry of Sn. The same argument
as in the proof of Theorem 1.3.2 shows that an isometry of Sn extends to
a unique orthogonal transformation of Rn+1.

Corollary 1. The group of spherical isometries I(Sn) is isomorphic to the
orthogonal group O(n + 1).



38 2. Spherical Geometry

Spherical Geodesics

Definition: A great circle of Sn is the intersection of Sn with a 2-
dimensional vector subspace of Rn+1.

Let x and y be distinct points of Sn. If x and y are linearly independent,
then x and y span a 2-dimensional subspace V (x, y) of Rn+1, and so the
set S(x, y) = Sn ∩ V (x, y) is the unique great circle of Sn containing both
x and y. If x and y are linearly dependent, then y = −x. Note that if
n > 1, then there is a continuum of great circles of Sn containing both x
and −x, since every great circle of Sn containing x also contains −x.

Definition: Three points x, y, z of Sn are spherically collinear if and only
if there is a great circle of Sn containing x, y, z.

Lemma 1. If x, y, z are in Sn and
θ(x, y) + θ(y, z) = θ(x, z),

then x, y, z are spherically collinear.

Proof: As x, y, z span a vector subspace of Rn+1 of dimension at most 3,
we may assume that n = 2. From the proof of Theorem 2.1.2, we have

(x × y) · (y × z) = |x × y| |y × z|.
Hence x × y and y × z are linearly dependent by Theorem 1.3.1. Therefore
(x × y) × (y × z) = 0. As

(x × y) × (y × z) = (x · (y × z))y,

we have that x, y, z are linearly dependent by Theorem 2.1.1(2). Hence
x, y, z lie on a 2-dimensional vector subspace of Rn+1 and so are spherically
collinear.

Theorem 2.1.4. Let α : [a, b] → Sn be a curve with b − a < π. Then the
following are equivalent:

(1) The curve α is a geodesic arc.

(2) There are orthogonal vectors x, y in Sn such that
α(t) = (cos(t − a))x + (sin(t − a))y.

(3) The curve α satisfies the differential equation α′′ + α = 0.

Proof: Let A be an orthogonal transformation of Rn+1. Then we have
that (Aα)′ = Aα′. Consequently α satisfies (3) if and only if Aα does.
Hence we are free to transform α by an orthogonal transformation. Suppose
that α is a geodesic arc. Let t be in the interval [a, b]. Then we have

θ(α(a), α(b)) = b − a

= (t − a) + (b − t)
= θ(α(a), α(t)) + θ(α(t), α(b)).
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By Lemma 1, we have that α(a), α(t), α(b) are spherically collinear. As

θ(α(a), α(b)) = b − a < π,

the points α(a) and α(b) are not antipodal. Hence α(a) and α(b) lie on a
unique great circle S of Sn. Therefore, the image of α is contained in S.
Hence, we may assume that n = 1. By applying a rotation of the form(

cos s − sin s
sin s cos s

)
we can rotate α(a) to e1, so we may assume that α(a) = e1. Then

e1 · α(t) = α(a) · α(t) = cos θ(α(a), α(t)) = cos(t − a).

Therefore e2 · α(t) = ± sin(t − a). As α is continuous and b − a < π, the
plus sign or the minus sign in the last equation holds for all t. Hence we
may assume that

α(t) = (cos(t − a))e1 + (sin(t − a))(±e2).

Thus (1) implies (2).
Next, suppose there are orthogonal vectors x, y in Sn such that

α(t) = (cos(t − a))x + (sin(t − a))y.

Let s and t be such that a ≤ s ≤ t ≤ b. Then we have

cos θ(α(s), α(t)) = α(s) · α(t)
= cos(s − a) cos(t − a) + sin(s − a) sin(t − a)
= cos(t − s).

As t − s < π, we have that θ(α(s), α(t)) = t − s. Thus α is a geodesic arc.
Hence (2) implies (1).

Clearly (2) implies (3). Suppose that (3) holds. Then

α(t) = cos(t − a)α(a) + sin(t − a)α′(a).

Upon differentiating the equation α(t)·α(t) = 1, we see that α(t)·α′(t) = 0.
Thus α(t) and α′(t) are orthogonal for all t. In particular, α(a) and α′(a)
are orthogonal. Observe that

|α(t)|2 = cos2(t − a) + sin2(t − a)|α′(a)|2.
As |α(t)| = 1, we have that |α′(a)| = 1. Thus (3) implies (2).

The next theorem follows easily from Theorem 2.1.4.

Theorem 2.1.5. A function λ : R → Sn is a geodesic line if and only if
there are orthogonal vectors x, y in Sn such that

λ(t) = (cos t)x + (sin t)y.

Corollary 2. The geodesics of Sn are its great circles.
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Exercise 2.1

1. Show that the metric topology of Sn determined by the spherical metric is
the same as the metric topology of Sn determined by the Euclidean metric.

2. Let A be a real n × n matrix. Prove that the following are equivalent:

(1) A is orthogonal.

(2) |Ax| = |x| for all x in Rn.

(3) A preserves the quadratic form f(x) = x2
1 + · · · + x2

n.

3. Show that every matrix in SO(2) is of the form(
cos θ − sin θ
sin θ cos θ

)
.

4. Show that a curve α : [a, b] → Sn is a geodesic arc if and only if there are
orthogonal vectors x, y in Sn such that

α(t) = (cos(t − a))x + (sin(t − a))y and b − a ≤ π.

Conclude that Sn, with n > 0, is geodesically connected but not geodesically
convex.

5. Prove Theorem 2.1.5. Conclude that Sn is geodesically complete.

6. A great m-sphere of Sn is the intersection of Sn with an (m+1)-dimensional
vector subspace of Rn+1. Show that a subset X of Sn, with more than one
point, is totally geodesic if and only if X is a great m-sphere of Sn for some
m > 0.

7. Let u0, . . . , un be linearly independent vectors in Sn, let v0, . . . , vn be linearly
independent vectors in Sn, and suppose that θ(ui, uj) = θ(vi, vj) for all i, j.
Show that there is a unique isometry φ of Sn such that φ(ui) = vi for each
i = 0, . . . , n.

8. Prove that every similarity of Sn is an isometry.

9. A tangent vector to Sn at a point x of Sn is defined to be the derivative
at 0 of a differentiable curve γ : [−b, b] → Sn such that γ(0) = x. Let
Tx = Tx(Sn) be the set of all tangent vectors to Sn at x. Show that

Tx = {y ∈ Rn+1 : x · y = 0}.

Conclude that Tx is an n-dimensional vector subspace of Rn+1. The vector
space Tx is called the tangent space of Sn at x.

10. A coordinate frame of Sn is a n-tuple (λ1, . . . , λn) of functions such that

(1) the function λi : R → Sn is a geodesic line for each i = 1, . . . , n;

(2) there is a point x of Sn such that λi(0) = x for all i; and

(3) the set {λ′
1(0), . . . , λ′

n(0)} is an orthonormal basis of Tx(Sn).

Show that the action of I(Sn) on the set of coordinate frames of Sn, given
by φ(λ1, . . . , λn) = (φλ1, . . . , φλn), is transitive.
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§2.2. Elliptic n-Space

The antipodal map α : Rn+1 → Rn+1, defined by α(x) = −x, obviously
commutes with every orthogonal transformation of Rn+1; consequently,
spherical geometry is antipodally symmetric. The antipodal symmetry of
spherical geometry leads to a duplication of geometric information. For
example, if three great circles of S2 form the sides of a spherical triangle,
then they also form the sides of the antipodal image of the triangle. See
Figure 2.5.3 for an illustration of this duplication.

The antipodal duplication in spherical geometry is easily eliminated by
identifying each pair of antipodal points x,−x of Sn to one point ±x. The
resulting quotient space is called real projective n-space Pn. The spherical
metric dS on Sn induces a metric dP on Pn defined by

dP (±x,±y) = min{dS(x, y), dS(x,−y)}. (2.2.1)

Notice that dP (±x,±y) is just the spherical distance from the set {x,−x}
to the set {y, −y} in Sn. The metric space consisting of Pn and the metric
dP is called elliptic n-space. The lines (geodesics) of Pn are the images of
the geodesics of Sn with respect to the natural projection η : Sn → Pn. As
η is a double covering, each line of Pn is a circle that is double covered by
a great circle of Sn. Elliptic geometry, unlike spherical geometry, shares
with Euclidean geometry the property that there is a unique line passing
through each pair of distinct points.

Gnomonic Projection

Identify Rn with Rn × {0} in Rn+1. The gnomonic projection

ν : Rn → Sn

is defined to be the composition of the vertical translation of Rn by en+1
followed by radial projection to Sn. See Figure 2.2.1. An explicit formula
for ν is given by

ν(x) =
x + en+1

|x + en+1|
. (2.2.2)

0 x

ν(x)

x + e2

Figure 2.2.1. The gnomonic projection ν of R into S1
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The function ν maps Rn bijectively onto the upper hemisphere of Sn.
Hence, the function ην : Rn → Pn is an injection. The complement of
ην(Rn) in Pn is Pn−1, which corresponds to the equator of Sn with an-
tipodal points identified.

Classical real projective n-space is the set Rn = Rn ∪ Pn−1 with Pn−1

adjoined to Rn at infinity. In Rn, a point at infinity in Pn−1 is adjoined
to each line of Rn forming a finite line. Two finite lines intersect if and
only if they intersect in Rn or they are parallel in Rn, in which case they
intersect at their common point at infinity. Besides the finite lines, there
are the lines of Pn−1 at infinity. When n = 2, there is exactly one line at
infinity. Classically, the real projective plane refers to the Euclidean plane
R2 together with one line at infinity adjoined to it so that lines intersect
as described above.

The injection ην : Rn → Pn extends by the identity map on Pn−1 to a
bijection ν : Rn → Pn that maps the lines of Rn to the lines of Pn. Classical
real projective n-space is useful in understanding elliptic geometry, since
the finite lines of Rn correspond to the lines of Rn.

Exercise 2.2

1. Prove that dP is a metric on P n.

2. Let η : Sn → P n be the natural projection. Show that if x is in Sn and
r > 0, then η(B(x, r)) = B(η(x), r).

3. Show that η maps the open hemisphere B(x, π/2) homeomorphically onto
B(η(x), π/2). Conclude that η is a double covering.

4. Show that η maps B(x, π/4) isometrically onto B(η(x), π/4).

5. Prove that the geodesics of P n are the images of the great circles of Sn with
respect to η.

6. Show that P 1 is isometric to 1
2S1.

7. Show that the complement in P 2 of an open ball B(x, r), with r < π/2, is a
Möbius band.

8. Let x be a point of P 3 at a distance s > 0 from a geodesic L of P 3. Show
that there is a geodesic L′ of P 3 passing through x such that each point
in L′ is at a distance s from L. The geodesics L and L′ are called Clifford
parallels.

9. Let Sn
+ = {x ∈ Sn : xn+1 > 0}. Define φ : Sn

+ → Rn by

φ(x1, . . . , xn+1) = (x1/xn+1, . . . , xn/xn+1).

Show that φ is inverse to ν : Rn → Sn. Conclude that ν maps Rn homeo-
morphically onto Sn

+.

10. Define an m-plane Q of P n to be the image of a great m-sphere of Sn with
respect to the natural projection η : Sn → P n. Show that the intersection
of a corresponding m-plane Q of Rn with Rn is either an m-plane of En or
the empty set, in which case Q is an m-plane at infinity in P n−1.
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§2.3. Spherical Arc Length

In this section, we determine the element of spherical arc length of Sn.

Theorem 2.3.1. A curve γ : [a, b] → Sn is rectifiable in Sn if and only if
γ is rectifiable in Rn+1; moreover, the spherical length of γ is the same as
the Euclidean length of γ.

Proof: The following inequality holds for all θ:
1 − θ2/2 ≤ cos θ ≤ 1 − θ2/2 + θ4/24.

Hence, we have that
θ2 − θ4/12 ≤ 2(1 − cos θ) ≤ θ2.

Let x, y be in Sn. Then
|x − y|2 = 2(1 − cos θ(x, y)).

Consequently

|x − y| ≤ θ(x, y) ≤ |x − y|√
1 − θ2(x, y)/12

.

As 0 ≤ θ(x, y) ≤ π, we have

|x − y| ≤ θ(x, y) ≤ |x − y|√
1 − π2/12

.

Let P be a partition of [a, b] and let 
S(γ, P ) and 
E(γ, P ) be the spher-
ical and Euclidean P -inscribed length of γ, respectively. Then we have


E(γ, P ) ≤ 
S(γ, P ) ≤ 
E(γ, P )√
1 − π2/12

.

Let |γ|S and |γ|E be the spherical and Euclidean length of γ, respectively.
Then we have that

|γ|E ≤ |γ|S ≤ |γ|E√
1 − π2/12

.

Therefore γ is rectifiable in Sn if and only if γ is rectifiable in Rn+1.
Suppose that |P | ≤ δ and set

µ(γ, δ) = sup
{
θ(γ(s), γ(t)) : |t − s| ≤ δ

}
.

Then we have that


S(γ, P ) ≤ 
E(γ, P )√
1 − µ2/12

.

Hence, we have that

|γ|S ≤ |γ|E√
1 − µ2/12

.

As γ : [a, b] → Sn is uniformly continuous, µ(γ, δ) goes to zero with δ.
Therefore |γ|S ≤ |γ|E . Thus |γ|S = |γ|E .

Corollary 1. The element of spherical arc length of Sn is the element of
Euclidean arc length of Rn+1 restricted to Sn.
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§2.4. Spherical Volume

Let x be a vector in Rn+1 such that xn and xn+1 are not both zero. The
spherical coordinates (ρ, θ1, . . . , θn) of x are defined as follows:

(1) ρ = |x|,

(2) θi = θ(ei, xiei + xi+1ei+1 + · · · + xn+1en+1) if i < n,

(3) θn is the polar angle from en to xnen + xn+1en+1.

The spherical coordinates of x satisfy the system of equations

x1 = ρ cos θ1,

x2 = ρ sin θ1 cos θ2,

... (2.4.1)
xn = ρ sin θ1 sin θ2 · · · sin θn−1 cos θn,

xn+1 = ρ sin θ1 sin θ2 · · · sin θn−1 sin θn.

A straightforward calculation shows that

(1)
∂x

∂ρ
=

x

|x| , (2.4.2)

(2)
∣∣∣∣ ∂x

∂θi

∣∣∣∣ = ρ sin θ1 · · · sin θi−1, (2.4.3)

(3)
∂x

∂ρ
,

∂x

∂θ1
, . . . ,

∂x

∂θn
are orthogonal. (2.4.4)

Moreover, the vectors (2.4.4) form a positively oriented frame, and so the
Jacobian of the spherical coordinate transformation

(ρ, θ1, . . . , θn) �→ (x1, . . . , xn+1)

is ρn sinn−1 θ1 sinn−2 θ2 · · · sin θn−1.
The spherical coordinate parameterization of Sn is the map

g : [0, π]n−1 × [0, 2π] → Sn

defined by
g(θ1, . . . , θn) = (x1, . . . , xn+1),

where xi is expressed in terms of θ1, . . . , θn by Equations (2.4.1) with ρ = 1.
The map g is surjective, and injective on the open set (0, π)n−1 × (0, 2π).

A subset X of Sn is said to be measurable in Sn if and only if g−1(X) is
measurable in Rn. In particular, all the Borel subsets of Sn are measurable
in Sn. If X is measurable in Sn, then the spherical volume of X is defined
to be

Vol(X) =
∫

g−1(X)
sinn−1 θ1 sinn−2 θ2 · · · sin θn−1dθ1 · · · dθn. (2.4.5)
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The motivation for Formula 2.4.5 is as follows: Subdivide the rectangular
solid [0, π]n−1 × [0, 2π] into a rectangular grid. Each grid rectangular solid
of volume ∆θ1 · · ·∆θn that meets g−1(X) corresponds under g to a region
in Sn that meets X. This region is approximated by the rectangular solid
spanned by the vectors ∂g

∂θ1
∆θ1, . . . ,

∂g
∂θn

∆θn. Its volume is given by∣∣∣∣ ∂g

∂θ1
∆θ1

∣∣∣∣ · · · ∣∣∣∣ ∂g

∂θn
∆θn

∣∣∣∣ = sinn−1 θ1 sinn−2 θ2 · · · sin θn−1∆θ1 · · ·∆θn.

As the mesh of the subdivision goes to zero, the sum of the volumes of the
approximating rectangular solids approaches the volume of X as a limit.

Let X be a measurable subset of Sn and let φ be an orthogonal trans-
formation of Rn+1. It is a basic fact of advanced calculus that φ(X) is
also measurable in Sn, and the volume of φ(X) can be measured with re-
spect to the new parameterization φg of Sn. As φ maps the rectangular
solid spanned by the vectors ∂g

∂θ1
∆θ1, . . . ,

∂g
∂θn

∆θn onto the rectangular solid
spanned by the vectors ∂φg

∂θ1
∆θ1, . . . ,

∂φg
∂θn

∆θn, we deduce that

Vol(φ(X)) = Vol(X).

In other words, spherical volume is an isometry-invariant measure on Sn.
It is clear from Formula 2.4.5 that spherical volume is countably additive,

that is, if {Xi}∞
i=1 is a sequence of disjoint measurable subsets of Sn, then

X =
∞
∪

i=1
Xi is also measurable in Sn and

Vol(X) =
∞∑

i=1

Vol(Xi).

Theorem 2.4.1. The element of spherical volume for the upper hemi-
sphere xn+1 > 0 of Sn, with respect to the Euclidean coordinates x1, . . . , xn,
is

dx1 · · · dxn

[1 − (x2
1 + · · · + x2

n)]
1
2
.

Proof: It is more convenient for us to show that the element of spher-
ical volume for the hemisphere x1 > 0, with respect to the coordinates
x2, . . . , xn+1, is

dx2 · · · dxn+1

[1 − (x2
2 + · · · + x2

n+1)]
1
2
.

The desired result will then follow by a simple change of coordinates.
Consider the transformation

g : (0, π/2) × (0, π)n−2 × (0, 2π) → Rn

defined by
g(θ1, . . . , θn) = (x2, . . . , xn+1),
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where xi is given by Equations (2.4.1) with ρ = 1. Then by (2.4.4), the
vectors ∂g

∂θ1
, . . . , ∂g

∂θn
are orthogonal. Hence, the Jacobian of the transfor-

mation g is given by

Jg(θ1, . . . , θn) =
∣∣∣∣ ∂g

∂θ1

∣∣∣∣ · · · ∣∣∣∣ ∂g

∂θn

∣∣∣∣
= cos θ1 sinn−1 θ1 sinn−2 θ2 · · · sin θn−1.

By changing variables via g, we have

∫
g−1(X)

sinn−1 θ1 sinn−2 θ2 · · · sin θn−1dθ1 · · · dθn

=
∫

gg−1(X)

dx2 · · · dxn+1

x1

=
∫

p(X)

dx2 · · · dxn+1

[1 − (x2
2 + · · · + x2

n+1)]
1
2
,

where p : Sn → Rn is the projection

p(x1, . . . , xn+1) = (x2, . . . , xn+1).

Exercise 2.4

1. Show that the spherical coordinates of a vector x in Rn+1 satisfy the system
of Equations (2.4.1).

2. Show that the spherical coordinate transformation satisfies the Equations
(2.4.2)-(2.4.4).

3. Show that the element of spherical arc length dx in spherical coordinates is
given by

dx2 = dθ2
1 + sin2 θ1dθ2

2 + · · · + sin2 θ1 · · · sin2 θn−1dθ2
n.

4. Let B(x, r) be the spherical disk centered at a point x of S2 of spherical
radius r. Show that the circumference of B(x, r) is 2π sin r and the area of
B(x, r) is 2π(1−cos r). Conclude that B(x, r) has less area than a Euclidean
disk of radius r.

5. Show that

(1) Vol(S2n−1) =
2πn

(n − 1)!
,

(2) Vol(S2n) =
2n+1πn

(2n − 1)(2n − 3) · · · 3 · 1
.
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§2.5. Spherical Trigonometry

Let x, y, z be three spherically noncollinear points of S2. Then no two of
x, y, z are antipodal. Let S(x, y) be the unique great circle of S2 containing
x and y, and let H(x, y, z) be the closed hemisphere of S2 with S(x, y) as its
boundary and z in its interior. The spherical triangle with vertices x, y, z
is defined to be

T (x, y, z) = H(x, y, z) ∩ H(y, z, x) ∩ H(z, x, y).

We shall assume that the vertices of T (x, y, z) are labeled in positive order
as in Figure 2.5.1.

Let [x, y] be the minor arc of S(x, y) joining x to y. The sides of T (x, y, z)
are defined to be [x, y], [y, z], and [z, x]. Let a = θ(y, z), b = θ(z, x), and
c = θ(x, y). Then a, b, c is the length of [y, z], [z, x], [x, y], respectively. Let

f : [0, a] → S2, g : [0, b] → S2, h : [0, c] → S2

be the geodesic arc from y to z, z to x, and x to y, respectively.
The angle α between the sides [z, x] and [x, y] is defined to be the angle

between −g′(b) and h′(0). Likewise, the angle β between the sides [x, y] and
[y, z] is defined to be the angle between −h′(c) and f ′(0), and the angle γ
between the sides [y, z] and [z, x] is defined to be the angle between −f ′(a)
and g′(0). The angles α, β, γ are called the angles of T (x, y, z). The side
[y, z], [z, x], [x, y] is said to be opposite the angle α, β, γ, respectively.

Lemma 1. If α, β, γ are the angles of a spherical triangle T (x, y, z), then

(1) θ(z × x, x × y) = π − α,

(2) θ(x × y, y × z) = π − β,

(3) θ(y × z, z × x) = π − γ.

Proof: The proof of (1) is evident from Figure 2.5.2. The proof of (2),
and (3), is similar.

x
α

y

β

z
γ

a

b

c

Figure 2.5.1. A spherical triangle T (x, y, z)



48 2. Spherical Geometry

α π
2 − απ

2 − α

z × xx × y

h′(0)−g′(b)

Figure 2.5.2. Four vectors on the tangent plane Tx with α < π/2

Theorem 2.5.1. If α, β, γ are the angles of a spherical triangle, then

α + β + γ > π.

Proof: Let α, β, γ be the angles of a spherical triangle T (x, y, z). Then

((x × y) × (z × y)) · (z × x)
= [(x · (z × y))y − (y · (z × y))x] · (z × x)
= (x · (z × y))(y · (z × x))
= −(y · (z × x))2 < 0.

By Theorem 2.1.1(2), the vectors x×y, z×y, z×x are linearly independent,
and so their associated unit vectors are spherically noncollinear. By Lemma
1 of §2.1, we have

θ(x × y, z × x) < θ(x × y, z × y) + θ(z × y, z × x).

Now by Lemma 1, we have π − α < β + γ.

Theorem 2.5.2. (The Law of Sines) If α, β, γ are the angles of a spherical
triangle and a, b, c are the lengths of the opposite sides, then

sin a

sin α
=

sin b

sin β
=

sin c

sin γ
.

Proof: Upon taking norms of both sides of the equations

(z × x) × (x × y) = (z · (x × y))x,

(x × y) × (y × z) = (x · (y × z))y,

(y × z) × (z × x) = (y · (z × x))z,

we find that
sin b sin c sin α = x · (y × z),
sin c sin a sin β = x · (y × z),
sin a sin b sin γ = x · (y × z).
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Theorem 2.5.3. (The First Law of Cosines) If α, β, γ are the angles of a
spherical triangle and a, b, c are the lengths of the opposite sides, then

cos γ =
cos c − cos a cos b

sin a sin b
.

Proof: Since

(y × z) · (x × z) =
∣∣∣∣ y · x y · z

z · x z · z

∣∣∣∣,
we have that

sin a sin b cos γ = cos c − cos a cos b.

Let T (x, y, z) be a spherical triangle. By the same argument as in the
proof of Theorem 2.5.1, the vectors z × x, x × y, y × z are linearly indepen-
dent, and so the associated unit vectors are spherically noncollinear. The
spherical triangle

T ′ = T

(
y × z

|y × z| ,
z × x

|z × x| ,
x × y

|x × y|

)
(2.5.1)

is called the polar triangle of T (x, y, z). Let a′, b′, c′ be the lengths of the
sides of T ′ and let α′, β′, γ′ be the opposite angles. By Lemma 1, we have

a′ = π − α, b′ = π − β, c′ = π − γ.

As T (x, y, z) is the polar triangle of T ′, we have

α′ = π − a, β′ = π − b, γ′ = π − c.

Theorem 2.5.4. (The Second Law of Cosines) If α, β, γ are the angles of
a spherical triangle and a, b, c are the lengths of the opposite sides, then

cos c =
cos α cos β + cos γ

sin α sin β
.

Proof: By the first law of cosines applied to the polar triangle, we have

cos(π − c) =
cos(π − γ) − cos(π − α) cos(π − β)

sin(π − α) sin(π − β)
.

Area of Spherical Triangles

A lune of S2 is defined to be the intersection of two distinct, nonopposite
hemispheres of S2. Any lune of S2 is congruent to a lune L(α) defined in
terms of spherical coordinates (φ, θ) by the inequalities 0 ≤ θ ≤ α. Here
α is the angle formed by the two sides of L(α) at each of its two vertices.
See Figure 2.5.3. By Formula 2.4.5, we have

Area(L(α)) =
∫ α

0

∫ π

0
sin φ dφdθ = 2α.

As L(π/2) is a quarter-sphere, the area of S2 is 4π.
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α

L(α)

Figure 2.5.3. A lune L(α) of S2

Theorem 2.5.5. If α, β, γ are the angles of a spherical triangle T , then

Area(T ) = (α + β + γ) − π.

Proof: The three great circles extending the sides of T subdivide S2 into
eight triangular regions which are paired off antipodally. Two of the regions
are T and −T , and the other six regions are labeled A,−A, B,−B,C,−C
in Figure 2.5.4. Any two of the sides of T form a lune with angle α, β, or γ.
The lune with angle α is the union of T and A. Hence, we have

Area(T ) + Area(A) = 2α.

Likewise, we have that

Area(T ) + Area(B) = 2β,

Area(T ) + Area(C) = 2γ.

Adding these three equations and subtracting the equation

Area(T ) + Area(A) + Area(B) + Area(C) = 2π

gives Area(T ) = α + β + γ − π.

T

α

β γ

A

−A

BC

−B −C

Figure 2.5.4. The subdivision of S2 into eight triangular regions
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Exercise 2.5

1. Let α, β, γ be the angles of a spherical triangle and let a, b, c be the lengths
of the opposite sides. Show that

(1) cos a = cos b cos c + sin b sin c cos α,

cos b = cos a cos c + sin a sin c cos β,

cos c = cos a cos b + sin a sin b cos γ,

(2) cos α = − cos β cos γ + sin β sin γ cos a,

cos β = − cos α cos γ + sin α sin γ cos b,

cos γ = − cos α cos β + sin α sin β cos c.

2. Let α, β, π/2 be the angles of a spherical right triangle and let a, b, c be the
lengths of the opposite sides. Show that

(1) cos c = cos a cos b,

(2) cos c = cot α cot β,

(3) sin a = sin c sin α,

sin b = sin c sin β,

(4) cos α = tan b cot c,

cos β = tan a cot c,

(5) sin a = tan b cot β,

sin b = tan a cot α,

(6) cos α = cos a sin β,

cos β = cos b sin α.

3. Prove that two spherical triangles are congruent if and only if they have the
same angles.

4. Let a, b, c be the sides of a spherical triangle. Prove that a + b + c < 2π.

5. Let α and β be two angles of a spherical triangle such that α ≤ β ≤ π/2 and
let a be the length of the side opposite α. Prove that a ≤ π/2 with equality
if and only if α = β = π/2.

6. Let α and β be two angles of a spherical triangle and let a and b be the
lengths of the opposite sides. Prove that α ≤ β if and only if a ≤ b and that
α = β if and only if a = b.

7. Let T (x, y, z) be a spherical triangle labeled as in Figure 2.5.1 such that
α, β < π/2. Prove that the point on the great circle through x and y nearest
to z lies in the interior of the side [x, y].

8. Let α, β, γ be real numbers such that 0 < α ≤ β ≤ γ < π. Prove that there
is a spherical triangle with angles α, β, γ if and only if β −α < π−γ < α+β.
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§2.6. Historical Notes

§2.1. Spherical geometry in n dimensions was first studied by Schläfli in his
1852 treatise Theorie der vielfachen Kontinuität [394], which was published
posthumously in 1901. The most important results of Schläfli’s treatise
were published in his 1855 paper Réduction d’une intégrale multiple, qui
comprend l’arc de cercle et l’aire du triangle sphérique comme cas partic-
uliers [391] and in his 1858-1860 paper On the multiple integral

∫
dxdy · · · dz

[392], [393]. In particular, n-dimensional spheres were defined by Schläfli
in this paper [392]. The differential geometry of spherical n-space was
first considered by Riemann in his 1854 lecture Über die Hypothesen, welch
der Geometrie zu Grunde liegen [381], which was published posthumously
in 1867. For a translation with commentary, see Vol. II of Spivak’s 1979
treatise Differential Geometry [413]

The cross product appeared implicitly in Lagrange’s 1773 paper Nouvelle
solution du problème du mouvement de rotation [269]. The cross product
evolved in the nineteenth century out of Grassmann’s outer product defined
in his 1844 Ausdehnungslehre [169] and Hamilton’s vector product defined
in his 1844-1850 paper On Quaternions [192]. The basic properties of cross
products, in particular, Theorem 2.1.1, appeared in Hamilton’s paper On
Quaternions [192]. The cross product was defined by Gibbs in his 1881
monograph Elements of Vector Analysis [165]. The triple scalar product
was defined by Hamilton in his paper On Quaternions [192]. According to
Heath’s 1921 treatise A History of Greek Mathematics [201], the triangle
inequality for spherical geometry is Proposition 5 in Book I of the first
century Sphaerica of Menelaus. That the geodesics of a sphere are its
great circles was affirmed by Euler in his 1732 paper De linea brevissima
in superficie quacunque duo quaelibet puncta jungente [129].

§2.2. Classical real projective space was introduced by Desargues in
his 1639 monograph Brouillon project d’une atteinte aux événements des
recontres du cone avec un plan [112]. Classical projective geometry was sys-
tematically developed by Poncelet in his 1822 treatise Traité des propriétés
projectives des figures [367]. The metric for the elliptic plane was defined
by Cayley in his 1859 paper A sixth memoir upon quantics [82]. Moreover,
the idea of identifying antipodal points of a sphere to form real projective
2-space appeared in this paper. The term elliptic geometry was introduced
by Klein in his 1871 paper Ueber die sogenannte Nicht-Euklidische Geome-
trie [243]. Three-dimensional Elliptic geometry was developed by Clifford
in his 1873 paper Preliminary sketch of biquaternions [89] and by Newcomb
in his 1877 paper Elementary theorems relating to the geometry of a space
of three dimensions and of uniform positive curvature [339]. Real projec-
tive 3-space appeared in Killing’s 1878 paper Ueber zwei Raumformen mit
constanter positiver Krümmung [238]. Real projective n-space appeared in
Killing’s 1885 monograph Nicht-Euklidischen Raumformen [240].
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§2.3. The element of spherical arc length for the unit sphere was derived
by Euler in his 1755 paper Principes de la trigonométrie sphérique tirés de
la méthode des plus grands et plus petits [130].

§2.4. Spherical coordinates and the element of spherical volume for the
unit n-sphere appeared in Jacobi’s 1834 paper Functionibus homogeneis
secundi ordinis [218] and in Green’s 1835 paper On the determination of
the exterior and interior attractions of ellipsoids of variable densities [175].
Moreover, the volume of an n-dimensional sphere was implicitly determined
by Jacobi and Green in these papers. Spherical coordinates for Euclidean n-
space, Formula 2.4.5, and Theorem 2.4.1 appeared in Schläfli’s 1858 paper
[392]. For the theory of measure on manifolds in Euclidean n-space, see
Fleming’s 1977 text Functions of Several Variables [145].

§2.5. According to Heath’s 1921 treatise A History of Greek Mathemat-
ics [201], spherical triangles first appeared in the first century Sphaerica of
Menelaus. In Book I of the Sphaerica, the theorem that the sum of the
angles of a spherical triangle exceeds two right angles was established. Ac-
cording to Rosenfeld’s 1988 study A History of Non-Euclidean Geometry
[385], rules equivalent to the spherical sine and cosine laws first appeared
in Indian astronomical works of the fifth-eighth centuries. In the ninth
century, these rules appeared in the Arabic astronomical treatises of al-
Khowarizmi, known in medieval Europe as Algorithmus. The spherical
law of sines was proved by Ibn Iraq and Abu l-Wafa in the tenth century.
The polar triangle and Lemma 1 appeared in the thirteenth century Ara-
bic treatise Disclosing the secrets of the figure of secants by al-Tusi. The
first law of cosines appeared in the fifteenth century treatise De triangulis
omnimodis libri quinque of Regiomontanus, which was published posthu-
mously in 1533. The vector proof of Theorem 2.5.3 (first law of cosines)
was given by Hamilton in his paper On Quaternions [192]. The second
law of cosines appeared in Viète’s 1593 treatise Variorum de rebus math-
ematicis responsorum liber VIII. According to Lohne’s 1979 article Essays
on Thomas Harriot [290], the formula for the area of a spherical triangle
in terms of the angular excess and its remarkably simple proof was first
discovered by Harriot in 1603. However, Theorem 2.5.5 was first published
by Girard in his 1629 paper De la mesure de la superfice des triangles et
polygones sphériques with a more complicated proof. The simple proof
of Theorem 2.5.5 appeared in Euler’s 1781 paper De mensura angulorum
solidorum [137]. Spherical trigonometry was thoroughly developed in mod-
ern form by Euler in his 1782 paper Trigonometria sphaerica universa ex
primis principiis breviter et dilucide derivata [138].



CHAPTER 3

Hyperbolic Geometry

We now begin the study of hyperbolic geometry. The first step is to define
a new inner product on Rn, called the Lorentzian inner product. This leads
to a new concept of length. In particular, imaginary lengths are possible.
In Section 3.2, hyperbolic n-space is defined to be the positive half of the
sphere of unit imaginary radius in Rn+1. The elements of hyperbolic arc
length and volume are determined in Sections 3.3 and 3.4. The chapter
ends with a section on hyperbolic trigonometry.

§3.1. Lorentzian n-Space

Throughout this section, we will assume n > 1. Let x and y be vectors
in Rn. The Lorentzian inner product of x and y is defined to be the real
number

x ◦ y = −x1y1 + x2y2 + · · · + xnyn. (3.1.1)

The Lorentzian inner product is obviously an inner product on Rn. The
inner product space consisting of the vector space Rn together with the
Lorentzian inner product is called Lorentzian n-space, and is denoted by
R1,n−1. Sometimes it is desirable to replace the Lorentzian inner product
on Rn by the equivalent inner product

〈x, y〉 = x1y1 + · · · + xn−1yn−1 − xnyn. (3.1.2)

The inner product space consisting of Rn together with this new inner
product is also called Lorentzian n-space but is denoted by Rn−1,1. For
example, in the theory of special relativity, R3,1 is a model for space-time.
The first three coordinates of a vector x = (x1, x2, x3, x4) in R3,1 are the
space coordinates, and the last is the time coordinate. In this chapter,
we shall work in R1,n−1, and for simplicity we shall continue to use the
notation Rn for the underlying vector space of R1,n−1.

54
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x1

x2

x3

Figure 3.1.1. The light cone C2 of R1,2

Let x be a vector in Rn. The Lorentzian norm (length) of x is defined
to be the complex number

‖x‖ = (x ◦ x)
1
2 . (3.1.3)

Here ‖x‖ is either positive, zero, or positive imaginary. If ‖x‖ is positive
imaginary, we denote its absolute value (modulus) by |||x|||. Define a vector
x in Rn−1 by

x = (x2, x3, . . . , xn). (3.1.4)

Then we have
‖x‖2 = −x2

1 + |x|2. (3.1.5)

If x and y are vectors in Rn, then we have

x ◦ y = −x1y1 + x · y. (3.1.6)

The set of all x in Rn such that ‖x‖ = 0 is the hypercone Cn−1 defined
by the equation |x1| = |x|. The hypercone Cn−1 is called the light cone
of Rn. See Figure 3.1.1. If ‖x‖ = 0, then x is said to be light-like. A
light-like vector x is said to be positive (resp. negative) if and only if
x1 > 0 (resp. x1 < 0).

If ‖x‖ > 0, then x is said to be space-like. Note that x is space-like if
and only if |x1| < |x|. The exterior of Cn−1 in Rn is the open subset of Rn

consisting of all the space-like vectors.
If ‖x‖ is imaginary, then x is said to be time-like. Note that x is time-like

if and only if |x1| > |x|. A time-like vector x is said to be positive (resp.
negative) if and only if x1 > 0 (resp. x1 < 0). The interior of Cn−1 in Rn

is the open subset of Rn consisting of all the time-like vectors.
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Theorem 3.1.1. Let x and y be nonzero nonspace-like vectors in Rn with
the same parity. Then x ◦ y ≤ 0 with equality if and only if x and y are
linearly dependent light-like vectors.

Proof: We may assume that x and y are both positive. Then x1 ≥ |x|
and y1 ≥ |y|. Hence

x1y1 ≥ |x| |y| ≥ x · y

with equality if and only if x1 = |x|, y1 = |y|, and x · y = |x| |y|. Therefore

x ◦ y = −x1y1 + x · y ≤ 0

with equality if and only if x and y are linearly dependent light-like vectors
by Theorem 1.3.1.

Theorem 3.1.2. If x and y are nonzero nonspace-like vectors in Rn, with
the same parity, and t > 0, then

(1) the vector tx has the same likeness and parity as x;

(2) the vector x + y is nonspace-like with the same parity as x and y;
moreover x+y is light-like if and only if x and y are linearly dependent
light-like vectors.

Proof: (1) Observe that ‖tx‖ = t‖x‖ and (tx)1 = tx1, and so tx and x
have the same likeness and parity.

(2) Next observe that

‖x + y‖2 = ‖x‖2 + 2x ◦ y + ‖y‖2 ≤ 0

by Theorem 3.1.1 with equality if and only if ‖x‖ = 0, ‖y‖ = 0, and
x ◦ y = 0. Therefore x + y is light-like if and only if x and y are linearly
dependent light-like vectors by Theorem 3.1.1.

Corollary 1. The set of all positive (resp. negative) time-like vectors is a
convex subset of Rn.

Proof: If x and y are positive (resp. negative) time-like vectors in Rn

and 0 < t < 1, then (1 − t)x + ty is positive (resp. negative) time-like by
Theorem 3.1.2.

Lorentz Transformations

Definition: A function φ : Rn → Rn is a Lorentz transformation if and
only if

φ(x) ◦ φ(y) = x ◦ y for all x, y in Rn.

A basis {v1, . . . , vn} of Rn is said to be Lorentz orthonormal if and only
if v1 ◦ v1 = −1 and vi ◦ vj = δij otherwise. Note that the standard basis
{e1, . . . , en} of Rn is Lorentz orthonormal.
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Theorem 3.1.3. A function φ : Rn → Rn is a Lorentz transformation
if and only if φ is linear and {φ(e1), . . . , φ(en)} is a Lorentz orthonormal
basis of Rn.

Proof: Suppose that φ is a Lorentz transformation of Rn. Then we have

φ(e1) ◦ φ(e1) = e1 ◦ e1 = −1
and

φ(ei) ◦ φ(ej) = ei ◦ ej = δij otherwise.

This clearly implies that φ(e1), . . . , φ(en) are linearly independent. Hence
{φ(e1), . . . , φ(en)} is a Lorentz orthonormal basis of Rn.

Let x be in Rn. Then there are coefficients c1, . . . , cn in R such that

φ(x) =
n∑

i=1

ciφ(ei).

As {φ(e1), . . . , φ(en)} is a Lorentz orthonormal basis, we have

−c1 = φ(x) ◦ φ(e1) = x ◦ e1 = −x1

and
cj = φ(x) ◦ φ(ej) = x ◦ ej = xj for j > 1.

Then φ is linear, since

φ
( n∑

i=1

xiei

)
=

n∑
i=1

xiφ(ei).

Conversely, suppose that φ is linear and {φ(e1), . . . , φ(en)} is a Lorentz
orthonormal basis of Rn. Then φ is a Lorentz transformation, since

φ(x) ◦ φ(y) = φ
( n∑

i=1

xiei

)
◦ φ
( n∑

j=1

yjej

)
=
( n∑

i=1

xiφ(ei)
)

◦
( n∑

j=1

yjφ(ej)
)

=
n∑

i=1

n∑
j=1

xiyiφ(ei) ◦ φ(ej)

= −x1y1 + x2y2 + · · · + xnyn = x ◦ y.

A real n×n matrix A is said to be Lorentzian if and only if the associated
linear transformation A : Rn → Rn, defined by A(x) = Ax, is Lorentzian.
The set of all Lorentzian n×n matrices together with matrix multiplication
forms a group O(1, n − 1), called the Lorentz group of n × n matrices. By
Theorem 3.1.3, the group O(1, n − 1) is naturally isomorphic to the group
of Lorentz transformations of Rn. The next theorem follows immediately
from Theorem 3.1.3.
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Theorem 3.1.4. Let A be a real n × n matrix, and let J be the n × n
diagonal matrix defined by

J = diag(−1, 1, . . . , 1).

Then the following are equivalent:

(1) The matrix A is Lorentzian.

(2) The columns of A form a Lorentz orthonormal basis of Rn.

(3) The matrix A satisfies the equation AtJA = J .

(4) The matrix A satisfies the equation AJAt = J .

(5) The rows of A form a Lorentz orthonormal basis of Rn.

Let A be a Lorentzian matrix. As AtJA = J , we have that (detA)2 = 1.
Thus detA = ±1. Let SO(1, n − 1) be the set of all A in O(1, n − 1) such
that detA = 1. Then SO(1, n−1) is a subgroup of index two in O(1, n−1).
The group SO(1, n − 1) is called the special Lorentz group.

By Corollary 1, the set of all time-like vectors in Rn has two connected
components, the set of positive time-like vectors and the set of negative
time-like vectors. A Lorentzian matrix A is said to be positive (resp. neg-
ative) if and only if A transforms positive time-like vectors into positive
(resp. negative) time-like vectors. For example, the matrix J is negative.
By continuity, a Lorentzian matrix is either positive or negative.

Let PO(1, n − 1) be the set of all positive matrices in O(1, n − 1). Then
PO(1, n−1) is a subgroup of index two in O(1, n−1). The group of positive
matrices PO(1, n − 1) is called the positive Lorentz group. Likewise, let
PSO(1, n − 1) be the set of all positive matrices in SO(1, n − 1). Then
PSO(1, n − 1) is a subgroup of index two in SO(1, n − 1). The group
PSO(1, n − 1) is called the positive special Lorentz group.

Definition: Two vectors x, y in Rn are Lorentz orthogonal if and only if
x ◦ y = 0.

Theorem 3.1.5. Let x and y be nonzero Lorentz orthogonal vectors in Rn.
If x is time-like, then y is space-like.

Proof: The vector y cannot be nonspace-like by Theorem 3.1.1.

Definition: Let V be a vector subspace of Rn. Then V is said to be

(1) time-like if and only if V has a time-like vector,

(2) space-like if and only if every nonzero vector in V is space-like, or

(3) light-like otherwise.

Theorem 3.1.6. For each dimension m, the natural action of PO(1, n−1)
on the set of m-dimensional time-like vector subspaces of Rn is transitive.



§3.1. Lorentzian n-Space 59

Proof: Let V be an m-dimensional, time-like, vector subspace of Rn.
Identify Rm with the subspace of Rn spanned by the vectors e1, . . . , em. It
suffices to show that there is an A in PO(1, n − 1) such that A(Rm) = V .
Choose a basis {u1, . . . , un} of Rn such that u1 is a positive time-like vector
in V and {u1, . . . , um} is a basis for V . Let w1 = u1

/
|||u1|||. Then we have

that w1 ◦ w1 = −1. Next, let v2 = u2 + (u2 ◦ w1)w1. Then v2 is nonzero,
since u1 and u2 are linearly independent; moreover

w1 ◦ v2 = w1 ◦ u2 + (u2 ◦ w1)(w1 ◦ w1) = 0.

Therefore v2 is space-like by Theorem 3.1.5. Now let

w2 = v2
/
‖v2‖,

v3 = u3 + (u3 ◦ w1)w1 − (u3 ◦ w2)w2,

w3 = v3
/
‖v3‖,

...
vn = un + (un ◦ w1)w1 − (un ◦ w2)w2 − · · · − (un ◦ wn−1)wn−1,

wn = vn

/
‖vn‖.

Then we have that {w1, . . . , wn} is a Lorentz orthonormal basis of Rn and
{w1, . . . , wm} is a basis of V . Let A be the n × n matrix whose columns
are w1, . . . , wn. Then A is Lorentzian by Theorem 3.1.4, and A(Rm) = V ;
moreover, A is positive, since Ae1 = w1 is positive time-like.

Theorem 3.1.7. Let x, y be positive (negative) time-like vectors in Rn.
Then x ◦ y ≤ ‖x‖ ‖y‖ with equality if and only if x and y are linearly
dependent.

Proof: By Theorem 3.1.6, there is an A in PO(1, n−1) such that Ax = te1.
As A preserves Lorentzian inner products, we can replace x and y by Ax
and Ay. Thus, we may assume that x = x1e1. Then we have

‖x‖2‖y‖2 = −x2
1(−y2

1 + |y|2) = x2
1y

2
1 − x2

1|y|2 ≤ x2
1y

2
1 = (x ◦ y)2

with equality if and only if y = 0, that is, y = y1e1. As x ◦ y = −x1y1 < 0,
we have that x◦y ≤ ‖x‖ ‖y‖ with equality if and only if x and y are linearly
dependent.

The Time-Like Angle between Time-Like Vectors

Let x and y be positive (negative) time-like vectors in Rn. By Theorem
3.1.7, there is a unique nonnegative real number η(x, y) such that

x ◦ y = ‖x‖ ‖y‖ cosh η(x, y). (3.1.7)

The Lorentzian time-like angle between x and y is defined to be η(x, y).
Note that η(x, y) = 0 if and only if x and y are positive scalar multiples of
each other.
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Exercise 3.1

1. Let A be a real n × n matrix. Prove that the following are equivalent:

(1) A is Lorentzian.
(2) ‖Ax‖ = ‖x‖ for all x in Rn.
(3) A preserves the quadratic form q(x) = −x2

1 + x2
2 + · · · + x2

n.

2. Let A be a Lorentzian n × n matrix. Show that A−1 = JAtJ .
3. Let A be a Lorentzian n × n matrix. Prove that if λ is an eigenvalue of A,

then λ−1 is an eigenvalue of A.
4. Let A = (aij) be a matrix in O(1, n − 1). Show that A is positive (negative)

if and only if a11 > 0 (a11 < 0).
5. Let A = (aij) be a matrix in PO(1, n − 1). Prove that a11 ≥ 1 with equality

if and only if A is orthogonal.
6. Show that O(n − 1) is isomorphic to PO(1, n − 1) ∩ O(n) via the mapping

A �→

⎛⎜⎜⎝
1 0 · · · 0
0
... A
0

⎞⎟⎟⎠ .

7. Show that PO(1, n − 1) is naturally isomorphic to the projective Lorentz
group O(1, n − 1)/{±I}.

8. Show that every matrix in PSO(1, 1) is of the form(
cosh s sinh s
sinh s cosh s

)
.

9. The Lorentzian complement of a vector subspace V of Rn is defined to be
the set

V L = {x ∈ Rn : x ◦ y = 0 for all y in V }.

Show that V L = J(V ⊥) and (V L)L = V .
10. Let V be a vector subspace of Rn. Prove that the following are equivalent:

(1) The subspace V is time-like.
(2) The subspace V L is space-like.
(3) The subspace V ⊥ is space-like.

11. Let V be a 2-dimensional time-like subspace of Rn. Show that V ∩ Cn−1 is
the union of two lines that intersect at the origin.

12. Let V be a vector subspace of Rn. Prove that V is light-like if and only if
V ∩ Cn−1 is a line passing through the origin.

13. Show that PO(1, n − 1) acts transitively on the hyperboloid Gn−1 in Rn

defined by the equation −x2
1 + x2

2 + · · · + x2
n = 1.

14. Show that PO(1, n − 1) acts transitively on

(1) the set of m-dimensional space-like subspaces of Rn, and
(2) the set of m-dimensional light-like subspaces of Rn.
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§3.2. Hyperbolic n-Space

Since a sphere of radius r in Rn+1 is of constant curvature 1/r2 and hyper-
bolic n-space is of constant negative curvature, the duality between spheri-
cal and hyperbolic geometries suggests that hyperbolic n-space should be a
sphere of imaginary radius. As imaginary lengths are possible in Lorentzian
(n+1)-space, we should take as our model for hyperbolic n-space the sphere
of unit imaginary radius

Fn = {x ∈ Rn+1 : ‖x‖2 = −1}.

The only problem is that the set Fn is disconnected. The set Fn is a
hyperboloid of two sheets defined by the equation x2

1 −|x|2 = 1. The subset
of all x in Fn such that x1 > 0 (resp. x1 < 0) is called the positive (resp.
negative) sheet of Fn. We get around this problem by identifying antipodal
vectors of Fn or equivalently by discarding the negative sheet of Fn. The
hyperboloid model Hn of hyperbolic n-space is defined to be the positive
sheet of Fn. See Figure 3.2.1.

Let x, y be vectors in Hn and let η(x, y) be the Lorentzian time-like
angle between x and y. The hyperbolic distance between x and y is defined
to be the real number

dH(x, y) = η(x, y). (3.2.1)

As x ◦ y = ‖x‖ ‖y‖ cosh η(x, y), we have the equation
cosh dH(x, y) = −x ◦ y. (3.2.2)

We shall prove that dH is a metric on Hn, but first we need some prelimi-
nary results concerning cross products in R3.

x1

x2

x3

Figure 3.2.1. The hyperboloid F 2 inside C2
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Lorentzian Cross Products

Let x, y be vectors in R3 and let

J =

⎛⎝−1 0 0
0 1 0
0 0 1

⎞⎠ . (3.2.3)

The Lorentzian cross product of x and y is defined to be

x ⊗ y = J(x × y). (3.2.4)

Observe that

x ◦ (x ⊗ y) = x ◦ J(x × y) = x · (x × y) = 0,

y ◦ (x ⊗ y) = y ◦ J(x × y) = y · (x × y) = 0.

Hence x ⊗ y is Lorentz orthogonal to both x and y. The next theorem
follows easily from Theorem 2.1.1 and the following identity:

x ⊗ y = J(y) × J(x).

Theorem 3.2.1. If w, x, y, z are vectors in R3, then

(1) x ⊗ y = −y ⊗ x,

(2) (x ⊗ y) ◦ z =

∣∣∣∣∣ x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣,
(3) x ⊗ (y ⊗ z) = (x ◦ y)z − (z ◦ x)y,

(4) (x ⊗ y) ◦ (z ⊗ w) =
∣∣∣∣ x ◦ w x ◦ z

y ◦ w y ◦ z

∣∣∣∣ .
Corollary 1. If x, y are linearly independent, positive (negative), time-like
vectors in R3, then x⊗ y is space-like and ‖x⊗ y‖ = −‖x‖ ‖y‖ sinh η(x, y).

Proof: By Theorem 3.2.1(4), we have

‖x ⊗ y‖2 = (x ◦ y)2 − ‖x‖2‖y‖2

= ‖x‖2‖y‖2 cosh2 η(x, y) − ‖x‖2‖y‖2

= ‖x‖2‖y‖2 sinh2 η(x, y).

Corollary 2. If x, y are space-like vectors in R3, then

(1) |x ◦ y| < ‖x‖ ‖y‖ if and only if x ⊗ y is time-like,

(2) |x ◦ y| = ‖x‖ ‖y‖ if and only if x ⊗ y is light-like,

(3) |x ◦ y| > ‖x‖ ‖y‖ if and only if x ⊗ y is space-like.

Proof: By Theorem 3.2.1(4), we have ‖x ⊗ y‖2 = (x ◦ y)2 − ‖x‖2‖y‖2.
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Theorem 3.2.2. The hyperbolic distance function dH is a metric on Hn.

Proof: The function dH is obviously nonnegative and symmetric, and
nondegenerate by Theorem 3.1.7. It remains only to prove the triangle
inequality

dH(x, z) ≤ dH(x, y) + dH(y, z).

The positive Lorentz transformations of Rn+1 act on Hn and obviously
preserve hyperbolic distances. Thus, we are free to transform x, y, z by a
positive Lorentz transformation. Now the three vectors x, y, z span a vector
subspace of Rn+1 of dimension at most three. By Theorem 3.1.6, we may
assume that x, y, z are in the subspace of Rn+1 spanned by e1, e2, e3. In
other words, we may assume that n = 2. By Corollary 1, we have

‖x ⊗ y‖ = sinh η(x, y) and ‖y ⊗ z‖ = sinh η(y, z).

As y is Lorentz orthogonal to both x ⊗ y and y ⊗ z, the vectors y and
(x⊗ y)⊗ (y ⊗ z) are linearly dependent. Therefore, the latter is either zero
or time-like. By Corollary 2, we have

|(x ⊗ y) ◦ (y ⊗ z)| ≤ ‖x ⊗ y‖ ‖y ⊗ z‖.

Putting this all together, we have

cosh(η(x, y) + η(y, z))
= cosh η(x, y) cosh η(y, z) + sinh η(x, y) sinh η(y, z)
= (x ◦ y)(y ◦ z) + ‖x ⊗ y‖ ‖y ⊗ z‖
≥ (x ◦ y)(y ◦ z) + (x ⊗ y) ◦ (y ⊗ z)
= (x ◦ y)(y ◦ z) + ((x ◦ z)(y ◦ y) − (x ◦ y)(y ◦ z))
= −x ◦ z

= cosh η(x, z).

Thus, we have that η(x, z) ≤ η(x, y) + η(y, z).

The metric dH on Hn is called the hyperbolic metric. The metric topol-
ogy of Hn determined by dH is the same as the metric topology determined
by the Euclidean metric dE on Hn defined by

dE(x, y) = |x − y|. (3.2.5)

The metric space consisting of Hn together with its hyperbolic metric dH

is called hyperbolic n-space. Henceforth Hn will denote hyperbolic n-space.
An isometry from Hn to itself is called a hyperbolic isometry.

Theorem 3.2.3. Every positive Lorentz transformation of Rn+1 restricts
to an isometry of Hn, and every isometry of Hn extends to a unique positive
Lorentz transformation of Rn+1.
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Proof: Clearly, a function φ : Hn → Hn is an isometry if and only if it
preserves Lorentzian inner products on Hn. Therefore, a positive Lorentz
transformation of Rn+1 restricts to an isometry of Hn.

Conversely, suppose that φ : Hn → Hn is an isometry. Assume first
that φ fixes e1. Let φ1, . . . , φn+1 be the components of φ. Then

φ1(x) = −φ(x) ◦ e1

= −φ(x) ◦ φ(e1)
= −x ◦ e1 = x1.

Thus φ(x) = (x1, φ2(x), . . . , φn+1(x)).
Let p : Hn → Rn be defined by p(x) = x, where x = (x2, . . . , xn+1).

Then p is a bijection. Define φ : Rn → Rn by

φ(u) = (φ2(p−1(u)), . . . , φn+1(p−1(u))).

Then φ(x) = φ(x) for all x in Hn. As φ(x) ◦ φ(y) = x ◦ y, we have

−x1y1 + φ(x) · φ(y) = −x1y1 + x · y.

Therefore φ(x) · φ(y) = x · y. Thus φ is an orthogonal transformation. By
Theorem 1.3.2, there is an orthogonal n×n matrix A such that Au = φ(u)
for all u in Rn. Let Â be the matrix⎛⎜⎜⎜⎝

1 0 · · · 0
0
... A
0

⎞⎟⎟⎟⎠ .

Then Â is positive Lorentzian and Âx = φ(x) for all x in Hn.
Now assume that φ is an arbitrary isometry of Hn. By Theorem 3.1.6,

there is a B in PO(1, n) such that Bφ(e1) = e1. As Bφ extends to a
positive Lorentz transformation of Rn+1, the same is true of φ. Suppose
that C and D are in PO(1, n) and extend φ. Then D−1C fixes each point
of Hn. As Hn is not contained in any proper vector subspace of Rn+1, we
have that D−1C fixes all of Rn+1. Therefore C = D. Thus φ extends to a
unique positive Lorentz transformation of Rn+1.

Corollary 3. The group of hyperbolic isometries I(Hn) is isomorphic to
the positive Lorentz group PO(1, n).

Hyperbolic Geodesics

Definition: A hyperbolic line of Hn is the intersection of Hn with a
2-dimensional time-like vector subspace of Rn+1.

Let x and y be distinct points of Hn. Then x and y span a 2-dimensional
time-like subspace V (x, y) of Rn+1, and so

L(x, y) = Hn ∩ V (x, y)
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is the unique hyperbolic line of Hn containing both x and y. Note that
L(x, y) is a branch of a hyperbola.

Definition: Three points x, y, z of Hn are hyperbolically collinear if and
only if there is a hyperbolic line L of Hn containing x, y, z.

Lemma 1. If x, y, z are points of Hn and

η(x, y) + η(y, z) = η(x, z),

then x, y, z are hyperbolically collinear.

Proof: As x, y, z span a time-like vector subspace of Rn+1 of dimension
at most 3, we may assume that n = 2. From the proof of Theorem 3.2.2,
we have that

(x ⊗ y) ◦ (y ⊗ z) = ‖x ⊗ y‖ ‖y ⊗ z‖.

By Corollary 2, we have that (x ⊗ y) ⊗ (y ⊗ z) is light-like. Now since

(x ⊗ y) ⊗ (y ⊗ z) = −((x ⊗ y) ◦ z)y

and y is time-like, we have that (x⊗y)◦z = 0. Consequently x, y, z are lin-
early dependent by Theorem 3.2.1(2). Hence x, y, z lie on a 2-dimensional
time-like vector subspace of R3 and so are hyperbolically collinear.

Definition: Two vectors x, y in Rn+1 are Lorentz orthonormal if and only
if ‖x‖2 = −1 and x ◦ y = 0 and ‖y‖2 = 1.

Theorem 3.2.4. Let α : [a, b] → Hn be a curve. Then the following are
equivalent:

(1) The curve α is a geodesic arc.

(2) There are Lorentz orthonormal vectors x, y in Rn+1 such that

α(t) = (cosh(t − a))x + (sinh(t − a))y.

(3) The curve α satisfies the differential equation α′′ − α = 0.

Proof: Let A be a Lorentz transformation of Rn+1. Then (Aα)′ = Aα′.
Consequently α satisfies (3) if and only if Aα does. Hence, we are free to
transform α by a Lorentz transformation. Suppose that α is a geodesic arc.
Let t be in the interval [a, b]. Then we have

η(α(a), α(b)) = b − a

= (t − a) + (b − t)
= η(α(a), α(t)) + η(α(t), α(b)).

By Lemma 1, we have that α(a), α(t), α(b) are hyperbolically collinear.
Consequently, the image of α is contained in a hyperbolic line L of Hn.
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Hence, we may assume that n = 1. By applying a Lorentz transformation
of the form (

cosh s sinh s
sinh s cosh s

)
we can transform α(a) to e1, and so we may assume that α(a) = e1. Then

e1 · α(t) = −α(a) ◦ α(t)
= cosh η(α(a), α(t))
= cosh(t − a).

Therefore e2 ·α(t) = ± sinh(t− a). As α is continuous, the plus sign or the
minus sign in the last equation holds for all t. Hence we may assume that

α(t) = (cosh(t − a))e1 + (sinh(t − a))(±e2).
Thus (1) implies (2).

Next, suppose there are Lorentz orthonormal vectors x, y in Rn+1 such
that

α(t) = (cosh(t − a))x + (sinh(t − a))y.

Let s and t be such that a ≤ s ≤ t ≤ b. Then we have
cosh η(α(s), α(t)) = −α(s) ◦ α(t)

= cosh(s − a) cosh(t − a) − sinh(s − a) sinh(t − a)
= cosh(t − s).

Therefore η(α(s), α(t)) = t−s. Thus α is a geodesic arc. Hence (2) implies
(1). Clearly (2) implies (3). Suppose that (3) holds. Then

α(t) = cosh(t − a)α(a) + sinh(t − a)α′(a).
On differentiating the equation α(t)◦α(t) = −1, we see that α(t)◦α′(t) = 0.
In particular, α(a) ◦ α′(a) = 0. Observe that

‖α(t)‖2 = − cosh2(t − a) + sinh2(t − a)‖α′(a)‖2.

As ‖α(t)‖2 = −1, we have that ‖α′(a)‖2 = 1. Therefore α(a), α′(a) are
Lorentz orthonormal. Thus (3) implies (2).

Theorem 3.2.5. A function λ : R → Hn is a geodesic line if and only if
there are Lorentz orthonormal vectors x, y in Rn+1 such that

λ(t) = (cosh t)x + (sinh t)y.

Proof: Suppose there are Lorentz orthonormal vectors x, y in Rn+1 such
that λ(t) = (cosh t)x + (sinh t)y. Then λ satisfies the differential equation
λ′′ − λ = 0. Hence, the restriction of λ to any interval [a, b], with a < b, is
a geodesic arc by Theorem 3.2.4. Thus λ is a geodesic line.

Conversely, suppose that λ is a geodesic line. By Theorem 3.2.4, the
function λ satisfies the differential equation λ′′ − λ = 0. Consequently

λ(t) = (cosh t)λ(0) + (sinh t)λ′(0).
The same argument as in the proof of Theorem 3.2.4 shows that λ(0), λ′(0)
are Lorentz orthonormal.
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Corollary 4. The geodesics of Hn are its hyperbolic lines.

Proof: By Theorem 3.2.5, every geodesic of Hn is a hyperbolic line.
Conversely, let L be a hyperbolic line of Hn. By Theorem 3.1.6, we may
assume that n = 1. Then L = H1. Define λ : R → H1 by

λ(t) = (cosh t)e1 + (sinh t)e2.

Then λ is a geodesic line mapping onto H1. Thus L is a geodesic.

Hyperplanes

We now consider the geometry of hyperplanes of Hn.

Definition: A hyperbolic m-plane of Hn is the intersection of Hn with
an (m + 1)-dimensional time-like vector subspace of Rn+1.

Note that a hyperbolic 1-plane of Hn is the same as a hyperbolic line of
Hn. A hyperbolic (n − 1)-plane of Hn is called a hyperplane of Hn.

Let x be a space-like vector in Rn+1. Then the Lorentzian complement of
the vector subspace 〈x〉 spanned by x is an n-dimensional time-like vector
subspace of Rn+1. Hence P = 〈x〉L ∩ Hn is a hyperplane of Hn. The
hyperplane P is called the hyperplane of Hn Lorentz orthogonal to x.

Theorem 3.2.6. Let x and y be linearly independent space-like vectors in
Rn+1. Then the following are equivalent:

(1) The vectors x and y satisfy the equation |x ◦ y| < ‖x‖ ‖y‖.
(2) The vector subspace V spanned by x and y is space-like.

(3) The hyperplanes P and Q of Hn Lorentz orthogonal to x and y, re-
spectively, intersect.

Proof: Assume that (1) holds. Then for nonzero real numbers s and t,
we have that

‖sx + ty‖2 = ‖sx‖2 + 2st(x ◦ y) + ‖ty‖2

> ‖sx‖2 − 2|st| ‖x‖ ‖y‖ + ‖ty‖2

= (‖sx‖ − ‖ty‖)2

≥ 0.

Thus V is space-like.
Conversely, if (2) holds, then the Lorentzian inner product on V is pos-

itive definite. Hence, Cauchy’s inequality holds in V , and so (1) holds.
Thus (1) and (2) are equivalent. Now (2) and (3) are equivalent, since
V L = 〈x〉L ∩ 〈y〉L.
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The Space-Like Angle between Space-Like Vectors

Let x and y be space-like vectors in Rn+1 that span a space-like vector
subspace. Then by Theorem 3.2.6, we have that

|x ◦ y| ≤ ‖x‖ ‖y‖

with equality if and only if x and y are linearly dependent. Hence, there is
a unique real number η(x, y) between 0 and π such that

x ◦ y = ‖x‖ ‖y‖ cos η(x, y). (3.2.6)

The Lorentzian space-like angle between x and y is defined to be η(x, y).
Note that η(x, y) = 0 if and only if x and y are positive scalar multiples
of each other, η(x, y) = π/2 if and only if x and y are Lorentz orthogonal,
and η(x, y) = π if and only if x and y are negative scalar multiples of each
other.

Let λ, µ : R → Hn be geodesic lines such λ(0) = µ(0). Then λ′(0)
and µ′(0) span a space-like vector subspace of Rn+1. The hyperbolic angle
between λ and µ is defined to be the Lorentzian space-like angle between
λ′(0) and µ′(0).

Let P be a hyperplane of Hn and let λ : R → Hn be a geodesic line
such that λ(0) is in P . Then the hyperbolic line L = λ(R) is said to be
Lorentz orthogonal to P if and only if P is the hyperplane of Hn Lorentz
orthogonal to λ′(0).

Theorem 3.2.7. Let x and y be linearly independent space-like vectors in
Rn+1. Then the following are equivalent:

(1) The vectors x and y satisfy the inequality |x ◦ y| > ‖x‖ ‖y‖.
(2) The vector subspace V spanned by x and y is time-like.

(3) The hyperplanes P and Q of Hn Lorentz orthogonal to x and y, re-
spectively, are disjoint and have a common Lorentz orthogonal hyper-
bolic line.

Proof: Except for scalar multiples of x, every element of V is a scalar
multiple of an element of the form tx + y for some real number t. Observe
that the expression

‖tx + y‖2 = t2‖x‖2 + 2t(x ◦ y) + ‖y‖2

is a quadratic polynomial in t. This polynomial takes on negative values if
and only if its discriminant

4(x ◦ y)2 − 4‖x‖2‖y‖2

is positive. Thus (1) and (2) are equivalent.
Suppose that V is time-like. Then V L is space-like. Now since V L =

〈x〉L ∩ 〈y〉L, we have that P and Q are disjoint. Observe that N = V ∩Hn
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is a hyperbolic line and V ∩ 〈x〉L is a 1-dimensional subspace of Rn+1.
Moreover, the equation

(tx + y) ◦ x = 0

has the unique solution
t = −x ◦ y/‖x‖2.

Furthermore

‖tx + y‖2 = − (x ◦ y)2

‖x‖2 + ‖y‖2 < 0.

Hence V ∩ 〈x〉L is time-like. Thus N ∩ P is the single point

u =
−(x ◦ y)(x/‖x‖) + ‖x‖y

±
√

(x ◦ y)2 − ‖x‖2‖y‖2
,

where the plus or minus sign is chosen so that u is positive time-like. Like-
wise N ∩ Q is a single point v. Let λ : R → Hn be a geodesic line such
that λ(0) = u and λ(R) = N . As λ′(0) and x are both Lorentz orthogonal
to u in V , we have that λ′(0) is a scalar multiple of x. Thus N is Lorentz
orthogonal to P . Likewise N is Lorentz orthogonal to Q.

Conversely, assume that (3) holds. Let N be the common Lorentz or-
thogonal hyperbolic line to P and Q. Then there is a 2-dimensional time-
like vector subspace W of Rn+1 such that N = W ∩ Hn. As N is Lorentz
orthogonal to P , we have that x is in W . Likewise y is in W . Hence
V = W , and so V is time-like.

Remark: The proof of Theorem 3.2.7 shows that if P and Q are disjoint
hyperplanes of Hn, with a common Lorentz orthogonal hyperbolic line N ,
then N is unique; moreover, if x, y are space-like vectors in Rn+1 Lorentz
orthogonal to P, Q, respectively, then x and y are tangent vectors of N .

The Time-Like Angle between Space-Like Vectors

Let x and y be space-like vectors in Rn+1 that span a time-like vector
subspace. By Theorem 3.2.7, we have that |x ◦ y| > ‖x‖ ‖y‖. Hence, there
is a unique positive real number η(x, y) such that

|x ◦ y| = ‖x‖ ‖y‖ cosh η(x, y). (3.2.7)

The Lorentzian time-like angle between x and y is defined to be η(x, y).
We now give a geometric interpretation of η(x, y).

Theorem 3.2.8. Let x and y be space-like vectors in Rn+1 that span a
time-like vector subspace, and let P, Q be the hyperplanes of Hn Lorentz
orthogonal to x, y, respectively. Then η(x, y) is the hyperbolic distance from
P to Q measured along the hyperbolic line N Lorentz orthogonal to P and
Q. Moreover x◦y < 0 if and only if x and y are oppositely oriented tangent
vectors of N .
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Proof: From the proof of Theorem 3.2.7, we have that P ∩N is the point

u =
−(x ◦ y)(x/‖x‖) + ‖x‖y

±
√

(x ◦ y)2 − ‖x‖2‖y‖2

and Q ∩ N is the point

v =
‖y‖x − (x ◦ y)(y/‖y‖)

±
√

(x ◦ y)2 − ‖x‖2‖y‖2
.

Now

cosh dH(u, v) = −u ◦ v

=
−((x ◦ y)3/‖x‖ ‖y‖) + (x ◦ y)‖x‖ ‖y‖

±((x ◦ y)2 − ‖x‖2‖y‖2)

=
−((x ◦ y)3 − (x ◦ y)‖x‖2‖y‖2)/‖x‖ ‖y‖

±((x ◦ y)2 − ‖x‖2‖y‖2)

=
−(x ◦ y)
±‖x‖ ‖y‖

=
|x ◦ y|

‖x‖ ‖y‖
= cosh η(x, y).

Moreover, the calculation of −u ◦ v shows that u and v have the same sign
if and only if x ◦ y < 0. Observe that u and v are in the 2-dimensional
time-like subspace V spanned by x and y. Evidently u and v are in the
quadrant of V between x and y or −x and −y if and only if the coefficient
−x ◦ y of u and v is positive. Thus x and y are oppositely oriented tangent
vectors of N if and only if x ◦ y < 0.

Let x and y be space-like vectors in Rn+1 and let P, Q be the hyperplanes
of Hn Lorentz orthogonal to x, y, respectively. Then P and Q are said to
meet at infinity if and only if 〈x〉L ∩ 〈y〉L is light-like. If P and Q meet at
infinity, then P and Q are disjoint, but when viewed from the origin, they
appear to meet at the positive ideal endpoint of the 1-dimensional light-like
subspace of 〈x〉L ∩ 〈y〉L.

Theorem 3.2.9. Let x and y be linearly independent space-like vectors in
Rn+1. Then the following are equivalent:

(1) The vectors x and y satisfy the equation |x ◦ y| = ‖x‖ ‖y‖.
(2) The vector subspace V spanned by x and y is light-like.

(3) The hyperplanes P and Q of Hn Lorentz orthogonal to x and y, re-
spectively, meet at infinity.

Proof: (1) and (2) are equivalent by Theorems 3.2.6 and 3.2.7, and (2)
and (3) are equivalent, since V L = 〈x〉L ∩ 〈y〉L. See Exercise 3.1.10.
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Theorem 3.2.10. Let x and y be linearly independent space-like vectors in
Rn+1 such that the vector subspace V spanned by x and y is light-like. Then
x ◦ y < 0 if and only if x and y are on opposite sides of the 1-dimensional
light-like subspace of V .

Proof: The equation ‖tx+ y‖ = 0 is equivalent to the quadratic equation
t2‖x‖2 + 2(x ◦ y)t + ‖y‖2 = 0,

which by Theorem 3.2.9 has the unique solution
t = −(x ◦ y)/‖x‖2.

Observe that the light-like vector
−(x ◦ y)(x/‖x‖2) + y

is in the quadrant of V between x and y if and only if x ◦ y < 0. Hence x
and y are on opposite sides of the 1-dimensional light-like subspace of V if
and only if x ◦ y < 0.

Theorem 3.2.11. Let y be a point of Hn and let P be a hyperplane of
Hn. Then there is a unique hyperbolic line N of Hn passing through y and
Lorentz orthogonal to P .

Proof: Let x be a unit space-like vector Lorentz orthogonal to P , and let
V be the subspace spanned by x and y. Then N = V ∩ Hn is a hyperbolic
line passing through y. Now the equation

(tx + y) ◦ x = 0
has the solution t = −x ◦ y. Hence

w =
−(x ◦ y)x + y

±
√

(x ◦ y)2 + 1
is a point of P ∩N . Let λ : R → Hn be a geodesic line such that λ(R) = N
and λ(0) = w. As w, x are Lorentz orthonormal vectors, we have

λ(t) = (cosh t)w ± (sinh t)x.

Hence λ′(0) = ±x. Thus N is Lorentz orthogonal to P .
Suppose that N is a hyperbolic line passing through y and Lorentz

orthogonal to P . Let λ : R → Hn be a geodesic line such that λ(R) = N
and λ(0) is in P . Then λ′(0) is Lorentz orthogonal to P . Hence λ′(0) = ±x.
Let W be the 2-dimensional time-like subspace such that N = W ∩ Hn.
As x and y are in W , we have that W = V . Thus N is unique.

The Angle between Space-Like and Time-Like Vectors

Let x be a space-like vector and y a positive time-like vector in Rn+1. Then
there is a unique nonnegative real number η(x, y) such that

|x ◦ y| = ‖x‖ |||y||| sinh η(x, y). (3.2.8)
The Lorentzian time-like angle between x and y is defined to be η(x, y).
We now give a geometric interpretation of η(x, y).
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Theorem 3.2.12. Let x be a space-like vector and y a positive time-like
vector in Rn+1, and let P be the hyperplane of Hn Lorentz orthogonal
to x. Then η(x, y) is the hyperbolic distance from y/|||y||| to P measured
along the hyperbolic line N passing through y/|||y||| Lorentz orthogonal to
P . Moreover x ◦ y < 0 if and only if x and y are on opposite sides of the
hyperplane of Rn+1 spanned by P .

Proof: As in the proof of Theorem 3.2.8, we have that P ∩N is the point

u =
−(x ◦ y)(x/‖x‖) + ‖x‖y

±
√

(x ◦ y)2 − ‖x‖2‖y‖2
.

Let v = y/|||y|||. Then

cosh dH(u, v) = −u ◦ v

=

√
(x ◦ y)2 − ‖x‖2‖y‖2

‖x‖ |||y|||

= cosh η(x, y).

Moreover, the calculation of −u◦v shows that u has the plus sign. Observe
that u is in the 2-dimensional time-like subspace V spanned by x and y.
Evidently u is in the quadrant of V between x and y if and only if the
coefficient −x ◦ y of u is positive. Thus x and y are on opposite sides of
the hyperplane of Rn+1 spanned by P if and only if x ◦ y < 0.

Exercise 3.2

1. Show that the metric topology of Hn determined by the hyperbolic metric is
the same as the metric topology of Hn determined by the Euclidean metric.

2. Prove that Hn is homeomorphic to En.

3. Show that every hyperbolic line of Hn is the branch of a hyperbola whose
asymptotes are 1-dimensional light-like vector subspaces of Rn+1.

4. Prove that Hn is geodesically complete.

5. Two hyperbolic lines of Hn are said to be parallel if and only if there is a
hyperbolic 2-plane containing both lines and the lines are disjoint. Show
that for each point x of Hn outside a hyperbolic line L, there are infinitely
many hyperbolic lines passing through x parallel to L.

6. Prove that a nonempty subset X of Hn is totally geodesic if and only if X
is a hyperbolic m-plane of Hn for some m.

7. Prove that H1 is isometric to E1, but Hn is not isometric to En for n > 1.

8. Let u0, . . . , un be linearly independent vectors in Hn, let v0, . . . , vn be lin-
early independent vectors in Hn, and suppose that η(ui, uj) = η(vi, vj) for
all i, j. Prove that there is a unique hyperbolic isometry φ of Hn such that
φ(ui) = vi for each i = 0, . . . , n.
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9. A tangent vector to Hn at a point x of Hn is defined to be the derivative
at 0 of a differentiable curve γ : [−b, b] → Hn such that γ(0) = x. Let
Tx = Tx(Hn) be the set of all tangent vectors to Hn at x. Show that

Tx = {y ∈ Rn+1 : x ◦ y = 0}.

Conclude that Tx is an n-dimensional space-like vector subspace of Rn+1.
The vector space Tx is called the tangent space of Hn at x.

10. A coordinate frame of Hn is an n-tuple of functions (λ1, . . . , λn) such that

(1) the function λi : R → Hn is a geodesic line for each i = 1, . . . , n;

(2) there is a point x of Hn such that λi(0) = x for all i; and

(3) the set {λ′
1(0), . . . , λ′

n(0)} is a Lorentz orthonormal basis of Tx(Hn).

Show that the action of I(Hn) on the set of coordinate frames of Hn, given
by φ(λ1, . . . , λn) = (φλ1, . . . , φλn), is transitive.

§3.3. Hyperbolic Arc Length

In this section, we compare the hyperbolic length of a curve γ in Hn with
its Lorentzian length in Rn+1 and show that they are the same. In the
process, we find the element of hyperbolic arc length of Hn.

Let x, y be points of Hn. By Theorem 3.1.7, we have

‖x − y‖2 = ‖x‖2 − 2x ◦ y + ‖y‖2

≥ −2 − 2‖x‖ ‖y‖ = 0

with equality if and only if x = y. Hence, the Lorentzian distance function

dL(x, y) = ‖x − y‖ (3.3.1)

satisfies the first three axioms for a metric on Hn. Unfortunately, dL does
not satisfy the triangle inequality. Nevertheless, we can still use dL to
define the length of a curve in Hn.

Let γ : [a, b] → Hn be a curve and let P = {t0, . . . , tm} be a partition
of [a, b]. The Lorentzian P -inscribed length of γ is defined to be


L(γ, P ) =
m∑

i=1

‖γ(ti) − γ(ti−1)‖. (3.3.2)

The curve γ is said to be Lorentz rectifiable if and only if there is a real
number 
(γ) such that for each ε > 0 there is a partition P of [a, b] such
that if Q ≤ P , then ∣∣
(γ) − 
L(γ, Q)

∣∣ < ε.

If 
(γ) exists, then it is unique, since if P and Q are partitions of [a, b],
then there is a partition R of [a, b] such that R ≤ P, Q.

The Lorentzian length ‖γ‖ of γ is defined to be 
(γ) if γ is Lorentz
rectifiable or ∞ otherwise.
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Theorem 3.3.1. Let γ : [a, b] → Hn be a curve. Then γ is rectifiable in
Hn if and only if γ is Lorentz rectifiable; moreover, the hyperbolic length
of γ is the same as the Lorentzian length of γ.

Proof: Let x, y be in Hn. Then we have

‖x − y‖2 = ‖x‖2 − 2x ◦ y + ‖y‖2

= 2(cosh η(x, y) − 1).

Now since
cosh η ≥ 1 + (η2/2),

we have that
‖x − y‖ ≥ η(x, y).

Suppose that γ is Lorentz rectifiable. Then there is a partition P of [a, b]
such that if Q ≤ P , then ∣∣ ‖γ‖ − 
L(γ, Q)

∣∣ < 1.

Hence, for all Q ≤ P , we have


H(γ, Q) ≤ 
L(γ, Q) ≤ ‖γ‖ + 1.

Thus γ is rectifiable. By Taylor’s theorem, we have

cosh η ≤ 1 +
η2

2
+

η4

24
cosh η.

Hence, if cosh η(x, y) ≤ 12, we have

‖x − y‖ ≤ η(x, y)
√

1 + η2(x, y).

Now suppose that γ is rectifiable and ε > 0. Then there is a partition
P of [a, b] such that

|γ|H − 
H(γ, P ) < ε.

Let δ > 0 and set

µ(γ, δ) = sup
{
η(γ(s), γ(t)) : |s − t| ≤ δ

}
.

As γ is uniformly continuous, µ(γ, δ) goes to zero with δ. Hence, there is
a δ > 0 such that cosh µ(γ, δ) ≤ 12 and

|γ|H
√

1 + µ2(γ, δ) < |γ|H + ε.

Now we may assume that |P | ≤ δ. Then for all Q ≤ P , we have

|γ|H − ε < 
H(γ, Q)
≤ 
L(γ, Q)

≤ 
H(γ, Q)
√

1 + µ2

≤ |γ|H
√

1 + µ2

< |γ|H + ε.
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Hence, we have ∣∣ |γ|H − 
L(γ, Q)
∣∣ < ε for all Q ≤ P.

Thus γ is Lorentz rectifiable and ‖γ‖ = |γ|H .

Let γ : [a, b] → Hn be a differentiable curve. As γ(t) ◦ γ(t) = −1, we
have γ(t) ◦ γ′(t) = 0. Hence γ′(t) is space-like for all t by Theorem 3.1.5.

Theorem 3.3.2. Let γ : [a, b] → Hn be a C1 curve. Then γ is rectifiable
and the hyperbolic length of γ is given by the formula

‖γ‖ =
∫ b

a

‖γ′(t)‖dt.

Proof: Define f : [a, b]n+1 → R by the formula

f(x) = | − γ′
1(x1)2 + γ′

2(x2)2 + · · · + γ′
n+1(xn+1)2|

1
2 .

Then f is continuous. Observe that the set

{|f(x) − f(y)| : x, y ∈ [a, b]n+1}
is bounded, since [a, b]n+1 is compact. Let δ > 0 and set

µ(f, δ) = sup
{
|f(x) − f(y)| : |xi − yi| ≤ δ for i = 1, . . . , n + 1

}
.

Let P = {t0, . . . , tm} be a partition of [a, b] such that |P | ≤ δ. By the mean
value theorem, there is a real number sij between tj−1 and tj such that

γi(tj) − γi(tj−1) = γ′
i(sij)(tj − tj−1).

Then we have
‖γ(tj) − γ(tj−1)‖ = f(sj)(tj − tj−1),

where sj = (s1,j , . . . , sn+1,j). Hence∣∣ ‖γ(tj) − γ(tj−1)‖ − ‖γ′(tj)‖(tj − tj−1)
∣∣

=
∣∣f(sj) − ‖γ′(tj)‖

∣∣(tj − tj−1)

≤ µ(f, δ)(tj − tj−1).

Set

S(γ, P ) =
m∑

j=1

‖γ′(tj)‖(tj − tj−1).

Then we have ∣∣
L(γ, P ) − S(γ, P )
∣∣

≤
m∑

j=1

∣∣ ‖γ(tj) − γ(tj−1)‖ − ‖γ′(tj)‖(tj − tj−1)
∣∣

≤
m∑

j=1

µ(f, δ)(tj − tj−1) = µ(f, δ)(b − a).
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Next, observe that∣∣∣∣∫ b

a

‖γ′(t)‖dt − S(γ, P )
∣∣∣∣

=
∣∣∣∣ m∑
j=1

∫ tj

tj−1

(‖γ′(t)‖ − ‖γ′(tj)‖)dt

∣∣∣∣
≤

m∑
j=1

∣∣∣∣∫ tj

tj−1

(‖γ′(t)‖ − ‖γ′(tj)‖)dt

∣∣∣∣
≤

m∑
j=1

∫ tj

tj−1

∣∣ ‖γ′(t)‖ − ‖γ′(tj)‖
∣∣dt

≤
m∑

j=1

∫ tj

tj−1

µ(f, δ)dt = µ(f, δ)(b − a).

Thus ∣∣∣∣∫ b

a

‖γ′(t)‖dt − 
L(γ, P )
∣∣∣∣

≤
∣∣∣∫ b

a

‖γ′(t)‖dt − S(γ, P )
∣∣∣+ ∣∣S(γ, P ) − 
L(γ, P )

∣∣
≤ 2µ(f, δ)(b − a).

Now f : [a, b]n+1 → R is uniformly continuous, since [a, b]n+1 is compact.
Therefore µ(f, δ) goes to zero with δ. Hence

lim
|P |→0


L(γ, P ) =
∫ b

a

‖γ′(t)‖dt.

Let γ : [a, b] → Hn be a curve. Set dx = (dx1, . . . , dxn+1) and
‖dx‖ = (−dx2

1 + dx2
2 + · · · + dx2

n+1)
1
2 . (3.3.3)

Then by definition, we have ∫
γ

‖dx‖ = ‖γ‖. (3.3.4)

Moreover, if γ is a C1 curve, then by Theorem 3.3.2, we have∫
γ

‖dx‖ =
∫ b

a

‖γ′(t)‖dt. (3.3.5)

The differential ‖dx‖ is called the element of hyperbolic arc length of Hn.

Exercise 3.3

1. Let x, y, z be distinct points of H1 with y between x and z. Prove that

dL(x, z) > dL(x, y) + dL(y, z).

2. Prove that a curve γ : [a, b] → Hn is rectifiable in Hn if and only if γ is
rectifiable in En+1.
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§3.4. Hyperbolic Volume

Let x be a positive time-like vector in R1,n, with n > 1, such that xn and
xn+1 are not both zero. The hyperbolic coordinates (ρ, η1, . . . , ηn) of x are
defined as follows:

(1) ρ = |||x|||,

(2) ηi = η(ei, xiei + xi+1ei+1 + · · · + xn+1en+1) if i < n,

(3) ηn is the polar angle from en to xnen + xn+1en+1.

The hyperbolic coordinates of x satisfy the system of equations

x1 = ρ cosh η1,

x2 = ρ sinh η1 cos η2,

... (3.4.1)
xn = ρ sinh η1 sin η2 · · · sin ηn−1 cos ηn,

xn+1 = ρ sinh η1 sin η2 · · · sin ηn−1 sin ηn.

A straightforward calculation shows that

(1)
∂x

∂ρ
=

x

|||x||| , (3.4.2)

(2)
∥∥∥∥ ∂x

∂η1

∥∥∥∥ = ρ, (3.4.3)

(3)
∥∥∥∥ ∂x

∂ηi

∥∥∥∥ = ρ sinh η1 sin η2 · · · sin ηi−1 for i > 1, (3.4.4)

(4)
∂x

∂ρ
,

∂x

∂η1
, . . . ,

∂x

∂ηn
are Lorentz orthogonal. (3.4.5)

Moreover, the vectors (3.4.5) form a positively oriented frame, and so the
Lorentz Jacobian of the hyperbolic coordinate transformation

(ρ, η1, . . . , ηn) �→ (x1, . . . , xn+1)

is ρn sinhn−1 η1 sinn−2 η2 · · · sin ηn−1.
The hyperbolic coordinate parameterization of Hn is the map

h : [0,∞) × [0, π]n−2 × [0, 2π] → Hn

defined by
h(η1, . . . , ηn) = (x1, . . . , xn+1),

where xi is expressed in terms of the hyperbolic coordinates η1, . . . , ηn by
the system of Equations (3.4.1) with ρ = 1. The map h is surjective, and
injective on the open set (0,∞) × (0, π)n−2 × (0, 2π).
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A subset X of Hn is said to be measurable in Hn if and only if h−1(X) is
measurable in Rn. In particular, all the Borel subsets of Hn are measurable
in Hn. If X is measurable in Hn, then the hyperbolic volume of X is defined
by the formula

Vol(X) =
∫

h−1(X)
sinhn−1 η1 sinn−2 η2 · · · sin ηn−1dη1 · · · dηn. (3.4.6)

The motivation for Formula 3.4.6 is as follows: Subdivide Rn into a
rectangular grid pattern parallel to the coordinate axes. Each grid rect-
angular solid of volume ∆η1 · · ·∆ηn that meets h−1(X) corresponds under
h to a region in Hn that meets X. This region is approximated by the
Lorentzian rectangular solid spanned by the vectors ∂h

∂η1
∆η1, . . . ,

∂h
∂ηn

∆ηn.
Its Lorentzian volume is∥∥∥∥ ∂h

∂η1
∆η1

∥∥∥∥ · · ·
∥∥∥∥ ∂h

∂ηn
∆ηn

∥∥∥∥ = sinhn−1 η1 sinn−2 η2 · · · sin ηn−1∆η1 · · ·∆ηn.

As the mesh of the subdivision goes to zero, the sum of the volumes of the
approximating rectangular solids approaches the volume of X as a limit.

Let X be a measurable subset of Hn and let φ be a positive Lorentz
transformation of Rn+1. Then φ(X) is also measurable in Hn and the hy-
perbolic volume of φ(X) can be measured with respect to the new param-
eterization φh of Hn. As φ maps the Lorentzian rectangular solid spanned
by the vectors ∂h

∂η1
∆η1, . . . ,

∂h
∂ηn

∆ηn onto the Lorentzian rectangular solid
spanned by the vectors ∂φh

∂η1
∆η1, . . . ,

∂φh
∂ηn

∆ηn, we deduce that

Vol(φ(X)) = Vol(X).

In other words, hyperbolic volume is an isometry-invariant measure on Hn.
It is clear from Formula 3.4.6 that hyperbolic volume is countably addi-

tive, that is, if {Xi}∞
i=1 is a sequence of disjoint measurable subsets of Hn,

then X = ∪∞
i=1Xi is also measurable in Hn and

Vol(X) =
∞∑

i=1

Vol(Xi).

Theorem 3.4.1. The element of hyperbolic volume of Hn with respect to
the Euclidean coordinates x1, . . . , xn in Rn,1 is

dx1 · · · dxn

[1 + (x2
1 + · · · + x2

n)]
1
2
.

Proof: It is more convenient for us to work in R1,n and show that
the element of hyperbolic volume of Hn with respect to the coordinates
x2, . . . , xn+1 is

dx2 · · · dxn+1

[1 + (x2
2 + · · · + x2

n+1)]
1
2
.

The desired result will then follow by a simple change of coordinates.
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Consider the transformation h : Rn−1 × (0, 2π) → Rn defined by

h(η1, . . . , ηn) = (x2, . . . , xn+1),

where xi is given by the system of Equations (3.4.1). Then by (3.4.5), the
vectors ∂h

∂η1
, . . . , ∂h

∂ηn
are Euclidean orthogonal. Hence, the Jacobian of the

transformation h is given by

Jh(η1, . . . , ηn) =
∣∣∣∣ ∂h

∂η1

∣∣∣∣ · · · ∣∣∣∣ ∂h

∂ηn

∣∣∣∣
= cosh η1 sinhn−1 η1 sinn−2 η2 · · · sin ηn−1.

By changing variables via h, we have∫
h−1(X)

sinhn−1 η1 sinn−2 η2 · · · sin ηn−1dη1 · · · dηn

=
∫

hh−1(X)

dx2 · · · dxn+1

cosh η1

=
∫

p(X)

dx2 · · · dxn+1

x1
,

where p : Hn → Rn is the projection

p(x1, . . . , xn+1) = (x2, . . . , xn+1).

Exercise 3.4

1. Show that the hyperbolic coordinates of a positive time-like vector x in R1,n

satisfy the system of Equations (3.4.1).

2. Show that the hyperbolic coordinate transformation satisfies (3.4.2)-(3.4.5).

3. Show that the element of hyperbolic arc length ‖dx‖ in hyperbolic coordi-
nates is given by

‖dx‖2 = dη2
1 + sinh2 η1dη2

2 + · · · + sinh2 η1 sin2 η2 · · · sin2 ηn−1dη2
n.

4. Let B(x, r) be the hyperbolic disk centered at a point x of H2 of radius r.
Show that the circumference of B(x, r) is 2π sinh r and the area of B(x, r) is
2π(cosh r − 1). Conclude that B(x, r) has more area than a Euclidean disk
of radius r.

5. Let B(x, r) be the hyperbolic ball centered at a point x of H3 of radius r.
Show that the volume of B(x, r) is π(sinh 2r − 2r).

6. Let B(x, r) be the hyperbolic ball centered at a point x of Hn of radius r.
Show that

Vol(B(x, r)) = Vol(Sn−1)
∫ r

0

sinhn−1 η dη.

7. Prove that every similarity of Hn, with n > 1, is an isometry.
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§3.5. Hyperbolic Trigonometry

Let x, y, z be three hyperbolically noncollinear points of H2. Let L(x, y)
be the unique hyperbolic line of H2 containing x and y, and let H(x, y, z)
be the closed half-plane of H2 with L(x, y) as its boundary and z in its
interior. The hyperbolic triangle with vertices x, y, z is defined to be

T (x, y, z) = H(x, y, z) ∩ H(y, z, x) ∩ H(z, x, y).

We shall assume that the vertices of T (x, y, z) are labeled in negative order
as in Figure 3.5.1.

Let [x, y] be the segment of L(x, y) joining x to y. The sides of T (x, y, z)
are defined to be [x, y], [y, z], and [z, x]. Let a = η(y, z), b = η(z, x), and
c = η(x, y). Then a, b, c is the hyperbolic length of [y, z], [z, x], [x, z],
respectively. Let

f : [0, a] → H2, g : [0, b] → H2, h : [0, c] → H2

be geodesic arcs from y to z, z to x, and x to y, respectively.
The angle α between the sides [z, x] and [x, y] of T (x, y, z) is defined to

be the Lorentzian angle between −g′(b) and h′(0). The angle β between
the sides [x, y] and [y, z] of T (x, y, z) is defined to be the Lorentzian an-
gle between −h′(c) and f ′(0). The angle γ between the sides [y, z] and
[z, x] of T (x, y, z) is defined to be the Lorentzian angle between −f ′(a)
and g′(0). The angles α, β, γ are called the angles of T (x, y, z). The side
[y, z], [z, x], [x, y] is said to be opposite the angle α, β, γ, respectively.

Lemma 1. If α, β, γ are the angles of a hyperbolic triangle T (x, y, z), then

(1) η(z ⊗ x, x ⊗ y) = π − α,

(2) η(x ⊗ y, y ⊗ z) = π − β,

(3) η(y ⊗ z, z ⊗ x) = π − γ.

Proof: Without loss of generality, we may assume that x = e1. The proof
of (1) is evident from Figure 2.5.2. The proof of (2), and (3), is similar.

x

α

y

β

z

γ

a

b

c

Figure 3.5.1. A hyperbolic triangle T (x, y, z)
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Lemma 2. Let x, y be space-like vectors in R3. If x ⊗ y is time-like, then
|||x ⊗ y||| = ‖x‖ ‖y‖ sin η(x, y).

Proof: As x ⊗ y is time-like, the vector subspace of R3 spanned by x and
y is space-like. By Theorem 3.2.1(4), we have

‖x ⊗ y‖2 = (x ◦ y)2 − ‖x‖2 ‖y‖2

= ‖x‖2 ‖y‖2 cos2 η(x, y) − ‖x‖2 ‖y‖2

= −‖x‖2‖y‖2 sin2 η(x, y).

Theorem 3.5.1. If α, β, γ are the angles of a hyperbolic triangle, then
α + β + γ < π.

Proof: Let α, β, γ be the angles of a hyperbolic triangle T (x, y, z). By
the same argument as in Theorem 2.5.1, the vectors x ⊗ y, z ⊗ y, z ⊗ x are
linearly independent. Let

u =
x ⊗ y

‖x ⊗ y‖ , v =
z ⊗ y

‖z ⊗ y‖ , w =
z ⊗ x

‖z ⊗ x‖ .

Now as
(x ⊗ y) ⊗ (z ⊗ y) = ((x ⊗ y) ◦ z)y

and
(z ⊗ y) ⊗ (z ⊗ x) = ((x ⊗ y) ◦ z)z,

we have that both u ⊗ v and v ⊗ w are time-like vectors. By Lemma 2 and
Theorems 3.1.7 and 3.2.1(4), we have

cos(η(u, v) + η(v, w))
= cos η(u, v) cos η(v, w) − sin η(u, v) sin η(v, w)
= (u ◦ v)(v ◦ w) + ‖u ⊗ v‖ ‖v ⊗ w‖
> (u ◦ v)(v ◦ w) + ((u ⊗ v) ◦ (v ⊗ w))
= (u ◦ v)(v ◦ w) + ((u ◦ w)(v ◦ v) − (v ◦ w)(u ◦ v))
= u ◦ w

= cos η(u, w).
Hence, either

η(u, w) > η(u, v) + η(v, w)

or
2π − η(u, w) < η(u, v) + η(v, w).

By Lemma 1, we have that η(u, w) = π − α, η(u, v) = β, and η(v, w) = γ.
Thus, either π > α + β + γ or π + α < β + γ. Without loss of generality,
we may assume that α is the largest angle. If π + α < β + γ, we have the
contradiction

π + α < β + γ < π + α.

Therefore, we have that
α + β + γ < π.
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Theorem 3.5.2. (Law of Sines) If α, β, γ are the angles of a hyperbolic
triangle and a, b, c are the lengths of the opposite sides, then

sinh a

sin α
=

sinh b

sin β
=

sinh c

sin γ
.

Proof: Upon taking norms of both sides of the equations

(z ⊗ x) ⊗ (x ⊗ y) = −((z ⊗ x) ◦ y)x,

(x ⊗ y) ⊗ (y ⊗ z) = −((x ⊗ y) ◦ z)y,

(y ⊗ z) ⊗ (z ⊗ x) = −((y ⊗ z) ◦ x)z,

we find that

sinh b sinh c sin α = |(x ⊗ y) ◦ z|,
sinh c sinh a sin β = |(x ⊗ y) ◦ z|,
sinh a sinh b sin γ = |(x ⊗ y) ◦ z|.

Theorem 3.5.3. (The First Law of Cosines) If α, β, γ are the angles of a
hyperbolic triangle and a, b, c are the lengths of the opposite sides, then

cos γ =
cosh a cosh b − cosh c

sinh a sinh b
.

Proof: Since

(y ⊗ z) ◦ (x ⊗ z) =

∣∣∣∣∣ y ◦ z y ◦ x
z ◦ z z ◦ x

∣∣∣∣∣,
we have that

sinh a sinh b cos γ = cosh a cosh b − cosh c.

Theorem 3.5.4. (The Second Law of Cosines) If α, β, γ are the angles of
a hyperbolic triangle and a, b, c are the lengths of the opposite sides, then

cosh c =
cos α cos β + cos γ

sin α sin β
.

Proof: Let

x′ =
y ⊗ z

‖y ⊗ z‖ , y′ =
z ⊗ x

‖z ⊗ x‖ , z′ =
x ⊗ y

‖x ⊗ y‖ .

Then

x =
y′ ⊗ z′

|||y′ ⊗ z′||| and y =
z′ ⊗ x′

|||z′ ⊗ x′||| .

Now since

(y′ ⊗ z′) ◦ (z′ ⊗ x′) =

∣∣∣∣∣ y′ ◦ x′ y′ ◦ z′

z′ ◦ x′ z′ ◦ z′

∣∣∣∣∣,
we have

− sin(π − α) sin(π − β) cosh c = cos(π − γ) − cos(π − α) cos(π − β).
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It is interesting to compare the hyperbolic sine law

sinh a

sin α
=

sinh b

sin β
=

sinh c

sin γ

with the spherical sine law

sin a

sin α
=

sin b

sin β
=

sin c

sin γ
,

and the hyperbolic cosine laws

cos γ =
cosh a cosh b − cosh c

sinh a sinh b
,

cosh c =
cos α cos β + cos γ

sin α sin β

with the spherical cosine laws

cos γ =
cos c − cos a cos b

sin a sin b
,

cos c =
cos α cos β + cos γ

sin α sin β
.

Recall that
sin ia = i sinh a and cos ia = cosh a.

Hence, the hyperbolic trigonometry formulas can be obtained from their
spherical counterparts by replacing a, b, c by ia, ib, ic, respectively.

Area of Hyperbolic Triangles

A sector of H2 is defined to be the intersection of two distinct, intersecting,
nonopposite half-planes of H2. Any sector of H2 is congruent to a sector
S(α) defined in terms of hyperbolic coordinates (η, θ) by the inequalities

−α/2 ≤ θ ≤ α/2.

Here α is the angle formed by the two sides of S(α) at its vertex e1.
Let β = α/2. Then the geodesic rays that form the sides of S(α) are

represented in parametric form by

(cosh t)e1 + (sinh t)
(
(cos β)e2 + (sin β)e3

)
for t ≥ 0,

(cosh t)e1 + (sinh t)
(
(cos β)e2 − (sin β)e3

)
for t ≥ 0.

These geodesic rays are asymptotic to the 1-dimensional light-like vector
subspaces spanned by the vectors (1, cos β, sin β) and (1, cos β,− sin β), re-
spectively. These two light-like vectors span a 2-dimensional vector sub-
space V that intersects H2 in a hyperbolic line L. Let T (α) be the inter-
section of S(α) and the closed half-plane bounded by L and containing e1.
See Figure 3.5.2.
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e1 α L

Figure 3.5.2. A generalized triangle with two ideal vertices

It is an interesting fact, which will be proved in Chapter 4, that H2

viewed from the origin looks like the projective disk model with the point
e1 at its center. Observe that the two sides of the sector S(α) meet the
hyperbolic line L at infinity. From this perspective, it is natural to regard
T (α) as a hyperbolic triangle with two ideal vertices at infinity.

A generalized hyperbolic triangle in H2 is defined in the same way that
we defined a hyperbolic triangle in H2 except that some of its vertices may
be ideal. When viewed from the origin, a generalized hyperbolic triangle
in H2 appears to be a Euclidean triangle in the projective disk model with
its ideal vertices on the circle at infinity. See Figure 3.5.2. The angle of a
generalized hyperbolic triangle at an ideal vertex is defined to be zero.

An infinite hyperbolic triangle is a generalized hyperbolic triangle with
at least one ideal vertex. An infinite hyperbolic triangle with three ideal
vertices is called an ideal hyperbolic triangle. Obviously, any infinite hyper-
bolic triangle with exactly two ideal vertices is congruent to T (α) for some
angle α.

We now find a parametric representation for the side L of T (α) in terms
of hyperbolic coordinates (η, θ). To begin with, the vector

(1, cos β, sin β) × (1, cos β,− sin β) = (−2 cos β sin β, 2 sin β, 0)

is normal to the 2-dimensional vector subspace V whose intersection with
H2 is L. Hence, the vectors in V satisfy the equation

(cos β)x1 − x2 = 0.

Now the points of H2 satisfy the system of equations⎧⎨⎩ x1 = cosh η,
x2 = sinh η cos θ,
x3 = sinh η sin θ.
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Hence, the points of L satisfy the equation

x1 = sec β cos θ
√

x2
1 − 1.

Solving for x1, we find that

x1 =
cos θ√

cos2 θ − cos2 β
.

Therefore
x2 =

cos θ cos β√
cos2 θ − cos2 β

and
x3 =

sin θ cos β√
cos2 θ − cos2 β

.

Lemma 3. Area T (α) = π − α.

Proof: Let
x(θ) = (x1(θ), x2(θ), x3(θ))

be the polar angle parameterization of L that we have just found. Then
by Formula 3.4.6, we have

Area T (α) =
∫ β

−β

∫ η(e1,x(θ))

0
sinh η dηdθ

=
∫ β

−β

(
cosh η(e1, x(θ)) − 1

)
dθ

=
∫ β

−β

x1(θ)dθ − α

and ∫ β

−β

x1(θ)dθ =
∫ β

−β

cos θdθ√
cos2 θ − cos2 β

=
∫ β

−β

cos θdθ√
sin2 β − sin2 θ

=
∫ 1

−1

du√
1 − u2

, where u =
sin θ

sin β

= Arc sin u
∣∣∣ 1
−1

= π.

Thus, we have that
Area T (α) = π − α.
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αβ
γ

Figure 3.5.3. An ideal triangle subdivided into three infinite triangles

Lemma 4. The area of an ideal hyperbolic triangle is π.

Proof: Let T be any ideal hyperbolic triangle and let x be any point in
the interior of T . Then T can be subdivided into three infinite hyperbolic
triangles each of which has x as its only finite vertex. See Figure 3.5.3. Let
α, β, γ be the angles of the triangles at the vertex x. Then

Area(T ) = (π − α) + (π − β) + (π − γ) = π.

Theorem 3.5.5. If α, β, γ are the angles of a generalized hyperbolic trian-
gle T , then

Area(T ) = π − (α + β + γ).

Proof: By Lemmas 3 and 4, the formula holds if T has two or three ideal
vertices. Suppose that T has only two finite vertices x and y with angles
α and β. By extending the finite side of T , as in Figure 3.5.4, we see that
T is the difference of two infinite hyperbolic triangles Tx and Ty with just
one finite vertex x and y, respectively. Consequently

Area(T ) = Area(Tx) − Area(Ty) = (π − α) − β.

Now suppose that T has three finite vertices x, y, z with angles α, β, γ. By
extending the sides of T , as in Figure 3.5.5, we can find an ideal hyperbolic
triangle T ′ that can be subdivided into four regions, one of which is T , and
the others are infinite hyperbolic triangles Tx, Ty, Tz with just one finite
vertex x, y, z, respectively. Consequently, we have

Area(T ′) = Area(T ) + Area(Tx) + Area(Ty) + Area(Tz).
Thus

π = Area(T ) + α + β + γ.

Corollary 1. If α, β, γ are the angles of a generalized hyperbolic triangle,
then

α + β + γ < π.
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α

β

π − β

x

y

T

Figure 3.5.4. An infinite triangle T expressed as the difference of two triangles

α

β γ

π − α

π − β

π − γ

x

y
z

T

Figure 3.5.5. The ideal triangle found by extending the sides of T (x, y, z)



88 3. Hyperbolic Geometry

Existence of Hyperbolic Triangles

The next theorem extends Theorem 3.5.4 to the case γ = 0.

Theorem 3.5.6. If α, β, 0 are the angles of an infinite hyperbolic triangle
with just one ideal vertex and c is the length of the finite side, then

cosh c =
1 + cos α cos β

sin α sin β
.

Proof: Let T (x, y, z) be an infinite hyperbolic triangle with just one ideal
vertex z. We represent z by a positive light-like vector. Let

x′ =
y ⊗ z

‖y ⊗ z‖ , y′ =
z ⊗ x

‖z ⊗ x‖ , z′ =
x ⊗ y

‖x ⊗ y‖ .

Then

x =
y′ ⊗ z′

|||y′ ⊗ z′||| and y =
z′ ⊗ x′

|||z′ ⊗ x′||| .

Let u be a point in the interior of the side [x, z) and let v be a point in the
interior of the side [y, z). By Lemma 1, we have

η(u ⊗ x, x ⊗ y) = π − α,

η(x ⊗ y, y ⊗ v) = π − β.

Hence, we have
η(z ⊗ x, x ⊗ y) = π − α,

η(x ⊗ y, y ⊗ z) = π − β.

Now z is in the subspace V spanned by x′ and y′, and x′ and y′ are on
opposite sides of 〈z〉 in V . Hence x′◦y′ = −1 by Theorems 3.2.9 and 3.2.10.
Now since

(y′ ⊗ z′) ◦ (z′ ⊗ x′) =
∣∣∣∣ y′ ◦ x′ y′ ◦ z′

z′ ◦ x′ z′ ◦ z′

∣∣∣∣ ,
we have

− sin(π − α) sin(π − β) cosh c = −1 − cos(π − α) cos(π − β).

We next prove a law of cosines for a hyperbolic quadrilateral with two
adjacent right angles. See Figure 3.5.6.

Theorem 3.5.7. Let Q be a hyperbolic convex quadrilateral with two ad-
jacent right angles, opposite angles α, β, and sides of length c, d between
α, β and the right angles, respectively. Then

cosh c =
cos α cos β + cosh d

sin α sin β
.
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α β

c

du v

x y

z

Q

Figure 3.5.6. A hyperbolic quadrilateral Q with two adjacent right angles

Proof: Let x, y be the vertices of Q at α, β, and let z be the unit space-like
vector Lorentz orthogonal and exterior to the side of Q of length d. Let

x′ =
y ⊗ z

‖y ⊗ z‖ , y′ =
z ⊗ x

‖z ⊗ x‖ , z′ =
x ⊗ y

‖x ⊗ y‖ .

Then

x =
y′ ⊗ z′

|||y′ ⊗ z′||| and y =
z′ ⊗ x′

|||z′ ⊗ x′||| .

Now since

(y′ ⊗ z′) ◦ (z′ ⊗ x′) =
∣∣∣∣ y′ ◦ x′ y′ ◦ z′

z′ ◦ x′ z′ ◦ z′

∣∣∣∣ ,
we have

− sin(π − α) sin(π − β) cosh c = − cosh d − cos(π − α) cos(π − β).

Theorem 3.5.8. Let Q be a hyperbolic convex quadrilateral with two ad-
jacent right angles and opposite angles α, β. Then α + β < π.

Proof: Subdivide Q into two triangles with angles α, β1, γ1 and β2, γ2, π/2
such that β1 + β2 = β and γ1 + γ2 = π/2. Then

Area(Q) = π − α − β1 − γ1 + π − β2 − γ2 − π/2
= π − α − β.

We next prove the existence theorem for hyperbolic triangles.
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Theorem 3.5.9. Let α, β, γ be positive real numbers such that

α + β + γ < π.

Then there is a hyperbolic triangle, unique up to congruence, with angles
α, β, γ.

Proof: We shall only prove existence. The proof of uniqueness is left as
an exercise for the reader. We may assume, without loss of generality, that
α, β < π/2. Now since

α + β < π − γ,

we have that
cos(α + β) > cos(π − γ).

Hence
cos α cos β − sin α sin β > − cos γ,

and so
cos α cos β + cos γ > sin α sin β.

Thus, we have that
cos α cos β + cos γ

sin α sin β
> 1.

Hence, there is a unique positive real number c satisfying the equation

cosh c =
cos α cos β + cos γ

sin α sin β
.

Let [x, y] be a geodesic segment in H2 of length c joining a point x to a
point y, and let Lb, La be the hyperbolic lines passing through the points
x, y, respectively, making an angle α, β, respectively, with [x, y] on the
same side of [x, y]. We claim that La and Lb meet on the same side of the
hyperbolic line Lc, containing [x, y], as α, β. The proof is by contradiction.

Assume first that La and Lb meet, possibly at infinity, on the opposite
side of Lc than the angles α, β. Then the lines La, Lb, Lc form a generalized
hyperbolic triangle two of whose angles are π − α and π − β, but

(π − α) + (π − β) > π,

which contradicts Corollary 1.
Assume next that La and Lb do not meet, even at infinity. Then La and

Lb have a common perpendicular hyperbolic line Ld joining a point u of
Lb to a point v of La. Assume first that u �= x, v �= y and that [u, v] is on
the opposite side of Lc. See Figure 3.5.7. Then u, v, x, y are the vertices
of a hyperbolic quadrilateral with two adjacent right angles and opposite
angles π − α and π − β, but

(π − α) + (π − β) > π,

which contradicts Theorem 3.5.8.
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α β
c

du v

x y

Lb La

Lc

Ld

Figure 3.5.7. The four lines in the proof of Theorem 3.5.9

Next, assume that u = x, v �= y and that v is on the opposite side
of Lc. Then x, y, v are the vertices of a hyperbolic triangle with angles
π/2 − α, π − β, π/2, but

(π/2 − α) + (π − β) + π/2 > π,

which contradicts Corollary 1. Likewise, if v = y and u is on the opposite
side of Lc, we also have a contradiction.

Next, assume that u �= x and that u is on the same side of Lc as α, and
v �= y and v is on the opposite side of Lc. Then the lines La, Lb, Lc, Ld form
two hyperbolic triangles two of whose angles are α, π/2 and π − β, π/2,
respectively. As β < π/2, we have π − β + π/2 > π, which contradicts
Corollary 1. Likewise, if v �= y and v is on the same side of Lc as β, and
u �= x and u is on the opposite side of Lc, we also have a contradiction.

Next, assume that v = y, u �= x and that u is on the same side of
Lc as α. Then x, y, u are the vertices of a hyperbolic triangle with angles
α, β − π/2, π/2, but β < π/2, which is a contradiction. Likewise, if u = x
and v �= y and v is on the same side of Lc as β, we also have a contradiction.

Finally, assume that u �= x, v �= y, and [u, v] is on the same side of Lc as
α, β. Then u, v, x, y are the vertices of a hyperbolic quadrilateral with two
adjacent right angles and opposite angles α, β. By Theorem 3.5.7, we have

cosh c =
cos α cos β + cosh d

sin α sin β
,

which is a contradiction, since cosh d > cos γ.
It follows that La and Lb meet, possibly at infinity, on the same side

of Lc as α, β. Therefore, the lines La, Lb, Lc form a generalized hyperbolic
triangle T with angles α, β, δ. By Theorems 3.5.4 and 3.5.6, we have

cosh c =
cos α cos β + cos δ

sin α sin β
.

Hence cos δ = cos γ and therefore δ = γ. Thus T is the desired triangle.
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Almost Rectangular Quadrilaterals and Pentagons

Theorem 3.5.10. Let Q be a hyperbolic convex quadrilateral with three
right angles and fourth angle γ, and let a, b the lengths of the sides opposite
the angle γ. Then

cos γ = sinh a sinh b.

Proof: Let x, y be space-like vectors Lorentz orthogonal and exterior to
the sides of Q of length a, b, respectively. Let z be the vertex of Q of angle
γ and z′ the opposite vertex. Let u, v be the vertices of Q between x, z and
y, z, respectively. See Figure 3.5.8. By Lemma 1, we have

η(v ⊗ z, z ⊗ u) = π − γ.

Hence, we have
η(y ⊗ z, z ⊗ x) = π − γ.

Likewise η(x, y) = π/2.
Let

x′ =
y ⊗ z

‖y ⊗ z‖ and y′ =
z ⊗ x

‖z ⊗ x‖ .

Then

x =
y′ ⊗ z′

‖y′ ⊗ z′‖ and y =
z′ ⊗ x′

‖z′ ⊗ x′‖ .

Now since

(y′ ⊗ z′) ◦ (z′ ⊗ x′) =
∣∣∣∣ y′ ◦ x′ y′ ◦ z′

z′ ◦ x′ z′ ◦ z′

∣∣∣∣ ,
we have by Theorem 3.2.12 that

0 = − cos(π − γ) − sinh a sinh b.

γ

a b
u v

x y

z

z′

Q

Figure 3.5.8. A hyperbolic quadrilateral Q with three right angles
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Theorem 3.5.11. Let P be a hyperbolic convex pentagon with four right
angles and fifth angle γ, let c′ be the length of the side of P opposite γ,
and let a, b be the lengths of the sides of P adjacent to the side opposite γ.
Then

cosh c′ =
cosh a cosh b + cos γ

sinh a sinh b
.

Moreover, the above formula also holds if the vertex of P of angle γ is at
infinity.

Proof: Assume first that the vertex z of angle γ is finite. Let x, y, z′ be
unit space-like vectors Lorentz orthogonal and exterior to the sides of P of
length a, b, c′, respectively. Let u, v be the vertices of P between x, z, and
y, z, respectively. See Figure 3.5.9. By Lemma 1, we have

η(v ⊗ z, z ⊗ u) = π − γ.

Hence, we have
η(y ⊗ z, z ⊗ x) = π − γ.

Let
x′ =

y ⊗ z

‖y ⊗ z‖ and y′ =
z ⊗ x

‖z ⊗ x‖ .

Then

x =
y′ ⊗ z′

‖y′ ⊗ z′‖ and y =
z′ ◦ x′

‖z′ ⊗ x′‖ .

Now since

(y′ ⊗ z′) ◦ (z′ ⊗ x′) =
∣∣∣∣ y′ ◦ x′ y′ ◦ z′

z′ ◦ x′ z′ ◦ z′

∣∣∣∣ ,
we have

− sinh a sinh b cosh c = − cos γ − cosh a cosh b.

γ

a b

u v

x y

z

z′

c′

P

Figure 3.5.9. A hyperbolic pentagon P with four right angles
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Assume now that z is at infinity. We can then represent z by a positive
light-like vector. Let x′ and y′ be as above. Then z is in the subspace
V spanned by x′ and y′, and x′ and y′ are on opposite sides of 〈z〉 in V .
Hence x′ ◦ y′ = −1 by Theorems 3.2.9 and 3.2.10. As before, we have

− sinh a sinh b cosh c = −1 − cosh a cosh b.

Right-Angled Hyperbolic Hexagons

Let H be a right-angled hyperbolic convex hexagon in the projective disk
model D2 of the hyperbolic plane. Without loss of generality, we may
assume that the center of D2 is in the interior of H. Then no side of H is
part of a diameter of D2. As all the perpendiculars to a nondiameter line
of D2 meet in a common point outside of D2, the three Euclidean lines
extending three alternate sides of H meet pairwise in three points x, y, z
outside of D. Likewise, the three Euclidean lines extending the opposite
three alternate sides of H meet pairwise in three points x′, y′, z′ outside of
D2. See Figure 3.5.10. The points x′, y′, z′ are determined by the points
x, y, z. To understand why, we switch to the hyperbolic model H2. We can
then represent x, y, z as unit space-like vectors that are Lorentz orthogonal
and exterior to three alternate sides of H. Then

x′ =
y ⊗ z

‖y ⊗ z‖ , y′ =
z ⊗ x

‖z ⊗ x‖ , z′ =
x ⊗ y

‖x ⊗ y‖ .

In other words T (x′, y′, z′) is the polar triangle of the ultra-ideal triangle
T (x, y, z). Compare with Formula 2.5.1. See also Figure 1.2.2.

Lemma 5. Let x, y be space-like vectors in R3. If x ⊗ y is space-like, then
‖x ⊗ y‖ = ‖x‖ ‖y‖ sinh η(x, y).

a b

c

a′b′

c′
x y

z

x′y′

z′

H

Figure 3.5.10. A right-angled hyperbolic hexagon H
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Proof: As x⊗y is space-like, the vector subspace of R3 spanned by x and
y is time-like. Hence

|x ◦ y| = ‖x‖ ‖y‖ cosh η(x, y).

By Theorem 3.2.1(4), we have

‖x ⊗ y‖2 = (x ◦ y)2 − ‖x‖2‖y‖2

= ‖x‖2‖y‖2 cosh2 η(x, y) − ‖x‖2‖y‖2

= ‖x‖2‖y‖2 sinh2 η(x, y).

Theorem 3.5.12. (Law of Sines for right-angled hyperbolic hexagons) If
a, b, c are the lengths of alternate sides of a right-angled hyperbolic convex
hexagon and a′, b′, c′ are the lengths of the opposite sides, then

sinh a

sinh a′ =
sinh b

sinh b′ =
sinh c

sinh c′ .

Proof: By Theorem 3.2.8, we have

a′ = η(y, z), b′ = η(z, x), c′ = η(y, z),
a = η(y′, z′), b = η(z′, x′), c = η(y′, z′).

Upon taking norms of both sides of the equations

(z ⊗ x) ⊗ (x ⊗ y) = −((z ⊗ x) ◦ y)x,

(x ⊗ y) ⊗ (y ⊗ z) = −((x ⊗ y) ◦ z)y,

(y ⊗ z) ⊗ (z ⊗ x) = −((y ⊗ z) ◦ x)z,

we find that

sinh b′ sinh c′ sinh a = |(x ⊗ y) ◦ z|,
sinh c′ sinh a′ sinh b = |(x ⊗ y) ◦ z|,
sinh a′ sinh b′ sinh c = |(x ⊗ y) ◦ z|.

Theorem 3.5.13. (Law of Cosines for right-angled hyperbolic hexagons)
If a, b, c are the lengths of alternate sides of a right-angled hyperbolic convex
hexagon and a′, b′, c′ are the lengths of the opposite sides, then

cosh c′ =
cosh a cosh b + cosh c

sinh a sinh b
.

Proof: Since

(y ⊗ z) ◦ (z ⊗ x) =
∣∣∣∣ y ◦ x y ◦ z

z ◦ x z ◦ z

∣∣∣∣ ,
we have by Theorem 3.2.8 that

− sinh a′ sinh b′ cosh c = − cosh c′ − cosh a′ cosh b′.

Corollary 2. The lengths of three alternate sides of a right-angled hyper-
bolic hexagon are determined by the lengths of the opposite three sides.
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Theorem 3.5.14. Let a, b, c be positive real numbers. Then there is a
right-angled hyperbolic convex hexagon, unique up to congruence, with al-
ternate sides of length a, b, c, respectively.

Proof: Let c′ be the unique positive real number that satisfies the equation

cosh c′ =
cosh a cosh b + cosh c

sinh a sinh b

and let Sc′ be a geodesic segment in H2 of length c′. Erect perpendicular
geodesic segments Sa and Sb of length a and b, respectively, at the endpoints
of Sc′ on the same side of Sc′ . Let La′ and Lb′ be the hyperbolic lines
perpendicular to Sb and Sa, respectively, at the endpoint of Sb and Sa,
respectively, opposite the endpoint of Sc′ . See Figure 3.5.10.

Without loss of generality, we may assume that c ≥ a, b. Then Lb′ does
not meet Sb; otherwise, we would have a quadrilateral with three right
angles and fourth angle γ, and opposite sides of length a and c′, and so by
Theorem 3.5.10, we would have

sinh a sinh c′ = cos γ,

but

sinh2 a sinh2 c′ = sinh2 a(cosh2 c′ − 1)

=
(cosh a cosh b + cosh c)2 − sinh2 a sinh2 b

sinh2 b

>
cosh2 c

sinh2 b
> 1,

which is a contradiction. Likewise La′ does not meet Sa. Moreover La′ does
not meet Lb′ , even at infinity; otherwise, we would have a pentagon with
four right-angles and fifth angle γ as in Figure 3.5.9, and so by Theorem
3.5.11, we would have

cosh c′ =
cosh a cosh b + cos γ

sinh a sinh b
,

which is a contradiction, since cosh c > cos γ.
By Theorems 3.2.6-3.2.9, the hyperbolic lines La′ and Lb′ have a common

perpendicular hyperbolic line Lc. Let La, Lb be the hyperbolic line of H2

containing Sa, Sb, respectively. Then Lc is on the same side of La as Sc′ ,
since Lc meets La′ and La′ is on the same side of La as Sc′ . Likewise Lc is
on the same side of Lb as Sc′ . Let Sc be the segment of Lc joining La′ to
Lb′ . Then we have a right-angled convex hexagon H with alternate sides
Sa, Sb, Sc. Let d be the length of Sc. Then by Theorem 3.5.13, we have

cosh c′ =
cosh a cosh b + cosh d

sinh a sinh b
.

Hence d = c. Thus H has alternate sides of length a, b, c. The proof that
H is unique up to congruence is left as an exercise for the reader.
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Exercise 3.5

1. Let α, β, γ be the angles of a hyperbolic triangle and let a, b, c be the lengths
of the opposite sides. Show that

(1) cosh a = cosh b cosh c − sinh b sinh c cos α, (3.5.1)

cosh b = cosh a cosh c − sinh a sinh c cos β, (3.5.2)

cosh c = cosh a cosh b − sinh a sinh b cos γ, (3.5.3)

(2) cos α = − cos β cos γ + sin β sin γ cosh a, (3.5.4)

cos β = − cos α cos γ + sin α sin γ cosh b, (3.5.5)

cos γ = − cos α cos β + sin α sin β cosh c. (3.5.6)

2. Let α, β, π/2 be the angles of a hyperbolic right triangle and let a, b, c be the
lengths of the opposite sides. Show that

(1) cosh c = cosh a cosh b, (3.5.7)

(2) cosh c = cot α cot β, (3.5.8)

(3) sinh a = sinh c sin α, (3.5.9)

sinh b = sinh c sin β, (3.5.10)

(4) cos α = tanh b coth c, (3.5.11)

cos β = tanh a coth c, (3.5.12)

(5) sinh a = tanh b cot β, (3.5.13)

sinh b = tanh a cot α, (3.5.14)

(6) cos α = cosh a sin β, (3.5.15)

cos β = cosh b sin α. (3.5.16)

3. Let α, β, 0 be the angles of an infinite hyperbolic triangle with just one ideal
vertex and let c be the length of the finite side. Show that

sinh c =
cos α + cos β

sin α sin β
. (3.5.17)

4. Prove that two generalized hyperbolic triangles are congruent if and only if
they have the same angles.

5. Let α and β be two angles of a hyperbolic triangle and let a and b be the
lengths of the opposite sides. Prove that α ≤ β if and only if a ≤ b and that
α = β if and only if a = b.

6. Let T (x, y, z) be a hyperbolic triangle labeled as in Figure 3.5.1 such that
α, β < π/2. Prove that the point on the hyperbolic line through x and y
nearest to z lies in the interior of the side [x, y].

7. Let α, β, γ be nonnegative real numbers such that α+β +γ < π. Prove that
there is a generalized hyperbolic triangle with angles α, β, γ.

8. Prove that two right-angled hyperbolic convex hexagons are congruent if and
only if they have the same three lengths for alternate sides.



98 3. Hyperbolic Geometry

§3.6. Historical Notes

§3.1. Lorentzian geometry was introduced by Klein in his 1873 paper Ue-
ber die sogenannte Nicht-Euklidische Geometrie [246] and was developed by
Killing in his 1885 treatise Nicht-Euklidischen Raumformen [240]. Three-
dimensional Lorentzian geometry was described by Poincaré in his 1887
paper Sur les hypothèses fondamentales de la géométrie [360]. See also
Bianchi’s 1888 paper Sulle forme differenziali quadratiche indefinite [47].
Lorentzian 4-dimensional space was introduced by Poincaré as a model
for space-time in his 1906 paper Sur la dynamique de l’électron [364].
For commentary on Poincaré’s paper, see Miller’s 1973 article A study
of Henri Poincaré’s “Sur la dynamique de l’électron” [308]. Lorentzian 4-
dimensional space was proposed as a model for space-time in the theory of
special relativity by Minkowski in his 1907 lecture Das Relativitätsprinzip
[320]. For commentary, see Pyenson’s 1977 article Hermann Minkowski
and Einstein’s Special Theory of Relativity [371]. Lorentzian geometry was
developed by Minkowski in his 1908 paper Die Grundgleichungen für die
elektromagnetischen Vorgänge in bewegten Körpern [317] and in his 1909
paper Raum und Zeit [318]. Lorentzian 4-space is also called Minkowski
space-time. Lorentz transformations of n-space were first considered by
Killing in his 1885 treatise [240]. In particular, Theorem 3.1.4 appeared in
Killing’s treatise. Lorentz transformations of space-time were introduced
by Lorentz in his 1904 paper Electromagnetic phenomena in a system mov-
ing with any velocity less than that of light [291]. The terms Lorentz trans-
formation and Lorentz group were introduced by Poincaré in his 1906 paper
[364]. The geometry of the Lorentz group was studied by Klein in his 1910
paper Über die geometrichen Grundlagen der Lorentzgruppe [255]. For a
discussion of the role played by Lorentzian geometry in the theory of rel-
ativity, see Penrose’s 1978 article The geometry of the universe [349] and
Naber’s 1992 monograph The Geometry of Minkowski Spacetime [337].

§3.2. The hyperboloid model of hyperbolic space and Formula 3.2.2 ap-
peared in Killing’s 1878 paper Ueber zwei Raumformen mit constanter pos-
itiver Krümmung [238]. The time-like and space-like angles were essentially
defined by Klein in his 1871 paper Ueber die sogenannte Nicht-Euklidische
Geometrie [243]. Most of the material in §3.2 appeared in Killing’s 1885
treatise [240]. Other references for this section are Klein’s 1928 treatise
Vorlesungen über nich-euklidisch Geometrie [256], Coxeter’s 1942 treatise
Non-Euclidean Geometry [99], Busemann and Kelly’s 1953 treatise Projec-
tive Geometry and Projective Metrics [69], and Thurston’s 1997 treatise
Three-Dimensional Geometry and Topology [427].

§3.3. The element of hyperbolic arc length of the hyperboloid model
of hyperbolic space appeared in Killing’s 1880 paper Die Rechnung in den
Nicht-Euklidischen Raumformen [239]. The Lorentzian length of a hyper-
bolic line segment was defined by Yaglom in his 1979 monograph A Simple
Non-Euclidean Geometry and Its Physical Basis [459].
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§3.4. Two-dimensional hyperbolic coordinates appeared as polar coordi-
nates in Lobachevski’s 1829-30 paper On the principles of geometry [282].
Two-dimensional hyperbolic coordinates were defined by Cox in terms of
Euclidean coordinates in his 1882 paper Homogeneous coordinates in imag-
inary geometry [92]. Moreover, Cox gave the element of hyperbolic area
in both hyperbolic and Euclidean coordinates in this paper. Hyperbolic
coordinates in n dimensions and Formula 3.4.6 appeared in Böhm and
Hertel’s 1981 treatise Polyedergeometrie in n-dimensionalen Räumen kon-
stanter Krümmung [52].

§3.5. That the sum of the angles of a hyperbolic triangle is less than
two right angles was proved by Saccheri, under his acute angle hypothe-
sis, in his 1733 treatise Euclides ab omni naevo vindicatus [387]. Formulas
equivalent to the hyperbolic sine and cosine laws appeared in Lobachevski’s
1829-30 paper [282]. See also his 1837 paper Géométrie imaginaire [284].
The law of sines appeared in a form that is valid in spherical, Euclidean,
and hyperbolic geometries in Bolyai’s 1832 paper Scientiam spatii abso-
lute veram exhibens [54]. The duality between hyperbolic and spherical
trigonometries was developed by Lambert in his 1770 memoire Observa-
tions trigonométriques [271]. Taurinus proposed that the duality between
hyperbolic and spherical trigonometries infers the existence of a geome-
try opposite to spherical geometry and studied its properties in his 1826
treatise Geometriae prima elementa [422]. That the area of a hyperbolic
triangle is proportional to its angle defect first appeared in Lambert’s mono-
graph Theorie der Parallellinien [272], which was published posthumously
in 1786. For a translation of the relevant passages, see Rosenfeld’s 1988
treatise A History of Non-Euclidean Geometry [385]. The elegant proof of
Theorem 3.5.5 was communicated to Bolyai’s father by Gauss in his letter
of March 6, 1832. For a translation, see Coxeter’s 1977 article Gauss as a
geometer [101].

The law of cosines for quadrilaterals with two adjacent right angles ap-
peared in Ranum’s 1912 paper Lobachefskian polygons trigonometrically
equivalent to the triangle [372]. The cosine law for trirectangular quadri-
laterals appeared in Barbarin’s 1901 treatise Études de géométrie analy-
tique non Euclidienne [31]. The law of cosines for quadrectangular pen-
tagons appeared in Ranum’s 1912 paper [372]. That the formulas of spher-
ical trigonometry with pure imaginary arguments admit an interpreta-
tion as formulas for right-angled hyperbolic hexagons appeared implicitly
in Schilling’s 1891 note Ueber die geometrische Bedeutung der Formeln
der sphärischen Trigonometrie im Falle complexer Argumente [389]. The
sine and cosine laws for right-angled hyperbolic hexagons appeared im-
plicitly in Schilling’s 1894 paper Beiträge zur geometrischen Theorie der
Schwarz’schen s-Function [390] and explicitly in Ranum’s 1912 paper [372].
References for hyperbolic trigonometry are Beardon’s 1983 treatise The
Geometry of Discrete Groups [35] and Fenchel’s 1989 treatise Elementary
Geometry in Hyperbolic Space [143].



CHAPTER 4

Inversive Geometry

In this chapter, we study the group of transformations of En generated
by reflections in hyperplanes and inversions in spheres. It turns out that
this group is isomorphic to the group of isometries of Hn+1. This leads to
a deeper understanding of hyperbolic geometry. In Sections 4.5 and 4.6,
the conformal ball and upper half-space models of hyperbolic n-space are
introduced. The chapter ends with a geometric analysis of the isometries
of hyperbolic n-space.

§4.1. Reflections

Let a be a unit vector in En and let t be a real number. Consider the
hyperplane of En defined by

P (a, t) = {x ∈ En : a · x = t}.

Observe that every point x in P (a, t) satisfies the equation

a · (x − ta) = 0.

Hence P (a, t) is the hyperplane of En with unit normal vector a passing
through the point ta. One can easily show that every hyperplane of En is
of this form, and every hyperplane has exactly two representations P (a, t)
and P (−a,−t).

The reflection ρ of En in the plane P (a, t) is defined by the formula

ρ(x) = x + sa,

where s is a real scalar so that x + 1
2sa is in P (a, t). This leads to the

explicit formula
ρ(x) = x + 2(t − a · x)a. (4.1.1)

The proof of the following theorem is routine and is left as an exercise for
the reader.

100
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Theorem 4.1.1. If ρ is the reflection of En in the plane P (a, t), then

(1) ρ(x) = x if and only if x is in P (a, t);

(2) ρ2(x) = x for all x in En; and

(3) ρ is an isometry.

Theorem 4.1.2. Every isometry of En is a composition of at most n + 1
reflections in hyperplanes.

Proof: Let φ : En → En be an isometry and set v0 = φ(0). Let ρ0 be the
identity if v0 = 0, or the reflection in the plane P (v0/|v0|, |v0|/2) otherwise.
Then ρ0(v0) = 0 and so ρ0φ(0) = 0. By Theorem 1.3.5, the map φ0 = ρ0φ
is an orthogonal transformation.

Now suppose that φk−1 is an orthogonal transformation of En that fixes
e1, . . . , ek−1. Let vk = φk−1(ek) − ek and let ρk be the identity if vk = 0,
or the reflection in the plane P (vk/|vk|, 0) otherwise. Then ρkφk−1 fixes
ek. See Figure 4.1.1. Also, for each j = 1, . . . , k − 1, we have

vk · ej = (φk−1(ek) − ek) · ej

= φk−1(ek) · ej

= φk−1(ek) · φk−1(ej)
= ek · ej

= 0.

Therefore ej is in the plane P (vk/|vk|, 0) and so is fixed by ρk. Thus, we
have that φk = ρkφk−1 fixes e1, . . . , ek. It follows by induction that there
are maps ρ0, . . . , ρn such that each ρi is either the identity or a reflection
and ρn · · · ρ0φ fixes 0, e1, . . . , en. Therefore ρn · · · ρ0φ is the identity and
we have that φ = ρ0 · · · ρn.

φk−1(ek) − ek

0

φk−1(ek)

ek

P

Figure 4.1.1. The reflection of the point φk−1(ek) in the plane P
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Inversions

Let a be a point of En and let r be a positive real number. The sphere of
En of radius r centered at a is defined to be the set

S(a, r) = {x ∈ En : |x − a| = r}.

The reflection (or inversion) σ of En in the sphere S(a, r) is defined by the
formula

σ(x) = a + s(x − a),

where s is a positive scalar so that

|σ(x) − a| |x − a| = r2.

This leads to the explicit formula

σ(x) = a +
(

r

|x − a|

)2

(x − a). (4.1.2)

There is a nice geometric construction of the point σ(x). Assume first
that x is inside S(a, r). Erect a chord of S(a, r) passing through x per-
pendicular to the line joining a to x. Let u and v be the endpoints of
the chord. Then σ(x) is the point x′ of intersection of the lines tangent
to S(a, r) at the points u and v in the plane containing a, u, and v, as in
Figure 4.1.2. Observe that the right triangles T (a, x, v) and T (a, v, x′) are
similar. Consequently, we have

|x′ − a|
r

=
r

|x − a| .

Therefore x′ = σ(x) as claimed.
Now assume that x is outside S(a, r). Let y be the midpoint of the line

segment [a, x] and let C be the circle centered at y of radius |x−y|. Then C
intersects S(a, r) in two points u, v, and σ(x) is the point x′ of intersection
of the line segments [a, x] and [u, v], as in Figure 4.1.3.

r

a

v

u

x x′ = σ(x)

Figure 4.1.2. The construction of the reflection of a point x in a sphere S(a, r)
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r

a

v

u

x′ xy

Figure 4.1.3. The construction of the reflection of a point x in a sphere S(a, r)

Theorem 4.1.3. If σ is the reflection of En in the sphere S(a, r), then

(1) σ(x) = x if and only if x is in S(a, r);

(2) σ2(x) = x for all x �= a; and

(3) for all x, y �= a,

|σ(x) − σ(y)| =
r2|x − y|

|x − a| |y − a| .

Proof: (1) Since
|σ(x) − a| |x − a| = r2,

we have that σ(x) = x if and only if |x − a| = r.

(2) Observe that

σ2(x) = a +
(

r

|σ(x) − a|

)2 (
σ(x) − a

)
= a +

(
|x − a|

r

)2(
r

|x − a|

)2

(x − a)

= x.

(3) Observe that

|σ(x) − σ(y)| = r2
∣∣∣∣ (x − a)
|x − a|2 − (y − a)

|y − a|2

∣∣∣∣
= r2

[
1

|x − a|2 − 2(x − a) · (y − a)
|x − a|2 |y − a|2 +

1
|y − a|2

]1/2

=
r2|x − y|

|x − a| |y − a| .
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Conformal Transformations

Let U be an open subset of En and let φ : U → En be a C1 function. Then
φ is differentiable and φ has continuous partial derivatives. Let φ′(x) be
the matrix

(
∂φi

∂xj
(x)
)

of partial derivatives of φ. The function φ is said to
be conformal if and only if there is a function

κ : U → R+,

called the scale factor of φ, such that κ(x)−1φ′(x) is an orthogonal matrix
for each x in U . Notice that the scale factor κ of a conformal function φ is
uniquely determined by φ, since [κ(x)]n = | det φ′(x)|.

Lemma 1. Let A be a real n × n matrix. Then there is a positive scalar
k such that k−1A is an orthogonal matrix if and only if A preserves angles
between nonzero vectors.

Proof: Suppose there is a k > 0 such that k−1A is an orthogonal matrix.
Then A is nonsingular. Let x and y be nonzero vectors in En. Then Ax
and Ay are nonzero, and A preserves angles, since

cos θ(Ax, Ay) =
Ax · Ay

|Ax| |Ay|

=
k−1Ax · k−1Ay

|k−1Ax| |k−1Ay|
=

x · y

|x| |y| = cos θ(x, y).

Conversely, suppose that A preserves angles between nonzero vectors.
Then A is nonsingular. As θ(Aei, Aej) = θ(ei, ej) = π/2 for all i �= j, the
vectors Ae1, . . . , Aen are orthogonal. Let B be the orthogonal matrix such
that Bei = Aei/|Aei| for each i. Then B−1A also preserves angles and
B−1Aei = ciei where ci = |Aei|. Thus, we may assume, without loss of
generality, that Aei = ciei, with ci > 0, for each i = 1, . . . , n. As

θ(A(ei + ej), Aej) = θ(ei + ej , ej)

for all i �= j, we have

(ciei + cjej) · cjej

(c2
i + c2

j )1/2cj
=

1√
2
.

Thus 2c2
j = c2

i + c2
j and so ci = cj for all i and j. Therefore, the common

value of the ci is a positive scalar k such that k−1A is orthogonal.

Let α, β : [−b, b] → En be differentiable curves such that α(0) = β(0)
and α′(0), β′(0) are both nonzero. The angle between α and β at 0 is
defined to be the angle between α′(0) and β′(0).
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Theorem 4.1.4. Let U be an open subset of En and let φ : U → En be a
C1 function. Then φ is conformal if and only if φ preserves angles between
differentiable curves in U .

Proof: Suppose that the function φ is conformal. Then there is a function
κ : U → R+ such that κ(x)−1φ′(x) is orthogonal for each x in U . Let
α, β : [−b, b] → U be differentiable curves such that α(0) = β(0) and
α′(0), β′(0) are both nonzero. Then by Lemma 1, we have

θ((φα)′(0), (φβ)′(0))
= θ(φ′(α(0))α′(0), φ′(β(0))β′(0))
= θ(α′(0), β′(0)).

Hence, the angle between φα and φβ at 0 is the same as the angle between
α and β at 0.

Conversely, suppose that φ preserves angles between differentiable curves
in U . Then the matrix φ′(x) preserves angles between nonzero vectors for
each x. By Lemma 1, there is a positive scalar κ(x) such that κ(x)−1φ′(x)
is orthogonal for each x in U . Thus φ is conformal.

Let U be an open subset of En and let φ : U → En be a differentiable
function. Then φ is said to preserve (resp. reverse) orientation at a point
x of U if and only if detφ′(x) > 0 (resp. det φ′(x) < 0). The function φ is
said to preserve (resp. reverse) orientation if and only if φ preserves (resp.
reverses) orientation at each point x of U .

Theorem 4.1.5. Every reflection of En in a hyperplane or sphere is con-
formal and reverses orientation.

Proof: Let ρ be the reflection of En in the plane P (a, t). Then

ρ(x) = x + 2(t − a · x)a,

ρ′(x) = (δij − 2aiaj) = I − 2A,

where A is the matrix (aiaj). As ρ′(x) is independent of t, we may assume
without loss of generality that t = 0. Then ρ is an orthogonal transforma-
tion and

ρ(x) = (I − 2A)x.

Thus I − 2A is an orthogonal matrix, and so ρ is conformal.
By Theorem 1.3.4, there is an orthogonal transformation φ such that

φ(a) = e1. Then

φρφ−1(x) = φ(φ−1(x) − 2(a · φ−1(x))a)
= x − 2(a · φ−1(x))e1

= x − 2(φ(a) · x)e1

= x − 2(e1 · x)e1.
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Therefore φρφ−1 is the reflection in P (e1, 0). By the chain rule,

det(φρφ−1)′(x) = det ρ′(x).

To compute the determinant of ρ′(x), we may assume that a = e1. Then

I − 2A =

⎛⎜⎜⎜⎜⎜⎝
−1

1 0
. . .

0
1

⎞⎟⎟⎟⎟⎟⎠ .

Thus det ρ′(x) = −1, and so ρ reverses orientation.
Let σr be the reflection of En in the sphere S(0, r). Then

σr(x) =
r2x

|x|2
and so

σ′
r(x) = r2

(
δij

|x|2 − 2xixj

|x|4

)
=

r2

|x|2 (I − 2A),

where A is the matrix
(
xixj/|x|2

)
. We have already shown that I − 2A is

orthogonal, and so σr is conformal; moreover σr reverses orientation, since

det σ′
r(x) =

(
r

|x|

)2n

det(I − 2A)

= −
(

r

|x|

)2n

< 0.

Now let σ be the reflection with respect to S(a, r) and let τ be the
translation by a. Then τ ′(x) = I and σ = τσrτ

−1. Hence σ′(x) = σ′
r(x−a).

Thus σ is conformal and reverses orientation.

Exercise 4.1

1. Prove Theorem 4.1.1.

2. Show that the reflections of En in the planes P (a, t) and P (b, s) commute if
and only if either P (a, t) = P (b, s) or a and b are orthogonal.

3. Show that a real n × n matrix A preserves angles between nonzero vectors if
and only if there is a positive scalar k such that |Ax| = k|x| for all x in En.

4. Let U be an open connected subset of En and let φ : U → En be a C1

function such that φ′(x) is nonsingular for all x in U . Show that φ either
preserves orientation or reverses orientation.

5. Let U be an open connected subset of C. Prove that a function φ : U → C
is conformal if and only if either φ is analytic and φ′(z) �= 0 for all z in U or
φ is analytic and φ′(z) �= 0 for all z in U .
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§4.2. Stereographic Projection

Identify En with En × {0} in En+1. The stereographic projection π of En

onto Sn − {en+1} is defined by projecting x in En towards (or away from)
en+1 until it meets the sphere Sn in the unique point π(x) other than en+1.
See Figure 4.2.1. As π(x) is on the line passing through x in the direction
of en+1 − x, there is a scalar s such that

π(x) = x + s(en+1 − x).

The condition |π(x)|2 = 1 leads to the value

s =
|x|2 − 1
|x|2 + 1

and the explicit formula

π(x) =
(

2x1

1 + |x|2 , . . . ,
2xn

1 + |x|2 ,
|x|2 − 1
|x|2 + 1

)
. (4.2.1)

The map π is a bijection of En onto Sn − {en+1}.
There is a nice interpretation of stereographic projection in terms of in-

versive geometry. Let σ be the reflection of En+1 in the sphere S(en+1,
√

2).
Then

σ(x) = en+1 +
2(x − en+1)
|x − en+1|2

. (4.2.2)

If x is in En, then

σ(x) = en+1 +
2

1 + |x|2 (x1, . . . , xn,−1)

=
(

2x1

1 + |x|2 , . . . ,
2xn

1 + |x|2 ,
|x|2 − 1
|x|2 + 1

)
.

e3

π(x)

E2

x

Figure 4.2.1. The stereographic projection π of E2 into S2
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Thus, the restriction of σ to En is stereographic projection

π : En → Sn − {en+1}.

As σ is its own inverse, we can compute the inverse of π from Formula
4.2.2. If y is in Sn − {en+1}, then

σ(y) = en+1 +
2(y − en+1)

|y|2 − 2y · en+1 + 1

= en+1 +
1

1 − yn+1
(y1, . . . , yn, yn+1 − 1)

=
(

y1

1 − yn+1
, . . . ,

yn

1 − yn+1
, 0
)

.

Hence

π−1(y) =
(

y1

1 − yn+1,
, . . . ,

yn

1 − yn+1

)
. (4.2.3)

Let ∞ be a point not in En+1 and define Ên = En ∪ {∞}. Now extend
π to a bijection π̂ : Ên → Sn by setting π̂(∞) = en+1, and define a metric
d on Ên by the formula

d(x, y) = |π̂(x) − π̂(y)|. (4.2.4)

The metric d is called the chordal metric on Ên. By definition, the map π̂
is an isometry from Ên, with the chordal metric, to Sn with the Euclidean
metric. The metric topology on En determined by the chordal metric is the
same as the Euclidean topology, since π maps En homeomorphically onto
the open subset Sn −{en+1} of Sn. The metric space Ên is compact and is
obtained from En by adjoining one point at infinity. For this reason, Ên is
called the one-point compactification of En. The one-point compactification
of the complex plane C is called the Riemann sphere Ĉ = C ∪ {∞}.

Theorem 4.2.1. If x, y are in En, then

(1) d(x,∞) =
2

(1 + |x|2)1/2 ,

(2) d(x, y) =
2|x − y|

(1 + |x|2)1/2(1 + |y|2)1/2 .

Proof: (1) Observe that

d(x,∞) = |π̂(x) − π̂(∞)|
= |π(x) − en+1|

=
∣∣∣∣( 2x1

1 + |x|2 , . . . ,
2xn

1 + |x|2 ,
−2

1 + |x|2

)∣∣∣∣
=

2
(1 + |x|2)1/2 .
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(2) By Theorem 4.1.3, we have

d(x, y) =
2|x − y|

|x − en+1| |y − en+1|

=
2|x − y|

(1 + |x|2)1/2(1 + |y|2)1/2 .

By Theorem 4.2.1, the distance d(x,∞) depends only on |x|. Conse-
quently, every open ball Bd(∞, r) is of the form Ên − C(0, s) for some
s > 0. Therefore, a basis for the topology of Ên consists of all the open
balls B(x, r) of En together with all the neighborhoods of ∞ of the form

N(∞, s) = Ên − C(0, s).

In particular, this implies that a function f : Ên → Ên is continuous at a
point a of Ên if and only if lim

x→a
f(x) = f(a) in the usual Euclidean sense.

Let P (a, t) be a hyperplane of En. Define

P̂ (a, t) = P (a, t) ∪ {∞}.

Note that the subspace P̂ (a, t) of Ên is homeomorphic to Sn−1. Let ρ be
the reflection of En in P (a, t) and let ρ̂ : Ên → Ên be the extension of ρ
obtained by setting ρ̂(∞) = ∞. Then ρ̂(x) = x for all x in P̂ (a, t) and ρ̂2

is the identity. The map ρ̂ is called the reflection of Ên in the extended
hyperplane P̂ (a, t).

Theorem 4.2.2. Every reflection of Ên in an extended hyperplane is a
homeomorphism.

Proof: Let ρ be the reflection of En in a hyperplane. Then ρ is continuous.
As lim

x→∞ ρ(x) = ∞, we have that ρ̂ is continuous at ∞. Therefore ρ̂ is a
continuous function. As ρ̂ is its own inverse, it is a homeomorphism.

Let σ be the reflection of En in the sphere S(a, r). Extend σ to a map
σ̂ : Ên → Ên by setting σ̂(a) = ∞ and σ̂(∞) = a. Then σ̂(x) = x for all x
in S(a, r) and σ̂2 is the identity. The map σ̂ is called the reflection of Ên

in the sphere S(a, r).

Theorem 4.2.3. Every reflection of Ên in a sphere of En is a homeomor-
phism.

Proof: Let σ be the reflection of En in the sphere S(a, r) and let σ̂ be
the extended reflection of Ên. As σ̂2 is the identity, σ̂ is a bijection with
inverse σ̂. The map σ̂ is continuous, since σ is continuous, lim

x→a
σ(x) = ∞,

and lim
x→∞ σ(x) = a. Thus σ̂ is a homeomorphism.
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Cross Ratio

Let u, v, x, y be points of Ên such that u �= v and x �= y. The cross ratio
of these points is defined to be the real number

[u, v, x, y] =
d(u, x)d(v, y)
d(u, v)d(x, y)

. (4.2.5)

The cross ratio is a continuous function of four variables, since the metric
d : Ên × Ên → R is a continuous function. The following theorem follows
immediately from Theorem 4.2.1.

Theorem 4.2.4. If u, v, x, y are points of En such that u �= v and x �= y,
then

(1) [u, v, x, y] =
|u − x| |v − y|
|u − v| |x − y| ,

(2) [∞, v, x, y] =
|v − y|
|x − y| ,

(3) [u, ∞, x, y] =
|u − x|
|x − y| ,

(4) [u, v,∞, y] =
|v − y|
|u − v| ,

(5) [u, v, x,∞] =
|u − x|
|u − v| .

Exercise 4.2

1. Derive Formula 4.2.1.
2. Let U be a subset of Ên containing ∞. Show that U is open in Ên if and

only if U is of the form Ên − K, where K is a compact subset of En.
3. Let η : En → En be a homeomorphism and let η̂ : Ên → Ên be the extension

obtained by setting η̂(∞) = ∞. Prove that η̂ is a homeomorphism.
4. Prove that the Euclidean metric on En does not extend to a metric d̂ on Ên

so that the metric space (Ên, d̂) is compact or connected.
5. Let P (a, t) be a hyperplane of En. Show that the extended plane P̂ (a, t) is

homeomorphic to Sn−1.

§4.3. Möbius Transformations

A sphere Σ of Ên is defined to be either a Euclidean sphere S(a, r) or an
extended plane P̂ (a, t) = P (a, t) ∪ {∞}. It is worth noting that P̂ (a, t) is
topologically a sphere.



§4.3. Möbius Transformations 111

Definition: A Möbius transformation of Ên is a finite composition of
reflections of Ên in spheres.

Let M(Ên) be the set of all Möbius transformations of Ên. Then M(Ên)
obviously forms a group under composition. By Theorem 4.1.2, every isom-
etry of En extends in a unique way to a Möbius transformation of Ên.
Thus, we may regard the group of Euclidean isometries I(En) as a sub-
group of M(Ên).

Let k be a positive constant and let µk : Ên → Ên be the function
defined by µk(x) = kx. Then µk is a Möbius transformation, since µk is the
composite of the reflection in S(0, 1) followed by the reflection in S(0,

√
k).

As every similarity of En is the composite of an isometry followed by µk

for some k, every similarity of En extends in a unique way to a Möbius
transformation of Ên. Thus, we may also regard the group of Euclidean
similarities S(En) as a subgroup of M(Ên).

In order to simplify notation, we shall no longer use a hat to denote the
extension of a map to Ên.

Lemma 1. If σ is the reflection of Ên in the sphere S(a, r) and σ1 is the
reflection in S(0, 1), and φ : Ên → Ên is defined by φ(x) = a + rx, then
σ = φσ1φ

−1.

Proof: Observe that

σ(x) = a +
(

r

|x − a|

)2

(x − a)

= φ

(
r(x − a)
|x − a|2

)

= φσ1

(
x − a

r

)
= φσ1φ

−1(x).

Theorem 4.3.1. A function φ : Ên → Ên is a Möbius transformation if
and only if it preserves cross ratios.

Proof: Let φ be a Möbius transformation. As φ is a composition of
reflections, we may assume that φ is a reflection. A Euclidean similarity
obviously preserves cross ratios, and so we may assume by Lemma 1 that
φ(x) = x/|x|2. By Theorem 4.1.3, we have

|φ(x) − φ(y)| =
|x − y|
|x| |y| .

By Theorem 4.2.4, we deduce that

[φ(u), φ(v), φ(x), φ(y)] = [u, v, x, y]

if u, v, x, y are all finite and nonzero. The remaining cases follow by conti-
nuity. Thus φ preserves cross ratios.
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Conversely, suppose that φ preserves cross ratios. By composing φ with
a Möbius transformation, we may assume that φ(∞) = ∞. Let u, v, x, y be
points of En such that u �= v, x �= y, and (u, v) �= (x, y). Then either u �= x
or v �= y. Assume first that u �= x. As [φ(u),∞, φ(x), φ(y)] = [u, ∞, x, y],
we have

|φ(u) − φ(x)|
|φ(x) − φ(y)| =

|u − x|
|x − y| ,

and since [φ(u), φ(v), φ(x),∞] = [u, v, x,∞], we have

|φ(u) − φ(x)|
|φ(u) − φ(v)| =

|u − x|
|u − v| .

Hence
|φ(u) − φ(v)|

|u − v| =
|φ(u) − φ(x)|

|u − x| =
|φ(x) − φ(y)|

|x − y| .

Similarly, if v �= y, then

|φ(u) − φ(v)|
|u − v| =

|φ(x) − φ(y)|
|x − y| .

Hence, there is a positive constant k such that |φ(x) − φ(y)| = k|x − y| for
all x, y in En. By Theorem 1.3.6, we have that φ is a Euclidean similarity.
Thus φ is a Möbius transformation.

From the proof of Theorem 4.3.1, we deduce the following theorem.

Theorem 4.3.2. A Möbius transformation φ of Ên fixes ∞ if and only if
φ is a similarity of En.

The Isometric Sphere

Let φ be a Möbius transformation of Ên with φ(∞) �= ∞. Let a = φ−1(∞)
and let σ be the reflection of Ên in the sphere S(a, 1). Then φσ fixes ∞.
Hence φσ is a similarity of En by Theorem 4.3.2. Therefore, there is a
point b of En, a scalar k > 0, and an orthogonal transformation A of En

such that
φ(x) = b + kAσ(x). (4.3.1)

By Theorem 4.1.3, we have

|φ(x) − φ(y)| =
k|x − y|

|x − a| |y − a| .

Now suppose that x, y are in S(a, r). Then |φ(x) − φ(y)| = |x − y| if and
only if r =

√
k. Thus φ acts as an isometry on the sphere S(a,

√
k), and

S(a,
√

k) is unique with this property among the spheres of En centered at
the point a. For this reason, S(a,

√
k) is called the isometric sphere of φ.
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Theorem 4.3.3. Let φ be a Möbius transformation of Ên with φ(∞) �= ∞.
Then there is a unique reflection σ in a Euclidean sphere Σ and a unique
Euclidean isometry ψ such that φ = ψσ. Moreover Σ is the isometric
sphere of φ.

Proof: Let σ be the reflection in the isometric sphere S(a, r) of φ. Then
a = φ−1(∞) and φσ(∞) = ∞. By Theorem 4.3.2, we have that φσ is a
Euclidean similarity. Let x, y be in S(a, r). Then we have

|φσ(x) − φσ(y)| = |φ(x) − φ(y)| = |x − y|.
Thus ψ = φσ is a Euclidean isometry and φ = ψσ.

Conversely, suppose that σ is a reflection in a sphere S(a, r) and ψ is
a Euclidean isometry such that φ = ψσ. Then φ(a) = ∞ and φ acts as
an isometry on S(a, r). Therefore S(a, r) is the isometric sphere of φ. As
ψ = φσ, both σ and ψ are unique.

Preservation of Spheres

The equation defining a sphere S(a, r) or P̂ (a, t) in Ên is

|x|2 − 2a · x + |a|2 − r2 = 0 (4.3.2)
or

− 2a · x + 2t = 0, (4.3.3)

respectively, and these can be written in the common form

a0|x|2 − 2a · x + an+1 = 0 with |a|2 > a0an+1.

Conversely, any vector (a0, . . . , an+1) in Rn+2 such that |a|2 > a0an+1,
where a = (a1, . . . , an) determines a sphere Σ of Ên satisfying the equation

a0|x|2 − 2a · x + an+1 = 0.

If a0 �= 0, then

Σ = S

(
a

a0
,
(|a|2 − a0an+1)

1
2

|a0|

)
.

If a0 = 0, then

Σ = P̂

(
a

|a| ,
an+1

2|a|

)
.

The vector (a0, . . . , an+1) is called a coefficient vector for Σ, and it is
uniquely determined by Σ up to multiplication by a nonzero scalar.

Theorem 4.3.4. Let φ be a Möbius transformation of Ên. If Σ is a sphere
of Ên, then φ(Σ) is also a sphere of Ên.

Proof: Let φ be a Möbius transformation, and let Σ be a sphere. As
φ is a composition of reflections, we may assume that φ is a reflection.
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A Euclidean similarity obviously maps spheres to spheres, and so we may
assume by Lemma 1 that φ(x) = x/|x|2.

Let (a0, . . . , an+1) be a coefficient vector for Σ. Then Σ satisfies the
equation

a0|x|2 − 2a · x + an+1 = 0.

Let y = φ(x). Then y satisfies the equation

a0 − 2a · y + an+1|y|2 = 0.

But this is the equation of another sphere Σ′. Hence φ maps Σ into Σ′.
The same argument shows that φ maps Σ′ into Σ. Therefore φ(Σ) = Σ′.

Theorem 4.3.5. The natural action of M(Ên) on the set of spheres of Ên

is transitive.

Proof: Let Σ be a sphere of Ên. It suffices to show that there is a Möbius
transformation φ such that φ(Σ) = Ên−1. As the group of Euclidean
isometries I(En) acts transitively on the set of hyperplanes of En, we may
assume that Σ is a Euclidean sphere. As the group of Euclidean similarities
S(En) acts transitively on the set of spheres of En, we may assume that
Σ = Sn−1. Let σ be the reflection in the sphere S(en,

√
2). Then we have

that σ(Sn−1) = Ên−1 by stereographic projection.

Theorem 4.3.6. If φ is a Möbius transformation of Ên that fixes each
point of a sphere Σ of Ên, then φ is either the identity map of Ên or the
reflection in Σ.

Proof: Assume first that Σ = Ên−1. Then φ(∞) = ∞. By Theorem
4.3.2, we have that φ is a Euclidean similarity. As φ(0) = 0 and φ(e1) = e1,
we have that φ is an orthogonal transformation. Moreover, since φ fixes
e1, . . . , en−1, we have that φ(en) = ±en. Thus φ is either the identity or
the reflection in P (en, 0).

Now assume that Σ is arbitrary. By Theorem 4.3.5, there is a Möbius
transformation ψ such that ψ(Σ) = Ên−1. As ψφψ−1 fixes each point
of Ên−1, we find that ψφψ−1 is either the identity or the reflection ρ in
Ên−1. Hence φ is either the identity or ψ−1ρψ. Let σ be the reflection in
Σ. As ψσψ−1 fixes each point of Ên−1 and is not the identity, we have
that ψσψ−1 = ρ. Hence σ = ψ−1ρψ. Thus φ is either the identity or σ.

Definition: Given a reflection σ in a sphere Σ of Ên, two points x and y of
Ên are said to be inverse points with respect to Σ if and only if y = σ(x).

Theorem 4.3.7. Let φ be a Möbius transformation of Ên. If x and y are
inverse points with respect to a sphere Σ of Ên, then φ(x) and φ(y) are
inverse points with respect to φ(Σ).
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Proof: Let σ be the reflection in Σ. Then φσφ−1 fixes each point of
φ(Σ) and is not the identity. By Theorem 4.3.6, we have that φσφ−1 is the
reflection in φ(Σ). As φσφ−1(φ(x)) = φ(y), we have that φ(x) and φ(y)
are inverse points with respect to φ(Σ).

Exercise 4.3

1. Show that a Möbius transformation of Ên either preserves or reverses orien-
tation depending on whether it is the composition of an even or odd number
of reflections. Let M0(Ên) be the set of all orientation preserving Möbius
transformations of Ên. Conclude that M0(Ên) is a subgroup of M(Ên) of
index two.

2. A linear fractional transformation of the Riemann sphere Ĉ is a continuous
map φ : Ĉ → Ĉ of the form φ(z) = az+b

cz+d
, where a, b, c, d are in C and

ad − bc �= 0. Show that every linear fractional transformation of Ĉ is an
orientation preserving Möbius transformation of Ĉ.

3. Let LF(Ĉ) be the set of all linear fractional transformations of Ĉ. Show that
LF(Ĉ) is a group under composition.

4. Let GL(2, C) be the group of all invertible complex 2 × 2 matrices, and
let PGL(2, C) be the quotient group of GL(2, C) by the normal subgroup
{kI : k ∈ C∗}. Show that the map Ξ : GL(2, C) → LF(Ĉ), defined by

Ξ

(
a b
c d

)
(z) =

az + b

cz + d
,

induces an isomorphism from PGL(2, C) to LF(Ĉ).

5. Let ρ(z) = z be complex conjugation. Show that

M(Ĉ) = LF(Ĉ) ∪ LF(Ĉ)ρ.

Deduce that LF(Ĉ) = M0(Ĉ).

6. Let φ(z) = az+b
cz+d

be a linear fractional transformation of Ĉ with φ(∞) �= ∞.
Show that the isometric circle of φ is the set{

z ∈ C : |cz + d| = |ad − bc| 1
2
}
.

7. Let φ be a Möbius transformation of Ên with φ(∞) �= ∞, and let Σφ be the
isometric sphere of φ. Prove that φ(Σφ) = Σφ−1 .

8. Let φ be a Möbius transformation of Ên with φ(∞) �= ∞, and let φ′(x) be
the matrix of partial derivatives of φ. Prove that the isometric sphere of φ
is the set {x ∈ En : φ′(x) is orthogonal}.
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§4.4. Poincaré Extension

Under the identification of En−1 with En−1 × {0} in En, a point x of
En−1 corresponds to the point x̃ = (x, 0) of En. Let φ be a Möbius
transformation of Ên−1. We shall extend φ to a Möbius transformation φ̃
of Ên as follows. If φ is the reflection of Ên−1 in P̂ (a, t), then φ̃ is the
reflection of Ên in P̂ (ã, t). If φ is the reflection of Ên−1 in S(a, r), then φ̃
is the reflection of Ên in S(ã, r). In both these cases

φ̃(x, 0) = (φ(x), 0) for all x in En−1.

Thus φ̃ extends φ. In particular φ̃ leaves Ên−1 invariant. It is also clear
that φ̃ leaves invariant upper half-space

Un = {(x1, . . . , xn) ∈ En : xn > 0}. (4.4.1)

Now assume that φ is an arbitrary Möbius transformation of Ên−1. Then
φ is the composition φ = σ1 · · ·σm of reflections. Let φ̃ = σ̃1 · · · σ̃m. Then
φ̃ extends φ and leaves Un invariant. Suppose that φ̃1 and φ̃2 are two
such extensions of φ. Then φ̃1φ̃

−1
2 fixes each point of Ên−1 and leaves

Un invariant. By Theorem 4.3.6, we have that φ̃1φ̃
−1
2 is the identity and

so φ̃1 = φ̃2. Thus φ̃ depends only on φ and not on the decomposition
φ = σ1 · · ·σm. The map φ̃ is called the Poincaré extension of φ.

Theorem 4.4.1. A Möbius transformation φ of Ên leaves upper half-space
Un invariant if and only if φ is the Poincaré extension of a Möbius trans-
formation of Ên−1.

Proof: Let φ be a Möbius transformation of Ên that leaves Un invariant.
As φ is a homeomorphism, it also leaves the boundary of Un invariant.
Hence φ restricts to a homeomorphism φ of Ên−1. As φ preserves cross
ratios in Ên, we have that φ preserves cross ratios in Ên−1. Therefore
φ is a Möbius transformation of Ên−1 by Theorem 4.3.1. Let φ̃ be the
Poincaré extension of φ. Then φ̃φ−1 fixes each point of Ên−1 and leaves
Un invariant. Therefore φ = φ̃ by Theorem 4.3.6.

Möbius Transformations of Upper Half-Space

Definition: A Möbius transformation of upper half-space Un is a Möbius
transformation of Ên that leaves Un invariant.

Let M(Un) be the set of all Möbius transformations of Un. Then M(Un) is a
subgroup of M(Ên). The next corollary follows immediately from Theorem
4.4.1.

Corollary 1. The group M(Un) of Möbius transformations of Un is iso-
morphic to M(Ên−1).
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Two spheres Σ and Σ′ of Ên are said to be orthogonal if and only if they
intersect in En and at each point of intersection in En their normal lines
are orthogonal.

Corollary 2. Every Möbius transformation of Un is the composition of
reflections of Ên in spheres orthogonal to Ên−1.

Proof: Let ψ be a Möbius transformation of Un. Then ψ is the Poincaré
extension φ̃ of a Möbius transformation φ of Ên−1. The map φ is the com-
position σ1 · · ·σm of reflections of Ên−1 in spheres. The Poincaré extension
of the reflection σi is a reflection of Ên in a sphere orthogonal to Ên−1.
As φ̃ = σ̃1 · · · σ̃m, we have that ψ is the composition of reflections of Ên in
spheres orthogonal to Ên−1.

Theorem 4.4.2. Two spheres of Ên are orthogonal under the following
conditions:

(1) The spheres P̂ (a, r) and P̂ (b, s) are orthogonal if and only if a and b
are orthogonal.

(2) The spheres S(a, r) and P̂ (b, s) are orthogonal if and only if a is in
P (b, s).

(3) The spheres S(a, r) and S(b, s) are orthogonal if and only if r and s
satisfy the equation |a − b|2 = r2 + s2.

Proof: Part (1) is obvious. The proof of (2) is left to the reader. The
proof of (3) goes as follows: At each point of intersection x of S(a, r) and
S(b, s), the normal lines have the equations{

u = a + t(x − a),
v = b + t(x − b),

where t is a real parameter. These lines are orthogonal if and only if their
direction vectors x − a and x − b are orthogonal. Observe that

|a − b|2 = |(x − b) − (x − a)|2

= |x − b|2 − 2(x − b) · (x − a) + |x − a|2

= s2 − 2(x − b) · (x − a) + r2.

Hence (x − a) and (x − b) are orthogonal if and only if

|a − b|2 = r2 + s2.

Thus, if the spheres are orthogonal, then

|a − b|2 = r2 + s2.

Conversely, suppose that |a − b|2 = r2 + s2. Then there is a right
triangle in En with vertices a, b, x such that |x − a| = r and |x − b| = s.
Consequently, x is a point of intersection of S(a, r) and S(b, s), and the
spheres are orthogonal. See Figure 4.4.1.
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a b

r s

Figure 4.4.1. Orthogonal circles S(a, r) and S(b, s)

Remark: It is clear from the proof of Theorem 4.4.2 that two spheres Σ
and Σ′ of Ên are orthogonal if and only if they are orthogonal at a single
point of intersection in En.

Theorem 4.4.3. A reflection σ of Ên in a sphere Σ leaves upper half-space
Un invariant if and only if Ên−1 and Σ are orthogonal.

Proof: Let Σ = P̂ (a, t) or S(a, r). By Theorem 4.4.2, we have that Ên−1

and Σ are orthogonal if and only if an = 0. Let x be in En and set y = σ(x).
Then for all finite values of y, we have

yn =

⎧⎪⎨⎪⎩
xn + 2(t − a · x)an if Σ = P̂ (a, t),(

r
|x−a|
)2

xn +
(

1 −
(

r
|x−a|
)2)

an if Σ = S(a, r).

Assume that an = 0 and xn > 0. Then x �= a, and so y is finite and yn > 0.
Thus σ leaves Un invariant.

Conversely, assume that σ leaves Un invariant. Then σ leaves Ên−1

invariant. As the reflection in Ên−1 switches Un and −Un, we may assume
that Σ is not Ên−1. Let x be in Ên−1 −Σ with y finite. Then xn = 0 = yn.
As x is not in Σ, the coefficient of an in the above expression for yn is
nonzero. Hence an = 0.

Theorem 4.4.4. Let φ be a Möbius transformation of Un. If φ(∞) = ∞,
then φ is a Euclidean similarity. If φ(∞) �= ∞, then the isometric sphere
Σ of φ is orthogonal to En−1 and φ = ψσ, where σ is the reflection in Σ
and ψ is a Euclidean isometry that leaves Un invariant.
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Proof: If φ(∞) = ∞, then φ is a Euclidean similarity by Theorem 4.3.2.
Now assume that φ(∞) �= ∞. Then φ is the Poincaré extension of a Möbius
transformation φ of Ên−1 by Theorem 4.4.1. Let σ be the reflection of
Ên−1 in the isometric sphere Σ of φ. Then there is a Euclidean isometry
ψ of En−1 such that φ = ψσ by Theorem 4.3.3. Let σ, ψ be the Poincaré
extensions of σ, ψ, respectively. Then σ is a reflection in a sphere Σ of En

orthogonal to En−1, and ψ is an isometry of En that leaves Un invariant.
As φ = ψσ, we have that φ = ψσ. Therefore Σ is the isometric sphere of φ
by Theorem 4.3.3.

Möbius Transformations of the Unit n-Ball

Let σ be the reflection of Ên in the sphere S(en,
√

2). Then

σ(x) = en +
2(x − en)
|x − en|2 . (4.4.2)

Therefore

|σ(x)|2 = 1 +
4en · (x − en)

|x − en|2 +
4

|x − en|2 .

Thus
|σ(x)|2 = 1 +

4xn

|x − en|2 . (4.4.3)

This implies that σ maps lower half-space −Un into the open unit n-ball

Bn = {x ∈ En : |x| < 1}. (4.4.4)

As σ is a homeomorphism of Ên, it maps each component of Ên − Ên−1

homeomorphically onto a component of Ên − Sn−1. Thus σ maps −Un

homeomorphically onto Bn and vice versa.
Let ρ be the reflection of Ên in Ên−1 and define η = σρ. Then η maps

Un homeomorphically onto Bn. The Möbius transformation η is called the
standard transformation from Un to Bn.

Definition: A Möbius transformation of Sn is a function φ : Sn → Sn

such that π−1φπ is a Möbius transformation of Ên, where π : Ên → Sn is
stereographic projection.

Let M(Sn) be the set of all Möbius transformations of Sn. Then M(Sn)
forms a group under composition. The mapping ψ �→ πψπ−1 is an isomor-
phism from M(Ên) to M(Sn).

Let φ be a Möbius transformation of Sn−1. The Poincaré extension of φ
is the Möbius transformation φ̃ of Ên defined by φ̃ = ηψ̃η−1, where ψ̃ is the
Poincaré extension of ψ = π−1φπ and η is the standard transformation from
Un to Bn. The Möbius transformation φ̃ obviously extends φ and leaves Bn

invariant; moreover, φ̃ is unique with this property. The following theorem
follows immediately from Theorem 4.4.1.
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Theorem 4.4.5. A Möbius transformation φ of Ên leaves the open unit
ball Bn invariant if and only if φ is the Poincaré extension of a Möbius
transformation of Sn−1.

Definition: A Möbius transformation of the open unit ball Bn is a Möbius
transformation of Ên that leaves Bn invariant.

Let M(Bn) be the set of all Möbius transformations of Bn. Then M(Bn)
is a subgroup of M(Ên). The next corollary follows immediately from
Theorem 4.4.5.

Corollary 3. The group M(Bn) of Möbius transformations of Bn is iso-
morphic to M(Sn−1).

The following corollary follows immediately from Corollary 2.

Corollary 4. Every Möbius transformation of Bn is the composition of
reflections of Ên in spheres orthogonal to Sn−1.

Theorem 4.4.6. A reflection σ of Ên in a sphere Σ leaves the open unit
ball Bn invariant if and only if Sn−1 and Σ are orthogonal.

Proof: Let η be the standard transformation from Un to Bn. Then
Σ′ = η−1(Σ) is a sphere of Ên by Theorem 4.3.4, and σ′ = η−1ση is the
reflection in Σ′ by Theorem 4.3.6. As η maps Un bijectively onto Bn,
the map σ leaves Bn invariant if and only if σ′ leaves Un invariant. By
Theorem 4.4.3, this is the case if and only if Ên−1 and Σ′ are orthogonal.
By Theorem 4.1.5, the map η is conformal and so it preserves angles. Hence
Ên−1 and Σ′ are orthogonal if and only if Sn−1 and Σ are orthogonal.

Theorem 4.4.7. Let φ be a Möbius transformation of Bn. If φ(∞) = ∞,
then φ is orthogonal. If φ(∞) �= ∞, then the isometric sphere Σ of φ is
orthogonal to Sn−1 and φ = ψσ, where σ is the reflection in Σ and ψ is an
orthogonal transformation.

Proof: Assume first that φ(∞) = ∞. Then φ is a Euclidean similarity by
Theorem 4.3.2. As φ(0) = 0, we have that φ(x) = kAx, where k > 0 and
A is an orthogonal matrix. As φ leaves Sn−1 invariant, we must have that
k = 1. Thus φ is orthogonal.

Now assume that φ(∞) �= ∞. Let σ be the reflection in the sphere
S(a, r), where a = φ−1(∞) and r2 = 1 − |a|2. Then S(a, r) is orthogonal
to Sn−1 by Theorem 4.4.2. Hence σ leaves Bn invariant by Theorem 4.4.6.
Now φσ(∞) = φ(a) = ∞. Hence φσ is an orthogonal transformation ψ,
and φ = ψσ. By Theorem 4.3.3, the isometric sphere of φ is S(a, r).

Theorem 4.4.8. Let φ be a Möbius transformation of Bn. Then φ(0) = 0
if and only if φ is an orthogonal transformation of En.
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Proof: As 0 and ∞ are inverse points with respect to Sn−1, and φ leaves
Sn−1 invariant, φ(0) and φ(∞) are inverse points with respect to Sn−1.
Therefore φ fixes 0 if and only if it fixes ∞. The theorem now follows from
Theorem 4.4.7.

Exercise 4.4

1. Identify the upper half-plane U2 with the set of complex numbers

{z ∈ C : Im z > 0}.

Show that a linear fractional transformation φ of Ĉ leaves U2 invariant if
and only if there exists real numbers a, b, c, d, with ad − bc > 0, such that

φ(z) =
az + b

cz + d
.

2. Let φ be in LF(Ĉ). Show that there are complex numbers a, b, c, d such that
φ(z) = az+b

cz+d
and ad − bc = 1.

3. Let SL(2, C) be the group of all complex 2 × 2 matrices of determinant one,
and let PSL(2, C) be the quotient of SL(2, C) by the normal subgroup {±I}.
Show that the inclusion of SL(2, C) into GL(2, C) induces an isomorphism
from PSL(2, C) to PGL(2, C). Deduce that PSL(2, C) and LF(Ĉ) are iso-
morphic groups.

4. Identify the open unit disk B2 with the open unit disk in C,

{z ∈ C : |z| < 1}.

Show that the standard transformation η : U2 → B2 is given by

η(z) =
iz + 1
z + i

.

5. Let φ(z) = az+b
cz+d

be in LF(Ĉ) normalized so that ad − bc = 1. Show that φ

leaves B2 invariant if and only if c = b and d = a.
6. Identify upper half-space U3 with the set of quaternions

{z + tj : z ∈ C and t > 0}.

Let φ(z) = az+b
cz+d

be a linear fractional transformation of Ĉ normalized so
that ad − bc = 1. Show that the Poincaré extension of φ is given by

φ̃(w) = (aw + b)(cw + d)−1, where w = z + tj.

7. Prove that Poincaré extension induces a monomorphism

Υ : M(Bn−1) → M(Bn)

mapping M(Bn−1) onto the subgroup M̃(Bn−1) of elements of M(Bn) that
leave Bn−1 and each component of Bn − Bn−1 invariant.

8. Let S(a, r) be a sphere of En that is orthogonal to Sn−1. Prove that the
intersection S(a, r)∩Sn−1 is the (n−2)-sphere S(a/|a|2, r/|a|) of the hyper-
plane P (a/|a|, 1/|a|).
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Henceforth, we shall primarily work with hyperbolic n-space Hn in Rn,1.
We now redefine the Lorentzian inner product on Rn+1 to be

x ◦ y = x1y1 + · · · + xnyn − xn+1yn+1. (4.5.1)
All the results of Chapter 3 remain true after one reverses the order of the
coordinates of Rn+1. The Lorentz group of Rn,1 is denoted by O(n, 1).

Identify Rn with Rn × {0} in Rn+1. The stereographic projection ζ of
the open unit ball Bn onto hyperbolic space Hn is defined by projecting
x in Bn away from −en+1 until it meets Hn in the unique point ζ(x). See
Figure 4.5.1. As ζ(x) is on the line passing through x in the direction of
x + en+1, there is a scalar s such that

ζ(x) = x + s(x + en+1).
The condition ‖ζ(x)‖2 = −1 leads to the value

s =
1 + |x|2
1 − |x|2

and the explicit formula

ζ(x) =
(

2x1

1 − |x|2 , . . . ,
2xn

1 − |x|2 ,
1 + |x|2
1 − |x|2

)
. (4.5.2)

The map ζ is a bijection of Bn onto Hn. The inverse of ζ is given by

ζ−1(y) =
(

y1

1 + yn+1
, . . . ,

yn

1 + yn+1

)
. (4.5.3)

x3

x

ζ(x)

e3

−e3

B2

H2

Figure 4.5.1. The stereographic projection ζ of B2 onto H2
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Define a metric dB on Bn by the formula

dB(x, y) = dH(ζ(x), ζ(y)). (4.5.4)

The metric dB is called the Poincaré metric on Bn. By definition, ζ is
an isometry from Bn, with the metric dB , to hyperbolic n-space Hn. The
metric space consisting of Bn together with the metric dB is called the
conformal ball model of hyperbolic n-space.

Theorem 4.5.1. The metric dB on Bn is given by

cosh dB(x, y) = 1 +
2|x − y|2

(1 − |x|2)(1 − |y|2) .

Proof: By Formula 3.2.2, we have

cosh dH(ζ(x), ζ(y)) = −ζ(x) ◦ ζ(y)

=
−4x · y + (1 + |x|2)(1 + |y|2)

(1 − |x|2)(1 − |y|2)

=
(1 − |x|2)(1 − |y|2) + 2(|x|2 + |y|2) − 4x · y

(1 − |x|2)(1 − |y|2)

= 1 +
2|x − y|2

(1 − |x|2)(1 − |y|2) .

Lemma 1. If φ is a Möbius transformation of Bn and x, y are in Bn, then

|φ(x) − φ(y)|2
(1 − |φ(x)|2)(1 − |φ(y)|2) =

|x − y|2
(1 − |x|2)(1 − |y|2) .

Proof: This is obvious if φ is an orthogonal transformation. By Theorem
4.4.6, we may assume that φ is a reflection in a sphere S(a, r) orthogonal
to Sn−1. By Theorem 4.1.3, we have

|φ(x) − φ(y)|2 =
r4|x − y|2

|x − a|2 |y − a|2 .

As S(a, r) is orthogonal to Sn−1, we have that r2 = |a|2 − 1. Moreover

φ(x) = a +
r2

|x − a|2 (x − a).

Hence

|φ(x)|2 = |a|2 +
2r2

|x − a|2 a · (x − a) +
r4

|x − a|2 .

Thus

|φ(x)|2 − 1 =
(|a|2 − 1)|x − a|2 + 2r2a · (x − a) + r4

|x − a|2

=
r2[|x − a|2 + 2a · (x − a) + |a|2 − 1]

|x − a|2

=
r2(|x|2 − 1)

|x − a|2 .
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Hyperbolic Translation

Let S(a, r) be a sphere of En orthogonal to Sn−1. By Theorem 4.4.2, we
have r2 = |a|2−1, and so a determines r. Let σa be the reflection in S(a, r).
Then σa leaves Bn invariant by Theorem 4.4.6. Let ρa be the reflection in
the hyperplane a · x = 0. Then ρa also leaves Bn invariant, and therefore
the composite σaρa leaves Bn invariant. Define

a∗ = a/|a|2.
A straightforward calculation shows that

σaρa(x) =
(|a|2 − 1)x + (|x|2 + 2x · a∗ + 1)a

|x + a|2 .

In particular σaρa(0) = a∗.
Let b be a nonzero point of Bn and let a = b∗. Then |a| > 1 and a∗ = b.

Let r = (|a|2 −1)1/2. Then S(a, r) is orthogonal to Sn−1 by Theorem 4.4.2.
Hence, we may define a Möbius transformation of Bn by the formula

τb = σb∗ρb∗ .

Then

τb(x) =
(|b∗|2 − 1)x + (|x|2 + 2x · b + 1)b∗

|x + b∗|2 .

In terms of b, we have

τb(x) =
(1 − |b|2)x + (|x|2 + 2x · b + 1)b

|b|2|x|2 + 2x · b + 1
. (4.5.5)

As τb is the composite of two reflections in hyperplanes orthogonal to the
line (−b/|b|, b/|b|), the transformation τb acts as a translation along this
line. We also define τ0 to be the identity. Then τb(0) = b for all b in Bn.
The map τb is called the hyperbolic translation of Bn by b.

Theorem 4.5.2. Every Möbius transformation of Bn restricts to an isom-
etry of the conformal ball model Bn, and every isometry of Bn extends to
a unique Möbius transformation of Bn.

Proof: That every Möbius transformation of Bn restricts to an isometry
of Bn follows immediately from Theorem 4.5.1 and Lemma 1. Conversely,
let φ : Bn → Bn be an isometry. Define ψ : Bn → Bn by

ψ(x) = τ−1
φ(0)φ(x).

Then ψ(0) = 0. By the first part of the theorem, ψ is an isometry of Bn.
Let x, y be points of Bn. From the relation

dB(ψ(x), 0) = dB(x, 0)

and Theorem 4.5.1, we have
|ψ(x)|2

1 − |ψ(x)|2 =
|x|2

1 − |x|2 .
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Hence |ψ(x)| = |x|. Likewise, we have

|ψ(x) − ψ(y)|2
(1 − |ψ(x)|2)(1 − |ψ(y)|2) =

|x − y|2
(1 − |x|2)(1 − |y|2) .

Therefore, we have
|ψ(x) − ψ(y)| = |x − y|.

Thus ψ preserves Euclidean distances in Bn.
Now ψ maps each radius of Bn onto a radius of Bn. Therefore ψ extends

to a function ψ : Bn → Bn such that

ψ([0, x)) = [0, ψ(x))

for each x in Sn−1. Moreover ψ is continuous, since

ψ(x) = 2ψ(x/2)

for each x in Bn. Therefore ψ preserves Euclidean distances. Hence ψ
preserves Euclidean inner products on Bn. The same argument as in the
proof of Theorem 1.3.2 shows that ψ is the restriction of an orthogonal
transformation A of En. Therefore τφ(0)A extends φ. Moreover τφ(0)A is
the only Möbius transformation of Bn extending φ, since any two Möbius
transformations extending φ agree on Bn and so are the same by Theorem
4.3.6.

By Theorem 4.5.2, we can identify the group I(Bn) of isometries of the
conformal ball model with the group M(Bn) of Möbius transformations of
Bn. In particular, we have the following corollary.

Corollary 1. The groups I(Bn) and M(Bn) are isomorphic.

An m-sphere of En is defined to be the intersection of a sphere S(a, r)
of En with an (m+1)-plane of En that contains the center a. An m-sphere
of Ên is defined to be either an m-sphere or an extended m-plane P̂ of Ên.

Lemma 2. The group M(Ên) acts transitively on the set of all m-spheres
of Ên.

Proof: Let V be the vector subspace of En spanned by e1, . . . , em. It
suffices to show that for every m-sphere Σ of Ên, there is a Möbius trans-
formation φ of Ên such that φ(V̂ ) = Σ, and the image of V̂ under every
Möbius transformation of Ên is an m-sphere of Ên.

Let Σ be an arbitrary m-sphere of Ên. If Σ is an extended m-plane,
then there is an isometry φ of En such that φ(V̂ ) = Σ, since I(En) acts
transitively on the set of m-planes of En.

Now suppose that Σ is an m-sphere of En. As the group of similarities
of En acts transitively on the set of m-spheres of En, we may assume that
Σ = Sm. Then the reflection in the sphere S(em+1,

√
2) maps V̂ onto Σ.
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Let φ be a Möbius transformation of Ên. If φ(∞) = ∞, then φ is a
Euclidean similarity, and so φ(V̂ ) is an extended m-plane of Ên. Now
assume that φ(∞) �= ∞. Then by Theorem 4.3.3, we have that φ = ψσ
where σ is the reflection in a sphere S(a, r) and ψ is a Euclidean isometry.
If a is in V , then σ leaves V̂ invariant, and so φ(V̂ ) is an extended m-plane
of Ên.

Now assume that a is not in V . Then V and a span an (m + 1)-
dimensional vector subspace W of En. Moreover V̂ is a sphere in Ŵ .
As σ leaves Ŵ invariant, σ(V̂ ) is a sphere in Ŵ by Theorem 4.3.4. The
point ∞ is not in σ(V̂ ), since a is not in V̂ . Hence σ(V̂ ) is an m-sphere of
En, and so φ(V̂ ) is an m-sphere of En.

A subset P of Bn is said to be a hyperbolic m-plane of Bn if and only
if ζ(P ) is a hyperbolic m-plane of Hn. A p-sphere Σ and a q-sphere Σ′ of
Ên are said to be orthogonal if and only if they intersect and at each finite
point of intersection their tangent planes are orthogonal.

Theorem 4.5.3. A subset P of Bn is a hyperbolic m-plane of Bn if and
only if P is the intersection of Bn with either an m-dimensional vector
subspace of En or an m-sphere of En orthogonal to Sn−1.

Proof: Let P be the intersection of Bn with the vector subspace V of En

spanned by e1, . . . , em. Then obviously ζ maps P onto the hyperbolic m-
plane of Hn obtained by intersecting Hn with the vector subspace spanned
by V and en+1. Thus P is a hyperbolic m-plane of Bn.

Let P ′ be an arbitrary hyperbolic m-plane of Bn. By Theorem 3.1.6,
the group M(Bn) acts transitively on the set of hyperbolic m-planes of Bn.
Hence, there is a Möbius transformation φ of Bn such that φ(P ) = P ′. By
Lemma 2, the set φ(V̂ ) is an m-sphere of Ên. As φ is conformal, φ(V̂ )
is orthogonal to φ(Sn−1) = Sn−1. Therefore P ′ is the intersection of Bn

with either an m-dimensional vector subspace of En or an m-sphere of En

orthogonal to Sn−1.
Let Q be the intersection of Bn with either an m-dimensional vector sub-

space of En or an m-sphere of En orthogonal to Sn−1. Then the boundary
of Q in Sn−1 is an (m−1)-sphere Σ of En. By Lemma 2, there is a Möbius
transformation ψ of Sn−1 such that ψ maps the boundary of P in Sn−1

onto Q. The Poincaré extension ψ̃ then maps P onto Q. Thus Q is a
hyperbolic m-plane of Bn.

A hyperbolic line of Bn is defined to be a hyperbolic 1-plane of Bn. The
geodesics of Bn are its hyperbolic lines by Corollary 4 of §3.2.

Corollary 2. A subset L of Bn is a hyperbolic line of Bn if and only if
L is either an open diameter of Bn or the intersection of Bn with a circle
orthogonal to Sn−1.
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It is clear from the geometric definition of the stereographic projection
ζ of Bn onto Hn that ζ preserves the Euclidean angle between any two
geodesic lines intersecting at the origin. As the hyperbolic angle between
two geodesic lines in Hn intersecting at ζ(0) = en+1 is the same as the
Euclidean angle, the hyperbolic angle between two geodesic lines in Bn

intersecting at the origin is the same as the Euclidean angle between the
lines. Moreover, since the isometries of Bn are conformal, the hyperbolic
angle between any two intersecting geodesic lines in Bn is the same as
the Euclidean angle between the lines. Thus, the hyperbolic angles of Bn

conform with the corresponding Euclidean angles. For this reason, Bn is
called the conformal ball model of hyperbolic n-space.

The hyperbolic sphere of Bn, with center b and radius r > 0, is defined
to be the set

SB(b, r) = {x ∈ Bn : dB(b, x) = r}. (4.5.6)

Theorem 4.5.4. A subset S of Bn is a hyperbolic sphere of Bn if and
only if S is a Euclidean sphere of En that is contained in Bn.

Proof: Let S = SB(b, r). Assume first that b = 0. By Theorem 4.5.1,
the distance dB(0, x) is an invertible function of |x|. Therefore S is a
Euclidean sphere centered at 0. Now assume that b is an arbitrary point of
Bn. Then the hyperbolic translation τb maps SB(0, r) onto S. Therefore
S is a Euclidean sphere by Theorem 4.3.4.

Conversely, suppose that S is a Euclidean sphere contained in Bn. If S
is centered at 0, then S is a hyperbolic sphere, since dB(0, x) is an invertible
function of |x|. Now assume that S is not centered at 0. Let x be the point
of S nearest to 0, and let y be the point of S farthest from 0. Then the line
segment [x, y] is a diameter of S. The line segment [x, y] is also a geodesic
segment of Bn. Let b be the hyperbolic midpoint of [x, y], and let r be the
hyperbolic distance from b to x. Then τb maps SB(0, r) onto SB(b, r), and
SB(b, r) is a Euclidean sphere by Theorem 4.3.4. Observe that τb maps a
diameter of SB(0, r) onto [x, y]. Therefore [x, y] is orthogonal to SB(b, r)
at x and y, since τb is conformal. Hence [x, y] is a Euclidean diameter of
SB(b, r). Therefore S = SB(b, r).

Let a be a point on a hyperbolic sphere S of Bn, and let R be the
geodesic ray of Bn starting at a and passing through the center c of S. If
we expand S by moving c away from a on R at a constant rate while keeping
a on S, the sphere tends to a limiting hypersurface Σ in Bn containing a.
By moving a to 0, we see that Σ is a Euclidean sphere minus the ideal
endpoint b of R and that the Euclidean sphere Σ is tangent to Sn−1 at b.

Definition: A horosphere Σ of Bn, based at a point b of Sn−1, is the
intersection with Bn of a Euclidean sphere in Bn tangent to Sn−1 at b.
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Figure 4.5.2. A horocycle of B2

A horosphere in dimension two is also called a horocycle. See Figure
4.5.2. The interior of a horosphere is called a horoball. The interior of a
horocycle is also called a horodisk.

Theorem 4.5.5. The element of hyperbolic arc length of the conformal
ball model Bn is

2|dx|
1 − |x|2 .

Proof: Let y = ζ(x). From the results of §3.3, the element of hyperbolic
arc length of Hn is

‖dy‖ = (dy2
1 + · · · + dy2

n − dy2
n+1)

1
2 .

Now since
yi =

2xi

1 − |x|2 for i = 1, . . . , n,

we have

dyi =
2dxi

1 − |x|2 +
4xi(x · dx)
(1 − |x|2)2 .

Hence

dy2
i =

4
(1 − |x|2)2

(
dx2

i +
4xidxi(x · dx)

1 − |x|2 +
4x2

i (x · dx)2

(1 − |x|2)2

)
.

Thus
n∑

i=1

dy2
i =

4
(1 − |x|2)2

(
|dx|2 +

4(x · dx)2

1 − |x|2 +
4|x|2(x · dx)2

(1 − |x|2)2

)
=

4
(1 − |x|2)2

(
|dx|2 +

4(x · dx)2

(1 − |x|2)2

)
.
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Now since

yn+1 =
1 + |x|2
1 − |x|2 ,

we have that

dyn+1 =
4x · dx

(1 − |x|2)2 .

Thus
n∑

i=1

dy2
i − dy2

n+1 =
4|dx|2

(1 − |x|2)2 .

Theorem 4.5.6. The element of hyperbolic volume of the conformal ball
model Bn is

2ndx1 · · · dxn

(1 − |x|2)n
.

Proof: An intuitive argument goes as follows: The element of hyperbolic
arc length in the xi-direction is

dsi =
2dxi

1 − |x|2 .

Therefore, the element of hyperbolic volume is

ds1 · · · dsn =
2ndx1 · · · dxn

(1 − |x|2)n
.

For a proof based on the definition of hyperbolic volume, start with the ele-
ment of hyperbolic volume of Hn with respect to the Euclidean coordinates
y1, . . . , yn given by Theorem 3.4.1,

dy1 · · · dyn

[1 + (y2
1 + · · · + y2

n)]
1
2
.

Then change coordinates via the map ζ : Bn → En defined by

ζ(x) =
2x

1 − |x|2 .

Now since ζ is a radial map, it is best to switch to spherical coordinates
(ρ, θ1, . . . , θn−1) and decompose ζ into the composite mapping

(x1, . . . , xn) �→ (ρ, θ1, . . . , θn−1)

�→
(

2ρ

1 − ρ2 , θ1, . . . , θn−1

)
�→ (y1, . . . , yn).

Now since
d

dρ

(
2ρ

1 − ρ2

)
=

2(1 + ρ2)
(1 − ρ2)2

,
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the Jacobian of ζ is

1
ρn−1

2(1 + ρ2)
(1 − ρ2)2

(
2ρ

1 − ρ2

)n−1

=
2n(1 + ρ2)
(1 − ρ2)n+1 .

Let y = ζ(x). Then
1

(1 + |y|2) 1
2

=
1 − |x|2
1 + |x|2 .

Therefore
dy1 · · · dyn

(1 + |y|2) 1
2

=
2n(1 + |x|2)
(1 − |x|2)n+1

(1 − |x|2)
(1 + |x|2)dx1 · · · dxn

=
2ndx1 · · · dxn

(1 − |x|2)n
.

Exercise 4.5

1. Show that if x is in Bn, then

dB(0, x) = log

(
1 + |x|
1 − |x|

)
.

2. Let b be a nonzero point of Bn. Show that the hyperbolic translation τb of
Bn acts as a hyperbolic translation along the hyperbolic line passing through
0 and b.

3. Let b be a point of Bn and let A be in O(n). Show that

(1) τ−1
b = τ−b,

(2) AτbA
−1 = τAb.

4. Show that SB(0, r) = S(0, tanh(r/2)).

5. Prove that the hyperbolic and Euclidean centers of a sphere of Bn coincide
if and only if the sphere is centered at the origin.

6. Prove that the metric topology on Bn determined by dB is the same as the
Euclidean topology on Bn.

7. Prove that all the horospheres of Bn are congruent.

8. Let b be a point of Bn not on a hyperbolic m-plane P of Bn. Prove that
there is a unique point a of P nearest to b and that the hyperbolic line
passing through a and b is the unique hyperbolic line of Bn passing through
b orthogonal to P . Hint: Move b to the origin.

9. Let b be a point of Bn not on a horosphere Σ of Bn. Prove that there is a
unique point a of Σ nearest to b and the hyperbolic line passing through a
and b is the unique hyperbolic line of Bn passing through b orthogonal to Σ.

10. Show that every isometry of B2 is of the form

z �→ az + b

bz + a
or z �→ az + b

bz + a
where |a|2 − |b|2 = 1.
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§4.6. The Upper Half-Space Model

Let η be the standard transformation from upper half-space Un to the
open unit ball Bn. Then η = σρ, where ρ is the reflection of Ên in the
hyperplane En−1 and σ is the reflection of Ên in the sphere S(en,

√
2).

Define a metric dU on Un by the formula

dU (x, y) = dB(η(x), η(y)). (4.6.1)

The metric dU is called the Poincaré metric on Un. By definition, η is an
isometry from Un, with the metric dU , to the conformal ball model Bn of
hyperbolic n-space. The metric space consisting of Un together with the
metric dU is called the upper half-space model of hyperbolic n-space.

Theorem 4.6.1. The metric dU on Un is given by

cosh dU (x, y) = 1 +
|x − y|2
2xnyn

.

Proof: By Theorem 4.5.1, we have

cosh dU (x, y) = cosh dB(η(x), η(y))

= 1 +
2|σρ(x) − σρ(y)|2

(1 − |σρ(x)|2)(1 − |σρ(y)|2) .

By Theorem 4.1.3, we have

|σρ(x) − σρ(y)| =
2|ρ(x) − ρ(y)|

|ρ(x) − en| |ρ(y) − en|

=
2|x − y|

|x + en| |y + en| ,

and by Formula 4.4.3, we have

1 − |σρ(x)|2 =
−4[ρ(x)]n

|ρ(x) − en|2 =
4xn

|x + en|2 .

Therefore

cosh dU (x, y) = 1 +
|x − y|2
2xnyn

.

The next theorem follows immediately from Theorem 4.5.2.

Theorem 4.6.2. Every Möbius transformation of Un restricts to an isom-
etry of the upper half-space model Un, and every isometry of Un extends
to a unique Möbius transformation of Un.

By Theorem 4.6.2, we can identify the group I(Un) of isometries of the
upper half-space model with the group M(Un) of Möbius transformations
of Un.
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Corollary 1. The groups I(Un) and M(Un) are isomorphic.

As the upper half-space model Un is isometric to hyperbolic n-space
Hn, we have that I(Un) is isomorphic to I(Hn). By Corollary 1 of §4.4,
the groups M(Un) and M(Ên−1) are isomorphic. Thus, from Corollary 1,
we have the following corollary.

Corollary 2. The groups I(Hn) and M(Ên−1) are isomorphic.

A subset P of Un is said to be a hyperbolic m-plane of Un if and only if
η(P ) is a hyperbolic m-plane of Bn. The next theorem follows immediately
from Theorem 4.5.3.

Theorem 4.6.3. A subset P of Un is a hyperbolic m-plane of Un if and
only if P is the intersection of Un with either an m-plane of En orthogonal
to En−1 or an m-sphere of En orthogonal to En−1.

A hyperbolic line of Un is defined to be a hyperbolic 1-plane of Un. The
geodesics of Un are its hyperbolic lines by Corollary 4 of §3.2.

Corollary 3. A subset L of Un is a hyperbolic line of Un if and only if L
is the intersection of Un with either a straight line orthogonal to En−1 or
a circle orthogonal to En−1.

The standard transformation η : Un → Bn is conformal. Hence, the
hyperbolic angle between any two intersecting geodesic lines of Un conforms
with the Euclidean angle between the lines, since this is the case in the
conformal ball model Bn. Thus, the upper half-space model Un is also a
conformal model of hyperbolic n-space.

The hyperbolic sphere of Un, with center a and radius r > 0, is defined
to be the set

SU (a, r) = {x ∈ Un : dU (a, x) = r}. (4.6.2)

The next theorem follows immediately from Theorem 4.5.4

Theorem 4.6.4. A subset S of Un is a hyperbolic sphere of Un if and only
if S is a Euclidean sphere of En that is contained in Un.

A subset Σ of Un is said to be a horosphere of Un based at a point b of
Ên−1 if and only if η(Σ) is a horosphere of Bn based at the point η(b).

Theorem 4.6.5. A subset Σ of Un is a horosphere of Un based at a point
b of Ên−1 if and only if Σ is either a Euclidean hyperplane in Un parallel
to En−1 if b = ∞, or the intersection with Un of a Euclidean sphere in Un

tangent to En−1 at b if b �= ∞.
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Figure 4.6.1. A horocycle of U2

Proof: By Theorem 4.3.4, a subset Σ of Un is a horosphere of Un if and
only if Σ is a sphere of Ên that is contained in Un and meets Ên−1 at
exactly one point. Therefore Σ is a horosphere of Un if and only if Σ is
either a Euclidean hyperplane in Un parallel to En−1 or the intersection
with Un of a Euclidean sphere in Un tangent to En−1.

A horosphere in dimension two is also called a horocycle. See Figure
4.6.1. The interior of a horosphere is called a horoball. The interior of a
horocycle is also called a horodisk.

Theorem 4.6.6. The element of hyperbolic arc length of the upper half-
space model Un is

|dx|
xn

.

Proof: Let y = η(x). Then

y = en +
2(ρ(x) − en)

|x + en|2 .

By Theorem 4.5.5, the element of arc length of Bn is 2|dy|/(1 − |y|2). As

yi =
2xi

|x + en|2 for i = 1, . . . , n − 1,

we have

dyi =
2dxi

|x + en|2 − 4xi(x + en) · dx

|x + en|4 .

Hence

dy2
i =

4
|x + en|4

[
dx2

i − 4xidxi(x + en) · dx

|x + en|2 +
4x2

i [(x + en) · dx]2

|x + en|4

]
.
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Now since

yn = 1 − 2(xn + 1)
|x + en|2 ,

we have

dyn =
−2dxn

|x + en|2 +
4(xn + 1)(x + en) · dx

|x + en|4 .

Hence

dy2
n =

4
|x + en|4

[
dx2

n − 4(xn + 1)dxn(x + en) · dx

|x + en|2

+
4(xn + 1)2[(x + en) · dx]2

|x + en|4

]
.

Thus

|dy|2 =
4

|x + en|4

[
|dx|2 − 4[(x + en) · dx]2

|x + en|2 +
4|x + en|2[(x + en) · dx]2

|x + en|4

]

=
4|dx|2

|x + en|4 .

From the proof of Theorem 4.6.1, we have

1 − |y|2 =
4xn

|x + en|2 .

Therefore, we have
2|dy|

1 − |y|2 =
|dx|
xn

.

