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Foreword

This book is meant as a text for a first year graduate course in analysis.
Any standard course in undergraduate analysis will constitute sufficient
preparation for its understanding, for instance, my Undergraduate Anal-
ysis. 1 assume that the reader is acquainted with notions of uniform con-
vergence and the like

gration before functional analysns. Such a rearrangement ﬁts the way
courses are taught in all the places I know of. 1 have added a number of
examples and exercises, as well as some material about intcgration on the
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and some material on functional analysis (e.g. the theory of the Gelfand
transform in Chapter XVI). These upgrade previous exercises to sections
in the text.

In a sense, the subject matter covers the same topics as elementary
calculus, viz. linear algebra, differentiation and integration. This time,
however, these subjects are treated in a manner suitable for the training
of professionals, i.e. people who will use the tools in further investiga-
tions, be it in mathematics, or physics, or what have you.

In the first part, we begin with point set topology, essential for all
analysis, and we cover the most important results.

I am selective here, since this part is regarded as a tool, especially
Chapters I and II. Many results are easy, and are less essential than
those in the text. They have been given in exercises, which are designed
to acquire facility in routine techniques and to give ﬂexibility for those
who want to cover some of them at greater length. The point set topol-
ogy simply deals with the basic notions of continuity, open and closed
sets, connectedness, compactness, and continuous functions. The chapter
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concerning continuous functions on compact sets properly emphasizes
results which already mix analysis and uniform convergence with the
language of point set topology.

In the second part, Chapters IV and V, we describe briefly the two
basic linear spaces of analysis, namely Banach spaces and Hilbert spaces.

The next part deals extensively with integration.

We begin with the development of the integral. The fashion has been
to emphasize positivity and ordering properties (increasing and decreas-
ing sequences). I find this excessive. The treatment given here attempts
to give a proper balance between L!-convergence and positivity. For
more detailed comments, see the introduction to Part Three and Chapter
VL

The chapters on applications of integration and distributions provide
concrete examples and choices for leading the course in other directions,
at the taste of the lecturer. The general theory of integration in mea-
sured spaces (with respect to a given positive measure) alternates with
chapters giving specific results of integration on euclidean spaces or the
real line. Neither is slighted at the expense of the other. In this third
edition, I have added some material on functions of bounded variation,
and I have emphasized convolutions and the approximation by Dirac
sequences or families even more than in the previous editions, for in-
stance, in Chapter VIII, §2.

For want of a better place, the calculus (with values in a Banach
space) now occurs as a separate part after dealing with integration, and
before the functional analysis.

The differential calculus is done because at best, most people will only
be acquainted with it only in euclidean space, and incompletely at that.
More importantly, the calculus in Banach spaces has acquired consider-
able importance in the last two decades, because of many applications
like Morse theory, the calculus of variations, and the Nash—Moser im-
plicit mapping theorem, which lies even further in this direction since one
has to deal with more general spaces than Banach spaces. These results
pertain to the geometry of function spaces. Cf. the exercises of Chapter
X1V for simpler applications.

The next part deals with functional analysis. The purpose here is
twofold. We place the linear algebra in an infinite dimensional setting

rhara Annt noouimntinne ara mada b 12

wicic L«Uuullully assumptions ar€ maac on tne llllCdl maps, and we show
how one can “linearize” a problem by taking derivatives, again in a
setting where the theory can be applied to function spaces. This part
includes several major spectral theorems of analysis, showing how we can
extend to the infinite dimensional case certain results of finite dimen-
sional linear algebra. The compact and Fredholm operators have appli-
cations to integral operators and partial differential elliptic operators (e.g
in papers of Atiyah—Singer and Atiyah—Bott).

Chapters XIX and XXIX. on unbouvnded hermitian operators, combine
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both the linear algebra and integration theory in the study of such
operators. One may view the treatment of spectral measures as providing
an example of general integration theory on locally compact spaces,
whereby a measure is obtained from a functional on the space of contin-
uous functions with compact support.

I find it appropriate to introduce students to differentiable manifolds
during this first year graduate analysis course, not only because these
objects are of interest to differential geometers or differential topologists,
but because giobal analysis on manifolds has come into its own, both in
its integral and differential aspects. It is therefore desirable to integrate
manifolds in analysis courses, and I have done this in the last part, which
may also be viewed as providing a good application of integration theory.

A number of examples are given in the text but many interesting
examples are also given in the exercises (for instance, explicit formulas for
approximations whose existence one knows abstractly by the Weierstrass—
Stone theorem; integral operators of various kinds; etc). The exercises
should be viewed as an integral part of the book. Note that Chapters
XIX and XX, giving the spectral measure, can be viewed as providing
an example for many notions which have been discussed previously:
operators in Hilbert space, measures, and convolutions. At the same
time, these results lead directly into the real analysis of the working
mathematician.

As usual, I have avoided as far as possible building long chains of
logical interdependence, and have made chapters as logicaily independent
as possible, so that courses which run rapidly through certain chapters,
omitting some material, can cover later chapters without being logically
inconvenienced.

The present book can be used for a iwo-semester course, omitting
some material. I hope I have given a suitable overview of the basic tools
of analysis. There might be some reason to include other topics, such as
the basic theorems concerning elliptic operators. I have omitted this
topic and some others, partly because the appendices to my SL,(R)
constitutes a sub-book which contains these topics, and partly because
there is no time to cover them in the basic one year course addressed to
graduate students.

The present book can also be used as a reference for basic analysis,
since it offers the reader the opportunity to select various topics without
reading the entire book. The subject matter is organized so that it makes
the topics available to as wide an audience as possible.

There are many very good books in intermediate analysis, and inter-
esting research papers, which can be read immediately after the present
course. A partial list is given in the Bibliography. In fact, the determina-
tion of the material included in this Real and Functional Analysis has
been greatly motivated by the existence of these papers and books, and
by the need to provide the necessary background for them.
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Finally, I thank all those people who have made valuable comments
and corrections, especially Keith Conrad, Martin Mohlenkamp, Takesi
Yamanaka, and Stephen Chiappari, who reviewed the book for Springer-
Verlag.

New Haven 1993/1996 SERGE LANG
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General Topology






CHAPTER |

Sets

I, §1. SOME BASIC TERMINOLOGY

We assume that the reader understands the meaning of the word “set”,

and in this chapter, summarize briefly the basic properties of sets and

operations between sets. We denote the empty set by ¢J. A subset S’ of
e

s /4 : /4 ’
S is said to be proper if ' # S. We write =S or§> 8§

fact that §' is a subset of S.
Let S, T be sets. A mapping or map f: T — § is an association which
to each element x € T associates an element of S, denoted by f(x), and

called the value of f at x. or the imaoe of x under f. If T' is a subset of

wisaiw s Veasuaw vy Liiv iy Jv WIAINEWE  J.

T, we denote by f (T) the subset of S consisting of all elements f(x) for
x € T'. The association of f(x) to x is denoted by the special arrow

x> f(x).

We usually reserve the word function for a mapping whose values are in
the real or complex numbers. The characteristic function of a subset §' of
S is the function y such that y(x)=1if xe S and y(x)=0if x¢ S'. We
often write x5 for this function.

Let X, Y be sets. A map f: X — Y is said to be injective if for all x,
x'e X with x # x' we have f(x) # f(x'). We say that f is surjective if
f(X) =Y, ie. if the image of f is all of Y. We say that f is bijective if it
is both injective and surjective. As usual, one should index a map f by
its set of arrival and set of departure to have absolutely correct notation,

but this is too clumsv and the context is sunnosed to make it clear what
UL w11l 10 vy \vlulllo] QLI L1Iw wwaItwAnAl ko ou.}yvouu LW IMIGAW AL wWAWGIL  YYiiQiu

these sets are. For instance, let R denote the real numbers, and R’ the
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real numbers = 0. The map

given by the same formula is surjective.
If f: X > Yis amap and S a subset of X, we denote by

N
the restriction of f to §, namely the map f viewed as a map deﬁned only
smntasna . D v 14 tha w2 l« - £ 1 Nt insan_

Ull S- FUI. HLalive, ll J N — N\ lb tllC lllal_l J\'_7A Iy
tive, but f|R’ is injective. We often let fg = fxs be the
f on S and O outside S.

A composite of injective maps is injective, and a composite of surjec-

tive maps is surjective. Hence a composite of bijective maps is bijective.

We denote by Q, Z the sets of rational numbers and integers respec-
tively. We denote by Z* the set of positive integers (integers > 0), and
similarly by R* the set of positive reals. We denote by N the set of
natural numbers (integers = 0), and by C the complex numbers. A map-
ping into R or C will be called a function.

Let S and I be sets. By a family of elements of S, indexed by I, one
means simply a map f: I — S. However, when we speak of a family, we
write f(i) as f;, and also use the notation {f;},.; to denote the family.

en J 1S not injec-

unction equal to

Example 1. Let S be the set consisting of the single element 3. Let
I={1,...,n} be the set of integers from 1 to n. A family of elements of
S, indexed by I, can then be written {q;},_, _, with each q,=3. Note
that a family is different from a subset. The same element of S may
receive distinct indices.

A faulu_y of elements of a set S indexe b_'y posﬁive integers, Oor non-
negative integers, is also called a sequence.

Example 2. A sequence of real numbers is written frequently in the

fnrm

ANJA KiL

{x1,%2,...} or {x,}n 21

and stands for the map f:Z* —»R such that f(i) = x;. As before, note
that a sequence can have all its elements equal to each other, that is

{L1,1,...})

is a sequence of integers, with x; =1 for each ie Z,*.
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We define a family of sets indexed by a set I in the same manner, that
is, a family of sets indexed by I is an assignment

iHS;

which to each i eI associates a set S;. The sets §; may or may not have
elements in common, and it is conceivable that they may all be equal
As before, we write the family {S;};.;-

~nes A mem b man maad ceaf o PPN

We can define the intersection and union of families of sets, just as for
the intersection and union of a finite number of sets. Thus, if {S;};c, is a
family of sets, we define the intersection of this family to be the set

()&

iel

consisting of all elements x which lie in all S;. We define the union

U S:

iel

to be the set consisting of all x such that x lies in some §;.

If S, S’ are sets, we define § x §' to be the set of all pairs (x, y) with
xe S and ye§'. We can define finite products in a similar way. If S,,
S,, ... is a sequence of sets, we define the product

1,
i=1

minessana ~ VY with v+ =~ C Qiemmilacly 1
I.IUC ILED (AgyAQyee-) WILLL AT O, OlllIIALLY,y 1

all se
indexing set, and {S;};.,; a family of sets, we define the product

[1s:

ilel

A | TS JPRRY S | Y RSN §-JNPR S | Y Y
0O D€ NeE S€t Of dall 1dINnuces 1x‘;,el will X; € ;.

Let X, Y, Z be sets. We have the formula
XuY)xZ=(XxZ)u(Y x 2).

To prove this, let w,2)e (X v Y)x Z with weXuUY and zeZ. Then
weXorweY. SayweX. Then w,2z)e X x Z. Thus

(XuY)xZc (X x2Z)u(Y x Z).

Conversely, X x Z is contained in (XU Y) x Z and so is Y x Z. Hence
their union is contained in (X U Y) x Z, thereby proving our assertion.
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We say that two sets X, Y are disjoint if their intersection is empty.
We say that a union X U Y is disjoint if X and Y are disjoint. Note that
if X, Y are disjoint, then (X x Z) and (Y x Z) are disjoint.

We can take products with arbitrary families. For instance, if {Xi}ier
is a family of sets, then

(U Xi>x z= (X x2)

iel

If the family {X;};c; is disjoint (that is X;nX; is empty if i #j for i,
j e I), then the sets X; x Z are also disjoint.
We have similar formulas for intersections. For instance,

XNnY)x Z=(X xZ)n(Y x Z).

We leave the proof to the reader.

Let X be a set and Y a subset. The complement of Y in X, denoted
by %Y, or X — Y, is the set of all elements x € X such that x¢ Y. If ¥,
Z are subsets of X, then we have the following formulas:

(gx(YUZ) = (ngﬁ(ng,
(gx(Yﬁ Z) = (ngU %XZ'

These are essentially reformulations of definitions. For instance, suppose
xeX and x¢(YuZ). Then x¢Y and x¢ Z. Hence xeéxYnéxZ.
Conversely, if xe €. Y néxZ, then x lies neither in Y nor in Z, and
hence x € €x(Y L Z). This proves the first formula. We leave the second
to the reader. Exercise: Formulate these formulas for the complement of
the union of a family of sets, and the complement of the intersection of a
family of sets.

Let A, B be sets and f: 4 - B a mapping. If Y is a subset of B, we
define f7!(Y) to be the set of all x € A such that f(x) e Y. It may be that

_l 3 —_— 3 3
f7HY) is empty, of course. We call f7(Y) the inverse image of Y {under

f). If f is injective, and Y consists of one element y, then f~*({y}) is
either empty or has precisely one element.
The following statements are easily proved:

If f:A—> Bis a map, and Y, Z are subsets of B, then
JHYuZ)=fY(Y)uSf'(2),
JHYNnZ) = (Y)nf71(2).
More generalily, if {Y;};., is a family of subsets of B, then

(Y

\lg

Y;) = (),
el

:
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and similarly for the intersection. Furthermore, if we denote by Y — Z
the set of all elements ye Y and y ¢ Z, then

Y =2)=f7'(1) - 7(2).
In particular,

f“(ngZ) = ngf‘l(Z).

Thus the operation f ! commutes with all set theoretic operations.

I, §2. DENUMERABLE SETS

Let n be a positive integer. Let J, be the set consisting of all integers k,
1Sk<n If §Sis a set, we say that § has n elements if there is a
bijection between S and J,. Such a bijection associates with each integer
k as above an element of S, say k+q,. Thus we may use J, to “count”
S. Part of what we assume about the basic facts concerning positive
integers is that if S has n elements, then the integer n is uniquely deter-
mined by S.

One also agrees to say that a set has 0 elements if the set is empty.

We shall say that a set S is denumerable if there exists a bijection of
S with the set of positive integers Z*. Such a bijection is then said to

enumerate the set S. It is a mapping

ne—a,

which to each positive integer n associates an element of S, the mapping
L St afen an A ez biera

If D is a denumerable set, and f: S — D is a bijection of some set S
with D, then S is also denumerable. Indeed, there is a bijection g: D —» Z*,
and hence g o f is a bijection of § with Z*.

Let T be a set. A sequence of elements of T is simply a mapping of
Z* into T. If the map is given by the association n— x,, we also write
the sequence as {x,},»;, Or also {x, x,,...}. For simplicity, we also
write {x,} for the sequence. Thus we think of the sequence as prescrib-
ing a first, second, ..., n-th element of . We use the same braces for
sequences as for sets, but the context will always make our meaning
clear.

Examples. The even positive integers may be viewed as a sequence
{x,} if we put x,=2n for n=1, 2, .... The odd positive integers may
also be viewed as a sequence {y,} if we put y,=2n—1forn=1,2,....
In each case, the sequence gives an enumeration of the given set.

We also use the word sequence for mappings of the natural numbers
into a set, thus allowing our seguences (o start from O instead of 1. If we
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need to specify whether a sequence starts with the O-th term or the first
term, we write

{Xn}n 20 or {Xn}nz1

according to the desired case. Unless otherwise specified, however, we
always assume that a sequence will start with the first term. Note
that from a sequence {x,},>o we can define a new sequence by letting
Yo =X, for n= 1. Then y, = x4, y, = X, .... Thus there is no essen-
tial difference between the two kinds of sequences.

Given a sequence {x,}, we call x, the n-th term of the sequence. A
sequence may very well be such that all its terms are equal. For in-
stance, if we let x, =1 for all n > 1, we obtain the sequence {1, 1,1,...}.
Thus there is a difference between a sequence of elements in a set T, and

a cnnthecat of T In the evxamnle inct given the set of all terms nf the
[ * DU VUOwWwL A A AAL LAANY Ul\ullll."\' Juo‘. e.'\lll, LAAN AR SWwARLIVU LAWY

sequence consists of one element, namely the single number 1.

Let {x,,X,,...} be a sequence in a set S. By a subsequence we shall
mean a sequence {Xx, , X,,,...} such that n; <n, <---. For instance, if
{rl is the sequence of positive integers, x, = n, the sequence of even
posmve integers {x,,} is a subsequence

An enumeration of a set S is of course a sequence in S.

A set is finite if the set is empty, or if the set has n elements for some
positive integer n. If a set is not finite, it is called infinite.

Occasionally, a map of J, into a set T will be called a finite sequence
in T. A finite sequence is written as usual,

{X1s-e0sXn} or (xi)i=1,....n-

When we need to specify the distinction between finite sequences and
maps of Z* into 7, we call the latter infinite sequences. Unless otherwise
specified, we shall use the word “sequence” to mean infinite sequence.

Proposition 2.1. Let D be an mﬁmte subset of Z+ Then D is de-

nnmornh’o nigd in fact t
—“wr J“ [ 3

{k,, kz,...} such that
ky <k, <<k, <k, <-

Proof. We let k, be the smallest element of D. Suppose mducnvely
that we have deﬁned k, <--- <k, in such a way that any element k in D
which is not equal to kl, ..sky i > k,. We define k,,, to be the
smallest element of D which is > k,. Then the map n—k, is the desired
enumeration of D.

Corollary 2.2. Let S be a denumerable set and D an infinite subset of S.
Then D is denumerable.
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Proof. Given an enumeration of S, the subset D corresponds to a
subset of Z* in this enumeration. Using Proposition 2.1 we conclude
that we can enumerate D.

Proof. Let S be a infinite set. For every non-empty subset T of S, we
select a definite element a; in T. We then proceed by induction. We let

x; be the chosen element a5. Suppose that we have chosen x,, ...,x,

having the property that for each k=2, ...,n the element x, is the
selected element in the subset which is the complement of {x,,...,x;_,}.
We let x,,, be the selected element in the complement of the set
{x1,...,X,}. By induction, we thus obtain an association nx, for all
positive integers n, and since x, # x, for all k <n it follows that our
association is injective, i.e. gives an enumeration of a subset of S.

Proposition 24. Let D be a denumerable set, and f: D —» S a surjective
mapping. Then S is denumerable or finite.

Proof. For each y € §, there exists an element x, € D such that f(x,) =
y because f is surjective. The association y+ x, is an injective mapping
of § into D, because if y, z€ § and x, = x,, then

Let g(y) = x,. The image of g is a subset of D and is denumerable.
Since g is a bijection between S and its image, it follows that S is
denumerable or finite.

Proposition 2.5. Let D be a denumerable set. Then D x D (the set of
all pairs (x, y) with x, y € D) is denumerable.

Proof. There is a bijection between D x D and Z* x Z*, so it will
suffice to prove that Z* x Z* is denumerable. Consider the mapping of
Z' x Z* - Z"* given by

(m, n)—>2"3™

In view of Proposition 2.1, it will suffice to prove that this mapping is
injective. Suppose 2"3™ = 273° for positive integers n, m, r, s. Say r <n.
Dividing both sides by 2", we obtain

2k3m = 3

with k=n —r = 1. Then the left-hand side is even, but the right-hand
side is odd, so the assumption r < n is impossible. Similarly, we cannot
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have n <r. Hence r =n. Then we obtain 3" =3 If m>s, then 3" =1
which is impossible. Similarly, we cannot have s> m, whence m=s.
Hence our map is injective, as was to be proved.

Proposition 2.6. Let {D,,D,,...} be a sequence of denumerable sets.
Let S be the union of all sets D; (i=1,2,...). Then S is denumerable.

Proof. For each i=1, 2, ... we enumerate the elements of D;, as
indicated in the following notation:

Dy: {xyy, X125 X135 e}

D,: {leaxzz’xzss }

Dl: {X“,xizs Xi3s "‘}

The map f:Z* x Z* — D given by
fi,)) = Xij

is then a surjective map of Z* x Z* onto S. By Proposition 2.4, it
follows that S is denumerable.

Corollary 2.7. Let F be a non-empty finite set and D a denumerable set.
Then F x D is denumerable. If S,, S,, ... are a sequence of sets,
each of which is finite or denumerable, then the union S, LS, U-"" is
denumerable or finite.

Proof. There is an injection of F into Z* and a bijection of D with
Z*. Hence there is an injection of F x D into Z* x Z* and we can
apply Corollary 2.2 and Proposition 2.6 to prove the first statement.
One could also define a surjective map of Z* x Z* onto F x D. As for
the second statement, each finite set is contained in some denumerable

set, so that the second statement follows from Propositions 2.1 and 2.6.

For convenience, we shall say that a set is countable if it is either finite
or denumerable.

I, §3. ZORN’'S LEMMA

In order to deal efficiently with infinitely many sets simultaneously, one
needs a special property. To state it, we need some more terminology.
Let S be a set. An orderiag (aiso cailed partial ordering) of (or on) §
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is a relation, written x < y, among some pairs of elements of S, having
the following properties.

ORD 1. We have x < x.
ORD 2. If x<yand y<zthen x < z.
ORD 3. If x<yand y < x then x = y.

A} Y729 som fm
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tn

WrIile )’
relatlon <yo y § x hold for every pair of elements (x, y) of S. Some

pairs may not be comparable. If the ordering satisfies this additional
property, then we say that it is a total ordering.

v
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Example 1. Let G be a group. Let S be the set of subgroups. If H,
H' are subgroups of G, we define

HEH

if H is a subgroup of H'. One verifies immediately that this relation
defines an ordering on S. Given two subgroups, H, H' of G, we do not
necessarily have H < H' or H' £ H.

Example 2. Let R be a ring, and let S be the set of left ideals of R.
We define an ordering in S in a way similar to the above, namely if L, L'
are left ideals of R, we define

LsL
if LcL'.

Exampie 3. Let X be a set, and S the set of subsets of X. If Y, Z are
subsets of X, we define Y<Z if Y is a subset of Z. This defines an
ordering on §.

In all these examples, the relation of ordering is said to be that of
inclusion.

In an ordered set, if x £ y and x # y we then write x < y.

Let A be an ordered set, and B a subset. Then we can define an
ordering on B by defining x <y for x, y € B to hold if and only if x <y
in A. We shall say that it is the ordering on B induced by the ordering
on A, or is the restriction to B of the partial ordering of A.

Let S be an ordered set. By a least element of S (or a smallest
element) one means an element a € S such that a < x for all xeS. Simi-
larly, by a greatest element one means an element b such that x < b for
all xeS.

By a maximal element m of S one means an element such that if xe §
and x = m, then x =m. Note that a maximal element need not be a
greatest element. There may be many maximal elements in S, whereas if
a greatest element exists, ihen it is unique (pioof?).
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Let S be an ordered set. We shall say that S is totally ordered if given
x, y € S we have necessarily x <y or y £ x.

Example 4. The integers Z are totally ordered by the usual ordering.
So are the real numbers.

Let S be an ordered set, and T a subset. An upper bound of T (in S)
is an element b e S such that x < b for all xe T. A least upper bound of
T in S is an upper bound b such that if ¢ is another upper bound, then
b <c. We shall say that S is inductively ordered if every non-empty
totally ordered subset has an upper bound.

We shall say that S is strictly inductively ordered if every non-empty

totally ordered subset has a least upper bound.

In Examples 1, 2, 3, in each case, the set is strictly inductively ordered.
To prove this, let us take Example 1. Let T be a non-empty totally
ordered subset of the set of subgroups of G. This means that if H, H' € T,

then H « H or H < H. Let U be the union of all sets in 7. Then:

(1) U is a subgroup. Proof: If x, ye U, there exist subgroups H,
H' e T such that xe H and ye H. If, say, H < H’', then both
x, ye H' and hence xye H'. Hence xye U. Also, x' e H', so
x"' e U. Hence U is a subgroup.

(2) U is an upper bound for each element of T. Proof: Every He T

1c contained in Lf’ soc H<Ufgrall He T

AU WA ALLGAAALWNE Adl ANJA SR31 X1 . 1.

(3) U is a least upper bound for T. Proof : Any subgroup of G which
contains all the subgroups H € T must then contain their union
U.

The proof that the sets in Examples 2, 3 are strictly inductively
ordered is entirely similar.

We can now state the property mentioned at the beginning of the
section.

there exists a maximal element in S.

Zorn’s lemma could be just taken as an axiom of set theory. How-
ever, it is not psychologically completely satisfactory as an axiom, be-
cause its statement is too involved, and one does not visualize easily the
existence of the maximal element asserted in that statement. We show
how one can prove Zorn’s lemma from other properties of sets which
everyone would immediately grant as acceptable psychologically.

From now on to the end of the proof of Theorem 3.1, we let 4 be a
non-empty partially ordered and strictly inductively ordered set. We re-
call that strictly inductively ordered means that every non-empty totally

ordered subset has a least upper bound. We assume given a map
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J: A— A such that for all xe A we have x £ f(x). We could call such
a map an increasing map.

Let ae A. Let B be a subset of A. We shall say that B is admissible
if:

(1) B contains a.

(2) We have f(B) c B.

(3) Whenever T is a totally ordered subset of B, the least upper
bound of T in A lies in B.

Then B is also strictly inductively ordered, by the induced ordering of A.
We shall prove:

Theorem 3.1 (Bourbaki). Let A be a non-empty partially ordered and

strictly inductively ordered set. Let f: A— A be an increasing mapping.

,,,,,, ci oF L 48 (=480 bl of et

Then there exists an element xy € A such that f(xy) = x,.

Proof. Suppose that A were totally ordered. By assumption, it would
have a least upper bound b € 4, and then

b= f(b)£b,

so that in this case, our theorem is clear. The whole problem is to
reduce the theorem to that case. In other words, what we need to find is
a totally ordered admissible subset of A.

If we throw out of A all elements x € A such that x is not = a, then
what remains is obviously an admissible subset. Thus without loss of
generality, we may assume that A has a least element a, that is a £ x for
ali x € A.

Let M be the intersection of all admissible subsets of A. Note that
A itself is an admissible subset, and that all admissible subsets of A
contain a, so that M is not empty. Furthermore, M is itself an admissi-
ble subset of A. To see this, let x€ M. Then x is in every admissible
subset, so f(x) is also in every admissible subset, and hence f(x)e M.
Hence f(M)c M. If T is a totally ordered non-empty subset of M, and
b is the least upper bound of T in A4, then b lies in every admissible
subset of A, and hence lies in M. It follows that M is the smallest
admissible subset of 4, and that any admissible subset of A contained in
M is equal to M.

We shall prove that M is totally ordered, and thereby prove Theorem
3.1

[First we make some remarks which don’t belong to the proof, but
will help in the understanding of the subsequent lemmas. Since a € M, we
see that f(a) e M, f o f(a)e M, and in general f"(a) e M. Furthermore,

asf@Lfa) S,
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If we had an equality somewhere, we would be finished, so we may
assume that the inequalities hold. Let D, be the totally ordered sct
{/"(@)},20- Then Dy looks like this:

a<fl@<fla<--<fla<-.
Let a, be the least upper bound of D,. Then we can form
a; < f(a,) < fa)) <+

in the same way to obtain D,, and we can continue this process, to
obtain
D,,D,,....

It is clear that D,, D,, ... are contained in M. If we had a precise way
of expressing the fact that we can establish a never-ending string of such
denumerable sets, then we would obtain what we want. The point is that
we are now trying to prove Zorn’s lemma, which is the natural tool for
guaranteeing the existence of such a string. However, given such a string,
we observe that its elements have two properties: If ¢ is an element of
such a string and x < ¢, then f(x) < c. Furthermore, there is no element
between ¢ and f(c), that is if x is an element of the string, then x < ¢ or
f(c) £ x. We shall now prove two lemmas which show that elements of
M have these properties.]

Let ce M. We shall say that ¢ is an extreme point of M if whenever
x € M and x < ¢, then f(x) < c. For each extreme point ce M we let

M, = set of x e M such that x < c or f(c) £ x.
Note that M_ is not empty because a is in it.
Lemma 3.2. We have M, = M for every extreme point ¢ of M.

Proof. It will suffice to prove that M, is an admissible subsef. Let
xe€M,. If x<cthen f(x)<c so f(x)eM,. If x=c then f(x)= f(c) is
again in M. If f(c) < x, then f(c) £ x £ f(x), so once more f(x)e M..
Thus we have proved that f(M,) = M..

Let T be a totally ordered subset of M, and let b be the least upper
bound of T in A. Since M is admissible, we have be M. If all ele-
ments x€ T are < ¢, then b <c and be M.. If some xe T is such that
Jf(c) £ x, then

Jle)=x=b,

and so b is in M,. This proves our lemma.

Lemma 3.3. Every element of M is an extreme point.
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Proof. Let E be the set of extreme points of M. Then E is not empty
because a € E. It will suffice to prove that E is an admissible subset. We
first prove that f maps E into itself. Let ce E. Let xe M and suppose
x < f(c). We must prove that

J(x) = f(o).

By Lemma 3.2, M = M, and hence we have x < ¢, or x =, or f(c) < x.
This last possibility cannot occur because x < f(c). If x < c then

JxX) = ¢ = flo).

If x = ¢ then f(x) = f(c), and hence f(E) c E.

Next let T be a totally ordered subset of E. Let b the least u
bound of T in A. We must prove that be E. Let xe M and x <b.
We must show that f(x)<b. If for all ce E we have f(c) £ x, then
¢S f(c) = x for all ce E, whence x is an upper bound for E, whence
b < cand b e E. Otherwise, since M. = M for all c € E, we must therefore

have x < c for some ce E. If x <, then f(x) <c £ b, and if x = c, then

Jx)=flc)e E

by what has already been proved, and so f(x) < b. This proves that
b e E, that E is admissible, and thus proves Lemma 3.3.

We now see trivially that M is totally ordered. For let x, ye M.
Then x is an extreme point of M by Lemma 3.3, and ye M, so y < x or

x=f(X)S,

thereby proving that M is totally ordered. As remarked previously, this

concludes the proof of Theorem 3.1.
We shall obtain Zorn’s lemma Pccentml as a corolla

SO vallaz

3.1. We first obtain Zorn’s lemma in a shghtly weaker form.

Corollary 34. Let A be a non-empty strictly inductively ordered set.

Then A has a maximal element.

Proof. Suppose that A does not have a maximal element. Then for
each x € A there exists an element y, € A such that x <y, Let f:1A—> A4
be the map such that f(x) =y, for all xe A. Then A, f satisfy the hypoth-
eses of Theorem 3.1 and applying Theorem 3.1 yields a contradiction.

The only difference between Corollary 3.4 and Zorn’s lemma is that in
Corollary 3.4, we assume that a non-empty totally ordered subset has a
least upper bound, rather than an upper bound. It is, however, a simple
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matter to reduce Zorn’s lemma to the seemingly weaker form of Corol-
lary 3.4. We do this in the second corollary.

Corollary 3.5 (Zorn’s Lemma). Let S be a non-empty inductively
ordered set. Then S has a maximal element.

Proof. Let A be the set of non-empty totally ordered subsets of S.
Then A is not empty since any subset of S with one element belongs to
A. If X, Ye A, we define X <Y to mean X c Y. Then A is partiaily
ordered, and is in fact strictly inductively ordered. For let T = {X,};.; be
a totally ordered subset of A. Let

Z=UXI'

iel

Then Z is totally ordered. To see this, let x, ye Z. Then x e X; and
y € X; for some i, jel. Since T is totally ordered, say X; c X;. Then x,
y € X; and since X is totally ordered, x <y or y £ x. Thus Z is totally
ordered, and 1s obviously a least upper bound for T'in A. By Corollary
3.4, we conclude that A has a maximal element X,. This means that X,
is a maximal totally ordered subset of S (non-empty). Let m be an upper
bound for X, in S. Then m is the desired maximal element of S. For if
x€ S and m £ x, then X, U {x} is totally ordered, whence equal to X, by

the mnvlmahhr of X. Thus xeX. and x < m. Hence x = m. as wag to
J llO AAWBYT SV W ‘.0 CSAANE JV A AWwiilWww .9 " Ao Y a0 W

be shown.



CHAPTER I

Topological Spaces

This chapter develops the standard properties of topological spaces. Most
of these properties do not go beyond the level of a convenient language.
In the text proper, we have given precisely those results which are used
very frequently in all analysis. In the exercises, we give additional results,
of which some just give routine practice and others give more special
results. To incorporate all this material in the text proper would be
extremely oppressive and would obscure the principal lines of thought
inherent in the basic aspects of the subject. The reader can always be
referred to Bourbaki [Bo] or Kelley [Ke] for encyclopaedic treatments.

