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Preface

About This Book

This book is meant to be used by beginning graduate students. It covers
basic material needed by any student of algebra, and is essential to those
specializing in ring theory, homological algebra, representation theory and
K-theory, among others. It will also be of interest to students of algebraic
topology, functional analysis, differential geometry and number theory.

Our approach is more homological than ring-theoretic, as this leads the
student more quickly to many important areas of mathematics. This ap-
proach is also, we believe, cleaner and easier to understand. However, the
more classical, ring-theoretic approach, as well as modern extensions, are
also presented via several exercises and sections in Chapter Five. We have
tried not to leave any gaps on the paths to proving the main theorems -
at most we ask the reader to fill in details for some of the sideline results;
indeed this can be a fruitful way of solidifying one’s understanding.

The exercises in this book are meant to provide concrete examples to
concepts introduced in the text, to introduce related material, and to point
the way to further areas of study. Our philosophy is that the best way
to learn is to do; accordingly, the reader should try to work most of the
exercises (or should at least read through all of the exercises). It should be
noted, however, that most of the “gtandard” material is contained in the
text proper. The problems vary in difficulty from routine computation to
proofs of well-known theorems. For the more difficult problems, extensive
hints are (almost always) provided.

The core of the book (Chapters Zero through Four) contains material
which is appropriate for a one semester graduate course, and in fact there
should be enough time left to do a few of the selected topics. Another
option is to use this book as a starting point for a more specialized course
on representation theory, ring theory, or the Brauer group. This book is
also suitable for self study.

Chapter Zero covers some of the background material which will be used
throughout the book. We cover this material quickly, but provide references
which contain further elaboration of the details. This chapter should never
actually be read straight through; the reader should perhaps skim it quickly
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before beginning with the real meat of the book, and refer back to Chapter
Zero as needed.

Chapter One covers the basics of semisimple modules and rings, includ-
ing the Wedderburn Structure Theorem. Many equivalent definitions of
semisimplicity are given, so that the reader will have a varied supply of
tools and viewpoints with which to study such rings. The chapter ends
with a structure theorem for simple artinian rings, and some applications
are given, although the most important applications of this material come
in the selected topics later in the book, most notably in the representation
theory of finite groups. Exercises include a guided tour through the well-
known theorem of Maschke concerning semisimplicity of group rings, as
well as a section on projective and injective modules and their connection
with semisimplicity.

Chapter Two is an exposition of the theory of the Jacobson radical. The
philosophy behind the radical is explored, as well as its connection with
semisimplicity and other areas of algebra. Here we follow the above style,
and provide several equivalent definitions of the Jacobson radical, since
one can see a creature more clearly by viewing it from a variety of vantage
points. The chapter concludes with a discussion of Nakayama’s Lemma
and its many applications. Exercises include the concepts of nilpotence
and nilradical, local rings, and the radical of a module.

Chapter Three develops the theory of central simple algebras. After a
discussion of extension of scalars and semisimplicity (with applications
to central simple algebras), the extremely important Skolem-Noether and
Double-Centralizer Theorems are proven. The power of these theorems and
methods is illustrated by two famous, classical theorems : the Wedderburn
Theorem on finite division rings and the Frobenius Theorem on the clas-
sification of central division algebras over R. The exercises include many
applications of the Skolem-Noether and Double-Centralizer Theorems, as
well as a thorough outline of a proof of the well-known Jacobson-Noether
Theorem.

Chapter Four is an introduction to the Brauer group. The Brauer group
and relative Brauer group are defined and shown to be groups, and as
many examples as possible are given. The general study of Br(k) is re-
duced to that of studying Br(K/k) for galois extensions K/k. This allows
a more thorough, concrete study of the Brauer group via factor sets and
crossed product algebras. Group cohomology is introduced, and an explicit
connection with factor sets is given, culminating in a proof that Br(K/k)
is isomorphic to H?(Gal(K/k), K*). A complete proof of this extremely
important theorem seems to have escaped much of the literature; most au-
thors show only that the above two groups correspond as sets. There are
exceptions, such as Herstein’s classic Noncommutative Rings, where an ex-
tremely involved computational proof involving idempotents is given. We
give a clean, elegant, and easy to understand proof due to Chase. This is
the first time this proof appears in an English textbook. The chapter ends
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with applications of this homological characterization of the Brauer group,
including the fact that Br(K/k) is torsion, and a primary decomposition
theorem dor central division algebras is given.

Chapter Five introduces the notion of primitive ring, generalizing that of
simple ring. The theory of primitive rings is developed along lines parallel
to that of simple rings, culminating in Jacobson’s Density Theorem, which
is the analogue for primitive rings of the Structure Theorem for Simple
Artinian Rings. Jacobson’s Theorem is used to give another proof of the
Structure Theorem for Simple Artinian Rings; indeed this is the classical
approach to the subject. The Structure Theorem for Primitive Rings is
then proved, and several applications of the above theorems are given in
the exercises.

Chapter Six provides a quick introduction to the representation theory
of finite groups, with a proof of Burnside’s famous p®q® theorem as the final
goal. The connection between representations of a group and the structure
of its group ring is discussed, and then the Wedderburn theory is brought
to bear. Characters are introduced and their properties are studied. The
Orthogonality Relations for characters are proved, as is their consequence
that the number of absolutely irreducible representations of a finite group
divide the order of the group. A nice criterion of Burnside for when a group
is not simple is shown, and finally all of the above ingredients are brought
together to produce a proof of Burnside’s theorem.

Chapter Seven is an introduction to the global dimension of a ring. We
take the elementary point of view set down by Kaplansky, hence we use
projective resoultions and prove Schanuel’s Lemma in order to define pro-
jective dimension of a module. Global dimension of a ring is defined and its
basic properties are studied, all with an eye toward computation. The chap-
ter concludes with a proof of the Hilbert Syzygy Theorem, which computes
the global dimension of polynomial rings over fields.

Chapter Eight gives an introduction to the Brauer group of a commu-
tative ring. Azumaya algebras are introduced as generalizations of central
simple algebras over a field, and an e.quivalehce relation on Azumaya al-
gebras is introduced which generalizes that in the field case. It is shown
that endomorphism algebras over faithfully projective modules are Azu-
maya. The Brauer group of a commutative ring is defined and shown to be
an abelian group under the tensor product. Br() is shown to be a functor
from the category of commutative rings and ring homomorphisms to the
category of abelian groups and group homomorphisms. Several examples
and relations between Brauer groups are then discussed.

The book ends with a list of supplementary problems. These problems
are divided into small sections which may be thought of as “mini-projects”
for the reader. Some of these sections explore further topics which have
already been discussed in the text, while others are concerned with related
material and applications.
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About Other Books

Any introduction to noncommutative algebra would most surely lean heav-
ily on LN. Herstein’s classic Noncommutative Rings; we are no exception.
Herstein’s book has helped train several generations of algebraists, includ-
ing the older author of this book. The reader may want to look at this book
for a more classic, ring-theoretic view of things.

The books Ring Theory by Rowen and Associative Rings by Pierce cover
similar material to ours, but each is more exhautive and at a higher level.
Hence these texts would be suitable for reading after completing Chapters
One through Four of this book; indeed they take one to the forefront of
modern research in Ring Theory.

Other books which would be appropriate to read as either a companion
or a continuation of this book are included in the references.
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Preface xi
A Word About Conventions

On Ogcaswn we will use the words “category” and “functorial”, as they are
the proper words to use. We do not, however, formally define these terms
in this book, and the reader who doesn’t know the definitions may look
them up or continue reading without any loss.

When making references to other papers or books, we will write out the
full name of the text instead of making a reference to the bibliography at
the back of the book. We do this so that the reader may know which book
we are refering to without having to look it up in the back. In addition, the
complete information on each reference is contained in the bibliography.
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0
Background Material

This chapter contains some of the background material that will be used
throughout this book. The goal of this chapter is to fill in certain small
gaps for the reader who already has some familiarity with this background
material. This should also indicate how much we assume the reader already
knows, and should serve to fix some notation and conventions. According-
ly, explanations will be kept to a minimum; the reader may consult the
references given at the end of the book for a thorough introduction to the
material. This chapter also contains several exercises, for use both by in-
structors and readers wishing to make sure they understand the basics.
The reader may want to begin by glancing casually through this chapter,
leaving a thorough reading of a section for when it is needed.

Rings: Some Basics

We begin with a rapid review of the definitions and basic properties of
rings.

A ring R is a set with two binary operations, called addition and mul-
tiplication, such that

(1) R is an abelian group under addition.
(2) Multiplication is associative; i.e., (zy)z = z(yz) for all 2,9,z € R.
(3) There exists an element 1 € R with 1z =zl =z for all z € R.

(4) The distributive laws hold in R : z(y + 2) = vy + 2z and (y + 2)z =
Yy + 2z for all z,y,z € R.

The element 1 € R is called the identity, or unit element of the ring
R. We will always denote the unit element for addition by 0, and the unit
element for multiplication by 1. R is a commutative ring if zy = yz for
all £,y € R. We shall not assume that our rings are commutative unless
otherwise specified.

Examples:

1. Z, the integers, with the usual addition and multiplication, with 0
and 1 as additive and multiplicative unit elements.



2. Q, R, and C; the rational numbers, real numbers, and complex num-
bers, respectively, with operations as in Example 1.

3. The ring Z/nZ of integers mod n, under addition and multiplication
mod n.

4. R[z], the ring of polynomials with coefficients in a ring R, is a ring
under addition and multiplication of polynomials, with the polyno-
mials 0 and 1 acting as additive and multiplicative unit elements,
respectively.

5. The ring M,(R) of n X n matrices with entries in a ring R , under
addition and multiplication of matrices, and with the n x n identity
matrix as identity element.

6. The ring End(M) of endomorphisms of an abelian group M, under
addition and composition of endomorphisms (recall that an endomor-
phism of M is a homomorphism from M to itself).

7. The ring of continuous real-valued functions on an interval [a, b], un-
der addition and multiplication of functions.

The rings in examples 1,2,3, and 7 are commutative; the rings in exam-
ples 4,5 and 6 are generally not (R[z] is commutative if and only if R is
commutative). We shall encounter many more examples of rings, many of
which will not be commutative.

A ring homomorphism is a mapping f from a ring R to a ring S such
that

(1) f(z+y) = f(z)+ f(y); i.e., fis a homomorphism of abelian groups.

In short, f preserves addition, multiplication, and the identity element.
For those more familiar with groups than with rings, note that (3) does not
follow from (1) and (2). For example, the homomorphism f: R — R xR
given by f(z) = (z, 0) satisfies (1) and (2), but not (3).

The composition of ring homomorphisms is again a ring homomorphism.
An endomorphism of a ring is a (ring) homomorphism of the ring into
itself. An isomorphism of rings is a ring homomorphism f : R — § which
is one-to-one and onto; in this case, R and S are said to be isomorphic as
rings. If f: R — S and ¢ : S — R are ring homomorphisms such that
fog and g o f are the identity homomorphisms of S and R, respectively,
then both f and g are ring isomorphisms.

A subset S of a ring R is called a subring if S is closed under addition
and multiplication and contains the same identity element as R. A subset
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I of a ring R is called a left ideal of R if I is a subgroup of the additive
group of R and if ri € I for all r € R,i € I; the notions of right ideal
and two-sided ideal are similarly defined. We shall always assume, unless
otherwise specified, that all ideals are left ideals. An ideal I is said to be a
maximal ideal of the ring Rif I # R and if I C J C R for some ideal J,
then J=1Ior J=R.

For a two-sided I, the quotient group R/I inherits a natural ring struc-
ture given by (r +I)(s+1) = rs+ I. This ring is called the quotient ring
of R by I. Note that there is a one-to-one, order-preserving correspondence
between ideals of R/I and ideals of R containing I.

A zero-divisor in aring R is an element r € R for which rs = 0 for some
s # 0. An element r € R is called a unit of R, and is said to be invertible,
if rs = s = 1 for some s € R. Note that the set of invertible elements of a
ring R forms a group under multiplication, called the group of units of R.
A ring such that 1 # 0, and such that every nonzero element is invertible,
is called a division ring. A commutative division ring is called a field.

Let F be a field and let n be the smallest integer for which 1+-.-4+1=
n-1 = 0. We call n the characteristic of F, denoted char(F'), and we
let char(F) = 0 if no such (finite) n exists. It is easy to show that the
characteristic of any field is either 0 or prime. For example, Q, R and C
are fields of characteristic 0. F,, the field with ¢ = p” (p prime) elements,
is a field of characteristic p.

Modules: Some Basics

Let R be a ring. A left R-module is an abelian group M, written addi-
tively, on which R acts linearly; that is, there is a map R x M — M,
denoted by (r,m) — rm for r € R,m € M, for which

(1) (r + s)m = rm + sm

(2) r(m+n)=rm+rn
(3) (rs)m = r(sm)
(4) Im=m

for r,s € R and m,n € M. Equivalently, M is an abelian group together
with a ring homomorphism p : R — End(M), where End(M) denotes
the ring of group endomorphisms of an abelian group (for those unfamil-
lar with this notion, see page 13). p is called the structure map, or a
representation of the ring R. There is a corresponding notion of right
module, but, unless otherwise specified, we shall assume all modules are
left modules.
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Examples:

1. An ideal I of a ring R is an R-module. In particular, R is an R-
module.

2. Any vector space over a field k is a k-module. A module over a division
ring D is sometimes called a vector space over D.

3. Any abelian group is a Z-module.

4. The cartesian product R* = Rx---x R is an R-module in the obvious
way. R” is called the free module of rank n.

5. The set of n x n matrices M,(R) over a ring R is an R-module
under addition of matrices. The action of R on M, (R) is defined, for
r € R,B € M,(R), to be r — rB, where rB denotes the matrix
whose i, jth entry is r times the i, jth entry of B.

Let M and N be R-modules. A mapping f : M — N is an R-module
homomorphism if :

(1) f(m+n) = f(m) + f(n)
(2) f(rm) = rf(m)

for all m,n € M,r € R. In this case f is also called R-linear. Note
that the composition of two module homomorphisms is again a module
homomorphism. A (module) endomorphism is a homomorphism of a
module to itself. A module homomorphism f : M — N which is one-to
one and onto is called a (module) isomorphism, in which case M and
N are said to be isomorphic modules.

A subset N of a module M is called a submodule of M, if N is an
(additive) subgroup of M and if rn € N for all r € R,n € N. Thus, the
R-submodules of R are precisely the (left) idealsof R. If f: M — N isa
homomorphism of R-modules, let

ker(fy={me M : f(m) =0}
im(f) = f(M)

be the kernel and the image of f. It is easy to check that ker(f) is a
submodule of M and im(f) is a submodule of N. In particular, for fixed
m € M, the kernel of the R-module homomorphism ¢ : R — M given by
¢(r) = rm, is a submodule (i.e., left ideal) of R. More explicitly, this kernel
is {r € R: rm = 0}. This ideal of R is called the annihilator of m, and
is denoted by ann(m). The intersection of the annihilators of each of the

elements of M is called the annihilator of M, and is denoted ann(M);
that is

ann(M) = ﬂ ann(m)
meM
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An R-module M is called faithful if ann(M) = 0. In this case the
associated representation p is also called a faithful representation of R.

The abelian group M/N inherits a natural R-module structure via r(m+
N) = rm+ N. This R-module is called the quotient module of M by N.
Note that there is a one-to-one, order preserving correspondence between
submodules of M/N and submodules of M containing N. This is sometimes
referred to as the Correspondence Theorem for Modules. If I is a two-sided
ideal of a ring R, and if M is an R/I-module, then M is also an R-module
via R — R/I — End(M). Further, given an R-module M which is
annihilated by I (i.e., I C ann(m) for all m € M), there is a unique
R/I-module structure on M giving rise to the original structure on M :

R ——— End(M)
£

R/

Thus, there is a one-to-one correspondence between R/I-modules and R-
modules annihilated by I.

We shall now discuss certain operations on rings and modules which
will be useful later in the text. If M is an R-module and N € M,I C R
are additive subgroups, then I'N is defined to be the additive subgroup
generated by {rn:r € I,n € N}; thatis, IN = {3_" ,rin; : m € N,r; €
I n; € N}. Note that if N is a submodule of M, then IN C N, and if I
is a left ideal of R, then I'N is a submodule. In particular, if M = R, then,
IN is a product of ideals. The following formulas hold for I, ;, I, € R and
N,Ni,N; € M :

Associative Law :  I1(I;N) = (I, Ix)N
Both sides are the additive subgroup generated by products ryron.

Distributive Laws :  (I1 + ;)N = 1N + ILbN
I(N, 4+ Ny) = IN; +1IN;

If M is an R-module and m € M, then Rm is a submodule of M and is
said to be the cyclic submodule of M generated by m.
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Zorn’s Lemma,

Zorn’s Lemma is used frequently in ring theory. Here we include one typical
application.

A partially ordered set is a set S, together with a relation <, which
satisifies

a<a (reflexive)
a<bandb<cimpliesa <c (transitive)
a<band b<aimpliesa=1>5 (anti-symmetric)

for all a,b,c € S. A subset T'C S is called a chain if eithera < borb<a
for all a,b € T. An upper bound for a chain T in S is an element ¢ € S
such that @ < ¢ for all @ € T. An element ¢ € S is called a maximal
element of S if a € § and ¢ < a implies ¢ = a. We now state

Lemma 0.1 (Zorn’s Lemma) Let S be a partially ordered set. If every
chain T of S has an upper bound in S, then S has at least one mazimal
element.

Zorn’s Lemma is logically equivalent both to the Axiom of Choice and to
the Well-ordering Principle. For proofs of these equivalences, see Halmos,
Naive Set Theory. For those who worry about using the Axiom of Choice
(and thus Zorn’s Lemma), we shall always point out where Zorn’s Lemma
is used.

We conclude this section with a typical application of Zorn’s Lemma.

Proposition 0.2 Let R # 0 be a ring (with 1). Then R has a mazimal
left ideal.

Proof: Let S be the set of proper (i.e., # R) left ideals of R, partially
ordered by inclusion. If {I,} is a chain of ideals in R, then for all o and
B, either I, C I or Ig C I,. It is now easy to check that I =], I, is an
ideal of R, and that 1 & I since 1 € I, for any a. Thus I € S and [ is an
upper bound for the chain. Hence S contains a maximal element. 0

Products

Let R, and R; be rings. Then the cartesian product Ry x Ry = {(r1,73) :
1 € Ry, € Ry} is a ring if addition and multiplication are taken coor-
dinatewise. The ring R; x R; is called the product of the rings R; and
R;. There are natural ring homomorphisms p; : By X Ry — R, given by
projection onto the ith coordinate, i = 1,2. There is also a one-to-one map
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RI—HRIXRQ

(r1,72) > (71,0).

The same holds true for R;. This is not, however, a ring homomorphism,
since it does not preserve identity elements. Thus R, and R, sit inside
R; x R, as two-sided ideals, but not as subrings. Given rings R:,..., R,,
we may form the product []} ; R; as was done in the case n = 2. The
product of n copies of a ring R is denoted by R".

Given any index set I (possibly infinite), and a family of modules { M; },e I,
we may, by the same technique as above, construct the product [];., M.
of these modules. An element of [],.; M; consists of a family of elements
{mi € M}, which we think of as ‘I-tuples’. The submodule of [],.; M.
consisting of those elements {m; € M;} for which all but finitely many of
the m; are zero, is called the direct sum of the modules {M,};c1, and
is denoted by @, ; M;. Note that for finite families of modules, the di-
rect sum and the product are the same. If M’ is a submodule of M, and
if M = M'@ M" for some module M”, then M’ is said to be a direct
summand of M.

Given a subset S of an R-module M, a linear combination of elements
of S is a finite sum Y r;s;, where each r; € R and each s; € S. We will
always write linear combinations so that the s; are distinct, which is always
possible by combining terms. The elements r; are called the coefficients
of the linear combination. The set of all linear combinations of elements
of S is the unique smallest submodule of M containing S, and is called
the submodule generated by S . The elements of S are then said to
generate the submodule. A module is said to be finitely generated if it
contains a finite generating set.

A subset S of an R-module M is linearly independent over R if, for
every linear combination > r;s; which is equal to 0, then r; = 0 for all i;
informally, there are no “relations” among the elements of S. In this case
we will also say that the elements of S are linearly independent. A subset
is linearly dependent over R if it is not linearly independent. A subset
S of an R-module M forms a basis for M over R if S generates M and
is linearly independent over R.

Given a family {M;} of submodules of an R-module M, the sum }_ M;
of the family of submodules is defined to be the submodule generated by
the union of the M;; or, equivalently, > M; is the set of all finite sums
> mi, m; € M;. The sum is a direct sum, and M is isomorphic to the
direct sum of the submodules M;, if every element of M can be written
uniquely as a finite sum Y m;, m; € M,.

If a set of elements {m,,...,m,} forms a basis for the R-module M,
then it is easy to check that M is isomorphic to R™, and in this case M
is said to be a free module of rank n. In the case when R is a field



or a division algebra we call n the dimension of M over R, denoted by
dimg(M), or simply dim(M) , when there is no confusion about which ring
we are talking about.

Algebras

It turns out that many important examples of modules have an additional
multiplicative structure which makes them rings as well, and the module
and ring structures are compatible in some sense. Examples to keep in mind
are matrix rings, polynomial rings, group rings, and the quaternions (which
we shall introduce in this section). The notion of an algebra ties the ring
and module structures together, and is one of the basic objects of study in
mathematics, particularly in this book. Although we give the definition of
an algebra over a commutative ring k, we shall only be interested in the
case when k is a field.

Definition: An (associative) algebra over a commutative ring R is a ring
A which is also a module over R, such that the ring and module multipli-
cation are compatible in the following way :

z(ab) = (za)b = a(xb) forall z € R,a,b€ A.

A is also called a R-algebra. When R is a field, a basis for A as a module
over R is said to be a basis for the algebra A, and A is said to be a finite
dimensional R-algebra, if A is finite dimensional as a module over R (i.e.,
if A has a finite basis over R). The algebra A is a commutative algebra
if A is a commutative ring.

Examples:
1. Any ring is an algebra over Z.
2. C is a two-dimensional algebra over R, with basis {1,}.

3. The set of n x n matrices My (k) over a field k is a k-algebra of dimen-
sion n?. A basis for this algebra consists of the matrices {e;;},1 <
i,7 < n, where e;; denotes the matrix with 1 in the 4, j position and
zeros elsewhere.

4. The ring R|z] is an algebra over the ring R, with basis 1,z,7z2,...
as a (free) R-module, and with multiplication of polynomials as the
algebra multiplication.

5. The ring R[[z]] of formal power series > o, r;z* with coefficients r; €
R is an R-algebra with the obvious multiplication. Similarly, the ring
R[z,z~!] of Laurent series is an R-algebra.
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6. Let R be a ring and let G be a group. The group ring R[G] consists
of the free R-module on the set G; elements are usually written as
Z cG 799, Where 7y € R, and only finitely many r, are non-zero.
Multlphcatlon is defined by extending (rg)(sh) = (rs)(gh) to all of
R[G] by the distributive law. Check that this makes R[G] into a ring.
Note that R = R-1 is naturally a subring of R[G]. For a commutative
ring R and a group G, the group ring R[G] is an algebra over R. R[G]
is often called a group algebra.

Let A and B be R-algebras. A map f : A — B is an R-algebra
homomorphism if f is a homomorphism of R-modules which is a homo-
morphism of rings as well; that is

(1) fla+b) = f(a) + f(b)
(2) f(za) = zf(a)

(3) f(ab) = ()ﬂ@

4 f() =

for all a,b € A,z € R. An R-algebra homomorphism which is one-to-one
and onto is called a R-algebra isomorphism , in which case the algebras
are said to be isomorphic algebras. A subset S of an algebra A is called a
subalgebra if S is both a subring and a submodule of A.

We end this section with the construction of a basic, important example
of an algebra. Recall that we can think of C as a two-dimensional algebra
with basis {1,i} over R. We shall now construct a four-dimensional algebra,
the quaternions, with basis {1, , j, k} over R. The quaternions will give an
example of a division ring for which multiplication is not commutative.
Later in this book we shall see why the number four is special, and why
the quaternions and its generalizations play such an important role in the
theory of noncommutative algebra.

Definition: The (real) Quaternions, denoted H (in honor of its discoverer
Hamilton), is the four-dimensional vector space over R with basis denoted
by {1,i,4,k}, and multiplication defined so that 1 is the multiplicative
identity element and

i"=j =k =-1

ij=—ji=k
jk=—kj=i
ik = —ki=—j

These equations (in fact the first two) completely determine how basis
elements are multiplied, and thus how any elements of the algebra are
multiplied. Every element ¢ = a + bi 4+ ¢j + dk € H has a quaternion
conjugate § = a — bi — ¢j — dk. It is easy to check that (¢)(T) =g q
and that qg = gg = a” +b*+ ¢ +d . This real number is denoted by |q|™~
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0 then g has multiplicative inverse ¢~! = g/|q|?, which shows that
If ¢ # q

H is a division algebra. See the exercises for more on the quaternions.

Tensor Product of Modules Over a Commutative
Ring

This section reviews basic properties of the tensor product of modules over
a commutative ring. Throughout this section we will assume that R is a
commutative ring.

Let M, N, and P be R-modules. A map f : M x N — P is said
to be an R-bilinear map, or simply a bilinear map, if f is R-linear in
each variable when the other variable is fixed; that is, the mappings z —
f(z,y0) and y — f(zo,y) are R-linear for each fixed zo € M,yo € N.
The idea of the tensor product is to convert bilinear maps into linear maps
(i.e., homomorphisms), which are much easier to work with.

Let M and N be modules over a commutative ring R. The tensor prod-
uct of M and N (over R), denoted by M ®g N , can be characterized by
the following universal property, which formalizes the idea of “converting”
bilinear maps into linear maps :

Theorem 0.3 (Universal Property of Tensor Product) Let M and
N be modules over a commutative ring R. Then there exists an R-module
M ®r N and a bilinear map i : M X N — M ®g N which satisfy the
following universal property : Given any R-module P and any bilinear map
f: M x N — P, there exists a unique linear mapping f' : M@r N — P
so that f = f' oi; that is, there exists a unique homomorphism f' so that
the following diagram commutes

MxN —— = M®N

f b

P

Moreover, if there exists an R-module S and a bilinear mapj: MXN — S
satisfying the above property, then there is an isomorphism g: MQgrN —
S with j = g oi; that is, the tensor product is unique up to isomorphism.

Proof:

Uniqueness : Apply the universal mapping property of M ®g N to j :
MxN — Stogetamap g: M g N — S with j = g o 4. Similarly,
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applying the universal mapping property of Stoi: M X N — M ®z N
givesamap ¢’ : S — M ®g N with i = g’ 0 j. Thus gog’ and ¢’ 0 g must
be the identity, and so both g and ¢’ are isomorphisms.

Existence : Let T denote the free module generated by the pairs {(m, n) :
m € M,n € N}. Thus every element of T can be written as a linear
combination 3| ri(m;,n;) for r; € R, (m;,n;) € M X N.

Let V denote the submodule of T' generated by elements of the following
form:

(m+m',n) — (m,n) — (m',n)
(myn+n')— (m,n) — (m,n’)
(rm,n) —r(
(m,rn) —r(

form,m’ € M,n,n’ € N,r € R. Let M @ N be the quotient module T'/V.
For each basis element (m,n) of M x N, let m ® n denote its image under
the quotient map T — T/V = M ®z N. Then M ®g N is generated
by elements of the form m ® n. Now define i : M x N — M ®z N by
i(m,n) = m @ n. It is easy to check from the definitions that ¢ is bilinear.

It remains to check that M ® p N satifies the universal mapping property.
To this end, let an R-module P and a bilinear map f : M x N — P be
given. We may extend f by linearity to a map f: T — P since T is free
with the set M x N as basis. Since f is bilinear, this implies that f(V) =0,
so that there is a well-defined homomorphism f' : T/V — P such that
F(m®n) = f(m,n), and we are done. O

The above proof shows that if {u;}7, and {v;}]., are generating sets for
M and N, respectively, then {u;®v, : 1 <i <n,1 <j < m}is a generating
set for M ® g N. In particular, if both M and N are finitely generated, then
so is M ®g N; and, in fact, dimgr(M Qg N) = dimg(M) - dimg(N).

Given R-modules M,,..., M, and an R-module P, a multilinear map
(or n-linear map) is a map f: M, X --- x M,, — P which is R-linear in
each variable when the other variables are held fixed. The same proof as
above gives a construction of the tensor product M) ®p --- ® g M,, which
satisfies the same universal property with respect to multilinear maps. We
leave the details as an exercise for the reader.

Endomorphism Rings

Let M be an abelian group, written additively. Let End(M) denote the set
of endomorphisms (i.e., group homomorphisms of M into itself; in particu-
lar, every endomorphism takes 0 to 0). If ¢ and 1/ are endomorphisms of M,

then ¢ o1 is also an endomorphism of M, so we may define a multiplication
in End(M) via



pp(n) = p((m))  forme M.

The identity endomorphism 1(m) = m clearly acts as a multiplicative
identity. We may also define an addition in End(M) via

(¢ + ) (m) = p(m) + (m) for me M.

It is trivial to verify that ¢+ € End(M), and that End(M) is an abelian
group under this addition, with the endomorphism 0(m) = 0 acting as the
additive identity element. Finally, it is easy to check that, under these
operations of addition and multiplication of endomorphisms, End(M) is a
ring.

More generally let M and N be R-modules, and let Homg(M, N) be the
set of R-module homomorphisms from M to N. Then, just as above, we see
that Homg (M, N) is an abelian group under addition of homomorphisms,
with the zero homomorphism acting as identity. We denote Hompg (M, M)
by Endgr(M). As above, we see that Endgr(M) is a ring, called the endo-
morphism ring of the ?-module M. A ring of endomorphisms of M
is a subring of Endgp(M).

Notice that Endg(M) is also an R-module via

(r¢)(m)=r-o(m) r€R,¢€ Endg(M),me M.

If R is a commutative ring, the R-module multiplication in Endg(M) is
compatible with the ring multiplication of Endg(M). Thus, in this case,
Endgr(M) is an R-algebra, and is called the endomorphism algebra of
the R-module M. If M is a free R-module of rank n, then it is not difficult
to see that Endg(M) is somorphic to the algebra M, (R).

Field Extensions: Some Basics

Let k be a field. A field extension of k is a field K with k¥ C K, and is
denoted by K /k. The smallest field containing k and 1, ..., 7, is denoted
by k(r1,...,7s). Given a field extension K/k, it is useful to consider K as
a vector space over k; the abelian group structure is that of K, and, for
r € k,v € K, rv is just the the product of r and v in K. In fact, since
there is actually a multiplication in K, and since all operations in sight
are commutative, we see that K is an algebra over k. The dimension of K
as a vector space over k is called the degree of the extension K/k, and
is denoted by [K : k|. The extension K/k is called a finite extension if
K : k] < oo.

Most of the time we shall be concerned with finite extensions K/k. Let
0 # u € K for such an extension. Since K is finite dimensional as a vector



space over k, the set {1,u,u? ... ,u"} is linearly dependent for some n;
that is, cpu™ + cp1u™ ' + -+« + cyu + g = 0 for some constants ¢; € k.
Thus u satisfies the polynomial f(z) = cpz™ + 12" + -+ + 1 + cq,
and f(z) € klz]. Let I = {g(z) € k[z] : g(u) = 0}. Clearly I is an additive
subgroup of k[z], and hg(0) = h(0)g(0) = 0 for all h(z) € k[z],g(z) € I,
so that I is an ideal. Since k is a field, every ideal in k[z] is principal (see,
e.g., Jacobson, Basic Algebra I). Since I contains f(z) # 0, I is not the
zero ideal, and so there exists a polynomial g(z) € k[z] which generates
I; that is, g(z) divides every polynomial which u satisfies. Clearly we may
take g(z) to be a monic polynomial, and then it is easy to see that g(z)
is the unique monic polynomial of least degree satisfying g(u) = 0. g(z) is
called the minimal polynomial of u over k.

A polynomial is said to be separable if it has distinct roots in an alge-
braic closure. An element v € K is said to be a separable element over k
if its minimal polynomial over k is a separable polynomial. A (finite) field
extension K /k is said to be a separable extension if every element of K
is separable over k. Note that if char(k) = 0, then every (finite) extension
of k is separable (see Exercise 35).

A field L D k is said to be a splitting field over k for the polynomial
f(z) € Ek[z] if f(x) factors as a product of linear factors f(z) = (z —
r)--+(z —ryp) in L{z], and if L = k(ry,...,7r,). Thus L is a splitting field
over k for f(z) if and only if L is the smallest field containing k& which
contains every root of f(z). A (finite) field extension K/k is called normal
if every irreducible polynomial in k[z] which has a root in K is a product
of linear factors in K|[z]. Thus the extension K/k is normal if and only if
K contains a splitting field for the minimal polynomial of every element
of K. An extension which is both normal and separable is called a galois
extension.

Let K/k be a field extension. The set of automorphisms of K which
are the identity when restricted to k forms a group under composition of
functions. This group is called the galois group of the extension K/k,
and is denoted by Gal(K/k). The Fundamental Theorem of Galois Theory
asserts, among other things, that for a galois extension K/k, the order of
Gal(K/k) is equal to [K : k.

Now suppose L O K D k are fields. Then there are three vector spaces
in sight; namely L over K, L over k, and K over k. The next result relates
the dimensions of these vector spaces, and will be used quite frequently.

Proposition 0.4 Let L O K D k be fields. Then [L : k] is finite if and
only if both [L : K| and K : k] are finite, and in this case
[L:k]=[L:K|K:Kk].

Proof: Suppose {u1,...,u,} is a basis for L over K and {v;,...,v} is a
basis for K over k. We claim that {u;v; : 1 <i<n,1 < j < m} is a basis
for L over k:
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n

{u;v;} span L/k: Let £ € L be given. Then = = >or ., ciu; for some
¢; € K. But ¢; € K implies that ¢; = Z;’;l d;jv; for some d;; € k. Hence
T =3 ; dijuv;.

{uiv]-} is independent over k: Suppose Ed,-]-uivj =0 f(?r §ome ds; E k.
Then Y,(3; dijvy)ws = 0, and so 3, di;v; = 0 for each i, since {u;} is a
basis. But {v;} is also a basis, and so d;; = 0 for all j and for each i.

Now if [L : k] is finite, then [K : k] is finite since K is a k-subspace of L,
and [L : K] is finite since the finite basis for L over k will clearly span L
over K. Conversely, if both [L : K] and [K : k] are finite, then the above
shows that [L : k| is finite and that [L : k] = [L : K|[K : k]. O

Exercises

The exercises in this chapter are not meant to be a complete set of exercises
for a basic course on rings, fields, and modules; rather, they are meant to
help the reader polish old skills. In addition, these exercises provide some
basic facts which will be used throughout the text.

Elementary Exercises on Rings and Modules

1. Let I,..., I, be two-sided ideals of a ring R such that I; + I; = R
for all ¢ # j. Prove the following:
(a) L+ ()1; = R for all .
i#i
(b) (Chinese Remainder Theorem): Given elements zi,...,z,
of R, there exists £ € R such that z = z;(mod I,) for all <.

(c) Show that there is an isomorphism of rings
¢:R/Lin---NI, — (R/T)) x -+ X (R/I)

such that ¢(z+(I,N---N1Iy)) = (z+(11),...,x+(I,)) for allz € R.

2. Show that every finitely generated module has a maximal (proper)
submodule, Is this true for modules that are not finitely generated?

3. Show that every module is isomorphic to a quotient module of a free
module.

4. Let R be a commutative ring, and let M be a free R-module of rank
n. Prove that the algebras Endr(M) and M,,(R) are isomorphic.
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Products and Sums

. Let R, and R, be rings. Show that any (left right,two-sided) ideal in

Ry X Ry is of the form L, X Ly, where L; is a (left,right,two-sided
respectively) ideal of R;, i = 1,2.

If R; and R are rings, show that there is a one-to-one correspondence
between Ri X Ry-modules M and pairs of modules (M), M) where
each M; is an R;-module, i = 1, 2. Generalize to the case of arbitrary
products.

Let Ry and R; be rings. Thinking of R, as R; x 0 sitting inside
R = R, x Ry, check that R, is a two-sided ideal but not a subring
(similarly for R,;). Now show that R, % R, as R; x Rj-modules,
even if Ry ~ Ry as rings. Show that there is in fact no non-trivial
R-homomorphism from R; to Rz. Generalize to the case of arbitrary
products.

Let M = @;.; M; and let N be an arbitrary R-module. Prove that
a homomorphism from M to N is uniquely determined by its restric-
tions to the M; and that these restrictions can be arbitrary. This can
be phrased as follows : There is an isomorphism

Hom(@P M;, N) = [ [ Hom(M;, N).

Show that there is an isomorphism

Hom(N, ][ Ms) = [[ Hom(N, M,).

IfE,,...,E, F,...,F,are any R-modulesand ¢:E, & ---® E,, —
B &-.- @ F,, is a R-module homomorphism, show that ¢ can be rep-
resented by a unique matrix

d11 ... d1n
M(¢) = : :
bdm1 .. Omn

where ¢,; € Hompg(E;, F;), in the sense that, if one represents an
element £ = 2,4+ -4+, € E1 ®--- ® E, as a column vector
1]

, and one represents elements of F} & - - - @ F},, similarly, then

Tn
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E?:l ¢1:(T:)
#(z) = :
Y1 dmi(Ti)

that is, ¢ is given by “matrix multiplication”. Further, check that
composition of maps corresponds to matrix multiplication. This ex-
ercise generalizes Proposition 1.7. [Hint: The module E, ® --- ® E,
is equipped with inclusions ix : Ex — E; @ --- ® E, and (onto)
projections my : By @ -+ ® E, — Ej.|]

Idempotents

(a) An element e of a ring R is said to be an idempotent if e? = e.
An element e is central in R if er = re for all » € R. Let e be
a central idempotent of R, and let Ry = eR and Ry = (1 —e)R.
Check that these subsets of R are two-sided ideals of R which are
in fact rings. What are the identity elements of R, and R, as rings?
Show that every element of R can be written uniquely as a sum of
an element of R, and an element of Ry. Conclude that R =~ R; X Ry
as rings.

(b) What do the ideals of R look like in terms of the ideals of Ry and
Ry?

(a) More generally, let e;,...,e, in R be an orthogonal family
of central idempotents; that is, assume each ¢;,1 < i < n is a
central idempotent and that e;e; = 0 for ¢ # j. Further assume that
ey +e +...+e, =1 Show that R =~ Ry, x Ry x ... x R,, where
Ri = CiR.

(b) What do modules over R look like?

Let I be a two-sided ideal of R, and assume that R=1®J =I®J’,
where J is a left ideal of R and J' is a right ideal of R. Prove that

there is a unique central idempotent such that I = Re, and that then
J=R(l-e)=J.

Tensor Products

Let M, N, and P be modules over a commutative ring R. Prove the
following (all tensoring is done over R):

() MIN=NQRM.
b)  MAN)QP~MRINQP)~ MONR P.

) (MPN)QP~(MQP)DB(NRP).
(d) RQM ~ M.
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Group Rings
(a)

(b)

(c) Show that R[G x H] ~ R[G] Qg R[H] =~ (R|G))[H] as rings.
(

t

d) Show that if G acts linearly on a vector space V over a field k,
hen V has a natural k[G]-module structure.

If G is the trivial group, what is R[G]?

If G is a free abelian group on n generators, what is R[G]?

(a) Let R,S be rings and let G be a group. Let U(S) denote the
group of units of S (that is, the (multiplicative) group of elements
in S that have multiplicative inverses). Show that there is a one-
to-one correspondence between ring homomorphisms f : R[G] — S
and pairs consisting of a ring homomorphism fr : R — S and a
group homomorphism fg : G — U(S) where the images of fp and
fe commute.

(b) If f: G — H is a group homomorphism, show that there is a
unique ring homomorphism R[G] — R[H| which is the identity on R
and is f when restricted to G.

Remark: Consider the case when R is a commutative ring and S
is an R-algebra, so fp is fixed as the structure map. The “units”
functor U is a functor S —— U(S) from the category of R-algebras
to the category of groups. The “group-algebra” functor G — R[G]
is a functor from groups to R-algebras. Holding fg fixed, the proof
of part (a) shows the existence of a bijection

Homgyoup(G,U(S)) «— Homp_aigebra (R[G]’ S),

that is, the group-algebra functor is the left-adjoint to the units func-
tor (for terminology, see Rotman’s Homological Algebra).

(a) If H is a finite subgroup of G, write Ny = >,y h (this is
the so-called “norm element” of H). Show that Ny - Ny = |H|Ng.
Conclude that if |[H| is invertible in R, then the element ey = Ny /|H|
is idempotent.

(b) Show that if H is a finite normal subgroup of G and |H| is in-
vertible in R, then ey is a central idempotent of R[G].

Let Q denote the rational numbers and let S5 denote the symmetric
group on 3 letters. Note that S3 is generated by the elements a = (12)
and b = (123) with o(a) = 2 and o(b) = 3, aba = b~', S5 ~ Z3 % Z,.
(a) Show that Q[Zs] ~ Q x Q. Exhibit the ring homomorphisms
explicitly. Exhibit the idempotents explicitly.
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(b) The unique surjective homomorphism Sz — Z; induces a ring

surjection Q[Ss] — Q[Z2] ~ Q x Q. For B = (b), find the images of

ep and 1 — ep, where ep is defined as in problem 17.

(c) Let M2(Q) denote the ring of 2 X 2 matrices over Q. Let A =
2 é ) and B = ( ? :1 ) Show that o(A) = 2,0(B) = 3 (can

you do this without computing?),and ABA = B™'. Thus there is a

group homomorphism

83 = GLx(Q) = U(M2(Q)).

Show that this gives a surjective ring homomorphism Q[S3] — M>(Q).

(d) Put all of this together and show that Q[S3] = Q x Q x M2(Q).
Explicitly give all of the homomorphisms. Explicitly list the idempo-
tents (in terms of the group ring) which give each factor. In Chapter
One we will see that this implies that Q[S3] is semisimple.

Remark: This example is typical of group representation theory :
youwll soon see that any group algebra Q[G] (G finite) is a direct
product of matrix algebras, and this is a good example to keep in
mind. The idea is to “enrich structure” by recasting problems from
group theory (which is hard) into the theory of algebras (which is
rich and well-developed, as we will see in subsequent chapters).

Generalizing part (a) of the previous exercise, show that if p is prime
then Q[Z,] = Q X Q[(,], where (, is a primitive p** root of unity.

Quaternions

Check that H is a division algebra which is not commutative. Find
the center of H; ie., the set of elements z € H which commute
(multiplicatively) with every element of H. Which elements commute
with i? with j?7 with k?

Let HQ be the subset of H consisting of elements with rational co-
ordinates; that is, let HQ ={a+bi+cj+dk:a,bcdecQ} . Show
that HQ is a subring of H, and that HQ is a division ring. HQ is
called the ring of rational quaternions.

Let R denote the set of matrices of the form ( _a-l; 2 ) a,beC.

(a) Show that R is a subring of My(C).
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(b) Show that the center of R may be identified with the real numbers
via a certain set of diagonal matrices.

(c) Show that R is isomorphic, as an R-algebra, to the real quater-
nions.

Show that the real quaternions can be considered as a two-dimensional
algebra over C. Explicitly give a basis for H over C.

Think of R* as pairs (r,v), where r is a real number and v is a vector
in R3. Define a multiplication on R* by

(r,)(#' V)= (' —v-d v + v+ v xd') i €Rv, v € R?

where - and x denote the standard dot and cross product of vectors
in R3, respectively. Prove that R* with this multiplication is an al-
gebra which is isomorphic to the quaternions. Thus, multiplication
of quaternions involves the two most basic operations on vectors in
three-dimensional euclidean space. Hamilton, the discoverer of the
quaternions, had the idea to use the quaternions to study physics.
Physicists, however, seem to have found it easier to use the dot and
cross product without mention of the quaternions.

The Opposite Ring

If R is a ring, then R° denotes the opposite ring (of R) : that is, R°
has the same additive group as R but multiplication in R° is defined
by r - s = sr. Check that R° is a ring.

(a) If k is a commutative ring and G is any group, show that k[G]° ~
k[G].

(b) Let H denote the division algebra of real quaternions. Show that
H° ~ H.

(c) If R is a ring and My (R) denotes the ring of n x n matrices over
R, show that M, (R)° =~ M,(R°).

(d) Exhibit a ring R such that R° is not isomorphic to R. Can you
give such a ring that is finite? If so, what is the smallest possible
number of elements it can have?

(e) Let R be a commutative ring and let 7, (R) denote the ring of n xn
upper triangular matrices over R. Is 7,,(R)® isomorphic to 7,(R)?
Show that Endg(R) = R°.

Show that if e is an idempotent of R, then S = eRe is a ring with
identity element e (note : by definition eRe = {ere : r € R}). Find
an isomorphism (of rings)
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¢ : S° = Endg(Re).

This generalizes the fact that, for any ring R, Endg(R) ~ R° (just
take e = 1).

Bimodules

28. Let R and S be rings. An R-S -bimodule is an abelian group M
with the structure of both a left R-module and a right S-module,
such that (rm)s = r(ms) for r € R,m € M,s € S. For example,
any ring R is an R-R bimodule under left and right multiplication.
If R and S are k-algebras, we will say that M is an R-S-bimodule
relative to k if, in addition to the above, Am = mA for A € k and
m € M. Prove that R-S bimodule structures on M relative to k are
in one-to-one correspondence with R ®; S°-module structures on M.

29. Let e and € be idempotents of a ring R, let S = eRe and let
S’ = €¢'Re’. Note that S and S’ are rings with identity elements
e and €', respectively. Find S-S’-bimodule structures on eRe’ and
Homp(Re, Re'), and an S- S’-bimodule isomorphism

eRe’ => Homp(Re, Re').

Note that, if we now take e’ = 1, then eR ~ Hompg(Re, R) as S-R-
bimodules. (cf. Exercise 27).

Universal Mapping Properties

30. (a) Show that any R-module homomorphism f : M — N “factors
through M /ker(f)”; that is, show that there is a unique homomor-
phism f’ : M /ker(f) — N so that the following diagram commutes :

f

M—-———>N

M/ kex( £)

Show further that f’ is one-to-one. Show that the above holds when
ker(f) is replaced by any submodule of ker(f) (of course, the injec-
tivity fails to hold).
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32.
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34.
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Exercises 23

(b) Prove a corresponding universal mapping property for homomor-
phisms of rings.

State the results of exercises 8 and 9 in terms of universal mapping
properties.

Let M,..., M, be modules over a commutative ring R. Following
the construction given in Theorem 0.3 for the case n = 2, construct
the tensor product M1 ®g -+ ® g M,,, and show that it is unique.
Prove a universal mapping property for this tensor product which
agrees with Theorem 0.3 in the case n = 2.

Elementary Exercises on Field Theory

(a) Let F be a field with char(F) # 0. Show that char(F) is equal to
the smallest integer n such that z +---+x=n-z=0forallz € I.
(b) Show that the characteristic of any field is either 0 or prime. Fur-
ther, show that any field of characteristic 0 contains Q as a subfield.

Assuming that C is algebraically closed, prove that the only finite
field extensions of R are R and C.

(a) Let k be a field. Show that a polynomial f(z) € k[z] has multiple
roots (in a splitting field for f over k) if and only if f and f’ have a
common root (in a splitting field), where f’ is the polynomial which
is the derivative of f as in elementary calculus.

(b) Use part (a) to show that any finite extension of a field of char-
acteristic zero is separable.

Show that the field Q(¥/2) is not a normal extension of Q, where
¥/2 denotes the real cube root of 2. Recall that Q(¥/2) denotes the
smallest field containing Q and .

Exact Sequences: Some Basics

A sequence of R-modules and R-module homomorphisms
e ,~+1ﬂ—+lMi£+ s e

is said to be exact at M; if ker(f;) = im(fiy1). The sequence is
called an exact sequence if it is exact at each M;. A short exact
sequence is an exact sequence of the form

0—->A—i->B—p+C—+O.
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37.

