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Preface to the Second Edition

The wonderful reception given to the first edition of this book by the mathe-
matical community was encouraging. It gives me much pleasure to bring out
now a new edition, exactly ten years after the book first appeared.

In the 1990s, two related projects have been completed. The first is the
problem book for ““First Course” (Lam [95]), which contains the solutions of
(and commentaries on) the original 329 exercises and 71 additional ones.
The second is the intended “sequel” to this book (once called *“Second
Course”), which has now appeared under the different title *“Lectures on
Modules and Rings” (Lam [98]). These two other books will be useful com-
panion volumes for this one. In the present book, occasional references are
made to *“Lectures’, but the former has no logical dependence on the latter.
In fact, all three books can be used essentially independently.

In this new edition of *‘First Course”, the entire text has been retyped,
some proofs were rewritten, and numerous improvements in the exposition
have been included. The original chapters and sections have remained un-
changed, with the exception of the addition of an Appendix (on uniseral
modules) to §20. All known typographical errors were corrected (although
no doubt a few new ones have been introduced in the process!). The original
exercises in the first edition have been replaced by the 400 exercises in the
problem book (Lam [95]), and I have added at least 30 more in this edition
for the convenience of the reader. As before, the book should be suitable as a
text for a one-semester or a full-year graduate course in noncommutative
ring theory.

I take this opportunity to thank heartily all of my students, colleagues,
and other users of “First Course™ all over the world for sending in correc-
tions on the first edition, and for communicating to me their thoughts
on possible improvements in the text. Most of their suggestions have been
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followed in this new edition. Needless to say, I will continue to welcome such
feedback from my readers, which can be sent to me by email at the address
“lam@math.berkeley.edu’.

T.Y.L.
Berkeley, California
01/01/01



Preface to the First Edition

One of my favorite graduate courses at Berkeley is Math 251, a one-semester
course in ring theory offered to second-year level graduate students. I taught
this course in the Fall of 1983, and more recently in the Spring of 1990, both
times focusing on the theory of noncommutative rings. This book is an out-
growth of my lectures in these two courses, and is intended for use by in-
structors and graduate students in a similar one-semester course in basic ring
theory.

Ring theory is a subject of central importance in algebra. Historically,
some of the major discoveries in ring theory have helped shape the course of
development of modern abstract algebra. Today, ring theory is a fertile
meeting ground for group theory (group rings), representation theory (mod-
ules), functional analysis (operator algebras), Lie theory (enveloping alge-
bras), algebraic geometry (finitely generated algebras, differential operators,
invariant theory), arithmetic (orders, Brauer groups), universal algebra (va-
rieties of rings), and homological algebra (cohomology of rings, projective
modules, Grothendieck and higher K-groups). In view of these basic con-
nections between ring theory and other branches of mathematics, it is per-
haps no exaggeration to say that a course in ring theory is an indispensable
part of the education for any fledgling algebraist.

The purpose of my lectures was to give a general introduction to the
theory of rings, building on what the students have learned from a standard
first-year graduate course in abstract algebra. We assume that, from such
a course, the students would have been exposed to tensor products, chain
conditions, some module theory, and a certain amount of commutative
algebra. Starting with these prerequisites, I designed a course dealing al-
most exclusively with the theory of noncommutative rings. In accordance
with the historical development of the subject, the course begins with the
Wedderburn—Artin theory of semisimple rings, then goes on to Jacobson’s

vii
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general theory of the radical for rings possibly not satisfying any chain con-
ditions. After an excursion into representation theory in the style of Emmy
Noether, the course continues with the study of prime and semiprime rings,
primitive and semiprimitive rings, division rings, ordered rings, local and
semilocal rings, and finally, perfect and semiperfect rings. This material,
which was as much as | managed to cover in a one-semester course, appears
here in a somewhat expanded form as the eight chapters of this book.

Of course, the topics described above correspond only to part of the
foundations of ring theory. After my course in Fall, 1983, a self-selected
group of students from this course went on to take with me a second course
(Math 274, Topics in Algebra), in which I taught some further basic topics in
the subject. The notes for this second course, at present only partly written,
will hopefully also appear in the future, as a sequel to the present work. This
intended second volume will cover, among other things, the theory of mod-
ules, rings of quotients and Goldie’s Theorem, noetherian rings, rings with
polynomial identities, Brauer groups and the structure theory of finite-
dimensional central simple algebras. The reasons for publishing the present
volume first are two-fold: first it will give me the opportunity to class-test the
second volume some more before it goes to press, and secondly, since the
present volume is entirely self-contained and technically indepedent of what
comes after, I believe it is of sufficient interest and merit to stand on its own.

Every author of a textbook in mathematics is faced with the inevitable
challenge to do things differently from other authors who have written earlier
on the same subject. But no doubt the number of available proofs for any
given theorem is finite, and by definition the best approach to any specific
body of mathematical knowledge is unique. Thus, no matter how hard an
author strives to appear original, it is difficult for him to avoid a certain de-
gree of ‘“‘plagiarism” in the writing of a text. In the present case I am all the
more painfully aware of this since the path to basic ring theory is so well-
trodden, and so many good books have been written on the subject. If, of
necessity, I have to borrow so heavily from these earlier books, what are the
new features of this one to justify its existence?

In answer to this, I might offer the following comments. Although a good
number of books have been written on ring theory, many of them are
monographs devoted to specialized topics (e.g., group rings, division rings,
noetherian rings, von Neumann regular rings, or module theory, PI-theory,
radical theory, loalization theory). A few others offer general surveys of the
subject, and are encyclopedic in nature. If an instructor tries to look for an
introductory graduate text for a one-semester (or two-semester) course in
ring theory, the choices are still surprisingly few. It is hoped, therefore, that
the present book (and its sequel) will add to this choice. By aiming the level
of writing at the novice rather than the connoisseur, we have sought to pro-
duce a text which is suitable not only for use in a graduate course, but also
for self-study in the subject by interested graduate students.

Since this book is a by-product of my lectures, it certainly reflects much
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more on my teaching style and my personal taste in ring theory than on ring
theory itself. In a graduate course one has only a limited number of lectures
at one’s disposal, so there is the need to “get to the point” as quickly as
possible in the presentation of any material. This perhaps explains the often
business-like style in the resulting lecture notes appearing here. Nevertheless,
we are fully cognizant of the importance of motivation and examples, and
we have tried hard to ensure that they don’t play second fiddle to theorems
and proofs. As far as the choice of the material is concerned, we have per-
haps given more than the usual emphasis to a few of the famous open
problems in ring theory, for instance, the Kéthe Conjecture for rings with
zero upper nilradical (§10), the semiprimitivity problem and the zero-divisor
problem for group rings (§6), etc. The fact that these natural and very easily
stated problems have remained unsolved for so long seemed to have cap-
tured the students’ imagination. A few other possibly “unusual” topics are
included in the text: for instance, noncommutative ordered rings are treated
in §17, and a detailed exposition of the Mal’cev-Neumann construction of
general Laurent series rings is given in §14. Such material is not easily
available in standard textbooks on ring theory, so we hope its inclusion here
will be a useful addition to the literature.

There are altogether twenty five sections in this book, which are consec-
utively numbered independently of the chapters. Results in Section x will be
labeled in the form (x.y). Each section is equipped with a collection of ex-
ercises at the end. In almost all cases, the exercises are perfectly “doable”
problems which build on the text material in the same section. Some ex-
ercises are accompanied by copious hints; however, the more self-reliant
readers should not feel obliged to use these.

As I have mentioned before, in writing up these lecture notes 1 have con-
sulted extensively the existing books on ring theory, and drawn material
from them freely. Thus I owe a great literary debt to many earlier authors in
the field. My graduate classes in Fall 1983 and Spring 1990 at Berkeley were
attended by many excellent students; their enthusiasm for ring theory made
the class a joy to teach, and their vigilance has helped save me from many
slips. I take this opportunity to express my appreciation for the role they
played in making these notes possible. A number of friends and colleagues
have given their time generously to help me with the manuscript. It is my
great pleasure to thank especially Detlev Hoffmann, André Leroy, Ka-Hin
Leung, Mike May, Dan Shapiro, Tara Smith and Jean-Pierre Tignol for
their valuable comments, suggestions, and corrections. Of course, the re-
sponsibility for any flaws or inaccuracies in the exposition remains my own.
As mathematics editor at Springer-Verlag, Ulrike Schmickler-Hirzebruch
has been most understanding of an author’s plight, and deserves a word of
special thanks for bringing this long overdue project to fruition. Keyboarder
Kate MacDougall did an excellent job in transforming my handwritten
manuscript into LaTex, and the Production Department’s efficient handling
of the entire project has been exemplary.
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Last, first, and always, I owe the greatest debt to members of my family.
My wife Chee-King graciously endured yet another book project, and our
four children bring cheers and joy into my life. Whatever inner strength I can
muster in my various endeavors is in large measure a result of their love,
devotion, and unstinting support.

T.Y.L.

Berkeley, California
November, 1990



Contents

Preface to the Second Edition v
Preface to the First Edition vii
Notes to the Reader ix
CHAPTER 1
Wedderburn—-Artin Theory 1
§1. Basic Terminology and Examples 2
Exercises for §1 22
§2. Semisimplicity 25
Exercises for §2 29
§3.  Structure of Semisimple Rings 30
Exercises for §3 45
CHAPTER 2
Jacobson Radical Theory 48
§4. The Jacobson Radical 50
Exercises for §4 63
§5. Jacobson Radical Under Change of Rings 67
Exercises for §5 77
§6. Group Rings and the J-Semisimplicity Problem 78
Exercises for §6 98
CHAPTER 3
Introduction to Representation Theory 101
§7. Modules over Finite-Dimensional Algebras 102

Exercises for §7 116

xi



xii

§8. . Representations of Groups
Exercises for §8

§9. Linear Groups
Exercises for §9

CHAPTER 4
Prime and Primitive Rings

§10. The Prime Radical; Prime and Semiprime Rings
Exercises for §10

§11. Structure of Primitive Rings; the Density Theorem
Exercises for §11

§12. Subdirect Products and Commutativity Theorems
Exercises for §12

CHAPTER 5
Introduction to Division Rings

§13. Division Rings
Exercises for §13

§14. Some Classical Constructions
Exercises for §14

§15. Tensor Products and Maximal Subfields
Exercises for §15

§16. Polynomials over Division Rings
Exercises for §16

CHAPTER 6
Ordered Structures in Rings

§17. Orderings and Preorderings in Rings
Exercises for §17

§18. Ordered Division Rings
Exercises for §18

CHAPTER 7
Local Rings, Semilocal Rings, and Idempotents

§19. Local Rings
Exercises for §19
§20. Semilocal Rings

Appendix: Endomorphism Rings of Uniserial Modules

Exercises for §20

§21. Th Theory of Idempotents
Exercises for §21

§22. Central Idempotents and Block Decompositions
Exercises for §22

Contents

117
137
141
152

153

154
168
171
188
191
198

202

203
214
216
235
238
247
248
258

261

262
269
270
276

279

279
293
296
302
306
308
322
326
333



Contents

CHAPTER 8
Perfect and Semiperfect Rings

§23. Perfect and Semiperfect Rings
Exercises for §23

§24. Homological Characterizations of Perfect and Semiperfect Rings
Exercises for §24

§25. Principal Indecomposables and Basic Rings
Exercises for §25

References
Name Index

Subject Index

xiii

335

336
346
347
358
359
368

370

373

3717






Notes to the Reader

As we have explained in the Preface, the twenty five sections in this book are
numbered independently of the eight chapters. A cross-reference such as
(12.7) refers to the result so labeled in §12. On the other hand, Exercise 12.7
will refer to Exercise 7 appearing at the end of §12. In referring to an exercise
appearing (or to appear) in the same section, we shall sometimes drop the
section number from the reference. Thus, when we refer to “Exercise 7"
anywhere within §12, we shall mean Exercise 12.7.

