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Introduction

This book was planned originally not as a work to be published, but as an excuse
to buy a computer, incidentally to give me a chance to organize my own ideas on
what measure theory every would-be analyst should learn, and to detail my
approach to the subject. When it turned out that Springer-Verlag thought that the
point of view in the book had general interest and offered to publish it, I was
forced to try to write more clearly and search for errors. The search was
productive.

Readers will observe the stress on the following points.

The application of pseudometric spaces. Pseudometric, rather than metric
spaces, are applied to obviate the artificial replacement of functions by
equivalence classes, a replacement that makes the use of “almost everywhere”
either improper or artificial. The words “function” and “the set on which a
function has values at least €” can be taken literally in this book. Pseudometric
space properties are applied in many contexts. For example, outer measures are
used to pseudometrize classes of sets and the extension of a finite measure from
an algebra to a o algebra is thereby reduced to finding the closure of a subset of
a pseudometric space.

Probability concepts are introduced in their appropriate place, not con-
signed to a ghetto. Mathematical probability is an important part of measure
theory, and every student of measure theory should be acquainted with the
fundamental concepts and function relations specific to this part. Moreover,
probability offers a wide range of measure theoretic examples and applications
both in and outside pure mathematics. At an elementary level, probability-in-
spired examples free students from the delusions that product measures are the
only important multidimensional measures and that continuous distributions are
the only important distributions. At a more sophisticated level, it is absurd that
analysts should be familiar with mutual orthogonality but not with mutual in-
dependence of functions, that they should be familiar with theorems on con-
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vergence of series of orthogonal functions but not on convergence of
martingales.

Convergence of sequences of measures is treated both in the general Vitali-
Hahn-Saks setting and in the mathematical setting of Borel measures on the
metric spaces of classical analysis: the compact metric spaces and the locally
compact separable metric spaces. The general discussion is applied in detail to
finite Lebesgue-Stieltjes measures on the line, in particular to probability
measures.
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0

Conventions and Notation

1. Notation: Euclidean space

RY denotes Euclidean N-space; R = RY; R is the half line [0,00); R is the
extended half-line [0,+c<]; R is the extended line [-oo,+°0]. The extended half-
lines and lines can be metrized by giving them the metric of their images under
the transformation s' = arctan s.

2. Operations involving oo

a(tee) =too if a>0,
=0 if a=0,
=Fw if a<O.

If a is finite, atoo = oo} if @ =+00, g+(+00) = +o0; if @ = —00, @+(—00) = —o0,

3. Inequalities and inclusions

“Positive” means “2 0’; “strictly positive” means “> 0.” The symbols < and >
allow equality. "Monotone" allows equality unless modified by “strictly.” Thus
the identically O function on R is both monotone increasing and decreasing, but
is not strictly monotone in either direction.

4. A space and its subsets

If S is a space, the class of all its subsets is denoted by 2°. The complement of a
subset A of a space is denoted by A. If A and B are subsets of S, AnB is some-
times denoted by B-A. The indicator function of a subset A of S , defined on S as
1 on A and 0 on A, is denoted by 1,. In particular, the identically 1 function 15
will be denoted by 1 and the identically O function 1g by 0.
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5. Notation: generation of classes of sets

If A is aclass of subsets of a space, the classes A4, Ag, and A are, respectively,
the classes of countable unions, countable intersections, and complements of the
sets in A.

6. Product sets

If §;,....5; are sets, S)x-XS}, is the product set
{(s15s$1): 5i€ Sy (I SH)}.
If A; isaclass of subsets of S;, A;XxxA, is the class
{A X XAp: Aj € A (i Sn))

of product sets. The corresponding definitions are made for infinite (not
necessarily countable) products.

7. Dot notation for an index set

“B.” is shorthand for { B;, i € I}, where [ is a specified not necessarily countable
index set. Unless the subscript range is otherwise described, “a finite sequence
B.” means the sequence B,,...,B), for some strictly positive integer n, and “a
sequence B.” means the infinite sequence B,,B,,... . The notation £B. means the
sum over the values of the subscript, and corresponding dot notation will be
applied to (not necessarily countable) set unions and intersections. If a. is a
sequence, the notation lim a. means lim,_,c. a,, and corresponding dot notation
will be applied to inferior and superior limits. When dots appear more than once
in an expression, the missing symbol is to be the same in each place. Thus if A.
and B. are sequences of sets, U(A.NB.) is the union of intersections A,NBy,.

8. Notation: sets defined by conditions on functions

If fis a function from a space S into a space S’ and if A’ is a subset of S', the set
notation {s € S: fis) € A'} will sometimes be abbreviated to {f e A'}. Here f may
represent a set of functions. Thus if g,,...,g, are functions from § into §' and if
B’ is a subset of S'?, the notation {s € S: [g,(),....gn(s)] € B'} may be
abbreviated to {(g,....gn) € A'}.
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9. Notation: open and closed sets

The classes of open and closed subsets of a topological space will be denoted,
respectively, by G and F.

10. Limit of a function at a point

The limit of a function at a point depends somewhat on the nationality and back-
ground of the writer. In this book, the limit does not involve the value of the
function at the point. Thus the function 1{0}. defined on R as 0 except at the
origin, where the function is defined as 1, has limit O at the origin in this book
even though the function does not have a Bourbaki limit at the origin.

11. Metric spaces

Recall that a metric space is a space coupled with a metric. A metric for a space
§ is a distance function d, a function from SxS into R* satisfying the following
conditions.

(a) Symmetry: d(s,t) = d(1,s).
(b) Identity: d(s,f) = 0 if and only if s = ¢.
(c) Triangle inequality: d(s,u) < d(s,t) + d(t,u).

A ballin S is an open set {s: d(s,sg) < r}; g is the center, r is the radius.

It is a useful fact that if d is a metric for S and if ¢ is a strictly positive constant,
the function dAc is also a metric for S and determines the same topology as d.
That is, the class of open sets is the same for dac as for d. If d is a function from
SxS into R and satisfies (a), (b), and (c), the function dAc is a finite valued
function satisfying these conditions and can therefore serve as a metric.

12. Standard metric space theorems

The following standard metric space theorems will be used. Proofs are sketched
to facilitate checking by the reader that they are valid for the pseudometric
spaces to be defined in Section 13.

(a) A metric space (S,d) can be completed, that is, can be augmented by
addition of new points to be complete. To prove this theorem, let S’ be the class
of Cauchy sequences of points of S. The space S' is partitioned into equivalence
classes, putting two Cauchy sequences s. and #. into the same equivalence class
if and only if lim d(s.,t) = 0. If s’ and ¢’ are equivalence classes, define d'(s',t") =
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lim d(s.,t.) = 0. If s’ and ¢’ are equivalence classes, define d'(s',t") = lim d(s.,t) for
e in s’ and t. in ¢". This limit exists, does not depend on the choice of Cauchy
sequences in their equivalence classes, and (S',d') is a complete metric space.
Define a function f from S into S' by f(s) = s,s,s,... . This map preserves distance,
and if S is identified with its image in S*, S" is the desired completion of S.

(b) A uniformly continuous function g from a dense subset of a metric space S
into a complete metric space S' has a unique uniformly continuous extension to S.
To prove this theorem, observe that if s is not already in the domain of g, and if s.
is a sequence in the domain of g, with limit s, the uniform continuity of g implies
that lim g(s.) exists and does not depend on the choice of s.. The value g(s) is
defined as this limit, and as so extended g is uniformly continuous on S. The
uniqueness assertion is trivial.

(c) If a complete metric space S is a countable union of closed sets, at least
one summand has an inner point. To prove this theorem, let US, be the union of a
sequence of closed nowhere dense subsets of S. There is a closed ball B, of radius
<1 in the open set §,. Similarly there is a closed ball B, of radius < 1/2 in B)n 32,
and so on. The intersection of these closed balls is a point of S in no summand.
Hence the union cannot be S, that is, if S is the union of a sequence of closed sets,
at least one is not nowhere dense, and therefore has an inner point.

(d) If f is a sequence of bounded continuous functions from a complete metric
space S into R, and if sup Ifu(s)| < +ee for each point s of S, then there is a number
Y for which the set (s € S: sup Ifu(s)! < Y}has an inner point. This theorem follows
at once from (c) because for each value of y the set in question is closed, and as ¥y
increases through the positive integers the set tends to S.

(e) A sequence f. of functions from a metric space (S,d) into a metric space
(5'.d") is said to converge uniformly at a point sy of S, if there is convergence at sq,
and if to every strictly positive € there corresponds a strictly positive 8 and an
integer k, with the property that d'(f,,,(s),f,,(s)) < £ whenevern 2 k, m 2k, and
d(s,sg) < 8. An equivalent condition is that there is a point s’ of S’ with the
property that whenever t. is a sequence in S, with limit s, then lim fo(t) = 5" If fo
'is a convergent sequence of continuous functions from S into S', the limit function
f is continuous at every point of uniform convergence of the sequence. In fact, if
5o is a point of uniform convergence, if €, 8, k are as just described, and if 3 is
decreased, if necessary, to make d'(/’,‘(s)‘ﬁ(so)) < € whenever d(s,sp) < 8, then

(12.1)  d(f()ftso) < d(Xs)fil) I+ a (1) fikso)) +d(fulsonfiso)) < 3¢

whenever d(s,59) < 8. Hence f is continuous at s, as asserted.

(f) If a sequence f. of continuous functions from a complete metric space (S,d)
into a metric space (S',d") is convergent, there must be at least one point of
uniform convergence. (Since this assertion can be applied to the restrictions of the
functions to an arbitrary closed ball in S, the set of points of uniform continuity of
the sequence, and therefore the set of continuity points of the limit function, is
actually dense in S.) This assertion is reduced to (c) as follows. For each pair of
strictly positive integers m, k, the set
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(12.2) Nsm{s: d(fals), fn6)) < Uk}

is a closed subset of S. When k is fixed and m increases, the union of these
closed sets is S. It follows that there is a closed ball By in one of these sets of
radius at most 1/k. If this argument is carried through with S replaced
successively by By,B,,...,the argument yields a monotone decreasing sequence B.
of balls whose intersection is a point of uniform convergence of the sequence f..

13. Pseudometric spaces

A pseudometric space is a space coupled with a pseudometric. A pseudometric
for a space S is a pseudometric distance function d, a function from SxS into
R that satisfies 11(a) and 11(c), but 11(b) is weakened to

(11b") d(s,s)=0.

There are two approaches to a pseudometric space (S,d). The most common
approach is to define a space s* of equivalence classes of subsets of S, putting
two points s and ¢ of S in the same equivalence class if and only if d(s,f) = 0. If
s* and r* are equivalence classes define d*(s*,1*) as d(s,t), for s in s* and ¢in ¢*.
This definition does not depend on the choice of s and ¢ in their equivalence
classes, and d* is a distance function making'S* a metric space.

A second approach, used in this book, is to stay with the pseudometric space,
making the same definitions as formulated for metric spaces: open and closed
sets, separable spaces, complete spaces, and so on. Note that if a sequence of
points of a pseudometric space is convergent to a point, the sequence is also
convergent to every point at zero distance from that point, and that therefore if a
point is in an open (or closed) set of a pseudometric space every point at zero
distance from it is also in that set. The theorems and proofs of the theorems in
Section 12 remain valid for pseudometric spaces. It may seem that in fact there
is not much difference between handling S and S* except that S* is simpler, but
in fact in many measure theoretic contexts, the pseudometric space is less
clumsy.






I
Operations-on Sets

In this chapter, certain relations between and operations on subsets of an
abstract space are described. When numbered relations are paired, as in (1.1),
each relation of the pair yields the other relation when the sets involved are
replaced by their complements. Proofs of easily verifiable assertions are
omitted.

1. Unions and intersections

If A. and B. are collections of subsets of a space S,

(1.1) (VA =nd., (M. =UA.,

(1.2) (UsAsIN(UrBy) = Us,t (AsNBy),
("NsAsI(N¢Br) = ~s,t (As\IBy).

Obviously 14~B= 1418, 14 =1-14 = 1414 (mod 2), and

(1.3) lauB =14 + 13— 1415.

2. The symmetric difference operator A

In this section A, B, C, and D are subsets of a space S. The symmetric difference
AAB is defined by

@.n AAB = (A-B) L (B-A)
or, equivalently,

.2) 14aB =1a+1g (mod?2).
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The latter form provides easy proofs of some of the relations listed below.
Obviously

(23) AAD = A, AAS =A,AM =0, (AAB)” =AAB, AAB=AABcC AUB.
The symmetric difference operator is commutative and associative:
2.4 AAB = BAA, AA(BAC) =(AAB)AC,

and therefore parentheses can be omitted in expressions of the form AABACA- .
The equality AAC = AABABAC yields the useful triangle inclusion relation

2.5) AAC c (AAB)U(BAC).

The symmetric difference operator satisfies

(2.6) (AAB)Y~C = (AnC)A(BAC), (AAB)UC = (AUC)A(BNC),
and if A. and B. are collections of subsets of S,

(2.7)  (UsAs) A(UrBp) €\ UAAABs), N(AABs) < (NeAs) A (UgBy),
(2.8) (NsAs) A (NeBy) © U(AAB.).

If A;,....A,, are subsets of S,

lua, = 214, - Zlana, ++C g A Aa
i i<j
2.9
lra, = 214 = Tlaoa ++ 104 0 0A,
i i<
When n = 2, both equalities reduce to (1.3). Each equality can be proved by
induction, or, more directly, by checking it at those points in A; for exactly m
values of j, for m = 0,...,n. Each equality reduces to the other when the sets in-
volved are replaced by their complements.

3. Limit operations on set sequences

If A. is a sequence of subsets of a space S, define

had Kol . . oo had
3.1 lim supA.:ﬁk:] Uj=kAj.l|m inf Ae = Uk:l nj:kAf‘
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The superior limit is the set of those points in A, for infinitely many values of n;
the inferior limit is the set of those points in A, for all but finitely many values
of n. The inferior limit is a subset of the superior limit, and if there is equality
with common limit set A, the sequence A. converges to A, written lim A. = A.
The following limit properties for sets are analogous to those for numbers,
because they correspond exactly to those for indicator functions, written at the
end of this section.

(a) A monotone increasing sequence of sets converges to the union of the sets; a
monotone decreasing sequence of sets converges to the intersection of the sets.

(b) If B. is a subsequence of A., then B. converges whenever A. does, because

3.2) lim inf A. c lim inf B, c lim sup B, c lim sup A..
Since
(3.3) lim inf A. = (lim sup A.) ",

(c) the sequence A. converges to A when A. converges to A. Furthermore, for
sequences A., B. of sets,

lim inf (AsUB.) O (lim inf A.) U (lim inf B.)

(3.4

lim sup (A.UB.) = (lim sup A.) U (lim sup B.),

lim inf (A.NB.) = (lim inf A.) N (lim inf B.),
3.5)

lim sup (A«"NB.) < (lim sup A.) N (lim sup B.).
Hence,

(d) whenever sequences A. and B. converge respectively to A and B, the
sequences AdUB. and A.NB. converge respectively to AUB and ANB.
The equality
(3.6) VLA, - mo = Un (A” AA”+] ),
for a sequence A. of sets, is useful in convergence studies, because (3.6) implies

3.7 lim sup A. - lim inf Ae = lim sup, 00 (ApAAp4)).
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Set sequence limit properties in terms of indicator functions. If A, is a
sequence of sets, the functions lim sup 14 and lim inf 14, are respectively the
indicator functions of the sets lim sup A. and lim inf A.. Thus the sequence A.
converges to A if and only if the corresponding sequence of indicator functions
converges to 14.

4. Probabilistic interpretation of sets and operations
on them

In the application of mathematical probability to nonmathematical contexts, a
space of points corresponds to a class of possible observations made in some
real context, for example, heights of humans in a specified country, positions of
stars, possible outcomes of tossing a coin twice, times of auto accidents on a
specified highway. The subsets of the space, events in the applications, are de-
termined by conditions in the real contexts. For example, in the last mentioned
application, one event is the class of accident times during the hours of daylight.
The union operation on sets corresponds to or for events; the intersection
operation for sets corresponds to and. It will be seen in later chapters that
mathematical probability (which must be distinguished from the
nonmathematical variety) is a certain specialization of measure theory,
distinguished by its own terminology and its field of nonmathematical
applications. On the one hand, mathematicians were computing probabilities
and expectations, on the other hand mathematicians were computing volumes
and masses, and the two fields did not come together until this century. In fact
some probabilists resented the invasion of their juicy domain by dry
mathematical rigor, and even now almost all probabilists write in the traditional
dialect of their subject.



II
Classes of Subsets of a Space

1. Set algebras

Definition. A class S of subsets of a space S is an algebra if the following
conditions are satisfied.