Il, §1. OPEN AND CLOSED SETS

Let X be a set. By a topology on X we mean a collection J of subsets
called the open sets of the topology, satisfying the following conditions:

TOP 1. The empty set and X itself are open.

TOP 2. A finite intersection of open sets is open.

TOP 3. An arbitrary union of open sets is open.

Example 1. Let X be any set. If we define an open set to be the

empty set or X itself, we have a topology on X, which is definitely not
interesting.

Example 2. Let X be a set, and define every subset to be open. In
particular, each element of X constitutes an open set. Again we have a
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topology, which is called the discrete topology on X. A space with th'e
discrete topology is called a discrete space. It does not look as if thl.s
topology were any more interesting than that of Example 1, but in fact it
does occur in practice.

Example 3. Let X = R be the set of real numbers. Define a subset U
of R to be open if for each point x in U there exists an open interval J
containing x and contained in U. The three axioms of a topology are
easily verified. This topology is called the ordinary topology.

Example 4. Generalization of Example 3, and used very frequently in
analysis. We recall that a normed vector space (over the real numbers) is

a vector space E together with a function on E denoted by x+|x| (real
valued) such that:

WAy Ouawas

NVS 1. We have |x| 20 and = 0 if and only if x =0.
NVS 2. If ce R and x € E, then |cx| = |c|]|x].
NVS 3. If x, ye E, then |x + y| < |x| + |yl

Similarly, one defines the notion of normed vector space bver the
complex numbers. The axioms are the same, except that we then take
the number ¢ to be complex in NVS 2,

By an open ball B in E centered at a point v, and of radius r > 0, we
mean the set of all x € E such that |[x — v| < r. We denote such a ball by
B,(v). We define a set U to be open in E if for each point re U there
exists an open ball B centered at x and contained in U. Again it is easy
to verify that this defines a topology, also called the ordinary topology of
the normed vector space. It is but an exercise to verify that an open ball
is indeed an open set of this topology.

Let {x,} be a sequence in a normed vector space E. This sequence is
said to be Cauchy if given ¢ (always assumed > 0) there exists N such
that for all m, n = N we have

|x,, — x,| < &.

This sequence is said to converge to an element x if given ¢, there exists
N such that for all n > N we have

|x - x,| <e.

Examples of Normed Vector Spaces

The sup norm. Let S be a set. A map f:S—F of S into a normed
vector space F is said to be bounded if there exists a number C > 0 such
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that | f(x)| < C for all xe S. If f is bounded, define

Iflls=US1 = sup | /),

sup meaning least upper bound. It can be easily shown that the set of
bounded maps B(S, F) of S into F is a vector space, and that || || is a
norm on this space, called the sup norm.

The L'-Norm. Let E be the space of continuous functions on [0, 1].
For f € E define

1
(AR =L |/ (x)] dx.

Then | |l is a norm on E, called the L-norm. This norm will be a
major object of study when we do integration later, in a general context.

Much of this book is devoted to studying the convergence of se-
quences for one or the other of the above two norms. For instance,
consider the sup norm. A sequence of maps {f,} is said to be uniformly
Cauchy on S if given ¢ there exists N such that for all m, n > N we have

1fo = falls < &

It i1s said to be unfformly convergent to a map f if given ¢ there exists N
such that for all n = N we have

I = Slls <&

In the second example, we would use the expressions L!-Cauchy and
L'-convergent instead of uniformly Cauchy and uniformly convergent, if
we replace the sup riorm by the L'-norm in these definitions.

Up to a point, one can generalize the notion of subset of a normed

. .
vector space as follows. Let X be a set. A distance function (also called

a metric) on X 1s a tap (x, y)—d(x, y) from X x X into R satisfying the
following conditionis:

and = 0 if and only if

DIS 1. We have d yeX, a if and only

DIS 2. For all x, y, we have d(x, y) = d(y, x).
DIS 3. For all x, y, z, we have
d(x, z) < d(x, y) + d(y, 2).

A set with a metric is called a metric space. We can then define open
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balls just as we did in the case of normed vector spaces, and also define
a topology in a metric space just as we did for a normed vector space.
Every open set is then a union of open balls. This topology is said to be
determined by the metric.

In a normed vector space, we can define the distance between elements
x, y to be d(x, y) = |[x — y|. It is immediately verified that this is a metric
on the space. Conversely, the reader will see in Exercise 5 how a metric
space can be embedded naturally in a normed vector space, in a manner
preserving the metric, so that the “generality” of metric spaces is iliusory.
For convenience, we also make here the following definition: If A, B are
subsets of a normed vector space, we define their distance to be

d(A, B) = inf |x — y|, x€ A, yeB.

Basic theorems concerning subsets of normed vector spaces hold just as
well for metric spaces. However, almost all metric spaces which arise
naturally (and certainly all of those in this course) occur in a normed
vector space with a natural linear structure. There is enough of a change
of notation from |x — y| to d(x, y) to warrant carrying out proofs with
the norm notation rather than the other.

Let  and J' be topologies on a set X. One verifies at once that
they are equal if and only if the following condition is satisfied: For each
x€ X and each set U open in J containing x, there exists a set U’
open in ' such that x e U’ < U, and conversely, given U’ open in "'
containing x, there exists U open in  such that xe U « U".

Example. The reader will verify easily that two norms | |, and | |, on
a vector space E give rise to the same topology if and only if they satisfy
the following condition: There exist C,, C, > 0 such that for all x € E we
have

Cilxly £ x|, £ G |x|,.

If this is the case, the norms are called equivalent.
Just to fix terminology, we define the closed ball centered at v and of

radius r = 0 to be the set of all x € E such that

We define the sphere centered at v, of radius r, to be the set of points x
such that

Ix —v|=r.

Warning. In some books, what we call a ball is called a sphere. This
is not good terminology, and the terminology used here is now essen-
tially universally adopted.
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Examples of normed vector spaces are given in the exercises. The
standard properties of subsets of normed vector spaces having to do with
limits are also valid in metric spaces (cf. Exercise 5). We can define balls
and spheres in metric spaces just as in normed vector spaces. We can
also define the notion of Cauchy sequence in a metric space X as usual
(again cf. Exercise 5), and X is said to be complete if every Cauchy
sequence converges, i.e. has a limit in X.

Example 5. Let G be a group. We define a subset U of G to be open
if for each element x € U there exists a subgroup H of G, of finite index,
such that xH is contained in U. It is a simple exercise in algebra to
show that this defines a topology, which is called the profinite topology.
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dard conventions has a unit element). We define a subset U of R to be
open if for each x € U there exists an ideal J in R such that x + J is

contained in U. It is a simple exercise in algebra to show that this
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Note. The topologies of Examples 5 and 6 will not occur in any
significant way in this course, and may thus be disregarded by anyone
uninterested in this type of algebra.

A set together with a topology is called a topological space. In this
chapter we develop a large number of basic trivialities about topological
spaces, and except for the numbered theorems, it is recommended that
readers work out the proofs for all other assertions by themselves, even
though we have given most of them.

The duality between intersections and unions with respect to taking
the complement of a subset allows us to define a topology by means of
the complements of open sets, called closed sets. In any topological
space, the closed sets satisfy the following conditions:

CL 1. The empty set and the whole space are closed.
CL 2. The finite union of closed sets is closed.

CL 3. The arbitrary intersection of closed sets is closed.

The first condition is clear, and the other two come from the fact that
the complement of the union of subsets is equal to the intersection of
their complements, and that the complement of the intersection of subsets
is equal to the union of their compiements.

Conversely, given a collection & of subsets of a set X (not yet a
topological space), we say that it defines a topology on X by means of
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closed sets if its elements satisfy the three conditions CL 1, 2, 3. We can
then define an open set to be the complement of a set in &.

Example 7. Let X =R". Let f(x,,...,x,) be a polynomial in n vari-
ables. A point a =(a,,...,a,) in R" is called a zero of f if f(a) =0. We
define a subset S of R" to be closed if there exists a family {f;};c; of
polynomials in n variables (with real coefficients) such that § consists
precisely of the common zeros of all f; in the family (in other words, all
points a € R* such that f;(a) = 0 for ail i). The reader may assume here
the result that, for any such closed set S, there exists a finite number of
polynomials f;, ...,f, such that S is already the set of zeros of the set
{fi,.--.f;}- It is easy to prove that we have defined a topology by means
of closed sets, and this topology is called the Zariski topology on R". It
is a topology which is adjusted to the study of algebraic sets, that is sets
which are zeros of polynomials. It will not reappear in this course, and
again a disinterested reader may omit it. It does become important in
subsequent courses, however. In 2-space, a closed set consists of a finite
number of points and algebraic curves. In 3-space, a closed set consists
of a finite number of points, algebraic curves, and algebraic surfaces.

Let X be a topological space, and § a subset. A point x € X is said to
be adherent to S if given an open set U containing x, there is some point
of § lying in U. In particular, every element of S is adherent to S. A
point of X is called a boundary point of S if every open set containing
this point also contains a point of S and a point not in S. Thus an
adherent point of § which does not lie in S is a boundary point of S. An
interior point of S is a point of § which does not lie in the boundary of
S. The set Int(S) of interior points of S is open.

A subset S of X is closed if and only if it contains all its boundary
points. This follows at once from the definitions.

By the closure of a s

11 LEUOa = —!v‘-'-r‘- - “aAL w12 AAlAVA)

t S of X we mean t e union
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boundary points. The closure of S, denoted by S, is therefore the set of
adherent points of S. It is also immediately verified that § is closed, and
is equal to the intersection of all closed sets containing S. In particular,
we have

§=35

As an exercise, the reader should prove that for subsets S, T of X we
have:

— ———

SUT=S0OT and SAT<SAT

Equality does not necessarily hold in the formula on the right.
(Example?)
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A subset S of a space X is said to be dense (in X) is § = X. For
instance, the rationals are dense in the reals.

Let X be a topological space and S a subset. We define a topology
on S by prescribing a subset V of § to be open in S if there exists an
open set U in X such that V=UnS. The conditions for a topology
on S are immediately verified, and this topology is called the induced
topology. With this topology, S is called a subspace.

Note. A subset of S which is open in § may not be open in X. For
instance, the real line is open in itself, but definitely not open in R2
Similarly for closed sets. On the other hand, if U is an open subset of X,
then a subset of U is open in U in the induced topology if and only if it
is open in X. Similarly, if S is a closed subset of X, a subset of S is
closed in S if and only if it is closed in X.

If P is a certain property of certain topological spaces (e.g. connected,
or compact as we shall define later), then we say that a subset has
property P if it has this property as a subspace.

A topology on a set is often defined by means of a base for the open
sets. By a base for the open sets we mean a collection # of open sets
such that any open set U is a union (possibly infinite) of elements of 4.
There is an easy criterion for a collection of subsets to be a base for a
topology. Let X be a set and # a collection of subsets satisfying:

B 1. Every element of X lies in some set in 2.

B2 If B, B are in # and x € BN B’ then there exists some B" in %
such that x€ B”" and B" < Bn B'.

If # satisfies these two conditions, then there exists a unique topology
whose open sets are the unions of sets in 4. Indeed, such a topology is
uniquely determined, and it exists because we can define a set to be open
if it is a union of sets in &. The axioms for open sets are trivially

\In":‘:n('
VEriiica.

Example. The open balls in a normed vector space form a base for
the ordinary topology of that space.

Example. Let X be a set and let %, ¥~ be topologies on X, that is
collections of open sets satisfying the axioms for a topology. We say that
¥ is a refinement of %, or that % is coarser than ¥, if every set open in
% is also open in ¥". Thus % has fewer open sets than ¥~ (“fewer” in the
weak sense since  may be equal to ¥").

Let Y be a topological space and let & be a family of mappings
f:X—>Yof Xinto Y. Let # be the family of all subsets of X consisting
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of the sets f~!(W), where W is open in Y and f ranges over &. Then
we leave to the reader the verification of the following facts:

1. 4 is a base for a topology on X, i.. satisfies conditions B 1, B 2.

2. This topology is the coarsest topology (the one with the fewest
open sets) such that every map f € & is continuous.

' cl.: .‘n.\l.\,. . I... . -..l AAAAAAAAA )% ad hy
UJ .

Ce topology on X determined &
For an apphcauon of the weak topology, see Chapter 1V, §1 and also
the appendix of Chapter IV.

There is a generalization of the weak topology as follows. Instead of
considering one space Y, we consider a family of spaces {Y}, for i
ranging in some index set. We let & be a family of mappings fi: X - ¥.
We let # be the family of all subsets of X consisting of finite intersec-
tions of sets f;"}(U;) where U, is open in Y. Then again it is easily
verified that & is a base for a topology, called the weak topology deter-
mined by the family &. The product topology defined below will provide
an example of this more general case, when the family & is the family of
projections on the factors of a product.

o
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A topological space is said to be separable if it has a countable base.
(By countable we mean finite or denumerable.) Exercises on separable
spaces designed to acquaint the reader with them, and essentiaily all
trivial, are given at the end of the chapter. It is easy to see that the real
numbers have a countable base. Indeed, we can take for basis elements
the open intervals of rational radius, centered at rational points. Simi-
larly, R* has a countabie base.

Note. In most cases, the property defining separability is equivalent
with the property that there exists a countable dense subset (cf. Exercise
15), and this second property is sometimes used to define separability.
We find our definition to be more useful but the reader is warned on the

discrepancy with some other texts.

An open set containing a point x is called an open neighborhood of
this point. By a neighborhood of x we mean any set containing an open

Ciix Cyiiie 2y 4 ez ] SWESEL [ OV vvIGuuuE all Ul}\:ll

set containing x. In a normed vector space, one speaks of an ¢-neighbor-
hood of a point x as being a ball of radius ¢ centered at x.

Let X, Y be topological spaces. A map f: X — Y is said to be contin-
uous if the inverse image of an open set (in Y) is open in X. In other
words, if V is open in Y then f~!(V) is open in X. Equivalently, we see
that a map f is continuous if and only if the inverse image of a closed
set is closed.
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Proposition 1.1. Let E, F be normed vector spaces and let f: E —» F be
a map. This map is continuous if and only if the usual (€, ) definition is
satisfied at every point of E.

We prove one of the two implications. Assume that f is continuous
and let xe E. Given ¢, let V be the open ball of radius ¢ centered at
f(x). The open set U = f~}(V) contains an open ball B of radius &
centered at x for some 6. In particular if yeE and |x — y| <4, then
f{y) eV and |f{y) — f(x){ <& This proves the (g, 6) property. The con-
verse is equally clear and is left to the reader.

Actually, this (¢, 6) property can be formulated analogously in arbi-
trary topological spaces, as follows: The map f: X — Y is said to be
continuous at a point x € X if given a neighborhood V of f(x) there exists
a neighborhood U of x such that f(U) < V. It is then verified at once
that f is continuous if and only if it is continuous at every point.

Proposition 1.2. Let X be a metric space (or a subset of a normed
vector space) and let f: X — E be a map into a normed vector space.
Then f is continuous if and only if the following condition is satisfied.
Let {x,} be a sequence in X converging to a point x. Then {f(x,)}
converges to f(x).

The proof will be left as an exercise to the reader.
A composite of continuous maps is continuous.

Indeed, if f: X - Y and g: Y — Z are continuous maps and V is open

in Z, then
(go )N =1"g7'(V)
is seen to be open.

As usual, we observe that a continuous image of an open set is not
necessarily open.

A continuous map f: X — Y which admits a continuous inverse map
g: Y — X is called a homeomorphism, or topological isomorphism. It is
clear that a composite of homeomorphisms is also a homeomorphism.
As usual, we observe that a continuous UijﬁCiivc map need not be a
homeomorphism. In fact, later in this course, we meet many examples
of . vector spaces with two different norms on them such that the identity
map is continuous but not bicontinuous.

Let {X,};c be a family of topological spaces and let

X=1_[X‘

iel
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be their product. We define a topology on X, called the product topol-
ogy, by characterizing a subset U of X to be open if for each x € U there
exists a finite number of indices i, ...,i, and open sets U, ...,U,, in the
spaces X; , ...,X; respectively such that

xeU, xxU x[] XicU.

#ix

The product for i # i, is taken for all indices i unequal to iy, ...,I,. In
other words, we can say that the product topology is the one having as a
base all sets of the form

U.

x - x U x [] X

P

Such sets have arbitrary open sets at a finite number of components, and
the full space at all other components.

The product topology is the unique topology with the fewest open sets
in X which makes each projection map

7[‘: X g X.'
continuous. Indeed, for each open set U, in X;, the set

ﬂ;l((]j) = lj,- X H Xg's

Py

must be open if 7; is continuous, and our previous assertion follows. In
other words, it is the weak topology determined by the family of all
projections on the factors.

More generally, given a set and a family of mappings of this set into
topological spaces, one can define a unique topology on the set making
all these mappings continuous, and having the fewest open sets doing

this, namely the weak topology. If S is a set, and

{fi: 8- Y}ies

is a family of maps into topological spaces Y, then the map
S:8-]1 %
tel
such that f(x) = {f;(x)} is continuous for this topology.

Example 8. We can give R" the product topology, which is called the
ordinary topology. We define the sup norm on R" by

Ix|l = max|x;|
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if x =(x,,...,x,) is given in terms of its coordinates. Then the topology
determined by this norm is clearly the same as the product topology.

Remark. A map f:X — Y which maps open sets onto open sets is
said to be open. A map which maps ciosed sets onto closed sets is said
to be closed. A continuous map need not be either. For instance, the
graph of the tangent is closed in the plane, but the projection map on
the x-axis maps it on an open interval:

y

Figure 2.1

The map which folds the plane over the real axis maps the open plane
on the closed half plane. If f: X — Y is continuous and bijective, then a
necessary and sufficient condition that f be a homeomorphism is that f
be open. This is simply a rephrasing of the continuity of the inverse

mapping f 1.

Il, §2. CONNECTED SETS

A topological space X is said to be connected if it is not possible to
express X as a union of two disjoint non-empty open sets. Of course, we
can formulate the definition in terms of closed sets instead of open sets.

The reader’s intuition of connectedness probably comes from the pos-
sibility of connecting two points of a set by a path. We shall discuss the
relation between this notion and the general notion later, after developing
first some basic properties of connected sets.

Proposition 2.1. Let f: X - Y be a continuous map. If X is connected
then the image of X is connected.
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Proof. Without loss of generality we may assume that Y is the image
of f. Suppose that Y is not connected, so that we can write Y=UuV
where U, V are open, non-empty, and disjoint. Then

-r -

X= (U]

L WE FAN
)
which is impossible. This proves our assertion.

ical space X is connected if and only if every
continuous map of X into a discrete space having at least two elements
is constant.
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Proof. Assume that X is connected, and that f is a continuous map of
X into a discrete space with at least two elements. If f is not constant,
we can write the image of f as a union of two disjoint non-empty sets,
open by definition, and this contradicts our previous result. Conversely,
suppose that we can write X = Uu V as a disjoint union of non-empty
open sets. Let p, g be two distinct objects and let the set {p, g} have the
discrete topology. If we define

J: X = {p, q}

to be the map such that

JU)={p} and  f(V)={q},
then f is continuous and not constant, as was to be shown.

Observe that our proof shows that instead of taking a discrete space
having at least two points, we can take a space with exactly two points
in characterizing a connected set, as we have just done.

Proposition 2.3. Let X be a topological space and let {S;};.; be a
family of subspaces which are connected. If they have a point in com-
mon then their union is connected.

Proof. Let a lie in the intersection of all S,. If we can write
U S" - U v I/,
where U, V are open in this union, then S;" U and S;n V are open in S;
for each i and hence S;c U or S;c V. If for some i we have S;c U,

then ae U and consequently we must have S; = U for all i, thus proving
our assertion.
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As a consequence of the preceding statement, we define the connected
component of a point a in X to be the union of all connected subspaces
of X containing a. This component is actually not empty, because the
set consisting of a alone is connected.

Proposition 2.4. Let X be a topological space and S a connected subset.
Then the closure of S is connected. In fact, if S< T <S8, then T is
connected.

Proof. Left to the reader.
Corollary 2.5. The connected component of a point is closed.
Proof. Clear.

As promised, we now discuss the relation between the naive notion of
connectedness and the general notion. Let X be a topological space. We
say that X is arcwise connected if given two points x, y in X there exists
a piecewise continuous path from x to y. By a piecewise continuous path,
we mean a sequence of continuous maps {«a,, ...,&,}, where each

0 [ai’ bl] - X
is a continuous map defined on a closed interval [q;, b;] such that

oy(b;) = 0141(as41)-

a(a;)=x and  o(b)=y.

Of course, if such a path exists, then it is easy to define just one continu-

ous map
o: [a, b] - X

from some interval [q, b] into X such that a(a) = x and a(b) =y. One
can even take the interval [a, b] to be [0, 1].

Proposition 2.6. Any interval of real numbers is connected.

Proof. We give the proof for a closed interval J = [q, b] and leave the
other cases (open, half-open, infinite intervals) as exercises. Suppose that

. | b, S U 2mmom  moma am

we can write J = AU B where A4, B are closed, disjoint, and non-empty.
Say that a € A. Let ¢ be the greatest lower bound of B. Then c lies in
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the closure of B and since B is closed, ce B, so ¢ #a. For any xeJ
with a < x < ¢, we must have xe€ A since ¢ is a lower bound for B.
Since A is closed, and since c lies in the closure of the interval a < x <¢,
it follows that c lies in A4, a contradiction which proves our assertion.

Proposition 2.7. If a topological space is arcwise connected, then it is
connected.

L e d
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Proof. Let X be arcwise connected and suppose t
as a disjoint union of non-empty open sets U, V. Let xeU and ye V.
There exists a continuous map a:J — X from a closed interval into
X starting at x and ending at y. Then a”!(U) and a~'(V) express J
as a disjoint union of non-empty disjoint sets which are open in J, a
contradiction.

The converse of the preceding result is false. For instance the subset of
the plane consisting of the y-axis and the graph of the curve y = sin(1/x)
is connected but not arcwise connected. In practice, however, most ordi-
nary sets which are connected are also arcwise connected, and the sort of
pathology which arises from sin(1/x) is just that: pathology. In Exercise
12, you will prove that an open subset of a normed vector space is
connected if and only if it is arcwise connected.

Theorem 2.8. Let {X;};.; be a family of connected topological spaces.
Then the product
X = n X'-
iel

is connected.

Proof. Let f: X —{p,q} be a continuous map of X into a discrete
space consisting of two points. We must show that f is constant. Let
ae X and say that f(a) = p. Then f~'(p) contains an open neighbor-
hood of a of the form

U=U, x-- xU_x [] X

Let b be any other point of X and write a, b in terms of their
coordinates:

a=(a,...,a;,...),

b=(b,,....b,...).
Let

z= (a.-, yeeeslis (bl)i;éi,.....i,,)

so that the coordinates of z are the same as those of a for iys ...,i, and
the same as those of b for the other indices. Then ze U and f(2) = p.
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Consider the composite of maps

Xh _E’X'._f) {P, Q},

g(xil) = (xi| ’ aiz’ b "a‘"’ (bl.)l-¢l., ..... ‘")'
Then g is continuous, so is fog, and since
connected set is connected, it follows that f
particular, f o g(a; ) = f(z) = p, and also

-4

the continuous image of a
og is constant on X; . In

f(bi, s Qiys o eesly (bi)i;ei, ..... i,,) = P-

We now perform the same trick, replacing a;, by b, ..., and g; by b, .
We then see that f(b) = p, thus proving that f is constant, which proves

the theorem.

Corollary 2.9. Euclidean n-space R" is connected, and so is the product
of any number of intervals.

Il, §3. COMPACT SPACES

Let X be a set and {S,},4 @ family of subsets. We say that this family
is a covering of X if its union is equal to X. If X is a topological space,
and {U,},.. is a covering, we say it is an open covering if each U, is
open. If {S,},c. is a covering of X, we define a subcovering to be a
covering {Sz}sep Where B is a subset of A. In particular, a finite sub-
covering of {S,} is a covering {S,,,...,5,,}.

Let X be a topological space. We shall say that X is compact if any
open covering of X has a finite subcovering. As usual, we can express a
dual condition relative to closed sets. Let {F,},., be a family of subsets
of X. We say that this family has the finite intersection property if any
finite intersection

E, Naliils F,
is not empty.
Proposition 3.1. A topological space X is compact if and only if, for

any family {F,},c4 of closed sets having the finite intersection property,
the intersection

is not empty.
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Proof. Assume that X is compact and let {F,} be a family of closed
sets having the finite intersection property. Suppose that the intersection
of this family is empty. Then the complements ¢F, form an open cover-
ing of X, and there is a finite subcovering by open sets {‘51‘;, ..., 6F, }
Taking the compiement, we conclude that the intersection

F, N nF,

is empty, which is a contradiction, thus proving the finite intersection
property. The converse is equally clear.

Proposition 3.2. A continuous image of a compact set is compact.

Proof. Let X be compact, and let f: X - Y be a continuous map,
which is surjective. Let {V} be an open covering of Y. Then {f~!(V,)} is
an open covering of X, and there is a finite subcovering

{1}

It follows that {V,,...,V, } is a covering of ¥, as was to be shown.
Proposition 3.3. A closed subspace of a compact space is compact.

Proof. Let X be a compact space and § a closed subspace. Let {U,}
be a covering of S by open sets in X. Let U be the complement of S in
X. Then {U,} together with U form an open covering of X, having a
finite subcovering

{Us,s -+ -sUa,» U}
Since U is disjoint from §, it follows that already U, , ...,U, cover §,
thus proving our assertion.

The converse of the preceding assertion is almost true but not quite.
A topological space X is said to be Hausdorff if given points x, ye X

and x # y there exist disjoint open sets U, V such that xeU and ye V.
If X is Hausdorff, then each point of X is obviously closed.

Proposition 3.4. A compact subspace of a Hausdorff space is closed.

Proof. Let § be a compact subset of the Hausdorfl space X. We
prove that its complement is open. Let x be in the complement. For
each ye S there exist disjoint open sets U,, V¥, such that xe U, and
ye V,. The family {V,},.s covers S and there is a finite subcovermg
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Then the intersection U, n---n U, is open, contains x, and is contained
in the complement of S, thus proving what we want.

A topological space X is said to be normal if it is Hausdorff, and if
given two disjoint closed sets 4, B in X there exist disjoint open sets U,

V such that Ac U and Bc V.

Proposition 3.5. A compact Hausdorff space is normal. In fact, if A, B
are compact subsets of a Hausdorﬁ’ space, and are disjoint, there exist

disjoint open seis U, V such thai Ac U and Bc V.

Proof. The proof is similar to the previous one, and involves merely
one further application of the same principle. Using the same trick as in
this previous proof, we know that for each x € A there exist disjoint open
sets U,, W, such that xe U, and Bc W,. (One would take the finite

union of the open sets V, , ...,V;n to obtam W, in the analogous situa-
tion.) The family of open sets {U,},., covers A, and there exists a finite
subcovering

frr rr
AV o -sVyx o

The open sets U, u---v U, and W, n---n W, solve our problem.

In the case of Hausdorff spaces, or normal spaces, we say also that
points (or closed sets) can be separated by open sets. The properties of
being Hausdorff or normal are thus called separation properties.

It is clear that a subspace of a Hausdorff space is Hausdorff. The
analogous statement for normal spaces is not necessarily true (cf. Kelley
[Ke], Exercise F, p. 132).

The general notion of a compact space is, in many practical cases,
equivalent with another notion with which the reader is probably already
familiar. We call a space X sequentially compact if it has the Weierstrass—
Bolzano property, namely every sequence {x,} in X has a point of accu-
mulation (a point ¢ such that given an open neighborhood U of ¢, there
exist infinitely many n such that x,e U). As usual, an equivalent condi-
tion is that an infinite subset of X has a point of accumulation. It is an
exercise to prove:

Proposition 3.6. If a topotogzcal space has a countable base, then ii is
compact if and only if it is sequentially compact.
(Cf. Exercise 19.)

The preceding criterion will not be used in this book.

Proposition 3.7. Compactness implies sequential compactness.
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Proof. Let X be compact. It will suffice to prove that an infinite
subset of X has a point of accumulation. Suppose that this is not the
case, and let S be an infinite subset. Given x € X, there exists an open
set U, containing x but containing only a finite number of the elements
of §. The family {U,},.x covers X. Let {U,,...,U,} be a finite sub-
covering. We conclude that there is only a finite number of elements of §
lying in the finite union

Uy, v---ul,.
This is a contradiction, which proves our assertion.

The converse is true under important and rather general conditions, as
shown in the next theorem.

Theorem 3.8. Let S be a subset of a metric space, or of a normed
vector space.

(1) S is compact if and only if S is sequentially compact.
() S is compact if and only if S is compiete, and given r > 0 there
exists a finite number of open balls of radius r which cover §.

Proof. We have already proved that compactness implies sequential
compactness. Conversely, assume that § is sequentially compact. Then
certainly § is complete, and we shall prove that the other condition
stated in (ii) is satisfied. Suppose it is not. Let r > 0. Let x, € S and let
B, be the open ball of radius r centered at x,. Then B; does not contain
S, and there is some x, €S, x,¢ B;. Proceeding inductively, suppose
that we have found open balls B, ...,B, of radius r, and points x,,
...,X, with x; € B; such that x;,, does not lie in B, u---UB,. We can
then find x,,, which does not lie in B, U--- U B,, and we let B,,, be the
open ball of radius r centered at x,,,. Let v be a point of accumulation
of the sequence {x,}. By definition, there exist positive integers m, k with

k > m such that

Ixx — v] < 7/2
and

| X, — v] < r/2.

Then |x; — x,,| < r and this contradicts the property of our sequence {x,}
because x; lies in the ball B,. This proves that S satisfies the condition
of (i).

Now assume this condition. Let {U;};.; be an open covering of S, and
suppose that there is no finite subcovering. We construct a sequence
{x,} in § inductively as follows. We know that S is covered by a finite
number of closed balls of radius 3. Hence there exists at least one closed
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ball C, of radius 1 such that C, NS is not covered by a finite number of
U,, We let x; be a point of C; nS. Suppose that we have obtained a
sequence of closed balls

O e — O
L 2 =Ly

such that C, has radius 1/2", with a point x,€ C,nS, and such that
C,NS is not covered by a finite number of U;. Since S itself can be

rnvarad hy o G'\I munmhae AF AlAacad Lkalla AF eadinws 1 /90 +1\ 24 Fallae..n
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that C,n S can also be so covered, and hence there exists a closed ball
C,.; of radius 1/(2"*') and such that C,,; 7S cannot be covered by a
finite number of U;. We let x,,, be a point of C,,, nS. This constructs
our sequence as desired. We see that {x,} is a Cauchy sequence in S,
which coverges to a point x in S. But x lies in some U, which contains
C, for all sufficiently large n, a contradiction which proves our theorem.

A subset S of a metric space, or a normed vector space, which can be
covered by a finite number of open balls of given radius » > 0 is said to
be totally bounded. We can phrase (ii) by saying that S is compact if and
only if it is complete and totally bounded. A subset of a topological
space is said to be relatively compact if its closure is compact. From (ii)
we get a convenient criterion for relative compactness.

\,ﬁfﬁllﬁf'y' 38. Let S be a subset O‘f a u‘)mpu:w normed vector Space.

Assume that given r > 0 there exists a finite covering of S by balls of

radius r. Then S is relatively compact.

u because if S is
covered by a finite number of balls of radius r/2, then the closure of S is
covered by a finite number of balls of radius » (centered at the same
points). Also S is complete. Hence we conclude that the closure of S is
compact.

As an application of Theorem 3.8, we recall that a closed (bounded)
interval in R has the Weierstrass—Bolzano property. Hence it is compact,
and therefore so is any closed bounded subset of R (being a closed subset
of a compact set). The converse is also true, since a compact set is
closed, and must be bounded, otherwise one can find an infinite sequence
tending to infinity, and not having a point of accumulation.

One can also prove the compactness of a closed interval directly from
the least upper bound axiom, as follows. Let a < b, and let {U;};., be an
open covering of [a b]. Let S be the set of all x € [a, b] such that [a, x]

PR S e @aéd Asvnsaduy lhananian ~ nd e

admits a finite buuuovcnug Then S is not cmpt_y \ucuauao aedo) andg is

bounded from above by b. Let c be its least upper bound. Then ce U,
for some index iy. If a <c, select a number t with a <t < c such that
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the interval [, c] is contained in U, . If a=c, let t =a. Then [a, t] can
be covered by a finite number of sets U;, say Ui, ... U, - .If c# b, U}CH
U, U, ...U, cover an interval [a, c"] with ¢’ >¢, a contradiction, proving

that ¢ = b and that [a, b] is compact.