38.

39.

40.

0. Background Material

Note that the sequence is exact at A if and only ifi : A — B is one-
to-one, and that the sequence is exact at C if and only if p: B — C
is onto. Exactness at B means that C =~ B/i(A).

Exact sequences are extremely useful in keeping track of informa-
tion about maps between modules. They are crucial in the study
of algebraic topology, algebraic geometry, and in fact all of algebra.
Although exact sequences are not essential for understanding much
of this book, they will provide another viewpoint in the study of
semisimple rings, the Brauer group and various selected topics.

A short exact sequence
f g
0—A--"B->5C—0

is said to split if there is a homomorphism h : C — B with goh =
idc, where ide denotes the identity endomorphism of C.

Let 0 — A —4» B 25 C — 0 be exact. Prove that the following
are equivalent:

(a) The sequence splits.

(b) The module f(A) is a direct summand in B.

(c) There is a homomorphism 7 : B — A with 7o f = id4.

(d) There is a homomorphism s : C — B such that go s =id¢.

Let 0 — A — B — C — 0 be exact. Show that the sequence
splits if C is a free module.

(a) Suppose

Al B 20 and A, 5B, 0,
are exact. Show that
AL x A 720 B« B, X% 0, x O,

is exact.

(b) Generalize part (a) to arbitrary direct products.

(c) Generalize part (a) to arbitrary direct sums.

Let 0 — V} — ... — V,, — 0 be an exact sequence of finite-

dimensional vector spaces over a field. Show that -7 (—1)!dim(V;) =
0.
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Length

A composition series for a module M is a chain of submodules
0=My C M, C- - CM,=M which admits no refinement, i.e.,
M;/M;_, is simple. We call n the length of the composition series.
The simple modules M;/M;_, are called the composition factors of
the composition series, A given module may have many composition
series. These series are related, however, by the following :

Theorem 0.5 (Jordan-Hélder Theorem) If M has a composi-
tion series, then any two composition series have the same length
and have isomorphic composition factors.

The proof of this theorem is the same as that for groups. For details
see e.g., Jacobson, Basic Algebra I. We define the length of a module
M, denoted by I(M), to be the length of a composition series for M
(if M doesn’t have a composition series, we say that M has infinite
length ). The length of a module is well-defined by the Jordan-Holder
Theorem. We also note that “length of a module” generalizes the
concept of “dimension of a vector space”. For example, it is easy to
see that if R is an algebra over a field k, then any R-module M such
that dimy (M) < oo has finite length.

(a) If M is a module of finite length, prove that any submodule and
any quotient module of M has finite length.

(b) Conversely, if M’ C M and M/M’ both have finite length, show
that M has finite length. Further, show that (M) = {((M')+I{(M/M').
Deduce that [(M') < I(M) if M # M.

(¢) Prove that a finite direct sum of modules of finite length has finite
length and give a formula for the length.

(d) If R has finite length as a left R-module, prove that every finitely
generated left R-module has finite length (A module M is finitely
generated if there exists a finite family of elements m,,..., m, of
M such that Rmy +--- + Rm, = M).

Chain Conditions

We say that a module M satisfies the ascending chain condition
(ACQ) if for every chain M; C M, C --- of submodules of M, there
is an integer n with M; = M, for all i > n. If M satisfies the ACC,
we also say that M is noetherian.

We say that a module M satisfies the descending chain condition
(DCC) if for every chain My 2 M, D -- - of submodules of M, there
is an integer m such that M; = M,, for all j > m. If M satisfies the
DCC, we say that M is artinian.
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42.

43.

44.

45,

46.

47.

48.

49.

0. Background Material

(a) Show that Z is a noetherian Z-module which is not artinian.
(b) Let Zp~ denote the submodule of the Z-module Q/Z consisting

of elements which are annihilated by some power of p. Show that Z ;e
is an artinian Z-module which is not noetherian.

(a) Show that the ACC is equivalent to the “maximal condition” : Ev-
ery non-empty collection of submodules contains a maximal element
(with respect to inclusion).
(b) Show that the DCC is equivalent to the “minimal condition” : Ev-
ery non-empty collection of submodules contains a minimal element
(with respect to inclusion).

Prove that a module is noetherian if and only if every submodule is
finitely generated.

(a) Prove that submodules and quotients of artinian modules are
artinian. Prove the same fact for noetherian modules.

(b) Let M’ be a submodule of M. Show that if both M’ and M/M' are
artinian, then so is M. Prove the same fact for noetherian modules.

In other words, these statements say that given a short exact sequence
0-M MM -0,

M is artinian (resp. noetherian) if and only if both M’ and M" are
artinian (resp. noetherian).

Prove that a module has finite length if and only if it is both artinian
and noetherian.

Note: We shall call a ring R a (left) noetherian ring or a (left)
artinian ring if it has the corresponding property as a left R-module.
We shall drop the adjective “left” when no confusion will occur.

Prove that if R is an artinian ring and M is a finitely generated
R-module, then M has finite length.

Prove that if M is an R-module of finite length, then Endr(M) is
artinian.

This exercise will show that the concepts of left and right artinian
(and noetherian) are not the same. Let K/k be a field extension with
[K : k] = oo. Let R denote the subset of M3(K) consisting of all
upper triangular matrices of the form
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a b
0 ¢
with a,b € K and ¢ € k. Show that R is a subring of My(K), and

that R is left artinian and left noetherian, but neither right artinian
nor right noetherian.

(a) Prove Fitting’s Lemma : If M is an artinian module and f :
M — M is an injective homomorphism, then f is surjective.

(b) Prove the dual assertion to Fitting’s Lemma : If M is a noetherian
module and f : M —> M is a surjective homomorphism, then f is
injective.

(c) Let G be a free abelian group of finite rank, and let ¢ : G — G
be an epimorphism. Show that ¢ is an isomorphism.
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Semisimple Modules & Rings
and the Wedderburn Structure
Theorem

This chapter is concerned with looking at part of a structure theory for
rings. The idea of any “structure theory” of an object (in this case a ring)
is to express that object in terms of simpler, better understood pieces. For
example, the Wedderburn Structure Theorem says that any semisimple ring
(we’ll define this later) is isomorphic to a finite product of matrix rings over
division rings, each of which is simple. The theory for semisimple modules
is in many ways analogous to the theory of vector spaces over a field, where
we can break up vector spaces as sums of certain subspaces.

One common theme in this chapter is the interconnection between the
structure of a ring and the structure of modules over that ring. This inter-
play leads to many deep and useful theorems.

Unless otherwise specified, all ideals will be left ideals and all modules
will be left modules.

Simple Modules

We begin our discussion with modules that are the basic building blocks of
other modules.

Definition: A non-zero module M is simple (or irreducible) if it contains
no proper non-zero submodule. An R-module M is cyclic with generator
m if M = Rm for some m € M.

If F is a field, then the submodules of a vector space V over F' are simply
the subspaces of the V. The simple F-modules are the one-dimensional
vector spaces over F'; thus there is only one isomorphism class of simple
F-modules. We shall soon see many other examples of simple modules.

Proposition 1.1 The following are equivalent for an R-module M :
(1) M is simple.

(2) M is cyclic and every non-zero element is a generator.

(8) M ~ R/I for some mazimal left ideal I.
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Proof:

(1) implies (2) : If m € R,m # 0, then Rm is a non-zero submodule of
M, hence Rm = M.

(2) implies (3) : Let I be the kernel of the surjective module map ¢ :
R — Rm given by ¢(r) = rm (this kernel is called the (left) annihilator
of m and is denoted by ann(m)). So I is a submodule of R, i.e. a left ideal
of R, and R/I ~ Rm. I is maximal : for if not, then there would be a
non-generating element of M.

(3) implies (1) : If M’ is a nonzero submodule of M ~ R/I, then by the
Correspondence Theorem for Modules (see Chapter 0) we have that there
is an ideal I’ properly containing I. Since I is maximal, I’ = R,so M' = M
and we are done. O

Note: It is easy to check that if R is commutative, then the ideal I in
(3) is independent of the generator m € M, so I is uniquely determined by
M:; in this case we see that isomorphism classes of simple R-modules are
in one-to-one correspondence with maximal ideals of R (this is a familiar
fact when R = Z).

It is easy to construct many examples of simple modules using (3) above.

Examples:
1. The simple Z-modules are Z /pZ for p prime.

2. The simple F{z]-modules (F' a field) are F[z]/(p) for p an irreducible
polynomial.

3. Here is a less obvious example : Let F be a field, V an n-dimensional
vector space over F, and let R = Endp(V) (R is often called the
“ring of linear operators over V). One sees by choosing a basis for V'
over F that R = M, (F), the ring of n xn matrices with entries in F.
V is an R-module via f - v = f(v); in fact, V is a simple R-module:
if v # 0, then v is part of a basis for V, so clearly Rv =V, hence V
satisfies (ii). In fact, we will see that this is the only simple R-module,
up to isomorphism.

One of the reasons simple modules are so useful and easy to work with
is that there are so few homomorphisms between them. Consider a module
homomorphism f : M — N. Note that kernel(f) and image(f) are
submodules of M and N, respectively. Thus if M is simple, then kernel( f)
is0or M, and if N is simple then image(f) is 0 or N. In particular, if both
M and N are simple, then f is either an isomorphism or the zero map.
This proves the well-known

Lemma 1.2 (Schur’s Lemma) Any homomorphism between simple R-
modules is either an isomorphism or the zero homomorphism. Therefore
Endgr(M) is a division ring if M is simple.



It is also clear that if M and N are simple, and if M % N, then
Hompgp(M,N)=0.

Remarks:

1. If R is a commutative ring, then
Endg(R/I) = Endg;1(R/I)~ R/I

since in general we have, for commutative rings R, that Endg(R) ~ R
via f — f(1). Note that, in particular, if M is a simple R-module,
then M =~ R/I for some maximal ideal I, and so Endgp(M) =~
Endgp(R/I) =~ R/I, a field. So when R is a commutative ring and
M is a simple R-module, Endg(M) is not only a division ring, but
is in fact a field.

2. If V is a module over a division ring D and R = Endp(V), then R
acts on V, and the action of R commutes with that of D. Thus scalar
multiplication induces a homomorphism

D — EndR(V)

d +— ‘scalar multiplication by d’.
In fact, this is an isomorphism :

Proof: Since the above homomorphism is clearly injective, we need
only show, given T' € Endg(V), that T is multiplication by an ele-
ment of D. Choose v # 0 in V. Given any element w of V, it is easy
to find an endomorphism of V which carries v to w; hence v generates
V as an R-module. Thus an R-module endomorphism 7T is uniquely
determined by what it does to v. It therefore suffices to show Tv = dv
for some d € D. Now since v is part of a D-basis for V, there is a
projection operator p € Endp (V) = R, where p is the endomorphism
that projects any vector in V onto the subspace Dv generated by v
(so in particular p(v) = v). Then Tv = T(pv) = p(Tv) € Dv and
we’re done. O

In fact, the above isomorphism holds for a class of rings more general
than division rings, namely semisimple rings. For details see Exercise
18.
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3. Suppose that R is an algebra over a field k¥ and M is a simple R-
module of finite k-dimension. Then by Schur’s Lemma Endg(M)
is a division ring, and, since it lies in Endi(M), is in fact a finite
dimensional algebra over k via the natural inclusion

k — Endgp(M)

z +— ‘multiplication by z’.

When are all R-endomorphisms of M of this form? That is, when is
it true that every R-endomorphism is just “multiplication by z” for
some z € k? The following corollary to Lemma 1.2 gives us a partial
answer.

Corollary 1.3 If k is an algebraically closed field, R an algebra over k,
and M a simple R-module of finite k-dimension, then k = Endp(M); that
is, the only endomorphisms of M are the scalar multiplications by elements
of k.

Proof: This follows from the fact that the only finite dimensional division
algebra over an algebraically closed field is the field itself (see Exercise 1).
0

This corollary is the original result proved by Schur, and was stated in
the context of group representation theory (with ¥ = C and R = CI[G]).
Together, Corollary 1.3 and Schur’s Lemma constitute the “orthogonality
relations for complex characters” which are so important in representation
theory. We will give some indication of the power of these methods in
Chapter 6.

Semisimple Modules

The next level in complexity of modules is to combine simple modules in
a simple way, namely with direct sum. The resulting modules are called
semisimple, and are one of the basic objects of study in algebra. The phi-
losophy is that semisimple modules behave in many ways like vector spaces
over a field, simple modules playing a role analogous to one-dimensional
subspaces.

Definition: A module M is called semisimple if it is a direct sum (not
necessarily finite) of simple modules. The Uniqueness Theorem for Semisim-
ple Modules (see Exercise 25) shows that these simple summands are de-
termined (up to isomorphism) by M, and so are independent of how we



write the direct sum. The simple modules in the direct sum are called the
(simple) constituents of M.

Examples:

1. Any simple module is semisimple.

2. Any vector space V over a division ring is semisimple. If we choose
a basis {e;};cr for V, then the one-dimensional subspaces generated
by the e; are simple modules whose direct sum is V.

3. Clearly any direct sum of semisimple modules is semisimple.

We shall see other examples of semisimple modules later.

Recognizing semisimple modules isn’t as hard as it looks. For example,
M is semisimple if one can write every element of M as a sum of elements
of simple submodules.

Proposition 1.4 If M is the sum (not necessarily direct) of simple sub-
modules M;,i € I, then M is semisimple. More precisely, there is a subset
I' C I such that M = @, M;.

The proof of this proposition is similar to the proof that every vector
space has a basis. Recall that a family of submodules {M,},c; is called
independent if )~ .. ; m; = 0 implies that m; = 0 for all j (here m; € M;
and m; = 0 for all but finitely many j). This is equivalent to saying that
> jes M; is a direct sum.

Proof: Consider the collection S = {J : {M;},¢; is independent} under
the partial order given by inclusion. § is clearly not empty. Every chain has
an upper bound in & (namely its union) and hence by Zorn’s Lemma. there
exists a maximal element I'. Let M’ = 3., M;. We claim that M’ = M
: for since each M; is a simple module, M' "\ M; = 0 or M' N\ M; = M;.
If M’ N\ M; = 0 then we could replace I’ by I' U {j}, contradicting the
maximality of I’. Hence M; C M’ for all M; j € I, and so M C M'. Since
clearly M’ C M we have M = M’ = %", ;. M;, the sum being direct since
I'eS. o

This proposition may be used to obtain information about the submod-
ules and quotient modules of a semisimple module M.

Corollary 1.5 If M is a semisimple module, then every submodule and
every quotient module of M is semisimple. Moreover, every submodule is a
direct summand.
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Proof: Write M as a direct sum of simple modules M = ®ze M IE M
is a submodule of M, then M/M' is generated by the images M; of the M;
under the natural projection M — M/M'. Now if M;#0, then M; =~ M;
since M; is simple, so by the above proposition there exists I" C I such
that M/M' = @,c;» Mi; hence M/M' is semisimple. It is now easy to
check that

M=(@Pmyem
ieIII

(see Exercise 15). Finally, M’ is semisimple because it is a quotient of the
semisimple module M; morever, if I’ = I\I”, then

M ~ M/ P M~ P M.

el iel’

0

There is a partial converse to this corollary that provides a useful crite-
rion for determining whether or not a module is semisimple :

Proposition 1.6 Let M be a module such that every submodule of M is a
direct summand. Then M is semisimple.

Proof: The proof, with outline provided, is left as Exercise 17. O

The Endomorphism Ring of a Semisimple Module

Any linear transformation of one finite-dimensional vector space into an-
other can always be represented by a matrix, with composition of trans-
formations corresponding to matrix multiplication, This way of describing
linear transformations is extremely useful, and we wish to develop the idea
more generally for semisimple modules.

The first result we prove will show how to represent R-linear maps be-
tween direct sums of R-modules (in particular free R-modules) by matrices
with entries in R. The reader should keep in mind the special case when R
is a field. As we shall see in the discussion following the proposition, how-
ever, matrices which represent R-linear maps for noncommutative rings R
still have entries in R, but these entries must be multiplied in reverse order;
that is, we should view the entries as elements of the opposite ring of R.
Before discussing this more precisely, we prove the following

Proposition 1.7 Let M be an R-module and let S = Endr(M). For any
positive integers m, n, there is a canonical isomorphism of abelian groups



Homp(M™, M™) a S™xn

such that the composition

Homp(M™, M™) x Homp(MP, M™) —s Homg(MP, M™)

(f,g)— fog

corresponds to matric multiplication

Smxn X Snxp Smxp

(A,B)— AB

In particular, Endp(M™) = S™*" = M, (S) is an isomorphism of rings.

For a more general result, which shows how to represent homomorphisms
of sums of different R-modules into other such sums, see Chapter 0, Exercise
10.

Proof: We'll give the setup and let the reader check the details. Given
fiM™ — M™, let a;; be the composite

MM oM oM

where the first map is ‘injection of the }-th summand’ and the last map is
‘projection onto the i-th factor’. This gives the correspondence f — [a;],
where [o;;] is an m X n matrix with elements in S.

In the other direction, given [a;;], we define

n
f(z1,...,zn) = (¥1,+-+,Ym)  where yi:Zaij z;.

=1

For an element r of a ring R, let T, : R — R denote the R-linear map
T, (z) = zr (note that the natural choice T, (z) = rz is not R-linear). This
gives a function

R EndR(R)

rP——)TT

which fails to be a homomorphism of rings since multiplication is back-
wards, namely T, o T, = Ts,. If R is commutative, then T, = T,,, and
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so this map does give a homomorphism. This homomorphism is one-to-one
since T, = T, implies in particular that r = T,.(1) = T, (1) = s, and is onto
since f = Ty() for any f € Endr(R). Thus Endr(R) ~ R if R is commu-
tative. In general, the problem of “backwards multiplication” is corrected
by looking at the opposite ring R° of R, which has the same additive
group as R, but has multiplication defined by r - s = sr (see Chapter 0,
Exercise 25 for properties of the opposite ring). By the same argument, it
is clear that Endg(R) = R° f9r any ring R. Note that this is consistent
with the case when R is commutative, for then R ~ R°.

We now look at Proposition 1.7 in the special case of modules over a
division ring. The theory of modules over a division ring D is very much
like the theory of vector spaces over a field. In particular, any D-module is a
direct sum of copies of D (by the usual proof for vector spaces over a field),
and (by Proposition 1.7) we can represent any D-linear map D" — D™
as an m x n matrix with entries in Endp(D) ~ D°; that is

Endp(D™) & M, (Endp(D)) = M,(D°).

Notice that if D is a field then D° =~ D, and we obtain the well-known
result from linear algebra that linear transformations can be represented by
matrices with entries in the base field, with composition of transformations
corresponding to matrix multiplication.

We conclude this section with a theorem that gives us some idea of what
the endomorphism ring of a semisimple R-module looks like for an arbitrary
ring R. In order to do this we must make one additional (though not too
restrictive) assumption. We will need

Definition: A semisimple module has finite length if it is a finite direct
sum of simple modules.

This definition is a special case of the definition of finite length for ar-
bitrary modules. For the more general definition of finite length, see the
exercises in Chapter 0. The statements that follow also hold for the more
general definition, although the proofs are a bit messier.

Proposition 1.8 If M is a semisimple R-module of finite length, then
Endg(M) is isomorphic to a finite product of matrix rings over division
TiNgs.

Proof: By grouping together isomorphic simple summands of M we can
write

k
i=1
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with M; simple and M; # M; if i # j (the M™ are called the homoge-
neous or isotypic components of M). Since Hom(M;, M;) =0fori # j,
clearly any endomorphism of M must take each isotypic constituent into
itself. Thus we have

Endp(M) =~ Endp(®f_, M)

~ HLI Endg(M) by Chapter 0, Exercises 8 and 9
and the above comment
~ [15_, Mo, (Endg(M;)) by Proposition 1.7.
=1 1

and Endg(M;) is a division ring for each i by Schur’s Lemma. O

This proposition shows that for semisimple R-modules M, we can think
of Endr(M) as isomorphic to the ring of matrices of the form

4, 0 O0 O
0 A2 0 O

0 0 0 A4,

where A; is an n; X n; matrix with elements in the division ring Endg(M;).
This is a particularly concrete way of describing semisimple R-modules.

Semisimple Rings

This section introduces the concept of semisimple ring. Semisimple rings
arise in diverse areas of mathematics such as number theory, representation
theory, differential geometry and analysis. Understanding their structure
will be one of our goals. Semisimple rings will also provide us with many
examples of semisimple modules.

Definition: A ring R is a (left) semisimple ring if R is semisimple as a
left R-module.

Remark: There is also an obvious notion of “right semisimple” . We shall
soon see, however, that this notion coincides with that of “left semisimple”,
so we shall henceforth drop the qualifier “left”.

We now give two other conditions which are equivalent to semisimplicity
of a ring. This will be our first example of how the structure of a ring may
be deduced from information about modules over that ring. For those not

familiar with the definition of exact sequence or split exact sequence, see
Chapter 0.
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Theorem 1.9 Let R be a ring. Then the following are equivalent :
(1) R is a semisimple Ting.

(2) Every R-module is semisimple.

(8) Every short exact sequence of R-modules splits.

Moreover, if these conditions hold then R has finite length as an R-
module and every simple R-module is isomorphic to a simple constituent
of R. In particular there are only finitely many simple R-modules (up to
isomorphism,).

Proof:

(1) implies (2): If R is a semisimple R-module, then B R is semisimple
for any such sum. Any R-module M is the quotient of some free mod-
ule @, R (Chapter 0, Exercise 3), hence is semisimple since quotients of
semisimple modules are semisimple (Corollary 1.5).

(2) implies (3): This follows immediately from the fact that every sub-
module of a semisimple module is a direct summand ( Corollary 1.5).

(3) implies (1): Given a submodule I of R, looking at

shows that, by (3), I is a direct summand of R. R is thus semisimple by
Proposition 1.6.

If the above three conditions hold, then R ~ ,.; M; as modules for
some simple R-modules M;. But R is finitely generated (by 1 € R) as an R-
module, so I is finite. Thus R has finite length. If M is a simple R-module,
we have

@MiiR—»M
el

with the second map onto (Proposition 1.1). Since M is simple, only one
of the maps M; — M is nonzero, and so must be an isomorphism. Thus
the simple R- modules are precisely the M;, and there are finitely many of
them. O

It is worth re-emphasizing that the only simple R-modules are those
occuring in the representation of R as a direct sum of simple modules.

Examples:

1. Any division ring D is semisimple because it has no proper (left)
ideals; hence it is a simple D-module.
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. Theorem 1.9 says that semisimple rings are, as modules, finite direct
sums of simple submodules. Since simple Z-module are just cyclic
groups of prime order, and since Z # 3", ... Z/pZ for any such finite
sum, it follows that the ring Z is not semisimple. Indeed, the homo-
geneous (i.e., having just one homogeneous constituent) semisimple
Z-modules are just the elementary p-groups, and the general semisim-
ple Z-module is a direct sum of such.

. If F is a field, then F[z] is not semisimple for reasons similar to the
above.

. One can check that Z/nZ is semisimple if n is square-free. Similarly,
for a field F, Flz]/(f) (F a field) is semisimple if f is square-free.

. If D is a division ring, V a finite dimensional vector space over D, then
the matrix ring Endp(V') is semisimple. Further, all simple modules
over Endp(V) are isomorphic.

Proof: Choose a basis {e1,...,€e,} for V and define

R=FEndp(V) — V&0V
f"'_)(f(el)v"‘vf(en))

We claim that the above map is an isomorphism of R-modules: It is
a homomorphism since ¢, the evaluation map at v, is R-linear, as
seen by

eo(hf) = (hf)(v)
= h(f(v))
= h(ew(f))-

The map is one-to-one since f is determined by what it does to a
basis, and is onto since, given any function on a basis, there exists an
f € Endp(V) extending that function.

Thus, since V is a simple Endp(V)-module (see the example after
Proposition 1.1), we see that Endp (V) is a semisimple ring. By The-
orem 1.9, every module over Endp(V) is a direct sum of simple mod-
ules (namely copies of V). O

Let us look at the above in terms of matrices, where we can give
a convenient family of simple submodules of the semisimple module
My (D°) = Endp(V) which illustrates the decomposition concretely.
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The spaces of column vectors

0 a4 0
V'i — ag;
0 Ani 0

are simple submodules of the semisimple module M,,(D°) = Endp(V)
and further M,(D°) = V1 & -+ ® V,,. Note again that the V; are
mutually isomorphic, so there is a single simple module (up to iso-
morphism).

Note: This result is not true if V' is not finite-dimensional (see Exercise
28).

6. If R and S are semisimple rings, then Rx S is semisimple. This can be
seen from the fact that if M is an R x S-module, then M = M; ® M,,
where M, is an R-module and M3 is an S-module (see Chapter 0,
Exercise 6).

Examples 5 and 6 imply that, gi&en division rings D; (i=1,...,n) and
finite dimensional vector spaces V; over D;, [, Endp,(V;) is semisimple.
For emphasis we state this as

Proposition 1.10 Any finite product of matriz rings over division rings
is semisimple.

Wedderburn Structure Theorem

Theorem 1.9 says that a semisimple ring R is isomorphic, as an R-module,
to a finite sum of simple R-modules. We can also give such a decomposition
of R into rings instead of modules; in fact, an even more precise result can
be given. Proposition 1.10 states that any finite product of matrix rings
is semisimple. The fact that all semisimple rings are of this form is the
content of the next theorem. This will be our second example of how the
structure of a ring may be deduced from information about modules over
that ring,.

Theorem 1.11 (Wedderburn Structure Theorem) Every semisimple
ring R is isomorphic to a finite direct product of matriz rings over division
rings. If R is commutative, then R is isomorphic to a finite direct product
of fields.



VVEAJErVULLL OULUTUULY & adusrd viad aa

Proof: Since R is semisimple as a ring (and thus of finite length as an
R-module, by Theorem 1.9) we have, by Proposition 1.8, that Endg(R)
is isomorphic to a finite product [ M, (D;) of matrix rings over division
rings D;. But Endg(R) =~ R°. Thus

R~ (R%)° =~ [[[Mn (Ds))°
~ HMTL:(D:’)

The last isomorphism comes from the fact that M, (D)° = My (D°), as
can be seen by using the transpose. The second statement of the theorem
is clear. OO

Before elaborating on the Wedderburn Structure Theorem, we give one
immediate consequence which makes life a bit less complicated.

Corollary 1.12 A ring is left semisimple if and only if it is right semisim-
ple.

Thus we refer only to semisimple rings without mention of left or right.

Definition: A ring is called simple if it has no non-trivial two-sided ideals.
This is, in general, weaker than saying that the ring is simple as a module
over itself; any ring which is simple as a module over itself is a simple
ring, but not conversely. Exercise 5 of this chapter shows that a ring of
n X n matrices over a division ring is simple, although it may contain many
nontrivial left ideals. It should be noted that some authors (e.g., Lang and
Bourbaki) define “simple” for rings so that “simple” implies semisimple.
As we shall see, one more condition needs to be met for our simple rings
to be semisimple.

Combining the fact that matrix rings are simple with the Wedderburn
Structure Theorem, we see that

Every semisimple ring R is isomorphic to a finite product of
simple rings Ry,...,R,.

We can think of each R; as 0 x ... x R; x ... x 0 sitting inside of R =
Ry x...x R,, so that each R; is a two-sided ideal in R (but not a subring!)
and thus an R-submodule of R. It is easy to check that if i # j then R; % R;
as R-modules, even if R; ~ R; as rings (Chapter 0, Exercise 7).

We also know what all of the simple R-modules are: each R; is isomorphic
to a matrix ring M, (D;), and, being simple, has a unique isomorphism
class of simple modules (by the Structure Theorem for Simple Artinian
Rings to follow). The unique isomorphism class of simple left (right) R:-
modules is the space generated by any column (row) vector (check this).
Thus R has exactly n isomorphism classes of simple modules. This follows
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from the fact that if M is an R x S-module, then M = M, ® M,, where
M, is an R-module and M is an S-module (Chapter 0, Exercise 6).

The Wedderburn Structure Theorem is a special case of a more general
theory of rings of projective dimension zero. For more information about
this topic, see Chapter 7.

We have shown that every semisimple ring can be written as a direct
product of simple rings. The following theorem tells us that we can do this

uniquely.

Theorem 1.13 (Uniqueness Theorem for Semisimple Rings) If

R=]]rR and R=ﬁR;
i=1

are two product decompositions of a ring R, where each R; and R’j is a
simple ring, then n = m and each R; is some R;.

Remark: The following proof will show that these simple factors are unique
in the sense that each R; really is equal to, not just is isomorphic to, some

A

Proof: First note that for each i, R;R = R;, since we may think of each
R; (and R’]) as a two-sided ideal in R. Applying this to the equation R =
[T}, R; gives R; = H;’;l R;R. Now each R;R) is a two-sided ideal of R;
and is thus either zero or R;. Since every R,R; isn’t zero, there is an R;
with R; = R,R;. Now R, = R,R; is also a two-sided ideal of R;, and so
must equal R. Thus we see that R; = R’. 00

There is an analogous, but weaker, uniqueness theorem for semisimple
modules, the proof of which we leave as an exercise (see Exercise 25).

Simple Rings and Further Applications

It follows from the definitions that any simple module is semisimple. Look-
ing at the way we defined these concepts for rings, however, the analogous
fact is not clear. In fact it is not true that every simple ring is semisimple!
(See Exercise 28 for an example.) The problem is that it is possible for
a ring (even a simple one) to contain an infimte descending sequence of
distinct left ideals I} D I D I3 D -+, but Theorem 1.9 shows that any
semisimple ring has finite length, and so no such descending chain of ideals
exists in a semisimple ring. If we assume that this does not happen in the
simple ring R, however, then it will be true that R is semisimple. A ring
satisfying such a descending chain condition is called left artinian. For
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those not familiar with artinian (and noetherian) rings and modules, see
the section on chain conditions in the exercises of Chapter 0 for additional
information.

Before proving that any simple artinian ring is semisimple, we shall intro-
duce two useful concepts that will aid in our understanding of the structure
of rings.

For a vector space V over a field F, V can be written as a direct sum of
one-dimensional subspaces, each of which is isomorphic (as an F-module)
to the simple module F'. Thus V can be broken up into simple pieces each
of which looks the same. The next definition generalizes this concept.

Definition: A semisimple module is called homogeneous if it is a direct
sum of a collection of simple modules all of which are isomorphic to a fixed
simple module S. We also say that the module 1s homogeneous or isotypic
of type S.

To prove the Structure Theorem for Simple Artinian Rings, we need a
lemma concerning endomorphisms of homogeneous semisimple modules.
Recall that a submodule M’ C M is said to be stable under the endomor-
phism ¢ : M — M if (M’) C M’. For homogeneous semisimple modules,
we can say exactly which submodules are stable under all endomorphisms;
namely, we have :

Lemma 1.14 Let M be a homogeneous semisimple module. Then the only
submodules of M that are stable under all endomorphisms are 0 and M.

Proof: Suppose M’ is a proper non-zero submodule. Since M is semisimple,
M’ is a direct summand, say M = M’ & M". Note that both M’ and
M" are semisimple and in fact are homogeneous of the same type as M
(see the proof that submodules and quotients of semisimple modules are
semisimple in Corollary 1.5). Hence Hom(M', M"') # 0. But then it is easy
to find endomorphisms of M which don’t stabilize M’, for example the
composition

MZS M 2 M M,

The converse to this lemma is also true, as is shown in Exercise 11. That
is, if 0 and M are the only submodules of M which are stable under all
endomorphisms of M, then M is semisimple and homogeneous.

For a vector space V over a field F, no non-zero scalar annihilates a non-
zero vector; that is, any (non-zero) one-vector set is linearly independent.
The more general notion for modules is the following :

Definition: An R-module M is said to be faithful if, for every r € R,
rM = 0 implies that » = 0.
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The following theorem ties together a few ways we have been looking at
the structure of rings, and in particular proves our claim that any simple
artinian ring is semisimple. This theorem provides another nice example of
the interplay between the structure of a ring and the structure of modules

over that ring,.

Theorem 1.15 (Structure Theorem for Simple Artinian Rings)
Let R be a ring. Then the following are equivalent :

(1) R is a simple artinian ring.

(2) R is isomorphic to a matriz ring over a division ring.

(8) R is semisimple and all simple modules over R are isomorphic.

(4) R is homogeneous and semisimple as an R-module.

(5) R is artinian and has a faithful simple module.

This theorem is sometimes called the Wedderburn-Artin Theorem .

Proof: (5) implies (4): Let M be a faithful simple module. We’ll show
that R is isomorphic to a submodule of M™ for some n. Consider all R-
homomorphisms f : R — M™ for various n, and choose one with minimal
kernel (we can do this since R is artinian). We claim that f is one-to-one,
for if f(r) = 0 and r # 0, then since M is faithful there is an m € M with
rm # 0. Define

R— MM
by
z — (f(x),zm)

This map has smaller kernel than f, giving a contradiction. Thus f is
one-to-one and so R 1s a submodule of the homogeneous semisimple module
M™. Hence R is homogeneous and semisimple.

(4) implies (3): This follows immediately from the definitions and Theo-
rem 1.9.

(3) implies (2): This follows immediately from the Wedderburn Structure
Theorem and the comments following it.

(2) implies (1): This is simply the fact that every matrix ring over a
division ring is both simple (Exercise 5) and artinian (Chapter 0,Exercise
48).

(1) implies (5): Note that for any module M, Ann(M) = {r € R|rM = 0}
is a two-sided ideal of the simple ring R and 1 ¢ Ann(M), so Ann(M) = 0.
Thus any R-module is faithful. Since R is artinian, R has some simple
module; in fact, any module has a simple submodule, for any descending
chain of ideals must eventually stabilize, and the module to which the
sequence stabilizes must clearly be simple. Thus R has a faithful simple
module. This completes the proof of the Theorem. 01
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Remark: It is easily shown (see Exercise 18) that if R satisfies the hy-
potheses of Theorem 1.15 and M is a simple R-module with endomorphis-
m ring D (remember D will be a division ring), then the structure map
R — Endp(M) is an isomorphism. This gives an explicit realization of

(2).

We apply the ideas of this chapter to prove a classical result due to
Burnside.

Corollary 1.16 (Burnside) Let R be an algebra over a field k and let
M be a simple R-module such that dimg(M) < oo. Also suppose that
Endr(M) = k (e.g., if k is algebraically closed, cf. Corollary 1.3). Then
the structure map R — Endy(M) is onto.

Proof: The diagram

R ———— End, (M)

R/Ann(M)

commutes, where the homomorphism from R to End(M) is the structure
map of M as an R-module. Now

(1) M is a faithful R/Ann(M)-module (always), and hence
(2) R/Ann(M) — Endi(M) and the latter is finite dimensional over k
since M is finite dimensional over k. Thus R/Ann(M) is artinian since it
has finite dimension.

Now (1) and (2) are just condition (5) of Theorem 1.15 for the ring
R/Ann(M), hence R/Ann(M) ~ Endy(M) via Remark (2) above, and we
are done. O

We now give a corollary which will be useful later on in our study of the
Brauer group. We give this corollary, which shows that every element in the
Brauer group (defined in Chapter 4) has an inverse, 1n order to demonstrate
some of the techniques used in this chapter.

Corollary 1.17 Let k be a field Let R be a simple k-algebra of finite
dimension n whose center is k. Then R ®y R° = M, (k).

Proof: R is an R-R bimodule relative to k, hence an R ®; R°-module
(Chapter 0, Exercise 28). It is a simple R ® R°-module since it has no
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non-zero two-sided ideals (two-sided ideal = R ®; R°-submodule of R).

Consideration of the map

Endrg,r°(R) — Z(R)

f— (1)
shows that
Endgg, re(R) = Z(R) = k.
So by Corollary 1.16
R @i R° — Endi(R) = M, (k)

is onto. But both the domain and the range have k-dimension n
the map is an isomorphism. O

2 and so

Summary

Throughout this chapter we have seen several characterizations of semisim-
ple rings. In the exercises, we will introduce other properties of a ring which
are equivalent to semisimplicity. Since it is useful to keep all of these prop-
erties in mind when looking at such rings, we give a summary of several
properties which characterize semisimple rings :

Theorem 1.18 For a ring R the following are equivalent:

(1) R is a semisimple ring; i.e., R is semisimple as o left R-module.

(2) Every left R-module is semisimple.

(3) Every short exact sequence of left R-modules splits.

(4) Every left R-module is projective.

(5) Every left R-module is injective.

(6) R is ring isomorphic to a finite product of matriz rings over division
Tings.

(7) R is the direct sum of a finite number of simple left ideals

Y
=1

where each L; is o simple (as a submodule) left ideal and L; = Re;, where
{ei}r, is a set of orthogonal idempotents such that e; +-e2+ -+ +e, = 1.
(8) R is artinian and has vanishing Jacobson radical.

Moreover, (1)-(5) hold with “left” replaced by “right”.

An explanation of (4) and (5) will be given in the exercises, and an expla-
nation of (8) will be given in Chapter 2. These conditions are included here
for completeness. The proof of this theorem (except for (8)) is contained in
this chapter partly in the exposition and partly in the exercises.
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Exercises

A Lonely, Ungroupable Exercise

1. Let D be a division algebra which has finite dimension over the field
k. For each a € D show there is a monic polynomial in k[z| which has
a as a root. Conclude that if k is algebraically closed, then k = D.
Note that this proves Corollary 1.3.

Simplicity

2. Let R be a ring (with 1) such that the only left ideals of R are 0 and
R. Show that R must be a division ring; that is, if R is simple as a
left R-module, then R is a division ring. If the hypothesis that R has
an identity 1s dropped, the result no longer holds. Give an example
to show this. In fact, the type of example you give is unique.

3. Show that the assumption “every non-zero element is a generator” in
Proposition 1.1 is necessary.

4. Determine all simple R-modules, where
(a) R=12.
(b) R = Clzl.
(c) Q/(z* —5)
(c)
(d) R = Clz,y].

(e) R is the set of continuous, real-valued functions with domain [0, 1].

R is a principal ideal domain.

5. Show that the only two-sided ideals of M, (R) are of the form M,,(I)
for some two-sided ideal I of R. Conclude that M, (R) is a simple ring
if and only if R is a simple ring. [Hint: The following may be useful:
Let e;; denote the n x n matrix with 1 in the 7, j position and zeros
elsewhere. These matrices are called the elementary matrices of
M, (R). Clearly {e;; : 1 <i,j < n} is a basis for M, (R) considered
as an R-module. So every element of M,,(R) can be written uniquely
as > a;je;j, and the e;; can be multiplied via the formula

0 ifj#k
€ij€kl =
ey ifj=k.

Note also that elementary row operations correspond to left multipli-
cation by elements of the form
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Eij(r)y=1+re;; re Ri#]j

where I denotes the n X n identity matrix. Similarly, column opera-
tions correspond to right multiplication by such elements.]

Remark: The above exercise can be viewed as a very special case in
Morita theory. Morita theory provides a set of data (called a Morita
context) which gives a categorical equivalence between the category
of R-modules and the category of S-modules, where R and S are rings
forming part of a Morita context. In particular, R and M, (R) are re-
lated by a Morita context. For more on Morita theory, see Jacobson’s
Basic Algebra I1.

Semisimplicity

. Show that the Z-module Q is neither semisimple nor has a simple

quotient. In fact, show that Q is indecomposable : it is not the
direct sum of two proper Z-submodules.

Show that the following conditions are equivalent for a semisimple
module M :

(i) M is finitely generated.

(i) M is a direct sum of a finite number of simple submodules.

(ii1) M has finite length.

(iv) M satisfies both the ACC and DCC.

In particular note that, for a vector space, length equals dimension.
Note that the equivalence of (iii) and (iv) is Exercise 46 of Chapter
0.

Prove that the homomorphic image of a semisimple ring is semisimple.

Let R be a ring and M a semisimple R-module. Let S and S’ be
isomorphic simple submodules of M via the isomorphismg: S — §'.

(a) Show that there is an R-isomorphism f : M 5 M such that
the restriction of f to S is the given isomorphism g; in particular,
HOEERE

(b) Show that this isn’t true if § and §’ are isomorphic but otherwise
arbitrary. [Hint : look at an infinite-dimensional vector space and an
infinite-dimensional proper subspace.]

Let N be a submodule of the R-module M. If N and M/N are
semisimple, does it follow that M is semisimple?
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Let M be a module. Show that 0 and M are the only submodules
of M stabilized by every endomorphism of M if and only if M is
semisimple and homogeneous(cf. Lemma 1.14).

Prove that a module M is semisimple if and only if every cyclic sub-
module of M is semisimple.

Some Centers

Let R be a ring. The center of R, denoted Z(R), is {z € R|zr =72
for all » € R}. Z(R) is a commutative subring of R.

(a) Show that Z(R x S) ~ Z(R) x Z(S).

(b) Show that Z(M,(R)) ~ Z(R).

(c) Show that Z(D) is a field if D is a division ring.

(d) Compute Z(7,(R)) for 7,(R) the ring of n x n upper triangular
matrices over R.

(e) Show that the center of a semisimple ring is a product of fields,
hence is semisimple.

(f) Let D be a division ring and V a non-zero vector space over D.
Let k = Z(D) and R = Endp(V). There is a homomorphism k — R
given by the action of k on V by scalar multiplication. Show that this
induces an isomorphism k =~ Z(R).

(g) Let k be a field and let G be a group. Describe Z(k[G]). [Hint: If
g € G has only finitely many conjugates, consider the element C, in
k[G) which is the sum of the conjugates of g.]

Let R be a semisimple artinian ring,.

(a) Prove that, if I is a two-sided ideal of R, then the canonical
homomorphism Z(R) — Z(R/I) is surjective.

(b) Let M be a left R-module and let S = Endg(M). Prove that the
homomorphism

T:Z(R) — Z(S)
defined by
mT(r)=rm forre Rme M

is surjective. Note that we view M as an R — S-bimodule.

(c) Assume now that R is simple artinian, and let D be the division
ring such that R =~ M, (D). Prove that Z(R) = Z(D) as fields. [Note
that this can be deduced from part (b) or shown directly.]
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15.

16.

17.

18.

19.

20.

21.
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Direct Summands

Let M be an R-module and M’ a submodule. Prove that M’ is a
direct summand of M if and only if M has a submodule M" which
maps isomorphically onto M /M’ under the canonical projection M —

M/M'.

If M’ is a direct summand of M, prove that any two complements
for M’ are isomorphic (recall that a complement of M’ in M is a
submodule N with M = M’ @ N). Give an example to show that two
complements are not necessarily equal.

Let M be a module such that every submodule is a direct summand.
Show that M is semisimple as follows:

(a) Show that every submodule of M inherits the property that each
of its submodules is a direct summand.

(b) Show that M contains a simple submodule : Choose any finitely
generated non-zero submodule M’ C M (e.g., M’ could be cyclic).
Let M” C M’ be a maximal submodule not equal to M’ (why do
such submodules exist?). Hence M'/M" is simple and by (a) there is
an X C M’ with M’ = M" & X and with X ~ M’'/M" simple.

(c) Let M, be the submodule of M generated by all simple sub-
modules, which is thus a direct sum of simple modules. Then M =
M, & M, for some submodule M. Applying (a) and (b) we see that
if My # 0, then it contains a simple submodule and we get a contra-
diction.

More Information from the Wedderburn Structure Theorem

Let R be a semisimple ring, let {M;,...,M,} be a set of repre-
sentatives for the isomorphism classes of simple R-modules, and let
D; = Endp(M,;). The action of R on M; defines a homomorphis-
m ¢; : R — Endp,(M;). Combining these gives a homomorphism
®: R — [[._, Endp,(M;). Prove that M; is finite dimensional over
D, and that ® is an isomorphism.

Prove that if R is a commutative semisimple ring, then the canon-
ical map R — [[; R/I is an isomorphism, where I ranges over the
maximal ideals of R.

With the notation of Exercise 18, let n; = dimp,M;. Prove that
n; is the multiplicity with which M; occurs in R, regarded as a left
R-module.

Prove that if R is a semisimple ring then the isotypic components of
R are the minimal two-sided ideals of R. Prove that every two-sided
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ideal of R is a product of these and conversely. Note that the isotypic
components are not subrings.

(a) Prove that R is a semisimple ring if and only if R is the direct
sum of a finite number of simple left ideals

R=DL.
i=1

where each L; is a simple (as a submodule) left ideal and L; = Re;,
where {e;}7_, is a set of orthogonal idempotents such that e, + e +
oo te, =1,

(b) Prove that if {e1,...,em} is a set of orthogonal idempotents in
My (D), D a division ring, then m < n.

This exercise provides a sketch of a clever proof, due to M. Rieffel, of
part of the Structure Theorem for Simple Artinian Rings. Let M # 0
be a left ideal of a simple ring R. Viewing M as a left R-module,
let S = Endg(M),T = Ends(M), and ¢ : R —> T be the natural
homomorphism. Assume that R possesses no nonzero proper two-
sided ideals, so that ¢ is injective.

(a) Show that (M) is a left ideal of T'. [Hint: Show that the mapping

M —-T
T — (1)

is a homomorphism of T-modules by using the fact that right multi-
plication by elements of M yields elements of S|

(b) Show that +(R) is a left ideal of T'. [Hint: Observe that MR = R
and apply v and part (a).]

(c) Show that 1 is an isomorphism.

Let A be a simple k-algebra with center k such that [4 : k] = p? with
p a prime. Prove that either A is a division algebra or A ~ My(k).
Uniqueness Theorem for Semisimple Modules

Prove the Uniqueness Theorem for Semisimple Modules: If M is an
R-module and if

MzéMi and MzéM]’.
i=1 j=1

are two direct sum decompositions of M with simple summands M;
and M, then n = m and there is a permutation = of {1,...,n} with
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M; ~ M, foreachi=1,...,n. [Hint : induct on the smaller of m
and n.]

(a) Show that the Uniqueness Theorem for Semisimple Modules is not
true if we replace “is isomorphic to” by “is equal to”, in contrast with
the Uniqueness Theorem for Semisimple Rings. [Hint : Show that if
M = RZ? is viewed as an R-module, then there are infinitely many
ways to decompose M as the direct sum of two simple submodules.]

(b) Show that the ring R of 2 X 2 matrices over the real numbers
has an infinite number of distinct proper left ideals, any two of which
are isomorphic as left R-modules. Then show that there are infinitely
many distinct pairs (I, I’) of minimal left ideals of R with R=I® I’
as modules (remember that minimal left ideals correspond to simple
left R-modules).

Maschke’s Theorem

Let k be a field and G be a finite group.

(a) Let M be a k[G]-module with submodule N. Since k is a field, we
know by Theorem 1.9 that the short exact sequence

O—»N—»MLM/N—»O

splits as a sequence of k-modules (here p is the canonical projection).
Denote the splitting by s : M/N — M. Clearly there is no reason
to believe that s is a homomorphism of k[G]-modules.

Define § : M/N — M by the formula S(z) = 3 c;95(97'2).
Compute po S.

(b) Show that if |G| is invertible in k, then there is a k[G]-splitting
of the above sequence. Conclude that k[G] is a semisimple ring.

Remarks : This result, known as “Maschke’s Theorem” | is of fun-
damental importance for representation theory. Given a group G,
we study C[G], which is just (by Maschke’s Theorem and Wedder-
burn’s Theorem) a product of algebras of the form M, (C). Since
we understand completely the structure of semisimple C-algebras,
the stratagem of embedding a mysterious object under study (the
group G) into an object with a richer and therefore better-understood
structure (the algebra C[G]) can be expected to yield great dividend-
s. In fact, many important theorems in the modern structure theo-
ry of finite groups are proved by representation-theoretic methods.
See Chapter 6 for more on this, in particular for an application of
Maschke’s Theorem in proving Burnside’s p%¢® theorem, a much cel-
ebrated result in group theory.
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For those who know some analysis, think of G as a discrete topological
group with the counting measure p normalized to be a probability

measure; ie., for X C G, p(X) = mllgl&, s0 u(G) = 1. Then sums
can be written as integrals; e.g., &7 2., ag becomes [ a(g)du(g).
Then the formula for the above splitting assumes the form :

1 m E; lm s(¢g7lz
6% 1q Zg (g~ /Gg (9 '2)dp(g)-

This should look familiar - it’s just the convolution of the identity
with the map s. In fact, if G is any compact topological group, there
exists a unique left-invariant measure (i.e., u(X) = p(gX) for all
measurable X C G) with u(G) = 1, called the Haar measure on G.
For example, the Haar measure on Euclidean space R™ is Lebesgue
measure, and the Haar measure on the circle S' is the usual “z--
arclength” measure. The fundamental facts about group representa-
tions work just as well in this setting. Indeed, various formulae arising
in the representation theory of finite groups are called “Fourier in-
version” formulae, because that’s exactly what’s happening.

