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Preface

This hook is an introduction to the subjects of information and
coding theary at the graduate or advanced undergradvate level.
Prerequisites include a basie knowledge of elementary probability, as
well as a Foundation in modern and linear slgebra, both at the
undergraduate level. A glanee at the first section of the appendix will
chow the teader what is expected in the way of modern algebra. All
material an finite ficlds is developed from scratch in the text.

[ have lried in this book to provide a thorough but hasic
introduction le the subjects of coding and information theory. My
intenfion is to describe as clearly as I can the fundamental Issues
involved in these fwo subjects, tather than trying to cover all aspects of
the theory. There are a few places where | have inchuded more than is
necessary for this purpose, In such cases, the sectiong are marked with
an asterisk and can be omitted withont less of continuily.

The fiest quarter of the book s devoled Lo information
theary — enough 1o diseuss the basic aspects of the suhject and give a
full statement of the Moisy Coding Theorem, as well as a cornplete
proof, in the case of Lhe binary symmetric channel,  While the
information theory portion of the book ¢an he omilled, it does provide
o solid foundation to help appreciale the issues invelved in both
stbjects.

Chapler 1 eovers the topic of entropy, In Chapter 2, we discuss
noiseless coding, including the Noiseless Coding Theorem and  Lhe
Huffinan algorithm for efficient gourge enceding. Chapter 3 is devoted
to noisy coding and culminates in the proof of the Molsy Coding
Theoremn (and its converses) for the binary symmetrie clannel, using
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random encoding,  The information theory portion of the book has a

decidedly probabilistic flavar,

The remaining portion of the book is deveted to eoding theory,
and has a decidedly alpebraic flavor, The approach = theoretical in
nattire, For example, we discuss encading and decoding algarithms, bat
do not cover the shifl-register circuits that might be used to implement
theze alporithms,

Chapter 4 beging with a briel review for those readers whe have
pot read the information theory pertion of the book, and continnes with
general remarks on codes, including a brief disoussion of several familios
of codes. Chapler 5 covers linear codes in detail, and Clapter 6 covers
the Hamming, Golay and Recd-Muller codes. The first. three seetions of
Chapter 7 are devoted to a faitly thorough discussion of the theory aof
finite ficlds and are followed by a discussion of cyclic codes. In Chapter
By we stidy several families of cyelic codes, and one family of nen-cyelic
codes,

The appendix, meant to serve as a reference, contains a review of
lopics Trom medern algebra, along with a discussion of Méhius
inversion, and binomial inequalities, both of which are used in bhe fesxct.
There is also a discussion of some computational Lechniques for finite
lields, suel as Berlehamp's factoring algorithm that are not used o the
text.  Several tables are included, among which the finite field tables
will prove very uselul for the vxercise sets,

Far a course based completely on coding theory, the inslructoer
may begin with Chapter 4. For a somewhat more balanced treatment,
Sections L1, L% and 3.1-3.3 could be covered rather lightly, skipping
proofs, before beginning the coding theory portion of the text,

A fow of the sections in the baok are fairly teclnical and may he
omitted by the instructor if desived without loss of continnity, Threse
sections are:

1} Seetion 1.1 onm enbropy for  countably infinite  probability
istributions and typical sequences,

2] Seetion 3.4 on the proaf of the Noisy Coding Theorem,

3] Section 4.5 on the main coding theory prablem (this section beging
with & summary ol results that can be covered quickly),

4)  Section 3.2 on weight distributions of codes {one can state Lhe
MaeWilliamns identity for lincar codes [Corallary 5.2.4], and cover
the related examples in e Lext),

5] Section 5.4 on invariant theory and self-dual codes,

Trvine, December 1084 Steven Heman
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Intruductiun

The main problem of information and coding theory ean be
described in a simple way as follows. Imagine that a stream of source
daka, say in the form of Lits (0% and 1%}, is Leing transmitted over a
communications channel, such as a telephone line. From time o time,
disruptions take place along the channel, causing some of the 0% to be
turned into 's, and vice-versa, The guestion is “How can we tell when
the ariginal source data has been changed, and when it has, how can we
recover Lhe original datal”

The izmue of accurate cormnunication is an exlremely important
one and arises in a variety of situations, A particularly bmportant area
for error detection and eorcection is in communication {rem space
velicles. Trata that is in storage s also subject Lo etrors, due to
imperfections in the storage medium, for instance, and iz therefore a
form of communications channel to which this question also applies.

Lk us illustrate the issues involved in dealing with the question of
how to detect and correct errors. One of the most fundarmental models
of a communications channel is the birary symmelric channel, pietured
in Figure 1. This model describes a siluation in which an error is made
by the channel —that is, a 0 s lored inte a1 or vice-versa — with
probability p< 172, Thus, regardiess of the inpul, a channel error, or
kit ervor, occurs wilh probability p.

Now, let us fmagine that we must design a scheme for detecting,
and hopelully correcting, bit ervors, One possibility would be to do
nothing.  When a bit is recelved at the output of the channel, we
simply decide that it was correet.  In this case, the probability of
making a decision erroris p
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Figure 1

On the other hand, we can be a litile moee clever by instrocting
the sender to send each bit three times in succession, The receiver
would then decide that the original source bit is the bit that appeas a
mujarty of the timee at the output to the channel. For instance, if the
output is 010, the receiver decides that the original bit was a 0.

Under the assumption that errors occus independently (not always
a reasonable assumption, but certainly a  convenieat atie), the
probability of making a decision error is the probability that af least
bwo bit ercors have been made by the channel, which is

Dy = @J p(1-p) +G) p? = 3p -t

Sitce this is less than . for p< 1/2, we deduce that by encoding the
original souree data, we can reduce the probabilicy of making a decision
erroe, In Ahis way, we are able to compensate in part for the loss that s
inherent in the channel,

Taking this idea a step forther, we can instruct the sender to send
each bit 2o+ 1 times in succession {we wanf an odd length so that
majority decisions are always possible]. As hefore, the receiver decides
that the original source bit is the hit that appears a majority of the
bime in the output,

The probability of a decision error in this case is the probability
that al least n+1 bit-errors will be made by the channel. Under our
indepentlence assumption, the number of ereors made by Lhe channel
has a binomial distribution with pararmeters (2n4l,p), and so the
expected mumber of errors is

¢ 1
) , i 1
kg :w._{\,_“‘_f (i 2o+ p < n+ ]
for 1< 172, Therefore, the weak law of large numbers tells us that 1le
probability that at least b 41 channel errors are made tends Lo Il as

i tends te jofinity,  In other werds, ihe probability that wi make a

k5 . Sends sourme
messAgs 101
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decision error tends to (0 as n gets large, n,u{_! S0 wWe Can l.':.ClIl'l]uBL:ﬁ?LLr_
for chanuel crrors to any desired deg?ma by r:hm_:smg n l:arge {-:_n:l_ug{.u
However, we pay a heavy price f-:!r dmng_t!n;, in L!:T]I?a ?- wt
efficiency of Lransmission of the source lrlifur]'lhatlﬂli. n .]:artn‘[u .:ur,l |_r
takes a certain amount of time to zend a bit _Lhrough the EJ:lJB..\ll.[].: ,hfmr :1
we send each bit In4l times, we are spending Zn+l '{lLIlLt:'.’l e fn.iul-.en
time to send a sirgle source bit: 'I"jms,‘i.]m rafe af soz]:alccl Hlflgslnn::ge
is 5 Hourclze ﬁ)its et ci}annei m.r". For n large, this is likely
eptably low rate of Lransmission. o .
- un;ii-er:-l,hc:lyess, we can see from this example t1‘1a_;L the ?:asm 1:1{».13 i5
to encode source information, by adding additional qunnatmni
sometimes referred to as redundency, that can be used 1,:{ deteit‘ anl-:
perhaps correct, errars in bransmission. The more redundancy .t 1ak “E
add to the original source data, the more reliably we can {%&L?J:L a.rli
correct errors, bub the less efficient we become at transmibling the
gource data, and so a compronise must bz made. . . i
Figure 2 shows the components that are involved in the

communication proeess.

SOURCE ENCODER CHANNEL

Encodas source messag&%ﬁgy intraclice Brrors
il
i SR i 1011010 L ;

DECODER ~ RECEIVER
; | Corracts errors and reclaims | Hecgiuns;:;uma
soUCe Messans Mass
1010010 il g R g B 101 L

Fipure 2

Iuformation generated by the SOURCE is_ta,]-:en, either one hlt_at a
time, or more often several bils al & time and mcod_cd by the
ENCODER inte a cedewerd.  This is done by an F:ze:an’mg scIJ'.!.frize,
which consists of a cods (set of codewords) and a function thal assigns a
codeword to each source message.  The codeword is the{l aent e E‘he
CHANNEL, during which errors may be introduced,  The DECOD]-J‘R
accepls the output of the CHANNEL, allempts to correch any errors IEm
branstnizston; and then recovers the wriginal source message from the
corrected codeword,  Finally, the RECEIVEIL receives the (hopefully)
TR TRN e R Akt N
mrr%;;:slming L]mtha]] sovrer messages have Lhe same length au.d_.all
codewards have the same length, we can define the rate of transmissien
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ol the cormmunications scheme as the length of a source message divided
by the lenpgth of the corresponding codeword. For instance, in the
exarmple showi in Fizure 2, tle rate of transtission is 4/7.

Now we cotne to a remarkable resnlt known as the Noisy Coding
Pheorenn This theorem says thal Lo every cominunications channel,
there is a nurnber €, called the capacity of the channel, with the
following property, 1f we are willing to zettle far a rate of transmission
that is strictly below channel capacity, then there is an enceding scheme
for the source data that will reduce the peohability of a decision error to
any desired level. In the case of the binary symmetric channel, the
capacity is

Chin sym = L+ P logg p+ (1-p) loga{l —p)
For instance, if the probability of bit error is p=0.01, then the
capacity 18 €= 0.01921,

The Noisy Coding Theorem was first proved by Claude Shannen
in 1948, Unfortunalely, neither his proof, using a technique known as
random encoding, nor any proof given sinee, is at all constructive, and
at this point, no one has found a way to construct the encoding schermes
promised by Shannon’s 1heorem.

[t should he emphasized, however, thal there are some additionsl
practical problems to he considered in searching for desivable encoding
schemes. In particular, a sequence of cocoding schemes that fulfills the
promise of the Noisy Coding Thearem would not be of much use unless
these schemes were relatively easy Lo implement, both in the enceding
and the decoding, This is further evacerbated by the fzel that, in order
to bring down the probability of error, the Noisy Coding Theorem
implies that we may have to use extremely long codes,

This is the point at which the coding theorist gets into the act, so
to speak. In an effort to find encoding schemcs that are relatively easy
Lo implement, coding theorists have been led te search for codes that

have considerable algebraic or geometric structure,

As a simple example, observe that the seurce alphabet &, = {0,1}
of the binary symmetric channel is in [act o gronp, under the operation
of addition modulo 2. In symbals,

Opl=0, Depl=1@0=1, [al=1y

Due way to use this algebraie struclure is by taking source messages of
lengbh 7, say, and adjoiniog an even parity check b#t to each eEsEe,
That is, we add an 8th bit to the end of cach souree string in such a
way that the total nomber of s o the resulting codeword is even. Put
mare farmally, we encade the message siring

By

as the codeword

zn
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L
where _q
iy Ry Ay =

Moww, if a single erver is made in transmission, th;a resuhl. will be a
word that has odd parity, that is, an odd number OE. 1%s. This tells the
decoder that an errar has oeearred. Utﬁnrtunla:,nl;.',}t dr:.ues 114I:|t a,l!naj-'hfnr
any error correction. NeverL]w!F:ss, nlespe‘zc.m]ly in situations where
transmission can be repeated, this is a significant {anrux'emcut aver m;]|
prror detection at all,  Tn fact, this scheme iz used by persona

g to detect errors in memory,
comiﬂil;(;fls consider a somewhat, more sophisticated example, . 'lese?'ve,
that the set F, iz aclually a field, under a,dditij:n ani Ijl’hlllflph{.a[il.ﬂ;'l
module 2. Furthermore, the set ¥Win,2) of all ’mnaFy strings of Icn%r,_t i
n o is & wecter space of dimension n oover &, with componentwise
addition modulo 2, For example in ¥{4,2) we have

1101 4 1001 = 4100

(Since the base field is £y scalar multiplication is trivial.) This
implics that we may edd source messages, as well as u:(:fleworlds. 1

Let us see how we might take advantage of this, Consider the
matrix over Ty clefined by

Loo0011
Cloreo1oa
G=lpo10110
0001111

The rows of this matrix can be thought of as vectors inl ViT,2), and
since they are linearly independent, they span a d-dimensional subspace
of V(7,2). We denote this particular code by I6. , .
Mow, lel the message space be the voclor apace Vi{4,2} of &
binary veclors of length 4. (We gan only encode 27 = 16 messages
with this message space, bub we are using it only for purposes aof
illustration.) If
&= alagaﬂru

is a source message, we cneode it by matrix multiplication, to pmnlch
the cadeword ali, Tor instanece, the source message a= 1011 in
Figure 2 becomes the codeword

i1
-:.=aE';:[l (111 l] E]]
0
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where all operations are performed modulo 2. Thus, ¢ = 011010,

Notice thal, sinee the lefumest 4% 4  submatrix of € g an
identity matrix, the first 4 bils of the codeword are identical to the
souree mossage.  This makes tecovering the source messape from the
codeword essentially trivial. The matrix @, whose rows form a basis
fer the code M, is called a generating matriz for %,

Now let us consider the problem of decoding with this code, Let
I be the matrix

0
H=|17 1
1o

—_ - =
T

1 1
0 1
1 1

gy

It is not hard to shew that each row of H is orthogonal to each row of
h ;
Lz, whern we use the ordinary det product, excepl that all operations are

performed module 2. For instance, taking the dot product of the first
rows of each matrix gives

[toaoo Ifooot1 1
=100 0a0-080 Lad-lal-1el-1
=0g0a0adaialgl =

rﬁ!'l:l.IJS. the rows of H, being linearly independent in V{7,2}, form a
basis 1}1!’ a 3-dimensional subspace ¥ of V(7,2), with the property that
H o7, where

:flz{vel-'{’r',z}]v-s:ﬂ' for all sg ¥}

iz the orthogonal complement of ¥, But it can be shown that
dim{3) = dim{V{T,2)) — dim{¥) = 41, and 50 % = §~

This gives us a very convenienl deseription of the codewords in
Ho, for il tells us that a vector ¢ isin 36 if and only if it is arthogonal
ko every row of the mairiz Hi that is,

cc X ifand only if cH' =0
where ) is the zero vector in V(7,2). For this reazom, [l g called o
ity check malviz for the code M.
. NUW." suppese that a codeword ¢ is sent 1l rogh the channel, but
meurs a single errer, say in tho -th pesition, Letting e be the vector

i V7.2 with a 1 in the i-th position, and 0% elsewhere, the
autpul of the channel is the vector

K=o
Now lel us compte

Introduckion

*H = (c@e)ll” = cH' @eH’ =g =ith column of H

But notiee that the matrix H  has been cleverly designed so Lhal its
i-th coluran, read from: the top down, is just the hina,gy representation
of the number 1. In olher words, the vector xH-, known as the
synidreme of the output veetor x, when read as a binary number, tells
us the precise location of the error. Thus, the code J6 can not only
detect & single ervar, hul can correct it as well!

For instance, a single error has been introdueed into the codeword
in Figare 2, and the output of the channel in this case Is x = LOEO0LD.
The syndrome of this vector is

T =[10 1001 0] =[10 0]

— e e DG
P == R i — 3
(SR s R R Y -

which is the binary number 100, =4, Hence, the error has ocoureed
in the 4th position, as we can clearly see.

This, the code M iz capable of correcting any single error in the
transmission of & codeword, This code is one of the family of famous
Hamming codes, which we will study at length in Chapler 6.

Let us examine the quality of the Hamming encoding scheme,
Since each source symbol has length 4 and each codeword has lenghh
T, the rate of trapsmission is 447, FPurthermeore, ainee any single error
in a codeword will be corrected (but none others, as we will see}, the
probabilily of a decision errar is the probability that al leasl 2 crrors
are made in the transmission of a 7-bit codeword, This probability is

" 6 V7
pe=1-Tol(l=p)f 4 (1-p)
where | is the probability of a channel error.  (We are assuming a
Binary symmetric channel as hefore.) If p =001, for instance, then
p, == 000203,

We could tey to duplicate these numbers using a simple repeat-
the-source strategy, by sending the same’Z-hil souree message three
times in succession. This would give a rate of transmission equal i
1/3, which is less than 4/7. However, the probability of decision error
using this scheme i Lhe probability that more than one of the 3-bit
megzages iz corrupled, and this s approximately L.00259, which s
larger than the earresponding number for the Hamming scheme.
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4 Introduction

Az owe mentioned in the preface, this book is divided into two
parts. The lirst part of the book is devoted to the fundamentals of
information theory, leading te a full statement of the Woisy Coding
Theorem and its prool o the caze of the binary symmeiric channel,
Then we proceed to the major portion of the book, which is devoted Lo
a stadly of several families of codes that are used for error detection and
carrection,

Part 1
Information Theory



CHAPTER 1
Entropy

11 Enfropy of a Source

Our goal in this section is o develop a satisfaclory measure af the
amount of information contained in an information source.  Let us
" pegin wilth & formal definition of the term souree,

Definition A source iz an ordered  pair F = (5., where
§= {5t 052 finite sel, known as a source alphabet, and T s a
prebabilily dietribution en 5. We denole the probability of x; by
or ]Tl{?'-i]a M

Suppose that we sample a source § = (5,P), that is, we chose an
clement. of § at randem according 1o the probability distribution P
Thus, the probability that x; is chiosen is - pix;}, Before the sampling
tukes place, there §s a certain amount of uncerfainty associated with the
gutcome, and afler the sampling, we have gained a certain amount of
information about the source, Thus, the concepls of uncertainty and
informalicn are related.

To illustrate this [urther, let na consider somie extrerne cases 1r
plx, =1, and plxs) =0 for i> 1, then the element x;  will always
be chosen, and so in this case there is no uncertainly, that is, the
wacertainty is sere. Put another way, weo get ne information from the
samnple, sinve there was nothing to learn about this sonree. Similarly, if
enly a “few” of the elements of § have nonzero probabilities of being
chosen, then we can be reasonably ¢ertain aboul the ontcome, and 80
the uncertainty i small amd the amounl of information in the gource i3

il
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stmall, On the other hand, it seems elear that the nneeriainty should be
a maximum when cach of the ontremes is equally likely, that is, when
o :% for all i=10...,n I this case, we get the maximum amount
of information by sampling Lhe source.

Since the concepls of uncerlainty and information are in this sense
equivalent, we will feel free to comtinue our discussion using either
concept.

THE ENTROPY FUNCTION H{py, ... .

Mow we wish to define a function H{py...,p,) 1o measure the
uncertainty invelved in sampling from a source,  Notiee that our
totation alludes to the fact that the function W depends only on the
probability distribution and not on the elements of the source alphabet,
In order to define U, we need to leok a bit more carefully at the notion
of wncertainky, OF course, we want HBipy,....p,) to be defined for all
Pro-oa by satislying 0<p <1, ;=1 Also, since a small change
in probabilities should produce only a small change in unceriainty, we
require that H  be continuons.  Next, when all outcames are equally
likely, it scems reasenable that the more outcomes Lhera are, Lhe greater
should be the uncertainty, Thus, we require that

1 1 1 1
H I:ﬁ"' . lﬁ:l <L “{n_ﬁ“ e 'E:ir‘f‘l}
Finally, suppose ihat the elements of § = {¥p0x, ) are

partitioned into nonempty disjoing blocks By, By, where |B;| = by,
and of course, 3 by =n. Consider the following experiment. We first
pick o block B, with probability proportional to its size, thal is,
P < bfn, and then we pick an element with equal probability, from
the chosin bleck B New, if % is.in block B, then sinee
il ifi#n
P{xj | B;) = 1 o *
B ifi=u
we have
n 1 b
Px) = _Z‘{P[xjm;} Py = L ot
J=

1

[

Henee, the probability of picking ;. i= the same under these conditions
a5 il we choose directly. from § with equal probability. Therefore, the
nueerlainty o the outcomes should be the zame,

Now, the uncertainty in choosing directly from §  with etpilal
probabilitics s I-I[;If,...,%}. On the other hand, the unceriainty in
choasing one of the blocks B,... B, is

b <]
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)

and, once a block has been chosen, we still have the uncertainby
involved in choosing an element from that block,  The AYerage
uncertainty in thal jrocess is

f:l’—‘{ﬂ-] *(Uneertainky in choosing from B.) = ih H(I i-)
= ET W
Thus, we get
k
1 Lo b L,
W) = H{zh o cogk) S oa H(Elhl)

i=1
In summary, we want our uncertainty funclion H 1o have the
following propertics, Let 1 denate the positive inlegers.

1) H{pye..ip,)  is defined and continuous for all | S
satisfying d <p <1, ¥p, = 1.

rad SR G, +
il+i"""n+lj’ for nedt,

| 3 Tor hi &= Z"', E!}j =n

1 b E
Higoid) = () + ZEF’ H(ﬁ?%‘)
1=

o Tt turns oub that properties 1)-3) uniquely define a function H,

Theorem L1L1 A function H  satisfies properties 13-3) if and aunly il ik
has the form

n
(1.1.1) Hylppoon,) = -—Zpi logy, py

i=1
where b > 1, and wlere we set log p=10 for p=1.
Froaf. We will leave it as an exercise Lo show that the function delined
by [1.1.1) satisfies properties L3} For the converse, we proceed as
follows.

Choose positive integers m and n for which m | n, and let

bi=wm for all i=1,..,k Then, since mk = by =n, we have
k=mnfm and property 3 gives

k
i 1 1 |
H( "'Hﬁ] = H(Itﬂl%--ﬂll-llj) w E:];“ H(ms'-"th)

i=1
B, ) )

If m=uw® where m and & are positive integers, this becomes
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i
d
5
4

e S
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i 1 Endrapy

=I5 L)_ ( 1 1 ! 1
“(ms""’nrln"'i =l m"']""_‘ms-l) +H(m-""‘ﬁ)

Defining the function g by gin) = H(%,..,,%) . we gel

glin®) = glm*) + glm)
which mplies that
(1,1:2) glm®) = sg(m)

for all positive integers o and s (Observe the appearance of
]agz?nt.hmlikc propertics.)  Further, since property 2] is equivalent to
gaying that g(n} Is a strictly increasing fanetion, we have

gim®) < g[m“’"}

sglm) < (54 g}

which implies that g{m) must be positive,
Now, for positive inlegers r and 1, let s be chosen so that

(1.1.3) m® <t g mft

and sa

Then sinee g iz increasing, we have

g(m®) < g(r") < g™+

ar
sgm) < telr) < (s + Lh(m)
O
.14 5 Bl 541
(1.1.4) S

But from { 1.1.3], we also have

slogm <tlogr<(z+1)logm
anid 5o -

Combining this with [1.1.4) gives

g(r) _logr o1

gim) logm "1

and sinee L was arbitrary, we conclude thal

|
_TE

gir)  logr
gim)  log m

or

g(r) _ g(m)
log t~ log m

1.1 Halropy oba Fouree
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Hence, g(rt)flogr is constant for all positive integers 1, that is,
g(r) =Clogr, whete O >0, since we have already established that
glr) > 0. By choosing the base of the logarithm appropriately, we may
assume that O =1, and so

(1.1.5) glr) = log, T

for all positive inlegers T
Mow let us take another Jook at property 3), which in view of

(1.1.5) can be written

T Iy k. b,
I-I(T},... "1"}'{‘) = jln) - Z‘H! glby)
i=l
= log,n— Y5 logy, by= = )7 gy
i=1 i=1
40 Binee any positive rational numbers ppgooes Py G0 be written in the
' form

f b b

T At 11

© gimply by forming a comman denominator, we get

K
(L18] H(pyo.spi) = = Dby log, by
i=1

" forall positive rational numbers Py Py Further, since the function

B s assumeed to be conlinuous, this must also hold for all positive real

Cnumnbers e e Finally, we observe that

P]'I-_H_Ili_ plog,p=10
and so {1.1.6) holds for all nonnegative real numbers prooa e B

Tefinition Lel P ={p;,....p,} bea probability distiibotion.  Then
the gquantity

n 1L

iy (ppoeee Pu) = — 304 logy, b= Y by oy,

=1 i=1
is ealled the beary enbropy of the distribution P. If F=(5F) isa
source, with Pix) =y, then we reler to Uy (£} = Uylpyenp,) a8 the
entropy of . 0

The lerm entropy was first used by Clausius in L8G4, and first
intraduced inta information theery by Shanpon in 1948 Moie that
enbropy measures both the amount of uncertainty in a distribution
Lefore sampling, and the amount of information oblained by sampling.

We should emphasize that, while Theorem 1.1.1 tells us that there
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is essentially only one function that satisfies the intuitive propecties L)-
33 of uncertainty, this would nat be useful if it were not for the fact
that enlropy does indeed play a key role in information theorv, as we
will see. lu other words, the frue justification for defining and studying
the entropy lunclion is its role in the upcoming theory and not that it
happens to salisly properties 1)-3),

A few remarks aboul Lhe base b oare in order here.  For Frany

results, the base does not peed cmphasiz, and so we will adopt the
“penerie” natalion
1

Hipyooap,) = z]:j log -E%—i

i=1

for entropy. Should this lead to any possibility of confusion, we will
return ta the subscripted natalion.  We should alse mention that Tany
books on information theary restrict atteniion to base 2, that is, to
binary entrapy, and use the notation Hipgeopy,) for binary entropy.

THE UNITS OF ENTROPY

As to the matter of units, if we sef § = {00, ... k-1}, then it
seems reasonable to say that sampling from 5 with equal probability
gives an ameount of information equal to one k-ary unit. For instanee,
it 8 ={0.1}, then sampling from 5 with equal probability gives one
one binary unit of information, or one §if of information, Hence, since

k
)=~ o=t

i=1
we ste that Hy measures the number of keary units of information. Tn
parbicalar, the dinary entropy Hylpyiooopy,)  measures information in

:Mnury um}!s.l or bils, and the ratural entropy Hypy.ooop,) measures
information in wateral wnils, or nals,

Example LLI Sampling from the sel
probabilities |’E=.’li gives

111y _1 l g
"-J(g:%,gj =9 log, & 5 log, 3 + % logy 3 =log, 3 = 1.5%3 hits

5 ={xpx0)  with equal

Sampling from S={x,x,x5] with probabilities by =Py =;'i- and prg =%
pives

llg(%,-é-,%) = 1 logy 4 + ‘i- log, 4 + i-— log, 2 = 1.5 hils

As expected, since we are more ecriain aboul the outeome in the second
case, s uneertainty is smaller. (]

2 17
1.1 Entropy of a Source

Example LL2 Table 1.1.1 shows the letters uf'_l:he a!p]}abe‘l.! along \‘.f'it.h
their approximate probabilities of oecwrrence in the I'.-nghs!l language,
{The letters arc listed in decreasing order of l‘nlzaquem.}'.}_ With the ltcla;
of & computer, we see thal the binary entropy is .=Lppr0x1lrnalely %.II}rEl"J 1.
bits. Thus, we get an average of 4.07091 bits of information by
sampling & single letter from English text. 0

TABLE 1.1.1

Leiter Probakility Lelier Probability

[Space] 0.1859 F 0.0208
E 0.1031 M 0.0148
T 1.07496 W 0.0175
A 00642 b4 00164
4] 0.0632 P .0152
I 00574 G 0152
N 004574 B 00127
5 0.0514 ¥ 0.0083
R {0.0454 K 0.0049
I 0467 X 0.0013
I. 00321 0 0.0008
D 040317 J 0.0008
U 0.0228 & 0.0005
C .0218

: Example 11,3 The important entropy function

| o
Hylp,l = p) =plog 5 + (1-p) logy 7= m

(note the base 2} is often denoted by H(p) and called fhe entropy
fanction. lts graph appearvs in Figure 1,11, 0

1 =g

f— . p
1/2 1

Fignre 1.1.1  The entropy function 1I{p)
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THE ENTROPY OF 4 RANDOM VARTABLE; JOINT ENTROPY
Mosl results concerning entropy are expressed in terms of the
entropy of a randem variable X or a random vector X — [, SR
vevy Pl

Accerdingly, we make the lottowing delinitions, {These definitions will
also Lelp sel our natation.) -

Definition Let X be a random variable with range § = s maintils
I P{X=x) = p(x;), then the entropy of X is defined by ;

H{X) = 3 plx;) log EETJ i
k=1 i

Definition Let X and Y De random variables, where X has range
S1=4{%nX, ) and Y has range Sy ={y0y0 IF

P{K:xj,‘x’ﬂyj):|¥{x-l,:,'j}: tlen the joint entropy of X and ¥ is
defined by

HXY) = Y pliiy:) log ——L
jzd': =y I.Jl:xj!yj

The entropy of the randem wvector X = (XY sl '
1 = (X, elined |
HIX} = H{X.¥). 0 Y R

Definition Let X,,,.., X, be random variables, where X, has range
8.0 PN =2, X =) = plxyee0x, ), then the  joint entropy of

1

};E""'xk is defined hy

H(Xyy..0 %) = Z By ol .

"'163111--:”:55313 p{x‘-‘""xu}

The entropy of the random vector X=X X is deh ’
HOX) = B X ) D (X0 X s defined by

Example 114 Suppose we sample with equal probability from the set

8= {)_c],. coxghe IF the random variable X denotes the outcome of the
satnpling, then P(X=x;) =1 for all i, and so

H{X) = H(:l—],...,%) = i% log = log n

=1

{TE]is shows that one n-ary unit of information is the same as log, o
bits of information)  On the ather hand, if ¥ is the uutcnmczof
sampling from S with probabilities P(Y=x;)=1 and P{Y¥=x.)=10
for 1= 1, then ’

H[.\l‘,] = H{",D,,ﬂ) = 1‘105 % =1

1.1 Entropy of & Sowres 14

We will prove in the next seetion thal these are the extreme values for
entropy. [

Example 1.1.5 Tf the random variables X and Y defined in Example
1.1.4 arc independent, then
pixpx) = P{X=x,Y=x;)
= P(X=x)P(Y=x;) = p(x;p(x;) = plx;}6; 4
where Ej.l =1ifj=1, and 0 otherwize, and so0 the joint enlropy of X
and Y is

=S w1 ol ——— = VT
H{X,Y) = ZJ p(x))7; ; log T izp(x,:.mg e H(X)

This says that, under these circumstances, the information obitained by
sampling both random variables is the same as the information

. obtained by sampling X alone.

' EXERCISES

Show that the fanction defined by (1.1.1) satisfies propertics 1)-3).
Compute Ho(1/8,1/8,3/4).

Compute Hil/a, . 1/a2/a2/a).

Find a relationship between Hy(X) and I(X),

Compute (), whers H{p) is the entropy function of Example
L33

1.
9.
3. Compute Ho{1/3,2/3).
4.
5.
6.

© 7. Prove that the entropy function Hip) of Example 113 is

symmelric abont the line x = 1/2,

8. Suppose we toss a fair coin, and if the outcome is a heads, we toss
it again. How much uncerfainty is there in the oukcome?

9. Suppoze we toss a fair coin and roll a fajir die. Tho we get more
information from this experiment or from the experiment of
tossing three Tair coins? four fair coins?

10, How much information do we gel by sampling from a deck of
cards if
{a) each card is equally likely to be drawn?

(1} the black eards are twice as likely o be drawn as the red
cards?

17, Supposs that we roll a fair die Lhal has Lwo faces pumbered 1
two faces numbersd 2, and bwo faces numbered 3. Then we Loss
a lair eoin the number of times indicated by the number on the
die. How much information do we gel by Lhis procedure?
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The accuracy of a certain radio station’s weatherman al predicting
rain is given by the following chart
Actual rain Actual no rain
Predicts tain Li12 1/6
Predicts no rain 1/12 243

Far instance, 1712 of the time the weatherman predicts rain when
in fact it does rain, Notice thal the weatherman is correct 34 of
the tlme. Now, an unemployed listener observes that he could be
correct §/6 of the time by simply always predicting no rain, and
so be applies for the weatherman’s job, However, the station
manager declines to hire the listener, Why?

Let 5={0,1} beasource with P(0)=p. Let X and Y he
independent random samples from this souree. Lei 2 he the
pumber of 0% in the pair  {X,Y}, Find the entropy of the
random varlable Z. Compute Hy(X,Y) - H,{%) and interpret
Lhe resull,

Let 5= {0,1} be a source, with P(D) = p. Sample this souree
independently twice, to get Hyoand Xy oand Jet Y =0 if
Xp=Xy and ¥Y=1 if X; #X,

ta) Find H{Y).

(b)  Show that H{X,Y)= H{X;. X5 What does this say?

(¢) Predict the value of H{X,.Y) - H{X,), and then justify your
prediction,

Let ¥, ={S,F)) and fa=(55,0) i‘all:‘.' sources, with
Sy = X 0X, Prix) =, ane Sy = {¥p ¥ b
Pofyi) =q. Lel. Ap20, At+p=1 Déine the mired souree
f=20F +pf, to have aiphabet 5,08, amd probabilities
Plxg) = Ay, Ply)) = pag;.

{a) Caleulate the entropy of 7.

{b]  Determine the value of A that maximizes this enlropy.

Let. E be an event with probability p,  We defive the informalion
ebleined by an cecurrence of E fo be Iip) = —logy p.  Use this
definition for Evercises 16-10.

1.

17.
18.

Shew that I{p) is characterized by the fact thai il is the only

continuous  function en  {(,1] with  the jroperty  thal

Hpa) = 1(p) + 1(g) and 1(3) = 1.

Whal is the relalionship between T(p) and B, )?

{a) A personal commputer monitor is vapahle of displaying pictures
made up of pixels st a resolution of 640 columns by 480 rows.
I each pixel can be in any ene of 16 colors, eztimate the
amounl of information in & randor picture.

1.1 Eatropy of & Bource

19,

21

(b) Estimate the information obtained from a random speech {.!'I
LO00 werds, asswming a 10,000 word vocabulary. (This
chows that a picture is actually worth more than a thousand
words!) )

Using Table L1, compute HE), {R), L2}
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1.2 Properties of Entropy

Tuo establish the main properties of entropy, we begin with two
lemamas.

Lepvma 1.2,1 If Inx denates the natural logarithm of %, then
In x < x—1
for all = = 0, with equality holding if and only if x=1. 0

Lemma 122 Let P={ppy....0%) bea probability distribution,
that is, 0<p, =1 and ¥ip=1 Let Q= 1003500000y} have the
property that 0 <g, <1 and Eqi =1 (note the fnequalily here).

Thien
AN {1
_erj iﬁgp%i Zpl togFlf-;
1=

1=1

where 0 -log % =10 and p-log % =+4oa for pz=0  Furthermore,
equality holds iCand only if o = p; forall &
Proof. Dy multiplying beth sides of this inequality by an appropriate

constant, we may assume that all logarithms are natural. Now let us
show that

(1.2.1) piln l_‘l,;i'il:]i n 7{}"“14'_5’}

If p; =, this becomes 0 < q;, which is cerlainly true. If p 20 buc
q; =0, then (1.2.1) holds since the right side is 40, Finally, if p, and
g are posilive, then we can write (1,2.1) in the form

l:’lu
P Lo ﬁ ST v
ar

q;

95

which holds by Lemma L2.1. Summing {1L.2.1) on | gives
g 1 = - 1
;prinpi-ﬂ_i Zpih]qj + iZq; ]Zpil;pi lrn,_.i—i

which proves the inequality. By looking at the proof of (1.2.1), and the
conditions implying equality in Lemma 12,1, we see Lhat equality holds
it and only if p;=0q; forall i &

1.2 Prapertics of Entropy

. ; ; 7 N
E RANGE OF THE ENT ROPY FUNCTHON .
1 With Lemma 1.2.2 ab our disposal, we can prove the following.

Theorem 123 Let X le a diserete random variable with range
%eyneaipte Then
HEs 0 < H{X) < log n

. . i ;
Furthermore, H(X}=logn if and only if p(x)=g for all i and

H(X) =0 if and only if pix;) =1 for samne .i' .
PEm:a}f. Applying Lemma 1:2.‘2 to the distributien of X and to the

ey 1 1
aniform distribution Q = {f....xls we getb

n:_q I_L‘ L
;E:_{b{xi} log p(lxjj < :1:1, plx;) log o

H(X)

i

i]‘(“ij log n = (log n) ip[xi} =logn

i=1 i=1

{|]

el Thus, H(X) < logn. Furthermors, equality haolds herle pri_:uisely- whcln
" equality holds in Lemma 1.2.2, that is, when pix) =g forall i We

will leave the proof of the remainder of the theorem as ap exercise,

Theorern 123 confinms the fact that the most informalion is

. obtained when sampling from a uniform distribution,

A GROUPING AXIOM FOR ENTROPY . .
Property § of Seetion 1.1 is an example of a grouping axiom for

entropy. Ilere is another prouping axiom, whose proof we leave as an

excreise,
Theorem 1.2.4 Let [PrseraPrslyse o2} be a probability
distribution. If a=py+-+p, then

H{pga-s o Brntip e "qm)
) v, iy B
= I][a,]_a}+a11(%,”,1i)—l—{l_a}H(ﬁp..\11'3) o

PROPERTIES OF JOINT ENTROPY

Now let us eonsider some properties of joint entropy. Tt seems
rensonalile that the joint information obtained by sampling .qu ran@om
variables should be no greater than the sum of the i.nformahc_:-n nbi.-an_led
hy sampling each random variable suparatelly, with eguality holdmg
precisely  when the canclom variables are independent,  Our next
thearem confirms Lhis,
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Theorem 125 Let X and Y be discrele random variables. Then
H{X,Y) < H(X) + H(Y)

with equality holding if and only if ¥ and ¥ are independent.
Proal. Sinee %_, Plaay;) = plxg) aad E plx¥;) = ply;) , we have

HEX) A+ HY) ZP Vo +Zp } log Efl
J

= ZU {x;,;) log - 1)[)(} ] zp{\:.,} N lu:ug }

L T
%P[‘ﬂd;}' log plGInly;)

Now, sinee 37 pix;)ply;) = 1, we may apply Lemma 1.2.2 to get
i

H{X)+ H{Y) > Ep LyJ}ll:ug = H{X,Y)

xl,\, }
Vinally, according to Lemma 1.2.2, equality halds here if and only if
plx)ply)) = play;)

that is, if and enly if X and Y are independent. §

Theorem 1.2.5 genora!uw readily to more than two variables. We
leave the proods as exereises.
Corellary L2.6 Lol Xy, X, be discrete random variables, Then
H{Xy,.. aky) = H{:{J F et HEK)
with ecquality holding if and anly if the X; are independent. [

Cnr:nf]nry L27 Let X,,....X, and Yiewn ¥, be diserete random
varialles, Then

A e X Yooy ¥ d SHX o Xo) H H{Y i, Y, )

with equality holding if and only if the candon vecto .
i i ] G o
and ¥ =(Y,,..., Y ] are independent, [ 1 ®

THE ENTROFY FUNCTION Hipj
Pheve is & very interesting relalionship between the entropy

=]
o

1.2 Prapertics of Entropy

funciicit

H(p) =plog i + (1—p) lﬁg"ll—

(log = log,) first discussed n Example 1.1.3 and certain sums of
binomial eoefficients, which we will use in our proaf of the Noisy
Coding Theorem in Chapler 3 and again in later chapters,

Theorem 1,28 For 1< A < %, we have
| A ]

z G: < 2nHM}

k=1l

 where H(A) = -Alog A —(1=2)log(l— A} is the entropy function.

" Proof. 1f A =0, hioth sides of this inequality equal 1. If A= 1/2, then
U since H{1/2) =1, the right side is equal to 2%, and so the inequality

. holds here as well. Let us assume that 0 <A < 1/2.

. We begin with Chebyshev’s inequality, 1§ X iz a random
variable that takes on nonnegative values only, then Chebyshev's
inequality says

{1.2.2) B{X =a)= ﬂ;(-—) furall a =0

Suppose that X has the form X =&Y, where ¥ s a randem

© wanable, and & iz a real number. I we set a = e then (1.2.2)

becornes

EY
Plet? z ') < [b} forall hel
et

Now, if t < 0, then we have P ofBif and only i tY = ih i and

ST enly if Y < b, and so this is couivalent to

£ '
(1.2.3) PIY <) < E:m)

farall be R and £<0 |

If ¥ isabinoinial tandom variable, with parameters {n,p}, then

e e ]L" ny _k n-k
P(Y<b)= {k)P i

k=0
where g = 1 —p, and wheee, 1 1 is not an integer, the uppu limit of
summation is understood Lo he  |b] Furthermore, (t 1 s the
binomial noment generating function, which is well known to be
E(e!T) = (g +pet)”

Thus, [ L.2.3) becomes

i}
Z (k] pkclu—ic E E_Lb[q+PE’-L}“

k=0
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Setting b= An, where 0 < X < 1, we el o s
An /,-F"f -‘h"\ /"#— - \.\
L , ’
(1-2:4) > (1) pkank < emntq 4 petyn () ]
k=0 KT e ! e —-_3.7
valid for £ < (. G- TR—— N7 B
... Bppetinge e <" in the right hand side of (1.2.4) and minimizing Convex Not convex
over 0<x < 1 (which is equivalent to t < ), we see that (1.2.4) is best,
when 3 Fipure 1.2.1
£ _ Ag
e — m . I i )
it I.\:-here fp=1-A and A<p. Substituting this value of &b into the ; I R dumponeek gty & real-webied Sanchion B dsconves 0P
i right hand side of (1.2.4) gives ; if o AT — 1)
I Agy—An A fagy-dn ol O for every xy €K and 0<a<l. Similarly, a function fik—R is
i l[ (}Tﬁ) (‘l + l'-'p]j) = (}Hﬁ) q”(l + _ﬁ} © gonvex down (also called concave) if
b Z ("l‘q)_ln[q N ,\'-}'n —jm_Anjin \ : flax + (1 —aly) 2 alx)+ (1 - Aily)
il T ﬁ) . #pd o Aorevery xy €K and 0<a<1.
and so (1.2.4} becomes e We may also characterize convex scbs (and functions) in terms of
; An v 0 convex combinations as  follows A convex combination of
(1-2.5) 2_./ (k) Pt 5 “E'_A“#‘F“u]’}mtl'fm PR e, €K g En expression of the form  a;x; 4+ bagx,, where
k=t G <a; =1 and Say=1. Aset K s convex if and only if every
for A< {Thiz is a useful result ” . e e convex corbination of elements of K iz alse in K. A function
5 A BUhes Welh) Sttt il g s fK—R is convex up if and only if
Z (E) i: }'--Al'll“_flll i ﬂiﬂ'ﬂ‘i"’“' +a”x“}<_:a,1f|:x|:|+...+_q_“f|:x"}
k=0
for every convex combination agx, 4 -4 a,x,,, and convex down if
for A<k But A-Augmpn _ gul=dleg Ao plog pf _ onHEd) O Ny ¥ eonve ; srbinati X X
the desired result. § ; HERER [y e bagx, ) 2 agfx ) 4o agfixg)
for every convex ecanbinabion agxy 4 -ota x,
Mow, the set K={p={p.op)li<sm=<l 2p=1] ofal
THE CON ["i‘-xl’n" OF THE ENTROPY FUNCTION probability disteibutions is a convex subset of  R"..  For il
tt Let K be a subsel of B Wesay that ¥ s convex if xyeK p=ipg..ap,) and g= (e fly) are in kK then

implies that
ap+ (1 —aly = (ap; +(1—akay,....ap, + (1 —a)q,)

ax+{| —aly
< 1 draplies thal 0 < ap; + (1 —a)g; = 1 and further,

Bub O = aeg

isalsoin K lor 0<a< 1 Of course, Lhe set

l {ax+(l-ajy|0<asz1) 3o lap (l-a)g) =ad pit (- ) g =at{l-a)=1

; is just the line ; i ;
"!! ﬂnii PR !("asnef;ﬂf:i lil:c]rpnufr.mg x and _V,_ami so K s convex if and g0 ap4{l ~alg €K, Thus, K is convex. Our next result shows
I 1 Iy canl all line segiments conneeting any pair of points of ; ol g S s
Li: K. This idea is pictured in Figore 1.2.1, that the entropy function HygR—R s convex down.
|
i ! Theorem 129 The entropy funetion 1 is convex down on the set of
1
i

prabability distribulions p={po..om,) that is,

e
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H(ap -+ (1 —a)q) 2 all(p) + {1 ~ a}Hi(q)
for all probability distributions p and q.