Since this is an exposition and not a treatise, the writing is by no means
encyclopedic. In particular, in most places, no systematic attempt is made to
give attributions, or to trace the results discussed to their original sources.
References to a book or a paper are given only sporadically where they seem
more essential to the material under consideration. A reference in brackets
such as Amitsur [56] (or [Amitsur: 56]) shall refer to the 1956 paper of
Amitsur listed in the reference section at the end of the book.

Occasionally, references will be made to the intended sequel of this book,
which will be briefly called Lectures. Such references will always be periph-
eral in nature; their only purpose is to point to material which lies ahead. In
particular, no result in this book will depend logically on any result to ap-
pear later in Lectures.

Throughout the text, we use the standard notations of modern mathe-
matics. For the reader’s convenience, a partial list of the notations com-
monly used in basic algebra and ring theory is given on the following pages.
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Some Frequently Used Notations

z ring of integers

Q field of rational numbers

R field of real numbers

C field of complex numbers

F, finite field with g elements

M, (S) set of n x n matrices with entries from S
c, < used interchangeably for inclusion

< strict inclusion

|A|, Card A used interchangeably for the cardinality of the set A
A\B set-theoretic difference

A— B surjective mapping from 4 onto B

0ij Kronecker deltas

E; matrix units

tr trace (of a matrix or a ficld element)
(x> cyclic group generated by x

Z(G) center of the group (or the ring) G
Cs(A) centralizer of 4 in G

[G: H] index of subgroup H in a group G

K : F] field extension degree

K :Dj, [K:D], left, right dimensions of K 2 D as D-vector space
4 r
K¢ G-fixed points on K

Mg, RN right R-module M, left R-module N

M @z N tensor product of My and g N

Homg(M,N) group of R-homomorphisms from M to N

Endr(M) ring of R-endomorphisms of M

nM (or M") M®- - ®M (n times)

[L R direct product of the rings {R;}

char R characteristic of a ring R

U(R),R* group of units of the ring R

uU(D), D", D multiplicative group of the division ring D

GL,.(R) group of invertible n x n matrices over R

GL(V) group of linear automorphisms of a vector space V

rad R Jacobson radical of R

Nil*(R) upper nilradical of R

Nil.(R) lower nilradical (or prime radical) of R

Nil R ideal of nilpotent elements in a commutative ring R

ann,(S), ann,(S) left, right annihilators of the set S _

kG, k[G] (semi)group ring of the (semi)group G over the ring k

klx;:iel] polynomial ring over k with (commuting) variables
{x,:iel}

kix, :iel) free ring over k generated by {x; : i/}
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ACC ascending chain condition
DCC descending chain condition
LHS left-hand side

RHS right-hand side






CHAPTER |
Wedderburn—Artin Theory

Modern ring theory began when J.H.M. Wedderburn proved his celebrated
classification theorem for finite dimensional semisimple algebras over fields.
Twenty years later, E. Noether and E. Artin introduced the Ascending
Chain Condition (ACC) and the Descending Chain Condition (DCC) as
substitutes for finite dimensionality, and Artin proved the analogue of
Wedderburn’s Theorem for general semisimple rings. The Wedderburn—
Artin theory has since become the cornerstone of noncommutative ring
theory, so in this first chapter of our book, it is only fitting that we devote
ourselves to an exposition of this basic theory.

In a (possibly noncommutative) ring, we can add, subtract, and multiply
elements, but we may not be able to ‘““divide”” one element by another. In a
very natural sense, the most “perfect” objects in noncommutative ring theory
are the division rings, i.e. (nonzero) rings in which each nonzero element has
an inverse. From division rings, we can build up matrix rings, and form finite
direct products of such matrix rings. According to the Wedderburn—Artin
Theorem, the rings obtained in this way comprise exactly the all-important
class of semisimple rings. This is one of the earliest (and still one of the nicest)
complete classification theorems in abstract algebra, and has served for
decades as a model for many similar results in the structure theory of rings.

There are several different ways to define semisimplicity. Wedderburn,
being interested mainly in finite-dimensional algebras over fields, defined the
radical of such an algebra R to be the largest nilpotent ideal of R, and de-
fined R to be semisimple if this radical is zero, i.e., if there is no nonzero
nilpotent ideal in R. Since we are interested in rings in general, and not just
finite-dimensional algebras, we shall follow a somewhat different approach.
In this chapter, we define a semisimple ring to be a ring all of whose modules
are semisimple, i.e., are sums of simple modules. This module-theoretic def-
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inition of semisimple rings is not only easy to work with, but also leads
quickly and naturally to the Wedderburn—Artin Theorem on their complete
classification. The consideration of the radical is postponed to the next
chapter, where the Wedderburn radical for finite-dimensional algebras is
generalized to the Jacobson radical for arbitrary rings. With this more gen-
eral notion of the radical, it will be seen that semisimple rings are exactly the
(left or right) artinian rings with a zero (Jacobson) radical.

Before beginning our study of semisimple rings, it is convenient to have a
quick review of basic facts and terminology in ring theory, and to look at
some illustrative examples. The first section is therefore devoted to this end.
The development of the Wedderburn-Artin theory will occupy the rest of
the chapter.

§1. Basic Terminology and Examples

In this beginning section, we shall review some of the basic terminology in
ring theory and give a good supply of examples of rings. We assume the
reader is already familiar with most of the terminology discussed here
through a good course in graduate algebra, so we shall move along at a
fairly brisk pace.

Throughout the text, the word *‘ring”” means a ring with an identity ele-
ment 1 which is not necessarily commutative. The study of commutative
rings constitutes the subject of commutative algebra, for which the reader
can find already excellent treatments in the standard textbooks of Zariski—
Samuel, Atiyah—~Macdonald, and Kaplansky. In this book, instead, we shall
focus on the noncommutative aspects of ring theory. Of course, we shall not
exclude commutative rings from our study. In most cases, the theorems
proved in this book remain meaningful for commutative rings, but in general
these theorems become much easier in the commutative category. The main
point, therefore, is to find good notions and good tools to work with in the
possible absence of commutativity, in order to develop a general theory of
possibly noncommutative rings. Most of the discussions in the text will be
self-contained, so technically speaking we need not require much prior
knowledge of commutative algebra. However, since much of our work is an
attempt to extend results from the commutative setting to the general setting,
it will pay handsomely if the reader already has a good idea of what goes on
in the commutative case. To be more specific, it would be helpful if the
reader has already acquired from a graduate course in algebra some ac-
quaintance with the basic notions and foundational results of commutative
algebra, for this will often supply the motivation needed for the general
treatment of noncommutative phenomena in the text.

Generally, rings shall be denoted by letters such as R, R’, or 4. By a
subring of a ring R, we shall always mean a subring containing the identity
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element 1 of R. If R is commutative, it is important to consider ideals in R.
In the general case, we have to differentiate carefully between left ideals and
right ideals in R. By an ideal I in R, we shall always mean a 2-sided ideal in
R; i.e., Iis both a left ideal and a right ideal. For such an ideal /in R, we can
form the quotient ring R := R/J, and we have a natural surjective ring ho-
momorphism from R to R sending a € Rto @ = a + I € R. The kernel of this
ring homomorphism is, of course, the ideal 7, and the quotient ring R has the
universal property that any ring homomorphism ¢ from R to another ring
R’ with ¢(I) = 0 “factors uniquely” through the natural homomorphism
R— R

A nonzero ring R is said to be a simple ring if (0) and R are the only ideals
in R. This requires that, for any nonzero element a € R, the ideal generated
by a is R. Thus, a nonzero ring R is simple iff, for any a # 0 in R, there exists
an equation ) bac; = 1 for suitable b;,¢; € R. Using this, it follows easily
that, if R is commutative, then R is simple iff R is a field. The class of non-
commutative simple rings is, however, considerably larger, and much more
difficult to describe.

In general, rings may have lots of zero-divisors. A nonzero element a € R
is said to be a left O-divisor if there exists a nonzero element b € R such that
ab =0 in R. Right O-divisors are defined similarly. In the commutative set-
ting, of course, we can drop the adjectives “left” and “right” and just speak
of 0-divisors, but for noncommutative rings, a left 0-divisor need not be a

2
right O-divisor. For instance, let R be the ring (g Z/ZZ), by which we

mean the ring of matrices of the form (g }z] ), where x,ze€ Z and

y € Z/2Z, with formal matrix multiplication. (For more details, see Example
1.14 below.) If we let

2 0 o1
a—(o l) and b—(o 0),

then ab = 0 € R, so a is a left O-divisor, but a is not a right 0-divisor since

0= x y\(2 0\ _[(2x y

-G )G )-(7)

clearly implies that x,z=0in Z and y =0 in Z/2Z. On the other hand,
b2 =0, so b is both a left 0-divisor and a right 0-divisor.

A ring R is called a domain if R # 0, and ab = 0 impliesa=0or b =0 in
R. In such a ring, we have no left (or right) 0-divisors. The reader no doubt
knows many examples of commutative domains (= integral domains); some
examples of noncommutative domains will be given later in this section.

A ring R is said to be reduced if R has no nonzero nilpotent elements, or,
equivalently, if a2 = 0 = a = 0 in R. For instance, the direct product of any
family of domains is reduced.
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An element a in a ring R is said to be right-invertible if there exists b € R
such that ab = 1. Such an element b is called a right inverse of a. Left-
invertible elements and their left inverses are defined analogously. If a has
both a right inverse b and a left inverse b’, then

b' = b'(ab) = (b'a)b = b.