(@ ODeS. :

(b) Theclass S is closed under complementation: if Ae Sthen Ae S.

(c) Theclass S is closed under finite unions: finite unions of sets in S are in
S.

(c") The class S is closed under finite intersections: finite intersections of sets
inS are in S.

Under (b), conditions (c) and (c') are equivalent, in view of Equation I(1.1). If
A. is a finite or infinite sequence of sets in an algebra S, their union, which may
or may not be in the algebra if the sequence is infinite, can be expressed as the
disjunct union of a sequence of sets in S, each of which is a subset of the
corresponding term of A.:

(1.1) AlLAU = AjUA-A)) U [A3-(ALAD)JL - |

Definition. An algebra S of subsets of a space S is a G algebra if S contains
the limit of every monotone sequence of its sets. The pair (S,S) is then a
measurable space, and the sets in S are measurable.

Application of complementation shows that this defining condition of a ¢
algebra, as distinguished from an algebra, is fulfilled even if it is specified as
fulfilled only for increasing (or only for decreasing) set sequences. If A. is a
sequence of sets in a ¢ algebra, the limit sets lim sup A. and lim inf A. are also
in the o algebra..

The smallest algebra of subsets of a space S is the pair of sets (@,S); the
largest algebra is 25. Both these algebras are g algebras.
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2. Examples

(a) Finite unions of right semiclosed intervals of RY. A right semiclosed
interval of R is either the empty set or a subset of R of the form

2.1 {se RRa<s<b) (o< a<b< +o0),

The complement of such an interval is either a right semiclosed interval or
the disjunct union of two such intervals, and the intersection of two such
intervals is another one. The class of finite unions of these intervals is therefore
an algebra. This algebra is not a ¢ algebra because, for example, it does not
contain the open interval (0,1) =), (0,l-1/n].1

The right semiclosed intervals of R¥ for N >1 are defined as the N-fold
products of right semiclosed intervals of R. For N 2 1 the class of finite unions
of these intervals is an algebra, but not a G algebra.

(a) In Example (a), replace R by the set of rational numbers. With this choice
instead of R in (2.1), the class of finite unions of these intervals is still an
algebra but not a ¢ algebra.

(b) Classes of 0,1 sequences. For n = 1,2,... let S, be the space of n—tuples of
0's and 1I's, and define § = §;x S;x, the space of infinite sequences of 0's and

I's. Let x,, be the nth coordinate function of S. Under the map taking a point of
Sn into the subset of S with that point as initial n-tuple, the algebra S, of all
subsets of S,; maps into a set algebra § ;' of subsets of S. The union U S.' of all
these algebras is itself an algebra §' of subsets of S. The algebra S,' is the al

gebra of sets specified by conditions on xi,...,x, the algebra ' is the algebra of
sets specified by conditions on finitely many coordinate functions of S. The
algebra S' is not a © algebra because, for example, A, = {x,=1} € S,' c S/, but
UA. is not in §'. The set algebra §' has the property, to be applied in Section

IV.14,thatif A in S’ is a disjunct countable union UA. of sets in S', then all but
a finite number of the summands are empty. Equivalently, phrased in terms of
the remainder sequence {A'U:'A., n21}, a decreasing sequence B. of non-

empty sets in S' has a nonempty limit. To prove this assertion about decreasing
sequences, observe that by hypothesis each set By, is specified by conditions on
a finite number of coordinates, say the first a, coordinates. (Note that if B, is
specified by conditions on the first a, coordinates then By, can also be specified
by conditions on the first a,' coordinates for a,' > ay.) The assertion to be
proved is trivial if the sequence a. is bounded. If this sequence is not bounded, it
can be supposed that the sequence is monotone increasing - if necessary replace
each value a, by a,v--va,. For each k, the set of initial ax-tuples of points of By
is not empty and decreases as n increases, to some nonempty set Cy of a-tuples.

Moreover the aj-tuples in Cy are the initial ag-tuples of Cp, for m >k. Thus the
sequence C.determines a nonempty set that is a subset of every set By, that is,
MB. is not empty, as was to be proved.
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Observation for later use. If, more generally, the space S, is a metric space,
if §=8x8;x -, and if x, is the nth coordinate function of §, a trivial adapta-
tion of the argument just used yields the following: if B. is a decreasing
sequence of nonempty subsets of S, with B, = {(x,,....x, Y€ B,'}, where B,' is a
compact subset of S, ", with a. some sequence of positi'{'e integers, then NB. is
not empty. This result is trivial unless the sequence a. is unbounded. It can be
assumed that a. is an unbounded increasing sequence (if not already increasing,
choose a subsequence of B. for which the corresponding subsequence of a. is
increasing), and the rest of the argument for the special case is carried through
without change.

3. The generation of set algebras

Let S¢ be a class of subsets of a space S, and let I' be the class of those algebras
of subsets of S that include Sy, Denote by 0y(Sg) the class of sets in every
algebra in the class I". Then 6y(Sy) is an algebra, the smallest one including all
the sets of Sy. Similarly there is a smallest G algebra 6(S) including all the sets
of 8y, the intersection of all such o algebras. The algebras 6,(S,) and &(S;) are
generated by Sj. Obviously

6[6S0)] = 6(Sp) = 6[0(Se)], To[0(S0)] =0oS0).

If A,,...,A, are subsets of a space S, they generate a partition of S into 2"
pairwise disjoint possibly empty cells, the intersections B,~-nB,, where each
set Bj is either A; or Kj. The algebra gg(As) is the class of finite unions of these
cells. In general, if Sy is an arbitrary class of subsets of S, the algebra 6¢(S) is
the class of finite unions of finite intersections of the members and complements
of members of 8y. There is no such simple representation of o(Sg).

4. The Borel sets of a metric space

A metric space is a pair (S,d) consisting of a space S and a distance function d.
The specification of d is usually omitted if it is irrelevant to the discussion or
obvious from the context. The distance function for the product of finitely many
metric spaces is to be understood to be defined by the Euclidean formula:
square root of the sum of squared distances for the factor spaces.

Every closed set in a metric space S is a countable intersection of open sets:
Fc Gg. In fact if A is closed, the set {s € S: d(s,A) < 1/n} is open and

@.1) A= (s € S d(s,A) < Un).
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Complementation yields the fact that G < Fg, that is, every open set in a
metric space is a countable union of closed sets. These two inclusions imply
first, that 6(G) O F and therefore 6(G) > o(F), and next that ) > G and
‘therefore that o(F) > o(G). Hence o(F) = 6(G).

Definition. The class B(S) of Borel subsets of a metric space S is the ¢
algebra 6(G) (= o(F)).

In dealing with a measurable space (S,S) for which S is a metric space it will
always be assumed, unless stated otherwise, that S=B(S). The reasoning that
led to the equality o(F) = o(G) for a metric space S shows that if 8 is so large
a class of Borel subsets of S that o(S) includes F or G, then o(S) = B(S). For
example B(R) is generated by the class of open intervals, also by the class of
closed intervals, also by the class of right semiclosed intervals, also by the class
of semi-infinite intervals, and so on.

Relativization of Borel sets. If A is a subset of a metric space (5,d), if A is
metrized by restricting d to pairs of points of A, and if Ay A, then Ag € B(A) if
and only if Ay is the intersection with A of a set in B(S), that is, in the obvious
notation, B(A) = B(S)N\A. In fact the class of sets in B(A) that are intersections
with A of a set in B(S) is a ¢ algebra relative to A and includes the subsets of A
that are open relative to A, because these are the intersections with A of open
subsets of S. Hence B(A) < B(S)nA. In the other direction, B(S)NA < B(A)
because the class of Borel subsets of S meeting A in a Borel set relative to A
includes the open subsets of S, is a G algebra, and is therefore B(S).

In particular, if A is a Borel subset of S, then a subset of A is Borel relative to
A if and only if it is Borel relative to S. Thus, for example, a subset of a line in
R? is a Borel set relative to the line if and only if the subset is a Borel set
relative to the plane.

5. Products of set algebras

For i=1,...,n, let S; be an algebra of subsets of a space S;. Let $=5)xxS, be
the product of these spaces. In the following, “product set” will always mean a
set in the class S;x-x S, of product sets A;x-*A , with A; in S;. Observe that
the intersection of two product sets is a product set, and that the complement of
a product set is a finite disjunct union of product sets. It follows that the class of
finite unions of product sets is an algebra, necessarily Go(S,x "X Sp).

In particular, if each space S; is R and if each algebra S; is the algebra of
finite unions of right semiclosed intervals of R, then 0yS;x-X S,) is the
algebra of finite unions of right semiclosed intervals of RY. The o algebra B(RV)
is generated by this algebra, also generated by the class of N fold products of the
one-dimensional Borel sets, also by the class of N fold products of classes that
generate B(R), for example, by the class of N-fold products of open intervals of
R, or of right semiclosed intervals of R, and so on.
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Returning to general factor spaces S....,5,, observe that
(5.1) O(S1x->8 5) = 0( (S < XASp)).

In fact, trivially, the right side is at least as large as the left. Conversely it is
sufficient to show that the left side is at least as large as the right by showing
that it includes o(S|)x--XX(S,,). Fix A; in §; for all i >1. The class of sets A, in
o(S ;) for which the product setA ;xX4 , is in 6(S1xx §,) includes 8,, is a G
algebra, and is therefore 6(S;). Thus the left side of (5.1) includes
o(S )xS,x-S,.. Go on by induction to finish the proof of the stated inclusion.

Cross sections of multidimensional sets. If A is in 6(S,xx S,;), denote by
Aj(s) the section of A with first coordinate s:

A (8) = {(S20e0s8n): (8,5s.--05) € A}

This set is in the set o algebra of subsets of S,x*"xS, generated by Syx>8 ,,
because the class of sets A for which this is true contains $)x->8, andisac
algebra of subsets of S. The corresponding assertions are true if more than one
coordinate is fixed.

Right semiclosed intervals in spaces of infinite dimensionality. Section 2,
Example (a), can be extended to an arbitrary infinite (not necessarily countable)
dimensionality. For every point i of an arbitrary index set /, let S; be a copy of
R and let §; be the algebra of finite unions of right semiclosed intervals of S;.
Define the space S as the class of all functions from / into R. Let x; be the ith
coordinate function of S. If i,...,i,, are index points and if A is a right semiclosed
interval of R”, the set {(xiy oebi) € A} is an n-dimensional right semiclosed
interval of S. The algebra of finite unions of all such finite dimensional intervals
is the infinite dimensional version of the algebra of finite unions of right
semiclosed intervals of RV,

6. Monotone classes of sets

Monotone class definition. A class S of subsets of a space S is a monotone
class if S contains the limit of every monotone sequence of its sets.

To each class S of subsets of a space corresponds a smallest monotone class
M(S) containing S (cf. the corresponding proof for algebras in Section 3). The
class S generates M(S).

_ Theorem. Let S be a class of subsets of a space. Suppose that M(S) includes
S and includes either the finite unions or the finite intersections of members of
S. Then M(S) = o(S). In particular, M(S) = &(S) if S is an algebra.
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Proof. Under the hypotheses of the theorem, the class M(S) contains the
complements of its sets, because the class of sets in M(S) whose complements
are in M(S) is a monotone class containing S and therefore must be M(S). To
prove that M(S) is closed under finite unions if M(S) contains the finite unions
of sets in S, let B be in S. The class I'g of sets A in M(S) for which AUB is in
M(S), contains S, and is a monotone class. Hence I's= M(S). Furthermore, the
class of sets in M(S), whose union with each set in M(S) is in M(S), was just
proved to contain 8§, and is a monotone class, so is M(S). Thus M(S) is an
algebra, necessarily a o algebra because of the monotone class property, and
therefore M(S) = o(8). This conclusion follows in the same way if it is
supposed that M(S) contains the finite intersections rather than finite unions of
members of S.

Generation of the Borel sets by monotone sequential limits. According to
Theorem 6, the class of Borel sets of a metric space S is the monotone class
generated by the open sets, equivalently the monotone class generated by the
closed sets.

The classes in the inclusion relations

6.1) G cG§c Gyg = Gsgs <

are all Borel sets but in most applications the union I' of these classes does not
contain all the Borel sets.

Example: S = R. In this case it can be shown that the monotone sequence
(6.1) is strictly monotone and that T is a strict subclass of B(R). Moreover, it
can be shown that the monotone sequence

6.2) FclycTggcMsgs <

is strictly monotone and that the union of these classes is a strict subclass of
B(R). This procedure can be continued (transfinite induction) to obtain a well-
ordered uncountable strictly increasing succession of classes of Borel sets
containing all the Borel sets of R. (A corresponding approach starts with the
sequence

6.3) Fc Bgc Fg5 < Bgég <

instead of (6.1).) This analysis of Borel sets will not be used in this book.



III
Set Functions

The point of this book is the study of countably additive set functions, and the
preceding chapters have set up the appropriate context by providing an
introductory analysis of classes of subsets of an abstract space. This chapter
introduces the set functions to be studied.

1. Set function definitions
Let A be a function from some class S of subsets of a space S into R.

(a) A is monotone increasing [decreasing) if MA) < MB) [A(A) 2 A(B)),
whenever AcB and both sets are in S.

In (b) and (c) it is supposed that @ € S and that (@) = 0.
(b) A is finitely [countably] subadditive if
(1.1) MUAL) S T NAY)

whenever A. is a finite [infinite] sequence of sets, that, together with their union,
are in S, and -co and +oo do not both appear in the summands.

(c) Ais finitely [countably) additive if (1.1) is true with equality whenever A. is
a disjunct finite [infinite] sequence of sets that, together with their union, are in
S, and -eo and +eo do not both appear in the summands.

In checking finite additivity or subadditivity, it is sufficient to consider
unions of only two sets.

Measures and signed measures. A countably additive set function from an
algebra into eitller [-o0,+00) OF (-00,+00] is a signed measure, a measure if the
range space is R*. If A is a measure defined on a © algebra S of subsets of S,
the triple (S,S,A) is a measure space, and the sets in S are measurable, or A
measurable if it is necessary to identify the measure. In particular, if A(S)=1, a
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measure space is a probability space, and A is a probability measure. In
probability contexts, the measurable sets are sometimes called events.

A measure space S and its measure A are finite if A(S) < +o, and are O finite
if § is a countable union of sets of finite measure. In view of the representation
II(1.1) of a countable union as a disjunct countable union, it is no further
restriction on the condition for ¢ finiteness to demand that the union be a dis-
junct union.

Null sets, carriers, and supports. A measurable set of measure 0 is null or,
more specifically, A null. An assertion about points of a measure space holds
almost surely, or almost everywhere, on the space, if true up to a null set, in the
sense that the set where the assertion is false is a null set. A subset of a null set
may not be measurable and therefore may not be a null set but (see Section
IV.1) the domain of definition of a measure can be extended to remove this
somewhat awkward complication. A measure is carried by a set if the set is
measurable and has a null complement.

Borel measures. A Borel measure is a measure A defined on the class of
Borel subsets of a metric space. If the space is separable there is a largest open A
null set, the union of the A null balls having centers at the points of a countable
dense set and having rational radii. The complement of this open set is the
smallest closed carrier of A. This uniquely defined closed carrier is the closed
support of A.

Monotonicity and subadditivity. Finite additivity of a positive set function

A, defined on a set algebra S, implies that A is monotone increasing, because if
A and Baresetsin S and if A c B,

(1.2) MB) = A(A) + AM(B-A) 2 MA).

Furthermore this set function A is finitely subadditive, because if sets C and D
arein S,

(1.3) MCuD) = NMC) + \D-C)< MC) + MD).

A slight extension of the argument, applying equality II(1.1), shows that a
measure on a set algebra is countably subadditive.

Countable additivity. The added condition of countable additivity imposed
on a finite valued finitely additive set function A, defined on an algebra S, can
be given the following equivalent forms.

(a) For a disjunct sequence A. of sets in S, with union in §, (1.1) is true with
equality.
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(b) For an increasing sequence B, of sets in S with limit B in S, lim A(B.) =

A(B). ,
(c) For a decreasing sequence B. of sets in S, with limit @, lim A(B.) = 0.

For example, to see that (a) implies (b), write B as a union:
B= By A (Bn.1-Bp).

Conversely (b) implies (a) because a countable union is the limit of the
monotone increasing sequence of partial unions.

The added condition of countable additivity imposed on a finitely additive,
not necessarily finite valued positive set function, defined on an algebra S, can
be given the following equivalent forms: (a) and (b) as above, but (c) is
replaced by

(c') For a decreasing sequence B. of sets in S with limit @, lim A(B.) =0 if
MB,) < +oo,

2. Extension of a finitely additive set function

The following lemma will be useful in the construction of product measures on
product spaces. The properties of S in the lemma are modeled on the properties
of classes of product subsets of the product of a finite number of spaces.