(c) Prove the converse of part (b). [Hint : Look at the exact sequence
0—->A—->k[G]——E->k—->O

where € is the ‘augmentation map’ €(}"rqg9) = 3 r, and A is the
kernel of € (A is often called the augmentation ideal of k[G]). Here
k is viewed as a k[G] — module via e. Show that this exact sequence
doesn’t split when the characteristic of k divides |G|.]

Some Counterexamples

(a) If V is a vector space of countably infinite dimension over a field
k, show that the set of finite rank operators (i.e., those elements of
Endy (V) whose image is finite dimensional) forms a two-sided ideal
in End,(V); hence Endi(V) is not simple, in contrast to the fact
that finite endomorphism rings of finite dimensional vector spaces
are simple.

(b) Use part (a) to construct a simple ring which is not semisimple.

Projective and Injective Modules

A module P is called projective if any of the following three equiv-
alent conditions holds :
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(i) Given a homomorphism f : P — B and a surjective homomor-
phism p: A — B, there exists a homomorphism g : P — A making
the following diagram commutative :

)

(ii) Every surjection p : M — P splits, i.e., there is a homomorphism
s: P —+ M such that ps = 1p.

(ili) P is a direct summand of some free module F.

(a) Show that these three conditions are equivalent.

(b) Show that an arbitrary sum of modules is projective if and only
if each of the summands is projective.

30. (a) Show that the projective Z-modules are precisely the free abelian
groups; i.e., every projective Z-module is free. Generalize this to prin-
cipal ideal domains.

(b) Let R be the ring of two-by-two matrices over a field k, and let T
be the left ideal of R consisting of matrices whose second column is
zero. Show that the left R-module I is projective but not free.

31. A module @ is called injective if either of the following equivalent
conditions holds :

(i) Given a homomorphism j : A — @ and an injective homomor-
phism i : A — B, there exists a homomorphism h : B — (} making
the following diagram commutative :

i

00— A——>3B

J

(ii) Every injection i : Q@ — M splits.
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33.

34.

35.

(a) Show that these two conditions are equivalent.

(b) Show that an arbitrary product of modules is injective if and only
if each factor is.

Remark : Injectivity is a concept “dual” to projectivity; that is, the
respective parts (i) and (ii) of the equivalent definitions are obtained
from each other by reversing the direction of the arrows. Is there an
analogue (or rather dual) to definition (iii) of Exercise 29 for injective
modules?

Prove that every vector space over a division ring is both projective
and injective.

Let R be a ring. Show that the following statements are equivalent :
(i) Every R-module is projective.

(ii) Every short exact sequence of R-modules splits.

(ili) Every R-module is injective.

In view of Theorem 1.9, this gives us two more equivalent definitions

of a semisimple ring.

Prove that Q is not a projective Z-module, thus providing another
proof that Z is not a semisimple ring.

Projective modules are quite common, whereas injective modules,
though still extremely useful in many contexts, are harder to come
by. This exercise gives a way of recognizing injective modules. Prove
the following : The R-module @ is injective if and only if for each
left ideal L of R, every homomorphism of L to @ can be extended to
a homomorphism of R to Q. [Hint : One direction is trivial. For the
other direction proceed as follows :

(i) Given a diagram

consider the collection S of all pairs (B;, f;) where image(i) C B; C
B and f; : B — Q satisfies f;i = f. Partially order S by saying
that (Bj, f;) > (Bk, f) if both B; D By, and the restriction of f; to
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36.

37.
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By is fi. Apply Zorn’s Lemma to get a maximal element of S; call it

(B07 fO)

(ii) Now show that Bo = B : if By # B, choose ¢ € B with ¢ ¢ By
and let L = {r € Rlrc € Bo}, a left ideal of R. Show that the
formula g(b) = fo(bc) defines a homomorphism from L to Q. Apply
the hypothesis to get a homomorphism ¢’ : R — Q. If rc € By,
show that f(rc) = r¢'(1). Let B’ = By + Rc, which contains but
is not equal to Bo. Show that f' : B — Q@ given by the formula
f'(bo + r¢) = fo(bo) + rg’(1) is a well-defined homomorphism which
restricts to fo on Bp. This should yield a contradiction and conclude
the proof.]

An abelian group A is divisible if for all ¢« € Aand n € Z,n # 0,
there exists b € A such that a = nb.

(a) Show that direct sums, homomorphic images, and direct sum-
mands of divisible groups are divisible.

(b) Show that an abelian group is divisible if and only if it is injective
as a Z-module.

(a) Show that the additive groups Q, R, and C are divisible.

(b) Show that Q/Z and direct factors of Q/Z, for example the p-
torsion subgroups Zp» = {r € Q : p"r € Z for some n} , are divisi-
ble.

(c) Show that no finite group is divisible. Show that no free abelian
group is divisible.
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The Jacobson Radical

In Chapter One we developed a structure theory for semisimple rings, as
summarized in Theorem 1.18. This theory used, for the most part, proper-
ties of modules over a semisimple ring in order to characterize such a ring.
In this chapter, we give a more intrinsic characterization of semisimple
rings.

What follows is part of a general theme in any structure theory. The
idea is to single out some “undesirable” property of the object one wishes
to study; in our case the information is captured by the Jacobson radical
of a given ring. One then studies only those objects which don’t have this
property; for example, those rings whose radical is zero. This can be a tricky
business, for one must strike a balance between studying a class of objects
large enough to be interesting and useful, yet small enough to be tractable.
A good example of such objects, as we have seen, are semisimple rings, and
it is this class of objects we are most interested in. Qur explorations using
this philosophy will also provide us with valuable information about rings
which are not semisimple.

Another Characterization of Semisimple Rings

We understand vector spaces over fields quite well. One nice property of
such modules is that no non-zero scalar annihilates a non-zero vector, and
in particular does not annihilate the entire module; that is, a field acts
faithfully on any vector space over that field (recall that an R-module
M is faithful if ann(M) = 0). Moving from the situation of a field to an
arbitrary ring R, we want to come up with an algebraic object that captures
the information of how far off we are from having R act faithfully on some
simple R-module. We will now define such an object - the Jacobson radical
J(R). The radical is an ideal consisting of those elements which can’t be
detected by simple modules. Accordingly, it will turn out that J(R) = 0
precisely when R has “enough” simple R-modules; and J(R) will vanish if
there exists a faithful simple R~module.

Definition: The (Jacobson) radical of a ring R, denoted J(R) , is the set
of those r € R such that r € ann(M) for every simple (left) R-module M;
that is,



J(R) = ﬂ ann(M).

M simple

If J(R) = 0, we say that “R has no radical.”

Remarks:

1. It is easy to check that J(R) is a two-sided ideal. It is also easy to

check that ann(M) is a maximal left ideal for each simple module M,
and that, conversely, each maximal left ideal I is the annihilator of
some simple R-module (namely, R/I). This is true because, &s stated
in Proposition 1.1, simple R-modules are precisely R/I for maximal
left ideals I. Thus we see that, alternatively,

max. left
ideals I

This shows that J(R) can be intrinsically defined. Such a definition
is useful in computing the Jacobson radical, as long as we can get
sufficient information on the maximal ideals of the ring at hand. This
is the case in examples 1, 2, and 4 below. Note that, in particular,
J(R) # R.

. Some authors say “R is semsimple” when referring to rings with
J(R) = 0. This is, in general, not the same as our definition of
the word; the ring Z, for example, has vanishing radical but is not
semisimple. Such people (usually ring-theorists) would say “semisim-
ple with minimum condition” when referring to our definition of
semisimple; here “minimum condition” refers to the descending chain
condition. Theorem 2.2 will show that their “semisimple with mini-
mum condition” really does coincide with our definition of semisim-
ple.

We now give a few examples where the radical can be computed explicitly.
Other examples may be found (and worked out) in the exercises.

Examples:
1. J(D) =0 for D a division ring, since D has no (nontrivial) maximal
left ideals.

2.J(Z)= () rZ=0.

p prime
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3. J(Z/p"Z) is the unique maximal ideal pZ/p"Z of Z/p"Z, which is
non-trivial for n > 2. For the proof of this fact, see the discussion after
Proposition 2.8.

4. J(M,(R)) = M,(J(R)). The proof of this fact is Exercise 16.

It should be noted that many radicals other than J(R) have been‘ con-
structed, such as the prime radical and the nilradical (which is treated in
Exercise 19). These radicals capture other “undesirable” properties of a
ring R. For an extensive treatment of radicals see M.J. Divinsky, Rings
and Radicals, and M. Gray, A Radical Approach to Algebra.

The radical J(R) is the intersection of all maximal left ideals of R. This
intersection may be infinite, and it would be nice to know if there is some
finite family of maximal left ideals whose intersection is precisely J(R);
thus making J(R) easier to deal with. In general, it is not true that such
a finite family exists; some sort of “finiteness condition” must be put on
the ring. Since the radical involves intersections, one might guess that the
appropriate finiteness condition to put on the ring R would be that there
are no infinite descending chains; that is, that R is artinian (see Chapter
Zero for the definition of artinian ring). This will suffice, as we now show.

Lemma 2.1 If R is an artinian ring, there is a finite family {L,,...,L,}
of ideals such that J(R) = (N, L.

Proof: If R has no maximal left ideals other than zero then the lemma is
trivial, so assume otherwise. Let

S ={NL; : {L;} is a finite family of maximal left ideals}.

By assumption S is not empty. Since R is artinian, there exists a minimal
(with respect to inclusion) element @ of S (Chapter Zero, Exercise 43). If
I is any maximal left ideal, then IN Q C Q, so Q@ = I N Q by minimality
of Q. Thus Q C I for all maximal left ideals I; that is, @ C J(R). Clearly
J(R) C Q, and so J(R) = @, an intersection of finitely many maximal left
ideals. 0

Although Chapter One gives seven equivalent characterizations of a semi-
simple ring, it may still be difficult to prove, using only these definitions,
that a given ring is semisimple. Perhaps this is because none of these def-
initions is intrinsic to the ring at hand; each involves different modules
associated with the ring. The Jacobson radical is intrinsic, and can be a
useful tool in determining if a ring is semisimple. The relationship between
the Jacobson radical and semisimplicity is given by the following theorem,
which will complete our list of characterizations of semisimple rings given
in Theorem 1.18.
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Theorem 2.2 R is semisimple if and only if R is artinian and J(R) = 0.

Proof: Assuming that R is semisimple, Theorem 1.9 shows that R has
finite length and is thus artinian. To show that J(R) = 0, first note that
any matrix ring M, (D) over a division ring is simple, so by condition
(5) of the Structure Theorem for Simple Artinian Rings, M, (D) has a
faithful simple module, and hence J(M, (D)) = 0. Alternatively, note that
M (D) has no nontrivial two-sided ideals (Chapter 1, Exercise 5), and
since J(M, (D)) is a two-sided ideal not equal to M,(D), J(Mp(D)) =0.
Since R is semisimple, R is a finite product of matrix rings over division
rings, each of which has trivial radical. The result follows from the fact that
J(R, X Ry) = J(R1) x J(R2) for rings Ry, Ry (see Exercise 5).

Now assume that R is artinian and J(R) = 0. By Corollary 1.5, it suffices
to show that R embeds as a submodule of some semisimple module. Well,
since R is artinian and J(R) = 0, there exists, by Lemma 2.1, a finite
collection {L;} of maximal left ideals whose intersection is zero. Thus the
natural map

R— P R/L;

has zero kernel (note that the image really is a sum since {L;} is finite).
Hence R embeds as a submodule of the semisimple module @, R/L;, and
is thus (by Corollary 1.5) semisimple. O

This theorem gives us a new way of determining whether a ring is
semisimple, at least in the case of artinian rings. It is often easier to com-
pute the radical than to realize one of the seven characterizations given
earlier of semisimple rings. Theorem 2.2 may also be viewed as showing
that, at least for artinian rings, J(R) is a measure of how far R is from
being semisimple.

We now make precise the statement in the beginning discussion of this
chapter that the radical “captures an undesirable property”. In the case
at hand, J(R) consists of elements that are undesirable in the sense that
they annihilate every simple R-module. Since J(R) consists of all these
annihilating elements, the quotient ring R/J(R) should contain no such
elements; that is, R/J(R) should have no radical. This idea has an analog
in any type of radical we define; namely, if J is some radical (Jacobson,
prime, nil, etc.) of R, then R/J should have no radical (of that type). Thus,
for our study of the Jacobson radical, we give the following

Corollary 2.3 R/J(R) has no radical; hence if R is artinian, R/J(R) is
semisimple.



S ApVAUIVG WA vIaL v - -

Proof: R/J(R) has no radical since simple R/J(R)-modules are in one-to-
one correspondence with simple R-modules. If R is artinian, so is R/J(R),
and so R is semisimple by Theorem 2.2. O

Corollary 2.3 is frequently used when proving statements about artinian
rings. The typical argument is as follows : If one wishes to prove a certain
statement concerning an artinian ring R, it suflices to show that the state-
ment holds for R/J(R). Since R/J(R) is artinian and has no radical, it is
semisimple and is thus a product of matrix rings over division rings. This
often reduces the original question to a question about matrices, where
computational techniques may be used. See Chapter Three, Exercise 18 for
an example of this kind of argument.

Properties of the Jacobson Radical

We now explore some of the properties of the Jacobson radical. We also
introduce the concept of nilpotence, which will be useful in describing some
of these properties and in making computations.

We call r € R a nilpotent element if ™ = 0 for some n. Anideal ] C R
is called a nilpotent ideal if I™ = 0 for some n (here I™ denotes a product
of ideals). Note that this is stronger than saying that all of the elements of
I are nilpotent, since I™ = 0 says that all n-fold products riry: -+, (each
r; € I) are zero. If R is commutative and I is a finitely generated ideal,
however, we have : I is nilpotent <= all elements of I are nilpotent <= I
is generated by nilpotent elements.

We shall now show how the radical of a ring may be characterized by
the ring’s nilpotent ideals.

Theorem 2.4 Any nilpotent ideal of a ring R is contained in J(R). If R
is artinian, then J(R) is nilpotent and hence is the largest nilpotent ideal
of R,

Note that J(R) is not necessarily nilpotent if R is not artinian (see
Exercise 20).

Proof: Let I be a nilpotent ideal. We must show IM = 0 for any simple
module M. Well, if IM # 0 then IM = M since M is simple, so I’M =
IM = M. Continuing this gives "M = M;but I" =0,s0 ["M = 0M =0,
a contradiction. Thus I C J(R).

Now assume that R is artinian and let J = J(R). Since R is artinian,
the descending chain J 2 J? D --. must stabilize; that is, J" = Jn+1 for
some n. Let A = J*. If A = 0, then J is nilpotent and we are done, so
suppose A # 0. Let I be a left ideal of R which is minimal among left
ideals L such that AL # 0. Such an I exists since R is artinian, and since
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the collection of such ideals is not empty; for example, AJ = A # 0. Now
A(JI) = (AN = AI #0, so JI = I by the minimality of I.

We claim that I is generated by a single element: Since AI # 0, there
exists € I such that Az # 0. But Az C I is a left ideal, and A- Az = Az,
so by minimality of I we have Az = I. In particular, since z € I, there
exists @ € A with az = z, and so (1 — a)z=0. Now if we can prove that
(1 — a) has a left inverse, then £ =0, and so I = Az =0, hence AI =0, a
contradiction. Thus it would be that A = 0 and so J is nilpotent.

So now all that is left is to show that 1 — q has a left inverse for any
a € J(R). Well, by definition of the radical, a is contained in every maximal
left ideal, so clearly 1 — a is in no maximal left ideal. Hence 1 — a is in no
proper left ideal, so R(1 — a) = R. In particular, 1 = r(1 — a) for some
r € R and we are done. O

For a proof of the second part of Theorem 2.4 which follows the module-
theoretic theme of this book, the reader may see Exercise 28. The argument
in the last paragraph is a special case of both Proposition 2.8 and Nakaya-
ma’s Lemma, which we shall see later in the chapter. The type of argument
used is a typical application of these results.

Example: Theorem 2.4 can be used to calculate the radical of R =
Z/p"Z, p a prime, as follows. All proper nonzero ideals of R clearly have
the form p’R,i = 1,...,n. Clearly every ideal is nilpotent, and pR is the
largest (nilpotent) ideal. Hence, by Theorem 2.4, J(R) = pR. Note that
J(R) = pR is nontrivial for n > 2.

Theorem 2.2 gives a relationship between semisimplicity and the vanish-
ing of the radical. Combining this with the above description of J(R) as the
largest nilpotent ideal of R will give us another method, in terms of nilpo-
tent ideals, of determining if a ring is semisimple. If R is commutative, it
will suffice to check whether or not there are any nilpotent elements. Thus
we give the following :

Corollary 2.5 R is semisimple if and only if R is artinian and has no
non-zero nilpotent left ideals. If R is commutative, then R is semisimple if
and only if R is artinian and has no nilpotent elements.

Proof: The first part of this corollary is clear from Theorem 2.4. For the
commutative case, note that a nilpotent element generates a nilpotent ideal,
since ™ = 0 if and only if (Ra)"” = Ra™ =0: 0

Another application of Theorent 2.4, combined with Theorem 2.2 and

Wedderburn’s Theorem yields the following corollary.

Corollary 2.6 If R is artinian, then R has a nilpotent two-sided ideal J
such that R/J is isomorphic to a finite product of matriz rings over division
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Tings, with factors in one-to-one correspondence with isomorphism classes
of simple R-modules.

These two corollaries can be used to show that any artinian ring (with
unit) is noetherian. This result is striking because these two concepts have
no obvious connection; intuitively, what happens at the “bottom” of a ring
shouldn’t have much to do with what happens at the “top”. The converse,
in fact, is not true; for example, Z is noetherian but not artinian. Note
also that the result does not hold for modules: an artinian module need
not be noetherian, as is demonstrated by the Z-modules Z,~ (Exercise 42
of Chapter 0). The fact that every artinian ring is noetherian can be quite
useful, as we saw in the proof of Corollary 2.6. Thus we give the following:

Theorem 2.7 (Hopkin’s Theorem) If R is artinian (with identity) then
R is noetherian.

Proof: An outline of the proof, with a few gaps waiting to be filled by an
eager reader, can be found in Exercise 31. O

We now give some results that describe J(R) on the level of individual
elements. This can be useful in certain cases for computing the radical.

Proposition 2.8 z € J(R) if and only if 1 + ax has a left inverse for all
a € R.

Proof: If z € J(R), then ar € J(R) since J(R) is a two-sided ideal . Thus
we have that az is in every maximal left ideal, so clearly 1 + az is in no
maximal left ideal. Hence 1+ az is in no proper left ideal, so R(1+az) = R.
In particular, 1 = r(1 + az) for some r € R and we are done.

Conversely, if ¢ ¢ J(R), then there exists some maxignal left ideal I such
that ¢ I. So I + Rz = R by maximality of I. In particular, 1 = r + ax
for some 7 € I, a € R; that is, 1 —az = r € I has no left inverse (remember
that br # 1 for any b € R since [ is a proper ideal). O

Example: As an application 'of Proposition 2.8, we compute the radical of
a ring that is useful in number theory and topology. The localization of
Z at a prime ideal p, denoted by Z,), is the subring of Q given by

m
Zg={_:(pnm)=1}
First note that the invertible elements of Z ;) are precisely those rational

- /
m,, m
numbers with numerator relatively prime to p. Hence 1 + (g)(PF) is

/

. . m m
invertible for all —, —
n’mn

c Z(p)‘, hence pZ(p) - J(Z(p)). Now if (m,p) =
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1, then (remember the Euclidean Algorithm) there exist a,8 € Z with
am + Bp = 1. Then 1 — am = Bp has no inverse in Z;), and so m is not

contained in the radical. It follows that — is not contained in the radical for

n
any m with (m,p) = 1, and so J (Z(p)) = pZp), which is always nontrivial.

We continue with another useful characterization of the Jacobson radical.

Proposition 2.9 Ifz € J(R) then 1+ is invertible (i.e. has a two-sided
inverse). Moreover, J(R) is the largest two-sided ideal with this property.

Proof: We already know by Proposition 2.8 that 1 +  has a left inverse,
call it z. Clearly z — 1 € J(R), s0o z = 1+ y for some y € J(R). Again by
Proposition 2.8, 1 4+ y has a left inverse; but 1 4+ y also has a right inverse,
namely 1 + z. Thus 1+ z and 1+ y are (two-sided) inverses of each other.

Now if I is any two-sided ideal with this property, then 1+ ax is invertible
for all a € R,z € I, so by the Proposition 2.8 we have z € J(R). Thus
ICJ(R).O

Thus far we have dealt with what should really be called the “left radical”
of R. We could also define a “right radical” of R to be the intersection of
all maximal right ideals of R, and by the same technique used in proving
Proposition 2.8, we can show that

z € J(R) if and only if 1 + xb has a right inverse for all b € R.

But Proposition 2.9 gives a symmetric characterization of the radical, so
the left radical and right radical must coincide. We state this formally as

Corollary 2.10 J(R) = J(R®).

We conclude this section with one more characterization of the Jacobson
radical in the hope that the many different views we have taken of this
creature will help to give the reader a good picture and intuition for it.

An element r of a ring R is called a non-generator of R if, whenever S is
a subset of R such that SU{r} generates R, then S alone generates R. First
note that every element r of J(R) is a non-generator, for if {z,,...,z,,7}
generates R, then in particular

azr+ + CpTn+Cppar =1

for some c1,...,eny1 € R. But ¢z + -+ + ¢pzy = 1 — cpya7 has a left
inverse by Proposition 2.8, so in fact {z;,...,Z,} generates R. Conversely,
if 7 € R is a non-generator, then » must be contained in every maximal left
ideal I, for otherwise I U {r} would generate R by maximality of I. Hence
r € J(R). So we now have another characterization of the radical :



J(R) is the set of non-generators of R.

In group theory, there is an analogous definition of a non-generating
element. In this case one studies the set of non-generators of a group G,
which is called the Frattini subgroup of G. The Frattini subgroup plays a
role in group theory which is analogous to that of the Jacobson radical in
ring theory.

Nakayama’s Lemma and Applications

We now give a lemma that is simple but extremely useful in a variety of
situations. This lemma, called Nakayama’s Lemma, often reduces a local
question to that of a field, where techniques from linear algebra can be
applied. We shall make this more precise later.

Lemma 2.11 (Nakayama’s Lemma) If M is a finitely generated R-
module such that J(R)YM = M, then M = 0.

Proof: Since J(R) annihilates every simple module, we have J(R)(M/M')=
0 for all maximal submodules M’ of M, andso J(R)M C M’ If M is finite-
ly generated and non-zero, then such an M’ exists by Zorn’s Lemma, and
hence J(R)M # M since M’ is proper, contradicting the given. Thus M
must be 0 and we are done. O

Remarks:

1. A trivial, alternate proof of Nakayama’s Lemma may be given when
J(R) is nilpotent, say J(R)® = 0, for then M = J(R)M = J(R)*(M) =
-v = J(R)"M = 0. In particular, if R is artinian then J(R) is nilpotent
(Theorem 2.4), and so this proof will work.

2. Even if J(R)M = M holds, the conclusion of Nakayama’s Lemma can
fail if M is not finitely generated (see Exercise 35).

Nakayama’s Lemma may be stated in several ways. We now give two
equivalent reformulations of Nakayama’s Lemma that will be useful for
applications.

Equivalent Formulations of Nakayama’s Lemma

1. Let M be a finitely generated R-module. If N is a submodule of M,
then N + J(R)M = M if and only if N = M.

2. Recall that if M is an R-module and I is a two-sided ideal of R,
then IM is a submodule of M, and the module M/IM is annihilated
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by I. Thus M/IM may be regarded in a natural way as a module over
R/I. For I = J(R), M = M/J(R)M can be considered as a module over
R = R/J(R). Supposing further that M is finitely generated, Nakayama’s
Lemma is then equivalent to the following: M = 0 if and only if M = 0.

It is not difficult to check that these two statements are equivalent to
Lemma 2.11; the reader is encouraged to do so.

We now give two applications of Nakayama’s Lemma; others will be given
throughout the exercises (although the reader may not always be told when
the lemma should be applied!). Using the forms of the lemma stated above,
one can often reduce questions about M to questions about M, where, as
above, M = M/J(R)M is considered as a module over R = R/J(R). M
is easier to work with since R is a ‘nicer’ ring than R. For example, R has
no radical, and is thus semisimple if R is artinian. Another example arises
when R is a local ring (defined in the exercises), in which case R is a field,
and so linear algebra may be used to determine the answers to questions
about M. This philosophy is demonstrated by the following two corollaries.

Suppose f : M —s M’ is a homomorphism of a module M into a finitely
generated module M’. Since f(IM) C IM’ for any ideal I of R, we have
in particular that f(J(R)M) C J(R)M'. Thus f induces a homomorphism
M — M making the following diagram commute :

Heren: M — M = M/J(R)M and «' : M’ — M = M'/J(R)M’ are

the natural quotient maps. N

Corollary 2.12 Let f : M ~— M’ be a homomorphism with M finitely
generated such that f : M — M’ is surjective. Then f is surjective.

Proof: Apply (1) above with N = image(f). O

Corollary 2.13 Let M be a finitely generated R-module, and let {z;} be
a collectiog_of elements of M. Then {z;} generates M if and only if {Z;}
generates M .



Proof: Apply the previous corollary with M the submodule generated by

{.’Ez} O

Although seemingly trivial, these corollaries, along with Nakayama’s
Lemma, are extremely useful in proofs. Several applications will be giv-
en in the exercises, both in a special section and scattered throughout.

Summary

Throughout this Chapter we have seen several different ways of looking at
the Jacobson radical J(R). Since it is useful to keep all of these characteri-
zations in mind when trying to compute the radical of a given ring, we now
give a summary of equivalent definitions of J(R).

Equivalent Definitions of the Jacobson Radical of a Ring R
WJR)= [ ann(M) = [\ ann(M).

simple left simple right

modules M modules M
@JR= () I= [ I.

max. left max. right

ideals T ideals I

)= {z € R: 1+ az has a left inverse for all a € R}.
) ={z € R:1+ zb has a right inverse for all b € R}.
)= {z € R:1+ axb has a (two-sided) inverse for all a,b € R}.
) is the largest two-sided ideal of R with the property that 1 +z
has a two-sided inverse for every element z of the ideal.

(7) J(R) is the set of non-generators of R.

The equivalence of all of these definitions, except for (5), was discussed
in the text. It is easy to check that (5) is equivalent to both (3) and (4),
and thus to the rest of the characterizations. When computing the radical
of a given ring, the trick is to choose the proper characterization ((1)-(7))
of J(R).

For artinian rings, we may further characterize J(R) as the largest nilpo-
tent ideal of R. Also for artinian rings, semisimplicity of R is equivalent
to the vanishing of J(R). In this sense the radical of an artinian ring R
measures how far R is from being semisiinple.

Exercises

Properties of the Radical

1. Show that if f : R — S is a ring surjection, then f(J(R)) C J(S).
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. (a) Let e be an idempotent in a ring R; ie., e

2. The Jacobson Hadgicar

Show by example that this inclusion need not be an equality. What
happens if f is not surjective?

. Let I be an ideal of a ring R. Show that if J(R/I) = 0, then I 2 J(R).

In particular, if I & J(R) and J(R/I) =0, then I = J(R).

. Let R be a ring and suppose v € R is invertible in R/J(R). Prove

that v is invertible in R.

. Let R be aring, and let M be an R-module. Prove that M is semisim-

ple if and only if ann(z) is the intersection of finitely many maximal
left ideals of R for all z € M,z # 0. [Hint: Try it first for M cyclic.]

. 1f {R.}ier is a family of rings, show that J([ | R:) = [ 7(R:).

i€l i€l

. Let S be a ring and let R be a subring of S. Assume that S is

finitely generated as a left R-module, and that SJ(R) = J(R)S (this
is automatic, for example, if R is central in S). Prove that J(R) C
7(S).

2 = ¢, Prove that

eJ(R)e = J(eRe).

(b) Show that if e € J(R) is an idempotent, then e = 0. More gen-
erally, show that if 2" = z for some n > 2 and =z € J(R), then
=0

. If I is a two-sided ideal in a ring R, show that J(R/I) 2 (I+J(R))/I.

If I C J(R), show that equality holds, and that equality need not hold
otherwise.

. Remember that J(R) is the intersection of all maximal left (or right)

ideals of R. This problem constructs a ring R such that J(R) is not
the intersection of maximal two-sided ideals of R. Let K be a field
of characteristic 0, ¢ an automorphism of K of infinite order, and let
R be the ring consisting of all (non-commuting) polynomials f(z) =
ap+ a1z + -+ + a,z™ with a; € K, but with multiplication defined
by the rule :

(az™)(bz™) = ac™(b)z™*"  forall a,b e K

This ring is usually called a twisted polynomial ring . Prove that:
(a) A subset of R is a non-zero two-sided ideal of R if and only if it
has the form Rz" for some n > 0.

(b) Rz is the unique maximal two-sided ideal of R, and R/Rz =~ K
as rings.

{c) J(R) = 0. [Hint: Start by looking for some maximal left ideals of
R, or perhaps some simple left R-modules.]
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11.

12.

13.

14.

Do a similar construction as in Exercise 9 for Laurent polynomials,
and show that this provides an example of a simple ring with no zero
divisors which is not a division ring.

(a) Let R be a semisimple artinian ring, and let M be a faithful left
R-module. Prove that, if R is also commutative, then M ~ R@® N
for some R-module N. Give an example to show that this is not true
in general if R is not commutative.

(b) Prove that J(R) = 0 if and only if there is a faithful semisimple
R-module.

(c) Assume that R has finitely many maximal left ideals and that
J(R) = 0. Prove that R~ R, X -+ X R,,, where, for each 1 < i < n,
either R; is a division ring or R; = M, (k;) with k; a finite field.
[Hint: First show that R is semisimple artinian.]

(d) Why is this one problem instead of three?

Computing J(R)

(a) Compute J(R) in the following cases :
() R = Z/8Z.
ii) R = Z/60Z.
ii)) R = Q[e]/(c® — 52).
iv) R = Q[[z]], the ring of formal power series.

v) R = Fp|Z/pZ], the group ring over the field F}, with p ele-
ments (p a prime).

(
(
(
(

(vi) R is a principal ideal domain which is not a field. [Hint: The
answers are different depending on whether R has finitely or
infinitely many primes.]

(vil) R = S[z] with S a (commutative) integral domain.

(b) Which of the above are semisimple?
(c) Compute the radical of Z/nZ. For which n is Z/nZ semisimple?

Let R be a principal ideal domain. Let a be a nonzero element of R,
and write S = R/(a). Describe S in terms of the factorization of a.
Compute J(S). Compute S/J(S). Give an explicit description of all
finitely generated projective S-modules. List (up to isomorphism) all
simple S-modules.

Consider the ring of all continuous real-valued functions on [0,1].
What is the radical of this ring?
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15. Let k be a field. For each k-algebra A given below, do the following;

16.

17.

18,

19.

Find J(A); find all s_;imple left A-modules (up to isomorphism); and
express J(A)!/J(A)*! as a direct sum of simple A-modules for all
1> 0.

(a) A=k[z]/(z"), n 2 0.

(b) A= the set of 2 x 2 upper triangular matrices with entries in k.

(c) A= Ma(k) as a k-space, but with multiplication defined by the
formula

a b a v aa’ ab' + bd’
c d d d ca’ +dc dd’
(d) The ring of matrices of the form

r m

0 s

where r € R, s € S and m € M for rings R and S and an R-S
bimodule M.

If R is a ring, show that J(M,(R)) = M,(J(R)). What does this
say about the radical of a matrix ring over a division ring? About the
radical of a semisimple ring?

(a) Find J(7,,(D)), where 7,,(D) is the ring of all upper triangular
n X n matrices over a division ring D.

(b) Show that 7,,(D)/J(T,(D)) is isomorphic to the direct product
D x D x - x D (n factors).

(c) If S is a subring of T,(D) such that S D D, show that J(S) =
SN J(T.(D)).

Nilpotence

An ideal T (left, right, or two-sided) is called a nil ideal if all its
elements are nilpotent. Prove that any nil ideal (left or right) of a
ring R is contained in J(R).

(a) Let I and J be two-sided nil ideals of R. Prove that I + J is a nil
ideal.

(b) Let Nil(R) denote the two-sided ideal generated by all two-sided
nil ideals of R. Nil(R) is called the nilradical of R. Prove that
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22.

Nil(R) is a nil ideal of R and that R/Nil(R) possesses no non-zero
nil ideals; that is, Nil(R/Nil(R)) = 0.

(c) Prove that Nil(R) C J(R).
(d) Compute Nil(R) for all of the rings discussed so far in this chap-

ter. Which one of these gives an example to show that equality does
not necessarily hold in part (¢)?

(e) Show that for a commutative ring R, Nil(R) is the intersection
of all prime ideals of R (recall that an ideal P # R is prime if, for
all ideals A, B of R, AB C P implies A C P or B C P).

(f) Show that for a commutative ring R, J(R[z]) = Nil(R)[z].

This exercise provides two examples of rings with ideals that are nil
but not nilpotent.

(a) Let R be the ring of infinite matrices (with entries in a field)
whose rows are eventually zero; that is, if [a;;] € R, then there is an
n with a;; = 0 for all j > n. Let S be the subring of R consisting of
matrices with zeros below the main diagonal. Show that J(S) is the
set of matrices that have zeros on the main diagonal (i.e., the set of
[a;;] with a; = 0). Show that J(S) is nil but not nilpotent. This also
gives an example of a ring whose radical is not nilpotent.

(b) Let R = k[z1,x2,...] be the ring of polynomials with commut-
ing indeterminants z,,Zs,... . Let I be the ideal of R generated by
{z2,z2,...}. Prove that R/I has nil ideals that are not nilpotent.

(a) Show that in non-commutative rings, nilpotent elements do not
necessarily generate nilpotent ideals. [Hint : Look at M, (Q).] Show
that a finite number of nilpotent elements do generate nilpotent ideals
in commutative rings.

(b) For D a division ring, show that M, (D) contains no two-sided
nilpotent ideals. Hence a semisimple ring contains no two-sided nilpo-
tent ideals.

(c) Show that the ring 7,,(D) is not a semisimple ring for n > 2.

(d) Show that any non-zero left ideal of M, (D) contains a non-zero

idempotent. Hence M,, (D) contains no left nil ideals. Draw the same
conclusion for a semisimple ring.

Remark: It is easy to see what the left ideals of M, (D) look like.
Think about this, especially in connection with Wedderburn’s Theo-
rem.

Let M be an R-module of finite length. Show that J(Endg(M)) is
nilpotent.
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23. (a) Give another proof of the converse of Maschke’s Theorem by

4.

25.

26.

exhibiting, if |G| is not invertible in k, a nil ideal of k[G].

(b) For fun, try to solve the following open questions : If G is an infi-
nite torsion-free group, can k[G] contain idempotents? Zero-divisors?
Nilpotent elements? Non-trivial units? What are the answers to these
question if the group has torsion (this is not hard)?

The answers to these questions for certain cases are known. See Za-
lesskii and Mikhalev’s article “Group Rings”, as well as Passman’s
survey “Advances in Group Rings”.

Let R be an artinian ring and let G be a finite group. Show that R[G]
is semisimple if and only if R is semisimple and |G| is invertible in R.

(a) Let I be a non-zero ideal of R[z], and let p(x) € R[z] be a non-
zero polynomial of least degree in I with leading coeflicient a. Show
that if f(z) € R[z] and a™ f(z) = 0, then a™ 'p(z) f(z) = 0.

(b) Show that if a ring R has no non-zero nil ideals (in particular, if R
is semisimple), then R|[z| has zero Jacobson radical . [Hint: Let M be
the set of non-zero polynomials of least degree in J(R[z]). Let N be
the set consisting of 0 and the leading coeflicients of polynomials in
M. Use part (a) to show that NV is a nil ideal of R, whence J(R|[z]) =
0.]

(c) Show that there exists a ring R such that R[] has zero Jacobson
radical but R does not. [Hint: Consider R = F[[z]], F a field.]

Give another proof of the part of Corollary 2.5 that says: If R is
an artinian ring and has no non-zero nilpotent left ideals, then R is
semisimple. Proceed as follows:

(a) Choose a minimal non-zero left ideal L. Show that L? = L. Fix
z € L with Lz = L, and choose e € L such that ex = z. Show that
€2 = e and conclude that Re = L is a simple, idempotent-generated
left ideal. Decompose R as a left R-module as R = Re & L,, where

L, = {y — yely € R} and note that Le = 0.
(b) Assume by induction that R has been decomposed as

R=Rey,®- - -®Re,® L,

with Re; simple and e, eg,...,€, an orthogonal family of idempo-
tents such that L,e; = 0 for all 4. If L,, # 0, as in part (a), show that
there is an €’ € L,, with Re' a simple left ideal, L, = Re’ ® L1,
L, 11/ = 0. Clearly e¢’e; = 0 for all i, but unfortunately the product
in the other order is not necessarily zero. Replace ¢’ by e,,11 = ¢’ —ee/,
where e = €; + - + e,. Show that everything works now.
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rxercises [ ]

(c) Use the finiteness hypothesis on R to conclude that this process
must terminate and hence R can be written as a direct sum of simple
left ideals.

(d) In the preceding theorem it is not necessary to assume that R
has an identity element. Show that e = e; + .+« + e, must be the
identity element of R in case R is written as above with precisely n
summands, and that these are all of the corresponding idempotents.
Check that re = r for all r € R. Why must er = 7 as well? [Hint:
Show s(er —r) =0 forall r,s € R.]

Part (a) of Exercise 26 shows that in an artinian ring which has no
non-zero nilpotent left ideals, any minimal left ideal is generated by
an idempotent. Show that, in fact, every left ideal of such a ring is
generated by an idempotent.

Give another proof of the second part of Theorem 2.4 by finishing
the following idea : In the terminology of the proof of Theorem 2.4,
let L ={m € I:mA = 0}. Check that L is an ideal and that I/L is
simple. Show that this implies AJI = 0 and obtain a contradiction.

Prove that if R is an artinian ring and L is a non-nilpotent left ideal
of R, , then there is an element y € L such that y™ # 0 for all n.
Proceed as follows :

(a) Find Lo C L with Lo # 0 and L3 = Lo.

(b) Show that there exists a non-zero left ideal M which is minimal
with respect to the properties (i) LoM # 0, (ii) M C Lo.

(c) Show that there exists a non-zero z € M with Loz = M.

(d) As x € M there is a y € Ly with yz = z. Show that this y works.

{(a) Show that if R is artinian, then a left ideal is nilpotent if and only
if it is nil (i.e., every element is nilpotent). Exercise 20 shows that
this is not necessarily true if R is not artinian.

(b) Show that in any artinian ring, maximal nilpotent left ideals exist.

(c) Show that in any ring, the sum of two nilpotent left ideals is again
nilpotent.

(d) Show that if R is artinian, then there is a unique maximal nilpo-
tent left ideal J containing all nilpotent left ideals.

(€) If L is a nilpotent left ideal of R, show that Lz is also nilpotent
for any z € R. Conclude that J of part (d) is a two-sided ideal.

(f) If R is artinian, show that R/J has no non-zero nilpotent left
ideals. Conclude that R/J is semisimple. Conclude that the ideal
J = J(R) is nilpotent in case R is artinian, as asserted in Theorem
24.



31.

32.

L L Lv v~ -

Hopkin’s Theorem

(a) Let R be an artinian ring and let J denote its Jacobson radical
(which is nilpotent by the Exercise 30 or Theorem 2.4). As R/J is
semisimple by Corollary 2.3, each of its modules are sums of simple
modules. Now J¢/Ji*! is an R/J-module. Show that it must be a
sum of a finite number of simple modules. Thus the chain 0 = J” C
Jr1 C ... € J C R can be refined to a composition series for R.
Conclude that R satisfies the ACC (i.e., is noetherian). You have just
proved Hopkin’s Theorem (Theorem 2.7); namely :

If R is an artinian ring with an identity element, then R is noetheri-
an.

(b) Give an example to show that Hopkin’s Theorem is false if R
is not required to have an identity element. [Hint : Try a ring with
trivial multiplication.]

Jordan Form and Another Proof of Maschke’s Theorem

(Compare this exercise with Chapter 1, Exercise 27.) Let K be a
field and let G be a finite group such that the characteristic of K
does not divide the order of G. Let n = |G|. There is a one-to-one
ring homomorphism

K[G] — M, (K) =~ Endk (K|[G])

given by sending v € K[G] to the function ‘left multiplication by v’,
and then taking the matrix of this linear transformation with respect
to the basis {g € G} of K[G] over K. This homomorphism is called
the left regular representation of G. By considering the dimen-
sion, K[G] is certainly artinian. Show that K[G] has no nilpotent left
ideals as follows: Suppose I is a nilpotent left ideal. If z = Z agg € 1

g€eG
is a non-zero nilpotent element, show that we can assume that a; # 0.

For z € K[G], let L, denote left multiplication by z. What is Tr(L,)
for g # 1?7 (Here T'r(L,) is the trace of the linear tranformation Lg;
i.e., the sum of the elements on the diagonal of the matrix repre-
senting L, in the given basis.) What is Tr(L,)? What must Tr(x)
be? Compute in two different ways, once from the hypothesis on z
and once from the formulas for T'r(Lg). This proves, using Corollary
2.5, that K|[G] is semisimple, which is the statement of Maschke’s
Theorem.

Remark: You have just computed the “character of the regular rep-
resentation”: a representation of G is a map G 2> GL,,(K) for
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some ; in this case, the map p is just g — [matrix of L), and m = n.
The character of a representation is the function X : G —s K given
by X(g) = Tr(p(g)). Character theory is a fruitful way of studying
finite groups. See Chapter 6 for more details.

If you have forgotten about Jordan canonical form, this is a good
time to review. In fact, prove the following: The Jordan form of a

matrix A is diagonal if and only if %[%l (f the minimal polynomial

of A) is semisimple.

More on Nakayama’s Lemma

Show that the two equivalent formulations of Nakayama’s Lemma
given on page 65 are actually equivalent to Nakayama’s Lemma.

(a) Show that, even if J(R)M = M, the conclusion of Nakayama’s
Lemma can fail if M is not finitely generated.

(b) Show that, in fact, there even exist rings with idempotent radical
(ie., with radical J = J(R) such that J2 = J). [Hint: Consider
the quotient of a polynomial ring in infinitely many variables by an
appropriate ideal.]

Give an another proof of Nakayama’s Lemma as follows: Let z,,. ..,
T be a generating set for M with a minimal number of elements.
Show that if M # 0 and J(R)M = M, then a smaller generating set
exists, thus giving a contradiction.

Let P,Q be finitely. generated projective R-modules, and let I be a
two-sided ideal of R such that I C J(R). Prove that P/IP =~ Q/IQ
if and only if P ~ @. This is useful in Algebraic K-Theory.

(a) Let I be a two-sided ideal of R contained in J(R). Prove that
the canonical homomorphism R* —s (R/I)* is surjective, where R*
denotes the multiplicative group of invertible elements of R.

(b) Let I be as in part (a). Prove that the canonical homomorphism
GL,(R) — GL,(R/I) is surjective.

Local Rings

If R is a ring such that the sum of any two non-units is again a non-
unit, then show that the collection of non-units is a two-sided ideal of
R. Call it I. Show that this two-sided ideal I is in fact the radical of
R. Further show that R/I is a division ring. A ring such that R/J(R)
is a division ring is called a local ring.
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(a) Remember that the localization of Z at a prime p is Z) = {Z ¢
Q : (p,n) = 1}. Show that Z,) is a local ring.

(b) Show that, for a field F, the ring of formal power series in several
variables F[[zy, ..., Zz]| is a local ring.

(c) The p-adic integers Zp can be described as the ring consisting
of infinite sequences of integers (a,, az, ...), where 0 < a; < p for all
i, and ay, = a;(mod p¥) for k < 1. Addition and multiplication of such
series is component-wise (mod p to the power of the component).
Equivalently, elements Zp may be taken to be formal power series

ro+ TP+ rap” 4 -+

where 0 < r; < p, with addition and multiplication as in standard
power series, but with “carrying”.

Show that Zp is a local ring. More generally, show that the completion
of aring at a prime ideal is a local ring (for the definitions, see Atiyah-
MacDonald, Introduction to Commutative Algebra).

If R is a local ring, then R has a unique maximal two-sided ideal I
(the set of non-units) such that R/I is a division ring. Show that the
converse is not true; that is, find a ring R with a unique maximal
two-sided ideal I, such that R/I is a division ring but R is not lo-
cal. [Hint: Look at the endomorphism ring of an infinite dimensional
vector space and the two-sided ideal of finite rank operators.|

Show that R/I* is a local ring for R a commutative ring and I a
maximal ideal. Why is I/I* the radical of R/I* ? (cf. example 3 on
page 59.)

Let L,(k) denote the ring of upper triangular matrices contained in
M, (k) for which all of the entries on the diagonal are equal. Compute
the radical of this ring. Show that the ring is a noncommutative local
ring and compute the residue division ring (i.e. R/J(R)).

Let R be a local ring. For A € M,(R), let A denote the image
of A under the canonical homomorphism M, (R) — M, (R/J(R))

induced by R — R/J(R). Show that A is invertible if and only if A
is invertible.

Let p be prime and k be any positive integer. Check that the sequence
1 — I+ M,(pZ/p*2) — GL,(Z/p*Z) — GL,(Z/pZ) — 1

is exact. Use this to show that the order of GL,(Z/p*Z) is (p™ —

D™ -p)--- (p" - p”“‘)(pk“l)"z. [Hint: It is not hard to compute
the orders of the second and fourth terms of the exact sequence.]
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Let R be an artinian ring. Prove that :
(a) J(R)®/J(R)**! is a finitely generated left R-module for all s > 0.

(b) R is a local ring if and only if R possesses no idempotents other
than 0 and 1. [Hint: Show that idempotents in R/J(R) can be lifted
to idempotents in R.]

(a) A left R-module M is called indecomposable if, whenever M=
M, & M3, then M, = 0 or M, = 0. Prove that, if Endg(M) is a local
ring, then M is indecomposable.

(b) Let R be a finite dimensional k-algebra, k a field, and let M be an
indecomposable finitely generated R-module. Prove that Endg(M)
is a local ring.

Let R be a local ring and let P be a finitely generated projective
R-module. Show that P is actually a free R-module as follows : For
J the radical of R, write R for R/J and P for P/JP. By Nakayama’s
Lemma, choose a finite set {z;} in P so that their images {z;} € P
form a basis over R and have the further property that the {z:}
generate P. Let F' be a free R-module with the same number of
generators as you have found for P. Map it in the obvious way onto
P. Show that this map is an isomorphism.

Remark: Kaplansky has shown that any projective module over a
local ring is free; finite-generation is not necessary. See Kaplansky,
“Projective Modules”, Math. Ann., 68 (1958), pp. 372-377.

Let G be a finite p-group for p prime and let k be a field of char-
acteristic p > 0. Part (b) will show that k[G] is a local ring. But
first:

(a) Show that k[G] has a unique simple module given by the map
k[G] —> k which is determined by g — 1; this map is usually called
the augmentation map of k[G]. [Hint: Let S be a simple k[G]-
module and let A be a finite additive subgroup of S which is carried
into itself by the action of G (e.g., for s € S take the additive subgroup
generated by {gs : g € G}). Note that pA = 0. Using the action of
G on A by multiplication, apply the fixed point theorem for p-groups
(see Jacobson, Basic Algebra I) and conclude that A contains a non-
zero subgroup Ag which is fixed by G. Now consider the submodule
of S generated by Ag.]