In this case, we shall say that a is invertible (or a unit) in R, and call b = b’
the inverse of a. (The definite article is justified here since in this case b is
easily seen to be unique.) We shall write U(R) (or sometimes R*) for the set
of units in R; this is a group under the multiplication of R (with identity 1).

If a € R has a right inverse b, then a € U(R) iff we also have ba = 1. In
the literature, a ring R is said to be Dedekind-finite (or von Neumann-finite)
if ab=1= ba=1, so these are the rings in which right-invertibility of
elements implies left-invertibility. Many rings satisfying some form of
“finiteness conditions” can be shown to be Dedekind-finite, but there do
exist non-Dedekind-finite rings. For instance, let V' be the k-vector space
key @ ke, @ - - - with a countably infinite basis {e;: i > 1} over a field &, and
let R = Endy (V') be the k-algebra of all vector space endomorphisms of V. If
a,b € R are defined on the basis by

ble;) = e, foralli>1, and
a(e;)) =0, a(e)=e;-; foralli>2,

then clearly ab = 1 # ba, so a is right-invertible without being left-invertible.
and R gives an example of a non-Dedekind-finite ring. On the other hand. if
Vo is a finite-dimensional k-vector space, then Ry = Endi(Vp) is Dedekind-
finite: this is a well-known fact in linear algebra. A

In some sense, the most “perfect” objects in noncommutative ring theory
are the division rings: we say that a ring R is a division ring if R # 0 and
U(R) = R\{0}. (Note that commutative division rings are just fields.) To
check that a nonzero ring R is a division ring, it is sufficient to show that
every element a 3 0 is right-invertible (this is an elementary exercise in group
theory). From this, it is easy to see that R 3 0 is a division ring iff the only
right ideals in R are {0} and R. Of course, the analogous statements also
hold if we replace the word *‘right” by the word “left”” in the above. In gen-
eral, in the sequel, if we have proved certain results for rings “on the right,”
then we shall use such results freely also “‘on the left,”” provided that these
results can indeed be proved by the same arguments applied *‘to the other
side.”

In connection with the remark just made, it is useful to recall the forma-
tion of the opposite ring R°P to a given ring R. By definition, R°P consists of
elements of the form a°f in 1-1 correspondence with the elements a of R,
with multiplication defined by

a® - b°? = (ba)°® (for a,b € R).

Generally speaking, if we have a result for rings ““on the right,” then we
can obtain analogous results ““on the left”” by applying the known results to
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opposite rings. Of course, this has to be done carefully in order to avoid
unpleasant mistakes.

We shall now record our list of basic examples of rings. (We have to warn
our readers in advance that a few of these are somewhat sketchy in details.)
Since the first noncommutative system was discovered by Sir William
Rowan Hamilton, it seems most appropriate to begin this list with Hamil-
ton’s real quaternions.

(l 1) Example Let H = R1 & Ri ® Rj @ Rk, with multiplication defined by
i = —1, j2 = =1, and ij = —ji = k. This is a 4-dimensional R-algebra with
center R. Ifa—a+b1+c;+dk where a,b,c,d € R, we define & = a — bi —
¢j — dk, and check easily that

wd=dx=a’+b*+c2+d*eR
Thus, if a # 0, then o € U(H) with
o=@+ +cr+d?) '
In particular, H is a division ring (we say that IHI is a division algebra over

R). Note that everything we said so far remains valid if we replace R by any
field in which

(a,b,c,d) # (0,0,0,0) = a®> + b2 + 2 +d> #0

(or, equivalently, —1 is not a sum of two squares). For instance, the “‘ratio-
nal quaternions’™ a + bi + ¢j + dk with a,b,c,d € Q form a 4-dimensional
division Q-algebra R,. In R|, we have the subring R consisting of

{a+bi+c¢j+dk:ab,cdelZ}.

This is not a division ring any more. In fact, its group of units is very small:
we see easily that

U(R;) = {#], +i, +j, +k} (the quaternion group).

There is a somewhat bigger subring R; of R; containing R», called Hurwitz’
ring of integral quaternions. By definition, R; is the set of quaternions of the
form (a + bi + ¢j + dk)/2, where a,b, c,d € Z are either all even, or all odd.
This is easily checked to be a subring of R,. As an abehan group, R; is free
on the basis

{(M+i+j+k)/2,i, )k},

so the (additive) index [R3 : R3] is 2. The unit group of R; can be checked to
be

U(R3) = {%]1, +i, +j, +k,(£1 +i + j + k)/2},

where the signs “+1” are arbitrarily chosen. This group of 24 elements is the
binary tetrahedral group—a nontrivial 2-fold covering of the tetrahedral
group A4. In fact, U(R;)/{x1} = A4. The reader can also check easily that
U(R;) contains the quaternion group U(R>) as a normal subgroup, so
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U(Rs) is a split extension of the quaternion group of order 8 by a cyclic
group of order 3.

(1.2) Example (Free k-Rings). Let k be any ring, and {x;: i € I} be a system
of independent, noncommuting indeterminates over k. Then we can form the
“free k-ring” generated by {x;: i € I}, which we denote by

R=k{xi:iel).

The elements of R are polynomials in the noncommuting variables {x;} with
coefficients from k. Here, the coefficients are supposed to commute with each
x;. The “freeness” of R refers to the following universal property: if
@o: k — k' is any ring homomorphism, and {a;: i € I} is any subset of k’
such that each a; commutes with each element of ¢y(k), then there exists a
unique ring homomorphism ¢: R — k' such that g|k = ¢,, and ¢(x;) = a; for
every i € I. The free k-ring k{x;: i € Iy behaves rather differently from the
polynomial ring k[x;: i € I] (in which the x,’s commute). For instance, in the
free k-ring k{x, y) in two variables, the subring generated over k by

zi=xy' (0<i<n)

is a free k-ring on (n + 1)-generators. This is easily verified by showing that
different monomials in {zo,...,z,} convert into different monomials in
{x, y}. Therefore k{x, y)> contains copies of k{xo,...,x,) for every n. In
fact, by the same reasoning, the subring of k{x, y) generated over k by
{zi: i = 0} is seen to be isomorphic to k{xo,x1,...», so k{x, y)> even con-
tains a copy of the free k-ring generated by countably many (noncommuting)
indeterminates. This kind of phenomenon does not occur for polynomial
rings in commuting indeterminates.

(1.3) Examples (Rings with Generators and Relations). Let £ and R be as
above, and let F = {f;: j e J} < R. Writing (F) for the ideal generated by F
in R, we can form the quotient ring R = R/(F). We refer to R as the ring
*‘generated over k by {x;} with relations F’ (the latter term reflects the fact
Si({Xi: ie I}) = 0 € R for all j). The following are some specific examples.

(a) If we use the relations x;x; — x;-x; = 0 for all i, i’ € I, the quotient ring
R is the “usual’ polynomial ring k[%;: i € /] in the commuting variables {x;}.

(b) If R=R{x,y) and F = {x?> + 1, y?> + |,xy + yx}, then R/(F) is the
R-algebra of quaternions.

(c) If R=k{x,y> and F = {xy — yx — 1}, then R = R/(F) is the (first)
Weyl algebra® over k, which we shall denote by A4, (k). The relation

! Since k need not be commutative, it is actually not quite right to use the term “algebra™ in this
context. But the nomenclature of Weyl algebras is so well established in the literature that we
have to make an exception here.



§1. Basic Terminology and Examples 7

in_A,(k) arose naturally in the work on the mathematical foundations of
quantum mechanics by Dirac, Weyl, Jordan-Wigner, D.E. Littlewood and
others. (Indeed, A4;(k) has been referred to by some as the ‘“‘algebra of
quantum mechanics.”) In the case when & is a field of characteristic 0, 4, (k)
can also be viewed as a ring of differential operators on the polynomial ring
P = k[y|. Indeed, if D denotes the operator d/dy on P and L denotes left
multiplication on P by y, then for any f(y) € P, Newton’s law for the dif-
ferentiation of a product yields

wmuv=%ow=y%+f=uo+nﬁ

where I denotes the identity operator on P. Thus we have a k-algebra ho-
momorphism ¢ of A4;(k) into the endomorphism algebra End; P sending x
to D and y to L. It is not difficult to see that the image of ¢ is exactly the ring
S of differential operators of the form

Z ai(L)Div

where the a;’s are polynomials in y. From this one can check that ¢ is an
isomorphism from A4, (k) onto S. In a later example, we shall see that 4;(k)
may also be thought of as a ring of twisted polynomials in the variable x
over the ring P = k[y]. Once A, (k) is defined, we can define the higher Weyl
algebras inductively by

An(k) = A1 (An-1(K)),
or, equivalently, 4,(k) is generated by a set of elements {x), y,,...,Xn, ¥»},
each commuting with elements of k, with the relations:
xiyi_yixi=l (1 SIS”)’ xlyj—y]xl::o (l¢.1)v
xixj — xixi =0 (i # j), yiyi—=yiyi=0 (i#)).
For some more details on these algebras, see (3.17).

(d) Let R = Z{x, y) and F = {xy}. The ring R = R/(F) is then generated
by x, y, with a “generic” relation Xy = 0. In this ring, x is a left O-divisor, but
it can be shown that it is not a right 0-divisor. Similarly, if R = Z{x, y) and
F = {xy — 1}, then R = R/(F) is generated by X, y, with a “generic” rela-
tion Xy = 1. It is not hard to show (e.g. by specialization) that yx # 1 in R.
Thus, x has a right inverse in R, but is not a unit.

(1.4) Example. Let k be any ring, and G be a group or a semigroup (with
identity), written multiplicatively. Then we can form the (semi)group ring

A=kG= @ ko.

oeG

Elements of A are finite formal sums of the shape Y, a,0, and are multi-
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/

plied by using the multiplication in G. Thus,
( Z a,,a) ( z b,r) = Z Cull,

where ¢, =) a,b,, with summation over all (6.7) € G x G such that
ot = p. Note that under this multiplication in A4, elements of k (= k- 1)
commute with elements of G (= 1 - G). Clearly, A4 is commutative iff both &
and G are commutative. This enables us to construct lots of examples of
noncommutative rings. Note that if G is the free semigroup generated by
{xi: i e I'}, then kG is just the free k-ring k{x,: i € I> discussed in (1.2). As-
suming further that & is a domain, it is easy to see that U(kG) = U (k). If,
however, G is a group (instead of just a semigroup), then clearly G is a sub-
group of U(kG). In general, U(kG) may be much larger than U(k) - G. For
instance, when G is a cyclic group of order 5 generated by x, then in the
integral group ring ZG, we have ab = 1 for

a=1-x*-x> and b=1-x-x*
so a, b are units of ZG not belonging to U(Z)G = +G. In general, the prob-
lem of determining the group of units for a group ring &G is quite difficult,
and has been solved only in certain special cases.