One can generalize to arbitrary compact sets some standard theorems
on closed intervals, e.g.:
Mnee 22 . 210 r .. A L_ PRIy S P 1
rropusiuvil J.1VU. L€l A UE compact >et, an U
function on A. Then f has a maximum (a point c€ A such th

f(©) 2 f(x) for all x e A).
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Proof. The image f(A) is compact, so closed and bounded. The least
upper bound of f(A) lies in f(A), thus proving our assertion.

If A is a subset of a normed vector space, and if f:A—>F is a
continuous map into some normed vector space F, then we say that f is
uniformly continuous on A if given ¢ there exists § such that whenever
x, ye A and |x — y| <8, then |f(x) — f(y)| <& We recall the theorem
from elementary analysis that:

Proposition 3.11. Let A be a compact subset of a normed vector space.
If f-A—F is a continuous map into a normed vector space, then f is
uniformly continuous. In fact, if A is contained in a subset S of a
normed vector space, if f is defined on S and continuous on A, then
given ¢ there exists 6 such that if xe A and ye S and |x — y| < J, then

/() = Sl <e

We recall the proof briefly. Given ¢, for each xe A we let r(x) > 0 be
such that if |y — x| < r(x), then |f(y) — f(x)| <e. We can cover A by
open balls B; of radius

5!' = r(xl')/za

centered at x; (i=1,...,n). We let d =mind;. If x € A, then for some i
we have |x — x;| < r(x;)/2. If |y — x| < 4, then |y — x;| < r(x;) so that

as was to be shown.

The preceding definition of uniform continuity, and the result just
proved, are of course valid for metric spaces, with the usual notation

d(x, y) replacing [x — y|. The property which we proved, and which is
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slightly stronger than uniform continuity on A, will be called relative
uniform continuity (relative to S, that is).

The only non-trivial theorem of this section is the theorem that a
product of compact spaces is compact. In situations when one can use
sequences, and one takes a finite product of spaces, however, the proof is
immediate. For instance, let E, F be normed vector spaces, and let S, T
be compact subsets of E, F, respectively. Let {z,} be a sequence in
S x T, and write z, —(x,,,y,,) with x,€E and y,e F. We can find a
subsequence {x, } converging to a point a in S. We can then find a
subsequence {yn.k} converging to a point b in F. Then the sequence

{z,,,k} converges to (a, b) so that § x T is sequentially compact.
The idea for this proof is to project on the coordinates, and from

Annerdiantanriona AnANUvAaransna tha Annvarancna tea tha cae~ds, Pl Yal-}
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However, if we do it for an infinite product, the above proof seems to fail
because we may exhaust all the indices before being through with the
proof. One can still formulate the basic idea so that it essentially carries
over to the most general case. Part of the difficulty in doing this is that
the points of accumulation in the various coordinate spaces are not
uniquely determined. Thus one must find a set theoretic device which
chooses simultaneously a point of accumulation in all coordinate spaces.

The proof below is due to Bourbaki.

Theorem 3.12 (Tychonoff’s Theorem). Let {X,},., be a family of com-
pact spaces. Then the product

X =1] x,

acA
is compact.

Proof. Let & = {F};c; be a family of closed subsets of the product,
having the finite intersection property. The family of subsets of X (not
necessarily closed) containing our given family & and having the finite
intersection property is ordered by ascending inclusion. One verifies im-
mediately by taking the usual union that it is inductively ordered. It is
therefore contained in a maximal family &#* having the finite intersection
property. Let

. X=X,

be the projection on the a-th factor. For each a, the family of closed sets
{m,(F)}, F e &%,

has the finite intersection property, and consequently there exists an
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element x, in each set 7(F) for all Fe #*. Let x =(x,). We contend
that x belongs to all sets F € #*. This will prove our theorem.

To prove our contention, we observe that the intersection of a finite
number of sets in F* also lies in #* because of the maximality of F*.
Let U be an open set of X containing x, of the form

U=U, x-xU,x [] X,

ata;

with each U,, open in X,. Then U, contains x,, for all i, and therefore
U,, contains a point of n, (F) for all Fe #*. Hence

1l (Ug) = U, x [] X,

atay

contains a point of F for each F € #*. Because of the maximality of #*
with respect to the finite intersection property, it follows that

7 (U,,)
belongs to & *, and hence the finite intersection of these sets for
i=1,...,n

also belongs to & *. But this finite intersection is nothing else but our
set U, and hence U intersects each F in & ™*, so a fortiori each F e &Z.
Hence x lies in the closure of each F € &, whence x € F for all Fe &, as
was to be shown.

Corollary 3.13. A subset of R" is compact if and only if it is closed and
bounded.

Proof. Let S be a subset of R" and assume first that S is closed and
bounded. Then S is contained in the product of a finite number of
closed intervals, and is therefore a closed subset of a compact space. It is
thus compact. Conversely, if it is compact, it is closed, and it must be
bounded; otherwise, one can find a sequence of elements in S going out
to infinity, and not having a point of accumulation.

Corollary 3.14. All norms on R" are equivalent.
Proof. Let || || be the sup norm, and | | any other norm. It will
suffice to prove that these two norms are equivalent. If €, ...,e, are the

usual unit vectors of R”, then for x = x,e, + -- + x,e, we get

x| = 1%y les] + -+ +|x,lle,| < Cllx|l
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with C = n-max|e;. This proves one of the desired inequalities, and also
shows that the other norm is continuous, because

x| = yll £ 1x — yl £ Clix - yll.

Let S, be the unit sphere centered at the origin for the sup norm. Then
S, is closed and bounded, so compact, and the other norm has a mini-
mum on §,, say at v. Thus for any x € R" we get

2|vl, and hence |v][lx]| £ Ix].

X
I

This yields the other inequality, and proves our corollary.

dimensional vector space. A closed subset of a complete metric space is
complete, and a complete subset of a metric space is closed. We con-
clude that a finite dimensional subspace of a normed vector space is
complete, and therefore closed.

A space X is said to be locally compact if every point has a compact
neighborhood. For instance, R" is locally compact, and so is any finite
dimensional vector space. It is clear that a normed vector space is locally
compact if and only if the closed unit ball is compact. (If the space is
locally compact, then some closed ball of radius » > 0 is compact, and
hence the unit ball is compact by multiplication with a positive number.)

Corollary 3.15 (F. Riesz). A normed vector space is locally compact if
and only if it is finite dimensional.

Proof. Let E be a locally compact normed vector space, and let B be
the closed ball of radius 1 centered at 0. We can find a finite number of
points x,, ...,x, € B such that B is covered by the open balls of radius 1
centered at these points. We contend that x,, ...,x, generate E. Let F be
alhn neclhncenmn mncenc—néad lier < -~ Tha r fier AT ctnnal hancao
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closed in E as a trivial consequence of Corollary 3.14. Suppose that x € E
and x ¢ F. Let

d(x’F) {_Ix_yl'

in
Drawing a closed ball around x intersecting F, and using the fact that
the intersection of F and this ball is compact, we conclude that there is
some z € F such that d(x, F) = |x — z|, and we have x — z # 0 since F 1s
closed in E. Then there is some x; such that

<1
2

|x — 2]
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and consequently that

|x — z|
5

|x =z —|x —z|x| <

However, z + |x — z| x; lies in F, and by definition of z such that
d(x, F) = |x — z|

we conclude that the left-hand side is = |x — z|. This is a contradiction
which proves our corollary.

Let X be a locally compact Hausdorff space. One can construct a
compact space by adjoining to X a point “at infinity” as follows. Let p
be some point not in X and let X’ be the union of X and {p}. We
define a base of open sets in X’ by throwing into this base all subsets of
X which are open in X, and the complements in X’ of compact sets in
X. That this defines a base is clear, and one also verifies at once that X’
is then compact. It is called the one point compactification of X.

It is easy to see that the one point compactification of R is homeo-
morphic to a circle. The one point compactification of the plane R? is
homeomorphic to the sphere. In general, the one point compactification
of R" is homeomorphlc to the n-sphere (i.e. the set of all x e R**' such

= 1 vhaera | | I-'qn ancls
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Il, §4. SEPARATION BY CONTINUOUS FUNCTIONS

We are concerned throughout this section with a normal space X and
the manner by which one can separate two disjoint closed sets by means
of a continuous function.

Lemma 4.1. Let X be a normal space. If A is closed in X and Ac U

VRV UCW s Py

is contained in an open set U, then there exists an open set U, such that
Ac U cU, cU.

Proof. Let B be the complement of U. By the definition of normality,
there exist disjoint open sets U, ¥; such that A c U, and B c V. Itis
clear that U, satisfies our requirements.

Theorem 4.2 (Urysohn’s Lemma). Let X be a normal space and let A,
B be disjoint closed subsets. Then there exists a continuous function f
on X with values in the interval [0, 1] such that f(A) =0 and f(B) = 1.
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Proof. In a metric space, which is the most important in practice, one
can give a trivial proof. Cf. Exercise 7. We now give the proof in
general. Let U; be the complement of B so that Ac U,. We find U,
such that

Ac Uy, c Uuz c U,.
We then find U,, and U,, such that
A C Ull4 [t Ul“' [t Ul/l C U.l[z C U3/4 C 173/4 C Ul'

Inductively, for e_zlch integer k with 0 < k < 2", we find Uj;~ such that if
r <s, then U, c U, =« U,. We then define the function f by

f(x)=1 if x e B,
f(x) = inf of all r such that xe U, if x ¢ B.

It is then essentially clear that f is continuous. We carry out the details.
It will suffice to prove that for numbers a, b such that 0 <a <1 and
0 < b < 1 the inverse images of the half-open intervals

770, a) and 7', 1]

are open. In fact, we have

/o9 =y U

r<a

because f(x) < a if and only if x lies in some U, with r < a. Similarly, we
have f(x) > b if and only if x ¢ U, for some r > b, so that

6 11= | 4T,

This proves our theorem.

Since a compact Hausdorff space is normal. Urysohn’s lemma applies
in this case. One needs it frequently in the locally compact case in the
following form.

Corollary 4.3. Let X be a locally compact Hausdorff space, and K a
compact subset. There exists a continuous function g on X which is 1
on K and which is equal to 0 outside a compact set.
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Proof. Each xe€ K has an open neighborhood ¥, with compact clo-
sure. A finite number of such neighborhoods V; , ...,V covers K. Let

V= [/xlu...u I/x“.

Then the closure of V is compact. There exists a continuous function
g =0 on V (compact Hausdorff, hence normal) which is 1 on K and 0
outside V, i.e. 0 on VN ¥V. We define g to be 0 on the complemeni of V
in X. Then g is continuous at every point in the compiement of ¥, and
as function on X is also continuous on V. This proves our corollary.

Theorem 4.4 (Tietze Extension Theorem). Let A be a closed subset of a
normal space X and let f be a continuous (real valued) function on A.

T’ion f'1ava exists a continuous fumrtinn f* nn Y whneo rostyriction to A
I8 I8 LIBLT © ALY W LUTILHIISIUV L J"'l"l'v 1 ViE LA TYISUVOUG T CULT IVILIIUTS 4A

is equal to f. If f has values in [0, 1], then we can choose f* to have
values in [0, 1] also.
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closed subsets of X, we denote by g, 5 a function with values in [0, 1]
such that g(A4) =0 and g(B) = 1. Such a function exists by Theorem 4.2.

We shall now define functions f, on 4 and g, on X.
We let f, = f and define sets 4,, B, by the conditions:

Ao = {x € A such that f(x
B, = {x € A such that f(x

S’ e’

We let go = 39,5, and define f; = f, — go. Inductively, suppose that we
have defined f,; we have

= {x € 4 such that f,(x) < ($)3)},
= {x € A such that f,(x) = (2)(2)"}.
We then define
9, =(3)3)"94,5.

and let f,,, = f, — g, (Here of course, we understand by g, its restric-
tion to A.) Then in particular:

Josr =f —(go + "+ g,)
We have

O
o
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(3" and 02/ <@
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The first inequality is clear. The second is proved by induction. It is
clear for n =0. Let n > 0. One distinguishes the three cases in which for
a given xe A we have xe 4,, or x¢ A, but x¢B,, or xe B,. The
desired inequality of f, is then obvious in each case, using the inductive
hypothesis.

From our inequalities (), we then conclude that the series

Go+ gyt ot gyt

converges pointwise, and furthermore converges to f on A. The uniform
bounds imply at once that the limit function is continuous, thus proving
Theorem 4.4, when f has values in [0, 1].

Remark 1. The restriction to the interval [0, 1] is of course unneces-
sary, and the theorem extends at once to any other closed bounded
interval, for instance by mapping such an interval linearly on [0, 1].

Now suppose that f is unbounded. Using the arctangent map we
reduce the theorem to the case when f takes values in the open interval
(=1, 1) and we must then know that the extension can be so chosen that
its values also lie in the open interval (—1,1). Let B be the closed
set where the extension f* (which we have constructed with values in
[—1,1]) takes on the values 1 or —1. Then A and B are disjoint, so
that by Urysohn’s lemma there exists a continuous function k on X with
values in [0, 1] such that his 1 on 4 and 0 on B. Then hf* has values
in the open interval (—1,1), as desired. This concludes the proof of
Theorem 4.4.

Remark 2. The theorem also holds in the complex case dealing sepa-
rately with the real and imaginary parts. The extra condition on the
restriction of the values can then be formulated analogously by requiring
that

I/ < 1r

Indeed, suppose that we have extended f to a bounded continuous com-
plex valued function g. Let b= f|. Let h be the function such that
h(z) =z if |z| £ b, and h(z) = bz/|z| if |z| > b. Then h is continuous,
lhll < b, and h o g fulfills our requirement.
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I, §5. EXERCISES

1. (a) Let X, Y be compact metric spaces. Prove that a mapping f: X =Y is
continuous if and only if its graph is closed in X x Y.

(b) Let Y be a complete metric space, and let X be a metric space. Let A be

a subset of X. Let f: A— Y be a mapping that is uniformly continuous.
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Let A be the closure of A in X. Show that there exists a unique extension
of f to a continuous map f: A — Y, and that f is uniformly continuous.
You may assume that X, Y are subsets of a Banach space if you wish,
in order to write the distance function in terms of the absolute value sign.

Seminorms. Let E be a vector space. A function o: E—R is called a
seminorm if it satisfies the same conditions as a norm except that we allow
o(x) =0 without necessarily having x =0. In other words, ¢ satisfies the
following conditions:

SN 1. We have 6(x) =2 0 for all x € E.
SN 2. If x€ E and a is a number, then o(ax) = |a| o(x).
SN 3. We have o(x + y) < a(x) + o(y) for all x, y € E.

We also denote a seminorm by the symbols | |.

(@) If | | is a seminorm on E, show that the set E, of elements x € E with
x| = 0 is a subspace.

(b) Define open balls with respect to a seminorm as with a norm. Show that
the topology whose base is the family of open balls is Hausdorff if and
only if the seminorm is a norm.

(c) Let {0,} be a sequence of seminorms on E such that the values g,(x) are
bounded. Let {a,} be a sequence of positive numbers such that ) a,
converges. Show that Za,,a,, is a seminorm.

(d) Let {6;};c; be a family of seminorms on a vector space E. Let x, € E and
let iy, ...,i, be a finite number of indices. Let r > 0. We call the set of
ali x € E such that

O}k(x—xo)<r, k= 1,...,",
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seminorms.

. (a) Let I' be the set of all sequences « = {a,} of numbers (say, real) such that

Y la,| converges. Define
le| =3 |a,l.

Show that this is a norm on I, and that I' is complete under this norm.
(b) Let p={b,} be a fixed sequence in I'. Show that the set of all a el

such that |a,| < |b,| is compact. Show that the unit sphere in I! is not
compact.

. Let a be a real number, 0 <a < 1. A real valued function f on [0, 1] is said

to satisfy a Holder condition of order « if there is a constant C such that for
all x, y we have

1/ (x) = S < Clx — yI~

For such a function, define

"f" =SUp|f‘x)! 2 Qllplf( x) — f(Y)l

xy |x—=yI
x#y
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(a)
(b)

Show that the set of functions satisfying such a Holder condition is a
vector space, and that || ||, is a norm on this space.
Show that the set of functions f with || f|l, <1 is a compact subset of

C(fo, 17).

5. Metric spaces. (a) Let X be a metric space with distance function d. Define

(c)

d'(x, y) = min{1, d(x, y)}. Show that d’ is a distance function, and that the
notion of convergence and limit with respect to d’' is the same as with
respect to d.

Ac 1 rmad vactar spaces,
AS 1IN noOrmed VeCior Spawvwo, one <an d

1y
quences {x,} such that given ¢, there xnsts N such that for all m, n > N
we have d(x,, x,,) < &. A metric space is called complete if every Cauchy
sequence converges. Show that if a metric space X as in part (a) is
complete with respect to d, then it is complete with respect to d'.
For each x € X define the function f, on X by

S:(y) = d(x, y).

Let || || be the sup norm. Show that

d(x, y) = Ilfx — Sl

Let a be a fixed element of X and let g, = f;, — f,. Show that the map
x—g, is a distance-preserving embedding of X into the normed vector
space of bounded functions on X. (If the metric is bounded, you can use
f, instead of g,). Thus one need not fuss too much with abstract metric
spaces. Besides, almost all metric spaces which occur naturally are in fact
given as subsets of normed vector spaces.

A topological space is said to be metrizable if there exists a metric
such that the open balls form a basis for the topology. Such a metric is
said to be compatible with the topology.

6. Let A be a subset of a metric space X. For each x € X, let

d(x, A) = infd(x, y)

x—d(x, A)

is a continuous function on X, and that d(x, A) = 0 if and only if x lies in the
closure of 4. We call d(x, A) the distance from x to A.

7. (a)

(b)

Show that a metrizable space is normal. [Hint: Let A, B be disjoint
closed subsets. Let U be the set of x such that d(x, A) < d(x, B) and let V
be the set of x such that d(x, B) < d(x, A).]
If A, B are disjoint closed subsets of a metric space, show that the
function

x> d(x, A)/(d(x, A) + d(x, B))

can be used to prove Uiyschn’s lemusa.
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Let X be a topological space and E a normed vector space. Let M(X, E) be

the set of all maps of X into E and C(X, E) the space of all continuous maps

of X into E. Let B(X, E) be the space of all bounded maps, and BC(X, E)

the space of bounded continuous maps.

(a) Show that BC(X, E) is closed in B(X, E).

(b) Suppose that E is complete, i.e. a Banach space. Show that B(X, E) is
complete, with the sup norm.

(c) If X is compact, show that C(X, E) = BC(X, E).

Uniform convergence on compact sets. Let X be a Hausdorfl space. Let
M(X, E) be the space of maps of X into a Banach space E. A sequence {f,}
in this space is said to be uniformly Cauchy on compact subsets if given a

compact set K and ¢ > 0, there exists N such that for m, n = N, we have

Ifo = fmllx <&

where || || is the sup norm on K. In other words, the sequence restricted to
K is uniformly Cauchy. The sequence is said to be uniformly convergent on
compact sets if there is some map f having the following property. Given a
compact set K and ¢, there exists N such that for n = N, we have

Ifo — Sk <e

In other words, the sequence restricted to K is uniformly convergent. We

shall now make M(X, E) into a metric space for which the above convergence
is the same as convergence with respect to this metric, in certain cases.

A sequence {K;} of compact subsets of X said to be exhaustive if their
union is equal to X, and if every compact subset of X is contained in some
K;. We assume that there exists such a sequence {K,}.

(a) Define
d(f)= ; 27 min(1, |fllk,)-

If f is unbounded on K, then we set ||f|lx = co and min(l, | f]lx) = 1.
Show that d(f) satisfies two of the properties of a norm, namely:

d(f)=0 ifand only if f=0;
d(f+ g) S d(f) + d(g).

(b) Define d(f, g) by d(f — g). Show that d(f, g) is a metric on M(X, E).
(c) Show that

270inf(1, If ) S d(f)  and  d(f) S Iflg, + 2

(d) Show that a sequence {f,} converges uniformly on compact sets if and
only if it converges in the above metric.

(e) Let K be a compact set and &> 0. Given f, let V(f, K, €) be the set of
all maps g such that ||f — g||x <& Show that V(f, K, €) is open in the
topology defined by the metric. Show that the family of all such open
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10.

11.

12.

13.

14.

sets for all choices of f, K, ¢ is base for the topology. This proves that
the topology does not depend on the choice of exhaustive sequence {K;}.
(f) If E is complete, i.e. a Banach space, show that M(X, E) is complete in
the metric defined above.
(g) If X is locally compact, show that the space of continuous maps C(X, E

is closed in M(X, E) for the metric.

Let U be the open unit disc in the plane. Show that there is an exhaustive
sequence of compact subsets of U.

Let U be a connected open set in the plane (or in Euclidean space R*). Show
that there is an exhaustive sequence of compact subsets of U.

Let U be an open subset of a normed vector space. Show that U is con-
nected if and only if U is arcwise connected.

The diagonal A in a product X x X is the set of all points (x, x).

(a) Show that a space X is Hausdorff if and only if the diagonal is closed in
X x X.

(b) Show that a product of Hausdorff spaces is Hausdorff.

If A is a subspace of a space X, we define the boundary of A (denoted by 0A)

to be the set of all x such that any open neighborhood U of x contains a

point of A and a point not in A. In other words, 34 = A N (%A).

(a) Show that 9(Au B) c A U 0B.

(b) Show that (A n B) c 0A v 0B.

(c) Let X, Y be topological spaces, and let A be a subset of X, B a subset of
Y. Show that

d(A x B) =(0A x B)yu(A4 x dB).

(d) Let A be a subset of a complete normed vector space E. Let xe A and
let y be in the complement of A. Show that there exists a point on the
line segment between x and y which lies on the boundary of A. (The line
segment consists of all points x + t(y — x) with 0 St < 1)

Separable Spaces

1S.

pos
=3}

17.

18.

A topological space having a countable base for its open sets is called separa-
ble. Show that a separable space has a countable dense subset.

separable.
(b) A compact metric space is separable.

(a) If X is a metric space and has a countable dense subset, then X is

(a) Every open covering of a separable space has a countable subcovering.
(b) A disjoint collection of open sets in a separable space is countable.
(c) A base for the open sets of a separable space contains a countable base.

A denumerable product of separable (resp. metric) spaces is separable (resp.
metric).
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19.

20.

21.

TOPOLOGICAL SPACES [11, §5]

Let X be separable. Show that the following conditions are equivalent:

(a) X is compact.

(b) Every sequence {x,} in X has at least one point of accumulation, that is
X is sequentially compact.

(A Ruasrwy Aa vwan~a f A L AfF nnn=nmnfil ~rlocad cate has a ngpgmn[v
‘b, .—4"-[] u"bl "anllls aC\.luCll\,u \ ! vi uvn \'lll!J‘. WIVOWW Uwew site (] r-J
intersection.

Prove that a normal separable space X is metrizable (Urysohn melrization
theorem). [Hint: Let {U} be a countable base for the topology Let (U,,, U,)
be an enumeration of ali pairs of elements in this base such that U, < U,,,'
For each i let f; be a continuous function satisfying 0 < f; < 1 and such that

fiis 0 on U, and 1 on the complement of U,,. Let

x5 = 5 51669 = SO

Show that d is a metric and that the identity mapping is continuous with
respect to the given topology on X and the topology obtained from the
metric. You will use the fact that given x € X and some open set U, in the

n....nvl-. ata In-..nc-ll:..l.l...-m ...kol..t
qaiiing X, uicic czuata anouicr sci U, i1 Ui€ 0asSt Sudil dlal

xeU,c U, cU,.

Regular spaces. A topological space X is called regular if it is Hausdorff, and

if given a point x and a closed set A not containing x, there exist disjoint

open sets U, V such that xe U and A c V.

(a) A subspace of a regular space is regular.

(b) Let X be a topological space. If every point has a closed neighborhood
which is regular, then X is regular.

(c) Every locally compact Hausdorff space is regular.

(d) If X is separable regular, show that every point x has a sequence of open
neighborhoods such that:
(i) (_]n-!‘l c Un;

(i) {x} = U,

The following exercises are of somewhat less general interest than the preced-

ing ones (but some are more amusing).

22.

Proper maps. Let X, Y be topological spaces and f: X - Y a map. We say
that f is closed if f maps closed sets into closed sets. We say that f is proper
if f is continuous and if for every topological space Z the map

Sxlz=0XXZ>YxZ

given by f(x, z) = (f(x), z) is closed.
(a) Show that a proper map is closed.
(b) Foreachi=1,...,nlet fi: X;— Y, be a continuous map. Assume that X,

is not empty for each i. Let f:]]X;—]]Y¥ be the product map. Show
that f is proper if and only if all f; are proper.

(c) If f: X — Y is proper and A is closed in X, show that f|4 is proper.
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23.

24.

25.

26.

217.

28.

Let f: X — X’ and g: X' - X” be continuous maps. Prove:
(@) If f and g are proper, so is g o .

(b) If g o f is proper and f is surjective, then g is proper.
(c) If go f is proper and g is injective, then f is proper.
(d) If g o f is proper and X'is Hausdorff, then f is proper.

Let X be a topological space, {p} a set consisting of one element p. The map
J: X = {p} is proper if and only if X is compact. [Hint: Assume that f is
proper. To show that X is compact, let {S,} be a family of non-empty closed

sets having the finite intersection proverty. Let Y= X u {p!. where p Adia.
Swie AR Vaiag vaiw aa MALVIOVWLAVIL PIUPWILY . Pe \le!, “ll\'lb ‘I IB uxn

joint from X. Define a base for a topology of Y by letting a set be in this
base if it is of type S, U {p}, or if it is an arbitrary subset of X. Show this is
a base. The projection n: X x Y — Y is a closed map. Let D be the subset of
X x Y consisting of all pairs (x,x) with xe X. Then n(D) is closed and
therefore contains p. Hence there exists x € X such that (x, p)eﬁ whence

agivae an gnan IJ in Y caontnintng nd C  tha ant I7 gy
BpivV il UpTil Ul /A \-Ull\.alulus X, ana dll_y gy l.llC St U X \Da\.lip]) ineer-

sects D, whence U intersects S;, and x lies in () S,.]

Let f: X — Y be a continuous map. Show that the following properties are
equivalent

(a) f is proper.
(b) f is closed and for each y € Y the set f~!(y) is compact.

Let f: X > Y be proper. If B is a compact subset of Y, then f~!(B) is
compact.

(The marriage problem so baptized by Hermann Weyl.) Let B be a set of boys,
and assume that each boy b knows a finite set of giris G,. The problem is to
marry each boy to a girl of his acquaintance, injectively. A necessary condi-
tion is that each set of n boys know collectively at least n girls. Prove that
this condition is sufficient. [Hint: First assume that B is finite, and use
induction. Let n> 1. If for all 1 < k < n each set of k boys knows > k girls,
marry off one boy and refer the others to the induction hypothesis. If for
some k with 1 < k < n there exists a subset of k boys knowing exactly k girls,
marry them by induction. The remaining n — k boys satisfy the induction
hypothesis with respect to the remaining girls (obvious!) and thus the case of
finite B is settled. For the infinite case, which is really the relevant problem
here, take the Cartesian product I'ln over all be B, each G, being finite,

discrete, and use Tychonoﬂ"s theorem For this elegant proof cf. Halmos
and Vaughn, Amer. J. Math. January 1950, pp. 214-215.]

The Cantor set. Let K be the subset of [0, 1] consisting of all numbers

houtnng o teanimn
uay llE a Lighuillia

uMa

a,
13"

where a, =0 or a,=2. This set is called the Cantor set. Show that K is
compact. Show that the complement of K consists of a denumerable union
of intervals, and that the sum of the lengths of these intervals is 1. Show that
the connected component of each point in K is the point itself. (One says
that K is totally disconnected.)
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29.

30.

31

W
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[It can be shown that a compact metric space is always a continuous
image of a Cantor set, and also that a totally disconnected compact metric
space is homeomorphic to a Cantor set. Cf books on general topology.
The Cantor set has measure 0, is not countable, and is a rich source for

PR W, [

counerexatiipies. _]

Peano curve. Let K be the Cantor set of the preceding exercise. Let S =
[0, 1] x [0, 1] be the unit square. Let f: K —S be the map which to each
element ) a,/3" of the Cantor set assigns the pair of numbers

(plz ),

where b, = a,/2. Show that f is well defined. Show that f is surjective and
continuous. One can then extend f to a continuous map of the interval onto
the square. This is called a Peano curve. Note that the intervai has dimen-
sion 1 whereas its image under the continuous map f has dimension 2. This
caused quite a sensation at the end of the nineteenth century when it was
discovered by Peano.

The semi parallelogram law (Bruhat-Tits). Let X be a complete metric space.
We say that X satisfies the semi parallelogram law, or is seminegative, if
given two points x,, x, € X there is a point z such that for all x e X we have

d(xy, x2)* + 4d(x, 2)* < 2d(x, x,)* + 2d(x, x,)*.

Prove that under this law, d(z, x;) = d(x,, X,)/2, and z is uniquely deter-
mined. We call z the midpoint of x,, x,.

(Serre, after Bruhat-Tits) Let X be a seminegative complete metric space. Let
S be a bounded subset of X. Show that there exists a unique closed ball
B,(x;) of minimal radius containing S. [Use the semiparallelogram law both
for uniqueness and existence. For existence, show that if {B, (x,)} is a se-
quence of closed balls containing S with limr, = r (the inf of all radii of
closed balls containing S), then {x,} is Cauchy.] The center of that closed
ball is called the circumcenter of S.

(Bruhat-Tits fixed point theorem) Let X be a complete seminegative metric
space. Let G be a group of isometries of X, ie. bijective maps f: X - X
which preserve distance. Denote the action of G by (g, x) = g.x. Suppose G

has a bounded orbit (i.e. there is a point x such that the set S of all elements
a.x, nr: (‘ IQ hnnndpd\ Then G bnc a ﬁvﬂd r\nlnl' {ﬂ-\n nnrnnmnnnlnr\ nf tha

g il LAt g & aswaa W ARAw  Sa PVakiv uiiw \.ulll\:‘lll"vl’ Vi uuie

orbit.
For the above exercises, cf. Bruhat-Tits, Groupes Réductifs sur un Corps

Local 1, Pub. IHES 41 (1972) pp. 5-251; and K. Brown, Buildings, Springer
Verlag, 1989, Chapter VI, Theorem 2 of §5.



CHAPTER i

Continuous Functions
on Compact Sets

I, §1. THE STONE-WEIERSTRASS THEOREM

Let E be a normed vector space (over the real or the complex numbers).
We can define the notion of Cauchy sequence in E as we did for real
sequences, and also the notion of convergent sequence (having a limit). If

.
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also called a Banach space. A closed subspace of a Banach space is
complete, hence it is also a Banach space.
normed vector

ARAG

Examnles, Let S be a non-empty set, and let F be a

A meAmzEprEenTe p = wvw < Cwiy u

space. We denote by B(S, F) the space of bounded maps from S into F.
It is a normed vector space under the sup norm, and if F is a Banach
space, then B(S, F) is complete, and thus is also a Banach space. The
proof that B(S, F) is complete if F is complete should be carried out as
an exercise. (The reader should have had a similar proof as part of a
course in advanced calculus but, at any rate, has had it for functions
which are real valued. The proof applies as well to Banach spaces.) If S
is a subset of a normed vector space (or a metric space) we denote by
C(S, F) the space of continuous maps of S into F, and by BC(S, F)
the subspace of bounded continuous maps. Then BC(S, F) is closed in
B(S, F), this being nothing else but a special case of the assertion that
a uniform limit of continuous maps is continuous. Again, the reader
should have seen a proof in the case of functions, and that same proof (a
3s-proof) applies to the case of maps into Banach spaces. (Do Exercise 0

if you have never done it before, or look up Undergraduate Analysis.)

Let X be a set. By an algebra A of functions on X (say, real valued)
we mean a subset of the ring of all functions having the properties that if
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f. ge A, then f+g and fg are in A, and if c € R, then ¢f € A. Most of
the algebras we deal with also contain the constant functions (identified
with R itself). We make a similar definition of an algebra over C.

For example, a polynomials in one variable form an algebra, and so
do polynomials in several variables. If ¢ is a function on some set S,
then the set of all functions which can be written in the form

4o +al(p + -+ a,,(p"

with ;€ R form an algebra, said to be generated by ¢. Similarly, we
have the notion of an algebra generated by a finite number of functions
®y, ---,0,, Or by a family of functions. It is the algebra of polynomials
in ¢, ...,0,. If X is a topological space, the set of all continuous
functions is an algebra, denoted by C(X). If we wish to specify the range
of values (real or complex), we write C(X, C) or C(X, R). Recall that a
function is a mapping with values in R or C.

