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Preface

This is not a book for the experts, nor is it written by one; it is a modest
attempt to lay down the basic foundations of the theory of iteration of ratio-
nal maps in a clear, precise, complete and rigorous way. The author hopes
that those who wish to learn something about the subject will be able to
do so from this book in a relatively painless way, and that it will serve as
a starting point from which many recent, and much deeper, works can be
tackled with some confidence.

The book begins, and ends, with a chapter consisting entirely of examples.
In the first chapter, the examples are quite straightforward and are discussed
from first principles without the advantage of any theoretical developments.
Many readers will want to omit this chapter, but its purpose is two-fold. First,
this subject is of interest to a large number of people not all of whom are
mathematicians, and it is hoped that some of these readers will appreciate the
more gentle start offered by this chapter; and second, in this chapter I illus-
trated most of the basic results of the theory in specific examples. The last
chapter also consists entirely of examples but, by contrast, a claim about a
particular example here demands as much formal verification as does the
proof of a theorem. The primary purpose of these examples is, of course, to
illustrate the theory developed earlier, but in addition to this, they have been
chosen to show the variety of possibilities that can occur, and some at least
go beyond those for which the computer-generated illustrations are now so
familiar. For the convenience of readers, I have included an index of examples
at the end of the text.

I have included a brief section at the beginning which describes some of
the elementary topics that I shall assume the reader is familiar with. Other
(more advances) material is assumed at several other places in the text, but
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there, some explanation is merged with the general discussion. Each chapter
starts with a summary outlining the main objectives in that chapter. There
are, of course, occasions when I need to use more advanced results from other
parts of mathematics, and where I have thought that a brief discussion of
these would materially assist the reader I have included such a discussion in
the text. Where I felt that it would not, I have relegated further discussion to
an appendix to that chapter. Finally, and perhaps inevitably, I accept that
some important items are omitted (most notably, the existence of Herman
rings), but this is not in any sense meant to be a complete account of the
subject.

It has been my objective to provide as much detail as seems appropriate
for an average graduate student to understand the argument completely and
without too much effort, and the criterion for the inclusion of detail has been
whether or not I thought that it would assist the reader. In several places there
is some minor repetition of material; this is simply an acknowledgement that
most readers do not read (and authors do not write) books in the same order
as their pages are numbered and so, on occasions, it is helpful to some readers
to have this repetition. The greatest difficulty seemed to be in placing the
material in a coherent order, and to avoid constantly changing from one topic
to another as seems to happen so often in other accounts of the subject: 1
believe that I have been reasonably successful in this but, ultimately, it is for
the reader to judge. I believe that important mathematical points should be
stressed (even when they are mathematically trivial), and I have written this
book in the belief that the onus lies with authors, not readers, to provide the
details.

There are references given in the text, but I have not attempted to include
references to all results, nor to trace the results back to the original source:
indeed, given some of the informal, expository (and sometimes incomplete)
accounts of the subject that exist, this would have sometimes been difficult,
although, of course, almost all of the results originate with Fatou and Julia.
There are no original illustrations in the text; the existing pictures are more
than adequate for my purposes and I am grateful for those who have allowed
me to use their illustrations.

In writing this text, I have had to learn the subject myself, and I have relied
heavily on the help, encouragement and advice of many people. Noel Baker
generously supplied me with notes for a course he gave, and as well as reading
the manuscript, has responded willingly to a stream of questions (not all
sensible) from me. Keith Carne has also read the manuscript, and has listened
patiently and responded to the ideas and difficulties I have had, and his inter-
est and support in this project has been most valuable. David Herron, Bruce
Palka, Cliff Earle, Kari Hag, Pekka Koskela and Shanshuang Yang partici-
pated in a seminar which worked through a large portion of the manuscript
and their comments and suggestions have led to a significant improvement in
the text. Norbert Steinmetz provided one of the ideas in Chapter 7, and Fred
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Gehring, as before, has been a great support. To all these people, and others
who have helped in various ways, I offer my thanks. Of course, I take full
responsibility for any errors that remain.

Cambridge, England Alan F. Beardon
November 1990
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Prerequisites

This section contains notation, terminology and some of the results that are
taken for granted in the text. First, the notation. The real line, the complex
plane and the extended complex plane are denoted by R, C and C_, respec-
tively, and throughout the text, A denotes the unit disc in C. For any set 4, the
closure, the boundary and the interior of 4 (all with respect to some underly-
ing space X which will be clear from the context) are 4, 94 and Int(A), or 4°,
respectively. For sets 4 and B, 4 — B denotes the set difference (rather than
A\ B which I find visually unattractive); thus

A—-B={xeAd: x¢B}

and the complement of 4 in X is X — A.

The symbol — defines a function f (for example, x — x?) as well as, of
course, f(x) = x2. Often, visual clarity is improved if brackets are omitted, so
I use f(x) and fx interchangeably. Likewise, if the composition x — f(g(x)) is
defined, it is denoted by fg. These liberties allow one to inject a particular
emphasis into a formula; for example, f(gx) is to be thought of as the f-image
of g(x), while fg(x) (the same point) is the fg-image of x. The composition of
f with itself n times is the n-th iterate f" of f, and f° = I, the identity map.
As usual, both notations f*, f”, and f* are used for the derivatives of f.

A small amount of complex analysis is taken for granted, roughly speaking
that which would be covered in a first (and conventional) course in the sub-
ject. For example, we shall assume familiarity with the Maximum Modulus
Theorem, Schwarz's Lemma and Rouché’s Theorem. All of these results can
be found in, for example, [3]. We say that f is a d-fold map of V onto W if,
for every w in W, the equation f(z) = w has exactly d solutions in V (counting
multiple solutions by their multiplicity); for example, a polynomial of degree
disad-fold m f C onto itself. If d = 1 we say the map is univalent, and at
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various points in the text we shall use Hurwitz’s Theorem (that if a sequence
univalent analytic maps f, converge uniformly to f on a domain D, then f is
either constant or univalent in D). This too can be found in [3].

Finally, we shall assume familiarity with the very basic ideas of metric
spaces, namely those up to, say, uniform continuity, compactness and con-
nectedness. We stress, however, that the material in Chapter 1 needs none of
these ideas, and that some attempt has been made to match progression
through the text with an assumption of increasing mathematical maturity.



CHAPTER 1

Examples

In this chapter we introduce some of the main ideas in iteration theory by
discussing a variety of simple examples. The discussions involve only ele-
mentary mathematics, and our sole objective is to illustrate and stress those
features that will be met in a general context later.

§1.1. Introduction

This book is about the repeated application, or iteration, of a rational func-
tion,

_aotaiz+ - +a.z"

T by 4 bz 4+ b z™

R(z)

of a complex variable z. Specifically, we select a starting point z, in the com-
plex plane C and then apply R repeatedly constructing, in turn, the points

29,21 = R(Zo), 2y = R(Zl), AN

In general, we denote the composition of two functions f and g by juxtaposi-
tion so fg is the function z — f(g(z)), and we allow ourselves to write either
fg(2) or f(gz) depending on which of these we wish to emphasize. With this
notation, z, = R"(z,), and by convention, R® = I, where I is the identity map.
Many questions now present themselves; for example, does the sequence
z, converge, or, better still, for which values of the initial point z, does the
sequence z, converge? If the sequence z, does not converge, can we say any-
thing else about its behaviour and, in any case, how robust are the answers
to these questions under a small change in the initial point z,? Instead of
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looking at the future progress of z,, we can also look at its history as repre-
sented, say, by the sequence

s 29521, 29,

where again z,,; = R(z,). In general, for a given z,, there will be several differ-
ent possibilities for z_;, even more for z_,, and so on, so here there is a case
for considering the totality of such sequences arising from a given point z,.

We can gain a little insight immediately by making some elementary obser-
vations about fixed points. A point { is a fixed point of Rif R({) = ¢{, and it is
clear that such points must have a special role to play in the theory. Suppose
now that for some choice of z,, the sequence z, converges to w. Then (because
R is continuous at w)

n—roo n—ow n—roo

w= lim z,,; = lim R(z,) = R<lim z,,) = R(w),

so wis a fixed point of R: thus if z, — w, then R(w) = w. For example, if
R(z) =z —4z 46, (1.1.1)

then, regardless of the choice of z,, if the sequence z, converges it can only
converge to 2, 3 or oo (we will discuss oo later). As

R(z)— 2 =(z ~ 2%,

the reader can now find those z, for which z, - 2.
If the fixed point { of R lies in C, then the derivative R’'({) is defined and
we say that { is:

(1) an attracting fixed point if |R'({)| < 1,
(2) a repelling fixed point if |R'({)| > 1; and
(3) an indifferent fixed point if |R'({)] = 1.

This classification will be discussed again in much greater detail in Chapter
6, but it will be helpful to make some preliminary remarks now. If z is close
to the fixed point {, then, approximately,

IR(z) — Ll =R(z) — RE)| = |R'(0)].1z — LI,

so points close to an attracting fixed point move even closer to it when we
apply R, while points close to a repelling fixed point tend to move away from
it. In particular, if z, lies sufficiently close to an attracting fixed point {, then
z,— { as n— oo. On the other hand, if z is close to (but not equal to) a
repelling fixed point ¢, initially it is repelled away from {, but it may return to
the vicinity of { (or even to { itself) at a later stage. In fact, the only way that
z, can converge to a repelling fixed point ¢, is to have z, = { for n > n,, say.
To see this, we suppose that z, — {, where z, # { for any n, and seek a contra-
diction. Certainly, the fact that the z, converge to, but are distinct from, {
implies that for infinitely many n,

|Zn+l - Cl < |Zn - Cl
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However, we can choose a number & such that |R'({)] > k > 1, and a neigh-
bourhood N of { such that for z in N,

IR(z) — {| = |R(z) — RQO)| > klz — ],

and then putting z = z,, we obtain a contradiction. For example, the function
(1.1.1) has attracting fixed points 2 and oo, and a repelling fixed point 3. Thus
for this function, if z, — w, then either w is 2 or oo, or z, = 3 for some n (this
happens, for example, when z, = 1).

We shall now describe, in the simplest possible way, the central idea in
iteration theory. Given two starting points z, and w,, we construct the se-
quences z, and w, as above, and ask the question if w, is sufficiently close to
2y, do the two sequences z, and w, exhibit roughly the same behaviour as n tends
to o0? In practical terms, if we wish to investigate the sequence z,, where
2o = /2, will it help if we take w, to be 1-414, and then investigate the se-
quence w,? The answer naturally depends on the choice of z,, so we divide
the complex plane into the set F consisting of those z, for which the answer
1s “yes” (for example, when the sequences z, and w, converge to the same
point), and the set J consisting of those z, for which the answer is “no” (for
example, when the sequences z, and w, oscillate violently and independently).
The action of the R” on the set F is to preserve the proximity of points (the
formal notion is equicontinuity), while the repeated action of R on J is to
drive the points apart. The division of the plane into the sets F and J is funda-
mental and ever present, and the reader should keep it clearly in mind.

The seminal ideas, and the foundations, of this subject originated with the
French mathematicians Pierre Fatou and Gaston Julia around 1918, and
more recently (due largely to computer graphics which were not available to
Fatou and Julia) the subject is enjoying a resurgence of interest at all levels
of mathematics. The subject can be studied theoretically and empirically, and
both approaches are valuable, or even essential; however, the purpose of this
book is to provide a careful and precise treatment of the fundamental theoret-
ical ideas and we shall have very little to say about computer graphics (al-
though, naturally, we use computer-generated pictures to illustrate our results).

In this introductory chapter, we shall be content to consider a variety of
explicit examples, all of which will be discussed using fairly primitive tech-
niques. The sole purpose of these examples is to aquaint the reader with some
of the central ideas in an informal and concrete setting and readers who are
familiar with the subject can safely omit this chapter.

§1.2. Iteration of Mobius Transformations

A Mobius transformation is a rational map of the form

az+ b

R(z) = ,
@) cz+d

ad — bc #0,
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where we have the usual convention that
R(©) = a/c, R(—d/c) = oo,

if ¢ # 0, while R(c0) = co when ¢ = 0. Mobius transformations are among the

small class of functions whose iterates can be computed explicitly and, as a

result, we can easily see that for the vast majority of these functions, the

sequence z, converges almost regardless of the choice of the starting point z,,.
We begin by considering an example, namely

3z-2
Then (by induction)
@n+1)z—2n z—1
"2)=r— = —_— 1.2,
R = e —an 1) 2z — @n—1) (12.2)
and so we find that for all z,
R'(z) =1 (1.2.3)

as n — o0. The reader should be warned, however, that despite this conver-
gence, the point 1 is not an attracting fixed point of R. Indeed, R'(1) = 1, and
a simple calculation shows that starting at z, = 1 — ¢, say, where ¢ is small
and positive, the iterates z,, start to move away from the point 1. Nevertheless,
(1.2.3) shows that the points z, eventually return to a neighbourhood of, and
indeed converge to, the point 1.

As one might expect, there is a general result underlying this discussion,
and we now consider this in detail. Any Mobius R either has a single (re-
peated) fixed point, or it has two distinct fixed points, and we consider each
case in turn.

Case 1: R has a single fixed point.
Suppose first that R has oo as its only fixed point. Then R(z) = z + B, say,
where f # 0, so
R"(z) =z + np,

and for every z, R"(z) = o0 as n — o0.
Now suppose that R has some point { in C as its only fixed point. In this
case, let g(z) = 1/(z — {) (a M&bius map taking { to oo), and define S by

S(z) = gRg™'(2).

As Sfixes z if and only z = o0, it follows that S is a translation, and hence that
S$"(z) — oo as n — 0. Also,

$™(z) = (gRg™")(gRg™")-(gRg™")(2)
=gRg™'(2),
and so replacing z by g(z), and applying g~', we find that
RY(z) » g7'(0) = {.

(1.2.4)
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We have now shown that if R is a Mébius transformation with a unique fixed
point {, then, for every z, R"(z) = {. Note that this discussion contains a
method for actually computing the explicit form of R", for R*(z) = g~'S"g(z)
and g and S" are known explicitly.

Case 2: R has exactly two (distinct) fixed points.
Suppose first that R fixes 0 and oo. Then R(z) = kz and R"(z) = k"z. Clearly,
R" fixes 0 and oo, while for all other z,

R'(2)-0 if |k| <
IR*2) = |z] if k| = 1;
R"(z) » 0 if |k] > 1.
Further, when |k| = 1, we have either:

(1) k is an n-th root of unity and R" is the identity; or
(ii) k is not a root of unity, and the points R"(z) are dense on the circle with
centre the origin and radius |z|.

Now suppose that R has exactly two fixed points {; and {, where {; # {,.
First, we construct a Mobius transformation g which maps {; to 0, and {, to
oo: for example, if {, and {, are both finite, we can take

_i7h
z—{;
Now let S = gRg™*: then S fixes 0 and o0 and so our previous remarks apply
to S. As g maps circles (including straight lines) to circles, we find that if R
has two fixed points, then either the R"(z) converge to one of the fixed points
of R, or they move cyclically through a finite set of points, or they form a dense
subset of some circle. As before, this gives a method of finding R" explicitly.
We have just seen that the iterates of a rational function of degree one,
namely the Mobius maps, behave in a very simple manner. These functions
stand alone in their simplicity, and for the rest of the text we shall only be
concerned with rational functions of degree at least two.

g(2)

EXERCISE 1.2

1. Show that if R is given by (1.2.1), and if x = | — ¢, where ¢ is small and positive,
then R(x) < x < 1.

2. Verify (1.2.2) by using (1.2.4) in the form R" = ¢~ 'S"g.

3. Show that the map R(z) = 2z/(z + 1) fixes 0 and 1, and compute R'(0) and R'(1).
Show also that for every n,
2"z
R 2)= oo,
2" -1z +1
Evaluate lim R"(z) for each z (including 0, 1 and o), and also lim(R™!Y'(z), that is,
the limit of the iterates of the MSbius map R 1.
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4. Let R(2) = z/(2z + 1). Find an explicit formula for R"(z) and examine lim R"(z) for
each z.

5. Show that if
Rig =Dz 2)
A-dz+0+10)

then for all z, R*(z) = z. [Try to avoid computing R*.]

§1.3. Iteration of z — z2

It is natural to continue our investigation by examining the simplest rational
function of degree two, namely

R(z) = 22,

and we shall see that even for this, the situation is much more complicated
than for Mobius maps. We shall continue to include oo in our discussion in
an intuitive way, so the fixed points of R are O (attracting), 1 (repelling), and
oo (attracting), and z, — 0 when |z,| < 1, while z, - oo when |z,| > 1.

It is evident that the interesting dynamics of R (that is, the action of the
iterates R") occurs on the unit circle

C={zlzl =1},

and we now focus our attention on this. First, the circle C has the striking
property that it is both forward and backward invariant under R (that is, each
point of C has its entire history and future lying on C). in fact, for this R,
J = C, and theinvariance of J is one of the basic results in the general theory.

The behaviour of the points R*(e®) on the unit circle C is rather compli-
cated and depends on the number-theoretic properties of 0. Writing z = ¢,
we have

R"(z) = exp(2"i6),
so if z is of the form
exp(2nir/2™) (1.3.1)

for some integers r and m, then R™(z) = 1 and consequently,
R(z)=1 when n>m.

Note that the set of points described in (1.3.1) is dense in C and starting at
any of these points the iterates reach the fixed point 1 after a finite number of
steps and remain there thereafter. By contrast, if we start at any point z, on
C, but not of the form (1.3.1), then the sequence z, of iterates cannot converge
to any point. Indeed, if z, — w, then w must be a fixed point of R on C and so
w = 1. But this is a repelling fixed point of R, so (as in §1.1), we must have
z, = 1 for some n. This, however, shows that z, is of the form (1.3.1) contrary
to our assumption.
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The points of the form (1.3.1) are dense in C, as also are the points on C
not of the form (1.3.1), and we can now begin to see the complicated and
“chaotic” behaviour of the iterates R"(z) on the unit circle C. Indeed, every arc
of C contains infinitely many points which eventually reach 1 and stay there,
and also infinitely many points which move on around the unit circle in a relent-
less fashion, never converging to any point. It is clear from this that given any
point z, on C, we can choose a point w,, on C and arbitrarily close to z,, for
which the iterates z, and w, exhibit quite different behaviour: thus the set J
contains the circle C. It is also clear that if z, and wy lie in the unit disc

A={z]z] < 1},

then the points z, and w, exhibit a similiar behaviour (for they both converge
to zero). The same is true if z, and w, lie in {z:|z| > 1}, for then both se-
quences converge to oo (any suspicion that they may nevertheless diverge
from each other stems from the reader’s implicit use of the Euclidean dis-
tance, and this will be replaced in Chapter 2 by other distances which cope
satisfactorily with o). These facts show that in this example, J is the unit
circle.

There are many other noteworthy features of this example and we shall
consider just a few more. First, let I be any arc of positive length on the unit
circle C. Now the map R: z — z2 doubles the polar angle of points on C,
hence if I subtends an angle 0 at the origin, then the arc R(I) subtends an angle
20. 1t follows immediately that for all sufficiently large n, the arc R"(I) covers,
and hence is, the unit circle C. This holds regardless of how small I is: the
action of the R” on each (arbitrary small) arc of C is to “explode” it to such
an extent that it eventually covers C. This too is a particular case of a general
result about the set J.

Next, consider the periodic points of R, that is, the fixed points of some
iterate R". As

R"(z) = 27",

the fixed points of R” on C are the (2" — 1)-th roots of unity and, taking these
into account for all values of n, we find that the periodic points are dense in C.

Further, it is clear that if
[ = ex 2ni
=P

then { is fixed by R", but not by R™ for any min {1,2,..., n — 1}: thus for
each natural number k, there are periodic points on C with exact period k.

Other features of this example can be easily handled by using the idea of a
binary expansion (see Exercise 1.3.5). Given z on C, write

z = exp(2mif),
where 0 satisfies 0 < 6 < 1. The action of R is to map z to exp(2ri20) and we

can ignore the integral part of 20 as exp is periodic with period 2n¥. It follows,
then, that weca  .1derstand the action of R on C if we understand the action
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of the map
0+ 20 (modl)

on the interval [0, 1). This map is most easily understood by writing € in
binary expansion, say

0=0.aya,a; ", (1.3.2)
for then, modulo 1,

20 =0.a,a5a," ",

and the effect is to ignore the first coefficient and move the other coefficients
one place to the left. It is now possible to construct a point z, in C with the
property that the sequence z, is dense in C: we simply list all finite sequences
containing only O’s and 1I's and place them next to each other to form a
sequence a,, d,, ... of 0’s and I's. By applying the map 6 — 20 (mod 1) a
suitable number of times, the sequence a,, a,, ... is transformed into a se-
quence which begins with any predetermined initial sequence. Because of this,
the angle 6 corresponding to the sequence a,, a,, ... gives rise to a point
2o = € on C for which the corresponding sequence (z,) is dense in C. In a
similar way, we can construct a point z, in C with the property that the set
of z, is infinite, but not dense, in C (see Exercise 1.3.6).

It should be clear to the reader that in essence, everything we have said
about z2is also true for z — oz, where d > 2 and || = 1, and for these maps,
J = C. We shall now show that the converse is true.

Theorem 1.3.1. Suppose that P is a polynomial of degree d, where d > 2, and
that the unit circle C is both forward and backward invariant. Then P(z) = az?,
where |a| = 1.

ProoF. Let A = {|z| < 1} and A* = {|z| > 1} U {}. As C is both forward
and backward invariant, it follows that P(A) is either A or A*, and as P is
bounded on A, P(A) = A. As C is invariant, it now follows that |P(z)| — 1 as
|z| = 1. These facts imply that

P(2) = g1(2)"* 94(2), (1.3.3)

where each g; is a M&bius map of A onto itself (see Exercise 1.3.7). From this,
and the fact that P has no poles in C, we deduce that all of the zeros of P are
at the origin, and hence that P is of the required form. O

ExErcise 1.3

1. Discuss the iteration of R: z +» 22, Show, for example, that J is the unit circle.
Does R have any attracting fixed points?

2. Let R(z) = z* and suppose that W is an open subset of the complex plane which
meets the unit circle C, but which does not contain the origin. Show that

Q RY(W)=C — {0).
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3. Show that z satisfies (1.3.1) if and only if for some n, R"(z) = 1.

4. Let R(z) = z2, and suppose that z, is any point other than 0 or co. Show that given
a point { on C, it is possible to choose points z_;, z_,, ..., where R(z,) = z,,;, such
that the sequence z_, converges to {. [This is a special case of a general result.]

5. The binary expansion 0.a,a,--- of a number 8 in [0, 1) is determined by

where each a;is 0 or 1. Show that if # has two such expansions (a,) and (b,) so that

™8

a2 =Y b2,
n=]1

then either a, = b, for all n, or for some N, ay = 1, a, = 0 when n > N, and

b — a, forn < N;
" 1—a, forn>N.

6. Let 0 be given by the binary expansion
0.1010010001 - - -,

where there are exactly n 0’s following the n-th occurrence of 1, and let zy =
exp (27if). Show that the set {z,, z,,...} is infinite, but that the sequence (z,) is
not dense in C.

7. Show that in the proof of Theorem 1.3.1, P satisfies (1.3.3). [Consider the quotient
P(z)/B(z) where B is a finite product of this type whose zeros coincide with those of
P in A, and apply the Minimum Modulus Theorem.]

8. By modifying the proof of Theorem 1.3.1, discuss those rational functions for which
J is the unit circle.

§1.4. Tchebychev Polynomials

It is an elementary fact that cos(kz) can be expressed as a polynomial T, in
oS 2, SO
cos(kz) = Ty(cos z); (1.4.1)

for example, T,(z) = 2z2 — 1. The polynomials T, are the famous Tchebychev
polynomials and, because of the functional relationship (1.4.1), it is fairly easy
to analyse the behaviour of their iterates. Indeed, (1.4.1) implies that for all n,

(T2)"(cos z) = cos(k"z),

and so we can investigate the iterates of T, simply by studying the iterates of
z + kz and then applying the function cos.

For notational simplicity, let us fix a value of k, k > 2, and denote T, by T.
First, we examine the action of the iterates of T on the real interval [ -1, 1].
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Each point in [—1, 1] is of the form cos @ for some real § and as
T(cos 0) = cos(k0),

we find that T maps [ — 1, 1] into itself (thatis, [ — 1, 1] is forward invariant).
Now let V be any sub-interval of [ — 1, 1] of positive length and construct
a sub-interval U of [0, 7] such that cos(U) = V. As

T"(cos x) = cos(k"x),
we find (by letting x range over U) that
T"(V) = cos(k"U).

Now U has positive length so, for sufficiently large n, k"U is an interval of
length at least 2z and then

T"(V) = cos(k"U) = [ -1, 1].

We have shown that if V is a non-empty sub-interval of [—1, 1], then, for
sufficiently large n, T" maps V onto [ — 1, 1]. This is reminiscent of the action
of the iterates of 22 on the unit circle (see §1.3), and it certainly shows that the
iterates T" cannot preserve the proximity of points in [ —1, 1]: thus in this
case, J contains [—1, 1].

We shall now show that on the complement Q of [ -1, 1], T"(z) -» oo as
n— o0, It follows that the iterates preserve proximity there (once we have
discussed oo properly) so in this example, the sets J and Fare[—1, 17 and Q
respectively.

There are two ways to show that T" — co on Q. First, we take any point
win Q and write w = cos z for some complex z, where z = x + iy. Note that
asw¢[—1,1],y # 0. Next,

|cos(x + iy)|? = |cos x cosh y + i sin x sinh y|?
= cos? x cosh? y + sin? x sinh? y
= cos? x(1 + sinh? y) + sin? x sinh? y
> sinh? y.

We deduce that
| T*(w)| = |cos(k"z)| = |sinh(k"y)|

which tends to oo as n — oo, as promised.
The second method uses the important idea of conjugacy of maps. First,

we define R(z) = z*, and

z+1/z
2

0(z) =

Then if z = ¢, we have
oR(z) = cos(kf) = To(2)
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(because T = T), and so, by analytic continuation,
oR(2) = To(2) (142

for all z. Observe that this shows that as R maps A* into itself, so T maps Q
into itself, and hence that [ —1, 1] is backward invariant under T. Now ¢ is
a conformal bijection of the exterior A* of the closed unit disc onto €, so from
(1.4.2), for zin Q,

T(z) = oRo ' (2). (1.4.3)

We express this by saying that T is conjugate in Q to R, and as this implies that
T"(z) = R0 (2),

it is easy to see that T"(z) » o0 (=¢(0)) on Q. Note that although (1.4.2)
holds on the unit circle C, (1.4.3) does not because ¢ is not injective there: we
call (1.4.2) a semi-conjugacy on C, and using this we can see that many of the
propertics of the iterates z* on C are transmitted to the iterates of 7; on
[-1,1].

The link between T, and z* given in (1.4.3) suggests that there should be a
result for 7; corresponding to Theorem 1.3.1. We prove

Theorem 1.4.1. Suppose that T is a polynomial of degree k, where k > 2. Then
the interval [ — 1, 1] is both forward and backward invariant under T if and only
if Tis T,or —1T,.

ProOF. We know that [ —1, 1] is forward and backward invariant under T,
and this implies that [ — 1, 1] is forward and backward invariant under — T,.
Now suppose that [ —1, 1] is invariant under an arbitrary polynomial T of
degree k, and let A be the open unit disc. The map ¢ is a conformal bijection
of A onto Q and as Q is forward and backward invariant under T, the conju-
gate map ¢! Ty is an k-fold analytic map of A onto itself. Further, it is clear
that | ! Tip(z)| — 1 as |z| - 1 and this implies that ¢ ™! Ty is a finite product
with d factors as in (1.3.3). Also, if wis a zero of ¢ ! T, then

Tow) = ¢(0) = «,
so @(w) = oo and hence w = 0. We deduce that
o' To(2) = az’, (1.4.4)
where |a| = 1, and hence that
T(HZ“) _az'+ ;> ,

Equating coefficients of z¢ and z ™% on both sides of this equation, we find that
a=1or —1.If a =1, then (1.4.3) (in which, T is T;) and (1.4.4) show that
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T=T,.1fa= —1,then

—T0(z) = —0(2%) = o(—27) = To(2),
andso T = —T,. (]

We end this section with some general remarks about these ideas. There is
an interesting class of examples whose iterates can be analysed in a broadly
similar way, and to see what these are, we extract the essential features from
the discussion above. Let G be a group of Euclidean isometries which gives
rise to some tesselation of the Euclidean plane. A function f is said to be
automorphic with respect to G if f is meromorphic on C and if

fg(2)) = 1(2)

for every g in G and every z in C. For example, if f(z) = cos z, then G is the
group generated by the two maps

z+ z 4+ 2nm, Z— —2z

for a second example, if f(z) = sin z, then G is generated by z — z + 2n. Bor-
rowing material from the more advanced theory of automorphic functions
(which will not be discussed here), we find that there are other examples of the
general phenomenon suggested by (1.4.1), namely the case when an auto-
morphic function f satisfies an algebraic relation of the form

flkz) = R(f(2)) (1.4.5)
for some rational function R and some complex number k. This yields
flk"z) = R*(f(2))
and so starting at f(z,), the iterates R"(fz,) can be examined by considering
the single function f at the sequence of points

3
29, k2o, k229, K32gs - - - -

The Tchebychev polynomials are just one class of examples of this type and,
in fact, all solutions of (1.4.5) are known (see [82]). We shall consider another
more complicated example of this type in Chapter 4. Further information on
the action of the Tchebychev polynomials on [ — 1, 1] can be found in [67],
p. 54, or in [99].

EXERCISE 1.4
1. Use the formula for sin(3x) to examine the iterates of
T(z) = 3z — 42>
Now consider the formula for cos(3x).

2. Using the relation (1.4.2), show that (T;)"¢ = ¢R" Deduce that the periodic points
of T, aredensein [—1, 1].



g1, lletauon ol s 2z — o 13

3. Derive the backward invariance of [ — 1, 1] from its forward invariance and the fact
that (as in the text) 7" — o0 on Q.

4, Show that for all mand n, T, commutes with T;,.

§1.5. Iteration of z +— z2 — 1

In this section we shall simply describe, without proof, the dynamics of the
iterates of the polynomial
P(z)=2z*—1.

The complexity of the division of C into the sets F and J for P is illustrated
in Figure 1.5.1 and it must be emphasized that this example is typical of
rational functions: the cases when J is a smooth curve (such as an interval or
a circle as in §1.3 and §1.4) are rare indeed. No proofs are offered in this
section, but by the end of the text the reader will be in a position to verify all
of the claims made here.

In Figure 1.5.1, the set J is the collection of black curves, and the set F
consists of the white regions (including the outer region which we denote by
F,). There are infinitely many components of F, and each is simply connected
(it has no holes). The two marked points are —1 and 0.

If z is in F,,, then P"(z) > 00 as n — oo: this is easy to establish whenever
|z| is sufficiently large (see Exercise 1.5.3), and the same holds for all other z
in F,, (from general results in complex analysis). Next, the two regions F,
(containing 0) and F_, (containing — 1) are interchanged by P, that is,

P(Fp)=F.;, P(F.)=Fy
this is a consequence of the fact that P(0) = — 1 and P(—1) = 0.

Figure 1.5.1. z +» z? — 1. Fractal itnage reprinted with permission from The Beauty
of Fractals by H.-O. Peitgen and P.H. Richter, 1986, Springer-Verlag, Heidelberg,
New York.
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If Q is any component of F, then so is P(Q) and, roughly speaking, the
components of F are moved one onto another by the action of P (this is a
general fact). The region F, has the special property that it is both forward
and backward invariant under P (essentially because oo is). For any other
component Q of F, the sequence P*(Q2) of regions is attracted towards the pair
Fy, F_ in the sense that the sequence of components P*(2), n > 1, eventually
becomes

v F,Fy, F ., Fy,....

EXERCISE 1.5

1. Show that the two fixed points of P in C are (1 + /5)/2 and (1 — /5)/2, and that
both of these are repelling fixed points. By considering the graph of P(x) for real x
(together with the graph y = x), show that P(x) > x when x > (1 + /5)/2, and
deduce that P"(x) — oo there. As a repelling fixed point of P must lie in J (this will
be proved later), this shows that the extreme right-hand point of J (see Figure 1.5.1)
is(l + ﬁ)/z_ Show also that (1 — \/g)/Z is the common boundary point of F_, and
F,.

2. Show that the left-hand end-point £ of F_;is vV (1 + ﬁ)/z. [Hint: Either draw the
graph of P2(x) for real x, or assume (as will be shown later) that P is a bijection of
F_, onto Fy and show that P(¢) = —(1 — \/5)/2.]

3. Show that if |z| > (1 + /5)/2, then P*(z) —» co. [Hint: Show that |P(z)| > k|z| if
k> 1and |z| > k/2 + (k¥/4 + 1)'2]

4. Show that P(—1) = —2and (P?)(—1) = 0, and interpret this geometrically for the
sequence zy, z;, ... when z; is close to — 1.

§1.6. Iteration of z — z2 + ¢

We have already considered the iteration of
Pz)=22+¢
forc =0, — 1 and —2 (see Exercise 1.6.1 and §1.4), and we now introduce the

reader to some of the more elementary features of the general case. Starting
with z, = 0, the four polynomials

22, 221, 22-2, z22-3
induce the corresponding sequences (z,):

(i) 0,0,0,0,...;
(i) 0, —1,0, —1,...;
(iii) 0, —2,2,2,...;

(iv) 0, —3,6,33,....

These sequences exhibit quite different behaviours : first is constant, the
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second has period two, the third ultimately becomes constant, while the fourth
converges to co. We now invite the reader to imagine what is happening to
the sequence

2o (=0), 2., 25, 25, - .. (1.6.1)

computed for the function P: z +— z2 + ¢ as ¢ moves continuously from 0 to
—3: somehow, the sequence (1.6.1) changes in character through the examples
(1)—(iv) and we wish to explain these changes. The explanation lies in recogniz-
ing different regions of values of ¢ in each of which the iterates of P have
common features, can then investigating the transition from one state to an-
other as ¢ moves from one region to another.

To illustrate this, let us identify the set of values ¢ for which z2 + ¢ has an
attracting fixed point in C. Now 22 + ¢ has two fixed points, say « and §, in
C, and as these are solutions of

22 —z4¢=0, (1.6.2)

they satisfy
a+ =1, af = c.
This shows that
P@)+ P(f)=2,

and this in turn shows that not both « and f can be attracting (for if they are,
|P'(@)] < 1 and |P'(B)| < 1). It follows that P can have at most one attracting
fixed point, and the condition that one of the fixed points, say «, is attracting is

2la| = |P'(2)] < 1.
However, from (1.6.2),

c=2a—o?

so the set of ¢ we are seeking is just the image of the disc {«: |a| < 3} under
the map z +» z — z2. As this map is fgh, where

h(Z)*—‘Z—%, g(z):zz, f(2)2%-2,

the set of ¢ is the cardioid illustrated in Figure 1.6.1.

In a similar way we can locate the set of ¢ for which z? + ¢ has an attracting
2-cycle: this is so when ¢ = — 1, for example, for then 0 and 1 are attracting
fixed points of the second iterate of z2 — 1. Now the fixed points of the second
iterate P? are the solutions of

PX(z)—z=0.

As « and B are fixed by P, they are also fixed by P2 thus P(z) — z divides
P2%(z) — z and we can write

P)—z=(2—z+c) (2 +z+1+0)
=(@z—a)z-p)z—-ui -0
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Figure 1.6.1

We are seeking conditions on ¢ which imply that {u, v} is an attracting
2-cycle; that is,
Plu) =v, P(v) = u, u#uv,

together with
(PP @)l <1, I(PPY@)I<L,
(so u and v are attracting fixed points of P2). Now by the Chain Rule,
(P?Y(u) = P'(P())P' ()
= P'(v)P'(u)
= 4uv
=41 + ¢),

so the set of ¢ we are seeking is the disc {c: |1 + ¢| < 1} (see Exercise 1.6.2).
This disc is illustrated, together with the cardioid obtained previously, in
Figure 1.6.2.

The point of tangency of the disc and the cardioid is —3 and we shall now
describe the change in the dynamics as ¢ moves from the cardioid to the disc
through the value —2. When c is in the cardioid, P has an attracting fixed
point « and a repelling 2-cycle {u, v} (that is, u and v are repelling fixed points
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Figure 1.6.2

of P?). Asc - —3, the points «, u and v converge to a common value —4, and
when ¢ = —32, o, u and v coincide (so P has no “genuine” 2-cycles) at an
indifferent fixed point of P. As ¢ now moves into the disc, these points separate
again, this time with o being a repelling fixed point and {u, v} being an at-
tracting 2-cycle: thus during this process the attracting nature of « has been
transferred to the pair {u, v}. This process is repeated, {u, v} losing its at-
tracting nature to a 4-cycle, then to an 8-cycle, and so on: this is known as
period doubling and the reader can easily verify it on a computer (by examin-
ing the limit of P*(0) for various values of ¢).

Unfortunately, this analysis does not seem to carry us any further; for
example, in searching for N-cycles, we can divide P¥(z) — z by P(z) — z but
the resulting polynomial has degree 2" — 2 (and this is at least 6 when N > 3).
Because of this, we resort to an experimental approach (with computer graph-
ics) and for reasons that will be described in Chapter 9, it is appropriate to
consider the set

M = {c: P"(0) 5 o}

see Figure 1.6.3.

A rough version of .# appeared in a paper by Brooks and Matelski given
in 1978, [29], where it was used in the context of discrete groups, and a little
later Mandelbrot produced very detailed pictures of the set .# which now
bears his name. In fact, the map z2 + c is the same (up to a change of co-
ordinates) as the logistic map z — Az(1 — z), and for real values at least, this
has a very long history. For further information, we refer the reader to (for
example), [16], [35], [67], [68], [69]. [73] and [80].
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Figure 1.6.3. The Mandelbrot set.

EXERCISE 1.6

1.

. Let P(z) = z* + ¢. Show that:

Show that P(z) = z2 — 2and Q(z) = 2z% — 1 are conjugate (thatis, P = ¢Q¢ ', for
some ¢(z) of the form az + b).

. Suppose that |1 + ¢| < }. Using the notation in the text, show that a, B, v and v are

distinct, Show also that because P? fixes u, it also fixes P(u), and deduce that P(u) =
v, P(t) =u,and u # v.

. Show that the map P: z > z? + ¢ is conjugate to the map Q: z +— iz(l — z)for a

suitable A and find the precise relationship between ¢ and A.

(i) P2y - 0if|z| <1+ /3 —]c;
(ii) PM2) > o if|z| > 1 + /% +|c|-
This shows that when || is small, the set J lies in a thin annulus {z: 1 — ¢, <|z| <
1 + &,} and so is approximately the unit circle in C.

. Use a computer to investigate the limiting behaviour of P*(0) in the cases ¢ = 0.2,

¢= —08,c= —1.3and ¢ = — . Experiment with other values of c.

. In the following, P(z) = z? + ¢, ¢, = P"(0) and

BN s I P/ (™
B 2 ’ a 2 ’
(the fixed points of P). Prove:

() if c < —2,thenc, > 2 + n|c + 2| whenn > 2,

(ii) if —2 < ¢ <0, then P maps [ — 8, B] into itself;
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(i) if 0 < ¢ < 1, then P maps [0, «] into itself, and
(iv) ifc > &, then ¢, > n(c — 3).
Use (i)—(iv) to show that the intersection of the Mandelbrot set .# with real axis
is [_ 27 %]'
7. Show that i € .

8. Prove that every quadratic polynomial has a 3-cycle, [Show that we may take P
in the form az + z>. Then P fixes 0 and «, say, and if P has no 3-cycle, then
P3(z) — z has all its zeros at 0 and «, thus P3(z) =z + z™ (z — «)® ™™ for some
m.]

§1.7. Iteration of z — z + 1/z

We now examine the iterates of
R(z)=z+ 1/z.

It is clear that R has no fixed points in the complex plane, and as R(z) — oo
when z — oo, and also when z — 0, it is natural to define

R(0) = o = R(O0);
thus oo is the only fixed point of R. If x > 0, then x < R(x), so
0<x<RX)<RYx)< ',

and hence R"(x) — oo (for any finite limit would have to be a fixed point of
R). The behaviour of R on the imaginary axis is quite different: if y > 1, then

R(y) =iy + l/iy = i(y - 1/y),
so points of the form iy, y > 1, move away from oo (and towards the origin)
under the action of R. It appears, then, that oo acts as an attracting fixed point
for some choices of z,, and as a repelling fixed point for others: in fact, oo is
an indifferent fixed point (see Exercise 1.7.1).
Now consider any z, with z, = x, + iy, Where x, > 1, and for the iterates
z,, wWrite z, = x, + iy,. Then
Xpe = X(1 + 12,172), (1.7.1)

and so
<-.-

l <xg<x; <xy <7< X
This implies that for all n, r, > 1; hence
|yn+1| = |yn(l - |Zn|—2)| < |yn|*
and we see that z, — oo in the horizontal strip

{x+iy:x> Lyl <lyol}:
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Figure 1.7.1

1. Exampiles

later, we shall see that this sort of behaviour is typical near indifferent fixed

points. It is also clear from (1.7.1) that R maps each set

={x+iyx>t}, >0
into itself.

Itis worthwhile to express these results in terms of the conjugate function

z
S(z) = gRg7'(2) = 1327

where g(z) = 1/z. As R maps Z, into itself, we have
Sg(Z,) = gR(E)) = g(L)),

and as

we find that S acts in the manner indicated in Figure 1.7.1.

EXERCISE 1.7
1. Show that the origin is an indifferent fixed point of S.
2. Show that if z lies in some disc g(Z,), then
S*z) -0, arg $"(z) - 0,
and interpret this geometrically.
3. Show that z — z + 1/z is conjugate to the map fg, where

_3z+l 2
f(z)*‘-z'ﬁ. g(z) = 2%,
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Show also that the map fg preserves both the unit circle and the unit disc. Show
that 1 is an attracting fixed point of f, a repelling fixed point of g, and an indifferent
fixed point of fg.

§1.8. Iterationof z +— 2z — 1/z

Let
R(z) =2z — 1/z.

As before, we adjoin <o to the plane and define both R(0) and R(o0) to be co,
so the fixed points of R are 1, —1 and oo. The fixed points 1 and —1 are
repelling, and as |z| > 2 implies that

[R(2)| > 2|z| — 1/z| > 3]z|/2,

we find that |R"(z)| > (3/2)"|z|, so oo is an attracting fixed point of R.
We shall now focus our attention on the action of R on the interval
I =[—1,1]. As Ris a strictly increasing map of each of the intervals
L=[-1,-3 L=[}1]
onto I, we can define two branches, say g, and g,, of R™! on I by go(I) = I,
and g,(I) = I,. Further, as R'(x) > 2 on I, and I,, it follows that
lgo)l <%, 1gi00)l <4,

on I, so if we apply either g; to an interval lying in [ — 1, 1], the length of the
interval decreases by a factor of at least 2.

Now let K, be the union of the 2" mutually disjoint closed intervals ¢, -
©,(I) where each g, is either g4 or g,: for example, K, consists of the four
intervals

go), gog,(I), g, 90(1), g3(1).
As @,+,(I) = I, we sce that

01 QuOpi (1) = @ u(D)

andso K,,, < K,, and, as each K, is non-empty and compact, it follows that
K is also, where

K

DY

K= ,

0

In fact, K is Cantor set: it is uncountable, and it cannot contain an interval
for such an interval would lie in K, for every n, and each interval in K, has
length at most 27" It is easy to see that

R(K,.)=K,  RUK,)=K,,, (1.8.1)

and from this we see that K is both forward and backward invariant under R.
Next, the iterates R” fail to preserve proximity on K: indeed, each interval
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@, """ 0,(I) is mapped monotonically by R” onto I, so, for example, the end-
points of ¢, - @,(I) (which are at most a distance 27" apart) are mapped by
R"onto —1 and 1. In this example, J = K.
Finally, let us write
gogog,(I) = 1(0,0, 1),

and similarly for other sequences of g;. Then each point x in K corresponds
to a unique sequence (x,, X,, ...) of 0’s and 1's which is defined by

{X} = 61 I(xl’ M xn)’ (182)

and with this representation, we have
R(I(xy, ..., x,)) = I(x3, ..., X,).
It follows that
(RO} = () 1063010

and this shows that K contains many periodic points of R: for example, if
(X1, Xgy...)=(1,0,1,1,0,1, 1,0, 1, ...),
the corresponding x given by (1.8.2) is fixed by R>.

EXERCISE 1.8
1. Verify (1.8.1), and deduce that x is in K if and only if R(x) is.

2. Show that if |z| > 1, then |R(z)| > |z|, and deduce that R"(z) —» cc. Show also that
if x is real and not in K, then R*(x) - co.

3. Show that the periodic points of R are dense in K (explicitly, given any open inter-
val I that meets K, there are points z in I which are fixed by some R").

4. Find positive values of a such that an analysis similar to that in the text holds for
the map z — az — 1/z.

5. For which « and B are the maps 2z — 1/z and 8z — 1/z conjugate?

6. Show that 2z — 1/z is conjugate to z/(2 — z2).

§1.9. Newton’s Approximation

In 1669, Newton discussed the equation x® — 2x — 5 = 0, Starting with an
approximation x, = 2 to the real root {, he wrote x = 2 + y and so obtained
the equation

y>+6y2+ 10y — 1 =0,

Neglecting the non-linear terms, he then found tha’ = 1/10 and so took
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x, = 2'1 as his next approximation to {. The method was systematically
discussed by Joseph Raphson in 1690, and by using the derivative (which
Newton did not), we obtain the now familiar Newton-Raphson iterative
scheme

f(x,)
")

for finding the solutions of the equation f(x) = 0. Given f, this means iter-
ating the new function

Xptp = X

_ &)

ey
and so this method falls within the scope of this text.

In 1879, Cayley (“throwing aside the restriction as to reality”) proposed
using the method to find complex roots of complex functions, and referred to
it as the Newton—Fourier method [30]. He asked for conditions under which
the sequence z, converges to a root { (“selected at pleasure”), and solved the
problem for the general quadratic polynomial. In the same year, he com-
mented in a one-page note [31] that “the case of the cubic equation appears
to present considerable difficulty”; and eleven years later, and apparently with-
out having made further progress, he again raised the issue: “J’espere appli-
quer cette theorie au cas d’une equation cubic, mais les calculs sont beaucoup
plus difficiles”, [32]. With the benefit of the computer-generated pictures that
we now have, we can see that Cayley’s failure to make any real progress at
that time was inevitable: the problem is one of finding the Julia set J for F,
and this is illustrated in part for the polynomial z*> — 1 in Figure 1.9.1.

The key to understanding Newton’s method lies in two observations: first,
(1.9.1) shows that the zeros of f correspond to fixed points of F and, second,
that successive iterates under F have a tendency to converge towards an
attracting fixed point of F. Thus if { is a zero of f which gives rise to an
attracting fixed point of F, then the iterates

z, = F(zo)

F(x) = x (1.9.1)

necessarily converge to { provided at least that the initial guess z, is suffi-
ciently accurate. This much is straightforward, but the problem of deciding if
z, — { when the initial guess z is far from { is much harder.

Our immediate task is to show that a zero of f is an attracting fixed point
of F, We may assume that

f@2) = - {)"g2),
where m > 1 and g({) # O: then

G (- 0g0)

@ (=04 + mgle)’

and, as the denc  nator on the right is non-zero at {, we can differentiate
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Figure 1.9.1. z +— z3 — 1. Fractal image reprinted with permission from The Beauty
of Fractals by H.-O. Peitgen and P.H. Richter, 1986, Springer-Verlag, Heidelberg,
New York.

both sides of (1.9.1) and obtain

Fo="2"
m
This shows that 0 < F'({) < 1 and hence that every zero of f corresponds to
an attracting fixed point of F. Note that the convergence of the z, to { is fastest
when m = 1 (this is when f has a simple zero at ().

This argument guarantees the convergence for a sufficiently accurate initial
guess, but this was not Cayley’s question; Cayley was interested in finding
all starting points which yield convergence to the given root. If we apply
Newton’s method to the quadratic polynomial

f@) =@z -o)z-p),

where « and f are distinct, we are led to consider the iteration of
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This shows explicitly that F fixes both « and B (the zeros of f) and it seems
reasonable to hope (on grounds of symmetry, say) that the z, will converge to
a provided only that we start the process at a point z, which is nearer to «
than to p (and similarly for ). We shall now verify that this is so.

The set of points nearer to o than to B is conveniently described as
{|w| < 1} where

-
W= Y

and because of this, it is best to work with the variable w rather than z. Note
that the two interesting values of z, namely « and B, correspond to the values
0 and o for w. Converting the problem into the variable w means that we
should consider the conjugate function R given by

R(z) = gFg~(2).

where g(z) = (z — ®)/(z — B). A computation (see Exercise 1.9.1) shows that
R(z) = z?%, and this is all we need. Indeed, if z, is closer to « than to §, then
lg(zo)| < 1 and soas n— oo,

R™(gzo) ~ 0.

But this means that as n — oo, we have
F"(zy) = g7'R"g(29) » g7 (0) = «

as required. Of course, a similar argument holds for f.

Finally we remark that more is known about this problem: for example, if
P is a polynomial with real distinct roots, then the sequence z, converges to
one of the roots of P for essentially every choice of z, (technically, this means
that the set of z, for which the convergence fails has zero area). For more
details, see [34], [39], [67] (pp. 91-92), [79] and [80].

EXERCISE 1.9

1. Using the notation in the text, show that gF(z) = [g(z)}?, and deduce that R(z) =
z2. Show also that if z, is equidistant from « and B, then F"(z,} will not converge
to either a or §.

2. Let f(z) = z* — 1, and let z, be constructed using Newton’s method. Find an ex-
plicit vatue of r such that if |z, — 1| < r, then z, - 1.

§1.10. General Remarks

The preceding examples have, we hope, given the reader some insight into
iteration theory. Having said this, we should stress that some of these exam-
ples are nort typical of the general case. For the typical rational function R, the
complex plans (with oo attached) divides into the two sets F and J. The
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sequence of forward and backward iterates preserve this subdivision: if z lies
in F then so does its entire history and future under applications of R, and
the same is true of J. The iterates preserve proximity on F (and usually con-
verge) whereas their action on J is in every sense chaotic. In the general case,
the geometry of J is beautiful, delicate and extremely complicated, a typical
example being illustrated in Figure 1.5.1. The sets J are Julia sets and there
are now many stunning pictures widely available in the literature: see, for
example, [80], [81] and [100]. For general references, we refer the reader to
[16], [35], [42], [43], [57], [69], [73] and [96].

The remainder of the book is devoted to a serious and rigorous study of
these ideas, but before we can proceed with this, we must undertake a careful
study of rational maps (Chapter 2) and normal families of analytic functions
(Chapter 3).



CHAPTER 2

Rational Maps

We present here some of the elementary properties of rational maps. A point
oo is adjoined to the complex plane and a rational map of degree d is con-
sidered as a d-fold map of the extended complex plane onto itself. The spheri-
cal and chordal metrics are introduced, the important notions of conjugacy,
valency, fixed points and critical points are discussed, and the Riemann-
Hurwitz relation is proved.

§2.1. The Extended Complex Plane

We begin by taking an abstract point, which we denote by oo, and adjoining
it to the complex plane C: the extended complex plane is then simply the union

C, =Cu{w}
To obtain a metric on C,, we identify C with the horizontal plane
{(xy, X3, X3) € R*: x5 = 0}

in R? and proceed to construct the usual model for C,, as a sphere. Let S be
the sphere in R*? with unit radius and centre at the origin, and denote the point
(0, 0, 1) (the top point of S) by {. We now project each point z in C linearly
towards (or away from) { until it meets S at a point z* distinct from {: the map
n: z — z* is called the stereographic projection of C into S. Clearly, if |z| is
large, then z* is near to {, and with this in mind, we define the projection n(o0)
of oo to be {. With this definition, = is a bijective map from C,, to S, and this
explains why ¢ is also called the complex (or Riemann) sphere: see Figure
2.1.1.
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Figure 2.1.1. Stereographic projection.

We now use the bijection 7 of C,, onto S to transfer the Euclidean metric
(in R?) from S to a metric ¢ on C,: this simply means that ¢ is defined in the
natural way by the formula

a(z, w) = |n(z) — n(w)| = |z* — w*|.

A gentle exercise in vector geometry (which we omit) yields an explicit for-
mula for o, namely

2|z — wl
(1 + 2721 + [w]?)?

a(z,w) = (2.1.1)
when z and w are in C, while for z in C,

. 2
a(z, 0) = lim a(z, w) = 1+ ]z

this being the limit of a(z, w) as w — 0. As a(z, w) is the Euclidean length of
the chord joining z* to w*, ¢ is called the chordal metric on C,. From a more
advanced point of view, C_, is both the topological one-point compactifica-
tion of C, and also a compact Riemann surface with z - z ™! defining the
chart at oo, and although this motivates much of our thinking, the details
need not concern us.

The Euclidean metric on C is simply not sufficiently versatile to cope with
matters concerning co, but the chordal metric o handles all points of C,, with
equal ease, and when we use a, oo loses (as it should) any special significance.
This is exhibited quite vividly by noting that the map h: z — z ' is actually
a g-isometry (that is, it preserves g-distances) for, as a trivial manipulation
shows, a(z, w) = a(z™!, w™").

It is evident from elementary geometry that every rotation of the sphere S
induces a g-isometry of C, in the sense that for any rotation ¢ of §, the
conjugate map .

C,>s5s8>¢C,
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is a g-isometry. In fact, the rotations of S coincide (in this sense) with the class
of the M6bius transformations of the form

az—c¢
cz+a

la]2 + e =1, 2.1.2)

(for example, a = 0 and ¢ = i gives z — z™!). Although we do not need to
know this fact, it is certainly useful to observe that the maps in (2.1.2) are
isometries, for these provide us with an adequate supply of isometries which
we may use to simplify a given situation: the proof is a straightforward com-
putation (Exercise 2.1.3).

There is an alternative metric on C,, namely the spherical metric a,, and
this is equivalent to the chordal metric . The spherical distance a,(z, w) be-
tween z and w in C, is, by definition, the Euclidean length of the shortest path
on S (an arc of a great circle) between z* and w*. If the chord joining z* and
w* subtends an angle 0 at the origin then, of course,

ao(z, w) =0, a(z, w) = 2sin(0/2)

a(z, w) = 2sin (aO(;’ w)>'

More useful than this, perhaps, are the inequalities

SO

(2/M)ay(z, w) < a(z, w) < ay(z, W) (2.1.3)
which follow from the elementary inequalities
20/n <sin§ <0, 0<0<n/2

In many instances, we can use o and a interchangeably (perhaps after chang-
ing some constants), and we shall frequently make this change without ex-
plicitly saying so.

Finally, we note that if y is any (say, continuously differentiable) curve in
C,.., then the spherical length of y is

f 2|dz|
s Tzl
because we can approximate the projection of y on the sphere by a polygonal
curve in R* and
fim W2
whz W —z] 1+ |z1*

EXERCISE 2.1
1. In the notation of the text, show that if z = x + iy, then
* = 1(2x, 2y, |22 — 1),

where t = 1/(|z|? + 1). Find a formula for z in terms of z*,
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2. Verify the formula (2.1.1) for o(z, w).

3. Verify that the Mdbius transformation g given by (2.1.2) is a g-isometry; that is,
show that o(gz, gw) = a(z, w).

4. Prove that every rotation of § arises from some map of the form (2.1.2).

§2.2. Rational Maps

A rational map is a function of the form
R(z) = P(2)/Q(2),

where P and @ are polynomials, not both being the zero polynomial. If P is
the zero polynomial, then R is the constant function zero: if Q is the zero
polynomial, then R is the constant function oo (note that this is regarded as
a rational function). If §(z) = 0 and P is not the zero polynomial, then R(z) is
defined to be oo, and we define R(c0) as the limit of R(z) as z — 0.

Suppose now that neither P nor Q is the zero polynomial. Strictly speak-
ing, R is not defined at the common zeros of P and @, but if these exist, we
may cancel the corresponding linear factors and thereby assume that P and
Q are coprime (that is, they have no common zeros). We shall always assume
that this has been done, and then P and Q are each uniquely determined up
to a scalar multiple by R, and the degree deg(R) of R is defined by

deg(R) = max{deg(P), deg(0)},

where deg(S) is the usual degree of a polynomial S. If R is a constant map with
value o, where a # 0, co, we have deg(R) = 0, and it is convenient to define
deg(R) = 0 even when a is 0 or co.

The rational maps can be characterized as the analytic maps of C,, into
itself and, briefly, we recall the relevant facts and establish our terminology.
Of course, the metrics o and g, enable us to discuss functions defined at co,
or taking the value co, and this, of course, is precisely the reason why they are
preferred to the Euclidean metric. A function f: D — C defined on a plane
domain D is holomorphic in D if the derivative f”’ exists at each point of D. The
map f: D — C,, is meromorphic in D if each point of D has a neighborhood
on which either f or 1/f is holomorphic. The poles of f are points w where
f(w) = o0, and near such points the map z +— 1/f(z) is holomorphic with
value zero at w. Observe that f is continuous at a pole w: indeed, 1/f is
continuous at w in the Euclidean metric, hence also in the chordal metric,
and as h: z — 1/z is a g-isometry,

a(f(2), f(W) = a(1/f(2), 1/f(w))
= a(1/f(2), 0)
-0
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A function f is said to be defined near, or in some neighbourhood of o if it
is defined on some set {|z| > r} U {c0}, and in this case, f is holomorphic (or
meromorphic) at co if the map z — f(1/z) is holomorphic (or meromorphic)
near the origin. In keeping with the accepted terminology for Riemann sur-
faces, and to emphasize that co and poles are not in any sense singularities,
we say that a map f: D, — D, between any two subdomains of C,, is analytic
in D, if it is holomorphic, or meromorphic, at each point of D,. The general
rule, then, is that we should forget the Euclidean metric, use o instead, and,
as a consequence, cease to distinguish co as a special point of either the do-
main or the range. As a trivial example, let

Piz)=ag+a,z+--+a,z"
where n > 0 and a, #£ 0. Then P(o0) = 00, and as the map

1 z"
TP agr" 4+ a,

is holomorphic near O with the value O there, P fixes co and is analytic there.
In particular, oo is a fixed point of every non-constant polynomial. More gener-
ally, it is well known (and easy to see) that each rational function is analytic
throughout C, and that the rational functions are the only maps with this
property.

It is a crucial fact that if R is a rational function of positive degree d, then
R is a d-fold map of C,, onto itself: that is, for any w in C,, the equation
R(z) = w has precisely d solutions in z (counting multiplicities). This result is
so fundamental that we feel obliged to remind some of our readers of the
proof.

We suppose that R is not constant and that

R(z) = P(2)/Q(z).  deg(P)=n,  deg(Q) =m,

with P and Q coprime. If n = m, then all the zeros and poles of R lie in C; there
are n of each (the zeros of P and Q respectively) and R has the same number,
namely deg(R), of zeros as poles. If n # m, we need the usual convention for
counting the zeros and peles at co. Suppose, for example, that n > m. Then R
has n zeros and m poles in C and R(o0) = co. The number of poles at oo is,
by definition, the number of zeros of the map z — 1/R(1/z) at zero and, as the
reader can easily calculate, this is n — m. A similar argument copes with the
case when m > n and we find that in all cases, R has precisely deg(R) zeros
and deg(R) poles in C,.

For any w in C, the number of solutions of R(z) = w is, by definition, the
number of zeros of R(z) — w. Now

P(z) — wQ(z)
R(Z) — W= -t e -
0(2)
and so R(z) — nd R(z) have the same degree (but only because of the fact

that if P and Q are coprime, then so are P — wQ and (). We deduce that the
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equation R(z) = w has precisely deg(R) solutions in z regardless of the value
of w(in C,), and so R is a d-fold map of C,, onto itself.

As the domain and range of R coincide, we can apply R repeatedly and so
obtain the n-th iterate R” of R. We need to know that

deg(R") = [deg(R)]"
and, clearly, this follows from the more general relation
deg(RS) = deg(R) deg(S) 2.2.1)

between any two non-constant rational maps R and S. To prove this, let R
and S have degree p and g respectively. For all but a finite set of values for w,
the set R™'{w} has precisely p values, say {,, ..., {,. Excluding those (finitely
many) w for which some S™'{{;} has fewer than g elements, we find that for
all but a finite number of w, the set (RS)™' {w} has exactly pg elements and
this yields (2.2.1). Clearly, (2.2.1) holds if one of R and § are constant.

EXERCISE 2.2

1. For any rational function R, the derivative R’ is also rational and so has a value at
o, namely R’(co0). Show that

R(z)/z » R'(0) as z - .
Deduce that if R(e0) = o0, then R’(c0) # 0.
2. Show that z s sin(1/z} is holomorphic at co, but that z + sin z is not.

3. Show that if f has a pole at z, and if g is holomorphic at oo, then gf is holomorphic
at z,,.

4, Show that if f is holomorphic and bounded in {1 < |z| < + 0}, then [ is holo-
morphic at co.

§2.3. The Lipschitz Condition

Quite generally, a continuous map from one compact metric space to another
is uniformly continuous, and it follows from this that a rational map R is
uniformly continuous with respect to both the chordal and spherical metrics
on C,,. Much more is true, however, and an elementary argument shows that
R satisfies a Lipschitz condition with respect to these metrics. We prove

Theorem 2.3.1, 4 rational map R satisfies some Lipschitz condition
ao(Rz, Rw) < May(z, w)

on the complex sphere.
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Proor. When R maps the point z to R(z), the change of scale (measured in the
metric a,) at z is the ratio

IR'(z)I(1 + |zI?)

1+[R@)IF

2.3.1)

so it enough to prove that this function is bounded above on the complex
sphere. To do this, it is only necessary to check that it is bounded above near
oo and near every pole of R, and this follows from standard, elementary
arguments, essentially because R is like some term (z — z,)™ near each of these
points z,. Of course, the supremum of the quantity (2.3.1) is actually the best
possible value of the constant M in Theorem 2.3.1. O

It will be convenient to have an explicit bound in Theorem 2.3.1 when R
is a MObius map, so we extend this last result to

Theorem 2.3.2. The Mobius map

az+b
g(Z) = E‘n, ad — bc = 1,

satisfies the Lipschitz condition

ao(gz, gw) < |l gl %ao(z, w),

where
lgl® = lal*> + |b]> + |c* + |dI>.

We remark that the best possible Lipschitz constant here is

[V lgl* =4+ ligh*)/2: (232

for more details, see Exercise 2.3.1, or [18] (p. 42 and p. 61) where this con-
stant is explained in terms of the action of g as an isometry of hyperbolic
3-space.

Proor OoF THEOREM 2.3.2. Using the proof of Theorem 2.3.1, we need only
show that for all z,
1+ |z|?
laz + b|> + |cz + d|?

<lgl*.

The expression on the left, which we denote by ®(g, z), measures the infinitesi-
mal change of scale of g at z in the metric a,, S0 we would expect it to satisfy
the Chain Rule

(g7", g2)®(g, 2) = It

in fact, it does, and the reader should now verify this by direct calculation.
With this, a lower bound on ®(g, z) is easy to obtain: the Cauchy-Schwarz
inequality yields

laz + bI* < (la* + [bI*)(1 + |z[*),
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and similarly for |cz + d|?, and together these inequalities show that for any z,
(g, 2) = gl ™2
Because of this and the Chain Rule, we find that
(g, g2) < llgll*

This is true for any g so, replacing g by ¢!, and using the fact that || g||® =
lg~! |1, we obtain
®(g.97'2) < lIgll®

and hence for all complex w,
(g, w) < lgl*
This completes the proof. O
Theorem 2.3.2 implies that if the norms || g|| are bounded for all g in some

family G, then there is a uniform Lipschitz inequality for G. This is important,
and in our next result we give a geometric criterion for this to be true.

Theorem 2.3.3. Let m be any positive number. Then the Mobius transformations
g which satisfy

a(g0,gl) = m, a(gl, goo) > m, a(goo, g0) > m, (2.3.3)
also satisfy the uniform Lipschitz condition

a(gz, gw) < (n/m®)a(z, w).

PRrOOF. Suppose that g satisfies (2.3.3): then
a(g0, g1).a(gl, goo). a(goo, g0) > m?, (2.3.4)

Writing g(z) = (az + b)/(cz + d) where ad — bc = 1, and recalling the formula
(2.1.1) for a(z, w), we evaluate the left-hand side of (2.3.4) and obtain

(lal? + 1cI*)(1bI1% + |dI*)(la + bI* + [c + dI*) < 1/m?.

Now
1 =ad — bc = d(a + b) — b(c + d)

s0, by the Cauchy-Schwarz inequality,
1< (6> + [dI*)(la + b|* + |c + d|*).

We deduce that
lal> + [c]* < 1/m?,

and an entirely similar argument shows that

[b|2 + |d|? < 1/m3,
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We have now shown that any g satisfying (2.3.3) also satisfies
Igl? < 2/m?,

and Theorem 2.3.3 now follows directly from (2.1.3) and Theorem 2.3.2. [

We end this section with a result which depends on Theorem 2.3.1 (and
which we shall need later) about closed curves on the sphere. Let y be a closed
curve on the sphere: then the complement of y is a union of mutually disjoint
domains, and we call these the complementary components of y. Now suppose
that y lics in some open hemisphere. Then exactly one of the complementary
components contains a hemisphere; we denote this by E(y) and call it the
exterior of y: the other complementary components of y are said to be the
interior components of y. We can now state the result.

Theorem 2.3.4. Let R be a rational function. Then there is a positive number §
suchthat if y is any closed curve of ay-diameter less than 8, then the image R(Q)
of an interior component Q of y does not meet the exterior E(Ry) of R(y).