(1.5) Example. Let k& be a ring and {x,:ie/} be independent variables
over k. In this example, the variables may be taken to be either pairwise
commuting or otherwise, but we shall assume that they all commute with
elements of k. With this convention, we can form the ring of formal power
series R = k[[x;: i € I]]. The elements of R have the form fy+ fi + f, + - -,
where each f) is a homogeneous polynomial in {x;: i € I'} over k with degree
n, and we multiply these power series formally. It is not difficult to calculate
the units of R; indeed,

F=fH+NHh+fit

is a unit in R iff the constant term f, is a unit in k. It suffices to do the “if”’
part, so let us assume that f;, € U(k). To find a power series

G=go+q+92+---
such that FG = 1, we have to solve the equations:

1= fog0, 0= fogi + figo. 0= fog2+ fig1 + foago, ..., etc.

Since f; € U(k), we can solve for go, g1, g2, - . - inductively. This shows that F
is right-invertible in R, and by symmetry we see that F is also left-invertible
in R.

(1.6) Example. For any ring k, we can define the ring k((x)) of Laurent
series in one variable x over k to be the set of formal Laurent series
F =3%"%_ fix', where, among the coefficients f; € k with i < 0, only finitely
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many can be nonzero. Again, these Laurent series are multiplied formally,
with the elements of k commuting with the variable x. One particularly good
feature of R = k((x)) is that, if k is a division ring, then so is R. To see this,
let F above be a nonzero element of R. Choose a suitable power x' (i € Z)
such that

F-x'=go+gix+gx?+--
with go # 0. If k is a division ring, then
go+ gix + gax? + -+ € U(k[[x]))

by an earlier remark in (1.5). Since x' is obviously in U(R), it follows that
F € U(R). Therefore, the Laurent series construction enables us to produce
new division rings from old division rings, and, of course, this construction
can be repeated to give division rings of iterated Laurent series over a given
division ring.

(1.7) Example (Hilbert’s Twist). Let k be a ring and ¢ be a ring endomor-
phism of k. We can construct “twisted” (or skew) versions of the polynomial
ring and the power series ring over k in one variable x by relaxing our earlier
assumption that elements of k commute with x. Instead of xb = bx for b € k,
we shall now stipulate that xb = a(b)x. Thus, elements of the skew polyno-
mial ring k[x; o] are “left polynomials” of the form Y./ a;x’, with multi-
plication defined by:

(Z a;xi) (Z bjx’ ) =Y aio'(b)x™.
It is easy to check that k[x; o] is indeed a ring (and the skew power series ring
k[[x;a]] is defined similarly). Note that if ¢ is not the identity, then k[x; o]
(and k[[x; o]]) will be noncommutative rings even though k£ may be commu-
tative. In k[x;o], we can talk about the right polynomials (with the co-
efficients appearing on the right): ¢ + x¢; + - -- + x"c,, but these are left
polynomials of the special form

co+a(c)x+---+0"(cn)x",

so not every member of k[x;o] can be written as a right polynomial. Of
course, if o is onto, then every left polynomial will be a right polynomial. If
o is not injective, say o(b) = 0 for some b € k\{0}, then xb = o(b)x =0,
although f(x)x # 0 for any f # 0 in R. This provides another example of a
left O-divisor in a ring which is not a right O-divisor. On the other hand, if o
is injective and k is a domain, then a simple consideration of lowest-term
coefficients shows that k[x; o] and k[|x; o]] are also domains. The unit groups
of k[x; 0] and k[[x; o]] are easy to determine: we have

U(k|x;o]) = U(k), and
U(k[|x;0]]) = {ao +aix+---: ao € U(k)},
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without any assumptions on the endomorphism ¢. The necessary arguments
are easy generalizations of the ones used earlier, combined with the addi-
tional observation that

ap e U(k) = a'(ap) € U(k) foralli>0.

(1.8) Example. Continuing in the spirit of (1.7), we can form a twisted
(or skew) Laurent series ring k((x; g)). For this, however, it is necessary to
assume that ¢ is an automorphism of k. Under this assumption, we can
“commute b € k past powers of x” by the rule x'b = o'(b)x’ for all ie Z,
including negative integers. Again, it is easy to see that this leads to an
associative multiplication on left Laurent series of the form Y a;x* (with
finitely many terms involving negative exponents). This gives the ring
k((x; o)) of skew Laurent series, in which we have in particular

x o) =67 (ab)x! = bx7".

Thus, a(b) = xbx~! for every b € k, so the automorphism ¢ may now be
viewed as the conjugation by x on k((x; o)) restricted to the subring k. Just
as before, we can show that if k is a division ring, then so is k((x;0c)), as
long as o is an automorphism of k. For instance, if k = Q(¢) and o is the Q-
automorphism of k sending ¢ to 2¢, then in k((x; o)), we have the relation
xt = 2tx. Hilbert was the first one to use the skew Laurent series construc-
tion to produce examples of noncommutative ordered division rings. Indeed,
once the notion of an ordering on a division ring is defined, it is not difficult
to see that the noncommutative division ring k((x; o)) constructed above can
be ordered. An introduction to the theory of orderings on rings will be given
in Chapter 6.

In the ring k((x;0)) of skew Laurent series, there is also the interesting
subring consisting of > * a;x’ with only finitely many nonzero terms.
(These are called the (skew) Laurent polynomials.) Since this ring is gen-
erated over k by x and x~!, we shall denote it by k[x, x“;a].

(1.9) Example (Differential Polynomial Rings). In multiplying left poly-
nomials, there is another thing we can do if we want to relax the assumption
that elements of kK commute with the variable x. To commute a € k past x,
we can try to use the new rule: xa = ax + d(a), where d(a) € k depends on a.
If this is to lead to an associative multiplication among left polynomials, we
must have x(ab) = (xa)b, so

(ab)x + 8(ab) = (ax + 6(a))b = a(bx + 6(b)) + o(a)b.
Canceling (ab)x = a(bx), we get

d(ab) = ad(b) + (a)b,

and, of course, to guarantee the distributive law, we also need

8(a + b) = 8(a) +(b).
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A map J: k — k satisfying these two properties (for all a,b € k) is called a
derivation on k. Given such a derivation, we can introduce a multiplication
on left polynomials in x by repeatedly using the rule xa = ax +d(a). The
task of checking that this indeed leads to an associative multiplication is
nontrivial, but we shall not dwell on the details here. (The interested reader
should carry out this check as a supplementary exercise.) With the multipli-
cation described above, the left polynomials 3 a;x’ form a ring, denoted by
k[x;0]. In the literature, this is known as a differential polynomial ring. Note
that if k is a domain, then so is k[x;d]. In the special case when ¢ is an inner
derivation, k[x;d] turns out to be isomorphic to the usual polynomial ring
k[r]. By definition, J is an inner derivation on k if there exists c € k such that
d(a) = ca — ac for every a € k. (It is easy to check that such a J is indeed a
derivation.) For such a J, we have

(x—c)a=ax+4d(a) —ca=a(x—rc)

for all a € k, so t = x — ¢ commutes with k and we can show easily from this
that k{x;d] = k[f]. In general, however, a derivation d need not be inner. For
instance, let k = ko[y] where ko is some (nonzero) ring, and let & be the
derivation on k defined by formal differentiation with respect to y (treating
elements of kj as constants):

3(>biy') =Y ity
then J is not inner since y is in the center of k but 6(y) =1. In the
differential polynomial ring k[x;d] = ko[y}[x;J], elements have the form
Y ai(y)x' (ai(y) € ko[y]), and we have the relation
xy=yx+6(y)=yx+1

From this, one can check without much difficulty that ko[y]|x;d] is iso-
morphic to the Weyl algebra

Ai(ko) = kolx, y>/(xy — yx = 1)

defined in (1.3)(c). In particular, one sees that a ky-basis for 4;(ko) is given
by

{x'5/: iZO,jZO.} aswellasby {y/x': j>0,i>0}.

It also follows by induction on n that, if ko is a domain, then the higher Weyl
algebras A4,(ko) are all domains.

(1.10) Examples. Let V be an n-dimensional vector space over a field k, with
n < oo. Then we can form the tensor algebra T(V') over k. If {ey,...,e,} is
a k-basis on V, T(V) is essentially the free k-algebra R = k<ey,...,e,).
Various quotient algebras of R are of interest. First, the symmetric algebra
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S(V) obtained from R by quotienting out the ideal generated by all
u@v—v@®u (uveVl)

is just the ordinary polynomial algebra kle,,...,e,] (with commuting e,’s).
Secondly, we have the exterior algebra /\(V') obtained from R by quotient-
ing out the ideal generated by v ® v for all v € V. This is a finite-dimensional
k-algebra, with dim; /\(V)=2". The ideal J of (V) generated by
é.....e, has the property that J" # 0 and J"*' = 0. In the terminology to
be introduced in §19, A (V) is a (generally noncommutative) local ring, with
residue field A(V)/J = k. If V has some further algebraic structure, we can
define other quotients of T'(V'), as follows.

(a) If k has characteristic # 2 and V is equipped with a quadratic form
q: V — k, then we can form the Clifford algebra C(V,¢q) by quotienting out
the ideal of T(V') generated by v ® v — ¢g(v) for all v e V. Again, it can be
shown that dim, C(V,g) = 2". In the special case when the quadratic form ¢
is the zero form, we get back the exterior algebra: C(V.0) = A(V).

(b) If V has a given structure as a Lie algebra over k with a bracket
operation

[.]: VxV -V,

we can form the universal enveloping algebra U of (V, |, ]) by quotienting
out the ideal of T(V') generated by

U®v—v®@u-—[uv] foralluveV.

If we fix a k-basis {ey,...,e,} on V, and let {a;,} be the structure constants
of the Lie bracket operation defined by

[eh e[] = Z aij(ef'
¢

then U is just the k-algebra generaled with é),. .., é, with relations

e,e, Z a,,peg

(According to a famous theorem of Poincaré-Birkhoff-Witt, a k-basis of U
is given by the ““‘monomials”

{erey---em: iy,... i = 0}

However, we shall not make use of this result here.) In the special case when
V is an abelian Lie algebra (that is, [u,v] = 0 for all u,v), we get back the
symmetric algebra: U = S(V). On the other hand, if V is the binary space
key @ ke, with a Lie algebra structure given by the Lie product [e, e2] = e3,
it can be checked that all relations in U boil down to a single one:
€18y — é28; — &, =0, so

U=kix,y>/(xy —yx—y).
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The latter algebra U’ is isomorphic to the skew polynomial ring k[x][y; o],
where o is the k-automorphism of k[x] sending x to x — 1. (In this ring,
yx =0(x)y = (x — 1)y, so we have xy — yx = y.) Another description of U’
is U’ = k[y|[x,d], where J is the derivation on k[y] given by

dj
5) = 5.