Let S be a compact set. Let 4 be an algebra of continuous functions
on S. Every function in A is bounded because S is compact, and conse-
quently we have the sup norm on A, namely for f € A,

I = sup /()1

Thus A is contained in the normed vector space of all bounded functions
on S. We are interested in determining the closure of 4. Since C(S) is
closed, the closure of A will be contained in C(S). We shall find condi-
tions under which it is equal to C(S). In other words, we shall find
conditions under which every continuous function on S can be uniformly
approximated by elements of A.

We shall say that A separates points of S if given points x, ye S,
and x # y, there exists a function f € A such that f(x) # f(y). The ordi-
nary algebra of polynomial functions obviously separates points, since the
function f(x) = x already does so.

Theorem 1.1 (Stone—Weierstrass Theorem). Let S be a compact set,
and let A be an algebra of real valued continuous functions on S.
Assume that A separates points and contains the constant functions.
Then the uniform closure of A is equal to the algebra of all real
continuous functions on S.

We shall first prove the theorem under an extra assumption. We shall
get rid of the extra assumption afterwards.

Lemma 1.2. In addition to the hypotheses of the theorem, assume also

that if f, g€ A then max(f, g) € A, and min(f, g)e A. Then the conclu-
sion of the theorem holds.
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Proof. We give the proof in three steps. First, we prove that given x,,
x, €8 and x; # x,, and given real numbers «, B, there exists he A such
that h(x,) = o and h(x,) = B. By hypothesis, there exists ¢ € 4 such that

o(xy) # ¢(x,). Let

o) o (5 gy P 00
B =t B =) ) = oty

isfies our requirements.

Next we are given a continuous function f on § and also given & We
wish to find a function g € 4 such that

J)—e<g(y) <f(y) +¢

for all yeS. This will prove what we want. We shall satisfy these
inequalities one after the other. For each pair of points x, ye S there
exists a function h, , € A such that

hey(x)=f(x) and  h.(y) = f(y).

If x =y, this is trivial. If x # y, this is what we proved in the first step.
We now fix x for the moment. For each ye S there exists an open ball
U, centered at y such that for ail ze U, we have

h.y(2) < f(2) + .

This is simply the continuity of f — h, , at y. The open sets U, cover S,
and since § is compact, there exists a finite number of points y,, ...,y,
such that U, , ...,U, already cover S. Let

h, = min(h, ,...,h,,, ).

Then h, lies in A according to the additional hypothesis of the lemma
(and induction). Furthermore, we have for all ze S:

h,(2) < f(2) + ¢,
and h,(x) = f(x), that is (h, — f)(x) = 0.

Now for each x e § we find an open vall V, centered at x such that,
by continuity, for all z € V, we have (h, — f)(z) > —¢, or in other words,

1) — & < hyfz).

By compactness, we can find a finite number of points x,, ...,x,, such
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that V.

Xy *

Vs, cover S. Finally, let
g = max(h, ,....h, ).
Then g lies in A, and we have for all ze §

fz) —e<g(2) < f(2) + ¢

¢l rauvtena tha laenmena

LIIC CUy plUVlllE lllC Ivillilia.

The theorem is an easy consequence of the lemma, and will follow if
we can prove that whenever f, g€ A then max(f, g) and min(f, g) lie in
the closure of A. To prove this, we note first that we can write

fg)= f+g lf — gl

f+g lf — gl
R

min(f, g) =

Consequently it will suffice to prove that if f € A then |f| € A.
Since f is bounded, there exists a number ¢ > 0 such that

—c=f(x)Sc

for all xe S. The absolute value function can be uniformly approximated
by ordinary polynomials on the interval [ —c, c] by Exercises 6, 7, or 8,
which are very simple ad hoc proof. Given ¢, let P be a polynomial such
that _ 7

|P(6) —ltl| <&

for —c £t <c. Then
|P(f(x)) = /()] <,
and hence | f| can be approximated by P o f. Explicitly, if

P(t) = a,t" + - + aq,

Pof=a,f"+ + a,,
P(f(x)) = a,f(xf" + -+ + a,.
This concludes the proof of the Stone—Weierstrass theorem.
Corollary 1.3. Let S be a compact set in R*. Any real continuous

Junction on S can be uniformly approximated by polynomial functions in
k variables.
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Proof. The set of polynomials contains the constants, and obviously
separates points of R* since the coordinate functions x,, ...,x, already do
this. So the theorem applies.

There is a complex version of the Weierstrass—Stone theorem. Let A
be an algebra of complex valued functions on the set S. If fe A, we
have its complex conjugate f defined by

e

N

£ .
J\A).

For instance, if f(x) = e then f(x) =e™™. If 4 is an algebra over C of
complex valued functions, we say that A is self comjugate if whenever
f € A the conjugate function f is also in A.

Theorem 1.4 (Complex S—W Theorem). Let S be a compact set and
A an algebra (over C) of complex valued continuous functions on S.
Assume that A separates points, contains the constants, and is self con-
jugate. Then the uniform closure of A is equal to the algebra of all
complex valued continuous functions on S.

Proof. Let Ay be the set of all functions in A which are real valued.
We contend that Ay is an algebra over R which satisfies the hypotheses
of the preceding theorem. It is obviously an algebra over R. If xl # X,
are poinis of §, there exists fe€ A such that fix,)=0 and fix,)=1.
(The proof of the first step of Lemma 1.2 shows this) Let g= f+ f.
Then g(x,) =0 and g(x,) =2, and g is real valued, so Ay separates
points. It obviously contains the real constants, and so the real S-W

.
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write @ = u + iv, where u, v are real valued. Then u, v are continuous,
and u, v can be approximated uniformly by elements of Ay, say f, ge Ag
such that |lu— f|l<e¢ and |lv—gll <e. Then [+ ig approximates
u + iv = @, thereby concluding the proof.

Remark. The Stone—Weierstrass theorem has a useful application to
locally compact spaces. For such corollaries, we refer the reader to
Chapter IX, §6, and Chapter XVI, §3. For explicit approximations in
concrete cases, see the Exercises and also Chapter VIII, §1.

I, §2. IDEALS OF CONTINUOUS FUNCTIONS

The second theorem of this chapter deals with ideals of continuous func-
tions. Let S be a topological space, and R a ring of continuous functions
(real valued) on S. An ideal J of R is a subset of R satisfying the
following properties: The zero function 0 is in J. If f, ge J, then f+ ¢
and —f are in J, and if k € R, then Jif € J. The reader should really have
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met the definition of an ideal in an algebra course, but we don’t assume
this here, although some motivation from algebra is useful.

Let f be continuous on S. A zero of f is a point x € S such that
f(x) =0. The set of zeros of f is a closed set denoted by Z,. Let J be
an ideal. Then the set

zn= () Z,
SeJ
£ all £ I i1c cloced and 1c
equal to the intersection of the sets of zeros of all f € J, 1s closed, and 1s

called the set of zeros of J. If J, J' are two ideals, and J < J', then
Z(J) > Z(J'). We ask to what extent the set of zeros of an ideal deter-
mines this ideal, and answer this question in an important case.

Theorem 2.1. Let X be a compact space, and let R be the ring of
continuous functions on X, with the sup norm. Let J be a closed ideal
(i.e. an ideal, closed under the sup norm). If f€ R is such that f(x)=
for all zeros x of J (i.e. if f vanishes on the set of zeros of J), then f
lies in J.

Proof. Given ¢, let U be the subset of X consisting of all x € X such
that | f(x)| <& Then U is open, and the complement S of U is closed,
and hence compact. Note that U contains Z,. For each y €S, we can
find a function g, in J such that g(x) ;EO in some open neighborhood
17 Af Aeadaenziascl  Thac. 2. cmaeen Lo L. 0 7 1 _r ¢

v, O1 y \uy t,uuuu‘uu_y; There is some finite COVering i"y,s ceasVy g OL O
corresponding to functions g,,, ...,g, . Let

g=g§| +“'+93,,,-

Then g is in J, is continuous, is nowhere 0 on S, and = 0. Since g has a
minimum on S, there is a number a > 0 such that g(x) = a for all xeS.
The function
ng
1+ ng

lies in J, because 1 + ng is nowhere 0 on X, its inverse is continuous
on X, so in R, and hence (1 + ng)™'ngeJ. For n large, the function
ng/(1 + ng) tends uniformly to 1 on S, and hence the function

ng
fl + ng

lies in J, and approximates f within ¢ on S. Since 0 < ng/(l1 + ng) <1 it
follows that on U we have the estimate

0 =1fng/(1 + na)| <e,
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and so fng/(1 + ng) lies within 2¢ of f. Thus we have shown that f lies
in the closure of J. Since J is assumed closed, we conclude that f lies in
J, thereby proving our theorem.

Remark 1. Siiuaiions analogous to that of Theorem 2.i arise fre-
quently in mathematics. For instance, let R be the ring of polynomials in
n variables over the complex numbers, R = C[t,,...,t,]. Let J be an
ideal of R, and define zeros of J to be n- tuples of complex numbers
x such that f(x;——u for all _; eJ. It is shown in ang:uraic geometry
courses that if f is a polynomial in R which vanishes on Z(J), then

f™ e J for some positive integer m. This is called Hilbert’s Nullstellensatz.

Remark 2. Theorem 2.1 is but an example of a type of theorem which
describes the topology of a space and describes properties of a space in
terms of the ring of continuous functions on that space. (Cf. also Exercise
5) This is one way in which one can algebraicize the study of certain
topological spaces.

i, §3. ASCOLI'S THEOREM

In the examples of Chapter XVIII, §4, we shall deal with compact subsets
of function spaces, and we need a criterion for compactness, which is

prnnulprl l-“r Ascoli’s theorem. It is also used in other nlaces in analvsis

ANJ VANAWNL & AOWWIAE O ULiiwWA waiie 40 RIOV wOWNE aix Viiidwi pABWWO axx KAy Caoy

for lnstance in a proof of the Riemann mapping theorem in complex
analysis. Therefore, we give a proof here in the general discussion of

compact spaces.
Let X be a subset of a metric space, and let F be a Banach space. Let

® be a subset of the space of continuous maps C(X, F). We shall say
that @ is (or its elements are) equicontinuous at a point xo € X if given ¢,

there exists 4 such that whenever x € X and d(x, x,) < &, then

|/(x) — f(xo)l <&

for all fe® We say that @ is equicontinuous on X if it is equicon-
tinuous at every point of X.

Theorem 3.1 (Ascoli’s Theorem). Let X be a compact subset of a
metric space, and let F be a Banach space. Let ® be a subset of the
space of continuous maps C(X, F) with sup norm. Then ® is relatively
compact in C(X, F) if and only if the following two conditions are
satisfied :

ASC 1. O is eauicontinuous.

ASC 2. For each x € X, the set ®(x) consisting of all values f(x) for
f € @ is relatively compact.
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Proof. Assume that @ satisfies the two conditions. We shall prove
that @ is relatively compact. For this it is sufficient to show that ® can
be covered by a finite number of balls of prescribed radius (Corollary 3.9
of Chapter II). Let r > 0. By equicontinuity, for each x € X we select an
open neighborhood V(x) such that if y € V(x), then |f(y) — f(x)] <r for
all fe ®. Then a finite number V(x,), ...,V(x,) cover X. Each set

d(x,), ..., 0(x,)
is relatively compact, and hence so is their union

Y = ®O(x,)u- - ud(x,)
Let B{a,), ...,B(a,,) be open balls of radius r centered at points ay, ...,a,
which cover Y. Then f(x,), ...,f(x,) lie in these balls. In fact, for each
i=1,...,n we have

f(x;) € B(a,;)

where a:{1,...,n} = {1,...,m} is some mapping. For each such map ¢
let @, be the set of f € ® such that for all i, we have

[/ (x:) — agil <.

Then the finite number of ®, cover ®. It suffices now to prove that each
®, has diameter <4r. But if f, ge ®, and xe X, then x lies in some
V(x;), and then:

1f(x) = g0l = 1/ (x) = Sl + 1/(x)) = agil + lag; — g0x;)l + |g(x;) — g(x)]

< 4r.

This proves our lmpllcauon and the part of Ascoli’s theorem which
- fl 'y
(& L

a rAnvaron anl nead 1.8s 0~ sbi o~ A__
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Ascoli’s theorem is used mostly when F is the real or complex num-
bers, and in that case, we reformulate it as a corollary.

Corollary 3.2. Let X be a compact subset of a metric space, and let ®
be a subset of the space of continuous functions on X with sup norm.
Then @ is relatively compact if and only if ® is equicontinuous and
bounded (for the sup norm, of course).

Proof. For each x e X, our hypothesis that ®(x) is bounded implies
that ®(x) is relatively compact, since a closed bounded subset of a finite
dimensional space is compact. So we can apply the theorem.
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Remark. Since ® has a metric defined by the sup norm, as a rela-
tively compact set it has the property that any sequence has a convergent
subsequence, converging in its closure. Sometimes one deals with a lo-
cally compact set X which is a denumerable union of compact sets. In
that case, one obtains the following version of Ascoli’s theorem.

Corollary 3.3. Let X be a metric space whose topology has a countable
base {U;} such that the closure U; of each U, is compact. Let { £} be a
sequence of continuous maps of X into a Banach space. Assume that
{f2} is equicontinuous (as a family of maps), and is such that for each
x € X, the closure of the set {f,(x)} (n=1,2,...) is compact. Then
there exists a subsequence which converges pointwise to a continuous
Junction f, and such that the convergence is uniform on every compact
subset.

Proof. We can find a sequence {V;} of open sets such that V,c V,,,,
such that ¥, is compact, and such that the union of the V;is X. For
each i, by the previous version of Ascoli’s theorem, there exists a sub-
sequence Whlch converges uniformly on ¥,. The diagonal sequence with
respect to all i converges uniformly on every compact set. This proves

the corollary.

Remark. In light of Urysohn’s metrization lemma, the hypotheses on
X in the corollary could be given as X separable locally compact.

i, §4. EXERCISES

0. Let S be a subset of a normed vector space (or a metric space), and let {f;}
be a sequence of continuous maps of S into a Banach space F. Assume that
{fa} is a Cauchy sequence (for the sup norm). Show that {f,} converges to a

continuous function f (for the sup norm). Show that BC(S, F) is closed in
m

R(C
D\, 1’ ).

1. Let X be a compact set and let R be the ring of continuous (real valued)
functions on X. Let J, J' be closed ideals of R. Show that J = J' if and only
if Z(J) 2 Z(J").

2. Let S be a closed subset of X. Let J be the set of all fe R such that f
vanishes on S. Show that J is a closed ideal. Assume that X is Hausdorff.
Establish a ring-isomorphism between the factor ring R/J and the ring of
continuous functions on S. (We assume that you have had the notion of a
factor ring in an algebra course.)

3. Let X be a compact space and let J be an ideal of C(X). If the set of zeros
of J is empty, show that J = C(X). (This result is valid in both the real and

the complex case.)
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Let X be a compact Hausdorfl space. Show that a maximal ideal of C(X)
has only one zero, and is closed. (Recall that an ideal M is said to be
maximal if M # C(X), and if there is no ideal J such that M = J < C(X)
other than M and C(X) itself) Thus if M is maximal, then there exists pe X

PPy SRR YRS PN wasnia
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Let X be a normal space, and let R be the ring of continuous functions on
X. Show that the topology on X is the one having the least amount of open
sets making every function in R continuous.

Give a Taylor formula type proof that the absolute value can be approxi-
mated uniformly by polynomials. First, reduce it to the interval [ -1, 1] by
multiplying the variable by ¢ or ¢! as the case may be. Then write |t| =
\/t_z. Select 6 small, 0 < < 1. If we can approximate (t> + 8)'/?, then we
can approximate ./t2. Now to get (¢ + 5)!/? either use the Taylor series

. . . : ?,
m or if vou don’t like the binomial
approximation for the square root function, or if you don binomial

expansion, first approximate
log(t? + 6)V% = 1 log(e? + 6)

by a polynomial P. Then take a sufficiently large number of terms from the
Taylor formula for the exponential function, say a polynomial Q, and use
Q o P to solve your problems.

Give another proof for the preceding fact, by using the sequence of poly-
nomials {F,}, starting with Fy(t) = 0 and letting

P41 (t) = P(t) + 4(t — P,(2)?).

Show that {P,} tends to \/E uniformly on [0, 1], showing by induction that

2/t
0<s./t-P@s ",
_J @ 2+n\/f

whence 0 < ./t — B(t) < 2/n.

Look at Example 1 of Chapter VIII, §3 to see another explicit way of

proving Weierstrass’ approximation theorem for a continuous function on a
finite closed interval. Do Exercise 1 of that chapter.

Let X be a compact set in a normed vector space, and let {f,} be a sequence

of continuous functions converging pointwise to a continuous function f. f, and

such that {f,} is a monotone increasing sequence. Show that the convergence
is uniform (Dini’s theorem; cf. Chapter IX, §1).

Let X be a compact metric space (whence separable). Show that the Banach
space C(X, R) or C(X, C) of continuous functions on X is separable.

[Hint: Let {x,} be a countable dense set in X and let g, be the function on
X given by

gnlx) = d(x, x,,),
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11

12.

13.

14.

15.

16.

where d is the distance function. Use the Stone-Weierstrass theorem applied
to the algebra generated by all functions g, to conclude that C(X,R) is
separable.] Note: Since a compact Hausdorff space is normal, and since a
normal separable space is metrizable, one can adjust the statement of the

anram meavad in tha avar~ion

thUIClll PIUVCU 111 UIIC GACILVIDO aa fUl}UWB
Let X be a compact Hausdorff” separable space. Then C(X, R) is separable.

Let X, Y be compact Hausdorff spaces. If f, g are continuous functions on
Xand Y rpener‘hvplv we denote I-w fﬁ g the function such that
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(S ® 9)(x, y) = f(x)g(y).

Show that every continuous function on X x Y can be uniformly approxi-
mated by sums ) i, f; ® g; where f; is continuous on X and g, is continuous

P ¥4

on I.

Let X be compact Hausdorff. By an algebra automorphism of C(X) we mean
a map o: C(X) — C(X) such that ¢ leaves the constants fixed, and satisfies

o(f +g)=0(f) +a(g) ao(fg)=0a([)a(g).
Show that an algebra automorphism is norm preserving, i.e. [laf | = [ f]l.

Let X be a compact Hausdorff space and let A be a subalgebra of C(X, R).
Show that there exists a continuous map ¢: X - Y of X onto a compact

enaca Y cuch that avary alamant af 4 can ha writtan in ¢ aorm a0 o where
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g is a continuous function on Y.

Let X, Y be compact Hausdorfl spaces. Show that X is homeomorphic to Y
if and only if C(X, C) is algebra-isomorphic to C(Y, C).

Let X be a compact Hausdorff space. Let # be the set of all maximal ideals
in C(X, C). Define a closed set in . to consist of all maximal ideals con-
taining a given ideal. Show that this defines a topology on 4. For each
x € X, let M, be the ideal of functions in C(X, C) which vanish at x. Show
that the map

x— M,

is a homeomorphism between X and .

For ae R let f,(x) = e"*e¢™*’. Prove that any function ¢ which is C* and has
compact support on R can be uniformly approximated by elements of the

W azAprGiwe  See L LRRARIRZ

space generated by the functions f, over C. [Hint: If { is a function van-
ishing outside a compact set, and N is a large integer, let Yy be the extension
of ¢y on [—N, N] to R by periodicity. Use the partlal sums of a Fourier
series to approximate such an extension of o(x)e*’, and then multiply by

e ] Remark. Instead of e =x* you could use any function h(x) > 0 which is
0 and tands to O at infinitv. This would not be the case in Exercises 19

Ly AlIU UIIUD WU UV GL aXisikisty. VY Leans  AalUw 222 Liata

and 20 below.

The next four exercises form a connected set.
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17.

18.

19.
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22.

23.
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Let X be compact Hausdorff and let p be a point of X. Let A4 be a
subalgebra of C(X, R) consisting of functions g such that g(p) = 0. Assume
that there is no point g # p such that g(g) = 0 for all ge A4, and that 4
separates the points of X — {p}. The the uniform closure of A is equal to the
ideal of aii functions vanishing at p.

Let X be locally compact Hausdorff, but not compact. Let C,(X, R) be the
algebra of continuous functions f on X such that f vanishes at infinity
(meaning, given ¢ there exists a compact K such that |f(x)] < ¢ if x ¢ K). Let
A be a subaigebra of C(X, R) which separates points of X. Assume that
there is no common zero to all functions in A. Show that A is dense in
C.(X, R).

Let f be a real valued continuous function on R, (reals 2 0). Assume that f
vanishes at infinity. Show that f can be uniformly approximated by functions
of the form ¢7*p(x), where p is a polynomial. [Hint: First show that you can
approximate e~2* by e *g(x) for some polynomial g(x), by using Taylor’s
formula with remainder. If p is a polynomial, approximate e ™"™*p(x) by e *q(x)

for some polynomial q.]
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be uniformly approximated by functions of the form e™* p(x), where
polynomial.

5
Q

Remark. By changing variables, one can use ¢™* and e¢™*" with a fixed
¢ > 0 instead of ¢™* and e™* in Exercises 19 and 20.

1 Pali v F Y
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. Let X be a metric space and E a normed vector space. Let BC(X, E) be the

space of bounded continuous maps of X into E. Let ® be a bounded subset
of BC(X, E). For xe X, let ev,: ® —» E be the map such that ev, (¢) = ¢(x).
Show that ev, is a continuous bounded map. Show that @ is equicontinuous
at a point ae X if and only if the map x »ev, of X into BC(®, E) is
continuous at a.

Let X be a compact subset of a normed vector space, and E a normed vector
space. Show that any equicontinuous subset ® of C(X, E) is uniformly equi-
continuous. [This means: Given ¢, there exists 6 such that |x — y| < § im-
plies | f(x) — f(y)l <€ for all fe®.]

Let X be a subset of a normed vector space and ® an equicontinuous subset
of BC(X,R). Let Y be the set of points x € X such that ®(x) is bounded.
Prove that Y is open and closed in X. If X is compact and connected, and if

for some point ae X the set ®(a) is bounded, show that @ is relatively
compact in C(X, R).



PART TWO

Banach and Hilbert Spaces

The two chapters of this part are absolutely basic for everything else that
follows, and introduce the most useful of all the spaces encountered in
analysis, namely Banach and Hilbert spaces. The reader who wishes to
study integration theory as soon as possible may continue these chapters
with Chapter VI, which will make essential use of the basic properties of
these spaces, especially the completion of a normed vector space and the
linear extension theorem. Indeed, the integral of the absolute value of a
function defines a seminorm on a suitable space of functions, whose com-
pletion will be the main object of study of the chapters on integration.

On the other hand, readers may look directly at the functional anal-
ysis, as a continuation of the linear theory of Banach and Hilbert spaces.
At some point, of course, these come together when we study the spectral
theorems and the existence of spectral measures.

As in the algebraic theory of vector spaces we shall consider continu-
ous linear maps L: E— F of a normed vector space into another. The
kernel and image of L are defined as in the algebraic theory, namely the
kernel is the set of elements x € E such that L(x) =0. The image is
simply L(E). Both Ker L and Im L are subspaces, of E and F respec-

tiVEIY However, now that we have the norm, we note that the kernel is

a closed subspace (being the inverse image of the closed set {0}). Warn-
ing: the image if not necessarily closed. For conditions under which the
image is closed, see Chapter XV.

For the integration theory, we do not need such considerations of
subspace and factor space. However, we shall consider the dual space in
the context of integration, showing that various spaces of functions are
dual to each other. Thus we deal at somewhat greater length with the
dual space in this chaptcr. An application of the duality theory in the
context of Banach algebras will be given in Chapter XVI.






CHAPTER IV

Banach Spaces

iV, §i. DEFINITIONS, THE DUAL SPACE, AND
THE HAHN-BANACH THEOREM

Let E be a Banach space, i.e. a complete normed vector space. One can
deal with series ) x, in Banach spaces just as with series of numbers, or
of functions, and the most ffPﬂlanf test for convergence (in fact absolute

convergence) is the standard one:

Let {a,} be a sequence of numbers = O such that ) a, converges. If

|Y | <a, fnr all n, then Y‘ X, converges

converges.
The proof is standard and trivial.

Let E, F be normed vector spaces. We denote by L(E, F) the space
of continuous linear maps of E into F. It is easily verified that a linear
map A: E— F is continuous if and only if there exists C > 0 such that
|A(x)] £ Clx| for all x € E. Indeed, if the C exists, continuity is obvious
(even uniform continuity). Conversely, if 4 is continuous at 0, then there
exists & such that if |x| £, then |A(x)] < 1. Hence for any non-zero
x € E, we get

whence we can take C = 2,/5=

Such a number C is called a bound for A, and A is also said to be
bounded. Let S, be the unit sphere in E (centered at the origin), that is
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the set of all x € E such that |x} = 1. Then a bound for 4 is immediately
seen to be the same thing as a bound for the values of A on §,. The
least upper bound of all values |A(x)], for x € S, is called the norm of 4,
and the map

A

is a norm on L(E, F). It is immediately seen that || is the greatest lower
bound of all numbers C > 0 such that

|A(x)] £ Clx|, all xe E.

Let E, F, G be normed vector spaces, let ue L(E, F), and let ve L(F, G).
Then vou is in L(E, G) and we have

lvoul < |v]ul.

Proof. A composite of continuous maps is continuous, and a compos-
ite of linear maps is linear, so our first assertion is clear. As to the
second, we have

v o u(x)] = |v(u(x))| < lvllu(x)] < |vllullx],
so the desired inequality follows by definition.
If F is complete, then L(E, F) is complete.

This is but an exercise. If {4,} is a Cauchy sequence of elements in
L(E, F), then for each xe€ E one verifies that {4,(x)} is a Cauchy se-
quence in F, and hence converges to an element which we define to be
A(x). One then verifies that A is linear, and that if C = lim|4,|, then C
is a bound for A, so that A is continuous. Finally one verifies that {1,}
converges to A in L(E, F). (Fill in the details as Exercise 1, or look them

up in Undergraduate Analysis.)

We give some terminology concerning the space L(E, F) which is used
constantly in this book, and in analysis.

A continuous (bounded) linear map of a Banach space into itself is
called an endomorphism, or an operator.

In the case of two spaces E, F, an element u e L(E, F) is said to be
invertible if there exists ve L(F, E) such that

uov=Ig and vou=1Ig

(where I is the identity mapping). In mathematics, the word isomorphism
refers to invertibility in various contexts, for instance a map having a
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continuous inverse, a linear inverse, a differentiable inverse, etc. ad lib.
Thus in each case, one should add an adjective to the word isomorphism
to make precise the kind of invertibility which is meant. In our present
case, we shall call invertible elements of L(E, F) toplinear isomorphisms,
the adjective toplinear referring to the topology and the linearity. The
set of toplinear isomorphisms of E onto F is denoted by Lis(E, F). If
E =F, then we call toplinear isomorphisms of E with itself toplinear

automorphisms of E; the set of such automorphisms is denoted by
Laut{E). (Fgor eunhonv. the
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instead of toplinear.)

A toplinear isomorphism u between Banach spaces E, F which also
preserves the norm (that is |u(x)] = |x| for all x e E) will be called a
Banach isomorphism, or an isometry.

We shall also be dealing with bilinear maps. Let E, F, G be normed
vector spaces. A map

Aar mav nraofar the adiactiva tanalinaar
GEI May PpIiCikl N adjecduive iopaiincar

O0:ExXF-G

is said to be bilinear if for each x € E the map y+ ¢(x, y) is linear, and if
for each y e F the map x> ¢(x, y) is linear. Such bilinear maps form a
vector space. It is easily verified (in a manner similar to the case of
linear maps) that ¢ is continuous if and only if there exists C such that

lo(x, y)| = Clx|]yl

for all xe E, ye F. The greatest lower bound of such C then defines a
norm on the space of continuous bilinear maps, denoted by L(E, F; G),
and this space is a Banach space if G is complete (Cf. Exercise 3.)

o PR PR nenaallnntsaan vy JURpEgEpS |

In the differential calculus, and other appiications, w¢ neca an

isomorphism between L(E,L(F,G)) and L(E,F;G) as follows. Let
Ae L(E, L(F, G)) and define ¢, by

@a(x, y) = Ax)(y)-
Then ¢, is obviously bilinear, and we have

l@a(%, ¥)] = 12yl £ 1A]1x] ]y

loal = 141

On the other hand, given ¢ € L(E, F; G), we can define 4, by

A,(X)(y) = o(x, y).
Then
12,()(¥)] £ lollx]|y]
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so that by definition,

[4,()] < lo]|x].
Hence

As one example of a bilinear map, we have
L(E,F)x E—F
such that (4, x)—» A(x). This bilinear map has norm 1.
Similarly, we can treat multilinear maps. If E,, ...,E,, F are normed
vector spaces, a multilinear map

o:Ey x - -xE,—»F

is a map which is linear in each variable. Such a map is continuous if
and only if there exists C such that for all x; € E; we have

W < Clx
JI = i

Ix_leeelx
1+21 I~

. - |
1 2 nil*

F)..))o L(E,,...,E,; F)

from the space of repeated continuous linear maps to the space of con-
tinuous multilinear maps exactly as in the bilinear case. If F is complete,
then all these spaces are also complete.

We now consider a specially important space of linear maps.

The normed vector space L(E, R) [or L(E, C) in the complex case] is
called the dual space of E, and is denoted by E'. Elements of E' are
called functionals on E. Functionals can be used as substitutes for coor-
dinates. Indeed, suppose that E = R¥, and let 4, be the i-th coordinate
function, that is

l‘(xl, . ..,x,,) = X;.

Then it is easily verified that {4,,...,4,} is a basis for the dual space of
R*. Furthermore, the values of 4,, ...,4, on an element x € R* character-
ize this element. Although we do not have such convenient bases in the
infinite dimensional case, we still have such a characterization of elements

of E in terms of the values of functionals. This is based on the following
theorem. ’
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Theorem 1.1. Let E be a real normed vector space, and let F be a
subspace. Let A: F - R be a functional, bounded by a number C > 0.
Then there exists an extension of A to a functional of E, having the
same bound.

Proof. Changing the norm on E (multiplying it by a number) we see
that it suffices to prove our theorem when C = 1. We first prove that if
ve E and v ¢ F, then we can extend A to F + Ru, and preserve the bound

Py PP J U
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and teR. Let ae R. The map A* on F + Rv such that
A¥x + tv) = A(X) + ta

is certainly linear. We must show that we can select a such that A* is
bounded by 1. Dividing both sides by t (if t # 0), we see that it suffices
to find a number a such that

1Ay +al =y + vl
for all y e F, or equivalently that for all y € F,

Ay)+a=Z|y+v] and —Ay)—a=|y+ul

AW — 2@ = 1Ay - 2)| = |y — 2|
—Az)—lz+ v} £ —A(Y) + |y + v

From this we conclude that there is a non-empty interval of values of a
which satisfy our requirements.

We now use Zorn’s lemma. We consider the set of pairs (G, A*) where
G is a subspace of E containing F, and A* is a functional on G having
the same bound as A, and extending 4. We order such pairs

(Gl’ Al) é (G29 12)
if G, is a subspace of G, and A, is an extension of A,. This is an
ordering, and our set of pairs is inductively ordered. The proof of this is
the usual proof: Given a totally ordered set of pairs as above, say
{(G;, 2))}, we let G be the union of ali C,. We can define a functional A*
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on G extending all 4: Any xe G is in some G;, and we define A*(x) =
Ai(x). This is independent of the choice of i such that x € G;, and the pair
(G, 4*) is an upper bound for our family. By Zorn’s lemma, let (G, 1*) be
a maximal element. Then G = E, for otherwise, there is some ve€E,

This proves our theorem.

Corollary 1.2. Let E be a normed vector space, and ve E, v #0. Then
there exists a functional A on E such that A{(v) # 0.

Proof. Let F be the one-dimensional space generated by v. We define
A on F taking any non-zero value on v, and extend A to E using
Theorem 1.1.

Theorem 1.1, or its Corollary, is referred to as the Hahn-Banach
theorem. We have formulated it over the reals, but it is also valid for
complex Banach spaces, and the complex case is easily reduced to the
real case. Indeed, given a complex functional 4 on a complex subspace
F, let ¢ be its real part. Let ¢’ be a real extension of ¢ to E, and define

A'(v) = @'(v) — ip'(iv) forveE.