This result almost says that if the curve vy is sufficiently small, then the
interior components of y map to the interior components of the image curve
R(y): however, the images of the interior components may also contain points
of R(y), so it is necessary to express this a little more carefully in terms of the
exterior of the image curve. The reader is urged to draw a diagram.

Proor. We may assume that R is not constant, and throughout the proof, the
diameter of a set refers to the g,-diameter. First, note that any interior compo-
nent Q of y has diameter at most the diameter of y itself, and so if M is as given
in Theorem 2.3.1,

diameter(R(Q)) < M diameter(y).

Now choose any d such that Md < =. It follows that if y is a closed curve of
ao-diameter less than §, then R(Q) has diameter less than = and so R(Q)
certainly cannot contain E(Ry).
We need to know that for any rational map R, and any domain W on the
sphere,
J(R(W)) = R(OW), (2.3.5)

then, applying this to €, we find that
J(R(2) = R(0Q) = R(y).

This, in turn, implies that E(Ry)is disjoint from d(R(Q)), and so either E(Ry) n
R(Q) is empty, or E(Ry) = R(R2). Now we have shown that R(2) cannot con-
tain E(Ry), thus E(Ry) n R(Q) is empty (as required) and it only remains to
prove (2.3.5).

To prove (2.” ™\, observe that any point { in dR(W) is the limit of points
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R(z,), where z, € W. Without loss of generality, z, — z, so { = R(z), where z
lies in the closure of W. Now z cannot be in W, else { is in R(W) and this, being
an open set, is disjoint from dR(W). We conclude that z is in dW, and so { is
in R(OW). The proof is now complete. O

EXERCISE 2.3

1. Show that (2.3.2) gives the best Lipschitz constant for a M&bius map g by regarding
g as a linear map (whose matrix has coefficients a, b, c and d) from C? to itself.

§2.4. Conjugacy

The rational maps of degree one are the Mabius maps

az+b

— — b
Z_'cz+d’ ad c # 0,

and as these constitute the group of analytic homeomorphisms of C,, onto
itself, they can be used to introduce conjugacy. We say that two rational maps
R and S are conjugate if and only if there is some M&bius map g with

S = gRg .

It is clear that conjugacy is an equivalence relation, and the equivalence
classes are the conjugacy classes of rational maps.

From a qualitative, or topological, point of view it is only the conjugation
invariant properties, or functions, that are of interest to us, and perhaps the
most important of these is the degree function: if R and S are conjugate, then

deg(R) = deg(S). 24.1)

This is an immediate consequence of (2.2.1).
Another important property of conjugacy is that it respects iteration: that
is,if S = gRg™!, then
S"=gR"g™ !,

This means that we can transfer a problem concerning R to a (possibly sim-
pler) problem concerning a conjugate S of R and then attempt to solve this
in terms of S. If we wish, we can rewrite the solution in terms of R, but it is
surely better to resist the temptation to do so and to attempt, instead, to
express the solution in a conjugation invariant form.

Yet another obvious property of conjugacy is that it respects fixed points:
explicitly, if S = gRg™, then $ fixes g(z) if and only if R fixes z. All of these
observations are elementary; nevertheless, they are important because, in gen-
eral, we shall not bother to distinguish between conjugate rational functions.

As a simple illustration of the use of conjugacy, let us characterize the
polynomials within the class of rational maps. Obviously, a non-constant
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rational map R is a polynomial if and only if R has a pole at oo and no poles
in C; more succinctly, if and only if R™'{co} = {c0}. More generally (and the
proof is trivial), we have

Theorem 2.4.1. A non-constant rational map R is conjugate to a polynomial if
and only if there is some w in C with R™' {w} = {w}.

EXERCISE 2.4

1. (i) Provethatany Mobius map is conjugate to one of the maps z + az,z v z + a
for a suitable value of a.
(ii) Prove that if ab 3 0, the maps z + az and z > bz are conjugate if and only if
eitherb=aorb=a'.
(iii) Prove that if ab 3 0, then the maps z — z + a and z s z + b are conjugate,

2. Prove that any quadratic polynomial is conjugate to one and only one map of the
form z - z* + a, and to one and only one map of the form z  Az(1 — z).

3. Show that ifd > 2, then (z¢ + 1)/z¢ is not conjugate to a polynomial.
4, Is the rational map (2z° — 2z + 1)/3z* ~ 4z + 2) conjugate to a polynomial?
5. Let R(z) = z2. Find all Mdbius map g such that gRg™! = R,

§2.5. Valency

Consider any function f that is non-constant and holomorphic near the point
7o in C. Then f has a Taylor expansion at z,, say

J@) = ag + a(z — o) + @4 (z — 2o} + -+,

where a, # 0, and the positive integer k is uniquely determined by the condi-
tion that the limit

fim 7= 10)

z—2zg (Z - 20)
exists, is finite and is non-zero. We denote this integer k by v,(z,) and call it
the valency, or order, of f at z,: of course, it is the number of solutions of
f(2) = f(zo) at z,.

The valency function v satisfies the important Chain Rule:
vfg(ZO) = vf(gzo)vg(zo)’

where zq, g(zo) and fyg(z,) are all in C, and the proof of this is easy. As g is
holomorphic and not constant near z,, g # ¢(z,) on a deleted neighbourhood
N of zy, and on N we have the identity

f9(2) — fg(z0) _ ( f9(z) — fg(zo) )(9(2) - g(Zo))"
(z = z) [9(x) — 9(zo)1*/\ (2~ 20)* /'’
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where g = v;(gzo) and k = v,(z,). The Chain Rule follows from this because
the right-hand side, and hence the left-hand side also, has a finite non-zero
limit as z — zq: thus v, (z,) = kq as required.

Observe next that f is injective in some neighbourhood of z, if and only if
v,(zo) = 1, and knowing this, the Chain Rule shows that the valency is pre-
served under a pre-application, and a post-application, of an injective func-
tion. Explicitly, if fg is defined near z with g injective near z, and if hf is defined
near z with h injective near f(z), then

v7,(2) = vy(g2), vy(z) = vy(2). (2.5.1)

Now (2.5.1) enables us to extend our definition of v/(z,) to the case where
Zo = 0, OF f(z¢) = oo (or both). We select any Mobius maps g and h which
map z, and f(z,) respectively to points in C and then define v,(z,) by

Uf(Zo) = vp(gzo),

where F = hfg~ L. The essential observation, of course, is that if we repeat this
procedure using different maps g and h, then the resulting answer will be the
same; thus v,(z,) is defined independently of the choice of g and h. In fact, a
similar argument shows that the valency can be defined for any analytic map
between two Riemann surfaces. Of course, if f has a pole of order k at z, (in
C) then f has valency k at z,, and R has k zeros at z, if and only if gRg~! has
k zeros at g(z,), where g is any M&bius map.

In keeping with common usage, an analytic map f: D — C_, is said to be
univalent in D if it is injective there. If f is univalent in D, then v,(z) = 1 for
every z in D, but the converse need not hold: for example, the map z? of
C — {0} onto itself has valency 1 everywhere but it is not injective in C — {0}.

Finally, the fundamental fact that a non-constant rational map R of degree
d is a d-fold map of C,, onto itself is easily expressed in terms of valency. For
any z, in R™1{w}, vg(z,) is the number of solutions of R(z) = w at z,, and so
for each w in the complex sphere,

Y. vg(2) = deg(R).

ze R {w}

EXERCISE 2.5
1. Suppose that R(z) = P(z)/Q(z) where
Pz)=ay +ayz+ - +a,z", Q@) =by+ bz +-4+b,2",

and where a,b,, # 0. Show that if m # n then vg(o0) = [m — n|. What can be said if
m=n?

§2.6. Fixed Points

The fixed points of a mapping play an important 1. in much of our later
work and they will be studied and classified in Chapter 6. In this section, we
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simply compute the number of fixed points of a rational map. Let R be a
non-constant rational function, say R = P/Q, where P and Q are coprime
polynomials. The location of the fixed points of R is trivial. First, R fixes oo
if and only if deg(P) > deg(Q). If { in C is fixed by R, then Q({) # O (else
P() # 0 and R({) = o0) and so { satisfies

P() ={0(0). (26.1)

Conversely, if (2.6.1) holds then Q({) # O(else P and @ vanish at { and are not
then coprime) so { is fixed by R. Thus the fixed points of R in C are (as
cxpcected) the solutions of

P(z) — zQ(2) = 0. (2.6.2)

Note that (2.6.2) need not have any solutions in C (even though the left-hand
side is a polynomial); for example, z +— z + z~! has no fixed points in C.

Having considered the location of the fixed points, our next task is to count
them, and we shall show that if they are counted in the same way that we
count zeros of an analytic map, then a rational map R of degree d, d > 1, has
precisely d + 1 fixed points in C_. It is advantageous to define the relevant
quantities for general analytic maps, and we make the natural definition that
if { is a fixed point of an analytic map f,and if { ¢ oc, then f has k fixed points
at { if and only if f(z) — z has k zeros at {. Observe (for example), that z + z°
has three fixed points at the origin but has valency 1 there, whereas z> has
one fixed point at the origin and valency 3 there.

The definition above does not apply to fixed points at oo, and to cope with
this, we need

Lemma 2.6.1. Let { in C be a fixed point of an analytic map f, and let ¢ be any
map that is analytic, injective and finite in some neighbourhood of (. Then
ofo ™" has the same number of fixed points at o({) as f has at .

PRrROOF. Suppose that f has k fixed points at {. We consider the identity
ofo ') -z

_ (qofqo"(Z) - 4040“(2)><fqo“(2) - qo“(2)><[qo"(2) - qo“q»(C)]f)
foT'@ -0 [o7'(2) - (T [z — 0T
and note that from this, it is sufficient to show that each term on the right

tends to a finite non-zero limit as z tends to ¢({). The first term on the right
is of the form

o(u) — o(v)
u—vp

and a simple application of Cauchy’s Integral formula applied to a small
circle about (/" shows that this tends to a finite non-zero limit, namely ¢'({),
as both u and v _nd to {. Next, the definition of k implies that as - tends to
©({), the second term on the right tends to a finite non-zero limit. Finally, the
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third term tends to [¢’({)]™* and the proof is complete. For an alternative
proof, see Exercise 2.6.5. O

The invariance expressed in Lemma 2.6.1 automatically provides a defini-
tion for the number of fixed points at oo, for if R(c0) = o0, we can conjugate
R so that oo is transferred to a finite fixed point, say {, and then count the
number of fixed points of the conjugate function there. Clearly, Lemma 2.6.1
guarantees that the answer will be independent of the conjugation used, and
so this provides the required definition. With this definition, Lemma 2.6.1
now implies

Theorem 2.6.2. Let { be fixed point of the rational map R, and let g be a Mbius
map. Then gRg™" has the same number of fixed points at g({) as R has at {.

We can now prove

Theorem 2.6.3. If d > 1, a rational map of degree d has precisely d + 1 fixed
points in C.

PrOOF. Any rational map R is conjugate to a rational map S which does not
fix co, and the number of fixed points of S and of R are the same, as are the
degrees of S and R. It follows that we may assume that R does not fix co.

Now write R = P/Q with P and Q coprime, and let { be any fixed point of
R, so { is finite. As Q({) # O, the number of zeros of R(z) — z at { is exactly
the same as the number of zeros of P(z) — zQ(z) at {: hence the number of
fixed points of R is exactly the number of solutions of P(z) = zQ(z) in C. As
R does not fix oo, we have

deg(P) < deg(Q) = deg(R):

thus the degree of P(z) — zQ(z) is exactly deg(R) + 1 and the proof is
complete. O

To each fixed point { of a rational map R, we associate a complex number
which we call the multiplier m(R, {) of R at {. If { is in C, the multiplier is
simply the derivative R’({) and this is invariant under a conjugation (provided
that the corresponding fixed point is also in C). We must now define the
multiplier m(R, c0) when oo is fixed by R. The procedure, of course, is to
choose a Mabius map g with g(c0) in C, and then define

m(R, o0) = m((gRg~", goo),

noting, by the preceding remarks, that this definition is independent of the
choice of g. We have now defined a conjugation invariant multiplier m(R, {) of
any rational map R at any of its fixed points {.

To illustrate this, suppose that

_aytaz++az”
T by bz 4+ byz™

R(z)
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where a,b,, ¢ 0 and n > m, so R fixes o0, and let us compute the multiplier
m(R, o) of R at co. By definition, m(R, o) is the derivative of

S:z — 1/[R(1/2)]
at the origin and this is found to be
bu/a, if n=m+1
SO =4 ™" ’
©) {0 ifn>m+ 1
Another computation gives
a,/by, fn=m+1
Rr — n/~m b
(c0) { if n>m+ 1

where, of course, by continuity,

R'(x0) = Iim R'(z)

zZ—w

(see Exercise 2.2.1). These computations show that the multiplier m(R, {) of a
rational map R at a fixed point { is given by
R'(¢ if {# oo;
mR,g)={FC)
1/R'(0) if { = 0.

For example, if R(z) = 3z, then oo is at attracting fixed point of R (this is
geometrically clear) and in this case, m(R, «0) = 1.

We end this section by considering the number of fixed points of an iterate
f" at a fixed point of f. For this, we need

Theorem 2.6.4. Suppose that

fe)=az + bz 4+ - (2.6.3)
near the origin, where a # 0, b, £ 0and r > 1. Then
f()=a"z+ bzt 4+, (2.64)

where
b,=a""'b,(1 + a’ + a* + - + @),

Immediately, this yields

Corollary 2.6.5. If a = 1, then b, = nb,.
Corollary 2.6.6. b, =0 if and only if a" # 1 and a™ = 1.

Of course, if a” # 1, then a # 1, so if f" has a single fixed point at 0, then
so does f. More generally, we have

Corollary 2.6.7. The iterate f" has at least as many fixed points at the origin
as f has, and if it has more, thena # 1 but a" = 1.
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We end with the

PROOF OF THEOREM 2.6.4. It is easy to see (by induction) that if f has the form
(6.2.3), then /" has the form (6.2.4). Substituting the power series for f, " and
S+ into the identity f"*'(z) = f(f"z) and identifying coefficients, we obtain

b

n

o= ab" 4 an(r+1)b“
and writing §, = b,/a", this gives

Bn+l = ﬁn + ambl-

This is easily solved for f, and the formula for b, follows, O

EXERCISE 2.6

1. Verify the formulae for S'(0) and R'(0) in the text.

2. By considering z + z™! and z? + z — 1, show that neither of the two following

statements implies the other:
(1) R has all of its fixed points at {;
(i) R7HC} = {L}.
3. Show that if d > 2, a polynomial of degree d has d fixed points in C and one fixed
point at 0.

4. Suppose that
a,+az+ -+ az”

R(z) =
(@ bo + byz 4+ + b,z™

where a,b,, # 0 and n >m. Show that R has exactly one fixed point at co if
n>m+ Lorifn=m+ 1and b, # a,.
5. Prove Lemma 2.6.1 in the following way. Suppose that

f2)y=z + az’** + -+,

where a # 0, s0 f has p + 1 fixed points at the origin. Now consider any power
series g(z) = Y=o b,z", where by = 0 and b, # 0, and let F = gfg™'. We claim that

F(2) =z + AzP** + -+,

where A4 # 0, and this can be proved as follows.
Consider the “commutator” fg — gf, and show that

149(2) = af (2) = ab, (b} — 1)zP*! + O(z?*?).

Next,
97'(2) = z/b, + O(z%),
SO
(fg — aMg™'2) = a(1 — b;?)zP*' + O(z"*?),
whence

@97 (2) = f(2) — a(l — by ")zP* + O(z"*?)
=z + ab;?zP* + Q2P ?),
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§2.7. Critical Points

This section is devoted to the notion of critical points and critical values
even though their full significance for iteration theory will not be apparent
until Chapter 9. A point z is a critical point of a rational map R if R fails to
be injective in any neighbourhood of z, and if R is not constant, these points
are precisely the points at which vg(z) > 1. A value w is a critical value for
R if it is the image of some critical point; that is, if w = R(z) for some critical
point z. These ideas are often confused and it is important to distinguish
clearly between them.

If R is of degree d if w is not a critical value, then R™'{w} consists of
precisely d distinct points, say zy, ..., z;. As none of the z; are critical points,
there are neighbourhoods N of w, and Ny, ..., N, of z,, ..., z; respectively,
with R acting as a bijection from each N; onto N. It follows that for each
J, the restriction R; of the map R to N; has an inverse

R;': N> N,
and we call these the branches of R™* at w.
We know that R is injective in some neighbourhood of any point in C

at which R’ has neither a zero nor a pole: thus for all but a finite set of z,
vg(z) = 1 and, consequently,

z [vr(z) — 1] < + o0,

the sum being over all z in C_. This sum gives us a measure of the number
of multiple roots of R (and the difficulties in defining R™!), and its actual
value is given by the Riemann—Hurwitz relation:

Theorem 2.7.1. For any non-constant rational map R,
Y [vr(z) — 1] = 2 deg(R) — 2. 2.7.1)

The general term in the sum is positive only when z is a critical point of
R so, as the valency is an integer, this provides us with an estimate of the
number of critical points of R. For a non-constant polynomial P, we have
vp(c0) = deg(P), so, in the same way, we obtain an estimate of the number
of critical points of P in C. These two estimates are given in

Corollary 2.7.2. A rational map of positive degree d has at most 2d — 2 critical
points in C,. A polynomial of positive degree d has at most d — 1 critical points
in C.

We shall see later that these estimates play a vital role in iteration theory.
Usually, we allocate a multiplicity to a critical point z: this multiplicity is
vg(z) — 1 and with this convention, a rational map of degree d has exactly
2d — 2critical p- .



A topological proof of Theorem 2.7.1, using the tuler characteristic, is
available and has the advantage that, suitably modified, it is valid for any
analytic map between compact Riemann surfaces: this is given in Chapter 5.
However, at this point some readers may prefer the following more elemen-
tary proof.

ProoF oF THEOREM 2.7.1. First, we note that both sides of (2.7.1) are invariant
under conjugation, thus it is sufficient to prove (2.7.1) for any conjugate of R.
Now select a point { such that R({) # {, vg({) = 1, and that R(z) = { has d
distinct solutions, and then construct a Mabius transformation g that maps
{to oo, and R({) to 1. If we now write S = gRg ', then translate the properties
of R into properties of S, and then relabel S as R, we find that we may assume:

(i) R(0) = 1;
(ii) R has distinct simple poles z,, ..., z, (all in C); and
(iii) vg(o0) = 1.

These conditions imply that the valency of R at o, and at each z;, is one,
hence the sum (2.7.1) is the same as

Y [vr(z) — 11, 2.7.2)

summed over all z in C except for the points z;. For all such z, R(z) is in C
and so the value of (2.7.2) is the number of zeros of R'(z).
Now write R = P/Q, say, in reduced form. Then

P'(2)Q(z) — P(2)Q'(2)
0(2)? ’

and this is also in reduced form for if not, the numerator and denominator
have a common zero (which must be some z;), and then

0= P,(Zj)Q(Zj) = P(Zj)Q,(Zj):

but then either P(z;) = O(which is false as P/Q is in reduced form) or Q'(z;) = 0
(which is false as the z; are simple zeros of Q). It now follows that as (2.7.2) is
the number of zeros of R'(z), it is also the degree of P’Q — PQ', or, equiva-
lently, the degree of the polynomial Q(z)?R'(z).

We shall compute the degree of this polynomial by finding its order of
growth at oo. First, it is clear that Q(z)?/2z%¢ tends to a finite non-zero limit as
z — 00. Next, the fact that vg(00) = 1 means that R is injective in some neigh-
bourhood at oo and so

R(z) =

R(1/z)=1+ Az + -~

near the origin, where 4 # 0. Differentiating both sides of this, and replacing
z by 1/z, we find that z2R'(z) tends to a finite non-zero limit at oo and so,
finally, (2.7.2) is 2d — 2 as required. O

We end this section with a simple result which locates the critical values of
the iterate R" in terms of the critical points of R.
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Theorem 2.7.3. Lec C be the set of critical points of a rational map R. Then the
set of critical values of R" is

R(C)u - U RYO). (2.7.3)

ProofF. The proof is a simple consequence of the Chain Rule for valencies.
Suppose first that z lies in the set (2.7.3); then there is a sequence

29,2y = R(z,), ..., 2 = R(z,-)

with one of the z;in C. It follows from the Chain Rule for valencies that the
valency of R" at z, exceeds one; hence z is a critical value of R". Conversely,
it zis a critical value of R", there must be some such sequence with the valency
of R" at z, exceeding one, and hence some z; is in C. O

ExEercise 2.7

1. Show that a rational map R of degree 2 has precisely two critical points and has
valency 2 at each of these points.

2. Verify the details of the proof of Theorem 2.7.1 in the text that because vg(o0) =1,
z2R'(2) tends to a finite non-zero limit as z — co.

3. Let R be a non-constant rational map. Show that
deg(R) — 1 < deg(R’) < 2 deg(R).

Show also:

(i) there is equality in the lower bound if and only if R is a polynomial; and

(ii) thereis equality in the upper bound if and only if all of the poles of R are simple
poles in C.

4. Suppose that a rational map R maps an open set D into itself. Show that if R" has
a critical point in D, then so does R.

§2.8. A Topology on the Rational Functions

Let € be the class of continuous maps of C_, into itself and let # be the
subclass of rational functions. The metric

p(R, S) = sup a,(Rz, Sz)

on % is the metric of uniform convergence on C,. As the chordal and spheri-
cal metrics only differ by a bounded factor, we could equally well use the
chordal metric here (the metric would change but the topology would not).
Now 2 is a closed subset of € because if the rational functions R, converge
uniformly to R on the complex sphere, then R is analytic on the sphere and
so it too is rational. More generally (and again we could use either the chordal
or the spherical metric), we have



Theorem 2.8.1. Suppose that each f, is analytic in a domain D on C, and that
[, converges uniformly on D to f withrespect to ay. Then fis also analytic in D.

ProoF. The proof is elementary and we merely remind the reader of the main
points. We need to check that f is analytic in some neighbourhood of each
point { of D. If neither { nor f({) are co, then the uniform convergence of the
J, near { ensures that f is bounded in some neighborhood N of {. This, to-
gether with Cauchy’s integral formula, shows that f is holomorphic in N. If
one, or both, of { and f({) are co, we compose f (before, or after, or both) with
the ag-isometry h: z — 1/z. As composition with a gy-isometry preserves the
local uniform convergence, this case is reduced to the situation already dis-
cussed above. Finally, recall that if f(c0) = oo, then f analytic at co simply
means that z +— 1/f(1/z) is holomorphic at the origin.
We return now to discuss rational functions. The degree function

deg: R — deg(R)

maps # onto {0, 1, 2, ...} and we shall need to know that this is continuous.

a

Theorem 2.8.2. The map deg: # — {0, 1, ...} is continuous. In particular, if the
rational functions R, converge uniformly on the complex sphere to the function
R, then R is rational and for all sufficiently large n, deg(R,) = deg(R).

PROOF. Again, the ideas are elementary and we only sketch the proof. First,
the uniform convergence of R, to R guarantees that R is analytic throughout
the sphere and so is rational. As deg: # — Z is a map between metric spaces,
it is enough to work with sequences; thus we assume that R, converges uni-
formly on the complex sphere to R and we wish to show that for sufficiently
large n, deg(R,) = deg(R). This is clear if R is constant, so we may assume that
deg(R) > 1.

We may assume that R(o0) # O for otherwise, we can replace R and R, by
1/R and 1/R,. With this assumption, R has distinct zeros, say z,, ..., z, and
these all lie in C. Construct small, mutually disjoint discs D; about the z,
ensuring that no D; contains a pole of R. Let K be the complement of the
union of the D;. For all sufficiently large n, R, is uniformly close to R, and so
has no poles, in the D,. As R, and R are uniformly close on the circles bound-
ing the D;, Rouché’s Theorem shows that R, and R have the same number of
zeros in each D,. Finally, R is bounded away from zero on the compact K,
hence so are the R, (for large n): thus for all sufficiently large n, R, and R have
the same number of zeros and so they have the same degree. O

As a consequence of Theorem 2.8.2, the class 4, of rational maps of degree
nis an open subset of 4 for it is the inverse image of the open subset {n} of Z
under the continuous map deg. It is easy to see that each &, is connected (for
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it R and S lie in #,, we can simply “slide” the zeros and poles of R to those
of S while maintaining the same degree) so we obtain

Corollary 2.8.3. The &, are the components of R.

We shall not need to use this result, and we leave the interested reader to
complete the details of the argument.

We end with a few remarks concerning the relation between the topologi-
cal structure of #,; and the coefficients of rational maps (and again, these can
be safely ignored). There is a natural map

(b: Czd+2 —_ {0}——7@0U"'Uﬂd,
(not the opposite direction) namely the map

(ag,.... a4, by, ..., b)) — P/Q

where
P(z)=aqg +ayz + - + a,z*

and similarly for Q (with coefficients b;). As non-zero scalar multiples of the

given vector lead to the same rational map P/Q, we can view ® as a map from

the complex projective space CP2¢*! to the space &, u -+ U #; of rational

maps of degree at most d (CP?**! is the space obtained from C2?*? — {0} by

identification of vectors which are non-zero scalar multiplies of each other).
The map @ is not as attractive as one might hope; for example:

(i) CP?9*! is connected whereas #, U - -+ U %, is not (its components are the
g?j);

(i) the coefficients may converge, but in the limit, the degree of the rational
map may drop (for example, (z + 1/n)/z — 1 in the sense of coefficients
but not uniformly on the sphere); and

(i) in passing from C2¢*? to CP?**!, we identify some of the pairs of vectors
which give the same rational map, but not all of them (for example, the
coefficient vector of z/z is not identified with the coefficient vector of the
constant map 1).

Despite these facts, the space &, of rational maps of degree d is embedded
homeomorphically in CP2¢+!. A rational map R of degree d determines its d
zeros and d poles, hence it determines its coefficients up to scalar multiples:
in other words, there is a map

V. R, — CP2eH!
with left inverse @. In fact, the map ¥ is a homeomorphism of %, onto its

image ¥(2,), and this image is an open dense subset of CP2?*!: we omit the
details.
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EXERCISE 2.8

1. Let R be a rational map other than the identity. Show that if R" converges uni-
formly tosome function g on a domain D, then g is constant. [Hint: From Theorem
2.3.1, R**! converges uniformly to Rg on D.]

Show, however, that a subsequence of (R") can converge uniformly on a domain
D to a non-constant function g.

2. Complete the proof of Corollary 2.8.3.



CHAPTER 3
The Fatou and Julia Sets

The informal discussion in Chapter 1 suggested that the dynamics of a ratio-
nal map R induces a subdivision of the complex sphere into two sets, namely
the Fatou set F and the Julia set J of R. Here, we introduce the notion of
equicontinuity of a family of maps, and then formally define the Fatou and
Julia sets in terms of the equicontinuity of the family {R"}. In addition, we
consider conditions which imply that a family of analytic maps is equicon-
tinuous (or a normal family) in a domain.

§3.1. The Fatou and Julia Sets

Although we shall assume that the reader is familiar with the basic ideas of
metric spaces (for example, uniform continuity and compactness), the defini-
tion of continuity will serve to motivate the crucial notion of equicontinuity.
A map f from a metric space (X, d) to a metric space (X, d, ) is continuous
at the point x, in X if, for every positive ¢, there is some positive § such that
for every x,

d(xq, x) < 6 implies d,(f(x0), f(x)) <e.

Clearly, § depends on f, x, and ¢, but if § can be found so that this holds for
all x, and for all f in some family & of maps of X into Y, then we say that the
family & is equicontinuous at x,. It is important to realize that the equi-
continuity of & at x, is the formal expression for the idea of preservation of
proximity which was introduced informally in Chapter 1: indeed, it implies
that every function in # maps the open ball with centre x, and radius ¢ into
a ball of radius at most &. For emphasis, we give a formal definition.
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Definition 3.1.1. A family # of maps of (X, d) into (X, d,) is equicontinuous
at x, if and only if for every positive ¢ there exists a positive § such that for
all x in X, and for all fin %,

d(xg, x) <8 implies d,(f(x0) f(x)) <&

The family & is equicontinuous on a subset X, of X if it is equicontinuous at
each point x, of X.

If the family & is equicontinuous on each of the subsets D, of X, then it is
automatically equicontinuous on the union ( ) D,. Taking the collection {D,}
to be the class of all open subsets of X on which % is equicontinuous, this
leads to the following general principle.

Theorem 3.1.2. Let & be any family of maps, each mapping (X, d) ifito (X, d,).
Then there is a maximal open subset of X on which F is equicontinuous. In
particular, if f maps a metric space (X, d) into itself, then there is a maximal
open subset of X on which the family of iterates { f"} is equicontinuous.

This (at last) provides us with a formal definition for the Fatou and Julia
sets of a rational map R, and the following terminology is chosen to honour
the creators of the theory.

Definition 3.1.3. Let R be a non-constant rational function. The Fatou set of
R is the maximal open subset of C,, on which {R"} is equicontinuous, and the
Julia set of R is its complement'in Ce.

Although the use of the term “Julia set” is standard, the use of “Fatou set”
was suggested as late as 1984 (in [22]). It seems appropriate, but the reader
should be familiar with the common alternatives, namely the stable set, and
the set of normality. This latter term is a reference to normal families of ana-
Iytic functions (which we discuss in §3.3), but we have preferred to base our
definition on equicontinuity because of its more immediate geometric appeal.

We denote the Fatou set of a rational map R by F, and the Julia set by J,
although sometimes, when we need to mention R explicitly, we use F(R) and
J(R) instead (in many earlier papers, the Julia set is denoted by F). Note that,
by definition, F(R) is open, and J(R) is compact.

We end this section with two simple, but important, properties of F and J.
A rational map, and in particular, a Mébius map and its inverse, satisfy a
Lipschitz condition with respect to the spherical (and chordal) metric on C,,
(Theorem 2.3.1). Thus if we conjugate R with respect to a MGbius map, equi-
continuity is transferred in the obvious way and we have

Theorem 3.1.4. Let R be a non-constant rational map, let g be a Mobius map,
and let S = gRg™'. Then F(S) = g(F(R)) and J(S) = g(J(R)).
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A similar argument (which we give below) leads to

Theorem 3.1.5. For any non-constant rational map R, and any positive integer
p, F(R?) = F(R) and J(R?) = J(R).

PROOF. Let S = R?. First, as {S":n > 1} is a subfamily of {R":n > 1}, it is
equicontinuous wherever {R": n > 1} is: thus F(R) c F(S). Next, as each R*
satisfies a Lipschitz condition, the family

F, = {R*S": n > 0}

is equicontinuous wherever {S": n > 1} is, In particular, each % is equicon-
tinuous on the Fatou set F(S) of S, and hence so too is the finite union
FouF U UZF,_,. As this union is {R": n > 0}, the family {R":n > 1} is
equicontinuous on F(S) and so F(S) = F(R). [Remark: A similar argument
makes use of uniform continuity instead of the Lipschitz condition.] O

EXERCISE 3.1
1. Show (rigorously) that the Julia set of z%, where d > 2, is the unit circle.

2. Suppose that R is a rational map, and that the iterates R" converge uniformly to
some constant on a domain D. Prove that D — F(R). Deduce that an attracting
fixed point of R lies in the Fatou set,

3. Prove that a repelling fixed point of R lies in the Julia set.

4. Give the detajls of the proof of Theorem 3.1.4.

§3.2. Completely Invariant Sets

In this section we discuss the consequences of a set being invariant under a
mapping, and we begin by defining the different types of invariance. If g is a
map of a set X into itself, a subset E of X is:

(i) forward invariant if g(E) = E;
(i) backward invariant if g™ (E) = E;
(iii) completely invariant if g(E) = E = g™*(E).
If g is surjective (that is, if g(X) = X) then the concepts of backward in-

variance and complete invariance coincide. Indeed, by surjectivity (but not
necessarily in the general case),

glg " (E))=E

which, with backward invariance, yields g(E) = E. The requirement of surjec-
tivity here is crucial and without it, there is a difference between backward
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and complete invariance: for example, C is backward invariant, but not com-
pletely invariant, under the map z — exp(z). As our main concern is rational
maps, we recall that these map C,, onto itself: thus for rational maps, back-
wards invariance coincides with complete invariance.

We illustrate these ideas with the following result which will be of impor-
tance later.

Theorem 3.2.1. Let R be a rational map of degree at least two and suppose that
a finite set E is completely invariant under R. Then E has at most two elements.

PrOOF. We suppose that E has k elements. Because E is finite, and because R
maps E into E, R must act as a permutation of E and so for a suitable integer
g, R?is the identity map of E into itself. Now suppose that R? has degree d.
1t follows that for every w in E, the equation R%(z) = w has d solutions which
are all at w, and so by the Riemann—-Hurwitz relation (applied to R?), we have

kd—1)<2d-2
I
As d > 2, we have k < 2 as required. O

It is convenient to collect together several general, but elementary, proper-
ties of completely invariants sets and throughout, we shall assume that g:
X — X is surjective so that we may use complete invariance and backward
invariance interchangeably. First, we mention that complete invariance be-
haves in the most obvious way under conjugation: if E is completely invariant
under g, and if h is a bijection of X onto itself, then h(E) is completely in-
variant under hgh™*.

Next, we apply the standard construction which is used to generate, for
example, subgroups, subspaces and topologies. The operator g~ commutes
with the intersection operator, that is, for any collection {E,} of sets,

9 (N E) =) g7 (Ed

and, because of this, the intersection of a family of completely invariant sets is
itself completely invariant. This means that we can take any subset E, and
form the intersection, say E, of all those completely invariant sets which con-
tain E,: obviously, E is then the smallest completely invariant set that contains
E, and we say that E, generates E.

We now introduce an equivalence relation which greatly facilitates the
discussion of completely invariant sets. For any x and y in X, we define the
relation ~ on X by x ~ y if and only if there exist non-negative integers n
and m with

g"(x) = g™ () (3:2.1)

Obviously, the relation ~ is symmetric and reflexive, and it is also transitive
for (3.2.1) and g”(y) = g%z) imply that

g P (x) = g™ (2):
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thus ~ is an equivalence relation on X. We denote the equivalence class
containing x by [x], and we call this the orbit of x (some authors call this the
“great orbit”, but see Exercise 3.2.1, [102] and [96], p. 14). It is easy to identify
the orbit [x], and we have

Theorem 3.2.2. Let g: X — X be any map of X onto itself. Then [x] is the
completely invariant set generated by the singleton {x}.

ProOOF. For the moment, let {x) denote the completely invariant set gen-
erated by {x} (of course, this notation will be abandoned in favour of [x] after
the proof is completed). First, we take any y in [x]. Then for some m and n,
gm(y) =g"(x),s0

yegmg'{x} = g7"g" (x> = (x),
equality holding here as {x) is completely invariant. We deduce that [x] c
xD

It only remains to show that [x] is completely invariant, for once this

has been done, the minimality of (x> implies that (x> = [x] and equality
follows. As y ~ g(y), we see that x ~ y if and only if x ~ g(y) or, in terms of
set membership,

ye[x] ifandonlyif g(y)e[x].

This shows that y € [x] if and only if y € g™' ([x]) thereby proving the com-
plete invariance of [x], and completing the proof. O

It is a direct consequence of Theorem 3.2.2 that a set E is completely
invariant if and only if it is a union of equivalence classes [x]. If this is the
case, then its complement must also be a union of equivalence classes and,
therefore, also completely invariant. This suggests that we should also look
at the interior, closure and boundary operators.

Theorem 3.2.3. Let g be any continuous, open map of a topological space X onto
itself and suppose that E is completely invariant. Then so are the complement
X — E, the interior E°, the boundary 0E, and the closure E, of E.

PrOOF. We have already proved that X — E is completely invariant. As g is
continuous on X, g”!'(E®) is an open subset of g~'(E}; and hence (by in-
variance) of E. Thus g ! (E®) < E°. Similarly, as g is an open map, g(E°) is an
open subset of E and so g(E°) = E°. Thus

E® = g7'g(E%) = g™ (E),

and so E° is completely invariant.

We now know that the complete invariance of E implies that of X — E and
E®, and the usual topological arguments guarantee that the closure and the
boundary of E are also completely invariant. This completes the proof. [
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We now prove that the division of the sphere into Fatou and Julia sets is
completely invariant: this is fundamental.

Theorem 3.2.4. Let R be any rational map. Then the Fatou set F and the Julia
set J are completely invariant under R,

ProoF. By Theorem 3.2.3, it is sufficient to prove that F is completely in-
variant, and because R is surjective, we need only prove that it is backwards
invariant. First, we take any z, in R™' (F) and let w, = R(z,): thus w, is in F.
It follows that given any positive ¢, there is a positive d such that if a(w, wy) <
d, then for all n, a(R"(w), R"(w,)) < & By continuity, there is also a positive
p such that if a(z,z,) <p, then a(R(z), w,) <6, and hence a(R"*!(z),
R**(z0)) < & This shows that {R"*':n > 1} is equicontinuous at z,, and
clearly, the addition of one function, namely R, does not destroy this fact.
Thus {R" n > 1} is equicontinuous at z,, and hence on R™'(F). As R™!(F) is
open, we deduce that R™'(F) c F.

To prove the opposite inclusion, take any z, in F and again, let wy = R(z,).
Because z, is in F, given any positive ¢ there is a positive d such that for all n,
ifa(z, zg) < 6 then a(R"*!(z), R""'(z,)) < & The set of z satisfying a(z, zo) < J
is an open neighbourhood N, say, of z,, and so R(N) is an open neighbour-
hood of w,. If wis in R(N), then w = R(z) for some z in N, and so

a(R"(w), R"(wp)) = a(R"*!(2), R""!(z,)) < &.
This shows that w, is in F, so F = R™!(F) and the proof is complete. 0

We can say more than Theorem 3.2.4 when R is a polynomial, and we have

Theorem 3.2.5. Let P be a polynomial of degree at least two. Then o is in F(P),
and the component F,, of F containing oo is completely invariant under P.

PROOF. It is clear that there is some neighbourhood, say W, of c«0 on which
P" & oo uniformly. Thus given any positive ¢, there is an integer N such that
if n> N,andif z and w are in W, then

a(P’z, P'w) < a(P"z, w0) + a(0, P"w) <,

so {P"} is equicontinuous in W, and oo is in F(P).

To show that F, is completely invariant, observe first that P(F,) both
contains o0 and is a connected subset of F (Theorem 3.2.4). Thus P maps F,,
into itself and so F,, = P"!(F,). Now suppose that z is in P~!(F,): then, by
Theorem 3.2.4,  lies in some component F, of F and by the argument above,
P maps F, into F,. If P(F}) # F,, then there is some point { in dF; with P({)
in F,, and this cannot be so as { is in J, and J is completely invariant. We
deduce that P(F,) = F,, and hence that F, contains some w with P(w) = c0.
But then w = o0, F, = F,, z € F, and the proof is complete. O
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We end this section with a simple observation which will be used several
times later. Suppose that a topological space X has only a finite number of
components, say X, ..., X,, and suppose also that f is a continuous map of
X onto itself. As each f(X;)is connected, f induces a map 7 of {1,..., ¢} into
itself defined by (i) = j where f(X;) = X,. As f is surjective so is 1, hence 1
is necessarily a permutation of {1, ..., t}. It follows that 7 has finite order, say
m, so, for all j,

£7(X) = X,

A simple argument (using the fact that the X; are pairwise disjoint) now shows
that each X, is completely invariant under f™, and we have proved.

Proposition 3.2.6. Let f be a continuous map of a topological space X onto
itself, and suppose that X has only a finite number of components X;. Then for
some integer m, each X; is completely invariant under ™.

This, of course, was the essential idea in the proof of Theorem 3.2.1.

EXERCISE 3.2

1. Let g be a bijection of a space X ontoitself, and let G be the cyclic group (g). Show
that

[x] = {g"(xy:n e Z},
that is, [x] is the orbit of x under the group G.

§3.3. Normal Families and Equicontinuity

We have defined the Fatou and Julia sets in terms of the equicontinuity of the
family {R"}. However, equicontinuity is closely related to normal families of
analytic functions, and once we have understood this connection (which is
expressed in the Arzela—Ascoli Theorem), we can exploit the more powerful
results about normal families of analytic functions to derive further informa-
tion about the Fatou and Julia sets. This is our programme for this section.

We begin with the definitions relevant to normal families. A sequence (f;)
of maps from a metric space (X, d,) to a metric space (X,, d,) converges
locally uniformly on X, to some map f if each point x of X, has a neighbour-
hood on which f, converges uniformly to f. In these circumstances, the con-
vergence is then uniform on each compact subset of X, .

Definition 3.3.1. A family # of maps from (X,, d,) to (X;, d;) is said to be
normal, or a normal family, in X, if every infinite sequence of functions from
Z contains a subsequence which converges locally uniformly on X; .
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We give the usual reminder that the limit of the convergent subsequence
need not lie in %. Although we have formulated these definitions for general
metric spaces, we shall only be concerned with subdomains of the complex
sphere with the chordal (or spherical) metric, and we come now to astatement
of the Arzela—Ascoli Theorem: this is proved in many texts (see, for example,
[3], p. 222) and we omit the proof.

Theorem 3.3.2. Let D be a subdomain of the complex sphere, and let & be a
Samily of continuous maps of D into the sphere. Then F is equicontinuous in D
if and only if it is a normal family in D.

As an illustration of the direct use of normality rather than equicontinuity,
we consider Vitali’s Theorem: this exploits analytic continuation and so en-
ables us derive information about the limit f of a sequence ( f,) throughout a
domain D simply from a knowledge of f on only a small part of D.

Theorem 3.3.3 (Vitali’s Theorem). Suppose that the family { f,, f,, ...} of ana-
Iytic maps is normal in a domain D, and that f, converges pointwise to some
Junction f on some non-empty open subset W of D. Then f extends to a function
F which is analytic on D, and f, — F locally uniformly on D.

PROOF. As {f,} is normal in D, there is some subsequence of ( f,) which con-
verges locally uniformly in D to some function F. It follows that F is analytic
in D, and that F = f on W.

Now suppose that (f,) fails to converge locally uniformly on D to F. Then
there is a compact subset K of D, a positive ¢ and a subsequence, say (g,), of
(f,) such that for all n,

sup a(g,z, Fz) > ¢.
K

However, by normality, there is some subsequence, say (h,), of (g,) which
converges locally uniformly to some function h on D. Clearly, h = f = F on
W, and as his analytic in D, we must have h = F throughout D. It follows that

sup a(h,z, Fz) >0,
K

and as (h,) is a subsequence of (g,), this violates the preceding inequality
(which holds for all n). The proof is complete. O

We turn now to obtain conditions which guarantee the normality of a
family of analytic functions. It is an elementary consequence of Cauchy’s
Integral Formula that if f is holomorphic and satisfies | f| < M in a domain
D in C, then |f’| is bounded above on each compact subset K of D, the upper
bound depending on M, K and D but not on f. This implies that if # is a
family of functions which are holomorphic and uniformly bounded in D, then
F is equicontinuous, and hence normal in D. It is possible to obtain a variety
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of mild generalizations of this result without much effort, but all such results
are hopelessly inadequate for our purposes. Instead, we pass these by and go
straight to one of the most powerful results of all concerning normality: this
result is absolutely essential for the study of iteration of rational maps, yet its
substantial proof can safely be omitted without prejudicing an understanding
of iteration theory. The result we seek is

Theorem 3.3.4. Let D be a domain on the complex sphere C,, and let Q be the
domain C, — {0, 1, co}. Then the family F of all analytic maps f: D —Q is
normal in D.

The hypothesis of Theorem 3.3.4 is that each function in .# fails to take
the values 0, 1 and oo at any point of D. We shall discuss the proof presently,
but first, we show how Theorem 3.3.4 can be used to produce two variations
on the same theme. In the first of these, we assume only that each function
S fails to take three values which now may depend on f. It is too much to
expect that three values can be completely arbitrary, and we must add the
requirement that they are uniformly separated on the sphere. The precise
result is

Theorem 3.3.5, Let & be a family of maps, each analytic in a domain D on the
complex sphere. Suppose also that there is a positive constant m and, for each
Sin &, three distinct points a;, by and c; in C_, such that:

(i) fin F does not take the values a,, b; and c, in D; and
(i) min{o(ay, by), a(by, /), alcy, a;)} = m.

Then # is normal in D.

Of course, Theorem 3.3.5 contains Theorem 3.3.4 as a special case, for we
can take a, = 0, b, = 1 and ¢, = oo for every f. There is another variation of
Theorem 3.3.4 that we shall need: this is

Theorem 3.3.6. Let D be a domain, and suppose that the functions ¢,, ¢, and
(o3 are analytic in D, and are such that the closures of the domains ¢,(D) are
mutually disjoint. Now let & be a family of functions, each analytic in D, such
that for every z in D, and every f in %, f(2) # @)(2), j=1, 2, 3. Then & is
normal in D.

In view of our total dependence on these theorems, and anticipating that
many readers will not wish to examine the long proof of Theorem 3.3.4 in
detail, we shall now give a sketch of the proof of Theorem 3.3.4, and complete
derivations of Theorems 3.3.5 and 3.3.6 from Theorem 3.3.4. The hope is that
the outline of the proof of Theorem 3.3.4 will provide adequate insight and
reassurance for those readers who choose not to examine the details: those
who do wish to see the details should consult Appendix I of this chapter.
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THE PROOF OF THEOREM 3.3.5. For each f in %, define the MGbius transforma-
tion g, by
gf(O) = ay, gf(l) = bfa gf(oo) = Cy.

The condition (ii) in Theorem 3.3.5 is precisely the hypothesis of Theorem
2.3.3,so the family {g,: f € # } satisfies a uniform Lipschitz condition on C,,,
say

a(g,(2), g¢(w)) < Ma(z, w),

where M is independent of f.

Now let Q = C,, — {0, 1, o}, let Q, = C,, — {a, by, ¢}, and define h, to
be the map g;'f. Thus f: D — Q, is the composition g,h, of the maps h,:
D - Q and g;: Q- Q,. Now by Theorem 3.3.4, the family {,} is normal in
D, and hence equicontinuous there. Finally,

and it is immediate that the equicontinuity of the family & is inherited from

the equicontinuity of the family {4,} and the uniform Lipschitz condition on
{g,}. This completes the derivation of Theorem 3.3.5 from Theorem 3.3.4. O

Tue PROOF OF THEOREM 3.3.6. For each w in D we define a M&bius map g,
by the conditions

(]W(O) = @1 (W), gw(l) = @Z(W), gw(w) = (03(W),

so by Theorem 2.3.3, the family {g,,: w € D} satisfies a uniform Lipschitz con-
dition on the sphere, say with constant M.
Now suppose that # = { f,: « € A}, and for each o, define
_ o1 _ [faw) = @1(W)1[p2(w) — 03(W)]
B9 = 0 1) = ) = W L) = 010

with the usual conventions when any of these points are oo. Clearly, each F,
is analytic in D, and does not take the values 0, 1 or oo there. Thus from
Theorem 3.3.4, {F,} is normal in D.

Now take any sequence f, from £, and let F, be the corresponding func-
tions defined as above. By normality, there is a subsequence of (F,) converging
to some analytic function F, uniformly on compact subsets of D, and for this
subsequence we have the inequalities

a(f,(w), g, F(W)) = a(g,F,(w), g, F(w))
< Ma(F,(w), F(w)).

As this last term tends to zero uniformly on compact subsets of D, we now
see that the original family & is normal on D, 0

We end this section with
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A SUMMARY OF THE PROOF OF THEOREM 3.3.4. First, normality is a local prop-
erty so we need only prove that for every z in D, the family & is normal in
some disc centred at z and lying within D. Thus we may assume that D is a
disc, and a simple change of variable enables us to further assume that D is
the unit disc A in C. We want to prove, then, that the family %, of analytic
maps f: A — Qis normal in A.

Our proof relies on hyperbolic geometry. First, we view A as the hyperbolic
plane with the hyperbolic metric p derived from the line element

ds = 2|dz|(1 — [z}

Now because A is the universal covering space of (), the metric p transfers to
a metric, say pq, on Q (the hyperbolic metric on Q). It is not too difficult to
analyse the metric geometry of (€, pg) and 1o show that the hyperbolic dis-
tance from any point in € to any of the boundary points 0, 1 and oo is infinite.
Thus, given any positive number d, there are three neighbourhoods, say A7,
A7 and A, of 0, | and oo respectively, such that the distance between any
two of these neighbourhoods exceeds d.

Now it is an important fact that any analytic map f: (4, p) — (£, pg) does
not increase hyperbolic distances (this is a deeper version of the classical
Schwarz Lemma). Further, any compact subset K of A has finite p-diameter,
say d,, and so we can conclude that its image f(K) has po-diameter at most
d,: it is important to note that this bound depends on K but not on f in #.
Now take a compact subset K of A of p-diameter at most d: it follows that for
every f in %, the image f(K) can meet at most one of the neighbourhoods A4,
N N

If we are now given any sequence of functions chosen from %,, we can pass
to a subsequence, say f,, with the property that each f,(K) is disjoint from one
particular .4/, say from 4#;. Now let g be a Mdbius transformation which
maps .4, onto the exterior of A. Then, for each f,, gf, maps K into A and so
the sequence (gf,) is normal in the interior of the compact set K. It follows
easily (as g is a Lipschitz map on the sphere) that the family %, is normal in
the interior of K, and as normality is a local property, & is normal in A. This
completes our sketch of the proof of Theorem 3.3.4: for more details, see
Appendix I to this chapter. O

ExEeRcIsE 3.3

1. Let D be a subdomain of C,,. Show that there exist compact subsets K,, K,, ... of
D, such that D is the union of their interiors, and deduce that each compact subset
of D is contained in a finite union of the K,,.

Now consider the family & of continuous maps f: D — C,, and for each integer
n, and each f and g in &, define

(/. 9) = sup o(f(z).9(z) < 2,
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and
o/, 9)= ; 270,(f, 9)

Show that z(f, g) is the metric of local uniform convergence on D in the sense that
for functions £, and fin &, f, — flocally uniformly on D if and only if z( £, f} — 0.

2. Let P be a polynomial of degree at least two. Use Vitali’s Theorem to show that
P" — o0 on the component %, of F(P) which contains co.

3. Let P(z) = z* — 2 (this was discussed in §1.4, but here is an alternative treatment).
(i) Show that [ —2, 2], and hence also the complement Q of [ —2, 2], is completely
invariant under P.
(i) Use Theorem 3.3.4 to show that {P"} is normal in Q, so F(P) o Q, and J(P) =
[-22].
(iif) Use (ii) to show that F(P)is connected, and then use Vitali’s Theorem (or the
previous exercise) to show that P* —» oo on F(P).
(iv) Deduce that J(P) = [—2, 2].

4. Let D be a subdomain of the complex sphere and suppose that the complement of
D contains at least three points. Let f be an analytic function which maps D into
itself and suppose that f has an attracting fixed point { in D. Show that the iterates
/" converge locally uniformly to { in D.

Appendix 1. The Hyperbolic Metric

This Appendix provides an opportunity to introduce the reader to some basic
ideas relating hyperbolic geometry to complex analysis. As described in §3.3,
we view the unit disc A as the hyperbolic plane with the metric p(z,, z,) being
defined as the infimum of

_ _ 2|de]
Liy)= L ds, ds = T

taken over all curves y that join z, to z, in A. Much is known about this
geometry (for example, the geodesics are the arcs of circles orthogonal to the
boundary of A) and for more details, we refer the reader to [18].

For our purposes it is best to transform this to the upper half-plane model
in which the space is

H* ={x+iy y> 0},

and where the corresponding metric py is derived from ds = |dz|/y. We begin
with the open region X lying in the upper half-plane H* and illustrated in
Figure 1.

Now let I be the group of transformations of the form

az+b
cz+d’

g(z) = )]



Appendix I. The Hyperbolic Metric 61

\
\

\\
NN

/v\ /
~
P
R
-1 0 1
Figure 1
where
adeZ + 1, b,ce2Z, ad — bc =1 2

(so I consists of those M&bius maps whose matrix is congruent modulo 2 to
the 2 x 2 identity matrix). The maps

uiz)=z+ 2, v(z) = 5 +l

are in " and they pair the sides of X as indicated in Figure 1. We prove
Theorem A. T is generated by u and v, and the T-images of T tesselate H*.

ProoF. First, we take g in I" and prove:

(a) if goo = oo, then g(z) = z + B for some even integer f3;
(b) if goo # oo and z € X, then Im[gz] < Im[z];
(©) if g is not the identity map I then g(£) X = (.

To prove these, we take g as in (1) and (2). If ¢ = O then from (2), ad = | so
a=d = +1 and (a) holds. Note that if ¢ = 0, then g(£)~ X = @&. In (b), we
have ¢ # 0 so

Q,={zilcz+d| < 1}

is an open disc with its centre on the real axis. Now if z is any integer,
then ¢z + d is an odd integer so z cannot lie in Q,. It follows that 0, 1 and
—1 lie outside Q,, so X does not meet the closure of , and [cz + d| > 1



02 3. 'The Fatou and Julia Sets

throughout X. As
Im[z]

ez + d” ®

Im[gz] =
(b) follows. Finally, (c) follows from (b) for suppose that g # I but that g(%)
meets . From (a), neither g nor g™! fix c0. As g(Z) meets Z, there are points
z and win X with w = g(z) and from (b),

Im[w] = Im[g(z)] < Im[z], Im[z] = Im[g~'(w)] < Im[w],

which is false.
We know that {u, v) = T", and we now prove:

(d) each z in H* has some image ¢(z), where g € {u, v, in the closure of X.
To prove this take any z in H*. As the set
{lez+d|:ce22,de2Z + 1}

does not contain zero and accumulates only at oo, it follows that the mini-
mum of |¢z + d| taken over the elements of (u, v) is assumed by some element
g of {u, v}, and replacing g by u™g for a suitable integer m (this leaves |cz + d|
unaltered), we may assume that

IRe[g(2)] < 1. “

Now (3) (which holds for all Mobius maps of H* onto itseif) and the minimiz-
ing property of g shows that for every h in <y, ¢>, Im[h(z)] < Im[g(2). In
particular,
Im[g(2)].129(z) + 1|72 = Im[vg(2)] < Im[g(z)]
and
Im[g(2)].129(2) — 1|72 = Im[v™"g(2)] < Im[g(2)],

and these and (4) show that g(z) lies in the closure of .

It is now easy to complete the proof of Theorem 1. Take any h in I" and
any w in the open set h(Z). By (d), there is some g in {u, v} such that g(w) lies
in the closure of Z, and so gh(Z) meets Z. By (c), h = g™, whence h e {u, v)
and so I = {u, v). As the opposite inclusion holds, we have I' = {u, v> and
having proved this, (¢) and (d) show that the I'-images of T tesselate H*. []

It is more convenient to continue the argument from a slight variation of
Theorem A, so let X, be as illustrated in Figure 2, and let «, f and y be
reflections in the sides of X,. The next result follows easily from Theorem A
(and its proof is omitted).

Theorem B. Let Iy = <a, B, 7). Then:

(1) the [y,-images of X tesselate H*; and
(1) T is a subgroup of index twoinTy,and Iy =T uTla
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The next step is to construct the quotient space H*/T" by means of an
analytic map; more precisely, we need to construct an analytic map 2: H* —
Q, where Q = C_ — {0, 1, o}, such that (up to conformal equivalence) 4 is
the quotient map and Q is the quotient space. Thus we prove

Theorem C. There exists an analytic map A of H* onto Q with the properties:

() forallzinH*, A(2) #0; and
(i) A(z) = A(w) if and only if w = h(z) for some hinT.

The proof is standard, and we only sketch the main ideas. The Riemann
Mapping Theorem shows that there is a conformal mapping 1 of £, onto H",
and the standard theory of boundary correspondence under conformal map-
pings shows that A extends to a homeomorphism between the closure of these
domains. By combining 4 with a suitable Mdbius map of H* onto itself, we
may assume that A fixes 0, 1 and oc. We deduce that 4 maps the positive
imaginary axis onto the interval (—oo, 0) so, by the Reflection Principle, 4 is
a conformal mapping of & onto C — {x: x = 0}. In a similar way wec can
analytically continue 4 across the other two sides of Z,.

It is clear from this construction that if z and w are any two points lying in
the closure of Z (and also in H*), then A(z) = A(w) if and only if w = g(2) for
some g in I'. We now extend the definition of A to H* by the formula A(gz) =
A(z) for all zin H* and all g in T, and it is easy enough to verify that this
defines a single-valued function on (the simply connected) H* which satisfies
the requirements of Theorem C. ]
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A great deal of explicit information is available about 4 (in terms of infinite
products, elliptic functions and the Schwarz-Christoffel transformations) and
the interested reader can consult, for example, [3], p. 277, and [76], p. 318
(where the normalizations differ from ours).

The next step is to show that the map A transfers the hyperbolic metric py
on H* to a metric pg on Q (the hyperbolic metric of Q), and also that any
analytic map

F:(A, p) > (€, po)

does not increase distances. This is easy. Each point in Q is the centre of a
small open disc ¥ which has the property that each component of 271(V) in
H™ is a topological disc which is mapped homeomorphically onto V by A. The
components of 27! (V) are mapped onto each other by the elements of I and,
as these elements are py-isometries, we see that the local metric structure of
H* is projected, without change of length, into a metric (derived from a line
element) on Q. The metric gq, is now obtained by minimizing this length over
all paths joining two given points in Q in the usual way (the length of any path
being computed a small piece at a time by transferring each small piece back
to H* and measuring it there). It is now clear that A is a map from (H", py)
onto (£, p,) which preserves the lengths of paths, and so does not increase
distances.

Now let F be any analytic map of A into Q. We can follow F by some
branch of A! defined near F(0) and then analytically continue this composi-
tion F, over all curves in A: the continuation exists by virtue of the properties
of 4, and it is single valued because A is simply connected. This provides us
with an analytic map F;: A — H* such that F(z) = A(F,(2)) (for this holds
initially). The SchwarzPick Lemma implies that F, is distance decreasing,
and as 2 is also distance decreasmg, so too is F.

The last step is to show that the p,-distance between any two of the bound-
ary points 0, 1 and oo of Q is infinite, and to do this we refer the problem back
to H*. Now the py-distance between the horizontal lines y = y, and y = y,
in H* is |log(y,/v,)l, and this tends to +o0 as y, - +c0. In fact, for suffi-
ciently large y,, the image of {x + iy: y > y, } under 4 is a neighbourhood of
o0 in Q) (we omit the details) and the desired result follows as the situation is
symmetric in 0, 1 and oo.

General References for Chapter 3

The classical references are [44], [45], [58] and [83]: more recent references
are [22], [28], [35], [51], [67], [71], [87] and [96].



CHAPTER 4

Properties of the Julia Set

This chapter is devoted to developing the basic and most easily available
properties of the Julia set of a rational map. Other properties of the Julia set
occur throughout the text.

§4.1. Exceptional Points

We begin now to exploit the fundamental Theorem 3.3.4. Given a rational
map R, we have the induced equivalence relation ~ discussed in §3.2, and the
equivalence class [z] is the smallest completely invariant set which contains
z. It is easy to see that [z] can be finite only in rather special circumstances,
so we enshrine this idea in a formal definition.

Definition 4.1.1. A point z is said to be exceptional for R when [z] is finite,
and the set of such points is denoted by E(R).

First, we justify the terminology by showing that such points are indeed
exceptional.

Theorem 4.1.2. A rational map R of degree at least two has at most two excep-
tional points. If E(R) = {{}, then R is conjugate to a polynomial with { corre-
sponding to oo. If E(R) = {{,, {5}, where [, # {,, then R is conjugate to some
map z +— z%, where {, and {, correspond to 0 and .

From this and Theorems 3.1.5 and 3.2.5, we have immediately

Corollary 4.1.3. If deg(R) > 2, then the exceptional points of R lie in F(R).
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PROOF OF THEOREM 4.1.2. It is clear that E(R) is completely invariant under R
and so, by Theorem 3.2.1, R has at most two exceptional points. It follows
that after a suitable conjugation, there are four possibilities to consider,
namely;

() E(R) = &;

(i) E(R) = {oo} = [0];

(i) E(R) = {0, o0}, [0] = {0}, [c0] = {o0};
(vi) E(R) = {0, oo} = [0] = [c0].

There is nothing more to say about (i). If (ii) holds, then, by Theorem 2.4.1, R
is a polynomial. If (iii) holds, then R is again a polynomial but this time of the
form z — az? for some positive integer d. Finally, if (iv) holds, then R(0) =

R(o0) = 0, and R has all of its zeros and poles in {0, o0} so it is of the form
z — az’ for some negative integer d. In all cases, the exceptional points lie in
F and this completes the proof. Observe that this argument shows that, in an
obvious sense, most rational maps have no exceptional points. O

We turn now to another characterization of exceptional points. For any z,
the backward orbit of z is the set

O7(2) = {w: forsome n = 0, R"(W) = z}

= |J R™"{z},
nz0
and we call the points in O~ (z) the predecessors of z. As O™ (2) = [z], any
exceptional point z has a finite backward orbit, and we show now that the
converse is also true.

Theorem 4.1.4. The backward orbit O (z) of z is finite if and only if z is
exceptional.

ProoOF. We need only prove that if O™ (z) is finite, then z is exceptional. To do
this, define the non-empty sets B, by
B, = |J R™™{z},
mzn

so R"'(B,) = B,,, and
[zZ1207(z)=B;,>B,2B,>

We now assume that O~ (z) is finite. Then each B, is finite, so there is some m
with B,, = B,,,,; this means that R"'(B,) = B,, and so B, is completely in-
variant. It follows that B,, contains some equivalence class [w], and as it is a
subset of [z], it must be [z]: thus [z] is finite as required. In fact, [z] = O™ (2).

O

As an application of this result, suppose that some 1terate R* of R is con-
jugate to a polynomial. Then there is some w with R™* “w} = {w}, and using
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Theorem 4.1.4, this implies that w is exceptional for R. Now such a map R
need not be conjugate to a polynomial (consider, for example, z — z~2) but
from Theorem 4.1.2, R? must be, so we have proved

Theorem 4.1.5. If for some positive integer k, R* is conjugate to a polynomial,
then R? is also conjugate to a polynomial.

EXERCISE 4.1
1. Use Theorem 3.3.4 directly to show that R can have at most two exceptional points.

2. Suppose for some positive k, R"*{w} = {w}. Prove that each R™"*{w} is a singleton,
say {w,}, and that w, is exceptional, and deduce that R™*{w} = {w}.

3. Develop the theory of exceptional points for rational maps of degree one.

§4.2. Properties of the Julia Set

We shall continue to exploit Theorem 3.3.4 as we explore the structure of the
Julia set. We have not yet considered whether the Julia set can be non-empty,
and our first task will be to settle this issue. The case when the rational map
R has degree one is trivial and of little interest, but in all other cases, J is not
empty. We prove

Theorem 4.2.1. I/ deg(R) > 2, then J(R) is infinite.

PrOOF. We begin by showing that J is not empty. If J is empty, then the family
{R"} is normal on the entire complex sphere, and so, by Theorem 2.8.2, there
is some subsequence of R" in which each map has the same degree. However,
deg(R") = [(deg(R)]" and this implies that R has degree one, contrary to our
assumption.

We know now that J contains some point {. Now J is completely invariant
(Theorem 3.2.4), so if J is finite, then { must be an exceptional point. This
cannot be so, however, as exceptional points lie in F (Corollary 4.1.3); thus J
is infinite, O

It is clear from Theorem 3.3.4 that the integer three has a significant role
to play and it appears yet again in a decisive way in the next result.

Theorem 4.2.2, Let R be a rational map with deg(R) > 2, and suppose that E is
a closed, completely invariant subset of the complex sphere. Then either:

(i) E has at most two elements and E < E(R) < F(R); or
(i) E isinfinite 1E o J(R).
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ProoOF. We know that either E has at most two points or it is infinite (Theo-
rem 3.2.1). If E is finite, then it contains only exceptional points and Theorem
4.1.2 and Corollary 4.1.3 then give (i). We suppose now that E is infinite. As
E is completely invariant, so is its complement ; hence each R" maps the
open set  into itself. We now apply Theorem 3.3.5 to the family {R"} on Q,
choosing the corresponding points a;, b, and ¢, to be three given pointsin E:
this shows that {R"} is normal in Q, and so Q < F. It follows that J is con-
tained in E and (ii) holds. O

It is usual, and convenient, to express the conclusion of Theorem 4.2.2 in
the form: J is the smallest closed, completely invariant set with at least three
points, and we shall refer to this property as the minimality of J. The proof of
Theorem 4.2.2 seems surprisingly short in view of the interesting corollaries
which flow from it but, of course, this is merely a reflection of the potency of
Theorem 3.3.4. We now begin to develop these corollaries.

First, the extended plane C, is the disjoint union of the interior J° of J,
the boundary dJ of J, and the Fatou set F. We know that F is completely
invariant: likewise, J is and hence so are J® and 8J (Theorem 3.2.3). If F is not
empty, then F L 4J is an infinite, closed, completely invariant set and so, by
the minimality of J, it contains J. In these circumstances, J = dJ and this
yields

Theorem 4.2.3. Either J = C_ or J has empty interior.

We shall consider the case when J = C_ in the next section.

Next, let J, be the derived set of J (that is, the set of accumulation points
of J). We claim that J, is an infinite, closed, completely invariant subset of J
and given this, the minimality of J implies that J = J,, and hence that J = J,,.
We deduce, then, that J has no isolated points.