Lemma. Let Sy be a collection of subsets of a space S. Suppose that the
intersection of two (and therefore every finite number) of sets in Sy is in S, and
suppose that the complement of a set in Sy is a finite disjunct union of sets in S,
5o that 0y(Sy) is the class of finite unions of sets in Sq. Let Ay be a finitely
additive set function on Sy,with values in either (=eo,+c0] or [-oo,+e0). There is
then a unique finitely additive extension of Ag to Go(Sy).

Proof. If A is a finite union of sets in §, A can be expressed as a finite disjunct
union of sets in S, say A = UA.. Define A(A) = X Ay(A). To prove that A as so
defined is independent of the choice of representation of A as a finite disjunct
union of sets in Sy, suppose that \UB. is another finite disjunct union of sets in
S, with union A. Then

A=UA. =\UB. =\Uj ( AjnBy,
and therefore

LA = ZiZed@jnBo = ZiZj MAjnBo = X A(B),

as was to be proved. Thus A has been given the required extension, obviously
finitely additive.
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3. Products of set functions

The following theorem will be useful, for example, in developing area in two
dimensions from length in one dimension.

Theorem. For i=1,...,n, let S; be an algebra of subsets of a space S;, and
define So= S,%x Sy, 8=0¢So). If N is a finitely additive positive set function
on S, for i = 1,..n, then there is a finitely additive set function A on S for
which

@3.1) MA%¥A ) = 1';'1 AA) (A€ Sii=1,..n).

Proof. Define A by (3.1) on S. According to Section IL.5, each set in S can be
expressed as a finite disjunct union of sets in 8¢. Define A on such a union by
additivity. The only question is whether this definition gives a value
independent of the representation of the given set as a disjunct product set
union. In proving the desired independence, it is sufficient, according to Lemma
2, to prove this independence for product set unions in Sy. The proof is by
induction. The independence is trivial when n=1. If n> 1, suppose independence
has been proved for n—1, and suppose that

k
3.2) AXoXA, = U] (BeXCo),
where B; e 8;x*8,., C; € 8, for i=1,...k and the union is disjunct. According

to the induction hypothesis, there is a finitely additive set function v on
Go(S1% 8 p,.1) satisfying

n-1
3.3) V(D3 XD y.1) = ]I] A(D.), (DjeS;, i=1,..n-1).
Itis to be proved that

k
(34 V(A1 XA p.1) Mn(An) = Zl, V(B;) My (C).

According to Section IL.3, there are 2K pairwise disjoint sets in S, with the
property that each set C; is a disjunct union of some of these sets. If in each term
B;xC; in (3.2), the set C; is expressed in terms of these sets, B;xC; is thereby
expanded into a disjunct union of product sets with common first factor set B;.
The ith summand in (3.4) is thereby expanded into several summands that have
sum V(B;)A,(C;), because A,, is additive. If this expansion is carried through for
all i, the value of the sum in (3.4) is not changed. Suppose then that this
expansion has already been carried through, yielding a union in (3.2) in which
two sets C, and C; are either identical or nonintersecting. If identical, the terms
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B;xCp, BgxCs can be combined into a single product set (B,UB;)xC,. When the
terms in (3.2) are combined in this way, the sum in (3.4) is unchanged, because
v is additive. After having made these changes, C|,C,,... are pairwise disjoint
and their union must be A,;, whereas B; must be A xxA,_, for all i. The right
side of (3.2) has become UA XA . xC ., and (3.4) is now trivial.

4. Heuristics on 0 algebras and integration

Let I,,..Jn be pairwise disjoint intervals of R with union an interval I. Let fbe a
function from I into R, with value gj on I;. The Riemann integral of fon / is Z;
aj ).(Aj). where X(Aj) is the absolute value of the difference between the
coordinates of the endpoints of A;. Riemann integration theory on R is based on
this integration of functions constant on intervals. In fact the Darboux upper and
lower sums for a function g (see Section VI.20), which approximate the
Riemann integral of g, are the Riemann integrals of functions constant on
intervals. Integration in the context of measure theory involves analogous sums,
but is based not on functions constant on intervals, but on functions constant on
sets of some G algebra of sets. The details of this integration will be given later,
but in this chapter preliminary definitions of integrals will be given in special
contexts to clarify the general case.

5. Measures and integrals on a countable space

Suppose that § is a countable space, written as a finite or infinite sequence s.,
and define S=25. A measure L on S is determined by its values on singletons: if
M{si})=p; then

MA)= Y pi.
sieA

Observe that if 2p. = +oo, but if each summand is finite, the sequence B. with
Bu= {sn.Sn+1,---} is a decreasing sequence of sets with limit @, even though
MB,) = +oo for all n. This example justifies the Section 1(c') finiteness
condition.

If fis a function from this countable space S into R, it is natural to define the
integral of fon S as Zf(s.)p. if the sum converges absolutely, and this in fact is a
special case of the final definition of an integral to be given in Section V1.4,

Adaptation of integrands to o algebras. Let S be the finite or infinite se-
quence s. with at least two points, define S as the o algebra of those subsets of S
that contain either both or neither of the two points s,, s5, and let p,,p;,... be
positive but not necessarily finite numbers. Define A({s;}) =p; for j > 2, and
define A on the two-point set {s,,5} as p,. These definitions, together with
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countable additivity, determine A on S. If f is a function from S into R*, and if
Sf(s1)#f(s,), there is no natural definition of the integral of f with respect to A on
S, because A is not defined on the singletons {s,} and {s,}. The difficulty is that,
as far as S is concerned, the point pair {s),5,} is an indivisible atom of the
measure space. Thus integration theory in this context is forced to consider only
those integrands f with f{s,)=f(s,); for such a function, the natural definition of
the integral is

G.1 Jf a\ = fis\)p, +j§2ﬂ3j)l’j.

when the series converges absolutely. The point is that an integrand must
assume each of its values on a measurable set. This fact leads to the general
concept of a function adapted to the class of measurable sets, a measurable
function, to be defined and discussed in Section V.1. At the present stage the
following definition is adequate.

Measurabihty definition for a function with a countable range space. Let
s, 25) be a countable measurable space, and consider functions from a
measurable space (S, S) into S'. Such a function y is measurable if it assumes
each of its values on a measurable set, that is, if a' is a point of §' then {y = d'} €
S, equivalently, {y € A'} € S whenever A’ is a subset of §'. The functionf in the
preceding paragraph, from § into R*, is measurable if and only if f(s)=f(s).

If (8,S) is provided with a probability measure, a measurable function is a
random variable in probability terminology.

6. Independence and conditional probability (preliminary
discussion)

Let (S,S,P) be an arbitrary probability space. All subsets of S considered below
are in S, that is, are measurable.

Independence of sets. Sets A,,....,A, inS are mutually independent if
(6.1) P{B\~+nBp} = P{B}P{Bn},

for every one of the 2" choices of the n-tuple B,,...,B,, where each set B; is
either A; orA

This mutual independence implies that for each choice of B., these sets are
also mutually independent. Moreover the sets of any subcollection of A. are
mutually independent. (For example, write (6.1) with B, replaced by its
complement, and then add the new equation to the original one, to find that
Ay,...,Ap- are mutually independent.). In particular, sets A; and A, are mutually
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independent if P{A;~4,} = P{A,}P{A,} because in this special case trivial eval-
uations show that the pairs (A;,45), (4,.4,), and (4,,4,) also satisfy this product
relation. A null set is independent of every set, as is also the complement of a
null set.

Infinitely many sets are mutually independent if the sets of every finite
subcollection are mutually independent.

Mutual independence of ¢ algebras. The o algebras of a collection of ¢
algebras of measurable sets are mutually independent if, whenever a set is
chosen from each o algebra, these sets are mutually independent. Let S,....,S4
be mutually independent o algebras of measurable sets. Then 6(S,,S,) and
0(S3,84) are mutually independent o algebras. To see this, let B be the
intersection of a set in 83 with one in S,. The class T of sets in 6(§8,,S,)
independent of B is a monotone class closed under finite disjunct unions and
complementation, and I' includes every intersection of a set in §; with one inS,
Since finite unions of such intersections can be written as disjunct unions of the
same type, and in fact constitute a set algebra, I' must be 6(S,.S,). Thus each set
in 6(S,,S,) is independent of B. An application to 6(S3,S4) of the reasoning just
used shows that every set in 6(8,,S,) is independent of every set in 6(S,,S,), as
was to be proved. More generally, an obvious further elaboration of this proof
shows that if {S;, i el} is a family of mutually independent G algebras, and if
{Io, 0. € E) are disjoint subsets of the index set /, then {0{ S; iely}, o € E}
are mutually independent © algebras.

Independence of random variables. In particular in this discussion let S’ be
a countable space, and consider random variables (= measurable functions) from
S into S' as defined in Section 5. The random variables of a collection of these
random variables are mutually independent if, whenever y,,....y, are finitely
many random variables in the collection and ay',...,a," are points of S', the sets
{»=ay'}.....{yn=ay,'} are mutually independent. This condition implies that if
A/,..., Ay’ are subsets of §' the sets {y, € A'},...{yn € A,'} are mutually
independent. The general definition that underlies these special cases (keeping
S ' countable at this stage, however) is the following. If y. is any collection of
random variables, measurable sets of the form {y, € A'}, with y, in the
collection, and A’ a subset of S', generate a o algebra, denoted by o(y.), and all
questions of independence of random variables are referred to the corresponding
G algebras. Thus two random variables y and z are mutually independent if and
only if 6(y) and 6(z) are mutually independent G algebras; similarly two
families {y.} and {2} of random variables are mutually independent if and only
if o(y.) and 6(z.) are independent G algebras, and so on. In particular, the sets of
a collection of measurable sets are mutually independent if and only if their
indicator functions are mutually independent.

Independent events. Recall that in probability applications, measurable sets
are sometimes called “events.” Nonmathematical events that are independent of
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each other in a nonmathematical sense correspond in mathematical models to
mathematically independent measurable sets. For example, in the coin tossing
analysis to be given in Section 9, the events heads on the first toss and tails on
the third toss are thought of as independent real-world events, and the
corresponding measurable sets in the mathematical model are mathematically
independent.

Conditional probability. Let (S,S,P) be a probability space, and let A be a
measurable nonnull set. A new probability measure B~ P{BlA} (read “the
conditional probability of B given A™) is defined by

(6.2) P(B|A} = P{BRA}/IP{A).

In simple contexts one can interpret such conditional probabilities for fixed A as

defining a new context, based on replacing S by A, replacing S by the class of
measurable subsets of A, and replacing P by the restriction of P to this class,
normalized to make the restriction a probability measure of sets B. However, in
most contexts it is preferable to keep S and S, so that (6.2) defines a new
probability measure on (S,8), carried by A. Observe that sets A and B are
mutually independent if and only if either A is null, or A is not null and
P(BlA}:P{B}. The innocent looking conditional probability concept, when
formulated in a more general context (see Section XI.2), has had a profound
influence and unexpected mathematical applications, both inside and outside
probability theory.

Expectation and conditional expectation. If S={s},s2,...} is a countable
space, and if a probability measure is defined on the G algebra 25 by setting
P{s;}=p; with p; 20 and Zp. = 1, the integral of a numerically valued function f
on S, defined in Section S5, is commonly written E{f} by probabilists (read
“expectation of f ). If this expectation exists, and if P{A}>0, the integral of f
with respect to the conditional measure P{°|A} is written E{f IA} (read
“expectation of f given A™).

7. Dependence examples

Let S, be the set 1,...N of integers, define S=S,™ as the space of m-tuples of
points of S, and let xi be the kth coordinate function of S. The following lists
several ways of assigning each singleton of S a measure value, in order to define
a probability measure P on 25,

(a) Let P& be'a measure on the kth factor space, say PK) {j} = q; ), where
(k) % 0 and Zc{ = 1, and assign to the singleton (jy,... i) of S the measure
ﬁk . For each pair k, j, the subset {x,=j} of S contains N™*! points and its
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probability is defined by

) Plusi)) = 0.
The sets {x;=j;}.....{xm=jm} are mutually independent subsets of S for every
choice of j;,... im, and corresponding to this fact, the measure P on § is what will
be defined in Section IV.11 as the product measure of the measures Py,...,Pp,.
‘As the following examples illustrate, product measures are not the only way to
define measures on product spaces.

(b) Transition probabilities and stochastic matrices. A matrix of positive ele-
ments with row sums 1 is a stochastic matrix. One kind of random variable
dependence, Markov dependence, is characterized by the fact that in a sequence
of random variables, probabilities for the nth, conditioned by the values of all
the preceding random variables, actually depend only on the last preceding
random variable, not on those farther back. More precisely, in the discrete
context of (a), choose N positive numbers p., with sum 1, as initial probabilities,
setting

(1.2) P{x;=i} =pj, i=1,..N.

Next choose an NxN stochastic matrix (p‘(; )), the matrix of first step transition
probabilities, that is, define {x;,x,} probabilities by

(1.3) P(x;=i, x5/} = pip) .

Observe that summing over j in (7.3) yields (7.2) and that
(7.4) Plxgin=it =p
when p; > 0. If m =2, (7.3) provides the most %:neral probability measure on S.

If m > 2, choose another stochastic matrix Ji) as matrix of second step
probabilities, setting

n, (2

(1.5) P{x\=i, x,5j, x3=k} =pjp iPjk

Observe that summing over & in (7.5) yields (7.3), and observe the Markov
property of the transition probabilities:

(7.6) P{xy=k|x,=i, x35j} = P{xy=k|xpzj} = p ,('/2()

when P{x=i, x,=j} > 0. The point of the Markov property is that the first
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conditional probability in (7.6) does not depend on i. If m > 3, go on with
further transition matrices. When m > 2, this procedure does not furnish the
most general probability measure on S. In fact to obtain the most general
probability measure when m = 3, replace the transition matrix (pj(:)) by a
stochastic matrix (p;j) (stochastic matrix in j,k for each i), which takes into
account the value two steps back, thereby replacing (7.5) by

_ M
(1.7) P{x\=i,xy=j, x3=k} =p; p ij Pisk

Summing over k in (7.7) yields (7.3). Equation (7.6) is replaced by
(1.8) P{xy=k|x,=i, x5/} = pi ju,

when P{x;=i, x,=j} > 0. The Markov property is lost unless p; jk does not
depend on i.. This property will be defined in a more general context in Section
X14.

Although the preceding discussion was based on random variables that were
the coordinate functions of a product space, this special context was irrelevant.
The important point was that Equations (7.2), (7.3), and so on were satisfied on
whatever probability space the random variables x. were defined. It is a typical
feature of the special point of view of probability theory in measure theory that
the probability relations between random variables define the context; the space
on which the random variables are defined is irrelevant.

8. Inferior and superior limits of sequences of
measurable sets

The combination of parts (a) and (c) of the following theorem is the “Borel-
Cantelli Theorem.” It is a historical accident that part (a) is usually stated only
in probabilistic contexts.

Theorem. Let A. be a sequence of measurable sets of a measure space
(S.S,A).

(a) (Cantelli) If £ MA.) <+, then
(8.1 AflimsupA.} =0.

(b) A{lim inf A.} < lim inf MA.) < lim sup MA.), and, if A is a finite measure,
the last term is at most A{lim sup A.}.

(c) (Borel) If (S,S,A) is a probability space, and if A. is a sequence of mutually
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independent measurable sets, then the condition X MA.) = +oo implies that
A{lim sup A.} = 1, and the condition T MA.) < +oo implies that A{lim sup A.}
=0.

Probability context. In the colorful language of probability, in which
measurable sets are “events,” (a) states for probability contexts a condition that
(almost surely) an event occurs only finitely often and (c) states that, in the
independence case, if the condition is not satisfied, the event is almost sure to
occur infinitely often. Observe, however, that it has not yet been shown that (c)
is a useful result, because no nontrivial example of an infinite sequence of
mutually independent measurable sets has been exhibited. The set sequence
@,9,... is an uninteresting trivial example that shows that (c) is not vacuous! A
nontrivial example inspired by coin. tossing and number theory will be exhibited
in Section 9, but not justified until Section IV.14.

Proof. The definition of superior limit of a sequence of sets implies that, for all
k,

82) Mlim sup A.} SA{U, A} ST, MAL),

from which (a) is immediate. Similarly, (b) follows directly from the definitions
of the inferior and superior limits of a sequence of sets. (The first inequality in
(b) is a special case of Fatou's integration limit inequality, which will be proved
in Section VI.8.) The second part of (c) is a special case of (a) but the following
direct proof of (c) does not use (a). The probability thaf the event A, does not
occur for n 2k, that is, the measure of the intersection ﬁk A., is

limp o0 MAR- A1 = TT, [1-240),
and the probability that the event occurs only finitely often is therefore

®8.3) limg—yee [ I, [1-AA0)].