(b) Conclude that the augmentation ideal (the kernel of the augmen-
tation map) is the Jacobson radical of k[G] and hence k[G] is a local
ring.
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(c) A further observation: Let L be any non-zero left ideal of k[G].

Show that Ng € L (remember that Ng, the so-called norm element

of k[G], is defined to be Z g). Hence k[G] has a unique non-zero
€CG

minimal ideal (left or two—gsided).

(d) Give an integer large enough so that the radical raised to that

pOWwer 1s zero.

The Radical of a Module

The Jacobson radical of a module is defined in a way analogous to
that of the radical of a ring : The radical of an R-module M is
the intersection of the maximal submodules of M, and is denoted
by J(M). It is easy to see that J(R) is the same whether R is con-
sidered as a ring or as an R-module, since maximal submodules are
precisely the maximal left ideals. Thus we may use the notation J(R)
unambiguously.

Let R be a ring and M be an R-module. Show that M is semi-simple
of finite length if and only if M is artinian and J(M) = 0. Note that
this generalizes Theorem 2.2.

Prove the following facts about J(M), each of which has its ring
theoretic analog (which are in previous exercises):

(a) If M is a finitely generated R-module, then J(M) # M.

(b) If f : M — N is a homomorphism of modules, then f(J(M)) C
J(N).

(c) If N is a submodule of M, then J(N) C J(M). Further, J(M/N) 2

J(M%+N'

(d) If N is a submodule of M such that J(M/N) = 0, then N D
J(M). In particular, if N is a submodule of M such that N C J(M)
and J(M/N) = 0, then N = J(M).

(e) Using the previous parts of this exercise, prove

Proposition 2.14 (Nakayama’s Lemma for Modules) If N is
a submodule of M with N + J(M) = M, then M = N.

(a) Prove that, if {M,;} is a family of R-modules, then J(®M;) =
®J(M;).
(b) Prove that , if {M;} is a family of R-modules, then

oJ(M;) € J([[ M) € [] T (M),

Give examples to show that both containments may be proper.
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(a) Show that for an R-module M, J(R)M C J(M). Give an example
of aring R and a finitely generated R-module M such that J(R)M #
J(M).

(b) Prove that, if P is a projective R-module, then J(R)P = J(P).
[Hint: Use Exercise 52 to prove it for free modules, then for projective
modules. '

(c) Let R be aleft artinian ring, and let M be a left R-module. Prove
that J(R)M = J(M), and that M/J(M) is the “maximal semisimple
factor module” of M (give a precise statement of what that phrase
means).

Let P be a finitely generated projective left R-module and let S =
Endg(P). This exercise outlines a proof that J(S) = {a € §:aP C
J(R)P} and S/J(S) = Endg(P/J(R)P). Note that this generalizes
Exercise 16.

(a) Let o € S and assume that P C J(R)P. Show that (1+a)S = S.
[Hint: Use Nakayama’s Lemma to prove that 1 + a is surjective.]

(b) Again, let @ € S, but assume that there is a maximal proper
submodule P’ of P with aP ¢ P’. Show that there exists 3 € S
with (1 — Ba)P C P'. [Hint: Note that aP + P' = P; hence, given
z € Pz = ay+ z for some y € P,z € P'. Show that we can choose
y = Bz for some 8 € S. To do this, first let P = {y € P: ay € P'}
and find f : P — P/P” such that, if x = ay + z as above, then
y+P" = f(z)]

(c) Prove that J(S) = {a € S : aP C J(R)P}, and find an isomor-
phism

$/J(S) = Endgr(P/J(R)P).
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Central Simple Algebras

In the first two chapters we studied rings and modules. Many of the impor-
tant examples we studied, such as polynomial rings, matrix rings, group
rings and the quaternions, have additional structure we have been ignoring;
namely, they are modules as well as rings, and the ring multiplication is
compatible with the module multiplication. Thus, these objects are alge-
bras (for definitions and basic properties concerning algebras, see Chapter
0). We now wish to exploit this additional structure in order to learn more
about these and other examples.

We will also introduce the tensor product as a way of constructing new
algebras from old ones (for definitions and basic properties concerning the
tensor product of modules, see Chapter 0). Changing from our philosophy
of looking at one ring or module at a time, we view the tensor product as
an operation on the category of all algebras over a given field. This point of
view (and the tensor product) will be indispensible in our discussion of the
Brauer group in Chapter 4. Added motivation for the following material
comes from the fact that algebras and the tensor product are useful in
algebra, topology, differential geometry and analysis, and indeed occupy a
central place in mathematics.

We assume throughout that k is a field, and that, unless otherwise speci-
fied, all algebras are k-algebras and all tensoring is done over k. Sometimes
the k may be included for emphasis.

Tensor Product of Algebras

If R and S are k-modules then R ®; S is a k-module (see Chapter 0 for
details). We now introduce additional structure into the situation in the
hope of extracting more information,

If R and S have the additional structure of k-algebras, then R ®j S has
a k-algebra structure such that

(r@s) - (r®s)=r'"®ss’ forallr,r’ € Rands,s' €8S.
To justify this, note that (r, s, 7’,s’) — rr’ ® ss’ is multilinear, and thus

induces a map
(R®S)®(R®S) — R®S.
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Equivalently, there is a bilinear map
(R®S)x (R®S) — R®S.

This says that there is a multiplication on R ® S which distributes over
addition. It is not difficult to see that 1 ® 1 is the identity element for this
multiplication, since multiplication by 1®1 fixes all generators r®s of R®S.
A similar argument (checking on generators) proves that multiplication is
associative. Thus we have shown that R®S is a ring. It is also easy to check,
using the fact that the ring multiplication in both R and S is compatible
with the action of k on these as k-modules, that the ring multiplication
is compatible with the action of k on the module R ® S. This shows that
R® S is, in fact, a k-algebra.

We now look at some of the basic properties of R ® S. Recall that there
are two basic k-algebra maps

i:R—R®S and j:S—RQ®S

given by
r—r®l and s—1Q®s

If {ea} is a basis for S over k, then every element z € R®S has a unique
expression

2= ra®ea=y (ra®)(1®@ea) = Y ilra)i(ea).

In other words, if we regard R ® S as an R-module via i, then R ® S
is free with basis {j(eq)}- This can be verified by using universal mapping
properties to exhibit the coordinate funictgxg.i~lt follows that i is one-
to-one, since anything in the kernel would annihilate R ® S, but only 0
annihilates a free module. Reversing the roles of § and R gives similar
results. Since ¢ and j are both one-to-one, we will henceforth identify R
and S with their images under i and j (note that the images commute
since (r®1)(1®s) = (r®s) = (1 ®s)(r®1)). With these identifications,
our observations above may be stated as follows:

Proposition 3.1 Given a field k and k-algebras R and S, then R® S is
a k-algebra. Further, we have that:

(i) R® S contains R and S as commuting subalgebras.
(1) Any basis {sg} of S over k is a basis for R® S as an R-module.
(iii) Any basis {ro} of R over k is a basis for R® S as an S-module.

Analogous to the universal mapping property of R®S as a module, R® S
also has a universal mapping property as an algebra:



Proposition 3.2 Given any k-algebra T, and any pair of k-algebra ho-
momorphisms R L T,8 —%5 T such that f(R) and g(S) commute and
flk = gk, then there is a unique k-algebra homomorphism h: R® S — T
such that hi = f and hj = g (where ¢ and j denote the canonical inclu-
stons). That is, the following diagram commutes :

\,,/

/
\

Proof: This is similar to the proof of the universal mapping property of
the tensor product of modules given in Chapter 0, so we leave this proof
as an exercise for the reader. O

The above proposition shows that we can think of R® S as the k-algebra
generated by R and S, subject to the relation that R and S commute.
Note that this does not say that r®@ s = s®r for r € R,s € S, but that
(r®l)(1®s)=(1®s)(r®1). The universal mapping property of R ® S
as a k-algebra is often used to construct k-algebra maps from R® S to T,
given k-algebra maps from R to T and from S to T. Examples of this are
scattered throughout the text. .

Extension of Scalars and Semisimplicity

We now apply the above comments to an important special case. Suppose
we are given a k-algebra R and an extension field K of k. The elements of k
are called scalars in the algebra R. It would be useful if we could “extend”
the scalars of R so that R could be considered as an algebra over K. As we
shall see, this can be accomplished by using the tensor product, namely by
taking K ®x R.

First note that any field extension K of k can be considered as an algebra
over k since K is a vector space over k, elements of K can be multiplied
together, and this multiplication is consistent with the scalar multiplication
for K as a vector space over k. Thus K ®; R is a K-algebra, usually written
as R, and is said to be obtained from R by extension of scalars. More
concretely, this means the following : a k-algebra R is often described by

giving a basis {e;} of R over k and saying how to multiply basis elements;
say
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eiej = E Cijk€k , Cijk € k.
k

According to part (ii) of Proposition 3.1, Rk can be described as a K-
algebra with the same basis and same multiplication law as R over k; for
note that k C K, so cijk € K, and the following diagram is commutative :

k——R

K——=K®&R

Example: Given any real algebra S (i.e., S is an algebra over R), we can
construct the C-algebra S¢ , which is called the complexification of S.
Note that, taking S = R, then Sc is simply C. Ho = CQRr His a
4-dimensional C-algebra. We shall later see that this C-algebra is simple,
and in fact isomorphic to M3(C).

Remark: For those who know some category theory, let R — Mod denote
the category of R-modules and R-module homomorphisms and let k — Alg
denote the category of k-algebras and k-algebra homomorphisms. Then
extension of scalars gives a functor from R —Mod to Rg —Mod and from
k — Alg to K — Alg. This may help when thinking about the following
comment.

Classically, enlarging the real numbers to the complex numbers often
simplified both proofs and statements of theorems; for C has many useful
properties which R does not, such as being algebraically closed. Extension
of scalars is a generalization of this philosophy, and is an important tool
that we will make significant use of.

An algebra is said to be a simple algebra or a semisimple algebra
if it has the corresponding property as a ring. We now wish to study the
effect that extending scalars has on the semisimplicity of an algebra. We
begin with a useful lemma : the Primitive Element Theorem. We include
this basic theorem from field theory for those who happened not to have
Seen it.

Lemma 3.3 (Primitive Element Theorem) If K D k is a finite sepa-
rable field extension, then there ezists ¢ € K with K = k(c).
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Proof: If k is finite then the proof is easy, so suppose k is infinite. By
using induction (which applies since the extension is finite), it suffices to
show that K = k(a,b) implies K = k(c) for some c € K. Let f(z) be the
irreducible polynomial of a over k with roots a\(= a), ..., a,, and let g(z)
be the irreducible polynomial of b over k with roots b, (= b), ..., by,. Since
k is infinite, there is some a € k such that the elements a; + ab; are all
distinct. Let ¢ = a + ab. Now g(b) = 0 and b is also a root of f(c — ax)
since f(c — ab) = f(a) = 0, ;hence = — b divides both g(z) and f(c — az)
in k(c)[z]. Since the roots of f(z) and g(z) are distinct (remember K/k is
separable), we have that the g.c.d. of g(z) and f(c— az) in k(c)[z] is z —b.
Hence b € k(c). Since @ € k(c) as well, a = ¢ — ab € k(c). This.shows that
k(a,b) C k(c) and so completes the proof. O

The element ¢ in the above lemma is called a primitive element for
the extension K D k.

Given a finite field extension L of k, L is semisimple (as an algebra over
k) since L is a field. It is natural to ask, more generally: “When is Lk
semisimple for every extension of scalars K 2 k?”. For finite extensions,
it turns out that Lk is semisimple for all K precisely when L is separable
over k. This is the content of the following theorem.

Theorem 3.4 Let L/k be a finite field extension. Then Lx = K @ L is
semisimple for every field K D k if and only if L/k is a separable extension.

Proof: Assume that L is separable. By the Primitive Element Theorem,
L = k(8) for some 6 € L, and hence has a basis 1,6,6%,...,6"!, where
6 satisfies a separable irreducible polynomial f over k of degree n = [L :
k); i.e., L =~ k[z]/(f(z)). By the above remarks, Lx has the same basis
1,6,6%,...,0" ! over K and satisfies the same polynomial f, so Lx =~
K([z]/(f(z)). Since f is separable, it factors over K into distinct irreducible
polynomials f(z) = fi(z)--- fa(z) in K[z]. So by the Chinese Remainder
Theorem (Exercise 1 of Chapter 0), we see that Lx ~ [[ K[z]/fi(z), a
product of fields, and is thus semisimple.

Conversely, assume that L is not separable. Then there exists a § € L
which is not a separable element; that is, the minimal polynomial f(z) of
8 over L is not a separable polynomial. Hence there is a field K 2 L in
which f(z) has repeated factors, so that k(6)x ~ K|z]/f(z) has nilpotent
elements. Since Lx 2 k(6)k, Lk also has nilpotent elements, hence by
Corollary 2.5 is not semisimple. O

Remark: For the proof it was useful to think of K®; L as Lk, an extension
of scalars of L. Sometimes, however, it is useful to restate the result in a
more symmetric fashion, namely:



The tensor product of two field extensions of k is semisimple provided
one of the factors is finite and separable over k.

Tensor Products, Simplicity and Semisimplicity

In the last section we studied when extension of scalars gives a semisimple
algebra. Now we consider the behavior of semisimplicity and other proper-
ties of algebras under tensor products in general.

We define the center of an algebra S over k tobe Z(S) = {z € S|zs = sz
for all s € S}; that is, Z(S) is just the center of S considered as a ring.
Note that for an algebra S over k, it is always true that k C Z(S). If, in
fact, k = Z(S), we say that S is a central k-algebra . We call S central
simple if S is both central and simple.

Examples:
1. H is a central simple algebra over R.

2. Any matrix algebra over a field is central simple (by Exercises 5 and
13(b) of Chapter 1).

3. Any proper field extension K2k is not central since Z(K) = K2k.

We now explore how these properties behave under the operation of
tensor product, and determine the structure of the center and the two-
sided ideals of a tensor product of certain algebras. Apart from general
interest and usefulness, added motivation for this exploration comes from
material we will study in Chapter Four. In that chapter we will define a
certain group (the Brauer group) whose elements are equivalence classes of
certain central simple algebras, with ® as the product operation. Corollary
3.6 shows that the group is closed under this product operation.

Theorem 3.5 Let S be a central simple algebra and let R be an arbitrary
algebra. Then

1. Every two-sided ideal of R® S has the form I ® S, where I is a two-
sided ideal of R. In particular, if R is simple then R ® S is simple.

2. Z(R®S) = Z(R). Taking R = K, K a field, shows that Sk is a
central simple K -algebra.

We shall see from the proof of the theorem that for a given ideal J of
R ® S, the ideal I is unique, and in fact I = J N R. Before proving the
theorem we give one immediate corollary:

Corollary 3.6 If R and S are central simple algebras, then so is R® S.



This corollary shows that HQR H is central simple,and that M, (k) ® S
is central simple for any central simple algebra S. The converse to Corollary
3.6 is also true (see Exercise 5).

The following lemma will aid us in proving Theorem 2:

Lemma 3.7 Let R and S be algebras with S central simple. If J is a non-
zero two-sided ideal of R® S, then JN R # 0.

Proof: Choose z € J,z # 0 so that z is written as a linear combination
!

= Z r; ® s; with [ minimal. Note that {r;} is linearly independent over
i=1

k, for otherwise [ would not be minimal; similarly for {s;}. Now s, # 0,

so by simplicity of S we have Ss,5 = S. Thus there exist z;,y; € S with

m
ijslyj = 1. Consider

7=1
g =3 (1®;)r(l®y;)
= Z?:l Zlizl Ti @ TjSiyj
=Yl ® (X, z58iy;)
= Zli=l Ti ® s}

where s; = 37" z;siy;, so sy = 1. Clearly 2’ € J,2’' # 0 since the r;

are linearly independent over k and hence over S by Proposition 3.1, and
81 =1 # 0. Now for any s € S we have

!
(1®s)z ~2'(1®s) =3 ri®ssi— Y |7 Qs
!
= Zi:Z Ti® (ssli - slis)
since ss| — s}s = s — s = 0. By minimality, this element is zero. Since the
7; are linearly independent over k, ss; — sis = 0 for each ¢. But this holds

for all s € S, so s} is in the center of S for each i. Since the center of S is
Just k by hypothesis (so r; ® s, = r; @ (s} - 1) = r;8; ® 1), we have

1
r =Yr®s,
ZZ’I‘iSIi@]-

= (X rs))®1€R.

Since z’ # 0, M\ﬂ R # 0 and we are done. O
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With this lemma at our disposal we now prove Theorem 2:

Proof: We begin with a proof of part (i) of the theorem. Let J be a
two-sided ideal of R® S and let I = J N R. Consider the natural map
R®S — (R/I)®S. We claim that the kernel of this map is I® S : for if
{z;} is a basis for I, extend this to a basis {z;} U {y;} for R; then {y; + I}
is a basis for R/I. Hence ) a;z; + Y bjy; is in the kernel if and only if
b; = 0 for all j. Considering

J— (R®8)/(I®8)~ (R/I)® S,

in order for J to contain I ® S properly it must be that the image of this
map is non-zero, so by the lemma im(J)NR/I # 0. But im(J)NR/I =0
by the choice of I = J N R. This proves part (i) of the theorem.

Our proof of part (ii) does not depend on the fact that S is simple: Let
z=3"7; ®s; be in the center of R® S. As in the proof of Lemma 3.7, we
may assume that the r; are linearly independent over k. For s € S we have

0=(1®8)z—2(1®s) =D @ (s5i — %:9)-

The independence of the r; over S then gives ss; — ;5 = 0 for all 4, so
ss; = 8;8; that is, s; € Z(S) = k for all ¢. Thus

z =Y.1i®s;
=Y rs®l
=3 risi)®1
=r®l
where r =Y r;s;. If £ € R, then
0=(z®1)z—2(z®1)= (zr—rz)®1,
sozr=rz for all z € R;ie., r € Z(R). O

We now have the necessary tools to answer questions concerning semisim-
plicity of tensor products of certain semisimple algebras. But first two

Remarks:
1. For algebras R = Ry x Ry, wehave R® S ~ (R; ® S) X (R2 ® S) for
any algebra S. To see this, note that the map

RxS— (B ®S)x (R ®S)

(r1,7m2,8) — (1M ® 8,72 ® 5)
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is bilinear with respect to R and S, and thus induces a homomorphism
R®S — (R ®8) x (R2 ® S). It is then easy to check that this is
an isomorphism by writing down the obvious inverse (using the injections
R, — R,i = 1,2). By induction, ([[R;) ® S = [[(R:i ® S) for any finite
product of rings.

2. Suppose S is a simple k-algebra with center C. Chapter 1, Exercise
13 shows that C is a field, so we can view S as a central simple C-algebra.
It is not hard to show (Exercise 13) that C =~ Endggs-(S). It is also clear
that R®r S = (R®, C)®¢c S.

We may use these remarks to reduce questions concerning semisimplicity
of tensor products of semisimple algebras to easier questions. Remark (1)
reduces the question to the case of simple algebras. Remark (2) further
breaks down the question into two steps : first do the extension of scalars
case, then answer the question assuming one of the algebras is central. We
shall use this method when proving Proposition 3.9.

In order to talk about semisimplicity of extension of scalars, we needed
the notion of separable field extension. Discussing semisimplicity of tensor
products requires a generalization of this concept.

Definition: Suppose S is a finite dimensional semisimple algebra over k.
If C denotes the center of S, then C = C), x --- x Cx where the C; are
fields (see Chapter 1, Exercise 13). We say that S is a separable algebra
if every C; is separable over k. Equivalently, we say that S is separable if
for each simple S-module M, the center of Endg(M) is a separable field
extension of k.

The notion of separable algebra vastly generalizes that of separable field
extension. We saw in the previous section that for such extensions L, all
extensions of scalars Ly are semisimple. We now prove the analogous result
for the more general case of separable algebras.

Proposition 3.8 If S is a separable algebra, then Sk is semisimple for all
fields K D k.
Proof: We may assume by Remark (1) that S is simple with separable
center C. Remember that C is a field since S is simple. Now
K®S ~(K®C)®cS by Remark (2)
~ ([[R:))®c S  for some simple R;
by Theorem 3.4
~[I(Ri®cS) by Remark (1)

and each R; ®¢ § is simple by part (i) of Theorem 2, since each R; is simple
and S is central simple over C. O
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Continuing the generalization of results on separable field extensions to
separable algebras, we now prove a fact analogous to the statement that
the tensor product of two field extensions is semisimple provided one of the
factors is finite and separable.

Proposition 3.9 If R and S are finite dimensional semisimple algebras,
and if at least one of R and S is separable, then R® S is semisimple.

Proof: Without loss of generality suppose R is separable. By Remark (1),
we may assume that both R and § are simple. Let C denote the center of
S; so C is a field. Then

RS = (R®C)®cS by Remark (2)

~ ([IR:) ®c S  for some simple R; by
the previous proposition

~ [[(Ri®cS) by Remark (1)

and each R; ®¢ S is simple for the same reasons as in the previous propo-
sition. O

Some Applications of Tensor Products

The results of the previous section have many interesting consequences. To
begin with, we obtain some nice results on the dimension of certain finite
dimensional algebras. Knowing the dimension of an algebra vastly limits
the possibilities of what that algebra can be. This will be useful when we are
trying to determine what the alternatives are for finite dimensional division
algebras over various fields (e.g., the reals). The following proof provides us
with our first example of how information may be obtained by extending
scalars to a field where more is known. This technique is extremely useful
for a variety of problems.

Theorem 3.10 If D is a finite dimensional division algebra over its center
k, then [D : k] is a square.

Proof: Let K = k, the algebraic closure of k. Note that [D : k] = [Dk :
K]. Dk is a finite dimensional algebra over K, hence artinian. Also, Dy
is simple by part (i) of Theorem 2. Thus, by the Structure Theorem for
Simple Artinian Rings, Dk is isomorphic to a ring of n x n matrices with
coefficients in a (finite dimensional) division algebra over K. Since K is
algebraically closed, Exercise 1 of Chapter 0 tells us that the only finite
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dimensional division algebra over K is K itself; hence Dg ~ M, (K). So
[D:k]=[Dk: K] = [M,(K): K]=n20O

More generally, if A is a simple algebra which is finite dimensional over
its center Z, then, by the Structure Theorem for Simple Artinian Rings,
A = M, (D), where D is a finite dimensional (over Z) division algebra with
center Z. So

[A:Z] =|[A:D||D: Z]

=n?-[D: 7|
=n?.m? for some m, by Theorem 3.10
= (nm)%.

This proves

Corollary 3.11 If A is a simple algebra which is finite dimensional over
its center Z, then [A: Z] is a square.

It is no surprise that a matrix algebra has dimension which is a square,
for we can plainly “see” the n? dimensions. The fact that any simple alge-
bra of finite dimension actually has square dimension is quite remarkable,
however, for it is far from obvious given the definitions. How useful it is to
extend scalars!

We prove the next result with an eye towards Chapter 4. As already
mentioned, we shall construct a group (the Brauer group of a field k) whose
elements are certain equivalence classes of finite dimensional central simple
algebras over k, with ® acting as product in the group. It will turn out
that M, (k) will be in the equivalence class of the identity. The following
proposition uses Theorem 2 to show that the inverse (in the Brauer Group)
of the equivalence class of a central simple algebra R is the equivalence class
of R°. This comment will be made precise in Chapter 4.

Proposition 3.12 Let R be a finite dimensional central simple algebra.
Then R ® R° ~ M, (k), where n = [R : k.

Proof: Let
A= {L, € Endg(R) : L, (z) = rz,r € R}

B = {T. € Endi(R) : T,(z) = zr,7 € R}.

Then, as shown in Chapter 1, A ~ R and B ~ R° asrings. Also, elements
of A and B commute by the associativity law in R (yes, the associativity
law). Define
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R® R° — Endk(R)
by
r®s+— LpoT,.

Since R (and thus R°) is central simple, by Theorem 2 we have that
R ® R° is simple. Thus the map is one-to-one. Since dimir(R ® R°) =
(dimk(R))2 = dimg(Endi(R)), we know that the map is onto, and thus an
isomorphism. Since M,,(k) = Endy(R) we are done. O

Remark: This is the second proof of this result. The earlier proof (Corol-
lary 1.17), used simplicity to show the above map is onto, then computing
dimension showed that the map is one-to-one.

Exercise 25 of Chapter 1 shows that H ~ H°. Since H is a central simple
algebra of dimension 4 over R, the theorem tells us that Hog H ~ My(R).
This provides yet another proof that H®pR H is central simple.

The Skolem-Noether Theorem

It is easy to show (Exercise 15), using elementary linear algebra, that any
automorphism of the ring of n x n matrices over a field k which leaves
k fixed must be inner (i.e., the automorphism is “conjugation by a fixed
matrix”). The Skolem-Noether Theorem is an important generalization of
this fact to any finite dimensional central simple algebra. In order to prove
this theorem, we need to know that for finite dimensional simple algebras
R, there is a unique R-module (up to isomorphism, of course) of any given
dimension. This is the content of

Lemma 3.13 Let R be a finite dimensional simple algebra over k. If M
and M, are finite dimensional R-modules of the same dimension over k,
then M| ~ M,.

Proof: Since R is finite dimensional (hence artinian) and simple, we know
by the Structure Theorem for Simple Artinian Rings that R has a unique
simple module M. Then M; ~ M% and M, ~ M for some [{,ly. Clearly
dimg(M;) = Lidime(M) for 1 = 1,2, so if dimg(M,) = dimg(M;), then
[y =3 and hence M, ~ M,. O

The above lemma generalizes the well-known fact that any two vector
spaces (over a field) of the same dimension are isomorphic. With this lemma
in hand we are now ready to prove the Skolem-Noether Theorem.



Theorem 3.14 (Skolem-Noether) Let S be a finite dimensional central
simple k-algebra, and let R be a simple k-algebra. If f,g : R — S are
homomorphisms (necessarily one-to-one), then there is an inner automor-
phism a: S — § such that of = g.

Equivalently, If R\ and R, are isomorphic simple subalgebras of S, then
for any homomorphism f : Ry, — Ry there is an inner automorphism a
of S such that a|g, = f. In particular, any automorphism of S is inner:

Note: We cannot drop the assumption that the center of S is k. For
example, if S is a proper field extension of k, then there are usually many
k-algebra automorphisms of S, but there are no (non-trivial) inner ones
since S is commutative. As a special case, note that complex conjugation
is a non-inner R-algebra automorphism of C.

Proof: S is finite dimensional (hence artinian) and simple, so S =~ Endp (V)
for some division algebra D over k and some finite dimensional D-module
V. Note that Z(S) = Z(D) = k. Now f and g define two R-module struc-
tures on V which commute with the given action of D and which induce
the given k-module structure on V. Hence V' is an R @ D-module in two
different ways. But R ® D is artinian and simple (by Theorem 2), so by
the Lemma these two R ® D-modules are isomorphic; that is, there is an
abelian group isomorphism & : V — V such that

(1) h(f(r)v) = g(r)h(v) and
(2) h(dv) = dh(v)

Now (2) says that h € Endp(V) = S, and (1) says that hf(r) = g(r)h;
that is, hf(r)h™! = g(r). This finishes the proof. O

The Skolem-Noether Theorem will play a crucial role in our proofs of
two classical theorems of Wedderburn and Frobenius, as well as in the
construction of factor sets, which will be objects of study in Chapter 4. In
case this is not enough to emphasize the usefulness of the Skolem-Noether
Theorem, several more of its many applications are given in the exercises
at the end of this chapter.

The Centralizer Theorem

In the study of groups it is quite useful to study the centralizers of various
subgroups of a group. In this section, we define the centralizer in the context
of algebras, and prove an important result on centralizers which will help
to elucidate the structure of algebras.

Definition: If R is an algebra and S is any subset of R, the centralizer
of S in R is defined to be C(S) = {r € R|rs = sr for all s € §}. One may
check that C(S) is a subalgebra of R for any subset S C R.



va O.  UCHIUL Al OLLUPIG JRagsnrs s

For a central simple k-algebra S, C(C(S)) = C(k) = S by definition. In
other words, § is its own “double centralizer” . Intuitively, it seems as if
the smaller the subalgebra R, the larger the centralizer C(R) should be, for
it is easier to commute with fewer elements. Taking the double centralizer
C(C(R)) is like moving “up and down”, then. Of course it is always true
that R C C(C(R)). Part (iv) of the following theorem shows that, as in
the case of the centralizer of the full central simple algebra, moving up and
down actually takes one back to where one started.

If S is a finite dimensional simple algebra, then by the Structure Theorem
for Simple Artinian Rings we know that S =~ M, (D) for some n and some
division algebra D. In fact, it makes sense to talk about the division ring D
such that S =~ M, (D), for D is uniquely determined (up to isomorphism)
as the opposite of the endomorphism ring of the unique simple S-module.
We shall write S ~ D when S = M, (D) for some n. The relation ~ is
a special case of a more general relation which will be of importance in
Chapter 4, where we will discuss the set of central simple algebras under
that equivalence relation. We shall elaborate fully on these ideas in Chapter
Four.

Theorem 3.15 (Centralizer Theorem) Let S be a finite dimensional
central simple algebra over k, and let R be a simple subalgebra of S. Then
(1) C(R) is simple.
(2) If S ~ Dy and R ® D§ ~ Dy, then C(R) ~ D;.
(3) [S: k] = [R: k|[C(R): k.
(4) C(C(R)) = R.

Remarks:
1. Note that Parts 2 and 3 completely determine the structure of C(R).

2. Part 4 of this theorem is often called the “Double Centralizer Theo-

rem”.

Proof: By the Structure Theorem for Simple Artinian Rings, we may as-
sume that S =~ Endp(V) = M,(D°), where D is a division algebra with
center k and V is a finite dimensional D-module. Alser note that V is an
R ® D-module, and C(R) = Endrgp(V) C S.

Proof of Part 1: R ® D is simple, so R ® D ~ Endg(W), where W is
the unique simple R ® D-module and E = Endrgp(W) is the associated
division algebra. So V ~ W™ as R ® D-modules. Thus

C(R) ~ Endrap(W™)
~ My (Endrep(W)) by Prop. 1.7

~ Mm(E).
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Proof of Part 2: § ~ D°,s0 Dy = D°. Now RQD} =R®D ~ E° = D,
(by the above). Thus C(R) ~ E = Dj3.

Proof of Part 3: Since C(R) ~ M, (E), we have that [C(R) : k] = n?[E :

k). Since V ~ W™ we also have that [V : k] = n[W : k] = n[W : E|[E : k].
Squaring this and plugging back in to the first equality gives

vV k)?

=W EPE RE L M
V. k)

T~ W:EPE: K

[V : k”
= dimx(Endg(W))

VP
T [R:k|[D:k

and so

=[S : k]

Proof of 4: Applying Part 3 to C(R) gives [S : k] =
k], so [C(C(R)) : k] = [R : k]. Also note that R C
R=C(C(R)). O

[C(R) : K][C(C
C(C’( ), so clearly

Among the Centralizer Theorem’s many applications, we can now express
any finite dimensional central simple algebra in terms of any of its central
simple subalgebras:

Corollary 3.16 IfRisa central simple subalgebra of a finite dimensional
central simple algebra S, then S ~ R® C(R).

Proof: Since R and C{R) commute, we have a map R ® C(R) — S via
r® 7' +— rr'. Since R® C(R) is simple, this map is one-to-one, hence an
isomorphism by counting dimensions. O
ey
With a little more work it is possible to make the technique of extension
of scalars even more useful. The idea is to try to extend scalars “as little
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as possible”, but enough so that things become easy. We shall now make
this precise.

Let D be a division algebra over k. A field K D k such that Dy ~
M., (K) is called a splitting field for D; for in this case Dy splits as a
sum of n Slmple(ﬁ modules, whereas D is simple as a module over itself. A
central simple k-algebra of the form M., (k) is often called a split central

simple k-algebra. If K is a separable maximal subfield of the k—algebra D,
and if L is an extension of k which splits every polynomial f(z) € k[z]
having a root in K, then L splits D (see Chapter 4, Exercise 30). This
gives a connection between the word “splitting” used in two different ways.

The integer n is called the degree of D; n? is called the rank of D over
k. Note that no further splitting takes place when we extend scalars over
K; for if K’ D K, then

DKI ~ K’ Rk Dk
~ K' @ Mu(K)
~ My (K').

In the next chapter we will use this technique to split the collection of all
division algebras with center k into more manageable pieces. These pieces
will turn out to have another explicit description via homological algebra.

As another application of the Centralizer Theorem, we derive a useful
result on maximal subfields of a division algebra D and their relationship
to the existence of splitting fields for D.

Corollary 3.17 Let D be a division algebra with center k and [D : k| = n2.
If K is any mazimal subfield of D, then [K : k| = n. Moreover, K is a
splitting field for D.

Proof: The first part follows immediately from parts (3) and (4) of the
Centralizer Theorem; for C(K) = K, so n? = [D : k] = [K : k][C(K) : k].
To show that K is a splitting field for D, we note that D is a D-K
bimodule (for the definition of bimodule, see Exercise 28 of Chapter 0),
hence a D® K-module, and as such it is simple. Moreover, Endpgk (D) =
K Since D® K is 51mple it follows that D ® K ~ EndK(D) My, (K),
=[D:K]. O

Corollary 3.17 provides us with many examples of splitting fields. It
is also true that for any division algebra there always exists a maximal
subfield which is also separable (see Exercise 33). This will be important
in our study of the Brauer group in Chapter 4.



Some Famous Theorems

The material presented so far in this chapter is mostly useful as a tool for
further applications. The power of these results may not seem obvious at
first, so at this point we will attempt to convert the unconvinced. A good
way to do this, perhaps, is to use the results to prove two famous, classical
theorems.

Theorem 3.18 (Wedderburn’s Theorem) Fuery finite division ring is
commutative.

This theorem (an addition to our growing list of “Wedderburn The-
orem”s!) is truly remarkable in that commutativity properties of a ring
seem to have nothing at all to do with whether or not the ring is finite;
although the theorem proves our intuition completely wrong. Apart from
being surprising and beautiful in its own right, this result (originally proven
by Wedderburn in 1905) has played an important role in many areas of al-
gebra, such as representation theory and projective geometry (see, e.g. E.
Artin, Geometric Algebra). This theorem is also a foundation stone for an
extensive theory dealing with conditions that can be put on a ring that
will make it commutative. For further details, see Herstein, Noncommuta-
tive Rings.

The following proof, due to B. L. van der Waerden , uses the Skolem-
Noether Theorem and consequences of the Centralizer Theorem in an es-
sential way.

Proof: For a finite division ring D, let k = Z(D) (remember that the
center of a division ring is a field), and let K be a maximal subfield of D
containing k,so k C K C D. If K = D we are done, so assume K # D. By
Theorem 3.10 we have [D : k| = n? for some n, so (since K # D) we have
(K : k] = n by Corollary 3.17. Thus if ¢ = |k|, then K must have order ¢".

Now any two fields containing k of order ¢" are isomorphic, since they
are both splitting fields of the polynomial z¢" — z over k (see, e.g., Jacob-
son, Basic Algebra I, Chapter 4.13). Thus they are conjugate in D by the
Skolem-Noether Theorem. Every element of D is contained in some maxi-~
mal subfield of D, so D = \J,.p zKz™! for some fixed maximal subfield K.
If D* denotes the multiplicative group of D, then D* = |J,cp. zK*z™".
But this is impossible unless K = D since, as shall be proved in the fol-
lowing lemma, no finite group is a union of conjugates of any nontrivial
subgroup. O

We now prove the lemma that was necessary in the above proof. This
lemma is an elementary problem in group theory.

Lemma 3.19 If H < G are finite groups with H # G,
then G # Uyeq 9Hg ™"



Proof: If N(H) denotes the normalizer of H in G, then [G : N(H)) is
the number of subgroups in G which are conjugate to H. The number of

non-identity elements in U ¢q gHg ' is

<[G: NH)I(IHI-1)

<[G:H|(H|-1)

=G| - [G: H]

<lel-1 since H # G
and 50 G # U, g 9Hg ™. O

In Chapter 4 we will give another (less elementary) proof of Wedderburn’s
Theorem by showing that the Brauer group of a finite field is trivial.

We know that C and H are division algebras of dimensions 2 and 4,
respectively, over R. What are the other finite dimensional division alge-
bras over R? W.R. Hamilton, who discovered the quaternions in 1843, had
worked for ten years trying to come up with a division algebra of dimension
3 over R. Of course Theorem 3.10 tells us that such an algebra does not
exist, and so (fortunately) Hamilton did not succeed. After Hamilton tried
in dimension 4 and succeeded in constructing the quaternions, efforts were
made by many mathematicians to come up with other so-called “hyper-
complex systems” (i.e., finite dimensional division algebras over R). All of
these efforts failed. Thus it was indeed satisfying when, in 1878, Frobenius
showed that all such hypercomplex systems had already been found :

Theorem 3.20 (Frobenius) If D is a division algebra with R in its cen-
ter and [D : R] < oo, then D =R, C, or H.

Proof: Let K be a maximal subfield of D, so [K : R| < oo by the given.
Since the only finite field extensions of R are R and C(Chapter 0, Exercise
34), we have that [K : R] =1 or 2. If [K : R] = 1, then by Corollary 3.17
we have that [D : R] = 1 and so D = R. If [K : R] = 2, then again by
Corollary 3.17 we have [D : K] =1or 2. If [D : K] =1 then D = C, so
suppose that [D : K] = 2. Now K =~ C, and the map f: K — K given
by a + bi — a — bi is an R-isomorphism. Hence, by the Skolem-Noether
Theorem, there exists ¢ € D with z(a+b)z™! = a—bi for all a, b. It is easy
to check that conjugation by z? is the identity, and so #? € C(K) = K.
Now f(z} = 22, and so 22 € R. If 22 > 0, then z? = r2 for some r € R, so
z = +r, a contradiction. Thus z? < 0, and so 22 = —y? for some y € R.
Let j = z/y, and let k = ij. It is then easy to check that



i2=j2_k2=—
ij=k=—ji
jk=1i=—kj
ki=j= —ik.

We also leave it for the reader to check (see Exercises 16) that {1,,4, k}
form a basis for D. O

In particular, this theorem shows that the only finite dimensional central
division algebras over R are R and H. In Chapter 4 we will use a calculation
of the Brauer group of R to recover this result.

In our definition of an algebra, we assumed associativity of multiplica-
tion. If this restriction is dropped, then there is a (non-associative) division
algebra over R of dimension 8 called the Cayley Algebra , otherwise known
as the octonions, and denoted by O. There is a theorem, the Generalized
Frobenius Theorem , that says that R, C, H, and O are the only finite
dimensional division algebras over R. This result is quite satisfying in the
sense that it tells us that “we know everything” about finite dimensional
division algebras over R.

Summary

In this chapter we explored properties of central simple algebras over a field
k. We saw that the tensor product A ® B of any two k-algebras 4 and B
is itself a k-algebra in the obvious way, and that A ®; B is central simple if
both A and B are. This fact was used to show that, for a separable k-algebra
S, the K-algebra Sk is semisimple for any extension K of the scalars k,
generalizing the case when S is a separable field extension of k. We also
saw that any automorphism of a finite dimensional central simple algebra
S is inner (Skolem-Noether Theorem), and that the double centralizer of
any simple subalgebra of R of S is R itself (Double Centralizer Theorem).
These two Theorems were used to prove the classical results that any finite
division ring is commutative (another Wedderburn Theorem), and that the
only finite dimensional division algebras containing R in its center are R, C,
and the real quaternions H (Frobenius Theorem). Thus all such division
algebras over R were classified. In Chapter 4, we shall use the material
developed in this chapter in an attempt to prove theorems along the lines
of the Frobenius Theorem, and along the way we will get a glimpse of how
this material ties in with a myriad of fields, including number theory and
algebraic K-theory.



Exercises

1. Let R be a k-algebra and let V be a vector space over k. Regard V
as a subspace of R ® V in the usual way.

(a) For any subspace W of V, show that (R@W)NV = W.

(b) If W, and W, are subspaces of V such that R®@ W, = R® W,
show that W, = W,. Show that this assertion is not necessarily true
unless k is a field. [Hint: try k = Z.]

2. Given finite groups G = G x G2 and a field k, show that
k[G] =~ k[G1][G2] = k[G1] ® k[G}]

as k-algebras.

3. Let R be a finite-dimensional central simple k-algebra. If M is an
R-R-bimodule relative to k, show that M is free both as a left R-
module and as a right R-module. In fact, show that there exists a
subset of M which is a basis of M both as a right and left R-module.
In particular, deduce that if R is a subalgebra of an algebra S, then
S is a free R-module. [Hint: M is an R ®; R°-module and hence its
structure is completely known.|

Remark: The results of this problem, except possibly for the exis-
tence of a simultaneous basis, remain valid even if k is not the center
of R. The proof again uses tensor products, but in a different way.
For details, see Bourbaki, Algebra, Chapter 8, section 5.

4. Let H be the division ring of quaternions over R.
(a) Show that H( is isomorphic to My(C).
(b) Explicitly exhibit this isomorphism, i.e., compute the images of
all the basis vectors 1®1,1®14,1®7,1®k of Hey over C. [Hint: Find
a simple H-module. ]

5. Let R and S be algebras.

(a) Show that both R and S are simple (semisimple) if R® S is simple
(semisimple).

(b) Show that both R and § are central if R® § is central.

6. Let R be an artinian algebra and let S be a finite dimensional algebra.
Prove that R® S is artinian.
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11.

12.

13.

14.

(a) Let R be a finite-dimensional commutative algebra over a field k.
If R is semisimple, show that every subalgebra of R is also semisimple.

(b) Give an example to show that this is false in the noncommutative
case. In fact, give a commutative subalgebra of M, (k) which is not
semisimple, even though M(k) is simple.

(a) If R is a finite-dimensional algebra over a field k, and if R is also
an integral domain, show that R is a division algebra over k.

(b) Prove that a subalgebra of a finite~-dimensional division algebra
is also a division algebra.

. (a) Let f(z) € k[z], k a field. Show that k[z]/(f(z)) is semisimple

if and only if f(x) is a separable polynomial over k (i.e., has no
multiple roots in its splitting field). [Hint: Use unique factorization
and the Chinese Remainder Theorem.]

(b) Let K be a finite dimensional separable extension field of a field

k, and let A be a central simple K-algebra. Show that A ®j A° is not
simple. [Hint: Find an idempotent # 0,1 in K Qx K°]

Let S be a finite dimensional semisimple algebra over a field k. Show
that S is a separable k-algebra if and only if S is projective as an
S @k S°-module.

Filling in Some Holes

The following exercises come from assorted gaps we have left in the
text. You will be doing the authors a great service if you work these
problems out.

(a) Prove Proposition 3.2

(b) Deduce from this that if M is an R-module and an S-module
such that the two actions commute and induce the same k-module
structure on M, then there is a unique R® S-module structure on M
inducing the given actions of R and S.

Furnish another proof of Theorem 3.4 by showing that K|z]/(f(x))
has no nilpotent elements.

Let S be a simple algebra with center C. Show that C ~ Endsgse (S)-

Check that the two “equivalent” definitions of separable algebra given
on page 89 are really equivalent.
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Show, using only elementary linear algebra, that any automorphism
of the ring of n x n matrices over a field k which leaves k fixed is inner
(i.e., the automorphism is “conjugation by a fixed matrix”). [Hint: Let
V = k™ be the vector space. Note that the images of the elementary
linear transformations (given by multiplication) ey, €22,..., en, on
this vector space are one-dimensional and have sum equal to V. If
f is any automorphism of M,,(k), then f(ei1),..., f(enn) have the
same property. Use these subspaces to give bases for V, and show
that the action of f is the same as conjugation by this change of
basis matrix. It will be useful to note that a matrix is completely
determined by its product with the e;;.]

Check that the properties of i, j, and k given in the proof of Theorem
3.20 hold. Also check that {1,1, 7, k} is indeed a basis for D,

Altering the Hypotheses of Skolem-Noether (or trying to)

Let k be a field, S = Mj5(k), R = k x Ma(k). Define f,g: R — S
by f(z,y) = diag(z,y,y) and g(z,y) = diag(z,z,z,y), where diag
denotes the appropriate block matrix. Show that there is no inner
automorphism h of S such that hf = ¢g. Hence the Skolem-Noether
theorem cannot be generalized to include the case of semi-simple
subalgebras of a central simple algebra.

In our proof of the Skolem-Noether Theorem we assumed that the
ring S had finite dimension over its center k. It is only necessary to
assume that the embedded simple algebra R has finite dimension over
k. Check that every step of the given proof works for this case, except
possibly the last step: S = Endp(V) for D a division algebra with
center k, V a finite dimensional vector space over D. V is a module
over R®x D in two different ways, via f,g : R — S. As before,
V is still a finitely generated R ® D-module and as such is still the
sum of a finite number of copies of the unique simple R ® D-module.
We no longer know that the same number occur each time since the
dimensions over k could be infinite. Nevertheless, we can still get a
map j:V — V from “V with f-structure” to “V with g-structure”
(if the first number of summands is smaller; in the opposite direction
if the reverse is true) which satisfies : (i) j is one-to-one; and (ii)
jo f(r) =g(r) o j. If j had an inverse, the proof would be complete.

Complete the following two ideas to show that any element of an
artinian ring which is not a zero-divisor must be a unit, thus finishing
the above proof in two different ways :

(i) Use Fitting’s Lemma (Chapter 0, Exercise 50).

(ii) Alternatively, show that it suffices to prove the statement for the
ring mod its radical, which has no radical and is artinian; hence is
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Exercises 103

semisimple. Now use the Wedderburn Structure Theorem to reduce
the problem to the case of matrix algebras over a field. Prove the
statement in this case by considering row and column reductions.

This exercise shows that the Skolem-Noether Theorem does not nec-
essarily hold if the simple subalgebras in question are not finite di-
mensional.

(a) Let Ry € Rz C -+ - be a (not necessarily finite) increasing sequence
of simple rings. Show that the union |J; R; is simple.

(b) Let S be a central simple k-algebra which is not commutative; for
example, S could be M (k). Let S; denote the tensor product (over
k) of i copies of S. Let R = |J, S;. Show that R is a central simple
k-algebra.

(c) Pick any element s € S which is not central. Use this to give a
conjugation on each S; which is nontrivial on each factor of the tensor
product. Show that this induces an automorphism of R which is not
inner.

(d) Consider the following subalgebras of R:

Rygdq=5®k 1®r S ®% 1® - -
Reoven =1 @, S ®% 1 ®r S Q4 -+ -

Use these subalgebras to show that the first part of the Skolem-
Noether Theorem does not necessarily hold if the subalgebras are
not finite dimensional.

What happens if we replace the central simple algebra S in the
Skolem-Noether Theorem with a semisimple ring? Show that with
the appropriate centralizer assumption, the first part of the theorem
will still hold, but the second part will not. What happens if one
drops the assumption that the ring homomorphisms take 1 to 17

Compute the automorphism group of an arbitrary semisimple ring.
[Hint: Reduce the question to that of the homogeneous components
and note that endomorphisms can be described in matrix notation.
When does such a matrix really represent an automorphism?)

More on Centralizers

Let A and B be k-algebras.

(a) Show that the centralizer of AQk in A® B is equal to Z(A)® B,
where Z(A) denotes the center of A.

(b) Show that Z(A® B) = Z(A) ® Z(B).
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(c) Show that if C and D are subalgebras of A and B, respectively,
then the centralizer of C ® D in A ® B is isomorphic to the tensor
product of the centralizer of C in A with the centralizer of D in B.

Let A be a k-algebra with subalgebra B. Prove that if £ € A*, then
C(z7'Bz) = z7'C(B)z.