First, as J is infinite (Theorem 4.2.1), J, is non-empty, and, as a derived set,
J, is automatically closed. Next, as R is continuous and of finite degree, it is
clear that R(J,) < J,, hence J, = R71(J,). In addition, as R is an open map it
is easy to see that R™1(J,) = J,, and we deduce that J, is completely invariant.
It follows from Theorem 4.2.2 that J; is infinite and we have verified the
claims above. ]

Because J has no isolated points, it is necessarily uncountable (this is a
consequence of Baire’s Category Theorem, [85]) and, in the usual termi-
nology, J is perfect. Thus we have proved

Theorem 4.2.4. Let R be a rational map with deg(R) = 2. Then J is a perfect
set and so is uncountable.

In the next chapter we shall prove a stronger, but similar, result for the
components of J (Theorem 5.7.1).
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We continue to explore the consequences of Theorem 3.3.4, and the next
result says that the successive iterates of R increasingly expand a neighbour-
hood of any point of J (we have seen this phenomenon before in some of the
examples studied in Chapter 1). Given an open set W which meets J, the result
describes the extent to which the images R"(W) cover the sphere. We recall
that E(R) has at most two elements, and we prove

Theorem 4.2.5. Let R be a rational map of degree at least two, and let W be
any non-empty open set which meets J. Then:

(i) UroR"(W) > C, — E(R); and
(1) for all sufficiently large integers n, R"(W) > J.

ProoF. Let W, = | Jio R"(W), and let K be the complement of W,. If K
contains three distinct points, say {,, {, and {5, then we can apply Theorem
3.3.5 to the family {R"} on W, with the points a,, b;, ¢, being the {;. It follows
that {R"} is normal in W, and hence W < F, a contradiction. This shows that
W, contains every point of the sphere with at most two exceptions. Now
consider a point z that is not an exceptional point of R: then z has an infinite
backward orbit (Theorem 4.1.3) and, by the preceding remarks, this must
meet W,. Thus for some point w, and some non-negative integers p and g,
RP(w) = z and w € RYW). It follows that z is in R”*%(W) and so (i) follows.

To prove (ii), take three open sets, say W,, W, and W;, each meeting J, and
a positive chordal distance apart from each other. First, we claim that for each
jin {1, 2, 3}, some forward image of W, covers some W,; that is, for each j
there are some integers k and n with

R™(W)) = W,. 4.2.1)

Indeed, suppose not. Then for some j, R"(W)) fails to cover any of W), W, and
W, and so, by Theorem 3.3.5, { R"} is normal in W,. This cannot be so, how-
ever, as W; meets J, so we have verified (4.2.1).

We have shown that for each jin {1, 2, 3}, there is some k and some n such
that R"(W;) > W,. Denote any such k by n(j): then = maps {1, 2, 3} into itself
and so some iterate of 7 has a fixed point: in other words, for some j and some
n, R"(W) > W.

Now put § = R™ then S(W,) > W, and so the sequence of sets S™(W)) is
increasing with m. Applying (i) to S and W, we find now that the sets S™(W¥;)
form an increasing open cover of the compact set J so a finite union, and
hence one of them, covers J. Clearly, we can choose all of the W, to lie in W,
and if this is done, then for some n,

J < R(W) = RYW).

Of course, for all such n,
J = R(J) < R™'(W),

and (ii) follows by induction. Od
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The next three results show how the Julia set J is realized as the limit, or
the closure, of some countable set. A point { is a periodic point of R if it is fixed
by some iterate R" and, clearly, there are only a countable number of such
points. These points will be examined in detail in Chapter 6 but here, we
prove

Theorem 4.2.6. Suppose that deg(R) > 2. Then J is contained in the closure of
the set of periodic points of R.

Remark. This implies that R has infinitely many periodic points, but we
shall prove much more than this in Chapter 6.

ProoF OF THEOREM 4.2.6. We consider any open set A4~ which meets J, and
we shall prove that 4" contains some periodic point of R. We choose a point
win J n .4, and we may assume that w is not a critical value of R?, for if it
is, we can replace it with another nearby point of J which is not. As deg(R) >
2, and as w is not a critical value of RZ, there are at least four distinct points
in R™2{w}. Choose three of them, say w,, w, and w;, distinct from w, and
construct neighbourhoods A, A, A5, A5 (with pairwise disjoint closures)
about w, w,, w,, w; respectively, such that #;, .4, and that R? is a homeo-
morphism from each 4] onto 44 (see Figure 4.2.1).

Now let S;: A — A be the inverse of R*: A} — A%, If for all z in A, all
j=1,2,3,andall n > 1, we have

R(2) # 52),

vy
J
T Ao =RxAN))
S = RY(¥3) = RAHY)
N3 ‘/52’
a

Figure 4.2.1
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then, from Theorem 3.3.6, {R"} is normal in ¥, and this is false as 4, meets
J. We deduce that there exists some z in .45, some j in {1, 2, 3}, and some
n > 1, such that R"(z) = S;(2). This implies that

R**"(z) = R*Si(2) = 2,

and so z is a periodic point in .4 as required. O

We now consider the relationship between J and an orbit [z] of a non-
exceptional point z. As the closure [z] of [z] is both closed and completely
invariant, the minimality of J implies that if z is not exceptional, then J < [z].
If zis in J, then it is not exceptional, so [z], and hence also [z], is contained
in J: thus if z is in J, then J = [z]. In fact, we can replace [z] by the smaller
set O™ (z) and still prove

Theorem 4.2.7. Let R be a rational map with deg(R) = 2.

(1) If z is not exceptional, then J is contained in the closure of O™ (2).
(i) If z € J, then J is the closure of O~ (2).

Remark. This shows that for any non-exceptional z the backward orbit
O7(2) is a countable set which accumulates at every point of J, and this is
often used as the basis of a computer program to illustrate J. Roughly speak-
ing, one selects a non-exceptional z and then computes successive inverse
images of z to plot the set J where these accumulate. There are difficulties,
however; for example, if deg(R) = d, then the number of inverse images at the
n-th stage is d” and this grows too rapidly for convenient computations so
some choices need to be made (see [80] and [81] for more details).

ProOF OF THEOREM 4.2.7. Consider any non-exceptional z and any non-empty
open set W which meets J. As W meets J, Theorem 4.2.5 imples that z lies in
some R"(W)and so O~ (z) meets W. This proves (i). If z is in J, then the closed,
completely invariant set J contains the closure of the backward orbit O~ (2),
and in conjunction with (i), this yields (ii). ]

If z is in F (and is non-exceptional), then the closure of O~ (z) contains J
but, of course, is strictly larger that J. Instead of looking at the entire inverse
orbit O~ (z), we can also look at the n-th inverse image R "(z) (which contains
at most 4" points) and ask when (in some sense) do these points converge to
J? The same question can be asked of a set E instead of the singleton {z}, and
as this is a more useful result to have available, we prove

Theorem 4.2.8. Let R be a rational map of degree at least two, and let E be a
compact subset of the complex sphere with the property that for all z in F(R),
the sequence {R"(2): n = 1} does not accumulate at any point of E. Then given
any open set U “~h contains J(R), R"E) = U for all sufficiently large n.
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E

R"(w)
U
* 0
w Zn
Figure 4.2.2

Remark. If the conclusion of the theorem holds we say that R™"(E) con-
verges to J and we write R™"(E) - J. Examples of such sets E are easy to find:
for example, if F, is a component of the Fatou set that contains an attracting
fixed point ¢, then any compact subset of F, — {{} has the required property.
In Chapters 7 and 8, we shall analyse completely the possible forward images
of {R™(z):n = 1} of a point z in F and after that, Theorem 4.2.8 will be even
more significant.

ProOF OF THEOREM 4.2.8. We suppose that the conclusion is false: then there
exists some open neighbourhood U of J, and, for n in some sequence {n,, n,,
...}, points z, in R™"(E), but not in U (see Figure 4.2.2). Now without loss of
generality, the points z, converge to w, say, and as U is open, w is not in U.
But J < U; hence wisin F.

Now take any positive ¢, As w € F, {R"} is equicontinuous in some neigh-
bourhood of w, so there is a positive § such that for all n, 6(z, w) < é implies
o(R"(z), R"(w)) < &. Thus for large enough n (of the form n),

o(R"(z,), R"(w)) < ¢
and as R"(z,) € E, this shows that the sequence R"(w) accumulates at E, con-

trary to our assumption. The proof is complete. OdJ

We end this section with the following generalization of Theorem 3.1.5 (but
see Exercise 4.2.1).

Theorem 4.2.9. Suppose that R and S are rational maps, each of degree at least
two. If R and S commute, then J(R) = J(S).

Proor. For any set E, we denote the diameter of E computed using the metric
o by diam[E]. From Theorem 2.3.1, there is some positive number M such
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that for all z and w,
o(Sz, Sw) < Mo(z, w).

Now take w in F(R). By the equicontinuity of {R"} at w, given any positive g,
there is a positive é such that for all n,

diam[R"(D(w, §))] < ¢/M,

where D(w, ) is the g-disc with centre w and radius 6. As R and S commute
we deduce that

diam[R"S(D(w, 8))] = diam[SR*(D(w, 8))]
< M diam[R"(D(w, 8))]
<&

It follows that {R"} is a normal family on the open set S(D(w, 8)) so, in partic-
ular, S(w) € F(R). This proves that S, and hence each $", maps F(R) into itself,
so {S"} is a normal family in F(R). We conclude that F(R) < F(S), and so, by
symmetry, F(R) = F(S). For more information on this topic, see [14] and

[19]. O

EXERCISE 4.2
1. Show that the maps z + 2z and z — z/2 commute, but have different Julia sets.

2. Suppose that C is a circle such that R™(C) = C. Show that either J = C,or Jis a
totally disconnected subset of C. This applies to the case when R is a finite Blaschke
product (a finite product of Mébius transformations, each leaving the unit disc A
invariant).

§4.3. Rational Maps with Empty Fatou Set

Our first objective is to show that for the rational map

22+ 1)?

e @3.1)

the Julia set is the entire complex sphere: this example (the first of its kind) was
given by Lattés in 1918, [62]. After this, we shall make some general observa-
tions about other rational functions with this property.

We shall use the technique illustrated in §1.4, although here, we use a group
of translations with two generators, and we require considerably more com-
plex analysis. Let 4 and u be complex numbers that are not real multiples of
each other, and let A be the corresponding lattice, that is,

A={mi+nu:nmeZ} 4.3.2)
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A period parallelogram for A is any closed parallelogram of the form
={z+sA+u0<s<,0<t <1}

A non-constant function f is an elliptic function for A if it is meromorphic
on C, and if each w in A is a period of f; that is, if for all z in C and all w in
A, f(z + w) = f(2). Of course, any such function maps C into C, and, because
f(C€) = f(Q), we see that f(C) is a compact subset of C_. However, by the
Open Mapping Theorem, f(C) is also an open subset of C : thus

[ =f(C) =

Our argument is based on the properties of the Weierstrass elliptic

function
1
*
KJ(Z) 2 + Z [(Z + w)z (JJZ:l

where Z* denotes summation over non-zero elements « in A (see, for exam-
ple, [3]. pp. 272-276, [40] or [61]). We shall only give the main steps in the
argument but, for the convenience of some readers, we give an expanded
version in the Appendix to this chapter. Now g and its derivatives satisfy
certain algebraic identities, and among these there is the addition formula

9 (22) = R(p(2)), (4.3.3)

where R is the rational function given by

MZ +2g5z + (92/4)2

R(z) =
42> — g,z — g,

4.3.4)
and where g, and g, are known quantities defined in terms of the lattice A.
Note that (4.3.3) is analogous to the double angle formulae in elementary
trigonometry.

Now let D be any discin C, let U = p~!(D), and define ¢(z) = 2z. As U is
open, and as ¢"(U) is the set U expanded by a factor 2", it is clear that for
sufficiently large n, ¢"(U) contains a period parallelogram Q of g. Using this
with (4.3.3), we deduce that for these n,

R'(D) = R'(p(U)) = p(2"V) =

roughly speaking, this implies that the functions R" explode any small disc D
onto the whole sphere. Clearly, as D is arbitrary, (4.3.5) implies that the family
{R"} is not equicontinuous on any open subset of the complex sphere, and so
we deduce that J(R) =
This argument gives a family of rational maps whose Julia set is the sphere;
indeed, we always have
g3 —27g% # 0, 4.3.5)

and any pair (g,, g5) satisfying this is realized by some lattice (see [61], p. 39).
Using this, we can construct A so that g, = 4 and 4. = 0; then R given by
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(4.3.4) is the function (4.3.1). However, there is an easier construction than
this. First, we let 7 be a positive number and we construct the square lattice
A, and the corresponding function g, by taking 2 = t and u = it. This choice
leads easily to g; = O (see the Appendix), and hence to a simplification of
(4.3.4), namely

162* + 8g,2° + (g,)°

R@ = 6@ =40

Now from (4.3.6), as g5 = 0, we have g, # 0, so by taking h(z) = 22/\/g'2, we
find that hRh™! (which also has C_ as its Julia set) is the function given in
(4.3.1). For further information on this and related examples, see [22], [53],
[67] and the Appendix to this chapter.

There are other interesting dynamical aspects of this example and briefly,
we shall discuss some of these. For each positive integer k, we denote
the set of points w/2*, we A, by 27%A, and observe that if z is in 27%A,
then

RY(p(2)) = p(2*2) = .

This shows that the inverse orbit O~ (c0) of co under R is g ({ ), 27*A), the

union being over all positive integers k. As (), 27*A is dense in C, its p-image

is dense in C, and so by Theorem 4.2.7, we again find that J(R) = C, .
Next, the formula (4.3.3) shows that if m = 2¢ — 1, then

R (p(w/m) = p(2to/m) = plw + o/m) = p(w/m),

and so the points g (w/m) are periodic points of R. By considering all w and
all k, we now see that the periodic points of R are dense in C_. Although we
are not yet in a position to claim that this shows that J(R) = C, it is in-
tuitively clear that it must (and it will follow from some of our later results).
Finally, we can show that J(R) = C_, by considering the critical points of
R. In general, a critical point of a rational map R is said to be pre-periodic if
it is not periodic, but a forward image of it is, and in Chapter 9 (Theorem

9.4.4) we shall prove

Theorem 4.3.1. If every critical point of the rational map R is pre-periodic, then
J=C,.

The rational map R in (4.3.4) is of degree four, so it has six critical points,
say ¢, ..., ¢s. We shall show now that each c; is finite, and that each is
mapped to oo (a fixed point of R) by R?: then each ; is pre-periodic and we
have J = C_. Again, we only sketch the main ideas and refer the reader to the
Appendix for more details.

We shall now find the critical points of R in (4.3.4). Let {,, ..., {, be the six
points

M4, piA, (A + py/d, (34 + p/4, 24 + p)/4, (34 + 2p)/4,



76 4. Properties ol the Juita det

and let #,, ..., ¢ be the six points
31/4, 3u/4, 32 + 3w)/4, (A + 3u)/4, (22 + 3p)/4, (A + 2u)/4:

note that these twelve points are distinct. As g is an even function, and as
n; + {;€ A, we find that

o) = p(={) = p{),
and from this, and the fact that modulo A, each point of C_, has precisely
two pre-images under g, we see that the six values p({;) are distinct. Now

#’(2) = oo if and only if p(z) = 00, that is, if and only if z is in A, and it is also
known that ’(z) = 0if and only if z is in 27 A but not in A. It follows that

©'(;) #0, o0, P'(25;) = 0,

and as
R(p(2)p'(2) = 2p'(22),

we see that the six values @({;) are the six critical points of R. Finally, it is
immediate from (4.3.3) that RZ maps each of these to co.

Theorem 4.3.1 enables us to produce other examples of maps whose Julia
set 1s the sphere: for example, the map

R(z) = (z — 2)*/2?

has critical points at 0 and 2, and as 2 — 0 — o0 — | — 1 under an application
of R, Theorem 4.3.1 implies that for this function too, J(R) is the complex
sphere. It is easy to see that this R is conjugate to the map

z 1 —2/22

and in fact, many functions in the family 1 + w/z? have this same property:
see [67], §2.4, for further details.

We end this section with a characterization of those rational maps whose
Julia set is the entire sphere [53].

Theorem 4.3.2, Let R be a rational map. Then J(R) = C_, if and only if there
is some z whose forward orbit {R"(2)}: n = 1} is dense in the complex sphere.

ProOF. First, let {B,: n = 1} be a countable base for the topology on C, (so
every open subset of C,, is a union of some of the B,). Next, let D be the set
of z such that the forward orbit O*(z) is dense in the sphere: thus z is in D if
and only if for all k, there exists some n with R"(z) € B,, and this implies that

D= () U R™"(B).

k>1 n>1

Suppose now that D = (¥. We write A, = C, — B, and
E.= () R7"(4);

n>1
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then, as D = (¥, we have

Now by Baire’s Theorem (for example, [85]), C, is not the countable union
of nowhere dense sets: thus for some k, the closure of E, has a non-empty
interior, say W. However, E, is closed, so there is some non-empty open subset
W of E,. This means that for all n, R"(W) = A,: thus in W, the functions R"
do not take values in B, and so W < F(R). This shows that if J(R) = C, then
D # &, so there is some z whose forward orbit is dense in the sphere.

Now suppose that J is not the entire sphere, so F(R) # (J, and also that
there is some z whose forward orbit O*(z) is dense in the sphere. First, z is not
in J for if it were, then O*(z) = J and so O*(z) could not be dense in the
sphere. It follows that z lies in some component Q of the Fatou set F(R), so
consider now the components

Q, R(Q), R¥(QY), ...

of F(R). As O*(z) is dense in the sphere there must be some N such that R¥(Q)
meets, and hence is, Q, and we may assume that N is the minimal such integer.
Further, if , is any component of F(R), then for some n, R*(z) € Q,, and so
R*(2) = Q,. We deduce that

F(R)=QUR(®Q)uU-URNI(Q),

and that the sets on the right are mutually disjoint. It follows that Q is com-
pletely invariant under R", and that the set {R**(z): k = 1} is dense in Q.
Again, we are not yet in a position to explain why this cannot be so, but it
cannot, and we shall see why after we have analysed the structure of forward
invariant components of the Fatou set in Chapter 7. ]

Appendix I1. Elliptic Functions

Details concerning the function g defined in §4.3 can be found, for example,
in [3], [40] or [61] as well as in many other texts: however, for the reader’s
convenience, we sketch some of the details here. Our main concern is to justify
the formula (4.3.3), but first, we shall discuss the problem from a slightly
broader perspective.

Given the lattice A in (4.3.2), let

S,(A)=2* o™ (M

where, as before, this sum is over the non-zero elements of A. This series
converges for n > 3, and as the general term in the series for g is O(w ™ 3), we
see that @ is meromorphic on C.

The quotient space C/A (which is also a quotient group) is topologically a
torus, and as every element of A is a period of g, we see that g induces a map
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o of C/A onto C . As these are compact Riemann surfaces, g, is an N-fold
covering map for some N, and by considering the poles of g, we see that
N = 2. It follows that for each w in C_, there are exactly two solutions
(modulo A) of g(z) = w in C. Note also that g is an even function, that is,
#(—2) = p(2).

There is a good reason why one might expect a formula of the type
©(22) = R(g(2)) to hold. Given any w in C_, there are only two solutions z
(modulo A) of the equation g(z) = w, and these can be taken to be, say, u and
A+ ) —uAs

PQRIA+ p—ul) = p(2u),

we can define a map w — @ (2u) of C_, onto itself which is independent of the
choice of u. It is easy to see that this map is analytic, thus it must be a rational
map R, and so we can now see why there is a formula of the type

R(p () = p(2u).

Of course, we can replace 2 here by any other integer (and indeed by certain
other numbers as well; see [53] and [61]).

We shall now sketch the details of the proof of (4.3.3). It is clear that the
derivative g’ has triple poles at, and only at, the points in A, and because of
this, it is not hard to see that one can construct a cubic polynomial P such
that the elliptic function p'(z)*> — P(g(z)) has no poles at the origin, and
hence no poles in C. Such an elliptic function must be constant (by Liouville’s
Theorem, for it is bounded on any period parallelogram, and hence also on
C), and a computation of P leads to the relation

9'(2) = 4p(2)’ — g, p(2) — g3, ()
where the g; are given by
g, = 60S,(A), g = 140S¢(A). 3)

Now select distinct points u and v in C at which g has different values and
determine 4 and B so that

©'(u)= Ap(u) + B, P'(v)=Ap(v) + B.
It is clear that the elliptic function
fz) = p'(z2) — Ap(2) — B

has three poles at (and only at) each point in A, and as a consequence of this
and the ideas sketched above, f must have three zeros. By construction, two
of these zeros are at  and v. Now (in general) if an elliptic function has poles
p, and zeros z; in a period parallelogram, then Y’ p; differs from ) z; by an
element of A. In our case, all of the poles of f occur at the origin, thus the
zeros of £ must sum to zero (modulo A) and so must be u, v and —(u + v) and
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their translates by A. However, as
[f(z) + Ap(2) + B)® = p'(2)?
=4p(2)> - g, 0(2) — g5,

we find that @(u), ©(v) and p(—[u + v]) are (distinct) solutions of the
equation
(Az + B> =4z — g,z — g5,

and so
A2 1w - p'v)
W+ p)+ (—[u+v]):—:4<— .
Pl + el o a "\ pw - pw
Letting u — v, and using the fact that g is an even function, we now obtain

2p () + p2v) = " ©)/p ()], (4)

Finally, differentiating both sides of (2) gives an expression for "(z), and
using this expression together with (2) and (4), we obtain the addition formula
given by (4.3.3) and (4.3.4).

With A = t and u = it, where 7 > 0, we have iA = A and so, from (1),

Sa(A) = S,(iA) = i7" S,(A).

Putting n = 6, we find from (3) that g; = 0, and this completes the sketch of
the details of the first part of §4.3.

Returning to the general lattice A, it remains only to show that the deriva-
tive g’ is zero at each of the points A/2, u/2 and (4 + w)/2. This is not difficult:
indeed for each z, (1 — z) = @(z) and equating the derivative of each side at
2/2 we find that p’(4/2) = 0. The same argument holds for the points u/2 and
(2 + p)/2. It is usual to put

ey =042, ey=p2), e5=p([A+ul2),

then from (2) and (4.3.5) we see that ¢,, e, and e, are the distinct zeros of the
cubic equation
4z3 — g,z — g, = 0.

In particular,
e +e, +e;=0, e,e3 + ez, +eje, = —g,/4, ee 83 = g3/4,

which simplifies considerably when g; = 0. Indeed, in this case some e; is zero
and (4.3.4) reduces to (z2 + a?)%/4z(z? — «?).



CHAPTER 5
The Structure of the Fatou Set

We begin with the simple properties of the Fatou set of a rational map R. As
R is a branched covering map of the sphere onto itself with the critical points
as branch points, the position of the critical points influences the structure of
the Fatou set F through the Euler characteristic. We discuss these ideas and
then apply them to study the structure of F.

§5.1. The Topology of the Sphere

Some results on the structure of the Fatou and Julia sets are simple conse-
quences of facts concerning the topology of the complex sphere and so require
almost nothing of the theory of iteration. It seems best to present these results
in this light and so our first task is to collect together the relevant topological
results. Throughout, the underlying space is the complex sphere C, and the
complement of a set E is denoted by C_ — E. The connectivity c¢(D) of a
domain D is the number of components of D, and D is simply connected if
every closed curve in D can be deformed (in D) to a point of D.

The first three results are standard and we omit their proofs (for more
details see, for example, [3] or [77].

Proposition 5.1.1. The closure of a connected set is connected.
Proposition 5.1.2. A compact set K on the sphere is disconnected if and only if

there exists a Jordan curve y which separates K (that is, K is disjoint fromy and
meets both components of the complement of y).
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Proposition 5.1.3. A domain D is simply connected if and only if its complement
is connected.

We will also find the following two variations of Proposition 5.1.3 useful.

Proposition 5.1.4. A domain D is simply connected if and only if its boundary
0D is connected.

Proposition 5.1.5. Let D be an open subset of the complex sphere. Then C,, — D
is connected if and only if each component of D is simply connected.

To illustrate our earlier remarks, we record an immediate (though elemen-
tary) consequence of Proposition 5.1.5.

Theorem 5.1.6. Let R be a rational map. Then J(R) is connected if and only if
each component of F(R) is simply connected.

We now give the straightforward proofs of the last two propositions.

Proor oF PrROPOSITION 5.1.4. First, if D is not simply connected there is a
simple closed curve y in D which separates the complement of D, and it fol-
lows from this that dD is disconnected. Suppose now that 6D is disconnected:
then, by Proposition 5.1.2, there is a simple closed curve y which separates D
into two disjoint subsets 4 and B. There are points of D arbitrarily close to
A and to B so, as D is arcwise connected, D meets y. By construction, y does
not meet dD: thus y lies in D, A and B lie in different components of the
complement of D and hence D cannot be simply connected. O

ProorF OoF PROPOSITION 5.1.5. Suppose first that the complement K of D is
disconnected. By Proposition 5.1.2, we can separate K by a Jordan curve y
lying in D and, as y is connected, it must lie in some component of D. Clearly,
this component is not simply connected: thus if each component of D is simply
connected, then K is connected.

Now suppose that K is connected and consider any component V of D. Let
Q be the union of K and all other components, say D,, of D so Q (the comple-
ment of V) is compact. Because 0D, = K, each set K U D, is connected, hence
so is their union, namely Q. As Q is connected, we deduce from Proposition
5.1.3 that V is simply connected and the proof is complete. ]

Finally (because we use this idea often), we include

Proposition 5.1.7. Let {D,} be a collection of simply connected domains that is
linearly ordered by inclusion. Then U, D, is a simply connected domain.
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Proor. Let D = | J,D,, so D is open. The assumption that {D,} is linearly
ordered by inclusion means that for every pair of suffices « and B, either
D, = Dgor Dy = D,. It is clear that D is connected for if not, it would be the
union of two disjoint non-empty open sets 4 and B, and there would then be
some D, contained in 4 and some D, contained in B. Thus D is a domain.
To show that D is simply connected, take any closed curve y in D. The
family {D,} is an open cover of y, so 7 lies in the union of a finite number of
the D,, and hence (by the linear ordering) in one of them, say in D;. It follows
that y can be deformed in D, to a point of Dy, and as Dy = D, D is simply
connected. ]

EXERCISE 5.1

1. Find a simply connected domain in C whose complement in C is not connected.
(Compare this with Proposition 5.1.3.)

2. Construct a simply connected domain whose boundary in C, is not arcwise con-
nected.

3. Let T be a closed curve in C,,. Show that every component oOf the complement of
T is simply connected.

4. Show how to construct three pairwise disjoint, simply connected domains D,, D,
and D; in C with the property that

oD, = oD, = aD,.
(See [56], p. 143.)

5. Show that Proposition 5.1.5 includes Proposition 5.1.3.

§5.2. Completely Invariant Components
of the Fatou Set

We begin our discussion of the structure of the Fatou set F by studying the
completely invariant components of F (and in Chapter 7, we study the for-
ward invariant components of F). The basic result in this section is

Theorem 5.2.1. Suppose that deg(R) = 2 and that F, is a completely invariant
component of F. Then:

(i) oF, = J;

(ii) F, is either simply connected or infinitely connected;
(iti) all other components of F are simply connected; and
(iv) F, is simply connected if and only if J is connected.

Applying this directly to the case when the Fate set itself is connected, we
obtain
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Corollary 5.2.2. If deg(R) > 2 and if F is connected, then either:

(i) F is simply connected and J is connected; or
(ii) F is infinitely connected and J has an infinite number of components.

In the case of a polynomial P, {o0} is completely invariant and hence so
too is the unbounded component of the Fatou set F(P). With this, another
direct application of Theorem 5.2.1 yields

Theorem 5.2.3. Let F be the Fatou set of a non-linear polynomial. Then:

(i) the unbounded component of F is either simply connected or infinitely con-
nected; and
(ii) each bounded component of F is simply connected.

Examples of the two possibilities described in Theorem 5.2.3(i) occur in
Chapters | and 9, and Theorem 5.2.3 verifies a visually obvious feature of the
illustrations of Julia sets given earlier. We end this section with the

PROOF OF THEOREM 5.2.1. As F, is completely invariant, so is its closure F,,
and so, by the minimality of J, J = F,. As J is disjoint from F,, we conclude
that J = dF, and this is (i).

To prove (ii), we assume that F; is a completely invariant component with
finite connectivity ¢ and we denote the components of the complement of F,
by E,, ..., E.. By Proposition 3.2.6, there is an integer m such that each E; is
completely invariant under R™ and as J is infinite, one of the E,, say E,, is
infinite. The minimality of J(R™) implies that it lies in E,, and so

J(R) = J(R™ < E,.

However, by (i) each E, meets J(R); thus ¢ = 1 and (ii) follows.

To prove (iii), observe that from (i), J U F, is the closure of F, and so it is
connected (Proposition 5.1.1). By Proposition 5.1.5, the components of its
complement are simply connected and as these components are just the com-
ponents of F other than F,, (iii) follows. Finally, (iv) is a direct consequence
of (i) and Proposition 5.1.4. The proof is now complete. ]

§5.3. The Euler Characteristic

We devote this section to a brief and informal introduction to the Euler
characteristic (a detailed treatment can be found in any one of a large number
of standard texts on the subject). Let S be a compact, or a bordered, surface:
for our applications, it is enough to consider S to be either the sphere, or a
plane domain together with its boundary, provided that this boundary con-
sists only of a finite number of simple closed curves. A triangulation T of S is
a partition of § 5 a finite number of mutually disjoint subsets called ver-
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tices, edges and faces with the following properties:

(i) each vertex is a point of S;
(ii) for each edge e, there is a homeomorphism ¢ of a closed interval [a, b]
in R into S which maps the open interval (g, b) onto e, and the end-points
a and b to vertices of T;
(iii) for each face f, there is a homeomorphism ¢ of a closed triangle @ in C
into S which maps the edges and vertices of Q (in the usual sense) to edges
and vertices of T, and such that f is the ¢-image of the interior of Q.

We stress that T partitions S into mutually disjoint subsets of S. Each such
subset is either a vertex, an edge or a face and we call each of these a simplex
of T (of dimension 0, 1 and 2 respectively). For any simplex s of dimension m,
we define the Euler characteristic x(s) as (— 1)™: more generally, if S; is any
subset of S comprising a union of simplices, say s, , ..., s, where 5; has dimen-
sion n;, we define

2(Se) = Y x(s)) = ;(— Iy,

In particular, if the triangulation T contains F faces, E edges and V vertices
respectively, then the Euler characteristic x(S) of § is, by definition,

W) =F—E+V.

The crucial, and well-known, fact (which we accept here without proof) is that
x(S) is a topological invariant which is independent of the particular triangu-
lation T used: thus we can compute x(S) by using any convenient triangula-
tion we choose. When we refer to a triangulation and Euler characteristic of
a domain, we are implicitly assuming that the closure of the domain can be
triangulated so that the domain itself is a union of simplices.

Calculations of y can often be simplified by using the following simple idea.
Suppose that S, and S, are subsets of S, each comprising a union of some of
the simplices in T then, simply by counting the contribution of each simplex
to each side of the equation, we obtain

x(S; U S) + x(8: 0 S;) = x(S1) + x(S,) (5.3.1)

Let us illustrate this with some simple examples. The boundary S of S
must be a union of edges and vertices (for clearly, no face can meet 8S) so if
S, denotes the interior of S, we have

x(8) = x(So) + x(3S).

It is easy to see that a simple closed curve C is a union of the same number
of edges and vertices, so x(C) = 0. From this, we see that if the boundary of a
surface S consists of a finite number of mutually disjoint simple closed curves,
then S and its interior S, have the same Euler characteristic. Next, by con-
structing explicit triangulations it is easy to see that y(C,) = 2, and that
x(D) = 1 for any open or closed disc D: these computations are simple but
important. Now suppose that D is the complement (in C,) of k mutually
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disjoint topological closed discs Q,, ..., O, each being bounded by a Jordan
curve, so D is of connectivity k. We can triangulate the sphere such that each
of D, @4, ..., Q is a union of simplices, and then (5.3.1) yields

2=x(C,)=x(D) + Y x(Q)
so (D) = 2 — k. Note that for any such subdomain D of the sphere:

(i) x(D) = 2if and only if D is the sphere C;
(i) x(D) = 1 if and only if D is simply connected, but not C;
(ili) x(D) = 0 if and only if D is doubly connected,;

while in all other cases, x(D) is negative. Later, when we apply these ideas to
a component of the Fatou set, we shall see that there is an important distinc-
tion to be made between the cases y(D) = 0 and x(D) < 0.

EXERCISE 5.3

1. Let S be the surface {z:]z] = 1} x [0, 1] (so S is homeomorphic to a closed an-
nulus). Show that x(S) = 0.

2. Let D be a domain obtained by removing 2g discs from the sphere and let Cy, ...,
C,, be the boundary curves of D. Let S, ..., S, be tubes (each topologically equiva-
lent to S in Exercise 5.3.1) and adjoin the boundary circles of S; to C; and C;,, to
construct the surface £ which is a sphere with g handles attached: we say that § is
a surface of genus g. Show that ¥(X)is 2 — 2g.

3. Let S be a surface of genus g from which k discs have been removed. Show that
x(S) = 2 — 2g — k and describe the topologically distinct surfaces of this type with
x(S) = 0.

§5.4. The Riemann—Hurwitz Formula
for Covering Maps

We are going to obtain the Riemann-Hurwitz formula for the situation de-
scribed briefly by
R:U-V,

where R is a rational map, and U and V are domains in C, (and so generalize
the Riemann-Hurwitz formula described in §2.7 which is the case U = V =
C,). First, for any domain U, we have

dR(U) = R(AU),

so, if R maps U onto V, then
oV < R(@U); (54.1)

of course, there may be strict inclusion here.



Suppose now that U is a component of R™! (V). Then each point { of oU
must map to dV (for certainly, R({) must be in the closure of V, and it cannot
lie in V unless { lies in U) so

R@U) < aV. (5.4.2)

In addition to this, R maps U onto V. Indeed, R(U) = V and if there is not
equality here, we could join a point of R(U) to a point of ¥V — R(U) by a curve
in V and such a curve would have to meet dR(U) in V, contradicting the fact
that IR(U) = R(0U) = V.1t follows that if U is a component of R™!(V), then
both (5.4.1) and (5.4.2) hold and so in this case,

av = R(dU).

These facts suggest that instead of considering a map R of U into V, we should
(as is so often the case) emphasize R™* and study the map R of a component
U of R(V) onto V. This change of emphasis is important.

In this section, our objective is to use R to relate the Euler characteristics
x(U) and x(V) of domains U and V as above. Any such relationship will
involve a contribution from the critical points of R and in order to quantify
this, we introduce the deficiency of R at z as

Or(z) = vp(2) — 1, (54.3)

where vg(z) is the valency as defined in §2.5. For any set A we define the total
deficiency of R over A as
op(A) = Z Or(2),

zed

and this is additive, that is, for disjoint sets 4 and B we have
Or(A © B) = 6zx(A) + Sx(B).

Frequently, but only when R is understood, we omit the suffix R and use &
instead of 8.

The reader will recall that (5.4.3) is the expression arising in the Riemann—
Hurwitz relation (Theorem 2.7.1) and that dz(z) = O for all but a finite set of
z. In our new notation, the Riemann-Hurwitz relation is

3(C.,) = 2 deg(R) — 2,

and, of course, for a polynomial P, (C) = deg(P) — I.
We are now ready to relate the quantities y(U), x(V), deg(R) and dx(U) as
suggested above. We shall assume:

(1) V is a domain bounded by a finite number of mutually disjoint Jordan
curves;

(2) U is a component of R™!(V); and

(3) there are no critical values of R on dV;

and with these assumptions, we prove
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Theorem 5.4.1. With the assumptions above, there is an integer m such that R is
an m-fold map of U onto V and

x(U) + 65(U) = my(V). (544)

In order to obtain a better appreciation of this result before giving its
proof, we briefly consider some consequences of it. First, taking U and V to
be C,, we have y(U)= x(VV) =2 and m = deg(R) and this recaptures the
Riemann-Hurwitz relation given in §2.7. Second, if we take V to be a simply
connected domain other than C_, then y(V) = 1 and (5.4.4) yields

og(U) = (m — 1) + (1 — x(U)).

Written this way, both terms on the right are non-negative and we can con-
clude that either:

(i) R has critical points in U (that is, dg(U) > 0); or
(i) U is simply connected and R is a homeomorphism of U onto V.

If, in addition to this, R™!(V) is connected, then we must have U = R7(V)
and m = deg(R), so in this case,

S(R\(V) = d—1

with equality only when R™!(V) is simply connected (for example, the map
z +— z% of the unit disc onto itself). For future reference, we state this as

Corollary 5.4.2. Let R be a rational map of degree d, suppose that V is simply
connected, and that R™' (V) is connected. Then

R(RT' (V) =2d -1,
with equality if and only if R™'(V) is simply connected.

We return now to the main result and give the

Proor oF THEOREM 5.4.1. We have already seen that R maps U onto V, and
also dU onto dV, and it follows from this that U is a component of the comple-
ment of R™1(3V).

We show now that for some integer m, R is an m-fold map of U onto V
(that is, for each w in V, there are exactly m solutions z of R(z) = w in U). For
w in V, let N(w) be the number of solutions (counting multiplicities) of R(z) =
w in U: we need only show that the map w — N(w) is continuous for then,
being integer valued, it is constant, say m, on the connected set V.

The proof that w — N(w) is continuous is standard but, nevertheless, we
remind our readers of it. It is well known that for each point {; in U which
maps to w, there is an open neighbourhood N; such that R is a k-fold map of
N; onto R(N;), where k is the valency of R at {;. We remove the open sets N,
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from the closure of U to form a compact set E, no points of which map to w:
thus the compact set R(E)is at a positive distance from w. It follows that there
is an open neighbourhood 4" of w that is disjoint from R(E). Now for each
point w, in A/, the solutions of R(z) = w, in U must lie in Uj N; and so we find
that N(w,) = N(w). We deduce that the function w — N(w)is constant on A"
and so is continuous at w, As V is connected, it follows that for some integer
m, R is an m-fold map of U onto V.

The next step is to extend this result to the map R of dU onto dV; that is,
we need to show that R maps dU in an m-fold manner onto dV. To show this,
we take { on @V and let the d pre-images of { be z,, ..., z,: note that there are
exactly d such points, where d = deg(R), because of the assumption (3) con-
cerning critical values. We know that none of the z; are in U, so we can relabel
and hence assume that z,,..., z, lie in ¢U, while none of z,,,, ..., z, lie in the
closure of U.

We can now select a neighbourhood N of { and, for each j, a neighbour-
hood N; of z;, with the properties:

(4) the N, are mutually disjoint;

(5) for jin {t + 1,..., d}, N;is disjoint from the closure of U;

(6) Ris ahomeomorphism of N;onto N (we denote the inverse of this by R;');
and

(7) N~ Vis connected.

This last property is a local property of Jordan curves which we shall accept
here without proof. Now let jbein {1,..., t}. Then N; meets U, and R maps
this intersection into N n V. We deduce that R;'(N n V) is a connected sub-
set of R™1(V) which meets U, and hence it lies in U.

It is now easy to see that m = r. We take any point « in N ~ V. The argu-
ment in the previous paragraph shows that for each jin {1, ..., t}, the point
R;'(a)liesin U: thus t < m. On the other hand, it is clear that for jin {t + 1,
..., d}, RN (@) is not in U; thus m < t and so m = t as asserted.

Finally, we need to know that dU is a finite union of mutually disjoint
Jordan curves. Now by assumption, §V comprises a finite number of Jordan
curves, and there are no critical values of R on dV. We take any { on one of
these curves, say on v, and find the m distinct branches, say R;’!, ..., R}, of
R™! defined near { and mapping { to the m pre-images z; of { on dU. Each
branch R;! can be analytically continued around y (there are no critical
values of R on ) and this continuation induces a permutation on {1, ..., m}.
It is clear that the assumption (3) implies that these continuations lead to
simple closed curves on ¢U, and that each such curve is mapped in a k-fold
manner (for some k) onto a curve in dV.

In remains to prove (5.4.4), and to do this, we triangulate the closure of V,
ensuring (as we may) that all critical values of R in V are vertices of the
triangulation (it is known that if { lies on a Jordan curve y, and if w does not,
then there is a simple arc o which joins w to { and which meets y only at ().
Suppose, then, that this triangulation, say T, has f faces, e edges and v vertices
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so, by definition,
(Vy=f—e+uv

We claim now that the m-fold map R of U onto V induces a triangulation
T, of the closure of U, and that this is obtained as the inverse images of the
simplices in T. The vertices of T; are the inverse images (in the closure of U)
of the vertices in T and so (by counting the number of solutions of R(z) = w,
where w is a vertex in T, and taking account of multiple solutions) we find that
T, has precisely mv — dg(U) vertices. Each edge of T lifts under each branch
of R™! to an edge of Ty, and as there are no critical values of R on any edge
of T (and so no multiple solutions of R(z) = w for w on an edge of T), we see
that T, has precisely me edges. A similar argument holds for the faces of T,
noting that as each face, F say, of T is simply connected, the Monodromy
Theorem ensures that each branch of R™1is single valued on F and moreover,
maps F onto a simply connected subdomain of U. We deduce, then, that T,
has precisely mf faces and (5.4.4) now follows easily as

x(U) =mf — me + (mv — 8x(U))
=m(f — e+ v) — 5(U)
= my(V) — ox(U). 1
We end this section with another simple consequence of Theorem 5.4.1,
and we recall that for a domain D bounded by ¢(D) Jordan curves,
x(D) = 2 — ¢(D). (5.4.5)
We now have

Proposition 5.4.3. With the same assumptions as in Theorem 5.4.1, ¢(U) = c(V).

Proor. From (5.4.5), this inequality is equivalent to
x(U) < x(V). (5.4.6)

As x(U) < 2, (5.4.6) holds when (V)= 2. It also holds when x(V) =1 for
otherwise, x(U) = 2, whence U, and therefore V, must be C_, and then x(V) =
2. In all other cases, x(V) < 0 and then from Theorem 5.4.1 and the fact that
m > 1, we have

x(U) < x(U) + 8(U) = my(V) < x(V). O

EXErCISE 5.4

1. Find examples of domains U and V, and a rational map R of U onto V, such that
JV is a proper subset of R(0U).

2. Suppose that R(z) = z* and that V is a Euclidean disc with the origin 0 not on its
boundary. Show that R™!(V) is either simply connected (and R is a d-fold map of
it onto V) or it consists of d simply connected domains (each homeomorphic under
Rto V). Whatis R™!(V)when V = {z:]z — 1] < 1}?
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3. In the circumstances described by Theorem 5.4.1, suppose that y(U) = x(V). Exam-
ine the possible cases corresponding to this common value being 2, 1, 0 or negative.

§5.5. Maps Between Components of the Fatou Set

The Euler characteristic of a domain D on the complex sphere has been de-
fined whenever its boundary dD consists of a finite number of Jordan curves.
In general, however, the boundary of a domain D is much more complicated
than this; we may not be able triangulate the closure of D and in these circum-
stances, x(D) is as yet undefined. As this is likely to be so in the case of major
interest to us (when D is a component of the Fatou set), this presents us with
a problem which we must now tackle. We propose to show that given any
domain D, we can define x(D) as the limiting value of the Euler characteristic
of smooth subdomains which exhaust D and, once this has been done, we can
then use the Euler characteristic as a tool to study the way in which R maps
one component of the Fatou set onto another. We shall restrict our discussion
to subdomains of C_; nevertheless, the following development is closely re-
lated to the construction of the ideal boundary components of a Riemann
surface (see [5], pp. 25-26 and 81-87).

Let D be any domain on the sphere. A subdomain Q of D is said to be a
regular subdomain of D if:

(1) Q is bounded by a finite union of mutually disjoint Jordan curves, say
Y1, -+ +» 7u» all of which lie in D; and

(2) the complement of Q consists of n topological discs, say W, ..., W,
(bounded by 7,, ..., y, respectively) and each W, meets the complement
of D. For example, {|z| < 1} is a regular subdomain of C, whereas
{1 <|z| <2} is not. Observe that x(Q) is defined for each regular sub-
domain Q of D.

Of course, if a subdomain Q of D satisfies (1) but not (2), we can adjoint to
Q those sets W, U y; which do not meet the complement of D to form a regular
subdomain Q, of D. Obviously, Q has a higher connectivity that Q,, and
x(€2) = x().

We want to consider D as the limit of regular subdomains, and as no
canonical sequence of subdomains of D presents itself, it is best to reject the
idea of a sequential limit and to consider instead convergence with respect to
the directed set (or net) of regular subdomains. There is no need for great
generality here and the details are quitc simple and explicit. First, we prove

Lemma 5.5.1. Let D be a proper subdomain of the complex sphere. Then:

(i) any compact subset of D lies in some regular subdomain of D; and
(ii) if Q, and Q, are regular subdomains of D, thenthe s a regular subdomain
Q of D which contains both Q, and Q,.



§5.5. Maps Between Components of the Fatou Set 91

Proor. It is clearly sufficient to prove this in the case when oo is in D, so we
shall assume that this is so. Let n be a positive integer, and cover the plane
with a square grid (including the axes), each square having diameter 1/2"
Now let K, be the union of those closed squares in the grid that contain some
point of the complement of D, and let D, be that component of the comple-
ment of K, that contains co. Then it is easy to see that D, is an increasing
sequence of regular subdomains of D whose union is D.

With this, the proof is trivial. Given any compact subset K of D, the family
{D,} is an open cover of K and so is covered by a finite collection of the D,.
As the D, are increasing with n, this finite collection contains a largest domain
D,, and this contains K. This proves (i). Finally, (ii) follows from (i) for if Q,
and Q, are regular subdomains, then the union of their closures is a compact
subset of D and so by (i), it lies in some regular subdomain of D. [}

Our next task is to show that y(R) is a monotonic function on the class
A(D) of all regular subdomains of D, and so tends to a limit (which may be
—o0) as Q increases to D through (D). The monotonicity property is ex-
pressed in

Lemma 5.5.2. The Euler characteristic y is a decreasing function on (D)
explicitly, if Q, and Q, regular subdomains of D such that Q, = Q, then
x(RQ;) < x(€).

Proor. Let W), ..., W, be the components of the complement of Q,, and let
Vi, ..., V, be the components of the complement of Q,: because Q, = Q,, we
have

o ouV,eWou-uW,.

Foreach jin {1, ..., n} choose a point z;in W,, but not in D. As z;is not in D,
itlies in some ¥, and so ¥, (being connected) liesin W], It follows that each W]
contains some V,, and hence m > n. The given inequality now follows as

1Q)=2-m<2—n= Q). O

Lemma 5.5.1 says that the class #(R) of regular subdomains of D is a net,
and Lemma 5.5.2 is the monotonicity of the function y: (D) - {2, 1,0, ...,
—o0}: thus these lead to

Definition 5.5.3. For any subdomain D of C_,
x(D) = inf{x(Q): Q a regular subdomain of D}.
Quite explicitly, either:

(1) x(D) = —o0, and there are regular subdomains Q, with x(2,) - —oo or,
equivalently, with ¢(Q2,) — +o0; or
(2) there is some regular subdomain €, of D such that

7€) = x(D) > —c0,
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and then (from Lemma 5.5.2) x(©2) = x(D) whenever Q is a regular sub-
domain which contains ©,. Note that when x(D) is finite, it is necessarily
attained by some Q as y is integer valued.

If D is a simply connected domain, then 0D is connected and each regular
subdomain Q can only have one complementary component: thus y(D) = 1
for a simply connected domain D, regardless of the nature of D. More gener-
ally, if D has connectivity k, then x(2) = 2 — k for all sufficiently large regular
subdomains Q, and so x(D) = 2 — k, again irrespective of the complexity of
oD.

As a culmination of these ideas, we have

Theorem 5.5.4. Let F, and F, be components of the Fatou set F of a rational
map R and suppose that R maps F, into F,. Then, for some integer m, R is an
m-fold map of F, onto F, and

x(Fo) + 0g(Fo) = my(Fy). (5:5.1)

Remark. We call (5.5.1) the Riemann-Hurwitz relation.

Proor. First, it is easy to see that as R(F,) = F,, equality holds and F, is a
component of R™!(F,). As R is locally an open k-fold mapping, the number
N(w) of solutions of R(z) = w in F, is a continuous, and hence constant,
function of win F,; thus for some m, R is an m-fold map of F, onto F;.

The proof of (5.5.1) is based on the construction of regular subregions Q,
and Q, of F, and F, respectively. We select a point w in F; and construct a
regular subregion Q, of F, which contains:

(1) all the critical points of R that lie in Fy; and
(2) all the pre-images z,, ..., z,, of w that lie in Fy.

Next, we select a regular subdomain Q, of F; which contains the compact set
R(Q,). Now each of the components of R™!(€,) lies in F(R) and is mapped
by R onto Q, (Theorem 5.4.1). Further, one such component, say ©,, contains
the connected set Q, which satisfies (2), and from this we deduce that Q, is
the only component of R™'(R,) that meets F,; in other words,

Q< Q,=R1Q)NF, < F,

We now claim that €, is a regular subregion of F,, and to verify this it is
sufficient to show that each component W of the complement of Q, meets
J(R). Now W is bounded by some Jordan curve y (which separates W from
Q,) so there are points in W (and close to y) which map to some component
B of the complement of Q,. As R™!(B) is disjoint from Q,, W contains some
component, say V, of R™!(B). However, as Q, is a regular subregion of F,, B
contains some point not in F,, and hence some point of J(R). It follows that
V, and hence W also, meets J(R) so , is indeed a regular subregion of F,.
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Now Q, = Q, < F; so from Lemma 5.5.2,

x(Q0) = 2(Q3) = x(Fo),

and from (1),
51:(90) = 511(92) = 5R(Fo)~

Using this with Theorem 5.4.1, we now have
X(Qz) + 0r(Fy) = mX(Ql). (552)

Given any a with « > x(F,), we choose Q, such that y(Q,) < a: then the same
holds for y(£2,) so
« + Og(Fo) = my(€;) = my(Fy),

and letting a — x(F,) we obtain
X(Fo) + 6r(Fo) = my(Fy).

To obtain the opposite inequality, take any Q,. Then, from (5.5.2), and re-
gardless of the choice of Q,, we have

x(Fo) + 0r(Fo) < my(Q)).

Now if § > y(F,), we can always choose , in the argument above so that
2(Q,) < B, and a similar argument shows that

x(Fo) + 0x(Fo) < my(F).

The proof is now complete. ]

§5.6. The Number of Components of the Fatou Set

We suppose that R has degree d, where d > 2, and we shall now obtain infor-
mation on the number of components of F. Suppose first that each of F,, ...,
F, is a completely invariant component of F, where k > 2. Applying Theorem
5.2.1(iii) to each of the components F; in turn, we find (as k > 2) that every F,
is simply connected. Next, we apply Theorem 5.5.4 to each F; and, noting that
as each F; is simply connected, x(F)) = 1, we obtain

ox(F) = (d— x(F)=d — |,

The Riemann-Hurwitz relation now yields

Kd=1)= 3 5(F)

< 6g(Cy)
=2d-12,

and so k < 2. This argument constitutes the proof of:
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Theorem 5.6.1. The Fatou set F of R contains at most two completely invariant
components, and if there are two, then each is simply connected.

Both of the possibilities in Theorem 5.6.1 can arise; if R(z) = z? — 2, then
F has a single completely invariant component, and if R(z) = 22, then F has
two completely invariant components. Theorem 5.6.1 does not by itself ex-
clude the possibility that F may have two completely invariant components
and other additional components: however, it is a consequence of Sullivan’s
No Wandering Domains Theorem (see §8.1 and §9.4) that if F has two com-
pletely invariant components, then these are the only components of F.

With reference to Theorem 5.6.1, it is of interest to note that for any posi-
tive integer m, there exist simply connected domains D,, ..., D,, with

oD, = 0D, =" = 0D,;
see [56], p. 143 (for this shows that we cannot prove Theorem 5.6.1 from the
single topological fact that all of the completely invariant components of F
have a common boundary, namely J).

An argument similar to that used above enables us to obtain information
on the total number of components of F. First, Chapter 1 contains a discus-
sion of the examples

222 -2 z2% oz zi— |,

and in these, F has one, two, and infinitely many components respectively (see
Figure 1.5.1 and also Exercise 5.6.1). In addition, we have seen (in §4.3) that
it is possible for F to be empty. It is possible, then, for F to have exactly 0, 1,
2 or infinitely many components, and our last result in this section says that
these are the only posibilities.

Theorem 5.6.2. The Fatou set F of a rational map R has either 0, 1, 2 or
infinitely many components.

ProoF. This is trivial if deg(R) = 1. If deg(R) > 2, this a direct consequence of
Theorem 5.6.1, for suppose that F has only finitely many components, say
F,, ..., F,. By Proposition 3.2.6, each F; is completely invariant under some
iterate R™ (which has the same Fatou set as R) and so, according to Theorem
5.6.1 (applied to R™), k < 2. 1

Remark. The proof of Theorem 5.6.1 is based on the idea that certain
components of F(R) contain critical points and this, in conjunction with the
Riemann- Hurwitz relation, bounds the number of components. This idea is
important and will be used again later to good effect.

EXERCISE 5.6

1. Let P(z) = z2 — 1. Showthat 0, — 1 and o are attractinyg fixed points of P2. Deduce
that F(P) has at least three, and hence infinitely many, components.
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Let F_; and F, be the components of F which contain — 1 and 0 respectively (as
in Figure 1.5.1). Prove:

(1) P maps F, onto F_, with multiplicity two;
(2) P maps F_, onto F, with multiplicity one.

2. A component F, of F(R) is pre-periodic if it is not forward invariant under any
iterate R", but if some image R™(F,) is. Prove that if F(R) has a pre-periodic compo-
nent, then it has infinitely many components.

3. Let P be a polynomial of degree at least two, and suppose that the component F,, of
F(P) which contains oo is infinitely connected. Show that F, is the only completely
invariant component. [ Note: F may have infinitely many components.]

§5.7. Components of the Julia Set

As usual, R is a rational map of degree d, where d > 2. We have seen that no
point of J is isolated (Theorem 4.2.4), and it is easy to show that if J is discon-
nected then it has infinitely many components. Indeed, if J has only a finite
number of components, say J,, ..., J,, then some J,, say J,, is infinite (as J is).
Moreover, by Proposition 3.2.6, there is some integer m such that each J, is
completely invariant under R™ so, by the minimality of the Julia set,

J(R) = J(R™) = J,,

and J(R) is connected. We now prove a stronger result than this, namely

Theorem 5.7.1. If J is disconnected, then it has uncountably many components
and each point of J is an accumulation point of infinitely many distinct compo-
nents of J.

In Chapter 11, we give an example of a rational map R with the properties
(i) J 1s disconnected, and (ii) each component F; of F has finite connectivity.
It follows that only a countable number of components of J can meet the
boundary of some F; thus in this example, there are components of J which do
not meet the closure of any component of F.

In order to prove Theorem 5.7.1, we need

Lemma 5.7.2. Let K be a compact connected subset of the complex plane. Then
R7Y(K) has at most d components and each is mapped by R onto K.

We prove Theorem 5.7.1 next (assuming Lemma 5.7.2) and then give the
proof of the lemma.

Proor oF THEOREM 5.7.1. Let K be the set of points in J at which infinitely
many components of J accumulate: our first objective is to use the minimality
of Jtoshow . .J < K, and so deduce that K = J. We have just seen that J
has infinitely many components, so K is not empty and obviously, it is closed.
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Now take any w not in K, so there is an open set U containing w such that
U meets only a finite number of components, say J,, ..., J,, of J. Now let
{ be any point of J ~n R(U): then { belongs to one of the connected subsets
R(J;), ..., R(J,) of J, and we deduce that the open neighbourhood R(U) of
R(w) meets only a finite number of components of J. This shows that R(w) is
not in K, and hence R™!(K) < K.

Note that this imples that K is infinite, for each point of the non-empty set
K is non-exceptional and so has an infinite backward orbit (Theorem 4.1.4).

Next, take { in K, so there is a sequence J;, J, ... of distinct components
of J which accumulate at {. Lemma 5.7.2 implies that at most d of the J, can
map to any given component of J so, using the continuity of R at {, it is clear
that R({) is also in K; thus R(K) = K. We have now shown that J = K and
so, in particular, no component of J is isolated. Further, each point of J is an
accumulation point of distinct components of J.

It only remains to prove that J has uncountably many components. We
argue by contradiction, so suppose that J has only countably many compo-
nents, say J;, J,, ...: thus J is a compact metric space which is the countable
union of the J,. Now by Baire’s Category Theorem, J is not the countable
union of nowhere dense sets, so we may suppose that the closure of J; has a
non-empty interior (in the relative topology on J). However, J;, as a compo-
nent of J, is closed in J, so we can conclude that J; has a non-empty interior
in J. This violates the statement at the end of the previous paragraph, so J
must have uncountably many components and the proof is complete. ]

We end with the

PrOOF OF LEMMA 5.7.2. Let D be the complement of K. By Proposition 5.1.5,
each component D; of D is simply connected and (by the methods described
in §5.4 and §5.5) we find that each component U of R™!(D;) is either a simply
connected domain, or it is a domain of finite connectivity which contains a
critical point of R (for if U does not contain a critical point, the Monodromy
Theorem shows that R: U — D, is a homeomorphism). It follows that R™! (D)
is the union of a finite number of multiply connected domains, say M,, ...,
M,, and a number (possibly infinite) of simply connected domains §;.

When there are no multiply connected domains M; present, all of the com-
ponents of R™!(D) are simply connected and then Proposition 5.1.5 implies
that the complement of R™!(D), namely R™!(K), is connected: thus the conclu-
sion of Lemma 5.7.2 holds in this case.

We now assume that at least one domain M; exists, and we consider the
minimal, and necessarily finite, set of components E,, ..., E, of R™!(K) such
that
(5.7.1)

q

U@Mchlu--'uE'
7

we claim that E,, ..., E, are all of the components of R™'(K). To see this,
suppose that Q is another component of R™!(K) and write E= E, U U E
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then E and Q are disjoint compact subsets of R™!(K), so from [77] (Theorem
5.6, p. 82), there are compact subsets 4 and B of R™!(K) such that

AUB=RYK), AnB=@g, QcA, EcB (512

We may assume that oo € R™!(D); then A4 and B are disjoint, compact subsets
of C, so we can find a bounded open set © which has a finite number of
components €;, each being bounded by a finite number of Jordan curves, and
which is such that

AcQ,  BrQ=(, 0QnAUB) =" (5.7.3)
see Exercise 5.7.1. Because of (5.7.2), we also have
3Q < R™(D). (5.7.4)

Now let Q, be the component of Q that contains the connected set Q.
Using (5.7.1) and (5.7.2), we find that for each r,

0M, c E c B,

and so we see from (5.7.3) that Q, and dM, are disjoint. Clearly, Q, is arcwise
connected, and this means that either Q, = M, or Q, " M, = (J. Now the
first possibility cannot occur because if it does, then

0= Q< M, <RD)

which violates the fact that 9 = R™!(K); thus Q, is disjoint from each M,. As
each M, is open, we deduce that the closure of Q, is disjoint from | | M,.

As a consequence of this, each boundary component y; (a Jordan curve) of
Q, lies in some simply connected domain S, for, by (5.7.4), it lies in R™'(D);
thus one side of 4, lies in S,,, while the other side contains R™'(K) and each
M,. It follows that for any z, in M,, and any z, in Q,

n(y, z0) = "(}’jv z,),
and hence that
n(0Qy, z1) = n(0Q, z,), (5.7.5)
where, in general, n(y, z) denotes the winding number of y about z. Now
Q, = {zeC:z ¢ 0Qy, n(0Qy, 2) # 0},

so from (5.7.5), z; € Q,. This, however, contradicts the fact that Q, and M,
are disjoint: thus no such component Q exists, and we have proved that

R K)=E, U UE,
As R7'(K) is compact, so is each E;, and hence R(E;) also: thus R(E;) is a
closed subset of K. We shall show that each R(E)) is relatively open in K: then,
as K is connected, we find that R(E;) = K. Clearly, this implies that that g < d

and the proof of the proposition will then be complete.
To show that R(E;) is relatively open in K, we take any { in R(E;), say
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{ = R(w), where w € E;. We find a neighbourhood N of w not meeting any
other E; (this is possible because R™!(K) has only finitely many components)
and observe that

K n R(N) = R(E; n N) = R(E;).

This shows that R(E;) is relatively open in K, and the proof of the proposition
is complete. 1

EXERCISE 5.7

1. Let 4 and B be disjoint, non-empty, compact subsets of C, and put a rectangular
grid on C which is fine enough so that no square in the grid meets both 4 and B.
Let {Q;} be the set of those closed squares which meet A, and let Q be the interior
of { ) @;. Show that Q is a bounded open set with a finite number of components
Q;, each being bounded by a finite number of Jordan curves. Show also that (5.7.3)
holds.



CHAPTER 6

Periodic Points

This chapter is devoted to an extensive discussion of the fixed and periodic
points of a rational map and their role in iteration theory.

§6.1. The Classification of Periodic Points

We have already used elementary facts about fixed points, and we turn now
to a systematic and detailed discussion of the periodic points of a rational
map R. A fixed point { of R is classified according to the multiplier m(R, {) of
R at { (see §2.6) and as this is conjugation invariant, we may assume that { is
in C and so m(R, {) = R'({). It is important to realize that as the classification
of fixed points is a purely local matter, it applies to any analytic function and,
in particular, to the local inverse (when it exists) of a rational map.

Definition 6.1.1. Suppose that { in C is a fixed point of an analytic function f.
Then { is:

(a) super-attractingif f'({) = 0;

(b) attractingif 0 < |f'({)| < 1;

(c) repellingif | f'())| > 1,

(d) rationally indifferent if 1'({) is a root of unity;

(e) irrationally indifferent if | f'({)| = 1, but f'({) is not a root of unity.

Some explanatory remarks may be helpful. First, the distinction between
(a) and (b) is that a super-attracting fixed point is a critical point of f, whereas
an attracting fixed point is not; thus f has a local inverse near { if { is
attracting, bu .ot if it is super-attracting. The reader may recall that in §1.1,
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no such distinction was made and, of course, there are still occasions when we
wish to embrace both cases; we do this by saying that { is (super)attracting.
In a similar way, it is sometimes convenient to combine cases (d) and (e), and
such a fixed point is said to be indifferent. For an indifferent fixed point {, the
best linear approximation to f near { is a rotation about { and the distinction
between (d) and (e) is simply whether this rotation has finite or infinite order.

The notion of periodic points, and the extension of the classification to
these, is straightforward. A point { is a periodic point of a rational function R
if it is a fixed point of some iterate R™. For such a point { there is a positive
integer n for which

LR, R*(Q), - RO (6.1.1)

are distinct but R*({) = {: the finite set of points in (6.1.1) is the cycle of { and
the integer n is the period of {. Of course, the fixed points of R are points of
period one: more generally, { has period »n if and only if it is a fixed point of
R" but not of any lower-order iterate.

A periodic point { of period n is classified as a fixed point of R" but we can
say a little more than this. By conjugation, we may assume that the cycle does
not contain oo and we write

{m = R™0), m=0,1,2,...,

80 {in = (- By n applications of the Chain Rule, we now have

(R (Cm) = H R'(R*(,))

= H R'(Gy),
k=0

the second product being a re-arrangement of the first. This argument shows
that the derivative (R") has the same value at each point {; of the cycle, and
so each point {; is classified in exactly the same way as any other {, in the
cycle. As a consequence of this, we can extend our classification to cycles and
speak naturally of the multiplier of the cycle, attracting cycles and so on.

A point { is pre-periodic under R if it is not periodic but if some image, say
R™({), is: in this case there exist positive integers m and n with

{, RQ), R*(@C), -, R™(0), ..., R™I(0)

distinct but with R™**({) = R™({). Most periodic points have associated pre-
periodic points (see Exercise 6.1.1); for example, the origin is a pre-periodic
point of the polynomial z* — 2.

In the remainder of this chapter, we shall discuss how the attracting,
repelling and indifferent cycles relate to the Fatou and Julia sets. Briefly, the
(super)attracting cycles are in the Fatou set, while the repelling cycles are in
the Julia set. The corresponding results for indifferent cycles are more delicate
and require much more work.
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EXERCISE 6.1

1. Let C be the cycle {{,,...,{,} for a rational map R. Show that either R"!(C)
contains pre-periodic points, or C is completely invariant, has at most two elements
and lies in F.

2. Suppose that { is a periodic point of R of period k. Prove that R" fixes { if and only
if k divides n.

3. Show that if any point { is fixed by both R" and R™, then ( is fixed by R? where g
is the greatest common divisor of m and n.

4. Show that z +» z2 has no indifferent fixed points, that z + 272 has no attracting
fixed points, and that z +» z + z2 has no repelling fixed points.

5. This exercise shows that given any integer N, there is a polynomial with an at-
tracting cycle of period at least N. We may assume that N is prime. For each c, let
P(2) =z% + ¢, s0

P = [P +c.

As the coefficients of P’(z) are polynomials in c,
Q. ¢ > PA(c)
is a polynomial in ¢ which satisfies
Ons1(c) = [2a(0)] + c.
Show that forn > 1,
2,00=0, Q0 =1  Qy-2)=2,

and deduce that for each n, there is some number y (which depends on 1) in (-2, 0)
such that Q,(y) = 0.

Show that P""1(0) = Q,(c): thus there is some y in (-2, 0) with PY(0) = 0. This
shows that the origin has period & for P,, where k divides N. As N is prime, k is 1
or N,and k # 1 as 0 is not fixed by P,: thus 0 belongs to a super-attracting cycle of
length N.