(In k[y][x,8], we have again xy = yx +3(y) = yx+ y.) Yet another de-
scription of U is given by identifying U with a certain subalgebra of the Weyl
algebra A (k) = k{t,s)/(ts — st — 1). To do this, just note that, by left
multiplication of ts — sz — 1 by s, we get (st)s — s(st) — s, so we can define a
k-algebra homomorphism

9: ki{x,y>/(xy —yx — y) — Ai(k)

by taking ¢(x) = §f and ¢(y) = $. It follows easily that U is isomorphic to
the subalgebra of A4, (k) generated by § and s7.

As another example, consider the (2n + 1)-dimensional Heisenberg Lie
algebra V with basis {xy,...,Xn, ¥|,---, Vn 2} and Lie products:

iyl =z=~[yx] (1<i<n),

with all other Lie products equal to 0. If we “identify” z with 1 in the
universal enveloping algebra U of V, we have the relations

xiyi—yxi=1 (1 <i<n),
xiy;=yxi=0, xixi—xxi=0, y;y—yyi=0 (Vi#)).

These are exactly the relations defining the nth Weyl algebra 4,(k). Thus,
we have an isomorphism U/(z — 1) = A,(k). The examples given in this and
the last paragraph suggest that, generally speaking, universal enveloping
algebras of Lie algebras are somewhat related to higher Weyl algebras and
iterated differential polynomial rings.

(1.11) Example (Skew Group Rings). Let & be a ring and let G be a group
acting on k as a group of automorphisms. Then we can form a skew group
ring R =k * G by taking its elements to be finite formal combinations
Y se G @00, With multiplication induced by:

(a,0)(b.7) = a,0(b;)(o7).

For instance, if G is an infinite cyclic group (o) where g acts on k, then k * G
is isomorphic to the skew Laurent polynomial ring k[x, x~!; a]. To show how
naturally skew group rings arise in practice, let us consider a group G which
is a semidirect product of a normal subgroup 7 with a complement H. Here,
H acts on T by conjugation, and this action can be extended uniquely to an
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action on the (usual) group ring k7. We express this action by writing

h ( Z a,t) = Za,"t,

teT teT
where "7 = hth~' for he H and 7€ T. Then in the (usual) group ring kG,

we have
h-3ar= (Za,hrh")h = ”(Za,z)h.

teT teT teT

This shows that kG = (kT) x H, where the skew group ring on the RHS is
formed with respect to the action of H on kT as described above. From this
example, we see that the formation of skew group rings is helpful already in
understanding the structure of the ordinary group rings G.

(1.12) Example. If A4 is any object in an additive category ¥, then End¢ A
(consisting of ¥-endomorphisms of A) is a ring. For instance, if € is the
category of right modules over a ring R, then we have the ring of endo-
morphisms Ende A = Endgr(A) associated to any right R-module 4. In the
special case when 4 = R (viewed as a right module over itself), we can
define a mapping L: R — Endgr(R) by sending r € R to the left multiplication
map L(r) on R defined by L(r)(a) = ra for any a € R. Since

L(r)(ab) = r(ab) = (ra)b = (L(r)(a))b,

we have indeed L(r) € Endgr(R). A similar calculation shows that L is a ring
homomorphism. If L(r) = 0, then 0 = L(r)(1) = r, so L is one-one. Finally
L is also onto, for, if ¢ € Endgr(R), then for r := ¢(1), we have

L(r)(a) = ra = ¢(1)a = p(a).

Since this holds for all a € R, we have L(r) = ¢. Thus, we have a ring iso-
morphism R = Endgr(R).

(1.13) Examples. Let V' be an n-dimensional right vector space over a divi-
sion ring k. Then, using a fixed basis {e,...,e,} on V, we can identify
Endy, V as usual with the ring R = M, (k) of n x n matrices over k. This
matrix ring R has many interesting subrings, some of which are described
below.

(@) The subring T of R consisting of all upper triangular matrices. The set
I of matrices of T with a zero diagonal is easily seen to be an ideal of T, with
T/I >k x --- x k (direct product of n copies of k). Moreover, using linear
algebra considerations, one sees that /7~! # 0 but I” = 0.

(b) The set of all matrices (a;) in T with @3, = a3» = -+ = @p-1,n = 0 can
be checked to be a subring of 7.

(c) The set of all matrices (a;) in T with a;; = az and all off-diagonal
elements zero except perhaps a,, is another subring of T.
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{d) Let k = C and n = 2. Then the set of matrices of the form ( ; B )

a
(where a,feC and ‘“bar” denotes taking complex conjugates) is R-
isomorphic to the division ring H of real quaternions. An explicit iso-
morphism is given by mapping a quaternion

a+bi+c¢i+dk (ab,c,deR)

a+bi —c-di

to the matrix . . ). Under this isomorphism, we have
c—di a-bi

(o) (o D) (0 9) e (G F)
(e) Continuing the notations in (d), consider the isomorphism
0: H — Endy(H)
obtained in (1.12), where the last H is viewed as a right H-module. Since
Endy(H) < Endp(H) = M4(R)

(using the basis {1, i, j,k} on H), (p(II-II) is the set of all 4 x 4 real matrices of
the form

a -b — -d
b a -d c
c d a -b

d —c b a

Therefore, these real matrices form an R-subalgebra of M4(R) isomorphic to
the algebra H of all real quaternions.
(f) Fork = Q, let

S={(x+y 4y ):x,yeQ}

=y Xx—=y .

S'={(x Y ):x,yeQ}.
-y x+y

Then S,S’ are both subfields of M,(Q) isomorphic to the field
Q(v-3). In fact, for a=( ! 4) and o = ( 0 1), we have

-1 -1 -1 1
(x+y 4y )=xl+ya and ( x Y )=x1+ya'. Since a and
-y xX—y -y x+y

a’ satisfy respectively their characteristic equations, we have «? + 3/ = 0 and
a? —a' + 1 =0. From this, it follows easily that S = Q(v-3) = S’ as Q-
algebras. An explicit isomorphism from S to S’ is provided by sending

and
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X+ 4
(' 4 4 )eSto
-y x—-)

(l 0)(x+y 4y 1 0 _'_ x—y 2y
1 2 -y x-y)\1 2/ "\ =2y x+y
_ xl y/
- _y/ x'+y’ ’
where x’ = x -y, y' = 2y.

(g) The following subsets are subrings of M, (Q):

a b . Z nZ
W.-{(C d).a,c,deZ,benZ} (abbrevnated(Z Z))

b
W, = {(j d): a,b,c,deZ, a=d (mod n), bEc(modn)}.

Wi = {(‘: z) a,deZ, a=d (mod n), b,cenZ}.

(h) The following subsets are subrings of M,(R(x)):
z Q Z R Z R[] Q R(x)
0 z)0 \0 @/7 \0o R /)" \0- Qx)/)
(1.14) Example (Triangular Rings). The rings listed in (h) above as well as
the rin z 2/21
Blo z
eral construction. Let R, S be two rings, and let M be an (R, S)-bimodule.

This means that M is a left R-module and a right S-module such that
(rm)s = r(ms) forall r € R, me M, and s € S. Given such a bimodule M, we

can form
R M r m
A—(O S)_{<0 s).reR,meM,seS},

and define a multiplication on A by using formal matrix multiplication:

r m r m rr’  rm’ + ms'
1.15 = .
(1.15) (0 s ) ( 0 s ) ( 0 ss’ )

A routine check shows that, with this multiplication (and entry-wise addi-
tion), 4 becomes a ring. (The bimodule property (rm)s = r(ms) on M is not
needed in the above definition, but is needed in venifying the associativity of
the multiplication in A4.) This construction of the (so-called) triangular ring 4
clearly covers all the examples mentioned at the beginning of (1.14).

In the ring theory literature, many surprising examples and counter-
examples have been produced via the triangular ring.construction, by vary-

) considered earlier are all special cases of a more gen-
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ing the choices of R, S and M. What makes this possible is the fact that the
left, right and 2-sided ideal structures in 4 turn out to be quite tractable. In
the following, we shall try to describe completely the left, right and 2-sided
ideals in A4.

First, it is convenient to identify R, S and M as subgroups in 4 (in the
obvious way) and to think of 4 as R® M @ S. In terms of this decomposi-
tion, the multiplication in 4 may be described by the following chart:

R M S

RIR M 0
(1.16) Mo 0 M
S|10 0 S

From this, it is immediately clear that R is a left ideal, S is a right ideal, and
M is a (square zero) ideal in 4. Moreover, R® M and M @ S are both
ideals of 4, with A/(R® M) =S and A/(M ®S) = R. Finally, R® S isa
subring of A.

(1.17) Proposition.

(1) The left ideals of A are of the form I, @ I,, where I, is a left ideal in S,
and I is a left R-submodule of R ® M containing M1,.

(2) The right ideals of A are of the form J, @ J,, where J| is a right ideal in
R, and J, is a right S-submodule of M ® S containing 1 M.

(3) The ideals of A are of the form K| @ Ko ® K, where K, is an ideal in
R, K; is an ideal in S, and Ky is an (R. S)-subbimodule of M containing
KiM + MK,;.

Proof. The fact that such I, @ I, is a left ideal, J, @ J; is a right ideal, and
K) ® Ko @ K; is an ideal is immediately clear from the multiplication table

(1.16). Conversely, let I be any left ideal of 4. 16 { © """ ) belongs to I, then
R)

0

so do
I 0 rm\ _(r m
0 0J\0 s/ \o o

and

(6 1G%)-G )

Therefore we have I =1, ® L, where ) =In(R®M) and , =1nS.
Clearly, /, is a left R-submodule of R ® M, and I, is a left ideal of S. Lastly,

Mh=M(InS)csInMcIn(ROM)=1.
This proves (1), and (2) is proved similarly. If K is an ideal of A4, then,

P
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':) belongs to K, so do
r m 10y /r O
0 s/\o 0o/ \o o)
(O 0\/r m\ (0 0O
0 1J\o s/ \0 s)°

). This shows that K = K; ® Ky @ K3, where

. r
whénever 0

0 m
and hence also ( 0 0

Ki=KnR, Ky=KnM, and Kb=KnS.