You can verify as Exercise 2 that A’ is a desired complex extension of A.

The dual space E’ is a special case of the space of linear maps L(E, F)
when F is the space of scalars. As such, we have seen that it is a Banach
space with its natural norm. Furthermore, we can form the double dual
E” in a similar fashion, and E” is also a Banach space. Note that each
element x € E gives rise to a functional f, € E”, given by

S E' > scalars R or C such that [ (1) = A(x),
continuous for the topology defined by the norm on E'.

Proposition 1.3. The map x+— f, is an injective linear map of E into E",
which is norm preserving, ie. |x| = |f|.

Proof. Suppose x, ye E and x#y. Then x — y #0. By the Hahn-

Banach theorem, there exists 4 € E’ such that A(x — y) # 0, so A(x) # A(y).
This proves that f, # f,, whence the map x+ f, is injective. The inequality

|A()] < 1A]]x]
shows that |f,] <|x|. We leave to the reader the opposite inequality

Ix] £ 1f.), which concludes the proof that we have an isometric em-
bedding of E in E".
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In Chapter II, §1 we defined the weak topology on a space, deter-
mined by a set of mappings into a topological space. We now apply this
notion to the dual space. We let & be the family of functions on E'
given by

F = {fx}er

as above. The weak topology on E' determined by this family & is
called simply the weak topology on E'. The next theorem gives one of its
most important properties.

Theorem 1.4 (Alaoglu’s Theorem). Let E be a Banach space, and let E
be the unit ball in the dual space E'. Then E| is compact for the weak
topology.

Proof. For each x € E, let K, be the closed disc of radius 1 in C. Let

K= T] K.

xcE

Ixl=1

be the Cartesian product of all closed discs of radius 1, taken over all
x € E satisfying |x| £ 1. We give K the product topology, so that by
Tychonoff’s theorem, K is compact. We map Ej into K by the map

f:E;—»K suchthat A [] Ax)= [] f:D
Ix|s1

IxIs1

Immediately from the definition, one sees that the map f is injective, and
thus gives an embedding of E; into the product space. Furthermore, also
from the definition of the weak topology defined in Chapter II, §1, we
observe that the weak topology determined by the family & is the same
as the weak topology determined by the family & of functionals f, with
x € E, (the closed unit ball in E), because any x€ E, x # 0 is a scalar

multiple of a unit vector. More precisely, we also have an imbedding

ffE=TJ]C, gvenby A [] A(x),
xeE

xeE

and the following diagram is commutative:

E' c I-[Cx

xeE

I
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The product topology induced on [] K, is the same as the topology
induced by viewing this product as a subspace of []C,. Therefore, it
follows that the weak topology on E/ is the topology induced by viewing
E, as a subspace of K via the embedding f, or also as a subspace of
J1C. (x € E), via the embedding of E' in [][C,. To show that Ej is
compact, it suffices therefore to show that f(E)) is closed in K.

To do this, we first prove that E' is closed in || C,(x€E). Let
[T7(x)(x € E) be an element of the product which lies in the closure of
f(E'). Given elements x, ye E, we have to show that x—y(x) is a
bounded functional. By definition of the weak topology, given there
exists A € E’ such that

I/‘.(X) - Y(x)l < &,
1A(y) — y()] <&,
[A(x +y) — y(x + )l <&

But A(x + y) = A(x) + A(y), whence |y(x + y) — (x) — y(»)] < 3¢, so

Px + ) = p(x) + p(y).

Similarly, one sees that y(cx) = cy(x) for c € C, whence y is linear. Also
similarly, one sees that y is bounded. Furthermore, if []y(x) lies in
the closure of E}, then the above A can be chosen such that |i]| <1,
that is |A(x)] £ |x]. Then by a similar epsilson argument, one sees that
ly(x)] < |x|, which proves that f(E}) is closed, whence compact, thus
concluding the proof of Theorem 1.4.

Remark. In the case of Hilbert space, to be defined in the next
chapter, the Banach space E is self dual, and so in this case, one may
state that the unit ball in Hilbert space is compact in the weak topology.

IV, §2. BANACH ALGEBRAS

An algebra (say over R) is a vector space 4, together with a mapping
A x A — A (called a multiplication) which is bilinear. This means that
for all u, v, we A and c € R we have

u(v + w) = uv + uw, (u + v)w = uw + ovw,
c(uv) = (cu)v = u(cv).
If in addition we have uv = vu, we say that the algebra is commutative.

If u(vw) = (uv)w, we say that the algebra is associative. If there exists an
element e € A such that eu = ue = u, we say that the algebra has a unit
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element ¢, which is then uniquely determined, because if e’ is another unit
element, then

A normed algebra is an associative algebra whose vector space is
normed, and whose norm satisfies the condition |uv] < |u|]v] A normed
algebra which is complete is called a Banach algebra.

For convenience when there is a unit element, we shall also assume
that |e] = 1. See Exercise 5 which shows that this condition can always
be achieved by a simple redefinition of the norm.

Example 1. Let A be the vector space of bounded functions on a set,
multiplication being ordinary multiplication of functions. Then A4 is a

Ranarh alashera QCn 1o tha cat Af hanndad Arnntintinie frrmntinea
Daliavii alguuid. OJU 10 LIV Ovil Vil UVUIIULU LULILLIuUuU U 1ulivuavin.

Example 2. Let 4 =R? and let the product be the cross product.
Then A4 is neither commutative nor associative, but otherwise satisfies

tha Atha nf ad anlhe Qinmna nAn_aconniativa alaahens
i€ owtner axioms O1I a normea als Oorfd. olfifc non-assoCialive aigoias

occur so rarely in what we do, we have taken associativity into the
definition of a normed algebra, so that the present example is not that of
a normed algebra in our sense.

Example 3. Let E be a normed vector space. Then L(E, E) is an
algebra, if we define the multiplication to be composition of mappings.
In other words, if u, ve L(E, E), then the product u o v is again a contin-
uous linear map of E into itself, and we have associativity and bilinearity,
which follow at once from the definition of the sum of two linear maps.
Furthermore, L(E, E) has a unit element I which is the identity mapping.
We often write uv instead of uov. Elements of L(E, E) are also called
endomorphisms of E, or operators on E, and we abbreviate L(E, E) by
End(E). If E is complete, i.e. a Banach space, then from remarks made in
§1, we conclude that End(E) is a Banach algebra. Of course, End(E) is
not necessarily commutative. It is the most impOTlaﬁt algebra studied in
this book. If E is finite dimensional, this algebra is essentially the alge-
bra of n x n matrices, where n = dim E.

Exampie 4. Let E be the vector space of continuous functions on R,
periodic of period 2m, with the sup norm. Then E is a Banach space. If

f, g € E, we define a product called the convolution product by

1
frg(x) == f f(t)g(x — t)dt.

J-

It follows easily from elementary integrations that E is then a commuta-
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tive, associative Banach algebra. Note that E does not have a unit
element. In this direction, see Chapter III, §1.

We observe that an algebra with a unit element contains a replica of
the scalars, under the map

c— ce,

which is injective, and preserves addition and multiplication. In the case
of L(E, E), an element cl (I = Identity) is simply “multiplication by c.”
Let A be an associative algebra with unit element e. An element u of
A is said to be invertible if there exists ve A such that uv = vu =e. The
element v is uniquely determined by u, because if uw = wu =e, then
multiplying on the left by v shows that w = vuw = v. We call this ele-

nuaman ~f . el Ao nta -1 A o hla ala ement is alSG

tha
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called a unit. If u, v are invertible, then so is uv, because
(u)™ = v L,
Theorem 2.1. Let A be a Banach algebra with unit element e. Then the
set of invertible elements is open in A. If ve A and |v] <1, then e + v

is invertible.

Proof. Let |v] < 1. Then the series e + v + v?> + -+ converges (abso-
lutely) and since

(e—v)etv+- - +v")=e— ",
it follows that e — v is invertible, and that its inverse is the limit of
e+v+--+0v" as n—-oo. That we have —v instead of v makes no

difference, since |—v| = |v]. Suppose now that u is invertible, and let

lw—u] < 1/|lu™1).

Then

wu™ —e]l=|w—-wu?|<|w—ullu! <l
Hence wu™! is invertible, whence w is invertible, thus proving our
theorem.

We observe that the map ur>u™" is continuous (as a map defined on
the set of invertible elements). The usual proof is valid.

Corollary 2.2. Let E, F be Banach spaces. Then the set of toplinear
isomorphisms of E onto F is open in L(E, F).
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Proof. Suppose that this set is not empty, and let u: E—»F be a
toplinear isomorphism. Then for v € L(E, F) we have

lu™o~ Il =u""' (0~ w)l £ lu™"v— ul.

If v is close to u, then u~'v is close to I, and is invertible by Theorem
2.1, so there exists w, such that

wou o= Ij.
Similarly, there exists a toplinear automorphism w, of F such that
vulw, = Ip.
Thus v has a right inverse and a left inverse, say v,, v,, such that
vyv=Ig and v, = Ig.

Considering v, vv, and using associativity shows that v, = v,, whence v is
invertible.

IV, §3. THE LINEAR EXTENSION THEOREM

Theorem 3.1. Let E be a normed vector space, F a subspace, and G a
complete normed vector space. Let

1.
Nn. I

Q

—

be a continuous linear map, with norm C. Then the closure F of F in E
is a subspace of E. There exists a unique extension of A to a continu-
ous linear map A: F — G, and A has the same norm as A.

Proof. Elements in F are limits of sequences in F. Thus if

x = lim x,, and y = lim y,,
then
x + y = lim(x, + y,)
and for c e R,
cx = lim(cx,).

Hence F is a subspace of E.
The uniqueness of 4 is clear from continuity. We show its existence.
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Let x € F, and let x = lim x, with x, € F. Then

H’(xn) - /l(xm)l = l'q'(xn - xm)l é Clxn - xml‘

Waean 1] Canchy camiianca in G. and sin
Nl (4 A,,; is a vaudily SCQuciico in v, alil Si

complete, {Ax,} has a limit in G which we denote by Ax. This value is
independent of the sequence x,— x, for if x = lim x; with x, € F, then
lim Ax, = lim Ax,. If

yeF and y = lim y,
with y, € F, then for ce R,

x + y = lim(x, + y,) and cx = lim(cx,,).
Hence

A(x + y) = lim A(x, + y,) = lim(4x, + Ay,) = lim ix, + lim iy,

= Ax + Ay.

Similarly, A(cx) = cA(x). Hence 1 is linear, and since for xe F we have
x = lim x, it follows that Ax = Ax if x e F. Thus 1 is an extension of 4.
Finally, we have
|2x| = lim|Ax,)|

because the norm is a continuous function. Since

|Ax,| £ Clx,l,
it foliows that
lim|Ax,| £ C|lim x,| = C]x],

because limits preserve inequalities. This proves that a bound for 1 is
also a bound for 4 and hence that |A] =|A|. This also concludes the
proof of Theorem 3.1.

We shall see examples of Theorem 3.1 very frequently in the sequel,
notably in the existence proof for the completion of a normed vector

space, in integration, Chapter VI, §3 and Chapter XIII, §1; and in the
spectral theorem of Chapter XVIII.

IV, §4. COMPLETION OF A NORMED VECTOR SPACE

Let E be a normed vector space. We wish to associate with E a
complete normed vector space in a manner analogous to that which
associates the real numbers to the rational numbers. We shall follow
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the method of Cauchy sequences. For another method, cf. Exercise 25.
We define a completion of E to be a pair (E, ¢) consisting of a Banach
space E and a continuous linear map

@:E—

t

which is injective, such that ¢(E) is dense in E, and such that ¢ preserves
the norm, i.e. |px| = |x| for all x € E. We shall now prove that such a pair
is é‘SS‘c‘i‘luuu_y umqumy determined. In _[uu, y [r ![J} is another COi‘npleuon,
then there exists a unique invertible element Ae L(E, F) such that the

following diagram is commutative, in other words = A o ¢.

E—
\\ /
The proof is in fact very easy. The map

Yoo l:p(E)>y(E)c F

is continuous and linear (it even preserves the norm) and consequently,

Dy me lll'lCd[ CX[CHS]OH [ﬂCOI'CIIl Il nas a Ul'lquC COI](]I]UOUS lll'led.l' exien-
sion of E into F, which we denote by A. Similarly, the continuous linear
map _

oy i Y(E)> @(E)< E

has a continuous linear extension of F into E, which we denote by u.
Then po A: E - E gives the identity when restricted to ¢(E), and hence is
equal to the identity on E itself by continuity (or by the uniqueness part
of the linear extension theorem). Similarly, 1o u: F — F is the identity.
This proves the uniqueness of the completion.

We observe that our toplinear isomorphism A preserves norms, that is
|Ax] = x|

for all x e E. This again follows by continuity.

We shall now give two proofs of the existence of a completion. So let
E be a normed vector space and let E' be its dual. As we saw in
Proposition 1.3, we have a natural norm- preservmg mjectmn E—E".
But E” is complete because E” = L(E', F) with complete F (F = scalars).
So the completion of E is simply the closure E in E". (Do Exercise 15.)

Next we give another proof, based on the same construction as the
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real numbers from the rational numbers. This construction will be used
in the integration theory. See the examples after the construction.

The Cauchy sequences of elements of E form a vector space, which we
denote by S, As usual, we have the notion of null sequences, that is
sequences {x,} in E such that given &, there exists N such that for ail
n> N we have |x,| < & The null sequences form a subspace. We define
two Cauchy sequences ¢ = {x,} and # = {y,} to be equivalent if there
exists a null sequence a = {a,} such that { =# + a (in other words
X, =y, + a, for ail nj. This is an equivalence reiation, and we denote
the equivalence class of ¢ by &. Then the equivalence classes of Cauchy
sequences form a vector space in a natural way, and we have (for c € R):

E+n=E+17 and c€ =ct.

We denote the vector space of equivalence classes of Cauchy sequences
by E. (It is nothing but the factor space of Cauchy sequences modulo
the subspace of null sequences.)

If £ = {x } is a Cauchy sequence and y = {y} is equivalent to £ then

lim |x,| = lim |y,|.

n—oo n—*oo
Then we define
[€] = lim |x,).
n—oo

It is verified at once that this is a norm of E, which is thus a normed

vector space.
We let

Awe

¢:E—E

be the map such that ¢(x) is the class of the Cauchy sequence {x, x,...}.
Then it is clear that ¢ is linear, and preserves norms. Furthermore, one
sees at once that if £ is the class of a Cauchy sequence ¢, and x = {x,},

\l—-\-"lll U'H“Ull
then

£ = lim o(x,).

n—o

Hence ¢(E) is dense in E.

All that remains to prove is that E is complete. To do this, let {E, }
be a Cauchy sequence in E. For each n there exists an element x, €E
such that

|E, — ¢x,| < 1/n,

because @(E) is dense in E. The sequence {x,} is then Cauchy (in E).
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Indeed, we have

lxn - xml = l(pxn - (pxml

which gives a 3e-proof of the fact that {x,} is a Cauchy sequence. Let
&= {x,}. Then {&,} converges to &, because given ¢,

IE,. - El é lEn - (pxnl + l(pxn - EI <2

for n sufficiently large. This proves that E is complete, and concludes the
proof for the existence of a completion of E.

Example 1. In integration theory, covered later in this book, one
starts with the vector space of continuous functions, say on [0, 1], with
the L'-norm

One can also take the vector space of continuous functions on R, van-
ishing outside some bounded interval, and define the L!-norm similarly.
Then this space is not complete, and its completion is called L!. It then
becomes a problem to identify elements of L' with certain functions, and
this is what we shall do.

Example 1 points to the need of a slight generalization of our normed
vector spaces. Indeed, even in elementary iniegration theory, one deals
with step functions, or piecewise continuous functions, which are such
that if ||f]], = 0, then f may not be the zero function. For instance, if f
is 0 except at a finite number of points, then we do have ||f]l; =0. In
view of this, one defines a seminorm on a vector space E to be a function

satisfying all properties of a norm, except that we require
x| 20

for all xeE, but we allow |x| =0 without having necessarily x = 0.
Then it is clear that the set of all x € E such that [x] =0 is a subspace
E,. The terminology of open and closed sets applies in the present
context, and the topology defined by a seminorm is simply not Haus-
dorff. In fact, the closure of 0 is obviously the space E, itself.

In defining the completion, we can just as well define the comple-
tion of a space with a seminorm. We form Cauchy sequences and null
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sequences, and we still get a map
j: E—E,

the only difference being that j has a kernel, which the reader will verify
to be precisely E,. In fact, we have a norm on the factor space E/E, if
we define the norm of a coset |x + E,| to be |x| (independent of the coset
representative x since we have

Ix + yl = x|

for all ye E;). Thus we can say that if E has a seminorm, the comple-
tion E is simply the completion of E/E, as discussed in this section.

A vector snace F with a cpmlnnrm | | can hp called a enmlnnrmnll

A VWLlUL Opave As VYALLL & Owilldidivaii 1 wiiRaw s DwEisssEwE B

space. We can define Cauchy sequences using the same definition as in
the normed case. We shall say that E is complete if every Cauchy
sequence in E converges—in other words, if given a Cauchy sequence
{x,} in E, there exists x € E such that given g, there exists N such that
for all n = N we have

|x, — x| <.

Of course, the element x to which our sequence {x,} converges is not
uniquely determined, only up to an element of E,. However, examples of
this situation arise in practice, in integration theory. One must then
distinguish between a complete seminormed space, and the completion of
E/E, mentioned above.

Example 2. Let E be the vector space of C® functions (say, real
valued) on R, vanishing outside a compact set (i.e. infinitely differentiable
functions f such that f(t) =0 if ¢ is outside some bounded interval). We
define the H%-norm on E by

where

LD =‘[ J(0)* dr.
We define the HP-norm by
4
IV = 3 1D,

where D is the derivative. The completion of E under the HP-norm is
called an H” space. This kind of space is used very frequently in analysis.
For p =0, the norm is also called the I.2-norm.
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Example 3. On the interval [0, 1], we let C? be the space of functions
having p continuous derivatives. For f € C? we define

I /llce = sup ID*f1.

ksp

Then this is a norm. It is an exercise to show that CP is already
complete under this norm.

IV, §5. SPACES WITH OPERATORS

Except for enumerating basic properties, it is rather rare in analysis that
one meets merely a normed vector space, or a Banach space, just by
itself. It is usually accompanied by a set of operators, and thus we make
here some general comments on this situation.

Let E be a normed vector space. Elements of L(E, E) are also called
operators on E. Let S be a set of operators on E. By an S-invariant
subspace F we mean a subspace such that for every Ae€S we have
AF c F, ie. if xeF and A €S, then Axe F. It is clear that if F is an
S-invariant subspace, then its closure is also S-invariant because if x, € F
and x, — x, then Ax, — Ax, so Ax lies in the closure of F.

< If
i . p _’
B commutes wit
subspaces.

B3

Proof. If x€ E and B = B,
kernel of B is S-invariant. Similarly, also from the relation AB
we see that the image of B is S-invariant.

LY

»

f
ij,

If A is an operator on E, and c,, ...,c, are numbers, we may form the
operator

p(4) = c, A" + -+ + ¢ol,
where
pt)=c,t"+ "+ ¢co

is the polynomial having the numbers as coefficients. If p, g are polyno-
mials and pq denotes the ordinary product of polynomials, then we have

(p+ @A) =p(4) +q(4) and  (pg)(4) = p(A)q(4).
Indeed, if g(t) = b,,t™ + - + by, then

p()q(e) =Y, dit¥,
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where

dk e Z Crbs.

r+s=k

But
p(A)q(A) = d, A

since associativity, commutativity, and distributivity hold in multiplying
powers of A. The statement concerning the sum p + g is even more
irivial to see. Also, if ¢ is a number, then

(cp)(A) = cp(A).

All these rules are useful when considering the evaluation of polynomials
on operators. In algebraic terminology, they express the fact that the
map

p+ p(A)

is a ring-homomorphism from the ring of polynomials into the ring of
operators.

If F is an A-invariant subspace, then it is clear that F is also p(A)-
invariant for all polynomials p. Thus if F is in fact a subspace of E
which is invariant for an operator A, then it is also invariant for the set
of all polynomials in A, called also the ring of operators generated by A.
The same holds for any set of operators S, letting the ring of operators
generated by S be the set of all operators expressed as finite sums

Z ci.---i,,Aill e A,

where 4,, ...,A, are elements of S, and the coefficients are numbers.
Indeed, if F is A- and B-invariant, then it is also (4 + B)-invariant and
AB-invariant.

If an operator B commutes with all elements of S, then it is clear that
by S, because if B commutes with A, and A4,, then B commutes with
A, + A4, and also with 4,4,. Furthermore, if F is a closed subspace
and is S-invariant, then it is also S-invariant, where S is the closure of
S. Indeed, if {B,} is a sequence of operators in S converging to some
operator B, and if x € F, then the sequence {B,x} is Cauchy, and hence
converges to Bx which lies in F.

In Chapters XVII and XVIII we study a pair (E, ) consisting of a
space E and an operator A4, and analyze this pair, describing its structure
completely in important cases. The idea is to apply in the present con-
text an all-pervasive point of view in mathematics, which is to decompose
an object into a direct sum of simpler objects. In the present context, let
us make some general definitions.
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Let E be a Banach space, and F, G closed subspaces. We know that
the product F x G consisting of all pairs (y,z) with ye F and z€eG is
also a Banach space, say under the sup norm. If the map

FxG—-E
given by
2>y +z

is a toplinear isomorphism, then we say that E is the direct sum of the
subspaces F and G. Observe that our requirements involve both an
algebraic and a topological condition. It follows from our conditions
that

E=F+G ad FnG={0}.

It will be proved later that, in fact, these two conditions are sufficient; in
other words, if they are satisfied, then the map

(y,2)—>y+z

not only has an algebraic inverse, but this inverse is continuous (corol-
lary of the open mapping theorem). When E is a direct sum of F and G,
we write

E=F®G.

If A is an operator on E, then we are interested in expressing E as a
direct sum of A-invariant subspaces. Subsequent chapters give examples
of this situation.

APPENDIX: CONVEX SETS

APP., §1. THE KREIN-MILMAN THEOREM

Although we shall not use the theorem of this section later in the book
(except for some exercises), it is worthwhile givihg it since it is used
at the beginning of more advanced and specialized courses, in a wide
variety of contexts. The exposition follows that of Artin (cf. Collected

Works).

Throughout this section, we let E be a vector space over the reals (not
normed). We let E* be a vector space of linear maps of E into R (not
necessarily the space of all such linear maps), and assume that E* separates
E, that is given x € E, x # 0 there exists A€ E* such that A(x) #0. We
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give E the topology having the smallest amount of open sets making all
A€ E* continuous. A base for this topology is therefore given by the
following sets: We take x € E, and 4,, ...,A, € E* and ¢ > 0. We let B
be the set of all y € E such that

|2:(y) — Alx)] <e.
The set of all such B is a base for the E*-topology.
A subset S of E is said to be convex if given x, y € S, the line segment
(1 —6x + ty, 0<t£1l,
joining x to y is contained in S.
We observe that an arbitrary intersection of convex sets is convex.

Lemma 1.1. Let x,, ...,x,€S. Any convex set containing x,, ...,X,
also contains all linear combinations

yxy + -+ L,x,

withO0<Zt;<1 for alli,and t, +--- +t,= 1. Conversely, the set of all

- P Y P

cainle 1esnne nzealiles do mmeszenss
QULTIL Linedr LCormutnuLion » Lonvea.

Proof. If t, # 1, then the above linear combination is equal to

[ ti !n—i \
(1 - tn)kl - X1 + -+ l—-:x,,_,) + . X,.

‘The first assertion follows at once by induction. The converse is also an
immediate consequence of the definitions.

The following properties of convex sets also follow at once from the
definitions.

Let A: E— F be a linear map. If S is convex in E, then A(S) is convex
in F. If T is convex in F, then 27 (T) is convex in E. In other words,

the image and inverse image of a convex set under a linear map are
convex.

Let A€ E*, 1 #0, and let H, be the kernel of 4 (i.e. the set of all x € E
such that A(x) = 0). Then H, is a closed subspace, and if v e E is such
that A(v) # 0, then

E = H() + RU.
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If A,, A, are non-zero functionals with the same kernel H, then there
exists c€R, ¢ #0 such that A, =cl,. Indeed, one sees at once that
¢ = A, (0)/A,(v).

Let A # 0 be an element of E*, and let ¢ € R. By the hyperplane H, we
mean the set of all x € E such that A(x) = c. In other words, H. = 27%(c).
If H, is the kernel of A, then H, consists of all elements y + y, with
y € Hy and y, any fixed element of E such that A(y,) = c.

The set of x € E such that A(x) = ¢ will be called a closed half space
determined by the hyperpiane, and so will the set of ali x such that
A(x) £ c. Similarly, we have the open half spaces, determined by the
inequalities A(x) > ¢ and A(x) < c respectively.

If S is a closed subset of E and x, a point, we say that a hyperplane
H separates S and x, if S is contained in one of the closed half spaces
determined by H, and x, is not contained in this half space.

Theorem 1.2. Let S be a closed convex set in E, and let xq ¢ S. Then
there exists a separating hyperplane for S and x,, such that S is con-
tained in a closed half space determined by H.

Proof. We begin by proving our statement in the finite dimensional

case.

Let T be a closed convex subset of R"”, and let P be a point of R"
such that P¢ T. The function f(X)=|X — P| (euclidean norm) has a
minimum on T, say at Q€ T. Let N=Q — P. Since P¢ T, we have
N # 0. We contend that the hyperplane passing through Q, perpendicu-
lar to N, will satisfy our requirements. The equation of this hyperplane
is X-N=0Q-N. Let Q' be any point of T, and Q' # Q. For every t with

0<t =<1, we have
IQ—PIZ1Q+HQ — Q) —P|=(Q—P)+¢(Q — Q)

Squaring gives

Letting ¢t tend to O yields
QO-N2Q-NZP-N+ N-N.
This proves that T is contained in the closed half space defined by

X-Nz2c,



86 BANACH SPACES [1V, App.]

where ¢ = P-N + N-N, thus proving our contention, and the fact that
our hyperplane separates T and P.

We return to the general case of the space E. There exists a neighbor-
hood of x, which does not intersect S. In other words, there exists ¢ and
Ais -.-,4, € E* such that ail y € E satisfying

() — Axo)l <& (i=1,...,n)
do not lie in S. Consider the linear map

¢o:E->R"
given by
x> (A1(x), ..., A4,(x).

The image of S is a convex set ¢(S) in R", which does not intersect the
neighborhood of ¢(x,) determined by the inequality

10 — o(xp)ll <&  (sup norm).

Its closure does not contain ¢(x,). By our result in the finite dimen-
sional case, there exists a non-zero vector

N =(c4,...,c,) €R"

such that ¢(S) lies in the closed half spaces determined by N and a
suitable constant c. We let

A=cihy+ "+ ¢y,

Then A€ E* and S is contained in a closed half space A = ¢, which does
not contain x,, thus proving Theorem 1.2.

Remark. All that we need in the sequel is th

AL 222 ~ ‘u--l—--- a2

th at, the assum i
as in the theorem, there exists a functional 1 € E* such that A(x,) is not
contained in A(S).

We define an extreme point of a convex set S to be a

b 1t
having the following property: Whenever y,, y, are points of S such
that we can write

x=ty, +(1 -1y,

with 0 <t < 1, then y, = y,.

Theorem 1.3. Let S be a non-empty, convex, compact subset of E. Then
there exists an extreme point of S.



[1V, App.] THE KREIN-MILMAN THEOREM 87

Proof. Let & be the family of non-empty, convex, compact subsets of
E contained in S, and having the following additional property:

If Ke% and xe€ K, and if y,, y, € S are such that

x=ty; +(1 - 1)y,
with0<t <1, then y,, y, € K.

Then the set S itself is in &#. We can order elements of % by
descending inclusion, and if {K,};.; is a totally ordered subfamily, then
the intersection

() K,

iel

is not empty, and clearly is again in &%. Hence by Zorn’s lemma, there
exists a minimal element S, in &#. We contend that S, consists of one
point. (This will prove our theorem.) Since elements of E* separate
points, it will suffice to prove that for each A€ E*, the set A(S,) consists
of one point. But A(S,) is convex and compact, whence a closed bounded
interval. Let ¢ be a right end point of this interval. Then the set
27(c) n S, is non-empty, convex, compact. We contend that it lies in &.
Let x be an element in 17}(c) N Sy, and suppose that we can write

x=ty; +(1 =1y,

with y,, y, €S and 0 <t < 1. Since Sy € &, we get y,, y, €S,. Applying
A, we find that
Ax) = ¢ = tA(y;) + (1 — )A(y,).

Since c is an end point of the interval A(S), it follows that

My)) =AMyz) =c.

Hence y,, y, also lie in 17%(c), and this shows that A7'(c)n S, is in &
Since we took S, minimal, we conclude that S, is contained in 27Yo),
thereby proving our theorem.

Corollary 1.4. Let S be as in Theorem 1.3, and let A € E*. Let c be an
end point of the interval A(S). Then 271 () S contains an extreme

point of S.

Proof. The intersection of the hyperplane 27Yc) with S is non-empty,
convex, compact, and thus has an extreme point x, with respect to
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A7Y(c)nS. However, if y,, y, € S and
x =ty, +(1 —t)y,

with 0 <t < 1, then A(x) =c =tA(y,) + (1 — t)A(y,), and hence Ay, =
Ay;)=c, so that y,, y,ed™c)nS. From this we conclude that
¥1 = ¥,, and hence that x is also an extreme point of S itself.

Theorem 1.5 (Krein—Milman Theorem). Let K be a convex, compact
subset of E. Let S be the set of extreme points of K. Then K is the
smallest closed convex set containing all elements of S (i.e. the intersec-
tion of all closed convex sets containing S).

Proof. Let S’ be the intersection of all closed convex sets containing S.
Then §' < K, and since K is compact, it follows that S is compact.
Suppose that there exists x, € K but x, ¢ §'. By Theorem 1.2, there exists

A € E* such that A(x,) is not contained in the interval A(S"), say
A(S) < Ax,).

Let ¢ be the right end point of the interval A(K). By Corollary 1.4, the
set A~'(c)n K contains an extreme point of K, contradicting the fact that
A(S) < ¢, and proving our theorem.

APP., §2. MAZUR’S THEOREM

In the applications of Theorem 1.2, one starts frequently with a convex
set in a Banach space, closed in the norm topology (ie. the topology
defined by the norm). In Theorem 1.2, we needed a convex set closed for
the weak topology defined by a family of functionals. An example of
such a family is simply the totality of all functionals, continuous for the
norm topology. Of course, if a set S is compact for the norm topology,
it is also compact for the weak topology. One can then raise the ques-
tion whether a closed convex set for the norm topology is also closed for
the weak topology. The answer is yes:

Theorem 2.1 (Mazur’s Theorem). Let E be a Banach space and let A
be a convex subset, closed for the norm topology. Then A is also closed
for the weak topology (that topology having the smallest amount of open
sets making all functionals continuous). In fact, A is the intersection of
all closed half spaces containing A.

The proof is self contained, and is based on the following lemma.
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Lemma 2.2. Let U be an open non-empty convex set in E which does
not contain the origin. Then there exists a functional A on E whose
kernel does not intersect U.

Proof. Let ae U. Then —a ¢ U, otherwise 0 € U because U is convex,
and this is impossible. By a cone we shall mean a subset C of E such
that if xe C, then txe C for all real t = 0. Let I be the set of all convex
cones containing U but not —a. Then I is not empty because the set
of all points tx with t =20 and x e U, is verified to be a convex cone
directly from the definitions, and belongs to I'. It is clear that I is
inductively ordered by ascending inclusion. Let C be a maximal element
of I. We contend that Cn(—2) is a closed hyperplane H which does

not intersect U. Picture:
/

(=

First we prove that the maximal cone C is closed. Suppose C is n
closed. Then we must have —a e C, for otherwise we have CcCe
and C # C, contradicting the maximality of C. On the other hand, we
have ae U = C. Since U is open, there is a ball B < U centered at a

and of radius r > 0. But C is convex. Therefore C contains the set A of

elements (—a + x)/2 with x € B. It is easy to see that A contains the ball
centered at the origin and of radius #/2. This and the fact that C is a
cone imply that C = E, a contradiction. It follows that H = Cn(—C) is

- Qe

closed, is a cone, is convex, and H = —H. Therefore H is immediately
seen to be a closed subspace. We have H # E because —a¢C, so
—a¢ H.