Theorem 4.6.7. The element of hyperbolic volume of the upper half-space
model Un is

dx1 · · · dxn

(xn)n
.

Proof: An intuitive argument goes as follows: The element of hyperbolic
arc length in the xi-direction is

dsi =
dxi

xn
.

Therefore, the element of hyperbolic volume is

ds1 · · · dsn =
dx1 · · · dxn

(xn)n
.

The element of hyperbolic volume of Un can also be derived from the
element of hyperbolic volume of Bn. Let y = η(x). By Theorem 4.5.6, the
element of hyperbolic volume of Bn is

2ndy1 · · · dyn

(1 − |y|2)n
.
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From the proof of Theorem 4.1.5, we see that the Jacobian of η is
(
√

2)2n

|ρ(x) − en|2n
=

2n

|x + en|2n
.

From the proof of Theorem 4.6.1, we have

1 − |y|2 =
4xn

|x + en|2 .

Therefore
2ndy1 · · · dyn

(1 − |y|2)n
=

2n

|x + en|2n

(
2n|x + en|2n

4n(xn)n

)
dx1 · · · dxn

=
dx1 · · · dxn

(xn)n
.

Exercise 4.6

1. Show that if x = sen and y = ten, then dU (x, y) = | log(s/t)|.
2. Show that if −1 < s < 1 and x is in Un, then

η−1τsenη(x) =
(1 + s

1 − s

)
x.

3. Let x be in Un. Show that the nearest point to x on the positive nth axis is
|x|en and we have

cosh dU (x, |x|en) = |x|/xn.

4. Let ρ be the nearest point retraction of Un onto the positive nth axis defined
by ρ(x) = |x|en. Prove that for all x, y in Un, we have

dU (ρ(x), ρ(y)) ≤ dU (x, y)

with equality if and only if either x = y or x and y lie on the nth axis.

5. Show that every isometry of U2 is of the form

z �→ az + b

cz + d
or z �→ a(−z) + b

c(−z) + d
,

where a, b, c, d are real and ad − bc = 1. Conclude that the group I0(U2) of
orientation preserving isometries of U2 is isomorphic to PSL(2, R).

6. Show that SU (a, r) = S(a(r), an sinh r), where

a(r) = (a1, . . . , an−1, an cosh r).

7. Prove that the metric topology on Un determined by dU is the same as the
Euclidean topology.

8. Prove that all the horospheres of Un are congruent.

9. Prove that any Möbius transformation φ of Un that leaves the horosphere
Σ1 = {x ∈ Un : xn = 1} invariant is a Euclidean isometry of En.

10. Show by changing coordinates that every Möbius transformation of Un pre-
serves hyperbolic volume.
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§4.7. Classification of Transformations

Let φ be a Möbius transformation of Bn. Then φ maps the closed ball Bn

to itself. By the Brouwer fixed point theorem, φ has a fixed point in Bn.
The transformation φ is said to be

(1) elliptic if φ fixes a point of Bn;

(2) parabolic if φ fixes no point of Bn and fixes a unique point of Sn−1;

(3) hyperbolic if φ fixes no point of Bn and fixes two points of Sn−1.

Let Fφ be the set of all the fixed points of φ in Bn, and let ψ be a Möbius
transformation of Bn. Then

Fψφψ−1 = ψ(Fφ). (4.7.1)

Hence φ is elliptic, parabolic, or hyperbolic if and only if ψφψ−1 is elliptic,
parabolic, or hyperbolic, respectively. Thus, being elliptic, parabolic, or
hyperbolic depends only on the conjugacy class of φ in M(Bn).

Elliptic Transformations

We now characterize the elliptic transformations of Bn.

Theorem 4.7.1. A Möbius transformation φ of Bn is elliptic if and only
if φ is conjugate in M(Bn) to an orthogonal transformation of En.

Proof: Suppose that φ is elliptic. Then φ fixes a point b of Bn. Let τb be
the hyperbolic translation of Bn by b. Then τ−1

b φτb fixes the origin. By
Theorem 4.4.8, the map τ−1

b φτb is an orthogonal transformation A of En.
Thus φ = τbAτ−1

b . Conversely, suppose that φ is conjugate in M(Bn) to
an orthogonal transformation A of En. Then A is elliptic, since it fixes the
origin. Therefore φ is elliptic.

Let SB(b, r) be the hyperbolic sphere of Bn with center b and radius r.
Let x and y be distinct points in SB(b, r) and let α, β : [0, r] → Bn be
geodesics arcs from b to x and y, respectively. The points b, x, y determine a
hyperbolic 2-plane of Bn that intersects SB(b, r) in a circle of circumference
2π sinh r. See Exercise 3.4.4. Hence the sphere SB(b, r) has a natural
spherical metric given by

d(x, y) = (sinh r)θ(α′(0), β′(0)). (4.7.2)

In other words, a hyperbolic sphere of radius r, with its natural spherical
metric, is isometric to a Euclidean sphere of radius sinh r. If the point b is
fixed by an elliptic transformation φ of Bn, then φ leaves each hyperbolic
sphere SB(b, r) centered at b invariant; moreover, φ acts as an isometry of
the natural spherical metric on SB(b, r).
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Parabolic Transformations

In order to analyze parabolic and hyperbolic transformations, it will be
more convenient to work in the upper half-space model Un of hyperbolic
space. Elliptic, parabolic, and hyperbolic Möbius transformations of Un

are defined in the same manner as in the conformal ball model Bn. Let φ
be a Möbius transformation of Un. The transformation φ is said to be

(1) elliptic if φ fixes a point of Un;

(2) parabolic if φ fixes no point of Un and fixes a unique point of Ên−1;

(3) hyperbolic if φ fixes no point of Un and fixes two points of Ên−1.

Note that being elliptic, parabolic, or hyperbolic depends only on the con-
jugacy class of φ in M(Un).

Lemma 1. Let φ̃ in M(Un) be the Poincaré extension of φ in S(En−1).
Then φ̃ is elliptic (resp. parabolic) if and only if φ is in I(En−1) and φ
fixes (resp. does not fix) a point of En−1.

Proof: The transformation φ̃ is a similarity of En by Theorem 4.3.2.
Suppose that φ̃ is elliptic. Then φ̃ fixes a point x of Un. Hence φ̃ fixes each
point of the vertical line L of Un that passes through x. Therefore φ̃ is an
isometry of En and so φ is an isometry of En−1 that fixes the base of L.
Conversely, suppose φ is an isometry of En−1 that fixes a point b of En−1.
Then φ̃ is an isometry of En that fixes each point of the vertical line (b, ∞)
of Un. Therefore φ̃ is elliptic.

Suppose that φ̃ is parabolic. Then φ does not fix a point of En. By
Theorem 1.3.6, there is a point a in En−1, a positive constant k, and an
orthogonal matrix A such that φ(x) = a + kAx. The fixed point equation
a + kAx = x can be rewritten as(

A − 1
k

I

)
x = −a

k
.

Since this equation has no solution, we have

det
(

A − 1
k

I

)
= 0.

Hence 1/k is an eigenvalue of A. As A is orthogonal, k = 1. Therefore
φ is an isometry of En−1. Conversely, suppose φ is an isometry of En−1

that fixes no point of En−1. Then φ̃ is not hyperbolic. Moreover φ̃ is not
elliptic by the first case. Therefore φ̃ is parabolic.

Theorem 4.7.2. A Möbius transformation φ of Un is parabolic if and only
if φ is conjugate in M(Un) to the Poincaré extension of a fixed point free
isometry of En−1.
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Proof: Suppose that φ is parabolic. Then φ fixes a point a of Ên−1.
If a �= ∞, then the inversion of Ên in the sphere S(a, 1) maps a to ∞.
Hence, there is a Möbius transformation ψ of Un such that ψ(a) = ∞.
Then ψφψ−1 fixes ∞. By Theorems 4.3.2, 4.4.1, and Lemma 1, the map
ψφψ−1 is the Poincaré extension of a fixed point free isometry of En−1.

Conversely, suppose that φ is conjugate in M(Un) to the Poincaré exten-
sion of a fixed point free isometry ψ of En−1. Then the Poincaré extension
ψ̃ is parabolic, since ∞ is its only fixed point. Thus φ is parabolic.

Theorem 4.7.3. A Möbius transformation φ of Un is parabolic if and only
if φ is conjugate in M(Un) to the Poincaré extension of an isometry ψ of
En−1 of the form ψ(x) = a + Ax where a �= 0 and A is an orthogonal
transformation of En−1 such that Aa = a.

Proof: Suppose that φ is parabolic. Then φ is conjugate in M(Un) to the
Poincaré extension of a fixed point free isometry ξ of En−1 by Theorem
4.7.2. Hence there is a point c of En−1 and an orthogonal transformation
A of En−1 such that ξ(x) = c + Ax.

Let V be the space of all vectors in En−1 fixed by A, and let W be its
orthogonal complement. Now the orthogonal transformation A leaves the
decomposition En−1 = V ⊕ W invariant. Hence A − I maps W to itself.
As V is the kernel of A − I and V ∩ W = {0}, we have that A − I maps W
isomorphically onto itself.

Write c = a + b with a in V and b in W . Then there is a point d in
W such that (A − I)d = b. Let τ be the translation of En−1 defined by
τ(x) = x + d. Observe that

τξτ−1(x) = τξ(x − d)
= τ(c + A(x − d))
= c + Ax − Ad + d

= c + Ax − b = a + Ax.

Let ψ(x) = a+Ax. Then τξτ−1 = ψ, and so φ is conjugate to ψ̃ in M(Un).
Hence ψ̃ is parabolic. Therefore ψ fixes only the point ∞ of Ên−1, and so
a �= 0.

Conversely, suppose that φ is conjugate in M(Un) to the Poincaré exten-
sion of an isometry ψ of En−1 of the form ψ(x) = a + Ax where a �= 0 and
A is an orthogonal transformation of En−1 such that Aa = a. The fixed
point equation a + Ax = x is equivalent to the equation (A − I)x = −a.
This equation has no solutions, since the image of A − I is the orthogonal
complement W of the fixed space V of A and −a is a nonzero point of V .
Therefore ψ is a fixed point free isometry of En−1. Thus φ is conjugate in
M(Un) to the Poincaré extension of a fixed point free isometry of En−1.
Hence φ is parabolic by Theorem 4.7.2.
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An important class of parabolic transformations of Un are the nontrivial
Euclidean translations of Un. Such a transformation τ is of the form

τ(x) = x + a,

where a is a nonzero point of En−1. A Möbius transformation φ of Un is
said to be a parabolic translation if and only if φ is conjugate in M(Un) to
a nontrivial Euclidean translation of Un.

Let Σ1 be the horosphere of Un defined by

Σ1 = {x ∈ Un : xn = 1}. (4.7.3)

The horosphere Σ1 has a natural Euclidean metric given by

d(x, y) = |x − y|.

This metric is natural, since the element of hyperbolic arc length |dx|/xn

of Un restricts to the element of Euclidean arc length |dx| on Σ1.
Let Σ be any horosphere of Un. Then there is a Möbius transformation

φ of Un such that φ(Σ) = Σ1. Define a Euclidean metric on Σ by

d(x, y) = |φ(x) − φ(y)|. (4.7.4)

We claim that this metric is independent of the choice of φ. Suppose that
ψ is another Möbius transformation of Un such that ψ(Σ) = Σ1. Then
φψ−1 leaves Σ1 invariant. This implies that φψ−1 is a Euclidean isometry.
Therefore, if x, y are in Σ, then

|φ(x) − φ(y)| = |φψ−1ψ(x) − φψ−1ψ(y)| = |ψ(x) − ψ(y)|.

Thus, the metric d on Σ does not depend on φ. The metric d is called the
natural Euclidean metric on Σ.

Theorem 4.7.4. Let Σ and Σ′ be horospheres of Un and let ψ be a Möbius
transformation of Un such that ψ(Σ) = Σ′. Then ψ acts as an isometry
with respect to the natural Euclidean metrics on Σ and Σ′.

Proof: Let φ and φ′ be Möbius transformations of Un such that φ(Σ) = Σ1
and φ′(Σ′) = Σ1. Then φ′ψφ−1 leaves Σ1 invariant and so is a Euclidean
isometry. Hence, if x, y are in Σ, then

d′(ψ(x), ψ(y)) = |φ′ψ(x) − φ′ψ(y)|
= |φ′ψφ−1φ(x) − φ′ψφ−1φ(y)|
= |φ(x) − φ(y)|
= d(x, y).

Now let φ be a parabolic transformation of Un with a as its unique fixed
point in Ên−1. By Theorem 4.7.2, the map φ leaves each horosphere of Un

based at a invariant. By Theorem 4.7.4, the map φ acts as an isometry of
the natural Euclidean metric on each horosphere based at a.
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Hyperbolic Transformations

We now characterize the hyperbolic transformations of Un.

Theorem 4.7.5. A Möbius transformation φ of Un is hyperbolic if and
only if φ is conjugate in M(Un) to the Poincaré extension of a similarity
ψ of En−1 of the form ψ(x) = kAx, where k > 1 and A is an orthogonal
transformation of En−1.

Proof: Suppose that φ is hyperbolic. By conjugating φ, we may assume
that one of the fixed points of φ is ∞. Let a in En−1 be another fixed point
and let τ be the translation of En by −a. Then τφτ−1 fixes both 0 and ∞.
This implies that there is a scalar k > 0 and an orthogonal transformation
A of En−1 such that

τφτ−1(x) = kÃx.

As Ã fixes en and τφτ−1 has no fixed points in Un, we must have k �= 1.
Let σ(x) = x/|x|2. Then

στφτ−1σ−1(x) = k−1Ãx.

Hence, we may assume that k > 1.
Conversely, suppose that φ is conjugate in M(Un) to the Poincaré ex-

tension of a similarity ψ of En−1 of the form ψ(x) = kAx, where k > 1 and
A is an orthogonal transformation of En−1. Then the Poincaré extension
ψ̃ is hyperbolic, since 0 and ∞ are its only fixed points. Therefore φ is
hyperbolic.

Corollary 1. A hyperbolic transformation has exactly two fixed points.

The simplest class of hyperbolic transformations of Un are the nontrivial
magnifications of Un. Such a transformation is of the form x �→ kx, where
k > 1. Notice that a magnification of Un leaves the positive nth axis
invariant. Moreover, if t > 0, then

dU (ten, kten) = log k.

Thus, a magnification of Un acts as a hyperbolic translation along the pos-
itive nth axis. A Möbius transformation φ of Un is said to be a hyperbolic
translation if and only if φ is conjugate in M(Un) to a magnification of Un.

Now let φ be an arbitrary hyperbolic transformation of Un with a and b
its two fixed points, and let L be the hyperbolic line of Un with endpoints
a and b. By Theorem 4.7.5, the map φ is the composite of an elliptic trans-
formation of Un that fixes the line L followed by a hyperbolic translation
along L. The line L is called the axis of the hyperbolic transformation φ.
Note that a hyperbolic transformation acts as a translation along its axis.

Remark: We are not using the term hyperbolic transformation in its usual
sense. Traditionally, a hyperbolic translation is called a hyperbolic trans-
formation, and a hyperbolic transformation that is not a hyperbolic trans-
lation is called a loxodromic transformation.
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Exercise 4.7

1. Prove that every nonidentity element of LF(Ĉ) has just one or two fixed
points in Ĉ.

2. Let z1, z2, z3 be distinct points of Ĉ and let w1, w2, w3 be distinct points of
Ĉ. Show that there is a unique element φ of M(Ĉ) such that φ(zj) = wj for
j = 1, 2, 3.

3. For each nonzero k in C, define µk in LF(Ĉ) by µk(z) = kz if k �= 1, and
µ1(z) = z + 1. Prove that each nonidentity element of LF(Ĉ) is conjugate
to µk for some k.

4. Let φ(z) = az+b
cz+d

with a, b, c, d in C and ad − bc = 1. Define

tr2(φ) = (a + d)2.

Show that two nonidentity elements φ, ψ of LF(Ĉ) are conjugate if and only
if tr2(φ) = tr2(ψ).

5. Let φ be a nonidentity element of LF(Ĉ). Show that

(1) φ̃ is an elliptic transformation of U3 if and only if tr2(φ) is in [0, 4);

(2) φ̃ is a parabolic transformation of U3 if and only if tr2(φ) = 4;

(3) φ̃ is a hyperbolic translation of U3 if and only if tr2(φ) is in (4, +∞).

6. Prove that the fixed set in Bn of an elliptic transformation of Bn is a hyper-
bolic m-plane.

7. Let {u0, . . . , un} be an affinely independent set of n + 1 unit vectors of En

and let φ and ψ be Möbius transformations of Bn, with n > 1, such that
φ(ui) = ψ(ui) for i = 0, . . . , n. Prove that φ = ψ.

8. Let φ be a parabolic transformation of Un. Show that there is a hyperbolic
2-plane of Un on which φ acts as a parabolic translation.

9. Let a be the point of Sn−1 fixed by a parabolic transformation φ of Bn.
Prove that if x is in Bn, then φm(x) → a as m → ∞. In other words, a is
an attractive fixed point.

10. Let a and b be the points of Sn−1 fixed by a hyperbolic transformation ψ of
Bn, and let L be the axis of ψ. Suppose that ψ translates L in the direction
of a. Prove that if x is in Bn and x �= b, then ψm(x) → a as m → ∞. In
other words, a is an attractive fixed point and b is a repulsive fixed point.

11. Let A be in PO(n, 1) and let A be the restriction of A to Hn. Prove that

(1) A is elliptic if and only if A leaves invariant a 1-dimensional time-like
vector subspace of Rn,1;

(2) A is parabolic if and only if A is not elliptic and A leaves invariant a
unique 1-dimensional light-like vector subspace of Rn,1;

(3) A is hyperbolic if and only if A is not elliptic and A leaves invariant
two 1-dimensional light-like vector subspaces of Rn,1.

12. Let A be in PO(n, 1). Prove algebraically that A is either an elliptic,
parabolic, or hyperbolic isometry of Hn.



142 4. Inversive Geometry

§4.8. Historical Notes

§4.1. Jordan proved that a reflection of Euclidean n-space in a hyperplane
is orientation reversing in his 1875 paper Essai sur la géométrie à n dimen-
sions [224]. That an isometry of Euclidean n-space is the composition of at
most n + 1 reflections in hyperplanes appeared in Coxeter’s 1948 treatise
Regular Polytopes [100].

According to Rosenfeld’s 1988 treatise A History of Non-Euclidean Ge-
ometry [385], Appollonius proved that an inversion in a circle maps circles
to circles in his lost treatise On plane loci. A systematic development of
inversion in a circle was first given by Plücker in his 1834 paper Analytisch-
geometrische Aphorismen [351]. Inversion in a sphere was considered by
Bellavitis in his 1836 paper Teoria delle figure inverse, e loro uso nella ge-
ometria elementare [38]. Theorem 4.1.3 appeared in Liouville’s 1847 Note
au sujet de l’article précédent (de M. Thomson) [279]. For the early his-
tory of inversion, see Patterson’s 1933 article The origins of the geometric
principle of inversion [348].

Conformal transformations of the plane appeared in Euler’s 1770 paper
Considerationes de trajectoriis orthogonalibus [133]. In particular, Euler
considered linear fractional transformations of the complex plane in this
paper. That inversion in a circle is conformal appeared in Plücker’s 1834
paper [351]. That inversion in a sphere is conformal appeared in Thomson’s
1845 letter to Liouville Extrait d’une lettre de M. Thomson [424].

§4.2. According to Heath’s 1921 treatise A History of Greek Mathemat-
ics [201], stereographic projection was described by Ptolemy in his second
century treatise Planisphaerium. That stereographic projection is the in-
version of a sphere into a plane appeared in Bellavitis’ 1836 paper [38]. The
Riemann sphere was introduced by Riemann in his 1857 paper Theorie der
Abel’schen Functionen [380]. The cross ratio of four points in the plane was
introduced by Möbius in his 1852 paper Ueber eine neue Verwandtschaft
zwischen ebenen Figuren [321].

§4.3. Möbius transformations of the plane were studied by Möbius in his
1855 paper Theorie der Kreisverwandtschaft in rein geometrischer Darstel-
lung [322]. In particular, the 2-dimensional cases of Theorems 4.3.1 and
4.3.2 appeared in this paper. Möbius transformations of 3-space were con-
sidered by Liouville in his 1847 note [279]. Liouville proved the remarkable
theorem that a smooth conformal transformation of 3-space is a Möbius
transformation in his 1850 note Extension au cas des trois dimensions de
la question du tracé géographique [281]. Liouville’s theorem was extended
to n dimensions, n > 2, by Lie in his 1871 paper Über diejenige Theorie
eines Raumes mit beliebig vielen Dimensionen [278]. The isometric circle
of a linear fractional transformation of the complex plane was introduced
by Ford in his 1927 paper On the foundations of the theory of discontinu-
ous groups [147]. That inversion in a sphere maps inverse points to inverse
points appeared in Thomson’s 1845 letter to Liouville [424].
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§4.4. The Poincaré extension of a Möbius transformation of the plane
was defined by Poincaré in his 1881 note Sur les groupes kleinéens [354].
Möbius transformations of a sphere were considered by Möbius in his 1855
paper [322]. The 2-dimensional cases of Theorems 4.4.7 and 4.4.8 appeared
in Ford’s 1929 treatise Automorphic Functions [148].

§4.5. The conformal ball model of radius two was introduced by Beltrami
in his 1868 paper Saggio di interpetrazione della geometria non-euclidea
[39]. In particular, he derived its element of arc length and noted that this
Riemannian metric had already been affirmed to be of constant negative
curvature by Riemann in his 1854 lecture Über die Hypothesen, welch der
Geometrie zu Grunde liegen [381]. For a discussion, see the introduction
of Stillwell’s 1985 translation of Poincaré’s Papers on Fuchsian Functions
[366]. The stereographic projection of Beltrami’s conformal ball model onto
hyperbolic space Hn appeared in Killing’s 1878 paper Ueber zwei Raum-
formen mit constanter positiver Krümmung [238]. The 2-dimensional con-
formal ball model of radius one and curvature −4 appeared in Poincaré’s
1882 paper Sur les fonctions fuchsiennes [356]. The 2-dimensional confor-
mal ball model of radius one and curvature −1 appeared in Hausdorff’s
1899 paper Analytische Beiträge zur nichteuklidischen Geometrie [195].

§4.6. The upper half-space model was introduced by Beltrami in his 1868
paper [39]. In particular, he derived its element of arc length and noted that
this Riemannian metric in dimension two had already been shown to be of
constant negative curvature by Liouville in his 1850 note Sur le théorème
de M. Gauss, concernant le produit des deux rayons de courbure principaux
[280]. That the group of Möbius transformations of n-space is isomorphic
to the group of isometries of hyperbolic (n + 1)-space follows immediately
from observations of Klein in his 1872 paper Ueber Liniengeometrie und
metrische Geometrie [244] and in his 1873 paper Ueber die sogenannte
Nicht-Euklidische Geometrie [246].

§4.7. The classification of the isometries of the hyperbolic plane into
three types according to the nature of their fixed points appeared in Klein’s
1871 paper Ueber die sogenannte Nicht-Euklidische Geometrie [243]. The
terms elliptic, parabolic, and hyperbolic transformations were introduced by
Klein in his 1879 paper Ueber die Transformation der elliptischen Functio-
nen [250] and were applied to isometries of hyperbolic n-space by Thurston
in his 1979 lectures notes The Geometry and Topology of 3-Manifolds [425].

That the intrinsic geometry of a sphere in hyperbolic space is spher-
ical is implicit in Lambert’s remark in his 1786 monograph Theorie der
Parallellinien [272] that spherical trigonometry is independent of Euclid’s
parallel postulate. This was proved by Bolyai in his 1832 paper Scientiam
spatii absolute veram exhibens [54]. The corresponding fact in hyperbolic
n-space appeared in Beltrami’s 1868 paper Teoria fondamentale degli spazii
di curvatura costante [40]. That the intrinsic geometry of a horosphere is
Euclidean appeared in Lobachevski’s 1829-30 paper On the principles of
geometry [282] and in Bolyai’s 1832 paper [54].



CHAPTER 5

Isometries of Hyperbolic Space

In this chapter, we study the topology of the group I(Hn) of isometries of
hyperbolic space. The chapter begins with an introduction to topological
groups. The topological group structure of I(Hn) is studied from various
points of view in Section 5.2. The discrete subgroups of I(Hn) are of
fundamental importance for the study of hyperbolic manifolds. The basic
properties of the discrete subgroups of I(Hn) are examined in Section 5.3.
A characterization of the discrete subgroups of I(En) is given in Section
5.4. The chapter ends with a characterization of all the elementary discrete
subgroups of I(Hn).

§5.1. Topological Groups

Consider the n-dimensional complex vector space Cn. A vector in Cn is
an ordered n-tuple z = (z1, . . . , zn) of complex numbers. Let z and w be
vectors in Cn. The Hermitian inner product of z and w is defined to be the
complex number

z ∗ w = z1w1 + · · · + znwn, (5.1.1)

where a bar denotes complex conjugation. The Hermitian norm of a vector
z in Cn is defined to be the real number

|z| = (z ∗ z)
1
2 . (5.1.2)

Obviously |z| ≥ 0, since

|z| = (|z1|2 + · · · + |zn|2) 1
2 .

The Hermitian norm determines a metric on Cn in the usual way,

dC(z, w) = |z − w|. (5.1.3)

The metric space consisting of Cn together with the metric dC is called
complex n-space. Define φ : Cn → R2n by

φ(z1, . . . , zn) = (Re z1, Im z1, . . . ,Re zn, Im zn).

144
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Then φ is obviously an isomorphism of real vector spaces. Moreover,

φ(z) · φ(w) = Re (z ∗ w).

Consequently φ preserves norms. Therefore φ is an isometry. For this
reason, we call dC the Euclidean metric on Cn.

Definition: A topological group is a group G that is also a topological
space such that the multiplication (g, h) �→ gh and inversion g �→ g−1 in G
are continuous functions.

The following are some familiar examples of topological groups:

(1) real n-space Rn with the operation of vector addition,

(2) complex n-space Cn with the operation of vector addition,

(3) the positive real numbers R+ with the operation of multiplication,

(4) the unit circle S1 in the complex plane with the operation of complex
multiplication,

(5) the nonzero complex numbers C∗ with the operation of complex mul-
tiplication.

Definition: Two topological groups G and H are isomorphic topological
groups if and only if there is an isomorphism φ : G → H that is also a
homeomorphism.

Example: The spaces Cn and R2n are isomorphic topological groups.

The General Linear Group

Let GL(n, C) be the set of all invertible complex n × n matrices. Then
GL(n, C) is a group under the operation of matrix multiplication. The
group GL(n, C) is called the general linear group of complex n×n matrices.

The norm of a complex n × n matrix A = (aij) is defined to be the real
number

|A| =

(
n∑

i,j=1

|aij |2
)1/2

. (5.1.4)

This norm determines a metric on GL(n, C) in the usual way,

d(A, B) = |A − B|. (5.1.5)

Note that this is just the Euclidean metric on GL(n, C) regarded as a subset
of Cn2

. For this reason, we call d the Euclidean metric on GL(n, C).
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Theorem 5.1.1. The general linear group GL(n, C), with the Euclidean
metric topology, is a topological group.

Proof: Matrix multiplication (A, B) �→ AB is continuous, since the entries
of AB are polynomials in the entries of A and B. The determinant function

det : GL(n, C) → C∗

is continuous, since detA is a polynomial in the entries of A. By the adjoint
formula for A−1, we have

(A−1)ji = (−1)i+j(det Aij)/(det A),

where Aij is the matrix obtained from A by deleting the ith row and jth
column. Consequently, each entry of A−1 is a rational function of the
entries of A. Therefore, the inversion map A �→ A−1 is continuous. Thus
GL(n, C) is a topological group.

Any subgroup H of a topological group G is a topological group with
the subspace topology. Hence, each of the following subgroups of GL(n, C)
is a topological group with the Euclidean metric topology:

(1) the special linear group SL(n, C) of all complex n × n matrices of
determinant one,

(2) the general linear group GL(n, R) of all invertible real n×n matrices,

(3) the special linear group SL(n, R) of all real n × n matrices of deter-
minant one,

(4) the orthogonal group O(n),

(5) the special orthogonal group SO(n),

(6) the Lorentz groups O(1, n − 1) and O(n − 1, 1),

(7) the positive Lorentz groups PO(1, n − 1) and PO(n − 1, 1).

The Unitary Group

A complex n × n matrix A is said to be unitary if and only if

(Az) ∗ (Aw) = z ∗ w

for all z, w in Cn. Obviously, the set of all unitary matrices in GL(n, C)
forms a subgroup U(n), called the unitary group of complex n×n matrices.
A unitary matrix is real if and only if it is orthogonal. Therefore U(n)
contains O(n) as a subgroup.

Two vectors z and w in Cn are said to be orthogonal if and only if
z ∗ w = 0. A basis {v1, . . . , vn} of Cn is said to be orthonormal if and only
if vi ∗vj = δij for all i, j. The next theorem characterizes a unitary matrix.
The proof is left as an exercise for the reader.
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Theorem 5.1.2. Let A be a complex n×n matrix. Then the following are
equivalent:

(1) The matrix A is unitary.

(2) The columns of A form an orthonormal basis of Cn.

(3) The matrix A satisfies the equation AtA = I.

(4) The matrix A satisfies the equation AAt = I.

(5) The rows of A form an orthonormal basis of Cn.

Corollary 1. A real matrix is unitary if and only if it is orthogonal.

Let A be a unitary matrix. As AtA = I, we have that | det A| = 1. Let
SU(n) be the set of all A in U(n) such that detA = 1. Then SU(n) is a
subgroup of U(n). The group SU(n) is called the special unitary group of
complex n × n matrices.

Theorem 5.1.3. The unitary group U(n) is compact.

Proof: If A is in U(n), then |A|2 =
∑n

j=1 |Aej |2 = n. Therefore U(n) is
a bounded subset of Cn2

. The function

f : Cn2 → Cn2
,

defined by f(A) = AtA, is continuous. Therefore U(n) = f−1(I) is a closed
subset of Cn2

. Hence U(n) is a closed bounded subset of Cn2
and therefore

is compact.

Corollary 2. The orthogonal group O(n) is compact.

Proof: As Rn2
is closed in Cn2

and O(n) = U(n) ∩ Rn2
, we have that

O(n) is closed in U(n), and so O(n) is compact.

Quotient Topological Groups

Lemma 1. If h is an element of a topological group G, then the maps

g �→ hg and g �→ gh,

from G to itself, are homeomorphisms.

Proof: Both maps are continuous and have continuous inverses g �→ h−1g
and g �→ gh−1, respectively.

Let H be a subgroup of a topological group G. The coset space G/H is
the set of cosets {gH : g ∈ G} with the quotient topology. The quotient
map will be denoted by π : G → G/H.
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Lemma 2. If H is a subgroup of a topological group G, then the quotient
map π : G → G/H is an open map.

Proof: Let U be open in G. Then π(U) is open in G/H if and only if
π−1(π(U)) is open in G by the definition of the quotient topology on G/H.
Now since

π−1(π(U)) = UH = ∪
h∈H

Uh,

we have that π−1(π(U)) is open by Lemma 1. Thus π is an open map.

Theorem 5.1.4. Let N be a normal subgroup of a topological group G.
Then G/N , with the quotient topology, is a topological group.

Proof: Let π : G → G/N be the quotient map g �→ gN . Then we have a
commutative diagram

G
g �→ g−1

−−−−−−→ G

π ↓ ↓ π

G/N
gN �→ g−1N−−−−−−−−−−→ G/N.

This implies that the inversion map gN �→ g−1N is continuous.
Next, observe that we have a commutative diagram

G × G
(g, h) �→ gh

−−−−−−−−−→ G

π × π ↓ ↓ π

G/N × G/N
(gN, hN) �→ ghN

−−−−−−−−−−−−−−→ G/N.

As π is an open map, π × π is also an open map. Consequently π × π is
a quotient map. From the diagram, we deduce that the multiplication in
G/N is continuous.

By Theorem 5.1.4, the following quotient groups, with the quotient
topology, are topological groups:

(1) the projective general linear group PGL(n, C) = GL(n, C)/N , where
N is the normal subgroup {kI : k ∈ C∗};

(2) the projective special linear group PSL(n, C) = SL(n, C)/N , where
N is the normal subgroup {wI : w is an nth root of unity};

(3) the projective general linear group PGL(n, R) = GL(n, R)/N , where
N is the normal subgroup {kI : k ∈ R∗};

(4) the projective special linear group PSL(2n, R) = SL(2n, R)/{±I};

(5) the projective special unitary group PSU(n) = SU(n)/N , where N is
the normal subgroup {wI : w is an nth root of unity}.
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Theorem 5.1.5. Let H be a subgroup of a topological group G, and let
η : G → X be a continuous function such that η−1(η(g)) = gH for each g
in G. If σ : X → G is a continuous right inverse of η, then the function φ :
X × H → G, defined by φ(x, h) = σ(x)h, is a homeomorphism; moreover,
the function η : G/H → X, induced by η, is a homeomorphism.

Proof: The function φ is a composite of continuous functions and so is
continuous. Let g be in G. As ηση(g) = η(g), we have that ση(g) is in gH,
and so g−1ση(g) is in H. Define a function

ψ : G → X × H

by the formula
ψ(g) = (η(g), [ση(g)]−1g).

The map ψ is the composite of continuous functions and so is continuous.
Observe that

φψ(g) = φ(η(g), [ση(g)]−1g)
= ση(g)[ση(g)]−1g

= g

and
ψφ(x, h) = ψ(σ(x)h)

= (η(σ(x)h), [ση(σ(x)h)]−1σ(x)h)
= (ησ(x), [σησ(x)]−1σ(x)h)
= (x, [σ(x)]−1σ(x)h)
= (x, h).

Thus φ is a homeomorphism with inverse ψ.
Let π : G → G/H be the quotient map. Then η induces a continuous

bijection η : G/H → X such that ηπ = η. The map πσ is a continuous
inverse of η, and so η is a homeomorphism.

Exercise 5.1

1. Prove that R and R+ are isomorphic topological groups.

2. Prove that R/2πZ and S1 are isomorphic topological groups.

3. Prove that C∗ and R+ × S1 are isomorphic topological groups.

4. Prove that S1 and SO(2) are isomorphic topological groups.

5. Prove that R and PSO(1, 1) are isomorphic topological groups.

6. Prove that if z, w are in Cn, then |z ∗ w| ≤ |z| |w| with equality if and only
if z and w are linearly dependent over C.

7. Let A be a complex n × n matrix. Show that |Az| ≤ |A| |z| for all z in Cn.

8. Let A, B be complex n × n matrices. Prove that |AB| ≤ |A| |B|.
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9. Let A, B be complex n × n matrices. Prove that |A ± B| ≤ |A| + |B|.
10. Prove Theorem 5.1.2.

11. Prove that a complex n × n matrix A is unitary if and only if |Az| = |z| for
all z in Cn.

12. Let A be a complex 2 × 2 matrix. Show that 2| det A| ≤ |A|2.
13. Let A be in SL(2, C). Prove that the following are equivalent:

(1) A is unitary;

(2) |A|2 = 2;

(3) A is of the form

(
a b

−b a

)
.

14. Let π : SL(2, C) → PSL(2, C) be the quotient map. Prove that π maps any
open ball of radius

√
2 homeomorphically onto its image. Deduce that π is

a double covering.

15. Prove that PSL(2, C) and PGL(2, C) are isomorphic topological groups.

16. Prove that GL(n, C) is homeomorphic to C∗ × SL(n, C).

§5.2. Groups of Isometries

Let X be a metric space. Henceforth, we shall assume that the group I(X)
of isometries of X and the group S(X) of similarities of X are topologized
with the subspace topology inherited from the space C(X, X) of continuous
self-maps of X with the compact-open topology.

Theorem 5.2.1. A sequence {φi} of isometries of a metric space X con-
verges in I(X) to an isometry φ if and only if {φi(x)} converges to φ(x)
for each point x of X.

Proof: It is a basic property of the compact-open topology of C(X, X)
that φi → φ if and only if {φi} converges uniformly to φ on compact sets,
that is, for each compact subset K of X and ε > 0, there is an integer k
such that d(φi(x), φ(x)) < ε for all i ≥ k and every x in K. If φi → φ, then
φi(x) → φ(x) for each x in X, since each point of X is compact.

Conversely, suppose that φi(x) → φ(x) for each x in X. Let K be a
compact subset of X and let ε > 0. On the contrary, suppose that {φi}
does not converge uniformly on K. Then there is a subsequence {φij } of
{φi} and a sequence {xj} of points of K such that for each j, we have

d(φij
(xj), φ(xj)) ≥ ε.

By passing to a subsequence, we may assume that {xj} converges to a point
x in K, since K is compact. Choose j large enough so that d(xj , x) < ε/4
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and d(φij (x), φ(x)) < ε/2. Then we have the contradiction

d(φij (xj), φ(xj)) ≤ d(φij (xj), φij (x)) + d(φij (x), φ(x)) + d(φ(x), φ(xj))
= 2d(xj , x) + d(φij

(x), φ(x))
< ε.

Therefore φi → φ uniformly on K. Thus φi → φ.

Definition: A metric space X is finitely compact if and only if all its
closed balls are compact, that is,

C(a, r) = {x ∈ X : d(a, x) ≤ r}

is compact for each point a of X and r > 0.

Theorem 5.2.2. If X is a finitely compact metric space, then I(X) is a
topological group.

Proof: It is a basic property of the compact-open topology that the
composition map (φ, ψ) �→ φψ is continuous when X is locally compact.
Now a finitely compact metric space has a countable basis. Consequently,
C(X, X) and therefore I(X) has a countable basis. Hence, we can prove
that the inversion map φ �→ φ−1 is continuous using sequences. Suppose
that φi → φ in I(X). Then φi(x) → φ(x) for each x in X. Let ε > 0, let x
be a point of X, and let y = φ−1(x). Then there is an integer k such that
for all i ≥ k, we have d(φi(y), φ(y)) < ε. Then for all i ≥ k, we have

d(φ−1
i (x), φ−1(x)) = d(x, φiφ

−1(x))
= d(φφ−1(x), φiφ

−1(x))
= d(φ(y), φi(y)) < ε.

Therefore φ−1
i (x) → φ−1(x). By Theorem 5.2.1, we have that φ−1

i → φ−1.
Hence, the inversion map is continuous. Thus I(X) is a topological group.

Theorem 5.2.3. The restriction map ρ : O(n + 1) → I(Sn) is an isomor-
phism of topological groups.

Proof: By Theorem 2.1.3, we have that ρ is an isomorphism. Thus, we
only need to show that ρ is a homeomorphism. Suppose that Ai → A in
O(n + 1). Then obviously Aix → Ax for all x in Sn. Therefore Ai → A in
I(Sn) by Theorem 5.2.1. Conversely, suppose that Ai → A in I(Sn). Then
Aiej → Aej for each j = 1, . . . , n + 1. Hence Ai → A in O(n + 1). Thus ρ
is a homeomorphism.

Theorem 5.2.4. The function Φ : En × O(n) → I(En), defined by the
formula Φ(a, A) = τaA, is a homeomorphism.
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Proof: Let e : I(En) → En be the evaluation map defined by e(φ) = φ(0).
It is a basic property of the compact-open topology that the evaluation map
e is continuous. Define τ : En × En → En by τ(a, x) = a + x. Then τ is
obviously continuous. It is a basic property of the compact-open topology
that the corresponding function τ̂ : En → I(En), defined by τ̂(a) = τa

where τa(x) = a + x, is also continuous. The map τ̂ is a right inverse for e.
We shall identify O(n) with the group of isometries of En that fix the ori-

gin. By the same argument as in the proof of Theorem 5.2.3, the compact-
open topology on O(n) is the same as the Euclidean topology on O(n).

For each φ in I(En), we have
e−1(e(φ)) = φO(n).

Therefore Φ is a homeomorphism by Theorem 5.1.5.

The group T(En) of translations of En is a subgroup of I(En), and
so T(En) is a topological group with the subspace topology. The next
corollary follows immediately from Theorem 5.2.4.

Corollary 1. The evaluation map e : T(En) → En, defined by the formula
e(τ) = τ(0), is an isomorphism of topological groups.

Theorem 5.2.5. The restriction map ρ : PO(n, 1) → I(Hn) is an isomor-
phism of topological groups.

Proof: By Theorem 3.2.3, we have that ρ is an isomorphism. Thus, we
only need to show that ρ is a homeomorphism. Suppose that Ai → A in
PO(n, 1). Then obviously Aix → Ax for all x in Hn. Therefore Ai → A in
I(Hn) by Theorem 5.2.1. Conversely, suppose that Ai → A in I(Hn). Then
Aien+1 → Aen+1. Now for each j = 1, . . . , n, the vector vj = ej +

√
2en+1

is in Hn. Hence Aivj → Avj for each j = 1, . . . , n. Therefore, we have

Aiej +
√

2Aien+1 → Aej +
√

2Aen+1.

Hence Aiej → Aej for each j = 1, . . . , n. Therefore Ai → A in PO(n, 1).
Thus ρ is a homeomorphism.

Groups of Möbius Transformations

Each Möbius transformation of Bn is completely determined by its action
on ∂Bn = Sn−1 because of Poincaré extension. Consequently, the topology
of Sn−1 determines a natural topology on the group M(Bn). This topology
is the metric topology defined by the metric

DB(φ, ψ) = sup
x∈Sn−1

|φ(x) − ψ(x)|. (5.2.1)

The metric topology determined by DB on M(Bn) is a natural topology
because it coincides with the compact-open topology inherited from the
function space C(Sn−1, Sn−1) of continuous self-maps of Sn−1.
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Lemma 1. If φ is in M(Bn), then

sup
x,y∈Sn−1

|φ(x) − φ(y)|
|x − y| = exp dB(0, φ(0)).

Proof: Suppose that φ(∞) = ∞. Then φ is orthogonal by Theorem 4.4.7.
Hence, we have

|φ(x) − φ(y)|
|x − y| = 1 = exp dB(0, 0).

Now suppose that φ(∞) �= ∞. Then φ = ψσ, where σ is the reflection in a
sphere S(a, r) orthogonal to Sn−1 and ψ is an orthogonal transformation.
By Theorem 4.4.2(3), we have that r2 = |a|2 − 1; and by Theorem 4.1.3,

|φ(x) − φ(y)|
|x − y| =

r2

|x − a| |y − a| =
|a|2 − 1

|x − a| |y − a| .

From the equation |x − a|2 = 1 − 2a · x + |a|2, we see that the minimum
value of |x − a| occurs when x = a/|a|. Therefore

sup
x,y∈Sn−1

|φ(x) − φ(y)|
|x − y| =

|a|2 − 1
(|a| − 1)2

=
|a| + 1
|a| − 1

.

Now since

σ(x) = a +
|a|2 − 1
|x − a|2 (x − a),

we have that σ(0) = a/|a|2. Therefore |a| = 1/|φ(0)|. Hence

|a| + 1
|a| − 1

=
1 + |φ(0)|
1 − |φ(0)| = exp dB(0, φ(0)).

Theorem 5.2.6. The group M(Bn), with the metric topology determined
by DB, is a topological group.

Proof: Let φ, φ0, ψ, ψ0 be in M(Bn). By Lemma 1, there is a positive
constant k(φ) such that |φ(x) − φ(y)| ≤ k(φ)|x − y| for all x, y in Sn−1. As
ψ restricts to a bijection of Sn−1, we have D(φψ, φ0ψ) = D(φ, φ0). Hence

D(φψ, φ0ψ0) ≤ D(φψ, φ0ψ) + D(φ0ψ, φ0ψ0)
≤ D(φ, φ0) + k(φ0)D(ψ, ψ0).

This implies that the composition map (φ, ψ) �→ φψ is continuous at
(φ0, ψ0). Similarly, the map φ �→ φ−1 is continuous at φ0, since

D(φ−1, φ−1
0 ) = D(φ−1φ, φ−1

0 φ)
= D(φ−1

0 φ0, φ
−1
0 φ)

≤ k(φ−1
0 )D(φ0, φ).

Corollary 2. The group M(Sn−1), with the metric topology determined by
DB, is a topological group.
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Let η be the standard transformation from Un to Bn. Then η induces
an isomorphism η∗ : M(Un) → M(Bn) defined by η∗(φ) = ηφη−1. The
restriction of η to Ên−1 is stereographic projection

π : Ên−1 → Sn−1.

Let d be the chordal metric on Ên−1. Define a metric DU on M(Un) by

DU (φ, ψ) = sup
x∈Ên−1

d(φ(x), ψ(x)). (5.2.2)

Then
DU (φ, ψ) = sup

x∈Ên−1

|πφ(x) − πψ(x)|

= sup
y∈Sn−1

|πφπ−1(y) − πψπ−1(y)|

= DB(ηφη−1, ηψη−1)
= DB(η∗(φ), η∗(ψ)).

Thus η∗ : M(Un) → M(Bn) is an isometry of metric spaces. The next
theorem follows immediately from Theorem 5.2.6.

Theorem 5.2.7. The group M(Un), with the metric topology determined
by DU , is a topological group.

Poincaré extension induces a homeomorphism from M(Sn−1) to M(Bn).
Therefore, Poincaré extension induces a homeomorphism from M(Ên−1) to
M(Un). This implies the following corollary.

Corollary 3. The group M(Ên−1), with the metric topology determined by
DU , is a topological group.

Theorem 5.2.8. The function Φ : Bn × O(n) → M(Bn), defined by the
formula Φ(b, A) = τbA, is a homeomorphism.

Proof: Let e : M(Bn) → Bn be the evaluation map defined by e(φ) =
φ(0). We now show that e is continuous. Suppose that D(φ, I) < r. As
each Euclidean diameter Lα of Bn is mapped by φ onto a hyperbolic line
φ(Lα) of Bn whose endpoints are a distance at most r from those of Lα,
the Euclidean cylinder Cα with axis Lα and radius r contains φ(Lα). Then
e is continuous at the identity map I, since

{φ(0)} ⊂ ∩
α

φ(Lα) ⊂ ∩
α

Cα = {x ∈ Bn : |x| < r}.

Now suppose that {φi} is a sequence in M(Bn) converging to φ. Then φ−1φi

converges to I, since M(Bn) is a topological group. As e is continuous at I,
we have that φ−1φi(0) converges to 0. Therefore φi(0) converges to φ(0).
Thus e is continuous.
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Define ∂τ : Bn × Sn−1 → Sn−1 by ∂τ(b, x) = τb(x). By Formula 4.5.5,
we have that

τb(x) =
(1 − |b|2)x + 2(1 + x · b)b

|x + b|2 .

Therefore ∂τ is continuous. Hence, the function ∂τ̂ : Bn → M(Sn−1),
defined by ∂τ̂(b)(x) = τb(x), is continuous, since the metric topology on
M(Sn−1), determined by DB , is the same as the compact-open topology.
Therefore, the function τ̂ : Bn → M(Bn), defined by τ̂(b)(x) = τb(x), is
continuous, since the map from M(Sn−1) to M(Bn), induced by Poincaré
extension, is a homeomorphism. The map τ̂ is a right inverse of e.

Let φ be in M(Bn). Then clearly φO(n) is contained in e−1(e(φ)).
Suppose that ψ is in e−1(e(φ)). Then ψ(0) = φ(0) and so φ−1ψ(0) = 0.
By Theorem 4.4.8, we have that φ−1ψ is in O(n). Therefore ψ is in φO(n).
Thus e−1(e(φ)) = φO(n). Hence Φ is a homeomorphism by Theorem 5.1.5.

Theorem 5.2.9. The function Ψ : Bn × O(n) → I(Bn), defined by the
formula Ψ(b, A) = τbA, is a homeomorphism.

Proof: Let e : I(Bn) → Bn be the evaluation map defined by e(φ) = φ(0).
Then e is continuous. Define τ : Bn × Bn → Bn by τ(b, x) = τb(x). Let b
and x be in Bn. Then by Formula 4.5.5, we have

τb(x) =
(1 − |b|2)x + (|x|2 + 2x · b + 1)b

|b|2|x|2 + 2x · b + 1
.

Hence τ is continuous. Therefore, the function τ̂ : Bn → I(Bn), defined by
τ̂(b)(x) = τb(x), is continuous. The map τ̂ is a right inverse of e.

We shall identify O(n) with the group of all isometries of Bn that fix
the origin. By the same argument as in the proof of Theorem 5.2.3, with
ej replaced by ej/2, the compact-open topology on O(n) is the same as the
Euclidean topology on O(n). As e−1(e(φ)) = φO(n), we have that Ψ is a
homeomorphism by Theorem 5.1.5.

Theorem 5.2.10. The restriction map ρ : M(Bn) → I(Bn) is an isomor-
phism of topological groups.

Proof: The map ρ is an isomorphism by Theorem 4.5.2. The functions
Φ : Bn × O(n) → M(Bn) and Ψ : Bn × O(n) → I(Bn) are homeomor-
phisms by Theorems 5.2.8 and 5.2.9. As ρ = ΨΦ−1, we have that ρ is a
homeomorphism.

The next theorem follows immediately from Theorem 5.2.10.

Theorem 5.2.11. The restriction map ρ : M(Un) → I(Un) is an isomor-
phism of topological groups.
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The group S(En−1) of similarities of En−1 is isomorphic, by extension
to ∞, to the group M(Ên−1)∞ of transformations in M(Ên−1) fixing ∞.

Theorem 5.2.12. The restriction map ρ : M(Ên−1)∞ → S(En−1) is an
isomorphism of topological groups.

Proof: The metric topology on M(Ên−1)∞ is the same as the compact-
open topology, since Ên−1 is compact. Suppose that ψi → ψ in M(Ên−1)∞.
Then ψi(x) → ψ(x) for each point x in En−1. By essentially the same
argument as in the proof of Theorem 5.2.1 (see Exercise 5.2.2), we have
that ρ(ψi) → ρ(ψ). Therefore ρ is continuous.

Suppose that φi → φ in S(En−1). Then φi(x) → φ(x) for each point x in
En−1. Let φ̃ be the Poincaré extension of φ. Then obviously φ̃i(x) → φ̃(x)
for each point x in Un. Hence φ̃i → φ̃ in M(Un) by Theorems 5.2.1 and
5.2.11. Let φ̂ : Ên−1 → Ên−1 be the extension of φ defined by φ̂(∞) = ∞.
Then φ̂i → φ̂, since Poincaré extension induces a homeomorphism from
M(Ên−1) to M(Un). As ρ(φ̂) = φ, we have that ρ−1(φi) → ρ−1(φ). Hence
ρ−1 is continuous. Thus ρ is a homeomorphism.

Exercise 5.2

1. Let ξ : X → Y be an isometry of finitely compact metric spaces. Prove that
the function ξ∗ : I(X) → I(Y ), defined by ξ∗(φ) = ξφξ−1, is an isomorphism
of topological groups.

2. Let X be a metric space. Prove that φi → φ in S(X) if and only if φi(x) →
φ(x) for each point x of X.

3. Let X be a finitely compact metric space. Prove that S(X) is a topological
group.

4. Let S(En)0 be the subgroup of S(En) of all similarities that fix the origin.
Prove that the map Ψ : R+ × O(n) → S(En)0, defined by Ψ(k, A) = kA, is
an isomorphism of topological groups.

5. Prove that the function Φ : En×R+×O(n) → S(En), defined by the formula
Φ(a, k, A) = a + kA, is a homeomorphism.

6. Let E(n) be the group of all real (n + 1) × (n + 1) matrices of the form

Aa =

⎛⎜⎜⎝
a1

A
...

an

0 · · · 0 1

⎞⎟⎟⎠ ,

where A is an n × n orthogonal matrix and a is a point of En. Prove that
the function η : I(En) → E(n), defined by η(a+A) = Aa, is an isomorphism
of topological groups.
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7. Let Ξ : SL(2, C) → LF(Ĉ) be defined by

Ξ

(
a b
c d

)
(z) =

az + b

cz + d
.

Prove that Ξ is continuous. Here SL(2, C) has the Euclidean metric topology
and LF(Ĉ) has the compact-open topology.

8. Prove that a homomorphism η : G → H of topological groups is continuous
if and only if η is continuous at the identity element 1 of G.

9. Let φ(z) = az+b
cz+d

be in LF(Ĉ) with ad − bc = 1 and d �= 0. Show that

(1) d2 = 1
φ(1)−φ(0) − 1

φ(∞)−φ(0) ,

(2) cd = 1
φ(∞)−φ(0) ,

(3) b/d = φ(0),

(4) ad = φ(∞)
φ(∞)−φ(0) .

10. Prove that Ξ in Exercise 7 induces an isomorphism from PSL(2, C) to LF(Ĉ)
of topological groups.

11. Let φ(z) = az+b
cz+d

be in LF(Ĉ) with ad − bc = 1. Prove that φ̃(j) = j in U3 if

and only if the matrix

(
a b
c d

)
is unitary.

12. Prove that PSU(2) and SO(3) are isomorphic topological groups.

13. Let H be the set all matrices of the form

(
a b

−b a

)
with a, b in C. Show

that H, with matrix addition and multiplication, is isomorphic to the ring
of quaternions H via the mapping(

a b

−b a

)
�→ a + bj.

14. Prove that SU(2) and the group S3 of unit quaternions are isomorphic topo-
logical groups.

15. Prove that the map χ : S3 → SO(3), defined by

χ(a + bj)(z + tj) = (a + bj)(z + tj)(a + bj),

with z in C and t in R, induces an isomorphism from S3/{±1} to SO(3) of
topological groups.

§5.3. Discrete Groups

In this section, we study the basic properties of discrete groups of isometries
of Sn, En, and Hn.

Definition: A discrete group is a topological group Γ all of whose points
are open.
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Lemma 1. If Γ is a topological group, then Γ is discrete if and only if {1}
is open in Γ.

Proof: If Γ is discrete, then {1} is open. Conversely, suppose that {1} is
open. Let g be in Γ. Then left multiplication by g is a homeomorphism of
Γ. Hence g{1} = {g} is open in Γ.

Any group Γ can be made into a discrete group by giving Γ the discrete
topology. Therefore, the topology of a discrete group is not very interesting.
What is interesting is the study of discrete subgroups of a continuous group
like Rn or GL(n, C). Here are some examples of discrete subgroups of
familiar continuous groups.

(1) The integers Z is a discrete subgroup of R.

(2) The Gaussian integers Z[i] = {m + ni : m, n ∈ Z} is a discrete
subgroup of C.

(3) The set {kn : n ∈ Z} is a discrete subgroup of R+ for each k > 0.

(4) The group of nth roots of unity {exp(i2πm/n) : m = 0, 1, . . . , n − 1}
is a discrete subgroup of S1 for each positive integer n.

(5) The set {kn : n ∈ Z} is a discrete subgroup of C∗ for each k in
C∗ − S1.

Lemma 2. A metric space X is discrete if and only if every convergent
sequence {xn} in X is eventually constant.

Proof: Suppose that X is discrete and xn → x in X. Then there is an
r > 0 such that B(x, r) = {x}. As xn → x, there is an integer m such that
xn is in B(x, r) for all n ≥ m. Thus xn = x for all n ≥ m.

Conversely, suppose that every convergent sequence in X is eventually
constant and X is not discrete. Then there is a point x such that {x} is
not open. Therefore B(x, 1/n) �= {x} for each integer n > 0. Choose xn

in B(x, 1/n) different from x. Then xn → x, but {xn} is not eventually
constant, which is a contradiction. Therefore X must be discrete.

Lemma 3. If G is a topological group with a metric topology, then every
discrete subgroup of G is closed in G.

Proof: Let Γ be a discrete subgroup of G and suppose that G − Γ is not
open. Then there is a g in G − Γ and gn in B(g, 1/n) ∩ Γ for each integer
n > 0. As gn → g in G, we have that gng−1

n+1 → 1 in Γ. But {gng−1
n+1}

is not eventually constant, which contradicts Lemma 2. Therefore, the set
G − Γ must be open, and so Γ is closed in G.
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Theorem 5.3.1. A subgroup Γ of U(n) is discrete if and only if Γ is finite.

Proof: If Γ is finite, then Γ is obviously discrete. Conversely, suppose
that Γ is discrete. Then Γ is closed in U(n) by Lemma 3. Therefore Γ is
compact, since U(n) is compact. As Γ is discrete, it must be finite.

Corollary 1. A subgroup Γ of O(n) is discrete if and only if Γ is finite.

Definition: The group of symmetries of a subset S of a metric space X
is the group of all isometries of X that leave S invariant.

Example 1. It has been known since antiquity that the five regular solids
can be inscribed in a sphere; in fact, a construction is given in Book 13 of
Euclid’s Elements. The group of symmetries of a regular solid P inscribed
in S2 is a finite subgroup of O(3) whose order is

(1) 24 if P is a tetrahedron,

(2) 48 if P is a cube or octahedron,

(3) 120 if P is a dodecahedron or icosahedron.

Theorem 5.3.2. A subgroup Γ of Rn is discrete if and only if Γ is gener-
ated by a set of linearly independent vectors.

Proof: We may assume that Γ is nontrivial. Suppose that Γ is generated
by a set {v1, . . . , vm} of linearly independent vectors. Then

Γ = Zv1 ⊕ · · · ⊕ Zvm.

By applying a nonsingular linear transformation, we may assume that vi =
ei for each i = 1, . . . , m. Then Γ ∩ B(0, 1) = {0}. Therefore Γ is discrete
by Lemma 1.

Conversely, suppose that Γ is discrete. This part of the proof is by
induction on n. Assume first that n = 1. Let r > 0 be such that B(0, r)
contains a nonzero element of Γ. Then C(0, r) ∩ Γ is a closed subset of
C(0, r) by Lemma 3. Hence C(0, r) ∩ Γ is a compact discrete space and
therefore is finite. Thus, there is a nonzero element u in Γ nearest to 0. By
replacing u by −u, if necessary, we may assume that u is positive. Let v
be an arbitrary element in Γ. Then there is an integer k such that v is in
the interval [ku, (k + 1)u). Hence v − ku is in the set

Γ ∩ [0, u) = {0}.

Therefore v = ku. Thus u generates Γ.
Now assume that n > 1 and every discrete subgroup of Rn−1 is generated

by a set of linearly independent vectors. As above, there is a nonzero
element u in Γ nearest to 0 and

Γ ∩ Ru = Zu.



160 5. Isometries of Hyperbolic Space

Let u1, . . . , un be a basis of Rn with un = u, and let η : Rn → Rn−1 be
the linear transformation defined by η(ui) = ei for i = 1, . . . , n − 1 and
η(u) = 0. Then η is a continuous function such that η−1(η(x)) = x + Ru
for all x in Rn. Define a linear transformation σ : Rn−1 → Rn by σ(ei) = ui

for i = 1, . . . , n−1. Then σ is a continuous right inverse of η. By Theorem
5.1.5, the map η : Rn/Ru → Rn−1 induced by η is an isomorphism of
topological groups.

Let π : Rn → Rn/Ru be the quotient map. We claim that π(Γ) is
a discrete subgroup of Rn/Ru. Let {vi} be a sequence in Γ such that
π(vi) → 0 in π(Γ). Then ηπ(vi) → 0 in Rn−1 and so η(vi) → 0 in Rn−1.
Therefore ση(vi) → 0 in Rn. Hence vi → 0 (mod Ru). Consequently, there
are real numbers ri such that vi − riu → 0 in Rn. By adding a suitable
integral multiple of u to vi, we may assume that |ri| ≤ 1/2. For large
enough i, we have that

|vi − riu| < |u|/2.

Whence, we have

|vi| ≤ |vi − riu| + |riu|
< |u|/2 + |u|/2 = |u|.

Therefore vi = 0 for all sufficiently large i. Consequently, every convergent
sequence in π(Γ) is eventually constant. Thus π(Γ) is a discrete subgroup
of Rn/Ru by Lemma 2. By the induction hypothesis, there are vectors
w1, . . . , wm in Γ such that π(w1), . . . , π(wm) are linearly independent in
Rn/Ru and generate π(Γ). Therefore u, w1, . . . , wm are linearly indepen-
dent in Rn and generate Γ. This completes the induction.

Definition: A lattice of Rn is a subgroup generated by n linearly inde-
pendent vectors of Rn.

Corollary 2. Every lattice of Rn is a discrete subgroup of Rn.

Example 2. Let Γ be the set of points of R4 of the form 1
2 (m, n, p, q)

where m, n, p, q are either all odd integers or all even integers. Then Γ is a
lattice of R4. This lattice is interesting because it has 24 unit vectors ±ei

for i = 1, 2, 3, 4 and
(
± 1

2 ,± 1
2 ,± 1

2 ,± 1
2

)
all of which are a nearest neighbor

to 0 in Γ. It is worth noting that these 24 points are the vertices of a
regular polyhedron in R4 called the 24-cell.

Let ŜL(n, C) be the group of complex n×n matrices whose determinant
is ±1. Then ŜL(n, C) is a subgroup of GL(n, C) containing SL(n, C) as a
subgroup of index two.

Theorem 5.3.3. A subgroup Γ of ŜL(n, C) is discrete if and only if for
each r > 0, the set {A ∈ Γ : |A| ≤ r} is finite.
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Proof: Suppose that {A ∈ Γ : |A| ≤ r} is finite for each r > 0. Then the
inequality

|A| ≤ |A − I| + |I|
implies that

B(I, r) ∩ Γ ⊂ {A ∈ Γ : |A| ≤ r +
√

n},

and so the set B(I, r) ∩ Γ is finite for each r > 0. Therefore {I} is open in
Γ, and so Γ is discrete by Lemma 1.

Conversely, suppose that Γ is discrete. As the determinant function
det : Cn2 → C is continuous, the set

ŜL(n, C) = det−1{−1, 1}

is closed in Cn2
. Hence ŜL(n, C) is a finitely compact metric space. Now Γ

is a closed subset of ŜL(n, C) by Lemma 3. Hence C(I, r) ∩ Γ is a compact
discrete set, and therefore is finite for each r > 0. Now the inequality

|A − I| ≤ |A| + |I|
implies that

{A ∈ Γ : |A| ≤ r} ⊂ C(I, r +
√

n) ∩ Γ,

and so the set {A ∈ Γ : |A| ≤ r} is finite for each r > 0.

Corollary 3. Every discrete subgroup Γ of ŜL(n, C) is countable.

Proof: Let Γm = {A ∈ Γ : |A| ≤ m}. Then Γ =
∞
∪

m=1
Γm is countable.

Example 3. Observe that the modular group SL(n, Z) and the unimodular
group GL(n, Z) are discrete subgroups of ŜL(n, C) by Theorem 5.3.3.

Discontinuous Groups

Let G be a group acting on a set X and let x be an element of X.

(1) The subgroup Gx = {g ∈ G : gx = x} of G is called the stabilizer of
x in G.

(2) The subset Gx = {gx : g ∈ G} of X is called the G-orbit through x.
The G-orbits partition X.

(3) Define a function φ : G/Gx → Gx by φ(gGx) = gx. Then φ is a
bijection. Therefore, the index of Gx in G is the cardinality of the
orbit Gx.

Definition: A group G acts discontinuously on a topological space X
if and only if G acts on X and for each compact subset K of X, the set
K ∩ gK is nonempty for only finitely many g in G.



162 5. Isometries of Hyperbolic Space

Lemma 4. If a group G acts discontinuously on a topological space X,
then each stabilizer subgroup of G is finite.

Proof: Each stabilizer Gx is finite, since {x} is compact.

Definition: A collection S of subsets of a topological space X is locally
finite if and only if for each point x of X, there is an open neighborhood
U of x in X such that U meets only finitely many members of S.

Clearly, any subcollection of a locally finite collection S is also locally
finite. Another useful fact is that the union of the members of a locally
finite collection S of closed sets is closed.

Lemma 5. If a group G acts discontinuously on a metric space X, then
each G-orbit is a closed discrete subset of X.

Proof: Let x be a point of X. We now show that the collection of one-
point subsets of Gx is locally finite. On the contrary, suppose that y is
a point of X such that every neighborhood of y contains infinitely many
points of Gx. Since X is a metric space, there is an infinite sequence {gi}
of distinct elements of G such that {gix} converges to y. Then

K = {x, y, g1x, g2x, . . .}

is a compact subset of X. As gix is in K ∩ giK for each i, we have a
contradiction. Thus {{gx} : g ∈ G} is a locally finite family of closed
subsets of X. Hence, every subset of Gx is closed in X. Therefore Gx is a
closed discrete subset of X.

Definition: A group G of homeomorphisms of a topological space X is
discontinuous if and only if G acts discontinuously on X.

Theorem 5.3.4. Let Γ be a group of similarities of a metric space X.
Then Γ is discontinuous if and only if

(1) each stabilizer subgroup of Γ is finite, and

(2) each Γ-orbit is a closed discrete subset of X.

Proof: If Γ is discontinuous, then Γ satisfies (1) and (2) by Lemmas 4
and 5. Conversely, suppose that Γ satisfies (1) and (2). On the contrary,
suppose that Γ is not discontinuous. Then there is a compact subset K of
X and an infinite sequence {gi} of distinct elements of Γ such that K and
giK overlap. Now g−1

i K and K also overlap. By passing to a subsequence,
we may assume that gi �= g−1

j for all i �= j, and by replacing gi with g−1
i , if

necessary, we may assume that the scale factor ki of gi is at most one. Now
for each i, there is a point xi in K such that gixi is in K. As K is compact,
the sequence {xi} has a limit point x in K. By passing to a subsequence,
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we may assume that {xi} converges to x. Likewise, we may assume that
{gixi} converges to a point y in K. Now observe that

d(gix, y) ≤ d(gix, gixi) + d(gixi, y)
= kid(x, xi) + d(gixi, y).

Hence {gix} converges to y. For each i, there are only finitely many j such
that gix = gjx by (1). Hence, there is an infinite subsequence of {gix},
whose terms are all distinct, converging to y; but this contradicts (2). Thus
Γ is discontinuous.

Lemma 6. If X is a finitely compact metric space, then I(X) is closed in
the space C(X, X) of all continuous self-maps of X.

Proof: The space X has a countable basis, since X is finitely compact.
Therefore C(X, X) has a countable basis. Hence I(X) is closed in C(X, X)
if and only if every infinite sequence of elements of I(X) that converges in
C(X, X) converges in I(X).

Let {φi} be a sequence in I(X) that converges to a map φ : X → X.
Then for each pair of points x, y of X, we have that

d(φi(x), φi(y)) → d(φ(x), φ(y)).

Therefore, we have d(x, y) = d(φ(x), φ(y)). Hence φ preserves distances.
We now show that φ is surjective. Let a be a base point of X and let

C(a, r) be the closed ball centered at a of radius r > 0. Then the set
φ(C(a, 2r)) is closed in X, since C(a, 2r) is compact. On the contrary,
suppose that y is a point of C(φ(a), r) that is not in φ(C(a, 2r)). Set

s = dist
(
y, φ(C(a, 2r))

)
.

Then 0 < s ≤ r. As φi → φ uniformly on C(a, 2r), there is an index j such
that d(φj(x), φ(x)) < s for each point x in C(a, 2r). Observe that

d(y, φj(a)) ≤ d(y, φ(a)) + d(φ(a), φj(a)) ≤ r + s ≤ 2r.

Therefore y is in C(φj(a), 2r). As φj maps C(a, 2r) onto C(φj(a), 2r),
there is a point x in C(a, 2r) such that φj(x) = y. Then we have the
contradiction

d(y, φ(x)) = d(φj(x), φ(x)) < s.

Therefore, we have that C(φ(a), r) ⊂ φ(C(a, 2r)). As r is arbitrary, φ
must be surjective. Hence φ is an isometry. Therefore, the sequence {φi}
converges in I(X). Thus I(X) is closed in C(X, X).

Lemma 7. Let Γ be a group of isometries of a metric space X. If there
is a point x in X such that the orbit Γx is a discrete subset of X and the
stabilizer subgroup Γx is finite, then Γ is discrete.
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Proof: Suppose that Γx is discrete and Γx is finite. Let εx : Γ → Γx be the
evaluation map at x. Then εx is continuous. Hence, the set ε−1

x (x) = Γx

is open in Γ. Therefore, the identity map of X is open in Γ, and so Γ is
discrete by Lemma 1.

Theorem 5.3.5. Let X be a finitely compact metric space. Then a group
Γ of isometries of X is discrete if and only if Γ is discontinuous.

Proof: Suppose that Γ is discontinuous. Let x be a point of X. Then the
orbit Γx is discrete and the stabilizer Γx is finite by Theorem 5.3.4. Hence
Γ is discrete by Lemma 7.

Conversely, suppose that Γ is discrete. Now X has a countable basis,
since X is finitely compact. Therefore C(X, X) has a countable basis.
Moreover C(X, X) is regular, since X is regular. Therefore C(X, X) is
metrizable. Hence Γ is closed in I(X) by Lemma 3, and so Γ is closed in
C(X, X) by Lemma 6.

Let K be a compact subset of X and let

S = {g ∈ Γ : K ∩ gK �= ∅}.

The set S is closed in C(X, X), since Γ is a closed discrete subset of
C(X, X). The set S is equicontinuous on X, since for each x in X, r > 0,
and g in S, we have

gB(x, r) = B(gx, r).

Let a be a point of K and let x be an arbitrary point of X. Let r = d(a, x)
and let s = diam(K). If g is in S, then we have

d(a, gx) ≤ d(a, ga) + d(ga, gx) ≤ 2s + r.

Hence, we have

εx(S) = {gx : g ∈ S} ⊂ C(a, 2s + r).

Hence εx(S) is compact. Therefore S is compact by the Arzela-Ascoli
theorem. As S is discrete, S must be finite. Thus Γ is discontinuous.

Exercise 5.3

1. Prove that a subgroup Γ of R+ is discrete if and only if there is a k > 0 such
that Γ = {km : m ∈ Z}.

2. Prove that a subgroup Γ of S1 is discrete if and only if Γ is the group of nth
roots of unity for some n.

3. Prove that every finite group of order n + 1 is isomorphic to a subgroup
of O(n). Hint: Consider the group of symmetries of a regular n-simplex
inscribed in Sn−1.

4. Prove that the projective modular group PSL(2n, Z) = SL(2n, Z)/{±I} is a
discrete subgroup of PSL(2n, R) and of PSL(2n, C).
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5. Prove that the elliptic modular group, of all linear fractional transformations
φ(z) = az+b

cz+d
with a, b, c, d integers and ad − bc = 1, is a discrete subgroup of

LF(Ĉ) that corresponds to the discrete subgroup PSL(2, Z) of PSL(2, C).

6. Prove that Picard’s group PSL(2, Z[i]) = SL(2, Z[i])/{±I} is a discrete sub-
group of PSL(2, C).

7. Let G be a group acting on a set X. Prove that

(1) the G-orbits partition X;

(2) the function φ : G/Gx → Gx, defined by φ(gGx) = gx, is a bijection
for each x in X.

8. Prove that a discrete group Γ of isometries of a finitely compact metric space
X is countable.

9. Let Γ be the group generated by a magnification of En. Prove that

(1) Γ is a discrete subgroup of S(En);

(2) Γ does not act discontinuously on En;

(3) Γ acts discontinuously on En − {0}.

10. Let X = Sn, En, or Hn. Prove that a subgroup Γ of I(X) is discrete if and
only if every Γ-orbit is a discrete subset of X.

§5.4. Discrete Euclidean Groups

In this section, we characterize the discrete subgroups of the group I(En)
of isometries of En.

Definition: An isometry φ of En is elliptic if and only if φ fixes a point
of En; otherwise φ is parabolic.

Note that φ in I(En) is elliptic (resp. parabolic) if and only if its Poincaré
extension φ̃ in M(Un+1) is elliptic (resp. parabolic) by Lemma 1 of §4.7.
Every element φ of I(En) is of the form φ(x) = a + Ax with a in En and
A in O(n). We shall write simply φ = a + A.

Theorem 5.4.1. Let φ be in I(En). Then φ is parabolic if and only if
there is a line L of En on which φ acts as a nontrivial translation.

Proof: Suppose that φ = a + A is parabolic. Let V be the space of all
vectors in En fixed by A, and let W be its orthogonal complement. Write
a = b+ c with b in V and c in W . Now A− I maps W isomorphically onto
itself, and so there is a point d of W such that (A− I)d = c. Let τ = d+ I.
Then by the proof of Theorem 4.7.3, we have τφτ−1 = b + A and b �= 0.
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Now Ab = b, and so τφτ−1 acts via translation by b on the vector
subspace of En spanned by b. Hence φ acts via translation by b on the line
L = {tb − d : t ∈ R}.

Conversely, suppose there is a line L of En on which φ acts as a nontrivial
translation. Then φ maps each hyperplane of En orthogonal to L to another
hyperplane orthogonal to L. Consequently φ has no fixed points in En.
Therefore φ is parabolic.

Corollary 1. If φ is a parabolic isometry of En, then there is a line L of
En, an elliptic isometry ψ of En that fixes each point of L, and a nontrivial
translation τ that leaves L invariant, such that φ = τψ.

Proof: Let φ = a + A be parabolic. Write a = b + c as in the proof of
Theorem 5.4.1. Choose d such that (A − I)d = c and let L be the line
{tb − d : t ∈ R}. Let ψ = c + A and τ = b + I. Then φ = τψ. Moreover, ψ
fixes each point of L, and τ leaves L invariant.

Corollary 2. If φ is a parabolic isometry of En, then the subgroup Γ of
I(En) generated by φ is discrete.

Proof: By Theorem 5.4.1, there is a line L of En on which φ acts as a
nontrivial translation. Let x be a point on L. Then the orbit Γx is discrete
and Γx = {I}. Therefore Γ is discrete by Lemma 7 of §5.3.

Remark: Let φ be an elliptic isometry of En. Then φ has a fixed point in
En, and so φ is conjugate in I(En) to an element in O(n). Consequently,
the subgroup generated by φ is discrete if and only if φ has finite order.

The next theorem is a basic result in linear algebra.

Theorem 5.4.2. Let A be an orthogonal n × n matrix. Then there are
angles θ1, . . . , θm, with 0 ≤ θ1 ≤ · · · ≤ θm ≤ π, such that A is conjugate in
O(n) to a block diagonal matrix of the form⎛⎜⎝ B(θ1) 0

. . .
0 B(θm)

⎞⎟⎠ ,

where B(0) = 1, B(π) = −1, and B(θj) =
(

cos θj − sin θj

sin θj cos θj

)
otherwise.

The angles θ1, . . . , θm in Theorem 5.4.2 are called the angles of rotation
of A, and they completely determine the conjugacy class of A in O(n), since
e±iθ1 , . . . , e±iθm are the eigenvalues of A, counting multiplicities. Further-
more, A is conjugate in U(n) to a diagonal matrix with diagonal entries
e±iθ1 , . . . , e±iθm . Note that A has finite order if and only if each angle of
rotation of A is a rational multiple of π.
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Commutativity in Discrete Euclidean Groups

Let A be a real n × n matrix. The operator norm of A is defined by

‖A‖ = sup{|Ax| : x ∈ Sn−1}. (5.4.1)

If A and B are real n × n matrices and if x is a point of En, then

(1) |Ax| ≤ ‖A‖ |x|, (5.4.2)
(2) ‖AB‖ ≤ ‖A‖ ‖B‖, (5.4.3)
(3) ‖A ± B‖ ≤ ‖A‖ + ‖B‖; (5.4.4)

if B is orthogonal, then

(4) ‖BA‖ = ‖A‖ = ‖AB‖, (5.4.5)
(5) ‖BAB−1 − I‖ = ‖A − I‖. (5.4.6)

The operator norm determines a metric d on O(n) defined by

d(A, B) = ‖A − B‖. (5.4.7)

Note that d is the restriction of the metric DB on M(Bn). Therefore the
metric topology on O(n) determined by d is the same as the Euclidean
metric topology of O(n) by Theorem 5.2.8.

Lemma 1. Let A be an orthogonal n × n matrix and let θm be the largest
angle of rotation of A. Then

‖A − I‖ = 2 sin(θm/2).

Proof: By Formula 5.4.6, we may assume that A is in the block diagonal
form of Theorem 5.4.2. Let x be a point of Sn−1. Let x = x1 + · · · + xm

be the orthogonal decomposition of x compatible with the block diagonal
matrix of Theorem 5.4.2. Then we have

|(A − I)x|2 = |Ax − x|2 = 2(1 − Ax · x)

and

Ax · x =

(
m∑

i=1

Axi

)
·

m∑
i=1

xi

=
m∑

i=1

Axi · xi

=
m∑

i=1

|xi|2 cos θi

≥
m∑

i=1

|xi|2 cos θm = cos θm.

Hence |(A − I)x|2 ≤ 2(1 − cos θm) with equality when x = en.
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Lemma 2. Let A, B be in GL(n, C) with A conjugate to a diagonal matrix,
and let Cn = V1 ⊕ · · · ⊕ Vm be the eigenspace decomposition of Cn relative
to A. Then A and B commute if and only if B(Vj) = Vj for each j.

Proof: Let cj be the eigenvalue associated to the eigenspace Vj for each
j. Then Vj = ker(A − cjI) by definition. Hence

B(Vj) = ker B(A − cjI)B−1

= ker(BAB−1 − cjI).
Therefore

Cn = B(V1) ⊕ · · · ⊕ B(Vm)

is the eigenspace decomposition of Cn relative to BAB−1.
Now suppose that A and B commute. Then BAB−1 = A and therefore

B(Vj) = Vj for each j. Conversely, suppose that B(Vj) = Vj for each j.
Let v be an arbitrary vector in Cn. Then we can write v = v1 + · · · + vm

with vj in Vj . Observe that
BAvj = Bcjvj = cjBvj

and
ABvj = A(Bvj) = cjBvj .

But this implies that BAv = ABv, and so BA = AB.

Lemma 3. Let A, B be in O(n) with ‖B − I‖ <
√

2. If A commutes with
BAB−1, then A commutes with B.

Proof: By Lemma 1, all the angles of rotation of the matrix B are less
than π/2. Therefore, all the eigenvalues of B have positive real parts. Now
let Cn = W1⊕· · ·⊕W
 be the eigenspace decomposition of Cn relative to B.
Then the eigenspaces Wj are mutually orthogonal, since B is orthogonal.
Let w be a nonzero vector in Cn and write w = w1 + · · · + w
 with wj in
Wj . Let cj be the eigenvalue of B corresponding to Wj . Then

Re
(
(Bw) ∗ w

)
= Re

((∑
cjwj

)
∗
∑

wk

)
= Re

∑
cj |wj |2 > 0.

Hence B cannot send any nonzero vector of Cn to an orthogonal vector.
Let Cn = V1 ⊕ · · · ⊕ Vm be the eigenspace decomposition of Cn relative

to A. Then
Cn = B(V1) ⊕ · · · ⊕ B(Vm)

is the eigenspace decomposition of Cn relative to BAB−1. Now since
BAB−1 and A commute, A(B(Vj)) = B(Vj) for each j by Lemma 2. Con-
sequently

B(Vj) = ⊕
k

(
B(Vj) ∩ Vk

)
is the eigenspace decomposition of B(Vj) relative to A. Now, since B
cannot send any nonzero vector of Cn to an orthogonal vector, we must
have that B(Vj) ∩ Vk = {0} for j �= k. Thus B(Vj) = B(Vj) ∩ Vj ⊂ Vj .
Hence B(Vj) = Vj for all j, and so A commutes with B by Lemma 2.
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Lemma 4. Let Γ be a discrete subgroup of I(En) and let φ = a + A and
ψ = b + B be in Γ. If ‖A − I‖ < 1/2 and ‖B − I‖ <

√
2, then A and B

commute.

Proof: On the contrary, suppose that BA �= AB. Define a sequence {ψm}
in Γ by ψ0 = ψ and ψm+1 = ψmφψ−1

m . Let ψm = bm + Bm. Then we have

ψm+1 = ψmφψ−1
m

= ψmφ(−B−1
m bm + B−1

m )
= ψm(a − AB−1

m bm + AB−1
m )

= bm + Bma − BmAB−1
m bm + BmAB−1

m .

Hence Bm+1 = BmAB−1
m . As ‖B0 − I‖ <

√
2 and

‖Bm+1 − I‖ = ‖BmAB−1
m − I‖ = ‖A − I‖ < 1/2,

it follows by induction that BmA �= ABm for all m, since B0A �= AB0 and
if BmA �= ABm, then (BmAB−1

m )A �= A(BmAB−1
m ) by Lemma 3. Hence

Bm �= A for all m.
Next, observe that

‖A − Bm+1‖ = ‖A − BmAB−1
m ‖

= ‖ABm − BmA‖
= ‖(A − Bm)(A − I) − (A − I)(A − Bm)‖
≤ ‖(A − Bm)(A − I)‖ + ‖(A − I)(A − Bm)‖
≤ 2‖A − I‖ ‖A − Bm‖
< ‖A − Bm‖.

Thus Bm+1 is nearer to A than Bm. Hence, the terms of the sequence
{Bm}, and therefore of {ψm}, are distinct.

Next, observe that

bm+1 = (I − BmAB−1
m )bm + Bma

and so we have
|bm+1| ≤ 1

2 |bm| + |a|.

Therefore |bm| is bounded by 2|a|+ |b| for all m. Hence, the sequence {bm}
has a convergent subsequence {bmj }. Furthermore {Bmj } has a convergent
subsequence, since O(n) is compact. Therefore {ψm} has a subsequence
that converges in I(En) by Theorem 5.2.4, and therefore in Γ, since Γ is
closed in I(En). As the terms of {ψm} are distinct, we have a contradiction
to the discreteness of Γ by Lemma 2 of §5.3.

Lemma 5. Let Γ be a discrete subgroup of I(En) and let φ = a + A and
ψ = b+B be in Γ with ‖A−I‖ < 1 and ‖B−I‖ < 1. If A and B commute,
then φ and ψ commute.
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Proof: Let [φ, ψ] = φψφ−1ψ−1. Then

[φ, ψ] = φψφ−1(−B−1b + B−1)
= φψ(−A−1a − A−1B−1b + A−1B−1)
= φ(b − BA−1a − BA−1B−1b + BA−1B−1)
= a + Ab − ABA−1a − ABA−1B−1b + ABA−1B−1

= (A − I)b + (I − B)a + I.

Now set
c = (A − I)b + (I − B)a.

Define a sequence {φm} in Γ by φ1 = [φ, [φ, ψ]] and φm = [φ, φm−1]. Then
φ1 = (A − I)c + I, and in general φm = (A − I)mc + I. Now

|(A − I)mc| ≤ ‖A − I‖m|c|.
As ‖A − I‖ < 1, we have that (A − I)mc → 0 in En. Therefore φm → I in
Γ by Theorem 5.2.4. Hence, the sequence {φm} is eventually constant by
Lemma 2 of §5.3. Therefore (A − I)mc = 0 for some m.

Let V be the space of all vectors in En fixed by A and let W be its
orthogonal complement. Write c = v + w with v in V and w in W . Then

(A − I)mc = (A − I)mw.

As A is orthogonal, A − I maps W isomorphically onto itself. Therefore
w = 0. Hence c is fixed by A. The same argument, with the sequence
{ψm} defined by ψ1 = [ψ, [φ, ψ]] and ψm = [ψ, ψm−1], shows that c is also
fixed by B.

Now observe that (A − I)b is in W and so is orthogonal to c. Likewise
(I − B)a is orthogonal to c. As c = (A − I)b + (I − B)a, we have that c is
orthogonal to itself, and so c = 0. Thus φ and ψ commute.

Example 1. Let u = (1/2,
√

3/2) and let Λ = Ze1 + Zu. Then Λ is a
discrete subgroup of R2 by Theorem 5.3.2. Let Γ be the group of orientation
preserving symmetries of Λ in E2. The group Γ contains all the translations
of E2 by elements of Λ, and so Γ0 = Λ. The points of Λ are the vertices
of a regular tessellation of E2 by equilateral triangles. Hence the stabilizer
Γ0 is the cyclic group generated by the rotation of E2 by an angle of π/3
corresponding to the matrix

A =
(

1/2 −
√

3/2√
3/2 1/2

)
.

Therefore Γ is a discrete subgroup of I(E2) by Lemma 7 of §5.3.
Observe that ‖A − I‖ = 1 and A commutes with I. However

A(e1 + I)A−1 = Ae1 + I = u + I,

and so A does not commute with e1 + I. This example shows that the
hypothesis ‖A − I‖ < 1 in Lemma 5 cannot be weakened to ‖A − I‖ ≤ 1.
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Lemma 6. If X is a compact metric space, then for each r > 0, there is
a maximum number k(r) of points of X with mutual distances at least r.

Proof: On the contrary, suppose there is no upper bound to the number of
points of X with mutual distances at least r. Since X is compact, it can be
covered by finitely many balls of radius r/2, say B(x1, r/2), . . . , B(xm, r/2).
Let y1, . . . , ym+1 be m + 1 points of X with mutual distances at least r.
Then some ball B(xi, r/2) contains two points yj and yk. But

d(yj , yk) ≤ d(yj , xi) + d(xi, yk) < r/2 + r/2 = r,

which is a contradiction.

Lemma 7. Let Γ be a subgroup of I(En) and for each r > 0, let Γr be the
subgroup of Γ generated by all elements φ = a + A in Γ, with ‖A − I‖ < r,
and let kn(r) be the maximum number of elements of O(n) with mutual
distances at least r relative to the metric d(A, B) = ‖A − B‖. Then Γr is
a normal subgroup of Γ and [Γ : Γr] ≤ kn(r) for each r > 0.

Proof: Let φ = a + A be in Γr, with ‖A − I‖ < r, and let ψ = b + B be
in Γ. Then ψφψ−1 = c + BAB−1 for some c in En. Hence

‖BAB−1 − I‖ = ‖A − I‖ < r.

Thus ψφψ−1 is in Γr. Consequently Γr is a normal subgroup of Γ.
Let ψi = bi + Bi, for i = 1, . . . , m, be a maximal number of elements of

Γ such that the mutual distances between B1, . . . , Bm are at least r. Then
m ≤ kn(r). Let ψ = b + B be an arbitrary element of Γ. Then there is an
index j such that ‖B − Bj‖ < r; otherwise ψ, ψ1, . . . , ψm would be m + 1
elements of Γ such that the mutual distances between B,B1, . . . , Bm are
at least r. Hence ‖BB−1

j − I‖ < r. As ψψ−1
j = c + BB−1

j for some c in
En, we have that ψψ−1

j is in Γr. Therefore ψ is in the coset Γrψj . Hence

Γ = Γrψ1 ∪ · · · ∪ Γrψm.

Thus [Γ : Γr] ≤ m ≤ kn(r).

Theorem 5.4.3. Let Γ be a discrete subgroup of I(En). Then Γ has an
abelian normal subgroup N of finite index containing all the translations in
Γ and the index of N in Γ is bounded by a number depending only on n.

Proof: Let N = Γ 1
2
. Then we have that N is a normal subgroup of Γ

with [Γ : N] ≤ kn(1/2) by Lemma 7; moreover, N is abelian by Lemmas 4
and 5. Clearly N contains every translation in Γ.

Example 2. Let Γ be the group of symmetries of Zn in En. Then
Γ0 = Zn; moreover, the stabilizer Γ0 is the subgroup of O(n) of all matrices
with integral entries. Clearly Γ0 is a finite group. Therefore Γ is discrete
by Lemma 7 of §5.3.
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If φ = a + A is in Γ, then obviously A is in Γ0. Hence, the mapping
a + A �→ A determines a short exact sequence

1 → T → Γ → Γ0 → 1,

where T is the translation subgroup of Γ. The sequence splits, since Γ0 is a
subgroup of Γ. Therefore Γ = TΓ0 is a semi-direct product. In particular,
the index of T in Γ is the order of Γ0. The order of Γ0 is 2nn!.

Definition: Let G be a group acting on a set X.

(1) An element g of G acts trivially on X if and only if gx = x for all x
in X.

(2) The group G acts trivially on X if and only if every element of G acts
trivially on X.

(3) The group G acts effectively on X if and only if 1 is the only element
of G acting trivially on X.

Theorem 5.4.4. Let Γ be an abelian discrete subgroup of I(En). Then
there are subgroups H and K of Γ and an m-plane P of En such that

(1) the group Γ has the direct sum decomposition Γ = K ⊕ H;

(2) the group K is finite and acts trivially on P ; and

(3) the group H is free abelian of rank m and acts effectively on P as a
discrete group of translations.

Proof: The proof is by induction on the dimension n. The theorem is
trivial when n = 0. Assume that n > 0 and the theorem is true for all
dimensions less than n. Choose φ = a + A in Γ such that the dimension
of the space V of all vectors in En fixed by A is as small as possible. If
V = En, then Γ is a group of translations and the theorem holds for Γ by
Theorem 5.3.2 with H = Γ and P the vector space spanned by the orbit
Γ0.

Now assume that dim V < n. By conjugating Γ by a translation, as in
the proof of Theorem 4.7.3, we may assume that A fixes a. Let ψ = b + B
be in Γ. From the proof of Lemma 5, we have

[φ, ψ] = (A − I)b + (I − B)a + I.

Hence (A − I)b + (I − B)a = 0. As A and B commute, B(V ) = V and so
(B − I)(V ) ⊂ V . From the equation

(B − I)a = (A − I)b,

we deduce that (B − I)a is in V ∩W = {0}. Hence B fixes a and A fixes b.
Thus b is in V . Consequently ψ, and therefore Γ, leaves V invariant.

By conjugating the group Γ by an appropriate rotation, we may assume
that V = Ek with k < n. Let Γ be the subgroup of I(Ek) obtained
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by restricting the isometries in Γ, and let ρ : Γ → Γ be the restriction
homomorphism. The kernel of ρ is a discrete subgroup of O(n) and is
therefore finite by Theorem 5.3.1. As Γ acts discontinuously on Ek, the
group Γ does also and is therefore discrete.

By the induction hypothesis, there are subgroups H and K of Γ, and
an m-plane P of Ek such that (1) Γ = K ⊕ H, (2) K is finite and acts
trivially on P , and (3) H is free abelian of rank m and acts effectively on
P as a discrete group of translations. Let K = ρ−1(K). Then K is a finite
subgroup of Γ, and K acts trivially on P . Moreover, there is an exact
sequence

1 → K → Γ → H → 1.

The sequence splits, since H is free abelian. Hence, there is a subgroup H
of Γ such that Γ = K ⊕ H and ρ maps H isomorphically onto H. Therefore
H is free abelian of rank m and H acts effectively on P as a discrete group
of translations. This completes the induction.

Definition: A lattice subgroup Γ of I(En) is a group Γ generated by n
linearly independent translations.

Corollary 3. A subgroup Γ of I(En) is a lattice subgroup if and only if Γ
is discrete and free abelian of rank n.

Lemma 8. Let H be a subgroup of finite index in a topological group Γ
with a metric topology. If H is discrete, then Γ is discrete.

Proof: Suppose that H is discrete. Then H is closed in Γ by Lemma 3
of §5.3. Since H is of finite index in Γ, there are elements g1, . . . , gm in Γ,
with g1 = 1, such that

Γ = g1H ∪ · · · ∪ gmH.

Hence, we have
H = Γ − g2H ∪ · · · ∪ gmH.

As each coset giH is closed in Γ, we have that H is open in Γ. As {1} is
open in H, we have that {1} is open in Γ. Thus Γ is discrete.

The next theorem follows immediately from Theorems 5.4.3 and 5.4.4
and Lemma 8.

Theorem 5.4.5. Let Γ be a subgroup of I(En). Then Γ is discrete if and
only if Γ has a free abelian subgroup H of rank m and of finite index such
that H acts effectively on an m-plane P of En as a discrete group of trans-
lations.

We shall prove that the m-plane P in Theorem 5.4.5 can be chosen so
that P is invariant under Γ. The next lemma takes care of the case m = 0.
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Lemma 9. If Γ is a finite subgroup of I(En), then Γ fixes a point of En.

Proof: Let m = |Γ| and set

a =
1
m

∑
φ∈Γ

φ(0).

Then for ψ = b + B in Γ, we have

ψ(a) = b +
1
m

∑
φ∈Γ

Bφ(0)

=
1
m

∑
φ∈Γ

b + Bφ(0)

=
1
m

∑
φ∈Γ

ψφ(0)

=
1
m

∑
φ∈Γ

φ(0) = a.

Theorem 5.4.6. Let Γ be a discrete subgroup of I(En). Then

(1) the group Γ has a free abelian subgroup H of rank m and finite index;

(2) there is an m-plane Q of En such that H acts effectively on Q as a
discrete group of translations; and

(3) the m-plane Q is invariant under Γ.

Proof: By Theorem 5.4.3, the group Γ has an abelian normal subgroup N
of finite index. By Theorem 5.4.4, the group N has a free abelian subgroup
H of rank m and of finite index, there is an m-plane P of En such that H
acts effectively on P as a discrete group of translations, and N acts on P
via translations. By conjugating Γ in I(En), we may assume that P = Em.

Let φ = a+A be an arbitrary element of N. As φ(0) = a, we find that a
is in Em and φ acts on Em by translation by a. Hence A fixes each point
of Em. Let Vφ be the subspace of En of elements fixed by A and set

V = ∩
φ∈N

Vφ.

Then Em ⊂ V .
Let ψ = b+B be an arbitrary element of Γ. We now show that ψ leaves

V invariant. First of all, we have

B(V ) = B

(
∩

φ∈N
Vφ

)
= ∩

φ∈N
BVφ

= ∩
φ∈N

Vψφψ−1

= ∩
φ∈N

Vφ = V.
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Thus B leaves V invariant. Let φ = a + A be in N. Then

ψφψ−1 = (I − BAB−1)b + Ba + BAB−1.

As ψφψ−1 is in N, there is a v in Em such that (I − BAB−1)b + Ba = v.
Let Wψφψ−1 be the orthogonal complement of Vψφψ−1 . Write b = c + d
with c in Vψφψ−1 and d in Wψφψ−1 . Then we have

(I − BAB−1)d + Ba = v.

Now observe that
Ba = v + (BAB−1 − I)d

is the orthogonal decomposition of Ba with respect to Vψφψ−1 and Wψφψ−1 .
As Ba is in V , we have that (BAB−1 − I)d = 0, and so d = 0. Therefore b
is in Vψφψ−1 for each φ in N. Hence b is in V . Thus ψ leaves V invariant.
Furthermore Ba is in Em for each a in Em. Hence B leaves Em invariant.

Now by conjugating Γ by an appropriate rotation of En that leaves Em

fixed, we may assume that V = E
 with 
 ≥ m. Let η : E
 → E
−m be the
projection defined by

η(x1, . . . , x
) = (xm+1, . . . , x
).

Define σ : E
−m → E
 by

σ(x1, . . . , x
−m) = (0, . . . , 0, x1, . . . , x
−m).

Then σ is a right inverse for η. By Theorem 5.1.5, we have that η induces
an isomorphism of topological groups η : E
/Em → E
−m. Define a metric
on E
/Em by

d(x + Em, y + Em) = |η(x) − η(y)|.

Then η is an isometry.
We now define an action of Γ/N on E
/Em by

(Nψ)(x + Em) = ψ(x) + Em = b + Bx + Em.

This action is well defined, since N acts on E
 by translation by elements
of Em and B leaves Em invariant. Moreover Γ/N acts on E
/Em via
isometries. By Lemma 9, the finite group Γ/N fixes a point Q = x + Em

of E
/Em. Hence Γ leaves the m-plane Q invariant, and H acts effectively
on Q as a discrete group of translations.

Exercise 5.4

1. Prove Formulas 5.4.2, . . . , 5.4.6.

2. Let A be a complex n × n matrix. Prove that |A|2 = tr(AAt).

3. Let A and B be complex n × n matrices. Show that if B is unitary, then
|BA| = |A| = |AB| and |BAB−1 − I| = |A − I|.
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4. Let A be an orthogonal n × n matrix and let θ1, . . . , θm be the angles of
rotation of A. Show that

|A − I|2 =
m∑

i=1

4(1 − cos θi).

5. Let A be an orthogonal n × n matrix. Show that if |A − I| < r, then
‖A − I‖ < r/

√
2.

6. Prove that the order of the group Γ0 in Example 2 is 2nn!.

7. Show that kn(1/2) in Lemma 7 satisfies the bounds 2nn! ≤ kn(1/2) ≤ (3n)n2
.

8. Let φ be a parabolic isometry of En and let L be a line of En on which φ acts
as a nontrivial translation. Show that the vector v such that φ(x) = x+v for
all x on L is uniquely determined by φ. The vector v is called the translation
vector of φ.

9. Let Γ be a discrete subgroup of I(En). Prove that the subgroup T of trans-
lations of Γ has finite index in Γ if and only if every isometry φ = a + A in
Γ has the property that its O(n)-component A has finite order.

10. Let Γ be a discrete subgroup of I(En) and let m be as in Theorem 5.4.6.
Prove that any two Γ-invariant m-planes of En are parallel.

11. Let I0(C) be the group of orientation preserving Euclidean isometries of C.
Show that every element of I0(C) is of the form φ(z) = az + b with a in S1

and b in C.

12. Determine all the discrete subgroups of I0(C).

§5.5. Elementary Groups

In this section, we shall characterize the elementary discrete subgroups of
the group M(Bn) of Möbius transformations of Bn.

Definition: A subgroup G of M(Bn) is elementary if and only if G has a
finite orbit in the closed ball Bn.

We shall divide the elementary subgroups of M(Bn) into three types.
Let G be an elementary subgroup of M(Bn).

(1) The group G is said to be of elliptic type if and only if G has a finite
orbit in Bn.

(2) The group G is said to be of parabolic type if and only if G fixes a
point of Sn−1 and has no other finite orbits in Bn.

(3) The group G is said to be of hyperbolic type if and only if G is neither
of elliptic type nor of parabolic type.
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Let φ be in M(Bn) and let x be a point of Bn. Then (φGφ−1)φ(x) = φ(Gx).
In other words, the φGφ−1-orbit through φ(x) is the φ-image of the G-orbit
through x. This implies that φGφ−1 is also elementary; moreover, G and
φGφ−1 have the same type. Thus, the elementary type of G depends only
on the conjugacy class of G.

Elementary Groups of Elliptic Type

Theorem 5.5.1. Let G be an elementary subgroup of M(Bn). Then the
following are equivalent:

(1) The group G is of elliptic type.

(2) The group G fixes a point of Bn.

(3) The group G is conjugate in M(Bn) to subgroup of O(n).

Proof: Suppose that G is of elliptic type. We pass to the hyperboloid
model Hn of hyperbolic space and regard G as a subgroup of PO(n, 1).
As G is of elliptic type, it has a finite orbit {v1, . . . , vm} in Hn. Let
v = v1 + · · ·+vm. Then v is a positive time-like vector of Rn,1 by Theorem
3.1.2. Now let v0 = v/|||v|||. Then v0 is in Hn. If A is in G, then A permutes
the elements of {v1, . . . , vm} by left multiplication. Therefore, we have

Av0 =
Av

|||v|||

=
Av1 + · · · + Avm

|||v|||

=
v1 + · · · + vm

|||v||| = v0.

Thus G fixes v0. Hence (1) implies (2).
Suppose that G fixes a point b of Bn. Let φ be a Möbius transformation

of Bn such that φ(0) = b. Then φ−1Gφ fixes 0. Consequently φ−1Gφ is a
subgroup of O(n) by Theorem 4.4.8. Thus (2) implies (3).

Suppose there is a φ in M(Bn) such that φ−1Gφ is a subgroup of O(n).
Then G fixes φ(0), and so (3) implies (1).

The next theorem follows immediately from Theorems 5.3.1 and 5.5.1.

Theorem 5.5.2. Let Γ be a subgroup of M(Bn). Then the following are
equivalent:

(1) The group Γ is finite.

(2) The group Γ is conjugate in M(Bn) to a finite subgroup of O(n).

(3) The group Γ is an elementary discrete subgroup of elliptic type.
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Elementary Groups of Parabolic Type

In order to analyze elementary groups of parabolic and hyperbolic type,
it will be more convenient to work in the upper half-space model Un of
hyperbolic space. Elementary subgroups of M(Un) of elliptic, parabolic,
and hyperbolic type are defined in the same manner as in the conformal
ball model Bn. The main advantage of working in M(Un) is that the group
of Euclidean similarities S(En−1) is isomorphic by Poincaré extension to
the stabilizer of ∞ in M(Un). Consequently, we may identify S(En−1) with
the stabilizer of ∞ in M(Un).

Theorem 5.5.3. Let G be an elementary subgroup of M(Un). Then the
following are equivalent:

(1) The group G is of parabolic type.

(2) The group G has a unique fixed point in Ên−1.

(3) The group G is conjugate in M(Un) to a subgroup of S(En−1) that
fixes no point of En−1.

Proof: Obviously (1) implies (2), and (2) and (3) are equivalent. We shall
prove that (2) implies (1) by contradiction. Suppose that G fixes a unique
point a of Ên−1 and G is not of parabolic type. Then G has a finite orbit
{u1, . . . , um} in Un other than {a}. Assume first that {u1, . . . , um} is in
Un. Then G is of elliptic type, and so it fixes a point u of Un by Theorem
5.5.1. Consequently G fixes the hyperbolic line L starting at a and passing
through u. But this implies that G fixes the other endpoint of L contrary
to the uniqueness of a. Therefore {u1, . . . , um} must be contained in Ên−1.

As a is the only fixed point of G in Ên−1, we must have m ≥ 2. The
index of each stabilizer Gui is m. Therefore H = Gu1 ∩ Gu2 is of finite
index in G. Moreover, each element of H is elliptic, since H fixes the three
points a, u1, u2. Therefore H fixes the hyperbolic line L joining a and u1.
Let u be any point on L. As Gu contains H, we have that Gu is of finite
index in G. Consequently, the orbit Gu is finite. But we have already
shown that this leads to a contradiction. Therefore G must be of parabolic
type. Thus (2) implies (1).

Theorem 5.5.4. Let φ, ψ be in M(Un) with ψ hyperbolic. If φ and ψ have
exactly one fixed point in common, then the subgroup generated by φ and
ψ is not discrete.

Proof: By conjugating in M(Un), we may assume that the common fixed
point is ∞. Thus, we may regard φ and ψ to be in S(En−1). By conjugating
in S(En−1), we may assume that ψ fixes 0. Then there are positive scalars
r, s, matrices A, B in O(n − 1), and a nonzero point a of En−1 such that
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φ(x) = a + rAx and ψ(x) = sBx. By replacing ψ with ψ−1, if necessary,
we may also assume that 0 < s < 1. Then we have

ψmφψ−m(x) = smBma + rBmAB−mx

for each positive integer m. The terms of the sequence {ψmφψ−m} are all
distinct, since ψmφψ−m(0) = smBma with a �= 0. As O(n− 1) is compact,
the sequence {BmAB−m} has a convergent subsequence {Bmj AB−mj }.
Let τm be the translation of En−1 by smBma. Then {τm} converges to
I by Corollary 1 of §5.2. As ψmφψ−m = τmrBmAB−m, the sequence
{ψmj φψ−mj } converges but is not eventually constant. Therefore, the
group 〈φ, ψ〉 is not discrete by Lemma 2 of §5.3.

Theorem 5.5.5. A subgroup Γ of M(Un) is an elementary discrete sub-
group of parabolic type if and only if Γ is conjugate in M(Un) to an infinite
discrete subgroup of I(En−1).

Proof: Suppose that Γ is an elementary discrete subgroup of parabolic
type. By Theorem 5.5.3, we may assume that Γ is a subgroup of S(En−1)
that fixes no point of En−1. By Theorem 5.5.4, the group Γ has no hy-
perbolic elements, otherwise Γ would fix a point of En−1. Therefore Γ is a
subgroup of I(En−1) by Lemma 1 of §4.7. The group Γ must be infinite,
otherwise Γ would be of elliptic type.

Conversely, suppose that Γ is an infinite discrete subgroup of I(En−1).
On the contrary, assume that Γ fixes a point of En−1. By conjugating in
I(En−1), we may assume that Γ fixes 0. Then Γ is a subgroup of O(n − 1).
But Γ is discrete, and so Γ must be finite, which is not the case. Therefore
Γ fixes no point of En−1. Hence Γ is of parabolic type by Theorem 5.5.3.

Elementary Groups of Hyperbolic Type

Let S(En−1)∗ be the subgroup of M(En−1) of all transformations that
leave invariant the set {0,∞}. The group S(En−1)∗ contains the subgroup
S(En−1)0 of all similarities that fix both 0 and ∞ as a subgroup of in-
dex two. We shall identify S(En−1)∗ with the subgroup of M(Un) of all
transformations that leave {0,∞} invariant.

Theorem 5.5.6. Let G be an elementary subgroup of M(Un). Then the
following are equivalent:

(1) The group G is of hyperbolic type.

(2) The union of all the finite orbits of G in Un consists of two points in
Ên−1.

(3) The group G is conjugate in M(Un) to a subgroup of S(En−1)∗ that
fixes no point of the positive nth axis.
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Proof: Suppose that G is of hyperbolic type. Then all the finite orbits of
G are contained in Ên−1, since G is not of elliptic type. Let {u1, . . . , um} be
the union of a finite number of finite G-orbits. Then each of the stabilizers
Gui is of finite index in G, since each of the orbits Gui is finite. Let

H = Gu1 ∩ · · · ∩ Gum .

Then H is of finite index in G and fixes each ui. If m ≥ 3, the group H
must be of elliptic type; but this implies that G is of elliptic type, which is
not the case. Therefore m can be at most 2. The case of one finite orbit,
consisting of a single point, is ruled out by Theorem 5.5.3. Therefore, either
G has one finite orbit consisting of two points or two finite orbits consisting
of one point each. Thus (1) implies (2).

Obviously (2) implies (3). Suppose that G is a subgroup of S(En−1)∗
that fixes no point of the positive nth axis. Then either G fixes both 0 and
∞ or {0,∞} is a G-orbit. Consequently G is not of parabolic type.

On the contrary, assume that G is of elliptic type. If G fixes both 0 and
∞, then G fixes the positive nth axis, which is not the case. Therefore
{0,∞} is a G-orbit. The stabilizer G0 is of index two in G and fixes both
0 and ∞. Hence G0 fixes the positive nth axis L. Let φ be in G − G0.
Then φ leaves L invariant and switches its endpoints. Consequently φ has
a fixed point u on L. As G0 and φ generate G, the group G fixes u, which
is a contradiction. Hence G is of hyperbolic type. Thus (3) implies (1).

Let G be an elementary subgroup of M(Un) of hyperbolic type. By
Theorem 5.5.6, the group G leaves invariant a unique hyperbolic line of Un

called the axis of G.
The next theorem follows from Theorems 5.5.2 and 5.5.6.

Theorem 5.5.7. A subgroup Γ of M(Un) is an elementary discrete sub-
group of hyperbolic type if and only if Γ is conjugate in M(Un) to an infinite
discrete subgroup of S(En−1)∗.

The structure of an infinite discrete subgroup Γ of S(En−1)∗ is easy to
describe. Let Γ0 be the subgroup of Γ fixing 0. Then Γ0 is of index 1 or 2
in Γ. Every element of Γ0 is of the form kA, where k is a positive scalar
and A is in O(n − 1). Let ρ : Γ0 → R+ be the homomorphism defined by
ρ(kA) = k. The kernel of ρ is the group Γ0 ∩ O(n − 1), which is finite. As
the orbit Γ0en is discrete, we find that the image of ρ is an infinite discrete
subgroup of R+. Hence, there is a scalar s > 1 such that

ρ(Γ0) = {sm : m ∈ Z}.

Thus Γ0 is finite by infinite cyclic.
Let ψ be an element of Γ0 such that ρ(ψ) = s. Then Γ0 is the semidirect

product of the finite subgroup Γ0∩O(n−1) and the infinite cyclic subgroup
generated by ψ. Consequently Γ has an infinite cyclic subgroup generated
by a hyperbolic transformation as a subgroup of finite index. This leads to
the next theorem.



§5.5. Elementary Groups 181

Theorem 5.5.8. A subgroup Γ of M(Un) is an elementary discrete sub-
group of hyperbolic type if and only if Γ contains an infinite cyclic subgroup
of finite index which is generated by a hyperbolic transformation.

Proof: Suppose that Γ has an infinite cyclic subgroup H generated by a
hyperbolic transformation ψ as a subgroup of finite index. Let a and b be
the fixed points of ψ. As Γa contains H, we have that Γa is of finite index
in Γ. Therefore, the orbit Γa is finite. Likewise Γb is finite. Hence Γ is
elementary. As H has no fixed points in Un, the type of Γ is not elliptic
by Theorem 5.5.1. Moreover Γ is not of parabolic type, since the union of
all the finite orbits of Γ contains at least a and b. Therefore Γ must be of
hyperbolic type. Let L be the axis of ψ and let x be a point on L. Then
the orbit Hx is discrete and Hx = {I}. Therefore H is discrete by Lemma
7 of §5.3. Consequently Γ is discrete by Lemma 8 of §5.4. The converse
follows from Theorem 5.5.7 and the discussion thereafter.

Example: Let µ be the magnification of Un defined by µ(x) = 2x, and
let σ be the inversion of Un defined by σ(x) = x/|x|2. Let Γ be the group
generated by µ and σ. As σµσ = µ−1, the infinite cyclic group 〈µ〉 has
index two in Γ. Therefore Γ is an elementary discrete subgroup of M(Un)
of hyperbolic type by Theorem 5.5.8. Observe that Γ leaves the set {0,∞}
invariant but fixes neither 0 nor ∞.

Solvable Groups

Let Fφ be the set of all fixed points in Bn of a Möbius transformation φ of
Bn. If φ, ψ are in M(Bn), then obviously

Fψφψ−1 = ψ(Fφ). (5.5.1)

This simple observation is the key to the proof of the next lemma.

Lemma 1. Every abelian subgroup of M(Bn) is elementary.

Proof: The proof is by induction on n. The theorem is trivial when n = 0,
since B0 = {0} by definition. Now suppose that n > 0 and the theorem
is true for all dimensions less than n. Let G be an abelian subgroup of
M(Bn). Assume first that G has an element φ that is either parabolic or
hyperbolic. Then Fφ consists of one or two points. As ψφψ−1 = φ for all
ψ in G, we have that ψ(Fφ) = Fφ for all ψ in G, and so G is elementary.

Now assume that all the elements of G are elliptic. Let φ be in G. Then
Fφ is the closure in Bn of a hyperbolic m-plane of Bn, since φ is conjugate
in M(Bn) to an element of O(n). Therefore Fφ is a closed m-disk. Choose
φ in G such that the dimension of Fφ is as small as possible. If dim Fφ = n,
then G is trivial, so assume that dim Fφ < n. By conjugating G in M(Bn),
we may assume that Fφ = Bm with m < n. As G is abelian, we have
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that ψ(Fφ) = Fφ for all ψ in G; in other words, G leaves Bm invariant.
Moreover G leaves Êm invariant by Theorem 4.3.7.

Let G be the group of transformations of Êm obtained by restricting
the elements of G. Then G is a subgroup of M(Bm) by Theorem 4.3.1.
Moreover G is abelian, since G is a homomorphic image of G. By the
induction hypothesis, G, and therefore G, has a finite orbit in Bm. Thus
G is elementary. This completes the induction.

Theorem 5.5.9. Let Γ be a discrete subgroup of M(Bn). Then Γ is ele-
mentary if and only if Γ has an abelian subgroup of finite index. Moreover,
if Γ is elementary, then Γ has a free abelian subgroup of finite index whose
rank is 0 if Γ is elliptic, 1 if Γ is hyperbolic, or k, with 0 < k < n, if Γ is
parabolic.

Proof: If Γ is elementary, then Γ has a free abelian subgroup of finite
index by Theorems 5.4.5, 5.5.2, 5.5.5, and 5.5.8 whose rank is 0 if Γ is
elliptic, 1 if Γ is hyperbolic, or k, with 0 < k < n, if Γ is parabolic.

Conversely, suppose that Γ has an abelian subgroup H of finite index.
Then H is elementary by Lemma 1. Let x be a point in Bn such that Hx
is finite. As [Γ : H] is finite, there are elements φ1, . . . , φm in Γ such that

Γ = φ1H ∪ · · · ∪ φmH.

Hence, we have that

Γx = φ1Hx ∪ · · · ∪ φmHx

is finite. Therefore Γ is elementary.

Theorem 5.5.10. Every solvable subgroup of M(Bn) is elementary.

Proof: Let G be a solvable subgroup of M(Bn). Define G(0) = G and
G(k) = [G(k−1), G(k−1)] for k > 0. Then G(k) = 1 for some smallest k.
We prove that G is elementary by induction on the solvability degree k.
This is clear if k = 0, so assume that k > 0 and all subgroups of M(Bn)
of solvability degree k − 1 are elementary. As the solvability degree of
H = G(1) is k − 1, we have that H is elementary.

Assume first that H is of parabolic or hyperbolic type. Then the union
of the finite orbits of H in Sn−1 is a one or two point set F . Let h be in
H and g in G. Then g−1hg is in H, since H is a normal subgroup of G.
Hence g−1hg(F ) = F . Therefore hg(F ) = g(F ). Hence g(F ) is a union of
finite orbits of H, and therefore g(F ) = F . Hence G has a finite orbit and
so G is elementary.

Now assume that H is elliptic. Let F be the set of all points of Bn fixed
by H. Then F is an m-plane of Bn. By conjugating G in M(Bn), we may
assume that F = Bm. If x is in F , and h is in H, and g is in G, then
g−1hgx = x, and so hgx = gx, and therefore gx is in F . Hence G maps
F to itself. Let G be the subgroup of M(Bm) obtained by restricting the
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elements of G to F . Then H is a subgroup of the kernel of the restriction
homomorphism ρ : G → G. Hence ρ induces a homomorphism from G/H
onto G. As G/H is abelian, G is abelian. Therefore G is elementary by
Lemma 1. Hence G, and therefore G, has a finite orbit in F . Thus G is
elementary.

Theorem 5.5.11. If G is a nonelementary subgroup of M(Bn) that leaves
no proper m-plane of Bn invariant, then G has no nontrivial, elementary,
normal subgroups.

Proof: On the contrary, let H be a nontrivial, elementary, normal sub-
group of G. Assume first that H is of elliptic type. Then the set F of
all points of Bn fixed by H is a proper m-plane of Bn. Let x be a point
of F , let φ be in H, and let ψ be in G. Then ψ−1φψ(x) = x, whence
φψ(x) = ψ(x). Hence ψ(x) is fixed by φ. As φ is arbitrary in H, we have
that ψ(x) is in F . As ψ is arbitrary in G, we deduce that G leaves F
invariant, which is not the case.

Assume next that H is not of elliptic type. Then the union of all the
finite orbits of H is a one or two point set F . Let ψ be in G. Then

ψ−1Hψ(F ) = HF = H.

Hence Hψ(F ) = ψ(F ). Therefore ψ(F ) = F. As ψ is arbitrary in G, we
deduce that GF = F , which is not the case because G is nonelementary.
Thus, we have a contradiction.

Corollary 1. If n > 1, then M(Bn) has no nontrivial, solvable, normal
subgroups.

Proof: By Theorem 3.1.6, we have that M(Bn) leaves no proper m-plane
of Bn invariant. Furthermore, since M(Bn) acts transitively on Sn−1, we
have that M(Bn) is nonelementary for n > 1. Therefore M(Bn) has no
nontrivial, solvable, normal subgroups by Theorems 5.5.10 and 5.5.11.

Remark: The group M(Bn) is isomorphic to I(Hn). Therefore I(Hn) has
no nontrivial, solvable, normal subgroups for n > 1. In contrast, both
I(Sn) and I(En) have nontrivial, abelian, normal subgroups.

The group M(Bn) has a nontrivial, abelian, quotient group because the
subgroup M0(Bn) of orientation preserving isometries of Bn has index two.
It follows from the next theorem that M0(Bn) is the only proper normal
subgroup of M(Bn) whose group of cosets is abelian.

Theorem 5.5.12. If n > 1, then M0(Bn) has no nontrivial, abelian, quo-
tient groups.

Proof: It suffices to show that M0(Bn) is equal to its commutator sub-
group. We pass to the upper half-space model Un. The group M0(Un) is
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generated by all products γ = σ1σ2 of two reflections in spheres Σ1 and
Σ2 of Ên that are orthogonal to En−1. There is a sphere Σ of Ên that is
orthogonal to En−1 and tangent to both Σ1 and Σ2. Let σ be the reflec-
tion in Σ. Then β1 = σ1σ and β2 = σσ2 are parabolic translations. This
is clear upon positioning the spheres so that ∞ is the point of tangency.
As γ = β1β2, we find that M0(Un) is generated by the set of all parabolic
translations of Un.

Now as any parabolic translation of Un is conjugate in M0(Un) to the
parabolic translation τ of Un, defined by τ(x) = e1 + x, it suffices to show
that τ is a commutator. Let µ be the magnification of Un defined by
µ(x) = 2x. Then

µτµ−1τ−1(x) = µτµ−1(−e1 + x)
= µτ(−e1/2 + x/2)
= µ(e1/2 + x/2) = e1 + x.

Therefore τ = [µ, τ ].

Let ζ : Bn → Hn be stereographic projection.

Definition: A subgroup Γ of I(Hn) is elementary if and only if the
subgroup ζ−1Γζ of I(Bn) corresponds to an elementary subgroup of M(Bn)
under the natural isomorphism from I(Bn) to M(Bn).

All the results of this section apply to elementary subgroups of I(Hn).

Exercise 5.5

1. Let G be an elementary subgroup of M(Bn) of hyperbolic type. Prove that
G has a hyperbolic element and that every element of G is either elliptic or
hyperbolic.

2. Let Γ be a discrete elementary subgroup of M(Bn) of parabolic type. Prove
that Γ has a parabolic element and every element of Γ is either elliptic or
parabolic.

3. Let φ, ψ be elliptic elements in M(Bn). Prove that if φ and ψ commute, then
either Fφ ⊂ Fψ or Fψ ⊂ Fφ or Fφ and Fψ intersect orthogonally.

4. Let G be an abelian subgroup of M(Bn). Prove that

(1) G is of elliptic type if and only if every element of G is elliptic,
(2) G is of parabolic type if and only if G has a parabolic element, and
(3) G is of hyperbolic type if and only if G has a hyperbolic element.

5. Let φ, ψ be in M(Bn) and suppose that φ and ψ have a common fixed point
in Bn. Prove that [φ, ψ] is either elliptic or parabolic.

6. Let G be a subgroup of M(Bn) with no nonidentity elliptic elements. Prove
that G is elementary if and only if any two elements of G have a common
fixed point.
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§5.6. Historical Notes

§5.1. The quadratic form of the Hermitian inner product was introduced
by Hermite in his 1854 paper Sur la théorie des formes quadratiques [204].
Complex n-space was described by Klein in his 1873 paper Ueber die so-
genannte Nicht-Euklidische Geometrie [246]. The concept of a topological
group evolved out of the notion of a continuous group of transformations
of n-dimensional space as developed by Lie, Killing, and Cartan in the late
nineteenth century. For an overview of the relationship between continu-
ous groups and geometry, see Cartan’s 1915 survey article La théorie des
groupes continus et la géométrie [74]. Abstract topological groups were in-
troduced by Schreier in his 1925 paper Abstrakte kontinuierliche Gruppen
[400]. A systematic development of the algebra of matrices was first given
by Cayley in his 1858 paper A memoir on the theory of matrices [81]. For
the early history of matrix algebra, see Hawkins’ 1977 articles Another look
at Cayley and the theory of matrices [197] and Weierstrass and the theory
of matrices [198]. Unitary transformations were studied by Frobenius in
his 1883 paper Über die principale Transformation der Thetafunctionen
mehrerer Variabeln [154]. The unitary group appeared in Autonne’s 1902
paper Sur l’Hermitien [29]. Quotient topological groups were considered
by Schreier in his 1925 paper [400]. Theorem 5.1.4 appeared in Pontrja-
gin’s 1939 treatise Topological Groups [369]. The n-dimensional projective
general linear group appeared in Klein’s 1873 paper [246].

§5.2. The group of isometries of a finitely compact metric space was
shown to have a natural topological group structure by van Dantzig and
van der Waerden in their 1928 paper Über metrisch homogene Räume [430].
See also Koecher and Roelcke’s 1959 paper Diskontinuierliche und diskrete
Gruppen von Isometrien metrischer Räume [266]. As a reference for the
compact-open topology, see Dugundji’s 1966 text Topology [118]. Theorem
5.2.8 appeared in Beardon’s 1983 text The Geometry of Discrete Groups
[35].

§5.3. Discrete groups of Euclidean isometries were studied implicitly by
crystallographers in the first half of the nineteenth century. For the early
history of group theory in crystallography, see Scholz’s 1989 articles The
rise of symmetry concepts in the atomistic and dynamistic schools of crys-
tallography, 1815-1830 [396] and Crystallographic symmetry concepts and
group theory (1850-1880) [397]. Discrete groups of Euclidean isometries
were first studied explicitly by Jordan in his 1869 Mémoire sur les groupes
de mouvements [223]. In particular, the 3-dimensional cases of Corollary
1 and Theorem 5.3.2 appeared in Jordan’s paper. Lattices arose in crys-
tallography, in the theory of quadratic forms, and in the theory of elliptic
functions during the nineteenth century. Finite groups and subgroups of
the elliptic modular group were the first discrete linear groups studied. In
particular, Klein determined all the finite groups of linear fractional trans-
formations of the complex plane in his 1876 paper Ueber binäre Formen
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mit linearen Transformationen in sich selbst [248]. Subgroups of the el-
liptic modular group were investigated by Klein in his 1879 paper Ueber
die Transformation der elliptischen Functionen [250]. The term discrete
group was used informally by Schreier in his 1925 paper [400]. A discrete
topological group was defined by Pontrjagin in his 1939 treatise [369].

Poincaré defined a discontinuous group to be a group of linear fractional
transformations of the complex plane that has no infinitesimal operations
in his 1881 note Sur les fonctions fuchsiennes [352]. He defined a Fuchsian
group to be a discontinuous group that leaves invariant a circle. Poincaré
knew that a Fuchsian group is equivalent to a discrete group of isometries
of the hyperbolic plane. Klein pointed out that there are discrete groups
of linear fractional transformations of the complex plane that do not act
discontinuously anywhere on the plane in his 1883 paper Neue Beiträge zur
Riemannschen Funktionentheorie [252]. Poincaré then defined a properly
discontinuous group to be a group of linear fractional transformations of
the complex plane that acts discontinuously on a nonempty open subset of
the plane in his 1883 Mémoire sur les groupes kleinéens [357]. He called
such a group a Kleinian group. Poincaré knew that a Kleinian group acts as
a discrete group of isometries of the upper half-space model of hyperbolic
3-space. See Poincaré’s 1881 note Sur les groupes kleinéens [354]. In mod-
ern terminology, a Kleinian group is any discrete group of linear fractional
transformations of the complex plane. Moreover, the terms discontinuous
and properly discontinuous have been replaced by discrete and discontin-
uous, respectively. For the evolution of the definition of a discontinuous
group, see Fenchel’s 1957 article Bemerkungen zur allgemeinen Theorie
der diskontinuierlichen Transformationsgruppen [142]. Theorem 5.3.3 ap-
peared in Fubini’s 1905 paper Sulla teoria dei gruppi discontinui [156].
Theorem 5.3.4 for groups of isometries appeared in Bers and Gardiner’s
1986 paper Fricke Spaces [44]. Theorem 5.3.5 for groups of isometries of
hyperbolic space was proved by Poincaré in his 1883 memoir [357]. Theo-
rem 5.3.5 was essentially proved by Siegel in his 1943 paper Discontinuous
groups [408]. See also Koecher and Roelcke’s 1959 paper [266].

Poincaré was led to investigate discrete groups of isometries of the hy-
perbolic plane because of his work on differential equations of functions
of a complex variable. In particular, Poincaré studied functions f of a
complex variable z with the property that f(γz) = f(z) for all elements
γ of a discrete group Γ of linear fractional transformations of the complex
plane. Such a function f is called an automorphic function with respect
to the group Γ. For the fascinating history of this line of research, see
Gray’s 1986 monograph Linear Differential Equations and Group Theory
from Riemann to Poincaré [173]. References for the theory of Fuchsian
and Kleinian groups are Fricke and Klein’s 1897-1912 treatise Vorlesungen
über die Theorie der automorphen Functionen [151], Ford’s 1929 treatise
Automorphic Functions [148], Fenchel and Nielsen’s classic treatise Discon-
tinuous Groups of Isometries in the Hyperbolic Plane [144], Lehner’s 1964
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treatise Discontinuous Groups and Automorphic Functions [275], Magnus’
1974 treatise Noneuclidean Tesselations and their Groups [293], Beardon’s
1983 text [35], Maskit’s 1988 treatise Kleinian Groups [302], and Kapovich’s
2001 treatise Hyperbolic Manifolds and Discrete Groups [230].

§5.4. The 3-dimensional case of Theorem 5.4.1 was first proved by
Chasles in his 1831 paper Note sur les propriétés générales du système de
deux corps semblables entr’eux [84]. Theorems 5.4.1 and 5.4.2 appeared in
Jordan’s 1875 paper Essai sur la géométrie à n dimensions [224]. Lemma
3 was proved by Frobenius in his 1911 paper Über den von L. Bieberbach
gefundenen Beweis eines Satzes von C. Jordan [155]. Lemma 4 for finite
subgroups of the orthogonal group also appeared in this paper. Lemmas
4, 5, and 7 appeared in Oliver’s 1980 paper On Bieberbach’s analysis of
discrete Euclidean groups [346]. Theorem 5.4.3 was first proved for fi-
nite subgroups of the orthogonal group by Jordan in his 1878 Mémoire
sur les équations différentielles linéaires [225] and in his 1880 paper Sur
la détermination des groupes d’ordre fini contenus dans le groupe linéaire
[226]. Theorem 5.4.3 follows easily from Jordan’s theorem and Bieber-
bach’s algebraic characterization of discrete Euclidean groups given in his
1911 paper Über die Bewegungsgruppen der Euklidischen Räume [48]. Like-
wise, Theorems 5.4.4-5.4.6 follow from Bieberbach’s characterization in this
paper.

§5.5. The concept of an elementary group is implicit in the classification
of discontinuous groups of linear fractional transformations of the com-
plex plane given by Fricke and Klein in Vol. I of their 1897 treatise [151].
The term elementary group was introduced by Ford in his 1929 treatise
[148]. Our definition of an elementary group conforms with the definition
of an elementary group in dimension three given by Beardon in his 1983
text [35]. The 2-dimensional case of Theorem 5.5.4 appeared on p. 118 in
Vol. I of Fricke and Klein’s 1897 treatise [151]. Theorem 5.5.5 appeared in
Greenberg’s 1974 paper Commensurable groups of Moebius transformations
[178]. Theorems 5.5.7 and 5.5.8 were proved by Tukia in his 1985 paper
On isomorphisms of geometrically finite Möbius groups [429]. Theorem
5.5.9 appeared in Martin’s 1989 paper On discrete Möbius groups in all di-
mensions [300]. The 3-dimensional case of Theorem 5.5.10 was essentially
proved by Myrberg in his 1941 paper Die Kapazität der singulären Menge
der linearen Gruppen [336]. Theorem 5.5.11 was essentially proved by Chen
and Greenberg in their 1974 paper Hyperbolic spaces [86]. Theorem 5.5.12
follows from the fact that M0(Bn) is a simple Lie group. References for
elementary groups are Ford’s 1929 treatise [148], Beardon’s 1983 text [35],
Kulkarni’s 1988 paper Conjugacy classes in M(n) [268], and Waterman’s
1988 paper Purely elliptic Möbius groups [444].



CHAPTER 6

Geometry of Discrete Groups

In this chapter, we study the geometry of discrete groups of isometries of
Sn, En, and Hn. The chapter begins with an introduction to the projec-
tive disk model of hyperbolic n-space. Convex sets and convex polyhedra
in Sn, En, and Hn are studied in Sections 6.2 through 6.5. The basic
properties of fundamental domains for a discrete group are examined in
Sections 6.6 and 6.7. The chapter ends with a study of the basic properties
of tessellations of Sn, En, and Hn.

§6.1. The Projective Disk Model

The open unit n-disk in Rn is defined to be the set
Dn = {x ∈ Rn : |x| < 1}.

Note that Dn is the same set as Bn. The reason for the new notation is
that a new metric dD on Dn will be defined so that Dn and Bn are different
metric spaces.

Identify Rn with Rn × {0} in Rn+1. The gnomonic projection µ of Dn

onto Hn is defined to be the composition of the vertical translation of Dn

by en+1 followed by radial projection to Hn. See Figure 6.1.1. An explicit
formula for µ is given by

µ(x) =
x + en+1

|||x + en+1|||
. (6.1.1)

The map µ : Dn → Hn is a bijection. The inverse of µ is given by
µ−1(x1, . . . , xn+1) = (x1/xn+1, . . . , xn/xn+1). (6.1.2)

Define a metric dD on Dn by
dD(x, y) = dH(µ(x), µ(y)). (6.1.3)

By definition, µ is an isometry from Dn, with the metric dD, to hyperbolic
n-space Hn. The metric space consisting of Dn, together with the metric
dD, is called the projective disk model of hyperbolic n-space.

188
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0 x

µ(x)

1-1

Figure 6.1.1. The gnomonic projection µ of D1 onto H1

Theorem 6.1.1. The metric dD on Dn is given by

cosh dD(x, y) =
1 − x · y√

1 − |x|2
√

1 − |y|2
.

Proof: By Formula 3.2.2, we have

cosh dD(x, y) = cosh dH(µ(x), µ(y))

= − x + en+1

|||x + en+1|||
◦ y + en+1

|||y + en+1|||

=
1 − x · y√

1 − |x|2
√

1 − |y|2
.

In order to understand the isometries of Dn, we need to introduce ho-
mogeneous coordinates for projective n-space Pn and classical projective
n-space Rn. By definition, Pn = Sn/{±1}. Thus, a point of Pn is a pair of
antipodal points of Sn. The idea of homogeneous coordinates is to use any
nonzero vector on the line passing through a pair ±x of antipodal points
of Sn to represent the point {±x} of Pn. With this in mind, we say that a
nonzero vector x in Rn+1 is a set of homogeneous coordinates for the point
{±x/|x|} of Pn. Notice that two nonzero vectors x, y in Rn+1 are homoge-
neous coordinates for the same point of Pn if and only if each is a nonzero
scalar multiple of the other. By definition, Rn = Rn ∪ Pn−1. Moreover,
gnomonic projection ν : Rn → Sn induces a bijection ν : Rn → Pn. A set
of homogeneous coordinates for a point x of Rn is a set of homogeneous co-
ordinates for the point ν(x). In particular, if xn+1 �= 0, then (x1, . . . , xn+1)
is a set of homogeneous coordinates for the point (x1/xn+1, . . . , xn/xn+1)
of Rn in Rn.
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A projective transformation of Pn is a bijection φ : Pn → Pn that corre-
sponds to a bijective linear transformation φ̃ : Rn+1 → Rn+1 with respect
to homogeneous coordinates that is determined only up to multiplication
by a nonzero scalar. In other words, a projective transformation of Pn

corresponds to an element of PGL(n + 1, R). Projective transformations
of Rn correspond to projective transformations of Pn via the bijection
ν : Rn → Pn.

Theorem 6.1.2. Every isometry of Dn extends to a unique projective
transformation of classical projective n-space Rn and every projective trans-
formation of Rn that leaves Dn invariant restricts to an isometry of Dn.

Proof: Let φ be a projective transformation of Rn. Then φ corresponds
to a bijective linear transformation φ̃ of Rn+1 that is unique up to multi-
plication by a nonzero scalar. Let (x1, . . . , xn+1), with xn+1 �= 0, be a set
of homogeneous coordinates for the vector (x1/xn+1, . . . , xn/xn+1) in Rn.
Then (

x1

xn+1

)2

+ · · · +
(

xn

xn+1

)2

< 1

if and only if
x2

1 + · · · + x2
n < x2

n+1.

Hence φ leaves Dn invariant if and only if φ̃ leaves invariant the interior of
the light cone Cn in Rn,1 defined by the equation

x2
1 + · · · + x2

n = x2
n+1.

Suppose that φ̃ leaves invariant the interior of the light cone Cn. We
claim that some nonzero scalar multiple of φ̃ is a positive Lorentz trans-
formation. Since φ̃ is continuous, φ̃ either leaves invariant the positive and
negative components of the interior of Cn or permutes them. By multi-
plying φ̃ by −1, if necessary, we may assume that φ̃ leaves invariant the
components of the interior of Cn. By composing φ̃ with a positive Lorentz
transformation, we may assume that φ̃ leaves invariant the (n+1)st axis of
Rn+1. By multiplying φ̃ by a positive scalar, we may assume that φ̃ fixes
the unit vector en+1. We now show that φ̃ is an orthogonal transformation.
Let x be a vector in Rn+1 not on the (n + 1)st axis of Rn+1. It suffices
to show that |φ̃(x)| = |x|. Let V be the 2-dimensional vector subspace of
Rn+1 spanned by x and en+1. By composing φ̃ with an orthogonal transfor-
mation of Rn+1 that fixes en+1, we may assume that φ̃ leaves V invariant.
Consequently, we may assume that n = 1. Then the matrix for φ̃ is of the
form (

a 0
b 1

)
.

Now since φ̃ leaves invariant the light cone, and since(
a 0
b 1

)(
1
1

)
=
(

a
b + 1

)
,
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we have that a = ±(b + 1). By composing φ̃ with the reflection(
−1 0

0 1

)
,

if necessary, we may assume that a = b + 1. Then we have(
a 0
b 1

)(
−1

1

)
=
(

−a
−b + 1

)
with a = −b + 1. Hence a = 1 and b = 0. Therefore φ̃ is the identity.
Hence φ̃ is an orthogonal transformation that fixes en+1. Therefore φ̃ is a
positive Lorentz transformation. Thus φ̃ leaves the interior of the light cone
Cn invariant if and only if some nonzero scalar multiple of φ̃ is a positive
Lorentz transformation.

Now every isometry of Hn extends to a unique positive Lorentz transfor-
mation of Rn,1, and every positive Lorentz transformation of Rn,1 restricts
to an isometry of Hn by Theorem 3.2.3. Moreover, the isometries of Hn

correspond via the isometry µ−1 : Hn → Dn, defined by

µ−1(x1, . . . , xn+1) = (x1/xn+1, . . . , xn/xn+1),

to the isometries of Dn. Therefore, every isometry of Dn extends to a
unique projective transformation of Rn, and every projective transforma-
tion of Rn that leaves Dn invariant restricts to an isometry of Dn.

Theorem 6.1.3. A function φ : Dn → Dn fixing the origin is an isometry
of Dn if and only if φ is the restriction of an orthogonal transformation of
Rn.

Proof: If φ is the restriction of an orthogonal transformation of Rn, then φ
is an isometry of Dn by Theorem 6.1.1. Now assume that φ is an isometry.
Then φ extends to a projective transformation φ̂ of Rn and φ̂ corresponds
to a bijective linear transformation φ̃ of Rn+1 with respect to homogeneous
coordinates that is unique up to multiplication by a nonzero scalar. The
unit vector en+1 in Rn+1 is a set of homogeneous coordinates for the origin
in Dn. Hence φ̃ leaves the (n + 1)st axis invariant. Thus, by multiplying φ̃
by a nonzero scalar, we may assume that φ̃ fixes the vector en+1. Now by
the same argument as in the proof of Theorem 6.1.2, we deduce that φ̃ is
an orthogonal transformation of Rn+1. Now since φ̃ restricts to φ on Dn,
we have that φ is the restriction of an orthogonal transformation of Rn.

A subset P of Dn is said to be a hyperbolic m-plane of Dn if and only if
µ(P ) is a hyperbolic m-plane of Hn.

Theorem 6.1.4. A subset P of Dn is a hyperbolic m-plane of Dn if and
only if P is the nonempty intersection of Dn with an m-plane of Rn.
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Proof: Let Q be a hyperbolic m-plane of Hn. Then Q is the intersection
of Hn with an (m + 1)-dimensional time-like vector subspace V of Rn+1.
Observe that µ−1 is the composite of the radial projection of Hn onto the
hyperplane P (en+1, 1) followed by the translation by −en+1. Clearly, radial
projection maps Q onto the intersection of the m-plane V ∩P (en+1, 1) with
the interior of the light-cone Cn of Rn,1. Thus µ−1(Q) is the nonempty
intersection of Dn with an m-plane of Rn. Clearly, we can reverse the
argument and show that any nonempty intersection of Dn with an m-plane
of Rn is the image under µ−1 of a hyperbolic m-plane of Hn.

A hyperbolic line of Dn is defined to be a hyperbolic 1-plane of Dn.

Corollary 1. The hyperbolic lines of Dn are the open chords of Dn.

Remark: The fact that the hyperbolic m-planes of Dn conform with
Euclidean m-planes makes the projective model very useful for convexity
arguments. However, one must keep in mind that the hyperbolic angles of
Dn do not necessarily conform with the Euclidean angles; in other words,
Dn is not a conformal model of hyperbolic n-space.

Theorem 6.1.5. The element of hyperbolic arc length of the projective disk
model Dn is

[(1 − |x|2)|dx|2 + (x · dx)2]
1
2

1 − |x|2 .

Proof: Let y = µ(x). From the results of §3.3, the element of hyperbolic
arc length of Hn is

‖dy‖ = (dy2
1 + · · · + dy2

n − dy2
n+1)

1
2 .

Now since
yi =

xi

(1 − |x|2)1/2 for i = 1, . . . , n,

we have

dyi =
dxi

(1 − |x|2)1/2 +
xi(x · dx)

(1 − |x|2)3/2 .

Hence

dy2
i =

1
1 − |x|2

(
dx2

i +
2xidxi(x · dx)

1 − |x|2 +
x2

i (x · dx)2

(1 − |x|2)2

)
.

Thus
n∑

i=1

dyi =
1

1 − |x|2

(
|dx|2 +

2(x · dx)2

1 − |x|2 +
|x|2(x · dx)2

(1 − |x|2)2

)

=
1

1 − |x|2

(
|dx|2 +

(2 − |x|2)(x · dx)2

(1 − |x|2)2

)
.
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Now since
yn+1 =

1
(1 − |x|2)1/2 ,

we have that
dyn+1 =

x · dx

(1 − |x|2)3/2 .

Thus
n∑

i=1

dy2
i − dy2

n+1 =
(1 − |x|2)|dx|2 + (x · dx)2

(1 − |x|2)2 .

Theorem 6.1.6. The element of hyperbolic volume of the projective disk
model Dn is

dx1 · · · dxn

(1 − |x|2)n+1
2

.

Proof: By Theorem 3.4.1, the element of hyperbolic volume of Hn, with
respect to the Euclidean coordinates y1, . . . , yn, is given by

dy1 · · · dyn

[1 + (y2
1 + · · · + y2

n)]
1
2
.

To find the element of hyperbolic volume of Dn, we change coordinates via
the map µ : Dn → Rn defined by

µ(x) =
x

(1 − |x|2) 1
2
.

As µ is a radial map, it is best to switch to spherical coordinates and
decompose µ into the composite

(x1, . . . , xn) �→ (ρ, θ1, . . . , θn−1)

�→
(

ρ

(1 − ρ2)
1
2
, θ1, . . . , θn−1

)
�→ (y1, . . . , yn).

Now as
d

dρ

(
ρ

(1 − ρ2)
1
2

)
=

1
(1 − ρ2)

3
2
,

the Jacobian of µ is

1
ρn−1

1
(1 − ρ2)

3
2

(
ρ

(1 − ρ2)
1
2

)n−1

=
1

(1 − ρ2)
n+2

2

.

Therefore
dy1 · · · dyn

[1 + (y2
1 + · · · + y2

n)]
1
2

=
1

(1 − |x|2)n+2
2

dx1 · · · dxn(
1 + |x|2

1−|x|2
) 1

2

=
dx1 · · · dxn

(1 − |x|2)n+1
2

.
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Exercise 6.1

1. Show that the hyperbolic angle between any two geodesic lines of Dn inter-
secting at the origin conforms with the Euclidean angle between the lines.
In other words, Dn is conformal at the origin.

2. Let P be a hyperplane of Dn. Prove that the intersection of all the hyper-
planes of Rn that are tangent to Sn−1 at a point of P ∩ Sn−1 is a point of
Rn called the pole of P . See Figure 1.2.2.

3. Prove that a line L of Dn is orthogonal to a hyperplane P of Dn if and only
if the projective line extending L passes through the pole of P .

4. Prove that the correspondence between a hyperplane of Dn and its pole gives
a one-to-one correspondence between the set of hyperplanes of Dn and the
points of Rn − Dn.

5. Let x be a point of Dn. Define an inner product 〈 , 〉x on Rn by

〈ei, ej〉x =

⎧⎨⎩
1−|x|2+x2

i
(1−|x|2)2 if i = j,

xixj

(1−|x|2)2 if i �= j.

Let κ, λ : R → Dn be geodesic lines such that κ(0) = x = λ(0), and let
u = κ′(0) and v = λ′(0). Show that the hyperbolic angle θ between κ and λ
is given by the formula

cos θ = 〈u, v〉x.

§6.2. Convex Sets

Throughout this section, X = Sn, En, or Hn with n > 0. A pair of points
x, y of X is said to be proper if and only if x, y are distinct and x, y are not
antipodal points of X = Sn. If x, y are a proper pair of points of X, then
there is a unique geodesic segment in X joining x to y. We shall denote
this segment by [x, y].

Definition: A subset C of X is convex if and only if for each pair of
proper points x, y of C, the geodesic segment [x, y] is contained in C.

In order to have uniformity in terminology, we shall define an m-plane
of Sn to be a great m-sphere of Sn.

Example: Every m-plane of X is convex. In particular, every pair of
antipodal points of Sn is convex!

Remark: It is obvious from the definition of convexity in X that an
arbitrary intersection of convex subsets of X is convex.
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Let C be a nonempty convex subset of X.

(1) The dimension of C is defined to be the least integer m such that C
is contained in an m-plane of X.

(2) If dimC = m, then clearly C is contained in a unique m-plane of X,
which is denoted by 〈C〉.

(3) The interior of C is the topological interior of C in 〈C〉 and is denoted
by C◦.

(4) The boundary of C is the topological boundary of C in 〈C〉 and is
denoted by ∂C.

(5) The closure of C is the topological closure of C in X and is denoted
by C. Note that C is also the topological closure of C in 〈C〉, since
〈C〉 is closed in X. Therefore C is the disjoint union of C◦ and ∂C.

If C is the empty set, then the dimension of C is undefined, and all the
sets 〈C〉, C◦, ∂C, and C are empty by definition.

Lemma 1. Let x, y be a proper pair of points of X. Then there is an r > 0
such that if u is in B(x, r) and v is in B(y, r), then u, v is a proper pair.

Proof: This is clear if X = En or Hn. Assume that X = Sn. Observe
that the sets {±x} and {±y} are disjoint, since x, y is a proper pair of
points. Let r be half the distance from {±x} to {±y}. Then B(x, r),
B(y, r), and B(−x, r) are mutually disjoint. As −B(x, r) = B(−x, r), no
point of B(x, r) can be antipodal to a point of B(y, r).

Theorem 6.2.1. If C is a convex subset of X, then so is C.

Proof: Let x, y be a proper pair of points in C. By Lemma 1, there are
proper pairs of points ui, vi, for i = 1, 2, . . . , in C such that ui → x and
vi → y. Define a curve

γ : [0, 1] → X

from x to y by

γ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − t)x + ty if X = En,

(1−t)x+ty
|(1−t)x+ty| if X = Sn,

(1−t)x+ty
|||(1−t)x+ty||| if X = Hn.

Likewise, define a curve
γi(t) : [0, 1] → C

from ui to vi for each i. Then clearly γi(t) → γ(t) for each t. Therefore
γ(t) is in C for each t.
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Theorem 6.2.2. Let C be a convex subset of X, and let x, y be a proper
pair of points in C. If x is in C◦, then the half-open geodesic segment [x, y)
is contained in C◦.

Proof: Without loss of generality, we may assume that 〈C〉 = X. We
first consider the case X = En. As x is in C◦, there is an r > 0 such that
B(x, r) ⊂ C. Let t be in the open interval (0, 1), and let

z = (1 − t)x + ty.

We need to show that z is in C◦. Assume first that y is in C. Observe that
z is in the set

(1 − t)B(x, r) + ty = B(z, (1 − t)r).

As B(x, r) and y are both contained in C, we have that B(z, (1− t)r) ⊂ C,
since C is convex. Thus z is in C◦. See Figure 6.2.1.

Assume now that y is in ∂C. As y is in ∂C, the open ball B(y, t−1(1−t)r)
contains a point v of C. Now since

B(y, t−1(1 − t)r) = t−1(z − (1 − t)B(x, r)),

there is a point u of B(x, r) such that

v = t−1(z − (1 − t)u).

Solving for z, we have
z = (1 − t)u + tv.

Let w = (1 − t)x + tv. Then z is in the set

(1 − t)B(x, r) + tv = B(w, (1 − t)r).

As B(x, r) and v are contained in C, we have that B(w, (1 − t)r) ⊂ C.
Therefore z is in C◦. Thus (x, y) ⊂ C◦.

Next, assume that X = Hn. We now pass to the projective disk model
Dn and regard C as a convex subset of Dn. Then C is also a convex subset
of En. As Dn is open in En, we have that C◦ in Dn is the same as C◦ in
En. Therefore [x, y) ⊂ C◦ by the Euclidean case.

x yz

r

Figure 6.2.1. B(z, (1 − t)r) = (1 − t)B(x, r) + ty
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Finally, assume that X = Sn. Let z be the midpoint of the geodesic
segment [x, y]. Then B(z, π/2) is an open hemisphere of Sn containing
[x, y]. As x is in C◦, we have that C◦ ∩ B(z, π/2) is a nonempty open
subset of Sn. Consequently〈

C ∩ B(z, π/2)
〉

= Sn.

By replacing C with C ∩ B(z, π/2), we may assume, without loss of gener-
ality, that C is contained in B(z, π/2). We may also assume that z = en+1.
Now by gnomonic projection, we can view C as a convex subset of En.
Then [x, y) ⊂ C◦ by the Euclidean case.

Theorem 6.2.3. If C is a nonempty convex subset of X, then so is C◦.

Proof: That C◦ is convex follows immediately from Theorem 6.2.2. It
remains to show that C◦ is nonempty. Without loss of generality, we may
assume that 〈C〉 = X. We first consider the case X = En. Then there exist
n+1 vectors v0, . . . , vn in C such that v1 −v0, . . . , vn −v0 are linearly inde-
pendent. As C is convex, it contains every vector of the form x =

∑n
i=0 tivi

with ti ≥ 0 and
∑n

i=0 ti = 1. By applying an affine transformation of En,
we may assume that v0 = 0 and vi = ei for i > 0.

Let a =
(

1
n+1 , . . . , 1

n+1

)
in En. We now show that B

(
a, 1

n(n+1)

)
⊂ C.

Suppose that

|x − a| <
1

n(n + 1)
.

Then we have

− 1
n(n + 1)

< xi − 1
n + 1

<
1

n(n + 1)
and so

1
(n + 1)

(
1 − 1

n

)
< xi <

1
(n + 1)

(
1 +

1
n

)
.

Therefore 0 < xi < 1/n for i = 1, . . . , n. Hence
∑n

i=1 xi < 1. This implies
that x is in C. Consequently B

(
a, 1

n(n+1)

)
⊂ C. Thus a is in C◦ and so

C◦ is nonempty.
Next, assume that X = Hn. We pass to the projective disk model Dn

and regard C as a convex subset of Dn. Then C◦ is nonempty by the
Euclidean case. Finally, assume that X = Sn. Then C contains a basis
v1, . . . , vn+1 of Rn+1, since 〈C〉 = Sn. Let P be the hyperplane of Rn+1

containing v1, . . . , vn+1. Then P does not contain the origin of Rn+1. Let
V be the n-dimensional vector subspace of Rn+1 parallel to P , and let H
be the open hemisphere of Sn whose boundary is V ∩Sn and that contains
v1, . . . , vn+1. Then 〈C ∩ H〉 = Sn. By replacing C with C ∩ H, we may
assume that C ⊂ H. We may also assume that H is the upper hemisphere
of Sn. Now by gnomonic projection, we can view C as a convex subset of
En. Then C◦ is nonempty by the Euclidean case.
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Sides of a Convex Set

Definition: A side of a convex subset C of X is a nonempty, maximal,
convex subset of ∂C.

Example: Let C be a right circular cylinder in E3 situated as in Figure
6.2.2. Then the sides of C are the top and bottom of C and all the vertical
line segments in ∂C joining the top to the bottom of C as [a, b] in Figure
6.2.2. Notice that C has an uncountable number of sides.

Theorem 6.2.4. If S is a side of a convex subset C of X, then

C ∩ 〈S〉 = S.

Proof: This is clear if dimS = 0, so assume that dimS > 0. We first
show that C◦ and 〈S〉 are disjoint. Suppose that x is in both C◦ and 〈S〉.
Now S◦ is nonempty by Theorem 6.2.3. As dimS > 0, we can choose y in
S◦ so that x and y are nonantipodal. As C◦ and ∂C are disjoint, x �= y.
Hence x, y is a proper pair of points. Now since y is in S◦, there is an r > 0
such that

B(y, r) ∩ 〈S〉 ⊂ S.

By Theorem 6.2.2, the half-open geodesic segment [x, y) is contained in C◦.
But observe that

[x, y) ∩ B(y, r) ⊂ 〈S〉 ∩ B(y, r) ⊂ S ⊂ ∂C,

which is a contradiction. Therefore C◦ and 〈S〉 are disjoint.
Now as C = C◦ ∪ ∂C, we have that C ∩ 〈S〉 ⊂ ∂C. The set C is convex

by Theorem 6.2.1. Hence C ∩ 〈S〉 is a convex subset of ∂C containing S.
Therefore C ∩ 〈S〉 = S because of the maximality of S.

a

b

Figure 6.2.2. A right circular cylinder in E3
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Theorem 6.2.5. Let P be an m-plane of X that contains an (m − 1)-
dimensional side S of a convex subset C of X. Then C◦ ∩ P is contained
in one of the components of P − 〈S〉; moreover, C ∩ P is contained in one
of the closed half-spaces of P bounded by 〈S〉.

Proof: If C◦∩P = ∅, then C∩P = S, since C∩P is a convex subset of ∂C
containing S. Hence, we may assume that C◦∩P �= ∅. Then P ⊂ 〈C〉, since
〈S〉 ⊂ P and P contains a point of C◦. Therefore C◦ ∩ P is a nonempty,
open, convex subset of P − 〈S〉. On the contrary, suppose that x and
y are points of C◦ ∩ P contained in different components of P − 〈S〉. As
dim(C◦∩P ) > 0, we may assume that x and y are nonantipodal. Now since
[x, y] is connected, it must contain a point of 〈S〉. But [x, y] is contained
in C◦ by Theorem 6.2.3, and C◦ is disjoint from 〈S〉 by Theorem 6.2.4,
which is a contradiction. Therefore C◦ ∩ P is contained in a component of
P − 〈S〉.

Clearly, we have
C◦ ∩ P ⊂ C ∩ P.

Let y be in ∂C ∩ P and choose x in C◦ ∩ P so that x, y are nonantipodal.
By Theorem 6.2.2, the set C◦ ∩P contains [x, y). Therefore y is in C◦ ∩ P .
Thus C◦ ∩ P = C ∩ P . Consequently C ∩ P is contained in one of the
closed half-spaces of P bounded by 〈S〉 by the first part of the theorem.

Theorem 6.2.6. If C is a convex subset of X, then

(1) every nonempty convex subset of ∂C is contained in a side of C;

(2) every side of C is closed;

(3) the sides of C meet only along their boundaries.

Proof: (1) Let K be a nonempty convex subset of ∂C and let K be the
set of all convex subsets of ∂C containing K. Then K is partially ordered
by inclusion and nonempty, since K contains K. Let C be a chain of K.
Then the union of the elements of C is clearly convex and an upper bound
for C. Therefore K has a maximal element by Zorn’s lemma.

(2) Let S be a side of C. Then S is convex by Theorem 6.2.1. Also S
is contained in ∂C, since ∂C is closed. Therefore S = S because of the
maximality of S. Thus S is closed.

(3) Let S and T be distinct sides of C. On the contrary, suppose that
x is in both S and T ◦. As S and T are distinct maximal convex subsets of
∂C, the side T is not contained in S. Hence, there is a point y of T not
in S. By Theorem 6.2.4, we have that C ∩ 〈S〉 = S, and so y is not in 〈S〉.

Assume first that dim T = 0. Then T = {x, y} with y = −x. As S is
not contained in T , the side S contains a point z �= ±x. Let S(x, z) be the
unique great circle of Sn containing x and z. Then S(x, z) also contains
y = −x. As S(x, z) is contained in 〈S〉, we find that y is also in 〈S〉, which
is a contradiction.
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Now assume that dim T > 0. Then T − S is an open subset of T by
(2). Therefore, we may assume that y is not antipodal to x. Let L be the
unique geodesic of X passing through x and y, and let P be the plane of
X of dimension 1 + dimS that contains 〈S〉 and L. As x is in T ◦, there is
an r > 0 such that B(x, r) ∩ 〈T 〉 ⊂ T. Observe that B(x, r) ∩ L is on both
sides of 〈S〉 in P and

B(x, r) ∩ L ⊂ B(x, r) ∩ 〈T 〉 ⊂ T ⊂ ∂C.

Therefore, there are points of C on both sides of 〈S〉 in P contrary to
Theorem 6.2.5. It follows that S and T ◦ are disjoint. Thus S and T meet
only along their boundaries.

Theorem 6.2.7. Let C be a convex subset of X, and let x, y be a proper
pair of points of ∂C such that x and y are not contained in the same side
of C. Then the open geodesic segment (x, y) is contained in C◦.

Proof: The geodesic segment [x, y] is not contained in ∂C; otherwise [x, y]
would be contained in a side S of C by Theorem 6.2.6(1), and so x and y
would be in the same side S of C, which is not the case. Therefore (x, y)
contains a point z of C◦. Furthermore, (x, z] and [z, y) are contained in C◦

by Theorem 6.2.2. Thus (x, y) ⊂ C◦.

Exercise 6.2

1. Let C be a convex subset of X that is not a pair of antipodal points of Sn.
Prove that C is connected.

2. Let C be a nonempty convex subset of X. Show that

(1) (C◦) = C = C,

(2) (C◦)◦ = C◦ = (C)◦,

(3) ∂C◦ = ∂C = ∂C,

(4) 〈C◦〉 = 〈C〉 = 〈C〉,
(5) dim C◦ = dim C = dim C.

3. Let C be a closed, convex, proper subset of X. Prove that C is the intersec-
tion of all the closed half-spaces of X containing C.

4. Let C be a closed convex subset of Sn. Prove that C is contained in an open
hemisphere of Sn if and only if C does not contain a pair of antipodal points.

5. Let C be a subset of Sn or Hn. Define K(C) to be the union of all the rays
in En+1 from the origin passing through a point of C. Prove that C is a
convex subset of Sn or Hn if and only if K(C) is a convex subset of En+1.

6. Let C be a bounded convex subset of Sn or Hn. Prove that T is a side of
K(C) if and only if there is a side S of C such that T = K(S).

7. Let C be a bounded, m-dimensional, convex, proper subset of X with m > 0.
Prove that ∂C is homeomorphic to Sm−1.
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§6.3. Convex Polyhedra

Throughout this section, X = Sn, En, or Hn with n > 0.

Definition: A convex polyhedron P in X is a nonempty, closed, convex
subset of X such that the collection S of its sides is locally finite in X.

Remark: Locally finite in Sn is the same as finite, since Sn is compact;
and every locally finite collection of subsets of En or Hn is countable, since
En and Hn are finitely compact metric spaces.

Theorem 6.3.1. Every side of an m-dimensional convex polyhedron P in
X has dimension m − 1.

Proof: We may assume that m = n. Let S be a side of P . Then there
is a point x in S◦ by Theorem 6.2.3. Now as the collection of sides of
P is locally finite, there is an r > 0 such that B(x, r) meets only finitely
many sides of P . By Theorem 6.2.6(3), the side S is the only side of P
containing x. Hence, we may shrink B(x, r) to avoid all the other sides of
P , since the sides of P are closed. Consequently, we may assume that

B(x, r) ∩ ∂P ⊂ S.

Moreover, we may assume that r < π/2. As x is in ∂P , the open ball
B(x, r) contains a point y of P ◦ and a point z of X − P . Now y is not in
〈S〉 by Theorem 6.2.4. Let Q be the plane of X of dimension 1 + dimS
that contains y and 〈S〉. Since the geodesic segment [y, z] is connected, it
contains a point w of ∂P . As [y, z] ⊂ B(x, r), the point w is in S. See
Figure 6.3.1. Hence z is in Q. Consequently Q contains the nonempty open
set B(x, r) ∩ (X − P ). Therefore Q = X. Thus dimS = n − 1.

x

y

z

w S

P

Figure 6.3.1. The four points w, x, y, z in the proof of Theorem 6.3.1
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Theorem 6.3.2. Let P be a convex polyhedron in X that is a proper subset
of 〈P 〉. For each side S of P , let HS be the closed half-space of 〈P 〉 such
that ∂HS = 〈S〉 and P ⊂ HS. Then

P = ∩{HS : S is a side of P}.

Proof: Let K = ∩{HS : S is a side of P}. Clearly, we have P ⊂ K. Let x
be a point of 〈P 〉−P and let y be a point of P ◦ that is not antipodal to x.
Then the segment [x, y] contains a point z of ∂P , since [x, y] is connected.
Let S be a side of P that contains z. Then x and y are on opposite sides
of the hyperplane 〈S〉 of 〈P 〉. Hence x is not in HS . Therefore, we have
〈P 〉 − P ⊂ 〈P 〉 − K, and so K ⊂ P . Thus P = K.

Theorem 6.3.3. If x is a point in the boundary of a side S of a convex
polyhedron P in X, then x is in the boundary of another side of P .

Proof: We may assume that 〈P 〉 = X. On the contrary, suppose that x
is not contained in any other side of P . Since the collection of sides of P is
locally finite, there is an r > 0 such that B(x, r) meets only finitely many
sides of P . As S is the only side of P containing x, we can shrink B(x, r)
to avoid all the other sides of P , since the sides of P are closed. Therefore,
we may assume that B(x, r) ∩ ∂P ⊂ S. Moreover, we may assume that
r < π/2. As x is in ∂P , the ball B(x, r) contains a point y of P ◦. As x is
in ∂S, the ball B(x, r) contains a point z of 〈S〉 − S. Now z is in X − P ,
since P ∩ 〈S〉 = S by Theorem 6.2.4. Consequently, the geodesic segment
[y, z] contains a point w of ∂P . See Figure 6.3.2.

As B(x, r) ∩ ∂P ⊂ S, the point w is in S. As z, w are in 〈S〉, we deduce
that y is in 〈S〉, which is a contradiction, since P ∩ 〈S〉 = S. It follows
that x is contained in some other side T of P ; moreover, x must be in the
boundary of T by Theorem 6.2.6(3).

x

y

z

w

S P

Figure 6.3.2. The four points w, x, y, z in the proof of Theorem 6.3.3
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Theorem 6.3.4. Every side of a convex polyhedron P in X is a convex
polyhedron.

Proof: Let S be a side of P . Then S is nonempty and convex by defi-
nition; moreover, S is closed by Theorem 6.2.6(2). Clearly S is a convex
polyhedron if the dimension of S is either 0 or 1, so assume that dim S > 1.

Let R be the collection of sides of S. We need to show that R is locally
finite in X. Let x be a point of X. As the collection S of sides of P is
locally finite, there is an r > 0 such that B(x, r) meets only finitely many
sides of P . We may assume that r < π/2. Let R0 be the collection of all
the sides of S that meet B(x, r). Suppose that R is in R0. Then B(x, r)
contains a point y of R◦, since B(x, r) is open. By Theorem 6.3.3, we can
choose a side f(R) of P other than S containing y.

We claim that the function f : R0 → S is injective. On the contrary, let
R1 and R2 be distinct sides of S in R0 such that f(R1) = f(R2). Now f(Ri)
contains a point yi of R◦

i ∩ B(x, r) for i = 1, 2. As r < π/2, we have that
y1 and y2 are nonantipodal. By Theorem 6.2.7, the open geodesic segment
(y1, y2) is contained in S◦. But [y1, y2] is contained in f(Ri) because of the
convexity of f(Ri), which is a contradiction. Therefore f is injective.

As B(x, r) meets only finitely many sides of P , the image of f is finite.
Therefore R0 is finite. This shows that R is locally finite. Thus S is a
convex polyhedron.

Definition: A ridge of a convex polyhedron P is a side of a side of P .

Theorem 6.3.5. If R is a ridge of a convex polyhedron P in X, then

(1) R◦ meets exactly two sides S1 and S2 of P ;

(2) R is a side of both S1 and S2;

(3) R = S1 ∩ S2.

Proof: We may assume that 〈P 〉 = X. Let R be a side of a side S1 of P .
Choose a point x in R◦ and an r > 0 such that

B(x, r) ∩ 〈R〉 ⊂ R.

By Theorem 6.3.3, there is another side S2 of P containing x in its bound-
ary. By Theorem 6.3.1, both 〈S1〉 and 〈S2〉 are hyperplanes of X. Now
by Theorem 6.2.5, the convex set P is contained in one of the closed half-
spaces of X bounded by 〈S2〉. Hence, every diameter of B(x, r) in R must
lie in 〈S2〉. Therefore

B(x, r) ∩ R ⊂ 〈S2〉.
By Theorem 6.2.4, we have

B(x, r) ∩ R ⊂ S2.

By Theorem 6.2.6(3), we have

B(x, r) ∩ R ⊂ ∂S2.
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Now by Theorem 6.2.6(1), the convex set B(x, r)∩R is contained in a side
R2 of S2. Let R1 = R. Then by Theorems 6.3.1 and 6.3.4, both 〈R1〉 and
〈R2〉 have dimension n − 2. As

B(x, r) ∩ R1 ⊂ R2,

we have that 〈R1〉 = 〈R2〉. Now 〈S1〉 ∩ 〈S2〉 contains 〈R〉. Therefore

dim
(
〈S1〉 ∩ 〈S2〉

)
≥ n − 2.

If the last equality were strict, then we would have 〈S1〉 = 〈S2〉, which is
not the case by Theorem 6.2.4. Therefore

〈S1〉 ∩ 〈S2〉 = 〈R〉.

Hence, for each i, we have

Ri = Si ∩ 〈R〉
= P ∩ 〈Si〉 ∩ 〈R〉
= P ∩ 〈S1〉 ∩ 〈S2〉 = S1 ∩ S2.

Thus R1 = R2. Therefore R is a side of S1 and S2, and R = S1 ∩ S2.
Next, assume that R◦ meets a third side S3 of P . Then the same argu-

ment as above shows that R is a side of S3 and R = S1 ∩ S3. Furthermore
〈S3〉 is also a hyperplane of X. Now the set X − 〈S1〉 ∪ 〈S2〉 has four
components C1, C2, C3, C4, one of which, say C1, contains P ◦ by Theorem
6.2.5. Moreover P is contained in C1. As S3 is in C1, the hyperplane 〈S3〉
divides C1 into two parts, that is, C1 − 〈S3〉 has two components C11 and
C12. See Figure 6.3.3. Now by Theorem 6.2.5, we have that P ◦ is contained
in both C11 and C12, which is a contradiction. Therefore R◦ meets exactly
two sides of P .

C4 C2

C1

C3

C11 C12
S1 S2

S3

Figure 6.3.3. The subdivision of E2 by three concurrent lines
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Theorem 6.3.6. An m-dimensional convex polyhedron P in En or Hn,
with m > 0, is compact if and only if

(1) the polyhedron P has at least m + 1 sides;

(2) the polyhedron P has only finitely many sides; and

(3) each side of P is compact.

Proof: We may assume that m = n. The proof is by induction on n.
The theorem is obviously true when n = 1, so assume that n > 1 and the
theorem is true for n − 1. Let Y = En or Hn.

Now suppose that P is compact. Then ∂P is nonempty; otherwise P
would be Y , which is not the case. Therefore P has at least one side S
by Theorem 6.2.6(1). Now S is an (n − 1)-dimensional convex polyhedron
by Theorems 6.3.1 and 6.3.4; moreover, S is compact, since S is a closed
subset of P . Therefore S has at least n sides R1, . . . , Rn by the induction
hypothesis. By Theorem 6.3.5, each Ri is the side of another side Si of P ;
moreover, the sides S1, . . . , Sn are distinct, since S ∩ Si = Ri. Therefore P
has at least n + 1 sides.

Now, for each x in P , there is a r(x) > 0 such that B(x, r(x)) meets
only finitely many sides of P . As P is compact, there is a finite subset
{x1, . . . , xk} of P such that P is covered by the union of B(xi, r(xi)), for
i = 1, . . . , k. Therefore P has only finitely many sides; moreover, each side
of P is compact, since each side of P is a closed subset of P .

Conversely, suppose that P satisfies properties (1), (2), (3). By Theorem
6.2.6(1), the boundary of P is the union of all the sides of P . Therefore
∂P is compact. Let x be a point in P ◦. Then there is an r > 0 such that
B(x, r) contains ∂P , since ∂P is bounded. Let y be a point on ∂P and let
z be the endpoint of the radius of B(x, r) passing through y. Then z is not
in P because of Theorem 6.2.2. Therefore, the set S(x, r)−P is nonempty.
As the sphere S(x, r) is connected for n > 1, the set S(x, r) ∩ P ◦ is empty.
Hence S(x, r) is contained in Y −P . As P is connected, P ⊂ B(x, r). Thus
P is bounded and so is compact. This completes the induction.

Theorem 6.3.7. Let P be an m-dimensional convex polyhedron in Sn,
with m > 0. Then the following are equivalent:

(1) P is contained in an open hemisphere of Sn;

(2) P has at least m + 1 sides and each side S of P is contained in an
open hemisphere of 〈S〉;

(3) P has a side S that is contained in an open hemisphere of 〈S〉.

Proof: Suppose that P is contained in an open hemisphere H of Sn. We
may assume that H is the upper hemisphere of Sn. Then by gnomonic
projection, we can view P as a compact convex polyhedron of En. Then
P has at least m + 1 sides by Theorem 6.3.6. If S is a side of P , then S is
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contained in the open hemisphere H ∩ 〈S〉. Thus (1) implies (2). Clearly
(2) implies (3).

Suppose that P has a side S that is contained in an open hemisphere of
〈S〉. On the contrary, assume that P is not contained in an open hemisphere
of Sn. We may assume that m = n, 〈S〉 = Sn−1, and P is contained in the
closed southern hemisphere Sn

− of Sn. Then dist(en, P ) = π/2. Let y be a
point of Sn−1. For each positive integer i, let yi be the point on the geodesic
segment [y, en] such that θ(yi, en) = π/(2i). Then dist(yi, P ) ≤ π/2 for
each i, since P is not contained in the open hemisphere opposite yi. Hence,
there is a point xi of P such that θ(xi, yi) ≤ π/2 for each i. Then xi is in
the n-dimensional lune Sn

− ∩ C(yi, π/2) for each i. As P is compact, the
sequence {xi} has a limit point x0 in P ∩Sn−1 = S that is contained in the
closed hemisphere of Sn−1 centered at y. Thus every closed hemisphere of
〈S〉 contains a point of S, which is a contradiction. Thus (3) implies (1).

Faces of a Convex Polyhedron

Let P be an m-dimensional convex polyhedron in X. We now define a
k-face of P for each k = 0, 1, . . . , m inductively as follows: The only m-face
of P is P itself. Suppose that all the (k + 1)-faces of P have been defined
and each is a (k + 1)-dimensional convex polyhedron in X. Then a k-face
of P is a side of a (k + 1)-face of P . By Theorems 6.3.1 and 6.3.4, a k-face
of P is a k-dimensional convex polyhedron in X. A proper face of P is a
k-face of P with k < m. Note that a proper face of P is just a side of a
side . . . of a side of P . Therefore, a face E of a face F of P is a face of P .
In other words, the face relation is transitive.

Theorem 6.3.8. If C is a convex subset of a convex polyhedron P in X
such that C◦ meets a face E of P , then C ⊂ E.

Proof: Let m = dimP and k = dimE. The proof is by induction on
m − k. This is certainly true if k = m, so assume that k < m and the
theorem is true for all (k + 1)-faces of P . Now E is a side of a (k + 1)-face
F of P . By the induction hypothesis C ⊂ F . Let x be a point of C◦ ∩ E.
Choose r > 0 so that

B(x, r) ∩ 〈C〉 ⊂ C.

By Theorem 6.2.5, the convex set F is contained in one of the closed half-
spaces of 〈F 〉 bounded by 〈E〉. Hence, every diameter of B(x, r) in C must
lie in 〈E〉. Therefore

B(x, r) ∩ 〈C〉 ⊂ 〈E〉.

Hence 〈C〉 ⊂ 〈E〉. Therefore

C ⊂ F ∩ 〈E〉 = E.
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Theorem 6.3.9. The interiors of all the faces of a convex polyhedron P
in X form a partition of P .

Proof: Let m = dimP . We first prove that P is the union of the interiors
of all its faces by induction on m. This is certainly true if m = 0, so assume
that m > 0 and any (m − 1)-dimensional convex polyhedron in X is the
union of the interiors of all its faces. Then each side of P is the union of
the interiors of all its faces. As P is the union of ∂P and P ◦, we have that
P is the union of the interiors of all its faces.

Now suppose that E and F are faces such that E◦ meets F ◦. Then
E ⊂ F and F ⊂ E by Theorem 6.3.8. Hence E = F . Thus, the interiors
of all the faces of P form a partition of P .

Theorem 6.3.10. If E and F are faces of a convex polyhedron P in X
such that E ⊂ F , then E is a face of F .

Proof: Let x be a point of E◦. Then there is a face G of F such that
x is in G◦ by Theorem 6.3.9. Now E ⊂ G and G ⊂ E by Theorem 6.3.8.
Therefore E = G. Thus E is a face of F .

Theorem 6.3.11. The family of all the faces of a convex polyhedron P in
X is locally finite.

Proof: Let m = dimP . The proof is by induction on m. This is certainly
true if m = 0, so assume that m > 0 and the theorem is true for all (m−1)-
dimensional polyhedra in X. Let x be a point of X. Then there is an r0 > 0
such that B(x, r0) meets only finitely many sides of P , say S1, . . . , Sk. By
the induction hypothesis, the family of all faces of Si is locally finite in X
for each i = 1, . . . , k. Hence, there is an ri > 0 such that B(x, ri) meets
only finitely many faces of Si for each i = 1, . . . , k. Let

r = min{r0, . . . , rk}.

Then B(x, r) meets only finitely many faces of P .

Theorem 6.3.12. If E is a k-face of an m-dimensional convex polyhedron
P in X, then

(1) E is a side of every (k + 1)-face of P that meets E◦;

(2) E is a side of only finitely many (k + 1)-faces of P ;

(3) E is a side of at least m − k (k + 1)-faces of P ;

(4) E is the intersection of any two (k + 1)-faces of P that contain E.

Proof: (1) Suppose that F is a (k + 1)-face of P that meets E◦. Then
E ⊂ F by Theorem 6.3.8, moreover, E is a side of F by Theorem 6.3.10.

(2) Let x be a point of E. Then there is an r > 0 such that B(x, r)
meets only finitely many (k + 1)-faces of P by Theorem 6.3.11. Hence E
is a side of only finitely many (k + 1)-faces of P .
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(3) We now prove that E is a side of at least m − k (k + 1)-faces of P
by induction on m − k. This is certainly true if k = m, so assume that
k < m and the theorem is true for all (k + 1)-faces of P . Now E is a
side of a (k + 1)-face F of P . By the induction hypothesis, F is a side
of m − k − 1 (k + 2)-faces of P , say G1, . . . , Gm−k−1. By Theorem 6.3.5,
we have that E is a side of exactly two sides F and Fi of Gi for each
i = 1, . . . , m − k − 1. Suppose that i �= j. As F ⊂ Gi ∩ Gj , we have that
dim(Gi ∩ Gj) = k + 1. Therefore, we have F ◦ ⊂ (Gi ∩ Gj)◦. By Theorem
6.3.8, we have that Gi ∩ Gj ⊂ F . Thus F = Gi ∩ Gj . Hence Fi �= Fj .
Thus, the m − k (k + 1)-faces F, F1, . . . , Fm−k−1 are distinct.

(4) Let F1 and F2 be distinct (k + 1)-faces of P that contain E. Then
E ⊂ F1 ∩F2, and so dim(F1 ∩F2) = k. Therefore, we have E◦ ⊂ (F1 ∩F2)◦.
By Theorem 6.3.8, we have that F1 ∩ F2 ⊂ E. Thus E = F1 ∩ F2.

Theorem 6.3.13. If E is a proper k-face of an m-dimensional convex
polyhedron P in X, then

(1) E is a face of every side of P that meets E◦;

(2) E is a face of only finitely many sides of P ;

(3) E is a face of at least m − k sides of P ;

(4) E is the intersection of all the sides of P that contain E.

Proof: (1) Let S be a side of P that meets E◦. Then E ⊂ S by Theorem
6.3.8; moreover E is a face of S by Theorem 6.3.10. (2) Let x be a point
of E. Then there is an r > 0 such that B(x, r) meets only finitely many
sides of P . Hence E is a face of only finitely many sides of P .

We now prove (3) and (4) by induction on m − k. This is certainly true
if k = m − 1, so assume that k < m − 1 and the theorem is true for all
(k + 1)-faces of P . By Theorem 6.3.12, we have that E is a side of finitely
many (k + 1)-faces of P , say F1, . . . , F
 with 
 ≥ m − k. By the induction
hypothesis and (2), we have that Fi is a face of only finitely many sides of
P , say Si1, . . . , Si
i , and 
i ≥ m − k − 1 for each i and

Fi =

i∩

j=1
Sij .

Now the sets {S1j} and {S2j} are not the same, since F1 and F2 are distinct
(k + 1)-faces of P . Hence, one of the sides in one of the sets is not in the
other set. Therefore E is a face of at least m − k sides of P . Clearly

{Sij : j = 1, . . . , 
i and i = 1, . . . , 
}
is the set of all the sides of P that contain E. By Theorem 6.3.12, we have
that Fi ∩ Fj = E for all i, j such that i �= j. Hence

E =


∩

i=1
Ei =



∩

i=1


i∩
j=1

Sij .

Thus E is the intersection of all the sides of P that contain E.
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Let x be a point of a convex polyhedron P in X. Then there is a unique
face F (x) of P that contains x in its interior by Theorem 6.3.9. The face
F (x) of P is called the carrier face of x in P .

Theorem 6.3.14. Let x be a point of a convex polyhedron P in X, let
F (x) be the carrier face of x in P , and let S(x) be the set of all the sides
of P that contain x. If x is in P ◦, then F (x) = P . If x is in ∂P , then

F (x) = ∩{S : S ∈ S(x)}.

Proof: Suppose x is in ∂P . Then F (x) is a proper face of P . Let S be in
S(x). Then F (x)◦ meets S at x. Hence F (x) ⊂ S by Theorem 6.3.8. If S
is a side of P that contains F (x), then S is in S(x). Hence S(x) is the set
of all the sides of P that contain F (x). Therefore F (x) = ∩{S : S ∈ S(x)}
by Theorem 6.3.13(4).

Theorem 6.3.15. Every nonempty intersection of faces of a convex poly-
hedron P in X is a face of P .

Proof: Let C be the nonempty intersection of a family F of faces of P . If
F = {P}, then C = P , and so we may assume that F is a family of proper
faces of P . Suppose that F is a family of sides of P . Now C◦ contains a
point x by Theorem 6.2.3. The point x is in ∂P , since C ⊂ ∂P . Let F (x)
be the carrier face of x in P . Then C ⊂ F (x) by Theorem 6.3.8. Now F (x)
is the intersection of all the sides of P that contain x by Theorem 6.3.14.
Therefore F (x) ⊂ C. Thus F (x) = C.

Assume now that F is a family of proper faces of P . Then each face F
in F is the intersection of all the sides of P that contain F by Theorem
6.3.13(4), and so C is an intersection of sides of P . Therefore C is a face
of P by the previous argument.

Theorem 6.3.16. Let P be an m-dimensional convex polyhedron in Sn.
Then either

(1) the polyhedron P is a great m-sphere of Sn; or

(2) the intersection of all the sides of P is a great k-sphere of Sn; or

(3) the polyhedron P is contained in an open hemisphere of Sn.

Proof: The proof is by induction on m. The theorem is certainly true
for m = 0, so assume that m > 0 and the theorem is true for all (m − 1)-
dimensional convex polyhedra in Sn. If P has no sides, then (1) holds.
Hence, we may assume that P has a side S.

Now assume that S is a great (m − 1)-sphere of Sn. Then P is a closed
hemisphere of 〈P 〉, since a point of P ◦ can be joined to any point of S by a
geodesic segment. Therefore (2) holds. Thus, we may assume that no side
of P is a great (m − 1)-sphere of Sn.
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If S is contained in an open hemisphere of 〈S〉, then (3) holds by Theorem
6.3.7. Hence, we may assume that no side of P is contained in an open
hemisphere. By the induction hypothesis, the intersection of all the sides
of a side of P is a great k-sphere of Sn.

We may assume that m = n, 〈S〉 = Sn−1, and P ⊂ Sn
+. Let T0 be the

intersection of all the sides of a side T of P . Then T0 is a great k-sphere
of Sn. As T0 ⊂ Sn

+, we must have

T0 ⊂ P ∩ Sn−1 = S.

Now T0 is a face of P by Theorem 6.3.15. Therefore T0 is a face of S by
Theorem 6.3.10. Now T0 is the intersection of all the sides of S that contain
T0 by Theorem 6.3.13(4). Let S0 be the intersection of all the sides of S.
Then S0 ⊂ T0 ⊂ T for every side T of P . Let P0 be the intersection of all
the sides of P . Then we have S0 ⊂ P0. Now S0 is a face of P by Theorem
6.3.15. Therefore S0 is the intersection of all the sides of P that contain S0
by Theorem 6.3.13(4). Hence P0 ⊂ S0. Thus P0 = S0. Hence P0 is a great
k-sphere of Sn. Thus (2) holds. This completes the induction.

Vertices of a Convex Polyhedron

A 0-face of a convex polyhedron P in X consists either of a single point or
a pair of antipodal points.

Definition: A vertex of a polyhedron P is a point in a 0-face of P .

For example, a great semicircle of Sn has two vertices, but only one 0-face.

Definition: The convex hull of a subset S of X is the intersection of all
the convex subsets of X containing S.

Theorem 6.3.17. A convex polyhedron P in En or Hn is compact if and
only if P has only finitely many vertices and P is the convex hull of its
vertices.

Proof: Assume first that P is in En. The proof is by induction of the
dimension m of P . The theorem is certainly true when m = 0, so assume
that m > 0 and the theorem is true in dimension m− 1. Suppose that P is
compact. Then by Theorem 6.3.6, the polyhedron P has only finitely many
sides and each side is compact. By the induction hypothesis, each side of
P has only finitely many vertices and is the convex hull of its vertices.
Therefore P has only finitely many vertices. Let V be the set of vertices of
P . Then the convex hull C(V ) is contained in P , since P is convex. Let x
be a point of P . We claim that x is in C(V ). If x is in a side S of P , then
x is a convex combination of the vertices of S by the induction hypothesis.
Hence, we may assume that x is in P ◦. Let v0 be a vertex of P . Then the



§6.3. Convex Polyhedra 211

ray from v0 passing through x meets ∂P in a point y other than v0, since P
is bounded. By Theorem 6.2.2, the point x lies between v0 and y. Hence,
there is a real number t between 0 and 1 such that

x = (1 − t)v0 + ty.

Let S be a side of P containing y. By the induction hypothesis, there are
vertices v1, . . . , vk of S and positive real numbers t1, . . . , tk such that

y =
k∑

i=1

tivi and
k∑

i=1

ti = 1.

Observe that

x = (1 − t)v0 + t

k∑
i=1

tivi

is a convex combination of v0, . . . , vk. Hence x is in C(V ). Therefore
P = C(V ).

Conversely, suppose that P has only finitely many vertices and P is the
convex hull of its vertices. Let r > 0 be such that the ball B(0, r) contains
the set V of vertices of P . Then B(0, r) contains the convex hull C(V ),
since B(0, r) is convex. Hence P is bounded and so P is compact. This
completes the induction.

Now assume that P is Hn. We pass to the projective disk model Dn. If
P is compact, then P is a Euclidean polyhedron, and so P has only finitely
many vertices and P is the convex hull of its vertices by the Euclidean case.
Conversely, suppose that P has only finitely many vertices and P is the
convex hull of its vertices. Then P is compact by the same argument as in
the Euclidean case.

Theorem 6.3.18. An m-dimensional convex polyhedron P in Sn, with
m > 0, is contained in an open hemisphere of Sn if and only if P is the
convex hull of its vertices.

Proof: Suppose that P is contained in an open hemisphere of Sn. We
may assume that P is contained in the open northern hemisphere of Sn.
Now by gnomonic projection, we can view P as a compact polyhedron in
En. Then P is the convex hull of its vertices by Theorem 6.3.17.

Conversely, suppose that P is the convex hull of its vertices. On the
contrary, suppose that P is not contained in an open hemisphere of Sn.
Then the intersection P0 of all the sides of P is a great k-sphere of Sn by
Theorem 6.3.16. Now P0 is contained in every 0-face of P , since a 0-face of
P is the intersection of all the sides of P containing it by Theorem 6.3.13.
Therefore dimP0 = 0, and so P0 is a pair of antipodal points. Hence P
has just two vertices. Therefore, the convex hull of the vertices of P is P0,
which is a contradiction, since m > 0.
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Exercise 6.3

1. Let P be a subset of Sn or Hn. Prove that P is a compact convex polyhedron
in Sn or Hn if and only if K(P ) is a convex polyhedron in En+1. See
Exercises 6.2.5 and 6.2.6.

2. Let H be a family of closed half-spaces of X such that ∂H = {∂H : H ∈ H}
is locally finite and ∩H �= ∅. Prove that ∩H is a convex polyhedron in X.

3. Let P be an infinite sided convex polygon in E2 all of whose vertices lie on
H1. Show that the family of lines {〈S〉 : S is a side of P} is not locally finite
at the origin.

4. Let P be an m-dimensional convex polyhedron in X. Prove that P is compact
and P �= 〈P 〉 if and only if ∂P is homeomorphic to Sm−1.

5. Let P be a convex polyhedron in En or Hn. Prove that P is compact if and
only if P does not contain a geodesic ray.

6. Let P be a convex polyhedron in En. Prove that P is compact if and only
if the volume of P in 〈P 〉 is finite.

7. Let P be an m-dimensional convex polyhedron in Sn such that the intersec-
tion of all the sides of P is a great k-sphere Σ of Sn. Let Σ′ be the great
(m − k − 1)-sphere of 〈P 〉 that is pointwise orthogonal to Σ. Prove that

(1) P ∩ Σ′ is an (m − k − 1)-dimensional convex polyhedron in Sn.

(2) If (m − k − 1) > 0, then T is a side of P ∩ Σ′ if and only if there is a
side S of P such that T = S ∩ Σ′.

(3) P ∩ Σ′ is contained in an open hemisphere of Sn.

§6.4. Geometry of Convex Polyhedra

In this section, we study the geometry of convex polyhedra in X = Sn, En,
or Hn with n > 0. We begin with the concept of the dihedral angle between
adjacent sides of a convex polyhedron in X.

Dihedral Angles

Let S and T be sides of an m-dimensional convex polyhedron P in X. Then
S and T are said to be adjacent if and only if either

(1) P is a geodesic segment and S and T are distinct, or

(2) P is a polygon in Hn and S and T are distinct and asymptotic, or

(3) S ∩ T is a side of both S and T .
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S T

θ(S, T )

α

Figure 6.4.1. The dihedral angle θ(S, T ) between adjacent sides

Definition: The dihedral angle of a convex polyhedron P in X between
adjacent sides S and T is the number θ(S, T ) defined as follows:

(1) If P is a geodesic segment, then θ(S, T ) is defined to be either the
angle between the endpoints of P if X = Sn, or zero if X = En, Hn.

(2) If P is a polygon in Hn and S and T are distinct and asymptotic,
then θ(S, T ) is defined to be zero.

(3) Now assume that S ∩T is a side of both S and T . Then the (m−1)-
planes 〈S〉 and 〈T 〉 subdivide the m-plane 〈P 〉 into four regions, one of
which contains P ; moreover,

〈S〉 ∩ 〈T 〉 = 〈S ∩ T 〉.

Let x be a point in S ∩T and let λ, µ : R → 〈P 〉 be geodesic lines such that

(1) λ(0) = x = µ(0);

(2) λ and µ are normal to 〈S〉 and 〈T 〉, respectively; and

(3) λ′(0) and µ′(0) are directed away from the respective half-spaces of
〈P 〉 containing P .

Let α be the angle between λ and µ at the point x. Clearly α does not
depend on the choice of x. The dihedral angle of P between S and T is
defined to be the angle

θ(S, T ) = π − α. (6.4.1)

See Figure 6.4.1. Note that as 0 < α < π, we have

0 < θ(S, T ) < π.

Let S be a side of a convex polyhedron P in X. In order to simplify
some formulas in Chapter 7, we define

θ(S, S) = π. (6.4.2)
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Links of a Convex Polyhedron

Let x be a point of a convex polyhedron P in X. Then there is a real
number r such that 0 < r < π/2 and r is less than the distance from x to
any side of P not containing x, since the set of sides of P is locally finite.
Let Σ = S(x, r). The set

L(x) = P ∩ Σ

is called a link of x in the polyhedron P . The spherical geometry of the
link L(x) is uniquely determined by x up to a change of scale induced by
radial projection from x.

For simplicity, we have only considered spherical polyhedra in Sn. By a
simple change of scale, the theory of spherical polyhedra in Sn generalizes
to polyhedra in any sphere of X.

Theorem 6.4.1. Let x be a point of an m-dimensional convex polyhedron
P in X, with m > 0, let r be a real number such that 0 < r < π/2 and
r is less than the distance from x to any side of P not containing x, and
let Σ = S(x, r). Then the link L(x) = P ∩ Σ of x in P is an (m − 1)-
dimensional convex polyhedron in the sphere Σ. If S(x) is the set of sides
of P containing x and m > 1, then

{S ∩ Σ : S ∈ S(x)}
is the set of sides of L(x). If S and T are sides of P containing x, then S
and T are adjacent if and only if m > 1 and S ∩ Σ and T ∩ Σ are adjacent
sides of L(x). If S and T are adjacent sides of P containing x, then

θ(S ∩ Σ, T ∩ Σ) = θ(S, T ).

Proof: The proof is by induction on m. The theorem is obviously true
for m = 1, so assume that m > 1 and the theorem is true for all (m − 1)-
dimensional convex polyhedra in X. We may assume that m = n. If x is
in P ◦, then L(x) = Σ, so assume that x is in ∂P . Let S be the set of sides
of P . For each S in S, let HS be the closed half-space of X bounded by
the hyperplane 〈S〉 and containing P . Then we have

P = ∩{HS : S ∈ S}.
As HS ∩ Σ = Σ for each S not containing x, we have

P ∩ Σ = ∩{HS ∩ Σ : S ∈ S(x)}.

Now HS ∩Σ is a closed hemisphere of Σ for each S in S(x). Therefore L(x)
is a closed convex subset of Σ.

Let y be a point of P ◦ such that y is not antipodal to x. By shrinking r,
if necessary, we may assume that d(x, y) ≥ r. Then the geodesic segment
[x, y] intersects S(x, r) in a point z of P ◦ by Theorem 6.2.2. Therefore
P ◦ ∩ Σ is a nonempty open subset of Σ contained in L(x). Hence we have
dimL(x) = n − 1.
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Now as P ◦ ∩ Σ ⊂ L(x)◦, we have that

∂L(x) ⊂ ∂P ∩ Σ.

Let S be a side of P containing x. By the induction hypothesis, S ∩Σ is an
(n − 2)-dimensional convex polyhedron in Σ. Now since P ⊂ HS , no point
of S ∩ Σ has an open neighborhood in Σ contained in L(x). Therefore

S ∩ Σ ⊂ ∂L(x).

Hence, we have
∂P ∩ Σ ⊂ ∂L(x).

Therefore, we have
∂L(x) = ∂P ∩ Σ.

The convex set S ∩Σ is contained in a side Ŝ of L(x) by Theorem 6.2.6(1).
Now as

∂P ∩ Σ = ∪{S ∩ Σ : S ∈ S(x)},

we have that
∂L(x) = ∪{Ŝ : S ∈ S(x)}.

Therefore {Ŝ : S ∈ S(x)} is the set of sides of L(x) by Theorem 6.2.6(3).
Hence L(x) has only finitely many sides. Thus L(x) is a convex polyhedron
in Σ.

Now by Theorem 6.2.6(3), we have that Ŝ◦ ⊂ S∩Σ. Therefore Ŝ = S∩Σ
for each S in S(x). Thus

{S ∩ Σ : S ∈ S(x)}

is the set of sides of L(x).
Let S and T be adjacent sides of P containing x. Then S ∩ T is a side

of both S and T . First assume that n = 2. Then S ∩ Σ and T ∩ Σ are the
endpoints of the geodesic segment L(x) of Σ, and so S ∩ Σ and T ∩ Σ are
adjacent sides of L(x). The angle between S ∩ Σ and T ∩ Σ is the angle of
the polygon P at the vertex x, and so we have

θ(S ∩ Σ, T ∩ Σ) = θ(S, T ).

Now assume that n > 2. Then S ∩ T ∩ Σ is an (n − 3)-face of L(x). Hence
S ∩ T ∩ Σ is a side of both S ∩ Σ and T ∩ Σ. Therefore S ∩ Σ and T ∩ Σ
are adjacent sides of L(x). If we measure the dihedral angle of P between
the sides S and T at a point of S ∩ T ∩ Σ, we find that

θ(S ∩ Σ, T ∩ Σ) = θ(S, T ).

Let S and T be sides of P containing x such that S ∩ Σ and T ∩ Σ are
adjacent sides of L(x). Then n > 1. If n = 2, then S and T are adjacent,
since S ∩T contains x. Now assume n > 2. Then S ∩T ∩Σ is a side of both
S ∩ Σ and T ∩ Σ. Hence S ∩ T ∩ Σ is an (n − 3)-face of L(x). Therefore
S ∩ T is an (n − 2)-face of P . Thus S and T are adjacent.
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Theorem 6.4.2. Let P be a convex polyhedron in Dn. Then its closure P
in En is a convex subset of En such that P ∩ Dn = P and

∂(P ) = ∂P ∪ (P ∩ Sn−1).

Moreover, if S is a side of P , then its closure S in En is a side of P , and
if u is a point of ∂(P ) that is not in the Euclidean closure of a side of P ,
then {u} is a side of P .

Proof: We may assume that 〈P 〉 = Dn. As P is a convex subset of En,
we have that P is a convex subset of En by Theorem 6.2.1. As Dn is open
in En and P is closed in Dn, we have

P ∩ Dn = P, P ◦ ⊂ (P )◦, and ∂P ⊂ ∂(P ).

Clearly, we have P ∩ Sn−1 ⊂ ∂(P ). Therefore, we have P ◦ = (P )◦ and

∂(P ) = ∂P ∪ (P ∩ Sn−1).

Let S be a side of P . Then S is contained in a side Ŝ of P . Now Ŝ ∩Dn

is a convex subset of ∂P containing S. Therefore Ŝ ∩ Dn = S. Clearly, we
have Ŝ ∩ Sn−1 ⊂ ∂(Ŝ). Therefore Ŝ◦ ⊂ S, and so Ŝ = S by Theorem 6.2.2.

Let u be a point of ∂(P ) that is not in the closure of a side of P . Let U
be a side of ∂(P ) containing u. Then U is not the closure of a side of P .
Hence U◦ is disjoint from ∂P , and so U◦ ⊂ Sn−1. Therefore U = {u}.

Let µ : Dn → Hn be gnomonic projection and let ζ : Bn → Hn be
stereographic projection. Define κ : Dn → Bn by κ = ζ−1µ. Then κ is an
isometry from Dn to Bn. By Formulas 6.1.1 and 4.5.3, we have that

ζ−1µ(x) = ζ−1
(

x + en+1

|||x + en+1|||

)
=

x

|||x + en+1|||
1

(1 + |||x + en+1|||−1)

=
x

|||x + en+1||| + 1
.

Hence, we have

κ(x) =
x

1 +
√

1 − |x|2
. (6.4.3)

The inverse of κ is given by

κ−1(y) =
2y

1 + |y|2 . (6.4.4)

Observe that κ extends to a homeomorphism

κ : Dn → Bn,

which is the identity on Sn−1.

Definition: An ideal point of a convex polyhedron P in Bn is a point u
of P ∩ Sn−1, where P is the closure of P in En.
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Theorem 6.4.3. Let u be an ideal point of a convex polyhedron P in Bn.
Then for each point x of P , there is a geodesic ray [x, u) in P starting at
x and ending at u.

Proof: Since the isometry κ : Dn → Bn extends to a homeomorphism
κ : Dn → Bn, we can pass to the projective disk model Dn of hyperbolic
space. Let x be a point of P . Now P is a convex subset of En by Theorem
6.4.2. Therefore, the line segment [x, u] is in P . Now since

[x, u] ∩ Sn−1 = {u} and P ∩ Dn = P,

we have that [x, u) ⊂ P .

Definition: A side S of a convex polyhedron P in Bn is incident with an
ideal point u of P if and only if u is in the closure of S in En.

Theorem 6.4.4. Let ∞ be an ideal point of a convex polyhedron P in Un.
Then a side S of P is incident with ∞ if and only if S is vertical.

Proof: Every hemispherical side of P is bounded in En. Therefore, if a
side S of P is incident with ∞, then S must be vertical.

Conversely, suppose that S is a vertical side of P . Let x be a point of
S. By Theorem 6.4.3, there is a geodesic ray [x,∞) in P starting at x and
ending at ∞. Now since [x, ∞) and 〈S〉 are vertical, we deduce that

[x,∞) ⊂ 〈S〉 ∩ P = S.

Therefore S is incident with ∞.

Definition: A horopoint of a convex polyhedron P in Bn is an ideal point
u of P for which there is a closed horoball C of Bn based at u such that C
meets just the sides of P incident with u.

Note that if P is finite-sided, then every ideal point of P is a horopoint.

Example: Let P be a convex polyhedron in Un all of whose sides are
hemispherical hyperplanes of Un such that P is the closed region above
them. Then ∞ is an ideal point of P , and ∞ is a horopoint of P if and
only if the set of radii of the sides is bounded.

Let u be a horopoint of a convex polyhedron P in Bn. Then there is a
closed horoball C of Bn based at u such that C meets just the sides of P
incident with u. Let Σ = ∂C. The set

L(u) = P ∩ Σ

is called a link of u in the polyhedron P . The Euclidean geometry of the
link L(u) is uniquely determined by u up to a similarity induced by radial
projection from u.
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Theorem 6.4.5. Let u be a horopoint of an m-dimensional convex poly-
hedron P in Bn, let C be a closed horoball of Bn based at u such that C
meets just the sides of P incident with u, and let Σ = ∂C. Then the link
L(u) = P ∩ Σ of u in P is an (m − 1)-dimensional convex polyhedron in
the horosphere Σ. If S(u) is the set of sides of P incident with u, then

{S ∩ Σ : S ∈ S(u)}
is the set of sides of L(u). If S and T are sides of P incident with u, then
S and T are adjacent if and only if S ∩ Σ and T ∩ Σ are adjacent sides of
L(u). If S and T are adjacent sides of P incident with u, then

θ(S ∩ Σ, T ∩ Σ) = θ(S, T ).

Proof: We pass to the upper half-space model Un of hyperbolic space.
We may assume that u = ∞. The proof is by induction on m. The theorem
is obviously true for m = 1, so assume that m > 1 and the theorem is true
for all (m − 1)-dimensional convex polyhedra in Un. We may assume that
m = n. By Theorem 6.4.4, a side of P is incident with ∞ if and only if it
is vertical. If P has no vertical sides, then L(u) = Σ, so assume that P has
a vertical side. Let S be the set of sides of P . For each S in S, let HS be
the closed half-space of Un bounded by the hyperplane 〈S〉 and containing
P . Then we have

P = ∩{HS : S ∈ S}.
As HS ∩ Σ = Σ for each hemispherical side S of P , we have

P ∩ Σ = ∩{HS ∩ Σ : S ∈ S(u)}.

Now HS ∩ Σ is a closed half-space of Σ for each S in S(u). Therefore L(u)
is a closed convex subset of Σ.

Let x be a point of P ◦. By shrinking Σ, if necessary, we may assume
that x is not inside of Σ. Then the geodesic ray [x,∞) intersects Σ in a
point y of P ◦ by Theorem 6.2.2 applied to the Euclidean closure of P in
the projective disk model. Therefore P ◦ ∩ Σ is a nonempty open subset of
Σ contained in L(u). Hence dim L(u) = n − 1.

Now as P ◦ ∩ Σ ⊂ L(u)◦, we have that

∂L(u) ⊂ ∂P ∩ Σ.

Let S be a vertical side of P . By the induction hypothesis, S ∩ Σ is an
(n − 2)-dimensional convex polyhedron in Σ. Now since P ⊂ HS , no point
of S ∩ Σ has an open neighborhood in Σ contained in L(u). Therefore

S ∩ Σ ⊂ ∂L(u).

Hence, we have
∂P ∩ Σ ⊂ ∂L(u).

Therefore, we have
∂L(u) = ∂P ∩ Σ.
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The convex set S ∩Σ is contained in a side Ŝ of L(u) by Theorem 6.2.6(1).
Now as

∂P ∩ Σ = ∪{S ∩ Σ : S ∈ S(u)},

we have that
∂L(u) = ∪{Ŝ : S ∈ S(u)}.

Therefore {Ŝ : S ∈ S(u)} is the set of sides of L(u) by Theorem 6.2.6(3).
Now by Theorem 6.2.6(3), we have that Ŝ◦ ⊂ S∩Σ. Therefore Ŝ = S∩Σ

for each S in S(u). Thus {S ∩ Σ : S ∈ S(u)} is the set of sides of L(u).
Moreover, the set of sides of L(u) is locally finite in Σ, since the set of sides
of P is locally finite in Un. Thus L(u) is a convex polyhedron in Σ. The
rest of the proof follows the argument of the proof of Theorem 6.4.1.

There is a nice way of representing the link of a horopoint u of a polyhe-
dron P in Un. If we position P so that u = ∞, then the vertical projection

ν : Un → En−1

projects L(u) onto a similar polyhedron in En−1 that does not depend on
the choice of the horosphere Σ such that L(u) = P ∩ Σ. See Figure 6.4.2.

Definition: An ideal vertex of a convex polyhedron P in Bn is a horopoint
of P whose link is compact.

For example, the polyhedron in Figure 6.4.2 has an ideal vertex at ∞.

Figure 6.4.2. The link of ∞ in a polyhedron in U3
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Theorem 6.4.6. Let P be a convex polyhedron in Dn. Then its closure P
in En is a convex polyhedron in En if and only if every ideal point of P is
an ideal vertex of P .

Proof: Let m = dimP . We may assume that m > 0. Suppose that P is
a convex polyhedron in En. Let u be an ideal point of P . We claim that
u is a vertex of P . On the contrary, suppose that u is not a vertex of P .
Then u is in the interior of a k-face F of P for some k > 0 by Theorem
6.3.9. Hence, there is an open Euclidean line segment in F containing u.
But any such line segment cannot lie entirely in Dn, since u is in Sn−1.
Thus, we have a contradiction, and so u must be a vertex of P .

If m = 1, the sides of P are the two endpoints of P . If m > 1, the sides
of P are the closures of the sides of P by Theorem 6.4.2. As P is compact,
P has only finitely many sides. Therefore P has only finitely many sides.
Let u be an ideal point of P . Then u is a horopoint of P . Let C be a closed
horoball of Dn based at u such that C meets just the sides of P incident
with u, and let Σ = ∂C. We claim that P ∩ Σ is compact. The proof is by
induction on m. This is certainly true if m = 1, so assume that m > 1 and
the claim is true for all (m− 1)-dimensional convex polyhedra in Dn. Now
the vertex u of P meets at least m sides of P by Theorem 6.3.13(3), and
so P ∩Σ has at least m sides by Theorem 6.4.5. If S is a side of P incident
with u, then S ∩ Σ is compact by the induction hypothesis. Hence P ∩ Σ
is compact by Theorem 6.3.6. Thus u is an ideal vertex of P .