Prove the following generalization of the Centralizer Theorem : If S is
a central simple k-algebra (not necessarily of finite dimension), and if
R is a finite dimensional simple subalgebra of S, then C(R) is simple,
and C(C(R)) = R. [Hint: Use the generalized form of the Skolem-
Noether Theorem (Exercise 18)and the previous two exercises.|

Another Theorem of Wedderburn

Theorem 3.21 Let A be o finite dimensional algebra over o field
k. Let I be a two-sided ideal of A which is generated by nilpotent
elements. Then I is nilpotent.

Prove this theorem as follows :

(i) We may as well assume that k is algebraically closed since A is a
subring of k®x A, where k denotes the algebraic closure of k. Explain.

(i) Show that M, (k) does not have a basis over k consisting of
nilpotents. [Hint: consider the trace.]

(iii) We now proceed by using induction on the dimension of I over
k. Why does the case dim(I) = 1 work?

(iv) Now I is artinian and if I contains no nilpotent left ideals, so I
is semisimple by Theorem 2.4. Hence I ~ [] M,,,(k). Why are these
matrix rings over k7

(v) By (ii) this can’t happen. Thus I contains a nonzero nilpotent
left ideal. Thus J(R) NI # 0.

(vi) Consider A/(J(R)NI) and compute the k-dimension of the image
of I. Use the induction hypothesis to complete the proof.

(a) Wedderburn'’s Theorem (Theorem 3.21, that is!) is usually stated
for rings without unit: If I is a finite dimensional k-algebra which
has a basis consisting of nilpotent elements, then I is nilpotent (here
I need not have an identity element). Show that this follows from
the Wedderburn theorem by taking A = k & I with suitably defined
multiplication. Conversely, the above theorem follows from this one.

(b) Apply this theorem to give another proof of Problem 49 in Chap-
ter 2, which states that, for a finite p-group G and a field k of char-
acteristic p > 0, the augmentation ideal I is the Jacobson radical of
k[G] and hence k[G] is a local ring.
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Remarks:

(i) Actually, the augmentation ideal I is generated by elements of the
form s — 1, where s runs over a set of group elements which generate
G. Prove this as an exercise.

(ii) This material plays a crucial role in the Nakayama-Rim theory of
cohomologically trivial modules. For more information on this topic,
see K. Brown, Cohomology of Groups.

Applications of the Skolem-Noether Theorem

Let D be a finite dimensional division algebra over its center k. Let
a,b € D have the same minimal polynomial over k. Show that there
exists £ € D such that zbz~! = a. This result is due to Dickson.,

(a) Let U denote the elements of absolute value 1 in H, the real
quaternions. Prove that every element in U is a commutator in the
multiplicative group H* of H. In fact, show that one can take the
elements to lie in U itself. Further, prove that given any triple of
elements u;, ug,u3 in U, there exists elements z,v;,vs, vz in U with
u1 = [z,v1],u2 = [2,v2],u3 = [2,v3]. Can this be done with an arbi-
trary 4 elements of U? [Hint: Use the previous exercise, and note that
two elements of U have the same minimal polynomial if and only if
they have the same trace.]

(b) Let D be a division algebra of dimension 4 over its center. Prove
that every pair of commutators in D* can be written as commutators
with the same first (or last) element. Use this to conclude that every
element of [D*, D*] can be represented as a single commutator.

Let D be a division algebra containing a finite field k in its center.
Assume that every element of D satisfies an algebraic equation over
k. Prove that D is a field. [Hint: Let K be the center of D and take
z € D,z ¢ K. Show that there is an element y € D such that
yk[z]y~! = k[z] but yzy~' # z. Obtain a contradiction by looking
at k[z,y].]

Let R be a ring. An additive map d : R —~ R is called a derivation
if d(ab) = ad(b) + d(a)b. For example, differentiation of polynomials
is a derivation on the ring of polynomials over R. d is called an inner
derivation if there exists an element ¢ € R such that d(z) = zc—cz
for all z € R.

Theorem 8.22 Let R be a finite dimensional central simple k-algebra
Every k-linear derivation on R is inner.
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Prove this theorem by applying the Skolem-Noether Theorem to the
following two isomorphic subrings of Ma(R):

{rI:reR} and {[8 d(:)]:reR}

Remark: Derivations play an important role in the study of separa-
ble algebras, a concept vastly generalizing separable field extensions.
The degree to which derivations fail to be inner can be measured by
a certain cohomology group, which we shall discuss later.

Let k be a field of characteristic not equal to 2. Let D be a divi-
sion algebra over k such that [D : k| = 4. Suppose that D is not
commutative. Show that k is the center of D and that there exists
elements u,v € D so that 1,u,v,uv form a basis for D over k and
satisfy u? = a,v? = b,uv = —vu for some a,b € k. Such an algebra
is called a generalized quaternion algebra over k. These algebras
play an important role in the study of the Brauer group and in alge-
braic K-theory, and are discussed in greater detail in the exercises of
Chapter 4.

The Jacobson-Noether Theorem

Theorem 3.23 (Jacobson-Noether) If D is a noncommutative di-
vision ring which is algebraic over its center k, then there is an ele-
ment in D, not in k, which is separable over k.

Prove this theorem as follows:

(a) Let K 2 k be fields of characteristic p and let ¢ € K be algebraic
over k. Let f(z) be the minimal polynomial of ¢ over k. If f(z) has
multiple roots, show that f(z) = g(zP) for some g(z) € k[z]. Conclude
that f(z) = h(z?") for some h(z) € k[z] which has no multiple roots.
This says that ¢?* is separable over k. :

(b) Since the theorem is clear if k has characteristic 0, assume that
k has characteristic p > 0. If the theorem fails, show (using part (a))
that there exists ¢ € D with oP € k,a & k. Defined: D — D by
d(z) = za — ax. Show that d is a k-linear map which satisfies d # 0
and dP(z) = zaP — aPz. Hence d? = 0 since a? € k. Let y € D be
such that d(y) # 0 and choose s such that z = d*~'(y) # 0 and
d*(y) = 0. Now s > 1 so z = d(w) for some w € D, ie., T = wa —aw.
Further, dz = 0, i.e. az = za. Write £ = au. Show that ¢ = ca — ac
for ¢ = wu~!. Thus ¢ = 1 + aca™!. Raise this to a large power of p
and reach a contradiction.
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Exercises 107

(a) (Koethe’s Theorem) Use the Jacobson-Noether Theorem to show
that if D is a finite dimensional division algebra with center k, and if
K C D is a separable extension of k, then D has a maximal subfield
containing K which is separable over k.

(b) Conclude from the Jacobson-Noether Theorem that any central
simple algebra has a separable splitting field which is finite dimen-
sional over its center.

(c) Does there exist a maximal subfield which is galois (i.e., normal
and separable) over its center? [Remark: Don’t feel bad if you don’t
get this one, considering that this was an open question for quite some
time. The problem was finally answered in the negative by Amitsur
(See S. Amitsur, “On Central Division Algebras”, or B. Jacob and A.
Wadsworth, “A new construction of noncrossed product algebras”).]

Embeddings of Algebras

(a) Let D be a central division k-algebra, A = M, (D), and V be a
simple A-module. Describe [V : k] in terms of r and D.

(b) Let A be a central simple k-algebra with [A : k] = n%. Given a
matrix algebra M., (k), it is natural to ask under what conditions on
A does A embed as a subalgebra of M,, (k). There is a nice answer
to this question. First note that A ~ M,,(D) for a unique division
algebra D by the Structure Theorem for Simple Artinian Rings, and
[D : k] = d? for some integer d by Theorem 3.10 (we will later call d
the “Schur index” of A in studying the Brauer group). Prove that A
is isomorphic to a k-subalgebra of M., (k) if and only if nd divides
m. In particular, show that if A is a central division k-algebra then
this condition holds if and only if [A : k| divides m. [Hint: Use the
Centralizer Theorem and Wedderburn’s Theorem.|

(a) More generally, suppose that A, and A, are simple k-algebras
with Ay central. Let D; (i = 1, 2) be the unique division algebra with
A; =~ M, (D;); and let n; = [A; : k], d; = [D; : k| (i = 1,2). Note
that n; = r;d;. Note that A1 ® D3 is simple, so A, ® D; ~ M, (Dj3)
for a unique division algebra Ds; let d3 = [Dj : k|. Prove that A,
embeds as a k-subalgebra of A if and only if n;dsd; divides ns.
[Hint: Let V; (i = 1,2) be the simple A; module, and let V5 be the
simple A; ® D§-module. First show that A; embeds in A if and only
if V2 is isomorphic to some A; ® D5-module. Show that this holds if
and only if dimy(V3) divides dimg(V2). Now compute dimensions of
everything in sight.]

(b) What happens if A; is now just semisimple in the above? How
about if A, is semisimple? How about if both A; and A; are just
semisimple? What kind of theorem can you prove?
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The Cartan-Brauer-Hua Theorem

This problem provides two lemmas which will be used in the proof of
the Cartan-Brauer-Hua Theorem (Exercise 37).

(a) Let R be a finite dimensional algebra over an infinite field k.
Show that if r € R, then there exists s € k* with » — s a unit in R.
In particular, show that every element of R is the sum of two units
in R. [Hint: Since R is finite dimensional, f(r) = 0 for some non-zero
polynomial f € k[z]. Since k is infinite, there exists s € k* such that
the polynomial f(z + s) has a non-zero constant term.|

(b) Show that no group can be written as the union of two of its
proper subgroups.

Prove the Cartan-Brauer-Hua Theorem: Let R be a finite dimensional
central simple algebra over an infinite field k. If D is a division sub-
algebra of R with D* a normal subgroup of R*, then either D = k or
D = R. [Hint: Suppose D # k and D # R. Use part (a) of Exercise 36
to show that D* is properly contained in R*, and use the Double Cen-
tralizer Theorem to show that C(D) is properly contained in R. Now
apply part (b) of Exercise 36 to find an element z € (D* U C(D)*)
with z ¢ R*. Use the hypothesis and part (a) of Exercise 36 to show
that w € D*, giving a contradiction.|

(a) Show that every subalgebra of a division algebra is a division
algebra.

(b) Show that if D is a finite dimensional central division algebra with
subfield E # k, then D is generated (as a k-algebra) by |, p. d7' Ed.

(c) Use part (b) of this exercise to give another proof of Wedderburn'’s
Theorem that finite division rings are commutative. Notice that this
gives a proof of Wedderburn’s theorem via the Double Centralizer
Theorem, whereas the proof given in the text uses the Skolem-Noether
Theorem.
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The Brauer Group

This chapter is concerned with the classification of finite dimensional cen-
tral division algebras over a given field k. In the case k = R, the Frobenius
Theorem shows that R and H are the only finite dimensional central di-
vision algebras over R. This kind of classification is optimal in the sense
that we have an explicit, easy-to-understand list of all finite dimension-
al central division algebras over R. Classifying finite dimensional central
division algebras over other fields has proven much more difficult, and in
fact this problem has been a focal point for research in number theory and
quadratic forms. Although such an explicit list as in the case of central
division algebras over R cannot always be given, there is much that can be
said.

Our attack on the above problem shall lead us to a discussion of the
Brauer group, named for R. Brauer, who first defined this group in 1929.
Computing the Brauer group is a classical problem that has strong ties with
number theory and algebraic geometry (see, e.g., J.P. Serre , Local Fields).
The Brauer group has also begun to play an important role in algebraic
K-theory, as can be seen by recent work of Merkur’'ev and Suslin (see I.
Kersten, Brauergruppen von Korpern).

We shall assume throughout this chapter that, unless otherwise specified,
all of the algebras are finite dimensional.

An Equivalence Relation on Central Simple
Algebras

For reasons that will soon be clear, it is more convenient to rephrase the
above classification question as follows: given a field k, try to classify all
finite dimensional central simple algebras over k up to similarity, where S
and S’ are called similar (written S ~ S’) if the division algebras D, D’
such that S = M,(D) and S’ = M,/ (D’) are isomorphic. Note that such
division algebras exist by the Structure Theorem for Simple Artinian Rings,
and that it makes sense to talk about the division algebra such that S ~
M., (D) since D is uniquely determined (up to isomorphism) as the opposite
of the endomorphism ring of a simple S-module. Thus we see that each
similarity class contains a unique isomorphism class of finite dimensional
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central division algebras, and each such division algebra is contained in a
unique similarity class. So the classification problem for finite dimensional
central division algebras is equivalent to that for finite dimensional central
simple algebras (up to similarity).

The point of studying the set of central simple algebras over k instead
of the central division algebras is that the tensor product of two division
algebras is not always a division algebra, while the tensor product of two
central simple algebras is again a central simple algebra; that is, the set
of central simple algebras is closed under tensor product. This allows one
to put a group structure on the (similarity classes of) central simple k-
algebras. The group structure imposes constraints which can be exploited
to give information about the central simple k-algebras, hence about the
central division k-algebras.

It will be useful in later discussions to phrase the above equivalence
relation in several different, though equivalent, forms.

Definition: Let S and T be finite-dimensional central simple k-algebras.
We say that S and T are similar , and write ,§ ~ T , if any one of the
following equivalent conditions hold :

1. If § = M, (D) and T = M,,(E) for division rings D, E, then D = E.
2. There exist m, n such that S @x M, (k) = T Q@ M, (k).
3. There exist m, n such that M,,(S) = M,(T).

4. If M is the unique simple S-module and N is the unique simple T-
module, then Endg(M) ~ Endr(N).

It is not difficult, using the previous discussion and Lemma 4.1, to check
that these four definitions of similarity are equivalent. We leave the verifi-
cation as an exercise to the reader.

The Brauer Group : Definition and Examples

Finally, after lots of foreshadowing in the previous chapter, we come to the
definition of the Brauer group.

Definition: The Brauer group of a field k, denoted Br(k), is the set
of equivalence classes of finite-dimensional central simple k-algebras under
the equivalence relation of similarity, with the tensor product acting as
the group operation and the equivalence class of k acting as the identity
element. The equivalence class in the Brauer group of a finite-dimensional
central simple algebra S will be denoted by [S].
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Note: For the logicians and set theorists in the crowd, it is an easy exercise
to check that the set of isomorphism classes of finite-dimensional algebras
over a given field really does form a set.

The Brauer group acts as a “classifier” of central division algebras, in
the sense that each element of Br(k) corresponds to a distinct central
division algebra over k. For example, Br(k) = 0 precisely when k is the
only central division k-algebra. Although we will not always be able to givé
a list of elements of Br(k) (and thus an explicit classification of central
division algebras), the group structure of Br(k) will allow us to make other
quantitative statements about the set of such algebras.

Note that [M, (k)] = [k] = 1 € Br(k) for every n. It is also useful to
note that if A and B are finite-dimensional central simple k-algebras, then
A =~ B if and only if [A] = [B] in Br(k) and A and B have the same
dimension over k.

Our next goal is to show that the Brauer group is, in fact, a group. Before
doing this, however, we shall give two useful lemmas.

Lemma 4.1 (i) M, (R) = R®, Mu(k) for any k-algebra R.
(i) Mm(k) ® Mp(k) = Mma(k).

Proof: Denoting the n x n identity matrix in M, (R) by I, we have maps

R — M, (R) via r — rl as well as the natural inclusion M, (k) —

Myp(R). Now (rI)A = rA = Ar = A(rI); that is, the images of the above

maps commute, and so there is a ring map R ®; M, (k) — M, (R) with

1®e;; — e;;, where ¢;; is the elementary matrix with a 1 in the ¢, § position.

Clearly the map takes an R-basis to an R-basis and is thus an isomorphism.
To prove part (ii), simply let R = M,, (k) in the above to obtain

Mun(k) ® Mu(K) ~ Mo(Mu(k)) by part (i)
~ Mo ()

The last isomorphism is the “erase-the-lines” isomorphism which comes
from facts about block multiplication of matrices. For a slightly more hands-
on proof of part (ii), see Exercise 2. O

The next lemma will help show that multiplication in the Brauer group
is well-defined by proving that we may multiply two equivalence classes by
multiplying any two representatives from these classes and then taking the
equivalence class of the product.

Lemma 4.2 If S~ S, and T ~ T then S® T ~ S, @ T1.

Proof: First note that if A ~ B, then A and B have the same division
algebra D, so we may write
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S ~ Mn(D) T
S ~M. (D) T

for some positive integers m,n,my, n1. Then

S®T =~ M,(D)® Mn(E)
~ D® M, (k) ® E® Mpn(k) by (i) of Lemma 4.1

~D®E® Mpn(k) by (ii) of Lemma 4.1 and
commutativity of tensor product

~ Mum (D ® E) by (i) of Lemma 4.1
Similarly, $; @ T\ ® My m, (D ® E) and we are done. O

Having given these two lemmas, we need only collect facts from the
previous chapter to show that Br(k) is an abelian group.

Proposition 4.3 Br(k) with the operation [S]e[T] = [S®T) is an abelian
group.

Proof: Let § and T be two finite-dimensional central simple k-algebras.
Then S ®T is finite-dimensional, and by Corollary 3.6 we know that S® T
is central simple. From this fact and Lemma 4.2 we see that the tensor
product gives a well-defined multiplication on Br(k). Associativity of this
multiplication follows from associativity of the tensor product. Clearly [k]
acts as an identity element, and by the definition of ~ we have [M,, (k)] =
[k]. By Proposition 3.12, S ® §° ~ M, (k) for a finite-dimensional central
simple algebra S, which proves that [S°] is the inverse of [S] in Br(k).
Finally, Br(k) is abelian since S®T ~ T ® S for any algebras S and T. O

There are a few cases in which Br(k) can be explicitly computed. Al-
though not all the proofs are contained in this book, we provide the follow-
ing list of examples to give the reader some idea of the possibilities that
are involved.

Examples:

1. Br(F) =0 for any finite field F by Wedderburn’s Theorem on finite
division rings. In fact, Br(k) = 0 for any algebraic extension k of a
finite field.

2. Br(k) = 0 for any algebraically closed field k, since there are no (non-
trivial) division algebras over an algebraically closed field (Chapter
1, Exercise 1). In fact, Br(k) = O for any field k of transcendence
degree one over an algebraically closed field.
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3. Br(R) = Z; and is generated by [H], as shown by Frobenius’ Theo-
rem and the fact that H Qg H ~ M4 (R).

4. Br(QP) ~ Q/Z. Here Qp denotes the field of p-adic numbers. The
subgroup of Q/Z of order n (namely 1Z/Z) corresponds to those
division algebras which have a splitting field of degree n. The proof
of this result uses local class field theory and is beyond the scope of
this book. The interested reader may consult Serre, Local Fields, or
Kersten, Brauvergruppen von Korpern.

5. For the Brauer group of Q, there is an exact sequence
0 — Br(Q) - @ Br(Q) - /2 —0

where Q; ranges over all completions of Q, j is the canonical map
(which maps into the direct sum rather than the direct product since
the map Br(Q) — Br(Q;) is trivial for all but finitely many ),
f({z:}) = ¥ =i, Br(R) is identified with $Z/Z, and each Br(Q,)
is identified with Q/Z. One may interpret this result by noting that
each element of Br(Q) gives rise to an infinite number of numerical
invariants in Q/Z, which completely determines the element. These
invariants can be arbitrary, subject only to : (i) the first is in %Z /Z,
(ii) all but a finite number are zero, and (iii) their sum is zero. This
can be generalized to other number fields; see Kersten, Brauergruppen
von Korpern.

In the 1930’s, such eminent mathematicians as A.A. Albert, R. Brauer,
H. Hasse and E. Noether made an intensive study of Br(k) in the case
when k is an algebraic number field. This work, which uses techniques
from and has importance in number theory, culminated in the complete
determination of the Brauer group of an algebraic number field. One of
their results is that any central division algebra over an algebraic number
field k is isomorphic to a cyclic crossed product algebra, which we will define
later in this chapter. For a summary of this work, see Albert, Structure of
Algebras, Deuring, Algebren, or Pierce, Associative Algebras.

The Relative Brauer Group and Galois Splitting
Fields

This section will explore the relationship between the Brauer Group and
maximal subfields of central simple algebras. We begin by noting that Br( ),
which associates to each field an abelian group, has the following functorial
property : given a field extension K/k, there is a homomorphism
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Br(k) — Br(K)
given by
[S] — [Sk]

where Sx = K ®; S is an extension of scalars. This homomorphism can of-
ten be used to determine information about Br(k) from information about
Br(K), which may be easier to deal with. The above homomorphism also
leads us to the following
§ . (T

Definition: Br(f(/k:) = ker(Br(k) — Br(K)); that is, Br(K/k) is the
set of finite-dimensional central division algebras over k which are split by
K. Br(K/k) is called the relative Brauer group .

The relative Brauer group will be useful in studying the Brauer group,
for we will be able to reduce questions about Br(k) to questions about
Br(K/k) for certain K, and Br(K/k) is often easier to work with. In order
to do this we must first discuss a generalization of maximal subfield of a
division ring.

Definition: Let S be a simple k-algebra. A maximal subfield of S is
defined to be a field K C S containing k such that C(K) = K that is, K
is its own centralizer in S.

There is another natural notion of “maximal subfield” meaning a subfield
which is maximal with respect to inclusion. The two definitions agree for
division algebras, but do not agree in general. In fact, maximal subfields (in
the first sense defined above) do not always exist. These facts are illustrated
by the following

Examples:

1. Consider M,,(H), which is a simple R-algebra of dimension 4n2. By
the Centralizer Theorem, any maximal subfield of M,,(H) would have
dimension 2n over R. But the only finite extensions of R are R and
C, so if n > 1 then a maximal subfield of M, (H) cannot exist.

2. Even when maximal subfields under both definitions exist, the two
notions do not always coincide. We give an easier example of when
maximal subfields (with our definition) are too small to be maximal
commutative subrings. Consider the ring Mo, (F) over a field F and
the subring § C My, (F) of matrices of the form
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where a € F, I is the n xn identity matrix and B is any n x n matrix.
Then S is a commutative subring of dimension n? + 1 over F, so any
maxima} commutative subring has dimension at least n? + 1. By the
Centralizer Theorem, however, any maximal subfield of My, (F) has
dimension 2n.

Computation of Br(k) is based on a more detailed study of splitting fields
than we've given so far. Corollary 3.17 provides us with one example of
how to construct splitting fields; namely, as maximal subfields of a division
algebra. More generally we have the following

Theorem 4.4 Let S be a central simple k-algebra of dimension n?. Then
any mazimal subfield K of S is a splitting field for S, and [K : k] =
[S : K] = n. Conversely, given any field extension K O k of degree n,
any element of Br(K/k) has a unique representative S of degree n? which
contains K as a maximal subfield.

Proof: First note that

n? =[S:k| by hypothesis

= [K : k|[C(K) : k] by part (iii) of the Centralizer Theorem
=[K : k]2 since C(K) = K

and so [K : k] = n. To show that K is a splitting field for S, note that S
acts on S on the left, K acts on S on the right, and the actions commute,
thus giving a map

f ) Rk K — EndK(S) ~ MH(K)

where f(s®x)(s') = ss'z. Since S is central simple and K is simple, SQ K
is simple by part (i) of Theorem 2. Since f has simple domain and is clearly
nonzero, f is one-to-one. Also, both § ®; K and M, (K) have dimension
n® over k; hence f is an isomorphism.

Conversely, suppose we are given an extension K/k and an element of
Br(K/k). Let D be the division algebra which represents the chosen ele-
ment of Br(K/k). Then K @ D° ~ M, (K) for some m(D acts on the
right) and is thus simple. Also note that

[D°: k] =m2 (%)
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Let V be the simple K ®) D°-module, so K ® D° =~ V™. Computing the
dimensions of both sides gives

m-[V:D]Z[K:k] (%%).

Now K acts on V, and the action commutes with that of D, so there is
a K-algebra homomorphism

K —> Endpe (V) = My.p)(D)

which is injective since K is a field. Let S = My.pj(D). Then [S] = [D]
in Br(K/k) and

[S:k] =[V:D]’[D:k]
= [V : D*m? by (x)
—(IV': D] m)?
=[K :k]? by ().

Now an application of part (iii) of the Centralizer Theorem, applied to
the simple subalgebra K of the central simple algebra S, yields

[K:K?=[S:k =[K:k[C(K):k|

and so C(K) = K and we are done. Uniqueness follows from the dimension
of §.0

For a division algebra of dimension n? over its center k, there exists a

splitting field which is a finite galois extension of k. This is trivial to prove
when the characteristic of k is zero, or, more generally, when every finite
extension of k is separable. The case of an arbitrary field requires use of the
Jacobson-Noether Theorem (Chapter 3, Exercise 32), and is done in the
following corollary. The fact that a galois splitting field exists is essential
when giving an explicit description of elements of the Brauer group.

Corollary 4.5 If D is a division algebra with center k and of dimension
n2, then there erists a finite galois extension K of k which is a splitting
field for D.

Proof: It follows from the Jacobson-Noether Theorem that there exists a
maximal subfield L C D which is separable over k (see Chapter 3, Exercise
33(a)). Let k C L C K be the normal closure. So K is galois over k and

Der K =~ (Do L)®L K
z./\/tn(L) ®LK

~ Myp(K)
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We now draw an immediate but important conclusion from Corollary
4.5. The following corollary reduces the general computation of Br(k) of a
field k to the study of Br(K/k) in the case where K is galois over k. This
is important because the relative Brauer group is, as we shall see in the
sections which follow, much easier to compute than Br(k).

Corollary 4.6 Br(k) =) Br(K/k), where K ranges over the finite galois
extensions of k.

Corollary 3.17 shows that if D is a division algebra of dimension n?,

then any maximal subfield of D has dimension n and splits D. Conversely,
it follows from Theorem 4.4 that every field which splits D has degree
divisible by n. We state this interesting fact as :

Corollary 4.7 If D is a central division k-algebra of dimension n?, and
if K splits D, then n|[K : k].

Factor Sets and Crossed Product Algebras

In this section we introduce the notions of factor sets and crossed produc-
t algebras. These concepts will prove useful in analyzing the structure of
central simple algebras, and will provide us with a more concrete descrip-
tion of elements of Br(K/k) than we have seen so far. This description will
allow us to make the connection between the relative Brauer group and the
important concept of cohomology in the following section.

In the proof of the Frobenius Theorem, we determined the structure of
a given division algebra D by looking at a maximal subfield K of D. In
the case when [D : K] = 2, K could be identified with C, and the Skolem-
Noether Theorem was applied to show the existence of 5 € D with

jzj ' =% forall z € C

which was the main step in showing that D must be the quaternions.

More generally, suppose that S is a central simple k-algebra of dimension
n? which contains K as a maximal subfield, K/k is a field extension of
degree n, and G is the Galois group of K over k. We shall now employ a
method similar to the one we used in the proof of the Frobenius Theorem
in order to analyze the structure of S. Instead of looking at a maximal
subfield of S, we look at a field K which splits S. Unfortunately, S does not
necessarily contain K, so we will have to choose a particular representative
of [S] € Br(K/k) which contains K as a maximal subfield. The details in
the general case will be more complicated than in the Frobenius Theorem,
for there are usually more than 2 automorphisms of K, and also because
the base field is not always as nice as R.
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For any o € G, there exists £, € S such that

Toaz;' = o(a) foralla e K (4.1)

by the Skolem-Noether Theorem. Note that z, is unique up to scalar mul-
tiplication by non-zero elements of K for if both 2/ and z, satisfy (4.1),
then z/ z_ ! induces the identity on K, and is thus contained in C(K) = K.
From this fact it follows that

ToTr = QprTor for some a,, € K*.

The coljection {a, -} is called a factor set of S relative to K. It is useful
to view {Z,} as a function G — K*, and a factor set {a,,} as a function
GxG— K*.

Note: We abbreviate {z, : ¢ € G} and {a,r : 0,7 € G} to {z,} and

{as+}.

Since the z,’s are unique only up to scalar multiplication, different choic-
es of {x,} will give rise to distinct factor sets. There is, however, a relation-
ship between factor sets that are obtained by different choices for the z,’s.
More precisely, suppose we have {z,} and {z/,} with factor sets {a, ,} and
{bs, }, respectively. Then z/,z;! = f, for some f, € K*; that is,

T = f,zs (4.2)
and we have
1t = foxofrz. by equation 4.2
bo Ty » = fo0(fr)Tots by (4.2),(4.1), and definition of b, ,

bsr forZor = fo0(fr)ao-Tor by equation 4.2

and so

ba,‘rfa'r = fao'(f-,-)aa,-r
Thus we obtain the following relationship between the two factor sets :

_ foo(fr)

ba,-r Qo
for

This relationship will be useful in later discussions. Note that if we choose
1 = 1, then a1, = a,1 = 1 for all 0 € G. We call such a factor set
normalized.

Although infinitely many bases for C over R exist, choosing the basis
{1,i} makes formulas easier to understand. We shall now show that the



z,’'s form a basis for the algebra S over the field K. The point is that {z,}
give multiplication formulas which take a particularly nice form, which in
some sense makes the algebra look like a “twisted” group algebra. By choos-
ing this basis in such a reasonable way, we will re-discover the algebraic
definition of cohomology.

Proposition 4.8 {z, : 0 € G} is a basis for S over K.

Proof: Since |G| = [K : k| = [S : K], we need only show independence.
So assume that the set is not independent, and choose a subset J which
is maximal with respect to the property that JGG and {z, : 7 € J} is
independent. Assume o ¢ J. Then

Ty = Za,m., for a, € K. (4.3)
T€J

multiplying by any r € K gives
ma-r:ZaTmT-r
T€J
yielding by (4.1)

o(r)z, = ZaTr(r)mT forallr € K (4.4)
TeJ

Multiplying (4.3) by o(r) and using (4.1) to equate it with (4.4) gives
a,7(r) =o(r)a, forallTe JreK.

Since z, # 0, there exists some 7 € J with a, # 0, so 7(r) = o(r) for
all r € K, and so ¢ = 7 € J, contradicting the choice of o. Thus J is all of
G, and we are done. O

This proposition shows that, additively,

S:®K.’Ea

o€@
with multiplication characterized by
z,a =o(a)z, forala€ K
and T,T; = Gy rTor
It is natural to ask whether any function {a, .} : G x G — K* is the

factor set for some algebra relative to some field. {a, - } cannot be arbitrary,
since the associativity relation z,(z,z-) = (£,%,)z, implies that
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LplorLor = Qp oTLpoTr
and so
P@0,7)8p,0rTpor = Gp,0lpo,rTpor

thus giving the constraint

P(aa,-r)ap,UT = Gp,0Qpo,r (*).

This is, however, the only condition on {a, .} in order for it to be a
factor set :

Proposition 4.9 Given an extension K[k, any set of elements {a,r} of
K satisfying (*) for all p,o,7 € G 1s the factor set relative to K of a central
simple k-algebra A. Further, A contains K as a mazimal subfield.

Note: In light of this proposition, any set of elements {a, .} of K which
satisfy (*) will be called a factor set (relative to K), regardless of whether
or not an algebra of which {a, -} is a factor set is given.

Proof: Let A be a vector space over K with basis {e, : 0 € G}. Define

multiplication via

(ae,)(Ber) = ao(B)as reqr

and extend this definition to all of A by linearity. Then it is easy to check
that the axioms for an algebra hold in A with a] 161 being the identity
element. For example the distributive law holds (almost) by definition,
and to show that 01,161 is the identity element, we first note that for any

a,

]-(al,a)al,a =a1,101,0
since {a,, .} satisfies (*). Thus @11 = a1,,, which implies that
-1 -1
(01,161)60 = 01101,0€0

=e,.
Similarly, it is easy to check that o(a1,1) = as,1, which implies that
-1 _ -1
ed(al,l)el = ‘7(01,1)00,160

_ea,
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showing that al_,iel acts as identity element. K is a subring of A via the
map

K-— A
a—a-1l (1=a1“,}el).

To show that K is its own centralizer, note that }" a,e, is contained in
C(K) if and only if

a(z Gp€s) = (Z Gs€s)a forall a € K,

which is equivalent to
aa, = a,0(a) for all a € K.

If a, # 0, this implies that a = o(a) for all ¢ € K, i.e., o is the identity.
Thus a, = 0 if o is not the identity, and so C(K) C K. Since K is clearly
contained in C(K), we have K = C(K) in A. A similar argument shows
that k = C(A).

To see that A is simple, suppose that I is a proper two-sided ideal of A.
Then K —» A/I is an injection. Let €, denote the image of e, under this
injection. Then €,a = a€, for all a € k. The proof that {e, : 0 € G} are
independent still works for {€, : 0 € G}. Hence I = 0 and A is simple. O

Definition: With notation as in the above proposition, A is called the
crossed product of K and G relative to the factor set {a, .}, and is
sometimes referred to simply as the crossed product algebra (K, G,a).

In this terminology, Proposition 4.9 shows that any factor set {a, -} is
the factor set of the central simple algebra (K,G,a), and that (K,G,a)
contains K as a maximal subfield.

Recall that a factor set {a, -} of an algebra is not uniquely determined,
for z, is unique only up to multiplication by non-zero scalars; that is,
different choices for the z,’s will give rise to distinct factor sets {a, -} and
{b5+}. As shown on page 118, however, such factor sets are related by

b, o Joolin)

y fa'r Qo,r

for some f, € K* (recall that {b, .} arise from {z/,}, where z/, = foZs).
Conversely, given two factor sets {a,,} and {b,,} which are related by
(**), it is easy to check (using (*) and (**)) that the vector space map

(**)

(K,G,b) — (K,G,a)
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-’Ela — oo,
is a k-algebra isomorphism. In short,

Two factor sets which are related by (**) give rise to isomorphic crossed
product algebras.

We shall now show how factor sets and crossed product algebras relate
to the relative Brauer group. In particular, the following theorem will show
that every element in the Brauer group is [(K yG,a)] for some factor set
{as,-}, and that one may associate an equivalence class of factor sets to each
element of Br(K/k). This gives a more concrete description of elements of
Br(K/k), which will actually make it possible to do some computations as
well as relate the relative Brauer group to cohomology.

Theorem 4.10 Let K/k be a Galois extension with Galois group G. Then
there is a one-to-one correspondence between elements of Br(K/k) and

equivalence classes of factor sets {ao,-} (relative to K ), where {as,} ~
{bo,+} if there exists {f,} such that (**) holds.

Proof: Given z € Br(K/k), Theorem 4.4 shows that there exists a unique
(up to isomorphism) central simple algebra A with [A] = z in which K
embeds as a maximal subfield, and in fact the embedding is unique up to
isomorphism (by the Skolem-Noether Theorem). From the above discussion
we see that different choices of A as a representative of z € Br(K/k) will
give rise to equivalent factor sets, and so we get a well-defined map

Br(K/k) —> equiv. classes of {a, -}

[A] — (factor set of A relative to K).

Conversely, given a factor set {a, ,}, Proposition 4.9 shows that there
exists a central simple algebra (K,G,a) which has the {a, .} as factor
set. Since equivalent factor sets give rise to isomorphic algebras, we get a
well-defined map

equiv. classes of {a, .} — Br(K/k)

{as,r} — (K, G,a)].

It is clear that composing the above two maps (in either order) gives the
identity, and so Br(K/k) is in one-to-one correspondence with the set of
equivalence classes of factor sets {a,,r}. O
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A Homological Characterization of the Brauer
Group

In this section we introduce the idea of cohomology as another point of view
from which to study the Brauer group. The notion of group cohomology is
useful in many other contexts, so we shall develop this material in a more
general setting than will actually be used here, although this development
is not really more difficult. We shall then apply the ideas of cohomology to
the study of the Brauer group.

The cohomology groups of a group were first defined by Hopf in the
early 1940’s by means of algebraic topology, and were used to study the
relationship between the homology and homotopy groups of spaces. The
definition of H™*(G, M) was algebraicized by Eilenberg-MacLane (and in-
dependently by Eckmann) in the course of the development of homological
algebra. It was they who realized that many classical constructions, such as
equivalence classes of factor sets, could be described as cohomology groups
in dimensions 0,1,2, and 3. The cohomology of groups has many applica-
tions in both topology and algebra. Its study remains a very active area
of research. A nice introduction to this theory can be found in K. Brown,
Cohomology of Groups.

Now let us proceed with the Eilenberg-MacLane definition of the coho-
mology of a group. For any group G and any abelian group M on which G
acts, we define

c'(G,M)=M

and, for n > 1, we define C*(G, M) to be the set of all functions from G™
(the product of G with itself n times) to M, that is, let

Cc™(G, M) = {f|f : G — M]}.

Notice that C*(G, M) is an abelian group under pointwise addition
of functions, with the zero function acting as identity. More precisely, if
f1, f2 € C*(G, M), then by definition

(fr+ f2)(915- -1 9n) = filgrs-- -1 9n) + f2(g1,- -1 9n)
and
0(g1,...,gn) =0.
Notice that G acts on C™(G, M) via

(g'f)(gla'-'agn):g'f(gla“-agn)-

The elements of C*(G, M) are called n-cochains of G with coeffi-
cients in M, and C*(G, M) is called the n-th cochain group. We shall



now define, for each 7 > 0, a homomorphism which carries the group of n-
cochains into the group of n+1 cochains. Let 6§ : CO(G, M) — CI(G, M)
be defined by

(bof)g1)=g1-fF - f

for f € C°(G,M), that is f € M. For n > 1, define 6, : C"(G,M) —
C"YG, M) by

6n(f)(gla ceey gﬂ+1) = 01 f(g2a cee agn+1)
+ 3 (1 (91 Gim15 GiGit 1y -y Gn1)

+(__1)n+1f(gl, sy gn)-

So for n = 1 this map is defined by

81f(g1,92) = g1 fg2) — fg192) + f(g1)

and for n = 2 we have

821(91,92,93) = g1 f(92,93) — f(g192,93) + f(g1, 9293) — f(91,92)-

6, is called the n-th boundary map. It is clear that each §,, is a group
homomorphism. The maps §,, also have the following important property :

Proposition 4.11 6,106, =0

Proof: This is an easy exercise which follows immediately from the defini-
tions, and will be left to the reader. O

This proposition shows that {C™, §,,} forms a cochain complex; that is,
a sequence of abelian groups {C"} and homomorphisms §, : C* — C"*!
satisfying 6,11 06, = 0. In shorter form, we may write this cochain complex
as

5 2
0—CO 2%t ... L, S ontl

Whenever one has a cochain complex, one may take its homology. We
now proceed to do this. Let

Z™ = kernel(6,)
B™ = image(bn_1)

Elements of Z™ are called n-cocycles; elements of B™ are called n-
coboundaries . The property 6,41 © 6, = 0 tells us that B™ C Z". Since
Z"™ is abelian, we may form the quotient Z"/B". We define the n-th co-
homology group of G with coefficients in M to be



H™(G, M) = Z"/B"

We shall now restrict our attention to the special case when G = Gal(K/k)
and M = K™ for a galois extension K/k. The groups H*(G, K™) are called
the Galois cohomology groups of the extension K/k with coeffi-
cients in K* . As we shall now see, the machinery of cohomology captures
the properties and relations between factor sets in a more manageable way.

In the terminology of the previous section, and letting G = Gal(K/k),
we can think of {f,} as a function G — K* (i.e., a 1-cochain), and {as,+}
as a function G X G — K*, (i.e., a 2-cochain). One version of Hilbert’s
famous “Theorem 90” states that H(G, K*) = k* and H'(G, K*)=1.An
outline of the proof of this theorem is given in Exercise 41. We shall now
concentrate on H?(G, K *), and will “re-discover” the relationship between
this group and the relative Brauer group Br(K/k); namely, that they are
isomorphic.

Z? consists of functions a : G x G —» K* such that 63(a) = 1; that is
(writing K* multiplicatively, of course)

1 = 8(a)(p,0,7) = pla(a,7))alps, 7)™ - a(p,o7)a(p,0) "

or, equivalently,

pla(a,7))alp,07) = a(p,0)a(po, T)

This condition is called the cocycle condition . The cocycle condition is
just condition (*) on page 120. In other words, the 2-cocycles of C?(G, K*)
are just the factor sets relative to K.

B? consists of functions which are the image under 6; of f : G — K™;
that is

81(f)(o,7) = o f(1)f(o7) " f(0)

Since two 2-cocycles represent the same element of H?(G, K*) precisely
when they differ (multiplicatively) by a 2-coboundary, we see that H 2(G,K*
consists of the set of factor sets (=2-cocycles) modulo the equivalence re-
lation @ ~ b in Z2(G,K*) if

fGU(fT)

ba,'r = _f;— rxs
This is just condition (**) on page 121. But Theorem 4.10 shows that the
set of factor sets modulo this equivalence relation is in one-to-one correspon-
dence with Br(K/k). Thus we see that, as sets, Br(K/k) is in one-to-one
correspondence with H?(G, K*).
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Remark: As we noted on page 118, every factor set (i.e., 2-cocycle) is
equivalent to a normalized factor set. This shows that we may assume that
every a € Z%(G, K*) satisfies a(1,0) = a(o,1) = 1. This assumption often
simplifies computations.

Our next goal is to prove that the above correspondence is an isomor-
phism of groups; that is, we shall prove that the map

¥ H*(G,K*) — Br(K/k)
given by

¥(a) = [(K, G, a)]

is an isomorphism, where q is a 2-cocycle. The above discussion shows that
@ is one-to-one and onto, so it remains only to see that 1 is a homomor-
phism. In other words, we must prove the following

Lemma 4.12 If K/k is a galois extension with Galois group G, and if a
and b are factor sets, then

[(K,G,o)|l(K,G,b)] = [(K,G,ab)] in Br(K/k).

The following proof is due to Chase, and seems to be a quicker, more
conceptual proof than is currently contained in the literature. For a more
computational proof, see the exercises at the end of this chapter.

Proof: Let A= (K, G,a), B = (K,G,b), and C = (K, G, c), where ¢ = ab.
What we must show is that A ®, B is equivalent (as a finite-dimensional
central simple algebra) to C. The idea of the proof is a slightly more in-
volved version of a technique that has been used throughout this book :
we just find an appropriate module on which both A ®; B and C act (on
opposite sides). From this we obtain a homomorphism of the first algebra
into an endomorphism ring over the second, and conclude that this is an
isomorphism by simplicity of A®; B and counting dimensions. It will follow
that the two algebras are equivalent in Br(K/k).

With the above outline in mind, let M = A° ® B, where we view A
and B as K-modules via left multiplication. In M we have that

za ®x b=a Q@ xb forallz € K,a€ A,be B (4.5)

where @ denotes the tensor product of two elements over K. Note that
the left-hand side of the equation is really a o £ ® b, where o denotes
multiplication in A°. The expression a o z is, however, equal to xa, the
multiplication here taking place in A. We shall continue to use this termi-
nology without comment.

We may now make M a right A ®; B-module via right multiplication :
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(o' ®k b')(a @y b) = a'a @k b'b for all a,a’ € A and b,b’ € B.

The next step of the proof is to introduce a left C-module structure on
M which makes M into a C — (A ®, B)-bimodule.

Let {uo},{vs}, {ws} be the distinguished bases over K of 4, B, and C,
respectively (see the proof of Proposition 4.9). Define the operation of ¢
on M on the left by

(zwe)(a®Kk b) = TUa QK Vsb forallz € K,0 € G,a € A,b€ B (4.6)

It is not difficult to check that this operation is well-defined, and that
M then satisfies the axioms of a (left) C-module, and that this structure is
compatible with the right A ®; B-module structure on M. Hence M has a
C — (A ® B)-bimodule. We shall give what is perhaps the most crucial of
these computations; namely, the verification of the associativity formula

(cYm =c(cm) forc,d €eC,me M.

So assume ¢ = zw,,¢ = r'w,, and m = a Qg b with z,2’ € K, 0,7 € G,
and a € A,b € B. Then

(cd)ym = z0o(2')agrbortlora QK vo-b by (4.6)
= 20(2' )0y, Uor @ ®K borUsrb by (4.5)
= z0(z' Jusura ®k vy b
= Zue L' ura QK vyurb
= zw, (T u-a @k v, b) by (4.6)
=c(c'm) by (4.6)
The C — (A ®; B)-bimodule structure of M gives a k-algebra homomor-
phism
(A®y B)° — Endc(M) (4.7)
z+— [z
where f;(m) = maz. This homomorphism is injective since A ®; B (and
thus (A ®; B)Cis a simple algebra. Thus it suffices to show that both the

range and domain have the same k-dimension in order to prove that the
above map is an isomorphism.



Let n = [K : k|. Since 4, B, and C each have dimension n over K, M
has dimension n? over K, and so

[M : k] = n*[K : k] = n® = n[C : k).

Since a finitely generated module over a simple algebra is determined
(up to isomorphism) by its dimension over the base field, it follows that M
is a free C-module of rank n, M =~ C™. Thus

Endc(M) = Endc(C") = Mn(Endc(C)) = My (C°) = C° @k M, (k).
It follows that
dimg(Ende(M)) = n’dimi(C) = n* = dimy (A ®; B).

Thus the homomorphism in (4.7) is an isomorphism, so (4 Q@ B)° ~
C° ®r My (k), and so (A®k B)® ~ C°. It follows that A® B ~ C and we
are done. O

Lemma 4.12 thus shows that the map v : H%(G, K*) — Br(K/k) is a
homomorphism, and the previous discussion shows that v is an isomorphis-
m. This gives us another way of looking at the Brauer group, and connects
this group to many other important areas of mathematics. We state this
as a theorem for emphasis.

Theorem 4.13 For a galois extension K/k, Br(K/k) ~ H?(Gal(K/k), K*
as groups.

The Brauer Group is Torsion

Using the fact that, for galois extensions, the relative Brauer group Br(K /k)
is isomorphic to the cohomology group H2(Gal(K/k), K*), we may deduce
facts about relative Brauer groups from general properties of cohomology
groups. In this section we shall prove that the Brauer group is a torsion
group; that is, each element of Br(k) has finite order. Although this proof
can be carried out directly in the Brauer group, it becomes easier to un-
derstand when placed in the context of homological algebra. We now begin
with a standard result about the cohomology of finite groups.

Theorem 4.14 If G is a finite group, then |G|H"(G, M) = 0.
Proof: We shall prove this fact in the case n = 2. The more general case
is similar, and will be left as an exercise.

Let f € Z%(G, M), so 62 f = 0; that is

0 = (62f)(g1,92,93) = 91f(92,93) — f(g192, 93) + f(91,9293) — f(g1,92)-



In other words
f(g91,92) = 91f(92,93) — f(9192,93) + f(g1, 9293).
Summing over all g3 € G gives

IGlf(g1,92) = Y (91(92,93) — F(9192,93) + f(91, 9293))-

g3€G

Now let h(g2) = .. cc f(g2,93)- Note that

> flo1,9208) = Y flgn,9s)

g93€G 93€G

and so

IGIf(91,92) = g1h(g2) — h(g9192) + h(q1)
= (61h)(g1, 92) € B*(G, M).

This shows that |G|Z2(G, M) C B%(G, M) and thus |G|H%(G, M) = 0.
a

This theorem may now be used to show that the Brauer group is a torsion
group.

Corollary 4.15 For any field k, Br(k) is a torsion abelian group.

Proof: Corollary 4.6 shows that Br(k) = |J Br(K/k), where the union is
taken over all galois extensions K/k. But Br(K/k) ~ H?(G, K*), which
by the above theorem is annihilated by |G| = [K : k]. O

This corollary also shows how the reduction of questions about Br(k)
to properties of relative Brauer groups Br(K/k) for galois extensions K /k
can be a useful technique.

A Primary Decomposition Theorem for Central
Division Algebras

The fact that the Brauer group is a torsion abelian group tells us a great
deal about central division algebras. This harkens back to the comment at
the beginning of this chapter that statements about the group structure of
Br(k) can be used to give us concrete information about a single central
division algebra.

Given a central division algebra D over k, the previous section shows
that [D] has finite order in Br(k), so this order can be written as a product
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of powers of distinct primes. It would be nice if D itself could be broken
up into pieces corresponding to this prime factorization. The main goal of
this section is to prove such a theorem. Along the way we will learn about
a variety of dimensionality relationships among various algebras.