Part (c) follows from the theory of infinite products:
(i) this infinite product converges if and only if ZA(A.) < 400;
(ii) if the product converges, the limit in (8.3) is 1;
(iii) if the product diverges, this limit is 0.

9. Mathematical counterparts of coin tossing .

Coin tossing is.not mathematics. A genuine human being of some sex, color,
creed, and national origin tosses a piece of metal, giving it certain initial
conditions and thereafter letting nature take its course (for which Newton
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devised a mathematical model). The coin comes to rest with either heads or tails
showing, and the tosser, enslaved by mathematical notation, registers x;j as the
result of the jth toss, setting x; = 1 for heads, xj=0 for tails. She or he observes
that (x)++xp,)/m is usually close to 1/2 when m is large, and, more generally,

observes that when m is large, and a is a specified n-tuple of 1's and 0's,

(number of times o appears in m successive n-tuples of tosses)/m

is usually close to 2. The words “when m is large” suggest that, in a
mathematical model of these observations, there is a limit theorem. In fact a
Bernoulli proved such a limit theorem of course without the measure theoretic
mathematics now available (which some old-fashioned probabilists are
convinced only beclouds the context), about three hundred years ago. These
observations suggest that in any mathematical model for coin tossing, whatever
corresponds to a specified succession of n heads and tails at specified times
should be assigned the measure 2.

Desert now the interesting but imprecise real world in favor of the duller but
more precise mathematical world, and construct n functions x,,....x;, on a
probability measure space, imposing the following conditions: x; is to have only
two possible values 0 and 1; the measure of the set on which these functions
take on any specified n—tuple of 0's and 1's is 2. A trivial computation
(addition) shows that then, for example, for each j, the measure of the set on
which xj = 1 is 1/2. There are many ways such a mathematical context can be
constructed. Two important ones will be exhibited in this section.

First mathematical coin tossing model. This model will look simpler and
be more interesting after Lebesgue measure is defined in Section IV.8. Every
number s in the interval (0,1] of R has a dyadic expansion s = .xx,..., that is,

9.1) s=x2 +x22 4o

Here x; is a function of s, with the possible values 1 and 0, made single valued
by choosing the representation of s ending in a sequence of 1's rather than O's at
the dyadic points. Thus ({x;=0} is the interval (0,1/2], and, more generally, if
values are assigned to x,,...,x, these functions will have those values on a right
semiclosed interval of length 2. If n is fixed, and if this length is assigned as
measure to each of these intervals, additivity determines the measures assigned
to the unions of these intervals. In this way, for each value of n, a probability
measure space (S,S,,P,) has been defined, consisting of the interval S = (0,1],
together with the G algebra S,, of unions of right semiclosed intervals of the
form ((j-1)271,j2"] for j = 1,...,2", with measure P, given by ordinary length.
The functions x,....x, have the required properties and are mutually
independent, corresponding to the notion of nonmathematical independence in
actual coin tossing. Statements about the results of actual coin tossing can be
translated into statements about this dyadic representation. The measures P. are
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mutually consistent, in the sense that if say m <n, then S,, S, and P,,=P, on
Sm. (This equality is trivial when n=m+1, and induction yields the general case.)
Define P, an additive set function on the algebra S.. =US. of finite unions of
dyadic right semiclosed subintervals of (0,1], by assigning its length to each
subinterval, so that Po.=Py, on S,,. The set function P.. is finitely additive be-
cause each measure P, is additive. (Actually P, is countably additive but the
proof is deferred until Section IV.14.) The space (S,So,P) is not a probability
space, because S is not a ¢ algebra. Such probabilities as

9.2) P{x)++xp < cn'?}

can be evaluated for all n, and the central limit theorem, which describes the
limit of this probability when n—eo, can be proved, but probabilities of the two
sets

9.3) Ulx. =1}, {1im (x)+~+x¥n = 112}

are not defined because these sets are not in S... The sequence {x.=1} of sets is
not a sequence of mutually independent sets in a probability space because S o
is not a o algebra.

In nonmathematical probability language, the first event in (9.3) is that in an
infinite sequence of tosses, heads occurs at least once; the second is that, in
such an infinite sequence,

(number of heads in n tosses)/n

has limit 1/2. Although neither of these events is meaningful in actual coin
tossing in the real world, because infinitely many tosses cannot be performed, a
further development of the mathematical model makes the sets in (9.3)
measurable, with probability 1 for both. More precisely, Lebesgue measure,
developed in Section IV.9, makes it possible to extend P, to a probability
measure P on 8=0(S..). The Borel-Cantelli theorem can then be applied to the
probability space (S,S,P) to obtain 1 for the probability that heads occurs
infinitely often. The strong law of large numbers in Section XI1.19, when
applied to this probability space, yields 1 for the probability of the second set in
(9.3), but far more elementary proofs yield this special result.

In 1909 Borel stressed the significance of such mathematical results in an
influential paper (whose proofs were, however, defective even for that era).

Second mathematical coin tossing model. This model is more direct than
the first. The notation used corresponds to that in the first model. In this model,
let S, be the space of the 2” n-tuples of 0's and 1's, and determine the discrete
probability measure Py, on the subsets of S, by defining the measure of each sin-
gleton as 2. The probability measure space (S,,25,P,) is a mathematical
model for tossing a coin n times. Each succession of n tosses corresponds to a
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point of this model, whereas the succession of tosses corresponded to a dyadic
interval in the first model. The space S, is the n-fold product space S,", and the
measure P, is the corresponding n-fold product measure, a simple special case
of the set functions considered in Theorem 3. The jth coordinate function x” of
Sp is the measurable function (alias random variable) corresponding 70 the
result of the jth toss. It is perhaps a bit more obvious in this model than in the
first that probability calculations in this simple context are counting problems:
how many points of S, have the property whose probability is to be calculated?
The required probability is the number of those points multiplied by 2. In
order to define a model adapted simultaneously to all values of n, consider the
space S of infinite sequences of 0's and 1's. Let x; be the jth coordinate function
of S, and define an additive set function P., by setting, for each value of n, 27
as the probability of the subset of S whose first n coordinates form a specified n-
tuple of O's and 1's. The finite unions of these sets form an algebra S.., and
probability is defined on this algebra by additivity. Note the parallelism between
this model and the first one, which was based on dyadic expansions. This model
has the same defect as the first one, in that probabilities like those in (9.2) are
accessible, but not those in (9.3). In both models, in order to go on, an additive
-function on a set algebra must be extended to a measure on the generated ¢
algebra. This will be done in Chapter IV.

Finally, it is important to remember to keep mathematics and real life apart.
It is an interesting facet of human behavior that, even when actual coin tossing
is analyzed, the analysis has almost always been philosophical, ignoring the
laws of mechanics, which quite unphilosophically govern the motion of real-
world coins, under initial conditions imposed by real-world humans, and
thereafter subject to the laws of motion of a real body falling under the influence
of real gravity. The point is that the impossible-to-make-precise description of
the actual results of coin tossing has a precise mathematical counterpart, in
which mathematical theorems can be proved, some of which suggest real-world
observational results.

10. Setwise convergence of measure sequences

Let (S,S) be a measurable space, and let A. be a sequence of measures defined

on 8. If lim A.(A) = M(A) exists for every measurable set A, then A converges
setwise to A. Under certain added hypotheses stated in the following theorem,
the limit set function A is a measure. Part (b) is generalized to signed measures
in Section IX.11, using a quite different type of proof.

Theorem. Let (S,S) be a measurable space, and let h. be a sequence of
measures on S, converging setwise to A. Then ) is a measure if either of the

following conditions is satisfied.

(a) . isan increasing sequence.
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(b) (Vitali-Hahn-Saks) A is finite valued.
Proof of (a). The limit set function A is obviously finitely additive. If A. is a
disjunct sequence of measurable sets, with union A, monotonicity and finite
additivity of A imply
(10.1) MA) 2Z MA.)
for all n, and therefore
(10.2) MA) 2 X NA.).
On the other hand, if ¢ < A(A), and if k is sufficiently large,
(10.3) ¢ < MA) = X LA € T MA).

Therefore (10.2) is also true with the inequality reversed, that is, A is a measure.

Proof of (b). The limit set function is again obviously finitely additive. If A is
not countably additive, there is a decreasing sequence A. of measurable sets,
with empty intersection, but with lim A(A.) = € > 0. Define o, =B, = 1; if o;
and B; have been defined for j < n choose 0,4, so large that o, > o, and that

(10.4) oo > Ao (A ) 2 TeB,

and then choose B, so large that B,4, > B, and that

(10.5) A, (AB,,,) < €.

Define B, = ABn'Aﬁn_H. Then )\.an_“(B,,) 2 3¢/4, and it follows that, fork 2 1,
(10.6) laj(U{B,.: neven, n2k}) 2 3e/d @ odd, j > k).
Hence

(10.7) MU (By: neven, ik} ) 2 3e/4 *k21).

Similarly, (10.7) is true if the union is over odd values of n. Add these
inequalities for even and odd values to obtain, since B. is a disjunct sequence,

(10.8) MAB) = MU, B.) 23en

for all k. This inequality contradicts the definition of € and thereby implies the
truth of (b).
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Observation. A glance at the proof of (b) shows that what has been proved,
in order to prove countable additivity of A, is that if A. is a sequence of
measures, with finite valued setwise limit A, then lim A(A.) = O implies that lim
A(A.) = 0. This result expresses a kind of uniformity of the setwise
convergence, to be exploited in the proof of Theorem IX.10.

11. Outer measure

Outer measures, set functions for which the countable additivity measure
hypothesis is weakened to an inequality, are fundamental in the analysis and
construction of measures.

Definition. An outer measure on a space § is a function A* from 25 into R*
satisfying the following conditions:

@ A (ﬁ) 0;
(b) l. is monotone increasing;
() AYis countably subadditive.

A set for which A* vamshes is null, or, more specnﬁcally. A* null. Condition
(b) implies that a subset of 2 A¥ null set lS also A* null, and condition (c) implies
that a countable umon of A* null sets is A* null.

Observe that if A* is an outer measure, and if c is a positive constant, the set
function A*Ac is also an outer measure. It will be useful later to modify a
possibly infinite valued outer measure in this way.

Generation of an outer measure. The most common way of obtaining an
outer measure is the following. Let A be an arbitrary collection of subsets of a
space S, containing @, and let q> be a function from A into R* with infimum 0. If
B is a subset of S, define A* (B) =+ if B cannot be covered by a countable
union of members of A, and otherwise define A* (B) by

(11L.1) A*B)=inf{ L ¢(B.): Bc UB., Bse A (n21)}.
It will now be shown that A* is an outer measure. Conditions (a) and (b) are
obviously satisfied. To verify the countable subadditivity inequality (1.1),
observe that (1.1) is trivial unless = A (As) < 400, In the latter case, choose € > 0,
and, for n 2 1, choose a countable union \U A,. of sets in A in such a way that
Ap U Ay. and that

Z 0(Ane) < M(An)+E27M.

Then UA. c Uy Ayj and (c) is satisfied, because
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(11.2) MUA) < Zpi04,) sEA @A) +e

The outer measure obtained in this way is the outer measure generated by A
and ¢. For example, if A consists only of the empty set, with (@) = 0, the
generated outer measure has value +eo for every other set.

The outer measure generated by a measure on an algebra. Suppose in
(11.1) that A is an algebra, and that ¢ = A is a measure on the algebra. In this
case the generated outer measure coincides with A on A. In fact, if Be A, the
sum in (11.1) can only be decreased if each summand set B, is decreased by
making the covering sequence disjunct, and can possibly be further decreased by
substituting B,nB for B,;. With these changes B. becomes a disjunct sequence
with union B, and the infimum in (11.1) is therefore A(B).

12. Outer measures of countable subsets of R

Let A* be the outer measure on R generated by the class of bounded open inter-
vals together with the function ¢ with value b-a on the interval (a,b). With this
definition, every countable set a;,a,... is null, contrary to unsophisticated
intuition, because if € > 0, and if B, is an open interval containing a,, of length
€2, then B. covers the set a., and  ¢(B.) = €. More generally, a trivial
modification of this proof shows that if ¢((a,b)) = F(b)-F(a), where F is a
monotone increasing function on R, then the outer measure generated using this
choice of ¢ is O for every countable set of continuity points of F.

If instead of R, the space is the set S of rational numbers, and if A s
generated by the bounded "intervals"” of the form {r rational:a < r < b}, with ¢
defined on this interval as b-a, then A (S) = 0. Thus it is not necessary that the
generated outer measure majorizes ¢ on the sets where ¢ is defined.

13. Distance on a set algebra defined by a
subadditive set function

If A is a finitely subadditive function from a collection S of subsets of a space §
into R*. with A(@) = 0, define two distances between sets A and B in S by

(13.1) d)(A,B) = MAAB), d)'(A,B) = MAAB)AL.
Recall that if A is subadditive, the function AAl is also subadditive, and that if d

is a pseudometric, then dAl is also. Each of these distance functions is positive,
vanishes if its two arguments are the same, and satisfies the distance triangle
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inequality because the symmetric difference operator A satisfies the triangle
inclusion relation I(2.5). Thus (S,d)) is a pseudometric space if A is finite
valued, and (S.d)') is a pseudometric space even without this finiteness
condition. These spaces are metric if every A null set is empty. The choice of the
number 1 in (13.1) is arbitrary in the sense that the topology defined by d)Ac is
independent of the choice of the strictly positive constant c, and, if A is finite
valued, is the same as that defined by d,.

[The following standard procedure, noted for clarification, can be applied to
obtain a metric space from (Sz,d)L) but this device will not be used in this book
except in the discussion of L" as a Hilbert space. Let A be a finite valued outer
measure on the subsets of a space S and let S be the space of equivalence
classes of subsets of S, putting two subsets in the same equivalence class when
the distance between them is 0, that is, when they differ by a A null set. The
space of equivalence classes becomes a metric space if the distance between the
equivalence class containing a set A and the equivalence class containing a set B
is defined as d)(A, B). The corresponding procedure is applicable to d)' and a not
necessarily finite outer measure.]

d)' continuity of basic functions. In a pseudometric space, the pseudometric
distance function is uniformly continuous from Sx$ into R*, as exhibited by an
application of the triangle inequality (A to Ag to By to B):

(13.2) ld)'(A, B)—d)'(Ao.Bo))l < d)'(A,Ag)+d)\'(B.By),

and the primes can be omitted if A is finite valued.

The function AAl from S into R* is uniformly continuous, because (13.2)
reduces to the inequality I(MA)A1)-(MAg1)! € d)'(A,Ag) when B=By=0. A
trivial modification of the discussion yields uniform continuity of Aac for an
arbitrary strictly positive constant ¢, and continuity of (possibly infinite valued)
A

Apply 1(2.7) and I(2.8) to prove that the union and intersection operations
from S$x8 into S are dj" uniformly continuous:

d)\'(AUBA(UBy) < d)'(A,Ap)+d)(B,By),
(13.3)
d)\'(ANB.AyBy) < d)'(A,Ag)+d'(B,By).

The primes can be omitted if A is finite valued.

14. The pseudometric space defined by an outer measure

The following theorem suggests that outer measures and measures endow their
domains with useful topologies. These topologies will be exploited in Chapter
IV.
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Theorem. Suppose either that
(i) (S.8,A) is a space S, with S =25 and A an outer measure, or that
(ii) (S.8,M) is a measure space.

Let S¢ be the subset of S on which A is finite valued and let Sy be a subclass of
S,with dy! closure So (=d), closure ifS = Sy). Then under either (i) or (ii):

(@) The pseudometric space (S,d)") is complete, and the class S¢ is a closed
subset of S, at distance | from S—Sf.

(b) The d)' limit A of a d)' convergent sequence is in Sf, [S-Sy] if and only if
all but a finite number of members of the sequence are in S, [S-S ¢l; up to a null
set, there is a subsequence with limit A in the convergence sense of Section1.3.

This theorem implies that the pseudometric space (Sf.d)) is complete.
Proof of (a). Let A. be a d)' Cauchy sequence of sets in 8. Choose strictly

positive integers &; < 0, <*- that are so large that MAmAAa )= dl(A,,,,Aa )
<2 when m> o,. Then (see I(3. 7))

(14.1)  Mlim sup Ag_ - lim inf Ao, ] = M[lim supp—se0 (AanAanH)]

$limgseo Y, MAg, Ma )=0.
n=k

Define A as the superior or inferior limit (defined in Section 1.3) of the sequence
A o OF any set in S and between these limits, so that

(142) N Auc A c Y, An= (N, An) U U, Aadla,, ).