Since K and M are ideals, we must have KyM + MK, € Kn M = Kj, and
the other required properties of Ky, K, K, are clear. QED

According to this proposition, the left and right ideal structures in 4 are
closely tied to, respectively, the left R-module structure on M and the right
S-module structure on M. Often, these two module structures on M can be
arranged to be quite different. In such a situation, the ring 4 will exhibit
drastically different behavior between its left ideals and its right ideals.
To illustrate this point, we shall use the triangular formation to construct
some rings below which are left noetherian (resp., artinian) but not right
noetherian (resp., artinian).

First let us recall a few standard definitions. A family of subsets {C;: i € I'}
in a set C is said to satisfy the Ascending Chain Condition (ACC) if there
does not exist an infinite strictly ascending chain

Ci; SCizg

in the family. Two equivalent formulations of this condition are the
following:

(1) For any ascending chain C;, = C;, < -- - in the family, there exists an
integer n such that C; = G, = C;

in+ | In+2

(2) Any nonempty subfamily of the given family has a maximal member
(with respect to inclusion).

The Descending Chain Condition (DCC) for a family of subsets of C is
defined similarly, and the obvious analogues of (1), (2) can be used as its
equivalent formulations.

Let R be a ring and let M be either a left or a right R-module. We say that
M is noetherian (resp., artinian) if the family of all submodules of M satisfies
ACC (resp., DCC). [More briefly, we can say: M has ACC (resp., DCC) on
submodules.] The following are three easy, but important, facts, which the
reader should have seen from a graduate course in algebra.
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(1.18) M is noetherian iff every submodule of M is finitely generated.
(1.19) M is both noetherian and artinian iff M has a ( finite) composition series.

(1.20) Let N be a submodule of M. Then M is noetherian (resp., artinian) iff N
and M /N are both noetherian (resp., artinian). In particular, the direct sum of
two noetherian (resp., artinian) modules is noetherian (resp., artinian).

A ring R is said to be left (resp., right) noetherian if R is noetherian when
viewed as a left (resp., right) R-module. If R is both left and right noetherian,
we shall say that R is noetherian. The examples we shall present below will
show that “left noetherian” and ‘“‘right noetherian™ are independent con-
ditions, so a ring being noetherian is indeed a stronger condition than its
being one-sided noetherian. By the preceding discussion, we see that R is left
noetherian iff every left ideal of R is finitely generated, iff any nonempty family
of left ideals in R has a maximal member.

A ring R is said to be left (resp., rlght) artinian if R is artinian when viewed
as a left (resp., right) R-module. If R is both left and right artinian, we say
that R is artinian. Again, we shall see that this is stronger than R being only
one-sided artinian.

Needless to say, the nomenclature above honors, respectively, Emmy
Noether and Emil Artin, who initiated the study of ascending and descend-
ing chain conditions for (one-sided) ideals and submodules. To complete our
review of basic facts on chain conditions, let us also recall the following
Proposition about finitely generated modules over rings satisfying chain
conditions.

(1.21) Proposition. If M is a finitely generated left module over a left no-
etherian (resp., artinian) ring, then M is a noetherian (resp., artinian) module.

One of the most lovely results in ring theory is the fact that a left (resp.,
right) artinian ring is always left (resp., right) noetherian. This fact was
apparently unknown to both Noether and Artin when they wrote their pio-
neering papers on chain conditions in the 1920’s. Rather, it was proved
only some years later by Levitzki and Hopkins. (We note, incidentally, that
‘“‘artinian = noetherian” works only for one-sided ideals, but not for mod-
ules!) Since this is a highly nontrivial result, we shall not assume it in the
balance of this section. A full proof of the Hopkins—Levitzki Theorem will
be given in §4 in conjunction with our study of the Jacobson radical of a ring.

As an- application of (1.17), we shall prove the following useful result
about triangular rings.

(1.22) Theorem. Let A = (R M) be as in (1.17). Then A is left (resp.,

0 S

right) noetherian iff R and S are left (resp., right) noetherian, and M as a left
R-module (resp., right S-module) is noetherian. The same statement holds if we
replace throughout the word ‘‘noetherian” by “artinian.”
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Proof. It suffices to treat the “left noetherian™ case, for the arguments in the
other cases are the same. First assume A is left noetherian. Since R and S
are quotient rings of A, they are also left noetherian. If M; c M, < --- is
an ascending chain of left R-submodules of M, then, passing to the
<g Ag’)’s, we get an ascending chain of left ideals of A. Thus
M; € M, < --- must become stationary, so M as a left R-module is no-
etherian. Conversely, assume that R, S are left noetherian, and that M as a
left R-module is noetherian. Consider an ascending chain IV ¢ /® < ... of
left ideals in A. The contraction of this chain to S must become stationary,
since S is left noetherian. On the other hand, the contraction of the chain to
R ® M must also become stationary, since (by (1.20)) the left R-module
R ® M is noetherian. Recalling that

I"=U"~S)® I~ (RO M)),
we see that /) < /' < ... becomes stationary, so we have proved that A is
left noetherian. QED

(1.23) Corollary. Let S be a commutative noetherian domain which is not

R
equal 10 its field of fractions, R. Then A = ( 0

right noetherian, and A is neither left nor right artinian.

g) is left noetherian and not

Proof. In view of the theorem, it suffices to show that (1) S is not artinian,
and that (2) R as a (right) S-module is not noetherian. For (1), simply note
that if s # 0 is a nonunit in S, then we have

262062

For (2), assume instead that R is a noetherian S-module. Then R is, in par-
ticular, a finitely generated S-module, so there would exist a common de-
nominator s € S for all fractions in R. But then 1/5s? = 5’/s for some s’ € S,
so s € U(S), contradicting S # R. QED

The following can also be deduced immediately from (1.22).

(1.24) Corollary. Let S = R be fields such that dims R = co. Then A =
R
( R ) is left noetherian and left artinian, but neither right noetherian nor

0 S
right artinian.

We can make two more useful remarks about the ring A in the last
Corollary. First, as a left module over itself, 4 has a composition series of

length 3, namely
0 R 0 R
A2 2
“\0 S 0 0

]

(0).
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The fact that this chain of left ideals cannot be further refined follows from
(1.17) (1) (or from an ad hoc calculation). This, of course, shows directly that
A is left noetherian and left artinian, in view of (1.19). Secondly, since
dimg R = o0, we can easily construct an infinite direct sum @:I M; of

0 M; .
nonzero (right) S-subspaces in R. By passing to the ( 0 0 )’s, we obtain

then an infinite direct sum of nonzero right ideals in 4. But, of course, the
fact that A is left noetherian implies that there cannot exist an infinite direct
sum of nonzero left ideals in 4. Using terminology to be introduced later in
Lectures, we have in 4 an example of a ring which is left Goldie but not right
Goldie.

Of course there are other methods for constructing rings which are no-
etherian on one side but not on the other. We conclude this section with two
more such constructions.

(1.25) Example. Let o be an endomorphism of a division ring k which is not an
automorphism. Then R = k(x;a] is left noetherian but not right noetherian.
Indeed, if I is any nonzero left ideal of R, then, choosing a monic left poly-
nomial f €I of the least degree, the usual Euclidean algorithm argument
implies that / = R - f. Thus, every left ideal of R is principal (we say that R
is a principal left ideal domain); in particular, R is left noetherian. On the
other hand, fix an element b € k\o(k). We claim that >, x'bxR is a direct
sum of right ideals, which will imply that R is not right noetherian. Assume,
for the moment, that there exists an equation

X"bxfo(x) + -+ + x""bx [, (x) =0,

where the first and the last terms are nonzero. Since R is a domain, this
gnves bxf,(x) = xg(x) for some g(x) € R. If f,(x) has highest-degree term
cx" (¢, #0) and g(x) = ¥_a;x’, a comparison of the coefficients of x"*!
gives bo(c,) = a(a,), whlch contradicts b ¢ o(k). Incidentally, R is also
neither left nor right artinian, since there are infinite descending chains

Rx2Rx*2--- and xR2x*R2 ---.

(1.26) Example (Dieudonné). Let R = Z{x,y)>/(y* yx). Then R is left
noetherian, but not right noetherian. To work with R, we shall confuse x, y
with their images in R. Thus, we view R as generated by x, y, with the
relations y2 =0 and yx =0. Then R has a direct sum decomposition
R = Z[x] ® Z|x]y. Here Z|x] is a subring, and Z[x]y is an ideal. We shall
assume the Hilbert Basis Theorem, which implies that Z[x] is a noetherian
ring. By (1.21), R = Z[x] @ Z[x]y is noetherian as a left Z[x]-module, and
hence as a left R-module. This shows that R is left noetherian. To show that
R is not right noetherian, it suffices to show that I = Z[x]y is not finitely
generated as a right R-module. Since both x and y act trivially on the right
of I, if I were finitely generated as a right R-module, it would be finitely
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gen;rated as an abelian group. This is clearly not the case, as
w .
I=Zxly=@ Z -x'y.
i=0

Incidentally, the ring R in this example is neither left nor right artinian, since
Iis an ideal in R, and R// = Z[x] is not an artinian ring.

Exercises for §1

Ex. 1.1. Let (R, +, x) be a system satisfying all axioms of a ring with iden-
tity, except possibly a + b = b + a. Show thata+ b =b+a forall a,b e R,
so R is indeed a ring.

Ex. 1.2. It was mentioned in the text that a nonzero ring R is a division ring
iff every a € R\{0}.is right-invertible. Supply a proof for this statement.

Ex. 1.3. Show that the characteristic of a domain is either 0 or a prime
number.

Ex. 1.4. True or False: “If ab is a unit, then a,b are units”? Show the
following for any ring R:

(a) If a" is a unit in R, then a is a unit in R.

(b) If a is left-invertible and not a right 0-divisor, then a is a unit in R.

(c) If R is a domain, then R is Dedekind-finite.

Ex. 1.4*. Let a € R. (1) Show that if a has a left inverse, then a is not a left
0-divisor. (2) Show that the converse holds if a € aRa.

Ex. 1.5. Give an example of an element x in a ring R such that Rx < xR.

Ex. 1.6. Let a,b be elements in a ring R. If 1 — ba is left-invertible (resp.
invertible), show that 1 — ab is left-invertible (resp. invertible), and construct
a left inverse (resp. inverse) for it explicitly. (Hint. R(1 —ab) contains
Rb(1 — ab) = R(1 — ba)b = Rb, so it also contains 1. This proof lends itself
easily to an explicit construction of the needed (left) inverse.)

Ex. 1.7. Let By,..., B, be left ideals (resp. ideals) in a ring R. Show that
R=B® --- @ B, iff there exist idempotents (resp. central idempotents)
er,...,e, with sum 1 such that e;e; = 0 whenever i # j, and B; = Re; for all
i. In the case where the B;’s are ideals, if R = B, @ --- @ B,, then each B;
is a ring with identity e;, and we have an isomorphism between R and the
direct product of rings B; x - -- x B,. Show that any isomorphism of R with
a finite direct product of rings arises in this way.