We begin by recalling a few definitions. Let D be a central division
algebra over k, and let K be a splitting field for D; i.e, Dg ~ M, (K)
for some n. We defined the degree of D, denoted deg(D), to be n. Note
that since [D : k|[K : k] = n?[K : k], [D : k] = n?, and so the degree of D
over k may also be defined as the square root of the dimension of D as a
vector space over k. If A is a central simple k-algebra, then A ~ M,,( D)
for a unique division algebra D, and we define the (Schur) index of A,
denoted ind(4) , to be the degree of D. The degree and the index of a
division algebra are equal by definition. Finally, we define the exponent
of the central simple k-algebra A, denoted exp(A), to be the order of [4]
in Br(k); that is, exp(A) is the smallest number m so that A®™ ~ M,.(k)
for some r, where A®™ denotes the tensor product of m copies of A.

Although it is not obvious from the definitions, there is a relationship
between the exponent and the index of a central simple algebra; namely,
the former divides the latter. We state this as

Proposition 4.16 [A]"¥4) =1 in Br(k); that is, exp(A) divides ind(A).

Proof: A ~ M, (D) for some central division algebra D over k with [D :
k] = m?, where m = ind(A). By Corollary 4.5, there is a finite galois
extension K of k which is a splitting field for D. Let G be the Galois group
of K over k, and |G| = n = [K : k]. By Theorem 4.4, [A : k] = n?. Note
that, since A ~ M,.(D), we have n? = r?[D: k] = r®m?, so n = rm.

Now [A4] = [(K, G, a)] for some a € Z(G, K*). Since [A|™ = [(K, G,a)]™,
it suffices to show that a™ € B%*(G,K*). Let V = D7, and note that V
is a left Endp(V)-module, where the action is given by ¢ - v = ¢(v) for
¢ € Endp(V),v € V. Since A = M, (D) = Endp(V), we see that V is a
left A-module. Since K C A, V is a vector space over K. Let’s compute
it’s dimension. We have

rm?=[V:D|D:k|=V:k|=[V:K||K:kl=[V:K]rm

and so [V : K] = m. Choose a basis {v1,...,v,,} for V over K. Since V
is a left A-module, we know that for each ¢ € 4, ¢ v; = } ., ciju; with
cij € K. We think of the ¢;; as an m X m matrix via

c- [v] = [ci][v] with [v] =
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Now choose a basis {z, },eq for (K, G, a) over K, and let X, € M,,(K)
denote the matrix associated to z,. For 0,7 € G, let 0(X;) denote the
matrix obtained from X, by letting o act on each entry. Then

ZoTr - [v] = 25X [v] = 0(X7) X5 [v]
and
ToZr - (V] = Goror - [V] = a6 r Xor[v].
Thus
o rXor = 0(X:) X,
Taking the determinant of both sides of this last equation, we see that
ay det(X,r) = o(det(X,))det(X,)
with det(X,) € K*. Thus a™ € B%(G, K*) and we are done. O

Note that Proposition 4.16 provides another proof that Br(k) is a torsion
group.

Before proving the main theorem of this section, we need two lemmas.
The following lemma gives a sort of partial converse to Proposition 4.16.
Taken together, the two statements show that exp(A) and ind(A) have the
same prime factors.

Lemma 4.17 Every prime divisor of ind(A) is a prime divisor of exp(A).

The following proof gives another example of the technique of extension
of scalars, a common tool in studying the Brauer group.

Proof: Let (K,G,a) = My;,(D) be a crossed product algebra with [A] =
[(K,G,a)] = [Mu(D)], where D is a central division k-algebra, and let
d = ind(A) = ind(D) = deg(D). Let p be a prime dividing d. Note that
|G? = [(K,G,a) : k] = m?d?; hence |G| = md and p divides |G|. Let G,
denote the p-Sylow subgroup of G, say |Gp| = p", and let K, D K denote
the fixed field of Gp. Then [K : Kp] = p" by the Fundamental Theorem of
Galois Theory. Since G, is p-Sylow, p A[K, : k], and so K, cannot split
A by Corollary 4.7. By the given, p divides the degree of any maximal
subfield of D, so exp(Ak,) # 1. But (A ®, K,) ®k, K = A® K splits
and [K : Kp] = p”, so p divides exp(Ak, ).
Recall that there is a homomorphism

Br(k) — Br(K)
[S]+— [Sk,]
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given by extension of scalars. Since this map is a homomorphism of groups
it is clear that exp(Ag,) divides ezp(A) and we are done. O

The tensor product of two division algebras is not always a division
algebra. This is the reason that division algebras were not used as elements
of the Brauer group. The following lemma gives a sufficient condition for
the product of two division algebras to be a division algebra.

Lemma 4.18 If D, and D, are central division algebras with deg(D;) and
deg(Ds) relatively prime, then D1 ® Dy is a division algebra.

Proof: D1 ® D2 ~ M.,,(D) for some central division algebra D and some
m; we will show that m = 1. Well, D} ® Dy = My (k), where k is the base
field. Then

n? = [My,(k): k] = [D{ ® D : k] = [Dy : k][D; : k]
and so n = [D; : k]. Now

Mn(Dz) = Mn(k) ® Do
=D} ® D ® D,
=D ® M,.(D)
= M, (D} ® D)
= M, (M,(D')) for some division algebra D’
= Mmr(Dl)-

So n = mr, which implies that m divides [D, : k|. Similarly, m divides
[Ds : k]. Since the degrees of D, and Ds are relatively prime, and hence
[D, : k] and [D; : k] are relatively prime, it follows that m = 1. O

We are now ready to prove a nice decomposition theorem for central
division algebras. This theorem is analogous to the primary decomposition
theorem for finitely generated modules over a principal ideal domain. In
each case we break down the given module (or division algebra) into its
so-called “primary components”.

Theorem 4.19 Let D be a finite-dimensional central division algebra over
k, and deg(D) = p{*---p}~, where py,...,p, are distinct primes. Then
there is a unique (up to isomorphism) decomposition

D=D1®D2®---®Dr

Yz
s

where D; are division algebras and ind(D;) = p
Proof: It suffices to show that, if deg(D) = n = nynp with n, and no
relatively prime, then D ~ D; ® Dy, where deg(D1) = n1 and deg(D2) =
na. The theorem will then follow by induction on the number of distinct
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primes in the factorization of n. Since n; and ny are relatively prime,
there are integers u,v with un; + vns = 1. Let Dy, Dy be the unique
central division algebras such that [D;] = [D]*™* and [D,] = [D]*™. Then
[D1 ® D] = [D](¥m1#vn2) = [D]. We also know that [D,]™ = [D]"" = [k]
by Proposition 4.16 (recall that deg(D1) = ind(D:) since D, is a division
algebra); hence exp(D1) | ny. Similarly, exp(D2) | no. Lemma 4.17 implies
that ezp(D;) and deg(D;) (i = 1,2) have the same prime divisors, and
(n1,n2) = 1 by the given, hence (deg(D;), deg(D2)) = 1. Since D, and D,
are division algebras of relatively prime degree, D1 ® D5 is a division algebra
by Lemma 4.18. Thus [D, ® D;] = [D] implies that deg(D1® D;) = deg(D).
It follows that deg(D;) =n;,i =1,2. 0

In view of this theorem, the structure theory of division algebras reduces
to the case where the degree is a prime power.

Summary

In this chapter we studied the Brauer group Br(k) of a field k, which
consists of all of the isomorphism classes of central simple k-algebras under
the equivalence relation given on page 110. Br(k) is a group under the
operation of tensor product, with [M,, (k)] = [k] acting as identity element
and [A°] acting as the inverse of [A]. Br(k) acts as a “classifier” of central
division algebras, and in the exercises we will get a glimpse of the connection
of the Brauer group with many other areas of algebra and number theory.

The study of Br(k) was reduced to the study of Br(K/k) for galois
extensions K /k. Using factor sets, which involves ideas generalizing those
used in the proof of the Frobenius Theorem, we obtained more explicit
information on elements of Br(K/k). The somewhat messy calculations
with factor sets gave the impetus for our re-discovery of the powerful ho-
mological viewpoint. The concrete connection of the cohomology of groups
with the theory of central simple algebras culminated in the proof that
Br(K/k) ~ H*(Gal(K/k),K*). Using this isomorphism, we proved that
Br(k) is a torsion abelian group. Finally, we used group theoretic facts
about Br(k) to give information about the indices and exponents of cen-
tral simple algebras, and to prove a structure theorem on central division
algebras, re-emphasizing the usefulness of making the set of (equivalence
classes of) finite-dimensional central simple algebras into a group.

Exercises

1. Show that the four conditions given on page 110 for two algebras to
be similar are indeed equivalent.



2. Let A = [a;;] € Mn(k) and B = [by] € My, (k). The Kronecker
product of matrices A and B, denoted by A® B, is the nm x nm
block matrix [Abg],1 < k,I < m. Prove that the mapping

M (k) @ Min(k) — Mnm (k)

(A,B)— A® B

induces a k-algebra isomorphism.

3. Show that the set of isomorphism classes of finite-dimensional alge-
bras over a given field k actually forms a set. Estimate its cardinality.

4. (a) Show that Br( ) is a functor from the category of fields and
field homomorphisms to the category of abelian groups and group
homomorphisms (if you don’t know what these words mean, look
them up).

(b) Let i : Kk — K and j : k — K be homomorphisms of fields
and let i, and j, be the induced maps from Br(k) to Br(K). Let
F={z €k:i(z)=j(z)}, and assume that K/i(F) is a finite galois
extension. Prove that i, = j,.

5. Give an example of two finite-dimensional central division algebras
over k whose tensor product (over k) is not a division algebra.

6. (a) Prove that Br(k) = 0 for any algebraic extension of a finite field.

(b) Prove that Br(k) = 0 for any field of transcendence degree one
over an algebraically closed field.

7. (a) Show that a k-algebra A is central simple over k if and only if
there is a k-algebra B such that A ® B = M, (k) as k-algebras for

some n.

(b) Let A, A’ be central simple k-algebras. Show that if [A] = [A'] in
Br(k) and [A: k] = [A": k|, then A ~ A’ as k-algebras.

8. Theorem 4.4 may be interpreted as follows: Given z € Br(K/k),
there is a pair (S,17) such that z = [S], where S is a central simple
k-algebra and i : K — S is a k-algebra homomorphism whose image
is a maximal commutative subalgebra of S. Suppose that (S’,#') is
another such pair and z = [$’]. Prove that there is a k-algebra iso-
morphism ¢ : S — S’ such that ¢i = ¢’. [Hint: Use Exercise 7b and
the Skolem-Noether Theorem.]



9.

10.

11.

12.

Let A be a central simple algebra with maximal commutative subal-
gebra K. Assume that K/k is galois with Galois group G. Let E be
the normalizer of K* in A*. Find a homomorphism ¢ of E onto G
such that Ker(¢) = K*. E is an example of what is called a “group
extension of G by K*".

Let A be a central simple k-algebra containing a field F. Let C(F)
be the centralizer of F' in A. Show that the following equality holds
in Br(F): [F ®, A] = [C(F)]. [Hint: Use the Double Centralizer
Theorem.]

Remark: The interplay between simple subrings and their central-
izers deserves to be understood; in this connection, see also Chapter
3, Exercise 3.16. In that case, the subalgebra was central simple but
there was no hypothesis on the ambient algebra. In this situation,
the ambient algebra is finite-dimensional central simple and the sub-
algebra (which doesn’t need to be a field for most of the argument)
is simple. In either case, what’s involved is the structure theory of
central simple algebras, the Centralizer Theorem and the Skolem-
Noether Theorem.

Schur Index

Let A be a central simple k-algebra. Prove the following :

(a) If [A : k] = n?, then ind(A)|n. ind(A) = n if and only if A is a
division algebra.

(b) If A’ is a central simple k-algebra such that [A] = [A"] in Br(k),
then ind(A') = ind(A).

(c) A possesses a splitting field of degree ind(A) over k.

(d) If K is any splitting field of A then ind(A)|[K : k].

(e) ind(A) = min{[K : k] : K splits A}.

(f) For m > 1, ind(A® --- ® A) (the tensor product of m copies of
A) divides ind(A).

~

~—

Let A be a central simple k-algebra and let K/k be a finite extension.
Prove that

(a) ind(Ak)|ind(A).
(b) ind(A)|[K : klind(Ak).

(c) If ind(A) and [K : k] are relatively prime, then ind(Ax) = ind(4);
and if A is also a division algebra, then so is Ag.
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Exponents

Let A and B be finite-dimensional central simple k-algebras. Let K/k
be a finite field extension. Prove the following facts :

(a) If [A] = [B], then exp(A) = exp(B).

(b) ezp(Ak) | exp(A).

(c) exp(A) | |K : klexp(Ak)-

(d) If md( ) is relatively prime to [K : k], then exp(Ak) = exp(A).
(e) exp(A ® B) divides the least common multiple of ezp(A) and
exp(B).

(f) exp(A®m) = exp(A)/n, where n is the greatest common divisor
of m and exp(A).

(g) If ind(A) and ind(B) are relatively prime, then ind(A @ B) =
(ind(A))(ind(B)) and exp(A ® B) = (exp(A))(exp(B)).

Let A be a finite-dimensional central simple k-algebra with ind(A) =
p'n, where p is prime, j > 1, and p does not divide n. Prove that
there is a field extension K over k whose dimension is relatively prime
to p, for which ind(Ag) =p’.

Generalized Quaternion Algebras

Let k be a field of characteristic not equal to 2. For a,b € k* let
b
(%) denote the vector space of dimension 4 over k having the

elements 1, i, j, k as a basis. Defining 2 = a,j> =band ij = —ji = k
makes this into a k-algebra (don’t confuse the field k with the element
k; both used because that is the standard notation). Note that k2 =

—ab, ki = —itk = —aj, and jk = —kj = —bi. The algebra (G’Tb) is
called a generalized quaternion algebra .

(a) Show that every 4-dimensional central simple algebra over k is
isomorphic to (a,Tb> for some a,b € k*. [Hint: See the proof of the

Frobenius Theorem.]

(b) Using this description of the central simple algebra, explicitly give
its factor set.

1
Show that (LT) ~ Mjy(k). [Hint: Consider the matrices e12 + e2;

and €11 — 622.]

Show that (akb) ~ (b,_ka)
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2 1.2
Show that (%b) S gm_,,cby_) for z,y € k*. [Hint: Remember the

proof of the Frobenius Theorem.]

Show that (‘%’) @K ~ (%”) for field K D k.

b
Show that (%) is a central simple k-algebra. [Hint: Compute the

center. Tensor with the algebraic closure and apply previous results
for the other part.]
Show that (a, 1k:— a
jugate of z = u + v + jw + kz to be Z = u — iv — jw — kz. Define
N(z) =Zz = 2Z. N(z) is called the (quaternion) norm of z. Show
that an element has an inverse if and only if N(z) # 0. Do this by
observing that the regular representation has determinant equal to
the square of N. Now compute N(1 + i+ 5).]

) ~ M;(k). [Hint: Define the quaternion con-

b -
Show that (%) z(a’k a>¢~‘1 My (k). [Hint: Consider j + k and

i+l
a, by . . . . .
Show that (T) is isomorphic to its opposite algebra.

b
This shows that each quaternion algebra %) has order dividing

2 in Br(k). If it is a division ring, it has order 2. A long standing
conjecture was that these elements generate the part of the Brauer
group annihilated by 2. This was eventually proved by the two Rus-
sian mathematicians A.S. Merkurjev and A.A. Suslin using algebraic
K-theory.

a,b . .
(T>z Ma(k) if and only if a = Ng/i(z) for some z € E = k(vb).
Here NE/k(u+v\/l;) = 42 —bv? is the norm, a multiplicative function.
[Hint: If v/b is in k, the result is clear. If not, consider N(u + i +
vj) if u? — bw? = a. In the other direction, assume N(z) = 0 for
some z # 0 and find the sought-after element by grouping elements
appropriately.]
This exercise takes on its true significance when placed in the con-
text number theory, K-theory, and the theory of quadratic forms, We
mention three instances:

(i) Look at the first part of J.P. Serre, A Course in Arithmetic under
“Hilbert symbol”. You will find defined there a symbol with the same
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formal properties as %b which gives information about quadratic

forms. Note that the above problem makes an assertion about when
the quadratic form Q(u,v) = u? — bv® assumes the value a € k;
b a,b .
namely, it does so when (GT)% Mas(k). But (T)z My (k) if
b,a
k
interesting (and nontrivial) fact : u? — bv® takes the value a if and
only if u? — av? takes the value b. This is a basic example of what is
known as a reciprocity law . See Serre’s book for other reciprocity
laws.

and only if ( )z Ma(k), by problem 17. This proves the following

(i1) Look at Samuel, Algebraic Theory of Numbers under “quadratic
reciprocity”; at least the statement of the theorem. It is a special case
of one of the deepest theorems of mathematics. The quadratic case
was known to Legendre, but was first proved by Gauss.

(iii) In algebraic K-theory, one defines a functor K. A theorem
of Matsumoto says that for a field k, K2(k) has formal generators
{a,b}, a,b € k* which satisfy the following relations :

(a) Bilinearity: {ab,c} = {a,c}{b,c} and {a,bc} = {a,b}{qa,c}.

(b) {a,b} = {b,a}~".

(¢){a,1—a} =1ifa,1 —a€k*.

These relations correspond to properties of generalized quaternion

algebras which you (hopefully) proved in the previous few exercises.
Thus there is a homomorphism

Ks(k)/{squares} — Br(k)

given by

e ()

whose image is the smallest subgroup of Br(k) generated by the
quaternion algebras. It was by this method that Merkurjev and Suslin
proved that the quaternion algebras generate the part of the Brauer
group annihilated by 2 (cf. Exercise 23). For more information about
K3, including Matsumoto’s Theorem, see J. Milnor, Introduction to
Algebraic K- Theory, as well as 1. Kersten, Brauergruppen von Kérpern.
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Show that (%b> is a division algebra if and only b is not the norm
of an element of k(1/a). [Hint: Use Exercise 24 of Chapter 1.]

a,b a,c a,bc ¢, —ac a,bc
(T)(X)k(T) ( P >®k( X >~( . >®kM2 . [Hint:
Consider the elements I =i x 1,J=jxj,K=IJ I'=1xj,J =
i x k', K’ =I'J" and think “double centralizer”.]

This exercise gives another formal property of Hilbert symbols; name-
ly, (a,bc) = (a,b)(a,c). When the result is interpreted in Br(k), it
says precisely that

a,b a,c\1 _ [[abc
[GIREIR(ES)
Together with the fact that (a,b) = (b, a), this shows that the Hilbert

symbol is bilinear (or “bimultiplicative”, as it is sometimes called due
to the multiplicative notation).

Prove that an element of Br(k) has the form [(a;kb)] for some q,b €

k if and only ifit is in Br(K/k) for some separable quadratic extension
K/k (remember that an extension K/k is called quadratic if it is of
degree two).

Let F be a field containing a primitive nth root of unity w. For
a,b € F* let A,(a,b) be the F-algebra of dimension n? which is
generated by elements z and y which satisfy 2" = q,y™ = b, and
yz = wzy. A basis for A,(a,b) consists of {z'y? : 0 < 4,5 < n}.
Check the following:

A, (a,b) is central simple over F', and thus gives a function
! F* x F* —s Br(F)
This function satisfies

aw(a,bc) = ay(a, b)ciw(a,c)
ay,(a,b) = ay(b,a)”
ay(a,1—a)=1
aw(a,—a)=1

aw(a,b)" =1

Further, a,(a,b) = 1 if and only if a is a norm from F(%/b). For
a local field F with w in F, there exists a,b such that a,(a,b) has
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order exactly n. Further information about these algebras and related
topics can be found in J.P. Serre, Local F' telds, J. Milnor, Introduction
to Algebraic K-Theory (Chapter 15), and L.E. Dickson, Algebras and
Their Arithmetics.

An involution of a k-algebra A is a k-module automorphism ¢ :
A — A such that ¢(zy) = ¢(y)¢(z) and ¢*(z) = z for all z,y € A.
(a) Show that if there is an involution of A, then A° ~ A.

,b
(b) Find involutions of the k-algebras M, (k) and (GT), thus con-

,b ,b
cluding that M, (k) = M,(k)° and (%)z(%)°

(c) Let A be a finite-dimensional central simple k-algebra. Prove that
if there is an involution ¢ of A, then [A]? = 1 in Br(k). Deduce that
[A)? = 1 for every quaternion algebra A.

Anocther Proof that Br(K/k) = H*(Gal(K/k), K*)

(a) Let K 2 k be a finite separable field extension and let L 2 k be a
splitting field for K relative to k (that is, any irreducible polynomial
in k[z] which has a root in K splits completely in L). For example,
L could be an algebraic closure of k, or if K is galois over k, then L
could be K. Let o1, ...,0, be the distinct k-algebra maps from K to
L, and let 0 : K — L™ be the maps with components oy,...,0,.
Let o : K — L™ be the unique L-algebra map extending o:

or{a®z)=a®o(z) forae L,z € K.

Prove that o, is an isomorphism. Thus the k-algebra K “splits com-
pletely” when the scalars are extended to L.

(b) Let K and L be as in (a). Show that if D is a central simple k-
algebra with maximal subfield K, then L splits D. [Hint: Use Exercise
22 to count idempotents.]

(c) If L splits D, and if K is a maximal separable subfield of D, does
L split K relative to k (as in part (a))?

Remark: Note that if K is galois over k, then we could take L = K,
obtaining an isomorphism

K ® K = H K.
s€Gal(K /k)

Now suppose that k and K are just commutative rings, not necessarily
fields, and that G is a finite group of automorphisms of K with fixed
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point set K¢ = k. We have the obvious map K ®x K —» [Ioeq K de-
scribed above, and we could define K/k to be a galois extension of
rings if this map is an isomorphism. Chase, Harrison, and Rosenberg
adopt this viewpoint in their paper Galois Theory and Cohomology
of Commutative Rings. One can also form the crossed product alge-.
bra (K, G, 1) arising from the trivial 2-cocycle. They showed that the
following are equivalent:

(a) S D R is a galois ring extension.

(b) S is a finitely generated projective R-module, and (K,G,1) ~
Endg(S).

(c) For every maximal ideal I C S, G acts faithfully on S/I.

(d) S is projective as an S ® S°-module, and for every nontrivial
idempotent e € S and o # 7 in G, there exists z € S with o(x)e #
7(x)e.

This Galois theory of rings is well-developed and useful. The article
by Chase, Harrison, and Rosenberg is quite readable and is strongly
recommended; see also DeMeyer and Ingraham, Separable Algebras
Over Commutative Rings.

(See, e.g., Herstein, Noncommutative Rings) Let K/k be a galois ex-
tension with galois group G. The fact that Br(K/k) ~ H*(G,K*)
boils down to the fact that for factor sets a and b, [(K, G, a)][(K, G, b)]
= [(K,G,ab)]. The proof (of Chase) given in the text exhibits a
“magic module” on which both (K,G,a) ®k (K, G,b) and (K,G, ab)
act. A more direct approach is to choose bases for the first two al-
gebras which give the cocycles ¢ and b, respectively, and then try
to find a corresponding basis for their tensor product. Their tensor
product is not, unfortunately, (K, G, ab), but rather, is matrices over
this ring. Hence we must find an appropriate subring of the matrix
ring M,,((K,G,ab)) = (K, G, ab) ®, M,(k) which is isomorphic to
(K, G, ab). This is where Exercise 30 comes in: we now want to list
explicitly the idempotents (and their properties) from that exercise.
Complete the following outline, which gives the “classical” proof that
Br(K/k) = H*(G,K*):

(a) Prove that if 4 is a central simple algebra over k and if e # 0 is an
idempotent element in A, then [A] = [eAe] in Br(k). [Hint: Think of
A as matrices via the Structure Theorem for Simple Artinian Rings.
What does the matrix representing an idempotent element look like?]

(b) Prove that

K&K =P e (K1) = P e (18 K)
c€G c€G
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where e, are orthogonal idempotents such that e,(2 ® 1) = ¢,(1 ®
o(z)) for all z € K. Proceed as follows: Since K /k is separable, K =
k(a) for some a € K. Let p(z) = z™ + @n-1Z""' + ... + ag be the
minimal polynomial of a over k. Show that K ® K is a product of
copies of K by writing K = k[z]/(p(z)). For o € G, let

bpm =a"®1+a™ ' ®c(a) +-- + 1@ a(a)™.

From the fact that {1,0(a),...,o(a)™ '} is linearly independent over
k for each fixed o, deduce that {bs1,-..,bsn-1} is independent over
k in K ®, K. Now note that

(a®1—-1®0(a)bsm=a""®1-1®ac(a)™*.
Deduce that
(@®1-1®0(a))bon-1+@no1bon-2+ -+ +aibso] = 0.

Hence a®1—1®o0(a) is a (nonzero) zero divisor in K ®, K, so there
is a minimal idempotent e, such that e,(a ®1 -1 ® o(a)) = 0 (an
idempotent e is a minimal idempotent if, whenever e = e; + €5 for
some commuting idempotents e, ez, then e = e; or e = e3). Show
that e,(z®1) = e,(1®0(z)) for all z € K. By comparing dimensions
and observing that e, # e, if o # 7, show that e, e, = 0 if 0 # 7,
and further that

Y e (K@ K)=> e,(18: K)=K @ K.
o€G o€G

(c) Use parts (a) and (b) to prove that, for factor sets a and b,

(K, G, 0) ® (K,G,b) ~ (K,G, ab) @ Mn(k).

Proceed as follows: Let R = (K, G, a)®« (K, G,b). Since R 2 K, K,
part (b) gives e, as above. Let ¢ = e,. Choose bases {z,}, {y-} for
(K,G,a) and (K, G,b) which give the cocycles a and b, respectively.
Show that

(1®yle(l®y; ') =e;
(z;'®1)e(z, ®1) =€,

for all 0,7 € G. Let w, = 2, ® y,. Show that w,e = ew,. Let u, =
€Wy} SO u, € eRe is invertible in eRe with inverse ew;'. Show that
Uglr = Ugr€(Qg,rbs,r ®1). Using the fact that K ® K is commutative
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(so e(K ®r 1) = (K ®x 1)e), show that u;'e(z ® 1)u, = e(o(z) ® 1
for z € K. Conclude that eRe 2 (e(K ®; 1),G,e(a ® 1)(b® 1)). By
a similar computation, show that eRe C > u,e(K ®¢ 1) C eRe, and
so eRe = Y u,e(K Q¢ 1) = (e(K @ 1),G,e(ab®1)). By part (a),
[R] = [eRe], so we finally have [R] = [eRe] = [(K, G, ab)] and we are
done!

Norms and Traces

Let R be a finite-dimensional algebra over a field k. If z € R, then
left multiplication by z is a k-endomorphism of R. The norm of this
k-endomorphism is called the norm of z, denoted Ng /k(m); the trace
of this k-endomorphism is called the trace of z, denoted Tg i (z). As

an example, if E = k(v/b), the element u+vv/b of E gives the matrix
u vb
in the basis {1, vb}. Thus

NE/k(u +'U\/B) = u2 — b’l)2

TE/k(u + ’U\/B) = 2u.
The definition of norm just given extends that of the norm for gen-
eralized quaternion algebras (cf. exercise 21).

As above, let R be a finite-dimensional algebra over a field k, and let
T € R. Show that the following properties hold:

(a) N(z) # 0 if and only if x is invertible.
(b) N : R* — k* is a homomorphism.
() N(a) =a™ if a € k, wheren = [R : k].
(d) T : R —> k is k-linear.

(e) T(xy) = T(yx)-

(f) T(a) = na for a € k.

Prove the following:

(a) Norm and trace are invariant under extension of scalars. That is,
if S = Rk for a field K containing k, then

Ng/k(x) = Ngi(T) forreR

and
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Ts/k(x) = Tr/k(Z) for z € R.

(b) Norm and trace are compatible with direct products. That is, if
R= Ry x Ro, then

Nryk((z1,72)) = Nry k(1) - NRy /k(22)
and

Tr/k((z1,22)) = Try jk(21) + Thyyk(22)-
(c) If z € J(R) then N(1+x)=1and T(z) = 0.
(d) In the notation of Exercise 30,

NK/k(.’E) = H a,(m)

and

Tk k() = Za,-(z).
(e) If R = M, (k), then

NR/k(I) = (det(m))"
and
Tr/k(z) = n - trace(z).

This suggests the definition of more useful functions, called the re-
duced trace and reduced norm ; Reiner, Maximal Orders, or Bass,
Algebraic K-Theory for details.

A bilinear form B(z, y) on a finite-dimensional vector space V' over
a field k is a function B : V x V — k which is linear as a function
of one variable when the other is kept fixed. B is said to be non-
degenerate if the following equivalent criteria hold:

(a) If z € V satisfies B(z,y) =0 for all y € V, then z = 0.

(b) The map f : V —s V* = Homy(V,k) defined by f(z)(y) =
B(z,y) is an isomorphism.
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Exercises 145

(c) For any basis e, ..., e, of V the matrix (B(e;, €;)) is invertible.
(d) For some basis, the matrix (B(e;, €;)) is invertible.

Show that these four conditions are equivalent. Recall that a finite-
dimensional algebra R over k is called separable over k if its center is
a product of separable field extensions of k. Prove that if char(k) =0
or if R is commutative, then R is separable if and only if the bilinear
form B(z,y) = Tg/k(zy) is non-degenerate. [Hint: Use the fact that
the trace is invariant under extension of scalars.]

Remark: This is no longer true if k¥ has non-zero characteristic and
R is noncommutative. If R = M,,(k) and char(k) = p, p a prime
dividlng n, then TR/k =0.

Let K be a galois extension of k with Galois group G which is cyclic of
order n. Prove that Br(K/k) =~ k*/Ng x(K*). [Hint: It is possible to
deduce this from the isomorphism of Br(K/k) with H*(G, K*), but
it is easier to go back to the proof of this isomorphism and observe
that the situation is much simpler when G is cyclic. Let z, be chosen
for o a generator of G. Use this element to choose all the other basis
elements in an obvious way.]

Use the preceding problem to give another proof of the Frobenius
Theorem that the only finite-dimensional central division algebras
over R are R and H. Also give another proof of Wedderburn’s Theo-
rem that all finite division rings are commutative. Do these by com-
puting the respective Brauer groups. It is yet another indication of
the power of the Brauer theory that it subsumes these two celebrated
results.

Cohomology and Applications
Prove Proposition 4.11 : 62 = 0.

Let G be a finite group and let M be a G-module. Show by a direct
argument that every element of H™(G, M) is annihilated by |G| for
n>1.

Remark: There is a more conceptual way to do this: for a sub-
group H C G, there are useful maps (which we will discuss in the
exercises later in this chapter) Res : H*(G, M) — H™(H, M) and
Cor : H*(H,M) — H"(G,M) (the classical “transfer maps” of
group theory) such that Coro Res : H*(G, M) — H™(G, M) is just
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multiplication by [G : H]. In particular, taking H = 1, the trivial
group, we see that multiplication by |G| is just the composite

H™(G, M) 25 H™(1, M) €5 H™(G, M)

But H"(1,M) = 0, so this composite is the zero map, and so |G|
annihilates H"(G, M). For more details on this, see K. Brown, Co-
homology of Groups.

Try to understand the following argument, checking statements and
filling in details as needed: By Theorem 4.13, H*(G, K*) ~ Br(K/k)
and hence classifies central simple algebras. By an entirely similar
argument, one can show that, for a G-module M, H%(G, M) classifies
extensions

l1— M —FE—G—1

inducing the given G-action on M (see K. Brown, Cohomology of
Groups). If M is finite and |M]| is prime to |G|, then note that:

(a) Multiplication by |G| is an automorphism of M, and so induces
an automorphism of H%(G, M).

(b) Multiplication by |G| kills H2(G, M) by the above problem. Thus
the only possibility is that H?(G, M) = 0; that is, there is only one
extension 1 — M — E —» G —> 1, the split one. Put another
way : If E is a group and M is an abelian normal subgroup such that
G = E/M has order prime to |M|, then E is a semidirect product
E = M x@G. Finally, by suitable cleverness, one can reduce the arbi-
trary case (M non-abelian) to the case of M abelian, thus giving the
following

Theorem 4.20 (Schur-Zassenhaus) If G is a finite group, H4 G
a normal subgroup with |H| prime to [G : H]|, then G is a semidirect
product G = H x(G/H).

Prove the following corollary to the above discussion :

Corollary 4.21 Let A be a finite-dimensional central simple k-algebra
with galois splitting field L, and let n = [L : k). Then

ARk ARy --- R A~ Mm(k)

n

for some m.
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Reflect upon how hard this would be to prove without use of coho-
mology.

Prove Hilbert’s so-called ‘Theorem 90’ : If K/k is a galois extension
and G = Gal(K/k), then H°(G,K*) = k* and H'(G,K*) = 1. [Hint
: Let f: G — K* satisfy (61(f)(o,7) =1 for all 5,7 € G. Now show
that there exists a € K* such that b= .. f(o)o(a) # 0. Deduce
that 7(b) = f(7)~'b for all 7 € G, so that f € BY(G,K*).]

(a) Let G be a group and let H be a subgroup. Let M be a G-
module. Show that by restricting a function from G x -+ x G — M
to a function H X -+ Xx H — M we obtain a homomorphism of
cochain groups

Res$, : C™(G, M) — C™(H, M).

“Res” stands for “restriction”. The map is called this for obvious rea-
sons. Show that Res$; maps Z™(G, M) into Z"™(H, M) and B"(G, M)
into B"(H, M), and hence induces a homomorphism

Res$, . HY(G,M) — H™(H, M).

(b) Let k C F C K be fields. Show that extension of scalars induces
a map

Resf : Br(K/k) — Br(K/F)
given by Resf ([A]) = [F @ A].

(c) Let K/k be a galois extension with Galois group G. Let H be a
subgroup of G and let F' be the corresponding fixed field. Let f be a
factor set satisfying the cocycle condition. Let A = (K, G, f) be the
central simple k-algebra constructed in the proof of the isomorphism
of the Brauer group with H?(G, K*). Let {z, : 0 € G} be the usual
K-basis of A, that is, z,u = 0(v)z, and Lo, = fo,rTor- Prove that
{z,:0 € H} is a K-basis C(F).

(d) Let k C F C K and H a subgroup of G as in part (c). Show that
the following diagram commutes:

H(G,K*)y — Br(K/k)

G F
Resy Res

H*(H,K*) ——— Br(K/F)
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43. (a) Let G be a group, H a normal subgroup, and M a G-module.

Show that MH = {m € M : g(m) = m  forall 0 € H} is a
G/H-module. Show that there is a homomorphism

Inf§ : HY(G/H,M") — H*(G, M)

which sends a cocycle f to the function defined by (o, 7) — f(c H, 7 H).
“Inf” stands for “inflation” because it gives a map from the cohomol-
ogy of a quotient group G/H into the cohomology of the (inflated)
full group G.

(b) Let k C F C K be fields such that [K : k] < co. Let B be a central
simple k-algebra with maximal commutative subring F. Considering
K ®F B as a right B-module, show that A = Endg(K ®F B) is
a central simple k-algebra with maximal commutative subring F.
Further, show that [A] = [B] in Br(k).

(c) Let k C F C K be as in part (b). Assume further that K is galois
over k with Galois group G, and that F is the fixed subfield of the
normal subgroup H. Show that the following diagram commutes:

HYG/H,F*) ———= Br(F/k)
Infg

H*G,K") ——— Br(K/k)

44. Let k C F C K be fields with E/K and K/k galois extensions. Show

that the sequence

0 — H(Gal(F/k), F*) 224 H2(Gal(K/k), K*)
£e3 H¥(Gal(K/F),K*) — 0

is exact.
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Primitive Rings and the
Density Theorem

We saw in Theorem 1.15 that simple artinian rings are precisely those
artinian rings which have a faithful simple module. It is useful to drop the
finiteness condition and to study those rings which have a faithful simple
module but are not necessarily artinian. Such a ring is called a primitive
ring. Primitive rings, a generalization of simple rings, play a role analogous
to that of simple rings in that they may be viewed as the basic building
blocks of other rings, though in an extended, infinite dimensional context.
This perhaps justifies the name primitive. The theory of primitive rings can
be developed along lines parallel to that of simple rings. The two theories
intertwine, and in fact some authors choose to study simple rings from the
point of view of primitive rings. This chapter explores such an approach.

Definition: A ring R is called primitive if it has a faithful simple module.

It should be noted that some of the terms in this definition are often giv-
en other names. Recall that giving an R-module M is the same as giving a
homomorphism p of R into End(M), the ring of abelian group homomor-
phisms of M. p is often called a representation of R (acting on M). An
irreducible representation of R is a representation for which the associ-
ated module is irreducible (i.e., simple). Thus a primitive ring is one which
has a faithful irreducible representation. We will pick up this terminology
in a later chapter on representation theory.

Examples:

1. Any simple ring is primitive; in particular, any finite dimensional
matrix ring over a division ring is primitive. This follows from the
fact that any nonzero ring R has a maximal left ideal 7, and if R is
simple then I contains no nonzero ideal, so R/ is a faithful simple
module for R. It should be noted that the zero ring is simple but not
primitive, but in this book we are only considering rings with identity
1, with 1 # 0, so the zero ring doesn’t count.

2. Let V be a vector space, not necessarily finite dimensional, over a
division ring D. Then R = Endp(V) has V as a faithful simple
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module and is thus primitive. Clearly V is a faithful R-module. To
show that V is a simple R-module, we need to see that for any v, w €
V, there is a ¢ € R with ¢(v) = w, but this is clear since v is part of
a basis for V. As noted in exercise 28 of Chapter 1, R is not simple
if V is not finite dimensional over D. This gives an example of a ring
which is primitive but not simple.

Other examples of primitive rings can be found in the exercises at the
end of this chapter and in Part IIL

There is another, more ring-theoretic approach to proving the Structure
Theorem for Simple Artinian Rings than was taken in Chapter 1. This
alternate line of attack uses the Jacobson Density Theorem, a theorem
which has applications throughout ring theory. We first begin with a

Definition: Let V be a vector space over a division ring D, and let R be
a ring of D-linear transformations of V. R is called a dense ring of lin-
ear transformations, or is said to act densely on V, if for every finite set
{v1,...,v,} of linearly independent vectors in V', and any set {wy,...,w,}
of (not necessarily independent) vectors in V, there exists a linear trans-
formation ¢ € R with

o(v;)) =w; fori=1,...,n

Let R be a dense ring of linear transformations of a finite dimensional
vector space over a division ring D with basis {v1,...,v,}. For any ¢ €
Endp(V), there must be ¢ € R with ¢(v;) = ¢(v;), since R is dense. But
{v1,...,v,} is a basis for V, so ¥ = ¢ € R. Thus the only dense ring of
linear transformations of V' is the ring Endp(V).

For those who wonder where the topological term “dense” comes from in
the above definition, let V' be given the discrete topology, and let Endp(V)
be given the compact-open topology as a space of functions on the space
V. Then it is not hard to check that a ring R of linear transformations acts
densly on V if and only if R is dense as a subspace of Endp(V).

Before proving the main theorem of this chapter, the Jacobson Density
Theorem, we prove a similar theorem in the context of semisimple modules
which will be used to prove Jacobson’s Theorem.

Theorem 5.1 (Density Theorem For Semisimple Modules) Let M
be a semisimple module over a ring R, and let S = Endpr(M). Let ¢ €
Ends(M). Then for any set {z1,...,z,} of M, there exists r € R such
that

o(z;)) =rz; fori=1,...,n.

Thus the action of any S-module endomorphism of M on a finite set can
be achieved by the action of an element of R.
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Note that {z,,...,z,} in the hypothesis of the theorem is not assumed
to be a linearly independent set.

Proof: We first prove the theorem in the case n = 1. Let z; be given. Since
M is semisimple we can write

M:—‘R.’L'l@MI

for some submodule M’ (every submodule is a direct summand). If 7 :
M — Rz, is the projection map, then 7 € S, and so

(1) = d(n(z1)) = m(P(21)).

But {y € M : n(y) = y} is just Rz,. Thus ¢(z1) € Rz, as desired.
Now suppose we are given the set {z1,...,z,} of M. At first suppose M
is simple. Look at the product map ¢(® : M™ —s M™ defined by

6™ (W, yn) = (W), - - DY)

Then Endp(M™) = M,,(S) by Proposition 1.7. Now ¢ and S both act
on M, and the actions commute, so ¢(™) € Endgndgmn)(M™), so by the
proof of the theorem in the n = 1 case there exists r € R with

(rz1,...,1x,) = ¢(")(ml, sy Zn) = (P(z1), ..., P(Tn))

and the theorem is proved for simple M.
If M is semisimple then M is a direct sum of its isotypic constituents

M~=M"® --®&M! with M;% M, ifi#j

The matrices representing the endomorphisms break up into blocks, and
the reader may check that the same argument as above will work. 0

The Density Theorem for Semisimple Modules may be used to prove
a density theorem for primitive rings due to Jacobson. This useful result
may be viewed as an analog to the Structure Theorem for Simple Artinian
Rings.

Theorem 5.2 (Jacobson Density Theorem) A ring R is primitive if
and only if it is a dense ring of linear transformations of a vector space
over a division ring.

It is interesting to note that Jacobson, in his book Basic Algebra II, calls
this theorem the “Density Theorem for Primitive Rings”, although it is
most commonly known as the Jacobson Density Theorem.

Proof: Suppose R is primitive, and that M is a faithful simple R-module.
Then D = Endgr(M) is a division ring by Schur’s Lemma. Since M is



faithful, R acts (by left multiplication) as a ring of linear transformations
on M considered as a vector space over the division ring D. Given a set
{v1,...,v,} of linearly independent (over D) vectors in M, and any set
{wi,..., wn} of vectors in M, we may take (by linear independence) the
v;’s as part of a basis for M, and so there exists a linear transformation ¢
such that

¢(v,~)=wi i=1,...,n.

But ¢ € Endp(M) and D = Endg(M), so by the Density Theorem for
Semisimple Modules there exists r € R with

T‘.’Ei=¢(mi)=yi i‘_‘la"'an'

Thus R is a dense ring of endomorphisms of M.
Conversely, suppose that R is a dense ring of endomorphisms of a vector
space V over a division ring D. Then V is an R-module via

p-v=0¢(v) forpc RveV.

V is clearly a faithful R-module, and is simple since, given any v # 0
in V, v is part of a basis for V, and so for any w € V there is a linear
transformation ¢ € R with ¢(v) = w; that is, w € Rv. Thus R is primitive,
as it has a faithful simple module. O

The ‘if’ direction of the Jacobson Density Theorem can be made stronger.
A set R of endomorphisms of a vector space V over a division ring D is
called n-fold transitive if, for any m < n, any set {z1,...,Z,} of m
linearly independent vectors in V and any set {y1,..., ym} of vectors in V,
there exists ¢ € R with ¢(z;) = y; for all 1 < i < m. Now if R is a ring
of endomorphisms of V' over D which is even just 1-fold transitive, then R
is primitive. To see this, note that by definition V is a faithful R-module,
and is simple by transitivity. Thus we have a stronger implication in the
‘if’ direction of the density theorem, although there is another intricacy
involved (see Exercise 9).

One may derive a plethora of results from the Jacobson Density Theorem;
we mention but two. Many authors derive the Structure Theorem for Simple
Artinian Rings as a consequence of Jacobson’s Theorem. We now take this
approach.

Theorem 5.3 (Simple artinian rings revisited) Any simple artinian
ring is isomorphic to a finite dimensional matriz ring over a division ring.

We don’t bother to derive the corresponding theorem for semisimple
rings (Wedderburn’s Theorem) and the uniqueness results, for these follow
as in Chapter 1.



Proof: Let R be a simple artinian ring. R is primitive since R is simple
(Example 1 on page 151). Let M be a faithful simple R-module, and let D =
Endgr(M), which is a division ring by Schur’s Lemma. By the Jacobson
Density Theorem we know that R is isomorphic to a dense subring of
Endp(M). If M is finite dimensional over D, then as noted previously a
dense subring of a finite dimensional endomorphism ring is the whole ring
of endomorphisms, so in this case R = Endp(M) and we are done.

So suppose that vy, va, . .. is an infinite linearly independent set of vectors
in the vector space M over D. Let I,, be the left ideal of R defined by

IL={r€R:rv; =0 forall1 <i<n}.

Clearly I D I3 D --- is a descending chain of left ideals. In fact it
is a properly descending chain by the Density Theorem for Semisimple
Modules, since by the theorem there is an element r € R with rv; = 0 for
1 £ i £ n, but with rv,y; # 0. This infinite descending chain contradicts
the hypothesis that R is artinian, so M is in fact finite dimensional over D
and we are done. 0

As another consequence of the Jacobson Density Theorem one may de-
rive a structure theorem for primitive rings which is similar to that for
simple artinian rings, although as one might expect considering the finite-
ness condition is dropped, part of the structure theorem has to deal with
the cases when the ring is quite big.

Theorem 5.4 (Structure Theorem for Primitive Rings) Let R be a
primitive ring with faithful simple module M. Let D = Endg(M) (D is a
division ring by Schur’s Lemma). Then either R = M, (D) for some n or,
for every positive integer m, there exists a subring Ry, of R which maps
homomorphically onto My, (D).

Proof: The proof is similar to that of Theorem 5.3. As before, if M has
finite dimension over D then R = Endp(M) = M, (D) for some n. If
U1, Vs,. .. 1s an infinite linearly independent set of vectors in the vector space
M over D, then let M,, be the D-subspace of M spanned by {v1,...,vn},
let

Rn={r€R:rV,, CVn}

and, as in the proof of Theorem 5.3, let
Im ={reR:rv;=0 forall 1 <i<m}.

Then I, is an ideal in the subring R,, of R, and R,,/In = M, (D) by
the Jacobson Density Theorem. This proves the theorem. 01
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It seems that one could use the Structure Theorem for Primitive Rings
to prove Theorem 5.3 (that every simple artinian ring is isomorphic to a
matrix ring), for it seems unlikely that a ring with subrings mapping onto
arbitrarily large matrix rings could be artinian. Such rings do, however,
exist; even division rings with this property exist! See Part III, Exercise 27
for an example. This shows that primitive rings may be quite unweidly;
indeed, every algebra is the image of some primitive algebra under some
homomorphism (Exercise 15).

As noted in the examples on page 151, every simple ring is primitive but
not every primitive ring is simple. The Structure Theorem for Primitive
Rings also lends credence to the notion that primitive rings extend the
notion of simple ring to the infinite dimensional context. In fact it is not
difficult to show that a ring is primitive artinian if and only if it is simple
artinian (if and only if it is a finite dimensional matrix ring); thus the
concepts of primitive and simple agree in the finite dimensional case. We
leave this fact as an exercise to the reader (Exercise 8).

Exercises

Primitive Rings

1. Let V be a vector space over a division ring D. Let V be given
the discrete topology and let Endp(V) be given the compact-open
topology as a space of functions on the space V. Show that a ring R
of linear transformations acts densely on V if and only if R is dense
as a subspace of Endp(M).

2. (a) Show that a ring is primitive if and only if it contains a maximal
left ideal that contains no nonzero ideal.
(b) Show that a commutative ring is primitive if and only if it is a
field.

3. Show that M, (R) is primitive if R is primitive.

4. Let V be a vector space of countably infinite dimension over a division
ring D, and choose a basis for V over D. Let R denote the set of linear
transformations represented by matrices of the form

A 0

0

where A is a finite square matrix and d € D. Check that R is a
subring of the ring of row-finite matrices (matrices with only finitely
many nonzero entries in each row). Show that R is primitive.
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Let V be the vector space Q[z], z an indeterminate. Let d denote the
“differentiation map” defined by

d(Cn.’En+"-+CI(E +C0)=ncn:p"—l +. 4

and let ¢ denote the “integration map (with constant term 0)” defined
by

"t 4.

i(ena™ + -+ 1T + o) = m+D)

Check that both d and i are Q-endomorphisms of V. Let R be the
subalgebra of Endq(V) generated by Q,d, and i. Show that R is
primitive.

. Let e be a nonzero idempotent of the ring R. Recall (Chapter 0,

Exercise 27) that eRe is a ring with e as identity element. Show that
eRe is primitive if R is primitive.