6. Prove that the fixed points of a polynomial cannot all be attracting (see [35],
p. 279).

§6.2. The Existence of Periodic Points

In an attempt to find the periodic points of period n of a rational map R, we
naturally consider solutions of

R'(z) = 2. 6.2.1)

Any solution of this equation will be periodic; however, it will not necessarily
be of period n for it may already be fixed by some earlicr iterate R™, where
m < n. This occurs, for example, when

R(z)=z2* -z (6.2.2)
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in this case every solution of R?(z) = z is also a solution of R(z) = z and so
for this R, there are no periodic points of period two. The Julia set of z2 — z
is shown in Figure (3.14), [22], p. 101.

This example raises a question of existence, namely: How often are peri-
odic points absent? Could there exist, for example, a rational function with
only finitely many periodic points? The answer is no. In fact, in the vast
majority of cases, periodic points of a given period do exist and for poly-
nomials, the situation is particularly striking. We have

Theorem 6.2.1. Let P be a polynomial of degree at least two and suppose
that P has no periodic points of period n. Then n = 2 and P is conjugate to
z> 72— 2.

In short, the example given in (6.2.2) was the only example of this type (up
to conjugacy) that we could possibly have given. There is also a correspond-
ing (though slightly weaker) result for rational functions, namely

Theorem 6.2.2. Let R be a rational function of degree d, where d > 2, and
suppose that R has no periodic points of period n. Then (d, n) is one of the pairs

(2,2),(2,3),3,2),(4, 2

moreover, each such pair does arise from some R in this way.

This shows, for example, that all rational functions have periodic points of
period 4, 5, 6, ..., and that every rational function of degree five or more has
periodic points of all orders. These results are due to I.N. Baker [9], and we
shall prove them in §6.8 (but see Exercise 6.2.2). Roughly speaking, if a ratio-
nal map fails to have any periodic points of period n, then every solution of
R"(z) = z must also be a solution of some equation R™(z) = z for some m
which divides, and is less than, n. This places a strong algebraic constraint
on the coefficients of R which, according to the two results above, is
rarely satisfied; nevertheless, the known proofs of these results are function-
theoretic.

The reader should note that not only is Theorem 6.2.2 weaker than Theo-
rem 6.2.1 in that several exceptional pairs (d, n) arise, but it is also weaker
in that an exceptional pair (d, n) does not necessarily determine a unique
conjugacy class of exceptional maps R: see Exercise 6.2.3 for more details.

Although we shall prove Theorems 6.2.1 and 6.2.2 later, we shall give a
simple argument now which guarantees the existence of at least an infinite set
of periodic points for each rational map (a fact that we shall need before we
prove the two theorems). This also follows from Theorem 4.2.6 but the follow-
ing argument is simple and direct. We suppose that R is a rational function
of degree d, where d > 2, and that R has no points of period p, where p is a
prime. Then every solution {, say, of R?(z) = z is of -~me period k, where k is
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less than, and divides p: thus k = 1, and { is a fixed point of R itself. As R and
RPhaved + 1 and d” + 1 fixed points respectively, we deduce that there must
be some fixed point { of R such that R? has more fixed points at { than R does,
and the only way that this can arise is that R'({) # 1 but R'({)" =1 (see
Corollary 2.6.7). Finally, there are at most d 4 | points { fixed by R and for
each of these, R'({)? = 1 for at most one prime q. Thus each rational R has
periodic points with prime period p for all but at most d + 1 prime numbers p.

If we consider this argument when R is a quadratic polynomial with no
periodic points of period two, we find that up to conjugacy, R(0) = 0 and
R'(0) = — 1.1t follows that R(z) = az? — z,and just by changing the scale, this
is easily seen to be conjugate to the polynomial z2 — z in (6.2.2).

For periodic points of entire functions, see (for example) [7] and [10].

EXERCISE 6.2

1. Show that every quadratic polynomial is conjugate to one and only one polynomial
of the form z +— z% + ¢. Show also that z2 — z is conjugate to z2 — 3.
Let P(z) = z* + c¢. Explain why P(z) — z divides P*(z) — z, and using this, show
that if P has no periodic points of period 2, then P(z) = z2 — 3.

2. The example z% — z shows that the pair (2, 2) in Theorem 6.2.2 is exceptional. To
show that the other pairs are exceptional (see [9] and Theorem 2.6.4), show that:
(@) if R(z) = z + (w — 1)(z% — 1)/2z, where @ = exp(2ri/3), then R has no points of

period 3;
(b) if R(z) = (z* + 6)/3z2, then R has no points of period 2;
(¢) if R(z) = —z(1 + 2z*)/(1 — 3z%) then R has no points of period 2.

3. Fora#1,let

Show that:
(a) R, has fixed points 0, co and « = 2/(1 — aj;
(b) R? has three fixed points at the origin,
(©) the five fixed points of R? are 0, 0, 0, oo and «;
(d) R, has no two-cycles.

Prove that R, is conjugate to R, ifand only if b = aorb = (3 — a)/(1 + a). [Hint:
If gR,g7! = R,, then R, must fix g(0), g(oo) and g(a), so these three points must
coincide with 0, oo, 8, where § = 2/(1 — b). Further, the multipliers at correspond-
ing points must coincide.]

4. Suppose that f is analytic on a neighbourhood of the origin and that f(0) = 0,
f'(0) = a. Show that there exists an integer N(f) such that for all integers n, the
numbser of fixed points of f" at 0 is either 1 (if a” # 1) or N(f) (ifa" = 1).

5. Let R be a rational map with deg(R) > 2, and let
G = {g: g Mobius, gRg™! = R}.
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Use the fact that R has periodic points of period p for some prime p to show that
G is a finite group. Select a rational map of your choice and attempt to find G
explicitly. (For a list of all finite M&bius groups, see [18] or [46].)

6. Prove that every quadratic polynomial has points of period 3.

§6.3. (Super)Attracting Cycles

Suppose that { is a (super)attracting fixed point of a rational map R. Then
|R'({)| < 1 and so there is a number «, |R'({)] < « < 1, and a disc D centred
at { such that in D,

IR(z) = ] = |R(z) ~ RQ)| < a|z = {|.

This shows that each R” maps D into itself, so D lies in the Fatou set F(R) and
R" - { uniformly on D. By Vitali’s Theorem (Theorem 3.3.3), R" — { locally
uniformly on the component of F(R) which contains {, and as F(R?) = F(R)
for any iterate RY, we easily obtain

Theorem 6.3.1. Let {{,,...,{,} be a (super)attracting cycle of R. Then each {,
lies in a component, say F;, of the Fatou set F(R), and asn — o0, R" — {; locally
uniformly on F,.

In view of this, we introduce some terminology. Given a (super)attracting
fixed point { of R, the component of F(R) which contains { is called the local,
or immediate, basin of {. It follows that R" - { precisely when z lies in some
inverse image R™™(B), m > 0, of the local basin B, and we call the set of
such z the basin (or stable set) for {. More generally, the local basin of a
(super)attracting cycle {{,,...,(,} is the union of the (necessarily distinct)
components Fy,..., F, of F(R)(as in Theorem 6.3.1) and the basin for the cycle
is the union of the local basin and all its inverse images.

Although a rational map R of degree d, d > 2, has infinitely many cycles,
we shall see later that it can have only finitely many (super)attracting cycles
(in fact, at most 2d — 2). Thus, for example, a quadratic polynomial can have
at most one (super)attracting cycle in C (the reader may recall that in §1.6, we
showed that a quadratic polynomial can have at most one attracting fixed
point in C).

Our next task is to analyse the behaviour of an analytic function f in a
neighbourhood of an attracting fixed point {, and this analysis will enable us
to understand completely the dynamics of f near {. We suppose, then, that f
is analytic in some neighbourhood A" of an attracting fixed point {, and we
may assume that f(A4) = 4. Now let g be any function which is analytic
and univalent on 4" with g({) = 0, and let F = gfg™!. Then F is defined and
analytic on the neighbourhood g(4") of the origin (see Figure 6.3.1) and, as
F'(0) = f'({), we see that O is an attracting fixed point of F. We call F a local
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Figure 6.3.1

(analytic) conjugate of f and we ask whether, by choosing g suitably, we can
arrange for F to be considerably simpler (say, in terms of its Taylor coeffi-
cients) than f is. The benefits that arise depend on how simple we can choose
F to be but, in any case, the iterates of f (near {) are reflected in the behaviour
of the iterates of F for F" = gf"g™ L.

We shall assume that { = O: this simplifies the formulae, and the corre-
sponding results for a general fixed point { can easily be obtained afterwards
by conjugation. The function f has a Taylor expansion at 0, say

fzy=az + bz? 4 -+, 0<lal <1,
and because F'(0) = f’({), we must have
F(z)=az + b,z + b3z> + ---.
We shall now show that by choosing a suitable g, we can achieve the greatest

possible simplification, namely that each b; is zero and F is the map z +— az.

Theorem 6.3.2. Suppose that f is analytic in a neighbourhood of the origin, that
f(0) = 0, and that f'(0) = awhere 0 < |a| < 1. Then there exists a unique func-
tion g which is analytic in some disc {|z| < r} with g(0) = 0, g'(0) = 1, and which
satisfies gfg~'(z) = az for all z sufficiently near the origin.
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There are several proofs of this result available, and each has some merit.
We give the simplest proof (by majorization) and then comment on other
proofs.

PRrROOF OF THEOREM 6.3.2. First, it is convenient to write
f(2)=az + a,z*> + a3z + --- = az + A(2),

so A(z) is a power series beginning with a quadratic term. As the series for f
converges at some non-zero z,, the sequence (a,z5) is bounded and replacing
f by ¢fp !, for some suitable ¢ of the form z — iz, we may assume that for
n>2la, <1.

In this proof it is more convenient to work with g™! than g so, in effect, we
shall replace g by g~'. We consider an arbitrary, formal power series g and
use the relation fg(z) = glaz) to determine the coefficients of g without any

regard to convergence: we then show that the series constructed in this way
has a positive radius of convergence and so obtain the result (with g replaced

by g™').
Now consider any formal power series

g(z) =z + byz? 4+ byz3 + --- = z + B(2).
The relation fy(z) = g(az) yields
az + aB(z) + A(g(z)) = az + B(az),
and hence

Y ba"~a)z"= Y az +b2% + )

n>2 n>2

As |a| < 1, we have a" # a for n > 2, and this determines the coefficients b,
uniquely (by induction) and in the form

bn(a" - (1) = Pn(ab seey Qpy bz’ () bn—l)’

where the polynomial P, in the given variables a;, b;,
Further, as |a,| < 1 for n > 2, this implies that

lal(1 — lal)|b,| < P,(1, ..., 1,1bs], ... [byey])s

has positive coefficients.

and this gives an upper bound on the rate of growth of the b,.
For our comparison function, we consider the function
HZ)=z~a(z2+2° + ),

where a = 1/(Ja| — |a|?). Obviously, H is analytic in the unit disc and so has
a local inverse, say
h(z) = z + py2° + B3z’ + -+,

that is, analytic in some neighbourhood of the origin. Thus for all z suffi-
ciently near to the origin,

z = H(h(z)) = h(z) — = Zz N

m>
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This identity reduces to
Y @+ B2+ =lal(l ~lal) 3, 2",
n>2

m>2
and this shows that
Ial(l - Ial)ﬁn = P"(l, X 1, Bz’ ""Bn—l)'

Using induction, it is now clear that first, §, > 0 for all n > 2, and second, that
|b,| < B, for all n > 2. It follows that the formal power series g does indeed
converge in some neighbourhood of the origin and so g is analytic near the
origin. Given this, the identity fg(z) = g(az) is valid near the origin, and as g
has a local inverse near the origin, the proof is complete. ]

In fact, this result implies more than we have stated so far. We consider the
case when f is a rational function, which we now denote by R, and we let B
be the local basin of an attracting fixed point { of R. According to Theorem
6.3.2, there is a disc W centred at { such that R(W) < W, and a power series
g analytic in W such that gR(z) = ag(z) there. Now let W, be the component
of R™(W) that contains {: we claim that

B=WuWuW,u..-. (6.3.1)

First, as W, is a connected subset of F(R), it must lie within B. Next, given any
zin B, join z to { by a curve y in B. Then by Theorem 6.3.1, there is some n
such that R*(y) = W, and hence vy, being connected, lies in W,. This shows that
z is in W, and thus proves (6.3.1).

Now define g, on W, by the formula

gnlz) = a""g(R"z).

Clearly, g, is analytic on W, and for all z sufficiently close to the origin,
ga(z) = g(z). We deduce that the sequence g, provides an analytic continua-
tion of g to the entire local basin B, and by analytic continuation, gR(z) =
ag(z) throughout B. Finally, we observe that

g(W,) = a "g(R"(W,)),
and as R" maps each component of R™"(W) onto W, we have
g(W,) = a""g(W).

Now g(W) is an open neighbourhood of the origin, and as |a| < 1, we easily
deduce that g(B) = C, and we have proved

Theorem 6.3.3. Let { be an attracting fixed point of the rational map R with
R'({) = a, and let B be the local basin of {. Then there exists a unique function
g that is analytic in B with g({) = 0, g'({) = 1, and g(B) = C, and such that in
B, gR(z) = ag(.
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Remark. Unlike the local conjugacy relation gRg™(z) = az, the functional
equation gR(z) = ag(z) does not require the existence of g~! (indeed, by
Liouville’s Theorem, g~! cannot exist throughout B). The analysis of these
equations and their solutions is attributed to Poincaré, Schroder and
Koenigs.

The method used in the proof of Theorem 6.3.2 will be used later (in §6.7)
to analyse the behaviour of R near certain indifferent fixed points. Other
proofs are available; see, for example, [67] where a proof is sketched using
quasiconformal mappings. We end with a brief sketch of another proof of
Theorem 6.3.3; this proof gives the existence of the function g throughout B
directly, and also motivates the proof of the corresponding result for super-
attracting fixed points which is given in §6.10.

A SECOND PROOF OF THEOREM 6.3.3. We may assume that { = 0. Ignoring the
details for the moment, if g satisfies g(Rz) = ag(z) near the origin, then for
each n,

gR"(z) = a"g(z),

RG) _ (9(R2)\!
- —g(z)(R,(z)> - (2) (632)

and hence

because R*(z) —» 0 as n - o0, and g'(0) = 1. This representation indicates how
we can establish the existence of g, namely by proving that R"(z)/a" converges
to some limit as n — oo. Observe that if this limit exists on some neighbour-
hood W of the origin, then it exists throughout B, for given z in B, then say,

R™(z)is in W and
Bn+m(z) _ I:Rn(Rmz)]

an+m aﬂ

Note also that if such a function g exists, then it is unique, for it is determined
by the limit in (6.3.2).

We now sketch the formal proof. We start with a disc 4" centred at the
origin, and a number a such that |a] < « < 1 and

IR(z)| < alz]
on 4. Next, we define the function ® on A4~ by
R(z) = az[1 + ®(2)]. (6.3.3)

Note that ®(0) = 0 and, by decreasing 4" if necessary, we may assume that ®
is analytic on the closure of .4, and so for some M,

|®D(z)] < M|z
there. Observe that on 4", we then have
|®(R™z)| < M|R™(z)] < Ma™|z]. (6.3.4
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Now for z in .4,
R™1(z) = R(R"z) = aR"(2)[1 + D(R"2)],
and so by induction, the first step being (6.3.3),

Rn+1 n
QTEZ) =2z l:[() [1 + (D(R"‘z)] (635)

This, together with (6.3.4) and standard results on infinite products (see Theo-
rem 2 in Appendix III to this chapter), shows that the infinite product

0@ =2 [] [1 + OR™]

exists and is analytic on 4", Moreover, by (6.3.5), g satisfies (6.3.2) on 4", and
it is clear that g(0) = 0 and g'(0) = 1. Finally, from (6.3.5) we have

. Rn+1(RZ . Rn+2 7
g(Rz) = llm—a;ﬁ—) = lim a..+f ) ag(z),

this being valid on .4#" and so throughout B.

The question of whether or not an analytic map f is locally conjugate to
its derivative (as a linear map) near one of its fixed points { is important, so
we say that f is linearizable at { if there is some function g that is analytic near
¢ with g({) = 0, g'({) = 1, and such that for all z sufficiently close to the origin,

@97 @) = ')z O

EXERCISE 6.3

1. Suppose that g(z) = z + --- is analytic near the origin. Use Leibnitz’s formula (for
the derivative of a product) to show that if G(z) = g(z)™, then G*(0) is a polynomial
in the variables g''(0), ..., g* "(0) with positive coefficients.

2. Suppose that R is a rational map, that { is an attracting fixed point of R, and that
the basin B of { is a simply connected proper subdomain of C. Prove that R is
conjugate on B to a Blaschke product of the form zg,(z) --- g,,(z), where the g; are
M&bius transformations mapping the unit disc onto itself with g;(0) # 0.

§6.4. Repelling Cycles

We begin with

Theorem 6.4.1. For any rational map R, every repelling cycle of R lies in J(R).
Proor. First, suppose that the origin is a repelling fixed point of R. Then,

near the origin,
R(z) =az + ---,
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where |a| > 1 and, consequently, as n — oo,
(R"Y(0) = a" — .

Suppose now that 0 is in F(R). Then {R"} is normal on some neighbour-
hood 4" of 0, and so some sequence of the iterates R" converge uniformly
on A" to some analytic function g. Now g(0) = 0, so ¢’(0) is finite. On the
other hand, the uniform convergence implies that for the given sequence,

g'(0) = lim(R")(0) = co,

which is a contradiction. We deduce that the repelling fixed 0 is in J.

Of course, this implies (by conjugation) that any repelling fixed point of
Ris in J(R). If {{,,...,,} is any repelling cycle for R, then each {; is in
J(RY), and as J(R?) = J(R), the proof is complete. 1

We can interpret Theorem 6.3.3 in the context of repelling fixed points,
for if  is a repelling fixed point of R, then there is a branch of R™! for which
{ is an attracting fixed point. Applying Theorem 6.3.3 to this branch, we
find that R is locally conjugate to z — R’({)z in some neighbourhood of {.

EXERCISE 6.4

1. Use the definition of equicontinuity (instead of the derivative) to show that a repel-
ling fixed point of R is in J(R).

2. Let { be a repelling point of R. Show that if R"(z) - { as n— o, then for some n,
R"(z) = {,and so z is in J(R).
Show, however, that it is possible to have z in F(R) and R"(z) converging to a
fixed point { of R in J. This happens, for example, when R(z) = z/(1 + z*)and { = 0
(see §1.8).
3. The origin is a repelling fixed point of f(z) = 2z/(1 + z*), and f’(0) = 2. Show that
afg ' (z) = 2z, where g is defined near the origin by g™!(z) = tanh z.

Show that a similar statement is true when f(z) = 2z(1 + 2) and g7*(2) =
€ — 1)2.

§6.5. Rationally Indifferent Cycles

Although it is not easy to decide whether a given indifferent cycle lies in the
Fatou or the Julia set, the question is easily settled for rationally indifferent
cycles.

Theorem 6.5.1. If deg(R) > 2 then every rationally indifferent cycle of R lies in
J(R).
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PrOOF. We recall that { lies in a rationally indifferent cycle of R of length m if
R™ fixes { and (R™)'({) is some root of unity. Suppose first that { is a rationally
indifferent fixed point of R. By conjugation, we may assume that { =0, so

R@Z)=az +bz" + -,

say, where b # 0, r > 2, and a* = 1 for some positive integer k. Writing § =
R* we have
S@)=z+cz? + -

for some p > 2, where ¢ #0 (for S cannot be the identity map unless
deg(R) = 1). By induction (or from Corollary 2.6.5),

S"zy=z+ncz’ + -,

and so (§")'”(0) - oo, as n — co. This means that {$"} cannot be normal in
any neighbourhood of the origin (for otherwise, some sequence of $” would
converge to some analytic ¢ with ¢(0) =0 and ¢'”(0) = o0); consequently,
{R"} is not normal near 0,50 0 (= {) is in J(R).

Finally, if { is any point of a rationally indifferent cycle of length m, the
preceding argument shows that { is in J(R™), and hence in J(R). Note that if
deg(R) = 1, then every indifferent cycle is in F(R). O

The remainder of this section is devoted to a detailed description of the
dynamics of the iterates R” near rationally indifferent cycles. This is a long
and difficult task, and in order to obtain a clear understanding of the global
structure of the arguments, we have provided a succession of results, each
(generally speaking) being an improvement on the preceding results. One of
the reasons why this description is much harder to obtain than, say, the de-
scription of the dynamics near an attracting fixed point, is that a rational map
R is not locally conjugate to its (linear) derivative near a rationally indifferent
fixed point ¢ (for the derivative is a rotation of finite order about {, and R can
have finite order only if deg(R) = 1). This observation means that we have to
find another way to describe the dynamics of the R” near such a cycle, and
the answer lies in showing that R is conjugate to a translation not, of course,
on the whole neighbourhood of {, but on certain open sets which have { on
their boundary. We shall include examples to illustrate the ideas as we pro-
ceed, and we begin with a simple lemma which isolates the most basic idea in
this section.

Lemma 6.5.2. Suppose that f is analytic and satisfies
)=z~ 27" + O(z"*?)

in some neighbourhood N of the origin. Let w, ..., w, be the p-th roots of unity
and let 1, ..., n, be the p-th roots of —1. Then for sufficiently small positive
numbers ry and 9,:
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(i) 1f(2)| < |z| on each sector

S;={2:0 < |z/wj| < 1o, |arg(z/@;)| < b };
and
(ii) | f(2)| > |2| on each sector

I, ={z:0 < |z/n;l < ro, |arg(z/n;)| < 6,}.

PROOF. Write

f@)z=1-2z7[1 + v(2)],
where v is analytic in N with v(0) = 0, and also
S={:¢l < 3, larg {| < m/4}.

It is easy to see that for a suitable choice of r, and 6,, z € §; implies that
z?[1 + v(z)] €8, and z € &; implies that —z?[1 + v(z)] € S. The desired in-
equalities now follow by elementary geometry. ]

The numbers w; and #; in Lemma 6.5.2 are the 2p-th roots of unity and
they are alternately and equally spaced around the unit circle. If

f@ =z +az"' + O(z"*?), a#0,

a similar result holds with the directions w; and #; replaced by the directions
of the solutions of az? = —1 and az? = | respectively. Also with this f, /!
exists near the origin and

[ 2) =2z — az?*! + O(z7%2)

so (with ry and 6, small enafgh) |f~'(z)] > |z| on each §;, and | ~'(2)| < |z|
oneach X,

Next, we consider a simple example and here our discussion contains the
ideas that we shall use to develop the general theory.

Example 6.5.3. The polynomial
P(z)=1z —z?

has a rationally indifferent fixed point at the origin. If 0 < x < 1, then 0 <
P(x) < x, and so P*(x) — O (for P"(x) can only converge to a fixed point of P):
if x < 0, then P(x) < x < 0, and so P"(x) — co. These observations are consis-
tent with Lemma 6.5.2 and we shall now investigates the behaviour of P*(z)
for all z near the origin.

Let a(z) = 1/z and replace P by its conjugate Q = gPs™!: thus

Q@) =z+ 1+ 1)z-1).
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Figure 6.5.1

Now note that if Re[z] > 1 then Re[(z — 1)"!] > 0 so
Re[Q(z)] > Re[z] + 1.

In particular, if t > 1, then Q maps {x + iy: x >t} into {x + iy: x >t + 1},
and rewriting this in terms of P, we see that P" - 0 uniformly in each suffi-
ciently small disc {z: |z — r| < r}. In fact, P acts as illustrated in Figure 6.5.1
(which the reader should compare with Figure 1.7.1).

Because of the particularly simple form of Q, we can say more than this.
Suppose that IT is any region that is disjoint from {|z| < 3}, and which is
mapped into itself by Q. Then on I,

Re[Q(z)]1 = Re[z] + 1 — 1/]z — 1] = Re[z] + 4,

so
Re[Q"(z)] = Re[z] + n/2

and Q" — oo on IT (“drifting” to the right). One possibility for IT is the half-
plane {Re[z] > 3}, but it is easy to find a much larger region than this. Now
Q(2) lies in the shaded disc illustrated in Figure 6.5.2, and if z ¢ I, the radius
r(z) of this disc is at most 4. Further, r(z) — 0 as z -» co and this suggests that
we might be able to take IT to be bounded by some parabola. We shall now
show that we can.
Let
IT = {x + iy: y* > 12(3 — x)}.

The boundary of I is a parabola which cuts the x-axis when x = 3, and it is
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easy to see that I1 is disjoint from {|z| < 3}. Writing
z=x+1y, Q@)= X +1iY, 1/z—1)=a+ib,
the expression for Q(z) yields
X=x+1+a Y=y+b
and so for zin 1,
Y2123 —-X)=(y + b — 123 —[x + 1 +a])
=[y* =123 — x)] + b2 + 2by + 12(1 + a)
> 12 - 2|by| — 12]al.
However, as |z| > 3, we have

lal < la + ibl < 1/|z| — 1) < 4
and
lybl < |zIAlzl — 1) < 3.

It follows that if z is in TI, then Y2 > 12(3 — X) and hence so is Q(z): we
deduce that Q maps I1 into itself and so P* — 0 on a(I1). The Julia set of P is
illustrated in Figure 6.5.3 where the black region is o(I).

In order to analyse the situation for a general rationally indifferent fixed
point, we need the notion of petals (which, roughly speaking, play the role of
the region o(I1) in the example above). For each positive t, each positive
integer p, and each k in {0, L, ..., p — 1}, we define the sets

I, (t) = {re': r* < t(1 + cos(p8)); |2kn/p — 0] < n/p}.

These sets are called petals (at the origin) and they are illustrated in Figure
6.5.4 when p = 6. Note that the petals are pairwise disjoint, and that each
subtends an angle 2n/p at the origin (so the total angle subtended at the
origin by all the petals is 2r). We call the line of symmetry of IT,(¢) (the ray
0 = 2kn/p) the axis of I1,.

We come now to the first major result of ‘“is section and in this, we
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Figure 6.5.3. z — z — z%. Reprinted with permission of the American Mathematical
Society.

describe the dynamics of the iterates R” in the petals at a fixed point { where
R'({) = L. By conjugation, we may assume that { =0 and, in addition, we
shall assume that R has a Taylor expansion there of the form

R(2) = z(1 — 2z + bz?P + ¢cz?7*! 4 -..).
Of course, we can always ensure that z?*! has coefficient —1 simply by
conjugating R with a map of the form z +— az: thus the significant part of this

assumption is that there are no terms between z?*' and z?**' in the Taylor series
3

a0

M)
B H\” o)
ETG)]

M)

M4(r)

Figure 6.5.4. Six petals at the origin.
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for R. We emphasize that the role of this assumption is that is enables us to
give an explicit description of the petals; without it, we can only establish the
existence of petal shaped regions which are conformal images of the IT,(¢)
described above.

Despite the fact that our interest centres on rational functions, it is desir-
able to prove the result for general analytic functions, for we can then apply
it to branches of R™!. We now prove

Theorem 6.5.4 (The Petal Theorem). Suppose that the analytic map f has a
Taylor expansion
f(2) = z — zP*! 4 O(z%7*)), 6.5.1)

at the origin. Then for all sufficiently small t:

(a) f maps each petal I1,(t) into itself ;

(b) f"(z) = O uniformly on each petal as n — oo;

(c) argf"(z) - 2kn/p locally uniformly on Tl as n - «c;
(d) 1f(2)| < |z| on a neighborhood of the axis of each petal,
(€) f: 11 (t) - I (¢) is conjugate to a translation.

By (a), the iterates f" are defined on each I1,(t), and (c) implies that for any
z in T,(r), the sequence f"(z) converges to 0 along a path which is asymptotic
to the axis of the petal IT,(¢): see Figure 6.5.5.

THE PrOOF OF THEOREM 6.5 4. First, we sketch the main ideas of the proof. We
consider a small sector S of angle 2n/p at the origin and symmetric about the
positive real axis, and open it out by the mapping z +— z? to a radially cut
disc, the cut being along the negative real axis. Next, we apply the mapping
z — 1/z and so obtain a disc W, centred at co and cut along the negative real
axis: see Figure 6.5.6. We then construct a conjugate g of f acting on W, and
proceed to show that g acts approximately like a translation on some forward
invariant subdomain IT of W (as in Example 6.5.2, IT will be the region to the
right of a parabola). The subdomain IT corresponds under the conjugacy to
a petal, and g: IT - I1 is shown to be conjugate a translation. We proceed
now to develop these ideas. 1

R

Figure 6.5.5. The dynamics on a petal.
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For each positive ry, let ’

S ={re’:0 <r<r,,|0] < n/p}

and
W= {re*:r>1/r§,|0| <n}.

We assume that r, < 1, but later we shall decrease r, so as to satisfy various
other conditions.

The map o: z — 1/z” is an analytic map of the complex sphere onto itself,
and it is also an analytic homeomorphism of S onto W, It follows that there
is an inverse map

ol W-S,

so we can define a function g on W by
9(2) = afo™'(2) = [f(z”"")]7".

This procedure merely replaces the action of f on S by that of g on W and
these maps act according to the mapping diagram

s < w

Co — C,

Our first task is to translate the coefficient structure of f given by (6.5.1)
into corresponding information about g. Now using (6.5.1), a computation
gives the Laurent expansion of [ f(z)]77 as

UIf@P =27+p+ Az + v(2), 6.5.2)
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where A is some constant, and where v is analytic and satisfies
lvz)| < Bl|z|”"', B>0,

say, in some neighbourhood A" of the origin. We now insist that r, is small
enough so that S = A", Suppose now that w is in W: then ¢™'(w) is in S and

g(w) = afo™(w)

=[fo"'w)17?
=w+p+ A/w + 0(w), (6.5.3)
where
|6(w)| = |va™ (w)| < Blo™ (w)|"*" < B/|w|'+ P, 6.54)

The estimates given by (6.5.3) and (6.5.4) are fundamental in all that follows.

Now (6.5.3) and (6.5.4) show that if |w| is large, then g acts approximately
like the translation w +— w + p, and it is easy to see that if « is sufficiently
large, g maps the half-plane {w: Re[w] = a} into itself. However, Example
6.5.2 suggests that we can do better than this and we now show that we can
replace the half-plane by a region IT which is bounded on the left by a para-
bola y.

Choose any K satisfying

K > max{1/r§,3(|A| + B)} > 1 (6.5.5)

(as ro < 1) and let
M= {x+iy: y* > 4K(K — x)}:

then IT is bounded by a parabola, and IT = W: see Figure 6.5.7.
Lemma 6.5.5.

(a) I is forward invariant under g;
(b) Re[g"(w)] — +00 uniformly onII;
(c) g: I1 - I1 is conjugate to a translation.

Lemma 6.5.5 is so closely linked to Theorem 6.5.4 that it is convenient to
merge the proofs of these two results as we proceed.

PROOF OF LEMMA 6.5.5. We write
w=Xx+ iy, gw) = X +iY, Aw +0w)y=a+ib, (6.5.6)
so, from (6.5.3), we have

X=x+p+a  Y=p+b
and hence if w e I,

Y? —4K(K — X) = (y + b)> — 4K(K — x — p — a)
=[y? - 4K(K — x)] + b* + 2yb + 4K(a + p)
> 4Kp — 2|yb| + 4K |al). (6.5.7)
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Figure 6.5.7

Assuming now that w lies in I1, we have |w| > K > 1, and from this, (6.5.4),
(6.5.5) and (6.5.6), we obtain

2|yb| + 4K |a] < 6|w||a + ib| < 6(|A| + B) < 2K < 4Kp.

Using this in (6.5.7), we find that Y2 — 4K(K — X) > 0; hence g(w) e I1, and
this verifies Lemma 6.5.3(a).

To establish Theorem 6.5.2(a), we put 1y = ¢~ '(IT). It is immediate that f
maps I, into itself, and the fact that I, is a petal for a suitable ¢ is simply a
matter of checking that ™' maps the parabola to the boundary of a petal.
This is simplest if polar co-ordinates are used, so we write z = re' (in S) and
w=pe? (in~  where w = 0(z). Then ¢ = —pb and pr? = 1, and as Il is
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expressed in polar co-ordinates by
T = {pe'®: 2K < p(1 + cos @)},
it is immediate that
M, = {re’: 2Kr? < 1 + cos(pb)}.
Next, we consider Lemma 6.5.3(b). Writing I1 + ¢ for the set obtained by
translating IT a distance t to the right, so
M 4t={x+iyy>>4K(K +t — x)},

the proof of (a) can easily be modified to prove the stronger statement that g
maps IT + ¢ into IT + (¢t + p/2). Indeed, when z e IT + ¢, we can mimic the
proof of (6.5.7) and obtain

—4K(K +t + p/2 — X) > 2Kp — {2|yb| + 4K]a|) > 0,

and this shows that g(IT + ¢) = IT + (¢t + p/2). It now follows that if z e IT,
then g"(z) € I1 + np/2, and as a consequence of this, |g"(z)| > \/; on I, for

(geometrically) IT + np/2 is disjoint from the disc {|z| < ﬁ} or (analytically)
X2 4+ Y2>X? 4+ 4K(K +np/2 — X) = (X — 2K)? + 2npK > n.

This proves Lemma 6.5.5(b), and also Theorem 6.5.4(b) when k = O (virtually
the same proof holds for the other petals, and here and elsewhere, we omit the
details).

Next, we verify Theorem 6.5.4(c). Now (6.5.3) suggests that as a first ap-
proximation, g"(w) = w + np, but we need a more delicate estimate of the
asymptotic nature of g"(w) as n — co. From (6.5.3) we have

g (w) = g(g*w) = g"(w) + p + A/g"(w) + 0(g*w), (6.5.8)

and by repeated use of this, we obtain

n—1

g"W)y=w+np + A(Z ) + Z O(g*w). (6.5.9)

g*(w)

We now take any compact subset Q of IT and we shall use C,, C,, ..., to
denote positive numbers which depend only on Q: for brevity, we shall implic-
itly assume that in any expression involving the C;, the point w is necessarily
in Q. For example, if w e I1, then

| Afw + 0(w)| < (4] + Bylwl < (14] + BYK < 4,
SO
Re[g(w)] = Re[w] + p — |A/w + O(w)| > Re[w] + p/2.

From this, we obtain
Re[g"(w)] > Re[w] + np/2

and so for all sufficiently large n,

lg"(w)| = Cyn. (6.5.10)
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Next, this with (6.5.4) shows that for all n,
10(g"w)l < Blg"(w)|'* 7 < Cy/n! *1H/P (6.5.11)
and, finally, from (6.5.9), (6.5.10) and (6.5.11), we obtain
lg"(w) — np| < C4logn. (6.5.12)

This inequality controls the “vertical drift” of g"(z) as n — o0, and it is evident
from this that arg(g"w) — 0 locally uniformly on IT as n — . As go = of we
have g"¢ = af ", and so if w = a(z), then

9" WL =1
and this yields

arg(f"z) = —(1/p) arg(g"w) -0

on ITy(t). This completes the proof of Theorem 6.5.4(c).

Next, Theorem 6.5.4(d) is a direct consequence of Lemma 6.5.2.

It remains to prove Lemma 6.5.5(c) (for Theorem 6.5.4(e) follows immedi-
ately from this) and to do this we continue to examine the asymptotic nature
of g"(2). As a rough guide to how we should proceed, we replace g*(w) by kp
in (6.5.9) (for k = 1) and obtain

g"(w) = w + np + (4/p) log n + O(1),
and in view of this, we define functions u, by
g"(w) = np + (A/p) log n + u,(w), (6.5.13)
and proceed to prove
Lemma 6.5.6. u, converges locally uniformly on I1 to some function u that is
holomorphic and univalent on I1.
Assuming this for the moment, we have
(n + U)p + (4/p) log(n + 1) + upi (W) = g"*' (w)
= g"(gw)
= np + (A/p)log n + u,(gw),
and after simplifying this and letting n tend to co, we obtain
u(w) + p = u(gw). (6.5.14)

As f is injective near the origin, g is injective on IT (if K is chosen large
enough); hence so is g”, and u, also. Hurwitz's Theorem now implies that u is
either injective or constant, and it is clearly not constant as (6.5.14) holds with
p # 0. This shows that the restriction of g to IT is conjugate to the mapping
2+ z + p of u(IT) into itself so, subject to proving Lemma 6.5.6, we have
completed the proofs of Lemma 6.5.5 and Theorem 6.5.4. O
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THE PROOF OF LEMMA 6.5.6, From (6.5.13), we have
i1 (W) — up(w) = [g"' (W) — g"(W)] — p — (4/p) log(! + 1/n),
which with (6.5.8) yields
s (W) — 1,(W) = A/g"(W) + 8(g"w) — (A/p) log(1 + 1/n)
= A[1/g"(w) — 1/np] + 8(g"w) + (4/p)[1/n — log(l + 1/n)].
The proof thus reduces to showing that each of the series

> |1/g"(w) — 1/np], > 18(g"w)l, Y llog(l + 1/n) — 1/n| (6.5.15)

n

converges uniformly on any compact subset Q of I,

The convergence of the second series is a direct consequence of (6.5.11), and
the convergence of the third series is straightforward, for an application of the
Mean Value Theorem to x - x — log(l + x) on [0, 1/n] shows that

llog(1 + 1/n) — 1/n| < 1/n?,
Finally, from (6.5.12) with the aid of (6.5.10), we obtain
11/g"(w) — 1/np)| < (Cs/n®) log n;

this gives the convergence of the first series in (6.5.15) and so completes the
proof of Lemma 6.5.6 and, of course, Theorem 6.5.4. O

We recall that Theorem 6.5.4 has only been proved under the assumption
(6.5.1) on the coefficients of R. The next step is to prove the corresponding
result for functions f which satisfy f(0) = 0 and f'(0) == 1, but not the condi-
tion (6.5.1), and for this we need the following result.

Theorem 6.5.7. Suppose that f is analytic near O with
f(2) =z 4+ azP™' + O(z?*%), a#0,
as z —0. Then f is conjugate near O to a function

F(z) = z — zP*! 4 O(z2?7rY),

With this available, the existence of petals (and the dynamics of f* on these
petals) for analytic maps of the form

f(2)=z + azP*!' 4+ ...,

follows immediately. Indeed, by Theorem 6.5.7, such an f is conjugate to
some F near the origin, and Theorem 6.5.4 is applicable to F; thus we can
define the petals for f as the conformal images (under the conjugating map)
of the petals for F. We shall not give an explicit statement of this result, and
it suffices to remark that the conclusions of Thec m 6.5.4 are valid (using
Lemma 6.5.2 to justify (d)) in these more general ¢, .amstances except for the
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fact that we no longer have an explicit expression for the petals. We do,
however, know that each petal for f subtends an angle 2n/p at the origin, and
that the petals are pairwise disjoint (if taken small enough) for the function
conjugating f to F is conformal there.

THE Proor OF THEOREM 6.5.7. First, by conjugation with a suitable map
z +> Az, we may assume that a = 1. The proof proceeds by induction over a
finite number of steps, starting with the given f and conjugating this to f,,
f2, ..., in turn until the Taylor series has the required form.

Suppose that we have reached a stage (or we are at the initial stage) where

ﬁ((Z)= z +Zp+l + bzp+r+l + e

b #0and 1 < r.If r > p the desired conclusion holds, so we may assume that
I <r < p. Now define
g(z) =z + gz,

where 8 == b/(p ~ r), and conjugate f, with g to obtain the function
Jewr = gfkg_l~

We can now save a little work by noting that f;,, and f, have the same
number of fixed points at the origin (Lemma 2.6.1), thus f, ., must be given by

fn@=z+ Y A"
m=p+1

We now use the fact that f,.,g = g¢f,, and express both sides as power
series, working modulo addition of functions which have a zero of order at
least p + r + 2 at the origin (alternatively, adding the O(z?*"*2) at the end of
every line). With this convention, we have

afi2)=( + 2Pt 4 pzrtrtl )+ Bz + 2P+l ppptrl '”)r+l
=z + 2 + 274+ [b + B(1 + r)]zP!
=z + Bz + 27" + (1 + p)z*tH,

and

fnd@ =+ p) + T Aule +

m=p+1
Still working modulo functions of order z#*"*2 at the origin, we now have
0
Zp+l + B(l + p)zp+r+l — Z Am(Z + BZrH)m
m=p+1
Ap+lzp+l + - F Ap+r+lzp+r+l

+ A,.8(p + Dzr*rtt,

i

and from this we see that

o1 = 1’ Ap+2 == Ap+r = Ap+r+l =0,
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It follows that f, is conjugate (near the origin) to the map
Sen(@ =z +27 + 0@,

and this is the general inductive step.

It may be that the series for f,,, terminates as a polynomial of degree less
than 2p + 2, and if this happens the proof is complete, Otherwise, the argu-
ment given above remains valid while r < p, and so will be valid up to and
including the case r = p — 1, when p + r + 2 = 2p + 1. We deduce that f is
conjugate to some map

2>z 4 2Pt 4 Oz,

which itself is conjugate (by a map z +— Az) to a function of the form F. The
proof is complete. O

Theorems 6.5.4 and 6.5.7 describe the action of the iterates of any map of
the form
@)=z 4+ az?' + -

on the p petals of f at the origin. We now consider the case when f is a
rational map R and obtain information about the relationship of the petals
to the Fatou set of R.

Theorem 6.5.8. Let R be a rational map and suppose that
R(z) =z + az?*' 4 ..., a#0,

near the origin. Let I1; be the petals of R and, for each j, let F; be the component
of F(R) that contains I1;. Then:

(a) R%(z) —0 and arg R"(z) - 2nk/p on F,; and
(b) Fy...., F,_, aredistinct components of F(R).

The geometric picture, then, is as follows. The rationally indifferent fixed
point 0 lies on the boundary of p components F, of F(R), and each F, contains
a petal IT; which makes an angle 2n/p at 0. Next, R maps each F, into itself,
and R" - 0 locally uniformly on each F, in such a way that for any z in F,,
R"(z) — 0 on a path which is asymptotic to the axis of the petal IT,. It is an
immediate consequence of this that different petals lie in different components
of F(R). In addition, this convergence shows that for any z, R"(z) ultimately
lies within IT,, so the consecutive inverse images of the petal I, in F, expand
to fill the entire component F,.

Finally, we note that a rationally indifferent fixed point may also lie on the
boundary of components of F other than the F;: indeed, if P(z) =z + --- is
any non-linear polynomial, then the origin is not only on the boundary of
each of the p components F;, but it is also on the boundary of the completely
invariant component F,, of F which contains co (and which is distinct from
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v
1

Figure 6.5.8. Fractal image reprinted with permission from The Beauty of Fractals by
H.-O. Peitgen and P. H. Richter, 1986, Springer-Verlag, Heidelberg, New York.

each F,; because P" - o0 on F,). As F,, is connected, it must therefore contain
a thin “tongue” which stretches to the origin between the petals: see Figure
6.5.8 (where p = 5) and Figure 6.5.9 (where p = 3) in which the petals are
coloured black.

Theorem 6.5.8 is a fundamental result and we shall give several proofs of
it. In each of these the specific shape of the petals is irrelevant so when we
refer to Theorem 6.5.4, strictly speaking we mean the (unstated) version of this
after it has been modified in the light of Theorem 6.5.7.

/f’

Figure6.5.9. z +— >z + z°. Reprinted with permission of the American Mathemat-
ical Society.
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THE FIRST PROOF OF THEOREM 6.5.6. First, we find open neighbourhoods A"
and 4] of the origin so that R is a homeomorphism of 4" onto .4, with
inverse denoted by R™'. Next, we choose petals I, ..., I1,_, for R, and petals
Zo, ..., X,y for R, all lying in A" U 4. Finally, let S, ..., S,_, be sectors
about the axes of (and lying within) Z, ..., X,_, respectively (as described in
Lemma 6.5.2) such that on S;, |[R™!(z)| < |z|. Clearly, for some positive ¢,

{lzl <t} = (U ) Ul §) = ¥ U

Now let F; be the component of F(R) which contains IT, and take any z in
F,. As 0 € J(R), we have R"(z) # 0, and by Vitali’s Theorem, R"(z) -+ 0 on F,
(as R" — 0 on I1,). It follows that for some n,

0 < |R"!'(2)] < |R"(2)] <t

As R maps R"(z) (in #") to R '(z) (in .#}) we must have R"!(R"*!(z)) = R"(2)
and so we have
IR™!(2)| < |R(2)] = |[RT'(R™(2))I.

This means that R"*'(z) is not in any S;; thus it is in some I1; and we have
proved that
F, = DO U UD}J—I’

where.
D; = {z e F,: for some n, R*(z) e I;}.

Of course, the sets D; are open subsets of F;, and they are pairwise disjoint
because the I; are disjoint and each is forward invariant. It follows that F, is
the disjoint union of the open sets D; and as F, is connected, all but one of the
D; are empty. Now I1, = D, so D, # ¥, thus (i) F, = Dy, and (ii) for j # k,
D; = (. Now (i) proves Theorem 6.5.8(a), and (ii) proves (b) for if F;, were to
contain IT; with j # k, we would have I1; = D, and so D; # (¥, contrary to (ii).
The proof is complete. ]

The main idea in the next proof of Theorem 6.5.8 will be used again in §7.3.

THE SECOND PROOF OF THEOREM 6.5.8. We consider the component F,, of F(R)
that contains the petal I, and, after replacing R by a conjugate function, we
may assume that oo lies in dFg: this means that the functions R" (which map
F, into itself) do not take the values O and oo in F,. Now take any z, in F,,
and any z, in the petal [T, and construct a subdomain V of F, whose closure
lies in F,, and which contains z,, zy and R(zy): in particular, R(V) meets V.

Next, as R’(0) = 1, there is a neighbourhood .4~ of the origin on which R
is injective. In addition, R" - Qlocally uniformly on Fy, so there is an integer
N such that W, defined by

W = R¥(V)U RV (V)URN* (1)U -,

is a forward invariant, connected, subdomain of #  F,. Nowlet R¥(z,) = {,



§6.5. Rationally Indifferent Cycles 127

(this lies in [T, » W) and for n > N, define the functions ¢, on W by

@n(2) = R*(2)/R"({,)-
We prove

Lemma 6.5.9. {¢,} is normal in W.

PRrROOF. First, ¢, does not take the values 0 and oo in W (because R” does not).
Next, as W < A", R is injective on W, and as R(W) = W, so too is each R™:
thus each ¢, is injective on W. Finally, as ¢,({,) = 1, none of the ¢, takes
any of the values 0, 00, 1 in W — {{,}, and so certainly, {¢,} is normal in
W — (o).

To prove that {{,} is normal in W, we need only prove that it is normal
near {,. By normality, we can find a sequence ¢,, which converges locally
uniformly to some function ¢ on W — {{,}. Now choose a closed disc centred
at {,, and lying in F;, and let C be its bounding circle and D its interior. Now

as nj - 00,
L ) 1 @(w)
o) = o j w—z"" j woz ™

and this convergence is uniform near {,,. The integral on the right is analytic
in D with value 1 at {, and, by definition, it is ¢(z) when z # (. It follows that
¢, now converges locally uniformly to ¢ throughout W, where ¢(z,) = 1,
and the proof of the lemma is complete. ]

We continue with the second proof, and we work with the function ¢ used
in the proof of the lemma. As the functions ¢, are injective in W, Hurwitz’s
Theorem implies that ¢ is either univalent or constant in W. Now for all n,

R*R R(R"z) — R(O
Pu(R(2) = fp..(Z)< RE(Z?> = ¢al2) (A(‘Enz_;fo*('))

and letting n — co through the sequence n;, we obtain

@(Rz) = R'(0)p(2) = (2)

This means that ¢ is not univalent in W — {{,} (for W is forward invariant
and R" — 0): thus ¢ is constant and so for all zin W,

@(z) = p(o) = 1.
We deduce that as n — oo in (n;),
R"(z0)/R"(£o) = 1,
and so given any positive ¢, for sufficiently large n in (n;),
IR"(20) — R™(Lo)l < &|R"(zo)|.

This means that the angle subtended at the origin by the line segment
[R"(zp), R*({ _ tends to zero as n — o0 in (n;), and as R"(z,) approaches the
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origin asymptotically along the axis of I, the same is true of R*({,). This
proves Theorem 6.5.8(a), and (b) follows easily as before. ]

Our third proof of Theorem 6.5.6 is only sketched, and it is included simply
to give more geometric insight into these ideas.

THE SKETCH OF A THIRD PROOF OF THEOREM 6.5.8. We begin by proving (b)
in the case p = 2 (it will be evident that only trivial modifications are required
when p > 3, and there is nothing to prove when p = 1). By conjugation, we
may assume that a = — 1, and as p = 2 there are two petals I, and IT, of R
whose axes lie along the positive and negative parts of the real axis respective-
ly. Next, let .4” be a disc centred at the origin whose diameter is less than the
6 described in Theorem 2.3.4, and on which R is injective.

We argue by contradiction, so we assume that I1; and I1, lie in the same
component, say F,, of F(R) and then construct a closed curve y which lies
entirely in Fy U {0}, and which is as illustrated in Figure 6.5.10, the essential
point being that y contains some small real segment (—¢, ). Observe now that
R" - 0 uniformly on y: indeed, the convergence is uniform on the segments
(—¢, 0) and (O, £) of y (for these lie in the petals), and also on the remainder of
y (which is a compact subset of F, on which R" - 0).

Because of the uniform convergence of R” to zero on y, we may relabel
some R™(y) and y and so assume:

Figure 6.5.10
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(1) each closed curve R*(y), n > 0, lies in A"

Further, by replacing y (which now lies in .47) by a collection of its subarcs,
we may assume:

(11) y is a simple closed curve,

and finally, because of the known nature of the convergence on the petals, a
minor modification to our new y enables us to retain the assumption:

(1) y contains some small real segment (— ¢, &).

With these, it follows by induction that every R"(y) is a simple closed curve in
A" with interior D,, say. Also, by Theorem 2.3.4, R maps each D, into D, ,
and as R" — 0 uniformly on y, this shows that R" — 0 uniformly on both y and
its interior Dy.

Finally, R™! exists and is injective on some neighbourhood of the origin,
and it has two petals whose axes lie along the positive and negative parts of
the imaginary axis. It follows from (i1i) that if these petals are taken small
enough, then one of them, which we denote by X, lies inside D, (as illustrated
in Figure 6.5.10). Now take any w in X. As R™! maps Z into itself, R™"(w) is
also in X, and so

sup{|R"(2)|: z € Do} = |[R"(R™"(W))| = |wl:

as this implies that R” does not converge uniformly to 0 on Dy, it is the desired
contradiction and (b) follows.

Finally, we use the hyperbolic metric to prove Theorem 6.5.8(a) when
p > 2 (and we only sketch the main ideas). As Theorem 6.5.8(b) holds, it
follows that near the origin, the component F, of F which contains I1, is
approximately a wedge W of angle 2n/p (that is to say, for some small r and
small ¢, there is some component of F, N {|z| < r} which contains a small
sector of angle 2n(1 — &)/p, and which is contained in a sector of angle
2n(1 + €)/p). Because of this, the hyperbolic metric p, of Fj, is, near the origin,
approximately the same as the hyperbolic metric for the wedge W (see, for
example, Appendix IV and [20]).

Now take any point z in F, and any z, in the petal [1,. As R maps F,
onto itself, R does not increase py-distances (this is the general version of the
Schwarz-Pick Lemma) so for all n,

Po(R"z, R"z5) < py(z, 2o) = d.

say. Now R"(z,) — 0 asymptotically along the axis of the petal, and so we
deduce that as n — o0, the points R"(z) ultimately approach 0, staying no more
than a py-distance, say 2d, away from the axis of Il,. If p, were to be replaced
here by the hyperbolic metric p, of W, this would mean that the points R"(z)
approach the origin within a strictly smaller wedge that W, and hence ulti-
mately lie within the petal I1,, and the fact that the metrics p, and p, are
asymptotically the same as the origin is approached means that the same is
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true for the metric p,. We omit the details, and this completes our discussion
of Theorem 6.5.8 and its proofs. 1

There is still one more result that we must consider before we can give the
Petal Theorem in its full generality, namely the extension of Theorem 6.5.8 to
the case when R(0) = 0 and R'(0) is a root of unity other than 1. We assume,
then, that

R(z) = az + bz?*' 4+ ..., (6.5.16)

where a # | but a = exp(2nir/q) where r and g are coprime (so 2" = | when
n = q but not for any smaller n). In this case, R? is of the form

R(z)=z+cz™' + -+

for some ¢, so R? has ¢t petals at the origin. This means that there are compo-
nents F,, ..., F, of F(R?), and hence of F(R), each one containing a petal of
R4. As R maps each F; to some component of F(R) which makes an angle 2n/t
at the origin, we see that R must act as a permutation of the set {F,, ..., F,}.
Further, as a = exp(2rir/q) with (r, ) = 1, we find (from Theorem 6.5.4 ap-
plied to R7) that R (viewed as a permutation of the F)) is a composition of,
say, k disjoint cycles each of length ¢, and it follows that ¢t = kq. Thus, given
R in the form (6.5.16), there is an integer k such that R has kq petals at the
origin, these dividing naturally into k sets of 4 petals such that R acts as a
cycle of length g on each such set. We shall not give a formal statement of this
as it is a special case of our final version of the Petal Theorem which follows
very shortly.
Observe that if R is given by (6.5.16), then

RYz)=a"z + -+,

so if g does not divide n, then R" has only one fixed point at the origin. If ¢
does divide n, say n = mg, then

Ri(z)=z +cz'"' + -
)

R™(z) = (R")"(2)

=z+meztt 4.

and R"hast + 1 (= kq + 1) fixed points at the origin.

We turn now to the final and most comprehensive version of the Petal
Theorem. Let {{,, ..., {,} be a rationally indifferent cycle of R, and write

Cn+i = R"(Ci)

for all n, n = 1, so that {, = {; if and only if i = j mod m. Essentially the only
difference between this case and the previous one is that now, R maps each
component of F(R) that contains a petal at {; to some other component con-
taining a petal at [, ,.
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Of course, the previous version applies to the map R™ at each point {; of
the cycle, so we now put S = R™ and suppose that

S(z) = R™(2)
={; + expQuir/g)z — L) + b(z = )P + -, (65.17)

where (r, g) = 1. Note that the coefficient exp(2rir/q) is independent of the
choice of j here as it is the multiplier of the cycle. In keeping with the previous
case, we also assume that

S$9(z) = R™(z2)
=G+ +ez—0FT 4+, (6.5.18)

where (as before, but using § instead of R) t = kq for some k. Note that §¢
acting near {; is conjugate (by the branch of R™"' which maps {;,, to ;) to
RS?R™' (= §7) acting near {;,,, and so 5% has the same number of fixed points
at{; asit has at {;,,: this proves that ¢ in (6.5.18), and hence k also, is indepen-
dent of the choice of {;.

Now S has gk (=1t) petals at each {;, hence associated with the cycle
{{y, ..., {n} are mkq components F,, ..., F,, of F(R). The action of R is to
map F,, say, with a petal at {,, to F,, say, with a petal at {,, then F, to F;
with a petal at {5, and so on until F,,,, with a petal at {,,,, (= {,). However,
F,. # F, (unless g = 1) for § maps F; to F,,,. In this way, R acts as a
permutation of {F,, ..., F,u,} as the product of k cycles each of length mq.
Thus we have the next (and final) version of the Petal Theorem.

Theorem 6.5.10. Let {{,, ..., {,.} be a rationally indifferent cycle for R, and let
the multiplier of R™ at each point of the cycle be exp(2nir/q), where (r, q) = 1.

Then there exists an integer k, and mkq distinct components F\, ..., F,, of F(R)
such that at each {;, there are exactly kq of these components containing a petal
of angle 2rt/kq at ;. Further, R acts as a permutationt on {Fy, ..., F,u,}, where

T is a composition of k disjoint cycles of length mq, and a petal based at {; maps
under R to a petal based at {;,,.

More information can be found in §6.10, especially Theorem 6.10.3 and
(6.10.3).

We end with a count of the number of fixed points of R in the cycle de-
scribed in the Petal Theorem: this will be needed in §6.8, and it is convenient
to prove it here while the relevant ideas are still fresh in the reader’s mind. We
recall that g|n means that g divides n, while g}n means that it does not.

Theorem 6.5.11. Suppose that the hypotheses of Theorem 6.5.10 and also (6.5.17),
(6.5.18) hold.

() If m}n, then R" has no fixed points at (;.
(i) If m|n bur-mq}n, then R" has one fixed point at {;.
(iti) If mq|n,. 1 R" hast + 1 fixed points at ;.
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Prook. First, (i) is clear for if m{n, then R" does not fix any {;. Now suppose
that m|n and write n/m = ug + v, where 0 < v < q.

To prove (i1) we assume that mgfn; thenv #0sol <v < gq. As(r,q) =1,
this means that rv/q is not an integer so exp(2nirv/q) # 1. We deduce that

R"(Z) - Suq+v(z)
= {; + expQnir[ug + v]/g)(z = {;) + -
= Cj + exp(2nirv/q)(z — C,) + -,

and so (ii) follows,
Finally, if mq|n, then v = 0 s0 n = umg, in which case

R"(z) = (§9"(2)
=0+ (=) +ucz =) +
which gives (i1i). -

EXERCISE 6.5

1. Investigate (from first principles) the dynamics of the iterates of z + z(1 — z") near
the origin.

2. Let P(z) = —z + z?**, where p is a positive integer. How many petals does P have
at the origin?

3. Use the method given in the proof of Theorem 6.5.7 to prove that the number of
fixed points of an analytic map f at a fixed point is conjugation invariant.

4. Consider the function g defined in the proof of Theorem 6.5.4, and let
T = {z:z| > R, |arg z| < ¢},

where ¢ € (0, /2) and R is chosen large enough so that £ < I1. By applying the
Cosine Rule to the triangle with vertices 0,w and w + p,show that if wis in X then

(Iw +pl = Iw(Iw + pl + [wl) = 2p|w| cos ¢.

Deduce that |w| < |g(w)| on X, and interpret this in terms of f.

§6.6. Irrationally Indifferent Cycles in F
We recall an earlier definition,

Definition 6.6.1. An analytic map f is linearizable near a fixed point { if f is
conjugate to

Jorzm {+(z=-0f©)

in some neighbourhood of {: explicitly, if there is some neighbourhood N of
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{, and some map g which fixes {, such that f is analytic in N, g is analytic and
injective in N U f(N), and gfg~' = f, on g(N).

We have seen that a rational map R is linearizable near each attracting,
and each repelling, fixed point. Near an indifferent fixed point {, R is or is not
linearizable depending only on whether { is in F or J, and this is our next
result.

Theorem 6.6.2. Let { be an indifferent fixed point of a rational map R. Then R
is linearizable near { if and only if { lies in F(R).

PROOF. First, we assume that R is linearizable near an indifferent fixed point
{,s0 gRg™! = ¢, where ¢ is a Euclidean rotation about {, and where g fixes,
and is analytic near, {. For each sufficiently small disc D centred at {, ¢(D) =
D, so R maps g ! (D) onto itself. We deduce that {R"} is normal in g~'(D), and
so{1isin F.

We now assume that { € F, and prove that R is linearizable near {. We may
assume that { = 0, so there is a neighbourhood of the origin on which {R"}
is equicontinuous and from this, we see that there i1s some neighbourhood, say
N, of the origin on which for all n,

IR"(2)| = |R*(z) — R"(0)] < 1. (6.6.1)
Now write a = R'(0), so |«| = 1, and for n > 1, define the functions T, by
T.(z) = [z + R(z)/ot + --- + R '(z)/«"" " ]/n.
Note that as |«| = 1 and (R*)'(0) = «*, we have T,(0) = 1 and
I T(2)| < 1 (6.6.2)
on N. The functions T, satisfy
(n/))T,(Rz) + z = (n + 1)T,4,(2)
= nT,(2z) + R"(2)/o",
and using this, || = 1, and (6.6.1), we see (after dividing through by n) that
T.(Rz) —aT,(z) -0 (6.6.3)

uniformly on N as n — co.

Next, (6.6.2) implies that {T,} is normal in N and it follows that as n - oo
on some sequence of integers, T, converges locally uniformly on N to some
analytic function g which, by (6.6.3), satisfies

g(Rz) = ag(z)

there. Because T,/(0) = 1, we also have g'(0) = 1 so g is not constant, and this
completes the proof. ]
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With reference to Theorem 6.6.2, we know that there can be indifferent
fixed points of R in J(R) (for example, rationally indifferent fixed points), and
we shall soon see that there can be indifferent fixed points in F(R). Ignoring
(for the moment) this question of existence, we proceed to characterize the
indifferent fixed points in the Fatou set by a method which gives an alterna-
tive proof of Theorem 6.6.2. We prove

Theorem 6.6.3. Let R be a rational map of degree d, d > 2, and suppose that {
is an indifferent fixed point lying in some component F, of F(R). Then F, is
simply connected, and R: F,— Fy is analytically conjugate to a rotation of
infinite order of the unit disc A.

Any component Fy of this type is called a Siegel disc after C.L. Siegel who,
in 1941, was the first to establish their existence (see [89] and [90]). We shall
verify their existence here, and for this we need the following two results.

Theorem 6.6.4. Suppose that || = 1, and that for some positive M and k, and
all positive integers n,
1]a" — 1] < Mn*. (6.6.9)

Then any analytic function f with Taylor expansion
fle) = az + ayz? + -~

is linearizable near the origin.

Theorem 6.6.5. Let S be the set of numbers o which satisfy |a| = 1 and (6.6.4)
for some M and k, and all n. Then S has measure 2.

These imply the existence of Siegel discs, for Theorem 6.6.5 shows that
there is some « in S, and Theorem 6.6.4 then implies that P: z — az 4 2% is
linearizable near the origin. It follows from Theorem 6.6.2 that 0 € F(P) and
finally, by Theorem 6.6.3, that the origin is the centre of a Siegel disc for P.
Much work has been done to find necessary and sufficient conditions on a for
f to be linearizable and we refer the reader to [55] for more details.

The remainder of this section consists of the proofs of Theorems 6.6.3, 6.6.4
and 6.6.5: of course, the proof of Theorem 6.6.5 has nothing to do with itera-
tion and involves only measure theory.

THE PROOF OF THEOREM 6.6.3. By conjugation we may assume that { = 0 so,
near the origin,
R(z) = az + bz* + -,

where |a| = 1. Further, as rationally indifferent fixed points are in J(R), we see
that a" # 1 for any positive integer n.

As J is infinite, the universal covering space o | is the unit disc A (see
Appendix IV to this chapter); thus there is an analytic map (the universal
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vV
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n(V)
Figure 6.6.1

covering map) n of A onto F, which is locally injective on A with n(0) = 0. We
now choose a neighbourhood V of 0 on which = is injective and let 7, be the
restriction of = to V with inverse ny': (V) — V. By continuity, there is a small
neighbourhood N of the origin which is mapped by Rz into (V) so we can
create the function

S =(ny) 'Ru: N = A,

where, of course, nS = Rr in N: see Figure 6.6.1.

The properties of the universal covering map = ensure that analytic contin-
uation of § is possible over every curve in A, and as A is simply connected,
the Monodromy Theorem guarantees that this continuation (which we con-
tinue to denote by S) is a single valued analytic map of A into itself. Near the
origin,

nS = Rm, (6.6.5)

and so, by analytic continuation, this holds throughout A.

We are interested in two consequences of (6.6.5). The first of these is
§'(0) = a, and as |a| = 1, Schwarz’s Lemma now tells us that S(z) = az. We
now combine *his with the second consequence of (6.6.5), nnmely nS" = R"x,
and so obtair.

n(a"z) = R"n(2). (6.6.6)
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We denote the cover group of F, by I, so F; is conformally equivalent to
the quotient space A/T". We shall show that (6.6.6) implies that I" is the trivial
group: this then implies that 7 is a homeomorphism from A onto Fy, and then
R is conjugate to the rotation S of A by the relation R = n™' Sz as required.

We have only to show that I is trivial, so take any y in I" and put w = y(0).
Then, as ny = y, we have

n(a"w) = R"n(w) = R"ny(0) = R"n(0) = 0.

Now as a” # 1 for any n, the closure of the set {a"} is the unit circle and so
by continuity, m(e*w) = 0 for all real t. As 7 is not constant, this means that
w = 0, and so every element y of I" fixes the origin. To conclude the proof, we
recall the basic fact that (in the general situation) the non-trivial elements of
any cover group I” have no fixed points in A: thus I is the trivial group, and
the proof is complete. O

Next, we consider Theorem 6.6.4: the proof that follows is taken from
Chapter 3 of [90] (and differs from Siegel’s original proof in [89]), and as the
proof is rather long, we give a summary of it first.

A SUMMARY OF THE PROOF OF THEOREM 6.6.4. We start with an analytic
function

f(@) =z + ayz?+ -+, 6.6.7
where o € S, so there is some positive constant C (= Mk!) such that for all n,
1/]a" — 1] < (C/kY)n*. (6.6.8)

Our objective is to construct a function
o@)=z + byz2 + -, 6.6.9)
which is analytic, and which satisfies
¢~ fo(2) = az,

in some neighbourhood of the origin. Given f as in (6.6.7), we create the
formal power series (6.6.9), and write

f(2) = az + F(z), o(z) = z + D(2), (6.6.10)

so F and ® are power series starting with a quadratic term. In terms of these,
the relation fo(z) = ¢(xz) becomes

O(xz) — a®(z) = F(p2),

which we now consider as an equation in the unknown function ®. To pro-
ceed, we replace this equation by the similar, but simpler, equation

®O(az) — ad(z) = F(2), 6.6.11)

and then use this to define ®, and hence ¢, as a formal series about the origin.
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In fact, it is easy to see that this series converges on some neighbourhood of
the origin, and we are then back in the realm of analytic function theory.