Conversely, suppose that every ideal point of P is an ideal vertex. We
may assume that m > 1. Then every ideal point of P is in the closure of
a side of P . Hence P is a closed convex subset of En whose sides are the
closures of the sides of P by Theorem 6.4.2. We now show that the set of
sides of P is locally finite in En. Let x be a point of En. We need to find
an open neighborhood N of x in En that meets only finitely many sides of
P . If x is in En − P , we may take N = En − P . If x is in Dn, then such
an N exists, since the set of sides of P is locally finite in Dn. Therefore,
we may assume that x is an ideal vertex of P .

We pass to the upper half-space model Un of hyperbolic space and po-
sition P so that x = ∞. Let C be a closed horoball of Un based at ∞
that meets just the sides of P incident with ∞, and let Σ = ∂C. Then
L(∞) = P ∩ Σ is compact. By Theorem 6.4.4, the sides of P incident with
∞ are the vertical sides of P . Let B be a ball in En centered at a point
in En−1 such that L(∞) ⊂ B. Then B contains the closures of all the
hemispherical sides of P , since all the hemispherical sides of P lie below
L(∞). Therefore N = Ên − B is an open neighborhood of ∞ in Ên that
meets just the sides of P containing ∞. As L(∞) is compact, L(∞) has
only finitely sides. Thus P has only finitely many sides incident with ∞
by Theorem 6.4.5. Hence N meets only finitely many sides of P . We pass
back to the projective disk model Dn of hyperbolic space. Then the set of
sides of P is locally finite in En. Thus P is a convex polyhedron in En.
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Definition: A generalized vertex of a convex polyhedron P in Bn is either
an actual vertex of P or an ideal vertex of P .

Definition: The convex hull in Dn of a subset S of Dn is the intersection
of the convex hull of S in En with Dn.

Theorem 6.4.7. Let P be a convex polyhedron in Dn. Then its closure P
in En is a convex polyhedron in En if and only if P has only finitely many
generalized vertices and P is the convex hull of its generalized vertices.

Proof: Let m = dimP . We may assume that m > 0. Suppose that P is
a convex polyhedron in En. If m = 1, the sides of P are the two endpoints
of P . If m > 1, the sides of P are the closures of the sides of P by Theorem
6.4.2. We claim that the vertices of P are the generalized vertices of P . The
proof is by induction on m. This is certainly true if m = 1, so assume that
m > 1 and the claim is true for all (m−1)-dimensional convex polyhedra in
Dn. Now the vertices of P are the vertices of the sides of P . Therefore, the
vertices of P are the generalized vertices of the sides of P by the induction
hypothesis. Let v be a vertex of P in Sn−1. Then v is an ideal vertex of
P by Theorem 6.4.6. Hence, every vertex of P is a generalized vertex of
P . If v is an ideal vertex of P , then v is an ideal vertex of every side of P
incident with v and therefore v is a vertex of P . Hence, every generalized
vertex of P is a vertex of P . Thus, the vertices of P are the generalized
vertices of P , which completes the induction.

Let V be the set of vertices of P . As P is compact, V is finite and
P = C(V ) by Theorem 6.3.17. Hence P has only finitely many generalized
vertices and P is the convex hull of its generalized vertices, since

P = P ∩ Dn = C(V ) ∩ Dn.

Conversely, suppose that P has only finitely many generalized vertices
and P is the convex hull of its generalized vertices. Let V be the set of
generalized vertices of P and let C(V ) be the convex hull of V in En. Then
we have

P = C(V ) ∩ Dn.

As V ⊂ Dn and Dn is a convex subset of En, we have that C(V ) ⊂ Dn.
Clearly, we have

C(V ) ∩ Sn−1 ⊂ V.

Therefore, we have
C(V ) = P ∪ V.

Now C(V ) is a closed subset of En containing P , since V is finite. There-
fore, we have

P ⊂ C(V ) = P ∪ V ⊂ P .

Hence, we have P = P ∪ V. Therefore, every ideal point of P is an ideal
vertex of P . Hence P is a convex polyhedron in En by Theorem 6.4.6.
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Theorem 6.4.8. Let P be an m-dimensional convex polyhedron in Dn,
with m > 1. Then its closure P in En is a convex polyhedron in En if and
only if P has only finitely many sides and P has finite volume in 〈P 〉.

Proof: We may assume that m = n. Suppose that P is a convex polyhe-
dron in En. By Theorem 6.4.2, the sides of P are the closures of the sides
of P . As P is compact, P has only finitely many sides. Therefore P has
only finitely many sides.

By the argument in the proof of Theorem 6.4.6, every ideal point of
P is a vertex of P . As P is compact, P has only finitely many vertices.
Therefore P has only finitely many ideal points. Now every ideal point of
P is an ideal vertex of P by Theorem 6.4.6. Let v1, . . . , vk be the ideal
vertices of P . For each i, choose a horoball Bi based at vi such that Bi

meets just the sides of P incident with vi. Then the set

P − (B1 ∪ · · · ∪ Bk)

is compact and therefore has finite volume. Hence, it suffices to show that
P ∩ Bi has finite volume for each i = 1, . . . , k.

Let v be an ideal vertex of P and let B be the corresponding horoball.
We now pass to the upper half-space model Un. Without loss of generality,
we may assume that v = ∞. Then B is of the form

{x ∈ Un : xn > s}
for some s > 0. Now all the sides of P incident with ∞ are vertical. Let
ν : Un → En−1 be the vertical projection. Then by Theorem 4.6.7, we
have

Vol(P ∩ B) =
∫

P∩B

dx1 · · · dxn

(xn)n

=
∫ ∞

s

{∫
ν(P∩∂B)

dx1 · · · dxn−1

}
dxn

(xn)n

= Voln−1
(
ν(P ∩ ∂B)

) [ 1
(n − 1)

−1
xn−1

]∞
s

=
Voln−1

(
ν(P ∩ ∂B)

)
(n − 1)sn−1 .

Now the set P ∩ ∂B is compact, since v is an ideal vertex of P . Therefore
Vol(P ∩ B) is finite. Thus P has finite volume.

Conversely, suppose that P has only finitely many sides and P has finite
volume in Dn. Then every ideal point of P is a horopoint of P . The above
volume computation shows that the link of every ideal point of P has finite
volume and is therefore compact. See Exercise 6.3.6. Hence, every ideal
point of P is an ideal vertex. Therefore P is a convex polyhedron in En

by Theorem 6.4.6.
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Exercise 6.4

1. Let x be a point of an m-dimensional convex polyhedron P in X, with m > 0,
let r be a real number such that 0 < r < π/2 and r is less than the distance
from x to any side of P not containing x, let L(x) = P ∩ S(x, r), and let
F (x) be the carrier face of x in P . Prove that

(1) L(x) is a great (m − 1)-sphere of S(x, r) if and only if x is in P ◦;

(2) the intersection of all the sides of L(x) is a great (k − 1)-sphere of
S(x, r) if and only if dim F (x) = k with 0 < k < m;

(3) L(x) is contained in an open hemisphere of S(x, r) if and only if x is a
vertex of P .

2. Let P be a convex polyhedron in Bn with only finitely many sides. Prove
that every ideal point of P is a horopoint of P .

3. Find an example of a convex polygon in D2 of finite area with an infinite
number of sides.

4. Let P be a convex polyhedron in Bn such that P has finite volume in 〈P 〉.
Prove that P is has finitely many sides if and only if every ideal point of P
is a horopoint of P .

5. Let P be an m-dimensional convex subset of Hn with m > 1. Prove that P
is a convex finite-sided polyhedron in Hn such that P has finite volume in
〈P 〉 if and only if K(P ) is a convex polyhedron in En+1. See Exercise 6.2.5.

§6.5. Polytopes

Throughout this section, X = Sn, En, or Hn with n > 0. We now consider
the classical polyhedra in X.

Definition: A polytope in X is a convex polyhedron P in X such that

(1) P has only finitely many vertices;

(2) P is the convex hull of its vertices;

(3) P is not a pair of antipodal points of Sn.

Theorem 6.5.1. A convex polyhedron P in X is a polytope in X if and
only if P is compact, and if X = Sn, then P is contained in an open
hemisphere of Sn.

Proof: This follows immediately from Theorems 6.3.17 and 6.3.18.

Corollary 1. A polytope P in X has only finitely many sides and every
side of P is a polytope in X.
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Theorem 6.5.2. An m-dimensional polytope P in X has at least m + 1
vertices.

Proof: Assume first that P is in En. The proof is by induction on the
dimension m. The theorem is certainly true when m = 0, so suppose that
m > 0 and the theorem is true in dimension m − 1. Let S be a side
of P . Then S is a polytope by Theorem 6.5.1. Hence, by the induction
hypothesis, S has at least m vertices. Now since P is the convex hull of its
vertices, S cannot contain all the vertices of P . Therefore P has at least
m + 1 vertices. This completes the induction.

Now assume that P is in Sn. Then by gnomonic projection, we can view
P as a Euclidean polyhedron. Therefore P has at least m + 1 vertices by
the Euclidean case.

Now assume that P is Hn. We pass to the projective disk model Dn.
Then P is a Euclidean polyhedron, since P is compact. Therefore P has
at least m + 1 vertices by the Euclidean case.

Definition: An m-simplex in X is an m-dimensional polytope in X with
exactly m + 1 vertices.

It is an exercise to prove that a subset S of En is an m-simplex if and only
if S is the convex hull of an affinely independent subset of m + 1 points
{v0, . . . , vm} of En.

Example: The standard m-simplex ∆m in En is the convex hull of the
points 0, e1, . . . , em of En.

Theorem 6.5.3. An m-dimensional polytope in X, with m > 0, has at
least m + 1 sides.

Proof: This follows from Theorems 6.3.6, 6.3.7, and 6.5.1.

Theorem 6.5.4. An m-dimensional polytope in X, with m > 0, is an
m-simplex if and only if P has exactly m + 1 sides.

Proof: The proof is by induction on m. The theorem is certainly true
for m = 1, so assume that m > 1 and the theorem is true for all (m − 1)-
dimensional polytopes in X. Suppose that P is an m-simplex. Then P
has at least m + 1 sides by Theorem 6.5.3. Let S be a side of P . Then
S does not contain all the vertices of P , since P is the convex hull of its
vertices. Therefore S has at most m vertices. As S is an (m−1)-dimensional
polytope, S has at least m vertices by Theorem 6.5.2. Therefore S has
exactly m vertices. Hence S is an (m − 1)-simplex. Thus, each side of P is
an (m − 1)-simplex. Hence, each side of P is the convex hull of m vertices
of P . Since the set of m+1 vertices of P has exactly m+1 subsets with m
vertices, P has at most m + 1 sides. Therefore P has exactly m + 1 sides.
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Conversely, suppose that P has exactly m+1 sides. Then P has at least
m+1 vertices by Theorem 6.5.2. Now by Theorem 6.3.13(3), each vertex of
P is the intersection of at least m sides of P . As the intersection of all the
sides of P is contained in each vertex of P , the intersection of all the sides
of P is empty. Therefore, each vertex of P is the intersection of exactly
m sides of P . Since the set of m + 1 sides of P has exactly m + 1 subsets
with m sides, P has at most m+1 vertices. Therefore P has exactly m+1
vertices. Thus P is an m-simplex.

Theorem 6.5.5. Let P be a polytope in X. Then the group of symmetries
of P in 〈P 〉 is finite.

Proof: The proof is by induction on dimP = m. The theorem is obviously
true if m = 0, so assume that m > 0 and the theorem is true for all (m−1)-
dimensional polytopes in X. Let Γ be the group of symmetries of P in
〈P 〉. Then Γ acts on the finite set S of sides of P . Now S is nonempty by
Theorem 6.5.3, and each side of P is an (m − 1)-dimensional polytope by
Theorem 6.5.1. By the induction hypothesis, the stabilizer of each side of
P is finite. Therefore Γ is finite.

Definition: The centroid of a polytope P in X with vertices v1, . . . , vk is
the point

c =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(v1 + · · · + vk)/k if X = En,

(v1+···+vk)/k
|(v1+···+vk)/k| if X = Sn,

(v1+···+vk)/k
|||(v1+···+vk)/k||| if X = Hn.

Note that c is a well-defined point of X by Theorems 3.1.2 and 6.5.1. A
polytope P in X contains its centroid c, since c is in the convex hull of the
vertices of P . It is an exercise to prove that the centroid c of P is in the
interior of P .

Theorem 6.5.6. Let P be a polytope in X. Then every symmetry of P
fixes the centroid of P .

Proof: Let g be a symmetry of P . Then g permutes the vertices v1, . . . , vk

of P . If X = En, then there is a point a of En and an A in O(n) such that
g = a+A by Theorem 1.3.5. If X = Sn or Hn, then g is linear. Therefore,
we have

g

(
v1 + · · · + vk

k

)
=

v1 + · · · + vk

k
.

Hence gc = c.
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Generalized Polytopes

We now generalize the concept of a polytope in Hn to allow ideal vertices
on the sphere at infinity of Hn. It will be more convenient for us, for
convexity arguments, and to have a direct representation of the sphere at
infinity, to work in the projective disk model Dn of hyperbolic space.

Definition: A generalized polytope in Dn is a convex polyhedron P in
Dn such that P has only finitely many generalized vertices and P is the
convex hull of its generalized vertices.

Theorem 6.5.7. A convex polyhedron P in Dn is a generalized polytope
in Dn if and only if its closure P in En is a polytope in En.

Proof: This follows immediately from Theorems 6.4.7 and 6.5.1.

Theorem 6.5.8. Let P be an m-dimensional convex polyhedron in Dn,
with m > 1. Then P is a generalized polytope in Dn if and only if P has
finitely many sides and P has finite volume in 〈P 〉.

Proof: This follows immediately from Theorems 6.4.7 and 6.4.8.

Theorem 6.5.9. An m-dimensional generalized polytope P in Dn has at
least m + 1 generalized vertices.

Proof: By Theorem 6.5.7, we have that P is a polytope in En. By Theo-
rem 6.5.2, we have that P has at least m+1 vertices. Now by the argument
in the proof of Theorem 6.4.7, the vertices of P are the generalized vertices
of P . Therefore P has at least m + 1 generalized vertices.

Definition: A generalized m-simplex in Dn is an m-dimensional general-
ized polytope in Dn with exactly m + 1 generalized vertices.

Note that a generalized 0-simplex is an actual point. A generalized
1-simplex is either a geodesic segment, a geodesic ray, or a geodesic.

Theorem 6.5.10. A convex polyhedron in Dn is a generalized m-simplex
in Dn if and only if its closure in En is an m-simplex in En.

Proof: Suppose that P is a generalized m-simplex. By Theorem 6.5.7, we
have that P is a polytope in En. By the argument in the proof of Theorem
6.4.7, the vertices of P are the generalized vertices of P . Therefore P has
exactly m + 1 vertices. Thus P is an m-simplex in En.

Conversely, suppose that P is an m-simplex in En. Then P is a polytope
in Dn by Theorem 6.5.7. By the argument in the proof of Theorem 6.4.7,
the vertices of P are the generalized vertices of P . Therefore P has exactly
m + 1 generalized vertices. Thus P is a generalized m-simplex.
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Theorem 6.5.11. An m-dimensional generalized polytope P in Dn, with
m > 1, has at least m + 1 sides.

Proof: By Theorem 6.5.7, we have that P is a polytope in En. By
Theorem 6.4.2, the sides of P are the closures of the sides of P . Now by
6.5.3, we have that P has at least m + 1 sides. Therefore P has at least
m + 1 sides.

Theorem 6.5.12. An m-dimensional generalized polytope P in Dn, with
m > 1, is a generalized m-simplex if and only if P has exactly m+1 sides.

Proof: By Theorem 6.5.7, we have that P is a polytope in En. By
Theorem 6.5.10, we have that P is a generalized m-simplex if and only if P
is an m-simplex in En. By Theorem 6.4.2, the sides of P are the closures
of the sides of P . Therefore P is a generalized m-simplex if and only if P
has exactly m + 1 sides by Theorem 6.5.4.

Definition: An ideal polytope in Dn is a generalized polytope in Dn all
of whose generalized vertices are ideal.

Definition: An ideal m-simplex in Dn is a generalized m-simplex in Dn

all of whose generalized vertices are ideal.

Example: Let v0, . . . , vm be m + 1 affinely independent vectors in Sn−1,
with m > 0. Then their convex hull is a Euclidean m-simplex ∆ inscribed
in Sn−1. Therefore ∆ minus its vertices is an ideal m-simplex in Dn by
Theorem 6.5.10.

Theorem 6.5.13. Let P be a generalized polytope in Dn that is not a
geodesic of Dn. Then the group of symmetries of P in 〈P 〉 is finite.

Proof: Let Γ be the group of symmetries of P in 〈P 〉. Then Γ permutes
the generalized vertices of P . Let g be an element of Γ that fixes all the
generalized vertices of P . We claim that g = 1. The proof is by induction
on m = dimP . This is certainly true if m = 0, so assume that m > 0,
and the claim is true for all (m − 1)-dimensional generalized polytopes in
Dn that are not geodesics. Let v be a generalized vertex of P . Then P
has a side S that is not incident with v, since P is the convex hull of its
generalized vertices and P is not a geodesic. If S is a geodesic of Dn, then
g = 1, since g fixes the endpoints of S and v. If S is not a geodesic, then
by the induction hypothesis, g is the identity on 〈S〉. Therefore g = 1
by Theorem 4.3.6. Hence Γ injects into the group of permutations of the
generalized vertices of P . Therefore Γ is finite.
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Regular Polytopes

Let P be an m-dimensional polytope in X. A flag of P is a sequence
(F0, F1, . . . , Fm) of faces of P such that dimFi = i for each i and Fi is a
side of Fi+1 for each i < m. Let F be the set of all flags of P and let Γ be
the group of symmetries of P in 〈P 〉. Then Γ acts on F by

g(F0, F1, . . . , Fm) = (gF0, gF1, . . . , gFm).

Definition: A regular polytope in X is a polytope P in X whose group of
symmetries in 〈P 〉 acts transitively on the set of its flags.

Theorem 6.5.14. Let P be a regular polytope in X. Then all the sides of
P are congruent regular polytopes and all the links of the vertices of P that
are equidistant from the vertices are congruent regular polytopes.

Proof: Let Γ be the group of symmetries of P in 〈P 〉. Observe that
(F0, F1, . . . , Fm) is a flag of P if and only if (F0, F1, . . . , Fm−1) is a flag of
the side Fm−1 of P . As Γ acts transitively on the set of flags of P , we have
that Γ acts transitively on the set of sides of P and on the set of flags of
each side of P . Thus all the sides of P are congruent regular polytopes.

Let r > 0 be such that r is less than the distance from any vertex v
of P to any side of P not containing v, and let Σ(v) = S(v, r). Then
L(v) = P ∩ Σ(v) is a link of v in P for each vertex v of P . By Theorem
6.4.1, we have that (F0, F1, . . . , Fm) is a flag of P if and only if(

F1 ∩ Σ(F0), F2 ∩ Σ(F0), . . . , Fm ∩ Σ(F0)
)

is a flag of the link L(F0) of the vertex F0 of P . As Γ acts transitively on
the set of flags of P , we have that Γ acts transitively on the set of links of
the vertices of P at a distance r from each vertex, and on the set of flags of
each such link. Thus all the links of the vertices of P at a distance r from
each vertex are congruent regular polytopes.

Lemma 1. If (F0, F1, . . . , Fm) and (G0, G1, . . . , Gm) are flags of a regular
polytope P in X, then there is a unique symmetry g of P in 〈P 〉 such that

g(F0, F1, . . . , Fm) = (G0, G1, . . . , Gm).

Proof: Assume first that

(G0, G1, . . . , Gm) = (F0, F1, . . . , Fm).

We prove that g = 1 by induction on m. This is certainly true if m = 0,
so assume m > 0 and the result is true in dimension m − 1. Now we have

g(F0, F1, . . . , Fm−1) = (F0, F1, . . . , Fm−1),

and so g is the identity on 〈Fm−1〉 by the induction hypothesis. Now as
gFm = Fm, we have that g = 1 by Theorem 4.3.6.



§6.5. Polytopes 229

We now return to the general case. Suppose h is another symmetry of
P in 〈P 〉 such that

h(F0, F1, . . . , Fm) = (G0, G1, . . . , Gm).

Then
h−1g(F0, F1, . . . , Fm) = (F0, F1, . . . , Fm).

Hence h−1g = 1 by the first case, and so g = h. Thus g is unique.

Lemma 2. If P and Q are congruent regular polytopes in X such that P
and Q share a common side S, and P and Q lie on the same side of the
half-space of 〈P 〉 bounded by 〈S〉, then P = Q.

Proof: Let g be an isometry of 〈P 〉 such that gP = Q. Then gS is a side
T of Q. The group of symmetries of Q in 〈P 〉 acts transitively on the set
of sides of Q, and so there is a symmetry h of Q in 〈P 〉 such that hT = S.
Then we have hgS = S.

Let (F0, F1, . . . , Fm−1) be a flag of S. Then hg(F0, F1, . . . , Fm−1) is a
flag of S. Let f be a symmetry of Q in 〈P 〉 such that

f(F0, F1, . . . , Fm−1, Q) = (hgF0, hgF1, . . . , hgFm−1, Q).

Then we have that

f(F0, F1, . . . , Fm−1) = hg(F0, F1, . . . , Fm−1),

and so f agrees with hg on S by Lemma 1. Observe that hg maps the half-
space of 〈P 〉 bounded by 〈S〉 and containing P onto itself. Therefore f = hg
by Theorem 4.3.6. Hence g is a symmetry of Q, and so P = g−1Q = Q.

Lemma 3. If S and T are sides of a compact convex polyhedron P in X,
then there is a finite sequence S1, S2, . . . , Sk of sides of P such that S = S1,
the sides Si and Si+1 are adjacent for each i = 1, . . . , k − 1, and Sk = T .

Proof: The proof is by induction on m = dimP . This is clear if m = 1,
so assume m > 1, and the result is true in dimension m − 1. If P has no
sides, then there is nothing to prove, so assume that P has a side S. Let U
be the union of all the sides of P that can be joined to S by a sequence of
sides as in the statement of the lemma. Then U is a closed subset of ∂P .

We now prove that U is an open subset of ∂P . Let x be a point of U .
Choose r such that 0 < r < π/2 and r is less than the distance from x to
any side of P not containing x. By Theorem 6.4.1, the set P ∩ S(x, r) is
an (m − 1)-dimensional convex polyhedron in S(x, r); moreover if S(x) is
the set of sides of P containing x, then

{R ∩ S(x, r) : R ∈ S(x)}

is the set of sides of P ∩S(x, r). By the induction hypothesis, any two sides
of P ∩ S(x, r) can be joined by a sequence of sides as in the statement of
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the lemma. Therefore any two sides of P containing x can be joined by a
sequence of sides as in the statement of the lemma. Therefore all the sides
of P containing x are in U , and so B(x, r) ∩ ∂P is contained in U . Thus U
is open in ∂P .

Let a be a point of P ◦, and let r > 0 such that

C(a, r) ∩ 〈P 〉 ⊂ P ◦.

Then radial projection from a maps S(a, r) ∩ 〈P 〉 homeomorphically onto
∂P . See Exercise 6.2.7. Therefore ∂P is connected. As U is both open and
closed in ∂P , we have that U = ∂P . Thus S can be joined to any side of
P by a sequence of sides as in the statement of the lemma.

Theorem 6.5.15. Let P be a polytope in X. Then P is regular if and
only if all the sides of P are congruent regular polytopes and all the dihedral
angles of P are equal.

Proof: Suppose that P is regular. Then all the sides of P are congruent
regular polytopes and all the links of the vertices equidistant from the
vertices are congruent regular polytopes by Theorem 6.5.14. We prove
that all the dihedral angles of P are equal by induction on m = dimP .
This is clear if m = 1, so assume m > 1, and the result is true in dimension
m − 1. Then all the dihedral angles of the links of the vertices of P are
equal. Hence all the dihedral angles of P are equal by Theorem 6.4.1.

Conversely, suppose that all the sides of P are congruent regular poly-
topes and all the dihedral angles of P are equal. We may assume that
m > 1. Let (F0, F1, . . . , Fm) and (G0, G1, . . . , Gm) be flags of P . Then
Fm−1 and Gm−1 are sides of P , and so are congruent regular polytopes.
Hence there is an isometry g of 〈P 〉 such that

g(F0, F1, . . . , Fm−1) = (G0, G1, . . . , Gm−1),

and g maps P into the half-space of 〈P 〉 bounded by 〈Gm−1〉 that contains
P . It remains to only to show that gP = P .

Let S be a side of P that is adjacent to Fm−1 along the ridge R. Let
T be the side of P that is adjacent to Gm−1 along the ridge gR. The
dihedral angle of P between the adjacent sides Fm−1 and S is the same as
the dihedral angle of P between the adjacent sides Gm−1 and T . Therefore
the dihedral angle of gP between the adjacent sides Gm−1 and gS is the
same as the dihedral angle of P between the adjacent sides Gm−1 and T .
Hence 〈gS〉 = 〈T 〉. Thus gS and T are congruent regular polytopes such
that gS and T share a common side gR, and gS and T lie on the same side
of the half-space of 〈T 〉 bounded by 〈gR〉. Hence gS = T by Lemma 2. It
follows by induction and Lemma 3 that g maps each side of P onto a side
of P . Therefore gP = P by Theorem 6.3.2. Thus we have

g(F0, F1, . . . , Fm) = (G0, G1, . . . , Gm).

Therefore P is regular.
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Theorem 6.5.16. Let P be a regular polytope in X. Then P is inscribed
in a sphere of 〈P 〉 centered at the centroid of P .

Proof: Let Γ be the group of symmetries of P . Then Γ acts transitively
on the vertices v1, . . . , vk of P . Now each element of Γ fixes the centroid c
of P by Theorem 6.5.6. Therefore

d(c, v1) = d(c, vi) for each i.

Hence P is inscribed in the sphere of 〈P 〉 centered at c of radius d(c, v1).

Two polytopes P and Q are said to be combinatorially equivalent if there
is a bijection φ from the set of faces of P to the set of faces of Q such that
if E and F are faces of P , then E ⊂ F if and only if φ(E) ⊂ φ(F ).

Let P be a regular polytope in X. The dual P ′ of P is the convex hull
of the set C of centroids of the sides of P . It is an exercise to prove that P ′

is a regular polytope in X whose dual P ′′ is combinatorially equivalent to
P . The vertices of P ′ are the centroids of the sides of P . The links of the
vertices of P ′ are combinatorially equivalent to the duals of the sides of P .
The sides of P ′ are in one-to-one correspondence with the vertices of P . If
v is a vertex of P and if Cv is the set of centroids of the sides of P that
contain v, then the convex hull of Cv is the side of P ′ corresponding to v.
The sides of P ′ are combinatorially equivalent to the duals of the links of
the vertices of P .

Schläfli Symbols

There is a nice notation for a regular polytope P in X that neatly describes
its combinatorial geometry called the Schläfli symbol of P . The Schläfli
symbol of an m-dimensional regular polytope P in X, with m > 1, is
defined inductively as follows. If m = 2, the Schläfli symbol of P is {
}
where 
 is the number of sides of P . If m > 2, the Schläfli symbol of P
is {
1, . . . , 
m−1} where {
1, . . . , 
m−2} is the Schläfli symbol of a side of P
and {
2, . . . , 
m−1} is the Schläfli symbol of the link of a vertex of P . The
overlapping of the terms in a Schläfli symbol is consistent, since the link
of a vertex of a side of P is a side of the link of a vertex of P by Theorem
6.4.1. A regular polygon and its dual have the same Schläfli symbol, and
it follows by induction on dimension that if {
1, . . . , 
m−1} is the Schläfli
symbol of a regular polytope P , then the Schläfli symbol of its dual P ′ is
{
m−1, . . . , 
1}.

The regular polytopes in X are completely classified. First, we consider
the classification of Euclidean regular polytopes.

(1) A 1-dimensional, Euclidean, regular polytope is a line segment.

(2) A 2-dimensional, Euclidean, regular polytope is a regular polygon.
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(3) A 3-dimensional, Euclidean, regular polytope is a regular solid. Up
to similarity, there are just five regular solids, the regular tetrahe-
dron, hexahedron, octahedron, dodecahedron, and icosahedron, with
Schläfli symbols {3, 3}, {4, 3}, {3, 4}, {5, 3}, and {3, 5}, respectively.

(4) Up to similarity, there are six 4-dimensional, Euclidean, regular poly-
topes. They are called the 5-cell, 8-cell, 16-cell, 24-cell, 120-cell, and
600-cell. An 
-cell has 
 sides. Their Schläfli symbols are {3, 3, 3},
{4, 3, 3}, {3, 3, 4}, {3, 4, 3}, {5, 3, 3}, and {3, 3, 5}, respectively.

(5) If m ≥ 5, then up to similarity there are just three m-dimensional,
Euclidean, regular polytopes, the regular m-simplex with m+1 sides
and Schläfli symbol {3, . . . , 3}, the m-cube with 2m sides and Schläfli
symbol {4, 3, . . . , 3}, and its dual with 2m sides and Schläfli symbol
{3, . . . , 3, 4}.

The classification of regular polytopes in Sn and Hn is essentially the
same as the classification of regular polytopes in En. The only difference is
that in Sn and Hn regular polytopes of the same combinatorial type come
in different nonsimilar sizes.

Theorem 6.5.17. Let P be a polytope in Sn. Then P is regular, with
centroid en+1, if and only if the gnomonic projection of P into En is regular
with centroid 0.

Proof: We may assume that 〈P 〉 = Sn. Suppose that P is regular with
centroid en+1. Let A be a symmetry of P . Then A is an element of O(n+1)
that fixes en+1. Hence, the restriction of A to En is an element A of O(n).
The gnomonic projection of Sn

+ onto En is given by φ(x) = x/xn+1, where
x = (x1, . . . , xn). Observe that

φ(Ax) = Ax/(Ax)n+1 = Ax/xn+1 = Aφ(x).

Therefore, we have
Aφ(P ) = φ(AP ) = φ(P ).

Hence A is a symmetry of φ(P ). Therefore φ(P ) is regular in En. Let
v1, . . . , vk be the vertices of P . Then we have

v1 + · · · + vk = |v1 + · · · + vk|en+1.

Therefore, we have v1 + · · · + vk = 0. Observe that

cos θ(vi, en+1) = vi · en+1 = (vi)n+1.

Therefore (v1)n+1 = (vi)n+1 for all i. Hence

(v1/(v1)n+1) + · · · + (vk/(vk)n+1)
k

=
v1 + · · · + vk

k(v1)n+1
= 0.

Thus, the centroid of φ(P ) is 0.
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Conversely, suppose that φ(P ) is regular with centroid 0. Let A be a
symmetry of φ(P ). Then A is an element of O(n). Let Â be the element of
O(n + 1) that extends A and fixes en+1. Then we have Aφ = φÂ. Hence,
we have

ÂP = Âφ−1φ(P ) = φ−1Aφ(P ) = φ−1φ(P ) = P.

Hence Â is a symmetry of P . Therefore P is regular.
Now since the symmetries of P of the form Â fix en+1 and act transitively

on the vertices of P , we deduce as before that (vi)n+1 = (v1)n+1 for all i.
Therefore

v1 + · · · + vk

k(v1)n+1
=

(v1/(v1)n+1) + · · · + (vk/(vk)n+1)
k

= 0.

Hence, we have
v1 + · · · + vk = 0.

Therefore, we have

v1 + · · · + vk = |v1 + · · · + vk|en+1.

Thus, the centroid of P is en+1.

Theorem 6.5.18. Let P be a polytope in Dn. Then P is regular with
centroid 0 if and only if P is regular in En with centroid 0.

Proof: The proof is the same as the proof of Theorem 6.5.17 with Sn

replaced by Hn.

Regular Ideal Polytopes

Let P be an ideal polytope in Dn. A flag of P is defined as before except
that vertices are now ideal.

Definition: A regular ideal polytope in Dn is an ideal polytope P in Dn

whose group of symmetries in 〈P 〉 acts transitively on the set of its flags.

Theorem 6.5.19. An ideal polytope P in Dn is regular if and only if P
is congruent to an ideal polytope in Dn whose closure in En is a regular
polytope in En.

Proof: We may assume that 〈P 〉 = Dn and n > 1. Let Γ be the group of
symmetries of P . Then Γ is finite by Theorem 6.5.13. Hence Γ fixes a point
of Dn by Theorems 5.5.1 and 5.5.2. By conjugating Γ, we may assume that
Γ fixes 0. Then every symmetry of P is a symmetry of P . Therefore, if P
is regular, then P is regular.

Conversely, suppose that P is regular. Then the centroid of P is 0,
since P is inscribed in Sn−1. See Exercises 6.5.5 and 6.5.7. Hence, every
symmetry of P is a symmetry of P . Therefore P is regular.
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Exercise 6.5

1. Prove that a subset S of En is an m-simplex if and only if S is the convex
hull of an affinely independent subset {v0, . . . , vm} of En.

2. An edge of a convex polyhedron P in X is a 1-face of P . Prove that an
m-dimensional polytope in X, with m > 1, has at least m(m + 1)/2 edges
and at least m(m + 1)/2 ridges.

3. Prove that an m-simplex in X has
(

m+1
k+1

)
k-faces for each k = 0, . . . , m.

4. Let P be a polytope in X. Prove that the centroid of P is in P ◦.
5. Prove that the centroid of a regular polytope P in X is the only point of 〈P 〉

fixed by all the symmetries of P in 〈P 〉.
6. Let ∆ be an m-simplex in En with m > 0. Prove that ∆ is inscribed in a

sphere of 〈∆〉.
7. Let P be a polytope in X that is inscribed in a sphere Σ of 〈P 〉. Prove that

Σ is unique.
8. Prove that the group of symmetries of a regular n-simplex in X is isomorphic

to the group of permutations of its vertices.
9. Let P and Q be combinatorially equivalent, n-dimensional, regular polytopes

in X. Prove that P and Q are similar if and only if the dihedral angle of P
is equal to the dihedral angle of Q.

10. Prove that a subset P of En is a polytope if and only if P is the convex hull
of a nonempty finite set of points of En.

11. Let P be a regular polytope in X. Prove that the dual P ′ of P is a regular
polytope in X whose dual P ′′ is combinatorially equivalent to P .

12. Let P be a regular ideal polytope in Dn. Prove that all the sides of P are
congruent regular ideal polytopes and all the links of ideal vertices of P are
similar regular polytopes.

§6.6. Fundamental Domains

Let Γ be a group acting on a metric space X. The orbit space of the action
of Γ on X is defined to be the set of Γ-orbits

X/Γ = {Γx : x ∈ X}
topologized with the quotient topology from X. The quotient map will be
denoted by π : X → X/Γ.

Recall that the distance between subsets A and B of X is defined to be
dist(A, B) = inf{d(x, y) : x ∈ A and y ∈ B}.

The orbit space distance function dΓ : X/Γ × X/Γ → R is defined by the
formula

dΓ(Γx,Γy) = dist(Γx,Γy). (6.6.1)

If dΓ is a metric on X/Γ, then dΓ is called the orbit space metric on X/Γ.
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Theorem 6.6.1. Let Γ be a group of isometries of a metric space X. Then
dΓ is a metric on X/Γ if and only if each Γ-orbit is a closed subset of X.

Proof: Let x, y be in X and let g, h be in Γ. Then

d(gx, hy) = d(x, g−1hy).

Therefore
dist(Γx,Γy) = dist(x,Γy).

Suppose that dΓ is a metric and Γx �= Γy. Then

dist(x,Γy) = dΓ(Γx,Γy) > 0.

Let r = dist(x,Γy). Then B(x, r) ⊂ X − Γy. Hence X − Γy is open and
therefore Γy is closed. Thus, each Γ-orbit is a closed subset of X.

Conversely, suppose that each Γ-orbit is a closed subset of X. If x, y are
in X and Γx �= Γy, then

dΓ(Γx,Γy) = dist(x,Γy) > 0.

Thus dΓ is nondegenerate.
Now let x, y, z be in X and let g, h be in Γ. Then

d(x, gy) + d(y, hz) = d(x, gy) + d(gy, ghz)
≥ d(x, ghz)
≥ dist(x,Γz).

Therefore
dist(x,Γz) ≤ dist(x,Γy) + dist(y, Γz).

Hence dΓ satisfies the triangle inequality. Thus dΓ is a metric on X/Γ.

Corollary 1. If Γ is a discontinuous group of isometries of a metric space
X, then dΓ is a metric on X/Γ.

Proof: By Theorem 5.3.4, each Γ-orbit is a closed subset of X.

Theorem 6.6.2. Let Γ be a group of isometries of a metric space X such
that dΓ is a metric on X/Γ. Then the metric topology on X/Γ, determined
by dΓ, is the quotient topology; if π : X → X/Γ is the quotient map, then
for each x in X and r > 0, we have

π(B(x, r)) = B(π(x), r).

Proof: Let x be in X and suppose that r > 0. Then clearly

π(B(x, r)) ⊂ B(π(x), r).

To see the reversed inclusion, suppose that y is in X and

dΓ(Γx,Γy) < r.
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Then we have dist(x, Γy) < r. Consequently, there is a g in Γ such that
d(x, gy) < r. Moreover, we have π(gy) = Γy. Thus, we have

π(B(x, r)) = B(π(x), r).

Hence π is open and continuous with respect to the metric topology on
X/Γ.

Let U be an open subset of X/Γ with respect the quotient topology.
Then π−1(U) is open in X. Therefore U = π(π−1(U)) is open in the
metric topology on X/Γ. Let x be in X and suppose that r > 0. Then

π−1(B(π(x), r)) = ∪
g∈Γ

B(gx, r).

Therefore B(π(x), r) is open in the quotient topology on X/Γ. Thus, the
metric topology on X/Γ determined by dΓ is the quotient topology.

Fundamental Regions

Definition: A subset R of a metric space X is a fundamental region for
a group Γ of isometries of X if and only if

(1) the set R is open in X;

(2) the members of {gR : g ∈ Γ} are mutually disjoint; and

(3) X = ∪{gR : g ∈ Γ}.

Theorem 6.6.3. If a group Γ of isometries of a metric space X has a
fundamental region, then Γ is a discrete subgroup of I(X).

Proof: Let x be a point of a fundamental region R for a group of isometries
Γ of a metric space X. Then gR ∩ Γx = {gx} for each g in Γ. Hence the
orbit Γx is discrete and the stabilizer Γx is trivial. Therefore Γ is discrete
by Lemma 7 of §5.3.

Definition: A subset D of a metric space X is a fundamental domain for
a group Γ of isometries of X if and only if D is a connected fundamental
region for Γ.

Example 1. Let α be the antipodal map of Sn. Then Γ = {1, α} is a
discrete subgroup of I(Sn) and any open hemisphere of Sn is a fundamental
domain for Γ. The orbit space Sn/Γ is elliptic n-space Pn.

Example 2. Let τi be the translation of En by ei for i = 1, . . . , n. Then
{τ1, . . . , τn} generates a discrete subgroup Γ of I(En). The open n-cube
(0, 1)n in En is a fundamental domain for Γ. The orbit space En/Γ is
similar to the n-torus (S1)n.
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Theorem 6.6.4. If R is a fundamental region for a group Γ of isometries
of a metric space X, then for each g �= 1 in Γ, we have

R ∩ gR ⊂ ∂R.

Proof: Let x be a point of R ∩ gR and let r be a positive real number.
Then B(x, r) contains a point of R, since x is in R, and a point of gR, since
x is in gR. As R and gR are disjoint, B(x, r) meets R and X − R. Hence
x is in ∂R. Thus ∂R contains R ∩ gR for each g �= 1 in Γ.

Theorem 6.6.5. If R is a fundamental region for a group Γ of isometries
of a metric space X and g is an element of Γ fixing a point of X, then g
is conjugate in Γ to an element h such that h fixes a point of ∂R.

Proof: This is certainly true if g = 1, so assume that g �= 1. Let x be a
fixed point of g. Then there is a point y of R and an element f of Γ such
that fx = y. Let h = fgf−1. Then h fixes y and h �= 1. Hence y is in ∂R
by Theorem 6.6.4.

Corollary 2. Let R be a fundamental region for a discrete group Γ of
isometries of En or Hn. If g is an elliptic element of Γ, then g is conjugate
in Γ to an element h such that h fixes a point of ∂R.

Proof: Every elliptic element of Γ has a fixed point.

Lemma 1. If Γ is a discrete group of isometries of Hn such that Hn/Γ is
compact, then there is an 
 > 0 such that d(x, hx) ≥ 
 for all x in Hn and
all nonelliptic h in Γ.

Proof: Let x be an arbitrary point of Hn and set

r(x) =
1
2
dist(x,Γx − {x}).

Then any two open balls in {B(gx, r(x)) : g ∈ Γ} are either the same or are
disjoint. Let π : Hn → Hn/Γ be the quotient map. As Hn/Γ is compact,
the open cover

{B(π(y), r(y)) : y ∈ Hn}
has a Lebesgue number 
 > 0. Hence, there is a y in Hn such that
B(π(y), r(y)) contains B(π(x), 
). Consequently the set

∪{B(gy, r(y)) : g ∈ Γ}
contains B(x, 
). As B(x, 
) is connected, there is a g in Γ such that
B(gy, r(y)) contains B(x, 
). By replacing y with gy, we may assume that
g = 1.

Now let h be an arbitrary nonelliptic element of Γ. As B(y, r(y))
and B(hy, r(y)) are disjoint, B(x, 
) and B(hx, 
) are disjoint. Therefore
d(x, hx) ≥ 
.
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Theorem 6.6.6. If Γ is a discrete group of isometries of Hn such that
Hn/Γ is compact, then every element of Γ is either elliptic or hyperbolic.

Proof: On the contrary, suppose that Γ has a parabolic element f . We
pass to the upper half-space model Un. Then we may assume, without
loss of generality, that f(∞) = ∞. Then f is the Poincaré extension of a
Euclidean isometry of En−1. By Theorem 4.6.1, we have for each t > 0,

cosh d(ten, f(ten)) = 1 +
|ten − f(ten)|

2t2

= 1 +
|en − f(en)|

2t2
.

Hence
lim

t→∞ cosh d(ten, f(ten)) = 1.

Therefore
lim

t→∞ d(ten, f(ten)) = 0.

But this contradicts Lemma 1.

Corollary 3. If Γ is a discrete group of isometries of Hn with a parabolic
element, then every fundamental region for Γ is unbounded.

Proof: Let R be a fundamental region for Γ. If R were bounded, then
R would be compact; but the quotient map π : Hn → Hn/Γ maps R onto
Hn/Γ, and so Hn/Γ would be compact contrary to Theorem 6.6.6.

Locally Finite Fundamental Regions

Definition: A fundamental region R for a group Γ of isometries of a
metric space X is locally finite if and only if {gR : g ∈ Γ} is a locally finite
family of subsets of X.

Example: Every fundamental region of a discrete group Γ of isometries
of Sn is locally finite, since Γ is finite.

Let R be a fundamental region for a discontinuous group Γ of isometries
of a metric space X, and let R/Γ be the collection of disjoint subsets of R,

{Γx ∩ R : x ∈ R},

topologized with the quotient topology. At times, it will be useful to adopt
R/Γ as a geometric model for X/Γ. The importance of local finiteness in
this scheme is underscored by the next theorem.

Theorem 6.6.7. If R is a fundamental region for a discontinuous group
Γ of isometries of a metric space X, then the inclusion ι : R → X induces
a continuous bijection κ : R/Γ → X/Γ, and κ is a homeomorphism if and
only if R is locally finite.
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Proof: The map κ is defined by κ(Γx ∩ R) = Γx. If x, y are in R and
Γx = Γy, then we have

Γx ∩ R = Γy ∩ R.

Therefore κ is injective. If x is in X, then there is a g in Γ such that x
is in gR whence g−1x is in R, and so Γx ∩ R is nonempty. Therefore κ is
surjective.

Let η : R → R/Γ be the quotient map. Then we have a commutative
diagram

R
ι→ X

η ↓ ↓ π

R/Γ κ→ X/Γ.

This implies that κ is continuous. Thus κ is a continuous bijection.
Now assume that R is locally finite. To prove that κ is a homeomor-

phism, it suffices to show that κ is an open map. Let U be an open subset
of R/Γ. As η is continuous and surjective, there is an open subset V of X
such that η−1(U) = R ∩ V and η(R ∩ V ) = U . Let

W = ∪
g∈Γ

g(R ∩ V ).

Then we have

π(W ) = π(R ∩ V )
= πι(R ∩ V )
= κη(R ∩ V ) = κ(U).

In order to prove that κ(U) is open, it suffices to prove that W is open in
X, since π is an open map.

Let w be in W . We need to show that there is an r > 0 such that
B(w, r) ⊂ W . As W is Γ-invariant, we may assume that w is R ∩ V . As
R is locally finite, there is an r > 0 such that B(w, r) meets only finitely
many Γ-images of R, say g1R, . . . , gmR. Then we have

B(w, r) ⊂ g1R ∪ · · · ∪ gmR.

If giR does not contain w, then B(w, r) − giR is an open neighborhood of
w, and so we may shrink r to avoid giR. Thus, we may assume that each
giR contains w. Then g−1

i w is in R for each i. As η(g−1
i w) = η(w), we

have that g−1
i w is in η−1(U) = R ∩ V . Hence w is in giV for each i. By

shrinking r still further, we may assume that

B(w, r) ⊂ g1V ∩ · · · ∩ gmV.

Consequently B(w, r) ⊂ W , since if x is in B(w, r), then x is in both giR
and giV for some i, and so x is in gi(R ∩ V ), which is contained in W .
Therefore W is open and κ is an open map. Thus κ is a homeomorphism.

Conversely, suppose that κ is a homeomorphism and on the contrary
there is a point y of X at which R is not locally finite. Then there is a



240 6. Geometry of Discrete Groups

sequence {xi}∞
i=1 of points in R and a sequence {gi}∞

i=1 of distinct elements
of Γ such that gixi → y. As gR is open and disjoint from every other
Γ-image of R, the point y is not in any gR. Let

K = {x1, x2, . . .}.

As K ⊂ R, we have that π(y) is not in π(K).
We claim that K is closed in X. Let x be in X − K. Now Γy − {x} is a

closed subset of X by Theorem 5.3.4. Therefore

dist(x,Γy − {x}) > 0.

Now let
r =

1
2
dist(x,Γy − {x}).

As the gi are distinct, x is equal to at most finitely many g−1
i y, since Γy is

finite. Thus d(x, g−1
i y) ≥ 2r for large enough i. As gixi → y, we have that

d(gixi, y) < r for large enough i. Hence, for large enough i, we have

2r ≤ d(x, g−1
i y) ≤ d(x, xi) + d(xi, g

−1
i y)

and
r < 2r − d(gixi, y) ≤ d(x, xi).

Thus B(x, r) contains only finitely many points of K, and so there is an
open ball centered at x avoiding K. Thus X−K is open and so K is closed.

As K ⊂ R, we have that η−1(η(K)) = K, and so η(K) is closed in R/Γ.
Therefore κη(K) = π(K) is closed in X/Γ, since κ is a homeomorphism.
As π is continuous, we have π(gixi) → π(y), that is, π(xi) → π(y). As
π(K) is closed, π(y) is in π(K), which is a contradiction. Thus R is locally
finite.

Theorem 6.6.8. Let x be a boundary point of a locally finite fundamental
region R for a group Γ of isometries of a metric space X. Then ∂R ∩ Γx
is finite and there is an r > 0 such that if N(R, r) is the r-neighborhood of
R in X, then

N(R, r) ∩ Γx = ∂R ∩ Γx.

Proof: As R is locally finite, there is an r > 0 such that B(x, r) meets
only finitely many Γ-images of R, say g−1

1 R, . . . , g−1
m R. By shrinking r, if

necessary, we may assume that x is in each g−1
i R. Suppose that gx is also

in ∂R. Then x is in g−1R and so g = gi for some i. Hence

∂R ∩ Γx ⊂ {g1x, . . . , gmx}.

Moreover, for each i, there is a yi in ∂R such that x = g−1
i yi. Therefore

∂R ∩ Γx = {g1x, . . . , gmx}.

Next, suppose that d(gx, y) < r with y in R. Then d(x, g−1y) < r. Hence
g is in {g1, . . . , gm} and so gx is in ∂R. Thus

N(R, r) ∩ Γx = ∂R ∩ Γx.
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Theorem 6.6.9. Let R be a fundamental region for a discontinuous group
Γ of isometries of a locally compact metric space X such that X/Γ is com-
pact. Then R is locally finite if and only if R is compact.

Proof: Suppose that R is compact. Then the map κ : R/Γ → X/Γ is a
continuous bijection from a compact space to a Hausdorff space and so is
a homeomorphism. Therefore R is locally finite by Theorem 6.6.7.

Conversely, suppose that R is locally finite and on the contrary R is not
compact. Then R is not countably compact, since R is a metric space.
Hence, there is an infinite sequence {xi} in R that has no convergent sub-
sequence. As X/Γ is compact, {π(xi)} has a convergent subsequence. By
passing to this subsequence, we may assume that {π(xi)} converges in X/Γ.
As the quotient map π maps R onto X/Γ, there is a point x of R such that
π(xi) → π(x). As π maps R homeomorphically onto π(R), the point x
must be in ∂R. By Theorem 6.6.8, there is an r > 0 such that

N(R, r) ∩ Γx = ∂R ∩ Γx.

Moreover, there are only finitely many elements g1, . . . , gm of Γ such that

∂R ∩ Γx = {g1x, . . . , gmx}.

By shrinking r, if necessary, we may assume that C(gix, r) is compact for
each i = 1, . . . , m. As π(xi) → π(x), there is a k > 0 such that

dist(Γxi, Γx) < r

for all i ≥ k. Hence, there is a hi in Γ for each i ≥ k such that

d(xi, hix) < r.

Now since
N(R, r) ∩ Γx = ∂R ∩ Γx,

we have hix = gjx for some j = 1, . . . , m. Hence xi is in the compact set

C(g1x, r) ∪ · · · ∪ C(gmx, r)

for all i ≥ k. But this implies that {xi} has a convergent subsequence,
which is a contradiction. Thus R is compact.

Rigid Metric Spaces

Definition: A metric space X is rigid if and only if the only similarity
of X that fixes each point of a nonempty open subset of X is the identity
map of X.

Theorem 6.6.10. If X is a geodesically connected and geodesically com-
plete metric space, then X is rigid.
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Proof: Let φ be a similarity of X that fixes each point of a nonempty
open subset W of X. Then the scale factor of φ is one, and so φ is an
isometry of X. Let w be a point of W and let x be an arbitrary point of
X not equal to w. Then there is a geodesic line λ : R → X whose image
contains w and x. Observe that

φλ : R → X

is also a geodesic line and φλ agrees with λ on the open set λ−1(W ). As
every geodesic arc in X extends to a unique geodesic line, we deduce that
φλ = λ. Therefore φ(x) = x. Hence φ = 1. Thus X is rigid.

Example: It follows from Theorem 6.6.10 that Sn, En, and Hn are rigid
metric spaces.

Definition: A subset F of a metric space X is a fundamental set for a
group Γ of isometries of X if and only if F contains exactly one point from
each Γ-orbit in X.

Theorem 6.6.11. An open subset R of a rigid metric space X is a fun-
damental region for a group Γ of isometries of X if and only if there is a
fundamental set F for Γ such that R ⊂ F ⊂ R.

Proof: Suppose that R is a fundamental region for Γ. Then the members
of {gR : g ∈ Γ} are mutually disjoint. Therefore R contains at most one
element from each Γ-orbit in X. Now since

X = ∪{gR : g ∈ Γ},

there is a fundamental set F for Γ such that R ⊂ F ⊂ R by the axiom of
choice.

Conversely, suppose there is a fundamental set F for the group Γ such
that R ⊂ F ⊂ R, and suppose that g, h are elements of Γ such that gR∩hR
is nonempty. Then there are points x, y of R such that gx = hy. Hence
h−1gx = y. As x and y are in F , we deduce that h−1gx = x. Therefore
h−1g fixes each point of R∩g−1hR. As X is rigid, h−1g = 1, and so g = h.
Thus, the members of {gR : g ∈ Γ} are mutually disjoint.

Now as F ⊂ R, we have

X = ∪
g∈Γ

gF = ∪
g∈Γ

gR.

Thus R is a fundamental region for Γ.

If R is a fundamental region for a group Γ of isometries of a metric space
X, then the stabilizer of every point of R is trivial. We next consider an
example of a discontinuous group of isometries of a metric space X such
that every point of X is fixed by some g �= 1 in Γ. Hence, this group does
not have a fundamental region.
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Example: Let X be the union of the x-axis and y-axis of E2, and let

Γ = {1, ρ, σ, α}
where ρ and σ are the reflections in the x-axis and y-axis, respectively, and
α is the antipodal map. Then Γ is a discontinuous group of isometries of
X, since Γ is finite. Observe that every point of X is fixed by a nonidentity
element of Γ. Hence Γ has no fundamental region. Moreover X is not rigid.

Theorem 6.6.12. Let Γ be a discontinuous group of isometries of a rigid
metric space X. Then there is a point x of X whose stabilizer Γx is trivial.

Proof: Since Γ is discontinuous, the stabilizer of each point of X is finite.
Let x be a point of X such that the order of the stabilizer subgroup Γx is
as small as possible. Let s be half the distance from x to Γx − {x}. Then
for each g in Γ, we have that B(x, s) meets B(gx, s) if and only if gx = x.
Hence, for each point y in B(x, s), we have that Γy ⊂ Γx, and so Γy = Γx

because of the minimality of the order of Γx. Hence, every point of B(x, s)
is fixed by every element of Γx. Therefore Γx = {1}, since X is rigid.

Dirichlet Domains

Let Γ be a discontinuous group of isometries of a metric space X, and let
a be a point of X whose stabilizer Γa is trivial. For each g �= 1 in Γ, define

Hg(a) = {x ∈ X : d(x, a) < d(x, ga)}.

Note that the set Hg(a) is open in X. Moreover, if X = Sn, En, or Hn, then
Hg(a) is the open half-space of X containing the point a whose boundary
is the perpendicular bisector of every geodesic segment joining a to ga. See
Figure 6.6.1. The Dirichlet domain D(a) for Γ, with center a, is either X
if Γ is trivial or

D(a) = ∩{Hg(a) : g �= 1 in Γ}
if Γ is nontrivial.

Hg(a)

a

ga

Figure 6.6.1. The half-space Hg(a)
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Theorem 6.6.13. Let D(a) be the Dirichlet domain, with center a, for a
discontinuous group Γ of isometries of a metric space X such that

(1) X is geodesically connected;

(2) X is geodesically complete;

(3) X is finitely compact.

Then D(a) is a locally finite fundamental domain for Γ.

Proof: This is clear if Γ is trivial, so assume that Γ is nontrivial. Let
r > 0. Then C(a, r) is compact. Hence C(a, r) contains only finitely many
points of an orbit Γx, since Γ is discontinuous. Let Kg = X−Hg(a) for each
g �= 1 in Γ. Then Kg is closed in X. We next show that {Kg : g �= 1 in Γ}
is a locally finite family of sets in X. Suppose that B(a, r) meets Kg in a
point x. Then we have

d(a, ga) ≤ d(a, x) + d(x, ga)
≤ d(a, x) + d(x, a) < 2r.

Hence B(a, 2r) contains ga. As B(a, 2r) contains only finitely many points
of Γa, the ball B(a, r) meets only finitely many of the sets Kg. Therefore
{Kg : g �= 1 in Γ} is a locally finite family of closed sets in X. Hence

X − D(a) = ∪{Kg : g �= 1 in Γ}

is a closed set. Thus D(a) is open.
From each orbit Γx, choose a point nearest to a and let F be the set

of chosen points. Then F is a fundamental set for Γ. If x is in D(a) and
g �= 1 in Γ, then

d(x, a) < d(x, ga) = d(g−1x, a),

and so x is the unique nearest point of the orbit Γx to a. Thus D(a) ⊂ F .
Let x be an arbitrary point of F not equal to a and let g �= 1 be in Γ.

Then we have
d(x, a) ≤ d(g−1x, a) = d(x, ga).

Let [a, x] be a geodesic segment in X joining a to x. Let y be a point of
the open segment (a, x). Then

d(y, a) = d(x, a) − d(x, y)
≤ d(x, ga) − d(x, y) ≤ d(y, ga)

with equality if and only if

d(x, a) = d(x, ga) = d(x, y) + d(y, ga).

Suppose that we have equality. Let [x, y] be the geodesic segment in
[x, a] joining x to y and let [y, ga] be a geodesic segment in X joining y to
ga. By Theorem 1.4.2, we have that [x, y] ∪ [y, ga] is a geodesic segment
[x, ga] in X joining x to ga. Now [x, a] and [x, ga] both extend [x, y] and
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have the same length. Therefore [x, a] = [x, ga], since X is geodesically
complete. Hence a = ga, which is a contradiction. Therefore, we must
have d(y, a) < d(y, ga). Hence y is in Hg(a) for all g �= 1 in Γ. Therefore y
is in D(a). Hence [a, x) ⊂ D(a). Therefore x is in D(a). Hence F ⊂ D(a).
Thus D(a) is a fundamental region for Γ by Theorems 6.6.10 and 6.6.11.
Moreover, if x is in D(a), then [a, x] ⊂ D(a), and so D(a) is connected.

It remains only to show that D(a) is locally finite. Suppose r > 0 and
B(a, r) meets gD(a) for some g in Γ. Then there is a point x in D(a) such
that d(a, gx) < r. Moreover

d(a, ga) ≤ d(a, gx) + d(gx, ga)
< r + d(x, a)
≤ r + d(x, g−1a)
= r + d(gx, a) < 2r.

But this is possible for only finitely many g. Thus D(a) is locally finite.

Theorem 6.6.14. Let D(a) be the Dirichlet domain, with center a, for a
discontinuous group Γ of isometries of a metric space X such that

(1) X is geodesically connected;

(2) X is geodesically complete;

(3) X is finitely compact.

Then
D(a) = {x ∈ X : x is a nearest point of Γx to a}.

Proof: This is clear if Γ is trivial, so assume that Γ is nontrivial. For
each g �= 1 in Γ, define

Lg = {x ∈ X : d(x, a) ≤ d(x, ga)}.

Then Lg is a closed subset of X containing Hg. Now since

Lg = {x ∈ X : d(x, a) ≤ d(g−1x, a)},

we have

∩{Lg : g �= 1 in Γ} = {x ∈ X : x is a nearest point of Γx to a}.

Moreover, since

D(a) = ∩{Hg(a) : g �= 1 in Γ},

we have that
D(a) ⊂ ∩{Lg : g �= 1 in Γ}.

Now suppose that x is a nearest point of Γx to a. Then we can choose a
fundamental set F for Γ containing x such that each point of F is a nearest
point in its orbit to a. From the proof of Theorem 6.6.13, we have that
F ⊂ D(a). Thus x is in D(a). Therefore

D(a) = {x ∈ X : x is a nearest point of Γx to a}.
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Exercise 6.6

1. Let R be a fundamental region for a group Γ of isometries of a metric space
X, and let R̂ be the topological interior of R. Prove that R̂ is the largest
fundamental region for Γ containing R.

2. Let Γ be a group of isometries of a connected metric space X with a locally
finite fundamental region R. Prove that Γ is generated by

{g ∈ Γ : R ∩ gR �= ∅}.

3. Let Γ be a discontinuous group of isometries of a connected metric space X
with a fundamental region R such that R is compact. Prove that

(1) Γ is finitely generated, and

(2) Γ has only finitely many conjugacy classes of elements with fixed points.

4. Let Γ be the subgroup of I(C) generated by the translations of C by 1 and i.
Find a fundamental domain for Γ that is not locally finite.

5. Let Γ be a discontinuous group of isometries of a metric space X that has a
fundamental region. Prove that the set of points of X that are not fixed by
any g �= 1 in Γ is an open dense subset of X.

6. Prove that the set Hg(a) used in the definition of a Dirichlet domain is open.

7. Let D(a) be a Dirichlet domain, with center a, for a group Γ as in Theorem
6.6.14. Prove that if x is in ∂D(a), then ∂D(a) ∩ Γx is a finite set of points
that are all equidistant from a.

§6.7. Convex Fundamental Polyhedra

Throughout this section, X = Sn, En, or Hn with n > 0. Let Γ be a
discrete group of isometries of X. By Theorem 6.6.12, there is a point a
of X whose stabilizer Γa is trivial. Let D(a) be the Dirichlet domain for Γ
with center a. Then D(a) is convex, since by definition D(a) is either X or
the intersection of open half-spaces of X. By Theorem 6.6.13, we have that
D(a) is a locally finite fundamental domain for Γ. Hence Γ has a convex,
locally finite, fundamental domain.

Lemma 1. If D is a convex, locally finite, fundamental domain for a dis-
crete group Γ of isometries of X, then for each point x of ∂D, there is a g
in Γ such that g �= 1 and x is in D ∩ gD.

Proof: As D is locally finite, there is an r > 0 such that B(x, r) meets
only finitely many Γ-images of D, say g1D, . . . , gmD with g1 = 1. By
shrinking r, if necessary, we may assume that x is in each giD. As D is
convex, ∂D = ∂D. Therefore B(x, r) contains a point not in D. Hence
m > 1. Thus, there is a g in Γ such that g �= 1 and x is in gD.
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Theorem 6.7.1. If D is a convex, locally finite, fundamental domain for
a discrete group Γ of isometries of X, then D is a convex polyhedron.

Proof: Since D is convex in X, we have that D is closed and convex in X.
Let S be the set of sides of D. We need to show that S is locally finite. Let
x be an arbitrary point of X. If x is in D, then D is a neighborhood of x
that meets no side of D. If x is in X −D, then X −D is a neighborhood of
x that meets no side of D. Hence, we may assume that x is in ∂D. As D is
locally finite, there is an r > 0 such that B(x, r) meets only finitely many
Γ-images of D, say g0D, . . . , gmD with g0 = 1. By shrinking r, if necessary,
we may assume that x is in each giD. Now for each i > 0, we have that
D ∩ giD is a nonempty convex subset of ∂D. By Theorem 6.2.6(1), there
is a side Si of D containing D ∩ giD. By Lemma 1, we have

B(x, r) ∩ ∂D ⊂
m
∪

i=1
(D ∩ giD).

Therefore
B(x, r) ∩ ∂D ⊂ S1 ∪ · · · ∪ Sm.

Now suppose that S is a side of D meeting B(x, r). Then B(x, r) meets
S◦, since S◦ = S. By Theorem 6.2.6(3), we have S = Si for some i. Thus
B(x, r) meets only finitely many sides of D. Hence S is locally finite. Thus
D is a convex polyhedron.

Definition: A fundamental region R for a discrete group Γ of isometries
of X is proper if and only if Vol(∂R) = 0, that is, ∂R is a null set in X.

Corollary 1. Every convex, locally finite, fundamental domain for a dis-
crete group Γ of isometries of X is proper.

Proof: Let D be a convex, locally finite, fundamental domain for Γ. Then
the sides of D form a locally finite family of null sets in X. Hence ∂D is
the union of a countable number of null sets, and so ∂D is a null set.

Theorem 6.7.2. If Γ is a discrete group of isometries of X, then all the
proper fundamental regions for Γ have the same volume.

Proof: Let R and S be proper fundamental regions for Γ. Observe that

X − ∪
g∈Γ

gS ⊂ ∪
g∈Γ

g∂S.

The group Γ is countable, since Γ is discrete. Hence, we have

Vol
(

∪
g∈Γ

g∂S
)

= 0.

Therefore, we have
Vol
(
X − ∪

g∈Γ
gS
)

= 0.
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Hence we have

Vol(R) = Vol
(
R ∩
(

∪
g∈Γ

gS
))

= Vol
(

∪
g∈Γ

R ∩ gS
)

=
∑
g∈Γ

Vol(R ∩ gS)

=
∑
g∈Γ

Vol(g−1R ∩ S) = Vol(S).

Definition: Let Γ be a discrete group of isometries of X. The volume of
X/Γ is the volume of a proper fundamental region for Γ in X.

Theorem 6.7.3. If H is a subgroup of a discrete group Γ of isometries of
X, then

Vol(X/H) = [Γ : H]Vol(X/Γ).

Proof: Let D be a Dirichlet domain for Γ. Then D is a proper funda-
mental domain for Γ. Let {gi}i∈I be a set of coset representatives H in Γ,
and set

R = ∪{giD : i ∈ I}.
Then R is open in X, since D is open in X. The members of {gD : g ∈ Γ}
are mutually disjoint. If h and h′ are in H, then hgiD = h′gjD if and only
if hgi = h′gj which is the case if and only if i = j and h = h′. Therefore
the members of {hR : h ∈ H} are mutually disjoint.

The set ∪{giD : i ∈ I} is closed in X, since D is locally finite. Therefore

R = ∪{giD : i ∈ I}.
Observe that

X = ∪{gD : g ∈ Γ}
= ∪{hgiD : h ∈ H and i ∈ I}
= ∪{h ∪ {giD : i ∈ I} : h ∈ H}
= ∪{hR : h ∈ H}.

Thus R is a fundamental region for H. As D is locally finite, we have

∂R ⊂ ∪{∂giD : i ∈ I} = ∪{gi∂D : i ∈ I}.
Hence Vol(∂R) = 0, since Vol(∂D) = 0 and Γ is countable. Thus R is
proper. Observe that

Vol(X/H) = Vol(R)
= Vol

(
∪ {giD : i ∈ I}

)
=
∑{

Vol(giD) : i ∈ I
}

= [Γ : H]Vol(D)
= [Γ : H]Vol(X/Γ).
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Fundamental Polyhedra

Definition: A convex fundamental polyhedron for a discrete group Γ of
isometries of X is a convex polyhedron P in X whose interior is a locally
finite fundamental domain for Γ.

Let Γ be a discrete group of isometries of X. By Theorem 6.7.1, the
closure D of any convex, locally finite, fundamental domain D for Γ is a
convex fundamental polyhedron for Γ. In particular, the closure D(a) of
any Dirichlet domain D(a) for Γ is a convex fundamental polyhedron for
Γ, called the Dirichlet polyhedron for Γ with center a.

Example: Let Γ be the group of all linear fractional transformations
φ(z) = az+b

cz+d with a, b, c, d integers and ad − bc = 1. Then Γ is a discrete
subgroup of I(U2) which is isomorphic to PSL(2, Z). Let T be the general-
ized hyperbolic triangle with vertices ± 1

2 +
√

3
2 i and ∞. See Figure 6.7.1.

Then T is the Dirichlet polygon for Γ with center ti for any t > 1.

Let Γ be a discrete group of isometries of X and let a be a point of X
whose stabilizer Γa is trivial. For each g �= 1 in Γ, define

Pg(a) = {x ∈ X : d(x, a) = d(x, ga)}.

Then Pg(a) is the unique hyperplane of X that bisects and is orthogonal
to every geodesic segment in X joining a to ga.

−1 0 1

T

− 1
2

1
2

Figure 6.7.1. A Dirichlet polygon T for PSL(2, Z)
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Theorem 6.7.4. Let S be a side of a Dirichlet domain D(a), with center
a, for a discrete group Γ of isometries of X. Then there is a unique element
g �= 1 of Γ that satisfies one (or all ) of the following three properties:

(1) 〈S〉 = Pg(a);

(2) S = D(a) ∩ gD(a);

(3) g−1S is a side of D(a).

Proof: (1) Since

∂D(a) ⊂ ∪{Pg(a) : g �= 1 in Γ},

we have that
S ⊂ ∪{Pg(a) : g �= 1 in Γ}.

Therefore
S = ∪{S ∩ Pg(a) : g �= 1 in Γ}.

Now S ∩ Pg(a) is a closed convex subset of X for each g �= 1 in Γ. As Γ is
countable, we must have

dim(S ∩ Pg(a)) = n − 1

for some g; otherwise, the (n − 1)-dimensional volume of S would be zero.
Now since

dim(S ∩ Pg(a)) = n − 1

we have that 〈S〉 = Pg(a).
Let g, h be elements of Γ such that

Pg(a) = 〈S〉 = Ph(a).

Since Pg(a) is the perpendicular bisector of a geodesic segment from a to
ga, we have that ga = ha. But a is fixed only by the identity element of Γ,
and so g = h. Thus, there is a unique element g of Γ such that 〈S〉 = Pg(a).

(2) By (1) there is a unique element g �= 1 of Γ such that S ⊂ Pg(a).
Let x be an arbitrary point of S. Then d(x, a) = d(x, ga). By Theorem
6.6.14, we have that x is a nearest point of Γx to a. Now

d(g−1x, a) = d(x, ga) = d(x, a).

Therefore g−1x is also a nearest point of Γx to a. Hence g−1x is in D(a)
by Theorem 6.6.14. Therefore g−1S ⊂ D(a). Hence

S ⊂ D(a) ∩ gD(a).

But D(a) ∩ gD(a) is a convex subset of ∂D(a). Therefore

S = D(a) ∩ gD(a),

since S is a maximal convex subset of ∂D(a).
Suppose that h is another nonidentity element of Γ such that

S = D(a) ∩ hD(a).
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Let x be an arbitrary point of S. Then h−1x is in D(a) and so

d(x, a) = d(h−1x, a) = d(x, ha).

Hence x is in Ph(a). Therefore S ⊂ Ph(a). Hence g = h by the uniqueness
of g in (1). Thus, there is a unique g �= 1 in Γ such that

S = D(a) ∩ gD(a).

(3) By (2), there is unique element g �= 1 of Γ such that

S = D(a) ∩ gD(a).

Then we have
g−1S = g−1D(a) ∩ D(a).

Therefore g−1S ⊂ ∂D(a). Hence, there is a side T of D(a) containing g−1S.
By (2) there is a unique element h �= 1 of Γ such that

T = D(a) ∩ hD(a).

Hence, we have
g−1S ⊂ D(a) ∩ hD(a),

and so we have

S ⊂ gD(a) ∩ ghD(a).
Thus, we have

S ⊂ D(a) ∩ ghD(a).

Suppose that gh �= 1. We shall derive a contradiction. Since S is a maximal
convex subset of ∂D(a), we have

S = D(a) ∩ ghD(a).

Then gh = g by (2), and so h = 1, which is a contradiction. It follows that
gh = 1 and so h = g−1. Thus g−1S = T .

Suppose that f is another nonidentity element of Γ such that f−1S is a
side of D(a). Then we have

f−1S = D(a) ∩ f−1D(a),
and so we have

S = D(a) ∩ fD(a).

Hence f = g by (2). Thus, there is a unique element g �= 1 of Γ such that
g−1S is a side of D(a).

Definition: A convex fundamental polyhedron P for Γ is exact if and only
if for each side S of P there is an element g of Γ such that S = P ∩ gP .

It follows from Theorem 6.7.4(2) that every Dirichlet polyhedron for a
discrete group is exact. Figure 6.7.2 illustrates an inexact, convex, funda-
mental polygon P for PSL(2, Z). The polygon P is inexact, since the two
bounded sides of P are neither congruent nor left invariant by an element
of PSL(2, Z). See Theorem 6.7.5.
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−1 0 1

P

− 1
4

3
4

Figure 6.7.2. An inexact, convex, fundamental polygon P for PSL(2, Z)

Theorem 6.7.5. If S is a side of an exact, convex, fundamental polyhe-
dron P for a discrete group Γ of isometries of X, then there is a unique
element g �= 1 of Γ such that S = P ∩ gP, moreover g−1S is a side of P .

Proof: Since P is exact, there is an element g of Γ such that S = P ∩ gP .
Clearly g �= 1. If h �= 1 is another element of Γ such that S = P ∩hP , then
gP ◦ and hP ◦ overlap; therefore gP ◦ = hP ◦ and so g = h. Thus, there is a
unique element g �= 1 of Γ such that S = P ∩ gP . The proof that g−1S is
a side of P is the same as the proof of Theorem 6.7.4(3).

Exercise 6.7

1. Let Γ be a discrete group of isometries of X and let f be an isometry of X.
Prove that X/Γ and X/fΓf−1 have the same volume.

2. Let Γ be an elementary discrete group of isometries of Hn. Prove that Hn/Γ
has infinite volume.

3. Let a and b be distinct points of X, and let

P = {x ∈ X : d(x, a) = d(x, b)}.

Prove that P is the unique hyperplane of X that bisects and is orthogonal
to every geodesic segment in X joining a to b.

4. Let Γ be the subgroup of I(C) generated by the translations of C by 1 and
1
2 +

√
3

2 i. Determine the Dirichlet polygon of Γ with center 0 in C.

5. Let T be the generalized hyperbolic triangle in Figure 6.7.1. Prove that T is
the Dirichlet polygon for PSL(2, Z) with center ti for any t > 1.



§6.8. Tessellations 253

§6.8. Tessellations

Throughout this section, X = Sn, En, or Hn with n > 0.

Definition: A tessellation of X is a collection P of n-dimensional convex
polyhedra in X such that

(1) the interiors of the polyhedra in P are mutually disjoint;

(2) the union of the polyhedra in P is X; and

(3) the collection P is locally finite.

Definition: A tessellation P of X is exact if and only if each side S of a
polyhedron P in P is a side of exactly two polyhedrons P and Q in P.

An example of an exact tessellation is the grid pattern tessellation of E2

by congruent squares. An example of an inexact tessellation is the familiar
brick pattern tessellation of E2 by congruent rectangles.

Definition: A regular tessellation of X is an exact tessellation of X
consisting of congruent regular polytopes.

The three regular tessellations of the plane, by equilateral triangles,
squares, and regular hexagons, have been known since antiquity. The five
regular tessellations of the sphere induced by the five regular solids have
been known since the Middle Ages. We are interested in tessellations of X
by congruent polyhedra because of the following theorem.

Theorem 6.8.1. Let P be an n-dimensional convex polyhedron in X and
let Γ be a group of isometries of X. Then Γ is discrete and P is an (exact )
convex fundamental polyhedron for Γ if and only if

P = {gP : g ∈ Γ}

is an (exact ) tessellation of X.

Proof: Suppose that Γ is discrete and P is a convex fundamental polyhe-
dron for Γ. Then P ◦ is a locally finite fundamental domain for Γ. Hence,
we have that

(1) the members of {gP ◦ : g ∈ Γ} are mutually disjoint;

(2) X = ∪{gP : g ∈ Γ}; and

(3) the collection P is locally finite.

Thus P is a tessellation of X.
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Now assume that P is exact. Let S be a side of P . Then there is a
unique element of g �= 1 of Γ such that S = P ∩ gP ; moreover g−1S is a
side of P . Hence S is a side of gP . Therefore S is a side of exactly two
polyhedrons P and gP of P. As P is Γ-equivariant, the same is true for
any side of any polyhedron in P. Thus P is exact.

Conversely, suppose that P is a tessellation of X. Then

(1) the members of {gP ◦ : g ∈ Γ} are mutually disjoint;

(2) X = ∪{gP : g ∈ Γ}; and

(3) the collection P is locally finite.

Hence P ◦ is a a locally finite fundamental domain for Γ. Therefore Γ is
discrete by Theorem 6.6.3, and P is a convex fundamental polyhedron for
the group Γ.

Now assume that P is exact. Then for each side S of P , there is a g in
Γ such that S is a side of gP . Hence S ⊂ P ∩ gP . Since P ∩ gP ⊂ ∂P and
S is a maximal convex subset of ∂P , we have that S = P ∩ gP . Thus P is
exact.

Definition: A collection P of n-dimension convex polyhedra in X is said to
be connected if and only if for each pair P, Q in P there is a finite sequence
P1, . . . , Pm in P such that P = P1, Pm = Q, and Pi−1 and Pi share a
common side for each i > 1.

Theorem 6.8.2. Every exact tessellation of X is connected.

Proof: The proof is by induction on the dimension n of X. The theorem
is obviously true when n = 1, so assume that n > 1 and the theorem is true
in dimension n − 1. Let P be an exact tessellation of X, and let P be a
polyhedron in P. Let U be the union of all the polyhedra Q in P for which
there is a finite sequence P1, . . . , Pm in P such that P = P1, Pm = Q, and
Pi−1 and Pi share a common side for each i > 1. Then U is closed in X,
since P is locally finite.

We now show that U is open in X. Let x be a point of U . Choose r such
that 0 < r < π/2 and C(x, r) meets only the polyhedra of P containing x.
Let Q be a polyhedron in P containing x. Then r is less than the distance
from x to any side of Q not containing x. By Theorem 6.4.1, the set
Q∩S(x, r) is an (n−1)-dimensional convex polyhedron in S(x, r); moreover,
if S(x) is the set of sides of Q containing x, then {T ∩S(x, r) : T ∈ S(x)} is
the set of sides of Q∩S(x, r). Therefore P restricts to an exact tessellation
T of S(x, r). By the induction hypothesis, T is connected. Consequently,
each polyhedron in P containing x is contained in U . Therefore U contains
B(x, r). Thus U is both open and closed in X. As X is connected, U = X.
Thus P is connected.
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Theorem 6.8.3. Let P be an exact, convex, fundamental polyhedron for
a discrete group Γ of isometries of X. Then Γ is generated by the set

Φ = {g ∈ Γ : P ∩ gP is a side of P}.

Proof: By Theorem 6.8.1, we have that P = {gP : g ∈ Γ} is an exact
tessellation of X. By Theorem 6.8.2, the tessellation P is connected. Let
g be an arbitrary element of Γ. Then there is a finite sequence of elements
g1, . . . , gm of Γ with P = g1P , gmP = gP , and gi−1P and giP share a
common side for each i > 1. This implies that g1 = 1, gm = g, and
P and g−1

i−1giP share a common side for each i > 1. We may assume
that gi−1 �= gi for each i > 1. Then g−1

i−1gi is in Φ for each i > 1. As
g = g1(g−1

1 g2) · · · (g−1
m−1gm), we have that Φ generates Γ.

Theorem 6.8.4. If a discrete group Γ of isometries of X has a finite-sided,
exact, convex, fundamental polyhedron P , then Γ is finitely generated.

Proof: By Theorem 6.7.5, the set of sides S of P is in one-to-one corre-
spondence with the set Φ = {g ∈ Γ : P ∩ gP ∈ S}. Therefore Φ is finite
and so Γ is finitely generated by Theorem 6.8.3.

Side-Pairing

Let S be a side of an exact, convex, fundamental polyhedron P for a discrete
group Γ of isometries of X. By Theorem 6.7.5, there is a unique element
gS of Γ such that

S = P ∩ gS(P ). (6.8.1)

Furthermore S′ = g−1
S (S) is a side of P . The side S′ is said to be paired to

the side S by the element gS of Γ. As

S′ = P ∩ g−1
S (P ),

we have that gS′ = g−1
S . Therefore S is paired to S′ by g−1

S and S′′ = S.
The Γ-side-pairing of P is defined to be the set

Φ = {gS : S is a side of P}.

The elements of Φ are called the side-pairing transformations of P .
Two points x, x′ of P are said to be paired by Φ, written x � x′, if and

only if there is a side S of P such that x is in S, x′ is in S′, and gS(x′) = x.
If gS(x′) = x, then gS′(x) = x′. Therefore x � x′ if and only if x′ � x.
Two points x, y of P are said to be related by Φ, written x ∼ y, if either
x = y or there is a finite sequence x1, . . . , xm of points of P such that

x = x1 � x2 � · · · � xm = y.

Being related by Φ is obviously an equivalence relation on the set P . The
equivalence classes of P are called the cycles of Φ. If x is in P , we denote
the cycle of Φ containing x by [x].
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Theorem 6.8.5. If P is an exact, convex, fundamental polyhedron for a
discrete group Γ of isometries of X, then for each point x of P , the cycle
[x] is finite, and [x] = P ∩ Γx.

Proof: It follows from the definition of a cycle that [x] ⊂ P ∩ Γx. Hence
[x] is finite by Theorem 6.6.8. Clearly [x] = P ∩ Γx when n = 1, so assume
n > 1.

Let y be in P ∩ Γx. Then there is an f in Γ such that y = fx. Hence
x is in f−1P . As P is locally finite, there is an r > 0 such that B(x, r)
meets only finitely many Γ-images of P , say g1P, . . . , gmP . By shrinking
r, we may assume that x is in giP for each i. By shrinking r still further,
we may assume that r < π/2 and r is less than the distance from x to
any side of giP not containing x. Now for each i, the set giP ∩ S(x, r)
is an (n − 1)-dimensional convex polyhedron in S(x, r) by Theorem 6.4.1.
Moreover

T = {giP ∩ S(x, r) : i = 1, . . . , m}
is an exact tessellation of S(x, r). By Theorem 6.8.2, the tessellation T is
connected. Hence, there are elements f1, . . . , f
 of Γ such that x is in f−1

i P
for each i, and P = f−1

1 P, f−1P = f−1

 P , and f−1

i−1P and f−1
i P share a

common side for each i > 1. This implies that f1 = 1, f
 = f , and P and
fi−1f

−1
i P share a common side Si for each i > 1. We may assume that

i > 1 and fi−1 �= fi for each i > 1. Then fi−1f
−1
i = gSi

for each i > 1. Let
x1 = x and xi = fix for each i > 1. As x is in f−1

i P , we have that fix is
in P . Hence xi is in P for each i. Now

gSi(xi) = fi−1f
−1
i xi = fi−1x = xi−1.

Hence xi−1 is in P ∩gSi
(P ). Therefore xi−1 is in Si and xi is in S′

i for each
i > 1. Hence, we have

x = x1 � x2 � · · · � x
 = y.

Therefore x ∼ y. Thus [x] = P ∩ Γx.

Cycles of Polyhedra

Definition: A cycle of polyhedra in X is a finite set

C = {P1, . . . , Pm}
of n-dimensional convex polyhedra in X such that for each i (mod m),

(1) there are adjacent sides Si and Si+1 of Pi such that Pi ∩Pi+1 = Si+1;

(2)
m∑

i=1
θ(Si, Si+1) = 2π; and

(3) if n > 1, then R =
m
∩

i=1
Pi is a side of Si for each i.
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Figure 6.8.1. A cycle of equilateral triangles in E2

See Figure 6.8.1. Note that every cycle of polyhedra in X contains more
than two polyhedrons.

Theorem 6.8.6. Let P be an exact tessellation of X with |P| > 2. Let R
be either ∅, if X = S1, or a ridge of a polyhedron in P. Then the set of all
polyhedra in P containing R forms a cycle whose intersection is R.

Proof: Let S be one of the two sides of a polyhedron P containing R.
We inductively define sequences

P1, P2, . . . and S1, S2, . . .

such that for each i,

(1) Pi is in P and Si is a side of Pi;

(2) P1 = P and S1 = S;

(3) R is a side of Si if n > 1;

(4) Si and Si+1 are adjacent sides of Pi; and

(5) Pi ∩ Pi+1 = Si+1.

The set R is contained in only finitely many polyhedra in P, since P is
locally finite. Hence, the sequence {Pi} involves only finitely many distinct
polyhedra. Evidently, the terms P1, P2, . . . , Pk are distinct if

k∑
i=1

θ(Si, Si+1) ≤ 2π.

Hence, the first repetition of the sequence occurs at the first polyhedron
Pm+1 such that

m+1∑
i=1

θ(Si, Si+1) > 2π.

Clearly Pm+1 intersects the interior of P1 and so Pm+1 = P1. Hence
Sm+1 = S1 and

m∑
i=1

θ(Si, Si+1) = 2π.
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Now as R = Si ∩ Si+1 for each i, we have that

R =
m
∩

i=1
Pi.

Therefore {P1, . . . , Pm} is a cycle of polyhedra whose intersection is R.
Let Q be any polyhedron in P containing R. Then clearly Q meets the

interior of ∪m
i=1 Pi, whence Q meets the interior of Pi for some i, and so

Q = Pi. Thus {P1, . . . , Pm} is the set of polyhedra in P containing R.

Cycle Relations

Let P be an exact, convex, fundamental polyhedron for a discrete group
Γ of isometries of X with |Γ| > 2. We next consider certain relations in Γ
that can be derived from the ridges and sides of P .

Let S be a side of P , and let R be either ∅, if X = S1, or a side of S.
Define a sequence {Si}∞

i=1 of sides of P inductively as follows:

(1) Let S1 = S.

(2) Let S2 be the side of P adjacent to S′
1 such that gS1(S

′
1 ∩ S2) = R.

(3) Let Si+1 be the side of P adjacent to S′
i such that

gSi(S
′
i ∩ Si+1) = S′

i−1 ∩ Si for each i > 1.

We call {Si}∞
i=1 the sequence of sides of P determined by R and S.

Theorem 6.8.7. Let S be a side of an exact, convex, fundamental poly-
hedron P for a discrete group Γ of isometries of X with |Γ| > 2, let R be
either ∅, if X = S1, or a side of S, and let {Si}∞

i=1 be the sequence of sides
of P determined by R and S. Then there is a least positive integer 
 and a
positive integer k such that

(1) Si+
 = Si for each i,

(2)
∑


i=1 θ(S′
i, Si+1) = 2π/k, and

(3) the element gS1gS2 · · · gS�
has order k.

Proof: Define a sequence {gi}∞
i=0 of elements of Γ by g0 = 1 and

gi = gS1gS2 · · · gSi for each i > 0.

We now prove that {giP}∞
i=0 forms a cycle of polyhedra in X. As S′

i and
Si+1 are adjacent sides of P for each i, we have that giS

′
i and giSi+1 are

adjacent sides of giP for each i; moreover,

giP ∩ gi+1P = gi(P ∩ gSi+1P ) = giSi+1

and gi+1S
′
i+1 = giSi+1 for each i.
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Now for each i > 0, we have

giSi+1 ∩ gi+1Si+2 = gi+1S
′
i+1 ∩ gi+1Si+2

= gi+1(S′
i+1 ∩ Si+2)

= gi(S′
i ∩ Si+1) = gi−1Si ∩ giSi+1.

Therefore, we have
∞
∩

i=0
giP = S1 ∩ gS1(S2) = R.

By Theorem 6.8.6, there is an integer m > 2 such that {giP}m
i=1 is a cycle

of polyhedra. Hence gi+mP = giP for each i, and so gi+m = gi for each i.
Now since

gi−1Si+m = gi+m−1Si+m

= gi+m−1P ∩ gi+mP

= gi−1P ∩ giP = gi−1Si,

we find that Si+m = Si for each i.
Let 
 be the least positive integer such that Si+
 = Si for each i. Then

k = m/
 is a positive integer. As
m∑

i=1

θ(giS
′
i, giSi+1) = 2π,

we have that

k

∑

i=1

θ(S′
i, Si+1) = 2π.

Moreover, as gm = 1, we have that gk

 = 1, and since gj �= 1 for 0 < j < m,

we deduce that k is the order of g
.

Let S be a side of an exact, convex, fundamental polyhedron P for a
discrete group Γ of isometries of X with |Γ| > 2, let R be either ∅, if
X = S1, or a side of S, and let {Si}∞

i=1 be the sequence of sides of P
determined by R and S. By Theorem 6.8.7, there is a least positive integer

 such that Si+
 = Si for each i. The finite sequence {Si}


i=1 is called
the cycle of sides of P determined by R and S. The element gS1gS2 · · · gS�

of Γ is called the cycle transformation of the cycle of sides {Si}

i=1. By

Theorem 6.8.7, the cycle transformation gS1gS2 · · · gS�
has finite order k.

The relation
(gS1gS2 · · · gS�

)k = 1 (6.8.2)

in Γ is called the cycle relation of Γ determined by the cycle of sides {Si}

i=1.

For each side S of P , the relation

gSgS′ = 1 (6.8.3)

is called the side-pairing relation determined by the side S.
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Remark: The cycle relations together with the side-pairing relations form
a complete set of relations for the generators

Φ = {gS : S is a side of P}

of the group Γ; that is, any relation among the generators Φ can be derived
from these relations. For a proof, see §13.5.

Example: Let L, S, R be the three sides occurring left to right in the
Dirichlet polygon T for PSL(2, Z) in Figure 6.7.1. Then

gR(z) = z + 1 and gS(z) = −1/z.

Hence R′ = L, S′ = S, and L′ = R. Observe that {S, R} is a cycle of sides
of T whose cycle transformation gSgR has order three. Moreover gS has
order two. The relations (gSgR)3 = 1 and g2

S = 1 form a complete set of
relations for the generators {gS , gR} of PSL(2, Z).

Exercise 6.8

1. Let S be a side of an exact, convex, fundamental polyhedron P for Γ. Show
that S′ = S if and only if gS has order two in Γ.

2. Let {Si}�
i=1 be a cycle of sides of an exact, convex, fundamental polyhedron P

for Γ. Show that the cycle transformation gS1 · · · gS� leaves S′
� ∩S1 invariant.

3. Furthermore, if X = En or Hn, with n > 1, prove that gS1 · · · gS� fixes a
point of S′

� ∩ S1.

4. Let Γ be the discrete group of isometries of E2 generated by the translations
of E2 by e1 and e2. Then P = [0, 1]2 is an exact, convex, fundamental
polygon for Γ. Find all the cycles of sides of P and the corresponding cycle
relations of Γ.

5. Let P be an exact, convex, fundamental polyhedron for Γ with only finitely
many sides. Prove that P has only finitely many cycles of sides.

6. Let R be a ridge of an exact, convex, fundamental polyhedron P for Γ and
let S and T be the two sides of P such that R = S ∩ T . Let {Si}�

i=1 be the
cycle of sides of P determined by R and S. Show that {S′

�, S
′
�−1, . . . , S

′
1}

is the cycle of sides P determined by R and T . Conclude that the cycle
transformation of {S′

�, S
′
�−1, . . . , S

′
1} determined by R and T is the inverse

of the cycle transformation of {Si}�
i=1 determined by R and S.

7. Let R be a side of a side S of an exact, convex, fundamental polyhedron P
for Γ and let R′ be the side of S′ such that gS(R′) = R. Let {Si}�

i=1 be the
cycle of sides of P determined by R and S. Show that {S2, . . . , S�, S1} is
the cycle of sides of P determined by R′ and S2. Conclude that the cycle
transformation of {S2, . . . , S�, S1} determined by R′ and S2 is conjugate in
Γ to the cycle transformation of {Si}�

i=1 determined by R and S.
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§6.9. Historical Notes

§6.1. All the essential material in §6.1 appeared in Beltrami’s 1868 papers
Saggio di interpetrazione della geometria non-euclidea [39] and Teoria fon-
damentale degli spazii di curvatura costante [40]. See also Klein’s 1871-73
paper Ueber die sogenannte Nicht-Euklidische Geometrie [243], [246].

§6.2. Convex curves and surfaces were defined by Archimedes in his
third century B.C. treatise On the sphere and cylinder [24]. Convex sets
in En were first studied systematically by Minkowski; for example, see his
1911 treatise Theorie der konvexen Körper, insbesondere Begründung ihres
Oberflächenbegriffs [319]. The Euclidean cases of Theorems 6.2.1-6.2.3 were
proved by Steinitz in his 1913-16 paper Bedingt konvergente Reihen und
konvexe Systeme [415], [416], [417]. For a survey of convexity theory, see
Berger’s 1990 article Convexity [43]. References for the theory of convex
sets are Grünbaum’s 1967 text Convex Polytopes [186] and Brøndsted’s
1983 text An Introduction to Convex Polytopes [64].

§6.3. Convex polyhedra in H3 were defined by Poincaré in his 1881 note
Sur les groupes kleinéens [354]. General polyhedra in En were studied by
Klee in his 1959 paper Some characterizations of convex polyhedra [242].
General polyhedra in Hn were considered by Andreev in his 1970 paper
Intersection of plane boundaries of a polytope with acute angles [15].

§6.4. The dihedral angle between two intersecting planes in E3 was
defined by Euclid in Book XI of his Elements [128]. The concept of the link
of a point in a convex polyhedron evolved from the concept of a polyhedral
solid angle, which was defined by Euclid, in Book XI of his Elements,
to be a convex polyhedron with just one vertex. In his 1781 paper De
mensura angulorum solidorum [137], Euler states that the natural measure
of a polyhedral solid angle, is the area of the link, of radius one, of the
vertex. Theorem 6.4.8 appeared in Vinberg’s 1967 paper Discrete groups
generated by reflections in Lobacevskii spaces [435].

§6.5. Euclidean polygons and the regular solids were studied in Euclid’s
Elements [128]. General polytopes in E3 were first studied by Descartes in
his 17th century manuscript De solidorum elementis [113], which was not
published until 1860. General polytopes in E3 were studied by Euler in
his 1758 paper Elementa doctrinae solidorum [131]. Polytopes in En and
Sn were first studied by Schläfli in his 1852 treatise Theorie der vielfachen
Kontinuität [394], which was published posthumously in 1901; in partic-
ular, Schläfli introduced the Schläfli symbol and classified all the regular
Euclidean and spherical polytopes in this treatise. The most important
results of Schläfli’s treatise were published in his 1855 paper Réduction
d’une intégrale multiple, qui comprend l’arc de cercle et l’aire du triangle
sphérique comme cas particuliers [391] and in his 1858-60 paper On the mul-
tiple integral

∫
dxdy · · · dz [392], [393]. Convex polytopes in Hn were con-

sidered by Dehn in his 1905 paper Die Eulersche Formel im Zusammenhang
mit dem Inhalt in der Nicht-Euklidischen Geometrie [109]. For a charac-
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terization of 3-dimensional hyperbolic polytopes, see Hodgson, Rivin, and
Smith’s 1992 paper A characterization of convex hyperbolic polyhedra and
of convex polyhedra inscribed in the sphere [212] and Hodgson and Rivin’s
1993 paper A characterization of compact convex polyhedra in hyperbolic
3-space [211]. References for the theory of convex polytopes are Coxeter’s
1973 treatise Regular Polytopes [100] and Brøndsted’s 1983 text [64].

§6.6. The concept of a fundamental region arose in the theory of lattices.
For example, Gauss spoke of an elementary parallelogram of a plane lattice
in his 1831 review [162] of a treatise on quadratic forms. The concept of a
fundamental region for a Fuchsian group was introduced by Poincaré in his
1881 note Sur les fonctions fuchsiennes [352]. See also Klein’s 1883 paper
Neue Beiträge zur Riemannschen Funktionentheorie [252]. The concept of
a locally finite fundamental region was introduced by Siegel in his 1943 pa-
per Discontinuous groups [408]. The 2-dimensional case of Theorem 6.6.6
was proved by Klein in his 1883 paper [252]. Theorem 6.6.7 appeared in
Beardon’s 1974 paper Fundamental domains for Kleinian groups [34]. The
Dirichlet domain of a plane lattice was introduced by Dirichlet in his 1850
paper Über die Reduction der positiven quadratischen Formen [115]. The-
orem 6.6.13 appeared in Busemann’s 1948 paper Spaces with non-positive
curvature [67]. For the theory of fundamental regions of Fuchsian groups,
see Beardon’s 1983 text The Geometry of Discrete Groups [35].

§6.7. According to Klein’s Development of Mathematics in the 19th
Century [257], Gauss determined the fundamental polygon for the elliptic
modular group in Figure 6.7.1. This fundamental polygon was described by
Dedekind in his 1877 paper Schreiben an Herrn Borchardt über die Theorie
der elliptischen Modulfunktionen [108]. The term fundamental polygon was
introduced by Klein for subgroups of the elliptic modular group in his 1879
paper Ueber die Transformation der elliptischen Functionen [250]. The
notion of a fundamental polygon was extended to all Fuchsian groups by
Poincaré in his 1881 note [352]. See also Dyck’s 1882 paper Gruppenthe-
oretische Studien [120]. Fundamental polyhedra for Kleinian groups were
introduced by Poincaré in his 1881 note [354]. The 2-dimensional case
of Theorem 6.7.1 was proved by Beardon in his 1983 text [35]. Theorem
6.7.1 for dimension n > 2 appeared in the 1994 first edition of this book.
Theorem 6.7.2 was essentially proved by Siegel in his 1943 paper [408].

§6.8. The general notion of a tessellation of H2 generated by a fun-
damental polygon appeared in Poincaré’s 1881 note [352]. The concepts
of side-pairing transformation and cycle of vertices determined by a fun-
damental polygon for a Fuchsian group were introduced by Poincaré in
his 1881 note Sur les fonctions fuchsiennes [353]. See also his 1882 paper
Théorie des groupes fuchsiens [355]. Tessellations of H3 generated by a
fundamental polyhedron were considered by Poincaré in his 1883 Mémoire
sur les groupes kleinéens [357]. For the classification of the regular tessella-
tions of Sn, En, and Hn, see Coxeter’s 1973 treatise Regular Polytopes [100]
and Coxeter’s 1956 paper Regular honeycombs in hyperbolic space [98].



CHAPTER 7

Classical Discrete Groups

In this chapter, we study classical discrete groups of isometries of Sn, En,
and Hn. We begin with the theory of discrete reflection groups. In Section
7.4, we study the volume of an n-simplex in Sn or Hn as a function of
its dihedral angles. In Section 7.5, we study the theory of crystallographic
groups. The chapter ends with a proof of Selberg’s lemma.

§7.1. Reflection Groups

Throughout this section, X = Sn, En, or Hn with n > 0.

Lemma 1. Let x be a point inside a horosphere Σ of Hn. Then the shortest
distance from x to Σ is along the unique hyperbolic line passing through x
Lorentz orthogonal to Σ.

Proof: We pass to the conformal ball model Bn of hyperbolic space and
move x to the origin. Then the shortest distance from 0 to Σ is obviously
along the unique diameter of Bn orthogonal to Σ. See Figure 7.1.1.

0
d

Figure 7.1.1. The shortest distance d from the origin to a horocycle of B2

263
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Let S be a side of an n-dimensional convex polyhedron P in X. The
reflection of X in the side S of P is the reflection of X in the hyperplane
〈S〉 spanned by S.

Theorem 7.1.1. Let G be the group generated by the reflections of X in
the sides of a finite-sided, n-dimensional, convex polyhedron P in X of
finite volume. Then

X = ∪{gP : g ∈ G}.

Proof: The proof is by induction on the dimension n. The theorem
is obviously true when n = 1, so assume that n > 1 and the theorem
is true in dimension n − 1. Let x be a point of P and let G(x) be the
subgroup of G generated by all the reflections of X in the sides of P that
contain x. Let r(x) be a real number such that 0 < r(x) < π/2 and the
ball C(x, r(x)) meets only the sides of P containing x. By Theorem 6.4.1,
the set P ∩ S(x, r(x)) is an (n − 1)-dimensional, convex polyhedron in the
sphere S(x, r(x)). From the induction hypothesis, we have

S(x, r(x)) = ∪
{
g(P ∩ S(x, r(x))) : g ∈ G(x)

}
.

Now since P is convex, we deduce that

B(x, r(x)) ⊂ ∪{gP : g ∈ G(x)}.

By Theorems 6.4.7 and 6.4.8, the polyhedron P has only finitely many
ideal vertices, say v1, . . . , vm. For each i, let Bi be a horoball based at vi

such that Bi meets just the sides of P incident with vi. For each i, let Gi

be the subgroup of G generated by all the reflections of X in the sides of P
that are incident with vi. By Theorem 6.4.5, the set P ∩ ∂Bi is a compact,
Euclidean, (n − 1)-dimensional, convex polyhedron in the horosphere ∂Bi.
We deduce from the induction hypothesis that

Bi ⊂ ∪{gP : g ∈ Gi}.

By Lemma 1, there is a horoball B′
i based at vi such that B′

i ⊂ Bi and
dist(B′

i, ∂Bi) = 1 for each i. Set

P0 = P −
m
∪

i=1
B′

i.

Then P0 is compact by Theorem 6.4.8. Let 
 > 0 be a Lebesgue number
for the open cover {B(x, r(x)) : x ∈ P0} of P0 such that 
 < 1. Let

U = ∪{gP : g ∈ G}.

We claim that N(P, 
) ⊂ U . Observe that N(P0, 
) ⊂ U . Let x be a point
of P ∩ B′

i. Then we have

B(x, 
) ⊂ Bi ⊂ U.

Hence N(B′
i, 
) ⊂ U for each i. Therefore N(P, 
) ⊂ U as claimed. Now as

U is G-invariant, we deduce that N(gP, 
) ⊂ U for each g in G. Therefore
N(U, 
) ⊂ U , and so U = X.
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Let P be an exact, convex, fundamental polyhedron for a discrete group
Γ of isometries of X. Then for each side S of P , there is a unique element
gS of Γ such that

S = P ∩ gS(P ).

The group Γ is defined to be a discrete reflection group, with respect to the
polyhedron P , if and only if gS is the reflection of X in the hyperplane 〈S〉
for each side S of P .

Definition: An angle α is a submultiple of an angle β if and only if either
there is a positive integer k such that α = β/k or α = β/∞ = 0.

Theorem 7.1.2. Let Γ be a discrete reflection group with respect to the
polyhedron P . Then all the dihedral angles of P are submultiples of π;
moreover, if gS and gT are the reflections in adjacent sides S and T of P ,
and θ(S, T ) = π/k, then gSgT has order k in Γ.

Proof: Let S, T be adjacent sides of P . Then {S, T} is a cycle of sides
of P . If θ(S, T ) = 0, then gSgT is a translation, and so gSgT has infinite
order. If θ(S, T ) > 0, then by Theorem 6.8.7, there is a positive integer k
such that 2θ(S, T ) = 2π/k and the element gSgT has order k in Γ.

Theorem 7.1.3. Let P be a finite-sided, n-dimensional, convex polyhedron
in X of finite volume all of whose dihedral angles are submultiples of π.
Then the group Γ generated by the reflections of X in the sides of P is a
discrete reflection group with respect to the polyhedron P .

Proof: (1) The proof is by induction on n. The theorem is obviously true
when n = 1, so assume that n > 1 and the theorem is true in dimension
n−1. The idea of the proof is to construct a topological space X̃ for which
the theorem is obviously true, and then to show that X̃ is homeomorphic
to X by a covering space argument.

(2) Let Γ×P be the cartesian product of Γ and P . We topologize Γ×P
by giving Γ the discrete topology and Γ × P the product topology. Then
Γ × P is the topological sum of the subspaces{

{g} × P : g ∈ Γ
}
.

Moreover, the mapping (g, x) �→ gx is a homeomorphism of {g} × P onto
gP for each g in Γ.

(3) Let S be the set of sides of P and for each S in S, let gS be the
reflection of X in the side S of P . Let Φ = {gS : S ∈ S}. Two points (g, x)
and (h, y) of Γ × P are said to be paired by Φ, written (g, x) � (h, y), if
and only if g−1h is in Φ and gx = hy. Suppose that (g, x) � (h, y). Then
there is a side S of P such that g−1h = gS . As g−1

S = gS , we have that
(h, y) � (g, x). Furthermore x is in P ∩ gS(P ) = S, and so x = gSx = y.
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Two points (g, x) and (h, y) of Γ×P are said to be related by Φ, written
(g, x) ∼ (h, y), if and only if there is a finite sequence, (g0, x0), . . . , (gk, xk),
of points of Γ × P such that (g, x) = (g0, x0), (gk, xk) = (h, y), and

(gi−1, xi−1) � (gi, xi) for i = 1, . . . , k.

Being related by Φ is obviously an equivalence relation on Γ×P ; moreover,
if (g, x) ∼ (h, y), then x = y. Let [g, x] be the equivalence class of (g, x)
and let X̃ be the quotient space of Γ × P of equivalence classes.

(4) If (g, x) � (h, x), then obviously (fg, x) � (fh, x) for each f in Γ.
Hence Γ acts on X̃ by f [g, x] = [fg, x]. For a subset A of P , set

[A] =
{
[1, x] : x ∈ A

}
.

Then if g is in Γ, we have

g[A] =
{
[g, x] : x ∈ A

}
.

If (g, x) is in Γ × P ◦, then [g, x] = {(g, x)}. Consequently, the members of
{g[P ◦] : g ∈ Γ} are mutually disjoint in X̃.

(5) We now show that X̃ is connected. Let η : Γ×P → X̃ be the quotient
map. As η maps {g} × P onto g[P ], we have that g[P ] is connected. In
view of the fact that

X̃ = ∪{g[P ] : g ∈ Γ},

it suffices to show that for any g in Γ, there is a finite sequence g0, . . . , gk

in Γ such that [P ] = g0[P ], gk[P ] = g[P ], and gi−1[P ] and gi[P ] intersect
for each i > 0. As Γ is generated by the elements of Φ, there are sides Si of
P such that g = gS1 · · · gSk

. Let g0 = 1 and gi = gS1 · · · gSi
for i = 1, . . . , k.

Now as
Si = P ∩ gSi(P ),

we have that
[Si] ⊂ [P ] ∩ gSi [P ].

Therefore, we have
gi−1[Si] ⊂ gi−1[P ] ∩ gi[P ].

Thus X̃ is connected.
(6) Let x be a point of P , let S(x) be the set of all the sides of P

containing x, and let Γ(x) be the subgroup of Γ generated by the elements
of {gS : S ∈ S(x)}. We now show that Γ(x) is finite. Let r be a real
number such that 0 < r < π/2 and r is less than the distance from x to
any side of P not containing x. By Theorem 6.4.1, we have that P ∩S(x, r)
is an (n − 1)-dimensional convex polyhedron in the sphere S(x, r), the set

{T ∩ S(x, r) : T ∈ S(x)}
is the set of sides of P ∩ S(x, r), and all the dihedral angles of P ∩ S(x, r)
are submultiples of π. By the induction hypothesis, Γ(x) restricts to a
discrete reflection group with respect to P ∩ S(x, r). Hence Γ(x) is finite,
since S(x, r) is compact.
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(7) We next show that

[1, x] =
{
(g, x) : g ∈ Γ(x)

}
.

Let (g, x) be in [1, x]. Then there is a sequence g0, . . . , gk in Γ such that
(1, x) = (g0, x), (gk, x) = (g, x), and (gi−1, x) � (gi, x) for all i > 0. Hence
gix = x for all i and there is a side Si in S(x) such that gi = gi−1gSi

for
i = 1, . . . , k. Therefore g = gS1 · · · gSk

. Thus g is in Γ(x). Consequently

[1, x] ⊂
{
(g, x) : g ∈ Γ(x)

}
.

Now let g be an element of Γ(x). Since Γ(x) is generated by the set
{gS : S ∈ S(x)}, there are sides Si in S(x) such that g = gS1 · · · gSk

. Let
g0 = 1 and gi = gS1 · · · gSi for i = 1, . . . , k. Then gi is in Γ(x) for all i.
As g−1

i−1gi = gSi , we have that (gi−1, x) � (gi, x) for all i > 0. Hence
(1, x) ∼ (g, x). Thus

[1, x] =
{
(g, x) : g ∈ Γ(x)

}
.

(8) For each point x of P and real number r as in (6), define

B̃(x, r) = ∪
g∈Γ(x)

g[P ∩ B(x, r)].

Suppose that g is in Γ(x) and y is P ∩ B(x, r). Then S(y) ⊂ S(x), and so
Γ(y) ⊂ Γ(x). As

[1, y] =
{
(h, y) : h ∈ Γ(y)

}
.

we have that
[g, y] =

{
(gh, y) : h ∈ Γ(y)

}
.

Consequently

η−1(B̃(x, r)) = ∪
g∈Γ(x)

{g} × (P ∩ B(x, r)).

Hence B̃(x, r) is an open neighborhood of [1, x] in X̃; moreover B̃(x, r)
intersects g[P ] if and only if g is in Γ(x).

(9) Let κ : X̃ → X be the map defined by κ[g, x] = gx. We now show
that κ maps B̃(x, r) onto B(x, r). By Theorem 6.8.1, we have that

{gP ∩ S(x, r) : g ∈ Γ(x)}
is a tessellation of S(x, r). Consequently, the members of

{gP ◦ ∩ B(x, r) : g ∈ Γ(x)}
are mutually disjoint and

B(x, r) = ∪
g∈Γ(x)

(
gP ∩ B(x, r)

)
.

Now as κ maps g[P ∩B(x, r)] onto gP ∩B(x, r) for each g in Γ(x), we have
that κ maps B̃(x, r) onto B(x, r).

(10) We now show that κ maps B̃(x, r) injectively into B(x, r). Let g, h
be in Γ(x), let y, z be in P ∩ B(x, r), and suppose that κ[g, y] = κ[h, z].
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Then gy = hz. Hence P and g−1hP intersect at y = g−1hz. As y is in
P ∩ B(x, r), we have that Γ(y) ⊂ Γ(x). Now there is an s > 0 such that

B(y, s) ⊂ B(x, r),

and
B(y, s) = ∪

f∈Γ(y)

(
fP ∩ B(y, s)

)
.

Hence g−1hP ∩ B(y, s) intersects fP ◦ ∩ B(y, s) for some f in Γ(y). But
the members of

{fP ◦ ∩ B(x, r) : f ∈ Γ(x)}
are mutually disjoint. Therefore g−1h = f for some f in Γ(y). Hence

y = f−1y = h−1gy = z

and
[g, y] = g[1, y] = g[g−1h, y] = [h, y] = [h, z].

Thus κ maps B̃(x, r) bijectively onto B(x, r).
(11) We now show that κ maps B̃(x, r) homeomorphically onto B(x, r).

Let g be in Γ(x). As κη maps {g} × P ∩ B(x, r) homeomorphically onto
gP ∩ B(x, r), we have that κ maps g[P ∩ B(x, r)] homeomorphically onto
gP ∩ B(x, r). Now since

B(x, r) = ∪
g∈Γ(x)

(
gP ∩ B(x, r)

)
,

and each set gP ∩B(x, r) is closed in B(x, r), and Γ(x) is finite, we deduce
that κ maps B̃(x, r) homeomorphically onto B(x, r).

(12) Now let g be an element of Γ. Then left multiplication by g is a
homeomorphism of X̃, since left multiplication by g is a homeomorphism
of Γ × P . Hence gB̃(x, r) is an open neighborhood of [g, x] in X̃. As
κ(gB̃(x, r)) = gκ(B̃(x, r)), we have that κ maps gB̃(x, r) homeomorphi-
cally onto B(gx, r). Thus κ is a local homeomorphism.

(13) We now show that X̃ is Hausdorff. Let

[g, x] = {(g1, x), . . . , (gk, x)},

[h, y] = {(h1, y), . . . , (h
, y)}
be distinct points of X̃. Then they are disjoint subsets of Γ × P . Now
choose r as before so that κ maps B̃(x, r) homeomorphically onto B(x, r)
and κ maps B̃(y, r) homeomorphically onto B(y, r). We may choose r small
enough so that the sets

η−1(gB̃(x, r)) =
k
∪

i=1
{gi} × (P ∩ B(x, r)),

η−1(hB̃(y, r)) =


∪

j=1
{hj} × (P ∩ B(y, r))

are disjoint in Γ×P , since if gi �= hj , then {gi}×P and {hj}×P are disjoint;
while if x �= y, we can choose r small enough so that B(x, r) and B(y, r)
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are disjoint. Therefore gB̃(x, r) and hB̃(y, r) are disjoint neighborhoods of
[g, x] and [h, y], respectively, in X̃. Thus X̃ is Hausdorff.

(14) Let v be an ideal vertex of P , let S(v) be the set of all the sides of
P incident with v, and let Γ(v) be the subgroup of Γ generated by the set
{gS : S ∈ S(v)}. Let B be a horoball based at v such that B meets just the
sides in S(v). Then P ∩ ∂B is a compact (n − 1)-dimensional, Euclidean,
convex polyhedron in the horosphere ∂B, the set

{S ∩ ∂B : S ∈ S(v)}
is the set of sides of P ∩ ∂B, and all the dihedral angles of P ∩ ∂B are
submultiples of π. By the induction hypothesis, Γ(v) restricts to a discrete
reflection group with respect to P ∩ ∂B.

(15) Define
B̃ = ∪

g∈Γ(v)
g[P ∩ B].

By the same argument as in (8), we have

η−1(B̃) = ∪
g∈Γ(v)

{g} × (P ∩ B).

Hence B̃ is an open subset of X̃, and B̃ intersects g[P ] if and only if g is
in Γ(v). By the same arguments as in (9) and (10), κ maps B̃ bijectively
onto B. As κ is an open map, κ maps B̃ homeomorphically onto B.

(16) Let v1, . . . , vm be the ideal vertices of P and for each i, let Bi be a
horoball based at vi such that Bi meets just the sides of P incident with vi.
Let B′

i be the horoball based at vi such that B′
i ⊂ Bi and dist(B′

i, ∂Bi) = 1.
Now set

P0 = P −
m
∪

i=1
B′

i.

Then P0 is compact. Let x be a point of P . Choose r(x) > 0 as before
so that κ maps B̃(x, r(x)) homeomorphically onto B(x, r(x)). As P0 is
compact, the open covering {B(x, r(x)) : x ∈ P0} of P0 has a Lebesgue
number 
 such that 0 < 
 < 1. If x is in P0, let y be a point of P0 such
that B(x, 
) ⊂ B(y, r(y)), and let B̃(x) be the subset of B̃(y, r(y)) that is
mapped onto B(x, 
) by κ. If x is in B′

i, let B̃(x) be the subset of B̃i that
is mapped onto B(x, 
) by κ. Then B̃(x) is an open neighborhood of [1, x]
in X̃ that is mapped homeomorphically onto B(x, 
) by κ. Moreover, if g
is in Γ, then gB̃(x) is an open neighborhood of [g, x] in X̃ that is mapped
homeomorphically onto B(gx, 
) by κ. Thus, if y is in the image of κ, then
B(y, 
) is in the image of κ. Therefore κ is surjective.

(17) Next, let α : [a, b] → X be a geodesic arc from y to z such that
|α| < 
 and suppose that κ[g, x] = y. We now show that α lifts to a
unique curve α̃ : [a, b] → X̃ such that α̃(a) = [g, x]. Now as κ maps gB̃(x)
homeomorphically onto B(gx, 
), the map α lifts to a curve α̃ : [a, b] → X̃
such that α̃(a) = [g, x] and α̃([a, b]) ⊂ gB̃(x). Suppose that α̂ : [a, b] → X̃
is a different lift of α starting at [g, x]. Then α̂−1(gB̃(x)) is a proper open
neighborhood of a in [a, b], since α̂ is continuous and not equal to α̃. Let t



270 7. Classical Discrete Groups

be the first point of [a, b] not in this neighborhood. Then α̃(t) �= α̂(t). As
X̃ is Hausdorff, there are disjoint open neighborhoods U and V of α̃(t) and
α̂(t), respectively. Choose s < t in the open neighborhood α̃−1(U)∩α̂−1(V )
of t. Then α̂(s) is in gB̃(x) and so must be equal to α̃(s). As U and V are
disjoint, we have a contradiction. Therefore, the lift α̃ is unique.

(18) We now show that κ : X̃ → X is a covering projection. Let z be
a point of X. We will show that B(z, 
) is evenly covered by κ. Since κ
is surjective, there is a point [g, x] of X̃ such that κ[g, x] = z. Then κ
maps the open neighborhood gB̃(x) of [g, x] in X̃ homeomorphically onto
B(z, 
). Next, suppose that [h, y] �= [g, x] and κ[h, y] = z. We claim that
gB̃(x) and hB̃(y) are disjoint. On the contrary, suppose that [f, w] is in
gB̃(x) ∩ hB̃(y). Let α : [a, b] → X be a geodesic arc from z to fw. As
fw is in B(z, 
), we have that |α| < 
. Hence α lifts to unique curves
α̃1, α̃2 : [a, b] → X̃ starting at [g, x] and [h, y], respectively. Both α̃1 and
α̃2 end at [f, w], since [f, w] is the only point in gB̃(x) and in hB̃(y) that
is mapped to fw by κ. By the uniqueness of the lift of α−1 starting at
[f, w], we have that [g, x] = [h, y], which is a contradiction. Hence gB̃(x)
and hB̃(y) are disjoint, and so B(z, 
) is evenly covered by κ. Thus κ is a
covering projection.

(19) Now κ : X̃ → X is a homeomorphism, since X is simply connected
and X̃ is connected. Therefore, the members of {gP ◦ : g ∈ Γ} are mutually
disjoint, since the members of {g[P ◦] : g ∈ Γ} are mutually disjoint; and

X = ∪{gP : g ∈ Γ},

since we have
X̃ = ∪{g[P ] : g ∈ Γ}.

(20) We now show that

P = {gP : g ∈ Γ}
is locally finite. Let y be an arbitrary point of X. Then there is a unique
element [f, x] of X̃ such that κ[f, x] = y. Let r be such that 0 < r < π/2
and r is less than the distance from x to any side of P not containing x.
Then the open neighborhood fB̃(x, r) of [f, x] intersects g[P ] if and only
if f−1g is in Γ(x). Hence, the set

κ(fB̃(x, r)) = B(fx, r) = B(y, r)

intersects gP if and only if f−1g is in Γ(x). As Γ(x) is finite, we have that
B(y, r) meets only finitely many members of P. Thus P is locally finite.

(21) If gS is any side of gP , then gS is also a side of ggSP , and since

gP ∩ ggSP = gS,

we have that gP and ggSP are the only polyhedra of P containing gS as a
side. Thus P is an exact tessellation of X. Therefore Γ is discrete and P is
an exact, convex, fundamental polyhedron for Γ by Theorem 6.8.1. Thus
Γ is a discrete reflection group with respect to the polyhedron P .
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Example 1. Let

P = {x ∈ Sn : xi ≥ 0 for i = 1, . . . , n + 1}.

Then P is a regular n-simplex in Sn whose dihedral angle is π/2. Therefore,
the group Γ generated by the reflections in the sides of P is a discrete reflec-
tion group with respect to P by Theorem 7.1.3. Obviously, the tessellation
{gP : g ∈ Γ} of Sn contains 2n+1 simplices, and so Γ has order 2n+1. It
is worth noting that the vertices of the regular tessellation {gP : g ∈ Γ} of
Sn are the vertices of an (n + 1)-dimensional, Euclidean, regular, polytope
inscribed in Sn whose Schläfli symbol is {3, . . . , 3, 4}.

Example 2. Let P be an n-cube in En. Then P is a regular polytope in
En whose dihedral angle is π/2. Therefore, the group Γ generated by the
reflections in the sides of P is a discrete reflection group with respect to P
by Theorem 7.1.3.

Example 3. Form a cycle of hyperbolic triangles by reflecting in the
sides of a 30◦ − 45◦ hyperbolic right triangle, always keeping the vertex at
the 30◦ angle fixed. As 30◦ = 360◦/12, there are 12 triangles in this cycle,
and their union is a hyperbolic regular hexagon P whose dihedral angle is
90◦. See Figure 7.1.2. Let Γ be the group generated by the reflections in
the sides of P . Then Γ is a discrete reflection group with respect to P by
Theorem 7.1.3.

Figure 7.1.2. A cycle of twelve 30◦ - 45◦ hyperbolic right triangles
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Figure 7.1.3. Four views of an expanding, hyperbolic, regular, dodecahedron
centered at the origin in the conformal ball model of hyperbolic 3-space

Example 4. Let D(r) be a regular dodecahedron inscribed on the sphere
S(0, r) in E3 with 0 < r < 1. Then D(r) is a hyperbolic regular dodecahe-
dron in the projective disk model D3 of hyperbolic 3-space. Let θ(r) be the
hyperbolic dihedral angle of D(r). When r is small, θ(r) is approximately
equal to but less than the value of the dihedral angle of a Euclidean regular
dodecahedron θ(0), which is approximately 116.6◦. As r increases to 1, the
angle θ(r) decreases continuously to its limiting value θ(1), the dihedral
angle of a regular ideal dodecahedron in D3. See Figure 7.1.3.

A link of an ideal vertex of a regular ideal dodecahedron is an equilateral
triangle by Theorems 6.5.14 and 6.5.19. The natural geometry of a link of
an ideal vertex is Euclidean. Therefore θ(1) = 60◦ by Theorem 6.4.5.

By the intermediate value theorem, there is an r such that θ(r) = 90◦.
Then P = D(r) is a hyperbolic regular dodecahedron with dihedral angle
π/2. Let Γ be the group generated by the reflections in the sides of P .
Then Γ is a discrete reflection group with respect to P by Theorem 7.1.3.

Example 5. The 24 points ±ei, for i = 1, 2, 3, 4, and (± 1
2 ,± 1

2 ,± 1
2 ,± 1

2 )
of S3 are the vertices of a regular 24-cell in E4. Let P be the corresponding
regular ideal 24-cell in B4. The Schläfli symbol of P is {3, 4, 3}. Hence a
link of an ideal vertex of P is a cube. Therefore, the dihedral angle of P
is π/2. Let Γ be the group generated by the reflections in the sides of P .
Then Γ is a discrete reflection group with respect to P by Theorem 7.1.3.
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Let Γ be a discrete reflection group with respect to a polyhedron P .
Then all the dihedral angles of P are submultiples of π by Theorem 7.1.2.
Let {Si} be the sides of P and for each pair of indices i, j such that Si and
Sj are adjacent, let kij = π/θ(Si, Sj). Let F be the group freely generated
by the symbols {Si} and let gSi be the reflection of X in the hyperplane
〈Si〉. Then the map φ : F → Γ, defined by φ(Si) = gSi , is an epimorphism.
By Theorem 7.1.2, the kernel of φ contains the words (SiSj)kij whenever
kij is finite.

Let G be the quotient of F by the normal closure of the words{
S2

i , (SiSj)kij : kij is finite
}
.

Then φ induces an epimorphism ψ : G → Γ. We shall prove that ψ is an
isomorphism when P has finitely many sides and finite volume. This fact
is usually expressed by saying that(

Si; S2
i , (SiSj)kij

)
is a group presentation for Γ under the mapping Si �→ gSi

. Here it is
understood that (SiSj)kij is to be deleted if kij = ∞.

Theorem 7.1.4. Let Γ be a discrete reflection group with respect to a
finite-sided polyhedron P in X of finite volume. Let {Si} be the set of sides
of P and for each pair of indices i, j such that Si and Sj are adjacent, let
kij = π/θ(Si, Sj). Then (

Si; S2
i , (SiSj)kij

)
is a group presentation for Γ under the mapping Si �→ gSi .

Proof: The proof follows the same outline as the proof of Theorem 7.1.3,
and so only the necessary alterations will be given. If P is a semicircle in
S1, then Γ has the presentation (S1; S2

1); otherwise, if n = 1, then P is
a geodesic segment and Γ is a dihedral group of order 2k12. It is then an
exercise to show that Γ has the presentation(

S1, S2; S2
1 , S2

2 , (S1S2)k12
)
.

The main alteration in the proof of Theorem 7.1.3 is to replace Γ by G
in the construction of the covering space X̃. Everything goes through as
before except where the induction hypothesis is used in steps (6) and (14).
Here one draws the additional conclusion that Γ(x) has the presentation(

Si ∈ S(x); S2
i , (SiSj)kij

)
.

Since the subgroup G(x) of G generated by the set {Si : Si ∈ S(x)} satisfies
the same relations and maps onto Γ(x), we deduce that G(x) has the same
presentation. In particular, the mapping Si �→ gSi induces an isomorphism
from G(x) onto Γ(x). Now everything goes through as before. The final
conclusion is that the mapping Si �→ gSi induces an isomorphism from G
to Γ.
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Coxeter Groups

Definition: A Coxeter group is a group G defined by a group presentation
of the form (Si; (SiSj)kij ), where

(1) the indices i, j vary over some countable indexing set I;

(2) the exponent kij is either an integer or ∞ for each i, j;

(3) kij = kji for each i, j;

(4) kii = 1 for each i;

(5) kij > 1 if i �= j; and

(6) if kij = ∞, then the relator (SiSj)kij is deleted.

Note that if i �= j, then the relator (SjSi)kji is derivable from the relators
S2

i , S2
j , and (SiSj)kij ; and therefore only one of the relators (SiSj)kij and

(SjSi)kji is required and the other may be deleted.
Let G = (Si, i ∈ I; (SiSj)kij ) be a Coxeter group. The Coxeter graph of

G is the labeled graph with vertices I and edges the set of unordered pairs

{(i, j) : kij > 2}.

Each edge (i, j) is labeled by kij . For simplicity, the edges with kij = 3 are
usually not labeled in a representation of a Coxeter graph.

Example 6. The Coxeter group G = (S1; S2
1) is a cyclic group of order

two. Its Coxeter graph is a single vertex.

Example 7. The Coxeter group G(k) = (S1, S2; S2
1 , S2

2 , (S1S2)k) is a
dihedral group of order 2k. Its Coxeter graph, when k > 2, is a single edge
with the label k.

Let Γ be a discrete reflection group with respect to a finite-sided poly-
hedron P of finite volume. Let {Si} be the set of sides of P , let kii = 1 for
each i, and for each pair of indices i, j such that Si and Sj are adjacent,
let kij = π/θ(Si, Sj), and let kij = ∞ otherwise. Then the Coxeter group

G =
(
Si; (SiSj)kij

)
is isomorphic to Γ by Theorem 7.1.4. Thus Γ is a Coxeter group.

Example 8. Let Γ be the group generated by the reflections in the sides
of a rectangle P in E2. By Theorem 7.1.4, the group Γ has the presentation(

S1, S2, S3, S4; S2
i , (SiSi+1)2 i mod 4

)
.

The Coxeter graph of Γ consists of two disjoint edges labeled by ∞.
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A Coxeter group G is said to be irreducible or reducible according as its
Coxeter graph is connected or disconnected. We leave it as an exercise to
show that a reducible Coxeter group is the direct product of the irreducible
Coxeter groups represented by the connected components of its graph. For
example, the discrete reflection group in Example 8 is the direct product of
the two infinite dihedral groups (S1, S3; S2

1 , S2
3) and (S2, S4; S2

2 , S2
4). This

is not surprising, since a rectangle in E2 is the cartesian product of two line
segments. In general, the geometric basis for the direct product decompo-
sition of a reducible discrete reflection group is the fact that orthogonal
reflections commute.

Exercise 7.1

1. Let Γ be a discrete reflection group with respect to a polyhedron P . Prove
that P is the Dirichlet polyhedron for Γ with center any point of P ◦.

2. Let Γ be a discrete reflection group with respect to a polyhedron P . Prove
that the inclusion of P into X induces an isometry from P to X/Γ.

3. Let Γ be the group generated by two reflections of E1 or H1 about the end-
points of a geodesic segment. Show that Γ has the presentation (S, T ; S2, T 2).

4. Let Γ be the group generated by two reflections of S1about the endpoints of
a geodesic segment of length π/k for some integer k > 1. Show that Γ has
the presentation (S, T ; S2, T 2, (ST )k).

5. Prove that a reducible Coxeter group G is the direct product of the ir-
reducible Coxeter groups represented by the connected components of the
Coxeter graph of G.

6. Prove that the group Γ in Example 1 is an elementary 2-group of rank n+1.

7. Let G be a finite subgroup of a discrete reflection group Γ with respect to an
n-dimensional convex polyhedron P in En or Hn. Prove that G is conjugate
in Γ to a subgroup of the pointwise stabilizer of a face of P . Conclude that
if every face of P has a vertex, then G is conjugate in Γ to a subgroup of the
stabilizer Γv of a vertex v of P .

8. Let P be an n-dimensional convex polyhedron in Sn all of whose dihedral
angles are at most π/2. Prove that P has at most n + 1 sides.

9. Let P be an n-dimensional convex polyhedron in Sn all of whose dihedral
angles are at most π/2. Prove that P is contained in an open hemisphere of
Sn if and only if P is an n-simplex.

10. Let Γ be a discrete reflection group with respect to an n-dimensional convex
polyhedron P in X. Prove that every link of a vertex of P is an (n − 1)-
simplex. Conclude that the stabilizer Γv of a vertex v of P is a finite spherical
(n − 1)-simplex reflection group.
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§7.2. Simplex Reflection Groups

Throughout this section, X = Sn, En, or Hn with n > 0. Let ∆ be an
n-simplex in X all of whose dihedral angles are submultiples of π. By
Theorem 7.1.3, the group Γ generated by the reflections of X in the sides
of ∆ is a discrete group of isometries of X. The group Γ is called an
n-simplex reflection group.

We shall also include the case of a 0-simplex ∆ in S0. We regard the
antipodal map α of S0 to be a reflection of S0. Since {∆, α(∆)} is a
tessellation of S0, we also call the group Γ generated by α, a 0-simplex
reflection group. The Coxeter graph of Γ is defined to be a single vertex.

Assume that n = 1. Then ∆ is a geodesic segment in X. Clearly Γ is a
dihedral group of order 2k, with k > 1, where π/k is the angle of ∆. The
Coxeter graph of Γ is either two vertices if k = 2 or an edge labeled by k if
k > 2. If X = S1, then k is finite, whereas if X = E1 or H1, then k = ∞.

Assume that n = 2. Then there are integers a, b, c, with 2 ≤ a ≤ b ≤ c,
such that ∆ is a triangle T (a, b, c) in X whose angles are π/a, π/b, π/c.
Note that T (a, b, c) is determined up to similarity in X by the integers a, b, c.
The group Γ generated by the reflections in the sides of T (a, b, c) is denoted
by G(a, b, c). Let G0(a, b, c) be the subgroup of G(a, b, c) of orientation
preserving isometries. Then G0(a, b, c) has index two in G(a, b, c). The
group G0(a, b, c) is called a triangle group, whereas G(a, b, c) is called a
triangle reflection group.

Spherical Triangle Reflection Groups

Assume that X = S2. By Theorem 2.5.1, we have
π

a
+

π

b
+

π

c
> π.

Hence, the integers a, b, c satisfy the inequality

1
a

+
1
b

+
1
c

> 1.

There are an infinite number of solutions (a, b, c) of the form (2, 2, c) and
just three more solutions (2, 3, 3), (2, 3, 4), and (2, 3, 5). The Coxeter graph
of the group G(2, 2, 2) consists of three vertices, and so G(2, 2, 2) is an
elementary 2-group of order 8. The Coxeter graph of G(2, 2, c), for c > 2,
is the disjoint union of a vertex and an edge labeled by c. Hence G(2, 2, c)
is the direct product of a group of order 2 and a dihedral group of order 2c.
Thus G(2, 2, c) has order 4c. The tessellation of S2 generated by reflecting
in the sides of T (2, 2, 5) is illustrated in Figure 7.2.1(a).

By Theorem 2.5.5, the area of T (2, 3, 3) is
π

2
+

π

3
+

π

3
− π =

π

6
.
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As the area of S2 is 4π, the tessellation

{gT (2, 3, 3) : g ∈ G(2, 3, 3)}
contains 24 triangles, and so G(2, 3, 3) has order 24. The tessellation can
be partitioned into 4 cycles, each consisting of 6 triangles cycling about
a 60◦ vertex. The union of each of these cycles is a spherical equilateral
triangle. See Figure 7.2.1(b). This gives a regular tessellation of S2 by 4
equilateral triangles. It is clear from the geometry of these two tessella-
tions that G(2, 3, 3) is the group of symmetries of the regular tetrahedron
inscribed in S2 with its vertices at the corners of the 4 equilateral trian-
gles. Consequently G(2, 3, 3) is a symmetric group on four letters. The
triangle group G0(2, 3, 3) is an alternating group on four letters called the
tetrahedral group. The Coxeter graph of G(2, 3, 3) is

� � �

The area of T (2, 3, 4) is π/12. Therefore, the tessellation

{gT (2, 3, 4) : g ∈ G(2, 3, 4)}
contains 48 triangles, and so G(2, 3, 4) has order 48. The tessellation can
be partitioned into 6 cycles, each consisting of 8 triangles cycling about
a 45◦ vertex. The union of each of these cycles is a spherical regular
quadrilateral. See Figure 7.2.1(c). This gives a regular tessellation of S2

by 6 quadrilaterals. It is clear from the geometry of these two tessellations
that G(2, 3, 4) is the group of symmetries of the cube inscribed in S2 with
its vertices at the corners of the 6 quadrilaterals. The above tessellation of
S2 by 48 triangles can also be partitioned into 8 cycles, each consisting
of 6 triangles cycling about a 60◦ vertex. The union of each of these
cycles is a spherical equilateral triangle. See Figure 7.2.1(c). This gives
a regular tessellation of S2 by 8 equilateral triangles. It is clear from the
geometry of these two tessellations that G(2, 3, 4) is the group of symmetries
of the regular octahedron inscribed in S2 with its vertices at the corners of
the 8 equilateral triangles. Now since a regular octahedron is antipodally
symmetric, we have

G(2, 3, 4) = {±1} × G0(2, 3, 4).

The triangle group G0(2, 3, 4) is a symmetric group on four letters called
the octahedral group. The Coxeter graph of G(2, 3, 4) is

� �
4

�

The area of T (2, 3, 5) is π/30. Therefore, the tessellation

{gT (2, 3, 5) : g ∈ G(2, 3, 5)}
contains 120 triangles, and so G(2, 3, 5) has order 120. The tessellation
can be partitioned into 12 cycles, each consisting of 10 triangles cycling
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about a 36◦ vertex. The union of each of these cycles is a spherical regular
pentagon. See Figure 7.2.1(d). This gives a regular tessellation of S2 by
12 pentagons. It is clear from the geometry of these two tessellations that
G(2, 3, 5) is the group of symmetries of the regular dodecahedron inscribed
in S2 with its vertices at the corners of the 12 pentagons. The above
tessellation of S2 by 120 triangles can also be partitioned into 20 cycles,
each consisting of 6 triangles cycling about a 60◦ vertex. The union of
each of these cycles is a spherical equilateral triangle. See Figure 7.2.1(d).
This gives a regular tessellation of S2 by 20 equilateral triangles. It is clear
from the geometry of these two tessellations that G(2, 3, 5) is the group of
symmetries of the regular icosahedron inscribed in S2 with its vertices at
the corners of the 20 equilateral triangles. Now since a regular icosahedron
is antipodally symmetric, we have

G(2, 3, 5) = {±1} × G0(2, 3, 5).

The triangle group G0(2, 3, 5) is an alternating group on five letters called
the icosahedral group. The Coxeter graph of G(2, 3, 5) is

� �
5

�

The tessellation of S2 generated by reflecting in the sides of T (a, b, c) in
each of the four cases is illustrated below.

(a) (b)

(c) (d)

Figure 7.2.1. Tessellations of S2 obtained by reflecting in the sides of a triangle
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Euclidean Triangle Reflection Groups

Now assume that X = E2. Then we have
π

a
+

π

b
+

π

c
= π.

Hence, the integers a, b, c satisfy the equation

1
a

+
1
b

+
1
c

= 1.

There are exactly three solutions (a, b, c) = (3, 3, 3), (2, 4, 4), or (2, 3, 6).
Note that T (3, 3, 3) is an equilateral triangle, T (2, 4, 4) is an isosceles right
triangle, and T (2, 3, 6) is a 30◦– 60◦ right triangle. The Coxeter graphs of
the groups G(3, 3, 3), G(2, 4, 4), and G(2, 3, 6) are, respectively,

�
���

��� �

�

�
4

�
4

� � �
6

�

The tessellation of E2 generated by reflecting in the sides of T (a, b, c) in
each of the three cases is illustrated below.

Figure 7.2.2. Tessellations of E2 obtained by reflecting in the sides of a triangle
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Hyperbolic Triangle Reflection Groups

Now assume that X = H2. By Theorem 3.5.1, we have
π

a
+

π

b
+

π

c
< π.

Hence, the integers a, b, c satisfy the inequality

1
a

+
1
b

+
1
c

< 1.

There are an infinite number of solutions to this inequality. Each solution
determines a hyperbolic triangle T (a, b, c) and a corresponding reflection
group G(a, b, c). Of all these triangles, T (2, 3, 7) has the least area, π/42.

The Coxeter graph of a hyperbolic reflection group G(a, b, c) is either

�
b

�
c

� or �
���

��� �

�

b

a c

according as a = 2 or a > 2. Figure 7.2.3 illustrates the tessellation of B2

generated by reflecting in the sides of T (2, 4, 6). Note that this tessellation
is the underlying geometry of Escher’s circle print in Figure 1.2.5.

Figure 7.2.3. Tessellation of B2 obtained by reflecting in the sides of T (2, 4, 6)
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Theorem 7.2.1. Let a, b, c, a′, b′, c′ be integers such that

2 ≤ a ≤ b ≤ c and 2 ≤ a′ ≤ b′ ≤ c′.

Then the triangle reflection groups G(a, b, c) and G(a′, b′, c′) are isomorphic
if and only if (a, b, c) = (a′, b′, c′).

Proof: Suppose that G(a, b, c) and G(a′, b′, c′) are isomorphic. Assume
first that G(a, b, c) is finite. Then G(a, b, c) and G(a′, b′, c′) are isomor-
phic spherical triangle reflections groups. From the description of all the
spherical triangle reflection groups, we deduce that (a, b, c) = (a′, b′, c′).
Thus, we may assume that G(a, b, c) is infinite. Then G(a, b, c) is either
a Euclidean or hyperbolic triangle reflection group. In either case, every
element of finite order in G(a, b, c) is elliptic.

By Theorem 6.6.5, every element of finite order in G(a, b, c) is conjugate
in G(a, b, c) to an element that fixes a point on the boundary of the triangle
T (a, b, c). Let x, y, z be the vertices of T (a, b, c) corresponding to the angles
π/a, π/b, π/c. In view of the fact that

{gT (a, b, c) : g ∈ G(a, b, c)}

is a tessellation of X, the stabilizer subgroup of each side of T (a, b, c) is the
group of order two generated by the reflection in the corresponding side of
T (a, b, c). Furthermore, the stabilizer subgroup at the vertex x, y, or z is a
dihedral group of order 2a, 2b, or 2c, respectively.

Let v be an arbitrary vertex of T (a, b, c) and let Gv be the stabilizer
subgroup at v. Then

{gT (a, b, c) : g ∈ Gv}

forms a cycle of triangles around the vertex v. Consequently, no two vertices
of T (a, b, c) are in the same orbit. Therefore, two elements in Gx ∪Gy ∪Gz

are conjugate in G(a, b, c) if and only if they are conjugate in the same
stabilizer Gv, since gGvg−1 = Ggv. Hence, the integers {2, a, b, c} are char-
acterized by G(a, b, c) as the orders of the maximal finite cyclic subgroups
of G(a, b, c). As this set is invariant under isomorphism, we have that
{2, a, b, c} = {2, a′, b′, c′}. Therefore (a, b, c) = (a′, b′, c′).

Barycentric Subdivision

Let P be an n-dimensional polytope in X. The barycentric subdivision of
P is the subdivision of P into n-simplices whose vertices can be ordered
{v0, . . . , vn} so that vk is the centroid of a k-face Fk of P for each k, and Fk

is a side of Fk+1 for each k = 0, . . . , n − 1. In particular, all the simplices
of the barycentric subdivision of P share the centroid of P as a common
vertex, and the side of such a simplex opposite the centroid of P is part
of the barycentric subdivision of a side of P . For example, Figure 7.1.2
illustrates the barycentric subdivision of a regular hexagon in B2.
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Tetrahedron Reflection Groups

We now consider some examples of tetrahedron reflection groups deter-
mined by regular tessellations of S3, E3, and H3.

Example 1. Let P be a regular Euclidean 4-simplex inscribed in S3.
Then radial projection of ∂P onto S3 gives a regular tessellation of S3

by five tetrahedra. Now since three of these tetrahedra meet along each
edge, their dihedral angle is 2π/3. Let T be one of these tetrahedra. Then
barycentric subdivision divides T into 24 congruent tetrahedra. Let ∆ be
one of these tetrahedra. Then the dihedral angles of ∆ are all submultiples
of π as indicated in Figure 7.2.4. Therefore, the group Γ generated by
reflecting in the sides of ∆ is a discrete reflection group with respect to ∆
by Theorem 7.1.3. It is clear from the geometry of ∆ and T that Γ is the
group of symmetries of P . Therefore Γ is a symmetric group on five letters,
and so Γ has order 5! = 120. The Coxeter graph of Γ is

� � � �

Example 2. Let P be a cube in E3. The dihedral angle of P is π/2.
Observe that barycentric subdivision divides P into 48 congruent tetrahe-
dra. Let ∆ be one of these tetrahedra. Then the dihedral angles of ∆ are
all submultiples of π as indicated in Figure 7.2.5. Therefore, the group Γ
generated by reflecting in the sides of ∆ is a discrete reflection group with
respect to ∆ by Theorem 7.1.3. It is worth noting that Γ is the group of
symmetries of the regular tessellation of E3 by cubes obtained by reflecting
in the sides of P . The Coxeter graph of Γ is

�
4

� �
4

�

Example 3. By the argument in Example 4 of §7.1, there is a hyper-
bolic regular dodecahedron P whose dihedral angle is 2π/5. Observe that
barycentric subdivision divides P into 120 congruent tetrahedra. Let ∆ be
one of these tetrahedra. Then the dihedral angles of ∆ are all submultiples
of π as indicated in Figure 7.2.6. Therefore, the group Γ generated by
reflecting in the sides of ∆ is a discrete reflection group with respect to ∆
by Theorem 7.1.3. It is worth noting that Γ is the group of symmetries of
the regular tessellation of H3 by dodecahedra obtained by reflecting in the
sides of P . The Coxeter graph of Γ is

�
5

� �
5

�
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π/3

π/2

π/3

π/2

π/2

π/3

Figure 7.2.4. A spherical tetrahedron with dihedral angles submultiples of π

π/4

π/2
π/4

π/2
π/2

π/3

Figure 7.2.5. A Euclidean tetrahedron with dihedral angles submultiples of π

π/5

π/2
π/5

π/2

π/2

π/3

Figure 7.2.6. A hyperbolic tetrahedron with dihedral angles submultiples of π
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Bilinear Forms

We now review some of the elementary theory of bilinear forms. Recall
that a bilinear form on a real vector space V is a function from V × V to
R, denoted by (v, w) �→ 〈v, w〉, such that for all v, w in V ,

(1) 〈v, 〉 and 〈 , w〉 are linear functions from V to R (bilinearity);

(2) 〈v, w〉 = 〈w, v〉 (symmetry);

moreover, 〈 , 〉 is said to be nondegenerate if and only if

(3) if v �= 0, then there is a w �= 0 such that 〈v, w〉 �= 0 (nondegeneracy).

A nondegenerate bilinear form on V is the same as an inner product on V .
A bilinear form 〈 , 〉 on V is said to be positive semidefinite if and only if

(4) 〈v, v〉 ≥ 0 for all v in V .

A bilinear form 〈 , 〉 on V is said to be positive definite if and only if

(5) 〈v, v〉 > 0 for all nonzero v in V .

Now suppose that 〈 , 〉 is a bilinear form on Rn. The matrix A of 〈 , 〉
is the real n × n matrix (aij) defined by

aij = 〈ei, ej〉.
Observe that A is a symmetric matrix. We say that A is positive definite,
positive semidefinite, or nondegenerate according as 〈 , 〉 has the same
property. By the Gram-Schmidt process, there is a basis u1, . . . , un of Rn

such that

〈ui, uj〉 = 0 if i �= j,

〈ui, ui〉 =

⎧⎨⎩ 1 if 1 ≤ i ≤ p,
−1 if p + 1 ≤ i ≤ q,

0 if q + 1 ≤ i ≤ n,

where p, q are integers such that 0 ≤ p ≤ q ≤ n. Note that A is positive
(semi) definite if and only if p = n (p = q), and A is nondegenerate if and
only if q = n. Furthermore q is equal to the rank of A. The pair (p, q − p)
is called the type of A.

Given any real symmetric n × n matrix A, we define the bilinear form
of A on Rn by the formula

〈x, y〉 = x · Ay.

Clearly, A is the matrix of the bilinear form of A.
The null space of a bilinear form 〈 , 〉 on Rn is the set

{y ∈ Rn : 〈x, y〉 = 0 for all x in Rn}.

The null space of the bilinear form of a matrix A is the null space of A.
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Lemma 1. Let A be a real symmetric n × n matrix such that the nnth
minor Ann of A is positive definite. Then A is

(1) positive definite if and only if det A > 0;

(2) of type (n − 1, 0) if and only if det A = 0;

(3) of type (n − 1, 1) if and only if det A < 0.

Proof: As the minor Ann is positive definite, there is an orthonormal
basis u1, . . . , un−1 of Rn−1 × {0} in Rn with respect to the inner product
of A. By the Gram-Schmidt process we can complete this basis to an
orthogonal basis u1, . . . , un of Rn with respect to the inner product of A
such that 〈un, un〉 = 1, 0, or −1. Hence A is either positive definite, of
type (n − 1, 0), or of type (n − 1, 1). Let C be the n × n matrix whose jth
column vector is uj . Then we have

CtAC = diag(1, . . . , 1, 〈un, un〉).

Hence A is positive definite, of type (n−1, 0), or of type (n−1, 1) according
as det A is positive, zero, or negative, respectively.

It follows from Lemma 1(1) and induction that a real symmetric n × n
matrix A = (aij) is positive definite if and only if the entries of A satisfy
the sequence of inequalities

a11 > 0, a11a22 − a2
12 > 0, . . . , det A > 0 (7.2.1)

where the ith term of the sequence is the determinant of the i × i matrix
obtained from A by deleting the kth row and column of A for each k > i.
It follows that the set of all positive definite n × n matrices corresponds to
an open subset of Rn(n−1)/2 under the mapping A �→ (aij) with i ≤ j.

Definition: Let ∆ be either an n-simplex in Sn, En or a generalized n-
simplex in Hn with sides S1, . . . , Sn+1 and let vi be a nonzero normal vector
to Si directed inwards for each i. The Gram matrix of ∆ with respect to
the normal vectors v1, . . . , vn+1 is the (n + 1) × (n + 1) matrix

A =
{

(vi · vj) if X = Sn, En

(vi ◦ vj) if X = Hn.

If vi is a unit vector for each i, and in the hyperbolic case if n > 1, then

A = (− cos θ(Si, Sj)) (7.2.2)

and A is called the standard Gram matrix of ∆ with respect to the sides
S1, . . . , Sn+1. In the hyperbolic case, by a normal vector, we mean a
Lorentz normal vector and by a unit vector, we mean a Lorentz unit vector.

Note if A = (aij) is a Gram matrix of ∆, then A = (aij/
√

aiiajj) is a
standard Gram matrix of ∆ by Formulas 1.3.3 and 3.2.6.
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Theorem 7.2.2. A real symmetric (n + 1) × (n + 1) matrix A is a Gram
matrix of an n-simplex ∆ in Sn if and only if A is positive definite.

Proof: Suppose that A is the Gram matrix of an n-simplex ∆ in Sn

with respect to the normal vectors v1, . . . , vn+1 of sides S1, . . . , Sn+1, re-
spectively. Let Vi be the n-dimensional vector subspace of Rn+1 such that
〈Si〉 = Vi ∩ Sn and let Hi be the half-space of Rn+1 bounded by Vi and
containing ∆. Then

Hi = {x ∈ Rn+1 : x · vi ≥ 0}
and

∆ =
(

n+1
∩

i=1
Hi

)
∩ Sn.

Let B be the (n+1)× (n+1) matrix whose jth column vector is vj . Then
the orthogonal complement of the column space of B is the set

{x ∈ Rn+1 : x · vi = 0 for i = 1, . . . , n + 1}.

But this set is ∩n+1
i=1 Vi = {0}. Therefore v1, . . . , vn+1 form a basis of Rn+1.

Thus B is nonsingular.
Next, define a positive definite inner product on Rn+1 by the formula

〈x, y〉 = Bx · By.

Then for each i, j, we have

〈ei, ej〉 = Bei · Bej = vi · vj .

Therefore A is the matrix of this inner product, and so A is positive definite.
Conversely, suppose that A is positive definite. Then there is an or-

thonormal basis u1, . . . , un+1 of Rn+1 with respect to the inner product of
A. Let C be the (n + 1) × (n + 1) matrix whose jth column vector is uj .
Then CtAC = I. Let B = C−1. Then A = BtB. Let vj be the jth column
vector of B. Then v1, . . . , vn+1 form a basis of Rn+1 and A = (vi · vj). Let

Q = {y ∈ Rn+1 : yi ≥ 0 for i = 1, . . . , n + 1}.

Then the set Q is an (n + 1)-dimensional convex polyhedron in En+1 with
n + 1 sides and exactly one vertex at the origin.

Now let

Hi = {x ∈ Rn+1 : vi · x ≥ 0}
and

Vi = {x ∈ Rn+1 : vi · x = 0},

and set
K =

n+1
∩

i=1
Hi.

Then BtK ⊂ Q. Let y be an arbitrary vector in Q. Set x = Cty. Then
Btx = y. Hence vi · x ≥ 0 for all i, and so x is in K. Therefore BtK = Q.
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Hence K is an (n + 1)-dimensional convex polyhedron in En+1 with n + 1
sides Vi ∩ K, for i = 1, . . . , n + 1, and exactly one vertex at the origin.
Therefore, the set ∆ = K ∩ Sn is an n-dimensional convex polyhedron
in Sn with sides Si = Vi ∩ ∆ for each i = 1, . . . , n + 1. Moreover ∆ is
contained in an open hemisphere of Sn by Theorem 6.3.16. Therefore ∆
is a polytope in Sn by Theorem 6.5.1. Hence ∆ is an n-simplex in Sn by
Theorem 6.5.4, and A is the Gram matrix of ∆ with respect to the normal
vectors v1, . . . , vn+1.

Lemma 2. Let ∆ be an n-simplex in En. Let v be a vertex of ∆, let S be
the side of ∆ opposite v, and let h be the distance from v to 〈S〉. Then

Voln(∆) = 1
nh Voln−1(S).

Proof: Position ∆ so that v is at the origin and S is parallel to and above
the coordinate hyperplane xn = 0. Let t = xn/h. Then we have

Voln(∆) =
∫

∆
dx1 · · · dxn

=
∫ 1

0

∫
tS

hdx1 · · · dxn−1dt

= h

∫ 1

0
Voln−1(tS)dt

= h

∫ 1

0
tn−1Voln−1(S)dt =

1
n

h Voln−1(S).

Theorem 7.2.3. Let A be a real symmetric (n+1)×(n+1) matrix, n > 0.
Let Aii be the iith minor of A, and let adjA be the adjoint matrix of A.
Then A is a Gram matrix of an n-simplex ∆ in En if and only if

(1) Aii is positive definite for each i = 1, . . . , n + 1,

(2) detA = 0, and

(3) all the entries of adjA are positive.

Proof: Suppose that A is the Gram matrix of an n-simplex ∆ in En

with respect to the normal vectors v1, . . . , vn+1 of sides S1, . . . , Sn+1, re-
spectively. Let Hi be the half-space of En bounded by 〈Si〉 and containing
∆. Then we have

∆ =
n+1
∩

i=1
Hi.

By translating ∆, if necessary, we may assume that the vertex of ∆
opposite the side Sj is the origin. Then the set(

n+1
∩

i=1
i�=j

Hi

)
∩ Sn−1
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is an (n − 1)-simplex in Sn−1. By the proof of Theorem 7.2.2, the vectors
v1, . . . , v̂j , . . . , vn+1 form a basis of Rn and Ajj is positive definite for each
j = 1, . . . , n + 1.

Let B be the n×(n+1) matrix whose jth column is vj for j = 1, . . . , n+1.
Define a positive semidefinite bilinear form on Rn+1 by the formula

〈x, y〉 = Bx · By.

Then the matrix of this form is A. Moreover, the null space of this form
is the null space of B. As the rank of B is n, the null space of B is
1-dimensional. Therefore, the null space of A is 1-dimensional. Hence
det A = 0.

Let ui be the vertex of ∆ opposite the side Si and let hi = dist(ui, 〈Si〉)
for each i. Let si = 1/hi and let Fi = Voln−1(Si) for each i. Then
Fi/si = nVol(∆) for each i by Lemma 2. Let x be a point in ∆◦. Then ∆
is subdivided into n + 1 n-simplices obtained by forming the cone from x
to each side Si of ∆. Let xi = dist(x, 〈Si〉) for each i. By Lemma 2

F1x1 + · · · + Fn+1xn+1 = nVol(∆).

As Fi = nsiVol(∆),

s1x1 + · · · + sn+1xn+1 = 1.

Now position ∆ so that un+1 is at the origin. Let v̂i = vi/|vi| for each i.
Then v̂i ·x = xi for each i = 1, . . . , n, and v̂n+1 ·x = xn+1 −hn+1. Observe
that

(s1v̂1 + · · · + sn+1v̂n+1) · x = s1x1 + · · · + sn+1xn+1 − 1 = 0.

As ∆◦ contains a basis of Rn, we must have

s1v̂1 + · · · + sn+1v̂n+1 = 0.

Now for each i, we have

vi · (s1v̂1 + · · · + sn+1v̂n+1) = ai1s1|v1|−1 + · · · + ai,n+1sn+1|vn+1|−1 = 0.

Therefore, the vector w = (s1/|v1|, . . . , sn+1/|vn+1|) is in the null space
of A. As all the components of w are positive and the null space of A is
1-dimensional, we conclude that all the components of a nonzero vector in
the null space of A have the same sign. Now as

A adjA = (detA)I = 0,

the column vectors of adjA are in the null space of A. Now

(adjA)ii = detAii > 0

for each i by Lemma 1, and so all the entries of adjA are positive.
Conversely, suppose that A satisfies (1)-(3). Then A is of type (n, 0) by

Lemma 1. Therefore, the null space of A is 1-dimensional. As

A adjA = (detA)I = 0,



§7.2. Simplex Reflection Groups 289

the column vectors of adjA are in the null space of A. Therefore all the
components of a nonzero vector in the null space of A have the same sign.

Now as A is of type (n, 0), there is a nonsingular (n+1)× (n+1) matrix
B such that

A = Btdiag(1, . . . , 1, 0)B.

Let vj be the jth column vector of B and let vj be the vector in Rn obtained
by dropping the last coordinate of vj . Then A = (vi · vj).

Let B be the n × n matrix whose jth column vector is vj . Then

Bei · Bej = vi · vj .

Hence, the restriction of the bilinear form of A to Rn is given by

〈x, y〉 = Bx · By.

As An+1,n+1 is positive definite, the matrix B is nonsingular. Therefore
v1, . . . , vn form a basis of Rn.

Now let
Hi = {x ∈ Rn : vi · x ≥ 0}

and let Vi be the bounding hyperplane of the half-space Hi for each i.
Let C be the (n + 1) × n matrix whose ith row is vi. As CCt = A, the
column space of C is the column space of A. Suppose that x is in ∩n+1

i=1 Hi.
Then vi · x ≥ 0 for each i = 1, . . . , n + 1. Hence, each component of Cx
is nonnegative. Let y be a nonzero vector in the null space of A. Then
y is orthogonal to the column space of A, since A is symmetric. Hence
(Cx) · y = 0. As all the components of y have the same sign, we deduce
that Cx = 0. Therefore x is in ∩n

i=1Vi = {0}. Thus ∩n+1
i=1 Hi = {0}.

By the proof of Theorem 7.2.2, the set ∩n
i=1Hi is an n-dimensional convex

polyhedron in En with n sides Vi ∩
(
∩n

j=1Hj

)
, for i = 1, . . . , n, and exactly

one vertex at the origin. As ∩n+1
i=1 Hi = {0}, we must have that(

n
∩

i=1
Hi

)
− {0} ⊂ −H◦

n+1 = {x ∈ Rn : vn+1 · x < 0}.

Let
H0 = {x ∈ Rn : vi · x ≥ −1}

and let V0 be the bounding hyperplane of the half-space H0. Then the set
H0 ∩ (−Hn+1) is the closed region bounded by the parallel hyperplanes V0
and Vn+1. Observe that radial projection from the origin maps a link of
the origin in ∩n

i=1Hi onto a compact subset of V0. Let

∆ =
n
∩

i=0
Hi.

Then ∆ is the cone from the origin to V0 ∩(∩n
i=1Hi). Hence ∆ is a compact

n-dimensional convex polyhedron in En with n + 1 sides

Si = Vi ∩
(

n
∩

j=0
Hj

)
for i = 0, . . . , n.

Therefore ∆ is an n-simplex in En by Theorems 6.5.1 and 6.5.4, and A is
the Gram matrix of ∆ with respect to the normal vectors v1, . . . , vn+1.
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Theorem 7.2.4. Let A be a real symmetric (n+1)×(n+1) matrix, n > 0.
Let Aii be the iith minor of A, and let adjA be the adjoint matrix of A.
Then A is a Gram matrix of an n-simplex ∆ in Hn if and only if

(1) Aii is positive definite for each i = 1, . . . , n + 1,

(2) detA < 0, and

(3) all the entries of adjA are positive.

Proof: Suppose that A is the Gram matrix of an n-simplex ∆ in Hn with
respect to the Lorentz normal vectors v1, . . . , vn+1 of sides S1, . . . , Sn+1,
respectively. Let Vi be the n-dimensional, time-like, vector subspace of
Rn,1 such that 〈Si〉 = Vi ∩Hn and let Hi be the half-space of Rn,1 bounded
by Vi and containing ∆. Then

Hi = {x ∈ Rn,1 : x ◦ vi ≥ 0}

and

∆ =
(

n+1
∩

i=1
Hi

)
∩ Hn.

Let B be the (n + 1) × (n + 1) matrix whose jth column vector is vj .
Then the Lorentz orthogonal complement of the column space of B is the
set

{x ∈ Rn,1 : x ◦ vi = 0 for i = 1, . . . , n + 1}.

But this set is
n+1
∩

i=1
Vi = {0}.

Therefore v1, . . . , vn+1 form a basis of Rn+1. Thus B is nonsingular.
Next, define a bilinear form on Rn+1 of type (n, 1) by the formula

〈x, y〉 = Bx ◦ By.

Then for all i, j, we have

〈ei, ej〉 = Bei ◦ Bej = vi ◦ vj .

Hence A is the matrix of this form, and so A is of type (n, 1). Therefore
det A < 0.

By translating ∆, if necessary, we may assume that the vertex of ∆
opposite the side of Sj is en+1. Let rj be half the distance from en+1 to Sj

in Hn. Then the set
∆′ = S(en+1, rj) ∩ ∆

is a spherical (n − 1)-simplex with sides S′
i = Si ∩ S(en+1, rk) for i �= j.

Furthermore, vi is a normal vector to the side S′
i for each i �= j in the

horizontal hyperplane P (en+1, cosh rj) of En+1 containing S′
i, since the last

coordinate of vi is zero for each i �= j. Therefore Ajj is positive definite by
Theorem 7.2.2 for each j = 1, . . . , n + 1.
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Let v∗
1 , . . . , v∗

n+1 be the row vectors of B−1 and let wi = Jv∗
i for each i.

Then wi ◦ vi = δij for each i, j. Now A = BtJB, and so

A−1 = B−1J(B−1)t = (v∗
i ◦ v∗

j ) = (wi ◦ wj).

As the iith entry of A−1 is det Aii/ det A, we have that wi is time-like for
each i. As wi ◦ vj = 0 for i �= j, we have that wi lies on the 1-dimensional
time-like subspace spanned by the vertex of ∆ opposite the side Si. As
wi ◦ vi > 0 for each i, we have that wi lies on the same side of Vi as
vi for each i. Hence wi is positive time-like for each i and w1, . . . , wn+1
normalize to the vertices of ∆. Hence wi ◦ wj < 0 for all i, j by Theorem
3.1.1. Therefore all the entries of A−1 are negative. As adjA = (detA)A−1,
we conclude that all the entries of adjA are positive.

Conversely, suppose that A satisfies (1)-(3). Then A is of type (n, 1) by
Lemma 1. Hence, there is a nonsingular (n + 1) × (n + 1) matrix B such
that A = BtJB. Let vj be the jth column vector of B. Then v1, . . . , vn+1
form a basis of Rn+1 and A = (vi ◦ vj). Let

Q = {y ∈ Rn+1 : yi ≥ 0 for i = 1, . . . , n + 1}.

Then the set Q is an (n + 1)-dimensional convex polyhedron in En+1 with
n + 1 sides, n + 1 edges, and exactly one vertex at the origin.

Now let

Hi = {x ∈ Rn,1 : vi ◦ x ≥ 0}
and

Vi = {x ∈ Rn,1 : vi ◦ x = 0},

and set
K =

n+1
∩

i=1
Hi.

As BtJK = Q, we deduce that K is an (n + 1)-dimensional convex poly-
hedron in En+1 with n + 1 sides Vi ∩ K for i = 1, . . . , n + 1, n + 1 edges,
and exactly one vertex at the origin.

Let v∗
1 , . . . , v∗

n+1 be the row vectors of B−1 and let wi = Jv∗
i for each

i = 1, . . . , n + 1. Then wi ◦ vj = δij for all i, j. Hence wi is in K for each i.
As wi ◦ vj = 0 for all j �= i, we have that wi is on the edge of K opposite
the side Vi ∩ K for each i.

Now A = BtJB, and so

A−1 = B−1J(B−1)t = (v∗
i ◦ v∗

j ) = (wi ◦ wj).

As A−1 = adjA/ det A, all the entries of A−1 are negative. Hence, we have
wi◦wj < 0 for all i, j. Therefore the vectors w1, . . . , wn+1 are time-like with
the same parity by Theorem 3.1.1. By replacing B with −B, if necessary,
we may assume that w1, . . . , wn+1 are all positive time-like.

Let x be a nonzero vector in K, and let y = BtJx. Then y is in Q, and
so yi ≥ 0 for each i. Observe that

x = J(Bt)−1y =
n+1∑
i=1

yiJ(B−1)tei =
n+1∑
i=1

yiwi.
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Hence x is positive time-like by Theorem 3.1.2. Therefore ∆ = K ∩ Hn

is an n-dimensional convex polyhedron in Hn with sides Si = Vi ∩ ∆ for
i = 1, . . . , n + 1. Now radial projection from the origin maps a link of the
origin in K onto ∆, and so ∆ is compact. Therefore ∆ is an n-simplex
in Hn by Theorems 6.5.1 and 6.5.4, and A is the Gram matrix of ∆ with
respect to the normal vectors v1, . . . , vn+1.

Let M be a real m × n matrix (mij). Then M is said to be nonnegative
(resp. nonpositive), denoted by M ≥ 0 (resp. M ≤ 0) if and only if mij ≥ 0
(resp. mij ≤ 0) for all i, j.

Lemma 3. Let A be a real symmetric n×n matrix (aij) such that aij ≤ 0
if i �= j. Suppose that the iith minor Aii of A is positive definite for each
i = 1, . . . , n. Then the adjoint of A is a nonnegative matrix.

Proof: Let x be a vector in Rn such that Ax ≥ 0. We claim that either
x ≥ 0 or x ≤ 0. On the contrary, suppose that xi < 0 for some i and
xj > 0 for some j. Let x′ be the vector obtained from x by deleting the
nonnegative components of x. Let A′ be the diagonal minor of A obtained
by omitting the rows and columns corresponding to the components of x
omitted in x′. Then A′x′ ≥ 0 since the terms omitted are all of the form
aijxj where xi < 0 and xj ≥ 0, whence i �= j, and so aij ≤ 0 and aijxj ≤ 0.

Now observe that x′ · A′x′ ≤ 0, since x′ ≤ 0. But A′ is positive def-
inite, since A′ is a diagonal minor of Aii for some i, and so we have a
contradiction. Thus either x ≥ 0 or x ≤ 0.

Suppose A is nonsingular. Then AA−1ei ≥ 0, and so either A−1ei ≥ 0
or A−1ei ≤ 0 for each i. Now we have adjA = (detA)A−1. Hence either
(adjA)ei ≥ 0 or (adjA)ei ≤ 0 for each i. Suppose A is singular. Then
A(adjA)ei = (detA)ei ≥ 0. Thus, in general, either (adjA)ei ≥ 0 or
(adjA)ei ≤ 0 for each i. The iith entry of adjA is det Aii and detAii > 0,
since Aii is positive definite. Therefore adjA ≥ 0.

Theorem 7.2.5. Let A = (− cos θij) be a symmetric (n + 1) × (n + 1)
matrix such that 0 < θij ≤ π/2 if i �= j and θii = π for each i, and let Aii

be the iith minor of A. Then A is a Gram matrix of an n-simplex ∆ in
Sn, En or Hn if and only if Aii is positive definite for each i = 1, . . . , n+1.
Furthermore ∆ is spherical, Euclidean, or hyperbolic according as det A is
positive, zero, or negative, respectively.

Proof: (1) Suppose that A is a Gram matrix of an n-simplex ∆ in Sn.
Then A is positive definite by Theorem 7.2.2. Hence Aii is positive definite
for each i and detA > 0 by Lemma 1. Conversely, if Aii is positive definite
for each i and detA > 0, then A is positive definite by Lemma 1, and so A
is a Gram matrix of an n-simplex ∆ in Sn by Theorem 7.2.2.

(2) Suppose A is a Gram matrix of an n-simplex ∆ in En. Then Aii is
positive definite for each i and detA = 0 by Theorem 7.2.3.
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Conversely, suppose that Aii is positive definite for each i and detA = 0.
Then A is of type (n, 0) by Lemma 1. Therefore, the null space of A is
1-dimensional. Let x be a nonzero vector in the null space of A. Then each
component xi of x is nonzero, since Aii is positive definite for each i. Now
AadjA = (det A)I = 0. Hence the column vectors of adjA are in the null
space of A. The iith entry of adjA is det Aii and detAii > 0, since Aii is
positive definite. Hence all the entries of adjA are positive by Lemma 3.
Thus A is a Gram matrix of an n-simplex ∆ in En by Theorem 7.2.3.

(3) Suppose A is a Gram matrix of an n-simplex ∆ in Hn. Then Aii is
positive definite for each i and detA < 0 by Theorem 7.2.4.

Conversely, suppose that Aii is positive definite for each i and detA < 0.
Let w1, . . . , wn+1 be the vectors in the second half of the proof of Theorem
7.2.4. Then A−1 = (wi◦wj). By Lemma 3, we have that A−1 = adjA/ det A
is nonpositive. Therefore wi ◦ wj ≤ 0 for all i, j. The vectors w1, . . . , wn+1
are time-like, since

(A−1)ii = detAii/ det A < 0.

Hence wi ◦wj < 0 for all i, j by Theorem 3.1.1. Thus all the entries of A−1

are negative. As adjA = (det A)A−1, all the entries of adjA are positive.
Thus A is a Gram matrix of an n-simplex ∆ in Hn by Theorem 7.2.4.

Classification of Simplex Reflection Groups

Let Γ be the group generated by the reflections of X in the sides of an
n-simplex ∆ all of whose dihedral angles are submultiples of π. Let v be a
vertex of ∆ and let Γv be the subgroup of Γ consisting of the elements of Γ
fixing v. Then Γv is a spherical (n−1)-simplex reflection group. Moreover,
the subgraph of the Coxeter graph of Γ, obtained by deleting the vertex
corresponding to the side of ∆ opposite v and its adjoining edges, is the
Coxeter graph of Γv. By induction, every subgraph of the Coxeter graph
of Γ obtained by deleting vertices and their adjoining edges is the Coxeter
graph of a spherical simplex reflection group.

The group Γ is said to be irreducible if and only if its Coxeter graph is
connected. Suppose that Γ is irreducible. Then we can delete vertices and
their adjoining edges from the Coxeter graph of Γ so that after each deletion
we obtain a connected subgraph. Now the only labels on the irreducible
spherical triangle reflection groups are 3, 4, and 5. Therefore, if n > 2,
the Coxeter graph of Γ has only 3, 4, and 5 as possible labels. Hence,
there are only finitely many possible Coxeter graphs of n-simplex reflection
groups for each n > 2. In view of Theorem 7.2.5, it is straightforward to
list all the possible Coxeter graphs of n-simplex reflections groups for a
given n. Spherical and Euclidean n-simplex reflection groups exist in all
dimensions n; however, hyperbolic n-simplex reflection groups exist only
for dimensions n ≤ 4. Figures 7.2.7–7.2.9 illustrate the Coxeter graphs of
all the irreducible, simplex, reflection groups.



294 7. Classical Discrete Groups

545

5 6 7 · · ·

· · ·

4 4 4 · · ·

· · ·

Figure 7.2.7. The irreducible, spherical, simplex, reflection groups

46∞

· · ·

4 4 4 · · ·

4 4 4 4 4 4 · · ·

· · ·

Figure 7.2.8. The Euclidean, simplex, reflection groups
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5 5 5 4

5 4 5

4 5 4

4

5

4

5

5

5 4 5 5 5 5

c

a b

b c

3 ≤ a ≤ b ≤ c, 1
a + 1

b + 1
c < 1

3 ≤ b ≤ c, 1
b + 1

c < 1
2

Figure 7.2.9. The hyperbolic, simplex, reflection groups

Exercise 7.2

1. Prove that G0(2, 3, 4) is a symmetric group on four letters and G0(2, 3, 5) is
an alternating group on five letters.

2. Prove that T (2, 3, 7) is the triangle of least area among all the hyperbolic
triangles T (a, b, c).

3. Prove that G(2, 4, 6) contains the group Γ in Example 3 of §7.1 as a normal
subgroup of index 12.

4. Prove that the group of symmetries of an (n + 1)-dimensional, Euclidean,
regular polytope inscribed in Sn is isomorphic to a spherical, n-simplex,
reflection group.

5. Prove that the regular tessellations of Sn correspond under radial projection
to the (n + 1)-dimensional, Euclidean, regular polytopes inscribed in Sn.

6. Prove that the group of symmetries of a regular tessellation of X is an n-
simplex reflection group.

7. Let A be a Gram matrix for two n-simplices ∆1 and ∆2 in X. Prove that
∆1 and ∆2 are similar in X.

8. Prove that every Euclidean or hyperbolic simplex reflection group is irre-
ducible.

9. Prove that every hyperbolic n-simplex reflection group is nonelementary
when n > 1.
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§7.3. Generalized Simplex Reflection Groups

Let ∆ be a generalized n-simplex in Hn all of whose dihedral angles are
submultiples of π. Then the group Γ generated by the reflections of Hn in
the sides of ∆ is a discrete group of isometries of Hn by Theorem 7.1.3.
The group Γ is called a (generalized) simplex reflection group. Figure
7.3.1 illustrates the Coxeter graphs of the hyperbolic, noncompact triangle,
reflection groups. Figure 7.3.2 illustrates the tessellation of B2 obtained
by reflecting in the sides of an ideal triangle.

Example: Let Γ be the subgroup of PO(2, 1) of all the matrices with
integral entries. Then Γ is a discrete subgroup of PO(2, 1), since Γ is a
subgroup of the discrete group GL(3, Z). We now show that Γ is a discrete
reflection group with respect to a triangle T (2, 4,∞) in H2. Clearly Γ acts
on the set S = H2 ∩ Z3. Observe that the point e3 = (0, 0, 1) is in S. The
stabilizer of e3 in Γ is isomorphic to O(2) ∩ GL(2, Z), and so is a dihedral
group of order eight generated by the 90◦ rotation about the z-axis and
the reflection in the xz-plane.

The points of S−{e3} nearest to e3 are the four points (±2,±2, 3). Let A
be the Lorentzian matrix that represents the reflection of H2 that maps e3
to (2, 2, 3), and let u be a Lorentz unit normal vector of the 2-dimensional
time-like subspace of R2,1 fixed by A. Then A is defined by the formula

Av = v − (2u ◦ v)u. (7.3.1)

Therefore e3 +2u3u = (2, 2, 3). Hence 2u2
3 = 2, and so we may take u3 = 1.

Then u = (1, 1, 1) and

A =

⎛⎝ −1 −2 2
−2 −1 2
−2 −2 3

⎞⎠ .

Therefore A is in Γ. Observe that A fixes the plane z = x + y. Hence A
fixes the hyperbolic line of H2 given by the conditions

z = x + y, x2 + y2 − z2 = −1, z > 0.

Substituting the first equation into the second, we see that A fixes the
hyperbolic line of H2 given by the equation xy = 1/2.

∞

a b
3 ≤ a ≤ bb > 2

b ∞

a > 2
a

∞ ∞

∞

∞ ∞ ∞ ∞

Figure 7.3.1. The hyperbolic, noncompact triangle, reflection groups
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Figure 7.3.2. Tessellation of B2 obtained by reflecting an ideal triangle

Observe that the reflections (x, y, z) �→ (x,−y, z) and (x, y, z) �→ (y, x, z)
fix the hyperbolic lines y = 0 and x = y, respectively, of H2. Let T be
the triangle in H2 defined by the inequalities xy ≤ 1/2, y ≥ 0, and x ≥ y.
Then clearly T = T (2, 4,∞). See Figure 7.3.3. Let Γ′ be the subgroup of
Γ generated by the matrices representing the reflections in the sides of T .
Then Γ′ is a discrete reflection group with respect to T .

Let g be an element of Γ. Then there is an f in Γ′ such that fge3 is in
T . Clearly e3 is the only point of S contained in T . Therefore fge3 = e3.
Thus fg is in the stabilizer of e3 in Γ. As the stabilizer of e3 in Γ is a
subgroup of Γ′, we have that g is in Γ′. Therefore Γ = Γ′. Thus Γ is a
triangle reflection group with respect to T (2, 4,∞).

x

y

T

(2, 2, 3)

Figure 7.3.3. A triangle T (2, 4, ∞) in H2
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Γ4, . . . ,Γ9 . . . 4

Γ3
4 4

Γ2
4 ∞

Figure 7.3.4. Coxeter graphs of the groups Γn for n = 2, . . . , 9

Let Γn be the subgroup of PO(n, 1) consisting of all the matrices with
integral entries. Then Γn is a discrete subgroup of PO(n, 1), since Γn is a
subgroup of the discrete group GL(n+1, Z). The group Γn is a hyperbolic,
noncompact n-simplex, reflection group for n = 2, 3, . . . , 9. The Coxeter
graphs of these groups are listed in Figure 7.3.4.

Theorem 7.3.1. Let A be a real symmetric (n+1)×(n+1) matrix, n > 1.
Let Aii be the iith minor of A and let adjA be the adjoint matrix of A. Then
A is a Gram matrix of a generalized n-simplex ∆ in Hn if and only if

(1) Aii is a Gram matrix of either a spherical or Euclidean (n−1)-simplex
for each i = 1, . . . , n + 1,

(2) detA < 0, and

(3) all the entries of adjA off the main diagonal are positive.

Proof: The proof follows the same outline as the proof of Theorem
7.2.4, and so only the necessary alterations will be given. Suppose that
A is the Gram matrix of a generalized n-simplex ∆ in Hn with respect to
the Lorentz normal vectors v1, . . . , vn+1 of sides S1, . . . , Sn+1, respectively.
Then det A < 0 as in the proof of Theorem 7.2.4.

Let uk be the vertex of ∆ opposite the side Sk. If uk is an actual vertex
of ∆, then Akk is a Gram matrix of a spherical (n − 1)-simplex as in the
proof of Theorem 7.2.4. Suppose that uk is ideal. We pass to the upper
half-space model Un. Then we may assume, without loss of generality, that
uk = ∞. Let B be a horoball based at ∞ such that B does not meet Sk.
Then ∆′ = ∂B ∩ ∆ is a Euclidean (n − 1)-simplex with sides S′

i = Si ∩ ∂B
for i �= k by Theorem 6.4.5; moreover θ(S′

i, S
′
j) = θ(Si, Sj) for i, j �= k.

Therefore Akk is a Gram matrix of the Euclidean (n − 1)-simplex ∆′.
Let w1, . . . , wn+1 be the vectors in the first half of the proof of Theorem

7.2.4. Then w1, . . . , wn+1 are linearly independent and A−1 = (wi ◦ wj).
The vectors w1, . . . , wn+1 are positive nonspace-like by the argument in the
proof of Theorem 7.2.4. Hence wi ◦ wj < 0 if i �= j by Theorem 3.1.1. As
adjA = (detA)A−1, we conclude that all the entries of adjA off the main
diagonal are positive.
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Conversely, suppose that A satisfies (1)-(3). Then the bilinear form of A
is positive definite on the subspace 〈e1, . . . , en−1〉. Hence A must be of type
(n, 1), since det A < 0. Let v1, . . . , vn+1 and w1, . . . , wn+1 be the vectors
in the second half of the proof of Theorem 7.2.4. Then A = (vi ◦ vj) and
w1, . . . , wn+1 are nonspace-like of the same parity by the argument in the
proof of Theorem 7.2.4.

Let x be the nonzero vector in K near the end of the proof of Theorem
7.2.4. Then x is positive nonspace-like with x light-like if and only if x is
a scalar multiple of a light-like wi for some i by Theorem 3.1.2. Hence the
only light-like vectors of K are those on the edges of K for which wi is
light-like. Therefore ∆ = K ∩ Hn is an n-dimensional convex polyhedron
in Hn with sides S1, . . . , Sn+1 and inward normal vectors v1, . . . , vn+1,
respectively. Let P be the horizontal hyperplane P (en+1, 1). Then K ∩ P
is an n-dimensional convex polyhedron in P with n + 1 sides and n + 1
vertices. Now radial projection from the origin maps a link of the origin
in K onto K ∩ P , and so K ∩ P is compact. Therefore K ∩ P is an
n-simplex in P by Theorems 6.5.1 and 6.5.4. Let ∆′ be K ∩ P minus
its light-like vertices. Let ν : Rn+1 → Rn be vertical projection. Then
ν(∆′) is a generalized n-simplex in Dn by Theorems 6.5.7 and 6.5.10. Let
µ : Dn → Hn be gnomonic projection. Then µν(∆′) = ∆. Hence ∆ is a
generalized n-simplex in Hn, and A is the Gram matrix of ∆ with respect
to the normal vectors v1, . . . , vn+1.

Theorem 7.3.2. Let A = (− cos θij) be a symmetric (n + 1) × (n + 1)
matrix, n > 1, such that 0 ≤ θij ≤ π/2 if i �= j and θii = π for each i, and
let Aii be the iith minor of A. Then A is a Gram matrix of a noncompact
generalized n-simplex ∆ in Hn if and only if

(1) Aii is a Gram matrix of either a spherical or Euclidean (n−1)-simplex
for each i = 1, . . . , n + 1,

(2) Aii is a Gram matrix of a Euclidean (n − 1)-simplex for some i,

(3) every column of A has more than one nonzero entry.

Proof: Suppose that A is the standard Gram matrix of a noncompact
generalized n-simplex ∆ in Hn with respect to the sides S1, . . . , Sn+1. Then
the minor Aii is a Gram matrix of either a spherical or Euclidean (n − 1)-
simplex for each i by Theorem 7.3.1. As ∆ is noncompact, ∆ has at least
one ideal vertex. Hence, the minor Aii is a Gram matrix of a Euclidean
(n − 1)-simplex for some i.

Let vi be the Lorentz unit inward normal vector of side Si for each i.
Then for each i, j, we have

vi ◦ vj = − cos θij .

Let B be the (n+1)×(n+1) matrix whose jth column vector is vj . Define
a bilinear form on Rn+1 by the formula

〈x, y〉 = Bx ◦ By.
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Then A is the matrix of this form. As Ajj is positive semidefinite, this
form is positive semidefinite on the vector subspace

〈e1, . . . , êj , . . . , en+1〉.
Hence, the Lorentzian inner product on Rn,1 is positive semidefinite on the
vector subspace

Wj = 〈v1, . . . , v̂j , . . . , vn+1〉.
Therefore Wj is nontime-like.

On the contrary, suppose that the jth column of A has only one nonzero
entry, namely, − cos θjj = 1. Then vj is Lorentz orthogonal to Wj . There-
fore vj is nonspace-like. But vj ◦ vj = 1, and so we have a contradiction.
Thus, every column of A must have at least two nonzero entries. Thus A
satisfies (1)-(3).

Conversely, suppose that A satisfies (1)-(3). Then Aii is the Gram ma-
trix of a Euclidean (n − 1)-simplex for some i. By reindexing, if nec-
essary, we may assume that An+1,n+1 is a Gram matrix of a Euclidean
(n − 1)-simplex. Let 〈 , 〉 be the bilinear form of A. Then Rn has a
basis {u1, . . . , un} such that 〈ui, uj〉 = 0 if i �= j, and 〈ui, ui〉 = 1 for
i = 1, . . . , n − 1, and 〈un, un〉 = 0. The matrix of the bilinear form of A
with respect to the basis {u1, . . . , un, en+1} is

C =

⎛⎜⎜⎜⎜⎜⎝
1 0 ∗

. . .
...

0 1 ∗
0 c

∗ · · · ∗ c 1

⎞⎟⎟⎟⎟⎟⎠ ,

where c = 〈un, en+1〉. Write un = (c1, . . . , cn) as a vector in Rn. Since un

is in the null space of An+1,n+1, all the components ci of un have the same
sign by the proof of Theorem 7.2.3. Hence

c =
n∑

i=1

ci〈ei, en+1〉 �= 0,

since 〈ei, en+1〉 ≤ 0 for all i < n + 1 with inequality for some i < n + 1.
By expanding the determinant of C along the (n + 1)st column, we find
that detC = −c2 < 0. Hence, the rank of C, and therefore of A, is n + 1.
As the bilinear form of A is positive definite on the (n − 1)-dimensional
vector subspace 〈u1, . . . , un−1〉, the matrix A must be of type (n, 1). Hence
det A < 0.

Let w1, . . . , wn+1 be the vectors in the second half of the proof of Theo-
rem 7.2.4. Then w1, . . . , wn+1 are linearly independent and A−1 = (wi◦wj).
Now we have

(A−1)ii = detAii/ det A ≤ 0.

Hence w1, . . . , wn+1 are nonspace-like. Therefore (A−1)ij �= 0 if i �= j by
Theorem 3.1.1.
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We next show that A−1 ≤ 0. Let x = A−1ek for some k. Then Ax ≥ 0.
We claim that either x ≥ 0 or x ≤ 0. On the contrary, suppose that xi < 0
for some i and xj > 0 for some j. Let x′ be the vector obtained from
x by deleting the nonnegative components of x. Let A′ be the diagonal
minor of A obtained by omitting the rows and columns corresponding to
the components of x omitted in x′. Then A′x′ ≥ 0 since the terms omitted
are all of the form aijxj where xi < 0 and xj ≥ 0, whence i �= j, and so
aij ≤ 0 and aijxj ≤ 0. Therefore x′ · A′x′ ≤ 0, since x′ ≤ 0.

First assume that xk = 0. Then x′ is obtained from x by at least two
deletions, and so A′ is positive definite and we have a contradiction. Next
assume xk < 0. Then xk is not deleted in x′. As the kth entry of Ax is 1,
the corresponding entry of A′x′ is positive. Therefore we have

x′ · A′x′ < 0,

but A′ is positive semidefinite, and so we have a contradiction. Thus either
x ≤ 0 or x ≥ 0. Hence there is no sign change in each column of A−1.

The matrix A−1 is symmetric, since A is symmetric. Hence all the entries
of A−1 off the main diagonal have the same sign, since n > 1. Suppose
(A−1)ij > 0 if i �= j. Then wi and wj have opposite parity if i �= j by
Theorem 3.1.1, which is a contradiction. Therefore (A−1)ij < 0 if i �= j.
Now as

adjA = (detA)A−1,

we have (adjA)ij > 0 if i �= j. Therefore A is a Gram matrix of a generalized
n-simplex ∆ in Hn by Theorem 7.3.1. As An+1,n+1 is not positive definite,
∆ is noncompact by Theorem 7.2.4.

It follows from Theorem 7.3.2 and the fact that the Coxeter graphs of
Euclidean simplex reflection groups are connected that a Coxeter graph is
the graph of a hyperbolic, noncompact n-simplex, reflection group if and
only if it has the following properties:

(1) The number of vertices is n + 1.

(2) The graph is connected.

(3) Any subgraph obtained by deleted a vertex and its adjoining edges is
the Coxeter graph of either a spherical or Euclidean (n − 1)-simplex
reflection group.

(4) Some subgraph obtained by deleting a vertex and its adjoining edges
is the Coxeter graph of a Euclidean (n − 1)-simplex reflection group.

For each dimension n ≥ 3, there are only finitely many such graphs,
and such graphs exist only for n ≤ 9. Figure 7.3.5 illustrates the Coxeter
graphs of all the hyperbolic, noncompact tetrahedron, reflection groups.
The number of Coxeter graphs of hyperbolic, noncompact n-simplex, re-
flection groups for n = 3, . . . , 9 is 23, 9, 12, 3, 4, 4, 3, respectively.
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Figure 7.3.5. The hyperbolic, noncompact tetrahedron, reflection groups

Exercise 7.3

1. Prove that PSL(2, Z) is isomorphic to the subgroup of orientation preserving
isometries of a reflection group with respect to a triangle T (2, 3, ∞).

2. Prove that Γ3 is a hyperbolic, noncompact tetrahedron, reflection group.
3. Construct the Coxeter graphs of all the hyperbolic, noncompact 4-simplex,

reflection groups.
4. Prove that the Coxeter graph of a hyperbolic, noncompact n-simplex, reflec-

tion group, with n ≥ 2, is obtained from the Coxeter graph of a Euclidean
(n − 1)-simplex reflection group by adding a new vertex and at most three
new edges from the new vertex.

5. Prove that each label of the Coxeter graph of a hyperbolic, noncompact
n-simplex, reflection group, with n ≥ 4, is at most 4.
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§7.4. The Volume of a Simplex

In this section, we derive some important properties of the volume of an n-
simplex ∆ in Sn or Hn as a function of its dihedral angles {θij : i < j}. It
follows from Theorems 7.2.2 and 7.2.4. applied to standard Gram matrices,
that the set of points of Rn(n+1)/2, corresponding to the dihedral angles of
all ∆, is an open set. Hence {θij : i < j} are independent variables. In
contrast, the dihedral angles of an n-simplex ∆ in En are not independent,
since if A = (− cos θij) is a standard Gram matrix for ∆, then {θij : i < j}
are constrained by the equation detA = 0. Consequently, Theorem 6.4.5
implies that the dihedral angles of a noncompact generalized n-simplex ∆
in Hn are not independent and the set of dihedral angles {θij : i < j} loses
one degree of freedom for each ideal vertex of ∆.

In order to obtain information about the volume of an n-simplex ∆ in
Sn or Hn as a function of its dihedral angles {θij : i < j}, we need to
express Vol(∆) as an explicit function of {θij : i < j}. The first step in
this direction is the following lemma.

Lemma 1. Let ∆ be either an n-simplex in Sn, Hn, with n > 0, or a
generalized n-simplex in Hn, with n > 1. Let A be a Gram matrix of ∆
and let C = (cij) = A−1. Let Φ(y) =

∑
ij cijyiyj for each y in the first

orthant Q = {y ∈ Rn+1 : yi ≥ 0 for each i}. Let κ = 1,−1 be the curvature
of Sn, Hn, respectively. Then

Vol(∆) =

√
κ det C

2
n−1

2 Γ(n+1
2 )

∫
Q

e−κΦ(y)/2 dy1 · · · dyn+1.

Proof: We will only prove the hyperbolic case. The proof of the spherical
case is similar and simpler. Let K be the cone of rays from the origin
through ∆ in R1,n. Let x be a positive time-like vector in R1,n. If n = 1,
define the hyperbolic coordinates (ρ, η1) of x by ρ = |||x||| and η1 equal to
the signed hyperbolic distance from e1 to x/|||x|||. Then x1 = ρ cosh η1 and
x2 = ρ sinh η1. If n > 1, let (ρ, η1, . . . , ηn) be the hyperbolic coordinates of
x defined by Formulas (3.4.1). Consider the integral

M(∆) =
∫

K

e−ρ2/2 dx1 · · · dxn+1.

Integrating with respect to hyperbolic coordinates, we have

M(∆) =
∫

K

e−ρ2/2 ρn sinhn−1 η1 sinn−2 η2 · · · sin ηn−1dρdη1 · · · dηn

=
∫ ∞

0
ρne−ρ2/2 dρ

∫
∆

sinhn−1 η1 sinn−2 η2 · · · sin ηn−1dη1 · · · dηn

= 2
n−1

2 Γ(n+1
2 )Vol(∆).

Let S1, . . . , Sn+1 be the sides of ∆ and let vi be a Lorentz inward normal
vector to Si for each i. Let A be the Gram matrix for ∆ with respect to the
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normal vectors v1, . . . , vn+1, and let B be the (n+1)×(n+1) matrix whose
jth column vector is vj for each j. Then A = BtJB. The matrix C = A−1

is symmetric, since A is symmetric. Now C = B−1J(B−1)t. Hence

| det B−1| =
√

− det C.

Let v∗
i , . . . , v∗

n+1 be the row vectors of B−1. Let wi = Jv∗
i for each i.

Then wi ◦ vj = δij for all i, j and C = (wi ◦ wj). Let Aii be the iith
minor of A. Then detAii ≥ 0 by Theorems 7.2.4 and 7.3.1. The diagonal
entries of C are nonpositive, since cii = detAii/ det A. Hence the vectors
w1, . . . , wn+1 are nonspace-like. As wi ◦ vj = 0 for i �= j, we have that wi

lies on the 1-dimensional nonspace-like subspace determined by the vertex
of ∆ opposite the side Si. As wi ◦ vi > 0 for each i, we have that wi lies on
the same side of the n-dimensional time-like subspace Vi spanned by Si as
vi for each i. Hence wi is positive nonspace-like for each i. Therefore all the
entries of C are nonpositive by Theorem 3.1.1 and w1, . . . , wn+1 normalize
to the vertices of ∆.

As in the proof of Theorem 7.2.4, we have that BtJK = Q. We now
change coordinates via BtJ . If y = BtJx, then

M(∆) =
∫

K

e−ρ2/2 dx1 · · · dxn+1 =
∫

Q

e−ρ2/2 | det B−1|dy1 · · · dyn+1.

Now
x = J(Bt)−1y =

∑
i

yiJ(B−1)tei =
∑

i

yiwi.

Hence, we have
−ρ2 = x ◦ x =

∑
i,j

cijyiyj = Φ(y).

Thus we have

M(∆) =
√

− det C

∫
Q

eΦ(y)/2 dy1 · · · dyn+1.

Theorem 7.4.1. Let ∆ be an n-simplex in Sn or Hn, with n > 1. Then
Vol(∆) is an analytic function of the dihedral angles of ∆.

Proof: We will only prove the hyperbolic case. The proof of the spherical
case is similar and simpler. We continue with the notation of Lemma 1.
Let m = (n + 1)(n + 2)/2. It follows from the inequalities (7.2.1) and
Theorem 7.2.4 that the set of all lexigraphically ordered m-tuples of entries
c = (cij)i≤j of inverses C of Gram matrices A of n-simplices ∆ in Hn form
an open subset U of Rm. By Lemma 1, we have

Vol(∆) =
√

− det C

2
n−1

2 Γ(n+1
2 )

∫
Q

eΦ(c,y)/2 dy.

For c = (cij)i≤j in U , set

F (c) =
∫

Q

eΦ(c,y)/2 dy.
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We claim that F (c) is analytic. To simplify notation, let

f(c, y) = exp(Φ(c, y)/2).

Then f(c, y) extends to a complex function f(z, y) of m complex variables
z = (zij)i≤j for each y. The function F (c) extends to a complex function
F (z) of m complex variables z = (zij)i≤j such that Re(z) is in U , since∫

Q

|f(z, y)|dy =
∫

Q

f(Re(z), y)dy < ∞.

We now show that F (z) is continuous in the open set

Û = {z ∈ Cm : Re(z) ∈ U}.

Let z0 be a point in Û , and let {zk} be an infinite sequence in Û converging
to z0. Let Re(z0) = c = (cij)i≤j . As U is open, there is an r > 0 such that∏

i≤j

[cij − r, cij + r] ⊂ U.

As Re(zk) → c, we may assume Re(zk) is in
∏

[cij − r, cij + r] for each k.
Let c′ = (cij + r)i≤j . Then for each y in Q and each k, we have

|f(zk, y)| = f(Re(zk), y) ≤ f(c′, y).

Hence by Lebesgue’s dominated convergence theorem, we have

lim
k→∞

F (zk) = F (z0).

Therefore F (z) is continuous in Û .
We next show that F (z) is analytic in each variable zij separately. Let

z0 = (ĉij)i≤j be a fixed point in Û , let Re(z0) = c = (cij)i≤j , and let
r > 0 be such that

∏
[cij − r, cij + r] ⊂ U . Let fij(zij , y) be the function

obtained from f(z, y) by fixing all the non ij-components of z at the non
ij-components of z0. Now the Taylor series

fij(zij , y) =
∞∑

k=0

1
k!

f
(k)
ij (ĉij , y)(zij − ĉij)k

converges absolutely for all zij and y.
Observe that

f
(k)
ij (ĉij , y) =

1
(1 + δij)k

(yiyj)kf(z0, y).

Let y be in Q, and let x = J(B−1)ty. Then x is in K and y = BtJx.
Hence yi = vi ◦ x for each i. Let ui be the vertex of ∆ opposite the side Si

for each i. By Formula 3.2.8 and Theorem 3.2.12, we have

vi ◦ x = ‖vi‖ρ sinh η(vi, x)
= ‖vk‖ρ sinh distH(x/|||x|||, 〈Si〉)
≤ ‖vk‖ρ sinh distH(ui, 〈Si〉) = ρ(ui ◦ vi).
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Define
sij = (ui ◦ vi)(uj ◦ vj).

Then we have

|f (k)
ij (ĉij , y)| ≤ ρ2ksk

ijf(c, y) = (−Φ(c, y))ksk
ijf(c, y).

Observe that∣∣∣∣∫
Q

f
(k)
ij (ĉij , y)dy

∣∣∣∣ ≤
∫

Q

|f (k)
ij (ĉij , y)|dy

≤
∫

Q

(−Φ(c, y))ksk
ijf(c, y)dy

=
sk

ij√
−C

∫
K

ρ2ke−ρ2/2dx

=
sk

ij√
−C

∫ ∞

0
ρ2k+ne−ρ2/2dρ Vol(∆)

=
sk

ijVol(∆)
√

−C

∫ ∞

0
2

2k+n−1
2 t

2k+n−1
2 e−tdt

= sk
ij

√
−A Vol(∆) 2k+ n−1

2 Γ(k + n+1
2 ).

Define
ak =

1
k!

sk
ij

√
−A Vol(∆) 2k+ n−1

2 Γ(k + n+1
2 ).

Then we have
ak+1

ak
= 2sij

k + n+1
2

k + 1
.

Hence ak+1/ak → 2sij as k → ∞. Therefore the power series
∞∑

k=0

1
k!

∫
Q

f
(k)
ij (ĉij , y)dy (zij − ĉij)k

converges absolutely for |zij − ĉij | < 1/(2sij). Let rij = min{r, 1/(2sij)}.
By Lebesgue’s dominated convergence theorem, the power series expansion

Fij(zij) =
∫

Q

fij(zij , y)dy

=
∫

Q

∞∑
k=0

1
k!

f
(k)
ij (ĉij , y)(zij − ĉij)kdy

=
∞∑

k=0

1
k!

∫
Q

f
(k)
ij (ĉij , y)dy (zij − ĉij)k.

is valid for |zij − ĉij | < rij . Therefore Fij(zij) is analytic in the open set
Ûij = {zij ∈ C : (zk
)k≤
 ∈ Û} for each i, j. As F (z) is continuous, we
have by Osgood’s lemma that F (z) is analytic in Û .
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It follows from inequalities (7.2.1) and Theorem 7.2.4, that the set of all
lexigraphically ordered m-tuples of entries a = (aij)i≤j of Gram matrices
A of n-simplices ∆ in Hn form an open subset V of Rm. Given a in V ,
define c(a) in U by (c(a)ij) = (aij)−1. Then c(a) is a real analytic function
of a, since det(aij) < 0 for all a in V . Therefore Vol(∆) is a real analytic
function of a in V , since

Vol(∆) =
F (c(a))

2
n−1

2 Γ(n+1
2 )
√

− det(aij)
.

Now if A = (aij) = (− cos θij) is a standard Gram matrix for ∆, then
a = (aij)i≤j is a real analytic function of θ = (θij)i<j . Hence Vol(∆) is a
real analytic function of θ.

The Schläfli Differential Formula

Our next goal is to compute the total differential of Vol(∆) with respect
to {θij : i < j}, but first we need to prove the following lemma.

Lemma 2. Let A = (aij) be a real n × n matrix with inverse C = (ck
).
Regard ck
 and det C to be functions of {aij}. Then

(1) dck
 = −
n∑

i,j=1
ckicj
daij,

(2) d(det C) = −det C
n∑

i,j=1
cjidaij.

Proof: (1) As CA = I, we have

∂(CA)
∂aij

=
∂C

∂aij
A + C

∂A

∂aij
= 0.

Hence, we have
∂C

∂aij
= −C

∂A

∂aij
C = (−ckicj
).

(2)
∂ det C

∂aij
=

∂(det A)−1

∂aij

= −(det A)−2 ∂ det A

∂aij

= −det C

det A

∂

∂aij

(
n∑

k=1

aik(−1)i+k det Aik

)

= −det C

det A
(−1)i+j det Aij

= −(det C)cji
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Theorem 7.4.2. Let ∆ be an n-simplex in Sn or Hn with n > 1. Let
S1, . . . , Sn+1 be the sides of ∆, let Rij = Si ∩ Sj and θij = θ(Si, Sj) for
each i, j, and let κ = 1,−1 be the curvature of Sn, Hn, respectively. Then

dVoln(∆) =
κ

n − 1

∑
i<j

Voln−2(Rij)dθij .

Proof: The 0-dimensional volume of a point is 1 and so the n = 2 case
follows from Theorems 2.5.5 and 3.5.5. Hence we may assume n > 2.
We will only prove the hyperbolic case. The proof of the spherical case
is similar and simpler. We continue with the notation of Lemma 1 and
Theorem 7.4.1. Then we have

M(∆) =
√

− det C F (c) =
√

− det C

∫
Q

eΦ(c,y)/2dy.

Suppose i �= j. Then the vectors {wk : k �= i, j} normalize to the vertices
of Rij . Move ∆ so that Rij lies in the (n − 1)-plane xn = xn+1 = 0. Let
Cij,ij be the (n − 1) × (n − 1) matrix obtained from C by deleting the ith
and jth rows and columns. Then we have that

M(Rij) =
√

− det Cij,ij

∫ ∞

0
· · ·
∫ ∞

0
eΦ/2

∏
m
=i,j

dym

∣∣∣
yi=yj=0

.

If i �= j, set

Mij =
∫ ∞

0
· · ·
∫ ∞

0
eΦ/2

∏
m
=i,j

dym

∣∣∣
yi=yj=0

.

In the following differentiation, we treat ck
 and c
k as independent vari-
ables, but we let ck
 = c
k afterwards. This will not cause a problem, since
we will sum terms with derivatives with respect to ck
 and c
k together. It
follows from the power series expansion of Fk
(zk
) in the proof of Theorem
7.4.1 that

∂F

∂ck

=
∫

Q

∂

∂ck

eΦ(c,y)/2dy.

Now, with integration by parts at the last step, we have∑
k,


cikcj

∂F

∂ck

= 1

2

∫
Q

∑
k

cikyk ·
∑



cj
y
 · eΦ/2 dy1 · · · dyn+1

= 1
2

∫
Q

∑
k

cikyk · 1
2

∂Φ
∂yj

· eΦ/2 dy1 · · · dyn+1

= 1
2

∫
Q

∑
k

cikyk · ∂eΦ/2

∂yj
dy1 · · · dyn+1

= − 1
2

∫∞
0 · · ·

∫∞
0

∑
k

cikykeΦ/2 ∏
m
=j

dym

∣∣∣
yj=0

− 1
2cijF.

If i �= j, we find after integrating with respect to yi, that∑
k,


cikcj

∂F

∂ck

= 1

2Mij − 1
2cijF.
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By Lemma 2(1), with A = (aij) = (− cos θij), we have

dF =
∑
k,


∂F

∂ck

dck
 = −

∑
i,j,k,


cikcj

∂F

∂ck

daij .

As aii = 1 for each i, we have that daii = 0 for each i. Hence, we have

dF = −1
2

∑
i
=j

Mijdaij +
1
2
F
∑
i
=j

cijdaij .

Let Cij be the ijth minor of C for each i, j. If i �= j, we have by Jacobi’s
theorem, that

det Cij,ij det C = detCii det Cjj − det Cij det Cji.

Hence, we have

det C

det Cij,ij
=

(det C)2

det Cii det Cjj − (det Cij)2
=

1
1 − a2

ij

.

By Lemma 2(2),

dM(∆) =
√

− det C dF − Fd(det C)
2
√

− det C

=
√

− det C dF − 1
2F

√
− det C

∑
i
=j

cijdaij

= − 1
2

√
− det C

∑
i
=j

Mijdaij

= − 1
2

∑
i
=j

√
det C

det Cij,ij
M(Rij)daij

= − 1
2

∑
i
=j

M(Rij)
daij√
1−a2

ij

= −
∑
i<j

M(Rij)dθij .

As M(∆) = 2
n−1

2 Γ(n+1
2 )Vol(∆) and Γ(n+1

2 ) =
(

n−1
2

)
Γ(n−1

2 ), we have

dVol(∆) =
−1

n − 1

∑
i<j

Voln−2(Rij)dθij .

Exercise 7.4

1. Let A be a real nonsingular symmetric matrix. Prove that A is positive
definite if and only if A−1 is positive definite.

2. Let ∆ be an n-simplex in En with vertices 0, u1, . . . , un, and let B be the
n × n matrix whose column vectors are u1, . . . , un. Prove that

Vol(∆) =
1
n!

| det B|.