Proof.  Let  p={
100! “ = PPyt and  q= g ability
distributions, and let. 0<a< 1. Then =i M ey

Hap-+ (1-aa) = 3 lapy + (1 ~a)a Jog o d—
c ap; (1 —ajg;

=a p-logl—

E= ap; + (1 —alg;
+(l—a) _Hq-l log B
l—,‘ ap; + {1 —ajq;

Now we use Lemma 1,2.2 to get
1 -
:-":‘?—E Pil“Eilrj +(1—&}|§ qilﬂﬂ%
i i -

= al{p) + (1 —a}H(q)

which coneludes the proof. I

ENTROPY AS AN EXPECTED VALEE

We conchide this section by mentioning that the entropy H{X)

can e L]l"\“.lgi] t of ag the ex Lt b L i [ £
pl.(‘. " f«.] 'allie of a eo t, 4 rlai
: } 1]k ra!]dﬂfﬂ VAT )1 &

Hix) = P(¥=x,) log =l
g (R=x;) log PIX=x;)
Thus, i we d : cari
Wl:txj) =lﬂ1.~:; EE“L“E.‘&“:;?(‘DIH variable W whaose walue at % s
P{X=x)
H(X) = &(w)

The sugeestive notation W = log ﬁ is often used for WY,

EXERCISES

1. Finish the proof of Theorem 1.2.3,
2. FProve Theorem [.2.4.

3 Prove Carollary 1,26,

4 Prove Corollary 1.2.7.

i

Show that M{p;,...op,) = Hipy,....p, 0} Ioterpret this in words.

1.2 Propertios of Enleasy 2

14,

L1,

1

14.

Let X, Xg .o X, be independent random variables wilh the
same distribution as the random variable X, Prove that
H(X o, Xp) = 0H(X),

Let  {ppoe.. by} be a probability distribution, and let g, =

Baar T P
{a) Provethat

i][p prreea pu] E Il[llr._p]_‘ 2 Pm!‘{hnj + ql:\lng{n - n-'l':l

(B)  When does equality hald in this inequality?
Here is the most general grouping axiom. Let P={py . Dut
be a probability distribution, Let  Gigpe..nly  be disjoint,
ponempty  subsets of P whose  union s . Tet
G; = {p;(1)..omilgy) ) where [ G| =g Prove thal

p.(t)  pyle

i j

H{pyie o iprd = Blgge i) + Zgi H( O TR }

L

Let X be a random variable, and let Y =f{®x). Prove that
H(Y) = HiX), Show that pruality holds iF and only if f is one-
toone on the set of all x such that P(X =x) #0.

Let. P;= {_pl_..,.,pu} be a probability distribution, with
PyZipy Bt Py Suppose that € >0 has the property that
py—t =Dzt Shaw that

Hi - ”1;“]. < Hipy — g + 6l ...1:,1}

Interpret this in words?
Use Lemma 1.2.2 to prove that, if IpyieoiPal 18:8 probability
distribution, then

3 Pl o &€ pyy o h By Xy

21N
geornetric mean of the x; is less than or equal to the arithmetic

mean.  Prove that equality helds if and only if the x; are all
cqual. Hint. Consider the xpressions ajx-jz:aixi.

Prove that a set K s convex if and only if every convex
combinstion of clemenls of K is also in K.

Prove iliat a fupction is convex up if and  enly if
flagxy + o Fapxg) = af(x) +oetaglix,)  for every convex
combination ax 4o a X, State and prove the analogous
result Tor convex down functions:

I W = log (1/P{X)), verify that XY = S(W)

|
2 . L
where Xy ....%, AamE posilive real numbers.  This sava thal 'the



30 1 Entropy

1.3 Additional Properties of Entropy

In this section, we discuss two issues relaled to entropy — the
entropy of countably infinite probability distributions and the malter of
se-called fypical sequences, This seclion can be omitted on first reading
without less of continuity.

THE ENTROFY OF COUNTABLY INFINITE DISTRIBUTH ONg

Lel; us begin this section by defining entropy for countably infinite
probability distributions,

Definition  The entropy of a countably infinite probability distribution
{pl’PEI"‘} 15 defined by

)
Hpypg. .0 = Z m Iogl—._,l-f 0
i=1 !

1 1 H -
[\.DLI(‘,E'. that, sinee each term in the above sutn is nonnegative, the sium
either converges to a nonnegative real number or else diverges to oo,

. ILr&L as immedialely prove the counterpart of Lemma 1.2.9 for
infinite probability distribuiions,

I._emllna _1.3.1 Let.  {pypge.o ) be a countably infinite probahility
dis[rlbui:mf,l and let {eqp,q;,...} have the property that g =0 and
a1 Then, assumming that the sums converge, we have

=, 1 —
L Bj |°EE£ E & [C'l';{-!i:
i=1 i=1 1

with equality i ane only if P =0
Proof. We know [romn the proof of Lemma 12,9 thai

i
Py log m = log q]—_l+ o —
summing from 1 to n gives

1 By

fo o | n n
.Z‘: i lnﬂm % Z, p; log g+ Z‘Ji = E]‘;
1= i=1 i=1 i=1

Sinve each swm on the right side converges, we can lake limils as
foltows

; 11_‘ 1 g I 1 e 1"
g, 30 mlonf < i | 3 pitog ot S 7
L= 1=1

i=1 =1

n I n
= lim > ; L i i
] = ]jl IDE uE + nlﬂ’!r'!; gq] _11]-'-5& E'I:Di
= - =

3
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o =0
i iE ]quLi+ Zﬂli ' E;,Pi

=1 =1 L5

fits]

py log ‘-lh

I

i=1
from which the result follows. 8

i Far our main result on entropy of countably infinite distributions,
! we need a resull from the theory of infinite series. 1 1s well known T.ha:t.
if an infinite series Y1, converges, then r—0 as i—eo. However, if
the terms r, &re monotonically decreasing and nonnegative, then we
can say much mote.

- Lemma 1.3.2 Leb fp 2Ty bea monotenically decreasing sequence
of positive real numbers. If the series 351, converges, then ig—0 as

.fl‘.l"':m' -
. Proof. Since ¥, converges and each 1 s positive, given any

L > ), there exists a number 1 such that

{13]) Tkl +rh+'1+“-+r"“{%

for all m =n. In particular, taking m = 2n, we get

% £
e + Trng2 o v Tan = P

i ©and since the sequence 1y s decreasing, this implies

£

iy, < 7
Loor

Inrg, e

Hence, in—ll as n—oe for even 1. A similar argument proves the

vesult for wdd 1. B

Now we can prove Lhe following result on the convergence of

entropy.

Theorem 133 Let  {pppy...p be a countably infinite prabability
distribution.

' i loig i converges, then so does T p; log -
1) TICthe swm 3o p; log i converges, then o do p; log 5.
2y N pyEpy2e and it Xy logl%, converges, then so does

oy Lo i ——

Prool. Since the series YO(1/i%) converges, wo can sel 5= Yo
(Actually, 5= w26, but we will not need this fact,} Then



A R S s o L A v B S e

a2

1 Eniropy

1

i1

and we may take o = 1/8i% in Lemma 1.3.1, whicl tells us thal

T LR o S o
> vilog ]Eplingwgz}

i
= plog Si* =log S+QED5 log i
i i

Hence, it 3. p;logi converges, so does 3 Ip; log{l/p;), which proves
part 1. As for part 2, we may assume that 0 for all i, for
otherwise all sums are finile, and the result is obvious, Since the p;
form a monatonically decreasing sequence of positive real numbers for
which 3 p; converges (to 1), we may apply Lemma 1.3.2, which tells
us that ip,—0 as i—oee. Henes, for any e = 0, there exisls an N such
that >N implies ip; <« thatis, i <¢fp. Thus

S plegis Y plog s < loget Y by log i
P iz : e M ?

which shows that it 30, [og% converges, so does Y p; logi. W
i

We will leave it ss an exercize to show that the eondition of
monclonicily is essential in part 2 of Thearem L33,

Example 131 TLet us consider a situalion where countably infioite
sonrees arise naturally. Suppose we have a source F) = (5, Pyl where
8§, =140,1} and P (0] =p, that is outputting a stream of independent
source syinbols.  Suppose {urther that a counting device Intercepls this
cutput and counls the number of 0°s that oceur before cach L Thaus,
for example, il the output of the source is

gl loaoiotonalil, .

the counter will outpul the sequence
2103500, ..

Mow, the counler can alsg be thought of as a source ¥, =(5, P4,
where 5, = {01,,..} and P, is the geomelric distribution, that is,

Poik) = Pik 0's followed immediately by a 1} = Pl —p)

Let us compare the entropy of the two sources ¥ and ¥, OF conrae
H{F,) = H{p.l —p). On the other hand,

. A3
18 Additional Properiies of Lnldopy

aery = — 3 (- p) log UL —¥)

Kz o
— % p8(L—p)leg p* - }:r p¥(1 = p) log {1 -p)
k= k=i

i P

' -"ﬁging the well-knowi formulas

el p
L : K k _ I
el E ]»,k = -1—_'1; and ‘2__: ¥ [‘1 = p.j

Kz k7o

Ty ;{re have

1

: 24 Ny
H(t,) —il—m{—{—ifﬂz)logp— “*PJ(l_p)] g (1-p)

plogp—(l—p)log(1-p) _ HEW)

= T1s I—p
Thus,

t

i ; itt the
i here is more uncertainty H0
“Thi . s that, provided p> 0.t . L
b o) PE (s than in whether or not fhe next s.}.‘rmhnl will
1, this discrepancy

s
Hif,) = .ll_lj

pumber of consecutiv :
Cbe a 0, Furthernere, & B gels c'i':'?f to

. ipereases. [l

' L SEQUENCES S _
WH{CIE?QW 19? e return to finite probability cl151.nblm.acfus. Vveldcan %_e],
further ingight. into the concept of entrapy by considering the idea of a

S Aypical sequence. Let B = {xl,,..,xm} he & source, with distribution

Bl =m Suppose Lhat we repealedly, and independently, satnple
il = "

ini : . of independent
from this source, phiaining & scquience Koy pdep

puch with the prohabilivy dislribution P, Roughly

ndom variables : ;
b : cet a particular element X to occur in the

how often ghould we cXp

B | |
Samp&';fl'fszluswer Ehis queskion, we c-:umlidcr Fm:h samphng‘ai.; Iizlng,;,
suceess if Lhe outcorme ERE & and a f'etalme 'Ef the otlji:vu}lnz: Dflsumef;;_
Then each sampling is 2 B-.’%mmu.ih trial, w“}" Fmgd _n é .E){} be. =
equal to Py IF we et XK= [}&.1?..,,}{];) rm:{ It:’]_.ﬂ Lg_ ol
pumber of snccesscs in the no trials Kironving WD 55

hinemial distribution
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| |"il|||-.|!.-|

P(si=1) = (1) pi(1 —p

with mean g =np; and variance ¢°

inequality =up(1 =) Now, Chebyalioy ',

{13.2) r{

5=
T“}k}{#

tells us, in rough terms, that it is more Jikely that S {5 clo

o I ; - : i orloser
0 t11[':J than farther away from np;.  Loosely sp&aking,J We expect :“
number 0ril' sticcesses, that iz, the number of  ='s,  fo L s Bl
g = np;. This leads vs to make the following definition R

Dtﬁmtfc:n Let X be a random variable with range {x

probability distribution P(X=x)=p,. Let X X I].:r“ i Lixm]l e
L : ¢ . " @ -

r]{audom variables  with  the sanie dis‘tr't|131L1tic:|11 nas 11“;;‘:“111!:-11!1.

Ry =X, =0, 05 a parli ; !
Ky e a parlicular sample of the Hiowe denoty e

number of %' among the s
; equencs o = v : T
a sequence o s a k-typical sequence if Wioessied 35 R T
S:le) —
ITI’J'E}\ far all i:],...,ﬂ
that is, if
S} — np,
N ]
wp(l=p;) e oemlt=ly e !

Intuitively, e is k-typical i

; g k-typical il Lhe number of x5 |

- 1 : NS oL ; i

what Qimhysimu’s inequality says is “most likely.” I U

» Now we corne to Lhe connection befweon k-typical sequences

e ur-.t-];y. .ln particular, we show that for any & and for large o ;rnlul

1 : ; et

pf&%lhlc sample sequences, the number of k-typical seque ne

approximately T

s

s ja

nnT-Em(.‘){;

where H_ {X) 15 the m-ary entropy of X,

Theorem .34 For any k>0,

1] T]ml pn‘.-lm];ﬂ'u_v that a sampled sequence i3 not k-typical i
most m/k%  and can terefore be made as amall as desir Fgi
taking k sufficiently large, e by

e B i

KXol and 0 &= (ag,. is ; i
sequence, then " (Apieea®) ds 8 ketypical

hitsl
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—nfl (X) = /My P = @) < m...nﬂm{}{j + /10y

Pre)
where o = a
Ce= 3 kBT =pi) logm Py
i=1

depends only on k and the probability distribulion. Thus, for
any k and for large 1, Lhe probability of getbing a particular k-
typical sequence is approximately

m—nl'lm[](}

3) The number My of k-typleal sequences of length n satisfies

}mni{m[}{] — \ﬁIC‘-k & Ny € mnHml:X:I + '&fﬁck

Thus, for any
SRCHETCES, approximately

k and for large n, of the m" possible sample

nH _[X)
m i

are k-dypical.

" Proof,  According to the definition of typical sequence, the probalbility

: that K= {XqieiisX) d8n0t k-typical is

Ve

| I
PiX is not k-typical) = P ( |‘_,J ﬂ_insl.l;, k, forsome i)

m 3 —
;'~ < EP(‘EQLPJ'\}IL)
P = | i

1=

Applyiig Chebyshey's inequality (1.3.2) gives
E11
P{X is not k-lypieal) = El R
=
This proves part 1}
Wext, supposc that o= {oqse ety
random variables X are independent, we have

i k-lypical.  Hines the

1 11
P(¥=n) = P{}{lzrr“.,.,xn:rrn} = H Pi¥=0;) = Hpi
i=1 i=1

Now, the factors p; Tmay nol all be distinet, and we can collect like

factors Lo geb
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moog,

IJ(x_uaJ - pjb]{aj

1=1
Taking logarithms gives

1L
(1.3.3) laig,,, P(X=e) = > Si(e) log, p;

j=1

Now, according to the deflinition of k-typical, we have
np; = ke < Sife) < np; + ke,

andd so (1.3.3) implies that

in (] i
Z [up; = ke log, py = lg P{X=a) < Z [np; + ker] log by
=1 i=1

or, since o = ol —“;_}qu:
i

m
1 Z Py ]ng Pi— -..,f(]l: Ek Yy pIE-]' = ]:‘J ]Ugtn Fj = ]G«gm P[x=cﬂ
i=1

i=1

L

- L =
<n Y plog, pit M Y kBT =B log, iy
i=1 i=1

Selting

In
o, = Z kit L — 1) Togg 1
ik

we geb
~nll(X} = /n Gy <lag, P(X=a) < —aH(X)+,/m 0

This gives part 2).

As for part 3}, we first note that if B iz a subset of a finite
satple space, and il each element e & £ has probability satisfying
ry = Me) <y then

n|El £ Plel<r,|E|

eck
and sinee P{E} = 3 Ple), we gel
cgl

PIE PE
e ¢ B

(1.3.4) L
1

Tow, in the case at hand, we let E be the set of k-typical sequences.
Thew from part 1) we get

o (La.G) m

a7

1.3 Addditional Properties of Entropy

(1.3.5) | —% <PE) <1

“ and from part 2, we have for e g L,

241

— () =Gy S = MH(X) Iy

O sing (1.4.5) for lower and upper estimates on P{E), and nsing (1.3.6)
. foobtain 1y and ry (1.3.4) gives

=

= ¥ o)
(1 - %) I“nHl"'ll:x} ﬁck = k E! - ]nIle[X] + \-"I‘E k

which is part 3). 0§

& I
and kph= —m———s
kzz:n (1L-p)®

"9 Finish the proof of Lemma 1.3.2 by supplying the details to show

thal ip— for i edd. N R
Let  {pPg...} be a conntably infinite probability distribution,

and let. X be a randem variable with P(X = n) = p,. Show lhat
Ho (X} < L+ 8(X]), where B(X) is the expected valne of .‘Y“
When does  equality  hebd in this  inequalily? Hlint.
25+l e

4, [%t(”:‘[p],pjz,.,,} be a countably infinite pn}bahilili,yl Ei':atribzﬂlan,
whose entropy s finite. Let {pppge..} bo the disjeint union of
the sets {gugg...) and  fryrge.d, where Siq=q and
Yory=r (Thus q-+r= 1) Prove that

, g0 3
H':pli'[':h‘ i j = H-Lq,r:l T l’.ﬂi(Tila‘erz,_ ’ ) +rH T‘,T,. . }

Vou will need a certain result ahoul absolutely convergent series.
What iz this result? - -

5. Let {pppge--b e o countably infinile probability distrilation,
whose entropy s finite,  Suppese that g =9 and  that
py—¢ 2 py+e for some ¢ >0 Prove Lhat

Hipjabae. ) = Uipg—tpyte, ) <o
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{a) Show that the series % ].3 converges, Denote the sum
by S. nleg“n

b) Let pr o= —de
it i S0 leg® n

{#) Show that the series E"LE converges for k= 3 Denote the
sum by S n

s H{py.py...} finite or infinite?

(b) Let Pn:algl? Show that H{p,,p,...) is finite,

Let 8§y ={0,1,2} be a source, with P(0)=p, P(1)=q,
P(2)=1-p—q.  Repeatedly performing the experiment of
sampling this source until a 2 appears produces another source
with alphabet 8, = {a: a2 |a;€5;, a,#2}. Caleulate the
probability distribution and the entropy of this souree,

Let  {pypoaw..t be a countably infinite prabability distribution,
whose entropy iz finite,  Can you approximate the entropy
Hipy:pgi...) to any desired degree of accuracy by the entropy of a
finite probability distribution? Explain,

Shaw by example that the requirement of being monotonically
decreasing is essential to part 2) of Theoremn 1,3.3. Tn other
wurds,lﬂud an example of a probability distribution {pgpan.. )
for which the sequence Pf‘p'z" .« & not menotonically decreasing

and for which 3, log 5= converges, but 3 p logi does not
COnverge, A

_ Noiseless Coding

1 Variable Length Encoding

Mow we turn to a discussion of source encoding for noiseless
{ransmission. VWhen no errors can occur in the transmission of data, we
may concentrate on the question of how to encode the dala as
efficiently as possible, in a sense we will make precise in a moment.
First, let us set sorne basie tenminalogy.

STRINGS AND CODES

: Let A ={a;...,8,} De a finite sel, which we refer to as an
" alphabet. A string, or word, over the alphabet A 1s any sequence of
L plements of A We will usually (but not always) write strings in the
o form

&= z:itaiz- -~a-lk

using juxtaposition of symbols. Occastonally, for readability sake, we
may include spaces, commas, parentheses, or other punetuation marks,
between the syinbols in a string, The empty string § s the unique
string with no symbals.

The length of a slring  a, denoled by leafa), is the number of
alphabet gymbols appearing in the string. The set of all strings over A
will be denoted Ty A"

Definition Let A ={a,,....,n]) bea finite set, which we call & code
alphabet. An r-ary code is a nonempty subset O of the sel AT of all
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strings over W, The size r of the code alphabet is called the radix of
Lhe code, and the elements of the eode are called codewords, A code
whose alphabet is  {0,1} is called a binary code, and a code whose
alphabet is {0,1,2} s called a ternary code, 0

Definition Let ¥ =(5,P) be a source, An encoding scheme for ¥ is
an ordered pair (), where © s a code and £5—C is an infective
futiction, ealled an encoding function. [

Thus, an encoding function assigns a codeword from © to each
source symbol in 5.

AVERAGE CODEWORD LENGTH

For the purpeses of noiseleds encading, the measure of efficiency of
an encading scherme is its average codeward length.

Definition The average codeword length of an encoding scheme  [Cf)
for a source = {5,1), where § = {20008, )y ds defined hy

Avelen(Cf) = i: Pls;len(f(s)) 0
1=l

Example 21,1  Consider the source § = {a.bed}, with probabilities
Plaj = P(by =2/17, P{c] =9/17 and P(d) =4/17. Consider also the
encoding schemes (Cif)) and (C4f,), where

Cy = {000,000 Cy = {00,10,11,01010)

f{a) =11 fyla) = 01010

f,(b) = 0 (1) = 00

fi{e) =100 fale) = 10

f(d) = L ey =11
e Avelen(Cif) = 2242048 .3,.4 5 -4
. £+ Iy 17 17 [} B
e Lenfe, — 2 2 e B g, A . 1L
Avelen(Cy 1) = 175+ % z+1?.2+ﬁ.g = 1%

we see that  (C),0) has a smaller average codeword length, and so is
more efficient than ()], even though the code C,  has longer
cadewords (on the average) than the code . This emphasizes the fact
that the average codeword length of an encoding scheme is vob the same
as the average eodeword length of & code, since the former depends also
on the probability distribution P o

2.1 Variable Length Caodes 41

We shonld poinl out thal it makes sense to compare the average
codeword  lengths of different  encoding  schemes only when the
gorresponding codes have the same radix. For in general, the larger the
padix, the shorter we can make the average codeword lenpgtl.

Our goal in this chapler iz Lo determine the mintmum average
codeword length among all “good® encoding schemes (in a sense we will

‘. make precise soon}, as well as to find a method for construcling such
encoding schemes. Az we will see, both goals are readily achieved.

2\ FIKED AND VARIABLE LENGTH CODES

¢+ Definition I all the codewords in a code C have the same lenglh, we
©gay that O s a fixed length code, or block code. 1If C  contains
. codewords of different lengths, we say that C is a variable length code.
i Any encoding scheme that uses a fixed length code will be refereed
a8 a fixed length encoding scheme, and similarly for variable length
encoding schemes, 1

! When the probability distribution P is not uniform, variable
length encocding is nsually more elflicient than fized length sncoding, As
Gia slmple example, consider a source with alphabet 5= {&10. 0051
© whose probability distribution satisfies

Plsy) =1—¢ and P({sy858,8,)) =¢

- Bince a fixed length binary code must have codeword length at least 3,
in order to encode 8§  words, its average codeword length is also at
"o demst 3. On the other hand, using a variable length code, we may
o Caseign the eodeword F to s and the codewords 100, 101, 110, and

S A1l to the other source symbals, giving an average codeword length of
1+{1=¢)+3e = 142, which is less than 3 if ¢ <1,

UNIQUE DECIPHERABILITY

Even though wvariable length enceding schemez can be more
efficient than fixed lengeh schemes, there is & potential problem with
varisble length schiemes, as illustrated by the following example.

S={abe}, C={001,001}
fla) =0, f(b)=01, [{c) =001

This encoding scheme is not wniguely decipherable, in the sense that the
codeword string 001 eould be deeoded a5 ab or as e In order to
make this encoding scheme uwniguely deciplerable, we require o
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codewsrd sepavator, such as J, which enables us to write the messape
#hoas 001, OF course, the addition of a codeword separator adds to
the overall lenglh of encoded messages, which is contrary to the goal of
efficient encoding,  (Fized length encoding schemes are automatically
unifuely decipherable and need no codeword separator.)

The difficulty here can be traced to the fact that a string of code
alphabet symbols may represent mere than one string of codewords.
This leads to the following definition.

Definition 4 code € iz uniquely decipherable if whenever e,... ¢,
d],...,l.'lj are codewords in O and

¢yt ey = dyeedy
then k=) and ¢ =d; forafl i=1,...k [

Clearly, the property of being uniquely decipherable iz extremely
desirable.  Swrprisingly, even a small change can make a code that is
nob uniquely decipherable info one that js.

Example 2,1.2 Let S = {abx} and consider the encoding scheme

C = {L01,001}
fla) = L, f(b) =01, flc}=1001

This differs from the previons code only in that the codeword 0 s
teplaced by the codeward 1. Heowever, this code s uniquely

decipherable. To see this, obsgerve Ahat the symbel 1 acts as a kind of '

codeword separator, in the sense that the presence of 3 1 indicates the
e of a codeword. Thus, reading a codeword string fram left to right,
we st decode when and only when we encounter & 1. For instance,
consider the string 1001, Reading from lefl to right, we must
decode 1 as o, 000 as e Ol as b oamd 1 as o to gel the source
siring peba. Mo other decoding iz possible. [

Altheugh there are methods for showing that a particular code is
upmiquely decipherable, we shall not go into them hece, since we will
limit our discussion Lo s special type of uniquely decipherable code,
witlioul limiting our ability to be cfficieni.

Ta e more specilic, one of the difficultics with  unigue
deciphecability is that, even though a code may have Lhis propesty, it
may be pecessary to owait until the entive message has been received
efore we can hegio Lo decode,

Example 21,3 Consider the code O = [0,00,001} and the encoding
[unclicn

2.1 Wariahle Lenglh Cades 43

fla) =10, f(by=01, flc)=011, f{d}=0111

"-;:_ It is not hard to see ihat this code is uniguely decipherable. Now
“guppose that the string 0111 is being transmitted. Just after receiving
the first 0, we cannot tell whether it represenits the source letler a, or
the beginning of a different source letter. Similarly, when the first 01 iz
received, we cannod tel] whetlier it represents a b, or the beginning of &
¢ or d lo fact, we cannot decipher the source message 0111 until ic
2 has been completely received.
; On the other hand, consider the code D = {0,10,110,L110}  and
encoding function

glay =0, glb)=10, gle)=110, gld)=1110

In this case, individual codewords can le deciphered as soon as they are
fb{‘;t‘.ived, since the presence of a 0 indicates the end of a codeword.
”hlus. each source symbol can be decoded 25 scon as its codeword is
fecelved, 1

INSTANTANEOUS CODES; THE PREFIX PROPERTY
The previcus example prompls us lo make the following
efinition,

Definition A code is said to be instantaneous if sach codeword in any
string of codewards can be decoded {reading from Jeft to right] as soon
as ik iz received, [

. If & code is instantaneous, then it is also uniquely decipherable.

However, as the code 0 of Example 2.1.3 illusirates, the converse is

-‘rjot true,

: The property ol lbeing  instaptancous i very  desirable
i Fortunately, theve i a very simple way to tell when a code has this

g property. First we need a definition,

o Definition A code is said to have the prefix property iF no eodeword s
a prefix of any other codewaord, that is, if whenever e=2xx; 9, Isa
codeword, then x;x;--%, 5 not a codeword lor 1<k <n. 0

i Given a code O, it iz a simple matter to determine whether or not
" it has the prefix property. b s only necessary to compare cach
codeword with all codewards of equal or greater length to see if 1t 1s &
prefix.  For example, the code {10001} has the prefix property,
singe 1 iz oot a prefix of 01 or 001 and 01 is nob a prefix of 001
However, the code {B,01,001} does not have the prefix property, since
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0 iz a prefix ol 1.
The importatce of the prefix property comes from the following
tliearem, whose prool we leave as an exercise,

Theorem 2.1.1 A code 0 is instanblancous if and only if it has the
prefix propesty. [

Example 214 Let n be a positive integer, A comma code is a code
2 with codewords
1,01, 001, 0001,.... D01, 03
n—1 n

This terminology comes from the fact Lhat the symbol 1 acts as a kind
of comma, indicating the end of a codeword. [The last codeword iz
determined by the unigue number of 0%  that it contains) Since
comma codes have the prefix property, they are instantancous. On the
ather hand, the code

1, 10, 100, 1064, {--+

-y Jﬂ' 4 'D .

=1 R
does not have LVhe prefix properfy, and so it is nel instantaneous.
Howewer, i is uniquely decipherable, since we can decipher any string of
codewords by rveading from right to left, where a1 indicates the
Beginning of a codevword. 1

ERAFTS THEQREM

The following remarkable theoremn, poblished by LG Kraft in
1948, gives a simple eriterion to determine whether or not there is an
instantancous code with given codeword lengths.

Theorem 2.1.2 (Kraft's Theorem)
1) I ©  is an rary instantaneous code with codeword lengths
€505 8,4 then these lengths must satisly Kralt’s inequality

&1
=

-
=1 vk
2} If the numbers £, £y, o0, € and 1 osatisfy Kraft’s inequality,

n
then there is an instantaneous r-ary code with codewaord lengths

E]’”'"EI'L'

Proof. Suppose firsl that © = {6,015 an inslanlaneous r-ary
eode with codeword lengths £, 8 We will show that Hraft's

inequality must hold. Let L =max{§}. I ¢=xx; x; €C, then
I

BT Variahle Length Codes

any word of the form
el e S A R

(! Termise 0 15 4

ihe v T any ; annpt be in
where the ¥, are any code sy mbols, canng o (2.1.1).

prefix of % But there are a total of v words of Ll
ming on i, we see that there are
Summing ,
1L 1

adifiat E:[.—EE_F IJZL
Laaghd 4 " EI
l i=1 i=1 1
) mumber of

i ; : ; Pl Loy
U wards of length L that eannaot be in G, However, i

L' words of length L ox'er the code alphabet js tlY, and o wo s

thich is Kraft’s inequality, o :
© Now suppose thal £ €308y and v salisfy H”'-“"”‘]"E'qr::]tgﬂ'
Ve will show thal there exists an instantanecus ol LII ;3' a.‘- e
S alphabet A = {ag, ag .. 8., with codeword ]chgi-]lﬂ_ by b ' J‘J: nf.'
' the number of & that are equal to §. Thus, w, v the nlu:;'t :«mds
©desired codewords of length 1, oy is the number of dhuirer] vode

L el length 2, and o on.

In order to construct the desived code, we wanl
Cwords of lenggh 1, say the first o code lotters

(o Heleet o

{2.1.2) Ay g g By
This can be done as long as
gy o
i ‘ e, since
4 Next, we want Lo select oy words of length . Huweyer,

: lhe
our code must be instanlaneons, we cannot allow any of 1

n other
codewords in {2.1.2) te be prefixes of the new t“‘l"w””l”'. ; A, we
wards, from among the 17 possible words of lt'ngl.:: A ”Tr.rthe 2

- 5 ; atlp any 1 1
cannet select the o codewords thal hegin wi e frm

: It
y I "hi il
" codewords in (2.1.2). This leaves 12 —ayr cadewortda ff
choose 1y codewords, and this can he done provided il

2
oy ST T

or

b kg S r
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The next step is to gelect oy codewords of length 3. There are
¥ such codewords, but as befors, the requirement that € be
instantaneons means that none of the aqr®  codewords of length 3
that begin with any of the o, elements in (2.1.2) can be used, nor can
any of the o,r codewerds of length 3 that begin wilh one of the o,
previeusly chosen codewords of length 2, Thus, we are left with Er
[XII'B — ayr codewords of length 3, from which to pick oy codewords.
This can be done provided that

o < = -:tlr?* — gt
or
&113 gt ooy < 1‘3

Continuing in this manner, we will get the system of inegualitics
oy =T

_ gl g S
{2.1.3) n-lr‘l oayt o ey <

o

Gcl!‘n'l kS agru-ﬂ o R 1 o, < P
Natice, however, that each inequality in (2.1.3) implies the previous
one. Hence, as long as the last inequalily is satisfied, we may construct
the desired code. Dividing the last fnequality in (2,0.3) by " gives

TP WU
T [

which 15 equivalent to Krafl’s inequality.

It s important to note that Kraft's Theorem says thal if the
lengths £, 85,..., 8, satisfly Kraft’s Tnequality, then there must exist
some instantancous code wilh these codeward lengths, 1t does nof say
that any code whose cocdeward lepgths satisfy Kraft's ineguality moast be
instantaneous. The next example shows that this iz need nol be the

o,

Example 2.1.5 Consider the binary eode O = {0,171, 100,110}, with
codeword Jengths 1,23 and 3, Since | A | = 2, the left side of Kraft's
ineguality is

+

+
2

[Ty
P
l.%l._.

Il

=rrimir S
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i;[mce, the lengths satisfy Kraft's inequality, but the code C is not
- gpstantabecus, since the second codeward is a prefix of the fourth. (]

Let us give an example of the construction in the proof of Krafi's

' Theoremn.

Example 2.0.6 TLet 4 == (0,0,2) and & =& =1, =12 by =1d5 =4,
tg.: &, Then since

33t 0P H34] _ 196
45 =213

'}(raft‘s Inequality is satisfied. Thus, according to Kraft's Thegrem, we
3hi;.i.|l.ci be able to construch an instantaneous eode over A with these

todeword lengths. )
7 The fiest step in constructing such s code 1s Lo choose the

eodewords of the smallest lengths £ = £; =1, For this, we may as well
#hoose

o, =10 and ¢ =1
\en we choose a codeword of length £y = 2. Since our code must be
stantaneous, we cannot starl this codeword with either I or 1, and
o it miust start with 2, Let us choose

c3=2ﬂ

Now we choose two codewords of length 4. These codewords cannot
gin with either 0 or 1, and so they mast begin with 2. However,
they caninot begin with 20, since that is codeword €. Lef us choose

cy, = 210 and ¢y = 2101
Finally, we choose a codeword of length 5 that begins with 211,
epo= 21T
Thus, € = {0,1,20,2100,2101,21100}. 0O

McMILLAN'S THEOREM

Tt is intercsting to observe that Krall's inequalily is also necessary
and sufficient for the existence of a uniguely deeipherable code. Of
course, Wraft’s inequality is sufficient since any instantmmm]slcndrx is
also uniquely decipherable,  The necessity of Krall's inequahl,.y wag
proved by McMillan in 1956, [The proof given here is not Mchillan's,
however.)
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Theorem 2,13 (McMillan's Theorem) 1f © = {ee,,....0.) is a
uniguely decipherable r-ary code, then its codeword lengths LETIE
£, musl satisfy Krafl's inequalicy

3 4o

Proof. The following prosf is the usual one given for this theorem,
although it is not partienlarly intuitive, Suppose that oy s the
number of codewords in C of length k. Then we have

__=§.'ij£‘5
i

k=1 l‘Ek J=1 T

I

Mow let w bea positive integer, and consider the quantity

i i
U i W) *n
( b3 *-) (F+Geon i

Multiplying this out gives

11

o} o [P R 1
& E"‘ < S }““ ol T,
. s 2 1 g N PRI
1 i}
ipsigieeady, T T fpalgyeyai, T1 “
'.Isl-f;m ]Ei]—gm

Mow, since 1 <i, < uy, each sum i+ .-obi, ds at least m and al
moesl um, taolioctnwf terms with a common sum iy -+ 1, we get

B ik G | um NL;
=2 - L h"”ii"-"i.z"'“i“ x Z,T

k=i p |.|u= ;

whiore

b= Z i ey

I, 71
: ) TR i [
B SRR I'!.1_[\

Now we are ready te use the [act that the code is uniguely
decipherable. Recalling that o, is the number of codewords in € of
lengih 1, we see that

is the number of possible strings of length & =iy 44, consisting
of a cadeword of length iy, followed by a wcleword of Iong1 b iy, and so
o, ending with & eodeword of length v

Mence, the sum My s the Lulal number of slrings  ¢y-¢, of

g4 Varialle Length Codes 44

" length k made up of exactly 1 codewerds, Now, let
N=Adey eyl 60, lenlx) =k}

be the sel of all such strings of codewords, Henee, N = |N|. LEach

¢ &N can be Lhough of simply as a string of length k over the r-

ary atphahet A, that is, a8 a member of A% of length k. But there

care F such strings in A%, and since € Is uniquely decipherable, no
T iwo distinet elemments of W represent the same string in A" Hence,

f | <ot

(418 n]{ H I Nk U
;F = Z_k < z:l{'um

. and so

k= T =1

aking u-th roots gives

11 oF

Z _% < ul,f'umilfu
k=1 1

= - =
Gince this holds for all positive Integers 1w, we may let u approach oo,

But u”“m”“-—rl A% U—oa, ald s0 we must liave

<] [

b
Tl

;_
n

Again we should point oul that if a code € has the property that
its codeword lengths £;,.... € satisly Kralts inequality, we cannot

Ceonglude that 0 must be uniquely decipherable,

Lxample 2.1.7 It is not possible to construct a uniquely decipherable
code, over the alphaber {0,1,2,....8}, with & codewords of length
one, 9 codewards of length two, 10 codewords of length three, and 10
Ceodewords of length four,  For if such a code existed, we would have

{since r = 10)

35
1o s o9 .10, 10 _ 100l
I ST ARTETT I T

=1 Fr!

Since this vielates MeMillan’s Theorem, no such code can exist. 0
Krafts Theorsm and MeMillan®s Theorem together tmply the
following results, whose proofs we leave as exercises,

Theorem 2.1.4 If a uniquely decipherable code existz with codeward
lengths & By by then an instanlanesus code must also exist with
these same codew nnl Tengths, 01
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Corollary 215 The winimum average codeword length, among all
uniquely deciphersble eheading sehemes for a source ¥, is equal Lo the
minimum average codeword length among all instantanesus encoding
schemes for F. (]

Hence, i secking to mindmize the average codeword length over all
untguely decipherable encoding schemes, we may resiricl allention fo
malantaneois codes,

EXERCISES

M Ercrcises [-7, determine whelher or notl tiore is on instanlencons
code with given radiz v ond codeword lengths. If so, consiruct such n
code,

L. r=2, lengths 1,233

2 r=2, lenpihs 1,2,2,3.5

3 r=2, lengths 1,5,3,3,4,4

4 r=32, lengths 2,2,3,3,4,4,5,5

& =3, lengths 1,1,2,2.3.3,3

6. r=15, lengths 1,1,1,1,1, 8,9

T.  r=15, lengths 1,1,1,1,22,2.354

8.0 Is the code O = {0,106,1100,1100,1110,1 111} instantancons? [s it
uniquely decipherable?

B Is the code C= {0,10,110,1010,1011,1101} inslantaneocus? s it

uniquely decipheralale?

L0, Suppese that we want an instantaneons binary code that containg
the codewords 0, 10 and 110, How many additional codewords
of length & could be added to this code?

11, Prove that each inequality in {2.1.3) implies the previous ane.

12, With reference to the proof of Kraft's Theorem, prove that

iz equivalent to Kralt's inequaliny,

L. Prove Theorem 2.1.4,

14, Prove Corollary 2.1.5.

15, Prove that & code O s uniquely decipherable if and only if for
AOY ) g ¥ Wy ¥y i DL we have xpxgex =
¥i¥oeooyy 1mphies xy = g 20 = kg = g

L. Leb € beinslantancous, Prove that the following are equivalent.
[SIJ Otz mazamnd instantaneous in the sense that no codewaord CAan

be added to 0 and slill paintain the property of being
inztanianeons.
(b] Every finite string of cade symbolds is the prefis of some string

A4 Variable Length Lodes al

of codewords in (.
{c) Eguality holds in Kraft's inequality.

17 For a given binary code ©, fet  N(k) he the total number of

eodeword strings thal coptain exactly &k bils. For instance, if
= {c.],r..l,rﬂ}, where ¢ =1, ¢y =10, ¢y =11, then N3} =5,
since the codeword strings ¢ 8,605,660, 60,6;  and o sl
contain exactly 3 Dbits, and so other eodeword strings contain
exactly § Dbits, Por the code C find a recurrence relation for
Nk}, and solve it
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2 Moiseless Caoding

2.2 Huffman Encoding

In 1832 DA, Huffman published a methed for consiruehing
elficient instantaneous eocoding schemes. This method is now known as
Huffivan encoding.

It is elear that the average codeword length of an cheoding scherme
iz not affected by the nature of the source symbols themselves, Hence,
for Lhe purposes of measuring average codeword lenglh, we may assunae
thai  the codewords are assigned  directly Lo the prohabililies.
Accordingly, we may speak of an encoding scheme {gy,...,6,) Tor the
prabability distribution (py,..p). When the probability distribution
iz understond, we may speak of an encoding seheme {g,...,6,),

With this in mind, the average codeword length of an encoding
schieme [ep,...,0,) Is

R,
AveLen(e),...,6,] = L 1y lenfey)
i=1

We will use the notation  Mindvelen{p,....p,) to denote the
minimum average codeword lenghh among all rary instantaneous
encoding schemes for the probahbility distribution {pieipgh By
virtue of Corollary 2,15, this minimem is also over all uniguely
decipherable encoding schemes,

Definition  An optimal rary encoding scheme for a probabilicy
distribution [Bgp0eeain,) 05 an r-ary instanlancows encoding scheme
{£yi0.00,) for which

Avelen(eg,.u,) = MindveLen (pra..., [ 1]

Note that woplimal encoding  schernes  are; by definition,
instantaneous,

AN EXAMPLE OF HUFFMAN ENCODING

g, : : S
Liefore discussing Hoffinan encoding in general, we would do well
bo consider a specilic example.

Example 2.2.1 Let us construct a d-ary Huffiman cocoding scheme for
the probability distribation

P = (0h24,0.20,0.18,0.13,0.10,0.06,0,05,0.03,0.01)

eomsisting of 9 probabilities.
With reference to Table 2220, the [first step iz to arrange the
probabilities in decreasing order of magnitude in the first column of a

-
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:r':_-t,'hbl.e. Next, we replace the three smallest ]:rfuba,hi]':ties by their sun,
" pearrange he resulting probabililies in decrsasing order, and p]ace‘ them
" jn & new colurmn. Notice thal we have marked the sum 0.09 will an

3 ."'astgrisk_ Notice alzo that we lave inserted a hiaulk -:o'lmnln labeled code

" petween the two columns of probabilities. We will t*.xpltalln the purpose
i of this column momentarily. The process: of Fombunng the three

- gmallest probabilities inle a single probabiliey s m]]g-:l & Huﬂ';:-f.rm

seduction of size: 3. The next step is to perform a Huffman reduction
oy of size 4, as shown in the fifth column of Table 2,21,

Thus, the probability columns in Table 2.2.1 are foz:.ned by the
il _gimpm process of sucoessive Huffman reductions and reordc}-mgs. As to
“the matter of the size of each reduction, when constructing an e-ary
fluffman code, all reductions sheuld have size r except possibly the
fipat reduction, whose size iz determined by the fact that m‘ wanl th_e
Jagt probabitity column of the table to have exacl.];.'_ r entries. In this
case r=4. Thus, noting that a reduction of size s reduces Lhe
‘niimber of probabilities by s—1, and sim.:_t B—(3—1) - {4.-— 1} =4,

o see that the first reduction should have size 3. We will discuss the
yeduction size in more detail a bit laler.
" QOnpee the probability columns in Table 2.2.1 are complete, we £ail
gonstrict a eode for each probability column by working from right fo
ift. Tor ease of readability, we will do this in Table 2.2.2, althongh
fie entive process can cerbainly be done in a single table. Ezml:e the last
polumn contains enly v=4 cntries (by design), we assign _E-hc -::r:udf
_..'ﬂ,.I,...,r—l o thiz column. To construch the next c.clciq?. we “axpa:l-ul
ihe codeword associaled with the probability marked with an a.':'-‘:f,"l'li-!k..
+ by concatenating that codeword with the symbols ﬂ,},. . ._,r—J.. as in the
widdle code column of Table 22,2 This expansion 1s re]umtcdl Ly

obtain the first code column of Table 2.2.2, which 15 the desired
" Huffman eecoding. 1

TABLE 2.2.1

Prohabilitice  Code

Probabililics  Code Probalilities Code

I 0.24 0.24 i at
r ﬂ.m} ﬂ_zﬂ [’24
0.13 013 0.13
b10 g.lo | |
I]'.U‘J*}

(0.616 S
0.05 0,06
0.03 }

0.0l
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TABLE 222

Probahilities  Code Probahilities Code Probabilities  Code
0.4 i .24 1 0.38s - 0
(.20 2 0,20 2 .24 1
L13 o 0.1%8 3 .18 v
13 [ 0.13 a0 .13 3
0.10 01 0.10 m} g
{104 03 A 02
0,05 020 06 ’7 3
(.03 021 } <
.01 022

MOTIVATION FOR THE GENERAL CASE

Since we are dealing with r-ary codes, we may as well assume that
the code alphabet is  {0,0,,..,r=1} In view of the previous example,
we malke the following observations. Let

P - (p]r'--!p“:}

be a probability distribution. Performing a Huffman reduction of size
g pives the probabilily distribution

= (Pyyeeo Py
where q=1p, ¢+ 4D, Suppose thal

Do=leg,. ...t _,d)

iz an optimal encoding scheme for this distribution, Then we can
construel an encoding scheme for  {py,...,p,) by “expanding® the
codeword d into s codewords

didl,. o dis=1)
of length L, to get

C=(ep g, odhdl o d{z-1))

It is esasy to see that this code has the prefix property, and so is
instbantaneons.