The proof now proceeds by an iterative scheme. Having constructed ¢
from f by means of (6.6.11), we put g = ¢~ fo, and define the generic step of
the iterative scheme as f +— g. Of course, if f(z) = az, then F =0, ® = 0 and
¢(z) = z, so the map z — az is a fixed point of the process f+— g, and this
suggests that the proof can be completed by a contraction argument (as in the
proof of the Contraction Mapping Theorem).

Unfortunately, if this process is iterated to produce functions f,, where

fO = f’ f;l+l = (P_lf,.(P,

the domains of analyticity of the £, shrink to a single point as n — co, and the
proof collapses. To overcome this, we perturb the conjugating map ¢ at the
n-th stage to produce a new map ¢,, and so produce sequences ¢, and f,,
where

fos1 = 07 fo00
With the appropriate definition for the ¢,, this overcomes the difficulty de-

scribed above, and a contraction argument then leads to the existence of a
function ¢ satisfying ¢ ~'fp(z) = az. We now give the formal proof.

THe PROOF OF THEOREM 6.6.4. We start with the analytic function f given by
(6.6.7), where o satisfies (6.6.8), and the function F given by (6.6.10). Note that
(6.6.8) implies that « is not a root of unity: also, we may assume that C > 1.

As described above, we define the formal power series ¢ given in (6.6.9) by
the relation (6.6.11), and we note that as (6.6.11) is equivalent to

(a" — a)b, = a,, (6.6.12)

this does indeed define each b,. Further, the relations (6.6.12) and (6.6.8) show
that the radius of convergence of ¢ is not less than that of f. Thus ¢ is analytic
in any disc centred at the origin in which f is, and near the origin we can
define the analytic function g by

9(2) = 7' fo(2) = az + G(2),
where G(z) = O(z2) as z - 0.

The first step in our iterative scheme is f — g (or, equivalently, F — G)
and we must now estimate |G'(z)| in terms of | F'(z)| through the intermediate
function |®'(z)|. First, we have

Lemma 6.6.6. Suppose that f and ¢ are analytic in {|z| < r}. Then for |z| <r,

r k+1
|'(2) < C|IF|l (——) ,
r—lz|

where |[F'|| = supy, <. |F'(2)].
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PROOF. First we estimate a,, then b,, and finally |®'(z)|. Applying Cauchy’s
Integral Formula to h (= F'), we have
m—l)o '
_IO1 I

(n—1)

rn—l ’

and this with (6.6.8) and (6.6.12) (and |a| = 1) yields

Cln — D¥IF|

Inbal < ==

It follows that for |z| <r,

|P'(2)| < ; Imby,| 1z

et £ (7)(4Y
<ciFy ¥ (m . k) @)m

r k+1
= CI|IF|l (—r — |2|>

as required. O

Our next task is to investigate where g acts and to do this, we suppose that
the positive numbers 4, § and r satisfy:

(1
2
3
4
Note thatas C > 1 and § < 1, we have 0 < 6 < 8 and so for |z| < r,

|F(z)] < 6|z| < Or.

f (and hence ¢) is analytic in {|z| < r};
0<%

Cs < 6+,

if |z] < r, then |F'(z)] < &.

— o — —

To describe where g acts, we introduce the nested sequence of discs
Do > D, > > Dy,

where
D, = {z:|z| < r(1 — mB)}.

We then have

Lemma 6.6.7. The maps ¢, f and ¢! act according to the scheme

D, 5 D,5D,% D,
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PRrooF. First, our assumptions (1)—(4) together with Lemma 6.6.6 imply that
if ze D, then
|®'(z)] < C8/8%*! < B, 6.6.13)

and hence that |®(z)| < 0|z|. It follows that for z in D,,
o) <|z] + |P@)| < |z](1 + 6) <r(l —40)(1 + 6) < r(1 — 30)

so ¢ maps D, into D,.
Next, a similar argument holds for f, for if z € D5, then (as 6 < 6) we have
|F(z)] < 0|z], and so

[f(2)] <lz] +|F(2)| <r(1 — 36)(1 + O).
Finally, suppose that ¢(z,) = ¢(z,), where z, and z, are in D,. Then
|2y — 23] = [@(2;5) — ®(z,)] < O]z, — z,]

and as 0 < 1 we have z; = z,. This shows that the restriction of ¢ to D, is a
homeomorphism of D, onto a domain whose boundary lies in ¢(éD, ). How-
ever, on dD,,

@) = |2| - [®@)] = |2I(1 — 6) = (1 — 6)* > r(1 — 26),

so D, < @(D,) and the proof of Lemma 6.6.7 is complete. O

Lemma 6.6.7 shows that g maps D, into D,, and we are now in a position
to estimate G'. This is given in
Lemma 6.6.8. On D;, |G'(2)| < 2C8%/6**2.
ProOF. First we write the identity ¢g = fo in terms of F, ® and G: this gives

az + G(z) + O(az + G(2)) = az + a®(z) + F(z + ®(2)),
and using (6.6.11) to eliminate ¢ ®(z), we obtain
G(2) = O(az) — O(az + G(z)) + F(z + ®(2)) — F(2).
Next, this and (6.6.13) show that if z is in Dy, then
1G@2)] < GG Sup |D'(2)] + |D(2)] Sup |F(2)]

<01G(2)| + 4|0(2)]
< |G@)I/S + (C8*/0* ) 2|

which yields
|G(z)| < 2C82r/0*1.

Finally, with this, we can estimate G'(z) for z in D4 by using Cauchy’s Integral
Formula (integrating around the circle centre z and radius r6) and so obtain
the given inequality. O
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To summarize our progress so far: Given « satisfying (6.6.8), and 0, § and r
satisfying (1)—(4), we have produced a map

f(2) = 0z + F(2) = g(z) = 0z + G(2),

and we have estimated |G'(z).

We now return to the iterative scheme suggested earlier, and define se-
quences (¢,), (f,) and (F,) inductively, where

Ja2) = az + Fy(2).

We put f, = f, and construct ¢, from f, as ¢ was constructed from f: after
this, we put f,., = ¢, 'f, 0, (so F,,, is obtained from F, as G was obtained
from F). At each stage, this requires a choice of parameters §,, é, and r,, and
we must exercise some care in this choice: if, for example, 6, = # and r, = r for
all n, then we can only assert that F, is defined on the disc of radius r(1 — 56)",
and this tends to zero as n — co.

Our choice of parameters is as follows. First, we put

8, = 1/[10(1 + 27)],
and
r,=r(l +27"/2
It is convenient to write

D, = {z:]z| <r(1 —mb,)},

and asr,,; = r,(1 — 56,), we have
Ve Dn.4 < Dn.3 < Dn.O = Dn*l.S < Dn—l.4’

where
V= {z:|z] < r/2}.

Next, we select a small positive & (the precise requirements will be clear
shortly) and then define §, inductively by

Opt1 = 2C53/0:+2-
From this, and assuming that § is sufficiently smali, we obtain
Cé, < 02

for all n > 0, and also §, — 0 as n — oo (see Exercise 6.6.1).

Clearly, we can also choose &, and r, (= r) sufficiently small so that (1)—(4)
hold with f, 8, 8 and r replaced by f, (= f), dy, 6, and r,. More generally,
suppose now that (1)-(4) hold with f, 8, 8 and r replaced by f,, 6,, 8, and r,,
so f, is analytic in D, ,. Then our discussion of the generic step F +— G implies
that f, ., is analyticin D, ,, and hence on D, . Moreover, as |F,(z)| < §, on
D, o, we also have

|Fps1(2)] < 2C87 /0572 = 6,
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on D, s, and hence on D, ,. We conclude that the process can be iterated
indefinitely, that each f, is defined and analytic on V, and that F,, and hence
F, also, converges uniformly to zero on V.
Writing
‘pn =®o " Dns

we have
Yo ' [a(2) = fos1(2) = 2z + F,41(2),

so it only remains to show that ¥, and ;' converge uniformly in some
neighbourhood of the origin to some non-constant functions ¢ and ¢! re-
spectively. Of course, it is sufficient to prove that {i,} is a normal family in
some neighbourhood of the origin, for if (on a subsequence) ¥, — o, then

¢'(0) = lim y;(0) = 1

(so ¢ is not constant) and ¥, ! — ¢! (see Exercise 6.6.2). The normality of
{y,}, however, is easily established. From Lemma 6.6.7, ¢, maps D, , into
D, 3, and hence into D,_, 4, and so we find that y, maps D, 4 into Dy ;. It
follows that {y,} is normal in V and the proof of Theorem 6.6.4 is finally
finished. O

We end with the

PROOF OF THEOREM 6.6.5. Let i be the map x +— exp(2zix) of R onto {|z| = 1}.
We denote linear measure on R by m, and linear measure on the unit circle
by m,, so for any subset E of [0, 1], we have m,(h(E)) = 2nm(E). Next, let S,
be the component of S in {|z] = 1}, and for each d in (0, 1), let

E;={x€[0, 1]: forsome m,n > 1, |nx — m| < &/n*}.

We shall show that for each positive 6, m(E;) < 46 and also, S, < h(E,): then
mq(Sy) < 8nd and letting § — 0, we obtain m,(S,) = 0 as required.
First,

n=1 m=1 n n

o on m & m 6
= 1 J -

,.LJI ,,,gl (o, ]m(n Wt n3>

for m > nimplies that m/n — §/n® > 1. We deduce that
o 26
mE;) < Y n (F) <46
n=1

as stated above.
Finally, select any J in (0, 1) and suppose that a is in S,. Then for all
positive numbers M and k, there is some integer n with

1/]a" — 1| > Mn*,
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and taking k = 2 and M = 57!, we see that there is some n with

la® — 1] < 8/n.

Now take x in [0, 1] such that h(x) = « and let m be the nearest integer to nx:
then, as sin(y) = 2y/n on [0, n/2], we have

Ian . lI — Iemzix _ e—nnixl
= 2|sin(nnx)|
= 2 sin|n(nx — m)|

> |nx — m|.

This shows that for these n and m, |nx — m| < §/n?: thus x is in E,, « is in
h(E;), and the proof is complete. O

EXERCISE 6.6

1.

Suppose that the numbers d, (n > 0) satisfy
Onsy < AB"},
where A > 1, B > 1 and §, > 0. Show (by induction) that
AB"™13, < (AB&,),
hence if ABJ, < 1, then §, < (4Bd,)"
Using the inequality 106, > 37", show (in the notation in the text) that for some

constants 4 and B, §, < (ABJ,)". Deduce that if §, is chosen sufficiently small, then

for all n,
C, < Ok*2,

. Suppose that f is analytic and injective near the origin. Show that in suitable

circumstances,

o [
o= | o

. Show that there exists a non-rational function f that is analytic near the origin, for

which some f" is the identity 1.

. Use Theorem 6.6.1 to give an alternative proof that a rationally indifferent fixed

point is in J.

§6.7. Irrationally Indifferent Cycles in J

Our earlier results give us a clear understanding of the dynamics of the iter-
ates R" in the vicinity of all attracting, repelling, and rationally indifferent
cycles, and also irrationally indifferent cycles in F, and we shall consider
super-attracting cycles in Theorem 6.10.1. The on  sult in this section shows
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that the remaining possibility, namely irrationally indifferent cycles in J, can
occur although the geometry and dynamics of the iterates in a neighbourhood
of these cycles seems not to be understood at all. We prove

Remark. The reader should compare (6.7.1) with (6.6.4).

Theorem 6.7.1. Suppose that P(z) = oz + -+ + z%, whered > 2 and |a| = 1 but
o is not a root of unity. If
la" — 1] < (1/n)*" ! 6.7.1)

for infinitely many n, then the origin is an irrationally indifferent fixed point of
P that lies in J(P).

Proor. First, we show that the periodic points of P accumulate at the origin.
Take any n, write N = d"~! and let 0, {,, ..., {y be the N + 1 fixed points of
P"in C, where

0 <] < - < |nl-
Now

P@)—z=(a"— 1Dz 4 - V"

=z(z =)z =Ly
and this with (6.7.1) yields
14 <12 - Lyl = Jan = 1] < 1

We conclude that there are periodic points of P distinct from, but arbitrarily
close to, the origin.

Suppose now that the origin is in F(P) so by Theorem 6.6.2 there is some
neighbourhood N of the origin, and some disc D centred at the origin, such
that P(N) = N and P: N — N is conjugate to the map z — oz of D onto itself.
Now select any non-zero periodic point { of P in N, say of period m. Then the
corresponding non-zero point 1 in D is of period m for the map z — az, so
a™ = 1, contrary to our assumption. We conclude that the origin is in J(P)
and the proof is complete. O

Of course, Theorem 6.7.1 does not establish the existence of irrationally
indifferent fixed points in J, for we have yet to show that numbers « satisfying
(6.7.1) do exist. In fact, it is easy to see that such numbers o are dense in the
unit circle, and we begin by showing that if « = exp(2rif), then the condition
(6.7.1) is closely related to the approximation of 8 by rational numbers.

Now for any positive integers m and n, we have

Ia" _ lI — Ienm‘l) _ e—nm‘ol
= 2|sin(nnd)|
= 2|sin n(nf — m)|

< 2r|nd — m|.
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It follows that (6.7.1) holds if for infinitely many n there is some m (depending
on n) such that
|8 —m/n| < 1/n¥*2, 6.7.2)

for then (with n > 2n)
|a" — 1| < 2nn|8 — m/n| < 1/n",

The problem, then, reduces to showing that the set of 8 satisfying (6.7.2) is
dense in R. Now each real number x has a continued fraction expansion and
the convergents of the continued fractions are particularly good rational
approximations to x. By defining 6 in terms of a specified continued fraction
expansion, we can construct many 6 satisfying (6.7.2), and it is apparent from
the construction that the set of such #is dense in R. A self-contained argument
for the construction is given in the exericses.

EXERCISE 6.7
1. Given positive numbers a,, d,, . . ., define the real numbers [a,, ..., a,] inductive by

[ao] = ao, [ags---» Gns Gns1 ] =[a0s .o\ Gn-y, 8 + 1/ay. ]
Next, define sequences (p,) and (g,) inductively by
Pn=GnPy-t +Pn-2,  Po =00,  P1=aoG +1;
Gn = OG-y + Gn-22 o =1, q, = a,.

(i) Verify that py/q, = [ao], and p, /q, = [ay, a; .

(if) Use the definition of [a,, ..., a,] to prove by induction that for all positive
X,

_ XPn + Pu-1

g, ..., 0, X] = ,
[ 0 " ] an + qn‘l
and deduce that

[a()’ ceey ay, an+1] = pn+l/qn+l'

(iii) Suppose that m, n, u, v are positive numbers with m/n < u/v. Show that if
a > 0, then

n+av v

n an+v v

m am-+u u m<m+au u
n

(this is trivial, but it shows that p,,,/q.., lies between p,/q, and p,,,/qn+1)-
Deduce that for m > n + 2, p,,/q,, lies between p,/q, and p,,, /@,

(iv) Let A, = p,q,~y — Pn-14,- Prove that A, = —A,_,, and deduce that A, =
(—1)"*'. Deduce that

1

Qulns1

Pn_ Pur)
qn Gn+1
(v) Now suppose that the a; are positive integers. Deduce that the p; and g;

are positive integers. Show also that g, > ¢q,-; + ¢,-,, and deduce that
qp2n+ 1.
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(vi) Use (iii), (iv) and (v) to show that (p,/q,) is a Cauchy sequence converging to 0,
say, and that
1

< -
qnqn+1

(vii) Now construct (a,) inductively as follows. Choose a positive integer m, and
positive integers a,, ..., a,, arbitrarily. If a,, ..., a, have been chosen, deter-
mine p,, ..., p, and g,, ..., g, as above, and then define

Gpir = 40, N=d"—1.

Then

Gntt = OniyGn + oy Z 431,

which, with (vi), yields (6.7.2).

§6.8. The Proof of the Existence of Periodic Points

We recall Theorem 6.2.1, namely that if a polynomial P of degree d (d > 2)
has no periodic points of period N, then N = 2 and P is conjugate to z —
z2 — z. In this section, we prove this result and also the corresponding result
for rational functions (Theorem 6.2.2).

THE PROOF oF THEOREM 6.2.1. Let P be a polynomial satisfying the hypotheses
of Theorem 6.2.1 {so N > 2), let

K = {zeC: P¥(2) =z},

and let
M={meZ: 1 <m< N, m|N}.

Then each z in K is a fixed point of P™ for some m in M, and we let m(z) be
the minimal such m.
The proof depends on establishing the inequalities
dV'd - 1) < Y [u(N,2) — um(z), 2] < Nd - 1), (6.8.1)
zek
where u(n, w) is the number of fixed points of P" at w. Obviously, (6.8.1)
implies that d¥~! < N, and hence that

N=1+(N=-D<lI4+(N-Dd=D<[1+@d-1D]"T=d"T<N.

This yields d = N = 2, and as we have already proved (in §6.2) that this im-
plies that P is conjugate to z — z? — z, it only remains to establish the in-
equalities (6.8.1).

The lower bound in (6.8.1) is easily obtained and we prove this first. The
sum Y u(N, z) over K is simply the total number of fixed points of P¥ in C,
and so is dV. Next, as each z in K is a fixed point of P™, where m = m(z), we
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have
Y um@,2)= Yy Y pm@erz< Y d7
zekK meM m(z)=m meM
and so
L=d"- Y d~
meM

is a lower bound for the central term in (6.8.1). Note that L gives the lower
bound in (6.8.1) when N = 2, so we may assume that N > 3. Now N — 1 and
N are coprime (for N — (N — 1) = 1) soif N — 2 > 1, then

Y dm<d 44 dV2<dh
meM

This shows that for all N, N > 2,
dV —d¥N 1 <L,

and this gives the lower bound in (6.8.1).

The verification of the upper bound in (6.8.1) requires more effort. Now
each z in K lies in some cycle of length m(z), and we denote these (pairwise
disjoint) cycles by C,, ..., C,. Further, we denote that length of C; by m;, so
if z is in C;, then m(z) = m;. As the central term in (6.8.1) is

S % [uN, 2) — utmy 2], (682
Jj=1 zeCy
we can confine our attention to each cycle separately. Now Corollary 2.6.7
implies that u(N, z) = u(m;, z) whenever z lies in a cycle C; that is not ratio-
nally indifferent, so the only nonzero contributions in (6.8.2) arise from the
rationally indifferent cycles C;.

Now let C; be a rationally indifferent cycle so, as in Theorem 6.5.10, there
are integers k;, m;, q; and p; (corresponding to k, m, g and p in Theorem 6.5.10),
where this m; is the same as that above (namely, the length of the cycle C)).
We want an upper bound of (6.8.2), and we need only concern ourselves with
the positive terms, for all others can be replaced by zero (but see Exercise
6.8.1). Now as u(m;, z) > 1, the term in (6.8.2) is positive only if u(N, z) > 2
and then, from Theorem 6.5.10, m;q; divides N. It follows that for all z in C;,

(N, z) — p(my, z) < g;k;.
Summing over all z in C;, we now find that
¥, [u(N, 2) — ulm;, 2)] = gjkym; < Nk,
2€e J
and so we can take
U=NZ&

as an upper bound for the central term in (6.8.1).
We need one more fact (which will be verified i» Chapter 9, but which is
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convenient to assume here), namely that if a cycle of components of F(P)
contains a petal, then it also contains a critical point of P. As there are k; such
cycles of components for the rationally indifferent cycle C;, we see that there
are at least Zi k; critical points of P in C; thus Z,-k,- <d — 1. It follows that
we can take the upper bound to be N(d — 1) and we have now established
(6.8.1). The reference to Chapter 9 is Theorem 9.3.2 (which could be proved
now), and we shall not need to use Theorems 6.2.1 and 6.2.2 later. O

Finally, we comment on the

PROOF OF THEOREM 6.2.2. Only minor modifications are needed to the previ-
ous proof. Indeed, the argument is exactly the same except for the fact that
the polynomial P is replaced by a rational map R, and we work in the sphere
C,, rather than the plane C. We put

K={zeC,:R¥z) =1z},
and obtain the lower bound

L=@+1)- Y @ +1

eM

as a lower bound for the central term in (6.8.1).
Similarly, for the upper bound, we obtain

U=NYk<N@2d-2),
J

and these lead to the inequality
A"+ 1<N2d -2+ Y @+ 6.8.3)

eM
When N is prime, M = {1} and we obtain
d¥ —d <2N(d — 1),
or
d(1 +d + - +d¥%) <2N.
For N = 2 this yields d < 4, while for N = 3, d = 2. Assume now that N > 4.

Then N and N — 1 are coprime so

Yodn<d+d? 4o+ dV2 <@ —dyd - ) <dV -4,

meM
and this with (6.8.3) yields
d"+1<2Nd-1)+d*'—-d)+ N -2
This is equivalent to

AV d-1)<(N—-1)d—=1)+ N — 4,
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and dividing by d — 1, we obtain
W1 < Nl < (2N — 1) + (N — 4) = 3N — 5,
which is false for N > 4. O

EXERCISE 6.8

1. Use Corollary 2.6.7 to show that each term in (6.8.2) is non-negative.

§6.9. The Julia Set and Periodic Points

We are now in a position to relate the Julia set to periodic points. First, we
prove

Theorem 6.9.1. Let R be a rational map of degree d, where d > 2. Then J is the
derived set of the periodic points of R.

We recall that z is in the derived set of E if and only if there are distinct
points z, in E such that z, — z. Later (in §9.6), we shall see that R has at most
2d — 2 non-repelling cycles, and with this, Theorem 6.9.1 implies that J is the
derived set of the repelling cycles. As each repelling cycle lies in J (and anti-
cipating the results in §9.6), this yields

Theorem 6.9.2. J is the closure of the repelling periodic points of R.
Next, we give the

PROOF OF THEOREM 6.9.1. We begin by choosing any open set W that meets
J, and then choosing a point w in W n J such that w is not a critical value of
R2 Then R™?{w} contains at least four points (as d > 2), and so we can
choose three of them, say w;, w, and w;, which are distinct from w. Now
construct pairwise disjoint, compact, neighbourhoods W, W,, W, and W, of
w, w;, w, and w; respectively, such that for each j, R? is a homeomorphism
of W, onto W, and let S;: W — W, be the inverse of R*: W; —» W; see Figure
6.9.1.
If for all zin W, all jin {1, 2, 3}, and all n > 1, we have

R"(z) # §j(2),

then {R"} is normal in W (Theorem 3.3.6). This cannot be so, however, as W
meets J: thus there is some z in W, some j, and some n, such that R"(z) = S;(2),
and hence

R™%(z) = R*S;(z) = z.
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W)
5,

Figure 6.9.1

This shows that z (in W)is a periodic point of R, and hence that J is contained
in the derived set of the periodic points of R. O

To prove that the derived set of the periodic points of R is contained in J,
it is sufficient to prove

Lemma 6.9.3. Any component of F contains at most one periodic point of R.

PROOF. Let F, be a component of F and suppose that a and f are periodic
points in F,. By replacing R by a suitable iterate R", we may assume that both
o and f arc fixed by R. If a is a (super)attracting fixed point of R: then R" — «
on F, and so as R fixes f§, we must have « = f. The remaining case is when «
is an indifferent fixed point of R, and then R: F, — F, is analytically con-
jugate to a rotation of infinite order of the unit disc (Theorem 6.6.3). In this
case, o is the only fixed point of R in F,, so again, « = f and the proof is
complete. O

We end this section with the following extension of Theorem 4.2.5.

Theorem 6.9.4. Let R be a rational map of degree d, where d > 2, let W be a
domain that meets J, and let K be a compact set which contains no exceptional
points of R. Then for all sufficiently large n, R"(W) o K,

PrROOF. Our knowledge of the exceptional points of R leads easily to the
existence of an open set N which contains E(R), which lies in F(R), and which
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is such that R(N) = N (see Theorem 4.1.2): if E(R) is empty, we let N be
the empty set. Moreover, as K is disjoint from E(R) we can choose N small
enough so that K and N are disjoint.

As W meets J, Theorem 6.9.2 implies that W contains a point { of a repel-
ling cycle of length g, say, and it follows (by continuity) that we can find a
neighbourhood V of { such that ¥V = W and RY(V) > V: thus

V< RY(V)< RH(V) <.

Now let @ = C,, — N:so Qis compact, @ > K, and as R(N) < N, we have
R(Q) o Q. Moreover, Theorem 4.2.5 (applied to RY, V and {) shows that

() R(v)=C, — E(RY = C.. — E(R) > Q.
n=0

As the sets on the left form an increasing open cover of @, there is some integer
t with R'(V) o Q. Finally, as R(Q) > Q and W > V, if m > t, we have

R™(W) > R™(V) = R"™R(V) > R"(Q) > Q o K

as required. O

§6.10. Local Conjugacy

Let
f@) = ayz + ayz® 4

be a power series, analytic near the origin. In this final section of the chapter,
we comment briefly on the possible forms that the local conjugates gfg ™" of f
can take. We shall assume that g(0) = 0, and we shall discuss analytic con-
jugacy (when g is analytic), topological conjugacy (when g is a homeomor-
phism), and formal conjugacy (when g is a formal power series).

We have already discussed analytic conjugacy when |a,| # 0, 1 (Theorem
6.3.2). The situation when a,; = 0 is straightforward, and the most optimistic
guess is that in this case f'is conjugate to the first non-trivial term of its Taylor
expansion, say to a,z? where ¢ > 2. This is correct, but as g = 2, the two maps
z+ a,z% and z — z? are conjugate and so we can state this result in the
following form.

Theorem 6.10.1. Suppose that

f@) = boz? + by z4* 4+

is analytic near the origin, and that by # 0, q > 2. Then there exists a unique
function g, analytic near the origin, such that:

(2) g(0)=0,4'(0) = I; and
(b) for all z near the origin, gfg™'(z) = 2
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For the proof we shall need

Lemma 6.10.2. Suppose that n > 2, let W = {w:|w — 1| <1}, and let z'"" de-
note the principal branch of the n-th root of z in W. Then

|zt — 1| < 2|z — 1|/n < U/n.

PRrOOF. We simply note that z'/" — 1 is the integral of the derivative of z'/"
along the segment from 1 to z and make the obvious estimates. O

THE PROOF OF THEOREM 6.10.1. First, we replace f by ofp ™!, where ¢(z) = Az
and 497! = b,, so we may assume that b, = 1. We now define the power series
h(z) by

f(2) = 291 + h(2)), (6.10.1)

so h(0) = 0, and there are positive numbers R and K such that
|h(z)| < K]z

when |z| < R.
Next, we choose any positive 4 satisfying

8 < min{}, R, 1/(2K)},
and let D = {z:|z| < 6}. If zis in D, then
| /@) < 121677 (1 + Kd) < |zI/2,
so f maps D into itself and on D,
/") < z1/2".
Forn > 0and z in D, we have
M@ =12 = ["@1[ + h(f"2)],

where
|h(f"2)] < K|f"(2)| < K|z]/2" < }.

This shows that 1 + h(f"z) lies in the disc W (in Lemma 10.6.2) and so we can
find a ¢"*'-th root, say h,, (z), of 1 + h(f"z) in D with

|hnsa(2) — 11 < 2/g"*".
We deduce that the infinite product

g(z) = z ﬁ hy(2)

converges uniformly on D, so g is analytic on D with g(0) = 0 and g’(0) = 1.
Finally,

T (17 = 1+ h(f"*'2) = [h,, (21"
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and so

h 1 (f2) = h,, ,(2)
(because their ratio is a root of unity and the two functions are equal when
z = 0). It follows that if
9n(2) = zhy(2) -~ by (2),
then
9a(f2) = f(2) [h2(2)** hpsa ()T

= Gn+1 (z)q»

and letting n — 00 we obtain
g9(f2) = g(z)*

as required. O
We shall now briefly consider the local analytic conjugates of f whena, =

1. In this case, f has the form
f@) =z2(1 + 2,2 4,27 +00) (6.10.2)

and by the Residue Theorem, the function () defined by

1 1
(f) = i £2'=r f“(z) — dz

is independent of r for r < ry, say. Further, if we expand (f(z) —z)™' in a
Laurent series about the origin, we see that (/) is of the form

P(a,, ..., o;,)/(x,)"
for some polynomial P: for example, if p = 1, then
o(f) = —ay/of.

We now prove that the function 7 is invariant under analytic conjugation.

Theorem 6.10.3. If f is of the form (6.10.2), and is analytically conjugate to g
near the origin, then t(f) = t(g).

PROOF. Let h be any conjugating function, that is, h is analytic near the origin
with h(0) = 0 and h’(0) = 0. We take a small circle, say C = {|z| = 2r}, and
for z and w in {|z] < r}, express h(z), h(w) and h'(z) as a Cauchy integral
around C. An elementary estimation then gives

h) — hw) W) < Mz—w
zZ—w - ’
say, and hence
1 h'(z) |z —w|
7= w k@) — k)| = M@ < how) = Mr
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say, because the previous inequality shows that the quotient in the middle
term is approximately 1/h’(0). This means that the two functions

1 h'(z)
f@) =2z h(fz) — hz)’
differ near the origin by some analytic function g and so will have the same
integral taken over any small curve surrounding the origin.

Now let F = hfh™!, let y be a small circle around the origin and let T" = h(y).
Then

~

1 1
T(F) _Zt—iurMF(z)~zdz

1 i h'(w)

~ 2ni ), F(w) — h(w)

LI T

T 2ni Jy h(fw) — h(w)
1 { 1

=§;t-i”f(w)—wdw

as required. O

As an application of Theorem 6.10.3, recall that if f is of the form (6.10.2),
then f is locally conjugate to a function

z > z(1 4 zP + AZ?P 4 O(227Y) 6.10.3)
(Theorem 6.5.7), and in this case, a simple calculation gives
(f)= —A.

Next, we have

Theorem 6.10.4. Suppose that f is given by (6.10.2). then for any integer q with
q > 2p, [ is analytically conjugate to some function

z i z(1 + 27 + Az?? + O(z9)).

The proof is essentially the same as that for Theorem 6.5.7 and we omit the
details. By contrast, we also have

Theorem 6.10.5. Suppose that f has a Taylor expansion
f@)=a,z + apz* + -+,

where a, is not aroot of unity. Then given any positive integer N, there is some
function g, analytic near and vanishing at the origin, such that near the origin

g7 fg(2) = a,z + O(z").
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PRrOOF. It is sufficient to show that any analytic F of the form
F(z) = a,z + O(z")

is conjugate near the origin to some map

z - a;z + O(z*™).

So, given
F@)=a;z + Az* + -+,

where A # 0, put
h(z) = z 4 bz*, b= A/(at — a,).

Then writing
g Fg(2) = az + ¢z + ¢32° + 0,

we must have
ay(z + bz*) + A(z + bz*)* 4 -+
=@z + 22 +) + blayz + ¢zt - f

Equating coefficients up to and including terms with z* (and noting that k >
2), we obtain
Cp=c3='"=¢=0

and
a,b + A= ¢, + bat.

Substituting the given value of b in this last equation shows that ¢, = 0, and
s0
k+1)

9" Fg(2) = a,z + O(z

as required. O

We turn now to discuss topological conjugacy and here, of course, the
conjugacy classes are much larger. First, observe that the dynamics of the
iterates /" near an attracting fixed point is invariant under topological con-
jugacy, forif f*(z) » 0 and F = hfh~!, then F"(hz) — 0 also, but in this case we
cannot talk of the muitiplier. In fact, given any two functions f and g (not
necessarily analytic) which are orientation-preserving homeomorphisms of
some neighbourhood of the origin into itself such that | f(z)| < |z| and |g(z)| <
|z|, then f and g are topologically conjugate [91] (see also [50]).

In the case of rationally indifferent fixed points, we have

Theorem 6.10.6. Suppose that
f@) =a;z +ayz* +-,

where a; = exp(2nip/q), (p, q9) = 1, and also that  iterate f" is the identity.
Then there is some integer k such that near the ongin, f is analytically con-



Appendix II1. Infinite Products 155

Jjugate to
z—>az(1 +z 4 --+),

and topologically conjugate to z — z(1 + z*9).

The reader is referred to [33] for the details.
Finally, we comment briefly on the question of formal conjugacy and we
mention just one result which sheds more light on the work in this section.

Theorem 6.10.7. Any formal power series about the origin is formally conjugate
to one and only one formal series of the form z(1 + z® + Az?P).

The proof is by repeated applications of Theorem 6.10.3, and we refer the
reader to [101] for more details.

EXERCISE 6.10

1. Show that the maps X — 2x and x — 3x of R into itself are topologically conju-
gate. [Consider a function h(x) = ax? for x > 0 and h(x) = — h(—x) for x < 0.]

2. In the notation of the text, show directly that if p = 1, then t(f) is invariant under
conjugation.

3. Show that the two polynomials z + z? and z + z? + z* are topologically, but not
analytically, nor formally, conjugate near the origin.

4. Let f(z) = 2z2 — 1 and g(z) = (1 + z?)/(2z). Show that in a neighbourhood of oo,
97 fgl2) = 2%

S. Let f(z) = explilog(l + z)] — 1, where log(l + z) =0 when z =0, so f'(0) =1
Show that near the origin, f2(z) = —z/(1 + z), and f* is the identity map. [See

Theorem 6.10.6, and note that if some iterate of a rational map R is the identity,
then deg(R) = 1.]

Appendix 111. Infinite Products

We discuss conditions which imply the convergence and analyticity of an
infinite product of analytic functions. Roughly speaking, the convergence of
the infinite product is related to that of infinite sums by taking logarithms,
but some care is needed in defining the logarithms. We shall prove two (equiv-
alent) results; the first involves logarithms but the second does not.

Theorem 1. Let D be an open disc in the complex plane and suppose that the
complex functions g,, g,, ... are continuous and never zero in D, and that
Y w1 log g,(2) is locally uniformly convergent on D to S(z). Then as n — o,

[T 6u2) > expIS(2)]

locally uniformi:y on D.
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PROOF. As g, does not vanish at any point of the disc D, there exists a single-
valued, continuous branch of log g, in D. By assumption, for suitable choices
of these branches, the series ) <, log g,(z) is locally uniformly convergent to
S on D, so S is continuous on D.

Now take any compact subset Q of D, so for some number M,
lexp[S(z)]| £ M on Q. Next, take any ¢ satisfying 0 < ¢ < 2M, and choose n,
such that for all z in Q and all n > n,,

i log g,.(2) — S(z)| < ¢/2M.
m=1

In general, if [{| < &/2M, then |{| < 1 and so
lexp({) — 1] < 2{¢].

It follows that if z € Q and n > n, then

< (e/M)lexp[S(2)]| <&

H. gn(2) ~ exp[S(2)]
as required. O

Theorem 2. Suppose that the functions fi, f,, ... are holomorphic in a domain
D and that the series

Zl FAG]
is locally uniformly convergent on D. Then
lim H: [1 + fu(2)]

exists locally uniformly in D.

In the following proof, we shall use Log[{] to denote the principal branch
of the logarithm of { on the complex plane cut along the negative real axis.
The inequality

I€1/2 < |Log[1 + {11 < 3{I/2,

is valid for |{| <1 and is easily proved (although the precise values of the
bounds here are irrelevant).

PROOF. It is sufficient to establish locally uniform convergence on the interior
of any compact disc K within D. Now for n > n(K), say, we have |f,(z)| < }
on K so, for these n, the functions

g.(2) =1+ £,(2)

satisfy the requirements of Theorem 1 with D as the interior of K. Theorem 1
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implies that the infinite product taken over n > n(K) converges, and the re-
quired result follows from this by including the finite number of factors corre-
spondingtom = 1,..., n(K). O

Remark. The results above show that if the factors in a convergent infinite
product are holomorphic, then so is the infinite product. Further, the analysis
above also shows that if the infinite product vanishes at some point w, then a
positive, but only finite, number of the factors vanish at w.

Appendix IV. The Universal Covering Surface

The following facts are well known, and together they form the Uniformiza-
tion Theorem: see [2], [5] or [63] for more details. We call the three domains
A (the open unit disc), C and C, canonical domains, and an analytic automor-
phism of any one of these is necessarily a Mobius map. Given any subdomain
D of the complex sphere (or of any other Riemann surface), there exists a
canonical domain X (the universal covering surface of D), and an analytic map
n of £ onto D (the universal covering map), such that: (1) each point of £ has a
neighbourhood on which = is injective; and (2) given any curve ¢: [0, 1] — D,
and any point w over ¢(0) (that is, with n(w) = ¢(0)) there is a unique curve
a,: [0, 1] — X such that no; = ¢ (so g, projects under = to g). We call ¢, the
lift of ¢ from w.

The cover group I is the group of all (M&bius) automorphisms y of X such
that 7y = =, and this has the properties;

(1) n(z) = n(w) if and only if z = y(w) for some y in T;
(2) the non-trivial elements of I" have no fixed points in Z; and
(3) I is discrete (that is, the I'-images of any z do not accumulate in X).

These facts enable us to construct the topological quotient space £/T", and it
is easy to see that X/I" is a Riemann surface which is conformally equivalent
to the original domain D. If D is a subdomain of the complex sphere whose
complement contains at least three points, then £ must be A and the local
hyperbolic geometry on X projects to the same local geometry on D (for the
elements of the cover group are hyperbolic isometries of A): for an example
of this, see Appendix III in which D = C_ — {0, 1, o0}.

Now let D be a domain (or a Riemann surface) whose universal covering
surface is the unit disc A. We regard A as the hyperbolic plane with metric
ds = 2|dz|/(1 — |z|?), and as the elements of the cover group I arc isometries
of this space, it follows that the hyperbolic metric on A projects down to a
hyperbolic metric p on D (so that the projection map = of A onto D is a local
isometry), and this implies that the intrinsic geometry of D is non-Euclidean.
This is so even when D is a subdomain of C, and in this case the hyperbolic
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metric is in sympathy with the geometry of D in a way that the Euclidean
metric is not; for example, the boundary of D is an infinite hyperbolic distance
away from any point of D. If the domains Dy and D, have hyperbolic metrics
p1 and p, respectively, then we have the important Comparison Principle: if
D, = D,, then p, < p,. This is a consequence of Schwarz’s Lemma: see [2]
and [20].

Given an analytic map f: D — D, we say that the analytic map F: X —+ X
is a lift of f if

nF = fn.

Observe that for any lift F and any {, F maps { to a point over fz({). Further,
if F and G are two lifts of f with F({) = G({), then as

nF(2) = fn(z) = =G (2),

and as = is injective near F({) (= G({)), we see that for all z sufficiently near
to {, F(z) = G(z) and hence F = G. It follows that each lift F maps { to some
point w over fn({), and that F is the only lift that maps { to w.

We shall now describe how to construct lifts and so obtain the totality of
all lifts of f. We take { = O (this is not essential) and take any point w over
Jm(0). Now draw a curve ¢ in X from 0 to z, say, project this to the curve n(o)
and then apply f to obtain the curve fn(¢) in D from fr(0) to fr(z). Next,
construct the unique lift ¢, of fr(¢) from w and denote the terminal point of
this by F(z). As X is simply connected, the construction of F(z) depends only
on z (and not on ¢), and, by construction, nF(z) = fr(z). It is easy to see that
F is analytic; thus F is a lift of f with F(0) = w.

As ny = nfor any y in I, we see that if F is any lift of f, then so is yF. With
this and the argument in the preceding paragraph, we now see that if F is a
lift of f, then the totality of lifts of f is {yF:y e I'}. In particular, T is the
totality of lifts of the identity map of D onto itself.

Next, we consider the nature of the lifts of f when f is an analytic auto-
morphism of D (that is, an analytic bijection of D onto itself). In this case, we
select any lift F of f. Now f ! is also an automorphism of D and so this too
has a lift, say G, and as 0 lies over f ! nF(0), we may assume that G maps F(0)
to 0. As

tFG=faG=f"'n=n

and
iGF = gnF = f fn =n.

we see that both FG and GF are lifts of the identity map of D onto itself, and
hence are elements of I'. As FG fixes F(0), and GF fixes 0, we find that FG and
GF are the identity maps of ¥ onto itself and so F is an automorphism of £
with F™! = G. In particular, F is a M6bius map.

Now observe that n(Fy) = fry = fn, so Fy is a lift of f. This shows that
FI" < T'F, and using this with F replaced by F™! (= ") we find that FT" = T'F.
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The normalizer of " is N(I'), where
N(T) = {n: n Mébius, nTy™! =T},

and so we have seen that the lift of an automorphism of D lies in the normalizer
of T. Tt is not difficult to see that every element of N(I') arises in this way, and
moreover, the group Aut(D) of automorphisms of D is isomorphic to the
quotient group N(I')/T.



CHAPTER 7
Forward Invariant Components

In Chapter 8 we shall show that each component of the Fatou set F of R has
a forward image that is mapped onto itself by some iterate R™ Anticipating
this, we devote this chapter to the classification of the forward invariant com-
ponents of the Fatou set of a rational map. Although this classification logi-
cally follows Chapter 8, by giving it first we emphasize that it does not depend
on the more advanced material in Chapter 8.

§7.1. The Five Possibilities

Our objective is to give a complete analysis of the possible forward invariant
components of the Fatou set of a rational map. We shall show that such a
component can arise in exactly one of five different ways, and we begin with
the terminology used to describe these possibilities: as usual, R is a rational
map of degree at least two with Fatou set F.

Definition 7.1.1. A forward invariant component F; of F is:

(@) an attracting component if it contains an attracting fixed point { of R;

(b) a super-attracting component if it contains a super-attracting fixed point {
of R;

(c) a parabolic component (or a Leau domain) if there is a rationally indifferent
fixed point { of R on the boundary of F,, and if R" = { on Fy;

(d) a Siegel discif R: F, — F, is analytically conjugate to a Euclidean rotation
of the unit disc onto itself;

() a Hermanring if R: F, — F, is analytically conjugate to a Euclidean rota-
tion of some annulus onto itself.
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Of course, in (d) and (e), the rotations necessarily have infinite order for other-
wise, some R" would be the identity and then deg(R) = 1. We know that
attracting, super-attracting and parabolic components exist, and the exis-
tence of Siegel discs was established in Chapter 6. The proof that Herman
rings exist is more difficult and we comment on this in §7.4.

The central, and most important, result in this chapter is that (a)-(e) are
the only possibilities for a forward invariant component of F, and this is re-
corded in

Theorem 7.1.2. A forward invariant component of the Fatou set F(R) is one of
the types (a)—(e) in Definition 7.1.1.

Theorem 7.1.2 is simply an amalgamation of several other theorems which
occur later in this chapter, but we shall explain the general strategy of the
proof now. The five possibilities in Definition 7.1.1 can almost be distin-
guished from each other by considering those functions which can be ex-
pressed as the limit of some subsequence of R” in F,. In (a) and (b), the only
possible limit is the fixed point { and this is in F; in (c), the only limit function
is ¢, and this is in OF,; finally, in (d) and (e), non-constant limit functions exist.
To complete the description, note that (a) and (b) are distinguished according
to whether { is, or is not, a critical point, and (d) and (e) are distinguished
either by the connectivity of F, or by the existence of a fixed point in F,.

EXERCISE 7.1

Remark. According to Theorem 5.2.1, any completely invariant component of F is
either simply connected or infinitely connected. These six exercises show the existence
of completely invariant components of types (a), (b) and (¢) which are (i) simply con-
nected, and (ii) infinitely connected.

1. Let R(z) = z(z — a)/(1 — az), where 0 < |a| < 1. Show that A is a simply connected
attracting component of F(R). [As {|z] <1} and {]z| > 1} are both forward in-
variani, they cannot be in the same component of F.]

2. Let R(z) = z/(2 — z%). Show that F(R) has an attracting component of infinite con-
nectivity. [Conjugate the function discussed in §1.8.]

3. Let R(z) = z2. Show that A is a simply connected super-attracting component of
F(R).

4, Let R(z) = 6z(1 — z). Draw the graph of R(x) for 0 < x < 1, and show that
oo R7™([0, 1]) is a Cantor set E. Prove that J = E, and deduce that R has a
super-attracting component of infinite connectivity.

5. Let P(z) = z — z* (see Example 6.5.3). Show that F(P) has a completely invariant,
simply connected, parabolic component. Let F, be the component of F which con-
tains the one petal at the origin. Show that F, is simply connected (P is a polyno-
mial) and completely invariant (deg(P) = 2), and F, contains the critical point of P.
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6. Let R(z) = z/(1 + z — z?). Find Im[R(z)] and deduce that each of
{x +iy:y>0}, {x+iy:y <0}, Ry {0},

is completely invariant under R. Show that 0 < R(x) < x < 1 on (0, 1); deduce that
R" -0 on (0, 1), and hence (by considering the periodic points of R in J) that
J N (O, 1) = . Show now that F is completely invariant, infinitely connected and
of type (c).

§7.2. Limit Functions

We now consider the class of functions which arise as locally uniform limits
of subsequences of (R") in F,. First (and regardless of whether F, is forward
invariant or not) we have

Definition 7.2.1. A function ¢ is a limit function on a component F, of F(R)
if there is some subsequence of (R") which converges locally uniformly to
¢ on Fy. The class of limit functions on F; is denoted by F(F,).

As {R": n > 1} is normal in F,, #(F,) is always non-empty, and each map
in % (Fy) is analyticin F,. If F, is forward invariant, and if ¢ is a limit function
in Fy, then ¢(F,) lies in the closure of Fy: in particular, if ¢ is constant, with
value { say, then { € Fy u 0F,. Moreover, if z is in Fy, then so is R(z), and so
on some sequence of integers n tending to oo,

R({{) =R (lim R"(z)) = lim R*(R(z)) = ¢(R(2)) = L.

n—oc n—oc

This proves

Lemma 7.2.2. If F, is forward invariant, and if there exists a constant limit
function with value {, then { is a fixed point of R.

Of course, if the component F, is (super)-attracting with fixed point {, say,
then R" — { locally uniformly on F, and so % (F;) contains a single function,
namely the constant function with value {. The same is true (by definition) if
F, is a parabolic component as in Definition 7.1.1(c): note that it is necessary
to assume that R" — { in this case for a rationally indifferent fixed point can
lie on the boundary of a super-attracting component of F (for example, when
R is a polynomial).

The next two results enable us to separate (a), (b) and (c) from (d) and (e)
but before giving these, we recall that an automorphism of a domain D is an
analytic bijection of D onto itself. The group of automorphisms of D is de-
noted by Aut(D).

Theorem 7.2.3. Suppose that F, is forward invariant -ud that every function in
F(F,) is constant. Then F (F,) contains exactly one ,_..action, with value {, say,
where R({) = { and R" — { locally uniformly on F,.
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Theorem 7.2.4. Suppose that F, is forward invariant, and that F (F,) contains
some non-constant function. Then R is in Aut(F,), and the identity map I is in
F(Fy).

PROOF OF THEOREM 7.2.3. In conjunction with Lemma 7.2.2, the hypotheses
imply that  (F;) cntains at most deg(R) 4+ 1 functions, and each is constant.
Suppose first that some limit function has the value {, where { € F,: then
R({) = ¢, and for some sequence n;, R" — { locally uniformly on F,. Let N be
an open Euclidean disc with centre {,and whose closure lies in F,. By assump-
tion, for some integer m of the form n;, R™(N) is strictly contained in N, and
s0, by the Schwarz Lemma, |(R™)'({)| < 1. However, R fixes {, so

IR'OI™ = (R™Y Q) < 1

and { is a (super)attracting fixed point of R. It follows that the full sequence
of iterates R”, n > 1, converges locally uniformly to { on F,, and in this case
there is only one limit function, namely the constant map with value {.

It remains to consider the case when #(Fy) consists of a finite number of
constant limit functions, the value of each being a fixed point of R on JF,.
Take any compact subset K of Fy and, enlarging K if necessary, we may
assume that K is connected, and contains some pair of points w and R(w). It
follows that R(K) meets K, R?(K) meets R(K), and so on, and so for any ng,

U R'(K)
is connected.

There are only a finite number of fixed points of R on 0F,, so let these be
¢y»...,¢,,and take any mutually disjoint open neighbourhoods ¥; of {; respec-
tively. If there is a strictly increasing sequence of integers k; such that each
R%(K) meets the complement of { J5-, ¥}, then no subsequence of (R*) can

converge locally uniformly to any of {,, ..., {, (which it must); thus for some
nO’
U R"(K) = jL_)l V.

As the union of the R*(K) is connected, it must lic in one V), say in V,, and
it follows that ¢, is the only limit function in F,. Moreover, the fact that
R*(K) = V,; for all sufficiently large n, means that R" — {, uniformly on K, and
hence locally uniformly on F,. O

PrRoOOF OF THEOREM 7.2.4. By assumption, there are non-constant analytic
limit functions in % (F,), and we begin by proving that if ¢ is any one of these,
then

o(Fy) = F,. (7.2.1)

First, therei- ~ me sequence of integers n; such that R™ — ¢ locally uniformly
on F,. Now iake any w in F,. As ¢ is not constant, the zeros of the map
z +— @(z) — @(w) are isolated, so let C be the boundary of some closed disc
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centred at w and lying in Fy,, and which is such that ¢ # ¢(w) on C. Then (by
the uniform convergence on C), for all sufficiently large j, and all z on C,

IR™(2) — (2)| < ilclf lo(2) — (w)l.

By Rouché’s Theorem, the two functions ¢(z) — ¢(w) and R™(z) — ¢(w) have
the same number of zeros inside C. As the first function vanishes at w, we
deduce that ¢(w) lies in R"(Fy) (= F,) and so (7.2.1) holds.

Consider now the non-constant function ¢ and the sequence n; as above.
By passing to a subsequence of the n; and relabelling, we may assume that

m.

=N

oy 7 X
as j— c0. Now {R™} is normal in Fj so there is some function § on F, such
that R™ — i locally uniformly on F, as j— oo in some set N of positive
integers.

Now take any z in F,: then R™(z) = ¢(z) where, by (7.2.1), ¢(z) is in Fy. As
j— oo in N, so R™ converges uniformly to ¢ on some compact neighbour-
hood of ¢(z) and hence, letting j — oo in N, we have

Yo(z) = lim R™(R™1(2)) = lim R"(z) = o(2) (12.2)

(see Exercise 7.2.1). As ¢ is not constant, ¥ must be the identity map I, and
this proves that I is in F(F,).

It is now easy to see that R is in Aut(F,). Indeed, because F, is forward
invariant, R must map F; onto itself. Further, the injectivity of R is trivial for
if R(z) = R(w), then

R™(z) = R™~(Rz) = R™™'(Rw) = R™/(w)

and letting j — oo in N, we obtain z = I(z) = I(w) = w. This completes the
proof of Theorem 7.2.4. O

The same ideas enable one to show (in the proof of Theorem 7.2.4) that if
@ is a non-constant limit function, then ¢ € Aut(F,). Indeed, R € Aut(F,) and
so has an inverse, say S: Fy — Fy. Now {S"} is a normal family in F, (because
the values taken by $" do not lie in J), thus given any sequence n; with R — ¢
locally uniformly in Fy, we can take a subsequence m; of n; such that §™
converges locally uniformly to some function i on F,. Now as ¢ maps F, into
itself, it follows that
Yo(z) = lim S™R™(z) = z, (7.2.3)

and hence that ¢ is injective on F,. Further, (7.2.3) shows that i is not con-
stant, and exactly as in the proof of (7.2.1), we see that iy maps F, into itself.
With this, we can reverse the roles of ¢ and ¥ in (7.2.3) and deduce that
oY (2) = z on F,. It follows that ¢ is a bijection of F, onto itself and so is in
Aut(F,). For other results, see Exercises 7.2.2 and 7.2.3.
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EXERCISE 7.2

1. Let D be a domain and suppose that f, — f and g, — g locally uniformly on D (with
all maps analytic). Suppose also that g(D) < D. Prove that f,g, = fg on D.

2. In the context of the proof of Theorem 7.2.4, show that if ¢, and ¢, are non-
constant functions in Z (Fy), then ¢, ¢, is in #(F,). Show also that ¢, ¢, = ¢,0,.

3. In the context of the proof of Theorem 7.2.4, show that if ¢ is a non-constant
function in #(F,), then ¢ ', which exists in Aut(F,), is also in & (F,). [Hint. Take
R™ — ¢ and R™ — I and, by passing to subsequences, assume that m; — n; strictly
increases to +oco. Now as j — oo in some suitable sequence, R™ — I, R™ ™" —
and R" — ¢.]

4. Use Theorem 7.1.2 to show that if #(F,) contains non-constant functions, then
F(R) has infinitely many components.

§7.3. Parabolic Domains

Suppose now that F, is a forward invariant component of F(R) and for the
moment, regard J0F, as the ideal boundary point of the one-point compacti-
fication of F,: explicitly,

R" - OF, 7.3.1)

means that for each compact subset K of F,, R*(K) is disjoint from K for all
but a finite set of n. If this is so, then any limit function ¢ on F, satisfies
@(Fy) < 0F,, and as 0F, has an empty interior (simply because F, is a do-
main), we deduce (from the Open Mapping Theorem) that ¢ is necessarily
constant. Thus if (7.3.1) holds, then by Theorem 7.2.3, there is some fixed point
{ of R in 0F, such that R" — { locally uniformly on F;. Our next result con-
tains these conclusions and adds one other important fact.

Theorem 7.3.1. Suppose that F, is a forward invariant component of F(R), and
that R" — O0F;, as n — co. Then there is some rationally indifferent fixed point {
of R in OF, such that:

(@) R" — { locally uniformly on F, as n — oo; and

(b) R'())=1.

ProoF. The remarks preceding the theorem show that there is a fixed point {
in dF, such that (a) holds; thus { is uniquely determined by the action of R on
F, and we only have to show that R’'({) = 1. Obviously, |R’({)| = 1 for other-
wise, { would be a (super)-attracting fixed point of R and so would lie in F(R).
It is also easy to see that |R'({)| < 1, for if not, { would be a repelling fixed
point of R. However, we showed in §1.1 that R"(z) can only converge to a
repelling fixed point { if R*(z) = { for some n, and as z e F and { € J, this
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cannot be so. It follows that
IR =1, (732)

and we shall use this to prove that R'({) = 1. We remark that we expect
R'(¢) = 1 to hold because by (7.3.2), R acts like a rotation about { on a small
neighbourhood of {, and in order that R(F,) = F,, this rotation must be
trivial,

The first part of our argument is contained in the second proof of Theorem
6.5.8 and we shall only outline the details of this part. By conjugation, we may
assume that { = 0 and that oo € 0F,. Next, put 1 = R’(0) and note that as
|A] = 1, R is injective in some neighbourhood .4 of the origin. Exactly as in
the second proof of Theorem 6.5.8, we can now construct a forward invariant
subdomain W of Fy n .4

Now take any point {,, in W, and for n > 1 define the functions ¢, on W by

@a(2) = R"(2)/R"(,).

By Lemma 6.5.9, {¢,} is normal in W and so some sequence ¢, converges
locally uniformly to some function ¢ on W. Further, by the remarks following
the proof of Lemma 6.5.9,

@(Rz) = Ao(2): (7.3.3)

at this point in §6.5 we knew that A = 1, but here, we only know that || = 1.

We now complete the proof of Theorem 7.3.1 without further reference to
§6.5. First, a non-constant locally uniform limit of injective analytic maps is
injective (Hurwitz’s Theorem); thus either ¢ is constant in W, or it is injective
in W.If ¢ is constant in W, then its value is 1 (its value at {,) and from (7.3.3),
we see that A = 1 as required.

If ¢ is not constant on W, then it has an inverse ¢! which maps (W) onto
W. However, from (7.3.3) we obtain

(R g) = A"o(lo) = A"

Now from (7.3.2), |4| = 1, so there is an increasing sequence of integers m; such
that A™ — 1 (Exercise 7.3.1). It follows that ¢(R™{,) — 1, and as the open set
¢ (W) contains the point 1 (= ¢({y)), we see that o(R™{y) € o (W) for all suffi-
ciently large j. For these j, then, we have

R™({o) = @7'(A™) = @7'(1) = L,

and this is false as we know that R" - 0 (= {) on W. We deduce that ¢ is
necessarily constant and hence that 4 = 1. 0

Remark. Suppose that F is forward invariant and that every limit function
in % (F,) is constant. Then for some fixed point {, R" = { in F, and { € F, U
OF,. If { € F,, then F, is a (super)attracting component of F(R) (see the proof
of Theorem 7.2.3), while if { € F,, then by Theorems 7.2.3 and 7.3.1, F, is a
parabolic component of F(R). Thus with reference * the proof of Theorem
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7.1.2, we have shown that if every limit function in &% (F,) is constant, then F,
is one of the types (a), (b) and (c) in Definition 7.1.1.

EXERcISE 7.3

1. Suppose that |A] = 1. Show that either A™ = 1 for some m or {A": n > 1} is dense in
the unit circle. Deduce that there is a strictly increasing sequence of integers m; such
that A™ — 1.

§7.4. Siegel Discs and Herman Rings
In this section we prove

Theorem 7.4.1. Suppose that F, is a forward invariant component of F(R),
where deg(R) = 2, and that F(F,) contains non-constant functions. Then F,
is either a Siegel disc or a Herman ring.

Remark. With this, we will have completed the proof of Theorem 7.1.2.

The idea of the proof of Theorem 7.4.1 is as follows. As J has at least three
points, the universal covering space of F; is the unit disc A, and F, is con-
formally equivalent to A/T", where T is the cover group (of Mobius transfor-
mations) acting on A. Now the conformal automorphisms R" of F, accumu-
late at the identity map (see Theorem 7.2.4), and if we rewrite this information
in terms of the group I" and its normalizer, we find that I is abelian. However,
the only abelian cover groups are cyclic, and if we now list all possible cyclic
groups and compute the corresponding quotient spaces, we find that A/T", and
hence F,, is simply or doubly connected. It follows that F, is conformally
equivalent to either a disc or an annulus and the rest of the argument is
straightforward. We now give the details.

PROOF OF THEOREM 7.4.1. As J is infinite, the universal covering space of F, is
the unit disc A (see Appendix IV to Chapter 6). We denote the cover group
by I' and the universal covering map of A onto F, by . By replacing R by a
conjugate, we may assume that the origin lies in F,, and that = is chosen so
that 7(0) = 0. Next, we select a neighbourhood V of the origin such that the
restriction n, of = to V is injective there.

Now by Theorem 7.2.4, #(F,) contains the identity map I so R" — I locally
uniformly in F,, as n — oo through some sequence of integers. Working only
with integers n in this sequence, and taking n sufficiently large, we find that
R™(0) € ny(V). It follows that for these n we can define functions S, by

S, = ng'R"x,
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and each of these is analytic in some neighbourhood of the origin. However,
the properties of the universal covering map guarantee that each S, has an
analytic continuation to A, and as A is simply connected, S, is single valued
on A: in fact, S, is a lift of R" so R"r = =§, throughout A (see Appendix [V).
By definition, S,(0) € V and so as n — oo (on the given sequence),

5,(0) = ng'R"n(0) - 0;
thus there are two cases to consider, namely:

Case 1: for some n, S,(0) = 0; and
Case 2: for all n, §5,(0) # 0.

First, in Case 1 (and for this n) we have
R"(0) = R"7(0) = 7S,(0) = n(0) = O,

so0 0 is a fixed point of R". Now 0 is not a repelling fixed point of R" for it lies
in F(R"), nor isit an attracting fixed point of R" for if it were, then by consider-
ing the iterates of R" acting on a set {z, R(2), ..., R"7!(z)}, we see that the full
sequence of iterates R™, m > 1, converges to 0 (contrary to the existence of
non-constant limit functions in F,). It follows that 0 is an indifferent fixed
point of R" and so from Theorem 6.6.3, F, is a Siegel disc for R". In particular,
F, is simply connected and so R (which, by Theorem 7.2.4, is an analytic
automorphism of F,) is conjugate (by the Riemann Mapping Theorem) to a
Mobius automorphism M, say, of the unit disc A. It follows that M" has a
fixed point say ¢ in A (corresponding to the fixed point 0 of R in F;;) and hence
(see Exercise 7.4.1) that M also fixes £. This implies that R fixes 0, and also
that 0 is an indifferent fixed point of R (for if not, it would not be an indifferent
fixed point of R"). Applying Theorem 6.6.3 again, we see that F, is a Siegel
disc for R.

For an alternative argument to this last part, we observe that as O is a fixed
point of R", it must be a fixed point of R for F, is forward invariant and any
component of F can contain at most one periodic point (Lemma 6.9.3).

It remains to consider Case 2. We recall that as n — o0 on some suitable
sequence, R" — I locally uniformly on F,. It follows that for some suitably
small neighbourhood A" of the origin, R*(A4") < ry(V) and so S, — I uni-
formly on .4 As {S,} is normal in A (for each S, maps A into itself), Vital’s
Theorem now implies that S, — I locally uniformly in A. Further, as the S, are
automorphisms of A (see Appendix IV), we easily see that S;' — I locally
uniformly on A.

Now take any element y in the cover group I' and consider the sequence
S, 'yS,. First, as the S, are in N(I') (see Appendix IV), these elements lie in
I and second, because S, and S, converge locally uniformly to I on A,
S, 'yS, — 7. As the [-orbit of a point in A cannot accumulate in A, we deduce
that for all sufficiently large n, say for n > n(y), S, 'yS, = y and so S, commutes
with y. Using the same argument for any other element p of I, we now see



§r.4. diegel Uiscs alld Herman Kings 169

that for any pair of elements y and p of I', S, commutes with both p and y
when n is sufficiently large.

It is convenient now to replace A (as the universal covering space of Fy) by
the upper half-plane H: the new cover group (acting on H) is some conjugate
group hTh™! where h is Mbius and h(A) = H, but for simplicity we continue
to use the notation I" and S,, where now the S, are automorphisms of H (and
S, is still a lift of R"). By choosing h suitably, we may assume that our chosen
element y of I' is one of the maps

zz 4 1, z — kz,

where k > 1.

Now recall that for large n, S, commutes with y and p. A trivial exercise
shows that the only M&bius maps which preserve H and which commute with
amap z — z 4 t, t real, are the maps z +— z 4 s, s real. Thus if y(z) = z 4 1,
then S,(z) = z + ¢ (¢ real) and hence p(z) = z + s (s real). This means that I is
a discrete group of real translations and so up to conjugacy is generated by
z — z + 1. In this case the quotient map is z — exp(2niz), and then H/T is
the punctured disc

A*={z0<|z| <1}

It follows that there is an analytic bijection, say ¢, of A* onto F,. Now ¢
extends to an analytic bijection of A onto F, U {¢}, say, where £ is an isolated
point of dF,. This cannot be so, however, for it implies that £ is an isolated
point of J(R): thus y is not the map z +— z + 1.

We know now that y(z) = kz, where k > 1, and the argument follows essen-
tially the same lines as above (see Exercise 7.4.2 for an alternative approach).
The only Mobius maps which commute with y are the maps z + tz, where
t > 0, and the maps z — u/z. Now maps of the second type are of order two,
so if S, is of this type then R? is the identity on F, and this cannot be so. It
follows that each S, is of the form z + tz as above. Now for large n, the
element p of I commutes with S,, so p is of one of the maps z — sz, where
s>0and s # 1, or z — pu/z. We know that p has no fixed points in H so p
must be of the form z — sz. Finally, as p was any element of T", we deduce
that I is a discrete subgroup of {z +— tz: ¢ > 0} and so is a cyclic group gener-
ated by some map z +— kz.

It is now evident that H/T" is a double connected region (it is obtained
topologically by identifying the edges of

{zeH: 1 <|z| <k}

under z — kz, and as it is conformally equivalent to F,, we deduce that F is
doubly connected (see Exercise 7.4.3 for an alternative approach to this part).
To complete the proof of Theorem 7.4.1, we need only establish the following
result.
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Lemma 7.4.2. Let
A={z1r <]zl <r},

where r > 1. Then the Euclidean rotations of A are the only automorphisms of
A that are of infinite order.

ProOF OF THEOREM 7.4.2. Let f be an automorphism of A. We use Exercise
7.4.3 so k> 1 and A = q(H). Using the same ideas as in the earlier parts of
the proof, we can lift the map f to a M6bius map F of H onto itself with the
property gF = fq. This shows that for any two points z and w in H with
q(z) = q(w), we have F(z) = y™F(w) for some integer m, and it follows from
this that for each z in H there is an integer m(z) such that

F(kz) = k™®F(2).

Clearly, the function m(z) varies continuously with z, and as H is connected,
m(z) is constant on H, say with value m: thus for all z in H, F(kz) = k™F(z),
and so, by induction,

F(k"z) = k™F(z).

Recalling that F is M6bius and letting n — 20, we find that F(o0) is either oo
(if m > 0), or 0 (if m < 0): note that m # 0, else F is constant with value F(o0).
By letting n - —oo, we find that F(0) is either O or o0, so we find that either F
fixes both 0 and oo, or it interchanges them. This means that F is of one of
the forms z — az, z — b/z, where a > 0 and b < 0, and a computation using
qF = fq shows that f is of one of the forms z — ez or z  e%/z, where 8 is
real. As f is of infinite order it is a rotation and this completes the proofs of

Lemma 7.4.2, Theorem 7.4.1 and Theorem 7.1.2. 0
We end this section with some brief remarks on the existence of Herman
rings. Let
1 +az
R@) = lzz( +a> (7.4.1)
Z4+a

where |A] = 1 and 0 < || < 1. If || is sufficiently small, then R is a homeo-
morphism of the unit circle A onto itself (see Exercise 7.4.4). Now it is known
that for suitable choices of 4 and a, R: V — V in analytically conjugate to a
rotation (necessarily of infinite order) of JA and moreover, this conjugacy
extends to an R-invariant neighbourhood V of 0A such that R: V — V is ana-
lytically conjugate to a rotation of an annulus (see [6] and [52]). Clearly,
{R™ n > 1} isnormal in ¥, and if F is the component of F(R) which contains
V, then #(F,) contains non-constant limit functions. We deduce that for these
choices of A and a, F, is either a Siegel disc or a Herman ring. As both 0 and
o0 are super-attracting fixed points of R, F, is not simply connected and so
F, must be a Herman ring.