Since (14.2) remains true if A is replaced by Aq' d\VAAy ) = MAAy )
<2+l and " "

(14.3) d)\'(AAm) < dx'(A.Aa") + dx(Aa",Am) <272 (m> o).
Thus A is a d) limit (a d), limit if S = Sy) of the Cauchy sequence A., and
therefore (S,4)") is a complete pseudometric space. It is trivial that every set in

Syis at d)' distance 1 from every set in S-Sy, and that therefore Sy is d) closed.

Proof of (b). The assertions in (b) are trivial in the light of (a) and the set
convergence definition in Section 1.3.
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15. Nonadditive set functions

This book is devoted to additive set functions and their application to
integration. Subadditive outer measures are introduced only to derive measures.
Nevertheless, it is important to realize that nonadditive set functions are intrinsic
in some contexts, for example, in classical and probabilistic potential theory.
The following is a deceptively simple example of how a nonadditive set
function can arise. Let (S,S,P) be a probability space, let f. be a sequence of
functions from S into a space S' and let A’ be a subset of S'. Define the function
¢ on certain subsets of S ' (all hypotheses of function and set measurability are
omitted here) by

(15.1) ¢A) =P{U{f.eA)}

= P{at least one function of the sequence takes on a value in A'}.

This function becomes more interesting if the context is glamorized! At each
point of S the corresponding sequence of values of f. is a trajectory. The value
®(A") is the probability that a trajectory hits A'. The set function ¢ is additive
only in trivial contexts, for example, if the functions f) ... are identical, but ¢ is
subadditive in a strong sense which will not be discussed here.
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1. Completion of a measure space (S,S,A)

The measure A and its measure space are complete if subsets of A null sets in S
are also in S; if so, the subsets are A null. According to the following theorem, if
(5.S,)) is not complete it can be completed, that is, S can be enlarged to obtain a
complete measure space.

Theorem. There is a smallest 6 algebra S* satisfying the following
conditions:

. *
i)S$S>S; . .
(ii) there is a complete measure on S whose restriction 108 isA. 8" consists of
those sets A for which there are sets B and C in S satisfying the conditions

(1.1 BcAcC, MC-B)=0.
This extension of A is the completion of A.

Proof. Let S * be the class of subsets A of S for which there are sets B and C as
described in the theorem. Then A(B) = A(C). Morover if the pair of sets (B',C")
has the same properties as the pair (B,C), then A(B") = MC") = MB) = A(C)
because C - B'e S and this difference is a subset of the A null set (C- By}
(C' -B"). Define A (A) = A(B), a deﬁmuon just proved to be independent of the
chonce of Band Cin (1.1). The class S* includes S, and A* =A on S. The class
S*is closed under cornplcmentauon, because if Band C are as above, CcAcB
and B-C = C-Bis A null. The class S* is closed under countable unions,
because if A. is a sequence of sets in $*, andif, forn 21, B, c A, <C,, with B,
and C, in S, and M Cp, - B,) =0, then UB. c UA. € UC., and

AMuC. - UB.) sA[u(C.-B.)] =0.

Thus S$” is a © algebra. Moreover A" is countably additive on S *, because if A.,
B., and C. are as above, and if A. is a disjunct sequence, then B. is a disjunct
sequence, and therefore
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(1.2) A*(UA.) = MUB.) = L A(B.) = X A*(A.).

Finally, if A' is an arbitrary complete measure extension of A, defined on a ¢
algebra §', S’ must include the subsets of A null sets and therefore must include

Ain(1.1). Hence §' S*. that is, A* is the minimal complete measure extension
of A.

2. Generalization of length on R

Consider the problem of defining the length of a subset of R. To avoid problems
connected with infinite length, consider only subsets of some closed finite
interval J. Borel proposed the following procedure to extend the definition of
length to a wide class of subsets of J. For a closed subinterval I of J, define A(I)
as the positive difference between the coordinates of its endpoints. Next define A
for finite disjunct unions of intervals by additivity, next define A by continuity
successively on the class of sets that are limits of increasing sequences of sets
on which A is already defined, the class of sets that are limits of decreasing se-
quences on which A is already defined, and so on, alternating between
increasing and decreasing sequences. The point of this procedure was to define
A as a measure on the ¢ algebra B(J) of what are now called Borel sets, but the
procedure proved to be impractical, and it was Lebesgue who first devised a
procedure to extend length to the class B(J) and to B(R).

3. A general extension problem

A common measure theoretic context is the following. Let A be a finite measure
defined on an algebra S of subsets of some space, but suppose that S is not a ¢
algebra. If one wishes to treat problems involving repeated applications of
countable unions and intersections of sets without going beyond the domain of
A, this measure must be extended to a measure on G(So). Carrying through
Borel's idea of extending the definition of A first to Sog, and then to 8 og5,... and
so on (the last three words stand for transfinite procedures) to reach 6(Sq) would
be difficult, but is unnecessary because, according to Sections 3-5, the sets in
G(S) are close to those in Sy in a sense that makes the extension easy. In fact
this extension will be formulated in Theorems 3 and 4 as the extension of A
from a subset of a certain pseudometric space into the closure of the subset.

Theorem. Let (S,S,)A) be a finite measure space, let S be the domain of the
completion of A, and suppose that S = 6(So),where Sy is a set algebra. Then:
(a) S*is the dy, closure of S,.

(b) Ife>0,and ifA is in SA, there are sets A'(€) and A"(g), with the following
properties:
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G.1) A€)CACA"E), A'(€)e Sos MA-A'(E)) <E;
A"€) € Sog MA"€)-AE)) <t.

(c) The space (Sx.dx) is a complete pseudometric space. If the G algebra S is
generated up to null sets by a countable collection of sets, then this
pseudometric space is separable.

If the measure ) is not supposed finite, but S is a countable union of sets in
S, of finite measure, then (3.1) s still true.

The meaning of the countable generation hypot.hesis in (c) is that there is a
countable collection S, of sets in 8 for which every set in S, equivalently every
set in S, differs by an S null set from some set in o(S,). For example, this
hypothesis is satisfied if there is a countable collection S, of sets in S for which
U(S 2) =8.

It will be seen that the separability assertion in (c) is false for infinite valued
measures (with d, repaced by d)') even if A is o finite.

It was pointed out in Section III.13 that A is a d)’ umformly continuous
function from S into R. Thus in going from S, to SA, the domain of A is
changed from a set algebra to its d)' closure, and the functlon A is extended by
continuity.

Proof of (a). The dj closure So of 8 is_a d, closed subset of the complete

pseudometric space (S, s ). The class So is closed under complementation,
because if A. is a sequence in 8o with dj, limit A, then A. is a sequence in S,
with d), limit A. The class So is closed under finite unions and intersections,
because (Section III.13) if A. and B. are sequences with respective
pseudometric limits A and B, then A.UB. and A.NB. are sequences with
respective pseudometric limits AUB and ANB. Thus So is an algebra, evenac

algebra, because a countable union of measurable sets is the dj, hmlt of the
partial unions. Hence So > S, and finally So S* because the sets of S* differ

from those of S by null sets.

Proof of (b) It is sufficient to show that A ”(€) exists, because application of this
result to A yields A '(€), on complementation. Let A* be the outer measure
generated by S, and the restriction of A to Sy. Then l A" on So, and the
existence of A"(g) is equivalent to the statement that * = A on S*. The outer
measure A” is finitely additive on S* because if A. and B. are sequences in Sg
with respective dj, limits the disjunct pair of sets A, B, then the dj, pseudometric
continuity properties yield

(32) A*(AUB) = lim A*(A.UB.) = lim [A *(4.)+A*(B.-A.)] = A*(A)+L*(B).

The outer measure is countably additive on S? because, on the one hand, as an
outer measure it is countably subadditive, and on the other hand, if A. is a
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disjunct sequence of sets in S* with union A, then Z.*(A) 2 2" X*(A.), and
therefore A" (A) 2 El*(A.). Thus, on S, the two set functions k and A* are
measures that are equal on S, and therefore equal on S because they are the
unique dj, continuous extensions of their common restriction to S,,.

Proof of (c). According to Theorem IIL.13, (S",dx) is a complete pseudometric
space. Suppose that up to null sets S is countably generated by a sequence B. of
sets in S. The algebra 0y(B.) is countable because it consists of finite unions of
finite intersections of the members of B. and B.. It is therefore sufficient to
prove that the d), closure of Gy(B.) includes S*. But according to what has just
been proved, such a closure is s,

Proof of the last assertion of the theorem. It is no further restriction than that
stated in the theorem to assume that § = US. is a disjunct countable union of sets
in 8; of finite measure. Apply the theorem for finite A separately to each
measure B—=A(BNS,,) on the class of intersections with S, of the sets in S*, with
S& replaced by the algrebra of intersections with S, of the sets in Sq. If A is in
S* and if € > 0, there is a set C, satisfying the conditions

ANS, < Cp C Sy, Cn € Sog. MCp—A) < 27,

then UC. is a superset of A, in Syg, and M(UC.~A) < €. Thus the part of (3.1)
involving a superset of A in Syq is true. Application of this result to A, together
with complementation, yield the other part of (3.1).

4. Extension of a measure defined on a set algebra

Theorem 3 shows how close the measurable sets of a finite measure space are to
the sets of an algebra that generates the class of measurable sets. The following
theorem uses this fact to show, under appropriate hypotheses, that a measure on
an algebra can be extended to a measure on the generated ¢ algebra.

Theorem. (Hahn-Kolmogorov). A G finite measure Ay on an algebra S of
subsets of a space has a unique extension to a © finite measure on (8 ).

Proof when ), is finite valued. Define S = 6(Sp) and define A* as the outer
measure generated by So and A. Then A = A" on So. It will be shown that the dj «
closure Sy of Sg includes S and that the restriction of A" to S is the desired
extension of A. In other words, the situation will be brought into the context of
Theorem 3. The class S is an algebra, according to the argument used in the
proof of Theorem 3, except that A* takes the place of A in the pseudometric.
Moreover A* is countably additive on S by the proof of countable additivity of
A* in the proof of Theorem 3. It follows that Sy is a G algebra. Thus A" offers

the desired extension of A and is unique because, as remarked in Section 3, the
extension from Sy to S necessarily extends A by continuity.
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Proof when ) is not finite. If S = US. is a disjunct countable union of sets in
Sy of finite measure, apply the theorem for spaces of finite measure separately
to each measure B— Ay(BNS,) on the class of intersections with S, of the sets
in Sy to obtain an extension of Ay to G(Sg). Since the separate extensions are
unique, the overall extension is unique.

5. Application to Borel measures

Theorem. Let S be a metric space, let . be a measure extended by
completion from B(S) to B)‘(S), and suppose that S is a countable union of open
sets of finite measure. Then if A is a measurable set and € > 0, there is a closed
subset A'(€) of A and an open superset A"(e) satisfying the conditions
MAa-A'e)) <, MA"E€)-A)<E.

Proof when A is finite valued. Apply Theorem 3 with S, the set algebra
generated by the class of open subsets of S. According to Theorem 3, the
assertions involving A'(e) and A"(€) are true except that unfortunately these sets,
described in Theorem 3, are not respectively closed and open in the present
context. To get an open version of A"(€) it is sufficient to show that if A is in
Sog there is an open superset of A that can be chosen to have measure arbitrarily
near that of A. Now the sets of Sog are disjunct countable unions of subsets of §
of the form BNC, where B is open and C is closed. It is therefore sufficient to
show that a closed set C has open supersets of measure arbitrarily close to that
of C, and since a closed set C is a countable intersection of open supersets, this
assertion is true. To get a closed version of A'(€), apply the result just obtained
to A. Thus the theorem is true when A is a finite measure.

Proof when A is not finite valued. If B is an open subset of S of finite measure

apply the present theorem for finite measures to the restriction of A to subsets of

B and thereby find that if A is a measurable subset of B, then there are open

subsets of B that are supersets of A of measure arbitrarily close to A(A). This fact

will now be applied in the present context, in which § = US. is a countable

union of open sets of finite measure, to find a set A"(€) with the desired

properties. If A is a measurable subset of S, and if € > 0, there is an open subset

Ap" of S, for which ANS, c A," and MA,"-ANA,) < €27". The set WA,"
satisfies the conditions for A"(e). Apply this result to A to find a closed subset

of A satisfying the conditions for A'(g).

6. Strengthening of Theorem 5 when the metric space S is
complete and separable

The following theorem strengthens Theorem 5 in the more restrictive context of
a complete separable metric space.
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Theorem. Let S be a separable metric space and let ) be a finite' measure
extended by completion from B(S) to B*(S).

(a) The space (B‘(S),dx) is a complete separable pseudometric space.

(b) Prohorov) IfS is complete then Theorem 5 is true with A'(€) compact, that
is, the measure of a measurable set is the supremum of the measures of its
compact subsets.

Proof of (a). The class S, of finite unions of balls with rational radii, with
centers a countable dense subset of S, is countable. Each open subset of § is the
limit of a monotone increasing sequence of sets in Sy, and therefore is a dj, limit
of Sy. Hence the class of open subsets of S is separable in the dj, pseudometric.
According to Theorem S5, the class of open sets is dj dense in the class of
measurable sets, and therefore the latter class is d, separable.

Proof of (b). In view of Theorem §$, it is sufficient to prove that if A is a closed
subset of S, then

6.1 MA) = sup {MF): F c A, F compact}.

In fact it is sufficient to prove (6.1) with A = §, because A provided with the §
metric is itself a complete separable space, and B(A) is the class of those Borel
sets relative to S that are subsets of A. If A(S) = O the theorem is trivial. If
MS) >0,choose ¢ < A(S). The space S is the union \UB,. of countably many
closed sets of diameter < 1 (say the closed balls of diameter 1 with centers at the
points of a countable dense subset of S). Choose enough sets from B;., with
union B), to get A(B,) > c. If closed sets B,,..,By., have been defined, with each
set Bj a finite union of closed sets of diameter < 1/j and A(B;~-nBj.,) > ¢, go
on to choose finitely many closed sets B,. of diameter < 1/n and union B, in
such a way that A(B;~-nBp) > c. The closed set M B, has measure at least ¢
and is compact because the set has the property that, for every strictly positive
integer n, the set B can be covered by finitely many closed sets of diameter <
1/n. Hence (b) is true. (This covering property is a standard compactness
criterion: the set B is compact because if C is an infinite subset of B, there must
be an infinite subset of C in a closed set C; of diameter <1, an infinite subset of
C, in a closed subset C, of C; of diameter <1/2, and so on. The intersection
MC. is a limit point of C.)

7. Continuity properties of monotone functions

Recall that a monotone increasing function F from R into R, has left and right
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limits at each point s of R, .

F(s-) = supy<sF(t), F(s+) = infpsF (D),

and that F(s-) S F(s) S F(s+). If the first [second] inequality is actually an
equality, F is left [right] continuous at s; if both inequalities are actually
equalities, F is continuous at s. The function F can have at most countably many
discontinuities, because at each discontinuity point s there is a rational number
strictly between the left and right limits at s, and different discontinuity points
correspond to different rational numbers. At a discontinuity point s, the dif-
ference F(s+)-F(s-) is the jump of F at s. The left [right] limit function s=— F(s-)
[s=*F(s+)] is a left [right] continuous monotone increasing function with itself
as left [right] limit function, and a continuity point of F or of its left or right
limit function is necessarily a continuity point of all three functions.

More generally, if F is a monotone increasing function from a dense subset
of R into R, one sided limits F(s-) and F(s+) exist at every point s of R, and
F(s-) SF(s)SF(s+) whenever F is defined at s. The left and right limit functions
are respectively left and right continuous monotone increasing functions on R, a
continuity point of either is a continuity point of the other, and F has a limit at
such a point. The set of points of R at which F does not have a limit is
countable. An extension of F with domain R is monotone if and only if the
extension lies between the left and right limit functions of F. A monotone
extension is therefore uniquely determined at all the continuity points of these
left and right limit functions.

The necessary changes in the preceding discussion if the domain of F is a
subinterval of R or a set dense in such an interval are immediate.

8. The correspondence between monotone increasing
functions on R and measures on B(R)

The class of monotone increasing functions F on R corresponds to the class of
measures A on B(R) by way of the fact that the A measure of a Borel set is the
increase of F on the set. A precise statement of this correspondence is the
content of the following theorem.

Theorem. Let F be a finite valued monotone increasing right continuous
Junction on R. Define F(—oo) as the right limit (> —) of F at —oo, and define
F(+00) as the left limit (<+o0) of F at +oo.