3. Let ∆ be a generalized n-simplex in Hn with n > 1. Prove that Vol(∆) is a
continuous function of the dihedral angles of ∆.
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§7.5. Crystallographic Groups

In this section, we study the theory of crystallographic groups.

Definition: An n-dimensional crystallographic group is a discrete group
Γ of isometries of En such that En/Γ is compact.

Examples of crystallographic groups are the Euclidean, simplex, reflection
groups in Figure 7.2.8.

Theorem 7.5.1. Let Γ be a discrete group of isometries of En. Then the
following are equivalent:

(1) The group Γ is crystallographic.

(2) Every convex fundamental polyhedron for Γ is compact.

(3) The group Γ has a compact Dirichlet polyhedron.

Proof: (1) implies (2) by Theorem 6.6.9. Clearly (2) implies (3), and (3)
implies (1).

Let P be a convex fundamental polyhedron for an n-dimensional crys-
tallographic group Γ. Then P is compact by Theorem 7.5.1. Therefore P
is bounded and has only finitely many sides. We regard P to be a model
for an n-dimensional crystal, and the tessellation {gP : g ∈ Γ} of En to be
a model for a crystalline structure.

The study of crystalline structures is called crystallography. By the
end of the nineteenth century, crystallographers had classified 1-, 2-, and
3-dimensional crystallographic groups. For each of these dimensions, it
was determined that there is only a finite number of different kinds of
crystallographic groups. This led Hilbert to ask, in problem 18 on his
celebrated list of problems, if there is only a finite number of different kinds
of crystallographic groups in each dimension. This problem was answered
affirmatively by L. Bieberbach in 1910 when he proved that there are only
finitely many isomorphism classes of n-dimensional crystallographic groups
for each n. In this section, we shall prove Bieberbach’s theorem.

Lemma 1. If H is a subgroup of finite index of a discrete group Γ of isome-
tries of X = En or Hn, then X/Γ is compact if and only if X/H is compact.

Proof: Suppose that X/H is compact. Define a function

φ : X/H → X/Γ

by φ(Hx) = Γx. Let π : X → X/Γ and η : X → X/H be the quotient
maps. Then π = φη. Therefore φ is continuous. As φ is surjective, X/Γ is
compact.
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Conversely, suppose that X/Γ is compact. Let D be a Dirichlet domain
for Γ. Then D is a locally finite fundamental domain for Γ. Therefore D is
compact by Theorem 6.6.9. Let g1H, . . . , gmH be the cosets of H in Γ and
define

K = g−1
1 D ∪ · · · ∪ g−1

m D.

Then K is a compact subset of X. Let x be a point of X. Then there is a
g in Γ such that gx is in D; moreover, there is an index i such that g = gih
for some h in H. Hence hx is in g−1

i D. Thus Hx is in η(K). This shows
that X/H = η(K) and therefore X/H is compact.

Theorem 7.5.2. Let Γ be a discrete group of isometries of En. Then Γ
is crystallographic if and only if the subgroup T of translations of Γ is of
finite index and has rank n.

Proof: Suppose that Γ is crystallographic. By Theorem 5.4.3, the group
Γ has an abelian subgroup H of finite index containing T; moreover, H is
also crystallographic by Lemma 1. By Theorem 5.4.4, there is an m-plane
P of En on which H acts by translation. Since points at a distance d
from P stay at a distance d from P under the action of H, the orbit space
En/H is unbounded if m < n. As En/H is compact, we must have m = n.
Therefore H is a lattice subgroup of I(En). Hence H = T, and T is of finite
index in Γ and has rank n.

Conversely, suppose that the subgroup T of translations of Γ is of finite
index and has rank n. By Theorem 5.3.2, there is a basis v1, . . . , vn of Rn

such that T is the group generated by the translations of En by v1, . . . , vn.
Clearly, the parallelepiped P spanned by v1, . . . , vn is a convex fundamental
polyhedron for T. As P is compact, En/T is also compact. Therefore En/Γ
is compact by Lemma 1.

Let Γ be an n-dimensional crystallographic group and let T = T(Γ) be
its group of translations. Then T is a free abelian group of rank n and
has finite index in Γ by Theorem 7.5.2; furthermore, by Theorem 5.4.4, the
subgroup T of Γ is characterized as the unique maximal abelian subgroup
of Γ of finite index. Therefore, the rank n of T is an isomorphism invariant
of Γ. Thus, the dimension n of Γ is an isomorphism invariant of Γ.

Let η : Γ → O(n) be the natural projection defined by η(a + A) = A.
The image Π of η is called the point group of Γ. As T is the kernel of η, we
have an exact sequence of groups

1 → T → Γ → Π → 1. (7.5.1)

Therefore T is a normal subgroup of Γ and Π is a finite group. Furthermore,
conjugation in Γ induces a left action of Π on T that makes T into a Π-
module. Let L = L(Γ) be the lattice subgroup of Rn corresponding to T.
If a + A is in Γ and b is in L, then

(a + A)(b + I)(a + A)−1 = Ab + I. (7.5.2)



312 7. Classical Discrete Groups

Hence Π acts on L by left matrix multiplication. The group Π acts effec-
tively on L, since L contains a basis of Rn. Consequently, we have a faithful
representation of Π into Aut(L) given by A �→ φA where φA(x) = Ax. As
L is isomorphic to Zn, we have an exact sequence of groups

0 → Zn → Γ → Q → 1, (7.5.3)

where Q is a finite subgroup of GL(n, Z) and the left action of Q on Zn

induced by conjugation in Γ is the natural action of Q on Zn. The standard
method of proving that there are only finitely many isomorphism classes
of n-dimensional crystallographic groups is to prove that there are only
finitely many isomorphism classes of group extensions of the form (7.5.3).
We shall take a different, more geometric, approach which exploits the
geometry of lattices in Rn.

Lemma 2. Let B(a, r) be the open ball in En with center a and radius r.
Then there is a positive constant cn, depending only on n, such that

Vol(B(a, r)) = cnrn.

Proof: Without loss we may assume that a = 0. Integrating with respect
to spherical coordinates, we have

Vol(B(0, r)) =
∫ 2π

0

∫ π

0
· · ·
∫ r

0
ρn−1 sinn−2 θ1 · · · sin θn−2dρdθ1 · · · dθn−1

=
rn

n
Voln−1(Sn−1).

Hence, the desired constant is

cn =
1
n

Voln−1(Sn−1).

Definition: A lattice L in Rn is full scale if and only if all the nonzero
vectors of L have norm at least 1.

Lemma 3. Let L be a full scale lattice in Rn and for each r ≥ 0, let N(r)
be the number of vectors in L whose norm is at most r. Then

N(r) ≤ (2r + 1)n.

Proof: Since L is full scale, the distance between any two distinct vectors
in L is at least 1. Consequently, the open balls of radius 1

2 centered at the
N(r) vectors of L, whose norm is at most r, are pairwise disjoint and are
all contained in the ball of radius r + 1

2 centered at the origin. Comparing
the volumes, we deduce from Lemma 2 that

N(r)
( 1

2

)n ≤
(
r + 1

2

)n
.
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Lemma 4. Let {v1, . . . , vn} be a basis for Rn. Then for each x in Rn,
there are integers k1, . . . , kn such that∣∣∣∣∣x −

n∑
i=1

kivi

∣∣∣∣∣ ≤ 1
2

(
|v1| + · · · + |vn|

)
.

Proof: Let x be in Rn. Then there are real numbers t1, . . . , tn such that
x =
∑n

i=1 tivi. Let ki be an integer nearest to ti in R. Then we have∣∣∣∣∣x −
n∑

i=1

kivi

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

(ti − ki)vi

∣∣∣∣∣
≤

n∑
i=1

∣∣(ti − ki)vi

∣∣ ≤ 1
2 (|v1| + · · · + |vn|).

Lemma 5. Let V be a vector subspace of Rn spanned by m linearly inde-
pendent unit vectors v1, . . . , vm in a full scale lattice L in Rn. If a vector
u in L is not in V , then its V ⊥-component w has norm

|w| > (m + 3)−n.

Proof: On the contrary, let u be a vector in L whose V ⊥-component w
satisfies

0 < |w| ≤ (m + 3)−n.

Now let k = (m + 3)n. Then k|w| ≤ 1. Hence, the vectors 0, u, 2u, . . . , ku
are at a distance at most 1 from V . By Lemma 4, we may add suitable
integral linear combinations of v1, . . . , vm to each of these vectors to obtain
k + 1 new distinct vectors in L whose V ⊥-components have not changed
but whose V -components have norm at most m/2. These k + 1 vectors of
L have norm less than r = (m/2) + 1. By Lemma 3, we have

k + 1 ≤ N(r) ≤ (2r + 1)n = (m + 3)n,

which is a contradiction. Therefore |w| > (m + 3)−n.

Definition: An n-dimensional crystallographic group Γ is normalized if
and only if its lattice L(Γ) is full scale and contains n linearly independent
unit vectors.

Lemma 6. Let Γ be an n-dimensional crystallographic group. Then Γ is
isomorphic to a normalized n-dimensional crystallographic group.

Proof: By changing scale, we may assume that a shortest nonzero vector
in L(Γ) is a unit vector. Now assume by induction that L(Γ) is full scale
and contains m < n linearly independent unit vectors v1, . . . , vm. We shall
find an n-dimensional crystallographic group Γ′ isomorphic to Γ such that
L(Γ′) is full scale and contains m + 1 linearly independent unit vectors.
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Let V be the vector subspace of Rn spanned by v1, . . . , vm. Assume
first that the action of the point group Π of Γ on L(Γ) does not leave
V invariant. Then there is an element A of Π and an index i such that
Avi is not in V . Let vm+1 = Avi. Then v1, . . . , vm+1 are m + 1 linearly
independent unit vectors in L(Γ). Therefore Γ is the desired group.

Now assume that Π leaves V invariant. Then Π also leaves V ⊥ invariant.
For each t > 0, define a linear automorphism αt of Rn by the formula

αt(u) = v + tw,

where u = v + w with v in V and w in V ⊥. Let a + A be in Γ. As A leaves
V and V ⊥ invariant, we have

αt(a + A)α−1
t = αt(a) + A.

Hence, for each t > 0, the group Γt = αtΓα−1
t is a subgroup of I(En). As

T(Γt) = αtT(Γ)α−1
t

and T(Γt) is of finite index in Γt for each t > 0, we have that Γt is an
n-dimensional crystallographic group for each t > 0. Moreover, we have

L(Γt) = αt(L(Γ)).
Let u be an arbitrary vector in L(Γ) − V and write u = v + w with v in

V and w in V ⊥. Then for t such that
0 < t ≤ |w|−1(m + 3)−n,

the vector v + tw is in L(Γt) − V and |tw| ≤ (m + 3)−n. By Lemma 5, the
lattice L(Γt) cannot be full scale. Let

s = inf{t : L(Γt) is full scale}.

Then 0 < s ≤ 1. As |αt(u)| ≥ 1 for all t > s, we have that |αs(u)| ≥ 1,
since |αt(u)| is a continuous function of t. Therefore L(Γs) is full scale.

Let u0 be a shortest vector in L(Γs) − V . We claim that u0 is a unit
vector. On the contrary, suppose that |u0| > 1. By replacing Γ by Γs, we
may assume that s = 1. Write u0 = v0 + w0 with v0 in V and w0 in V ⊥.
As |u|2 ≥ |u0|2, we have

|v|2 + |w|2 ≥ |v0|2 + |w0|2.
Let t = |u0|−1. Then

|αt(u)|2 = |v + tw|2

= |v|2 + t2|w|2

≥ |v|2 + t2(|v0|2 + |w0|2 − |v|2)
= |v|2(1 − t2) + t2|u0|2

≥ t2|u0|2 = 1.

Therefore L(Γt) is full scale contrary to the minimality of s. Thus, we
have that vm+1 = u0 is a unit vector. Hence v1, . . . , vm+1 are m + 1
linearly independent unit vectors in L(Γs). Therefore Γs is the desired
group. This completes the induction. Thus Γ is isomorphic to a normalized
n-dimensional crystallographic group.
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Theorem 7.5.3. (Bieberbach’s theorem) There are only finitely many iso-
morphism classes of n-dimensional crystallographic groups for each n.

Proof: Fix a positive integer n. By Lemma 6, it suffices to show that there
are only finitely many isomorphism classes of normalized n-dimensional
crystallographic groups. Let Γ be such a group. Then L(Γ) contains n
linearly independent unit vectors w1, . . . , wn. For each i, let ωi = wi + I
be the corresponding translation in Γ, and let H be the subgroup of T(Γ)
generated by ω1, . . . , ωn. Then H is a free abelian group of rank n and
therefore has finite index in T(Γ). By Theorem 7.5.2, the group T(Γ) has
finite index in Γ. Hence H is of finite index in Γ.

By Lemma 4, we may choose for each coset Hω of H in Γ a represen-
tative ω = w + A whose translation vector w has norm |w| ≤ n/2. Let
ωn+1, . . . , ωm be the chosen coset representatives. Then every element φ of
Γ can be expressed uniquely in the form

φ = (a1w1 + · · · + anwn + I)ωp,

where a1, . . . , an and p are integers with n + 1 ≤ p ≤ m. We shall call this
expression the normal form for φ.

Since every element of Γ has a unique normal form, there are for each
i, j = 1, . . . , m, unique integers cijk and f(i, j) > n such that

ωiωj = (cij1w1 + · · · + cijnwn + I)ωf(i,j).

The integers cijk and f(i, j) completely determine Γ, since one can find the
normal form of a product of elements φ, ψ of Γ given the normal forms for
φ, ψ and ωiωj for each i, j = 1, . . . , m. To see this, let

φ = (a1w1 + · · · + anwn + I)ωp,

ψ = (b1w1 + · · · + bnwn + I)ωq

be the normal forms for φ and ψ. Then

φψ = (a1w1 + · · · + anwn + I)ωp(ωb1
1 · · ·ωbn

n )ωq.

To find the normal form for φψ, it suffices to find the normal form of
ωp(ωb1

1 · · ·ωbn
n )ωq. If b1 > 0, we replace ωpω1 by its normal form. This has

the effect of lowering b1 to b1 −1. If b1 < 0, we replace ωpω
−1
1 by its normal

form

ωpω
−1
1 = (d1w1 + · · · + dnwn + I)ωi.

Observe that
ωiω1 = (−d1w1 − · · · − dnwn + I)ωp.

Hence i is the unique integer such that p = f(i, 1); moreover dk = −ci1k

for each k = 1, . . . , n. Thus, we can raise b1 to b1 + 1. It is clear that by
repeated application of these two steps we can find the normal form of φψ.

Even more is true. The integers cijk and f(i, j) determine Γ up to
isomorphism, in the sense that if Γ′ is another normalized n-dimensional
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crystallographic group with the same set of integers, then Γ and Γ′ are
isomorphic. To see this, let w′

1, . . . , w
′
n be the corresponding unit vectors

of L(Γ′) and let ω′
n+1, . . . , ω

′
m be the corresponding coset representatives.

Then the function ξ : Γ → Γ′, defined by

ξ((a1w1 + · · · + anwn + I)ωp) = (a1w
′
1 + · · · + anw′

n + I)ω′
p,

is an isomorphism, since ξ is obviously a bijection, and the same algorithm
determines the normal form for a product in each group. Thus, to show
that there are only finitely many isomorphism classes of normalized n-
dimensional crystallographic groups, it suffices to show that the absolute
values of the integers cijk and m have an upper bound depending only on
the dimension n.

Now the elements ωi, ωj and ωf(i,j) have translation vectors of length at
most n/2. Consequently, the translation vector of

cij1w1 + · · · + cijnwn + I = ωiωjω
−1
f(i,j)

has length at most 3n/2. Let vk be the component of wk perpendicular to
the hyperplane spanned by w1, . . . , wk−1, wk+1, . . . , wn. Then

|cijkvk| ≤ 3n/2.

By Lemma 5, we have that |vk| > (n+2)−n. Hence, for each i, j, k, we have

|cijk| ≤ 3n

2
(n + 2)n.

We next find an upper bound for m. First of all, we have

m − n = [Γ : H] = [Γ : T(Γ)][T(Γ) : H].

Now the translations among the representatives ωn+1, . . . , ωm form a com-
plete set of coset representatives for H in T(Γ). Each translation vector wi

has norm at most n/2 and, by Lemma 3, is one of at most (n+1)n vectors
in L(Γ). Hence

[T(Γ) : H] ≤ (n + 1)n.

Next, observe that
[Γ : T(Γ)] = |Π|,

where Π is the point group of Γ. Let A be in Π. Then A is uniquely
determined by its images Awi for i = 1, . . . , n. By Lemma 3, the vector
Awi is one of at most 3n different unit vectors in L(Γ). Hence A is one of
at most (3n)n different matrices in O(n). Hence

[Γ : T(Γ)] ≤ (3n)n.

Thus, we have
m ≤ n + (3n)n(n + 1)n.

Remark: The exact number of isomorphism classes of n-dimensional
crystallographic groups for n = 1, 2, 3, 4 is 2, 17, 219, 4783, respectively.
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The Splitting Group

Let Γ be an n-dimensional crystallographic group and let m be the order of
the point group Π of Γ. If τ = a+I is a translation in Γ, let τ

1
m = (a/m)+I.

Let Γ∗ be the subgroup of I(En) generated by T(Γ)
1
m and Γ. Then Γ∗ has

the same point group Π. Therefore

[Γ∗ : Γ] = [T(Γ)
1
m : T(Γ)] = [ 1

mL(Γ) : L(Γ)] = [( 1
mZ)n : Zn] = mn.

Hence Γ∗ is also an n-dimensional crystallographic group with

L(Γ∗) = 1
mL(Γ). (7.5.4)

The group Γ∗ is called the splitting group of Γ.

Lemma 7. If Γ∗ is the splitting group of Γ, then the following exact se-
quence splits

1 → T(Γ∗) → Γ∗ → Π → 1.

Proof: Let η : Γ∗ → Π be the natural projection. For each A in Π, choose
φA in Γ such that η(φA) = A. Then for each A, B in Π, there is an element
τ(A, B) of T(Γ) such that

φAφB = τ(A, B)φAB .

Let φA = aA + A for each A. Then

φAφB = aA + AaB + AB.

Hence, we have
τ(A, B) = aA + AaB − aAB + I.

Define a function f : Π × Π → L(Γ) by the formula

f(A, B) = aA + AaB − aAB .

Taking the sum of both sides of the last equation, as B ranges over all the
elements of Π, gives∑

B∈Π

f(A, B) = maA + A
∑
B∈Π

aB −
∑
B∈Π

aB .

Define σ : Γ → Γ∗ by

σ(A) = − 1
m

∑
C∈Π

f(A, C) + aA + A.

Let s =
∑

C∈Π aC . Then

σ(A) = − 1
m (A − I)s + A.

Observe that

σ(AB) = − 1
m (AB − I)s + AB

= − 1
m (A − I)s − 1

m (AB − A)s + AB = σ(A)σ(B).

Therefore σ is a homomorphism such that ησ is the identity on Π.
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Theorem 7.5.4. Let ξ : Γ1 → Γ2 be an isomorphism of n-dimensional
crystallographic groups. Then there is an affine bijection α of Rn such that
ξ(φ) = αφα−1 for each φ in Γ1.

Proof: Since the subgroup of translations of a crystallographic group is
characterized as the unique maximal free abelian subgroup, we have

ξ(T(Γ1)) = T(Γ2).

Hence ξ induces an isomorphism ξ : Π1 → Π2 between the point groups
of Γ1 and Γ2. For each A in Π1, choose φA in Γ1 such that η1(φA) = A
where η1 : Γ1 → Π1 is the natural projection. Then {φA : A ∈ Π1} is a set
of coset representatives for T(Γ∗

1) in Γ∗
1. Let τ be an arbitrary element of

T(Γ∗
1) and let m be the order of Π1 and Π2. Define ξ∗ : Γ∗

1 → Γ∗
2 by

ξ∗(τφA) = [ξ(τm)]
1
m ξ(φA).

Then ξ∗ is an isomorphism, since ξ∗ maps T(Γ∗
1) isomorphically onto T(Γ∗

2),
and ξ∗ agrees with the isomorphism ξ. Moreover ξ∗ extends ξ.

By Lemma 7, the exact sequence

1 → T(Γ∗
i ) → Γ∗

i → Πi → 1

splits for each i = 1, 2. Let σi : Πi → Γ∗
i be a splitting homomorphism.

The finite group σi(Πi) has a fixed point in En. By a change of origin, we
may assume that σi(Πi) fixes the origin. Then σi(Πi) = Πi for i = 1, 2.
Hence, every element of Γ∗

i is of the form τA with τ in T(Γ∗
i ) and A in Πi.

Let v1, . . . , vn generate L(Γ1) and define w1, . . . , wn by

wj + I = ξ(vj + I) for j = 1, . . . , n.

Then w1, . . . , wn generate L(Γ2). Hence, there is a unique linear automor-
phism α of Rn such that α(vj) = wj for j = 1, . . . , n.

Let A be in Π1 and let a be in L(Γ∗
1). Then

A(a + I)A−1 = Aa + I.

Hence, we have
ξ∗(A(a + I)A−1) = ξ∗(Aa + I).

Therefore
ξ∗(A)(α(a) + I)ξ∗(A)−1 = αAa + I

and so we have
ξ∗(A)α(a) + I = αAa + I.

Hence, we have ξ∗(A)α = αA. Thus, we have ξ∗(A) = αAα−I . Hence

ξ∗(τA) = ξ∗(τ)ξ∗(A) = (ατα−1)(αAα−1) = α(τA)α−1.

Corollary 1. Two n-dimensional crystallographic groups are isomorphic
if and only if they are conjugate in the group of affine bijections of Rn.
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Bieberbach Groups

Definition: An n-dimensional Bieberbach group is a group G for which
there is an exact sequence of groups

0 −→ Zn ι−→ G
η−→ Q −→ 1 (7.5.5)

such that Q is a finite subgroup of GL(n, Z) and the left action of Q on Zn

induced by conjugation in G is the natural action of Q on Zn.

For example, any n-dimensional crystallographic group is an n-dimensional
Bieberbach group. We shall algebraically characterize crystallographic
groups by showing that every n-dimensional Bieberbach group is isomor-
phic to an n-dimensional crystallographic group.

Lemma 8. Let G be an n-dimensional Bieberbach group and let Q be a
finite subgroup of GL(n, Z) as in the exact sequence 7.5.5. Then G can be
embedded as a subgroup of finite index in the semidirect product Zn � Q.

Proof: For each q in Q, choose an element xq of G such that η(xq) = q
and x1 = 1. Then for each q, r in Q, there is a unique element f(q, r) of
Zn such that

xqxr = ιf(q, r)xqr.

The function f : Q × Q → Zn completely determines G, since if a, b are in
Zn, then

(ι(a)xq)(ι(b)xr) = ι(a + qb + f(q, r))xqr.

The associativity of the group operation in G gives rise to the following
cocycle identity for f . For each q, r, s in Q, we have

f(q, r) + f(qr, s) = qf(r, s) + f(q, rs).

We next construct a new n-dimensional Bieberbach group G∗ from G
and f . Let G∗ = Zn × Q as a set and let m = |Q|. Define a multiplication
in G∗ by the formula

(a, q)(b, r) = (a + qb + mf(q, r), qr).

It is straightforward to check that G∗ is a group with this multiplication.
Let κ : Zn → G∗ and π : G∗ → Q be the natural injection and projection.
Then we have an exact sequence

0 −→ Zn κ−→ G∗ π−→ Q −→ 1.

Moreover, we have
(0, q)(a, 1)(0, q)−1 = (qa, 1).

Therefore G∗ is an n-dimensional Bieberbach group.
Next, we show that π has a right inverse. Define σ : Q → G∗ by

σ(q) =
(
−
∑
s∈Q

f(q, s), q
)
.
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Taking the sum of both sides of the cocycle identity for f gives

mf(q, r) +
∑
s∈Q

f(qr, s) = q
∑
s∈Q

f(r, s) +
∑
s∈Q

f(q, s).

Hence

σ(qr) =
(
−
∑
s∈Q

f(qr, s), qr
)

=
(
−
∑
s∈Q

f(q, s) − q
∑
s∈Q

f(r, s) + mf(q, r), qr
)

= σ(q)σ(r).

Thus σ is a homomorphism such that πσ is the identity on Q.
Next, define a function

ξ : Zn � Q → G∗

by the formula
ξ(a, q) = κ(a)σ(q).

Then ξ is an isomorphism. Hence, it suffices to show that G can be em-
bedded in G∗ as a subgroup of finite index.

Define ε : G → G∗ by

ε(ι(a)xq) = (ma, q).

Then we have

ε(ι(a)xqι(b)xr) = ε(ι(a + qb + f(q, r))xqr)
= (m(a + qb + f(q, r)), qr)
= (ma + q(mb) + mf(q, r)), qr)
= (ma, q)(mb, r)
= ε(ι(a)xq)ε(ι(b)xr).

Thus ε is a homomorphism. Clearly ε is a monomorphism and

[G∗ : ε(G)] = [Zn : (mZ)n] = mn.

Lemma 9. Let Q be a finite subgroup of GL(n, R) (resp. GL(n, C)). Then
Q is conjugate in GL(n, R) (resp. GL(n, C)) to a finite subgroup of O(n)
(resp. U(n)).

Proof: Define an inner product on Rn (resp. Cn) by the formula

〈x, y〉 =
∑
q∈Q

qx ∗ qy.

This product is obviously bilinear, Hermitian symmetric, and nondegener-
ate; moreover, for each q in Q, we have

〈qx, qy〉 = 〈x, y〉.
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By the Gram-Schmidt process, we construct an orthonormal basis v1, . . . ,vn

for Rn (resp. Cn) with respect to this inner product. Define A in GL(n, R)
(resp. GL(n, C)) by Aei = vi for i = 1, . . . , n. Then

〈Ax, Ay〉 =
〈
A

n∑
j=1

xiei, A

n∑
j=1

yjej

〉
=
〈 n∑

i=1

xivi,

n∑
j=1

yjvj

〉
=

n∑
i=1

xiyi

= x ∗ y.

If q is in Q and x, y are in Rn (resp. Cn), then

A−1qAx ∗ A−1qAy = 〈qAx, qAy〉
= 〈Ax, Ay〉
= x ∗ y.

Thus A−1qA is an orthogonal (resp. unitary) transformation. Hence
A−1QA is a finite subgroup of O(n) (resp. U(n)).

Theorem 7.5.5. Let G be an n-dimensional Bieberbach group. Then G is
isomorphic to an n-dimensional crystallographic group.

Proof: As every subgroup of finite index of an n-dimensional crystallo-
graphic group is again an n-dimensional crystallographic group, we may
assume, by Lemma 8, that G is a semidirect product Zn � Q, where Q is a
finite subgroup of GL(n, Z). By Lemma 9, there is a matrix A in GL(n, R)
such that AQA−1 is a subgroup of O(n). The group L = A(Zn) is a lattice
in Rn and Π = AQA−1 acts naturally on L. The function

α : Zn � Q −→ L � Π

defined by the formula

α(a, q) = (Aa, AqA−1)

is obviously an isomorphism. Now define a function

β : L � Π −→ I(En)

by the formula
β(a, A) = a + A.

Then β is clearly a monomorphism. Let T = β(L). Then T is gener-
ated by n linearly independent translations. Therefore T is a discrete
subgroup of I(En). As T is of finite index in Γ = Imβ, we have that Γ
is an n-dimensional crystallographic group. Thus G is isomorphic to an
n-dimensional crystallographic group.
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Exercise 7.5

1. Prove that a discrete group Γ of isometries of En is crystallographic if and
only if En/Γ has finite volume. See Exercise 6.3.6.

2. Prove that a discrete group Γ of isometries of En is crystallographic if and
only if the translation vectors of its parabolic elements span Rn.

3. Let Γ be a crystallographic group. Prove that an element g of Γ is a trans-
lation if and only if g has only finitely many conjugates in Γ.

4. Let Γ be a crystallographic group. Prove that an element a + A of Γ is a
translation if and only if ‖A − I‖ < 1.

5. Let a + A be an element of a crystallographic group Γ such that A �= I.
Prove that the largest angle of rotation of A is at least π/3.

6. Verify that G∗ in the proof of Lemma 8 is a group.

7. Prove that the group G∗ in the proof of Lemma 8 is isomorphic to the
splitting group of G when G is crystallographic.

§7.6. Torsion-Free Linear Groups

In this section, we prove Selberg’s lemma using ring theory. In this section,
all rings are commutative with identity.

Definition: A ring A is an integral domain if and only if 0 �= 1 in A and
whenever ab = 0 in A, then either a = 0 or b = 0.

Clearly, any subring of a field in an integral domain. Let S be a subset
of an integral domain A. Then S is said to be multiplicatively closed if and
only if 1 is in S and S is closed under multiplication. Suppose that S is
multiplicatively closed. Define an equivalence relation on A × S by

(a, s) ∼= (b, t) if and only if at = bs.

Let a/s be the equivalence class of (a, s) and let S−1A be the set of equiv-
alence classes. Then S−1A is a ring with fractional addition and multipli-
cation. The ring S−1A is called the ring of fractions of A with respect to
the multiplicatively closed set S.

Observe that the mapping a �→ a/1 is a ring monomorphism of A into
S−1A. Hence, we may regard A as a subring of S−1A. Note that S−1A is
also an integral domain. If S = A − {0}, then S−1A is a field, called the
field of fractions of A. Thus, any integral domain is a subring of a field.

Definition: An ideal P of a ring A is prime if and only if A/P is an
integral domain.
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An ideal M of a ring A is said to be maximal if and only if M is proper
(M �= A) and A contains no ideals between M and A. Any maximal ideal
M of a ring A is prime, because A/M is a field. By Zorn’s Lemma, any
proper ideal I of a ring A is contained in a maximal ideal of A.

Let P be a prime ideal of an integral domain A. Then S = A − P is
a multiplicatively closed subset of A. The ring AP = S−1A is called the
localization of A at P .

Definition: A ring A is local if and only if A has a unique maximal ideal.

Lemma 1. If M is a proper ideal of a ring A such that every element of
A − M is a unit of A, then A is a local ring with M its maximal ideal.

Proof: Let I be a proper ideal of A. Then every element of I is a nonunit.
Hence I ⊂ M , and so M is the only maximal ideal of A.

Theorem 7.6.1. If P is a prime ideal of an integral domain A, then AP

is a local ring.

Proof: Let S = A − P . Then M = {a/s : a ∈ P and s ∈ S} is a proper
ideal of AP . If b/t is in AP − M , then b is in S, and so b/t is a unit of AP .
Therefore AP is a local ring with M its maximal ideal by Lemma 1.

Integrality

Let A be a subring of a ring B. An element b of B is said to be integral
over A if and only if b is a root of a monic polynomial with coefficients in
A, that is, there are elements a1, . . . , an of A such that

bn + a1b
n−1 + · · · + an = 0. (7.6.1)

Clearly, every element of A is integral over A.
Let b1, . . . , bm be elements of B and let A[b1, . . . , bm] be the subring of

B generated by A and b1, . . . , bm. Note that every element of the ring
A[b1, . . . , bm] can be expressed as a polynomial in b1, . . . , bm with coeffi-
cients in A. If B = A[b1, . . . , bm], we say that B is finitely generated over
A, and b1, . . . , bm are generators of B over A.

Theorem 7.6.2. Let A be a subring of an integral domain B and let b be
an element of B. Then the following are equivalent:

(1) The element b is integral over A.

(2) The ring A[b] is a finitely generated A-module.

(3) The ring A[b] is contained in subring C of B such that C is a finitely
generated A-module.
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Proof: Assume that (1) holds. From Formula 7.6.1, we have

bn+i = −(a1b
n+i−1 + · · · + anbi) for all i ≥ 0.

Hence, by induction, all positive powers of b are in the A-module generated
by 1, b, . . . , bn−1. Thus A[b] is generated, as an A-module, by 1, b, . . . , bn−1.
Thus (1) implies (2).

To see that (2) implies (3), let C = A[b].
Assume that (3) holds. Let c1, . . . , cn be generators of C as an A-module.

Then there are coefficients aij in A such that for each i = 1, . . . , n,

bci =
n∑

j=1

aijcj .

Then we have that
n∑

j=1

(δijb − aij)cj = 0.

By multiplying on the left by the adjoint of the matrix (δijb − aij), we
deduce that

det(δijb − aij)cj = 0 for j = 1, . . . , n.

Therefore, we have
det(δijb − aij) = 0.

Expanding out the determinant gives a equation of the form (7.6.1). Hence
b is integral over A. Thus (3) implies (1).

Corollary 1. If A is a subring of an integral domain B, and b1, . . . , bm

are elements of B, each integral over A, then the ring A[b1, . . . , bm] is a
finitely generated A-module.

Proof: The proof is by induction on m. The case m = 1 follows from
Theorem 7.6.2. Let Ai = A[b1, . . . , bi] and assume that Am−1 is a finitely
generated A-module. Then Am = Am−1[bm] is a finitely generated Am−1-
module by Theorem 7.6.2. Thus Am is a finitely generated A-module.

Corollary 2. If A is a subring of an integral domain B, then the set C of
all elements of B that are integral over A is a subring of B containing A.

Proof: Let c, d be in C. Then A[c, d] is a finitely generated A-module
by Corollary 1. Hence c + d and cd are integral over A by Theorem 7.6.2.
Thus C is a subring of B.

Let A be a subring of an integral domain B. The subring C of B of all
elements of B that are integral over A is called the integral closure of A in
B. If C = A, then A is said to be integrally closed in B. If C = B, then B
is said to be integral over A.
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Lemma 2. Let A be a subring of an integral domain B such that B is
integral over A.

(1) If Q is a prime ideal of B, and P = A∩Q, then B/Q is integral over
A/P .

(2) If S is a multiplicatively closed subset of A, then S−1B is integral
over S−1A.

Proof: Let b be in B. Then there are elements a1, . . . , an of A such that

bn + a1b
n−1 + · · · + an = 0.

Upon reducing mod Q, we find that b + Q is integral over A/P .
(2) Let b/s be in S−1B. Then dividing the last equation by sn gives

(b/s)n + (a1/s)(b/s)n−1 + · · · + (an/sn) = 0.

Thus b/s is integral over S−1A.

Lemma 3. Let A be a subring of an integral domain B such that B is
integral over A. Then A is a field if and only if B is a field.

Proof: Suppose that A is a field and b is a nonzero element of B. Then
there are coefficients a1, . . . , an in A such that

bn + a1b
n−1 + · · · + an = 0,

and n is as small as possible. As B is an integral domain, we have that
an �= 0. Hence

b−1 = −a−1
n (bn−1 + a1b

n−2 + · · · + an−1)

exists in B, and so B is a field.
Conversely, suppose that B is a field and a is a nonzero element of A.

Then a−1 exists in B and so is integral over A. Hence, there are coefficients
a1, . . . , an in A such that

a−n + a1a
−n+1 + · · · + an = 0.

Then we have
a−1 = −(a1 + a2a + · · · + anan−1)

is an element of A, and so A is a field.

Lemma 4. Let A be a subring of an integral domain B such that B is
integral over A, let Q be a prime ideal of B, and let P = A ∩ Q. Then P
is maximal in A if and only if Q is maximal in B.

Proof: By Lemma 2(1), we have that B/Q is integral over A/P . As Q is
prime, we have that B/Q is an integral domain. Therefore A/P is a field
if and only if B/Q is a field by Lemma 3.
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Theorem 7.6.3. Let A be a subring of an integral domain B such that B
is integral over A, and let P be a prime ideal of A. Then there is a prime
ideal Q of B such that A ∩ Q = P .

Proof: Let BP = (A − P )−1B. Then BP is integral over AP by Lemma
2(2). Consider the commutative diagram of natural injections

A −→ B
α ↓ ↓ β
AP −→ BP .

Let N be a maximal ideal of BP . Then M = AP ∩ N is maximal in AP by
Lemma 4. Hence M is the unique maximal ideal of the local ring AP . Let
Q = β−1(N). Then Q is a prime ideal of B such that

A ∩ Q = α−1(M) = P.

Valuation Rings

Definition: A subring B of a field F is a valuation ring of F if and only
if for each nonzero element x of F , either x is in B or x−1 is in B.

Theorem 7.6.4. If B is a valuation ring of a field F , then

(1) B is a local ring; and

(2) B is integrally closed in F .

Proof: (1) Let M be the set of nonunits of B. If x is in M and b in
B, then bx is in M , otherwise (bx)−1 would be in B, and therefore the
element x−1 = b(bx)−1 would be in B, which is not the case. Now let x, y
be nonzero elements of M . Then either xy−1 is in B or x−1y is in B. If
xy−1 is in B, then x + y = (1 + xy−1)y is in M , and likewise if x−1y is in
B. Hence M is an ideal of B and therefore B is a local ring by Lemma 1.

(2) Let x in F be integral over B. Then there are coefficients b1, . . . , bn

in B such that
xn + b1x

n−1 + · · · + bn = 0.

If x is in B, then we are done, otherwise x−1 is in B and so

x = −(b1 + b2x
−1 · · · + bnx1−n)

is in B. Thus B is integrally closed in F .

Let F be a field and let K be an algebraically closed field. Let Σ be
the set of all pairs (A, α), where A is a subring of F and α : A → K is a
homomorphism. Define a partial ordering on Σ by the rule

(A, α) ≤ (B, β) if and only if A ⊂ B and β | A = α.

By Zorn’s Lemma, the set Σ has a maximal element.
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Theorem 7.6.5. Let (B, β) be a maximal element of Σ. Then B is a
valuation ring of F .

Proof: We first show that B is a local ring with M = kerβ its maximal
ideal. The ring β(B) is an integral domain, since it is a subring of the field
K. Therefore M is prime. We extend β to a homomorphism γ : BM → K
by setting

γ(b/s) = β(b)/β(s)

for all b in B and s in B − M , which is allowable, since β(s) �= 0. As the
pair (B, β) is maximal, we have that B = BM . Therefore, every element
of B − M is a unit, and so B is a local ring and M is its maximal ideal by
Lemma 1.

Now let x be a nonzero element of F and let M [x] be the ideal of
B[x] of all polynomials in x with coefficients in M . We now show that
either M [x] �= B[x] or M [x−1] �= B[x−1]. On the contrary, suppose that
M [x] = B[x] and M [x−1] = B[x−1]. Then there are coefficients a0, . . . , am

and b0, . . . , bn in M such that

a0 + a1x + · · · + amxm = 1,

b0 + b1x
−1 + · · · + bnx−n = 1

and m and n are as small as possible. By replacing x by x−1, if necessary,
we may assume that m ≥ n. Multiplying the second equation by xn gives

(1 − b0)xn = b1x
n−1 + · · · + bn.

As b0 is in M , we have that 1 − b0 is in B − M and so is a unit of B.
Therefore, we can write

xn = c1x
n−1 + · · · + cn

with ci in M . Hence, we can replace xm by c1x
m−1 + · · · + cnxm−n in

the first equation. This contradicts the minimality of m. Thus, either
M [x] �= B[x] or M [x−1] �= B[x−1].

We now show that either x is in B or x−1 is in B. Let B′ = B[x]. By
replacing x by x−1, if necessary, we may assume that M [x] �= B′. Then
M [x] is contained in a maximal ideal M ′ of B′; and B ∩ M ′ = M , since
B ∩M ′ is a proper ideal of B containing M . Hence, the inclusion of B into
B′ induces an embedding of the field k = B/M into the field k′ = B′/M ′.
Moreover k′ = k[x] where x = x+M ′. Hence, if x �= 0, there are coefficients
c0, . . . , cn in k such that

x−1 = c0 + c1x + · · · + cnxn.

Hence, we have
0 = −1 + c0x + · · · + cnxn+1.

Therefore x is algebraic over k.
Now the homomorphism β : B → K induces an embedding β : k → K

because M = ker β. Let p(t) be the irreducible polynomial for x over k.
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As K is algebraically closed, the polynomial (βp)(t) has a root r in K. We
extend β to a homomorphism β′ : k′ → K as follows: Let y be in k′. Then
there is a polynomial f(t) over k such that y = f(x). Define

β′(y) = (βf)(r).

Then β′ is well defined, since if g(t) is another polynomial over k such that
y = g(x), then we have

(g − f)(x) = 0,

and so p(t) divides (g − f)(t), whence (βp)(t) divides (β(g − f))(t) and so

(βg)(r) = (βf)(r).

Clearly β′ is a ring homomorphism extending β. Composing β′ with the
natural projection B′ → k′ gives a homomorphism β′ : B′ → K extending
β. As (B, β) is maximal, B = B′, and so x is in B. Thus B is a valuation
ring of F .

Corollary 3. If A is a subring of a field F , then the integral closure C of
A in F is the intersection of all the valuation rings of F containing A.

Proof: Let B be a valuation ring of F containing A. Then B is integrally
closed in F by Theorem 7.6.4. Hence, any element of F that is integral
over A is an element of B. Therefore C ⊂ B.

Now let x be an element of F − C and let A′ = A[x−1]. Then x is not
in A′, since otherwise there would be coefficients a0, . . . , an in A such that

x = a0 + a1x
−1 + · · · + anx−n

and so we would have

xn+1 − a0x
n − · · · − an = 0

and therefore x would be in C, which is not the case. Hence x−1 is a
nonunit of A′ and so is contained in a maximal ideal M of A′. Let k be
the algebraic closure of the field k = A′/M and let α : A′ → k be the
composition of the natural projection A′ → k followed by the inclusion
k → k. Then α can be extended to a homomorphism β : B → k where B
is a valuation ring of F containing A′ by Theorem 7.6.5. Then x−1 is also
a nonunit in B, since β(x−1) = 0. Therefore x is not in B. Hence C is the
intersection of all the valuation rings of F containing A.

Lemma 5. Every algebraically closed field is infinite.

Proof: Let K be a field with finitely many elements a1, . . . , an. Then

p(t) = 1 + (t − a1)(t − a2) · · · (t − an)

is a polynomial over K that has no root in K. Thus K is not algebraically
closed.
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Theorem 7.6.6. Let A be a subring of an integral domain B such that B
is finitely generated over A, and let b be a nonzero element of B. Then there
exists a nonzero element a of A with the property that any homomorphism
α of A into an algebraically closed field K, such that α(a) �= 0, can be
extended to a homomorphism β : B → K such that β(b) �= 0.

Proof: By induction on the number of generators of B over A, we reduce
immediately to the case where B is generated over A by a single element x.
Assume first that x is not algebraic over A, that is, no nonzero polynomial
with coefficients in A has x as a root. As B = A[x], there are coefficients
a0, . . . , an in A, with a0 �= 0, such that

b = a0x
n + a1x

n−1 + · · · + an.

Set a = a0 and let
α : A → K

be a homomorphism such that α(a) �= 0. Now the nonzero polynomial

α(a0)tn + α(a1)tn−1 + · · · + α(an)

has at most n roots in K; therefore, there is an element y of K such that

α(a0)yn + α(a1)yn−1 + · · · + α(an) �= 0,

since K is infinite by Lemma 5. Extend α : A → K to a homomorphism

β : B → K

by setting β(x) = y. Then β(b) �= 0, as required.
Assume next that x is algebraic over A. Then x is integral over the field

F of fractions of A. As b is in F [x], we have that b is integral over F by
Theorem 7.6.2. Hence b is algebraic over A, and therefore b−1 is algebraic
over A. Hence, there are coefficients c0, . . . , cm and d0, . . . , dn in A, with
c0d0 �= 0, such that

c0x
m + c1x

m−1 + · · · + cm = 0,

d0b
−n + d1b

1−n + · · · + dn = 0.

Set a = c0d0 and let α : A → K be a homomorphism such that α(a) �= 0.
Then α can be extended first to a homomorphism

α′ : A[a−1] → K

by setting
α′(a−1) = α(a)−1,

and then to a homomorphism γ : C → K, where C is a valuation ring of
the field of fractions of B, by Theorem 7.6.5. As a = c0d0, we have that
x is integral over A[a−1]. Therefore x is in C by Corollary 3, and so C
contains B. Likewise, since a = c0d0, we have that b−1 is integral over
A[a−1]. Therefore b−1 is in C, and so b is a unit in C. Hence γ(b) �= 0.
Now take β : B → K to be the restriction of γ to B.
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Selberg’s Lemma

Let A be a subring of C. Then A is said to be finitely generated if and only if
A is finitely generated over Z, that is, there are a finite number of elements
a1, . . . , am of A, called the generators of A, such that every element of A
can be expressed as a polynomial in a1, . . . , am with coefficients in Z.

Theorem 7.6.7. Let A be a finitely generated subring of C. Then every
subgroup of GL(n, A) has a torsion-free normal subgroup of finite index.

Proof: For each prime p in Z, let αp be the composite

Z
proj−→ Zp

inj−→ Zp,

where Zp = Z/pZ and Zp is the algebraic closure of Zp. By Theorem
7.6.6, there is a nonzero integer m with the property that for any prime
p not dividing m, the homomorphism αp : Z → Zp can be extended to a
homomorphism βp : A → Zp. As βp(1) = 1, the kernel of βp is a proper
ideal of A. Let Mp be a maximal ideal of A containing kerβp. Then

pZ = Z ∩ ker βp ⊂ Z ∩ Mp.

As pZ is a maximal ideal of Z, we have that Z∩Mp = pZ. Therefore A/Mp

is a field of characteristic p.
Now βp : A → Zp induces an embedding of A/ ker βp into Zp. As Zp is

an algebraic extension of Zp, we have that A/ ker βp is algebraic over Zp.
Therefore A/Mp is an algebraic extension of Zp. As A is finitely generated
over Z, we have that A/Mp is finitely generated over Zp. Therefore A/Mp

is a finite extension of Zp by Corollary 1. Hence A/Mp is a finite field.
Let GLn(A, Mp) be the kernel of the natural projection from GLn(A)

into GLn(A/Mp). Then GLn(A, Mp) is a normal subgroup of GLn(A) of
finite index, since GLn(A/Mp) is a finite group. Let Γ be an arbitrary
subgroup of GLn(A) and set

Γp = Γ ∩ GLn(A, Mp).

Then Γp is a normal subgroup of Γ of finite index.
Let p, q be distinct primes not dividing m and set

Γp,q = Γp ∩ Γq.

Then Γp,q is a normal subgroup of Γ of finite index. We now prove that
Γp,q is torsion-free by contradiction. Let g be an element of Γp,q of finite
order r > 1. We may assume, without loss of generality, that r is prime.
As gr = I, each eigenvalue of g is an rth root of unity. By Lemma 9 of
§7.5, we have that g is conjugate in GL(n, C) to a unitary matrix. Hence
g is conjugate to a diagonal matrix. Now since the order of g is r, at least
one eigenvalue of g is a primitive rth root of unity ω.
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Let B = A[ω]. By Theorem 7.6.3, there is a prime ideal Qp of B such
that A ∩ Qp = Mp. Let φ(t) be the characteristic polynomial of g. As g is
in GLn(A, Mp), we have

φ(t) ≡ (t − 1)n mod Mp[t].
Therefore, we have

φ(ω) ≡ (ω − 1)n mod Qp.

As φ(ω) = 0, we have that ω−1 is in Qp, since B/Qp is an integral domain.
Hence, there is a nonzero element x of Qp such that ω = 1 + x. Observe
that

1 = (1 + x)r = 1 + rx +
r(r − 1)

2
x2 + · · · + xr.

Therefore, there is a y in Qp such that
1 = 1 + x(r + y).

Thus x(r + y) = 0 and so r + y = 0. Hence r is in Z ∩ Qp = pZ. As r is
prime, we have that r = p. Likewise r = q, and we have a contradiction.
Thus Γp,q is torsion-free.

Corollary 4. (Selberg’s lemma) Every finitely generated subgroup Γ of
GL(n, C) has a torsion-free normal subgroup of finite index.

Proof: Let Γ be the group generated by g1, . . . , gm and let A be the
subring of C generated by all the entries of the matrices g±1

1 , . . . , g±1
m . Then

Γ is a subgroup of GL(n, A) and so has a torsion-free normal subgroup of
finite index by Theorem 7.6.7.

Corollary 5. Every finitely generated subgroup of I(Hn) has a torsion-free
normal subgroup of finite index.

Proof: The group PO(n, 1) is a subgroup of GL(n + 1, C).

Exercise 7.6

1. Let Γ be a group with a torsion-free subgroup of finite index. Prove that Γ
has a torsion-free normal subgroup of finite index.

2. Γ be a group with a torsion-free subgroup of finite index. Prove that there
is an upper bound on the set of finite orders of elements of Γ.

3. Let A be a finitely generated subring of C. Prove that every subgroup of
PSL(2, A) has a torsion-free normal subgroup of finite index.

4. Prove that every finitely generated subgroup of PSL(2, C) has a torsion-free
normal subgroup of finite index.

5. Prove that every finitely generated subgroup Γ of GL(n, C) is residually
finite, that is, for each g �= 1 in Γ, there is normal subgroup Γg of Γ of finite
index such that g is in Γ − Γg. Conclude that every finitely generated group
of hyperbolic isometries is residually finite.
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§7.7. Historical Notes

§7.1. Theorems 7.1.2 and 7.1.3 for 2- and 3-dimensional hyperbolic polyhe-
dra appeared in Poincaré’s 1883 Mémoire sur les groupes kleinéens [357].
Theorems 7.1.3 and 7.1.4 for spherical and Euclidean n-simplices appeared
in Coxeter’s 1932 paper The polytopes with regular-prismatic vertex figures
II [94]. See also Witt’s 1941 paper Spiegelungsgruppen und Aufzählung
halbeinfacher Liescher Ringe [454]. Theorems 7.1.1 and 7.1.3 for compact
polyhedra were proved by Aleksandrov in his 1954 Russian paper On the
filling of space by polyhedra [12] and in general by Seifert in his 1975 paper
Komplexe mit Seitenzuordnung [403]. Coxeter groups were introduced by
Coxeter in his 1935 paper The complete enumeration of finite groups of the
form R2

i = (RiRj)kij = 1 [96].
§7.2. The spherical, Euclidean, and hyperbolic triangle reflection groups

were determined by Schwarz in his 1873 paper Ueber diejenigen Fälle, in
welchen die Gaussische hypergeometrische Reihe eine algebraische Func-
tion ihres vierten Elementes darstellt [401]. Hyperbolic tetrahedron reflec-
tion groups were considered by Dyck in his 1883 paper Über die durch
Gruppen linearer Transformationen gegebenen regulären Gebietseintheilun-
gen des Raumes [121]. The spherical tetrahedron reflection groups were
determined by Goursat in his 1889 paper Sur les substitutions orthogonales
et les divisions régulières de l’espace [168]. The spherical and Euclidean,
n-simplex, reflection groups were enumerated by Coxeter in his 1931 note
Groups whose fundamental regions are simplexes [93]. See also Coxeter’s
1934 paper Discrete groups generated by reflections [95]. The hyperbolic,
tetrahedron, reflection groups appear in Coxeter and Whitrow’s 1950 pa-
per World-structure and non-Euclidean honeycombs [104]. The hyperbolic
n-simplex reflection groups were enumerated by Lannér in his 1950 thesis
On complexes with transitive groups of automorphisms [273].

Theorem 7.2.2 appeared in Coxeter’s 1932 paper [94]. Lemma 2 ap-
peared in Schläfli’s 1852 treatise Theorie der vielfachen Kontinuität [394].
Theorem 7.2.3 appeared in Coxeter’s 1948 treatise Regular Polytopes [100].
Theorem 7.2.4 appeared in Milnor’s 1994 paper The Schläfli differential
equality [313]. The proof of Lemma 3 for positive definite matrices is due
to Mahler and appeared in Du Val’s 1940 paper The unloading problem for
plane curves [119]. Theorem 7.2.5 for spherical and Euclidean n-simplices
appeared in Coxeter’s 1932 paper [94]. See also Witt’s 1941 paper [454].
Theorem 7.2.5 for hyperbolic n-simplices appeared in Vinberg’s 1967 paper
Discrete groups generated by reflections in Lobacevskii spaces [435].

§7.3. Theorem 7.3.2 appeared in Vinberg’s 1967 paper [435]. The hyper-
bolic, noncompact n-simplex, reflection groups were enumerated by Chein
in his 1969 paper Recherche des graphes des matrices de Coxeter hyper-
boliques d’ordre ≤ 10 [85]. For a survey of hyperbolic reflection groups,
see Vinberg’s 1985 survey Hyperbolic reflection groups [436]. References
for reflection groups are Bourbaki’s 1968 treatise Groupes et Algèbres de



§7.7. Historical Notes 333

Lie [59], Coxeter’s 1973 treatise Regular Polytopes [100], and Humphreys’
1990 treatise Reflection Groups and Coxeter Groups [217]. A complete list
of the Coxeter graphs of the hyperbolic, noncompact n-simplex, reflection
groups can be found in Humphreys’ 1990 treatise [217]. For the history of
reflection groups, see the historical notes in Bourbaki’s 1968 treatise [59]
and in Coxeter’s 1973 treatise [100].

§7.4. Lemma 1 appeared in Kneser’s 1936 paper Der Simplexinhalt in der
nichteuklidischen Geometrie [258]. Theorem 7.4.1 appeared in Aomoto’s
1977 paper Analytic structure of Schläfli function [16]. The spherical case of
Theorem 7.4.2 appeared in Schläfli’s 1855 paper Réduction d’une intégrale
multiple, qui comprend l’arc de cercle et l’aire du triangle sphérique comme
cas particuliers [391]. The 3-dimensional hyperbolic case of Theorem 7.4.2
appeared in Sforza’s 1907 paper Sul volume dei poliedri [406] and the n-
dimensional version appeared in Kneser’s 1936 paper Der Simplexinhalt
in der nichteuklidischen Geometrie [258]. For a generalization of Schläfli’s
differential formula to polytopes, see Milnor’s 1994 paper [313]. For the
volumes of all the hyperbolic Coxeter simplices, see Johnson, Kellerhals,
and Tschantz’s 1999 paper The size of a hyperbolic Coxeter simplex [219].

§7.5. Theorem 7.5.1 appeared in Auslander’s 1965 paper An account
of the theory of crystallographic groups [27]. Theorems 7.5.2 and 7.5.3
were proved by Bieberbach in his 1911 paper Über die Bewegungsgruppen
der Euklidischen Räume I [48]. Our proof of Theorem 7.5.3 was given
by Buser in his 1985 paper A geometric proof of Bieberbach’s theorems
on crystallographic groups [70]. Theorem 7.5.4 was proved by Bieberbach
in his 1912 paper Über die Bewegungsgruppen der Euklidischen Räume II
[49]. A description of the 2-dimensional crystallographic groups can be
found in Coxeter and Moser’s 1980 treatise Generators and Relations for
Discrete Groups [103]. For the classification of the 3-dimensional crystal-
lographic groups, see the 2001 paper On three-dimensional space groups
of Conway, Friedrichs, Huson, and Thurston [91]. For the classification
of 4-dimensional crystallographic groups, see the 1978 treatise Crystallo-
graphic Groups of Four-Dimensional Space of Brown, Bülow, Neubüser,
Wondratschek, and Zassenhaus [66]. Lemma 9 was proved by Moore in his
1898 paper An universal invariant for finite groups of linear substitutions
[328] and by Loewy in his 1898 paper Ueber bilineare Formen mit conjugirt
imaginären Variabeln [289]. Theorem 7.5.5 appeared in Zassenhaus’ 1948
paper Über einen Algorithmus zur Bestimmung der Raumgruppen [462]. As
a reference for crystallographic groups, see Farkas’ 1981 article Crystallo-
graphic groups and their mathematics [141].

§7.6. The material on integrality and valuation rings is basic commuta-
tive ring theory which was adapted from Chapter 5 of Atiyah and Macdon-
ald’s 1969 text Introduction to Commutative Algebra [26]. Selberg’s lemma
was proved by Selberg in his 1960 paper On discontinuous groups in higher-
dimensional symmetric spaces [404]. For another proof of Selberg’s lemma,
see Alperin’s 1987 paper An elementary account of Selberg’s lemma [14].



CHAPTER 8

Geometric Manifolds

In this chapter, we lay down the foundation for the theory of hyperbolic
manifolds. We begin with the notion of a geometric space. Examples of
geometric spaces are Sn, En, and Hn. In Sections 8.2 and 8.3, we study
manifolds locally modeled on a geometric space X via a group G of simi-
larities of X. Such a manifold is called an (X, G)-manifold. In Section 8.4,
we study the relationship between the fundamental group of an (X, G)-
manifold and its (X, G)-structure. In Section 8.5, we study the role of
metric completeness in the theory of (X, G)-manifolds. In particular, we
prove that if M is a complete (X, G)-manifold, with X simply connected,
then there is a discrete subgroup Γ of G of isometries acting freely on X
such that M is isometric to X/Γ. The chapter ends with a discussion of
the role of curvature in the theory of spherical, Euclidean, and hyperbolic
manifolds.

§8.1. Geometric Spaces

We begin our study of geometric manifolds with the definition of a topo-
logical manifold without boundary.

Definition: An n-manifold (without boundary) is a Hausdorff space M
that is locally homeomorphic to En, that is, for each point u of M , there
is an open neighborhood U of u in M such that U is homeomorphic to an
open subset of En.

Example: Euclidean n-space En is an n-manifold.

Definition: A closed manifold is a compact manifold (without boundary).

Example: Spherical n-space Sn is a closed n-manifold.

334
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Definition: An open manifold is a manifold (without boundary) all of
whose connected components are noncompact.

Example: Hyperbolic n-space Hn is an open n-manifold.

Definition: An n-manifold-with-boundary is a Hausdorff space M that is
locally homeomorphic to Un = {x ∈ En : xn ≥ 0}.

Example: Closed upper half-space Un is n-manifold-with-boundary.

Let M be an n-manifold-with-boundary and let M◦ be the set of points
of M that have an open neighborhood homeomorphic to an open subset
of Un. Then M◦ is an open subset of M called the interior of M . The
interior M◦ of M is an n-manifold. Let ∂M = M − M◦. Then ∂M is a
closed subset of M called the boundary of M . The boundary ∂M of M is
an (n − 1)-manifold. A manifold-with-boundary is often called a manifold;
however, in this book, a manifold will mean a manifold without boundary.

Definition: An n-dimensional geometric space is a metric space X satis-
fying the following axioms:

(1) The metric space X is geodesically connected; that is, each pair of
distinct points of X are joined by a geodesic segment in X.

(2) The metric space X is geodesically complete; that is, each geodesic
arc α : [a, b] → X extends to a unique geodesic line λ : R → X.

(3) There is a continuous function ε : En → X and a real number k > 0
such that ε maps B(0, k) homeomorphically onto B(ε(0), k); more-
over, for each point u of Sn−1, the map λ : R → X, defined by
λ(t) = ε(tu), is a geodesic line such that λ restricts to a geodesic arc
on the interval [−k, k].

(4) The metric space X is homogeneous.

One should compare Axioms 1-4 with Euclid’s Postulates 1-4 in §1.1. Note
that Axioms 3 and 4 imply that X is an n-manifold.

Example 1. Euclidean n-space En is an n-dimensional geometric space.

Example 2. Spherical n-space Sn is an n-dimensional geometric space.
Define ε : En → Sn by ε(0) = en+1 and

ε(x) = (cos |x|)en+1 + (sin |x|) x

|x| for x �= 0.

Then ε satisfies Axiom 3 with k = π/2.
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Example 3. Hyperbolic n-space Hn is an n-dimensional geometric space.
Define ε : En → Hn by ε(0) = en+1 and

ε(x) = (cosh |x|)en+1 + (sinh |x|) x

|x| for x �= 0.

Then ε satisfies Axiom 3 for all k > 0.

Theorem 8.1.1. Let X be an n-dimensional geometric space and suppose
that ε : En → X is a function satisfying Axiom 3. Then for each geodesic
line λ : R → X such that λ(0) = ε(0), there is a point u of Sn−1 such that
λ(t) = ε(tu) for all t.

Proof: Let λ : R → X be a geodesic line such that λ(0) = ε(0). Then
there is a c > 0 such that the restriction of λ to [0, c] is a geodesic arc. Let
k be the constant in Axiom 3 and choose b > 0 but less than both c and
k. Then λ(b) is in B(ε(0), k). Hence, there is a point u of Sn−1 such that
ε(bu) = λ(b). Define α : [0, c] → X by

α(t) =
{

ε(tu), 0 ≤ t ≤ b,
λ(t), b ≤ t ≤ c.

Then α is the composite of two geodesic arcs. Hence α is a geodesic arc by
Theorem 1.4.2, since

d(λ(0), λ(b)) + d(λ(b), λ(c)) = d(λ(0), λ(c)).

By Axiom 2, the arc α extends to a unique geodesic line µ : R → X. Now
λ and µ both extend the restriction of λ to [b, c]. Therefore λ = µ. Hence
λ(t) = ε(tu) for 0 ≤ t ≤ b. Furthermore λ(t) = ε(tu) for all t, since λ is
the unique geodesic line extending the restriction of λ to [0, b].

Theorem 8.1.2. Let B(x, r) be the topological closure of an open ball
B(x, r) in a geometric space X. Then

B(x, r) = C(x, r)

and the closed ball C(x, r) is compact.

Proof: The set C(x, r) is closed in X, and so B(x, r) ⊂ C(x, r). As every
point of the set {y ∈ X : d(x, y) = r} is joined to x by a geodesic segment
in B(x, r) by Axiom 1, we also have the reverse inclusion. Thus, we have

B(x, r) = C(x, r).

Let ε : En → X be a function satisfying Axiom 3 with ε(0) = x. As ε is
continuous, ε(B(0, r)) ⊂ B(x, r). Let y be an arbitrary point of C(x, r). By
Axiom 1, there is a geodesic arc α : [0, 
] → X from x to y. By Axiom 2,
the arc α extends to a geodesic line λ : R → X. By Theorem 8.1.1, there is
a point u of Sn−1 such that λ(t) = ε(tu) for all t. Hence y = ε(
u), where

 = d(x, y) ≤ r. Therefore y is in ε(C(0, r)). Hence ε(C(0, r)) = C(x, r).
As C(0, r) is compact and ε is continuous, C(x, r) is compact.
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Free Group Actions

Let Γ be a discrete group of isometries of an n-dimensional geometric space
X. Then Γ is discontinuous by Theorems 5.3.5 and 8.1.2. Hence X/Γ is
a metric space by Theorems 5.3.4 and 6.6.1. We next consider a sufficient
condition on the action of Γ on X so that X/Γ is an n-manifold.

Definition: A group Γ acting on a set X acts freely on X if and only if
for each x in X, the stabilizer subgroup Γx = {g ∈ Γ : gx = x} is trivial.

Example: The group {±1} acts freely on Sn.

Definition: A function ξ : X → Y between metric spaces is a local
isometry if and only if for each point x of X, there is an r > 0 such that ξ
maps B(x, r) isometrically onto B(ξ(x), r).

Theorem 8.1.3. Let Γ be a group of isometries of a metric space X such
that Γ acts freely and discontinuously on X. Then the quotient map

π : X → X/Γ

is a local isometry and a covering projection. Furthermore, if X is con-
nected, then Γ is the group of covering transformations of π.

Proof: Let x be an arbitrary point of X. Then we have

π(B(x, r)) = B(π(x), r)

for each r > 0 by Theorem 6.6.2. Hence π is an open map. Now as Γ
acts freely on X, the map g �→ gx is a bijection from Γ onto Γx. The set
Γx − {x} is closed by Theorem 5.3.4. Hence, we have

dist(x,Γx − {x}) > 0.

Now set
s =

1
2
dist(x,Γx − {x})

and let y, z be arbitrary points of B(x, s/2). Then d(y, z) < s. Let g �= 1
be in Γ. Then

d(x, gx) ≤ d(x, y) + d(y, gz) + d(gz, gx).

Hence, we have

d(y, gz) ≥ d(x, gx) − d(x, y) − d(z, x)
≥ 2s − s/2 − s/2 = s.

Therefore
dΓ(π(y), π(z)) = dist(Γy, Γz) = d(y, z).

Thus π maps B(x, s/2) isometrically onto B(π(x), s/2), and so π is a local
isometry.
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Now let g, h be in Γ and suppose that B(gx, s) and B(hx, s) overlap.
Then B(x, s) and B(g−1hx, s) overlap. Consequently

d(x, g−1hx) < 2s.

Because of the choice of s, we have that g−1h = 1 and so g = h. Thus,
the open balls {B(gx, s) : g ∈ Γ} are mutually disjoint in X. The orbit
space metric dΓ on X/Γ is the distance function between Γ-orbits in X.
Therefore π−1(B(π(x), s)) is the s-neighborhood of Γx in X. Hence, we
have

π−1(B(π(x), s)) = ∪
g∈Γ

B(gx, s).

As each h �= 1 in Γ moves B(gx, s) off itself, no two points of B(gx, s) are
in the same Γ-orbit. Therefore π maps B(gx, s) bijectively onto B(π(x), s).
Furthermore, since π is an open map, π maps B(gx, s) homeomorphically
onto B(π(x), s) for each g in Γ. Hence B(π(x), s) is evenly covered by π.
Thus π is a covering projection.

If g is in Γ, then πg = π, and so g is a covering transformation of π. Now
assume that X is connected. Choose a base point x0 of X. Let τ : X → X
be a covering transformation of π. Then πτ = π. Hence πτ(x0) = π(x0),
and so there is an element g of Γ such that τ(x0) = gx0. Now g and τ
are both lifts of π : X → X/Γ with respect to π that agree at one point.
Therefore τ = g by the unique lifting property of covering projections.
Thus Γ is the group of covering transformations of π.

X-Space-Forms

Let Γ be a discrete group of isometries of an n-dimensional geometric space
X such that Γ acts freely on X. Then the orbit space X/Γ is called an
X-space-form. By Theorem 8.1.3, an X-space-form is an n-manifold.

Choose a base point x0 of X. Let α : [0, 1] → X/Γ be a loop based at
the point Γx0. Lift α to a curve α̃ : [0, 1] → X starting at x0. Then

πα̃(1) = α(1) = Γx0.

Now since Γ acts freely on X, there is a unique element gα of Γ such that
α̃(1) = gαx0. By the covering homotopy theorem, the element gα depends
only on the homotopy class [α] in the fundamental group π1(X/Γ, Γx0).
Hence, we may define a function

η : π1(X/Γ) → Γ

by the formula η([α]) = gα.

Theorem 8.1.4. Let X be a simply connected geometric space and let X/Γ
be an X-space-form. Then η : π1(X/Γ) → Γ is an isomorphism.
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Proof: Let α, β : [0, 1] → X/Γ be loops based at Γx0 and let α̃, β̃ : [0, 1] →
X be lifts starting at x0. Then the curve α̃(gαβ̃) : [0, 1] → X lifts αβ and
starts at x0. Observe that

α̃gαβ̃(1) = gαgβx0.

Therefore
η([α][β]) = η([αβ]) = gαgβ = η([α])η([β]).

Thus η is a homomorphism.
Let g be an arbitrary element of Γ. As X is geodesically connected,

there is a curve γ : [0, 1] → X from x0 to gx0. Then πγ : [0, 1] → X/Γ is a
loop based at Γx0 whose lift starting at x0 is γ. Hence η([πγ]) = g. Thus
η is surjective. To see that η is injective, assume that η([α]) = 1. Then α̃
is a loop in X. As X is simply connected, [α̃] = 1 and so

[α] = π∗([α̃]) = 1.

Hence η is injective. Thus η is an isomorphism.

Theorem 8.1.5. Let X be a simply connected geometric space. Then two
X-space-forms X/Γ and X/H are isometric if and only if Γ and H are
conjugate in the group I(X) of isometries of X.

Proof: Let φ be an element of I(X) such that H = φΓφ−1. Then for each
g in Γ and x in X, we have

φgx = (φgφ−1)φx.

Hence φgx is in the same H-orbit as φx. Thus φ induces a homeomorphism

φ : X/Γ → X/H

defined by φ(Γx) = Hφx. If x and y are in X, then

dH(φ(Γx), φ(Γy)) = dH(Hφx,Hφy)
= dH(φφ−1Hφx, φφ−1Hφy)
= dH(φΓx, φΓy)
= dΓ(Γx,Γy).

Thus φ is an isometry.
Conversely, suppose that ξ : X/Γ → X/H is an isometry. By Theorem

8.1.3, the quotient maps π : X → X/Γ and η : X → X/H are covering
projections. Since X is simply connected, ξ lifts to a homeomorphism ξ̃
such that the following diagram commutes:

X
ξ̃−→ X

π ↓ ↓ η

X/Γ
ξ−→ X/H.

As π, ξ, and η are local isometries, ξ̃ is also a local isometry.



340 8. Geometric Manifolds

Let x, y be distinct points of X. As X is geodesically connected, there
is a geodesic arc α : [0, 
] → X from x to y. Since ξ̃ is a local isometry, the
curve ξ̃α is rectifiable and

|ξ̃α| = |α| = 
 = d(x, y).

Therefore, we have
d(ξ̃(x), ξ̃(y)) ≤ d(x, y).

Likewise, we have
d(ξ̃−1(x), ξ̃−1(y)) ≤ d(x, y).

Hence, we have

d(x, y) = d(ξ̃−1ξ̃(x), ξ̃−1ξ̃(y))
≤ d(ξ̃(x), ξ̃(y)).

Therefore, we have
d(ξ̃(x), ξ̃(y)) = d(x, y).

Thus ξ̃ is an isometry of X.
Let g be an arbitrary element of Γ. Then we have

ηξ̃gξ̃−1 = ξπgξ̃−1

= ξπξ̃−1

= ηξ̃ξ̃−1 = η.

Hence ξ̃gξ̃−1 is a covering transformation of η. Therefore ξ̃gξ̃−1 is in H by
Theorem 8.1.3. Thus H contains ξ̃Γξ̃−1. By reversing the roles of Γ and
H, we have that Γ contains ξ̃−1Hξ̃. Hence ξ̃Γξ̃−1 = H. Thus Γ and H are
conjugate in I(X).

Exercise 8.1

1. Prove that elliptic n-space P n is an n-dimensional geometric space.

2. Prove that the n-torus T n = En/Zn is an n-dimensional geometric space.

3. A metric space X is said to be locally geodesically convex if for each point
x of X, there is an r > 0 such that any two distinct points in B(x, r) are
joined by a unique geodesic segment in X. Prove that every geometric space
is locally geodesically convex.

4. Let X be a geometric space. Prove that every X-space-form is geodesically
connected.

5. Let X be a simply connected geometric space, let X/Γ be an X-space-form,
and let N(Γ) be the normalizer of Γ in I(X). Prove that I(X/Γ) is isomorphic
to N(Γ)/Γ.
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§8.2. Clifford-Klein Space-Forms

Let X = Sn, En, or Hn. Then an X-space-form is called a Clifford-Klein
space-form. Thus, a Clifford-Klein space-form is an orbit space X/Γ where
Γ is a discrete group of isometries of X acting freely on X. A Clifford-
Klein space-form X/Γ is also called a spherical, Euclidean, or hyperbolic
space-form according as X = Sn, En, or Hn, respectively.

Theorem 8.2.1. A discrete group Γ of isometries of X = En or Hn acts
freely on X if and only if Γ is torsion-free.

Proof: As Γ is discontinuous, the stabilizer Γx is finite for each x in X.
Hence, if Γ is torsion-free, then Γx = {1} for each x in X, and so Γ acts
freely on X. Conversely, suppose that Γ acts freely on X. Then every
nonidentity element of Γ is either parabolic or hyperbolic, and so every
nonidentity element of Γ has infinite order. Thus Γ is torsion-free.

Definition: The volume of a Clifford-Klein space-form X/Γ is the volume
of any proper fundamental region R of Γ in X.

Note that the volume of a Clifford-Klein space-form X/Γ is well defined,
since all the proper fundamental regions of Γ have the same volume by
Theorem 6.7.2.

Theorem 8.2.2. If X/Γ and X/H are two isometric Clifford-Klein space-
forms, then

Vol(X/Γ) = Vol(X/H).

Proof: By Theorem 8.1.5, there is an isometry φ of X such that H =
φΓφ−1. Let R be a proper fundamental region for Γ. We now show that
φ(R) is a proper fundamental region for H. First of all, φ(R) is an open set,
since R is open. Let F be a fundamental set for Γ such that R ⊂ F ⊂ R.
As Hφx = φΓx for each x in X, we have that φ(F ) is a fundamental set
for H. Moreover

φ(R) ⊂ φ(F ) ⊂ φ(R).

Furthermore

Vol(∂(φ(R))) = Vol(φ(∂R)) = Vol(∂R) = 0.

Therefore φ(R) is a proper fundamental region for H by Theorem 6.6.11.
Finally

Vol(X/Γ) = Vol(R) = Vol(φ(R)) = Vol(X/H).

Definition: A Clifford-Klein space-form X/Γ is orientable if and only if
every element of Γ is orientation preserving.
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Spherical Space-Forms

It follows from Theorem 8.1.3 that every spherical space-form Sn/Γ is
finitely covered by Sn. Hence, every spherical space form is a closed n-
manifold with a finite fundamental group when n > 1.

Example 1. Clearly, the group {±1} acts freely on Sn. The space-form
Sn/{±1} is elliptic n-space Pn.

Theorem 8.2.3. Spherical n-space Sn and elliptic n-space Pn are the only
spherical space-forms of even dimension n.

Proof: Let M = Sn/Γ be a space-form of even dimension n and let A
be a nonidentity element of Γ. Then A is an odd dimensional orthogonal
matrix. By Theorem 5.4.2, we deduce that ±1 is an eigenvalue of A. Hence
1 is an eigenvalue of A2. Therefore A2 fixes a point of Sn. As Γ acts freely
on Sn, we must have that A2 = I. Consequently, all the rotation angles of
A are π. Hence A is conjugate in O(n + 1) to −I. As −I commutes with
every matrix in O(n + 1), we have A = −I. Thus M = Pn.

Theorem 8.2.4. Every spherical space-form Sn/Γ of odd dimension n is
orientable.

Proof: Let M = Sn/Γ be a space-form of odd dimension n and let A
be a nonidentity element of Γ. Then A is an even dimensional orthogonal
matrix. As Γ acts freely on Sn, the matrix A has no eigenvalue equal to 1.
By Theorem 5.4.2, we deduce that A has an even number of eigenvalues
equal to −1. Hence A is a rotation. Consequently, every element of Γ
preserves an orientation of Sn and therefore M is orientable.

Example 2. Identify S3 with the unit sphere in C2 given by
{(z, w) ∈ C2 : |z|2 + |w|2 = 1}.

Let p and q be positive coprime integers. Then the matrix(
e2πi/p 0

0 e2πiq/p

)
is unitary and has order p. Let Γ be the finite cyclic subgroup of U(2)
generated by this matrix. Then Γ acts freely on S3 as a group of isometries.
The space-form

L(p, q) = S3/Γ

is called the (p, q)-lens space. It is known that two lens spaces L(p, q)
and L(p′, q′) are homeomorphic if and only if p = p′ and either q ≡ ±q′

(mod p) or qq′ ≡ ±1 (mod p). In particular, L(5, 1) and L(5, 2) have iso-
morphic fundamental groups but are not homeomorphic. Thus, the home-
omorphism type of a spherical space-form is not determined, in general, by
the isomorphism type of its fundamental group.



§8.2. Clifford-Klein Space-Forms 343

Euclidean Space-Forms

Let En/Γ be a Euclidean space-form. Then Γ is a torsion-free discrete
group of isometries of En. By the characterization of discrete Euclidean
groups in §5.4, the group Γ is a finite extension of a finitely generated free
abelian group of rank at most n.

Example 3. Let Γ be a lattice subgroup of I(En). Then Γ is a torsion-
free discrete subgroup of I(En). The space-form En/Γ is called a Euclidean
n-torus.

Theorem 8.2.5. Every compact, n-dimensional, Euclidean space-form is
finitely covered by a Euclidean n-torus.

Proof: Let En/Γ be a compact Euclidean space-form. By Theorem
7.5.2, the subgroup T of translations of Γ is of finite index and of rank n;
moreover, T is a normal subgroup of Γ. Now the action of Γ on En induces
an action of Γ/T on En/T such that if g is in Γ and x is in En, then

(Tg)(Tx) = Tgx.

The group Γ/T acts as a group of isometries of En/T, since

dT(TgTx,TgTy) = dT(Tgx,Tgy)
= dT(gTx, gTy)
= dT(Tx,Ty).

Furthermore Γ/T acts discontinuously on En/T, since Γ/T is finite.
Next, we show that Γ/T acts freely on En/T. Suppose that

(Tg)(Tx) = Tx.

Then Tgx = Tx. Hence gx = hx for some h in T. Therefore h−1gx = x.
As Γ acts freely on En, we have that h−1g = 1. Therefore g = h, and so g
is in T. Thus Γ/T acts freely on En/T.

By Theorem 8.1.3, the quotient map

π : En/T → (En/T)/(Γ/T)

is a covering projection. Clearly (En/T)/(Γ/T) is isometric to En/Γ. Thus
En/Γ is finitely covered by the Euclidean n-torus En/T.

Corollary 1. If En/Γ is a compact Euclidean space-form, then Γ is a
torsion-free finite extension of a free abelian group of rank n.

Example 4. Let τi be the translation of E2 by ei, for i = 1, 2, and let ρ
be the reflection of E2 in the line y = 1/2. Let Γ be the group generated
by ρτ1 and τ2. Then Γ is a torsion-free discrete subgroup of I(E2). The
space-form E2/Γ is a Klein bottle that is double covered by the Euclidean
torus E2/T, where T is generated by τ2

1 and τ2.
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Two Euclidean space-forms En/Γ and En/H are said to be affinely equiv-
alent if and only if there is a homeomorphism φ : En/Γ → En/H induced
by an affine bijection of Rn. By Theorem 7.5.4, two closed Euclidean space-
forms have isomorphic fundamental groups if and only if they are affinely
equivalent. Moreover, there are only finitely many isomorphism classes of
n-dimensional crystallographic groups by Theorem 7.5.3. Therefore, there
are only finitely many affine equivalence classes of closed n-dimensional
Euclidean space-forms. The exact number of affine equivalence classes of
closed n-dimensional Euclidean space-forms for n = 1, 2, 3, 4 is 1, 2, 10, 74,
respectively.

Hyperbolic Space-Forms

Our main goal is to understand the geometry and topology of hyperbolic
space-forms. We begin by studying the elementary hyperbolic space-forms.

Definition: A hyperbolic space-form Hn/Γ is elementary if and only if Γ
is an elementary subgroup of I(Hn).

The type of an elementary space-form Hn/Γ is defined to be the elemen-
tary type of Γ. By the characterization of elementary discrete subgroups
of I(Hn) in §5.5, a space-form Hn/Γ is elementary if and only if Γ contains
an abelian subgroup of finite index.

Let Hn/Γ be an elementary space-form. Assume first that Γ is of elliptic
type. Then Γ is finite by Theorem 5.5.2, but Γ is torsion-free by Theorem
8.2.1, and so Γ is trivial. Thus, the only n-dimensional, elementary, hyper-
bolic space-form of elliptic type is Hn.

Next, assume that Γ is of parabolic type. We now pass to the upper
half-space model and consider Γ to be a subgroup of I(Un). By Theorem
8.1.5, we may assume that Γ fixes ∞. Then Γ corresponds under Poincaré
extension to an infinite discrete subgroup of I(En−1) by Theorem 5.5.5. As
Γ acts trivially on the second factor of the cartesian product

Un = En−1 × R+,

we deduce that Un/Γ is homeomorphic to (En−1/Γ)×R+. As Γ is torsion-
free, En−1/Γ is a Euclidean space-form. The next theorem says that the
similarity type of En−1/Γ is a complete isometric invariant of Un/Γ.

Theorem 8.2.6. Let Un/Γ and Un/H be two elementary space-forms of
parabolic type such that both Γ and H fix ∞. Then Un/Γ and Un/H are
isometric if and only if En−1/Γ and En−1/H are similar.

Proof: By Theorem 8.1.5, the space-forms Un/Γ and Un/H are isometric
if and only if Γ and H are conjugate in I(Un). As Γ and H both fix ∞, they
are conjugate in I(Un) if and only if they are conjugate in the subgroup of
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I(Un) that fixes ∞. The group S(En−1) of similarities of En−1 corresponds
under Poincaré extension to the subgroup of I(Un) that fixes ∞. Thus Γ
and H are conjugate in I(Un) if and only if they are conjugate in S(En−1).
The same argument as in the proof of Theorem 8.1.5 shows that Γ and H
are conjugate in S(En−1) if and only if En−1/Γ and En−1/H are similar.
Thus Un/Γ and Un/H are isometric if and only if En−1/Γ and En−1/H
are similar.

Now assume that Γ is of hyperbolic type. From the description of an
elementary discrete group of hyperbolic type in §5.5, we have that Γ is
an infinite cyclic group generated by a hyperbolic element of I(Un). By
Theorem 8.1.5, we may assume that Γ is generated by a Möbius transfor-
mation φ of Un defined by φ(x) = kAx with k > 1 and A an orthogonal
transformation of En that fixes the n-axis. A fundamental domain for Γ is
the two-sided region

{x ∈ Un : 1 < xn < k}.

Let K = {km : m ∈ Z}. The two sides of the fundamental domain of Γ are
paired by φ. Consequently Un/Γ is a (n − 1)-dimensional vector bundle
over the circle R+/K.

Next observe that the geodesic segment [en, ken] in Un projects to a
simple closed curve ω in Un/Γ, called the fundamental cycle of Un/Γ. The
length of ω is defined to be log k, which is the hyperbolic length of [en, ken].
The torsion angles of Un/Γ are defined to the angles of rotation of A.

Theorem 8.2.7. Two elementary space-forms Un/Γ1 and Un/Γ2 of hy-
perbolic type are isometric if and only if they have the same fundamental
cycle length and torsion angles.

Proof: By Theorem 8.1.5, the space-forms Un/Γ1 and Un/Γ2 are iso-
metric if and only if Γ1 and Γ2 are conjugate in I(Un). Hence, we may
assume that Γi is generated by a Möbius transformation φi of Un, given
by φi = kiAi, with ki > 1 and Ai an orthogonal transformation of En that
fixes the n-axis for i = 1, 2.

Now suppose that Γ1 and Γ2 are conjugate in I(Un). Then there is a
Möbius transformation ψ of Un such that φ1 = ψφ±1

2 ψ−1. As the fixed
points of ψφ±1

2 ψ−1 are ψ{0,∞}, we deduce that ψ leaves the set {0,∞}
invariant. Assume first that ψ fixes both 0 and ∞. Then there is a 
 > 0
and B in O(n) that fixes en such that ψ = 
B. This implies that

ψφ±1
2 ψ−1 = Bφ±1

2 B−1.

Hence, we have
k1A1 = k±1

2 BA±1
2 B−1.

As k1, k2 > 1, we have that k1 = k2 and A1 = BA2B
−1. Therefore Un/Γ1

and Un/Γ2 have the same fundamental cycle length and torsion angles.
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Now assume that ψ switches 0 and ∞. Then we may assume, by the
first case, that ψ(x) = x/|x|2. Then ψφ±1

2 ψ−1 = k∓1
2 A±

2 . Hence, we have
that k1A1 = k∓1

2 A±
2 . As k1, k2 > 1, we have that k1 = k2 and A1 = A−1

2 .
Therefore Un/Γ1 and Un/Γ2 have the same fundamental cycle length and
torsion angles.

Conversely, suppose that Un/Γ1 and Un/Γ2 have the same fundamental
cycle length and torsion angles. Then k1 = k2, and A1 and A2 are conjugate
in O(n) by an orthogonal transformation that fixes en. Therefore φ1 and
φ2 are conjugate in I(Un). Thus Γ1 and Γ2 are conjugate in I(Un) if and
only if they have the same fundamental cycle length and torsion angles.

Exercise 8.2

1. Show that E1/2πZ is isometric to S1.

2. Prove that the lens spaces L(p, q) and L(p′, q′) are isometric if and only if
p = p′ and either q ≡ ±q′ (mod p) or qq′ ≡ ±1 (mod p).

3. Show that the volume of a spherical space-form Sn/Γ is given by the formula

Vol(Sn/Γ) = Vol(Sn)/|Γ|.

4. Show that the Klein bottle group Γ of Example 4 is a torsion-free discrete
subgroup of I(E2).

5. Let En/Γ be a noncompact Euclidean space-form such that Γ is nontrivial
and the subgroup T of translations of Γ is of finite index in Γ. Prove that
En/Γ is finitely covered by a Euclidean space-form isometric to T m ×En−m,
where T m is a Euclidean m-torus with 0 < m < n.

6. Let En/Γ and En/H be Euclidean n-tori with rectangular fundamental poly-
hedra P and Q, respectively. Prove that En/Γ and En/H are isometric if
and only if P and Q are congruent in En.

7. Prove that two Euclidean space-forms En/Γ and En/H are similar if and
only if Γ and H are conjugate in S(En).

8. Let En/Γ and En/H be Euclidean n-tori with rectangular fundamental poly-
hedra P and Q, respectively. Prove that En/Γ and En/H are similar if and
only if P and Q are similar in En.

9. Let En/Γ and En/H be compact Euclidean space-forms and let A(Rn) be
the group of affine bijections of Rn. Prove that the following are equivalent:

(1) En/Γ and En/H are affinely equivalent;

(2) Γ and H are conjugate in A(Rn);

(3) Γ and H are isomorphic.

10. Prove that every elementary hyperbolic space-form has infinite volume.
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§8.3. (X,G)-Manifolds

Let G a group of similarities of an n-dimensional geometric space X and
let M be an n-manifold. An (X, G)-atlas for M is defined to be a family
of functions

Φ = {φi : Ui → X}i∈I ,

called charts, satisfying the following conditions:

(1) The set Ui, called a coordinate neighborhood, is an open connected
subset of M for each i.

(2) The chart φi maps the coordinate neighborhood Ui homeomorphically
onto an open subset of X for each i.

(3) The coordinate neighborhoods {Ui}i∈I cover M .

(4) If Ui and Uj overlap, then the function

φjφ
−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj),

called a coordinate change, agrees in a neighborhood of each point of
its domain with an element of G. See Figure 8.3.1.

Ui Uj

φi φj

φi(Ui) φj(Uj)

φjφ
−1
i

Figure 8.3.1. A coordinate change
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Theorem 8.3.1. Let Φ be an (X, G)-atlas for M . Then there is a unique
maximal (X, G)-atlas for M containing Φ.

Proof: Let Φ = {φi : Ui → X} and let Φ be the set of all functions
φ : U → X such that

(1) the set U is an open connected subset of M ;

(2) the function φ maps U homeomorphically onto an open subset of X;

(3) the function
φφ−1

i : φi(Ui ∩ U) → φ(Ui ∩ U)

agrees in a neighborhood of each point of its domain with an element
of G for each i.

Clearly Φ contains Φ. Suppose that φ : U → X and ψ : V → X are in
Φ. Then for each i, we have that

ψφ−1 : φ(U ∩ V ∩ Ui) → ψ(U ∩ V ∩ Ui)
is the composite ψφ−1

i φiφ
−1, and therefore it agrees in a neighborhood of

each point of its domain with an element of G. As {Ui} is an open cover of
M , we have that ψφ−1 : φ(U ∩V ) → ψ(U ∩V ) agrees in a neighborhood of
each point of its domain with an element of G. Thus Φ is an (X, G)-atlas
for M . Clearly Φ contains every (X, G)-atlas for M containing Φ, and so
Φ is the unique maximal (X, G)-atlas for M containing Φ.

Definition: An (X, G)-structure for an n-manifold M is a maximal
(X, G)-atlas for M .

Definition: An (X, G)-manifold M is an n-manifold M together with an
(X, G)-structure for M .

Let M be an (X, G)-manifold. A chart for M is an element φ : U → X
of the (X, G)-structure of M . If u is a point of M , then a chart for (M, u)
is a chart φ : U → X for M such that u is in U .

Example 1. An (Sn, I(Sn))-structure on a manifold is called a spherical
structure, and an (Sn, I(Sn))-manifold is called a spherical n-manifold.

Example 2. A (En, I(En))-structure on a manifold is called a Euclidean
structure, and a (En, I(En))-manifold is called a Euclidean n-manifold.

Example 3. An (Hn, I(Hn))-structure on a manifold is called a hyperbolic
structure, and an (Hn, I(Hn))-manifold is called a hyperbolic n-manifold.

Example 4. A (En, S(En))-structure on a manifold is called a Euclidean
similarity structure, and a (En, S(En))-manifold is called a Euclidean sim-
ilarity n-manifold.
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X-Space-Forms

Let Γ be a discrete group of isometries of an n-dimensional geometric space
X such that Γ acts freely on X. Then the quotient map π : X → X/Γ is
a local isometry. Hence X/Γ is an n-manifold. For each x in X, choose
r(x) > 0 so that π maps B(x, r(x)) isometrically onto B(π(x), r(x)). Let
Ux = B(π(x), r(x)) and let φx : Ux → X be the inverse of the restriction
of π to B(x, r(x)). Then {Ux}x∈X is an open cover of X/Γ and φx maps
Ux homeomorphically onto B(x, r(x)) for each x in X. Furthermore Ux is
connected for each x in X, since B(x, r(x)) is connected.

Let x, y be points of X such that Ux and Uy overlap and consider the
function

φyφ−1
x : φx(Ux ∩ Uy) → φy(Ux ∩ Uy).

Let w be an arbitrary point of φx(Ux ∩ Uy) and set z = φyφ−1
x (w). Then

π(w) = π(z). Hence, there is a g in Γ such that gw = z. As g is continuous
at w, there is an ε > 0 such that φy(Ux ∩ Uy) contains gB(w, ε). By
shrinking ε, if necessary, we may assume that φx(Ux ∩Uy) contains B(w, ε).
As πg = π, the map φ−1

y g agrees with φ−1
x on B(w, ε). Thus φyφ−1

x agrees
with g on B(w, ε). This shows that {φx : Ux → X}x∈X is an (X,Γ)-atlas
for X/Γ. By Theorem 8.3.1, this atlas determines an (X, Γ)-structure on
X/Γ, called the induced (X, Γ)-structure. Thus X/Γ together with the
induced (X, Γ)-structure is an (X, Γ)-manifold.

Let G be a subgroup of S(X) containing Γ. Clearly, an (X, Γ)-atlas for
X/Γ is also an (X, G)-atlas for X/Γ; therefore, the induced (X, Γ)-structure
on X/Γ determines an (X, G)-structure on X/Γ, called the induced (X, G)-
structure. In particular, X/Γ, with the induced (X, I(X))-structure, is an
(X, I(X))-manifold. Thus, every X-space-form is an (X, I(X))-manifold.

Theorem 8.3.2. Let X be a geodesically connected and geodesically com-
plete metric space. If g and h are similarities of X that agree on a nonempty
open subset of X, then g = h.

Proof: The metric space X is rigid by Theorem 6.6.10.

Theorem 8.3.3. Let φjφ
−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) be a coordinate

change of an (X, G)-manifold M . Then φjφ
−1
i agrees with an element of

G on each connected component of its domain.

Proof: Let C be a connected component of φi(Ui ∩ Uj). Suppose that w
and x are in C. Then there are open subsets W1, . . . , Wm of C such that w
is in W1, the sets Wk and Wk+1 overlap for k = 1, . . . , m − 1, the set Wm

contains x, and φjφ
−1
i agrees with an element gk of G on Wk. As gk and

gk+1 agree on the nonempty open set Wk ∩ Wk+1, we have that gk = gk+1
by Theorem 8.3.2. Therefore, all the gk are the same. Thus φjφ

−1
i agrees

with g1 at x and therefore on C.
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Metric (X,G)-Manifolds

Definition: A metric (X, G)-manifold is a connected (X, G)-manifold M
such that G is a group of isometries of X.

Let γ : [a, b] → M be a curve in a metric (X, G)-manifold M . We now define
the X-length of γ. Assume first that γ([a, b]) is contained in a coordinate
neighborhood U . Let φ : U → X be a chart for M . The X-length of γ is
defined to be

‖γ‖ = |φγ|.

The X-length of γ does not depend on the choice of the chart φ, since if
ψ : V → X is another chart for M such that V contains γ([a, b]), then there
is an isometry g in G that agrees with ψφ−1 on φγ([a, b]) by Theorem 8.3.3
and therefore

|φγ| = |gφγ| = |ψφ−1φγ| = |ψγ|.

Now assume that γ : [a, b] → M is an arbitrary curve. As γ([a, b]) is
compact, there is a partition

a = t0 < t1 < · · · < tm = b

of [a, b] such that γ([ti−1, ti]) is contained in a coordinate neighborhood Ui

for each i = 1, . . . , m. Let γti−1,ti be the restriction of γ to [ti−1, ti]. The
X-length of γ is defined to be

‖γ‖ =
m∑

i=1

‖γti−1,ti
‖.

The X-length of γ does not depend on the choice of the partition {ti},
since if

a = s0 < s1 < · · · < s
 = b

is another partition such that γ([si−1, si]) is contained in a coordinate
neighborhood Vi, then there is a third partition

a = r0 < r1 < · · · < rk = b

such that {ri} = {si} ∪ {ti}, and therefore

m∑
i=1

‖γti−1,ti‖ =
k∑

i=1

‖γri−1,ri‖ =

∑

i=1

‖γsi−1,si‖.

Definition: A curve γ in a metric (X, G)-manifold M is X-rectifiable if
and only if ‖γ‖ < ∞.

Lemma 1. Any two points in a metric (X, G)-manifold M can be joined
by an X-rectifiable curve in M .
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Proof: Define a relation on M by u ∼ v if and only if u and v are joined
by an X-rectifiable curve in M . It is easy to see that this is an equivalence
relation on M . Let [u] be an equivalence class and suppose that v is in
[u]. Let ψ : V → X be a chart for (M, v). Then there is an r > 0 such
that ψ(V ) contains B(ψ(v), r). Let x be an arbitrary point in B(ψ(v), r).
As X is geodesically connected, there is a geodesic arc α : [a, b] → X from
ψ(v) to x. Clearly B(ψ(v), r) contains α([a, b]). Hence ψ−1α : [a, b] → M
is an X-rectifiable curve from v to ψ−1(x). This shows that [u] contains
the open set ψ−1(B(ψ(v), r)). Thus [u] is open in M . As M is connected,
[u] must be all of M . Thus, any two points of M can be joined by an
X-rectifiable curve.

Theorem 8.3.4. Let M be a metric (X, G)-manifold. Then the function
d : M × M → R, defined by

d(u, v) = inf
γ

‖γ‖,

where γ varies over all curves from u to v, is a metric on M .

Proof: By Lemma 1, the function d is well defined. Clearly d is nonnega-
tive and d(u, u) = 0 for all u in M . To see that d is nondegenerate, let u, v
be distinct points of M . Since M is Hausdorff, there is a chart φ : U → X
for (M, u) such that v is not in U . Choose r > 0 such that φ(U) contains
C(φ(u), r). By Theorem 8.1.2, the sphere

S(φ(u), r) = {x ∈ X : d(φ(u), x) = r}
is compact. Hence, the set

T = φ−1(S(φ(u), r))

is closed in M , since M is Hausdorff.
Let γ : [a, b] → M be an arbitrary curve from u to v. Since γ([a, b])

is connected and contains both u and v, it must meet T . Hence, there is
a first point c in the open interval (a, b) such that γ(c) is in T . Let γa,c

be the restriction of γ to [a, c]. Then the image of γa,c is contained in
φ−1(C(φ(u), r)). Consequently, we have

‖γ‖ ≥ ‖γa,c‖
= |φγa,c|
≥ dX(φ(u), φγ(c)) = r.

Therefore, we have
d(u, v) ≥ r > 0.

Thus d is nondegenerate.
If γ : [a, b] → M is a curve from u to v, then

γ−1 : [a, b] → M

is a curve from v to u, and ‖γ−1‖ = ‖γ‖. Consequently d is symmetric.
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If α : [a, b] → M is a curve from u to v, and β : [b, c] → M is a curve
from v to w, then αβ : [a, c] → M is a curve from u to w, and

‖αβ‖ = ‖α‖ + ‖β‖.

This implies the triangle inequality

d(u, w) ≤ d(u, v) + d(v, w).

Thus d is a metric on M .

Let M be a metric (X, G)-manifold. Then the metric d in Theorem
8.3.4 is called the induced metric on M . Henceforth, we shall assume that
a metric (X, G)-manifold is a metric space with the induced metric.

Theorem 8.3.5. Let φ : U → X be a chart for a metric (X, G)-manifold
M , let x be a point of φ(U), and let r > 0 be such that φ(U) contains
B(x, r). Then φ−1 maps B(x, r) homeomorphically onto B(φ−1(x), r).

Proof: Clearly φ−1 maps B(x, r) into B(φ−1(x), r). Let v be an arbitrary
point of B(φ−1(x), r). Then there is a curve γ : [a, b] → M from φ−1(x)
to v such that ‖γ‖ < r. Suppose that v is not in φ−1(B(x, r)). We shall
derive a contradiction. Let s = (‖γ‖ + r)/2. Since γ([a, b]) is connected
and contains both φ−1(x) and v, it must meet φ−1(S(x, s)). Hence, there
is a first point c in (a, b) such that γ(c) is in φ−1(S(x, s)). Let γa,c be the
restriction of γ to [a, c]. Then the image of γa,c is contained in φ−1(C(x, s)).
Consequently

‖γ‖ ≥ ‖γa,c‖ = |φγa,c| ≥ s,

which is a contradiction. Thus φ−1 maps B(x, r) onto B(φ−1(x), r).

Corollary 1. If M is a metric (X, G)-manifold, then the topology of M is
the metric topology determined by the induced metric.

Theorem 8.3.6. Let φ : U → X be a chart for a metric (X, G)-manifold
M , let x be a point of φ(U), and let r > 0 be such that φ(U) contains
B(x, r). Then φ−1maps B(x, r/2) isometrically onto B(φ−1(x), r/2); there-
fore φ is a local isometry.

Proof: By Theorem 8.3.5, the function φ−1 maps B(x, r/2) bijectively
onto B(φ−1(x), r/2). Hence, we only need to show that φ−1 preserves
distances on B(x, r/2). Let y, z be distinct points of B(x, r/2). As X is
geodesically connected, there is a geodesic arc α : [0, 
] → X from y to z.
By the triangle inequality, dX(y, z) < r. Hence, every point in α([0, 
])
is at most a distance r/2 from either y or z. Therefore B(x, r) contains
α([0, 
]). Hence

d(φ−1(y), φ−1(z)) ≤ ‖φ−1α‖ = |α| = dX(y, z).
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Now let γ : [a, b] → M be any curve from φ−1(y) to φ−1(z). Assume
first that U contains γ([a, b]). Then

‖γ‖ = |φγ| ≥ dX(y, z).

Now assume that U does not contain γ([a, b]). Set

s = max{dX(x, y), dX(x, z)} + (r/2).

Then s < r. Hence, there is a first point c in (a, b) such that γ(c) is
in φ−1(S(x, s)), and there is a last point d in (a, b) such that γ(d) is in
φ−1(S(x, s)). Let γa,c be the restriction of γ to [a, c] and let γd,b be the
restriction of γ to [d, b]. Then

‖γ‖ ≥ ‖γa,c‖ + ‖γd,b‖
= |φγa,c| + |φγd,b|
≥ dX(y, φγ(c)) + dX(φγ(d), z)
≥ r/2 + r/2
> dX(y, z).

Thus, in general, we have

‖γ‖ ≥ dX(y, z).

Hence, we have
d(φ−1(y), φ−1(z)) ≥ dX(y, z).

Since we have already established the reverse inequality, we have that φ−1

maps B(x, r/2) isometrically onto B(φ−1(x), r/2).

Example: The unit circle S1 in C is a Euclidean 1-manifold. The complex
argument mapping

arg : S1 − {−1} → R

is a chart for S1 whose image is the open interval (−π, π). Observe that
(−π/2, π/2) is the largest open interval centered at the origin that is
mapped isometrically onto its image by arg−1. This example shows why
the radius r is halved in Theorem 8.3.6.

Exercise 8.3

1. Prove Corollary 1.

2. Let γ : [a, b] → M be a curve in a metric (X, G)-manifold. Prove that the
X-length of γ is the same as the length of γ with respect to the induced
metric.

3. Let X/Γ be an X-space-form. Show that the induced metric on X/Γ is the
orbit space metric dΓ.

4. Prove that every metric (X, G)-manifold is locally geodesically convex.

5. Prove that any two points of a metric (X, G)-manifold M can be joined by
a piecewise geodesic curve in M .



354 8. Geometric Manifolds

§8.4. Developing

Let φ : U → X be a chart for an (X, G)-manifold M and let γ : [a, b] → M
be a curve whose initial point γ(a) is in U . Then there is a partition

a = t0 < t1 < · · · < tm = b

and a set {φi : Ui → X}m
i=1 of charts for M such that φ1 = φ and Ui

contains γ([ti−1, ti]) for each i = 1, . . . , m. Let gi be the element of G
that agrees with φiφ

−1
i+1 on the connected component of φi+1(Ui ∩ Ui+1)

containing φi+1γ(ti). Let γi be the restriction of γ to the interval [ti−1, ti].
Then φiγi and giφi+1γi+1 are curves in X and

giφi+1γ(ti) = φiφ
−1
i+1φi+1γ(ti) = φiγ(ti).

Thus giφi+1γi+1 begins where φiγi ends, and so we can define a curve
γ̂ : [a, b] → X by the formula

γ̂ = (φ1γ1)(g1φ2γ2)(g1g2φ3γ3) · · · (g1 · · · gm−1φmγm).

We claim that γ̂ does not depend on the choice of the charts {φi} once a
partition of [a, b] has been fixed. Suppose that {ψi : Vi → X}m

i=1 is another
set of charts for M such that ψ1 = φ and Vi contains γ([ti−1, ti]) for each
i = 1, . . . , m. Let hi be the element of G that agrees with ψiψ

−1
i+1 on the

component of ψi+1(Vi ∩ Vi+1) containing ψi+1γ(ti). As Ui ∩ Vi contains
γ([ti−1, ti]), it is enough to show that

g1 · · · gi−1φi = h1 · · ·hi−1ψi

on the component of Ui ∩ Vi containing γ([ti−1, ti]) for each i. This is
true by hypothesis for i = 1. We proceed by induction. Suppose that it
is true for i − 1. Let fi be the element of G that agrees with ψiφ

−1
i on

the component of φi(Ui ∩ Vi) containing φiγ([ti−1ti]). On the one hand, fi

agrees with
ψi(ψ−1

i−1h
−1
i−2 · · ·h−1

1 )(g1 · · · gi−2φi−1)φ−1
i

on the component of φi(Ui−1 ∩ Vi−1 ∩ Ui ∩ Vi) containing φiγ(ti−1). On
the other hand, (h−1

i−1 · · ·h−1
1 )(g1 · · · gi−1) agrees with

(ψiψ
−1
i−1)(h

−1
i−2 · · ·h−1

1 )(g1 · · · gi−2)(φi−1φ
−1
i )

on the component of φi(Ui−1 ∩ Vi−1 ∩ Ui ∩ Vi) containing φiγ(ti−1). Hence

fi = (h−1
i−1 · · ·h−1

1 )(g1 · · · gi−1)

by Theorem 8.3.2. Therefore

(g1 · · · gi−1)φi = (h1 · · ·hi−1)(h−1
i−1 · · ·h−1

1 )(g1 · · · gi−1)φi

= (h1 · · ·hi−1)fiφi

= (h1 · · ·hi−1)ψi

on the component of Ui ∩ Vi containing γ([ti−1, ti]). This completes the
induction.
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Next, we show that γ̂ does not depend on the partition of [a, b]. Let
{si}


i=1 be another partition with charts {ψi : Vi → X}

i=1. Then {ri} =

{si} ∪ {ti} is a partition of [a, b] containing both partitions. Since the
charts {φi} and {ψi} can both be used in turn for the partition {ri}, we
deduce that all three partitions determine the same curve γ̂. The curve
γ̂ : [a, b] → X is called the continuation of φγ1 along γ.

Theorem 8.4.1. Let φ : U → X be a chart for an (X, G)-manifold M ,
let α, β : [a, b] → M be curves with the same initial point in U and the
same terminal point in M , and let α̂, β̂ be the continuations of φα1, φβ1
along α, β, respectively. If α and β are homotopic by a homotopy that keeps
their endpoints fixed, then α̂ and β̂ have the same endpoints, and they are
homotopic by a homotopy that keeps their endpoints fixed.

Proof: This is clear if α and β differ only along a subinterval (c, d) such
that α([c, d]) and β([c, d]) are contained in a simply connected coordinate
neighborhood U . In the general case, let H : [a, b]2 → M be a homotopy
from α to β that keeps the endpoints fixed. As [a, b] is compact, there is
a partition a = t0 < t1 < · · · < tm = b such that H([ti−1, ti] × [tj−1, tj ])
is contained in a simply connected coordinate neighborhood Uij for each
i, j = 1, . . . , m. Let αij be the curve in M defined by applying H to the
curve in [a, b]2 illustrated in Figure 8.4.1(a), and let βij be the curve in M
defined by applying H to the curve in [a, b]2 illustrated in Figure 8.4.1(b).
Then by the first remark, α̂ij and β̂ij have the same endpoints and are
homotopic by a homotopy keeping their endpoints fixed. By composing all
these homotopies starting at the lower right-hand corner of [a, b]2, proceed-
ing right to left along each row of rectangles [ti−1, ti]× [tj−1, tj ], and ending
at the top left-hand corner of [a, b]2, we find that α̂ and β̂ are homotopic
by a homotopy keeping their endpoints fixed.

a b

b

a b

tj−1

tj

ti−1 ti ti−1 ti

(a) (b)

Figure 8.4.1. Alternate routes from (a, a) to (b, b) in the square [a, b]2
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(X,G)-Maps

Definition: A function ξ : M → N between (X, G)-manifolds is an
(X, G)-map if and only if ξ is continuous and for each chart φ : U → X
for M and chart ψ : V → X for N such that U and ξ−1(V ) overlap, the
function

ψξφ−1 : φ(U ∩ ξ−1(V )) → ψ(ξ(U) ∩ V )

agrees in a neighborhood of each point of its domain with an element of G.

Theorem 8.4.2. A function ξ : M → N between (X, G)-manifolds is an
(X, G)-map if and only if for each point u of M , there is a chart φ : U → X
for (M, u) such that ξ maps U homeomorphically onto an open subset of
N and φξ−1 : ξ(U) → X is a chart for N .

Proof: Suppose that ξ : M → N is an (X, G)-map and u is an arbitrary
point of M . Let ψ : V → X be a chart for (N, ξ(u)). Since ξ is continuous
at u, there is a chart φ : U → X for (M, u) such that ξ(U) ⊂ V . Then

ψξφ−1 : φ(U) → ψξ(U)

agrees with an element g of G, since φ(U) is connected. Hence ξ maps U
homeomorphically onto an open subset of N , and φξ−1 : ξ(U) → X agrees
with g−1ψ : V → X. Therefore φξ−1 is a chart for N .

Conversely, suppose that for each point u of M , there is a chart φ : U →
X for (M, u) such that ξ maps U homeomorphically onto an open subset
of N , and φξ−1 : ξ(U) → X is a chart for N . Then ξ is continuous. Let
χ : W → X and ψ : V → X be charts for M and N , respectively, such
that W and ξ−1(V ) overlap, and let u be an arbitrary point of the set
W ∩ ξ−1(V ). Then there is a chart φ : U → X for (M, u) such that ξ maps
U homeomorphically onto an open subset of N and φξ−1 : ξ(U) → X is a
chart for N . Observe that in a neighborhood of χ(u), the function

ψξχ−1 : χ(W ∩ ξ−1(V )) → ψ(ξ(W ) ∩ V )

agrees with (ψξφ−1)(φχ−1). As φχ−1 and ψξφ−1 are coordinate changes
for M and N , respectively, ψξχ−1 agrees in a neighborhood of χ(u) with
an element of G. Thus ξ is an (X, G)-map.

Theorem 8.4.3. Let φ : U → X be a chart for a simply connected (X, G)-
manifold M . Then there is a unique (X, G)-map φ̂ : M → X extending the
chart φ.

Proof: Fix a point u in U and let v be an arbitrary point of M . Then
there is a curve α : [a, b] → M from u to v. Let α̂ : [a, b] → X be the
continuation of φα1 along α. Then α̂(b) does not depend on the choice of
α by Theorem 8.4.1, since M is simply connected. Hence, we may define a
function φ̂ : M → X by φ̂(v) = α̂(b).
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Let ψ : V → X be a chart for (M, v) such that ψ = φ if v is in U . Then
there is a partition

a = t0 < t1 < · · · < tm = b

and a set of charts {φi : Ui → X}m
i=1 for M such that φ1 = φ, and Ui

contains α([ti−1, ti]) for each i = 1, . . . , m, and φm = ψ. Let αi be the
restriction of α to [ti−1, ti] and let gi be the element of G that agrees with
φiφ

−1
i+1 on the connected component of φi+1(Ui∩Ui+1) containing φi+1α(ti).

Then
α̂ = (φ1α1)(g1φ2α2) · · · (g1 · · · gm−1φmαm).

Let β : [b, c] → V be a curve from v to w and let g = g1 · · · gm−1. Then
α̂β = α̂gψβ. Hence φ̂(w) = α̂β(c) = gψ(w). Therefore φ̂(w) = gψ(w)
for all w in V . Hence φ̂ maps V homeomorphically onto the open subset
gψ(V ) of X and ψφ̂−1 : φ̂(V ) → X is the restriction of g−1. Thus φ̂ is an
(X, G)-map by Theorem 8.4.2; moreover, φ̂ extends φ.

Now let ξ : M → X be any (X, G)-map extending φ. Without loss of
generality, we may assume that the set of charts {φi : Ui → X}m

i=1 for M
has the property that

φiξ
−1 : ξ(Ui) → X

is a chart for X. Then φiξ
−1 extends to an element h−1

i of G. Hence
ξ(w) = hiφi(w) for all w in Ui. As ξ(w) = φ(w) for all w in U , we have
that h1φ = φ and so h1 = 1. We proceed by induction. Suppose that
hi−1 = g1 · · · gi−2. Then for each w in Ui−1, we have

ξ(w) = hi−1φi−1(w)

= g1 · · · gi−2φi−1(w) = φ̂(w).

Hence
hiφi(w) = ξ(w) = φ̂(w) = g1 · · · gi−1φi(w)

for all w in Ui−1 ∩ Ui. Therefore hi = g1 · · · gi−1. Hence, by induction, we
have that

ξ(v) = hmφm(v) = gφm(v) = φ̂(v).

Therefore ξ = φ̂. Thus φ̂ is unique.

Theorem 8.4.4. Let M be a simply connected (X, G)-manifold. If ξ1, ξ2 :
M → X are (X, G)-maps, then there is a unique element g of G such that
ξ2 = gξ1.

Proof: Let φ : U → X be a chart for M such that φξ−1
i : ξi(U) → X

is a chart for X for i = 1, 2. By Theorem 8.3.3, there is an element gi of
G extending φξ−1

i : ξi(U) → X. As giξi is an (X, G)-map extending φ for
i = 1, 2, we have that g1ξ1 = g2ξ2 by the uniqueness of φ̂. Let g = g−1

2 g1.
Then ξ2 = gξ1. If h is an element of G such that ξ2 = hξ1, then gξ1 = hξ1
whence g = h by Theorem 8.3.2. Thus g is unique.
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The Developing Map

Let M be a connected (X, G)-manifold and let κ : M̃ → M be a universal
covering projection. Then M̃ is simply connected. Let {φi : Ui → X} be
an (X, G)-atlas for M such that Ui is simply connected for each i. Then
the set Ui is evenly covered by κ for each i. Let {Uij} be the set of sheets
over Ui and let κij : Uij → Ui be the restriction of κ. Define φij : Uij → X
by φij = φiκij . Then φij maps Uij homeomorphically onto the open set
φi(Ui) in X. Suppose that Uij and Uk
 overlap. Then Ui and Uk overlap.
Consider the function

φijφ
−1
k
 : φk
(Uij ∩ Uk
) → φij(Uij ∩ Uk
).

If x is in φk
(Uij ∩ Uk
), then

φijφ
−1
k
 (x) = φiκijκ

−1
k
 φ−1

k (x) = φiφ
−1
k (x).

Hence φijφ
−1
k
 agrees in a neighborhood of each point of its domain with

an element of G. Therefore {φij : Uij → X} is an (X, G)-atlas for M̃ .
We shall assume that M̃ is an (X, G)-manifold with the (X, G)-structure
determined by this (X, G)-atlas.

Observe that κ maps the coordinate neighborhood Uij homeomorphi-
cally onto Ui, and φijκ

−1 : κ(Uij) → X is the chart φi : Ui → X for M .
Thus κ is an (X, G)-map by Theorem 8.4.2.

Let τ : M̃ → M̃ be a covering transformation of κ and let ũ be an
arbitrary point of M̃ . Then there is an i such that κ(ũ) is in Ui. Hence,
there is a j such that ũ is in Uij . As τ permutes the sheets over Ui, there
is a k such that τ(Uij) = Uik. Observe that φijτ

−1 : τ(Uij) → X is the
chart φik : Uik → X. Therefore τ is an (X, G)-map.

Let φ : U → X be a chart for M̃ . Then φ extends to a unique (X, G)-
map δ : M̃ → X by Theorem 8.4.3. The map

δ : M̃ → X

is called the developing map for M determined by the chart φ. By Theorem
8.4.4, any two developing maps for M differ only by composition with an
element of G. Thus, the developing map δ is unique up to composition
with an element of G.

Holonomy

Choose a base point u of M and a base point ũ of M̃ such that κ(ũ) = u.
Let α : [0, 1] → M be a loop based at u. Then α lifts to a unique curve α̃ in
M̃ starting at ũ. Let ṽ be the endpoint of α̃. Then there is a unique covering
transformation τα of κ such that τα(ũ) = ṽ. The covering transformation
τα depends only on the homotopy class of α in the fundamental group
π1(M, u) by the covering homotopy theorem. Let β : [0, 1] → M be another
loop based at u. Then α̃β = (α̃)(ταβ̃) and so ταβ = τατβ .
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Let δ : M̃ → X be a developing map for M . As δτα : M̃ → X is an
(X, G)-map, there is a unique element gα of G such that δτα = gαδ. Define

η : π1(M, u) → G

by η([α]) = gα. Then η is well defined, since gα depends only on the
homotopy class of α. Observe that

δταβ = δτατβ = gαδτβ = gαgβδ.

Hence
η([α][β]) = η([αβ]) = gαgβ = η([α])η([β]).

Thus η is a homomorphism. The homomorphism η : π1(M) → G is called
the holonomy of M determined by the developing map δ.

Note, if δ′ : M̃ → X is another developing map for M , then there is a g
in G such that δ′ = gδ, and therefore

δ′τα = gδτα = ggαδ = ggαg−1δ′.

Hence, the holonomy η′ of M determined by δ′ differs from the holonomy
of M determined by δ by conjugation by g.

Theorem 8.4.5. Let M be a connected (X, G)-manifold and let H be
a subgroup of G. Then the (X, G)-structure of M contains an (X, H)-
structure for M if and only if H contains the image of a holonomy η :
π1(M) → G for M .

Proof: Suppose that the (X, G)-structure of M contains an (X, H)-
structure. Then H contains the image of any holonomy for M defined
in terms of the (X, H)-structure for M . Conversely, suppose that H con-
tains the image of a holonomy η : π1(M) → G for M . Let δ : M̃ → X
be the developing map that determines η, and let {φi : Ui → X} be an
(X, G)-atlas for M such that Ui is evenly covered by the covering pro-
jection κ : M̃ → M for each i. Let {Uij} be the set of sheets over Ui

and let κij : Uij → Ui be the restriction of κ. Define φij : Uij → X by
φij = φiκij . Then {φij : Uij → X} is an (X, G)-atlas for M̃ . Hence δ maps
Uij homeomorphically onto an open subset of X for each i and j.

For each i, choose a sheet Uij over Ui and define ψi : Ui → X by setting
ψi = δκ−1

ij . Then ψi maps Ui homeomorphically onto an open subset of X
for each i. Assume that Ui and Uk overlap and consider the function

ψkψ−1
i : ψi(Ui ∩ Uk) → ψk(Ui ∩ Uk).

Then for some j and 
, we have

ψkψ−1
i (x) = δκ−1

k
 κijδ
−1(x)

for each x in ψi(Ui ∩ Uk). Hence ψkψ−1
i agrees in a neighborhood of each

point of its domain with δτδ−1 for some covering transformation τ of κ.
By hypothesis, δτδ−1 agrees with an element of H. Hence {ψi : Ui → X}
is an (X, H)-atlas for M .
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Now as φij : Uij → X is a chart for M̃ , we have that φijδ
−1 : δ(Uij) → X

is the restriction of an element of G. Since

φiψ
−1
i = φiκijδ

−1 = φijδ
−1,

we have that φiψ
−1
i is the restriction of an element of G. This implies that

{ψi} is contained in the (X, G)-structure of M . Consequently, the (X, H)-
structure on M determined by {ψi} is contained in the (X, G)-structure of
M . Thus, the (X, G)-structure of M contains an (X, H)-structure.

Definition: An (X, G)-manifold M is orientable if and only if the (X, G)-
structure of M contains an (X, G0)-structure for M , where G0 is the group
of orientation preserving elements of G.

By Theorem 8.4.5, a connected (X, G)-manifold M is orientable if and only
if the image of a holonomy η : π1(X) → G for M consists of orientation
preserving elements of G.

Exercise 8.4

1. Prove that an (X, G)-map is a local homeomorphism.

2. Prove that a composition of (X, G)-maps is an (X, G)-map.

3. Let X be a geometric space and let G be a subgroup of S(X). Prove that a
function ξ : X → X is an (X, G)-map if and only if ξ is in G.

4. Let M be an (X, G)-manifold and let κ : M̃ → M be a covering projection.
Prove that M̃ has a unique (X, G)-structure so that κ is an (X, G)-map.

5. Let M and N be (X, G)-manifolds, let κ : M̃ → M be a covering projection,
and let ξ : M → N and ξ̃ : M̃ → N be functions such that ξ̃ = ξκ. Prove
that ξ is an (X, G)-map if and only if ξ̃ is an (X, G)-map.

6. Prove that an (X, G)-map ξ : M → N between metric (X, G)-manifolds is a
local isometry.

7. Let U be a nonempty open connected subset of X = Sn, En, or Hn, and let
φ : U → X be a distance preserving function. Prove that φ extends to a
unique isometry of X.

8. Let X = Sn, En, or Hn, and let ξ : M → N be a function between metric
(X, I(X))-manifolds. Prove that ξ is an (X, I(X))-map if and only if ξ is a
local isometry.

9. Let M be a connected (X, G)-manifold and let H be a normal subgroup of
G. Prove that the (X, G)-structure of M contains an (X, H)-structure if and
only if H contains the image of every holonomy for M .

10. Let M be a connected (X, G)-manifold and let H be a normal subgroup of
G. Suppose that the (X, G)-structure of M contains an (X, H)-structure for
M . Prove that the set of (X, H)-structures for M contained in the (X, G)-
structure of M is in one-to-one correspondence with G/H.
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§8.5. Completeness

In this section, we study the role of various forms of completeness in the
theory of (X, G)-manifolds. We begin by studying metric completeness.

Definition: An infinite sequence {xi}∞
i=1 in a metric space X is a Cauchy

sequence if and only if for each ε > 0, there is a positive integer k such that
d(xi, xj) < ε for all i, j ≥ k.

Lemma 1. Let {xi}∞
i=1 be a Cauchy sequence in a metric space X. Then

{xi} converges in X if and only if {xi} has a limit point in X.

Proof: Let y be a limit point of {xi} in X. We shall prove that {xi}
converges to y. Let ε > 0. As {xi} is a Cauchy sequence, there is an
integer k such that for all i, j ≥ k, we have d(xi, xj) < ε/2. As y is a limit
point of {xi}, there is an integer 
 ≥ k such that

d(x
, y) < ε/2.

Hence, for all i ≥ k, we have

d(xi, y) ≤ d(xi, x
) + d(x
, y) < ε.

Thus xi → y in X.

Definition: A metric space X is complete if and only if every Cauchy
sequence in X converges in X.

Theorem 8.5.1. Let X be a metric space and suppose there is an ε > 0
such that B(x, ε) is compact for all x in X. Then X is complete.

Proof: Let {xi} be a Cauchy sequence in X. Then there is a positive
integer k such that d(xi, xj) < ε for all i, j ≥ k. Hence B(xk, ε) contains xi

for all i ≥ k. As B(xk, ε) is compact, the sequence {xi} has a limit point
in B(xk, ε). Hence {xi} converges by Lemma 1. Thus X is complete.

Theorem 8.5.2. Let Γ be a group of isometries of a finitely compact met-
ric space all of whose Γ-orbits are closed subsets of X. Then X/Γ is a
complete metric space.

Proof: Let B(x, r) be an open ball in X. Then the quotient map π :
X → X/Γ maps B(x, r) onto B(π(x), r) by Theorem 6.6.2. As B(x, r) is
compact, we have

π(B(x, r)) = B(π(x), r).

Hence B(π(x), r) is compact. Thus X/Γ is complete by Theorem 8.5.1.

Theorem 8.5.3. Let Γ be a group of isometries of a metric space X such
that each Γ-orbit is a closed discrete subset of X. If X/Γ is complete, then
X is complete.
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Proof: Let {xi} be a Cauchy sequence in X. Then {Γxi} is a Cauchy
sequence in X/Γ, since

dist(Γxi, Γxj) ≤ d(xi, xj).

Hence {Γxi} converges to an orbit Γy. Set

s =
1
2
dist(y, Γy − {y}).

Then s > 0, since Γy is a closed discrete subset of X. Now for all g in Γ,
we have that

s =
1
2
dist(gy, Γy − {gy}).

As {xi} is a Cauchy sequence, there is an integer k such that d(xi, xj) < s/2
for all i, j,≥ k. Suppose that 0 < ε ≤ s/2. As Γxi → Γy, there is an integer

 ≥ k and an element gi of Γ such that d(xi, giy) < ε for all i ≥ 
. Hence,
if i ≥ 
, then

d(xk, giy) ≤ d(xk, xi) + d(xi, giy) < s.

But B(xk, s) contains at most one point of Γy. Therefore, there is an
element g of Γ such that giy = gy for all i ≥ 
. Moreover d(xi, gy) < ε for
all i ≥ 
. Therefore xi → gy. Thus X is complete.

Theorem 8.5.4. Let X be a complete metric space and let ξ : X → X be
a similarity that is not an isometry. Then ξ has a unique fixed point in X.

Proof: By replacing ξ by ξ−1, if necessary, we may assume that the scale
factor k of ξ is less than one. Let x be any point of X. Define a sequence
{xm}∞

m=1 in X by xm = ξm(x) for each m. Then for m < n, we have

d(xm, xn) = d(ξm(x), ξn(x)).

≤
n−1∑

=m

d(ξ
(x), ξ
+1(x))

= (km + km+1 + · · · + kn−1)d(x, ξ(x))

=
(

km − kn

1 − k

)
d(x, ξ(x))

< km

(
d(x, ξ(x))

1 − k

)
.

Consequently {xm} is a Cauchy sequence in X. Therefore, the sequence
{xm} converges to a point y in X. As ξ is continuous, the sequence {ξ(xm)}
converges to ξ(y). But ξ(xm) = xm+1. Hence {xm} and {ξ(xm)} converge
to the same point, and so ξ(y) = y. Thus y is a fixed point of ξ in X.

Now let z be a fixed point of ξ. Then

d(y, z) = d(ξ(y), ξ(z)) = kd(y, z).

Hence d(y, z) = 0 and so y = z. Thus y is the unique fixed point of ξ.
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Geodesic Completeness

We next consider the role of geodesic completeness in the theory of metric
(X, G)-manifolds. Recall that a metric space X is geodesically complete if
and only if each geodesic arc α : [a, b] → X extends to a unique geodesic
line λ : R → X.

Theorem 8.5.5. If M is a geodesically complete metric (X, G)-manifold,
then M is geodesically connected.

Proof: Let u, v be points of M , with d(u, v) = 
 > 0, and let φ : U → X
be a chart for (M, u). Choose r > 0 so that φ(U) contains B(φ(u), 2r).
Then φ maps B(u, r) isometrically onto B(φ(u), r) by Theorem 8.3.6.

Assume first that v is in B(u, r). Then φ(v) is in B(φ(u), r) and

d(φ(u), φ(v)) = d(u, v) = 
.

As X is geodesically connected, there is a geodesic arc α : [0, 
] → X from
φ(u) to φ(v). Observe that

|α| = 
 = d(u, v) < r.

Therefore B(φ(u), r) contains the image of α. Hence φ−1α : [0, 
] → M is
a geodesic arc from u to v.

Now assume that v is not in B(u, r). Let S be a sphere S(u, ε) in M
with ε < r. Then the function δ : S → R, defined by δ(z) = d(z, v), is
continuous. As S is compact, there is a point w on S at which δ attains its
minimum value. Since w is in B(u, r), there is a geodesic arc β : [0, ε] → M
from u to w. Moreover β extends to a unique geodesic line λ : R → M ,
since M is geodesically complete.

We claim that λ(
) = v. To prove this result, we shall prove that
d(λ(t), v) = 
 − t for all t in [ε, 
]. First of all, since every curve from
u to v must intersect S, we have

d(u, v) ≥ dist(u, S) + dist(S, v)
= d(u, w) + d(w, v) ≥ d(u, v).

Hence, we have
d(λ(ε), v) = d(w, v) = 
 − ε.

Now let s be the supremum of all t in [ε, 
] such that d(λ(t), v) = 
 − t.
Then d(λ(s), v) = 
 − s by the continuity of d(λ(t), v) as a function of t.
Let λ0,s : [0, s] → M be the restriction of λ. As

d(u, v) ≤ d(u, λ(s)) + d(λ(s), v),

we have that

 ≤ d(λ(0), λ(s)) + 
 − s.

Hence, we have
‖λ0,s‖ = s ≤ d(λ(0), λ(s)).
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u w vw′λ(s)

S S′

Figure 8.5.1. A geodesic segment joining u to v

Therefore ‖λ0,s‖ = d(λ(0), λ(s)). Consequently λ0,s is a geodesic arc. Sup-
pose that s < 
. We shall derive a contradiction.

Let ψ : V → X be a chart for (M, λ(s)). Choose r′ > 0 so that ψ(V )
contains B(ψλ(s), 2r′). Let S′ be a sphere S(λ(s), ε′) with

ε′ < min{r′, 
 − s}
and let w′ be a point on S′ nearest to v. See Figure 8.5.1. Now since

d(λ(s), v) = 
 − s and ε′ < 
 − s,

we have that v is not in the closed ball C(λ(s), ε′). Therefore

d(λ(s), v) ≥ dist(λ(s), S′) + dist(S′, v)
= d(λ(s), w′) + d(w′, v) ≥ d(λ(s), v).

Hence d(λ(s), v) = ε′ + d(w′, v), and so d(w′, v) = (
 − s) − ε′. Therefore

d(u, w′) ≥ d(u, v) − d(w′, v)
= 
 − (
 − s − ε′)
= s + ε′

= d(u, λ(s)) + d(λ(s), w′) ≥ d(u, w′).

Let γ : [0, s + ε′] → M be the composite of λ0,s and a geodesic arc from
λ(s) to w′. Then γ is a geodesic arc by Theorem 1.4.2, since

d(u, w′) = d(u, λ(s)) + d(λ(s), w′).

As M is geodesically complete, the arc γ extends to a unique geodesic line
µ : R → M . But µ also extends λ0,s. Therefore µ = λ. Hence λ agrees
with γ, and so λ(s + ε′) = w′. Therefore

d(λ(s + ε′), v) = 
 − (s + ε′).

But this contradicts the supremacy of s. Therefore s = 
. Hence λ(
) = v
and λ0,
 is a geodesic arc in M from u to v. Thus M is geodesically
connected.
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Lemma 2. Let X be a geometric space. Then there is a k > 0 such that
if λ : R → X is a geodesic line, then λ restricts to a geodesic arc on the
interval [−k, k].

Proof: Let k be as in Axiom 3 for a geometric space. Then k has the
desired property by Axioms 3 and 4 and Theorem 8.1.1.

Theorem 8.5.6. Let M be a metric (X, G)-manifold and let ξ : M → X
be a local isometry. Then M is geodesically complete if and only if ξ is a
covering projection.

Proof: Suppose that ξ is a covering projection. Let α : [a, b] → M be a
geodesic arc in M . As ξ is a local isometry, ξα : [a, b] → X is a geodesic
curve. Consequently, ξα extends to a unique geodesic line λ : R → X.
Since ξ is a covering projection, λ lifts to a geodesic line µ : R → M
such that µ(a) = α(a). By unique path lifting, µ extends α. Now let
µ′ : R → M be another geodesic line extending α. Then ξµ′ : R → X
is a geodesic line extending ξα. Therefore ξµ′ = λ. By the unique lifting
property of covering projections, µ′ = µ. Hence µ is the unique geodesic
line in M extending α. Thus M is geodesically complete.

Conversely, suppose that M is a geodesically complete. We first show
that geodesic arcs in X can be lifted with respect to ξ. Let α : [a, b] → X be
a geodesic arc and suppose u is a point of M such that ξ(u) = α(a). Since ξ
is a local isometry, there is a geodesic arc β : [a, c] → M such that β(a) = u,
c < b, and ξβ is the restriction αa,c of α to [a, c]. As M is geodesically
complete, β extends to a unique geodesic line µ : R → M . Since ξ is
a local isometry, ξµ : R → X is a geodesic line extending αa,c. Hence
ξµ : R → X is the unique geodesic line extending α. Let α̃ : [a, b] → M be
the restriction of µ. Then α̃(a) = u and ξα̃ = α. Thus, geodesic arcs can
be lifted with respect to ξ.

Next, we show that ξ is surjective. Let x be a point in the image of ξ
and let y be any other point of X. As X is geodesically connected, there
is a geodesic arc α : [0, 
] → X from x to y. As x is in the image of ξ, we
can lift α to a curve α̃ : [0, 
] → M with respect to ξ. Then

ξα̃(
) = α(
) = y.

Hence y is in the image of ξ. Thus ξ is surjective.
Now let B(x, r) be an arbitrary open ball in X. We next show that

ξ−1(B(x, r)) = ∪
u∈ξ−1(x)

B(u, r).

As ξ is a local isometry, we have

ξ(B(u, r)) ⊂ B(x, r)

for each u in ξ−1(x). Therefore

∪
u∈ξ−1(x)

B(u, r) ⊂ ξ−1(B(x, r)).
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Now let v be an arbitrary point in ξ−1(B(x, r)). Then ξ(v) is in B(x, r).
Let α : [0, 
] → X be a geodesic arc from ξ(v) to x, and let α̃ : [0, 
] → M
be a lift of α with respect to ξ such that α̃(0) = v. Then

ξα̃(
) = α(
) = x.

Thus α̃(
) is in ξ−1(x). Moreover

‖α̃‖ = |α| = d(x, ξ(v)) < r.

Therefore v is in B(α̃(
), r). This shows that

ξ−1(B(x, r)) ⊂ ∪
u∈ξ−1(x)

B(u, r).

Since we have already established the reverse inclusion, we have

ξ−1(B(x, r)) = ∪
u∈ξ−1(x)

B(u, r).

Let u be in ξ−1(x). We next show that ξ maps B(u, r) onto B(x, r). Let
y be an arbitrary point of B(x, r) other than x. Then there is a geodesic
arc α : [0, 
] → X from x to y. Moreover, there is a lift α̃ : [0, 
] → M with
respect to ξ such that α̃(0) = u. Then ξα̃(
) = α(
) = y. Furthermore

‖α̃‖ = |α| = d(x, y) < r.

Therefore α̃(
) is in B(u, r). This shows that ξ maps B(u, r) onto B(x, r).
By Lemma 2, there is a k > 0 such that if λ : R → X is a geodesic line,

then λ restricts to a geodesic arc on [−k, k]. Let u be in ξ−1(x). We next
show that ξ maps B(u, k) bijectively onto B(x, k). We have already shown
that ξ maps B(u, k) onto B(x, k). On the contrary, suppose that v, w are
distinct points of B(u, k) such that ξ(v) = ξ(w). By Theorem 8.5.5, there
is a geodesic arc α : [−b, b] → M from v to w. As the endpoints of α are in
B(u, k), we have

2b = d(v, w)
≤ d(v, u) + d(u, w) < 2k.

Hence 0 < b < k. As M is geodesically complete, α extends to a geodesic
line µ : R → M . Because of the choice of k, the geodesic line ξµ : R → X
restricts to a geodesic arc on [−k, k]. Therefore ξα : [−b, b] → X is a
geodesic arc from ξ(v) to ξ(w), which is a contradiction. Hence ξ maps
B(u, k) bijectively onto B(x, k).

By the triangle inequality, the sets {B(u, k/2) : u ∈ ξ−1(x)} are pairwise
disjoint. Now since ξ maps B(u, k/2) homeomorphically onto B(x, k/2) for
each u in ξ−1(x) and

ξ−1(B(x, k/2)) = ∪
u∈ξ−1(x)

B(u, k/2),

the set B(x, k/2) is evenly covered by ξ. Thus ξ is a covering projection.
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Complete (X,G)-Manifolds

Let δ : M̃ → X be a developing map for a connected (X, G)-manifold M .
Let {Ui} be the collection of all the open connected sets Ui of M̃ such that
δ maps Ui homeomorphically into X, and let φi : Ui → X be the restriction
of δ. Then {φi} is an (X, {1})-structure for M̃ , and {φi} is contained in
the (X, G)-structure on M̃ , since δ is an (X, G)-map. We shall regard the
universal covering space M̃ to be an (X, {1})-manifold with the (X, {1})-
structure {φi}. Then δ is also a developing map for the (X, {1})-manifold
M̃ , since δ : M̃ → X is the unique (X, {1})-map extending φi : Ui → X.
Note that the (X, {1})-structure on M̃ is unique up to multiplication by
an element of G. Therefore, the induced metric on M̃ is unique up to
multiplication by a scale factor of an element of G.

Definition: An (X, G)-manifold M is complete if and only if the universal
covering space of each connected component of M is a complete metric
space.

Theorem 8.5.7. Let M be a metric (X, G)-manifold. Then the following
are equivalent:

(1) M is complete;

(2) M is geodesically complete;

(3) M is a complete metric space.

Proof: Suppose that M is complete. Then M̃ is a complete metric space.
We now show that M̃ is geodesically complete. Let α : [a, b] → M̃ be
a geodesic arc and let δ : M̃ → X be a developing map for M . Then
δα : [a, b] → X is a geodesic curve. Hence, there is a unique geodesic line
λ : R → X extending δα. Let I be the largest interval in R containing [a, b]
for which there is a map µ : I → M̃ lifting λ with respect to δ. Then I is
open, since δ is a local homeomorphism. On the contrary, suppose that I is
not all of R. Then there is a sequence of real numbers {ti} in I converging
to an endpoint c of I. As δ is a local isometry, µ is locally a geodesic
arc. Therefore, µ does not increase distances. Hence {µ(ti)} is a Cauchy
sequence in M̃ . As M̃ is a complete metric space, {µ(ti)} converges to a
point ũ in M̃ . Now extend µ to a function µ : I ∪ {c} → M̃ by setting
µ(c) = ũ. Then µ is continuous, since the point ũ does not depend on the
choice of the sequence {ti} converging to the point c. Observe that

δµ(c) = lim
i→∞

δµ(ti)

= lim
i→∞

λ(ti) = λ(c).

Hence µ : I ∪{c} → M̃ further lifts λ. But this contradicts the maximality
of I. Thus I is all of R and µ : R → M̃ is a geodesic line extending α.
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Let µ′ : R → M̃ be another geodesic line extending α. As δ is a local
isometry, δµ′ : R → X is a geodesic line extending δα. Hence we have

δµ′ = λ = δµ.

Therefore µ′ = µ, since δ is a local homeomorphism. Hence µ is the unique
geodesic line extending α. Thus M̃ is geodesically complete. Therefore M
is geodesically complete, since the universal covering projection κ : M̃ → M
is a local isometry. Thus (1) implies (2).

Now assume that M is geodesically complete. Then M̃ is geodesically
complete, since the universal covering projection κ : M̃ → M is a local
isometry. Therefore δ : M̃ → X is a covering projection by Theorem 8.5.6.
Furthermore, the proof of Theorem 8.5.6 shows that there is an r > 0 such
that B(x, 2r) is evenly covered by δ for all x in X. Let ũ be a point of
M̃ . From the proof of Theorem 8.5.6, we have that δ maps B(ũ, r) onto
B(δ(ũ), r). As δ is continuous, we have

δ(B(ũ, r)) ⊂ B(δ(ũ), r).

By a geodesic arc lifting argument, δ maps B(ũ, r) onto B(δ(ũ), r). Now
as δ maps B(ũ, r) homeomorphically onto B(δ(ũ), r), we have that B(ũ, r)
is compact for each point ũ of M̃ . By the same argument, the covering
projection κ : M̃ → M maps B(ũ, r) onto B(κ(ũ), r). Therefore B(u, r) is
compact for each point u of M . Hence M is a complete metric space by
Theorem 8.5.1. Thus (2) implies (3).

Now assume that M is a complete metric space. Let Γ be the group
of covering transformations of the universal covering κ : M̃ → M . Then
Γ is a group of isometries of M̃ whose orbits are the fibers of κ. Hence κ
induces a homeomorphism

κ : M̃/Γ → M.

Moreover κ is a local isometry, since κ and the quotient map π : M̃ → M̃/Γ
are local isometries. Now the homeomorphism κ : M̃/Γ → M induces an
(X, G)-structure on M̃/Γ. We claim that the orbit space metric dΓ on M̃/Γ
is the same as the induced (X, G)-manifold metric d on M̃/Γ. First of all,
dΓ and d agree locally, since κ : M̃/Γ → M is a local isometry; moreover
dΓ ≤ d, since arc length with respect to dΓ is the same as X-length. Finally,
dΓ = d, since π preserves X-length. Therefore the map κ : M̃/Γ → M is
an isometry. Hence M̃/Γ is a complete metric space. Therefore M̃ is a
complete metric space by Theorem 8.5.3. Thus (3) implies (1).

Definition: An (X, G)-structure Φ for a manifold M is complete if and
only if M , with the (X, G)-structure Φ, is a complete (X, G)-manifold.

Theorem 8.5.8. Let M be an (X, G)-manifold and let G1 be the group of
isometries in G. Then M is complete if and only if the (X, G)-structure of
M contains a complete (X, G1)-structure for M .
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Proof: Without loss of generality, we may assume that M is connected.
Suppose that M is complete. Let κ : M̃ → M be a universal covering
projection. Then M̃ is a complete metric space. Let τ : M̃ → M̃ be a
nonidentity covering transformation of κ. Then τ is an (X, G)-map. Hence
τ is locally a similarity. As M̃ is connected, all the local scale factors of τ
have the same value k. Let γ : [a, b] → M̃ be a curve from u to v. Then
‖τγ‖ = k‖γ‖. Hence, we have

d(τ(u), τ(v)) ≤ kd(u, v).

Likewise, we have

d(τ−1(u), τ−1(v)) ≤ k−1d(u, v).

Observe that

kd(u, v) = kd(τ−1(τ(u)), τ−1(τ(v))) ≤ d(τ(u), τ(v)).

Therefore, we have
d(τ(u), τ(v)) = kd(u, v).

Thus τ is a similarity. Since τ has no fixed points, τ is an isometry by
Theorem 8.5.4.

Let η : π1(M) → G be the holonomy determined by a developing map
δ : M̃ → X for M . Then η is defined by η([α]) = gα where δτα = gαδ
and τα is a certain covering transformation of κ. As δ and τα are local
isometries, gα is an isometry of X. Hence, the image of η is contained in
the group G1 of isometries in G. Therefore, the (X, G)-structure Φ of M
contains an (X, G1)-structure Φ1 for M by Theorem 8.4.5. Moreover Φ1 is
complete, since M̃ is a complete metric space.

Conversely, suppose that the (X, G)-structure Φ of M contains a com-
plete (X, G1)-structure Φ1 for M . Then M̃ is a complete metric space.
Therefore M is a complete (X, G)-manifold.

Definition: A function ξ : M → N between (X, G)-manifolds is an
(X, G)-equivalence if and only if ξ is a bijective (X, G)-map.

Clearly, the inverse of an (X, G)-equivalence is also an (X, G)-equivalence.
Two (X, G)-manifolds M and N are said to be (X, G)-equivalent if and
only if there is an (X, G)-equivalence ξ : M → N . Note that an (X, G)-
equivalence ξ : M → N between metric (X, G)-manifolds is an isometry.

Theorem 8.5.9. Let G be a group of similarities of a simply connected
geometric space X and let M be a complete connected (X, G)-manifold.
Let δ : M̃ → X be a developing map for M and let η : π1(M) → G be the
holonomy of M determined by δ. Then δ is an (X, {1})-equivalence, η maps
π1(M) isomorphically onto a freely acting discrete group Γ of isometries of
X, and δ induces an (X, G)-equivalence from M to X/Γ.
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Proof: First of all, M̃ is geodesically complete by Theorem 8.5.7. Hence,
the developing map δ : M̃ → X is a covering projection by Theorem 8.5.6.
Therefore δ is a homeomorphism, since X is simply connected. Hence δ is
an (X, {1})-equivalence and so is an isometry. Now π1(M) corresponds to
the group of covering transformations of the universal covering κ : M̃ →
M which corresponds via δ to the image of η. Therefore η maps π1(M)
isomorphically onto a freely acting discrete group Γ of isometries of X.
Moreover δ induces a homeomorphism δ such that the following diagram
commutes:

M̃
δ−→ X

κ ↓ ↓ π

M
δ−→ X/Γ,

where π is the quotient map. As κ, δ, and π are (X, G)-maps, δ is an
(X, G)-map. Hence δ is an (X, G)-equivalence.

Theorem 8.5.10. Let M be a metric (X, I(X))-manifold with X simply
connected. Then the following are equivalent:

(1) The manifold M is complete.

(2) There is an ε > 0 such that each closed ε-ball in M is compact.

(3) All the closed balls in M are compact.

(4) There is a sequence {Mi}∞
i=1 of compact subsets of the manifold M

such that M = ∪∞
i=1Mi and N(Mi, 1) ⊂ Mi+1 for each i.

Proof: Assume that M is complete. Then M is isometric to an X-space-
form X/Γ by Theorem 8.5.9. Now all the closed balls in X are compact by
Theorem 8.1.2. Hence, all the closed balls in X/Γ are compact by Theorem
6.6.2. Therefore, all the closed balls in M are compact. Thus (1) implies
(3). As (3) implies (2), and (2) implies (1) by Theorem 8.5.1, we have that
(1)-(3) are equivalent.

Now assume that all the closed balls in M are compact. Let u be a point
of M . For each integer i > 0, let Mi = C(u, i). Then M = ∪∞

i=1Mi and

N(Mi, 1) ⊂ Mi+1

for each i. Thus (3) implies (4).
Now assume that (4) holds. Let {ui} be a Cauchy sequence in M . Then

there is an integer k such d(ui, uj) < 1 for all i, j ≥ k. As M = ∪∞
i=1Mi,

there is an integer 
 such that

{u1, . . . , uk} ⊂ M
.

Then the set M
+1 contains the entire sequence {ui}, since

N(M
, 1) ⊂ M
+1.

As M
+1 is compact, the sequence {ui} converges. Therefore M is com-
plete. Hence (4) implies (1). Thus (1)-(4) are equivalent.
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Exercise 8.5

1. Prove that every locally compact, homogeneous, metric space X is complete.

2. Let X be a connected n-manifold with a complete metric. Prove that a
function ξ : X → X is an isometry if and only if it preserves distances.
Hint: Use invariance of domain.

3. Prove that a local isometry ξ : M → N between metric (X, G)-manifolds is
an isometry if and only if it is a bijection.

4. Let M be a metric (X, G)-manifold and let κ : M̃ → M be a covering
projection with M̃ connected. Prove that M is geodesically complete if and
only if M̃ is geodesically complete.

5. Prove that a local isometry ξ : M → N between geodesically complete metric
(X, G)-manifolds is a covering projection.

6. Prove that a connected (X, G)-manifold M is complete if and only if every
(or some) developing map δ : M̃ → X for M is a covering projection.

7. Let X be a simply connected geometric space. Prove that a function ξ :
X → X is an isometry if and only if it is a local isometry.

8. Prove that the universal covering space X̃ of a geometric space X is also a
geometric space.

9. Let M be an (X, I(X))-manifold and let X̃ be the universal covering space of
X. Prove that the (X, I(X))-structure of M lifts to an (X̃, I(X̃))-structure
for M .

10. Let M be a complete connected (X, I(X))-manifold and let X̃ be the uni-
versal covering space of X. Prove that M is (X̃, I(X̃))-equivalent to an
X̃-space-form.

§8.6. Curvature

In this section, we briefly describe the role of curvature in the theory of
spherical, Euclidean, and hyperbolic manifolds. We assume that the reader
is familiar with the basic theory of Riemannian manifolds. In particular,
every connected Riemannian manifold has a natural metric space structure.

Theorem 8.6.1. A connected Riemannian n-manifold X is an n-dimen-
sional geometric space if and only if X is homogeneous.

Proof: Suppose that X is homogeneous. Then X is a complete metric
space by Theorem 8.5.1. Hence X is geodesically connected and geodesi-
cally complete by the Hopf-Rinow-Whitehead Theorem. The exponential
map at any point of X determines a function ε : En → X satisfying Axiom
3 for a geometric space.
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Remark: It is a theorem of Berestovskii that an n-dimensional geometric
space X has a Riemannian metric compatible with its topology such that
every isometry of X is an isometry of the Riemannian metric.

Definition: An n-dimensional geometry is a simply connected, homoge-
neous, Riemannian n-manifold X for which there is at least one X-space-
form of finite volume.

Euclidean 1-dimensional geometry E1 is the only 1-dimensional geom-
etry up to isometry. If n > 1, then Sn, En, and Hn are examples of
nonsimilar n-dimensional geometries. These geometries are characterized
as the geometries of constant curvature because of the following theorem.

Theorem 8.6.2. Let X be a Riemannian n-manifold such that X is

(1) connected,

(2) complete,

(3) simply connected, and

(4) of constant sectional curvature.

Then X is similar to either Sn, En, or Hn.

Remark: One should compare conditions 1-4 in Theorem 8.6.2 with
Euclid’s Postulates 1-4 in §1.1.

Corollary 1. If X is a 2-dimensional geometry, then X is similar to either
S2, E2, or H2.

Proof: As X is homogeneous, X is of constant curvature.

Two n-dimensional geometries X and Y are said to be equivalent if
and only if there is a diffeomorphism φ : X → Y such that φ induces an
isomorphism φ∗ : I(X) → I(Y ) defined by

φ∗(g) = φgφ−1.

It is a theorem of Thurston that there are, up to equivalence, exactly eight
3-dimensional geometries.

We end the chapter with the definition of a geometric manifold.

Definition: A geometric n-manifold is an (X, S(X))-manifold, where
S(X) is the group of similarities of an n-dimensional geometry X.

Spherical, Euclidean, and hyperbolic manifolds are examples of geometric
manifolds.
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§8.7. Historical Notes

§8.1. The concept of an n-dimensional manifold was introduced by Rie-
mann in his 1854 lecture Über die Hypothesen, welche der Geometrie zu
Grunde liegen [381]. For a discussion, see Scholz’s 1992 article Riemann’s
vision of a new approach to geometry [398], and for the early history of
manifolds, see Scholz’s 1980 thesis Geschichte des Mannigfaltigkeitsbegriffs
von Riemann bis Poincaré [395]. The concept of a geometric space was
introduced here as a metric space generalization of a homogeneous Rie-
mannian manifold. Theorem 8.1.3 for Clifford-Klein space-forms appeared
in Hopf’s 1926 paper Zum Clifford-Kleinschen Raumproblem [213]. The
fundamental group was introduced by Poincaré in his 1895 memoir Analy-
sis situs [361]. In particular, Theorem 8.1.4 for Clifford-Klein space-forms
was described in this paper. Theorem 8.1.5 for closed geometric surfaces
was essentially proved by Poincaré in his 1885 paper Sur un théorème de
M. Fuchs [359].

§8.2. The elliptic plane was introduced by Cayley in his 1859 paper A
sixth memoir upon quantics [82]. In 1873, Clifford described a Euclidean
torus embedded in elliptic 3-space in his paper Preliminary Sketch of Bi-
quaternions [89]. Closed hyperbolic surfaces were constructed by Poincaré
in his 1882 paper Théorie des groupes fuchsiens [355]. In 1890, Klein pro-
posed the problem of determining all the closed spherical, Euclidean, and
hyperbolic manifolds in his paper Zur Nicht-Euklidischen Geometrie [253].
Killing recognized that a closed spherical, Euclidean, or hyperbolic mani-
fold can be represented as an orbit space of a discontinuous group of isome-
tries acting freely in his 1891 paper Ueber die Clifford-Klein’schen Raum-
formen [241]. In particular, Killing introduced the term Clifford-Klein
space-form in this paper. For the historical context of Killing’s work, see
Hawkins’ 1980 article Non-Euclidean geometry and Weierstrassian mathe-
matics [199]. Theorem 8.2.3 appeared in Killing’s 1891 paper [241]. The-
orem 8.2.4 appeared in Hopf’s 1926 paper [213]. The lens spaces L(5, 1)
and L(5, 2) were shown to be nonhomeomorphic by Alexander in his 1919
paper Note on two three-dimensional manifolds with the same group [13].
For the classification of lens spaces, see Brody’s 1960 paper The topological
classification of the lens spaces [63], and for the classification of spherical
space-forms, see Wolf’s 1984 treatise Spaces of Constant Curvature [456].
Theorem 8.2.5 appeared in Auslander and Kuranishi’s 1957 paper On the
holonomy group of locally Euclidean spaces [28]. The Euclidean plane-
forms were described by Klein in his 1928 treatise Vorlesungen über nicht-
euklidische Geometrie [256]. The 3-dimensional Euclidean space-forms were
enumerated by Nowacki in his 1934 paper Die euklidischen, dreidimension-
alen, geschlossenen und offenen Raumformen [345]. See also Hantzsche
and Wendt’s 1935 paper Dreidimensionale euklidische Raumformen [193].
References for Euclidean space-forms are Wolf’s 1984 treatise [456] and
Charlap’s 1986 text Bieberbach Groups and Flat Manifolds [83].
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§8.3. The concept of an (X, G)-manifold originated in the notion of a lo-
cally homogeneous Riemannian manifold introduced by Cartan in his 1926
paper L’application des espaces de Riemann et l’analysis situs [75]. The
concept of an (X, G)-manifold was introduced by Veblen and Whitehead in
their 1931 paper A set of axioms for differential geometry [432]. For further
development of the theory of (X, G)-manifolds, see Goldman’s 1988 paper
Geometric structures on manifolds and varieties of representations [167].

§8.4. The concept of the developing map originated in the notion of
a developable surface introduced by Euler in his 1772 paper De solidis
quorum superficiem in planum explicare licet [135]. For commentary, see
Cajori’s 1929 article Generalizations in geometry as seen in the history
of developable surfaces [71]. Theorem 8.4.1 appeared in Ehresmann’s 1936
paper Sur les espaces localement homogènes [124]. The developing map and
holonomy homomorphism for locally homogeneous Riemannian manifolds
were described by Cartan in his 1926 paper [75].

§8.5. The concept of metric completeness was introduced by Fréchet in
his 1906 paper Sur quelques points du calcul fonctionnel [149]. For the his-
tory of metric completeness, see Dugac’s 1984 article Histoire des espaces
complets [117]. Theorem 8.5.4 for the Euclidean plane was proved by Euler
in his 1795 paper De centro similitudinis [139]. Theorems 8.5.5, 8.5.7, and
8.5.10 for Riemannian surfaces were proved by Hopf and Rinow in their
1931 paper Ueber den Begriff der vollständigen differentialgeometrischen
Fläche [215] and were extended to Riemannian n-manifolds by Whitehead
in his 1935 paper On the covering of a complete space by the geodesics
through a point [450]. See also Cohn-Vossen’s 1935 paper Existenz kürzester
Wege [90]. Theorem 8.5.9 for spherical, Euclidean, or hyperbolic manifolds
was proved by Hopf in his 1926 paper [213] and was extended to locally ho-
mogeneous Riemannian manifolds by Whitehead in his 1932 paper Locally
homogeneous spaces in differential geometry [449].

§8.6. Berestovskii’s theorem appeared in his 1982 paper Homogeneous
Busemann G-spaces [42]. The notion of an n-dimensional geometry orig-
inated in Riemann’s concept of a manifold of constant curvature in his
1854 lecture [381]. For a discussion, see von Helmholtz’s 1876 paper On
the origin and significance of geometrical axioms [439]. The notion of an
n-dimensional geometry was developed by Killing, Lie, and Cartan in their
work on Lie groups. For a discussion, see Cartan’s 1936 article Le rôle
de la théorie des groupes de Lie dans l’évolution de la géométrie moderne
[76]. Theorem 8.6.2 appeared in Riemann’s 1854 lecture [381]. For a proof,
see Vol. II of Spivak’s 1979 treatise Differential Geometry [413]. Thurston’s
theorem on 3-dimensional geometries appeared in his 1982 article Three di-
mensional manifolds, Kleinian groups, and hyperbolic geometry [426]. For a
discussion, see Scott’s 1984 survey The geometries of 3-manifolds [402] and
Bonahon’s 2002 survey Geometric structures on 3-manifolds [55]. The 4-
dimensional geometries are described in Wall’s 1985 paper Geometries and
geometric structures in real dimension 4 and complex dimension 2 [440].



CHAPTER 9

Geometric Surfaces

In this chapter, we study the geometry of geometric surfaces. The chapter
begins with a review of the topology of compact surfaces. In Section 9.2,
a geometric method for constructing spherical, Euclidean, and hyperbolic
surfaces is given. The fundamental relationship between the Euler charac-
teristic of a closed geometric surface and its area is derived in Section 9.3.
In Section 9.4, the set of similarity equivalence classes of Euclidean or hy-
perbolic structures on a closed surface is shown to have a natural topology.
The geometry of closed geometric surfaces is studied in Sections 9.5 and
9.6. The chapter ends with a study of the geometry of complete hyperbolic
surfaces of finite area.

§9.1. Compact Surfaces

A surface is a connected 2-dimensional manifold. A compact surface is
called a closed surface.

Definition: A triangulation of a closed surface M consists of a finite
family of functions

{φi : ∆2 → M}m
i=1

with the following properties:

(1) The function φi maps the standard 2-simplex ∆2 homeomorphically
onto a subset Ti of M , called a triangle. The vertices and edges of Ti

are the images of the vertices and edges of ∆2 under φi.

(2) The surface M is the union of the triangles T1, . . . , Tm.

(3) If i �= j, then the intersection of Ti and Tj is either empty, a common
vertex of each triangle, or a common edge of each triangle.

375
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Figure 7.2.1 illustrates four different triangulations of S2. It is a funda-
mental theorem of the topology of surfaces that every closed surface has
a triangulation. Given a triangulation of a closed surface M , let v be the
number of vertices, e the number of edges, and t the number of triangles.
The Euler characteristic of M is the integer

χ(M) = v − e + t. (9.1.1)

It is a basic theorem of algebraic topology that χ(M) does not depend on
the choice of the triangulation. More generally, if M is a cell complex with
a 0-cells, b 1-cells, and c 2-cells, then

χ(M) = a − b + c. (9.1.2)

If M1 and M2 are surfaces, then we can form a new surface M1#M2,
called the connected sum of M1 and M2, as follows: Let φi : ∆2 → Mi, for
i = 1, 2, be a function that maps ∆2 homeomorphically into Mi and set

M ′
i = M − φi(Int ∆2)

for i = 1, 2. Then M1#M2 is defined to be the quotient space of the
disjoint union M ′

1
∐

M ′
2 obtained by identifying φ1(x) with φ2(x) for each

x in ∂∆2. The topological type of M1#M2 does not depend on the choice
of the functions φ1 and φ2. Evidently, if M1 and M2 are closed, then

χ(M1#M2) = χ(M1) + χ(M2) − 2, (9.1.3)

since we can choose φ1 and φ2 to be part of triangulations of M1 and M2.
Starting from the fact that closed surfaces can be triangulated, it is

not difficult to classify all closed surfaces up to homeomorphism. The
classification of closed surfaces is summarized in the following theorem.

Theorem 9.1.1. A closed surface is homeomorphic to either a sphere, a
connected sum of tori, or a connected sum of projective planes.

Orientability

Let {φi : ∆2 → M}m
i=1 be a triangulation of a closed surface M . Orient

the standard 2-simplex ∆2 with the positive orientation from E2. Then φi

orients the triangle Ti = φi(∆2) for each i. In particular, φi orients each
of the three edges of Ti. A triangulation of M is said to be oriented if and
only if each edge of the triangulation receives opposite orientations from
the two adjacent triangles of which it is an edge. See Figure 9.1.1.

Let ρ be the reflection of ∆2 in the line y = x. Then ρ reverses the
orientation of ∆2. A triangulation {φi : ∆2 → M}m

i=1 for M is said to be
orientable if and only if an oriented triangulation of M can be obtained
from {φi}m

i=1 by replacing each φi by φi or φiρ. The surface M is said
to be orientable if and only if it has an orientable triangulation. It is a
basic theorem of algebraic topology that a closed surface M is orientable
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Figure 9.1.1. Adjacent oriented triangles with compatible orientations

if and only if every triangulation of M is orientable. Furthermore, a closed
surface is orientable if and only if it is either a sphere or a connected sum
of tori.

A connected sum of n tori is called a closed orientable surface of genus n.
A 2-sphere is also called a closed orientable surface of genus zero. The
relationship between the Euler characteristic of a closed orientable surface
M and its genus is given by the formula

χ(M) = 2(1 − genus(M)). (9.1.4)

A connected sum of n projective planes is called a closed nonorientable
surface of genus n. A closed nonorientable surface of genus two is also
called a Klein bottle. The relationship between the Euler characteristic of
a closed nonorientable surface M and its genus is given by the formula

χ(M) = 2 − genus(M). (9.1.5)

The next theorem states that the Euler characteristic and orientability
form a complete set of topological invariants for the classification of closed
surfaces.

Theorem 9.1.2. Two closed surfaces are homeomorphic if and only if
they have the same Euler characteristic and both are orientable or both
are nonorientable.

Surfaces-with-boundary

A surface-with-boundary is a connected 2-manifold-with-boundary. Let M
be a compact surface-with-boundary. The boundary ∂M of M is a disjoint
union of a finite number of topological circles. Let M∗ be the closed surface
obtained from M by gluing a disk along its boundary to each boundary
circle of M . We now state the classification theorem for compact surfaces-
with-boundary.
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Theorem 9.1.3. Two compact surfaces-with-boundary M1 and M2 are
homeomorphic if and only if they both have the same number of bound-
ary components and the closed surfaces M∗

1 and M∗
2 , obtained from M1

and M2 by gluing a disk to each boundary component, are homeomorphic.

Triangulations and the Euler characteristic of a compact surface-with-
boundary M are defined in the same way as for closed surfaces. If M has
m boundary components, then the relationship between the Euler charac-
teristics of M and M∗ is given by the formula

χ(M∗) = χ(M) + m. (9.1.6)

A compact surface-with-boundary M is said to be orientable if and only
if the closed surface M∗ is orientable. The next theorem follows from
Theorems 9.1.2 and 9.1.3.

Theorem 9.1.4. Two compact surfaces-with-boundary are homeomorphic
if and only if they have the same number of boundary components, the same
Euler characteristic, and both are orientable or both are nonorientable.

§9.2. Gluing Surfaces

In this section, we construct spherical, Euclidean, and hyperbolic surfaces
by gluing together convex polygons in X = S2, E2, or H2 along their sides.

Let P be a finite family of disjoint convex polygons in X and let G be
a group of isometries of X.

Definition: A G-side-pairing for P is a subset of G,

Φ = {gS : S ∈ S},

indexed by the collection S of all the sides of the polygons in P such that
for each side S in S,

(1) there is a side S′ in S such that gS(S′) = S;

(2) the isometries gS and gS′ satisfy the relation gS′ = g−1
S ; and

(3) if S is a side of P in P and S′ is a side of P ′ in P, then

P ∩ gS(P ′) = S.

It follows from (1) that S′ is uniquely determined by S. The side S′ is
said to be paired to the side S by Φ. From (2), we deduce that S′′ = S.
Thus, the mapping S �→ S′ is an involution of the set S. It follows from
(3) that gS �= 1 for all S.
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Let Φ = {gS : S ∈ S} be a G-side-pairing for P and set

Π = ∪
P∈P

P.

Two points x, x′ of Π are said to be paired by Φ, written x � x′, if and only
if there is a side S in S such that x is in S, and x′ is in S′, and gS(x′) = x.
If gS(x′) = x, then gS′(x) = x′. Therefore x � x′ if and only if x′ � x.

Two points x, y of Π are said to be related by Φ, written x ∼ y, if and
only if either x = y or there is a finite sequence x1, . . . , xm of points of Π
such that

x = x1 � x2 � · · · � xm = y.

Being related by Φ is obviously an equivalence relation on the set Π. The
equivalence classes of Π are called the cycles of Φ. If x is in Π, we denote
the cycle of Φ containing x by [x].

Let
[x] = {x1, . . . , xm}

be a finite cycle of Φ. Let Pi be the polygon in P containing the point
xi and let θ(Pi, xi) be the angle subtended by Pi at the point xi for each
i = 1, . . . , m. The angle sum of [x] is defined to be the real number

θ[x] = θ(P1, x1) + · · · + θ(Pm, xm). (9.2.1)

Definition: A G-side-pairing Φ for P is proper if and only if each cycle
of Φ is finite and has angle sum 2π.

Example 1. Let P be a closed hemisphere in S2. Pair ∂P to itself by
the antipodal map α of S2. Then each point x in P ◦ forms a cycle whose
angle sum is 2π, and each pair of antipodal points x, x′ in ∂P form a cycle
whose angle sum is 2π. Therefore, this {I, α}-side-pairing is proper.

Example 2. Let P be a rectangle in E2. Pair the opposite sides of P
by translations. Then each point x in P ◦ forms a cycle whose angle sum
is 2π. See Figure 9.2.1(a). Each pair of points x, x′ directly across from
each other in the interior of opposite sides forms a cycle whose angle sum
is 2π. See Figure 9.2.1(b). Finally, the four vertices x1, x2, x3, x4 of P
form a cycle whose angle sum is 2π. See Figure 9.2.1(c). Therefore, this
T(E2)-side-pairing is proper.

Example 3. Let P be an exact fundamental polygon for a discrete group
Γ of isometries of X acting freely on X. For each side S of P , there is a
unique element gS of Γ such that P ∩ gSP = S. Then

Φ = {gS : S is a side of P}

is a proper Γ-side-pairing by Theorems 6.8.5 and 6.8.7.
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x
x x′

x1 x2

x3x4

(1) (2) (3)

Figure 9.2.1. Cycles in a rectangle

Theorem 9.2.1. If Φ = {gS : S ∈ S} is a proper G-side-pairing for P,
then for each side S in S,

(1) the isometry gS fixes no point of S′; and

(2) the sides S and S′ are equal if and only if S is a great circle of S2

and gS is the antipodal map of S2.

Proof: (1) On the contrary, suppose that gS fixes a point x of S′. Assume
first that x is in the interior of S′. Then [x] = {x} and θ[x] = π, which
is a contradiction. Assume now that x is an endpoint of S′. Then x is an
endpoint of exactly one other side T in S. As gS(S′) = S, we have that
x is in S, and so either S = S′ or S = T . If S = S′, then gS would fix S
pointwise, contrary to the first case; therefore S = T . Then [x] = {x} and
θ[x] < π, which is a contradiction. Thus gS fixes no point of S′.

(2) If S is a great circle and gS is the antipodal map of S2, then

S′ = g−1
S (S) = S.

Conversely, suppose that S′ = S. As gS′ = g−1
S , we have that gS has order

two. Let x be a point of S. Then x′ = gS(x) is also a point of S. If x
and x′ were not antipodal points, then gS would fix the midpoint of the
geodesic segment joining x to x′ in S contrary to (1). Therefore x and x′

are antipodal points of S2. Hence S is invariant under the antipodal map of
S2, and so S must be a great circle. Hence, the polygon P in P containing
S is a hemisphere. As gS is the antipodal map on S and P ∩ gS(P ) = S,
we have that gS is the antipodal map of S2.

Let Φ be a proper G-side-pairing for P. Then Π is the topological sum
of the polygons in P, since P is a finite family of disjoint closed subsets of
X. Let M be the quotient space of Π of cycles of Φ. The space M is said
to be obtained by gluing together the polygons in P by Φ. We next prove
the gluing theorem for geometric surfaces.
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Theorem 9.2.2. Let G be a group of isometries of X and let M be a space
obtained by gluing together a finite family P of disjoint convex polygons in
X by a proper G-side-pairing Φ. Then M is a 2-manifold with an (X, G)-
structure such that the natural injection of P ◦ into M is an (X, G)-map
for each P in P.

Proof: Without loss of generality, we may assume that each polygon in
P has at least one side. Let π : Π → M be the quotient map and let x be
a point of Π. We now construct an open neighborhood U(x, r) of π(x) in
M and a homeomorphism

φx : U(x, r) → B(x, r)

for all sufficiently small values of r.
Let P be the polygon in P containing x. There are three cases to

consider. Either (1) x is in P ◦, or (2) x is in the interior of a side S of P ,
or (3) x is a vertex of P . See Figure 9.2.1. If x is in P ◦, then [x] = {x}. If
x is in the interior of a side of P , then [x] = {x, x′}, with x �= x′, since Φ is
proper. If x is a vertex of P , then x is the endpoint of exactly two sides of
P , and so x is paired to exactly two other points of Π, since Φ is proper.
In this case, each element of [x] is paired to exactly two other elements of
[x]. Thus, in all three cases, the cycle [x] can be ordered

[x] = {x1, x2, . . . , xm}

so that
x = x1 � x2 � · · · � xm � x.

Moreover, if m > 1, then there is a unique side Si in S such that

gSi(xi+1) = xi for i = 1, . . . , m − 1, and gSm(x1) = xm.

Let g1 = 1 and gi = gS1 · · · gSi−1 for i = 2, . . . , m. Then gixi = x for
each i. Let Pi be the polygon in P containing the point xi for each i. Let
r be a positive real number such that r is less than one-fourth the distance
from xi to xj for each i �= j and from xi to any side of Pi not containing
xi for each i. Then the sets Pi ∩ B(xi, r), for i = 1, . . . , m, are disjoint.

Let θi = θ(Pi, xi) for each i. Then Pi ∩ B(xi, r) is a sector of the open
disk B(xi, r) whose angular measure is θi for each i. Hence

gi(Pi ∩ B(xi, r)) = giPi ∩ B(x, r)

is a sector of the open disk B(x, r) whose angular measure is θi for each i.
If m = 1, then x is in P ◦ and we have

B(x, r) = P ∩ B(x, r) = g1P1 ∩ B(x, r).

If m = 2, then x is in the interior of a side S1 of P and we have

B(x, r) = (P ∩ B(x, r)) ∪ (gS1P2 ∩ B(x, r))
= (g1P1 ∩ B(x, r)) ∪ (g2P2 ∩ B(x, r)).
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Figure 9.2.2. The partition of B(x, r) into sectors by a proper side-pairing

Now assume that m > 2. Then x is a vertex of P . Observe that the
polygons Pi and gSi(Pi+1) lie on opposite sides of their common side Si,
and so the polygons giPi and gi+1Pi+1 lie on opposite sides of their common
side giSi for i = 1, . . . , m−1. As Si = gSi

(S′
i) for i = 1, . . . , m, we have that

giSi = gi+1S
′
i for i = 1, . . . , m−1. Now Si and S′

i−1 are the two sides of Pi

whose endpoint is xi for i = 2, . . . , m, and so giSi and giS
′
i−1 = gi−1Si−1

are the two sides of giPi whose endpoint is x for i = 2, . . . , m. Therefore,
the sectors giPi∩B(x, r), for i = 1, . . . , m, occur in sequential order rotating
about the point x. See Figure 9.2.2. Since θ[x] = 2π, we have

B(x, r) =
m
∪

i=1

(
giPi ∩ B(x, r)

)
.

The polygons Pm and gSm(P ) lie on opposite sides of their common
side Sm, and so the polygons g−1

Sm
(Pm) and P lie on opposite sides of their

common side S′
m. Now as S1 and S′

m are the two sides of P whose endpoint
is x, we deduce that

gmPm = g−1
Sm

Pm.

Therefore gm = g−1
Sm

. Hence, we have the cycle relation gS1 · · · gSm = 1.
In all three cases, let

U(x, r) = π
(

m
∪

i=1
Pi ∩ B(xi, r)

)
.

Now as the set
π−1(U(x, r)) =

m
∪

i=1
Pi ∩ B(xi, r)

is open in Π, we have that U(x, r) is an open subset of M .
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Define a function

ψx :
m
∪

i=1
Pi ∩ B(xi, r) → B(x, r)

by ψx(z) = giz if z is in Pi ∩ B(xi, r). Then ψx induces a continuous
function

φx : U(x, r) → B(x, r).

The function φx is a bijection with a continuous inverse defined by

φ−1
x (z) = π(g−1

i z) if z is in giPi ∩ B(x, r).

Hence φx is a homeomorphism.
Next, we show that M is Hausdorff. Let x and y be points of Π such that

π(x) and π(y) are distinct points of M . Let {x1, . . . , xm} and {y1, . . . , yn}
be the cycles of Φ containing x and y, respectively. Then {x1, . . . , xm}
and {y1, . . . , yn} are disjoint subsets of Π. Let Pi be the polygon in P
containing xi for i = 1, . . . , m, and let Qj be the polygon in P containing
yj for j = 1, . . . , n. Then we can choose radii r and s as before so that

π
(

m
∪

i=1
Pi ∩ B(xi, r)

)
= U(x, r)

and
π
(

n
∪

j=1
Qj ∩ B(yj , s)

)
= U(y, s).

Moreover, we can choose r and s small enough so that
m
∪

i=1
Pi ∩ B(xi, r) and

n
∪

j=1
Qj ∩ B(yj , s)

are disjoint subsets of Π. As
m
∪

i=1
Pi ∩ B(xi, r) = π−1(U(x, r))

and
n
∪

j=1
Qj ∩ B(yj , s) = π−1(U(y, s)),

we deduce that U(x, r) and U(y, r) are disjoint open neighborhoods of π(x)
and π(y) in M . Thus M is Hausdorff, and therefore M is a 2-manifold.

Next, we show that

{φx : U(x, r) → B(x, r)}
is an (X, G)-atlas for M . By construction, U(x, r) is an open connected
subset of M and φx is a homeomorphism. Moreover U(x, r) is defined for
each point π(x) of M and sufficiently small radius r. Hence {U(x, r)} is
an open cover of M . It remains only to show that if U(x, r) and U(y, s)
overlap, then the coordinate change

φyφ−1
x : φx

(
U(x, r) ∩ U(y, s)

)
→ φy

(
U(x, r) ∩ U(y, s)

)
agrees in a neighborhood of each point of its domain with an element of G.
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As before, we have

π−1(U(x, r)) =
m
∪

i=1
Pi ∩ B(xi, r),

π−1(U(y, s)) =
n
∪

j=1
Qj ∩ B(yj , s).

By reversing the roles of x and y, if necessary, we may assume that m ≤ n.
If m > 1, let Si be the side of Pi containing xi as before, and if n > 1, let
Tj be the side of Qj containing yj as before. Let g1, . . . , gm and h1, . . . , hn

be the elements of G constructed as before for x and y. Because of the 1/4
bounds on r and s, there is just one index j, say 
, such that the set

P ∩ B(x, r) ∩ Qj ∩ B(yj , s)
is nonempty. We shall prove that the coordinate change φyφ−1

x is the
restriction of the element h
 of G.

Assume first that m = 1. Then x is in P ◦ and
π−1(U(x, r)) = B(x, r).

Therefore
U(x, r) ∩ U(y, s)

= π(B(x, r)) ∩ π
(

n
∪

j=1
Qj ∩ B(yj , s)

)
= π

(
B(x, r) ∩

n
∪

j=1
Qj ∩ B(yj , s)

)
= π

(
B(x, r) ∩ B(y
, s)

)
.

Hence
φx

(
U(x, r) ∩ U(y, s)

)
= B(x, r) ∩ B(y
, s)

and
φy

(
U(x, r) ∩ U(y, s)

)
= h


(
B(x, r) ∩ B(y
, s)

)
.

Therefore, the coordinate change
φyφ−1

x : B(x, r) ∩ B(y
, s) → h


(
B(x, r) ∩ B(y
, s)

)
is the restriction of h
.

Assume next that m = 2. Then x is in the interior of a side S of P and
x′ is in the interior of a side S′ of P ′ and the set

P ′ ∩ B(x′, r) ∩ Qj ∩ B(yj , s)
is nonempty only for j = 
−1 or 
+1 (mod n). By reversing the ordering of
y1, . . . , yn, if necessary, we may assume that this intersection is nonempty
only for j = 
 + 1. Then P = Q
, P ′ = Q
+1, S = T
, and
U(x, r) ∩ U(y, s)

= π
[(

P ∩ B(x, r)
)

∪
(
P ′ ∩ B(x′, r)

)]
∩ π
[ n

∪
j=1

Qj ∩ B(yj , s)
]

= π
[ n

∪
j=1

P ∩ B(x, r) ∩ Qj ∩ B(yj , s) ∪
n
∪

j=1
P ′ ∩ B(x′, r) ∩ Qj ∩ B(yj , s)

]
= π
[(

P ∩ B(x, r) ∩ B(y
, s)
)

∪
(
P ′ ∩ B(x′, r) ∩ B(y
+1, s)

)]
.



§9.2. Gluing Surfaces 385

Hence

φx

(
U(x, r) ∩ U(y, s)

)
=
(
P ∩ B(x, r) ∩ B(y
, s)

)
∪ gS

(
P ′ ∩ B(x′, r) ∩ B(y
+1, s)

)
=
(
P ∩ B(x, r) ∩ B(y
, s)

)
∪
(
gS(P ′) ∩ B(x, r) ∩ B(y
, s)

)
= B(x, r) ∩ B(y
, s)

and

φy

(
U(x, r) ∩ U(y, s)

)
= h


(
P ∩ B(x, r) ∩ B(y
, s)

)
∪ h
+1

(
P ′ ∩ B(x′, r) ∩ B(y
+1, s)

)
= h


[(
P ∩ B(x, r) ∩ B(y
, s)

)
∪ gS

(
P ′ ∩ B(x′, r) ∩ B(y
+1, s)

)]
= h


[(
P ∩ B(x, r) ∩ B(y
, s)

)
∪
(
gS(P ′) ∩ B(x, r) ∩ B(y
, s)

)]
= h


(
B(x, r) ∩ B(y
, s)

)
.

Now on the set
P ∩ B(x, r) ∩ B(y
, s),

the map φyφ−1
x is the restriction of h
, and on the set

gS

(
P ′ ∩ B(x′, r) ∩ B(y
+1, s)

)
,

the map φyφ−1
x is the restriction of h
+1g

−1
S = h
. Hence, the coordinate

change
φyφ−1

x : B(x, r) ∩ B(y
, s) → h


(
B(x, r) ∩ B(y
, s)

)
is the restriction of h
.

Assume now that m > 2. Then both x and y are vertices. As U(x, r)
and U(y, s) overlap, π(x) = π(y) because of the bounds on r and s. Hence
x = y
. Let t = min{r, s}. Then

U(x, r) ∩ U(y, s) = U(x, t),
φx(U(x, t)) = B(x, t),
φy(U(x, t)) = B(y, t).

Now either
xi = y
+i−1 (mod m)

or
xi = y
−i−1 (mod m).

By reversing the ordering of y1, . . . , ym, if necessary, we may assume that
the former holds. Then

Pi = Q
+i−1 (mod m)

and
Si = T
+i−1 (mod m).
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Now observe that

gi = gS1 · · · gSi−1

= gT�
· · · gT�+i−2

= h−1

 h
+i−1 (mod m)

and so we have
h
+i−1 = h
gi (mod m).

Now as
B(x, t) =

m
∪

i=1
giPi ∩ B(x, t),

the map φyφ−1
x is the restriction of

h
+i−1g
−1
i = (h
gi)g−1

i = h


on the set giPi∩B(x, t) for each i = 1, . . . , m. Hence, the coordinate change

φyφ−1
x : B(x, t) → B(y, t)

is the restriction of h
. Thus, in all three cases, φyφ−1
x agrees with an

element of G. This completes the proof that {φx} is an (X, G)-atlas for M .
Let P be a polygon in P and let ι : P ◦ → M be the natural injection of

P ◦ into M . Then for each point x in P ◦ and chart φx : U(x, r) → B(x, r),
the map

ι−1 : ιB(x, r) → B(x, r)

is φx. Therefore ι is an (X, G)-map by Theorem 8.4.2. Thus, the (X, G)-
structure of M has the property that the natural injection of P ◦ into M is
an (X, G)-map for each P in P.

Example 4. Let n be an integer greater than one. Then we have
π

2n
+

π

4n
+

π

4n
=

π

n
< π.

Hence, there is a hyperbolic triangle of the form �
(

π
2n , π

4n , π
4n

)
by Theorem

3.5.9. Now reflecting in the sides of �, keeping the vertex whose angle is
π/2n fixed, generates a cycle of 4n hyperbolic triangles whose union is a
regular hyperbolic 4n-gon P whose dihedral angle is π/2n. We position P
in B2 so that its center is the origin. See Figure 9.2.3 for the case n = 2.

Now label the sides of P in positive order by the symbols

S1, T
′
1, S

′
1, T1, . . . , Sn, T ′

n, S′
n, Tn

as in Figure 9.2.3. The side S′
i is paired to the side Si by first reflecting

in the straight line passing through the origin and the center of the side
labeled T ′

i , and then reflecting in the side of P labeled Si. The side T ′
i is

paired to the side Ti by first reflecting in the straight line passing through
the origin and the center of the side labeled S′

i, and then reflecting in the
side of P labeled Ti. The 4n vertices of P form a cycle whose angle sum is
2π. Therefore, this side-pairing is proper.
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T ′
1

S1

S′
1

T1

S′
2

T2

T ′
2

S2

Figure 9.2.3. A regular hyperbolic octagon

Let M be the space obtained from P by gluing together its sides by
this side-pairing. Then M is a closed surface with a (B2, I0(B2))-structure
by Theorem 9.2.2. It is evident from the gluing pattern of P that M is a
connected sum of n tori. Thus M is a closed orientable surface of genus
n > 1.

Example 5. Let n be an integer greater than two. Then we have

π

n
+

π

2n
+

π

2n
=

2π

n
< π.

Hence, there is a hyperbolic triangle of the form �
(

π
n , π

2n , π
2n

)
by Theorem

3.5.9. Now reflecting in the sides of �, keeping the vertex whose angle is
π/n fixed, generates a cycle of 2n hyperbolic triangles whose union is a
regular hyperbolic 2n-gon Q whose dihedral angle is π/n. We position Q
in B2 so that its center is the origin.

We now divide the sides of Q into pairs of consecutive sides. Each of
these pairs of consecutive sides of Q are paired by a rotation about the
origin followed by the reflection in the corresponding side of Q. The 2n
vertices of Q form a cycle whose angle sum is 2π. Therefore, this side-
pairing is proper.

Let M be the space obtained from Q by gluing together its sides by
this side-pairing. Then M is a closed surface with a (B2, I(B2))-structure
by Theorem 9.2.2. It is evident from the gluing pattern of Q that M is a
connected sum of n projective planes. Thus M is a closed nonorientable
surface of genus n > 2.
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The Generalized Gluing Theorem

In later applications, we shall need a more general version of Theorem 9.2.2.
The first step towards this generalized gluing theorem is to generalize the
notion of a convex polygon so as to allow vertices in the interior of a side.

Definition: An abstract convex polygon P in X is a convex polygon P in
X together with a collection E of subsets of ∂P , called the edges of P , such
that

(1) each edge of P is a closed, 1-dimensional, convex subset of ∂P ;

(2) two edges of P meet only along their boundaries;

(3) the union of the edges of P is ∂P ;

(4) the collection E is a locally finite family of subsets of X.

By Theorem 6.2.6, a convex polygon P in X, together with the collection
S of its sides, is an abstract convex polygon. Note that, in general, an edge
of an abstract convex polygon P may or may not be equal to the side of P
containing it. The vertices of an abstract convex polygon P are defined to
be the endpoints of the edges of P . A vertex of an abstract convex polygon
P may be in the interior of a side of P .

We next generalize the notion of a disjoint set of convex polygons so as
to allow the possibility that the polygons may live in different copies of X.

Definition: A disjoint set of abstract convex polygons of X is a set of
functions

Ξ = {ξP : P ∈ P}

indexed by a set P such that

(1) the function ξP : X → XP is a similarity for each P in P;

(2) the index P is an abstract convex polygon in XP for each P in P;

(3) the polygons in P are mutually disjoint.

Let Ξ be a disjoint set of abstract convex polygons of X and let G be a
group of similarities of X.

Definition: A G-edge-pairing for Ξ is a set of functions

Φ = {φE : E ∈ E}

indexed by the collection E of all the edges of the polygons in P such that
for each edge E of a polygon P in P,
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(1) there is a polygon P ′ in P such that the function φE : XP ′ → XP is
a similarity;

(2) the similarity ξ−1
P φEξP ′ is in G;

(3) there is an edge E′ of P ′ such that φE(E′) = E;

(4) the similarities φE and φE′ satisfy the relation φE′ = φ−1
E ;

(5) the polygons P and φE(P ′) are situated so that P ∩ φE(P ′) = E.

Let Φ be a G-edge-pairing for Ξ. Then the pairing of edge points by
elements of Φ generates an equivalence relation on the set Π = ∪P∈P P .
The equivalence classes are called the cycles of Φ, and Φ is said to be proper
if and only if every cycle of Φ is finite and has angle sum 2π. Topologize
Π with the direct sum topology and let M be the quotient space of Π of
cycles of Φ. The space M is said to be obtained by gluing together the
polygons of Ξ by Φ.

The proof of the next theorem follows the same outline as the proof of
Theorem 9.2.2 and is therefore left to the reader.

Theorem 9.2.3. Let G be a group of similarities of X and let M be a space
obtained by gluing together a disjoint set Ξ of abstract convex polygons of
X by a proper G-edge-pairing Φ. Then M is a 2-manifold with an (X, G)-
structure such that the natural injection of P ◦ into M is an (X, G)-map
for each polygon P of Ξ.

Exercise 9.2

1. In the proof of Theorem 9.2.2 that {φx : U(x, r) → B(x, r)} is an (X, G)-
atlas for M , use the 1/4 bounds on r and s to show that there is at most
one index j such that the following set is nonempty:

P ∩ B(x, r) ∩ Qj ∩ B(yj , s).

2. Show that the case n = 2 in Example 5, with a Euclidean 45◦-45◦ right
triangle, yields a Euclidean structure on the Klein bottle.

3. Let P be a convex fundamental polygon for a discrete group Γ of isometries
of X and let E be the collection of all 1-dimensional convex subsets of ∂P
of the form P ∩ gP for some g in Γ. Prove that P together with E is an
abstract convex polygon in X.

4. Let P be as in Exercise 3. For each edge E of P , let gE be the element of Γ
such that P ∩ gE(P ) = E. Prove that Φ = {gE : E ∈ E} is a Γ-edge-pairing
for P .

5. Prove Theorem 9.2.3.
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§9.3. The Gauss-Bonnet Theorem

We next prove the Gauss-Bonnet Theorem for closed geometric surfaces.

Theorem 9.3.1. If κ = 1, 0, or −1 is the curvature of a closed spherical,
Euclidean, or hyperbolic surface M , then

κArea(M) = 2πχ(M).

Proof: As M is compact, M is complete. By Theorem 8.5.9, we may
assume that M is a space-form X/Γ. Let P be an exact fundamental
polygon for Γ. Then P is compact by Theorem 6.6.9.

If P has no sides, then P = S2 = M and
Area(M) = 4π = 2πχ(M).

If P has one side, then P is a closed hemisphere of S2, and so M = P 2 by
Theorem 9.2.1(2), and

Area(M) = 2π = 2πχ(M).
If P has two sides, then P is a lune of S2, but both side-pairings of a lune
are not proper. Therefore, we may assume that P has at least three sides.
Then the 2nd barycentric subdivision of P subdivides P into triangles and
projects to a triangulation of M so that each triangle of the subdivision of
P is mapped homeomorphically onto a triangle of the triangulation.

Let �1, . . . ,�t be the triangles of the 2nd barycentric subdivision of P .
Then e = 3t/2 is the number of edges of the triangulation of M . Let v be
the number of vertices of the triangulation of M . Then

χ(M) = v − e + t = v − 1
2 t.

Suppose that κ = 1 or −1. Then by Theorems 2.5.5 and 3.5.5, we have
κArea(M) = κArea(P )

= κ

t∑
i=1

Area(�i(αi, βi, γi))

=
t∑

i=1

(αi + βi + γi − π)

= 2πv − tπ

= 2π(v − 1
2 t) = 2πχ(M).

Now suppose that κ = 0. Then we have

2πv =
t∑

i=1

(αi + βi + γi) = tπ.

Hence, we have
χ(M) = (v − 1

2 t) = 0.

Thus, we have
κArea(M) = 2πχ(M).
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Theorem 9.3.2. If M is a closed surface, then M has

(1) a spherical structure if and only if χ(M) > 0,

(2) a Euclidean structure if and only if χ(M) = 0,

(3) a hyperbolic structure if and only if χ(M) < 0.

Proof: (1) If χ(M) > 0, then M is either a sphere or projective plane by
Theorem 9.1.1, both of which have a spherical structure. Conversely, if M
has a spherical structure, then χ(M) > 0 by Theorem 9.3.1.

(2) If χ(M) = 0, then M is either a torus or a Klein bottle by Theorem
9.1.1, both of which have a Euclidean structure. Conversely, if M has a
Euclidean structure, then χ(M) = 0 by Theorem 9.3.1.

(3) If χ(M) < 0, then M is either a closed orientable surface of genus n,
with n > 1, or a closed nonorientable surface of genus n, with n > 2, both
of which have a hyperbolic structure by the constructions in Examples 4
and 5 in §9.2. Conversely, if M has a hyperbolic structure, then χ(M) < 0
by Theorem 9.3.1.

Exercise 9.3

1. Let T be a triangle in X = S2, E2, or H2. Prove that the centroid of T is
the intersection of the three geodesic segments joining a vertex of T to the
midpoint of the opposite side of T .

2. Let P be a compact convex polygon in X = S2, E2, or H2 with n ≥ 3 sides.
Prove that the 2nd barycentric subdivision of P divides P into 12n triangles.

3. Let P be a compact convex polygon in E2 or H2 as in the proof of Theorem
9.3.1. Prove that each triangle of the barycentric subdivision of P is mapped
homeomorphically onto its image in M by the quotient map from P to M .

4. Let P be a compact convex polygon in E2 or H2 as in the proof of The-
orem 9.3.1. Prove that the 2nd barycentric subdivision of P projects to a
triangulation of M .

§9.4. Moduli Spaces

Let M be a closed surface such that χ(M) ≤ 0. By Theorem 9.3.2, the
surface M has a Euclidean or hyperbolic structure according as χ(M) = 0
or χ(M) < 0. In this section, we show that the set of similarity equivalence
classes of Euclidean or hyperbolic structures on M has a natural topology.

If χ(M) = 0, let E(M) be the set of Euclidean structures for M , and
if χ(M) < 0, let H(M) be the set of hyperbolic structures for M . Let
X = E2 or H2 according as χ(M) = 0 or χ(M) < 0, and let S(M) be
the set of complete (X, S(X))-structures for M . We begin by studying the
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relationship between S(M) and E(M) or H(M). First of all, if χ(M) < 0,
then S(M) = H(M), since S(H2) = I(H2) and every hyperbolic structure
for M is complete because M is compact. Thus, we may assume that
χ(M) = 0.

Define a left action of S(E2) on E(M) as follows: If ξ : E2 → E2 is a
similarity and

Φ = {φi : Ui → E2}
is a Euclidean structure for M , define ξΦ to be the Euclidean structure for
M given by

ξΦ = {ξφi : Ui → E2}.

Clearly, I(E2) acts trivially on E(M). Hence, the action of S(E2) on E(M)
induces an action of S(E2)/I(E2) on E(M). The group S(E2)/I(E2) is
isomorphic to R+. Consequently, there is a corresponding action of R+ on
E(M) defined as follows: If k > 0 and Φ = {φi : Ui → E2} is in E(M),
then

kΦ = {kφi : Ui → E2}.

Clearly, this action of R+ on E(M) is effective. Furthermore, we see that
two elements of E(M) are in the same S(E2)-orbit if and only if they differ
by a change of scale.

Given a Euclidean structure Φ for M , let Φ̂ be the unique complete
(E2, S(E2))-structure for M containing Φ.

Lemma 1. If Φ is a Euclidean structure for M , then Φ̂ is the disjoint
union of the Euclidean structures {kΦ : k > 0}.

Proof: Clearly, the Euclidean structures {kΦ : k > 0} are disjoint and

∪{kΦ : k > 0} ⊂ Φ̂.

Let φ : U → E2 be an arbitrary chart in Φ̂. We shall prove that φ is in kΦ
for some k > 0. Define a function f : U → R+ as follows: For each point
u of U , choose a chart φi : Ui → E2 of Φ such that u is in Ui. Then φφ−1

i

agrees with an element g of S(E2) in a neighborhood of u. Define f(u) to
be the scale factor of g. Observe that f(u) does not depend on the choice
of the chart φi, since if φj : Uj → E2 is another chart in Φ such that u is
in Uj , then

φφ−1
j = (φφ−1

i )(φiφ
−1
j )

in a neighborhood of u, and φiφ
−1
j agrees with an isometry of E2 in this

neighborhood. It is clear from the definition of f that f is locally constant;
therefore, f is constant, since U is connected.

Let k be the constant value of f . If φi : U → E2 is a chart in Φ such
that U and Ui overlap, then k−1φφ−1

i agrees with an element of I(E2) in a
neighborhood of each point of φi(U ∩ Ui). Therefore k−1φ is in Φ. Hence
φ is in kΦ. Thus

Φ̂ = ∪̇{kΦ : k > 0}.



§9.4. Moduli Spaces 393

Theorem 9.4.1. If M is a closed surface such that χ(M) = 0, then the
mapping Φ �→ Φ̂ induces a bijection from S(E2)\E(M) onto S(M).

Proof: If ξ is an S(E2) and Φ is in E(M), then ξ̂Φ = Φ̂. Hence, the
mapping Φ �→ Φ̂ induces a function

σ : S(E2)\E(M) → S(M).

Suppose that Φ and Φ′ are elements of E(M) such that Φ̂ = Φ̂′. By Lemma
1, there is a k > 0 such that Φ′ = kΦ. Hence Φ and Φ′ are in the same
S(E2)-orbit of E(M). Therefore σ is injective. Now let Ψ be an arbitrary
element of S(M). By Theorem 8.5.8, we have that Ψ contains a Euclidean
structure Φ for M . As Φ̂ = Ψ, we have that σ is surjective. Thus σ is a
bijection.

Moduli Space

Two (X, S(X))-structures Ψ and Ψ′ for M are said to be similar if and only
if (M,Ψ) and (M, Ψ′) are (X, S(X))-equivalent. Let M(M) be the set of
similarity equivalence classes of complete (X, S(X))-structures for M .

(1) If χ(M) = 0, then M(M) is in one-to-one correspondence with the
set of similarity classes of Euclidean structures for M by Theorem
9.4.1.

(2) If χ(M) < 0, then M(M) is the set of isometry classes of hyperbolic
structures for M .

The set M(M) is called the moduli space of Euclidean or hyperbolic struc-
tures for M .

We next study the relationship between S(M) and M(M). Let Hom(M)
be the group of homeomorphisms of M . Define a right action of Hom(M)
on S(M) as follows: If h : M → M is a homeomorphism and

Ψ = {ψi : Vi → X}
is an element of S(M), define Ψh to be the element of S(M) given by

Ψh = {ψih : h−1(Vi) → X}.

Theorem 9.4.2. If M is a closed surface such that χ(M) ≤ 0, then the
natural projection from S(M) to M(M) induces a bijection from the set
S(M)/Hom(M) onto M(M).

Proof: Let h : M → M be a homeomorphism and let

Ψ = {ψi : Vi → X}
be an element of S(M). Then for each i and j, we have

(ψih)(ψjh)−1 = ψiψ
−1
j .
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Hence h is an (X, S(X))-map from (M, Ψh) to (M, Ψ). As h is a bijec-
tion, (M, Ψh) and (M, Ψ) are (X, S(X))-equivalent. Hence, the natural
projection from S(M) to M(M) induces a surjection

µ : S(M)/Hom(M) → M(M).

Let Ψ and Ψ′ be similar elements of S(M). Then there is an (X, S(X))-
equivalence h : (M, Ψ′) → (M, Ψ). As h is a local homeomorphism and a
bijection, h is a homeomorphism. If ψi : Vi → X and ψj : Vj → X are
charts in Ψ and Ψ′, respectively, then ψihψ−1

j agrees in a neighborhood of
each point of its domain with an element of S(X). Therefore ψih is in Ψ′.
Hence Ψh = Ψ′. Thus Ψ and Ψ′ are in the same Hom(M)-orbit in S(M).
Hence µ is injective. Thus µ is a bijection.

Teichmüller Space

Let Hom1(M) be the group of all homeomorphisms of M homotopic to
the identity map of M . The Teichmüller space of Euclidean or hyperbolic
structures for M is defined to be the set

T (M) = S(M)/Hom1(M).

The group Hom1(M) is a normal subgroup of Hom(M). The quotient

Map(M) = Hom(M)/Hom1(M)

is called the full mapping class group of M . The action of Hom(M) on S(M)
induces an action of Map(M) on T (M); moreover, the quotient map from
T (M) to M(M) induces a bijection from T (M)/Map(M) onto M(M).

The Dehn-Nielsen Theorem

Choose a base point u of M and let h : M → M be a homeomorphism.
Then h induces an isomorphism

h∗ : π1(M, u) → π1(M, h(u)).

Let α : [0, 1] → M be a curve from u to h(u). Then α determines a change
of base point isomorphism

α∗ : π1(M, h(u)) → π1(M, u)

defined by
α∗([γ]) = [αγα−1].

The composite α∗h∗ is an automorphism of π1(M) = π1(M, u). Let
β : [0, 1] → M be another curve from u to h(u). Then β∗h∗ is also an
automorphism of π1(M). Moreover

β∗h∗ = β∗α−1
∗ α∗h∗ = (βα−1)∗α∗h∗.
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The automorphism (βα−1)∗ of π1(M) is just conjugation by [βα−1].
Let Inn(π1(M)) be the group of inner automorphisms of π1(M). Then

the quotient group

Out(π1(M)) = Aut(π1(M))/Inn(π1(M))

is called the outer automorphism group of π1(M). Let [h∗] be the coset
α∗h∗Inn(π1(M)) in Out(π1(M)). Then [h∗] does not depend on the choice
of the curve α. If h is homotopic to the identity map of M , then α∗h∗
is an inner automorphism of π1(M), and so [h∗] = 1. Thus, the mapping
h �→ [h∗] induces a function

ν : Map(M) → Out(π1(M)).

The next theorem is a basic theorem of surface theory.

Theorem 9.4.3. (The Dehn-Nielsen Theorem) If M is a closed surface
with χ(M) ≤ 0, then ν : Map(M) → Out(π1(M)) is an isomorphism.

Proof: We shall only prove that ν is a monomorphism. We begin by
showing that ν is a homomorphism. Let g, h : M → M be homeomor-
phisms, let α : [0, 1] → M be a curve from the base point u to h(u), and
let β : [0, 1] → M be a curve from u to g(u). Then βgα : [0, 1] → M is a
curve from u to gh(u). Hence

ν[gh] = (βgα)∗(gh)∗Inn(π1(M))
= β∗g∗α∗h∗Inn(π1(M))
= (β∗g∗)(α∗h∗)Inn(π1(M)) = ν[g]ν[h].

Thus ν is a homomorphism.
Let h : M → M be a homeomorphism such that ν[h] = 1 in Out(π1(M))

and let α : [0, 1] → M be a curve from u to h(u). Then there is a loop
γ : [0, 1] → M based at u such that α∗h∗ = γ∗. Hence h∗ = (α−1γ)∗. By
replacing α by γ−1α, we may assume that h∗ = α−1

∗ .
Now M has a cell structure with one 0-cell u, k 1-cells, and one 2-cell.

Let γi : [0, 1] → M , for i = 1, . . . , k, be characteristic maps for the 1-cells
of M . Then

hγi � α−1γiα � γi for each i.

Hence, there are homotopies Hi : [0, 1]2 → M from hγi to γi such that
Hi(0, t) = Hi(1, t) for all t and Hi(0, t) = Hj(0, t) for all t and all i, j.

Let h1 be the restriction of h to the 1-skeleton M1 of M . Define a
homotopy

H : M1 × [0, 1] → M

by H(γi(s), t) = Hi(s, t). Then H is well defined and a homotopy of h1 to
the inclusion map of M1 into M . As χ(M) ≤ 0, we have that π2(M) = 0.
Hence, we can extend H to a homotopy of h to the identity map of M .
Therefore [h] = 1 in Map(M). Thus ν is a monomorphism.
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Deformation Space

Let η : π1(M) → I(X) be a holonomy for M with respect to a complete
(X, S(X))-structure Ψ for M . The holonomy η depends on the choice of a
developing map for M . If η′ is another holonomy for M with respect to Ψ,
then there is a similarity ξ of X such that

η′(c) = ξη(c)ξ−1

for each c in π1(M).
Let [η] denote the orbit S(X)η under the left action of S(X) on the set

of homomorphisms Hom(π1(M), I(X)) by conjugation. Then [η] does not
depend on the choice of the developing map for M . Thus, the mapping
Ψ �→ [η] defines a function from S(M) into the set

S(X)\Hom(π1(M), I(X)).

Now by Theorem 8.5.9, the holonomy η maps π1(M) isomorphically
onto a discrete subgroup of I(X). A homomorphism in Hom(π1(M), I(X))
mapping π1(M) isomorphically onto a discrete subgroup of I(X) is called
a discrete faithful representation of π1(M) in I(X). Let D(π1(M), I(X))
be the set of discrete faithful representations of π1(M) in I(X). Then
D(π1(M), I(X)) is invariant under the action of S(X).

The deformation space of M is defined to be the set

D(M) = S(X)\D(π1(M), I(X)).

Note that the mapping Ψ �→ [η] defines a function from S(M) to D(M).
Let h : M → M be a homeomorphism and let δ : M̃ → X be the

developing map for M that determines the holonomy η. Let κ : M̃ → M
be the universal covering projection and let h̃ : M̃ → M̃ be a lift of h with
respect to κ. Then δh̃ : M̃ → X is a developing map for the (X, S(X))-
structure Ψh for M . We now compute the holonomy for M determined by
δh̃ in terms of η and h.

Choose a base point ũ of M̃ such that κ(ũ) = u. Let α : [0, 1] → M be a
loop based at u. Then α lifts to a unique curve α̃ in M̃ starting at ũ. Let
ṽ be the endpoint of α̃ and let τα be the unique covering transformation
of κ such that τα(ũ) = ṽ. Then there is a unique element gα of I(X) such
that

δτα = gαδ.

The holonomy η : π1(M, u) → I(X) is defined by η([α]) = gα.
Let u′ = h(u), ũ′ = h̃(ũ), and η′ : π1(M, u′) → I(X) be the holonomy

for M determined by δ. Then

κh̃τα = hκτα = hκ

and
κτhαh̃ = κh̃ = hκ.
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Now as
h̃τα(ũ) = h̃(ṽ) = τhαh̃(ũ),

we have that
h̃τα = τhαh̃.

Hence, we have
δh̃τα = δτhαh̃ = ghαδh̃.

Thus, the holonomy for M determined by δh̃ is the homomorphism

η′h∗ : π1(M, u) → I(X).

Note that η′ is defined relative to the base point u′ = h(u). We now
switch the base point back to u. Let γ̃ : [0, 1] → M̃ be a curve from ũ
to ũ′ and set γ = κγ̃. Then γ : [0, 1] → M is a curve from u to u′. Let
β : [0, 1] → M be a loop based at u′ and let β̃ : [0, 1] → M̃ the lift of β
starting at ũ′. Then γβγ−1 : [0, 1] → M is a loop based at u and the curve

γ̃β̃(τβ γ̃−1) : [0, 1] → M̃

is the lift of γβγ−1 starting at ũ. Observe that

γ̃β̃(τβ γ̃−1)(1) = τβ(ũ).