Sinee
n=4s

AvelenD) = Z by leng) + o len{d)

i=l

amd

Jas Hulfmean Encading

AvelLen(C) = fui fenle)) + i p; [en{dj+1]

i=n—:f1

i=1
il ik =i
- — E py lenfe;) +allen(d)+1] = Avelen(D) +1q
! i=1

i we have
i (2.2.1) MindveLen (py,....py) & Avelen(C)

= A :u.ngn{D} +g= Mind 'L'e.[.f,‘nrl:'p1_1 S !1“_3111‘0 41
From this we deduce that © will be optimal if and only if
2.2.2)  MindveLendpy,....p,) = Mindvelen(p.. G Paoetl) T4

Our goal then is to establish this result, by establishing the reverse
equality to (2.2.1)

{2

.{'?'nf.e we have done this, we will know that the process af successive
sexpansions” will produce optimal eneoding schemes,

Thus, let  C=(e..,8,) be an aptimal encoding schcmf: for
Pyas o) Suppose that the maximum length of the codewords in C
a L. If © happens to have s codewords of length L of the form
(2.2.4) ai, di,...,dis-1]

A 45 i K Il
for some d, then we can %eontract” C inte an encoding scheme

9.8}  MinAveLen (py....p,) = Mindvel en{Pys s o Puos WG

D = (eg50e 0y sidl)
for (Pyeeeeryog 9) Then

MinAveLen (Pyre.sliy_pd) € Avelen(D)
T =i
i=1

= ipjéi—ﬂ

=1
= Awelen(()—q
= MinAweLen (. Py) — 0

which shows that (2.2.3) holds,
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Thus, we are left with the question of whelher there iz always an

optimal encoding scheme {1 = et .,c"_] with cedewords of the form
[2.2.4).

THE GENERAL CASE

Before prococding to this exislence gquestion, let us make a few
remarcks  aboub the veduction size.  As already mentioned, when
constructing an r-ary Huffman code, we wanf each reduction to have
sige 1, except possibly the first, whose size is delermined by the
requirciment thal the final column of probabilities should have size 1.
Moting that a reduetion of size © redoces the number of probabilities
by =1, thenif s is the size of the fiest reduction, and if u 1% the
number of subseqieent reductions of size 1, we have

n—{s—Lly~ulr=1]=7r

or

s=n={u+1Ljr—1)

Since 28 <, we deduce that the first reduction size & is wiequely
determined by the conditions

(2.2.5) s=n mod [v-1), 2<a<r

Tt is uselul te note that for binary Hulfman encoding, where ©=72,
condition [2.2.5) simply savs that s =r =2, Hence, in this case, the
reduction size is always equal Lo 2.

Mow we are ready for our exiztence resuli.

Theorem 221 Let P ={py,....p,) bea probability distribution, with
Py 2Py 2o 2 py. Then there exists an optimal r-ary encoding scheme

C=lep...e,) for I othat has s codewords of maximurs lenglh L
of the form

dib, dl,...,diz-1)
where 5 05 given by (2.25)0  As o resull, for such prohabilicy

distributions, we have

MinAveLen (g, op,) = Mindvelen{p. by, _ad) +q

where o =p,_. iy,
Proof.  Amoung all optimal r-ary encoding schemes for (R EPR y

choose one, sy O = (e8], that hag smallest {efal codeword length

[1]
>4
i=1

"?_ﬁ-. Huffiman Escoding 57

where &= lenfe). Sinee O is optimal, we have

113
AveLen(() = E by lenfe) = MinAveLen (po... Dy

=1

We will show that if © does nol fave the desired property, .then Wi
ean make certain changes in © in sneh a way that the resulting code
il still be optimal, but will have the desired property. ;

MNew, € must have the property that codewords with larger
ohability have smaller lenghhs, that is,

P> p;  implies lene;) < len(g;)

I‘;c.}_r it len(g) = Ie:r{cj}, then we could interchange the codewords ¢
and ¢ and achieve a smaller average codeword lenglh, By
gdsumplion, we liave

N Py 2y,

we may further assume, by rearcanging if necessary, that
W2.6) I e

Mow, if there are precisely k codewords in € of maximum
ength L, then {2.2.6) gives

ﬁu-k < E’:‘;—!-:-H == En =T

te would Hke to show that % =5 where 5 is the length of the first
r&lucl.inn. This will tell us that {7 contains at least s codewords of
i length L.
To do this, consider the Kraft sum
It ,E
I
i=1

We know that K < 1, since © is instantanveus. However, if
e T e

then  Kraft's inequality would held with £ = L replaced Ty
£ —1 =hL~—Ll. This would mean that there was as mstantancous code
n

with codeword lengths

£ i

n=1*

Tda1ep En_i

which is a rcontradiclion to the fact that  © has minimum totad
codeword length among all optimal encoding schemes, (It may not be a
contradiction to the fach that O is optimal, since. p, might Taex erpnal

to )

g i i e B by i AT




hi 2 Meiseless Coding g i

Thus, we hlave
s ol 5 <1

L

Multiplying by ™ gives

S R S e
ane so

(2.2.7) K = th—rda, where o i ra—
Now let us make a lew ohservations about K.
1) Sinee r—1 |t =1, (2.2.7) implies that
t“E = a mod {r—1} ' '

2] Sinee 1
tr=5%" I'L'_E'l
=1
and since ™ = 1 mod {r— 1) for any positive integer w, we have

rT"K = o mad (r—1)

3)  From 1 and 2, we get o =nmod {r— 1), and since 2<a <1, we
deduce from [2.2.5) that o =s. Henes

K = +&
4} Since r|r¥ -1, observation 3 implies that
K =4 mod r

8] Binee L—of =0 ifand only if i3 n—k we may write

] ; iw—k
dr= 3 h Y
i=1 je=]

and &0
PR =k ed ¢

B} From 4) and 5) we get
s=k modr

But 2 <e<r and soowe must have either k<0, k=% or k>,
Sinee the Tiest iequality is not possible, and since r> s, we
dedice thal k = s, as desired.

Thus, we may assume that the last & codewords of O have
maximupm length Lo Now suppose that ¢ iz one of these codewords of
lenglh L oand that ¢ = dx. Copsider the words

S ey

g2 Hulfnai Frcoding 50

. (2:28) a0, di,...,d(s-1}

obtained from ¢ be replacing the last symbol by 01,5 - L.

If any of these words % is mot in 0 then since k 28, we know
that there is another codewaord in 13 of length L. Hence, we may
replace that codeword by x and still have an optimal code. Fllnﬂ,ll:,',
gince the last Kk eodewnrds in  C have the same len%ﬂu we can
rearrange them, i necessary, to insure that the words (2.2.8) are the

lasl & codewords, §

- HUFFMAN'S ALGORITHM

Now we can pregent Huffinan’s algarithm,

:"'."‘f‘[;hmmm 222 Consider the following algorithm M for producing

encoding schemes © for probability distributions L.

If P={pp.... Pyl where n=r, then let © = (0,...,n-1].

I P (pyee by, where n2r then

“a) Reovder I' If necessary so that py 2pe =0 2Dy

b) Let Q={Dju--Dyg @ Where a=py_ o+ Fbw and
where 8 iz delermined by (2.2.5). .

¢} Perform the algorithm 36 on obtaining an encoding

schemn

1)

D= (g0 s Gyt
d) Let
C = {epnity_pdydly . d(s-1))

:':..' Then the encoding scheme € is optimal. N
o oproof. The proof is by induclion on the size n  of the proba!):l:l;:'f
. distribution. The result is clearly true for n <r. Suppose the result is

true for all prebability distributions of length ess than n, and consider
the encoding scheme O = (eg,...,5,] for (Bysee e Puh |}mduce<jl by ZI-E

Since | Q| =n {where (@ comuvs from part 2c}, the mrluct.p.:e.
hypothesis implies that 1 (alse from part 2c) is optimal, Thus, D is
instantaneous, and by Theerem 2,21

Avelen(D) = MindveLen(py,. .o Pyoe 41 = MinAweLen(py, .o By — 1
Sinee I iz instantaneous, so is O Finally,

AveLen{Cy = AveLen{D} 4+ = MinAvelen{pg o)
and so © iz aptitnal, B

We should remark that, heeanse of step Za, 1he Huflinan
algovithoy may not always produce the same code when applied to the
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same probabilities, To facl, as the next example demonstrates, we Ay
gel codes with dilferent word lengths, even though the average waord

length must be the same.

Example 2.2.2 Table 2.2.3 shows the construetion of a binary Huffman
code, where the reduetion size iz 2. Table 2,24 shows the code that is
obtained by a different ordering of the probabilities (note the different
position of the asterisk in column 3).
different codeword lengths (the firsl has total codewerd length 17, and
the secand has Lotal codeword length
codes, and they both have average codeword len
minimum possible by Theorem 2.2.2, 1

2 Noiseless Coding

Even though these codes have

16), they are both Huffman
gth 2.49, which is the

TABLE 2.2.3

Prob Code Prol Code Prob Code Prob Code Prob Code
0.32 oo 032 oo .32 o 38+ | 1624 0
019 10 &1% 10 (.30 01 L3200 0. 1
.19 11 0.1% 11 14 10 man 0

011 011 elPs GLOD 0.1% 0t

010 0o 11 ol

0.08 010l

TABLE 2.2.4

Prob  Code

Prol; Code

.32 oo

Prab Code Prob Code Prob Code

0.52 0D 32 ng 038 1 N4iZe 0
o1y 1 0,19 10 .30« 01 02 a0 nan |1
LS SV (VR VI | B B L1 10 30 ol
.11 011 1% 010 0.1 11
0.10 100 il 81l
0.08 10l

EXERCISES

fn Bwereises -4, find ¢ Huffman enceding of the gven probubilily

dislribulton for the given radic,
L; P o= {0.2,001,0.1,0.5,0.1,0.2}
{a} r=2 [blr=3

{e) r=4

Yy r="56

9.2 Huflwan Euicoding 61

P o= {0L5,0.02,0.02,0.02,0,02 0,02}

(a) T=2 (b} r=3 (o) r=%

P ={0l,... 0.1}

(@) r=2 (b) r=3 [(e)r=4 (d r=b6 ([e]r=6
P oe= (0.05,0,11,0.8,0.006,0.02,0.005,0.01})

(a) v=2 [b) =3 (&) r=4

P = {0.5,0.05,0.03,0.02,0.3,0.1,0.15,0.05}

(a) r=2 (b} r=3 (c} r=4 (d} r=5

P = {0.8,0.1,0.1,0.5,0. 1,0.06,0,05,0.05,0.05,0.04,0.03,0.02}

(a) r=2 (b) r=3 [¢) r=4 (d) r=5

o the proof of Theorem .22, prove that € is instantancons.
In the proof of Theorer 2203, prove that

AveLen(C) = AveLen(D}) +q,

Gtate a conditlon in terms of the sizes of the probabilities that will

guarantes uniqueness (up to switching s and 1's) in Huflinan

encading.

Determine the number of reductions in the Huffman encoding

scheme in terms of the number nof probabilities and the radix r.

Faplain how you would use the results of Theorem 2.2.2 to

compute MmAvelen (pp ).

Show that the number of additions, concatenations and steps in

reordering, in the Iuffman construction process 1s al most Mn®,

where M does not depend on the number 1 of probabilities. {In

ather words, the number of operations is O(n).y Hint, Try the

binary case first.

Determine all probability distributions that have (00,01,10,11)

and (0,10,110,111} as binary Hulfman encodings,

Let. € bea binary Hoffman encoding for the unifonn probability

disteibution P =(1/n,...,1/n), and suppose that the codeword

lengths of © are &, Let n = a2k where 1 €a <2 X

{a) Show that € has minimum lofal codeword length T = 338
ameng all instantansous encodings for I\

(b) Slow that (& has at least two codewords of maximum length
L =max £, ;

() Show that the Kraft sam 37 (1/v77) equals 1.

{d} Show that &=L a §=1-1 foralli

{e) Let u be the number of codewords of length L —1 Iand let
v le Lhe nomber of codewords of length L. Determine u, v
and L in terms ol a and k.

() Find Mindveleny(1/n,.. . L{n).



g2  Noissless Coding

2.3 The Noiseless Coding Theorem

Now we are ready Lo dizeuss the main results on nojseless coding,
As we know, the entrapy I[¥] of a souree ¥ iz the amount of
information contained in the source. Further, since an instantaneous
encading scheme for £ captures the informalion in Lhe source, il is net
unreazonable to belicve Lhal the average codeword length of such a code
sk be at least as large as the entropy  H(F). In fact, this is what the
Moiseless Coding Theorem says. This theorem, first proved by Claude
Shannon in 1948, also says thal by clever encoding, we can make the
average codeword length as close to the entropy as desired.

As in the previows seedion, the Noiseless Coding Theorem does not
depend in any way on the nature of the source symbols, and so we will
assume that codewords are assigned directly lo the probabilitibs.
Accordingly, we speak of en encoding scheme (e11..008,)  for a
probability distribution  {py,...p, ). Recall that the average codeword
length of an encoding scheme. (c,..,y¢) for (p....p,) is

i}
Avelen(e), . .,e) = Zpi fenfe,)
i=1

We denote the length fen(e) by £,

Recall also that the r-ary entropy of a probability distribution {or
of a source) is given by
1]

H:[Pn-“u["n} = Zp‘i Ingrj%

Now we are ready for our [irst result.

Theorem 2301 Let € =cy,....q.)

be an instantaneous encoding
seheme for P =(py,...,p, ) Then

I'.Il'{]'-'l’ HAE :pll.,} S ‘dt"cLEH{Cl" S }t‘n)

with equality on the lefl side if and only if fenfe,) = lag (1/p;).
Froof, Sinee C iz instantancons, Kraft's Theorem tells us that

n
e
i=1 T

Thus, we may apply Lemma 12,2, with o, = ],r‘rEi. to deduce that
I l n I
Hoippooap,) = El“i log, 5 < ij fog, G
=1 i=1

11 n
[
&= E] B log, ' = El Py = Avelen(e),..., 0 )
= j=

45 The Moiseless Dadibng Thenrem 63

o furthermore, according to Lemma L2.2, equalily helds here if and only
if q = pp that i if and enly I py = 155 or §=log (e 1
I

We note thal Theorem 23,1 holds with the vord “instantaneous”
replaced by “uniguely decipheralle.”

ma o 111
Fxample 231 The entropy of the probability distribution P = (353

iB 3
VA ol g1 4 lipga=2

fence, any inslantancous hinary encoding scheme for P oanuat l'u?.'.'n
average codeword length of at least 3/2. The Huffman encoding
tcheme (assigned directly to the probabilities)

-0 Q=0 @en

i 1 1 =
Hy(ELd) = 2tog, § + Llom, 6 + flog, 6 ~ 12516
and so Theorern 2.3.1 says that any instantaneous Linary encoding
dcheme for P must have average codeword length at lease 12614,
However, the Huffman encoding scheme

Q=0 (e (-

has average codeword Jength 4/3. Thus, in this case, we cannol achieve
" an average codeword length as low as the entropy of the source. O

Example 2.3.3 In Example 112, we mentioned that the entropy of the

| source in Table 1.1.1 is approximately  4.07931 1L'T\'rh131ll the Huffn'!an
encoding scheme iz applied to this source, the result is an en-:f:-dm‘g
scheme with average codeword length approximately 4.1195, which is
quite close to the entropy. M

Motice that the condition for equatity in Theorem 2.3.1 1s that
£ = 1Dgrﬁi{ = —log, 1y

which means that log p; must be an integer. Since this iz nol often
the caze, we cannel often expect equality.
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However, we can always fiid an instantanesus encoding scheme (]
for which the #; sabisly

(2.8.1) log, - < ¢ < Jog, 1+ 1

This follows from Kraft’s inequality, sines Lo, pl < £ iz equivalent Lo
L

|
Pi2 F
T
and so n n
% = B=1
i=1 01 =1
Now, since |

eicziagrpl;q-l

the average codeword length of ¢ = (41008, satisfies

™
n i,
_z'li';l:LL’ﬂl:CJ - zpjfi 2 Z]?‘i(lﬂg..r};-‘- ”
b=l i=1

T 13

4 1

2l Xpi :Ugr‘ﬁlk Zpi = Hrlzl:'l""‘pu}-i_ l
i=1 i=1

Thus, we have found an instanianeos encoding scheme for (p,,...,p )
xvl::os.-ﬁ average codewortd lengih is less than Hopioam,) + 1. Putti]‘rllg
this tagether with Theorern 2.5.1, we gel the Noiseless Coding Theorem.

']'_hen.rcml 2.3.2 (The Noiseless Coding Theorem) [or any probability
distribution P = [p,,... (Db we have

Hpisooop) = M;’ﬁAueLm:r[p“_..,p“) < Hllpgsen by ) + 1 i)

‘ We ‘nhou]d point oul that using {2.3.1) and the meihod of
Example 2,10 Lo construct eades does nof, in general, give the srmallest

1103511.::13 average codeword length, and so is not as good as Huffroan
EHCO{UIEEJ

EXTENSIONS OF A SOURCE
_'Tll_c Noiseless Coding Theoren determines Mind velem (Pyae oy )
to within | r-ary unit, but this may stifl be foo muach for snn?u

purposes, f'n_rl.lmaLe]y, Wlere s a way Lo improve upon Lhis, based on
the following idea.

3 The Maigeless Coding Theore 6o

nition Lel = {5,F) be a source. The n-th extension of ¥ is "
(5°,P"), where S™ s the set of all words of length n over 3, and
PO is the probability distribution defined for x = x;x) by

PT(x) = Plx - Plxy) :

it The probability distribution P e defined so that if X000, %
. are independent random sarnplings of ¥, where

P(X=5;) = P(s;)

or all i, then the distribution of the random vector X=Xy ..., Xy
fs P™ This allows for a simple proof, based on Corollary 1.2.6, of the
fact that since we get n times as much information from an
ndependently formed word of length n as we do from a word of

ength 1, the entropy of " should be n times the entropy of £, We
ve the details of this as an exercisc,

?ﬁéﬁrem 233 Let ¥ be a source, and let % be s n-th extension,
Fhen H, (") = nll (). In terms of probability distributions, we have

H(P" =nHiP) |

Applying the Noiseless Coding Theorem to the extension PY, and
uging Theorem 2.3.3, gives the following,

Theorem 2.3.4 Let P be a probability distribution, and let. P De its
n-th extension. Then

- : A1l
i, (py < LRANELT) ey 4 ] 0

It #=(5%F) is a zonece with probabiliy distribution P, and
4" = (S PR s its n-th extension, then since each source symbol in #"
contains exactly n source symbols of ¥, the quantity

Mindvelen(P")
o

iz the misimwn average codeward lenglh per sowrce symbel of F.

Theorein 2.5.4 says that, by encoding a sufficiently long extension of ¥,

we may make the minimum average codeword lenglh per souree symbol
oo 3 oas close to the endropy H(P) as desired.

Example 234  Consider the probability distribution P=l&,%:l. A
Huffinan encoding for this distribution is

=0 )=
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whose average codeward length is %-I-f:i =L
The second extension P? i

A Haffman encoding scheme for PE 5

f% =010, 1{E) =01, r(%):mh (L) =1
which has average vodeword length

1
Hence, the average codeword length per souree symbol 15 27732 =
0.84375.

Similarly, we can show that the Lhird exkension  PY has average
codeward length per source symbol cqual to 082292, and the average
codeword length per source symbol for the fourth extension  P* s
0.81830,

While it is not always teue that the average codeword length per
source symbol decreases monotonically as n incecases, Theorem 2.3.4
guarantees that the lmit sl approack HiF). 0O

EXERCISES

1. Provide the details of the proof of Theorem 2,3.9

2 Let S={abe) and P=(E2I1. Use (2.3.1), and the method of
Example 2,16, 10 construct an tneoding scheme, and compare ity
average codeword length with that of a Huffinan encoding scheme.

A Preve Thesrem 2.5.3.

Prove Theorem 2,5.4,

5. Find a source ¥ for which MindveLen (4] < L Mind veLen (9%).
Whal is the relevance of this to a theorem in this section?

. Show thal the Noiseless Coding Theorem is best possible by
showing that, for any ¢ =0, there is a probability distrilaiion for
which ﬂﬁnm'cLenr{pl,.__1[}nj —Hipy, o oop) e =0

T.  Let Digri i, ) = MinAvelLen (p,.. s l—= e lpyss bk
Show Ahat a Hoffman reduetion eannol increase the wvalue of
Dipyocpy)- (o other words, Dy, 2 Dy eyl
where s and g areas in e proof of Theorem 2,2.2.)

B, Uonsider the following method for constritcking a hinary encoding
of a  prebability  distribution (Bvsweiiik where
Py 2Py = 2y Define g by

L=

67
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q=0, q=pp b tpsy (i=1)

and let ;o =[—lag p;]. where [x] i the smallest integer ai
least as large as x. Finally, let ¢ be the hinary c}:gm_n:;'mn of kT
truncaled after the first an; bils Lo the right of the binary point.
For example, if a; = 37/64 and P = 1,-"'%1]1 , then
my=[—log [1/201] = [4.32] =5, and ¢ is the first 3 bits in
the binary expansion of q, which is ¢ =10010. (Note thal
g; = 100101}
(&) Show that the code C=(g,....¢,} has the prefix 1)):0]?0:-1.1.'.
(b} Show Lhat the average codeword length A of this code
salisfies Holpyye.op) S A< Hplppeoay) # 1. o
Consider a source that emits binary digits, with probabilitics
Pi0)=p, P{l1=1-p. Suppose we encode the output of the
source by counting °s as follows

L= 1000
[E—1001
Q01—1010

00000001 —1111
OBO00000-0

In short, if fewer than & s oceour before a1, we encode the

string of 0's  followed by the 1 with the codewerd  lejeqeq

where eje,ey is the binary expression for the number of s 1f

eight I's pecur in a row, we encode this with a 0.

{2} Prove thal this code j= instantaneous, _

() Define an cvend as the eubpuiting of a codeword. Find the
average number A of code bits per event.

{¢)] Find the average number A, of source bits per event.

(d) For p=.0, compare the number A_/A, '.‘.-'1.1.11 the average
codeword length per source symbal of the binary Huffian
encoding of Lhe [ourth extengion of the original source. What
does Lhig say about the optimality of Huffman enceding?



.1 The Discrete Memoryless Channel
and Conditional Entropy

. 1n the previous chagler, we discussed the question of how to mosl
“efficient]y encode source information for transmission over a noiseless
hannel, where we did not need to be comeerned about correcting eerors.
Now we are ready to consider the que-stmn of how to encode source data
efficiontly and, al ile same time, minimize ihe probability of
incorrecled errors when transmitiing ever a nolsy channel,

© The Noiscless Ceding Theorem demonstrates the key role played
by the concept of entropy in neiseless source encoding.  As we will see,
ntropy also plays a key role in nolsy channel encoding.

. DISCRETE MEMORYLESS CHANNELS
We begin with the definition of a discrete memoryless channel,

S Definition A discrete memoryless channel consisls of an Input alp]uabef
i={xp.0nx), an oulpul alphabet O ={y;... ¥} and a set ol
channel probabilities ply; | %], satisfying

1
ZD(J-'J"I-‘:E]': 1
=1

for all i Intuitively, we think of ply; [x]) as the probability that ¥
is received, given that x is sent thrmw,'h the channel.

""-:h'
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Furthermere, if ce=¢ - ¢ and d=d, - d, are words of
lemgth 1 over 3 and 3, respectively, the probability pld|c) that
d s received, given that o s senl, is

pid|c) = H phd; ) i1
=1

The term discrete refers to the fact that the input and ouiput
alphabets are finite, and we use the term memoryless since the
probability that an output symbel d; is received depends only on the
current input ¢, and not on previeus inputs. Notice also that a
discrete memoryless  channel has a  certaln  time, or position,
independence, expressed by the fact that the probahbility that an error
pccurs in a symbol does nol depend on the position of that symbel in
the word.

Our plan in this section iz to discuss the concept of entropy, as it
applies 1o a discrete memoryless channel.  Since input o a channel is
often praobabilistic in nature, we think of the input to a channel as the
values of a random variable X, with input distribulion defined by
PiX=x} = pix).

Each input X induces an outpul Y, with output distribution
defined by

el

P(Y=y;) = > blyy | x)plx)

i=1

The joint distribution of X and Y s given by
P{R=x;Y=y;) = ]JE}'J- [ 3, 0pd ;)

and the backward channel probabilities are

P{X=x;, Y=y)
FiX=x. 1I"-=_‘,"- = —-u----a_-r—']
(kery | Vo) = ~prgs

It is dmportant to keep in mind that the output distribution, the jeint
distribution and the backward channel probabilities all depend on the
input distribution, as well a2 the channel probabilitics.

For conventence we will refer to a diserete memoryless channel
simply as a channel Also, when no confusion can arise, we will adopt
the following notation

.I e Bz Mexmoryless Clusninel zud Canditional Eutrapy Tl

plx) = P(X=x
ply;) = P(Y=y;)
]_)[:r_.!l:r'j) = P{K:X_hwlrm}"j:]
plxfagl = PX=x; | T5"=l!-‘j:|
ply; | %) = P(Y=y; | X=x3)

:[EI'hus, for instance, the symbal pl0| 1) is ambiguous, but if we know
't.ﬁnt el and ve0, then the symbols  plu), piv), plu|v) and
‘p{v|u} are nol ambiguous.) o

" A typical discrete memoryless channel is pictured in Figure 3.1.1.

3 Y
oy Yo

i l oy

= l ]

B

bt X

i 8 i

E Input alphabet Qutpul alphabet
i

Figure 1.1 A typical discrete memoryless channel

mple 3.1.1 One of the most important discrete memoryless channels
/i the binary symmetric channel, which has input and output alphabets
1}, and channel probabilities

p{l|0=p{0|l)=p and p0f0)=p(l|l}=1-p

.ﬂ?ﬁhm the probability of a bit error, or erossover probability, is p. This
hannel is pletured in Figore 3.1.2. 0

}:
| 1.|j
i P #
o o 7 0
P
/
b1
i ’ \\
u
™y
T ——
1 a 1

Figure 3.1.2 A binary symmetric channel
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Example 3.1.2 The chanmel pictured in Figore 3.01.3 is called a binary
erasure channel, since the output ¥ is interpreted as a loss, or erasure,
of the Input. [

= = _D_ > B |:|
Aol A

b
g Ay

. o
1rs o

.rét"fs \:‘J,
[ Nl N
r

Figure 3.1.3 A binary erasure channel

CONDITIONAL ENTROPY

In general, koowing the value of the output ¥ of a channel will
have an effect on our uncertainty about the input X, This leads us to
make the following definition.

Definition I X and Y  are random variables, then the conditional
entropy of X, given Y=y, is defined by

H(X | Y=y = }_/p % 1 ¥;) lngp(xhj
1

Thus  {X|¥ =) I8 the entropy of X, computed using the
conditional probability distribution p(- | Y=y;).

The conditional entropy of X, given Y, is the average conditional
entropy of X, given Y:yj, that is,

L

+ =
DMK Y=yjloly) = 3 > plx [ j)ply ]"’gp{x i

i=1 =1 j=1

HX|¥)=

Notice Lhal Lhese definitions involve the beckward channel
probabilitics plx; | ¥;h

The conditional entropy H{X |Y) messures the uncerfainty
remaining i the inpul X, aller having observed the output Y. For
thiz reason, it is semetimes called the equivecation of X with respect
o Y. (Webster's dietionary defines eguivecation as “lo avoid
comimitting onesell in what one says™)  MNote also that  H{X|[Y)
measures the amonnt of infermation remaining in X,  after sampling
Y, and so it can be interpreted ag the [oss of information about X

e Discrele Memoryless Chanmel and Conditional Entropy

by the chanmnel.

P@c]a.l case of the hmar}f erazure channel,

1f&
| = - L > ® 0]
if2 -\-"""--‘-l
o
13 T
il
P
23

Figure 3.1.4

are given the following input and channel probabilities

p(X=0) =}, p(X=1)=3

P(Y=2|X=0) = % P(Y=1|X=0)

PlY=T|X=l) = P(Y=1|X=1)=

_3,

i =11y.3-1
! =g tleg=3

and similarly for the others, giving
py=y=4 (v=n=}

. The joint distribution is computed as follows

H

P(X=0,Y=0} = P(¥Y=0|X=0) P{X=0)= %% = %
and similarly for the uthers, giving

P{}Lnﬂ,‘:’=ﬂ)=%, P{X=0,Y=?) =

m-—- m-—

P(X=1Y¥=0) =0, FP(X=1¥=)=

(Put anether way, H{X|Y) is the amount of
@I{.;.rmatmn about ¥ that doesa™t make it through the channel to ¥.)

mple 1.3 Consider the channel pictared in Figure 3.1.4, which is a

=1

~2
3

P(X=0,¥=1) =0

P(X=1,Y=1) =4
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The conditional distribulion of X given Y is computed as follows

Bix=0Y=0) |
P{Y=0) ~— &

as expected (zee Figure 5,14} Similarly, we get

P{X=0|¥=0)= F=1

P(X=0|Y=0)=1, P(X=0|Y¥=2)=1 P(X=0|Y=1)=0

P(X=1|Y=0]=0, P{X=1|y=2)=% PX=l|¥=1)=1
Mext, we corapute entropies, where all ooils are bits and the base is 2,

H(X) = P(X=0] log m] U}+m:x:n:ogmi~:ﬁ

:dllngd-l-%logﬁ:::ﬂ.ﬁll

H(Y} = P(Y= T S 27 log sora—se
(Y} =P{Y=0}iog BT Y"U] +PiY=") log FIV=7)
+ P{Y=1) log smmr—s = L.406

The conditional entropies are

H(X | Y=0) = P[X=0| Y=0] log r-*.:x:nl =

- A o ElE e
+ P{X=1,Y=0} log PiX=LlY=0) !
and shmilarly,

H(X | Y=7) = 0.018, (X |Y=11=0

anel 20
(XY = H(X | V=) P Y=0) + B{X | ¥=AR (Y= 2)
+ H{x ]‘1’:1}1"[‘:"=1} a2 344

It is interesting to nole that sinee. H{X | Y=7) = H(X), we actually have
more uncertainty about the value of X after observing thal ¥ =7
than before observing Y at all!  Pui another way, there is snore
infarmation in sampling X if we know that ¥ =7 than if we do not
knew the value of V. Mowever, since H{X | Y) < H{X), on the sverage
we pain information by knewing the value of Y. [1

Since the joint entropy XYY represents the uncertainty in
beth X aed Y, the quantity  [{XY)—H{Y) represents the
uneertainty in bolli variables remaining after the uncertainty in Y has

;ll The Diserete Memaoryless Channel and Condilinnal Entropy i

removed. Tt seems reasonable that this should be H{X Y], and
g next theorem shows that this is indeed the case.

HX | ¥) = H{X,Y) - H(Y)
rool.  We have

WX|Y) = EW‘ | ¥iiplyy) log s

- ply;)
= %!}‘{Ki:!rj} log 'p““"{xi‘}.j‘}

xl}]'

= 3o psn) o s = Towl) e

1
= Eid:p(xi,yj] log H‘:ﬁh)_ jEP{}'_j:' log ﬁ:'_,;ﬁ

= [{X,Y) — H(Y) i

We can also interpret the results of Theorerm 311 by saying that
he information obtained by sampling both X and Y s equal to the
I linformation obtained by sampling Y, plus the information obtained by
sampling X given Y,

" Theorem 3.1.1 has the following corollary, which says that
sampling Y caunel inersase the uncertainly o X,

(‘.orullary A2 I X and Y are random variables, then
HX | YY) < H(X)

with erpiality if and only if X and Y are independent, [

Tt s worth mentioning that, despite Corallary 3.1.2, it is puﬁi.h.le
b that BN | Y=y) o= THX) for a given outpul ¥, as was the case in
o Example 31108,
L We will alss have use for the conditional endropy H[Y | X} of ¥,
W given X, defined by

H{Y | X) = LH{YU& e = 30 D plsy e p(x;) log o lsxij

i=1 j=1

: which, since il involves the (forward) channel probabilities, is a bit
casier Lo compute than H{X | Y).

R

e e e i

i
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Clonelitional entropy ean also be defined for randem veetors,

Definition [T Xy, 00X, and Yo..0Y,, are random variables, then
the conditional entropy of X ..., X, given that Yy =y, = vy,

S ek
ia detined by

H[Kll sy x‘u |Y]=3"'1>" ¥ =Ym::"1tt}

I i
== Wk T Dy s v Ve ) 1o
xl.‘z:!'\'n[\ M 111 2 :’]1) I'gpllef"':'xn|:-"'-1""‘:"m}
or, in vector notation,
HX|Y=y1= Y pix|y)log ——
XY =y)= D _plx|y)log srores |
The eonditional entropy of X aiven ¥ is deflined by
H{X|Y)= 3 H{X|Y=ylply) = > plxy) log .~---11—- i
¥ 6y pix| ¥

Conditional entropy can be thonght of as the expectation of a
certain randony variable, just as can the (unconditional) entropy. Since

A - 5 .
H{X|Y)= % pl;y) log plx; [ v

it we defline & random variable U whese value at I:ijjj is log
then J{X | Y = &(U} Thus,

B{X]) = E(]ng ﬁ) and H{X|Y)= @(];}g I*'EﬁLT"'r_))

1
P':-‘(i | }'jjls

SOME SPECTAL CITANNELS

The channel matrix of a channel is defined 1o be the matrix of
Lransition probabilities

plyy1xy) plyglx) By, %)

plyy | 25} plyalx;) Py, [ %2}

nly, lx)

|_ plyy L) w5

4 The Discrete Memoryless Channel and Cendilional Entropy i

“MNotice that each row of the channel matrix correzsponds 1o a single
""'!-."input symbol, and each eolnmn correspands to a single output symhol.
k) The channe! matrix can he vsed to define certain special types af

" channels as follows. (We will leave verification of all equivalences as

-l gyercises.)

. pefinition

1) Intnitively, a channel is lossfess if the input X s completely

determined by the output Y. Specifically, a channel is lossless if

any {and hence all) of the following equivalent conditions lold.

a) There exist nonemnpey digjoint subsets Byl B, of the oulput
alphabel with the property that P{Y € B;| X =x;) = L.

b) For all input distributions, whenever p(y;) # 0, there exists
an ¥ for which plx; |y =1L

¢} For all input distributions, the uncertainky in X, koowing
¥, iszero, that is, H(X |Y) =0

U Intuitively, a channel is delermindsiéc if the output Y Is

completely determined by the input X. Specifically, a chanuel is

doterministic if either {and henee both) of the follewing equivalent

conditions hald.

a} Forall x;, there exists a y, for which ply;| ¥ =1

b) Far all input distributions, the uncertainty in ¥ knowing X
is zero, thal is, H(Y [X) =0,

A channel is noiseloss if it e both lossless and deterministie.

Equivalently, a channel is noiscless if there exists an injection ¢

from the input alphabet {x;...x} to the output alphabet

{¥ysea¥,} for which piafx) | x) =1 forall L

Intuitively, a channel is wseless if knowledge about the input X

tells us nothing about the outpul Y. Specifically, a channel is

useless if any {and hence all) of the following equivalent conditions

haold,

a) The rows of the channel matrix are identical.

b) For all input distributions, we have H{X|Y) = H(X]}

¢) The input X and the oulpul ¥ are independent for @ll
input distributions. 0

Pipures 3.1.5 and 3.1.6 illustrale these coucepls.
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Figure 3.1.0

Definition

13 A channel is row symmetric if cach row of the channe] matrix
consists of the same set of numbers, each oceurring with the same
frequency.

& A channel ie column symmetrie if each column af the chanuel
inatrix consists of the same sel of numbers, each seeurring with
the same frequency.

31 A channel is symmetric if it i both row symmebrie and column
symmebric. [

As an example, the channel with channel matrix

Tl el
T L
P
= Sh

is symmetric, as are Lhe binary symmelric channels.

i '.\.
=
4
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~ The following theorems describe the principle features of rew and
‘golumn symmetric channels.  We leave proofs of these results as

pxercises.

" fheorem 313 For a 1ow symmebric channel, the uncerlainty in Y,
 ynowing X, is independent of the distribution of X, that is, H(Y | X}
*'ig independent of the input distribution, In fact, we have

i
S I
HX|Y)= FEIPL\’J' |} log bl [=)

t?g_.a_ny i=1,....5 Pul another way, a channel is row symmetric if
owledge about the output Y given by the input X does not depend
om which input distribation is used. 0

:‘ﬂwaram 314 For a column symmetric channel, a uniform input
distrilution produces 2 uniform eutput distribution. 0

ERCISES

Find the channel matrix for a binary symmetric channel.

Find the channel matrix for & binary ¢rasure channel,

Give an example of a 3x3 channel matrix for a symmetric
channel.

Clansider the binary erasure channel with probabilities

px=0) =4 P(x=0)=}

PY=0|X=0)=4 P(Y=2|X=0)=1, P(Y=1[X=0}=0

i:
P(Y=0|X=1)=0, P{Y=?|X=1)=3 P(¥=1| x=1{) =}
Compute Hy(X), Hy(¥), Hy(X|¥) and Hy(Y | X).

Consider the hinary erasure channel with probahbilities

PX=0) =5  P(=1)= 2
Pv=0|X=0)=2  PY=7|X=0) = P(Y=1|X=0) =1
p(y=0|x=1)=1  P(Y=t|X=1) =} pey=Lx=1) =3

Compute H,(X), H,(¥), HyX 1Y) and LY [ ).
6. Consider a channel whose input = an integer from 0 lo s ansl
whose oulput is the parity of the input. What kind of channel is
}- A Blis?
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Consider a channel whose input alphabet is the set of all inbegers

between -1 and b, and whose ontput is the square of the inpot,

What type of channel is this? What type of channel do we get if

we change the input alphaliel to the set of all integers between

and n?

Give an example af a channel that is

(a) lossless, but neither deterministic nor symmetric,

{1} nniseless,

{e) symmetric and lossless, but not deterministic,

{d) useless and determninistic,

Verify the cquivalences for the definition of a lossless chanrel,

Verify the equivalences for Lhe definition of & determinisiic

channel.

Yerily the equivalences for the definition of & noiseless channel,

Verify the equivalences for the definition of & useless channel,

Prove Thearem 3.1.3.

Prove Theorem 3.1.4.

Let fi{xp . x )=y, Y.} be a function from the input alphabet

bt the outpul alphabet of & channel,

(a) Prove that H{f(X}|X) =0 for any input X.

(1} I’rovlelthat H{f{X)) < H{(X) for any input X. Under what
conditions does equality hold in this inequality?

F‘ro‘.r'e.' that H{X,Y |2} < H(X | Z) + H(Y | Z), with equality if and

only it play; ) =plx Lo ply; [ ). What does this say in

words?

Prove Lhat H{X,Y |Z)=H(X

sav in words?

Prove that I{Z|X,Y) < H(Z | X}, with cguality if and only if

pUGY e = pleg Lz dply: | 2). What does this say in words?

(a) Prove that H{X+Y|Y)=H(X] ¥,

(L) I X and Y are independent, prove that X +Y) =
min{H(X),H{Y)}. -

LVHHIY [XA), What does this

4 - Mutual Infermation and Channel Capacity 51

;2 Mutual Information and Channel Capacity

MUTUAL INFORMATION
Constder a channel with input X and output Y. The quantity

(YY) = H{X)— H{X | ¥)

I.-oﬂiﬁ-"% the armount of information in 3, minus the amount of information

Cstillin X after knowing ¥, In other words, T(X;¥) is the amount of
:f(}[mat.'k{m that we learn aboul X, by virtue of knowing Y, or, put
&gt_- another way, it iz the amount of information about X thal gets
hrough the channel, Notice also that
I(XY) = HX)-HIX|Y)
= H{X)—[H{XY) - H(Y)] = H{X)+H{Y) - H{X,Y)

go, by symmetry, we have 1GY)=1Y;X). This motivates the
owing cefinition.

‘Definition The mutual information of X and Y is defined by

HXY )= H0 - HiX | Yy =HY) - H(Y | X) a
Notice that the guantity  EX;¥)}  depends upon the inpul
istrilution of X, as well a3 the channel probabilities plx Ly}

Example 3.1 Relerring to the channel in Example 3,13, we have

, I(X;¥) = H{X} - H(X | Y) 2 0.811 — 0.344 = 0.467 bits i
[ Example 3.2.2 Suppose thal we toss a fair die, an@ if the outcome is a
I G 4, we toss a fair coin once, but if the outcome is & 5 or 6,
)

" we toss a fair coln twice. How much information do we gel about the
o outcome of the dic from the number of heads?
b This situation can be modeled by a discrete memoryless channel,
| o7 washown in Figure 32,0, We let X =0 if the outcome of the die is a
L2 3 or 4, and X =1 if the oulcome s a & or 6. (Clearly, we
cannot distinguish between the outeormnes 1, 2, 3 and 4, nor between
§ and 6] Wealso let ¥ be the number of heads. Then

i
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P{X= Uj«.g and  P(X=1) =

and

pw:mxzmzjl F{Y=1 | X=0 % P(Y=2|X=0) =0
P{Y=0|X=1) =:1!., P{Y=1|X=1) =§. PY=2|X=1)=
Further, we have

Y [x=) =B 40 =1 and  H(Y|X=1) =ndth =3

and zo ;
HY (X =2 d 8 1168

We will leave the details of the following computations az an exercise,
PlY=0j= Py=l)=§ PY=2)=4

H(Y) 2 1,995
and so finally, we get

X Y) = H(Y) = LY | X) 22 1395 — 1166 = 0,159 bits i
=0
Dig=1.22ar'd4
®=1 s
Dlecsiors " Zhesss

Figure 3.2.1

Mutual information can alsa be defined for random vectors,

Definition  If X and ¥ are random veetars, then the raulual
information of X and ¥ is defined by

HXY) = HX)-T(X|Y) D

4 Mutual Infesmation and Channel Capacity 83

A SUMMARY OF PROFPERTIES
Far teference, let us list some of the properties of entropy and

Coomubual information, along with a description of each property. We
- eave the pronfs {where necessary) for the exercises,

o “Theorem 3.2.1 Let X and Y be random variables.
1) The information in both X and Y s less than or equal to the

information in X plus the information in Y, with equality if and
enly il X and Y arce independent

HOEY) < HIX) 4+ HY)
The information in both X and Y is equal to the information
remaining in X, given Y, plus the information in Y
H{X,Y) = H(X | Y) + H(Y)
The information aboul X ohtained from Y is equal to the
information in X minus the information remaining in X,

given Y
(Y = HIX)—HX | Y)

The information about X obtained from Y i= equal to the
informaltion about ¥ obiained from X

I(YiX) = 1(X;Y)
The information aboul X ohtained from Y is equal to the

exeess information oblaioed by sampling X and Y separately,
rather than jointly

106 = H(X) + H{Y) — H{X,Y)

The information about X oblained fram Y is always
nonnegative, and is equal to 0 00 and enly i X and Y are

independent #
{X:Y) = 0
The information about X ohtained from X s Lhe infermation
in X «
10X = HiX) 1]

Many of the relationships in Theorem 3.2,1 can be recalled from

Fignre §.2.2.
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't H{X | Y) |I(X|Y}) HIY | X) ]

\\ | ’ /f f{g
N X

HiX) H{Y} '

Figure 3.2.2 Relationships between entropy and information

THE CAPACITY OF A CHANNEL
We are now ready Lo define the concept of the capacity of a

channel,  This concept plays a key role in the main results of
information theory,

Definition The capacity of a channel is the maximum mutual
information I{X;Y), taken over all inpul distributions plx) of XK. In
symhols,
C= max I[X;Y) a
F[?‘j]

The problem of determining the capacity of an arbitrary channel
geems to be very difficult. However, we can determine the capacilies of
sorme special bypes of channels, dnehiding the fmportant symmetric
chanuels, We leave the proof of the next theorem as an exercise.