(a) Define a set function Aof on each right semiclosed interval of R by setting

@8.1) 2or((@blNR) = F(b)-F(a), (-0 S a<h < +oo).
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Then AoF has a unique extension to a measure Ar on B(R); this extension is
finite on compact sets. Denote by 7\.]:‘ the complenon of this measure and
choose € > 0. Each set A in the domain of Lp" lies between a closed subset and
an open superset whose difference has A" measure at most €. Moreover if
lp (A) < +oo, there is a finite union B of open intervals for which Ap (AAB) <.

(b) Conversely, if A is a measure on B(R), finite on compact sets, there is a
finite valued monotone increasing right continuous function Fj on R, uniquely
determined up to an additive constant by the condition

(8.2) Fa(b) - F(@) = A((a,b]), 00 <A< b < 4o,

(c) One monotone function determined in accordance with (b) by the measure
Ar in (a) is F, and the measure determined in accordance with (a) by the
monotone function F in (b)is A.

After this theorem has been proved the asterisk will be dropped, that is, A
will be written instead of Af".

Proof that Agr defined by (8.1) has an additive extension to the set algebra
S, of finite unions of right semiclosed intervals. It is trivial that AyF is finitely
additive on the class of right semiclosed intervals of R. According to Lemma
II1.2, it follows that this set function has a unique finitely additive extension to
the algebra S,. From now on, ‘Agf" refers to this extension.

Proof that A,r is a measure on S;. The monotonicity and right continuity of F,
not yet used, are needed to prove that Ayr is a measure on 8. The fact that F is
monotone increasing makes Agx positive. To prove countable additivity, it must
be shown that if I is in Sy, that is, if I is a finite disjunct union of right
semiclosed intervals, and if I = \UL is a disjunct countable union of members
of Sy, then

(8.3) AR = ZAp(l.).

Since Agr is additive, each member of L can be replaced by its component
intervals, and therefore it can be supposed that each set J; is a right semiclosed
interval. Since each component interval of I is the countable union of its
intersections with the members of I, it is sufficient to prove (8.3) for I a right
semiclosed interval. Thus from now in it will be supposed that the sets in (8.3)
are all right semiclosed intervals.

Since 1> U7 I. for all n, and since Agf is monotone and finitely additive on

So. n
Aor(D) 2 X Aoril))

for all n, and therefore
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(8.4) MR 2 X ARL).

The reverse (subadditivity) inequality is trivial if the sum is +eo. It is therefore
sufficient to prove subadditivity when each summand in (8.3) is finite. Let J be
a right semiclosed interval with compact closure J”, a subset of I. Choose € > 0.
Let Ij' be a right semiclosed interval, with the same left-hand endpoint as /; and
the same right-hand endpoint if that endpoint is +co, but otherwise with right-
hand endpoint to the right of that of /; but so close that

MoRU}) < Mofllj) + €27,

Let Ijo be the interior of /;'. The compact interval J' is covered by L. Apply
the Heine-Borel theorem to find that

kK o Kk
JcJ'cUlI. cUlI.'

for sufficiently large k, from which it follows, in view of the monotonicity and
finite subadditivity of AyF, that

k
(8.5) AFU) S AR Y S ):.1 AF() ST AHL) +€.

When ¢ tends to O and J increases to I, (8.5) yields the desired countable
subadditivity, and therefore the countable additivity, of Ar on S,.

Proof of (a). According to Theorem 4, the measure Ayr has a unique extension
to a measure on 6(Sp)=B(R), and according to Theorem 1 this measure has a
unique completion. According to Theorem S, a set A in the domain of the
completion lies between a closed subset and an open superset B' with an
arbitrarily small difference set measure. If Af(A) < 4o and € > 0, the last
assertion of (a) is proved by choosing B' to make the difference set measure at
most €/2, and then choosing a large enough number of the pairwise disjoint
intervals making up B to be within &2 of the measure of B'. The measure A is
uniquely determined by F, because the values of Af on right semiclosed
intervals, and therefore on the sets in Sg,and finally on the sets of B(R), which
are all in the d), closure of S, are uniquely determined by F.

Proof of (b). If A is a measure on the o algebra B(R), finite on compact sets,
there is a monotone increasing right continuous function F on R, determined
up to an additive constant by its increase on right semiclosed intervals. For
example, the monotone increasing right continuous function defined by

F(b) r©b))  ifb>0,
0 ifb=0,
-M®0]) ifb<0

(8.6)



46  Measure Theory

satisfies (8.2). If k((-mb]) is finite for some b, and therefore for all b, F), is
usually defined by

8.7 F(b) = A((-e0,b])
for all b, to make Fj(—oo+) = 0.

Proof of (c). What has been proved under (a) and (b) is that certain functions
and measures are paired: if a measure A and a monotone function F are paired,
the increase in F on a right semiclosed interval is the A measure of the interval.
This is the content of Equations (8.1) and (8.2). When A and F are paired, A is
written as Ag or F is written as Fj, to stress the pairing. Part (c) of the theorem is
thus trivial.

Terminology. When F(s) = s for all 5, the measure Af is Lebesgue measure,
named after the mathematician who inaugurated modern measure theory by
defining this measure. In the general case A r is called, depending on the context
and the predilections of the caller, a Lebesgue-Stieltjes measure on R, a Radon
measure on R, or a distribution on R, or if M(R) = 1, a probability measure or
probability distribution on R. In the last case, in which F is normalized by
setting F(-co+) = 0 and therefore F(+e-) = 1, F is a probability distribution
function on R. The terms “Lebesgue measure” and “Lebesgue-Stieltjes
measure” usually refer to the completed measures of Borel sets. The general
theory of measure and integration studied in this book is sometimes referred to
as Lebesgue measure theory.

Modification for intervals of R. It is obvious how to adapt the preceding
discussion to define measure on an open subinterval / of R: one simply starts
with a monotone function on / instead of a monotone function on R. There is no
added complication if / contains its right endpoint. There is, however, a slight
complication if I contains its left endpoint, in that the monotone function on /
must be allowed to have the left endpoint as a right discontinuity. Let I be an
interval containing its left endpoint a, and let F be a finite valued monotone
increasing function on /, right continuous except possibly at a, with Fj(a) = 0.
The discussion in this section, as adapted to 1, leads to a measure Ar on B(J),
finite on compact sets, determined by setting F(a) = 0 and

(8.8) A{([a,b]) = F(b)-F(a) ® > a).

The singleton {a} has measure F(a+). Finally, the adaptation of the discussion
to intervals of R is now trivial: map such an interval onto a subinterval of R.

Example. Let A be Lebesgue measure on R, and consider the class of countable
unions of open intervals (n,n+1) with n an arbitrary integer. If A and B are two
such unions, not identical, then they differ by at least one set of measure 1.
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Hence d)'(A,B) = 1. Since there are an uncountable number of such unions, the
class of Borel sets is not separable in the d)' metric, even though the class is the
O algebra generated by a countable collection of sets, for example by the open
intervals with rational endpoints.

9. Discrete and continuous distributions on R

Let F be a monotone increasing right continuous function on R. If F has a jump
ata point s, Ag({s}) = F(s)-F(s=) > 0. Every singleton is Ag null if and only if F
is continuous, and in that case A is a continuous distribution. If F increases
only in jumps, that is, if F(b)-F(c) is the sum of the jumps at points in (a,b}, for
every right semiclosed interval (a,b), F is a jump function, and A is a discrete
distribution. For example, if the sequence r. is dense in R, the function F de-
fined by '

©.1) Fs)= Y 2n

m<

is a jump function, with jump of 2" at r,, and F is continuous except at the
points of re.

10. Lebesgue-Stieltjes measures on R and their
corresponding monotone functions

If F is a finite valued function from R" into R, and if a < b, define the differ-
ence operator Dj(a,b) acting on F by

(10.1) (Dj(@,b)F)(s1.....5n)

= F(S10e 15100 Sj 100N~ F(S 1100151 S 1aeesSN
with the obvious conventions when j = 1 and j = N. The N operators defined in
this way commute with each other. In the present context, the appropriate
definition of a right continuous monotone increasing function is that it is a
function F from R" into R which satisfies the following two conditions:
(a) F is right continuous in each variable when the others are fixed.

(b) If (ay,....ay) and (b,,...,by) are points of R”, with a; < b; for all j, then

N
(10.2) ([11 D.(@.,b.))F 2 0.
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In particular, if F tends to O when at least one of its arguments tends to -0, and
tends to 1 whcu all its arguments tend to +co, F is a probability distribution
function on R Let Sy be the algebra of finite unions of right semiclosed
intervals of RY. If I is the bounded right semiclosed interval (a;,b x*)(ay.by],
define Aog(I) as the left side of (10.2). If I is not bounded, define Ay(I) as the
obvious limit of Az on bounded intervals. The argument in Section 8, for N=1 —
that Agr is finitely additive on the class of right semiclosed intervals and
therefore has a finitely additive extension to the algebra S of finite unions of
these intervals, that this extension is a measure on S, and therefore can be
extended to a measure on o(S,) = B(R ) finite valued on compact sets, and
then can be completed — is only slightly more complex when N>1, and the
details of this generahzauon will be omitted. Theorem 8 is therefore true for
measures on RY, with essentially the same proof as %Iven when N=1. In
particular, if Fy is a probability distribution function on R then k(RN) =1, and
Ar is a probability measure, or probability distribution on RY.

Conversely suppose that A is a measure on B(RV), finite on compact sets
There is then a monotone increasing right continuous function F; on RY,
satisfying the N-dimensional version of (8.1), that is, the left side of (10.2) is
A,—((a,,b.]x )(aN.bN]) The function can be normalized, say by defining it as 0
at the origin. The measure defined by F;,, following the procedure in the first
part of this section, is then A. In particular, if A((-00,0]X+X(-00, 0)) is finite, F;
can be defined by

(10.3) F3(S10mesSw) = M((00,51 X500, 5x]).

11. Product measures

Note on the construction of product measures. If integration is introduced
before product measures, product measures can be defined directly, using
certain integrals, thus avoiding repetition of some of the arguments in the proof
of the following theorem. For further details on product measures defined in
terms of integrals, see Note on the construction of product measures in
Section VI.10.

Theorem. Fori=1,...N let (5;,8;,A;) be a © finite measure space, define
S=8;xxSy, 8 =8;x xSy,
and define .. on S' by
(11.1)  MAx-xAy) = f] A@A) A eSi i=1,..,N).

Then A can be extended uniquely to a measure on o(S").
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Proof. According to Theorem IIL3, the set function A has a unique finitely
additive extension to a set function on Gy(S'). To prove the theorem, it is
sufficient, according to Theorem 4, to prove that this extension is a measure on
Go(S). Suppose first that N=2 and that A, and A, are finite valued. To prove that
A is a measure on Gy it is sufficient to prove that if A. is a decreasing
sequence of sets in 6o(S"), given for n %1 by

(11.2) An =\ BpXCpe (Buke Sy, Crke S»),

where the union is finite and disjunct, and if MA. = @, then lim A(A.) = 0.
Without loss of generality, the summand sets in (11.2) can be partitioned for
each value of n if necessary (see Section IL5) to make the members of Bp.
mutually disjoint. Define a function f,; on §; by

Sfn(s) = A(Cpp) if s€ Bpi (k21),
=0 if s UBp..

The sequence f, is a decreasing sequence of functions, with limit O because, for
each sin Sy, the set {t € Sy (s,f) € A,} decreases monotonely when n—eo, with
limit the empty set. If € > 0, the set {s € §): fp(s) > €} is a subunion of \UB,;.
and decreases monotonely when n—eo, with limit the empty set . The A,
measure of this subunion therefore decreases monotonely, with limit O when
n—oo. Hence

(11.3) MAp) = ZMBro)haCre) < Mi{s: fu(s) > E}A(Sy)
+eM(S)) = eN(S)) (n—o0).

It follows that limA(A.) = O, as was to be proved. If A; and A, are not
necessarily finite valued but if, for i = 1,2, §;' € S;, and A(S;') < +ee, then the
result just obtained is applicable to 5,'xS,'". It follows that the theorem covers &
finite measures, as stated. If N = 3, the space $,x5,%S; can be written in the
form (5;%5,)xS; and the theorem for N=3 is thereby reduced to the case N=2.
The induction proof for general N is now obvious.

In Theorem 11 the measure A on o(S') is the product measure, written
A x+xAy, of the factor measures A,,...,Ay.

12. Examples of measures on RY

Example (a). For i=1,...,N let F; be a monotone increasing right continuous
function on R and define the monotone increasing function Fon RY by
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F(syy...8n) = Fy(sy ) Fp(sn).

The Lebesgue-Stieltjes measure A on RY is then the product measure of the
factor measures Ag,,...Ar, In particular, if Fi(s) = s for all i, A is N-
dimensional Lebesgue measure on B(RY), the extension of N-dimensional
volume to the class of Borel sets. As always, this measure can be completed.

Example (b). If A is a finite valued measure of Borel subsets of the unit
square S=[0.l!x[0.l]. it is the restriction to subsets of S of a Lebesgue-Stieltjes
measure on R for which R%S is null.

Example (c). In Example (b), let D be the diagonal of S through the origin
and let v be a probability measure of Borel subsets of D. The measure v can be
considered to be the restriction to subsets of D of a probability measure A on the
Borel subsets of S, with A(S-D)=0.

13. Marginal measures

Let (5,,S;) and (S,,S,) be measurable spaces, and define $=S,x5,, S=8,>8,.
Then a measure A on o(S) induces marginal measures ., on S; and A, on S 5.
M(A]) = MA|X$2) and M(Az)=7t(S|xA 2) fOI'A] in Sland Az in s;.

Example (a). If A = A;X), is a product measure with finite valued factor
measures A; and Ay, the marginal measures are A,(S;)A; and A(S;)A,. For
instance, in Section 12 Example (b), if A is two dimensional Lebesgue measure
on the square S, the marginal measures are both one dimensional Lebesgue
measure on the unit interval [0,1].

Example (b). In Section 12 Example (c), if v is 272 times one-dimensional
Lebesgue measure on D, the two marginal measures of A are again one-
dimensional Lebesgue measure on [0,1].

As these two examples show, marginal measures by no means determine the
measure of which they are marginal.

14. Coin tossing (Continuation of Section IIL.9)

First mathematical model. In the discussion of this model in Section II1.9,
a finitely additive set function P was defined on the ¢ algebra S.. of finite
unions of dyadic right semiclosed subintervals of (0,1]. Functions x;,x,... were
defined as the successive digits in the dyadic representation of a point of (0,1].
Unfortunately the sets III(9.3) are not in S. and therefore their probabilities
cannot be defined until P is defined on o(S.,.,)=B((0,I]). Lebesgue measure on
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(0,1] provides the necessary extension of P. Under this extension, the first set
A=U{x.=1} inIII(9.3) has a well defined probability:

(14.1)  P{A}=1-P{A}) =1- P{N{x=0}} = 1- limy_y0e 2 = 1.

This result is a special case of the Borel-Cantelli theorem. It will be proved in
Section XI.19 that the probability of the second set in ITI(9.3) is also 1.

Second mathematical model. In the second mathematical model, P is a
finitely additive set function defined on the algebra S.. of subsets of the space S
of infinite sequences of 1's and O's. This algebra is the class of finite unions of
sets determined by fixing a finite number of coordinates of S. The extension of
the domain of P from S to 6(S.) can be made by mapping this model into the
first model, that is, the conditions x,=q,,....xp=a, in the second model define a
subset of (0,1] in the first model, and probabilities are thereby referred from the
second model to the first. A more direct approach is to prove that, in the second
model, P is countably additive on S. and therefore has an extension to a
measure on 0(S.). To prove countable additivity of P on S.. it need only be re-
marked that, according to Section II.2 Example (b), if a countable union of sets
in S is itself in S then only a finite number of summands are nonempty. In
other words, the union is effectively a finite union. Thus, countable additivity is
trivially the same as finite additivity in this case. Alternatively, the Hahn-
Kolmogorov theorem can be invoked to prove that P has a measure extension to
0(S ),

15. The Carathéodory measurability criterion

Let (S,S,A) be a measure space, and let A" be the outer measure generated by S
and A. Then (Section IIL.11) A* is a countably subadditive set function, equal to
AonS.

Theorem. If A is a subset of S, and if B. is a finite or infinite disjunct
sequence of measurable sets, with union B, then

(15.1) A*(ANB) = ZA*(ANB.).

Proof. Since A* is countably subadditive, it is sufficient to prove (15.1) with
“2"” instead of “=". Let C be a measurable superset of AnB. Then

(15.2) MC) 2M(CNB) = MCNB.) 2 L A*(ANB.).