Hence τγβγ−1 = τβ . Thus η′ = ηγ∗ where

γ∗ : π1(M, u′) → π1(M, u)

is the change of base point isomorphism. Therefore, the holonomy for M
determined by δh̃ is

ηγ∗h∗ : π1(M, u) → I(X).

Now suppose that h : M → M is homotopic to the identity map of M .
Then the automorphism

γ∗h∗ : π1(M) → π1(M)

is conjugation by an element b of π1(M). If c is in π1(M), then

ηγ∗h∗(c) = η(bcb−1) = η(b)η(c)η(b)−1.

Therefore, we have that
ηγ∗h∗ = η(b) · η.

Hence Ψ and Ψh determine the same element [η] of D(M). Thus, the
mapping Ψ �→ [η] induces a function ρ : T (M) → D(M) defined by

ρ([Ψ]) = [η],

where [Ψ] = ΨHom1(M).

Theorem 9.4.4. If M is a closed surface such that χ(M) ≤ 0, then the
function ρ : T (M) → D(M), defined by ρ([Ψ]) = [η], where η is a holonomy
for (M, Ψ), is a bijection.
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Proof: We first show that ρ is injective. Let Ψ1 and Ψ2 be complete
(X, S(X))-structures for M such that ρ([ψ1]) = ρ([Ψ2]). Let δi : M̃ → X
be a developing map for (M, Ψi) and let

ηi : π1(M, u) → I(X)

be the holonomy for M determined by δi for i = 1, 2. Then ρ([Ψi]) = [ηi]
for i = 1, 2. Therefore [η1] = [η2]. Hence, there is a similarity ξ of X such
that η2 = ξ · η1. Now ξδ1 is also a developing map for (M, Ψ1); moreover,
ξδ1 determines the holonomy ξ · η1. Hence, by replacing δ1 with ξδ1, we
may assume that η1 = η2.

Let Γ = Im(ηi) for i = 1, 2. Then Γ acts freely and discontinuously
on X by Theorem 8.5.9. Let δi : M → X/Γ be the map induced by δi

for i = 1, 2. Then δi is an (X, S(X))-equivalence from (M, Ψi) to X/Γ for
i = 1, 2. Let h = δ

−1
2 δ1. Then h is an (X, S(X))-equivalence from (M, Ψ1)

to (M, Ψ2). Therefore Ψ2h = Ψ by Theorem 9.4.2.
Let Γxi = δi(u) and let

ϑi : π1(X/Γ, Γxi) → Γ

be the holonomy for X/Γ for i = 1, 2. Then ηi is the composite

π1(M)
(δi)∗−→ π1(X/Γ) ϑi−→ Γ.

Let γ̃ : [0, 1] → X be a curve from x1 to x2 and set γ = πγ̃. Then
γ : [0, 1] → X/Γ is a curve from Γx1 to Γx2 and ϑ2 = ϑ1γ∗. Hence

(δ
−1
2 γ−1)∗h∗ = (δ

−1
2 γ−1)∗(δ

−1
2 )∗(δ1)∗

= (δ
−1
2 )∗γ−1

∗ (δ1)∗
= η−1

2 ϑ2γ
−1
∗ ϑ−1

1 η1

= η−1
2 η1

= 1.

Therefore h is homotopic to the identity map of M by Theorem 9.4.3.
Hence [Ψ1] = [Ψ2]. Thus ρ is injective.

We now show that ρ is surjective. Let η : π1(M) → I(X) be a dis-
crete faithful representation of π1(M) in I(X) and set Γ = Im(η). Since
M has either a Euclidean or hyperbolic structure, π1(M) is torsion-free.
Therefore Γ is a torsion-free discrete subgroup of I(X). Hence Γ acts freely
and discontinuously on X, and so X/Γ is either a Euclidean or hyperbolic
surface.

Let ϑ : π1(X/Γ) → Γ be the holonomy for X/Γ. Then ϑ−1η : π(M) →
π1(X/Γ) is an isomorphism. Consequently M and X/Γ are homeomorphic.
By Theorem 9.4.3, there is a homeomorphism h : M → X/Γ such that

α∗h∗ = ϑ−1ηι,

where α∗ is a change of base point isomorphism and ι is an inner automor-
phism of π1(M).
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Let Ψ = {ψi : Vi → X} be the (X, S(X))-structure for X/Γ. Then

Ψh = {ψih : h−1(Vi) → X}
is a complete (X, S(X))-structure for M . Lift h to a homeomorphism
h̃ : M̃ → X. Then h̃ is a developing map for (M, Ψh). The holonomy for M
determined by h̃ is ϑβ∗h∗ where β∗ is a change of base point isomorphism.
Therefore, we have

ρ[Ψh]) = [ϑβ∗h∗]
= [ϑβ∗α−1

∗ α∗h∗]
= [ϑ(βα)−1

∗ α∗h∗]
= [ϑα∗h∗] = [η].

Hence ρ is surjective. Thus ρ is a bijection.

The group Aut(π1(M)) acts on D(π1(M), I(X)) on the right. Moreover,
if ζ is an automorphism of π1(M) and η is in D(π1(M), I(X)) and ξ is a
similarity of X, then

(ξ · η)ζ = ξ · (ηζ).

Hence, the action of Aut(π1(M)) on D(π1(M), I(X)) induces an action of
Aut(π1(M)) on D(M). Let ι be an inner automorphism of π1(M). Then
there is a b in π1(M) such that ι(c) = bcb−1 for all c in π1(M). If η is in
D(π1(M), I(X)), then

ηι(c) = η(bcb−1) = η(b)η(c)η(b)−1.

Hence ηι = η(b) · η. Therefore Inn(π1(M)) acts trivially on D(M). Hence,
the action of Aut(π1(M)) on D(M) induces an action of Out(π1(M)) on
D(M). Let

O(M) = D(M)/Out(π1(M)).

Theorem 9.4.5. If M is a closed surface such that χ(M) ≤ 0, then the
function ρ : T (M) → D(M) induces a bijection ρ : M(M) → O(M).

Proof: Let Ψ be a complete (X, S(X))-structure for M and let h : M → M
be a homeomorphism. Let η : π1(M) → I(X) be a holonomy for (M, Ψ).
Then there is a change of base point isomorphism γ∗ such that ηγ∗h∗ :
π1(M) → I(X) is the holonomy for Ψh. Hence

ρ([Ψ][h]) = ρ([Ψh])
= [ηγ∗h∗]
= [η][h∗]
= ρ([Ψ])ν([h]).

By Theorems 9.4.3 and 9.4.4, we have that ρ induces a bijection from
T (M)/Map(M) onto D(M)/Out(π1(M)). Thus ρ induces a bijection from
M(M) onto O(M).
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We now define a topology for each of the sets D(M), O(M), T (M),
and M(M). First, topologize π1(M) with the discrete topology and the
set C(π1(M), I(X)) of all functions from π1(M) to I(X) with the compact-
open topology. Then C(π1(M), I(X)) is the cartesian product I(X)π1(M)

with the product topology.
Next, we topologize D(π1(M), I(X)) with the subspace topology inher-

ited from C(π1(M), I(X)). Now we topologize D(M) and O(M) with the
quotient topology inherited from D(π1(M), I(X)) and D(M), respectively.
Finally, we topologize T (M) and M(M) so that ρ : T (M) → D(M) and
ρ : M(M) → O(M) are homeomorphisms. Then M(M) has the quotient
topology inherited from T (M).

Remark: It is a fundamental theorem of Teichmüller space theory that
Teichmüller space T (M) is homeomorphic to a finite dimensional Euclidean
space. Moreover T (M) has a finitely compact metric such that the map-
ping class group Map(M) acts discontinuously on T (M) by isometries.
Therefore, the orbit space T (M)/Map(M) has a complete metric. Now
T (M)/Map(M) is homeomorphic to M(M). Therefore, moduli space
M(M) has a complete metric.

Exercise 9.4

1. Let Φ and Φ′ be Euclidean structures for M . Prove that Φ̂ and Φ̂′ are similar
if and only if (M, Φ) and (M, Φ′) are similar metric spaces.

2. Let Φ and Φ′ be hyperbolic structures for M . Prove that Φ and Φ′ are
similar if and only if (M, Φ) and (M, Φ′) are isometric.

3. Let Φ and Φ′ be hyperbolic structures for M . Prove that [Φ] = [Φ′] in T (M)
if and only if there is an isometry from (M, Φ) to (M, Φ′) that is homotopic
to the identity map of M .

4. Let h : M → M be a homeomorphism of a surface M and let α : [0, 1] → M
be a curve from u to h(u). Prove that if h is homotopic to the identity map
of M , then α∗h∗ is an inner automorphism of π1(M, u).

5. Let M be a closed surface. Prove that the natural action of Hom1(M) on
M is transitive.

6. Let u be a point of a closed surface M and let h : M → M be a homeomor-
phism. Prove that h is homotopic to a homeomorphism g : M → M such
that g(u) = u.

7. Prove that Nielsen’s homomorphism ν is surjective if M is a torus.

8. Prove that Nielsen’s homomorphism ν is surjective if M is a Klein bottle.
See Exercises 9.5.7 and 9.5.8.

9. Let M be a closed surface. Prove that Aut(π1(M)) is a countable group.
Conclude that Out(π1(M)) is a countable group.

10. Prove that C(π1(M), I(X)) is the cartesian product I(X)π1(M) with the prod-
uct topology.
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§9.5. Closed Euclidean Surfaces

In this section, we classify the Euclidean structures on the torus T 2. By
definition, T 2 is the orbit space E2/Z2. Therefore T 2 has a Euclidean
structure as a Euclidean space-form. This Euclidean structure on T 2 is
far from unique. We shall prove that T 2 has an uncountable number of
nonsimilar Euclidean structures.

Theorem 9.5.1. The deformation space D(T 2) is homeomorphic to the
upper half-plane U2; moreover, the right action of the group Aut(π1(T 2))
on D(T 2) corresponds to the right action of GL(2, Z) on U2 given by

z ·
(

a b
c d

)
=

⎧⎨⎩
az+c
bz+d if ad − bc = 1,

az+c
bz+d if ad − bc = −1.

Proof: We shall identify π1(T 2) with Z2 and E2 with C. By Theorem
5.4.4, every homomorphism in D(Z2, I(C)) maps Z2 into the subgroup T(C)
of translations of C. By Corollary 1 of Theorem 5.2.4, we may identify T(C)
with C.

We now show that Hom(Z2, C) is homeomorphic to C2. Define
h : Hom(Z2, C) → C2

by the formula
h(η) = (η(1, 0), η(0, 1)).

As each component of h is an evaluation map, h is continuous. The map
h is obviously an isomorphism of groups. To see that h−1 is continuous,
we regard Hom(Z2, C) to be a subspace of the cartesian product CZ

2
. Now

h−1 : C2 → CZ
2

is defined by
h−1(z, w)(m, n) = mz + nw.

Hence, each component of h−1, given by (z, w) �→ mz + nw, is continuous
and so h−1 is continuous. Thus h is a homeomorphism.

Let ξ be a similarity of C. Then there is a nonzero complex number u
and a complex number v such that

ξ(z) =
{

uz + v if ξ preserves orientation,
uz + v if ξ reverses orientation.

Let τ be the translation of C by w. If ξ preserves orientation, then
ξτξ−1(z) = ξτ(u−1z − u−1v)

= ξ(u−1z − u−1v + w)
= z + uw.

If ξ reverses orientation, then
ξτξ−1(z) = ξτ(u−1z − u−1v)

= ξ(u−1z − u−1v + w)
= z + uw.
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Hence, the action of S(C) on T(C) by conjugation corresponds under the
identification of T(C) with C to multiplication by nonzero complex numbers
of C possibly followed by complex conjugation. Moreover, the left action
of S(C) on Hom(Z2, C) corresponds under h to multiplication by nonzero
complex numbers on C2 possibly followed by complex conjugation on C2.

By Theorem 5.3.2, a homomorphism η : Z2 → C maps Z2 isomorphically
onto a discrete subgroup of C if and only if η(1, 0) and η(0, 1) are linearly
independent over R. Hence D(Z2, C) corresponds under h to the subset
D of C2 of all pairs (z, w) such that z, w are linearly independent over R.
Now define f : D → U2 by

f(z, w) =
{

z/w if Im(z/w) > 0,
z/w if Im(z/w) < 0.

Then f is continuous and induces a continuous bijection

g : S(C)\D → U2.

As the mapping z �→ (z, 1) from U2 to D is continuous, we see that g−1 is
continuous. Therefore g is a homeomorphism. Thus D(T 2) is homeomor-
phic to U2.

We identify Aut(Z2) with the group GL(2, Z) so that a matrix
(

a b
c d

)
in GL(2, Z) represents the automorphism of Z2 that maps (1, 0) to (a, c) and
(0, 1) to (b, d). Then the right action of Aut(Z2) on Hom(Z2, C) corresponds
under the isomorphism

h : Hom(Z2, C) → C2

to the right action of GL(2, Z) on C2 given by

(z, w)
(

a b
c d

)
= (az + cw, bz + dw).

Hence, the right action of GL(2, Z) on S(C)\D corresponds under the home-
omorphism

g : S(C)\D → U2

to the right action of GL(2, Z) on U2 given by

z ·
(

a b
c d

)
=

⎧⎨⎩
az+c
bz+d if ad − bc = 1,

az+c
bz+d if ad − bc = −1.

Theorem 9.5.2. The moduli space M(T 2) is homeomorphic to the hyper-
bolic triangle �(i, 1

2 +
√

3
2 i,∞) in U2.

Proof: If
(

a b
c d

)
is in GL(2, Z), then

z ·
(

a b
c d

)
=
(

a c
b d

)
· z,
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where GL(2, Z) acts on the left by hyperbolic isometries of U2. Hence, the
orbit space U2/GL(2, Z) is the same as the orbit space PGL(2, Z)\U2. Now
the triangle �(i, 1

2+
√

3
2 i,∞) is a fundamental polygon for PGL(2, Z); more-

over, PGL(2, Z) is a triangle reflection group with respect to �. Therefore
PGL(2, Z)\U2 is homeomorphic to � by Theorem 6.6.7. Now O(T 2) is
homeomorphic to U2/GL(2, Z) by Theorem 9.5.1. Hence M(T 2) is home-
omorphic to the triangle �.

Let P be the unit square in C with vertices 0, 1, 1+ i, i. The Klein bottle
K2 is, by definition, the surface obtained by gluing the opposite sides of P
by the translation τ1, defined by τ1(z) = z + 1, and the glide-reflection γ1,
defined by γ1(z) = −z + 1 + i. This side-pairing of P is proper, and so K2

has a Euclidean structure by Theorem 9.2.2.
We leave it as an exercise to show that τ1 and γ1 generate a discrete

subgroup Γ1 of I(C) and P is a fundamental polygon for Γ1. The group Γ1
is called the Klein bottle group. The group Γ1 is isomorphic to π1(K2) by
Theorems 6.6.7, 6.6.9, and 8.1.4. Like the torus T 2, the Klein bottle K2

has an uncountable number of nonsimilar Euclidean structures. The proof
of the next theorem is left as an exercise for the reader.

Theorem 9.5.3. The deformation space D(K2) is homeomorphic to U1;
moreover, Out(π1(K2)) acts trivially on D(K2) and therefore the moduli
space M(K2) is also homeomorphic to U1.

Exercise 9.5

1. Let P be the parallelogram in C, with vertices 0, 1, z, w in positive order
around P , and let M be the torus obtained from P by gluing the opposite
sides of P by translations. Prove that the class of M in T (T 2) corresponds

to the point w ·
(

0 1
1 0

)
= w/|w|2 of U2 via the bijections of Theorems

9.4.4 and 9.5.1.

2. Show that τ1 and γ2
1 generate a discrete subgroup of T(C) of index two in

the Klein bottle group Γ1. Conclude that Γ1 is a discrete subgroup of I(C).

3. Prove that the square P in C, with vertices 0, 1, 1 + i, i, is a fundamental
polygon for the Klein bottle group Γ1.

4. Prove that a discrete subgroup Γ of I(C) is isomorphic to Γ1 if and only if
there are v, w in C such that v, w are linearly independent over R and Γ is
generated by τ and γ defined by τ(z) = z + v and γ(z) = −(v/v)z + v + w.

5. Prove that D(K2) is homeomorphic to U1.

6. Let P be the parallelogram in C, with vertices 0, 1, z, w in positive order
around P , and let M be the Klein bottle obtained from P by gluing the
opposite sides [0, w] and [1, z] by a translation and [0, 1] and [w, z] by a
glide-reflection. Prove that the class of M in T (K2) corresponds to the
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point Im(w) of U1 under the composite of the bijections of Theorems 9.4.4
and 9.5.3.

7. Prove that τ1 generates a characteristic subgroup of Γ1 and that Γ1/〈τ1〉 is
an infinite cyclic group generated by 〈τ1〉γ1.

8. Prove that Out(Γ1) is a Klein four-group generated by the cosets αInn(Γ1)
and βInn(Γ1), where α(τ1) = τ1 and α(γ1) = τ1γ1, and β(τ1) = τ1 and
β(γ1) = γ−1

1 .

9. Prove that Out(π1(K2)) acts trivially on D(K2).

10. Let κ : M(K2) → M(T 2) be the function defined by mapping the class of a
Klein bottle to the class of its orientable double cover. Prove that κ is well
defined and that κ is neither surjective nor injective.

§9.6. Closed Geodesics

In this section, we study the geometry of closed geodesics of hyperbolic
surfaces.

Definition: A period of a geodesic line λ : R → X is a positive real
number p such that λ(t + p) = λ(t) for all t in R. A geodesic line λ is
periodic if it has a period.

Theorem 9.6.1. A periodic geodesic line λ : R → X has a smallest period
p1 and every period of λ is a multiple of p1.

Proof: Let P be the set of all real numbers p such that λ(t + p) = λ(t)
for all t. Then P consists of all the periods of λ, their negatives, and zero.
The set P is clearly a subgroup of R. Now since λ is a geodesic line, there
is an s > 0 such that λ restricted to the closed interval [−s, s] is a geodesic
arc. Therefore λ is injective on [−s, s]. If p is a nonzero element of P , then
λ(p) = λ(0), and so p cannot lie in the open interval (−s, s). Therefore 0
is open in P , and so P is a discrete subgroup of R. By Theorem 5.3.2, the
group P is infinite cyclic. Let p1 be the positive generator of P . Then p1
is the smallest period of λ, and every period of λ is a multiple of p1.

Definition: A closed geodesic in a metric space X is the image of a
periodic geodesic line λ : R → X.

Example: Let M = Hn/Γ be a space-form and let π : Hn → Hn/Γ be the
quotient map. Let h be a hyperbolic element of Γ with axis L in Hn, and
let λ̃ : R → Hn be a geodesic line whose image is L. Then h acts on L as a
translation by a distance p = d(λ̃(0), hλ̃(0)). Therefore λ = πλ̃ : R → M is
a periodic geodesic line with period p. Hence, the set C = λ(R) is a closed
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geodesic of M . Observe that
C = λ(R) = πλ̃(R) = π(L).

Therefore, the axis L of h projects onto the closed geodesic C of M .

Definition: An element h of a group Γ is primitive in Γ if and only if h
has no roots in Γ, that is, if h = gm, with g in Γ, then m = ±1.

Theorem 9.6.2. Let C be a closed geodesic of a space-form M = Hn/Γ.
Then there is a primitive hyperbolic element h of Γ whose axis projects onto
C. Moreover, the axis of a hyperbolic element f of Γ projects onto C if
and only if there is an element g of Γ and a nonzero integer k such that
f = ghkg−1.

Proof: Since C is a closed geodesic, there is a periodic geodesic line
λ : R → M whose image is C. Let λ̃ : R → Hn be a lift of λ with respect
to the quotient map π : Hn → Hn/Γ. Then λ̃ maps R isometrically
onto a hyperbolic line L of Hn. Let p be the smallest period of λ. Then
πλ̃(p) = πλ̃(0). Hence, there is a nonidentity element h of Γ such that
λ̃(p) = hλ̃(0). Now hλ̃ : R → Hn also lifts λ and agrees with λ̂ : R → Hn,
defined by

λ̂(t) = λ̃(t + p),

at t = 0. As λ̂ also lifts λ, we have that hλ̃ = λ̂ by the unique lifting
property of the covering projection π : Hn → Hn/Γ. Therefore h leaves L
invariant. Hence h is hyperbolic with axis L. Moreover h is primitive in Γ,
since

p = d(λ̃(0), hλ̃(0))

is the smallest period of λ. Thus h is a primitive hyperbolic element of Γ
whose axis projects onto C.

Let f be a hyperbolic element of Γ and suppose that g is an element of
Γ and k is a nonzero integer such that f = ghkg−1. Then the axis of f is
gL. Therefore, the axis of f projects onto C.

Conversely, suppose that the axis K of f projects onto C. Then there
exists an element g of Γ such that K = gL. Now g−1fg is a hyperbolic
element of Γ with axis L. Hence g−1fg acts as a translation on L by a
signed distance, say q. Now |q| is a period of λ, and so there is a nonzero
integer k such that q = kp by Theorem 9.6.1. Hence g−1fgh−k fixes each
point of L. As Γ acts freely on Hn, we have that g−1fgh−k = 1. Therefore
g−1fg = hk and so f = ghkg−1.

Theorem 9.6.3. Let M = Hn/Γ be a compact space-form. Then every
nonidentity element of Γ is hyperbolic.

Proof: Since Γ is discrete and M is compact, every element of Γ is either
elliptic or hyperbolic by Theorem 6.6.6. Moreover, since Γ acts freely on
Hn, an elliptic element of Γ must be the identity.
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Closed Curves

Let M = Hn/Γ be a space-form. A closed curve γ : [0, 1] → M is said to be
elliptic, parabolic, or hyperbolic if and only if for a lift γ̃ : [0, 1] → Hn, the
element g of Γ such that γ̃(1) = gγ̃(0) is elliptic, parabolic, or hyperbolic,
respectively. This does not depend on the choice of the lift γ̃, since if
γ̂ : [0, 1] → Hn is another lift of γ, then γ̂ = fγ̃ for some f in Γ and so

fgf−1γ̂(0) = fgf−1fγ̃(0)
= fgγ̃(0)
= fγ̃(1) = γ̂(1).

Note that a closed curve γ : [0, 1] → M is elliptic if and only if γ is null
homotopic (nonessential). Hence, an essential closed curve γ : [0, 1] → M
is either parabolic or hyperbolic. If M is compact, then every essential
closed curve γ : [0, 1] → M is hyperbolic by Theorem 9.6.3.

Definition: Two closed curves α, β : [0, 1] → X are freely homotopic if
and only if there is a homotopy H : [0, 1]2 → X from α to β such that
H(0, t) = H(1, t) for all t.

Theorem 9.6.4. Let γ : [0, 1] → M be a hyperbolic closed curve in a
complete hyperbolic n-manifold M . Then there is a periodic geodesic line
λ : R → M that is unique up to composition with a translation in R, and
there is a unique period p of λ such that γ is freely homotopic to the closed
curve λp : [0, 1] → M defined by λp(t) = λ(pt).

Proof: Since any closed curve freely homotopic to γ is in the same con-
nected component of M as γ, we may assume that M is connected. As
M is complete, we may assume that M is a space-form Hn/Γ by Theo-
rem 8.5.9. Let γ̃ : [0, 1] → Hn be a lift of γ with respect to the quotient
map π : Hn → Hn/Γ. As γ is hyperbolic, the element h of Γ such that
hγ̃(0) = γ̃(1) is hyperbolic.

Let L be the axis of h in Hn and let λ̃ : R → Hn be a geodesic line
parameterizing L in the same direction that h translates L. Then λ = πλ̃
is a geodesic line in M . Let p > 0 be such that

hλ̃(t) = λ̃(t + p).

Applying π, we find that

λ(t) = λ(t + p).

Thus p is a period for λ.
Define a homotopy H̃ : [0, 1]2 → Hn from γ̃ to λ̃p by the formula

H̃(s, t) =
(1 − t)γ̃(s) + tλ̃p(s)

|||(1 − t)γ̃(s) + tλ̃p(s)|||
.
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Observe that

hH̃(0, t) =
h((1 − t)γ̃(0) + tλ̃(0))
|||(1 − t)γ̃(0) + tλ̃(0)|||

=
(1 − t)hγ̃(0) + thλ̃(0)

|||h((1 − t)γ̃(0) + tλ̃(0))|||

=
(1 − t)γ̃(1) + tλ̃(p)

|||(1 − t)γ̃(1) + tλ̃(p)|||
= H̃(1, t).

Let H = πH̃. Then H(0, t) = H(1, t) for all t. Hence γ is freely homotopic
to λp via H.

We now prove uniqueness. Let µ : R → M be a periodic geodesic line
and let q be a period of µ such that γ is freely homotopic to µq. Let
G : [0, 1]2 → M be a homotopy from γ to µq such that G(0, t) = G(1, t) for
all t, and let G̃ : [0, 1]2 → Hn be a lift of G such that γ̃(s) = G̃(s, 0) for
all s. As hγ̃(0) = γ̃(1), we have

hG̃(0, t) = G̃(1, t)

for all t by unique path lifting.
Let µ̃ : R → Hn be the lift of µ such that µ̃(0) = G̃(0, 1). Then G̃ is a

homotopy from γ̃ to µ̃q. Hence

hµ̃(0) = hG̃(0, 1) = G̃(1, 1) = µ̃(q).

Now for each integer k, we have that γk is freely homotopic to µkq, and
the above argument shows that hkµ̃(0) = µ̃(kq). Hence, we have

hµ̃((k − 1)q) = µ̃(kq).

Therefore h maps the geodesic segment [µ̃((k−1)q), µ̃(kq)] onto the geodesic
segment [µ̃(kq), µ̃((k+1)q)] for each integer k. Thus h leaves the hyperbolic
line µ̃(R) invariant, and so µ̃(R) = L. As hµ̃(0) = µ̃(q), we have p = q,
and µ and λ differ by a translation of R.

Definition: A closed curve γ : [a, b] → X is simple if and only if γ
is injective on the interval [a, b). A closed geodesic in a metric space X,
defined by a periodic line λ : R → X, with smallest period p, is simple if
and only if the restriction of λ to the closed interval [0, p] is a simple closed
curve.

Theorem 9.6.5. Let γ : [0, 1] → M be a hyperbolic, simple, closed curve
in a complete, orientable, hyperbolic surface M . Then there is a periodic
geodesic line λ : R → M that is unique up to composition with a translation
in R, and there is a unique period p of λ such that γ is freely homotopic to
the closed curve λp : [0, 1] → M defined by λp(t) = λ(pt). Furthermore p
is the smallest period of λ and λp is simple.
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Proof: All but the last sentence of the theorem follows from Theorem
9.6.4. As in the proof of Theorem 9.6.4, let γ̃ : [0, 1] → H2 be a lift of
γ with respect to the quotient map π : H2 → H2/Γ, and let h be the
hyperbolic element of Γ such that hγ̃(0) = γ̃(1). Let C = γ([0, 1]). Then
C is homeomorphic to S1. Let C̃ be the component of π−1(C) containing
γ̃(0). Then we have

C̃ = ∪{hkγ̃([0, 1]) : k ∈ Z}

by unique path lifting.
Since γ represents an element of infinite order in π1(M), the covering

C̃ of C is universal, and so C̃ is homeomorphic to R. Let L be the axis
of h in H2. We now pass to the projective disk model D2. Because of
the attractive-repulsive nature of the endpoints of L in D2 with respect
to h, the closure of C̃ in D2 is the union of C̃ and the two endpoints of
L. Therefore, the closure of C̃ in D2 is homeomorphic to a closed interval
whose interior is C̃ and whose endpoints are those of L.

Let λ̃ : R → D2 be a geodesic line parameterizing L in the same direction
that h translates L, and let p > 0 be such that

hλ̃(t) = λ̃(t + p).

Then λ = πλ̃ is a geodesic line with period p, and γ is freely homotopic to
λp by the proof of Theorem 9.6.4.

Let q be the smallest period of λ. We now show that λq : [0, 1] → M
is simple. On the contrary, suppose that λq is not simple. Then λq must
cross itself transversely. Hence, there is an element g of Γ and another lift
gλ̃ : R → D2 of λ such that the hyperbolic line gL = gλ̃(R) intersects L at
one point. As the endpoints of C̃ and gC̃ link, C̃ and gC̃ must intersect.
See Figure 9.6.1. But C̃ and gC̃ are distinct components of π−1(C) and so
are disjoint, which is a contradiction. Thus λq is simple.

Figure 9.6.1. Lifts of two simple closed curves on a closed hyperbolic surface
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Let m = p/q. Then λp = λm
q . Assume that m > 1. We shall derive a

contradiction. Let g be the element of Γ such that gλ̃(0) = λ̃(q). By unique
path lifting, we have

λ̃qgλ̃q · · · gm−1λ̃q = λ̃p.

Therefore, we have

gmλ̃(0) = gm−1λ̃(q) = λ̃(p) = hλ̃(0).

Hence h = gm. Consequently g has the same axis as h, and so g translates
along L a distance q in the same direction as h.

Now, without loss of generality, we may assume that L is the line
(−e2, e2) of D2. Then C̃ divides D2 into two components, the left one
that contains −e1 and the right one that contains e1. Observe that gC̃ is
a component of π−1(C) different from C̃ and so must be in either the left
or right component of D2 − C̃. Say gC̃ is in the right component. Likewise
gC̃ divides D2 into two components, the left one that contains −e1 and
the right one that contains e1. Moreover g maps the right component of
D2 − C̃ onto the right component of D2 −gC̃ because g leaves invariant the
right component of S1 − {±e2}. Hence g2C̃ is in the right component of
D2 − C̃. By induction, we deduce that gmC̃ = C̃ is in the right component
of D2 − C̃, which is a contradiction. Therefore m = 1 and p = q. Thus γ
is freely homotopic to the simple, closed, geodesic curve λp.

Let γ : [0, 1] → M be a hyperbolic, simple, closed curve in a complete
orientable surface M . By Theorem 9.6.5, there is a periodic geodesic line
λ : R → M , with smallest period p, that is unique up to composition with a
translation in R, such that γ is freely homotopic to λp : [0, 1] → M defined
by λp(t) = λ(pt). Moreover λp is simple. The simple closed geodesic λ(R)
of M is said to represent the simple closed curve γ.

Definition: Two curves α, β : [0, 1] → X are homotopically distinct if and
only if α is not freely homotopic to β±1.

Theorem 9.6.6. Let α, β : [0, 1] → M be disjoint, homotopically distinct,
hyperbolic, simple, closed curves in a complete, orientable, hyperbolic sur-
face M . Then α and β are represented by disjoint, simple, closed geodesics
of M .

Proof: On the contrary, suppose that the simple closed geodesics repre-
senting α and β intersect. We may assume that M is a space-form H2/Γ.
Then there are lifts K and L of the geodesics in the universal cover H2 that
intersect. Now K and L do not coincide, since α and β are homotopically
distinct. Therefore K and L intersect at one point.

Let A = α([0, 1]) and B = β([0, 1]). Then there are lifts Ã and B̃ of A
and B, respectively, that have the same endpoints as K and L, respectively.
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Consequently Ã and B̃ must intersect. See Figure 9.6.1. Therefore A and
B intersect, which is a contradiction. Thus, the simple closed geodesics
representing α and β are disjoint.

Theorem 9.6.7. Let α, β : [0, 1] → M be homotopically distinct, hyper-
bolic, simple, closed curves in a complete, orientable, hyperbolic surface M
whose images meet transversely at a single point. Then the simple closed
geodesics of M , representing α and β, meet transversely at a single point.

Proof: We may assume that M is a space-form H2/Γ. Let π : H2 → H2/Γ
be the quotient map. Let A = α([0, 1]), B = β([0, 1]), and Ã and B̃
be components of π−1(A) and π−1(B), respectively, such that Ã and B̃
intersect. Let g and h be the hyperbolic elements of Γ that leave Ã and B̃
invariant, respectively, and let K, L be the axis of g, h, respectively.

We now show that Ã and B̃ meet transversely at a single point. As A
and B meet transversely, Ã and B̃ also meet transversely. Suppose that Ã
and B̃ meet at two points x̃ and ỹ. Then π(x̃) = x = π(ỹ). Hence, there
exist nonzero integers k and 
 such that gkx̃ = ỹ = h
x̃. Therefore gk = h
,
and so K = L. Hence α and β or α and β−1 are homotopic by Theorem
9.6.5, which is a contradiction. Thus Ã and B̃ meet transversely at a single
point x̃. Therefore K and L meet at a single point z̃.

Next, we show that the geodesics C = π(K) and D = π(L), representing
α and β, meet at a single point. Suppose that C and D meet at points z and
w with π(z̃) = z. Let w̃ be a point of L such that π(w̃) = w. Then there is
an element f of Γ such that fK meets L at a single point w̃. Consequently
fÃ meets B̃ at a point ỹ. Then π(ỹ) = x. As ỹ is in B̃, there is an integer
m such that ỹ = hmx̃. Now since fÃ and hmÃ meet at ỹ, we have that
fÃ = hmÃ. Therefore fK = hmK. As K and L meet at the point z̃, we
have that hmK and L meet at the point hmz̃. Therefore w̃ = hmz̃. Hence
w = z. Thus C and D meet transversely at a single point.

Exercise 9.6

1. Let Bn/Γ be a space-form and let g and h be nonidentity elements of Γ with
h hyperbolic. Prove that the following are equivalent:

(1) The elements g and h are both hyperbolic with the same axis.

(2) The elements g and h are both powers of the same element of Γ.

(3) The elements g and h commute.

(4) The elements g and h have the same fixed points in Sn−1.

(5) The elements g and h have a common fixed point in Sn−1.

2. Let Bn/Γ be a compact space-form. Prove that every elementary subgroup
of Γ is cyclic.
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3. Let X be a geometric space and let M = X/Γ be a space-form. Let λ : R →
M be a periodic geodesic line with smallest period p. Prove that there are
only finitely many numbers t in the interval [0, p] such that λ(t) = λ(s) with
0 ≤ s < t. Conclude that a closed geodesic of M intersects itself only finitely
many times.

4. Let X = Sn, En, or Hn, and let M = X/Γ be a space-form. Let π : X →
X/Γ be the quotient map. Prove that a closed geodesic C of M is simple if
and only if π−1(C) is a disjoint union of geodesics of X.

5. Let γ : [0, 1] → M be an essential closed curve in a complete Euclidean
n-manifold M . Prove that there is a periodic geodesic line λ : R → M and
a unique period p of λ such that γ is freely homotopic to the closed curve
λp : [0, 1] → M defined by λp(t) = λ(pt).

6. Let γ : [0, 1] → M be an essential, simple, closed curve in a complete,
orientable, Euclidean surface M . Prove that there is a periodic geodesic line
λ : R → M and a unique period p of λ such that γ is freely homotopic to
the closed curve λp : [0, 1] → M defined by λp(t) = λ(pt). Furthermore p is
the smallest period of λ and λp is simple.

7. Let γ and λp be as in Theorem 9.6.4. Prove that |λp| ≤ |γ|. Conclude that
λp has minimal length in its free homotopy class.

8. Prove that the infimum of the set of lengths of essential closed curves in a
compact hyperbolic n-manifold M is positive.

9. Let X be a geometric space and let M = X/Γ be a space-form. Let λ, µ :
R → M be periodic geodesic lines such that λ(R) = µ(R). Prove that there
is an isometry ξ of R such that µ = λξ. Conclude that the length of the
closed geodesic λ(R) is well defined to be the smallest period of λ.

10. Let M = Hn/Γ be a compact hyperbolic space-form. Prove that for each
� > 0, there are only finitely many closed geodesics in M of length ≤ �.

§9.7. Closed Hyperbolic Surfaces

In this section, we describe the Teichmüller space of a closed orientable
surface of genus n > 1. The next theorem is a basic theorem of the topology
of closed surfaces.

Theorem 9.7.1. If M is a closed orientable surface of genus n > 1, then

(1) the maximum number of disjoint, homotopically distinct, essential,
simple, closed curves in M is 3n − 3; and

(2) the complement in M of a maximal number of disjoint, homotopically
distinct, essential, simple, closed curves in M is the disjoint union of
2n − 2 surfaces each homeomorphic to S2 minus three disjoint closed
disks.
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Figure 9.7.1. A pair of pants

Pairs of Pants

We shall call a space P homeomorphic to the complement in S2 of three
disjoint open disks a pair of pants. See Figure 9.7.1. A pair of pants is
a compact orientable surface-with-boundary whose boundary consists of
three disjoint topological circles. By Theorems 9.6.6 and 9.7.1, a closed,
orientable, hyperbolic surface M of genus n > 1 can be subdivided by
3n − 3 disjoint, simple, closed geodesics into the union of 2n − 2 pairs of
pants with the geodesics as their boundary circles. See Figure 9.7.2.

Let P be a pair of pants in a hyperbolic surface M such that each
boundary circle of P is a simple closed geodesic of M . A seam of P is
defined to be the image S of an injective geodesic curve σ : [a, b] → M such
that the point σ(a) is in a boundary circle A of P , the point σ(t) is in the
interior of P for a < t < b, the point σ(b) is in another boundary circle B
of P , and the geodesic section S is perpendicular to both A and B.

Figure 9.7.2. A maximal number of disjoint, homotopically distinct, essential,
simple, closed curves on a closed orientable surface of genus three
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Theorem 9.7.2. Let P be a pair of pants in a hyperbolic surface M such
that each boundary circle of P is a simple closed geodesic of M . Then any
two boundary circles of P are joined by a unique seam of P . Moreover, the
three seams of P are mutually disjoint.

Proof: Let P ′ be a copy of P . For each point x of P , let x′ be the
corresponding point of P ′. Let Q be the quotient space obtained from the
disjoint union of P and P ′ by identifying x with x′ for each point x of ∂P .
We regard Q to be the union of P and P ′ with

∂P = P ∩ P ′ = ∂P ′.

The space Q is a closed orientable surface of genus two called the double of
P . See Figure 9.7.3.

Let A, B, C be the boundary circles of P . The hyperbolic structures on
the interiors of P and P ′ extend to a hyperbolic structure on Q so that
A, B, C are closed geodesics of Q. The hyperbolic surface Q is complete,
since Q is compact.

Let α : [0, 1] → P be a simple curve such that the point α(0) is in A,
the point α(t) is in the interior of P for 0 < t < 1, and the point α(1) is
in B. Let α′ be the corresponding simple curve in P ′. Then αα′−1 is an
essential, simple, closed curve in Q. Hence αα′−1 is freely homotopic to a
simple closed curve δ whose image is a simple closed geodesic D in Q by
Theorem 9.6.5. Now by Theorem 9.6.7, the geodesic D meets the geodesics
A and B transversely in single points. Let S = D ∩ P . Then S is a section
of D contained in P joining A to B.

Let ρ : Q → Q be the map defined by ρ(x) = x′ and ρ(x′) = x for each
point x of P . Then ρ is an isometry of Q. Observe that

ρ(αα′−1) = α′α−1.

Hence α′α−1 is freely homotopic to ρδ, and ρD is the simple closed geodesic
of Q that represents α′α−1. Therefore ρD = D by Theorem 9.6.5. Conse-
quently D is perpendicular to both A and B. Hence S is perpendicular to
A and B. Thus S is a seam of P joining A to B.

Figure 9.7.3. The double of a pair of pants
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Now suppose that T is another geodesic section in P joining A to B that
is perpendicular to A and B. Then E = T ∪ T ′ is a simple closed geodesic
of Q. Let σ, τ : [0, 1] → P be simple curves starting in A whose images
are S, T , respectively. Then σ is freely homotopic to τ by a homotopy
keeping the endpoints on A and B. Hence σσ′−1 is freely homotopic to
ττ ′−1. Therefore D = E by Theorem 9.6.5. Hence S = T . Thus, the seam
S is unique.

Now suppose that T is the seam of P joining A to C. Let β : [0, 1] → P
be a simple curve such that the point β(0) is in A, the point β(t) is in
the interior of P for 0 < t < 1, the point β(1) is in C, and the image of
β is disjoint from the image of α. Then αα′−1 and ββ′−1 are essential,
homotopically distinct, disjoint, simple, closed curves in Q. Therefore, the
simple closed geodesics representing them, D and T ∪ T ′, are disjoint by
Theorem 9.6.6. Thus S and T are disjoint.

Let P be a pair of pants in a hyperbolic surface M such that each
boundary circle of P is a simple closed geodesic of M . If we split P apart
along its seams, we find that P is the union of two subsets D1 and D2,
meeting along the seams of P , each of which is homeomorphic to a disk.
The boundary of each Di is the union of six geodesic sections meeting only
along their endpoints at right angles.

By replacing M with the double of P if M is incomplete, we may assume
that M is complete; hence, we may assume that M is a space-form H2/Γ.
Let π : H2 → H2/Γ be the quotient map and let Hi be a component of
π−1(Di) for i = 1, 2. As Di is simply connected, π maps Hi homeomorphi-
cally onto Di for i = 1, 2. The set Hi is a closed, connected, locally convex
subset of H2 and so is convex. Hence Hi is a convex hexagon in H2 all of
whose angles are right angles. Thus P can be obtained by gluing together
two right-angled, convex, hyperbolic hexagons along alternate sides.

Theorem 9.7.3. Let P be a pair of pants in a hyperbolic surface M such
that each boundary circle of P is a simple closed geodesic of M . Let a, b, c be
the lengths of the boundary circles of P and let H1, H2 be the right-angled,
convex, hyperbolic hexagons obtained from P by splitting P along its seams.
Then H1 and H2 are congruent with nonseam alternate sides of length
a/2, b/2, c/2, respectively. Moreover P is determined, up to isometry, by
the lengths a, b, c.

Proof: As H1 and H2 have the same lengths for their seam alternate sides,
H1 and H2 are congruent by Theorem 3.5.14. Hence H1 and H2 have the
same lengths for their nonseam alternate sides. As these lengths add up to
a, b, c, respectively, we find that the nonseam alternate sides of H1 and H2
have length a/2, b/2, c/2, respectively. As H1 and H2 are determined, up to
congruence, by the lengths a/2, b/2, c/2, we deduce that P is determined,
up to isometry, by the lengths a, b, c.
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Figure 9.7.4. A marked, closed, oriented surface of genus three

Teichmüller Space

Let M be a closed oriented surface of genus n > 1. We mark M by
choosing 3n − 3 disjoint, homotopically distinct, essential, simple, closed
curves αi : [0, 1] → M , for i = 1, . . . , 3n − 3, and n + 1 more disjoint,
homotopically distinct, essential, simple, closed curves βj : [0, 1] → M , for
j = 1, . . . , n + 1, which together with the first set of curves divides M into
closed disks as in Figure 9.7.4. Observe that the first set of curves divides
M into pairs of pants and that the second set of curves forms a continuous
set of topological seams for the pairs of pants.

Let Φ be a hyperbolic structure for M . By Theorem 9.6.6, the curves
α1, . . . , α3n−3 are represented by 3n − 3 disjoint, simple, closed, oriented
geodesics A1, . . . , A3n−3 of (M, Φ). By Theorem 9.7.1, these geodesics di-
vide M into 2n − 2 pairs of pants. By Theorem 9.7.3, these pairs of pants
are determined, up to isometry, by the lengths of their boundary circles.
Let 
i be the length of Ai for each i = 1, . . . , 3n − 3.

In order to determine the isometry type of (M, Φ) from that of the pairs
of pants, we need to measure the amount of twist with which the boundary
circles of the pairs of pants are attached. We use the curves β1, . . . , βn+1
to measure these twists. By Theorem 9.6.6, the curves β1, . . . , βn+1 are
represented by n + 1 disjoint, simple, closed geodesics B1, . . . , Bn+1. In
the pairs of pants, these geodesics restrict to geodesic sections joining the
boundary circles because of Theorem 9.6.7. Furthermore, in the pairs of
pants, these geodesic sections are homotopic to the seams of the pairs of
pants by homotopies keeping the endpoints on the curves A1, . . . , A3n−3.

Let Pi and Qi be the pairs of pants of M with Ai as a boundary circle,
and suppose that the orientation of Ai agrees with the orientation of Pi. Let
2ai be the total radian measure that the above homotopies move, within
Pi, the two endpoints on Ai. The number ai measures the degree to which
the two geodesic sections wrap around the two seams of Pi ending in Ai

and is called the winding degree of (Pi, Ai). See Figure 9.7.5. The winding
degree ai does not depend on the choice of the homotopies.
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Pi Qi

Ai

Figure 9.7.5. The four geodesic sections and seams ending in the geodesic Ai

Let bi be the winding degree of (Qi, Ai). The real number ti = ai − bi is
called the twist coefficient of Ai. The twist coefficient ti measures the twist
with which Pi and Qi are attached at Ai relative to the given marking and
orientation of M . Note that ti is congruent modulo 2π to the angle that
Qi must rotate around Ai so that the corresponding seams of Pi and Qi

match up. See Figure 9.7.5.
Define a function F : H(M) → R6n−6 by setting

F (Φ) = (log 
1, t1, log 
2, t2, . . . , log 
3n−3, t3n−3). (9.7.1)

We shall call the components of F (Φ) the length-twist coordinates of the
hyperbolic structure Φ for the marked oriented surface M .

Theorem 9.7.4. Let M be a closed oriented surface of genus n > 1. Then
the function F : H(M) → R6n−6 induces a bijection from T (M) to R6n−6.

Proof: Let h : M → M be a homeomorphism that is homotopic to
the identity map of M . Then h is an orientation preserving isometry
from (M, Φh) to (M, Φ). Consequently h−1Ai is a simple closed geodesic
of (M, Φh) for all i. As h−1 is homotopic to the identity map, h−1Ai

is freely homotopic to Ai for each i. Hence, the curves α1, . . . , α3n−3
are represented in (M, Φh) by the geodesics h−1A1, . . . , h

−1A3n−3. Like-
wise, the curves β1, . . . , βn+1 are represented in (M, Φh) by the geodesics
h−1B1, . . . , h

−1Bn+1. As h−1 is an orientation preserving isometry, the
geodesic h−1Ai has the same length and twist coefficient as Ai for each i.
Therefore F (Φh) = F (Φ). Thus F induces a function F : T (M) → R6n−6.

Next, we show that F is injective. Suppose that Φ and Φ′ are hy-
perbolic structures for M such that F (Φ) = F (Φ′). Let A1, . . . , A3n−3
be the simple closed geodesics in (M, Φ) representing α1, . . . , α3n−3, and
let A′

1, . . . , A
′
3n−3 be the simple closed geodesics in (M, Φ′) representing

α1, . . . , α3n−3. Then Ai has the same length and twist coefficient as A′
i

for each i. By Theorem 9.7.3, there is an orientation preserving isometry
h : (M, Φ′) → (M, Φ) mapping the geodesic A′

i onto the geodesic Ai for
each i.
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Let B1, . . . , Bn+1 be the simple closed geodesics in (M, Φ) represent-
ing β1, . . . , βn+1, and let B′

1, . . . , B
′
n+1 be the simple closed geodesics in

(M, Φ′) representing β1, . . . , βn+1. Now the sets h(B′
1), . . . , h(B′

n+1) are
simple closed geodesics in (M, Φ) that form a continuous set of topolog-
ical seams for the pairs of pants of (M, Φ) and twist the same amount
about the geodesics A1, . . . , A3n−3 as the continuous set of topological
seams B1, . . . , Bn+1. Consequently h(B′

j) is freely homotopic to Bj for
each j. Therefore h(B′

j) = Bj for each j by Theorem 9.6.5.
Regard the geodesics A′

1, . . . , A
′
3n−3 and B′

1, . . . , B
′
n+1 as forming the

1-skeleton M1 of a cell structure for M . Let h1 be the restriction of h to
M1. Then we can construct a homotopy from h1 to the inclusion map of
M1 into M , since Ai is freely homotopic to A′

i for each i and Bj is freely
homotopic to B′

j by a homotopy consistent with the first set of homotopies
for each j. Now since π2(M) = 0, the homotopy of h1 to the inclusion of
M1 into M can be extended to a homotopy of h to the identity map of M .
As Φ′ = Φh, we have that [Φ′] = [Φ] in T (M). Thus F is injective.

Next, we show that F is surjective. Let (s1, t1, . . . , s3n−3, t3n−3) be a
point of R6n−6 and set 
i = esi for i = 1, . . . , 3n − 3. By Theorem 3.5.14,
there are 4n − 4 right-angled, convex, hyperbolic hexagons that can be
glued together in pairs along alternate sides to give 2n − 2 pairs of pants
whose 6n − 6 boundary circles have length 
1, 
1, 
2, 
2, . . . , 
3n−3, 
3n−3,
respectively, and which are in one-to-one correspondence with the 2n − 2
pairs of pants of M in such a way that the indexing of the lengths of the
boundary circles of each of the hyperbolic pairs of pants corresponds to the
indexing of the boundary circles of the corresponding pair of pants of M .
We choose seam preserving homeomorphisms from the pairs of pants of M
to the corresponding hyperbolic pairs of pants, and orient the hyperbolic
pairs of pants so that these homeomorphisms preserve orientation.

Write ti = θi + 2πki, with 0 ≤ θi < 2π and ki an integer. Let M ′

be the oriented surface obtained by gluing together the hyperbolic pairs
of pants along the two boundary circles of length 
i by an orientation
reversing isometry with a twist of θi in the direction compatible with the
orientation of αi([0, 1]) for each i. By Theorem 9.2.3, the surface M ′ has a
hyperbolic structure such that the circle Ci in M ′, obtained by gluing the
two boundary circles of length 
i, is a simple closed geodesic of length 
i for
each i. Moreover, the homeomorphisms between the pairs of pants of M
and M ′ extend to an orientation preserving homeomorphism h : M → M ′

mapping αi([0, 1]) onto Ci for each i.
Let Φ = {φi : Ui → H2} be the hyperbolic structure of M ′. Then

Φh = {φih : h−1(Ui) → H2} is a hyperbolic structure for M such that h
is an orientation preserving isometry from (M, Φh) to (M ′, Φ). Let Ai =
αi([0, 1]) for each i. Then Ai is a simple closed geodesic of (M, Φh) of
length 
i that represents αi for each i. Moreover, the twist coefficient of Ai

is congruent to θi modulo 2π. Hence, by replacing h with h composed with
an appropriate number of Dehn twists about Ci for each i, we can assume
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that the twist coefficient of Ai is ti for each i. Then we have

F (Φh) = (s1, t1, . . . , s3n−3, t3n−3).

Hence F is surjective. Thus F is a bijection.

Remark: It is a fundamental theorem of Teichmüller space theory that
the bijection F : T (M) → R6n−6 is a homeomorphism.

Corollary 1. The moduli space M(M) of a closed orientable surface M
of genus n > 1 is uncountable.

Proof: As π1(M) is finitely generated, the group Out(π1(M)) is count-
able. Hence, the mapping class group Map(M) is countable, since the
Nielsen homomorphism ν : Map(M) → Out(π1(M)) is injective. Now
by Theorem 9.7.4, we have that T (M) is uncountable, and so the set
T (M)/Map(M) is uncountable. There is a bijection from T (M)/Map(M)
to M(M), and so M(M) is uncountable.

Exercise 9.7

1. Let {γ1 . . . , γk} be a finite set of disjoint, simple, closed curves in a closed
orientable surface M , and let M ′ be the compact 2-manifold-with-boundary
obtained from M by cutting M along the images of γ1, . . . , γk. Prove that
γ1, . . . , γk are essential and homotopically distinct if and only if no compo-
nent of M ′ is a disk or a cylinder. Hint: If γi is null homotopic, then the
image of γi bounds a disk in M ; and if γi and γj , with i �= j, are essential
and freely homotopic, then the images of γi and γj bound a cylinder in M .

2. Prove Theorem 9.7.1.

3. Let P be a pair of pants with boundary circles A, B, C and let α, β : [0, 1] →
P be simple curves whose images are geodesic sections that begin in A, end in
B, and are otherwise disjoint from A, B, C. Prove that α is freely homotopic
to β by a homotopy that keeps the endpoints in A and B.

4. Let M̃ be a marked, closed, oriented surface of genus n − 1 embedded in R3

so that the βj curves all lie on the xy-plane, the αi curves lie either on the
xz-plane or on planes parallel to the yz-plane, and M̃ and its marking are
invariant under a 180◦ rotation φ about the z-axis and the reflection ρ in
the xy-plane. See Figure 9.7.4. Let σ = ρφ and let Γ = {I, σ}. Prove that
M = M̃/Γ is a closed nonorientable surface of genus n.

5. Let � > 0. Prove that M̃ in Exercise 4 has a hyperbolic structure Φ̃� whose
length-twist coordinates are log �, 0, . . . , log �, 0, and such that φ and ρ are
isometries. Conclude that Φ̃� induces a hyperbolic structure Φ� on M .

6. Prove that the moduli space M(M) of a closed nonorientable surface M of
genus n > 2 is uncountable.
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§9.8. Hyperbolic Surfaces of Finite Area

In this section, we study the geometry of complete hyperbolic surfaces
of finite area. We begin by determining the geometry of exact, convex,
fundamental polygons of finite area.

Theorem 9.8.1. Let P be an exact, convex, fundamental polygon of finite
area for a discrete group Γ of isometries of H2. Then P has only a finite
number of sides and the sides of P can be cyclically ordered so that any two
consecutive sides are adjacent.

Proof: We pass to the projective disk model D2. Let P be the closure of
P in E2 and suppose that P contains m points on S1. Then P contains the
convex hull Q of these m points. The set Q = Q ∩ D2 is an ideal polygon
with m sides. As Q can be subdivided into m − 2 ideal triangles,

Area(Q) = (m − 2)π.

As P contains Q and the area of P is finite, there must be an upper bound
on the number of points of P on S1. Thus P contains only finitely many
points on S1.

Let θ(v) be the angle subtended by P at a vertex v. Suppose that
v1, . . . , vn are finite vertices of P and R is the convex hull of v1, . . . , vn.
Then R is a compact convex polygon with n sides. As R can be subdivided
into n − 2 triangles, we deduce that

Area(R) = (n − 2)π −
n∑

i=1

θ(vi).

Therefore, we have

2π + Area(R) =
n∑

i=1

(π − θ(vi)).

Consequently

2π + Area(P ) ≥
∑

{π − θ(v) : v is a vertex of P}.

Hence, the sum
∑
v

(π − θ(v)) converges. Let

A = {v : θ(v) ≤ 2π/3}
and

B = {v : θ(v) > 2π/3}.

Then A is a finite set, since the sum
∑
v

(π − θ(v)) converges.

Now the Γ-side-pairing of P induces an equivalence relation on the ver-
tices of P whose equivalence classes are called cycles of vertices. Each cycle
C of vertices is finite by Theorem 6.8.5 and corresponds to a cycle of sides
of P , and so by Theorem 6.8.7, the angle sum

θ(C) =
∑

{θ(v) : v ∈ C}



420 9. Geometric Surfaces

is a submultiple of 2π. Consequently, each cycle C of vertices contains at
most two vertices from the set B and at least one vertex from the set A.
Therefore, there are only finitely many cycles of vertices. As each cycle of
vertices is finite, P has only finitely many vertices. This, together with the
fact that P ∩ S1 is finite, implies that P has only finitely many sides and
the sides of P can be cyclically ordered so that any two consecutive sides
meet either in D2 or at an ideal vertex on the circle S1 at infinity.

We now determine the topology of a complete hyperbolic surface of finite
area.

Theorem 9.8.2. Let M be a complete hyperbolic surface of finite area.
Then M is homeomorphic to a closed surface minus a finite number of
points and

Area(M) = −2πχ(M).

Proof: Since M is complete, we may assume that M is a space-form
H2/Γ. Let P be an exact, convex, fundamental polygon for Γ. As

Area(P ) = Area(H2/Γ),

we have that P has finite area. By Theorem 9.8.1, the polygon P has only
finitely many sides and the sides of P can be cyclically ordered so that
any two consecutive sides are adjacent. We now pass to the projective disk
model D2. Let P be the closure of P in E2. Then P is a compact convex
polygon in E2. By Theorem 6.6.7, the surface M is homeomorphic to the
space P/Γ obtained from P by gluing together the sides of P paired by
elements of Γ. This pairing extends to a side-pairing of P . Let P/Γ be the
space obtained from P by gluing together the sides of P paired by elements
of Γ. Then P/Γ is a closed surface and P/Γ is homeomorphic to P/Γ minus
the images of the ideal vertices of P . Thus M is homeomorphic to a closed
surface minus a finite number of points.

Now P/Γ is a cell complex, with some 0-cells removed, consisting of a
0-cells, b 1-cells, and one 2-cell. Let v1, . . . , vm be the finite vertices of P
and let n be the number of sides of P . As P can be subdivided into n − 2
generalized triangles, we deduce that

Area(P ) = (n − 2)π −
m∑

i=1

θ(vi)

= (2b − 2)π − 2πa

= −2π(a − b + 1) = −2πχ(P/Γ).

Thus, we have that

Area(M) = −2πχ(M).
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Complete Gluing of Hyperbolic Surfaces

Let M be a hyperbolic surface obtained by gluing together a finite fam-
ily P of disjoint, convex, finite-sided polygons in H2 of finite area by a
proper I(H2)-side-pairing Φ. We shall determine necessary and sufficient
conditions such that M is complete.

It will be more convenient for us to work in the conformal disk model
B2. Then the sides of each polygon in P can be cyclically ordered so that
any two consecutive sides meet either in B2 or at an ideal vertex on the
circle S1 at infinity. We may assume, without loss of generality, that no
two polygons in P share an ideal vertex. Then the side-pairing Φ of the
sides S of the polygons in P extends to a pairing of the ideal vertices of
the polygons in P. The pairing of the ideal vertices of the polygons in
P generates an equivalence relation whose equivalence classes are called
cycles. If v is an ideal vertex, we denote the cycle containing v by [v].

Let v be an ideal vertex of a polygon Pv in P. Then we can write

[v] = {v1, v2, . . . , vm}
with

v = v1 � v2 � · · · � vm � v.

Define sides S1, . . . , Sm in S inductively as follows: Let S1 be a side in S
such that gS1(v2) = v1. Then v1 is an ideal endpoint of S1. Suppose that
sides S1, . . . , Sj−1 have been defined so that vi is an ideal endpoint of Si

and gSi(vi+1) = vi for i = 1, . . . , j − 1. As gSj−1(S
′
j−1) = Sj−1, we have

that vj is an ideal endpoint of S′
j−1. Let Sj be the other side in S whose

ideal endpoint is vj . Then gSj
(vj+1) = vj if j < m, and gSm

(v1) = vm

if j = m. Thus S1, . . . , Sm are defined. The sequence {Si}m
i=1 is called a

cycle of unbounded sides corresponding to the cycle [v] of ideal vertices.

Example 1. Let P be the ideal square in B2 with vertices ±e1 and ±e2.
Pair the opposite sides of P by first reflecting in the lines y = ±x and
then reflecting in the corresponding side of P . This I0(B2)-side-pairing
Φ is proper. The hyperbolic surface M obtained by gluing together the
opposite sides of P by Φ is a once-punctured torus. Figure 9.8.1 illustrates
the cycle of vertices of P and the corresponding cycle of unbounded sides.

Choose ε > 0 so that the Euclidean ε-neighborhoods of the ideal vertices
v1, . . . , vm are disjoint and meet just two sides in S. Let Pi be the polygon
in P containing the side Si. Choose a point x1 of S1 so that the horocycle
based at v1 passing through x1 is contained in B(v1, ε). See Figure 9.8.2.
The horocycle intersects P1 in a horoarc α1 that is perpendicular to the
sides S′

m and S1. Since g−1
S1

is continuous at v1, we can choose x1 closer
to v1, if necessary, so that the horocycle based at v2 passing through the
point x′

1 = g−1
S1

(x1) is contained in B(v2, ε). This horocycle intersects P2
in a horoarc α2 that is perpendicular to S′

1 and S2. Let x2 be the endpoint
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v1v3

v2

v4

S1

S2S3

S4

Figure 9.8.1. The cycle of sides of an ideal square with opposite sides paired

α1

B(v1, ε)

v1

x1

S1

S′
m S1

P1

Figure 9.8.2. The horocycle based at v1 passing through the point x1
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of α2 in S2. Continuing in this way, we construct a sequence of points
x1, . . . , xm and horoarcs α1, . . . , αm such that xi is an endpoint of αi in Si

for i = 1, . . . , m, and x′
i−1 is an endpoint of αi in S′

i−1 for i = 2, . . . , m,
and αi is contained in B(vi, ε) for i = 1, . . . , m.

Let x′
0 be the endpoint of α1 in S′

m. Define d(v) to be ±d(x′
m, x′

0) with
the sign positive if and only if x′

m is further away from v than x′
0. The real

number d(v) does not depend on the choice of x1 because if y1, . . . , ym is
another such sequence of points, then

d(x′
0, y

′
0) = d(x1, y1) = d(x′

1, y
′
1) = · · · = d(xm, ym) = d(x′

m, y′
m)

and so

±d(x′
m, x′

0) = ±d(x′
m, y′

m) ± d(y′
m, x′

0)
= ±d(x′

0, y
′
0) ± d(y′

m, x′
0) = ±d(y′

m, y′
0).

The real number d(v) is called the gluing invariant of the ideal vertex v.
For example, the gluing invariant of v1 in Figure 9.8.1 is zero.

The cycle transformation of the cycle of unbounded sides {Si}m
i=1 is

defined to be the transformation

gv = gS1 · · · gSm .

As gSi
(vi+1) = vi and gSm

(v1) = vm, we have that gv fixes v.

Theorem 9.8.3. The gluing invariant d(v) is zero if and only if the cycle
transformation gv is parabolic.

Proof: Let fi be the parabolic element of I(B2) that fixes vi and maps
xi to x′

i−1 for i = 1, . . . , m, and set gi = gSi
for each i. As gi(vi+1) = vi,

gm(v1) = vm, and gi(x′
i) = xi, we have that f1g1 · · · fmgm fixes v and

f1g1 · · · fmgm(x′
m) = x′

0.

Suppose that d(v) = 0. Then x′
m = x′

0. Hence f1g1 · · · fmgm fixes
the side S′

m. Therefore f1g1 · · · fmgm is either the reflection in S′
m or the

identity map. Now gi maps the side of S′
i containing Pi+1 to the side

of Si not containing Pi for i = 1, . . . , m, and Pm+1 = P1; moreover, fi

maps the side of Si not containing Pi to the side of S′
i−1 containing Pi

for i = 1, . . . , m, and S′
0 = S′

m. Hence f1g1 · · · fmgm maps the side of S′
m

containing P1 to the side of S′
m containing P1. Therefore f1g1 · · · fmgm

must be the identity map. Now observe that

g−1
v = (f1g1 · · · fmgm)(g−1

m · · · g−1
1 )

=
m∏

i=1

(g1 · · · gi−1fig
−1
i−1 · · · g−1

1 ).

Each term of the above product is a parabolic translation, with fixed point
v, that translates along the horocycle determined by α1 in the direction
from x1 to x′

0. Hence gv is parabolic with fixed point v.
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Conversely, suppose that gv is parabolic. Then from the last equation,
we deduce that f1g1 · · · fmgm is either parabolic, with fixed point v, or
the identity map. As f1g1 · · · fmgm leaves invariant the hyperbolic line
containing S′

m, we have that f1g1 · · · fmgm is the identity map. Therefore
x′

m = x′
0 and so d(v) = 0.

Theorem 9.8.4. Let Γv be the group generated by the cycle transformation
gv. If gv is parabolic, then there is an open horodisk B(v) based at v and
an injective local isometry

ι : B(v)/Γv → M

compatible with the projection of the polygon Pv to M .

Proof: We pass to the upper half-plane model U2 and assume, without
loss of generality, that v = ∞. Then gv is a horizontal translation of
U2. Let B(v) be the open horodisk based at v with the horoarc α1 on its
boundary. Then Γv acts freely and discontinuously on B(v) as a group of
isometries. Consequently B(v)/Γv is a hyperbolic surface.

We now find a fundamental domain for Γv in B(v). Define g1 = 1
and gi = gS1 · · · gSi−1 for i = 2, . . . , m. As the polygons Pi and gSi(Pi+1)
lie on opposite sides of their common side Si for i = 1, . . . , m − 1, the
polygons giPi and gi+1Pi+1 lie on opposite sides of their common side giSi

for i = 1, . . . , m − 1. Thus, the rectangular strips giPi ∩ B(v) lie adjacent
to each other in sequential order. See Figure 9.8.3. As gv translates the
side S′

m of g1P1 onto the side gmSm of gmPm, we see that the rectangular
strip

m
∪

i=1
giPi ∩ B(v)

is the closure of a fundamental domain D for Γv in B(v); moreover D is
locally finite.

R

g1α1 g2α2 gmαm

g1P1 g2P2 · · · gmPm B(v)

S′
m g1S1 g2S2 gm−1Sm−1 gmSm

Figure 9.8.3. A fundamental domain for Γv in B(v)
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By Theorem 6.6.7, the inclusion map of D into B(v) induces a homeo-
morphism

κ : D/Γv → B(v)/Γv.

Let π :
m
∪

i=1
Pi → M be the quotient map. Then we have a map ψ : D → M

defined by ψ(z) = πg−1
i (z) if z is in giPi ∩ B(v). Clearly ψ induces an

embedding
φ : D/Γv → M.

Define an embedding
ι : B(v)/Γv → M

by ι = φκ−1. It is clear from the gluing construction of the hyperbolic
structure for M that ι is a local isometry.

Lemma 1. Let K and L be two vertical hyperbolic lines of U2 and let
α and β be two horizontal horoarcs joining K to L with β above α at a
hyperbolic distance d. Then

|β| = |α|e−d.

Proof: Let

K = {k + ti : t > 0},

L = {
 + ti : t > 0},

α(t) = t + ai for k ≤ t ≤ 
,

β(t) = t + bi for k ≤ t ≤ 
.

Then we have

|α| =
∫ 


k

|α′(t)|
Im(α(t))

dt =
∫ 


k

dt

a
=

(
 − k)
a

.

Likewise |β| = (
 − k)/b. Hence

|α|/|β| = b/a = exp(dU (ai, bi)) = ed.

Theorem 9.8.5. Let M be a hyperbolic surface obtained by gluing together
a finite family P of disjoint, convex, finite-sided polygons in H2 of finite
area by a proper I(H2)-side-pairing Φ. Then M is complete if and only if
d(v) = 0 for each ideal vertex v of a polygon in P.

Proof: We pass to the conformal disk model B2. Let v be an ideal
vertex of a polygon in P and let [v] = {v1, . . . , vm} with v = v1. Choose a
sequence of points x1, . . . , xm of B2 and a sequence of horoarcs α1, . . . , αm

as before. Suppose that d(v) < 0. Then the images of these arcs in M
appear as in Figure 9.8.4. By continuing along horoarcs, as indicated in
Figure 9.8.4, we construct an infinite sequence of points {xi}∞

i=1 of B2 and
an infinite sequence of horoarcs {αi}∞

i=1. Let α be the ray in M obtained
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α1

α2

α3

· · ·

αm

x1

x2

x3

xm−1

xm

Figure 9.8.4. A sequence of horoarcs spiraling into a puncture of M

by spiraling in along the images of the αi. Then α has finite length, since
the length of each successive circuit around the puncture of M represented
by v is reduced by a constant factor less than one because of Lemma 1.
Consequently, the image of the sequence {xi} in M is a Cauchy sequence.
As this sequence does not converge, M is incomplete. If d(v) > 0, we
spiral around the puncture in the opposite direction and deduce that M is
incomplete. Thus, if M is complete, then d(v) = 0 for each ideal vertex v.

Conversely, suppose that d(v) = 0 for each ideal vertex v. By Theorems
9.8.3 and 9.8.4, we can remove disjoint open horodisk neighborhoods of
each ideal vertex to obtain a compact surface-with-boundary M0 in M .
For each t > 0, let Mt be the surface-with-boundary obtained by removing
smaller horodisk neighborhoods bounded by horocycles at a distance t from
the original ones. See Figure 9.8.5. Then Mt is compact for each t > 0 and
M = ∪

t>0
Mt.

M0

∂Mt∂M0

Figure 9.8.5. A complete hyperbolic surface M of finite area
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Let x be a point of M − Mt. Then there is a d > 0 such that x is
in ∂Mt+d. We claim that d is the distance in M from x to Mt. By the
definition of Mt+d, we have that d is at most the distance in M from x to
Mt. On the contrary, suppose that γ is a curve in M from x to a point y in
Mt of length less than d. Then γ must cross ∂Mt, and so we may assume
that y is in ∂Mt and the rest of γ lies in M −Mt. By Theorem 9.8.4, there
is an injective local isometry

ι : B(v)/Γv → M

whose image is the component of M − M0 containing x. Hence γ corre-
sponds under ι to a curve in B(v)/Γv of the same length. Let Ct be the
horocycle in B(v) at a distance t from ∂B(v). Then ι−1γ lifts to a curve γ̃
in B(v) starting in Ct+d and ending in Ct. By Lemma 1 of §7.1, we have
that |γ̃| ≥ d, which is a contradiction. Thus d is the distance in M from x
to Mt. Consequently Mt+1 contains N(Mt, 1) for each t > 0. Therefore M
is complete by Theorem 8.5.10(4).

Cusps

Let B(∞) be the open horodisk R×(1,∞) in the upper half-plane model U2

and let fc be the horizontal translation of U2 by a Euclidean distance c > 0
in the positive direction. Let Γc be the infinite cyclic group generated by fc.
Then Γc acts freely and discontinuously on B(∞) as a group of isometries.
Consequently B(∞)/Γc is a hyperbolic surface. The surface B(∞)/Γc is
homeomorphic to S1 × (1,∞). Each horocycle R×{t} in B(∞) projects to
a horocircle in B(∞)/Γc, corresponding to S1 × {t} in S1 × (1,∞), whose
length decreases exponentially with t because of Lemma 1. For this reason,
a hyperbolic surface M , isometric to B(∞)/Γc for some c > 0, is called a
cusp of circumference c.

The geometry of a cusp is easy to visualize because a cusp of circumfer-
ence c ≤ π isometrically embeds in E3. See Figure 1.1.5. The circumference
of a cusp M is unique and an isometric invariant of M because it is the
least upper bound of the lengths of the horocircles of M .

The area of a cusp M of circumference c is defined to be the area of the
fundamental domain

D = (0, c) × (1,∞)

for Γc in B(∞). Hence, we have

Area(M) =
∫

D

dxdy

y2 =
∫ ∞

1

∫ c

0

dxdy

y2 = c.

Thus, the area of a cusp M is equal to its circumference and is therefore
finite even though M is unbounded.

We now determine the geometry of a complete hyperbolic surface of
finite area.
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Theorem 9.8.6. Let M be a complete hyperbolic surface of finite area.
Then there is a compact surface-with-boundary M0 in M such that M −M0
is the disjoint union of a finite number of cusps.

Proof: Since M is complete, we may assume that M is a space-form
H2/Γ. Let P be an exact, convex, fundamental polygon for Γ. Then P has
finite area and only finitely many sides. By Theorem 6.6.7, the inclusion
map of P into H2 induces a homeomorphism

κ : P/Γ → H2/Γ,

where P/Γ is the space obtained from P by gluing together the sides of P
paired by the elements of a subset Φ of Γ. By Theorem 6.8.7, the I(H2)-
side-pairing Φ is proper. Therefore P/Γ has a hyperbolic structure by
Theorem 9.2.2. It is clear from the gluing construction of the hyperbolic
structure for P/Γ that κ is a local isometry. Moreover, since P/Γ and H2/Γ
are both hyperbolic surfaces, κ is an isometry. Therefore P/Γ is complete.

We now pass to the conformal disk model B2. Since P/Γ is complete,
we can remove disjoint open horodisk neighborhoods of each ideal vertex
of P to obtain a compact surface-with-boundary M0 in M . Furthermore
M − M0 has a finite number of components, and for each component C of
M − M0 there is a ideal vertex v of P and an injective local isometry

ι : B(v)/Γv → M,

as in Theorem 9.8.4, mapping onto C. By replacing the horodisk neigh-
borhood B(v) of v by a smaller concentric horodisk, if necessary, we can
arrange ι to map the cusp B(v)/Γv isometrically onto C. Thus, we can
choose M0 so that each component of M − M0 is a cusp.

Discrete Groups

We now consider a general method for constructing a space-form H2/Γ of
finite area by gluing together a finite-sided convex polygon in H2 of finite
area by a proper I(H2)-side-pairing.

Theorem 9.8.7. Let Φ be a proper I(H2)-side-pairing for a finite-sided
convex polygon P in H2 of finite area such that the gluing invariants of all
the ideal vertices of P are zero. Then the group Γ generated by Φ is discrete
and torsion-free, P is an exact, convex, fundamental polygon for Γ, and the
inclusion map of P into H2 induces an isometry from the hyperbolic surface
M , obtained by gluing together the sides of P by Φ, to the space-form H2/Γ.

Proof: The quotient map π : P → M maps P ◦ homeomorphically onto
an open subset U of M . Let φ : U → H2 be the inverse of π. From the
construction of M , we have that φ is locally a chart for M . Therefore φ is
a chart for M .
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Let κ : M̃ → M be a universal covering. As U is simply connected,
φ : U → H2 lifts to a chart φ̃ : Ũ → H2 for M̃ . Let δ : M̃ → H2 be the
developing map determined by φ̃. The hyperbolic surface M is complete by
Theorem 9.8.5. Therefore δ is an isometry by Theorem 8.5.9. Let ζ = κδ−1.
Then ζ : H2 → M is a covering projection extending π on P ◦. Moreover,
by continuity, ζ extends π.

Let Γ be the group of covering transformations of ζ. By Theorem 8.5.9,
we have that Γ is a torsion-free discrete group of isometries of H2, and ζ
induces an isometry from H2/Γ to M . Now as U is simply connected, it
is evenly covered by ζ. Hence, the members of {gP ◦ : g ∈ Γ} are mutually
disjoint. As π(P ) = M , we have

H2 = ∪{gP : g ∈ Γ}.

Therefore P ◦ is a fundamental domain for Γ.
Let gS be an element of Φ. Choose a point y in the interior of the side

S of P . Then there is an element y′ in the interior of the side S′ of P
such that gS(y′) = y. Since π(y′) = y, there is an element g of Γ such that
g(y′) = y. Since gS′ does not extend into P ◦, we must have that gS′ lies
on the hyperbolic line extending S. Moreover, since pairs of points of S◦

equidistant from y are not identified by π, we have that g and gS agree on
S′. Furthermore, since gP lies on the opposite side of S from P , we deduce
that g = gS by Theorem 4.3.6. Thus Γ contains Φ. Therefore P/Γ is a
quotient of M .

Now by Theorem 6.6.7, the inclusion map of P into H2 induces a contin-
uous bijection from P/Γ to H2/Γ. The composition of the induced maps

H2/Γ → M → P/Γ → H2/Γ

restricts to the identity map of P ◦ and so is the identity map by continuity.
Therefore M = P/Γ.

Now since ζ : H2 → M induces an isometry from H2/Γ to M = P/Γ,
the inclusion map of P into H2 induces an isometry from P/Γ to H2/Γ.
Therefore P is locally finite by Theorem 6.6.7. Hence P is an exact, convex,
fundamental polygon for Γ. Finally Φ generates Γ by Theorem 6.8.3.

Example 2. Let P be the ideal square in U2 with vertices −1, 0, 1,∞.
See Figure 9.8.6. Pair the vertical sides of P by a horizontal translation
and the sides incident with 0 by reflecting in the y-axis and then reflecting
in the corresponding side of P . This I0(U2)-side-pairing Φ is proper. The
hyperbolic surface M obtained by gluing together the sides of P by Φ is a
thrice-punctured sphere.

The complete hyperbolic structure of finite area on the thrice-punctured
sphere is special because the thrice-punctured sphere is the only surface
that has a complete hyperbolic structure of finite area that is unique up to
isometry.
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P

−1 0 1

Figure 9.8.6. The ideal square P in U2 with vertices −1, 0, 1, ∞

Theorem 9.8.8. The complete hyperbolic structure of finite area on the
thrice-punctured sphere is unique up to isometry.

Proof: Let M be a thrice-punctured sphere with a complete hyperbolic
structure of finite area. Then M is isometric to a space-form U2/Γ of finite
area. By Theorem 9.8.6, there is a compact surface-with-boundary M0 in
M such that M − M0 is the disjoint union of three cusps. Therefore M0 is
a pair of pants. Consider the curves α, β, γ in M0 shown in Figure 9.8.7.
Observe that the simple closed curves αβ−1, βγ−1, and αγ−1 are freely
homotopic to the boundary horocircles of M0. Therefore, the elements
of π1(M), represented by these curves, correspond to parabolic elements
f, g, h of Γ. As [αβ−1] and [βγ−1] generate the free group π1(M) of rank
two, f and g generate the free group Γ of rank two. Moreover h = fg,
since we have

[αγ−1] = [αβ−1][βγ−1].

αγ

β

Figure 9.8.7. The pair of pants M0 in a thrice-punctured sphere M
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By conjugating Γ in I0(U2), we may assume that f(z) = z + 2. As g is
parabolic, there are real numbers a, b, c, d such that

g(z) =
az + b

cz + d
with ad − bc = 1 and a + d = 2.

If c = 0, then a/d = 1, since g is parabolic, and so f and g would commute,
which is not the case, since Γ is a free group of rank two generated by f
and g. Therefore c �= 0. Hence, the fixed point of g is on the real axis. By
conjugating Γ by a horizontal translation of U2, we may assume that the
fixed point of g is 0. Then b = 0, and so ad = 1. As a + d = 2, we deduce
that a = 1 = d. Hence, we have

g(z) =
z

cz + 1
and h(z) =

(1 + 2c)z + 2
cz + 1

.

As h is parabolic, we have
2 + 2c = ±2.

Therefore c = −2, and so

g(z) =
z

−2z + 1
.

Now g(1) = −1, and so g and g−1 are the parabolic side-pairing trans-
formations in Example 2 of the sides of the ideal square incident with 0.
Therefore Γ is the discrete group in Example 2. Thus, the complete hyper-
bolic structure of finite area on M is unique up to isometry.

Exercise 9.8

1. Let C be a cycle of m ideal vertices. Prove that C has 2m cycle trans-
formations associated to its vertices and that all these transformations are
conjugates of each other or their inverses. Conclude that if one of these
transformations in parabolic, then they are all parabolic.

2. Prove that the open horodisk B(v) in Theorem 9.8.4 can be replaced by a
smaller concentric open horodisk so that ι maps the cusp B(v)/Γv isometri-
cally onto its image in M .

3. Construct complete hyperbolic structures of finite area on the once-punc-
tured Klein bottle and on the twice-punctured projective plane by gluing
together the sides of the ideal square in Figure 9.8.1.

4. Prove that the group in Example 2 is the group of all linear fractional trans-
formations γ(z) = (az + b)/(cz + d) with a, b, c, d integers such that

ad − bc = 1 and

(
a b
c d

)
≡
(

1 0
0 1

)
(mod 2).

5. Let M be a surface obtained from a closed surface by removing a finite
number of points. Prove that M has a complete hyperbolic structure of
finite area if and only if χ(M) < 0.

6. Prove that the once-punctured torus has an uncountable number of noniso-
metric complete hyperbolic structures of finite area.
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§9.9. Historical Notes

§9.1. The Euler characteristic of the boundary of a convex polyhedron was
essentially introduced by Euler in his 1758 paper Elementa doctrinae soli-
dorum [131]. Euler proved that the Euler characteristic of the boundary of
a convex polyhedron is two in his 1758 paper Demonstratio nonnullarum
insignium proprietatum quibus solida hedris planis inclusa sunt praedita
[132]. The Euler characteristic of a closed, orientable, polygonal surface
was introduced by Lhuilier in his 1813 paper Mémoire sur la polyédrométrie
[277]. In particular, Formula 9.1.4 appeared in this paper. A surface with
a complex structure is called a Riemann surface. Closed Riemann surfaces
were introduced and classified by Riemann in his 1857 paper Theorie der
Abel’schen Functionen [380]. Closed orientable surfaces were classified by
Möbius in his 1863 paper Theorie der elementaren Verwandtschaft [323].
The notion of orientability of a surface was introduced by Möbius in his
1865 paper Ueber die Bestimmung des Inhaltes eines Polyëders [324]. See
also his paper Zur Theorie der Polyëder und der Elementarverwandtschaft
[325], which was published posthumously in 1886. Formula 9.1.6 appeared
in Jordan’s 1866 paper Recherches sur les polyèdres [221]. Compact ori-
entable surfaces-with-boundary were classified by Jordan in his 1866 paper
La déformation des surfaces [220]. That the projective plane is nonori-
entable appeared in Klein’s 1874 paper Bemerkungen über den Zusammen-
hang der Flächen [247]. See also Klein’s 1876 paper Ueber den Zusammen-
hang der Flächen [249]. The Klein bottle was introduced by Klein in his
1882 treatise Ueber Riemanns Theorie der algebraischen Functionen und
ihrer Integrale [251]. Theorems 9.1.2 and 9.1.4 appeared in Dyck’s 1888
paper Beiträge zur Analysis situs [122]. For the early history of topology
of surfaces, see Pont’s 1974 treatise La Topologie Algébrique des origines à
Poincaré [368] and Scholz’s 1980 treatise Geschichte des Mannigfaltigkeits-
begriffs von Riemann bis Poincaré [395]. References for the topology of
surfaces are Massey’s 1967 text Algebraic Topology: An Introduction [303]
and Moise’s 1977 text Geometric Topology in Dimensions 2 and 3 [326].

§9.2. In 1873, Clifford described a Euclidean torus embedded in elliptic
3-space in his paper Preliminary sketch of biquaternions [89]. In particu-
lar, he wrote, “The geometry of this surface is the same as that of a finite
parallelogram whose opposite sides are regarded as identical.” Closed hy-
perbolic surfaces were constructed by Poincaré in his 1882 paper Théorie
des groupes fuchsiens [355] by gluing together the sides of hyperbolic con-
vex polygons by proper side-pairings. As a reference for geometric surfaces,
see Weeks’ 1985 text The Shape of Space [446].

§9.3. The Gauss-Bonnet theorem for closed, orientable, Riemannian
surfaces appeared in Dyck’s 1888 paper [122] and was extended to nonori-
entable surfaces by Boy in his 1903 paper Über die Curvatura integra und
die Topologie geschlossener Flächen [61]. Theorems 9.3.1 and 9.3.2 ap-
peared in Weeks’ 1985 text [446].



§9.9. Historical Notes 433

§9.4. The moduli space of a closed orientable surface M was introduced
by Riemann in his 1857 paper [380] as the space of all conformal equiva-
lence classes of Riemann surface structures on M . In particular, Riemann
asserted that the moduli space of a closed orientable surface M of genus
n > 1 can be parameterized by 3n − 3 complex parameters that he called
moduli. For a discussion, see Chap. V of Dieudonné’s 1985 treatise History
of Algebraic Geometry [114]. Klein asserted that every closed Riemann
surface is conformally equivalent to either a spherical, Euclidean, or hyper-
bolic plane-form, that is unique up to orientation preserving similarity, in
his 1883 paper Neue Beiträge zur Riemann’schen Functionentheorie [252].
Klein’s assertion is called the uniformization theorem. The uniformiza-
tion theorem was proved independently by Poincaré in his 1907 paper Sur
l’uniformisation des fonctions analytiques [365] and by Koebe in his 1907
paper Über die Uniformisierung beliebiger analytischen Kurven [259]. For
a discussion, see Abikoff’s 1981 article The uniformization theorem [2]. It
follows from the uniformization theorem that Riemann’s moduli space of
a closed orientable surface M of positive genus is equivalent to the moduli
space of orientation preserving similarity classes of Euclidean or hyperbolic
structures for M .

The Teichmüller space of a closed orientable surface appeared implicitly
in Klein’s 1883 paper [252] and in Poincaré’s 1884 paper Sur les groupes
des équations linéaires [358]. For a discussion, see §6.4 of Gray’s 1986
treatise Linear Differential Equations and Group Theory from Riemann to
Poincaré [173]. Teichmüller space was explicitly introduced by Teichmüller
in his 1939 paper Extremale quasikonforme Abbildungen und quadratische
Differentiale [423]. Theorem 9.4.3 for orientable surfaces was proved by
Dehn and Nielsen and appeared in Nielsen’s 1927 paper Untersuchungen
zur Topologie der geschlossenen zweiseitigen Flächen [343]. Theorem 9.4.3
for nonorientable surfaces was proved by Mangler in his 1938 paper Die
Klassen von topologischen Abbildungen einer geschlossenen Flächen auf
sich [295]. The space of discrete faithful representations of a group ap-
peared in Weil’s 1960 paper On discrete subgroups of Lie groups [448].

§9.5. That the moduli space of the torus has complex dimension one ap-
peared in Riemann’s 1857 paper [380]. Theorems 9.5.1 and 9.5.2 appeared
in Poincaré’s 1884 paper [358].

§9.6. All the essential material in this section appeared in Poincaré’s
1904 paper Cinquième complément à l’analysis situs [362].

§9.7. A closed orientable hyperbolic surface was implicitly decomposed
into pairs of pants by Fricke and Klein in their 1897-1912 treatise Vorlesun-
gen über die Theorie der automorphen Functionen [151]. Moreover, they
implicitly showed that a pair of pants is the union of two congruent right-
angled hyperbolic hexagons sewn together along seams. Instead of working
with right-angled hexagons, they worked projectively with ultra-ideal tri-
angles. An ultra-ideal triangle corresponds to a right-angled hexagon in
the same way that the triangle T (x, y, z) corresponds to the right-angled
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hexagon in Figure 3.5.10. Fricke and Klein also essentially proved that the
Teichmüller space of a closed orientable surface of genus n > 1 is home-
omorphic to (6n − 6)-dimensional Euclidean space. They expressed their
coordinates in terms of the traces of the matrices in SL(2, R) that repre-
sent the transformations corresponding to the decomposition geodesics and
certain other simple closed geodesics on a closed hyperbolic surface. Each
trace determines the length of the corresponding simple closed geodesic.
The twist coefficients of the decomposition geodesics were not clearly iden-
tified by Fricke and Klein. For discussions, see Keen’s 1971-1973 paper On
Fricke moduli [232], [233], Harvey’s 1977 article Spaces of discrete groups
[194], and Bers and Gardiner’s 1986 paper Fricke Spaces [44].

An explicit decomposition of a closed, orientable, hyperbolic surface into
right-angled hyperbolic hexagons was given by Löbell in his 1927 thesis Die
überall regulären unbegrenzten Flächen fester Krümmung [285]. In particu-
lar, Löbell described the length coordinates and twist coordinates (modulo
2π) of a closed, orientable, hyperbolic surface. Löbell’s decomposition and
coordinates were described by Koebe in his 1928 paper Riemannsche Man-
nigfaltigkeiten und nichteuklidische Raumformen. III [263]. This decompo-
sition was further studied by Fenchel and Nielsen in their 1948 manuscript
Discontinuous Groups of Non-Euclidean Motions [144]. In particular, they
implicitly unwound the twist coordinates. For a discussion, see Wolpert’s
1982 paper The Fenchel-Nielsen deformation [457]. The length-twist coor-
dinates of a closed, orientable, hyperbolic surface were explicitly described
by Thurston in his 1979 lecture notes The Geometry and Topology of 3-
Manifolds [425], by Douady in his 1979 exposé L’espace de Teichmüller
[116], and by Abikoff in his 1980 treatise The Real Analytic Theory of Te-
ichmüller Space [1]. For a characterization of a pair of pants in a hyperbolic
surface, see Basmajian’s 1990 paper Constructing pairs of pants [32].

§9.8. Theorem 9.8.1 was proved by Siegel in his 1945 paper Some re-
marks on discontinuous groups [409]. Theorem 9.8.2 was proved by Koebe
in his 1928 paper [263]. The complete gluing of an open surface of finite
area was considered by Poincaré in his 1884 paper [358]. For commentary,
see Klein’s 1891 paper Ueber den Begriff des functionentheoretischen Fun-
damentalbereichs [254]. Theorem 9.8.4 was essentially proved by Seifert in
his 1975 paper Komplexe mit Seitenzuordnung [403]. Theorem 9.8.5 for a
single polygon was proved by de Rham in his 1971 paper Sur les polygones
générateurs de groupes fuchsiens [111] and by Maskit in his 1971 paper
On Poincaré’s theorem for fundamental polygons [301]. Theorem 9.8.5 was
proved by Seifert in his 1975 paper [403]. Theorem 9.8.6 essentially ap-
peared in Koebe’s 1927 Preisschrift Allgemeine Theorie der Riemannschen
Mannigfaltigkeiten [260]. See also his 1928 paper [263]. Theorem 9.8.7 ap-
peared in de Rham’s 1971 paper [111] and in Maskit’s 1971 paper [301].
Theorem 9.8.8 is a consequence of the classification of all the complete hy-
perbolic structures on a thrice-punctured sphere given by Fricke and Klein
in their 1897-1912 treatise [151].



CHAPTER 10

Hyperbolic 3-Manifolds

In this chapter, we construct some examples of hyperbolic 3-manifolds. We
begin with a geometric method for constructing spherical, Euclidean, and
hyperbolic 3-manifolds in Sections 10.1 and 10.2. Examples of complete
hyperbolic 3-manifolds of finite volume are constructed in Section 10.3.
The problem of computing the volume of a hyperbolic 3-manifold is taken
up in Section 10.4. The chapter ends with a detailed study of hyperbolic
Dehn surgery on the figure-eight knot complement.

§10.1. Gluing 3-Manifolds

In this section, we shall construct spherical, Euclidean, and hyperbolic 3-
manifolds by gluing together convex polyhedra in X = S3, E3, or H3 along
their sides.

Let P be a finite family of disjoint convex polyhedra in X and let G be
a group of isometries of X.

Definition: A G-side-pairing for P is a subset of G,

Φ = {gS : S ∈ S},
indexed by the collection S of all the sides of the polyhedra in P such that
for each side S in S,

(1) there is a side S′ in S such that gS(S′) = S;

(2) the isometries gS and gS′ satisfy the relation gS′ = g−1
S ; and

(3) if S is a side of P in P and S′ is a side of P ′ in P, then

P ∩ gS(P ′) = S.

It follows from (1) that S′ is uniquely determined by S. The side S′ is
said to be paired to the side S by Φ. From (2), we deduce that S′′ = S. The

435
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pairing of side points by elements of Φ generates an equivalence relation on
the set Π = ∪P∈P P , and the equivalence classes are called the cycles of Φ.

The solid angle subtended by a polyhedron P in X at a point x of P is
defined to be the real number

ω(P, x) = 4π
Vol(P ∩ B(x, r))

Vol(B(x, r))
, (10.1.1)

where r is less than the distance from x to any side of P not containing x.
It follows from Theorems 2.4.1 and 3.4.1 that ω(P, x) does not depend on
the radius r.

Let [x] = {x1, . . . , xm} be a finite cycle of Φ, and let Pi be the polyhedron
in P containing the point xi for each i = 1, . . . , m. The solid angle sum of
[x] is defined to be the real number

ω[x] = ω(P1, x1) + · · · + ω(Pm, xm). (10.1.2)

If x is in the interior of a polyhedron in P, then [x] = {x} and ω[x] = 4π.
If x is in the interior of a side S of a polyhedron in P, then x′ = g−1

S (x) is
in the interior of S′ and [x] = {x, x′}; therefore ω[x] = 2π or 4π according
as x = x′ or x �= x′.

Now suppose that x is in the interior of an edge of a polyhedron in P.
Then every point of [x] is in the interior of an edge of a polyhedron in P,
in which case [x] is called an edge cycle of Φ. Let θ(Pi, xi) be the dihedral
angle of Pi along the edge containing xi for each i. The dihedral angle sum
of the edge cycle [x] is defined to be the real number

θ[x] = θ(P1, x1) + · · · + θ(Pm, xm). (10.1.3)

Note that ω(Pi, xi) = 2θ(Pi, xi) for each i. Therefore ω[x] = 2θ[x].

Definition: A G-side-pairing Φ for P is proper if and only if each cycle
of Φ is finite and has solid angle sum 4π.

Theorem 10.1.1. If G is a group of isometries of X and Φ is a proper
G-side-pairing for a finite family P of disjoint convex polyhedra in X, then

(1) the isometry gS fixes no point of S′ for each S in S;

(2) the sides S and S′ are equal if and only if S is a great 2-sphere of S3

and gS is the antipodal map of S3; and

(3) each edge cycle of Φ contains at most one point of an edge of a poly-
hedron in P.

Proof: (1) On the contrary, suppose that gS fixes a point x of S′. Let [x] =
{x1, . . . , xm}. Then m ≥ 2, since Φ is proper. Let Pi be the polyhedron in
P containing xi for each i. Let r be a positive real number such that r is less
than half the distance from xi to xj for each i �= j and from xi to any side of
Pi not containing xi for each i. Then Pi∩S(xi, r) is a polygon in the sphere
S(xi, r) and the polygons {Pi ∩S(xi, r)} are disjoint. Now the side-pairing
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Φ restricts to a proper I(S2)-side-pairing of the polygons {Pi ∩ S(xi, r)}.
Let Σ be the space obtained by gluing together the polygons. Then Σ has
a spherical structure by Theorem 9.2.3; moreover Σ is a 2-sphere, since Σ
is compact, connected, and ω[x] = 4π.

Let P be the polyhedron in P containing x. Then the side S′ ∩ S(x, r)
of P ∩ S(x, r) is paired to the side S ∩ S(x, r) of P ∩ S(x, r). Let y be a
point of S ∩S(x, r) and let y′ = g−1

S (y). Then y �= y′ by Theorem 9.2.1(1).
As P ∩ S(x, r) is a convex polygon, there is a geodesic segment [y, y′] in
P ∩ S(x, r) joining y to y′. As y is paired to y′, the segment projects to a
great circle of the sphere Σ, but this is a contradiction because the length
of [y, y′] is at most half the length of a great circle of S(x, r). Thus gS fixes
no point of S′.

(2) The proof of (2) is the same as the proof of Theorem 9.2.1(2).
(3) Suppose that [x] is an edge cycle. Then the cycle [x] can be ordered

[x] = {x1, x2, . . . , xm}
so that

x = x1 � x2 � · · · � xm � x.

Let Ei be the edge of the polyhedron in P containing xi, and let k be the
number of points of [x] contained in E1. Then Ei contains k points of [x]
for each i. Let yi be the centroid of the points of [x] in Ei for each i, and
let y = y1. Then we have

y = y1 � y2 � · · · � ym � y.

Moreover
d(x1, y1) = d(x2, y2) = · · · = d(xm, ym).

Therefore k = 1 or 2. Now as

4π = ω[x] = 2θ[x] = 2kθ[y] = kω[y] = 4kπ,

we must have k = 1.

Let Φ be a proper G-side-pairing for P and let M be the quotient space
of Π of cycles of Φ. The space M is said to be obtained by gluing together
the polyhedra in P by Φ.

Theorem 10.1.2. Let G be a group of isometries of X and let M be a
space obtained by gluing together a finite family P of disjoint convex poly-
hedra in X by a proper G-side-pairing Φ. Then M is a 3-manifold with
an (X, G)-structure such that the natural injection of P ◦ into M is an
(X, G)-map for each P in P.

Proof: Without loss of generality, we may assume that each polyhedron
in P has at least one side. Let x a point of Π and let [x] = {x1, . . . , xm}.
Let Pi be the polyhedron in P containing xi for each i. If xi is in a side
of Pi, then m ≥ 2 by Theorem 10.1.1. Let δ(x) be the minimum distance
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from xi to xj for each i �= j and from xi to any side of Pi not containing
xi for each i.

Let r be a real number such that 0 < r < δ(x)/2. Then for each i,
the set Pi ∩ S(xi, r) is a polygon in the sphere S(xi, r), and the polygons
{Pi ∩ S(xi, r)} are disjoint. Now the side-pairing Φ restricts to a proper
I(S2)-side-pairing of the polygons {Pi ∩ S(xi, r)}. Let Σ(x, r) be the space
obtained by gluing together the polygons. Then Σ(x, r) has a spherical
structure by Theorem 9.2.3. Now since Σ(x, r) is compact, connected, and
ω[x] = 4π, we deduce that Σ(x, r) is a 2-sphere.

Let π : Π → M be the quotient map. Then for each i, the restriction of
π to the polygon Pi ∩ S(xi, r) extends to an isometry

ξi : S(xi, r) → Σ(x, r).

Moreover, for each i, j, the isometry

ξ−1
j ξi : S(xi, r) → S(xj , r)

extends to a unique isometry gij of X, and gij(xi) = xj .
Suppose that the element gS of Φ pairs the side S′ ∩ S(xi, r) of the

polygon Pi ∩ S(xi, r) to the side S ∩ S(xj , r) of Pj ∩ S(xj , r). Then ξ−1
j ξi

agrees with gS on the set S′ ∩ S(xi, r). Hence ξ−1
j ξi agrees with gS on the

great circle 〈S′〉 ∩ S(xi, r). Therefore gij agrees with gS on the plane 〈S′〉.
Now since gij and gS both map Pi ∩ S(xi, r) to the opposite side of the
plane 〈S〉 from Pj ∩ S(xj , r), we deduce that gij = gS by Theorem 4.3.6.

Now suppose that

xi = xi1 � xi2 � · · · � xip
= xj .

Then we have

ξ−1
j ξi = (ξ−1

ip
ξip−1)(ξ

−1
ip−1

ξip−2) · · · (ξ−1
i2

ξi1).

Hence, we have
gij = gip−1ipgip−2ip−1 · · · gi1i2 .

Now the elements gi1i2 , . . . , gip−1ip are in Φ by the previous argument.
Therefore gij is in G for each i, j.

Define
U(x, r) =

m
∪

i=1
π(Pi ∩ B(xi, r)).

As the set
π−1(U(x, r)) =

m
∪

i=1
Pi ∩ B(xi, r)

is open in Π, we have that U(x, r) is an open subset of M .
Suppose that x = xk and define a function

ψx :
m
∪

i=1
Pi ∩ B(xi, r) → B(x, r)

by the rule
ψx(z) = gik(z) if z is in Pi ∩ B(xi, r).
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Suppose that gS(xi) = xj . Then gS = gij . Let y be a point of S ∩ B(xj , r)
and let y′ = g−1

S (y). Then y′ is a point of S′ ∩ B(xi, r). As

ξ−1
k ξi = (ξ−1

k ξj)(ξ−1
j ξi),

we have that gik = gjkgij . Therefore

ψx(y) = gjk(y) = gjkgS(y′) = gik(y′) = ψx(y′).

Consequently ψx induces a continuous function

φx : U(x, r) → B(x, r).

For each t such that 0 < t < r, the function φx restricts to the isometry

ξ−1
k : Σ(x, t) → S(x, t)

corresponding to t. Therefore φx is a bijection with a continuous inverse
defined by

φ−1
x (z) = πg−1

ik (z) if z is in gik(Pi ∩ B(xi, r)).

Hence φx is a homeomorphism. The same argument as in the proof of
Theorem 9.2.2 shows that M is Hausdorff. Thus M is a 3-manifold.

Next, we show that{
φx : U(x, r) → B(x, r)

∣∣ x is in Π and r < δ(x)/3
}

is an (X, G)-atlas for M . By construction, U(x, r) is an open connected
subset of M and φx is a homeomorphism. Moreover U(x, r) is defined
for each point π(x) of M and sufficiently small radius r. Consequently
{U(x, r)} is an open cover of M .

Suppose that U(x, r) and U(y, s) overlap and r < δ(x)/3 and s < δ(y)/3.
Let F (x) be the face of the polyhedron in P that contains x in its interior.
By reversing the roles of x and y, if necessary, we may assume that

dimF (x) ≥ dimF (y).

As before, we have

π−1(U(x, r)) =
m
∪

i=1
Pi ∩ B(xi, r),

π−1(U(y, s)) =
n
∪

j=1
Qj ∩ B(yj , s).

Now for some i and j, the set Pi ∩B(xi, r) meets Qj ∩B(yj , s). By reindex-
ing, we may assume that P1 ∩B(x1, r) meets Q1 ∩B(y1, s). Then P1 = Q1
and d(x1, y1) < r + s by the triangle inequality. We claim that y1 is in
every side of P1 that contains x1. On the contrary, suppose that y1 is not
in a side of P1 that contains x1. Then s < d(x1, y1)/3. Therefore x1 is in
every side of P1 that contains y1, otherwise we would have the contradic-
tion that r < d(x1, y1)/3. Hence F (x1) is a proper face of F (y1), which is
a contradiction. Therefore y1 is in every side of P1 that contains x1. This
implies that for each i, the set Pi ∩B(xi, r) meets Qj ∩B(yj , s) for some j.
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We claim that the set Pi ∩ B(xi, r) meets Qj ∩ B(yj , s) for just one
index j. On the contrary, suppose that Pi ∩ B(xi, r) meets Qj ∩ B(yj , s)
and Qk ∩ B(yk, s) with j �= k. Then Pi = Qj = Qk. Now since yj and yk

are in every side of Pi that contains xi, we have that F (yj) and F (yk) are
faces of F (xi). Moreover, F (yj) and F (yk) are distinct by Theorem 10.1.1.
Therefore F (yj) and F (yk) are proper faces of F (xi). Hence, we have

r < d(xi, yj)/3, r < d(xi, yk)/3, and s < d(yj , yk)/3.

Now by the triangle inequality at the last step, we have that

d(xi, yj) + d(xi, yk) < (r + s) + (r + s)
< d(xi, yj)/3 + d(xi, yk)/3 + 2d(yj , yk)/3
≤ d(xi, yj) + d(xi, yk),

which is a contradiction. Therefore Pi ∩ B(xi, r) meets Qj ∩ B(yj , s) for
just one index j.

We claim that the set Qj ∩ B(yj , s) meets Pi ∩ B(xi, r) for just one
index i. On the contrary, suppose that Qj ∩ B(yj , s) meets Pi ∩ B(xi, r)
and Pk ∩B(xk, r) with i �= k. Then Pi = Qj = Pk. Now since yj is in every
side of Pi that contains xi or xk, we have that F (yj) is a face of F (xi)
and F (xk). Moreover F (xi) and F (xk) are distinct by Theorem 10.1.1.
Therefore F (yj) is a proper face of F (xi) and F (xk). Hence, we have

r < d(xi, yj)/3 < (r + s)/3.

Therefore r < s/2. As s < δ(y)/3, we have that r < δ(y)/6. Now observe
that

d(xi, yj) < r + s < δ(y)/2 and d(xk, yj) < r + s < δ(y)/2.

From the construction of U(y, r+s), we deduce that π maps Pi∩B(yj , r+s)
injectively into M . As xi and xk are in Pi ∩ B(yj , r + s), we have a
contradiction. Consequently, we can reindex [y] so that Pi ∩B(xi, r) meets
just Qi ∩ B(yi, s) for i = 1, . . . , m. Then Pi = Qi for each i.

Let gij and hij be the elements of G constructed as before for x and y.
Suppose that gS pairs the side S′ ∩ S(xi, r) of Pi ∩ S(xi, r) to the side
S ∩ S(xj , r) of Pj ∩ S(xj , r). Then gS = gij and gS(xi) = xj . Therefore xi

is in S′. Now since Pi ∩B(xi, r) meets Pi ∩B(yi, s), we have that yi is also
in S′. Now observe that gS(Pi ∩ B(xi, r)) meets gS(Pi ∩ B(yi, s)). Hence
Pj ∩ B(xj , r) meets Pj ∩ B(gSyi, s). Therefore gSyi = yj . Hence gij = hij .

Now suppose that

xi = xi1 � xi2 � · · · � xip
= xj .

Then we deduce from the previous argument that

yi = yi1 � yi2 � · · · � yip
= yj

and

gij = gip−1ip
gip−2ip−1 · · · gi1i2

= hip−1iphip−2ip−1 · · ·hi1i2 = hij .
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Next, observe that

U(x, r) ∩ U(y, s)

= π
(

m
∪

i=1
Pi ∩ B(xi, r)

)
∩ π
(

n
∪

j=1
Qj ∩ B(yj , s)

)
= π

([
m
∪

i=1
Pi ∩ B(xi, r)

]
∩
[

n
∪

j=1
Qj ∩ B(yj , s)

])
= π

(
m
∪

i=1

n
∪

j=1

[
Pi ∩ B(xi, r) ∩ Qj ∩ B(yj , s)

])
= π

(
m
∪

i=1
Pi ∩ B(xi, r) ∩ B(yi, s)

)
.

Let x = xk and y = y
. Then

φx

(
U(x, r) ∩ U(y, s)

)
=

m
∪

i=1
gik

(
Pi ∩ B(xi, r) ∩ B(yi, s)

)
and

φy

(
U(x, r) ∩ U(y, s)

)
=

m
∪

i=1
hi


(
Pi ∩ B(xi, r) ∩ B(yi, s)

)
.

Now on the set
gik

(
Pi ∩ B(xi, r) ∩ B(yi, s)

)
,

the map φyφ−1
x is the restriction of

hi
g
−1
ik = hi
h

−1
ik = hi
hki = hk


for each i = 1, . . . , m. Therefore φyφ−1
x is the restriction of hk
. Thus

φyφ−1
x agrees with an element of G. This completes the proof that {φx} is

an (X, G)-atlas for M .
The same argument as in the proof of Theorem 9.2.2 shows that the

(X, G)-structure of M has the property that the natural injection map of
P ◦ into M is an (X, G)-map for each P in P.

The next theorem makes it much easier to apply Theorem 10.1.2.

Theorem 10.1.3. Let G be a group of orientation preserving isometries
of X and let Φ = {gS : S ∈ S} be a G-side-pairing for a finite family P of
disjoint convex polyhedra in X. Then Φ is proper if and only if

(1) each cycle of Φ is finite;

(2) the isometry gS fixes no point of S′ for each S in S; and

(3) each edge cycle of Φ has dihedral angle sum 2π.

Proof: Suppose that Φ is proper. Then every cycle of Φ is finite and has
solid angle sum 4π; moreover, gS fixes no point of S′ for each S in S by
Theorem 10.1.1. Let

[x] = {x1, . . . , xm}
be an edge cycle of Φ. As ω[x] = 2θ[x], we have that θ[x] = 2π. Thus,
every edge cycle of Φ has dihedral angle sum 2π.
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Conversely, suppose that Φ satisfies (1)-(3). Then every cycle of Φ is
finite by (1). Now let

[x] = {x1, . . . , xm}
be a cycle of Φ. If x is in the interior of a polyhedron of P, then ω[x] = 4π.
If x is in the interior of a side of a polyhedron of P, then ω[x] = 4π by (2).
If x is in the interior of an edge of a polyhedron of P, then [x] is an edge
cycle, and we have by (3) that

ω[x] = 2θ[x] = 4π.

Now assume that x is a vertex of a polyhedron of P. Then xi is a vertex
of a polyhedron Pi in P for each i. Let r be a positive real number such
that r is less than half the distance from xi to xj for each i �= j and from
xi to any side of Pi not containing xi for each i. Then Pi ∩ S(xi, r) is a
polygon in the sphere S(xi, r) and the polygons {Pi ∩S(xi, r)} are disjoint.
Now the side-pairing Φ restricts to a proper side-pairing of the polygons
{Pi∩S(xi, r)}. Hence, the space Σ obtained by gluing together the polygons
has an orientable spherical structure by Theorem 9.2.3. Therefore Σ is a
2-sphere, since it is compact and connected. Hence ω[x] = 4π. Thus Φ is
proper.

Example 1. Let P be a cube in E3. Define a T(E3)-side-pairing Φ for
P by pairing the opposite sides of P by translations. Then each edge cycle
of Φ consists of four points. Therefore, each edge cycle of Φ has dihedral
angle sum 2π. Hence Φ is proper by Theorem 10.1.3. Therefore, the space
M obtained by gluing together the sides of P by Φ is a T(E3)-manifold by
Theorem 10.1.2. The 3-manifold M is called the cubical Euclidean 3-torus.

Example 2. Let D(r) be a regular spherical dodecahedron inscribed on
the sphere S(e4, r) in S3 with 0 < r ≤ π/2. Let θ(r) be the dihedral angle
of D(r). When r is small, θ(r) is approximately equal to but greater than
the value of the dihedral angle of a Euclidean regular dodecahedron, which
is approximately 116◦, 34′. As r increases, θ(r) increases continuously until
it reaches θ(π/2), the dihedral angle of a regular dodecahedron in S3 with
vertices on S2. As ∂D(π/2) = S2, we have that θ(π/2) = 180◦. Now as θ(r)
is a continuous function of r, taking values in the interval (θ(0), θ(π/2)],
there is a unique value of r such that θ(r) = 120◦. Let P = D(r) for
this value of r. Then P is a regular spherical dodecahedron all of whose
dihedral angles are 2π/3.

Define an I0(S3)-side-pairing Φ for P by pairing the opposite sides of P
with a twist of π/5. See Figure 10.1.1. Then each edge cycle of Φ consists
of three points. Therefore, each edge cycle of Φ has dihedral angle sum 2π.
Hence Φ is proper by Theorem 10.1.3. Therefore, the space M obtained by
gluing together the sides of P by Φ is an orientable spherical 3-manifold
by Theorem 10.1.2. The 3-manifold M is called the Poincaré dodecahedral
space.
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Figure 10.1.1. The gluing pattern for the Poincaré dodecahedral space

Example 3. By the argument in Example 4 of §7.1, there is a regular
hyperbolic dodecahedron P in H3 all of whose dihedral angles are 2π/5.
Define an I0(H3)-side-pairing Φ for P by pairing the opposite sides of P
with a twist of 3π/5. See Figure 10.1.2. Then each edge cycle of Φ consists
of five points. Therefore, each edge cycle of Φ has dihedral angle sum 2π.
Hence Φ is proper by Theorem 10.1.3. Therefore, the space M obtained
by gluing together the sides of P by Φ is a closed, orientable, hyperbolic 3-
manifold by Theorem 10.1.2. The 3-manifold M is called the Seifert-Weber
dodecahedral space.

Figure 10.1.2. The gluing pattern for the Seifert-Weber dodecahedral space
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Exercise 10.1

1. Let P be the cube [−1, 1]3 in E3. Pair the opposite vertical sides of P
by horizontal translations and the top and bottom sides of P by a vertical
translation followed by a 180◦ rotation about the vertical z-axis. Show that
this I0(E3)-side-pairing for P is proper.

2. Prove that the fundamental group of the Poincaré dodecahedral space has
order 120. You may use Theorem 11.2.1.

3. Prove that the Poincaré dodecahedral space has the same singular homology
as the 3-sphere.

4. Compute the singular homology of the Seifert-Weber dodecahedral space.

5. Prove that there are infinitely many pairwise nonisometric, closed, orientable,
hyperbolic 3-manifolds. Hint: See Exercise 7.6.5 and Theorem 11.2.1.

§10.2. Complete Gluing of 3-Manifolds

Let M be a hyperbolic 3-manifold obtained by gluing together a finite
family P of disjoint, convex, finite-sided polyhedra in H3 of finite volume by
a proper I(H3)-side-pairing Φ. In this section, we shall determine necessary
and sufficient conditions such that M is complete.

It will be more convenient for us to work in the conformal ball model
B3. Then each polyhedron in P has only finitely many ideal vertices on the
sphere S2 at infinity by Theorems 6.4.7 and 6.4.8. We may assume, without
loss of generality, that no two polyhedrons in P share an ideal vertex. Then
the side-pairing Φ of the sides S of the polyhedra in P extends to a pairing
of the ideal vertices of the polyhedra in P, which, in turn, generates an
equivalence relation on the set of all the ideal vertices of the polyhedra in
P. The equivalence classes are called cycles. The cycle containing an ideal
vertex v is denoted by [v]. A cycle of ideal vertices is called a cusp point of
the manifold M .

Let v be an ideal vertex of a polyhedron Pv in P. Choose a horosphere
Σv based at v that meets just the sides in S incident with v. The link of
the ideal vertex v is defined to be the set

L(v) = Pv ∩ Σv.

Note that L(v) is a compact Euclidean polygon in the horosphere Σv, with
respect to the natural Euclidean metric of Σv, whose similarity type does
not depend on the choice of the horosphere Σv. For each cycle [v] of ideal
vertices, we shall assume that the horospheres {Σu : u ∈ [v]} have been
chosen small enough so that the links {L(u) : u ∈ [v]} are disjoint. We
next show that Φ determines a proper S(E2)-side-pairing of the polygons
{L(u) : u ∈ [v]}.
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Let gS be an element of Φ and let u, u′ be elements of [v] such that
gS(u′) = u. Then Σu′ ∩ S′ is a side of L(u′) and Σu ∩ S is a side of L(u).
Now let

gS : Σu′ → gS(Σu′)

be the restriction of gS . Then gS is an isometry with respect to the natural
Euclidean metrics of the horospheres Σu′ and gS(Σu′). Observe that the
line segment

gS(Σu′ ∩ S′) = gS(Σu′) ∩ S

is parallel to the line segment Σu ∩ S because gS(Σu′) is concentric with
Σu. Let

pS : gS(Σu′) → Σu

be the radial projection of gS(Σu′) onto Σu. Then pS is a change of scale
with respect to the natural Euclidean metrics of gS(Σu′) and Σu. Define

hS : Σu′ → Σu

by hS = pSgS . Then hS is a similarity with respect to the natural Euclidean
metrics of Σu′ and Σu. Moreover hS maps the side Σu′ ∩ S′ of L(u′) onto
the side Σu ∩ S of L(u). Clearly {hS} is a proper S(E2)-side-pairing of the
polygons {L(u)}. Here S ranges over the set of all the sides in S incident
with the cycle [v]. We shall assume that the horospheres {Σu} have been
chosen so that pS = 1 for the largest possible number of sides S.

Let L[v] be the space obtained by gluing together the polygons {L(u)}
by {hS}. Then L[v] is a Euclidean similarity surface by Theorem 9.2.3.
The surface L[v] is called the link of the cusp point [v] of the hyperbolic
3-manifold M obtained by gluing together the polyhedra in P by Φ. We
now determine the topology of L[v].

Theorem 10.2.1. The link L[v] of a cusp point [v] of M is either a torus
or a Klein bottle; moreover, if each element of Φ is orientation preserving,
then L[v] is a torus.

Proof: By construction, L[v] is a closed surface. By subdividing the
polygons, if necessary, we may assume that all the polygons {L(u)} are
triangles. Let p, e, t be the number of vertices, edges, and triangles, respec-
tively. Then we have 3t = 2e, since each triangle has 3 edges and each edge
bounds 2 triangles. Now the sum of all the angles of the triangles is πt on
the one hand and 2πp on the other hand. Hence t = 2p. Therefore

χ(L[v]) = p − e + t

= 1
2 t − 3

2 t + t = 0.

Hence L[v] is either a torus or a Klein bottle. If each element of Φ is
orientation preserving, then each element of {hS} is orientation preserving,
whence L[v] is orientable and L[v] is a torus.
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Theorem 10.2.2. The link L[v] of a cusp point [v] of M is complete if
and only if links {L(u)} for the ideal vertices in [v] can be chosen so that
Φ restricts to a side-pairing for {L(u)}.

Proof: Suppose that Φ restricts to a side-pairing for {L(u)}. Then
hS = gS for each S, and so {hS} is an I(E2)-side-pairing for {L(u)}. As
L[v] is compact, the (E2, I(E2))-structure on L[v] determined by {hS} is
complete by Theorem 8.5.7. Hence L[v] is a complete (E2, S(E2))-surface
by Theorem 8.5.8.

Conversely, suppose that L[v] is complete. Let G be the abstract graph
whose vertices are the elements of [v] and whose edges are the sets {u, u′}
for which there is an element gS of Φ such that gS(u′) = u. Then G is
connected. Let H be the subgraph of G whose vertices are those of G and
whose edges are the sets {u, u′} for which there is an element gS of Φ such
that gS(u′) = u and pS = 1. We now show that H is connected. On the
contrary, assume that H is disconnected. Then there is an edge {u, u′}
of G joining two components of H. By rechoosing all the horospheres
corresponding to one of these components by a uniform change of scale, we
can add the edge {u, u′} to H. However, we assumed in the original choice
of the horospheres that H has the largest possible number of edges. Thus
H must be connected.

Now as L[v] is complete, the (E2, S(E2))-structure of L[v] contains a
(E2, I(E2))-structure; moreover, since H is connected, we can choose the
scale of the (E2, I(E2))-structure on L[v] so that the natural injection map
of L(u)◦ into L[v] is a local isometry for each u in [v]. Let gS be an element
of Φ such that gS(u′) = u. Then the restriction of hS to the interior of the
side Σu′ ∩ S′ of L(u′) is a local isometry because it factors through L[v].
Consequently hS is an isometry and therefore pS = 1. Thus Φ restricts to
a side-pairing for {L(u)}.

We now assume that L[v] is complete. For greater clarity, we pass to
the upper half-space model U3 and assume, without loss of generality, that
v = ∞. By Theorem 8.5.9, there is a group of isometries Γv of U3 acting
freely and discontinuously on Σv, and there is a (E2, I(E2))-equivalence
from Σv/Γv to L[v] compatible with the projection from L(v) to L[v].

Let B(v) be the open horoball based at v such that ∂B(v) = Σv. Then
Γv acts freely and discontinuously on B(v) as a group of isometries. Con-
sequently B(v)/Γv is a hyperbolic 3-manifold called a cusp. It is clear from
the gluing construction of M that we have the following 3-dimensional
version of Theorem 9.8.4.

Theorem 10.2.3. If the link L[v] of a cusp point [v] of M is complete,
then there is an injective local isometry

ι : B(v)/Γv → M

compatible with the projection of Pv to M .
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We next consider the 3-dimensional version of Theorem 9.8.5.

Theorem 10.2.4. Let M be a hyperbolic 3-manifold obtained by gluing
together a finite family P of disjoint, convex, finite-sided polyhedra in H3

of finite volume by a proper I(H3)-side-pairing Φ. Then M is complete if
and only if L[v] is complete for each cusp point [v] of M .

Proof: Suppose that L[v] is incomplete for some ideal vertex v. By
Theorem 10.2.2, there is a side S incident with [v] such that pS �= 1. Let H
be the graph in the proof of Theorem 10.2.2. Since H is connected, there
are sides S1, . . . , Sm incident with the cycle [v] at ideal vertices v1, . . . , vm,
respectively, such that gSi(vi+1) = vi, and gSm

(v1) = vm, and pSi
= 1 for

each i = 1, . . . , m − 1, and S = S′
m.

Let Li = L(vi) for i = 1, . . . , m. Choose a point x′
0 in the side S ∩ L1

of the polygon L1. Let α1 be a Euclidean geodesic arc in L1 joining x′
0

to a point x1 in the side S1 ∩ L1 of L1. We choose inductively a point
xi in the side Si ∩ Li of Li and a Euclidean geodesic arc αi in Li joining
x′

i−1 to xi for i = 2, . . . , m so that pS(x′
m) = x′

0. If the point x′
m is closer

to v1 than x′
0, then the same argument as in the proof of Theorem 9.8.5

shows that the sequence x1, x2, . . . , xm can be continued to a nonconvergent
Cauchy sequence in M . If x′

0 is closer to v1 than x′
m, then xm, xm−1, . . . , x1

can be continued to a nonconvergent Cauchy sequence in M . Thus M is
incomplete.

Conversely, suppose that L[v] is complete for each ideal vertex v. From
Theorem 10.2.3, we deduce that there is a compact 3-manifold-with-bound-
ary M0 in M such that M − M0 is the disjoint union of cusps. The same
argument as in the proof of Theorem 9.8.5 shows that M is complete.

Exercise 10.2

1. Prove that the similarity type of the link of a cusp point L[v] does not depend
on the choice of the horospheres {Σu}.

2. Fill in the details of the proof of Theorem 10.2.3.

3. Prove that the horoball B(v) in Theorem 10.2.3 can be replaced by a smaller
concentric horoball so that ι maps the cusp B(v)/Γv isometrically onto its
image in M .

4. Prove that a cusp B(v)/Γv has finite volume.

5. Prove that the hypothesis of finite volume can be dropped from Theorem
10.2.4. Hint: See Theorem 8.5.10.

6. State and prove the 3-dimensional version of Theorem 9.8.7.
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§10.3. Finite Volume Hyperbolic 3-Manifolds

In this section, we construct some examples of open, complete, hyperbolic
3-manifolds of finite volume obtained by gluing together a finite number
of regular ideal polyhedra in H3 along their sides. Each of these examples
is homeomorphic to the complement of a knot or link in Ê3. We begin by
showing that the figure-eight knot complement has a hyperbolic structure.

Let T be a regular ideal tetrahedron in B3. See Figure 10.3.1. Since
the group of symmetries of T acts transitively on its edges, all the dihedral
angles of T are the same. The link of each ideal vertex of T is a Euclidean
equilateral triangle, and so all the dihedral angles of T are π/3.

Let T and T ′ be two disjoint regular ideal tetrahedrons in B3. Label the
sides and edges of T and T ′ as in Figure 10.3.2. Since a Möbius transforma-
tion of B3 is determined by its action on the four vertices of T , the group of
symmetries of T corresponds to the group of permutations of the vertices
of T . Consequently, there is a unique orientation reversing isometry fS of
B3 that maps T ′ onto T and side S′ onto S in such a way as to preserve
the gluing pattern between S′ and S in Figure 10.3.2 for S = A, B, C, D.

Let gS be the composite of fS followed by the reflection in the side S.
Then gA, gB , gC , gD and their inverses form an I0(B3)-side-pairing Φ for
{T, T ′}. There are six points in each edge cycle of Φ. Hence, the dihedral
angle sum of each edge cycle of Φ is 2π. Therefore Φ is a proper side-pairing.

Let M be the space obtained by gluing together T and T ′ by Φ. Then
M is an orientable hyperbolic 3-manifold by Theorem 10.1.2. There is
one cycle of ideal vertices. The link of the cusp point of M is a torus by
Theorem 10.2.1. This can be seen directly in Figure 10.3.3.

Figure 10.3.1. A regular ideal tetrahedron in B3
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Figure 10.3.2. The gluing pattern for the figure-eight knot complement
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Figure 10.3.3. The link of the cusp point of the figure-eight knot complement



450 10. Hyperbolic 3-Manifolds

Figure 10.3.4. The figure-eight knot

Now choose disjoint horospheres based at the ideal vertices of T ′ that
are invariant under the group of symmetries of T ′. Then the isometries
fA, fB , fC , fD will map these horospheres to horospheres based at the ideal
vertices of T that are invariant under the group of symmetries of T . Con-
sequently, these horospheres are paired by the elements of Φ. Therefore,
the link of the cusp point of M is complete by Theorem 10.2.2. Thus M
has a cusp by Theorem 10.2.3. Finally M is complete by Theorem 10.2.4.

Let K be a figure-eight knot in E3. See Figure 10.3.4. We now show
that M is homeomorphic to Ê3 − K. Drape the knot K over the top of
the tetrahedron T and add directed arcs a and b to K as in Figure 10.3.5.
These two arcs will correspond to the two edges a, b of M .

a

b

A

B

C

Figure 10.3.5. The figure-eight knot draped over the tetrahedron T
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Now observe that the boundary of side A has the gluing pattern in
Figure 10.3.6(a). The resulting quotient space is homeomorphic to a closed
disk with two points removed as in Figure 10.3.6(b). This quotient space
is homeomorphic to a disk with one interior point and part of its boundary
removed as in Figures 10.3.6(c) and (d). Notice that the disk (d) has a
right-hand half-twist next to the directed arc b. The disk (d) spans the
part of K that follows the contour of side A in Figure 10.3.5. Note that
the knot passes through the missing point of the interior of the disk (d).

Likewise, sides B,C,D of T give rise to disks that span the parts of K
that follow the contours of sides B,C,D. See Figures 10.3.7-10.3.9. These
four disks together with K form a 2-complex L whose 1-skeleton is the
union of K and the arcs a, b. Let M2 be the image of ∂T in M . From the
compatibility of the gluing, we see that M2 is homeomorphic to L − K.

aa

b

A

(a)

a
b

(b)

a
b

(c)

a

b

A

(d)

Figure 10.3.6. Side A deforming into a 2-cell of the complex L
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Figure 10.3.7. Side B deforming into a 2-cell of the complex L
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Figure 10.3.8. Side C deforming into a 2-cell of the complex L
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Figure 10.3.9. Side D deforming into a 2-cell of the complex L

Each of the arcs a, b meets all four of the 2-cells of L. By collapsing
a and b to points, we see that L has the homotopy type of a 2-sphere.
Hence Ê3 − L is the union of two open 3-balls. Now cut Ê3 − K open
along the interiors of the 2-cells of L and split apart the arcs a, b along
their interiors to yield two connected 3-manifolds-with-boundary N and
N ′ whose boundaries are 2-spheres minus four points with the same cell
decomposition as the boundaries of T and T ′, respectively. Figure 10.3.10
illustrates cross sections of the subdivisions of Ê3 − K normal to the arcs
a and b. Note that ∞ is in N . This explains the inside-out flip of the disks
(a) and (b) in Figures 10.3.6-10.3.9.

As the interiors of N and N ′ are open 3-balls, the manifolds N and N ′

are closed 3-balls minus four points on their boundaries. Consequently,
there is a function φ from the disjoint union of N and N ′ to the disjoint
union of T and T ′ that induces a homeomorphism from Ê3 − K to M .
Thus M is homeomorphic to the complement of a figure-eight knot in Ê3.
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Figure 10.3.10. Cross sections normal to the arcs a and b pointing down

The Whitehead Link Complement

Let P be the regular ideal octahedron in B3 with vertices ±e1,±e2,±e3.
See Figure 10.3.11. By the same argument as in Theorem 6.5.14, the link
of each ideal vertex of a regular ideal polyhedron is a Euclidean regular
polygon. Therefore, the link of each ideal vertex of P is a Euclidean square.
Hence all the dihedral angles of P are π/2.

Figure 10.3.11. A regular ideal octahedron in B3
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Figure 10.3.12. The gluing pattern for the Whitehead link complement

Now label the sides, edges, and vertices of P as in Figure 10.3.12. Let gA

be the Möbius transformation of B3 that is the composite of the reflection
in the plane of B3 midway between the plane of side A and side A′, then a
2π/3 rotation in the plane of A about the center of A in the positive sense
with respect to the outside of A, and then a reflection in the plane of A.
Let gB be defined as gA except without the rotation. Let gC be defined
as gA and let gD be defined as gB . Then gA, gB , gC , gD and their inverses
form a I0(B3)-side-pairing Φ for the polyhedron P . There are four points
in each edge cycle of Φ. Hence, the dihedral angle sum of each edge cycle
of Φ is 2π. Therefore Φ is a proper side-pairing.

Let M be the space obtained by gluing together the sides of P by Φ.
Then M is an orientable hyperbolic 3-manifold by Theorem 10.1.2. There
are two cycles of ideal vertices of P . The links of the cusp points of M
are tori by Theorem 10.2.1. This can be seen directly in Figure 10.3.13.
Each element gS of Φ is the composite of an orthogonal transformation
followed by the reflection in S. Hence disjoint horospheres based at the ideal
vertices of P and equidistant from the origin are paired by the elements of
Φ. Therefore, the links of the cusp points of M are complete by Theorem
10.2.2. Thus M has two disjoint cusps by Theorem 10.2.3. Finally M is
complete by Theorem 10.2.4.
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Figure 10.3.13. The links of the cusp points of the Whitehead link complement
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Figure 10.3.14. The Whitehead link

Let L be a Whitehead link in E3. See Figure 10.3.14. We now show that
M is homeomorphic to Ê3 − L. Drape the link L over the top pyramid of
the regular octahedron and add three directed arcs a, b, c to L as in Figure
10.3.15. These three arcs will correspond to the three edges a, b, c of M .

Now observe that the boundary of side A of P has the gluing pattern
in Figure 10.3.16(a). The resulting quotient space is homeomorphic to a
closed disk with two points removed as in Figure 10.3.16(b). This quotient
space is homeomorphic to a disk with one interior point and part of its
boundary removed as in Figure 10.3.16(c). This last disk spans the right
half of the component of L in Figure 10.3.15 that is in the shape of an
infinity sign. Notice that the other component passes through the missing
point of the interior of the disk in Figure 10.3.16(c).

a

b c
A

B

C

D

Figure 10.3.15. The Whitehead link draped over of a regular octahedron
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Figure 10.3.16. Side A deforming into a 2-cell of the complex K
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Figure 10.3.17. Side B deforming into a 2-cell of the complex K
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Next, observe that the boundary of side B of P has the gluing pattern
in Figure 10.3.17(a). The resulting quotient space is homeomorphic to a
closed disk with part of the boundary removed as in Figure 10.3.17(b) and
(c). The last disk spans the part of L in Figure 10.3.15 that follows the
contour of side B. Likewise, the sides C and D of P give rise to disks that
span the parts of L that follow the contours of sides C and D. These four
disks together with L form a 2-complex K whose 1-skeleton is the union
of L and the arcs a, b, c. Let M2 be the image of ∂P in M . From the
compatibility of the gluing, we see that M2 is homeomorphic to K − L.

The 2-complex K is contractible because if we collapse the arcs a, b, c
to points, we obtain a closed disk. Consequently Ê3 − K is an open 3-
ball. Now cut Ê3 − L open along the interiors of the 2-cells of K and
split apart the arcs a, b, c along their interiors to yield a 3-manifold-with-
boundary N whose boundary is a 2-sphere minus six points with the same
cell decomposition as ∂P . Now as the interior of N is an open 3-ball, N
is a closed 3-ball minus six points on its boundary. Consequently, there is
map φ : N → P inducing a homeomorphism from Ê3 − L to M . Thus M
is homeomorphic to the complement of a Whitehead link in Ê3.

The Borromean Rings Complement

Let L be the Borromean rings in Figure 10.3.18 below. We now describe a
hyperbolic structure for Ê3 − L.

Figure 10.3.18. The Borromean rings
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Figure 10.3.19. The 2-complex K

Adjoin six directed arcs a, b, . . . , f to L as in Figure 10.3.19. The union
of L and these six arcs form the 1-skeleton of a 2-complex K whose 2-cells
are disks corresponding to the eight regions A, B, . . . , H in Figure 10.3.19.
Observe that each of the arcs a, b, . . . , f meets four of the 2-cells of K. By
collapsing the arcs a, b, . . . , f to points, we see that K has the homotopy
type of a 2-sphere. Consequently Ê3 − K is the union of two open 3-balls.

Now cut Ê3−L open along the interiors of the 2-cells of K and split apart
the arcs a, b, . . . , f along their interiors to yield two connected 3-manifolds-
with-boundary N and N ′ whose boundaries are 2-spheres minus six points
with the same cell decompositions as the boundaries of the octahedrons
in Figure 10.3.20. As the interiors of N and N ′ are open 3-balls, N and
N ′ are closed 3-balls minus six points on their boundaries. Consequently
Ê3 − L can be obtained by gluing together two regular ideal octahedrons
along their sides by the side-pairing in Figure 10.3.20.

Notice that the paired sides are glued together with 120◦ rotations, al-
ternating in direction from side to adjacent side. We leave it as an exercise
to show that this side-pairing determines a complete hyperbolic structure
for Ê3 − L.
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Figure 10.3.20. The gluing pattern for the Borromean rings complement
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Exercise 10.3

1. Determine the class in M(T 2) of the link of the cusp point of the figure-eight
knot complement.

2. Determine the classes in M(T 2) of the links of the cusp points of the White-
head link complement.

3. Draw a picture of each of the 2-cells of the complex K in Figure 10.3.19.

4. Explain how the gluing pattern in Figure 10.3.20 is derived from the splitting
of the complex in Figure 10.3.19.

5. Prove that the side-pairing of two regular ideal octahedrons described in
Figure 10.3.20 induces a complete hyperbolic structure on the complement
of the Borromean rings in Ê3.

6. Construct a complete hyperbolic manifold M by gluing together the sides of a
regular ideal tetrahedron. The manifold M is called the Gieseking manifold.

7. Show that the link of the cusp point of the Gieseking manifold M is a Klein
bottle. Conclude that M is nonorientable. You may use Theorem 11.2.1.

8. Show that the Gieseking manifold double covers the figure-eight knot com-
plement.

9. Construct a complete, orientable, hyperbolic manifold M by gluing together
two regular ideal tetrahedrons such that M is not homeomorphic to the
figure-eight knot complement. The manifold M is called the sister of the
figure-eight knot complement. You may use Theorems 11.2.1 and 11.2.2.

10. Show that the links of the cusp points of the figure-eight knot complement
and its sister represent different classes in M(T 2).

§10.4. Hyperbolic Volume

In this section, we compute the volume of the hyperbolic 3-manifolds con-
structed in sections 10.1 and 10.3. We begin by studying the geometry of
orthotetrahedra.

Orthotetrahedra

A (generalized ) orthotetrahedron T in H3, with angles α, β, γ, is a (gener-
alized) tetrahedron in H3 with three right dihedral angles and whose four
sides can be ordered S1, S2, S3, S4 so that

θ(S1, S2) = α, θ(S2, S3) = β, θ(S3, S4) = γ.

An orthotetrahedron is the 3-dimensional analogue of a right triangle. Any
tetrahedron can be expressed as the algebraic sum of orthotetrahedra.
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Figure 10.4.1. An orthotetrahedron T in D3 with vertex u3 at the origin

Let ui be the vertex of T opposite side Si for i = 1, . . . , 4. See Figure
10.4.1. The four sides of an orthotetrahedron T are right triangles with
right angles at vertices u2 and u3. Hence u2 and u3 are actual vertices
of T . Observe that α is the angle of side S4 at u3 and γ is the angle of
side S1 at u2. Therefore α, γ < π/2. By considering the link of u1 in T ,
we see that β + γ ≥ π/2 with equality if and only if u1 is ideal. Likewise
α + β ≥ π/2 with equality if and only if u4 is ideal. If u4 is ideal, then
β = π/2 − α < π/2. Suppose u4 is actual. Then the link of u4 in T is
a spherical triangle with angles α, β, π/2. By Exercise 2.5.2(b), we have
cos β = cos φ sin α where φ is the angle of side S1 at u4. Now φ < π/2, and
so β < π/2. Thus β < π/2 in general.

The standard Gram matrix of T is

A =

⎛⎜⎜⎝
1 − cos α 0 0

− cos α 1 − cos β 0
0 − cos β 1 − cos γ
0 0 − cos γ 1

⎞⎟⎟⎠ .

The determinant of A is

D = sin2 α sin2 γ − cos2 β.

By Theorems 7.2.4 and 7.3.1, we have that D < 0, and so sin α sin γ < cos β.
The next theorem follows from Theorems 7.2.5 and 7.3.2.

Theorem 10.4.1. Let α, β, γ be positive real numbers. Then there is a
generalized orthotetrahedron T in H3 with angles α, β, γ if and only if
α, β, γ < π/2, sin α sin γ < cos β, and α + β, β + γ ≥ π/2, with equal-
ity if and only if the associated vertex of T is ideal.
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Theorem 10.4.2. Let T be an orthotetrahedron in H3 with angles α, β, γ.
Let a, b, c be the lengths of the edges of T with dihedral angles α, β, γ, re-
spectively, and let δ be the angle defined by the equation

tan δ =

√
cos2 β − sin2 α sin2 γ

cos α cos γ
.

Then

a =
1
2

log
sin(α + δ)
sin(α − δ)

, b =
1
2

log
sin(π

2 − β + δ)
sin(π

2 − β − δ)
, c =

1
2

log
sin(γ + δ)
sin(γ − δ)

.

Proof: Let vi be the Lorentz unit inward normal vector of Si for each
i = 1, . . . , 4. Let B be the 4×4 matrix whose column vectors are v1, . . . , v4.
Then A = BtJB. Hence B is nonsingular. Let v∗

1 , . . . , v∗
4 be the row

vectors of B−1. Then we have v∗
i · vj = δij . Let wi = Jv∗

i for each i. Then
wi ◦ vj = δij . Now A = BtJB = (vi ◦ vj), and so

A−1 = B−1J(B−1)t = (v∗
i ◦ v∗

j ) = (wi ◦ wj).

The entries of A−1 are negative by Theorem 7.2.4, and so w1, . . . , w4 are
time-like. As wi ◦vj = 0 for each i �= j, we have that wi is a scalar multiple
of ui for each i. As wi ◦ vi > 0, we have that wi is on the same side of 〈Si〉
as vi. Hence wi is positive time-like and ui = wi/|||wi||| for each i.

Now A−1 = adjA/D and

adjA =

⎛⎜⎜⎝
sin2 γ − cos2 β cos α sin2 γ cos α cos β cos α cos β cos γ

cos α sin2 γ sin2 γ cos β cos β cos γ
cos α cos β cos β sin2 α cos γ sin2 α

cos α cos β cos γ cos β cos γ cos γ sin2 α sin2 α − cos2 β

⎞⎟⎟⎠.

As a = η(u3, u4), we have

cosh a = cosh η(u3, u4)
= cosh η(w3, w4)

=
w3 ◦ w4

‖w3‖ ‖w4‖

=
cos γ sin2 α/D

−
(
sin α/

√
−D
)(√

sin2 α − cos2 β/
√

−D
)

=
cos γ sin α√

sin2 α − cos2 β
.

Likewise

cosh b =
cos α cos β cos γ√

sin2 α − cos2 β
√

sin2 γ − cos2 β

and

cosh c =
cos α sin γ√

sin2 γ − cos2 β
.
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Figure 10.4.2. The generalized orthotetrahedron T ′

From these formulas, we derive the formulas

tanα tanh a = tan(π
2 − β) tanh b = tan γ tanh c =

√−D
cos α cos γ .

Let δ be the limit of the angle α as the vertex u4 goes to infinity while
holding u1, u2 and γ fixed. Then δ is the angle opposite γ of the generalized
orthotetrahedron T ′ in Figure 10.4.2 with actual vertices u1, u2, u

′
3 and

ideal vertex v′
4. From the above formulas, we deduce that

tan δ =
√

−D

cos α cos γ
with δ < α, π

2 − β, γ.

Solving for a, b, c from the formulas

tanα tanh a = tan(π
2 − β) tanh b = tan γ tanh c = tan δ,

we obtain

a = 1
2 log sin(α+δ)

sin(α−δ) , b = 1
2 log sin( π

2 −β+δ)
sin( π

2 −β−δ) , c = 1
2 log sin(γ+δ)

sin(γ−δ) .

The Lobachevsky Function

We now study some of the properties of the Lobachevsky function L(θ)
defined by the formula

L(θ) = −
∫ θ

0
log |2 sin t|dt. (10.4.1)

Notice that the above integral is improper at all multiples of π. We will
prove that L(θ) is well defined and continuous for all θ. To begin with, we
define L(0) = 0.
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Let w be a complex number in the complement of the closed interval
[1,∞). Then 1 − w is in the complement of the closed interval (−∞, 0].
Define arg(1−w) to be the argument of 1−w in the interval (−π, π). Then
the formula

log(1 − w) = log |1 − w| + i arg(1 − w) (10.4.2)

defines log(1 − w) as an analytic function of w in the complement of the
closed interval [1,∞). The relationship between log(1 − w) and L(θ) is
revealed in the next lemma.

Lemma 1. If 0 < θ < π, then

log(1 − e2iθ) = log(2 sin θ) + i(θ − π/2).

Proof: Observe that

1 − e2iθ = 1 − (cos 2θ + i sin 2θ)
= 1 − (cos2 θ − sin2 θ) − 2i sin θ cos θ

= 2 sin2 θ − 2i sin θ cos θ

= 2 sin θ(sin θ − i cos θ)
= 2 sin θ[cos(θ − π/2) + i sin(θ − π/2)].

The result now follows from Formula 10.4.2.

Consider the function φ(w) defined by the formula

φ(w) =
− log(1 − w)

w
. (10.4.3)

The singularity at w = 0 is removable, since

lim
w→0

wφ(w) = 0.

From the power series expansion

− log(1 − w) =
∞∑

n=1

wn

n
, for |w| < 1, (10.4.4)

we find that

φ(w) =
∞∑

n=1

wn−1

n
, for |w| < 1. (10.4.5)

Thus φ(w) is analytic in the complement of the closed interval [1,∞).
The dilogarithm function Li2(z) is defined as an analytic function of z

on the complement of the closed interval [1,∞) by the formula

Li2(z) =
∫ z

0
φ(w)dw. (10.4.6)
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Figure 10.4.3. Curves α, β, γ in the unit disk

By integrating Formula 10.4.5, we find that

Li2(z) =
∞∑

n=1

zn

n2 , for |z| < 1.

Note that the above series converges uniformly on the closed disk |z| ≤ 1.
Now define

Li2(1) =
∞∑

n=1

1
n2 .

Then Li2(z) is continuous on the closed disk |z| ≤ 1 and

Li2(z) =
∞∑

n=1

zn

n2 , for |z| ≤ 1. (10.4.7)

Let ε, θ be real numbers such that 0 < ε < θ < π and consider the curves
α, β, γ in Figure 10.4.3. Since φ(w) is analytic in the complement of the
closed interval [1,∞), we have∫

α

φ(w)dw +
∫

β

φ(w)dw =
∫

γ

φ(w)dw.

Hence, we have ∫
β

φ(w)dw = Li2(e2iθ) − Li2(e2iε).

Let w = e2iθ. Then dw/w = 2idθ. Hence, we have∫
β

φ(w)dw = −
∫

β

log(1 − w)dw/w

= −
∫ θ

ε

log(1 − e2it)2idt

= −
∫ θ

ε

[
log(2 sin t) + i(t − π/2)

]
2idt

=
[
t2 − πt

]θ
ε

− 2i

∫ θ

ε

log(2 sin t)dt.
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Thus

−2i

∫ θ

ε

log(2 sin t)dt = Li2(e2iθ) − Li2(e2iε) +
[
πt − t2

]θ
ε
.

Since Li2 is continuous on the unit circle, we deduce that the improper
integral ∫ θ

0
log(2 sin t)dt = lim

ε→0+

∫ θ

ε

log(2 sin t)dt

exists, and so L(θ) is well defined for 0 < θ < π and

2iL(θ) = Li2(e2iθ) − Li2(1) + πθ − θ2. (10.4.8)

By letting θ → π, we find that L(π) exists and L(π) = 0. Thus, Formula
10.4.8 holds for 0 ≤ θ ≤ π.

Theorem 10.4.3. The function L(θ) is well defined and continuous for
all θ. Moreover, for all θ, the function L(θ) satisfies the relations

(1) L(θ + π) = L(θ),

(2) L(−θ) = −L(θ).

Proof: (1) As L(0) = 0 = L(π) and log |2 sin θ| is periodic of period π,
we deduce that L(θ) is well defined for all θ, continuous, and periodic of
period π. (2) As log |2 sin θ| is an even function, L(θ) is an odd function.

Theorem 10.4.4. For each positive integer n, the function L(θ) satisfies
the identity

L(nθ) = n

n−1∑
j=0

L(θ + jπ/n).

Proof: Upon substituting z = e2it into the equation

zn − 1 =
n−1∏
j=0

(z − e−2πij/n),

we obtain the equation

e2int − 1 =
n−1∏
j=0

e2it(1 − e−2it−2πij/n).

From the proof of Lemma 1, we have

|1 − e2iθ| = |2 sin θ|.
Therefore, we have

|2 sinnt| =
n−1∏
j=0

|2 sin(t + jπ/n)|.
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Hence, we have∫ θ

0
log |2 sinnt|dt =

n−1∑
j=0

∫ θ

0
log |2 sin(t + jπ/n)|dt.

After changing variables, we have

1
n

∫ nθ

0
log |2 sinx|dx =

n−1∑
j=0

∫ θ+jπ/n

jπ/n

log |2 sinx|dx.

Thus, we have

1
n
L(nθ) =

n−1∑
j=0

L(θ + jπ/n) −
n−1∑
j=0

L(jπ/n).

By Theorem 10.4.3, we have

L((n − j)π/n) = L(−jπ/n) = −L(jπ/n).

Hence, we have
n−1∑
j=0

L(jπ/n) = 0.

Thus, we have
1
n
L(nθ) =

n−1∑
j=0

L(θ + jπ/n).

By the fundamental theorem of calculus, we have

dL(θ)
dθ

= − log |2 sin θ|,

d2L(θ)
dθ2 = − cot θ.

Consequently, L(θ) attains its maximum value at π/6 and its minimum
value at 5π/6. One can compute by numerical integration that

L(π/6) = .5074708 . . . .

By Theorem 10.4.4, we have the equation
1
2
L(2θ) = L(θ) + L(θ + π/2)

and therefore, by Theorem 10.4.3, we have
1
2
L(2θ) = L(θ) − L(π/2 − θ). (10.4.9)

Substituting θ = π/6 yields the equation

1
2
L(π/3) = L(π/6) − L(π/3).
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-.5

-.3

-.1

.1

.3

.5

L(θ)

π/6 π/3 π/2 2π/3 5π/6 π

θ

Figure 10.4.4. A graph of the Lobachevsky function

Thus, we have

L(π/3) =
2
3
L(π/6) = .3383138 . . . . (10.4.10)

We now have enough information to sketch the graph of L(θ). See Figure
10.4.4.

The Volume of an Orthotetrahedron

We are now ready to compute the volume of an orthotetrahedron in H3 in
terms of the Lobachevsky function.

Theorem 10.4.5. Let T be an orthotetrahedron in H3 with angles α, β, γ,
and let δ be defined by

tan δ =

√
cos2 β − sin2 α sin2 γ

cos α cos γ
.

Then the volume of T is given by

Vol(T ) = 1
4

[
L(α + δ) − L(α − δ) + L(γ + δ) − L(γ − δ)

−L(π
2 − β + δ) + L(π

2 − β − δ) + 2L(π
2 − δ)

]
.

Proof: Let a, b, c be the lengths of the edges of T with dihedral angles
α, β, γ, respectively. By Theorem 7.4.2, the total differential of Vol(T ) with
respect to α, β, γ is

dVol(T ) = −1
2a dα − 1

2b dβ − 1
2c dγ.

We are going to compute the volume of T by integrating dVol(T ). In order
for this work, we need to hold δ fixed. We take α and γ to be independent
variables. Then β depends on α and γ, since

cos2 β = sin2 α sin2 γ + cos2 α cos2 γ tan2 δ.
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γ

u1

u2

u3

u4

(a)

α

u1

u2

u3

u4

(b)

Figure 10.4.5. Deformations of the orthotetrahedron T holding δ fixed

Figure 10.4.5(a) shows that T can be deformed to the edge [u1, u2] hold-
ing c and γ fixed. As tan δ = tan γ tanh c, the angle δ remains fixed.
The angle α tends to π/2 and β tends to π

2 − γ. Figure 10.4.5(b) shows
that T can be deformed to the edge [u3, u4] holding a and α fixed. As
tan δ = tanα tanh a, the angle δ remains fixed. The angle γ tends to π/2,
and so β tends to π

2 − α. By an alternating sequence of partial deforma-
tions, we can contract T to a point, holding δ fixed, with α tending to π/2,
β tending to 0, and γ tending to π/2.

Let V = V (α, β, γ) be the volume of T as a function of α, β, γ, and let

U(α, γ) = V (α, β(α, γ), γ).

Then we have (
∂V

∂α

)
δ

=
∂U

∂α

=
∂V

∂α
+

∂V

∂β

∂β

∂α

= −a

2
− b

2
∂β

∂α
.

Hence, by Theorem 10.4.2 at the last step, we have

V = −1
2

∫
a dα − 1

2

∫
b

∂β

∂α
dα

= −1
2

∫
a dα − 1

2

∫
b dβ

= −1
4

∫ α

π/2
log

sin(θ + δ)
sin(θ − δ)

dθ − 1
4

∫ β

0
log

sin
(

π
2 − θ + δ

)
sin
(

π
2 − θ − δ

) dθ + C1(γ).
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Therefore, on the one hand(
∂V

∂γ

)
δ

= − b

2
∂β

∂γ
+

dC1

dγ
.

While, on the other hand(
∂V

∂γ

)
δ

=
∂V

∂β

∂β

∂γ
+

∂V

∂γ

= − b

2
∂β

∂γ
+

∂V

∂γ
.

Hence we have

C1 =
∫

− 1
2c dγ

= −1
4

∫ γ

π/2
log

sin(θ + δ)
sin(θ − δ)

dθ + C2.

Thus

V = −1
4

[∫ α

π/2
log

sin(θ + δ)
sin(θ − δ)

dθ +
∫ β

0
log

sin
(

π
2 − θ + δ

)
sin
(

π
2 − θ − δ

) dθ

+
∫ γ

π/2
log

sin(θ + δ)
sin(θ − δ)

dθ

]
+ C2.

Now V tends to 0 as (α, β, γ) tends to (π/2, 0, π/2), and so C2 = 0. Thus

Vol(T ) = 1
4

[
L(α + δ) − L(π

2 + δ) − L(α − δ) + L(π
2 − δ)

−L(π
2 − β + δ) + L(π

2 + δ) + L(π
2 − β − δ) − L(π

2 − δ)
+L(γ + δ) − L(π

2 + δ) − L(γ − δ) + L(π
2 − δ)

]
.

Example 1. Let T be the orthotetrahedron with angles π/5, π/3, π/5.
Then we have

δ = arctan

(√
−14 + 10

√
5

3 +
√

5

)
= .5045493 . . . .

Therefore

Vol(T ) = 1
4

[
2L(π

5 + δ) − 2L(π
5 − δ) − L(π

6 + δ)

+L(π
6 − δ) + 2L(π

2 − δ)
]

= .09332553 . . . .

The hyperbolic regular dodecahedron P with dihedral angle 2π/5 is subdi-
vided by barycentric subdivision into 120 copies of T . Hence, we have

Vol(P ) = 120Vol(T ) = 11.19906 . . . .

Thus the volume of the Seifert-Weber dodecahedral space is 11.19906 . . . .
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Theorem 10.4.6. The volume of a generalized orthotetrahedron T , with
one ideal vertex and angles δ, π

2 − δ, γ, is given by

Vol(T ) =
1
4
[
L(δ + γ) + L(δ − γ) + 2L(π/2 − δ)

]
.

Proof: Let Tα,β,γ be the generalized orthotetrahedron in Figure 10.4.2
with u1, u2, γ fixed and u1 an actual vertex. By Lebesgue’s monotone
convergence theorem,

Vol(Tδ,π/2−δ,γ) = lim
α→δ−

Vol(Tα,β,γ).

Theorem 10.4.7. The volume of a generalized orthotetrahedron T , with
two ideal vertices and angles δ, π

2 − δ, δ, is given by

Vol(T ) =
1
2
L(δ).

Proof: This follows from Theorem 10.4.6, Lebesgue’s monotone conver-
gence theorem, and Formula 10.4.9.

Ideal Tetrahedra

Let T be an ideal tetrahedron in H3 and let Σ be a horosphere based at
an ideal vertex v of T that does not meet the opposite side of T . Then
L(v) = Σ ∩ T is a Euclidean triangle, called the link of v in T . See Figure
10.4.6 below. The orientation preserving similarity class of L(v) does not
depend on the choice of Σ.

α

βγ

α

βγ

L(v)

v = ∞

Figure 10.4.6. An ideal tetrahedron in U3
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Theorem 10.4.8. The (orientation preserving ) similarity class of the link
L(v) of a vertex v of an ideal tetrahedron T in H3 determines T up to
(orientation preserving ) congruence.

Proof: We pass to the upper half-space model U3 and assume, without
loss of generality, that v = ∞. Then the other three vertices of T form a
triangle in E2 that is in the orientation preserving similarity class of L(v).
See Figure 10.4.6. Any (direct, that is, orientation preserving) similarity of
E2 extends to a unique (orientation preserving) isometry of U3. Therefore,
if T ′ is another ideal tetrahedron in U3, with a vertex v′ such that L(v) is
(directly) similar to L(v′), then T and T ′ are (directly) congruent.

Theorem 10.4.9. Let T be an ideal tetrahedron in H3. Then T is deter-
mined, up to congruence, by the three dihedral angles α, β, γ of the edges
incident to a vertex of T . Moreover, α + β + γ = π and the dihedral angles
of opposite edges of T are equal. Furthermore, if α, β, γ are positive real
numbers such that α + β + γ = π, then there is an ideal tetrahedron in H3

whose dihedral angles are α, β, γ.

Proof: Let v be an ideal vertex of T . By Theorem 10.4.8, the congruence
class of T is determined by the similarity class of L(v), which, in turn, is
determined by the dihedral angles α, β, γ of the edges of T incident to v.

To see that the dihedral angles of the opposite sides of T are equal, label
the dihedral angles of T as in Figure 10.4.7 below. Then we have⎧⎪⎪⎨⎪⎪⎩

α + β + γ = π,
α + β′ + γ′ = π,
α′ + β′ + γ = π,
α′ + β + γ′ = π.

By adding the first two and the last two equations, we obtain{
2α + (β + β′) + (γ + γ′) = 2π,
2α′ + (β + β′) + (γ + γ′) = 2π.

Therefore α = α′. The same argument shows that β = β′ and γ = γ′.

α′

β′

γ

γ′

β
α

Figure 10.4.7. The dihedral angles of a tetrahedron
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Let α, β, γ be positive real numbers such that α+β +γ = π. Then there
is a triangle � in E2 with angles α, β, γ. Let T be the ideal tetrahedron
in U3 whose vertices are the vertices of � and ∞. Then the link of ∞ in
T is similar to �. Hence T is an ideal tetrahedron in U3 whose dihedral
angles are α, β, γ.

It follows from Theorems 10.4.8 and 10.4.9 that the orientation preserv-
ing similarity class of the link L(v) of a vertex v of T does not depend on
the choice of v. A simple geometric explanation of this fact is that the
group of orientation preserving symmetries of T acts transitively on the set
of vertices of T . See Exercise 10.4.7.

Let Tα,β,γ be an ideal tetrahedron in U3 with dihedral angles α, β, γ.
We now compute the volume of Tα,β,γ .

Theorem 10.4.10. The volume of the ideal tetrahedron Tα,β,γ is given by

Vol(Tα,β,γ) = L(α) + L(β) + L(γ).

Proof: We may assume that one vertex of Tα,β,γ is at ∞ and that the
base of Tα,β,γ is on the unit sphere. The vertical projection of Tα,β,γ to
E2 is a Euclidean triangle � with angles α, β, γ and vertices on the unit
circle. There are three cases to consider. The origin is (1) in the interior
of �, (2) on a side of �, or (3) in the exterior of �.

(1) Suppose that the origin is in �◦. Join the origin to the midpoints of
the sides and the vertices of � by line segments. This subdivides � into six
right triangles. Note that the pairs of triangles that share a perpendicular
to a side of � are congruent. See Figure 10.4.8. Since an angle inscribed in
a circle is measured by one half its intercepted arc, the angles around the
origin are as indicated in Figure 10.4.8. Projecting this subdivision of �
vertically upwards subdivides Tα,β,γ into six generalized orthotetrahedra
each with two ideal vertices. See Figure 10.4.9. By Theorem 10.4.7,

Vol(Tα,β,γ) = 2
[ 1
2L(α) + 1

2L(β) + 1
2L(γ)

]
.

α

βγ

αα
β

β
γ

γ

Figure 10.4.8. Subdivision of the triangle �
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α

βγ

Figure 10.4.9. Subdivision of the tetrahedron Tα,β,γ

(2) Now suppose that the origin is on a side of �. Then � is inscribed
in a semicircle. Hence, one of the angles of � is a right angle, say γ. Join
the origin to the midpoints of the sides and vertices of � by line segments.
This subdivides � into four right triangles. See Figure 10.4.10 below. The
same argument as in case (1) shows that

Vol(Tα,β,π/2) = 2
[ 1
2L(α) + 1

2L(β) + 1
2L(π/2)

]
.

α β

γ

α
αβ

β

Figure 10.4.10. Subdivision of the triangle �
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α β

γ

αβ

2(π − γ)

Figure 10.4.11. The triangle � expressed as the difference of right triangles

(3) Now suppose that the origin is in the exterior of �. Then one of the
angles of � is obtuse, say γ. Join the origin to the midpoints of the sides
and vertices of � by line segments. This expresses � as the union of four
right triangles minus the union of two right triangles. See Figure 10.4.11.
The same argument as in case (1) shows that

Vol(Tα,β,γ) = 2
[ 1
2L(α) + 1

2L(β) − 1
2L(π − γ)

]
.

Example 2. The hyperbolic structure on the complement of the figure-
eight knot constructed in the last section was obtained by gluing together
two copies of Tπ/3,π/3,π/3. Thus, its volume is 6L(π/3) = 2.0298832 . . . .

Theorem 10.4.11. A tetrahedron of maximum volume in H3 is a regular
ideal tetrahedron.

Proof: Since any tetrahedron in H3 is contained in an ideal tetrahedron,
it suffices to consider only ideal tetrahedra. Because of Theorem 10.4.10,
we need to maximize the function

V (α, β, γ) = L(α) + L(β) + L(γ)

subject to the constraints

α, β, γ ≥ 0 and α + β + γ = π.

As V is continuous, it has a maximum value in the compact set α, β, γ ≥ 0
and α + β + γ = π. Now V (α, β, γ) = 0 if any one of α, β, γ is zero by
Theorem 10.4.3. Hence V attains its maximum value when α, β, γ > 0. Let

f(α, β, γ) = α + β + γ.

Then by the Lagrange multiplier rule, there is a scalar λ such that

grad(V ) = λgrad(f)
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at any maximum point (α0, β0, γ0). Then we have

L′(α0) = L′(β0) = L′(γ0).

Therefore, we have
sin α0 = sinβ0 = sin γ0.

As α0 + β0 + γ0 = π, we deduce that α0, β0, γ0 = π/3. Thus, every ideal
tetrahedron of maximum volume is regular.

Let P be an ideal polyhedron in U3 obtained by taking the cone to ∞
from an ideal n-gon on a hemispherical plane of U3. Let α1, . . . , αn be the
dihedral angles of P between its vertical sides and the base n-gon. We shall
denote P by Pα1,...,αn

.

Theorem 10.4.12. The polyhedron Pα1,...,αn has the following properties:

(1) α1 + α2 + · · · + αn = π,

(2) Vol(Pα1,...,αn) =
∑n

i=1 L(αi).

Proof: The proof is by induction on n. The case n = 3 follows from
Theorems 10.4.9 and 10.4.10. Suppose that the theorem is true for n − 1.
By subdividing the base n-gon of Pα1,...,αn into an (n−1)-gon and a triangle,
and taking the cone to ∞ on each polygon, we can subdivide Pα1,...,αn into
the union of Pα1,...,αn−2,β and Pαn−1,αn,π−β . By the induction hypothesis,
we have that

α1 + · · · + αn−2 + β = π,

αn−1 + αn + π − β = π.

Adding these two equations gives (1). Similarly, we have

Vol(Pα1,...,αn−2,β) =

(
n−2∑
i=1

L(αi)

)
+ L(β),

Vol(Pαn−1,αn,π−β) = L(αn−1) + L(αn) + L(π − β).

Adding these two equations gives (2).

Example 3. The hyperbolic structure on the complement of the White-
head link constructed in the last section was obtained from a regular ideal
octahedron, which can be subdivided into two copies of Pπ/4,π/4,π/4,π/4.
Therefore, its volume is

8L(π/4) = 3.6638623 . . . .

Example 4. The hyperbolic structure on the complement of the Bor-
romean rings constructed in the last section was obtained by gluing to-
gether two regular ideal octahedrons. Therefore, its volume is

16L(π/4) = 7.3277247 . . . .
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Exercise 10.4

1. Derive the following formulas in the proof of Theorem 10.4.2

tan α tanh a = tan(π
2 − β) tanh b = tan γ tanh c =

√
−D/(cos α cos γ).

2. Derive the formula

a =
1
2

log
sin(α + δ)
sin(α − δ)

from the formula
tan α tanh a = tan δ.

3. Deduce from Formula 10.4.8 that the function L(θ) has the Fourier series
expansion

L(θ) =
1
2

∞∑
n=1

sin(2nθ)
n2 .

This series converges slowly. A faster converging series for L(θ) is given in
the next exercise.

4. Prove that the function L(θ) has the series expansion

L(θ) = θ − θ log(2θ) +
∞∑

n=1

|B2n|
4n

(2θ)2n+1

(2n + 1)!
for 0 < θ < π,

where B2 = 1/6, B4 = −1/30, B6 = 1/42, . . . are Bernoulli numbers, by
twice integrating the usual Laurent series expansion for the cotangent of θ.

5. Let L be the positive 3rd axis in U3 and let r be a positive real number. Set

C(L, r) = {x ∈ U3 : dU (x, L) = r}.

Prove that C(L, r) is a cone with axis L and cone point 0, and that the angle
φ between L and C(L, r) satisfies the equation sec φ = cosh r.

6. Let K and L be two nonintersecting and nonasymptotic hyperbolic lines of
U3. Prove that there is a unique hyperbolic line M of U3 perpendicular to
both K and L.

7. Let K, L, M be the perpendicular lines between the opposite edges of an
ideal tetrahedron T in B3. Prove that the group Γ of orientation preserving
symmetries of T contains the 180◦ rotations about K, L, M . Conclude that
K, L, M meet at a common point in T ◦ and are pairwise orthogonal and that
Γ acts transitively on the set of ideal vertices of T .

8. Prove that the set of volumes of all the ideal tetrahedra in H3 is the interval
(0, 3L(π/3)].

9. Prove that a regular ideal hexahedron can be subdivided into five regular
ideal tetrahedra.

10. Find the volume of a regular ideal dodecahedron.
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§10.5. Hyperbolic Dehn Surgery

In this section, we construct hyperbolic structures for almost all the closed
3-manifolds obtained from Ê3 by performing Dehn surgery along the figure-
eight knot. We begin by parameterizing Euclidean triangles.

Let �(u, v, w) be a Euclidean triangle in the complex plane C with
vertices u, v, w labeled counterclockwise around �. To each vertex of �
we associate the ratio of the sides adjacent to the vertex in the following
manner.

z(u) =
w − u

v − u
, z(v) =

u − v

w − v
, z(w) =

v − w

u − w
. (10.5.1)

The complex numbers z(u), z(v), z(w) are called the vertex invariants of
the triangle �(u, v, w). See Figure 10.5.1 below.

Lemma 1. The vertex invariants z(u), z(v), z(w) depend only on the ori-
entation preserving similarity class of the triangle �(u, v, w).

Proof: An arbitrary orientation preserving similarity of C is of the form
x �→ ax + b with a �= 0. Observe that

z(au + b) =
(aw + b) − (au + b)
(av + b) − (au + b)

=
a(w − u)
a(v − u)

= z(u).

Lemma 2. Let z(u) be a vertex invariant of a triangle �(u, v, w). Then

(1) Im(z(u)) > 0; and

(2) arg(z(u)) is the angle of �(u, v, w) at u.

Proof: Define a similarity φ of C by

φ(x) =
x

v − u
− u

v − u
.

Then φ(u) = 0, φ(v) = 1, and φ(w) = z(u). As φ preserves orientation, the
triangle ∆(0, 1, z(u)) is labeled counterclockwise. See Figure 10.5.2. Hence
Im(z(u)) > 0, and arg(z(u)) is the angle of �(u, v, w) at u.

u v

w

v − u

w − u z(u) = w−u
v−u

Figure 10.5.1. The vertex invariant z(u) of the triangle �(u, v, w)
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0 1

z(u)

Figure 10.5.2. The triangle �(0, 1, z(u))

It is evident from Figure 10.5.2 that z(u) determines the orientation
preserving similarity class of �(u, v, w). Consequently z(u) determines
z(v) and z(w). By Lemma 1, we can calculate z(v) and z(w) from the
triangle �(0, 1, z(u)). This gives the relationships

z(v) =
1

1 − z(u)
, (10.5.2)

z(w) =
z(u) − 1

z(u)
. (10.5.3)

Example: For an equilateral triangle �(u, v, w), the vertex invariants
z(u), z(v), z(w) are all equal to 1

2 +
√

3
2 i, since �(u, v, w) is directly similar

to �(0, 1, 1
2 +

√
3

2 i).

We now state precisely the parameterization of Euclidean triangles in C

by their vertex invariants.

Theorem 10.5.1. Let �(u, v, w) be a Euclidean triangle in C, with ver-
tices labeled counterclockwise and let z1 = z(u), z2 = z(v), z3 = z(w) be its
vertex invariants. Then z1, z2, z3 are in U2 and satisfy the equations

(1) z1z2z3 = −1, and

(2) 1 − z2 + z1z2 = 0.

Conversely, if z1, z2, z3 are in U2 and satisfy (1) and (2), then there is
a Euclidean triangle � in C that is unique up to orientation preserving
similarity whose vertex invariants in counterclockwise order are z1, z2, z3.

Proof: By Formulas 10.5.2 and 10.5.3, we have

z1z2z3 = z1

(
1

1 − z1

)(
z1 − 1

z1

)
= −1.

As z2 = 1/(1 − z1), we have z2 − z1z2 = 1.
Conversely, suppose that z1, z2, z3 are in U2 and satisfy equations (1)

and (2). Then the vertex invariants of �(0, 1, z1) are z1, z2, z3.
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z1

z1

z2z2

z3

z3

Figure 10.5.3. The edge invariants of an ideal tetrahedron

Parameterization of Ideal Tetrahedra

We now parameterize the ideal tetrahedra in H3. Let v be a vertex of an
ideal tetrahedron T in H3. We label the edges of T , incident with v, with
the corresponding vertex invariants z1, z2, z3 of the link of v. Then opposite
edges of T have the same label. The three parameters z1, z2, z3 are indexed
according to the right-hand rule with your thumb pointing towards a vertex
of T . See Figure 10.5.3. The complex parameters z1, z2, z3 are called the
edge invariants of T .

The next theorem follows immediately from Theorems 10.4.8 and 10.5.1.

Theorem 10.5.2. Let z1, z2, z3 be complex numbers in U2 satisfying

(1) z1z2z3 = −1, and

(2) 1 − z2 + z1z2 = 0.

Then there is a ideal tetrahedron T in H3, unique up to orientation preserv-
ing congruence, whose edge invariants, in right-hand order, are z1, z2, z3.

Gluing Consistency Conditions

Let Φ be an I0(H3)-side-pairing for a finite family T of disjoint ideal tetra-
hedra in H3. We now determine necessary and sufficient conditions on the
edge invariants of the tetrahedra in T such that Φ is proper. The side-
pairing Φ induces a pairing on the set E of edges of the tetrahedra in T ,
which, in turn, generates an equivalence relation on E . The equivalence
classes of E are called cycles of edges.
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Lemma 3. Let Φ be a proper I(H3)-side-pairing for a family T of k dis-
joint ideal tetrahedra in H3. Then the set E of edges, of the tetrahedra in
T , is subdivided into k cycles of edges.

Proof: Let M be the hyperbolic 3-manifold obtained by gluing together
the tetrahedra in T by Φ. Let [v1], . . . , [vm] be the cusp points of M . By
Theorem 10.2.1, the link L[vi] of the cusp point [vi] is either a torus or a
Klein bottle for each i = 1, . . . , m. Let L(M) be the topological sum of
L[v1], . . . , L[vm]. Then the Euler characteristic of L(M) is given by

χ(L(M)) = χ(L[v1]) + · · · + χ(L[vm]) = 0.

Choose a set {L(u)} of disjoint links of the vertices of the tetrahedra in
T . Then Φ determines a proper S(E2)-side-pairing of the triangles {L(u)}
and a cell subdivision of L(M) into triangles. Now Φ determines a cell
subdivision of M into k ideal tetrahedra. The links {L(u)} determine links
of the tetrahedra that subdivide M . Each of these tetrahedra contains four
links and the four links meet each edge of the tetrahedron at two vertices.
Let 
 be the number of cycles of edges. Then 
 is the number of edges in
the subdivision of M . Therefore the number of vertices in the subdivision
of L(M) is 2
. Each link is a triangle. Therefore, the number of edges of
the subdivision of L(M) is 3 · 4k/2 = 6k. The number of triangles of the
subdivision of L(M) is 4k. Hence, we have

χ(L(M)) = 2
 − 6k + 4k = 2(
 − k).

As χ(L(M)) = 0, we must have 
 = k.

Theorem 10.5.3. Let Φ be an I0(H3)-side-pairing for a finite family T
of k disjoint ideal tetrahedra in H3. Then Φ is proper if and only if the set
E, of edges of the tetrahedra in T , is subdivided into k cycles of edges and
the invariants of each cycle of edges {E1, . . . , Em} satisfy the equation

z(E1)z(E2) · · · z(Em) = 1.

Proof: Let Ei be an edge of the side Si of the tetrahedron Ti in T .
By reindexing, if necessary, we may assume that gSi

(Ei+1) = Ei for i =
1, . . . , m − 1 and gSm

(E1) = Em. Define g1 = 1 and gi = gS1 · · · gSi−1 for
i = 2, . . . , m + 1. Then gm+1(E1) = E1. Orient Ti positively for each i.
This orients each side of Ti. Now orient Ei positively with respect to Si for
each i. As gSi

is orientation preserving, its restriction gSi
: S′

i → Si reverses
orientation. As Si+1 and S′

i intersect along Ei+1, the edge Ei+1 is oriented
negatively with respect to S′

i. Therefore, the restriction gSi : Ei+1 → Ei

preserves orientation for i = 1, . . . , m − 1. Likewise gSm : E1 → Em

preserves orientation. Hence gm+1 preserves the orientation of E1. Thus,
either gm+1 is the identity on E1 or gm+1 acts as a nontrivial translation
along E1. In the latter case, Φ has an infinite cycle on E1. Thus Φ has
finite cycles if and only if gm+1 is the identity on E1 for each cycle of edges
{E1, . . . , Em}.
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z(E1)

z(E2)
z(E3)

z(E4)

. . .
z(Em)

Figure 10.5.4. A cycle of Euclidean triangles

The tetrahedrons Ti and gSi
(Ti+1) lie on opposite side of their common

side Si and so the tetrahedrons giTi and gi+1Ti+1 lie on opposite sides of
their common side giSi for i = 1, . . . , m − 1. Now Si and S′

i−1 are the
two sides of Ti intersecting along Ei and so giSi and giS

′
i−1 = gi−1Si−1

are the two sides of giTi intersecting along E1 for i = 2, . . . , m. Therefore,
the tetrahedra giTi, for i = 1, . . . , m, occur in sequential order rotating
about the edge E1 starting at the side S′

m of T1 and ending at the side
gmSm = gm+1S

′
m of gmTm. Observe that {giTi} forms a cycle of tetrahedra

around the edge E1 if and only if the dihedral angle sum of the edges
E1, . . . , Em is 2π and gm+1 = 1. Thus Φ is proper if and only if {giTi}
forms a cycle of tetrahedra around E1 for each cycle of edges {E1, . . . , Em}.

By taking E1 to be a vertical line of U3, we see that {giTi} forms a cycle
if and only if the orientation preserving similarity classes of Euclidean tri-
angles determined by the invariants z(E1), . . . , z(Em) have representatives
that form a cycle around a point of C. See Figure 10.5.4. This will be the
case if and only if

(1) arg z(E1) + arg z(E2) + · · · + arg z(Em) = 2π

and representatives can be chosen so that their sides match up correctly.
As |z(Ei)| is the ratio of the length of adjacent sides, the sides will match
up correctly if and only if

(2) |z(E1) · · · z(Em)| = 1.

Thus Φ is proper if and only if the edge invariants of each cycle of edges
satisfy equations (1) and (2).

Suppose Φ is proper. Then the edge invariants of each cycle of edges
satisfy equations (1) and (2). Hence we have

(3) z(E1)z(E2) · · · z(Em) = 1,

and the set E of edges is subdivided into k cycles of edges by Lemma 3.
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Conversely, suppose that E is subdivided into k cycles of edges E1, . . . , Ek

and the edge invariants of Ei satisfy equation (3) for each i. Then the edge
invariants of Ei satisfy equation (2) and equation (1) with the right-hand
side 2π replaced by a positive multiple 2πn(Ei) for each i. Adding the
argument equations gives

(4)
k∑

i=1

∑
E∈Ei

arg z(E) = 2π
k∑

i=1

n(Ei).

The left-hand side of equation (4) is the sum of all the dihedral angles of
the tetrahedra in T . Each ideal tetrahedron has dihedral angle sum 2π by
Theorem 10.4.9. Hence the left-hand side of equation (4) is 2πk. Therefore
we must have n(Ei) = 1 for each i. Thus the edge invariants of Ei satisfy
equation (1) for each i. Therefore Φ is a proper side-paring.

Hyperbolic Structures on the Figure-Eight Knot

Consider the gluing pattern on two parameterized ideal tetrahedrons T and
T ′ in Figure 10.5.5 that gives the figure-eight knot complement. The gluing
consistency equations for the two edge cycles are

z1w2z2w1z2w2 = 1 and z1w3z3w1z3w3 = 1.

As z1z2z3 = −1 and w1w2w3 = −1, the product of the two consistency
equations is automatically satisfied

(z1z2z3)2(w1w2w3)2 = 1.

Thus, we need only consider one of the consistency equations, say
z1z

2
2w1w

2
2 = 1. (10.5.4)

z2

z3

z1

z1

z3

z2

T

w2

w3

w1

w1

w3

w2

T ′

Figure 10.5.5. The gluing pattern for the figure-knot complement
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From Formulas 10.5.2 and 10.5.3, we have z2 = 1/(1 − z1), and so
z1z2 = z2 − 1. Likewise w1w2 = w2 − 1. Hence, upon substituting z = z2
and w = w2 into Formula 10.5.4, we have

z(z − 1)w(w − 1) = 1. (10.5.5)

This gives the quadratic equation in z,

z2 − z − (w(w − 1))−1 = 0, (10.5.6)

which has the solutions

z =
1 ±
√

1 + 4(w(w − 1))−1

2
. (10.5.7)

We want solutions such that Im(w) > 0 and Im(z) > 0. For each value of w,
there is a unique solution for z, with Im(z) > 0, provided the discriminant
1 + 4(w(w − 1))−1 is not in the interval [0,∞).

Let w = a + bi with a, b real and b > 0. Then

w(w − 1) = (a + bi)(a − 1 + bi)
= (a(a − 1) − b2) + (b(a − 1) + ab)i.

Now suppose that w(w − 1) is real. Then

b(a − 1) + ab = 0,

and so a = 1/2. Thus

w(w − 1) = −1
4

− b2.

Solving the inequality

1 + 4(w(w − 1))−1 ≥ 0

yields the inequality b ≥
√

15/2. Thus, the desired solutions correspond
to the points in U2 minus the ray { 1

2 + t
2 i : t ≥

√
15}. See Figure 10.5.6

below. The next theorem now follows from Theorem 10.5.3.

0 1/2 1

i

2i

1
2 +

√
3

2 i

1
2 +

√
15
2 i

Figure 10.5.6. The solution space for w
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Theorem 10.5.4. The hyperbolic structures on the figure-eight knot com-
plement obtained by gluing together the parameterized ideal tetrahedrons T
and T ′ according to the given pattern are parameterized by the points in the
upper half w-plane minus the ray { 1

2 + t
2 i : t ≥

√
15}. The parameterization

is given by w2 = w and

z2 =
1
2

+

√
1
4

+
1

w(w − 1)
.

The Uniqueness of the Complete Structure

Let M be the hyperbolic 3-manifold obtained by properly gluing together
the ideal tetrahedrons T and T ′ according to the gluing pattern in Figure
10.5.5. We now show that 1

2 +
√

3
2 i is the only value of the parameter w for

which M is complete.
Let L be the link of the cusp point of M . By Theorem 10.2.4, we have

that M is complete if and only if L is complete. By Theorems 8.4.5, 8.5.8,
and 8.5.9, we have that L is complete if and only if the holonomy

η : π1(L) → S0(C)

maps π1(L) isomorphically onto a freely acting discrete group of Euclidean
isometries of C. By Theorem 5.4.4, this is the case if and only if the image
of η is a lattice group of translations of C.

Now every element of S0(C) is of the form φ(z) = αz+β with α in C∗ and
β in C; moreover, φ is a Euclidean translation if and only if α = 1. Notice
that the derivative of φ is φ′(z) = α, and so φ is a Euclidean translation if
and only if φ′(z) = 1.

We now compute the derivative of the holonomy of the similarity struc-
ture on L. Consider the pseudo-triangulation of L in Figure 10.5.7. After
developing the triangulation of L onto C, we can regard directed edges of
the triangulation as vectors in C. The ratio, as complex numbers, of any
two vectors in the same triangle is known in terms of the vertex invari-
ants. See Figure 10.5.1. This allows us to compute the derivative of the
holonomy as a telescoping product of ratios.

Let x be the element of π1(L) represented by the base of the parallelo-
gram in Figure 10.5.7. To compute η′(x), we assign the value 1 to the base
of triangle a and develop the triangulation of L onto C along x until we
come to another copy of triangle a. See Figure 10.5.8(a). The values of the
directed edges encountered along the way are given in terms of the vertex
invariants by the equations

1
v1

= z1,
v1

v2
= w2, . . . ,

v11

v12
= z3.

Therefore
1
v1

v1

v2
· · · v11

v12
= z2

1z2
2z4

3w2
1w

2
2 = z2

3w2
1w

2
2.
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z1

z1

z3

z2
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d
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w2

w3

w1

w1

w3

w2
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he

f

T ′

h
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e
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w3

w1

w2

z3

z2

z1

w1

w2

w3

z2

z1

z3

w3

w1

w2

z3

z2

z1

w1

w2

w3

z2

z1

z3

x

y

Figure 10.5.7. The link of the cusp point of the figure-eight knot complement

Hence, we have

1/v12 = z2
3w2

1w
2
2 =
(

w1w2

z1z2

)2

=
(

w − 1
z − 1

)2

.

The value v12 of the base of the second triangle a is η′(x). Thus

η′(x) =
(

z − 1
w − 1

)2

. (10.5.8)

Let y be the element of π1(L) represented by the left side of the paral-
lelogram in Figure 10.5.7. From Figure 10.5.8(b), we compute

η′(y) = −z3w1w3 =
−1

z1z2w2
=

1
w(1 − z)

.

From Formula 10.5.5, we have

η′(y) = z(1 − w). (10.5.9)

Now η′(x) = 1 if and only if z = w, and so η′(x) = 1 = η′(y) if and only
if w = 1

2 +
√

3
2 i. Hence η′ is trivial if and only if w = 1

2 +
√

3
2 i. Thus M is

complete if and only if w = 1
2 +

√
3

2 i, that is, both T and T ′ are regular.



§10.5. Hyperbolic Dehn Surgery 489

a b c d a

g f e h

z1
w2

z2 z3
w1

z3 z1
w2

z2 z3
w1

z3

v1 v4 v7 v10v2 v5 v8 v11

1 v3 v6 v9 v12

(a)

a

a

h

h

z3

w3

w1

(b)

Figure 10.5.8. The developments of triangle a along x and y

The Metric Structure of the Link

We now assume that M is incomplete. Then the link L of the cusp point of
M is incomplete. By Theorems 8.4.5 and 8.5.8, the image of the holonomy

η : π1(L) → S0(C)

contains an element φ that is not an isometry. Then φ(z) = αz + β with
|α| �= 0, 1. By composing the developing map δ : L̃ → C with a translation
of C, we may assume that β = 0. Then φ fixes 0. As π1(L) is abelian,
every element of Im(η) must also fix 0. Thus η maps into the subgroup
S0(C)0 of orientation preserving similarities of C that fix 0.

Every element of S0(C)0 is of the form z �→ kz for some nonzero complex
number k. Hence, we may identify S0(C)0 with the multiplicative group C∗

of nonzero complex numbers. The exponential map exp : C → C∗ induces
an isomorphism from the topological group C/2πiZ to C∗. Therefore exp
induces a complete metric on C∗ so that C/2πiZ is isometric to C∗ via exp.
It is an exercise to show that C∗ is a geometric space with C∗ ⊂ I0(C∗).



490 10. Hyperbolic 3-Manifolds

a

b c d

ef

g

h

Figure 10.5.9. Triangles �′
a, . . . , �′

h for w = 1
2 + 1

2 i

We now show that the developing map δ : L̃ → C maps into C∗. Let
�i, for i = a, . . . , h, be the eight triangles in the triangulation of L. Lift
these triangles to triangles �̃i, for i = a, . . . , h, in L̃ that meet as in Figure
10.5.7. Let �′

i = δ(�̃i) for i = a, . . . , h. See Figure 10.5.9. Since L̃ is the
union of the images of the triangles �̃i under the covering transformations
of the universal covering κ : L̃ → L, we have that δ(L̃) is the union of the
images of the triangles �′

i under the elements of Im(η). Since η(y) does
not fix a point in any of the triangles �′

i, we see that 0 is not in any of the
triangles �′

i. As Im(η) leaves C∗ invariant, we deduce that δ maps into C∗.
Therefore L has the structure of a (C∗, C∗)-manifold by Theorem 8.4.5.

Now L is a complete (C∗, C∗)-manifold because L is compact. Hence
L̃ is a complete (C∗, C∗)-manifold. Therefore δ : L̃ → C∗ is a universal
covering by Theorem 8.5.6. The exponential map exp : C → C∗ is a
universal covering of geometric spaces. We shall identify the group T(C)
of translations of C with C. Then the complete (C∗, C∗)-structure of L
lifts to a complete (C, C)-structure for L. Let δ̃ : L̃ → C be a lift of
δ : L̃ → C∗ with respect to exp. Then δ̃ is the developing map for L as
a (C, C)-manifold. Let η̃ : π1(L) → C be the holonomy determined by δ̃.
Then η = exp η̃ is the holonomy determined by δ.

Theorem 10.5.5. The group Im(η) is a discrete subgroup of C∗ and the
map δ : L̃ → C∗ induces a (C∗, C∗)-equivalence from L to C∗/Im(η) if and
only if 2πi is in Im(η̃).

Proof: Since L is a complete (C, C)-manifold, Im(η̃) is a discrete sub-
group of C, and δ̃ : L̃ → C induces a (C, C)-equivalence from L to C/Im(η̃)
by Theorem 8.5.9. Observe that we have a commutative diagram of epi-
morphisms

C
exp−−−→ C∗

↓ ↓
C/Im(η̃)

exp−−−→ C∗/Im(η).
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Suppose that Im(η) is a discrete subgroup of C∗ and δ induces a (C∗, C∗)-
equivalence from L to C∗/Im(η). Then exp is an isomorphism. Now as
exp(2πi) = 1, we have that 2πi is in Im(η̃).

Conversely, suppose that 2πi is in Im(η̃). As η = exp η̃, the kernel of
η is nontrivial. Hence Im(η) is the direct sum of a finite cyclic group and
an infinite cyclic group. Therefore, the infinite cyclic group generated by
φ is of finite index in Im(η). As 〈φ〉 is discrete, Im(η) is discrete. Since 2πi
is in Im(η̃), the map exp is an isomorphism. As C/Im(η̃) is compact and
C∗/Im(η) is Hausdorff, exp is a homeomorphism. Consequently δ induces
a (C∗, C∗)-equivalence from L to C∗/Im(η).

Suppose that Im(η) is a discrete subgroup of C∗ and δ : L̃ → C∗ induces
a (C∗, C∗)-equivalence from L to C∗/Im(η). Then δ̃−1 : C → L̃ induces
a covering projection from C∗ to L that is a (C∗, C∗)-map. Consequently,
the triangulation of L lifts to a triangulation of C∗ by Euclidean triangles.
Thus, the triangulation of L develops into an exact tessellation of C∗ by
Euclidean triangles. Figure 10.5.10 below illustrates the exact tessellation
of C∗ when η̃(y) = 2πi/10.

Figure 10.5.10. A tessellation of C∗ by Euclidean triangles
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Metric Completion

We now determine when the metric completion M of M is a hyperbolic
3-manifold. We shall identify the triangle �i in L with a triangle in M
that represents it, for each i = a, . . . , h, such that these eight triangles in M
meet as in Figure 10.5.9. Then we may identify the triangle �̃i of L̃ with
a triangle in the universal covering space M̃ that projects to the triangle
�i in M , for each i = a, . . . , h, such that these eight triangles in M̃ meet
as in Figure 10.5.9.

Regard C as the boundary of U3 in R3. Let δ̂ : M̃ → U3 be the
developing map for M that maps the triangle �̃a onto a horizontal triangle
directly above �′

a. Let �̂′
i = δ̂(�̃i) for i = a, . . . , h. Then the triangles �̂′

i

lie on a horizontal horosphere of U3 with �̂′
i directly above �′

i for each i.
Let η̂ : π1(M) → I0(U3) by the holonomy determined by δ̂. Then we have
a commutative diagram

π1(L)
η−→ C∗

i ↓ ↓ j

π1(M)
η̂−→ I0(U3)

where i and j are the injections induced by inclusion and Poincaré exten-
sion, respectively.

Let Ti be the tetrahedron in M corresponding to T or T ′ that contains
the triangle �i for i = a, . . . , h. Then Ti lifts to a tetrahedron T̃i in M̃
containing �̃i. Let T ′

i = δ̂(T̃i) for i = a, . . . , h. Then T ′
i is the ideal

tetrahedron in U3, with one vertex at ∞, directly above the triangle �′
i.

Let C be a solid cone in U3 centered about the 3rd axis, with its vertex
at 0, such that the triangle �̂′

i is outside of C for each i = a, . . . , h. Then
T ′

i intersects ∂C in a triangle τ ′
i directly above �̂′

i. See Figure 10.5.11.
Let τi be the triangle in Ti corresponding to τ ′

i . Since τ ′
i is above �̂′

i, for
i = a, . . . , h, the triangles τa, . . . , τh meet only along their boundaries in
M . Furthermore, since the image of jη leaves ∂C invariant, the triangles
τa, . . . , τh fit together to form a pseudo-triangulation of a torus S in M .

The torus S is the boundary of a closed neighborhood N in M of the cusp
point of M . Let τ̃i be the triangle in T̃i corresponding to τi for i = a, . . . , h,
and let Ñ be the component of the subspace of M̃ over N that contains τ̃i

for each i. As N deformation retracts onto S and π1(S) injects into π1(M),
we have that π1(N) injects into π1(M). Hence Ñ is a universal covering
space of N .

Let C0 be C minus the 3rd axis. As the developing map δ : L̃ → C∗

is surjective, C∗ is covered by the triangles �′
i, for i = a, . . . , h, and their

images by elements of the image of the holonomy η : π1(L) → C∗. Hence
C0 is covered by the tetrahedra T ′

i , for i = a, . . . , h, and their images by
the elements of j(Im(η)). Consequently δ̂(Ñ) = C0.
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Figure 10.5.11. The triangles τ ′
i (on the cone), �̂′

i, and �′
i (on the plane)

Let U3
0 be U3 minus the 3rd axis. Then the universal covering

exp : C → C∗

extends to a universal covering

êxp : U3 → U3
0

defined by
êxp(z, t) = (exp z, t).

The hyperbolic metric induced on U3 by êxp is not the Poincaré metric,
so we shall denote U3, with the induced metric, by Ũ3

0 . Let C̃0 be the
subspace of Ũ3

0 over C0. Then C̃0 is a universal covering space of C0.
Now since the developing map δ : L̃ → C∗ lifts to a homeomorphism

δ̃ : L̃ → C, the developing map δ̂ : Ñ → C0 lifts to a homeomorphism
˜̂
δ : Ñ → C̃0. Let

j̃ : C → I0(Ũ3
0 )

be the injection obtained by lifting j : C∗ → I0(U3). Now j is given by

j(k)(z, t) = (kz, |k|t).
Hence j̃ is given by

j̃(k̃)(z̃, t) = (k̃ + z̃, |k|t) with k = exp k̃.

As δ̃ : L̃ → C induces a (C, C)-equivalence from L to C/Im(η̃), we conclude

that the map ˜̂
δ : Ñ → C̃0 induces an isometry from N to C̃0/j̃(Im(η̃)).
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Theorem 10.5.6. Let M be an incomplete hyperbolic 3-manifold obtained
by properly gluing together two ideal tetrahedrons according to the gluing
pattern for the figure-eight knot complement. Then the metric completion
M is a hyperbolic 3-manifold if and only if the holonomy η̃ : π1(L) → C

for the link L of the cusp point of M has the property that
Im(η̃) ∩ i R = 2πi Z.

Proof: Suppose that Im(η̃) ∩ i R = 2πi Z. Let Γ = j(Im(η)) and let
Γ̃ = j̃(Im(η̃)). As η = exp η̃, the projection of C̃0 onto C0 induces an
isometry from C̃0/Γ̃ to C0/Γ. Hence N is isometric to C0/Γ. The metric
completion of C0 is C, since C is the closure of C0 in the complete metric
space U3. The group Γ is generated by a hyperbolic transformation of U3

whose axis is the core of C. Therefore Γ acts discontinuously on C. Hence
C/Γ is a metric space homeomorphic to a solid torus. As C/Γ is compact,
C/Γ is complete. Hence C/Γ is the metric completion of C0/Γ, since C/Γ
is the closure of C0/Γ in C/Γ. Thus, the metric completion N of N is
isometric to C/Γ.

Now observe that the hyperbolic structure of the interior of C0/Γ extends
to a hyperbolic structure on the interior of C/Γ. Hence, the hyperbolic
structure of N◦ extends to a hyperbolic structure on N◦. As M − N◦ is
compact, the metric completion of M is (M −N)∪N , which is a hyperbolic
3-manifold.

Conversely, suppose that M is a hyperbolic 3-manifold. Let δ : M̃ → U3

be the developing map for M that is consistent with the developing map
δ : M̃ → U3 for M . Let η : π1(M) → I(U3) be the holonomy determined
by δ. Then we have a commutative diagram

π(L) i−→ π1(M) → π1(M)

η ↓ ↓ η̂ ↓ η

C∗ j−→ I0(U3) → I(U3).

By Theorem 8.5.9, we have that Im(η) is a discrete torsion-free subgroup
of I(U3). Therefore Γ = j(Im(η)) is a discrete torsion-free subgroup of
I0(U3). As Γ fixes 0 and ∞, the group Γ is elementary of hyperbolic type.
By Theorem 5.5.8, the group Γ contains an infinite cyclic subgroup of finite
index generated by a hyperbolic transformation. Since Γ is torsion-free, Γ
is an infinite cyclic group generated by a hyperbolic transformation. As
η = exp η̃, the image of η̃ is generated by an element in the kernel of exp
and some other element not in i R. Hence, there is a positive integer m
such that

Im(η̃) ∩ i R = m2πi Z.

By Theorem 8.5.9, the map δ : M̃ → U3 induces an isometry from M
to U3/Im(η). Consequently δ induces an isometry from S to ∂C/Γ. This
implies that δ : L̃ → C∗ induces a (C∗, C∗)-equivalence from L to C∗/Im(η).
By Theorem 10.5.5, we have that 2πi is in Im(η̃). Therefore m = 1.
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K

µ

λ

Figure 10.5.12. A meridian-longitude pair µ, λ for a knot K

The Dehn Surgery Invariant

Let K be a smooth knot in Ê3. A meridian of K is a simple closed curve
µ on the surface of a tubular neighborhood N of K in Ê3 that bounds a
disk in N . A meridian µ of K is unique up to isotopy; and so the element
m of π1(∂N) representing µ is unique up to sign. A longitude of K is an
essential simple closed curve λ on ∂N that meets a meridian µ of K at only
one point and is null homologous in Ê3 − K. A longitude λ of K is unique
up to isotopy; and so the element 
 of π1(∂N) representing λ is unique up
to sign. A meridian µ and longitude λ of K that meet at only one point
are called a meridian-longitude pair of K and, by convention, are oriented
by the right-hand rule with your thumb pointing in the direction of λ. See
Figure 10.5.12. Finally, the pair m, 
 generates π1(∂N).

We now determine a meridian-longitude pair for the figure-eight knot
K. From Figure 10.3.6, we see that the curve α in Figure 10.3.3 represents
a meridian of K. Figure 10.5.13 illustrates α as it would appear in Figure
10.3.5. Let L be the link of the cusp point of M and assume first that
L is complete. Starting on α, we follow a longitude on L, slightly above
K in Figure 10.3.5, down through side A. The path of sides and regions
encountered in Figure 10.3.5 is

AN ′DNBN ′ANCN ′BNDN ′CNA.

Hence, the longitude crosses the curves in Figure 10.3.3 in the order

α, ε, δ, κ, λ, η, ι, γ.

A

a
α

Figure 10.5.13. The meridian α of the figure-eight knot
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Figure 10.5.14. A representation of a meridian-longitude pair on L

Thus, the central zigzag path in Figure 10.5.14 represents a longitude for
K. From Figures 10.5.7 and 10.5.14, we deduce that the meridian and
longitude of K are represented by m = y and 
 = x + 2y in π1(L). From
Formulas 10.5.8 and 10.5.9, we have

η(m) = z(1 − w), (10.5.10)
η(
) = z2(1 − z)2. (10.5.11)

Now assume that M is incomplete. The holonomy η : π1(L) → C∗ lifts
to a homomorphism η̃ : π1(L) → C such that η̃ maps π1(L) isomorphically
onto a lattice subgroup of C. Therefore η̃(m) and η̃(
) form a basis for the
real vector space C. From Formulas 10.5.10 and 10.5.11, we have

η̃(m) = log |z(1 − w)| + i arg(z(1 − w)), (10.5.12)
η̃(
) = 2 log |z(1 − z)| + 2i arg(z(1 − z)). (10.5.13)

Now arg(z(1 − w)) and arg(z(1 − z)) are continuous functions of w that
approach 0 as w → 1

2 +
√

3
2 i. Hence, we have

arg(z(1 − w)) = arg(z) + arg(1 − w),
arg(z(1 − z)) = arg(z) + arg(1 − z),

with

0 < arg(z) < π,

−π < arg(1 − w) < 0,

−π < arg(1 − z) < 0.

Thus, we have
−π < arg(z(1 − w)) < π,

−π < arg(z(1 − z)) < π.
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Definition: If M is incomplete, the Dehn surgery invariant of M is the
pair of real numbers (a, b) such that

aη̃(m) + bη̃(
) = 2πi. (10.5.14)

If M is complete, the Dehn surgery invariant of M is ∞.

Let W be the solution space for w in Figure 10.5.6. Then the Dehn
surgery invariant determines a map

d : W → Ê2

such that d( 1
2 +

√
3

2 i) = ∞. If w �= 1
2 +

√
3

2 i, then

d(w) = (a(w), b(w)), (10.5.15)

where a and b satisfy the system of equations

a log |z(1 − w)| + 2b log |z(1 − z)| = 0, (10.5.16)
a arg(z(1 − w)) + 2b arg(z(1 − z)) = 2π. (10.5.17)

Theorem 10.5.7. The Dehn surgery invariant map d is continuous.

Proof: Let W0 be W minus the point 1
2 +

√
3

2 i. By Cramer’s rule, a and
b, satisfying Equations 10.5.16 and 10.5.17, are continuous functions of w
on the set W0. As both arg(z(1 − w)) and arg(z(1 − z)) approach 0 as
w → 1

2 +
√

3
2 i, we deduce from Equation 10.5.17 that (a(w), b(w)) → ∞ as

w → 1
2 +

√
3

2 i. Hence d is continuous at the point 1
2 +

√
3

2 i.

Theorem 10.5.8. Let M be an incomplete hyperbolic 3-manifold obtained
by properly gluing together two ideal tetrahedrons according to the gluing
pattern for the figure-eight knot complement. Then the metric completion
M is a hyperbolic 3-manifold if and only if the Dehn surgery invariant of
M is a pair (p, q) of coprime integers.

Proof: By Theorem 10.5.6, the metric completion M is a hyperbolic
3-manifold if and only if

Im(η̃) ∩ i R = 2πi Z.

Now Im(η̃)∩i R is a subgroup of Im(η̃) and therefore is a free abelian group
of rank 0, 1, or 2. The last case is impossible since Im(η̃) ∩ i R would then
be of finite index in Im(η̃), and every subgroup of finite index of Im(η̃) is
generated by two linearly independent vectors of the real vector space C.
Hence Im(η̃) ∩ i R is a cyclic group. As Im(η̃) is generated by η̃(m) and
η̃(
), we have that

Im(η̃) ∩ i R = 2πi Z

if and only if there are coprime integers p, q such that

pη̃(m) + q η̃(
) = 2πi.
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Dehn Surgery

Let N be a closed tubular neighborhood of the figure-eight knot K in
E3. Let p, q be coprime integers and let M(p,q) be the closed orientable
3-manifold obtained by gluing a solid torus V to Ê3 − N◦ along their
boundaries by a homeomorphism that maps a meridian of V onto a simple
closed curve in ∂N representing mp
q in π1(∂N). The 3-manifold M(p,q) is
said to be obtained from Ê3 by (p, q)-Dehn surgery on K.

Theorem 10.5.9. Let M be an incomplete hyperbolic 3-manifold, obtained
by properly gluing together two ideal tetrahedrons according to the gluing
pattern for the figure-eight knot K, whose Dehn surgery invariant is a pair
(p, q) of coprime integers. Then the metric completion M is a hyperbolic
3-manifold homeomorphic to the 3-manifold M(p,q) obtained from Ê3 by
(p, q)-Dehn surgery on K.

Proof: By Theorem 10.5.8, the metric completion M is a hyperbolic
3-manifold. From the proof of Theorem 10.5.6, we have

M = (M − N◦) ∪ N,

where N is a solid torus isometric to C/Γ. The group Γ = j(Im(η)) is
generated by a hyperbolic transformation z �→ kz, where |k| > 1. Let F
be the frustrum in U3 bounded by ∂C and the horospheres x3 = 1, |k|.
See Figure 10.5.15. Then F ◦ is a fundamental domain for Γ in C, and
V = F/Γ is a solid torus that is glued to M −N◦ to give M . Now M −N◦

is homeomorphic to the complement in Ê3 of a open tubular neighborhood
of K. Therefore M is homeomorphic to a 3-manifold obtained from Ê3 by
Dehn surgery on K. Observe that the bottom rim ρ of F in Figure 10.5.15
represents a meridian of V , and ρ corresponds to a rotation by 2π in Γ.
As the Dehn surgery invariant of M is (p, q), the curve ρ represents the
element mp
q of π1(∂N). Thus M is homeomorphic to M(p,q).

1

|k|

F

ρ

Figure 10.5.15. The frustrum F within the cone C
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Figure 10.5.16. The compactification of W along the missing ray

Let Ŵ be the compactification of the solution space W obtained by
adjoining to W the real axis, a copy of R along the ray

R = { 1
2 + t

2 i : t ≥
√

15}

as indicated in Figure 10.5.16, and two more points ±∞, with −∞ joining
the left ends of the new lines together and +∞ joining the right ends of
the new lines together. Note that Ŵ is topologically a disk whose interior
is W .

Let σ be the involution of W obtained by interchanging the solutions w
and z of Equation 10.5.5,

z(z − 1)w(w − 1) = 1.

Then we deduce from Formulas 10.5.10 and 10.5.11 that

ση(m) = η(m)−1 = η(−m),
ση(
) = η(
)−1 = η(−
).

Therefore, we deduce from Formula 10.5.14 that dσ = −d.

Lemma 4. The involution σ of W extends to a continuous involution σ̂
of Ŵ .

Proof: The function σ : W → W is defined by the formula

σ(w) =
1
2

±
√

1
4

+
1

w(w − 1)
.

Hence σ is analytic and therefore σ is continuous.
When w is near the interval (−∞, 0), we find that z is near the interval

(1,∞). Hence σ extends continuously to (−∞, 0) by the formula

σ̂(w) =
1
2

+

√
1
4

+
1

w(w − 1)
.

We define σ̂(0) = +∞.
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When w is near the interval (0, 1/2], we find that z is near the right side
of the ray R. Hence σ extends continuously to (0, 1/2] by the formula

σ̂(w) =
1
2

+ i

√
−
(

1
4

+
1

w(w − 1)

)
,

where σ̂(w) is understood to lie in the right copy R+ of the ray R.
When w is near the interval [1/2, 1), we find that z is near the left side

of R. Hence σ extends continuously to [1/2, 1) by the formula

σ̂(w) =
1
2

+ i

√
−
(

1
4

+
1

w(w − 1)

)
,

where σ̂(w) is understood to lie in the left copy R− of R. We define
σ̂(1) = −∞.

When w is near the interval (1,∞), we find that z is near the interval
(−∞, 0). Hence σ extends continuously to (1,∞) by the formula

σ̂(w) =
1
2

−
√

1
4

+
1

w(w − 1)
.

We define σ̂(+∞) = 0.
When w is near the right side of R, we find that z is near the interval

(0, 1/2]. Hence σ extends continuously to R+ by the formula

σ̂(w) =
1
2

−
√

1
4

+
1

w(w − 1)
.

When w is near the left side of R, we find that z is near the interval
[1/2, 1). Hence σ extends continuously to R− by the formula

σ̂(w) =
1
2

+

√
1
4

+
1

w(w − 1)
.

Finally, we define σ̂(−∞) = 1. Then σ̂ is a continuous involution of Ŵ .

Let τ be the involution of W defined by

τ(w) = 1 − w.