Theorem 3.2.2

1) The capacity of a lossless channel is logs, where s (s the size of
the input alphabet.

21 The capacity of a deterministic channel s log v, where v is the
size of the set {¥; | ply; =) =1 for some x;}.

3} The capacity of & noiseless channel 13 logs, where s is the size
of the input alphalbel.

4} The capacity of a uscless channel is zera. 01

g Mutaal Information and Chanel Capacity &5

Jj'l.ﬁenr\em 2.3 The capacity of a symmetric channel i=

cgym log t — LP‘{:I"] | x:' log (:‘, i-“ }

i=t

or any 1= logs F urth{\-rmgre1 capacity is achieved by the uniform

“jnput dlstnbutmn p(x) =%
Cproof. First, we observe that

HOY [ X) = D plx) (}: ply; 1 %) log P{}'jll X-J)
1 ]

But sinee the channel is symmetric, the inside sum does not depend on
“and so we get

01)  H(Y[|X)= (E ply; | ;) log p—@ﬁ) (2 p{xi})

- oty b ot gty

1 i e TR

. Now, since H(Y|X) does not depend on the distribution of X, we

@ = max [{Y;X)
D':x;

= max [H{Y) - H(Y [ X]]
Dllx'.)

= mang HiY) —HiY | X)

pl

ut  H(Y) takes its maximum value of logt when ¥ has the
aniforma distribution, and this happens precisely when X has ihe
uniform distribution (%) = 1/s forin this case,

;
Y=y = ¥ plxlely; %) =5 }_,P (yj %)

1=
i '-;:_ which is independent of j for a symmetrie channel. Finally, using
| (8:2.1), we get

L
— N = - NESR! 1
&= max 1Y X) = log § Ej piy; x50 log —Tp{),j %)

el
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Corollary 3.2.4  The capacity of the binary symmetric channel with
crossaover probability pois

Chin sy T L= plog Jl)_ (1-p} log IE_P = 1-Hip)

where H(p) iz the entropy funetion, 0

EXERCISES

1. Cempute the remaining probabilities for Example 3.2,2.

4 Suppose you flip a fair coin twice, letting 0 represent heads and
1 represent tails. Thus, the outcome has the form {ij), whers
ij=0 or 1. Hew much information aboui the outeomes of the
tosses do you get from the sum i 4§77 How much information is
there in Lhe outcome of the two tozzes?

3. An urn contains three balls, numbered 1, 2 and 3. Suppose you

draw a ball at random, If the number on the ball is not 1, let ¥
be the number on the ball. 1§ the number on the ball 5 1, then
draw another ball at random and let Y be the sum of the
numbers on the two balls. Model this situation by a channel, and
campute the information about the number drawn on the first
deaw, obtained from the value of Y. What information is

obtained about the number drawn on the second draw from the
value of Y7

4. Conmsider the special caze of a binary erasure channel shown in

Figure 3.2.3.

i-p
e ————
R
4 .
T,
B
,-f”'.f”
[ }
4 1o i

Figonre 3.2.3

Calenlabe the mutual information XY in terms of the input
probability  p0) = pg. Then determnive the capacity of the
channel, and an input distribution that aclhieves that capacity.

atieal formacion and Channel Capacity a7

. Consider the special case of a binary erasure channel shown in
Figure 3.2.4.

L] —1:' _:" . ':,'3
Tigure 3.24

.Gaiculate the mutual infermation 1{3;Y) in terms af- the inpit
probability  plxq) =p;.  Then determin_& the capacity of the
-chammel, and an input distribution that achieves that capacity,
Jonsider Lhe channel shown in Figure 3.2.5.

o]
3
1
a""\_\‘
P il
W Th
B 1—} "y
e m
g 3 ¥a

x‘i"'ﬁ‘“' ¥4

1
i 3 ¥
Flgure 3.2.5

‘ - ] 3
a) For u =3, write the channel matrix of this chanr!el, 1F1nd the
capacity of the channel, and an input distribution that
;mhie\_r_,es capacity.
b) Rep#al part a), for arbiteary o, . .
Show thal the mutual information I(X;Y) can be written in the

form
- plx ;)
XYy =3 > plxpy) log SRRl
i=1 j=1 P ]
8. Show that the capacity of a channel is always achieved by some

input. distribution. Hint. The mutual information function T[X;Y)
is a continuous fanetion of the input distribution.
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Can you express the mutual information BX5Y) as an expected

valiue?

Show that the capacity of a lossless charnmel s log s, where 5 s

the size of the input alpliabet. Whal input distribution achieves

capacity?

Show that the capacity of a delerministic channel is log u, wlere

uo s the size of the set {y; [p(y;|x) =1 for some x}. What

input distributions achieve capacity?

Show that the capacity of a noiseless channel is logs, where 5 is

the size of the input alphabet. Whal input distributions achieve

capacity?

Show that the capacity of a useless channel is zers, What inpud

distributions achieve capacity?

Prove Corollary 3.2.4.

Supply proofs {where necessary) for Theorem 3.2.1.

;?lois;dg? tal-\{:.llat{mel, with channel probabilities p{}rj | xi}.. F'.Dr each
1 istribution  pix) for X, we gel an output distribution

;’{'::"i} = 2oplxlply; %) for ¥, and hence also an uncertainty

i 1

fa) Let pylx) and pylx) he input distributions, and let
Polx) = apg (%) + {I—&}Pz(xi}
1=lf'herc b <a < 1. Show that quiy;) =aq (y) + (1-a)g.(y).
{b} Show that the uncertainty H(Y) is a convex down function
of the aepul distribution plx).
{c) Show that the conditional uncertainty H(Y |X) is a linear
function of the input distribution.

(d) Use parts (b} and {c) toshow that the information T(X;Y)
1z a convex down lunction of the input distribntion.

e Moisy Coding Theorem Bl

The Noisy Coding Theorem

The ultimate goal of accorate communication 2 to ke able to
roduce the ariginal source information, using the outpul information
ofthe channel. This is done partly by meanz of & decision scheme that
¢ used to guess Ui correct input to the channel, based on the output,
Unfortunately, most channels are not lossless, and so, in general,
gome information about the input to the channel is lost before reaching
{@ioutput.  As we have seen, the less of information is given by
b ﬁ;@iﬁ{fr‘{ j and depends not only on the channel probabilities, hut also on
, J\gﬁ.ﬁ;}input distribution.

" Fortunately, however, there are ways to compensate for the oss of
siformation in a given channel by encoding the source information
V‘)ﬁgj'um sending it through the chanwel, Let ws consider a simple
: ple of this. Suppese we wish to send information through a binary
smnetric channel, with crossover prebability ]}{%, as pietured in

e
\\\lf\ A
//{-‘l g

—F w4

1-p

i L]

Fipore 3.3.1

Each source symbol (I or 1) is sent through the channel without
engoding, and our decision schemne is simply lo decide that the received
yifibol is the one that was sent. In this case, regardless of which source
Csymbuol is sent, the probability of making a dectsion error is 1

Scenarie .
| We encode sach source symbol o by duplicating it two additional times,

 to get the cedeword oo Then we send this codeword through the
7 channel, one symbol at a tinie. Our decision scheme is to decide Lhat
¢ the ariginal source symibol is Lhe symbol that appears a neajorily of the

. time in the output string. For instance, if the output steing is 010, we

——
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decicle thal 0 was sent,

Becawse we are comsidering only memoryless channels, Lhe
probability of making a decision ervar, thal iz, an error in deciding thy
vriginal source symbel, is the probability thal two or more bit erraes
are made by the channel in transmitting the codeword, and this

probability iz _
(3) o1 +{2) 6 = 37 — 3p?

Since this is less than p, for p < %, we see What by encoding the original
source symbol, we can reduce the probability of making a decision errar,
In this way, we are able to compensale in part for the loss that is
inherent. in the channel,

Seenario &,

The previous scenario can be generalized as follows, We encode each
souree symbol o by wriling it a tetal of 2n 41 times (wo want an
odd string length so that majority decisions are always possible)

- C

Ty e

241

Then we send this codeword through the channel one bit ab & time, As
before, cur decision scheme is to decide that the original source symbal
is the symbal that appears a majority of the time in the output string.

The probability of & decision errer in this case is the probabilicy
that at least w1l Dbit errors will be made by the channel in
teansmitting the codeword,  But the number of errors made by Lhe
chatmel has a binomial distribution with parameters (Zn+1,p), and so
Lhe expected number of errors is (Zo4+1)p < o+l for p= %. Therefore,
the weak law of large numbers tells uz that the probabilily that at least
n+l channel errors are made tends o 0 as o tends Lo infinity. In
olher wards, the probahility that we make a decision error tends Lo
as ngets large, Thus, we can compenzate far channel information loss
to ang desired degree by choosing 1 large enough.

However, we pay a heavy price for doing this, in terms of the
elliciency of transiission of source information, In particular, it Lakes
a certain amount of time to send an input symbol throngh the channel,
ane il we duplicale each source symbol Znsl times, we are spending
41 umits of chanied time to send a stngle souree symbol. Thus, the
vale of source fransidssion is 'in“l-‘f-T soirce bifs per channel hit, For n
large, Lhis &= likely Lo be an unacceptably low rate of transmission,

We can see from the previous seenario that here are Lwo
samewhat conlradictory poals at wark in channe) comiminication, Op

91
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.1,., one hand, we want to minimize he probability of a dEf:is.lou elrrr.rr
¥ encoding the source data, but on the ather hand, ml':\lwa;;. o
maximize the rate of transmission of that source data. The Noisy
Coding Thearem, and its EOI:L\-‘(’ISE}, :el] uzs how we must compromise in
i 7l ese two opposing goals,
dﬁalmétge‘:.:i:l :i]:at the :-.:LE,EL-:i.ty E;E.E{:-![ a channel is the maximum a:f:mmt
f information that can be sent thlmugh the r:ha_nnel, t}Ee n‘:;:]xmlur::
Peing taken over all input distributions. The Noisy Coding Leoren
tells us that, as long as we are willing to settle for a source Lra.nsm{ssmn
tate thal is kelow the capacily of the channel, t‘ttat. iz, as lohg as we .3.1;?
iﬁﬂing to leave some roam for judicmu}s encoding, we can u:c-m]:%lsahe.
st the less of infermation te any desited degree of aa:nurac%.r. ‘o
'”Qrt gpecific; for any number R <@, a_m.:'i for any € =0, there is ?t];
encoding schems, and c.ormspondh}‘g decision scheme, that transm
source data at rate [, with probability of error al most -
L Let us now turn to the details.

THE CHANNEL o
. We hegin with a discrete memotyless channel, with inpul and

pritput alpliabels

l I={xpenx) and O ={y;,...5}

and chanmel prolabilities
Dl:lr'j ]

Our intention is to think of the channoel as ﬂ:I::.C.EpL'LIEg' mdeworde;

=g, from acode © over 3 of length n and size m, ;'T]u
gutputiing strings d=d--d,  of the same length over C’}. i 11:3
.ii},rigt.h af a fixed length code is the length of any codeword in the code,
and the gige ig the total number of codewords.)

Because the chammel is memoryless, wo have

pld|e) = ll_l[l'illdi e}

i=1

[

far all codewords «. o . .
2" Since onr primary inlerest here is in codeword input, and not _]-i:LF;It
symbol input, we will think of the lnput as a randatn veetor x};]tﬁ
input distribution defined by P(X=c} = 1:[(;}. {For endes of length L
Pt codeward input is the same as symbol Inpul. _ -

{ Each input X induces an oulput Y wilh output distribution

defined iy

P(Y=d) = Z pld | clP{X=c)
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The joint distribution of X and ¥ is given by
P{X=c,Y=d) = p{d | c)P{X=c)
and the backward channel probabilities are
P(X=c,Y=d)
F{Y=d)

When no confusion can arise, we will adopt the notation
ple) = P(X=c)
p(d) = P(Y=d)

pled) = P(X=c,¥=d)

)

plc|d) = P(X=c|Y=d)
pld | e} = P{¥=d | X=c)

P(X=c| Y=d} =

THE DECISION SCHEME
A decision scheme is 5 i i
: partial function f from the set of oubput
ih‘ings to the set of codewords. The word partial refers to the fact tl]jmt,
‘ may not L deﬁ!lmd t'oz: all autput strings. The intention is that, if an
UjL]:lut stmlag d g recmw:z:d, and if f{d) is delined, then the decision
scheme decides that f{d) is the codeword that was sent, If f{d) is nat

the codeword that was sent i ecod
: » we say Lthat a decision error i
error, has been made, Sre =

By latting
B, =1"'(c) = {d | f(d)=c}

Trez 1,.]1:-: s.at of all ml:L[JuLs for which we decide thal the eorrect inpul was
c, we can also think of a decision scheme as a collection {B.) of
L=

disioint subsets of the set i i 15l
239 e set of eutput strings. Thisz is pictured in Figure

4
|r/';;: \ft' )
Coe
C. & l\‘ 1_/ 4 :I

cm. f_;'\

FN
)

Figure 3.3.2

Decizien

B{, Schame

e e
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{HE PROBABILITY OF A DECISION ERROR
 For any decision scheme, if the codeword ¢ is sent through the
annel, then the probability of a decision error is given by

5 pidie)

dgi e

Pierrer |c] =

Hence, the probability p, of a decision error is

Vo= z Plerror | clple) = E z pid | elpic)

3.3.1)
= oagiie

Notice that this probability depends on Lhe input distribution ple), as

M as on the decision scheme,
ln order to see how we can determine a decision scheme that

irnizes the probability of decision error, let us compute this error by
J nditloning on the cutput, rather than the input, If the output of the
annel iz d, then the rorrct decision will be made if and only if £d}

s the actual input. Hence,
Pierror |d) =1 —p(f(d) [ d ]

ﬁ%ﬂraging aver all possible oulputs, we Lave

p.= 3 Plerror | dp(d} = 1 - 3 plidy | dip(d)
d d

Now, this probability can be minimized liy choosing a decision
schiéme that maximizes the sum on the far right.  But since vach term
'. this sum is nonnegative, and since the factors pld) do net depend
i the decision scheme, we maximize this sum by chossing fid) so
it pif(d) | d) is as large as possible, for all d. Lek ns SUFIIATLEE.

efinition For a given input distribulion, any decision scheme { for
“which f{d) has the property Llsat

plI(d) | d) = max ple|d)
“for all output slrings d, s ealled an ideal observer. [n words, an ideal

1 observer is one for which fid) is a cadeword maosl likely Lo have been
| ‘sent, miven that d was received. O

MNotice that the probabilities ple[d) are backward channel
probabilities, and so they dlepend on the inpat distribution,
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dlhels?_rem Aal F:nr any given input distribution, an ideal ohacrver
eeiston seheme will minimize the probability p,

[l of a decision e
among all decision seliemes, 0 o

e The ideal observer decision sclieme hasg advantages as well ag
f.tmdva_nl-ﬁ.?_z;es.‘ Perhaps its main dizadvantage is Lhat it depends on the
input distribution, Thus, if the input distribution is changed, the idey]

DrJSE'T‘-'L'.rI may alse change,  We can eliminate this dependency by
cansidering the mazonum probability of a decision error, defined by

Pl max Plerror | ¢)

This probability depends onl
¥ on the decision schem
of course), and has the virtue that if o i Yoo e g,

< €, then we have Il
: bue th i A a untform
1bmm¢i on the crror probability, in the sense that the probability of error
is small no matter what

the i is i istribuati
s #nput is, and so for all input distributions,
po= E Flerrer | elplc) = pAET <
[+

The difficulty here is that, unfortunately

method for finding decision sehemes Lhat rnla
. Anm‘.]mr way Lo remove the dependency on the input distribution
Is to consider a aniform input distribution ple) =k where m s the

size of the code.  Then, accordin to (3.5.1 ili
il L Sl the 3
decksion error is given by ? ’ ; e

= %E Plerror | ¢

we do not have a general
ke pie® small,

'1h1.=:. Is referred lo as the average probability of error.  (This
terminology is o bil misleading, since {3.5.1) l
prabability of ecror, the avera
el Perh
errnr,

. is also an averape
: e being taken over the input distribulion
aps-a better term would have been uniform probabilily of

Since, in the uniform case

[d :p_((]]c]ph[‘.:_j_ i
we have i pid) - m pld]c)

max ple | d) = max —L =1 : i
: ple]d) triax mp(d) pld|e) = T max pld [ cf

o Metsy Coding Theares 05
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gther words, for the uniform input distribulion, maximizing the
cward channel probabilities  ple|d) s equivalent to maximizing
(forward) chanuel probahilities 1pid | ¢). Again we summarize,

finition  Any decision scheme [ for which d)  has the property

p(d | [{d)) = max p(d]|e)

¢ all output strings  d, is called a maximum likelihood decision
ame. In words, f{d) is an input steing with the property that, for no
er input string would it be more likely that the output d  was
ived. O

pein 332 For the uniform input distribution, an ideal observer
ich minimizes the average probability of error), is the same as a
aximmum likelihood decision scheme. 01

The maximum likelihood decision scheme has the advantage that
,i -,.ﬁ'ﬁn easy to implement,  We will discuss this in considerable
il when we turn 1o coding theory in the second parl of this hook,
“the other bhand, il may seem te have the disadvantage thal
mitimizing  the average probability of error is nol as good as
friirnizing the marimum probability of crrer. However, as we will see
-~ dpthe next section, for the asympiotic results ol the Noisy Coding
" Hheorem, it turns out to be just as good,

'E RATE OF A CODE

Before we can state the Moisy Coding Theorem formally, we need
“discuss in mors detail the notion: of rate of transmission. Let us
fppose that the source information is in the form of sbrings of length
%, over the input alphabet 3 of the channel, and that the code O
Fonsists of codewords of length n over 3.

CIf we denote the oumber of codewords by [ C|, then it is
customary to say that the code © has length n and size |G|, or iz an
(i, | O] Jreode. (The notation {n, | O] )-code 15 used by coding theorists,
i:ut, the components are oflen reversed in books on information theory.)
; Now, since the channel must transmit nocode symbols in order to
nd k souree symbols, the rate of trapsmission is R =3£1 source
f#jj:nhuls per code syimbol.  Further, since there are g possible sonree
gtrings, the code must have size al least % g order Lo accommodate
bl of these strings. Assuming thal | O] = <% we have

k =log, [ ]
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andd so

Thus we have the Tollowing.

Theorem 3.33 Ansary (n,|C|)eode C transmits at a rate equal Lo

log, [T |
Ro=—2 L

source (s-ary} cigits per code (s-ary) digit, [

Definition The number
log, ||

[

R(C) =

is called the rate of the cade L [

THE NOISY CODING THEOREM

Now we can slate the Noisy Coding Theorem.  Let [%] denate
the smallest inleger greater than or equal to .

Theorem 3.34  (The Noisy Coding Theorem) Consider a diserete

memeryless channel with capacity € For any positive number B < €,

there exists a sequence O of sary cades, and corresponding decision

schernes [, with the following properijes,

I}y ¢, s an (nfs"7)-code, that is, C, has length n and rate al
least

2)  The maximum probability of error of . approaches 0 88—,
that is,

P ) = 0 o

We will give a formal proof of the Noisy Coding Theorem, for the ,
binary symmebric channel, in the next section. Let us instead look at
the icea ehined the prool, sinee thai will shed considerable light on Lthe
current state of affairs in information and coding theory,

In the next seclion, we will prove a result Lhat says that replacing -
the words marimum probability in the Noisy Coding Theoremn by
wverage probabilily results in an equivalent theorem, and so we may
prave the Noisy Cading Theorem in this equivalent form. ’

The [irsl step in the peoof is 1o descrilic a coneeptually simple
decision scheme that applics Lo any code Cp=At...,q.) of lngth o
anil size m. The ides is that we decide in favor of the unigue codewosrd
that is “clozest™ ro the received word, in a sense we will make precise i

he Moisy Coding Theorem 97

3 :.%-gsha next seetion. 1 a unigue elosest codewaord dees not exisl, we simply
'M'&;Ijnit AT eTTOr.

. The pexb ostep i3 te find an upper bound  on th.e RUETHGE

ﬁqba,biliﬁ,y of error hased on thiz decision scheme, say of the fonim

Iﬁ.f*'[i‘-g e ':'m:' = Uu{.cll ran ':m\-}

he notalion pa¥ey.. .1y ) emphasizes the dependence of the average
Srabability of error on the choles of code

Next, we take Lhe viewpoint that we can pick the mdew::urds €
pendently and at random, with each binary string equally likely to
. This enables us to think of the ¢ ag random variables w;, and

we have

e -

P e 5- 'ﬁ“”m? S Ulwp-a W)

g{]);u[[‘"p-- ' :-w:'n]l:l £ g'::L‘-'n'[“"l“' = wm]}

- for any random variable X, it must be true that some wvalue of X
'grsrater than the expected value 8(X) of X. Hence, there must
jst some code €,...,c,, for which

P 1) < B+ ns ) £ BT (1015 0l)

e e

ally, we show that, provided m = |'$“R'|, where R = €, the right-
and side 8(U (wy,...,00)) tends to 0 as n—wee, anch henee so does
@ left hand side. This will complete the proof.

The type of proof just outlined is known as proaf by randen
sding, and was used by Claude Shannon in his original paper. .In
Uffect, it says that nol only do codes exist with the desired properties,
pat that a randemly chosen code is reasonably likely fo have these
w_;-_i:u'opertinsl ;

: Unfortunaiely, prool hy random coding is nol constructive, that
the proaf does not tell us how to construct the codes promised 'tl:! t.h-e
oremt. What is most remarkahle about the present state of affairs is
hat, despite the fact thal the preof says that ther are a Lot of codes
hat perform as promised in Lhe thearem, ne one has vet been able to
aetually construct such codes, )

' There are some additional practical problems to be considered in
arching for desirable codes. 1o particular, a sequence of codes that
Cfulfills the promise of the Noisy Coding Theorem swould nob be of much
wse wnless the corresponding deeision schemes were relatively easy to
dAmplement,  Also, in ornder to bring the probability of error down Lo a
Cdesired level, the Noisy Coding Theorem fmplies that we may have to
increase Lhe'leng! b of the code to a perhaps unwerkable size. Thus,

s,
1

vkl AT
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i

i simmply finding codes that satizfy the Noisy Coding Theoreny does o

i solve the problem ol reliable communpication.  As we will see in the

7l sequel, in an effort ta find decision schemes that are relatively casy to

il implement, coding theorists have been led to search for codes that have
I

i considerable algebraic or geometric struclure,

THE WEAK CONVERSE OF THE NOISY CODING THEOREM

The converse of the Noisy Coding Theorem tsakes lwo comumon
forms = the sireny converse and the week converse. This Lerminology is
a bit misleading, since the strong converse is an asympiotic result,
whereas the weak converse is not and, in facl, the strong converse does
not imply the weak converze,

e plan is ta state and prove the weak converse now, and state
the strong converse later in the section. We will prove the strong
converse, for the case of the binary symmetric chaonel, in the next
section.

We begin with an bmportant result relating the information lozs
HiX|¥) to the probability of error. Consider a discrete memoryless
channel, a code O with corresponding decision scheme £, aned an input
distribution ple). Suppose that a word d s received, Then it seems
reasonable that the uncertainty H(X | Y=d] in X, given that d was
sent, should be no larger than

the uncertainty in deciding correctly or incorrectly,
given < was sent
+
Pibeing correct) - uncertainty in being correct,
given thal we are correct
+
P{bsing incorrect) - uncertainty in being incorrect,
given that we are incorrect

But if we are correct, then the uncerbainty in being correcl s sero, and
a0owe have

the uncertainty in deciding corvectly or incorrecily,
piven d was sent
+
Plbeing incorrect] - uneertainty in being incorrect,
given that we are incorrect

This can be made more precise by using a groaping axiom for
entropy, Let O= {e;,.q0,b bea code of length noand size m. Let

i e ATV e

::a.nd

Let ug temporarily fi

53 The Hoisy Ceding Thearso an

>x and ¥ be the input and outpul random veclors associated with the
‘jnput distribution plel. Thus,

P(X=c) = ble)

P{Y=d) = p{d) = 3 _p(d|cple)

x the output at d and consider the conditional
robability distribution of X given that ¥ = d, defined by

{332] pile) = pleld) = P(X=c|Y=d)

If we assume Tor concreteness that fld) = e, then
:3.'3.3) pt = Plerror [d) = 1= ple [d) = 1-pTe,)

Now we wish to employ a special case of the grouping axiom of
eorerm 124, whose proof is left as an excreise

Y p B
8,3.4) Ty ) = H{1=pg) + [1'"1”1(’['—?_}1"”'1——&)

Letting  py = 1¥leghs ])2=]:|'I:r.2],...,pm:])"I:(:m]l_. we have, in view of
(3.3.2) and {3.3.3).

X ) e
HUX | Y=d) = H(p,) + piH( Tﬁiﬁ% 1__;.'&1_})

This equation is the precise formulation of our previous disa:ulsaio‘n. .
Since H{rge. o) < logm-1), for all probability distributions

W can write

I2!" iy
WX | Y=d) < B{py) 4 p, log{m-1)

Averaging over all outputs d gives

WX | Y) = S pld)H(X | Y=d)
d

< 57 pld)[A(p) + p} log{m-1]
d

TR

pldip,

1

S pld)i(py) + log(m-1)
d d

Since the entrapy funetion H{p) is convex down, this implies

&
[}
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RK|Y) < B3 pld)p) + logtm=1) 3 pld)p,
d il

Jog m —nC < HIX|Y)

Finally, we observe that

< H{p2¥(n)) +p2*in) bog(m-1]
> opldipy =Y pld)l—ple, [d)] =1 —pleg) =1 -p(f(d)} =p,

4 d < L4+ pin) log m
is the probability of a decision error. Thus,

logm—nC—1 . 4
H(X|Y) < H(p,) + p, log{m~-1) LR

This important eesult is known as Fano's imequalily,

Y

1o < pile)

Ay R T

Theorem 3.3.5 (Fano's Inequality) For any deecision scheme {Cf) with
| &) = m, and any inpot distribution, it p_ denotes the probability of
a decision error, then

HIX|Y) < Uip,)+p, logtn-1) 0

i

Lo
. '6'w. if R = Ce, with e >0, then m = |'2“R'| 2’1“( +1 and so we ve

ne+l e
et < pgt(n)
ne 4} i

Mow we can tuen fo the wealt converse of the Noisy Coding
Theoreny, which says that, for any sequence of codes whose rate R
exceeds the capacity of the channel, and for any corresponding decision
schemes, the average probability of error must be bounded away [ 53
from 0, i

after rearranging,

1
B | At
e s vl

: 3
Gince Lhe lefl side of this inequality approaches - =1, we deduce
he existence of a 6, >0 and an N 20 such that

Theorem 336  (Weak Converse to the Noisy Coding Theorem)

Comsider a discrete memoryless chaonel, with capacity €. Suppose thal

2, 15 a sequence of {n,[ﬁ"[{']]ﬁcuduﬁ. with corresponding  decision

schemes £, and thal the average probability of errar of £ is pl¥in).

Then if R = €, there exists a constant & = 0 for which

pitin) =

for off n. e
Proof. Lot m:[s“n'[. Also, let Xo=(X[...,X,) be the input

random veclor, where X, is the -th inpul o the chanoel.  For the

1
uniform inpul disteibution ple) = &, we have H{X) = log m. Henee,

pein) = b, =0, for all n=N

Now, for a fixed v, if pi¥n) =0, then the second inequality in
3.5.6) tellz us that
]: :. logm—nl <D
hich is equivalent to logm < nC, or A v S'ma:(: this is nol the
se, we deduce that pgfin) =1 far each n. Taking

£ = min{pE) by PET(NDE)

! praves the theercm. |
B Y) = HUX) = (X 1Y) = log m — H{X | ¥) :

Mow, we leave it as an exercise bo show thal

THE STRONG CONVERSE OF THE NOISY CORING THEQREM
We conclude this section by stating the strong converse af the
Noisy Coding Theorem, which wee will prove in the next section.

(3.3.5) XYy = iI(X”Yi} <nl
i=1

logm = HiX|Y)<nt i
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Theorem 33,7  (Strong Converse o the Noisy Coding Theorem)
Cuns‘ufcr a discrete memoryless channel, with capacity €. Suppose that
C, is a sequence of {n,[s““]]—cﬂd&a, with corresponding  decision

s-&hem_&s f,. and that the average probability of error of foois p2¥m).
Then if B> € we must have

pe(n) 1
as n—oer 0

EXERCISES
1. Caonsider the channel with chanwel matriz
101 1
E %3 '
11
5 5 4
1 1 1
T g §

Far the input distribution p(x;) :%, Blxg) = pixg) = %, tind the
best decision procedure and the associated average and maximum
probabilities of error.

2. Consider the channel shawn in Figure 3.3.3,

ks

i

K>y,
142

:(2- "Ir—:)-l y
ir e

How

Figure 3.3.3

Without doing any caleulations, characterize the condition that
the channel loss is zero, in terms of the input distribution. Then
verily your thoughls algebeaically.

Yerily equation (3.5.4).

Verify inequality (3.3.5).

does not imply the weak converse,

Let. {ppeioop,} be a probability distribution.
max{p,}.

{a] Show that Hipyieeaapy) = Hip) for any i
{(b) Show that H{p,,...,p,) 2
(c) Show Lhat

Lzt

Pmax =

1
log IER—

Explain why ihe strong converse of the Noisy Coding Theerem

g

L he Majsy Coding Theorem
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Hippsee o) 2 201 — P
Hinl. Use part (a) for p,,, = §, and part (b} for p, . < %
{d) Far the ideal observer, show that
H{X | d) =% Plerror | d)

(¢} For the ideal ohserver, show that the average probability of
error satislios

piv < S H(X| Y)

Suppose we choose a code ¢,...,¢,, at random. Use Chebyshev’s
ginequa]ity
; BX
Px 2 < 2
to show that, for any ¢, we can ensure that the probability that i
PE¥eyy.aty,) 18 greater than or equal to & is at most <, if the
length n of the code is sufficiently large.

“Let CHI and CH2 be channels with i

\'.

i = {xslw---xa]i}i 0, = {3'111---=3“t11]
Channel Matrix :(])[:g’ji |xlk))

and i

= X ndah O = ECPIREES Y i

Channel Mateix = [p{yj?_ | xig:l)

Define a new channel, called the product of the two channels, with

i= {xi.]sz} i.=1,,. s .,311 _]I=1|. ' .,5'3-3

&= ol iat by Jeliants
Channel Malrix = (P{xiix-ig |3-']-1:..'j2}}
i | ¥ia¥jed = Bl ;00 plygz | %)

In words, the produet channel is used, for input 2%, by sending
the first component x;; through the first channel, and the second
component X, through the second channel, simnltaneously.
Show that the capacity € of the product is equal to C= C4C,,
where €, is the capacity of the i-th channel.
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B Let  DBSC be a binary symmeiric channel, with erossover
probability  p. Consider the following three channels, eaell with
input and oulput alphabels consisting of the set 2% of all binary
wurds.nr length 3, Let iji,i, be the input and to0g be the
LTI
(a} Output o, is determined by sending iy through BEC. Oulputs

oy and oy are chosen randomly, with each possibility Leing
equally Tikely.
(b} Output o is determined by sending the majority bit from
among iy iy and iy theough BSC, Then Uy = 0g =0,
{e) Outpul oy is determined by sending 1, through BSC,
Por each chamnel, assume a uniform input distribution, and a
decision scheme that simply declares that the input iz the same as
the cutput. Find the probability of a decision error in each case,

10, ‘The Hatming codes, which we will study in detail later in the
book, have the following properties,

(i} For r=12.,, the Hamming code
n=2"1 and size

| gfr} | = 2% -7 =1

Myir] has length

(The cadewnrd alphabet is binary.)

(i) The Hamming distance between any pair of codewords is at
least 3.

(iti) Any binary word of length n s either a codeword, or else
it has distance 1 {rom exacily one codeward.

fa) Caleulate the rate of the Hamming code Hogirh
happens 1o the rate a5 n—ee?

(b) What is the ideal observer decision scheme for this code,
assuming a unilorm  inpul  distribution into &  binary
symmelric channel with erossover probability p < %‘."

(¢} Compute Plerror |d), under the ideal observer decision
schemie,

(e} Compute p_, under the ideal sbserver decision scheme,

What

j Proof of the Moisy Coding Theorem L0h

ﬁ_4 Proof of the Noisy Coding Theorem
" and Its Strong Converse

In this section, we prove Lhe Moisy Coding Theorem and its strong
epnverae for the case of the hinary symmetric channel, The proofs in
Hhiis case include the major ideag embodied in proofs of fuller versions of
;Hihge thearens, and have the advantage of bringing these ideas closer to
& surface.

Hefore beginning, we need a few preliminary definitions.

Toition  The zet of all binary words of length n will be denoted
2% Thus, |[2%]| =2% W x and y are binary words of the same

mgth, then the Hamming distance d{xy) from x to y is the
umber of pesitions in which the bwo words dilfer, [0
For instanee, i x= L1031 and y=01011, then dixy) =2,

If p=0, then the closed ball with center x and radius p

B(x.p0) = {y | dxy) < p} g

Let us dispose of a lechnical matler in a separate lemma, rather
than interrupt Lhe upeoming prools,

Temma 341 Let 222 be an integer, Let 0 < R < C, Then therc
ists an L' salislving
: log,

41y R4p <R <e

roof. The existence of R s elear. Sinee nR' ZaR +log 2 + 1, we
Vi

Loy o Lol o PIVEIORE 5 bt =R 5 (o) - 1)

— Sll'snR] —s> [311R'|

rs“R]ggs—, which iz

0 the last inegqualily helding previded  that
certainly true for no sufficiently large. @
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MORE ON THE FROBABILITY OF ERRBOR

Our plan s to prove a version of the Noisy Ceding Theorem with
the words maezomum probability replaced by average probobility.  As
promised in the previous section, we have the following resull, which
shows Lhat the two versions are equivalent,

Theorem 3.4.2 Copsider a discrete moemorytess chiannel, and let € he
any positive real mumber. The following two smtcmema are equiv d,].ellT
1] For any R <G, there is a sequence of {n, |'s“ Thcodes
correzponding  decision schemes £, for which the mazimum
probability of error p**n) approaches 0 as n—oo
For any R <€, there is a sequence of (n,[s"%])-codes L. and
corresponding  decision schernes g, for which the average
probability of ecror pS%n) approaches 0 as n—oo,
Proof. As we have already noted, if the maximum probability of error
is less than ¢, then so is the average probability of error,  Hence,
statemenl 1} implies statement 2).

Az for the converse, suppose statement 2) holds and we are given
an R< € Firsh, choose an R’ sa.tisfwngn {3.4.1}, Then, according o
statement 2, there is a sequence of (n[e"" J)—codes I, and decision
schemes g, for which the average probability of ereor tends to 0 as
n—ce, Henee, for any ¢ =0, i n is sufficiently large, we may find &
eodi

h1

L3
(L

I"u. = {El“"!&u}

3 ! HiEA .
where w=[s""], and a decision scheme g, for which the average
probability of error is less than /2, that is,

1]
Tl:‘ E plerror |e) f-:%
i=1
Now, we leave it as an exercise to shew that if the average of a sel
of nonpepative numberz is equal to &, then al least half of the numbers
must be less than or equal Le 2a. Tn the present comtext, this tells os
that at  least hall of the codewords e &K, must  satisly
Plerror [g) < 20¢/2) =« Using only Lhese codewords, we get a code

(":u == {l:-“....,i;'r,}l

¢
of lenglh 0 and size v > l[h“n 1. FPurthermore, by restricting the
decision schome g, to those output strings d for W]u-:'h g”(dj} e,
we geb a maxivmmn probability of error at mc}bt £
[3.4.17 hiolds, so does {3.4.2), and so

Finally, since

| C'n [ > % !'Snﬂ"l > {5"“]

i34 Proof of the Noisy Coding Theorem 07

b'1‘:{"]:1331 we can, il necessary, take a subset of © {and Further restrict the
decision scheme) to oblain the code described in statement 1), This
proves the thearem. 0

| PROOF OF THE NOISY CODING THEOREM
Bub In order Lo prave the Noisy Coding Theorem, we will use Theorem
";’ C1,2.8, For convenience, lel uz restate it here as a lemma.

mma 343 1f 05 A <1 then
Al

Z G{l) < qulI{A)

k=0

where H{A} = A log 11~+|:1-,5.} lnangllJl is the entropy function. [

We are now ready for the proof of the Naoisy Coding Theorem.

Theorem 344 (The Noisy Coding Theorem) Consider a discrete
mcmnrvlees channel with capacity €. For any positive number R < C,
i there exists a sequence C, of s-ary codes, and corresponding chls:on
d@ hemes ['n, with the following propertics,

%C C, 1 an (0,[*"))-code, that is, 1, has length n and rate at
least. H.
The maxinmum probability of errae of [ approaches 0 as n—os,
that is,

pe(n) — €

Proof,  %We prove this theorem fm‘ a binary symmetric channel (s = 2},
with erossover probalbilily p < 3 The plan of the proof was outlined in
’bh& previous section, o el us go directly to the delails.
“ Lel & be any positive number for which  poe -C,::Ji:l and let
p=nfpbe). Lel Cf = ey} be any code of length n and size
. Inoorder to perform raudom coding, we must aflow the possibility
that some of the codewords ¢ € 0 are identical. {Thus, the code
Vs a muliised, rather than & set.y We leave It as an exercise to show that
o0 this presents no problems.
: Now let us define a decision scheme Pn as follows, Supposce that
o the string d - isireceived. If there is a wnique codeword ¢ in the closed
Cball Bid,p), we decide on that codeword, Otherwise, we simply admit
" adecision error. Thas, if ¢ & Bid,p) for ki, we admit an error,
even i ¢ = g
According fo Ahis decision scheme, if o i sent and d is
receiver, a decigion error will oocar il ¢ iz not in ﬁ[d,p], or i there is
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a eodeward o with k54, for which o, € B(d,g), Thus

Ploorfe) < 3~ pldle) + 5 pdle)

d e 2 dg 2™
o Bld,p) Ae; e B(d, p)
(1#1)
i
S 2 pdlg + Y T pi|e)
dg 2™ i=1  de
L B{dnﬁ'J i#1 G = El:dr.l'}]

The fiest sum on the right is the probability that the received
word d s not in the elosed ball Bid,p), which is the probability that
at least. p bil errors have been made Ly the channel. But, according

to the law of large numbers, since p > np, this probability tends Lo 1
as n—eo. It follows that

E P{dl “j:] = IlflLn
dg 2™
@ Bid, g

where & —0 as n—eo, Note that, sinee the set of all binary sbrings of
length  n iz finite, there are only a finite number of possibilities for
the . Hence, we can assume hat &, is independent of the code
We now have

i
Plerrar|g) = 6, + E pld | g}
Jj=1 dg 2
J#l e Bid,p)

In view of Theorem 3.4.2, we can assume that cach cadeword is
equally likely to be input into the channel and find a bound on Lhe
average probabilily of error.  Sinee, in this case, ple) = F%T for all i,

we have
1L

B¢ (gse 1 6) = i ) Plerror | ¢)
=1
] I !'I'.I_‘ m
E 3ll+ it Z Z: Z ]J(dfcﬂl
i=1 j=1  de2™
I#L o e Bd,p)

Lelting

Ui dixy)sp
6P[x,y} ~ { U otherwise

: Proof of the Maizy Coding Theorem 104

T i
PEen ) Sk D0 D0 3 p(d )b, (de)
i=1 jmll de?®
I#i

i L um
{84.3)  pIepe ) S8+ flﬁ B i Z pid |c§}ﬁp[d,cj}
& (I. 6 2!: i=l ll

I
1
L

¢ Mow, suppose that the codewards o are chosen independently
cand at random, with each Linary string equally likely to cccur. If ik

tﬁ;ﬁirescnts the i-th codeword chosen, then w,...,w_  are independent

I -
dom variables, uniformly distributed over the set of all 2" binary

. ‘E&‘- rds of length o, Further, from (34,3}, we deduce that

s
=
=

DBRCHRERCE

de2" j=1 J=1

L e T —

'{;‘iking expected values, and noting that for i3, the random variables
Ed |(¢-'i] and -5[d,wj] are independent, we get

:ii'.ri,ri]l

) S04 3D S(p(d | )06, (0

' . B(d,
CBlpld [wy)) = 3 § oI Pwy=x) :‘2% 3 65(dx) :LEHI’U.

xe xe 2"

4
4 Bp(d]w)) =3 pldlxiPlw=x) = 5 p(d|x)
: :\_'.‘ KEQII o xEE‘II
(. Substituting these values into (3.4.4), we get
: 3 o n Bid,p) |
SR (TR | - R I U :1% pid | x) %
b de 2t i=l j=1 " xeg2®
= 1
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Rearvanging terms, and noting that for auy d, |B(d,p)| = |B(0,p) I,
where 0 is the binary word consisting of all 0%, we gef

(3.4.5)

Bog) O &
E{P;u(b}““ ‘!-wn]}} E én +% }__{ E Z- P{d |K}

i=1 j:l xEﬂn dEQ“

P#i
Now,
¥ L elE= N =
xe? de 2" xe
and so
] m i
Yoo Yopdix=) 3 P =mm-1)°
=1 j=1 xg2" de2® i=1 j=1_
i#i 1#1

Substituting this inte (3.4.5) and simplifying gives
82wy, )) 8, + B B(00)|

Since g = n{p4e), Lemma 343, with A = pte, implies that

n{p-te)
|ﬁ|:u,l|‘3]| = E (:) S 211“[5:-}{)
k=t

ani =0

Blpafey, . ow ) A ‘.E%?‘n“(p-{-f}

Since this holds for all sufficiently small ¢ = @ (s0 that pte< %}, and
since the entropy unction 1 is continuous, we have
A Hi
BIPZ(Wys. - W) S 8, + T2
Writing
%‘QUH{P} - 2!0321:1— nf1=Mipl) - 2logzm —n

thiz hecomes

BIpE eyt )) <6, 4278 T ne

= L
Mow, singe R < € weean find an R' for which

R+l<Rhize

3 Proof of the Noisy Coding Theovam 11

x

n gufficiently large. Therefore, we have for sueh n,

1 v
rztﬂ{'ll < gkt 1< 2:|R+l o :,:u[l{-l-n] - gnﬂ-

fore, taking the code sive to be

m= |-211R.]

log, m — 0t < log, {'f‘w} —nC < n{R' —C)

- [
(T D a

Finably, we observe that, for each n, thers must exist at least one

(wl"'!lr’wll“} = [cjs"ﬂctn}

random vector (i), ,,. Wy}, that is, one code O = (&Gl
ich el

-nfC-R

PEM ey B) S By 2
ioth terms on the right side of this inequality tend to 0 as
, the proof is camplele, Il

OF OF THE STRONG CONVERSE - .
In order to prove the strong converse of the [Nu‘m:,- Cloding
rem, we need a preliminary lemma, Stirling’s formula is

nl = 4/2an n"e exp (ﬁin-gﬁlwl')

i,s formula underestimatos n! when an even number (including 2eTo)
‘terme of the series in parenlhcses are taken, and ovem'::tinmtes n!
en an odd number of terms are taken, We will indicate in the
cises Tow this formula can be used to prove the following lemma.