'BX definition of A, the set C can be chosen to make A(C) arbitrarily close to
A (ANB), thereby yielding the desired inequality.
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The Carathéodory approach to measure theory starts with an outer measure
and defines a set B to be measurable if (15.1) is satisfied with B = S and only
two summands.

16. Measure hulls

In this section thc subsets of a o finite measure space (S,S,2) are treated, and the
outer measure A" is the outer measure generated by S and A. If A is a subset of §
of finite outer measure, a set A* is a measure hull of A if A* is a measurable
superset of A and if A(4*) = A*(A). A measure hull A* is determined uniquely
up to null sets because if A;* and A,* are measure hulls of A then A;*NA,* is
also a measure hull of A, and

ATA) = MA*) = MA *OAL*) = MAr®).

Every set A of finite outer measure has a measure hull, because if Ae is a
sequence of measurable supersets of A with lim A(A.) = A (A), then NA. is.a
measure hull of A.

If A has measure hull A* and B is measurable, then ANB has measure hull
A*NB because there must be equality throughout the following string of
equalities and inequalities:

(16.1) MA*nB) = A*(AnB) = A*(A) - A*AnB) > MA*) - AMA*NB)
=MA*NB).

Here the first equality is a special case of (15.1). This hereditary character of the
measure hull justifies the definition that for an arbitrary subset A of S, its
measure hull is defined as a superset A® of A with the property that if B is a
measurable set of finite measure, then A*N\B is a measure hull for ANB. Every
set A has a measure hull, because if § = \US. is a representation of S as a count-
able union of measurable sets of finite measure, and if ANS,, has measure hull
A,,*, then WA." is a measure hull for A. The reader is invited to verify that a
measurable set A is a measure hull of A if and only if the difference A™-A has
no non null measurable subset. In analysis involving arbitrary subsets of S it is
frequently advantageous to replace sets by their measure hulls.
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Measurable Functions

1. Function measurability

In the operations of analysis, it is desirable to work in a class of admissible
objects that does not have to be enlarged as the work progresses. For example,
in real analysis the basic set of admissible numbers is R, sometimes enlarged to
R. The class of rational numbers is too small because it is not closed under limit
operations. Similarly, in studying measures, a natural class of admissible sets is
a o algebra, because closure under the operations of complementation and the
forming of countable unions and intersections are needed.

In this chapter, functions from a space S into a space S' will be studied, and
the first decision to be made is the choice of admissible functions. Again, it is
desirable to choose a class that need not be enlarged as the work progresses, and
if S is coupled with a o algebra S of its subsets to form a measurable space
(S,S), it is to be expected that the chosen class of functions will depend on S.
For example, it is desirable that the indicator functions of sets in S be in the
class of admissible functions. The following are (interrelated) reasonable re-
quirements.

(a) The class should be closed under the operations of taking linear
combinations, products, and limits, if such operations are meaningful for S'. If
S '=R, the class of continuous functions is not large enough to satisfy this
condition because the limit of a convergent sequence of continuous functions
need not be continuous.

(b) If f is an admissible function from S into a space S ' and g is an admissible
function from S' into a space S", then g(f) should be admissible as a function
from S into S".

(c) If fis an admissible function from S into a space §', the set of points of S at
which f satisfies reasonable conditions, say that the set of points of S at which
the values of f lie in an admissible subset of S, should be an admissible subset
of §.
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Condition (c) leads to the concept of measurability of f, as formulated in the
next paragraph, and will be seen to imply conditions (a) and (b).

Let (5,8) and (5°,S') be measurable spaces, and let f be a function from S into
§". It is convenient to call such a function a function from (S,S) into (S',S") as
well as from § into S'. The range space S ' of the function is commonly,
especially in probability contexts, called the state space of the function. The
inverse function f~! takes complements relative to S' into complements relative
to S, unions (even uncountable ones) in S into the corresponding unions in S,
intersections (even uncountable ones) in S into the corresponding intersections
in S. That is, for example, if A ¢ is a family of subsets of S', then

FUUAY) = UFIAY).

Hence f °}(S"), the class of inverse images of the sets in ', is a & algebra; it will
be denoted by o(f). This G algebra is, for given (§',S'), the class of subsets of S
determined by measurable conditions onf. If 6(f) c S, that is, if the inverse
image of a measurable set in the range space of f is a measurable set in the
domain space, the function fis measurable from (S.S) into (§'S'). It is
immediate that the transitivity condition (b) is satisfied: if f is a measurable
function from a measurable space into a second one, and if g is a measurable
function from the second space into a third, then g(f) is measurable from the first
into the third, and o{ g(N] < o(N.

Example. Given a space S, a measurable space (S',S), and a function f from §
into §', one choice of & algebra S of subsets of S making f measurable from
(5.8) into (§',8) is S = 25. The smallest choice of S making f measurable from
(S,S) into (S'.8") is o(f). In particular, if S' is countable and §' =25, f is mea-
surable if and only if the inverse image of every S' singleton is in 8. This is the
definition given in Section IILS in studying discrete state spaces.

A function f may be described as S measurable, or measurable with respect
to S, or measurable from S into S ', or simply measurable, if the relevant spaces
or G algebras missing from the description have been specified or if the context
is so general that full measure space identification is not needed. Thus a
function identically equal to a real number is a measurable function from an
arbitrary measurable space into R, that is, into (R,B(R)). More generally, the
indicator function of a subset of a measurable space is a measurable function
from the space into R if and only if the subset is measurable. In probability
contexts, a measurable function is given the alias random variable.

Testing for measurability. In testing for measurability of a function f from a
measurable space (S,S) into a measurable space (S ',S'), the fact that 8' and
f -I(S") are o algebras implies that it is sufficient for measurability that the
condition f-1(Sy)c S be satisfied for a subclass Sy' of S' large enough to
generate the G algebra S/, that is, large enough to make 8 '=0(8S’). In particular if
(5',8") = R,B(R)), the real valued function f is measurable if f-1(4') € S for
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every interval A’ of the form (-c0,b), that is, if {f<b} € S for all b. In fact, it was
pointed out in Section I1.4 that the class of these intervals generates B(R). Other
sufficiently large classes Sy’ are the classes of intervals of the form (-05] or of
the form (b,+e0), and so on. A dense set of values of b yields a sufficiently large
class of these intervals. The definition of measurability of a real valued function
is frequently given using one of these classes of intervals instead of the full class
S'=B(R).

Vector functions. If f},....,; are functions from S into S', the vector function
f: s = [/i(5),....fn(s)] from S into S is measurable from (S,S) into (S "'.O(S"‘))
if and only if each function Jj is measurable from (S,S) into (S',S"), because the
product sets A x4 5, with factor sets in S' generate the G algebra (S "), and

@A) = AT AR,

The class of sets determined by measurable conditions on functions. If
{f1.t €1} is a collection of measurable functions from (S5,S) into (S',S"), with / an
arbitrary index set, the ¢ algebra o(f,t € I) of subsets of S determined by
measurable conditions on f. is the ¢ algebra generated by the sets of the form
{fi € A'}, for ¢t in I and A' in S'. This ¢ algebra is the smallest ¢ algebra of
subsets of S making each of the given functions measurable. In particular, when
I=1,...,n, the o algebra o(f;,....fy,) is the ¢ algebra of subsets of S of the form
{(f1,---n) € A'}for A’ in O(S™).

Let (S,S), (5',8"), and (§",S") be measurable spaces, and let f be a measurable
function from the first space into the second. By definition of o(f), f is not only
measurable from (5,S) into (S'.S'), but even measurable from (go(f) mto
(5',S"). Thus if g is a measurable function from (S",S) into (S",S"), then h = g(f)
is not only measurable from (S,S) into (S",S") but even measurable from
(S.0() into (S*,S"). This restrictive measurability condition on a measurable
function k from (S,S) into (S",8") is not only necessary but, under certain
conditions on the spaces, is sufficient to ensure, for given f, measurable from
(S5.S) into (S',S"), and given h, measurable from (S,S) into (§",S"), that i can be
written in the form g(f), with g measurable from (S°,S') into (S",S"). This fact
will not be needed explicitly but gives intuitive content to later definitions of
conditional expectations and probabilities. It will be proved, to exhibit the
principle involved, when S" contains the singletons and A is a function from S
into S", taking on oniy countably many values. Suppose then that A takes on the
values in the sequence a., and {h = an} € o(f). Then {h =a,) = {fe A} for
some set A, in S'. Define g = a, on A, to obtain the representation h = g(f),
with g measurable from (S',S') into (S",S").

These simple remarks suggest that, whenever {f;,t €} is a collection of mea-
surable functions from a measurable space (S,S) into the measurable space
(§',S", and a reasonable definition is needed of a measurable function g of all of
these functions into some measurable space, one reasonable definition is that g
be measurable from (S, 6(f;.f € 1)) into the prescribed space.
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Measurability of a function defined on a subset of a space. If (5,S) is a
measurable space, a function f from a set A in S into the measurable space
(5',8") is measurable if f"'(S') c S. Equivalently, denoting by S4 the class of
subsets of ‘A in S, the function f is measurable if and only if the function, when
considered as a function from (A,S4) into (S',S"), is measurable. In particular,
the restriction to A of a measurable function from (§,S) into (S',8'") is
measurable.

Borel measurable functions. A measurable function from one metric space
into a second is Borel measurable. A continuous function from one metric space
into a second is Borel measurable, because the inverse image of an open state
space set is open and the open state space sets generate the o algebra of Borel
state space sets.

Approximation of measurable functions by step functions. A step function
from a measurable space (S,S) into R is a finite linear combination, with
coefficients in R, of indicator functions of sets in S. A step function is a simple
example of a measurable function from the measurable space into R. An
essential tool in the study of measurable functions from (S,S) into R is the fact

that a measurable function f from S into R is the limit of a monotone increasing
sequence f. of positive step functions. For example, define

fa=(-12"  on {G-D27 <f<j2™") (1<j<4m),
1.1n
=2 on {f22"}).

If f is a measurable function from (S,S) into ﬁ, fis still the limit of a sequence of
step functions by way of the definition

fa=@-1)27"  on (-2t sf<j2™y (<4
(1.2) =-2" on (f<—2n-2-n}
= 2" on {(f=2n).
Under this definition, the sequence f; is monotone increasing, neglecting a finite
number of terms, if fis lower bounded.
2. Function measurability properties

(a) Applications of transitivity. If f,,....f; are measurable from (S,S) into a
metric space S’, and if fis measurable from (S'",B(S'")) into R, then f{f,....h) is
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measurable from (S,S) into R. For example, if $'=R it follows that |f}}, cf; (forc
a constant), 1/f; (if f; never vanishes), I f., [If., the pointwise maximum
fiv-Vfn, the pointwise minimum fiAAf, are measurable whenever each
function f; is. The last two are also measurable when the functions are extended
real valued. It can argued more directly that the pointwise supremum f = sup fe
is measurable for a finite or countably infinite sequence f. of extended real
valued measurable functions, by noting that {f>c} =\U{f.>c}. This assertion of
measurability is incorrect for uncountable collections of functions.

(b) Sets defined by inequalities between extended real valued measurable
functions. If f; and f, are measurable functions from a measurable space into R
the sets {f,>f2). {12}, and {f=f,} are measurable because (first set)

(h>f2) =Ur rational [i>r )Nl <r}],

the second set is the complement of the first, and the third set is {f,<f; }n{fi}-
A somewhat more sophisticated proof of measurability of these sets applies (a).

(c) Completeness of a measure and function measurability. If f and g are
functions from a complete measure space into a measurable space, and if f=g
almost everywhere, then if one of the functions is measurable, the other is also.
Less trnvnal than this is the fact that if (S,S,A) is a o finite measure space and if
(5.8* A% is the completed measure space, then if f is a measurable_ functlon
from (S, S‘) into R there is a function g, measurable from (S,S) into R and \*
almost everywhere equal to f, that is equal to f except on a subset of a A null
set. It is sufficient to prove this assertion for f positive, because it is then trivial
that the result is true for f negative, and the two results combine to give the
result for arbitrary f. There is a funcuon g as stated when f is the indicator
function of a set in §*, becausc if A € S” there is a subset Ay of A, in S, and
dlffermg from A by a l null set. It follows that the assertion is true for an
S.,S ) step funcuon It was pointed out above, see (1.1), that, in the general case
of a positive $* measurable function £, f is the limit of an increasing sequence of
(5.S") step functions. The desired function g is the pointwise supremum of the
corresponding sequence of (S,8) step functions.

(d) Measurability of functions of several variables if one is fixed. If (5,,S,)
and (5,,8;) are measurable spaces, if S = §)x5,, if § = 6(S>8;), and if
f: (s1,.5)*f(s,.8,) is a measurable function from (§,S) into R, then for each
point 5) of S, the function f{s,*) is a measurable function from (S5,,S,) into R.In
fact, this is true when f is the indicator function of a set in S according to
Section I1.5, and therefore it is true when f is a step function. It is sufficient to
prove measurability for positive f; in that case apply the representation in (1.1)
of fas the limit of an increasing sequence of step functions.
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3. Measurability and sequential convergence

If . is a sequence of measurable functions from a measurable space (S,S) into R,
it was pointed out in Section 2 that inff. and sup f. are measurable. It follows
that the functions

lim supfe = infj5) Supn>;j fn,  liminffe =supj>; infys; fo

are measurable, the convergence set is measurable, and the restriction of the
limit function to the convergence set is measurable on that set.

More generally, it will now be proved that the last two assertions in the
preceding sentence are true if the range space of the sequence f. is a complete
metric space (§,d). For fixed m and n, the function s=*[fy(s)/m(s)] is a
measurable function from S into the metric product space S'2. Since a metric
space distance function is continuous, the function s-‘d’(f,,(s),fm(s)) from (S,S)
into R is measurable, and therefore the supremum h; of these functions for n'and
m at least j is a measurable function. The convergence set C of the sequence f. is
measurable because C is the set on which the sequence k. has limit 0. To prove
that on C the limit function f is measurable, it is sufficient to show that the set
{s € C:f{s) e A') is measurable whenever A' is a closed subset of §'. This
measurability follows from the evaluation

3.1) {se C:fs)e A} ={s€e C:d(fts),4) =0},

since the distance from a point of S’ to A' is a continuous function of the point
and vanishes if and only if the point is in A'".

4. Baire functions

If B, is the class of Borel measurable functions from a metric space (S,d) into R,
then

(a) B, contains the continuous functions, and
(b) B, is closed under sequential convergence,

that is, the limit of a convergent (everywhere on S) sequence of functions in the
class is itself in the class. Consider the classes of functions from S into R
satisfying conditions (a) and (b). The intersection B, of all these classes is a
class satisfying conditions (a) and (b) and is the smallest such class; its
members are the Baire functions. According to the following theorem, B, = B,.
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Theorem. A function from a metric space into R is a Baire function if and
only if the function is Borel measurable.

Proof. (The notation B, B,, will be used as just defined.)

(a) B, B, because B, satisfies conditions (a) and (b) defining B,, and B, is the
minimum class satisfying these conditions.
The converse will be proved in several steps.

(b) If ¢ is a continuous function from RZinto R, fand g are in By, and f is
continuous, then ¢(f,g) is in B,, because the class of functions g for which this
assertion is true contains the continuous functions and is closed under sequential
convergence.

(c) If ¢ is a continuous function from R? into R, and fand g are in B,, then
&(fg) is in B, because the class of functions f for which this is true contains the
continuous functions according to (a) and is closed under sequential
convergence. In particular if ¢ is a continuous function from Rinto R, and if fis
in B, then (/) is in B,.

(d) The obvious induction proof shows that if ¢ is continuous from R into R,
and if f},...f; are in By, then ¢(f}.....y) is in B,. Furthermore, the latter function
is in B, not only when ¢ is continuous but even for ¢ a Baire function from R"
into R, because the class of functions for which the assertion is true was just
proved to contain the continuous functions and is closed under sequential
convergence.

(e) The class B of subsets of S whose indicator functions are in B, is B(S). If A
is a closed subset of S, the continuous function f;: s=*exp[-nd(s,A)] is in B,, and
the sequence f. has limit 14. Thus B includes the closed sets. Moreover the
class B, is closed under monotone convergence and therefore is B(S).

(f) B, =B,. Ifg € B, consider the step functiong,, from S into R defined by
&n(8) = (=127 on {s: -1)2" <f(s) <j2™) (li hs4™)
@.n
=0 elsewhere.
The function g, is in B, because it is a linear combination of a finite number of
indicator functions of Borel subsets of S and therefore is a continuous function

of these indicator functions. Since the sequence g. converges to g, the function g
is in B,, and therefore B,  B,. The reverse inclusion was proved in (a).
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5. Joint distributions

Let (5,S,A) be a finite measure space and let x,,...,xy be measurable functions
from this space into a measurable space (S',S"). These functions determine a
measure A’ on ¢ (S'V) by

(5.1) M) =A {s: (@) e &}, (&€ aS™).