Then τ(z) = 1 − z, and we deduce from Formulas 10.5.10 and 10.5.11 that

τη(m) = η(m)−1,

τη(
) = η(
).

Therefore, we deduce from Formulas 10.5.12-10.5.14 that

dτ(w) = (aτ(w), bτ(w)) = (a(w),−b(w)).

Let ρ : Ê2 → Ê2 be the reflection in the x-axis. Then dτ = ρd. Clearly τ
extends to a continuous involution τ̂ of Ŵ .
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Lemma 5. The Dehn surgery invariant map d : W → Ê2 extends to a
continuous function d̂ : Ŵ → Ê2.

Proof: We begin by extending d to the open interval (1,∞). When w is
near (1,∞), then z is near the interval (−∞, 0). Thus, for w in (1,∞), we
define

z =
1
2

−
√

1
4

+
1

w(w − 1)
,

arg(w) = 0, arg(1 − w) = −π, arg(z) = π, arg(1 − z) = 0.

Then arg(z(1 − w)) = 0 and arg(z(1 − z)) = π. From Equation 10.5.17, we
find that b(w) = 1, and so from Equation 10.5.16, we have

a(w) =
−2 log |z(1 − z)|
log |z(1 − w)|) .

From Equation 10.5.5, we have

a(w) =
−2 log(w(w − 1))

log(w(1 − z))
.

Define d̂ on the interval (1,∞) by

d̂(w) = (a(w), 1).

Then d̂ is continuous on the set W ∪ (1,∞).
Next, observe that

log(w(w − 1))
log(w(1 − z))

=
log(w) + log(w − 1)
log(w) + log(1 − z)

=
1 + log(w−1)

log(w)

1 + log(1−z)
log(w)

< 2

and that

lim
w→∞

log(w(w − 1))
log(w(1 − z))

= 2.

Hence a(w) > −4 and lim
w→∞ a(w) = −4. Now

a
(
(1 +

√
5)/2
)

= 0

and a(w) ≤ 0 for w ≥ (1 +
√

5)/2. By continuity, we deduce that a maps
the interval [(1 +

√
5)/2,∞) onto the interval (−4, 0]. Observe that

d̂
(
(1, (1 +

√
5)/2]

)
= d̂σ̂

(
(−∞, (1 −

√
5)/2]

)
= d̂σ̂τ̂

(
[(1 +

√
5)/2,∞)

)
= −ρd̂

(
[(1 +

√
5)/2,∞)

)
.

Therefore a maps the interval (1, (1 +
√

5)/2] onto the interval [0, 4).
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We now extend d to the right copy R+ of the ray R. When w is near
the right side of R, then z is near the interval (0, 1/2]. Thus, for w in R+,
we define

z =
1
2

−
√

1
4

+
1

w(w − 1)
,

arg(z) = 0, and arg(1 − z) = 0. Then arg(z(1 − z)) = 0 and

arg(z(1 − w)) = arg(1 − w).

From Equation 10.5.17, we find that

a(w) =
2π

arg(1 − w)
.

As w varies from 1
2 +

√
15
2 i to +∞ along R+, the value of a(w) increases

from −4.76679 . . . to −4. From Equation 10.5.16, we find that

b(w) =
−a(w) log |z(1 − w)|

2 log |z(1 − z)| .

From Equation 10.5.5, we have

b(w) =
−a(w) log |w(1 − z)|

2 log |w(1 − w)|

=
−a(w) log |w(1 − z)|

2 log |ww|

=
−a(w) log |w(1 − z)|

4 log |w|

= −a(w)
4

(
1 +

log(1 − z)
log |w|

)
.

Hence, we have

b
( 1

2 +
√

15
2 i
)

= 0 and lim
w→+∞ b(w) = 1.

Define d̂ on R+ by
d̂(w) = (a(w), b(w)).

Then d̂ is continuous on the set W ∪ R+.
We next define d̂(+∞) = (−4, 1) and show that d̂ is continuous at +∞.

Suppose that w is in W with |w| large and w is to the right of the ray R.
Then |z| is small. From the equation

|z| |z − 1| |w| |w − 1| = 1,

we deduce that
|z| |w|2 � 1.

Therefore, we have
log |z| + 2 log |w| � 0.
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x

y

(−4, 1)

(−4,−1)

(4, 1)

(4,−1)

−5 5

Figure 10.5.17. The image of the boundary of Ŵ

From Equation 10.5.16, we find that a + 4b � 0. From the equation

arg(z) + arg(z − 1) + arg(w) + arg(w − 1) = 2π,

we deduce that
arg(z) � π − 2 arg(w).

Therefore, we have

arg(1 − z) � 0,

arg(1 − w) � arg(w) − π,

arg(z(1 − w)) � − arg(w),
arg(z(1 − z)) � π − 2 arg(w).

From Equation 10.5.17, we find that

−(a + 4b) arg(w) + 2bπ � 2π.

Therefore (a, b) � (−4, 1) with (a, b) → (−4, 1) as w → +∞. Thus d̂ is
continuous at the point +∞.

Now, by symmetry, d : W → Ê2 extends to a continuous function

d̂ : Ŵ → Ê2

such that d̂σ̂ = −d̂ and d̂τ̂ = ρd̂. Consequently d̂(∂Ŵ ) is a simple closed
curve enclosing the origin that is symmetric with respect to the x and y
axes. See Figure 10.5.17.

Theorem 10.5.10. Let p, q be coprime integers such that either |p| > 4
or |q| > 1, and let M(p,q) be the closed orientable 3-manifold obtained from
Ê3 by (p, q)-Dehn surgery on the figure-eight knot. Then M(p,q) has a
hyperbolic 3-manifold structure.



504 10. Hyperbolic 3-Manifolds

Proof: Let C and D be the closed disks in Ê2 bounded by the simple
closed curve d̂(∂Ŵ ) with (0, 0) in C. See Figure 10.5.17. Let

r : Ê2 − {(0, 0)} → D

be a retraction that retracts C − {(0, 0)} onto ∂C = ∂D. From Equation
10.5.17, we deduce that (0, 0) is not in the image of d̂. Hence, the function

f : Ŵ → D

defined by f = rd̂ is well defined and continuous.
We now prove that f is onto. On the contrary, suppose that f is not

onto. Then f is homotopic to a map g : Ŵ → ∂D such that f and g
agree on ∂Ŵ . Let ∂f : ∂Ŵ → ∂D be the restriction of f . Then we have a
commutative diagram of first homology groups and homomorphisms:

H1(∂Ŵ )
i∗−→ H1(Ŵ )

(∂f)∗ ↓ g∗ ↙

H1(∂D)

As H1(Ŵ ) = 0, we have that (∂f)∗ is the zero homomorphism; but ∂f is
a degree one map, which is a contradiction. Therefore f is onto.

Now since r retracts C − {(0, 0)} onto ∂D, we deduce that D ⊂ d̂(Ŵ ).
Therefore D◦ ⊂ d(W ). The theorem now follows from Theorem 10.5.9,
since (p, q) is in D◦.

Exercise 10.5

1. Prove that every Euclidean triangle in C is directly similar to a triangle whose
vertices are 0, 1, z, where z satisfies the inequalities Im(z) > 0, |z| ≤ 1, and
|z − 1| ≤ 1.

2. Prove that C∗ is a geometric space with I(C∗) = C∗ � (〈ι〉 × 〈κ〉), where C∗

acts on itself by multiplication and ι(z) = z−1 and κ(z) = z.

3. Let M(p,q) be a hyperbolic 3-manifold obtained by hyperbolic (p, q)-Dehn
surgery on the figure-eight knot and let M∞ be the complete, hyperbolic,
figure-eight knot complement. Prove that

Vol(M(p,q)) < Vol(M∞),

lim
(p,q)→∞

Vol(M(p,q)) = Vol(M∞).

4. Prove that infinitely many nonisometric, closed, orientable, hyperbolic 3-
manifolds can be obtained from the figure-eight knot by hyperbolic Dehn
surgery.

5. Prove that the Seifert-Weber dodecahedral space cannot be obtained from
the figure-eight knot by hyperbolic Dehn surgery.
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§10.6. Historical Notes

§10.1. The concept of gluing together polyhedra to construct a 3-manifold
was introduced by Poincaré in his 1895 paper Analysis situs [361]. In
particular, Example 1 appeared in this paper. The first example of a
closed hyperbolic 3-manifold was constructed by Löbell in his 1931 paper
Beispiele geschlossener dreidimensionaler Clifford-Kleinscher Räume neg-
ativer Krümmung [288] by gluing together eight copies of a 14-sided, right-
angled, hyperbolic polyhedron. For a description of Löbell’s 3-manifold
in terms of reflection groups, see Vesnin’s 1987 paper Three-dimensional
hyperbolic manifolds of Löbell type [433]. Examples 2 and 3 were given by
Seifert and Weber in their 1933 paper Die beiden Dodekaederräume [445].
Moreover, Theorem 10.1.3 appeared in this paper. Other examples of closed
hyperbolic 3-manifolds obtained by gluing together polyhedra can be found
in Best’s 1971 paper On torsion-free discrete subgroups of PSL(2, C) with
compact orbit space [46], in Gucul’s 1979 paper On a series of compact
3-dimensional manifolds of constant negative curvature [187], in Molnár’s
1989 paper Two hyperbolic football manifolds [327], and in Everitt’s 2004
paper 3-manifolds from Platonic solids [140].

§10.2. Necessary and sufficient conditions for the complete gluing of
a hyperbolic 3-manifold from a single polyhedron were given by Maskit
in his 1971 paper On Poincaré’s theorem for fundamental polygons [301].
Necessary and sufficient conditions for the complete gluing of a hyperbolic
3-manifold were given by Seifert in his 1975 paper Komplexe mit Seiten-
zuordnung [403]. The concept of the link of a cusp point of a hyperbolic
3-manifold was introduced by Thurston in his 1979 lecture notes The Ge-
ometry and Topology of 3-Manifolds [425], and all of the results of this
section appeared in Thurston’s notes. See also Thurston’s treatise Three-
Dimensional Geometry and Topology [427].

§10.3. The first example of a complete hyperbolic 3-manifold of finite
volume was constructed by Gieseking in his 1912 thesis Analytische Unter-
suchungen über topologische Gruppen [166] by gluing together the sides of
a regular ideal tetrahedron. For a description of the Gieseking manifold,
see Adams’ 1987 paper The noncompact hyperbolic 3-manifold of minimal
volume [4]. The Gieseking manifold is nonorientable. Its orientable double
cover is the figure-eight knot space. That the figure-eight knot space has a
complete hyperbolic structure appeared in Riley’s 1975 paper A quadratic
parabolic group [382]. The construction of the complete hyperbolic struc-
ture on the figure-eight knot space by gluing together two regular ideal
tetrahedrons appeared Thurston’s 1979 notes [425]. The complements of
the Whitehead link and the Borromean rings were first shown to have a
complete hyperbolic structure by Riley. See Wielenberg’s 1978 paper The
structure of certain subgroups of the Picard group [452] and Riley’s 1979
paper An elliptical path from parabolic representations to hyperbolic struc-
tures [383]. The construction of the complete hyperbolic structure on the



506 10. Hyperbolic 3-Manifolds

Whitehead link and the Borromean rings by gluing together regular ideal
octahedrons appeared in Thurston’s 1979 notes [425]. For examples of
complete hyperbolic 3-manifolds obtained by gluing together ideal cubes
or regular ideal dodecahedra, see Aitchison and Rubinstein’s 1990 paper An
introduction to polyhedral metrics of non-positive curvature on 3-manifolds
[10], their 1992 paper Combinatorial cubings, cusps, and the dodecahedral
knots [11], and Everitt’s 2004 paper [140].

§10.4. Theorem 10.4.1 appeared in Coxeter’s 1935 paper The func-
tions of Schläfli and Lobatschefsky [97]. Clausen investigated the function
f(φ) = 2L(φ/2) in his 1832 paper Ueber die Function f(φ) = sinφ +
1
22 sin 2φ + 1

32 sin 3φ + etc. [88]. In particular, Formula 10.4.9 appeared in
this paper. Moreover, Theorem 10.4.3 is implicit in Clausen’s Fourier series
expansion of f(φ). The Lobachevsky function was originally defined to be
minus the integral of log cos θ from 0 to θ by Lobachevsky in his 1836 Rus-
sian treatise Application of imaginary geometry to certain integrals. For a
German translation with commentary, see N. J. Lobatschefskijs Imaginäre
Geometrie und Anwendung der imaginären Geometrie auf einige Integrale
[283]. The present Lobachevsky function was introduced by Milnor in his
1978 manuscript Notes on hyperbolic volume and appeared in Thurston’s
1979 lecture notes [425]. Milnor’s notes were published in his 1994 paper
How to compute volume in hyperbolic space [311]. See also Milnor’s 1982
paper Hyperbolic geometry: the first 150 years [310]. Theorems 10.4.5-
10.4.7 were essentially proved by Lobachevsky in his 1836 treatise [283].
We follow the proofs of Theorems 10.4.2 and 10.4.5 given by Vinberg in his
1993 survey Volumes of non-Euclidean polyhedra [437]. Theorems 10.4.4,
10.4.8-10.4.10, and 10.4.12 appeared in Thurston’s 1979 notes [425]. See
also Milnor’s notes [311] and his 1982 paper [310]. Theorem 10.4.11 ap-
peared in Coxeter’s 1935 paper [97] and was proved by Milnor in his 1982
paper [310]. Other references for hyperbolic volume are Kellerhals’ 1989
paper On the volume of hyperbolic polyhedra [235] and her 1991 paper The
dilogarithm and volumes of hyperbolic polytopes [236].

Jørgensen and Thurston proved that the set of volumes of complete hy-
perbolic 3-manifolds of finite volume is a well-ordered closed subset of the
real line with all the volumes of open manifolds as limit points from the left.
In particular, there is a closed hyperbolic 3-manifold of minimum volume.
Furthermore, volume is a finite-to-one function of complete hyperbolic 3-
manifolds of finite volume. For a discussion, see Thurston’s 1979 notes
[425] and Gromov’s 1981 paper Hyperbolic manifolds according to Thurston
and Jørgensen [182]. Wielenberg constructed arbitrarily large finite sets of
nonisometric, open, complete, hyperbolic 3-manifolds with the same finite
volume in his 1980 paper Hyperbolic 3-manifolds which share a fundamental
polyhedron [453]. Vesnin constructed arbitrarily large finite sets of noniso-
metric, closed, hyperbolic 3-manifolds with the same volume in his 1991
paper Three-dimensional hyperbolic manifolds with common fundamental
polyhedron [434]. See also Apanasov and Gutsul’s 1992 paper Greatly sym-
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metric totally geodesic surfaces and closed hyperbolic 3-manifolds which
share a fundamental polyhedron [22]. Cao and Meyerhoff proved that the
figure-eight knot complement and its sister are the orientable, open, com-
plete, hyperbolic 3-manifolds of minimum volume in their 2001 paper [73].
For a lower bound on the volume of a hyperbolic 3-manifold with N cusps,
see Adams’ 1988 paper Volumes of N -cusped hyperbolic 3-manifolds [5].
For a positive lower bound for the set of volumes of complete hyperbolic
3-manifolds, see Gehring and Martin’s 1991 paper Inequalities for Möbius
transformations and discrete groups [164]. See also Culler and Shalen’s
1992 paper Paradoxical decompositions, 2-generator Kleinian groups, and
volumes of hyperbolic 3-manifolds [106].

§10.5. The similarity structures on the torus were considered by Kuiper
in his 1950 paper Compact spaces with a local structure determined by the
group of similarity transformations in En [267]. See also Fried’s 1980 paper
Closed similarity manifolds [152].

Hyperbolic Dehn surgery was introduced by Thurston in his 1979 lec-
ture notes [425], and all the results of this section appeared in Thurston’s
notes. According to Thurston [425], he became interested in hyperbolic
Dehn surgery because of Jørgensen’s 1977 paper Compact 3-manifolds of
constant negative curvature fibering over the circle [229]. Thurston has
proved that most knot and link spaces have a complete hyperbolic struc-
ture and almost all Dehn surgeries on a hyperbolic knot or link space yield
a hyperbolic 3-manifold. For details, see Thurston’s 1979 notes [425], his
1982 article Three-dimensional manifolds, Kleinian groups and hyperbolic
geometry [426], Morgan’s 1984 paper On Thurston’s uniformization theo-
rem for 3-dimensional manifolds [329], McMullen’s 1992 article Riemann
surfaces and the geometrization of 3-manifolds [305], and Benedetti and
Petronio’s 1992 text Lectures on Hyperbolic Geometry [41].

For an analysis of the volumes of hyperbolic 3-manifolds obtained by
Dehn surgery on a hyperbolic knot space, see Neumann and Zagier’s 1985
paper Volumes of hyperbolic 3-manifolds [338]. For a computation of the
volumes of closed, orientable, hyperbolic 3-manifolds of small complex-
ity, see Matveev and Fomenko’s 1988 paper Constant energy surfaces of
Hamiltonian systems, enumeration of 3-dimensional manifolds in increas-
ing order of complexity, and computation of volumes of closed hyperbolic
manifolds [304]. Weeks has written a computer program called SnapPea
that computes invariants of hyperbolic 3-manifolds. For a discussion, see
Adams’ 1990 review SnapPea, The Weeks hyperbolic 3-manifold program
[6]. See also Weeks’ 1993 paper Convex hulls and isometries of cusped hy-
perbolic 3-manifolds [447]. For a tabulation of hyperbolic knots and links
and their invariants, see Adams, Hildebrand, and Weeks’ 1991 paper Hy-
perbolic invariants of knots and links [8]. For an analysis of some of the
complete hyperbolic 3-manifolds obtained by Dehn surgery on the White-
head link complement, see Hodgson, Meyerhoff, and Weeks’ 1992 paper
Surgeries on the Whitehead link yield geometrically similar manifolds [210].



CHAPTER 11

Hyperbolic n-Manifolds

In this chapter, we study hyperbolic n-manifolds. We begin with a ge-
ometric method for constructing spherical, Euclidean, and hyperbolic n-
manifolds. In Section 11.2, we prove Poincaré’s fundamental polyhedron
theorem for freely acting groups. In Section 11.3, we prove the Gauss-
Bonnet theorem. In Section 11.4, we determine the simplices of maximum
volume in hyperbolic n-space. In Section 11.5, we study differential forms.
In Section 11.6, we introduce the Gromov norm of a closed hyperbolic
manifold. In Section 11.7, we study measure homology. In Section 11.8,
we prove Mostow’s rigidity theorem for closed hyperbolic manifolds.

§11.1. Gluing n-Manifolds

In this section, we shall construct n-dimensional spherical, Euclidean, and
hyperbolic manifolds by gluing together n-dimensional convex polyhedra.
Let X = Sn, En, or Hn with n > 0.

Definition: An n-dimensional, abstract, convex polyhedron P in X is an
n-dimensional convex polyhedron P in X together with a collection F of
subsets of ∂P , called the facets of P , such that

(1) each facet of P is a closed, (n− 1)-dimensional, convex subset of ∂P ;

(2) two facets of P meet only along their boundaries;

(3) the union of the facets of P is ∂P ;

(4) the collection F is locally finite in X.

By Theorem 6.2.6, an n-dimensional convex polyhedron P in X, together
with the collection S of its sides, is an n-dimensional, abstract, convex
polyhedron. Note that, in general, a facet of an abstract convex polyhedron

508
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P may or may not be equal to the side of P containing it. It is an exercise
to prove that every facet of an n-dimensional, abstract, convex polyhedron
is an (n − 1)-dimensional convex polyhedron.

Definition: A disjoint set of n-dimensional, abstract, convex polyhedra
of X is a set of functions

Ξ = {ξP : P ∈ P}
indexed by a set P such that

(1) the function ξP : X → XP is a similarity for each P in P;

(2) the index P is an n-dimensional abstract convex polyhedron in XP

for each P in P; and

(3) the polyhedra in P are mutually disjoint.

Let Ξ be a disjoint set of n-dimensional, abstract, convex polyhedra of
X and let G be a group of similarities of X.

Definition: A G-facet-pairing for Ξ is a set of functions

Φ = {φF : F ∈ F}
indexed by the collection F of all the facets of the polyhedra in P such
that for each facet F of a polyhedron P in P,

(1) there is a polyhedron P ′ in P such that the function φF : XP ′ → XP

is a similarity;

(2) the similarity gF = ξ−1
P φF ξP ′ is in G;

(3) there is a facet F ′ of P ′ such that φF (F ′) = F ;

(4) the similarities φF and φF ′ satisfy the relation φF ′ = φ−1
F ;

(5) the polyhedrons P and φF (P ′) are situated so that P ∩ φF (P ′) = F .

Let Φ be a G-facet-pairing for Ξ. The pairing of facet points by ele-
ments of Φ generates an equivalence relation on the set Π = ∪P∈P P whose
equivalence classes are called the cycles of Φ. Topologize Π with the direct
sum topology and let M be the quotient space of Π of cycles. The space
M is said to be obtained by gluing together the polyhedra of Ξ by Φ.

The normalized solid angle subtended by a polyhedron P in X at a point
x of P is defined to be the real number

ω̂(P, x) =
Vol(P ∩ B(x, r))

Vol(B(x, r))
, (11.1.1)

where r is less than the distance from x to any side of P not containing x.
It follows from Theorems 2.4.1 and 3.4.1 that ω̂(P, x) does not depend on
the radius r.
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Let [x] = {x1, . . . , xm} be a finite cycle of Φ, and let Pi be the polyhedron
in P containing the point xi for each i = 1, . . . , m. The normalized solid
angle sum of the cycle [x] is defined to be the real number

ω̂[x] = ω̂(P1, x1) + · · · + ω̂(Pm, xm). (11.1.2)

Definition: A G-facet-pairing Φ for Ξ is proper if and only if each cycle
of Φ is finite and has normalized solid angle sum 1.

The proof of the next theorem is by induction on n and follows the same
outline as the proof of Theorem 10.1.2 and it is therefore left to the reader.

Theorem 11.1.1. Let G be a group of similarities of X and let M be a
space obtained by gluing together a disjoint set Ξ of n-dimensional, abstract,
convex polyhedra of X by a proper G-facet-pairing Φ. Then M is an n-
manifold with an (X, G)-structure such that the natural injection of P ◦

into M is an (X, G)-map for each polyhedron P of Ξ.

Example 1. We now consider an example of a closed hyperbolic 4-
manifold obtained by gluing together the sides of a 4-dimensional, regular,
convex polyhedron in H4. For n = 0, 1, 2, 3, 4, let Γn be the discrete,
n-simplex, reflection group whose Coxeter graph is, respectively,
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�
5
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�
5

� �

�
5

� � �

�
5

� � �
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For n = 1, 2, 3, the group Γn is a discrete group of isometries of Sn

generated by the reflections of Sn in the sides of a spherical n-simplex
∆n. The group Γ4 is a discrete group of isometries of H4 generated by the
reflections of H4 in the sides of a hyperbolic 4-simplex ∆4. For n = 1, 2, 3, 4,
let vn be a vertex of ∆n such that the subgroup of Γn fixing vn is Γn−1.
Then the images of ∆n under Γn−1 fit together at vn to give the barycentric
subdivision of a regular convex polyhedron Pn in Sn, if n = 1, 2, 3, or in
H4 if n = 4. The images of Pn under Γn form an exact tessellation of Sn,
if n = 1, 2, 3, or of H4 if n = 4, by congruent copies of Pn. The group of
symmetries of this tessellation is Γn. The order of Γn, for n = 0, 1, 2, 3, 4,
is 2, 10, 120, 14400, ∞, respectively.
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For n = 1, 2, 3, the convex hull of the set of vertices of this tessellation
of Sn is a regular Euclidean convex polyhedron Qn+1 which is combinato-
rially equivalent to Pn+1. The set P 1 is an arc of twice the length of ∆1

and so S1 is tessellated by 10/2 = 5 copies of it. Hence Q2 is a regular
pentagon. Therefore P 2 is a regular spherical pentagon and S2 is tessel-
lated by 120/10 = 12 copies of it. Hence Q3 is a regular dodecahedron.
Therefore P 3 is a regular spherical dodecahedron and S3 is tessellated by
14400/120 = 120 copies of it. The 4-dimensional regular polyhedron Q4 is
called the 120-cell. Therefore P 4 is a regular hyperbolic 120-cell.

The polyhedron Q4 has 120 sides, 720 ridges, 1200 edges, and 600 ver-
tices. Each side of Q4 is a regular dodecahedron and is parallel to its
opposite side, −S. For each side S of P 4, let fS be the reflection of H4

that pairs S to its opposite side S′ and let gS be the composite of fS fol-
lowed by the reflection in the side S. Then {gS} is an I0(H4)-side-pairing
for P 4. We shall call Φ = {gS} the opposite side-pairing of P 4.

Using known coordinates for the vertices of Q4, one can check that each
ridge cycle contains 5 points, each edge cycle contains 20 points, and all
the vertices of P 4 belong to 1 cycle. Therefore Φ has finite cycles. Now the
tessellation of H4 by congruent copies of P 4 has the property that 5 copies
of P 4 meet along a ridge, 20 copies of P 4 meet along an edge, and 600
copies of P 4 meet at a vertex. Consequently, the normalized solid angle
subtended by P 4 at an interior ridge point is 1/5, at an interior edge point
is 1/20, and at a vertex is 1/600. Hence, each cycle has normalized solid
angle sum 1. Thus Φ is proper.

Let M be the space obtained by gluing the sides of P 4 by the opposite
side-pairing Φ. Then M is a closed, orientable, hyperbolic 4-manifold by
Theorem 11.1.1. The manifold M is called the Davis 120-cell space.

Complete Gluing of n-Manifolds

We now consider gluing together polyhedra to form a complete manifold.
We begin by proving a complete gluing theorem for Euclidean manifolds.

Theorem 11.1.2. Let M be a Euclidean n-manifold obtained by gluing
together a finite family P of disjoint, finite-sided, n-dimensional, convex
polyhedra in En by a proper I(En)-side-pairing Φ. Then M is complete.

Proof: Without loss of generality, we may assume that M is connected.
Then M is a metric space with the induced metric. We shall prove that M
is complete by finding an ε > 0 so that B(u, ε) is compact for every u in
M . It will then follow from Theorem 8.5.1 that M is complete.

Let Π be the union of the polyhedra in P and let π : Π → M be the
quotient map. Let x be a point of Π and let {x1, . . . , xm} be the cycle of
Φ containing x. Let Pi be the polyhedron in P containing xi and let r > 0
be less than one-third the distance from xi to any side of Pi not containing
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xi for each i. Then there is a chart

φx : U(x, r) → B(x, r)

for (M, π(x)). By Theorem 8.3.5, we have that φ−1
x maps B(x, r/2) home-

omorphically onto B(π(x), r/2). As B(x, r/2) is compact, we have

φ−1
x (B(x, r/2)) = B(π(x), r/2)

and therefore B(π(x), r/2) is compact.
Let Πk be the union of all the k-faces of the polyhedra in P for each

k = 0, 1, . . . , n. Then Π0 is a finite set. Let r0 > 0 be less than one-sixth
the distance from any point x of Π0 to any side of a polyhedron in P not
containing x. Then B(π(x), r0) is compact for each x in Π0. Now suppose
that rk > 0 and B(π(x), rk) is compact for each x in Πk. Let rk+1 > 0 be
such that rk+1 ≤ rk/2 and for each (k+1)-face F of a polyhedron in P, we
have that rk+1 is less than one-sixth the distance from F − N(∂F, rk/2) to
any side of a polyhedron in P not containing F . Let x be a point of Πk+1.
Then there is a (k + 1)-face F such that x is in F .

Assume first that x is in N(∂F, rk/2). Then there is a point y of ∂F
such that |x − y| < rk/2. Hence π(x) is in B(π(y), rk/2). By the triangle
inequality, B(π(x), rk+1) ⊂ B(π(y), rk). Therefore B(π(x), rk+1) is com-
pact. Now assume that x is not in N(∂F, rk/2). Let {x1, . . . , xm} be the
cycle of x. Then there is a (k+1)-face Fi of a polyhedron in P such that xi

is in F ◦
i for each i. Moreover xi is not in N(∂Fi, rk/2) for each i because

each element of Φ is an isometry. Therefore rk+1 is less than one-sixth
the distance from xi to any side of a polyhedron in P not containing xi

for each i. Hence B(π(x), rk+1) is compact. It follows by induction that
B(π(x), rn) is compact for all x in Π.

Let M be a hyperbolic n-manifold obtained by gluing together a finite
family P of disjoint, finite-sided, n-dimensional, convex polyhedra in Bn by
a proper M(Bn)-side-pairing Φ. We shall determine necessary and sufficient
conditions such that M is complete. We may assume, without loss of
generality, that no two polyhedrons in P meet at infinity. Then Φ extends
to a side-pairing of the (n − 1)-dimensional sides of the Euclidean closures
of the polyhedra in P, which, in turn, generates an equivalence relation on
the union of the Euclidean closures of the polyhedra in P. The equivalence
classes are called cycles. We denote the cycle containing a point x by [x].

Let P be a polyhedron in P. A cusp point of P is a point c of P ∩ Sn−1

that is the intersection of the Euclidean closures of all the sides of P incident
with c. The cycle of a cusp point of a polyhedron in P is called a cusp point
of M . As each polyhedron in P has only finitely many cusp points, M has
only finitely many cusp points.

Let c be a cusp point of a polyhedron in P. Let b be a point in [c]
and let Pb be the polyhedron in P containing b in its Euclidean closure.
The link of b is defined to be the (n − 1)-dimensional, Euclidean, convex
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polyhedron L(b) obtained by intersecting Pb with a horosphere Σb based
at b that meets just the sides of Pb incident with b. We shall assume that
the horospheres {Σb : b ∈ [c]} have been chosen small enough so that the
links of the points of [c] are mutually disjoint. Then Φ determines a proper
S(En−1)-side-pairing for {L(b) : b ∈ [c]} as in §10.2. Let L[c] be the space
obtained by gluing together the polyhedra {L(b)} by this side-pairing. The
space L[c] is called the link of the cusp point [c] of M .

Theorem 11.1.3. The link L[c] of a cusp point [c] of M is a connected,
Euclidean, similarity (n − 1)-manifold.

Proof: The space L[c] is a (En−1, S(En−1))-manifold by Theorem 11.1.1.
It follows directly from the definition of a cycle that L[c] is connected.

Theorem 11.1.4. The link L[c] of a cusp point [c] of M is complete if
and only if the links {L(b)} for the points in [c] can be chosen so that Φ
restricts to a side-pairing for {L(b)}.

Proof: If links for the points in [c] can be chosen so that Φ restricts to
a side-pairing for {L(b)}, then this side pairing for {L(b)} is an I(En−1)-
side-pairing, and so L[c] is complete by Theorem 11.1.2. The converse is
proved by the same argument as in the proof of Theorem 10.2.2.

Theorem 11.1.5. If the link L[c] of a cusp point [c] of M is complete,
then there is a horoball B(c) based at the point c, a discrete subgroup Γc of
M(Bn) leaving B(c) invariant, and an injective local isometry

ι : B(c)/Γc → M

compatible with the projection of Pc to M .

Proof: The proof is the same as the proof of Theorem 10.2.3.

Theorem 11.1.6. Let M be a hyperbolic n-manifold obtained by gluing
together a finite family P of disjoint, finite-sided, n-dimensional, convex
polyhedra in Bn by a proper M(Bn)-side-pairing Φ. Then M is complete if
and only if L[c] is complete for each cusp point [c] of M .

Proof: Without loss of generality, we may assume that M is connected.
Suppose that L[c] is incomplete for some cusp point [c] of M . Then M
is incomplete by the same argument as in the proof of Theorem 10.2.4.
Conversely, suppose that L[c] is complete for each cusp point [c]. Let M0
be the manifold-with-boundary obtained from M by removing the image
of the injective local isometry

ι : B(c)/Γc → M

of Theorem 11.1.5 for each cusp point [c] of M . Then M0 is complete by the
same argument as in the proof of Theorem 11.1.2. Finally M is complete
by the same argument as in the proof of Theorem 9.8.5.
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Example 2. We now consider an example of an open, complete, hyper-
bolic 4-manifold of finite volume obtained by gluing together the sides of a
4-dimensional, regular, ideal, convex polyhedron in H4. For n = 0, 1, 2, 3, 4,
let Γn be the discrete, n-simplex, reflection group whose Coxeter graph is,
respectively,
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4
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4

� �
4

�

For n = 1, 2, 3, the group Γn is a discrete group of isometries of Sn

generated by the reflections of Sn in the sides of a spherical n-simplex
∆n. The group Γ4 is a discrete group of isometries of H4 generated by
the reflections of H4 in the sides of a generalized hyperbolic 4-simplex ∆4.
For n = 1, 2, 3, 4, let vn be a vertex of ∆n such that the subgroup of Γn

fixing vn is Γn−1. Then the images of ∆n under Γn−1 fit together at vn to
give the barycentric subdivision of a regular convex polyhedron Pn in Sn,
if n = 1, 2, 3, or in H4 if n = 4. The images of Pn under Γn form an exact
tessellation of Sn, if n = 1, 2, 3, or of H4 if n = 4, by congruent copies of
Pn. The group of symmetries of this tessellation is Γn. The order of Γn,
for n = 0, 1, 2, 3, 4, is 2, 6, 48, 1152, ∞, respectively.

For n = 1, 2, 3, the convex hull of the set of vertices of this tessellation of
Sn is a regular Euclidean convex polyhedron Qn+1 that is combinatorially
equivalent to Pn+1. The set P 1 is an arc of twice the length of ∆1 and so S1

is tessellated by 6/2 = 3 copies of it. Hence Q2 is an equilateral triangle.
Therefore P 2 is a spherical equilateral triangle and S2 is tessellated by
48/6 = 8 copies of it. Hence Q3 is a regular octahedron. Therefore P 3 is a
regular spherical octahedron and S3 is tessellated by 1152/48 = 24 copies
of it. The 4-dimensional regular polyhedron Q4 is called the 24-cell. All
the vertices of P 4 are ideal. Therefore P 4 is a regular, ideal, hyperbolic
24-cell.

The 24-cell Q4 has 24 sides, 96 ridges, 96 edges, and 24 vertices. Each
side S of Q4 is a regular octahedron and is parallel to its opposite side,
−S. We rotate Q4 so that its vertices are ±ei, for i = 1, 2, 3, 4, and
(± 1

2 ,± 1
2 ,± 1

2 ,± 1
2 ). We pass to the projective model D4 of hyperbolic space

and rotate P 4 so that Q4 and P 4 coincide. We now pair each side S of
P 4 to its opposite side S′ by an orientation reversing isometry gS of D4.
For each of the eight sides of P 4 whose Euclidean centers are (± 1

2 , 0, 0,± 1
2 )

and (0,± 1
2 ,± 1

2 , 0), let gS be the composite of the antipodal map followed
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by the reflection in the side S. Now each side of P 4 has two vertices of
the form ±ei and ±ej with i �= j. For the remaining 16 sides of P 4, let
gS be the composition of the reflection of D4 that pairs S to S′ followed
by the reflection of D4 that transposes the vertices ±ei and ±ej of S,
and then followed by the reflection in the side S. Then Φ = {gS} is an
I(D4)-side-pairing for P 4.

One can check that each ridge cycle contains 4 points and each edge
cycle contains 8 points. Therefore Φ has finite cycles. Now the tessellation
of D4 by congruent copies of P 4 has the property that 4 copies of P 4 meet
along a ridge and 8 copies of P 4 meet along an edge. Consequently, the
normalized solid angle subtended by P 4 at an interior ridge point is 1/4
and at an interior edge point is 1/8. Hence, each cycle has normalized solid
angle sum 1. Thus Φ is proper.

Let M be the space obtained by gluing the sides of P 4 by Φ. Then M is a
hyperbolic 4-manifold by Theorem 11.1.1. The manifold M is noncompact
and nonorientable but has finite volume. We shall call M the hyperbolic
24-cell space.

There are 6 cycles of ideal vertices of P 4. Each element gS of Φ is the
composite of a rotation about the origin followed by the reflection in S.
Consequently, disjoint horospheres based at the ideal vertices of P 4 and
equidistant from the origin are paired by the elements of Φ. Therefore, the
links of the cusp points of M are complete by Theorem 11.1.4. Finally M
is complete by Theorem 11.1.6.

Exercise 11.1

1. Prove that every facet of an n-dimensional, abstract, convex polyhedron is
an (n − 1)-dimensional convex polyhedron.

2. Let P be a convex fundamental polyhedron for a discrete group Γ of isome-
tries of X and let F be the collection of (n − 1)-dimensional convex subsets
of ∂P of the form P ∩ gP for some g in Γ. Prove that P together with F is
an abstract convex polyhedron in X.

3. For each facet F of P in Exercise 2, let gF be the element of Γ such that
P ∩ gF (P ) = F . Prove that Φ = {gF : F ∈ F} is a Γ-facet-pairing for P .

4. Prove Theorem 11.1.1.

5. Let Γ be the group generated by the opposite side-pairing of the hyperbolic
120-cell P 4. Prove that Γ is a torsion-free subgroup of Γ4 of index 14400.
You may use Theorem 11.2.1.

6. Let P be a finite-sided convex polyhedron in En. Prove that for each r > 0,
the set P − N(∂P, r) is either empty or a finite-sided convex polyhedron.

7. Let P and Q be disjoint, finite-sided, convex, polyhedrons in En. Prove that
dist(P, Q) > 0.

8. Explain why the argument in the proof of Theorem 11.1.2 breaks down in
the hyperbolic case.
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§11.2. Poincaré’s Theorem

In this section, we prove Poincaré’s fundamental polyhedron theorem for
freely acting discrete groups of isometries of X = Sn, En, or Hn with n > 1.
We begin by proving a weak version of Poincaré’s theorem.

Theorem 11.2.1. Let Φ be a proper I(X)-side-pairing for an n-dimen-
sional convex polyhedron P in X such that the (X, I(X))-manifold M ob-
tained by gluing together the sides of P by Φ is complete. Then the group Γ
generated by Φ is discrete and acts freely, P is an exact, convex, fundamen-
tal polyhedron for Γ, and the inclusion of P into X induces an isometry
from M to the space-form X/Γ.

Proof: The quotient map π : P → M maps P ◦ homeomorphically onto
an open subset U of M . Let φ : U → X be the inverse of π. From the
construction of M , we have that φ is locally a chart for M . Therefore φ is
a chart for M .

Let κ : M̃ → M be a universal covering. As U is simply connected,
φ : U → X lifts to a chart φ̃ : Ũ → X for M̃ . Let δ : M̃ → X be the
developing map determined by φ̃. Then δ is an isometry by Theorem 8.5.9.
Let ζ = κδ−1. Then ζ : X → M is a covering projection extending π on
P ◦. Moreover, by continuity, ζ extends π.

Let Γ be the group of covering transformations of ζ. By Theorem 8.5.9,
we have that Γ is a freely acting discrete group of isometries of X and ζ
induces an isometry from X/Γ to M . Now as U is simply connected, it is
evenly covered by ζ. Hence, the members of {gP ◦ : g ∈ Γ} are mutually
disjoint. As π(P ) = M , we have

X = ∪{gP : g ∈ Γ}.

Therefore P ◦ is a fundamental domain for Γ.
Let gS be an element of Φ. Choose a point y in the interior of the side

S of P . Then there is an point y′ in the interior of the side S′ of P such
that gS(y′) = y. Since π(y′) = y, there is an element g of Γ such that
g(y′) = y. Since gS′ does not extend into P ◦, we must have that gS′ lies
on the hyperplane 〈S〉.

Now since π : P → M maps a neighborhood of y in S injectively into
M , we must have that g and gS agree on a neighborhood of y′ in S′. Hence
g = gS on 〈S′〉. Furthermore, since gP lies on the opposite side of S from
P , we deduce that g = gS by Theorem 4.3.6. Thus Γ contains Φ. Therefore
P/Γ is a quotient of M .

Now by Theorem 6.6.7, the inclusion map of P into X induces a contin-
uous bijection from P/Γ to X/Γ. The composition of the induced maps

X/Γ → M → P/Γ → X/Γ

restricts to the identity map of P ◦ and so is the identity map by continuity.
Therefore M = P/Γ.



§11.2. Poincaré’s Theorem 517

Now since ζ : X → M induces an isometry from X/Γ to M = P/Γ,
the inclusion map of P into X induces an isometry from P/Γ to X/Γ.
Therefore P is locally finite by Theorem 6.6.7. Hence P is an exact, convex,
fundamental polyhedron for Γ. Finally Φ generates Γ by Theorem 6.8.3.

In order to apply Theorem 11.2.1, we need to know that the manifold M
is complete. If X = Sn, then M is always complete, since M is compact.
If X = En and the polyhedron P is finite-sided, then M is complete by
Theorem 11.1.2. If X = Hn and P is finite-sided, then easily verifiable
necessary and sufficient conditions for M to be complete are given by The-
orems 11.1.4 and 11.1.6. If X = Hn and P has infinitely many sides, then
M may fail to be complete even though the conditions of Theorem 11.1.6
are satisfied. This phenomenon is exhibited by the next example.

Example 1. We now consider a proper side-pairing Φ for an infinite-sided
hyperbolic polygon P , with no vertices, such that the hyperbolic surface M
obtained by gluing together the sides of P by Φ is incomplete. Let {Sn}∞

n=1
and {S′

n}∞
n=1 be sequences of disjoint lines of U2 formed by Euclidean semi-

circles of unit radius whose centers lie on the real line R in the increasing
order

S1, S
′
1, S2, S

′
2, . . .

such that
distU (Sn, S′

n) = 1/2n = distU (S′
n, Sn+1)

for each n. Let P be the closed region of U2 above and bounded by the
family of lines {Sn, S′

n}∞
n=1. Then P is a convex polygon in U2 whose sides

are the lines {Sn, S′
n}∞

n=1.
Let x′

n be the point of S′
n nearest to Sn+1 and let xn+1 be the point

of Sn+1 nearest to S′
n for each n. Then the geodesic segment [x′

n, xn+1]
is orthogonal to both S′

n and Sn+1 and has length 1/2n. Let g1 be the
composition of the reflection in the vertical line midway between S1 and
S′

1 followed by the reflection in S1, and for each n > 1, let gn be the
composition of the reflection in the vertical line midway between Sn and
S′

n followed by the reflection in Sn, and then followed by the translation
along Sn so that

gn(x′
n) = xn.

Then gn(S′
n) = Sn and

Φ = {gn, g−1
n }∞

n=1

is a proper I0(U2)-side-pairing for P . Let π : P → M be the quotient map.
Observe that the union of geodesic segments

[x′
1, x2] ∪ [x′

2, x3] ∪ · · ·

projects to a half-open geodesic section in M of length one. Hence, we have
that {π(xn)}∞

n=1 is a Cauchy sequence in M . Observe that this sequence
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does not converge in M , since each point of M has a neighborhood in
M that contains at most one term of the sequence {π(xn)}. Thus M is
incomplete. Therefore P is not a fundamental polygon for the group Γ
generated by Φ by Theorems 6.6.7 and 8.5.2.

Note that the same construction works in all dimensions. Just replace
the semicircles with hemispheres all of whose centers are collinear.

Poincaré’s Fundamental Polyhedron Theorem

Let S be the set of sides of an exact, convex, fundamental polyhedron P
for a freely acting discrete group Γ of isometries of X. Then for each S in
S, we have the side-pairing relation

gSgS′ = 1 (11.2.1)

of Γ. The expression SS′ is called the word in S corresponding to the
side-pairing relation gSgS′ = 1 of Γ. Recall from §6.8 that each cycle of
sides {Si}


i=1 of P determines a cycle relation

(gS1gS2 · · · gS�
)k = 1 (11.2.2)

of Γ, where k is the order of gS1gS2 · · · gS�
. The expression (S1S2 · · ·S
)k

is called the word in S corresponding to the above cycle relation of Γ.
If X = En or Hn, then Γ is torsion-free and so k = 1. Thus, we have

the cycle relation
gS1gS2 · · · gS�

= 1.

We are now ready to state Poincaré’s fundamental polyhedron theorem for
freely acting discrete groups of isometries of X.

Theorem 11.2.2. Let Φ be a proper I(X)-side-pairing for an n-dimen-
sional convex polyhedron P in X such that the (X, I(X))-manifold M ob-
tained by gluing together the sides of P by Φ is complete. Then the group
Γ generated by Φ is discrete and acts freely, P is an exact, convex, funda-
mental polyhedron for Γ, and if S is the set of sides of P and R is the set
of words in S corresponding to all the side-pairing and cycle relations of Γ,
then (S; R) is a group presentation for Γ under the mapping S �→ gS.

Proof: (1) By Theorem 11.2.1, the group Γ is discrete and acts freely,
and P is an exact, convex, fundamental polyhedron for Γ.

(2) Let F be the group freely generated by the elements of S. Then we
have an epimorphism η : F → Γ defined by η(S) = gS . By Theorem 6.8.7,
the kernel of η contains the elements of R. Let G be the quotient of F by
the normal closure of the set R in F . Then η induces an epimorphism

ι : G → Γ.

We shall prove that ι is an isomorphism.
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(3) Suppose X = Sn. Let R be a side of a side S of P , let {Si}

i=1 be the

cycle of sides of P determined by R and S, and let (gS1gS2 · · · gS�
)k = 1 be

the corresponding cycle relation. Then gS1gS2 · · · gS�
leaves R invariant.

Assume first that R is a great (n− 2)-sphere of Sn. Then P has exactly
two sides S and T and S ∩ T = R by Theorems 6.3.5 and 6.3.16. Now gS

does not leave S′ invariant, otherwise gS would fix the center of the (n−1)-
hemisphere S′. Hence gS(S′) = S �= S′, and so T = S′. Therefore 
 = 1
and gS has order k > 2. Hence (S, T ; ST, TS, Sk, T k) is a presentation for
Γ = 〈gS , gT 〉 under the mapping S �→ gS and T �→ gT .

Assume now that ∂R �= ∅. Then gS1gS2 · · · gS�
fixes a point of R by the

Brouwer fixed point theorem. Hence gS1gS2 · · · gS�
= 1, since Γ acts freely

on Sn. Therefore k = 1. Thus we may assume in all cases for X that k = 1.
(4) Let G×P be the cartesian product of G and P . We topologize G×P

by giving G the discrete topology and G × P the product topology. Then
G×P is the topological sum of the subspaces {{g}×P : g ∈ G}. Moreover,
the mapping (g, x) �→ ι(g)x is a homeomorphism of {g} × P onto ι(g)P for
each g in G.

(5) Two points (g, x) and (h, y) of G × P are said to be paired by Φ,
written (g, x) � (h, y), if and only if g−1h is in S and ι(g)x = ι(h)y.
Suppose (g, x) � (h, y). Then there is a side S of P such that g−1h = S.
As S−1 = S′ in G, we have that (h, y) � (g, x). Furthermore x is in
P ∩ gS(P ) = S and y = x′ is in S′.

Two points (g, x) and (h, y) of G×P are said to be related by Φ, written
(g, x) ∼ (h, y), if and only if there is a finite sequence, (g0, x0), . . . , (gk, xk),
of points of G × P such that (g, x) = (g0, x0), (gk, xk) = (h, y), and

(gi−1, xi−1) � (gi, xi) for i = 1, . . . , k.

Being related by Φ is obviously an equivalence relation on G×P ; moreover,
if (g, x) ∼ (h, y), then x ∼ y. Let [g, x] be the equivalence class of (g, x)
and let X̃ be the quotient space of G × P of equivalence classes.

(6) If (g, x) � (h, y), then obviously (fg, x) � (fh, y) for each f in G.
Hence G acts on X̃ by f [g, x] = [fg, x]. For a subset A of P , set

[A] =
{
[1, x] : x ∈ A

}
.

Then, if g is in G, we have

g[A] =
{
[g, x] : x ∈ A

}
.

If (g, x) is in G × P ◦, then [g, x] =
{
(g, x)

}
. Consequently, the members of

{g[P ◦] : g ∈ G} are mutually disjoint in X̃.
(7) We now show that X̃ is connected. Let π : G×P → X̃ be the quotient

map. As π maps {g} × P onto g[P ], we have that g[P ] is connected. In
view of the fact that

X̃ = ∪
{
g[P ] : g ∈ G

}
,

it suffices to show that for any g in G, there is a finite sequence g0, . . . , gm

in Γ such that [P ] = g0[P ], gm[P ] = g[P ], and gi−1[P ] and gi[P ] intersect
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for each i > 0. As G is generated by the elements of S, there are sides Si of
P such that g = S1 · · ·Sm. Let g0 = 1 and gi = S1 · · ·Si for i = 1, . . . , m.
Now since

Si = P ∩ gSi(P ),

we have that
[Si] ⊂ [P ] ∩ Si[P ].

Therefore, we have
gi−1[Si] ⊂ gi−1[P ] ∩ gi[P ].

Thus X̃ is connected.
(8) Let P0 be P minus all its faces of dimension less than n − 2. Set

X̃0 = ∪
{
g[P0] : g ∈ G

}
.

Then the same argument as in (7) shows that X̃0 is connected.
(9) Let κ : X̃ → X be the function defined by κ[g, x] = ι(g)x. Then κ

is continuous, since κπ : G × P → X is continuous. Moreover κ maps g[P ]
homeomorphically onto ι(g)P , since κπ maps {g} × P homeomorphically
onto ι(g)P .

(10) Let
X0 = ∪{γP0 : γ ∈ Γ}.

Then κ restricts to a surjection κ0 : X̃0 → X0. Hence X0 is connected.
(11) We now show that κ0 : X̃0 → X0 is a covering projection. Let x be

an arbitrary point of X0; we need to find an open neighborhood U of x in
X0 that is evenly covered by κ0. Let γ be an element of Γ such that x is
in γP0. Now since κ0g = ι(g)κ0 for all g in G, we may assume that γ = 1.

Assume first that x is in P ◦. Then U = P ◦ is an open neighborhood of
x in X0 that is evenly covered by κ0 and the sheets over U are the members
of {

g[P ◦] : g ∈ Ker(ι)
}
.

Now assume that x is in the interior of a side S of P . Then we have

[1, x] =
{
(1, x), (S, x′)

}
.

Hence, the set [S◦] meets just [P ] and S[P ] among the members of{
g[P ] : g ∈ G

}
.

Consequently
U = P ◦ ∪ S◦ ∪ gSP ◦

is an open neighborhood of x in X0 that is evenly covered by κ0 and the
sheets over U are the members of{

g([P ◦] ∪ [S◦] ∪ S[P ◦]) : g ∈ Ker(ι)
}
.

Now assume that x is in the interior of a ridge R of P . Let {Si}

i=1 be

the cycle of sides of P with S1 = S and R = S′

 ∩ S1. Let x1 = x and

xi+1 = g−1
Si

(xi) for i = 1, . . . , 
 − 1. Then gS�
(x1) = x
 and

x = x1 � x2 � · · · � x
 � x.
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Therefore, we have
[x] = {x1, . . . , x
}.

Now
(1, x) = (1, x1) � (S1, x2) � · · · � (S1 · · ·S
−1, x
).

As S1 · · ·S
 = 1 in G, we have

(S1 · · ·S
−1, x
) � (1, x),

which closes the cycle of (1, x). Therefore

[1, x] =
{
(1, x1), (S1, x2), . . . , (S1 · · ·S
−1, x
)

}
.

Let g1 = 1 and let gi = S1 · · ·Si−1 for each i = 2, . . . , 
. The elements
ι(g1), . . . , ι(g
) of Γ are distinct, since the polyhedra ι(g1)P, . . . , ι(g
)P form
a cycle around their common ridge R of one revolution. See Figure 9.2.2.
Therefore, the elements g1, . . . , g
 of G are distinct. Now the set [R◦] meets
just g1[P ], . . . , g
[P ] among the members of {g[P ] : g ∈ G}. Consequently

U = R◦ ∪


∪

i=1
ι(gi)S◦

i ∪


∪

i=1
ι(gi)P ◦

is an open neighborhood of x in X0 that is evenly covered by κ0 and the
sheets over U are the members of{

g
(
[R◦] ∪



∪

i=1
gi[S◦

i ] ∪


∪

i=1
gi[P ◦]

)
: g ∈ Ker(ι)

}
.

Thus κ0 is a covering projection.
(12) Now X0 is simply connected by a general position argument. Hence

κ0 : X̃0 → X0 is a homeomorphism. Observe that κ maps g[P ◦] onto P ◦

for all g in Ker(ι) and the members of {g[P ◦] : g ∈ Ker(ι)} are mutually
disjoint. Therefore Ker(ι) = {1}. Hence ι : G → Γ is an isomorphism.
Thus (S; R) is a group presentation for Γ under the mapping S �→ gS .

Theorem 11.2.2 gives a group presentation (S; R) for the group Γ gen-
erated by a proper side-pairing Φ of P . The presentation (S; R) can be
simplified by eliminating each side-pairing relation SS′ = 1 and exactly
one of the generators S or S′ when S′ �= S. The case S′ = S occurs only
when P has one side. If S′ is eliminated, then each occurrence of S′ in
a cycle relation is replaced by S−1. Moreover, each cycle of sides {Si}


i=1
determines 2
 cycles of sides by taking cyclic permutations of {Si}


i=1 and
their inverse orderings. The corresponding cycle transformations are all
conjugate to each other or their inverses. Therefore, any one of the cor-
responding cycle relations is derivable from any one of the others. Hence,
all but one of them can be eliminated from a presentation for Γ. Thus if
|S| > 1, the presentation (S; R) can be simplified to a presentation with
half the generators and one relation for each cycle of ridges of P .

Example 2. Consider the ideal quadrilateral P in U2 in Figure 9.8.6.
Label the sides of P left to right by S, T, T ′, S′. Let M be the hyperbolic
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surface obtained by gluing the sides of P by the side-pairing Φ described
in Example 2 of §9.8. Then M is a thrice-punctured sphere. Therefore M
has three cusp points. It is clear that links for the cusp points of P can be
chosen so that Φ pairs their endpoints. Hence M is complete. By Theorem
11.2.2, the group Γ generated by Φ has the presentation

(S, S′, T, T ′; SS′, TT ′).
We eliminate the generators S′ and T ′ and the side-pairing relations to
obtain the presentation (S, T ) for Γ. Thus Γ is a free group of rank two
generated by gS and gT .

Example 3. Consider the regular octagon P in B2 in Figure 9.2.3. Let
M be the hyperbolic surface obtained by gluing the sides of P by the side-
pairing Φ described in Example 4 of §9.2. Then M is a closed orientable
surface of genus two. Observe that P has one cycle of vertices and therefore
essentially one cycle of sides

{S1, T1, S
′
1, T

′
1, S2, T2, S

′
2, T

′
2}.

Hence, the group Γ generated by Φ has the presentation
(S1, T1, S2, T2; S1T1S

−1
1 T−1

1 S2T2S
−1
2 T−1

2 ).

Example 4. Consider a regular ideal octahedron P in B3 with the gluing
pattern for the Whitehead link complement in Figure 10.3.12. Then P has
three cycles of edges and therefore essentially three cycles of sides

{A, D′, C, B′}, {B,C,D′, C ′}, {A, B, A′, D′}.

Therefore, the Whitehead link group has the presentation
(A, B, C, D; AD−1CB−1, BCD−1C−1, ABA−1D−1).

Exercise 11.2

1. Show that Theorem 11.2.2 does not hold for X = S1 but does hold for
X = E1 or H1.

2. Given a proper I(X)-side-pairing for an n-dimensional convex polyhedron P
in X, prove that S′ = S if and only if P is a closed hemisphere of Sn and
gS is the antipodal map of Sn.

3. Show that the exceptional case k > 2 in part (3) of the proof of Theorem
11.2.2 actually occurs.

4. Use the gluing pattern for the 3-torus M in Example 1 of §10.1 to find a
presentation for π1(M) using Theorem 11.2.2.

5. Use the gluing pattern for the Poincaré dodecahedral space M in Figure
10.1.1 to find a presentation for π1(M) using Theorem 11.2.2.

6. Use the gluing pattern for the Seifert-Weber dodecahedral space M in Figure
10.1.2 to find a presentation for π1(M) using Theorem 11.2.2.

7. Use the gluing pattern for the figure-eight knot complement M in Figure
10.3.2 to find a presentation for π1(M) using Theorem 11.2.2.
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§11.3. The Gauss-Bonnet Theorem

Let ∆ be either an n-simplex in X = Sn, En or a generalized n-simplex
in Hn. The normalized solid angle subtended by ∆ is constant along the
interior of a face of ∆. If F is a face of ∆, let ω̂(∆, F ) be the normalized
solid angle subtended by ∆ at any point in F ◦. For each k = 0, 1, . . . , n,
define

wk(∆) =
∑

{ω̂(∆, F ) : F is a k-face of ∆}. (11.3.1)

The normalized solid angle sum of ∆ is defined to be

W (∆) =
n∑

k=0

(−1)kwk(∆). (11.3.2)

The normalized volume of ∆ is defined to be

V (∆) = Vol(∆)/Vol(Sn). (11.3.3)

Lemma 1. If ∆ is an n-simplex in Sn, then

W (∆) =
{

2V (∆) if n is even,
0 if n is odd.

Proof: Let Hi for i = 1, . . . , n + 1 be the closed hemispheres of Sn that
bound and contain ∆. By the principle of inclusion and exclusion, we have

Vol
(

n+1
∪

i=1
Hi

)
=

n+1∑
k=1

(−1)k−1
∑

i1,...,ik

Vol
(

k
∩

j=1
Hij

)
.

Now we have
Sn −

(
n+1
∪

i=1
Hi

)
=

n+1
∩

i=1
Sn − Hi = −∆◦.

Therefore

Vol(Sn) − Vol(∆) =
n+1∑
k=1

(−1)k−1
∑

i1,...,ik

Vol
(

k
∩

j=1
Hij

)
.

Dividing by Vol(Sn) gives

wn(∆) − V (∆) =
n∑

k=1

(−1)k−1wn−k(∆) + (−1)nV (∆).

Therefore

V (∆) + (−1)nV (∆) =
n∑

k=0

(−1)kwn−k(∆).

Multiplying by (−1)n gives

V (∆) + (−1)nV (∆) =
n∑

k=0

(−1)kwk(∆) = W (∆).
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Theorem 11.3.1. Let ∆ be an n-simplex in X = Sn, En, or Hn, and let
κ be the sectional curvature of X. Then

W (∆) =
{

κ
n
2 2V (∆) if n is even,

0 if n is odd.

Proof: The normalized solid angle sum W (∆) is invariant under change
of scale. Let r > 0. If ∆ is an n-simplex in the sphere rSn, then we have
Vol(rSn) = rnVol(Sn) and the sectional curvature of rSn is κ = 1/r2.
Hence by Lemma 1, we have

W (∆) =
{

κ
n
2 2Vol(∆)/Vol(Sn), if n is even,

0 if n is odd.

We will prove that the above formula also holds for κ = 0 and κ = −1 by
an analytical continuation argument in the variable κ.

Let r > 0. Consider the change of scale φ : Rn+1 → Rn+1 defined by
φ(x) = rx. Let rHn = φ(Hn). Then

rHn = {x ∈ Rn,1 : ‖x‖2 = −r2 and xn+1 > 0}.

Define a metric on rHn so that φ : Hn → rHn is a similarity with scale
factor r. Then the element of arc length ds of rHn is given by

ds2 = dx2
1 + · · · + dx2

n − dx2
n+1.

Consider the linear change of variables ψ : Rn+1 → Rn+1 defined by
y = ψ(x) = (x, xn+1/r) where x = (x1, . . . , xn). Then we have

|y|2 − r2yn+1 = |x|2 − x2
n+1 = ‖x‖2.

Hence we have

ψ(rHn) = {y ∈ Rn+1 : |y|2 − r2y2
n+1 = −r2 and yn+1 > 0}.

Likewise, we have

ψ(rSn
+) = {y ∈ Rn+1 : |y|2 + r2y2

n+1 = r2 and yn+1 > 0}.

Let κ = 1/r2 in the spherical case, and let κ = −1/r2 in the hyperbolic
case, and define

Xκ = {y ∈ Rn+1 : κ|y|2 + y2
n+1 = 1 and yn+1 > 0}.

If κ > 0, then Xκ = ψ(rSn
+) = Sn

κ , if κ = 0, then Xκ = P (en+1, 1),
and if κ < 0, then Xκ = ψ(rHn) = Hn

κ . Define a metric on Xκ so that
ψ : rSn

+ → Sn
κ and ψ : rHn → Hn

κ are isometries, and X0 has the Euclidean
metric. Then the element of arc length ds of Xκ, for κ �= 0, is given by

ds2 = dy2
1 + · · · + dy2

n + 1
κdy2

n+1.

We now pass to the projective model of Xκ. If κ ≥ 0, define Dn
κ = Rn

and if κ < 0, define

Dn
κ = {x ∈ Rn : |x|2 < 1/|κ|}.
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Define µ : Xκ → Dn
κ by µ(y) = y/yn+1. Then µ is a bijection with inverse

ν(x) =
(x, 1)√
1 + κ|x|2

.

By a calculation similar to the proof of Theorem 6.1.5, we find that the
element of arc length ds of Dn

κ is given by

ds2 =
n∑

i=1

dy2
i + 1

κdy2
n+1 =

(1 + κ|x|2)|dx|2 − κ(x · dx)2

(1 + κ|x|2)2 .

Observe that the right-hand side varies smoothly in κ through 0. When
κ = −1, we have the arc length element of Dn given by Theorem 6.1.5.
When κ = 0, we have the arc length element |dx| of En, and when κ = 1,
we have the arc length element on Rn obtained by pulling back |dy| by the
gnomonic projection ν : Rn → Sn

+. The above equation for ds2 defines a
Riemannian metric on Dn

κ so that µ : Xκ → Dn
κ is an isometry. Given a

Riemannian metric

ds2 =
n∑

i,j=1

gijdxidxj ,

the volume element is
√

det(gij)dx1 · · · dxn. It is an exercise to compute
the determinant of (gij) and show that the volume element of Dn

κ is
dx1 · · · dxn

(1 + κ|x|2)n+1
2

.

Let ∆ be an n-simplex in Hn. Let R = max{|x| : x ∈ µ(∆)}. Then
R < 1, since ∆ is bounded. Let K be the cone of rays from the origin
through ∆ in Rn+1. Define ∆κ = K ∩ Xκ for each κ > −1/R2. Then ∆κ

is an n-simplex in Xκ. Observe that µ(∆κ) = µ(∆) for each κ. Hence

Vol(∆κ) =
∫

µ(∆)

dx1 · · · dxn

(1 + κ|x|2)n+1
2

.

We claim that Vol(∆κ) is an analytic function of κ in an open neighborhood
of the interval [−1, 1].

Let p = −(n + 1)/2, and for each nonnegative integer q, define(
p

q

)
=

p(p − 1) · · · (p − q + 1)
q!

.

Then the binomial series expansion

(1 + κ|x|2)p =
∞∑

q=0

(
p

q

)
(κ|x|2)q

converges absolutely for |κ||x|2 < 1. Observe that∣∣∣∣∣
∫

µ(∆)

(
p

q

)
|x|2qdx

∣∣∣∣∣ ≤
∫

µ(∆)

∣∣∣∣(p

q

)∣∣∣∣ |x|2qdx

≤
∫

µ(∆)

∣∣∣∣(p

q

)∣∣∣∣R2qdx =
∣∣∣∣(p

q

)∣∣∣∣R2q VolE(µ(∆)).
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Define

aq =
∣∣∣∣(p

q

)∣∣∣∣R2q VolE(µ(∆)).

Then we have
aq+1

aq
=

|p − q|
q + 1

R2 =
q − p

q + 1
R2.

Hence aq+1/aq → R2 as q → ∞. Therefore the power series
∞∑

q=0

(
p

q

)∫
µ(∆)

|x|2q dx κq

converges absolutely for |κ| < 1/R2. By Lebesgue’s dominated convergence
theorem, the power series expansion

Vol(∆κ) =
∫

µ(∆)
(1 + κ|x|2)p dx

=
∫

µ(∆)

∞∑
q=0

(
p

q

)
(κ|x|2)q dx

=
∞∑

q=0

(
p

q

)∫
µ(∆)

|x|2q dx κq

is valid for |κ| < 1/R2. Therefore Vol(∆κ) is an analytic function of κ in
the open neighborhood (−1/R2, 1/R2) of [−1, 1].

Let S and T be sides of ∆, and let U and V be the time-like n-
dimensional subspaces of Rn,1 such that S = U ∩ ∆ and T = V ∩ ∆.
Let Sκ = U ∩ ∆κ and Tκ = V ∩ ∆κ for each κ. Then Sκ and Tκ are sides
of ∆κ for each κ. We claim that the dihedral angle θκ = θ(Sκ, Tκ) of ∆κ

is an analytic function of κ in an open neighborhood of [−1, 1]. The angle
θκ can be measured using the inner product 〈 , 〉κ on Rn+1 defined by

〈x, y〉κ = x · y + 1
κxn+1yn+1.

Let u, v be the Lorentz unit inward normal vectors to U, V , respectively.
Let uκ = (u, −κun+1) and vκ = (v,−κvn+1). If x is in Sκ, then we have
〈uκ, x〉κ = u ◦ x = 0 and if y is in Tκ, then 〈vκ, y〉κ = v ◦ y = 0. Hence uκ

and vκ are inward normal vectors to Sκ and Tκ, respectively. Now we have

cos(π − θκ) =
〈uκ, vκ〉κ√

〈uκ, uκ〉κ

√
〈vκ, vκ〉κ

.

Hence we have

cos θκ = − u · v + κun+1vn+1√
|u|2 + κu2

n+1

√
|v|2 + κv2

n+1

.

As u and v are space-like, we have |un+1| < |u| and |vn+1| < |v|. Let

m = min{|u|2/u2
n+1, |v|2/v2

n+1}.
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Then θκ is an analytic function of κ in the open neighborhood (−m, m) of
[−1, 1].

We next show that wi(∆κ) is an analytic function of κ in an open neigh-
borhood of [−1, 1] for each i = 0, 1, . . . , n. This is clear if i = n−1, n, since
wn(∆κ) = 1 and wn−1(∆κ) = (n + 1)/2. Let x be a vertex of ∆κ and let
rκ > 0 be such that rκ is less than the distance from x to the opposite side
of ∆κ for each κ. Then

ω̂(∆κ, x) =
Voln(∆κ ∩ B(x, rκ))

Voln(B(x, rκ))
=

Voln−1(∆κ ∩ S(x, rκ))
Voln−1(S(x, rκ))

.

Now ∆κ ∩ S(x, rκ) is an (n − 1)-simplex in S(x, rκ) whose dihedral angles
are the dihedral angles of ∆κ between the sides that are incident to x by
Theorems 6.4.1, 6.5.1, 6.5.4, and Exercise 6.4.1(3). By Theorem 7.4.1, we
have that ω̂(∆κ, x) is an analytic function of the dihedral angles of ∆κ, and
so w0(∆κ) is an analytic function of κ in an open neighborhood of [−1, 1].

Now suppose 0 < i < n − 1. Let x be a point in the interior of an i-face
F of ∆κ. Let rκ > 0 be such that rκ is less than the distance from x to any
side of ∆κ not containing x. Then F ∩ S(x, rκ) is a great (i − 1)-sphere in
S(x, rκ) by Theorem 6.4.1 and Exercise 6.4.1(2). Let Σ(x, rκ) be the great
(n − 1 − i)-sphere of S(x, rκ) that is pointwise orthogonal to F ∩ S(x, rκ).
Then

ω̂(∆κ, F ) =
Voln(∆κ ∩ B(x, rκ))

Voln(B(x, rκ))
=

Voln−1−i(∆κ ∩ Σ(x, rκ))
Voln−1−i(Σ(x, rκ))

.

Now ∆κ∩Σ(x, rκ) is an (n−1−i)-simplex in Σ(x, rκ) whose dihedral angles
are the dihedral angles of ∆κ between the n−i sides of ∆κ that are incident
to x by Theorems 6.4.1, 6.5.1, 6.5.4, and Exercise 6.3.7. By Theorem 7.4.1,
we have that ω̂(∆κ, F ) is an analytic function of the dihedral angles of
∆κ, and so wi(∆κ) is an analytic function of κ in an open neighborhood
of [−1, 1]. It follows that W (∆κ) is analytic function of κ in an open
neighborhood of [−1, 1].

Assume that n is odd. Then W (∆κ) = 0 for all κ > 0. Hence we have
W (∆κ) = 0 for all κ in the interval [−1, 1]. Therefore W (∆) = 0. As any
Euclidean n-simplex is similar to an n-simplex of the form ∆0, we have
that W (∆) = 0 in the Euclidean case as well.

Now assume that n is even. Then for κ > 0, we have that

W (∆κ) = κ
n
2 2Vol(∆κ)/Vol(Sn).

Now both sides of the above equation are analytic functions of κ in an open
neighborhood of [−1, 1]. Therefore the above equation holds for all κ in
the interval [−1, 1]. Therefore W (∆) = (−1)

n
2 2V (∆) and W (∆0) = 0.

Definition: Let X = Sn, En or Hn, and let M = X/Γ be a space-form
with quotient map π : X → M . Let m be an integer with 0 ≤ m ≤ n. An
m-simplex in M is the bijective image under π of an m-simplex in X.
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Theorem 11.3.2. (Gauss-Bonnet theorem) If κ = 1, 0,−1 is the sectional
curvature of a closed spherical, Euclidean, or hyperbolic n-manifold M , with
n even, then

χ(M) = κ
n
2 2Vol(M)/Vol(Sn).

Proof: The manifold M is complete, since M is compact. By Theorem
8.5.9, we may assume that M is a space form X/Γ with Γ a discrete group
of isometries of X = Sn, En, Hn that acts freely on X. If X = Sn, then
M = Pn or Sn by Theorem 8.2.3, and so the theorem is true in this case.
Thus we many assume X = En or Hn.

Let P be an exact fundamental polyhedron for Γ. Then P is compact
by Theorem 6.6.9. Hence P is a convex polytope by Theorem 6.5.1. The
second barycentric subdivision of P induces a triangulation of M . Let
∆1, . . . ,∆m be the n-simplices of the triangulation of M .

If F is a j-simplex face of an n-simplex ∆i of the triangulation of M , then
the sum of the normalized solid angles ω̂(∆i, F ) over all the n-simplices
∆i that contain F is one. Let αj be the number of j-simplices in the
triangulation of M . By Theorem 11.3.1, we have that

κ
n
2 2Vol(M)/Vol(Sn) =

m∑
i=1

W (∆i)

=
m∑

i=1

n∑
j=0

(−1)jwj(∆i)

=
n∑

j=0

(−1)j
m∑

i=1

wj(∆i)

=
n∑

j=0

(−1)jαj = χ(M).

Corollary 1. If M is a closed hyperbolic n-manifold, with n even, and Pn

is elliptic n-space, then
Vol(M) = (−1)

n
2 χ(M)Vol(Pn).

Example 1. Let M be the Davis 120-cell space constructed in §11.1 by
gluing together the opposite sides of a regular hyperbolic 120 cell P . Then
M is a closed orientable hyperbolic 4-manifold. The polytope P has 600
vertices, 1200 edges, 720 ridges, and 120 sides. The vertices form one vertex
cycle, the edges are divided into cycles of 20, and the ridges are divided
into cycles of 5. Therefore, the side-pairing of P induces a cell complex
structure on M with one 0-cell, 60 1-cells, 144 2-cells, 60 3-cells, and one
4-cell. Hence

χ(M) = 1 − 60 + 144 − 60 + 1 = 26.

By Corollary 1,
Vol(M) = 26(4π2/3) = 104π2/3.
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Theorem 11.3.3. If M is a closed, orientable, hyperbolic n-manifold, then
χ(M) is even.

Proof: Without loss of generality, we may assume that M is connected
and oriented. Let βq = dim Hq(M ; Q) be the qth Betti number of M . Then
βq = βn−q for each q by Poincaré duality. If n is odd, we have that

χ(M) =
n∑

q=0

(−1)qβq = 0,

while if n is even, we have that

χ(M) =
n∑

q=0

(−1)qβq ≡ βn/2 mod 2.

Thus we may assume n is even, and it suffices to show that βn/2 is even.
Suppose that n/2 is odd. Then the cup product pairing determines a

nondegenerate skew-symmetric bilinear form on Hn/2(M ; Q). Hence βn/2
is even, since the determinant of an odd order skew-symmetric real matrix
is zero.

Now suppose n/2 is even. Then the cup product pairing determines a
nondegenerate symmetric bilinear form on Hn/2(M ; Q). Let b+ and b−
be the number of positive and negative entries of a diagonal matrix for
this form. Then the signature of M is defined to be sign(M) = b+ − b−.
Observe that

βn/2 = b+ + b− ≡ sign(M) mod 2.

By Hirzebruch’s signature theorem, sign(M) is a rational polynomial in
the Pontryagin numbers of M . By a theorem of Chern, all the Pontryagin
numbers of M are zero. Therefore sign(M) = 0, and so βn/2 is even.

We now turn our attention to generalizing the Gauss-Bonnet theorem
to include complete hyperbolic manifolds of finite volume.

Lemma 2. If ∆ is a generalized n-simplex in Hn, with n > 1, then

W (∆) =
{

(−1)
n
2 2V (∆) if n is even,

0 if n is odd.

Proof: Define ∆κ for κ > −1 as in the proof of Theorem 11.3.1. Then
∆κ is an n-simplex in Xκ for each κ, since ∆κ is bounded. Observe that
(1 + κ|x|2)−(n+1)/2 is a decreasing function of κ. Hence, by Lebesgue’s
monotone convergence theorem, we have

lim
κ→−1+

Vol(∆κ) = Vol(∆).

Let θκ be the dihedral angle of ∆κ corresponding to a dihedral angle θ of
∆. By the proof of Theorem 11.3.1, we have that limκ→−1+ θκ = θ and
therefore limκ→−1+ wi(∆κ) = wi(∆) for each i > 0.
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Let v be a generalized vertex of ∆ and let vκ be the corresponding vertex
of ∆κ. If v is an actual vertex, then we have limκ→−1+ ω̂(∆κ, vκ) = ω̂(∆, v).
Assume that v is an ideal vertex. Let rκ be half the distance from vκ to
the opposite side of ∆κ. Then

ω̂(∆κ, vκ) =
Vol(∆κ ∩ B(vκ, rκ))

Vol(B(vκ, rκ))
.

Now observe that

Vol(∆κ ∩ B(vκ, rκ)) ≤ Vol(∆κ) ≤ Vol(∆)

and Vol(B(vκ, rκ)) → ∞ as κ → −1. Therefore limκ→−1+ ω̂(∆κ, vκ) = 0,
and so limκ→−1+ w0(∆κ) = w0(∆). Hence we have

lim
κ→−1+

W (∆κ) = W (∆).

Assume that n is odd. Then W (∆κ) = 0 for all κ > −1 by Theorem
11.3.1. Hence W (∆) = 0. Now assume that n is even. By Theorem 11.3.1,
we have for κ > −1 that

W (∆κ) = κ
n
2 2Vol(∆κ)/Vol(Sn).

After taking the limit of both sides as κ approaches −1 from the right, we
have that W (∆) = (−1)

n
2 2V (∆).

Lemma 3. Let M be a complete hyperbolic n-manifold of finite volume
with n > 1. Suppose M is triangulated by a finite number of generalized
n-simplices ∆1, . . . ,∆m. For each q, let αq be the number of generalized
q-simplices that are a face of ∆i for some i. Then χ(M) =

∑n
q=0(−1)qαq.

Proof: This is standard if M is closed, so assume that M is open. Let
∆′

1, . . . ,∆
′
m be the generalized n-simplices obtained by cutting M apart

along the boundaries of ∆1, . . . ,∆m. Then M is obtained by gluing to-
gether ∆′

1, . . . ,∆
′
m by a proper side-pairing Φ. As M is complete, links

{L(b)} for the points in each cusp point [c] of M can be chosen so that
Φ restricts to an I(En−1)-side-pairing of {L(b)} by Theorems 11.1.4 and
11.1.6. The resulting link L[c] is a closed, connected, Euclidean (n − 1)-
manifold by Theorem 11.1.3. By Poincaré duality and the Gauss-Bonnet
theorem, χ(L[c]) = 0 for each cusp point [c] of M .

By Theorem 11.1.5, the link L[c] is the boundary of a closed neighbor-
hood of [c] that strongly deformation retracts to L[c] by the nearest point
retraction. See Lemma 1 of §7.1 and Figure 7.1.1. Therefore M strongly
deformation retracts to an n-manifold M with boundary whose compo-
nents are the links {L[c]} of the cusp points {[c]} of M . The manifold M
has a cell complex structure with n-cells ∆1, . . . ,∆m where ∆i is obtained
from ∆i by truncating along the links {L(b)} of the cusp points {b} of ∆i.
Using this cell complex structure to compute χ(M), we find that

χ(M) = χ(M) =
n∑

q=0

(−1)qαq + χ(∂M) =
n∑

q=0

(−1)qαq.
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Theorem 11.3.4. If M is a complete hyperbolic n-manifold of finite vol-
ume, with n even, and Pn is elliptic n-space, then

Vol(M) = (−1)
n
2 χ(M)Vol(Pn).

Proof: By Theorem 8.5.9, we may assume that M is a space form Hn/Γ
with Γ a discrete group of isometries of Hn that acts freely on Hn. Let
P be an exact fundamental polyhedron for Γ. Then P is finite-sided by
Theorems 12.2.12, 12.4.8, and 12.7.3. We pass to the projective disk model
Dn of hyperbolic n-space. The closure P of P in En is a convex polyhedron
in En by Theorem 6.4.8 and P is a generalized polytope in Dn by Theorem
6.4.7. The second barycentric subdivision of P induces a triangulation of
M into generalized n-simplices, ∆1, . . . ,∆m. Let αj be the number of
generalized j-simplices in the triangulation of M . By Lemmas 2 and 3 and
the same argument as in the proof of Theorem 11.3.2, we have

(−1)
n
2 2Vol(M)/Vol(Sn) =

m∑
i=1

W (∆i) =
n∑

j=0

(−1)jαj = χ(M).

Example 2. Let M be the hyperbolic 24-cell space constructed in §11.1
by gluing together pairs of sides of a regular hyperbolic ideal 24 cell P .
Then M is an open, complete, nonorientable, hyperbolic 4-manifold. The
ideal polytope P has 24 ideal vertices, 96 edges, 96 ridges, and 24 sides.
The edges are divided into cycles of 8, and the ridges are divided into cycles
of 4. Therefore, the side-pairing of P induces a generalized cell complex
structure on M with 12 1-cells, 24 2-cells, 12 3-cells, and one 4-cell. By the
same argument as in the proof of Lemma 3, we have

χ(M) = −12 + 24 − 12 + 1 = 1.

By the Gauss-Bonnet theorem, Vol(M) = 4π2/3, and M is a minimum
volume complete hyperbolic 4-manifold.

Exercise 11.3

1. Let κ be a real number and let x be a vector in Rn. Prove that

det
(
(1 + κ|x|2)I − κ(xixj)

)
= (1 + κ|x|2)n−1.

2. Let ∆ be either an n-simplex in Sn, En or a generalized n-simplex in Hn.
Prove the case n = 4 of the Schläfli-Peschl formula that for n even,

W (∆) = 2
n/2∑
i=0

22i+2 − 1
i + 1

B2i+2 w2i(∆)

where B2 = 1/6, B4 = −1/30, B6 = 1/42, . . . are Bernoulli numbers.
3. Let {θij}i<j be the set of dihedral angles of an ideal 4-simplex ∆ in H4.

Prove that
Vol(∆) =

4
3
π2 − π

3

∑
i<j

θij .
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§11.4. Simplices of Maximum Volume

An n-simplex ∆n in Bn is said to be regular if and only if every permutation
of the vertices of ∆n is induced by a Möbius transformation of Bn. In this
section, we prove that an n-simplex ∆n in Bn has maximum volume if and
only if ∆n is regular and ideal. As every simplex in Bn is contained in an
ideal simplex, it suffices to consider only ideal simplices.

In dimension one, B1 is the only ideal 1-simplex and B1 is regular and
of maximum length. Thus, we may assume that n ≥ 2. In dimension
two, all ideal triangles are congruent in B2, and so all ideal triangles are
regular and of maximum area. In dimension three, an ideal tetrahedron
has maximum volume if and only if it is regular by Theorem 10.4.11. Thus,
we are only concerned with dimensions n ≥ 4.

Lemma 1. The volume of an n-simplex ∆n in Dn is given by

Vol(∆n) =
∫

∆n

dx1 · · · dxn

(1 − |x|2)(n+1)/2 .

Proof: By Theorem 6.1.6, the element of hyperbolic volume of the pro-
jective disk model Dn is dx1 · · · dxn/(1 − |x|2)(n+1)/2.

Let ∆n be an ideal n-simplex in Un with vertices v0, . . . , vn. By replacing
∆n with a congruent n-simplex, we may assume that v0 = ∞. Since
v1, . . . , vn all lie on an (n − 2)-sphere in En−1 and the group S(En−1)
acts transitively on the set of all (n − 2)-spheres in En−1, we may assume,
without loss of generality, that v1, . . . , vn are in Sn−2. Then the side of
∆n, spanned by v1, . . . , vn, lies in the northern hemisphere of Sn−1. Let
ν : Un → En−1 be the vertical projection. Since all the sides of ∆n

incident with ∞ are vertical, ν(∆n) is a Euclidean (n − 1)-simplex with
deleted vertices. Therefore ν(∆n) is an ideal (n − 1)-simplex in Dn−1. We
shall use this fact to set up an induction on the dimension n.

Lemma 2. The volume of an ideal n-simplex ∆n in Un, with vertices
v0, . . . , vn such that v0 = ∞ and v1, . . . , vn are in Sn−2, is given by

Vol(∆n) =
1

n − 1

∫
ν(∆n)

dx1 · · · dxn−1

(1 − |x|2)(n−1)/2 .

Proof: By Theorem 4.6.7, the element of hyperbolic volume of the upper
half-space model Un is dx1 · · · dxn/(xn)n. Therefore, we have

Vol(∆n) =
∫

∆n

dx1 · · · dxn

(xn)n

=
∫

ν(∆n)

(∫ ∞

(1−|ν(x)|2) 1
2

dxn

(xn)n

)
dx1 · · · dxn−1

=
1

n − 1

∫
ν(∆n)

dx1 · · · dxn−1

(1 − |ν(x)|2)(n−1)/2 .
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Lemma 3. Let ∆n be an ideal n-simplex in Un, with vertices v0, . . . , vn

such that v0 = ∞ and v1, . . . , vn are in Sn−2, and let ν : Un → En−1 be the
vertical projection. Then ∆n is regular if and only if ν(∆n) is Euclidean
regular.

Proof: Suppose that ∆n is regular. To prove that ν(∆n) is Euclidean
regular, it suffices to show that the transposition of any two vertices v, w
of ν(∆n) is realized by a Euclidean isometry. Since ∆n is regular, there is
a Möbius transformation τ of Un such that τ transposes v and w and fixes
every other vertex of ∆n. As τ fixes ∞, we have that τ is the Poincaré
extension of a similarity of En−1. Moreover, since τ leaves invariant the
Euclidean line segment [v, w], we have that τ is a Euclidean isometry. Thus
ν(∆n) is Euclidean regular.

Conversely, suppose that ν(∆n) is Euclidean regular. To prove that ∆n

is regular, it suffices to prove that the transposition of any vertex u of
ν(∆n) and ∞ is realized by a Möbius transformation of Un. Since ν(∆n)
is Euclidean regular, every vertex v �= u of ν(∆n) is the same Euclidean
distance r from u. Let σ be the reflection of En in the sphere S(u, r). Then
σ(u) = ∞, σ(∞) = u, and σ fixes all the other vertices of ∆n. Thus ∆n is
regular.

Lemma 4. Let ∆n
∗ be a regular Euclidean n-simplex inscribed in Sn−1 and

let F : Dn → En be the vector field defined by

F (x) =
x

(1 − |x|2)(n−1)/2 .

Then the following divergence formula holds:∫
∆n∗

(divF )dV =
∫

∂∆n∗

(F · n̂)dS,

where n̂ is the outward normal to the boundary of ∆n
∗ .

Proof: We first calculate the divergence of F . Observe that

divF (x) =
n∑

i=1

∂

∂xi

(
xi

(1 − |x|2)(n−1)/2

)

=
n∑

i=1

(
1

(1 − |x|2)(n−1)/2 +
(n − 1)x2

i

(1 − |x|2)(n+1)/2

)
=

n

(1 − |x|2)(n−1)/2 +
(n − 1)|x|2

(1 − |x|2)(n+1)/2

=
1

(1 − |x|2)(n−1)/2 +
(n − 1)

(1 − |x|2)(n+1)/2 .

By Theorem 6.4.8, the set ∆n
∗ has finite volume in Dn. Therefore, by

Lemma 1, the integral of (1 − |x|2)−(n+1)/2 over ∆n
∗ is finite.
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Next, observe that

0 ≤ 1
(1 − |x|2)(n−1)/2 ≤ 1

(1 − |x|2)(n+1)/2 .

Therefore, the integral of (1 − |x|2)−(n−1)/2 over ∆n
∗ is finite. Hence, the

integral of divF over ∆n
∗ is finite.

Now ∂∆n
∗ consists of n + 1 regular Euclidean (n − 1)-simplices ∂i∆n

∗ for
i = 0, 1, . . . , n. Let vi be the vertex of ∆n

∗ opposite the side ∂i∆n
∗ . Since

0 is the centroid of ∆n
∗ , we have that

∑n
i=0 vi = 0. Hence, for each j, we

have that
n∑

i=0

vi · vj = 0.

As vi · vj , for i �= j, is independent of i and j, we have

1 + nvi · vj = 0

and so for all i �= j, we have

vi · vj = −1/n.

Let x be any point of ∂i∆n
∗ . Then there are coefficients t0, . . . , tn in the

interval [0, 1] such that

x =
n∑

j=0

tjvj ,

n∑
j=0

tj = 1, and ti = 0.

Hence

x · n̂ = x · (−vi) = −
n∑

j=0

tjvj · vi = −vj · vi = 1/n.

Let ai and rn be the center and radius of the circumscribed (n − 2)-sphere
for ∂i∆n

∗ . Then ai is a scalar multiple of vi. As ai · −vi = 1/n, we have
that ai = −vi/n. Now 0, ai, and any vertex vj �= vi form a right triangle
with the right angle at ai. Therefore

|ai|2 + r2
n = 1.

Hence, we have
rn = (1 − 1/n2)

1
2 .

Let x be any point of ∂i∆n
∗ . Then 0, x, and ai form a right triangle with

the right angle at ai. Therefore

|ai|2 + |x − ai|2 = |x|2.
Hence, we have

1 − |x|2 = r2
n − |x − ai|2.

Therefore ∫
∂∆n∗

(F · n̂)dS =
n + 1

n

∫
∂n∆n∗

dS

(r2
n − |x − an|2)(n−1)/2 .
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Now ∂n∆n
∗ is congruent to rn∆n−1

∗ . Hence, this integral transforms into
n + 1

n

∫
∆n−1

∗

dx1 · · · dxn−1

(1 − |x|2)(n−1)/2 .

Moreover, this integral is finite by Lemma 2. Thus, both integrals in the
desired divergence formula are finite.

For each i = 0, 1, . . . , n and real number r such that 1/2 < r < 1, let
∆n−1

i (r) be the (n − 1)-simplex obtained by intersecting ∆n
∗ with the hy-

perplane normal to vi and passing through the point rvi. Then ∆n−1
i (r)

is a regular Euclidean (n − 1)-simplex for each i. Let ∆n
∗ (r) be the poly-

hedron obtained from ∆n
∗ by truncating ∆n

∗ along the (n − 1)-simplices
∆n−1

0 (r), . . . ,∆n−1
n (r). Then by the divergence theorem, we have∫

∆n∗ (r)
(divF )dV =

∫
∂∆n∗ (r)

(F · n̂)dS.

Taking the limit as r → 1 gives the formula∫
∆n∗

(divF )dV =
∫

∂∆n∗

(F · n̂)dS + lim
r→1

(
n∑

i=0

∫
∆n−1

i
(r)

(F · n̂)dS

)
.

Thus, it remains only to show that the last term is zero.
The hyperplane spanned by ∆n−1

i (r) has the equation x · vi = r. Hence∫
∆n−1

i
(r)

(F · n̂)dS =
∫

∆n−1
i

(r)

rdS

(1 − |x|2)(n−1)/2 .

Let ∆n
i (r) be the n-simplex spanned by ∆n−1

i (r) and vi. Then ∆n
i (r) is

a regular Euclidean n-simplex. Let s be the Euclidean distance from the
centroid ci of ∆n

i (r) to vi. Since the Euclidean distance from ci to the side
∆n−1

i (r) of ∆n
i (r) is s/n, we have

r + (s/n) + s = 1.

Hence, we have
s = (1 − r)/(1 + 1/n).

Let sn be the radius of the circumscribed (n−2)-sphere for ∆n−1
i (r). Then

sn = s(1 − 1/n2)
1
2 = (1 − r)

(
1 − 1/n

1 + 1/n

) 1
2

.

Observe that for each x in ∆n−1
i (r), we have

|x|2 ≤ r2 + s2
n

= r2 + (1 − r)2
(

n − 1
n + 1

)
≤ r2 + (1 − r)2

= 1 − 2r + 2r2

= 1 + 2r(r − 1)
≤ 1 + (r − 1) = r.
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Then we have∫
∆n−1

i
(r)

rdS

(1 − |x|2)(n−1)/2 ≤
∫

∆n−1
i

(v)

dS

(1 − r)(n−1)/2

=
Vol(∆n−1

i (r))
(1 − r)(n−1)/2 .

Now
Vol(∆n−1

i (r)) = sn−1Vol(∆n−1
∗ ) = kn(1 − r)n−1

for some constant kn depending only on n. Therefore∫
∆n−1

i
(v)

rdS

(1 − |x|2)(n−1)/2 ≤ kn(1 − r)(n−1)/2.

Taking the limit as r → 1, we deduce that

lim
r→1

∫
∆n−1

i
(r)

rdS

(1 − |x|2)(n−1)/2 = 0.

Lemma 5. If ∆n
∗ is a Euclidean regular ideal n-simplex in Dn, then

Vol(∆n
∗ ) =

n

n − 1

∫
∆n∗

dx1 · · · dxn

(1 − |x|2)(n−1)/2 .

Proof: By Lemma 4, we have∫
∆n∗

dx1 · · · dxn

(1 − |x|2)(n−1)/2 + (n − 1)
∫

∆n∗

dx1 · · · dxn

(1 − |x|2)(n+1)/2

=
n + 1

n

∫
∆n−1

∗

dx1 · · · dxn−1

(1 − |x|2)(n−1)/2 .

By Lemmas 1-3, we have∫
∆n∗

dx1 · · · dxn

(1 − |x|2)(n−1)/2 + (n − 1)Vol(∆n
∗ ) =

(n + 1)(n − 1)
n

Vol(∆n
∗ ).

Hence
1

(n − 1)

∫
∆n∗

dx1 · · · dxn

(1 − |x|2)(n−1)/2 =
1
n

Vol(∆n
∗ ).

Lemma 6. If ∆n
∗ is a Euclidean regular ideal n-simplex in Dn, then

1
n

− 1
n2 ≤ Vol(∆n+1

∗ )
Vol(∆n∗ )

≤ 1
n

.

Proof: By Lemmas 1, 2, and 5, we have the formulas∫
∆n∗

dx1 · · · dxn

(1 − |x|2)(n+1)/2 = Vol(∆n
∗ ),∫

∆n∗

dx1 · · · dxn

(1 − |x|2)n/2 = nVol(∆n+1
∗ ),∫

∆n∗

dx1 · · · dxn

(1 − |x|2)(n−1)/2 =
n − 1

n
Vol(∆n

∗ ).
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Hence
n − 1

n
Vol(∆n

∗ ) ≤ nVol(∆n+1
∗ ) ≤ Vol(∆n

∗ ).

Lemma 7. Let f : (0, 1] → R be a continuous concave function, let c be
the centroid of a Euclidean n-simplex ∆n inscribed in Sn−1, and let ∆n

∗ be
a regular Euclidean n-simplex inscribed in Sn−1. Then∫

∆n

f(1 − |x|2)dV ≤ VolE(∆n)
VolE(∆n∗ )

∫
∆n∗

f
(
(1 − |c|2)(1 − |x|2)

)
dV

whenever both integrals are finite. Moreover, if f is strictly concave, then
equality holds if and only if ∆n is regular.

Proof: Let v0, . . . , vn be the vertices of ∆n. Then

∆n =
{ n∑

i=0

tivi : ti ≥ 0 and
n∑

i=0

ti = 1
}

.

Let ∆n be the n-simplex in En+1 given by

∆n =
{
(t0, . . . , tn) : ti ≥ 0 and

n∑
i=0

ti = 1
}
.

Let P be the hyperplane of En+1 spanned by ∆n and let α : P → En be
the affine bijection defined by

α(t0, . . . , tn) =
n∑

i=0

tivi.

Upon changing variables by α, we have∫
∆n

dV =
∫

∆n

| det α′|dS.

Therefore, we have

| det α′| =
VolE(∆n)
VolE(∆n)

.

Upon changing variables by α, we have∫
∆n

f(1 − |x|2)dV =
∫

∆n

f
(
1 −
∣∣ n∑
i=0

tivi

∣∣2)| det α′|dS

=
VolE(∆n)
VolE(∆n)

∫
∆n

f
(
1 −
∣∣ n∑
i=0

tivi

∣∣2)dS.

Let σ be a permutation of the set {0, . . . , n}. As the Lebesgue measure
S on P is invariant under the transformation ti �→ tσ(i), we have∫

∆n

f
(
1 −
∣∣ n∑
i=0

tivi

∣∣2)dS =
∫

∆n

f
(
1 −
∣∣ n∑
i=0

tσ(i)vi

∣∣2)dS.
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Hence
VolE(∆n)
VolE(∆n)

∫
∆n

f(1 − |x|2)dV

=
1

(n + 1)!

∑
σ

∫
∆n

f
(
1 −
∣∣ n∑
i=0

tσ(i)vi

∣∣2)dS

=
∫

∆n

1
(n + 1)!

∑
σ

f
(
1 −
∣∣ n∑
i=0

tσ(i)vi

∣∣2)dS

≤
∫

∆n

f

(
1

(n + 1)!

∑
σ

(
1 −
∣∣ n∑
i=0

tσ(i)vi

∣∣2))dS.

Now ∣∣∣ n∑
i=0

tσ(i)vi

∣∣∣2 =
∑
i
=j

tσ(i)tσ(j)vi · vj +
n∑

i=0

t2i .

Moreover
1

(n + 1)!

∑
σ

∑
i
=j

tσ(i)tσ(j)vi · vj

=
∑
i
=j

(
1

(n + 1)!

∑
σ

tσ(i)tσ(j)

)
vi · vj

=
∑
i
=j

(
1

n(n + 1)

∑
k 
=


tkt


)
vi · vj

=
1

n(n + 1)

(
1 −

n∑
i=0

t2i

)∑
i
=j

vi · vj

=
1

n(n + 1)

(
1 −

n∑
i=0

t2i

)[
(n + 1)2|c|2 − (n + 1)

]
=

1
n

(
1 −

n∑
i=0

t2i

)(
(n + 1)|c|2 − 1

)
.

Hence
1

(n + 1)!

∑
σ

(
1 −
∣∣ n∑
i=0

tσ(i)vi

∣∣2)
= 1 − 1

(n + 1)!

∑
σ

∣∣ n∑
i=0

tσ(i)vi

∣∣2
=
(
1 −

n∑
i=0

t2i

)
+

1
n

(
1 −

n∑
i=0

t2i

)(
1 + (n + 1)|c|2

)
=
(
1 −

n∑
i=0

t2i

)(n + 1
n

)(
1 − |c|2

)
.
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Therefore

VolE(∆n)
VolE(∆n)

∫
∆n

f(1 − |x|2)dV ≤
∫

∆n

f
((n + 1

n

)(
1 − |c|2

)(
1 −

n∑
i=0

t2i

))
dS

with equality if ∆n is regular.
We now apply this last equality to g(t) = f((1 − |c|2)t) and ∆n

∗ . Then
we have

VolE(∆n)
VolE(∆n∗ )

∫
∆n∗

f
(
(1 − |c|2)(1 − |x|2)

)
dV

=
∫

∆n

f
((

1 − |c|2
)(n + 1

n

)(
1 −

n∑
i=0

t2i

))
dS.

Therefore, we have∫
∆n

f(1 − |x|2)dV ≤ VolE(∆n)
VolE(∆n∗ )

∫
∆n∗

f
(
(1 − |c|2)(1 − |x|2)

)
dV.

Now assume that we have equality and f is strictly concave. Then

1
(n + 1)!

∑
σ

f
(
1 −
∣∣ n∑
i=0

tσ(i)vi

∣∣2) = f

(
1

(n + 1)!

∑
σ

(
1 −
∣∣ n∑
i=0

tσ(i)vi

∣∣2))
for all (t0, . . . , tn) in ∆n. Therefore∣∣∣∣∣

n∑
i=0

tσ(i)vi

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=0

tivi

∣∣∣∣∣
for all (t0, . . . , tn) in ∆n and all σ. Let t0 = t1 = 1/2 and ti = 0 for i > 1.
Then we find that

|v0 + v1| = |vi + vj | for all i �= j.

Hence, we have
v0 · v1 = vi · vj for all i �= j.

Therefore, we have

|v0 − v1| = |vi − vj | for all i �= j.

Consequently ∆n is regular.

Theorem 11.4.1. An n-simplex ∆n in Bn has maximal volume if and
only if it is regular and ideal.

Proof: The proof is by induction on n. The theorem is true for n = 1, 2, 3,
so assume that n ≥ 3 and the theorem is true in dimension n. Now consider
∆n+1. We may assume that ∆n+1 is ideal. We pass to the upper half-space
model Un+1 and position ∆n+1 as in Lemma 2. Let ∆n = ν(∆n+1).

Let ∆n
∗ be a regular ideal n-simplex in Dn and let

kn = nVol(∆n+1
∗ )/Vol(∆n

∗ ).



540 11. Hyperbolic n-Manifolds

Define f : (0, 1] → R by

f(t) = t−n/2 − knt−(n+1)/2.

Then

f ′′(t) =
(n

2

)(n + 2
2

)
t−(n+4)/2 − kn

(
n + 1

2

)(
n + 3

2

)
t−(n+5)/2.

Hence

f ′′(t) < 0 if and only if t <
kn(n + 1)(n + 3)

n(n + 2)
.

Therefore, if 1 < kn(n+1)(n+3)
n(n+2) or equivalently kn > n(n+2)

(n+1)(n+3) , then f is
strictly concave. By Lemma 6, we have

kn ≥ (n − 1)/n.

Now observe that
(n − 1)

n
≥ n(n + 2)

(n + 1)(n + 3)

if and only if n2 − n > 3, which is the case, since n ≥ 3. Thus f is strictly
concave.

For ease of notation, set


n =
VolE(∆n)
VolE(∆n∗ )

.

We now apply Lemma 7 to f and ∆n. By Lemmas 1 and 2, we have

nVol(∆n+1) − knVol(∆n)

=
∫

∆n

f(1 − |x|2)dV

≤ 
n

∫
∆n∗

f
(
(1 − |c|2)(1 − |x|2)

)
dV

= 
n(1 − |c|2)−n/2nVol(∆n+1
∗ ) − 
nkn(1 − |c|2)−(n+1)/2Vol(∆n

∗ )
= 
n(1 − |c|2)−n/2[nVol(∆n+1

∗ ) − kn(1 − |c|2)−1/2Vol(∆n
∗ )
]

≤ 
n(1 − |c|2)−n/2[nVol(∆n+1
∗ ) − knVol(∆n

∗ )
]

= 0.

By the induction hypothesis, we have

Vol(∆n) ≤ Vol(∆n
∗ )

and so

nVol(∆n+1) ≤ knVol(∆n) ≤ knVol(∆n
∗ ) = nVol(∆n+1

∗ ).

Thus Vol(∆n+1
∗ ) is maximal. If Vol(∆n+1) = Vol(∆n+1

∗ ), then we have by
Lemma 7 that ∆n is Euclidean regular and therefore ∆n+1 is regular by
Lemma 3.
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Theorem 11.4.2. The hyperbolic volume of a generalized n-simplex ∆n

in Dn is a continuous function of its vertices.

Proof: For each positive integer j, let ∆n
j be a generalized n-simplex in

Dn with vertices v0j , . . . , vnj such that (v0j , . . . , vnj) → (v0, . . . , vn) where
v0, . . . , vn are the vertices of a generalized n-simplex ∆n in Dn. We need
to prove that

lim
j→∞

Vol(∆n
j ) = Vol(∆n).

Assume first that ∆n
j is ideal for each j. Then ∆n is ideal. This part

of the proof is by induction on the dimension n. There is nothing to prove
in dimension one, since D1 is the only ideal 1-simplex in D1. In dimension
two, all ideal 2-simplices are congruent, and so the theorem is true in this
case. Assume that n > 2 and this part of the theorem is true in dimension
n − 1.

For each j, let Aj be the rotation of En that rotates v0j to v0 with no
other nonzero angles of rotation. As v0j → v0, we have that Aj → I in
O(n). Hence (Ajv0j , . . . , Ajvnj) → (v0, . . . , vn). As

Vol(Aj(∆n
j )) = Vol(∆n

j ),

we may replace ∆n
j by Aj(∆n

j ). Thus, we may assume, without loss of
generality, that v0j = v0 for all j.

We now pass to the upper half-space model Un of hyperbolic space and
assume, without loss of generality, that v0 = ∞ and v1, . . . , vn lie on Sn−2 in
En−1. For each j, the vertices v1j , . . . , vnj lie on an (n−2)-sphere S(aj , rj)
in En−1. Now as (v1j , . . . , vnj) → (v1, . . . , vn), we have that aj → 0 and
rj → 1. Let

φj = −r−1
j aj + r−1

j I.

Then φj maps S(aj , rj) onto Sn−2. Moreover φj → I in S(En−1). Hence
(φj(v1j), . . . , φj(vnj)) → (v1, . . . , vn). As

Vol(φj(∆n
j )) = Vol(∆n

j ),

we may replace ∆n
j by φj(∆n

j ). Thus, we may assume, without loss of
generality, that the vertices v1, . . . , vn lie on the sphere Sn−2 for all j. By
Lemma 2, we have

Vol(∆n) =
1

n − 1

∫
ν(∆n)

dx1 · · · dxn−1

(1 − |x|2)(n−1)/2 ,

where ν : Un → En−1 is the vertical projection.
For each j, let χj be the characteristic function of the set ν(∆n

j ) and
let χ be the characteristic function of ν(∆n). Then {χj} converges to χ
almost everywhere, and for each j, we have

χj(x)
(1 − |x|2)(n−1)/2 ≤ χj(x)

(1 − |x|2)n/2 .
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By the induction hypothesis, we have

lim
j→∞

∫
Dn−1

χj(x)dV

(1 − |x|2)n/2 =
∫

Dn−1

χ(x)dV

(1 − |x|2)n/2 < ∞.

By Lebesgue’s dominated convergence theorem, we deduce that

lim
j→∞

∫
Dn−1

χj(x)dV

(1 − |x|2)(n−1)/2 =
∫

Dn−1

χ(x)dV

(1 − |x|2)(n−1)/2 .

Therefore
lim

j→∞
Vol(∆n

j ) = Vol(∆n).

We now return to the general case. Without loss of generality, we may
assume that 0 is the centroid of ∆n. As the vertices of ∆n

j converge to the
vertices of ∆n, the centroid cj = (v0j + · · ·+vnj)/(n+1) of ∆n

j converges to
0. Let τj be the hyperbolic translation of Dn by −cj . Then τj → I in I(Dn).
Hence (τj(v0j), . . . , τj(vnj)) → (v0, . . . , vn). As Vol(τj(∆n

j )) = Vol(∆n
j ), we

may replace ∆n
j by τj(∆n

j ). Then 0 is in the interior of ∆n
j for each j. Let

∆̂n
j be the ideal n-simplex with vertices v̂0j , . . . , v̂nj , where v̂ij = vij/|vij |

for each j, and let ∆̂n be the ideal n-simplex with vertices v̂0, . . . , v̂n,
where v̂i = vi/|vi|. Then (v̂0j , . . . , v̂nj) → (v̂0, . . . , v̂n). Let χj , χ̂j , χ, χ̂ be
the characteristic functions for the sets ∆n

j , ∆̂n
j , ∆n, ∆̂n, respectively. Then

χj → χ and χ̂j → χ̂ almost everywhere. Now as ∆n
j ⊂ ∆̂n

j , we have that
χj ≤ χ̂j for each j. See Exercise 11.4.5. Let

dµ = dV/(1 − |x|2)(n+1)/2

be the element of hyperbolic volume of Dn. By the first case, we have

lim
j→∞

∫
Dn

χ̂jdµ =
∫

Dn

χ̂dµ < ∞.

By Lebesgue’s dominated convergence theorem, we deduce that

lim
j→∞

∫
Dn

χjdµ =
∫

Dn

χdµ.

Therefore, we have
lim

j→∞
Vol(∆n

j ) = Vol(∆n).

Exercise 11.4

1. Prove that the volume of a regular Euclidean n-simplex inscribed in Sn−1 is

(n + 1)
1
2

n!

(
1 +

1
n

)n/2

.

2. Let ∆n be a Euclidean n-simplex inscribed in Sn−1 and let ∆n
∗ be a regular

Euclidean n-simplex inscribed in Sn−1. Prove that

VolE(∆n) ≤ VolE(∆n
∗ )

with equality if and only if ∆n is regular.
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3. Prove that a regular ideal 4-simplex in B4 has volume

10π

3
arc sin

(1
3

)
− π2

3
= .26889 . . . .

4. Fill in the details in the proof of Lemma 7 that if i �= j, then∑
σ

tσ(i)tσ(j) = (n − 1)!
∑
k �=�

tkt�.

5. Let ∆ be a generalized n-simplex in Dn with vertices v0, . . . , vn. Suppose
0 is in the interior of ∆. Let v̂i = vi/|vi| for each i and let ∆̂ be the ideal
n-simplex with vertices v̂0, . . . , v̂n. Prove that ∆ ⊂ ∆̂.

§11.5. Differential Forms

In this section, we study differential forms on a hyperbolic space-form.
We begin by defining the differential structure on hyperbolic n-space Hn.
Suppose Hn is in Rn,1. Let p : Hn → Rn be the vertical projection defined
by p(x) = (x1, . . . , xn). Then p is a homeomorphism, and so p determines
a C∞ differential structure on Hn. Let ι : Hn → Rn+1 be the inclusion
map. The map ιp−1 : Rn → Rn+1 is C∞, since

p−1(y) = (y1, . . . , yn,
√

1 + |y|2). (11.5.1)
Hence a map φ : N → Hn is C∞ if and only if ιφ : N → Rn+1 is C∞.

A tangent vector to Hn at a point x of Hn is defined to be the derivative
at 0 of a differentiable curve γ : [−b, b] → Hn such that γ(0) = x. The
tangent space of Hn at x is the set of all tangent vectors to Hn at x. By
Exercise 3.2.9, we have

Tx(Hn) = {y ∈ Rn,1 : x ◦ y = 0}. (11.5.2)
Hence Tx(Hn) is an n-dimensional space-like vector subspace of Rn,1 for
each x in Hn. Therefore the Lorentzian inner product on Rn,1 restricts to
a positive definite inner product on Tx(Hn).

The tangent bundle of Hn is the set
T(Hn) = {(x, v) ∈ Hn × Rn,1 : v ∈ Tx(Hn)} (11.5.3)

with the subspace topology from Hn × Rn+1.
Given x in Hn, let τx be the hyperbolic translation of Hn that translates

en+1 to x along its axis. The Lorentzian matrix for τx is

Υx =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 + x2
1

1+xn+1

x1x2
1+xn+1

· · · x1xn

1+xn+1
x1

x2x1
1+xn+1

1 + x2
2

1+xn+1
· · · x2xn

1+xn+1
x2

...
...

...
...

xnx1
1+xn+1

xnx2
1+xn+1

· · · 1 + x2
n

1+xn+1
xn

x1 x2 · · · xn xn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Define a map Υ : Hn × Rn → T(Hn) by the formula

Υ(x, v) = (x,Υx(v, 0)). (11.5.4)

Then Υ is a homeomorphism. Define a C∞ differential structure on T(Hn)
so that Υ is a C∞ diffeomorphism. Then T(Hn) is a trivial C∞ vector
bundle over Hn with projection map (x, v) �→ x.

Let ι : T(Hn) → Hn × Rn+1 be the inclusion map. Then the map
ιΥ : Hn × Rn → Hn × Rn+1 is C∞. Hence ι is C∞.

Define a map
ρ : Hn × Rn+1 → T(Hn)

by the formula
ρ(x, v) = (x, v + (v ◦ x)x). (11.5.5)

Then ρ is a retraction. The map Υ−1ρ : Hn × Rn+1 → Hn × Rn is C∞.
Hence ρ is C∞.

Lemma 1. A function φ : N → T(Hn) is C∞ if and only if the function
ιφ : N → Hn × Rn+1 is C∞.

Proof: If φ is C∞, then ιφ is C∞. If ιφ is C∞, then φ = ριφ is C∞.

Let M = Hn/Γ be a space-form, and let π : Hn → M be the quotient
map. Then π is a covering projection by Theorem 8.1.3. As Γ acts on Hn

via C∞ diffeomorphisms, M has a C∞ differential structure so that π is a
C∞ local diffeomorphism.

The group Γ acts diagonally on T(Hn) on the left. The action is discon-
tinuous, since for each r > 0, there are only finitely many g in Γ such that
g(C(en+1, r) × Rn+1) meets C(en+1, r) × Rn+1. Moreover, Γ acts freely
on T(Hn), since Γ acts freely on Hn. Let q : T(Hn) → T(Hn)/Γ be the
quotient map. Then q is a covering projection, since given x in Hn and
r < 1

2dist(x,Γx−{x}). Then q((B(x, r)×Rn+1)∩T(Hn)) is evenly covered
by q. The orbit space T(Hn)/Γ is Hausdorff by the following lemma.

Lemma 2. If Γ is a discontinuous group of homeomorphisms of a locally
compact Hausdorff space X, then the orbit space X/Γ is Hausdorff.

Proof: Let x and y be points of X such that Γx and Γy are disjoint. As
X is locally compact and Hausdorff, there are open neighborhoods U and
V of x and y, respectively, such that U and V are compact and disjoint.
Now since {x} ∪ V is compact, only finitely many elements of Γx meet V .
Hence W = V − Γx is an open neighborhood of y.

Let O be an open neighborhood of y such that O ⊂ W . Then Γx and
ΓO are disjoint, since Γx and O are disjoint. Now since U ∪ O is compact,
at most finitely many Γ-images of O meet U . Hence N = U − ΓO is an
open neighborhood of x. Moreover ΓN and ΓO are disjoint, since N and
ΓO are disjoint. Therefore X/Γ is Hausdorff.
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Given a point u in M = Hn/Γ, a tangent vector of M at u is an orbit Γv
of a tangent vector v of Hn at x where π(x) = u. Set [v] = Γv. The tangent
space of M at u is the set Tu(M) of all tangent vectors [v] of M at u. If v
and w are in Tx(Hn) and c is in R, then the formulas [v] + [w] = [v + w],
c[v] = [cv], and [v] ◦ [w] = [v ◦ w] define a real n-dimensional vector space
structure on Tπ(x)(M) with a positive definite inner product.

Definition: The tangent bundle of M is the set

T(M) = {(u, [v]) : u ∈ M and [v] ∈ Tu(M)}. (11.5.6)

Given (x, v) in T(Hn), define η : T(Hn)/Γ → T(M) by the formula
η(Γ(x, v)) = (π(x), [v]). Then η is a bijection. Topologize T(M) so that η
is a homeomorphism. Define π∗ : T(Hn) → T(M) by

π∗(x, v) = (π(x), [v]). (11.5.7)

Then π∗ = ηq. Hence π∗ is a covering projection. As Γ acts on T(Hn) via
C∞ diffeomorphisms, T(M) has a C∞ differential structure so that π∗ is a
C∞ local diffeomorphism. Thus T(M) is a C∞ vector bundle over M with
projection map (u, [v]) �→ u.

Tangent Maps

Let k be a positive integer and let D be either a k-dimensional convex or
nonempty open subset of Rk. Let M be a C∞ differentiable n-manifold. A
map φ : D → M is said to be C∞ if for each x in D there is an rx > 0 such
that φ extends over B(x, rx) to a C∞ map φx. If φ : D → Rn is C∞ and
if x is in D − D◦, then the partial derivatives of φ at x are well defined to
be the corresponding partial derivatives of any C∞ extension φx of φ over
B(x, rx), since x is in D◦ and the partial derivatives are continuous at x.

The tangent space of D at a point x is Tx(D) = Rk and the tangent
bundle of D is T(D) = D × Rk. Let φ : D → Hn be a C∞ map and let

φ′(x) =
(

∂φi

∂xj
(x)
)

(11.5.8)

be the matrix of partial derivatives of φ at a point x of D. By the chain
rule, φ induces a linear transformation

Tx(φ) : Tx(D) → Tφ(x)(Hn)

defined by the formula
Tx(φ)(v) = φ′(x)v. (11.5.9)

Moreover φ induces a C∞ map

T(φ) : T(D) → T(Hn)

defined by
T(φ)(x, v) = (φ(x), Tx(φ)(v)). (11.5.10)
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Suppose M = Hn/Γ is a space-form with quotient map π : Hn → M .
Let φ : D → M be a C∞ map. Let x be a point of D and let rx > 0 such
that φ extends over B(x, rx) to a C∞ map φx. Then φx lifts to a C∞ map
φ̃x : B(x, rx) → Hn with respect to π. Define a linear transformation

Tx(φ) : Tx(D) → Tφ(x)(M)

by the formula
Tx(φ)(v) = [φ̃′

x(x)v]. (11.5.11)

The definition of Tx(φ) does not depend on the choice of the lift φ̃x of φx,
since (gφ̃x)′(x) = gφ̃′

x(x) for each g in Γ. The map φ induces a C∞ map
T(φ) : T(D) → T(M) defined by

T(φ)(x, v) = (φ(x), Tx(φ)(v)). (11.5.12)

Euclidean Differential Forms

Let k be a positive integer. Let Λk(Rn) be the real vector space of all
skew-symmetric k-linear functionals on Rn. The standard basis of Λk(Rn)
is the set of functionals

{ei1··· ik : 1 ≤ i1 < · · · < ik ≤ n}
where

ei1··· ik(v1, . . . , vk) = detAi1··· ik
(11.5.13)

and Ai1··· ik
is the k × k matrix formed from the i1, . . . , ik rows of the

n × k matrix A that has v1, . . . , vk as columns. Hence dim Λk(Rn) =
(
n
k

)
.

We take the coefficients with respect to the standard basis of Λk(Rn) as
coordinates for a C∞ differential structure on Λk(Rn).

Let D be either an n-dimensional convex or nonempty open subset of Rn.

Definition: A 0-form on D is a function f : D → R. If k is a positive
integer, a k-form on D is a function ω : D → Λk(Rn).

If 1 ≤ i1 < · · · < ik ≤ n, define a C∞ k-form dxi1 ∧ · · · ∧ dxik on D by

dxi1 ∧ · · · ∧ dxik(x) = ei1··· ik . (11.5.14)

If ω is a k-form on D, with k > 0, there are unique functions fi1··· ik
: D → R

such that
ω =

∑
i1<···<ik

fi1··· ik
dxi1 ∧ · · · ∧ dxik .

Moreover ω is C∞ if and only if fi1··· ik
is C∞ for each index i1 · · · ik.

Definition: If ω = fdx1 ∧ · · · ∧ dxn is a C∞ n-form on D and X is a
measurable subset of D, then the integral of ω over X is defined by∫

X

ω =
∫

X

f(x) dx1 · · · dxn. (11.5.15)
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The Bundle of Skew-Symmetric k-Linear Functionals

Let k be a positive integer. If V is a real vector space, let Λk(V ) be the real
vector space of all skew-symmetric k-linear functionals on V . If L : V → W
is a linear transformation of real vector spaces, define a homomorphism

L∗ : Λk(W ) → Λk(V )

by the formula

L∗(λ)(v1, . . . , vk) = λ(L(v1), . . . , L(vk)). (11.5.16)

Define

Λk(T(Hn)) = {(x, λ) : x ∈ Hn and λ ∈ Λk(Tx(Hn))}.

Given x in Hn, let Υx be the Lorentzian matrix of the hyperbolic transla-
tion τx of Hn that translates en+1 to x along its axis, and define

Υ∗
x : Λk(Tx(Hn)) → Λk(Rn).

by the formula

Υ∗
x(λ)(v1, . . . , vk) = λ(Υx(v1, 0), . . . ,Υx(vk, 0)).

Then Υ∗
x is an isomorphism for each x in Hn. Define

Υ∗ : Λk(T(Hn)) → Hn × Λk(Rn).

by the formula
Υ∗(x, λ) = (x,Υ∗

x(λ)). (11.5.17)

Then Υ∗ is a bijection. Define a C∞ differential structure on Λk(T(Hn)) so
that Υ∗ is a C∞ diffeomorphism. Then Λk(T(Hn)) is a trivial C∞ vector
bundle over Hn with projection map (x, λ) �→ x.

Given a point x in Hn, define

ρx : Rn+1 → Tx(Hn)

by the formula
ρx(v) = v + (v ◦ x)x. (11.5.18)

Then ρx is the Lorentz orthogonal projection of Rn+1 onto Tx(Hn). The
homomorphism

ρ∗
x : Λk(Tx(Hn)) → Λk(Rn+1)

is a monomorphism for each x in Hn.
Define

ρ∗ : Λk(T(Hn)) → Hn × Λk(Rn+1)

by the formula
ρ∗(x, λ) = (x, ρ∗

x(λ)). (11.5.19)

Then ρ∗ is an injection.
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Define Υ̂∗ : Hn × Λk(Rn+1) → Hn × Λk(Rn+1) by the formula

Υ̂∗(x, λ) = (x,Υ∗
x(λ)).

Then Υ̂∗ is a C∞ diffeomorphism. Let p̂ : Rn+1 → Rn be the vertical
projection. Observe that the following diagram commutes

Λk(T(Hn)) Υ∗
−−→ Hn × Λk(Rn)

ρ∗ ↓ ↓ I × p̂∗

Hn × Λk(Rn+1) Υ̂∗
−−→ Hn × Λk(Rn+1),

where I is the identity map. As I × p̂∗ is C∞, we deduce that ρ∗ is C∞.
Define P : Hn × Λk(Rn+1) → Λk(T(Hn)) by the formula

P(x, λ) = (x, λx)

where λx is the restriction of λ to Tx(Hn)k. Then Pρ∗ is the identity map
of Λk(T(Hn)). Let i : Rn → Rn+1 be the injection defined by i(v) = (v, 0).
Observe that the following diagram commutes

Hn × Λk(Rn+1) Υ̂∗
−−→ Hn × Λk(Rn+1)

P ↓ ↓ I × i∗

Λk(T(Hn)) Υ∗
−−→ Hn × Λk(Rn).

As I × i∗ is C∞, we deduce that P is C∞.

Lemma 3. A function φ : N → Λk(T(Hn)) is C∞ if and only if the
function ρ∗φ : N → Hn × Λk(Rn+1) is C∞.

Proof: If φ is C∞, then ρ∗φ is C∞. If ρ∗φ is C∞, then φ = Pρ∗φ is C∞.

Let M = Hn/Γ be a space-form. Define a left action of Γ on Λk(T(Hn))
by the formula

g(x, λ) = (gx, (g−1)∗(λ)). (11.5.20)

Then Γ acts freely and discontinuously on Λk(T(Hn)) and the orbit space
Λk(T(Hn))/Γ is Hausdorff by Lemma 2.

Define

Λk(T(M)) = {(u, λ) : u ∈ M and λ ∈ Λk(Tu(M))}.

Let π : Hn → M be the quotient map. Given λ in Λk(Tx(Hn)), set

[λ] = {(g−1)∗(λ) : g ∈ Γ}. (11.5.21)

Define η : Λk(T(Hn))/Γ → Λk(T(M)) by η(Γ(x, λ)) = (π(x), [λ]) where

[λ]([v1], . . . , [vk]) = λ(v1, . . . , vk)

for each λ in Λk(Tx(Hn)) and v1, . . . , vk in Tx(Hn). Then η is a bijection.
Topologize Λk(T(M)) so that η is a homeomorphism.
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Define π∗ : Λk(T(Hn)) → Λk(T(M)) by

π∗(x, λ) = (π(x), [λ]). (11.5.22)

Then π∗ = ηq where q : Λk(T(Hn)) → Λk(T(Hn))/Γ is the quotient
map. Hence π∗ is a covering projection. As Γ acts on Λk(T(Hn)) via
C∞ diffeomorphisms, Λk(T(M)) has a C∞ differential structure so that π∗
is a C∞ local diffeomorphism. Thus Λk(T(M)) is a C∞ vector bundle over
M with projection map (u, λ) �→ u.

Hyperbolic Differential Forms

Let M = Hn/Γ be a space-form with quotient map π : Hn → M .

Definition: A 0-form on M is a function f : M → R. If k is a positive
integer, then a k-form on M is a function

ω : M → ∪
u∈M

Λk(Tu(M))

such that ω(u) is in Λk(Tu(M)) for each u in M . In other words, if k > 0,
a k-form ω on M is the second coordinate function of a section

sω : M → Λk(T(M))

of the vector bundle Λk(T(M)) over M . If k > 0, a k-form on M is said to
be C∞ if the corresponding section sω : M → Λk(T(M)) is C∞.

Given a 0-form ω on M , define a 0-form π∗ω on Hn by π∗ω = ωπ. Given
a k-form ω on M , with k > 0, define a k-form π∗ω on Hn by

π∗ω(x)(v1, . . . , vk) = ω(π(x))([v1], . . . , [vk]) (11.5.23)

for each x in Hn and v1, . . . , vn in Tx(Hn). If ω is C∞, then π∗ω is C∞,
since π is C∞, and if k > 0, the following diagram commutes

Hn sπ∗ω−−−→ Λk(T(Hn))

π ↓ ↓ π∗

M
sω−−→ Λk(T(M)).

Thus every C∞ k-form ω on M lifts to a unique C∞ k-form π∗ω on Hn.

Definition: Let D be either a k-dimensional convex or nonempty open
subset of Rk and let φ : D → M be a C∞ map. Given a 0-form ω on M ,
define a 0-form φ∗ω on D by φ∗ω = ωφ. Given a k-form ω on M , with
k > 0, define a k-form φ∗ω on D by

φ∗ω(x) = Tx(φ)∗ω(φ(x)). (11.5.24)

It is an exercise to prove that if ω is C∞, then φ∗ω is C∞.
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The Integral of an n-Form

Suppose Hn is in Rn,1. Let p : Hn → Rn be the vertical projection defined
by p(x) = (x1, . . . , xn). A subset X of Hn is measurable in Hn if and only
if p(X) is measurable in Rn. Let M = Hn/Γ be a space-form with quotient
map π : Hn → M . A subset X of M is measurable in M if and only if
π−1(X) is measurable in Hn.

Definition: Let X be a measurable subset of a space-form M = Hn/Γ,
and let R be a proper fundamental region for Γ in Hn. The volume of X
in M is defined by

Vol(X) = Vol
(
π−1(X) ∩ R

)
. (11.5.25)

The argument in the proof of Theorem 6.7.2 shows that the definition of
Vol(X) does not depend on the choice of R.

Let M = Hn/Γ be a space-form, and let R be a proper fundamental
region for Γ in Hn. Set O = p(R). Then O is an open subset of Rn. Let
η : O → M be the restriction of πp−1. Then η is a C∞ diffeomorphism of
O onto an open subset of M whose complement has zero volume. Let X be
a measurable subset of M . Then η−1(X) = p(π−1(X)∩R) is a measurable
subset of Rn.

Definition: Let M be an orientable hyperbolic space-form. If ω is a C∞

n-form on M and X is a measurable subset of M , then the integral of ω
over X is defined by the formula∫

X

ω =
∫

η−1(X)
η∗ω. (11.5.26)

The above integral does not change if a subset of zero volume is removed
from X, since p maps sets of zero volume to sets of zero volume by Theorem
3.4.1, and so Theorem 11.5.1 below implies that the above definition does
not depend on the choice of the fundamental region R.

Lemma 4. Let V be a real n-dimensional vector space, let λ be in Λn(V ),
and let u1, . . . , un be in V . Suppose vi =

∑n
j=1 cijuj for each i = 1, . . . , n.

Then
λ(v1, . . . , vn) = det(cij) λ(u1, . . . , un).

Proof: This is a standard fact in multilinear algebra and its proof is left
as an exercise for the reader.

We assume that Hn is oriented with the standard orientation so that
p : Hn → Rn is orientation preserving. If M = Hn/Γ is an orientable
space-form, the standard orientation of M is the orientation so that the
quotient map π : Hn → M is orientation preserving.
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Theorem 11.5.1. Let M = Hn/Γ be an orientable space-form. Let ω be
a C∞ n-form on M , and let X be a measurable subset of M . Let U be
an open subset of Rn, and let φ : U → M be a C∞ diffeomorphism of U
onto an open subset of M such that φ preserves the standard orientation.
If X ⊂ η(O) ∩ φ(U), then φ−1(X) is measurable in Rn and∫

X

ω =
∫

φ−1(X)
φ∗ω.

Proof: As φ−1(X) = (φ−1η)(η−1(X)) and

φ−1η : η−1(η(O) ∩ φ(U)
)

→ φ−1(η(O) ∩ φ(U)
)

is a C∞ diffeomorphism, φ−1(X) is measurable in Rn.
Let y be in O and let u be in U such that φ(u) = η(y). Now since

η(y) = φ(φ−1η)(y), we have

Ty(η) = Tu(φ)Ty(φ−1η)

where Ty(φ−1η) : Rn → Rn is the linear transformation defined by

Ty(φ−1η)(v) = (φ−1η)′(y)v.

Hence, by Lemma 4 on the next to the last step, we deduce that

η∗ω(y)(e1, . . . , en)
= Ty(η)∗ω(η(y))(e1, . . . , en)

=
(
Tu(φ)Ty(φ−1η)

)∗
ω
(
φ(φ−1η(y))

)
(e1, . . . , en)

= Ty(φ−1η)∗Tu(φ)∗ω
(
φ(φ−1η(y))

)
(e1, . . . , en)

= Ty(φ−1η)∗φ∗ω
(
φ−1η(y)

)
(e1, . . . , en)

= φ∗ω
(
φ−1η(y)

)(
(φ−1η)′(y)e1, . . . , (φ−1η)′(y)en

)
= det(φ−1η)′(y)φ∗ω(φ−1η(y))(e1, . . . , en)
= | det(φ−1η)′(y)|φ∗ω(φ−1η(y))(e1, . . . , en).

The result follows from the change of variables formula for integrals.

The Volume Form

The volume form of Hn in Rn,1 is the C∞ n-form Ωn on Hn defined by

Ωn(x)(v1, . . . , vn) = det(v1, . . . , vn, x) (11.5.27)

for each x in Hn and v1, . . . , vn in Tx(Hn). The volume form of Hn in
R1,n is defined by

Ωn(x)(v1, . . . , vn) = det(x, v1, . . . , vn). (11.5.28)

That Ωn is C∞ follows from Lemma 3 and Theorem 11.5.2 below.
The extended volume form of Hn is the map Ω̂n : Hn → Λn(Rn+1)

defined by Ω̂n(x) = ρ∗
xΩn(x) for each x in Hn.
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Theorem 11.5.2. Let Ω̂n be the extended volume form of Hn in R1,n.
Then

Ω̂n(x) =
n+1∑
k=1

(−1)k−1xk ei1··· îk··· in+1 .

Proof: Let fk : Hn → R, for k = 1, . . . , n + 1, be the maps such that

Ω̂n(x) =
n+1∑
k=1

fk(x) ei1··· îk··· in+1 .

On the one hand, we have

Ω̂n(x)(e1, . . . , êk, . . . , en+1) = fk(x),

while on the other hand, with respect to R1,n, we have

Ω̂n(x)(e1, . . . , êk, . . . , en+1)

= Ωn

(
ρx(e1), . . . , ̂ρx(ek), . . . , ρx(en+1)

)
= det

(
x, ρx(e1), . . . , ̂ρx(ek), . . . , ρx(en+1)

)
= det(x, e1 − x1x, . . . , ̂ek ± xkx, . . . , en+1 + xn+1x)
= det(x, e1, . . . , êk, . . . , en+1)
= det(xkek, e1, . . . , êk, . . . , en+1)
= (−1)k−1 det(e1, . . . , ek−1, xkek, ek+1, . . . , en+1)
= (−1)k−1xk.

Theorem 11.5.3. If X is a measurable subset of Hn, then∫
X

Ωn = Vol(X).

Proof: By definition ∫
X

Ωn =
∫

p(X)
(p−1)∗Ωn.

Let y = p(x) = x. By Formula 11.5.1 on the second step, we have

(p−1)∗Ωn(y)(e1, . . . , en)
= Ωn

(
p−1(y)

)(
(p−1)′(y)e1, . . . , (p−1)′(y)en

)
= Ωn(x)(e1 + (x1/xn+1)en+1, . . . , en + (xn/xn+1)en+1)
= det(e1 + (x1/xn+1)en+1, . . . , en + (xn/xn+1)en+1, x)
= det(e1 + (x1/xn+1)en+1, . . . , en + (xn/xn+1)en+1, (1/xn+1)en+1)
= det(e1, . . . , en, (1/xn+1)en+1)
= 1/xn+1

= 1/(1 + |x|2)1/2.

The result now follows from Theorem 3.4.1.



§11.5. Differential Forms 553

Let M = Hn/Γ be an orientable space-form. Then det g = 1 for each g
in Γ. If x is in Hn, and v1, . . . , vn are in Tx(Hn), and g is in Γ, we have

Ωn(gx)(gv1, . . . , gvn) = det(gv1, . . . , gvn, gx)
= det g det(v1, . . . , vn, x)
= Ωn(x)(v1, . . . , vn).

This formula allows us to make the following definition.

Definition: The volume form of M is the n-form ΩM on M defined by

ΩM (u)([v1], . . . , [vn]) = Ωn(x)(v1, . . . , vn) (11.5.29)

where x is in Hn, and v1, . . . , vn are in Tx(Hn), and π(x) = u. Moreover
ΩM is C∞, since π∗ΩM = Ωn.

Theorem 11.5.4. Let M = Hn/Γ be an orientable space-form. If X is a
measurable subset of M , then∫

X

ΩM = Vol(X).

Proof: Let R be a proper fundamental region for Γ in Hn. Let U =
p
(
π−1(X) ∩ R

)
, let φ : U → Hn be the restriction of p−1, and let η = πφ.

Then we have

η∗ΩM = (πφ)∗ΩM = φ∗π∗ΩM = φ∗Ωn.

By Theorem 11.5.1, applied to φ : U → Hn, and Theorem 11.5.3, we have∫
X

ΩM =
∫

η−1(X)
η∗ΩM

=
∫

φ−1(π−1(X)∩R)
φ∗Ωn

=
∫

π−1(X)∩R

Ωn

= Vol(π−1(X) ∩ R) = Vol(X).

The Integral of a k-Form over a k-Chain

Let k be a nonnegative integer and let ∆k be the standard k-simplex in Rk

spanned by the vectors 0 = e0, e1, . . . , ek. Let M be a hyperbolic space-
form with quotient map π : Hn → M .

Definition: If σ : ∆k → M is a C∞ map and ω is a C∞ k-form on M ,
then the integral of ω over σ is defined by∫

σ

ω =
∫

∆k

σ∗ω. (11.5.30)
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A C∞ singular k-chain in M is a formal linear combination

c =
m∑

i=1

riσi

of C∞ maps σi : ∆k → M with real coefficients ri for each i = 1, . . . , m.

Definition: If c =
∑m

i=1 riσi is a C∞ singular k-chain in M and ω is a
C∞ k-form on M , then the integral of ω over c is defined by∫

c

ω =
m∑

i=1

ri

∫
σi

ω. (11.5.31)

The proof of the next theorem is left as an exercise for the reader.

Theorem 11.5.5. Let M = Hn/Γ be a space-form, and let σ : ∆n → M
be a C∞ map that maps ∆n bijectively onto an n-simplex ∆ in M . Let σ0 :
(∆n)◦ → M be the restriction of σ and suppose σ0 is a C∞ diffeomorphism
onto ∆◦. Then ∫

σ

ΩM = ±Vol(∆)

with the plus or minus sign according as σ0 preserves or reverses the stan-
dard orientation.

Exercise 11.5

1. Let x be a point of Hn. Prove that Υx is the Lorentzian matrix of the
hyperbolic translation τx of Hn that translates the center en+1 of Hn to x
along its axis.

2. Prove that the definition of Tx(φ) by Formula 11.5.11 does not depend on
the choice of the extension φx of φ.

3. Verify that (I × p̂∗) Υ∗ = Υ̂∗ρ∗ and that (I × i∗) Υ̂∗ = Υ∗P.
4. Let ω be a k-form on Hn. Define ω̂ : Hn → Λk(Rn+1) by ω̂(x) = ρ∗

xω(x).
Prove that ω is C∞ if and only if ω̂ is C∞.

5. Let M = Hn/Γ be a space-form with quotient map π : Hn → M , and let ω
be a k-form on M . Prove that ω is C∞ if and only if the k-form π∗ω on Hn

is C∞.
6. Prove that the k-form φ∗ω defined by Formula 11.5.24 is C∞ if ω is C∞.
7. Let X be a measurable subset of a space-form M = Hn/Γ. Prove that the

definition of Vol(X) does not depend on the choice of the proper fundamental
region R of Γ in Hn.

8. Let M = Hn/Γ be a space-form, with quotient map π : Hn → M , and let
X be a measurable subset of Hn such that π is injective on X. Prove that
π(X) is measurable in M and Vol(π(X)) = Vol(X).

9. Prove Lemma 4.
10. Prove Theorem 11.5.5
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§11.6. The Gromov Norm

In this section, we consider the Gromov norm of a closed, orientable, hyper-
bolic manifold. As an application, we prove that two homotopy equivalent,
closed, orientable, hyperbolic manifolds have the same volume.

Let X be a topological space and let S(X; R) be the singular chain
complex of X with real coefficients. For each integer k ≥ 0, the group of
singular k-chains Sk(X; R) is a real vector space with a basis consisting of
all continuous maps from the standard k-simplex ∆k to X. Recall that a
continuous map σ : ∆k → X is called a singular k-simplex in X.

Let c be a k-chain in Sk(X; R). Then for each singular k-simplex σ in
X, there is a unique real number rσ such that

c =
∑

σ

rσσ.

Here rσ = 0 for all but finitely many σ. The simplicial norm of c is defined
to be the real number

‖c‖ =
∑

σ

|rσ|. (11.6.1)

If α is a homology class in Hk(X; R), the simplicial norm of α is defined
to be the real number

‖α‖ = inf
{
‖c‖ : c is a k-cycle representing α

}
.

If α and β are in Hk(X; R) and t is in R, then obviously

(1) ‖tα‖ = |t| ‖α‖,

(2) ‖α + β‖ ≤ ‖α‖ + ‖β‖.

Lemma 1. If f : X → Y is a continuous function and α is a homology
class in Hk(X; R), then ‖f∗(α)‖ ≤ ‖α‖.

Proof: Let c be a k-cycle representing α and write c =
∑
σ

rσσ as before.

Then the homology class f∗(α) in Hk(Y ; R) is represented by f∗(c), where

f∗(c) =
∑

σ

rσfσ.

As the maps fσ : ∆k → Y are not necessarily distinct, we have

‖f∗(c)‖ ≤
∑

σ

|rσ| = ‖c‖.

Therefore ‖f∗(α)‖ ≤ ‖α‖.

Definition: The Gromov norm of a closed, connected, orientable n-
manifold M is the simplicial norm of a fundamental class of M in Hn(M ; R).
The Gromov norm of M is denoted by ‖M‖.
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Theorem 11.6.1. If M is a closed, connected, orientable, spherical or
Euclidean n-manifold, with n > 0, then ‖M‖ = 0.

Proof: Assume first that M = Sn or Tn. Then M admits a map f :
M → M of degree two. By Lemma 1, we have

(deg f)‖M‖ ≤ ‖M‖.

Consequently ‖M‖ = 0.
Now assume that M is arbitrary. Then M is finitely covered by M̃ = Sn

or Tn. Let π : M̃ → M be the covering projection. By Lemma 1, we have

(deg π)‖M‖ ≤ ‖M̃‖ = 0.

As the degree of π is the order of the covering, we have that deg π ≥ 1 and
so ‖M‖ = 0.

Remark: Since the simplicial norm of a nonzero homology class may be
zero, the simplicial norm on real singular homology is technically not a
norm but only a pseudonorm.

Straight Singular k-Simplices

Let k be a nonnegative integer. The standard k-simplex ∆k is the k-simplex
in En spanned by the vectors 0 = e0, e1, . . . , ek. Let x be a point of ∆k.
Then we have

x = x1e1 + · · · + xkek

with 0 ≤ xi ≤ 1 for each i and x1 + · · · + xk ≤ 1. Set

x0 = 1 −
k∑

i=1

xi.

Then x0, . . . , xk are the barycentric coordinates of x and we have

x =
k∑

i=0

xiei.

Definition: A singular k-simplex σ in Hn is said to be straight if for each
x in ∆k, we have

σ(x) =
k∑

i=0

xiσ(ei)
/∣∣∣∣∣∣∣∣∣∣∣∣ k∑

i=0

xiσ(ei)
∣∣∣∣∣∣∣∣∣∣∣∣. (11.6.2)

The image of a straight singular k-simplex σ is the convex hull in Hn

of the points σ(e0), . . . , σ(ek); moreover, σ is uniquely determined by the
sequence of points σ(e0), . . . , σ(ek); furthermore, if g is an isometry of Hn,
then gσ is also a straight singular k-simplex.
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Let M = Hn/Γ be a space-form. A singular k-simplex σ in M is said to
be straight if and only if σ lifts to a straight singular k-simplex σ̃ in Hn.
By the previous remark, if some lift of σ is straight, then every lift of σ is
straight, since any two lifts of σ differ by an element of Γ.

Given a singular k-simplex σ in M , we can associate to σ a straight
singular k-simplex Str(σ) as follows: First lift σ to a singular k-simplex σ̃
in Hn. Let Str(σ̃) be the unique straight singular k-simplex determined by
the sequence of points σ̃(e0), . . . , σ̃(ek). Now let Str(σ) = π Str(σ̃) where
π : Hn → M is the quotient map. Then Str(σ) is a straight singular k-
simplex, and Str(σ) does not depend on the choice of the lift σ̃, since any
two lifts of σ differ by an element of Γ.

The straightening operator Str on singular k-simplices in M extends
linearly to a linear transformation

Strk : Sk(M ; R) → Sk(M ; R).

Furthermore, since
Strk−1∂k = ∂kStrk

for all k, we have that Str = {Strk} is a chain map.

Lemma 2. The straightening chain map Str : S(M ; R) → S(M ; R) is
chain homotopic to the identity.

Proof: Let σ be a singular k-simplex in M . Lift σ to a singular k-simplex
σ̃ in Hn. Since Hn is convex, there is a canonical homotopy

Fσ̃ : ∆k × [0, 1] → Hn

from σ̃ to Str(σ̃) defined by

Fσ̃(x, t) =
(1 − t)σ̃(x) + tStr(σ̃(x))

|||(1 − t)σ̃(x) + tStr(σ̃(x))||| .

If g is an isometry of Hn, then Fgσ̃ = gFσ̃. Therefore Fσ̃ projects to a
homotopy Fσ : ∆k × [0, 1] → M from σ to Str(σ) that does not depend on
the choice of the lift σ̃.

Now ∆k × [0, 1] has vertices

a0 = (e0, 0), . . . , ak = (ek, 0), b0 = (e0, 1), . . . , bk = (ek, 1).

For each i = 0, . . . , k, let

αi : ∆k+1 → ∆k × [0, 1]

be the affine map that maps e0, . . . , ek+1 to a0, . . . , ai, bi, . . . , bk, respec-
tively. Define a linear transformation

Fk : Sk(M ; R) → Sk+1(M ; R)

by the formula

Fk(σ) =
k∑

i=0

(−1)iFσαi.
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A straightforward calculation shows that

∂k+1Fk(σ) + Fk−1∂k(σ) = Strk(σ) − σ.

Therefore, we have

∂k+1Fk + Fk−1∂k = Strk − idk.

Thus F = {Fk} is a chain homotopy from Str to the identity.

Let Strk(M ; R) be the set of all straight singular k-chains in M . Then
Str(M ; R) is a chain subcomplex of S(M ; R).

Theorem 11.6.2. If M is a hyperbolic space-form, then the inclusion
chain map

i : Str(M ; R) → S(M ; R)

induces an isomorphism on homology.

Proof: The straightening chain map Str : S(M ; R) → Str(M ; R) is a chain
homotopy inverse of i by Lemma 2.

Remark: It follows from Theorem 11.6.2 that one can compute the real
homology of a hyperbolic space-form M using only straight singular chains
in M . Moreover, if c is any singular chain in M , then ‖Str(c)‖ ≤ ‖c‖, and
so one can also compute the simplicial norm of a real homology class of M
using only straight singular cycles.

Lemma 3. Let M = Hn/Γ be a compact, orientable, space-form, with
n > 1, and let Vn be the volume of a regular ideal n-simplex in Hn. Then

‖M‖ ≥ Vol(M)/Vn.

Proof: Let ΩM be the volume form for M and let c =
∑

σ rσσ be
any straight singular n-cycle representing the fundamental class of M in
Hn(M ; R). We claim that ∫

c

ΩM = Vol(M).

First we show that the integral
∫

c
ΩM depends only on the homology class

of c. Let c′ be any straight singular n-cycle homologous to c. Then there
is a straight singular (n + 1)-chain b such that

c − c′ = ∂b.

By Stokes’s theorem, we have∫
c

ΩM −
∫

c′
ΩM =

∫
∂b

ΩM =
∫

b

dΩM = 0,

since dΩM = 0. Thus
∫

c
ΩM depends only on the homology class of c.
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Let P be an exact, convex, fundamental polyhedron for Γ. Then P is
compact by Theorem 6.6.9. Since P is exact, the barycentric subdivision of
P projects to a subdivision of M into a finite number of n-simplices. More-
over, the second barycentric subdivision of P projects to a triangulation of
M into a finite number of n-simplices ∆1, . . . ,∆m that barycentrically sub-
divides the first subdivision of M . For each i = 1, . . . , m, let σi : ∆n → M
be the straight singular n-simplex such that σi(ej) is the unique vertex
of ∆i contained in the jth skeleton of the first subdivision of M for each
j = 0, . . . , n, and for each i, let ri = 1 or −1 according as σi preserves or
reverses the standard orientation. Then

c′ = r1σ1 + · · · + rmσm

is a straight singular n-cycle representing the fundamental class of M . Now∫
c′

ΩM =
m∑

i=1

ri

∫
σi

ΩM =
m∑

i=1

ri

∫
∆n

σ∗
i ΩM .

By Theorem 11.5.1, applied to the restriction of σi to the interior of ∆n,
and by Theorem 11.5.4, we have

ri

∫
∆n

σ∗
i ΩM =

∫
∆i

ΩM = Vol(∆i).

Therefore, we have ∫
c′

ΩM =
m∑

i=1

Vol(∆i) = Vol(M).

Thus, we have ∫
c

ΩM =
∫

c′
ΩM = Vol(M).

Next observe that ∫
c

ΩM =
∑

σ

rσ

∫
∆n

σ∗ΩM

=
∑

σ

±rσVol(σ̃(∆n))

≤
∑

σ

|rσ|Vol(σ̃(∆n)).

Now by Theorem 11.4.1, we have Vol(σ̃(∆n)) < Vn. Therefore, we have

Vol(M) =
∫

c

ΩM <
∑

σ

|rσ|Vn.

Dividing by Vn, we obtain the inequality

Vol(M)/Vn < ‖c‖.

Therefore, we deduce that

Vol(M)/Vn ≤ ‖M‖.
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Haar Measure

Let G = I(Hn) and let H be the subgroup of G of all elements that fix
the point en+1. The left-invariant Haar integral of a function φ : G → R is
given by the formula∫

G

φ(g)dg =
∫

G/H

(∫
H

φ(gh)dh

)
d(gH),

where dh is the left-invariant Haar measure on the compact group H and
d(gH) is the left-invariant measure on G/H corresponding to hyperbolic
volume in Hn under the homeomorphism from G/H to Hn given by The-
orems 5.1.5 and 5.2.9. The Haar measure on a locally compact topological
group is unique up to multiplication by a positive scalar. We shall normal-
ize the Haar measure dg on G by normalizing the Haar measure dh on H
so that ∫

H

dh = 1.

Lemma 4. Let x be a point of Hn, let R be an open (resp. closed) subset
of Hn, and let

S = {g ∈ I(Hn) : gx ∈ R}.

Then S is open (resp. closed) and the Haar measure of S is the volume of
the set R.

Proof: Assume first that x = en+1. As the evaluation map

ε : I(Hn) → Hn,

defined by ε(g) = gen+1, is continuous, S = ε−1(R) is open (resp. closed).
Let χS be the characteristic function of the set S. Then

Vol(S) =
∫

G

χS(g)dg

=
∫

G/H

(∫
H

χS(gh)dh

)
d(gH)

=
∫

G/H

χS/H(gH)d(gH) = Vol(R).

Now let x be an arbitrary point of Hn. Set

S0 = {g ∈ I(Hn) : gen+1 ∈ R}
and let f be an isometry of Hn such that fx = en+1. Then S = S0f .
Hence S is open (resp. closed). It is a basic fact of the theory of Haar
measure that the Haar measure on a group is both left- and right-invariant
if the abelianization of the group is finite. Consequently, the Haar mea-
sure on I(Hn) is both left- and right-invariant because of Theorem 5.5.12.
Therefore

Vol(S) = Vol(S0f) = Vol(S0) = Vol(R).
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Theorem 11.6.3. (Gromov’s theorem) Let M be a closed, connected, ori-
entable, hyperbolic n-manifold, with n > 1, and let Vn be the volume of a
regular ideal n-simplex in Hn. Then

‖M‖ = Vol(M)/Vn.

Proof: Since M is complete, we may assume that M is a space-form
Hn/Γ. Let P be a convex fundamental polyhedron for Γ. Then P is
compact by Theorem 6.6.9. Choose a point x0 in P ◦ and let u0 = π(x0)
where π : Hn → Hn/Γ is the quotient map.

Let σ : ∆n → M be a straight singular n-simplex such that σ(ei) = u0
for each i. Then σ lifts to a unique straight singular n-simplex σ̃ : ∆n → Hn

such that σ̃(e0) = x0. As πσ̃(ei) = u0 for each i, we have that σ̃(ei) is in
the Γ-orbit of x0 for each i. Hence, there is a unique element fi of Γ, with
f0 = 1, such that σ̃(ei) = fix0 for each i.

Given 
 > 0, choose points x1, . . . , xn of Hn such that x0, . . . , xn are the
vertices of a regular n-simplex ∆n


 in Hn whose edge length is 
. For each
i = 0, . . . , n, let

Si = {g ∈ I(Hn) : gxi ∈ fi(P ◦)}.

By Lemma 4, the set Si is open and Vol(Si) = Vol(P ). Let

Sσ = S0 ∩ · · · ∩ Sn.

Then Sσ is open and Vol(Sσ) ≤ Vol(P ). As P is compact, Vol(P ) is finite
and therefore Vol(Sσ) is finite.

Suppose that g is in Sσ. Then gxi is in fi(P ◦) for each i = 0, . . . , n and
so

d(x0, fix0) ≤ d(x0, gx0) + d(gx0, gxi) + d(gxi, fix0)
< diam(P ) + 
 + diam(P ).

Let r = 
+2 diam(P ). As B(x0, r) contains only finitely many elements of
Γx0, there are only finitely many σ such that the set Sσ is nonempty.

Suppose that Sσ is nonempty. Then if g is in Sσ, we have

d(σ̃(ei), gxi) = d(fix0, gxi) < diam(P )

for each i = 0, . . . , n. Hence, the vertices of σ̃(∆n) are within a fixed
distance from the corresponding vertices of the regular n-simplex g∆n


 . By
choosing 
 sufficiently large, we may assume that σ̃(∆n) is a nondegenerate
n-simplex in Hn.

For each σ, let rσ = ±Vol(Sσ) with the plus or minus sign according as
σ preserves or reverses the standard orientation. Define

c
 =
∑

σ

rσσ.

Then c
 is a straight singular n-chain in M .
For each i = 0, . . . , n, let

Ti = {g ∈ I(Hn) : gxi ∈ Γ∂P}.
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By Lemma 4, the set Ti is closed and

Vol(Ti) = Vol(Γ∂P ) = 0.

Now set
T = T0 ∪ · · · ∪ Tn.

Then T is closed and Vol(T ) = 0.
Suppose that g is in S0 − T . Then there exists a unique element fi

of Γ, with f0 = 1, such that gxi is in fiP
◦ for each i = 1, . . . , n. Let

σ̃ : ∆n → Hn be the straight singular n-simplex such that σ̃(ei) = fix0 for
each i. Let σ = πσ̃. Then g is in Sσ. Consequently, we have

S0 − T = ∪
σ

Sσ.

Moreover, the sets {Sσ} are pairwise disjoint. Therefore, we have

Vol(S0) = Vol(S0 − T ) =
∑

σ

Vol(Sσ) =
∑

σ

|rσ|.

Hence, we have

‖c
‖ =
∑

σ

|rσ| = Vol(S0) = Vol(P ) = Vol(M).

Now let σ̃ : ∆n → Hn be an arbitrary, nondegenerate, straight, singular
n-simplex such that σ̃(ei) = fix0 for some fi in Γ for each i = 0, . . . , n. Let

Sσ̃ = {g ∈ I(Hn) : gxi ∈ fi(P ◦) for i = 0, . . . , n}
and let rσ̃ = ±Vol(Sσ̃) with the plus or minus sign according as πσ̃ pre-
serves or reverses the standard orientation. If f is in Γ, then fSσ̃ = Sfσ̃

and so rfσ̃ = rσ̃. Thus, the infinite chain

c̃
 =
∑

σ̃

rσ̃σ̃

is Γ-equivariant. Now for each σ̃, there is an f in Γ such that fσ̃(e0) = x0.
Therefore, we have

rσ̃ = rfσ̃ = rπ(σ̃).

Hence, the chain c̃
 is the infinite chain in Hn that covers the chain c
 in
M . Therefore c̃
 is locally finite.

Now observe that
∂c̃
 =

∑
σ̃

rσ̃∂σ̃

is a locally finite chain. Hence, we have

∂c̃
 =
∑

τ

sττ,

where each τ is a straight singular (n−1)-simplex in Hn such that τ(ei) is in
Γx0 for each i. For each such τ , let Pτ (resp. Nτ ) be the union of all the sets
Sσ̃ such that rσ̃ contributes positively (resp. negatively) to the coefficient
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sτ of τ . Let ρ be the reflection of Hn in the hyperplane spanned by the
image of τ . Then ρPτ − Nτ ⊂ T , and so Vol(ρPτ − Nτ ) = 0. Therefore
Vol(Pτ − ρNτ ) = 0. Moreover ρNτ − Pτ ⊂ T , and so Vol(ρNτ − Pτ ) = 0.
Hence Pτ and ρNτ differ by a set of measure zero, and so

sτ = Vol(Pτ ) − Vol(Nτ )
= Vol(Pτ ) − Vol(ρNτ ) = 0.

Therefore ∂c̃
 = 0. As ∂c̃
 covers ∂c
, we deduce that ∂c
 = 0. Thus c
 is
a cycle.

Now since Hn(M ; R) is generated by the fundamental class [c] of M ,
there is a constant k
 such that [c
] = k
[c]. Let ΩM be the volume form
of M . On the one hand,∫

c�

ΩM =
∫

k�c

ΩM = k


∫
c

ΩM = k
Vol(M)

and so
k
 =

1
Vol(M)

∫
c�

ΩM .

On the other hand,∫
c�

ΩM =
∑

σ

rσ

∫
∆n

σ∗ΩM =
∑

σ

|rσ|Vol(σ̃(∆n)).

Let σ
 be a simplex, with a nonzero coefficient in the sum
∑

rσσ, such
that σ̃(∆n) has least volume. Then∫

c�

ΩM ≥
(∑

σ

|rσ|
)

Vol(σ̃
(∆n))

= ‖c
‖Vol(σ̃
(∆n))
= Vol(M)Vol(σ̃
(∆n)).

Hence, we have that
k
 ≥ Vol(σ̃
(∆n)).

Now as [c
/k
] is the fundamental class of M , we deduce that

‖M‖ ≤ ‖c
‖/k
 ≤ Vol(M)/Vol(σ̃
(∆n)).

Now there is an isometry g
 of Hn such that σ̃
(ei) is within a distance
diam(P ) from g
xi for each i = 0, . . . , n. Consequently

lim

→∞

Vol(σ̃
(∆n)) = Vn

by Theorem 11.4.2. Therefore

‖M‖ ≤ Vol(M)/Vn.

As we have already established the reversed inequality in Lemma 3, the
proof is complete.
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Theorem 11.6.4. If M, N are homotopy equivalent, closed, connected,
orientable, hyperbolic n-manifolds, with n > 1, then Vol(M) = Vol(N).

Proof: Let f : M → N be a homotopy equivalence and let g : N → M be
a homotopy inverse of f . Let κ be a fundamental class of M . Then f∗(κ)
is a fundamental class of N and

g∗(f∗(κ)) = (gf)∗(κ) = κ.

Hence, by Lemma 1, we have

‖κ‖ = ‖g∗(f∗(κ))‖ ≤ ‖f∗(κ)‖ ≤ ‖κ‖.

Therefore, we have

‖M‖ = ‖κ‖ = ‖f∗(κ)‖ = ‖N‖.

Hence, by Theorem 11.6.3, we find that Vol(M) = Vol(N).

Exercise 11.6

1. Let π : M̃ → M be d-fold covering between closed, connected, orientable
n-manifolds. Prove that ‖M̃‖ = d ‖M‖.

2. Let σ : ∆k → Hn be a straight singular k-simplex, and let Nσ be the maximal
subset of Rk containing ∆k over which σ extends by Formula 11.6.2. Prove
that Nσ is convex and open.

3. Let σ : ∆k → Hn be a straight singular k-simplex. Prove that σ is C∞.

4. Let σ : ∆n → Hn be a straight singular n-simplex such that σ(∆n) is an
n-simplex ∆ in Hn. Let Nσ be as in Exercise 2 and let σ̂ : Nσ → Hn

be the extension of σ defined by Formula 11.6.2. Prove that σ̂ is a C∞

diffeomorphism onto either Hn or an open half-space of Hn containing ∆.

5. Explain why the proof of Lemma 3 breaks down in the spherical case where
Vn is replaced by Vol(Sn).

6. Prove that the abelianization of I(Hn) has order two.

§11.7. Measure Homology

In this section, we develop the theory of measure homology of a hyperbolic
space-form M = Hn/Γ. Let π : Hn → M be the quotient map. Then π is
a local isometry and a covering projection by Theorem 8.1.3.

For each integer k ≥ 0, let C∞(∆k, M) be the space of C∞ singular k-
simplices in M topologized with the C1 topology. If k = 0, the C1 topology
is the same as the compact-open topology. If k > 0, then the C1 topology is
a larger topology than the compact-open topology that takes into account
not only the proximity of functions but also of their first derivatives.
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Let k > 0. A basis for the C1 topology on C∞(∆k, M) consists of sets
N(σ, r) such that σ is in C∞(∆k, M) and r is a positive real number such
that r < 
/2 where 
 is a Lebesgue number of a covering of σ(∆k) by open
subsets of M that are evenly covered by π. An element τ of C∞(∆k, M) is
in N(σ, r) if and only if (1) the map τ is in B(σ, r), that is, d(σ(x), τ(x)) < r
for all x in ∆k and (2) if σ̃, τ̃ : ∆k → Hn are lifts of σ, τ , respectively, with
respect to π such that d(σ̃(e0), τ̃(e0)) < r, then

‖σ̃′(x)u − Υτ̃(x),σ̃(x)τ̃
′(x)u‖ < r

for each x in ∆k and u in Sk−1 where Υτ̃(x),σ̃(x) is the Lorentzian matrix
of the hyperbolic translation of Hn that translates τ̃(x) to σ̃(x) along its
axis. Note that the vector σ̃′(x)u − Υτ̃(x),σ̃(x)τ̃

′(x)u lies in Tσ̃(x)(Hn) and
the definition of N(σ, r) does not depend on the choice of the lift σ̃ of σ.

The Measure Chain Complex

Let Ck(M) be the real vector space of all compactly supported, signed,
Borel measures µ of bounded total variation ‖µ‖ on the space C∞(∆k, M).
Here

‖µ‖ = µ+
(
C∞(∆k, M)

)
+ µ−

(
C∞(∆k, M)

)
where µ = µ+ − µ− is the Jordan decomposition of µ into its positive and
negative variations.

For each i = 0, . . . , k, let ηi : ∆k−1 → ∆k be the ith face map. Then ηi

induces a continuous function

η∗
i : C∞(∆k, M) → C∞(∆k−1, M)

defined by η∗
i (σ) = σηi. Furthermore η∗

i induces a linear transformation

(η∗
i )∗ : Ck(M) → Ck−1(M)

defined by (
(η∗

i )∗(µ)
)
(B) = µ

(
(η∗

i )−1(B)
)

for each measure µ in Ck(M) and Borel subset B of C∞(∆k−1, M). Define
a linear transformation ∂k : Ck(M) → Ck−1(M) by the formula

∂k =
k∑

i=0

(−1)i(η∗
i )∗.

Lemma 1. The system {Ck(M), ∂k} is a chain complex.

Proof: If j < i, then ηiηj = ηjηi−1 and so we have

(η∗
j )∗(η∗

i )∗ = (η∗
i−1)∗(η∗

j )∗.

With this identity, the usual calculation shows that ∂k−1∂k = 0.
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The homology of the chain complex C(M) = {Ck(M), ∂k} is called the
measure homology of M . Let S∞(M) be the subchain complex of S(M ; R)
of C∞ singular chains in M . It is a basic fact of differential topology that
the inclusion chain map from S∞(M) into S(M ; R) induces an isomorphism
on homology.

Given a C∞ singular k-simplex σ : ∆k → M , define an atomic Borel
measure µσ on C∞(∆k, M) at σ by the formula

µσ(B) =
{

1 if σ is in B,
0 otherwise.

Define a linear transformation

mk : S∞
k (M) → Ck(M)

by the formula
mk

(∑
σ

rσσ
)

=
∑

σ

rσµσ. (11.7.1)

Lemma 2. The family {mk} of linear transformations is a chain map from
S∞(M) to C(M).

Proof: Let σ : ∆k → M be a C∞ singular k-simplex. It suffices to show
that

∂mk(σ) = mk−1(∂σ).

Observe that

∂mk(σ) = ∂µσ =
k∑

i=0

(−1)i(η∗
i )∗(µσ),

whereas

mk−1(∂σ) = mk−1

(
k∑

i=0

(−1)iσηi

)
=

k∑
i=0

(−1)iµσηi
.

Moreover

(η∗
i )∗(µσ)(B) = µσ

(
(η∗

i )−1(B)
)

=
{

1 if σ is in (η∗
i )−1(B),

0 otherwise

=
{

1 if η∗
i (σ) is in B,

0 otherwise

=
{

1 if σηi is in B,
0 otherwise

= µσηi(B).

Thus, we have
(η∗

i )∗(µσ) = µσηi .

Therefore, we have ∂mk(σ) = mk−1(∂σ).
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Lemma 3. Let ω be a C∞ k-form on M and let

Iω : C∞(∆k, M) → R

be the function defined by

Iω(σ) =
∫

σ

ω.

Then Iω is continuous.

Proof: If k = 0, then Iω(σ) = ω(σ(e0)), and so Iω is continuous, since
ω : M → R is continuous. Now suppose k > 0. Let σ be in C∞(∆k, M).
Then by definition ∫

σ

ω =
∫

∆k

σ∗ω

where σ∗ω is the C∞ k-form on ∆k defined by

σ∗ω(x) = Tx(σ)∗(ωσ(x)).

As the space C∞(∆k, M) is first countable, we can prove the continuity of
Iω in terms of sequences. Suppose that σi → σ in C∞(∆k, M). We need
to prove that Iω(σi) → Iω(σ).

Let σ̃ : ∆k → Hn be a lift of σ with respect to π. Then we have

σ∗ω = (πσ̃)∗ω = σ̃∗π∗ω

where π∗ω is the C∞ k-form on Hn defined by Formula 11.5.23.
Let ρx : Rn+1 → Tx(Hn) be the Lorentz orthogonal projection defined

by the Formula 11.5.18. Define ω̂ : Hn → Λk(Rn+1) by ω̂(x) = ρ∗
x(π∗ω(x)).

Then ω̂ is a C∞ map by Lemma 3 of §11.5. Let σ̃∗ω̂ be the C∞ k-form on
∆k defined by

σ̃∗ω̂(x) = Tx(σ̃)∗(ω̂(σ̃(x))).

Then σ̃∗ω̂ = σ̃∗π∗ω, since ρx : Rn+1 → Tx(Hn) is a retraction for each x.
Let 
 be a Lebesgue number of a covering of σ(∆k) by open subsets of

M that are evenly covered by π. As σi → σ in C(∆k, M), we may assume
that d(σ(x), σi(x)) < 
/2 for each i and all x in ∆k. Let σ̃i : ∆k → Hn

be the lift of σi with respect to π such that d(σ̃(e0), σ̃i(e0)) < 
/2. It is an
exercise to prove that σ̃i → σ̃ in C(∆k, Hn).

As the map ω̂ : Hn → Λk(Rn+1) is continuous, the map

ω̂∗ : C(∆k, Hn) → C(∆k, Λk(Rn+1))

defined by ω̂∗(τ) = ω̂τ is continuous. Hence we have that ω̂σ̃i → ω̂σ̃ in
C(∆k, Λk(Rn+1)). Let

{ei1··· ik : 1 ≤ i1 < · · · < ik ≤ n + 1}
be the standard basis of Λk(Rn+1). Then there are C∞ maps fi1··· ik

:
∆k → R such that

ω̂σ̃(x) =
∑

i1<···<ik

fi1··· ik
(x)ei1··· ik .
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Likewise we have

ω̂σ̃i(x) =
∑

i1<···<ik

f i
i1··· ik

(x)ei1··· ik

for each i. Then f i
i1··· ik

→ fi1··· ik
in C(∆k, R) for each index i1 · · · ik.

Now there is an f in C∞(∆k, R) such that

σ∗ω = f dx1 ∧ · · · ∧ dxk.

Likewise, we have
σ∗

i ω = fi dx1 ∧ · · · ∧ dxk.

On the one hand

σ∗ω(x)(e1, . . . , ek) = f(x)e1···k(e1, . . . , ek) = f(x),

while on the other hand

σ∗ω(x)(e1, . . . , ek)
= Tx(σ̃)∗(ω̂(σ̃(x)))(e1, . . . , ek)

=
∑

i1<···<ik

fi1··· ik
(x)ei1··· ik(σ̃′(x)e1, . . . , σ̃

′(x)ek).

Now
ei1··· ik(σ̃′(x)e1, . . . , σ̃

′(x)ek) = detAi1··· ik

where Ai1··· ik
is the k × k matrix formed from the i1, . . . , ik rows of the

(n + 1) × k matrix A that has σ̃′(x)e1, . . . , σ̃
′(x)ek as columns. Therefore

the function ei1··· ik(σ̃′(x)e1, . . . , σ̃
′(x)ek) is a polynomial pi1··· ik

(x) in the
partial derivatives of σ̃ at x. Likewise ei1···ik(σ̃′

i(x)e1, . . . , σ̃
′
i(x)ek) is the

same polynomial pi
i1··· ik

(x) in the partial derivatives of σ̃i at x for each i.
It is an exercise to prove that σ̃′

i → σ̃′ in C(∆k, M(n + 1, k)) where
M(n + 1, k) is the space of all real (n + 1) × k matrices. Hence the partial
derivatives of σ̃i converge to the corresponding partial derivatives of σ̃ in
C(∆k, R). As C(∆k, R) is a topological ring, we have that

lim
i→∞

fi = lim
i→∞

∑
i1<···<ik

f i
i1··· ik

pi
i1··· ik

=
∑

i1<···<ik

fi1··· ik
pi1··· ik

= f

in C(∆k, R). Therefore fi → f uniformly, since ∆k is compact. Hence

lim
i→∞

∫
∆k

fi dx1 ∧ · · · ∧ dxk =
∫

∆k

f dx1 ∧ · · · ∧ dxk

by Lebesgue’s dominated convergence theorem. Therefore

lim
i→∞

∫
∆k

σ∗
i ω =

∫
∆k

σ∗ω.

Thus Iω : C∞(∆k, M) → R is continuous.
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The de Rham Chain Complex

Let Ωk(M) be the real vector space of all C∞ k-forms on M and let

dk : Ωk(M) → Ωk+1(M)

be the exterior differential. Then {Ωk(M), dk} is a cochain complex whose
cohomology is the de Rham cohomology of M .

Let Dk(M) be the real vector space of all linear functionals on Ωk(M).
Define a linear transformation

∂k : Dk(M) → Dk−1(M)

by the formula
(∂kf)(ω) = f(dk−1ω).

Then {Dk(M), ∂k} is a chain complex called the de Rham chain complex.
Let µ be a measure in Ck(M) and let K be the compact support of µ.

Then the set Iω(K) is bounded in R for each ω in Ωk(M) by Lemma 3. As
µ has bounded total variation, the integral

∫
K

Iωdµ is finite for each ω in
Ωk(M). Hence, we may define a linear functional

fµ : Ωk(M) → R

by the formula

fµ(ω) =
∫

σ∈C∞(∆k,M)

(∫
σ

ω

)
dµ. (11.7.2)

Define a linear transformation


k : Ck(M) → Dk(M)

by the formula

k(µ) = fµ. (11.7.3)

Lemma 4. The family {
k} of linear transformations is a chain map from
C(M) to D(M).

Proof: Let µ be a measure in Ck(M). Then


k−1(∂µ) = 
k−1

(
k∑

i=0

(−1)i(η∗
i )∗(µ)

)

=
k∑

i=0

(−1)i
k−1
(
(η∗

i )∗(µ)
)

=
k∑

i=0

(−1)if(η∗
i
)∗(µ).
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Now we have
i∑

i=0

(−1)if(η∗
i
)∗(µ)(ω)

=
k∑

i=0

(−1)i

∫
τ∈C∞(∆k−1,M)

(∫
τ

ω

)
d
(
(η∗

i )∗(µ)
)

=
k∑

i=0

(−1)i

∫
σ∈C∞(∆k,M)

(∫
η∗

i
(σ)

ω

)
dµ

=
∫

σ∈C∞(∆k,M)

(
k∑

i=0

(−1)i

∫
σηi

ω

)
dµ

=
∫

σ∈C∞(∆k,M)

(∫
∂σ

ω

)
dµ

=
∫

σ∈C∞(∆k,M)

(∫
σ

dω

)
dµ

= fµ(dω)
= ∂fµ(ω).

Thus, we have

k−1(∂µ) = ∂
k(µ).

Theorem 11.7.1. If M is a hyperbolic space-form, then the composition
of the chain maps

m∗ : S∞(M) → C(M) and 
∗ : C(M) → D(M)

induces an isomorphism on homology.

Proof: Define a linear transformation

Ik : Ωk(M) → Hom(S∞
k (M), R)

by the formula

(Ik(ω))(c) =
∫

c

ω.

Then {Ik} is a cochain map that induces an isomorphism on cohomology
by de Rham’s theorem. By the universal coefficients theorem, the chain
map

(I∗)∗ : Hom(Hom(S∞
∗ (M), R), R) → Hom(Ω∗(M), R)

induces an isomorphism on homology. Consequently, the corresponding
chain map

I∗ : S∞(M) → D(M)
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induces an isomorphism on homology. Here

(Ik(c))(ω) = (c∗Ik)(ω)
= c∗(Ik(ω))
= (Ik(ω))(c)

=
∫

c

ω.

Given σ in C∞(∆k, M), then


kmk(σ) = 
k(µσ) = fµσ .

Moreover

fµσ (ω) =
∫

τ∈C∞(∆k,M)

(∫
τ

ω

)
dµσ =

∫
σ

ω,

since µσ is the atomic measure on C∞(∆k, M) at σ. Therefore, we have
that 
∗m∗ = I∗, and so 
∗m∗ induces an isomorphism on homology.

Straightening

Let M be a hyperbolic space-form. Define a function

Strk : C∞(∆k, M) → C∞(∆k, M)

by Strk(σ) = Str(σ).

Lemma 5. The function Strk : C∞(∆k, M) → C∞(∆k, M) is continuous
for each k.

Proof: Let π : Hn → M be the quotient map. Then

π∗ : C∞(∆k, Hn) → C∞(∆k, M)

is a continuous surjection, moreover π∗ is an open map, since π is a covering
projection. Define a function

S̃trk : C∞(∆k, Hn) → C∞(∆k, Hn)

by S̃trk(σ) = Str(σ). As Strkπ∗ = π∗S̃trk, it suffices to show that S̃trk is
continuous.

The image of S̃trk is the set Str(∆k, Hn) of straight singular k-simplices
in Hn. The C1 topology on Str(∆k, Hn) is the same as the compact-open
topology. Moreover, the function

S̃trk : C∞(∆k, Hn) → Str(∆k, Hn)

is continuous with respect to the compact-open topology. Therefore S̃trk is
continuous with respect to the C1 topology, since the C1 topology contains
the compact-open topology.
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The continuous function

Strk : C∞(∆k, M) → C∞(∆k, M)

induces a linear transformation

(Strk)∗ : Ck(M) → Ck(M)

defined by (
(Strk)∗(µ)

)
(B) = µ

(
(Strk)−1(B)

)
for each measure µ in Ck(M) and Borel subset B of C∞(∆k, M).

Lemma 6. The family {(Strk)∗} of linear transformations is a chain map
from C(M) to C(M).

Proof: Observe that

∂k(Strk)∗ =
k∑

i=0

(−1)i(η∗
i )∗(Strk)∗

=
k∑

i=0

(−1)i(η∗
i Strk)∗

=
k∑

i=0

(−1)i(Strk−1η∗
i )∗

=
k∑

i=0

(−1)i(Strk−1)∗(η∗
i )∗ = (Strk−1)∗∂k.

Theorem 11.7.2. Let M be a hyperbolic space-form. Then the straight-
ening chain map

(Str∗)∗ : C(M) → C(M)

is chain homotopic to the identity.

Proof: Given an element σ of C∞(∆k, M), let Fσ : ∆k × [0, 1] → M be
the homotopy from σ to Str(σ) constructed in Lemma 2 of §11.6. Define

F k : C∞(∆k, M) → C∞(∆k × [0, 1], M)

by F k(σ) = Fσ. We claim that F k is continuous. Define

F̃ k : C∞(∆k, Hn) → C∞(∆k × [0, 1], Hn)

by F̃ k(σ) = Fσ̃. Let π : Hn → M be the quotient map. Then

π∗ : C∞(∆k, Hn) → C∞(∆k, M),
π∗ : C∞(∆k × [0, 1], Hn) → C∞(∆k × [0, 1], M)

are continuous open surjections, since π is a covering projection. Now as
π∗F k = F̃ kπ∗, it suffices to show that F̃ k is continuous.
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The function

A : C∞(∆k, Hn) → C∞(∆k, Hn) × C∞(∆k, Hn),

defined by the formula
A(σ) = (σ, Str(σ)),

is continuous, since Strk is continuous. The function

B : C∞(∆k, Hn) × C∞(∆k, Hn) → C∞(∆k, Hn × Hn),

defined by the formula

B(σ, τ)(x) = (σ(x), τ(x)),

is continuous with respect to the C1 topology. The function

C : C∞(∆k, Hn × Hn) → C∞(∆k × [0, 1], Hn × Hn × [0, 1]),

defined by the formula

C(σ)(x, t) = (σ(x), t),

is continuous with respect to the C1 topology. The function

φ : Hn × Hn × [0, 1] → Hn,

defined by the formula

φ(x, y, t) =
(1 − t)x + ty

|||(1 − t)x + ty||| ,

is C∞. Therefore, the function

D : C∞(∆k × [0, 1], Hn × Hn × [0, 1]) → C∞(∆k × [0, 1], Hn),

defined by D = φ∗, is continuous. Finally, the function

F̃ k : C∞(∆k, Hn) → C∞(∆k × [0, 1], Hn)

is continuous, since F̃ k = DCBA.
For each i = 0, . . . , k, let

αi : ∆k+1 → ∆k × [0, 1]

be the affine map constructed in Lemma 2 of §11.6. Then

(αi)∗ : C∞(∆k × [0, 1], M) → C∞(∆k+1, M)

is continuous, since αi is C∞.
For each i = 0, . . . , k, define a function

F k
i : C∞(∆k, M) → C∞(∆k+1, M)

by F k
i (σ) = Fσαi. Then F k

i is continuous, since F k
i = α∗

i F
k.

Define a linear transformation F k
∗ : Ck(M) → Ck+1(M) by the formula

F k
∗ =

k∑
i=0

(−1)i(F k
i )∗.
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Essentially the same calculation as in Lemma 2 of §11.6 shows that

∂k+1F
k
∗ + F k−1

∗ ∂k = (Strk)∗ − idk.

Thus F∗ = {F k
∗ } is a chain homotopy from (Str∗)∗ to the identity.

Smearing

We now assume that the space-form M = Hn/Γ is compact and orientable.
Let G = I0(Hn) be the group of orientation preserving isometries of Hn,
and let H be the subgroup of G of all elements that fix the point en+1.
The Haar integral of a function φ : G → R is given by the formula∫

G

φ(g)dg =
∫

G/H

(∫
H

φ(gh)dh

)
d(gH),

where dh is the Haar measure on the compact group H and d(gH) is the
measure on G/H corresponding to hyperbolic volume in Hn under the
homeomorphism from G/H to Hn given by Theorems 5.1.5 and 5.2.9. We
shall normalize the Haar measure dg on G by normalizing the Haar measure
dh on H so that ∫

H

dh = 1.

The group G has a left-invariant metric. For example, the metric corre-
sponding to the metric d on M0(Bn), defined by

d(φ, ψ) = DB(φ−1, ψ−1),

is left-invariant. See Formula 5.2.1. Therefore Γ acts freely and discon-
tinuously on G as a group of isometries by left multiplication by Theorem
5.3.4. Therefore, the quotient map

κ : G → Γ\G

is a covering projection by Theorem 8.1.3. Consequently, the Haar measure
on G descends to a positive measure on Γ\G so that κ is locally measure
preserving. The integral of a function φ : Γ\G → R, with respect to this
measure, is given by the formula∫

Γ\G

φ(Γg)d(Γg) =
∫

(Γ\G)/H

(∫
H

φ(Γgh)dh

)
d(ΓgH),

where d(ΓgH) is the measure on the double coset space

(Γ\G)/H = Γ\(G/H) = Γ\Hn = M

corresponding to hyperbolic volume. The volume of Γ\G is given by

Vol(Γ\G) =
∫

Γ\G/H

(∫
H

dh

)
d(ΓgH)

=
∫

Γ\G/H

d(ΓgH) = Vol(M).
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The group G is homeomorphic to Hn × H by Theorems 5.1.5 and 5.2.9.
Moreover, the corresponding action of Γ on Hn × H is given by

g(x, h) = (gx, ∗).

Let D be a Dirichlet polyhedron for Γ. Then D◦ × H is a fundamental
domain for the action of Γ on Hn × H. As M is compact, D is compact.
Therefore D × H is compact, and so Γ\G is compact.

Given σ in Str(∆k, Hn), define a function

σ∗ : Γ\G → Str(∆k, M)

by σ∗(Γg) = πgσ, where π : Hn → M is the quotient map.

Lemma 7. The function σ∗ : Γ\G → Str(∆k, M) is continuous.

Proof: Let κ : G → Γ\G be the quotient map. Then σ∗ lifts to a function

σ∗ : G → Str(∆k, Hn)

defined by σ∗(g) = gσ. As π∗σ∗ = σ∗κ, it suffices to show that

σ∗ : G → Str(∆k, Hn)

is continuous. Since the action of G on Hn,

α : G × Hn → Hn,

given by α(g, x) = gx, is continuous, the corresponding inclusion map
α̂ : G → C(Hn, Hn) is continuous. As

σ∗ : C(Hn, Hn) → C(∆k, Hn)

is continuous, its restriction

σ∗ : G → Str(∆k, Hn)

is continuous.

Definition: Let σ be an element of Str(∆k, Hn). The smear of σ over M
is the positive Borel measure on C∞(∆k, M) given by the formula

Smr(σ) = (σ∗)∗(d(Γg)). (11.7.4)

In other words, if B is a Borel subset of C∞(∆k, M), then Smr(σ)(B) is
the volume of (σ∗)−1(B) in Γ\G.

As Γ\G is compact, the image of

σ∗ : Γ\G → C∞(∆k, M)

is compact. Therefore Smr(σ) has compact support. Moreover

‖Smr(σ)‖ = Vol(Γ\G) = Vol(M).

Thus, we have a function

Smr : Str(∆k, Hn) → Ck(M).
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Lemma 8. If σ is in Str(∆k, Hn) and f is in I0(Hn), then

Smr(fσ) = Smr(σ).

Proof: Define f∗ : Γ\G → Γ\G by f∗(Γg) = Γgf . Then f∗ is continuous,
since right multiplication by f is continuous in G. Observe that

Smr(fσ) = ((fσ)∗)∗(d(Γg))
= (σ∗f∗)∗(d(Γg)) = (σ∗)∗(f∗)∗(d(Γg)).

Now since the Haar measure on G is right-invariant, the induced measure
on Γ\G is invariant under right multiplication by G. Hence, if B is a Borel
subset of Γ\G, we have

(f∗)∗(d(Γg))(B) = Vol((f∗)−1(B)) = Vol(Bf−1) = Vol(B).

Therefore, we have
(f∗)∗(d(Γg)) = d(Γg).

Hence, we have

Smr(fσ) = (σ∗)∗(d(Γg)) = Smr(σ).

The function
Smr : Str(∆k, Hn) → Ck(M)

extends linearly to a linear transformation

Smrk : Strk(Hn) → Ck(M).

Lemma 9. The family {Smrk} of linear transformations is a chain map
from Str(Hn) to C(M).

Proof: Let σ be an element of Str(∆k, Hn). It suffices to show that

Smrk(∂σ) = ∂Smrk(σ).

Observe that

Smrk(∂σ) = Smrk

(
k∑

i=0

(−1)iσηi

)
=

k∑
i=0

(−1)iSmr(σηi),

whereas

∂Smrk(σ) =
k∑

i=0

(−1)i(η∗
i )∗Smr(σ).

Now observe that

Smr(σηi) = ((σηi)∗)∗(d(Γg))
= (η∗

i σ∗)∗(d(Γg))
= (η∗

i )∗(σ∗)∗(d(Γg)) = (η∗
i )∗Smr(σ).

Therefore Smrk(∂σ) = ∂Smrk(σ).
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Definition: Let σ be an element of Str(∆k, Hn) and let ρ be a reflection of
Hn. The average of σ over M is the signed Borel measure on C∞(∆n, M)
given by

Avg(σ) =
1
2
(
Smr(σ) − Smr(ρσ)

)
. (11.7.5)

Theorem 11.7.3. Let M = Hn/Γ be a compact orientable space-form. If
σ is in Str(∆n, Hn), then Avg(σ) is a cycle in Cn(M).

Proof: Observe that

∂Avg(σ) =
1
2
(
∂Smr(σ) − ∂Smr(ρσ)

)
=

1
2
(
Smr(∂σ) − Smr(∂ρσ)

)
=

1
2

[
Smr

(
k∑

i=0

(−1)iσηi

)
− Smr

(
k∑

i=0

(−1)iρσηi

)]

=
1
2

k∑
i=0

(−1)i
(
Smr(σηi) − Smr(ρσηi)

)
.

Moreover, we have
Smr(σηi) = Smr(ρσηi),

since σηi and ρσηi differ by an element of I0(Hn). Hence ∂Avg(σ) = 0.

Representing the Fundamental Class

Now assume that the space-form M = Hn/Γ is compact and oriented with
the standard orientation. Let c be a cycle in S∞

n (M) that represents the
fundamental class of M . Then the cycle FM = In(c) in Dn(M), defined by

FM (ω) =
∫

c

ω,

represents the fundamental class of M in Hn(D(M)). The cycle FM does
not depend on the choice of c because Dn+1(M) = 0. The cycle FM is
called the fundamental cycle of M in Dn(M).

A cycle µ in Cn(M) is said to represent a class κ in Hn(D(M)) if the
cycle 
n(µ) = fµ in Dn(M) represents κ.

Lemma 10. Let µ be a cycle in Cn(M), let ΩM be the volume form of M ,
and let FM be the fundamental cycle of M in Dn(M). Then µ represents
the class fµ(ΩM )Vol(M)−1[FM ] in Hn(D(M)).

Proof: Since [FM ] generates Hn(D(M)), there is a constant k such that
[fµ] = k[FM ]. As Dn+1(M) = 0, we have that fµ = kFM . Hence

fµ(ΩM ) = kFM (ΩM ) = kVol(M)
and so k = fµ(ΩM )/Vol(M).
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Theorem 11.7.4. Let M = Hn/Γ be a compact orientable space-form, let
σ be in Str(∆n, Hn), and let FM be the fundamental cycle of M in Dn(M).
Then Avg(σ) represents the class ±Vol(σ(∆n))[FM ] in Hn(D(M)) with
the plus or minus sign according as πσ preserves or reverses the standard
orientation.

Proof: Observe that

fSmr(σ)(ΩM ) =
∫

τ∈C∞(∆n,M)

(∫
τ

ΩM

)
d(Smr(σ))

=
∫

τ∈C∞(∆n,M)

(∫
τ

ΩM

)
d
(
(σ∗)∗(d(Γg))

)
=
∫

Γg∈Γ\G

(∫
σ∗(Γg)

ΩM

)
d(Γg)

=
∫

Γg∈Γ\G

(∫
πgσ

ΩM

)
d(Γg)

=
∫

Γg∈Γ\G

±Vol(gσ(∆n))d(Γg)

=
∫

Γ\G

±Vol(σ(∆n))d(Γg)

= ±Vol(σ(∆n))Vol(Γ\G)
= ±Vol(σ(∆n))Vol(M).

Hence

fAvg(σ)(ΩM ) =
1
2

(
fSmr(σ)(ΩM ) − fSmr(ρσ)(ΩM )

)
= ±Vol(σ(∆n))Vol(M).

Therefore Avg(σ) represents the class ±Vol(σ(∆n))[FM ] in Hn(D(M)) by
Lemma 10.

Exercise 11.7

1. Let M be a hyperbolic space-form, and let σ be in C∞(∆k, M). Prove that
the definition of the set N(σ, r) does not depend on the choice of the lift σ̃
of σ.

2. Let M = Hn/Γ be a space-form, let σ be in C∞(∆k, M), and let σ̃ : ∆k →
Hn be a lift of σ with respect to the quotient map π : Hn → M . Let τ be in
N(σ, r) for some r > 0, and let τ̃ be the lift of τ such that d(σ̃(e0), τ̃(e0)) < r.
Prove that d(σ̃(x), τ̃(x)) < r for all x in ∆k.

3. Let x and y be in Hn, let Υx,y be the Lorentzian matrix of the hyperbolic
translation of Hn that translates x to y along its axis, let c be the center of
Hn, and let Υx = Υc,x. Prove that Υx,y = ΥxΥzΥ−1

x where z = Υ−1
x (y).
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4. Let x, y, z be noncollinear points of Hn and let α, β, γ be the angles of the
triangle �(x, y, z) at x, y, z, respectively. Let τx,y be the hyperbolic trans-
lation of Hn that translates x to y along its axis. Prove that τz,xτy,zτx,y is
the hyperbolic rotation of Hn by the angle π − (α + β + γ) about the point
x in the 2-plane 〈{x, y, z}〉 of Hn.

5. Let σ, τ, υ be in C∞(∆k, M) with υ in N(σ, r) ∩ N(τ, s). Prove that there
is a t > 0 such that N(υ, t) ⊂ N(σ, r) ∩ N(τ, s). Hint: Use the previous
exercise and Lemma 1 of §5.4.

6. Let M be a hyperbolic space-form. Prove that the total variation is a norm
on the vector space Ck(M) for each k.

7. Let M be a hyperbolic space-form. Prove that mk : S∞
k (M) → Ck(M) is

norm preserving for each k.

8. Let M be a hyperbolic space-form. Prove that the C1 topology on the set
C∞(∆k, M) is first countable for each k.

9. Let M = Hn/Γ be a space-form, let σ be in C∞(∆k, M), and let {σi} be an
infinite sequence contained in N(σ, r) for some r > 0. Let σ̃ : ∆k → Hn be a
lift of σ with respect to the quotient map π : Hn → M , and let σ̃i : ∆k → Hn

be the lift of σi with respect to π such that d(σ̃(e0), σ̃i(e0)) < r for each i.
Prove that σi → σ in C∞(∆k, M) if and only if σi → σ in C(∆k, M) and
σ̃′

i → σ̃′ in C(∆k, M(n + 1, k)) where M(n + 1, k) is the space of all real
(n + 1) × k matrices with the Euclidean topology.

10. Let M be a hyperbolic space-form, let σ be in C∞(∆k, M), and let {σi} be
an infinite sequence in C∞(∆k, M). Prove that σi → σ in C∞(∆k, M) if and
only if σi → σ in C(∆k, M) and T(σi) → T(σ) in C(T(∆k), T(M)).

11. Let M = Hn/Γ be a space-form, and let π : Hn → M be the quotient map.
Prove that π∗ : C∞(∆k, Hn) → C∞(∆k, M) is a covering projection.

12. Prove that the C1 topology on Str(∆k, Hn) is the compact-open topology.

13. Let i : {e0, . . . , ek} → ∆k be the inclusion map. Prove that the map

i∗ : Str(∆k, Hn) → C({e0, . . . , ek}, Hn)

is a homeomorphism. Conclude that the space Str(∆k, Hn) is homeomorphic
to (Hn)k+1 for each k.

14. Prove that the straightening function

Strk : C∞(∆k, Hn) → Str(∆k, Hn)

is continuous for each k.

15. Let M = Hn/Γ be a space-form. Prove that Str(∆k, M) is homeomorphic to
(Hn)k+1/Γ, where Γ acts diagonally on the left of (Hn)k+1 as a discontinuous
group of isometries. Conclude that Str(∆k, M) is a connected (k + 1)n-
dimensional manifold for each k.

16. Let σ be in Str(∆k, Hn). Prove that the definition of the measure Avg(σ)
does not depend on the choice of the reflection ρ of Hn.

17. Let σ be in Str(∆k, Hn) and suppose that Avg(σ) is averaged over M . Prove
that ‖Avg(σ)‖ = Vol(M).
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§11.8. Mostow Rigidity

Let M and N be closed, connected, orientable, hyperbolic n-manifolds,
with n > 2. In this section, we prove Mostow’s rigidity theorem which
states that a homotopy equivalence ϕ : M → N is homotopic to an isom-
etry. Since M and N are complete, we may assume that M and N are
hyperbolic space-forms, say M = Hn/Γ and N = Hn/H.

It is basic theorem of differential topology that any continuous function
between differentiable manifolds is homotopic to a C∞ map. Hence, we
may assume that a homotopy equivalence ϕ : M → N is a C∞ (smooth)
map.

Lipschitz Conditions

Definition: A function f : X → Y between metric spaces satisfies a
Lipschitz condition if and only if there is a constant k > 0 such that

d(f(x), f(y)) ≤ kd(x, y) for all x, y in X.

The constant k is called a Lipschitz constant for f . Note that a function
satisfying a Lipschitz condition is uniformly continuous.

Lemma 1. Let C be a compact convex subset of Hn and let f : C → Hn

be a C1 map. Then f satisfies a Lipschitz condition.

Proof: Let x, y be distinct points of C and let α : [a, b] → C be a geodesic
arc from x to y. Then fα : [a, b] → Hn is a C1 curve from f(x) to f(y). We
pass to the upper half-space model Un of hyperbolic space. By Theorem
4.6.6, the element of hyperbolic arc length of Un is |dx|/xn. Observe that

d(f(x), f(y)) ≤ |fα|

=
∫ b

a

|(fα)′(t)|
(fα(t))n

dt

=
∫ b

a

|f ′(α(t))α′(t)|
(fα(t))n

dt

≤
∫ b

a

|f ′(α(t))| |α′(t)|
(fα(t))n

dt

=
∫ b

a

|f ′(α(t))|(α(t))n|α′(t)|
(fα(t))n(α(t))n

dt.

Let k be the maximum value of the continuous function |f ′(x)|xn/(f(x))n

on the compact set C. Then we have

d(f(x), f(y)) ≤ k

∫ b

a

|α′(t)|dt

(α(t))n

= k|α| = kd(x, y).
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Lemma 2. A C1 map ϕ : M → N satisfies a Lipschitz condition.

Proof: By Lemma 1 and Theorem 8.1.3, the map ϕ satisfies a Lipschitz
condition locally, that is, for each point w of M , there is an r(w) > 0 and
a k(w) > 0 such that d(ϕ(u), ϕ(v)) ≤ k(w)d(u, v) for all u, v in C(w, r(w)).
As M is compact, there is a finite set of points {w1, . . . , w
} of M such
that {B(wi, r(wi))} covers M . Set

k = max{k(w1), . . . , k(w
)}.

Let u, v be distinct points of M . By Theorem 8.5.5, there is a geodesic
arc α : [a, b] → M joining u to v. Moreover, there is a partition

a = t0 < · · · < tm = b

of the interval [a, b] such that for each i, we have α([ti, ti+1]) ⊂ B(wj , r(wj))
for some j. Hence, we have

d(ϕ(u), ϕ(v)) ≤
m−1∑
i=0

d(ϕ(α(ti)), ϕ(α(ti+1)))

≤
m−1∑
i=0

kd(α(ti), α(ti+1)) = kd(u, v).

By covering space theory, any map ϕ : M → N lifts to a map ϕ̃ : Hn →
Hn such that the following diagram commutes:

Hn ϕ̃−→ Hn

π ↓ ↓ η

Hn/Γ
ϕ−→ Hn/H,

where π and η are the quotient maps.

Lemma 3. Let ϕ̃ : Hn → Hn be a lift of a smooth homotopy equivalence
ϕ : M → N . Then ϕ̃ satisfies a Lipschitz condition and a Lipschitz constant
for ϕ is also a Lipschitz constant for ϕ̃.

Proof: By Theorem 8.1.3, we have that for each w in N and x in
η−1(w) there is an r(w) > 0 such that η maps B(x, r(w)) isometrically onto
B(w, r(w)). Let ε be a Lebesgue number for the covering {B(w, r(w))} of
the compact space N . Then η maps B(x, ε) isometrically onto B(η(x), ε)
for each x in Hn.

Now as M is compact, ϕ : M → N is uniformly continuous. Hence,
there is a δ > 0 such that if d(u, v) < δ, then d(ϕ(u), ϕ(v)) < ε. Let x, y
be points of Hn, with d(x, y) < δ, and let α : [a, b] → Hn be a geodesic
arc from x to y. Then πα([a, b]) ⊂ B(π(x), δ), since π is a local isometry.
Hence we have

ϕπα([a, b]) ⊂ B(ϕπ(x), ε).
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Next, observe that ηϕ̃α = ϕπα and η maps B(ϕ̃(x), ε) isometrically onto
B(ϕπ(x), ε). Therefore, by unique path lifting, we have

ϕ̃α([a, b]) ⊂ B(ϕ̃(x), ε).

Let k be a Lipschitz constant for ϕ. Then we have

d(ϕ̃(x), ϕ̃(y)) = d(ηϕ̃(x), ηϕ̃(y))
= d(ϕπ(x), ϕπ(y))
≤ kd(π(x), π(y)) = kd(x, y).

Now assume that x and y are arbitrary points of Hn. Let

x = x0, x1, . . . , xm = y

be a partition of the geodesic segment [x, y] such that d(xi, xi+1) < δ for
each i = 0, . . . , m − 1. Then

d(ϕ(x), ϕ(y)) ≤
m−1∑
i=0

d(ϕ(xi), ϕ(xi+1))

≤
m−1∑
i=0

kd(xi, xi+1) = kd(x, y).

Pseudo-isometries

Definition: Given a metric space X, a function f : X → X is a pseudo-
isometry if and only if there are constants k and 
 such that

k−1d(x, y) − 
 ≤ d(f(x), f(y)) ≤ kd(x, y)

for all x, y in X; moreover, if 
 = 0, then f is called a quasi-isometry.

Theorem 11.8.1. Let M = Hn/Γ and N = Hn/H be compact orientable
space-forms and let ϕ̃ : Hn → Hn be a lift of a smooth homotopy equiva-
lence ϕ : M → N . Then ϕ̃ is a pseudo-isometry.

Proof: Let ψ : N → M be a smooth homotopy inverse for ϕ and let
F : M × [0, 1] → M be a homotopy from ψϕ to idM . Let ψ̃ : Hn → Hn

be a lift of ψ. By the covering homotopy theorem, F lifts to a map F̃ :
Hn × [0, 1] → Hn such that F̃0 = ψ̃ϕ̃. As πF̃1 = F1π = π, we have that
F̃1 = f for some element f of Γ. By replacing ψ̃ with f−1ψ̃ and F̃ with
f−1F̃ , if necessary, we may assume that F̃1 is the identity map I of Hn.
Then F̃ is a homotopy from ψ̃ϕ̃ to I. Now let g be in Γ. Then we have

πF̃ (g × I) = F (π × I)(g × I)
= F (πg × I)
= F (π × I) = πF̃ .
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Hence, there is an element h of Γ such that F̃ (g × I) = hF̃ . As F̃1 = I,
we find that h = g. Therefore F̃ is Γ-equivariant. In particular ψ̃ϕ̃ = F̃0 is
Γ-equivariant.

Let D be a Dirichlet polyhedron for Γ. Then D is compact, since Hn/Γ
is compact. Therefore F̃ (D × [0, 1]) is compact. Let δ be the diameter of
F̃ (D × [0, 1]). If x is in D, then ψ̃ϕ̃(x) and x are in F̃ (D × [0, 1]), and so

d(ψ̃ϕ̃(x), x) ≤ δ.

As ψ̃ϕ̃ is Γ-equivariant, the above inequality holds for all x in Hn.
By Lemma 3, there is a constant k > 0 such that

d(ϕ̃(x), ϕ̃(y)) ≤ kd(x, y) and d(ψ̃(x), ψ̃(y)) ≤ kd(x, y)

for all x, y in Hn. Observe that

d(x, y) ≤ d(x, ψ̃ϕ̃(x)) + d(ψ̃ϕ̃(x), ψ̃ϕ̃(y)) + d(ψ̃ϕ̃(y), y)
≤ 2δ + kd(ϕ̃(x), ϕ̃(y)).

Therefore, we have

d(ϕ̃(x), ϕ̃(y)) ≥ k−1d(x, y) − 2δ/k.

Let 
 = 2δ/k. Then for all x, y in Hn, we have

k−1d(x, y) − 
 ≤ d(ϕ̃(x), ϕ̃(y)) ≤ kd(x, y).

Lemma 4. Let γ : [a, b] → Hn be a C1 curve, let s be the distance from
the set γ([a, b]) to a hyperbolic line L of Hn, and let ρ : Hn → L be the
nearest point retraction. Then

|ργ| ≤ (cosh s)−1|γ|.

Proof: We pass to the upper half-space model Un of hyperbolic space.
Without loss of generality, we may assume that L is the positive nth axis.
Then ρ(x) = |x|en and

cosh d(x, ρ(x)) = |x|/xn.

Observe that

|ργ| =
∫ b

a

|(ργ)′(t)|
(ργ(t))n

dt

=
∫ b

a

|ρ′(γ(t))γ′(t)|
|γ(t)| dt

=
∫ b

a

|(γ(t)/|γ(t)|) · γ′(t)|
|γ(t)| dt

=
∫ b

a

|γ(t) · γ′(t)|
|γ(t)|2 dt

≤
∫ b

a

|γ′(t)|
|γ(t)| dt

≤
∫ b

a

|γ′(t)|dt

(cosh s)(γ(t))n
= (cosh s)−1|γ|.
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Lemma 5. Let k > 0 be a Lipschitz constant for a function f : Hn → Hn

and let α : [a, b] → Hn be a geodesic arc from x to y. Then |fα| ≤ kd(x, y).

Proof: Let
a = t0 < t1 < · · · < tm = b

be a partition of [a, b]. Then
m∑

i=1

d(fα(ti−1), fα(ti)) ≤
m∑

i=1

kd(α(ti−1), α(ti)) = kd(x, y).

By definition of |fα|, we have that |fα| ≤ kd(x, y).

Lemma 6. Let f : Hn → Hn be a pseudo-isometry. Then there exists a
constant r > 0 such that if α : [a, b] → Hn is a geodesic arc, then

fα([a, b]) ⊂ N([fα(a), fα(b)], r).

Proof: Let α : [a, b] → Hn be a geodesic arc and let L be a hyperbolic
line of Hn passing through fα(a) and fα(b). Let k and 
 be constants such
that

k−1d(x, y) − 
 ≤ d(f(x), f(y)) ≤ kd(x, y)

for all x, y in Hn and set

s = cosh−1(k2 + 1).

Suppose that fα(e) is not in N(L, s). Then there is a largest subinterval
[c, d] of [a, b] containing e such that fα([c, d]) is disjoint from N(L, s). See
Figure 11.8.1. Let p = α(c) and q = α(d). Then

d(f(p), L) = s = d(f(q), L).

L

fα(a)

fα(b)

fα(c)

fα(d)

fα(e) N(L, s)

Figure 11.8.1. The pseudo-isometry f applied to the arc α
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Let β : [c, d] → Hn be the restriction of α. We now establish an upper
bound for the length of the curve fβ. Let ρ : Hn → L be the nearest point
retraction. By Lemmas 4 and 5, we have

k−1d(p, q) − 
 ≤ d(f(p), f(q))
≤ d(f(p), ρf(p)) + d(ρf(p), ρf(q)) + d(ρf(q), f(q))
≤ 2s + |ρfβ|
≤ 2s + (k2 + 1)−1|fβ|
≤ 2s + (k2 + 1)−1kd(p, q).

Therefore, we have

d(p, q) ≤ (2s + 
)k(k2 + 1) = m.

By Lemma 5, we have

|fβ| ≤ kd(p, q) ≤ km.

Now set t = s + km. Then fβ([c, d]) ⊂ N(L, t). Therefore fα(e) is in
N(L, t) and so fα([a, b]) ⊂ N(L, t).

Suppose that fα(e) is not in N([fα(a), fα(b)], t). Then there is a largest
subinterval [c, d] of [a, b] containing e such that fα([c, d]) is disjoint from
N([fα(a), fα(b)], t). See Figure 11.8.2. Let p = α(c) and q = α(d). Then
either

d(f(p), fα(b)) = t = d(f(q), fα(b))

or we have
d(f(p), fα(a)) = t = d(f(q), fα(a)).

Without loss of generality, we may assume that the former holds.

L

fα(a)

fα(b)

fα(c)

fα(d)
fα(e)

t

t

t

Figure 11.8.2. The pseudo-isometry f applied to the arc α
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Let β : [c, d] → Hn be the restriction of α. We now establish an upper
bound for the length of the curve fβ. Observe that

d(f(p), f(q)) ≤ d(f(p), fα(b)) + d(fα(b), f(q)) = 2t.

Therefore
k−1d(p, q) − 
 ≤ d(f(p), f(q)) ≤ 2t.

Hence, we have d(p, q) ≤ k(2t + 
) = j. By Lemma 5, we have

|fβ| ≤ kd(p, q) ≤ kj.

Now set r = t + kj. Then fβ([c, d]) ⊂ B(fα(b), r). Therefore fα(e) is in
B(fα(b), r), and so fα([a, b]) ⊂ N([fα(a), fα(b)], r).

Lemma 7. Let f : Bn → Bn be a pseudo-isometry. Then there exists
a constant r > 0 such that for each hyperbolic ray R of Bn based at any
point p, there is a unique hyperbolic ray R′ of Bn based at f(p) such that
f(R) ⊂ N(R′, r).

Proof: Let R be a hyperbolic ray in Bn based at p and let λ : R → Bn

be a geodesic line such that λ([0,∞)) = R. As f is a pseudo-isometry,

lim
i→∞

d(fλ(0), fλ(i)) = ∞.