Temma 345 170 <a<i, then
-
(11}2 211[lll::-1.} A

Rl

where H(a}:alugé—i—{l—-a} 10511_—5 i ihe enbropy Fanction, and
§,—1 as n—o, 0
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MNow we are ready for the proof of the strong converse. We will
prove the thearem with the words everage probabilily replaced hy
mazimam probabdilidy, sud leave it as an exercise o show that the twa
versions are equivalent. Thus, we prove the following result.

Theorem 3.4.6 Consider a discrete memaryless channel, with capaciy
C. Suppose that O, is a sequence of (n,[s"™codes, with
corresponding decision schemes £, and that the maximum probability
of error of £, i5 pI*Tn}. Then if R > €, we must have

preEin)—1

as oo,
Prooﬁ (For the binary symrmetrie channel, with crossover prabability
p<i) We will prove the theorem by assuming that pP*{n), does nat
converge o 1, and showing that this implics R <€ In partmu!,ér we
assume Lhat t-hfre exists @ number A< 1 for which pl*(n) < A, for
all sufficiently large n, and show that It < ¢,

Intuitively speaking, the inequalities

i3.4.8) plerror [ ) < pP™n) < A< 1

which tell us that the probability of error is not too large, also lell us
that the sets B, =f7'(¢;) cannot Lie too small. For if B, i small,
then nat enough crrors will be corrected, and the probability ﬂf a1 error
will therefore be large. On the other hane, the sets B, cannot he tog
large, for they are disjoint subsets ol the 2“ possible b:mry words of
lengih o,

Cur plan then is to firsh get a lower bound on the size of the sets
B, say

|Bi| =L

and then use the fact that the [2"R] sers B; are disjoint to deduce that

[‘lhﬁ'}- L=< all
&

This tells us that R cannot be too large and will lead us to the desired
conelusion.

To make all of this more precise, consider the set B;, as shown in
Figure 3.4.1. *

A e e S
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Figure 3.4.1

i " q
se of the nature of the channel, and because p<g a given string
fewer errors is more likely to be received than a given slring with

Blep) C B ¢ Blc o 41)

rsome g =0, [The set B is more tightly packed around ¢ than
i E ) To verify this, suppose that d, & B;, d, ¢ By, but that d, i

rto ¢ thanis d . Then,

It

using B;)

S pldile)

dje B,
= 2
dieBio{d)

< . pldle)+pld, )
dj € BJ_{':I'u}

= e pid; | )
di e B—{d, } v {']v}

= Pino error | ¢, using B;—{d, yu{d})

"Plne error | ¢,

p(dy | &) 4 pld, | e)
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Henee,
Flerror | e, using B.) = Plerror | g, using B={d, v {d.}]

We can therefore conclude from (3.4.6) Lhat

(3.4.7) Pierror | g, using B} < pl*(n)

We do net contend that the sets Bf,..., Bl form a decision
scheme, for they may not be disjoint. Our interest in the set Bf Colnes
from the fact that we can easily eskimate its size, by estimating the size
of g, using {$.4.7) and the law of large numbers.  Then, since
| B{|=|B,;|, we get an estimate on the size of B,

In particular, a decision error will occur uging the sef B
whenever the channel makes al leasi  p4-1  bit errors, since in t.hat
case, the received word will lie outside the ball Bie,p+1]), and so also
outside the set B Hence, (3.4.7) implics that

Plat Teast pi+1 bit ervors) < p**(n) <A <1

Now, if p+1 = op’ for any p' < p, then
Plat least np’ bit errors) < P{at least pi+1 bit errors) £ A < 1

which cannol happen Tor oo lacge, since 16 would conteadict the law of
large numbers, which savs that the probahility on the far left must
approach 1 83 n—oe. Thus, given any p' < p, we must have

(3.4.8) ikl =g

for n sufficiently large (and depending en '),
form

Writing [3.4.8) in the
p; = n{p' =) = np"
we see that, Tor any  p” <,
.I':"i = l’!i}”
for n sufficiently large.

Now we can estimate Lhe size of B, and so also of B, For any
P i s sofficiently Tarpe, we have g > np“ and 0

¥

| Bieppy) | = ZQ (n; )

J=l]

i

|B;| = |B{| =

But then, since p¥ < p< %, Lemma 3.4.5 implies that

{5.4.9) A -Jf““h:p”}"‘sn]
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f,—0 as n—oo. This is the Yower bound that we have besn

ng.
Sinee the [?"R] decision sels B, are disjoint, and since there are
binary strings of length n, we ha'.e

|'2nﬁ-|
3B g
i=]
en [3.4.8) implics
[gnl'{'l 2 H{]J IS“]ET‘

gt 2“[1_H|:!}”}+5n]

j]ich implies that
R <1 —Hip“H+d,

pre 8 =0 a5 e, and where  p" iz any number satisfying
& ] But since the entropy function H  is continuous, and sin-:e
i, we deduce that R cannot be strictly greater than 1—H{p)=

ther words, R <€ This coneludes the proof. 0

XERCISES
Show that, if the average of a set of nonnegative numbers is equal
to a, then at least half of the numbers must be less than or equal
fo Za.
If X isa disevete random variable, prove Lhat at least one value
of N must be less than or equal to S[X)
Show thal the use of multisets in the proof of the Noisy Ceding
Theorem does not cause any preblems.
Show that, for §<a<l, and h=1-a,

2.“” [a)

(n)z mb

as follows,
{a) Use Stirling’s formula to get a lower bound on

() = oot

by underestimating n! and overestimating (an)l and i)l
as indicated in U text,




— ==

L1

3 'i';[oigy Cm:'“m

(B) Use in the result of parl (a), the fact that, for an > 1 ang
b =08,

| 1 1
1 2an + Fhn = a

1)»”’5

gl e L TREGETR
EXP( Ldan  1Zbn 2 2

il s0

{e) Do the cases not eavered in part (b} separalely.

Use the resnlts of the previous exercise to prove Lemma 3.4.5.
Show thal Theorem 3.4.6 s equivalent to the strong converse of
the Noisy Coding Theorem {Theorem 8.5.7). '
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Error Detection and Correction

The jumping off point for coding theory is Shannon's Noisy
ng Theorem. Let us undertake a review of some of the topics Lhat
covered in the previous chapter, so that we can restale this
artant theorem. This will also help to set our terminclogy, for
o readers who have studied the information theory portion of this
L, as well as for those who have not.

" We begin with the definition of a block code.

efinltion Let A= {a;... ya,} bea finite set, called & code alphabet,
ad leot A7 be the set of all strings of length n  over . Any
onemnpty subset € of A" s called & g-ary Bblock code. Each string
(0 is called a codeword. 1f CC A" contains M codewords, then
‘i customary to say that C has length n and size M, or is an
1, M}-code. The rale of a grary {n,M}-code is

log, M
1

[HE CHANNEL

Now let us define a communications channel, Sinee our intention
s to think of the channel as accepting codewords e=ep-n, from a
code O ouf length 1 over a code alphabet A and outputting strings

e e T
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d.: dpoeod, of the same length over an alphabet that contains A, we
will assuime that the input alphabet is a subset of the output alphalbet,

Definition A discrete memoryless channel consists of an input alphabeg
A=day,..,a.}, an ontput alphabel, 7 = by by} containing A,
and a set of channel probabililies, or transilion probabilities, p(b; | a.)
satislving T

¥

3
Z:P[bj |-’1',]' =1
j=1

for all . Intwitively, we think of pib; | a;) as the probability that
is received, given thal & is sent through the channel ; !

Furthermore, if e=cy-voey and d=d; -+ d  are words of
length n over A and O, respectively, the probability pld}ec) that
d {5 received, given that ¢ is sent, is

bl [€) = ﬂpcdi &) !

IExampIe 411 One of the most important discrete memoryless channels
is the hinary symmetric channel, which has input and output alphahets
{01} and channel probabilities

P10 =p(0|1)=p and pO[0)=p(1|1)=1-p

Thus, the probability of a bil error, or crossover probability, is p. This
channel Js pictured in Figure 4.1.1. [

/"\ |

A binary symmetric channel

Figure 4.1.1

The channel matrix of a channel is defined Lo be the matrix of
channel probabilities

TR —
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piby [ag) plby|a] PU:'; |1)
piby [ag) plby|ag) plb, [ a;)
piby fag) piby la,) p(by [a,)

Since input to a channel is generally probabilistic in nature, we
ak of the input as the values of a random variable X, with inpui
gribution delined by P(X=s) = pla;). As we did in Sectien 3.1, we
cmow define the outpul and joint distributions, as well as the
skward channel probabilities. However, since our primary interest is
eword input and not just symbel input, we think of the input as a
om vector X, with input distribution defined by

P{X=c) = ple)

Fach input X ioduces an output Y (which need not be a
deword) with output distribution defined by

P(Y=d) = E pld | e)P{X=c)

'gjoil:tt distribution of X and Y is given by
] P(X=c,Y=d) = p{d | e} X=c)
d the backward channel probabilitics are

F(X;t’.;‘(nd}

PiX=c|¥=d] = w

Wﬁen no confusion can arise, we will adopt the following notation

b(e) = P(X=c)

pld) = P{Y=d)
pied) = P{X=c Y=d)
pleld) = P(X=c|Y=d)
pld|e) = P{¥=d | X=c)

When a received symbol is different from the symbol that was

e nput Lo Lhe channel, we say that & symbol error, or channel error, has
i)

oceurted,  When o sedewerd e s dnput into the ehannel, buat the

coutput d Qs not egual to e, we say that a woed error has occurred.

R T £y T s T,

o el R
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BURST ERRORS

Much of coding theory assumes thal errors in transmission ape
independent, However, this can be an unrealistic assumption.  For
instance, electrical interferences often last longer than the time it fakes
to transmit a single code symbol, and defecls on magnetic tape or disk
are usually larger than the space required to store a single code synbag),
Henee, errors often oceur in dursfs.

Accordingly, we will also discuss the question of designing cedes
that are effective in correcting durs! errors, As we will see, the auality
of & ecode may be quite different when it is used for burst errgr
correction, rather than independent error correction,

/
THE DECISION SCHEME '

A decision scherne is a partial function  from the set of outpat
strings to the set of codewords, The word pariial refers to the fact that
[ may not be defined for olf output strings, The infention is that, if an
outpat string d is received, and if f{d} is defined, then the decision
scheme decides that [{d) is the codeword that was sent. If f{d) is not
the codeword that was sent, we say that a decision error, or a decoding
error, has heen made,

By letting

By = (c) = {d|f{d)=c)

be the set of all outpuls for which we decide that the correct input was
o, we can also think of a decision scheme as a collection {B,,..., B}
of disjoinl subsets of the set of culput steings, This is pictured in
Figure 4.1.2.

A, \Pc

II d:' :
c o= Vo "

N ' o
C.+ - »c,

[ o

Figure 4,12

Error Detecticn and Correction 13

Let ns chear up an jssue related to terminology, With regard to a
munieations channel, such ss the one shown in Vigure 2 of the
troduction, the term decoding refers to the processes of attempting to

cct any errors in trapsmission, as then reclaiming the original source
iessage from the corrected codeword.,  However, for coding theory
rposes, the term decoding refers simply ko the process of error
srection, which is implemented by means of a decision scheme.

 ABILITIES ASSOCIATED WITH ERROR DETECTION

If errors occir in transmission, they will be detected if and only if
received word is nef another codeword, Thus, if a codeword ¢€C
nb, we have

Plundetected error | ¢ sent) = Z pld | e)
de
d¥*e
, the probability of undetected error is given liy

Pundet err = E Z ]:'l:dlc}pl:c)

cEC del
d#c

OBARILITIES ASSOCIATED WITH ERROR CORRECTION
For any decision scheme, if a codeword © s sent threugh the
nel, then the probabilicy of a decision error is given by

>, pldle

dii~ e

Plerror |¢] =

ce, the (unconditional} probability p, of a decision crror is

J.I:l Pe = ZP(mch]p[c] = Z Z pld | <hple)

Y oagr e

Notice that this probability depends on the input distribution ple),\as

| as on the decision scheme, .
ln order to sec how we can determine a decision scheme that ™

mizes the probability of decision error, let us compute this error by
nditioning on the autput, rather than the input, If the owiput of the
channel is d, then the correet decision will be made i and only it {{d)
as the actual topat, Hence,

Plerror |d) = | — p(fid) |d }
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Averaging aver all possible autpuls, we have

P = z Flerror | djpid) = 1 - ?]}{f{d} | dip(d)
d

Now, this probability can be minimized by choosing a decision
sthemne that maximizes the sum on the far right, Bul since sach tepm
in this sum is nonnegative, and since the factors p{d) de net depend
on the decision scheme, we maximize this sum by cheosing f{d) so
that p(fid) |d) is as large as possible, for all d. Let us summarize.

Definition For a given input distribulion, any decision scheme T fo
which f{d) has the property that f

plf{d) | d) = max ple | o)

for all output strings d, is called an ideal observer. In words, an ideal
observer is one for which f{d} is a codeword most likely to have been
sent, given that d was received, [

Notice that the probabilities plc|d) are backwsrd channel
probabilities, and so they depend on the input distribution.

Theorem 4.1.1 Fer any given input disteibution, an ideal observer
decizicn scheme will minimize the probability p, of a decision errar,
among all docision schemes. [)

The ideal obscrver decision scheme has advantages as well as
disadvantages, Perbaps its main disadvantage is that il depends on the
input distribution, Thus, if the input distribuiion is changed, the ideal
observer may alse change,  We can eliminate this dependency by
considering the saremum probability of a decision error, defined by

.

b = max Plerror | )

This probability depends only on the decisien scheme {and the chanpel,
of course}l, and has the virtue that il pM* < ¢ then we have a unifgrm

bound o the error prohability, in the sense that the probability of error
is small no matter what the input is, and o for afl inpnt distributions,

w have
po= 3 Plerror | p(e) < piie7 < o
T

The dilfieulty here is thatl, unfortupately, we do net have a general
methed for finding decision schemes that make B small.
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Another way to remove Lhe dependency on the input disteibution
4ito consider a uniform inpud distribution

ple) =%
ere. M is the size of the cede.  Then, according to (4.1.1), the
:'di@:#{;;babllity of & decision error i gi.ven by

Bt = -FETZ: P{error | ¢}

is is referred to as the average probability of error.  (This
minology is & bit misleading, sinee (4.1.1) is also an_average
shability of ervor, the average being taken over the input dlstr;bptmn
). Perhaps a better term would have been wniform probability of
or.)

Sinee, in Lhe uniform cage

pid [} ple) 1
ple | d} = p{d}l ~ mpl

i pid | e}

ave

1
max plejd) = i ':let_dj pidjc) = o) max pid]| )

noother words, for the uniform input distribution, maximizing‘ Ehe
backward channel probabilities ple|d) iz equivalent to meximizing

pld | f{d}) = max p(d| c

& f:;:r all ontput strings  d, is called a maximum likelihood decizion
scheme.  [n words, {{d] is an input steing with the property that for no
other input string weuld it be more likely that the outpul d  was
received. (1

Theorem 4.1.2  For the uniform input distribution, an ideal observer
(which minimizes the averrge probability of error) is the same as a
it likelihood decision scheme, [I

We awill assume [from now on fhat the input fo g channed is
uniferm.  Thus, maximum likelihood decision making is ap ideal
obzerver, and we have

/

e T
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(4.1.2) Vyndet erp = Z E[f pd|<)
el deC’
d# o
and
1
(4.1.3) Pdosde crr = D a Pl

l:EG d?f‘_l[c}

THE NOISY CODING THEGREM

The capacily € of a channel is the maximum amount of
informalion that can be sent through the channel, the maximum being
taken over afl input distributions. More details on this can be found in/
Seetion 3.2, The Nolsy Ceding Theorem tells us that, as long as we arc
willing to settle for a rate that is helow the capacity of the channel, we

can compensate for the Joss of information by the channel te any
desired degree of accuracy,

Theorem 4.0.3  (The MNoisy Coding Theorem) Consider a discrete

memotyless channel with capacily €. For any positive number R < &

there exists a sequence (), of rary codes, and carresponding decision

sclhemes £, with the following properties.

1} G, is an [n,[ruﬁ]}l—cadf&, that is, © has length noand rate at
least R,

2} The maximum probability of ervor of I approaches 0 as n—,
that. is,

P () — 0 1

The proof of the Nolsy Coding Theorem given in Chapter 3, and
indeed all known proofs, are non-constructive, that is, they do not tell
us how to consiruct the codes promised in the theorem, Furthermore,
despile the fact that the proof given in Chapier 3 says that there are’s
lot of codes Lhat perform as promised in the theorem, no one has yet
aclually been able to construet such cades,

There are some additional practical problems to be considered in
searching for desirable codes. 1o particular, a sequence of codes titht
fulfills the promise of the Noisy Coding Theorem would not be of much
use unless the corresponding decision schemes were relatively easy to
implement,  Also, in order to bring the probability of error down 1o a
desited Jovel, the Noisy Coding Theorem implies that we may have to
increase the length of Lhe code to a perhaps unworkable size. Thus,
simply finding codes that satisfy the Noisy Coding Theorem does not
solve the prolilem of reliable communication.

i ‘ i L2y
Error Delection and Correction

Ag we are about to see, in au effort o {'md.l decision schemes that
relatively eazy to implement, coding theorists have }mc:1 led Lo
for codes thal have considerable algebraic or gaun:m!,nn structnre,
We have now set the stage for a discussion of clodmg thear}r._ Ti_le
order of business will be to deseribe rn'!t'l'll'ﬂﬂﬂ'll dts}tance decoding 11}
imore intuitive fashion, by introducing a metric on the st C o
Jewords in a code.

trhese crercises are faken from Section §.3.)

 Consider the channel with ¢hannel matrix

CT TR ) (S, 1)
gl wabes Lol
e e BIpe

Tor the input distribution pix;) = %, pxy} = pixs) =%, ﬁn_d the

best decision procedure and the assoclated average and maximum

probabilities of erear, . . | .

Let BSC  be a DLinary symmetric channel, with crossover

probability p. Consider the fellowing three channels, eachlw:th

input and output alphabets consisting of the set 2 of all binary

words of Jength 3, Let il be the input and 0,040, be the

utput,

?a.} p.output oy is deterinined by sending .i’ through BS.C.']. Ou]tlp}!ts
oy and o are chosen randomlby, with each possibi |L;-.If el
qually lkely. -

(1) EDlutpuyL 01}53 deterrained by sending the magerily bit from
among Iy, Ly, aod iy theowgh BSE}. Then 0, =103 = 0.

{c) Output oy is determined by se.nclmg‘ iy T.hr:::ug:h B:S(J.

Far esch channel, assume a uniform input distribution and a

decision scheme that simply declares Lthat the 'nqmt_is the same as

the output, Find the probability of a r]e::lsim} error in cach case.

The Homming codes, which we will ztudy in delail later 1n the

& the following properties.
bm::?f hl?;: ll‘]= i gti}m Hamming code  Th,(r) has lenglh
n=2"—1 and size

|36, = 2% —1—

{The codeword alphabet iz binary.)

{ii}) The Hamming dislance between any pair of codewerds is al

e L
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least 3.
{ii) :"'L_I'ly' binary ward of length n is either a codeword, or has
distance 1 from exactly one codeword,

(a} Caleulate the rate of the Hamming code M ir}.
happens to the rale a3 n—sa? :

() Whal‘-‘ls the ideal observer decision scheme for this cods
ase;ummgi a  uniferm inpot  distribution inte a bi:nm::,‘-
symmetric channel with crozsover probability p < %?

(¢} Compute Plerror |d}, uwnder the ideal observer decision
scheme.

(d) Compute p,, under the ideal observer decision schene.

W bt
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Minimam [Hstance Drecoding
. Minimum Distance Decoding

IMUM DISTANCE DECODING

In gencral, the problem of finding good codes s @ very difficult
However, by making certain assumptions ahout the channel, we
, at least give the problem a highly intuitive flavar. Let us begin

Zith a definition.

finition Let x and y be strings of the same length, over the zame
habet, The Hamming distance dixy) between x and y is the
mber of posilions in which x and y differ. 0

For instance, if x= 10112 and y=20110 then dixy)=2,
ieo these words differ in two positions (the first and fifthy., The
wing result says that Hamming distance is a metric. We leave the

a3 an exercise.

15

i'rem 421 Let A" be the set of all words of length n over the
het A, Then the Hamming distance function A % AN

s the following properties. For all x ¥, and = in A",

- (positive definitencss)
dixy) = 0, and dlxy) =0 ifand only if x=y¥

. {symmetry)
dixy) = diyx)

{Lriangle incqualily)
d(x,¥) = #{x,3) + iz y)

[ence, the pair (A",d) is a melric space, [

Now leb us consider the binary symielric channel, with crossover
abability p < 1/2, and channel matrix

f the codeword ¢ is sent through this channel and the word d is
received, then the nurnber of symbel errors made by the channel i
Lequal to the Hayruming distanee dled). Hence, we have

o

]J{(] | l.'.‘.]l = pﬂx“"i][[ _ p}ll—'dfl:ld}
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Since p < 1/2, this probability is greatest when dlc,d] is smalley,
Thus, maximwn  likelibood decoding is equivalent to choosing
codeward o that is closest to the received word d. We refer ta this o
minimum distance decoding.

Example 4.2.1 The binary repetition code of length 3 iz the code
G = {000, 111}

For this eode, wsing mininoum distance decoding, a decoding error wi)|
oceur if and only if at least two channel errors are made, and s
acrording to {4.1.5)

Pdecode ;W:EPEEI_P}'PPS:EPJA—EKF 0
When more than one codeword bas minimum distance from the
eeceived word, we will refer to this situation as a tie. In praciice, the
procedure for handling ties usually depends on the seriousness of making
a decoding error. In some cases, we may wish to chooese randomly fram
among the nearest codewords,  In other cases, it might be more
desirable simply to admil a decoding ervor, thereby reducing the chance
of letting an undeteeted error slip by, The term complete decoding
tefers to the case where all received words are decoded, and the tenm
incomplete decoding refers Lo the case where we prefer occasionally Lo
admil an errar, rather than always decode, (Recall that we used
incomplete decoding in the prool of the Nolsy Coding Theorem.)
There are many other channels for which maximum likelihood
decoding takes the intuitive form of minimum distance decoding,  For
ingtance, the binary erasure channel, with channel matrix

- ]
] no1-p
has this property, for p < 1J2,

Adso, maximum likelihood  decoding is equivalent to minimiim
distance decoding for any channel in which, if a symbol error does
oceur, then the received symbol is equally likely to be any of the other
possilale symbols. When the input alphabel agrees with the oubpul
alphabet, we have for such & channel ¥

plaglag =1—p

pla; | a5) = Eﬁ-l i)

anil

where O is a geaty code.  {Again, we require that p < Lf2.) Ilence,
the channel mateix has size o =, and has the form

Ll

pimin Dstance Drecoding

P8 i LA
L-p a—1 g1
- i
e 1-p a=T
BRGNS =
-1 u-1 .

ey ’ ; " p . s, 4
sth 1—p on the main diagonal and =5 every where ¢lse.

q-1

OR-CORRECTING AND I-ERRGR-DETECTING‘ CODES )
o implementing minimum  distanee  decoding, the following

epts are useful.

fion The minimum distance af aocode g defined to be
= mi d
d[C) -clrEEnCd[c, ]

(' Hrd}-mdc is a code with length n, size M, and minmung
ance d. O

nitln-n A code C is t-error-delecting if whenever at most 1, 'hul.iat
b ane, ercor iz made inoa codeward, Lhe resuitlnglwfard_ is nal a
}wordj A code [0 is exactly terror-detecting if it is t-ereor-
.l.ing, bt not (b+1)-errer-detecting, [

We leave the proof of the nexl fosull a8 an exXerase.

Borem 422 A code O s exactly t-error-detecting if and only if
(o) =t+1. B . 1

It errars eccur in Lhe transmission of & codewaord, wt\\viﬂ Ay
éﬁﬁt an error of size | has ocourred,

i:'ﬁ;,ﬁnitiun A code © s t-error-corpecting it m':lninmm ::listfmcle
decoding is able to correct all errors of sige 1 or less in aEl'y £ :::;E,
assuming that all ties are reported as errors. A code fl I_.:m}:_r
teérror-correcting iF i is L-errcr-correctllng, but  noat [:L-d ]h o
gorrecting. (In other words, all errors of size t are correcled, O
Yeast one error of size t+1 s decoded tucorrectly.} O

It is not hard bo make the conmection bebween f-error-correction

apd the minimum disiance of & code,
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Theorem 4.23 A code {0 iz exactly t-error-correcting if and only if
d{C) = 2t+1 or 242,

Proof. Suppose first that  f[C) = 2641 or 2842 Suppose also thag
the received word d differs from the original codeword ¢ In at most ¢
positions, that is, d(d,e) <t. Then o iscloser to ¢ than to any other
cadeword, for il d{d,c) < 1, we would have, by the triangle inequality

e’} < ded) + d{die’) St+1 =2t < 4C)

which is a conbradiction, Therefore, minimum distance decoding wilt
correcl ©oor fewer errors,

Furthermore, if fiC) = 21+1, then there are codewords ¢ and o
for which diee’) = 2t4+1. T other words, © and < differ in exactly

261 positions. Supposze that the codeword ¢ i sent and that the ¢

received word d  has exactly  E41 errors, all of which are located in
the aforementioned 241 positions, and that d wow agrees with o
in those (41 ercar positions, Then dld.c) = 141 but

dld,e’) = 241 - {t41) = ¢

and so maximum likelihood decoding would decode d as o, which is
incorrect, Hence, © is not {6+ )-ereor-correcting,  We leave the case
@C) = 2t+2 as an exercise.

For the converse, it O iz exaclly t-error-corvecting, we could not
have dlee’) < 26, for then it would be possible for the received word 4
Lo lave precisely L oercors, placing it at least as close to ¢ Ay Lo the
codeword ¢ bhal was originally sent. [ence, a{C) = 2e41. On the
ather hand, it d(C) > 2043 = 2{e413+1, then by our earlier argument,
the code C would be [t-+I)-error-correcting. Hence, d(C) = 24+1 ar
1428

Corollary 42,4 d{C) =d i and only if © is exactly [[d-1)/2 |-error-
carpecting. [

-
USING 4 CODE FOR SIMULTANEQUS ERROR CORRECTION AND
DETECTION

Im a given situation, the errar defeciong quality of a code with even
minimumn eistance depends on whether or vot the code is used for erfor
detection only or for both error deteclion and errar corvection.

To see this, suppose that © s an [0,M d}-code O, where d =
2L+ 2. As a sbrictly error-detecting code, O can defect up o d—1=
241 errors

On the othier hand, suppose we wish to use 0 for simultaneous
error correction and error detection.  Stuce € is exactly l-error
correching, if wo wish to maximize Lhe ercor-corcecting capabilities of
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e must “allow™ it to correct any | crrors, Tliat is, if a word x
received and if there is a codeword ¢ for which d(e,x) < t, then we
gume that at most t errors have aecurred, and coreect x to e 1f
such codewnrd € exisls, then we may declare that some ervors have
rred. g o

Now, il exactly 141 errors have occurred in trapsmitting <,
en the received word x cannot be within t of any codeword d, for
it were, then

dled) < diex)+dixd) 414t =2t4 1< d

gnce, our strategy regitires us to deleetl that errars have ocenrred, and
{; can detect L4+ 1 errors .

However, if L2 errors have occurred, then since d =2t 42, in
least one case the received word % will have distance { from the
¢ codeword, and we will “correct” the received word incorrectly,
thier than detect the errors.  Henee, O does nol always detect t-2

covem 42,5 1T an {n,M;d)-code with even mintmum dislance d =
9 s used for error detection onfy, then it is exactly (2t + 1)-error-

ting. On the other hand, if € is used for maximum error
¥ection, as well as error detection, then © s exacLl}: teerror-
fecting and can simultaneously detect €41 errors, but it cannot
ways deteet more than L+ 1 errors. 0

We leave it to Lhe reader to show Lhat, in case the mininiem
ance is odd, when the quality of ercor correction is maximized, error
tion does not take place,

ample 4.2.2  In January 1879, the Mariner 9 spacecraft Look black-
{-white photographs of Mars, A grid of size 600600 w placn?d
¢t each photograph, and each of the resulting 360,00 grid
nponents was assigned one of G4 shades of gray. Thus, the souree
wrimation consisted of B4 different source symbels.  Bach source
srmbol was then encoded nsing a binaty (32,64,16)-code, known as a
ed-Muller code. (We will study Reed-Muller codes in detail later in
e book.) Sinee the minimum distance of this code iz 16, it Is exactly
r&rrar—mrrecling. Furthermore, io addition to coreecting up to T
rears, this code can simullaneously detech 3 errors. The rate of the
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Lxample 4.2.3 In the period from 1979 through 1981, the Voyage
spacecrafts took color photographs of Jupiter and Saturn, This requireq
a source alphabict of size 4090 (o represenl various shades ol color, The
souree information was then encoded using a binary (24,4006 8)-code,
known as a Goluy code. (We will also study Golay codes in detail)
This code iz exactly 3-error-correcting and ean stmultaneously detect 4
errors. I has rate

_log 096 e

=TI TETY !

Example 4.2.4 The g-ary repetition code of length n s the code
= {000, 111y o (a-1){a- 1) - {a-13}

This code has minimum distance n, and so it s exactly L[n—l‘}f&lj-
error-correcting.  On the other hand, for strict error detection, it s
(n—1}-error-cetecting. 0

THE RELATIONSHIP BETWEEN MINIMUM DISTANCE AND THE
PROBABILITY OF ERROR

The code © = {000,111,333}, over the alphabet A = {01,231,
can casily be made more efficient by adding the codeword 222, which
would inerease the rate of the code, but not change its minimum
distance. This leads s to make the following definition,

Definition An {0, Mal)-code is said to be maximal if it iz not containnd
o any (n,M+1,d)-cade. 0

An (nMd)-eode © code is maximal i and only if, for all strings
x there is a codeword e with the property that dixe) < d. In this
case, if a codeword e s Lransmitted, and if d or more errors are
inade, so that the received word % has the property that dixe) =4,
then x will be eloser to a different codeword, and so a decoding error
will be made,  This establishes the following lower bound on the
probability of a decoding errer, for the binary sviumetric channel

i
=
Biecade e 2 Z(k “ i

k=l
On the other band, an (n,Md)-code O
correeting, where | = [(d-1]/2].
decoding satistics

L3

15 exactly t-errar-
Hence, the probability of correct

t

Pegrpesr = Z (;:}:‘l": 1-p)* A

k=0
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L

g | PR 1= E({:)Pkl:l—ilj11_k

k=0

Pierade evr =

For convenience, let us sei

1L

> (B (1-py

k=

Binan) =

k=]

en we have the following.

sorem 4.2.6 For the binary symmetric channel, the probability of a
oding error for a maximal (n,M,d)-code sabisfles

= BP(ELd—]j L P gepnde v S 1= Bp{nr[é?'!'}) L

Let us consider the sitnation as n  gels large, which may be
ry to obtain a good code. If the probability of a channel error is
en the expected number of errors in a codewerd of length o is np,
erefore, if the minimum distance d does not keep pace with np, we
not hope to correct many errors, We can gel more specific
prmation from Theorem 4.2.6. For an {n,M ()-code O Tet

&= ﬁ[{.":l f]

T

rollary 4.2.7  Assume & hinary symmetric channel, with crossover
ohahility p< 1. Suppose that € s a sequence of (n,M,.d J-codes,
th &, =d,/n. If for some constanl r, we have & Zr<p for F..l"
fficiently large 1, then the prolability of a demding ervor for O
di to 1 as n—oe,

oof. By adding eodewords to each O if possible without changing
L owe may  assume that oeach O I maxim i, Let us set
= (d,~13fm. The condition & <r<p for n suffiiently large is
valent to A<s<p for v sulliciently large,  According to
orern A8 (in the appendix), if 0= A <s<p<l, then

_p:lt'l—.k]n EIIH[.}.]

B, (nd,~1} = B indn) < pHy

- 2[.111 Tog p{l=A)n log{1-p}]+uH{A}

. onlb(3)+H{R)]

where  hiA) = A log p+(1-4) leg{1=p).  Now, [(3) =h{X)}+H(A} is a
continnous function on  [0s], and according to Lemma 1.2.2, if A #p,
then [{A) =< 0. Henee, on [0.¢], [(3) s hounded away from 0, that is,
there exists a constant ko such that A} <k <0 forall 022 <s
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Therefore,
B (nd,~1) £ 2% =0 asn—eo

An application of Theorem 4.2.6 completes bhe proof. @

Covollary 4.2.7 tells us, in particular, that we cannot expect good
error correction if the ratio dfn of minimum distance to code length
approaches 0 as n gets large, as it does {unfortunately) for many of
the known families of codes,

THE PACKING AND COVERING RADIF OF 4 CODE g
We can get further geometric insight into the crror correcting
capabilities of codes by introducing some additional concepts,

Definition Let x be a word in A", where | A] =q, and let r he
any nonnegative real number, The sphere of radius ¢ aboul x is the
hed

Syt = {y € A [ dixy) <1}

The volume ¥ _(n,r] of the sphere Sq{x,:} iz the number of elements
in 5, (xr). This volume is independent of the center and is given by

‘u“q{n,r} = ;(;;](q-l}k 0

For the binary alphabet 4= {{,1}, the set A* s shown in
Figure 4.2.1. The words that lie in the sphere of radius 1 about the
word 111 are shown as solid dots in this figure, (Thus, spheres in AT
de nol leok very round.)
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Unfortunately, for n=3, it is net possilile to draw realislic
stures like Figure 4.2.1, However, we can gel some representalion of
& situation for larger values of o by looking at Figure 4.2.2. [0
rsc, this figure is not metrically aceurate.)

he minimum distance
‘potween these two

Figure 4.2.2

e solid dote in this fgure represenlt eodewords, and the open dots

cent. all other words of length n. The radius of the spheres shown
Figure 4.2.2 is determined by the minimum distance of the code, by
_lply inereasing the radius of the spheres until just before bwo spheres
ome “tangent,” which will happen when () = 2+ (see left side

gure 4.2.3], or just hefore two spheres “gyerlap,” which will happen
en d(C) = 2t+1 (sce righl side of Figure 4.2.3). In eithcr case, the
ius of cach sphure is L, and O s eracily Trrm-mrrcﬁting.

00 00

o T R e G =3=2{1)+1
sol=tand & is soimland Gis
single-arrar-carracting single-arrar-corresting

Figure 4.2.3
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Definition Let C o A" be a code. The packing radius of O s th,
bargest integer v for which the spheres 5, (er) about each codeword
are digjoint.  The covering radiug of © 15 the smalles! integer s o
which the spheres 8 _{es) about each codeword o cover A" that i,
tor which the union of the spheres 5 _(es) is A" We will denote the
packing radiug of 0 by pr(C) and the covering radius ly er{C). 0

The following results show the conneclion between error corfection
and the packing and covering radii.

Theorem 4.2.8 Assuming that ties are always reported as errors, a code
s t-error-correcting if and only if the spheres S (et} about each
codewaord are disjoint.

Proof. Suppose that C j& t-error-correcting, and that d lies in beth

S, (e,t) and Sq{c'1tj, where e # ¢, Then minimum dislance decoding
wonld have to correct o o either o or o) depending on which one
was sent, since in both cases, at most t errors have occurred,
However, this iz not poszible, for even if  d{de) = d{de'), we have
asswmed that ties are always reported as ereors. The converse is clear.

Corollary 4.2.9 Assuming that ties are always reported as errors, a code
i3 exactly t-error-correching il and only il p{C) =t. 0O

PERFECT AND QUASE-PERFECT CODES
The following concept plays a major vale in coding theery,

Definition A code € i said to be perfect if pr{C) = er{C}). In words,
a code OC A" s perfect i their cxists a number ¢ for which the

spheres 3, (o,r)  about each codeword e are disjoint and cover A",
(See Figure 4.2.4.)

Example 4.2.5 One of the so-called Hamming codes Moy(3) s a binary
{7,063 -code, {We will study the Hamming codes in detail later In the
beok.) Since J6,(3) is single-creor-correcting, pr{3,(3)} =1, and so
the spheres 5,0 1) of radins 1 about the codewords in  J6,{3) are
digjoint. Furthermore

(M3 =16

150e0)] =1+()=8
and

| A7 | =27 = j28
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s

Ldsines 168 = 128, we deduce that Ehe spheres Sgic,1) eover AT
we, Jo,(3) is perfect. O

 The size of a porfect code is unigquely determined by the length
the minimum distance,  The following result is known as the

ere-packing condition,

sorem 4.2.10 (The Sphere-Packing Condition) Let © be a q-ary
M,d)code. Then C s perfect if and only if d =2t41 is odd and

M-Vt =q"

—— : n Ik
w=e [ 5

We leave it s an exercise to show thab a perfect code must
dd minimum distance, If C  is perfect, then the packing and
ng radit of € are both equal to I, and so the set of M spheres
divs b about the codewords in © form a partition of the o"
s of length n. Hence, the splere-packing condition holds, On the
ar hand, if the sphere-packing condition holds for some (,M,2641)-
g.. (0, then sinee the spheres of radius & about each codeword are
Joint, and the sphere-packing condition implies that they cover Am,

ave pr{C) =cr{C) =t &

It is important to emphasize that the existence of numbers n, M,
t for which the sphere-packing condition helds does nof imply
it a code with Lhese parameters must exisl, and we shall see an
carpple of this in the sequel,

The problem of determining all perfect codes has nob yet been
lved. However, as we will fgo in the nexl section, a great deal is
known sahout perfect codes we?’\*tlphabe[ﬁ whoze size is a power of a
e, >

We leave il fo the reader to show ithat the sphere-packing

ndition is satisfied by the following familics of parameters
(M) = (g, 1),

(n,M,d) = (o1, 2n+1),

{n M) = (2m41,2,2m+ 1),

¢
(o Md) = I;ccll—-__—:,q“'r.ﬂ], e

The first solution corresponds to the entire space  ¥{ng). The

!
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seeanl solution corresponds Lo codes with a single codeword {whase
mindmum distance is undefined), the third solution corresponds to the
binary repetition codes of odd length, and the fourth solutiey
corresponds to Lhe famous g-ary Hamming codes, which we will study
tater in the book.

A computer seatch was conducted by wan Lint in 1967, which
showed that the only solutions to the sphere-packing condition for

no 1000, d < 2001 (L < 1000), q < 100
lLiesides those given by 1)-3) above are
5)  (nM,d) = (23,27,
6)  (n,M.d) = (50,2785, vy
) (m,Md) =(11.3%5).

Ad we will see when we discuss designs and codes, there is no code
with parameters corresponding to solution 6. Solutions 5 and 7
correspond to the famous Golay codes, which we will also study later in
the book.

Thus, there are nel very many perfect codes.  The following
definition deseribes the “next Lest thing,”
Definition A code O s sald to be quasi-perfect i er{ ) = pr{C)1,
In words, acode OC A" is quasi-perfect if their exists a number
for which the spheres S,0er) of radius ¢ are disjoint, and the spheres
Sgler+1) of radius 41 cover A" {See Figure 4.2.4.) 0

This cebe 5 perfect

‘[his code is quasi-perfect ¢
Figure 4.2.4

EXERCISES

. Calculate the following Hamming distances,
(a) d(O10D1,10110) (b} &12345,54321)

2. Caleulate the probability of a decoding error Tor the binary
repetition code of length 4. How many errors will this code
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detect? low many will it correct?

Calewlate the probability of a decoding error fer the binary
repetition code of length &, How many errors will this code
detect? How many will it correet?

Consider the binary code € = {11100, 01001, 10010, 00111},

{a) Compute the minimum distance of (.,
{ls] Decode the words 10000, 01100, and 00140,
(¢) Compute the rate of this code,
Construct a binary ($,4,5)-code,
Does a binary (7,85} -code exist? Justify your answer.
" Prove Thearem 4.2.1,
Prove Theorem 4,23,
Finish the proof of Theorem 4.2.3, {Do the case (0] = 2t4+2.)
FProve Corollary 4.2.4.
Prove Corollary 4.2.9.
With reference to the discussion of simultanesus error correction
. and detection, show that, in case the minimum distance is odd,
when the quality of errar correction is maximized, error detection
does not take place.
Consider the hinary code
€ = {D0DU0NA0, 00001111, 00110011, 00111100}
(a) Corapute the distance between all codewords in L
(b} We define the complement of a binary word to be the werd
obtained by changing all 0% 1o 1%s and all 1% to 0%s. Describe
the distance features of the code obtained by taking all
codewords in C and the complements of these codewords.
{r) Generalize the results of part (b)),
Define the mazimuin distance of a code, Can vou state and prove
any results aboul. maximum distance that are analogous to any
resulls in thiz sechion?
Prave Jililat, for the binary erasure channel, maximum likelihood
decoding, is equivalent to minimum distance decoding,
Prove that, for the channel whose matrix s given by [4.2.1),
maxiimum likelihood decoding is equivalent to minimum distance
decading.
Find & symmetrie channel for which maximum likelihood decoding
iz nol equivalent to minimum distance decoding,

Prove that i
: r — % k
Vglnir) = %ﬁ(l{)[q_l}
Show that a perfect code must have odd minimum distance,
Show that the splere-packing condition is satisfied for the
following families of parameters
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al (oMal) = (0,0 2041) B} (M) = {2m4-1,2,2m41)
o (M) = {{_;f.q“*r,a} f=2
Prove that a binary [o,M,2t41)-code exists if and only if a binary

(n+1,M,2t+2)-code exists. Hint, Think about parity check bits,
Let cd & A" and consider the sets

§={xed"|dxe] <dixd)}, T= [xe A" ] dixd) < dixe)}
Prove that |S| = | T].
Let O be a perfect, binary {n,M,7)-code, Use the sphere-packing

condition te show that n=7 or n=23 Hinl Show that the
sphere packing condition iz ,

(e 1[(a- 1Y = 3(n41)+8] = 5 2% !
for some k= 0. If 2'|(n41} show that i3
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Families of Codes

PSTEMATIC CODES

Ginee a q-ary [n,M)-code has M codewords, it can be used to
eup to M source messages. However, cerlain types of codes are
gre easily used for encoding than others.

nition A qeary [n,q]‘}-codc is called systemalic if there arc k
tions  ipsdge..sd)  with the property that, by restricting the
ewords to these positions, we get all of the ¢ possible g-ary words
ength k. The set {i;\ig,. .3} is called an information set, and the
ord symbols in these posilions are called information gymbaols. 0

If & source can be represented as the set of all grary words of
k, then a g-ary systemaltic code of size qf can be used to
each source word, by embedding it without change, into a
ord, as the following example shows,

C = {0000, 0110,1001, 1010}

shernatic on the first and third positions, Hence, if the source is
,01,10,11}, we can encode as follows

00—0000, 01—0110, 10—1001, 11—1010 1]

i The type of encoding shown in the previous example s called
matic encoding. Clearly, systematic encoding makes the reverse

s extremely easy, sinee we can simply read the source word
frectly from the codeword.

ple 4.3.2 The binary code C= {O00,100,010,001F  is not
emnatic. [

NITE FIELDS

Up to now, we have not said much about the code alphabet A
pweyer, if we expect to endow our codes with any meaningful
ficture, we must generally assume that o has some strocture, which
usually taken to e that of a finite field,
e will have a greal deal to say about finile felds in a later
_ thapter. Tor now, let us simply note the following key fact, which will
ye proved at a later time.
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Theorem 43,0 1f p i3 a prime number and 1 is & positive intepe;
then there is (up to isomarphism) exactly one field of size q= pﬁl
which is denoted by F, or GF(q). Furthermore, all finite ficlds hm-,;
size pP, for some prime number p and positive integer 0. O

The set [Fq]“ of all n-tuples whose components belong to T g
a vector space over T ol dimension n. We will denote (T ]“q by
Vin), and usaally write the wvector (}‘:1-121---:}‘::] in th% form
Xy K

EQUIVALENCE OF CODES

As far as error eorrecting properties are coneerned, there is no
difference between the codes ) = {000,011} and Cp= {000,101}, and
so, in this senze, they should be considered as equivalent.