We have E=Cu(—C). To see this, let xe E and suppose x ¢ C,
x¢ —C. Since C is maximal, the cone consisting of all elements ¢ + tx
with ce C, t =0 contains —a, and so does the cone of all elements
¢+ t(—x), ce C, t 2 0. Hence we can write

with ¢,, ¢, € C and t,, t, 2 0. Consequently

c, +(t; +t))xeC.
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However, ¢, +t;x = —a is on the line segment between c¢; and ¢, +
(¢, +t;)x, and thus lies in C, a contradiction which proves that E =
Cu(-0).

Now suppose that x € C. Then the line segment between x and —a

contains a point of H. For instance, on the segment x + t{—a — x) with
0<t<Z1, let t be the sup of all ¢t such that x + fé(~a — x) lies in C.
THER X 4 t(—=n — & f16s 10 Hy ntid ¢ 9 1, otheiwise —d e fl, whith b
impossible, Wa (herefore have

(1—1)x—ta=heH,
whence

Working also with —x instead of x, we conclude that E is generated by
H and g, so that the factor space E/H has dimension 1 and hence H is a
closed hyperplane.

Finally I Annc nnt intarcant I] Far Atharwica lat Le KT AT Qinnra T7J
i unau_y, 41 UULVO 11UL IIVIOUVWL U, 1UL ULIIVLIWIOV IVL 1 T I1 1 1 V. willvwe U
is open, for small s >0 we have h—sae U so h—sae C. But —heC,

whence —sae C and —ae C, which is impossible. This proves our
lemma.

We now prove: Let b be a point of a Banach space E, which does not
belong to the norm-closed non-empty convex set A. Then there exists a

functional A and a number o such that A(x) > o for all xe A and
Ab) < a.

Proof. Let B be an open ball centered at b and not intersecting A.
Then the set U = A — B, consisting of all points x — y with xe A and
y € B, is open, convex, non-empty, and does not contain the origin. (U
is open because it is a union of open sets a — B with ae A, and it is
immediately verified to be convex because the sum of two convex sets is
convex.) We apply our lemma to U and find a functional A as in the
lemma, so that Az= 0 for all ze A — B, and therefore Ax 2 Ay for all
x€A, yeB. Let f=infAx for xe A. The map A is an open map-
ping, for instance because A gives an isomorphism of a one-dimensional
subspace of E onto R. Therefore iy <f for all ye B, so that in
particular, b < f. We let o = 3(Ab + B) to conclude the proof of our
assertion.

Mazur’s theorem follows at once, since we have prove
empty closed convex set is the intersection of all clo

________ s=Lf22 < La:s Av WA Swwrans/ak (=5 5 S, €3

containing it.
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IV, §6. EXERCISES

1. Fill in the details that if F is complete, then L(E, F) is complete.

2. Show that the Hahn-Banach theorem for the complex case follows easily
from the real case of this theorem. In other words, finish the details of the
argument given after Corollary 1.2.

3. Let E, F, G be normed vector spaces. A bilinear map 1: E x F— G is a map
which is linear in each variable, i.e. for each xe E the map yw—A(x,y) is
linear, and for each y € F, the map x+ A(x, y) is linear. Show that a bilinear
map 2 is continuous if and only if there exists C > 0 such that

1(x, )i = Clxliyl

for all xe E, ye F. Let L(E, F; G) be the set of continuous bilinear maps of
E x F into G. Show that L(E, F; G) is a normed vector space, if the norm of
A is defined to be the inf of all numbers C as above. Show that if G is
complete, then L(E, F; G) is complete.

4. Let E be a Banach space and F a closed subspace. For each coset x + F of
F, define |x + F| = inf]x + y| for y € F. Show that this defines a norm on the
factor space E/F, and that the natural map E — E/F is continuous linear. (Cf.
Chapter XV, §1.)

5. Let A be a Banach algebra. Suppose that there is a unit element e # 0, but
that we do not necessarily have |ej = 1.
(a) Show that je] = 1.
(b) Define a new norm | | on A by putting

|xyl
lIxll = sup ——.
y#£0 11
Show that || || is in fact a norm and that [le]| = 1.

(c) Show that A4 is a Banach algebra under this new norm.

6. (a) Show that a finite dimensional subspace of a normed vector space is

closed.
(b) Let E be a Banach space and F a finite dimensional subspace. Show that

there exists a closed subspace G such that F + G = E and
FnG={0}.

You will have to use the Hahn—-Banach theorem.

7. Let F be a closed subspace of a normed vector space E, and let veE,
v¢ F. Show that F 4 Ru is closed. If E = F + Ro, show that E is the direct
sum of F and Rv. (You can give a simple ad hoc proof for this. A more
general result will be proved later as a consequence of the open mapping
theorem.)
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10.

11
12.

13.

14.

16.
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Let E, F, G be normed vector spaces and assume that G is complete. Let
A E x F - G be a continuous bilinear map. Show that A can be extended to
a continuous bilinear map of the completions E x F — G, which has the same
norm as 1. (Identify E, F as subspaces of their completions.)

T o6 A Lo o Docoal ¥ b o aaler. oA alamant [ at T ha
LEL A O€ 4 panacn dlBCUrd coniniutative, dia Wllll ullll eiement. Lel v o€ an

ideal. Show that the closure of J is also an ideal. (The definition of an ideal
is the same as in the case of rings of continuous functions. If the algebra is
not commutative, then the same result is valid if we replace ideals by left
ideals.)

Let A be a commutative Banach algébra and let M be a maximal ideal.
Show that M is closed.

Give the proof of the inequality left to the reader in Proposition 1.3.

Let E be an infinite dimensional Banach space, and let {x,} be a sequence of
linearly independent elements of norm 1. Show that there exists an element
in the closure of the space generated by all x, which does not lie in any
subspace generated by a finite number of x,. [Hint: Construct this element
as an absolutely convergent sum )’ ¢,x,.]

Let {E,} be a sequence of Banach spaces. Let E be the set of all sequences
= {x,} with x,€ E, such that ) |x,| converges. Show that E is a vector
space, and that if we define

1] =X Ix,|

then this is a norm, and E is complete.

Let E be a Banach space, and P, Q two operators on E such that P+ Q = I,
and PQ = QP = 0. Show that

E = Ker P + Ker Q,

and that Ker P=1Im Q. Show that Ker PnKer Q = {0}, and that Ker P
and Im P are closed subspaces.

. Let E be a Banach space and let F be a vector subspace. Let F be the

a FERINE SRS AVS. =

closure of F. Prove that F is a subspace, and is complete.

1§ 31 =)

Let A be a subset of a Banach space. By c(A4) we denote the convex closure

of A, ie. the intersection of all convex sets containing A. We let ¢(A4) denote

the closure of r'lA\ Then rlA\ ic convay DPrava:s If K je cnmmnct o
18 ¢Loan @ L0017 )1 a 2202 \¥2) L5 WU YVA. X1 1UVYG. AF IV I3 bUlll}Jabl, lllCll Ll[\,

is also compact. [Hmt. Show ¢(K) is totally bounded as follows. First find a
finite number of points x,, ...,x, such that K is contained in the union of
the balls of radius ¢ around these points. Let C be the convex closure of
the set {x,,...,x,}. Show that C is compact, expressing C as a continuous

image of a compact set. Let y,, ...,y, be points of C such that C is con-
tained in the union of balls of radius & aroun ese

s oif raGius ¢ around these points. Then get the
desired result.]
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17.

18.

19.

Let F be the complete normed vector space of continuous periodic functions
on [—m=, nr] of period 2z, with the sup norm. Let E be the vector space of all
real sequences a = {a,} such that ) |a,| converges. Define

©
lel = Y la,l.
n=1

Show that this is a norm on E. Let
La(x) =Y’ a, cos nx,

so that L: E— F is a linear map. Show that L has norm 1. Let B the closed
unit ball of radius 1 centered at the origin in E. Show that L(B) is closed in
F. [Hint: Let {f;} (k=1,2,...) be a sequence of elements in L(B) which
converges uniformly to a function f in F. Let b, be the Fourier coefficient
of f with respect to cosnx. Let p={b,}. Show that § is in E and that

L) =f]

Let K be a continuous function of two variables defined for (x, y) in the
square [a, b] x [a, b]. Assume that |K| £ C for some constant C > 0, where
Il || is the sup norm. Let E be the Banach space of continuous functions on
[a, b], and let T: E — E be the linear map such that

b
Tg(x) = I K(t, x)g(t) dt.

Show that T is bounded and ||T|| < C(b —a). For more on T, see Chapter
XIV, Exercise 5.

Let A be a commutative Banach algebra with unit element e, over the reals,
and define the exponential and logarithm maps by

2

u
expu=1+u+ﬁ+"-

and
u—e? @m-—¢e? L

2 3

logu=(u—e)—

Show that exp converges absolutely for all ue 4, and that log converges
absolutely for all u with |u —e| < 1. Show that the exp and log give inverse

continuous mappings from a neighborhood of 0 onto a neighborhood of ¢ in
4 Qhaw that thau caticfu the usual function eauations

M. JLUWY inat LTy SAiiSiy 12T USIsSs SRURILRsURs © quaiiviis

exp(u + v) = (exp u)(exp v),
log(uv) = log u + log v,

in these domains of definition. Show that every element of A sufficiently close
to e is an n-th power for every positive integer n.



94 BANACH SPACES [1V, §6]

20. Let X be a compact Hausdorff space and let C(X) be the Banach space of
real continuous functions on X. If 1 is a functional on C(X) (sup norm) such
that A(1) =|4|, show that A is positive, in the sense that if fe C(X), f 20,
then A(f) = 0.
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V, §1. HERMITIAN FORMS

Essentially all of this chapter goes through over the real or the complex
numbers with no change. Since the theory over the complex does intro-
duce the extra conjugation, we use the complex language, and point out
explicitly in one or two instances those results which are valid only over
the complex.

Let E, F be vector spaces over C and let L: E —» F be a map. We say
that L is antilinear, or semi-linear, if L is R-linear, and L(ax) = aL(x) for
all xeE and a € C.

Let E be a vector space over the complex numbers. A sesquilinear
form or scalar product on E is a map

ExE-C
denoted by

¥\ FEEN '

{~ . e \
\ N Y7\ Y/

which is linear in its first variable, and semi-linear or antilinear in its
second variable, meaning that for x, y, y,, y, € E, a € C, we have

Gyr+y) =<6+ <%y and  (x ap) = a(x, y).
If in addition we have for all x, y€ E
X, 9 =<y, x),

we say that the form is hermitian. If furthermore we have {(x, x) 20 for
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all x € E, we say that the form is positive. We say the form is positive
definite if it is positive, and {x, x) > 0 if x # 0. We shall assume through-
out that our form { , ) is positive, but not necessarily definite. We ob-

serve that a sesquilinear form is always R-bilinear.

We define v to be plﬂptll!."l.l.lldl Oorf Gi‘fhﬁgﬁﬁnl to w if <u, 'v'> =0. Let

S be a subset of E. The set of elements veE such that {v,w) =0 for
all we S is a subspace of E. This is easily seen and will be left as an

exercise. We denote this set by S*. Let E, consist of all elements veE
cuich that o € p-l- that ic /0 w N\ —N far all \w e~ B Than EF cennhenara

ouwuwil LiiaLl v 9y LilAl 10 VUV, VW ,/ = V 1V1I ail YW T L. 4 11vil 240 IO (l- o Uopavu,

which will be called the null space of the hermitian product.

Theorem 1.1. If weE is such that {(w,w) =0, then we E,, that is
{w,v) =0 for all ve E.

Proof. Let t be real, and consider

0= v+twv+tw)={vv)+ 2t Redv, w) + t2(w, w)
= (v, v) + 2t Re{v, w).

If Re{v, w) # 0 then we take t very large of opposite sign to Re{v, w).
Then (v, v) + 2t Re{v, w) is negative, a contradiction. Hence

This is true for all ve E. Hence Re{iv, w) =0 for all veE, whence
Im{v, w) = 0. Hence (v, w) =0, as was to be shown.

We define |v] =.,/{v,v), and call it the length or norm of v. By
definition and Theorem 1.1, we have |v| = 0 if and only if v € E,,.

Theorem 1.2 (Schwarz Inequality). For all v, w € E we have
I<v, w)| < v]|wl.
Proof. Let o = {w,w) and f = — (v, w). We have

0 =< (av + pw, aw + pw)
= Cav, av) + {fw, aw) + {aw, fw) + (Pw, fw)
= a0 (v, v) + Balw, v) + af(v, w) + BB(w, w).

Note that « = jwj>. Substituting the values for a, B, we obtain

0 é 'WI4IU'2 - 2|W|2<U’ W><U, W) + IW'2<U, W)(U, W).
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But
(v, w)<v, wy = Kv, w)l?.

IwiI<v, wHI* < |wl*]vl?.

Hence

If |w| =0, then we E, by Theorem 1.1 and the Schwarz inequality is
obvious. If |w|# 0, then we can divide this last relation by |w|?, and
taking the square roots yields the proof of the theorem.

Theorem 1.3. The function v |v| is a seminorm on E, that is:
We have |v] =2 0, and |v] =0 if and only if v € E,.
For every complex o, we have |av| = |a||v|.

Forv,we E we have lv + w| < |v] + lw].
Proof. The first assertion follows from Theorem 1.1. The second is

left to the reader. The third is proved with the Schwarz inequality. It
suffices to prove that

v+ w> < (lv] + [w])>.
To do this, we have

o+ w2 ={v+wo+w)= v )+ W)+ (v, w) + {w, w).
But {(w, v) + (v, w) =2 Re{v, w) £ 2|{v, w)|. Hence by Schwarz,

v+ wi® S |vl? + 2|Cv, w)| + |w]?
< o) + 2|v]|w| + Iw|? = (Jv] + [w])>

Taking the square root of each side yields what we want.

We call | | the L2-norm (or we should really say the L?-seminorm).

A alacnnat ~F B 3o caid ¢4 hha o seeié wantns 3f 1ol — 1 IF 1yl £ N ¢

MAll CICIICIIU Ul L 1D dxdlU U UU a uliit veuvwl 11 'U' el il 'U' 7V, L
vflv| is a unit vector.

Let w € E be an element such that |w| #0, and let v € E. There exists

a unique number ¢ such that v — cw is perpendicular to w. Indeed, for

(YY) a narnandirnlare ta W wa mn

" __ o~ tn ot ayup
v CYW WV UL PU‘. P\Illul\iulal LU W VYWWU LiIUOL liavw

w—cw,w) =0,
whence (v, w) — {cw, w) =0 and (v, w) = c{w, w). Thus

R
cC= <W, w>.
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Conversely, letting ¢ have this value shows that v —cw is perpendicular
to w. We call ¢ the Fourier coefficient of v with respect to w.

Let v,, ...,v, be elements of E which are not in E,, and which are
mutually perpendlcular that is {v;,v;) =0 if i # j. Let c; be the Fourier

coeflicient of v with respect to v;. Then

v— Clvl - CZUZ —_—cct = C,,U,,
is perpendicular to v,, ...,0,. Indeed, all we have to do is to take the

t is t
product of v with v;. All the terms involving {v;, v;) will give 0, and we
shall have two terms

<U,U]- c(_’s ]

which cancel. Thus subtracting linear combinations as above orthogo-
nalizes v with respect to v,, ...,v,.
We have two useful identities, namely:

The Pythagoras Theorem. If u, w € E are perpendicular, then
lu + w)? = Ju)? + |w)%

The Parallelogram Law. For u, w € E, we have

ju + wi® + Ju — wj* = 2juf” + 2{w|~.

The proofs come immediately from expanding out the norm according to
the deﬁnitions

Let {v;}ies be a family of elements of E such that |y;| # 0 for all i
For each finite subfamily, we can take the space generated by this sub-

family, i.e. linear combinations
C by, + 1t +C U

with complex coefficients ¢;. The union of all such spaces is called the
space generated by the family {v;};.;.- Let us denote this space by F. We
say that the family {v;} is total in E if the closure of F is equal to all
of E.

As a matter of notation, we shall omit the double indices and write
Uy, ...,0, instead of v; , ...,0; .

We say that the famlly {v,} is an orthogonal family if its elements are
mutually perpendicular, that is {v;,v;> =0 if i # j, and if in addition
|v;l # 0 for all i. We say that it is an orthonormal family if it is ortho-
gonal and if ju;j =1 for aii ii One can aiways obtain an orthonormai
family from an orthogonal family by dividing each vector by its norm.
A total orthonormal family is called a Hilbert basis, or also an ortho-
normal basis. (Warning: It is not necessariily a “basis” in the sense of
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abstract algebra, i.e. not every element of the space is a linear combina-
tion of a finite number of elements in a Hilbert basis.)

Theorem 1.4. Let {v;} be an orthogonal family in E. Let x € E and let
¢; be the Fourier coefficient of x with respect to v,. Let {a;} be a

family of numbers. Then

=
L
II/\
_—

n n
Ix - Y av Z At
| k=1 k=1

Proof. We know that
k=1

is orthogonal to each v;, i =1, ...,n. Hence we get from Pythagoras:

2

n n
= Ix - Z Cr Uy + Z (¢ — a)u,
] K=1 i

k=1 |

=|x — Z cbil? + |Z (c — a v )2

n 2
- Z a, Uy
K=1 ]

This proves the desired inequality.

hermitian
form. If we start with a space with a form which is only positive (not
definite), we can obtain a pre-Hilbert space by taking the factor space
EJE, (i.e. equivalence classes of elements of E modulo E;). Similarly, we
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can form the comnletion of E. Viewing E as a space over the reals we
WEAAE AVLRIL LAV VVILIPIAVIIVAL Vi 4. VIVWILIE 1s A0 4 opalvy Vivwl uiv 1uvalildy Yo

can extend the R-bilinear form { , ) to the completion. If E is a pre-
Hilbert space, then the extended form is hermitian positive definite.
(That it is hermitian positive follows by continuity. For the definiteness,
if {x,} is a sequence converging to x, and x # 0, we may assume that
x, #0, and then that {x,/|x,|} converges to x/|x|. Thus we may deal
with unit vectors, whence the definiteness follows immediately.)

A Hilbert space is a vector space with a positive definite hermitian
form, which is complete under the corresponding L2-norm. Thus we see
that the completion of a pre-Hilbert space is a Hilbert space.

Lemma 1.5. Let E be a Hilbert space, and F a closed subspace. Let
x € E and let
a=inf |x—y|
yeF

Then there exists an element y, € F such that

¢ ==l -yl
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Proof. Let {y,} be a sequence in F such that |y, — x| approaches a.
We show that {y,} is Cauchy. By the parallelogram law, we have

Iyn - .le2 = zlyn - x'2 + zlym - xlz - 4'%(yn + ym) - le

é zlyn - x'Z + zlym - X|2 - 4a2

because of the definition of a. This shows that {y,} is Cauchy, and thus
converges to some vector y,. The lemma follows by continuity.

Theorem 1.6. Let F be a closed subspace of the Hilbert space E, and
assume that F # E. Then there exists an element z € E, z # 0, such that
z is perpendicular to F.

Proof. Let xe E and x ¢ . Let y, € F be at minimai distance from x
(by the lemma), and let a be this distance. Let z=x — y,. Then z #0
since F is closed. For all y € F, y # 0 and complex «, we have

2 ares12
|

IX — yo + &y

IIA

1x = yol
whence, expanding out, we obtain
0 < ay, z) + alz, y> + adly, y).

F

Yo

Figure 5.1

We let a=1t{z, y), with t real # 0. We can then cancel t and get a
contradiction for small ¢, if {y, z) # 0. This proves the theorem.

Corollary 1.7. Let E be a Hilbert space, E # {0}. Then there exists a
total orthogonal basis for E.

Proof. Let S be the set of non-empty orthogonal families. If &,, &,
are orthogonal families, we define %, £ .%, if #, ¢ &,. This gives an
inductive ordering. Let # be a maximal element, and let F be the
subspace generated by 4. We contend that F is dense in E. Otherwise,
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F # E, and by the theorem there exists z€ E, z # 0 and z perpendicular
to F. We can then obtain a bigger orthogonal family than 4, a contra-
diction which proves our corollary.

Corollary 1.8. Let E be a Hilbert space, and F a closed subspace. Then
E=F+ F*

Proof. If y,e F and z, € F*, then the sequence {y, + z,} is Cauchy if
and only if {y,} is Cauchy and {z,} is Cauchy (by the Pythagoras
theorem). Hence F + F' is closed. If F + F' #E, then there exists
we E, w # 0, which is perpendicular to F + F*, whence perpendicular to
F, so that w € F1, a contradiction which proves the corollary.

We observe that if F is a closed subspace, then F** = F. For any
x € E, we can write uniquely

x=y+z
with ye F and z e F*. The map P: E — E such that

Px=y
is calied the orihogonai projeciion on F. It is obviously a continuous
linear map, and we study such maps in greater detail in Chapter XVIII,

§5.

Corollary 1.9. Let E be a Hilbert space. Let {F}} (i=1,2,...) be a
sequence of closed subspaces which are mutually perpendicular, that is
F,LFif i # j. Let F be the closure of the space F generated by all F;.
(In other words, F is the closure of the space F consisting of all sums
X bt X, x€F)

Then every element x of F has a unique expression as a convergent
series

¢ o]
x=)Y x, Xx€R.

&

:

Let P, be the orthogonal projection on F. Then x; = Px, and for any
choice of elements y; € F; we have

x— ) Bx

1A

i=1 i

X — yl‘l.
=1
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Proof. Since

— i Px
i=1

is orthogonal to F, ...,F, we can use exactly the sam
Theorem 1.4, and the Pythagoras theorem to show the
writing

) 1
ast inequality,

l ; I
x—Zx
| i=1

'M=
+

There exists a sequence from F which approaches x. It therefore follows
that the partial sums

must approach x also. If

with x; € F;, then we apply the projection P, (which is continuous!) to
conclude that P.x = x,, thus proving the uniqueness.

It is convenient to call the family {F;} an orthogonal decomposition of
F in the preceding theorem. If F = E, then we call it an orthogonal
decomposition of E, of course.

Suppose that the Hilbert space E has a denumerable total family {v,},
which we assume to be orthonormal. Then every element can be written
as a convergent series

a0
=) ayv
n=1

where a, is the Fourier coefficient of x with respect to v,, and the
convergence is of course with respect to the L2-norm. Namely, we take

the snaces F in thn nrpulnnc rhcnnnc:nn to be the 1_dim al enacac
tiiv opa Ay 2k1 U3 | A0V UOOIVIL Uw Lwilw 47 uuuuualuual apa\,\.ro

generated by v,. In particular, we see that ) |a,|? converges, and that

8

IxI* = Y. la,J%
1

n

If {v,} is merely an orthonormal system, not necessarily a Hilbert basis,
then of course we don’t get the equality, merely the inequality

This is called the Bessel inequality, and it is essentially obvious from
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previous discussions. For instance, for each n we can write

vV=0v— i akvk"l" i akuk
k=1 k=1

and apply Pythagoras’ theorem.

Conversely, we can define directly a set I? consisting of all sequences
{a,} such that ) |a,|* converges. If a = {a,} and B = {b,} are two se-
quences in this space, then using the Schwarz inequality, on finite partial
sums, one sees that

Y. la,b,|

converges, whence we can define a product

<a’ :B> = Z anFn'

Again from the above convergence, we conclude that 2 is in fact a vector
space, because

> la, + b,> £} 1a,1* + 3 2la,b,| + Y |b, >

Furthermore, this product is a hermitian product on it. Finally, it is but
an exercise to verifv that 12 is complete. Indeed. the family !n 1 is total

WA WASW T Vwiaiy vii&s S WUiIpIAVIV. AAANATNAy  TiaV alezazaay TGy

orthonormal in the completion of lz, and in this completion any element
can be expressed as a convergent series, described above. Thus the ele-

ments of the completion are precisely those of /2.
The space 12 can also be interpreted as the completion of a space of

functlons, those periodic of period 2x, say, a total orthogonal family then
being constituted by the functions

Xa(t) = e

where n ranges over all integers (positive, negative, or zero).

It is clear that any two Hilbert spaces having denumerable ortho-
normal total families are isomorphic under the map which sends one
family on the other. Indeed, if G is another Hilbert space with total
orthonormal family {e,}, then the map

Z anvnHZ a,e,

is linear and preserves the norm. In this way, we get a map from our
space of periodic functions into %, which is injective and preserves the
norm. It extends therefore uniquely to the completion.

In general, if two Hilbert spaces have total orthonormal families with
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the same cardinality, then any bijection between these families extends to
a unique norm-preserving linear map of one space to the other.

[J. - »
V, §2. FUNC

Theorem 2.1. For every y in the Hilbert space E, the map A, such that
Ay(x) = {x, ¥) is a functional. The association

y A,
is a norm-preserving antilinear isomorphism between E and its dual space
E'

Proof. The Schwarz inequality shows that |4,| < |y|, and evaluating 4,
at y shows that |4,| =]y|, so we get a norm-preserving semi-linear map
of E into E', semi-linear because of the hermitian nature of the scalar
product, namely for complex o,

There remains to show that every functional comes from some y e E. Let
A be a functional, and let F be its kernel (the closed subspace of all x
such that A(x)=0). If F #E, there exists ze E, z #0 such that z is
perpendicular to F (by Theorem 1.6). We contend that some scalar
multiple of z achieves our purpose, say az. A necessary condition on « is
that

(z,az) = A(2)

or in other words, & = A(z)/{z, z). This is also sufficient. Indeed, for any
x € E, we can write

A A
X=Xx-= f)f)z + 1%\)2
/NZj gy
and
B A(x)
Az)

lies in F. Taking the product with az, we obtain
(x, 0z) = A(x)
thus proving our theorem.

By an operator we shall mean a continuous linear map of E into itself.
As we know, the space of operators End(E) is a Banach space.
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By Herm(E) we denote the set of all continuous hermitian forms on E.
By Sesqu(E) we denote the set of all continuous sesquilinear forms on E.
It is immediately verified that both these sets are in fact Banach spaces,
and that Herm(E) is a closed subspace of Sesqu(E). We shall now relate
continuous sesquilinear forms on E and operators.

Let A: E— E be an operator. We define ¢, by

04(x, y) = (Ax, y).

Then ¢, is obviously a continuous sesquilinear form on E. Conversely,
let ¢ be such a form. For each y e E the map

x> (x, y)

is a functional, and consequently there exists a unique y* € E such that
for all x € E we have

o(x, y) = (X, y*>

The map y+ y* is immediately verified to be linear, using the uniqueness
of the element y* representing ¢. Furthermore, from the Schwarz in-
equality, we find that

IY* = lollyl

If we define A*: E— E to be the map such that A*y = y* then we
conclude that A* is a continuous linear map of E into itself, i.e. an

operator.
On the other hand, if we define Y¥/(y, x) = ¢(x, y), then V¥ is se nlinear

N/ AL ViAW 12saaNay az we ¥\ vy g7y Saavan —---- A2

continuous, and by what we have jUS seen, there exists a umqu opera-
tor A such that J(y, x) = (y, Ax), or in other words

o(x, y) = (Ax, y).
Thus ¢ = ¢, for some A.
Theorem 2.2. The association
A @,

is a norm-preserving isomorphism between End(E) and the space of
continuous sesquilinear forms on E.

Proof. Ali that remains to be proved is that |A] = {@,].

loa(x, Y| £ 141111y
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so that |g,] < |A]. Conversely, we know that |Ax| = |44,| and

124x(M)] = 194l 1x]1]-

Hence |Ax| < |@,l|x|. This proves that |A| < |¢,l, whence our theorem
follows.

We have also shown that to each operator A we can associate a
unique operator A* satisfying the relations

(Ax, y> = {x, A*y)

for all x, ye E. We call A* the adjoint of A (transpose of A if our
Hilbert space is over the reals).

L opatb wiis )

Theorem 2.3. The map A A* satisfies the following properties:
(A + B)* = A* + B*, A** = A,
(xA)* = aA*, (AB)* = B*A*,
and for the norm,

|4 =14],  |A*A] = AP

Proof. The first four properties are immediate from the definitions.
For instance,

(aAx, y) = (Ax, ay) = {x, A*¥ay) = {x, GA*y).

From the uniqueness we conclude that (aA4)* = aA*. The others are
equally easy, and are left to the reader. As for the norm properties, we
have

[<A*x, p)| = IKx, Ayl £ |A]1x] |y
so that
loas| = | A*| £ Al
Since A** = A4, it follows that |4] < |A*| so |A| = |A*|. Finally,

|A*A] £ | A*)14] = | AP,

and conversely,
|Ax|? = (Ax, Ax) = (A*Ax, x) L |A*A]|x|?

so that |A| £ |A*A|"2. This proves our theorem.
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If ¢ is a continuous sesquilinear form on E, we define the function

q(x) = ¢(x, x)
to be its associated quadratic form. In the complex case, we can recover
the sesquilinear form from the quadratic form. We phrase this in terms

of operators.

Theorem 24. For a complex Hilbert space, if A is an operator and
(Ax,x) =0 for all x, then A = 0.

Proof. This follows from what is called the polarization identity,

CAx +y), x + y) — CAlx — y), x — y> = 2[{Ax, y) + {4y, x)].

Under the assumption of Theorem 2.4, the left-hand side is equal to 0.
Replacing x by ix, we get

(Ax, y) + (Ay, x) =0,
i(Ax,y) — i(Ay,x) = 0.

From this it follows that {(Ax, y)> =0 and hence that 4 = O.

Theorem 2.4 is of course false in the real case, since a rotation is not
necessarily O, but may map every vector on a vector nernendlcular to it.

AW WO Ray aias eSS AR Y w2 il iRial

However, in Chapter XVIII we shall deal with the case when A= A* in
which case the result remains true, obviously.

Operators A such that A = A* are called hermitian, or self adjoint.
We shall study these especially in Chapter XVIIL

V, §3. EXERCISES
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XEr i
converges weakly to 0 if for all y e H we have lim(x,, y> = 0.

1. Let {v,} (n=1,2,...) be a denumerable Hilbert basis for the Hilbert space H.
Show that the sequence {v,} converges weakly to 0, and hence that the unit
sphere is not closed in the unit ball for the weak topology.

2. Suppose the Hilbert space H has a countable basis. Let x€ H be such that
Ix| < 1. Show that there exists a sequence {u,} in H with |u,| =1 for all n
such that {u,} converges weakly to x.
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o

Let X be a closed convex subset of a Hilbert space. Show that there exists a
point in X which is at smallest distance from the origin.

Let E be a Hilbert space, and let {x,} be an orthonormal basis. Let {c,} be a
sequence of positive numbers such that ) ¢? converges. Let C be the subset of
E consisting of all sums ) a,x, where |a,| < c,. Show that C is compact.

Show that a Hilbert space is separable (has a countable base for the topology)
if and only if it has a countable orthonormal basis.

r:

Let A be an operator on a Hilbert space. Show that

Ker A = (Im A*)%.
Let E be the vector space of real valued continuous functions on an interval
[a,b]). Let K = K(x, y) be a continuous function of two variables, defined on

the square a S x<b and a<y<b. An element f of E is said to be an
eigenfunction for K, with respect to a real number r, if

b
fo)=r _,[ K(x, »f(x) dx.

We take E with the L2-norm of the hermitian product given by

b
S =I /9.

Prove that if f, ...,f, are in E, mutually orthogonal, and of L?*-norm equal to
1, and if they are eigenfunctions with respect to the same number r, then n is
bounded by a number depending only on K and r. [Hint: Apply Bessel's

inequality.]
A o "I

Let E be a pre Hilbert space.
(a) If E is complex, then Im(x, y) = Re(x, iy).
(b) Let x, ye E. If E is real, then

%y =Hx + y? = x> — |y)?).
If E is complex, then
(xy> =3x + yI? = x> = |y1) + 4(1x + iy]* — |x]* = |y)%).
(c) Let F be a normed vector space such that the parallelogram law holds for

its norm. Define {x, y)> by the formula in (b). Show that this is a positive
definite scalar product.



PART THREE

Integration

This part deals with integration in multiple contexts. We start with the
integral on arbitrary measured spaces, setting the basic framework in a
context which makes its structure particularly clear. The main idea is
that one starts the theory of the integral by defining the integral on a
natural space of simple functions where one sees immediately what the
integral means. The space of step functions is the one which covers all
cases, from the most general to the most special. As we shall also see, if
one wants integration on the reals, or in euclidean space, then the space
generated by characteristic functions of intervals or cubes, or the C”
functions with compact support, also form a natural starting space for
integration.