. In the proof of the Structure Theorem for Primitive Rings, show that

R is artinian if and only if the faithful simple R-module M has finite
dimension over the division ring D = Endg(M).

. Show that a ring is primitive artinian if and only if it is simple artini-

an. [Hint: Look at the proof of the Structure Theorem for Primitive
Rings.]

More on the Converse to the Density Theorem

(a) We showed above that if R is a 1-fold transitive ring of endomor-
phisms of a vector space V' over a division ring D, then R is primitive.
Show that in this case, however, the commuting ring of R need not
equal D (recall that the commuting ring of R is the set of endomor-
phisms in Endgr(M) which commute with all of the endomorphisms
¢ given by scalar multiplication with r € R).

(b) Now assume that V is finite dimensional. Characterize all simple
subrings of M,, (D) (see Chapter 3, Exercise 34).

(c) Still assuming V is finite dimensional, characterize all primitive
subrings of M, (D).

Show that any ring R of 2-fold transitive endomorphisms of a vector
space V over a division ring D is dense, and so is n-fold transitive
for all n. Thus in this case the commuting ring of R is precisely D.
[Hint: Show first that, if v € V and ¢ € Endg(V), then v and ¢(v)
are linearly independent over D, as long as dimp(V) > 2.]
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Semi-Primitive Rings

A ring R is called semi-primitive if for any element a # 0 of R, there
is a simple R-module M with a & ann(M). The relationship between
semi-primitive rings and semisimple rings is reminiscient of that be-
tween primitive rings and simple rings. In studying semi-primitive
rings it will be useful to generalize the concept of direct product. If
{R4} is any family of rings, and if 73 : [ R, — Rg is the natural
projection, then R is said to be a subdirect product of the rings R,,
if there is a monomorphism ¢ : R — [ Rq such that 7goi : R —» Rs
is surjective for each §.

Show that the following three conditions on a ring R are equivalent:

(i) R is semi-primitive.
(ii) R has a faithful semisimple module.

(iii) R is a subdirect product of primitive rings.

(a) Show that a commutative ring is semi-primitive if and only if it
is a subdirect product of fields.

(b) Show that Z is semi-primitive, as is any principal ideal domain
with an infinite number of primes.

(a) Show that a ring R is semi-primitive if and only if J(R) = 0,
where J(R) denotes the (Jacobson) radical of R.

(b) Show that R/J(R) is semi-primitive, and that J(R) is the inter-
section of all ideals I of R such that R/I is primitive.

Show that R is semisimple artinian if and only if R is semi-primitive
artinian.

Applications of the Density Theorem

Let A be an algebra over the field k, and let V be a direct sum of
infinitely many copies of A. Consider the subring R of Endg (V) gen-
erated by A (acting diagonally) and the set of linear transformations
which are nonzero on at most finitely many terms of the direct sum
(these transformations are sometimes said to have finite support).
Show that R is primitive and that there is a surjection of R onto A.
Thus any k-algebra is the image of some primitive k-algebra under
some homomorphism.

The goal of this exercise is to prove a very nice theorem of Jacobson
that gives a condition on the powers of elements of a ring that will
make the ring commutative. The condition is that for every elemen-
t  of the ring, there is some integer n(r) > 1 so that r™(™ = r. It
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seems quite strange that a ring with such a property must necessarily
be commutative, and even strange that any condition of this nature
should imply commutativity. This theorem can be proved using tech-
niques from this chapter.

(a) Show that if R is a primitive ring with the property that, for each
r € R, there is an integer n(r) > 1 such that (") = r then R is a
division ring.

(b) Show that the ring in part (a) is in fact a field. [Hint: Show that
R has finite characteristic p. If R = Z(R) we are done, otherwise
choose r € R,y ¢ Z(R). Use the generalized Skolem-Noether Theo-
rem (Chapter 3, Exercise 18) to find an s € R with srs~! = rP. Show
that r and s generate a finite division ring.]

(c) Let R be any ring such that, for any r € R, there is an integer
n(r) > 1 such that r*(") = . Show that R is semi-primitive.

(d) Prove the following theorem of Jacobson: If R is any ring such
that, for any r € R, there is an integer n(r) > 1 such that () = T,
then R is commutative.

Remark: The theorem you just proved has vast generalizations, and
indeed there is a whole theory of commutativity of which this is one of
the foundling steps. For an introduction to commutativity theorems
see Herstein, Noncommutative Rings.
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Burnside’s Theorem and
Representations of Finite
Groups

In this chapter we provide an application of the structure theory of rings
developed in Chapters One and Two to the theory of finite groups. Repre-
sentation theory of finite groups is a vast subject; in this chapter we’ll make
a thin beeline right to a famous theorem of Burnside. For a more thorough
introduction to the representation theory of finite groups, the reader may
consult Serre, Linear Representations of Finite Groups, as well as Fulton
and Harris, Representation Theory : A First Course.

Unless otherwise specified, G will denote a finite group throughout this
chapter. We will only discuss representation over the field C of complex
numbers, as this suffices for the desired applications.

Group Representations

We begin with a rephrasing of some of the ring theory we have learned into
the language of representation theory.

Definition: A representation of a group G is a homomorphism p : G —
GL(V) , where GL(V) is the algebra of automorphisms of a vector space
V over a field k. The dimension of V' over k (which we will assume to be
finite throughout this chapter) is called the degree of the representation.

Note: Henceforth we will assume that k = C, and by “representation”
we will mean a representation over the complex numbers, which is usual-
ly called a complex representation. Although representations over other
fields, in particular fields of nonzero characteristic, are extremely importan-
t, restricting our attention to representations over C will simplify matters
greatly, and suffices for the applications we wish to give. When working
with complex representations, the two most important properties of the
field C which will be used are the facts that the order of the group G is
invertible in the field C, and C is algebraically closed.



If V is n-dimensional and if we pick a basis B for V over C, then GL(V)
can be thought of as the group of n X n invertible matrices over C, denoted
GL,(C). In this way the representation p assigns a matrix pg(g) to each
group element g, and we call p a matrix representation of G (sometimes
we refer to a matrix representation without explicitly choosing a basis). If
A and B are bases for V over C, and if C is the change of basis matrix
from A to B, then the matrices pa(g) and ps(g) are related by : pg(g) =
C~'pa(9)C. If p is a matrix representation, we denote the (3, j)-entry of
the matrix p(o) by p;;(o) for o € G.

Notice that V is a module over the group ring C[G], where the action of
the ring is defined by g-v = p(g)(v) for g € G,v € V and is extended linearly
to C[G). Conversely, a C[G]-module V gives a representation p : G —
GL(V) defined by p(g)(v) = g - v, where g - v denotes the multiplication of
a module element by a scalar. Hence the study of representations of G is
equivalent to the study of C[G]-modules.

Two representations p : G — GL(V) and p' : G — GL(V’) are
equivalent if V and V' are isomorphic as C[G]-modules. Note that this is
the same as saying that o’ (g9) = Tp(g)T ! forallg € G, where T : V —s V'
is a C-module isomorphism.

Examples:

1. Letting V be one-dimensional and letting p : G — GL(V) be p(g) =
1 for all g € G, where ‘1’ here denotes the identity element of GL(V'),
gives a representation called the trivial representation of G.

2. A degree one representation is simply a homomorphism p : G — C*.
Note that since G has finite order each p(g) is a root of unity; in
particular |p(g)] = 1 for all g € G. When G = Z/nZ, the cyclic
group of order n, then it is clear that each nth root of unity gives
a degree one representation over C, so that there are precisely n
representations of Z/nZ of degree one over C.

3. The group algebra C[G] is a left module over itself, which gives a
representation of G. This most fundamental and important repre-
sentation is called the (left) regular representation of G; it is a
degree |G| representation. Note that g € G acts by left multiplication
on elements of C[G], giving an element of End(C[G]). For example,
let G = {1,z,22% 2%} be the cyclic group of order 4. The group ele-
ment z2 € G acts on the standard C-basis {1,z,z?,z%} of the group
ring C[G] by multiplication on the left :

22-1=22, 2. z=2% 2%.2%=1

Thus if p is the regular representation of G, we have



001 0
5 |0 001
PEI=11 0 0 0
010 0

Definition: A simple C[G]-module V' (and the associated representation
p: G — GL(V)) is called an irreducible representation.

Notice from the Wedderburn Theory (cf. the discussion on page 41) that
every irreducible representation occurs as a component of the regular rep-
resentation.

Characters and Orthogonality Relations

Let f and g be complex valued functions on G. Define

(f,9) = |G| > flo)g(a™).

c€G

This “inner product” is clearly bilinear, and is symmetric (i.e. (f,g) =
(g, f)) since o can be replaced by ¢! in the sum.

Proposition 6.1 Let p and p’ be inequivalent matric representations of a
finite group G. Then (pir, p};) = O for all i,r,s,j. If p is irreducible then
(Piry psj) = 0 unless i = j and r = s, in which case (pir, pr:s) = 1/d, where
d is the degree of p.

Proof: Let p : G — GL(V),p' : G —» GL(V’) be the given represen-
tations. Let 7 : V — V' be a C-linear map, and let n = |G|. Then
LP(T) =LY .coTo™! isa G-map from V to V'. If V and V' are non-
isomorphic and irreducible then 1 F(T) = 0 by Schur’s Lemma. Choosing a
basis and expressing this in terms of p and pr, and letting A be the matrix
of T with respect to the chosen basis gives

1
LS o) Ane) =0 (6.1)
o €G
where A can be any d' x d matrix, where d = dim(V),d' = dim(V’).
Now let A = E,; be the elementary matrix with a 1 in the (r, s) position
and 0 elsewhere. One then checks that the (2, j) entry of o/ (0)Ersp(o™") is
Pir(0)psj(c™"). Hence equation (6.1) implies that 2 5°_ . o, (0)ps;(0™1) =



0; that is, 1(p},,ps;) = 0 for all 4,7, s, 5. Since the ‘inner product’ is sym-
metric we are done.
Now suppose that V is irreducible, so that E"dC[G] (V) = C. Now

15, p(0)Ap(c~1) = A, where A depends on A and I is the identity
matrix. Letting A =¥, , and writing the corresponding X as A, gives

1 - i
n > pir(0)psi(07T) = Ansbiy =0 if i g

so that (p;, psj) = 0 if ¢ # j. Similarly (s, pir) = 0 if s # 7. We also have
that

Arr = (piry Pri) = (Pri, Pir) = Aii |
and so there exists A with \;; = X for all 7. Thus
A=Y =25 %, pril@)pin(e™)
= L5, Tipn(@)picle™)
L5, lo(0)p( e

= £, = g n=1

Hence A = 1/d and we are done. O

We now introduce an extremely important tool in the study of represen-
tations.

Definition: The character of a representation p : G — GL(V), denoted
by x(p) (or sometimes simply x), is defined to be x (o) = Tr[p(c)] for o € G,
where ‘Tr’ denotes the trace of a linear transformation. Note that x can be
computed the same way relative to any basis for V, since Tr(ABA™!) =
Tr(B) for any n x n matrices A and B over C. This also shows that x is a
class function, i.e. x is a well-defined function on the conjugacy classes of
G, and that equivalent representations have the same characters.

Examples:

1. Since the trivial representation p : G — GL(V) is such that p(g) is
the 1 x 1 identity matrix for all g € G, we see that x(g) = 1 for all
geG.
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2. If p is the regular representation of G, choose the elements of G as a
basis for C[G]. Let x denote the character of p. Clearly x(1) = |G|,
since multiplication by 1 is represented by the identity matrix with
respect to the chosen basis. If ¢ € G is not equal to 1, then gh # h
for all b € G, hence the matrix representing multiplication by ¢ has
zero’s along the diagonal, so that x(g) = 0 in this case.

We will see other examples of characters later.

Note that if x-is a character of a representation of degree n then x(1) = n.
Also note that if x and X’ are characters of representations p : G — GL(V)
and p' : G — GL(V'), respectively, then x + x’ is the character of the
direct sum representation p ® p' : G — GL(V @ V'). In particular, the
character of a representation p is the sum of the characters of the irreducible
components of p.

Characters play a central role in representation theory, as they encapsu-
late a great deal of information about their reprentations; indeed a char-
acter characterizes its representation. The following theorem shows that
any two inequivalent irreducible representations are part of an orthonor-
mal basis in the space of class functions on G. In fact, we will later see that
the set of characters corresponding to the (finite number of) irreducible
representations of G forms an orthonormal basis for this function space.

Theorem 6.2 (Orthogonality Relations) If p and p' are inequivalent
representations with characters x and x’, then (x,x’) = 0. If p is irreducible
then (Xa X) =1

Proof: First note that x(o) = Z‘ii:l pii(a) and x'(0) = Z‘:;l pi;(a) for
o € G. Then

d d

d d
0ox) = (Z piis Z Pi) =D Y (piirpl;) =0

i=1 j=1

by bilinearity and by Proposition 6.1. For the same reasons we also have,
if p is irreducible, that

d d
pii) = Z
l i .=

=13

d d
6x) = (Z Piis (Piis Pi5) Z,?iz:(pu,mi) =1L

1
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The Group Ring

Let G be a finite group. Recall Maschke’s Theorem from Exercise 27 of
Chapter 1 or Exercise 32 of Chapter 2, which tells us that the group
algebra C[G] is semisimple. So C[G] = [[i-; Ma,(C). The multiplicity
of an irreducible representation in the regular representation is precisely
its degree d;. We know from the Wedderburn theory (cf. the discussion
on page 41) that C[G] has exactly r isomorphism classes of simple mod-
ules, in other words G has exactly r inequivalent irreducible representa-
tions. The d;’s are the degrees of the irreducible representations; hence
6] = dimg(CIG]) = i, d2. |

Is there some way to determine 7, the number of inequivalent irreducible
representations of G? The answer is yes; in fact r is a familiar number
associated to the group G.

Proposition 6.8 The number of inequivalent irreducible representations
of a finite group G s equal to the number of conjugacy classes in G.

Proof: Let R = C[G], so that R ~ [];_, R;, where each R; is a matrix ring
over a division C-algebra of finite dimension. Hence Z(R) = [];_, Z(R;),
and each each Z(R;) is one-dimensional over C (remember that the center
of a matrix ring over a field consists of scalar multiples of the identity
matrix). Hence r = dim(Z(R)).
Now let z € R. Then z € Z(R) if and only if czo~! = z for all 0 € G.
Write = ), . «,7. Then £ = cxo~! is the same as
ZTEG T = ZTEG ‘TTO’TO’_I
reGTo-t76Th

SO T, = Ty-1,, for all o € G. Hence z € Z(R) if and only if z, = z,-1,,
for all 0 € G. Let {C;}2., denote the conjugacy classes of G, and let
¢ = Ygec, o in C[G]. We shall call c; the characteristic function
of the conjugacy class C;. Clearly {¢j}3=, is a C-basis for Z(R), and so
r = dimg(Z(R)) equals the number of conjugacy classes in G. O

Examples:

1. In Example 2 on Page 162 we found n degree one representations (over
C)of the cyclic group G = Z/nZ. Note that these representations are
pairwise inequivalent since they all have different characters. Since G
has n conjugacy classes (each element is in its own class), Proposition
6.3 implies that these are precisely the irreducible representations of

G.
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2. Let G = S3, the symmetric group on 3 letters. S3 has 3 conjugacy
classes, hence S3 has 3 inequivalent irreducible representations. One
of these is the trivial representation, which is of degree one; another
is the degree one representation given by ‘sgn’, the sign of a permuta-
tion. One can check that these representations are inequivalent since
their characters x; and x2 take on different values on the odd permu-
tations. So we know there is one more irreducible representation p of
S3, and if n is its degree then 1+1+4n2 = |S3| = 6,50 n = 2. One can
also figure out the values of the character x3 of p since x1 + X2 +2x3
is the character of the regular representation, which takes the value
0 on the non-identity elements of G and the value |G| = 6 on the
identity element.

Characters and Algebraic Integers

Note that in the decomposition C[G] = [[i., R: we can write 1 = Y_._, €;,
where €; € R; is the unit in R; (i.e. the identity matrix in the matrix ring
R; & Mg4,(C)). Then the e;’s also form a basis for Z(R) = [I;_, Z(R.).
Let p; correspond to an irreducible representation given by R;. With c;
denoting the characteristic function of the conjugacy class C; in G (cf. the
proof of Proposition 6.3), write

R=R,®R.®---®R,

el 2T
c]—cj-i—c]-i— c;-

Then pi(c;) = pi(c;-) = )\;ei for some )\;- € C by Schur’s Lemma. It
should be noted that here we are identifying p;(c;), which is an element
of End(V;), with an element of the group ring. Indeed the C[G]-module
structure on V;, viewed as a ring map C[G] — Endg(V;), factors through
the natural projection

;

Pi
Y
End.(V)

Since pi(ci) = Aiei, then Tr(pi(c;)) = diX;. On the other hand

Trpi(c;)) = Y Trlpi(a)) = hyixi(os),

oeCy
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where o; is any element of Cj, h; = |C;| and x; is the character of p;. Note
that we’ve used the fact that a character x of a representation is constant
on conjugacy classes : x(0) = x(Tor™1). This discussion shows that
\i = hixi(og)
3 d;
Our next goal is to show that the A;- are algebraic integers; that is, each
satisfies some monic polynomial with coefficients in Z.

Theorem 6.4 With notation as above, each A;- is an algebraic integer.

Proof: Recall that c; is defined to be Zaecj o, where C; is a conjugacy
class in G. Hence cjcy = D, MjkoT, Where nji, is a non-negative integer.
Since cjcx € Z(C[G]), we have 77 ¢jerT = cjex for 7 € G. This implies
that

. — =1,
Y v NikoO = CjCk =T CjCkT X
= peg NkeT 10T
= ZUEG Njk(ror—1)0

so that njry = Njk(rer-1) for 7 € G. Grouping terms in conjugacy classes
gives c;cr = Zf;l ajkic; with aji; a non-negative integer. Projecting onto
the ¢th component gives :

8

(Ne)(Aees) = pile)pilen) = pileser) = D ajuies
=1
Hence A;Afc = 31— ajriA} with each ajr; a non-negative integer. By
taking M = @ \;Z in the following proposition and by noting that M is
a faithful Z[)\;-]—module for each j, we conclude that the A are algebraic

integers.
O

Proposition 6.5 Let A be a subring of a commutative ring B, and let
x € B. Then the following are equivalent:

1. z is integral over A; that is, T satisfies a monic polynomial with co-
efficients in A.

2. Alz] is a finitely generated A-module.

3. Alz] is contained in a subring C of B which is a finitely generated
A-module.

4. There is a faithful A[x]-module M which is finitely generated over A.
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Proof: It is obvious that (1) implies (2) and that (2) implies (3). The fact
that (3) implies (4) is clear by taking M = C and by noting that 1 € C.
To prove that (4) implies (1), let {z1,...,2,} be a set of generators of M
as an A-module, and write Tz; = Y_;_, ai;T;, that is

Z méijm]- = Z ai]-mj

i=1 =1

or, written differently :
n
Z(.’Etsi]‘ — a,-]-)mj =0.
i=1

Let P be the matrix [pi;] with p;; = £6;; — ai;. So

I
P =0.
Tn
Hence
z1 T
det(P) | : | =@diP)P| : | =0,
T T,

where adj(P) denotes the adjoint matrix of P. Now det(P) is a monic
polynomial of degree n in = which acts trivially on M, and det(P) = 0
since A[z] acts faithfully. O

We will need the following facts about algebraic integers, which hence-
forth we will use without comment. The proofs (with hints) are left for the
exercise section at the end of this chapter.

1. Any rational number which is also an algebraic integer is in fact an
integer.

2. The algebraic integers form a ring. More generally, if A C B is an
extension of commutative rings, the set of elements of B which are
integral over A form a subring of B.

The fact that the A; are algebraic integers has important consequences.
Recall that the orthogonality relations tell us that if x is the character
corresponding to an irreducible representation, then (x, x) = 1. Thus, with
n =G|,
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— Z xi(o) Xt(a =

UEG

Hence
8
hX,O' -
> 207 -

]:l

and so
8 . n
> Xxilo7) = T
i=t ¢

Now a] 1, where k is the order of o, so p;(0;)* = 1. Thus all the
eigenvalues of p,(a]) are kth roots of unity. But x:(o;) = Tr(pi(c;)) is a
sum of eigenvalues, hence is an algebraic integer, as is Xi(a].‘l). Thus n/d;
is an algebraic integer. But n/d; € Q, hence n/d; € Z, or d;|n. In other
words, the degrees of the irreducible representations of a finite group divide
the order of the group.

Burnside’s Theorem

In this section we use the tools of representation theory we have developed
in this chapter to prove a famous theorem of Burnside. Burnside’s Theorem
was one of the first major theorems in group theory which was proved using
representation theory.

With the notation as in the previous sections, let us recall we have shown
so far:

1. = haxileg)

; 7 is an algebraic integer (Theorem 6.4).

2. xi(o;) is an algebraic integer.

3. If h; and d; are relatively prime then is an algebraic integer.

xi(o;)
d;
This follows from the following
Lemma 6.6 Let a and b be relatively prime integers. If a is an algebraic

integer and if ac/b is an algebraic integer, then a/b is an algebraic integer.

Proof: Since a and b are relatively prime, there exist 7, s € Z with ra+sb =
1. Hence r(aa/b) + sa = a/b and so a/b is an algebraic integer. O
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Lemma 6.7 With notation as above, if h; and d; are relatively prime, then
either pi(c;) is in the center of pi(G) or xi(o;) = 0.

Proof: First note that x;(o;) = Tr(pi(o;)) is the sum of d; roots of unity,
so that | ( )| < 1. If equality holds then |x;(c;)| = di, so that all of

the elgenvalues of pi(o;) lie on the same ray through the origin. Since each
eigenvalue also lies on the unit circle, they are all equal, so that p;(o;) is

scalar and lies in the center of p;(G).

Now suppose that | c(ia])l <1,and let a = X.c(ia.)
dith root of unity and let K = Q(n). If 0 € Gal(K/Q) then o(a) is
also 1/d; times a sum of d; roots of unity., so that |o(a)] < 1. Hence
|Ha€Gal(K/Q) o(a)| < 1. Since « is an algebraic integer, so is each o(a),
hence the product is an algebraic integer. Since the product is also a rational
number, it must be an integer, hence it must be 0. But 0, being fixed by the

Galois group, is its own (and only) galois conjugate, so that in fact « = 0
and we are done. O

Let n be a primitive

The core of Burnside’s Theorem is contained in the following proposition,
which in itself provides a nice condition under which a group is not simple.

Proposition 6.8 If the number of elements in some conjugacy class C of
a finite group G is a positive power of a prime p, then there is a nontrivial
irreducible representation p of G such that p(C) is contained in the center
of p(G). In particular, G is not simple.

Proof: Let x be the character of the regular representation of G. Then for
all 1 # z € G, we have

0=x(z) = Z dixi(z) =1+ Z dixi(z) (6.2)

=2

With the notation as above, take £ = o;. Then for a given ¢ either p|d; or
p fd;. If p fd; then |C;| and d; are clearly relatively prime, so by Lemma 6.7
we know that either p;(o;) is in the center of p;(G) or x;(c;) = 0. Suppose
the first alternative never happens for ¢ > 2. Then by (Proposition 6.2) we
have that 0 = 1 + pf, where 3 is an algebraic integer. But then —1/p = 3
is an algebraic integer and a rational number, hence an integer (Exercise
12), an obvious contradiction. Thus p;(o;) is in the center of p;(G) for each
t and we are done. O

We are now ready to prove the main result of this chapter, Burnside’s
p®q® Theorem, which states that every group of order p%q® is solvable. It
seems interesting that this purely group-theoretic result was not proven



fi v. LwusuE S 1 IeUrelil ailu nepresentations ot Finmte Groups

without recourse to representation theory for nearly 60 years after Burn-
side’s original 1904 proof, and even then the proof (by John Thompson)
was quite long and complicated. This makes the proof using representation
theory all the more impressive. A shorter purely group-theoretic proof of
Burnside’s Theorem was finally given by Goldschmidt (“A Group Theoretic
Proof of the p2g® Theorem, for Odd Primes”) and Matsuyama (“Solvability
of Groups of Order 2%p°").

Theorem 6.9 (Burnside’s p®q® Theorem) Every group of order pq®,
where p and q are distinct primes, s solvable.

Proof: Let G be a group of order paqb. We proceed by induction on the
order of G. First recall that groups of order p® are solvable (Exercise 16(a)).
Choose a nontrivial element z in the center of a ¢-Sylow subgroup of G.
Then either z € Z(G) or Con(x) - the conjugacy class of = in G - has
(positive) prime power order (recall that |Con(z)| is equal to the index
of the centralizer of  in G). Hence the hypothesis of Proposition 6.8 is
satisfied, so that G is not simple. The result follows by induction on the
order of G, together with the standard result from group theory (Exercise
16b) that if N is a normal subgroup of G with both N and G/N solvable,
then G is solvable. O

Burnside’s work originated in the problem of classifying finite simple
groups, or at least finding restrictions on their orders. Finite simple groups
have finally been classified, a culmination of decades of work by many
mathematicians (Note: the proof is so huge, however, that its validity is
still not wholly clear). Much of the progress in this area has been made
using techniques of representation theory. Readers who are interested in the
classification of finite simple groups should take a look at D. Gorenstein’s
book, Finite Simple Groups.

Exercises

Representations and Characters

1. Let x be the character of a representation p. Prove that p is irreducible
if and only if (x,x) = 1.

2. Let x be the character of a representation p. Show that the number
of times that p contains the trivial representation is equal to (x, 1),
where 1 denotes the character of the trivial representation.

3. Show that every character of G which is 0 for all 1 # g € G is an
integral multiple of the character of the regular representation.
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4. Prove that a finite group N is abelian if and only if all irreducible
representations of N have degree 1. Conclude that if N is an abelian
subgroup of a finite group G then every irreducible representation of
G has degree < |G|/|N]|.

5. Let G be a finite group and let p be an irreducible representation of
G of degree n with character x.

(a) Prove that |x(z)| = n for all z € Z(G), where Z(G) denotes the
center of G.

(b) Prove that n? < |G|/|Z(G)|.
(c) Prove that Z(G) is cyclic if p is faithful.

6. Let p: G — GL(V) be a representation with character x, and let
V* denote the dual space of V; that is, V* is the vector space of
linear functionals on V. For v € V,v/ € V*, let (v,v') denote the
value of the linear functional v at v. Show that there exists a unique
representation p* : G — GL(V*) such that

(p(9)(v), A (g)(@")) = (v,v') for g € G,v € V,o/ € V*.

The representation ¢ is called the dual representation of p. What
is the character of the dual representation?

7. Kp:G— GL(V) and p' : ' — GL(V') are representations then
we may define a representation p®p' : Gx G — GL(V)®GL(V) =
GL(V®V') by

(pxp')g,9") = pr(g) @ (g).

This representation is called the tensor product of the representa-
tions p and g'. We shall prove that GL(V) ® GL(V) is isomorphic to
GL(V ® V) in Chapter 8.

(a) If x, X’ and x" are the characters of p, o’ and p ® o’ respectively,
show that x"(g,¢') = x(9)x'(¢') for all (¢,¢") € G x G

(b) Show that if p and g/ are irreducible then p ® ' is irreducible.

(c) Prove that every irreducible representation of G x G’ is isomor-
phic to some representation of the form p ® p’, where p and /' are
irreducible representations of G and G', respectively. This shows that
the study of representations of a direct product can be reduced to
the study of the representations of each of its factors.
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8.

10.

11.

6. Burnside’s Theorem and Representations of Finite Groups

When determining the values of the characters of the representations
of G, it is a useful and common practice to make an array whose
rows are indexed by these characters and whose columns are indexed
by the conjugacy classes of G. The entry in the row indexed by the
character x; and the column indexed by the conjugacy class C; is
xi(C};) (recall that characters are class functions). This table is called
the character table of G.

For each of the following groups G, determine the number of irre-
ducible representations of G. Determine the character table of G.

(a) G = Sy, the symmetric group on 4 letters.

(b) G = Ay, the alternating group on 4 letters. Recall that Ay is the
subgroup of S; consisting of the set of even permutations.

(¢) G = {£1,%i, £, £k}, the multiplicative subgroup of order 8 in
the quaternions. This is often called the quaternion group.

(d) G = D, the dihedral group of order 2n. Recall that G is the
group of rotations and reflections of the plane which preserve a regular
polygon with n vertices. If » denotes a rotation through an angle of
2n/n, and if f (for ‘flip’) is any single reflection, then G is generated
by r and f with relations 7 = f2 =1, frf = r~!. [Hint: The cases
when n is even or odd are different. Start by constructing the degree
one and degree two representations.]

. (a) Note that D4 and the group @ of quaternions have the same

character table. Show that D4 and @ are not isomorphic, but the
group algebras C[D4] and C[Q)] are isomorphic.

(b) Show that the real group algebras R[D,] and R[Q)] are not iso-
morphic.

Prove that the number of degree one representations of a group G is
equal to [G : G'], where G’ denotes the commutator subgroup of G.
Show how G’ can be determined from the character table of G.

(a) Let G be a finite abelian group. Show that every irreducible com-
plex representation of G has degree one.

(b)How many irreducible complex representations does G have?

(b) The group of characters of irreducible representations of a finite
abelian group G is called the character group of G. Prove that G
is isomorphic to its character group. [Hint : Write G as a product
of cyclic groups G| x --- X G,,, where each G; is generated by ¢; €
Gi. Show that for any character x as above, the value of x on any
element of one of G; is a |G;|th root of unity. Now show that the
homomorphism f from the character group of G to G defined by
f(x) = (x(91),--,x(gn)) is an isomorphism.]
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Algebraic Integers

Show that any rational number which is an algebraic integer is in fact
an integer.

Show that the algebraic integers form a ring. More generally, show
that if A is a subring of a commutative ring B, then the set of elements
of B which are integral over A forms a subring of B. [Hint: Use
Proposition 6.5]

Related to Burnside’s Theorem

Let G be a group having a faithful irreducible representation of degree
p*, with a > 0 and p prime, and let x be the character of that
representation. Suppose Z(G) = 1, and let H be a p-Sylow subgroup
of G. Prove that x(g) = 0 for all 1 # g € Z(H).

Prove that a nonabelian simple group cannot have a nilpotent sub-
group of prime power index.

(a) Prove that any group whose order is a prime power is solvable.
This begins the induction in Burnside’s Theorem.

(b) Let N be a normal subgroup of a group G. Prove that G is solvable
if and only if both N and G/N are solvable. This allows one to use
induction in the proof of Burnside’s Theorem.
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The Global Dimension of a
Ring

There is an invariant of rings called the global dimension. Semisimple rings
are precisely those rings with global dimension zero. Thus the material in
Chapters 1 and 2 can be considered the zero’th step in the theory of global
dimension. Kaplansky, based upon an observation of Schanuel, was the first
to set down the dimension theory of rings in an elementary way, without
using the powerful machinery of homological algebra. This section is based
on his Queen Mary College notes.

We saw in Chapter 1 that semisimple rings have a nice structure, namely
they are all products of matrix rings over division rings. Theorem 1.18
shows that the semisimplicity of a ring R is characterized by the property
that every (left) R-module is projective; an instance of the phenomenon
that the structure of a ring is reflected in the structure of modules over
that ring. One way to measure how far an arbitrary ring R is from being
semisimple is to determine how far R-modules are from being projective.
Let us begin, then, with a way of measuring how far a fixed R-module is
from being projective.

Definition: Let R be a ring and let M be an R-module. A (finite) pro-
Jjective resolution is a long exact sequence

O0—P,—--—P—Ph—M

with each P; a projective R-module. The projective dimension of the
module M, denoted pd(M), is the least n for which there is a projective
resolution as above; if no projective resolution for M exists then we set
pd(M) = oc. Sometimes we denote projective dimension by pdp(M) if
we wish to emphasize that we are considering the dimension of M as an
R-module. Projective dimension is sometimes called homological dimen-
sion.

First note that pd(M) = 0 if and only if M is projective; in this sense
projective dimension gives a measure of how far a module is from being
projective. We will see other evidence for this. It is also clear that pd(M) =
1 if and only if M is not projective but is the quotient of two projective
modules.



To compute the projective dimension of a module Mip practice, we need
some way of telling when we actually have the smallest yro jective resolution
of M in hand. It is satisfying and useful that every jrojective resolution
of M has the same length, so that any projective resaution of M may be
used to compute its projective dimension. This follows from the following

Lemma 7.1 (Schanuel’s Lemma) Let R be a ringand let
0—M-—P SN — 0

0—»M'—+P’L>N—>O

be short exact sequences of R-modules. If P and P are projective then
MaeP ~M ¢P.

Proof: Let L = {(z,2') € P® P’ : f(x) = f'(¢)}. Then it is easy to see
that L is a submodule of P® P’ and that the natural projection v : L — P
is onto; for given p € P, there exists p’ € P’ with f'p') = f(p) (since f’
is onto), and so (p,p’) € L and w(p,p’) = p. Since P is projective, the
surjective homomorphism 7 : L — P splits, hence . ~ ker(r) @ P. But
note that

ker(m) = {(0,F) € P& P : f/(¢)) = 0} = ker(f') ~ M’
and so L ~ M’ @ P. The same argument shows that 2~ M @ P'. O

An easy induction argument using Schanuel’s Lemma shows that every
projective resolution of a module M has the same lensth, which is pd(M).
Instead of looking at long exact sequences, one can chcp them up into short
exact sequences to define projective dimension. R-mcdules M and M’ are
said to be projectively equivalent if there are prcjective R-modules P
and P’ with M @ P ~ M’ @ P’. Tt is not difficult -0 check that this is
actually an equivalence relation; we denote the equivalence class of M by
[M]. It follows from Schanuel’s Lemma that if

0O—N-—w>P—5M-—0

and
0— N —P M —0

are short exact sequences with P and P’ projective, then [M] = [M'] implies
[N] = [N']. Now if M is any R-module then we can map a projective R-
module P onto M with kernel N as above. Defining a map R by R([M]) =
[N], this discussion shows that R is well-defined. It is easy to check that
pd(M) is the smallest integer n with R™([M]) = 0.

Note also that if we have an exact sequence 0 — N — P — M — 0
with P projective, then R™([M]) = R*~!([N]) for all n > 1. This shows



that pd(N) = 0 if Pd(M) = 0, pd(M) = oo if and only if pd(N) = 0o, and
Pd(N) = pd(M) - 1 if pd(M) > 0.

Examples:

1. pdr(V) = 0 for any vector space V over a field F, since any such V
is a free F-module.

2. If G is an abelian group then pdz(G) = 0 if G is free abelian and
pdgz(G) = 1if G is not free. The first fact is clear, the second follows
from the exact sequence

O—>Z—>Z—>Z/nZ—>O.

3. Let p be prime and consider the ring R = Z/p2Z. The annihilator of
P € R is the ideal pR, so we have an exact sequence

0 —pR—R-—pR—0

of R-modules. But pR is not projective, for otherwise p would gen-
erate R. The discussion above shows that R([pR]) = [pR]; hence
4. Example 3 immediately generalizes to the following: Let a,b € R

be such that ann(a) = bR and ann(b) = aR. Then either pd(aR) =
pd(bR) = oo or aR®bR ~ R as R-modules and pd(aR) = pd(bR) = 0.

5. If {M,} is any collection of R-modules, then pd(€ M;) = sup{pd(M;)}

Having a measure of how far a module is from being projective gives a
natural way of measuring how far a ring is from being semisimple.

Definition: The (left) global dimension of a ring R, denoted gd(R), is
defined to be the supremum of the projective dimensions of left R-modules:

gd(R) = sup{pdr(M) : M a left R-module}.

Examples:

1. gd(R) = 0 if and only if R is semisimple. This follows from the fact
(Theorem 1.18) that R is semisimple if and only if every (left) R-
module is projective; and an R-module M is projective if and only if
pd(M) = 0.
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2. A ring is said to be a (left) hereditary ring if all of its left ideals
are projective as R-modules. Hence gd(R) = 1 if and only if R is a
hereditary ring which is not semisimple. Hereditary rings have been
studied extensively by ring theorists. For more on hereditary rings,
see the exercises at the end of this chapter.

There is an obvious way of defining (right) projective dimension for right
R-modules, which gives rise to the notion of right global dimension for the
ring R. Since, by Corollary 1.12, a ring is left semisimple if and only if it
is right semisimple, we see that a ring has left global dimension zero if and
only if it has right global dimension zero. This statement does not hold true
in general, however: there exist rings whose left and right global dimensions
are not equal (see Exercise 11). In what follows we will always be working
with left global dimension, although the statements would hold for right
global dimension as well.

Lemma 7.2 Let 0 — A — B — C — 0 be an ezact sequence of R-
modules. If any two of these modules has finite projective dimension, then
so does the third, in which case

pd(4) < maz{pd(B),pd(C)}
pd(B) < maz{pd(A) +1,pd(C)}
pd(C) < maz{pd(A) +1,pd(B) + 1}

Furthermore, if pd(B) = 1 and pd(C) > 1, then pd(C) = pd(A) + 1.

Proof: We prove only the first half of the lemma as this is the only part
which will be needed later; the proof of the second half is left to the reader.

We induct on the sum of the given two dimensions. If C is projective
then the sequence splits and B~ A ® C, so [B] = [A] and pd(B) = pd(A).
If B is projective then R([C]) = [A], so that pd(a) < ¢ < a + 1 and the
result holds. So suppose that neither B nor C is projective.

Map a projective module P onto B with kernel D. Let E be the preim-
age under this map of A C B. Note that E is equal to the kernel of the
epimorphism P —s B — C, and that D and E are projective. It is easy
to check that the sequences

0—D—P B —0
0—F—P—C—0
0—D-—FE—A-—0

are exact. Since pd(B) # 0 and pd(C) # 0 we have that pd(D) = pd(B) —1
and pd(E) = pd(C) — 1, so that at least two of the modules in the third
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exact sequence above have finite projective dimensions whose sum is less
than the sum in the original sequence. The result follows by induction: for
example pd(E) < maz{pd(D) + 1,pd(A)} implies that pd(C) < {pd(B) +
1,pd(A) + 1}; the other two inequalities follow similarly. O

The following proposition is due to Kaplansky.

Proposition 7.3 Let R be a ring and let a € R be an element in the
center of R which is not a zero-divisor. If M is a nonzero R/(a)-module
then de(M) = de/(a)(M) + 1.

Proof: We induct on n = de/(a)(M). If n = 0 then M is a projective
R/(a)-module, hence a direct summand of some free R/(a)-module N.
Since (a) is a free R-module and is not a direct summand of R, we have
pdr(R/(a)) = 1 and pdr(N) = 1; hence pdp(M) < 1. To show that M is
not a projective R-module, note that a acts faithfully on any free R-module,
and thus on any non-zero projective R-module.

Now assume n > 0, and map a free R/(a)-module N onto M to form

0—sL-—>N—M—70.

Then L # 0 and pdg/q)(L) = n — 1, so pdg(L) = n by induction. Also
note that pdg(N) = 1. It follows from Lemma 7.2 that pdp(M) < n + 1,
with equality if n > 1. If n = 1 write M = P/Q for R-modules P and Q
with P projective. Then we have the following exact sequences of R/(a)-
modules (note that ¢M = 0so aP C Q):

0— Q/aP — P/aP — M — 0

0 — aP/aQ — Q/aQ — Q/aP — 0.

Since P/aP is a projective R/(a)-module and since n = 1, we have
that Q/Pa is a projective R/(a)-module, so the second exact sequence
splits. Thus M = aP/aQ is a direct summand of Q/aQ, which is therefore
not projective. Hence @ is not a projective R-module, and pdg(M) > 1,
completing the proof. O

An immediate consequence of Proposition 7.3 is the following

Corollary 7.4 Let R be a ring and let a € R be an element in the center
of R which is not a zero-divisor. If gd(R/(a)) = n < oo then gd(R) > n+1.

Corollary 7.4 can be used to help compute the global dimension of a
polynomial ring in terms of the global dimension of its ring of coefficients.
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Theorem 7.5 Let R[z] be the polynomial ring over the ring R. Then
gd(R[z]) = gd(R) + 1.

Proof: We give the argument for gd(R) < oo; the case gd(R) = oo is
not much different and is left to the reader. It follows immediately from
Corollary 7.4 that gd(R[z]) > gd(R) + 1.

We now show that the inequality also goes in the reverse direction; that
is, pdg[z) (M) < pdr(M)+1 for every R-module M. The first thing to note
is that pdp(M) = pdg[y)(R[z] ®r M). One direction follows from the fact
that R[z] @ M is a projective R-module if M is a projective R-module,
which is easy to see since the same statement clearly holds for free modules
and since direct sums distribute through tensor products. Conversely, if
R[z] ® M is R[z]-projective, then R[z] ® M is a direct summand of some
free R[z]-module, which is also a free R-module; hence R[z] ® M is R-
projective. But as an R-module, R[z] ® M is just a sum of copies of M, so
M is R-projective. It follows that pdr(M) = pdg(4)(R[z] @ M).

Now R|[z] acts on both R[z] and M. Taking the difference of these two
actions gives a map

¥ Rjz]® M — R[z]® M
Zmi ® m; — 2:(avi+1 ®m; — ' ® Tm;).

Let y1: R[z]® M — M be the multiplication map induced by p(f®@m) =
fm. Then there is an exact sequence of R[z]-modules

0 — Rlz]®M -5 Rlz]®@ M 5 M — 0.
Lemma 7.2 then implies that pdgpp;)(M) < pdpi;)(R[z] @ M) +1 =
de(M) +1.0
An immediate corollary is the famous

Corollary 7.6 (Hilbert Syzygy Theorem) Let k[z,,...,z,] be a poly-
nomial ring in n variables over a field k. Then gd(k[z1,...,zx]) = n.

Exercises

1. Use Schanuel’s Lemma to show that every projective resolution of an
R-module has the same length.

2. (a) Recall that two R-modules M and M’ are called projectively
equivalent if there are projective R-modules P and P/ with M®P ~
M' @ P'. Show that this is an equivalence relation.

(b) With the notation as on page 178, show that pd( M) is the smallest
integer n with R™([M]) = 0.
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State and prove a dual version to Schanuel’s Lemma.

Let a,b € R be such that ann(a) = bR and ann(b) = aR. Show that
either pd(aR) = pd(bR) = oo or aR @ bR ~ R as R-modules and
pd(aR) = pd(bR) = 0.

. Show that if { M;} is any collection of R-modules, then pd(@ M;) =

sup{pd(M,)}.

Prove the second half of Lemma 7.2.

. Let R be a commutative ring, M an R-module, and A a free R-

algebra. Show that the projective dimension of M as an R-module is
equal to the projective dimension of M as an A-module.

. Prove that gd(M,(R)) = gd(R) for any ring R.
. (D.E. Cohen) Let S be a subring of R such that S is a direct summand

of R as an R—S bimodule. Prove that gd(S) < gd(R)+pds(R). In par-
ticular, if R is projective as ans S-module then gd(S) < gd(R). [Hint:
If M is an S-module, first show that pd(M) < pd(Homg(R, M)).]

(a) Let R[z,z~!] be the ring of Laurent series over the ring R. What
is the relationship between gd(R[z,z~!]) and gd(R)? Prove it.

(b) Use part (a) to derive a result for Laurent series in many variables
which is analogous to the Hilbert Syzygy Theorem.

(Small) Let R be the ring of matrices with a € Z,b,c € Q.

a
0
Show that R has left global dimension 1 but right global dimension
2.

Remark: In fact, Jategaonkar proved that if 1 <m < n < oo, then
there exists a ring R with left global dimension m and right global
dimension n. See his paper “A counter-example in ring theory and
homological algebra”, J. Algebra 12 (1969), pp.418-440.

Show that semisimple rings, principal ideal domains, and the ring of
upper triangular matrices of a division ring are hereditary.

(Cartan-Eilenberg)

(a) Show that if R is a hereditary ring, then every submodule of a
free R-module is isomorphic to a direct sum of (left) ideals.

(b) Prove that a ring R is hereditary if and only if every submodule
of a projective R-module is projective.

(c) Prove that a ring R is hereditary if and only if every quotient
module of an injective R-module is injective.
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The Brauer Group of a
Commutative Ring

An absolutely natural impulse in virtually all of algebra is to
do for commutative rings what has already been done for fields.

D. Zelinsky

The Brauer group Br(R) of a commutative ring was introduced by Aus-
lander and Goldman in their 1960 paper The Brauer Group of a Commuta-
tive Ring, building on earlier work of Azumaya. This group coincides with
the “classical” Brauer group (cf. Chapter 4) in the case when R is a field.
One of the points of extending the theory to rings is that one can relate
Brauer groups of fields to Brauer groups of related rings in exact sequences;
one then hopes that this will help compute the classical Brauer group. The
Brauer group of a commutative ring is also part of a Galois theory of com-
mutative rings. For more on these matters, the reader may consult Galois
Theory and Cohomology of Commutative Rings by Chase, Harrison and
Rosenberg, The Brauer Group of Commutative Rings by Orzech and Smal-
1, Separable Algebras Over Commutative Rings by DeMeyer and Ingraham,
or the paper of Auslander and Goldman quoted above.

Henceforth, unless otherwise specified, R will denote a commutative ring
and all (unlabeled) tensoring will be done over R.

Azumaya Algebras

In this section we introduce the notion of Azumaya algebra over a commu-
tative ring, which generalizes the notion of central simple algebra over a
field. Just as in the case of fields, these objects will be central to our study;
in particular we will form a group out of the set of (equivalence classes of)
Azumaya algebras over a fixed ring R.

Definition: Let A be an R-algebra. Let A°* = A®pg A°, where A° denotes
the opposite algebra of A. The R-algebra A€ is called the enveloping
algebra of A.

There is a natural homomorphism v : A* — Endg(A) defined by



P(a® a)(y) = aya

extended linearly. Recall from Chapter 0, Exercise 28 that there is a one-
to-one correspondence between left A°-modules and A-A bimodules.

Definition: An R-module A is said to be faithfully projective if A ig
finitely generated, projective and faithful as an R-module. An R-algebra A
is called an Azumaya algebra if the following two conditions hold:

1. A is a faithfully projective R-module.

2. The map ¢ : A®* — Endg(A) defined above is an isomorphism.

Example: If k is a field then a (finite dimensional) k-algebra A is an
Azumaya algebra if and only if A is central simple. For suppose that A
is central simple. Then A is faithfully projective since k is a field, and
Proposition 3.12 shows that condition (2) above is satisfied. Hence any
central simple algebra over a field is an Azumaya algebra.

Conversely, if A is an Azumaya k-algebra, then A ~ k™ as k-modules for
some n since A is faithfully projective. From this fact and condition (2) in
the definition of Azumaya algebra we see that

A® = Endi(A) = Endi (k™) = M, (k)

so that A° is a central simple k-algebra. But for any k-algebras A and B,
both A and B are central simple if A ® B is central simple; hence A is
central simple since A® ~ A ® A° is central simple.

We will see other examples of Azumaya algebras later.

Theorems about endomorphism algebras of projective R-modules can
often be reduced to similar questions about endomorphism algebras of free
R-modules, a fact which we shall often exploit. Hence we begin with a
proposition describing the behavior of matrix algebras under the tensor
product.

Proposition 8.1 Let R be a commutative ring. Then
1. Mp(R)® Myp(R) = Myp,(R).

2. The map w : Endr(R™)®Endg(R") — Endr(R™®R"™) defined by
w(f ® g) = f ® g extended linearly is an isomorphism of R-algebras.



Proof: Let {e;,...,e,,} be a basis for R™ and let {f1,..., f,} be a basis
for R". Then R™ @ R™ has basis {&; ® f; 1 1 <i < m,1 <j < n}. Let
E;j € Endp(R™) and Fy; € Endr(R™) be defined by

E,-j(er)=§irej, 1 Si,j,rﬁm

Fkl(fs)zéksflr 1§k,l,s§n

where 6;, equals 1 wheni = randisOwhen ¢ # r. Then {F;; : 1 < i,j <m}
is an R-algebra basis for Endp(R™) and {Fi; : 1 < k,! < n} isan R-algebra
basis for Endg(R"), so that {F;; ® Fiy: 1 <4,5 <m;1 <k,l <n}isan
R-algebra basis for Endg(R™) ® Endg(R").