Let r be the constant of Lemma 6. Then there is an m > 0 such that
d(fλ(0), fλ(i)) ≥ r for all i ≥ m.

Without loss of generality, we may assume that fλ(0) = 0. For each
integer i ≥ m, let Ri be the hyperbolic ray in Bn based at 0 and passing
through fλ(i). For each pair of integers i, j such that j > i ≥ m, let xij

be the point of Rj nearest to fλ(i). As

fλ([0, i]) ⊂ fλ([0, j]) ⊂ N(Rj , r),

we find that d(fλ(i), xij) < r. Now the triangle �(0, fλ(i), xij) has a right
angle at xij . See Figure 11.8.3. Let αij be the angle of � at 0. Then by

0 xij

αij

fλ(i)

fλ(j)

Ri

Rj

f(R)

Figure 11.8.3. The pseudo-isometry f applied to the ray R



§11.8. Mostow Rigidity 587

Formula 3.5.9, we have

sinh d(fλ(i), xij) = sinh d(0, fλ(i)) sinαij .

Therefore, we have

sin αij ≤ sinh r

sinh d(0, fλ(i))
.

Hence, for each ε > 0, there is an integer k ≥ m such that αij < ε for all
j > i ≥ k. For each integer i ≥ m, let

ui = fλ(i)/|fλ(i)|.

Then {ui} is a Cauchy sequence in Sn, since if i < j, we have

dS(ui, uj) = αij .

Therefore {ui} converges to a point u in Sn.
Let R′ be the ray based at 0 and ending at u. Then the sequence of rays

{Ri} converges to R′ in En. Consequently, the sequence of neighborhoods
{N(Ri, r)} converges to N(R′, r) in En. If i < j, then

fλ([0, i)) ⊂ fλ([0, j]) ⊂ N(Rj , r).

Therefore, we have

fλ([0, i]) ⊂ ∩
j>i

N(Rj , r) ⊂ N(R′, r).

Hence, we have
f(R) = fλ([0,∞)) ⊂ N(R′, r).

Lemma 8. Let f : Bn → Bn be a pseudo-isometry. Given a point u in
Sn−1, let R be a ray in Bn ending at u, and let R′ be a ray ending at u′ such
that f(R) ⊂ N(R′, r) for some r > 0. Then u′ is uniquely determined by
u, and the function f∞ : Sn−1 → Sn−1, defined by f∞(u) = u′, is injective.

Proof: Observe first that the point u′ depends only on R and not on the
choice of R′, since if λ : R → Bn is a geodesic line such that λ([0,∞)) = R,
then fλ(i) → u′ as i → ∞. Next, we show that u′ depends only on u and
not on the choice of R. Suppose that S is another ray ending at u and that
S′ is a ray ending at u′′ such that f(S) ⊂ N(S′, s) for some s > 0.

On the contrary, suppose that u′ �= u′′. Let µ : R → Bn be a geodesic
line such that µ([0,∞)) = S. Then there exist m > 0 such that

d(fλ(i), fµ(j)) ≥ 1

for all i, j ≥ m. Let k and 
 be constants such that

k−1d(x, y) − 
 ≤ d(f(x), f(y)) ≤ kd(x, y)

for all x, y. As R and S are asymptotic, there exists i, j ≥ m such that

d(λ(i), µ(j)) < 1/k.
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Therefore, we have that

d(fλ(i), fµ(j)) < 1,

which is a contradiction. Hence u′ = u′′. Thus u′ depends only on u, and
so we have a function f∞ : Sn−1 → Sn−1 defined by f∞(u) = u′.

We now show that f∞ is injective. On the contrary, suppose that u and
v are distinct points of Sn−1 such that u′ = v′. Let R and S be rays in Bn

ending at u and v, respectively, and let R′ and S′ be rays in Bn such that
f(R) ⊂ N(R′, r) for some r > 0 and f(S) ⊂ N(S′, s) for some s > 0. Let
λ, µ be geodesic lines as above. Then there exists m > 0 such that

d(λ(i), µ(j)) ≥ k(1 + r + s + 
) for all i, j ≥ m.

Since u′ = v′, there exists i, j ≥ m such that

d(fλ(i), fµ(j)) < 1 + r + s.

Hence, we have

d(λ(i), µ(j)) ≤ k(d(fλ(i), fµ(j)) + 
)
< k(1 + r + s + 
),

which is a contradiction. Thus f∞ is injective.

Lemma 9. Let f : Bn → Bn be a pseudo-isometry. Then there exists a
constant r > 0 such that for each hyperbolic line L of Bn, there is a unique
hyperbolic line L′ of Bn such that f(L) ⊂ N(L′, r).

Proof: Let L be a hyperbolic line of Bn with endpoints u and v, and let
λ : R → Bn be a geodesic line such that λ(R) = L and λ(t) → v as t → ∞.
Let r > 0 be the constant in Lemma 7. Then for each positive integer i,
there is a ray Ri of Bn based at fλ(i) such that

fλ((−∞, i]) ⊂ N(Ri, r).

Moreover, all the rays {Ri} terminate at the same point u′ of Sn−1 that
is the limit of the sequence {fλ(−i)}. Likewise, the sequence {fλ(i)}
converges to a point v′ of Sn−1. By Lemma 8, we have that u′ �= v′.
Hence, the sequence of rays {Ri} converges to the hyperbolic line L′ of Bn

with endpoints u′ and v′. Moreover, if j > i > 0, then

fλ((−∞, i]) ⊂ fλ((−∞, j]) ⊂ N(Rj , r).

Therefore
fλ((−∞, i]) ⊂ ∩

j>i
N(Rj , r) ⊂ N(L′, r).

Hence, we have
f(L) = fλ(R) ⊂ N(L′, r).

Lemma 10. Let f : Bn → Bn be a pseudo-isometry. Then there exists a
constant s > 0 such that for each hyperplane P of Bn and hyperbolic line L
orthogonal to P , the nearest point retraction ρ : Bn → L′ maps f(P ) onto
a geodesic segment of length at most 
.
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u v

w

J KR

L

P

c

Figure 11.8.4. The ideal triangle with sides J, K, L

Proof: Let x be an arbitrary point of P . Without loss of generality, we
may assume that P and L intersect at 0. Let R be a ray in P based at 0
and passing through x. Then there are two hyperbolic lines J and K of
Bn that are asymptotic to both R and L. See Figure 11.8.4. The distance
from 0 to either J or K is b = sinh−1(1) by Formula 3.5.17.

Let R′ be the ray based at f(0) such that f(R) ⊂ N(R′, r) as in Lemma
7, and let J ′, K ′, L′ be the hyperbolic lines of Bn that remain within a
distance r from f(J), f(K), f(L), respectively, as in Lemma 9. By Lemma
8, the endpoint of R′ is not an endpoint of L′, and J ′ and L′ are the two
hyperbolic lines of Bn that are asymptotic to both R′ and L′. See Figure
11.8.5. Let I be the hyperbolic line of Bn that is asymptotic to R′ and
perpendicular to L′. Let p be the nearest point of L′ to f(0) and let q be
the intersection of I and L′.

u′
v′

w′

J ′ K ′

L′

I

p q
f(0)

Figure 11.8.5. The ideal triangle with sides J ′, K′, L′
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Let k be a Lipschitz constant for f . Then the distance from f(0) to
J ′ and K ′ is at most kb + r, where r is the constant in Lemma 9. As
f(L) ⊂ N(L′, r), the distance from p to J ′ and K ′ is at most kb + 2r = c.
As a geodesic segment from p to either J ′ or K ′ must cross I at a point z,
we deduce from Formula 3.5.7, applied to �(p, q, z), that d(p, q) < c.

Let y be a point of R′ such that d(f(x), y) ≤ r. Since ρ does not increase
distances, d(ρf(x), ρ(y)) ≤ r. As ρ(y) lies between p and q on L′, we deduce
that

d(ρf(x), p) ≤ d(ρf(x), ρ(y)) + d(ρ(y), p) ≤ r + c.

Therefore, the diameter of ρ(f(P )) is at most 
 = 2(r + c).

Given a pseudo-isometry f : Bn → Bn, let f : Bn → Bn be the function
that extends both f and f∞ : Sn−1 → Sn−1.

Theorem 11.8.2. If f : Bn → Bn is a pseudo-isometry, then the function
f : Bn → Bn is continuous.

Proof: This is clear if n = 1, so assume that n > 1. The function f is
continuous in Bn, since f is continuous and Bn is open in Bn. We now
show that f is continuous at a point u of Sn−1. Let L be the hyperbolic
line of Bn passing through 0 and ending at u. Let r > 0 be as large as the
constants in Lemmas 9 and 10, and let L′ be the hyperbolic line of Bn such
that f(L) ⊂ N(L′, r). Let U ′ be the open neighborhood of f(u) = u′ in Bn

bounded by a hyperplane P ′ of Bn orthogonal to L′. Let H ′ be the half-
space of Bn bounded by P ′ on the opposite side from U ′. Let λ : R → Bn

be a geodesic line such that λ(R) = L and λ(t) → u as t → ∞. Then
fλ(t) → u′ as t → ∞. Let ρ : Bn → L′ be the nearest point retraction.
Then ρfλ(t) → u′ as t → ∞. Hence, there is a constant m > 0 such that

d(ρfλ(t), H ′) > 2r for all t ≥ m.

Let Pt be the hyperplane of Bn orthogonal to L at λ(t). Then by Lemma
10, we have

d(ρf(Pt), H ′) > r for all t ≥ m.

Let U be the open neighborhood of u in Bn bounded by Pm. In order to
show that f is continuous at u, it suffices to show that f(U) ⊂ U ′. Now
since the nearest point retraction ρ : Bn → L′ leaves H ′ invariant, the last
inequality implies that f(U ∩ Bn) ⊂ U ′ ∩ Bn.

Let v be a point of U ∩Sn−1 and set v′ = f(v). Let K be the hyperbolic
line of Bn passing through 0 and ending at v, and let µ : R → Bn be a
geodesic line such that µ(R) = K and µ(t) → v as t → ∞. Then there is
a constant c such that µ(t) is in U ∩ Bn for all t ≥ c. Hence fµ(t) is in
U ′ ∩ Bn for all t ≥ c. Now since fµ(t) → v′ as t → ∞, we deduce that v′

is in U ′ ∩ Sn−1. Thus f(U) ⊂ U ′ and so f is continuous at u. Thus f is
continuous.
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Measure Homology

Let ϕ : M → N be a C∞ map. Then ϕ induces a continuous function
ϕk

∗ : C∞(∆k, M) → C∞(∆k, N)
defined by ϕk

∗(σ) = ϕσ. Furthermore ϕk
∗ induces a linear transformation

(ϕk
∗)∗ : Ck(M) → Ck(N)

defined by
(ϕk

∗)∗(µ)(B) = µ((ϕk
∗)−1(B))

for each µ in Ck(M) and Borel subset B of C∞(∆k, N).

Lemma 11. The family {(ϕk
∗)∗} of linear transformations is a chain map

from C(M) to C(N).

Proof: Let µ be an element of Ck(M). Then we have

(ϕk−1
∗ )∗(∂µ) = (ϕk−1

∗ )∗
( k∑

i=0

(−1)i(η∗
i )∗(µ)

)
=

k∑
i=0

(−1)i(ϕk−1
∗ )∗(η∗

i )∗(µ)

=
k∑

i=0

(−1)i(ϕk−1
∗ η∗

i )∗(µ),

whereas

∂(ϕk
∗)∗(µ) =

k∑
i=0

(−1)i(η∗
i )∗(ϕk

∗)∗(µ)

=
k∑

i=0

(−1)i(η∗
i ϕk

∗)∗(µ).

Now observe that if σ is in C∞(∆k, M), then
(ϕk−1

∗ η∗
i )(σ) = ϕ(σ(ηi)) = (ϕσ)ηi = η∗

i ϕk
∗(σ).

Therefore, we have
ϕk−1

∗ η∗
i = η∗

i ϕk
∗.

Thus, we have
(ϕk−1

∗ )∗(∂µ) = ∂(ϕk
∗)∗(µ).

Let ϕ : M → N be a C∞ map. Then ϕ induces a cochain map
{ϕ∗

k : Ωk(M) → Ωk(N)},

which, in turn, induces a chain map
{(ϕ∗

k)∗ : Dk(M) → Dk(N)},

where
(ϕ∗

k)∗(f)(ω) = f(ϕ∗
k(ω)).
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Lemma 12. Let ϕ : M → N be a C∞ map. Then for each k the following
diagram commutes

Ck(M)

k−−→ Dk(M)

(ϕk
∗)∗ ↓ ↓ (ϕ∗

k)∗

Ck(N)

k−−→ Dk(N).

Proof: Let µ be an element of Ck(M) and let ω be in Ωk(N). Then


k(ϕk
∗)∗(µ)(ω) = f(ϕk∗)∗(µ)(ω)

=
∫

τ∈C∞(∆k,N)

(∫
τ

ω

)
d
(
(ϕk

∗)∗(µ)
)

=
∫

σ∈C∞(∆k,M)

(∫
ϕk∗(σ)

ω

)
dµ

=
∫

σ∈C∞(∆k,M)

(∫
ϕσ

ω

)
dµ

=
∫

σ∈C∞(∆k,M)

(∫
σ

ϕ∗ω
)

dµ

= fµ(ϕ∗
k(ω))

= (ϕ∗
k)∗(fµ)(ω) = (ϕ∗

k)∗
k(µ)(ω).

Therefore, we have

k(ϕk

∗)∗ = (ϕ∗
k)∗
k.

Theorem 11.8.3. Let M = Bn/Γ and N = Bn/H be compact orientable
space-forms and let ϕ̃ : Bn → Bn be a lift of a smooth homotopy equivalence
ϕ : M → N . If u0, . . . , un are the vertices of a regular ideal n-simplex in
Bn, then ϕ̃∞(u0), . . . , ϕ̃∞(un) are the vertices of a regular ideal n-simplex
in Bn.

Proof: On the contrary, suppose that the ideal n-simplex spanned by
ϕ̃∞(u0), . . . , ϕ̃∞(un) is not regular. We pass to the upper half-space model
Un of hyperbolic space, and without loss of generality, we may assume that
ui �= ∞ for each i. Let Vn be the volume of a regular ideal n-simplex. By
Theorems 11.4.1, 11.4.2, and 11.8.2, there is an ε > 0 and an r > 0 such
that if σ : ∆n → Un is a straight singular n-simplex, with |ui − σ(ei)| < r
for each i, then

Vol(Str(ϕ̃σ)(∆n)) < Vn − ε.

Define
Ui = {x ∈ Un : |ui − x| < r}

and let
Ki = {x ∈ Un : |ui − x| ≤ r/2}.
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Define
U = {g ∈ I0(Un) : gKi ⊂ Ui for each i = 0, . . . , n}.

Then U is open in I0(Un), since I0(Un) has the compact-open topology.
Let G = I0(Un). Then the quotient map κ : G → Γ\G is an open map,

since it is a covering projection. Hence κ(U) is an open subset of Γ\G.
Therefore Vol(κ(U)) > 0.

Let ς be a straight singular n-simplex in M such that

|ui − ς̃(ei)| ≤ r/2

for each i and
Vol(ς̃(∆n)) > Vn − δ,

where

δ =
εVol(κ(U))
2Vol(M)

.

Now if g is in U , then

Vol(Str(ϕ̃gς̃)(∆n)) < Vn − ε < Vol(ς̃(∆n)) + δ − ε,

whereas if g is not in U , then

Vol(Str(ϕ̃gς̃)(∆n)) < Vn < Vol(ς̃(∆n)) + δ.

By switching the indices of u0 and u1, if necessary, we may assume that
ϕς : ∆k → N preserves the standard orientation. Thus ς and ϕ either both
preserve the standard orientation or both reverse the standard orientation.

Observe that

f(Strn
)∗(ϕn∗ )∗(Smr(ς̃))(ΩN )

= f(Strn
ϕn∗ )∗(Smr(ς̃))(ΩN )

=
∫

τ∈C∞(∆n,N)

(∫
τ

ΩN

)
d
(
(Strnϕn

∗ )∗(Smr(ς̃))
)

=
∫

σ∈C∞(∆n,M)

(∫
Strn

ϕn∗ (σ)
ΩN

)
d(Smr(ς̃))

=
∫

σ∈C∞(∆n,M)

(∫
Str(ϕσ)

ΩN

)
d
(
(ς̃∗)∗(d(Γg))

)
=
∫

Γg∈Γ\G

(∫
Str(ϕς̃∗(Γg))

ΩN

)
d(Γg)

=
∫

Γg∈Γ\G

(∫
Str(ϕπgς̃)

ΩN

)
d(Γg)

=
∫

Γg∈Γ\G

(∫
Str(ηϕ̃gς̃)

ΩN

)
d(Γg)
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=
∫

Γg∈Γ\G

±Vol(Str(ϕ̃gς̃))d(Γg)

<
(
Vol(ς̃(∆n)) + δ − ε

)
Vol(κ(U))

+
(
Vol(ς̃(∆n)) + δ

)(
Vol(M) − Vol(κ(U))

)
= (Vol(ς̃(∆n)) + δ)Vol(M) − εVol(κ(U))
= (Vol(ς̃(∆n)) + δ)Vol(M) − 2δVol(M)
= (Vol(ς̃(∆n)) − δ)Vol(M).

Let ρ be a reflection of Un. Then we have

−f(Strn
)∗(ϕn∗ )∗(Smr(ρς̃))(ΩN ) = −

∫
Γg∈Γ\G

±Vol(Str(ϕ̃gρς̃))d(Γg)

≤ VnVol(M)
<
(
Vol(ς̃(∆n)) + δ

)
Vol(M).

Therefore
fStrn

∗ (ϕn∗ )∗(Avg(ς̃))(ΩN ) < Vol(ς̃(∆n))Vol(M).

Hence
fStrn

∗ (ϕn∗ )∗(Avg(ς̃))(ΩN ) = kVol(M) with k < Vol(ς̃(∆n)).

Now by Lemma 10 of §11.7 and Theorem 11.6.4, we have

nStrn

∗ (ϕn
∗ )∗(Avg(ς̃)) = fStrn

∗ (ϕn∗ )∗(Avg(ς̃))(ΩN )Vol(N)−1FN

= kVol(M)Vol(N)−1FN = kFN ;
but by Theorems 11.7.2 and 11.7.4 and Lemma 12, we have


nStrn
∗ (ϕn

∗ )∗(Avg(ς̃)) = 
n(ϕn
∗ )∗(Avg(ς̃))

= (ϕ∗
n)∗
n(Avg(ς̃))

= (ϕ∗
n)∗(±Vol(ς̃(∆n))FM ) = Vol(ς̃(∆n))FN ,

which is a contradiction.

Rigidity

Lemma 13. Let ρ be the reflection of Bn in the side S of a regular ideal
n-simplex ∆ in Bn. If n > 2, then ∆ and ρ∆ are the only regular ideal
n-simplices in Bn having S as a side.

Proof: We pass to the upper half-space model Un of hyperbolic space.
Let v0, . . . , vn be the vertices of ∆ with v0, . . . , vn−1 the vertices of S. We
may assume that v0 = ∞ and v1, . . . , vn are in Sn−2. Let ν : Un → En−1

be the vertical projection. Then ν(∆) is a Euclidean regular (n−1)-simplex
inscribed in Sn−2 by Lemma 3 of §11.4; moreover v0, . . . , vn−1, v are the
vertices of a regular ideal n-simplex if and only if v1, . . . , vn−1, v are the
vertices of a Euclidean regular (n − 1)-simplex in En−1; in which case, by
Lemma 2 of §6.5, either v = vn or v is the point obtained from vn by
reflecting En−1 in the hyperplane spanned by v1, . . . , vn−1.
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Lemma 14. Let G be the group generated by the reflections in the sides
of an ideal n-simplex ∆ in Bn with vertices u0, . . . , un. Then the union of
the orbits Gu0, . . . , Gun is dense in Sn−1.

Proof: On the contrary, assume that U = ∪n
i=0Gui is not dense in Sn−1.

Then there is a point u of Sn−1 and an open half-space H of Bn such that
u is the center of the spherical disk D = H ∩ Sn−1 and

D ⊂ Sn−1 − U.

By Theorem 7.1.1, we have

{g∆ : g ∈ G} = Bn.

Hence, there an element g of G such that g∆ meets H. Since Bn − H is
hyperbolic convex, some vertex of g∆ meets D, which is a contradiction.
Thus U is dense in Sn−1.

Theorem 11.8.4. Let M = Bn/Γ and N = Bn/H be compact orientable
space-forms, with n > 2, and let ϕ̃ : Bn → Bn be a lift of a smooth
homotopy equivalence ϕ : M → N . Then ϕ̃∞ : Sn−1 → Sn−1 is a Möbius
transformation.

Proof: Let ∆ be a hyperbolic, regular, ideal n-simplex in Bn with ver-
tices u0, . . . , un. By Theorem 11.8.3, we have that ϕ̃∞(u0), . . . , ϕ̃∞(un) are
the vertices of a regular ideal n-simplex ∆′ in Bn. Let f be the unique
Möbius transformation of Sn−1 such that fui = ϕ̃∞(ui) for each i. Then
f−1ϕ̃∞(ui) = ui for each i.

Let gi be the reflection of Bn in the side of ∆ opposite the vertex ui.
Then the points u0, . . . , ui−1, giui, ui+1, . . . , un are the vertices of the reg-
ular ideal n-simplex gi∆ in Bn. Consequently, the points

ϕ̃∞(u0), . . . , ϕ̃∞(ui−1), ϕ̃∞(giui), ϕ̃∞(ui+1), . . . , ϕ̃(un)

are the vertices of a regular ideal n-simplex (gi∆)′ in Bn. Let hi be the
reflection of Bn in the side of ∆′ opposite the vertex ϕ̃∞(ui). By Lemma
13, we have that

(gi∆)′ = hi∆′.

Therefore, we have
ϕ̃∞(giui) = hiϕ̃∞(ui).

Hence

f−1ϕ̃∞(giui) = f−1hiϕ̃∞(ui)
= f−1hiff−1ϕ̃∞(ui) = giui.

Thus f−1ϕ̃∞ fixes giui for each i.
Let G be the group generated by g0, . . . , gn. By induction, f−1ϕ̃∞ fixes

each point of U = ∪n
i=0Gui. Moreover, the set U is dense in Sn−1 by

Lemma 14. Therefore f−1ϕ̃∞ is the identity map of Sn−1 by continuity.
Hence ϕ̃∞ = f . Thus ϕ̃∞ is a Möbius transformation of Sn−1.
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Theorem 11.8.5. (Mostow’s rigidity theorem) If ϕ : M → N is a
homotopy equivalence between closed, connected, orientable, hyperbolic n-
manifolds, with n > 2, then ϕ is a homotopic to an isometry.

Proof: Without loss of generality, we may assume that M and N are
hyperbolic space-forms, say M = Bn/Γ and N = Bn/H. Let π : Bn → M
and η : Bn → N be the quotient maps. Let g be an element of Γ and let
ϕ̃ : Bn → Bn be a lift of ϕ. Then we have

ηϕ̃g = ϕπg = ϕπ = ηϕ̃.

Hence, there is a unique element ϕ∗(g) of H such that ϕ̃g = ϕ∗(g)ϕ̃. More-
over, if h is another element of Γ, then

ϕ∗(g)ϕ∗(h)ϕ̃ = ϕ∗(g)ϕ̃h = ϕ̃gh.

Therefore, we have
ϕ∗(gh) = ϕ∗(g)ϕ∗(h).

Thus ϕ∗ : Γ → H is a homomorphism.
Let ψ : N → M be a homotopy inverse for ϕ. Then as in the proof

of Theorem 11.8.1, we can choose a lift ψ̃ : Bn → Bn such that ψ̃ϕ̃ is
Γ-equivariant. Let g be an element of Γ. Then we have

gψ̃ϕ̃ = ψ̃ϕ̃g = ψ̃ϕ∗(g)ϕ̃ = ψ∗(ϕ∗(g))ψ̃ϕ̃.

Therefore g = ψ∗ϕ∗(g). Hence ψ∗ϕ∗ = idΓ. Therefore ϕ∗ is injective and
ψ∗ is surjective. Moreover ψ∗ is surjective regardless of the choice of ψ̃. By
reversing the roles of ϕ and ψ, we obtain that ϕ∗ is surjective. Therefore
ϕ∗ is an isomorphism.

Without loss of generality, we may assume that ϕ : M → N is smooth.
By Theorems 11.8.1 and 11.8.2, we have ϕ̃∞g = ϕ∗(g)ϕ̃∞ for each g in Γ.
By Theorem 11.8.4, the map ϕ̃∞ : Sn−1 → Sn−1 is a Möbius transforma-
tion of Sn−1. Hence ϕ̃∞ extends to a Möbius transformation f of Bn such
that fg = ϕ∗(g)f for each g in Γ. Therefore

fΓf−1 = ϕ∗(Γ) = H.

By Theorem 8.1.5, the map f induces an isometry f : M → N defined by

f(Γx) = fΓf−1fx = Hfx.

We now pass to the hyperboloid model of hyperbolic space. Define a
homotopy F : Hn × [0, 1] → Hn by the formula

F (x, t) =
(1 − t)ϕ̃(x) + tf(x)

|||(1 − t)ϕ̃(x) + tf(x)||| .

Then F (g × id) = ϕ∗(g)F for each g in Γ. Hence F induces a homotopy
F : M × [0, 1] → N from ϕ to f . Thus ϕ is homotopic to an isometry.

Corollary 1. The hyperbolic structure on a closed, connected, orientable,
hyperbolic n-manifold, with n > 2, is unique up to isometry homotopic to
the identity.
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Exercise 11.8

1. Let k and � be the constants in the definition of a pseudo-isometry of an
unbounded metric space X. Prove that k ≥ 1 and � ≥ 0.

2. Let X be an unbounded metric space. Prove that a function f : X → X is
a pseudo-isometry if and only if there are constants k and b such that

d(f(x), f(y)) ≤ kd(x, y) for all x, y in X and

k−1d(x, y) ≤ d(f(x), f(y)) if d(x, y) ≥ b.

3. Let L be a hyperbolic line of Hn and let ρ : Hn → L be the nearest point
retraction. Prove that ϕ does not increase distances.

4. Let L be a hyperbolic line of Dn passing through 0, and let ρ : Dn → L
be the nearest point retraction. Prove that ρ is the Euclidean orthogonal
projection of Dn onto L.

5. Let ρ be as in Exercise 3 and let x, y, z be collinear points of Hn with y
between x and z. Prove that ρ(y) is between ρ(x) and ρ(z).

6. Let a be a point on a hyperbolic line L of Hn and suppose that r > 0. Prove
that the sphere S(a, r) is tangent to ∂N(L, r).

7. Let f : B2 → B2 be a pseudo-isometry. Prove that f∞ : S1 → S1 is a
homeomorphism.

8. Let u0, . . . , un and v0, . . . , vn be the vertices of two regular ideal n-simplices
in Bn. Prove that there is a unique Möbius transformation of g of Bn such
that gui = vi for each i.

9. Let G be the group generated by the reflections in the sides of a regular ideal
n-simplex in Bn. Prove that G is discrete if and only if n ≤ 3.

10. Let Hn/Γ and Hn/H be compact, orientable, hyperbolic space-forms, and
let ξ : Γ → H be an isomorphism. Prove that there is an element f of I(Hn)
such that ξ(g) = fgf−1 for each g in Γ.

§11.9. Historical Notes

§11.1. The Davis 120-cell space appeared in Davis’s 1985 paper A hyperbolic
4-manifold [107]. See also Ratcliffe and Tschantz’s 2001 paper On the
Davis hyperbolic 4-manifold [379]. Closed hyperbolic manifolds exist in
all dimensions; for examples, see Borel’s 1963 paper Compact Clifford-
Klein forms of symmetric spaces [57], Millson’s 1976 paper On the first
Betti number of a constant negatively curved manifold [309], and Gromov
and Piatetski-Shapiro’s 1988 paper Non-arithmetic groups in Lobachevsky
spaces [185]. Borel proved that there are infinitely many nonisometric,
closed, hyperbolic n-manifolds for each dimension n in his 1969 paper On
the automorphisms of certain subgroups of semi-simple Lie groups [58].
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Theorem 11.1.2 implicitly appeared in Seifert’s 1975 paper Komplexe mit
Seitenzuordnung [403]. Theorems 11.1.3 and 11.1.6 appeared in Thurston’s
1979 lecture notes The Geometry and Topology of 3-Manifolds [425]. The
hyperbolic 24-cell space appeared in the first edition of this book. For more
examples of 24-cell spaces, see Ratcliffe and Tschantz’s 2000 paper The vol-
ume spectrum of hyperbolic 4-manifolds [378]. Open, complete, hyperbolic
n-manifolds of finite volume exist in all dimensions n > 1. Examples can be
found in Millson’s 1976 paper [309] and in Gromov and Piatetski-Shapiro’s
1988 paper [185]. Millson proved in his 1976 paper [309] that there are
infinitely many nonisometric, open, complete, hyperbolic n-manifolds of
finite volume for each dimension n > 1. See also Ratcliffe and Tschantz’s
1997 paper Volumes of integral congruence hyperbolic manifolds [377]. In
contrast to dimension three, Wang has proved that for all n > 3, there are
at most finitely many isometry classes of complete hyperbolic n-manifolds
of volume less than any given bound in his 1972 paper Topics on totally
discontinuous groups [443]. Ratcliffe and Tschantz determined the set of all
volumes of open complete hyperbolic 4-manifolds in their 2000 paper [378].
As references for n-dimensional hyperbolic manifolds, see Benedetti and
Petronio’s 1992 text Lectures on Hyperbolic Geometry [41] and Vinberg’s
1993 survey Geometry II, Spaces of Constant Curvature [438].

§11.2. Theorem 11.2.1 for 3-dimensional compact polyhedra appeared
in Weber and Seifert’s 1933 paper Die beiden Dodekaederräume [445]. The
2- and 3-dimensional cases of Theorem 11.2.2 appeared in Maskit’s 1971
paper On Poincaré’s theorem for fundamental polygons [301].

§11.3. Lemma 1 and the Euclidean case of Theorem 11.3.1 appeared
in Poincaré’s 1905 paper La généralisation d’un théorème élémentaire de
géométrie [363]. The 4-dimensional hyperbolic case of Theorem 11.3.1 ap-
peared in Dehn’s 1905 paper Die Eulersche Formel im Zusammenhang mit
dem Inhalt in der Nicht-Euklidischen Geometrie [109]. Theorems 11.3.1-2
appeared in Hopf’s 1926 paper Die Curvatura integra Clifford-Kleinscher
Raumformen [214]. For a generalization to polytopes, see Milnor’s 1994 pa-
per Euler characteristic and finitely additive Steiner measures [312]. The-
orem 11.3.3 appeared in Kellerhals and Zehrt’s 2001 paper The Gauss-
Bonnet formula for hyperbolic manifolds of finite volume [237] and in Rat-
cliffe’s 2002 survey Hyperbolic manifolds [376]. Chern’s theorem appeared
in his 1955 paper On curvature and characteristic classes of a Riemannian
manifold [87]. Theorem 11.3.4 appeared in Gromov’s 1982 paper Volume
and bounded cohomology [183]. See also Kellerhals and Zehrt’s 2001 paper
[237]. As a reference for the signature theorem, see Milnor and Stasheff’s
study Characteristic classes [314]. The spherical case of the Schläfli-Peschl
formula appeared in Schläfli’s 1855 paper Réduction d’une intégrale mul-
tiple [391]. The Euclidean and hyperbolic cases appeared in Peschl’s 1956
paper Winkelrelationen am Simplex und die Eulersche Charakteristik [350].

§11.4. Theorem 11.3.1 was proved by Haagerup and Munkholm in their
1981 paper Simplices of maximal volume in hyperbolic n-space [188]. All
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the results in this section except for Theorem 11.4.2 appeared in this paper.
§11.5. As references for the theory of differential forms, see Fleming’s

text Functions of Several Variables [145], Spivak’s text Calculus on Mani-
folds [411], and Volume I of Spivak’s treatise Differential Geometry [412].

§11.6. All the results of this section appeared in Thurston’s 1979 lecture
notes [425] and in Gromov’s 1982 paper [183].

§11.7. All the results of this section appeared in Thurston’s 1979 lecture
notes [425] and in Gromov’s 1982 paper [183]. As a reference for the C1

topology, see Hirsch’s 1976 text Differential Topology [209]. As a reference
for measure homology, see Zastrow’s 1998 paper On the (non)-coincidence
of Milnor-Thurston homology theory with singular homology theory [463].

§11.8. The concept of a quasi-isometry has it origins in Dehn’s 1912
paper Über unendliche diskontinuierliche Gruppen [110]. See also Margulis’
1970 paper Isometry of closed manifolds of constant negative curvature with
the same fundamental group [299], Cannon’s 1984 paper The combinatorial
structure of cocompact discrete hyperbolic groups [72], and Gromov and
Pansu’s 1991 survey Rigidity of lattices: An introduction [184].

The concept of a pseudo-isometry was introduced by Mostow in his 1970
paper The rigidity of locally symmetric spaces [333]. The 2-dimensional
cases of Theorem 11.8.1 and Lemma 9 were proved by Morse in his 1924
paper A fundamental class of geodesics on any closed surface of genus
greater than one [331]. See also the Morse lemma in Gromov and Pansu’s
1991 survey [184]. Theorem 11.8.2 for lifts of homeomorphisms of a closed
hyperbolic surface appeared in Nielsen’s 1924 paper Über topologische Ab-
bildungen geschlossener Fächen [342]. See also Nielsen’s 1927 paper Un-
tersuchungen zur Topologie der geschlossenen zweiseitigen Flächen [343].
Lemmas 7-9 and Theorem 11.8.2 for quasi-isometries were proved by Efre-
movič and Tihomirova in their 1963 paper Continuation of an equimor-
phism to infinity [123]. Theorem 11.8.3 was proved by Gromov and ap-
peared in Thurston’s 1979 lecture notes [425] and in Munkholm’s 1980 pa-
per Simplices of maximal volume in hyperbolic space, Gromov’s norm, and
Gromov’s proof of Mostow’s rigidity theorem (following Thurston) [335].
Theorems 11.8.4-5 for diffeomorphisms were proved by Mostow in his 1968
paper Quasi-conformal mappings in n-space and the rigidity of hyperbolic
space forms [332]. Theorems 11.8.4-5 were proved by Mostow in his 1973
study Strong Rigidity of Locally Symmetric Spaces [334].

All the essential material in this section appeared in Thurston’s 1979
lecture notes [425] and in Munkholm’s 1980 paper [335]. Prasad has gen-
eralized Mostow’s rigidity theorem to include complete hyperbolic mani-
folds of finite volume in his 1973 paper Strong rigidity of Q-Rank 1 lattices
[370]. See also Sullivan’s 1980 paper On the ergodic theory at infinity of an
arbitrary discrete group of hyperbolic motions [420], Agard’s 1985 article
Remarks on the boundary mapping for a Fuchsian group [9], and Besson,
Courtois, and Gallot’s 1996 article Minimal entropy and Mostow’s rigidity
theorems [45].



CHAPTER 12

Geometrically Finite n-Manifolds

In this chapter, we study the geometry of geometrically finite hyperbolic
n-manifolds. The chapter begins with a study of the limit set of a group
of Möbius transformations of Bn. In Sections 12.2 and 12.3, we study the
limit set of a discrete group of Möbius transformations of Bn. In Section
12.4, we study geometrically finite groups of Möbius transformations of
Bn. In Section 12.5, we study nilpotent groups of isometries of hyperbolic
n-space. In Section 12.6, we prove the Margulis lemma. In Section 12.7,
we apply the Margulis lemma to study the geometry of geometrically finite
hyperbolic n-manifolds. In particular, we determine the global geometry
of complete hyperbolic n-manifolds of finite volume.

§12.1. Limit Sets

In this section, we study the basic properties of the limit set of a group of
Möbius transformations of Bn. We shall denote the topological closure of
a subset S of Ên by S.

Definition: A point a of Sn−1 is a limit point of a subgroup G of M(Bn)
if there is a point x of Bn and a sequence {gi}∞

i=1 of elements of G such
that {gix}∞

i=1 converges to a. The limit set of G is the set L(G) of all limit
points of G.

Theorem 12.1.1. If a in Sn−1 is fixed by either a parabolic or hyperbolic
element of a subgroup G of M(Bn), then a is a limit point of G.

Proof: Let g be either a parabolic or hyperbolic element of G that fixes
the point a. By replacing g with g−1, if necessary, we may assume that a
is the attractive fixed point of g. Then gi(0) → a as i → ∞. Hence a is a
limit point of G.

600
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Theorem 12.1.2. If G is a subgroup of M(Bn), then for each point x of
Bn, we have L(G) = Gx ∩ Sn−1.

Proof: By definition, we have Gx ∩ Sn−1 ⊂ L(G). Suppose that a is a
limit point of G. Then there is a sequence {gi}∞

i=1 of elements of G and a
point y of Bn such that {giy} converges to a. Then d(gix, giy) = d(x, y)
for all i. Therefore |gix − giy| → 0 as i → ∞ by Theorem 4.5.1. Hence

lim
i→∞

gix = lim
i→∞

giy = a.

Therefore a is in Gx ∩ Sn−1. Thus L(G) = Gx ∩ Sn−1.

Corollary 1. If G is a subgroup of M(Bn), then L(G) is a closed G-
invariant subset of Sn−1.

Definition: A subset C of Bn is hyperbolic convex if any two distinct
points of C can be joined by either a hyperbolic line segment or a hyperbolic
ray or a hyperbolic line contained in C.

The hyperbolic convex hull of a subset K of Bn is the intersection C(K)
of all the hyperbolic convex subsets of Bn that contain the set K.

Lemma 1. Let G be a subgroup of M(Bn), let K be a closed G-invariant
subset of Bn, and let C(K) be the hyperbolic convex hull of K in Bn. Then
C(K) is a closed G-invariant subset of Bn.

Proof: We pass to the projective disk model Dn. Then C(K) is the
Euclidean convex hull of K in En. It is a basic theorem in the theory of
convex sets that the convex hull of a compact subset of En is compact.
Hence C(K) is compact and therefore C(K) is closed.

Let g be in G. Then C(K) is G-invariant, since

gC(K) = g(∩{S : S ⊃ K and S is a convex subset of Dn})
= ∩{gS : S ⊃ K and S is a convex subset of Dn}
= ∩{gS : gS ⊃ K and gS is a convex subset of Dn}
= ∩{S : S ⊃ K and S is a convex subset of Dn} = C(K).

Theorem 12.1.3. Let G be a nonelementary subgroup of M(Bn). Then
every nonempty, closed, G-invariant subset of Sn−1 contains L(G).

Proof: Let K be a nonempty, closed, G-invariant subset of Sn−1. Then K
is infinite, since G is nonelementary. Let C(K) be the hyperbolic convex
hull of K in Bn. Then C(K) is a closed G-invariant subset of Bn by
Lemma 1. Moreover C(K)∩Sn−1 = K, since K is a closed subset of Sn−1.
Let x be any point of C(K) ∩ Bn. Then Gx ⊂ C(K), and so

L(G) = Gx ∩ Sn−1 ⊂ C(K) ∩ Sn−1 = K.

Thus K contains L(G).
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Theorem 12.1.4. Let G be a subgroup of M(Bn). Then L(G) is empty if
and only if G is elementary of elliptic type.

Proof: Suppose G is elementary of elliptic type. Then G fixes a point b
of Bn by Theorem 5.5.1, and so

L(G) = Gb ∩ Sn−1 = {b} ∩ Sn−1 = ∅.

Conversely, suppose L(G) is empty. We prove that G is elliptic by in-
duction on n. If n = 0, then G fixes B0 = {0}, and so G is elliptic. Assume
n > 0 and the assertion is true for all dimensions less than n. Suppose G
leaves an m-plane P of Bn invariant with m < n. By conjugation G in
M(Bn), we may assume that P = Bm. Let G1 be the restriction of G to
Êm. Then G1 is a subgroup of M(Bm) such that L(G1) = ∅ by Theorem
12.1.2. Hence G1 is elliptic by the induction hypothesis. Then G1 and
therefore G fixes a point of Bm, and so G is elliptic.

Let b be in Bn. Then Gb ⊂ Bn. Let K = C(Gb). Then K is a
compact, convex, G-invariant subset of Bn by Lemma 1. Moreover 〈K〉 is
G-invariant. Hence if dimK < n, then G is elliptic. Assume dim K = n.

We pass to the hyperboloid model Hn and regard G as a subgroup of
PO(n, 1). Let Ωn be the volume form of Hn, let ι be the identity map of
Hn, and let ι Ωn be the (n + 1)-tuple of C∞ n-forms on Hn defined by

(ι Ωn)(x) = xΩn(x) = (x1Ωn(x), . . . , xn+1Ωn(x)).

Let g be in G, and let g∗(ι Ωn) be the (n + 1)-tuple of C∞ n-forms on Hn

defined by
g∗(ι Ω)(x) = gx g∗Ωn(gx).

Let v1, . . . , vn be in Tx(Hn). By Lemma 4 of §11.5, we have

g∗(ι Ωn)(x)(v1, . . . , vn) = gxΩn(gx)(gv1, . . . , gvn)
= gxdet(gv1, . . . , gvn, gx)
= gxdet g det(v1, . . . , vn, x)
= gxdet g Ωn(x)(v1, . . . , vn).

Hence g∗(ι Ωn) = (det g)g Ωn. Let p : Hn → Rn be the vertical projection.
Then by Theorem 11.5.1 on the last step, we have

g

∫
K

ι Ωn =
∫

K

g Ωn

= det g

∫
K

g∗(ι Ωn)

= det g

∫
p(K)

(p−1)∗g∗(ι Ωn)

= det g

∫
pg−1(K)

(gp−1)∗(ι Ωn) =
∫

K

ι Ωn.

Thus G fixes the vector v =
∫

K
ι Ωn in Rn,1.
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Let x = p(x). By the proof of Theorem 11.5.3, we have

vi =
∫

p(K)

xi dx1 · · · dxn

(1 + |x|2)1/2

for each i = 1, . . . , n and vn+1 = Vol(p(K)). As K = K◦, we have that
p(K) is the closure of its interior in Rn. Therefore vn+1 > 0. By the
Schwarz inequality,(∫

p(K)

xi dx1 · · · dxn

(1 + |x|2)1/2

)2

≤ Vol(p(K))
∫

p(K)

x2
i dx1 · · · dxn

1 + |x|2

for each i = 1, . . . , n. Hence we have

v2
1 + · · · + v2

n ≤ Vol(p(K))
∫

p(K)

|x|2
1 + |x|2 dx1 · · · dxn

< Vol(p(K))2 = v2
n+1.

Thus v is positive time-like. Therefore G fixes the point v/|||v||| of Hn, and
so G is elliptic.

Theorem 12.1.5. Let G be a subgroup of M(Bn) such that L(G) is finite.
Then G is elementary and G has at most two limit points.

Proof: If L(G) is empty, then G is elementary of elliptic type by Theorem
12.1.4. Assume that L(G) is nonempty. As L(G) is G-invariant, L(G) is a
union of finite G-orbits. Therefore G is elementary. The group G has at
most two limit points by Theorem 5.5.6.

Exercise 12.1

1. Let G be a subgroup M(Bn) and let H be a subgroup of G of finite index.
Prove that L(H) = L(G).

2. Let G be a subgroup M(Bn) such that G has a hyperbolic element and let
F be the set of all fixed points of hyperbolic elements of G. Prove that
L(G) = F .

3. Let G be a subgroup of M(Bn). Prove that L(G) consists of a single point if
and only if G is elementary of parabolic type and all the elements of G are
either elliptic or parabolic.

4. Let G be the subgroup of M(Un) generated by the parabolic translation
f(x) = x + e1 and the hyperbolic translation h(x) = 2x. Prove that G is
elementary of parabolic type and L(G) is uncountable.

5. Let G be a subgroup of M(Bn). Prove that L(G) consists of two points if
and only if G is elementary of hyperbolic type.
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§12.2. Limit Sets of Discrete Groups

In this section, we study the basic properties of the limit set of a discrete
group of Möbius transformations of Bn.

Theorem 12.2.1. Let Γ be a discrete subgroup of M(Bn). Then the fol-
lowing are equivalent:

(1) The group Γ is elementary.

(2) The group Γ is elementary of elliptic, parabolic, or hyperbolic type
and Γ has 0, 1, or 2 limit points, respectively.

(3) The limit set L(Γ) is finite.

Proof: Suppose that Γ is elementary. If Γ is of elliptic type, then L(Γ)
is empty by Theorem 12.1.4. Assume that Γ is of parabolic type. Let a be
the fixed point of Γ. Then Γ leaves invariant the horosphere Σ based at a
passing through 0 by Theorem 5.5.5. Hence

L(Γ) = Γ0 ∩ Sn−1 ⊂ Σ ∩ Sn−1 = {a}.

The group Γ has a parabolic element by Lemma 1 of §4.7 and Theorems
5.4.5 and 5.5.5. Hence L(Γ) = {a} by Theorem 12.1.1.

Assume now that Γ is of hyperbolic type. Let a, b be the endpoints of
the axis Λ of Γ and let x be any point of Λ. Then

L(Γ) = Γx ∩ Sn−1 ⊂ Λ ∩ Sn−1 = {a, b}.

The group Γ has a hyperbolic element by Theorem 5.5.8. Hence we have
L(Γ) = {a, b} by Theorem 12.1.1. Thus (1) implies (2). Clearly (2) implies
(3). Finally (3) implies (1) by Theorem 12.1.5.

Lemma 1. If Γ is a discrete subgroup of M(Bn) all of whose elements are
elliptic, then Γ is finite.

Proof: Every element of Γ is of finite order, since every element of Γ is
elliptic and Γ is discontinuous. By Selberg’s lemma, every finitely generated
subgroup of Γ contains a torsion-free subgroup of finite index. Therefore,
every finitely generated subgroup of Γ is finite. Given a finite subgroup H of
Γ, let Fix(H) be the set of points fixed by every element of H. Then Fix(H)
is an m-plane of Bn for some m ≥ 0. Choose H such that dim Fix(H) is as
small as possible. Now let g be any element of Γ and let K be the subgroup
of Γ generated by g and the elements of H. Then K is finitely generated
and therefore is finite. Now Fix(K) ⊂ Fix(H). Hence, by the minimality
of dim Fix(H), we have that Fix(K) = Fix(H). As g is arbitrary in Γ, we
deduce that Fix(Γ) = Fix(H). Thus Γ is elementary of elliptic type and so
Γ is finite by Theorem 5.5.2.
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Theorem 12.2.2. If F is the set of all fixed points of nonelliptic elements
of a discrete subgroup Γ of M(Bn), then F = L(Γ).

Proof: As F ⊂ L(Γ), we have that F ⊂ L(Γ), since L(Γ) is closed. Let
a be in F . Then a is fixed by some nonelliptic element h of Γ. If g is in
Γ, then ghg−1 is nonelliptic and fixes ga. Hence F , and therefore F , is
Γ-invariant. Hence L(Γ) ⊂ F by Theorems 12.1.3, 12.2.1, and Lemma 1.
Thus F = L(Γ).

Lemma 2. If g is either an elliptic or parabolic element of M(Un) such
that g(∞) �= ∞, then the isometric spheres of g and g−1 intersect.

Proof: Let Σg and Σg−1 be the isometric spheres of g and g−1, re-
spectively. By Theorem 4.4.4, the sphere Σg is orthogonal to En−1 and
g = fσ where σ is the reflection in Σg and f is a Euclidean isometry that
leaves Un invariant. Now since g−1 = σf−1 = f−1(fσf−1), we find that
Σg−1 = f(Σg) by Theorem 4.3.3. Let Hg and Hg−1 be the closed half-spaces
of Un bounded above by Σg and Σg−1 , respectively. Then

g(Un − Hg ∪ Hg−1) ⊂ g(Un − Hg)

= fσ(Un − Hg)
⊂ f(Hg) = Hg−1 .

Hence g does not fix a point of the set Un − (Hg ∪ Hg−1). Therefore, the
fixed points of g are in Hg ∪ Hg−1 . By replacing g by g−1, if necessary, we
may assume that g fixes a point a of Hg and a is in Hg if g is elliptic. If a is
in Σg, then Σg and Σg−1 intersect at a, since Σg−1 = g(Σg). Assume next
that a is inside Σg. Let Σ be the largest (horo)sphere (based) centered at
a such that Σ ⊂ Hg. Then Σ meets Σg at a unique point b. As g leaves Σ
invariant, we have that gb is in Hg, but gb is also in Σg−1 . Therefore Σg

and Σg−1 intersect, since they have the same radius.

Theorem 12.2.3. If Γ is a discrete subgroup of M(Bn) all of whose ele-
ments are either elliptic or parabolic, then Γ is elementary.

Proof: If every element of Γ is elliptic, then Γ is elementary by Lemma 1.
Now assume that Γ has a parabolic element f . We pass to the upper half-
space model Un and conjugate Γ in M(Un) so that f(∞) = ∞. Then f is
a Euclidean isometry. We now prove that every element of Γ fixes ∞. On
the contrary, suppose that g is an element of Γ such that g(∞) �= ∞. Let
Σg be the isometric sphere of g. Then for each positive integer m, we have
that Σfmg = Σg by Theorem 4.3.3. Moreover

Σg−1f−m = fmg(Σfmg) = fmg(Σg) = fm(Σg−1).
Since the cyclic group generated by f acts discontinuously on En, there is
a positive integer m such that Σg and fm(Σg−1) are disjoint. Hence Σfmg

and Σg−1f−m are disjoint. By Lemma 2, we have a contradiction. Thus,
every element of Γ fixes ∞, and so Γ is elementary.
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Theorem 12.2.4. If F is the set of all fixed points of hyperbolic elements
of a nonelementary discrete subgroup Γ of M(Bn), then F = L(Γ).

Proof: By Theorem 12.2.3, the set F is nonempty. Hence F is a nonempty,
closed, Γ-invariant subset of L(Γ), and so F = L(Γ) by Theorem 12.1.3.

Theorem 12.2.5. Let Γ be a nonelementary discrete subgroup of M(Bn).
Then the limit set L(Γ) is perfect and is therefore uncountable.

Proof: Recall that a set is perfect if and only if it is closed and has no
isolated points. On the contrary, suppose that L(Γ) has an isolated point a.
Then a is an isolated point of the set F of all fixed points of hyperbolic
elements of Γ by Theorem 12.2.4. Hence a is fixed by some hyperbolic
element h of Γ. As F is infinite, there is a b in F not fixed by h; but the
set {hk(b) : k ∈ Z} has a as a limit point, which is a contradiction. Thus
L(Γ) is perfect. It is well known that a nonempty perfect subset of En is
uncountable.

Theorem 12.2.6. Let Γ be a nonelementary discrete subgroup of M(Bn),
and let f be an element of M(Bn) that commutes with every element of Γ.
Then f is elliptic and Γ leaves invariant the set of fixed points of f .

Proof: The group Γ has a hyperbolic element h by Theorem 12.2.3. Let
Fh be the set of fixed points of h. Then Ffhf−1 = fFh implies that f
permutes the two fixed points of h. If f transposes the two fixed points of
h, then f fixes a point on the axis of h, and so f is elliptic. Thus we may
assume that f fixes the fixed points of every hyperbolic element of Γ. The
set of hyperbolic fixed points is dense in L(Γ) by Theorem 12.2.4 and L(Γ)
contains more than two points by Theorem 12.2.1. Therefore f fixes at
least three points and so f must be elliptic. If g is in Γ, then Fgfg−1 = gFf

implies that gFf = Ff , and so Γ leaves Ff invariant.

Example 1. Let Γ be a nonelementary discrete subgroup of M(Bn−1).
Then Γ extends to a nonelementary discrete subgroup Γ̃ of M(Bn) by
Poincaré extension. Let f be the reflection of Bn in Bn−1. Then f com-
mutes with every element of Γ̃.

Corollary 1. If Γ is a nonelementary discrete subgroup of M(Bn), then
the center of Γ is finite.

Proof: This follows from Lemma 1 and Theorem 12.2.6.

Corollary 2. If Γ is a nonelementary discrete subgroup of M(Bn) that
leaves no proper m-plane of Bn invariant, then the centralizer of Γ in
M(Bn) is trivial.
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Proof: Suppose f commutes with every element of Γ. Then f is elliptic
and Γ leaves invariant the m-plane of Bn of fixed points of f by Theorem
12.2.6. As Γ leaves no proper m-plane of Bn invariant, we have m = n,
and so f is the identity element of M(Bn).

The Ordinary Set

We now study some of the basic properties of the complement of the limit
set of a discrete group of Möbius transformations of Bn.

Definition: The ordinary set of a discrete subgroup Γ of M(Bn) is the
set O(Γ) = Sn−1 − L(Γ). A point of O(Γ) is called an ordinary point of Γ.

Definition: A discrete subgroup Γ of M(Bn) is of the first kind if O(Γ)
is empty; otherwise Γ is of the second kind.

Example 2. Let Γ be a discrete subgroup of M(Bn) such that Bn/Γ is
compact. Then Γ is of the first kind. To see this, let P be a fundamental
polyhedron for Γ containing 0. Then P is compact by Theorem 6.6.9. One
can easily prove that given a point x of Sn−1, there is a sequence {gi}∞

i=1
of distinct elements of Γ such that B(x, 1/i) contains giP for each i, and
so, the orbit Γ0 accumulates at x. Thus L(Γ) = Sn−1.

Example 3. Every elementary discrete subgroup of M(Bn), with n > 1,
is of the second kind by Theorem 12.2.1.

Example 4. Let Γ be a discrete subgroup of M(Bn−1). Then Γ extends
to a discrete subgroup Γ̃ of M(Bn) by Poincaré extension. Moreover, we
have L(Γ̃) = L(Γ) ⊂ Sn−2 and so Γ̃ is of the second kind. In particular, if
Γ is of the first kind, then L(Γ̃) = Sn−2.

Theorem 12.2.7. Let Γ be a discrete subgroup of M(Bn) of the second
kind. Then

(1) the ordinary set O(Γ) is an open dense subset of Sn−1;

(2) the limit set L(Γ) is a nowhere dense closed subset of Sn−1.

Proof: (1) If Γ is elementary, then clearly O(Γ) is an open dense subset
of Sn−1. Now suppose that Γ is nonelementary. Then O(Γ) is a nonempty,
closed, Γ-invariant subset of Sn−1. Therefore O(Γ) contains L(Γ) by The-
orem 12.1.3. Hence O(Γ) = Sn−1.

(2) By (1), every neighborhood of a point in L(Γ) contains a point of
O(Γ). Thus, the interior of L(Γ) in Sn−1 is empty and so L(Γ) is nowhere
dense in Sn−1.
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Nearest Point Retraction

Let K be a closed, nonempty, hyperbolic convex subset of Bn. Let x be a
point of Bn. If K consists of a single point, then the nearest point of K to
x is the single point of K, otherwise a nearest point of K to x is defined
to be x if x is in K or a point of K on the smallest (horo)sphere (based)
centered at x that meets K if x is not in K. A nearest point of K to x is
unique, since K and closed (horo)balls are convex.

The nearest point retraction of Bn onto K is the function ρK : Bn → K
defined so that ρK(x) is the the nearest point of K to x.

Lemma 3. Let K be a closed, nonempty, hyperbolic convex subset of Bn.
Then the nearest point retraction ρK : Bn → K is continuous on the set
Bn ∪ (Sn−1 − K).

Proof: If K ⊂ Sn−1, then K is a single point, and so we may assume
that K contains a point of Bn. Let x be a point of Bn ∪ (Sn−1 −K). Then
ρK(x) is a point of Bn. By applying a Möbius transformation of Bn, we
may assume, without loss of generality, that ρK(x) = 0. Let y be another
point of Bn ∪ (Sn−1 − K). In order to prove that ρ = ρK is continuous at
the point x, we will show that |ρ(x)− ρ(y)| ≤ |x− y|. This is certainly true
if ρ(y) = 0, so assume that ρ(y) �= 0. As K is hyperbolic convex, the line
segment [0, ρ(y)] is contained in K. If x �= 0, the angle between [0, ρ(y)]
and [0, x] is at least π/2, since otherwise the smallest (horo)sphere (based)
centered at x that meets K would meet the interior of [0, ρ(y)] at a point of
K nearer to x than 0. Likewise, by moving ρ(y) to 0, we see that if ρ(y) �= y,
the angle between [0, ρ(y)] and [ρ(y), y] is at least π/2. Now let P and Q
be the Euclidean hyperplanes passing through 0 and ρ(y), respectively,
perpendicular to [0, ρ(y)]. Then the points x and y are on opposite sides
of the region between P and Q. Hence |ρ(x) − ρ(y)| ≤ |x − y|. See Figure
12.2.1. Thus ρ is continuous at the point x.

0
x

y

ρ(y)

Figure 12.2.1. The nearest point retraction ρ applied to a point y
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Theorem 12.2.8. Let Γ be a discrete subgroup of M(Bn). Then Γ acts
discontinuously on Bn ∪ O(Γ).

Proof: This is clear if L(Γ) has at most one point, and so we assume that
L(Γ) has at least 2 points. Let C(Γ) be the hyperbolic convex hull of L(Γ)
in Bn. Then C(Γ) is a closed Γ-invariant subset of Bn by Lemma 1 of
§12.1. Let ρ : Bn → C(Γ) be the nearest point retraction of Bn onto C(Γ).
Then ρ(gx) = gρ(x) for all g in Γ and x in Bn, since C(Γ) is Γ-invariant.
Moreover ρ is continuous on Bn ∪ O(Γ) by Lemma 3.

Let K be a compact subset of Bn ∪ O(Γ). Then ρ(K) is a compact
subset of C(Γ) − L(Γ). Let g be an element of Γ such that K ∩ gK �= ∅.
Upon applying ρ to K ∩ gK, we find that ρ(K) ∩ gρ(K) �= ∅. By Theorem
5.3.5, the group Γ acts discontinuously on Bn. Therefore ρ(K)∩gρ(K) �= ∅
for only finitely many g in Γ, whence K ∩ gK �= ∅ for only finitely many g
in Γ. Thus Γ acts discontinuously on Bn ∪ O(Γ).

Remark: Let Γ be a discrete subgroup of M(Bn). The reason O(Γ) is
called the ordinary set of Γ is because Bn ∪O(Γ) is the largest open subset
of Bn on which Γ acts discontinuously. The proof is left as an exercise for
the reader.

Theorem 12.2.9. Let Γ be a discrete subgroup of M(Bn). Then for each
x in O(Γ), there is open neighborhood N of x in Bn ∪ O(Γ) such that for
each g in Γ, either N ∩ gN = ∅ or gN = N and gx = x.

Proof: Choose r > 0 so that

C(x, r) ∩ Bn ⊂ Bn ∪ O(Γ).

Let K = C(x, r)∩Bn. Then K is a compact subset of Bn∪O(Γ). As Γ acts
discontinuously on Bn ∪O(Γ), there are only finitely many g in Γ such that
K ∩gK �= ∅. By shrinking r, if necessary, we may assume that K ∩gK = ∅
if gx �= x. Now the stabilizer Γx is a finite group. By conjugating Γ in
M(Bn), we may assume, without loss of generality, that Γx fixes 0. Then
Γx is a subgroup of O(n) that fixes the line through 0 and x. Consequently,
each element of Γx leaves N = B(x, r) ∩ Bn invariant.

Lemma 4. Let P be a convex fundamental polyhedron for a discrete sub-
group Γ of M(Bn), and let {gi}∞

i=1 be a sequence of distinct elements of Γ.
Then the Euclidean diameter of giP goes to zero as i goes to infinity.

Proof: Let r > 0. As C(0, r) is compact, the ball B(0, r) in Bn meets only
finitely many members of {gP : g ∈ Γ}, since P is locally finite. Therefore
Bn − B(0, r) contains all but finitely many of the terms of {giP}∞

i=1. As
each giP is convex, the Euclidean diameters of all the giP in Bn − B(0, r)
are bounded above by a function of r that goes to zero as r → ∞. Therefore
diamE(giP ) → 0 as i → ∞.
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Theorem 12.2.10. If P is a convex fundamental polyhedron for a discrete
subgroup Γ of M(Bn), then {gP : g ∈ Γ} is a locally finite collection of
subsets of Bn ∪ O(Γ).

Proof: On the contrary, suppose that {gP : g ∈ Γ} is not a locally finite
collection of subsets of Bn∩O(Γ). Then there is a point a of Bn∩O(Γ) and
a sequence {gi}∞

i=1 of distinct elements of Γ such that B(a, 1/i) contains
a point xi of giP . The point a is in O(Γ), since {gP : g ∈ Γ} is a locally
finite collection of subsets of Bn. As the terms of {gi} are distinct, the
Euclidean diameter of giP goes to zero as i → ∞ by Lemma 4. As xi → a,
we deduce that gix → a for any x in P . Therefore a is a limit point of Γ,
which is a contradiction.

Theorem 12.2.11. If P is a convex fundamental polyhedron for a discrete
subgroup Γ of M(Bn), then O(Γ) = ∪{g(P ∩ O(Γ)) : g ∈ Γ}.

Proof: Let x be a point of O(Γ). Choose a sequence of points {xi}∞
i=1

in Bn converging to x. Then for each i, there is a gi in Γ such that xi

is in giP . Now only finitely many of the terms of {gi}∞
i=1 are distinct by

Theorem 12.2.10. Hence, there is a j such that xi is in gjP for infinitely
many i. Therefore x is in gjP . Thus O(Γ) = ∪{g(P ∩ O(Γ)) : g ∈ Γ}.

We now give a characterization of the discrete subgroups of M(Bn) of
the second kind in terms of the geometry of their convex fundamental
polyhedra.

Theorem 12.2.12. Let Γ be a discrete subgroup of M(Bn). Then the fol-
lowing are equivalent:

(1) The group Γ is of the second kind.

(2) Every convex fundamental polyhedron for Γ contains a closed half-
space of Bn.

(3) The group Γ has a convex fundamental polyhedron that contains a
closed half-space of Bn.

Proof: Suppose that Γ is of the second kind. Let P be a convex funda-
mental polyhedron for Γ. By Theorem 12.2.11, we have

O(Γ) = ∪{g(P ∩ O(Γ)) : g ∈ Γ}.

Now Γ is countable, since Γ is discrete. As O(Γ) is locally compact, O(Γ)
is a Baire space. Therefore, one of the closed subsets g(P ∩ O(Γ)) of O(Γ)
has a nonempty interior in O(Γ). Hence, the interior of P ∩ O(Γ) in O(Γ)
is nonempty. Let x be a point of the interior of P ∩ O(Γ). Then there is
an r > 0 so that

B(x, r) ∩ Sn−1 ⊂ P ∩ O(Γ).
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By convexity, the closed half-space of Bn bounded by B(x, r) ∩ Sn−1 is
contained in P . Thus (1) implies (2). Clearly (2) implies (3).

Suppose that Γ has a fundamental polyhedron that contains a closed
half-space Bn. Then there is a point x of Sn−1 and an r > 0 such that
B(x, r)∩Bn ⊂ P . As the sets {gP ◦ : g ∈ Γ} are mutually disjoint, the sets

{g(B(x, r) ∩ Bn) : g ∈ Γ}
are mutually disjoint. Hence, no point of B(x, r) ∩ Sn−1 is fixed by a
nonidentity element of Γ. By Theorem 12.2.2, we have that

B(x, r) ∩ Sn−1 ⊂ O(Γ).
Therefore Γ is of the second kind. Thus (3) implies (1).

Definition: Let Γ be a discrete subgroup of M(Bn). The volume of Bn/Γ
is the volume of any proper fundamental domain for Γ in Bn.

Note that the volume of Bn/Γ is well defined, since all the proper funda-
mental domains for Γ have the same volume by Theorem 6.7.2. The next
theorem follows immediately from Theorem 12.2.12.

Theorem 12.2.13. If Γ is a discrete subgroup of M(Bn) such that the
volume of Bn/Γ is finite, then Γ is of the first kind.

Theorem 12.2.14. If H is an infinite normal subgroup of a nonelementary
discrete subgroup Γ of M(Bn), then L(H) = L(Γ).

Proof: Let FH be the set of all fixed points of nonelliptic elements of
H. Then FH is nonempty by Lemma 1. Given an element h of H, let Fh

be the fixed set of h. If g is in Γ, then gFh = Fghg−1 . Therefore FH is a
Γ-invariant subset of Sn−1. Hence FH is a nonempty, closed, Γ-invariant
subset of Sn−1. Therefore L(Γ) ⊂ FH = L(H) ⊂ L(Γ) by Theorems 12.1.3
and 12.2.2.

Example 5. In §10.3, we constructed a complete hyperbolic 3-manifold
M of finite volume that is homeomorphic to the complement of the figure-
eight knot K in Ê3. By Theorem 8.5.9, there is a discrete subgroup Γ of
M(B3) such that B3/Γ is isometric to M . By Theorem 8.1.4, the group
Γ is isomorphic to the fundamental group of B3/Γ. It is a basic fact of
knot theory that the commutator subgroup of π1(M) is a free group of
rank 2 and the abelianization of π1(M) is infinite cyclic. Therefore, the
commutator subgroup Γ′ of Γ is a free group of rank 2 and Γ/Γ′ is infinite
cyclic. Now the group Γ/Γ′ acts freely and discontinuously as a group
of isometries on B3/Γ′ and the orbit space (B3/Γ′)/(Γ/Γ′) is B3/Γ. By
Theorem 8.1.3, the quotient map π : B3/Γ′ → B3/Γ is a local isometry
and a covering projection. As π is an infinite covering, B3/Γ′ has infinite
volume. Nevertheless Γ′ is of the first kind because of Theorems 12.2.13
and 12.2.14.



612 12. Geometrically Finite n-Manifolds

Theorem 12.2.15. Let Γ be a finitely generated, nonelementary, discrete
subgroup of M(Bn) that leaves no m-plane of Bn invariant for m < n − 1.
Then the normalizer N of Γ in M(Bn) is discrete.

Proof: Let {g1, . . . , gm} be a set of generators for Γ with g1 = 1. Let x
be a point of Bn that is fixed only by the identity element of Γ. Set

s = dist(x,Γx − {x}).

Let

U = {φ ∈ M(Bn) : d(φ(gix), gix) < s/2 for i = 1, . . . , m}.

Then U is an open neighborhood of the identity in M(Bn).
Suppose that f is an element of N ∩ U . Then we have

d(g−1
i f−1gifx, x) = d(gifx, fgix)

≤ d(gifx, gix) + d(gix, fgix)
= d(fx, x) + d(gix, fgix) < s.

Hence g−1
i f−1gifx = x and so g−1

i f−1gif = 1. Therefore f and gi com-
mute for each i = 1, . . . , m. As g1, . . . , gm generate Γ, we have that f
commutes with every element of Γ. By Theorem 12.2.6, we deduce that f
is elliptic and Γ leaves invariant the fixed set Ff of f .

Let m be the least integer such that L(Γ) is contained in an (m − 1)-
sphere of Sn−1. By conjugating Γ, we may assume that L(Γ) ⊂ Sm−1. As
Γ leaves the convex hull C(Γ) of L(Γ) invariant, Γ also leaves Bm invariant,
since Bm = 〈C(Γ) ∩ Bn〉. By our hypothesis, m = n − 1 or n.

Now Ff is a k-plane of Bn for some k > 0. As Γ leaves Ff invariant,
L(Γ) ⊂ F f . Hence Ff = Bn−1 or Bn. Thus f is either the reflection ρ of
Bn in Bn−1 or f = 1. Therefore

N ∩ (U − {ρ}) = {1}.

Hence {1} is open in N, and so N is discrete by Lemma 1 of §5.3.

Classical Schottky Groups

Let Γ be a subgroup of M(Bn). An open subset D of Bn is called a Γ-
packing if D ∩ gD = ∅ for all g �= 1 in Γ.

Theorem 12.2.16. Let Γ1, . . . ,Γm be subgroups of M(Bn) whose union
generates the group Γ, and let Di be a Γi-packing for each i = 1, . . . , m

such that D =
m
∩

i=1
Di is nonempty and Di ∪ Dj = Bn when i �= j. Then

(1) the group Γ is the free product of the groups Γ1, . . . ,Γm;

(2) the set D is a Γ-packing;

(3) the group Γ is discrete.
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Proof: (1) Let gk �= 1 be in Γik
for each k = 1, . . . , 
 and suppose that

ik �= ik+1 for each k = 1, . . . , 
 − 1. We now prove by induction that

g
 · · · g1(D) ⊂ Bn − Di�
.

First of all,
g1(D) ⊂ g1(Di1) ⊂ Bn − Di1 .

Assume that k < 
 and

gk · · · g1(D) ⊂ Bn − Dik
.

Then we have

gk+1gk · · · g1(D) ⊂ gk+1(Bn − Dik
)

⊂ gk+1(Dik+1)
⊂ Bn − Dik+1 .

This completes the induction. Therefore

g
 · · · g1(D) ⊂ Bn − Di�
⊂ Bn − D.

This shows that g
 · · · g1 �= 1. Therefore Γ is the free product of Γ1, . . . ,Γm.
(2) Now suppose that g �= 1 in Γ. Then there exist g1, . . . , g
 as above

so that g = g
 · · · g1. Hence D ∩ gD = ∅ by (1). Thus D is a Γ-packing.
(3) Now let x be a point of D. Then {x} is open in Γx, since D is a

Γ-packing by (2). Let ε : Γ → Γx be the evaluation map at x. Then ε is
continuous. Therefore ε−1(x) = {1} is open in Γ, and so Γ is discrete.

A Schottky polyhedron in Bn is a convex polyhedron P in Bn, with an
even number of sides, each of which is a hyperplane of Bn. See Figure
12.2.2. Let Φ be a M(Bn)-side-pairing for a Schottky polyhedron P in Bn,
with 2m sides, such that no side of P is paired to itself. The group Γ
generated by Φ is called a classical Schottky subgroup of M(Bn) of rank m.

P

Figure 12.2.2. A Schottky polygon P in B2
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Theorem 12.2.17. Let Γ be a classical Schottky subgroup of M(Bn) of
rank m. Then Γ is a free discrete subgroup of M(Bn) of rank m.

Proof: Let Γ be generated by a M(Bn)-side-pairing Φ for a Schottky
polyhedron P in Bn, with 2m sides, such that no side of P is paired to
itself. Then we can order the sides of P as follows:

S1, . . . , Sm, S′
1, . . . , S

′
m.

Moreover Γ is generated by the elements gS1 , . . . , gSm . Let Γi = 〈gSi〉 and
let Pi be the convex polyhedron in Bn with Si and S′

i as its only sides for
each i = 1, . . . , m. Then P ◦

i is a Γi-packing and Γi is infinite cyclic for each
i = 1, . . . , m. Moreover P ◦ = ∩m

i=1 P ◦
i is nonempty and P ◦

i ∪P ◦
j = Bn when

i �= j. By Theorem 12.2.16, the group Γ is discrete and the free product of
Γ1, . . . ,Γm. Thus Γ is a free group of rank m.

Example 6. Consider the Schottky polyhedron P in Un whose sides are
the vertical planes x1 = 1 and x1 = 2. Then the element h of M(Un),
defined by hx = 2x, pairs the sides of P . Observe that the set

∪{hk(P ) : k ∈ Z}
is the open half-space, x1 > 0, in Un. Therefore P is not a fundamental
polyhedron for the Schottky group Γ generated by h.

Example 6 shows that a Schottky polyhedron P is not necessarily a
fundamental polyhedron for a Schottky group generated by a side-pairing
of P . On the other hand, we have the following theorem.

Theorem 12.2.18. Let P be a Schottky polyhedron in Bn such that no
two sides of P meet at infinity, and let Γ be a Schottky group generated by
a M(Bn)-side-pairing Φ for P such that no side is paired to itself. Then P
is an exact, convex, fundamental polyhedron for Γ, and the inclusion of P
into Bn induces an isometry from the hyperbolic n-manifold P/Γ, obtained
by gluing together the sides of P by Φ, to the space-form Bn/Γ.

Proof: The theorem follows immediately from Theorems 11.1.6 and
11.2.1, since P has no cusp points.

We next show that the Schottky groups in Theorem 12.2.18 have inter-
esting limit sets.

Theorem 12.2.19. Let P be a Schottky polyhedron in Bn such that P has
at least four sides and no two sides of P meet at infinity, and let Γ be a
Schottky group generated by a M(Bn)-side-pairing Φ for P such that no
side is paired to itself. Then L(Γ) is a Cantor set.

Proof: Let S be a side of P . Since S and S′ do not meet at infinity,
the side-pairing transformation gS is hyperbolic and its fixed points are
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on opposite sides of S and S′. Let T be a side of P distinct from S and
S′. Then gT is hyperbolic and its fixed points are on opposite sides of T
and T ′. Hence gS and gT do not have a common fixed point. Therefore
Γ is nonelementary by Theorem 12.2.1. Hence L(Γ) is perfect by Theorem
12.2.5. As every perfect, totally disconnected, compact, metric space is a
Cantor set, it remains only to show that L(Γ) is totally disconnected.

We begin by showing that P∩Sn−1 ⊂ O(Γ). Assume first that P contains
a point a fixed by some g �= 1 in Γ. Then P and gP meet at a. Hence P
and gP share a side S, and so g = gS . As g−1

S (S) = S′, the sides S and
S′ meet at infinity at a, which is a contradiction. Therefore P contains no
fixed points of nonidentity elements of Γ.

Now assume that P contains a limit point b of Γ. As the interior of
P ∩ Sn−1 is contained in O(Γ), the point b is in the closure of a side S of
P . Choose r > 0 so that

B(b, r) ∩ Sn−1 ⊂
(
P ∪ gS(P )

)
∩ Sn−1.

By Theorem 12.2.2, there is a point c of B(b, r) that is fixed by a nonidentity
element of Γ. As the interiors of P ∩Sn−1 and gS(P )∩Sn−1 are contained
in O(Γ), the point c must be in the closure of S. But P contains no fixed
points of nonidentity elements of Γ, and so we have a contradiction. Thus
P ∩ Sn−1 ⊂ O(Γ).

Let P = {gP : g ∈ Γ}. Then P is an exact tessellation of Bn by
Theorem 12.2.18. Therefore P is connected by Theorem 6.8.2. Define a
sequence of convex polyhedra P1 ⊂ P2 ⊂ · · · inductively as follows. Let
P1 = P . Assume that Pi has been defined. Let Pi+1 be the union of Pi

and the polyhedra in P that share a side with Pi. Then for each i, the
polyhedron Pi is a finite union of polyhedra in P, and every side of Pi is a
hyperplane of Bn. Moreover, since P is connected, we have

∞
∪

i=1
Pi = ∪P.

Now since P ∩Sn−1 ⊂ O(Γ) and O(Γ) is Γ-invariant, P i ∩Sn−1 ⊂ O(Γ)
for each i. Therefore

L(Γ) ⊂
∞
∩

i=1

(
Bn − P i

)
.

Let u and v be distinct limit points of Γ and let L be the hyperbolic line
of Bn with end points u and v. Since

∞
∩

i=1

(
Bn − P i

)
⊂ Sn−1,

there is an i such that Bn − P i does not contain L. Then by convexity, u
and v lie in different components of Bn − P i. Let U be the component of
Sn−1−P i containing u, and let V be the union of the remaining components
of Sn−1 − P i. Then U and V are disjoint open neighborhoods in Sn−1 of
u and v, respectively, such that L(Γ) ⊂ U ∪ V. Therefore u and v lie in
different components of L(Γ). Thus L(Γ) is totally disconnected.
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Exercise 12.2

1. Let Γ be a discrete subgroup of M(Bn) with a parabolic element and let F be
the set of all fixed points of parabolic elements of Γ. Prove that L(Γ) = F .

2. Let Γ be a nonelementary discrete subgroup of M(Bn). Prove that Γ has
an infinite number of hyperbolic elements, no two of which have a common
fixed point.

3. Let g be an element of M(Bn) such that for some x in Sn−1 and radius r
with 0 < r < 2, we have

g(C(x, r) ∩ Sn−1) ⊂ B(x, r).

Prove that g is hyperbolic and that g fixes a point of B(x, r) ∩ Sn−1.

4. Let Γ be a nonelementary discrete subgroup of M(Bn) and let x, y be distinct
limit points of Γ. Prove that for each r > 0, there is a hyperbolic element
h of Γ such that B(x, r) contains one of the fixed points of h and B(y, r)
contains the other. Hint: See Exercise 4.7.10.

5. Prove that a perfect subset of En is uncountable.

6. Let Γ be a discrete subgroup of M(Bn) such that Bn/Γ is compact. Prove
that Γ is of the first kind by the argument sketched in Example 2.

7. Let Γ be a nonelementary discrete subgroup of M(Bn), let P be an m-plane
of Bn, with m > 1, and suppose that Γ leaves no �-plane of Bn invariant for
all � < m. Prove that Γ leaves P invariant if and only if L(Γ) ⊂ P ∩ Sn−1.

8. Let K be a closed hyperbolic convex subset of Bn that contains a point of
Bn and let ρK : Bn → K be the nearest point retraction. Prove that if x, y
are in Bn, then d(ρK(x), ρK(y)) ≤ d(x, y).

9. Let K be a closed, nonempty, hyperbolic convex subset of Bn. Prove that
the nearest point retraction ρK : Bn → K is continuous.

10. Let Γ be a discrete subgroup of M(Bn) and let U be an open subset of Sn−1

on which Γ acts discontinuously. Prove that O(Γ) contains U . Conclude that
Bn ∪ O(Γ) is the largest open subset of Bn on which Γ acts discontinuously.

11. Let Γ be a discrete subgroup of M(Bn). Prove that a point x of Sn−1 is in
O(Γ) if and only if there is an open neighborhood U of x in Sn−1 such that
U ∩ gU �= ∅ for only finitely many g in Γ.

12. Let P be a convex fundamental polyhedron for a discrete subgroup Γ of
M(Bn). Prove that

P ∩ Sn−1 − ∂P ⊂ O(Γ).

13. Prove that the free group Γ′ in Example 5 is not a classical Schottky subgroup
of M(B3).

14. Let g1, . . . , gm be nonelliptic elements of M(Bn) such that no two elements
have a common fixed point. Prove that there are positive integers k1, . . . , km

such that gk1
1 , . . . , gkm

m generate a classical Schottky group of rank m.

15. Let Γ be a nonelementary discrete subgroup of M(Bn). Prove that Γ contains
a classical Schottky group of rank m for each m.
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§12.3. Limit Points

In this section, we study the basic properties of conical and cusped limit
points of a discrete group of Möbius transformations of Bn.

Conical Limit Points

Definition: A point a of Sn−1 is a conical limit point of a subgroup G
of M(Bn) if there is a point x of Bn, a sequence {gi}∞

i=1 of elements of G,
a hyperbolic ray R in Bn ending at a, and an r > 0 such that {gix}∞

i=1
converges to a within the r-neighborhood N(R, r) of R in Bn.

Figure 12.3.1 illustrates the r-neighborhood of a diameter of B2. In the
upper half-space model Un, an r-neighborhood of a vertical line L of Un

is the interior of a Euclidean hypercone in Un with L as its axis. Thus ∞
is a conical limit point of a subgroup G of M(Un) if and only if there is a
point x of Un and a sequence {gi}∞

i=1 of elements of G such that {gix}∞
i=1

converges to ∞ within a Euclidean hypercone in Un whose axis is a vertical
line of Un. See Figure 12.3.2.

Theorem 12.3.1. Let a be a point of Sn−1 fixed by a hyperbolic element
h of a subgroup G of M(Bn). Then a is a conical limit point of G.

Proof: By replacing h with h−1, if necessary, we may assume that a is
the attractive fixed point of h. Let x be any point on the axis L of h. Then
{hix}∞

i=1 converges to a within any r-neighborhood of L in Bn. Thus a is
a conical limit point of G.

We next prove that the point x in the definition of a conical limit point
plays no special role.

N

a

−a

Figure 12.3.1. An r-neighborhood N of the line (−a, a) of B2
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N

b

Figure 12.3.2. An r-neighborhood N of the line (b, ∞) of U2

Theorem 12.3.2. Let a be a conical limit point of a subgroup G of M(Bn),
let x be a point of Bn, let {gi}∞

i=1 be a sequence of elements of G, let R
be a hyperbolic ray in Bn ending in a, and let r > 0 be such that {gix}∞

i=1
converges to a within N(R, r). Then for each point y of Bn, there is an
s > 0 such that {giy}∞

i=1 converges to a within N(R, s).

Proof: Let s = d(x, y) + r. For each i, there is a point zi on R such that
d(gix, zi) < r. Hence

d(giy, zi) ≤ d(giy, gix) + d(gix, zi) < d(y, x) + r = s.

Thus giy is in N(R, s) for each i, and so giy → a within N(R, s).

The next theorem gives useful conditions for proving that a limit point
of a discrete group is conical.

Theorem 12.3.3. Let a be a limit point of a discrete subgroup Γ of M(Bn),
and let {gi}∞

i=1 be a sequence of distinct elements of Γ. Then the following
are equivalent:

(1) For some (or each ) hyperbolic ray R in Bn ending at a, there is an
r > 0 such that {gi(0)} converges to a within N(R, r).

(2) For some (or each ) hyperbolic ray R in Bn ending at a, there is a
compact subset K of Bn such that K ∩ g−1

i R �= ∅ for all i.

Proof: Suppose there is a hyperbolic ray R ending at a such that {gi(0)}
converges to a within N(R, r) for some r > 0. Let S be another hyperbolic
ray ending at a. Then there is an s > 0 such that N(R, r) ⊂ N(S, s).
Therefore {gi(0)} converges to a within N(S, s). Thus, the quantifiers “for
some” and “each” are equivalent in (1).

Let R be a hyperbolic ray ending at a. Then for any g in Γ and r > 0,
one has d(g(0), R) ≤ r if and only if g−1R meets the compact set C(0, r).
Thus (1) and (2) are equivalent.
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Theorem 12.3.4. A conical limit point of a discrete subgroup Γ of M(Bn)
cannot lie on the Euclidean boundary of a convex fundamental polyhedron
for Γ.

Proof: On the contrary, suppose that a conical limit point a of Γ lies on
the Euclidean boundary of a convex fundamental polyhedron P for Γ. By
Theorem 6.4.3, there is a hyperbolic ray R in P ending at a. By Theorem
12.3.3, there is a sequence {gi}∞

i=1 of distinct elements of Γ and a compact
subset K of Bn such that K ∩ giP �= ∅ for all i. But this contradicts the
fact that P is locally finite.

Corollary 1. A fixed point of a hyperbolic element of a discrete subgroup Γ
of M(Bn) cannot lie on the Euclidean boundary of any convex fundamental
polyhedron for Γ.

Cusped Limit Points

Let Γ be a discrete subgroup of M(Un) such that ∞ is fixed by a parabolic
element of Γ. Then the stabilizer Γ∞ is an elementary group of parabolic
type. Therefore Γ∞ corresponds under Poincaré extension to a discrete
subgroup of I(En−1). By Theorems 5.4.6 and 7.5.2, there is a Γ∞-invariant
m-plane Q of En−1 such that Q/Γ∞ is compact. Let r > 0 and let N(Q, r)
be the r-neighborhood of Q in En. Then N(Q, r) is invariant under Γ∞.
Now define

U(Q, r) = Un − N(Q, r). (12.3.1)

Then U(Q, r) is an open Γ∞-invariant subset of Un. Note that if m = n−1,
then U(Q, r) is a horoball based at ∞. The set U(Q, r) is said to be a cusped
region for Γ based at ∞ if for all g in Γ − Γ∞, we have

U(Q, r) ∩ gU(Q, r) = ∅. (12.3.2)

Let r1 be the infimum of all r > 0 such that U(Q, r) is a cusped region
for Γ based at ∞. If Γ �= Γ∞, then r1 > 0 and U(Q, r1) is the maximal
cusped region for Γ based at ∞, since if x, y are in U(Q, r1) and g is in Γ
with y = gx, then there is an r > r1, such that U(Q, r) is a cusped region
for Γ based at ∞, with x, y in U(Q, r), whence g is in Γ∞.

A cusped region U(Q, r) for Γ based at ∞ is said to be proper if U(Q, r)
is nonmaximal. Let U(Q, r) be a proper cusped region for Γ based at ∞.
Then U(Q, r) is a subset of a cusped region U(Q, s) for Γ based at ∞ with
s < r. Hence, we have

U(Q, r) − {∞} ⊂ U(Q, s).

Therefore, for all g in Γ − Γ∞, we have

U(Q, r) ∩ gU(Q, r) = ∅. (12.3.3)
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−1 0 1

Figure 12.3.3. The four circles in Example 1

Example 1. Let P be the Schottky polyhedron in U3 with four sides
whose boundaries in Ĉ are the four circles in Figure 12.3.3. We pair the
two vertical sides of P and the two nonvertical sides of P by reflecting in the
vertical plane midway between the two vertical sides, and then reflecting
in the corresponding side of P . This side-pairing generates a Schottky
subgroup Γ of M(U3) of rank 2. The group Γ corresponds under Poincaré
extension to the group in Example 2 at the end of §9.8.

Observe that the parabolic translation f(z) = z + 2 generates Γ∞ and
Γ∞ leaves invariant the real axis R of C. Let r ≥ 1/2 and let N(R, r) be
the r-neighborhood of R in E3. Then Γ∞ leaves N(R, r) invariant. Hence
Γ∞ leaves invariant the set

U(R, r) = U3 − N(R, r).

As U(R, r) ⊂ ∪{fk(P ) : k ∈ Z}, we have that U(R, r) ∩ gU(R, r) = ∅ for
all g in Γ − Γ∞, Thus U(R, r) is a cusped region for Γ.

Definition: Let c be a point of En−1 fixed by a parabolic element of a
discrete subgroup Γ of M(Un). A subset U of Un is a (proper) cusped region
for Γ based at c if upon conjugating Γ so that c = ∞, the set U transforms
to a (proper) cusped region for Γ based at ∞.

Lemma 1. If U is a cusped region based at c for a discrete subgroup Γ of
M(Un), then U ⊂ Un ∪ O(Γ).

Proof: On the contrary, suppose that there is a limit point a of Γ in U .
Then there is a point x of Un and a sequence {gi}∞

i=1 of elements of Γ such
that {gix} converges to a. As U is an open neighborhood of a in Un, there
is an integer j such that gix is in U for all i ≥ j. Since U ∩ gU = ∅ for all
g in Γ − Γc and gix = (gig

−1
j )gjx, we conclude that gig

−1
j is in Γc for all

i ≥ j. Hence, there is an element fi of Γc such that gi = figj for all i ≥ j.
Let y = gjx. Then {fiy}∞

i=j converges to a. Hence a is a limit point of Γc.
Therefore a = c. But c is not in U , and so we have a contradiction.
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Definition: A cusped limit point of a discrete subgroup Γ of M(Un) is a
fixed point c of a parabolic element of Γ such that there is a cusped region
U for Γ based at c.

Definition: A bounded parabolic limit point of a discrete subgroup Γ of
M(Un) is a fixed point a of a parabolic element of Γ such that the orbit
space (L(Γ) − {a})/Γa is compact.

Theorem 12.3.5. Let Γ be a discrete subgroup of M(Un) such that ∞ is
fixed by a parabolic element of Γ. Let Q be a Γ∞-invariant m-plane of
En−1 such that Q/Γ∞ is compact. Then ∞ is a bounded parabolic limit
point of Γ if and only if there is an r > 0 such that L(Γ) ⊂ N(Q, r).

Proof: The group Γ∞ is a discrete group of isometries of En that leaves
En−1 invariant by Theorem 5.5.5. Suppose that ∞ is a bounded parabolic
limit point of Γ. Then (L(Γ)−{∞})/Γ∞ is a bounded subset of En−1/Γ∞.
Hence there is an r > 0 such that (L(Γ) − {∞})/Γ∞ is contained in the
r-neighborhood of Q/Γ∞ in En−1/Γ∞. Therefore L(Γ) ⊂ N(Q, r).

Conversely suppose L(Γ) ⊂ N(Q, r). Then (L(Γ) − {∞})/Γ∞ is con-
tained in the compact subset (N(Q, r) − {∞})/Γ∞ of En−1/Γ∞. As O(Γ)
is a Γ∞-invariant open subset of En−1, we have that O(Γ)/Γ∞ is an open
subset of En−1/Γ∞ and (L(Γ)−{∞})/Γ∞ is a closed subset of En−1/Γ∞.
Therefore (L(Γ) − {∞})/Γ∞ is compact, and so ∞ is a bounded parabolic
limit point of Γ.

Corollary 2. A cusped limit point of a discrete subgroup Γ of M(Un) is a
bounded parabolic limit point of Γ.

Proof: Let c be a cusped limit point of Γ. By conjugating Γ, we may
assume that c = ∞. Let U(Q, r) be a cusped region for Γ based at ∞. By
Lemma 1, we have that U(Q, r) ⊂ Un ∪ O(Γ). After taking complements
in U , we have L(Γ) ⊂ N(Q, r). Thus c is a bounded parabolic limit point
by Theorem 12.3.5.

Remark: In §12.6, we will prove the converse of Corollary 2 that every
bounded parabolic limit point of Γ is a cusped limit point of Γ.

Theorem 12.3.6. Let c be a cusped limit point of a discrete subgroup Γ
of M(Un) and let P be a convex fundamental polyhedron for Γ. Then there
is an element g of Γ such that c is in gP .

Proof: We conjugate Γ so that c = ∞. Then Γ has a cusped region
U(Q, r) based at ∞. By Lemma 1, we have U(Q, r) ⊂ Un ∪ O(Γ). Hence,
by increasing r, we may assume that U(Q, r) ⊂ Un ∪O(Γ) ∪ {∞}. We now
prove that P meets only finitely many members of {gU(Q, r) : g ∈ Γ}.
Define

C(Q, r) = U(Q, r) −
(
U(Q, r + 1) ∪ {∞}

)
.
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Then C(Q, r) is a closed subset of En. Now as U(Q, r) ∩ gU(Q, r) = ∅ for
all g in Γ − Γ∞, we have U(Q, r) ∩ gU(Q, r + 1) = ∅ for all g in Γ − Γ∞.
Therefore

C(Q, r) ⊂ Un − ∪
g∈Γ

gU(Q, r + 1).

As C(Q, r) ∩ Un is nonempty, U(Q, r + 1) does not contain gP for any g
in Γ. Therefore, if gP meets U(Q, r), then gP meets C(Q, r), since gP is
connected. Thus, if P meets g−1U(Q, r), then gP meets C(Q, r).

Let D be a Dirichlet polyhedron for Γ∞ in Q. Then D is compact, since
Q/Γ∞ is compact. Let ρ : En → Q be the orthogonal projection. Then
ρ−1(D) is closed in En, since ρ is continuous. Hence K = C(Q, r)∩ρ−1(D)
is a closed subset of En; moreover K is bounded, since K ⊂ N(D, r + 1).
Therefore K is compact. Furthermore C(Q, r) = ∪{fK : f ∈ Γ∞}. By
Theorem 12.2.10, we have that {gP : g ∈ Γ} is a locally finite family of
subsets of Un ∪ O(Γ). As K is a compact subset of Un ∪ O(Γ), we deduce
that K meets only finitely many Γ-images of P , say g1P, . . . , gkP . Now
suppose that P meets g−1U(Q, r). Then gP meets C(Q, r). Hence, there
is an f in Γ∞ such that gP meets fK, and so f−1gP meets K. Therefore
f−1g = gi for some i, and so g = fgi. Hence g−1U(Q, r) = g−1

i U(Q, r).
Thus P meets only g−1

1 U(Q, r), . . . , g−1
k U(Q, r).

Now let {xi}∞
i=1 be a sequence of points of U(Q, r) such that the nth

coordinate of xi is positive and goes to infinity as i → ∞. Then for each
i, there is an hi in Γ such that hixi is in P . Then P meets hiU(Q, r).
Hence, there is a j such that hiU(Q, r) = hjU(Q, r) for infinitely many
i ≥ j. For all such i, we have that h−1

j hiU(Q, r) = U(Q, r). Hence, there
is an fi in Γ∞ such that h−1

j hi = fi. Therefore hi = hjfi. Let yi = fixi.
Then hjyi = hixi, and so hjyi is in P . Hence yi is in h−1

j P . As the nth
coordinate of xi goes to infinity as i → ∞, we have that fixi → ∞, and so
yi → ∞. Thus ∞ is in h−1

j P .

The next corollary follows immediately from Theorems 12.3.4 and 12.3.6.

Corollary 3. A cusped limit point of a discrete subgroup Γ of M(Un) is
not a conical limit point of Γ.

Lemma 2. Let Γ be a discrete subgroups of M(Un) such that ∞ is fixed
by a parabolic element of Γ, let Q be a Γ∞-invariant m-plane of En−1 such
that Q/Γ∞ is compact, let P be a convex fundamental polyhedron for Γ,
and let {xi}∞

i=1 be a sequence of points of P converging to ∞. Then

lim
i→∞

distE(xi, Q) = ∞.

Proof: By Theorem 5.4.5, the group Γ∞ has a torsion-free subgroup of
H of finite index. Then Q/H is compact by Lemma 1 of §7.5. Let D be a
Dirichlet polyhedron for H. Then D is compact. Let r > 0 and let M(D, r)
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be the r-neighborhood of D in En−1. Then M(D, r) is compact. Let
M(Q, r) be the r-neighborhood of Q in En−1. Then M(Q, r) is convex. As
M(D, r) projects onto (M(Q, r)−{∞})/H, we find that (M(Q, r)−{∞})/H
is compact. Hence M(Q, r)/H has finite volume in the space-form En−1/H.

Now since xi → ∞ in P , we have that ∞ is P . Let ν : Un → En−1

be the vertical projection. Then ν(P ◦) is an open convex subset of En−1.
Hence ν(P ◦) ∩ M(Q, r) is an open convex subset of En−1. Now since
ν(P ◦) ∩ M(Q, r) injects into M(Q, r)/H, we deduce that ν(P ◦) ∩ M(Q, r)
has finite volume in En−1. Therefore ν(P ◦) ∩ M(Q, r) is bounded. Hence
ν(P ) ∩ M(Q, r) is compact.

We now show that distE(xi, Q) → ∞. On the contrary, suppose there
is an r > 0 such that distE(xi, Q) ≤ r for infinitely many i. For these
infinitely many i, the point ν(xi) is in the bounded subset ν(P ) ∩ M(Q, r)
of En−1. As xi → ∞, there is an i such that distE(xi, Q) ≤ r and the nth
coordinate of xi is greater than r, which is a contradiction.

Definition: A polyhedral wedge in En is a convex polyhedron P in En

such that the intersection of all its sides is nonempty.

Note that the intersection of all the sides of a polyhedral wedge in En

is an m-plane of En. Also a polyhedral wedge in En has only finitely
many sides, since the collection of its sides is locally finite. Figure 12.3.4
illustrates a polyhedral wedge in E2.

Lemma 3. Let P be an n-dimensional polyhedral wedge in En. Then there
is an integer 
 such that if P1, . . . , Pk are polyhedra in En that are congruent
to P , with mutually disjoint interiors, then k ≤ 
.

Proof: Let a be any point in the intersection of all the sides of P . The
normalized solid angle subtended by P is defined to be

ω(P ) =
Vol(P ∩ B(a, 1))

Vol(B(a, 1))
.

Given r > 0, let µr be the similarity of En defined by µr(x) = x/r and
let τr be the translation of En defined by τr(x) = x − a + a/r. Then
µr(P ) = τr(P ).

P

Figure 12.3.4. A polyhedral wedge P in E2
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Observe that

lim
r→∞

Vol(P ∩ B(0, r))
Vol(B(0, r))

= lim
r→∞

Vol(µr(P ) ∩ B(0, 1))
Vol(B(0, 1))

= lim
r→∞

Vol(P ∩ B(τ−1
r (0), 1))

Vol(B(τ−1
r (0), 1))

= lim
r→∞

Vol(P ∩ B(a − a/r, 1))
Vol(B(a − a/r, 1))

=
Vol(P ∩ B(a, 1))

Vol(B(a, 1))
= ω(P ).

Now let 
 be the greatest integer less than or equal to 1/ω(P ). Suppose
there are 
 + 1 polyhedra P0, . . . , P
 in En that are congruent to P whose
interiors are mutually disjoint. We shall derive a contradiction. First of
all, ω(Pi) = ω(P ) for each i. Choose r sufficiently large so that for each i,
we have ∣∣∣∣Vol(Pi ∩ B(0, r))

Vol(B(0, r))
− ω(P )

∣∣∣∣ < ω(P ) − 1

 + 1

.

Then for each i,

Vol(Pi ∩ B(0, r)) > Vol(B(0, r))/(
 + 1).

Hence

Vol
(



∪

i=0
Pi ∩ B(0, r)

)
=




Σ
i=0

Vol(Pi ∩ B(0, r)) > Vol(B(0, r)),

which is a contradiction. Thus 
 is the desired upper bound.

Cusp Points

Let P be a convex polyhedron in Un. A cusp point of P is an ideal point c
of P for which there is an open neighborhood N of c in Ên such that the
intersection of the closures in Un of all the sides of P that meet N is c. If
c is a cusp point of P , then the cusp of P incident with c is the union of
all the sides of P incident with c. For example, the two vertical sides of
the polyhedron P in Example 1 form a cusp of P with ∞ its cusp point.
Likewise, the points −1, 0, and 1 are cusp points of P .

Suppose that c is a cusp point of P . Then there is a horosphere Σ based
at c such that Σ meets just the sides of P incident with c. By Theorem
6.4.5, the set L(c) = Σ ∩ P is a Euclidean convex polyhedron called the
link of c in P . Note that the orientation preserving similarity class of L(c)
does not depend on the choice of Σ. If we conjugate Γ so that c = ∞, then
there is a canonical way of representing L(c). Let ν : Un → En−1 be the
vertical projection. Then L(c) is directly similar to νP . For example, the
projection νP of the polyhedron P in Example 1 is the polygon in C whose
sides are the two vertical straight lines in Figure 12.3.3.
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An ideal vertex of a polyhedron P in Un is a cusp point c of P such
that L(c) is compact. If P is 2-dimensional, then every cusp point of P
is an ideal vertex. The cusp points of the 3-dimensional polyhedron P in
Example 1 are not ideal vertices of P . If P is n-dimensional and has finite
volume in Un, then every cusp point of P is an ideal vertex of P .

Theorem 12.3.7. Let a be a bounded parabolic limit point of a discrete
subgroup Γ of M(Un) and let P be a convex fundamental polyhedron for Γ
such that a is in P . Then a is a cusp point of P .

Proof: First we show that there is an r > 0 such that the open ball
B(a, r), in the chordal metric on Ên, meets just the sides of P incident
with a. Suppose that this is not the case. Then for each positive integer
i, the ball B(a, 1/i) meets a side Si of P such that a is not in Si. Since
B(a, 1/i) is open, it contains a point xi of S◦

i . Then the sequence {xi}∞
i=1

converges to a. By Lemma 1 of §6.7, there is an element gi �= 1 of Γ such
that xi is in P ∩ giP for each i. We now pass to the projective disk model
Dn. By Theorem 6.4.2, we have

P ∩ giP ⊂ (P ∩ giP ) ∪ (P ∩ Sn−1)
⊂ ∂P ∪ (P ∩ Sn−1) = ∂P .

Hence P ∩giP is a convex subset of ∂P . By Theorem 6.2.6, the set P ∩giP
is contained in a side of the convex set P . As xi is in S◦

i , we deduce that
P ∩ giP ⊂ Si by Theorem 6.4.2. As a is in P − Si for all i, we have that
gia �= a for all i.

We pass back to Un and conjugate Γ so that a = ∞. Let Q be a Γ∞-
invariant m-plane of En−1 such that Q/Γ∞ is compact, and let r > 0 be
such that L(Γ) ⊂ N(Q, r). Then gia is in N(Q, r)−{∞} for each i. Let D
be a Dirichlet polyhedron for Γ∞ in Q. Then D is compact, since Q/Γ∞ is
compact. Hence N(D, r) is compact. Now for each i, there is an element
fi of Γ∞ such that figia is in N(D, r). By passing to a subsequence,
we may assume that figia → b in En−1. By Lemma 2, we have that
distE(xi, Q) → ∞. Hence distE(fixi, Q) → ∞. Therefore fixi → a.

We now show that infinitely many of the terms of {figi}∞
i=1 are distinct.

Suppose that this is not the case. Then by passing to a subsequence, we
may assume that there is an element h of Γ such that figi = h for all i. As
xi is in giP , we have that fixi is in hP for all i. As fixi → a, we find that
a is in hP . Hence a = f−1

i a is in f−1
i hP = giP . Then a is in P ∩ giP and

so a is in Si, which is a contradiction. Thus, infinitely many of the terms
of {figi} are distinct.

Let Ri be the ray in figiP joining fixi to figia. The sequence of rays
{Ri} converges to the line (a, b). Let x be any point of (a, b). Then B(x, 1)
meets all but finitely many of the rays {Ri}. Hence, the compact set C(x, 1)
meets all but finitely many terms of {figiP} contrary to the local finiteness
of P . Hence there is an r > 0 such that B(a, r) meets just the sides of P
incident with a.
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Now since every point of P ∩ Ên−1 − ∂P is an ordinary point of Γ, the
limit point a is in ∂P . Hence B(a, r) meets at least one side of P incident
with a. Let Σ be a horosphere based at a and contained in B(a, r). We
conjugate Γ so that a = ∞. By Theorem 6.4.4, we have that Σ meets just
the vertical sides of P . Hence P ∩ Σ is a Euclidean, (n − 1)-dimensional,
convex, polyhedron in Σ with at least one side by Theorem 6.4.5. Let
ν : Un → En−1 be the vertical projection. Then νP is a Euclidean, (n−1)-
dimensional, convex, polyhedron in En−1 directly similar to P ∩ Σ.

We now show that a is a cusp point of P . Suppose that this is not
the case. Then the intersection of all the vertical sides of P is nonempty.
Hence νP is a polyhedral wedge in En−1. Let f be a parabolic element of
Γ∞. Then f has infinite order. As the polyhedra {fkP}∞

k=1 have mutually
disjoint interiors in Un, the polyhedra {νfkP}∞

k=1 have mutually disjoint
interiors in En−1. As νfkP = fkνP for each k, the polyhedron νfkP is
congruent to νP for each k. But this contradicts Lemma 3. Thus a is a
cusp point of the polyhedron P .

Example 2. Consider the Schottky polygon P in B2 in Figure 12.3.5.
The polygon P is invariant under the antipodal map of B2. We pair the
opposite sides of P by hyperbolic translations g, h along the diameters of
B2 joining the opposite sides of P . This side-pairing generates a Schottky
group Γ of rank two. The polygon P obviously contains the Dirichlet
polygon D for Γ centered at 0. Hence P = D, since P ◦ is a Γ-packing. The
cusp point v of P is an ordinary point of Γ, since the open circular arcs
(gu, v) and (v, hw) are subsets of O(Γ) and limit points are not isolated.
Thus v is not a limit point of Γ.

P

u

v

w

−u

−v

−w

hwgu

gP hP

Figure 12.3.5. The polygon P and two of its translates
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Exercise 12.3

1. Let a be a conical limit point of a subgroup G of M(Bn). Prove that ga is a
conical limit point of G for each g in Γ.

2. Let a be a limit point of a subgroup G of M(Bn). Prove that a is a conical
limit point of G if and only if there is a sequence {gi}∞

i=1 of elements of G
such that {gi(0)}∞

i=1 converges to a within a Euclidean hypercone C whose
vertex is a and whose axis passes through 0.

3. Let c be a cusped limit point of a discrete subgroup Γ of M(Un). Prove that
gc is a cusped limit point of Γ for each g in Γ.

4. Prove directly that a cusped limit point of Γ is not a conical limit point.

5. Let P be a polyhedral wedge in En. Prove that the intersection of all the
sides of P is an m-plane of En.

6. Let P be a polyhedral wedge in En with at least two sides. Prove that every
side of P is a polyhedral wedge.

7. Let P be an n-dimensional convex polyhedron in Un of finite volume. Prove
that every cusp point of P is an ideal vertex.

§12.4. Geometrically Finite Discrete Groups

In this section, we characterize the discrete subgroups of M(Bn) that have
the property that every limit point is either conical or cusped in terms of
the geometry of their convex fundamental polyhedra.

Geometrically Finite Convex Polyhedra

A convex polyhedron P in Bn is said to be geometrically finite if for each
point x of P ∩Sn−1 there is an open neighborhood N of x in En that meets
just the sides of P incident with x.

Example 1. Every finite-sided convex polyhedron in Bn is geometrically
finite.

Example 2. Let Q be a convex polyhedron in En−1 with infinitely many
sides and let ν : Un → En−1 be the vertical projection. Then the vertical
prism P = ν−1(Q) is a convex polyhedron in Un with an infinite set of
sides

{ν−1(S) : S is a side of Q}.

The polyhedron P is geometrically finite in Un, since the set of sides of P
is locally finite in En and every side of P is incident with ∞.
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Theorem 12.4.1. Let P be a geometrically finite convex polyhedron in
Bn. Then

(1) if x is in ∂P ∩ Sn−1, then there is a side of P incident with x;

(2) if x is in ∂P ∩ Sn−1 and infinitely many sides of P are incident with
x, then x is a cusp point of P ;

(3) the polyhedron P has only finitely many cusp points;

(4) all but finitely many of the sides of P are incident with a cusp point
of P .

Proof: (1) Since P is geometrically finite, there is an r > 0 such that
B(x, r) meets just the sides of P incident with x. As x is in ∂P , the ball
B(x, r) meets a side of P , which is therefore incident with x.

(2) Suppose that the set S(x) of all sides of P incident with x is infinite.
Then the intersection of all the sides in S(x) is empty, since S(x) is locally
finite. Therefore x is a cusp point of P .

(3) As P ∩ Sn−1 is compact, there are points x1, . . . , xm of P ∩ Sn−1

and radii r1, . . . , rm such that B(xi, ri) meets just the sides of P incident
with xi for each i and

P ∩ Sn−1 ⊂
m
∪

i=1
B(xi, ri).

Suppose that B(xi, ri) contains a cusp point c of P . Then all the sides of
P incident with c are incident with xi. As the intersection of the Euclidean
closures of all the sides of P incident with c is c, we conclude that c = xi.
Hence, all the cusp points of P are in the set {x1, . . . , xm}. Thus P has
only finitely many cusp points.

(4) Let B(x1, r1), . . . , B(xm, rm) be as in (3). As P −
m
∪

i=1
B(xi, ri) is

compact and the set of sides of P is locally finite, all but finitely many
sides of P meet

m
∪

i=1
B(xi, ri). Reindex x1, . . . , xm so that x1, . . . , xk are all

the cusp points of P . Then the ball B(xi, ri) meets only finitely many sides
of P for each i = k + 1, . . . , m by (2). Hence, all but finitely many sides

of P meet
k
∪

i=1
B(xi, ri). Thus, all but finitely many sides of P are incident

with a cusp point of P .

Corollary 1. A geometrically finite convex polyhedron P in Bn is finite-
sided if and only if all its cusps are finite-sided.

Corollary 2. Every geometrically finite convex polygon in B2 is finite-
sided.

We next prove a series of lemmas about convex polyhedra in Euclidean
n-space En.
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Lemma 1. Let P be a convex polyhedron in En. Then ∂P is disconnected
if and only if ∂P is the union of two parallel hyperplanes of 〈P 〉.

Proof: Without loss of generality, we may assume that 〈P 〉 = En. Choose
a point a of P ◦ and r > 0 so that C(a, r) ⊂ P . Define a function

ρ : ∂P → S(a, r)
by letting ρ(x) be the intersection of the line segment [a, x] with the sphere
S(a, r). Then we have

ρ(x) = a +
r(x − a)
|x − a| .

Hence ρ is a continuous injection. Moreover ρ maps ∂P homeomorphically
onto ρ(∂P ), since ρ maps S homeomorphically onto ρ(S) for each side S of
P and the set of sides of P is locally finite. Therefore ∂P is disconnected
if and only if ρ(∂P ) is disconnected.

Let S be a side of P . Then for each point x of 〈S〉, the line segment
[a, x] intersects both ∂P and S(a, r). Consequently ρ(∂P ) contains the
open hemisphere of S(a, r) nearest to S whose boundary is parallel to S.
As ∂P is the union of the sides of P , we deduce that ρ(∂P ) is a union of
open hemispheres of S(a, r) whose boundaries are parallel to the sides of
P . Consequently ρ(∂P ) is disconnected if and only if ρ(∂P ) is the union of
two antipodal open hemispheres of S(a, r). Therefore ∂P is disconnected if
and only if P has exactly two parallel sides. Now P has exactly two parallel
sides if and only if each side of P is a hyperplane of En by Theorems 6.2.6
and 6.3.5. Thus ∂P is disconnected if and only if ∂P is the union of two
parallel hyperplanes of En.

Lemma 2. Let E and E′ be two k-faces of a convex polyhedron P in En.
Then there is a sequence F1, . . . , F
 of (k + 1)-faces of P such that E is a
side of F1, and E′ is a side of F
, and Fi and Fi+1 meet along a common
side for each i = 1, . . . , 
 − 1.

Proof: Let m = dimP . The proof is by induction on m − k. This is
clear if k = m − 1, so assume that k < m − 1 and the theorem is true for
(k +1)-faces of P . Let F and F ′ be (k +1)-faces of P such that E is a side
of F and E′ is a side of F ′. If F = F ′, then we are done, so assume that
F �= F ′. Then by the induction hypothesis, there is a sequence G1, . . . , G


of (k +2)-faces of P such that F is a side of G1, and F ′ is a side of G
, and
Gi and Gi+1 meet along a common side Fi for each i < 
. Let F0 = F and
F
 = F ′. We may assume that 
 is as small as possible. Then Fi �= Fi+1 for
each i. Since F has at least one side E, we have that ∂G1 is connected by
Lemma 1. Hence, there is a sequence F11, . . . , F1
1 of sides of G1 such that
F0 = F11, F1
1 = F1, and F1j and F1j+1 meet along a common side for
each j < 
1. By induction, there is a sequence Fi1, . . . , Fi
i

of sides of Gi

such that Fi−1 = Fi1, Fi
i
= Fi, and Fij and Fij+1 meet along a common

side for each j < 
i and i = 1, . . . , 
.
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Lemma 3. Let P be a convex polyhedron in En. If some k-face of P is a
k-plane of En, then every k-face of P is a k-plane of En.

Proof: Let E and E′ be two k-faces of P and suppose that E is a k-plane
of En. By Lemma 2, there is a sequence F1, . . . , F
 of (k + 1)-faces of P
such that E is a side of F1, and E′ is a side of F
, and Fi and Fi+1 meet
along a common side Ei for i = 1, . . . , 
 − 1. We may assume that 
 is as
small as possible. Let E0 = E and E
 = E′. Then Ei �= Ei+1 for each
i = 0, . . . , 
−1. As E is both open and closed in ∂F , and E �= E1, we deduce
that ∂F1 is disconnected. Therefore E1 is a k-plane of En by Lemma 1.
By induction, we conclude that Ei is a k-plane for each i = 1, . . . , 
. Thus
E′ is a k-plane of En.

Lemma 4. If P is a convex polyhedron in En such that all but finitely
many sides of P are polyhedral wedges, then P is finite-sided.

Proof: Let m = dimP . The proof is by induction on m. This is certainly
true if m = 0, so assume that m > 0 and the theorem is true for all
polyhedra in En of dimension m − 1. On the contrary, suppose that P
has infinitely many sides. Then P has a side S that is a polyhedral wedge.
Now the intersection of all the sides of S is a k-face of S that is a k-plane of
En. Hence, every k-face of P is a k-plane by Lemma 3. Now every k-face
of P is a face of only finitely many sides of P by Theorem 6.3.13, and by
Lemma 3, every side of P has a k-face. Therefore, there are infinitely many
k-faces of P .

Assume now that k = m−2. Then every side of P has either one side or
two disjoint sides. Therefore P has at most two sides that are polyhedral
wedges, which is a contradiction. Therefore, we may assume that k < m−2.
Then every side of P has at least two sides by Lemma 3.

Let T be a side of P that is not a polyhedral wedge. Then all but finitely
many of the sides of T are a side of a polyhedral wedge side of P . As every
side of a polyhedral wedge, with at least two sides, is a polyhedral wedge,
we have that all but finitely many of the sides of T are polyhedral wedges.
By the induction hypothesis, T is finite-sided. Hence T has only finitely
many k-faces by Theorem 6.3.13.

Now since all but finitely many of the sides of P are polyhedral wedges,
and there are infinitely many k-faces of P , and each side of P has only
finitely many k-faces, there is a k-face E of P such that all the sides of P
containing E, say S1, . . . , S
, are polyhedral wedges. As no other side of P

meets Si for each i = 1, . . . , 
, we find that


∪

i=1
Si is both open and closed

in ∂P . Hence ∂P is the union of the sides S1, . . . , S
 by Lemma 1. But
this contradicts the assumption that P has infinitely many sides. Thus P
is finite-sided.
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Theorem 12.4.2. Let c be the cusp point of an infinite-sided cusp of a
geometrically finite, exact, convex, fundamental polyhedron P for a discrete
subgroup Γ of M(Bn). Then c is fixed by a parabolic element of Γ.

Proof: First, we prove that all but finitely many of the sides of P incident
with c meet only the sides of P incident with c. On the contrary, suppose
that {Si}∞

i=1 is a sequence of distinct sides of P such that c is in Si and
Si meets a side Ti of P such that c is not in T i for all i. Let gi = gSi

for
each i. As P ∩ giP = Si, we find that c is in giP for each i. Now the terms
of the sequence {gi}∞

i=1 are distinct. Hence, the Euclidean diameter of giP
goes to zero as i → ∞. Now as c is a cusp point of P , there is an r > 0
such that B(c, r) meets just the sides of P incident with c. Hence, there is
a j such that

gjP ⊂ B(c, r).

As Sj ⊂ gjP , we find that B(c, r) meets Tj , which is a contradiction. Thus,
all but finitely many of the sides of P incident with c meet only the sides
of P incident with c.

We say that a side S of P is cusped if ∂S is a cusp of S. We next
prove that infinitely many of the sides of P incident with c are cusped and
have c as their cusp point. We now pass to the upper half-space model
Un and conjugate Γ so that c = ∞. Let ν : Un → En−1 be the vertical
projection. Then νP is an infinite-sided polyhedron in En−1 whose sides
are the vertical projections of the vertical sides of P . Now a vertical side S
of P is cusped if and only if S meets only vertical sides of P and νS is not
a polyhedral wedge. Moreover, all but finitely many of the vertical sides of
P meet only vertical sides of P , and by Lemma 4, infinitely many of the
sides of νP are not polyhedral wedges. Hence, infinitely many of the sides
of P incident with c are cusped and have c as their cusp point.

Let S be a cusped side of P . Then S is paired to another cusped side
S′ of P by gS′ and the unique cusp point of S is paired to the unique cusp
point of S′. By Theorem 12.4.1, the polyhedron P has only finitely many
cusp points and all but finitely many of the sides of P are incident with
a cusp point of P . Consequently, there is a sequence {Si}∞

i=1 of distinct
cusped sides of P incident with c such that c is the cusp point of Si for all
i, and S′

i is incident with a cusp point c′ of P for all i. Now since all but
finitely many of the sides of P incident with c′ meet only the sides of P
incident with c′, we may assume that S′

i meets only the sides of P incident
with c′ for each i. Then c′ is the cusp point of S′

i for each i.
Let hi = gS′

i
for each i. Then the terms of the sequence {hi}∞

i=1 are
distinct. Moreover hic = c′ for each i. Hence hic = h1c for all i. Therefore
h−1

i h1c = c for all i. Hence, the stabilizer Γc is infinite. Therefore Γc is an
infinite elementary group. By Theorem 12.3.4, the point c is not fixed by
a hyperbolic element of Γ. Therefore Γc is of parabolic type. Hence c is
fixed by a parabolic element of Γ.
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Let P be an exact, convex, fundamental polyhedron for a discrete sub-
group Γ of M(Bn) and let Φ be the Γ-side-pairing of P . Two points x, x′

of P are said to be paired by Φ, written x � x′, if and only if there is a side
S of P such that x is in S, and x′ is in S′, and gS(x′) = x. If gS(x′) = x,
then gS′(x) = x′. Therefore x � x′ if and only if x′ � x. Two points x, y
of P are said to be related by Φ, written x ∼ y, if and only if either x = y
or there is a finite sequence x1, . . . , xm of points of P such that

x = x1 � x2 � · · · � xm = y.

Being related by Φ is obviously an equivalence relation on the set P . The
equivalence classes of P are called cycles. If x is in P , we denote the cycle
containing x by [x].

Theorem 12.4.3. Let P be a geometrically finite, exact, convex, funda-
mental polyhedron for a discrete subgroup Γ of M(Bn). Then for each point
x of P , we have that

(1) the cycle [x] is finite;

(2) [x] = P ∩ Γx.

Proof: (1) By Theorem 6.8.5, we may assume that x is in P ∩ Sn−1.
If x is not in ∂P ∩ Sn−1, then [x] = {x}. Hence, we may assume that x is
in ∂P ∩ Sn−1.

Assume first that x is fixed by a parabolic element of Γ. By the same
argument as in the last two paragraphs of the proof of Theorem 12.3.7, we
deduce that x is a cusp point of P . As [x] ⊂ Γx, every point of [x] is fixed
by a parabolic element of Γ. Hence, every point of [x] is a cusp point of P .
By Theorem 12.4.1, the polyhedron P has only finitely many cusp points.
Thus [x] is finite.

Assume now that x is not fixed by a parabolic element of Γ. By Theorem
12.4.1, there is a side S of P such that x is in S. By Theorems 12.4.1 and
12.4.2, only finitely many sides of P are incident with x. Let k be the
smallest dimension such that there is a k-face E of P such that x is in E.
Then for each side S of P incident with x, there is a k-face E of S such
that E is incident with x by Lemma 3 applied to the link of x in P . Now
by Theorem 6.3.13, every k-face of P incident with x is an intersection of
sides of P that are incident with x. Hence, there are only finitely many
k-faces of P incident with x, say E1, . . . , E
.

Assume first that 
 = 1. Then E1 is the intersection of all the sides of
P incident with x. Hence x is not a cusp point of P . Assume now that

 > 1. Then the intersection of all the sides of P incident with x is empty,
since E1 ∩ E2 = ∅ by the minimality of k. Hence x is a cusp point of P .
Thus 
 > 1 if and only if x is a cusp point of P . As x is not fixed by a
parabolic element of Γ, no point of [x] is fixed by a parabolic element of Γ.
Therefore, each cusp point in [x] is finite-sided by Theorem 12.4.2.
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We say that x is directly related to a point y of P if there is an element
g of Γ such that y = gx and there are k-faces E and F of P such that x is
in E, y is in F , and F = gE. As P is locally finite, there are only finitely
many g in Γ such that Ei ⊂ P ∩ g−1P for each i = 1, . . . , 
. Hence x is
directly related to only finitely many points of P .

Now assume that x ∼ y. Then there is a finite sequence x1, . . . , xm of
points of P such that

x = x1 � x2 � · · · � xm = y.

By induction on m, the integer k is the smallest dimension such that there
is a k-face F of P such that y is in F . Thus k depends only on [x]. If x is
directly related to y, then y is one of only finitely many points, so assume
that x is not directly related to y. Then m > 2 and one of the points
x2, . . . , xm−1 is a cusp point of P . Let j be the largest index such that
xj is a cusp point of P . Then xj is directly related to y. As P has only
finitely many cusp points and since each cusp point of P in [x] is directly
related to only finitely many points of P , we conclude that y is one of only
finitely many points. Thus [x] is finite.

(2) By Theorem 6.8.5, we may assume that x is in P ∩ Sn−1. It is clear
from the definition of [x] that [x] ⊂ P ∩Γx. Let y be a point of P ∩Γx. Then
there is an element f of Γ such that y = fx, whence x is in f−1P . We now
pass to the upper half-space model Un and conjugate Γ so that x = ∞. Let
g be an element of Γ such that x is in gP . Since gP is geometrically finite,
a sufficiently high horizontal horosphere Σ will meet just the vertical sides
of gP . Then gP ∩Σ is a Euclidean, (n−1)-dimensional, convex polyhedron
in Σ. Let ν : Un → En−1 be the vertical projection. Then νgP is a convex
polyhedron in En−1 directly similar to gP ∩ Σ. Let

T = {νgP : g ∈ Γ and x ∈ gP}

and let U be the union of all the polyhedra in T . Then T is locally finite,
since P is locally finite. Hence U is a closed subset of En−1. Now for any
point z of U , there is a point w directly above z and an r > 0 such that

B(w, r) ⊂ ∪{gP : g ∈ Γ and x ∈ gP}.

Now νB(w, r) is an open neighborhood of z in En−1 contained in U . Hence
U is an open subset of En−1. Thus U is both open and closed in En−1 and
therefore is all of En−1. As {gP : g ∈ Γ} is an exact tessellation of Un, we
conclude that T is an exact tessellation of En−1.

Now by Theorem 6.8.2, the tessellation T is connected. Hence, there
are elements f1, . . . , fm of Γ such that x is in the set f−1

i P for each i and
νP = νf−1

1 P , νf−1
m P = νf−1P , and νf−1

i−1 P and νf−1
i P share a common

side for each i > 1. Then P = f−1
1 P , f−1

m P = f−1P , and f−1
i−1P and f−1

i P
share a common vertical side for each i > 1. Hence f1 = 1, fm = f , and
P and fi−1f

−1
i P share a common side Si for each i > 1. We may assume

that fi−1 �= fi for each i > 1. Then we have fi−1f
−1
i = gSi for each i > 1.
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Let x1 = x and xi = fix for each i > 1. As x is in f−1
i P , we find that fix

is in P . Hence xi is in P for each i. Now observe that

gSi
(xi) = fi−1f

−1
i (xi) = fi−1(x) = xi−1.

Hence xi−1 is in P ∩ gSi
(P ). Therefore xi−1 is in Si and xi is in S′

i for
each i > 1. Hence

x = x1 � x2 � · · · � xm = y.

Therefore x ∼ y. Thus [x] = P ∩ Γx.

Theorem 12.4.4. Let P be an exact, convex, fundamental polyhedron for
a discrete subgroup Γ of M(Bn). Then the following are equivalent:

(1) The polyhedron P is geometrically finite.

(2) Every point of P ∩ L(Γ) is a cusped limit point of Γ.

(3) Every point of P ∩ L(Γ) is a bounded parabolic limit point of Γ.

Proof: Assume that P is geometrically finite. Let x be a point of P ∩L(Γ).
Suppose g be an element of Γ such that x is in gP . Then g−1x is in P ∩Γx.
By Theorem 12.4.3, there are elements g1, . . . , gk of Γ such that

P ∩ Γx = {g−1
1 x, . . . , g−1

k x}.

Hence g−1x = g−1
i x for some i. Then x = gg−1

i x and so gg−1
i is in Γx.

Thus, we have that
g ∈ Γxg1 ∪ · · · ∪ Γxgk.

Assume first that Γx is finite. Then g is one of only finitely many
elements of Γ, say g1, . . . , g
. We pass to the projective disk model Dn.
Let r > 0 be less than the Euclidean distance from x to any side of giP
that is not incident with x. Let y be a point of Dn ∩ B(x, r) and let [x, y]
be the line segment from x to y. From the proof of Theorem 12.4.3(2),
we see that the line segment [x, y] starts off at x and immediately enters
giP for some i. The ray (x, y] can exit giP only at one of its sides that
is not incident with x. As [x, y] ⊂ B(x, r), we deduce that (x, y] ⊂ giP .
Therefore y is in giP . Thus

Dn ∩ B(x, r) ⊂ g1P ∪ · · · ∪ g
P.

But this contradicts the fact that x is a limit point of Γ. Therefore Γx

must be infinite. Hence Γx is an elementary group of either parabolic or
hyperbolic type. By Theorem 12.3.4, the point x is not fixed by a hyperbolic
element of Γ. Therefore Γx is of parabolic type. Hence x is the fixed point
of a parabolic element of Γ.

We now pass to the upper half-space model Un and conjugate Γ so that
x = ∞. Let ν : Un → En−1 be the vertical projection. Then from the
proof of Theorem 12.4.3(2), we have that

T = {νgP : g ∈ Γ and x ∈ gP}
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is an exact tessellation of En−1. As

T = {νgP : g ∈ Γxg1 ∪ · · · ∪ Γxgk},

we deduce that
En−1 = ∪

f∈Γ∞
f
(

k
∪

i=1
νgiP

)
.

By Theorems 5.4.6 and 7.5.2, there is a Γ∞-invariant m-plane Q of En−1

such that Q/Γ∞ is compact. Since giP is geometrically finite for each
i = 1, . . . , k, there is an r > 0 such that N(Q, r) contains every nonvertical
side of g1P, . . . , gkP . Let

U(Q, r) = Un − N(Q, r).

Then we have that

U(Q, r) ⊂ ∪
f∈Γ∞

f
(

k
∪

i=1
giP
)
.

Now since gjg
−1
i (∞) �= ∞ for each i, j such that i �= j, and since gjg

−1
i is

continuous at ∞, we can increase r so that

gjg
−1
i (U(Q, r)) ⊂ N(Q, r)

for each i, j such that i �= j.
We claim that U(Q, r) is a cusped region for Γ. On the contrary, suppose

that there is an element g of Γ − Γ∞ such that

U(Q, r) ∩ gU(Q, r) �= ∅.

Since U(Q, r) is an open subset of Un, there is a point y in the interior of
fgiP in Un for some i and f in Γ∞ such that gy is in hgjP for some j and
h in Γ∞. Then gfgiP = hgjP, and so gfgi = hgj . Then i �= j and

g = hgjg
−1
i f−1.

Therefore, we have

gU(Q, r) = hgjg
−1
i f−1U(Q, r)

= hgjg
−1
i U(Q, r)

⊂ hN(Q, r) = N(Q, r),

which is a contradiction. Hence U(Q, r) is a cusped region for Γ. Therefore
x is a cusped limit point of Γ. Thus (1) implies (2). As every cusped limit
point is a bounded parabolic limit point, (2) implies (3).

Assume every point of P ∩ L(Γ) is a bounded parabolic limit point.
Then every point of P ∩ L(Γ) is a cusp point of P by Theorem 12.3.7.
Hence every point x of P ∩ L(Γ) has an open neighborhood N in En that
meets just the sides of P incident with x by the definition of a cusp point.
Let x be a point of P ∩ O(Γ). By Theorem 12.2.10, there is an r > 0
such that B(x, r) meets only finitely many members of {gP : g ∈ Γ}, say
g1P, . . . , gkP . By shrinking r, if necessary, we may assume that x is in giP
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for each i = 1, . . . , k. Now suppose that B(x, r) meets a side S of P . Then
B(x, r) meets gSP . Hence gS = gi for some i. Therefore x is gSP . By
Theorem 6.4.2, we have that P ∩ gS(P ) = S. Hence S is incident with x.
Thus B(x, r) meets just the sides of P incident with x. Therefore P is
geometrically finite. Thus (3) implies (1).

Corollary 3. If P is a geometrically finite, exact, convex, fundamental
polyhedron for a discrete subgroup Γ of M(Bn), then P ∩ L(Γ) is a finite
set of cusped limit points of Γ.

Proof: By Theorems 12.3.7 and 12.4.4, every point of P ∩ L(Γ) is a cusp
point of P . By Theorem 12.4.1, the polyhedron P has only finitely many
cusp points. Thus P ∩ L(Γ) is a finite set of cusped limit points of Γ.

Horocusps

Let Γ be a discrete subgroup of M(Bn) with a parabolic element that fixes
the point a of Sn−1. A horoball B(a) based at a is said to be a horocusped
region for Γ based at a if for all g in Γ − Γa, we have

B(a) ∩ gB(a) = ∅. (12.4.1)

A horocusped region B(a) for Γ based at a is said to be proper if B(a) is
nonmaximal. If B(a) is a proper horocusp region for Γ based at a, then for
all g in Γ − Γa, we have

B(a) ∩ gB(a) = ∅. (12.4.2)

Let M = Bn/Γ and let π : Bn → M be the quotient map. Let B(a) be
a (proper) horocusp region for Γ based at a. The (proper) horocusp of M
corresponding to B(a) is the open subset V = π(B(a)) of M .

If a (proper) horocusp region B(a) for Γ is also a cusped region for Γ,
then a (proper) horocusp V of M , corresponding to B(a), is also called a
(proper) cusp of M .

Lemma 5. Let Γ be a discrete subgroup of M(Bn). If V is a horocusp
of M = Bn/Γ corresponding to a horocusp region B(a) for Γ, then the
inclusion of B(a) into Bn induces a homeomorphism η : B(a)/Γa → V .
Moreover, if B(a) is a proper, then the inclusion of C(a) = B(a)−{a} into
Bn induces a homeomorphism η : C(a)/Γa → V .

Proof: This is clear if Γ = Γa, so assume that Γ �= Γa. The function
η : B(a)/Γa → V , defined by η(Γax) = Γx, is continuous and surjective by
the definition of V . Suppose x, y are in B(a) and Γx = Γy. Then there
is a g in Γ such that gx = y. By Formula 12.4.1, we have that g is in Γa.
Hence Γax = Γay. Thus η is injective. The quotient map π : Bn → M
and is open by Theorem 6.6.2. Hence η is open, since B(a) is open in Bn.
Therefore η is a homeomorphism.
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Now suppose that B(a) is proper. As π is continuous, π(C(a)) ⊂ V .
As B(a) is proper, there is a horocusp region Ba for Γ based at a such
that C(a) ⊂ Ba. Let s = dist(C(a), ∂Ba). Then s > 0 by Lemma 1
of §7.1. Now dist(C(a), gC(a)) ≥ 2s for all g in Γ − Γa. Hence B(x, s)
meets at most one element of {gC(a) : g ∈ Γ} for each x in Bn, Therefore
∪{gC(a) : g ∈ Γ} is a closed subset of Bn. Hence π(C(a)) is closed in M ,
and so π(C(a)) = V . Define η : B(a)/Γa → V by η(Γax) = Γx. Then η
is a continuous bijection as before. If K is a closed Γ∞-invariant subset of
C(a), then B(x, s) meets at most one element of {gK : g ∈ Γ} for each x
in Bn. Therefore ∪{gK : g ∈ Γ} is a closed subset of Bn. Hence π(K) is
closed in M . Therefore η is a closed map. Hence η : C(a)/Γa → V is a
homeomorphism.

The Convex Core

Let Γ be a discrete subgroup of M(Bn), and let C(Γ) be the hyperbolic
convex hull of L(Γ). Then C(Γ)∩Bn is a closed, convex, Γ-invariant subset
of Bn. The convex core of M = Bn/Γ is the set

C(M) = (C(Γ) ∩ Bn)/Γ. (12.4.3)

The convex core C(M) is a closed connected subset of M . Note that if
|L(Γ)| ≤ 1, then C(M) = ∅, otherwise C(M) is nonempty.

Geometrically Finite Groups

A discrete subgroup Γ of M(Bn) is said to be geometrically finite if Γ has
a geometrically finite, exact, convex, fundamental polyhedron.

Remark: This is not the usual definition of a geometrically finite group.
In the usual definition, polyhedra are finite-sided instead of geometrically
finite. We shall prove that our new definition agrees with the usual def-
inition when n = 1, 2, 3. The reason we have altered the usual definition
is because the new definition seems to be the right definition when n > 3.
This is justified by Theorem 12.4.5 and the examples below.

Theorem 12.4.5. Let Γ be a discrete subgroup of M(Bn), let M = Bn/Γ,
and let C(M) be the convex core of M . Then the following are equivalent:

(1) The group Γ is geometrically finite.

(2) There is a (possibly empty) finite union V of proper horocusps of M ,
with disjoint closures, such that C(M) − V is compact.

(3) Every limit point of Γ is either conical or bounded parabolic.

(4) Every exact, convex, fundamental polyhedron for Γ is geometrically
finite.
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Proof: Assume that Γ is geometrically finite. Then Γ has a geometrically
finite, exact, convex, fundamental polyhedron P . By Corollary 3, we have
that P ∩ L(Γ) is a finite set of cusped limit points of Γ, say c1, . . . , cm.
Choose a proper cusped region Ui for Γ based at ci for each i such that
U1, . . . , Um are disjoint and U i meets just the sides of P incident with ci

for each i. Let Bi be a horoball based at ci and contained in Ui such that
if gci = cj , then gBi = Bj . Then Bi is a proper horocusped region for Γ
based at ci for each i. Let π : Bn → M be the quotient map, and define
V = π(B1 ∪ · · · ∪ Bm). Then V is a finite union of proper horocusps of M
with disjoint closures.

Define
K =

(
P ∩ C(Γ)

)
− (B1 ∪ · · · ∪ Bm).

Then K is closed in Bn. We now show that K is bounded. On the contrary,
let {xi}∞

i=1 be an unbounded sequence of points of K. By passing to a
subsequence, we may assume that {xi} converges to a point a of Sn−1.
Then a is in the set

P ∩ C(Γ) ∩ Sn−1 = P ∩ L(Γ).

Hence a = cj for some j. We pass to the upper half-space model Un and
conjugate Γ so that a = ∞. Let Q be a Γ∞-invariant m-plane of En−1

such that Q/Γ∞ is compact. By Theorem 12.3.5, there is an r > 0 such
that L(Γ) ⊂ N(Q, r). Let ν : Un → En−1 be the vertical projection, and
let R be the closure of ν−1(N(Q, r)) in Un. Then C(Γ) ⊂ R. Hence

{xi}∞
i=1 ⊂ ν−1(N(Q, r)).

By Lemma 2 of §12.3, we have that distE(xi, Q) → ∞, and so we must
have (xi)n → ∞. Therefore xi is in Bj for all sufficiently large i, which is
a contradiction, since K is disjoint from Bj . Thus K is bounded. As K
is closed and bounded, K is compact. As C(M) − V ⊂ π(K), we deduce
that C(M) − V is compact. Thus (1) implies (2).

If Γ is elementary, then every limit point of Γ is either conical or bounded
parabolic. Suppose that Γ is nonelementary and there is a union V of
finitely many proper horocusps, with disjoint closures, such that C(M)−V
is compact. Let V1, . . . , Vm be the horocusp components of V , and let Bi be
a horocusp region for Γ based at ai in Sn−1 corresponding to Vi for each i.
Let Γi be the stabilizer of ai in Γ for each i, and let Si be the horosphere
boundary of Bi for each i. By Lemma 5, the inclusion of C(Γ) ∩ Si into
Bn induces a homeomorphism from (C(Γ) ∩ Si)/Γi onto C(M) ∩ ∂Vi. As
C(M) ∩ ∂Vi is compact for each i, we have that (C(Γ) ∩ Si)/Γi is compact
for each i. Let pi : Bn → Sn−1 −{ai} be the geodesic projection away from
ai, that is, pi(x) is the endpoint of the hyperbolic line of Bn that starts at ai

and passes through x. Then pi is Γi-equivariant. Hence pi(C(Γ) ∩ Si)/Γi

is compact for each i. As L(Γ) − {ai} is a closed Γi-invariant subset of
pi(C(Γ) ∩ Si), we have that (L(Γ) − {ai})/Γi is compact for each i. Hence
ai is a bounded parabolic limit point for each i.
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Let a be a limit point of Γ that is not bounded parabolic. Let x be a point
of C(Γ)∩Bn, and let [x, a) be the ray from x to a. Then [x, a) ⊂ C(Γ)∩Bn,
since C(Γ) ∩ Bn is convex. Let B = π−1(V ). The connected components
of B are horoballs based at the points of Γa1 ∪· · ·∪ Γam and each point of
Γa1 ∪ · · · ∪ Γam is a bounded parabolic limit point of Γ. Hence no subray
of [x, a) is contained in B. Therefore [x, a) − B is unbounded. Let {xi}∞

i=1
be a sequence of points of [x, a) − B converging to a. As C(M) − V is
compact, there is an r > 0 such that C(M) − V ⊂ π(C(0, r)). Hence there
is an element gi of Γ such that gixi is in C(0, r) for each i. We now show
that infinitely many terms of {gi} are distinct. Suppose this is not the
case. Then after passing to a subsequence, there is a g in Γ such that gxi

is in C(0, r) for all i. As xi → a, we have that gxi → ga, whence ga is in
C(0, r), which is not the case. Therefore, infinitely many of the terms of
{gi} are distinct. As C(0, r) ∩ gi[x, a) �= ∅ for each i, we have that a is a
conical limit point of Γ by Theorem 12.3.3. Hence every limit point of Γ is
either conical or bounded parabolic. Thus (2) implies (3).

Now assume that every limit point of Γ is either conical or bounded
parabolic. Let P be an exact, convex, fundamental polyhedron for Γ. No
point of P ∩ L(Γ) is a conical limit point by Theorem 12.3.4. Therefore
every point of P ∩ L(Γ) is a bounded parabolic limit point. Hence P is
geometrically finite by Theorem 12.4.4. Thus (3) implies (4). Clearly (4)
implies (1).

Theorem 12.4.6. If Γ is a geometrically finite discrete subgroup of M(Un)
with n = 1, 2, 3, then every exact, convex, fundamental polyhedron for Γ is
finite-sided.

Proof: Let P be an exact, convex, fundamental polyhedron for Γ. Then
P is geometrically finite by Theorem 12.4.5. By Theorem 12.4.1, it suffices
to show that every cusp of P is finite-sided. On the contrary, suppose that
c is the cusp point of an infinite-sided cusp of P . Then n = 3 and c is
fixed by a parabolic element of Γ by Theorem 12.4.2. Conjugate Γ so that
c = ∞. Let ν : U3 → E2 be the vertical projection. Then ν(P ) is a convex
polygon in E2 whose sides are the vertical projections of the vertical sides
of P . Hence ν(P ) has infinitely many sides.

Assume first that E2/Γ∞ is compact. By Theorem 5.4.5, the group Γ∞
has a torsion-free subgroup H of finite index. Then E2/H is compact by
Lemma 1 of §7.5. Now since ν(P ◦) injects into the space-form E2/H, we
deduce that ν(P ◦) has finite area. As ν(P ◦) is convex, ν(P ) is compact.
Hence ν(P ) has only finitely many sides, which is a contradiction.

Now assume that E2/Γ∞ is not compact. Then Γ∞ has an infinite cyclic
subgroup H of finite index by Theorem 5.4.5 and Lemma 1 of §7.5. Now H
is generated by either a horizontal translation or a glide-reflection of E3.
Hence, by replacing H by a subgroup of index two, if necessary, we may
assume that H is generated by a horizontal translation τ of E3.
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x

y

τx

τf−1yf−1y

Figure 12.4.1. The line segment in the proof of Theorem 12.4.6

Let g be an element of Γ such that S = P ∩ gP is a vertical side of P .
We now show that there is at most one nonidentity element f of H such
that T = P ∩ fgP is a vertical side of P . Let f be such an element. Then
S �= T , since f �= 1. Now f = τm for some integer m �= 0. By replacing τ
by τ−1, if necessary, we may assume that m > 0. As fg �= 1, we deduce
that f translates gP from the opposite side of 〈S〉 from P to the opposite
side of 〈T 〉 from P . Hence f translates points of gP ◦ near f−1(T ◦) across
〈S〉 and across 〈T 〉. Therefore S and f−1(T ) and are distinct sides of gP .

Now let k be a nonzero integer. If k < 0, then τkgP lies on the opposite
side of 〈S〉 from P , and so P ∩ τkgP = ∅. If k > m, then τkgP lies on
the opposite side of 〈T 〉 from P , and so P ∩ τkgP = ∅. Now suppose that
0 < k < m. Choose points x in S◦ and y in T ◦ so that the Euclidean line
segment [x, y] is horizontal and sufficiently high enough so that [x, y] ⊂ P
and [x, f−1y] ⊂ gP . Then (x, y) ⊂ P ◦ and (x, f−1y) ⊂ gP ◦. Now observe
that the line segments τk(x, f−1y) and (x, y) intersect. See Figure 12.4.1.
Hence P ◦ and τkgP ◦ intersect. Therefore τkg = 1 and so P ∩ τkgP = P .
Thus f is the only nonidentity element of H such that P ∩fgP is a vertical
side of P .

Let {Si}∞
i=1 be a sequence of distinct vertical sides of P . Then there is

a sequence {gi}∞
i=1 of distinct elements of Γ such that P ∩ giP = Si for

each index i. Now each coset of H in Γ contains at most two terms of {gi}.
Hence, the terms of {gi} fall into infinitely many cosets of H in Γ. As H has
finite index in Γ∞, the terms of {gi} must fall into infinitely many cosets of
Γ∞ in Γ. But the argument in the first paragraph of the proof of Theorem
12.4.4 shows that the terms of {gi} lie in only finitely many cosets of Γ∞
in Γ, which is a contradiction. Thus P is finite-sided.

Theorem 12.4.7. If Γ is a geometrically finite discrete subgroup of M(Bn)
with no parabolic elements, then every exact, convex, fundamental polyhe-
dron for Γ is finite-sided.

Proof: Let P be in exact, convex, fundamental polyhedron for Γ. Then
P is geometrically finite by Theorem 12.4.5. The polyhedron P has no
infinite-sided cusps by Theorem 12.4.2. Therefore P is finite-sided by Corol-
lary 1.
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Theorem 12.4.8. If Γ is a geometrically finite discrete subgroup of M(Bn)
of the first kind, then Bn/Γ has finite volume and every exact, convex,
fundamental polyhedron for Γ is finite-sided.

Proof: Let P be an exact, convex, fundamental polyhedron for Γ. Then
P is geometrically finite by Theorem 12.4.5. Let v be a point of P ∩ Sn−1.
We claim that v is an ideal vertex of P . On the contrary, suppose that v
is not an ideal vertex of P . We now pass to the upper half-space model
Un and conjugate Γ so that v = ∞. Since P is geometrically finite, there
is an r > 0 so that C(0, r) contains all the nonvertical sides of P . Let
ν : Un → En−1 be the vertical projection. Then ν(P ) is a noncompact
convex polyhedron in En−1. Hence, the set ν(P ◦) is unbounded. Therefore
ν(P ◦)−C(0, r) is a nonempty open subset of En−1. Hence, there is a point
b of ν(P ◦) − C(0, r) and an s > 0 so that

C(b, s) ∩ En−1 ⊂ ν(P ◦) − C(0, r).

Now since C(0, r) contains all the nonvertical sides of P , we have that
C(b, s) ⊂ P . Therefore Γ is of the second kind by Theorem 12.2.12, which
is a contradiction. Thus v is an ideal vertex of P . Hence P has finitely
many sides and finite volume by Theorems 6.4.6 and 6.4.8.

Theorem 12.4.9. Every geometrically finite discrete subgroup of M(Bn)
is finitely generated.

Proof: Let Γ be a geometrically finite discrete subgroup of M(Bn). Then
Γ has a geometrically finite, exact, convex, fundamental polyhedron P . By
Theorem 6.8.3, the group Γ is generated by Φ = {gS : S is a side of P}. If
P is finite-sided, then Φ is a finite set, and we are done, so assume that P is
infinite-sided. Then P has an infinite-sided cusp and its cusp point is fixed
by a parabolic element of Γ by Theorems 12.4.1 and 12.4.2. Moreover P
has only finitely many cusp points c1, . . . , cm that are fixed by a parabolic
element of Γ, and all but finitely many sides of P , say S1, . . . , S
, are
incident with ci for some i. Let Γi be the stabilizer of ci for each i. Then
Γi is an elementary group of parabolic type. Hence Γi is finitely generated
for each i. Let {fij} be a finite set of generators of Γi for each i. By
Theorem 12.4.3, the cycle [ci] is finite for each i. Let [ci] = {gijci} for each
i, and let Ψ be the union of the sets {fij} and {gij}, for i = 1, . . . , m, and
{gSk

}. Then Ψ is a finite subset of Γ.
We now show that Ψ generates Γ. Since Φ generates Γ, it suffices to

show that Φ ⊂ 〈Ψ〉. Let S be a side of P . If S is not incident with ci for
some i, then S = Sk for some k, and so gS is in Ψ. Assume now that S is
incident with ci for some i. Then gS′(ci) is fixed by a parabolic element of
Γ, and so gS′(ci) = ck for some k. As ci � ck, we have that ck = gijci for
some j. Then gS′(ci) = gij(ci), whence gSgij is in Γi. Therefore gS is 〈Ψ〉.
This shows that Φ ⊂ 〈Ψ〉. Thus Γ is finitely generated.
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It is known that a discrete subgroup of M(B2) is geometrically finite if
and only if it is finitely generated. We next consider an example of a finitely
generated discrete subgroup of M(B3) that is not geometrically finite.

Example 3. Let Γ be the figure-eight knot group in Example 5 of §12.2.
Then Γ is a discrete subgroup of M(B3) such that B3/Γ has finite volume.
Let Γ′ be the commutator subgroup of Γ. Then Γ′ is a free group of rank
two and a discrete subgroup of M(B3) of the first kind such that B3/Γ′

has infinite volume. Therefore Γ′ is not geometrically finite by Theorem
12.4.8.

We next consider an example that shows that Theorem 12.4.6 cannot
be generalized to dimensions greater than three.

Example 4. Let θ be a real number such that θ/π is irrational and let

A =

⎛⎝ 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞⎠ .

Then A is an irrational rotation with axis R in E3. Let f = e1 + A. Then
f is an isometry of E3 that leaves R invariant. The infinite cyclic group
Γ generated by f is a discrete group of isometries of E3. Let a be a point
of E3 and let P (a) be the Dirichlet polyhedron for Γ with center a. If
a is in R, then P (a) is the closed region between the two parallel planes
orthogonal to R at a distance 1/2 from a.

Assume now that a is not in R. We claim that P (a) has infinitely many
sides. On the contrary, assume that P = P (a) is finite-sided. Let S be
a side of P . Then 〈S〉 is the perpendicular bisector of the line segment
[a, fma] for some integer m �= 0. Consequently 〈S〉 intersects the line

L = {(a1, ta2, ta3) : t ∈ R}
passing through a and orthogonal to R below the ray

R = {(a1, ta2, ta3) : t ≥ 1}.

Hence P is contained in the closed half-space of E3 bounded by 〈S〉 and
containing R.

Now as a is an P ◦, there is an r > 0 so that C(a, r) ⊂ P . Define

ρ : ∂P → S(a, r)

by letting ρ(x) be the intersection of the line segment [a, x] with the sphere
S(a, r). Then ρ is an injection. From the description of ρ(∂P ) in Lemma 1,
we deduce that S(a, r) − ρ(∂P ) is a finite-sided convex polygon in S(a, r)
that contains the point R ∩ S(a, r) in its interior. Consequently, there is a
solid cone C in E3, with axis R, such that

C ∩ S(a, r) ⊂ S(a, r) − ρ(∂P ).
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Then C ⊂ P ◦. Hence, the cones {fmC}∞
m=1 are mutually disjoint; but

the same argument as in the proof of Lemma 3 of §12.3 shows that this is
impossible. Thus P (a) is infinite-sided.

We now extend Γ to a discrete subgroup of M(U4) by Poincaré extension.
Let ν : U4 → E3 be the vertical projection. For each point u of U4, let
P (u) be the Dirichlet polyhedron of Γ in U4 with center u. Then P (u) is
a vertical prism over the polyhedron νP (u) in E3. Moreover, we have that
νP (u) = P (ν(u)). Therefore P (u) is finite-sided if and only if ν(u) is in
R. Thus Γ is a geometrically finite discrete subgroup of M(U4) such that
some of its Dirichlet polyhedra are infinite-sided.

Example 5. We now consider an example of nonelementary, geometrically
finite, discrete subgroup of M(U4) such that some of its Dirichlet polyhedra
are infinite-sided. Let P be the Schottky polyhedron in U4 with two vertical
sides P (−e1, 1/2) ∩ U4 and P (e1, 1/2) ∩ U4, and two nonvertical sides
S(−e2, 1/2) ∩ U4 and S(e2, 1/2) ∩ U4. We pair the vertical sides of P by
the element f of Example 4. Let L be the hyperbolic line of U4 that is
orthogonal to the nonvertical sides of P . We pair the nonvertical sides
of P by the hyperbolic translation h of U4, with axis L, that maps one
side to the other. Let Γ be the subgroup of M(U4) generated by f and h.
Then Γ is a free discrete subgroup of M(U4) of rank 2 by Theorem 12.2.17.
Therefore Γ is a nonelementary subgroup of M(U4).

For each point u of U4, let D(u) be the Dirichlet polyhedron for Γ with
center u. Let v be the point of L midway between the nonvertical sides
of P . Then P = D(v), since P contains D(v) and P ◦ is a Γ-packing.
Therefore P is an exact, convex, fundamental polyhedron for Γ with four
sides. Hence Γ is geometrically finite.

Now as ∞ is a limit point of Γ in P , we have that ∞ is cusped by
Theorem 12.4.4. Hence, there is a cusped region U for Γ. Let B be a
horoball based at ∞ and contained in U . We now show that D(u) is
infinite-sided for each u in B such that ν(u) is not in R. Let u be such a
point and let g an element of Γ such that the hyperplane

Pg(u) = {x ∈ U4 : d(x, u) = d(x, gu)}
contains a side S of D(u). If g is in Γ∞, then S is a vertical side of D(u).
If g is not in Γ∞, then gu is not in B, and so S is a nonvertical side of
D(u) with u outside of 〈S〉.

Now assume that D(u) has only finitely many sides. Then D(u) has
only finitely many nonvertical sides, say S1, . . . , Sm. Let Hi be the closed
half-space of U4 bounded by 〈Si〉 and containing u for each i. Let P (u) be
the Dirichlet polyhedron for Γ∞ with center u. Then

D(u) = P (u) ∩
m
∩

i=1
Hi.

But P (u) has infinitely many sides, and so D(u) has infinitely many vertical
sides, which is a contradiction. Thus D(u) has infinitely many sides.
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Exercise 12.4

1. Let P be a finite-sided, exact, convex, fundamental polygon for a discrete
subgroup Γ of M(B2). Prove that a cusp point c of P is a cusped limit point
of Γ if and only if every element of [c] is a cusp point of P .

2. Let P be a finite-sided, exact, convex, fundamental polyhedron of finite
volume for a discrete subgroup Γ of M(Bn). Prove that every ideal vertex
of P is a cusped limit point of Γ.

3. Let P be a geometrically finite, exact, convex, fundamental polyhedron for
a discrete subgroup Γ of M(Bn). A cusp of P is said to be thin if the link
of its cusp point does not contain a Euclidean hypercone. Prove that a cusp
point c of P is a cusped limit point of Γ if and only if every element of [c] is
a cusp point of a thin cusp of P .

4. Prove that a discrete subgroup Γ of M(Bn) is geometrically finite if and only
if every limit point of Γ is either conical or cusped.

5. Let P be a convex fundamental polyhedron for a discrete subgroup Γ of
M(Bn) and let a be a point of P ∩ Sn−1 for which there is no r > 0 such
that B(a, r) meets just the sides of P incident with a. Prove that a is a limit
point of Γ that is neither conical nor bounded parabolic.

6. Let Γ be a geometrically finite discrete subgroup of M(Bn). Prove that every
convex fundamental polyhedron for Γ is geometrically finite.

7. Let Γ be an elementary discrete subgroup of M(Bn). Prove that Γ has at
least one finite-sided Dirichlet polyhedron.

8. Let H be a subgroup of finite index of a discrete subgroup Γ of M(Bn). Prove
that H is geometrically finite if and only if Γ is geometrically finite.

9. Prove that every nonelementary, geometrically finite, discrete subgroup of
M(Bn) contains a subgroup that is not geometrically finite.

10. Let D(u) be the Dirichlet polyhedron in Example 5 with u in B and ν(u)
not in R. Prove that D(u) has infinitely many vertical sides.

11. Let x be an irrational number. Prove that there is a sequence {dn/cn}∞
n=1

of distinct rational numbers such that

|x − dn/cn| = O(c−2
n ).

§12.5. Nilpotent Groups

In this section, we study nilpotent subgroups of I(Hn). In particular, we
prove that every discrete subgroup of I(Hn) that is generated by elements
sufficiently near to the identity is abelian. As an application, we prove
that a subgroup of I(Hn) is discrete if and only if all its abelian and two-
generator subgroups are discrete.
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Lemma 1. Let A, B be in O(n) with |B − I| < 2. If A commutes with
[B,A], then A commutes with B.

Proof: If A commutes with BAB−1A−1, then A commutes with BAB−1,
and so A commutes with B by Lemma 3 of §5.4 and Exercise 5.4.5.

Lemma 2. If G is a nilpotent subgroup of O(n) generated by elements A
such that |A − I| < 2, then G is abelian.

Proof: Let A and B be elements of G such that |A−I| < 2 and |B−I| < 2.
On the contrary, assume that A and B do not commute. Consider a nested
chain of commutators

D = [C1, [C2, . . . , [Cm, Cm+1] · · · ]],

where Ci = A or B for all i. As G is nilpotent, there is a maximal length
m such that D �= I. Assume that m has this value and D �= I. Then A and
B commute with D. Hence [C2, . . . , [Cm, Cm+1] · · · ]] commutes with D.
Therefore [C2, . . . , [Cm, Cm+1] · · · ]] commutes with C1 by Lemma 1, which
is a contradiction. Hence A and B commute. Therefore G is abelian.

Lemma 3. If G is a nilpotent subgroup of S(En) generated by elements
a + kA such that |A − I| < 2, then G is abelian.

Proof: Define η : G → O(n) by η(a + kA) = A. Then η is a homomor-
phism. Hence η(G) is a nilpotent subgroup of O(n). By Lemma 2, we have
that η(G) is an abelian subgroup of O(n). Let φ = a + kA and ψ = b + 
B
be in G with |A − I| < 2 and |B − I| < 2. Then A and B are in η(G) and
so A and B commute. Hence

[φ, ψ] = φψφ−1ψ−1

= φψφ−1(−
−1B−1b + 
−1B−1)
= φψ(−k−1A−1a − k−1
−1A−1B−1b + k−1
−1A−1B−1)
= φ(b − 
k−1BA−1a − k−1A−1b + k−1A−1)
= a + kAb − 
Ba − b + I

= (kA − I)b + (I − 
B)a + I.

Now set
c = (kA − I)b + (I − 
B)a.

Define a sequence {φm} in G by φ1 = [φ, [φ, ψ]] and φm = [φ, φm−1] for
m > 1. Then we have

φ1 = (kA − I)c + I,

and, in general, we have

φm = (kA − I)mc + I.

As G is nilpotent, φm = I for some m. Assume first that k = 1 = 
. Then
the same argument as the last two paragraphs of the proof of Lemma 5 of
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§5.4 shows that φ and ψ commute. Now assume that one of k or 
 is not 1.
Without loss of generality, we may assume that k �= 1. Then the null space
of kA − I is zero. Hence (kA − I)mc = 0 implies that c = 0. Therefore φ
and ψ commute. Thus G is abelian.

Lemma 4. If A is in PO(n, 1), then

|A|2 = (n + 1) + 4 sinh2 dH(en+1, Aen+1).

Proof: Let A = (aij). By Theorem 3.1.4, the columns (and rows) of A
form a Lorentz orthonormal basis of Rn,1. Therefore, we have

a2
i,1 + · · · + a2

i,n − a2
i,n+1 =

{
1 if i < n + 1

−1 if i = n + 1
and

a2
1,n+1 + · · · + a2

n,n+1 − a2
n+1,n+1 = −1.

Hence, we have

|A|2 =
n+1∑
i=1

n+1∑
j=1

a2
ij

=
n∑

i=1

n+1∑
j=1

a2
ij +

n+1∑
j=1

a2
n+1,j

=
n∑

i=1

(1 + 2a2
i,n+1) + (−1 + 2a2

n+1,n+1)

= (n − 1) + 2
n+1∑
i=1

a2
i,n+1

= (n − 1) + 2(−1 + 2a2
n+1,n+1)

= (n − 3) + 4a2
n+1,n+1

= (n − 3) + 4(−en+1 ◦ Aen+1)2

= (n − 3) + 4 cosh2 dH(en+1, Aen+1)
= (n + 1) + 4 sinh2 dH(en+1, Aen+1).

Lemma 5. Every nilpotent subgroup of M(Bn) fixes a point of Bn.

Proof: Let G be a nilpotent subgroup of M(Bn). Then G is elementary
by Theorem 5.5.10. If G is of either elliptic or parabolic type, then G fixes
a point of Bn, so we may assume that G is of hyperbolic type. We pass to
the upper half-space model Un. By Theorem 5.5.6, we may conjugate G
so that G leaves the set {0,∞} invariant.

We claim that G fixes both 0 and ∞. On the contrary, assume that G
fixes neither 0 nor ∞. Let G1 be the subgroup of G that fixes each point
of the nth axis L of Un. We now show that G1 is a normal subgroup of G.
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Let f be in G1, let g be in G, and let y be in L. As g leaves L invariant,
there is a point x of L such that y = gx. Then

gfg−1y = gfx = gx = y.

Thus gfg−1 is in G1 and so G1 is a normal subgroup of G.
Let G2 be the subgroup of G that fixes both 0 and ∞. Then G2 is of

index two in G. We now show that G1 �= G2. On the contrary, suppose
that G1 = G2. Let h be an element of G − G2. Then h leaves L invariant
and so fixes a point z of L. As G is generated by G2 and h, we have that G
fixes z, contrary to the assumption that G is of hyperbolic type. Therefore
G1 �= G2.

As G is nilpotent, G/G1 is nilpotent. Therefore, the center of G/G1 is
nontrivial. Hence, there is an element g of G2 − G1 and an element h of
G − G2 such that

hgh−1 = g mod G1.

Now g = kA for some k > 0, with k �= 1, and A in O(n), with A(en) = en;
and h = 
Bσ, for some 
 > 0, and B in O(n), with B(en) = en, and
σ(x) = x/|x|2. Then

hgh−1 = 
BσkAσ
−1B−1

= 
Bk−1A
−1B−1 = k−1BAB−1.

But we have that
k−1BAB−1 �= kA mod G1,

which is a contradiction. Hence G = G2.

Lemma 6. If f is the parabolic translation of U2 defined by f(z) = z + 1,
then f corresponds to the Möbius transformation g of B2 defined by

g(z) =
(1 + i/2)z + (1/2)
(z/2) + (1 − i/2)

and g corresponds to the matrix A in PO(2, 1) defined by

A =

⎛⎝ 1 −1 1
1 1/2 1/2
1 −1/2 3/2

⎞⎠ .

Proof: The standard transformation η : U2 → B2 has the property
that η(0) = −i, η(i) = 0, and η(∞) = i. Therefore η(z) = iz+1

z+i . Hence
g = ηfη−1 is given by the matrix product(

i 1
1 i

)(
1 1
0 1

)(
−i/2 1/2

1/2 −i/2

)
=
(

1 + i/2 1/2
1/2 1 − i/2

)
.

Now let ζ : B2 → H2 be stereographic projection. Then g corresponds
to the matrix A in PO(2, 1) extending ζgζ−1. From Formulas 4.5.2 and
4.5.3, we have that

Ae3 = ζgζ−1(e3) = ζg(0) = ζ(2/5, 1/5) = (1, 1/2, 3/2).
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Therefore, we have

A =

⎛⎝ a11 a12 1
a21 a22 1/2
a31 a32 3/2

⎞⎠ .

As f fixes ∞, we have that g fixes i. Consequently (0, 1, 1) is an eigenvector
of A. This, together with the fact that the second and third columns of A
are Lorentz orthogonal, implies that

A =

⎛⎝ a11 −1 1
a21 1/2 1/2
a31 −1/2 3/2

⎞⎠ .

Finally, the first column of A can be derived from the information that the
columns of A are Lorentz orthogonal and detA = 1.

Theorem 12.5.1. Let G be a nilpotent subgroup of PO(n, 1) generated by
elements A such that |A − I| < 2. Then G is abelian.

Proof: By Theorem 5.5.10, we have that G is an elementary subgroup of
PO(n, 1). Let A be an element of G such that |A − I| < 2. Then

|A − I|2 = |A|2 − 2trA + (n + 1).

By Lemma 4, we have

|A|2 = (n + 1) + 4 sinh2 d(en+1, Aen+1).

Therefore

|A − I|2 = 2(n + 1 − trA + 2 sinh2 d(en+1, Aen+1)).

Assume first that G is of elliptic type. Then G is conjugate in PO(n, 1) to
a subgroup G′ of O(n + 1). Let A′ be the element of G′ corresponding to
A. Then

|A′ − I|2 = 2(n + 1 − trA′) = 2(n + 1 − trA).

Therefore, we have
|A′ − I|2 ≤ |A − I|2 < 4.

Therefore G′ is abelian by Lemma 2. Hence G is abelian.
Now assume that G is not elliptic. Then G fixes a point on the sphere

at infinity of Hn by Lemma 5. Hence, there is a subgroup G′ of S(En−1)
whose Poincaré extension in M(Un) corresponds to a conjugate of G in
PO(n, 1). Let φ = a + kA′ be the element of G′ corresponding to A. We
shall prove that |A′ − I| < 2. Now since

|A′ − I| = |BA′B−1 − I|

for all B in O(n − 1), we are free to conjugate φ in S(En−1).
Assume first that φ is elliptic. Then by conjugating φ in I(En−1), we

may assume that a = 0 and k = 1. Let Ã′ be the Poincaré extension of
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A′. Then Ã′ is in O(n) and Ã′en = en. Let η : Un → Bn be the standard
transformation. Then η = σρ, where ρ is the reflection of En in En−1 and
σ is the inversion in the sphere S(en,

√
2). Hence

ηÃ′η−1(x) = σρÃ′ρσ(x)
= σÃ′σ(x)

= σÃ′
(
en +

2(x − en)
|x − en|2

)
= σ

(
en +

2(Ã′x − en)
|Ã′x − en|2

)
= σ2Ã′x = Ã′x.

Therefore ηÃ′η−1 = Ã′. Hence A is conjugate in PO(n, 1) to the block
diagonal matrix (

A′ 0
0 I2

)
,

where I2 is the 2 × 2 identity matrix. Then we have

|A′ − I|2 = 2(n − 1 − trA′)
= 2(n + 1 − trA)
≤ |A − I|2 < 4.

Assume next that φ is parabolic. Then by conjugating φ in S(En−1),
we may assume that a = en−1, k = 1, and A′en−1 = en−1. By Lemma 6,
we have that A is conjugate in PO(n, 1) to the block diagonal matrix(

A′′ 0
0 B

)
,

where A′′ is the (n − 2) × (n − 2) matrix obtained from A′ by deleting its
last row and column, and B is the 3 × 3 matrix in Lemma 6. As trB = 3,
we have that

|A′ − I|2 = 2(n − 1 − trA′)
= 2(n + 1 − trA)
≤ |A − I|2 < 4.

Assume now that φ is hyperbolic. Then by conjugating φ in I(En−1),
we may assume that a = 0. Then A is conjugate in PO(n, 1) to the block
diagonal matrix (

A′ 0
0 C

)
,

where

C =
(

cosh s sinh s
sinh s cosh s

)
and s is the hyperbolic distance translated by φ along its axis, that is,
s = | log k|. Let ρ : Hn → L be the nearest point retraction of Hn onto the
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axis L of A. It follows from Theorem 4.6.1 and Exercise 4.6.3 that for all
x, y in Hn, we have

d(ρ(x), ρ(y)) ≤ d(x, y).

Hence, we have

s = d(ρ(en+1), Aρ(en+1))
= d(ρ(en+1), ρ(Aen+1))
≤ d(en+1Aen+1).

Therefore

|A′ − I|2 = 2(n − 1 − trA′)
= 2(n − 1 − trA + 2 cosh s)
≤ 2(n − 1 − trA + 2 cosh2 s)
= 2(n + 1 − trA + 2 sinh2 s)
≤ 2(n + 1 − trA + 2 sinh2 d(en+1, Aen+1))
= |A − I|2 < 4.

Thus, in all three cases, we have that |A′ − I| < 2. Therefore G′ is abelian
by Lemma 3. Hence G is abelian.

Lemma 7. Let A, B be matrices in GL(n, C). If 0 < |A− I| < 2−
√

3 and
0 < |B − I| < 2 −

√
3, then∣∣[A, B] − I

∣∣ < min
{
|A − I|, |B − I|

}
.

Proof: Suppose that |A − I| < k < 1 and |B − I| < k < 1. Observe that

A−1 − I = −(A − I) − (A − I)(A−1 − I).

Hence
|A−1 − I| ≤ |A − I| + |A − I| |A−1 − I|.

Therefore

|A−1 − I| ≤ |A − I|
1 − |A − I| <

k

1 − k
.

Let C be a complex n × n matrix. Then we have

CA−1 = C + C(A−1 − I).

Hence, we have

|CA−1| = |C + C(A−1 − I)|
≤ |C| + |C(A−1 − I)|
≤ |C|(1 + |A−1 − I|)

< |C|
(
1 +

k

1 − k

)
=

|C|
1 − k

.
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Let A1 = A − I and B1 = B − I. Then we have
(ABA−1B−1 − I) = (AB − BA)A−1B−1

= (A1B1 − B1A1)A−1B−1.

Therefore, we have

|ABA−1B−1 − I| <
|A1B1 − B1A1|

(1 − k)2

≤ 2|A − I| |B − I|
(1 − k)2

.

Now let k = 2 −
√

3. Then we have

|ABA−1B−1 − I| <
2|A − I|(2 −

√
3)

(
√

3 − 1)2
= |A − I|.

Likewise |ABA−1B−1 − I| < |B − I|.

Theorem 12.5.2. If Γ is a discrete subgroup of ŜL(n, C) generated by
elements A such that |A − I| < 2 −

√
3, then Γ is nilpotent.

Proof: Regard ŜL(n, C) as a subset of Cn2
. As

ŜL(n, C) = det−1{−1, 1},

we have that ŜL(n, C) is closed in Cn2
. As Γ is closed in ŜL(n, C), the set

Γ is closed in Cn2
. Let

N = Γ ∩ B(I, 2 −
√

3) and K = Γ ∩ C(I, 2 −
√

3).
Then K is a compact discrete space. Therefore K and N are finite. Let m
be the number of elements of N .

Suppose that A1, . . . , Ak are elements of N . Define [A1] = A1 and
[A1, . . . , Aj ] = [[A1, . . . , Aj−1], Aj ]

and suppose that [A1, . . . , Aj ] �= I for each j = 1, . . . , k. By Lemma 7, we
have that

|A1 − I| > |[A1, A2] − I|
> |[A1, A2, A3] − I|
...
> |[A1, . . . , Ak] − I|.

Hence A1, [A1, A2], . . . , [A1, . . . , Ak] are distinct nonidentity elements of N .
Therefore k < m. Consequently, any m-fold commutator of elements of N
is trivial. By repeated application of the identities

[B,A] = [A, B]−1,

[A, B−1] = B−1[B,A]B,

[A, BC] = [A, B]B[A, C]B−1,

we deduce that any m-fold commutator of elements of Γ = 〈N〉 is trivial.
Thus Γ is nilpotent.
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Theorem 12.5.3. If Γ is a discrete subgroup of PO(n, 1) generated by
elements A such that |A − I| < 2 −

√
3, then Γ is abelian.

Proof: By Theorem 12.5.2, we have that Γ is nilpotent, and by Theorem
12.5.1, we have that Γ is abelian.

Theorem 12.5.4. Let Γ be a subgroup of PO(n, 1). Then Γ is discrete if
and only if

(1) every abelian subgroup of Γ is discrete; and

(2) every two-generator subgroup of Γ is discrete.

Proof: Suppose that Γ is nondiscrete. Then there is a sequence {Ai}∞
i=1

of distinct elements of Γ such that Ai → I. Without loss of generality, we
may assume that |Ai − I| < 2 −

√
3 for all i. Let H be the subgroup of

Γ generated by {Ai}. Then H is nondiscrete. If H is nonabelian, then Ai

does not commute with Aj for some i, j, whence the subgroup generated
by Ai and Aj is nondiscrete by Theorem 12.5.3.

Theorem 12.5.5. Let Γ be a nonelementary subgroup of PO(n, 1) such
that Γ leaves no m-plane of Hn invariant for m < n − 1. Then Γ is
discrete if and only if every two-generator subgroup of Γ is discrete.

Proof: Suppose that Γ is nondiscrete and let H be as in the proof of
Theorem 12.5.4 and suppose that H is abelian. Then H is elementary by
Lemma 5. By passing to a subsequence of {Ai}∞

i=1, we may assume that
the terms of {Ai}∞

i=1 are either all elliptic, all parabolic, or all hyperbolic.
Assume first that the terms of {Ai}∞

i=1 are either all parabolic or all
hyperbolic. As Ai and Aj commute for each i and j, we deduce that Ai

and Aj have the same set F of ideal fixed points for each i and j. As Γ is
nonelementary, there is a B in Γ such that BF �= F . As BAiB

−1 → I as
i → ∞, there is an i such that |BAiB

−1 − I| < 2 −
√

3. As BF is the set
of ideal fixed points of BAiB

−1, we deduce that BAiB
−1F �= F , and so

Ai and BAiB
−1 do not commute. Therefore 〈Ai, BAiB

−1〉 is nondiscrete
by Theorem 12.5.3.

Assume now that all the terms of {Ai}∞
i=1 are elliptic. We pass to the

conformal ball model Bn. For each i, let Fi = {x ∈ Bn : Aix = x}. There
is a dimension m such that dimFi = m for infinitely many i. By passing
to a subsequence of {Ai}∞

i=1, we may assume that dim Fi = m for all i. As
Ai commutes with A1, we have that AiF1 = F1 for each i. The restriction
Ai of Ai to F1 is elliptic by Exercise 5.5.3. Hence 〈Ai〉∞

i=1 fixes a point
of F1 ∩ Bn by induction on dimension. Therefore H is of elliptic type.
Conjugate H so that H is a subgroup of O(n).

Let Vi be the m-dimensional vector subspace of Rn that extends Fi.
Then for each i and j, either Vi = Vj or Vi and Vj intersect orthogonally
by Exercise 5.5.3. Let Gn

m be the set of all m-dimensional vector subspaces
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of Rn. Now O(n) acts transitively on Gn
m. The stabilizer O(n)m of Em is

closed in O(n). By Theorem 6.6.1, we have that Gn
m is a compact metric

space, isometric to the coset space O(n)/O(n)m, with metric d defined by
d(V, W ) = min{|A − I| : A ∈ O(n) and AV = W}.

Suppose V and W in Gn
m intersect orthogonally and A is in O(n) with

AV = W and d(V, W ) = |A − I|. Then there is a unit vector v in V such
that v and Av are orthogonal. Hence we have

d(V, W ) = |A − I| ≥ |Av − v| =
√

2.

By Lemma 6 of §5.4, there is a maximal number p of points of Gn
m with

mutual distances at least
√

2. This implies that there is a j such that
Vi = Vj for infinitely many i. Hence, by passing to a subsequence of
{Ai}∞

i=1, we may assume that Fi = F for all i. Then Fix(H) = F . Hence
m < n − 1, since |H| > 2.

Now L(Γ) is infinite by Theorem 12.1.5. Let C(Γ) = C(L(Γ)). As
〈C(Γ) ∩ Bn〉 is Γ-invariant, dim(C(Γ) ∩ Bn) ≥ n − 1. Therefore L(Γ) is
not contained in F . Let K = {g ∈ Γ : gF = F}. As L(K) ⊂ F , we deduce
that the index of K in Γ is infinite by Exercise 12.1.1. Let B0, . . . , Bp be
in distinct cosets of K in Γ. As BjAiB

−1
j → I as i → ∞ for each j, there

is an i such that |BjAiB
−1
j − I| < 2 −

√
3 for each j = 0, . . . , p. Assume

that Λ = 〈BjAiB
−1
j 〉p

j=0 is abelian. Then Λ is elementary of elliptic type.
Conjugate Λ so that Λ is a subgroup of O(n). Observe that

BjF = {x ∈ Bn : BjAiB
−1
j x = x}.

If j �= k, then BjF �= BkF , and so BjF and BkF intersect orthogo-
nally, contrary to the maximality of p. Therefore Λ is nonabelian, and
so BjAiB

−1
j and BkAiB

−1
k do not commute for some j and k, whence

〈BjAiB
−1
j , BkAiB

−1
k 〉 is nondiscrete by Theorem 12.5.3.

Exercise 12.5

1. A group G is said to be locally discrete if every finitely generated subgroup
of G is discrete. Prove that Q is an abelian, nondiscrete, locally discrete
subgroup of R.

2. Let

H =

{(
cos πx − sin πx
sin πx cos πx

)
: x ∈ Q

}
.

Prove that H is an abelian, nondiscrete, locally discrete subgroup of O(2).
3. Let H be the group in Exercise 2, let K be a nonelementary discrete subgroup

of PO(2, 1), and let

G =

{(
A 0
0 B

)
: A ∈ H and B ∈ K

}
.

Prove that G is a nonelementary, nondiscrete, locally discrete subgroup of
PO(4, 1).
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§12.6. The Margulis Lemma

In this section, we prove the Margulis lemma. We then use the Margulis
lemma to prove the existence of Margulis regions for a discrete subgroup
of I(Hn). As an application, we prove that bounded parabolic limit points
are cusped limit points.

Definition: Given a discrete subgroup Γ of I(Hn), a point x of Hn, and
ε > 0, let Γε(x) be the subgroup of Γ generated by the set

{g ∈ Γ : d(gx, x) ≤ ε}.

Theorem 12.6.1. (The Margulis lemma). For each dimension n, there is
an ε > 0 such that for every discrete subgroup Γ of I(Hn) and for every
point x of Hn, the group Γε(x) is elementary.

Proof: We pass to the conformal ball model Bn. Let Γ be a discrete
subgroup of M(Bn). Let x be a point of Bn and let τ be the hyperbolic
translation of Bn by x. Then for each ε > 0, we have

τ−1Γε(x)τ = τ−1〈g ∈ Γ : d(gx, x) ≤ ε〉τ
= 〈τ−1gτ ∈ τ−1Γτ : d(τ−1gτ(0), 0) ≤ ε〉
= (τ−1Γτ)ε(0).

Thus we may assume, without loss of generality, that x = 0. Let Γε = Γε(0).
For each positive integer 
, set

K
 = {g ∈ M(Bn) : d(g(0), 0) ≤ 1/
}.

Observe that K
 corresponds to the subset C(0, 1/
) × O(n) of Bn × O(n)
under the homeomorphism Φ : Bn × O(n) → M(Bn) of Theorem 5.2.8.
Therefore K
 is compact for each 
. The set K
 obviously contains the
identity I for each 
. Moreover K
 is invariant under the inversion map of
M(Bn) for each 
, since

d(g(0), 0) = d(0, g−1(0)).

Let K


 be the set of all elements of M(Bn) of the form g1 · · · g
 with gi

in K
 for each i = 1, . . . , 
. Observe that if gi is in K
 for each i = 1, . . . , 
,
then

d(g1 · · · g
(0), 0) ≤

∑

i=1

d(g1 · · · g
+1−i(0), g1 · · · g
−i(0))

=

∑

i=1

d(g
+1−i(0), 0) ≤ 1.

Therefore K


 ⊂ K1 for each 
.
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Let U be the open neighborhood of I in M(Bn) corresponding to the
open set {

A ∈ PO(n, 1) : |A − I| < 2 −
√

3
}
.

As M(Bn) is a topological group, with respect to the metric DB , defined by
Formula 5.2.1, there is an r > 0 such that if B = B(I, r), then B−1B ⊂ U .
As the metric DB is right-invariant, Bg = B(g, r) for each g in M(Bn).
By Lemma 6 of §5.4, there is a maximum number m of elements of the
compact metric space K1 with mutual distances at least r. Hence, we can
have at most m mutually disjoint open balls in K1 of radius r. Therefore,
we can have at most m mutually disjoint right translates of B in M(Bn)
by elements of K1.

Let ε = 1/(m+1) and let H = 〈Γε ∩U〉. Then H is an abelian subgroup
of Γε by Theorem 12.5.3. Let Bf1, . . . , Bfk be mutually disjoint right
translates of B by elements of Γε ∩ K1 with k as large as possible. Then
k ≤ m. We now show that {Hfi}k

i=1 contains a full set of cosets for H in Γε.
Let g be in Γε. As Γε is generated by Γ ∩ Km+1, we can write g = g1 · · · g


with gi in Γ ∩ Km+1 for each i. We assume that 
 is as small as possible.
We call 
 the length of g.

Assume first that 
 ≤ m + 1. Then g is in Km+1
m+1 ⊂ K1, and so g is in

Γε ∩K1. Therefore Bg meets Bfi for some i. Hence gf−1
i is in B−1B ⊂ U .

Therefore gf−1
i is in H and so Hg = Hfi. Now assume that 
 > m + 1.

Let hi = g1 · · · gi for each i = 1, . . . , m + 1. Then hi is in Km+1
m+1 ⊂ K1 for

each i. Consequently, the sets {Bhi}m+1
i=1 cannot all be disjoint; say Bhi

meets Bhj with i < j. Let α = hi, β = gi+1 · · · gj , and γ = gj+1 · · · g
.
Then g = αβγ with Bα ∩ Bαβ �= ∅. Hence α(αβ)−1 is in B−1B ⊂ U .
Therefore αβ−1α−1 is H and

Hg = H(αβ−1α−1)(αβγ) = Hαγ.

Let g′ = αγ. Then Hg = Hg′ and the length of g′ is less than the length
of g. By induction, it follows that Hg = Hg′′ with the length of g′′ at
most m + 1. Hence Hg = Hfi for some i by the previous argument. Thus
{Hfi}k

i=1 contains a full set of cosets for H in Γε. Hence

[Γε : H] ≤ k ≤ m.

Therefore Γε is elementary by Theorem 5.5.9.

Definition: The n-dimensional Margulis constant is the supremum cn of
all ε > 0 that satisfy the n-dimensional Margulis lemma.

Note that the Margulis constant cn is finite for each n > 1, since there are
nonelementary, discrete subgroups Γ of I(Hn) such that Hn/Γ is compact
for each n > 1.
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Margulis Regions

Let Γ be a discrete subgroup of M(Bn). For each r > 0, set

V (Γ, r) = {x ∈ Bn : d(x, gx) < r for some nonelliptic g in Γ}.

Note that the set V (Γ, r) may be empty.

Lemma 1. Let Γ be a discrete subgroup of M(Bn). Then V (Γ, r) is a
Γ-invariant open subset of Bn for each r > 0.

Proof: Let x be a point of V (Γ, r). Then there is a nonelliptic element g
of Γ such that d(x, gx) < r. Let f be any element of Γ. Then

d(fx, fgf−1fx) = d(x, gx) < r.

As fgf−1 is nonelliptic, fx is in V (Γ, r). Thus V (Γ, r) is Γ-invariant.
Now let s = (r − d(x, gx))/2. Then for each y in B(x, s), we have

d(y, gy) ≤ d(y, x) + d(x, gx) + d(gx, gy)
= 2d(x, y) + d(x, gx) < r.

Therefore V (Γ, r) contains B(x, s). Thus V (Γ, r) is open.

Lemma 2. Let Γ be an elementary discrete subgroup of M(Un) of parabolic
type that fixes ∞. Let a be a point of En−1, and let (a,∞) be the vertical
line of Un with base point a. If x is in Un, let (x,∞) be the open vertical
ray from x to ∞. Then for each r > 0, there is a point x directly above a
such that V (Γ, r)∩(a,∞) = (x,∞) and ∂V (Γ, r)∩(a,∞) = {x}. Moreover

∂V (Γ, r) ∩ Un ⊂ {x ∈ Un : d(x, gx) = r for some parabolic g in Γ}.

Proof: The group Γ is the Poincaré extension of a discrete subgroup of
I(En−1) by Theorem 5.5.5. Let a be a point of En−1, and let x be a point
directly above a. Let f be a nonelliptic element of Γ. Then f is parabolic
by Lemma 1 of §4.7. By Theorem 4.6.1, we have

cosh d(x, fx) = 1 +
|x − fx|

2x2
n

2

.

The value of |x−fx| does not depend on xn. Hence by increasing the value
of xn, if necessary, we may assume that d(x, fx) ≤ r. Now there are only
finitely many elements g of Γ such that

C(x, r/2) ∩ gC(x, r/2) �= ∅,

since Γ is discontinuous. Hence, there are only finitely many parabolic
elements g of Γ such that d(x, gx) ≤ r. By replacing f with another
parabolic element of Γ, if necessary, we may assume that

d(x, fx) ≤ d(x, gx)
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for all parabolic elements g of Γ. By increasing the value of xn, if necessary,
we may assume that d(x, fx) = r. Then d(x, gx) ≥ r for all parabolic
elements g of Γ. Let y be a point of (a, x). If yn > xn, then d(y, fy) < r,
while if yn < xn, then d(y, gy) > r for all parabolic elements g of Γ.
Therefore x is in ∂V (Γ, r) and V (Γ, r) ∩ (a,∞) = (x,∞).

Now suppose that x is a point in ∂V (Γ, r)∩Un. Then there is a sequence
of points {yi}∞

i=1 of V (Γ, r) converging to x within B(x, r/2). Now for each
i, there is a parabolic element gi of Γ such that d(yi, giyi) < r. By the
triangle inequality, we have

d(x, gix) ≤ d(x, yi) + d(yi, giyi) + d(giyi, gix)
< (r/2) + r + (r/2) = 2r.

Now as Γ is discontinuous, there are only finitely many elements g of Γ
such that

C(x, r) ∩ gC(x, r) �= ∅.

Consequently, the sequence {gi}∞
i=1 can take on only finitely many values.

By passing to a subsequence, we may assume that gi = g for all i. As
d(yi, gyi) < r, we have by continuity that d(x, gx) ≤ r. But x is not in
V (Γ, r), and so d(x, gx) = r. If y is a point of Un directly above x, then
d(y, gy) < r and so y is in V (Γ, r). Therefore x is the only point in ∂V (Γ, r)
directly above a. Thus ∂V (Γ, r) ∩ (a,∞) = {x}. Moreover, we have that

∂V (Γ, r) ∩ Un ⊂ {x ∈ Un : d(x, gx) = r for some parabolic g in Γ}.

Lemma 3. Let Γ be an infinite, elementary, discrete subgroup of M(Bn).
Then V (Γ, r) is connected for each r > 0.

Proof: Assume first that Γ is of parabolic type. We pass to the upper
half-space model Un and by conjugating Γ we may assume that Γ fixes ∞.
By Lemma 2, we have that V (Γ, r) intersects each vertical line of Un in an
open ray ending at ∞.

On the contrary, suppose that V (Γ, r) is disconnected. Then there exist
disjoint, nonempty, open subsets M and N of V (Γ, r) such that

V (Γ, r) = M ∪ N.

By Lemma 1, the sets M and N are open in Un. No point of M is vertically
above a point of N and vice versa, since an open vertical ray is connected.
Let ν : Un → En−1 be the vertical projection. Then ν(M) and ν(N) are
disjoint, nonempty, open subsets of En−1 such that

En−1 = ν(M) ∪ ν(N),

which is a contradiction. Thus V (Γ, r) is connected for each r > 0.
Assume now that Γ is of hyperbolic type. Then without loss of generality,

we may assume that Γ leaves invariant the positive nth axis in Un and that
V (Γ, r) is nonempty. Let x be a point of V (Γ, r). Then there is a nonelliptic
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element g of Γ such that d(x, gx) < r. As g fixes both 0 and ∞, we have
that g is hyperbolic. Hence, there is a positive constant k, with k �= 1, and
an A in O(n − 1) such that g = kÃ. By Theorem 4.6.1, we have

cosh d(x, gx) = 1 +
|x − kÃx|

2kx2
n

2

.

Now |x|en is the nearest point to x on the positive nth axis. Let y be
any point on the geodesic segment [|x|en, x]. Then |y| = |x| and yn ≥ xn.
Observe that

y · Ãy = (ν(y) + ynen) · (Aν(y) + ynen)
= ν(y) · Aν(y) + y2

n

= |ν(y)|2 cos θ(ν(y), Aν(y)) + y2
n

= |ν(y)|2 cos θ(ν(x), Aν(x)) + y2
n

= |ν(x)|2 cos θ(ν(x), Aν(x)) + x2
n

+ (y2
n − x2

n)(1 − cos θ(ν(x), Aν(x)))
≥ |ν(x)|2 cos θ(ν(x), Aν(x)) + x2

n

= x · Ãx.

Hence, we have

|y − kÃy|
y2

n

2

=
|y|2 − 2ky · Ãy + k2|y|2

y2
n

≤ |x|2 − 2kx · Ãx + k2|x|2
x2

n

=
|x − kÃx|

x2
n

2

.

Therefore, we have
d(y, gy) ≤ d(x, gx) < r.

Hence V (Γ, r) contains the geodesic segment [|x|en, x]. As V (Γ, r) also
contains the positive nth axis, V (Γ, r) is connected.

Lemma 4. If Γ is a discrete subgroup of M(Bn) and r > 0, then

V (Γ, r) = ∪{V (Γa, r) : a is a fixed point of a nonelliptic element of Γ}.

Proof: Clearly, we have

V (Γa, r) ⊂ V (Γ, r)

for each point a fixed by a nonelliptic element of Γ. Now let x be an
arbitrary point of V (Γ, r). Then there is a nonelliptic element g of Γ such
that d(x, gx) < r. Let a be a fixed point of g. Then g is in Γa, and so x is
in V (Γa, r). Thus V (Γ, r) is the union of the sets {V (Γa, r)}.
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Theorem 12.6.2. Let Γ be a discrete subgroup of M(Bn) and let cn be
the Margulis constant. Suppose that V (Γ, r) is nonempty and 0 < r ≤ cn.
Then the set of connected components of V (Γ, r) is the set of all nonempty
V (Γa, r) such that a is a fixed point of a nonelliptic element of Γ.

Proof: By Lemmas 1, 3, and 4, it suffices to show that any two members
of {V (Γa, r)} are either disjoint or coincide. Suppose that a and b are two
points fixed by nonelliptic elements of Γ, and suppose that x is in both
V (Γa, r) and V (Γb, r). Then there are nonelliptic elements g and h of Γ,
fixing a and b, respectively, such that d(x, gx) < r and d(x, hx) < r. Hence
g and h are in Γs(x) with s < cn. As Γs(x) is elementary, g and h have
the same fixed points by Theorems 5.5.3 and 5.5.6. Therefore Γa = Γb by
Theorem 5.5.4.

Definition: Suppose that 0 < r ≤ cn, where cn is the Margulis constant
and suppose that V (Γ, r) is nonempty. A component V (Γa, r) of V (Γ, r) is
called a Margulis region for Γ based at the point a.

Parabolic Fixed Points

Lemma 5. Let Γ be an elementary discrete subgroup of M(Un) of para-
bolic type that fixes ∞, let Q be a Γ-invariant m-plane of En−1 such that
Q/Γ is compact, let P be the vertical (m+1)-plane of Un above Q, and let
Pt = {x ∈ P : xn ≥ t}. Then for each r > 0, there is a t > 0 such that

N(Pt, r/3) ⊂ V (Γ, r).

Proof: Let r > 0. Since Q/Γ is compact, there is a compact Dirichlet
polyhedron D for Γ in Q. By Lemma 2, we know that V (Γ, r/3) intersects
each vertical line of Un in an open ray ending at ∞. Hence, since V (Γ, r/3)
is open and D is compact, there is a t > 0 such that

D × {t} ⊂ V (Γ, r/3).

As Γ leaves both ∂Pt = Q × {t} and V (Γ, r/3) invariant, ∂Pt ⊂ V (Γ, r/3).
Therefore Pt ⊂ V (Γ, r/3).

Now let x be an arbitrary point of N(Pt, r/3). Then there is a point y
of Pt such that d(x, y) < r/3. As y is in V (Γ, r/3), there is a nonelliptic g
in Γ such that d(y, gy) < r/3. Observe that

d(x, gx) = d(x, y) + d(y, gy) + d(gy, gx)
< r/3 + r/3 + r/3 = r.

Therefore x is in V (Γ, r). Thus N(Pt, r/3) ⊂ V (Γ, r).

Lemma 6. Let a be a conical limit point of a discrete subgroup Γ of M(Bn)
and let R be a hyperbolic ray in Bn ending at a. Then for each r > 0, there
is a point x of Bn and a sequence {gi}∞

i=1 of distinct elements of Γ such
that {gix}∞

i=1 converges to a within N(R, r).
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Proof: By Theorem 12.3.3, there is a sequence {gi}∞
i=1 of distinct elements

of Γ and a compact subset K of Bn such that K ∩ g−1
i R �= ∅ for all i. For

each i, choose a point xi on R such that g−1
i xi is in K. As K is compact,

the set {g−1
i xi} has a limit point x in K. By passing to a subsequence, we

may assume that {g−1
i xi}∞

i=1 converges to x within B(x, r). As g−1
i xi is in

B(x, r) for each i, we have that xi is in B(gix, r) for each i. Hence gix is
in N(R, r) for each i, and so gix → a within N(R, r).

Theorem 12.6.3. A fixed point a of a parabolic element of a discrete sub-
group Γ of M(Bn) is not a conical limit point of Γ.

Proof: We pass to the upper half-space model Un and by conjugating
Γ, we may assume that a = ∞. Let V (Γ∞, r) be a Margulis region for Γ
based at ∞. Then by Lemma 5, there is a t > 0 such that

N(Pt, r/3) ⊂ V (Γ∞, r).

Let R be a vertical ray in Pt that ends at ∞. On the contrary, assume
that ∞ is a conical limit point of Γ. Then by Lemma 6, there is a sequence
{gi}∞

i=1 of distinct elements of Γ and a point x of Un such that {gix}∞
i=1

converges to ∞ within N(R, r/3). Hence gix → ∞ within V (Γ∞, r). Now
by Lemma 1 and Theorem 12.6.2, the set V (Γ∞, r) is Γ∞-invariant and is
moved disjointly away from itself by elements of Γ − Γ∞. Therefore, the
elements of {gix} are translates of each other by elements of Γ∞, and so
all have the same nth coordinate and therefore lie in a bounded subset of
N(R, r/3). Hence {gix} cannot converge to ∞, which is a contradiction.
Thus a is not a conical limit point of Γ.

Corollary 1. Every point fixed by a parabolic element of a geometrically
finite discrete subgroup Γ of M(Bn) is a bounded parabolic limit point of Γ.

Proof: Every limit point of Γ is either conical or bounded parabolic by
Theorem 12.4.5, and so every parabolic fixed point is a bounded parabolic
limit point by Theorem 12.6.3.

Lemma 7. If �(x, y, z) is a generalized hyperbolic triangle whose angles
at x and y are greater than π/4, then d(x, y) < cosh−1(3).

Proof: Let α, β, γ be the angles of �(x, y, z) at x, y, z, respectively, and
let c = d(x, y). Then by Theorems 3.5.4 and 3.5.6, we have

cosh c =
cos α cos β + cos γ

sin α sin β
.

As α, β > π/4 and α + β + γ < π, we have that α, β < 3π/4. Hence
sin α, sin β > 1/

√
2 and | cos α|, | cos β| < 1/

√
2. Therefore

cosh c <
(1/

√
2)2 + 1

(1/
√

2)2
= 3.
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Lemma 8. If �(x, y, z) is a hyperbolic triangle, with d(y, z) ≥ 2d(x, y),
then the angle of �(x, y, z) at z is less than π/4.

Proof: Let α, β, γ be the angles of �(x, y, z) at x, y, z, respectively, and
let a, b, c be the lengths of the opposite sides. Then we have that a ≥ 2c.
Now as

d(y, z) ≤ d(y, x) + d(x, z),

we find that
d(x, z) ≥ d(y, z) − d(x, y) ≥ d(x, y).

Therefore b ≥ c.
On the contrary, assume that γ ≥ π/4. By the law of sines, we have

sinh a

sin α
=

sinh b

sin β
=

sinh c

sin γ
.

As b ≥ c, we have that sinβ ≥ sin γ. Assume first that γ ≥ π/2. Then
sin β ≥ sin(π − γ) and π − γ ≤ π/2. Hence β ≥ π − γ. As α + β + γ < π,
we have a contradiction. Therefore γ < π/2, and so β ≥ γ.

Now as a ≥ 2c, we have

sinh a ≥ sinh 2c = 2 sinh c cosh c ≥ 2 sinh c.

Therefore
sin α ≥ 2 sin γ ≥ 2 sin γ cos γ = sin 2γ.

As γ ≥ π/4, we have that 2γ ≥ π/2. Hence α ≥ π − 2γ. Therefore

α + β + γ ≥ π − γ + β ≥ π,

which is a contradiction. It follows that γ < π/4.

Definition: Two subsets A and B of Bn are said to be r-near for some
r > 0 if and only if A ⊂ N(B, r) and B ⊂ N(A, r).

Let K be a closed, nonempty, hyperbolic convex subset of Bn and let
ρK : Bn → K be the nearest point retraction.

Lemma 9. For each r > 0, there is an s > 0 such that if K and L are
closed, nonempty, convex, r-near subsets of Bn, then for all x in Bn,

d(ρK(x), ρL(x)) < s.

Proof: Set
s = max{2r, cosh−1(3)}.

Let x be a point of Bn, let y = ρK(x), and let z = ρL(x). If d(y, z) < 2r,
then d(y, z) < s, so assume that d(y, z) ≥ 2r. Then x �= y, since if x = y,
then x is in K and d(x, z) < r. Likewise x �= z. Hence, the points x, y, z
are distinct.
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Now since z is in L and L ⊂ N(K, r), there is a point w in K ∩ B(z, r).
As d(y, z) > r, we have that w �= y. As K is convex, the geodesic segment
[y, w] lies in K. Since y is the nearest point of K to x, the angle between
[x, y] and [y, w] is at least π/2. As d(z, w) < r and d(y, z) ≥ 2r, the angle
between [y, z] and [y, w] is less than π/4 by Lemma 8. Without loss of
generality, we may assume that y = 0. Then by Theorem 2.1.2, we have

θ(x, w) ≤ θ(x, z) + θ(z, w).

Hence
θ(x, z) ≥ θ(x, w) − θ(z, w) > π/2 − π/4 = π/4.

Therefore, the angle between [x, y] and [y, z] is greater than π/4. Likewise,
the angle between [y, z] and [z, x] is greater than π/4. By Lemma 7,

d(y, z) < cosh−1(3) ≤ s.

Lemma 10. Let K and L be closed, nonempty, hyperbolic convex subsets
of Bn and let C be a closed convex subset of Bn such that K ∩C and L∩C
are r-near. Let s be as in Lemma 9 and let B be a subset of C such that
N(B, s) ⊂ C. Then

ρ−1
K (B) ⊂ ρ−1

L (C).

Proof: Let x be a point of ρ−1
K (B). Then ρK(x) is in K ∩ B. Therefore

ρK∩C(x) = ρK(x).

By Lemma 9, we have

d(ρK∩C(x), ρL∩C(x)) < s.

As N(B, s) ⊂ C, we deduce that ρL∩C(x) is in C◦. We next show that

ρL∩C(x) = ρL(x).

On the contrary, suppose that ρL∩C(x) = y and ρL(x) = z with y �= z.
Then z is nearer to x than y is to x. As L is convex, the geodesic segment
[y, z] lies in L. After positioning y at the origin, we see that every point on
the open segment (y, z) is nearer to x than y is to x. But (y, z) meets C◦

contrary to the fact that y is the nearest point of L ∩ C to x. Therefore
ρL∩C(x) = ρL(x). Hence ρL(x) is in C. Thus ρ−1

K (B) ⊂ ρ−1
L (C).

Theorem 12.6.4. A point a of Sn−1 is a cusped limit point of a discrete
subgroup Γ of M(Bn) if and only if a is a bounded parabolic limit point of
the group Γ.

Proof: If a is a cusped limit point of Γ, then a is a bounded parabolic
limit point of Γ by Corollary 2 of §12.3. Conversely, suppose a is a bounded
parabolic limit point of Γ. We pass to the upper half-space model Un and
by conjugating Γ, we may assume that a = ∞. Let Q be a Γ∞-invariant
m-plane of En−1 such that Q/Γ∞ is compact.



§12.6. The Margulis Lemma 663

If Γ is elementary, then Γ fixes ∞ and so U(Q, r) = Un − N(Q, r) is a
cusped region for Γ based at ∞ for all r > 0. Hence we may assume that
Γ is nonelementary.

There is a t > 0 such that L(Γ) ⊂ N(Q, t) by Theorem 12.3.5. Let
V = V (Γ∞, r) be a Margulis region for Γ based at ∞. Then for each g
in Γ, either V ∩ gV = ∅ or gV = V and g(∞) = ∞ by Theorem 12.6.2.
Let ν : Un → En−1 be the vertical projection and let K be the closure of
ν−1(Q) in Un. Let L = C(Γ) be the hyperbolic convex hull of L(Γ) and let
R be the closure of ν−1(N(Q, t)) in Un. Then K, L, R are closed hyperbolic
convex subsets of Un. Let D be a Dirichlet fundamental polyhedron for
Γ∞ in Q. Then D is compact, and so N(D, t) is compact. Since V is open
and contains the region above an open ball in V , there is a closed horoball
C based at ∞ such that ν−1(N(D, t)) ∩ C ⊂ V . As V is Γ∞-invariant,
R ∩ C ⊂ V . As R contains L(Γ), we have that L ⊂ R. Hence there is an
r > 0 such that L ∩ C ⊂ N(K ∩ C, r). Since (L(Γ) − {∞})/Γ∞ and Q/Γ∞
are compact subsets of En−1/Γ∞, there is a s > 0 such that

Q/Γ∞ ⊂ N((L(Γ) − {∞})/Γ∞, s).

Hence Q ⊂ N(L(Γ) − {∞}, s). As L contains every vertical line of Un

above a point of L(Γ)−{∞}, there is an r > 0 by Theorem 4.6.1 such that

K ∩ ∂C ⊂ N(L ∩ ∂C, r).

As hyperbolic distance decreases under an upward vertical translation, we
deduce that K ∩ C ⊂ N(L ∩ C, r). Thus there is an r > 0 such that K ∩ C
and L ∩ C are r-near.

Let s be as in Lemma 10 and let B be the horoball contained in C such
that ∂B is at a distance s from ∂C. Then N(B, s) ⊂ C. By Lemma 10,
we have that ρ−1

K (B) ⊂ ρ−1
L (C). Now as L ∩ C ⊂ R ∩ C ⊂ V, we have that

ρ−1
L (C) ⊂ ρ−1

L (V ). Therefore ρ−1
K (B) ⊂ ρ−1

L (V ).
Observe that ρ−1

K (B) has the shape of a cusped region for Γ based at ∞,
and for each g in Γ, we have gρ−1

L (V ) = ρ−1
L (gV ), since ρL is Γ-equivariant.

Hence, for each g in Γ − Γ∞, we have

ρ−1
L (V ) ∩ gρ−1

L (V ) = ρ−1
L (V ∩ gV ) = ∅.

Therefore ρ−1
K (B) is a cusped region for Γ based at ∞. Thus ∞ is a cusped

limit point of the group Γ.

Corollary 2. If Γ is a discrete subgroup of M(Un) such that ∞ is fixed
by a parabolic element of Γ and En−1/Γ∞ is compact, then ∞ is a cusped
limit point of Γ.

Proof: The set (L(Γ)−{∞})/Γ∞ is closed in En−1/Γ∞, since O(Γ)/Γ∞ is
open in En−1/Γ∞. As En−1/Γ∞ is compact, (L(Γ)−{∞})/Γ∞ is compact.
Hence ∞ is a bounded parabolic limit point of Γ. Therefore ∞ is a cusped
limit point of Γ by Theorem 12.6.4.
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Lemma 11. Let Γ be a discrete subgroup of M(Bn) and let A be the set
of fixed points of parabolic elements of Γ. Let cn be the Margulis constant
and suppose 0 < r ≤ cn. Then {V (Γa, r/2)−{a} : a ∈ A} is a locally finite
family of closed subsets of Bn.

Proof: By Lemma 2 and Exercise 12.6.7, we have that

V (Γa, r/2) − {a} ⊂ V (Γa, r)

for each a in A. By Theorem 12.6.2, the sets {V (Γa, r) : a ∈ A} are
mutually disjoint. Hence V (Γa, r) is an open subset of Bn that meets just
one member of the family of closed sets, namely V (Γa, r/2) − {a}.

We now show that the set K = ∪{V (Γa, r/2) − {a} : a ∈ A} is closed in
Bn. Let x be a limit point of K in Bn. Then there is a sequence {xi}∞

i=1
of points of K converging to x. Hence there is a j such that d(x, xj) < r/4.
Now xj is in V (Γa, r/2) − {a} for some a in A. By Lemma 2, there is an
element g of Γa such that d(xj , gxj) ≤ r/2. By the triangle inequality, we
have

d(x, gx) ≤ d(x, xj) + d(xj , gxj) + d(gxj , gx)
< (r/4) + (r/2) + (r/4) = r.