For an alternative construction of Herman rings, and quantitative infor-
mation about them see [88]; this construction uses quasiconformal maps and
we consider these and part of the material in [” in Chapter 8 and §9.8.
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Figure 74.1. z+— Az + 2%, A = exp(ni(\/g — 1)). Fractal image reprinted with permis-
sion from The Beauty of Fractals by H.-O. Peitgen and P.H. Richter, 1986, Springer-
Verlag Heidelberg New York.

For computer-generated illustrations of Siegel discs see Figure 7.4.1, [80],

and for Herman rings, see [100]. For further information, see also [36], [37],
[54] and [70].

EXERCISE 7.4

I

Let M be any Mdbius transformation and let Z(M) be the set of fixed points of M.
Show that either for some n, M" is the identity, or for all n, Z(M") = Z(M). [Hint:
Without loss of generality, Z(M) = {0, co} or Z(M) = {0}.]

. Using Z(S) and Z(T) as in Question 1, show that the M6bius maps S and T com-

mute if and only if T maps X(S) onto itself, and S maps X(T) onto itself. Use this
to argue (in the proof of Theorem 7.4.1) that I" is a cyclic group generated by some
z— kz.

. Suppose that k > 1, let y(z) = kz, and let " be the group generated by y. Show that

for a suitable choice of constants r and A, the analytic function g: H — C by
q(z) = r exp(4 log 2),

maps H onto {z: 1/r < |z| < r}, and satisfies g(z) = q(w) if and only if w = y™(z) for
some integer m. Deduce that the quotient space H/I" (and hence F, also) is con-
formally equivalent to the annulus g(H).

. Suppose that R is given by (7.4.1), where |[1| = | and 0 <[a] < |. Show that if

R(z) = R(w) and z # w, then

+ oz + w) + Tzw(z + w) + |x|?(z? + zw + w?) =0,



Deduce that if |a| < %, then R is injective on dA, and hence is a homeomorphism of
0A ontoitself. Show also that if y{t) = exp(it), 0 < t < 2z, then the winding number
of R(y) about the origin is 1.

§7.5. Connectivity of Invariant Components

This section contains results about the connectivity of a component F, of
F(R). To prove these, we need two results about critical points, the first of
which is

Theorem 7.5.1. Let R be a rational map of degree at least two. If a component
F, of F(R) contains a (super)attracting fixed point of R, then it also contains a
critical point of R.

PrOOF. The conclusion is trivial if F, contains a super-attracting fixed point
for such a point is a critical point. We assume, then, that F, contains an
attracting fixed point {, and by conjugation, we may assume that { # co. Thus
|R'({)| < 1 and we can construct a Euclidean disc

V={zlz-{l<r},

in F, such that R maps the closure of V into V.

The proof proceeds by contradiction, so we assume now that F, does not
contain any critical points of R. Let U, be the component of (R")™'(V) which
contains {. Clearly, U, lies in F,, and the Riemann—Hurwitz formula together
with our assumption about critical points yields

1> X(U,)=X(U,)+U)=mX(V)=m> 1.

This shows that m = X(U,) = | and so R is a homeomorphism of the simply
connected domain U, onto the disc V.
Next, U, « U,,, (for U, is connected and contains {, and it is mapped by
R"*! into R(V)) and so
UclUycUc:-.

We need one more fact concerning the U,. As { is an attracting fixed point,
R" — { locally uniformly on F,. Now take any z in F,, and join z to { by a
curve ¢ in F,. As ¢ is compact, we see that for some n, R"(¢) lies in V and so
g, and hence z, lies in U,. This shows that

and so F, is simply connected (Proposition 5.1.7). The Monodromy Theorem,
or
140 = X(F,) + 3(F,) = mX(Fy) = m > 1,



9s.0. Lounectivity 01 invariant Components 173

now shows that R is a homeomorphism of the simply connected domain F,
onto itself. Applying the Riemann Mapping Theorem, we deduce that the
map R of F, onto itself is analytically conjugate to an automorphism S of the
unit disc which fixes the origin and as such, S must be a Euclidean rotation
of A. However, this implies that

=80 =Rl <1,

a contradiction, and the proof is complete. O

The second result about critical points is the corresponding result for Petal
domains, namely

Theorem 7.5.2. Let R be a rational map of degree at least two, let { be a
rationally indifferent fixed point lying on the boundary of some forward in-
variant component F, of F(R), and suppose that R" — { locally uniformly in F,.
Then F, contains a critical point of R.

Although we shall not prove this until Chapter 9 (which is devoted to a
study of critical points), it is convenient (but not necessary) to use it in the
proof of the next result. For a proof, readers may now consult Theorem 9.3.2
and its proof, but for those who would prefer not to do this, we have also
included an outline of a proof of the next result which does not use Theorem
7.5.2. We can now start to derive results about the connectivity of forward
invariant components of F(R). First, we have

Theorem 7.5.3. Let R be a rational map of degree at least two. Then any for-
ward invariant component of F(R) is simply, doubly, or infinitely, connected.

PROOF. As Fj is forward invariant, it is of one of the five types listed in Defini-
tion 7.1.1 (this is Theorem 7.1.2). If F, is a Siegel disc or a Herman ring, then
F, is simply or doubly connected as required. We may assume, then, that F,
is one of the types (a), (b) or (c) and so, by Theorems 7.5.1 and 7.5.2, F,
contains a critical point of R.

We may also assume that F; has finite connectivity (else the conclusion
holds) and as F, is forward invariant, the restriction of R to F, is an m-fold
covering map of F, onto itself for some positive integer m. With these facts,
we have the basic relation

1(Fo) + 8(Fp) = my(F,),
with all terms finite. We deduce that
(m — 1) x(Fy) = 6(F,) > 0,

and so m > 2 and x(F,) > 0. Thus in these cases, x(F,) = 1 and so F, is simply
connected. This completes the proof subject to proving Theorem 7.5.2. [
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Theorem 7.5.3 and its proof contains the following results.
Corollary 7.5.4. If F is connected, then it is either simply or infinitely connected.

Corollary 7.5.5. If a component of F(R) contains a fixed point of R, then it is
either simply or infinitely connected.

Corollary 7.5.6. A forward invariant component of R is doubly connected if and
only if it is a Herman ring.

If a forward invariant component F, is of one of the types (a), (b) or (c),
then according to Theorem 7.5.3 and Corollary 7.5.6, it must be simply or
infinitely connected: in fact, all six possibilities can occur as is shown in Exer-
cise 7.1,

We end this section with a sketch of a proof of Theorem 7.5.3 that does not
use Theorem 7.5.2. This argument is closer in spirit to the proof of Theorem
7.5.1, it requires more background knowledge, and we omit the details.

We assume that the connectivity of F, is finite and at least three, that is,
—o0 < 3(Fp) < 0, and seek a contradiction. We also use the same notation as
in the proof of Theorem 7.4.1: thus F, is conformally equivalent to the quo-
tient space A/I", where the unit disc A is the universal cover of F, and I is the
cove group. Now as before,

0> (m — 1)x(F,) = 8(F) = 0,

and so m = 1: thus R is in Aut(F,).

Now the lifts of all maps in Aut(F,) constitute the normalizer N(I') of T,
and Aut(F,) is isomorphic to the quotient group N(I')/T (see Appendix IV to
Chapter 6). Further, it can be shown that as the connectivity F; is at least
three, the group I is not abelian and as a consequence of this, N(I') is discrete
(if T is abelian, then N(I') is not discrete: see Exercise 7.5.1). There is a stan-
dard proof (which involves arguments about the areas of fundamental regions
of I and N(I)) that if, in the general case, A/T" is compact, then the quotient
N(T')/T is a finite group. In our case, A/T is not compact (it is homeomorphic
to F,), but as F, has finite connectivity, A/T is a compact surface from which
a finite number of discs have been removed. With this fact available, the
argument that yields the finiteness of N(I')/T" in the compact case can now be
modified so as to produce the same conclusion (the modification here is to
analyse the action of the groups on the Nielsen convex hull, which intersects
the fundamental regions in a set of finite area, rather than the full disc). In any
event, in this way we can show that N(I')/T, and hence Aut(F,), is a finite
group. However, R is in Aut(F,), and it cannot have finite order; thus we have
the required contradiction.

Clearly, to give all of the details of this argument would take us too far
afield; we emphasize, however, that the results in € pter 9 are proved inde-
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pendently of Theorem 7.5.1, so the first proof of this result is much the simpler
of the two proofs.

EXERCISE 7.5

1. Let y(z) = z + 1, let I" be the group generated by 7, and let N(I') be the normalizer
of I (that is, the group of all MGbius maps g which preserve H and which satisfy
gl” = I'g). Show that all real translations are in N(I'), so N(I') is not discrete. Show
that z +— mzis in N(I') when m is an integer. Find N(I').

2. Construct, and solve, the analogous question to Question 1 when y(z) = kz, where
k>0and k # 1.

3. Let F, be a forward invariant component of the Fatou set of a rational map R of
degree at least two. Show that R is an automorphism of F, if and only if F, is a
Siegel disc or a Herman ring.



CHAPTER 8
The No Wandering Domains Theorem

This chapter is devoted to the proof of Sullivan’s important theorem, namely
that for any component  of the Fatou set of R, the sequence Q, R(Q),
R?(Q)), ... is eventually periodic.

§8.1. The No Wandering Domains Theorem

Consider the sequence
Q, RQ), R*(QY), ..., R(Q), ... 8.1.1)

of successive images of a component Q of the Fatou set of a rational map R.
This chapter is devoted to the proof that this sequence is eventually periodic
(the only alternative being that the regions in (8.1.1) are pairwise disjoint). We
begin with the terminology which enables us to refer briefly to each possibility
and, as usual, R is a rational map with deg(R) > 2.

Definition 8.1.1. A component Q of the Fatou set F(R) is:

(a) periodic if for some positive integer n, R*(Q) = €,
(b) eventually periodic if for some positive integer m, R™(£)) is periodic; and
(c) wandering if the sets R*(€Q), n > 0, are pairwise disjoint.

A wandering component of F(R) is called a wandering domain of R. Fatou
asked whether or not such domains can exist and in 1983, [93], Sullivan
proved that they cannot (for an alternative proof, see [21]).

Theorem 8.1.2. Every component of the Fatou set of arational map is eventually
periodic.



§8.2. A Preliminary Result 177

Sullivan’s result is probably the most significant advance made in this subject
in recent times and we shall devote this entire chapter to its proof. It implies,
for example, that the long-term dynamics of a rational map R on its Fatou
set F is the action of R on the periodic components of F, and as a periodic
component of F is forward invariant under some R™ we have already ana-
lysed this situation in Chapter 7. Further important applications arise by
combining it with the results on critical points in Chapter 9, for periodic
components imply the existence of critical points (see Theorems 7.5.1 and
7.5.2), and from the Riemann—Hurwitz relation we know that there are at
most 2d — 2 critical points, The rest of this chapter is concerned only with the
proof of Theorem 8.1.2, and the reader who is primarily interested in applica-
tions can now pass safely on to Chapter 9.

Although we shall not consider entire functions in this text, we remark that
wandering domains can exist for these: see [11], [12], [13], [15] and [41].

§8.2. A Preliminary Result

The proof of Theorem 8.1.2 will be by contradiction so we suppose now that
R does have a wandering domain. In this section we shall derive a conse-
quence of this assumption which enables us to simplify Sullivan’s original
proof by restricting ourselves to simply connected components of F(R): of
course, this only contributes towards the required contradiction and it will
have no significance at all once Theorem 8.1.2 has been proved. We prove

Lemma 8.2.1. Suppose that R has a wandering domain. Then for some compo-
nent W of F(R), the components

W, R(W), RA(W), ..., R"(W), ... (8.2.1)

of F(R) are pairwise disjoint, simply connected, and contain no critical points of
R. In particular, each is mapped by R homeomorphically onto the next.

The heart of the argument lies in showing that the existence of a wandering
domain implies the existence of a simply connected wandering domain. We
use diam[E] to denote the diameter of a set E with respect to the spherical
metric, and as a first step, we prove

Lemma 8.2.2. Suppose that W is a wandering domain. Then for any compact
subset K of W, diam[R"(K)] —0asn— co.

PRrOOF. Suppose that this is false: then there is some compact subset K of W,
some positive ¢, and some increasing sequence n; of integers such that for
j=12..,

diam[R"(K)] > &. (8.2.2)
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As {R"} isnormal in W, there is a subsequence of R™ which converges locally
uniformly on W to some analytic function g: for convenience, we relabel this
subsequence and so assume that R" itself has this property. Now if g is con-
stant, with value o say, on W, then R™ converges uniformly to « on K and so,
for large j, R™(K) lies in an ¢/3-neighbourhood of «. This contradicts (8.2.2)
and we conclude that R" converges to a non-constant g locally uniformly on
w.

We now take a point { in W where g'({) # 0 and draw a small circle C with
centre { which with its interior D lies in W, and which is such that g(z) # g({)
when z is on C. Then for j > j,, say,

|R™(2) — g(2)| < in£ lg(w) — gDl < 19(2) — g(0)

on C and so by Rouché’s Theorem, R*(D) contains the point g({). This con-
tradicts the fact that W is a wandering domain and so completes the proof.

|

We can now give the

PROOF OF LEMMA 8.2.1. First, R has a wandering domain, (2 say, so only a
finite number of the sets R"({2) contain critical points of R. Taking N to be
sufficiently large, we let W = R¥(Q) and W, = R (W), so W is a wandering
domain and no W, contains any critical points of R. As a consequence of this,
we have

(W) = myx (W), (8.2.3)

where R is an m,-fold map of W, onto W,,, (Theorem 5.5.4). Now it is only
necessary to prove that W (= W,) is simply connected for then, from (8.2.3),
myx(W;) = 1; hence W, is also simply connected, m, = |1 and the argument
then proceeds by induction in the same way to derive the simple connectivity
of W, for all subsequent n.

To complete the proof, then, we show that W is simply connected and
again we proceed by contradiction. Given that W is not simply connected,
there is a simple closed curve, say y, in W which is not homotopically trivial
in W, and we define y, = R"(y). Now

R™ W - R"(W)

is a smooth unlimited covering map (for by construction, there are no critical
points of any of the factors R in the composition R"), and this ensures that y,
is not homotopically trivial in R"(W), for if it were, the Monodromy Theorem
would enable us to take the deformation of y, into a point of R*(W) and lift
it to a deformation of y into a point of W.

We now recall Theorem 2.3.4 and the § defined in that result. By Lemma
8.2.2 (with K = y) there is some m such that for n > m,

diam[y,] < 4.
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Now according to Theorem 2.3.4, if n > m then R maps the union of y, and
its interior components into the union of y,,, and its interior components.
Using Theorem 3.3.5, we deduce that {R": n > 1} is normal in each interior
component of 7, and so each such component lies in F. It now follows that
the union of y,, and all its interior components is a connected, compact subset
of F(R) whose complement is (by Proposition 5.1.3) simply connected. We
deduce that y,, is homotopic to a point in F(R) (see Exercise 8.2.1), and hence
also in W, contrary to our earlier observation. It follows that W is simply
connected and the proof is complete. O

Remark. When (in §8.6) we proceed to the proof of Theorem 8.1.2 by con-
tradiction, we shall assume that the (hypothetical) wandering domain has
those properties given in Lemma 8.2.1.

EXERCISE 8.2

1. Let D be a simply connected domain on the complex sphere, let K be its (compact,
connected) complement and suppose that D contains a compact set J. Prove that
there is a Jordan curve ¢ in D which separates K from J. [Assume that oo € J, put
a square grid on the plane so that no square meets both K and J and consider the
outer boundary of the squares that meet K.]

By taking K to be the union of y,, and its interior components, and J to be J(R),
show (in the proof of Lemma 8.2.1) that y,, is homotopically trivial in F(R).

2. Let W be any component of F(R) and let W, be the components of the completely
invariant set [W] generated by W. Show that if one W, is a wandering domain of
R, then so is every W,

§8.3. Conformal Structures

We shall need certain facts about quasiconformal maps and in order to avoid
too great a disruption to the proof of Theorem 8.1.2, we shall adopt a rather
axiomatic view and confine ourselves to a brief discussion of the few standard
results that we need. The reader is referred to [1], [63] and [64] for the proofs
and the background material.

We begin with a generalization of the Cauchy—Riemann equations. Given
any function f with continuous partial derivatives in a domain D, we intro-
duce the two differential operators

6f_l<6f ,a_f> af_1<af_,af>

z 2\x Tlay) T u\ex oy
Observe that if f is analytic, then
) o
f 0, Al = f (Z),

oz 0z
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the first of these being the Cauchy—Riemann equations. Qur generalization
of these equations is the Beltrami equation

o o 8.3.1
Frie #5, 8.3.1)
where u is some suitable complex-valued function on D, and the basic idea is
that if u = 0 throughout D then any sufficiently smooth solution f of (8.3.1)
is analytic in D, while in the general situation, u is taken as a measure of the
deviation of a solution f from conformality. Of course, given a function f on
D, we can use (8.3.1) to define p; this u (when it exists) is called the complex
dilatation of f and is denoted by ;.

An essential feature of the theory is that it is developed for a very large class
of u; most notably, i is not required to be continuous and as a result we have
a tool of great flexibility. The functions y: D — C are required to be Lebesgue
measurable and to satisfy

hall < 1 (83.2)

in D, so |u| < || ull almost everywhere (that is, except on a set of zero area),
and we shall call any such function u a Beltrami coefficient on D.

Given a domain D and a Beltrami coefficient y on D, we say that a homeo-
morphism f on D is quasiconformal with complex dilatation y on D if f is an
L2-solution of (8.3.1) in D (see [63], p. 24). The reader need not worry about
the technical nature of the definition as we shall not mention these ideas
again; however, some explanatory remarks may be helpful. First, a quasi-
conformal map f is differentiable (in the sense that its derivative is a linear
map from R? to itself) almost everywhere (a.e.) in D, and we only require
(8.3.1) to be satisfied a.e. in D, Second, the intuitive implication of (8.3.1) is
that for almost all z, the function f maps an infinitesimal circle C centred at
z to an infinitesimal ellipse E centred at f(z), where both the eccentricity and
the orientation of E and are determined by u(z). The significance of (8.3.2) is
that it controls this distortion induced by £, and it implies that the eccentricity
of E is bounded above throughout D.

We turn now to the basic existence and uniqueness theorem for solutions
of (8.3.1); see Theorems 4.2 and 4.4 in [63].

Theorem 8.3.1. Let p be a Beltrami coefficient on a domain D on the complex
sphere. Then:
(i) there exists a quasiconformal map with complex dilatation u on D; and
(i) if @ and W are two such maps, then ™! is analytic.
Taking u to be identically zero and i to be the identity, we obtain

Corollary 8.3.2. If ¢ is quasiconformal with dilatation 0 on D, then it is con-
formal on D.
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Remark. Given a simply connected domain D (conformally equivalent to
the unit disc A), and a Beltrami coefficient ¢ on D, then there is a quasi-
conformal map ¢ of D onto A with dilatation y almost everywhere in D:
this is the Measurable Riemann Mapping Theorem for the case when y is
identically zero is the classical Riemann Mapping Theorem.

Theorem 8.3.1 leads naturally to the idea that each px on D creates a
Riemann surface, namely the space D together with a conformal structure on
D determined by p. For a given D and g, this conformal structure is defined
by the atlas .7(p) (the totality of charts) consisting of the family of all maps
@: D — C_, which are quasiconformal with dilatation u on D. Theorem 8.3.1(i)
guarantees that each point of D is in the domain of some such ¢, and Theorem
8.3.1(ii) guarantees that the transition map between two different co-ordinate
charts is analytic; thus «/(y) defines a conformal structure on D and so con-
verts D into a Riemann surface. We shall denote this Riemann surface by
D[ u], and we call the structure the p-conformal structure on D. Of course, if
u = 0, then D[] is simply D with the usual structure as a subdomain of C,
and we usually use D rather than D[07]; however, where there may be some
gain in clarity, we shall use D[0].

Given the Riemann surface D[ ], we say that the map

[iD->C,,

is u-analytic if it is an analytic map between the Riemann surfaces D[ ] and
C, (with the usual structure). if, in addition, f is a homeomorphism, we say
that it is y-conformal on D. Of course, we retain the usual usage of analytic
and conformal when p is identically zero. Note that if f is y-analytic on D, and
if g is analytic on f(D), then (as the composition of analytic maps is analytic)
gf is p-analytic on D. Quite generally, a homeomorphism ¢ from an open
subset of a Riemann surface # to C, is analytic if and only if it is a chart in
thc maximal atlas for #; thus we record the different points of view in

Lemma 8.3.3. Let ¢ be a homeomorphism defined on D. Then the following are
equivalent:

() @ is u-conformal on D;
(i) ¢ is a chart for D[ u];
(iii) ¢: D[] - C[0] is analytic.

Our last task in this section is to formulate the transfer of a conformal
structure from one domain to another in terms of complex dilatations. If g is
a bijection of a Riemann surface X onto a set Y, then g can be used to transfer
the conformal structure on X to Y in a natural, trivial, and unique, way so
that g: X — Y is analytic. We need to express this transfer of structure in
terms of Beltrami coefficients and we prove
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Lemma 8.3.4. Suppose that y and v are Beltrami coefficients on the domains U
and V respectively and let g be an analytic map of U onto V. Then:

(i) g: U[u] - V[v] is analytic;
if and only if
(ii) v(g2) = [9'(2)/9'(2)1u(z) ae. in U.

PrOOF. First, if  is v-conformal on V, then the Chain Rule for partial deriva-
tives (which exist almost everywhere) leads directly to the fact that the com-
plex dilatation of the composition yg is y,, where

1(2) = [9'(2)/g'(2)1v(g2)

(see Exercise 8.3.1). Further, by the definition of analyticity for maps between
Riemann surfaces, (i) holds if and only if the composite map

Yg: ULl S Vvl 5 €, [0]

is analytic.

If (i) holds, then yg is analytic, and hence is py-conformal in a neighbour-
hood of each z in U except at an isolated set of points. We deduce that y = g,
ae. in U, and this is (ii). If (ii) holds, then /g is u-conformal in a neighbour-
hood of each z in U except in a set {z;} of isolated points. It follows that yg
is analytic in the complement of {z;} and hence (as g is continuous in U) in U
itself. 0

We shall use Lemma 8.3.4 to transfer structure in two different ways. First,
if g is an analytic homeomorphism from U onto V, and if y is given on U, then
we can define v on V by (i) and, as a resul, (i) will hold: thus we have trans-
ferred the structure from U to V. If we no longer assume that g is injective,
this process may not be valid as (ii) may provide conflicting definitions of v at
some point of V. However, in this case, if v is given, we can use (ii) to define u
and again force (i) to be true: thus we have transferred the structure from Vv
to U. Thus, quite generally, we can pull back a conformal structure against
the action of an analytic function so that the function remains analytic with
respect to the two new structures. We shall use both of these ideas in the next
section.

ExERCISE 8.3

I. Suppose that f is p-conformal, that g is v-conformal, and that the composition g o f
(= gf) is defined. Writing df and of for df/dz and df/0Z respectively, prove that

d(go f)=1(dg o f)of +(8g o ),
(g o f)=1(8g o N)f +(3g o f)of.
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Show also that _
75 §-7
and deduce that if f is analytic, then
tor(2) = ()@Y ()]

§8.4. Quasiconformal Conjugates of Rational Maps

In this section we focus attention on the conjugate 9R¢™! of a rational map
R by some u-conformal map ¢ of the complex sphere onto itself. In general,
@R will not be analytic and our next result enables us to recognize when
it is. We have

Lemma 8.4.1. Suppose that R is a rational map, and that ¢ is a u-conformal
map of the complex sphere onto itself. Then @R is rational if and only if

u(Rz) = [R')/R()]p(2) (84.1)
a.e. on the sphere, and when this is so, deg(pRp™"') = deg(R).

We emphasize that (8.4.1) guarantees that we can conjugate a rational
map by a non-analytic function ¢ and yet still retain analyticity.

ProOF. By virtue of Lemma 8.3.4, condition (8.4.1) is equivalent to the state-
ment that

R:C[u] = Cyu]

is analytic and this, in turn, is equivalent to the statement that gRp ™' is an
analytic map of the complex sphere onto itself with the usual structure (for ¢
is a chart of the Riemann surface C_[u]). This proves that that (8.4.1) holds
if and only if @Rp™" is analytic throughout the sphere, and hence rational.
Moreover, @Rp~! must have the same degree as R because ¢ is a homeo-
morphism of the sphere onto itselfl and the degree of @R¢ ™! is given by the
cardinality of (pRp ™)' {w} for most points w. 0

We shall now incorporate this result into the situation in which a wan-
dering domain exists, and in doing so, we take a significant step forward in
our proof of Theorem 8.1.2. We prove

Lemma 8.4.2. Let R be a rational map, and suppose that W satisfies the condi-
tions of Lemma 82.1. Then any Beltrami coefficient yu on W extends to a
Beltrami coefficient on the complex sphere with the property that if ¢ is any
u-conformal map of the sphere onto itself, then @R ™" is a rational map with
the same degree as R.
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ProoF. We begin with a Beltrami coefficient x on W and our objective is to
extend p to the sphere so that the extension satisfies (8.4.1) a.e. on the sphere.
As the sphere is the disjoint union of the completely invariant set [W] and its
(completely invariant) complement, say K, we can extend p to [W] and to K
separately and then verify that (8.4.1) holds on each of these two sets. We
define u to be identically zero on K so (8.4.1) is certainly satisfied there.

The extension from W to [ W] is carried out as follows. First, using Lemma
8.2.1 and the ideas expressed at the end of the preceding section, we define u
on the (pairwise disjoint) sets W, (= R"(W)),n > 0, by ensuring that the map

R:W,[u] > W, [u),  W,=R'(W),

is analytic. Next, we define u on successive inverse images of the W, by the
requirement that R provides an analytic map between any component (2 and
its image under R (with the p-structures): this process determines y uniquely
on [W] and is characterized by the fact that for every component Q of [W],
the map

R: Q[u] - RE)[ 4]

is analytic. As a consequence of this, the functional relation (8.4.1) holds a.e.
on [W] (this is simply Lemma 8.3.4) and this proves Lemma 8.4.2. O

§8.5. Boundary Values of Conjugate Maps

Our proof of Theorem 8.1.2 requires a comparison between the boundary
values of two functions which are conjugate to each other by a conformal
map, so we devote this section to this topic. Let i be a Beltrami coefficient on
the unit disc A, let g be a conformal map of A onto a simply connected domain
W in C, and use g to transfer u to a Beltrami coefficient v on W (as in Lemma
8.3.4). Suppose now that ® is a v-conformal map of W onto itself, and that ®
extends to a homeomorphism of the closure of W onto itself such that ® = I
(the identity map) on W. Then the map
p=g'0g

is a y-conformal map of A onto itself, and as such, it extends to a homeomor-
phism of the closed disc onto itself ([1], p. 47). Our objective is to study the
behaviour of ¢ on JA: one approach to this problem is through the theory of
prime ends, but we shall take a different route.

When comparing maps which are conjugate by a conformal map, it is
natural to try to exploit conformal invariants and one such invariant is the
hyperbolic metric. For any homeomorphism ® of a simply connected domain
Q onto itself, we define the (hyperbolic) displacement function of ® by

z - p(®z, 2),

where p is the hyperbolic metric of Q (wWhich exists unless € is conformally
equivalent to C or C ).
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Returning to the discussion above, the conformal equivalence g is an iso-
metry with respect to the hyperbolic metrics in A and W and so the property
of having a bounded displacement is invariant under conjugation by g: thus
if ® has a bounded displacement on W, then ¢ has a bounded displacement
on A (and conversely). This, however, implies that ¢ = I on JA for it implies
that ¢(z) lies in the hyperbolic disc A(z, d) with centre z and some (fixed)
radius d, and as z converges to any { on JdA, the Euclidean radius of A(z, d)
tends to zero (see Exercise 8.5.1).

We now seek a criterion for ® to have a bounded displacement function in
W, and for our purposes, it will be sufficient to assume that v is a Beltrami
coeflicient on the entire sphere, and that @ is a v-conformal map of the sphere
onto itself. With this additional information, we can readily obtain a criterion
for ® to have a bounded displacement function with respect to the chordal
metric on the sphere, and we can then convert this to a criterion for ® to have
a bounded hyperbolic displacement on W. First, we have

Lemma 8.5.1. For each positive ¢ there is a positive  such that if the Beltrami
coefficient v on C, satisfies ||v|| < 8, then a(Fz, z) < ¢ in C, for every function
F that is a v-conformal map of C_, onto itself which fixes 0, 1 and co.

ProoF. This is a non-sequential version of Theorem 4.6, [63]. If the conclu-
sion is false there is a positive ¢, a sequence of v,-conformal maps F,, and a
sequence z,, such that:

(i) F,fixes 0, 1 and oo;
(i) [|vall < 1/n; and
(iti) o(F,z,, z,) = &

By Theorem 4.6, [63], (i) and (ii) imply that F, — I uniformly on C_, and this
contradicts (iii). 0

Now let 8, be the value of § corresponding to ¢ =  in Lemma 8.5.1. Then
we have

Lemma 8.5.2. Let p be the hyperbolic metric of a simply connected subdomain
W of C. If the Beltrami coefficient v on C_ satisfies |v|| < d,, then p(®z, z) <
log 2 in W for every function ® which is a v-conformal map of C,_, onto itself,
and which satisfies ®(W) = W, and ® = I on OW.

PROOF. As the statement of Lemma 8.5.2 is invariant under conjugation by a
Mobius map, we may assume that co € dW. Now suppose that W, p, v and ®
satisfy the hypotheses of Lemma 8.5.2 with ||v]] < &,.

We take any { in W, let r({) be the (Euclidean) distance between { and oW,
and suppose that this is attained at o in 0W. As W is a connected set contain-
ing o and oo, there is some point § in W such that

1B —al =10 —af =r(),
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and we define the Euclidean similarity h by
z—a
f—a
The function F defined by F = h®h™! is a v-conformal map of C_onto itself,

and it fixes 0, 1 and oo (because ® fixes o, f and o0); thus by Lemma 8.5.1,
¢(Fz, z) < } on C_. Putting z = h({), we obtain

o(h(®(), k) < § < o(1,2),
and as |h({)| = 1, this implies that | i(®{)| < 2, and hence that
2|(®C) — K| = a(h®(), KO L(1 + |A(®@)1*)(1 + |h()1})]"?

<1

h(z) =

Using the definition of h, this now yields

D) — Ll <r()/4

Now the disc {z: |z — {| < r({)} lies in W, so if p, denotes the hyperbolic
metric of this disc then, by the Comparison Principle for hyperbolic metric,

iz >slog2

144

p(®L, ) < (D, {) < log 1

4

as required. O

In conclusion, if p: A - A and ®: W — W are as given above with p =
g~ '®g, and if ® satisfies the hypotheses of Lemma 8.5.2, then ¢ = I on dA.

EXERCISE 8.5

1. Suppose that the displacement function of @: A — A (as in the text) is bounded
above by d. Use the formula

le@w] 4lz—wp
S‘"h[ 2 ]‘(1—|z|2)(1—|w|2)

(valid for all z and w in A) to show that for some M,
lz = @(2)* < M(1 — |z]),

and deduce that ¢ extends continuously to the identity on dA.

§8.6. The Proof of Theorem 8.1.2

In this, the final section of the chapter, we complete the proof of Theorem
8.1.2. We assume that R has a wandering domai: ) there exists a compo-
nent W of F(R) with the properties expressed in Lemma 8.2.1. As W is simply
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connected (and J is infinite), there is a conformal equivalence g of A onto W.
Now let u be any Beltrami coeflicient on A, Using g, we can transfer y to v on
W (as in Lemma 8.3.4), and then extend v to C_, as in Lemma 8.4.2. Solving
the Beltrami equation with coefficient v throughout the sphere, we obtain a
v-conformal map ¢ of the sphere onto itself such that p Rp~! is rational (and
of the same degree as R), and by combining ¢ with a Mobius map we may
assume that ¢ fixes 0, 1 and oo and so is uniquely determined by . In this
way we have created the composite map

p v @i @Re™! 8.6.1)

of the space of Beltrami coefficients on A to the space of rational maps of
degree deg(R).

Roughly speaking, the space of Beltrami coefficients on A is infinite dimen-
sional while the space of rational maps of degree dcg(R) is finite dimensional,
so the map u — @R ' must map a large subspace of Beltrami differentials
onto a single rational function S. We shall justify this later, but to main-
tain the flow of ideas, we formulate the result we need as a lemma and con-
tinue with the proof of Theorem 8.1.2. For the moment, then, we assume the
validity of

Lemma 8.6.1. Suppose that n, > 0. For each t in [0, 1] we can construct a
Beltrami coefficient y, in A such that:

(a) " Ky "m < Ho- and
(b) (8.6.1) maps each p, to the same rational function S.

Further, this construction can be made so that for each z, the map t — @,(2) is
continuous on [0, 1], where ¢, is the image of u, under the first two maps in
(8.5.1).

A consequence of this is that for all ¢ in [0, 1],

@Rp ' =5 = gRp,",
so if we put
®, = 05 i,
we find that:
(1) Dy(z) =zonC,;
(2) for each ¢, the map z — ®,(z) commutes with R;

(3) for each ¢, the map z — ®,(z) is a homeomorphism of C_, onto itself;
(4) for each z, the map t — ®@,(z) is continuous on [0, 1].

These properties lead to two striking facts.

Lemma 8.6.0 reachtin[0, 1], ®, = I on J(R). Further, ®, maps each com-
ponent of F(K) onto itself.
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PrOOF. For p = 1, 2,..., let F, be the set of fixed points of R”. By virtue of (2),
if z is in F,, then so is ®,(2); thus ®, maps each finite set F, into itself. Now by
(4), for each z in F,, the map t — ®@,(z) is a continuous map of [0, 1] into the
discrete set F,; thus ®,(z) is independent of ¢ and so, by (1), for all ¢ in [0, 1]
and all z in F,, ®,(z) = z. We deduce that for each ¢, ®, is the identity map on
the union of the F,, and hence by (3), also on the closure of this union. As the
closure of the periodic points of R contains J (Theorem 4.2.6), the restriction
of @, to J is the identity.

Because of this, and because @, is a homeomorphism of the sphere onto
itself, each ®, must permute the components of F(R). Now take any z in any
component F; of F(R). By virtue of (1) and (4), the image of [0, 1] under the
map t — ®,(2) is a curve which lies in F and which starts at z. It follows that
this curve lies entirely in F,, and so for each ¢, ®, must map the arbitrary
component Fy into itself. This completes the proof of Lemma 8.6.2. O

As ®, maps each component F, of F(R) onto itself, the homeomorphisms
¢, must map W onto the simply connected domain W,, where W, (= ¢,(W))
is independent of ¢. It follows that there is a conformal equivalence h of W,
onto A, and we have now reached the situation summarized in Figure 8.6.1.

Now in the construction of v (on C_) from g (on A) in (8.6.1) we have
Ivle = Il 4]l (see Lemmas 8.3.4 and 8.4.1), so, by virtue of Lemma 8.6.1(a),
vl <1o, Where, of course, p, maps to v, in (8.6.1). By taking 1, small enough,
we can ensure that the complex dilatation of ®, (= @,'¢,) has L*-norm less
than 4, as given in Lemma 8.5.2. By this lemma, and the remarks following

Q};T.

,/4’,. tel0, 1]

Figure 8.6.1
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it, we can now conclude that the map g~'®,g of A onto itself has bounded
displacement function and so extends to the identity on JA.
Now observe that each of the maps in the composition

AL 5 Wiv] % w,[0] 5 AL0]

is analytic, whence ¥, (= hg,g) is a y,-conformal map of A onto itself and so
extends to a homeomorphism of the closed disc onto itself. Moreover, in the
open disc

‘I’O_lwt =g7'0yg,

thus on dA, Yo", = 1, and so i, = ¥,

Now let ¥, be any y,-conformal map of A onto itself. By Theorem 8.3.1,
¥, = M,'¥, for some Mobius automorphism M, of A, and so we deduce that
MY, = M,¥,
on JA. In proving Lemma 8.6.1, we shall construct maps P, so that ¥, = ¥,
on some open arc of JA, and this will imply that M, = M,,, and hence that
¥, = ¥,. However, it will be clear from our construction that this is not so,
and this will be the contradiction that completes the proof of Theorem 8.1.2.
It remains, then, to prove Lemma 8.6.1 and to construct the maps ¥, with the

properties used above.

First, we take an integer N satisfying N > 4d + 2 (the space of rational
maps of degree d, d = deg(R), having 4d + 2 real degrees of freedom). We
shall now construct, for each vector T lying in the cube [0, ¢, ]" (where ¢, is
some small number yet to be chosen), a Beltrami coeflicient u; on A and a
ur-conformal map ¥; of A onto itself. In fact, we shall construct the maps ¥,
first, and then define y; to be their complex dilatations.

Divide the interval [0, 27] into 2N equal and consecutive arcs o, 14, ...,
Ty, Oy, and for cach of the arcs ¢; we construct a C*-function w; on [0, 2]
such that:

(i) w;(x) > 0 on the interior of g;, while w;(x) = 0 otherwise; and
(ii) |wj(x)| < § for all x and j

(see Exercise 8.6.1). Now define the map

Y. (z) = zexp [i i tjcoj(()):l,

where z = r exp(if)), of A onto itself, and let the Beltrami coefficient u; on A
be the complex dilatation of V..

The complex dilatation y; can easily be computed in terms of the partial
derivatives 0\V;/0r and 0'¥; /36 (Exercise 8.6.2) and when this has been done
we find that

prlre®) = —Sg———, @62
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and hence for all T,

N
O XeEl
lhr(re)| < g <5
2= 3 1tyai0)

Note that:

(a) if arg z lies in any of the intervals 7;, then Wy(z) = z;
(b) distinct values of T lead to distinct functions ¥,.; and
(c) given anyn, ||prll, < nif & is small enough.

The first two of these are the properties required of the function ¥, at the end
of the proof of Theorem 8.1.2, and by choosing &, small enough, (c) guarantees
that we can satisfy Lemma 8.6.1(a) for all .#;. We fix this value of ¢;, and it
remains to complete the proof of Lemma 8.6.1.

THE PROOF OF LEMMA 8.6.1. Given the Beltrami coefficient pr, let the compo-
sition (8.6.1) be
T - pr > vy > @7 > Ry = @ Ro;7. (8.6.3)

The idea of the proof is to factor the map T+ R, through the intermediate
stage of a vector whose components are the zeros and poles of Ry, and then
to show that the first factor, and hence the composition, is constant on some
curve.

We may replace R by any conjugate with respect to a Mobius map, so we
may assume that R is such that:

(1) R has distinct zeros a,, ..., a; in C;
(2) R has distinct poles by, ..., b, in C; and
(3) RO)=1.

Now recall that ¢, in (8.6.3) fixes 0, 1 and co. It follows that R; is the unique
rational function with zeros ¢(a;), with poles ¢,(b;), and with R..(0) = 1, and
so we only have to show that the map

I(T) = (pr(ay), ..., or(as), @1(by), ..., pr(by))

of (0, ¢,)" into C2 is constant on some curve.

Now in the fundamental paper [4], Ahlfors and Bers examined the general
question of how a solution z — ¢,(2) of the Beltrami equation with coefficient
,(2) varies when the parameter ¢ varies, and they showed that (in an appro-
priate sense) for each z, the map t — ¢,(2) varies as smoothly as the map
t — p,(z). We shall not enter into the details of this here, and we refer the
interested reader to the original paper for the precise formulation of this
result. For us, the important outcome is that because the map T > pp(2) is
C™, the same is true of T +— v;(2) (in the sense of [41). and hence each of the
maps

t — op(a), t— @b
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is C*. We conclude that IT is a C*-map of the open cube %, % = (0, ¢,)", into
c*,

The set of points where the rank of 1’ is maximal, say k, is an open subset
%, of € (for the rank of IT' is upper semi-continuous) and so the restriction of
I1 to %, is a map of constant rank. It follows from the Implicit Function
Theorem (see, for example, [23], p. 79) that the inverse image of a point is a
sub-manifold of %, of dimension N — k (which is positive) and so there is
some curve in %, on which IT is constant. The proof of the lemma, and of
Theorem 8.1.2, is now finished. O

EXERCISE 8.6

1. Given an interval [q, b], define the function @ on R by putting w(x)=
A(x — a)*(x — b)? on [q, b] and w(x) = 0 otherwise, where A is chosen so that
|w'(x)] < % on [q, b]. Show that w is C!, and that for each ¢ in [0, 1], the map
X +» x + tg(x) is a strictly increasing map of [a, b] onto itself.

By giving an alternative definition on [a, b], show that there is a C*-function w
with these properties.

2. Express the complex dilatation of a C!-function in terms of the usual partial deriva-
tives d/dr and d/00, and hence verify (8.6.2).



CHAPTER 9
Critical Points

We give evidence to support the assertion that the forward orbits of the criti-
cal points of a rational map determine the general features of the global dynam-
ics of the map.

§9.1. Introductory Remarks

The point z, is a critical point of a rational map R if R is not injective in any
neighbourhood of z,, and the influence of these points on the dynamics of
R stems largely from the quantitative constraint imposed by the Riemann-—
Hurwitz relation, namely that R hasat most 2d — 2 critical points. We denote
the set of critical points of R by C (or by C(R) when there is need to specify
R explicitly), and we use C*, or C*(R), to denote the forward images of C;
thus

c" =) RY(C).
n=0

Now let d = deg(R). If w, is not a critical value of R", then there are d"
distinct branches, say S;, j = 1,..., d”, of (R")™" defined in some neighbour-
hood of wq. If Vis a domain which does not contain any critical values of R",
and if U is a component of (R") "' (V), then R" is a unbranched covering map
of U onto V: is simply connected, there are d” such components U and R" is
a homeomorphism of each onto V. With these facts in mind, we recall from
Theorem 2.7.3 that the set of critical values of R" is ( J;., R*(C).

As oo is a critical point of a polynomial P of degree d, where d > 2, it is
often convenient to confine our attention to the d — 1 finite critical points of
P, namely those in C.
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§9.2. The Normality of Inverse Maps
We prove the following result about branches S; of (R")™".

Theorem 9.2.1. Let R be a rational map with deg(R) > 2, and suppose that the
family {S,. n > 1} is such that each S, is a single-valued analytic branch of some
(R™™" in a domain D. Then {S,: n > 1} is normal in D.

Remark. Here, S, is not necessarily a branch of (R*)™!; the family may
contain many branches of each (R™) ™!

ProoF. Take two disjoint cycles A and B of R, each containing at least three
points (see §6.2). Now S, cannot map any point { of D — A to A (else for some
m, { = R™S,({) € A), so by Theorem 3.3.5, {S,} is normal in D — A. The same
argument holds for B, so {S,} is normal in the union, D,of D — Aand D — B.
O

The following extension of Theorem 9.2.1 will be useful.

Lemma 9.2.2. Suppose that D and {5, } are as in Theorem 9.2.1. If D meets J(R),
then any locally uniform limit ¢ of a subsequence of (S,) is constant.

PrOOF. For each n, let m(n) be such that S, is a branch of (R"™)~! in D,
Suppose now that S, — ¢ locally uniformly in D as n — oo in some infinite set
N, of positive integers, and assume that ¢ not constant: we seek a contradic-
tion. Now each S,, is univalent in D (for S, has a left inverse R™™") and as ¢ is
not constant, Hurwitz's Theorem implies that ¢ is univalent in D.

Now take any { in D nJ and draw a small circle y about { which (with its
interior) lies in D. As S, — ¢ uniformly on v, it follows from the Argument
Principle that for all sufficiently large n in N,, S,(D) contains some neighbour-
hood W of ¢({). Now Theorem 4.2.5 is applicable because as S,({) - ¢({),
@({) is also in J; thus for all k > k,, say, we have R¥(W) > J. We can now
take n in N, such that m(n) > k;; then

J < R™™(W) < R™™S, (D) =

The hypotheses of Lemma 9.2.2 apply equally well to any subdomain of D
50, starting with a subdomain D, of D which meets, but which does not con-
tain, J, the above argument shows that J < D, which is false. Thus ¢ is con-
stant on D,, and hence also on D. O

EXERCISE 9.2

1. In the notation of Theorem 9.2.1, suppose that D — F(R), and give a direct proof
of the normality of {S,} in D. !
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§9.3. Critical Points and Periodic Domains

We now provide evidence that the dynamics of a rational map R is influ-
enced by the orbits of its critical points by obtaining specific information
about the location of these orbits in relation to the periodic components of
F and the cycles of R. Roughly speaking, we shall show that each attract-
ing cycle, each rationally indifferent cycle, the boundary of each Siegel disc,
and each boundary component of each Herman ring, attracts an infinite
forward orbit of some critical point of R. As R has at most 2d — 2 critical
points, this leads directly to quantitative information about the dynamics
of R.

We recall that the immediate basin of a (super)attracting cycle {{;, ..., {,}
is the union of those components of F which contain some {;, and with this
we have

Theorem 9.3.1. Let R be a rational map of degree at least two. Then the im-
mediate basin of each (super)attracting cycle of R contains a critical point
of R.

Theorem 9.3.1 extends in a natural way to the rationally indifferent cycles
of R, where the immediate basin of such a cycle is a cycle of components of F,
each of which contains some petal at some point of the cycle (see §6.5 and also
Exercise 9.3.1). Note that with this definition, a rationally indifferent cycle
may have several basins (for example, z + z?*! has p immediate basins):
nevertheless, we have

Theorem 9.3.2. Each immediate basin of a rationally indifferent cycle of R
contains a critical point of R.

Of course, the critical point mentioned in Theorem 9.3.2 necessarily has an
infinite forward orbit. The critical point mentioned in Theorem 9.3.1 has an
infinite forward image if the component is attracting; if the component is
super-attracting, then either it has an infinite forward image, or it lies in the
cycle (and so is periodic). Note, however, that a super-attracting cycle always
contains a critical point.

The next result concerns the location of the forward orbits of critical points
in relation to the Siegel discs and Hermann rings (for more information, see
[37] and [54]).

Theorem 9.3.3. Let {Q, ..., Q,} be a cycle of Siegel discs, or of Herman rings,
of a rational map R. Then the closure of C*(R) contains | ) 08;.

Together, Theorems 9.3.1, 9.3.2 and 9.3.3 lead to many interesting conse-
quences and we shall discuss these in the next sect . To complete the pic-



§9.3. Critical Points and Periodic Domains 195

ture, we now consider the irrationally indifferent cycles in J, and although
these are not related in any obvious way to the components of the Fatou set,
we can still prove

Theorem 9.3.4. Let R be a rational map R of degree at least two. They every
irrationally indifferent cycle of R in J lies in the derived set of C*(R).

The remainder of this section contains the proofs of these results. First, we
remark that we may confine our attention to attracting cycles in the proof of
Theorem 9.3.1, for a super-attracting cycle contains critical points. Moreover,
it is sufficient to prove the result for an attracting fixed point, for suppose that
{¢y,..., {,} is an attracting cycle, and let F; be the component of F which
contains ;. If we assume that the conclusion of Theorem 9.3.1 holds in the
case of an attracting fixed point, we can conclude that R" has a critical point
in each F;, and hence that R must have a critical point in some F; (as otherwise,
R F, » F, would have no critical points). As the basin of the cycle is | ] F,
the morc general result follows. In fact, we have already proved Theorem 9.3.1
in the case of an attracting fixed point (it is Theorem 7.5.1), but we now give
an alternative, and shorter, proof.

PROOF OF THEOREM 9.3.1. We need only consider the case of a fixed point ¢,
so let F; be the component of F(R) which contains {. As A is the universal
cover of F, the map R: F, — F, can be lifted to a single-valued analytic map
®, say, of A into itself, and we may assume that n(0) = { and ®(0) = 0.

Assume now that R has no critical points in F,. Then the branch of R™!
which fixes { can be continued analytically over every curve in F;, and this
implies that given any curve y in A, there is a curve I, namely n 'R " xn(y),
which maps by ® onto y. In particular, ®(A) = A. Now as R has no critical
points in F;, we see that ® has no critical points in A (for the cover map = is
a local homeomorphism); thus ® is a smooth covering map of A onto itself
and so is a homeomorphism, and hence a Mobius map of A onto itself. As
n® = Rn, we obtain

|®'(0) = ROl < 1,

and this cannot be so as the Mdbius map ® is a hyperbolic isometry and
hence |®©(z)| = |z| for all z. O

There is another way of expressing this last part of the argument. Using
the earlier proof (of the equivalent Theorem 7.5.1), we see that F, is simply
connected, and then 7 is a conformal equivalence of A onto F, which con-
jugates ® with R. As ® is a hyperbolic isometry of A, and n: A —» F, is an
isometry (between the respective hyperbolic metrics), we see that R is an iso-
metry of F; onto itsell. This, however, conflicts with the fact that R contracts
distances near {. Note that this argument does not require us to examine the
hyperbolic r ““ric at {, and it is this form that we shall use for the correspond-
ing proof in ...c case of an indifferent fixed point.
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We come now to the proof of Theorem 9.3.2, and this is an amalgam of the
two proofs of Theorem 9.3.1. As before, we need only consider the case of a
rationally indifferent fixed point {, and after again replacing R by some iterate
R", we may also assume that the basin in Theorem 9.3.2 is a forward invariant
component F, which contains a petal at {.

THE PrOOF OF THEOREM 9.3.2. The idea is that the rationally indifferent case
is the limit of the attracting case as we move the attracting fixed point out to
the Julia set. We assume that R has no critical points in F;, and we proceed
in essentially the same way as in the proof of Theorem 7.5.1, this time taking
V to be a petal at {. We know (see Chapter 6) that R maps V into itself, and
that F; is the union of the backward images R™"(V) of V. As V is simply
connected, the domains R™"(V) provide an increasing sequence of simply
connected domains which expand to fill F,, thus F, is simply connected. This
means that R: F, - F, is analytically conjugate to a M6bius map ® of the unit
disc A onto itself, and as @ is a hyperbolic isometry of A, we find that R is a
hyperbolic isometry of F, onto itself (for the hyperbolic metrics are transferred
without change by the conjugating map n: A — F;). The required contradic-
tion is now obtained from the following lemma, for this implies that R is not
an isometry of F. O

Lemma 9.3.5. Suppose that { is a rationally indifferent fixed point of R, that F,
is a forward invariant component of F(R) which contains a petal at {, and that
p, is the hyperbolic metric of F,. Then for any z in F;, p,(R"z, R"*'2) - 0 as
n — oo.

PRrROOF. A close examination of the proof of the Petal Theorem (Theorem
6.5.2) shows that there is a subdomain V, of the petal V which is mapped
conformally by some map ¢ onto a half-plane

H = {x +iy: x > xo},

and which is such that R: ¥; - V, is conjugate under ¢ to a map g: H - H
which satisfies
9"(z) =np + o(n)

as n — o0, Now let pg be the hyperbolic metric on V;. As F, contains V;, the
Comparison Principle for hyperbolic metrics implies that p, < pg, so it is
enough to prove the result for p, rather than p, (see Appendix IV),

Now let © be the hyperbolic metric on H. As the conjugating map ¢ be-
tween (V;, po) and (H, t)is an isometry, we now only prove the corresponding
result for the action of g on H. This, however, is entirely straightforward and
is left to the reader (see Exercise 9.3.2). The proof of Theorem 9.3.2 is now
complete. O

Next, we give the
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PROOF OF THEOREM 9.3.3. As before, we may replace R by some iterate R™ and
so assume that R maps Q onto itself, where Q is either a Siegel disc or a
Herman ring. In these circumstances, R is a conformal bijection of Q onto
itself (see Chapter 7) and so has an inverse S: Q — (), with §” denoting both
the n-th iterate of S and also the inverse of R": Q — Q.

We shall proceed by contradiction, so we suppose that there is a point {
on 01, and a disc, say

D={z:|z — {] < 3¢},

whose closure does not meet C*(R). Now take a point w in Q ~ D, and let
U, be the component of R (D) which contains S"(w). By our assumption
about C*(R) (and by arguments that we have already used in this chapter),
R": U, - D is a smooth covering map with D simply connected, so U, is sim-
ply connected and R is a bijection of U, onto D with inverse S, say. Of course,
S, = S$"near w, so S, gives an analytic continuation of S” (defined near w) to D.

Next, the map R of Q onto itself is conjugate to a rotation of infinite order
of a disc or annulus; thus the same is true of S and so there is a set N, say, of
integers such that S” — I locally uniformly on Q asn — oo in N, As §, = §"
near w, we find that S, — I uniformly in some neighbourhood of w. Now by
Theorem 9.2.1, {S,: n € N} is normal in D and this in conjunction with Vitali’s
Theorem (Theorem 3.3.3) shows that S, — I locally uniformly in D as n —» oo
in N,

Now let

U={z:]z—{l<e¢}

and
V={z:]z={| <2}:

see Figure 9.3.1. A simple argument based on Rouche’s Theorem shows that
if nis sufficiently large and in N, then S,(V) o U. Applying the map R": U,—»D

=

Figure 9.3.1
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(the inverse of S,), we obtain
R(U)=R'S,(V)=V

for these n and so, from Theorem 4.2.5, J = V. Clearly, we may assume that
D was originally chosen small enough so that it does not contain J: this is the
required contradiction and the proof is complete. O

Remark. For further information about the location of the forward orbits
of critical points in relation to the boundaries of Siegel discs and Herman
rings we refer the reader to [37], [54] and [55].

We end this section with the

PROOF OF THEOREM 9.3.4. We first prove the result for an irrationally indiffer-
ent fixed point ¢, of R, and then extend this to cover the case of a cycle. We
proceed by contradiction, so we suppose that there is a domain D, which
contains {; and is such that

CHR A (Do — {11} = . 93.1)

We may take D, to be simply connected, so let D; be the component of
R™(D,) that contains {,, write

ROI(Cl)ﬁDl = {Cl,---, Cq},
say, where ¢ > 1, and consider the map

R:D, — {4, .. ) = Dy — (L4} 9.3.2)

Ifzliesin D, — {{;, ..., {,}, then z cannot be a critical point of R (else C*(R)
would meet Dy — {{,} at R(2)), so the map (9.3.2) is a smooth covering map
of D, — {{,,...,{,} onto Dy — {¢}. The Riemann—Hurwitz formula shows
that (1 — ¢q) + 0 = 0and so g = 1, and as { is not a critical point of R, we now
see that R is a smooth covering map of D; onto D,; thus Dy is simply con-
nected and all of the relevant properties of D, have now been inherited by D, .

It follows that this process can be continued to construct a sequence of
simply connected domains D,, each containing {,, each satisfying the condi-
tion corresponding to (9.3.1), and such that R maps D,,, homeomorphically
onto D,. We denote the inverse of R™: D, — D, by §, so, by Theorem 9.2.1, the
family {S,} is normal in D,. Now as n — co on some sequence, S, — ¢, say,
locally uniformly on D,, and by Lemma 9.2.2, ¢ is constant on D,. We may
assume (by conjugation) that {; # oo, and as S,({,) = {,, we find that ¢(z) =
{, throughout D,. But then as {, is an irrationally indifferent fixed point of
R, I(R"Y({,)] = 150

I=15.) = le'(C) =0,

and this is the contradiction we are seeking.
Now suppose that {{;, ..., {y} is anirrationally wuifferent cycle for R, and
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put S = RN, We have just shown that there is a critical point , say, of S, and
a sequence n; such that the distinct points S"(s) converge to {,. As one of ,
R(n), ..., R '(n) is a critical point of R, we conclude that {,, and hence each
{;, is in the derived set of the forward orbit of some critical point of R. The
proof is now complete. O

EXERCISE 9.3

1. Let P(z) = z(1 + z2). Show that F(P) has at least three components, namely two
petal domains at the origin and an unbounded component. Show also that the axes
of the petals lie on the imaginary axis. Prove that P maps each of the sets

{iy:0,y < 1}, {—iy:0<y<1}

into itself, and that P" — 0 on each.
Find the two finite critical points of P and use this P to illustrate Theorem 9.3.2,

2. Let H = {x + iy: y > 0} and Ict t be the hyperbolic metric on H (so the t-distance is
obtained from the differential ds =|dz|/y). Show that if z and w liein {x+1iy: y> y, 1},
then 1(z, w) < |z — w|/y,. Deduce that if z, = in + o(n) as n— oo, then 1(z,,, z,,,)—0
as n— w.

§9.4. Applications

Here, we give various applications of the results about critical points obtained
in the previous section, and we shall not bother to refer to these results explic-
itly. First, a rather obvious consequence of these results is obtained by noting
that distinct cycles have disjoint basins. As R has at most 2d — 2 critical
points, we obtain the following result which is all the more impressive if we
bear in mind that R has infinitely many cycles.

Theorem 9.4.1. Let R be a rational map of degree d, where d > 2. Then the

combined number of (super)attracting and rationally indifferent cycles is at most
2d - 2.

We shall return to a sharper version of this result in §9.6, but even now we
can extract more information in specific cases. For example, if R is a quadratic
polynomials, then there are only two critical points (one at co and one in C)
and so there are at most two periodic cycles of components of types (a), (b),
(c) in Definition 7.1.1 (one of which is the completely invariant component F,
which contains oo). If the finite critical point is attracted towards oo, then
there cannot be another such component so, in this case, F(R) = F,, and
hence F(R) is connected.

Returnin~ * ~» Theorem 9.4.1, we see that a rational map of degree d can
have at most .« — 2 (super)attracting cycles. In fact, this upper bound is sharp
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for given any d with d > 2, there is a rational map R of degree d with exactly
2d — 2 (super)attracting cycles (see [88]). In the other direction, R need not
have any (super)attracting cycles at all. Of course, this must be the case for
any map R whose Fatou set is empty, but as this is rather artificial, we give a
more interesting example.

Example 9.4.2. We claim that the map

3z2 41

R@) = 22 43

has no (super)attracting cycles (of any period), and to verify this we show that
the forward orbit of each critical point of R accumulates at a point in J and
then appeal to Theorem 9.3.1. Now R(z) = h(z2), where h is a Mdbius map of
the unit disc onto itself, so the two critical points of R are 0 and oo and we
must find the forward images of these points.

Note that R has all three of its fixed points at the point 1, and as this is a
rationally indifferent fixed point, it lies in J. Further, an easy computation
shows that:

(i) x < R(x) < 1o0n (0, 1); and
(i) 1 < R(x) < xon(l, +c0);

and from these we see that R" — 1 on (0, +00) because R" can only converge
to a fixed point of R. As R(0) = § and R(c0) = 3, we find that the forward orbit
of each critical point accumulates only at J and so R has no (super)attracting
cycles.

In fact, in this example J is the unit circle and R” — 1 on both components
of F(R). To see this, observe that the unit circle is completely invariant under
both h and z - z2, and hence under R, so it only remains to show that J is
the entire circle. Now the fixed point 1 is a rationally indifferent fixed point,
and as

R(1 +2)=1+z—2%4+ 0(z%),

we see that F(R) has exactly two (disjoint) components that contain petals
based at 1 (see Theorem 6.5.8). As J « A, these components can only be the
inside and the outside of the unit circle, with the entire circle as J(R) to
separate them.

Our next application was first mentioned in Chapter 5 (see Theorem 5.6.1
and the remarks following it).

Theorem 9.4.3. If the Fatou set F(R) of R has two completely invariant compo-
nents, then these are the only components of F(R).

PROOF. By assumption, there exist two completely invariant components, say
F, and F,. Now neither F, nor F, can be a Siegel disc or a Hermann ring (for
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if so, R would be an injective map of the F; onto itself and so, by complete
invariance, we would have deg(R) = 1). It follows that each F;is an attractive,
a super-attractive, or a parabolic component of F(R), and in each of these
cases, the forward orbit of any point in F; converges to a fixed point {; in the
closure of F,.

Now every component of F 1s simply connected (Theorems 5.2.1 and 5.6.1)
and in particular, F, and F, are. By considering the map R of F; onto itself,
and using Theorem 5.5.4 together with the simple connectivity and complete
invariance of each F,, we obtain

o(F)) =d — 1 =5(F),

where deg(R) = d. This, together with fact that R has at most 2d — 2 critical
points, implies that the forward orbit of every critical point liesin F, U F, and
accumulates only at {, or {,.

Suppose now that F had other components: then (by Sullivan’s Theorem,
§8.1) it would necessarily contain some cycle of components disjoint from the
invariant components F;, and F,. Now by Theorems 9.3.1, 9.3.2 and 9.3.3,
such a cycle would either have to meet some forward orbit of critical points
(and it cannot because F,; and F, contain all of the critical points of R), or it
would have to contain Siegel discs or Herman rings. In this latter case, there
would be infinitely many accumulation points of forward orbits of critical
points, and as these forward orbits accumulate only at {, and {, this case
cannot occur either. We have now eliminated all possibilities, so F(R) has no
other components. 0

Finally, we prove Theorem 4.3.1 which was only stated in §4.3, and which
we now restate as

Theorem 9.4.4. If every critical point of R is pre-periodic, then J(R) = C,,.

PROOF. We suppose that every critical point of R is pre-periodic, and that
F is non-empty, and we seek a contradiction. As F is non-empty then, by
Sullivan’s Theorem, there is some component of F which is periodic under the
action of R. Now such a cycle of components is associated with a super-
attracting cycle, an attracting cycle, a rationally indifferent cycle, a cycle of
Siegel discs, or a cycle of Herman rings. In the first case there is some periodic
critical point, while in the remaining cases, there is a critical point with an
infinite forward orbit. By assumption, none of these cases can arise so F must
be empty and J = C,,.
Recall that Theorem 9.4.4 shows that the rational map

R() = (z — 2)¥/z*

has an empty Fatou set (see the remarks preceding Theorem 4.3.2). We shall
give another, more direct, discussion (which does not use Sullivan’s deep re-
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sult) of this example in §11.9. In fact, Theorem 9.4.4 can also be proved with-
out appealing to Sullivan’s result (see Exercise 9.4.3). O

EXERCISE 9.4

1. Show that the rational map R discussed in Example 9.4.2 is conjugate to the map
z +— z + 1/z (see §1.7 and Exercise 1.7.4).

2. Investigate the rational maps defined by z ~» h(z?), where h(z) = (az + c)fcz + a),
0 < ¢ < a(see Example 9.4.2).

3. Let R be a rational map with deg(R) > 2. Use Sullivan’s Theorem to show that if ¢
is a constant limit function in some component of F(R), then the value of ¢ lies in
the closure of C*(R) (for the definition of limit functions, see §7.2).

Now prove this result without using Sullivan’s Theorem. [Suppose that R" - 0
locally uniformly on some component Fy, of F(R) as n — co in some set N of positive
integers, and assume that D = {|z| < ¢} is disjoint from C*(R). Take z, in F, and
for each nin N with R"(z,) € D, construct a single-valued analytic branch S, of
(R"! in D with S,R"(z,) = z,. Show that {S,} is normal in D, and assume that
S. — ® as n - o0 on some sequence. Show that

Zo = §,R"(z¢) = ®(0)

as n— oo in N;. Now take another point, say, z; in F,: show that z, = ®(0), and
hence that z, = z,, a contradiction.]

§9.5. The Fatou Set of a Polynomial

Let P be a non-linear polynomial. We know that every bounded component
of F(P) is simply connected, and that the unbounded component F, of F(P)
is either simply connected or infinitely connected (Theorem 5.2.3). Our first
result shows that the connectivity of F,, is determined by the dynamics of the
finite critical points of P.

Theorem 9.5.1. Let P be a polynomial with deg(P) = 2. Then the following are
equivalent:

(@) F, is simply connected,
(b) J is connected,
(c) there are no finite critical points of Pin F,,.

ProoF. We already know that (a) and (b) are equivalent (Theorem 5.2.1). First,
we prove that (a) implies (c), so assume that F, is simple connected; thus
x(F,,) = 1. Applying the Riemann—Hurwitz relation to the map P of F_ onto
itself, we obtain

1 +8(F,)=d,
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and as P has deficiency d — 1 at co, there cannot be any finite critical points
of P in F,: thus (c) follows.

It remains to prove that (c) implies (a), so assume now that are no finite
critical points in F,,. From this and the complete invariance of F_, we see that
P" has no finite critical points in F,, (see Theorem 2.7.3). Now find a disc D
centred at oo and such that

PD)cDcF,,

and define Dy, = D, and D, = P™"(D). Then, as before, each D, is a domain
containing co, and the D, satisfy

D=DycD cD,c.

Applying the Riemann-Hurwitz relation to the map P" of D, onto D, and
noting that there are no finite critical points of P"in F,, we find that

2(D,) + (d" — 1) = x(D,) + 6(D,) = d"x(D).

Now D is simply connected, so y(D,) = 1 and D, is simply connected. As F.,
is the union of the increasing sequence of simply connected domains D, it, too,
is simply connected and the proof is complete. O

Theorem 9.5.1 implies that for the quadratic polynomial P:z — z2 + ¢,
the connectivity of F_ is completely determined by the behaviour of the se-
quence P"(0), and we shall examine this situation in detail in §9.10. Returning
to the general case, and recalling that F_ is completely invariant, Theorem
9.5.1 leads immediately to the following two corollaries.

Corollary 9.5.2. If either:

(@) every finite critical point of P liesin J; or
(b) every finite critical point of P has a finite forward orbit, then F, is simply
connected.

Corollary 9.5.3. If every finite critical point of P is pre-periodic, then F is
connected and simply connected.