There are variouns definitions of equivalence of codes in the
literature, We will adopt the following definitions.

Dﬂ:ﬁl‘jitil}l] Two g-ary {nM)-codes ©; and O, are equivalent if there
exists a permutation ¢ eof the coordinale positions  and
permutations w3,y T, of the code alphabet for which

¢ieq e, €Oy iF and only if fri{c‘?[!])wg{c"m)- T %{n}] Gy

In words, twe codes are equivalenl if one can be turned into the other
by permuting the coordinate positions of cach codeword [via o) and by
permuting the code symhals in each position of each codeword (via
Fpves i Tl Of course, .o or any m; may be the identity pernutation. [

The following definition of equivalence iz ugeful for special types of

codes. We begin with a preliminary delinition.
|

Definition Let @ be a permutalion of size n, For 1= 1,.,.xn, lek
mF =Fy e multiplication by a ponzere scalar o in L"‘q, that is;
Ta=0s

Then the map ¥ {nq)—¥{nq) defined by

ple e, ) =y tca{lj}ﬂ:&(ca[z]}' . -r.,{cﬂ,{n])

is called o monomial trapsformation of degree 1w In words, a
monamial traneformation acting on n coordinates is & permmutation of
those coordinates, followed by rmultiplication of each coordinate by a
nonzera scalst, (]
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jtion Two (1,M}-codes C, and G, over F, ate gealar multiple
yalent if there 15 a monoenial Leansformation o of degres 1 for
ch plC) =0y where p(C) = {pecle€ C}- Thus, C, and U
gealar multiple equivalent il they are equivalent in the sense of the
ons definition, where each permulation W is mulliplication by a

COF course, i bwo codes are scalar multiple eqpuivalent, they are
pqu‘:\ra\ent. We leave proof of the next two results as exercises.

e 4.3.2 11 0 g .4, then any code over A is equivalent (but not
rily scalar multiple equivalent} to & code that contains the zero
word 0=0-40 0

m 433 1 C, and C, are equivalent, then d(Cy) = d(Cyl-
nder minimum distance decoding, and assuming a channel of the
iy (4.2.1) [which includes the hinary symmetric channel], the
ability of a feceding error is the same for equivalent codes. 0

£S OF CODES
We wislh now e discuss some of the rore impottant bypes of
correcting codes. Each of these codes will be studied in detail in

Codes

" One of the great advantages of using & finite field F, as code
i 4'1:-1:1, i that we can perform vector space operations on the
iwords. However, unless the code is a subspace of Vin.ql we
nol be eertain that Lhe sum af two codewords {or a scalar mulitipie
& codewned) is another codeword, This prompls us to define perhaps

‘mnost important type of codes.

inition A code L CV(ng} s 8 lincar code if il is & subspace of

.in,q]. If L has dimension k over Vinq), we say that L is an
nk]-code (note the square brackets), and if L has minimum distance
we say that L isan [n,k,dl-cudc. 1}

{in the literature, one often finds (k) in place of [nk), which can be
a bit confusing.)

Note that all linear codes contain the zero eodeword, denoted by
=004, Nole also that the size and rate of a q-ary [ kl-code are

]'I.'I:qk, R=;il
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To explore some of the advantages of linear codes, we need 5
simple definition and & few basic facts.

Definition Ti_m weight w(x) of a word x€ Ving) s the number of
nmaznr'a‘po:ﬁtlons in x. The (minimum) weight w(() of acode € jy
the minimurm weight of all nonzero codewords in G 0

Definition IF x =3 X%, and ¥ =¥ ¥yo¥, are hnary words, we
define the intersection of x and ¥ by

Xy = (VXY ¥n¥n)

Thus, xMy hasa 1 in the i-th position if and only if hoth x and y
have a 1 in the i-th position. [ i
/

We leave proof of the following as an exercize,

Lemma 4.3.4
1) PForall xy € Vinal

dixy) = n{x—y]
91 Poral xye Vi) [note q = 2,

d{,y) = wix) + wly) — 2u(xn ¥l 0

. Tn opder o find the minimum distanee of an arbitrary {n,M)-code
it is, in peneral, necessary to compnte all {T':f) Hamming dis{ancesj
Haowever, as the next result chows, for a linear code, we necd only
compute M —1 weights!

Theorem #.3.5 Tor a linear code L, we have diL} = w{L}.
Froof. Sinee ¢—d runs through all codewords in L, as & and d run
through all codewords, we have |

4L} = ;nr}ré I,{ dle,d)] % #m[i!g:— L{ wic—d}} = :;n;% h{w(c]} = \BGJ:I i

Cyclic Codes i

Many important codes have consiclerably mare structure than that
of & vertor space. Consider a lincar code  LC ¥ing), We moay
associate to eaeh eodeword € =og8 Ty B pelynomial in Pq[xj as
follows

(4.3.1) g€yt — Sph xR A T

P Panilies of Liedos

act, the map i i & vechor space isomerphism from L onto the
ace @(L) of F[x]. As is customary, We can ignore this map and
ply think of the cocdewords in Lo ag polynomials, or Vioe-veTsa,
The advantage of this approach is that Fqu'j j& more than just a
erlot space — it is also an algebra. In other words, by thinking of
ewalbils as polynosnials, we can multiply two codewards.  However,
product of two codewords may not be another codewerd, and 30 we
gt make some refinemnents in our thinking.
. Let plx) be a polynomial of degree n, and let {p(x)) denote the
generuted by plx).  The quotient algebra ig the sef. of
ynomials fix) of degree less than n
' i Pl i e F ) | des(f) <)
: = o) = {fix] € q[:x}lu eg(flx]) <n
ith the operations of ordinary addition and sealar multiplication, and
tiplication modulo plx).  Thus, io R, the produet of two
Snomials of degree less than 1 s another polynomial of degree less
n .
" The map ¢ defined in (4.3.1] can be thought of as a vector Spact
qorphism from L onte tle subspace @i L) of R. In other words,
van think of the codewords in L as polynomials in the algebra R,
e multiplication is more suited to our present needs,
‘o fact, we now have Gwo new el of structures that can e nzed
. namely subalgebras and idenls. 1f the code L is an ideal of
hen pot only is it an algelea, but it hias the property that the
uct of any codeword and ary ather poiynorial is a codeworid.
Leb us specialize one gtep further, by taking plx} =" =1, and
ng I, be the quotient algebra
L Ep

N1 {Xh—' ];5
(& & ideal v Ry, then L. is closed nnder multiplication Ly any
wormjal in Ry But this is equivalent (for a vectar subspace] to
closed under mltiplication by % and since
g A € X F et Cn-—i}i'“_l:' =ltgk+ clxz gkt X mod {(x"-1]

O R e ‘{'t‘,l}[ﬂ =i c’u-—’.k}"“_l

we see that if
T e

L e S e
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[n the symbolism of strings,

eyt L dmplies ey jepeiee, €L

We can now define the most impartant suliclass of linear codes,

Definition A linear code L € Vinwg) is eyelic if

ety e, €L dmplies e oo, o €L

Fut another way, when codewords are thought of as polynomials usin
(4.3.1), a code L is eyelic il it is an ideal of R, = F [/ {"-1). 0

We will devote two entire chapters to cyelic codes,  For the
moment, let us make a few briel remarks, which will be. discussed
thoroughly at the appropriate time, /

As it happens, the algebra Ry, is a prencipal ideal domain, which
means that each ideal (cwclic code} € s generated by a single
polynomial g(x], called the generator polynomanl of C, that is the
unigue menic pobynomial of smallest degree in €L Thus,

O = {lx)glx) [ f(x) € R}

The dimension of the code € is equal to n—deg(g(x)). Farthermore,
glx] must divide x"—1, and so the roots of g(x) are all rools of
x%— 1, that is, #-th rects of unily,

Therefore, we can define a cyclic code by specifying ils generator
pelynomial  g(x]) o, equivalently, by specifying which n-th roots of
unity are the roots of g(x), This leads to several families of codes,
depending on hew the choice of reots is made,

For instance, we shall see that the n-th rootz of unity form a
cyclie gronp under multiplication, and so they have the form

].,w@g.,.,}w"_l

where  w o is kiown sz a primilive n-th roel of unity '&hus\r far
example, we could define a cyelic code by requiring that ihe kznera,tur
polynomial be the polynomial of smallest degree that has roats that
include the “consecutive™ numbers

BTy ]
whose ecxponents are the e—1 conseculive integers  1,2,,..,8e-1, for
some e | Of course, this may mean that g(x) has additional roots
as weil, Suech codes are called BOW codes and form one of the most
important families of codes.
The point we wish te emphasize here is Lhal the rich algebraic
structure of the algebra R, makes il possible to define cyelic codes
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ot have a rich structure as well, This allows us to learn a greal deal
sut these codes and also allows lor the application of sophisticated
coding technigues,

lincar Codes

Nonlinear codes can be constructed hy a variety of means, Faor
Jh.lst.gnce, sorme nonlinear  codes  ecome  from  cerfain  types  of
combinatorial objects, such as block designs, or Latin Squares. Here is
i example.

ample 433 The sets of points and lines shown in Figure 4.3.1 ?S
ferred to as the projective plane of order & or the Fane plane. It 1s
jexample of & combinalorial design.

1

4 5 o
Figure 4.3.1

Let us denote the lines in this figure by § =14, £, =16, £y =46,
6, =15, & =70, €;=34, {; =85 Notice that each line is incid'ent
with exactly 3 points, and cach paiv of lines meets at exactly 1 point,
The neidence matriz of this plane is the matrix {#;] for which

if line £ contains point j

1
By = {I] atherwise

This matrix s the 7 x 7T matrix

——

=

i == B — N —
—_ e o T T
S D R e
— D e e T
f i e R e R Sl
o R e T i s R e e

=D e
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Motice that any two rows of 8, thought of as binary words, have
distarce 4 from sach other, since they each have 3 ones, whose positions
agree exactly once. 10 we denole these Tows by Ty, Tq then

rf[rj,rj) =4
Mow, consider the complements 8,...,8; of the rows, where & s
obtained from r; by interchanging 0's and 1's. Clearly,

Iil:ﬁhﬂj_} =4
We leave it as an exercise Lo show that

dtrhﬂj] =1

and so the code O = {0,100 P2 8y000 8.} 38 8 (T,16,3)-code. V‘:"/e: will
also leave it as an exercise to show that this code is perfect, but not
linear, O

FAMILIES OF CODES

For concreteness, lel us briefly list some of the more important
families of codes. Much of the rest of this book will be deveted to
diseussing these codes. Recall that the rate of a q-ary (n,M,d)-code is

L leg M
R = R{C) = +
and that
§=8c) =14

(See Corollary 4.2.7 for the relevance of the number £

Repetition Codes
The q-ary repetition code Hepln) of length n s |

G = {000, Loy (o101 a1} '\

These very simple codes are geary linear [n,Ln]-codes, with
k= % am] d=1

Mote that while § s maximuwm possible, we have RB—0 as n—o.

Hamming Codes

The family of Hamming codes M (r) s probably the most
famous of all error-correcling codes, ﬂmse codes were discovered
independently by Marcel Golay in 1849 and Richard Hamming in 1850,
They are perfect, linear, and very casy to decode, Al Sinary Hamming
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wdes are equivalent to eyclic codes, and some, but not all, nen-binary
Hamming codes are equivalent to cyclic eodes.
Specifically, for each ¢ =1, ﬂﬁq{r] is a g-ary [nk,dl-cede, where

-
:11:115 k=p-t, d=3

o+ most cominon case by far is the binary case, where

n=

n=2"—1, k=n-r, d=3

Phie Hamming codes are exactly single-ervor-correcting, with
B=1l= ﬁ- and 8= %-

ote that Ttel, but f=0 a5 n-reo.

Codes

In 1948, Marcel Golay introduced some linear codes, denoted by
Gizq0 Gy and Gy, that ave now called Golay codes. The code Gy,
a binary linear (24,4006,8)-code which, as we mentioned before, was
aed by the Voyager spacecraft to transmit color photographs of Jupiter
The related code Gyy s a binary perfect eyelic
32,4006, Th-code.

 The code {, is a ternary perfect eyclic (11,729,58)-code, and Gy
a ternary linear (12,729,6)-code, MacWilliams and Sloane {1977}, in
heir monumental treatise on coding theory, refer to the binary Golay
epdes as “probably the most important of all codes, for both practical
theoretical reasons.”

eed-Muller Codes

The Reed-Muller codes are a family of binury linear codes that
iave good practical value and nice decoding properties.  For each
positive integer m, and each integer T for which D <t < m, the r-th
arder Reed-Muller code Pa{r.m) has parameters

w20 k= L), d =20

The first order Reed-Muller codes Ffl,m) are (2720FL 20 codes.

The code” B(1,5) was wsed by Mariner 9 Lo transmit black and white

phiotographs of Mars in 1972,

© For the Reed-Muller codes, we have
L ()4 ()

Bi= = and  f= o
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Hence, il ¢ is fixed we have R—0 as n—so, and if r—oo then d—p
A% m—too;

o
BCH Cuodes and Reed-Solomon Codes

The BCH cedes, named after Bose and Ray-Chaudhuri, wha
discovered them in 1960, and Hoegquenghem, who discovered them in
L¥58, are generalizations of the Hamming codes. They are eyelic q- ary
vodes, which have greal practical importance for error-correction,

We saw earlier that the BCH codes are defined by specifying that

the generator polynomial have reols that include a list of
*consecutive™ roots

[ |

Wty L II
The number e is referred to as the designed distance of the code. A
BCH code € with designed distance e has minimum distanee d > e,
Hence, if the generator polynomial of © is  g(x), then C lhas
paramelbers

o, k=n-deglg(x)}

Many BCH codes seem to have d=e and so, in some sense, we can
“design®™ our own minimum distance,

For any prime power q, the g-ary Reed-Solomon code iz the BCH
code with length q—1. Thus, reasonably long Reed-Solomon codes
have large radix, which may seem impractical. However, as we will see,
there are ways to “map” a g-ary code onto a binary code.  We will alsa
see thal the Reed-Solomon cedes ave very important for bursk-error-
cerrection, In fack, NABA uses Reed-Solomon codes extensively in their

decp space programs, (for instance, on their Foliles, Magellan, and
[lysses missions).

dze

|
Guadratic Residue Codey

The quadeatic residue codes are another class of quclic codes that
have prime lenglh p. An integer & is quadralic residué mod p if the
eruation

= a maed p

has & solution, that is, if a has a square root modulo p, Tt is konows
fram number theory that 2 is a quadratic residue mod p if and only if
P has the form 8mf 1, and so the hinary quadratic residue codes must
have prime length of the forn o= 8m =+ 1.

As we will see, when p o has this form, we can define a generator
polyneimial by specifving thal its roots be cither

&
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{7 | v i a quadratic residue mod p)
{w' | u is mot a quadratic residue mod p)

o other words, the generator polynomial may be either

g,{x) = 1_[ fx—wf)] o )= H [x—w)
re QR u £ MQR
¢ QRc{l,...,p-1} is the set of quadratic residues mod p and

R {1,....p=1} is the sot of quadratic nenresidues mod p.
Since thers are precizely (p-1)f2 elements in cfxc]1 of the scts
R and NQR, the quadratic residue codes have dimension

i a4
p

-1
k =n—deglg(x]) =p ._,PT =

'fortunat.ely, it is diffieult to delermine the minimum distance of a
sdratic residue code. We do know that the minimum disiance does
tisfy the sguare rool bound

d> /b

this bound is often not very good.
s hinary quadratic reaicdue codes are

At any rate, the parameters of

0=, k:pf—‘l;l-, tfzﬁ

. . : 1
ice that the rate of the quadratic residue codes sat—ts‘_ﬁﬂ‘ ‘R B
The overall quality of quadratic residue codes is still uncertain,
¢ are some rather good quadratic residue codes of small length
hcludmg the perfect Golay codes §yp and Gyqh which iz promising,
it it is not koown whether theee are good quadratic residue codes of

ppa Cades

o Just as eyclic codes are specified by their generator polynomial,
oppa codes are specified by a special Goppa palynomial (3{x), defined
Cpver a field F o, along with aset LT o of nenzeros of G{x]. The
oppa codes afe linear but not, in general, cyclic, o

One of the nicest features of Goppa codes is that the minimam
istance iz hounded below by 14 deg(Glx)). In fact, if g = deg{Gix)),
hen the parameters of the Goppa cade satisfy

n="|L|, kzn—mg dz1+g
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(In the binary case, il G{x) has no multiple roots, we can improve ke
bennd on minimum distance to d = 1 4 2g)

Justesen Codes *

Notice that in each of the previous cases where we give specific
values for the rate B and for the number 4, we have either R—0 o
6—0 as n—soo. In other words, either the rate tends to 0, or the
probability of a decoding crror tends to | as n—sa, (See Corollary
427} We will discuss a family of linear eodes, known as Jusfesey
eades, that have constant rate R = 1, and for which

§ = H7Y3) = 0.110

where H[A) = =X log & — (1-4)log(1-4) is the entropy function. Thus,
the Justesen codes are “asymptotically good” codes.

PERFECT CODES

FPor quite some tinee, it was thought that the Hamming codes
!ll.’gq(r}l and the Golay codes Gy and {ip;  were the only nontrivial
perfect codes, The drivial perfect codes are hinary repetition codes of
add length, codes consisting only of the zero codeward and all of
Vinyg). {(Compare with the discussion of perfect codes in Section 4.2,
However, as we shall see later in the book, Vasil'ev found a family of
menlinear perfect codes with the same parameters as the Hamming
codes,

The following theorem, due to Tictiviinen (1073), with a large
contribution by van Lint, descrilics the situation with regard Lo perfect

cotdes over alphabets of prime power, We will not prove this theorem,
however.,

Theorem 4.3.6 A nonirivial perfect q-ary code C, where q isa 1‘3]_"rimc

power, must have the same parameters {length, size and minidhum

distance) as either & Hamming code ,'}E-q[r} or obe of the Golay cides

gq or Gy, Furthermors,

L} il © has the paramelers of one of the Golay eodes, then it is
ciuivalent to that Golay code,

2} if © i hucor and has the parameters of one of the Hamming
eodes, then it 3z equivalent to that Hamming code. [

OBTAINING NEW CODES FROM OLD CODES

There are several useful techniques thal can be used to obtain new
codes frorm old ones:

3 Families of Clodes

-nading o Code - ‘ .
The process of adding one or more additional coordinate positions

‘4o the codewords in a code is referred to as L':t:!E:‘i‘_'tdi‘n.g fhe code, T‘F]a
gsh commmon way be extend a code is by adding an overall par;fy
peck whicl is done as follows. If C Is a g-ary (o, M, d)-code, we
efine the extended code C by

n+l
C=depey gt [ ogeg ey € ¢ and kz;:ick -—-l]}

C isan [ﬁ,ﬁ,g}—mdt, then

F=utl, M=M, d=d or dtl
' i BT ity check to the code
“peample 4.3.4 Adding an  overall parity ¢
= {%ﬂ,ﬂl.lﬂ,lt} gives the extended code C= iﬂﬂ[},ﬂll,liﬁ]lillﬂ}.
Hotice that C  has minimum distance 1, but  © has minimum

digtance 2. 0

sample 435 Consider the binary Hamming code Hoylr), which has

paramcters
(27~1-r)

n=F—1, M=1 , d=3
e extended Hamming code ﬁz[r}, obtained by adding an overall
arity check to Hgir), has parameters

T i el
s M=o G
] hus, while the extended code has no better error cawccfring capat?illii':es
han the original cede, it does have better error defecling capabilities,
iice it can detect [wo errors {while also correcting a gingle error). 0l

Punciuring a Code ‘
% w{'l‘hegnppnsite process to cxtending a code is puncluring 4 code, in
which one or more coordinate positions  are removed  from  the
codewords. 1 C s a goary (n,M,d)-code, and if d = 2, then the code
obitained by puneturing © once has parameters

n"=n=1, M =M, d*=d or d-1

Example 436 The (23,4096,7)-code Gy is obtained from :.I{e
{24,4006,8)-code G,y by punetring t,!ml latter in the 1:-{5!: position. (In
'Tal:l;, puncturivg Gy 0 any position gives code a-.qun-'glenL far ‘ﬂ‘ﬂ.}
Motice thal the code G, does not salisly the sphz‘.r{!-‘]'r&ckmg condition,
and so it is not perfect. [owever, the code Gy is porfect. [Henee,
puncturing a non-perfect code can result in a perfect code. 0



156 4 General Bemarks on Codeg

Faor binary codes; the process of extending and puncturing can he
used to prove the following useful result.

Theorem 437 A binary (n,M, 26+ )-code exisls if and only if & l’ﬁi:'iary
(n+1,M,2t4+2)-code exists, N
Prool. Suppose that © s a binary [0,M,2t4+1)-code and that C i
the code obtained from © by adding an overall parity check. Then
since each codeword i C has even weight, Lemma 4,34 tells us thal
the distance between any two codewords in O is even. Hence, &{C) is
even, and so il must be 2442,

Conversely, suppose that O iz a binary (n+1,M,2¢4+2)-code and
that dlcd) = 2642, If we punciure T in & positien at which ¢ and
d disagree, the resulling code ©F has minimum distance ‘.ZH-IJ.I ]

Expunging ¢ Code

Expunging a code refers to the process of simply deleting some aof
the eodewords in the eode. ({Some authors use the term ezpurgate)) Az
an example, suppose thal L is a hinary linear (nM,d)-code. If L
containg at least one codeword of odd weight, then exactly one-half of
the codewords in L must have odd weight, [We leave proof of this as
an exercize.) By throwing away the codewords of odd weight, we get an
(e, M72.d%-code, where ' =, Furthermore, since each remaining
codeword has even weight, the minimum distance of the expunged code
must be even, and so il d 15 odd then 4" = d.

Augmenting o Code .

The apposile process of expunging a code s augmenting a code,
which simply means adding additional words to the code. A common
way Lo augment a bingry code C s to include the comr.-!cmcntal. of cach
codeword in Q where the complement € of a binary word & is the
word obtained from ¢ by interchanging all s and 1%s.| Let us
denote the seb of all complements of the words in C hy C5 %

Lemma 3.8 If xy e V(n,2), then dlxy®) =n—dxy). W
Proof. d{xy®) iz the number of positions in which x and ¥°
dizagree, which i precizely the same as the pumber of positions in
which x  and ¥y agree {sinee o =12), which in furn is equal to
n—dixyl i

Theorem 439 Lef C be a binary (n,M,d)-code, Then
O = min{dn —d

where o, Is the mazimem distance bélween codewords in €.

ma:}
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rpof.  We have
#(CUCE) = minf dO), ¢, min dled)}
de ot

ut 4] = dCF) =4, and according Lo the previous lemma,

© min, died) = 1‘:21{1}&{-:,{1“) = éléir:!:{-n —ded)} =n- max dle,d)
;E g(’ cd- e det deC

om which the result follows, Il

—1c
I L isa binary lnear code, andif 1 =111 &L, then .L =L
wever, if 14 L, then LNLE= 0. In Faet, we have the following.

eoremt 43,10 If L s a hinary linear (n,.‘-.-[,d}--:[:nda that does not
ntain the codeword 1= 111, then LUL® is a binary linear

0, 2M,d")-code, where

A = minfdn = w4

! is the s weight of any codeword in L. 0
d where . is the mas &

' ing a Code .

' m;;;ﬂciimfﬂg & code refers Lo the process Icr[‘ ke:apmg u|_1l_1f thn;ﬁe
ewords in & code that have a given symbel in a given position { ::;
‘{mstance, a 0 in the firsl position), and then deleting that position. .
Q is an (n,M,d)-code then a shortened code has Iengtlh n—dl M:i

minimum distance d. The shortened code formed by takm{g o ew::r =]
%ith an s in the i-th position is referred to as the cross-section X =8

The proaf of Lhe Following resull, is left to the reader.

Tr.hci}rem 4311 If C is a binary lnear {1, M,d)-code, then the eross-
ection x; =0 is a binary linear {:1—1,-%?':1 Jy-code, O

. The Direct Sum Construction o
IF Cp isagary (g, M4, )-code and Oy I8 agary {1y Mg,dy)r
code, the direct sum Cy is the code

Cy = led|ce iy, dE Cot
Clearly, €y has parameters
| n=ugtn,, M= MM, d= min{d;.dq}
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The {wp+v)-Construciion
A much more uselul constructi i
: 3 struction than the direct sum s
- 1 : !
Eﬂ:?m?g‘] IIf Cy s an (nMyd)-code and Cy is an (n,My,d }I~m-die
Ioof which are over the alphalet I, (note that C; and Gz ] A
Lhe same length), then we can define a code Cp & O, b]v 5 e

Cl @Cz = {C{C—Fd:] |c & {:1‘ de |:2}

glertai‘nl?-', Lhe lr-r:nth of C,&C, is In, and the size is MM, Asf
e minimum distance, consider lwo distinet codewords u l= z](c +dﬂr
and uy = gy(ey+dy). If dy =d,, then : 2y

d{uyup) = 2d{ey 05) = 24,
On the other hand, if d; # d;, then
g iy} = winy —uy)
= e, —oy) + wle, — ey +d,; —dy)
= wid; —d,)
did)dy) = d,

4

Henee, d[C; & C) = mi : ;
3 1 o) = min{2d,,d,}, S .
we get the following resu]t{ il SRR ol T

Thew by

" r:emid..l.l\?. .If Cy isan (nMd)lcode and €, is an (n,M,.d,)-
. both O,f which are over the same alphabet F_, then G, & C 3

(20 M Mo d-eode, where d' = min{2d;d,). 0 4 By BE

Exnm!:te 4.3.7  Recall that the first order Heed-Muller codes (1

are binary  (2™27+ 901 codes, and that ch(i’.“) de t( IT]
bmar}r_mpr&h'ttiml code of length 2™ which is a [2“‘2331&5; -
According to Theorer 4.5.11, the code A s

Fol L) b Rep(2™) /

is a binary [20F1 902 om0 A i
; ,my. o As owe will see when we stud e
Muller codes, Tof 1) @ fep(2™) is the Reed-Muller code (1 ri+¥ ilc{iﬂ

THE AUTOMORPHISM GROUP OF A CODE
Associated with every code over F, s a cerfain group, called the

automorphisy group of the code. Thi
o, g proup can be useful in stwdyi
the structure of the code, as well as in drcoding. L

i CFoanilics of Godes

ol

finition Let C be a binary (nk)-code.

G of permutations is said lo ix a code

omultiset M of all symbols appeari

L&Y

tion Let C bean (nM)-code over Foo The automorphism
Auf(() of C is the set of all monomial transformations i of

o 1 for which p{CyCC O

When q =2, 2 monomial transfermation is nothing more than &
utation 7 of the coordinate posilions, that is,

Te = CafyCa(a) Cmin)
us, ot binary codes, we liave the following.

The automorphism group of
Aul(C) = (v €8, [meeC for all e£C}) |

is a monomial transformation, then the code
oultiple equivalent to ©
pCc G {and hence

Recall that If g
C) = {re|ec€eC} is, by definition, sealar
- monomial transformations for which
== () are precisely the ones in AulC).

We leave proof of the following as an exercise.

_.rem 43,13 The set Anf{C] is a group. i

For a binary code O, the group Aut{C) is a subgroup of the

mmetric group S,

ample 4.3.8 The autemorphism group of the conde
€ = {0000,1100,0011,1711}

 the following subgroup of 5, of size 8
Aut(C) = {id,(]2),(34],[12](34}{13}(‘24],{]4}{23},[1324],[14‘23)} ]

vansitive Permutalion Groups

A gronp G of penmutations T € 5,
iven ig€ {l,...,n}; thereis n TE € far which m(i)=]. A group
¢, or 0O s said lo be

[i, turne cut that many important

is said to be transitive if,

tnvariant under G, i G C AulC),
odes are {ixed hy a transilive permutation graup.

I is lpvariant under & trangitive perinutation group, then the
ng in the i-th position is Lhe same

for all i. (In other words, he same symbols appear in pach position, -

 with the same multiplicity.)
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Here is a small sampling of the consequences of being invariang
under a transitive permutation group.

Theorem 4314 If an {n,M)-cade O Iz invariant under a transilive
permnutation group G, and if A denotes the number of codewords f
welght i, then n|id;.

Proof. Let B be the matrix whose rows consist of the codewords in ¢
of weight 1. Hence, B has size A;xn. Fix j& {l,....n]}, and let
ez be such that #w(1y=]j. Applying 7 to the codewords in B
results in moving the first column of B to the j-th colummn. However,
since w g Awl(C), the resulting matrix B" has the same rows as R,
but perhaps in a different order. In other words, the entries in the first
column of B are simply a rearrangement of the enteies in the j-th
columm. This shews that all columns of B have the same number of
nonzero entries. I we denote this numlber lay B then the ti}ta]:__lr.i]_umbgr
of nongero entries in B is equal to both wn and A, Henee, rn=
1Ay, which completes the proof. §

Corollary 43,05 Let ©C be an {n+l,M}-code in which all codewords
have even weight. Let € be the {n,M)-code obtained from © by
puncturing O in any position, Let AT be the number of codewords of
weight i in C% IF € is Invariant under a transitive permutation
group €1, then

kA2, = (n+ 1 —2k)AS,
In particular, C% has odd minimum weight,

Praof. Sinee © s invariant under a transitive permutation group G,
Theorem 4.5.14 applies, and we have

where 1y 15 the number of nonzere entries in any column of the
matrix B Tormed Trom the codewords in © of weight 2k, ag in the
proof of Theorem 4.5.14, f

f

MNow, A%, is the number of codewords in 7 of weight 2k-1.
But these codewords came fram the codewerds in C of weight l'\?k that
have a nongero entry in the column that was punctured, and sinee there
are tyy sueh codewords, we deduce that vy, = Az, ;. Henee,
(4.3.2) ThAg, = A (n+1)
Since C has only even weight codewords, we also deduce thal

A+ A%y = Ay

Subslituting this inte (4.3.2) gives the desived resull,  The final
statement follows [romn the Tace that if A5 £ 0, then A3 #4010

Families of Codes LGl

Hary 4.316 Let € be a code, and suppose that the extended eade
invarant under a fransitive permutation group. Then © has odd

ght. 0

=

(ERCISES .

. s the code € = [000,119,011,11L} systematie?

Is 7., afield for all positive integers n?

Prove Lemma 4.3.2:

Prove Theorem 4.3.3,

Prove Lemma 4.3.4. -

. Show that if [, and L, are linear, then so 15 Ly Ly

+ Compute the rate of the Galay codes. :

Referring to Example 4.3.3, show that dir,s) =3, and so the

cotde C = {01,844 Tps8pp0.aB7) 158 {7.16,3)-code. i

Show that the code in Example 4.3.3 is perfect, l“.'“ u-:rrt ll(ne,ar.

‘Let T, denote the set of all even weight wordsin V(n,2). Show

that E, is linear, Whal are its parameters n, k, and d7

. Describe scalar muitiple equivalence for binary codes,

Prove Theotem 4.3.11. Does a corresponding theorem hold for
oss-sections of the form x; = 17 Explain. £ .

?: O is an (n,Md)-code, s:hu:uﬁ that the extended code O 15 an

(ﬁ',ﬂ,ﬁ}—mde, with & =n+1, M =M, and d1=d or d+1. .

Show that the condition that the codes be binary is necessary in

Theerem 4.3.7. ‘

Show that CGolay Gy, s not perfect, bhut that 5 15 perfect.

! ¢ Lhat iz perfect.

I’g:‘!;grcnt]hat ?fn L P: a binary linear code, and if 1=11-- 1el,
ihen L =L°% However, f 1¢L, then LNL= B. Frove

Theorern 4.5. 11, .

Show that a linear code can be cquivalent to a uonhmfar code. -
Show that, up to equivalence, there is exactly one Linary {84,5)-
codle, s
Show that any qeary (ngnlcode is equivalent to a repetition
code, N . i
Is any code equivalent lo a code containing the string 1=11-.-17
Prove that any hinary (5,M3-code  must satisfy M <4,
Furthermore, there is, up to tr[ui'.-al]fl:ncv.:j. exa-:.t!lﬂ um:; (5.4,3)-code.
{lew many mequivalent binary [(n,2)-codes are there:

Consider &the ?:inary words ¢y = 11010000, ¢; = lllﬁﬂlﬂiﬁl, and
£y = LOLOLOLO.  Let £ be the code formed by incloding eq, oy
cq, all eyelic shifts of these words, and the words 0 and L Show
that € isa (8,20,3)-code.
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24,

25,

28,

27,
28,

29,
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Use the {vu+v)-construetion and the code of the previous exereise
to construct a {16,2560,3)-code.
Sllplpoﬁe thal L -‘IS a linear [n,qk,d]—cucle that iz systematic on off
chioices of k positions, Show that d =n—k1,
Show that a q-ary (q+!,quq‘]—mde, where o iz odd, is perfocr if
and only if g =13,
Prove Thearern 4.3.13.
What iz Aull ; G0 : e i
V[n?gj!; wl{E, ) where E, i the set of all even weight words iy
What is the auntemorphism gron & g
B poof the extended cod

Example 4.5.47 = e
Show  that C,c de ily i

i3 o5 not  necessarily  imply  t
Aut{C] D Aut{C;). N
Suppose that T is the binary linear code obtained from a binagy
lmear‘ code L by adjeining the wvector 1. Show that
A.u_i{[.. ) 2 Anf{Ly, I, in addition, L has odd length and all
weights in L are even, then Axf{L") = Auf(L).
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.4 Codes and Designs

¢ We will see in this briel section that there is a connection between
odes and  ceriain  other combinatorial  structures  known  as
mbinalorial designs.  We begin this section with seme gencral
rernarks on combinalorial designs. Readers interested in learning more
-~ gbout designs may wish to constlt the ook by Anderson (1950,

: A set of size ko will be referred to as a k-seb,

finition Let S bea v-set, whose elements will be called pointa. A
#_{T,k,}.} desigu ie oa collection @ of distinet k-subsets of 5, called
ks, with the property that every t-subset of S s contained in
actly A blocks, 0

When the parameters v, k, and A do not require emphasis, it is
stomary to refer to % simply as a b-design. Some special cases of
esigns are worll singling out.

Detinition
3O T(vkAa) design with k< is referred to as a balanced
incomplete block design or BIBD.

A (v k1) design is referred to as & Steiner system and denoted
by S{t.cv). Thus, a Steiner systom is a collection of k-subsets
{blocks) of a v-set with the property that every t-subset lies in
exactly one block. A Steiner triple system ig a Stelner system
5(2,3.%), that is, a collection of triplets with the preperty that
sael pair of elements lies in exactly one triplet.

A 2-(vk1] design is called a projective plane.  The k-subsets
{blocks) are the lines, and every pair of points lies on exactly one
line. It iz possible to show that a 2-[v k1) design is also an
S(2n4lmi4n+l). Such a design e a projective plane of
order 1. (]

Txample 4.4.1 An example of a Steiner triple systemn is given by Figure
4.4.1, which we have met before in connection with nonlinear codes, In
this case, § = {1,2,3,4,5,6,7}, and the blocks are represented by the line,
segments and the circle. Each block is a S-subset of 5, and each pair of
points in 5 is in exactly ooe block., Hence, this is a Steiner triple
system 5(2,8,7), bebler known as the projective plane of order 2. 10
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Relatively little is known about the existence of Steiner systems i,
general.  In {ach, ne Steiner systems with >3  have ever heeg
discovered, and only a handful have been discovered for t=4 or 5

However, we do have the following results, whose proofs can be found iy
Anderson (1990). "

4 5 6
Figure 4.4.1

Theorem 4.4.1
1) A Steiner triple system S{2,5,v) exists ift and only if

v=1ar3 (mod G}
) A Steiner quadruple systern 8(3,4,v) exists if and enly if

v =2 ord (mod 6) A

It is customary to let 1 denote the number of Llocks in a
t-(v/k,A) design D, and let r denote the number of blocks containing a
given point in B We will see ina momenl that r iz well dnﬁ:no.d.

L

Theorem 44.2 A t-design is also an s-design, for any s < ¢,

Proof. Let A be an s-subset of Lhe (v k,A) design D, and suppose
that A is the number of blocks containing A, We must show' thai A,
is independent of A, To this end, let ws counl the number of pairs
(,B), where B iz a block, D is & t-subzet, and AC D C B On the
one hand, for cach ol the ([7F) cheices for Iy, there are A blocks B
containing  Dn On the other hand, for each of the A blocks D
containing A, there are {1;::) cholces for D, Henece, we have

Myzg=ad)
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s implies that A, is independent of the set A, _and go D 15 an s
dgn. In face, if D isa t-(v,k,A) design, then it is also an s-(v e, A

sign, where
n=(iz) /629 :

We leave proof of the following result as an exercise.

i orem .43 Lot 3 be a t-(v.k M) design.

Each point of D is contained in r blocks, where

] =) /6]

@ has b blocks, where
b=(3)/ ()

The patatmeters v, k, b, and 1 oare related by
rv = bk 1]

Intersection Numbers of g t-Design
| We have seen that, for a tedesign D, the nu1mher of blocks
"ﬁtaiuing a given point p; s independent of the point pg. Let us
eralize this fact. ,

et M =Lpp.a and N ={g,,....q,) be disjoint sets of
'mt.sI: with ﬂgrin, nl-]g?,,} and let  p(M,N) be the number of ‘tglocks
hat contain M but are disjoint from N. Noie that a(M0) s the
umnber of blocks that contain M and p(®N) is the number of blocks
hat are disjoint from N, Also, p(0,8) =b. We want to show that
WM,N) depends anly on the sizes of M and N, 0o
" According to Theorem 4.4.2, p{M,0) depends only on the size o
Let us assume that (M N} depends only on the sizes uf\ M oand
N, whenover IN| €n-1.  Let N={py : .1.1_1:'11}- ’Ilﬁen th;
AN — .1 blocks that contlain M Ibut are digjoint from N - {pnt
fall into two groups —thoss Lhat contain Py and those that do not.

=4

- Hence, we have

SN = {p,}) = (MU {p N = (o)) + p(MN)

W(MK) = p(MN = () — (MU {p b N =i 1)
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But by assumption, the terms an the right depend enly on the sizes af
M and N, and therefore so does p{M,N).

Thus, we may Tet g o= p[M,N), for any sets M and N wig
IM|{ =mand |N| =mn. TItiscustomary in the literature to treat the
numbers

Mg = Hicig

where 0 <) <i<t. These are defined as follows, If {p;,...,p} isa
set of points, then }njd is the number of blocks that contain thel Points
Biveesa P bt sol the paints Bipprs s a Py

Let us summarize,

Theorem 444 Let T be a b-(v,lc, A} design, and let 1Py} bea
set of points in D, and suppose that 0 <) <i <1, The ,humher. Aol
blacks that contain Proees Py bul nof Bippreea b depends only cn:*:] the
numbers § and i, and is called a block intersection number of 4
Furthermore, we have the Pascal property

(4.4.1)

as well as

Aot = Kt g1 = A

Mgy X =A[‘;:})/(§ :f) 0

Figure 4.4.2 shows a portion of the block intersection nurnbers,
along with the recurrence (4.4,1).

lﬁlﬂ

A, A |

1,0 1.1
A A A \
2.0 135 2.2 &5
b L)
. i-1,§-1 ' !
; -
:;lt'i,j$_x liﬂ' |
Figure 4.4.2
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GINS AND CODES
Ta explain the connection between designs and codes, we need a
gimple definitions, We will restrict our attention o the binary case.

mefinition Let x and y  be binary words of length oo The set of

itiong in which x  las novgero entries is called the support of =
say that x covers y if the support of y is a subsel of the
port of x. 0

For example, the support of x = L0110 is {1,3,4}, and x covers
0100,

fimition Let © be a binary code of length n. Lel 8, be the set of
rds in © of weight w. We say that S holds a t-{m,w, )
o if the supports of codewords in 85, form the blecks of a
w,A) design, thal is, il for any tset T C{l,2,..n} there are
1y A codewords of weight w in C with 1's in the positions

by T. 0

ur first result on codes and designs shows that perfect codes
ya hold designe,

et 4.4.5 Let O be a perfect binary (n,Md)-code. Then the set
of all codewords of minimum weight d  holds a Steiner system
el dnd, whers = (d-1}/2.
aof., Since © Qg perfect, the spheres of radiusg t are digjoint and
er Vin,2). Hence, any binary word x of weight t+1 is contained
axactly one sphere, say =€ 5{gt). But diex} <t implies that
) < die) +wix) L+l =d, and so ¢ must be in 8y,
Mow, we have

wix)=t4+1, wle)=d=2t+1 and dxe) <t
en aecording to Lemma 4.3.4,
Qalx e} = wix) + wfe) — dxe) =242

dso wixre) =6+ 1 = wix), which implies that ¢ covers x.
.m[:rle 4.4.2 Since the perfect Hamming code ﬂf:z(r;l has parameters

r
SR Co L

e codewards Sy of weight 3 in J6,[(r) held a Steiner triple system
(2,3,2°-1}, 0
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Corollary 4.46 Let C be a perfect binary {n,M,d)-code. Then the
number Ay of codewords of mininmm weight d =26 41 is

Ad :(tflv(ti lj )

Example 4.4.3  For the Hamming codes ¥oo{r), we have
= {21y faay (@ -)E = 1)
A= g :

Theorem 4.4.5 can be used to give necessary conditions on the
existence of perfect (n,Md)-codes. [(Recall that t sphere-packing
condition also gives necessary conditions for the existence of perfect
cores, )

Corollary 447 [f C s a perfect binary {n,M,dpcode, where o =
2+ 1, then the numbers

=i/
L T fi+l-s
miust be integera for all 1<s <4,

Proof. This follows from Theorem 4.4.5 and the value of A, given in
the proof of Theorem 4.4.2, ¥

Example 4.4.4 Recall from Section 4.2 that one of the solutions to the
sphere-packing condition is (n,M,d) = (80,2755}, If a code with these
parameters were to exizt, then the number

~ 8B} SN _ &8
2=(7)/()=%
would have to be an integer, which it is net. Hence, t:okﬁuch code can
exist. [

.

EXERCISES i

L. Prove Theorem 4.4.3. Hint. For part 2), count the number of
pairs (A,B), where A is a t-subset, B is a block of the design,
and A C B,

20 Let Sitkw] he a Steiner system, with underlying set 5, and let
s £ 8. Buppose we punclure S{tkw] by taking only those blocks
containing s and then removing s from these blocks. Show that
the resulting callection of blocks forms an S5(t-1k-1,0-1) Steiner
gystemn.
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Generalize the previous exercise to t-designs. The resulting design
iz called a derfved design,

Uging {4.4.1), compute the block intersection numbers for the
Steiner triple svstemn 5{(2,3,7) in Figure 4.4.1.

Prove Theorem 4.4.4 in detail.

Show that x covers y if and only if wix+¥) = wix) — aly).
Show that % covers y Wandonly if xNy=1y,

Show that x coverz y if and only if wixMy) > wiy).