Ex. 18. Let R=B, @ --- @ B,, where the B;’s are ideals of R. Show that
any left ideal (resp. ideal) I of R has the form I =1} @ --- @ I, where, for
each i, I; is a left ideal (resp. ideal) of the ring B,.

Ex. 1.9. Show that for any ring R, the center of the matrix ring M,(R)
consists of the diagonal matrices r - I,, where r belongs to the center of R.
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Ex. 1.10. Let p be a fixed prime.

(a) Show that any ring (with identity) of order p? is commutative.

(b) Show that there exists a noncommutative ring without identity of order p?.
(Hint. Try the multiplication (a, b)(c,d) = ((a + b)c, (a + b)d) on (Z/pZ)*.)
(c) Show that there exists a noncommutative ring (with identity) of order p3.

Ex. 1.11. Let R be a ring possibly without an identity. An element e € R is
called a left (resp. right) identity for R if ea = a (resp. ae = a) for every a € R.
(a) Show that a left identity for R need not be a right identity.

(b) Show that if R has a unique left identity e, then e is also a right identity.
(Hint. For (b), consider (e + ae — a)c for arbitrary a, c € R.)

Ex. 1.12. A left R-module M is said to be hopfian (after the topologist H.
Hopf) if any surjective R-endomorphism of M is an automorphism.

(1) Show that any noetherian module M is hopfian.

(2) Show that the left regular module gR is hopfian iff R is Dedekind-finite.
(In particular, R being hopfian is a left-right symmetric notion.)

(3) Deduce from (1), (2) that any left noetherian ring R is Dedekind-finite.

Ex. 1.13. Let 4 be an algebra over a field k such that every element of 4 is
algebraic over k. (Such 4 is called an algebraic k-algebra.)

(a) Show that 4 is Dedekind-finite. .

(b) Show that a left 0-divisor of A is also a right 0-divisor.

(c) Show that a nonzero element of A is a unit iff it is not a 0-divisor.

(d) Let B be a subalgebra of 4, and b € B. Show that bis a unitin Biffitisa
unit in A4.

Ex. 1.14. (Kaplansky) Suppose an element a in a ring has a right inverse
b but no left inverse. Show that a has infinitely many right inverses. (In
particular, if a ring is finite, it must be Dedekind-finite.)

Ex. 1.15. Let 4 = C[x; 0], where o denotes complex conjugation on C.

(a) Show that Z(4) = R[x?].

(b) Show that 4/A4 - (x* + 1) is isomorphic to H, the division ring of real
quaternions.

(c) Show that A/A4 - (x* + 1) is isomorphic to M,(C).

(Hint. For (c), define a ring homomorphism ¢: 4 — M,(C) by taking

0 i a 0
o(x) = (l 0) and ¢(a) = (0 : o(a)) foraeC.)
Ex. 1.16. Let K be a division ring with center k.
(1) Show that the center of the polynomial ring R = K[x] is k[x].
(2) For any a € K\k, show that the ideal generated by x — a in K[x] is the
unit ideal. '
(3) Show that any ideal I = R has the form R - h where h € k[x].

Ex. 1.17. Let x, y be elements in a ring R such that Rx = Ry. Show that
there exists a right R-module isomorphism f: xR — yR such that f(x) = y.
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Ex. 1.18. For any ring &, let

A={(a b): a+c=b+dek}.
c d

Show that 4 is a subring of M,(k), and that it is isomorphic to the ring R of
2 x 2 lower triangular matrices over k.

Ex. 1.19. Let R be a domain. If R has a minimal left ideal, show that R is a
division ring. (In particular, a left artinian domain must be a division ring.)

Ex. 1.20. Let E = Endg(M) be the ring of endomorphisms of an R-module
M, and let nM denote the direct sum of n copies of M. Show that Endg(nM)
is isomorphic to M,(E) (the ring of n x n matrices over E).

Ex. 1.21. Let R be a finite ring. Show that there exists an infinite sequence
ny < ny < n3 < --- of natural numbers such that, for any x € R, we have
XM =x"=xM =

Ex. 1.22. For any ring &, let A = M,(k) and let R (resp. S) denote the ring
of n x n upper (resp. lower) triangular matrices over k.

(1) Show that R =~ S.

(2) Suppose k has an' anti-automorphism (resp. involution). Show that the
same is true for A, Rand S.

(3) Under the assumption of (2), show that R, S, R°P, S°P are all isomorphic.

'z nZ Z
that R =~ S, and that these are rings with involutions.

Ex. 1.24. Let R be the ring defined in Exercise 23, where n > 1 is fixed.
(1) Show that m € Z is a square in R iff m is a square in Z/nZ.
Z 2pZ
Let R=
@ e k= (5
p € R?, but 2 e R?iff 2 is a square in Z/ pZ.

Ex. 1.23. Foraﬁxednzl‘,letR=(§ nZ) andS=(Z Z).Show

) where p is an odd prime. Show that 2p € R?,

Ex. 1.25. (Vaserstein) Let a, b, ¢ be such that ab + ¢ = | in a ring R. If there
exists x € R such that a + cx € U(R), show that there exists y € R such that
b+ yce U(R). ’
(Hint. Set u = a + cx € U(R), and check that the element y = (1 — bx)u~!
works. For this choice of y, an inverse for b + yc is given by a + x(1 — ba).
The calculations are tricky, and have to be carried out carefully.)

Ex. 1.26. For any right ideal A4 in a ring R, the idealizer of A is defined to be
Ir(4) ={reR: rd c A}.

(1) Show that [g(A4) is the largest subring of R that contains 4 as an ideal.

(2) The ring Eg(A) := 1g(A)/A is known as the eigenring of the right ideal A.
Show that Eg(A4) =~ Endr(R/A) as rings. (Note that, in a way, this “com-
putes” the endomorphism ring of an arbitrary cyclic module over any ring.)
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Ex. 1.27. Let R = M, (k) where k is a ring, and let 4 be the right ideal of R
consisting of matrices whose first r rows are zero. Compute the idealizer
Ir(A) and the eigenring Eg(A4).

Ex. 1.28. Do the same for the right ideal 4 = xR in the free k-ring
R = klx,y).

§2. Semisimplicity

After studying some of the basic examples in the last section, we shall now
begin more systematically the study of noncommutative rings. The main
focus of the present chapter is on a very important class of rings, called
semisimple rings. In this section, we shall first study the main properties
of these semisimple rings; in the next section, we shall present the basic struc-
ture theory for these rings, due to Wedderburn and Artin. Much of this
material now lies in the foundations of the theory of noncommutative
rings. In fact, it is perhaps not an exaggeration to say that the Wedderburn—
Artin structure theory of semisimple rings marked the beginning of the mod-
ern phase of development of noncommutative ring theory in the twentieth
century.

There are several possible approaches to- the notion of semisimple rings.
We shall follow a somewhat more modern approach, using the convenient
language of modules. We assume the reader is familiar with the rudiments of
the theory of modules; in particular, we shall use freely in the text basic facts
about submodules, direct sums, composition factors, homomorphisms and
exact sequences, etc. If R is a ring and M is a left (resp., right) R-module, we
shall often write M as g M (resp., M); this suggests that the scalars of R act on
the elements of M from the left (resp., right). If R, S are rings and M is an
(R, S)-bimodule (as defined in (1.14)), we shall similarly write M as g M.

Fundamental to the study of the theory of modules are the following two
definitions.

(2.1) Definitions. Let R be a ring, and M be a (left) R-module.

(a) M is called a simple (or irreducible) R-module if M # 0, and M has no
R-submodules other than (0) and M.

(b) M is called a semisimple (or completely reducible) R-module if every
R-submodule of M is an R-module direct summand of M.

Note that, according to these definitions, the zero module is semisimple,
but not simple. A direct application of the definition (b) above leads to the
following.

(2.2) Remark. Any submodule (resp., quotient module) of a semisimple
R-module is semisimple.
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Clearly, if g M is simple, then it is also semisimple. To understand more
precisely the relationship between simplicity and semisimplicity, we first prove
the following intermediate fact.

(2.3) Lemma. Any nonzero semisimple left R-module M contains a simple
submodule.

Proof. Let m be a fixed nonzero element of M. In view of (2.2), it suffices to
treat the case when M = R-m. By Zorn’s Lemma, there exists a submodule
N of M maximal with respect to the property that m ¢ N. Take a (necessarily
nonzero) submodule N’ such that M = N @ N’. We finish by showing that
N’ is simple. Indeed if N” is a nonzero submodule of N’, then N @ N” must
contain m (by the maximality of N), and so N @ N”" = M, which clearly
implies that N” = N’, as desired. = QED

The Lemma above enables us to give two other characterizations of
semisimple modules. Often these characterizations are used as alternative
definitions for semisimplicity.

(2.4) Theorem. For an R-module M = g M, the following three properties are
equivalent:

(1) M is semisimple.
(2) M is the direct sum of a family of simple submodules.
(3) M is the sum of a family of simple submodules.

(Convention: The sum and direct sum of an empty family of submodules
are both understood to be the zero module. This convention makes the fol-
lowing argument valid in all cases, including the case M = (0).)

Proof of (2.4). (1) = (3). Let M, be the sum of all simple submodules in M,
and write M = M, @ M>, where M, is a suitable R-submodule. If M, # (0),
the Lemma implies that M, contains a simple R-submodule. But the latter
must lie in M), a contradiction. Thus, M, = (0); i.e., M, = M.

(3) = (1). Write M = 3", _, M;, where M;’s are simple submodules of M.
Let N = M be a given submodule. To show that N is a direct summand of
rM, consider subsets J = I with the following properties:

(@) Xjes M; is a direct sum.

(b) N 3jes M; = (0).

It is routine to check that Zorn’s Lemma applies to the family of all such J’s,
with respect to ordinary inclusion. (This is a nonempty family as it contains
the empty set.) Thus, we can pick a J to be maximal. For this J, let

M =N+ Mi=N® DM,
jeJ jeJ
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We finish by showing that M’ = M (for then N is a direct summand of g M).
For this, it suffices to show that M’ 2 M, for all i € I. But if some M; £ M’,
the simplicity of M; implies that M’ ~n M; = (0). From this we have

M +M;=N® (@Mj) ® M,
jeJ

in contradiction to the maximality of J.
(3) = (2) follows from the argument above applied to N = (0).
(2) = (3) is a tautology. QED

We are now ready to introduce the notion of a (left) semisimple ring.