It turns out that for the basic framework of integration, all one needs
for the space of values is linearity and completeness, so a Banach space.
I think it obscures matters to assume (as is often done) that values are
first taken in the real numbers, and to make abusive use of the ordering
properties of the reals and of positivity in setting up the integral. Fur-
ther comments on this will be made in Chapter VI, especially the intro-
ductory comments.

However, doing general Banach valued integration on measured spaces
does not mean that one eventually slights special properties of complex
valued integration over the real numbers. This entire part will mix gen-
eral considerations with particular situations and examples, especially on
euclidean space and the real line. Readers can see how having the gen-
eral machinerv of integration on measured spaces, or locally compact

wiai lllu\dlllll\/l.’ AREL\paa oL RO L ol o

spaces, is used to make easier the formulation of more concrete results.
For instance, in Chapter VIII, we give specific results on approximations
on R or R" with Dirac sequences and farailies. In Chapter IX, two



110 INTEGRATION [PART THREE]

sections on functions of bounded variations and the Stieltjes integral
illustrate the general relationships between measures and functionals on
C™ functions with compact support. They also emphasize what is pecu-
liar to the real numbers, as distinguished from what holds when the
values are taken in an arbitrary Banach space.

Thus, throughout this part, we see general integration theory on mea-
sured spaces alternate with special features on euclidean spaces or on the
real line.



CHAPTER VI

The General Integral

In this chapter we develop integration theory. We want two things from
an integral which are not provided by the standard Riemann integral of
bounded functions:

(1) We want to integrate unbounded functions.
(2) We want to be able to take limits under the integral sign, of a
fairly general nature, more general than uniform limits.

To achieve this, we proceed in a manner entirely similar to the manner
used when extending the integral to the completion of a space of step

fivnrtinne avrant that inctaad Af tha onn ra wa necs tho ’ =MNrm
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Simple and basic lemmas then allow us to identify elements of the com-
pletion with actual functions, and all properties of the integral then
become just as easy to prove as in the earlier versions of integration.
The lemmas are designed to show that if in addition to L'-convergence
we require pointwise convergence almost everywhere, then we still re-
cover essentially the L'-completion, up to functions which vanish almost
everywhere.

The treatment here is a conglomerate of various treatments in the
literature. Unlike most treatments, however, 1 have based the existence
and definition of the integral on a very simple lemma, which I call the
fundamental lemma of integration (Lemma 3.1). It can be proved ab ovo
with a very short proof, and shows immediately how an L'-Cauchy
sequence of functions converges (almost uniformly!). From this conver-
gence, one can immediately see how to extend the integral “by continu-
ity” from step maps to the most general class of mappings which is
desired. In the basic lemma, positivity plays no role whatsoever. A
posteriori, one notices that the monotone convergence theorem and the
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“Fatou lemma” of other treatments become immediate corollaries of the
basic approximation lemmas derived from Lemma 3.1. Thus it turns out
that it is easier to work immediately with complex valued functions than
to go through the sequence of many other treatments, via positive func-
tions, real functions, and only then complex functions decomposed into
real and imaginary parts. The proofs become shorter, more direct, and
to me much more natural. One also observes that with this approach
nothing but linearity and completeness in the space of values is used.
Thus one obtains at once integration with Banach valued functions. But
readers may well omit considering this case if it makes them more com-
fortable to deal with C-valued functions only. Note, however, that vector
space valued functions are useful in giving an especially simple proof for
the Fubini theorem, which again I find more transparent than the proof
used in many treatments, based on positivity. Historically, Bochner was
the first to consider integration of Banach valued functions. From the
point of view taken here, there is no difference between Banach or com-
plex valued functions.

Actually, it 1s a reasonable gquestion why one should want to identify
elements of the completion with functions: why not just work formally
with Cauchy sequences? One of the basic reasons is that certain proper-
ties of the formal completion which one wishes to use are obvious if
elements of this completion are identifiable with functions. For example,
consider the space L of continuous functions on [0,1]. Let T: L — L
be the linear map given by Tf(x) = xf(x). Then T is continuous for the
L*-norm on this space, whence T extends uniquely to a continuous linear
map T on the completion. Now it is clear that T is injective on L, and
one can ask if T: L — L is also injective. If we can identify an element of
the completion with a function f so that T is again given as multiplica-
tion by x, then one sees at once that T is injective. Otherwise, one has
to prove some lemma about L!'-Cauchy sequences which amounts to a
special case of those proved to establish the representation of elements of

the completion by functions, and which serve in a wide variety of context.

I would also like to draw the reader’s attention to the approximation
Theorem 6.3, which gives a key result in line with our general approach:
to prove something in integration theory, first prove it for a subspace of
functions for which the result is obvious, then extend by linearity and

continuity to the largest possible space.

VI, §1. MEASURED SPACES, MEASURABLE MAPS,
AND POSITIVE MEASURES

Let X be a set (non-empty). By a o-algebra in X we mean a collection
of subsets .# having the following properties:

6-ALG 1. The empty set 15 1ii .
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6-ALG 2. The collection M is closed under taking complements (in X)
and denumerable unions. In other words, if Ae # then
GxAe M, and if {A,} is a sequence of elements of M, then

s

A,

n=1

is also an element of M.

We conclude at once from these conditions that the whole set X is in
A, and that a denumerable intersection of elements of .# is also in .
Also, using empty sets, we see that finite unions or intersections of ele-
ments of .# are also in .#, and we could just as well have assumed this
by saying “countable” instead of “denumerable” in our second axiom.

A set X together with a g-algebra # is called a measurable space, and
the elements of .# are called its measurable sets. We note that if A4, B
are measurable, and if we denote by A — B the set

consisting of all elements of A not in B, then A — B is measurable.

To prove that a collection of subsets is a o-algebra, we shall often use
the following characterization:

A collection M of subsets of X is a g-algebra if and only if it contains
the empty set, is closed under taking complements, finite intersection, and
such that, if {A,} is a sequence of disjoint elements of # then the union
U A, isin A

Proof. This is clear since we can write

U 4y = 4, 0(4; = 4) U (As ~ (4,0 4)) U

We could also define the notion of an algebra of subsets of X. It is a
collection &7 of subsets satisfying the following conditions:

ALG 1. The empty set is in .
ALG 2. If A, Be o/, then AnB, AUB,and A— B are in .

ich is closed under

Terminology. In some texts, what we call an algebra is called a ring
(of subsets). However, in the iheory of algebraic structures (groups, rings,
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fields, vector spaces, etc.) it has become more or less standard practice
to assume that a ring has a unit element for multiplication, while an
“algebra” is merely an additive group with a bilinear law of composition.
Our definitions have therefore been made to fit these conventions, in the
analogous situation of algebras of subsets. Here, of course, the “unit
element” is the whole space.

Let & be a collection of subsets of X. Then there exists a smallest

o-algebra 4 in X which contains .

Proof. We can take for .# the intersection of all o-algebras containing
&. The collection of all subsets of X is such an algebra, and does
contain &, so that we are not faced with the empty set. It is immediate
that the intersection .# above is itself a o-algebra, so we are done.

In the preceding result, the o-algebra .# is said to be generated by %,

Example 1.

Let X be a topological space, and let & be the collection of all open
sets. The o-algebra generated by these open sets is called the algebra of
Borel sets. An element of this algebra is called Borel measurable. In
particular, every denumerable intersection of open sets and every de-
numerable union of closed sets is Borel measurable.

Example 2.
Let (X, #) be a measurable space. Let f: X —» Y be a mapping of X
into some set Y. Let A be the collection of subsets S of Y such that

—1 . . . . .
S7(S) is measurable in X. Then A is a g-algebra. The proof for this is

immediate from basic properties of inverse images of sets. We call 4" the
direct image of .# under f, and could denote it by f,(.#). (Cf. Exercise
1.)

Example 3.

Let X be a measurable space, and let Y be a subset. If .# is the
collection of measurable sets of X, we let .#, consist of all subsets 4 Y,
where A€ A. Then it is clear that .#, is a g-algebra, which is said to be
induced by .# on Y. Then (Y, .#,) is a measurable space.

Measurable Maps

If (X, A#) and (Y, A") are measurable spaces, and f: X - Y is a map, we
define f to be measurable if for every Be 4" the set f~!(B) is in .# By
condition M2 below, one sees at once that if Y is a topological space,
and A" is the g-algebra of Borel sets, then f is measurable in this general
sense if and only if it satisfies the seemingly weaker condition stated in
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M2, namely that the inverse image of an open set is measurable. In
practice, we deal only with maps into topological spaces, and in fact into
normed vector spaces.

Ml. If f: X — Y is measurable, and g: Y = Z is measurable, then the
composite g o [ is measurable. This is clear.

M2. Let f: X —>Y be a map into a topological space, with the o-
algebra of Borel sets. Suppose that for every open V in Y, the
inverse image f~'(V) is measurable. Then f is measurable.

Proof. Let A be the collection of subsets S of Y such that f~1(S) is
measurable in X. Then A" is a o-algebra and contains the open sets.
Hence it contains all Borel sets in Y, thus proving the desired result.

From now on, our maps will have values in a topological space, with
the Borel sets as measurable sets.

We note at once that taking complements, we could have defined
cmmmmmermenle 1l Lo, al._ o T%a2 . al..a al._ = _. _____ °:____ ___ _ O . _1__ 1 _ _a 5_
HiICasulavlity Uy uiC CONUIIUIL ial tic 1IVeISC 1IIage U1 a ClOSCAd SCL IS
measurable. Furthermore, we see that the inverse image of a countable
union of closed sets, and the inverse image of a countable intersection of
open sets is measurable because if {U,} is a sequence of open sets, then

I \ ©
~ 7 ~ 17

"l=]1 n}='!=]1] (Un)

and similarly for closed sets. Example: Let J be a half-open interval
(a, b] and let f: X —» R be measurable. Then

S7((a, b])

is measurable because we can write (a, b] as the union of closed intervals

—

[a+%,bJ for n=12 ....

We shall now give a large number of criteria for mappings and sets to
be measurable, and we shall see that limit operations preserve measur-
ability, and algebraic operations likewise, under extremely mild hypo-
theses on the image space Y. These hypotheses will always be satisfied in
practice, and trivially so in the case when we deal with maps into the
real or complex numbers, or into Euclidean n-space.

M3. Let f:X—Y xZ be a map of a measurable space X into a
product of topological spaces Y, Z. Write f in terms of its coordi-
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nate maps, f = (g, h) where g: X - Y and h: X = Z. If [ is mea-
surable, then so are g and h. Conversely, if g, h are measurable,
and every open set in Y x Z is a countable union of open sets
V x W, where V is open in Y and W is open in Z, then f is
measurable.

Proof. If f is measurable, then composing f with the projections of
Y x Z on Y or Z shows that both g and h are measurable. Conversely,
if g, h are measurable, then for any open sets ¥V, W in Y, Z respeciively,
we have

YV x W)y=g '(V)nh™ (W).

Hence f~'(V x W) is measurable. The measurability of f~'(U) for any
open set U now follows from the assumption made on the topology of
Y x Z.

M4, In particular, we conclude that a complex function f on X is
measurable if and only if its real part and imaginary part are
measurable.

Note that the condition expressed on the product space Y x Z in our
criterion is satisfied if Y, Z are metric spaces and have denumerable
everywhere dense sets. Thus they are satisfied if Y, Z are separable
Banach spaces, and in particular for euclidean n-space. Actually, in most
applications we integrate complex valued functions, so that there is no
problem with this extra condition.

MS. If f is a measurable map of X into a normed vector space, then
the absolute value |f| is measurable, being composed of f and the
continuous function y—|y|.

We would like the sum of two measurable maps f, g into a normed
vector space E to be measurable. Since the sum can be viewed as the
composite of the map x— (f(x),g(x)) and the sum map E x E - E,
which is continuous, what we want follows from our criterion concerning
maps into a product space, provided the extra condition is satisfied. In
particulaY, we obtain the following.

M6. Measurable complex valued functions on X form a vector space,
and similarly if the values are in a finite dimensional space, or if
we restrict ourselves to maps whose image is separable (i.e. contains
a countable dense set). Similarly, if f, g are measurable complex
Junctions on X, then the product fg is measurable.

For this last assertion, we note that the product is composed of the
map (f, g) and the product C x C — C, which is continuous.
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M7. Let f: X » Y be a mapping of X into a metric space. Let {f,} be
a sequence of measurable mappings of X into Y which converges
pointwise to f. Then [ is measurable.

Proof. Let U be open in Y. If x e f~}(U), then for ail k sufficientiy
large, we must have x e f;'(U) because fi(x) converges to f(x). Hence
for each m,

8

Yoy e ) 4w

C

k

and consequently

e () U st

On the other hand, let A be a closed set. Suppose that x lies in every
union

U it

for all positive integers m. Then for arbitrarily large k, we see that f(x)
lies in A, and hence by assumption the limit f(x) lies in A because A is
closed. Hence we obtain the reverse inclusion

(1)

f“l Ayecf

)8

(4).

- —

o

k

Let V be a fixed open set. For each positive integer n let A, be the
closed set of all ye Y such that d(y, V) = 1/n, and let V, be the open
set of all y € Y such that d(y, €V) > 1/n. Then

V,c 4,
and
V=) 4,=U V.
n=1 n=1

Thus we have the inclusions

mm=Usrtar=y 0 Uit
>U () U 700

and .
rm=Urimey N U it

This proves that the equatity helds, and shows that f~'(V) is measurable.
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This last result is really the main thing we were after. We need it
immediately in the next section to know that if f is a limit of measurable
real valued functions, then for every real a, the set

is measurable when J is equal to the interval of all ¢ > a or the interval

ofallt =a.
In the dafinitinn ond d

in the subsequent sections, the limit property we have just proved, com-
bined with our definition, is the one which will be most useful. It turns
out that there is a condition which is necessary and sufficient for a map
to be measurable in all applications, but which we preferred to postpone
and state as a criterion rather than take as definition. We now discuss
this condition. It will be the useful one in dealing with further properties.
A map f: X — Z into any set Z is said to be a simple map if it takes
on only a finite number of values, and if, for each v € Z the inverse image
f~1(v) is measurable. Thus X can be written as a finite disjoint union,

rtiec nof the inteoral
S ) a “AAWw &AL \-Uel A

where each X, is measurable, and f is constant on X.

It is clear that simple maps of X into a Banach space E form them-
selves a vector space.

If {¢,} is a sequence of simple maps of X into a Banach space E, and
{@,} converges pointwise, then the limit is measurable, according to the
criterion M7. The converse is almost true, and is indeed true when E is
finite dimensional (so in particular when E represents the real or complex
numbers). We have:

M8. A map f: X - E of X into a finite dimensional space is measur-
able if and only if it is a pointwise limit of simple maps.

*Proof. The result reduces immediately to the case when E = R. We
leave the reduction to the reader. Thus assume that f is measurable real
valued. For each integer n = 1 cut up the interval [—n, n] into intervals
of equal length i/n and denote these intervals by J,, ...,Jy. We take
each J, to be closed on the left and open on the right. We let Jy,,
consist of all ¢ such that |t} = n. Let

Ak=f—1(‘,k) fOl‘ k=l,...,N+1

so that each A, is measurable, the sets A4, (k=1,...,N + 1) are disjoint,
and their union is X. On each A4, we define a constant map , by

VoA =inf, £ if k=1,...N.
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We can write Ay,, = Bu B’ where B consists of those elements x such
that f(x) 2 n and B’ consists of those x such that f(x) < —n. We define

'//n(B) =n and 'pn(B’) = —hn.

Then the sequence {y,} converges pointwise to f, and each i, is a simple
function. This proves that measurability implies the other condition. The
converse is already known from M7, and thus our characterization of

.
mnacllrcﬂ'\ln mango 10 nrnunrl
Ilivaouwuiauvivw lllul.lo LIS Plv'\lu-

The construction of the case we just discussed yields a useful addi-
tional property in the positive case:

M9. Let f: X - Ry, be a positive real valued measurable map. Then
[ is a pointwise limit of an increasing sequence of simple maps.

Proof. The functions V), defined above are all £ f, and we let

©, = max(y,, ...,\¥,)

Then {¢,} is increasing to f, as desired.

After discussing positive measures, we shall discuss a variant of condi-
tion M8, related to a given measure.

Positive Measures

We shall now define positive measures. To do this, it is convenient to
introduce the symbol oo in the context of positivity (after all, we want
some sets to have infinite measure).

We let o0 be a symbol unequal to any real number. By [0, co] (which
we call also an interval) we mean all ¢ which are real = 0 or co. We

introduce the obvious ordering in [0, 00], with a < oo for every real a.
We define addition and multiplication in [0, co] by the convention that

NARva

owa=ao=0 ifa=0,
0'a=a: o0 = o if0<a< o,
w+a=a+ =0 if0<a< .

Then associativity, distributivity, and commtativity hold in [0, c0]. The
sum of a sequence of elements in [0, co] then can be viewed to converge
to a number = 0 or to oo. o o

Let X be a measurabie space and lei # De the colieciion Or iis
measurable sets. A positive measure on .# (or on X, by abuse of lan-
guage) is a map

Lo M — (0, 0]
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which is countably additive. In other words u(¢¥) =0, and if {4,} is
a sequence of measurable sets which are mutually disjoint (4, A4, is
empty if n # m), then

If A is measurable, we call u(4) its measure, or y-measure if the reference
to u is necessary to avoid confusion.

Examples. Let X be a set and x, an element of X. If 4 is a subset of
X containing x,, we define u(4) = 1. If A does not contain x, we define
u(A4) = 0. It is immediately verified that this defines a measure, called the
Dirac measure at x,.

As another example, if a subset is finite, we define its
number of elements, and if a subset is infinite, we define its measure to
be c0. Again it is immediately verified that this defines a measure, called

the counting measure.

NAnntten 4o ban adn
Hica»>uilcc ww v 1w

We shall identify measures with integrals later.

A measurable space together with a measure is called a measured
space. When we want to specify all data in the notation, we write the
full triple (X, .#, p) for a measured space.

We derive some trivial consequences from the definition of a positive
measure.

First we note that the additivity of p holds for finite sequences since
we can take all but a finite number of the 4, to be empty.

Next, a measure satisfies properties of monotonicity, namely:

If A, B are measurable, A = B, then u(A) £ u(B).
This is obvious because we can write B= A U (B — A).

Proposition 1.1. If {A,} is a sequence of measurable sets and A, < A,,,
for all n, and if

o0

A=) 4,

n=1

then
() = lim p(A,)

n—o0

(This is understood in the obvious sense if u(4) = 0.) To prove this, we
let A, be the empty set, write

A=A4,0(4; - A)V(A3 - A))U U (4, — 4,)0 0,
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and use the countable additivity. We get

N
uA) = lim 3 p(A4,., — A,) = lim p(4y),

N—w n=0 N—w

as was to be shown.

It will occasionally be useful to have the following characterization of
measures:

Proposition 1.2. A map pu: # — [0, 0] is a measure if and only if
u() =0, p is finitely additive, and if {A,} is an increasing sequence of
measurable sets whose union is A, then

lim pu(4,) = u(A).
Our assertion is obvious, taking into account our preceding arguments.

Proposition 1.3. If A, is a decreasing sequence of measurable sets, i.e.
A,y < A, for all n, if some A, has finite measure, and if

then
u(A) = lim p(4,).

To prove this, say p(A4,) # co. We write
A =(4, — A)VA,.

The sets A, — A, form an ascending sequence, whose union is 4; — A.
By our previous result, we conclude that

u(4,) = lim p(4, — A,) + lim p(4,)

n—oo n—*o0

= p(A; — A) + lim u(4,)

n—oo

= u(4,) — p(4) + lim p(4,).

n—o0

Our assertion follows.

Note that if we do not assume that some A, has
the conclusion may be false. Indeed if all A, have infinite measure, their
intersection may be empty. Think of the real numbers 2 n.

Lronibn svrnnoctzen 'Y ey
1HIIILT llICadulc, 1iivll
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If A, is an arbitrary sequence of measurable sets, then in general we
have only

u(g A..) < OZ:,; p(A,).

This is again obvious.

Having the notion of (positive) measure on # we emphasize the role
played by sets of measure 0, and we shall use the following terminology.
A property of elements of X is said to hold almost everywhere, or for
almost all x, if there exists a set S of measure 0 such that the property
holds for all x ¢ S. For instance, if f: X - R is a map of X into the
reals, we say that f = 0 almost everywhere if f(x) = 0 for almost all x,
i.e. for all x outside a set of measure 0. Of course, we should really put
the p into the notation, and say p-aimost everywhere or u-almost all, but
since we deal with a fixed measure, we omit the prefix p- for simplicity.

In developing the theory of the integral, we follow the oldest idea,
which is first to integrate step maps and then take limits. We shall now
discuss the measure theoretic aspect of this procedure.

Let A be a set of finite measure. By a partition of 4 we mean a finite
sequence {A4;} (i =1, ...,r) of measurable sets which are disjoint and such
that

- () 4
i=1

Let E be a Banach space. A map f: X —» E is called a step map with
respect to such a partition if f is equal to 0 outside A (that is f(x) =0 if

v A and (A hac nna alamant far aach 7 (i a f 1c nnnctant an AY A
Eal F ll’, CAALANS J ‘l ll’ 11830 Wiilw Wwiwiililwiil 1VL w11 ¢ ‘l o\we 10 wwyilouwaiil vil ﬂ" I

map f: X — E is said to be a step map if it is step with respect to some
partition of some set of finite measure. We denote the set of all step
maps by St(y, E) or more briefly by St(u).

If Y is a measurable subset of X, then the restriction to Y of a step
map on X is a step map on Y. Conversely, a step map on Y can be
extended to a step map on X by giving it value 0 outside Y. If f is a
map on X, we denote by f, the map such that f,(x)=0 if xe Y and
fr(x)=flx)if xe Y.

The set of step maps St(u, E) is a vector space. If f is a step map, then

sois |f|. If f:X = E is a step map and g: X - C is a step function,
then gf (also written fg) is a step map.

Proof. This is proved trivially using a refinement of two partitions.
Indeed, if {4;} and {B;} are two partitions of A, then

{A:n B}
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is also a partition. Also, if f is 0 outside A4, and g is O outside B, and A4,
B are measurable of finite measure, then AU B has finite measure, and
we can find a partition of AU B with respect to which both f and g are
step maps. From this our assertions are obvious.

We shall not use the rest of this section until the corollaries of the
dominated convergence theorem in §5.

We shall define the integral on certain maps which are limits of step
maps. The present discussion is devoted to such limits. We define a map
to be p-measurable if it is a pointwise limit of a sequence of step maps
almost everywhere. In other words, if there exists a set Z of measure 0
and a sequence of step maps {¢,} such that {¢,(x)} converges to f(x) for
all x¢ Z. Let f: X - Y be pu-measurable, and let Ac X and Bc Y be
measurable subsets with f(A4) =« B. Then the induced map f: 4> B is
pu-measurable. Instead of M1, we have: if f: X - E is u-measurable, and

g: E - F is continuous, then g o f is y-measurable.

M10. The p-measurable maps of X into E form a vector space. If f, g
are p-measurable functions (complex), so is their product. In fact,
if [:X—>E and g: X - F are p-measurable maps into Banach
spaces, and E x F— G is a continuous bilinear map, then the
product fg (with respect to this map) is p-measurable. The abso-
lute value |f] is u-measurable. If f is a u-measurable function
such that f(x) # 0 for all x, then 1/f is u-measurable.

Proof. All statements are clear, except possibly the last, for which we
give the argument: If {¢,} is a sequence of step functions converging
pointwise to f, then we let ¥, (x) = 1/@,(x) if @, (x) #0 and ¥,(x) =0 if
¢,(x) = 0. Then ¥, is step, and the sequence {i,} converges pointwise to

1f.

The property of p-measurability builds in some very strong finiteness
properties on both the set of departure and the set of arrival of the map.
To begin with, it is clear that a p-measurable map vanishes outside a
countable union of sets of finite measure. Such sets are important. We
give a name to them, and say that a measurable subset Y of X is o-finite
if it is a countable union of sets of finite measure. More accurately, we
should really say that u is o-finite on Y, and we should say that u is
o-finite if it is o-finite on X. However, we allow ourselves the other
terminology when y is fixed throughout a discussion.

Secondly, there exists a set Z of measure O such that the image
f(X — Z) of the complement of Z contains a countable dense set (ie. is
separable). This is clear since outside such Z the map f is a pointwise
limit of step maps, and thus the image of X — 2 lies in the closure of a
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set which is a countable union of finite sets. Thus we now have two
necessary conditions for a measurable map to be p-measurable, namely
countability conditions on its domain and range. It turns out that these
are sufficient.

Mil. Let f: X - E be a map of X into a Banach space. The following

two conditions are equivalent:

(i) There exists a set Z of measure 0 such that the restriction of
f to the complement of Z is measurable, f vanishes outside
a o-finite subset of X, and the image f(X — Z) contains a
countable dense set.

(ii) The map f is a pointwise limit almost everywhere of a se-
quence of step maps (that is, [ is p-measurable).

In particular. if u ic g-finite and if { is a function (comnlex
AT ‘lu' RV AR LAT , t’ '& I v JD'III—" AT NN U J (a3 “w J“ wErw \VV I.I - o
valued), then f is p-measurable if and only if there exists a subset
Z of measure 0 such that f is measurable on the complement of

Z.

Proof. We have already proved that (ii) implies (i), using our preced-
ing remarks, and M7. Conversely, assume (i). We may assume that X is
a disjoint unipn of subsets X, (k =1, 2,...) of finite measure. If we can
prove that the restriction f|X, of f to each X, is u-measurable, then for
each k there is a sequence {p{*} (j=1,2,...) of step maps on X, which
converges almost everywhere to f|X,. We define ¢, by the following
values:

®, is o on X, for k=1,...,n,

@, (x)=0 if x¢X,u-—-ulX,.

Then each ¢, is a step map, and the sequence {¢,} converges almost
everywhere to f. This reduces the proof that f is u-measurable to the
case when X has finite measure.

Suppose therefore that X has finite measure. We may also assume
that the image of f contains a countable dense set {v,} (k=1,2,...).
For each positive integer n, let By,(v,) be the open ball of radius 1/n
centered at v,. The union of these balls for all k=1, 2, ... covers the
image of f, whence the union of the inverse images under f covers X
itself. If we take k large, it follows that the finite union of inverse images

f_l(Bl/n(vl))u e Uf_l(Bl/,,(v,,)) =X-Y,
differs from X by a set Y, such that u(Y,) < 1/2". We let

Z"= Y,,U }’"_‘_lu...
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so that u(Z,)<1/2"*. Then Z,> Z,,, o--- is a decreasing sequence.
On X — Y, we can obviously find a step map ¢, such that

lf(x) = @,(x)l <1/n for x¢¥,.

We simply define the map ¢, inductively to have the value v, on the
inverse image of B,,,(v,), the value v, on the inverse image of

Bl/n(uz) - Blln(vl )

and so forth. We let y, be equal to ¢, on X — Z, and give |, the value
0 on Z,. Then y, is a step map, and the sequence {,} converges
pointwise to f, except possibly on the set Z equal to the intersection of
all Z,, which has measure 0. This proves what we wanted.

Remark 1. The proof is substantially the same as that of M8, granting
the necessary adjustment to the more general situation.

Remark 2. We get some uniformity of convergence from the proof,
outside a set of arbitrarily small measure.

Remark 3. We took values of f in a Banach space, but for purposes
of M11, values in any complete metric space would have done just as
well. The additive structure plays no role. However, in all subsequent
applications, we deal with maps in vector spaces where the additive
structure does play a role.

Remark 4. Let .# be the o-algebra of all subsets of the set X. Let
f: X — E be an arbitrary map into-a Banach space. Then f is measur-
able, and p-measurable if p is such that u(Y)=0 for all subsets Y of X.
This shows that it is reasonable to exclude the behavior on a set of

saen ~amy

measure 0 in our definition of u-measurability.

M12. Let {f,} be a sequence of p-measurable maps, converging almost
everywhere to a map f. Then [ is p-measurable.

Proof. This is clear by using (i) of M11, and the following facts: A
denumerable union of sets of measure 0 has measure 0. A denumerable
union of sets having countable dense subsets has a countable dense
subset. [If {D,} is a sequence of denumerable sets in a metric space, then

’ D, > U le
1 n=1

U D> D, for all n, whence
k=1 K=
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so that

o0 uo_
U D= D,
k=1 n=1

and our second statement is clear aiso.]

Property M12 concludes the list of properties which show that u-
measurability is preserved under the standard operations of analysis, with
the sole exception of composition of maps, contrary to M1.

For the rest of this chapter, we let (X, .#, p) be a measured space, i.e.
. is a o-algebra in X, and p is a positive measure on .#. We let E be a
Banach space. At first reading, the reader may assume that all maps f are
complex or real valued, that is E= C or R. No proof or notation would
be made shorter by this assumption.

VI, §2. THE INTEGRAL OF STEP MAPS

If A is a measurable set of finite measure, and f is a step map with
respect to a partition {4;} (i = 1,...,r) of 4, then we define its integral to
be

Lfdu - z HANS(A).

If {B;} (j=1,...,s) is another partition of A4, then f is step with respect
to the partition {4; n B;} and we have

Z 1A BYf(A) = u(ADS(A)

Summing over i shows that our integral does not depend on the partition
of A. If f is step with respect to a partition of a set 4 and a set B, then
it is also step with respect to a partition of AU B, and we see that our
integral is therefore well defined.

If A is an arbitrary measurable subset and f is a step map on X,
recall that f, is the map such that f,(x) = f(x) if xe A and f,(x)=0 if
x ¢ A. Then f, is a step map both on 4 and on X, and we define

.[fdu=f Jadp
A X

If 4 remains fixed throughout a discussion, we write

.[ f instead of I fdp,
¥ X
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and even omit the X if the total space X is fixed, so that we also write

f f instead of f /.
X

If we integrate over a subset of X, then we shall always specify this
subset, however. We now have trivial properties of the integral.
First, the integral is obviously a linear map

f: St(u, E)> E

which satisfies the following properties.

If A, B are disjoint, then

P A
Jace” Ja7 T e”

This is clear from the linearity, and the fact that f, gz = f, + fs-

p—
SN
—

Over the reals, the integral is an increasing function of its variables.
This means: If E=R and f < g, then

@) jfé.[g-

Furthermore, if f =0 and A < B, then

() Jféjf-
A B

Property 2 can be obtained from its positive alternate, namely

-
N
S’

If =0, then Jff = 0.

Indeed, we just use linearity on g — f.

Finally, the integral satisfies the inequalities

[ro

(4)

é_[ |1 dp < 1S | (A),
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where || || is the sup norm. This is an obvious estimate on a finite sum
expressing the integral.
We can define a seminorm on the space of step maps, by letting

fad r

Il = Jx /1 du =J 1

That this is a seminorm is immediately verified. For instance, to show
that
If+gl S 1S10s + gl

we take a partition of a set of finite measure such that both f and g are
step maps with respect to this partition, and then we estimate using the
triangle inequality. This seminorm will be called the L!-seminorm.

Note. The results of this section are at the level of a first course in
calculus. We don’t take limits, and our results depend only on the
presence of an algebra (not necessarily a o-algebra) and a map u of this
algebra into the reals = 0 which is additive, i.e.

m(A v B) = p(A) + u(B)

for A, B disjoint in the algebra.

Vi, §3. THE L'-COMPLETION

We wish to investigate the completion of our space of step maps with
respect to the L'-seminorm. We recall that the completion is defined to
be the space of equivalence classes of L!-Cauchy sequences, and that two
Cauchy sequences are said to be equivalent if their difference is an L!-
null sequence. We denote the completion by L'(y). We recall that the

have a linear map
St(p) - L' (p)

whose kernel is the subspace of step maps whose L!-norm is 0. We shall
describe this kernel in a more general situation later.

We want to determine a certain space of functions corresponding as
closely as possible to the elements of L'(p). If every L!-Cauchy sequence
were also pointwise convergent, there would be no problem. This is
however not the case, but the situation is close enough to this so that we
can almost think 1n these terms.

We define £'(y) to be the set of mappings such that there exists an
L'-Cauchy sequence of step mappings converging almost everywhere to
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J. If{f.} and {g,} are L!'-Cauchy sequences of step mappings converg-
ing almost everywhere to f and g respectively, then {f, +g,} and {of,}
(for any number o) are L!-Cauchy and converge almost everywhere to
J + g and of respectively. Consequently £*(y) is a vector space.