Prove Corollary 4.4.6,

Give the details of the proof of Corollary 4.4.7.
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4.5 The Main Coding Theory Problem

A goed (nMd)-code should have a relatively large size so that
can be used to encode a large number of souree messages and™,
relatively large minimum distance, so thal it can be used to correcy 4
large number of errors. Not surprisingly, these poals are conﬂicting

It is customary to let A (n,d} denote the largest possible e-ise M
for whiclk there exists a g- ar:.-' (nMd)-code. The numbers (n d)
pla}-‘ a ventral role in coding theory, and much effort has been Pxpended
in attempting to determine their values. In fact, determining the valyes
of A, (nd) has come to be known as the main coding theory problem.

CL’.[OS* of the resulis oblained thus far center on determining
A, (nd) for small values of o, n, and d, or finding upper beunds on
Aglnd).  There has also been tonsiderah]:a work doile on determining
the asymptotic behavior of A as a function of §=d/n as
n—ao. An (n,Md)code for v'rh:n&u M A ln,d) is said to be optimal.

We begin with a summary of some of the main results of this
gection.  This summary will be sufficient for those readers whoe would
tike to move on as quickly as possible, The remainder of the seetion
containg the details, aleng with complete proofs. Since some of these
details are a bit technical, the reader may wish to skip the stareed
sections upon first reading,

OVERVIEW

Elermentary Resulis

Theorem 4.51 For any n > 1,
1 Aynd) =

2) Aginn)=q [ i

Theorem 4.52 Vor any n = 2, \
Aq(n,d) < q A (n-1,d) 0
For binary codes,
Ag(n,241) = Aglnd-1,2642)

Tt another way, it d is even, then  Agind) = A,(n-1d-1}, Thus
far binary codes, il is enough te determine Ay(n,d) for all edd values
of d (or for all even values), 0

Theorem 4.5.3
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Lower Bound on A fmed)
{The Gilbert-Yarshamoy Boum]}

k,[LJ(q B

orem 455  (The Gilbert-Varshamov Bound) For ¢ a prime
er, there exists a g-ary linear [nk]-code with minimum distance at
mit d provided that

.mrem 454

Agl

q

I e——
¥, i)
i=0

1=

ql‘ <

i
ice, if & is the largest integer for which this inequality holds, then

ser Bownds on A ()
orem 4,56 (The Singleton Bound) A (nd) <g" 91 1

The Singleton bound i often not very good. However, there are
where the Singleton bound gives equality. See Example 4.5.1.

vem 4.5.7 (The Sphere-Macking Bound or The Hamming Bound)

L )

 Recall that a peclect code is a code for which equality holds in the
e-packing bound,

i
gorem 4.5.16 (The Plotkin Bound) Lot & =31_r1“~

d
i —dn

If d = 8n, then |

ﬁq{n,d] <

0

Motice that the Plotkin bound applies only when the minimum
listance « is rather large. This bound can easily be refined a bit when
j= 2
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Theorem 4.5.18 (The Plotkin Bound)
1) If d iseven and 2d >n = d, then

Aglnd) % Q[Ejl—nJ -

Also, iF s even,
Ay(2d,d) < 4d
9] If d isodd and 2d+13n >d, then

d41
A"’f(n'd\] = 2id4+1-n

Also, if d 15 odd,

A (2d+1,d) < 4d +4 )

Theorem 4.5.24 (The Elias Bound) Let 8 =21 If ¢ is a positive
integer satisfying v < fn and 1 - 20ur-+8nd > 0, then

fnd q"
A (ne) = .
q{n )= r* — Mnr+ind vq(nﬂ'} &

This completes the overview., Noaw we present the delails,

ELEMENTARY RESULTS

The following result is easily established.

Theorem 4.5.1 For any n =1,
1) Afdnly=4g"
2) Agnn)=q I

Theorem 4.52 Forany o> 2,

Ag(0d) < g A n-1,0)

Proof. Let © be an optimal g-ary {(n,M,d)-code. Thus, M = A _(n.d).
Clearly, one of the o cross-sections x; =i of ( must contain at
least M/q codewords, and so

A

According to Theorem 4.5.7, a binary {n,M,2t+1)-code exists if
and only if a binary {n+1,M,21+2}-code exists. Hence, we immediately
have the following,

The Main Coding Theary Problem LT3

eorem 4.5.3  Tor binary codes,
Agln,2041) = Ay(u+1,2042)
¢ another way, if d is even, then Au(nd) = .-'L:z{n—l,d—l}l. ]

Thus, for birary codes, it is encugh to determine Ay(n,d) for all
values of d [or for all even values).

ALL VALUES OF A, ()
The following table of values of Ay(nd) is taken from Hill
867, which in turn comes from Sloane (1952},

TABLE 4.5.1 — A,(n,d)

n e =5 d=7
5 4 2 -
i & 2 -
7 18 p) pl
B 20 4 2
K 41 G i
11 T2-79 12 2
11 144-154 24 q
12 254 3z 4
13 al2 4 q
14 1024 128 LG
15 2048 256 32
16 2a60-A276 256-340 36-37

As the exercises show, many of the lower bounds on Ag(nd) in
Pable 4.5.1 corne from codes Lhat we discuzsed in the previous section,
mch as the Hamming codes and the repetition codes, along with
rtened versions of these codes.

LOWER BOUND ON Aq{r:,d}

U € isa mazimal (n,Md)-code, then no word in Ving) has
tance d  or more from all codewords in C, Tn other words, the
heres S {e;d=1) about the codewords in € must cover V{n,q), and

M-V (nd-1) = i

is gives the following important lower bound on A lnd).
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Theorem 4.5.4  (The Gilbert-Varshamov Bound)

1)
Agnd) 2 g n

(e

This bound can actually be improved by considering linear codes,
However, unlike the previous result, the bound applies only when ¢ is
a prime power. We postpone the proof of the following result until the
next chapter, when we consider linear codes in more detail.

Theorem 4.5.5 (The Gllbert-Varshamov Bound) There pxists a g-ary
linear [nk]-code with minimom distance at least d provided that

d-2

3. (i e

=0

Hence, if k s the largest integer for which this ineguality holds, then
Aglnd) =k O

UPPER BOUNDS ON A, (nd)
Now let us consider various upper bounds on A in.d).

The Singleton Bound
The Singleton bound is one of the shnplest of all upper bounds on
A loyd).
II
Theorem 4,56 (The Singleton Bound) \

ﬁql:l'!,d:l < (lu—d+]

Proof. Let O be a gary (M d}-code. IF we remove the last d-1
coordinale positions from each codeword in ), the resulting M words
must be distinet,  Since these words have length n—d 41, we get
I'I"I _‘:_:qh—d-l'-ll I

The Singleton boond is often net very good. [Hewever, there are
cases where Lhe Singleton bound gives equality, Here is an example,

Example 4.5.1 The following  eode iz & (3,16,2)-code  over
Fy= {0,180}
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C= {000 la0  bila  hal
Nla  abd lob 111
falh bl0 1ha aaa
Bl all  alb bbb}

ce, A,(3,2) 2 16. Bul the Singleton bound gives A4(3.2) < g3l
= 16, and so equality holds, [

The Singleton bound irmplies that any [o.k,d]-code must satisfy

qk i qn—d+1
k<n—-d+1
d<n—-k+1

inear code for which equality holds in this inequality is called a
rmum distance scparable code, or MDS code, since it has the largest
ble minimum distance for any code with given length and
pension.  Thus, an MDS code has parameters fnn-d+ld], or
ivalently, [nkn-k+1]. MDS codes have some very nice properties,

s we will see in Chapter 5,

=l

For now, lel us ohzerve thal if we remove any set of n—k=d- 1
rdinate DOS:lt]L‘IIIS from an MDS code ©, then we must et q
binct strings of length k, that is, we get all of ¥(k,q). Thus, any set
-k coordinate positions in C contains all possible k-tuples, and ©
yystermatic on any set of & positions,

& Sphere-Packing Bound

Since the spheres of radius pr{C) about each codeword of © are
int, we immediately obtain the following sphere-packing bound,
o known as Lhe Hamming bound.

':ﬁ.‘,m 4,57 (The Sphere-Packing Bound)

Mo € = 1= |85 :

T

k=0

Reeall that a perfect code is a code for which equality holds in the
here-packing hound.
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+ The Numbers A{ndow)

The sphere-packing bound can be improved upon by taking 4
more careful Jook at just what the spheres of radius  pr(C]  actually
cover. To this end, we restrict attention to the binary case q =2, and
introduce the notation  A{nd,w)  to denote the maximum size of 4
binary code of length n and minimum distance af least d, for which
all eadewords have weight w. Let us consider some of the more basic
properties of the numbers  Afnd,w)l  We leave proof of the following
lemina as an exercise,

Lemma 4.5.8

1 A2k =2

2} An,2kw) = Afn ko —w) |

3 A2k — L) = Ain,2kw) n

The next result gives an upper bound on Afn,2kw}.

Th AED AlnZkw] € |-t .
eOrem {n.2k,w) = L'.'? i knj

Proof, Let © e an (n,M,2k)-code, each of whese codewords has
weight w, where M = Ai{n 2kw). Arrange the eodewords in O as
rows of an Mxn matrix B, and let k; be the number of 1's in the
i-th eolumn of B, We compute the sum 5 of the scalar produets
G of all pairs of distinet rows of B,

On the one hand, it i3, then

€ = ufg Ng) = Jhule;) + wie) — dle,g)] £ aw =2k =w—k

and so
MM I
s= 3 ) ci-cjgi:w—k}m[h-l—w
=1 j=1
i#i

O the other hand, the contribution to 8§ from the i-th column s
ik, — L), and so we have

i} i 1 n
S= 3 klg—1= 3 k=Y k= k-wM
i=1 i=1 i=1

=1

Bul the Tast sumy above is minimized when k= wM/n, and so we get
Ingl
wM M 28 < (w-kM(M-1)

which gives the desired result apon solving for M. §
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aple 452 According to Theorem 4,54,

A(9,5,4) < L‘u-ﬁé‘ﬁJ =5

rthermaore, the code
€ = {1111100000,100011100,010010011}
pws that A(BGA) =310

Next, we hiave a recursive inequality for A{n,2kw).

prem 4510 A(n,2kw) < |[WA(n-1,2kw-1)

' f, Let C be an (n,b,2k)-code, each of whose codewords has

bt w, where M = A{n,2kw). The cross-section x, =1 of G has
both n-1, minimum distance at least 2k, constant codeword weight
. and hence size at most A{n-1,2kw-1). As a result, there are at

Aln-1,2kw-1) 1 in the first position of all codewords in .
oo, the total number of 1's in all codewords in € s at most
n—1,2k,w).  Dut this number is equal to  wM, and so we get
< nAfn-1,2kw), from which the result follows. 0

arolary 4.5.11

Aln,2k-1w) = A{n,2kw) < wlnj llﬂ:?ﬁﬂj g } J J 0

gple 4.5.3 According to Corollary 4.5.11,
=

A(13,5,5) < [%[%H&LHJ =93 i

Here are some additional values of  A{n,2kd), which we quote
oul proof.

rem 4.5.12
Sechinheim (L966)

AlnA3) = [%lnT_lJ 1 -

where e =1 if n=58modd and 0 otherwise
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2} Kalbfleisch and Stanton (1968}

w for n =2 ot 4 mod §

Alpdd) = ﬂtﬂm}—-—i}— forn=1or 3 modf

m:il'j}:;.:“_"ﬁl for n.= 0 mod f

w The foknson Sourd

Now we are ready to improve upon the sphere-packing bound, for
binary codes. We begin with a lemma, whese proof is left as ap
exercise, !

Lemma 4513 If ¢ and d are binary words, with ded) = 2t+41,
then there exist exactly {“:‘1] binary woerds x with the property that
dlex)=t+1 and didx) =1 0

Now, if € isa binary (n,M,2t+1)-code, the sphere-packing bound
says Lhat the spheres of radius &= pr{C) about the cedewords in C
are digfoint, and so

M-Vt <2®

Hawever, we may improve upon this inequality as follows.
Let T, be the set of all binary words that have minimum

distance exactly t+1  from the codewords in O In other wouds,

x€ Ty if and only if dixch=t+1 for some codeword e and
dixd) > t+1 for all codewords d. Since nene of the words in T,
are in any of the spheres of radius  about the codewords of C, we
have \

(4.5.1) MeWalmt) o+ [Ty | 27 N
To find a lower bound on [Ty, |, consider the set
U={{cx}|e€C xET 4y diex)=1t+l}
= {{e,x) | e € C, de,x) = t+1, d{dx) > t+1 forall d&C}
First, fix a codeword e, and congider the csection

U= 1{xl{cx) € U]
= {x| d{ex) = t+1, d{dx) = t+1 forall deC}
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ice thal if  dex) =1t+1, then didx} =t for all de ) since
herwise dlc,d) € dexHdixd) < H+1. Hence,

U, = {x] dlex) = t+1, d{dx) #t forall d€ C}

hus, in order to determine the size of Uy we must subtract from the
B} binary words whose distance from ¢ is t+1, those words whose
ance from some other codeword d is equal to 1.

Observe, however, that if d{xe) =t+1 and dixd) =1, then
fed) = 9441, Furthermore, no two distinet codewords can have
ance b from a single word x. Hence, according to Lemma 4.5.13,

| S =( : )"‘ [# codewords at distance 2641 from c| (2":' 1)

CIF we subtract e from each codewerd in © that has distance

tly 2e+l from ¢ the result is a code with length n, ¢ach of
iie codewords has weight exactly 2t+1. This implies that there are
most  A[n,20+1,2t+1) codewords in C with distance exactly 2t+1
n e Henee,

[Uel = (tjllk)* A{!1,2L+1,2t+l](2t?—1)

U] =M -[(LL}- A(n,2t+1,2t+1}(2“:‘1)]

Now fix a word x €T, , and consider the x-section
Vv, = {e](ex) € U} = {c] c€C, diex) =1+1}

o d eV, then d{ex)= d{dx}=t+1. Hence,

wie—xp = twld —x) = t+1

2+ < died) = dle —x,d - x)
= ufe — x}+uw(d — x) — 2uf[e —x] N [d—x])
= 3t42 = 2uffc—x] 0 [d —=])

ich im]:-lies. Lheat

wle—x|Nd-x]}=0

dso c—x and d—x haveno s in common. Hence, there can be
most |_tf+.—‘.lj words of the form =%, where e € ¥, that Is, at most

“’t_-;Tj words in V. Therefore,

e AL ST o

N._-w:'g,_-,'.-_ﬁ-.;._m-.-ﬁhr -

S e

SRR

s
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(4.5.3) U] 2|1 T |

Pulbting [4.5.2) and [4.5.3) together, we gel

1Ty, | 2 Ll,,,J[L(Hl) Afo2t41 z¢+1)(“+1)]

This bound, together with (4.5.1), gives the Johnson bound.

Theorem 4.5,14 (The Johnson bound)

Ayin2t+1) < Z a

] () [(L-H) (n12t+11ﬁt+1}(m?l)]

k=0 t+1 |

Exnmple 4.5.4 Aecording  to the results of  Example 4573
Al13,5,6) = 23, and so the Johnson hound gives

altd
Ayl135) < 2 =%-[1%=?7.23

(1) )20

Thus, A,{13,5) <77. {Note that this bound is not good enough te give
the true value of A,(13,5), which is 64.) O

Using Corollary 4.5.11, we gel Lhe following corollary to Theorem
4.5.14.
Corollury 4515
gl
Ag(n 2641} € — 2 - 0

S0t |

Example 455 A code is nearly perfect if it gives equality in Corollary
4.5.15. The shortened Hamming [27-2,2"-2_r 3]-code is nearly perfect,
and s0

A2ty it

Henee, the shortened Hamming codes are optimal.
The so-called punciured Preparvata code is a nearly perfect
nonlinear (2M_1,2% =2 5 cade, and so
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Az(2!11—115} T 22m—ﬁm

e Plotkin Bound B ‘ _
The Plotkin bound applies only when the minimum distance d is

her large. However, as we will see, it may be a superb bound. We
n with a preliminary version.

orem 4.5.16 (Plotkin) Let 8 =35 If d > én, then

d
Agind) £ T m

oof. Let O be a qeary (n,M,d)-code, and consider the sum of the
"t,a.m;es hetween codewords, which is given by

5% died)
€ C ded
ce the minimum distance of C s d, we have
§ > M(M—1)d

the ather hand, suppose that the number of §'% in the i-th pmsiafi.on
all codewords in O is kg, where j=0,,...9-1. Then the i-th
tion contributes a total of
e M? 2

ki =ME s Yok g M-y =0
it == 3,

5, since the last sum above 1s smallest when ky = M/q. Sinee there
st o positions, we have
MM = 1)d <8 < iM?n

Theorem 4,517 If d >1n, then

Aylngd] = ‘2{}%1

fa

b
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Proof. As in the previews proof, let © be an (0,M,d)-code, and ket g
bie defined as before. Hence,

(4.5.4) Sz MM-1)d

Suppose that there are k; 1’s  in the i-th position of all codewsrds,

Then this position contribubes k{M-k} to 5 and so

(45.5) §= 5 k(M-k)
i=1

If M is even, this sum is maximized for k; = M/2, in which case
5 < %M2n |
This, together with {4.5.4}, gives

C\;}d = %Mgn

2l
M= al-n

which is equivalent to

from which the result follows. I M iz odd, then the sum in (4.5.5) is
maximized for k; = %[M—l}, in which case

S<HM -1y
This, together with {4.5.4), gives

i 1 2
(2]d gE{M——l} t
which is equivalent to

M=

2 |
Zd-n .

which againo implies the desired resuli. @ A\
We can improve upon this result by separating the cases where
is even and where o is odd.

Theorem 4518 (The Plotkin Bound)
1) I d izeven and d = %n, then

, o _d J
Ay lnyd) = 21,:’£d—11

Alsa, i is even,
Ay (2] = el

) The Main Coding Theory Preblem
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If 4 is odd and d = §(n-1), then
d-+L J

Aglnd) = Hl--l-n
Also, if d iz add,
.&Q[gd‘l'l.‘dl} E 4“ -+ q

of. The first inequality in part 1) is Theorem 4.5.17. For the
ond inequalivy, let o =2k, Then, {romn Theorem 4.5.2 and the first

nality, we have
4 - _—-—-—Ek = k
Ak, 2K) < 28, (4k-1,2K) = 41_4k—(4k-1}j :

¢ the first inequality in part 3], we have

d+41
Ayfnd) = Ag{ne1d+1) ElmﬁJ

v, A,(2d+1,d) = Ay(2d+2,d+1) £ 4{d+1)-

ple 4.56 The Plotkin bound can also be used, in conjunetion with
srem 4.5.2, to give an upper bound when d quLfn. For example,

have

; ; Bl
Agl135) = PPAL(105) <8 2 \mJ =96 o

ity in the Plotkin Bound — Hadumard codes . . )
© The guestion of equality in the Plotkin bound is an interesting

d unfinished) one.

jefinition A Hadamard matrix i, of order n is an nxn matrix
hse enbrics are all equal to 1 or —1, and for which

H H} =nl, .
Hadamard matrix whose fivet row and first column consist enfively of
is said to be pormalized. O

Far example, the following are normalized Hadamard matrices.

(1 111
T
Bi={ 1 1.1-1

1-1-4 1

L




i

¥
184 4 General Remarks on Coda,

1
|

e
i

'
| '

— e e b e
1
1
1
i

[
v
{
]
i
"

4

i
e e e e e e
i

a
0
i

L e S i e i W e o

'
r

i
s
' [
i
|
1

B pr el e et et
1

I
O e gy S R

bk e e e b b e b

i
e S B R

A I (e A 0 S e
i
I i

kb b e B bk Ea e

It is known that a necessary condition for the fexistence of g
Hadamard matrix H_ is that n=1or 2, or 4 |n, but it is not known
whether this condition ie also sufficient, (It is a simple exercise to show
that if a Hadamard matrix H, exists, then so does a nermalized
Hadamard matrix of Lhe same size.)

Given a normalized Hadamard malrix M, we can form several
different codes as follows, Recall that the complement x° of a binary

word iz the word obtained {rom x by interchanging @s and 1%,
Alse, CF=I["lceC]

Theorem 4.5.1%  The matrix A, obisined from & nermalized
Hadamard mateix 1, by replacing all 1% by 0% and all -1" by
Vs, is called a binary Hadamard matrix. Furthermore, from A, we
can construct the following Hadamard codes.

I} The rows of A, with the first coordinate removed, form an
I:n-—I,n,:lJ—cn]--co-de, which we denote by Hadl,,

2)  The shortened Hadamard code SHadi,, obtained by!taking the
cross-section xp = 0 of Hadf, is an [11—21%1:1.,%11)—':0{&. 5

8)  The set Hadl U{Hadl }* is an (nnl,zn,%nulj-mde, derioted by
Had2 .

4] The rows of A, together with the complements of these rows,
form an {’n,Eu,%n}-code, denoted by Hadd . 01

Proof,

1} Sinee the rows of I are orthogenal, the number of positiens in
which any two rows agree must equal the number of positions in
which they (lisagﬁree, Hence, the distance between any iwo distinet
raws of A s gn.

2} This follows fram the fact thal, excepl for the first column, each
eolumn of H, has the same number of 1% and -1%,
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. This fellows from Theorem 4.3.9, since
d = min {-1511,{11—1]...%:1} = %ﬂ =

This also follows from Theorem 4.35.9. 8

Dur plan now is to discuss a theorem of Levenshtein that says if

mard watrices H_ exist for cerfain values of m {an open

fon at present}, then equality must hold in Plotkin’s bound.

We begin by discussing some new constructions.  Let < be an

o d)-code, 1T u is a nonnegative integer and ¢ isa codew?rd, then
© denotes the word cooc, formed by juxtaposing u coples of e

, uC denotes the code

10 = {uc|ce C}

¢h is a (un,Mud)-code. 1 u=0, then uC is taken to be the
.t}' set. )

Mow suppose that €, is an {ny My, J-eode and , is an
M., J-eode, both over the same alphabet.t jSIlpste further that we
the order of the codewords in each code, writing

Gy ={enip- o) avd Cp = (op ey}

ere the angle brackets indieate an ordered set. Then we can

terleave codewords of C and €, to form a new code @Gy by

‘Eaposing corresponding codewords in the erdered codes © and Gy,

til we ran oub of codewords in either code. In symbals,

(eriea €iptop oo Cng Cang b T My My

CieC, = ;
{ey1CanCratags- '?':1!\-13':23-1.2} it My > M,

e will leave il as an exercise to show that €)@ Gy has parameters
{11y, min{M; M}, d)

here d 2 dy4dy I either of the codes ¢, is the empty set, then by
efinition, C @ ¢, is rqual te the other cincle

We can combine the two peevious construclions to gel the
allowing resull,

heorem 4.5.20 Let € be an ordered {1, M4, )-code, and let 0y be
n ordered {15,y dq)-code, both ever the same alphabet, IF uv are
‘positive integers, then uly o v, has parameters

{xn e, mind My M.}, d)

-

cwhere 2 oud4vdy O
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Now we are ready to discuss Levenshtein’s theorem. II n 5 g,
multiple of 4, we know that the Hadamard codes of Theorem 4.5 19
exist, Let us consider a code of the form

(1.5.6) C = uSHodly ©vSHadly .

where the Hadamard codes are ordered by the rows of the b:ma,},
Hadamard matrices from whence Lhey come,  According to the prevings
tlieorem, if uv =0, then C has patameters

N = (dk-2hu+{dk+2)v, M =2k D> Zku+{2k+2)v

Also, if w0 and v =0, then = uSladly, has parametors
N ={4k-2u, M =2 D=2
Sinee "

2{ o J_ ; Pk 2+ 23
3D=N]™ " 2[0kus (2Zk+2)v] ~ [[4k-2Ju+[4k+2)v]

we see thal equality holds in the Plotkin bound for the code (4.5.6).
Mow, I n and o are both even, with 2d = n = o, then setting

n o= (k-2 [k 2)v

and
d = Zhu 2k 42w
and solving for u and v gives

{4.5.7) = gd(2k+1) = nlkt 1)) v = Ynk —d(2k-1)]

which implies, using 2d > n>d, that u >0 and v l]\\
We have therefore shown that, if n and d are bath even and
2d > n = d, and i Hadamard matrices Hy and Wpepq exist for

B =Lz d—nJ

then equality holds in the Plotkin bound, that iz,

Aylnyd) = Elﬁj

and the code (4.5.4), where 1 and v are given by (4.5.7), is optimal,
The caze where n iz odd and k is even iz handled in an entirely

7
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agous manner by considering codes of the form
= uHadly + viHadly 4

i length 2k} The
that the lirst code is not shortened and__ has
ﬂ:ﬁmr:buth n and k are odd is handled with codes of the form

C=usHadly + vHedly o
Let us now state Levenshtein's Thearem,

m 4.5.21  (Levenshiein) .
Let o beeven, 2d = n = d, and K= [M—_-nj

M) = ]

whenever the Hadamard matrices g and Hyopq exish, and
in addition, H,, existsif n is odd and k is even, arid
Hyppo exists il both n and k are odd, Furthermore, if
w = d(2kH1) - nfk+1), v=nk—d(2k-1)
then the following codes are optimal:
0 evell %Sh’ad! e %SH il g
nodd, k even:  uHadly ©3SHedly
n add, k odd: %Sﬂmﬂﬁc v Hadly g
(i) We also have
o Agf2d,d) = 4d

whenever a Hadamard mateix  Hyy  exists, where the code
Hodliyy 35 aptinal.
d+1
Let d beodd, 2d+l »uzd,and k= Lmj
(§it) Then equality holds in Plotkin's bound, that is,

: di
Aginad) = a—&iﬁl

whenever Lhe Hadamard matrices Hy, and Hgq exist, and
in addition, Hy, exists il n odd and k even, and gy o
exists if both n and k are odd,

iv] We also have

S Aayl2deld) = d(d+1)

whenever a lladamard matrix Hyy exists,
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Gptl[ilai C,Gdl“ﬁ 1l case d ¥
15 ﬂdd are Dbt-?l !_’.d I} HIOT
o 111 Enlng

I - o

hhr;:;c:f.ﬁL Part 2) follows from part 1) using the fact that, if d s gdy
ll 1{11,rdj =Agin+ld+1). We have already established part {1) i‘h

noeven. We leave the rest of the prool as an exercise. 3 ¢

Example 4.57 Lot usz a i
A7 Let pply Levenshiein's The ok 5 =
and d =12, In this case, 2d =n >, and MR

I
R [EH—nJ =g
Furthermore, u = 19{5) — 1 _
s (5)=19(3) =3 and v=19(2)— 1253] =9, Hence
C = 3Hudi, © SHudly, F

iz optimal, Mow, from Hy, we get the ordered code

Hnrqu =

_— =
L e K e e}
e —

{the cadewards are §
are the rows), and from H,,, we get the ordered code

Siadl,, =

s e
—
-
i B e e
—_— T =
= Sy

(LA
1:1
L0
01

= e
=0 = =

Pasting together 3 coples of Hadl, and 1 copy of SHady, gives
1

'_ﬁ-j‘_,.ﬂ‘::_

o= — =]
=

1]
.
O/
I

[
=
B — -
L i =— R — ]
e =
—_— e
Lot e i B e
O e T
e
Lol —
ol = =
—_— T em D
= = —1
—_——
T
0

«The Eligs Bound

an.lr’f‘he Elias i:l-uunr] is one of the best known bounds {although the
a o2 prc-gclt-ummmg bound discussed in the next chapter can be better)
ig proved in a manner similar o the Plotki g :
' : ] nbound, Let C bea g
ary (n,M)-code, and let r be a positive integer. Cansider the s]hhir?ﬁ-
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(x,t) of radius r about all words in  V(n,q), and suppose that the
Miere S (xr)] contains K codewords. Let us count the number of
alrs (c,:?q{x,:]], where the codeword ¢ lies in the sphere S, (x,r). On
he one hand, each codeword is in exactly V(o) of these spheres,
od on the other hand, sach sphere Sq{x.r) containg K, codewords.
BILCEy
K,=M-Vnr)
% £ V[ma)

i\-iding both eides by " gives the average number of codewords in
he spheres, and since there must be at least one sphere that meets or
kooeds the average, we have established the following theorem.

heorem 4.5.22 Let (0 be a g-ary (1,M)-code. For any integer 2> o,
here is & sphere 3, (xr) about some waord x in V{n.g) with the
perty that the number K, of codewords in So(x7) satisfies

M-V, ()

T

ch & sphere BlxT) 15 called a critical sphere for C. 0O

Now suppose that C is a g-ary (n,M,d}-code, and let Sqlxr) be
itical sphere. The code C' formed by subtracting x from all
codewords in C s also a g-ary (n,Md}-cods, and so we may as well
aseume that x = 0, and so the eritical sphere is Sq{ﬁ,r}.

. Let us consider the code C) = CﬂSq([},r}, which censists of the
codewords in C  that have weight at most 1. The code € i an
0K e)-code, where by Theorem 4.5.22,

M- Vq[n,r)

E—Qn—'“

d e=d.

Our desire is to use a refinement of the method of proof for the
Plotkin bound on the code C,. Since we know something about the
:,ﬁ_mx'tmum weight of sach codeword in ), we have some additional
‘advantages in this case. Thus, we consider the sum of the distances
bween codewords in Gy

s=5" % ded)
cEGldECl
before, we have
(4.5.8) S > K(K—1)e
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Again, we let kij Dbe the number of j's in the i-th position in 4]
codewords in Hente.

noog=1
§= E Z k(K —ky)

i=1 j=0

Our task is o estimate this sum from above, Let us collech some facts
about the numbers k.. Since there are K codewords in Cya

i
q-1
2 k=
=
Also, since w{e) < r, the number of 's in ¢ must be at leasl n—r.

Hence, the tolal number of 0% in all codewords is al least K{n-rp),
thal is,

(4.5.9) U = ikiﬂ = Kin—r)
el

Now we are ready to estimate 5. Since we have some special
knowledge about ki, we separate these terms from the others,

5’: Z k(K = k) =nk?* = > ( Ekﬂ)
i=l j=0 i=1 i=1

Using the Cauchy-Schwarz inequality, we have

and so

sk’ (k4 ik —kgt) |

=1

=nK? ——E( (a=1JKEy + K2 = 2Kk iy

=1

_nK*_qL (qL + K2~ 3K, )

T S L Wt R
ni? — K q_i;kmr{-ml{zkm

I=1
=E[|Kz——-ﬂ—ik? +-L KT
q-1 G =l
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Another application of the Cauchy-Schwars inequality gives

2
I
1
x E%{E‘:km) = 5T
=1

-2 pe_ 4 lpty g
SEEHK q"']. ]'lT +thl\.r

= q—l—i([q—ijnKz ~SrtyoKT)

¢ expression in parentheses is a quadratic in T, whose TRAXImUm

It e ooours ab
y T =8k

us, if we wish to bound this quadratic from above by using {4.5.9),
‘st choose ©oso that

K(n—r) > 2K
is,
T ‘f.ﬁ;'l-l'“

wming this to be the case, we get using (4.5.9)

5¢ q%l({q K — %K*(n—r)%mﬂtn—r))

= q-Tl_-i-K?'r(Z(qnl] = %rj
i -:. erefore, together with {:4-5-3), we have

K(K—1)e < {—I~£—1K2r(2l:q—l} —%r)

portion of the Elias boune,
ig—1
]
i & positive integer satisfving ¢ < nf, then

i A e
i —— i P
4510 K r* = M4 fne

Theorem 4,523 Let O be a q-ary (n,K e)-code, and let § =S~ If

R e s
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Recall that € came from an (n.Md)-code C, and that
K> MW nr)
q

and e>d. Henre, replacing ¢ by d in (4.5.10), we have

M.V
Vinr) o dnd
SRSt
q = 2 nr+dnd

Solving for M, we get the Elias bound.

Theorem 4.524 (The Elias Bound) Let g=321 [,
infeger satisfying r< fn and 12— %nragnd » ﬂ: then

is & positive
.'II

Ajlnd) g Pud . 4
e R oy .
bl ) 0 = 28nr4fnd V_qfn_.r} d

ASYMPTOTIC BOUNDS

I3 1 1 i
3 dﬁ-e canciu::lc this selcr.mu with a lirief discussion of asyrmphotic
s, Reca!hn‘g our discussion relating to Corollary 4.2.7, we set
d=1d/n and consider the quattity 1

i ¥
o (6) = llﬁu—}solép [ﬁ Iogqﬂq{n,én}]

wl&ch I]SIﬂlE Iimdir: superior of the maximum rate of a code of length n
and mimimum distance o, when pesop | =
L o0 In such as way that § = dfn
Each of the bounds we have discussed | i i
_ d : seussed in this section leads to an
;.sympg‘ot:c bound, that is, & bound on ce(d). W give only a sampling
ere. For maore on this subject, we sy i
e sauggest the books of v L
and MacWilliams and Sloane {iQ??}. B UJSQ‘?
For 0 < X< 1 and pE=1-=x lal .

H (A=A lng,&+ [ l':‘gq;%i

, .
Fﬂte _!.ha,t. 1{2[,‘1] = H“]. is the entrapy function of Chapter 1, ‘The
ollawing result is proved in the appendix. {See Corollary A3.11.)

Lemmu 4,525 Lot a?zfl_":;.l_t For 0<§<8,

e |

i l} ]‘ng‘-'q[ﬁplé“”} =H, (&) 44 log (q-1)
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1a3

Our ficst resolt 15 an asymptotic lower bound, which comes from
e Giilhert-Varshamov bound,

heorem 4.5.26 Let ¢="21 1f 0 <8 <4, then

of. The Gilbere-Varshamow bound {Theorem 4.5.4) is
n

A ) el o
e vV [n,d-1)

Llog A nd) =1} log,V (nd-1} > 1 - log V., (nd)

ay () = lira!n_'s;]: [?1‘_ ]ngtl.ﬂ.q[n,ﬁnjl z 1=lim. %Icgq‘.’q(n,ﬁn]
\ lplying Lemma 4.5.25 completes the proof. 1

=1

collary 4.527 Let § = —— and =4 <4 There is a sequence C)
of (n,,,M, . J-codes with the following property. Given any ¢ > 0,
f:]icre i an m, such that m > m, implies that

R(Cy,) 2 1= T, (6] — § log, (q=1) — ¢ i

i

Any sequence of codes that meeis the conditions of the previous
allaty iz said Lo meed fhe Gidberd- Varshamov bownd,

Now let us consider an asymptobic upper bound,
Theorem 45,28 Let 0 =1 Then

a8} < L= (0 JOP-F) il 060
o, (6) =0 it dcécl

S Proof. The second part follows {rom Plotkin®s bound {Theorem 4.5.16),
--which tells us that if o = &y then

Ol P
hgladls Togm =g
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where the expression on the right is constant (since & is constant), g

the first half, we use the Eliag bound [Theorem 4.5.24), which tells g
that if 0 < r < dn and f{r) = ¥ = 2dar4dnd = 0, then

1
A d o E?‘nd = q
o(md) S 2 — 28nrind Vo(nr)

Mow, the first facter on the right side can be reweitten, to give

(13
(4.5.11) Ag(nidn) € eme—bE . 3
() —#ipi+o8 Volnr)

We wish to choose a positive infeger 1< fn so that f(r) > 0 But the
geros of 0} are n{f £ /000 — )}, and so if we choose © so'that

Loo-li-8)<e

we will have r<fn and (e) = 0.

In particular, we may take A < 8 — 900 — 8, and choose r =|An),
Then {4.5.11) holds, and so by Lemma 4.5.24,

- log, A (n,dn) -:_Zfli lag ) _g§(£)+93)+ I —% ]ugq‘v‘q{n,lknﬂ
n

Lk
= 1=1 (A} = Alog (g-1] as n—oo

Since this holds for any 3 < @ — /F(F — 6), the result follows, ¥

EXERCISES \

1. Prove Theorem 4.5.1. :
2. Use Theorem 452 to catablish the Singleton bound.

3. Prove Lemma 4.5.8,

4, Prove Corollary 4.3.11.

5. Bhow thal A(BGA4) = 2.

6. Prove that (R)Aq(n,2k) < 2"A(n,2k,w).
7. FProve that

Aln2kw) < | mAln- 12k w) |
", Prove Lemma 4. 513,
9, Prove Corollary 4.5.15.

W Werily that e codes in Example 4.5.5 are nearly perfect,
11, Is a perfect code nearly perfect?

4 General Remarks on ey
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Prove that if we multiply any rew or column of a I[-Iadarn;ard
nalrix by =1, the resull is another Hadamard malriz.  What

dooz this have to do with normalized Hadamard matrices?

Show that the columns of & Hadamard matrix are erthogonal,
¥ H, isa Hadamard matrix, show that

H, H,
I, -H,

iz also-a Hadamard mateix. - "

Use the results of the previous exercise fo construg, g

Show that Cy&C; s an [n"+n21mm{M‘,Mz},d]-cade, where
d = dy+d,. Prove Theorem 4.5.20.

Finish the proof of Theorern 4.5.21. _ _ .
TUsing Levenshtein's Theorem, find an optimal Binary code o

- lepgth 6 and minimum distance 4,

Using Levenshtein's Theorem, find an optimal binary cede of
Jength 9 and minimuwn distance 6. _ _ o ot
Using Levenshtein’s Theorem, [ind an optimal binary code o
length 17 and minimum distance 10, . . e o
Using Levenshlein’s Theorzim, find an optimal binary code o
length 27 and minimum distance 16. . -
Use [Hamming codes and their shorlened versions ta wverify the
lower bounds on Ag(3,3), Aq(6,3) and AglT,3) in Talble 4.%-.1,
Use Hamming codes and their shortened versions to verify tl}e
lower bounds on  Ag(12,3), Ag(13.3), Aa(14,3) and ha(15,8) in
E:::]:e;;:iliiilm codes and codes obtained from the rePetiticn codles
to verify the lower bounds on Al(3.3), Agf4,3), A4(5,5), Ay(6,5),

59 in Tahle 4.5.1. . ‘
i:;:.l tg(ﬂﬂ hinacy linear [n,k.d]-code with generator matnix {1
We may assume that the firsl row of G has the Forme 1 10--4h
where there are o 1's. WhyT Hence, G has the form

Loesd O}
G}_ (:2

T —

Tet «, be the minimum distance of the [n—dk~1]-code with
generator matrix Gy Bhow that d, =d/f2




APTER §
near Codes

Linear Codes and Their Duals

In this chapter, we look more closely al the most important class
o — the linear codes, For completeness, we restale the definition.

efinition A code L CV{ngq) is 2 linear code if it is a subspace of
gl If L has dimension k over V(ngq), we say that L isan

]—mde., and if L has minimum distance d, we say that L is an
,d}-mde 0

Recall also that, according to Theorem 4.3.5, the minimum

nee of a linear code is equal to the minimum weight of the code, in
ymbols, (L) = wiL).

'HE GENERATOR MATRIX OF A LINEAR CODE
Since a linear code is a vector space, we can describe it by giving a
1t is customary to arrange the basis veetors as rows of a matrix.

' finition Tet L be an [nk}-code. A kxn matrix G whose rows
m a hasis fDl' L is called a gencrator matrix for L. 0

If L s an [nk]-code, with generator matrix (i, then the
;, cadewords in L are procisely the linear combinations of the rows of G
Pul another way,

L= {xG|x € V{ka]}

\
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This provides a very siinple method for cicoding source data, For iy
the source can be represented as the seb of all g-ary words of length &
then we may encode the source woed x £ V(k,q) as the codeword xt3.

Example 5.1.1 Consider (he binary code with generator matrix

1
G=|0
1

Y e
= =
]

This code can encode souree symbols from Y{3.2). In particular, for
each x = (3y,3,,%,) € V(3,2), we associate the codeword

/

0
1 = (g Fy Mg ¥a, Xy ) ' 0
1

(=

1 %1

[-“1 oy x3] LIRS

L0

ISincv. performing elementary row operations (interchanging rows

multiplying & row by a nonzere scalar, and adding a multiple of n:m.;

row to another] does not change the row space of a matedx, any malrix

thal iz row equivalent to a generator matrix for a code L is also a
generalar matrix for L. This implies the following theorem,

Theorem 51,1 Lel L be a linear [nok]-code. Given any & coordinate

positions, there is a code equivalent te L that is systematic on thoge
positions, [

A generator matrix of the form O = (G| A) where T, s the

identity matrix of size k, is said to be in standard form. The generator

matrix in Example 5.1.2 below has this form. In view of the previous
remarks, every linear code has a penerator matrix in standard form.
When & kxn  generator matrix s in siandard formi, it is
3ystenllatic on its first  k  coordinate positions. “This makes. both
encoding and the reverse process very simple. ’

Example 5.1.2 As we will see in the next chapter, the matrix

0

= —o o
= ]
—_—— T e

]
1
0
l

e e R S
=T A

1
I
1

H a penerator matrix for the Hamming code Ho(d). Notiee that ¢ is
in standard form. The Hamming code Mool 3] can encode souree words

R T
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o Vi{4,2) az follows
i

I
«4]

e frns
| xG = [xl Ky Ny x4]

——
— e
_— e —

i
—

0
1
0
0

fae R B8 e 0

=[x, xg x3 Xy Xphxabxy  xytrgbxy xRty

i
ince G iz in standard form, the original source message appears as
pe first k symbols of its codeword. 1

Generator matrices can alzo be used to describe sealar multiple
quivalence.

teorem 5.1.2 Two linear codes Ly and Ly, with generating matrices
i and Gy, respectively, are scalar multiple equivalent if and only if
i 4 can be transformed into G, by elementary row operations, by
muting the columns of Gy, and by multiplying the columps of G
rnonzero scalars, [

HE DUAL OF 4 LINEAR CODE

The vector space ¥(n,g) has a natural inner product defined on
i In particular, if sw=pox, and y=ypey, are in Ving), we
efine the dot product or scalar product of x and ¥y by

-

¥ =¥y by

We will also use the notation {x,y) for xy.) The following concept
lays a key role in the theory of linear codes.

efinition Let L be a linear [n,kl-code. The set
L*={xeVing)|x-c=0 forall ceL}
called the dual code of L, (I

heorem 5,13 ,
If G is & generator matrix for L, then

L* = {x & V() | xG" =0}

The dual L* of a linear [n,k]-code is a linear [, n-k]-code.

| For any lineat code L, we have L™ = L.