(This measure, the joint distribution of the given N functions, is almost
exclusively applied in probabilistic contexts, in most of which A is a probability
measure and §'= R.) In particular, the (one-dimensional marginal) distribution
of xj is given by

(5.2) Aj'(A') = Ms: xj(s) € A’} A'eS".

Representations of sets of measurable functions. Let x,,...,xy be as above,
but suppose for simplicity that S ' = R. The distribution of x;,...xy is a
Lebesgue-Stieltjes measure on R and, as determined by this measure, the
coordinate functions on R¥ have the same joint distribution on RV as the given
functions on S. In investigations in which only joint distributions of functions
are involved, it is sometimes convenient to use these N coordinate functions on
R instead of the given N functions on S.

6. Measures on function (coordinate) space

Let U be a complete separable metric space, / be an arbitrary infinite set to be
used as an index set and S be the space of all functions ® from I into U. The
space S is a coordinate space of dimensionality the cardinality of /. Denote by x;
the ith coordinate function, a function from S into U, defined by setting x;(®) ="
(). For example, if / is the set of strictly positive integers, and if U = R, the
space § is countably infinite dimensional Euclidean space. The following
discussion would not be simplified by supposing / to be only countably infinite,
and it is important that this restriction not be imposed, because in the probability
context of continuous parameter stochastic process theory the index set is
commonly an interval of R. Call a subset S of S a finite dimensional measurable
set based on the finite index set (ij,...,i) if

6.1) S = {o: [xj,@),...x;,@)] e 4},

where A' e B(U"). The standard abbreviation will be used below, in which the
notation for the set in (6.1) is shortened to {(xis--Xiy)e A'). The class of subsets
of S obtained when i,....i, are specified, but A' is allowed to vary in B(U "), is
O(xj,»--+Xi,,). Denote by S the union of all these algebras of subsets of S, for all
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finite index sets, that is, the algebra of subsets of S determined by measurable
conditions on finitely many coordinates. The class S is an algebra, but not a ¢
algebra unless U is a singleton.

Theorem (Kolmogorov). (Separable complete metric state space U, I an
arbitrary infinite index set, S the space of functions from I into U.) Let A be a
positive finite valued set function, defined on the algebra S, of finite
dimensional measurable subsets of S, and suppose that A is countably additive
on each © algebra of finite dimensional measurable sets based on a specified
finite coordinate set. Then ) is a measure on S, and therefore has an extension
to a measure on 6(8Sg) =0O(x;, i € I).

The hypotheses imply that A is finitely additive on S,,.

The context of this theorem is a generalization of that encountered in the
second mathematical model for coin tossing studied in Sections IIL.9 and IV.14,
in which case U consisted of two points.

Proof. The fact that each product space U™ is a complete separable metric space
and that therefore (Prohorov theorem) every finite measure on U™ has the
property that the measure of a Borel subset is the supremum of the measures of
its compact subsets will be used. To show that A is a measure on Sy, it suffices
to show that if S. is a decreasing sequence of sets in Sy, with empty intersection,
then lim A(S.) = 0. This will be shown by showing that if S. is a decreasing
sequence of sets in S¢ and A(S,;) > € > 0 for all n, then the sequence S. must
have a nonempty intersection. By hypothesis S, is defined by conditions on co-
ordinates with some finite index set, say S, = z(x,-, iel))e Ay }. where I, is
an index set containing a, points and A ', € B(U ny. The distribution of
{xi, i € Iy} is a Borel measure on U n and therefore there is a compact subset
A'n of A} for which

(6.2) Miie I e Ay }>e-3m).

Define S,;, as the subset of S,; on the left in (6.2), and define S,= S;;N"NSy).
Then A(Sp3) >€/2 and S., is a decreasing sequence of nonempty sets in Sy
determined by conditions on values of the functions in S at compact subsets of
powers of U. This is precisely the context discussed in Section II.2
(Observation), where it was shown that the sequence S.; must have a nonempty
intersection. Hence the sequence S. has a nonempty intersection, as was to be
proved.

7. Applications of coordinate space measures

To a distribution on RY. that is, to a Lebesgue-Stieltjes measure on B(RN ),
correspond N functions, the coordinate functions of RY, with that joint
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distribution. In other words, the statement “let x,...,xy be measurable functions
with distribution ‘™ is never vacuous; the situation can be realized by
coordinate functions on R". Theorem 6 Justifies the corresponding statement for
infinitely many functions with a complete metric separable state space in the
following sense. Suppose a finite measure space, together with an infinite family
of measurable functions from that space into a complete separable metric space
U, is to be constructed, and that each finite set of the functions is to have a
prescribed joint distribution. According to Theorem 6, such a family of
functions can be realized as the family of coordinate functions on a coordinate
space if the prescribed joint distributions are mutually consistent. “Mutually
consistent” means that the joint distributions of finite sets of the functions have
the property that if finitely many coordinate functions fo have prescribed joint
distribution v, the joint distribution prescribed for a subset of these functions is
the corresponding marginal distribution of v. In fact, if this is so, these
prescribed distributions define a set function A on the ¢ algebra S in Theorem
6, with the properties stated in that theorem, and this set function is then a
measure, which can be extended to a measure on G(Sy). The coordinate
functions of the measure space obtained in this way have the prescribed joint
distributions.

Observe that all these finite dimensional distributions need not be defined
explicitly. For example, if the index set is the set of strictly positive integers, the
state space is R, and x, is the sequence of coordinate functions of RXRx:, it is
sufficient to prescribe, for n 2 1, the distribution of x;,...,x,, prescribing this
distribution in such a way that it induces as marginal distribution the prescribed
distribution of x,,...,x,.,. The distribution prescribed for an arbitrary k-tuple of
the coordinate functions is then to be the corresponding k-dimensional marginal
distribution of xy,...,%,, for n so large that the largest of the k-tuple of indices is
at most n.

Example (a). (Arbitrary index set) If the state space U is the interval [0,1] of
R and if, for n 2 1, the specified distribution of every n-tuple of coordinate
functions is n-dimensional Lebesgue measure on [0,1]%, then these finite
dimensional measures are mutually consistent, and Theorem 6 yields Lebesgue
measure on the unit “cube” of dimensionality the (not necessarily countable)
cardinality of /.

Example (b). Let the index set / be the set of strictly positive integers, N be a
strictly positive integer, the state space U be the set 1,...,N, p....,py be positive
numbers with sum 1, and (p;j) be an NxN stochastic matrix. According to
Theorem 6 there is a probability measure on the space S of infinite sequences of
the integers 1,...,N, determined by (see Section III.7(b))

(.1 Mxi=ay,...5n = an)} =pa, Pa,a,"" Pa,,_,a,
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8. Mutually independent random variables on a
probability space

Mutual independence of measurable sets and of G algebras of measurable sets
was defined in Section IIL6, and independence relations involving random
variables will now be reduced to independence relations between © algebras of
sets. Each function x from a probability space into a measurable space deter-
mines the ¢ algebra o(x) defined in Section 1, and, more generally, a family x.
of such functions determines a ¢ algebra G(x.). An independence statement in-
volving random variables is to be interpreted as that statement with the random
variables replaced by the corresponding ¢ algebras generated by the random
variables. Thus, families x. and y. of random variables are independent of each
other if that is true of their ¢ algebras o(x.) and a(y.), and so on. Ifx,,...,x,, are
measurable functions from a probability space (S,S,P) into a measurable space
(5 '.S"), these functions are mutually independent, by definition, if and only if
the o algebras 6(x,),...,0(x,) are mutually independent, that is, if and only if

(8.1)  P{x,eA}..xpe Ay} =P{x; € Al}Plxge Ay} (Aie S i=l,..n).

In particular, measurable sets are mutually independent if and only if their
indicator functions are mutually independent.

The condition (8.1) is satisfied if it is satisfied for sets A;' generating the ¢ al-
gebra S'. Thus if (58" is (R,B(R)) in (8.1), it is sufficient if, for each i the sets
A;' run through the intervals of the form (-eo,b], and it is in this form that the
independence definition is sometimes formulated.

Let {x;, i € I} be a family of mutually independent measurable functions
(“random variables™) from a probability space (S,S) into a measurable space
(5'.S"). Let I; and I, be disjoint subsets of /. Then o(x;, i € I;) and 6(x;, i € L)
are mutually independent sub G algebras of S. Therefore, if x and y are random
variables from (S,S) into some state space and are measurable respectively with
respect to the first and second of these sub o algebras, then these two random
variables are mutually independent. This statement can be stated more
intuitively (but less precisely) by stating that x and y are mutually independent
because they are defined respectively in terms of the collections (x;, i € ;) and
(x;, i € h), which are independent collections.

In particular, if x, is a sequence of mutually independent random variables
with state space R, y is a Borel measurable function of some of these random
variables, and z is a Borel measurable function of others, it follows that y and z
are mutually independent.

If xy,....xy are mutually independent, their joint distribution is the product of
the measures of the individual distributions. This property is the content of (8.1).
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9. Application of independence: the 0-1 law

The following two elementary facts about ¢ algebras of measurable sets of a
probability space (S,S,P) will be needed.

(a) A sub o algebra of S is independent of itself if and only if each of its sets is
either null or the complement of a null set. In fact, a measurable set A is
independent of itself if and only if P{A} = P{A}?2, thatis, if and only if P{A} is
0 or 1, and two sets, each independent of itself, are mutually independent.

(b) If B is a sub o algebra of S containing only null sets and their
complements, and if x is a random variable measurable from (S,B,P) into R,
then x is equal almost everywhere to a constant. In fact, if c is a constant the set
{x < c} must have probability 0 or 1, and this probability is a monotone
increasing function of c. If this probability is O for all finite ¢ then x =+co almost
everywhere. If this probability is 1 for all finite ¢ then x =—co almost everywhere.
Aside from these two cases there must be a point s at which the monotone
function jumps from O to 1 and then x=s almost everywhere, because P{x = s} =
limgloP{s-€e<x<s+€}.

Theorem. (0-1 law) Let F. be an increasing sequence of G algebras of
measurable sets of a probability space (S,S,P). Let G. be a decreasing sequence
of G algebras of measurable sets of the space, with G, c 6(\J P.). Suppose that,
for each value of n, the two G algebras Ry, and G,, are mutually independent.
Then M G. contains only null sets and their complements.

In intuitive language: for each value of n, By, is the past through time n, G,
is the future strictly after time n, and by hypothesis the two are mutually
independent. The theorem asserts that in the given context, an event in the
distant future is either sure to occur or sure not to occur.

Proof. If A € M G. then, since A € o(\U F.), there is (Theorem IV.3(b)). for
every strictly positive integer k, a set A¢ in some F,, depending on k, with

P{AAAy) < 1/k. Since the sets Ag and A are mutually independent, P{AAA;} =
P{A}P{Ay}, and therefore (k—0), P{A} = P{A}?, as was to be proved.

10. Applications of the 0-1 law

In each of the following applications, x. is a sequence of mutually independent
finite valued random variables, and the o algebras

Fp=0(x),....n)s  Gp = O0n41 Xn42s---)-

are therefore mutually independent. The G algebra N Ge. is the tail ¢ algebra, or
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tail of x.. The hypotheses of the 0-1 law are obviously satisfied. Hence a
measurable set (alias event) in the tail of the sequence must be either a null set
or the complement of a null set, and a measurable function (alias random

variable) measurable with respect to this tail, must be almost everywhere
constant.

Application (a). The convergence of the series Lx. depends only on the tail
of x., and therefore the series converges either almost everywhere or almost
nowhere on S.

Application (b). If A. is an infinite sequence of Borel subsets of R then
(10.1) P{lim inf, o0 {xs € Ay} } = Oo0r1,
P{lim SUPp—yeo (X, € A,,}} =0orl,

because the sets in (10.1) are tail sets. In colloquial language these probabilities
are respectively the probabilities that x,, enters the set A, only finitely often, and
that x,, enters the set A, infinitely often.

Application (c) The random variables
(10.2) lim inf;_yo0 (x)+*+x,¥n , lim sup,—yoo (X1 4+ +xp V0
are measurable with respect to the tail ¢ algebra because, say for the first,
(10.3) lim inf,; —y00 (X1 4 +xp¥n = lim inf},yoo (Xt +x, Y0

for all m. Hence the inferior and superior limits in (10.2) are almost everywhere
constant. The two constants are equal, with value say c, not necessarily finite, if
and only if the sequence of averages converges almost surely to c. Thus the

sequence of averages converges either almost everywhere on S (to a constant
function) or almost nowhere on S.

11. A pseudometric for real valued measurable functions
on a measure space

Let (5,8,A) be a measure space, denote by §' the class of almost everywhere
finite valued measurable functions from S intoR, and denote by § the subclass
of functions f in §' for which A{Ifl >¢} is finite for sufficiently large €, in which
case this measure decreases when € increases, with limit 0 when € —+o0. The
class §' is linear in the sense that a linear combination of members of the class
coincides, on the set of finiteness of those members, with another member of the
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class. In the same sense, the subclass § is also linear; it is obviously closed
under multiplication by constants, and is closed under summation because

Mir+gl2e} san2en) + Migizer2}.
The norm of a function in §'. If f is in §, the inequality A{lf > €} < € is

satisfied for sufficiently large values of €, and if satisfied for one value of € it is
satisfied for all larger values. Define

(1L.1) M =infle:A(If>€) <€} iffe§

= 400 iffe §-8,
and define
(11.2) d\(fg) =lf-gh, d\(fg)= If-ghal.

Here the norm Ifl), is the convergence in measure norm of f. The following three
properties of this norm will be needed.

(@ MIA> 1M} < Ay In fact the inequality is trivial if the right-hand side is
+oo; if fhas finite norm and if€ > Ifl) then A{)f | >e}<&.

(b) Ay = 0 if and only if f = 0 almost everywhere because, according to (a),
zero norm implies that f = 0 almost everywhere, and the converse is obvious.

(c) Finite or not, the norm is subadditive:

(11.3) Ir+rgh <slfly+ lgla.

In fact this inequality is trivial unless f and g have finite norms; if they do, the
inequalities &;> Il and € > Igly, imply

14)  Mlf+gl >ep+eg ) <MIfl> e +A{lgl > e} <ef+ g4

Hence If +gl), <¢&f+ €, and therefore (11.3) is true. Properties (a), (b), and (c)
imply that d), satisfies the conditions for a pseudometric on the space §, aside
from the fact that it may take on the value +oo, and that therefore dj ' satisfies the
conditions for a pseudometric on this space. The d)' distance between a function
of infinite norm and one of finite norm is 1.

In Section II1.13, the notations d)' and d, referred to distance between sets;
here the notation refers to distance between functions. According to Theorem
III.14, the class S is a complete pseudometric space under the distance
definition d'(A,B) = AM(AAB)Al, and the subclass of sets of finite measure is a
closed subset of this space. Under the two uses of the notation d', d)'(A,B) =
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d)'(14,1p), and d)(A,B) = dj(14,1p) if A(AAB) < 1. Thus it should cause no
confusion if the notations dy' and dj are used both for pseudometrics on $' and
S. The role of the class of sets of finite measure in the pseudometric of
measurable sets is taken in the present context by the class § of measurable
functions of finite norm.

12. Convergence in measure
(Notation as in Section 11)

A sequence f, of functions in §' converges in measure with limit fin §' if there is
convergence to fin the dj' norm. The limit function is in $'-S [S] if and only if
all but a finite number of the functions are in §'-8 [S]. Written out, the
sequence converges in measure to f if and only if, for every strictly positive €,
lim A{If=f| > &} = 0; the sequence is a Cauchy sequence for convergence in
measure, that is, a d)' Cauchy sequence, if and only if, for every strictly positive
&, limp, p—s4ool fin-Sfn! > €} = 0.

Theorem (Measure space (S,S.l)). The space (8.d)\)is a complete
pseudometric space, and the subset § is a closed subset of §' at distance 1 from
S'- S. The space (8,d)) is separable if A is a finite measure and if the & algebra
S is generated up to null sets by a countable subcollection of sets.

It makes no difference in the last assertion of the theorem whether d), or dj’
is used as the pseudometric on S.

Proof. If f. is ad)' Cauchy sequence, choose @) = 1 < a; < - successively so
large that A{lfa~fg | > 2%} < 2° for n >ay. Then M | fg, Fa; > 2k} < 2%,
and therefore (Cantelli's theorem), except for the points of a null set,
| fay +1'fakl <27k for sufficiently large k, depending on the point of S. Thus
the sequence fg is almost everywhere convergent to some function f, and
A{lr- fak| > 2-k+1} < 2k+1