Only Corollary 9.5.3 should require further explanation. Suppose now that
every finite critical point of P is pre-periodic so, by Theorem 9.5.1, F_ is
simply connected. If F is not connected then, by Sullivan’s Theorem (Theorem
8.1.2) and the complete invariance of F,, there must exist a periodic cycle of
components of F other than F,. However, as we have seen in §9.3, such a
cycle requires a critical point which is either in a super-attracting cycle in C,
or which has an infinite forward orbit. As pre-periodicity explicitly excludes
both of these two possibilities, we find that F = F_, and so is both connected
and simply conpected.
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Figure 9.5.1. z —» z2 + i Fractal image reprinted with permission from The Beauty of
Fractals by H.-O. Peitgen and P.H. Richter, 1986, Springer-Verlag, Heidelberg, New
York.

As examples of the three hypotheses in these corollaries (and in the same
order), we find that F_ is simply connected in each of the cases

zz2 -2, z 22— 1, 2z 41

The reader is invited to supply the details. The Julia set of z*> + i is given
above in Figure 9.5.1: the Julia set for z2 — 2 is [ —2, 2], and the Julia set for
z? — 1is illustrated in Figure 1.5.1.

The reader will almost certainly have seen many illustrations of Julia sets
for polynomials z2 + ¢, and it is evident that these Julia sets have rotational
symmetry of order two about the origin. We shall now show how to compute
the symmetry group of the Julia set of any polynomial P of degree d, where
d=2.

First, by definition, the symmetry group X(P) of J(P) is the group of Eucli-
dean isometries y (of the form z — az + b, [a] = 1) such that y(J(P)) = J(P).
Now every element of Z(P) is either a rotation or a translation, and as J(P)
is bounded in C, Z(P) can only contain rotations. However, if two rotations
¢ and y have distinct fixed points (in C), then their commutator gys 'y ! is
a non-trivial translation, so we deduce that X(P) is some group of Euclidean
rotations about a point £ in C.

There are two cases to consider, depending on whether X(P) is finite or
infinite. If X(P) is infinite (in fact, it must then be the group of all rotations
about &), then J(P) must consist of a union of circles centred at & (see Exercise
9.5.4). However, J(P) is also the boundary of F,; thus J(P) must consist of
exactly one circle. By conjugation we may assume that J(P) is the unit circle,
then P is of the form az?, where |a] = 1, and Z(P) is the group of all rotation
about the origin. Clearly, this is an exceptional case.

Now suppose that Z(P) is finite (and not trivial). Qur task is to find the
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common centre of the rotations and the order of X(P). Let
P(Z)=ay + " +a,, 247! + a,2¢,

where a; # 0. Now take any w in C, and let z,, ..., z; be the solutions of
P(z) = w; thus
PRy=w+ a)z—2z,) (2 — z4)

and so (because d > 2)
(zy + - + 25)/d = —ay-, [(day).

This says that the centre of gravity of the z; is independent of the choice of w,
and clearly this extends to the fact that the centre of gravity of P7"(w) is
independent of both n and w. As (roughly speaking) P~"(w) — J(P), it is rea-
sonable to suppose that this centre of gravity is indeed the centre of symmetry
of J(P). Itis important to note that this centre of gravity is defined even when
J(P) has no symmetries, so we define ¢ by

&= —a,,/(da)

and call it the centroid of P.

Before stating our result, observe that if y is a Euclidean similarity, then
(either by computing coefficients, or by examining inverse images) the cen-
troid of yPy ™! is the y-image of the centroid of P. Clearly,

Z(yPy™') = yZ(Ppy7,

so in attempting to identify the symmetry group Z(P), it is sufficient to replace
P by any polynomial conjugate (by a similarity) to P. Conjugating P by a
translation, we may shift the centroid to the origin (this means that the coeffi-
cient of z¢™! vanishes) and by a further conjugation of the form z — Az (which
will not move the centroid), we may assume that P is monic. Thus (up to
conjugacy) we may assume that P is in the form

Piz)=ay + -+ + 02971 4 29, (8.5.1)
and we now rewrite this as
P(2) = z°P,(z"), 9.5.2)

where a and b are maximal for this form, and P, is a monic polynomial. If
a = d, then P(z) = z? and J(P)is a circle. Excluding this exceptional case, we
find that 0 < a < d and P,(0) # 0. We can now state our basic result.

Theorem 9.5.4. The elements of the symmetry group X(P) are rotations about
the centroid of P. Further, if P is given by (9.5.1) and (9.5.2) and a < d, then
X(P) has order b.

As an example, consider

P(z) = z> — 922 4+ 29z — 3.
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The centroid of P is 3, and writing y(z) = z — 3 we have
Py (2) =z(2 + 22).

We find, then, that the only non-trivial symmetry of J(P) has order two and
Z(P) = {1, y}, where y(z) = 6 — z.

The proof of Theorem 9.5.4 depends on a knowledge of Green’s functions,
so we shall discuss this first. The unbounded component F, of F(P) supports
a Green’s function g(z) with pole at co, and this is the unique function with
the properties:

(i) g is harmonic and positive in F, n C;
(ii) g(z) — log|z| is bounded in a neighbourhood of co; and
(iii) g(z) >0asz - 0F,.

We shall not enter into the theory of Green’s functions here, but the interested
reader can consult one of many texts on complex analysis or potential theory.
Our next task is to identify g in terms of the function which conjugates P to
z +— z% at 00. As oo is a super-attracting fixed point there is some function ¢
that fixes o0 and is analytic nearby, and which is such that

pPp71(z) = z*

in some neighbourhood of o (Theorem 6.10.1). Explicitly, we can find a
neighbourhood D of co with the properties:

(iv) the closure of P(D) is a compact subset of D;
(v) near oo, ¢ is analytic and of the form

o(@)=2+by+byjz 4",

(vi) @ maps D onto some set {|z| > r}, where r > 1; and
(vii) P(2) = [p(2)] on D.

For later use, observe that if P satisfies (9.5.1) and (9.5.2) then, by equating
coefficients of z¢~1 in (vii),
by = 0. (9.5.3)

We prove
Lemma 9.5.5. g(2) = log|p(2)| in D.

PROOF. As pP" is defined on P ™"(D), we can define a function g, there by
gn(2) = d 7" log|o(P"z)],

and from (v) and (vi), g, is positive and harmonic on P (D) (except at o).
Next, P~™"(D) = P™"*)(D), so if z is in P™"(D), then both g, and g,,, are
defined at z. As

P (2) = oP(P"2) = [p(P"2)]%,

we see that g, ,,(z) = g,(z) on P™"(D). Finally as is the union of the do-
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mains P~"(D), we can now define a positive harmonic function g on F, by
putting g = g, on P~"*(D). Of course, near <o,

g(2) = log|e(2)| = log|z| + O(1),

so in order to complete the proof, we must show that g(z) - 0 as z —» JF,,.
For any z in F,, z lies in some P~™*!1(D) and

dgp1(2) = ™ log|p P™(Pz)| = |g,(P2)];
thus we have the functional relation
d~'g(Pz) = g(2),

and hence also
d~"g(P"z) = g(2).
Now let
M = sup{g(w): we P~(D), w ¢ D}.

If z lies outside P~"(D), then for some m satisfying m > n, z lies in P~™*1)(D)
but not in P~™(D); thus g(P™z) < M. It follows that

d"g(z) < d"g(z) = g(P"2) < M,
and so finally,
0 < g(2) < M/d"

on F,_ — P™"(D). The proof is complete. O
We can now give the

PROOF OF THEOREM 9.5.4. The first step is to identify the elements of X(P) in
terms of the function ¢, so take any isometry y, say y(z) = az + b. Now clear-
ly, y is a symmetry of J(P) if and only if it is a symmetry of F,,, and hence if
and only if g is invariant under y; thus y € Z(P) if and only if

g(yz) = g(2)

for all z near co. Recalling that g(z) = log|p(2)|, we now find that y € Z(P) if
and only if for some 4 with [A| =1,

plaz + b) = dp(2)

near co. If this is so, then from (9.5.3), a = 4 and b =0, and we have now
proved that the elements of X(P) are rotations about the centroid of P.

Note that this argument also shows that if y € £(P), then ¢y = yp. Con-
versely, if y is a rotation about the origin, and if it commutes with ¢, then

g(yz) = log|py(2)|
= log|ye(2)|
= log|p(2)|
= g(z);
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thus we have proved that an isometry y is in Z(P) if and only if y(0) = 0 and
Yo = @y a

Next, we identify the elements of (P) in terms of P. We have
Lemma 9.5.6. An isometry y is in (P) if and only if y(0) = 0 and Py = y°P.

PROOF. Suppose first that y(0) = 0 and Py = y9P. Then for each n there is
some m with
Py = y™P",
SO
|P"(y2)| = | P"(2)|.

Letting n — oo, this shows that y(z) is in F,, if and only if z is, thus y must be
a symmetry of J(P) (the boundary of F,).

Now suppose that y is in Z(P); then (from above) y fixes the origin and
commutes with ¢. Writing y(z) = Az, this shows that

@(Pyz) = @P(yz)
= [p@2)]"
= [(py)(2)]*
= [(yp)(2)]*
= [Ap(2)]’
= A[p(2)]*
=y (p(2)")
= y(@P(2))
= ¢(y'P(2),
and because ¢ is univalent near co, this shows that Py = y?P as required.

a

We are now in a position to show that if P is given by (9.5.1) and (9.5.2),
then X(P) has order b. First, suppose that ¢(z) = pz, where u® = 1. Then from
(9.5.2), a = d (mod b) so u° = pu*, and so

Po(z) = pz°Po(*2") = p'z*Po(z®) = 0*P(2),
so by Lemma 9.5.6, ¢ is in (P). Thus X(P) contains the group of rotations
about the origin of order b.
Next, let o be any element of X(P), so o(z) = uz, say, where |u| = 1. As

Po = 6P, we have
ez Po(u®2%) = pu?z°Py(2%).
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Dividing by z“ and letting z — 0 (and recalling that Py(0) # 0), we find that
p® = p, and so for all w,
Py(utw) = Py(w). (9.5.4)

Now write P, in the form
Po(w) = oty + 3, a;w™, (9.5.5)

where each a; is non-zero, and observe that because the integer b in (9.5.2) is
maximal, the integers m; are coprime; thus there are integers v; such that

Z vm; = 1.
7

Using (9.5.4), we find that for each of the terms in the sum in (9.5.5), u*™ = 1,
and so

ub — ub;vjmj — I_I ubmjvj = l,
J

as required. The proof of Theorem 9.5.4 is now complete. O

EXERCISE 9.5

1. Let P(z) = z? — 1, and for each w in F(P), let F,, be the component of F(P) contain-
ing w. Show that the only finite critical point of P is in an attracting two-cycle of
P, and deduce

(i) F(P) has infinitely many components;
(ii) every component of F(P) is simply connected;
(iii) P has no Siegel discs;
(iv) {F,}and {F,, F_,} are the only periodic cycles of components of F;
(v) every bounded component of F(P) is mapped by some P" into F,, thus for
any bounded component Q, the sequence P*(Q) is eventually ..., F,, F_j,
Fo, F_y, ...

Find the multiplicity of P as a map acting between the given components in each
of the following cases:

Fw*Fm’ F0_>F-la F—1_>FO'
Locate the component of F in Figure 1.5.1 (other than F_;) which maps onto F,.

2. Let P be a polynomial of degree d, where d > 2, and suppose that F,, is simply
connected. Show that P: F,, — F,_ is conjugate to z +— z“ acting on the unit disc.

3. Show that if ¢ and y are rotations about different points, then their commutator is
a non-trivial translation.

4. Suppose that the symmetry group Z(P) of J(P) is an infinite group of rotations
about £ (as in the text). Let w be any point of J(P). Show that the set {y(w): y € Z(P)}
is dense in the circle centre £ and radius |w — £|, and deduce that the entire circle
lies in J(P).

5. Let y be a similarity and suppose that £ is the centroid of P. Show that yPy~! has
centroid y(¢).
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6. Show that if P(z) = z2 + ¢, where ¢ # 0, then £(P) = {I, 6}, where 5(z) = —z.

7. Let P(z) = z* + z2 + Az + B. Find all values of A and B for which £(P) has order
1, 2 and 3 respectively.

8. Let P(z) = z(1 + z?) and Q(2) = —z(1 + z?). Show that P and Q have the same
Julia set, but that P and Q are not conjugate (use Theorem 4.2.9 and Lemma 2.6.1)

§9.6. The Number of Non-Repelling Cycles

In this section we show that a rational map R of degree d has at most 2d — 2
non-repelling cycles. Theorem 9.3.1 shows that the number N, of (super)-
attracting cycles is at most 2d — 2, and Fatou showed that by perturbing the
coefficients of R in an appropriate way, one can ensure that at least half of
the number N, of indifferent cycles become attracting. If the perturbation is
small enough, the (super)attracting cycles remain super(attracting), so Fatou
proved that Ny + N;/2 < 2d — 2: in addition to Fatou’s paper ([45], p. 66),
we refer the reader to [22] and [67] for a discussion of this method. More
recently, Shishikura showed that by using quasiconformal maps to provide
the perturbation, one can obtain the sharp inequality N, + N, <2d — 2[88]:
we follow his method here and prove

Theorem 9.6.1. A rational map R of degree d, d > 2, has at most 2d — 2 non-
repelling cycles.

We remark that this (or Fatou’s weaker result) provides the missing step
in the proof of Theorem 6.9.2, namely that J(R) is the closure of the repelling
cycles of R.

The idea behind the proof of Theorem 9.6.1 is to compose R with a quasi-
conformal map in such a way that the non-repelling cycles of R become
attracting cycles of the composite map S. Now S is not rational, but we can
construct a quasiconformal conjugate @S¢ ' of S which is rational, which
leaves the degree invariant, and which preserves the attracting nature of the
cycles of S. With this, we apply Theorem 9.3.1 to the map @S¢ ™! and so
obtain the required bound of 2d — 2.

The reader is reminded that Chapter 8 contains a brief account of, and
references for, quasiconformal maps. In addition to this, we shall say that a
map is quasiregular if it is a composite map of the form fg, where f is rational
and g is a quasiconformal map of the sphere onto itself. The rest of this section
is devoted to the

PROOF OF THEOREM 9.6.1. Given the rational map R, we take any finite collec-
tion C,, ..., C, of non-repelling cycles of R, and ot~ objective is to prove that
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g < 2d — 2. By conjugation, we may suppose that the cycles C,, ..., C, lie in
C, and we write
Ciu-—-uC ={{,....0}

The proof proceeds by constructing various functions h, R,, H, and S, which
depend on a parameter ¢ in (0, 1) and then, eventually, choosing a value of ¢
that is small enough to satisfy certain conditions that have arisen during the
proof.

We begin by constructing a polynomial h with the properties

M) =0, W)= -1, j=1..1

(see Exercise 9.6.1), and throughout this proof we shall make frequent use of
k, where k = deg(h). We now choose any ¢ in (0, 1) and use h (which does not
depend on &) to construct the perturbation R, of R given by

R,(2) = R(z + ¢h(2)).

Of course, R, is rational, and each C; is a (super)attracting cycle of R,: how-
ever, deg(R,) > deg(R), so we need to modify this perturbation of R to return
its degree back to deg(R).

In some sense, the deviation of R, from R is most when ¢|z[* is large, so we
want to suppress the perturbation in this region. To do this, we take any
decreasing C*-function

p: [0, +0)—[0, 17

such that p = 1 on [0, 1] and p = 0 on [2, +00), and replace z + ¢h(z) by
H,(2) = z + ep(e'™*|z])h(2).
With this, we put
S(2) = RH,(2) = R(z + ep(e'*|z|)h(2)),
and observe that

5,(2) = R,(z) if e'*z| <1,
*2D=\RE@ i ez > 2

(see Figure 9.6.1). In particular, if

e<min{|{;|7%..., 14174,

then S, = R, near each {; and so each cycle C; is a (super)attracting cycle for
S,

€

Next, we find a number M, M > 1, such that:

(1) [h(z)] < M when |z| < I

(2) |h(z)] < M|z|* and |h'(z)] < M|z|*"* when |z] > I;
(3) for all real x, |p'(x)] < M; and

4) o(Rz, Rw) < Mo(z, w) (see Theorem 2.3.1).
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S¢e =R
H(z) =1z

Figure 9.6.1

With these, we can easily establish two basic properties of the functions H,
and S,, namely

%) a(S,(z), R(z)) < 2*M %!
onC, (so S, — R uniformly on C_, as ¢ = 0), and

(6) for all sufficiently small ¢, H, is a quasiconformal homeomorphism of C_,
onto itself.

To prove (5), note that S,(z) = R(z) when |z| > 2¢7'* so we need only con-
cern ourselves with those z satisfying |z| < 2¢7*, For these z, we can use (1),
(2) and (4) to obtain

a(S.(z), R(2)) < Mo(H,z, z)
2Me|h(z)|
=M+ 121
2M? max{1, |z*}

= max{l, |z[}
< 2M?%e max {1, |z[*"'}
< 2*M2gllk

which proves (5).
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To prove (6), we must estimate | u,||,,, where

J0H,(w) J0H, (w)
6E = ”t( ) Z

and it is clear that we may assume that
eV < |zl <267

because outside of this region H, is analytic and u, = 0 there. When z satisfies
these inequalities, we have

OH, 0 s”" z
’_a__ ’ eh(z) P 12D p( | )
Z

_ dd

eh(z)e*p ’(s”"lzl)

< £1+1/kM2|Z|k
< Mgl

Similarly,

%ﬁt =1 +ep(e*z])h'(2) + eh(2)e'p ’(8”"I2I)
Zz

and this time simple estimates show that

6117_]

= O(gl*
Fe (")

as ¢ — 0. These inequalities imply that for all sufficiently small ¢, ||z, < 1,
and in this case, the Jacobian J of H, is positive for (in general)

oH,|> |oH,|?
0z 0z
and so H, (which is C®) is locally a homeomorphism. This means that H, is a
smooth covering map of the sphere onto itself, and hence (by the Monodromy
Theorem) it is a homeomorphism of the sphere onto itself. Finally, as ||z, [, <
1, (6) holds.

Observe now that as H, is a homeomorphism of the sphere onto itself, we
have deg(S,) = deg(R), where here, deg(S,) is the cardinality of the set S, ' {w}
for all but a finite number of exceptional points w. Suppose now that for any
small ¢ we can find a quasiconformal map ¢ of the sphere onto itself such that
@S, ! is rational. Clearly, this conjugation leaves the degree unchanged, so

deg(S,¢ ') = deg(R),

and moreover, it preserves the (super)attracting nature of the cycles C; of S,,
for such a cycle is characterized by the convergence of the iterates of points
near the cycle to the cycle, and this is invariant under any topological con-

J =
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Jjugacy. Applying Theorem 9.3.1 to this ¢S,¢ !, we obtain Theorem 9.6.1, so
it only remains to show that such a map ¢ exists. The existence proof is based
on the following

Lemma 9.6.2. Let g be a quasiregular map of C_, onto itself and suppose that g
maps the open set E into itself. Suppose also that dg/dz = 0 on both E and
C,, — g9 '(E). Then there exists a quasiconformal map ¢: C, — C,, such that
ogo " is rational.

Shishikura calls this quasiconformal surgery for it shows that by a quasi-
conformal conjugation, we can merge the two analytic maps g of E into itself,
and g of C, — | J2 o9 "(E) into itself, into one analytic map of the sphere
onto itself. We shall continue with the proof of Theorem 9.6.1 until it is com-
plete, and then return to prove Lemma 9.6.2.

The next result is merely a restatement of Lemma 9.6.2 in the context of
our proof, but it does serve to focus attention on the next important step,
namely the construction of the set E. For each positive &, let

V,={z:|z| > ¢},

Lemma 9.6.3. Suppose that E is an open set such that:

(@) E and V, are disjoint; and
(b) S, maps Eu V, into E.

Then for all sufficiently small ¢, S, is quasiconformally conjugate to a rational
map.

ProOF. We verify the hypotheses of Lemma 9.6.2 with g = S,. By assumption,
S, maps the open set E into itself, and we have seen that for sufficiently small
¢, S, is quasiregular on the sphere and analytic outside of V,. As (a) and (b)
imply that both E and C_ — S;'(E) are disjoint from V,, the desired con-
jugacy follows.

We must now construct a set E satisfying the conditions in Lemma 9.6.3,
and to do this, we construct an open set E, depending on the positive parame-
ter ¢, and then show that we can take E to be E, for some suitably small &. We
recall that each {;lies in C, and for each ¢, we shall construct a neighbourhood
of N; of {; (for brevity, we omit the dependence of N; on ¢ from our notation)
satisfying

Nyc{zi|z - {l < 1},

and the set E, will be the union of the N;. We shall assume that ¢ is chosen so
that for each j,
1G]+ 1 < et

and these assumptions imply that Lemma 9.6.3(a  satisfied, and also that
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S¢=R, here {/

Figure 9.6.2

S. = R, on E: see Figure 9.6.2. The verification of Lemma 9.6.3(b) will be part
of our construction of the N;.

We now give the detailed construction of the N;, and this splits naturally
into the three cases of a (super)attracting, irrationally, or rationally indifferent
cycle. Of these, the latter case is the hardest.

Case 1: A (super)attracting cycle {{o, ..., {4-1 }.

It will be convenient to use the notation A < B for sets A and B to mean
that the closure of A is contained in the interior of B. We construct a simply
connected open neighbourhood W of {, such that RY(W) < W, and then find
open neighbourhoods W, of [, such that

R(W)y<W << W_; <W
Now put .
Ny = RY(W), N;=RW), j=1,..,9—1,

SO
F ) <N, R(N)<N,, ..., R(Nj)<N,. 9.6.1)
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In this case, the sets N; do not depend on &, so it follows from (5) that for all
sufficiently small ¢, (9.6.1) holds after we have replaced R by S,. Thus for these
cycles, if € is small enough, S, maps U N; into itself.

If R has a (super)attracting cycle, we may assume (by applying a prior
conjugation) that R(o0) € Ny, so (using (5) again) for all sufficiently small ¢, S,
maps V, into N,. Thus in this case, the hypothesis Lemma 9.6.3(b) holds in
the sense that for these particular N;, S, maps both | J N, and ¥, into [ N,.

The construction of the set E, for indifferent cycles requires the following
result, and again we defer the proof until after the completion of the proof of
Theorem 9.6.1.

Lemma 9.64. Let {{,, ..., {,_,} be an indifferent cycle of R with multiplier 2,
and suppose that the function o is analytic near {, with a({,) = 0 and a’({o) = 1.
Then

aRIa™(z) = [aR% ™' (z) — Az] + Az(1 — &) + O(ez?)

as(z,8)— (0, 0).
Case 2: An irrationally indifferent cycle {{,, ..., {;-1}.
Using Theorem 6.10.5, we can find a function « as in Lemma 9.6.4 such

that near the origin,
aR%"1(z) = 1z + O(z**3),

as z —» 0, where (as before) k = deg(h). As S, = R, near {,, we deduce from
Lemma 9.6.4 that
aSa "' (2) = 2z[(1 — &) + O(ez) + O(z**?)], (9.6.2)

where there is some neighbourhood A~ of (0, 0), and some constant A4, such
that the terms O(ez) and O(z**?) are bounded above by Ag|z| and A|z[F*2
respectively.

Next, for sufficiently small ¢, « ™! is defined on the disc

D = {z:|z| < g/®+D},
SO we can write
Ny = a~Y(D), N; = S5,(No), ..., Npoy = STH(N).
By definition, then,
S(No L UN,_j)c Nyu -~ UN,_; USI(Ny),
so we want to show that for sufficiently small ¢, SI(N,) < N, or, equivalently,
aS?a~'(D) < D.
Now from (9.6.2), if z is in D then
a(S,)a"1(z) = Az[1 — qe + O('*)],



§9.6. The Num® "- of Non-Repelling Cycles 217

where t = (k + 1)7, and it follows that for sufficiently small ¢,
(S ™! (2)] < |22] = |zl,

so aS?a”! maps D into itself. We deduce that for these cycles, and for all
sufficiently small ¢, S, maps  J N; into itself.

If R has at least one (super)attracting cycle, the previous argument (in Case
1) which shows that S, maps V, into U N; remains valid. If not, but if R has
least one irrationally indifferent cycle, we argue as follows. The set ¥, lies in a
disc with centre oo and chordal radius 2¢'*, We may assume (by a prior
conjugation) that R(w0) = (,; then, as R is Lipschitz with respect to the chor-
dal metric, R(V,) lies in a disc with centre {, and chordal radius O(&'/*). Now
this together with (5) implies that S,(V,) lies in some disc of chordal, and
therefore Euclidean, radius O(g'/*). As N, has centre {; and Euclidean radius
approximately £'/**1) and as ¢'/* < £!/**1), we see that for all sufficiently
small g, S,(V,) « N,. This completes the discussion for the irrationally indiffer-
ent cycles.

1

Remark. We remark that at this point we have already obtained Fatou’s
inequality. If Ny, N,, N, and N, denote the number of (super)attracting, indif-
ferent, irrationally indifferent, and rationally indifferent, cycles respectively
(so N, = N, + Nj), then the argument above shows that N, + N, <2d — 2.
However, as each (super)attracting and rationally indifferent cycle attracts
the forward orbit of a critical point, we also have N, + N; <2d — 2 and
together, these yield N, + N,/2 <2d — 2.

Case 3: A rationally indifferent cycle {{,, ..., (-1 }.

In this case we use Lemma 9.6.4 in conjunction with the Petal Theorem.
We shall suppose that R has m petals at each ;, so there is some map a such
that near the origin,

aR%~1(z) = z(1 — z™ 4+ O(z™*)).

Note that A™ = 1: this follows from the Petal Theorem as this map has m
petals at the origin which are permuted by z — Az. Next, from Lemma 9.6.4
(and the fact that S, = R, near {,),

aSla~(z) = Az[(1 — &) — z™ + Ofez) + O(z™*")] 9.6.3)

as z — 0 (note that unlike Case 2, the m here is determined by R). Also, the
terms O(ez) and O(z™*!) are at most A¢|z| and A|z|™*!, say, respectively pro-
viding that |z| < r, and ¢ < ¢,, where these depend only on R.

The construction of the N;is more delicate in this case, and in some sense
it is an amalgamation of the ideas in Cases 1 and 2. Roughly speaking, the set
N; will be the union of regions which resemble the petals at {j, together with
a small disc D; at {;, and we begin by discussing these sets.

We choose a positive number r,, (with ry < 1, but also chosen to satisfy
certain inequalities to be given later), and we insist that

m—1/2

e<rg <rg.
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|Z| =To

Figure 9.6.3

Now let
D = {z:|z]| < g¥/?m1},

Q, = {re®:0<r<ry, |8l < n/3m},
and let Q,, ..., Q,, be the successive images of Q; under a rotation about the
origin of angle 2n/m. Finally, let
N=DuQ,u-—uQ,

this is illustrated in Figure 9.6.3 in the case m = 4.

If r, is chosen small enough, the maps o« ™! and aS%a™" for 0 < ¢ < &, say,
are defined on N, and our immediate objective is to show that for all suffi-
ciently small &, «S7a ™' maps the closure N into N. As N is invariant under the
map z > Az, it suffices to show that N is mapped into N by g,, where

g.(z) = A7 'S " (2)
=2[(1—gf —z"+ Oe2) + ="*1)],

and to do this, it is sufficient to prove the following lemma.
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Q,

)
=

lz| = ro
Figure 9.6.4

Lemma 9.6.5. In the notation above:

(@) |g.(2)| <zl on N; and
(b) |arg g,(z)| < n/3monQ, — D.

Remark. Let the sets Qp, Q] and Q7 be as illustrated in Figure 9.6.4. It is
sufficient to prove (b) on Q) and Q] as the argument for Q7 parallels that
for Q). Further, a similiar statement (and proof) holds for the other “petals”
Q;, so with these extensions (which we omit), Lemma 9.6.5 does prove that
g.(N) c N.

PrOOF. First, we prove (a). If zis in D, then |ez|, |z™| and |z™*!| are all at most
g'"", where t = 1/(2m — 1). Thus

lge(2)l < lzI[(1 — &)t + (1 + 24)e"*']
= lzI[(1 — ge + O],

and this is strictly less than |z| if ¢ is sufficiently small.
Next, take z in Q,. Then

(1 —e)® —z™> = (1 —€)* + |z|*™ — 2 Re[(1 — &)z"]
<(1=e)% 4 [z = (1 = o)jz|"
<[(1 =& — [2I"/37%,
provided that 8|z|™ < 3(1 — ¢)% Taking ¢ and r, small enough, we have
9.(2)] < |zI[(1 — &)* — |2|"/3 + Aelz| + Alz[™*1]
<|z|[1 — ge(1 + Ofe) + O(2)) — |zI"(5 + O(2))]
< |z|

as required.
Before starting our proof of (b), take any w with |w| < 1. Because 1 + w lies
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on the circle with centre 1 and radius |w|, we see that
larg(l + w)| < sin~I(|w]),
and because 28/n < sin 0 on [0, n/2], we find that
larg(l + w)| < 2|w.
This shows that if ¢ and r, are small enough, then for all zin Q,,
larg[(1 — &) — z™ + O(ez) + O(z™*")]| < n/6m. (9.6.4)
From this, it follows that if z lies in Q], then
larg g.(2)| < |arg z| + |arg[(1 — €)? — z™ + O(ez) + O(z™*")]|
< n/6m + n/6m,

which proves (b) for these z.
Finally, take z in Q. Then (9.6.4) holds so certainly

arg g(z) = arg z + arg[(1 — &ff — z™ + O(ez) + O(z™*")]
> n/ébm — n/6m
=0.

Next,
arg g.(z) < n/3m + arg[(1 — &) — z™ + Ofez) + O(z™*")]

so it is sufficient to prove that on Q},
arg[(1 — &)y — z™ + O(ez) + O(z™*!)] < 0. (9.6.5)
Now for z in Q/,
Im[(1 — ) — z™] = —Im(z™) < —|z|"/2.
However, as z lies outside of D,
|0(ez) + O] < A(|2|™72 + [z|™*1)
< 242" /o,
so, providing that 24 /r, < 3,
Im[(1 —&)! —z™ 4+ O(ez) + O(z™*1)] < 0
and hence (9.6.5) holds. This completes the proof of the lemma. 0
We have proved that for small enough ¢, g,(N) = N, and it is now easy to

construct the neighbourhoods N; at the points ;. The map ™' maps N into
some region N, at {, and it follows that S? maps N, into N,. We now write

Ni = §(No) ---» Nyoy = STTH(No),

and a similiar argument to that in the earlier cases shows that aS,a™" maps
(U N; into itself.
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Finally, if R has none of the cycles discussed in Cases 1 and 2, we may
assume (by a prior conjugation) that R(cc) lies in the interior of the image of
Q,, and as this does not depend on ¢, we see that if ¢ is small enough, S,(V,)
will also lie in the image. This completes the discussion of Case 3, and with it,
the proof of Theorem 9.6.1 subject to proving Lemmas 9.6.2 and 9.6.4.

We end by giving the proofs of these lemmas.
PROOF OF LEMMA 9.6.4. The function
F(z,8) = «(S,f'a 7' (2)

is an analytic function of z (for fixed &), and an analytic function of ¢ (for fixed
z), in each case in some neighbourhood of the origin. Thus F is analytic in the
variable (z, €), and it can be expressed as a convergent power series

F(z,¢) = z™Me

3[\/]8
8

am."

0 n=0

in some neighbourhood of (0,0) in C2 Next (and we shall justify these
shortly),

M8

U o2™ = aR%a ! (2);

m=0

ag &" = , ) =0;
ont" =F(0,8) =0

n=0

Y ay ,ze" = Az(1 — €)f;

n=0

It
s

il

a, ,z™e" = O(ez?).

2n=1

Given that these sums are as claimed, the result follows by summing over all
four expressions and taking account of the two terms counted twice, namely
o0 (= 0) and aq_, z (= Az). It only remains to justify these four sums.

The first sum is F(z, 0), and

F(z,0)= aSla"!(z) = aR%a ' (2).
The second sum is F(0, ¢), and
F(0, &) = aS%a~'(0)

= aS?(Co)
= a({o)
=0

The fourth sum is obviously O(ez?2). The third sum is [6F (0, £)/dz]z. Now

oF (z &)

= [ (RA2""2))]. [(R.9) (@"'2)]. [(« ') (2)]
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and putting z = 0 we obtain

aF (0, -
00 w(ta). R €)@y 0)
Z
= (R} (Lo)
-1
-1l R
j=0
-1
~Tl e -or@n
j=0
=il —¢)f
as required, and this completes the proof of Lemma 9.6.4. O

THE PROOF OF LEMMA 9.6.2. The idea is to construct a Beltrami coefficient u
on C, such that
9:Co[p] - C L]

is analytic so, if ¢ is a solution of the Beltrami equation
0¢/0Z = nude/dz, (9.6.6)
then the composite map
Co[0]% Co[u] 5 C..[4] 5 €, [0]

is analytic and so is rational.
As g maps the open set E into itself, we have

Ecg'(B)cg?(B)c -,
so C,, is the disjoint union of the measurable sets
Eq(=E), Eni=g™"E)—g™"E) (r>0),
and
K=C,— Oog‘"(E):Cw— OOE

Now define g on C_ by putting u = 0 on K U E,, and defining g inductively
onE,, E,,...by
_ g(W)/az + u(gw)dg(w)/éz

= . 6.7
3g(W)/az + Algm)Ba(w)z 067

uw)

As quasiconformal maps (and their inverses) preserve zero area, u is defined
a.e. on C,. Further, by definition, (9.6.7) holds throughout U;,"’=0 E,, and it
holds in K for if w € K, then g(w) € K, g(w) ¢ g *(E) and so

uw) =0 = pu(gw),  dg(w)/0z =0
thus (9.6.7) holds throughout C.
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We shall now show that g is a Beltrami coefficient on C. First, if w e E,,,
where n > 2, then g(w) is not in g7*(E) so dg(w)/0Z = 0, and hence |u(w)| =
|£(gw)|. This shows that the essential supremum of u over C,, is the same as
the essential supremum of p over E;. However, if w € E,, then u(gw) = 0; thus
the essential supremum of u over E, is at most | g,||,,, where p, is the complex
dilatation of g, and so || u||, < Ilg,ll, < 1. A standard argument shows that
is measurable (in our application, g is S,, a smooth function), so u is a Beltrami
coefficient on C,,.

Now let ¢ be any solution of (9.6.6) on C,,. If we compute the complex
dilatation of the composition g we find (see [1], or [63]) that it is precisely
the right-hand side of (9.6.7): thus ¢g is also a solution of (9.6.6) throughout
C,. It follows from Theorem 8.3.1 that the composite function (pg)e™" is
analytic except, possibly, at the finite set of points where the valency of g
exceeds one. As these points are removable singularities of ¢ge ', we deduce
that @ge ! is analytic on the sphere and hence a rational map. The proof is
complete. 0O

EXERCISE 9.6

1. Given distinct points zy, ..., z, in C, define the polynomials IT and @, by
N2 =(z—-z)(z-2z) Q2 =Tz - z)
Use Lagrange’s Interpolation Formula to find a polynomial P with P(z;) =

—1/Q;(z;), and show that if h(z) = I1(z) P(z), thenforall j, h(z;} = O and K'(z;) = — 1.
Find h explicitly when n = 2.

§9.7. Expanding Maps

An important class of rational maps R are those which are expanding on
their Julia set. Roughly speaking, this means that if we take a small open
neighbourhood W of J, then the inverse images W, R/ (W), R"3(W),...of W
contract at some specified rate towards J. For example, this happens for
P: z > 22, where |P'(z)| = 2 on J, and it fails to happen for Q: z > 22 — 2,
where Q'(0) = 0 and 0 € J. This section is concerned with obtaining informa-
tion of this kind which can then be used to develop metric properties of the
Julia set as, for example, in §9.8 and §9.9. Our discussion will focus on two
different points of view; the first is the more elementary (and follows from
Theorem 9.2.1), while the second is in terms of general Riemannian metrics
and uses the hyperbolic metric and the Uniformization Theorem.
We begin with the more elementary discussion and we prove

Theorem 9.7.1. Let R be a rational map with deg(R) > 2. Suppose that
o0 € F(R), @ 1at the closure of the forward orbit C* of the critical points of
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R is disjoint from J. Then
lim inf |(R")(2)] = +o0.

n—w zelJ
PrOOF. We begin by explaining how this follows from certain properties of
the branches S, of (R")™!, and after this, we use Theorem 9.2.1 to derive these
properties. The hypothesis on C* ensures that we can find local branches S,
of (R")"! at each point { in J, and by Theorem 9.2.1, the derivatives of these
branches converge to zero on a neighbourhood of {. As J is compact, we can
convert this local information into a global statement which says (roughly
speaking) that S, —» 0 uniformly on J (the problem, of course, is that we do
not know that the S, are unambiguously defined throughout J), and this
shows that |[(R")’| = +oo uniformly on J. The following lemma contains a
precise statement of the properties of the S, that we require. O

Lemma 9.7.2. Given any positive ¢, there is an integer nq, such that for alln > n,,
and all z in J, and each branch S, of (R")™! at z, |S,(z)| <.

Assuming this, take any w in J. Let z, = R"(w), and let S, be the branch of
(R")"! which maps z, to w. Now for z near z,, R"S,(z) = z so

I(R™Y (Sx2)!.1S,(2)| = L.

Given any positive &, choose n, as in Lemma 9.7.2 and put z = z,. Then for
n>ng,
I =|(R?YW)I.[S,(z,)| <&|(R"Y (W)l

which yields the desired result. It remains to give the

PRrROOF OF LEMMA 9.7.2. We suppose the contrary so there is a positive ¢, an
infinite set N of positive integers, points z, in J (for n in N), and branches B,
of (R")™! at z, such that for all nin N,

|By(z,)| > &. (9.7.1)

By passing to a subsequence we may assume that z, — {, where { is in J. Now
find a disc D at { not meeting C*: then D does not contain any critical value
of any R" and so for every n, all branches of (R")"! exist in D. For n > m, say,
z, lies in D and so we can define branches S, of (R")™! in D with S = B, at z,
and nearby. Now by Theorem 9.2.1, S, — 0 locally uniformly in D, whence

By(z,) = §,(z,) >0
contrary to (9.7.1). O
We turn now to the second part of our discussion. Let R be a rational map
with Julia set J, and let w(z)|dz| be a Riemannian metric defined on some

neighbourhood W of J (so w is positive and continuous on W). We do not
insist that w is defined throughout the sphere. If z is in W ~ R™}(W), then the
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change of scale of R at z (measured in the w-metric) is

©(Rz)|R'(2)|
w(z)

IR =

]

and this is defined on a neighbourhood of J.

Definition 9.7.3. We say that R is expanding on J (with respect to w) if there are
positive numbers ¢ and 4, with 2 > 1 and

IRY@I = cA”,  nx=1,

on J. We then call A a dilatation constant of R on J.

Our first task is to show that the property of R being expanding on J is
independent of the choice of the metric w(z)|dz|; thus if there is one metric
with respect to which R is expanding, then, automatically, R will be expand-
ing with respect to both the Euclidean and the spherical metrics.

Theorem 9.7.4. If R is expanding with respect to one metric, then it is expanding
with respect to all such metrics. Moreover, the values of the dilatation constants
are independent of the metric.

PrROOF. Let p(z)|dz| and w(z)|dz| be two metrics, each defined on some
neighbourhood of J. Then, from the continuity of the map z +» w(z)/p(z) and
the compactness of J, there are positive numbers m and M such that on J,

m < w(z)/p(z) < M.

Using subscripts to denote the metric concerned, we then have

IR"Y (@), < (M/m) (R (2)Il,, 9.72)
and also a similiar inequality with w and p interchanged, and this completes
the proof. O

Next, we establish a criterion for R to be expanding on J.

Theorem 9.7.5. Suppose that each critical point of R has a forward orbit that
accumulates at a (super)attracting cycle of R. Then R is expanding on J.

Proor. First, we construct disjoint open (topological) discs, one at each point
of each (super)attracting cycle, such that the union V of these discs is forward
invariant under R. By taking the discs to be small enough, the complement
of V is connected.

Let W be the complement of V¥ U C*, so W supports a hyperbolic metric
which we denote by p(z)|dz|. Now by assumption, only finitely many points
of C* lie outside ¥, and R maps V u C* into itself. It follows that RV (W) <
W, so if we take any branch S of R™! at a point in W, its values, and all values
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obtained by analytic continuation of S in W, will lie in W. Note that such
continuations exist as no critical points of R lie in W.

Now choose w in W and some branch S of R™! at w such that S(w) # w.
Let n: A — W be the universal cover map, we may assume that n(0) = w, and
we choose { in A such that n({) = S(w). The branch S at w provides an analytic
branch ¢ of n71 Sn with ¢(0) = {, and we can continue ¢ analytically through-
out A to obtain a single-valued analytic map ¢ of A into itself.

Now Schwarz’s Lemma implies that ¢ is either an isometry or a contrac-
tion on A (with respect to the hyperbolic metric on A). If ¢ is a contraction,
its scaling factor is strictly less than one at each point of A (again, this is
Schwarz’s Lemma), and as n: A - W is a local isometry (with respect to the
two hyperbolic metrics), we deduce that any local branch of an analytic con-
tinuation of § is a local contraction in the metric p. This means that | R'(z)|, >
1 at each point of W, so writing

A=inf{|R@),:z€ J},

we have 1 > 1. Further, the Chain Rule now implies that, for all n > 1, and
all zin J,
IR, = A" > 1 (9.7.3)

onJ.

If ¢ were an isometry, the same argument would show that the branches
of S, and so R also, would be a local isometry. This cannot be so, however,
forif wis in a repelling cycle of length m, R™ is expanding at w in the Euclidean
metric, and hence in the hyperbolic metric also. The proof is now complete.

a

We end with the remark that although we have shown that
IR, = 4> 1

on J, where p is the hyperbolic metric, it does not necessarily follow from this
that |[R'(z)] = A > 1 on J. However, from (9.7.2) there is some constant c, and
some integer n, such that on J,

[(R"Y(2)] = cA" > L.

These observations add weight to the view that the hyperbolic metric is the
instrinsic metric here, and constantly changing between R and R" is the price
that we pay for using the Euclidean (or spherical) metric.

EXERCISE 9.7

1. Let P(z) = (3z — z*)/2. Show that all of the critical points of P are super-attracting
fixed points (so P is expanding on J). Show also that all components of F(P) are
simply connected.
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§9.8. Julia Sets as Cantor Sets

Let P be a polynomial of degree d, where d > 2. We know that the unbounded
component F has infinite connectivity if it contains some finite critical point
of P (Theorems 5.2.3 and 9.5.1), but we can say much more if it contains all
finite critical points of P. This section is devoted to a discussion of this situa-
tion, but in a form that is applicable to general rational maps.

We need the notion of a Cantor set, the prototype being the famous exam-
ple of the Cantor “middle-third” set (see Exercise 9.8.1). A subset E of the
complex sphere is said to be a Cantor set if it is non-empty, closed, perfect
(there are no isolated points), and totally disconnected (each component of E
is a single point). This is a purely topological description, but later in this
section we shall consider metric properties. First, though, we prove

Theorem 9.8.1. Let R be a rational map of degree d, where d > 2, and let { be
a (super)attracting fixed point of R. If all of the critical points of R lie in the
immediate attracting basin of {, then J(R) is a Cantor set.

Theorem 9.8.1 is applicable to some rational maps that are not polyno-
mials (see Exercise 9.8.2). For quadratic polynomials, the converse of Theorem
9.8.1 is true (but only because there is a single finite critical point): in this case,
if J is a Cantor set, then F,_ is of infinite connectivity, and so by Theorem 9.5.1,
F,, contains the unique finite critical point of P. On the other hand, the con-
verse is false for cubic polynomials (which have two finite critical points): see
§11.6. It is natural to ask whether J is a Cantor set whenever it has infinitely
many components, and again the answer is “no”; see §11.5. Finally, we note
that there is a rational map R for which all critical points are attracted to-
wards a super-attracting fixed point of R, yet for which J is not a Cantor set:
see §11.8.

We now have the

ProoF OF THEOREM 9.8.1. By conjugation, we may assume that { = co, and
we let F_ be the component of F that contains oo (so F,, is the immediate
basin in Theorem 9.8.1). We denote the distinct critical values of R by
C,, Ca ... (there are only finitely many of these): by assumption, each c; lies in
F,, hence so does each R"(c;) and R"(c;) — o0 as n — co.

We are not yet in a position to say that F is connected (that is, F = F,),
but we can show now that

R"> o onF, 9.8.1)

To see this, recall that by the No Wandering Domains Theorem (Chapter 8)
each component of F is eventually mapped by R into some periodic cycle of
components F, ..., F,. Now this cycle of components must attract critical
points (in the - ise sense described in Theorems 9.3.1, 9.3.2 and 9.3.3), and
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our hypothesis about critical points implies that this cycle can only be F,. It
follows that any component of F is eventually mapped into F,, and (9.8.1)
follows. We now begin our construction of J as a Cantor set.

As J is a compact subset of C, and as C*(R) accumulates only at co, we
can find a Jordan curve I that separates J from C*(R). [For example, we can
take a compact disc at oo and in F, and join @ to each of the finite number
of points R"(c;) not in Q by a simple arc. We may assume that these arcs
7. ..., 7, are pairwise disjoint and that the connected compact set Qu
7, U---u 1, lies in F,. It is now easy to separate this set from J by a Jordan
curve.] Let ¥ and W be the interior and exterior of I' respectively and let
K = V uT. Clearly, wu T is a compact subset of F,, so for some integer N,

R*WuTI)c W,

and therefore also
R (VvuD <V

Observe also that as the critical values of RY are in C*(R), R" has no critical
values in K.

As J(R) = J(RM), it is sufficient to work with R" so, relabelling R" as R, we
may now assume that

RWulcW, RV WuDcV, CHRcW JcV,

and we let d = deg(R). Now R is a smooth covering map of each component
of R™!(V) onto ¥, and as V is simply connected, the restriction of R to each
such component is a homeomorphism of that component onto V. Thus we
can define branches S, ..., S; of R™! on K (= VuT)and it is clear that the
sets S;(K), ..., S;(K) are pairwise disjoint compact subsets of K. It is these sets
which form the basis of the construction of J as a Cantor set: see Figure 9.8.1.

Figure 9.8.1
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To realize J as a Cantor set, we consider the images of K under the
elements of the semi-group generated by S, , ..., S;; thus for each sequence of
integers i; in {1, ..., d} we define

K@iy niy) =8, - 5 (K). 9.8.2)
It is clear that
K(iy, ..., 0y, 0h41) = K(iy, ..., i), (9.8.3)
and that the d" sets K(i,, ..., i,) are pairwise disjoint compact sets with

C) K(iy,...,i,) = R™"(K).

[T i,=

We write

K, = () R™(K)

so certainly, K is non-empty, compact and perfect. We now show that
K, = J, and that K is totally disconnected.

It is easy to see that J = K. By construction, J = K, and this with the
complete invariance of J shows that J < K. Next, if z is in K, then for all
n, R"(z)e K, and so by (9.8.1), z is not in F. This proves that K, < J, and
hence that K, = J.

Now let K’ be any component of K: then K, can lie in at most one of the
sets K(j,,....J,) for a given n, so there is a sequence (j,) such that

K'e () KGi-oood)

(in fact, equality holds here for the intersection of a decreasing sequence of
compact connected sets is connected, but we do not need to know this). In
order to prove that K is totally disconnected, it is enough to prove that for
any given sequence (j,),

diameter[K(j,,...,j,)]— 0 (9.8.4)

as n — oo, and this can be derived from our earlier results on the family of
branches of the inverses of the (R")™". As each of the functions §;, --- §; map
of Vinto itself, together they form a normal family in V; this also follows from
Theorem 9.2.1, for each of these maps are branches of some (R™)"!. Now by
Lemma 9.2.2, any locally uniform limit of a subsequence of

Si1s ), ;s 5,5,,S

¢ Bt 7 ' Pl ot E L
is constant (and such limits exist by normality). As (9.8.2) and (9.8.3) hold, it
is clear that this sequence converges locally uniformly to some number
on K, and that for all sufficiently large n, the sets K(j,, ..., j,) lie in some
pre-assigned arbitrarily small neighbourhood of {. This verifies (9.8.4) and
completes the proof of Theorem 9.8.1. 0
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We can say more, both topologically and metrically, about the situation
described in the proof of Theorem 9.8.1. First let IT be the class of sequences
x = (%, X,,...), where each x; is in {1,...,d}, and define the shift map
o: 11 - 11 by

a(x) = (x5, X3, ...)

It is easy to see that p, defined by

pry) = 3 a0

n=1 3" ’

is @ metric on I1, and that p(x, y) < 37" if and only if

(xl""’xn)=(yl5"‘9yn)‘

Further, for all x and y,
plox, oy) < 3p(x, y)
so ¢ is continuous.

We shall prove that if R satisfies the hypotheses of Theorem 9.8.1, then
R: J — J is topologically conjugate to the shift map ¢: IT - I1, and together
with the elementary properties of o described in Exercise 9.8.4, this will yield
a proof of the following result.

Theorem 9.8.2. Suppose that R satisfies the hypotheses of Theorem9.8.1. Then:

(@) foradense set of {inJ,the forward orbit {R"({): n > 1} isdense in J; and
(b) the periodic points are dense in J.

We know that in general, the periodic points of R are dense in J (see
Theorem 6.9.2 and §9.6), but here we have more explicit information and,
in any event, this provides a good illustration of the use of the topological
conjugacy between R and g. For further details about the shift map ¢ in this
context, we refer the reader to [35] and [67].

PROOF OF THEOREM 9.8.2. We take R satisfying the hypotheses of Theorem
9.8.1, and we use the same notation as in the proof of the theorem. Because
of (9.8.4), each x in I1 gives rise to a point

L) = ('jlk(x,,...,xn),

and each point in J arises in this way; thus this defines a bijection {: x > {(x)
of IT onto J. The proof that this map is a homeomorphism is straightforward
and is omitted.
Next,
R(K(xy,..., x,)) = RS, -+ S, (Ky)

=5, S, (Ky)
= K(XZ, caay x"),
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so, by intersecting these sets over all values of n, we find that R({(x)) = {(a(x)):
thus R{ = {o on Il and as { is a bijection,

R={a{™",

so R is conjugate to g.

By constructing a sequencc x in IT such that every finite sequence (v, ..., ¥,)
with n > 1 and y; {1, ..., d}, occurs somewhere in x, and considering the
point {(x) of J, we obtain (a). Similarly, by constructing periodic sequences in
I1, we obtain (b). 0

We end this section with a brief discussion of the metric properties of the
construction of J from the sets K(j,, ..., j,). Consider the family

F =S, S itrrin=1r...,din=1}

as used in the proof of Theorem 9.8.1. This family is normal in V,, and as each
member of the family maps V, (which is bounded in C) into itself, the family
of derivatives, namely

F =S, S s dn= Lo din = 1},

is locally uniformly bounded, and hence normal, in V,. By Lemma 9.2.2, the
locally uniform limits of sequences from % are constant, thus any locally
uniform limit of any sequence from & is the zero map. It follows from this
that, for example,

I(S;, -+ §,) ) < 3

on the compact subset K, of ¥, for all but a finite set of n (for if not, there is
some sequence of these maps whose maximum modulus on K, is at least ).
Taking some n for which all 4" maps of the form §; ---§; have this property,
we relabel these maps as Ty, ..., T;, where k = d", and then use these maps to
generate the Cantor set. Of course, we again obtain J as the Cantor set, but
in this construction the sets in the n-th generation decrease in size at a uniform
rate O(1/2"). With a little more effort, we can show that a similar statement
is true (perhaps with a different constant) for the original construction, but in
any case, the point is that J is realized as the limit of a fairly regular process.

EXERCISE 9.8

1. Let E, = [0, 1], and construct E, inductively as follows. Given that E, is a finite
union of disjoint closed intervals, E,,, is obtained from E, by removing the open
middle third of each of these intervals (that is, we remove (a + i1, a + %t), where
t = b — a,from [a, b]). For example, E, = [0, 1w [%, 1]. Prove that E, E = (| E,,
is a Cantor set (this is the famous “middle-third” Cantor set). Prove that the com-
plement of E in [0, 1] has unit length; thus E has zero length.

2. Show that T. .em 9.6.1 is applicable to the map z — 2z — 1/z. [J is a Cantor set
(see §1.8) but the results here yield more information about J.]



232 9. Critical Points

3. Let P(z) = z% + c. Show that if |z| > |c|, then
IP(2)] = (lel — D]z.
Deduce that if |c| > 2, then J is a Cantor set. [When ¢ = —2, J is not a Cantor set.]

4. Let IT be the class of sequences x = (x, X,, ...), where each x;isin {1, ..., d},and
define the shift map ¢ 11 - 11 by

o(x) = (X3, X3, ...}
(i) Show that p defined by
Xy — nl
pix,y)= % Y

21 3

is a metric on 1, and that p(x, y) < 37" if and only if
(X1seees Xn) = (Visoves Vn)
(i) Show that o is surjective, but not injective, and that
plox, ay) < 3p(x, y),

$0 ¢ is continuous.
(iti) The set of all finite sequences with elements in {1, ..., d} is countable, and so

can be written in a list, say s,, s,, ... . Making the obvious interpretation of
{=(51,52-.)

as a point in T1, show that the forward orbit of { under iterates of ¢ is dense in

mn.

(iv) By constructing periodic sequences in I1, show that the set of periodic points
of o is dense in I1,

§9.9. Julia Sets as Jordan Curves

In this section our principal objective is to obtain sufficient conditions for a
Julia set to be a Jordan curve. Suppose that a (super)attracting fixed point {
of a polynomial P lies in a simply connected component F, of F(P) (and recall
that every bounded component of F(P) is simply connected). We shall show
that the boundary 0F, of F, is a closed curve, and each point of 0F, is accessible
from F, (in fact, 0F, is a quasicircle, [105]). We remark, in passing, that
not every simply connected domain has a closed curve as its boundary (for
example, the complement of a compact, connected, but not arcwise con-
nected, set is a simply connected domain whose boundary is not even arcwise
connected).

Now suppose that a given polynomial P has two completely invariant
components, say F, and F;, each containing a (super)attracting fixed point.
Then these are the only components of the Fatou set of P, they are both
simply connected, and J is their common boundary (Theorems 5.6.1 and
9.4.3). It follows from the remarks above that each point of J is accessible from
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both F, and F,;, and we are now in a position to apply the converse of the
Jordan Curve Theorem ([77], p. 170) which asserts that in these circum-
stances, J is a Jordan curve.

It is possible to avoid the use of the converse of the Jordan curve theorem
here in the following way. First, one shows (by the method given below) that
the boundary of F, is a continuous image, say e - I'(e’’) of the unit circle
0A. To show that 0F, is a Jordan curve, we must realize it as a homeomorphic
image of dA. Now in general, I is not a homeomorphism, but one can show
that for each { in 8F,, I'"1{{} is a closed arc on the unit circle (see, for exam-
ple, [35], p. 285). This induces an equivalence relation ~ on 3A whose equiva-
lence classes are the closed arcs I' '{{}, and JF, is homeomorphic to the
quotient space A/ ~. Strictly speaking, it is still necessary to prove that 6A/ ~
is homeomorphic to JA, and this can be done, for example, by using the
topological characterization of Jordan curves, [77].

We begin our formal discussion with the special case in which the fixed
point is at oo.

Lemma 9.9.1. Let P be a polynomial of degree d, where d > 2. If F,_ is simply
connected, and if P is expanding on its Julia set J, then J is a closed curve and
every point of J is accessible from F,,.

Remark. With these hypotheses, J(P) (= dF, ) need not be a Jordan curve;
for example, the map z ~ z? — 1 is expanding on its Julia set (see Theorem
9.7.5 and Figure 1.5.1).

THE PrROOF OF LEMMA 9.9.1. Applying the Riemann-Hurwitz formula to
P:F_ — F,, we find that F_ has exdctly d — 1 critical points of P, and all of
these lie at co. Now take any disc D centred at oo, which is such that P(E) -
D < F,. For each n, let D, = P™"(D): then D, is open and connected,

D=DycD D,
and as
x(D,4y) + (d — 1) = dy(D,),

we see that each D, is simply connected. Let y, be the boundary of D,; then y,
is a Jordan curve and P" is a d"-fold map of y, onto y,. Roughly speaking, we
shall show that y, converges to dF,.

Let 4 = {z: 1 < |z| < r}. The topological annulus .o/ bounded by y, and ¥
is conformally equivalent to A (for some r), with y, corresponding to {|z| = 1},
and we can use this conformal equivalence to transfer the radial cross-cuts

t—(1+tr—-1)e® 0<t<l,

of A to /. We call the image curves the radial cross-cuts of </, and we write
the radial cross-cut starting at z on 7y, as the map

t s oz t), te[0,1].
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It is convenient to give a label to this curve as a set (rather than as a map),
and we denote this by a,(z). Note also that the conformal equivalence be-
tween A4 and & extends to a homeomorphism between the closed domains, so
the map (z, t) +— a(z, t) is cntinuous on y, x [0, 1]. Further, as 6./ is an ana-
lytic curve, the conformal equivalence extends analytically across the bound-
aries (by the Reflection Principle) so each o,(z) has finite length.

Now consider a point z on y, and suppose that the radial cross-cut o,(z)
from z ends at z; on y,; thus o(z, 0) = z and o(z, 1) = z{. Then P(z,) lies on
¥o and so we can lift the radial cross-cut g,(Pz,)under P~ to produce a curve

t— a(z, 1), te[l,2],

starting at z; and joining y, to y, (see Figure 9.9.1); we denote this curve as a
set by g,(2). This process can be continued in the obvious way to construct
curves

t—o(zt), tenn+1]

(n=1,2,...)whichjoin y, to y,,,. We denote these curves as sets by g,(z), and
(for the same z) these are joined end to end and are otherwise disjoint. It is
clear thateach point of each y, has a unique curve of this type passing through
it.

Figure 9.9.1



§9.9. Julia Sets as Jordan Curves 235

Figure 9.9.2

Let us now examine this in detail. We have constructed a map
(z,t) = a(z, 1)
of the product space y, x [0, +0) (a cylinder) into F such that:

(a) o(z, t) is continuous in (z, t);
(b) the end-points of g,(z) are a(z, n) and a(z, n + 1),
(c) z —> a(z, n) maps y, onto y,.

This is illustrated in Figure 9.9.2.

We come now to a metric condition which is closely related to P being
expanding on J and which, for the moment, we regard as an assumption. We
shall assume that there is some constant k, 0 < k < 1, and some integer n,,
such that for n > n,, and all z on y,,

length[a,,,(z)] < k.length[a,(2)]. 9.9.1)
Using this we see that
n+m—1
la(z,n) — a(z,n+ m)| < Y. length[o)(z)] < Mk™",
Jj=n

for some M, and combining this with the General Principle of Uniform Con-
vergence, we find that the sequence of maps

z > a(z, n) (9.9.2)

converges uniformly on y, to some function ®. We denote the image ®(y,) by
I', say, and as the maps (9.9.2) are continuous in z, so is the map ®. It follows
that I' is a closed curve, and we shall now show that I' = 0F,_.

If{ € I then there are points {, on y, which converge to {, so, in particular,
{ is in the closure of F,. However, { cannot lie in F_ else it has a compact



236 9. Critical Points

neighbourhood K lying in some D, (for the D; are an open cover of K), and
hence not meeting y,, ¥,+1, ..- - We deduce that I' = JF,.

To prove that 8F, < I', take any { in 8F,_ and suppose that { is not on I'.
Then there are disjoint open sets V and W such that{ € Vand I' < W. As the
curves 7y, converge uniformly to I, y, « W for all but a finite set of n. In
addition, { does not lie on any y, (for these are in F,)), so we may decrease V
and so assume that no y, meets V. Now V is not contained in any D, (for
{ € Vn OF,), and since it fails to meet y,, we see that V is disjoint from every
D,. It follows that V is disjoint from F, (the union of the D,), but this is not
so as { € V n 0F,. We deduce that dF,, < I, and hence that

J(P)=0F, =T.

It remains to justify the metric condition (9.9.1), for then we will have
shown that J is a closed curve, every point of which is, by construction,
accessible from F,. Now (9.9.1) is a almost consequence of the fact that P is
expanding on its Julia set J. Suppose for the moment that

IP'(2)| = k> I (9.9.3)

on J. Then (as J is compact) a similar inequality holds (with a smaller value
of k) on some open neighbourhood W of J, and so we may assume that (9.9.3)
holds on W. The set F,, — W is compact and so lics in some D,; thus for
n > n,, say, F,, — D, lies in W. With this, we deduce that for these n,
length[g,_,(Pz)] = length[P(g,(z))] = k length[a,(z)].
Writing
L, = sup length[o,(z)]
Z€EYo
(which is finite as vy, is compact) we find that
kL, <L, i,
and hence that
length[a,(z)] = O(k™)

as n — oo. Clearly, it is sufficiently to replace (9.9.1) by this in the argument
above, so we have now completed the proof under the assumption (9.9.3).
In general, however, (9.9.3) will not hold, but there will be some m with

[(P™Y(2)| = k> 1

holding on some neighborhood W of J (see §9.7). In this case, we must make
a further modification by replacing a,(z) (joining y, to 7,,,) by the curve

T,(2) = 0,(2) v VO m-1(2)
which joins 7, to y,, - As
Tn—-l(sz) = P"‘(r"(z)),

the proof remains valid with only minor alterations. O
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Lemma 9.9.1 readily extends to the case of a general (super)attracting fixed
point, and we have

Theorem 9.9.2. Let P be a polynomial which is expanding on its Julia set, and
suppose that the immediate attracting basin F, of a (super)attracting fixed point
{ of P is simply connected. Then J is a closed curve, and every point of J is
accessible from F,.

PROOF. The case when { = oo follows from Lemma 9.9.1, so we may assume
that { € C, and by applying a conjugation (with respect to a translation) we
may now suppose that { = 0. It follows that F, is simply connected and
bounded (in C). Now construct a disc D, say {|z| < ¢}, in F, which is such that
P(D) = D. We denote the component of P~"(D) which contains 0 (= {) by D,;
thus

D=DycD cD,c=",

and F, is the union of the D,.

We shall now show that each D, is simply connected, and to do this we
take any simple closed curve ¢ in D,, and let W be the interior of g. Our aim
is to prove that W = D,. Now as ¢ lies in D,, P"(¢) lies in D and so |P"| < ¢
on g. The Maximum Modulus Theorem now shows that | P"| < ¢ throughout
W, hence W is a connected subset of P™"(D). As g (= dW)isin D,, we conclude
that W < D, and so each D, is simply connected.

Now for a suitably large N, Dy contains all of the critical points of P which
lie in F,, and we now relabel Dy, Dy, ... as Dy, D{, ... . In this way, we have
constructed an increasing sequence of Jordan subdomains D, of F,, with D,
bounded by a Jordan curve y,, such that:

(1) DypcDycD,cD c < Un D = Fo;
(2) D, contains all of the critical points of P in Fy;
(3) P(Yn+1) = Vs P(Dn+1) = Dn'

With these, the proof proceeds exactly as for Lemma 9.9.1 and we omit the
details. a

We can now argue as follows. If F(P) has exactly two components, then
both are simply connected (because each is completely invariant under P2).
Thus, finally, and as described above, we have

Theorem 9.9.3. Let P be a polynomial that is expanding on its Julia set, and
suppose that F(P) is the union of exactly two components, each of which con-
tains a (super)attracting fixed point. Then J(P) is their common boundary and
is a Jordan curve.

For examples of this, and an example where this is not applicable, see
Exercises 99.3 and 9.9.4. Roughly speaking, when J is a Jordan curve, it is
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either very smooth or highly irregular: for further information, we refer the
reader to [67] (pp. 80-85), [28] (pp. 116-117) and [86].

EXERCISE 9.9

1. Let
K={iy:lyl <1}u{x+isin(l/x}: 0 <x < 1}.

Show that the complement of K in C_, is a simply connected domain whose bound-
ary is not a closed curve.

2. Construct an increasing sequence of domains D,, each bounded by a Jordan curve,
whose union D is a simply connected domain with the property that not every point
of 8D is accessible from within D.

3. Let P(z) = z2 + ¢, and recall that if c lies in a certain cardioid (see §1.6) then P, has
two attracting fixed points, say { and co. Let F; be the component of F(P) which
contains {. Using Theorem 9.3.1, deduce that P is a two-fold map of F; onto itself,
and hence that F, is a completely invariant component of F(P). This shows that F,
and F, are the only components of F(P)so J(P,) is a Jordan curve.

4. Verify that for the map R given in Example 9.4.2, F(R) has exactly two components,
neither of which contain an attracting fixed point.

§9.10. The Mandelbrot Set

Given a family of rational functions R(z, ¢y, ..., ¢,) parametrized by the com-
plex parameters c,, ..., ¢,, We can partition the parameter space into dis-
joint regions ; in such a way that as (cy, ..., c,,) moves through each (; the

dynamics of the iterates of R display essentially the same features, while as
(¢y5 ..., Ccy) passes from one € to another, some significant change in the
dynamics take place. For the family of polynomials

P@z)=z+¢, ceC,

the partitioning of C leads to the Mandelbrot set .#: for example, we saw in
§1.6 that as ¢ moves from the cardioid into the disc, the unique attracting fixed
point of z2 + ¢ is converted into an attracting two-cycle. Much has been
written about the Mandelbrot set, and the reader may consult {387, [39], [59]
and [80] for more information. Here, we shall confine ourselves to giving the
details of the proof that .# is connected [38].