Let h € Endr(R™ ® R™) be given. Then

hie: ® f;) = Z hik jiex @ fi
k.l

for some h, ji € R. Let b/ = Zk‘l hikjiEix ® Fj1. Then it is easy to check
that w(h') = h; hence w is surjective. To show that w is injective, first note
that any element h € Endgr(R™) @ Endg(R"™) can be written uniquely as
h= Zi,j,k,l hij,klEij ® Fk[. We now Compute

w(h)(es ® fr) =3,k hiriEij(eo) @ Fa(fr)
= 3 i ik higki(Sicej ® bkr fi)

= ;1 hojrie; ® fi.

If w(h) = 0 then w(h)(e, ® fr) = 0 for each o, 7. Since {¢; ® fi} forms
a basis for R™ ® R™, the above computation implies that h,; -, = 0 for all
0,7,7,1; hence h =0. 0

A more general version of Proposition 8.1 is given in Exercise 2.

Recall from Exercise 10 of Chapter 0 that if E+,...,E,, F1,..., F,, are
any R-modulesand ¢: E1 ®--- @ E, — F1 @ @ F,, is a R-module ho-
momorphism, then ¢ can be represented by a unique matrix

éun .. Pin
M) =1 E
¢m1 v ¢mn

where ¢;; € Hompg(FE;, F;). In particular, for R-modules M and N, there
are homomorphisms
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Endp(M) = Endg(M & N) L5 Endp(M)
i f o
= [80]

s
PR

Notice that joi is the identity, so that ¢ is injective and j is surjective. We
shall use this observation several times in what follows. The recurring theme
will be that projective modules are direct summands of free modules, whose
endomorphism algebras we understand quite well, so we should be able to

use the above maps to tell us something about endomorphism algebras of
projective modules. We begin with a useful illustration of this idea.

Proposition 8.2 If P and Q are finitely generated projective R-modules
then the map w : Endr(P) ® Endp(Q) — Endp(P ® Q) defined by
w(f ® 9) = f ® g extended linearly is an isomorphism.

Proof: As P and @ are finitely generated projective R-modules, we can

choose R-modules P’ and Q' with P® P’ =~ R™ and Q & Q' ~ R™. We
then have the the following commutative diagram:

Endg(P)®Endg(Q) ——————> End,(P®Q)

Endp,(POP')Y®End,(Q®Q") Endp(POP)®(Q®Q"))

U
U

Endg(R"Y® Endy (R™) ———— Endgy(R"®R™)

where the homomorphism ¢ and its splitting homomorphism j are induced
by the inclusions P < P @ P’ and Q — @ ® Q’, as discussed above;
similarly i’ and j’ are induced by these inclusions. The bottom right-hand
side isomorphism comes from the fact that

PoP)®Q®Q)~(PRQ)&(PRQ)& (P ®Q)a (P Q")
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and since P @ P' = R™ and Q & Q' ~ R™. Note that the diagram above
commutes, including the splitting maps. Since w’ is an isomorphism by
Proposition 8.1, it follows that w is an isomorphism. O

Just as matrix algebras with entries in a field k played an important role
in the study of Br(k) (namely, these are precisely the algebras representing
[k] = 1 € Br(k)), so shall Endg(P) for faithfully projective R-modules P
play an important role in Br(R). The first basic fact about these endomor-
phism algebras is that they are Azumaya algebras.

Proposition 8.3 If P is o faithfully projective R-module then Endg(P)
is an Azumayae R-algebra.

Proof: Since P is a finitely generated projective R-module, there is an
R-module @ with P & Q@ = R™ for some n. Hence Endp(P & Q) =
Endp(R™) ~ M, (R) ~ R™ as R-modules, so that Endg(P ® Q) is free.
But by the discussion on page 187, there are homomorphisms Endg(P) —
Endp(P ® Q) — Endgr(P) whose composition is the identity; hence
Endg(P) is finitely generated projective. If » € R annihilated Endg(P),
then in particular it would annihilate the identity map 1 € Endg(P),
whence it would annihilate P. Since P is a faithful R-module, this shows
that Endg(P) is a faithful R-module.

It is left to prove that Endg(P) satisfies condition (2) in the definition
of Azumaya algebra. Let Q be as above, so that P & Q ~ R™. Then it is
not difficult to check that the following diagram commutes:

]
Endg(P)®Endg (P)° ——————= Endg (Endg(P))

Ve
Endg(P®Q)®Endg(P®Q)° —— > Endg(Endg(P®Q))

where, as always, the vertical maps and their splittings are induced by
the inclusion P < P & @, and the horizontal homomorphisms are as in
condition (2) of the definition of Azumaya algebra. Hence to show that ¢ p
is an isomorphism it suffices to show that ¢ pgg is an isomorphism.

Let {e1,...,e,} be a basis for the free R-algebra P & Q = R", and let
Eij (S EndR(R") be defined by Eij(ek) = éikej- Then {E,] 1< i,j < n}
is an R-algebra basis for Endg(R"), and {E;;®Fy; : 1 <i,j,k,1 <n}isan
R-algebra basis for Endg(R™) ® Endg(R™)°. We also have, by definition
of Ypeq, that
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Yrag(Eij ® Ext)(Est) = EijEqEg = 656 Eir.
From this it is easy to check that ¥pgq is an isomorphism. O

The Brauer group of a commutative ring R will consist of (equivalence
classes of) Azumaya algebras over R with the tensor product as the group
operation. The following proposition will help show that the group is close
under this operation.

Proposition 8.4 If A and B are Azumaya algebras then A ® B is an
Azumaya algebra.

Proof: We leave as an exercise for the reader the fact that AQB is faithfully
projective if both A and B are faithfully projective (Exercise 3).

Now let yagp : (A ® B)* — Endp(A ® B) be the homomorphism
defined in condition (2) of the definition of Azumaya algebra. Then the
following diagram is commutative:

¢
Endg(A)®yS —————= Endg(A®;S)

’

Endp(R")®y S ———— Endg(R"®;S)

Here 44 : AQr A° —> Endg(A) denotes the isomorphism coming from
the fact that A is Azumaya (similarly for v)g), w is the isomorphism given
by Proposition 8.1, and the left side vertical isomorphism comes from the
commutativity of the tensor product and the fact that (AQ B)° = A°® B°.
This shows that 1 agp is an isomorphism. Hence A ® B is an Azumaya R-
algebra. O

A subject intimately connected with Azumaya algebras is that of Poly-
nomial Identity Rings. An explanation of this relationship can be found in
L. Rowen, Ring Theory, Vol. II, Chapter 6.

Constructing the Brauer group

In this section we define the Brauer group of a commutative ring and prove
that Br( ) is functorial.
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In our study of the Brauer group of a commutative ring, we will introduce
an equivalence relation on the set of Azumaya algebras over that ring, just
as in the case for fields. More precisely, we make the following

Definition: Let A and B be Azumaya algebras over R. We write A ~ B
if there exist faithfully projective R-modules P and @ such that A ®p
EndR(P) ~ BQ®p EndR(Q)

Note that in the case when R is a field, ~ is precisely the equivalence
relation on central simple algebras over R which was introduced in Chapter
4 on page 110. The equivalence classes of central simple R-algebras under
that relation form the elements of the Brauer group Br(R) of the field R.

Proposition 8.2 can be used to show that ~ is indeed an equivalence
relation. The only thing to check is transitivity, so suppose that A ~ B and
B ~ C for Azumaya algebras A, B,C over R. Then there exist faithfully
projective R-modules P, P/, @, Q' with

A® Endg(P)~ B® Endg(Q)
B® EndR(P') ~C® EndR(Q').
This implies that

AQ® Endp(P®P') ~ A® Endg(P)® Endg(P’)
~ B ® Endr(Q) ® Endr(P')
~ B® Endr(P') ® Endgr(Q)
~ C ® Endr(Q') ® Endg(Q)

~C®FEndp(Q' ®Q)

with P® P’ and Q' ® Q faithfully projective since P, P',Q, Q' are faithfully
projective (Exercise 3); hence A ~ C.

With this equivalence relation we are now ready to construct the Brauer
group.

Definition: We denote by [A] the equivalence class of the Azumaya R-
algebra A under the equivalence relation ~. We define the Brauer group of
a commutative ring R, denoted by Br(R), as the set of equivalence classes
of Azumaya R-algebras, with the tensor product as the group operation
and with [R] acting as the identity element.

Recall from Proposition 8.3 that Endg(P) is an Azumaya algebra for
any faithfully projective R-module P. Also note that (Endg(P)] = [R] =
1 € Br(R) by definition of ~.



R =]

P F R D N 2

Collecting the above observations together with the propositions of the
previous sections, we now show that Br(R) is indeed a group.

Theorem 8.5 Br(R) with multiplication defined by [A] e [B] = [A® B] is
an abelian group.

Proof: It is easy to check that if A ~ A’ and B ~ B’ for Azumaya algebras
A, A" B,B' then A® B ~ A’ ® B’ (Exercise 5). Since it is also true that
A® B is an Azumaya algebra if both A and B are (Proposition 8.4), we see
that ® gives a well-defined multiplication on the set of equivalence class-
es of Azumaya R-algebras. This multiplication is clearly associative and
commutative. [R] = [Endg(P)] for P faithfully projective acts as identity
element by definition of ~. Finally, if A is Azumaya then so is A°, and

[A]  [A°] = [A® A°] = [Endg(A)] = 1 € Br(R)

so that [A°] is the inverse of [A] in Br(R). O

Homomorphisms and Functoriality

Just as we saw in the case of fields, homomorphisms between Brauer group-
s can be just as important as the Brauer groups themselves. We shall
now prove that Br() is a (covariant) functor from the category of com-
mutative rings and ring homomorphisms to the category of abelian groups
and group homomorphisms. For those not familiar with these terms from
category theory, this can be phrased as saying that to each commutative
ring R there is an associated group Br(R), and to each homomorphism
f + R — S of commutative rings there is an associated homomorphism
Br(f): Br(R) — Br(S) of abelian groups, so that

1. If g: S — T is another homomorphism of commutative rings then
Br(go f) = Br(g) o Br(f), and

2. If f : R —> Ris the identity homomorphism then Br(f) : Br(R) —
Br(R) is the identity homomorphism.

So suppose that f : R —-> S is a homomorphism of commutative rings.
Then S becomes a commutative R-algebra via

r-s= f(r)s.

If A is an R-algebra then A®pg S is an S-algebra. An obvious candidate
for Br(f) is

Br(f): Br(R) — Br(S)
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(A] — [A®r 5]
Before proving that Br(f) is well-defined we shall need the following two
lemmas, which relate certain tensor products over R to others over S.

Lemma 8.6 If A and B are R-algebras and if S is a commutative R-
algebra then (A®r S) ®s (B®r S) =~ (A®r B)®gr S as S-algebras.

Proof: We leave as an exercise (Exercise 7) to the reader the fact that the
map defined by

(A®r S) ®s (B®rS) — (A®r B)®r 5

(a@5)®(b®s) — (a®b) @ss’

extended linearly is an isomorphism. O

Lemma 8.7 If A is a faithfully projective R-algebra and S is a commuta-
tive R-algebra then Endp(A) @r S ~ Ends(A®gS).

Proof:
We define a homomorphism ¢ : Endg(A) ®g S — Ends(A®g S) by

d(f@s)(a®s)=f(a)® ss’'

extended linearly, where f € Endg(A),a € A, and s,s’ € S. As Aisa
faithfully projective R-module, there exists an R-module B with A® B ~
R™. We then have the following commutative diagram :

¢

’

Endp(R")®pS ——> Endg(R"®S)

where the vertical maps are induced by the inclusion A — A® B as dis-
cussed on page 187, and ¢’ is defined by

¢(fRs)(ves)=f(v)®ss

extended linearly, where f € Endr(R"),v € R™, and s,s’ € S. Since the
above diagram (including the splitting maps) commutes, it suffices to show
that ¢ is an isomorphism.

Let {e1,...,en} be an R-algebra basis for A® B ~ R™, so that {e; ®1}
is an S-algebra basis for (A @® B) ®r S~ R"®g S. Let E;; € Endgr(R")
be defined, as always, by
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Eij(ek) = bikej, 1< L,Jj<n

so that {E;;} is an R-algebra basis for Endg(R"). To show that ¢’ is onto,
let h € Ends(R" ® S) be given. Then h(e; ® 1) = E €; ® 8;; for some
si; € S. For each 1,

¢(3,,; Eij ® si5)(ei ® 1) =3; Bij(ei) ® 54
=257 ® i

Since {e; ® 1} forms an S-algebra basis for R" ® S and since elements of
Ends(R™ ® S) are determined uniquely by their value on a basis, we see
that ¢’ is onto.

To show that ¢’ is one-to-one, first note that any element h € End r(RM®
S can be written uniquely as

= Z E,'j R 835
%)

with s;; € S. Then ¢/'(h)(e:®1) = 3_, 7; ®s;5. If ¢'(h) = 0, then ¢'(h)(e; ®
1) = 0 for each i, so that 3__ sij(e; ® 1) = 3-, 7 ® 8;5 = 0. Since {¢; ® 1}
forms a basis for R™ @ S, this implies that s;; = 0 for each j and for each
. Hence h = 0 and we are done. O

To show that Br(f) is well-defined we must first show that the operation
of tensoring with S (over R) takes Azumaya R-algebras to Azumaya S-
algebras.

Lemma 8.8 If A is an Azumaya R-algebra and S is a commutative R-
algebra then A ®g S is an Azumaya S-algebra.

Proof: We leave as an exercise (Exercise 4) the fact that if A is a faithfully
projective R-algebra and S is a commutative R-algebra then A ®g S is
a faithfully projective S-algebra. To prove that condition (2) in the def-
inition of Azumaya algebra holds, we note that the following diagram is
commutative:

(A®,S) R (A®,S)° _Yaes Endp(A®,S)

U

P | =

®1
(A®,A°)®,S WA~ S = Endgp(A)®S
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where ¢4 : A ®pr A° — FEndgr(A) is the isomorphism coming from the
fact that A is an Azumaya R-algebra, ¢ is the isomorphism coming from
Lemma 8.7, and the left-side vertical isomorphism comes from Lemma 8.6.
Hence 1 ags is an isomorphism. O

With these lemmas it is now possible to prove that Br() is a functor.

Theorem 8.9 Br() is a functor from the category of commutative rings
and ring homomorphisms to the category of abelian groups and group ho-
momorphisms.

Proof: Let f : R — S be a homomorphism of commutative rings.
By Lemma 8.8 we have that the operation of tensoring with S (over R)
takes Azumaya R-algebras to Azumaya S-algebras. To prove that Br(f)
is well-defined we must check that Br(f) preserves the equivalence re-
lation ~. So suppose that A and B are R-algebras with A ~ B, say
A®g Endg(P) ~ B®g Endgr(Q) for some faithfully projective R-modules
P and Q. Tensoring both sides by ®gS gives

(A Rr EndR(P)) Rr S = (B Rr EndR(Q)) Rr S

and by an application of Lemma 8.6 this gives

(A®R S) ®s (Endp(P) ®r S) = (B ®r S) ®s (Endr(Q) ®r S).

Since, by Lemma 8.7, Endgp(P)®r S ~ Ends(P®zrS) and Endgr(Q)®r
S ~ Ends(Q ®gr S), it follows that

(A®r S) ®s Ends(P ®@r S) = (B ®r S) ®s Ends(Q ®r S).

Since P ®g S and Q ®g S are faithfully projective S-modules, this says
that (A®grS) ~ (B®g S) as S-algebras, so that Br(f) : Br(R) — Br(S)
is well-defined. Furthermore, for Azumaya R-algebras A and B we have

Br(f)([A]e[B]) = Br(f)([A®x B))
= [(A Rr B) Rnr S]
=[(A®r S) ®s (B®g S)] by Lemma 8.6
= [A®r S]e[B®gS]
= Br(f)([A]) » Br(f)([B])

so that Br(f) is a group homomorphism. It is now trivial to verify that
Br(f) is a functor. O

The fact that Br() is a functor may be used to relate Brauer groups of
various rings and fields. We list a few examples, followed by references for
their proofs.
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Examples:

1. If R is the ring of algebraic integers in a (finite) algebraic number
field, then Br(R) is a direct product of cyclic groups of order 2, A
special case of this theorem implies that Br(Z) = 0.

2. If I is an ideal in the commutative ring R, then the canonical ho-
momorphism R — R/I induces a homomorphism of Brauer groups
Br(R) — Br(R/I). This homomorphism is an isomorphism when-
ever I is a nilpotent ideal, or when R is a complete local ring with
maximal ideal I.

3. If R is an integral domain with field of fractions k, then the homo-
morphism Br(R) — Br(k) induced by the inclusion R — k is often
one-to-one. This happens, for example, when R is a regular domain.
The homomorphism from Br(R) to Br(k) is rarely onto; for example
Br(Z) =0 but Br(Q) #0.

4. If R is any ring we have homomorphisms
R Rz -L R

where R[z] denotes the ring of polynomials in one variable over R, i
denotes the inclusion homomorphism, and j : R[z] — R is the R-
homomorphism determined by j(z) = 0. Note that jo¢ is the identity.
If R is commutative, this sequence induces homomorphisms

Br(R) 2% Br(Rlz)) 29 Br(R)

with Br(j)oBr(7) the identity by functoriality. In particular, Br(z) is
injective, Br(j) is surjective, and Br(R[z]) is the direct sum of Br(R)
and kernel(Br(j)). When R is a field, Br(7) is an isomorphism if and
only if R is perfect.

These and other examples are discussed in D. Zelinsky’s survey article
“Brauer Groups”. Their proofs are beyond the scope of this book; the proof
of Example 1 can be found in Grothendieck, “Le Groupe de Brauer, I, II,
III”, while the proofs of Examples 2,3, and 4 can be found in Auslander
and Goldman, “The Brauer Group of a Commutative Ring”.

Exercises

1. An algebra A over a commutative ring R is called central if Z(A) =
R. The goal of this exercise is to prove that Azumaya algebras are
central.
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(a) Prove that any idempotent finitely generated ideal of a commu-
tative ring R is principal.

(b) If M is any R-module, let

Ta(M) = {>_ fi(m:) : fi € Homp(M, R),m; € M}

Then Tp(M) is a two-sided ideal of R, called the trace ideal of M.
Show that the trace ideal of any faithfully projective R-module is all
of R.

(c) Prove that if A is a faithfully projective R-algebra, and if we
identify R with the image of the algebra-structure map R — A,
then R is an R-module direct summand of A. [Hint : Apply part (b)
tole R]

(d) Suppose that A is an R-algebra which is faithfully projective as
an R-module and faithful as an A®-module. Prove that A is central.
Conclude that Azumaya algebras are central. [Hint : Let A=R&® P
be the splitting given by part (c). Since R is central in A, it will suffice
to show that any nonzero element of P is not central. Prove that, for
any p € P, 1®p and p ® 1 are distinct in A°. Now show that this
implies that p is not central.]

. Generalize Proposition 8.1 as follows : Let R be a commutative ring.
Show that the natural map

Hom(R™, R™)® Hom(R",R") — Hom(R™ ® R*, R™ ® R")

is an isomporphism for any positive integers m,n, m’, n’.

. (a) Show that if M and N are finitely generated R-modules, then
M ® N is a finitely generated R-module.

(b) Show that if M and N are projective R-modules then M @ N is
a projective R-module.

(¢) Give an example to show that the tensor product of two faithful
R-modules is not necessarily faithful. Show that if M and N are

faithfully projective R-modules then M ® N is a faithfully projective
R-module.

. Let S be a commutative R-algebra.

(a) Show that if A is a finitely generated R-module then A®g S is a
finitely generated S-module.

(b) Show that if A is a projective R-module then A®g S is a projective
S-module.
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(c) Give an example to show that, even if A is a faithful R-module,
A ®p S may not be a faithful S-module. [Hint: Look at the ring of
continuous, real-valued functions on the unit interval, and the idea]
of functions which are zero in some neighborhood of 0.] Show that
if A is a faithfully projective R-module then A ®g S is a faithfully
projective S-module.

. Prove that if A ~ A’ and B ~ B’ for Azumaya algebras A, A’ B, B’

then AQ B~ A'® B'.

. (a) Prove that [A] = [R] = 1 in Br(R) if and only if A = Endg(P)

for some faithfully projective R-module P.

(b) Prove that [A] = [B] in Br(R) if and only if A®p B° =~ Endg(P)
for some faithfully projective R-module P,

. Prove Lemma 8.6; that is, if A is an R-algebra and S is a commutative

R-algebra then the map defined by

(A®R S)®s (B®rS) — (A®r B)®gr S
(a®38)®(b®s")— (a®b)® ss’
extended linearly is an isomorphism.

Verify that Br() is a functor.

Show that there is no subring A of the real quaternions H such that:
A is free of rank 4 over Z; A®7z R = H (i.e., A contains a basis
for H over R); and A is an Azumaya algebra over Z. In particular,
the Z-algebra of “integer quaternions”, i.e. the set of real quaternions
with integer coordinates, is not an Azumaya algebra over Z. [Hint:
Tensor with Z/2Z and use exercise 1.]

(a) Let R be a commutative ring in which 2 is invertible. Define the
quaternions @ over R as follows : @ is a free R-module with basis
1,i,5,k and multiplication satisfying 12 = j2 = k? = —1,ij = k =
—ji. Show that ¢} is an Azumaya R-algebra. What can you say about
the order of [Q] in Br(R)?

(b) Let R be as in part (a), and let a and b be units in R. define the

generalized quaternion algebra (f) to be the free R-algebra with
basis {1,7,4,k} satisfying i2 = a,j2 = b,ij = —ji = k. Show that

,b
<%) is an Azumaya algebra.



Part III

Supplementary Exercises
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1. Let k be a field, and let R be a k-subalgebra of M, (k) with the
property that every simple R-module is a k-space of dimension one.
Show that there is an invertible matrix v € My (k) such that all
elements of uRu™! are upper triangular matrices. [Hint: Look at a
composition series of R as a left R-module.]

2. (a) Let A be a finite-dimensional algebra over a field. Show that if
a € A, then either a has a two-sided inverse in A or there exists b # 0
in A such that ab = 0 = ba; in particular, if A is an integral domain,
then it is a division ring. [Hint: Use the “minimal polynomial” of a.]

(b) Give an example of a ring R and an element a € R that has a left
inverse but no right inverse.

The Ore Condition and the Construction of Division Rings
of Fractions

One common way of constructing fields is to take the field of frac-
tions of a commutative integral domain, a process exactly like that of
constructing the field of rational numbers from the ring of integers.
There is an analogous process in the noncommutative case, whereby
one may construct the “division ring of fractions” from a (not nec-
essarily commutative) integral domain. This construction does not
work for every integral domain, but in the 1940’s, O. Ore gave a pre-
cise condition on an integral domain which tells when the division
ring of fractions may be constructed. This provides us with many
more examples of division rings, one of the basic objects of study in
this book.

3. Let us begin with the easier case of constructing the field of fractions
of a commutative integral domain R. Let S = {(a,b) : a,b € R,b #
0}, and define an equivalence relation ~ on S by setting (a,b) ~
(a’,¥') if ab’ = a'b. Denote the equivalence class of (a,b) by a/b.
Show that setting

a/b+c/d = (ad + bc) /bd

and
a/b-c/d= ac/bd

is well-defined and makes the set of equivalence classes in S into a
field containing R. Show that this field is the smallest field containing
R.

4. (a) Now let us generalize the construction of the field of fractions
to the case of an integral domain R which is not necessarily com-
mutative. R is said to satisfy the right Ore condition if for al-
1 a,b € R, both nonzero, there exist a/,b’ € R (both nonzero) so



that aa’ = bb’; that is, a and b have a common right multiple. Let
S={(a,b):a,be R,b# 0}, and define an equivalence relation ~ on
S by setting (a,b) ~ (c,d) if ab’ = cd’, where bb' = dd’ via the Ore
condition. Show that this is an equivalence relation. Let D be the set
of equivalence classes in S. Define an addition by

a/b+c/d = (ab' + cd')/bb’
where bb' = dd’ via the Ore condition, and define a multiplication by
a/b-c/d=ab/dc’

where bb' = cc’ via the Ore condition. Show that these operations are
well-defined, and that they make D into a division algebra containing
R.

(b) Prove a universal mapping property for R with respect to D.
Conversely to the above, show that any ring which has a division
ring of fractions must satisfy the right Ore condition.

(c) Give the definition of left Ore condition, and mentally go through
this exercise again for rings satisfying the left Ore condition.

Let D be a division algebra.

(a) Show that D[z] satisfies both the right and left Ore condition. In
fact, show that a ring R satisfies the (right) Ore condition if and only
if the polynomial ring R[z] does.

(b) Let F be a field, and let F'{z,y} be the free algebra on z and
y. This algebra is similar to the polynomial algebra Flz,y], except
that  and y do not commute in F{z,y}. Show that F{z,y} does not
satisfy either Ore condition.

(c) Let o be an automorphism of D, and let D[z; o] denote the twist-
ed polynomial ring of D twisted by ¢. This ring is defined to be
the polynomial ring D[z] with multiplication defined by

za = o(a)z,

so for example
(az™)(bz™) = ac™(b)z™ ™.

Show that D[z; o] satisfies both the right and left Ore conditions.

(d) Now let o be any endomorphism of D. Let § : D — D be a
o-derivation , which means that

6(ab) = o(a)é(b) + 6(a)b for a,be D.
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Denote by D[z;0,6] the polynomial ring D|z] with multiplication
defined by

za = o(a)z + 6(a).

This generalizes the concept of twisted polynomial ring. Show that
the following are equivalent:

(1) o is onto.
(2) Dlz; 0,8) satisfies the right Ore condition.
(3) Every right ideal of D|z; 0, ] is principal.

More on Injective Modules

. Recall that Z-modules are precisely the abelian groups, and (Chapter
1, Exercise 36) injective Z-modules are precisely the divisible abelian
groups. Prove that every abelian group can be embedded in a divis-
ible group; in other words, every Z-module can be embedded in an
injective Z-module. [Hint: Do it first for free abelian groups.]

. The goal of this exercise is to classify all injective Z-modules (i.e. all
divisible abelian groups).

(a) Let T(G) denote the torsion subgroup of G, that is, T(G) is the
set of elements of G which have finite order. Show that G/T(G) is
torsion-free. Show that if G is divisible, then G ~ T(G) & (G/T(G)),
and both T(G) and G/T(G) are divisible.

(b) Show that any torsion-free divisible group is a direct sum of copies
of Q.

(c) A group G is called a p-primary (p a prime) if every element of
G has order some power of p. Let G and H be divisible p-primary
groups, and let G, (resp. Hp) denote the subgroup of G (resp. H)
consisting of elements annihilated by p. Prove that G ~ H if and only
if G, ~ Hp. [Hint: One direction is clear; for the other, think of the
isomorphism ¢ : G, — Hp, as a map ¢ : G, — H. Now use the
extension property of injective modules (Exercise 35 of Chapter 1) to
find a map from G to H. Show that this map is an isomorphism.]

(d) Recall that Z,~ denotes the submodule of the Z-module Q/Z
consisting of elements which are annihilated by some power of p.
Prove that every divisible group G (i.e., every injective Z-module)
is isomorphic to a direct sum of copies of Q and Zy (for various
primes p). [Hint: The number of copies of Zpw for a given prime p is
equal to the dimension of Gy as a vector space over Z/pZ.)



(e) If G is a divisible group, note that G/T(G) is a vector space over
Q, and T(G), is a vector space over Z/pZ. Prove that, if G and H
are divisible groups, then G = H if and only if

(i) G/T(G) and H/T(H) have the same dimension; and

(ii) For each prime p, T(G), and T(H), have the same dimension.

. This exercise gives a method for constructing injective modules over
an arbitrary ring R. Let R be a ring and let A be an abelian group,

(a) Show that Homg(R, A) becomes a left R-module via (rf)(s) =
f(sr). Similarly, it becomes a right R-module via (fr)(s) = f(rs).
(b) If @ is an injective Z-module (i.e. a divisible abelian groupi, show
that Homyg(R, Q) is an injective R-module. Do this by applying Ex-
ercise 35 of Chapter 1: Given a left ideal L of R and a homomorphism
f: L — Homg(R,Q), consider the function

g:L—»Q

defined by
g9(z) = f(z)(1).

This is a Z-homomorphism and by the Z-injectivity of @ extends to
a Z-homomorphism ¢’ : R — Q. Let

f'*R—> Homz/(R,Q)

be defined by
f'(2)(y) = ¢'(yx)-

Show that f’ is an R-homomorphism which extends f.

(c) Show that every R-module can be embedded in an injective R-
module. [Hint: Apply Homg/(R, ) to exercise 6 and note that for
an R-module M, we have M ~ Hompg(R, M) C Homz(R, M). Note
that the R-module structure here for Hompg (R, M) is given as above;
this is not the usual way, but fortunately it doesn’t make any differ-
ence here.]

Remark: These results are used in homological algebra to construct
injective resolutions of modules; that is, we can obtain, for each M,
an exact sequence of the form

0—M-— —Q—Qz—> -

with each @, injective.
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10.

11.

12,

-

Let R be a commutative Noetherian ring, Q be an injective R-module,
and I be an ideal of R. Show that the set of elements z ¢ Q@ such
that I"z = 0 for some n (depending on x) is an injective R-module.
[Hint : Use Chapter 0, Exercise 35.]

The Big Ring: A Counterexample to Everything

Let V be a vector space of countably infinite dimension over a field
k. Let I be the set of finite rank operators; i.e., those elements of
Endi (V) whose image is finite dimensional. Show that I forms a
two-sided in Endg(V'); hence Endi(V) is not simple, in contrast to
the fact that endomorphism rings of finite dimensional vector spaces
are simple.

With the notation as above, let R = Endk(V)/I. We shall call the
ring R the Big Ring (certain people have refered to this ring as
the Mother of all Rings). The Big Ring has several interesting
properties, and provides, for many theorems, an example to show that
the theorem does not hold if the assumption of finite-dimensionality
is dropped. The Big Ring also provides certain counterexamples in
algebraic K-theory. Prove the following facts about the Big Ring R:

(a) The Big Ring is a simple ring which is not semisimple.
(b) R~ R® R as R-modules (but not as rings, of course).
(0) R~ Ma(R).

(d) Let ¢ : My(R) — R be an isomorphism, and let diag: R —
M;(R) denote the map which takes r € R to the 2 x 2 diagonal

matrix each of whose nonzero entries is r. Let A : R — R be the
composition A = ¢ o diag. Let S be the direct limit of the sequence

R RARARA ...

Show that S is actually isomorphic to a subalgebra of R. Is S isomor-
phic to R?

(e) Use parts (c) and (d) of this exercise to give counterexamples to
both parts of the Skolem-Noether Theorem.

Other Examples of How Skolem-Noether Can Fail

The examples in this section will show how both parts of the Skolem-
Noether may fail, even in the case of central division algebras.

Let D, C Dy C -+ be a (not necessarily finite) increasing sequence
of division rings. Show that the union | J, D; is a division ring.



13. (a) Let F bea field with char(F') # 2, and let K = F(zy,y1, z2, ya,. . D
where each z; and each y; is an indeterminate over F. The field K

is called a function field in infinitely many variables. Let (_m,?y)

denote a generalized quaternion algebra over K (for information on
these algebras, see the exercises of Chapter 4). Show that

(55 on (%) e ox (55)

is a division algebra for each ¢.

(b) Use the division algebras from part (a) to come up with an ex-
ample which shows that neither part of the Skolem-Noether Theorem
necessarily holds if the subalgebras are not finite dimensional.

14. (a) Let Dy, Ds,... be an infinite sequence of division algebras of rel-
atively prime degree over a field k. Show that

D, ®; Dy ® - Q D;

is a division algebra for each i (cf. Chapter 4, Exercise 4.18).

(b) Use the division algebras from part (a) to come up with an ex-
ample which shows that neither part of the Skolem-Noether Theorem
necessarily holds if the subalgebras are not finite dimensional.

Maximal Commutative Subalgebras

15. Let A be a central simple algebra over a field k, and let K and L be
commutative subalgebras of A. Prove the following facts:

(a) A is a faithful K ®; L-module.

(b) The K ®j L-module A is projective and has a summand isomor-
phic to K ®; L.

(c) [K : k][L: k] < [A: k]; in particular [A: k] > [K : k]2
16. Derive the following corollary to Exercise 15: Let K,L C A as in

Exercise 15 with both K and L semisimple. Then the following are
equivalent:

(a) K and L are maximal commutative subalgebras of A.
(b) A~ K ® L as K ®x L-modules.
(c) [A: k] =[K: K][L: k|
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19.

20.

21.

22.

23.

24.
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Let A be a central simple k-algebra with commutative semisimple
subalgebra K. Prove that the following are equivalent:

(a) K is a maximal commutative subalgebra of A.
(b) A=~ K ® K as K ® K-modules.
(c) [A: k] = [K : k)2

Prove the following generalization of Theorem 4.4: If A is a central
simple k-algebra, and if K is a maximal commutative semisimple
subalgebra of A, then K splits A. [Hint: Use the Double Centralizer
Theorem.]

Let A be a central simple k-algebra with [A : k] = n?. Let a € A, and
let f be the minimal polynomial of a over k. Assume that deg(f)f =
n, f is separable, and f has a root in k. Prove that A =~ My(k).

Primitive Rings and Density

Let I be a two-sided ideal in a dense ring of linear transformations
of a vector space V over a division ring D. Prove that I itself is
dense; that is, show that if {v1,...,v,} is a linearly independent set
of vectors in V, and if {wi,...,w,} is an arbitrary set of vectors in
V, then there exists ¢ € I with ¢(v;) = w; for 1 <i < n.

Let R be a ring with J(R) = 0 such that for all a,b,c € R,
a(bc — cb) = (bc — cb)a.

Show that R is a subdirect product of division rings. [Hint: First
assume that R is (left) primitive and that [V : D] > 1, where V is a
faithful simple R-module with endomorphism ring D. Choose a,b,c
like matrices and get [V : D] = 1.

Prove that if a (left) primitive ring R contains a finite nonzero left
ideal then R is finite.

Let F be a field of characteristic 0 and let F{z,y} denote the free
algebra over F generated by z and y. Let I denote the ideal of F{z,y}
generated by ry — yz — z. Show that F{z,y}/I is primitive.

Let R = Flty,...,ts) be the polynomial ring in n indeterminates over
a field F.

(a) Show that for each 7 with 1 < ¢ < n there is a unique derivation
di of R with di(tj) = 5,]

(b) As usual, for r € R let T, denote be the map T,(s) = rs. Show

that if D is any derivation of R, and if » € R, then T, o D is also a
derivation of R.



25.

26.

27.

(c) Show that every derivation of R is of the form

i=1

where the d; are as in part (a) and r; € R. Conversely, all such sums
are derivations of R.

(d) Let S be the ring of endomorphisms of the additive group of R
generated by the derivations and the T,’s, € R. Assuming that F
has characteristic 0, show that S is simple, hence primitive.

Let F be a field of characteristic 0, and let F{z1,...2n,y1,...,yn}
be the free algebra on 2n indeterminates. Suppose that I is the ideal
in F{z1,...Zn,Y1,...,Yn} generated by elements of the form

[-’Eiy -Tj]r [yiayj]a [yiamj] - éij 1< i:j <n.

Let W, = F{z1,...Tn,¥1,.,Yn}/I. Wy is called the Weyl alge-
bra. Let R and S be as in exercise 24. Let

¢!F{mla"'mn7y17“‘7y"}—')S
-’Ez"—“’Tti

Yi > d;

for 1 < i < n. Show that ¢ is surjective and has kernel I. Conclude
that the Weyl algebra W,, is primitive.

(a) Show that the Weyl algebra W, is simple.
(b) Show more generally that the Weyl algebra W, is simple.

This exercise constructs a division ring R which is artinian, yet has
the property that for every positive integer n, there exists a subring
R, of R which maps homomorphically onto My(D), where D =
Endp(M), M a faithful simple R-module (compare with Theorem 5.4
and the discussion that follows).

(a) Let Lo be a field containing all nth roots of unity (e.g., the com-
plex numbers). Let L = Ly(z), z an indeterminate. Let L,, = Lo( ¥/z).
Then The Galois group Gal(L,/L) is the cyclic group of order n,
say generated by the automorphism o,. Let R,, = Ly [zn; 0n] be the
twisted polynomial ring over the indeterminate z, with twist o, (re-
call that R, is simply the polynomial ring L, [z,] with multiplication
defined by z,a = on(a)z,). Define a map
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29.

30.

R, — Mn(L)
Ty C(Yy" —2)
where C' = C(y™—z) denotes the companion matrix of the polynomial

y™ — z over L. Show that this map is surjective. [Hint: Let ¢ be a
primitive nth root of unity. The matrix

0 Cn—l
has the property that SCS~! = (C, and is an explicit matrix that

conjugates like the Skolem-Noether theorem says.]

(b) Use the rings R, as p runs over all primes to form a ring R which
satisfies the Ore condition, and let A be the division ring of fractions
of R (cf. exercises 4 and 5). Show that A is the division ring we are
looking for.

von Neumann Regular Rings

Prove that the following three conditions on a ring R are equivalent:

(i) Every principal left ideal of R is generated by an idempotent.
(ii) For any a € R, there exists b € R with aba = a.

(iil) Every principal right ideal of R is generated by an idempotent.
A ring satisfying these conditions is called von Neumann regular,
or simply regular. Such rings were introduced by (you guessed it)

von Neumann in his work on so-called “continuous geometries” in the
mid 1930’s.

Show that a regular ring is a division ring if and only if its only
idempotents are 0 and 1.

Show that the following rings are regular:

(a) Division rings.

(b) Products of regular rings.

(¢) Endp(V), where V is a (not necessarily finite dimensional) vector
space over the division ring D.

(d) Semisimple rings.
(e) eRe, where e is an idempotent of the regular ring R.

(f) M, (R), where R is a regular ring.
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32.

33.
34.

35.

(a) Show that regular rings have vanishing Jacobson radical, hence
are semi-primitive. Give an example of a ring R with J(R) = 0 that
is not regular.

(b) Show that the following conditions on a ring R are equivalent:

(i) R is semisimple.
(ii) R is regular and artinian.

(ili) R is regular and noetherian,

Show that R is regular if and only if every finitely generated submod-
ule M of a projective R-module P is a direct summand. [Hint: for
one direction take R = P; for the other, you may assume P is free
(why?). Then Hom(P, M) is a left ideal of M, (R) and is therefore a
summand. So M ~ Hompg(R, M) is a projective R-module.]

Clifford Algebras

Clifford algebras provide interesting examples of semisimple rings
which generalize some of the rings we’ve studied, and are useful in
differential geometry and the study of quadratic forms (see, e.g., Ja-
cobson’s Basic Algebra I).

Let F be a field with characteristic not equal to 2, and let ay,...,a,
be elements of F'. The Clifford algebra C = C(ay,...,a,) is defined
to be the free F-algebra F{z;,...z,} over indeterminates z,...z,
subject to the relations z;x; = —z;z; and z? = q; for all i # j. For
example, over the field R C(—1) is the field C of complex numbers
and C(—1, 1) is the Quaternions H. More generally, if ¢; and as

are nonzero elements of the field F, then C(a,, a2) is the generalized
ay, az

quaternion algebra ) discussed in the exercises of Chapter 4.

When all of the g;’s are 0, C is the Grassmann algebra, also known
as the exterior algebra.

Which Clifford algebras have zero-divisors?

Let C = C(a4,...,an) be a Clifford algebra. If {iy,...%,} is a subset
of N = {1,2,...,n} with iy < iy < --- < i,, let 5 denote the
monomial x; x;, -+ z; € C. Show that {zs: S C N} is a basis for
the Clifford algebra C, and hence C has dimension 2" over the field
F; in particular C is artinian.

(a) Let C = C(ay,...,a,) be a Clifford algebra. Prove that C is
semisimple if and only if []* , a; # 0. [Hint: Necessity is easy. To
prove sufficiency, use a trace argument which is similar to the proof
of Maschke’s Theorem given in Chapter 2, Exercise 32.]



36.

37.

38.

39.

40.

41.
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(b) If C is a Clifford algebra which is semisimple, show that C is a
direct sum of at most two simple components.

Let C = C(a1,...ay) be the clifford algebra with a; # 0 if i < r and
a; = 0 for i > r. Prove that J(R) is generated by z,,;,...,z,, and
that C/J(C) =~ C(a1,...,ar).

Classifying Quaternion Algebras

The goal of this group of exercises is to give a classification (as F-
b
algebras) of the general quaternion algebras (0’7 over the field F

We follow the treatment given in Pierce’s Associative Algebras. For
the definitions and basic properties of generalized quaternion alge-
bras, see the section devoted to them in the exercises of Chapter 4.
Recall that if £ = ¢g + 37+ ¢2j +c3k is an element of the generalized

. a,b . . .
quaternion algebra ———>, then the quaternion conjugate of z is

F
defined to be T = ¢ — ¢1¢ — c2j ~ c3k, and the (quaternion) norm
of z is defined to be N(x) = 2T = ¢ — ac? — bc3 — abc?.

Use the exercises on quaternion algebras in Chapter 4 to show that
every generalized quaternion algebra over R is isomorphic (as an R-
algebra) to either H or M»(R).

3

b
An element £ = ¢g + €11+ ¢cpj +c3k of A = (%) is called a pure

quaternion if ¢y = 0. The set of pure quaternions is denoted by Ag.
Show that the notion of pure quaternion is independent of the choice
of basis for A by showing that a nonzero element z € A is a pure
quaternion if and only if z ¢ F and z? € F.

a', b

b
Let A = (%) and A’ = be generalized quaternion al-

gebras with norms N and N’, respectively. Show that A and A’ are
isomorphic (as F-algebras) if and only if there is a vector space iso-
morphism ¢ : Ag — Aj with N'(¢(z)) = N(z) for all z € Ao.

Two quadratic forms @ and @' on a vector space over a field F' are
said to be equivalent if one may be obtained from the other by a
change of basis. Represent @ by the matrix [Q;;], so that

5]

Q(z1, T2, 23) = [x1 T2 23][Q:5] | T2
T3
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43.

44,

Then the quadratic forms @ and Q' are equivalent if and only if
there is a non-singular matrix P with [Q;;] = P*[Q};]P, where Pt de-
notes the transpose of P. Prove the following classification of quater-
nion algebras in terms of quadratic forms: The quaternion algebras
’

( %’;) and ( a’},?b > are isomorphic (as F-algebras) if and only if the
quadratic forms Q(z1, 2, T3) = am% +bz§ - abz§ and Q'(z1, za, z3) =
o'z} +b'x? — a'b'z} are equivalent. [Hint: Let Q(z1, 22, 23) = —az? —
bm% + ab:p%. Note that if z = ¢12+ c2j + czk is a pure quaternion, then
N(z) = Q(c1, ¢, c3); similarly for @ and N’. Write these equations
in matrix form and see what Exercise 40 says.

Use the classification of quaternion algebras to show that Br(Q) is
infinite.

Polynomial Identity Rings

For a deeper exploration of polynomial identity rings, see Procesi,
Rings with Polynomial Identities, and Rowen, Polynomial Identities
in Ring Theory.

Let k be a field and let k[z1,...,z,] denote the free k-algebra in the
(noncommuting) varibles zi,...,Z,. An algebra A over k is said to
satisfy a polynomial identity if there exists a nonzero polynomi-
al f € kl[zi1,...,z,] for some n such that f(ay,...,a,) = 0 for all
ai,...,an in A, In this case A is said to satisfy f, and A is called a
polynomial identity algebra , or P.I. algebra for short.

(a) Show that any commutative algebra is a P.I. algebra.
(b) Show that My(k) is a P.I. algebra over the field k.

(c) Let S, denote the group of permutations of n objects, and let
sgn(c) be 1 or —1 according to whether o is an even or odd permu-
tation. In k[z,,...,z,], the standard identity of degree n is

[Z1,...,Tn] = Z $gN(0)To(1) " * To(n)
oES,

where o runs over all elements of S,. Notice that [z, 2] = 7122 —
z9x1. Show that if A is an n-dimensional k-algebra then A satisfies
[£1,...,Zn41]. Hence My (k) satisfies [z1,...,Tn2,1])

Let n be a positive integer and let f be a nonzero polynomial in
k[zy,...,z,]. Show that there exists an integer m so that Mp (k)
does not satisfy f. Thus there is no universal polynomial identity
which holds for all matrix algebras.
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45. (a) Show that if a k-algebra A satisfies a polynomial identity of degree
d then it satisfies a multilinear identity whose degree is less than or
equal to d. Conclude that if A satisfies a multilinear identity f, then
A Q@ K satisfies f for any extension field K of k.

(b) Show that M,, (k) does not satisfy a polynomial identity of degree
less than 2n. [Hint: First show that if M, (k) satisfies such an identity
f, then one can assume that f is multilinear and homogeneous.]

(c) Prove Kaplansky’s Theorem, which is a cornerstone in the theory
of P.I. rings: Let A be a primitive algebra satisfying a polynomial
identity of degree d. Then A is a finite dimensional simple algebra over
its center Z(A), and the dimension of A over Z(A) is at most [d/2]?,
where [d/2] denotes the greatest integer of d/2. [Hint: Use exercise 44
to show that A is isomorphic to My (D) for some division ring D. Now
split D by amaximal subfield K, and show that AQz kK ~ M, (K).
Now compute dimensions and apply parts (a) and (b) to obtain the
desired conclusion.]

Final Exam

46. Some Rings:

Z/nZ

Clz]

Clz,y]

Qla]/(«* — 5)

Clz,yl/(22* - y* + 1)

Mn(R)

T.(R), the ring of upper triangular matrices.
Cl|[z]], the ring of formal power series over C
Clz,z 7, the ring of formal Laurent series over C
C[G], where G is a cyclic group

C|G], where G is any finite group

The ring of real-valued continuous functions on [0, 1]

For each of the rings listed above, determine whether that ring is

(a) simple

(b) semisimple



(c) radical free, i.e. J(R) =

.,'
*

) artinian

f

(d

(e) noetherian
(f) primitive

(g) semi-primitive
(h)

)

(i) von Neumann regular

prime

For each of the rings R listed above, compute the following :

a) Z(R)

b) J(R)
(c) The units of R
(

)
)
d) The zero-divisors of R
)
)

(
(

(e) The nilpotent elements of R Z
(f) The idempotents of R '
For each of the rings R listed above, classify the finitely generated
R-modules which are:

(a) simple

(b) semisimple
(c) of finite length
(d) free

(e) projective
(f)

f) injective
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This book provides a concise introduction to the field of noncommu-
tative algebra. It covers material essential to all students of algebra,
particularly those specializing in ring theory, homological algebra, rep-
resentation theory and K-theory. The core of the book is suitable for a
one-semester graduate course; it is also suitable for self-study.

The approach is more homological than ring-theoretic and begins with
the basics of semisimple modules and rings, including the Wedderburn
structure theorem. The Jacobson radical is discussed from several dif-
ferent points of view followed by a development of the theory of central
simple algebras, including proofs of the Skolem-Noether and Double
Centralizer theorems. This theory is then used to give quick proofs of
two famous, classical results: the Wedderburn Theorem on finite divi-
sion rings and the Frobenius Theorem on the classification of central
division algebras over the reals. The first part of the book closes with an
introduction to the Brauer group and its relation to cohomology.

The remaining chapters consist of special topics: the notion of primitive
rings is developed along lines parallel to that of simple rings; the repre-
sentation theory of finite groups is combined with the Wedderburn
Structure Theorem to prove Burnside's Theorem; the global dimension
of a ring is studied using Kaplansky's elementary point of view; and the
Brauer group of a commutative ring is introduced. In addition to the
large number of exercises throughout the book, a set of supplementary
problems explores further topics and can serve as a starting point for
student projects.

ISBN 0-387-94057-X
ISBN 3-540-94057-X