In this section and the nexi, we speak of Cauchy sequences instead of
L'-Cauchy sequences since this is the only seminorm which will enter
into considerations. Since we have several notions of convergence, how-
ever, we still specify by an adjective the type of convergence meant in
each case. Actually, it will be useful to say that a sequence {f,} approxi-
mates and element [ of £ if {f,} is L'-Cauchy and converges to f
almost everywhere.

We shall extend the integral to %!, and we need two lemmas, which
show that our approximation technique is not far removed from uniform

approximation. The first is the fundamental lemma of integration.

Lemma 3.1. Let {f,} be a Cauchy sequence of step mappings. Then
there exists a subsequence which converges pointwise almost everywhere,
and satisfies the additional property: given ¢ there exists a set Z of
measure < ¢ such that this subsequence converges absolutely and uni-
Jormly outside Z.

Proof. For each integer k there exists N, such that if m, n = N,, then

1
1o = Sl < 525

We let our subsequence be g, = fy,, taking the N, inductively to be
strictly increasing. Then we have for all m, n:

1 .
"gm—'gn“l <ﬁ’ if mgn‘
We shall show that the series
g:(x) + kzl (gk+1(x) - gk(x))

converges absolutely for almost all x to an element of E, and in fact we
shall prove that this convergence is uniform except on a set of arbitrarily
small measure.

Let Y, be the set of x € X such that

1
lgn+1(x) - gn(x)l g ?'
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Since g, and g,,,, are step mappings, it follows that Y, has finite measure.
On Y,, we have the inequality

-1- S !g”-'-i — Tm
2"
whence
1 1 1
';,—"F(Yn): ;ﬁé “ Ign+1 —'gnl é‘)Zn'
< JY, « JX <
Hence
1
< —.
u(Y,) = >
Let
Z,=Y vy, v
Then
#(Zﬁ) S 1—‘
— 2" i

If x¢ Z,, then for k = n we have

1
1gk+1(x) — gu(x)] < 2%

and from this we conclude that our series

kZ (9k+1(x) - gk(x))

is absolutely and uniformly convergent, for x ¢ Z,. This proves the state-
ment concerning the uniform convergence. If we let Z be the intersection
of all Z,, then Z has measure 0, and if x ¢ Z, then x ¢ Z, for some n,
whence our series converges for this x. This proves the lemma.

Lemma 3.2. Let {g,} and {h,} be Cauchy sequences of step mappings
of X into E, converging almost everywhere to the same map. Then the
Jollowing limits exist and are equal:

limf g, = limj h,.
X X

Furthermore, the Cauchy sequences {g,} and {h,} are equivalent, i.e.
{9, — h,} is an L'-null sequence.
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Proof. The existence of the limit of each integral is of course a trivial-
ity. To see the argument once more, we have

so that {{g,} is a Cauchy sequence, whence converges. Let f, =g, — h,,.
Then {f,} is Cauchy, converges almost everywhere to 0, and we must

prove that the integrals
f f. and J ¥
X X
converge to 0.

Given ¢, there exists N such that if m, n = N we have

1o — Jmlls <.

Let A be a set of finite measure outside of which f, vanishes. Then for
all n = N we have

( lf,,|=L_ G- [ 1h-pl<2s

JEA JX

By Lemma 3.1, there exists a subset Z of A such that

MO < T

and a subsequence of n such that {f,} tends to O uniformly on 4 — Z.
Then for n large in this subsequence, we conclude that

‘[ If.] <e.
A-Z

S W= uly + w@) Il < 26

Taking the sum of our integrals over ¥4, A —Z, and Z we find the
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desired bound,
(AR =J | £al < 5e.
X
This proves the lemma.

In view of Lemma 3.2, for every f in .#' we can define the integral
r r r
J fdu=J f=limJ Jodp
X X X
using any approximating sequence of step maps {f,} to f. Elements of
Z! will therefore be called integrable maps. It is clear that the integral is

a linear map of %! into E.

We want to extend the seminorm || ||, to #!. We need a lemma for
this.

Lemma 3.3. If f is integrable and {f,} is an approximating sequence

of step maps, then |f] is integrable, and {|f,|} approximates |f|. In
particular,

L |f] = lim L |l = lim I £, 11,

Proof. 1t is clear that |f,| converges to |f| almost everywhere, so that
| f] is integrable. To see that {|f,|} is a Cauchy sequence, we note that

whence

Al =1l = Lllfnl Sl S j om Sl = 1o fuls.

This proves the lemma.
Lemma 3.3 implies in particular that
lim || £l

is independent of the choice of approximating sequence {f,} to f, and
thus allows us to define

‘l -lll‘

(AR er Lf1=Em || f,1l,.
X

By continuity, this is trivially verified tc be a seminorm on #!.
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Let us summarize what we have done. Our purpose was to construct
a completion (essentially) of the space of step mappings, under the L'-
seminorm. In any case, we have constructed a space ' on which we
have extended the integral and the seminorm by continuity. We must
stiif show that this space is compiete. We could now either relate our
&' with the space of equivalence classes of Cauchy sequences, and use
the result of Chapter 4, §4, that this latter space is complete, or repro-
duce independently the proof of that result in the present instance. For
convenience, we do this.

Theorem 3.4. The space &! is complete, under the seminorm | |;.

Proof Let { £} be a Cauchy sequence in £*. For each n there exists
+ € St(y) such that

Ife = galls < 1/n.

The sequence {g,} is then Cauchy. Indeed, we have

19, — gmlls S Ngu — Lulls + 1S — Sulls + 1 fon = Gmll s

which gives a 3e-proof of the fact that {g,} is a Cauchy sequence. For a
subsequence of n, we know by Lemma 3.1 that {g,} converges almost
everywhere to a function f in #'. For this subsequence, we then have

W= E0f—gulls + 19— T

P Py

and this is < 2¢ for n sufficiently large in the subsequence. Hence the
subsequence is L'-convergent to f. It follows that the sequence {,} itself
is L'-convergent to f, and concludes the proof.

Note that the statement of Theorem 3.4 is to be interpreted in the
sense that given a Cauchy sequence {f,} of elements in £, there exists
some f in 2‘ such that given ¢, we have i f, — f1; <eé for n sufficiently
large. We still have the possibility that the seminorm || ||, is not a
norm, so that strictly speaking, “the” completion in the sense of Chapter
1V, §4, would be the factor space of £* by the subspace of all elements f
such that || ], = 0.

Let us now take for granted the existence of a completion as the
space of equivalence classes of Cauchy sequences of step maps, modulo

null sequences. Denote this by L'(p). Then we can define a map
y: L)~ L ()

which to each integrable f e %! associates the equivalence class of a
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Cauchy sequence {f,} approximating f. Lemma 3.2 shows that this map
is well defined, and it is obviously linear. The definition of the seminorm
on #! means that in this notation, we have

1SNy = Tyl
Similarly, the integral, which is a continuous linear map

”

J dy: St(u, E) — E
X

for the L!-seminorm of St(y), extends in a natural way to L'(y). What
we have shown in Lemma 3.2 is that there is a way of lifting it to £! in

such a way that for f€ %! we have

I f=_[ Y(f)-
X X

The continuity of the integral with respect to our L'-seminorm is implied
by the relation
s
x

This relation is true for step maps f, and consequently holds for the
extension of our continuous linear map to the completion. Therefore, it
holds also for elements of ¥ by Lemma 3.3 and the definition of the
seminorm || ||, on %*. The preceding relation also shows that the inte-
gral has norm < 1, as a linear map.

_S__[ 1ST=111-
X

VI, §4. PROPERTIES OF THE INTEGRAL: FIRST PART

We note that if fe %! and g differs from f only on a set of measure 0,
then g lies in #!, and the integrals of f, g coincide, as well as their
L!-seminorms.

We also note that if fe £ we can always redefine f on a set of

- AwNAwai & Swe

measure 0, say by giving it constant value on such a set, so that our new
map is measurable. Indeed, if {¢,} is a sequence of step maps converging
to f except on some set Z of measure 0, we let , be the same map as ¢,
outside Z, and define y,(x) =0, say, for xe Z. Then V, is measurable,
and the sequence {y,} converges everywhere to a map g which is equal
to f except on Z. Furthermore, g is measurable, by M7.

The properties of the integral which we obtained for step maps now
extend to the integral of elements of ¥'. We shall go through these
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properties systematically once more. We start by repeating that

f du: L' (n, E) > E
X
is linear.

We observe that if f, g are in &'(y) then |f), |g| are in £*(u, R), and
consequently if E = R, then

sup(f, 9) =2+ g+ 1f —gl)

is in &%, and so is inf(f, g) for a similar reason, namely

inf(f,g) =3(/+g— 1/ — gl

The expression for the sup also shows that if {f,}, {g,} are sequences
in &'(u, R) which are L*'-convergent to functions f, g respectively, then

sup(f,, g,) is L*-convergent to sup(f, g).
If f is a real function, then we can write

f=r"-f
where f* =sup(f,0) and f~ = —inf(f, 0). It follows that f is in £ if

and only if f* and f~ are in &#'. Such a decomposition is occasionally
useful in dealing with real valued maps.

For any measurable set A and any f € £*(p) the map f, is also in £

(Recall that f, is the same as f on A, and zero outside A.) Proof: If {¢,}
is a sequence of step maps approximating f, then {¢,,} converges almost
everywhere to f, and is Cauchy because

r r
J |Gus = Omal < J 100 — Ol = 10 — Pmll-
X X

Hence {¢,,} approximates f,. From the linearity of the integral, we thus
obtain:

If A, B are disjoint measurable sets, then

W [ r=[re]s

Jaus JAa JB

This follows from the fact that f, g = f, + fs
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Over the reals, the integral is an increasing function of its variables.
This means: if E =R and f < g, then

(2) r f= fg
J° =
Furthermore, if f =20 and A c B are measurable, then
() J f< J f
A B
Property 2 can be obtained from its positive alternate, namely
r
(2P) If £=0, then J fzo.

This is clear since an approximating sequence of step functions {¢,} can
always be taken such that ¢, = 0, replacing ¢, by sup(g,, 0) if necessary.
Property 2 follows by linearity, and Property 3 is then obvious.

Finally, the integral on ' (p) satisfies the inequalities

| I
4) ” fduléj If1dp S 1 filu(4)
A
where || || is the sup norm. (We recall that 0- 00 = 0.) This is immediate,
'0‘(1"" an nr\nrnvlmnhnn canilanmna III\ 1 nf Qtan MmMang tn f nctna Anemterme

tARilip Gll QpYpPLUALLLIGLILLE SVYULIIVL W, § Ul Stuvy Hiapo UJ _’, uallls bUllLIllu'

ity for the first inequality, and (2) for the second. When | f|| or u(A) is
infinite, the inequality is clear, and when both are finite, we use (2).

The next properties are general properties, immediate from the conti-
nuity of the integral. We make the Banach space explicit here.

Theorem 4.1. Let A:E—F be a continuous linear map of Banach
spaces. Then A induces a continuous linear map

L' (u, E)—> L' (n, F)
by
fdof,
and we have
y) Jf fdu= Jf Ao fdp.
X X

This is obvious for step maps, and follows by continuity for £!.
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Theorem 4.2. Let E, F be Banach spaces. Then we have a toplinear
isomorphism

L1 E x F) > £ (, E) x L (p, F).

If f:X —>E x F is a map, with coordinate maps f = (g, h) in E and F
respectively, then fe %' if and only if g, h are in £, and then

Jr=(J= %)

The proof is a simple exercise which we leave to the reader. (The
projection is a continuous linear map on each factor!) It applies in
particular in R", or in C, and we see that a complex map is in %! if and
only if its real and imaginary parts are in %'. Actually, this particular
case can be seen even more easily, for if we write a complex function

f=g+ih

where g, h are real, we note that a sequence of complex step functions
approximates f if and only if its real part approximates g and its imagi-
nary part approximates h (with our definition of approximation, that is
L'-Cauchy , and convergence almost everywhere). Thus

whenever f ic in i, O

ff=jg+ifh

All the properties mentioned up to now are essentially routine, and
are listed for the sake of completeness. It is natural to make such a list
involving properties like linearity, monotonicity, sup, inf, behavior under
linear maps, and product mappings, which are the standard finite opera-
tions on maps and spaces.

We now turn to the limiting operations, and list the properties of the
integral under these operations, giving a large number of criteria for limit
mappings to be in .Z*.

Vi, §5. PROPERTIES OF THE INTEGRAL: SECOND PART

We first generalize the basic and crucial Lemma 3.1 to arbitrary maps in
Z1. This will be formulated as Theorem 5.2. We need a minor lemma
to use in the proof, which was automatically satisfied when we deait with
step maps. We define a measurable set to be o-finite if it is a countable
union of sets of finite measure.
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Lemma 5.1. Let fe %'(u) be measurable. Let ¢ > 0. Let S, be the set
of all x e X such that |f(x)| = c. Then S, has finite measure. Further-
more, [ vanishes outside a o-finite set.

Proof. Let {¢,} be an approximating sequence of step functions to f.
Taking a subsequence if necessary and using Lemma 3.1, we can assume
that there exists a set Z of measure < ¢ such that the convergence of
{p,} is uniform on the complement of Z. Hence for all sufficiently large
n, we have

|0, (x)] = ¢/2 if xeS.—Z.

This proves that S, has finite measure. Taking the values ¢ = 1/k for
k=1, 2, ... shows that f vanishes outside a o-finite set. Actually we can
see this even more easily, since each ¢, vanishes outside a set of finite
measure, and f is the limit almost everywhere of {¢,}, whence f vanishes
outside a countable union of sets of finite measure.

We see that Lemma 5.1 applies in particuiar to the characteristic
function of a measurable set: if it is in %!, then the measure of this set is
finite.

Theorem 5.2. Let {f,} be a Cauchy sequence in ¥ which is L'-
convergent to an element f in ¥'. Then there exists a subsequence
which converges to f almost everywhere, and also such that given ¢,
there exists a set Z of measure < ¢ such that the convergence is uniform

on the complement of Z.

Proof. Considering f, — f instead of f,, we are reduced to proving
our theorem in the case f = 0. Selecting a subsequence, we may assume
without loss of generality that we have

1

< -
~

1ol < 555
22n

tJnl

Also, changing the f, on a set of measure 0, we can assume that all f,
are measurable. We proceed as in Lemma 3.1. Let Y, be the set of x
such that |f,(x)| = 1/2". Then

1 1

_,,P(Yn) < 1f.] < 1.l < 2300

2 Y, X 2
whence

1
Y)=s -
u( n) 2"

lIA
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Let Z,=Y,uY,,,u--. Then u(Z,) £1/2"'. If x¢ Z,, then for k= n
we have

O] < 55

whence {/,} converges uniformly to 0 on the complement of Z,. We let
Z be the intersection of all Z,. Then Z has measure 0, and it is clear
that {f,} converges pointwise to 0 on Z. This proves our theorem.

Corollary 5.3. An element f € &' has seminorm || f||, = O if and only if
f is equal to 0 almost everywhere.

Proof. Assume that || f]|; = 0. Then the sequence {0,0,...} converges

m _gpl to f and hv Tther 57 it converges nnlntuncp olr_nncf everv-

a2l ) A sawN A waza we A% WUALY WA WO rU ALV YYAOW CRRILIUOL WY -,_

where to f, so that f is 0 almost everywhere. The converse is obvious.

Corollary 5.3 is a major result in our theory. We define two maps of
X into E to be equivalent if they differ only on a set of measure 0. We
see that the actual completion of the space of step maps under the
L'-seminorm is the space of equivalence classes of functions in %!, under
the equivalence defined by the property of being equal almost every-
where. In other words, the kernel of the map

y: £ () - L' (p)
is the space of maps f which are 0 almost everywhere.

Corollary 54. Let {f,} be a Cauchy sequence in &* which converges
almost everywhere to a mapping f. Then f is in &', and is the L!-limit

of {1.}-

Proof. The sequence {f,} is L!-convergent to some g€ &', and by

the theorem, some subsequence converges almost everywhere to g. Since
this subsequence converges almost everywhere also to f, it follows that
f = g almost everywhere. This proves our corollary.

Theorem 5.5 (Monotone Convergence Theorem). Let {f, } be an in-

creasing (resp. decreasing) sequence of real valued funct:ons in ! such
that the integrals
.[ J.du
X

are bounded. Then {f,} is Cauchy, and is both L' and almost every-
where convergent to some function f € £*.
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Proof. Suppose that we deal with the increasing case. Let

a=supjﬁ.
Kk Jx

Then for n = m we have

I — Julls = f(f..—-f,,.)= [fr* [ mS 0= rf.,.,
J J J J

whence we see that the sequence of functions is Cauchy. By Theorem 5.2
a subsequence converges almost everywhere, and since the sequence {f,}
is increasing, it follows that {f,} itself converges almost everywhere. That
convergence is in L'-seminorm by Corollary 54. This proves our asser-

tion in the increasing case, and the decreasing case is similar, or follows
by considering the sequence {—7,}.

Corollary 5.6. If {f,} is a sequence of real valued functions in %',
and if there exists a real-valued function g€ £* such that ¢ =0 and
|f,| < g for all n, then sup f, and inf f, are in £, and

supJf,,_S_jsupj}, and jinff,,éinfjf,,.

Proof. The functions

Sup(fl IR ’f;r)

are in %', and form an increasing sequence bounded by g. Hence they
converge almost everywhere and we can apply the theorem to conclude
the proof for the sup. The inf is dealt with similarly.

For the next corollary, we recall a definition. Let {
of real valued functions = 0. If

lim inf £,

k- n2k
exists, we call it the lim inf of the sequence {f,}. It is clear that if {f,}
converges pointwise, then its liminf exists and is equal to the limit.
Actually, in the next corollary,

k—o0 n2k

will exist for almost all x, and the resulting function, which we may
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define arbitrarily on a set of measure zero, will be in #*. By abuse of
language, we still denote it by lim inf f,.

Corollary 5.7 (Fatow’s Lemma). Let {,} be a sequence of real valued
Junctions = 0 in L. Assume that

liminf || /1,

exists (so is a real number 2 0). Then lim inf f,(x) exists for almost all
X, the function lim inf f, is in £*, and we have

J lim inf f, du < lim inf‘[ fodp=timinf || £,
X X

Proof. We apply the monotone convergence theorem twice, first to
the decreasing sequence {g,,} given by

gm = A00(fs Susts - s Sirm):

Since {g,,} is a decreasing sequence, converging to inf f;, and since
n2k

[

J_ (f Jrk+l""’j;t+m)§.,j‘k+j for j=i"'-9m

we conclude from the monotone convergence theorem that

finff,,é infff,,g lim infjf,,.
n2k n2k k- n2k

Let b = inf f,. Then {h,} is an increasing sequence for k =1, 2, ..., and
nZk
we can apply the monotone convergence theorem to h,. The limit lim h,
k— o
is precisely lim inf f,, and Fatou’s lemma drops out as desired.

Note. Fatou’s lemma is used most often in the simple case when {/,}
is pointwise convergent almost everywhere, and when the L!'-seminorms
If.ll; are bounded, thus ensuring that the pointwise lim f, is in Z".

Theorem 5.8 (Dominated Convergence Theorem). Let {f,} be a se-
quence of mappings in &L'(u). Assume that there exists some function
ge L' (u R) such that g 20 and |f,| < g for all n. Assume that {f,}
converges almost everywhere to some map f. Then f is in ¥* and {f,}
is L'-convergent to f.
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Proof. For each positive integer k, let

gx = Sup I./;l - fml

m,n2k

Then {g,} is a decreasing sequence of real valued functions, and since
I, — f..] £ 2g, it follows from Corollary 5.6 that each g, is in £'. By the
monotone convergence theorem and the hypothesis, the sequence {g,}
converges almost everywhere to 0. Hence {f,} is actually a Cauchy

sequence, and we can apply Corollary 5.4 to conclude the proof.

We now refer for the first time since the definition of %' to the
notion of u-measurability. The point is that we want to give criteria for
the limit of a sequence of maps to be in %!, and u-measurability is the
natural hypothesis here. We refer the reader to M11 and emphasize the
countability implications arising from a map being in £', and hence
pu-measurable (by definition).

Corollary 59. Let f be p-measurable. Then [ is in £ (y) if and only
if its absolute value |f| is in Z'(u, R). More generally, assume that

there exists an element ge £'(u, R) such that g =20 and such that
|f1<g. Then f isin £(p).

Proof. et fin ! ha a ceanence nf ctan manc convarai
a VVJ i & l"’"j wWw \’\I“ WALWW Ja QL“P lll“yo W wi

/- Without loss of generality we can assume that g is measurable (We
may have to change all ¢,, f, and the given g on a set of measure 0.)
Define a map h,, by

h(x) = @u(x) if [@(x)] = 2g(x),
h,(x) =0 if  |@,(x)| > 2g(x).

The set S, of all x such that 2g(x) — |@,(x)| =0 is measurable and it

fallawe that 6L wl fAe nan 1 Earetbnes nan LY

1I0u0WS wial A, 1S I 2 \y.; I0r €acn h. rurtnermore 1!1,,] LOLIVEL B
pointwise to f, and |h,| < 2g9. We can therefore apply the dominated
convergence theorem to conclude the proof.

Corollary 5.10. Let {f,} be a sequence of maps in £'(y) which con-
verges pointwise almost everywhere to f. If there exists C = 0 such that
I fully < C for all n, then f is in £* and || |, < C.

Proof. All f, are p-measurable, and hence f is u-measurable, by M12
of §1. By Corollary 5.9, it suffices to prove that |f] is in #'(y, R). But
| /1= 1lim|f,], and Fatou’s lemma applies to conclude the proof.
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Remark. In Corollary 5.10, we don’t assert of course that {f,} is
L'-convergent to f. This is in general not true since for instance we can
find a sequence {f,} converging everywhere to 0 such that each f, has
Il /.ll; = 1. (Take very thin tall vertical strips moving towards the y-axis.)
To get L'-convergence, we must of course cut down such f, in a manner
similar to that used in Corollary 5.9.

Corollary 5.11. Let fe £'(u). Let g be a bounded measurable function

on X (so real or complex). Then gf is in L' ().

Proof. Let {¢,} be a sequence of step maps converging both L! and
almost everywhere to f. Using M8 of §l, let {,} be a sequence of
simple functions converging pointwise to g. Then {¢,},} is a sequence of
step maps, and as n — oo, this sequence converges almost everywhere to
fg. Changing f and g on a set of measure 0 (e.g. giving them the value
0), we can assume that this convergence is pointwise everywhere. If C is
a bound for g, ie. |g(x)] £ C for all x, then |fg] £ C|f]. We can now
apply Corollary 5.9 to conclude the proof that fg is in %#'. We can also
reproduce the proof of Corollary 5.9, ie. after suitable adjustment we
may suppose that

leal = 2111

for all n, whence |@,¥,| £ 2C|f] for all n, and then apply the dominated
convergence theorem directly.

Corollary 5.12. Let E x F - G be a continuous bilinear map of Banach
spaces into another. Let fe ¥'(u,E) and let g be a bounded p-
measurable map of X into F. Then fge £ (u, G).

Proof. There is nothing to change in the preceding proof.

Corollary 5.13. Let {f,} be a sequence of maps in &' such that

5 J 1ol dp
n=1 JXx

() = i i)

converges almost everywhere, the map f is in & 1, and

J fau=3 | fdn
X n=1JX
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Proof. Immediate from the dominated convergence theorem, consider-
ing the partial sums, and using the function

Example. It is often useful to consider sums as in Corollary 5.13 in
the following context. Let {A4,} be a sequence of disjoint measurable sets
whose union is equal to X. For each n let f, be integrable over 4,, and
define f, to be 0 outside A4,, so that f, is then defined over all of X. Let

f=xr
(Conversely, if f is given on all of X, we could let /. =f, = where
\ Ak 7 J O ’ Jn JAp JAAp
X4, is the characteristic function of 4,.) If

converges, then it follows that f is in %! over all of X.

Remark. In our discussion of measurability, we have already pointed
out that a pointwise limit of step maps takes its values in a separable set,
i.e. having a countable dense subset. Actually, taking the space generated
by the values of the step maps in a sequence converging to f we see that
this space, and its closure, have a countable dense subset. This applies
when [ is in #! since we can change f on a set of measure 0, say giving
f the value 0 on such a set, so that f is a pointwise limit of step maps
on the complement of this set. Furthermore, we also recall that a limit
of step maps vanishes outside a countable union of sets of finite measure,
and this also applies to an element of £!.

Corollary 5.14. Let f be in ¥'. Given ¢, there exists a set of finite
measure A such that

Proof. As we have remarked, we can change f on a set of measure 0
such that f vanishes outside a countable union of sets of finite measure,
say {A,}. Let

B,=A,u---UA,.

The sets B, are increasing, and without loss of generality we may assume
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that X = ) B,. Then

convergence theorem.

The next theorem has a probabilistic interpretation as follows. If A is
a set of finite measure s 0, we may view

1
mﬁ”“

as the average of f over A. The theorem will assert that if the average of
S over all such A lies in some closed set S, then in fact the values f(x)
must lie in S for almost all x. We call this the averaging theorem.

Theorem 5.15. Let fe %'(u, E). Let S be a closed subset of E and
assume that for all measurable sets A of finite measure # 0 we have

(Ax[fd”es

Suppose 0 € S or X is o-finite. Then f(x)€ S for almost all x.

Proof. Changing f on a set of measure 0, we may assume without
loss of generainty that f vanishes outside a set which is a countable union
of sets of finite measure, and that E has a countable dense subset. It is
then clear that it will suffice to prove our theorem under the additional
assumption that pu(X) < oo, which we now make. Let ve E and v¢S.
Let B,(v) be an open ball of radius r centered at v and not intersecting S.
Let A be the set of all x e X such that f(x) € B,(v). We prove that A has

measure 0. Indeed, if u(4) > 0 we have

e aaaNeVwiney

- - d
waf” ‘ Lmjf M)””‘
§—— f If —vldu<r,
1A J

which is a contradiction. Hence u(A4) = 0. The lemma follows using the
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countability assumption on E, and using a countable dense set in the
complement of S, together with open balls of rational radii around the
elements of this set, which form a base for the topology.

Corollary 5.16. Let f e ¥*(y) and assume that

jfdu=0
A

for every measurable set A of finite measure. Then f is equal to 0
almost everywhere.

Proof. We take S to consist of 0 alone, and apply the theorem.

Corollary 5.17. Let fe #'(n). For each step function g the map fg is
in £(u), and if

f fodu—=0

J JI
X
for all step functions g, then f(x) =0 for almost all x.

Proof. Apply Corollary 5.16 to characteristic functions y,.

Corollary 5.18. Let fe #'(y). Let b2 0. If

| f fdul < bu(A)
[Ja |

Jor all sets A of finite measure, then | f(x)| < b for almost all x.

Proof. Let S, be the subset of E consisting of those elements v such
that |v]| = b + 1/n and apply the theorem. Then take the union for n= 1,
2, ....

The next corollary is included for later applications. The reader inter-
ested only in the case of complex or real functions may omit it.

Corollary 5.19. Let E be a Hilbert space and f e ¥'(u, E). If

I {f,9>dup=0
X

Jor all step maps g, then f(x) =0 for almost all x.
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Proof. The proof is really just like that of Corollary 5.17. First we
may assume that the image of f is contained in a separable Hilbert
subspace. Let e be a unit vector. For any measurable set A of finite
measure, the step map ey, having value e in 4 and 0 outside A4 is
bounded measurable. Let us denote by f, the Fourier coefficient of f
along e so that f, is a function. We have

0= [ {frexa) dp = f f. du.
J Ja

X

This being true for all A it follows that f, is equal to 0 almost every-
where. Since there is a countable Hilbert basis in our Hilbert space, it
follows that f is 0 almost everywhere.

Corollary 5.20. Let E be a Hilbert space and fe %'(u, E). For each

unit vector e€E, let f, be the component of f along e. Let b=0.
Assume that for each unit vector e and each set of finite measure A we

have
f Jedu
A

Then | f(x)] £ b for almost all x.

< bu(A).

Proof. We may assume that E is separable as in Theorem 5.15, and
that p(X) < oco. Let veE and |v|>b. Let B(v) be an open ball of
radius r centered at v not intersecting B,(0). If A is the set of all xe X
such that f(x) € B,(v), we take e to be a unit vector in the direction of v.
Let ¢ =|v]. If x € A, then |f,(x) — c| < r so that f,(x) € B,(c). By Corol-
lary 5.18 it follows that A has measure 0. Our Corollary 5.20 follows at
once.

VI, §6. APPROXIMATIONS

We shall analyze Theorem 5.2 more closely, so as to fit certain situations
which arise in practice. Let us look at a special case, the real line. The
most natural definition of any integral on R is to start with step func-
tions defined on bounded intervals (open, closed, or half open or closed),
and define the integral for these. However, the sets which are finite
unions of bounded intervals do not form a o-algebra, only an algebra.
Thus we are faced with two problems: extend the measure (length) func-
tion on bounded intervals to a measure on the o-algebra generated by
the finite intervais, and second, show that the step functions taken with
respect to finite intervals are still L!'-dense in the .#'-completion. The
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problem of extending the measure to a o-algebra is dealt with in §7.
Here, we settle the other question, and a countability condition arises
naturally.

Let o/ be a subalgebra of .#, and assume that o/ consists of sets of
finite measure. We shall say that X is o-finite with respect to <7 if X is a
countable union of elements of .«7. Taking the usual inductive comple-
mentation, we see that if X is o-finite with respect to ., then in fact,
there is a sequence {4,} of disjoint elements of =&/ such that

We recall that a step map f with respect to o/ is a map which is equal
to 0 outside some element 4 of o/, and such that there is a partition
{A,...,A,} of A consisting of elements of o, such that f is step with
respect to this partition. We shall denote the space of step maps with
respect to &/ by St(s«/). We are interested in giving conditions under
which the closure of St(s) in #!'(y) is equal to #!. The next two
lemmas lead to the theorem giving such criterion. We first consider
those measurable subsets contained in some element A of /. Thus we
denote by &/, the algebra induced by &/ on A, ie. the algebra of all
elements of o/ contained in 4. We let St(</,) be the vector space of step

maps with respect to &/,.

Remark. Let Y be a measurable subset of an element A of & and y,
its characteristic function. Let ¢ be a step function such that
lxy — @ll; <e.
If we let ¢, = inf(e, 1), then |xy — ¢,| £ |lxy — @I, and hence

lxy — @1l <e

We have a similar situation taking sup(¢p, 0). We are interested in those
Y such that g, lies in the closure of St(«/,, R). Our remark shows that
in determining those Y, we may restrict our attention to those step func-

For what follows, we also observe that St(s/,,R) is closed under the
operations of sup and inf.

Lemma 6.1. Let A be an element of /. Let N, be the collection
of measurable subsets Y of A whose characteristic function y, lies in
the L'-closure of St(sZ,,R), ie. such that given ¢, there exists a step
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function ¢ € St(=4,, R) satisfying

(*) lxy — oll; <e.

and  inf(xy, Xz) = Xrnz
are in A,. Also, x, — Xy = X4-y is in A,. Hence A is an algebra. To
show that it is a g-algebra, it suffices to show that if {Y,} is a sequence
in A, of disjoint elements, then U Y, is A,. (If we have an arbitrary
sequence in 4, we can always adjust it by taking relative complementa-
tions to yield another sequence of disjoint elements in .4}, having the
same union.) Thus let {Y,} be a disjoint sequence in .4}, and let {¢,} be
step functions in St(&/,, R) such that

[

— < —.
Ixy, — @alls 7
Let
aD
Y=\ ¥%.
n=1
Then
Xy — Z Ol = Ny — xy,oeeeor s + | Xyy0eoov, — Z Pk
k=1 1 k=1 1

We take n so large that the first term on the right is < e. The second
term on the right is estimated by

n
Z lxy, — @xlls <e
k=1

This proves that 4/, is a g-algebra in A.
The next lemma pertains to a completely general situation.

Lemma 6.2. Let {A;};c; be a family of sets whose union is equal to X.
For each i, let N; be a g-algebra of subsets of A;. Let A" be the
collection of subsets Y of X such that Y nA;e A; for all i. Then A is
a g-algebra in X.
Proof. Let Ye #. Then €Y A;= A, — Y. Hence
Z e N. Then
(YNZ)nA,=(YnA)N(ZNnA)
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whence YN Z is in 4. Let {¥,} be a sequence of subsets of X in A"
Then

(G %)nai= 0 o6

whence | J ¥, is in 4. This proves our lemma.

Theorem 6.3. Let o/ be a subalgebra of #, consisting of sets of f