For each c in C let J, be the Julia set of P,, and let F, be the unbounded
component of the Fatou set F(P,). We write ¢, = P(0), so (c,) is the forward
orbit of the finite critical point of P.. Because P — oo in some neighbourhood
of oo, either the sequence (c,) converges to oo (and J, is a Cantor set), or it is
bounded (and J, is connected); thus (see §1.6)

M = {ce C:(c,) is bounde,. (9.10.1)
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We need a sharper result than this, and as —2 € .# the following result is the
best of its type.

Theorem 9.10.1. .# = {ce C:forn > 1, |c,| < 2}.

PRrOOF. Given any c, let
W ={z:|z| = |c|,|z| > 2}.
Now for each z in W, there is a positive ¢ such that |z| > 2 + ¢, and then
IP2)| 2 |z|* ~ le| > |zI? ~ |z] 2 (1 + &)z,

so P(W) = W. Replacing z by P.(z) (and using the same ¢) we see that P™ — co
on Wasm— oo.

As (9.10.1) holds, it suffices to show that if c € .4, then |c,| < 2 forn > 1,
so suppose now that ¢ € .#. Then for all n, ¢, ¢ W (else ¢,,,, = 00 as m — )
sO

led <lel  or e <2.

As ¢; = c, this shows first that |c| < 2, and then for all n, |c,| < 2. O

It is evident that ¢, = Q,(c) for some polynomial Q,, and as c,,, = P.(c,)
for each c, the @, can be defined inductively by Q,(c) = c and

Qn+l(c) = [Qn(c)]2 + c.

In terms of the Q,, Theorem 9.10.1 becomes
= () 01 (K)
where K = {|z| < 2}, s0 .# is compact, and by taking complements we obtain
M) = Co =t = | 0;D)

where D = ¢(K). Now for any non-constant polynomial @, Q~'(D) is open,
connected, and contains oo, and as any union of such sets also has these
properties, we see that €(.#) is open and connected. Our objective here is to
prove

Theorem 9.10.2. There is a conformal map of €(#) onto {|z| > 1}, thus €(4)
is simply connected.
We can motivate this result as follows. First, we have
1K) =201 (K)= -, (9.10.2)

and this shows  t.# i 'heintersection of the decreasing sequence of com-
pact sets @, '(K,. If t! s are connected (as computer experiments sug-
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gest), then so is their intersection .# and hence by Proposition 5.1.3, €(.#) is
simply connected.

We pause to verify (9.10.2) even though this will not be needed. First, we
prove (by induction) that if |z| > 2, then

2<zl =10, (@) <1Q:(2) < 1Qa(2) < --+, (9.10.3)
the inductive step being
Q0112 2 [2W(2)I* — |2
> 2,2)(12.() — 1)
>0,

Now suppose that z € @, };(K); then (9.10.3) fails so | z| < 2, and as this implies
that
10,(2)12 = 1Q,41(2) — 2| < [Qpia(2)] + |2 < 4,

(9.10.2) follows.
The remainder of this section is devoted to the

ProoF oF THEOREM 9.10.2. We begin by recalling the properties of the Green’s
function g.(z) of the unbounded component F, of the Fatou set F(P.): see §9.5.
Foreach ¢, there is a function g.: F, — (0, +c0] that is positive and harmonic
in F, except at co where g.(z) — log|z| is bounded. Further, g.(z) - 0 as z —»
0F, (= J.), and for sufficiently large |z|,

g.(z) = log|e.(2)l,

where ¢, is the unique function which is analytic and satisfies
P)~z aszo oo,  @P2) = 2),

near co. Finally, in F,,
9.(P.(2)) = 24,(2). (9.10.4)

Roughly speaking, to prove the theorem we construct an analytic continu-
ation of (z, ¢) +— ¢.(z) and then show that the desired conformal map is ¢ +—»
¢.(c), and to do this we require a little of the theory of functions of two
complex variables. For any open subset D of C x C, a function f: D - C is
analytic if it can be expressed as a power series (in two variables) in some
neighbourhood of each point of D, and this is so if f is analytic in each
variable when the other variable is kept fixed. Most of our maps are defined
on subsets of C,, x C, and analyticity at co (in the first variable) is defined by
the usual application of z > 1/z. As an example, P,(z) is analyticin C,, x C.

It seems clear that we should confine our attention to the set

Q={(z,c)eC, x C:ce¥(H),zeF,},



§9.10. The Mandelbrot Set 241

and our first task is to show that this is open. Let
Q, = {(z,c). ce €M), |z| > 2,|z|* > 2]c|},
clearly, this is open in C_, x C. Moreover, if (z, ¢) € Q, then
|P2)| = |2I* — |e| > |2I?/2,
and from this, we obtain
2 <|z| < |P2)| < |PXz)| <. (9.10.5)
A simple induction argument now yields
PP > 2(12l/2)" - oo (9.106)

and we deduce that P](z) — oo locally uniformly on Q.
Now define F by
F:(z,c) = (PA2), ).

Then
(2 0)€ | F"(Q)
if and only if for some n > 0,
ceb(#), |P@)I>2, P> 2,

that is, if and only if ¢ € €(.#) and P’(z) € Q,. In view of the remarks above,
it is now clear that

(@]

Q=1 F ")

i}

o]

and as F is continuous and €, is open, we find that Q is open. Moreover, as
P - oo locally uniformly in Q,, we now see that the same holds locally uni-
formly in Q.

For any set Din C,, x C,, the ¢-section of D is

D(c) = {z: (z, c)e D}.

Now for each ¢ in €(.#), Q(c) = F,, and as this is infinitely connected (it is the
complement of the Cantor set J,), it is easier to work with an open subset Q,
of Q which has simply connected c-sections, but which still contains (c, c) for
all c in €(.#). We now construct such an Q,. If ¢ € ¢(.#), then 0 € F, so we
can define

Ql - {(Z, C) ek gc(z) > gc(o)}

Lemma 9.10.3.

(i) (o0, ¢) and (c, ¢) lie in Q,(c);
(ii) each c-section of Q, is simply connected;
(iii) €, is an open subset of C_, x C.
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Proor. Clearly (w0, c) € Q, (c), and putting z = 0 in (9.10.4) we see that (¢, ¢) €
Q,(c).
To prove (ii), we fix ¢ and write
A, ={z€F,:g(z) > 2"g.(0)},
)
Q)=A4>2A, 24, 5.

As the A, form a sequence of neighbourhoods of co which shrink uniformly
to oo, for a sufficiently large N, z € A if and only if

l@(2)] = exp[g.(2)] > exp[2Vg.(0)],

and as ¢, is conformal near oo, this inequality defines a simply connected
domain. Thus for some N, A is a simply connected domain.
Now from (9.10.4), for all n,

zeA, ifandonlyif P(z)eA,,;;

thus P, is a two-fold branched covering map of A, onto A,,, which is
branched only at o (for the only other branch point of P,is at 0 and 0 ¢ A,).
This implies that each A, is a domain, and the Riemann-Hurwitz relation

X(An) + 1 = ZX(ADH»I)

shows that if one of the A, is simply connected, then they all are. We deduce
that A, is simply connected and as A, = Q, (¢), this is (ii).
As Qis openin C, x C, to prove (iii) it is enough to prove that the map

g:(z, ) g.(2)

is continuous on Q. Moreover, this will be so if g is continuous on Q,: indeed,
on Q,
9(z, ) = g.(2) = 2779 (P! (2)) = 27"(gF")(z, c),

and this is continuous on F~"(Q;) (whose union is Q) if g is continuous on Q,,.
The proof that g is continuous on Q, will come later, and we emphasize that
until we have proved this, we do not know that Q, is open.

Our next task is to fix a value of n and define a single-valued 2"-th root of
P!(2) throughout Q,. We shall denote this by ®,(z, ¢), so we claim that there
are functions ®,(z, ¢) on Q, such that

(z, ¢) = ®,(z, ¢) is analytic in Q;

for each cin €(#4), ®,(z,c) ~z as z-— oo; (9.10.7)

®,(P.(2), ¢} = [®p11 (2, 0)]* inQ,. (9.10.8)
To construct the ®,, note that the functicn

(z,0) > 1/P'(z7%, ) = 22"H, (2, ,
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is defined on
E={(z0:(z"" e},

and H, is never zero there. For each ¢, X(c) is simply connected (see Lemma
9.10.3(ii)) so we can define an analytic 2"-th root of z + H,(z, c) in Z(c) by

/6z(w c)
Zr exp{znj. H (w, ¢) dw}, (9.10.9)

where the integral is over any curve 7 joining 0 to z in X(c). Conjugating by
z > 1/z, this provides us with maps ®, which are defined and which satisfy
(9.10.7) and (9.10.8) in Q,. It is clear from (9.10.9) that each ®, is analytic in
the interior of Q,, and we recall that do not yet know that Q, is open. O

We proceed by analysing the functions ®, on Q, and we prove

Lemma 9.10.4. ®, converges uniformly on Q, to some ®, where:

(1) @ is analytic in Qg;

(2) ®(c,c) ~casc— w;

(3) for eachc, ®(z,c) ~ zasz - w;
4) |®(z, ¢)| > 1in Q;

(5) ®(P.2), ©) = B(z, ¢)*.

Proor. Write

0,
0,02, = 0,2, T (z(zc)c)

and as P¥*'(z) = P.(PX(z)), we have
(DIH»I(Z’ C) _ [l + ,‘C .
q)k(z, C) [Pc (Z)]

say. To estimate 8, we integrate the derivative of (1 + w)"/* along the radial
segment from 0 to w, |w| < 3, to obtain

(1 + w)'™ — 1] < 2|wl/k,

1/2k+1
] =14 8,(z, ¢),

and using this and (9.10.5) we have

2]c| || 1
< < —==.
|9 (Z C)l = 2,¢+1 |Pk( )|2 = 2k|z|2 = 2k+l

(9.10.10)

This shows that the ®, converge uniformly on Q, to some ® and (1) follows
as the @, are analytic there.

To prove (2), we recall that .# < {|z| < 2}. Thus if |c| > 2, then (¢, c) €
Q, and so from (9.10.10),

[8(c, )| < as ¢ — ow.

2"I o
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This shows first that ®, — ® uniformly on {(c, c): |c| > 2}, and second (by
taking the limit term by term),

2 172 ©
lim ¢"'®(c, ¢) = lim ((C—Jri) 111+ 6ic. o)

[nd o] c—rao 4
=1

Next, take a fixed ¢ in 4(.#). The functions z > @,(z, ¢) converge uni-
formly to z + @(z, ¢) on Q4(c), and (after conjugating by z + 1/z) the deriva-
tive of @, at oo converges to that of ® and this gives (3).

Next, from (9.10.5), |®,(z, ¢)] > 1 on Qg, so [®(z,c)| > | there. Now for
each ¢, z +» ®(z, c) is analytic in the disc Q,(c) and, by (3), it is not constant
there: thus (4) follows from the Minimum Modulus Theorem on Q,(c). Final-
ly, (5) follows by letting n — oo in (9.10.8) and this completes the proof of
Lemma 9.10.4. O

At this point, we can complete our proof that Q, is open by showing that
g is continuous on €. For each c, the functions

gc(z)’ 10g|(pc)|, logld)(z, C)l,

of z are defined in some neighbourhood of co. The first two are equal there,
and the second two are equal there (by Lemma 9.10.4 and the uniqueness of
¢.). It follows that for each c,

g.(2) = log|®(z, c)| (9.10.11)

as functions of z throughout Q,(c) (for they are both harmonic there), thus
this holds throughout €, and as ® is analytic in Q, g is continuous there.
It now follows that Q, is open and each @, is analytic there.

We have now assembled all of the preliminary material for the proof. The
functions &, are defined in Q, and they converge uniformly to @ in the open
subset Q) N Q; of Q,. We have also seen that P/(z) - oo locally uniformly on
Q,, and this shows that given any compact subset K of Q;, there is some n(K)
such that if n > n(K), then |®,| > 1 on K. Now Cauchy’s Integral formula
holds in several variables and in the usual way (when combined with the map
z > 1/z) this shows that the family {®,(z, ¢)} is locally equicontinuous, and
hence normal, in Q,. The usual proof of Vitali’s Theorem is valid (see Theo-
rem 3.3.3) and using this to guarantee the analytic continuation, we deduce
that @ extends to an analytic map in Q,, where @, — ® locally uniformly in
Q.

As (¢, ¢) € Q, for every ¢ in €(.#), we can now define an analytic map

¢ ¢(c) = D(c, ¢)

on €(.#). Further, as (9.10.11) holds throughout €, and as g.(z) > 0, we find
that |@(c)| > 1, thus @ maps €(.#) into {|z| > 1}.
Next, we need to know that

lo(c)) =1 as c— oM (9.10.12)
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Assuming this for the moment, we see first that if |w| > 1, then @ ! (w) is finite,
and second that every curve in {|w| > 1} lifts under ¢~ to some curve in
%(A). It follows that for some k, ¢ is a k-fold covering map of ¥(.#) onto
{|w| > 1} (see the discussion of complete covering surfaces in [5]), and k = 1
for the only pole of ¢ is at co, and as ®(c, ¢} ~ ¢ when ¢ — oo, this is a simple
pole.

It only remains to prove (9.10.12) and to do this note that

1 <|o(c)| = |D(c, ¢l
= lim |P2(c)|'*"

n—~a

= (1im IQ.,(C)I"2">2

Opil@)=¢pyy = P:H(O) = P/(c).

Now take any positive ¢, choose a positive integer k such that

as

4<(1+¢*7",

and let
E = {z:|z] <3,|Q4(2)| < 3}.

By Theorem 9.10.1, E is an open neighbourhood of .#, and we shall verify
(9.10.12) by showing that if ¢ € E, then |¢(c)| < 1 + &.
Let T(x) = x? + 3; then (by induction) for n > 1,

T"(3) < (947"
Now suppose that ¢ € E. As |c¢| < 3, for each n we have
@10l < T(IQulc))s
and as T is increasing, repeated applications of this yield
[Qn il < T"(|1Qu(c)])
< T"(3)
<47
We deduce that
I <) = (lim IQ.,(C)I"2">2

n—~vao0
<l+e

as required. 0



CHAPTER 10

Hausdorff Dimension

We define the Hausdorff dimension of a set, and after giving some examples
we show that the Julia set of a rational map has positive dimension.

§10.1. Hausdorff Dimension

In 1918, Hausdorff introduced the ¢t-dimensional measure m,(E) of a set E and
used this to create the dimension of E. The idea is that if the set E has dimen-
sion d(E), and if t > d(E), then m,(E) = 0 (the measure is too crude to recog-
nize E), while if t < d(E), then m,(E) = + o0 (the measure m, is too delicate to
measure E). For example, a disc in C has dimension 2, infinite length and zero
volume, and Hausdorff extended this familiar idea to the whole spectrum of
positive numbers.

We shall consider subsets of C (and later of C, with the chordal and
spherical metrics), but the ideas are equally applicable to any metric space.
The open disc in C with center w and radius r is denoted by D(w, r), and for
any set A, |A| denotes the diameter of A4, so

|A| = sup{lz — w|:z, we A}.

Let E be any set and ¢ a positive number. For each positive d, we consider
the possible coverings {A;} of E by sets of diameter less than 4, and in an
attempt to minimize the sum ) ;|4;l', we define

md(E) = inf{Z [A;l': |4l <8, E= | A,}.
i i

As & decreases, the class of such coverings of E diminisnes, so m?(E) increases
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and we define the ¢-dimensional measure m,(E) of E by

m,(E) = lim m}(E) = sup m}(E).
-0 >0
This limit always exist (we allow it to take the value +c0), and m,(E) is called
the t-dimensional Hausdorff measure of E. In fact, m, is an outer measure on
the class of all subsets of C.
The following simple result enables us to go on to define the Hausdorfl
dimension of E.

Lemma 10.1.1. If m(E) < + o0 and t < T, then m(E) = 0.

PRrooF. Suppose that the family {4;} satisfies E = ( J; 4; and |4;| < 6; then
mi(E) < g |47 < 8T X |4l
J

Varying {4;} over all such coverings of E, we obtain
m3(E) < 6T 'm)(E),
and letting § — 0, we obtain m(E) = 0. O

An immediate consequence of Lemma 10.1.1 is the existence of a non-
negative number d(E) such that

_ J+oo if t <d(E)
m{E) = {0 if t> d(E),

and we call d(E) the Hausdorff dimension of E. Notice that we make no claims
about the size of m,(E) when t = d(E) as this can take any value in the range
[0, +0].

There are many other ways to measure the size of a set E, for example, the
more recently introduced box dimension, and also the notion of capacity
from potential theory. We shall concern ourselves only with Hausdorff’s ap-
proach, but we refer the reader to [42], [43], [60], [84], [86], [97] and [98]
for more information on these and related topics.

We end this section with some useful remarks concerning the computation
of the dimension. First, any set A can be enclosed in an open disc of radius
2|A|, so if each set A; in a covering is replaced by such a disc D;, then

Z 4" < Z D)l < 4 Z |41,

J 7 J
and this shows that we may confine ourselves to coverings of E by open discs
in our definition of d(E).

Next, suppose that E is a subset of C,,, and define d4(E) to be the dimension
of E as above, except that for this, we use the chordal metric to measure
diameters (we  d equally well use the spherical metric here, and the corre-
sponding value ur dy(E) would be the same). As any Mdbius map g is Lipschitz
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with respect to the chordal metric, it is easy to see that dy(g(E)) = do(E). In
addition, if E is bounded in C, then the ratio of the chordal and Euclidean
metrics near E is bounded (above and below) and so d(E) = d,(E). These
observations lead us to the conclusion that we should really use the chordal
(or spherical metric) to define d(E), and that when E < C, we may, if we wish,
use the Euclidean metric. Henceforth, we shall use d(E) (and not d,(E)) for the
dimension computed in this way.

Finally, given a rational map R and a Mobius map g, the remarks above
show that

d(J(gRg™")) = d(g(J(R))) = d(J(R)),

so when estimating the dimension of J(R), we may freely replace R by any of
its conjugates.

Exercise 10.1

1. Show:
(i) if A is countable, then d(A) = 0;
(ii) f A = R, thend(4) < 1;
(i) if A < C, then d(4) < 2.

2. (i) Show that d(R) = 1, and that m,(R) = + c0.
(ii) Suppose that for the sets E,,, d(E,) = « — n™!, and let E be the union of the E,,.
Show that d(E) = a and m,(E) = 0.

§10.2. Computing Dimensions

This section contains a brief discussion of how one can estimate (or, in rare
circumstances, compute) the Hausdorff dimension of a set. Generally speak-
ing, it is not difficult to establish an upper bound for d(E) (for any covering
will suffice), but it is much harder to obtain a lower bound.

To obtain an upper bound of dim(E), it is only necessary to find an efficient
covering of E by sets of small diameters and then compute the appropriate
sum. For example, suppose that for each J we can find a covering {4} of E
with |4;| < é and

YAl <1
7
Then for all §, m}(E) < 1; thus m,(E) < 1 and hence d(E) < t.

To illustrate this, consider the classical Cantor middle-third set E (see Exer-
cise 9.8.1). In this case, the construction of E provides us with an efficient
covering for, at the n-th stage, there is a covering {I;} of E by 2" intervals, each
of length 37". Given any 4, choose n sufficiently large so that 37" < 4, and
define

. log 2

== 10.2.1
log 3 (1025
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Then

™%

Ul
—

L' =2"37") =1,
J
and so by our remarks above, d(E) < t. Later, we shall see that d(E) = t.
Next, we describe a general method for obtaining a lower bound on d(E).
Recalling that D(w, r) is a disc, we prove

Lemma 10.2.1. Suppose that u is a probability measure on the subset E of C,
and that for some positive constants ¢, t and ry,

Dz, ) < er'

whenever z € E and 0 < r < ry. Then dim(E) > ¢.

Proor. Take any positive 4, and as we let 6 -0 when we compute the
Hausdorf dimension, we may assume that § < r,/2. Now consider any cover-
ing of E by discs D(w,, ), k = 1,2,..., with r, < 4. For each disc D(w;, r;) that
meets E, we select a point {; in this intersection and create the disc D((}, p;),
where p; = 2r; < 1. Clearly, E lies in the union of the newly created discs, and
as

1=puE) < ; wD;, p))
<c) o
7
<cy (@n)
x
<c Z [diam D(w,, )7,
x

we find that m}(E) > ¢™'. Letting § — 0, this gives m,(E) > ¢! and hence
dim(E) > t. a

Let us now attempt to complete the proof that the classical Cantor set E
has dimension log 2/log 3 by using Lemma 10.2.1. At the n-th stage of our
construction of E we have 2" intervals of length 37", and we denote by u, the
probability measure which has a constant probability density of (3/2)" on the
union of these intervals. Intuitively, as n — co, the probability measures u,
converge to a probability measure u on E, and providing that

tn(A) = p(A) (10.2.2)

for any set 4, we can apply Lemma 10.2.1 to x and estimate d(E). We apply
Lemma 10.2.1 next, then we discuss the existence of p.

First, (10.2.2) implies that y is a probability measure on E. Now select any
x in E. Then x lies in exactly one of the intervals used in each stage of the
construction of E and denoting these intervals by I,, I,, ..., we have

[I|=37" LnLne = {x}.
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Now take any rin (0, 1), and let N be the largest integer such that (273 < 1.
This means that (6r)3" > 1, and with ¢ given by (10.2.1), we have

(6")‘ > 3—Nr — 2—N.

However, as |D(x, r)| < 37", D(x, r) can meet at most one of the intervals used
at the N-th stage of the construction (for two such intervals are separated by
a distance of 37%), and by definition, this interval must be I,. It follows that
foralln > N,

in(D(X, 7)) < py(Iy) = 27V < (67),

so by (10.2.2),
w(D(x, r)) < (6r).

Lemma 10.2.1 now shows that d(E) > t, and so d(E) = t as required.

Now this argument does not need the full strength of (10.2.2), and a full
justification of what is actually needed here and in the next section can be
found in [60], pp. 1-12. Given a sequence of probability measures g, on C,
one can always find a subsequence g, ;, such that

u(D) < lim inf g, (D)

-]

for every open set D, and
lil;ﬂ SUP ft(5(D) < u(K)

for every compact set K. These show that in our example above, a sub-
sequence of (u,) converges in this sense to a probability measure p on E and,
moreover, that the inequality

Ha(D(z, 1)) < cr'

for u, is inherited by u, and this is all that is required. A similar (but slightly
different) argument will be used in §10.3.

We end this section with a brief discussion of other examples of sets whose
dimension can be estimated. First, given any compact connected set E, sup-
pose that there are Euclidean similarities ¢,, ..., ¢, such that each ¢; maps E
into itself, say with ¢,(E) = E;, and such that the sets E; are pairwise disjoint.
We can use this pattern to generate a Cantor set, the k" sets at the n-th stage
of the construction being of the form ¢(E), where ¢ runs over all possible
words of length n in the semi-group generated by ¢, ..., ¢,. Such sets are said
to be self-similiar and exactly the same arguments as those given above for the
classical Cantor set show that d(E) is the unique positive solution d of the
equation

|EF = |E|* + -+« + | EJ".

In the case of the classical Cantor set, k = 2, E = [0, 1], and ¢, (x) = x/3,
92(2) = (x + 2)/3.

In fact, self-similiar sets rarely arise out of other in  zsting situations, but
the methods above allow for some flexibility. For example, there are situa-
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tions where this type of construction arises, but where the maps ¢; are given
by analytic functions, and in such circumstances Koebe’s Distortion Theorem
([46]) allows one to conclude that there is only a bounded deviation from
self-similarity. This is enough to obtain estimates on the dimension of the set
and, in particular, to show that it has positive dimension. Such sets are exam-
ples of general Cantor sets, and for examples of these situations, see [17], [42],
[43] or [98]. In §9.7 we described conditions under which a Julia set is a
general Cantor set of this type, and the methods outlined above enable us to
conclude that these Julia sets have positive dimension (and one can obtain
explicit bounds on their dimension).

More information about the dimension of Julia sets is known, and we
mention a result of Ruelle, [86], in which J is the Julia set of the polynomial
22 + c. If c is small, then J is a Jordan curve (see §9.8), and Ruelle proved that
asc— 0,

d(J) =1+ |c*/(41og 2) + O(c®).

For other results on the dimension of the Julia set, and deeper problems
about the ergodicity of the action of R, the reader can consult, for example,
[28], [65], [71], [75], [78], and [86].

§10.3. The Dimension of Julia Sets

Let R be a rational map of degree d, where d > 2, and suppose that co € F(R).
Then R has no poles in J and so |R’(z)| attains its (finite) maximum on J. As
J contains some repelling cycle {z,, ..., z,,.}, and as

[R'(z1) "+ R'(z)| = [(R™)(z1)] > 1,
we have
Ko=max{|R'(z):z€J} > 1.

With this definition, we now have

Theorem 10.3.1. Let R be a rational map of degree d, whered > 2. If «© € F(R),
then
logd

; el 10.3.1
dlm(J)ZlogKo, (10.3.1)

and this lower bound is best possible.

Remark. The lower bound is attained when R(z) = z%. Also, for any R,
dim(J) < 2andso Ky > \/3 > \/5

Given any rctional map R, we can choose a Mdbius map g such that
o0 € F(gRg™), ..d because J and g(J) have the same dimension (see §10.1),
we have
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Theorem 10.3.2. If deg(R) > 2, then dim(J) > 0.

The idea in the proof of Theorem 10.3.1 is to find a point { in F(R) such
that for every n, R™"({) has precisely d" elements, and also such that as n — oo,
R™"({) accumulates precisely at J. We then let u, be the probability measure
distributed uniformly over R™"({), and by letting n — oo through a suitable
sequence, the measures u, converge to a probability distribution u on J. By
analysing the distribution of the points in R™"({) and their distances from
J we obtain inequalities on u,, and hence on u, which enable us to apply
Lemma 10.2.1 and so obtain a lower bound of dim(J). This proof is essentially
that given in [47].

Before giving the proof, let dist[U, V] be the Euclidean distance between
the sets U and ¥, and let card(E) be the cardinality of the set E.

PRrOOF OF THEOREM 10.3.1. As o0 € F, we can select a positive number d such
that each pole of R is at a distance at least 26 from J. Now let

J(8) = {z: dist[z, J] < 8},

and
K(3) = sup{|R'(2)|: z € J(9)},

so obviously, 1 < Ky < K(8) < +00, and
K(®)—» K, as 6-0.

We shall prove that
. log d
dim(J) > og K(3) (10.3.2)
and we obtain (10.3.1) from this by letting  — 0. As é will not vary in proving
(10.3.2), we can now write K for K(J).

To select {, we choose a compact disc E in F(R) to which Theorem 4.2.8.
is applicable (if R has (super)attracting or rationally indifferent cycles, we take
E to be a disc in the immediate basin of the cycle; if no such cycles exist, then
F(R) contains a Siegel disc or a Herman ring, say F,, and we take E to be a
disc in R™!(F,)). We have used Sullivan’s Theorem here, but this is not really
necessary for if R had a wandering domain Q, we could take E to be in disc
in Q.

We now take { to be any point of E whose orbit does not meet the orbit
of any critical point; then for every n, R™"({) has precisely d" elements. From
Theorem 4.2.8, there is an integer m such that R™"(z) = J(§) whenever n > m,
and by replacing { by some point in R™™({) and relabelling, we may assume
that

@o R™() = J(5). (10.3.3)

We now introduce various quantities that we shall need for the proof;
these are:
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@ RO ={5,6):i=1,...,d"};
(b) d, = dist[J, R™"({)], so d, = dist[J, {]; and
(c) the uniform probability distribution g, on R™"({).

Note that p, places a mass of d™" on each {,(i), and for any E,
Uo(E) = d7™" . card {i: {,(i) € E}.

Next, from (10.3.3),
d, <. (10.3.4)

Also, Theorem 4.2.8 implies that d, — 0 as n — oo, and we shall now show that
this convergence is not too rapid (that is, the sets R™"({) do not approach J
too quickly).

Lemma 10.3.3. In the notation above, d, < Kd,,,, and so

doSd;KSdzkzg"'-

ProoF. Take any z in J and any {, ., (i), so either:

(i) 6 <|z— @) or
(i) |z — L < 6.

If (i) holds, then
d, <6 <Kd<Kl|z—{,.0)

If (i) holds, then the linear segment from z to {,,, (i) lies entirely in J(4) and
50 |R’| < K on this segment. As R(z) and R({, ., (i)) are in J and R™"({) respec-
tively, we have

dn < [R(2) = R({pir (D)) £ K|z = {40 (B)]-
In both cases, then, we have
d, < K|z = {,,, ()],
and by letting z and (, ,, (i) vary, we obtain d, < Kd,,,,. O

The proof of Theorem 10.3.1 is easiest if there are no critical points in
J, so we shall proceed under this assumption, and subsequently consider the
changes necessary to prove the result in the general case. It is important to
note, however, that the part of the proof given so far remains valid without this
assumption.

This assumption means that for each z in J, there is a positive r, such that
R is univalent on D(z, r,). Now the discs D(z, r,), z € J, form an open cover of
the compact set J, so by Lebesgue’s Covering Theorem, there is a positive
number 7 such that R is univalent on each disc D(z, 1), z € J. Decreasing z if
necessary, we may assume that r < 4, and we now choose a positive integer
q such that

do/Ki< 1 <4
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The next result says that in some sense, R™"({) must be uniformly distrib-
uted near J.

Lemma 10.3.4. For all z in J, and all integers n and m satisfyingn > 1, m > q,
there are at most d"*9™ points of R™"({) in D(z, d,/K™); thus

card(D(z, do/K™) " R7"({)) < d"*9™ ™. (10.3.5)

Proor. We shall prove that (10.3.5) holds for all z in J and all n> 1, by
induction on m for m > ¢q. Now (10.3.5) holds for all z in J and alln > 1 when
m = ¢, for in this case the upper bound is d". We now assume that the asser-
tion is true when ¢ <m < M and prove thatforallzin Jand alln > 1,

card(D(z, do/KM*') A R™"(()) < d"+a~M+D), (10.3.6)

First, suppose that n = 1. Then by Lemma 10.3.3 (and as K > 1),
do/KM*t < dy/K < d, = dist[J, R7'({)],
and so in this case none of the points {, (i) are within a distance d,/KM*! of

J, and (10.3.6) holds because the left-hand side of the inequality is zero.
Now suppose that n > 2,s0 n — 1 > 1. In this case,

do/KM* < dy/KI < 1 < 4,
s0 R is univalent on the disc D(z, do/K™*!) and |R’| < K there. This means
that R is a univalent map of D(z, d,/K™*") into D(Rz, d,/K™) and so distinct

points of R™"({) in D(z, d,/K™*") are mapped into distinct points of R-""1({)
in D(Rz, dy/K™). Thus, using the inductive step (and n — | > 1), we have

card(D(z, do/K™*') " R™"(()) < card(D(z, do/KM) n R™""1(L))

< d(n—l)+q—M
— dn+q—(M+l)

This proves (10.3.6) when n = 1 and when n > 2 and so the proof of Lemma
10.3.4 is complete. 0

If we rewrite Lemma 10.3.4 in terms of the probability measure u, we
obtain
#a(D(z, do/K™)) < d*/d",

and it is easy to modify this to obtain a general result of the type described in
Lemma 10.1.1. We show that for all r < dy/K,

u(D(z, 1)) < (d**dg")rt (103.7)

where t = (log d)/(log K). If r < dy/K, there is some sitive integer m such
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that do/K™*! <r < d,/K™ and so as K' = d we have
in(D(z, 7)) < p,(D(z, do/K™))
< d¥ydm
= dIK™
< d(rK/d,)
< (d9*/dy)r,
which is (10.3.7).
We now observe that some subsequence of the u, converges weakly to
some probability measure y on J in such a way that the condition (10.3.7) is
inherited by p (see the discussion in §10.2). Thus forall zin J and all rin (0, d,),

we have
w(D(z, 1)) < (d9+/dg)r, (10.3.8)

and this with Lemma 10.2.1 shows that
dim(J) > (log d)/(log K).

This completes the proof of Theorem 10.3.1 in the case when R has no critical
points in J. O

We must now discuss the modifications necessary to prove the general
case. By assumption, R now has critical points in J, so let the set of these be

C={cys..., &}

Now R, and hence any R™, has derivative zero at each c; and so no iterate R™

can fix any c; (else ¢; would be a super-attracting fixed point of R™ and so lie

in F). We deduce that for each j, R"(c;) lies outside of C whenever n is suffi-

ciently large, and so there is some integer p such that RP(C)is disjoint from C.
Now choose any positive p satisfying the conditions:

(a) the discs D(c;, 2p) are pairwise disjoint;
(b) |[(R?Y(z)| < 1 on each D(c;, 2p); and
(©) 4p < dist[R?(C), C].

Next, define
H=1J- UD(Cj, P),

so H is a compact subset of J and H n C = . It follows (as in the earlier part
of the proof) that there is a positive number 7 such that if z € H, then R is
univalent on the disc D(z, 7). Finally, our choice of the integer q is modified
to take the presence of C into account and here we choose ¢ such that

do/K? < min{t, p,8}, q>p.
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We now claim that in this modified situation, Lemma 10.3.4 remains valid
and with this, the proof proceeds exactly as before. Thus it only remains to
give (in these new circumstances) the

ProoF ofF LEMMA 10.3.4. We prove this by induction on m for m > ¢ and as
before, the inequality holds when m = ¢. Next, we assume that the inequality
holds for all zin J, all n > 1, and all m with ¢ < m < M, and proceed to show
that

card(D(z, dy/ KM*1) N R7"(()) < dm+a-M+D), (10.3.9)

First, we suppose that 1 < n < M + 1. Then by Lemma 10.3.3,
do/KM*! < do/K" < d,

50
card(D(z, dy/KM*') n R™({)) < card(D(z, d,) n R™"({))

=0

by virtue of the definition of d,,.
We may now suppose that n > M + 1 so

n>M+1>q>p.

When z € H, (10.3.9) follows from the induction hypothesis exactly as before,
s0 we may assume that z e UD(cj, p). From (a), z lies in one of the discs
D(c;, p), say in D(c,, p). Noting that

do/KM*1 < do/K9 < p,

and using (b), we find that R” maps D(z, do/K™*') into D(R?(z), do/K™*").
Clearly, at most d” points in D(z, do/K™*') can map into any given point in
D(R?(z), do/K™*') and from this it follows that

card(D(z, do/KM*')n R™"({)) < d” card(D(R"(z), do/K™*') n R~ P(()).

Now from (c), R?(z) lies in H, and as we have already derived the inequality
(10.3.9) for points z in H, we deduce that

card(D(z, do/KM“) A R™™(Q)) < dPdpr+a-M+1)
and the proof is complete. 0
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Examples

We end the book as we began it, with examples of rational maps and their
Julia and Fatou sets. Now that the general theory is available, we can con-
sider more interesting examples than those in Chapter 1 and these, in turn,
serve to illustrate some of the theorems we have proved since then. In each
case, we point out the most interesting features first, and we recommend that
the reader try to sketch the Julia and Fatou sets before considering the
details.

§11.1. Smooth Julia Sets

For the sake of completeness, we recall the cases in which J is a segment or a
circle. Theorem 1.3.1 shows that for a polynomial P, J(P) is the unit circle if
and only if P(z) = az", where |a| = 1 and n > 2, while Theorem 1.4.1 shows
that J(P) is the segment [ — 1, 1] if and only if P is one of the Tchebychev
polynomials T, or — T, where T,(cos 8) = cos(nf).

The point of this section is to remark that there are results available which
imply that in general, J(P) is not a smooth curve; see, for example, [28] and
[67]. Indeed, the repelling cycles are dense in J, and if { is a repelling fixed
point of P™, then P™ will be conjugate near { to some map z +—» Az. In general,
Ais not real nor of modulus one; in these cases z > Az has spirals as invariant
curves, and points of J (near {) will lie on conformal images of these spirals.

ExErcISE 11.1

1. Investigate rational functions R whose Julia set is the unit circle. [Hint: A is com-
pletely invariant under R or 1/R.]
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§11.2. Dendrites

The Julia set J(P) of a polynomial P is a dendrite if F(P) is connected and
simply connected, and J(P) is connected, and a sufficient condition for this
to be so is that each finite critical point of P is pre-periodic (see Corollary
9.5.3). The simplest exampleis J = [ — 1, 1](as in §11.1), and another example
is z2 + i (see Figure 9.5.1). A more illuminating example is with P(z) = z% + ¢,
where c is chosen in (—2, 0) so that

2+ +c=531~- /1 -4

(and ¢ is approximately —1.5436...). The left-hand side here is P*(0), while
the right-hand side is the negative fixed point « of P. By drawing graphs of
the two functions, we see that there is a solution in (—2, 0) and with this c,
the critical point 0 is pre-periodic and J is a dendrite.

To obtain some idea of the structure of J in this case, we note first that
as F = F_,z e Fifand only if P"(z) —» co. Now let g be the positive fixed point
of P: then

s0 by the previous remark, [ - f3, ] < J. Now P maps [ - 8, f] in a two-fold
manner onto [c, 7, and (as an easy calculation shows) it maps some interval
{iy: |y| < q} in a two-fold manner onto [ — , c]. Thus with the obvious inter-
pretation of [ —igq, iq],

[-B,B10P([~B B =[~B Blul~iq, iq].

By repeating this process we see that
U P7([-B. B
n=0

has a tree-like structure and this is the dendrite J(P): see [35], p. 290, for
further details.

§11.3. Components of F of Infinite Connectivity

R(z) = 2° (1—_—@)
z—a

and 0 < a < 1/13, then F(R) contains infinitely many components, each of
which has infinite connectivity.

There is a component F;, of F(R) containing the origin (a super-attracting
fixed point), and if 2| < 3a/4, then

3a\*(4 + 3a?

We shall show that if
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s0 R"(z) » 0 as n — 0. It follows that
{z:|z| < 3a/4} = F,.

As R(1/a) = 0, there is a component F, of F(R) containing 1/a, and as
R(F,) = F,, we see that R” — 0 on F,. Now R maps the unit circle A into
itself, so for z in A, R"(z) does not converge to zero. This shows that 0A is
disjoint from F, and F,, and as |1/a| > 1, we see that F, lies inside ¢A, while
F, lies outside 0A.

Next, because deg(R) = 4, R has only four zeros, and as these are 0, 0, 0
and 1/aq, it follows that

R YF) = FyUF,. (11.3.1)

Of course, oo is also a super-attracting fixed point lying in the component F_,
say, so F(R) has at least three, and hence infinitely many, components. Note
also that R ™! = R, where o(2) = 1/z, 50 0(F,) = F,.

Our next task is to examine the critical points of R. These are at 0, 0, o,
oo, & and f, say, where by computing R’(z), we see that o and 8 are the
solutions of

2z — 3a = az(3z ~ 4a).

Note that aff = 1, so a(a) = p. We claim that one critical point lies inside the
circle

I = {|z ~ 3a/2| = a/4},
and to verify this we use Rouche’s Theorem. On I', we have

[az(3z — 4a)| < 3alz|(|z — 3a/2| + |3a/2 — 4a/3])

< 3a(Ta/4)(a/4 + a/6)

< af2

= |2z — 34|,

and so, as 2z — 3a has one zero inside T, there is one critical point, say a,
inside I'. Because « lies inside I', we can now obtain the estimate

IR(@)| < |a|3(' * “'“')

|| ~ a

(7a>3(4 + 7a2>
S o
> 4 a

< 3a/4,

and this shows that « is in R™!(F,). However, |«| < 1, so from (11.3.1), we find
that « lies in F,. This means that F, contains at least three critical points of
R (namely 0, 0 and o) and so applying the Riemann-Hurwitz relation to
R: F, » F,, we have

x(Fo) + 3 < 3x(F).
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This shows that F, is not simply connected, so it must be of infinite connectiv-
ity (Corollary 7.5.5). Because d(F,) = F,, F, is also of infinite connectivity.

Finally, observe that as f = g(a), the forward images of all critical points
accumulate only at 0 and oo, and this implies that any component of F(R) is
a pre-image of either F;, or F,, and so has infinite connectivity.

§11.4. F with Infinitely Connected and
Simply Connected Components

We shall show that the polynomial
P(z)=z*—2%)9
has the properties:

(a) F, is infinitely connected,
(b) F has infinitely many other components and each is simply connected; and
(€) J has infinitely many non-degenerate components.

The reader should sketch the graph of P for real x and confirm that P has:

(1) zeros at 0, 0 and 9;

(2) critical points at 0, 6, co and oo;

(3) super-attracting fixed points at 0 and co lying in components F, and F_
respectively, and repelling fixed points at

o= 1145898 ..., B =T7854102....
As 0 and oo are fixed points, F, # F,. We claim that

(4) F, contains the disc D, = {z: |z| > 10};
(5) F,, contains the circle C = {z: |z| = 6};
(6) F, contains the disc D, = {z: |z| < 9/10}.

First, if |z| > 10, then
P2zl = 1211219 — 1) = 1079,
so (4) follows. Similarly, (6) holds because if [z| < 9/10, then
[P(2)/z| < |2](|zI/9 + 1) < 99/100.
Finally, (5) holds because if |z| = 6, then
IP@I > |21 - [21/9) = 12,

so P(C), and hence C, lies in the completely invariant F,.

We know that, in general, F,_ is either simply or infinitely connected: in this
case, F,, contains C but not the point 9 (which maps to 0), hence it is of infinite
connectivity. For another proof, observe that F, contains the three critical
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points 6, co and <o, s0
x(Fp) + 3 = 3x(F,):

and hence y(F,) = —o0.

Next P(9) = 0, s0 9 € F. Moreover, the components F; and F, (containing
9) are distinct because they are separated by the circle C in F,: thus F has at
least three, and hence infinitely many components. As P is a polynomial, all
coraponents of F other than F,_ are bounded and simply connected, and as
the forward images of the critical points accumulate only at 0 and o, every
component of F other than F, is eventually mapped onto F,. Of course, (c)
follows from (b).

EXERcCISE 11.4

1. Discuss the polynomial z(z + 1)(z + 2). [P(x) > x if x > 0.]

§11.5. J with Infinitely Many
Non-Degenerate Components

In the example given in §11.4, J had infinitely many non-degenerate compo-
nents because the complement of F, contained infinitely many topological
discs. Here we give an example in which J has infinitely many non-degenerate
components, but F = F_. We shall show that the polynomial

P(2) = (3/3/2z(z + )(z + 2)
has the properties:

(@) F is connected and of infinite connectivity; and
(b) J contains infinitely many non-degenerate components.

First, the reader should draw a graph of P(x) for real x, and confirm that:

(i) Ois a repelling fixed point of P;
,(ii) the critical points of P are co, o0, a and f3, where

a=—1-1//3 B=—-1+1./3

(iii) P maps the interval [ — 1, 0] onto itself.

If x > 0, then P(x) > 3x,s0 P" — o0 on (0, +00) and so this interval lies in
F,. Because P(x) = 1, the critical point « lies in F,, and so F,, has infinite
connectivity (Corollary 7.5.5 and Theorem 9.5.1).

Our knowledge of the critical points of P yields more information. If F had
a component other than F,, then (by Sullivan’s Theorem) there would be a
cycle of components which would attract a critical point in the manner de-
scribed in §9.3. However, P"(«) — oo, while P%(f) =0, so p is in J; thus F
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cannot have a component other than F_, so F = F,, and F is both connected
and of infinite connectivity.

It is now easy to see that J contains the interval [ —1, 0]. Indeed, as F =
F,, we have P" — oo on F, and as [ - 1, 0] is forward invariant under P, it lies
in J. It follows that J contains at least one non-degenerate component, and
as any such component cannot be completely invariant under P (else it would
be J, and F_ would be simply connected), it has infinitely many pre-images,
and these too are non-degenerate components of J.

EXERCISE 11.5

1. Show that —2 is in J. By considering the graph of P, show that there is only one
real solution of P(z) = —2, and deduce that J does not lie entirely in the real axis.

§11.6. F of Infinite Connectivity with
Critical Points in J

We shall show that for the polynomial
P(z) = 2> — 1222 + 36z

(a) F is connected and is of infinite connectivity;
(b) J is a Cantor set; and
(c) not every finite critical point is attracted towards co.

First, note that
P(2)=zz—-62=z+z(z—5(@E=~-17),
so P has:

(1) zeros at 0, 6 and 6;
(2) fixed points at 0, 5, 7 and oco; and
(3) critical points at 2, 6, co and co.

As P(6) = 0, P(0) = 0 and P’'(0) = 36, we see that both 0 and 6 are in J; thus
(c) holds. Next, if |z| > 8, then | P(z)| > 4|z|. As P(2) > 8, we see that P"(2) —»
oo as n — oo; thus 2 € F_. Now F, contains exactly three critical points, and
as

2(Fp) + 3 = 3x(F,),

we find that F,, has infinite connectivity.

Now observe that P is a strictly increasing map of [0, 2] onto [0, 32], a
strictly decreasing map of [2, 6] onto [0, 32], and a strictly increasing map of
[6, 8] onto [0, 32]. As deg(P) = 3, this shows that for any point x in [0, 32],
the entire backward orbit of x lies in [0, 8], and hence I < [0, 8]. It follows
that F = F_, so F is connected and (a) holds.
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Finally, J cannot contain a non-degenerate component for such a compo-
nent would have to be an interval, say (w — ¢, w + ¢), of positive length in
[0, 8]. However, all of the inverse images of the point 2 lie in both F and
[0, 8], and as these must accumulate at w, no such interval can exist. By
Theorem 5.7.1, J is a Cantor set.

EXERCISE 11.6

1. Let P(z) = az(z — B)?, where aand f are positive. Find conditions on aand 8 which
imply that P has the properties (a), (b) and (c) in the text.
Find conditions on « and ff such that P is conjugate to a Tchebychev polynomial
(see §1.4) and find J explicitly in this case.

§11.7. A Finitely Connected Component of F

If P is a polynomial, then every component of F(P) is simply connected or
infinitely connected. If R is rational, then R may have Herman rings and these
are doubly connected. Using quasiconformal mappings, I.N. Baker has estab-
lished (implicitly) the existence of components of a Fatou set of any given
connectivity: here, we give an explicit example (suggested by Shishikura) of a
Fatou set with a component of finite connectivity greater than two.
Let
241 + 1122%)

RO= T =m0

t>0.
We shall show that if ¢ is sufficiently small, then F(R) has a component of con-
nectivity 3 or 4 (it seems probable that with a little more work, one could com-
pute the connectivity exactly, but this is not the main point of the example).
First, we observe that oo is a repelling fixed point of R; thus oo and its
pre-images 1/t and 1/t* are in J.
Next, R has exactly eight critical points, say 0, ¢t™',t™', {,,..., {5, and each
is in C. We now prove

Lemma 11.7.1. For sufficiently small t, the non-zero critical points of R lie
outside'the circle {|z| = 3}.

ProoF. The critical points {; are those solutions of R’(z) = 0 which are distinct
from 0 and 1/t, and a calculation shows that the {; satisfy an equation of the
form

2 +1zQ(z,t) =0,

where Q is a polynomial in z and ¢ (which can, but need not, be found explic-
itly). Now let
M = sup{|Q(z 1)]: 2| < 3,1 < 1},
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and assume that ¢t < min{1/3, 2/3M}, so certainly |¢'| > 3. Also, |{;| > 3 for
otherwise,

2=t5;0(, 0l < 2.
This completes the proof. a

Next, we consider the component F, of F which contains the origin (a
super-attracting fixed point). As R(z) — z2 uniformly on compact subsets of
C when t - 0, we should expect that when ¢ is sufficiently small, F, looks
roughly like the unit disc; this is the content of the next result.

Lemma 11.7.2. Given any ¢ in (0, 1), there is some positive number t,, such that
if 0 <t <tg,then F, is simply connected, and

(2l <1—e} cFoc{lzl <146},

ProoF. First, we prove that F, lies between the two given discs. Let K =
{|z| < 2} and choose t, such thatif t < t, and z € K, then

1+ '<|[R@)/2Y <1 +e

If |z] <1 — ¢, then
[R(2)| < (1 + &)|z|* < (1 — &Yz,

and so F, contains the disc {|z| < 1 — ¢}.

Now suppose that F, meets the circle |z| = 1 + ¢at some point w, and join
w to the origin by a curve g lying in F,. As o is a compact subset of F,, R" = 0
uniformly on ¢ so there is a unique positive integer k such that R*(g) meets
{|z] =1 + ¢}, but R"(¢) does not for any n, n > k + 1. Now let { be a point
where R*(g) meets {|z| = 1 + ¢}; then

11> [ROI> (1P + 87" =L,

a contradiction. As F, is arcwise connected and disjoint from {|z| = 1 + ¢},
Fo lies within {|z| < 1 + ¢}.

It remains to show that F,, is simply connected. We choose a disc V centred
at the origin, and such that R(V) < ¥, and let ¥, be that component of R™"(V)
which contains the origin with V = ¥, It is clear that V, < V,,,, n > 0, and
as R" » 0 on F,, we also have Fy = | |7, V,.

Now R has five zeros, namely 0 (twice) and the three cube roots of — 1/¢t12
(which lie outside |z| = 2, and so outside of F,). It follows that R must be a
two-fold map of F, onto itself, and from Lemma 11.7.1, the only critical points
of R in F, are those at the origin. It follows from this that R: V,,, —» V, is a
two-fold covering map with é(¥,,,) = 1, and the Riemann-Hurwitz formula,
namely

1iir) + 6(Vasr) = 24(V,),

shows (by induction) that every V, is simply connected. Finally, as F, is the
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union of the increasing sequence of simply connected domains V,, F, itself
is simply connected. (The Riemann-Hurwitz formula applied to F, directly
shows that it is simply or infinitely connected, but we must rule out the latter
possibility). This completes the proof of Lemma 11.7.2. O

To complete the argument, we define the triply connected domain Q by
Q= {z: 1/2t*) < |z| < 2/t%, |z — 1/t%| < 1/(4t%)},

and prove

Lemma 11.7.3. R7}(F,) consists of two components, namely Fo and a component
W which contains Q. Further, W has connectivity three or four.

Proor. We begin by showing that R(Q) = F,. Assuming that 6t> < 1, we have
the following simple estimates on Q:

[22(1 + t1223)| < 36/18;
11—tz >
[1—tz| = (1/2t3) — 1 > 1/(3t3).
These show that for some constant M,
RE) < {2l < M1},

and by taking e = § in Lemma 11.7.1, and t < { M, we find that R(Q) < F,.

It follows that Q lies in some component F; of R™!(F,), and Lemma 11.7.2
ensures that if ¢ is small, F, is disjoint from F,. Now of the five zeros of R, two
are in F, (at the origin) and three are in Q (at the cube roots of — 1/t'2): thus
R7(F,) is the disjoint union of F, and F,, R is a two-fold covering map of F,
onto itself, and a three-fold covering map of F, onto F,.

Now if ¢ is small, each component of the complement of Q contains a point
of J (namely, 1/t, 1/t* and co); thus the connectivity of F, is at least three.
Finally, of the eight critical points of R, three (namely 0, 1/¢, 1/¢) are not in F;.
It follows that F, contains at most five critical points, and as R is a three-fold
map of F, onto the simply connected F,, we have

x(Fy) + 5= x(Fy) + 0(F;) = 3x(Fo) = 3,
s0 x(F;) > — 2. As the connectivity of F, is 2 — x(F,), F, has connectivity 3 or

4 and this completes the discussion. O

EXERCISE 11.7

1. Show that o is a repelling fixed point of R.
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§11.8. J Is a Cantor Set of Circles

Let
R(z) = 2% + A/Z3,

where 1 > 0. As co is a super-attracting fixed point of R, 0 and o lie in some
components F, and F,, respectively of F, and we shall see later that F, # F, .
We shall show that when A is sufficiently small:

(a) F; and F,, are simply connected, while all other components of F are doubly
connected,

(b) R"—> wonF;

(c) oo attracts all critical points of R;

(d) J is a Cantor set of circles;

(€) there is some component of J which does not meet the boundary of any
component of F;

(f) Ris expanding on J.

Any component of J with the property (¢) is called a buried component,
[74], and Theorem 5.7.1 shows that these arise whenever J is disconnected
and every component of F has finite connectivity. In this example, J is (rough-

ly speaking) like the set
U {lzl =r},

where {r,} is some Cantor set on the positive real axis.

The idea behind this example is as follows. There is an annulus &/ which
separates 0 from oo, and which is such that R™!(.¢) consists of two annuli,
say .7, and /,, both lying in &/ and separating 0 and co. It follows that
R %(o#) consists of four annuli, say 7, ;, &,,, ¥5,, %,4, two of which lie in
&/, and two of which lie in .2#,. Continuing in this way, at the n-th stage we ob-
tain 2" disjoint annuli, each containing two annuli of the next stage. The inter-
section of any nested sequence of these annuli gives a Jordan curve separat-
ing 0 from oo, and the Julia set is the (uncountable) union of these Jordan
curves. While this idea is simple enough, the verification is quite long.

In the following discussion, we shall assume implicitly (and without further
comment) that 1 satisfies various inequalities that arise in our discussion; all
of these will be valid if A is sufficiently small and we shall not attempt to
estimate this range although, clearly, it would be possible to do so. In addi-
tion, we shall use positive numbers a, b, « and f, which are assumed to satisfy
the inequalities

LeB<(l=bWB3<i<a<(l+bf3<axti

and a + 3B > 1 (for example, take f = 1, b = {5 and then choose a and «).
We now define
o ={A"<|z| < A7t}

and prove
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Lemma 11.8.1. R™!(«&/) <= «.

ProoF. The components of the complement of o7 are
A={lzl<2*), B={lzI>27).

On B we have
[R@)/z| > |zl —A>AP— 1> 1,

so R(B) = B. On A we have
IR@)| = Az — |z|?
> }.1_3" _ }.2“
S
because a > 0 and 3a — | > b; thus R(A) = B. Together, these imply that
R o) < . O
Next, we describe J.

Lemma 11.8.2.

s

J = () R™(A).

n=1
ProoOF. We are not yet in a position to prove this completely, but the general
idea is as follows, From Lemma 11.8.1, the sets R™"(«), n > 0, are decreasing
with n and each lies in /. Now define

K = () R™(4),

and observe that as R™' commutes with the intersection operator, K is com-
pletely invariant under R. Later, we shall show that R” — oo on F; then as K
is forward invariant, it must be disjoint from F and so K < J. We shall also
see that we can replace A in the definition of K by its closure, and this then
implies that K is closed and non-empty. It will be clear that K has at least
three points (it will be a union of Jordan curves) and this with the minimality
of J implies that J < K, and hence J = K. O

In order to justify our description of J, we must identify R™!(.o/) and to
help us do this we define two annuli by

Vi={i<lzl <3},
W, = {1* < |z| < A*}.
With these, we have
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Lemma 11.8.3. R™!(«¢) is the disjoint union of two doubly connected sub-
domains, say V and W of <, where:

(1) V contains V,, and W contains Wy,
(2) R is a twofold map of V onto ; and
(3) R is a three-fold map of W onto .

Proor. For small 4, R(V,) is approximately
{i<lzl<?}

and so for all sufficiently small 4, R(V,) < «f and hence V; < R™'(%). On W,
we have
Az = 2| < R@)| < |21 + Azl ™* = o(lz]),

where |z| < 1% < V5. Now ¢ is decreasing on this range so on W,
A1 _ 42 < R(z7)| < A2 4 A,
and it follows that R(W,) < & if
19 < A1738 _ J28 < q20 4 gi-3a o 3ob

This is so because a > | — 38, f# > 4 and b > 3z — I; thus both ¥, and W, lie
in R ().

It follows that there are components V¥ and W of R™!(«/) containing V,
and W, respectively, and by Lemma [1.8.1, ¥ and W lie in .o/, Assuming for
the moment that V and W are disjoint, we can prove (2) and (3) as follows. As
deg(R) = 5, there are exactly five solutions of R(z) = | in C_,, and so (2) and
(3) will hold if we prove that the equation R(z) = | has two solutions in V,
and three solutions in W,. Obviously, we use Rouché’s Theorem here and
with this in mind, we note that for all sufficiently small 4,

(i) 2% > |2° = 4 on [z|=3
(ii) (23] > |2° + A on [z|=1;
(iii) (23] > |2° + A on |z|= A%
(iv) A>123—2%  om |[z]=A%

Note that (iii) holds as # < 1, and (iv) holds as a > . With these inequalities,
Rouché’s Theorem shows that R(z) = 1 does indeed have two solutions in ¥
and three solutions in W,, and this verifies (2) and (3). It also shows that U
and V are the only components of R™!(%/).

To complete the proof of the lemma, we must show that ¥ and W are
disjoint, doubly connected domains and to do this we examine the action of
R on its critical points. As deg(R) = 5, R has eight critical points, say 0, 0, co
and {,, ..., {5, where all of the {; lie on the circle

[ = {z:|z)° = 34/2}.
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Now for z on I" (and sufficiently small 1), we have
IR@)| < 1271 + Mlzl®) = )]z < 2228 < 2°,

so R(IN) is disjoint from . As I" separates ¥, from W, (because § > %), and as
I' is disjoint from R™!(.), we see that I separates V from W and so V and
W are disjoint.

Finally, as R(I') is disjoint from .o, there are no critical values of R in &,
and this shows that for every component Q of R™!(«¢), R: Q — & is a smooth
covering map of Q onto .. With this, the Riemann-Hurwitz relation shows
that each such Q is a doubly connected subdomain of ./ and the proof is
complete. O

By examining this argument, it should be clear that we can indeed replace
o by its closure in the definition of K above so, as asserted, K is both closed
and non-empty. Moreover,

R (o) = RY(V)U RY(W),

and this has four components, each of which contain a point of K (see the
proof of Lemma 11.8.2). To complete the proof of Lemma 11.8.2, we need to
prove (b), namely that R" —» co on F, and this will follow from a little more
knowledge about the dynamics of R. We prove

Lemma 11.84. F, contains the disc {|z| < (4/2)'?}, and F,, contains the disc
{lz1 > 3}.

ProoF. If |z| > 3, then
IR@)/zl = 12| — Azl ™ >3 — 2> 4,
and so z € F,. Next, if [w|® < 1/2, then
IRW)| = Alw| 7> — [w]> 22 — (42)** > 3,

so {|w| < (4/2)'”} is a connected subset of R7}(F,). As R(0) = o0, Fo <
R Y(F )andsowe F,. O

We have seen that R(T) < {|z| < 24%%} and, from Lemma 11.8.4, this is
contained in F, (because i < ). It follows that R*(T) lies in F,, and so the
forward orbit of each critical point of R converges to co: this is (c). It follows
from this that (b), namely R" — oo on F, holds for if not, there would be some
cycle of components of F(R) other than F,, and this would have to attract the
forward orbit of some critical point as described in §9.3. Note that this infor-
mation about the forward orbits of critical points also yields (f) (see Theorem
9.7.5).

The crucial point now is to show that F, # F,_. Exactly as we argued for
<, we find that R™!(V) and R™!(W) each consist of two annuli, and so on as
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we apply R™! repeatedly. The only issue here is to show that these annuli must
separate 0 and oo, and we can see that this must be so in the following way.
Take any annulus A4 in .«/, so A contains no critical values of R. Take a simple
closed curve o passing once around A and lift this back under R™! to a simple
cdosed curve t in a component B of R7!(A4). Now for some m, R is an m-fold
map of B onto A, and R(7) is the curve ¢ traversed m times (and possibly in
the opposite direction to g). Assume now that A surrounds the origin. Then,
using n(y, w) for the winding number of a curve y about w, we have

n(R(z), 0) = +mn(o,0) # 0,

and so by the Argument Principle, if R has Z zeros and P poles inside z, then
Z # P. In particular, B must contain some zeros, or some poles, of R in its
inner hole. Now the zeros of R do not lie in R™!(«/) (for they map to 0), but
they do lie between W, and ¥, (for § > }); thus they must lie between the
doubly connected domains ¥ and W. It follows that if B = W, then B must
contain a pole of R, namely 0, in its inner hole, while if B = V, then B must
contain a zero or a pole in its inner hole. In both cases, B must surround to the
origin; thus we have proved that if A in &/ surrounds the origin, then so does
each component of R™!(A). This step is essential if we are to justify our claim
that F, and F_, are separated by a closed curve in J.

Knowing now that the annuli in our construction all separate 0 from oo,
we consider any decreasing sequence of compact annuli, say A, 4,, ... from
our construction. Denoting the two components of the complement of 4, by
C, and C,, itis easy to prove that the intersection [} A, separates C, from C,,
and hence 0 from co, This argument shows that F, and F, are separated by
J, and hence F, # F,.

Now consider F,,. The finite critical points of R are not in F, (they map to
F,, and F_ is forward invariant) and so F, must be simply connected: to see
this, take a disc D at oo with R(D) < D, and let D, be the component of R™"(D)
that contains co; then (by induction)

{(Dayy) + 1 =2((D,) =2,

and so F, is the union of the exanding sequence of simply connected domains
D,. Next, the non-zero critical points of R are not in F (if so, then R(T") would
have to lie in F,), so R is a three-fold covering map of F, onto F, which has
two critical points at the origin and no others on F,; the Riemann Hurwitz
formula

UFy) + 2= 3((F,) =3

shows that F, must also be simply connected.
Finally, let
Q= {A¥° < |z| < 3A/2)'S).

Exactly as for R(T), we see that R(Q) < F,, and so Q liesi. me component
F, of F. As Q contains all five zeros of R, and all five non-zero finite critical
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points of R, R maps F, in a five-fold manner onto F,, and the Riemann-—
Hurwitz formula
CF) +5=50(F) =5

shows that F, is doubly connected. We have now shown first that R™1(F_)
comprises F, and F,, and second, that R™}(F,) = F,. All pre-images of F, are
free of critical points and so are also doubly connected.

The proof that J is a union of Jordan curves uses the fact that R is expand-
ing on J (and the argument follows the lines of that used in §9.9), and for the
same reason that the classical Cantor set is uncountable, so J includes an
uncountable number of Jordan curves. As each component of F has finite
connectivity, (¢) holds; alternatively, one can argue in the same way as is used
to show that not every point of the classical Cantor set is an end-point of one
of the intervals used in its construction.

EXERCISE 11.8

1. Given £ > 0, show that if 4 < ¢/2 then F,, contains the disc {|z| > 1 + &}.

§11.9. The Function (z — 2)?/z?

We shall give a direct proof that for the function
R(z) = (z — 2)Y/2%,

J(R)is the complex sphere. This proof does not use Sullivan’s No Wandering
Domains Theorem (see §9.4), nor does it depend on the theory of elliptic
functions (as does the example in §4.3).

We assume that F(R) is non-empty, and let F, be any one of its compo-
nents. Suppose first that there is some sequence R” converging locally uni-
formly to a non-constant function ¢ in F,. Then ¢(F;) is a domain, and if
{ € o(F,), we can find some closed disc D in F, with centre z,, where ¢(z,) =
{. As R™ — ¢ uniformly on dD, Rouché’s Theorem implies that { lies in
R"(F,) for large j and so ¢(F;) < F(R).

Let F} be the component of F(R) which contains ¢(F,), and now argue as
in the proof of Theorem 7.2.4. We may assume that m; - +oco, where m; =
n; — n;,_; and on a subsequence, R™ — , say, locally uniformly on F;. It
follows that Y@ =  on F,, and so y = I; thus the identity map I is a limit
function in F;. For large j, R™(F;) meets, and hence is, F, and this implies
(as in the proof of Theorem 7.2.4) that R™ is injective in F. Thus some iterate
R™ is an automorphism of F; and so F; must be either a Siegel disc or a
Herman ring of R™. This cannot be so, however, for this requires some critical
point of R™ to have an infinite forward orbit, and the critical points of R are
0 and 2 and thes~ are pre-periodic for R acts in the following way:

20-5w-1-o1-.
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We have now shown that any limit function ¢ in F; is constant there (and
such functions must exist). Suppose, then, that ¢ takes the constant value A:
we claim that 1 € {0, 1, 2, oo}, To prove this, we suppose that R" — 1 in F,,
where 1 is not any of these values, and construct an open disc D with centre
A not containing 0, 1, 2 or co, and thus not meeting any critical value of any
R™. Choose z, in Fy; then for large j, R™(z,) € D and so we can define a branch
Sn, of (R™)™! which maps R™(z,) to z,. Further, 5, can be continued analyti-
cally over D to obtain a single-valued analytic function there, and Sa, RV =1
on F, (as this holds near z;). By Theorem 9.2.1, the family {S,,J} is normal in
D, and so on some subsequence (which we may take to be n;) Sa, = @, say, on
D. From standard arguments (involving normal families), we now have for
any z; in Fy, R"(z,) — 4, s0

Zy = San"J(Zl) - ®(4),

so ®(4) = z,, a contradiction.

We have now shown that if F(R) is not empty, then there is some sequence
of iterates, say R™, converging locally uniformly to some 1in {0, 1, 2, c0}. By
applying R?, it follows that some sequence of iterates converges locally uni-
formly to 1 on F,, so we may assume that the sequence R™ does. We shall
now obtain a contradiction. Let

D={z|z— 1] <}}.

As
R(z) — 1 = 4(1 — 2)/z2

we find that on D,
Jjz—1|< |R(z) - 1] < 6]z — 1]

Now suppose that R"(z) e D. Then using the lower bound in the preceding
inequality, we see that the points R""'(z), R"*2(z), ... move away from the
point 1, at least until one of them leaves D. Thus there is some k with R"*¥(z)
in D and R"***1(z) outside D. This gives

<R — 1| < 6|R™(2) - 1| < 3,
and so R"***1(z) lies in the annulus
A={zi<|z-1< 3}

It follows that as n;—» oo, there is a corresponding sequence k; such that
R"*ki(z) lies in A. This cannot be so, though, because we have seen that the
only limit functions in F; are constants with one of the values 0, 1, 2 or co.
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complex projective space, 47

conformal structure, 181
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critical value, 3
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