Therefore x is in V (Γa, r), and so x must be in V (Γa, r/2) − {a}. Thus K
is closed.

Now let y be an arbitrary element of Bn. If y is not contained in V (Γa, r)
for some a in A, then Bn − K is an open neighborhood of y that does not
meet any members of {V (Γa, r/2) − {a} : a ∈ A}.

Theorem 12.6.5. Let Γ be a discrete subgroup of M(Bn) and let C be
the set of cusped limit points of Γ. Then for each point c in C, there is a
cusped region U(c) based at c for Γ such that the regions {U(c) : c ∈ C}
are mutually disjoint, gU(c) = U(gc) for each g in Γ and c in C, and
{U(c)−{c} : c ∈ C} is a locally finite family of closed subsets of Bn ∪O(Γ).

Proof: This is clear if Γ is elementary, so assume that Γ is nonelementary.
Let cn be the Margulis constant, and suppose 0 < r ≤ cn. For each c in
C, let V (c) = V (Γc, r/2). Then the regions {V (c) : c ∈ C} are mutually
disjoint and gV (c) = V (gc) for each g in Γ and c in C. Let ρ : Bn → C(Γ)
be the nearest point retraction. Then the regions {ρ−1(V (c)) : c ∈ C} are
mutually disjoint. As in the proof of Theorem 12.6.4, there is a cusped
region U(c) for Γ based at c such that U(c) − {c} ⊂ ρ−1(V (c)) for each c
in C. Then the regions {U(c) : c ∈ C} are mutually disjoint. Now as ρ is
Γ-equivariant, we have

gρ−1(V (c)) = ρ−1(V (gc))

for each g in Γ and c in C. Consequently, we can choose U(c) so that
gU(c) = U(gc) for each g in Γ and c in C.
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We now show that {U(c)−{c} : c ∈ C} is a locally finite family of closed
subsets of Bn ∪ O(Γ). Let x be a point of Bn ∪ O(Γ), and let y = ρ(x).
Then there is an s > 0 such that B(y, s) meets only finitely many members
of {V (Γc, r/2) : c ∈ C} by Lemma 11. Now ρ−1(B(y, s)) is an open subset
of Bn ∪ O(Γ), since ρ is continuous on Bn ∪ O(Γ) by Lemma 3 of §12.2.
Hence ρ−1(B(y, s)) is an open neighborhood of x in Bn ∪ O(Γ) that meets
only finitely many members of {ρ−1(V (Γc, r/2)) : c ∈ C}. As

U(c) ⊂ ρ−1(V (Γc, r/2))
for each c in C, we have that ρ−1(B(y, s)) is an open neighborhood of x
in Bn ∪ O(Γ) that meets only finitely many members of {U(c) : c ∈ C}.
Thus we have that {U(c) − {c} : c ∈ C} is a locally finite family of closed
subsets of Bn ∪ O(Γ).

Exercise 12.6

1. Let Γ be an elementary discrete subgroup of M(Bn) of parabolic type, with
fixed point a, all of whose nonelliptic elements are parabolic translations.
Prove that V (Γ, r) is a horoball in Bn based at a for each r > 0.

2. Let Γ be an elementary discrete subgroup of M(Bn) of hyperbolic type, and
let � be the smallest length that a hyperbolic element of Γ translates along
the axis of Γ. Prove that V (Γ, r) is nonempty if and only if r > �.

3. Let Γ be an elementary discrete subgroup of M(Bn) of hyperbolic type with
axis L. Prove that V (Γ, r) is invariant under any of hyperbolic translation
of Bn with axis L.

4. Let Γ be an elementary discrete subgroup of M(Bn) of hyperbolic type, with
axis L, all of whose nonelliptic elements are hyperbolic translations, and let
� be as in Exercise 2. Prove that for each r > �, there is an s > 0 such that
V (Γ, r) = N(L, s).

5. Let Γ be an elementary discrete subgroup of M0(B3) of hyperbolic type with
axis L, and let � be as in Exercise 2. Prove that for each r > �, there is an
s > 0 such that V (Γ, r) = N(L, s).

6. Let Γ be an elementary discrete subgroup of M(Bn) of hyperbolic type with
axis L. Prove that for each r > 0, there is an s > 0 such that we have
V (Γ, r) ⊂ N(L, s).

7. Let Γ be an elementary discrete subgroup of M(Bn) of parabolic type with
fixed point a. Prove that for each r > 0, there is a horoball Br based at a
such that V (Γ, r) ⊂ Br.

8. Let Γ be an infinite, elementary, discrete subgroup of M(Bn), and suppose
V (Γ, r) in nonempty. Prove that V (Γ, r) ∩ Sn−1 = L(Γ).

9. Let Γ be a discrete subgroup of M(Bn) with a parabolic translation f that
fixes the point a of S−1. Prove that there is a horocusped region B(a) for Γ
based at a.

10. Prove that a geometrically finite discrete subgroup Γ of M(Bn) has only
finitely many conjugacy classes of maximal elementary subgroups of para-
bolic type.
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§12.7. Geometrically Finite Manifolds

In this section, we study the geometry of geometrically finite hyperbolic
manifolds. We begin by defining the thick and thin parts of a hyperbolic
space-form.

Let M = Bn/Γ be a hyperbolic space-form and let r > 0. The r-thin
part of M is the set

V (M, r) = V (Γ, r)/Γ.

The r-thin part of M is an open subset of M . Let

T (Γ, r) = Bn − V (Γ, r).

The r-thick part of M is the set

T (M, r) = T (Γ, r)/Γ.

The r-thick part of M is a closed subset of M whose complement is the
r-thin part of M .

Theorem 12.7.1. For each dimension n, there is a δ > 0 such that for
each hyperbolic space-form Bn/Γ, there is a point x of Bn such that the
quotient map π : Bn → Bn/Γ maps B(x, δ) isometrically onto B(π(x), δ).

Proof: Let cn be the Margulis constant. By Theorem 12.6.2, the set
T (Γ, cn) is nonempty. Let x be any point of T (Γ, cn). Then d(x, gx) ≥ cn

for every g �= 1 in Γ. Then for every g �= 1 in Γ, we have

B(x, cn/2) ∩ gB(x, cn/2) = ∅.

Hence π maps B(x, cn/2) bijectively onto B(π(x), cn/2). Therefore, by the
triangle inequality, π maps B(x, cn/4) isometrically onto B(π(x), cn/4).

Corollary 1. For each dimension n, there is a positive lower bound for
the set of volumes of complete hyperbolic n-manifolds.

Remark: For even n, we have the lower bound of Vol(Sn)/2 for the
volume of a complete hyperbolic n-manifold by the Gauss-Bonnet theorem.
See Theorem 11.3.4.

Geometrically Finite Hyperbolic Manifolds

A hyperbolic n-manifold M is said to be geometrically finite if M has a finite
number of connected components and each component of M is isometric
to a space-form Bn/Γ with Γ geometrically finite.

Remark: It follows from Theorem 8.1.5 that a hyperbolic space-form
Bn/Γ is geometrically finite if and only if Γ is geometrically finite.
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Theorem 12.7.2. Let M = Bn/Γ be a hyperbolic space-form, and let
C(M) be the convex hull of M . Then the following are equivalent:

(1) The hyperbolic manifold M is geometrically finite.

(2) There is a (possibly empty) finite union V of proper horocusps of M ,
with disjoint closures, such that C(M) − V is compact.

(3) The open set N(C(M), r) has finite volume for each r > 0.

(4) The closed set C(M) ∩ T (M, r) is compact for each r > 0.

Proof: The hyperbolic manifold M is geometrically finite if and only if Γ
is geometrically finite. Hence, the equivalence of (1) and (2) follows from
Theorem 12.4.5.

Suppose that M is geometrically finite. Then Γ is geometrically finite.
Hence Γ has a geometrically finite, exact, convex, fundamental polyhedron
P . Let C(Γ) be the hyperbolic convex hull of L(Γ). Define

B(Γ) = C(Γ) ∩ Bn.

Then C(M) = B(Γ)/Γ. In order to prove that N(C(M), r) has finite
volume, it suffices, by Formula 11.5.25, to prove that N(B(Γ), r) ∩ P ◦ has
finite volume. By Corollary 3 of §12.4, we have that P ∩ L(Γ) is a finite
set of cusped limit points of Γ, say c1, . . . , cm. Now we have

N(B(Γ), r) ∩ Sn−1 = C(Γ) ∩ Sn−1 = L(Γ).

Hence
N(B(Γ), r) ∩ P ∩ Sn−1 = P ∩ L(Γ) = {c1, . . . , cm}.

Choose a cusped region Ui for Γ based at ci for each i such that U1, . . . , Um

are disjoint. Define

W =
(
N(B(Γ), r) ∩ P ◦)− (U1 ∪ · · · ∪ Um).

We claim that W is bounded. On the contrary, let {xi}∞
i=1 be an unbounded

sequence of points of W . By passing to a subsequence, we may assume that
{xi} converges to a point a of Sn−1. Then a is in the set

N(B(Γ), r) ∩ P ∩ Sn−1 = {c1, . . . , cm}.

Hence a = cj for some j. We pass to the upper half-space model Un and
conjugate Γ so that a = ∞. Let Q be the Γ∞-invariant m-plane of En−1

such that Q/Γ∞ is compact and Uj = U(Q, s). By Lemma 2 of §12.3, we
have that distE(xi, Q) → ∞. Therefore xi is in Uj for all sufficiently large i,
which is a contradiction, since W is disjoint from Uj . Thus W is bounded.
Therefore W has finite volume. Hence, to prove that the set N(B(Γ), r)∩P ◦

has finite volume, it suffices to show that the set N(B(Γ), r) ∩ P ◦ ∩ Ui has
finite volume for each i.

We now pass to the upper half-space model Un and conjugate Γ so that
c1 = ∞. Then there is a Γ∞-invariant m-plane Q of En−1 and an s > 0
such that U1 = U(Q, s). By Lemma 1 of §12.3, we have that

L(Γ) ⊂ N(Q, s).
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Q
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N0
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Figure 12.7.1. The subdivision of N(K, s) ∩ ρ−1
(
ν−1(C) ∩ B(s)

)
Let ν : Un → En−1 be the vertical projection and let R be the closure
in Un of ν−1(N(Q, s)). Then R is a closed hyperbolic convex subset of
Un containing L(Γ). Therefore C(Γ) ⊂ R. Let K = ν−1(Q). Then by
increasing s, if necessary, we may assume that

N(B(Γ), r) ∩ U1 ⊂ N(K, s) ∩ U1.

Let D be a Dirichlet polyhedron for Γ∞ in Q and let

B(t) = {x ∈ Un : xn > t}.

Let ρ : Un → K be the nearest point retraction. Observe that the set

N(K, s) ∩ ρ−1(ν−1(D◦) ∩ B(s)
)

is a fundamental domain for Γ∞ in N(K, s) ∩ U1. We now show that

Vol
(
N(K, s) ∩ ρ−1(ν−1(D) ∩ B(s)

))
< ∞.

As Q/Γ∞ is compact, D is compact. Hence, there is an m-cube C in Q
containing D. By conjugating Γ, we may assume that Q = Em. Then
K = Em+1. Let µ : En → En be defined by µ(x) = 2x. Then µ is an
isometry of Un that leaves K invariant. For each i = 0, 1, 2, . . . , let

Ni = N(K, s) ∩ ρ−1(ν−1(C) ∩
(
B(2is) − B(2i+1s)

))
.

Observe that N0 is bounded, and so it has finite volume. See Figure 12.7.1.
Since µ(C) can be subdivided into 2m cubes congruent to C, we deduce
that µ(Ni) can be subdivided into 2m regions each congruent to Ni+1.
Therefore

Vol(Ni+1) =
1

2m
Vol(Ni).

Hence, by induction, we have

Vol(Ni) =
(

1
2m

)i

Vol(N0).
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Therefore

Vol
( ∞

∪
i=0

Ni

)
=

∞∑
i=0

Vol(Ni)

= Vol(N0)
∞∑

i=0

(
1

2m

)i

= Vol(N0)
(

2m

2m − 1

)
< ∞.

Hence
Vol
(
N(K, s) ∩ ρ−1(ν−1(C) ∩ B(s)

))
< ∞.

As D ⊂ C, we have that

Vol
(
N(K, s) ∩ ρ−1(ν−1(D) ∩ B(s)

))
< ∞.

Therefore, we have that

Vol
(
(N(K, s) ∩ U1)/Γ∞

)
< ∞.

As N(B(Γ), r) ∩ U1 ⊂ N(K, s) ∩ U1, we have that

Vol
(
(N(B(Γ), r) ∩ U1)/Γ∞

)
< ∞.

Since U1 is a cusped region for Γ based at ∞, we deduce that

Vol
(
N(B(Γ), r) ∩ P ◦ ∩ U1

)
< ∞.

Likewise, we have that

Vol
(
N(B(Γ), r) ∩ P ◦ ∩ Ui

)
< ∞

for each i > 1. Hence

Vol
(
N(B(Γ), r) ∩ P ◦) < ∞.

Therefore, we have that

Vol
(
N(C(M), r)

)
< ∞.

Thus (2) implies (3).
Now assume that N(C(M), r) has finite volume for each r > 0. On the

contrary, suppose that C(M) ∩ T (M, r) is not compact for some r > 0.
Choose a sequence of points {ui}∞

i=1 of C(M) ∩ T (M, r) inductively as fol-
lows: Let u1 be any point of C(M)∩T (M, r). Assume that u1, . . . , um have
been chosen so that the balls {B(ui, r/2)}m

i=1 are mutually disjoint. Since
the set

m
∪

i=1
C(ui, r) is compact, it cannot contain C(M) ∩ T (M, r). Hence,

there is a point um+1 of C(M)∩T (M, r) such that the balls {B(ui, r/2)}m+1
i=1

are mutually disjoint. It follows by induction that there is a sequence
{ui}∞

i=1 of points of C(M) ∩ T (M, r) such that the balls {B(ui, r/2)}∞
i=1

are mutually disjoint.
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Now for each i, choose xi in C(Γ) ∩ T (Γ, r) such that π(xi) = ui where
π : Bn → M is the quotient map. Now as xi is in T (Γ, r), we have that
d(xi, gxi) ≥ r for all g �= 1 in Γ. Hence, we have

B(xi, r/2) ∩ gB(xi, r/2) = ∅

for all g �= 1 in Γ. Therefore π maps B(xi, r/2) bijectively onto B(ui, r/2).
Hence

Vol(B(ui, r/2)) = Vol(B(xi, r/2)) = Vol(B(0, r/2)).

As B(ui, r/2) ⊂ N(C(M), r/2) for each i, we deduce that N(C(M), r/2)
has infinite volume, which is a contradiction. Therefore C(M) ∩ T (M, r)
must be compact for all r > 0. Thus (3) implies (4).

Now assume that C(M) ∩ T (M, r) is compact for each r > 0. We shall
prove that every limit point of Γ is either conical or bounded parabolic.
Let a be a limit point of Γ. If a is fixed by a hyperbolic element of Γ, then
a is a conical limit point of Γ by Theorem 12.3.1.

Assume next that a is fixed by a parabolic element of Γ. We pass to
the upper half-space model Un and conjugate Γ so that a = ∞. Let Q
be a Γ∞-invariant m-plane of En−1 such that Q/Γ∞ is compact. We shall
prove that a is a bounded parabolic limit point of Γ by showing that there
is an s > 0 such that

L(Γ) ⊂ N(Q, s).

On the contrary, suppose that there is no such s. Then there is a sequence
{xi}∞

i=1 of points of L(Γ)−{∞} such that distE(xi, Q) → ∞. Let V (Γ∞, r)
be a Margulis region for Γ based at ∞. Then for each i, there is a point yi

of Un directly above xi such that yi is in ∂V (Γ∞, r/2) by Lemma 2 of §12.6.
Moreover yi is in V (Γ∞, r) for each i by Lemma 2 of §12.6. Furthermore
yi is in C(Γ) for each i, since C(Γ) is convex. Clearly distE(yi, Q) → ∞.

Let π : Un → M be the quotient map. Then the sequence {π(yi)}∞
i=1

has a limit point in the compact set C(M) ∩ ∂T (M, r/2). By passing to a
subsequence, we may assume that {π(yi)} converges to a point w. Let z be
a point of C(Γ) ∩ ∂T (Γ, r/2) such that π(z) = w. As π(yi) → w, there is a
gi in Γ such that {giyi}∞

i=1 converges to z. Now z is in V (Γ, r). Hence z is
in V (Γb, r) for some fixed point b of a nonidentity element of Γ by Lemma
4 of §12.6. As giyi → z, there is a j such that gjyj is in V (Γb, r). Now
since yj is in V (Γ∞, r), we have that gjyj is in V (Γgj(∞), r). By Theorems
5.5.4 and 12.6.2, we deduce that gj(∞) = b. Now by replacing z by g−1

j z,
we may assume that z is in V (Γ∞, r), and by passing to a subsequence, we
may assume that giyi is in V (Γ∞, r) for all i. Then gi is in Γ∞ for all i.
Hence distE(giyi, Q) → ∞, and so giyi → ∞, which is a contradiction.
Thus, there is an s > 0 such that

L(Γ) ⊂ N(Q, s).

Hence, by Theorem 12.3.5, we have that a is a bounded parabolic limit
point of Γ.
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Assume now that the point a is not fixed by a nonidentity element of Γ.
Let R be a hyperbolic ray in Bn starting in C(Γ) and ending at a. Then
R ⊂ C(Γ), since C(Γ) is convex. Let cn be the Margulis constant, and
suppose 0 < r ≤ cn. Then no subray of R is contained in a component
of V (Γ, r), since otherwise its endpoint a would be fixed by a nonidentity
element of Γ. Therefore, the set R ∩ T (Γ, r) is unbounded. Let {xi}∞

i=1 be
a sequence of points of R ∩ T (Γ, r) converging to a. As C(M) ∩ T (M, r) is
compact, there is an s > 0 such that

C(M) ∩ T (M, r) ⊂ C(0, s).

Hence there is an element gi of Γ such that gixi is in C(0, s) for each i. We
now show that infinitely many of the terms of {gi} are distinct. Suppose
this is not the case. Then after passing to a subsequence, there is a g in
Γ such that gxi is in C(0, s) for all i. As xi → a, we have that gxi → ga,
whence ga is in C(0, s), which is not the case. Therefore infinitely many
of the terms of {gi} are distinct. As C(0, s) ∩ giR �= ∅ for each i, we have
that a is a conical limit point of Γ by Theorem 12.3.3. Thus, every limit
point of Γ is either conical or bounded parabolic. Hence Γ is geometrically
finite by Theorem 12.4.5. Thus (4) implies (1).

Theorem 12.7.3. Every complete hyperbolic n-manifold of finite volume
is geometrically finite.

Proof: Let M be a complete hyperbolic n-manifold of finite volume. By
Theorem 12.7.1, there is a positive lower bound for the set of volumes
of complete hyperbolic n-manifolds. Therefore M has a finite number of
connected components. Thus, we may assume that M is connected. By
Theorem 8.5.9, we may assume that M is a space-form Bn/Γ of finite
volume. Then C(M) = M by Theorem 12.2.13. Hence M is geometrically
finite by Theorem 12.7.2.

The next theorem describes the global geometry of a complete, open,
hyperbolic n-manifold of finite volume.

Theorem 12.7.4. Let M be a complete, open, hyperbolic n-manifold of
finite volume. Then there is a compact n-manifold-with-boundary M0 in M
such that M − M0 is a finite union of proper cusps with disjoint closures.

Proof: The manifold M is geometrically finite by Theorem 12.7.3. Hence
M has a finite number of connected components. Thus, we may assume
that M is connected. By Theorem 8.5.9, we may assume that M is a space-
form Bn/Γ of finite volume. By Theorem 12.7.2, there is a nonempty finite
union V of proper horocusps, with disjoint closures, such that M − V is
compact. Let V1, . . . , Vm be the horocusp components of V , let Bi be a
proper horocusped region for Γ based at ai corresponding to Vi for each i,
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and let Γi be the stabilizer of ai in Γ for each i. By Lemma 5 of §12.4, the
inclusion of Bi into Bn induces a homeomorphism

ηi : Bi/Γi → Vi

for each i. Moreover ηi is a local isometry for each i. Hence we have

Vol(Bi/Γi) = Vol(Vi)

for each i. Therefore Bi/Γi has finite volume for each i. Let Si be the
horosphere boundary of Bi for each i. Then Si/Γi is compact for each i.
By Lemma 5 of §12.4, the inclusion of Si into Bn induces a homeomorphism
from Si/Γi onto ∂Vi for each i. Hence ∂Vi is a closed (n − 1)-dimensional
submanifold of M for each i. Therefore M0 = M − V is a compact n-
manifold-with-boundary,

∂M0 = ∂V = ∂V1 ∪ · · · ∪ ∂Vm.

Moreover M −M0 is the union of the proper cusps V1, . . . , Vm. Furthermore
V 1, . . . , V m are disjoint.

The Ideal Boundary of a Hyperbolic Manifold

Let M be a complete, connected, hyperbolic n-manifold. Then there is a
torsion-free discrete subgroup Γ of M(Bn) and an isometry ξ : M → Bn/Γ.
The orbit space O(Γ)/Γ is called the ideal boundary of M . Let M be the
union of M and its ideal boundary, and let

ξ : M → (Bn ∪ O(Γ))/Γ

be the extension of ξ that is the identity on O(Γ)/Γ. We topologize M so
that ξ is a homeomorphism.

Theorem 12.7.5. Let Γ be a torsion-free discrete subgroup of M(Bn) of
the second kind. Then the quotient map

π : Bn ∪ O(Γ) → (Bn ∪ O(Γ))/Γ

is a covering projection and the orbit space (Bn∪O(Γ))/Γ is an n-manifold-
with-boundary O(Γ)/Γ.

Proof: As Γ is torsion-free, Γ acts freely on Bn ∪ O(Γ) by Theorems
8.2.1 and 12.2.9. Therefore π is a covering projection by Theorems 8.1.3
and 12.2.9. Now by Lemma 2 of §11.5, the orbit space (Bn ∪ O(Γ))/Γ
is Hausdorff. Hence (Bn ∪ O(Γ))/Γ is an n-manifold-with-boundary, since
Bn∪O(Γ) is an n-manifold-with-boundary. The boundary of (Bn∪O(Γ))/Γ
is O(Γ)/Γ.

Corollary 2. Let M be a complete, connected, hyperbolic n-manifold, and
let M be the union of M and its ideal boundary. If the ideal boundary of
M is nonempty, then M is an n-manifold-with-boundary.
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Lemma 1. Let U(Q, r) be a cusped region based at ∞ for a discrete sub-
group Γ of M(Un). Then the Euclidean nearest point retraction

ρ : Un − {∞} → N(Q, r) ∩ (Un − {∞})

is well defined, continuous, and Γ∞-equivariant.

Proof: The Euclidean nearest point retraction

ρ : Un − {∞} → N(Q, r) ∩ (Un − {∞})

is well defined, since N(Q, r) is Euclidean convex. Let φ : En → Q be the
orthogonal projection. If x is in U(Q, r) − {∞}, then ρ(x) is the point on
the Euclidean line segment [x, φ(x)] that is a Euclidean distance r from
φ(x). Hence if x is in U(Q, r) − {∞}, we have

ρ(x) = φ(x) +
r(x − φ(x))
|x − φ(x)| .

Therefore ρ is continuous. As Q is Γ∞-invariant and the elements of Γ∞
are Euclidean isometries, we have that ρ is Γ∞-equivariant.

Cusps

Let Γ be a torsion-free, elementary, discrete subgroup of M(Un) of parabolic
type, with fixed point ∞, and let U be a (proper) cusped region for Γ based
at ∞. Note that if En−1/Γ is noncompact, then U includes ideal points
of En−1. Let M be a complete, connected, hyperbolic n-manifold. A
submanifold of M equivalent to U/Γ is called an n-dimensional (proper)
cusp of M . Here an equivalence is a homeomorphism that restricts to a
local isometry on actual points. The set of actual points of a (proper) cusp
of M form an unbounded subset of M called a (proper) cusp of M . Hence,
if M is closed, then M has no cusps.

Theorem 12.7.6. Let M be a connected, open, geometrically finite, hyper-
bolic n-manifold and let M be the union of M and its ideal boundary. Then
there is a compact connected n-manifold-with-boundary M0 in M such that
M − M0 is a finite union of proper cusps of M with disjoint closures.

Proof: Since M is connected and geometrically finite, we may assume
that M is a space-form Bn/Γ and

M = (Bn ∪ O(Γ))/Γ

with Γ geometrically finite. Let C be the set of cusped limit points of Γ.
By Theorem 12.6.5, there is a proper cusped region U(c) based at c for Γ
for each c in C such that the regions {U(c) : c ∈ C} are mutually disjoint,
gU(c) = U(gc) for each g in Γ and c in C, and {U(c) − {c} : c ∈ C} is a
locally finite family of closed subsets of Bn ∪ O(Γ).
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Let (
Bn ∪ O(Γ)

)
0 =
(
Bn ∪ O(Γ)

)
− ∪

c∈C
U(c).

Choose a representative c for each Γ-orbit in C, and let

ρc : Bn − {c} → (Bn − {c}) − U(c)

be the retraction corresponding to the retraction in Lemma 1. For each g
in Γ, define a retraction

ρgc : Bn − {gc} → (Bn − {gc}) − U(gc)

by ρgc = gρcg
−1. Note that ρgc is well defined, since ρc is Γc-equivariant.

Hence we have a Γ-equivariant retraction

ρ : Bn ∪ O(Γ) → (Bn ∪ O(Γ))0

that agrees with ρc on U(c) − {c} for each c in C. The retraction ρ is
continuous, since ρc is continuous for each c and {U(c) − {c} : c ∈ C} is a
locally finite family of closed subsets of Bn ∪O(Γ). Hence (Bn ∪O(Γ))0 is a
closed, connected, Γ-invariant subset of Bn∪O(Γ). Let π : Bn∪O(Γ) → M
be the quotient map and define

M0 = π
(
(Bn ∪ O(Γ))0

)
.

Then M0 is a closed connected subset of M . Now since (Bn ∪ O(Γ))0
is an n-manifold-with-boundary, we have that M0 is an n-manifold-with-
boundary by Theorem 12.7.5.

Let P be an exact, convex, fundamental polyhedron for Γ. Then P is
geometrically finite. Hence P has only finitely many cusp points that are
cusped limit points of Γ, say c1, . . . , cm. It follows from Theorems 12.3.6
and 12.3.7 that for each c in C, there is a g in Γ such that gc = ci for some i.
Therefore C is partitioned into only finitely many Γ-orbits. Consequently,
M − M0 has only finitely many components. If K is a component of
M − M0, then K is a proper cusp of M , since there is a c in {c1, . . . , cm}
such that the inclusion of U(c) into M induces an equivalence

η : U(c)/Γc → K.

The components of M − M0 have mutually disjoint closures, since the
collection {U(c) − {c} : c ∈ C} is a Γ-invariant, locally finite family of
mutually disjoint closed subsets of Bn ∪ O(Γ). Thus M − M0 is a finite
union of proper cusps of M with disjoint closures.

Now let
P 0 = P −

m
∪

i=1

(
U(ci) ∪ {ci}

)
.

Then P 0 is a closed subset of Bn by Lemma 2 of §12.3. Therefore P 0 is
compact. By Theorem 12.4.4, we have that P 0 is a subset of Bn ∪ O(Γ).
Hence π(P 0) is compact. Now as M0 ⊂ π(P 0), we deduce that M0 is
compact.
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Finiteness Properties of Geometrically Finite Manifolds

We now derive some finiteness properties of geometrically finite hyperbolic
manifolds.

Theorem 12.7.7. Let M = Bn/Γ be a nonelementary geometrically finite
space-form such that Γ leaves no m-plane of Bn invariant for m < n − 1.
Then the group I(M) of isometries of M is finite.

Proof: An isometry φ of M = Bn/Γ lifts to an isometry φ̃ of Bn such
that φ̃Γφ̃−1 = Γ. Moreover φ̃ is unique up to composition with an element
of Γ. Conversely, if ψ is an isometry of Bn such that ψΓψ−1 = Γ, then ψ
induces an isometry of M . Let N be the normalizer of Γ in M(Bn). We
conclude that I(M) is isomorphic to N/Γ.

The group Γ is finitely generated by Theorem 12.4.9. Therefore N is
discrete by Theorem 12.2.15. Now by Theorem 12.2.14, we have that
L(Γ) = L(N). Therefore N leaves L(Γ) invariant. Hence N also leaves
invariant the set

B(Γ) = C(Γ) ∩ Bn.

Therefore N leaves invariant the set N(B(Γ), 1).
Since the set N(B(Γ), 1) is open, there is a point x of N(B(Γ), 1) that is

not fixed by any g �= 1 in N. Let D be the Dirichlet domain for N centered
at x. Set

E = D ∩ N(B(Γ), 1).

Then E is a fundamental domain for the action of N on N(B(Γ), 1). Let
{hi} be a set of Γ-coset representatives in N. Then

F = ∪hiE

is a fundamental region for the action of Γ on N(B(Γ), 1). Let ∂0F be the
boundary of F in N(B(Γ), 1). As D is a locally finite fundamental domain
for N, we have

∂0F ⊂ ∪hi∂D.

Therefore, we have
Vol(∂0F ) = 0.

Hence, we have
Vol(F ) = Vol(N(B(Γ), 1)/Γ).

By Theorem 12.7.2, we have that

Vol(F ) = Vol(N(C(M), 1)) < ∞.

Now since
[N : Γ] = Vol(F )/Vol(E),

we deduce that N/Γ is finite. Therefore I(M) is finite.
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Corollary 3. Every complete hyperbolic n-manifold of finite volume, with
n > 1, has a finite group of isometries.

Proof: Let M be a complete hyperbolic n-manifold of finite volume.
Then M has a finite number of connected components. Therefore, we may
assume that M is connected. By Theorem 8.5.9, we may assume that M is
a space-form Bn/Γ of finite volume. The group Γ is nonelementary, since
every elementary hyperbolic space-form has infinite volume. By Theorem
12.7.3, the group Γ is geometrically finite. By Theorem 12.2.13, the group
Γ is of the first kind. Therefore Γ leaves no proper m-plane of Bn invariant.
Hence I(M) is finite by Theorem 12.7.7.

Theorem 12.7.8. Let M be a geometrically finite hyperbolic n-manifold.
For each real number 
 > 0, there are only finitely many closed geodesics
in M of length at most 
.

Proof: Let 
 > 0 and let C be a closed geodesic in M of length at most

. As C is connected, C is contained in a connected component of M . As
M has only finitely many connected components, we may assume that M
is connected. Hence we may assume that M is a hyperbolic space-form
Bn/Γ.

By Theorem 12.7.2, there is a union V of finitely many disjoint horocusps
of M such that C(M)−V is compact. Let π : Bn → Bn/Γ be the quotient
map, and let B = π−1(V ). Then B is a Γ-invariant disjoint union of
horoballs of Bn. Now C is not contained in V , since π−1(C) is a disjoint
union of hyperbolic lines and no hyperbolic line is contained in a horoball.
Hence there is a point y in C − V . Let P be an exact convex fundamental
polyhedron for Γ in Bn. Then there is a point x in P − B such that
π(x) = y.

By Theorem 9.6.2, there is a primitive hyperbolic element h of Γ whose
axis L passes through the point x and projects onto C. The endpoints
of L in Sn−1 are limit points of Γ, and so L ⊂ C(Γ). Therefore x is in
P ∩ C(Γ) − B. The line segment [x, hx] of L projects onto C and d(x, hx)
is the length of C.

The set P ◦ ∩ C(Γ) − B is a locally finite fundamental domain for the
action of Γ on Bn ∩C(Γ)−B and (Bn ∩C(Γ)−B)/Γ = C(M)−V . Hence
P ∩ C(Γ) − B is compact by Theorem 6.6.9. Now as d(x, hx) ≤ 
, we have
that hx is in the compact set N(P ∩ C(Γ) − B, 
) Hence, since P is locally
finite, there are only finitely many g in Γ such that hx is gP ∩ C(Γ) − B,
say g1, . . . , gk. The point x is in h−1giP ∩ C(Γ) − B for some i, and so x
is in P ∩ h−1giP ∩ C(Γ) − B. As the set P ∩ C(Γ) − B is compact and
P is locally finite, there are only finitely many elements f of Γ such that
P ∩ fP ∩C(Γ)−B is nonempty, say f1, . . . , fm. Then h−1gi = fj for some
j, whence h = gif

−1
j . Hence there are only finitely many possibilities for

h, and so there are only finitely many possibilities for C. Thus M has only
finitely many closed geodesics of length at most 
.
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Exercise 12.7

1. Let M be a nonelementary hyperbolic space-form. Prove that C(M) is a
strong deformation retract of M .

2. Let M0 be the submanifold of M in Theorem 12.7.4. Show that ∂M0 is
naturally a Euclidean (n − 1)-manifold. Prove that the Euclidean similarity
type of ∂M0 is an isometry invariant of M .

3. Prove that the submanifold M0 of M in Theorem 12.7.6 is a strong defor-
mation retract of M .

4. Let Hn/Γ be a geometrically finite space-form. Prove that for all sufficiently
small values of r, we have

V (Γ, r) = ∪{V (Γa, r) : a is a fixed point of a parabolic element of Γ}.

§12.8. Historical Notes

§12.1. Poincaré introduced the limit set of a discrete group of linear frac-
tional transformations of the unit disk in his 1882 paper Sur les fonc-
tions fuchsiennes [356]. Theorem 12.1.1 appeared in Vol. I of Fricke and
Klein’s 1897 Vorlesungen über die Theorie der automorphen Functionen
[151]. Theorem 12.1.2 appeared in Fubini’s 1908 text Introduzione alla teo-
ria dei gruppi discontinui e delle funzioni automorfe [157]. Theorem 12.1.3
appeared in Ford’s 1927 paper On the foundations of the theory of discon-
tinuous groups of linear transformations [147]. Theorem 12.1.4 appeared
in Greenberg’s 1962 paper Discrete subgroups of the Lorentz group [177].

§12.2. Theorems 12.2.1, 12.2.7, 12.2.11, and 12.2.16 appeared in Vol. I
of Fricke and Klein’s 1897 treatise [151]. Theorem 12.2.2 appeared in
Vol. II of Appell, Goursat, and Fatou’s 1930 treatise Théorie des Fonctions
Algébriques [23]. The 3-dimensional case of Theorem 12.2.3 was proved by
van Vleck in his 1919 paper On the combination of non-loxodromic substi-
tutions [431]. Theorem 12.2.3 appeared in Apanasov’s 1975 paper Kleinian
groups in space [17]. Theorem 12.2.4 appeared in Lehner’s 1964 survey
Discontinuous Groups and Automorphic Functions [275]. Theorems 12.2.5,
12.2.12, and 12.2.13 appeared in Poincaré’s 1882 paper [356]. Corollary
2 appeared in Greenberg’s 1962 paper [177]. Theorem 12.2.8 appeared in
Poincaré’s 1883 Mémoir sur les groupes kleinéens [357]. The convex hull
of the limit set of a torsion-free discrete group of Möbius transformations
of the unit disk was introduced by Koebe in his 1928 paper Riemannsche
Mannigfaltigkeiten und nichteuklidische Raumformen III [263]. See also
Nielsen’s 1940 paper Über Gruppen linearer Transformationen [344]. As
a reference for nearest point retractions onto convex sets, see Bishop and
O’Neill’s 1969 paper Manifolds of negative curvature [51]. Theorem 12.2.9
appeared in Beardon’s 1983 text The Geometry of Discrete Groups [35].
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Theorem 12.2.10 appeared in Fubini’s 1908 text [157]. The 2-dimensional
case of Theorem 12.2.14 appeared in Greenberg’s 1960 paper Discrete
groups of motions [176]. Theorem 12.2.14 appeared in Chen and Green-
berg’s 1974 paper Hyperbolic spaces [86]. Theorem 12.2.15 for closed surface
groups was proved by Poincaré in his 1885 paper Sur un théorème de M.
Fuchs [359]. Theorem 12.2.15 is a consequence of a general result in Wang’s
1967 paper On a maximality property of discrete subgroups with fundamen-
tal domain of finite measure [441]. Two-dimensional Schottky groups were
introduced by Schottky in his 1877 paper Ueber die conforme Abbildung
mehrfach zusammenhängender ebener Flächen [399]. The 2-dimensional
cases of Theorems 12.2.17 and 12.2.18 are consequences of general results
in Poincaré’s 1882 paper [356]. Limit sets of 3-dimensional Schottky groups
were considered by Poincaré in his 1883 memoir [357]. Theorem 12.2.19 es-
sentially appeared in Fricke’s 1894 paper Die Kreisbogenvierseite und das
Princip der Symmetrie [150]. See also Vol. I of Fricke and Klein’s 1897
treatise [151]. For a discussion of the fractal nature of limit sets of Schot-
tky groups, see Mandelbrot’s 1983 paper Self-inverse fractals osculated by
sigma-discs and the limit sets of inversion groups [294].

§12.3. Conical limit points of Fuchsian groups were introduced by Hed-
lund in his 1936 paper Fuchsian groups and transitive horocycles [202].
A conical limit point is also called a point of approximation. The 3-
dimensional cases of Theorems 12.3.1-4 were proved by Beardon and Maskit
in their 1974 paper Limit points of Kleinian groups and finite-sided funda-
mental polyhedra [36]. Corollary 1 appeared in Vol. I of Fricke and Klein’s
1897 treatise [151]. Cusped limit points in dimension three were introduced
by Beardon and Maskit in their 1974 paper [36]. Bounded parabolic limit
points and Theorem 12.3.5 appeared in Bowditch’s 1993 paper Geomet-
rical finiteness for hyperbolic groups [60]. Theorems 12.3.6 and 12.3.7 for
Fuchsian groups were proved by Klein in his 1883 paper Neue Beiträge zur
Riemannschen Functionentheorie [252]. The 3-dimensional cases of Theo-
rems 12.3.6 and 12.3.7 for rank two parabolic fixed points appeared in Vol. I
of Fricke and Klein 1897 treatise [151]. Theorems 12.3.6 and 12.3.7 for di-
mension n > 3 appeared in the 1994 first edition of this book. Corollary 3
was proved by Beardon and Maskit in their 1974 paper [36]. As references
for the theory of limit sets, see Nicholls’ 1988 survey article The limit set
of a discrete group of hyperbolic motions [340] and his 1989 treatise The
Ergodic Theory of Discrete Groups [341].

§12.4. The concept of a geometrically finite convex polyhedron and
Theorems 12.4.1-9 for dimension n > 3 appeared in the 1994 first edition
of this book. The 3-dimensional cases of Theorems 12.4.3-9 were proved
by Beardon and Maskit in their 1974 paper [36]. The equivalence of parts
(1), (2) and (3) of Theorem 12.4.5 appeared in Bowditch’s 1993 paper [60].

§12.5. Lemma 1 was proved by Frobenius in his 1911 paper Über den
von L. Bieberbach gefundenen Beweis eines Satzes von C. Jordan [155].
Lemmas 2, 3, 5, and Theorem 12.5.1 were proved by Bowditch in his 1993



§12.8. Historical Notes 679

paper Geometrical finiteness for hyperbolic groups [60]. Lemma 4 appeared
in Beardon and Wilker’s 1984 paper The norm of a Möbius transforma-
tion [37]. Lemma 6 appeared in Greenberg’s 1962 paper [177]. Lemma
7 was proved by Zassenhaus in his 1938 paper Beweis eines Satzes über
diskrete Gruppen [461]. Moreover, Theorem 12.5.2 has its origins in this
paper. Theorem 12.5.2, without a bound, appeared in Každan and Mar-
gulis’ 1968 paper A proof of Selberg’s conjecture [231]. See also Wang’s 1969
paper Discrete nilpotent subgroups of Lie groups [442]. Theorem 12.5.2 for
real matrices appeared in Martin’s 1989 paper On discrete Möbius groups
in all dimensions [300]. Theorem 12.5.3, without a bound, appeared in
Bowditch’s 1993 paper [60]. The 3-dimensional case of Theorem 12.5.5 was
proved by Jørgensen in his 1977 paper A note on subgroups of SL(2, C)
[228]. Theorem 12.5.5 appeared in Abikoff and Haas’ 1990 paper Nondis-
crete groups of hyperbolic motions [3]. See also Martin’s 1989 paper [300].

§12.6. The 3-dimensional cases of Theorems 12.6.1 and 12.6.2 appeared
in Thurston’s 1979 lecture notes The Geometry and Topology of 3-Manifolds
[425] and Gromov’s 1981 paper Hyperbolic manifolds according to Thurston
and Jørgensen [182]. See also Gromov’s 1978 paper Manifolds of negative
curvature [181]. The Margulis lemma has its origins in Každan and Mar-
gulis’ 1968 paper [231] and appeared in Gromov’s 1978 paper [181] and in
Thurston’s 1979 notes [425]. The existence of parabolic Margulis regions
in dimension two was established by Shimizu in his 1963 paper On dis-
continuous groups operating on the product of the upper half planes [407].
See also Leutbecher’s 1967 paper Über Spitzen diskontinuierlicher Gruppen
von lineargebrochenen Transformationen [276]. The existence of hyperbolic
Margulis regions in dimension two was essentially established by Keen in
her 1974 paper Collars on Riemann surfaces [234]. See also Halpern’s 1981
paper A proof of the collar lemma [190] and Basmajian’s 1992 paper Gen-
eralizing the hyperbolic collar lemma [33]. Hyperbolic Margulis regions in
dimension three were studied by Brooks and Matelski in their 1982 pa-
per Collars in Kleinian groups [65] and by Gallo in his 1983 paper A 3-
dimensional hyperbolic collar lemma [158]. Lemmas 5 and 6 and Theorem
12.6.3 were proved by Susskind and Swarup in their 1992 paper Limit sets
of geometrically finite hyperbolic groups [421]. Lemmas 7-10, and Theorems
12.6.4 and 12.6.5 were proved by Bowditch in his 1993 paper [60]. Corol-
lary 2 for Fuchsian groups was implicitly proved by Klein in his 1883 paper
[252]. The 2- and 3-dimensional cases of Corollary 2 appeared implicitly
in Vol. I of Fricke and Klein’s 1897 treatise [151]. Corollary 2 appeared in
Wielenberg’s 1977 paper [451].

§12.7. The thick and thin parts of a hyperbolic space-form were in-
troduced by Thurston in his 1979 notes [425]. Theorem 12.7.1 was es-
sentially proved by Každan and Margulis in their 1968 paper [231]. See
also Wang’s 1969 paper [442]. Theorem 12.7.1 for Fuchsian groups ap-
peared in Marden’s 1974 paper Universal properties of Fuchsian groups
in the Poincaré metric [296] and in Sturm and Shinnar’s 1974 paper The
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maximal inscribed ball of a Fuchsian group [419]. Theorem 12.7.1 appeared
in Apanasov’s 1975 paper A universal property of Kleinian groups in the
hyperbolic metric [18] and in Wielenberg’s 1977 paper Discrete Moebius
groups: fundamental polyhedra and convergence [451]. For a lower bound
on the radius in Theorem 12.7.1, see Friedland and Hersonsky’s 1993 pa-
per Jorgensen’s inequality for discrete groups in normed algebras [153].
The convex core of a hyperbolic surface was introduced by Löbell in his
1927 thesis Die überall regulären unbegrenzten Flächen fester Krümmung
[285]. See also Koebe’s 1928 paper [263] and Löbell’s 1929 paper Über die
geodätischen Linien der Clifford-Kleinschen Flächen [286]. Theorem 12.7.2
has its origins in Nielsen’s 1940 paper [344]. The 2-dimensional case of The-
orem 12.7.2 was proved by Fenchel and Nielsen in their 1959 manuscript
Discontinuous Groups of Non-Euclidean Motions [144]. The convex core
of a hyperbolic 3-manifold was introduced by Löbell in his 1931 paper
Beispiele geschlossener dreidimensionaler Clifford-Kleinscher Räume neg-
ativer Krümmung [288]. The 3-dimensional case of Theorem 12.7.2 was
proved by Thurston in his 1979 lecture notes [425]. Theorem 12.7.2 was
essentially proved by Bowditch in his 1993 paper [60]. For examples that
show that parts (1) and (3) of Theorem 12.7.2 are not equivalent when Γ
has torsion and n > 3, see Hamilton’s 1998 paper Geometrical finiteness
for hyperbolic orbifolds [191]. The 2-dimensional case of Theorem 12.7.3
was proved by Siegel in his 1945 paper Some remarks on discontinuous
groups [409]. The 2-dimensional case of Theorem 12.7.4 was proved by
Fenchel and Nielsen in their 1959 manuscript [144]. Theorems 12.7.3 and
12.7.4 were proved by Garland and Raghunathan in their 1970 paper Fun-
damental domains for lattices in (R-)rank 1 semisimple Lie groups [160].
See also Margulis’ 1969 paper On the arithmeticity of discrete groups [298]
and Selberg’s 1970 paper Recent developments in the theory of discontin-
uous groups of motions of symmetric spaces [405]. Theorem 12.7.5 and
Corollary 2 appeared in Marden’s 1974 paper The geometry of finitely gen-
erated Kleinian groups [297]. The 3-dimensional case of Theorem 12.7.6 was
proved by Marden in his 1974 paper [297]. Theorem 12.7.6 for manifolds
with a finite-sided fundamental polyhedron appeared in Apanasov’s 1983
paper Geometrically finite hyperbolic structures on manifolds [20]. Theorem
12.7.6 was proved by Bowditch in his 1993 paper [60]. The 2-dimensional
case of Theorem 12.7.7 was proved by Löbell in his 1930 paper Ein Satz
über die eindeutigen Bewegungen Clifford-Kleinscher Flächen in sich [287].
Theorem 12.7.7 appeared in Ratcliffe’s 1994 paper On the isometry groups
of hyperbolic manifolds [374]. Corollary 3 for closed surfaces was proved by
Poincaré in his 1885 paper [359], and for closed n-manifolds by Lawson and
Yau in their 1972 paper Compact manifolds of nonpositive curvature [274].
Corollary 3 was proved by Avérous and Kobayashi in their 1976 paper On
automorphisms of spaces of nonpositive curvature with finite volume [30].
Theorem 12.7.8 appeared in Greenberg’s 1977 survey Finiteness theorems
for Fuchsian and Kleinian groups [179].



CHAPTER 13

Geometric Orbifolds

In this chapter, we study the geometry of geometric orbifolds. We begin by
studying the geometry of an orbit space of a discrete group of isometries
of a geometric space. In Section 13.2, we study orbifolds modeled on a
geometric space X via a group G of similarities of X. Such an orbifold is
called an (X, G)-orbifold. In particular, if Γ is a discrete group of isometries
of X, then the orbit space X/Γ is an (X, G)-orbifold for any group G of
similarities of X containing Γ. In Section 13.3, we study the role of metric
completeness in the theory of (X, G)-orbifolds. In particular, we prove that
if M is a complete (X, G)-orbifold, with X simply connected, then there is a
discrete subgroup Γ of G of isometries of X such that M is isometric to X/Γ.
In Section 13.4, we prove the gluing theorem for geometric orbifolds. The
chapter ends with a proof of Poincaré’s fundamental polyhedron theorem.

§13.1. Orbit Spaces

In this section, we study the geometry of an orbit space X/Γ of a discrete
group Γ of isometries of a geometric space X.

Theorem 13.1.1. Let Γ be a discontinuous group of isometries of a metric
space X and let π : X → X/Γ be the quotient map. Then for each point x of
X, the map π induces a homeomorphism from B(x, r)/Γx onto B(π(x), r)
for all r such that

0 < r ≤ 1
2
dist(x,Γx − {x}).

Moreover π induces an isometry from B(x, r)/Γx onto B(π(x), r) for all r
such that

0 < r ≤ 1
4
dist(x,Γx − {x}).

Proof: Let x be an arbitrary point of X. Then we have
π(B(x, r)) = B(π(x), r)

681
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for each r > 0 by Theorem 6.6.2. Hence π is an open map. Set

s =
1
2
dist(x,Γx − {x})

and suppose that 0 < r ≤ s. Then by the triangle inequality, we have

B(x, r) ∩ gB(x, r) = ∅ for all g in Γ − Γx.

Therefore π induces a homeomorphism from B(x, r)/Γx onto B(π(x), r).
Now suppose that 0 < r ≤ s/2. Let y and z be points of B(x, r) with

d(y, z) = dist(y, Γxz)

and suppose that g is in Γ − Γx. Then we have

2s ≤ d(x, gx)
≤ d(x, y) + d(y, gz) + d(gz, gx)
≤ (s/2) + d(y, gz) + (s/2).

Hence, we have that
d(y, gz) ≥ s > d(y, z).

Therefore, we have that

d(y, z) = dist(y, Γz).

Hence, we have that

dist(Γxy, Γxz) = dist(Γy, Γz).

Thus π maps B(x, r)/Γx isometrically onto B(π(x), r).

Theorem 13.1.2. Let Γ be a discontinuous group of isometries of a metric
space X which is both geodesically connected and geodesically complete, and
let π : X → X/Γ be the quotient map. Then Γ is the set of all isometries
φ of X such that πφ agrees with π on a nonempty open set; in particular,
Γ is the group of all isometries φ of X such that πφ = π.

Proof: Let φ be an isometry of X such that πφ agrees with π on a
nonempty open set U . Let x be a point of U such that the order of Γx is
as small as possible. Set

s =
1
2
dist(x,Γx − {x}).

Then by the triangle inequality, we have

B(x, s) ∩ gB(x, s) = ∅ for all g in Γ − Γx.

Let y be a point of B(x, s)∩U . Then Γy ⊂ Γx, and so Γy = Γx. Therefore,
every element of Γx fixes each point of the nonempty open set B(x, s) ∩ U .
Hence Γx = {1} by Theorem 8.3.2.
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α(a)

πα(b)

α(b)

x-axis

Figure 13.1.1. The image of a geodesic arc

Now as πφ(x) = π(x), there is an element g of Γ such that φ(x) = gx.
Hence g−1φ is an isometry of X that fixes the point x. Now for each point
y of B(x, s) ∩ U , we have

πg−1φ(y) = πφ(y) = π(y)

and so g−1φ(y) is in
Γy ∩ B(x, s) = {y}.

Therefore g−1φ is the identity on the open set B(x, s) ∩ U . Hence φ = g
by Theorem 8.3.2.

Let Γ be a discrete group of isometries of a geometric space X and let
π : X → X/Γ be the quotient map. If α : [a, b] → X is a geodesic arc,
then πα : [a, b] → X/Γ is not necessarily a geodesic curve. For example,
let X = E2 and let Γ be the group generated by the reflection of E2 in the
x-axis. Then X/Γ is isometric to the closed half-plane U2. Observe that
if α(a) and α(b) lie on opposite sides of the x-axis, then πα fails to be a
geodesic curve at the point where α crosses the x-axis. See Figure 13.1.1.
However, if α(a) or α(b) lies on the x-axis, then πα is a geodesic arc.

Lemma 1. Let Γ be a finite group of isometries of a metric space X and
let π : X → X/Γ be the quotient map. Let α : [a, b] → X be a geodesic arc
such that α(a) is fixed by every element of Γ. Then πα : [a, b] → X/Γ is a
geodesic arc.

Proof: Observe that for each t in the interval [a, b], we have

dΓ(πα(a), πα(t)) = dist(Γα(a),Γα(t))
= dist(Γα(a), α(t))
= d(α(a), α(t)) = t − a.

Now if a ≤ s < t ≤ b, then we have

dΓ(πα(a), πα(s)) = s − a.
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Hence, we have

dΓ(πα(s), πα(t)) ≥ dΓ(πα(a), πα(t)) − dΓ(πα(a), πα(s))
= (t − a) − (s − a)
= t − s.

Moreover, we have

dΓ(πα(s), πα(t)) = dist(Γα(s),Γα(t)) ≤ d(α(s), α(t)) = t − s.

Therefore, we have
dΓ(πα(s), πα(t)) = t − s.

Thus πα is a geodesic arc.

Theorem 13.1.3. Let Γ be a discontinuous group of isometries of a metric
space X and let π : X → X/Γ be the quotient map. If α : [a, b] → X is a
geodesic arc, then πα : [a, b] → X/Γ is a piecewise geodesic curve.

Proof: For each point x of X, set

r(x) =
1
4
dist(x,Γx − {x}).

Then the collection of open intervals

{B(t, r(α(t))) : a ≤ t ≤ b}
covers [a, b]. Now as [a, b] is compact, there is a partition {t0, . . . , tm} of
[a, b] such that for each i = 1, . . . , m, we have

[ti−1, ti] ⊂ B(t, r(α(t)))

for some t in [a, b]. Hence, by Theorem 13.1.1 and Lemma 1, we deduce
that πα restricted to [ti−1, ti] is either a geodesic arc if t is not in (ti−1, ti)
or the product of two geodesic arcs joined at t if t is in (ti−1, ti). Thus πα
is a piecewise geodesic curve.

Note that Theorem 13.1.3 implies that π : X → X/Γ preserves the
length of a geodesic arc α : [a, b] → X. The next theorem says that π
preserves the length of any curve γ : [a, b] → X.

Theorem 13.1.4. Let Γ be a discontinuous group of isometries of a metric
space X and let π : X → X/Γ be the quotient map. If γ : [a, b] → X is a
curve, then |πγ| = |γ|.

Proof: For each point x of X, set

r(x) =
1
4
dist(x,Γx − {x}).

Then the collection of open balls

B = {B(γ(t), r(γ(t))) : a ≤ t ≤ b}
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covers γ([a, b]). Now as γ([a, b]) is compact, there is a partition {t0, . . . , tm}
of [a, b] such that for each i, there is a ball B(xi, ri) in B such that

[ti−1, ti] ⊂ B(xi, ri).

Moreover, by Theorem 13.1.1, there is a finite subgroup Γi of Γ such that
π induces an isometry from B(xi, ri)/Γi onto B(π(xi), ri). Let γi be the
restriction of γ to the interval [ti−1, ti], and let πi : X → X/Γi be the
quotient map. If the theorem is true for finite groups, then we would have

|πγi| = |πiγi| = |γi|,
and it would then follow from the additivity of arc length that |πγ| = |γ|.
Thus, we may assume that Γ is finite.

The proof now proceeds by induction on the order |Γ| of Γ. The theorem
is certainly true if |Γ| = 1. Assume that |Γ| > 1 and the theorem is true for
all groups of order less than |Γ|. Let F be the set of points of X that are
fixed by all the elements of Γ. If the image of γ is disjoint from F , then by
the previous argument and the induction hypothesis, we can conclude that
|πγ| = |γ|. Thus, we may assume that there is a number c in the interval
[a, b] such that γ(c) is in F .

Now let P = {t0, . . . , tm} be an arbitrary partition of [a, b]. Then


(πγ, P ) =
m∑

i=1

dΓ(πγ(ti−1), πγ(ti))

≤
m∑

i=1

d(γ(ti−1), γ(ti))

= 
(γ, P )
≤ |γ|.

Hence |πγ| ≤ |γ|.
On the contrary, suppose that |πγ| < |γ|. Then there is a partition

{t0, . . . , tm} of [a, b] such that

|πγ| <

m∑
i=1

d(γ(ti−1), γ(ti)).

Let γi be the restriction of γ to the interval [ti−1, ti]. Then we have that

|πγi| < d(γ(ti−1), γ(ti))

for at least one index i. Thus, by replacing γ with γi, we may assume,
without loss of generality, that

|πγ| < d(γ(a), γ(b)).

Now as the point γ(c) is in F , we have

dΓ(πγ(a), πγ(c)) = dist(Γγ(a),Γγ(c))
= dist(γ(a),Γγ(c))
= d(γ(a), γ(c)).
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Likewise, we have

dΓ(πγ(c), πγ(b)) = d(γ(c), γ(b)).

Hence, we have

|πγ| ≥ dΓ(πγ(a), πγ(c)) + dΓ(πγ(c), πγ(b))
= d(γ(a), γ(c)) + d(γ(a), γ(c))
≥ d(γ(a), γ(b)),

which is a contradiction. Thus |πγ| = |γ|.

Theorem 13.1.5. Let Γ be a discontinuous group of isometries of a finitely
compact metric space X. If X is geodesically connected, then X/Γ is
geodesically connected.

Proof: Let Γx and Γy be distinct Γ-orbits and let 
 = dΓ(Γx,Γy). Now

 = dist(x,Γy) and B(x, 
 + 1) contains only finitely many points of Γy,
since B(x, 
 + 1) is compact. Hence, there is an element g of Γ such that

 = d(x, gy).

Let α : [0, 
] → X be a geodesic arc from x to gy and let π : X → X/Γ
be the quotient map. We now show that πα : [0, 
] → X/Γ is a geodesic
arc from Γx to Γy. Suppose that 0 ≤ s < t ≤ 
. Then

dΓ(πα(s), πα(t)) ≤ d(α(s), α(t)) = t − s,

since π does not increase distances. Now observe that


 = dΓ(πα(0), πα(
))
≤ dΓ(πα(0), πα(s)) + dΓ(πα(s), πα(t)) + dΓ(πα(t), πα(
))
≤ s + (t − s) + (
 − t) = 
.

Hence, we have that

dΓ(πα(s), πα(t)) = t − s.

Thus πα is a geodesic arc from Γx to Γy.

Theorem 13.1.6. Let Γ be a discrete group of isometries of a geometric
space X and let π : X → X/Γ be the quotient map. If α : [a, b] → X/Γ is
a geodesic arc and x is a point of X such that π(x) = α(a), then there is a
geodesic arc α̃ : [a, b] → X such that α̃(a) = x and πα̃ = α; moreover, α̃ is
unique up to multiplication by an element of the stabilizer Γx.

Proof: Since X is a geometric space, there is a k > 0 such that any
point in the ball B(x, k) distinct from x is joined to x by a unique geodesic
segment. Set

s =
1
2
dist(x,Γx − {x})

and let
r = min{k, s/2}.
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Suppose that c is a number such that a < c ≤ b and c − a < r. Then

dΓ(α(a), α(c)) = c − a < r.

By Theorem 13.1.1 and Lemma 1, there is a point z in B(x, r) such that
Γz = α(c) and

d(x, z) = dΓ(α(a), α(c)) = c − a.

Let t be a number such that a < t < c. Then we have that

dΓ(α(a), α(t)) = t − a < r.

Hence, there is a point y in B(x, r) such that Γy = α(t) and d(x, y) = t−a.
Observe that

dist(Γy, z) = dΓ(Γy, Γz) = c − t.

As r ≤ s/2, we have that d(y, z) < s. Now, if g is in Γ − Γx, then

B(x, s) ∩ gB(x, s) = ∅

and so d(gy, z) ≥ s. Therefore, by replacing y with gy for some g in Γx,
we may assume that d(y, z) = c − t. As r ≤ k, there is a unique geodesic
segment [x, z] in X joining x to z. Let [x, y] be a geodesic segment in X
joining x to y, and let [y, z] be a geodesic segment in X joining y to z.
Then we have

d(x, y) + d(y, z) = (t − a) + (c − t) = c − a = d(x, z).

Therefore, by Theorem 1.4.2, we have [x, y] ∪ [y, z] = [x, z]. Hence y lies on
[x, z] at a distance t − a from x. Consequently

α̃a,c : [a, c] → X,

defined by α̃a,c(a) = x and α̃a,c(t) = y and α̃a,c(c) = z, is a geodesic arc
such that α̃a,c(a) = x and πα̃a,c(c) = α(t) for all t in [a, c].

Next suppose that α̂a,c : [a, c] → X is another geodesic arc such that
α̂a,c(a) = x and πα̂a,c(c) = α(t) for all t in [a, c]. Then we have

πα̂a,c(c) = α(c) = Γz.

Now as
d(x, α̂a,c(c)) = c − a < r < s,

there is a g in Γx such that α̂a,c(c) = gz. Moreover, as

d(x, gz) = d(x, z) < r ≤ k,

there is a unique geodesic segment [x, gz] in X joining x to gz. Therefore
α̂a,c = gα̃a,c.

Next let 
 be the supremum of all real numbers c such that a < c ≤ b
and there is a geodesic arc α̃a,c : [a, c] → X such that α̃a,c(a) = x and
πα̃a,c(t) = α(t) for all t in [a, c] and α̃a,c is unique up to multiplication by
an element of Γx.
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Since we can replace α̃a,c by gα̃a,c for any g in Γx, there is an increasing
sequence

a < c1 < c2 < · · ·
converging to 
 such that α̃a,cj

extends α̃a,ci
for all i < j. Define

α̃a,
 : [a, 
] → X

by α̃a,
(t) = α̃a,ci(t) if a ≤ t ≤ ci and

α̃a,
(
) = lim
i→∞

α̃a,ci
(ci),

which exists, since {α̃a,ci(ci)} is a Cauchy sequence. Clearly α̃a,
 preserves
distances on [a, 
). Observe that if a ≤ t < 
, then we have

d(α̃a,
(t), α̃a,
(
)) = d
(
α̃a,
(t), lim

i→∞
α̃a,ci

(ci)
)

= lim
i→∞

d(α̃a,
(t), α̃a,ci(ci))

= lim
i→∞

|ci − t| = 
 − t.

Thus α̃a,
 preserves distances and therefore α̃a,
 is a geodesic arc. Clearly
πα̃a,
(t) = α(t) for all t in [a, 
). As the quotient map π : X → X/Γ is
continuous, πα̃a,
(
) = α(
).

Now suppose that α̂a,
 : [a, 
] → X is another geodesic arc such that
α̂a,
(a) = x and πα̂a,
(t) = α(t) for all t. Then for each i, there is a gi in
Γx such that α̂a,
 extends giα̃a,ci . As Γx is finite, there is a g in Γx such
that g = gi for infinitely many i. Thus, by passing to a subsequence, we
may assume that α̂a,
 extends gα̃a,ci for all i. Therefore α̂a,
 = gα̃a,
 by
continuity.

We claim that 
 = b. On the contrary, suppose 
 < b. Let z = α̃a,
(
).
By the first part of the proof, there is a geodesic arc α̃
,d : [
, d] → X such
that α̃
,d(
) = z and πα̃
,d(t) = α(t) for all t in [
, d]. Define

α̃a,d : [a, d] → X

by α̃a,d = α̃a,
α̃
,d. Then α̃a,d(a) = x and πα̃a,d(t) = α(t) for all t in [a, d].
Let w = α̃a,d(d). Then we have

d(x, w) ≥ dist(x,Γw)
= dΓ(α(a), α(d))
= d − a

= (
 − a) + (d − 
)
= d(x, z) + d(z, w) ≥ d(x, w).

Therefore, we have
d(x, w) = d(x, z) + d(z, w)

and so α̃a,d is a geodesic arc by Theorem 1.4.2.
Now suppose that α̂a,d : [a, d] → X is another geodesic arc such that

α̂a,d(a) = x and πα̂a,d(t) = α(t) for all t. Then there is an element g of Γx
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such that gα̂a,d extends α̃a,
. Let v = α̂a,d(d) and let [x, z], [x, w], and [x, v]
be the images of α̃a,
, α̃a,d, and α̂a,d, respectively. As the geodesic segments
g[x, v] and [x, w] both extend the geodesic segment [x, z], we deduce that
g[x, v] = [x, w], since X is geodesically complete. Therefore gα̂a,d = α̃a,d.
Thus α̃a,d is unique up to multiplication by an element of Γx. But d > 
,
which contradicts the supremacy of 
. Therefore, we must have 
 = b.
Thus, there is a geodesic arc α̃ : [a, b] → X such that α̃(a) = x, πα̃ = α,
and α̃ is unique up to multiplication by an element of Γx.

Theorem 13.1.7. Let Γ be a discrete group of isometries of a geometric
space X and let π : X → X/Γ be the quotient map. If γ : [a, b] → X/Γ is
a rectifiable curve and x is a point of X such that π(x) = γ(a), then there
is a rectifiable curve γ̃ : [a, b] → X such that γ̃(a) = x and πγ̃ = γ.

Proof: Since γ : [a, b] → X/Γ is uniformly continuous, for each positive
integer j, there is a δj > 0 such that if s, t are in [a, b], with |s − t| < δj ,
then we have that

dΓ(γ(s), γ(t)) < 1/j.

Construct a sequence of partitions Pj = {tij} of [a, b] such that |Pj | < δj

for each j and
lim

j→∞

(γ, Pj) = |γ|.

Set

ij = dΓ(γ(tij), γ(ti+1,j)) for each i, j.

By Theorem 13.1.5, there is a geodesic arc αij : [0, 
ij ] → X/Γ starting at
γ(tij) and ending at γ(ti+1,j). Define γj : [a, b] → X/Γ by

γj(t) = αij

(
t − tij

ti+1,j − tij

ij

)
if t is in [tij , ti+1,j ].

Let C([a, b], X) be the set of all continuous functions from [a, b] to X.
Define a metric D on C([a, b], X) by the formula

D(α, β) = sup
{
d(α(t), β(t)) : t ∈ [a, b]

}
.

Then the metric topology determined by D is the compact-open topology.
Likewise, define a metric DΓ on C([a, b], X/Γ).

We now show that the sequence {γj} converges to γ in C([a, b], X/Γ).
Observe that if t is in [tij , ti+1,j ], then

dΓ(γ(t), γj(t)) ≤ dΓ(γ(t), γ(tij)) + dΓ(γ(tij), γj(t))
< 1/j + dΓ(γ(tij), γ(ti+1,j))
< 1/j + 1/j = 2/j.

Hence, we have that
DΓ(γ, γj) ≤ 2/j.

Therefore γj → γ.
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By Theorem 13.1.6, the piecewise geodesic curve γj : [a, b] → X/Γ with
respect to the partition Pj lifts with respect to π to a piecewise geodesic
curve γ̃j : [a, b] → X with respect to Pj such that γ̃j(a) = x for each j.
We next show that the sequence {γ̃j} is equicontinuous. Let ε > 0. Then
there is a positive integer m such that

DΓ(γ, γj) < ε/3 for all j > m.

For each t in [a, b], let γa,t be the restriction of γ to [a, t] and let λ(t) = |γa,t|.
Then λ : [a, b] → R is continuous. Now since γ̃1, . . . , γ̃m and λ are uniformly
continuous, there is a δ > 0 such that if s, t are in [a, b], with s < t and
t − s < δ, then

d(γ̃j(s), γ̃j(t)) < ε

for j = 1, . . . , m and
λ(t) − λ(s) < ε/3.

Now suppose that j > m and s, t are in [a, b], with s < t and t− s < δ. Let
γs,t be the restriction of γ to [s, t]. Suppose that s is in [tk−1,j , tkj ] and t is
in [t
j , t
+1,j ]. Then k − 1 ≤ 
. Assume first that k − 1 < 
. Then we have

d(γ̃j(s), γ̃j(t))

≤ d(γ̃j(s), γ̃j(tkj)) +

−1∑
i=k

d(γ̃j(tij), γ̃j(ti+1,j)) + d(γ̃j(t
j), γ̃j(t))

= dΓ(γj(s), γj(tkj)) +

−1∑
i=k

dΓ(γj(tij), γj(ti+1,j)) + dΓ(γj(t
j), γj(t))

≤ dΓ(γj(s), γ(s)) + dΓ(γ(s), γ(tkj)) +

−1∑
i=k

dΓ(γ(tij), γ(ti+1,j))

+ dΓ(γ(t
j), γ(t)) + dΓ(γ(t), γj(t))
< ε/3 + |γs,t| + ε/3
= ε/3 + λ(t) − λ(s) + ε/3
< ε/3 + ε/3 + ε/3 = ε.

The case k − 1 = 
 is similar and simpler. Thus {γ̃j} is equicontinuous.
Now observe that if t is in [a, b], then we have

d(γ̃j(a), γ̃j(t)) ≤ |γ̃j | = |γj | ≤ |γ|.
Thus, the image of γ̃j is contained in B(x, |γ|) for each j. It follows by
the Arzela-Ascoli theorem that the sequence {γ̃j} has a limit point γ̃ in
C([a, b], X). By passing to a subsequence, we may assume that γ̃j → γ̃.
Then γ̃j(a) → γ̃(a) and so γ̃(a) = x. Now the induced map

π∗ : C([a, b], X) → C([a, b], X/Γ)

is continuous. Therefore π∗(γ̃j) → π∗(γ̃). Hence γj → πγ̃. Therefore
πγ̃ = γ. By Theorem 13.1.4, we have |γ̃| = |γ|, and so γ̃ is rectifiable.
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Exercise 13.1

1. Let Γ be a discrete group of isometries of a geometric space X and let x
be a point of X. The point Γx of X/Γ is called a ordinary point of X/Γ if
Γx = {1}, otherwise Γx is called a singular point of X/Γ. Prove that the set
of all ordinary points of X/Γ is a connected, open, dense subset of X/Γ.

2. A metric space X is said to be locally geodesically connected if for each point
x of X, there is an r > 0 such that any two distinct points in B(x, r) are
joined by a geodesic segment in X. Let X be a connected locally geodesically
connected metric space. Prove that

ρ(x, y) = inf{|γ| : γ is a curve in X from x to y}.

defines a metric on X, called the inner metric of X.

3. Let (X, d) be a connected locally geodesically connected metric space X, and
let ρ be the inner metric of (X, d). Prove that d(x, y) ≤ ρ(x, y) with equality
if x and y are joined by a geodesic segment in X. Conclude that the identity
map ι : X → X is a local isometry from (X, d) to (X, ρ).

§13.2. (X,G)-Orbifolds

Let G a group of similarities of a geometric space X and let M be a
Hausdorff space. An (X, G)-orbifold atlas for M is defined to be a family
of functions

Φ = {φi : Ui → X/Γi}i∈I ,

called charts, satisfying the following conditions:

(1) The set Ui, called a coordinate neighborhood, is an open connected
subset of M , and Γi is a discrete group of isometries of X for each i.

(2) The chart φi maps the coordinate neighborhood Ui homeomorphically
onto an open subset of X/Γi for each i.

(3) The coordinate neighborhoods {Ui}i∈I cover M .

(4) If Ui and Uj overlap, then the function

φjφ
−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj),

called a coordinate change, has the property that if x and y are points
of X such that

φjφ
−1
i (Γix) = Γjy,

then there is an element g of G such that gx = y and g lifts φjφ
−1
i

in a neighborhood of x, that is,

φjφ
−1
i (Γiw) = Γjgw

for all w in a neighborhood of x.
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Theorem 13.2.1. Let Φ be an (X, G)-orbifold atlas for M . Then there is
a unique maximal (X, G)-orbifold atlas for M containing Φ.

Proof: Let Φ = {φi : Ui → X/Γi} and let Φ be the set of all functions
φ : U → X/Γ such that

(1) the set U is an open connected subset of M , and Γ is a discrete group
of isometries of X;

(2) the function φ maps U homeomorphically onto an open subset of
X/Γ;

(3) the function
φφ−1

i : φi(Ui ∩ U) → φ(Ui ∩ U)

has the property that if w and x are points of X such that

φφ−1
i (Γiw) = Γx,

then there is an element g of G such that gw = x and g lifts φφ−1
i in

a neighborhood of w.

Clearly Φ contains Φ. Suppose that φ : U → X/Γ and ψ : V → X/H
are in Φ. Consider the function

ψφ−1 : φ(U ∩ V ) → ψ(U ∩ V ).

Suppose that x and y are points of X such that ψφ−1(Γx) = Hy. Let

φi : Ui → X/Γi

be in Φ such that φ−1(Γx) is in Ui. Then there is a point w of X such that

φ−1
i (Γiw) = φ−1(Γx) = ψ−1(Hy).

Hence, there are elements g and h of G such that gw = x and hw = y, and
g and h lift φφ−1

i and ψφ−1
i , respectively, in a neighborhood of w. Observe

that hg−1x = y and hg−1 lifts ψφ−1
i φiφ

−1 = ψφ−1 in a neighborhood
of x. Thus Φ is an (X, G)-orbifold atlas for M . Clearly Φ contains every
(X, G)-orbifold atlas for M containing Φ, and so Φ is the unique maximal
(X, G)-atlas for M containing Φ.

Definition: An (X, G)-orbifold structure for a Hausdorff space M is a
maximal (X, G)-orbifold atlas for M .

Definition: An (X, G)-orbifold M is a Hausdorff space M together with
an (X, G)-orbifold structure for M .

Definition: A geometric orbifold is an (X, G)-orbifold such that X is an
n-dimensional geometry.

Example 1. Let Γ be a discrete group of isometries of a geometric space
X and let G be any group of similarities of X containing Γ. Then the
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identity map ι : X/Γ → X/Γ constitutes an (X, G)-orbifold atlas for X/Γ.
By Theorem 13.2.1, this atlas determines an (X, G)-orbifold structure for
X/Γ, called the induced (X, G)-orbifold structure. Thus X/Γ together with
the induced (X, G)-orbifold structure is an (X, G)-orbifold.

Example 2. An (Sn, I(Sn))-orbifold is called a spherical n-orbifold.

Example 3. A (En, I(En))-orbifold is called a Euclidean n-orbifold.

Example 4. An (Hn, I(Hn))-orbifold is called a hyperbolic n-orbifold.

Example 5. A (En, S(En))-orbifold is called a Euclidean similarity n-
orbifold.

Definition: A chart for an (X, G)-orbifold M is an element φ : U → X/Γ
of the (X, G)-structure of M .

Theorem 13.2.2. Let φ : U → X/Γ be a chart for an (X, G)-orbifold M .
Then Γ is a subgroup of G.

Proof: By Theorem 6.6.13, the group Γ has a fundamental domain D in
X. Let π : X → X/Γ be the quotient map. Then D contains a point x
of the open set π−1(φ(U)), since ΓD is dense in X. Let f be an arbitrary
element of Γ and set y = fx. Then Γx = Γy. Hence, there is an element
g of G such that gx = y and g lifts the identity map φφ−1 of φ(U) in a
neighborhood of x. Therefore πg agrees with π in a nonempty open set.
Hence g is in Γ by Theorem 13.1.2. As x is in D, the stabilizer Γx is trivial.
Therefore fx = gx implies that f = g. Hence f is in G. Thus Γ is a
subgroup of G.

Order of a Point

Let u be a point of an (X, G)-orbifold M . A chart for (M, u) is a chart
φ : U → X/Γ for M such that u is in U . Suppose that φi : Ui → X/Γi

and φj : Uj → X/Γj are charts for (M, u). Then there are points x and y
of X such that φi(u) = Γix and φj(u) = Γjy. Hence φjφ

−1
i (Γix) = Γjy.

Therefore, there is an element g of G such that gx = y and g lifts φjφ
−1
i

in a neighborhood of x. Let Γx be the stabilizer of x in Γi and let Γy be
the stabilizer of y in Γj . Let f be an element of Γx. Then we have that
gfg−1y = y and gfg−1 lifts the identity map (φjφ

−1
i )(φiφ

−1
j ) of φj(Ui∩Uj)

in a neighborhood of y. Therefore gfg−1 is in Γy by Theorem 13.1.2.
Thus gΓxg−1 ⊂ Γy. By reversing the roles of x and y, we deduce that
g−1Γyg ⊂ Γx. Therefore gΓxg−1 = Γy. Hence, the conjugacy class of Γx

in G depends only on the point u.
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Figure 13.2.1. A Euclidean orbifold

The order of the point u of the orbifold M is the order of the stabilizer
Γx. As Γx is determined up to conjugacy by u, the order of u does not
depend on the choices of φi and x.

Example 6. Let Γ be the discrete group of isometries of E2 generated by
the reflections in the sides of an equilateral triangle �. By Theorem 6.6.7,
the inclusion map ι : � → E2 induces a homeomorphism κ : � → E2/Γ.
Consequently, we can pull back the Euclidean orbifold structure of E2/Γ
onto � by κ. Then the vertices of � have order six. The interior points of
the sides of � have order two, and the interior points of � have order one.
See Figure 13.2.1.

Theorem 13.2.3. Let φ : U → X/Γ be a chart for (M, u), let x be a point
of X such that φ(u) = Γx, and let Γx be the stabilizer of x in Γ. Then
there is an open neighborhood V of u in U such that φ restricted to V lifts
to a chart ψ : V → X/Γx for (M, u).

Proof: If Γx = Γ, then we may take V = U . Thus, we may assume that
Γx is a proper subgroup of Γ. Set

s =
1
2
dist(x,Γx − {x}).

By Theorem 13.1.1, the quotient map π : X → X/Γ induces a homeomor-
phism

η : B(x, s)/Γx → B(π(x), s).

Let V = φ−1(B(π(x), s)). Then V is an open neighborhood of u in U .
Define ψ : V → X/Γx by ψ(v) = η−1φ(v). Then ψ lifts the restriction of φ
to V .

As the ball B(x, s) is connected, B(π(x), s)) is also connected. There-
fore V is connected. The function φ maps V homeomorphically onto
B(π(x), s) and η−1 maps B(π(x), s) homeomorphically onto the open sub-
set B(x, s)/Γx of X/Γx. Therefore ψ maps V homeomorphically onto an
open subset of X/Γx.
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Now suppose that φi : Ui → X/Γi is a chart for M . Consider the
function

ψφ−1
i : φi(Ui ∩ V ) → ψ(Ui ∩ V ).

Suppose that y and z are points of X such that

ψφ−1
i (Γiy) = Γxz.

Then we have that
η−1φφ−1

i (Γiy) = Γxz.

Hence, we have that
φφ−1

i (Γiy) = Γz.

As φ and φi are charts for M , there is an element g of G such that gy = z
and g lifts φφ−1

i in a neighborhood W of y. This means that

φφ−1
i (Γiw) = Γgw

for all w in W . Let πi : X → X/Γi be the quotient map and let

W ′ = W ∩ π−1
i (φi(Ui ∩ V )).

Then W ′ is a neighborhood of y in X, and for all w in W ′, we have

ψφ−1
i (Γiw) = η−1φφ−1

i (Γiw) = η−1(Γgw) = Γxgw.

Thus g lifts ψφ−1
i in a neighborhood of y. Therefore ψ : V → X/Γx is a

chart for (M, u).

An ordinary point of an (X, G)-orbifold M is a point of M of order one,
and a singular point of M is a point of M of order greater than one. The
ordinary set of M is the set Ω(M) of all ordinary points of M , and the
singular set of M is the set Σ(M) of all singular points of M .

Example 7. Consider the Euclidean orbifold structure on the equilateral
triangle � in Example 6. Then Ω(�) = �◦ and Σ(�) = ∂�.

Theorem 13.2.4. Let M be an (X, G)-orbifold. Then the ordinary set
Ω(M) is an open dense subset of M and the singular set Σ(M) is a closed
nowhere dense subset of M .

Proof: Let u be an ordinary point of M . By Theorem 13.2.3, there is
a chart φ : U → X for (M, u). Then the order of each point of U is one.
Hence U ⊂ Ω(M). Thus Ω(M) is open in M .

Let v be an arbitrary point of M , and let ψ : V → X/Γ be a chart for
(M, v). Let π : X → X/Γ be the quotient map, and let D be a fundamental
domain for Γ in X. Then π(D) is a dense subset of X/Γ. Let W be an
open neighborhood of v in V . Then ψ(W ) is an open subset of X/Γ, and
so ψ(W ) ∩ π(D) is nonempty. Each point of ψ−1(π(D)) has order one.
Therefore W contains an ordinary point of M . Thus Ω(M) is dense in M .
As Σ(M) is the complement of Ω(M) in M , we conclude that Σ(M) is a
closed nowhere dense subset of M .
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Theorem 13.2.5. Let φjφ
−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) be a coordinate

change of an (X, G)-orbifold M . Then φjφ
−1
i lifts to an element of G on

each connected component over its domain.

Proof: Let πi : X → X/Γi be the quotient map and let C be a connected
component of π−1

i (φi(Ui ∩ Uj)). Let w be a point of C. Then there is an
open neighborhood W of w in C and an element g of G such that g lifts
φjφ

−1
i on W . Let x be an arbitrary point of C. Then there are open subsets

W1, . . . , Wm of C such that W = W1, the sets Wk and Wk+1 overlap for
k = 1, . . . , m − 1, the point x is in Wm, and φjφ

−1
i lifts to an element gk

of G on Wk for each k.
It suffices to prove that we can replace gm by g. The proof is by induction

on m. This is certainly true if m = 1, so assume that m > 1, and we can
replace gm−1 by g. By Theorem 13.2.4, the open set

φjφ
−1
i (πi(Wm−1 ∩ Wm))

contains an ordinary point Γjz of X/Γj . Then the stabilizer of z in Γj is
trivial. Hence, there is an r > 0 such that

B(z, r) ∩ B(fz, r) = ∅

for all f �= 1 in Γj .
Let y be a point of Wm−1 ∩ Wm such that

φjφ
−1
i (Γiy) = Γjz.

Then there is an s > 0 such that

B(y, s) ⊂ Wm−1 ∩ Wm,

gB(y, s) ⊂ B(gy, r),

gmB(y, s) ⊂ B(gmy, r).

Now observe that
Γjgy = φjφ

−1
i (Γiy) = Γjgmy.

Hence, there is an element h of Γj such that gy = hgmy. Moreover, if y′ is
in B(y, s), then

Γjgy′ = φjφ
−1
i (Γiy

′) = Γjgmy′.

Hence, there is an element h′ of Γj such that gy′ = h′gmy′. Observe that
gy′ is in B(gy, r) and gmy′ is in B(gmy, r). Hence h′gmy′ is in the set

B(hgmy, r) ∩ B(h′gmy, r).

Now since Γjgmy = Γjz, the stabilizer of gmy in Γj is trivial, and so

hB(gmy, r) ∩ h′B(gmy, r) = ∅ unless h = h′.

Hence h = h′. Therefore gy′ = hgmy′ for all y′ in B(y, s). Hence g = hgm

by Theorem 8.3.2. Thus, we may replace gm by g.
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Theorem 13.2.6. Let X = Sn, En or Hn, and let Γ and H be discrete
subgroups of X. Then X/Γ and X/H are isometric if and only if Γ and H
are conjugate in I(X).

Proof: If Γ and H are conjugate in I(X), then X/Γ and X/H are isometric
by the same argument as in the first part of the proof of Theorem 8.1.5.
Conversely, suppose that φ : X/Γ → X/H is an isometry. We prove that
φ lifts to an isometry φ̃ of X, that is, φ(Γx) = Hφ̃(x) for each x in X, by
induction on the dimension n. This is obviously true for n = 0. Suppose
that n > 0 and φ lifts in dimension n−1. The identity map ι : X/Γ → X/Γ
is a chart for the (X, I(X))-orbifold X/Γ and {ι} is an atlas for X/Γ.

We now show that φ : X/Γ → X/H is a chart for X/Γ. Since φ = φι−1,
we need to show that if φ(Γx) = Hy, then there is an isometry ψ of X such
that ψ(x) = y and φ(Γw) = Hψw for all w in a neighborhood of x. Let Γx

be the stabilizer of x in Γ. By Theorem 13.1.1, there is an s > 0 such that
the quotient maps π : X → X/Γ and η : X → X/H induce isometries

π : B(x, s)/Γx → B(π(x), s) and η : B(y, s)/Hy → B(η(y), s).

Hence we have an isometry η−1φπ : B(x, s)/Γx → B(y, s)/Hy.

Suppose 0 < r < s. Then η−1φπ restricts to an isometry

η−1φπ : S(x, r)/Γx → S(y, r)/Hy.

The sphere S(x, r) is similar to Sn−1, and so the induction hypothesis
implies that η−1φπ lifts to an isometry ξ : S(x, r) → S(y, r). The isometry
ξ extends to a unique isometry ψ of X such that ψ(x) = y and ψ lifts

η−1φπ : B(x, s)/Γx → B(y, s)/Hy.

Then φ(Γw) = Hψ(w) for all w in B(x, s). Hence φ : X/Γ → X/H is a
chart for X/Γ. As φ = φι−1, we have that φ is a coordinate change of
X/Γ, and so φ lifts to an isometry φ̃ of X by Theorem 13.2.5, since X is
connected. This completes the induction.

We next prove that φ̃Γφ̃−1 = H. Let x be a point of X and set y = φ̃(x).
As φ̃ lifts φ, we have that

φ̃Γφ̃−1y = φ̃Γφ̃−1φ̃x = φ̃Γx = Hφ̃(x) = Hy.

Thus, given an element g of Γ and a point y of X, there is an element h of
H such that φ̃gφ̃−1(y) = h(y). Now choose y so that y is in a fundamental
domain D for H. As D is an open subset of X and φ̃gφ̃−1 is continuous,
there is an r > 0 such that B(y, r) ⊂ D and φ̃gφ̃−1(B(y, r)) ⊂ hD. Let z be
a point of B(y, r). Then z is in D and φ̃gφ̃−1(z) is in hD. Hence we must
have φ̃gφ̃−1(z) = h(z), since the sets {fD : f ∈ H} are pairwise disjoint.
Thus, the isometries φ̃gφ̃−1 and h of X agree in the open set B(y, r), and
so φ̃gφ̃−1 = h. Hence φ̃Γφ̃−1 ⊂ H, and by reversing the roles of Γ and H,
we have φ̃−1Hφ̃ ⊂ Γ. Thus φ̃Γφ̃−1 = H.
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Metric (X,G)-Orbifolds

Definition: A metric (X, G)-orbifold is a connected (X, G)-orbifold M
such that G is a group of isometries of X.

Let γ : [a, b] → M be a curve in a metric (X, G)-orbifold M . We now
defined the X-length of γ. Assume first that γ([a, b]) is contained in a
coordinate neighborhood U . Let φ : U → X/Γ be a chart for M . The
X-length of γ is defined to be

‖γ‖ = |φγ|. (13.2.1)

We now show that the X-length of γ does not depend on the choice of the
chart φ. Suppose that ψ : V → X/H is another chart for M such that V
contains γ([a, b]).

Assume first that φγ is rectifiable. Then the curve φγ : [a, b] → X/Γ
lifts to a curve φ̃γ : [a, b] → X by Theorem 13.1.7. Now by Theorem 13.2.5,
there is an isometry g in G that lifts ψφ−1 on φ̃γ([a, b]). Hence

|φγ| = |φ̃γ| = |gφ̃γ| = |ψφ−1φγ| = |ψγ|.
Now assume that φγ is nonrectifiable. Then ψγ is nonrectifiable; other-

wise, we could lift ψγ : [a, b] → X/H to a curve ψ̃γ : [a, b] → X and g−1ψ̃γ
would be a rectifiable curve that lifts φγ, contrary to Theorem 13.1.4.
Therefore |φγ| = ∞ = |ψγ|. Thus, the X-length of γ is well defined when
the image of γ lies in a coordinate neighborhood of M .

Now assume that γ : [a, b] → M is an arbitrary curve. As γ([a, b]) is
compact, there is a partition

a = t0 < t1 < · · · < tm = b

of [a, b] such that γ([ti−1, ti]) is contained in a coordinate neighborhood Ui

for each i = 1, . . . , m. Let γti−1,ti
be the restriction of γ to [ti−1, ti]. The

X-length of γ is defined to be

‖γ‖ =
m∑

i=1

‖γti−1,ti‖. (13.2.2)

The X-length of γ does not depend on the choice of the partition {ti},
since if

a = s0 < s1 < · · · < s
 = b

is another partition such that γ([si−1, si]) is contained in a coordinate
neighborhood Vi, then there is a third partition

a = r0 < r1 < · · · < rk = b

such that {ri} = {si} ∪ {ti}, and therefore
m∑

i=1

‖γti−1,ti‖ =
k∑

i=1

‖γri−1,ri‖ =

∑

i=1

‖γsi−1,si‖.
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Definition: A curve γ in a metric (X, G)-orbifold M is X-rectifiable if
and only if ‖γ‖ < ∞.

Lemma 1. Any two points of a metric (X, G)-orbifold M can be joined by
an X-rectifiable curve in M .

Proof: Define a relation on M by u ∼ v if and only if u and v are joined
by an X-rectifiable curve in M . Clearly, this is an equivalence relation
on M . Let [u] be an equivalence class and suppose that v is in [u]. Let
ψ : V → X/H be a chart for (M, v). Then there is an r > 0 such that ψ(V )
contains B(ψ(v), r). Let Hx be an arbitrary point of B(ψ(v), r). As X/H
is geodesically connected, there is a geodesic arc α : [a, b] → X/H from
ψ(v) to Hx. Clearly B(ψ(v), r) contains α([a, b]). Hence ψ−1α : [a, b] → M
is an X-rectifiable curve from v to ψ−1(Hx). This shows that [u] contains
the open set ψ−1(B(ψ(v), r)). Thus [u] is open in M . As M is connected,
[u] must be all of M . Thus, any two points of M can be joined by an
X-rectifiable curve.

Theorem 13.2.7. Let M be a metric (X, G)-orbifold. Then the function
d : M × M → R, defined by

d(u, v) = inf
γ

‖γ‖,

where γ varies over all X-rectifiable curves from u to v, is a metric on M .

Proof: By Lemma 1, the function d is well defined. Clearly d is non-
negative and d(u, u) = 0 for all u in M . To see that d is nondegenerate,
let u, v be distinct points of M . Since M is Hausdorff, there is a chart
φ : U → X/Γ for (M, u) such that v is not in U . Choose r > 0 such that
φ(U) contains C(φ(u), r). By Theorems 6.6.2 and 8.1.2, the set

S(φ(u), r) = {Γx ∈ X/Γ : dΓ(φ(u), Γx) = r}

is compact. Hence, the set T = φ−1(S(φ(u), r)) is closed in M , since M is
Hausdorff.

Let γ : [a, b] → M be an arbitrary X-rectifiable curve from u to v. Now
since γ([a, b]) is connected and contains both u and v, it must meet T .
Hence, there is a first point c of the open interval (a, b) such that γ(c) is
in T . Let γa,c be the restriction of γ to [a, c]. Then the image of γa,c is
contained in φ−1(C(φ(u), r)). Consequently, we have

‖γ‖ ≥ ‖γa,c‖
= |φγa,c|
≥ dΓ(φ(u), φγ(c)) = r.

Therefore d(u, v) ≥ r > 0. Thus d is nondegenerate. The rest of the proof
follows the proof of Theorem 8.3.4.
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Let M be a metric (X, G)-orbifold. Then the metric d, in Theorem
13.2.7, is called the induced metric on M . Henceforth, we shall assume
that a metric (X, G)-orbifold is a metric space with the induced metric.

Theorem 13.2.8. Let φ : U → X/Γ be a chart for a metric (X, G)-
orbifold M , let Γx be a point of φ(U), and let r > 0 be such that φ(U)
contains the ball B(Γx, r). Then φ−1 maps B(Γx, r) homeomorphically
onto B(φ−1(Γx), r).

Proof: The proof is the same as the proof of Theorem 8.3.5 with x
replaced by Γx.

Corollary 1. If M is a metric (X, G)-orbifold, then the topology of M is
the metric topology determined by the induced metric.

Theorem 13.2.9. Let φ : U → X/Γ be a chart for a metric (X, G)-
orbifold M , let Γx be a point of φ(U), and let r > 0 be such that φ(U)
contains the ball B(Γx, r). Then φ−1 maps B(Γx, r/2) isometrically onto
B(φ−1(Γx), r/2); therefore φ is a local isometry.

Proof: The proof is the same as the proof of Theorem 8.3.6 with x
replaced by Γx.

Exercise 13.2

1. Let φ : U → X/Γ be a chart for an (X, G)-orbifold M and let g be an element
of G. Show that the function g : X/Γ → X/gΓg−1, defined by

g(Γx) = gΓg−1gx,

is a similarity and that gφ : U → X/gΓg−1 is a chart for M .

2. Let M be an (X, G)-orbifold. Prove that the (X, G)-orbifold structure of M
contains a unique (X, G)-manifold structure for Ω(M).

3. Let Γ and H be a discrete groups of isometries of X = Sn, En, or Hn such
that X/Γ and X/H are isometric. Prove that Vol(X/Γ) = Vol(X/H).

4. Let γ : [a, b] → M be a curve in a metric (X, G)-orbifold. Prove that the
X-length of γ is the same as the length of γ with respect to the induced
metric.

5. Let Γ be a discrete group of isometries of a geometric space X. Prove that
Ω(X/Γ) is a geodesically connected subset of X/Γ.

6. Let Γ be a discrete group of isometries of a geometric space X. Show that the
induced metric on X/Γ and Ω(X/Γ) is the orbit space metric dΓ. Conclude
that X/Γ is the metric completion of the metric (X, Γ)-manifold Ω(X/Γ).

7. Let Γ be a discrete group of isometries of X = Sn, En, or Hn. Define F =
∪{Fix(g) : g �= 1 in Γ}. Prove that F is a closed Γ-invariant subset of X and
Σ(X/Γ) = F/Γ. Prove that dimΣ(X/Γ) = max{dimFix(g) : g �= 1 in Γ}.
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§13.3. Developing Orbifolds

In this section, we study the role of metric completeness in the theory of
(X, G)-orbifolds. In particular, we prove that if M is a complete (X, G)-
orbifold, with X simply connected, then there is a discrete subgroup Γ of
G of isometries of X such that M is (X, G)-equivalent to X/Γ.

(X,G)-Paths

Let M be an (X, G)-orbifold. Informally, an (X, G)-path over M is a list
of data that describes a piecewise lifting of a curve in M to X. The formal
definition goes as follows: Let x and y be points of X and let φ : U → X/Γ
and ψ : V → X/H be charts for M such that Γx is in φ(U) and Hy is in
ψ(V ). An (X, G)-path over M from (x, φ) to (y, ψ) is a sequence

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm} (13.3.1)

such that there is a partition {s0, . . . , sm} of the unit interval [0, 1] so that
αi : [si−1, si] → X is a curve and φi : Ui → X/Γi is a chart for M such
that if πi : X → X/Γi is the quotient map, then

πiαi([si−1, si]) ⊂ φi(Ui)

for each i, and g0, . . . , gm are elements of G such that

(1) x = g0α1(0) and g0 lifts φφ−1
1 in a neighborhood of α1(0),

(2) αi(si) = giαi+1(si) and gi lifts φiφ
−1
i+1 in a neighborhood of αi+1(si)

for each i = 1, . . . , m − 1, and

(3) αm(1) = gmy and gm lifts φmψ−1 in a neighborhood of y.

Observe that

(1) φ−1(Γx) = φ−1
1 π1α1(0),

(2) φ−1
i πiαi(si) = φ−1

i+1πi+1αi+1(si) for each i = 1, . . . , m − 1,

(3) φ−1
m πmαm(1) = ψ−1(Hy),

and A describes the piecewise lifting of the curve

A = (φ−1
1 π1α1) · · · (φ−1

m πmαm) (13.3.2)

in M from the point φ−1(Γx) to the point ψ−1(Hy).

Example: Let α : [0, 1] → X be the constant curve at the point x. Then

I = {1, α, φ, 1} (13.3.3)

is an (X, G)-path over M from (x, φ) to (x, φ) called the constant (X, G)-
path over M at (x, φ).
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We now consider five operations on an (X, G)-path

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}.

1. Subdivision

For some index j, add a point s of the open interval (sj−1, sj) to the
partition {s0, . . . , sm} and replace αj in A by

αj |[sj−1,s], φj , 1, αj |[s,sj ].

2. Junction

Junction is the opposite operation of subdivision.

3. Translation

For some index j, if ψ : Vj → X/Hj is a chart for M such that

φ−1
j πjαj([sj−1, sj ]) ⊂ Vj

and if fj is an element of G that lifts

ψjφ
−1
j : φj(Uj ∩ Vj) → ψj(Uj ∩ Vj)

in the component containing αj([sj−1, sj ]), replace gj−1, αj , φj , gj in A by

gj−1f
−1
j , fjαj , ψj , fjgj .

Example: Let g be an element of G. Then g induces a similarity

g : X/Γj → X/gΓjg
−1,

defined by
g(Γjx) = gΓjg

−1gx,

such that the following diagram commutes:

X
g−→ X

↓ ↓
X/Γj

g−→ X/gΓjg
−1

where the vertical maps are the quotient maps. Observe that the function

gφj : Uj → X/gΓjg
−1

is a chart for M , since g lifts (gφj)φ−1
j . Hence, by translation, we may

replace gj−1, αj , φj , gj in A by

gj−1g
−1, gαj , gφj , ggj .

Thus, we are free to translate by any element of G.
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4. Reparameterization

For some increasing homeomorphism h : [0, 1] → [0, 1] such that h(si) = ti
for i = 0, . . . , m, replace αi by βi, defined by

βi(t) = αi(h−1(t)) for ti−1 ≤ t ≤ ti and i = 1, . . . , m.

5. Small Homotopy

Replace αi by βi for each i = 1, . . . , m when there is a homotopy

Hi : [si−1, si] × [0, 1] → X

from αi to βi such that

πiHi([si−1, si] × [0, 1]) ⊂ φi(Ui)

and for all t, we have

(1) α1(0) = H1(0, t) = β1(0),

(2) Hi(si, t) = giHi+1(si, t) for i = 1, . . . , m − 1,

(3) αm(1) = Hm(1, t) = βm(1).

Homotopic (X,G)-Paths

Two (X, G)-paths A and B over M from (x, φ) to (y, ψ) are said to be
homotopic, written A � B, if and only if there is a finite sequence of the
above five operations taking A to B. Being homotopic is obviously an
equivalence relation among the set of (X, G)-paths over M from (x, φ) to
(y, ψ). We shall denote the homotopy class of A by [A].

Now let

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm},

B = {h0, β1, ψ1, h1, . . . , hn−1, βn, ψn, hn}

be (X, G)-paths over M from (x, φ) to (y, ψ) and (y, ψ) to (z, χ), respec-
tively. The product AB of A and B is the (X, G)-path over M from (x, φ)
to (z, χ),

{g0, α
′
1, φ1, g1, . . . , gm−1, α

′
m, φm, gmh0, β

′
1, ψ1, h1, . . . , hn−1, β

′
n, ψn, hn},

where

α′
i(s) = αi(2s) for si−1/2 ≤ s ≤ si/2 and i = 1, . . . , m

and

β′
j(s) = βj(2s − 1) for (1 + sj−1)/2 ≤ s ≤ (1 + sj)/2 and j = 1, . . . , n.
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In order to simplify notation, we shall drop the primes in AB and ignore
reparameterization. Observe that if A � A′ and B � B′, then AB � A′B′.
Hence, we may define the product

[A][B] = [AB]. (13.3.4)

Fundamental Orbifold Group

Let M be an (X, G)-orbifold. The fundamental orbifold group of M , based
at (x, φ), is the set πo

1(M, x, φ) of homotopy classes of (X, G)-paths over M
from (x, φ) to (x, φ) together with the multiplication of homotopy classes.

Theorem 13.3.1. Let M be an (X, G)-orbifold. Then πo
1(M, x, φ) is a

group.

Proof: The multiplication of πo
1(M, x, φ) satisfies the associative law,

since homotopy includes reparameterization. Let I = {1, α, φ, 1} be the
constant (X, G)-path over M at (x, φ), and let

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}

be an (X, G)-path over M from (x, φ) to (x, φ). Then we have

IA = {1, α, φ, 1}{g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}
= {1, α, φ, g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}.

By translation, we have

IA � {g0, g
−1
0 α, φ1, 1, α1, φ1, g1, . . . , gm−1, αm, φm, gm}.

Hence, by junction, we have

IA � {g0, (g−1
0 α)α1, φ1, g1, . . . , gm−1, αm, φm, gm}.

Now by small homotopy, we have

IA � {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm} = A.

Likewise, we have that AI � A. Hence, we have

[I][A] = [A] = [A][I].

Thus [I] is the identity element of πo
1(M, x, φ).

Given A as above, let

A−1 = {g−1
m , α−1

m , φm, g−1
m−1, α

−1
m−1, φm−1, g

−1
m−2, . . . , g

−1
1 , α−1

1 , φ1, g
−1
0 }.

Then we have that
[A][A−1] = [I] = [A−1][A].

Hence [A−1] is the inverse of [A]. Thus πo
1(M, x, φ) is a group.
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Holonomy

Let M be an (X, G)-orbifold, let x be a point of X, and let φ : U → X/Γ
be a chart for M such that Γx is in φ(U). Let

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}
be an (X, G)-path over M from (x, φ) to (x, φ). Then the element g0 · · · gm

of G depends only on [A]. Hence, we may define a homomorphism

η : πo
1(M, x, φ) → G

by the formula
η([A]) = g0 · · · gm. (13.3.5)

The homomorphism η is called the holonomy of M determined by (x, φ).
Let Γ be a discrete group of isometries of X. Then the orbit space X/Γ

is an (X, Γ)-orbifold such that the identity map

ι : X/Γ → X/Γ

is a chart for X/Γ.

Theorem 13.3.2. Let Γ be a discrete group of isometries of a simply con-
nected geometric space X. Then for any point x of X, the holonomy

η : πo
1(X/Γ, x, ι) → Γ

is an isomorphism.

Proof: We first show that η is surjective. Let g be an element of Γ. Then
there is a curve α : [0, 1] → X from x to gx. Observe that A = {1, α, ι, g}
is an (X, Γ)-path over X/Γ from (x, ι) to (x, ι) and η([A]) = g. Thus η is
surjective.

We now show that η is injective. Let

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}
be an (X, Γ)-path over X/Γ from (x, ι) to (x, ι) such that g0 · · · gm = 1.
Observe that by translation, we have

A � {1, g0α1, ι, g0g1, α2, φ2, g3, . . . , gm−1, αm, φm, gm}.

Continuing in this way, we deduce that

A � {1, g0α1, ι, 1, g0g1α2, ι, 1, . . . , 1, g0 · · · gm−1αm, ι, 1}.

Hence, by junction, we have

A � {1, (g0α1)(g0g1α2) · · · (g0 · · · gm−1αm), ι, 1}.

Now since X is simply connected, the closed curve

(g0α1)(g0g1α2) · · · (g0 · · · gm−1αm)

is null homotopic. Therefore A � I. Thus η is injective.
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Universal Orbifold Covering Space

Let M be an (X, G)-orbifold. Let x, y, z be a points of X and suppose that
φ : U → X/Γ, ψ : V → X/H, and χ : W → X/K are charts for M such that
Γx is in φ(U), Hy is in ψ(V ), and Kz is in χ(W ). An (X, G)-path J over
M from (y, ψ) to (z, χ) is said to be constant if and only if J = {1, β, ψ, f},
where β : [0, 1] → X is the constant curve at y.

Let A be an (X, G)-path over M from (x, φ) to (y, ψ) and let B be an
(X, G)-path over M from (x, φ) to (z, χ). We say that A is related to B,
written A ∼ B, if and only if there is a constant (X, G)-path J over M
from (y, ψ) to (z, χ) such that AJ � B.

Lemma 1. Being related is an equivalence relation among the set of all
(X, G)-paths over M that start at (x, φ).

Proof: As AI � A, we have that A ∼ A. Suppose that A ∼ B as above.
Then there is a constant (X, G)-path J = {1, β, ψ, f} over M from (y, ψ)
to (z, χ). Let J ′ = {1, γ, χ, f−1}, where γ : [0, 1] → X is the constant
curve at z. Then J ′ is a constant (X, G)-path over M from (z, χ) to (y, ψ).
Observe that

J ′ = {1, γ, χ, f−1} � {f−1, fγ, ψ, 1} = J−1.

Therefore, we have that

BJ ′ � AJJ−1 � A.

Hence B ∼ A.
Now suppose that A ∼ B and B ∼ C. Then there is a constant (X, G)-

path K = {1, γ, χ, g} over M such that BK � C. Observe that

JK = {1, β, ψ, f}{1, γ, χ, g}
= {1, β, ψ, f, γ, χ, g}
� {1, β, ψ, 1, fγ, ψ, fg}
� {1, βfγ, ψ, fg} = {1, β, ψ, fg}

and the last (X, G)-path is constant. Moreover, we have that

AJK � BK � C.

Therefore A ∼ C. Thus, being related is an equivalence relation.

The universal orbifold covering space of M , based at (x, φ), is the set
M̃ of all equivalence classes of (X, G)-paths over M starting at (x, φ). Let
A be an (X, G)-path over M starting at (x, φ). The equivalence class of A
will be denoted by 〈A〉. Define a function κ : M̃ → M by

κ(〈A〉) = A(1). (13.3.6)

The function κ is called the universal orbifold covering projection of M̃ .
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We now define a topology on M̃ . Let A be an (X, G)-path over M
from (x, φ) to (y, ψ), and let N be an open neighborhood of A(1) in M .
Let 〈A, N〉 be the set of all equivalence classes of the form 〈AB〉, where
B is an (X, G)-path over M starting at (y, ψ) such that B([0, 1]) ⊂ N .
Observe that if J is a constant (X, G)-path over M starting at (y, ψ),
then 〈A〉 = 〈AJ〉. Therefore 〈A〉 is in 〈A, N〉. Moreover, if 〈A′′〉 is in
〈A, N〉 ∩ 〈A′, N ′〉, then A′′(1) is in N ∩ N ′ and

〈A′′, N ∩ N ′〉 ⊂ 〈A, N〉 ∩ 〈A′, N ′〉.
Consequently, the set of all subsets of M̃ of the form 〈A, N〉 form a basis
for a topology on M̃ . Henceforth, we shall regard M̃ to be topologized
with this topology.

Lemma 2. If A′ is an (X, G)-path over M such that 〈A′〉 is in 〈A, N〉,
then

〈A′, N〉 = 〈A, N〉.

Proof: Since 〈A′〉 is in 〈A, N〉, there is an (X, G)-path B over M such
that A′ ∼ AB and B([0, 1]) ⊂ N . Hence, there is a constant (X, G)-path J
such that A′J � AB. Now if B′ is an (X, G)-path over M starting where
A′ ends such that B′([0, 1]) ⊂ N , then

A′B′ � A′JJ−1B′ � ABJ−1B′.

Therefore, we have
〈A′, N〉 ⊂ 〈A, N〉.

Now as
A � ABB−1 � A′JB−1,

we have that 〈A〉 is in 〈A′, N〉. Therefore, we have

〈A, N〉 ⊂ 〈A′, N〉
by the previous argument. Thus 〈A′, N〉 = 〈A, N〉.

Lemma 3. Let M be an (X, G)-orbifold. Then a universal orbifold cover-
ing projection κ : M̃ → M is a continuous open map. Moreover, if M is
connected, then κ is surjective.

Proof: Suppose that M̃ is based at (x, φ), let A be an (X, G)-path over
M from (x, φ) to (y, ψ), and let N be an open neighborhood of A(1) in M .
Then κ is continuous at 〈A〉, since

κ(〈A, N〉) ⊂ N.

To show that κ is open, it suffices to show that κ(〈A, N〉) is open in M .
Now since A(1) = ψ−1(Hy), we find that ψ−1(Hy) is in V ∩ N , and so Hy
is in ψ(V ∩ N). Let s > 0 be such that

B(Hy, s) ⊂ ψ(V ∩ N).
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Then ψ−1(B(Hy, s)) is an open neighborhood of A(1) in N and

ψ−1(B(Hy, s)) ⊂ κ(〈A, N〉),

since any geodesic arc in X/H from Hy to a point of B(Hy, s) lifts to a
geodesic arc in X from y to a point of B(y, s) by Theorem 13.1.6. Now
〈A, N〉 = 〈A′, N〉 for all A′ in 〈A, N〉 by Lemma 2. Therefore, by the same
argument, A′(1) has an open neighborhood contained in κ(〈A, N〉) for each
〈A′〉 in 〈A, N〉. Thus κ(〈A, N〉) is open in M .

By a similar argument, M − κ(M̃) is open in M . Hence κ(M̃) is both
open and closed in M . Therefore, if M is connected, κ is surjective.

Lemma 4. Let M be an (X, G)-orbifold. Then every universal orbifold
covering space M̃ of M is connected.

Proof: Let M̃ be the universal orbifold covering space of M based at
(x, φ). Let

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}

be an (X, G)-path over M from (x, φ) to (y, ψ) and let I be the constant
(X, G)-path over M at (x, φ). We claim that there is a curve in M̃ from
〈I〉 to 〈A〉. The proof is by induction on m.

Assume first that m = 1. Then

A = {g0, α1, φ1, g1}.

Let J = {1, β, ψ, g−1
1 } be the constant (X, G)-path over M from (y, ψ) to

(α1(1), φ1). Then we have

J � {g−1
1 , g1β, φ1, 1}.

Hence, we have

AJ � {g0, α1, φ1, g1}{g−1
1 , g1β, φ1, 1}

= {g0, α1, φ1, 1, g1β, φ1, 1}
= {g0, α1g1β, φ1, 1}
= {g0, α1, φ1, 1}.

Consequently, we may assume that g1 = 1 and (y, ψ) = (α1(1), φ1).
Now for each t in [0, 1], define αt : [0, 1] → X by

αt(s) = α1(ts)

and define an (X, G)-path At over M from (x, φ) to (α1(t), φ1) by

At = {g0, αt, φ1, 1}.

Observe that α0 is the constant curve at α1(0) and

A0 = {g0, α0, φ1, 1} � {1, g0α0, φ, g0} ∼ I.

Hence 〈A0〉 = 〈I〉. Define γ : [0, 1] → M̃ by γ(t) = 〈At〉.
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We now show that γ is continuous at a point t. Let N be an open
neighborhood of A(t) in M . Now since A = φ−1

1 π1α1 is continuous at t,
there is an ε > 0 such that

A(B(t, ε) ∩ [0, 1]) ⊂ N.

We claim that
γ(B(t, ε) ∩ [0, 1]) ⊂ 〈At, N〉.

Let r be in B(t, ε) ∩ [0, 1]. Define a curve βr : [0, 1] → X by
βr(s) = α1((1 − s)t + sr)

and define an (X, G)-path Br over M from (α1(t), φ1) to (α1(r), φ1) by
Br = {1, βr, φ1, 1}.

Then we have
AtBr = {g0, αt, φ1, 1}{1, βr, φ1, 1}

� {g0, αtβr, φ1, 1}
� {g0, αr, φ1, 1} = Ar

and
Br([0, 1]) = φ−1

1 π1βr([0, 1]) ⊂ N.

Hence γ(r) = 〈Ar〉 is in 〈At, N〉. Therefore
γ(B(t, ε) ∩ [0, 1]) ⊂ 〈At, N〉

and so γ is continuous at t. Thus γ is a curve in M̃ from 〈I〉 to 〈A〉.
Now assume that m > 1 and let

Am−1 = {g0, α
′
1, φ1, g1, . . . , gm−2, α

′
m−1, φm−1, 1}

be the (X, G)-path over M from (x, φ) to (αm−1(sm−1), φm−1) determined
by A by reparameterization. Then by the induction hypothesis, 〈I〉 can
be joined to 〈Am−1〉 by a curve in M̃ . Let M̃ ′ be the universal orbifold
covering space of M based at (αm−1(sm−1), φm−1). Define a function

(Am−1)∗ : M̃ ′ → M̃

by the formula
(Am−1)∗(〈A′〉) = 〈Am−1A

′〉.
Then we have

(Am−1)∗(〈A′, N〉) = 〈Am−1A
′, N〉.

Hence (Am−1)∗ is a homeomorphism with inverse (A−1
m−1)∗.

Let Im−1 be the constant (X, G)-path over M at (αm−1(sm−1), φm−1)
and let

A′
m−1 = {gm−1, α

′
m, φm, gm}

be the (X, G)-path over M from (αm−1(sm−1), φm−1) to (y, ψ) determined
by A by reparameterization. Then by the case m = 1, we have that 〈Im−1〉
can be joined to 〈A′

m−1〉 by a curve γ : [0, 1] → M̃ ′. Now

(Am−1)∗γ : [0, 1] → M̃

is a curve from 〈Am−1〉 to 〈A〉. Hence 〈I〉 can be joined to 〈A〉 by a curve
in M̃ . Thus M̃ is connected.
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Lemma 5. Let M be an (X, G)-orbifold. Then every universal orbifold
covering space M̃ of M is Hausdorff.

Proof: Let M̃ be the universal orbifold covering space of M based at
(x, φ) and let κ : M̃ → M be the universal covering projection. Let 〈A〉
and 〈A′〉 be distinct points of M̃ . Assume first that κ(〈A〉) and κ(〈A′〉) are
distinct. As M is Hausdorff, there are disjoint open neighborhoods N and
N ′ of κ(〈A〉) and κ(〈A′〉), respectively. The projection κ is continuous by
Lemma 3. Hence κ−1(N) and κ−1(N ′) are disjoint open neighborhoods of
〈A〉 and 〈A′〉, respectively. Thus, we may assume that κ(〈A〉) = κ(〈A′〉).

Suppose that A is an (X, G)-path over M from (x, φ) to (y, ψ), where
ψ : V → X/H. Let r > 0 be such that

(1) B(Hy, r) ⊂ ψ(V ),

(2) r ≤ 1
2dist(y, Hy − {y}),

(3) B(y, r) is simply connected.

Now set
N = ψ−1(B(Hy, r)).

Then N is an open neighborhood of ψ−1(Hy) = κ(〈A〉) in M .
We claim that 〈A, N〉 and 〈A′, N〉 are disjoint open neighborhoods of

〈A〉 and 〈A′〉, respectively. On the contrary, suppose that 〈A, N〉 meets
〈A′, N〉. Then 〈A, N〉 = 〈A′, N〉 by Lemma 2. Hence 〈A′〉 = 〈AB〉 for
some (X, G)-path B over M from (y, ψ) to (z, χ) such that B([0, 1]) ⊂ N .
Suppose that

B = {h0, β1, ψ1, h1, . . . , hn−1, βn, ψn, hn}.

Then by Theorem 13.2.5, there is an element fi of G such that fi lifts the
coordinate change

ψψ−1
i : ψi(Vi ∩ V ) → ψ(Vi ∩ V )

in the component containing βi([si−1, si]). Then by translation, we have

B � {h0f
−1
1 , f1β1, ψ, f1h1f

−1
2 , . . . , fn−1hn−1f

−1
n , fnβn, ψ, fnhn}.

Now since we are free to replace B by any element of 〈B〉, we may assume,
without loss of generality, that ψi = ψ for all i to begin with. Then each
hi lifts ψψ−1, and so hi is in H for each i. Hence, by translation, we have

B � {1, h0β1, ψ, h0h1, β2, ψ, h2, . . . , hn−1, βn, ψ, hn}
� {1, h0β1, ψ, 1, h0h1β2, ψ, h0h1h2, β3, ψ, h3, . . . , hn−1, βn, ψ, hn}
...
� {1, h0β1, ψ, 1, h0h1β2, ψ, 1, . . . , 1, h0 · · ·hn−1βn, ψ, h0 · · ·hn}.

Hence, we may assume that hi = 1 for i = 1, . . . , n − 1. Then by junction,
we have that

B � {1, β1 · · ·βn, ψ, hn}.
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Hence, we may assume that

B = {1, β, ψ, h}.

Let J = {1, γ, χ, h−1} be the constant (X, G)-path over M from (z, χ) to
(β(1), ψ). Then we have

J � {h−1, hγ, ψ, 1}.

Hence, we have

BJ � {1, β, ψ, h}{h−1, hγ, ψ, 1}
= {1, β, ψ, 1, hγ, ψ, 1}
� {1, βhγ, ψ, 1}
� {1, β, ψ, 1}.

Hence, we may assume that h = 1 and (z, χ) = (β(1), ψ).
Now as

κ(〈AB〉) = κ(〈A〉),

we have that
ψ−1(Hβ(1)) = ψ−1(Hy).

Hence Hβ(1) = Hy and so there is an element f of H such that fβ(1) = y.
Let η : X → X/H be the quotient map. Then we have

η(β([0, 1])) ⊂ B(Hy, r).

Hence, we have

β([0, 1]) ⊂ η−1(B(Hy, r)) = ∪
h∈H

B(hy, r).

Now since
r ≤ 1

2
dist(y, Hy − {y}),

any two balls in {B(hy, r) : h ∈ H} are disjoint or coincide. Moreover

B(hy, r) = B(y, r)

if and only if h is in the stabilizer Hy of y. As β(0) = y and β([0, 1]) is
connected, we deduce that

β([0, 1]) ⊂ B(y, r).

As fβ(1) = y, we must have that f is in Hy. Therefore β(1) = y. Thus β is
a closed curve. Now since B(y, r) is simply connected, β is null homotopic
in B(y, r). Therefore AB � A. Thus, we have

〈A′〉 = 〈AB〉 = 〈A〉,

which is a contradiction. Therefore 〈A, N〉 and 〈A′, N〉 are disjoint open
neighborhoods of 〈A〉 and 〈A′〉 in M̃ , respectively. Thus M̃ is Hausdorff.
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The Developing Map

Let
A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}

be an (X, G)-path over M from (x, φ) to (y, ψ). Then the point g0 · · · gmy
of X depends only on [A]. Moreover, if J = {1, β, ψ, f} is a constant
(X, G)-path over M from (y, ψ) to (z, χ), then we have

g0 · · · gmfz = g0 · · · gmy,

since fz = y, and so g0 · · · gmy depends only on 〈A〉.
Let M̃ be the universal orbifold covering space of M based at (x, φ). The

developing map determined by (x, φ) is the function δ : M̃ → X defined by

δ(〈A〉) = g0 · · · gmy. (13.3.7)

Lemma 6. Let M̃ be a universal orbifold covering space of an (X, G)-
orbifold M . Then the developing map δ : M̃ → X is a local homeomor-
phism.

Proof: Let δ be determined by (x, φ) and let

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}
be an (X, G)-path over M from (x, φ) to (y, ψ), where ψ : V → X/H. Let
r > 0 be such that

(1) B(Hy, r) ⊂ ψ(V ),

(2) r ≤ 1
2dist(y, Hy − {y}),

(3) B(y, r) is simply connected.

Now set
N = ψ−1(B(Hy, r)).

Then N is an open neighborhood of ψ−1(Hy) = A(1) in M . Let

g = g0 · · · gm.

We claim that δ maps the set 〈A, N〉 bijectively onto the ball gB(y, r). Let
〈A′〉 be an element of 〈A, N〉. By the argument in Lemma 5, we have that
〈A′〉 = 〈AB〉, where

B = {1, β, ψ, 1}
is an (X, G)-path over M from (y, ψ) to (β(1), ψ) such that

β([0, 1]) ⊂ B(y, r).

Hence δ(〈A′〉) = gβ(1) is in gB(y, r). Moreover, since we may take β to be
any rescaled geodesic arc in B(y, r), we have that

δ(〈A, N〉) = gB(y, r).
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Now suppose that
B′ = {1, β′, ψ, 1}

is another (X, G)-path over M from (y, ψ) to (β′(1), ψ) such that

β′([0, 1]) ⊂ B(y, r) and δ(〈AB〉) = δ(〈AB′〉).
Then gβ(1) = gβ′(1). Hence β(1) = β′(1). Now since B(y, r) is simply
connected, β is homotopic to β′ in B(y, r) by a homotopy keeping the
endpoints fixed. Hence B � B′ and so 〈AB〉 = 〈AB′〉. Thus δ maps
〈A, N〉 injectively onto gB(y, r).

Now since the sets of the form 〈A, N〉 form a basis for the topology of
M̃ , we deduce that δ : M̃ → X is a local homeomorphism.

It follows from Lemmas 5 and 6 that a developing map δ : M̃ → X
induces an (X, {1})-manifold structure on M̃ . We shall regard the universal
orbifold covering space M̃ to be an (X, {1})-manifold whose charts are the
restrictions of δ. Then M̃ has a metric such that δ : M̃ → X is an (X, {1})-
map and therefore a local isometry. Thus, we have the following theorem.

Theorem 13.3.3. If M̃ is a universal orbifold covering space of an (X, G)-
orbifold M , then M̃ is an (X, {1})-manifold such that the developing map
δ : M̃ → X is an (X, {1})-map.

Observe that the fundamental orbifold group πo
1(M, x, φ) of an (X, G)-

orbifold M acts on the universal orbifold covering space M̃ of M based at
(x, φ) by the formula

[C]〈A〉 = 〈CA〉. (13.3.8)

Theorem 13.3.4. Let M̃ be the universal orbifold covering space based
at (x, φ) of a connected (X, G)-orbifold M . Then πo

1(M, x, φ) acts effec-
tively and discontinuously on M̃ via similarities, and the universal orbifold
covering projection κ : M̃ → M induces a homeomorphism

κ : M̃/πo
1(M, x, φ) → M.

Proof: We first show that πo
1(M, x, φ) acts effectively on M̃ . Suppose that

A is an (X, G)-path over M from (x, φ) to (y, ψ), and [C] is an element
of πo

1(M, x, φ), and [C]〈A〉 = 〈A〉. Then 〈CA〉 = 〈A〉. Hence, there is a
constant (X, G)-path J = {1, β, ψ, f} over M from (y, ψ) to (y, ψ) such
that CAJ � A. Now fy = y and f lifts ψψ−1 in a neighborhood of y.
Hence f is in the stabilizer Hy.

Observe that the homotopy classes of the form [J ], with J as above,
form a subgroup of πo

1(M, y, ψ) isomorphic to Hy via the holonomy

η : πo
1(M, y, ψ) → G,

and since [C] = [AJ−1A−1], this subgroup of πo
1(M, y, ψ) is isomorphic to

the stabilizer of 〈A〉 via the change of base point isomorphism

[A]∗ : πo
1(M, y, ψ) → πo

1(M, x, φ).
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Thus, the stabilizer of 〈A〉 is isomorphic to the finite group Hy. In partic-
ular, if A(1) = ψ−1(Hy) is an ordinary point of M , then the stabilizer of
〈A〉 is trivial. Hence πo

1(M, x, φ) acts effectively on M̃ .
We next show that πo

1(M, x, φ) acts on M̃ via similarities. Let [C] be an
element of πo

1(M, x, φ). Then we have

δ([C]〈A〉) = δ(〈CA〉) = η([C])δ(〈A〉).
Hence, the following diagram commutes:

M̃
δ−→ X

[C]∗ ↓ ↓ η([C])∗
M̃

δ−→ X

Now as δ is a local isometry and η([C])∗ is a similarity, we deduce that [C]∗
is a local similarity, all of whose local scale factors are the same. As [C]∗ is
a bijection, we conclude that [C]∗ is a similarity by the same argument as
in the proof of Theorem 8.5.8. Thus πo

1(M, x, φ) acts on M̃ via similarities.
We next show that the πo

1(M, x, φ)-orbits are the fibers of κ : M̃ → M .
If [C] is in πo

1(M, x, φ), then

κ([C]〈A〉) = κ(〈A〉).
Hence, we have

πo
1(M, x, φ)〈A〉 ⊂ κ−1(κ(〈A〉)).

Now let B be an (X, G)-path over M from (x, φ) to (z, χ) such that

κ(〈A〉) = κ(〈B〉)
Suppose that χ : W → X/K. Then

ψ−1(Hy) = χ−1(Kz).

Let f be an element of G such that fz = y and f lifts ψχ−1 in a neighbor-
hood of z and let

J = {1, β, ψ, f}
be the constant (X, G)-path over M from (y, ψ) to (z, χ). Then B(AJ)−1

is an (X, G)-path over M from (x, φ) to (x, φ) and we have

[B(AJ)−1]〈A〉 = 〈B(AJ)−1A〉
= 〈BJ−1A−1A〉
= 〈BJ−1〉 = 〈B〉.

Hence 〈B〉 is in πo
1(M, x, φ)〈A〉. Therefore

πo
1(M, x, φ)〈A〉 = κ−1(κ(〈A〉)).

Thus, the πo
1(M, x, φ)-orbits are the fibers of κ.

We next show that πo
1(M, x, φ) acts discontinuously on M̃ . First of all,

the πo
1(M, x, φ)-orbits are closed, since they are the fibers of κ : M̃ → M .

Let A be an (X, G)-path over M from (x, φ) to (y, ψ), where ψ : V → X/H.
Let r > 0 be such that
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(1) B(Hy, r) ⊂ ψ(V ),

(2) r ≤ 1
2dist(y, Hy − {y}),

(3) B(y, r) is simply connected.

Now set
N = ψ−1(B(Hy, r)).

Then N is an open neighborhood of ψ−1(Hy) = κ(〈A〉) in M . By the
argument in Lemma 6, we have

〈A, N〉 ∩ κ−1(κ(〈A〉)) = 〈A〉.
Hence 〈A〉 is open in κ−1(κ(〈A〉)). Thus, the πo

1(M, x, φ)-orbits are discrete.
Therefore πo

1(M, x, φ) acts discontinuously on M̃ by Theorem 5.3.4.
Now κ : M̃ → M is a continuous open surjection by Lemma 3, and the

fibers of κ are the πo
1(M, x, φ)-orbits. Therefore κ induces a homeomor-

phism
κ : M̃/πo

1(M, x, φ) → M.

Theorem 13.3.5. Let M̃ be the universal orbifold covering space based at
(x, φ) of a connected (X, G)-orbifold M and let G1 be the group of isome-
tries in G. Then the following are equivalent:

(1) The group πo
1(M, x, φ) acts on M̃ via isometries.

(2) The image of the holonomy η : πo
1(M, x, φ) → G is contained in G1.

(3) The (X, G)-orbifold structure Φ of M contains an (X, G1)-orbifold
structure Φ1 for M containing φ.

Proof: Let [C] be an element of πo
1(M, x, φ). Then we have the commu-

tative diagram
M̃

δ−→ X
[C]∗ ↓ ↓ η([C])∗

M̃
δ−→ X.

Now by Theorem 13.3.4, the map [C]∗ is a similarity. As δ is a local
isometry, [C]∗ is an isometry if and only if η([C])∗ is an isometry. Thus (1)
and (2) are equivalent.

Suppose that the image of the holonomy η : πo
1(M, x, φ) → G is con-

tained in G1. Let

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}
be an (X, G)-path over M from (x, φ) to (y, ψ), where ψ : V → X/H. Let

g = g0 · · · gm

and let
g : X/H → X/gHg−1
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be the induced similarity. Define a function

ψA : V → X/gHg−1

by ψA = gψ. We claim that the totality of such maps {ψA} is an (X, G1)-
orbifold atlas for M .

Suppose that

B = {h0, β1, ψ1, h1, . . . , hn−1, βn, ψn, hn}

is an (X, G)-path over M from (x, φ) to (z, χ), where χ : W → X/K, and
let

h = h0 · · ·hn.

Suppose that gy′ and hz′ are points of X such that

ψBψ−1
A (gHg−1gy′) = hKh−1hz′.

Then we have that
χψ−1(Hy′) = Kz′.

Now as V is connected, there is a rectifiable curve γ : [0, 1] → X/H from
Hy to Hy′ such that

γ([0, 1]) ⊂ ψ(V ).

The curve γ lifts to a curve γ : [0, 1] → X starting at y by Theorem 13.1.7.
Let C = {1, γ, ψ, 1} be the corresponding (X, G)-path over M from (y, ψ)
to (γ(1), ψ). By replacing A by AC and y by γ(1), we may assume that
Hy = Hy′. Likewise, we may assume that Kz = Kz′. Let e be an element
of H such that ey = y′, and let k be an element of K such that kz = z′.
Then e and k are in G1 by Theorem 13.2.2.

Now since χψ−1(Hy) = Kz, there is an element f of G such that fy = z
and f lifts χψ−1 in a neighborhood of y. Let J = {1, β, ψ, f−1} be the
constant (X, G)-path over M from (y, ψ) to (z, χ). Now (2) implies that
η([AJB−1]) is an element of G1. Hence gf−1h−1 is an element of G1.
Observe that

hkfe−1g−1 = (hkh−1)(hfg−1)(ge−1g−1)

is in G1,

(hkfe−1g−1)(gy′) = hkfe−1y′ = hkfy = hkz = hz′,

and hkfe−1g−1 lifts χBψ−1
A in a neighborhood of gy′. Thus {ψA} is an

(X, G1)-orbifold atlas for M . Moreover {ψA} is obviously contained in the
(X, G)-orbifold structure Φ of M . Now as φI = φ, we find that φ is in
{ψA}. Thus (2) implies (3).

Now suppose that the (X, G)-orbifold structure Φ of M contains an
(X, G)-orbifold structure Φ1 for M containing φ. Let

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}
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be an (X, G)-path over M from (x, φ) to (x, φ) with partition {s0, . . . , sm}
of [0, 1]. We claim that g0 · · · gm is in G1. By subdivision, we may assume
that there is a chart ψi : Vi → X/Hi in Φ1 such that

αi([si−1, si]) ⊂ Vi for each i = 1, . . . , m.

Hence, by translation, we may assume that φi = ψi for each i. Now since
φ : U → X/Γ is in Φ1, there is an element h0 of G1 such that h0α1(0) = x
and h0 lifts φφ−1

1 in a neighborhood of α1(0). Hence g0h
−1
0 x = x and

g0h
−1
0 lifts φφ−1

1 (φ1φ
−1) in a neighborhood of x. Therefore g0h

−1
0 is in the

stabilizer Γx. Now Γ is a subgroup of G1 by Theorem 13.2.2. Therefore g0
is in G1. Likewise g1, . . . , gm are in G1. Hence η([A]) = g0 · · · gm is in G1.
Thus, the image of η is contained in G1 and so (3) implies (2).

Theorem 13.3.6. Let M̃ be the universal orbifold covering space based at
(x, φ) of a connected (X, G)-orbifold M and let G1 be the group of isome-
tries in G. Suppose that πo

1(M, x, φ) acts on M̃ via isometries. Then the
(X, G)-orbifold structure Φ of M contains an (X, G1)-orbifold structure
Φ1 for M containing φ, and if M together with Φ1 is considered to be
a metric (X, G1)-orbifold, then the universal orbifold covering projection
κ : M̃ → M induces an isometry

κ : M̃/πo
1(M, x, φ) → M.

Proof: The (X, G)-orbifold structure Φ of M contains an (X, G1)-orbifold
structure Φ1 for M containing φ by Theorem 13.3.5. Consider M together
with Φ1 to be an (X, G1)-orbifold. Let 〈A〉 be an arbitrary point of M̃ and
suppose that

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}

is an (X, G)-path over M from (x, φ) to (y, ψ), where ψ : V → X/H. Now
let χ : W → X/K be in Φ1 such that ψ−1(Hy) is in W . Let z be a point of
X such that

ψ−1(Hy) = χ−1(Kz).

Then there is a constant (X, G)-path J = {1, β, ψ, f} over M from (y, ψ)
to (z, χ). Now by replacing A by AJ and ψ by χ, we may assume that ψ
is in Φ1. Then the same argument as at the end of the proof of Theorem
13.3.5 shows that g = g0 · · · gm is in G1.

Let r > 0 be such that

(1) B(Hy, 2r) ⊂ ψ(V ),

(2) r ≤ 1
4dist(y, Hy − {y}),

(3) r ≤ 1
4dist(〈A〉, πo

1(M)〈A〉 − {〈A〉}),

(4) B(y, 2r) is simply connected.
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Now set
N = ψ−1(B(Hy, r)).

Then N is an open neighborhood of ψ−1(Hy) = κ(〈A〉) in M . By the
argument in Lemma 6, the developing map δ : M̃ → X maps the set
〈A, ψ−1(B(Hy, 2r))〉 homeomorphically onto the ball B(gy, 2r). Hence, by
Theorem 8.3.6, we have that

〈A, N〉 = B(〈A〉, r)
and δ maps B(〈A〉, r) isometrically onto B(gy, r).

Suppose that [C] is in the stabilizer of 〈A〉. Then there is a constant
(X, G)-path J over M from (y, ψ) to (y, ψ) such that

δ([C]〈A〉) = δ(〈CA〉)
= δ([AJ ])
= δ([AJA−1A])
= gη([J ])g−1δ([A])

with η([J ]) in the stabilizer Hy. Hence δ induces an isometry δ such that
the following diagram commutes:

B(〈A〉, r) δ−→ B(gy, r)
↓ ↓

B(〈A〉, r)/πo
1(M)〈A〉

δ−→ B(gy, r)/gHyg−1

↓ ↓
B(πo

1(M)〈A〉, r) gψκ−→ B(gHg−1gy, r),

where the vertical maps are induced by quotient maps. Now by Theorem
13.1.1, the bottom vertical maps are isometries. Therefore gψκ is an isom-
etry. Observe that ψ maps B(κ(〈A〉), r) isometrically onto B(Hy, r) by
Theorem 13.2.9. Now as g is an isometry, the map

g : X/H → X/gHg−1

is an isometry. Hence g maps B(Hy, r) isometrically onto B(gHg−1gy, r).
Therefore κ maps B(πo

1(M)〈A〉, r) isometrically onto B(κ(〈A〉), r). Thus κ
is a local isometry.

Now as κ : M̃/πo
1(M) → M is a homeomorphism, κ induces an (X, G1)-

orbifold structure on M̃/πo
1(M). We claim that the orbit space metric dπ on

M̃/πo
1(M) agrees with the induced (X, G1)-orbifold metric d on M̃/πo

1(M).
First of all, dπ and d agree locally, since κ is a local isometry; moreover,
dπ ≤ d, since arc length with respect to dπ is the same as X-length. On
the contrary, suppose that 〈A〉 and 〈B〉 are points of M̃ such that

dπ(πo
1(M)〈A〉, πo

1(M)〈B〉) < d(πo
1(M)〈A〉, πo

1(M)〈B〉).
Then we have

dist(〈A〉, πo
1(M)〈B〉) < d(πo

1(M)〈A〉, πo
1(M)〈B〉).
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Hence, there is an X-rectifiable curve γ : [0, 1] → M̃ from 〈A〉 to a point
in πo

1(M)〈B〉 such that

‖γ‖ < d(πo
1(M)〈A〉, πo

1(M)〈B〉).

Let � : M̃ → M̃/πo
1(M) be the quotient map. Then ‖�γ‖ = ‖γ‖ by

Theorem 13.1.4. Therefore, we have

‖�γ‖ < d(πo
1(M)〈A〉, πo

1(M)〈B〉),

which is a contradiction. Hence dπ = d. Thus κ is an isometry.

Complete (X,G)-Orbifolds

We now define a notion of completeness for (X, G)-orbifolds.

Definition: An (X, G)-orbifold M is complete if and only if every universal
orbifold covering space M̃ of M is a complete metric space.

Theorem 13.3.7. Let M be a metric (X, G)-orbifold. Then M is complete
if and only if M is a complete metric space.

Proof: Suppose that M is complete. Let M̃ be the universal orbifold
covering space of M based at (x, φ). Then M̃ is a complete metric space.
Hence M̃ is geodesically complete by Theorem 8.5.7. Therefore, the de-
veloping map δ : M̃ → X is a covering projection by Theorem 8.5.6.
Furthermore, the proof of Theorem 8.5.6 shows that there is an r > 0 such
that B(w, 2r) is evenly covered by δ for all w in X. Now δ maps B(〈A〉, r)
homeomorphically onto B(δ(〈A〉), r) for all 〈A〉 in M̃ . Hence B(〈A〉, r) is
compact for all 〈A〉 in M̃ . Now the quotient map

� : M̃ → M̃/πo
1(M, x, φ)

maps B(〈A〉, r) onto B(�(〈A〉), r) by Theorem 6.6.2. As B(〈A〉, r) is com-
pact, we deduce that

�(B(〈A〉, r)) = B(�(〈A〉), r).

Hence B(�(〈A〉), r) is compact for all 〈A〉 in M̃ . Therefore M̃/πo
1(M, x, φ)

is a complete metric space by Theorem 8.5.1. Hence M is a complete metric
space by Theorem 13.3.6.

Conversely, suppose that M is a complete metric space. Then we have
that M̃/πo

1(M, x, φ) is a complete metric space by Theorem 13.3.6. Hence
M̃ is a complete metric space by Theorem 8.5.3. Thus M is complete.

Definition: An (X, G)-orbifold structure Φ for a Hausdorff space M
is complete if and only if M , with the (X, G)-orbifold structure Φ, is a
complete (X, G)-orbifold.
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Theorem 13.3.8. Let M be an (X, G)-orbifold and let G1 be the group
of isometries in G. Then M is complete if and only if the (X, G)-orbifold
structure of M contains a complete (X, G1)-orbifold structure for M .

Proof: Without loss of generality, we may assume that M is connected.
Suppose that M is complete. Then the universal orbifold covering space
M̃ of M based at (x, φ) is a complete metric space. Let [C] be an element
of πo

1(M, x, φ). Then the map [C]∗ : M̃ → M̃ is a similarity by Theorem
13.3.4. We claim that [C]∗ is an isometry. On the contrary, suppose that
[C]∗ is not an isometry. Then [C]∗ has a fixed point 〈A〉 in M̃ by Theorem
8.5.4. Now by Theorem 13.3.4, the stabilizer of 〈A〉 is a finite group of
isometries, which is a contradiction. Hence [C]∗ is an isometry. Thus
πo

1(M, x, φ) acts on M̃ via isometries. Therefore, by Theorem 13.3.5, the
(X, G)-orbifold structure of M contains an (X, G1)-orbifold structure for
M containing φ. Consider M to be an (X, G1)-orbifold with this structure.
Then by Theorem 13.3.6, the universal orbifold covering projection κ :
M̃ → M induces an isometry

κ : M̃/πo
1(M, x, φ) → M.

The developing map δ : M̃ → X is a covering projection by Theorems
8.5.6 and 8.5.7. Hence, there is an r > 0 such that B(〈A〉, r) is compact
for all 〈A〉 in M̃ . Therefore B(πo

1(M)〈A〉, r) is compact for all 〈A〉 in M̃ .
Hence M̃/πo

1(M) is a complete metric space by Theorem 8.5.1. Therefore
M is a complete metric space. Hence M is a complete (X, G1)-orbifold
by Theorem 13.3.7. Thus, the (X, G)-orbifold structure of M contains a
complete (X, G1)-orbifold structure for M .

Conversely, suppose that the (X, G)-orbifold structure Φ of M contains
a complete (X, G1)-orbifold structure Φ1 for M . Consider M together
with Φ1 to be an (X, G1)-orbifold. Let φ be a chart in Φ1 and let M̃ be
the universal (X, G)-orbifold covering space of M based at (x, φ). Then by
Theorems 13.3.5 and 13.3.6, the group πo

1(M, x, φ) acts on M̃ via isometries,
and the universal orbifold covering projection κ : M̃ → M induces an
isometry κ : M̃/πo

1(M) → M . Now M is a complete metric space by
Theorem 13.3.7. Hence M̃/πo

1(M) is a complete metric space. Therefore
M̃ is a complete metric space by Theorem 8.5.3.

Now suppose that M̃ ′ is the (X, G)-orbifold covering space of M based
at (y, ψ). Then there is an (X, G)-path A over M from (x, φ) to (y, ψ),
since M is connected. Let A∗ : M̃ ′ → M̃ be the change of base point
homeomorphism defined by

A∗(〈A′〉) = 〈AA′〉.

Suppose that

A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}
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and let g = g0 · · · gm. Then we have a commutative diagram

M̃ ′ A∗−→ M̃
δ′ ↓ ↓ δ

X
g∗−→ X,

where the vertical maps are the developing maps. As g∗ is a similarity, we
deduce that A∗ is a similarity. Hence M̃ ′ is a complete metric space. Thus
M is complete.

Definition: A function ξ : M → N between (X, G)-orbifolds is an (X, G)-
map if and only if ξ is continuous and for each chart φ : U → X/Γ for M and
chart ψ : V → X/H for N such that U and ξ−1(V ) overlap, the function

ψξφ−1 : φ(U ∩ ξ−1(V )) → ψ(ξ(U) ∩ V )

has the property that if x and y are points of X such that

ψξφ−1(Γx) = Hy,

then there is an element g of G such that gx = y and g lifts ψξφ−1 in a
neighborhood of x.

Theorem 13.3.9. An injection ξ : M → N between (X, G)-orbifolds is an
(X, G)-map if and only if for each point u of M , there is a chart φ : U →
X/Γ for (M, u) such that ξ maps U homeomorphically onto an open subset
of N and φξ−1 : ξ(U) → X/Γ is a chart for N .

Proof: Suppose that ξ : M → N is an (X, G)-map and u is an arbitrary
point of M . Let ψ : V → X/H be a chart for (N, ξ(u)). Since ξ is continuous
at u, there is a chart φ : U → X/Γ for (M, u) such that ξ(U) ⊂ V . Then

ψξφ−1 : φ(U) → ψξ(U)

lifts to an element of G on each component over φ(U). Hence ψξ(U) is open
in X/H, and so ξ(U) is open in N . Therefore ξ is an open map. Hence ξ
maps U homeomorphically onto ξ(U).

Now consider the map

(φξ−1)ψ−1 : ψ(ξ(U)) → φξ−1(ξ(U))

and suppose that
φξ−1ψ−1(Hy) = Γx.

Then we have
ψξφ−1(Γx) = Hy.

Hence, there is an element g of G such that gx = y and g lifts ψξφ−1

in a neighborhood of x. Therefore g−1y = x and g−1 lifts φξ−1ψ−1 in a
neighborhood of y. As ξ(U) ⊂ V and ψ : V → X/H is a chart for N , we
deduce that φξ−1 : ξ(U) → X/Γ is a chart for N .
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Conversely, suppose that for each point u of M , there is a chart φ : U →
X/Γ for (M, u) such that ξ maps U homeomorphically onto an open subset
of N and φξ−1 : ξ(U) → X/Γ is a chart for N . Then ξ is continuous. Let
χ : W → X/K and ψ : V → X/H be charts for M and N , respectively, such
that W and ξ−1(V ) overlap. Now let u be an arbitrary point of the set
W∩ξ−1(V ). Then there is a chart φ : U → X/Γ for (M, u) such that ξ maps
U homeomorphically onto an open subset of N and φξ−1 : ξ(U) → X/Γ is
a chart for N . Consider the function

ψξχ−1 : χ(W ∩ ξ−1(V )) → ψ(ξ(W ) ∩ V ).
Suppose that y and z are points of X such that

ψξχ−1(Kz) = ψξ(u) = Hy.

Now since
ψξχ−1 = (ψξφ−1)(φχ−1)

and φχ−1 and ψ(φξ−1)−1 are coordinate changes for M and N , respec-
tively, there is an element h of G such that hz = y and h lifts ψξχ−1 in a
neighborhood of z. Thus ξ is an (X, G)-map.

Definition: A function ξ : M → N between (X, G)-orbifolds is an (X, G)-
equivalence if and only if ξ is a bijective (X, G)-map.

Note that the inverse of an (X, G)-equivalence is also an (X, G)-equivalence.
Two (X, G)-orbifolds M and N are said to be (X, G)-equivalent if and
only if there is an (X, G)-equivalence ξ : M → N . Note that an (X, G)-
equivalence ξ : M → N between metric (X, G)-orbifolds is an isometry.

Theorem 13.3.10. Let G be a group of similarities of a simply connected
geometric space X and let M be a complete connected (X, G)-orbifold. Let
η : πo

1(M) → G be a holonomy of M and let δ : M̃ → X be the correspond-
ing developing map. Then δ is an (X, {1})-equivalence, η maps πo

1(M)
isomorphically onto a discrete group Γ of isometries of X, and δ induces
an (X, G)-equivalence from M to X/Γ.

Proof: Now δ : M̃ → X is a covering projection by Theorems 8.5.6
and 8.5.7. Therefore δ is a homeomorphism, since X is simply connected.
Hence δ is an (X, {1})-equivalence and so is an isometry. Now πo

1(M) cor-
responds to the group of covering transformations of the universal orbifold
covering projection κ : M̃ → M which corresponds via δ to the image of η.
By Theorems 13.3.4, 13.3.5, and 13.3.8, the group πo

1(M) acts discontinu-
ously on M̃ via isometries. Therefore η maps πo

1(M) isomorphically onto
a discrete group Γ of isometries of X. By Theorem 13.3.4, we deduce that
δ induces a homeomorphism δ such that the following diagram commutes:

M̃
δ−→ X

κ ↓ ↓ π

M
δ−→ X/Γ,
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where π is the quotient map.
We claim that δ : M → X/Γ is a chart for M . Let ψ : V → X/H be a

chart for M and let y and z be points of X such that
κψ−1(Hy) = Γz.

Now since κ : M̃ → M is surjective, there is an (X, G)-path
A = {g0, α1, φ1, g1, . . . , gm−1, αm, φm, gm}

over M from (x, φ) to (y, ψ). Let g = g0 · · · gm. Then g is in G and
δψ−1(Hy) = δκ(〈A〉)

= πδ(〈A〉)
= π(gy) = Γgy.

Hence, there is an element f of Γ such that fgy = z. Let r > 0 such
that B(Hy, r) ⊂ ψ(V ). Suppose that y′ �= y is in B(y, r). Then there is
a rescaled geodesic arc β : [0, 1] → X from y to y′, and {1, β, ψ, 1} is an
(X, G)-path over M from (y, ψ) to (y′, ψ). Observe that

δψ−1(Hy′) = δκ(〈AB〉)
= πδ(〈AB〉)
= π(gy′) = Γgy′.

Hence fg lifts δψ−1 on B(y, r). Thus δ : M → X/Γ is a chart for M . It
now follows from Theorem 13.3.9, with U = M , that δ : M → X/Γ is an
(X, G)-equivalence.

Exercise 13.3

1. Let M be a connected (X, G)-orbifold. Prove that there is an (X, G)-path
over M from any (x, φ) to any (y, ψ).

2. Let Γ be a discrete group of isometries of a geometric space X and let
ι : X/Γ → X/Γ be the identity map. Define a function ζ : π1(X, x) →
πo

1(X/Γ, x, ι) by ζ([α]) = [{1, α, ι, 1}]. Prove that ζ is a homomorphism and
that the following sequence is exact:

1 −→ π1(X, x)
ζ−→ πo

1(X/Γ, x, ι)
η−→ Γ −→ 1.

3. Let M̃ be the universal orbifold covering space based at (x, φ) of an (X, G)-
orbifold M and let κ : M̃ → M be the universal orbifold covering projection.
Let A be an (X, G)-path over M from (x, φ) to (y, ψ) and let N be an
open neighborhood of κ(〈A〉) in M . Prove that κ(〈A, N〉) is the connected
component of N containing κ(〈A〉).

4. Let Γ be a group acting discontinuously and freely on a locally compact
Hausdorff space X. Prove that the quotient map π : X → X/Γ is a covering
projection.

5. Let κ : M̃ → M be as in Exercise 3 with M connected. Prove that κ restricts
to a covering projection κ1 : κ−1(Ω(M)) → Ω(M).

6. Prove that a connected (X, G)-orbifold M is complete if and only if every
(or some) developing map δ : M̃ → X for M is a covering projection.
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§13.4. Gluing Orbifolds

In this section, we shall construct n-dimensional spherical, Euclidean, and
hyperbolic orbifolds by gluing together n-dimensional convex polyhedra.
Let X = Sn, En, or Hn with n > 0.

Definition: A disjoint set of n-dimensional convex polyhedra of X is a
set of functions

Ξ = {ξP : P ∈ P}

indexed by a set P such that

(1) the function ξP : X → XP is a similarity for each P in P;

(2) the index P is an n-dimensional convex polyhedron in XP for each
P in P;

(3) the polyhedra in P are mutually disjoint.

Let Ξ be a disjoint set of n-dimensional convex polyhedra of X and let
G be a group of similarities of X.

Definition: A G-side-pairing for Ξ is a set of functions

Φ = {φS : S ∈ S}

indexed by the collection S of all the sides of the polyhedra in P such that
for each side S of a polyhedron P in P

(1) there is a polyhedron P ′ in P such that the function φS : XP ′ → XP

is a similarity;

(2) the similarity gS = ξ−1
P φSξP ′ is in G;

(3) there is a side S′ of P ′ such that φS(S′) = S;

(4) the similarities φS and φS′ satisfy the relation φS′ = φ−1
S ;

(5) the polyhedrons P and φS(P ′) are situated so that P ∩ φS(P ′) = S.

Let Φ be a G-side-pairing for Ξ. The pairing of side points by elements
of Φ generates an equivalence relation on the set Π = ∪P∈P P whose equiv-
alence classes are called the cycles of Φ. Topologize Π with the direct sum
topology and let M be the quotient space of Π of cycles. The space M is
said to be obtained by gluing together the polyhedra of Ξ by Φ.

The cycle of a point x of Π is denoted by [x]. Recall that a ridge of a
polyhedron P is a side of a side of P . If x is in the interior of a ridge of
a polyhedron in P, then every point of [x] is in the interior of a ridge of a
polyhedron in P, in which case [x] is called a ridge cycle of Φ.
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Let [x] = {x1, . . . , xm} be a finite ridge cycle of Φ and let Pi be the
polyhedron in P containing xi for each i. The point xi is in exactly two
sides of Pi. Hence xi is paired to at most two other points of [x] by elements
of Φ for each i. Therefore, we can reindex {x1, . . . , xm} so that

x1 � x2 � · · · � xm.

The ridge cycle [x] is said to be dihedral if there is a side S of P1 containing
x1 such that S′ = S and φS(x1) = x1. Note that [x] is dihedral if and only if
there is a side T of Pm containing xm such that T ′ = T and φT (xm) = xm.
If the ridge cycle [x] is not dihedral, then [x] is said to be cyclic.

Let S be a side of P1 containing x1 such that if m > 1, then φS(x2) = x1.
Define a sequence {Si}∞

i=1 of sides determined by x1 and S and a sequence
{Pi}∞

i=1 of polyhedra in P inductively as follows: Let S1 = S and let P1 be
as before. Then S′

1 is a side of P2. If i > 1 and if S′
i−1 is a side of Pi in P,

then Si is the side of Pi adjacent to S′
i−1. Note that S′

i−1 and Si are the
two sides of Pi containing xi and φSi−1(xi) = xi−1 for i = 2, . . . , m.

Theorem 13.4.1. Let [x] = {x1, . . . , xm} be a finite ridge cycle of a side-
pairing Φ with x1 � x2 � · · · � xm. Let S be a side of P1 containing x1
such that if m > 1, then φS(x2) = x1, and let {Si}∞

i=1 be the sequence of
sides determined by x1 and S.

If [x] is cyclic, then

(1) φSm
(x1) = xm,

(2) S′
m and S1 are the two sides of P1 containing x1, and

(3) Si+m = Si for each i = 1, 2, . . . .

If [x] is dihedral, then

(1) S′
m = Sm and φSm

(xm) = xm,

(2) Sm+i = S′
m−i for i = 1, . . . , m − 1,

(3) S2m and S1 are the two sides of P1 containing x1,

(4) S′
2m = S2m and S2m(x1) = x1, and

(5) Si+2m = Si for each i = 1, 2, . . . .

Proof: Let x′
m be the point of S′

m such that φSm(x′
m) = xm. Then either

x′
m = x1, xm−1, or xm. Assume first that x′

m = x1. Then x1 is in S′
m.

Suppose S′
m = S1. Assume first that m = 1. Then [x] is dihedral, and S2

and S1 are the two sides of P1 containing x1. Now φS2(x1) = x1. Hence
x1 is S′

2. As S2 �= S1, we have S′
2 �= S′

1, and so S′
2 = S2. Hence S3 = S1,

and so Si+2m = Si for each i. Assume now that m > 1. Then we have

x2 = φS′
1
(x1) = φSm(x1) = xm.
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Hence m = 2, but S′
2 �= S1, since S2 �= S′

1. Therefore S′
m �= S1, and so

S′
m and S1 are the two sides of P1 containing x1. Hence [x] is cyclic. As

Sm+1 = S1, we have that Si+m = Si for each i = 1, 2, . . . .
Assume now that x′

m = xm−1. Then m ≥ 2. If m = 2, then we are
back to the first case, so assume m > 2. As xm−1 is in S′

m, we have that
S′

m is either S′
m−2 or Sm−1. Now S′

m �= Sm−1, since Sm �= S′
m−1. Hence

S′
m = S′

m−2, and so Sm = Sm−2. Then we have

xm−2 = φSm−2(xm−1) = φSm
(xm−1) = xm,

which is not the case. Hence x′
m = xm−1 only when m = 2.

Assume now that x′
m = xm. By the first case, we may assume that

m > 1. As xm is in S′
m, we have that S′

m is either S′
m−1 or Sm. Suppose

that S′
m = S′

m−1. Then Sm = Sm−1. But this implies that

xm = φSm(xm) = φSm−1(xm) = xm−1,

which is not the case. Therefore S′
m = Sm. Hence Sm+i = S′

m−i for i =
1, . . . , m − 1. Therefore S′

2m−1 = S1, and so S2m and S1 are the two sides
of P1 containing x1. Let x′

1 be the point of S′
2m such that φS2m(x′

1) = x1.
Now x′

1 = x1 or x2. Suppose x′
1 = x2. Then x2 is in S′

2m, and so S′
2m is

either S′
1 or S2. Now S′

2m �= S′
1, since S2m �= S1. Hence S′

2m = S2. Assume
that m = 2. Then we have

x1 = φS4(x2) = φS′
2
(x2) = φS2(x2) = x2,

which is not the case. Assume now that m > 2. Then we have

x1 = φS2m(x2) = φS′
2
(x2) = x3,

which is not the case. Therefore we must have x′
1 = x1. Hence [x] is

dihedral. Now S2m+1 = S1, and so Si+2m = Si for each i = 1, 2, . . . .

Let [x] = {x1, . . . , xm} be a finite ridge cycle of a side-pairing Φ for a
disjoint set of convex polyhedra of X and let Pi be the polyhedron contain-
ing xi for each i. Let θ(Pi, xi) be the dihedral angle of Pi along the ridge
containing xi for each i. The dihedral angle sum of the ridge cycle [x] is
defined to be

θ[x] = θ(P1, x1) + · · · + θ(Pm, xm). (13.4.1)

Definition: A side-pairing Φ for a disjoint set of convex polyhedra of X
is said to be subproper if each cycle of Φ is finite, each dihedral ridge cycle
of Φ has dihedral angle sum a submultiple of π, and each cyclic ridge cycle
has dihedral angle sum a submultiple of 2π.

Theorem 13.4.2. Let G be a group of similarities of X and let M be a
space obtained by gluing together a disjoint set Ξ of n-dimensional convex
polyhedra of X by a subproper G-side-pairing Φ. Then M is an (X, G)-
orbifold such that the natural injection of P ◦ into M is an (X, G)-map for
each polyhedron P of Ξ.



§13.4. Gluing Orbifolds 727

Proof: The proof is by induction on the dimension n. In order to simplify
notation, we shall assume that G is a group of isometries of X and leave
the proof of the general case to the reader. This restriction only affects the
Euclidean case of the theorem. By changing the scale of XP for each P in
P, we may assume that each ξP : X → XP in Ξ is an isometry. In order
to simplify the notation, we shall further assume that XP = X and ξP = 1
for each P in P and leave the proof of the general case to the reader.

Let x a point of Π and let [x] = {x1, . . . , xm}. Let Pi be the polyhedron
in P containing xi for each i and let δ(x) be the minimum of π, the distance
from xi to xj for each i �= j, and the distance from xi to any side of Pi not
containing xi for each i.

Let r be a real number such that 0 < r < δ(x)/2. Then for each i, the
set Pi ∩S(xi, r) is a spherical (n−1)-dimensional polyhedron in the sphere
S(xi, r), and the polyhedra {Pi ∩ S(xi, r)} are disjoint. Observe that the
side-pairing Φ restricts to a subproper I(Sn−1)-side-pairing of the polyhedra
{Pi ∩ S(xi, r)}. Let Σ(x, r) be the space obtained by gluing together the
polyhedra {Pi ∩ S(xi, r)}. Then Σ(x, r) has a spherical (n − 1)-orbifold
structure by inspection if n = 1, 2, or by induction if n > 2. Moreover
Σ(x, r) is compact, since [x] is a finite cycle. Therefore Σ(x, r) is a complete
spherical orbifold by Theorem 13.3.7. Furthermore Σ(x, r) is connected if
n > 1. If n = 2 and x is a vertex, then Σ(x, r) is either a circle if [x] is
cyclic or a geodesic segment if [x] is dihedral by Theorem 13.4.1.

Now by inspection if n = 1, or since Φ is subproper if n = 2, or by
Theorem 13.3.10 if n > 2, there is, for each i, a finite subgroup Γi of G that
fixes the point xi such that the restriction of the quotient map π : Π → M
to the polyhedron Pi ∩ S(xi, r) extends to a continuous function

κi : S(xi, r) → Σ(x, r)

such that κi induces an isometry κi : S(xi, r)/Γi → Σ(x, r). Moreover Γi

does not depend on the choice of r. If n = 2 and x is a vertex, then Γi is
either the cyclic group generated by the rotation about xi by the angle θ[x]
if [x] is cyclic, or the dihedral group generated by any two reflections in lines
forming an angle θ[x] at xi if [x] is dihedral. Let πi : S(xi, r) → S(xi, r)/Γi

be the quotient map. Then κi = κiπi. For each i, j, the isometry

κ−1
j κi : S(xi, r)/Γi → S(xj , r)/Γj

lifts to an isometry ξij : S(xi, r) → S(xj , r) by Theorem 13.2.6 such that

κjξij = κjπjξij

= κjκ
−1
j κiπi

= κiπi = κi.

Moreover ξij is unique up to left multiplication by the restriction of an
element of Γj by Theorem 13.1.2. The isometry ξij extends to an isometry
gij of X that is unique up to left multiplication by an element of Γj . We
may assume that gii = 1 for each i.
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Suppose that the element gS of Φ pairs the side S′ ∩ S(xi, r) of the
polyhedron Pi ∩ S(xi, r) to the side S ∩ S(xj , r) of Pj ∩ S(xj , r). Then gS

restricts to an isometry gS : S(xi, r) → S(xj , r). Observe that κi agrees
with κjgS on the open set

US =
(
P ◦

i ∪ (S′)◦ ∪ g−1
S (P ◦

j )
)

∩ S(xi, r).

Hence, on the open set ξij(US), the map κjgSξ−1
ij agrees with κiξ

−1
ij = κj .

Therefore gSξ−1
ij is the restriction of an element of Γj by Theorem 13.1.2.

Hence gSg−1
ij is in Γj , and so we may assume that gij = gS . If i = j, then

the assumption that gij = gS will conflict with the previous assumption
that gii = 1, but this will not matter, since we only need to specify gij up
to left multiplication by an element of Γj , and in this case gS is in Γj .

Now suppose that

xi = xi1 � xi2 � · · · � xip
= xj .

Then we have

κjξip−1ip
ξip−2ip−1 · · · ξi1i2 = κip−1ξip−2ip−1 · · · ξi1i2

...
= κi2ξi1i2 = κi.

Hence ξij(ξip−1ipξip−2ip−1 · · · ξi1i2)
−1 is the restriction of an element of Γj .

Therefore gij(gip−1ip
gip−2ip−1 · · · gi1i2)

−1 is an element of Γj . Hence, we
may assume that

gij = gip−1ipgip−2ip−1 · · · gi1i2 .

Define
U(x, r) =

m
∪

i=1
π(Pi ∩ B(xi, r)).

Since the set
π−1(U(x, r)) =

m
∪

i=1
Pi ∩ B(xi, r)

is open in Π, we have that U(x, r) is an open subset of M .
Suppose that x = xk and let Γx = Γk. Define a function

ψx :
m
∪

i=1
Pi ∩ B(xi, r) → B(x, r)/Γx

by the rule
ψx(z) = Γxgik(z) if z is in Pi ∩ B(xi, r).

Suppose that gS(xi) = xj . Then we may assume that gij = gS . Let y be a
point of S∩B(xj , r) and let y′ = g−1

S (y). Then y′ is a point of S′ ∩B(xi, r).
Observe that

κkξjkξij = κjξij = κi = κkξik.
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Therefore ξik(ξjkξij)−1 is the restriction of an element of Γx. Hence, we
have that gik(gjkgij)−1 is an element of Γx. Therefore, we have

ψx(y) = Γxgjk(y)
= ΓxgjkgS(y′)
= Γxgjkgij(y′)
= Γxgik(y′) = ψx(y′).

Consequently ψx induces a continuous function

φx : U(x, r) → B(x, r)/Γx.

For each t such that 0 < t < r, the function φx restricts to a map

φx : Σ(x, t) → S(x, t)/Γx.

Let z be a point of Pi ∩ S(xi, t). Then we have

φxπ(z) = ψx(z)
= πkξik(z)
= κ−1

k κiπi(z)
= κ−1

k κi(z) = κ−1
k π(z).

Therefore φx = κ−1
k . Hence φx is an isometry. Consequently φx is a

bijection with a continuous inverse defined by the rule

φ−1
x (Γxz) = πg−1

ik (z) if z is in gik(Pi ∩ B(xi, r)).

Hence φx is a homeomorphism. The same argument as in the proof of
Theorem 9.2.2 shows that M is Hausdorff.

Next, we show that{
φx : U(x, r) → B(x, r)/Γx

∣∣ x is in Π and r < δ(x)/4
}

is an (X, G)-atlas for M . By construction, U(x, r) is an open connected
subset of M and φx is a homeomorphism. Moreover U(x, r) is defined
for each point π(x) of M and sufficiently small radius r. Consequently
{U(x, r)} is an open cover of M .

Suppose that the sets U(x, r) and U(y, s) overlap and r < δ(x)/4 and
s < δ(y)/4. Let w be in B(x, r) and z be in B(y, s) such that

φyφ−1
x (Γxw) = Γyz.

We need to find an element g of G such that gw = z and g lifts φyφ−1
x in

a neighborhood of w.
Let F (x) be the face of the polyhedron in P that contains x in its interior.

By reversing the roles of x and y, if necessary, we may assume that

dimF (x) ≥ dimF (y)

with equality only if r ≤ s. As before, we have

π−1(U(x, r)) =
m
∪

i=1
Pi ∩ B(xi, r),

π−1(U(y, s)) =
n
∪

j=1
Qj ∩ B(yj , s).
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Now for some i and j, the set Pi ∩ B(xi, r) meets Qj ∩ B(yj , s). Then
Pi = Qj and d(xi, yj) < r + s. We claim that yj is in every side of Pi that
contains xi. On the contrary, suppose that yj is not in a side of Pi that
contains xi. Then s < d(xi, yj)/4. Therefore xi is in every side of Pi that
contains yj , otherwise we would have the contradiction that r < d(xi, yj)/4.
Hence F (xi) is a proper face of F (yj), which is a contradiction. Therefore
yj is in every side of Pi that contains xi. This implies that for each i, the
set Pi ∩ B(xi, r) meets Qj ∩ B(yj , s) for some j.

We claim that the set Pi ∩ B(xi, r) meets Qj ∩ B(yj , s) for just one
index j. On the contrary, suppose that Pi ∩ B(xi, r) meets Qj ∩ B(yj , s)
and Qk ∩ B(yk, s). Then Pi = Qj = Qk. Now since yj and yk are in every
side of Pi that contains xi, we have that F (yj) and F (yk) are faces of F (xi).

Assume first that dimF (x) > dimF (y). Then F (yj) and F (yk) are
proper faces of F (xi). Consequently, we have

r < d(xi, yj)/4, r < d(xi, yk)/4, and s < d(yj , yk)/4,

which leads to the contradiction

d(xi, yj) + d(xi, yk) < (r + s) + (r + s)
< d(xi, yj)/4 + d(xi, yk)/4 + 2d(yj , yk)/4
< d(xi, yj) + d(xi, yk).

Now assume that
dimF (x) = dimF (y).

Then r ≤ s. Observe that

s < d(yj , yk)/4 ≤ (d(xi, yj) + d(xi, yk))/4 < 2(r + s)/4

and so s < r, which is a contradiction. Therefore Pi ∩ B(xi, r) meets
Qj ∩ B(yj , s) for just one index j = i′.

Let gij and hij be the elements of G constructed as before for x and y.
Suppose that gS pairs the side S′ ∩ S(xi, r) of Pi ∩ S(xi, r) to the side
S ∩ S(xj , r) of Pj ∩ S(xj , r). Then we may assume that gij = gS . Now
gS(xi) = xj , and so xi is in S′. As Pi ∩ B(xi, r) meets Pi ∩ B(yi′ , s),
we have that yi′ is also in S′. Now observe that gS(Pi ∩ B(xi, r)) meets
gS(Pi ∩ B(yi′ , s)). Hence Pj ∩ B(xj , r) meets Pj ∩ B(gSyi′ , s). Therefore
gSyi′ = yj′ . Hence, we may assume that gij = hi′j′ .

Now suppose that

xi = xi1 � xi2 � · · · � xip = xj .

Then we deduce from the previous argument that

yi′ = yi′
1

� yi′
2

� · · · � yi′
p

= yj′

and so we may assume that

gij = gip−1ip
gip−2ip−1 · · · gi1i2

= hi′
p−1i′

p
hi′

p−2i′
p−1

· · ·hi′
1i′

2
= hi′j′ .
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Next, observe that

U(x, r) ∩ U(y, s)

= π
(

m
∪

i=1
Pi ∩ B(xi, r)

)
∩ π
(

n
∪

j=1
Qj ∩ B(yj , s)

)
= π

((
m
∪

i=1
Pi ∩ B(xi, r)

)
∩
(

n
∪

j=1
Qj ∩ B(yj , s)

))
= π

(
m
∪

i=1

n
∪

j=1

(
Pi ∩ B(xi, r) ∩ Qj ∩ B(yj , s)

))
= π

(
m
∪

i=1
Pi ∩ B(xi, r) ∩ B(yi′ , s)

)
.

Let x = xk and y = y
. Then

φx

(
U(x, r) ∩ U(y, s)

)
=

m
∪

i=1
Γxgik

(
Pi ∩ B(xi, r) ∩ B(yi′ , s)

)
and

φy

(
U(x, r) ∩ U(y, s)

)
=

m
∪

i=1
Γyhi′


(
Pi ∩ B(xi, r) ∩ B(yi′ , s)

)
.

Now if v is a point of the set gik

(
Pi ∩ B(xi, r) ∩ B(yi′ , s)

)
, then we have

φyφ−1
x (Γxv) = φy(π(g−1

ik v))
= Γyhi′
g

−1
ik v

= Γyhi′
h
−1
i′k′v

= Γyhi′
hk′i′v = Γyhk′
v.

Therefore, the element hk′
 lifts φyφ−1
x . Hence, there is an element f of

Γy such that fhk′
w = z. Let g = fhk′
. Then g is an element of G such
that gw = z and g lifts φyφ−1

x in a neighborhood of w. This completes the
proof that {φx} is an (X, G)-atlas for M .

The same argument as in the proof of Theorem 9.2.2 shows that the
(X, G)-structure of M has the property that the natural injection map of
P ◦ into M is an (X, G)-map for each P in P.

Example 1. Let � be a triangle in S2, E2, or H2 with angles α, α, 2π/3 at
its vertices x, y, z, respectively. See Figure 13.4.1. Let L = [x, z], R = [y, z],
S = [x, y] be the sides of �. Pair side L to side R by the rotation gR about
z of 2π/3, pair side R to side L by gL = g−1

R , and pair side S to itself by the
reflection gS in the line 〈S〉. Consider the side-pairing Φ = {gL, gR, gS}.
The point z forms a cyclic ridge cycle whose angle sum is 2π/3. The points
x and y form a dihedral ridge cycle whose angle sum is 2α.

Assume that Φ is subproper. Then there is a positive integer k such
that 2α = π/k. Observe that the angle sum of � is

2π

3
+ 2α =

2π

3
+

π

k
,

which is greater than, equal to, or less than π, according as k is less than,
equal to, or greater than three. Thus � is spherical if α = π/2, π/4,
Euclidean if α = π/6, or hyperbolic if α = π/2k with k > 3.
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x y

z

α α

2π/3
L R

S

Figure 13.4.1. A triangle in S2, E2, or H2

Let M be the space obtained from � by gluing together its sides accord-
ing to Φ. By Theorem 13.4.2, we have that M is a 2-dimensional orbifold
that is spherical if α = π/2, π/4, Euclidean if α = π/6, or hyperbolic if
α = π/2k with k > 3. Topologically, M is a disk. The singular set of M
consists of a point of order 3 in the interior of M , corresponding to z, and
the boundary of M , which consists of a point of order 2k, corresponding
to {x, y}, and an open edge of points of order 2, corresponding to S◦.

Example 2. Let Q be a quadrilateral in E2 whose vertices are in cyclic
order w, x, y, z, and whose angles are α, α, β, β, respectively. See Figure
13.4.2. As 2α + 2β = 2π, we have that α + β = π. Let S = [w, x],
R = [x, y], T = [y, z], L = [z, w]. Then the sides S and T are parallel.
Pair side T to side S by the composition gS of the vertical translation from
T to S followed by a change of scale, pair side S to side T by gT = g−1

S ,
pair side L to itself by the reflection gL in the line 〈L〉, and pair side R
to itself by the reflection gR in the line 〈R〉. Consider the side-pairing
Φ = {gL, gR, gS , gT }. Then {w, z} and {x, y} are dihedral ridge cycles
whose angle sum is π. Therefore Φ is subproper.

Let M be the space obtained from Q by gluing together its sides accord-
ing to Φ. Then M is a Euclidean similarity 2-orbifold by Theorem 13.4.2.
Topologically, M is a cylinder. The singular set of M is its boundary and
all the singular points of M have order two.

w x

yz

α α

ββ

L R

S

T

Figure 13.4.2. A quadrilateral in E2
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e1 e3

e2

e4

Figure 13.4.3. A right-angled regular tetrahedron in S3

Example 3. Let P be the regular spherical tetrahedron in S3 whose
vertices are the vectors e1, e2, e3, e4. All the dihedral angles of P are π/2.
Let A, B, C, D be the side of P opposite the vertex e1, e2, e3, e4, respectively.
See Figure 13.4.3. Pair the side B to the side A by a rotation gA of
π/2 about their common edge [e3, e4]. Pair the side A to the side B by
gB = g−1

A . Pair the side D to the side C by a rotation C of π/2 about their
common edge [e1, e2]. Pair the side C to the side D by gD = g−1

C . Consider
the side-pairing Φ = {gA, gB , gC , gD}. Observe that each point on the open
edges (e1, e2) and (e3, e4) forms a cyclic ridge cycle whose dihedral angle
sum is π/2. All the remaining interior edge points of P fall into cyclic ridge
cycles whose dihedral angle sum is 2π. Therefore Φ is subproper.

Let M be the space obtained from P by gluing together its sides accord-
ing to Φ. Then M is a spherical 3-orbifold by Theorem 13.4.2. Topologi-
cally, M is a 3-sphere. This can be seen by first gluing side A to side B.
This yields a 3-ball with the edge [e1, e2] glued together at its ends to form
the equator of the ball. The edge [e3, e4] becomes the north-south diameter
of the ball. The sides C and D become the northern and southern hemi-
spheres of the ball. Now gluing the northern and southern hemispheres by
a rotation about the equator yields a 3-sphere. The north-south diameter
of the ball glues together at its ends to form a circle that simply links the
equator. The singular set of M is therefore two simply linked circles, and
all the singular points of M have order four.
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x
y

z

Figure 13.4.4. A cube in E3

Example 4. Let P be the cube in E3 with vertices (±1,±1,±1). Pair
the x = ±1 side of P to itself by the rotation of π about the line y = 0,
x = ±1, respectively. Pair the y = ±1 side of P to itself by the rotation
of π about the line z = 0, y = ±1, respectively. Pair the z = ±1 side of
P to itself by the rotation of π about the line x = 0, z = ±1, respectively.
The axes of these six rotations intersect P in six line segments that bisect
the sides of P as indicated in Figure 13.4.4. Consider the side-pairing Φ
consisting of these six rotations. The endpoints of the six axis line segments
fall into dihedral ridge cycles whose dihedral angle sum is π, and all the
other interior edge points of P fall into cyclic ridge cycles whose dihedral
angle sum is 2π. Therefore Φ is subproper.

Let M be the space obtained from P by gluing together its sides accord-
ing to Φ. Then M is a Euclidean 3-orbifold by Theorem 13.4.2. Topologi-
cally, M is a 3-sphere. This can be seen by gluing together the sides of P
one at a time. The six axis line segments are glued together to form the
Borromean rings. See Figure 10.3.18. This is beautifully illustrated in the
video Not Knot. The singular set of M is therefore the Borromean rings,
and all the singular points of M have order two.

Example 5. Let P be a regular hyperbolic dodecahedron P in H3 all
of whose dihedral angles are π/2 as in Example 4 of §7.1. We pass to the
projective disk model D3 and center P at the origin. Then P is also a
Euclidean regular dodecahedron. Choose three pairs of opposite edges of
P that are perpendicular to each other. For example, the six horizontal
and vertical edges in Figure 13.4.5. Each side of P shares exactly one of
these edges with another side of P . For each of these six edges, pair the
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Figure 13.4.5. A right-angled regular dodecahedron in D3

two sides of P that share this edge by a rotation of π/2 about the edge.
Consider the side-pairing Φ consisting of these 12 rotations. Observe that
each point in the interior of these six edges forms a cyclic ridge cycle whose
dihedral angle sum is π/2, and all the remaining interior edge points of P
fall into cyclic ridge cycles whose dihedral angle sum is 2π. Therefore Φ is
subproper.

Let M be the space obtained from P by gluing together its sides accord-
ing to Φ. Then M is a hyperbolic 3-orbifold by Theorem 13.4.2. Topolog-
ically, M is a 3-sphere. This can be seen by gluing together the sides of
P one at a time. The six edges are glued together to form the Borromean
rings. The singular set of M is therefore the Borromean rings, and all the
singular points of M have order four.

Complete Gluing of Orbifolds

We now consider gluing together polyhedra to form a complete orbifold.
We begin with the complete gluing theorem for Euclidean orbifolds.

Theorem 13.4.3. Let M be a Euclidean n-orbifold obtained by gluing to-
gether a finite family P of disjoint, finite-sided, n-dimensional, convex poly-
hedra in En by a subproper I(En)-side-pairing Φ. Then M is complete.

Proof: The proof is the same as the proof of Theorem 11.1.2 with the
exception that the constant 1/3 must be replaced by 1/4 as in the proof of
Theorem 13.4.2.
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Let M be a hyperbolic n-orbifold obtained by gluing together a finite
family P of disjoint, finite-sided, n-dimensional, convex polyhedra in Bn

by a subproper M(Bn)-side-pairing Φ. We shall determine necessary and
sufficient conditions such that M is complete. We may assume, without
loss of generality, that no two polyhedrons in P meet at infinity. Then Φ
extends to a side-pairing of the (n − 1)-dimensional sides of the Euclidean
closures of the polyhedra in P which, in turn, generates an equivalence
relation on the union of the Euclidean closures of the polyhedra in P. The
equivalence classes are called cycles. We denote the cycle containing a point
x by [x]. The cycle of a cusp point of a polyhedron in P is called a cusp
point of M . As each polyhedron in P has only finitely many cusp points,
M has only finitely many cusp points.

Let c be a cusp point of a polyhedron in P. Let b be a point in [c] and let
Pb be the polyhedron in P containing b in its Euclidean closure. The link of
b is the (n − 1)-dimensional, Euclidean, convex polyhedron L(b) obtained
by intersecting Pb with a horosphere Σb based at b that meets just the sides
of Pb incident with b. We shall assume that the horospheres {Σb : b ∈ [c]}
have been chosen small enough so that the links of the points in [c] are
mutually disjoint. Then Φ determines a subproper S(En−1)-side-pairing
for {L(b) : b ∈ [c]} as in §10.2. Let L[c] be the space obtained by gluing
together the polyhedra {L(b)} by this side-pairing. The space L[c] is called
the link of the cusp point [c] of M .

Theorem 13.4.4. The link L[c] of a cusp point [c] of M is a connected,
Euclidean, similarity (n − 1)-orbifold.

Proof: The space L[c] is a (En, S(En−1))-orbifold by Theorem 13.4.2. It
follows directly from the definition of a cycle that L[c] is connected.

Theorem 13.4.5. The link L[c] of a cusp point [c] of M is complete if
and only if the links {L(b)} for the points in [c] can be chosen so that Φ
restricts to a side-pairing for {L(b)}.

Proof: If links for the points in [c] can be chosen so that Φ restricts to a
side-pairing for {L(b)}, then this side-pairing for {L(b)} is a I(En−1)-side-
pairing, and so L[c] is complete by Theorem 13.4.3. The converse is proved
by the same argument as in the proof of Theorem 10.2.2.

Theorem 13.4.6. If the link L[c] of a cusp point [c] of M is complete,
then there is a horoball B(c) based at the point c, a discrete subgroup Γc of
M(Bn) leaving B(c) invariant, and an injective local isometry

ι : B(c)/Γc → M

compatible with the projection of Pc to M .

Proof: The proof is the same as the proof of Theorem 10.2.3.
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Theorem 13.4.7. Let M be a hyperbolic n-orbifold obtained by gluing to-
gether a finite family P of disjoint, finite-sided, n-dimensional, convex poly-
hedra in Bn by a subproper M(Bn)-side-pairing Φ. Then M is complete if
and only if L[c] is complete for each cusp point [c] of M .

Proof: The proof is the same as the proof of Theorem 11.1.6.

Example 6. Let � be a generalized triangle in H2 with angles 0, 0, 2π/3
at its vertices x, y, z, respectively. See Figure 13.4.6. Let L = (x, z], R =
(y, z], S = (x, y) be the sides of �. Pair side L to side R by the rotation
gR about z of 2π/3, pair side R to side L by gL = g−1

R , and pair side
S to itself by the reflection gS in the line 〈S〉. Consider the side-pairing
Φ = {gL, gR, gS}. The point z forms a cyclic ridge cycle whose angle sum
is 2π/3. Therefore Φ is subproper.

Let M be the space obtained from � by gluing together its sides ac-
cording to Φ. Then M is a hyperbolic 2-orbifold by Theorem 13.4.2. The
cusp points x and y of � form a cusp point of M . Let L(x) and L(y) be
disjoint links for x and y that are equidistant from z. Then Φ restricts to
a side-pairing for L(x) and L(y). Therefore L[x] is complete by Theorem
13.4.5. Hence M is complete by Theorem 13.4.7.

Topologically, M is a disk with a point removed from its boundary that
corresponds to the cusp point {x, y}. The singular set of M consists of a
point of order 3 in the interior of M , corresponding to z, and the boundary
of M , all of whose points have order two.

x y

z

2π
3L R

S

Figure 13.4.6. A generalized triangle in B2
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Figure 13.4.7. The links of the cusp points of M

Example 7. Let P be the regular, ideal, hyperbolic octahedron in B3

with vertices at ±e1,±e2,±e3. See Figure 10.3.11. All the dihedral angles
of P are π/2. For each horizontal edge of P , pair the two sides of P that
share this edge by a rotation of π/2 about the edge. Consider the side-
pairing Φ consisting of these eight rotations. Observe that each point on a
horizontal edge of P forms a ridge cycle whose dihedral angle sum is π/2,
and all the remaining edge points of P fall into ridge cycles whose dihedral
angle sum is π. Therefore Φ is subproper.

Let M be the space obtained from P by gluing together its sides accord-
ing to Φ. Then M is a hyperbolic 3-orbifold by Theorem 13.4.2. Observe
that M has five cusps. Each of the four equatorial cusps of P yields a
cusp of M , and the northern and southern cusps of P form the fifth cusp
of M . Choose disjoint links for the cusps of P that are equidistant from
the origin. Then Φ restricts to a side-pairing for these links. Therefore,
each link of M is complete by Theorem 13.4.5. Hence M is complete by
Theorem 13.4.7.

Each link of M is topologically a 2-sphere. This can be seen from Figure
13.4.7. Consequently, M is topologically a 3-sphere minus five points. The
singular set of M consists of eight lines whose points have order either two
or four as indicated in Figure 13.4.8.
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Figure 13.4.8. The singular set of M

Exercise 13.4

1. Let Φ be a G-side-pairing for a finite set of disjoint, n-dimensional, compact,
convex polyhedra of X. Prove that Φ has finite cycles.

2. Let P be an exact fundamental polyhedron for a discrete group Γ of isome-
tries of X. Prove that the side-pairing of P determined by Γ is subproper.

3. Prove directly that the space obtained by gluing together the sides of the
quadrilateral in Example 2 is a Euclidean similarity 2-orbifold.

4. Prove that the Euclidean similarity orbifold in Example 2 is complete if and
only if α = β.

5. Position the quadrilateral Q in Example 2 in C so that the similarity gS is
multiplication by a positive real number. Let C∗ be a metric space so that
the exponential map exp : C → C∗ induces an isometry from C/2πiZ to C∗.
Find all the values of the angle α of Q so that the side-pairing Φ generates
a discrete group Γ of isometries of C∗ with fundamental polygon Q. See
Exercise 10.5.2.

6. Generalize Theorem 10.5.6 so that the conclusion is as follows: The met-
ric completion M is a hyperbolic 3-orbifold if and only if the image of the
holonomy η̃ for the link L of the cusp point of M contains 2πi.

7. Generalize Theorem 10.5.8 so that the conclusion is as follows: The metric
completion M is a hyperbolic 3-orbifold if and only if the Dehn surgery
invariant of M is a pair (p, q) of integers.

8. Generalize Theorem 10.5.9 so that the greatest common divisor d of p and
q may be greater than one and the conclusion is as follows: The metric
completion M is a hyperbolic 3-orbifold homeomorphic to the 3-manifold
M(p/d,q/d) obtained from Ê3 by (p/d, q/d)-Dehn surgery on K.

9. Generalize Theorem 10.5.10 so that the greatest common divisor d of p and
q may be greater than one and the conclusion is as follows: M(p/d,q/d) has
a hyperbolic 3-orbifold structure whose singular set is a simple closed curve
all of whose points have order d when d > 1.

10. Prove that if d > 4, then S3 has a hyperbolic 3-orbifold structure whose
singular set is a figure-eight knot all of whose points have order d.

11. Prove that if d > 4, then the d-fold cyclic branched covering of S3, along the
figure-eight knot in Exercise 10, has a hyperbolic 3-manifold structure.
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§13.5. Poincaré’s Theorem

In this section, we prove Poincaré’s fundamental polyhedron theorem for
discrete groups of isometries of X = Sn, En, or Hn with n > 1. We begin
by proving a weak version of Poincaré’s theorem.

Theorem 13.5.1. Let Φ be a subproper I(X)-side-pairing for an n-dimen-
sional, convex polyhedron P in X such that the (X, I(X))-orbifold M ob-
tained from P by gluing together the sides of P by Φ is complete. Then
the group Γ generated by Φ is discrete, P is an exact, convex, fundamental
polyhedron for Γ, and the inclusion of P into X induces an isometry from
M to X/Γ.

Proof: The quotient map π : P → M maps P ◦ homeomorphically onto
an open subset U of M . Let φ : U → X be the inverse of π. From the
construction of M , we have that φ is locally a chart for M . Therefore φ is
a chart for M .

Let x be a point of P ◦, let M̃ be the universal orbifold covering space
of M based at (x, φ), let κ : M̃ → M be the universal orbifold covering
projection, and let δ : M̃ → X be the corresponding developing map.
By Theorem 13.3.10, the map δ is an isometry. Let ζ = κδ−1. Then
ζ : X → M extends π on P ◦, and so ζ extends π by continuity.

Let η : πo
1(M, x, φ) → I(X) be the holonomy of M . Then by Theorem

13.3.10, the image of η is a discrete group Γ of isometries of X and the map
δ : M̃ → X induces an isometry δ : M → X/Γ such that δζ : X → X/Γ is
the quotient map.

Now as U is a simply connected subset of Ω(M), it is evenly covered by
κ and ζ. Hence, the members of {gP ◦ : g ∈ Γ} are mutually disjoint. As
π(P ) = M , we have

X = ∪{gP : g ∈ Γ}.

Therefore P ◦ is a fundamental domain for Γ.
Let gS be an element of Φ. Choose a point y in the interior of the side S

of P . Then there is a point y′ in the interior of the side S′ of P such that
gS(y′) = y. Since π(y′) = y, there is an element g of Γ such that g(y′) = y.
If y′ �= y, then g �= 1. If y′ = y, then π(y) is a singular point of M of order
two, and so we may assume that g �= 1. Now since gS′ does not extend
into P ◦, we must have that gS′ lies on the hyperplane 〈S〉.

Assume first that S′ �= S. Then π : P → M maps S◦ injectively into M .
Therefore, we must have that g = gS in a neighborhood of y′ in S′. Hence
g = gS on 〈S′〉. Furthermore, since gP lies on the opposite side of S from
P , we deduce that g = gS by Theorem 4.3.6.

Assume now that S′ = S. Then gS has order two. We may assume that y
is an ordinary point of the orbifold 〈S〉/〈gS〉. Then π maps a neighborhood
of y in S injectively into M . Therefore, the same argument as before shows
that g = gS . Thus Γ contains Φ. Therefore P/Γ is a quotient of M .



§13.5. Poincaré’s Theorem 741

Now by Theorem 6.6.7, the inclusion map of P into X induces a contin-
uous bijection from P/Γ to X/Γ. The composition of the induced maps

X/Γ → M → P/Γ → X/Γ
restricts to the identity map of P ◦ and so is the identity map by continuity.
Therefore M = P/Γ.

Now since ζ : X → M induces an isometry from X/Γ to M = P/Γ,
the inclusion map of P into X induces an isometry from P/Γ to X/Γ.
Therefore P is locally finite by Theorem 6.6.7. Hence P is an exact, convex,
fundamental polyhedron for Γ. Finally Φ generates Γ by Theorem 6.8.3.

In order to apply Theorem 13.5.1, we need to know that the orbifold M
is complete. If X = Sn, then M is always complete, since M is compact.
If X = En and the polyhedron P is finite-sided, then M is complete by
Theorem 13.4.3. If X = Hn and P is finite-sided, then easily verifiable
necessary and sufficient conditions for M to be complete are given by The-
orems 13.4.5 and 13.4.7. If X = Hn and P has infinitely many sides, then
M may fail to be complete even though the conditions of Theorem 13.4.7
are satisfied. This phenomenon is exhibited by the Example 1 of §11.2.
In contrast, we have the following general reflection theorem, where M is
always complete.

Theorem 13.5.2. Let P be an n-dimensional convex polyhedron in X all
of whose dihedral angles are submultiples of π. Then the group Γ generated
by the reflections of X in the sides of P is a discrete reflection group with
respect to the polyhedron P .

Proof: The orbifold M obtained by gluing together the sides of P by
the reflections in the sides of P is just P . Moreover M is isometric to P ,
since P is a convex subset of X. Now as P is a closed subset of X, we
have that P and M are complete. Therefore, the group Γ generated by the
reflections of X in the sides of P is a discrete reflection group with respect
to the polyhedron P by Theorem 13.5.1.

Poincaré’s Fundamental Polyhedron Theorem

Let S be the set of sides of an exact, convex, fundamental polyhedron P
for a discrete group Γ of isometries of X. Then for each S in S, we have
the side-pairing relation gSgS′ = 1 of Γ. The expression SS′ is called the
word in S corresponding to the side-pairing relation gSgS′ = 1 of Γ. Recall
from §6.8 that each cycle of sides {Si}


i=1 of P determines a cycle relation
(gS1gS2 · · · gS�

)k = 1
of Γ, where k is the order of gS1gS2 · · · gS�

. The expression (S1S2 · · ·S
)k

is called the word in S corresponding to the above cycle relation of Γ. We
are now ready to state Poincaré’s fundamental polyhedron theorem.
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Theorem 13.5.3. Let Φ be a subproper I(X)-side-pairing for an n-dimen-
sional, convex polyhedron P in X such that the (X, I(X))-orbifold M ob-
tained from P by gluing together the sides of P by Φ is complete. Then
the group Γ generated by Φ is discrete, P is an exact, convex, fundamental
polyhedron for Γ, and if S is the set of sides of P and R is the set of words
in S corresponding to all the side-pairing and cycle relations of Γ, then
(S; R) is a group presentation for Γ under the mapping S �→ gS.

Proof: The proof is essentially the same as the proof of Theorem 11.2.2.
The only difference is in the construction of the neighborhood U of an
interior ridge point x of P in step (11), where 
 is replaced by k
.

Theorem 13.5.3 gives a group presentation (S; R) for the group Γ gen-
erated by the side-pairing Φ. The presentation (S; R) can be simplified
by eliminating each side-pairing relation SS′ = 1 such that S �= S′ and
exactly one of the generators S or S′. If S′ is eliminated, then each occur-
rence of S′ in a cycle relation is replaced by S−1. Moreover, each cycle of
sides {Si}


i=1 determines 2
 cycles of sides by taking cyclic permutations of
{Si}


i=1 and their inverse orderings. The corresponding cycle transforma-
tions are all conjugate to each other or their inverses. Therefore, any of the
corresponding cycle relations is derivable from any of the others. Hence, all
but one of them can be eliminated from a presentation for Γ. Thus (S; R)
can be simplified to a presentation with the generators of the form S = S′

and half the generators of the form S �= S′, and the side-pairing relations
of the form S2 = 1, and one cycle relation for each cycle of ridges of P .

Example 1. Consider the triangle � in S2, E2 or H2 in Figure 13.4.1. Let
Γ be the group generated by the side-pairing for � described in Example
1 of §13.4. The triangle has two cycles of vertices. By Theorem 13.5.3, the
group Γ has the presentation

(R, L, S; RL, S2, R3, (RSLS)k).
After eliminating the generator L and the side-pairing relation RL = 1, we
have that Γ has the presentation

(R, S; S2, R3, (RSR−1S)k).

Example 2. Consider the regular tetrahedron P in S3 in Figure 13.4.3.
Let Γ be the group generated by the side-pairing for P described in Example
3 of §13.4. The tetrahedron has three cycles of edges. By Theorem 13.5.3,
the group Γ has the presentation

(A, B, C, D; AB, CD, B4, C4, ADBC).
We eliminate the generators A and D and the side-pairing relations AB = 1
and CD = 1 to obtain the presentation

(B,C; B4, C4, B−1C−1BC)
for Γ. Therefore Γ is the direct product of two cyclic groups of order 4.
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Theorem 13.5.4. Let P be an exact, convex, fundamental polyhedron for
a discrete group Γ of isometries of X, let S be the set of sides of P , and let
R be the set of all the side-pairing and cycle relations of Γ with respect to
the Γ-side-pairing of P . Then (S; R) is a group presentation for Γ under
the mapping S �→ gS.

Proof: Let M be the orbifold obtained by gluing the sides of P by the Γ-
side-pairing of P . Then the inclusion of P into X induces an isometry from
M to X/Γ by Theorem 13.5.1. Therefore M is complete. Hence (S; R) is a
group presentation for Γ under the mapping S �→ gS by Theorem 13.5.3.

Exercise 13.5

1. Show that Theorem 13.5.3 does not hold for X = S1 but does hold for
X = E1 or H1.

2. Find a presentation for the discrete group of isometries of E3 corresponding
to the Euclidean orbifold in Example 4 of §13.4.

3. Find a presentation for the discrete group of isometries of H3 corresponding
to the hyperbolic orbifold in Example 5 of §13.4.

4. Find a presentation for the discrete group of isometries of H3 corresponding
to the hyperbolic orbifold in Example 7 of §13.4.

§13.6. Historical Notes

§13.1. Theorem 13.1.7 was essentially proved by Floyd in his 1950 paper
Some characterizations of interior maps [146]. See also Armstrong’s 1968
paper The fundamental group of the orbit space of a discontinuous group
[25].

§13.2. Spherical, Euclidean, and hyperbolic 2-orbifolds were studied by
Koebe in his 1930 paper Riemannsche Mannigfaltigkeiten und nichteuk-
lidische RaumformenV [265]. Two-dimensional spherical, Euclidean, and
hyperbolic orbit spaces were studied by Fenchel and Nielsen in their 1959
manuscript Discontinuous Groups of Non-Euclidean Motions [144]. Dif-
ferentiable n-orbifolds were introduced by Satake in his 1956 paper On a
generalization of the notion of manifold [388]. These orbifolds were called
V-manifolds by Satake. The term orbifold was introduced by Thurston in
his 1979 lecture notes The Geometry and Topology of 3-Manifolds [425].

§13.3. The homotopy theory of (X, G)-paths was developed by Hae-
fliger in his 1990 paper Orbi-espaces [189]. In particular, Theorem 13.3.2
appeared in this paper. The concept of the developing map of an orbifold
was introduced by Koebe in his 1930 paper [265]. In particular, Theorem
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13.3.10 for groups of isometries of S2, E2, or H2, without reflections, ap-
peared in this paper. Theorem 13.3.10 for groups of isometries appeared
in Thurston’s 1979 lecture notes [425].

§13.4. The hyperbolic 2-orbifold obtained by gluing together the sides of
a fundamental polygon of a Fuchsian group was introduced by Poincaré in
his 1882 paper Théorie des groupes fuchsiens [355]. Theorems 13.4.3-13.4.7
were essentially proved by Seifert in his 1975 paper Komplexe mit Seiten-
zuordnung [403]. For some interesting examples of hyperbolic 3-orbifolds,
see Weber and Seifert’s 1933 paper Die beiden Dodekaederräume [445],
Meyerhoff’s 1985 paper The cusped hyperbolic 3-orbifold of minimum vol-
ume [307], Adams’ 1992 paper Noncompact hyperbolic 3-orbifolds of small
volume [7], and Hilden, Lozano, and Montesinos’ 1992 papers The arith-
meticity of figure eight knot orbifolds [207] and On the Borromean orbifolds:
Geometry and arithmetic [206]. For a beautiful illustration of a sequence
of geometric 3-orbifolds converging to the complement of the Borromean
rings, see Epstein and Gunn’s 1991 video Not Knot [125].

It is an interesting fact due to Thurston that every closed orientable
3-manifold has a hyperbolic orbifold structure. In fact, every closed ori-
entable 3-manifold is an orbifold covering space of the hyperbolic orbifold
in Example 5. For a discussion, see Hilden, Lozano, Montesinos, and Whit-
ten’s 1987 paper On universal groups and 3-manifolds [208].

§13.5. The 2-dimensional case of Poincaré’s theorem for finite-sided
polygons appeared in Poincaré’s 1882 paper [355]. See also de Rham’s
1971 paper Sur les polygones générateurs de groupes fuchsiens [111]. The
3-dimensional case of Poincaré’s theorem for finite-sided polyhedra of in-
finite volume appeared in Poincaré’s 1883 Mémoire sur les groupes des
kleinéens [357]. The 2- and 3-dimensional cases of Poincaré’s theorem, for
side-pairings such that the stabilizer of a face fixes the face pointwise, were
proved by Maskit in his 1971 paper On Poincaré’s theorem for fundamental
polygons [301]. Theorem 13.5.1, for finite-sided polyhedra and side-pairings
such that the stabilizer of a face fixes the face pointwise, was proved by
Seifert in his 1975 paper [403]. The n-dimensional version of Poincaré’s the-
orem, for finite-sided polyhedra of finite volume and side-pairings such that
the stabilizer of a face fixes the face pointwise, was proved by Morokuma
in his 1978 paper A characterization of fundamental domains of discon-
tinuous groups acting on real hyperbolic spaces [330]. The n-dimensional
version of Poincaré’s theorem appeared in Maskit’s 1988 treatise Kleinian
Groups [302]. See also Epstein and Petronio’s article, An exposition of
Poincaré’s polyhedron theorem [126]. For a computer implementation of
the 3-dimensional case of Poincaré’s theorem, see Riley’s 1983 paper Ap-
plications of a computer implementation of Poincaré’s theorem on funda-
mental polyhedra [384]. For the theory of 3-orbifolds, see Boileau, Maillot,
and Porti’s text, Three-dimensional orbifolds and their geometric struc-
tures [53]. For applications to the theory of hyperbolic 3-manifolds, see
Kapovich’s text, Hyperbolic Manifolds and Discrete Groups [230].
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76. Cartan, É., Le rôle de la théorie des groupes de Lie dans l’évolution de la
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121. Dyck, W., Vorläufige Mittheilungen über die durch Gruppen linearer Trans-
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radicaux, J. Math. Pures Appl., 11 (1846), 417-433.

160. Garland, H. and Raghunathan, M. S., Fundamental domains for lattices in
(R)-rank 1 semisimple Lie groups, Ann. of Math., 92 (1970), 279-326.

161. Gauss, C. F., Disquisitiones generales circa superficies curvas, Comment.
Soc. Reg. Sci. Göttingen. Rec., 6 (1828), 99-146 (General investigations of
curved surfaces, In: 150 Years after Gauss’ “Disquisitiones generales circa
superficies curvas”, 2nd Ed., P. Dombrowski, Astérisque, 62 (1979), Soc.
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algébrique, J. Reine Angew. Math., 84 (1878), 89-215.
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Isometrien metrischer Räume, Math. Z., 71 (1959), 258-267.

267. Kuiper, N. H., Compact spaces with a local structure determined by the
group of similarity transformations in En, Indag. Math., 12 (1950), 411-418.



758 Bibliography

268. Kulkarni, R. S., Conjugacy classes in M(n), In: Conformal Geometry,
edited by R. S. Kulkarni and U. Pinkall, Aspects of Math., E12, Vieweg,
Braunschweig (1988), 41-63.

269. Lagrange, J., Nouvelle solution du problème du mouvement de rota-
tion d’un corps de figure quelconque qui n’est animé par aucune force
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Anwendung der imaginären Geometrie auf einige Integrale, edited by H.
Liebmann, B. G. Teubner, Leipzig, 1904).
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286. Löbell, F., Über die geodätischen Linien der Clifford-Kleinschen Flächen,
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Arch. Hist. Exact Sci., 10 (1973), 208-328.

309. Millson, J. J., On the first Betti number of a constant negatively curved
manifold, Ann. of Math., 104 (1976), 235-247.

310. Milnor, J., Hyperbolic geometry: The first 150 years, Bull. Amer. Math.
Soc., 6 (1982), 9-24.

311. Milnor, J., How to compute volume in hyperbolic space, In: John Milnor
Collected Papers, Vol. 1 Geometry, Publish or Perish, Houston, TX (1994),
189-212.

312. Milnor, J., Euler characteristic and finitely additive Steiner measures, In:
John Milnor Collected Papers, Vol. 1 Geometry, Publish or Perish, Hous-
ton, TX (1994), 213-234.
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344. Nielsen, J., Über Gruppen linearer Transformation, Mitt. Math. Ges. Ham-
burg, 8 (1940), 82-104.

345. Nowacki, W., Die euklidischen, dreidimensionalen, geschlossenen und offe-
nen Raumformen, Comment. Math. Helv., 7 (1934), 81-92.

346. Oliver, R. K., On Bieberbach’s analysis of discrete Euclidean groups, Proc.
Amer. Math. Soc., 80 (1980), 15-21.

347. Otal, J.-P., The Hyperbolization Theorem for Fibered 3-Manifolds, SMF/
AMS Texts and Monographs 7, Providence, RI (2001).

348. Patterson, B. C., The origins of the geometric principle of inversion, Isis,
19 (1933), 154-180.

349. Penrose, R., The geometry of the universe, In: Mathematics Today Twelve
Informal Essays, edited by L. A. Steen, Springer-Verlag, New York (1978),
83-125.

350. Peschl, E., Winkelrelationen am Simplex und die Eulersche Charakteristik,
Sitzungsber. Math.-Nat. Kl. Bayer. Akad. Wiss. (1956), 319-345.

351. Plücker, J., Analytisch-geometrische Aphorismen, J. Reine Angew. Math.,
11 (1834), 219-225.
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Math. France, 15 (1887), 203-216.
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Hautes Études. Sci. Publ. Math., 61 (1985), 171-214.

430. van Dantzig, D. and van der Waerden, B. L., Über metrisch homogene
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462. Zassenhaus, H., Über einen Algorithmus zur Bestimmung der Raumgrup-
pen, Comment. Math. Helv., 21 (1948), 117-141.

463. Zastrow, A., On the (non)-coincidence of Milnor-Thurston homology theory
with singular homology theory, Pacific J. Math., 186 (1998), 369-396.



Index

abstract
polygon, 388
polyhedron, 508

acting
discontinuously, 161
effectively, 172
freely, 337
trivially, 172

action of a group, 18
adjacent sides, 212
affine

basis, 27
combination, 27
function, 27
hull, 27
set, 27

affinely
equivalent, 344
independent points, 27

angle
of Dn, 194
of En, 14
of Hn, 68
of a triangle

of H2, 80, 84
of S2, 47

sum of a cycle, 379
angles

of a hyperbolic triangle, 80
of a spherical triangle, 47
of rotation, 166

antipodal
transformation, 16
vectors, 36

arc length
element

of Bn, 128
of Dn, 192

of En, 31
of Hn, 76
of Sn, 43
of Un, 133

in a metric space, 28
area

of a cusp, 427
of a disk

of H2, 79
of S2, 46

of a triangle
of H2, 86
of S2, 50

asymptotic lines, 9
atlas

of a manifold, 347
of an orbifold, 691

attractive fixed point, 141
automorphic function, 186
average of a simplex, 577
axis, 140, 180

Bn, 119, 123
B(a, r), 15
barycentric subdivision, 281
Beltrami’s model, 7
Bieberbach

group, 319
theorem, 315

bilinear form, 284
Borel measure, 565
Borromean rings, 459
boundary

of a convex set, 195
of a manifold, 335
of a surface, 377

bounded
parabolic limit point, 621

768



Index 769
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