Proof. Part 1) follows from the fact that x is orthogonal to every
deword in L il and only if iv is orthogonal to every codeword in a
basis for [, Part 21 follows from parck 13, which says that LY isthe
solution space of a systemn of &k equations in n unknowns, with

8

L

- iR T T i T
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rank’ k. We leave the details of this as an exercise. For part 3), we
first ohserve that Lo L**, But L and L™ have the same
dimension, and so they must be equal, @

We shonld remark that the properties of the dual of a linear codq
over a finife field can be quite different from those of the dual space of
a vectar space over the real numbers, For instance, it W iz 2 subspace
of a finite dimensional real vector space ¥, then W N W" = {0}, sinee
no veclor is orthogonal to itself. This is not always the case for linear
codes, however. In fact, as the next example illustrates, we can even

have L™ =Ll
Example 5,13 For the binary [4,2]-code
L = {0000,1100,0011,1111} J

we have L € LY, and since L* i5 also a [4,2]-code, we get L=L" &
linear code L for which L=1L" iz said to be selfrdual We will
discuss self-dual codes in more detail later in this section. [

Despite the fact that L1 L* need not be the zero code, part 2 of
Theoremn 5.1.3 dees tells us that

dim(L) + dim(L*) =n
Let T be o linear code with k xn generator matrix G = (I, | A}
in standard form, and let H be the matrix
H= (_‘H‘T lIn—l:]
where AT is the transpose of A, Then

GH™ = (I, | A) (1‘:‘“‘)= CAtA =0

Henee, the rows of H are orthogonal to the rows of G, .:a,ll\lq since
rank(Hy=n-k = dim(LY), we deduce that H is a generator hatrix
for the dual code L*. X

The matrix H is also called a parity check matrix for L. The
reason for this terminelogy is that

x€L ifandonlyif xH =0

and if H = {ly) and x= (%), then xl1T =0 has the form

by xp+hyy Xy ot hyyx, =0
by x5y + byg xg +oot by, %, = 0
hu—k,lxi + I]nuk.‘.!:"".! B it hn—k,uxu = 0

Linear Codes and Their Duals Ml

s, the rows of M are the cocfficients of a system of linear eouations
L ose solutions are precisely the codewords in L. These linear
uations are called parity check equations, [Appending an even parily
jeck Bit %,y Lo a binary codeword xp--, is done in such a way
Y% = 0. This is the origin of the term parity check equation.}

. The parity check matrix  H  is nol in standard form s 2
mer madriz for L. However, as a parily check malriz, a mateix of
form (B|1.) is said to be in standard form.

mple 5.1.4 Since the generator matrix G for the code M,(3) of
mple 5.1.2 is in standaed form, Yoy{3) has parity check matrix (in
dard form)

=
1}
——

11
01
LD

—
= e
i ==

1
o
i

ig case, the parity check equations are

Xy 4-x3+x4+x5:0
X+ Xy Xy g =0
K1+K2+X4+X?=ﬂ 0

There does not secm to be an efficient way to determine the
imum distance (weight) of a linear code directly from a generator
ix. However, we can do so from a parity check matrix H for L.
particular, let the columng of I be ky,... K, aod suppose that a
ticular choice of w of the columns are linearly dependent, Then
e exizt coefficients ©p,...,e,, with exactly w being nonzero, for
ich

¢ c‘ik1+"'+‘:ukn =0

s iz equivalent to eHT =0, where c=g¢p -ty anl s0 ce L.
rtherinore, since ¢ has weight w, we have d{L) = w(l) < w.

On the other hand, if e is any codeword of weight w, then
" =0, and therefore some w eolumns of I are linearly dependent.
have established the following very uselul result.

ieorem 504 Let L be a linear [nk,d]-code, with parity check
attix I Then d is the smallest integer r for which there are f
nearly depindent columins in H. (Thus, H has d  linearly
dependent columns, but any d-1 columns are linearly independent.} 0

This theorem can be used to give the promised prool of the
Gilbert-Varshamoy bound [Theorem 4.5.5).

Bt P T A e e e
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Theorem 515 (The Gilbert-Varshamov Bound) There exists a g-ary
linear [o,k]-code with minimum distance at least d provided that

n
qk{ - .

(n 1) {q- :I

h'-“

il
=]

Henee, if k i= the largest integer for which this inequality holds, then
Aglnd) =k

Proof. According to Tleorem 5.14, we can establish this theorem by
constructing an  (n—k)xn parity check matrix for which any set of
do1 columns is linearly independent. To this end, we may choose any
nonzero (n-k)-tuple for the first column of M, Then we may cloose
the second column te be any nengere (n-k)-tuple that iz nol & scala
multiple of the first column. In general, we want to choose the i-th
colummn to be any nouzero (n—k)-tuple that is nob in the linear span of
any set of d—2 previously chosen columns, Now, the number of linear
combinations of d-2 or fewer columns, from among the i-1 existing
columning, is

N 2 ]jl:cl l ( 1J{q 1]2_'_ +(I l}lq 1}:1 -2
Since we also cannol chooze the zero colurmnn, there are

q”_k -M:—1

available chioices. As long as "% — N,—1>0 for i=n (and hence

for all i< n), we may complete the matrix H. This completes the
proof as well, 1

SYNDROME DECOINNG
An efficient decoding process [or linear codes can be nbkained
throagh the use of parity check matrices. L
',
Definition Let T be an [nk]-eode, with parity check malriz . For
any % € Ving), the word xH" is called the ayndrome of x 0

Thus, x & L if and only if the syndrome of x iz 0,

Let us tecall a few simple facts about quotient spaces. If
L Ving} is a linear code (Lo, subspace], the guotient space of
Ving) wmodule T is defined by

YO8 - (x4 1 x € Vinal)

The set x4+ L ={x+c|eEL) is called a coset of L. The quaticnt

4 Lisaar Coees and Their Duals 03

e s also a vector space over Fq, where
alx+Ll=ax+L and (x+L)+{y+L)={x+y)+L

scall also that x4+ L =y+ L if and only if x~y <L,
Mow we can state the following result.

corem 5.6 Lel I he an [nk]-code, with parity check matrix H.
en x and y in V{ng) have the same syndrome if and only if they
o the same coset of the quotient space Vin,q)/L.

f. We have

gL =yl iff x—yel i (x—yu =0 if <" =yH" 0

Now Jet us supposé that aword x is received. Minimum distance
eoding requires that we decode x as a codeword e for which a=
¢ has smallest weight. But as ¢ ranges over L, a ranges aver
g cosel X L. Henee, minimum distance decoding requires that we
de % as the codeward

C=X=a

iere & ig a word in x4 L of smallest weight, that is, a word of
nallest weight among those words with the same syndrome as x.

eorem 5.1.7 Let L be a linear code with parity check matrix H.
hen minimum distance decoding is equivalent to decoding a recelved
ord x asa word c=x-a where a is a word of smallest weight in
e coset x4+ L, or cquivalently, where a is a word of smallest weight

Jwith the same :._';mlrome as % 0O

;
The decoding process in Theorem 5.1.7 can be described in terms
‘o so-called standard array for L,

0 L1 Oz e Coy

iy {:1+ﬂ-l t‘Z‘L‘;LI o c:|1+ai
i o3y ot T Cntag
iy cpta,  cpfa, Eta,

; he first row of the array consists of the codewords in L. To form the

gecond row, we choose a word a;  of smallest weight that is nob in the
vst row, and add it 1o each word of the first row, This forins the coset
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a;+ Lo In general, the i-th row of the array is formed by choosing &
ward  a; of smallest weight that iz not yel in the array, and adding j;
to each word of the fiest row, to lorm the coset a4 L. This proces
continues until the array contains all words in Ving). The elemenig
a; are called the coset leaders of the array.

Singe each row of the standard array is a coset of L, two words iy
Vin,g) have the same syndrome if and only if they lie in the same roy
of the array.

In view of the way Lhal lhe cosel leaders were selected, if g
received word x iz in the j-th column of the array, then x= ¢+ a,
for some i, where a; is a word of smallest weight in the cosel x 41,
Henee, x s decoded a5 the codeword o, Put another way, we decad,
x as the codeword at the top of the column containing =

Fortunately, we can avoid having to maintain the entire standard
array by determining the coset leader a;; rather than the codeword o
OF course, determining the coset leader is equivalent to detern]initfg AT
codeword, since e =x—a, The peint is that, since each row jg
uniquely determined by the syndrome of its members, we need anly
maintain a table of coset leaders and their syndromes.  Then il = s
received, we compute its syndrome, find the coset leader a with the
same syndrome, and decode x as e=x—a, This process is refereed
to as gyndrome decoding,

Example 5.1.5 Lot L be the binary [1,2)-cods with generalor malrix

1101
C‘“[ﬂ 10 u}
The cosets of L are

0+ C = {DO0,010D,1101,1001}
W00 4 € = {10060, 1 100,010, 0001}
0010+ C = {0010,0110,1111,1011}
1010 4 € = {1010,1110,0111,0011}

Since the coset leaders were chosen with minimnm weight, the sLan-:E:ut-'r!
array i

Hong  0iog 1101 1003

log g plo1 000l

LI | VA R B R £ B}

W 11y 01l ool

Now, by adding the secand row of G fo the first row, we obtain
a generating matrix in standard form

Limear Codes and Their Duals

(=1
—
[l ]

=,
= =
T
= =
= e

'

ilith gives the parity check matrix

001 0]
H"[iﬂﬂi

m this we can create a table of cosel leaders and their syndromes.

Cosel leader Syndrome

0004 00
1000 01
noLo 1
LIBRE 11

1180-H" =11

e, according to the syndrome table, the coset leader 15 1010, and
we decode x as

1110 + 1010 = 0100 ]

We should ocbserve that errors in transmission will be corrected if
nel only i Lhose errors correspond to one of the coset leaders, To see
, auppose that e is the codeword that was actually sent, and x=
+e is received, where e iz the error vector. If e iz a coset leader,
i % lesin the row headed by e, and so decoding x will give the
t codeword x—~e=c  On the other hand, if e is not a coset
Lut lies in the j-th row of the standard array, then =x iz in the
row as well and will be decoded ticorrectlyas x—a #£x—e==c
In particular, if L has minimum distance o, then all of the
Ving) of weight at mest t=|[(d-1)/2] must be coset
This can alzo be seen by noting that if two words x and ¥

oo Let L be s linear code. We have seen that syndrome decoding
Jil_l reault in the correct codeword i and only if the error made in
ansmission iz one of the coset leaders.  Assuming a binary symmetric
o channel, with crossover probability p, if we let o; be the number of
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cazet leaders that have weight i, for i =0,...,n, then the probabiliy
of correct decoding is the probability that the crrer is one of these cosat
leaders, which is

n " .
Poprr decods = E :aipi[i T p}“_l
i=0

THE PROBABILITY OF ERROR DETECTION

An error in the Lransmission of a codeword ¢ will go undelected if
and only if the reccived word d is a codeword that is different from ¢
Thus, for a linear code L, an undetected error aceurs if and only if the
error vieetor d—e 38 a nonzero codeword. Hence, if Ay denotes the
number of codewords in L of weight k, the probahility of ap
undetected error, for the binary symmetric channel with crossover
probability p, is

i
ke o
Poyndel err = ZA]{P (1-py" §
le=1

We will have much more to say about the important numbers Ay in
the next section.

MAJORITY LOGIC DECODING

A procedure referred to as majorily logic decoding often provides a
simple method for decoding a linear code. Let us describe ihis
procedure using an example.

Recall thal the matrix

1

i ]

fomon T T R i Y
T
L e B =
R S ey

1
0
1
1

o T ]

0
0 |

of Example 5.1.2 is the generating matrix of the Hamming code 5&2(3).
Therefare, it is also the parily check matrix of the dual code, which we
simply denote by O,

Now, we may perform any elemientary row operations on the rows
af €& and still have a parity check matrix for C, Adding row 1 Lo the
other Tows gives

——
[ S e =5
[ = =)
_— T T
——
==
[ e ]
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ding rows 1 and 2 to row 3 gives

1oono1l
CL_11{+m11{r
Tl1 110000
itoo01 oo

The parity check equations that correspond to rows 3, 4, and 1,
tively, are

X1+ .'K-z+ X
xy +3"~§+ Xy

il
0
% 4 X+ Xy ]

i u

ige that the coeflicient of %, in each equation is 1 and that each
he obhier variables appears with a nongero coefficient, in one and only
vation. Let us pause for a definition.

ition A system of parity check equations for a binary linear code
io be arthogonal with respect to the variable x; provided x;
& in every equation of the system with coefficient 1, but all other
jables appear in ¢zactly one equation with coefficient 1. 00

Thus (5.1.1) is orthopgonal with respect to ;.
 Now suppose that a single error oceurs in transmission, If the
ror is in the first position, Lthen x; is incorrect, but all obher x; are
oct, Hence, each of the equations {5.1.1) will be unsalisfied {that is,
ill get 1 =0 upon substitution of the variables). On the other
g, if the error is in any position other than the fiest, tlien exactly
of the squations (5.1.1) will be unsatisfied. Thus, the number of
tisfied equations will tell us whether or not the first position in the
ved word is correct {assuming a single error).  (If exactly lwo
Wations are unsalisfied,.we deduce thab at least two errors have
rred.)
Thus, we have a simple method for eorveeting the first position in
eceived word. Assuming a single error, if the mejority of equations
) are satisfied, then position 1 is correch — otherwise it is not. This
majority logic decoding,
We leave it as an exercise to show that, by judicious choice of row
rations, we can perform majority logic decoding on all 7 posilions
he code C, '
More generally, suppose we have T parity cheek equations for

P

inary [nk]-code L. Suppose that these equations are orthogonal with

pect to the variable x, Suppose further that | < rf2 errors have

P
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aecurred in transmission. 1T one of the errors is in the 41 position,
then al most t—1 of the equations can be “correcled” by the
remaining errore, and so al least T—(L=1) 2 /2 4+ 1 equations wil] |,
unsatisfied. On the other hand, if the i-th posilion dees not suffer g,
ertor, then al most t<r/2 cquations will be unsatisfied, Therefore,
the i-th position in the received word is in error of and only if the
majority ef equations is unsatisiied,

SELF-DUAL CODES
A linear code L is said to be self-orthogonal if L CL". W,
leave proof of the following simple result as an exercise.

Theorem 5.1.8 Let G be a generator malrix for a q-ary linear code L.
Then L is selforthaponal if and only if distinet rows of G are
orthogonal and have weight divisible by g [

Theorem 5.1.9 If distinct rows of a generator matrix for a binary linear
code 1 are orthogonal and have weight divisible by 4, then L iz self.
orthogonal and all weights in L are divisible by 4.

Proof. Sell-orthogouality follows from the previous theorem. The
second staternent follows by induetion, using the fact that

wu +¥) = wfu) + u(v) = 2u(uny)

and that w{urv) is even, since u and v are orthogonal, 1

Example 516 According to the previeus theotem, the binary [7,3]-code
L with generalor matrix

]
G=| 0
0

S
= —

1
]
1

e — i —

0
!
0

—_——

is sell-orthogonal and all codeword weights are divisible by 4 Hence,"

all seven nonzere codewords in L have weight 4, Furthermore, since
Y is a [T.4)-code that containg L, as well as the string 1, we deduee
that L is geoerated by the rows of G, along with the string 1. 0

A linear code L is said to be self-dual if LY = L. In this case, L
must be an [n,n/2)-code, where n is even, In fact, a linear [n,k}-code
L is seli-dual 3T and only if it is selforchogonal and k= n/2. We will
ericounter some important self-dual endes in the sequel. o the
meanwhile, Lere is a simple example of a sell=dual code,

Linear Codes and Thetr Duals 2049

mple 5.1.7 The code L in Example 5.1.6 s self-orthogonal, and its
fual code T has generator matrix

- .n:l'rr'f.a"*v: r sty

ot =

T — T
ot e ke et
L= N ==}
—_— i ke T

0
1
1
1

- e
e — el

adding an overall parity check to this code, we obtain a code L
generator matrix

]

P — I

1
0
1
1

_—— s

{
1
1
1

—_—— =
— e

1
1
1
1

= ]

code s a selforthoponal [8,4)-code, and se it is self-dual. 0

UOme of the reasons that self-dual codes are important is that there
bitrarily long sell-dual codes that meet the Gilberl-Varshamov
bound (see Section 4.5 on asymptotic results). Hence, there are
sonably good” long self-dual codes, (See MacWilliams, Sloane, and
mpson (1972) and Pless and Pierce (1973).)
1w code Lo ks selfodual, then any parity check matrix for L s
generating matrix, and any generaling matrix is also a parity
] ma,brié. Thus, if G = Uua"? | A) is a generating matrix for L, so
= {:—J"L | L sl
The fc-l!:;:-ﬁng theorem, whose proof we shall omit (see
Williams and Sloane (1977), p. 633 and Pless (1968)) describes the
tions nnder which a self-dual code exists,

orem 5,110 A g-ary self-dual fnn/2]-code exists if and only il ene
the following holds

- q and n are both even

g=1mod4 and o iseven

Cgq=3dmod 4 and nois divisible by 4.0

In particular, we nole that 'a binary self-dual [/ 2 code exists
for all positive even integers n, and a ternary self-dusl [non/2]-code
kists if and only if 0 is divisible by 4.

A hinary sell-dual eode I, has the property that all codeword
reights are cven.  If, in addition, all rodeword weights in L are
ivisible by 4, then [ iz zaid Lo be an even code. (Same authors nse
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the term doubly even.) For a proof of the following resulbt, see Gloasg,

(1971),

Theorem 5011 An even [nn/2]-code exists if and only if is
divisible by & [

+FPHE NUMBER OF BINARY SELF-DUAL CODES

A relatively simple counting argument can be used to count the
number of binary self-dual [nn/2]-codes.  These vesults have loeey
generalized to g-ary codes by Pless (1968}, We begin with a definitiog
and a preliminary result, which is of independent interest,

Definition A linear code L is weakly selfidual if 1L c Lt 0

Theorem 5112 If g isa prime power, then there are -

(n) = q"=1)3-4a-1)
Ya (@t =1 fa - D= 1) g~ 1)

subspaces of Vin,q) of dimension k. The expressions {3}, arc called
Caussian  coefflicients and have properties similar to those of Lhe
binomial coellicients,

Praof.  Let  S{nk) be the number of k-ditnensional subspaces of
Vingl Let Nink) be the number of k-tuples of linearly independent
vectors (..., v} in ¥{ng). To determine N{n k), we obzerve thar
vy ean be chosen in =1 ways, vy can be chosen in g"—q ways,
and 2o on. Hence

Nink) = (" = Dig" —a) (4" = (En_kH:l

Mow, each of these k-tuples can be obtained by first choosing a subspace
af Wing} of dimension k&, and then selecting the vectors from Lhis
subzpace. By a reasoning similar te that given above, fc:}‘.L any k-
dimensional subspace of V{nq), the nuomber of k-tuples of independent
vectors in this subspace is

(0= 1) = qp {a* = ¢*7)
Hence, we have

N{n k) = S{n k)" - 1)(a" ~q}(g" ~ ")

from which the result follows.

Theorem 5143 Let L e a binary weakly sell~dual [nk]-code. The
total number of binary weakly self-dual [o,n/2)-codes containing T is
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nfd-k

T @+

i=1

voof. Let . be the number of weakly self-dual [mym]-codes ©
ontaining L, for k <m <nf2. Let us count the number of ordered
airs (D), where

LeDCE

i where D is a weakly self-dusl [n,m]-code and E isa weakly self-
al [n,m1]-code. ‘ - 1
© First, we fix D. Since E has dimension one greater t,lis.n D, it
st be generated by D and a single nongern vector X not in D In
i, if x€ E~D, then
; E=DuU |:K+D:I

the code generated by D and x. Furthermore, since B is weakly
fudua.l, we have xe EC B c Db ‘Thus, E is obtained from D by
foining a string x € Dt =D, But DU(x+D)=D U£y+D} if and
vif x and ¥ lie in the same coset of D in D™ Hence, the
ber of distinet codes of the form £ = DU (x+Dj is the number of
net nontrivial cosets of D in I, which is

=1

1 = 21:—2m -1

I e

g : Ay or =2

hus, the number of pairs (D,E) is a,,_m_(i“ w1

" On the other hand, let us fix E. Since every subcode {subspace)
a weakly self-dual code that contains 1 is also weakly selfedual, any

b n-code D for whish LCDCE will form a pair (D,E). Now, the

ber of ro-dimensional subspaces D of E  that contain the k-
mensional subspace L is the same as the number of _(m-k}—
mensional subspaces of an {m+1-k)-dimensional space, which is caual
the Gaussian coefficient

(m+ 1 —-‘L()‘2 —gml=k _

.

m-k

we, the mnumber of pairs (D E) 5 also egual  to

+1{2m+1"k—1]. Equating the two expressions for this number
m
ives .
-2 ” maT—k _
I:rn,m[n Bl ]} = Un.m-i-'llzg ]‘}

gn—‘Jn:- |
Pmtl = T _zm+1"""k_— 5% for k £m < nf2

Since o, =1, the resnlt follows. 1
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By taking L ={0,1} and k=1 in Theorem 5.1.13, we arrive ay
our goal.

Corollary 5.1.14 The tatal number of binary sclf-dual [n,n/2]-codes is

=1

H (2 1) 0

i=1

BEURST ERROR DETECTION AND CORRECTION

We mentioned in Section 4.1 that errors in transmission often
accur in clusters or bursis. For instance, electrical interferences often
last longer than the time it takes to transmit a single code symbel, and
defects on magnetic tape or disk are usually larger than the space
required to store a single code symbeol. We will discuss the issue of
Lurst error correction in some detail in Chapler 7 and agﬁ'm in
Chapler 8, For now, let us present a few simple facts on the subject.

Definition A burst in  Ving) of length b is a string in Ving)
whose nonzero coordinates are confined te b consecutive positions, the
first and last of which must be nenzero, [I

The following lemme will be useful,

Lemma 51,15 Let L be a linear [nk]-code. If L contains no bursts
af length b or less, then we must have k <n—b.

Proof. Clonsider the set 8 of all strings in Vinyg) with 0% in the last
n-b positions, {The first b poesitions may conlain any values,
including 0.) If any two distinet strings in 5 lie in the same coset of
L, then their difference would be a nongero burst of lengih al most b,
which is not possible, Hence, the number of cosets of L, which is
™%, must be greater than or equal to the size of 8, which is BT
other words, q“"k = q", fromn which the result follows. § q]\

kS
We have seen that the more crrors we expech a code to detect (or
correct], the smaller must he the code.  The situation for bursl crror
defection is settled quite casily by the following result,

Theorem 5.1.16 If a linesr [ kl-code L can detect all burst errors of
lenglh b or less, then we must have k <n—b. Furthermore, there is
a linear fnn-bl-code that will detect all burst errors of lengih b or
less.

Proof, In arder for L to detect all burst errars of length b or jess, no
barst of length B or less can be in L. Hence, by Leima &.1.15, we
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¢ k=n—b. To prove the second staternent, consider the parity
eck matrix H of size bxn wlose first row is

1060 1000 - s L0 1000
R e el — e —
bosymbols bosymbols bogymbels £k apmbals

ad each of whese remaining rows is a right shift of the previous row

*(adding a 0 to the beginning of the row]. For inslaice, when h=3

ﬁd o= 11, we have

loolpolonld
H=io0 10010001001
¢t o1o01o0l 0o

e be a burst of length b or less in Vinq). Since any b
secutive columns of H form a bxb permutation matrix, the
drorne e is just a reordering of the vector e and so iz nonzera,
Tence, any burst error of length b or less will be detected. B

! Wow let us consider burst error correction.

eorem 5.1.17 If & linear [nk]-code L can correct all burst errors of
gth b or less (using minimum distance deceding) then we must
k=<n-~—2hb

of Tf 2 < {<2b, then any burst e of length ¢ can be written as
difference ¢, —e, of two distinct bursts of lengih at most b, Since
“can correct e and ey, they cannod lie in the same cosel of L, and
heir differenice € cannot be a codewerd, Since a hurst af length 1
not be a rodeword, we may apply Lemma 5.1.15 (with b replaced

2h), to get k Zn—2b U

We ohserved in the previous proofl that if a code L can eorrect
y burst error of length b or less, then no two such bursts can lie in
he same cosel of L. By counting the number of bursts of length b or
bss, wo et & lower bound on the number of cosets of L, and hence an
)b'p&r bound on the dimension of L. We leave prouf of the lellowing
ulb as an exercise.

fi"hcarcm 5118 If a linear [u.k]-code L can correct all bursl crrors of
length b or less, then we must have

k<n—b+ 1 —log[(a=t]{n-D+1] + 1] 1]

L T T e T
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EXERCISES

L. Prove Theorem f.1.1.

2. Prove Theorem 5.1.2.

3. Finish the proof of Theorem 5.1.1,

4. Find the generator matrix for & g-ary repetition code.

b, Can a binary (11,24,5)-code be linear? Explain.

6. If L is a linear code, s the extended code L, defined by adding

10,

11.

12.

an overall parity check to L, also linear?
Find the minimum distance of a binary linear code wilh generator
matrix

14
G=|04
b1

—
e

1
1
l

o

FPind the minimum distance of a ternary linear code with

generator matrix
BEERE
& —[1 02 z]

Construct a standard array for Lhe binary lincar code with

generator matrix .
|1 touto
G_lﬂ L noi ﬂ]

Then decode the words 11111 and 10004,

Shew that for a linear code L with generator matrix G, the
coordinate positions ipdgaeesdy form an infermation set if and
ouly if the corresponding eolumns of G are linearly independent.

Show that, for a binary linear code, Hx' iz the sum of the®

columps of H where an error has occurred.
Repeat Example & L5 for the binaty code with generating matrix

. 1ol

M —[ 1101 ]
Construct a syndromne table, containing coset leaders and their
syndromes, for the Hamming code J6,(3). Then decode the words
0000010, 111111, 1100110, and 10L0LO0L.
If a linear eode 1. has parity check matrix W, what is the parity
check matrix for the extended code 1 obtained by adding an
averall parity check to H?
Show that if a binary linear code L containg al least one
codeword of odd weight, then exactly one-half of the codewords in
L must have odd weight. 17 T does centain a word of odd
weight, deseribe Lhe set of words of even weight,
Show that, by judivious choice of row operations, majorily logic
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decoding can be performed on all T positions in the code ©
discuzsed in the subsection on majorily logic decoding,

Prove Theorsm 5.1.5.

Show Ihat if L is a binary self-orthogonal code, then all
codeword weights are even and 1€ L*,

Prove that if L is a binary [n{n-1)/2}-code (hence n is odd),
then L% is generated by any basis for L, together with the
string 1. .
Show that a linear [nklcode L is self-dual if and only 1l it is
sell-orthogonal and k = n/2,

Can a subspace of a vegtor space over a field of characteristic zevo
Le self-dual? Explain.

Prove that a binary self-dual [n,n/2)-code exists for all positive
ever integers . Hind, Construct a generating matrix,

If L is a linear code, prove that Axf{L) = Aut{L").

If & monamial transformation g sends a basis for a linear code T

' to another basis for L, does thiz imply that p isin Awt(L)?
" Prove Theorem 5.1.18.

Let A and B be mutually arthogenal subsels of Vinqg), that is,

cab=0 forall ac A, be B Suppose further that |A| =q*
cand  |B| 2" L1l Show that A s a linear code, Hinl
" Consider the subspaces (A) and (B} generated by A and B,

What can you say about the sum of their dimensions?

TN

A
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52 Weight Distributions

Ini this section, we delve more deeply inte the slructure of cadeg,
paving particular attention to the relationship between a linear rody
and its dual, We will alse diseover an upper bound en the nuinbers
Aglnd) that is often superior to the bounds of Seclion 4.5,

For any inMj-eode O, we let Ay denote the number of
codewords in O of weight k. The numbers Ay A, ace referred 1
as Lhe weighl distribution of ), and the formal sum

113
Wolsi= D A"
k=0
is ealled the weight enumerator of C,

Weight distributions play an important role in various ways, Aga
simple example, it can be shown that any code with the same lengtl),
size, and weight distribution as a Golay code must be equivalent to that
Galay code.

lo genersl, it §2 cifficult to determine the weight distribution of 5
giuen coide,  One of the most Impertant tools for this purpose is the
MacWilliams ddeniity, which relates the weight enumerator of a linear
code L to the weight enumerator of the dual code L*. Our appreach
to deriving this identily will be rather algebraic, since this will enahle
us boe pencralize to nonlinear codes as well.  However, we should
mention that we will not have further use of the relatively sophisticated
algebraic techniques set forth in this section, and so it is not essential
that the reader master these techniques before going on to subsequent
material.

CHARACTERS

Let (G, Dea groap, and fet € be the muoltiplicative jgroup of
complex numbers of absolute value 1. A homomorphism X:d%_'t1 iz
called a character of (5. Note that, since ¥ is a homomorplism, we
have

wig o+ h) = xlghyih)

X =1

ane

The principal character of (s the charvacter

Zigl=1 foral geG
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ey 520 Let G he a group, and lel y be a character of G

|G| 3f x i= principal

2 xlgl = .

otherwise

Il x is the principal character, the result follows easily. If nat,
“there existz an h € G for which x(h) # L. In this case, we have

XY ale) = 3 xlgrh) = 3 xg)

gEG EEC GEG

0 oxg=0.1
gEG

Now, et xF, = C; bea nen-principal cl'lls.racter o [Fq, +
et u & Ving). (We will indicate in the exercises how to show that
a-character always exists) Then for any linear code L C Vi),
an define a mapping  xil — C; by
xulc) = xl{eu)) = xxyeq 4004 Xty
e=cyoog,  amd W=yl We wliil abuze the nolation
ewhat and write xixy) fer y[{=x.¥)]. Then

x(e+d) = xle+ du) = xl{eu + {d,u})
= afejxid)) = xu{edidd)
| sa X, is.a character on L. Note alsa that
Xal¥) = Xxlu)
e follawing theorem tells us when this character is principal.

sorem 522 The character xyL—C s principal if ‘*f’d anly if
LY. In particnlar, x,/V{nq)—C; is principal if and only if u=1.
fool, Suppose that uwe L7, Then ey =0 forall c€L, and g0

fel = xfey =1

T howd iz principal, Conversely, suppose that
or all ¢ & L, showing that ¥, is prineipal, ¥,

;(u is principal, that is,

v le) = xlen) = ¥Oy=1 forall ceL

Now, it ug LY, then as ¢ ranges over L, the values of {cu) range

over all of P, and so x(e)=1 for all @& F, But this cnniraxl.mts
the assumption that xF, — €4 is not principal, Mence, nel™, B

Bz

e TR R T
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From now on, we will assume thal ¥ 1s a non-principal character
on F,. We will find it convenient to use the notation dp to equal |
if P is a true statement, and 0 if P is not true. For example,
bier wauals 1 0F x isin L and 0 otherwise. )

Combining Thearems 5.2.1 and 5.2.2, we get the following,

Corollary 5.2.3 Let L C V(nq) bea linear code. Then for u & V(n,g)

E xufﬁ}= |L|6uELJ' f

eelL

THE GROUP ALGEBRA

As we know, the set V(n,g) is an additive group, We obbain
an algebra based on this group by using the elements of Ving) as
exponents of formal swms, More specifically, let t be an independent
variable, and let CVin,g) be the set of all formal sumas of the form

g=glt= > af
x & Ving)
where o, are complex numbers, When n and g are understood, it
will be convenient to simply use ¥ for Vi{ng) and CV for CV{naq)
The set CV  can be made into an algebra over the complex
numbers by defining addition, scalar multiplication, and multiplication

as follows

.x x . xt! - i ﬁ, L:

,;uﬁ § +x;ﬁ ‘;v{a +48,)

] o= (- a b

aiudd I;Ja r;‘l-f -
|
( E r:rxt.’):Z _ﬂyt.") = E [c‘rriﬁ'j}t’“” = E ( E t‘rl ﬁy) £
xEV YEW syeEV £V Ety=w K

With these operations, CV iz known as the group algebra of ¥V over
the complex fleld €.

While il makes no sense to evaluate an clement of the group
algebra by substituting a complex number for the variable b, we can
apply characters to elements of the group algebra. In particular, we set

x“uﬂ = Xll( E: azt'x ) = E: a:xu{.x) = Z ﬂ,xl:‘-'?ﬂl]l
xEV xEV xe Y

It ig easy to verily that y (gh) = y (g)x (h).
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B TRANSFORM OF AN ELEMENT OF THE GROUP ALGEBRA
Given an clement g(t) = Toat* of the group algebra CV, we
ine the transform of g by

&0 =3 %o

ie following inversion theorern shows us how we can Tecover g from
transform .

orem 52,4 If gt) = 3 o t® then
1< xe W
oy =4 X _(E)
E(t) = qg(t™")

wof. First, we have

) gty = vaxcmt*
: 2

‘w0 we are led to compute, using Corollary 5.2.3,

w@® = T %)
yevV
= E x,(ﬁl\ix{ﬂ

yeV

=3 T apy )

yEV mEY

Y agnylehiy(x)

sEY

: i, Z AylBF x)

ye¥

By 2 Xonald)

Y yEW

m
-

¥

]
=
im
=

]

L

it}
=

£
1
=¥y

from which part 1) follows, Using this in (5.2.1), we have

E{t} =" z a_ltx =q" Z Cz_,‘t"‘ o q“g{t_l)

xEV xc ¥

which proves part 2. 0

S T

e

= iR A
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WEIGHT ENUMERATORS AND WEIGHT DISTRIBUTIONS

For cach element,
T
xg W

of the group algebra CV{n.q), we can collect terms o, of the same

weight w(x) by defining the weight enumerator of g as the formal

&1
Wois) = E n‘xﬁw{“j = i [ Z ax} K = i Aksk
=0 w[:}:k

eV be=0

where the coefficionts
Ay = E Qg
wx}=k
form the weight distrilution of g /
‘Motice that, if ©C Vin,g) is a code, and if

gelt) =Dt

ee

is the generating function of €, then the numbers Ay form the weight
distribution of €. Henece the terminology.
The welght enurmerator of the transform § of g is

Woe) = Y nte @ =3 [ T xx(ﬁ}]s = LAES

xEV k=0 | wlx}=k

where the coefficients

-

{5.2.2) A= Y xle

wixh=k

form the weight distribution of g.

Now we are ready for the MacWilliams identity, which describes
the relationship belween Ws{s} aacl WE{B}.

Theorem 52.5 (The MacWilliams Identity) Let g be an element of
thie group algebra CV({o,qh. Then

# o1 I -
Wats)= [1+{a-Ds] WE(H(H—I}E)
Froof. Since

g =Y xett
=EV

wie have
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Wals) = 3 vle)s ™ = (s
¥ E W xEY yeV
=37 oy 2 ek
vEY xe ¥

Now let s write x =+, and y=yp oy, I welel wixg) = 0if

=0and wix)=1if %30, then

' E j:{)':.}'}sii-{x:l - Z X':xlfl'!'""l'l'i“)’”} Sw[xl] Fretulx) _
oo X6 kg xeV

Sl o

';iEF xz_EF anF

{x.ij(x{xm}s““z}) "' (Iiwnlsu{x"])

hich is the expansion of the product

 Z xlry) s % 3 xlnyg) 8 50 x(xy)
L% E ‘q Rl XET"

| 4]

=1 3 xtwie™

=l xeF

L

ow, if x; =1, then

P L L DR BH (T

xEFq e,

nd if ¥, # 0, then by Theorern 5.2.1

Vot =14 3 s =1s(-1) =13

xEFq KD
L 1T s

hxyls ul:x," =1 _slwﬂr}[l +1:1'|—1}3]"_1("{ﬂ
FEY

Wolsl = 3 ay [L—a"P+ (1))
B ¥E Y
B i ﬁu_ uiy)
= 1+ (g-1}s] ,E;w k. (l+(t1—135)

I4{gq-1)s

ihg b i e e i o

= [l (a= 1 W) .

B S Sl 2 i

e s B

ey

RETHHE
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THE KRAWTCHOUK POLYNOMIALS

To obtain an explicit relationship between the weight distributioy
Ay of g oand the weight distribution Ay of the transform § we write
the MacWilliams identily in the form

(5.2.3) iikskz iﬁnk(l—s]k[l+{t|—l}s]“_k
k=(F k=l

Thus, we are interested in expanding the expression
(1— st o+ (g — s

as & power series in os. This is done by considering the poelynomials
Ki(x] = Ki{xin,q) that are uniquely defined by the generating function

{5.2.4) (1—s)*[1+{g—1)s]"* = 2 K;(x)s! /

These polynomials are koown as the Krawlchouk polynomials and have
been studied a good deal,  (The Krawtchouk polynomials, with slight
modification, are polynomials of Shelfer type. See Roman {1984) for
e details)

By expanding the left side of (5.2.4) and equating coefficients of
powers of s, we gel the following explicit expression for the
Krawtchouk palynomials

(5.2.5) K0 = 3 (K11

i

k
=0

Setling <=k in (5.2:4), and sabstituting into the right side of
[0.2.3), we get )

n,o_ K 1 ) . o 1 . oo K
DoAET =D Ay Ktk = ) Y OAK RS = D > T AK(i)s
k=i k=0 i=6 =M k=0 k:[blli:l;,'l

Equating coefficients of s% on both sides gives I"L

"
- L] “
A= 2 ARG
i=0

Lel us summarize.

Theorem 5246 (The MacWillinms Tdentity) Let

g= Y ot and @)=Y xle
xEV rEY

be an element of €V aod its transform, respectively. Let
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- ; =
W, (s) = 1;25 Aksk and WY g{s] = Z Aps
o the corresponding welght enumerators, where

‘ﬂhkz E ftr a.l'l.d "‘Ek: Z ‘(x(E}

w{xi=k wixj=k

; IELH .—.———1_Ei
'\.\-E(H) =[1 + (g~ L)Sl W g‘(}+{q-l}€-)

. equivalently, g n !
; K= ) Ay

=0

here Ky (x) are the Frawtchouk polynemials. 0
l\l

[EAR CODES ) o
! Now let us apply the previens resulls to linear coclea,

V(n,q) iz any code, the sum

g =golt) = E £

ce U

é?.an element of the group algebra CV, which has already been defined
he generating function of . Since

Wﬁc(s:l = i [ Z ll'ﬁk = E ""‘ksk

kzﬂ w[:n‘!:l =]{

weight enumerator of the generating function g is the same as

seight enumeratar of .
' The following tesult shows what happens when we apply the
haracter ¥, to the generating function g, of a linear code.

heorem 5,27 Let L CV(ng) be alinear code. Then

k]
L SHELL

XulBL) =

Prool. Ve have

xle) =0l 30 )= oxlel = (L1 s
e L ce L

by Corotlary 5.2.4. 0

There is a simple relationship between the t.ra.ns['c,:r of the
generating function of a linear cade and the generating function of the
dual cade, Tf L Ving) isalinear code, then

—
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8= 2 et =3 L LL}¢1=|L|E1;*=|L|g¢

FRa zEV X E L.t.
Thus, we have the fallowing,

Theorem 5.2.8 If L C¥ing) isa linear code, then

£,= |Llg. 5

Example 521 Consider the hinary linear code

L= {000,111}
which has generating function

gi(t) = 1200411 <

Since (xy}€Fy, for xyeV(n,2), we may take ¥ to be the non.
principal character defined by

xla) = (-1)@

for we Py, and so

xulx) = (1)

Then
X,[KL) = (_I}{Uﬂﬂ-x}_i_ {_[:I{]Il,z}
and 50
Xuau(EL}' s E_l}fﬂou.ﬂouj + (=1 ]{111 Aoy =y
Xoor(gL) = (~1)1009000) (=1f1ILond o gy (~1)=0
Xoto{gy) = (=110 jNL0RY g Ly gy
Xoiafgr) = (=[P pptunonn) 141 =2
Continuing in this way, we get ‘\..

Xionl8L) =0 Xioale) =2 xole) =2 xinle) =0
Henee,

EL“*} = Z }:r(.!{]_,}t’ = QF-MF’—J- g0l I e R T
eV

Theorem 3.8 then gives

J;"u(i) = 000 011y 107 o

and so L* = {000,011,101,110}. 0

—

Weight Distrifnitions 998

According to Theorem 5.2.8, if L is a linear code, then
= 1Tlga

We ()= L w!ﬁ(s) = LW ()

ence, we obtain e fellowing MacWilliams identity for linear codes.

wollary 5.2.9  (The MacWilliams Identity for Linear Codes) Let
€ V(o) be a linear code, let LY beits dual, and let

Wilsl = iﬁks", and WL.‘[S} = Z:Atsk
k=0

he weight cnumerators of L and L*, respectively. Then

Wil = -ﬁl-r L+ {qui]lsi“wL(ﬁ%éfm)

here Ky (x) are the Krawtchouk polynomisls, [

OF course, sinee L™ = L, we may use the MacWilliams identity
3 eXPTess the weught enuwmerator of L in terms of the weight
murnerator of LY,
xample 5.2.2 Recall the binary code L = {000,111} of Bxample 5.2.1.
ere A, = A, =1, Ay = A, =10, and so

Wiis) =14

he MacWilliams identity then gives

W (=) 1+s3[L+G;:)j}=%{{l+ﬁ}3—{l—s]3}=]+332

* has 1 word of weight 0 {the zero word) and 3 words of
9. This implies that LY = {000,011,101,110}, as seen in

OMENTS OF THE WEIGHT DISTRIBUTION

The MacWilliams dentity (Corollary 5.2.9) can be used to derive
- various types of moments of the weight distribution A; ol a lincar
code. Leb us shetel an exampls, leaving the details of the computations
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to the reader.
Lete L bea linear [nk]-code. Revermng the roles of L ang [*
the MacWilliams identity can be written in the form

{5.2.6) Zas _—m Eglu — (1 4 (g=1)s)!

i=l

Differentiating this r times and selting 5 =1 gives {Leibniz's ruls i
helpfol here)

(5.2.7) ;I;' (A = E{ 1(a-1) (Rt

The sum on the left-hand side of this equation is the r-ih bimomial
meowend of the weight distribution Ay, A
Replacing s by s7! and then multiplying by s™ if (5.2.8)

gives
1

= I i .

(5.2.8) z‘j"isn_l = ﬁ z‘ﬂ"{-[s — 1)ifs 4 q- 1)
i=0 ;R =

Differentiating this t  times and setting s =1 gives the following

formula, which we will use in Chapter 6

{5.2.0) ql "ZE( —1)A - ZGH)

*DISTANCE DISTRIBUTIONS

We may generalize the previous discussion as follows. For any
(n,M)-code C, let

By = pil(ed) | d €C, dicd) =k}

The numbers By,..., 1, are referred to as the digt.aucﬂ distribution of
Coand Lthe formal sum

EC{S} = i Bksk \
k=0

iz the distance commerator of (. We loave il ag an exercise to show
that, for a lincar code L, the weight distribution and the distance
distribution ceincide,

As we have seen, the MacVWilliams identity applies to weighl
enumerators of elements of the group algebra, Fortunately, it happens
that the distance enumnerator of a code is the weight enumerator of a
group algebra element. To see this, consider the product

Waight Distributions i

ho(t) = 1 Belbgelt ™)

ere #c(t) is the generating function for an (n,M)-cade € C Ving).

halt) = g BoltEclt™)

ence, the weight enumerator of hg(t) is
n T
1 I 1 ke
Wy (5) = (e d) | wle-d) =k} |s" = Bys
n {8 = 5 gi | gﬂ
hich is the distance enumerator of €. This proves the following.

sorem 5.2.10 If CcCV(ng) is an (n,M)-code, then the distance
merator of s ihe weight enumerator of

helt) = ar gelteclt™) i
Thus, we may apply the MacWilliams identity {Theorem 5.2.8)

he(t) to obtain the following result.

eorem 5201 Tet O Vina) be a code, and let
: n
ko
Bpfs) = ZBHS = thlzs}
k=0
its distance enumerator (zee Theorem 5.2.10), where

heit) = I\_l'I Hc{t}gcttml}

1] n
W (5] = Z Byt = Z Z wollioHs®
h'c =1 k=0 w[x}zk
be the weight enumerator of the teansform Hc{t:l, Then
n
B, = D BiK() 0
=0

To see the significance of thiz resull, we peed a lemma, whioze
proof is lell as an exercise.

i

LT
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Lemma 5212 I C.C Ving) isa code, then

¥dzalt™)) = xfaclt])

where the bar denoles complex conjugate. 0

MNow, ginee

Be=3" el
5 [x)=k
and since wix)

Xt} = g XudBelblgclt ™)) = g1 xul gt xdect™))

= Xl e = g | xalect) P
we have

(5.2.10) Bo=a 2 |ndeclf =0

wix)=k ""/

This, together with Theorem 5.2.11, gives the following result, which

will lead us later in this scction to an important bound on the nombers
Aqln,d).

Theorem 5.2.13 Fora code OC Ving), we have for k=10,...,n

11
Y BEi) =0 b
1=l

s THE FOUR FONDAMENTAL PARAMETERS OF A {ODE
The distrilations . N
Bgyiv-v By and: Byiea By,

can be used to define whatl are referred fo as the four Fundamental
parameters of & code; denoted by o, ¢, 4, and 5

The parameter -4 s the minimum distance of the code. In other
words, it iz the smallest pesifive index k for which DBy is nenzerc.
The parameter s s Lhe nawber ol distined nonzeto distances heiween
codewords, in oller wo