(2.5) Theorem and Definition. For a ring R, the following statements are
equivalent:

(1) All short exact sequences of left R-modules split.

(2) All left R-modules are semisimple.

(3) All finitely generated left R-modules are semisimple.
(4) All cyclic left R-modules are semisimple.

(5) The left regular R-module gR is semisimple.

If any of these conditions holds, R is said to be a left semisimple ring.

Note. By using right modules instead, we can similarly define the notion of
a right semisimple ring. We shall see later, however, that a ring is left semi-
simple iff it is right semisimple. After we prove this fact, we shall be at liberty
to drop the adjectives *“left’”” and “‘right” and just talk about semisimple rings.

Proof of (2.5). Note that (1), (2) are clearly equivalent, and we have a
sequence of trivial implications

2)=@3)=4=0)

Therefore, it suffices to prove that (5) = (2). Let M be any left R-module
where R satisfies (5). In view of (2.2), (5) implies that any cyclic submodule
R-m of M is semisimple. Since M =3, _, R-m, it follows (from the
characterization (2.4)(3)) that M is semisimple. = QED

Let R be a left semisimple ring. Using the characterization (2.5)(5), we
have a decomposition R = @),_, U; into simple left R-modules ;, which are
just minimal left ideals in R. Since 1 € R, this direct sum is easily seen to be a
finite direct sum. From this finite decomposition, we can write down a com-
position series for R with composition factors {;}. It follows from (1.19)
that xR satisfies both the 4CC and the DCC for R-submodules.

(2.6) Corollary. A left semisimple ring R is both left noetherian and left
artinian.
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The characterization (2.5)(1) of a left semisimple ring in terms of split
short exact sequences enables us to give a homological interpretation of left
semisimplicity. This is done by using the important notion of a projective
module. Recall that a left R-module P is R-projective (or projective for short)
if, for any surjective R-homomorphism f: 4 — B between left R-modules A4,
B, and any R-homomorphism g: P — B, there exists an R-homomorphism
h: P — Asuchthat foh=g.

The following well-known Proposition in homological algebra offers two
alternative characterizations of projective modules. The easy proof of this
Proposition will be left to the reader.

(2.7) Proposition. A (left) R-module P is projective iff P is (isomorphic to) a
direct summand of a left free R-module, iff any surjective R-homomorphism
from any left R-module onto P splits.

Using this Proposition, we can now state the homological characterization
of the class of (left) semisimple rings.

(2.8) Theorem. The following conditions on a ring R are equivalent:
(1) R is left semisimple;

(2) All left R-modules are projective;
(3) All finitely generated left R-modules are projective,
(4) All cyclic left R-modules are projective.

Proof. (1) < (2) follows from (2.5) and (2.7), and (2) = (3) = (4) is obvious.
We finish by showing that (4) = (1). To check (1), we shall verify that the
left regular module zR is semisimple. Consider any left ideal A = R. By (4)
the left R-module R/ is projective, so by (2.7) the short exact sequence

0—U—R—R/UA—0

splits. This implies that U is an R-module direct summand of gR, as
desired. QED

There is also the notion of an injective module which is directly dual to the
notion of a projective module. We say that a left R-module 7 is R-injective
(or injective for short) if, for any injective R-homomorphism f: 4 — B be-
tween left R-modules 4, B, and any R-homomorphism g: 4 — /, there exists
an R-homomorphism h: B — I such that ho f = g. As is easily shown, the
second part of (2.7) admits the following dual: / is injective iff any injective R-
homomorphism from I to any left R-module splits. From this characterization
of injective modules, we deduce the following partial analogue of (2.8).

(2.9) Theorem. The following conditions on a ring R are equivalent:
(1) R is left semisimple:

(2) All left R-modules are injective.



§3. Structure of Semisimple Rings 29

JActually, the full analogue of Theorem 2.8 does hold, so one could have
added to (2.9) two more equivalent conditions:

(3) All finitely generated left R-modules are injective.
(4) All cyclic left R-modules are injective.

Of course, we have (1) = (2) = (3) = (4), but the implication (4) = (1)
(due to B. Osofsky) is much harder. For a proof of this implication, we refer
“the reader to pp. 223-224 in Lectures.

There are many more characterizations of semisimple rings besides
the ones mentioned here. For an exhaustive list of 23 characterizations, see
p. 496 (Vol. I) of Rowen [88].

Exercises for §2

Ex. 2.1. Is any subring of a left semisimple ring left semisimple? Can any
ring be embedded as a subring of a left semisimple ring?

Ex. 2.2. Let {F;: i e I} be a family of fields. Show that the direct product
R =TI, F; is a semisimple ring iff the indexing set [ is finite.

Ex. 2.3. What are semisimple Z-modules?’

Ex. 24. Let R be the (commutative) ring of all real-valued continuous
functions on [0, 1]. Is R a semisimple ring?

Ex. 2.5. Let R be a (left) semisimple ring. Show that, for any right ideal /
and any left ideal J in R, IJ =InJ. If I, J, K are ideals in R, prove the
following two distributive laws:

INn(J+K)=(InJ)+ (InK),
I+(JnK)=U+J)n(+K).

Ex. 2.6. Let R be a right semisimple ring. For x, y € R, show that Rx = Ry
iff x = uy for some unit u € U(R). (Hint. Assume Rx = Ry. By Exercise
1.17, there exists a right R-homomorphism f: xR — yR such that f(x) = y.
Now extend f to an automorphism of Rg.)

Ex. 2.7. Show that for a semisimple module M over any ring R, the follow-
ing conditions are equivalent:

(1) M is finitely generated;

(2) M is noetherian;

(3) M is artinian;

(4) M is a finite direct sum of simple modules.

Ex. 2.8. Let M be a semisimple (say, left) module over a ring. Let {V: ie I}
be a complete set of nonisomorphic simple modules which occur as sub-
modules of M. Let M; be the sum of all submodules of M which are iso-
morphic to V. It is easy to show that M = @iM,«: the M;’s are called the
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isotypic components of M. In the following, we assume that each M; is
finitely generated. By Exercise 7, this means that each M; =~ m;V; for suitable
integers m;. Let N be any submodule of M. Show that N =~ (-B,.n;V} for
suitable n; < m;, and that M/N = @), (m; — n;) V..

§3. Structure of Semisimple Rings

In the last section, we studied various characterizing properties of left semi-
simple rings. In this section, we shall present the full structure theory of this
important class of rings, due to J.H.M. Wedderburn (1907) and E. Artin
(1927). In essence, the Wedderburn-Artin Theorem enables one to deter-
mine completely the class of (left) semisimple rings starting from the more
elementary class of division rings. This theorem, regarded by many as the
first major result in the abstract structure theory of rings, has remained as
important today as in the earlier part of the twentieth century when it was
first discovered.

As we have mentioned earlier, the definition of (left) semisimple rings we
adopted in §2 is somewhat different from the one Wedderburn originally
used. In developing the structure theory of finite-dimensional algebras (or
*‘systems of hypercomplex numbers,” as they were called at the beginning of
the century), Wedderburn defined the radical of such an algebra A4 to be the
largest nilpotent ideal in A. If this (Wedderburn) radical happens to be zero,
A is called a semisimple algebra. About twenty years later, Artin extended
Wedderburn’s methods to the class of rings satisfying the DCC on left
ideals.? For these rings 4 (now called left artinian rings), Artin showed that
there is also a largest nilpotent ideal, so the Wedderburn radical of A4 is still
defined. If this radical is zero, the left artinian ring A is said to be semisimple.
In his 1927 paper, Artin obtained the structure theory of these semisimple
(left artinian) rings, in full generalization of Wedderburn’s earlier structure
theory of semisimple finite-dimensional algebras.

In the next section, we shall show that the Wedderburn—Artin definition of
semisimple rings agrees with the definition we gave in §2 (cf. (4.14)). In our
exposition, we do not emphasize the Wedderburn radical since it is defined
only for certain classes of rings, instead of for all rings. (In the next chapter,
we shall study more generally the Jacobson radical, which is defined for all
rings, and which agrees with the Wedderburn radical for left artinian rings.)
The definition of (left) semisimple rings we gave in (2.5) has the advantage
that it is independent of the notion of the radical; for this reason, it is more
convenient for our exposition. Actually, this definition of semisimplicity is
also quite natural, and very much in keeping with the spirit of the work of
E. Noether and H. Weyl in representation theory. We shall continue to use
this definition throughout this section.

2 Actually, Artin worked with rings satisfying both DCC and ACC on left ideals, without real-
izing that the former implies the latter, which was later proved by Levitzki and Hopkins.
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Before we proceed to the formulation of the Wedderburn—Artin Theorem,
it will be useful to first construct some examples of left semisimple rings. The
only obvious example so far is that of a division ring. If D is a division ring,
then its left modules are the left vector spaces over D. It is well-known that
any short exact sequence of vector spaces splits, so D is left (and right) semi-
simple. To produce more examples, we shall use the construction of (finite)
matrix rings. First let us prove the following elementary result on the classi-
fication of ideals in a full matrix ring.

(3.1) Theorem. Let R be a ring and M, (R) be the ring of n x n matrices over
R. Then any ideal I of M,(R) has the form M, () for a uniquely determined
ideal W of R. In particular, if R is a simple ring, so is M,(R).

Proof. If U is an ideal in R, clearly M, () is an ideal in M, (R). If A, B are
both ideals in R, it is also clear that A = B iff M,,(A) = M,(B). Now let 1
be any ideal in M,(R), and let A be the set of all the (1, 1)-entries of matrices
in I. This U is easily seen to be an ideal in R, and we are done if we can show
that I = M, (A). For any matrix M = (m;), we have an identity
(3.2) EijMEk[ = mjkE,-g,
where {E;;} denote the matrix units. Assume M € I. Letting i = £ =1, the
equation above shows that my Ey; € I, and so mj € U for all j, k. This shows
that I = M, (). Conversely, take any (a;) € M,(2). To show that (a;) €I,
it is enough to show that a;E; € I for all i,¢. Find a matrix M = (m;) eI
such that a;; = my,. Then, for j = k = 1, (3.2) gives

aieEiq = mnEy = EaME € I.

The last conclusion of the Theorem is now clear. QED

In the next theorem, we study in detail the properties of a matrix ring over
a division ring.
(3.3) Theorem. Let D be a division ring, and let R = M, (D). Then

(1) R is simple, left semisimple, left artinian and left noetherian.

(2) R has (up to isomorphism) a unique left simple module V. R acts faith-
Sully on V, and gRR = n - V as R-modules.?

(3) The endomorphism ring End(rV'), viewed as a ring of right operators on
V, is isomorphic to D.

Before we proceed to the proof, a few words on notation are in order here,
concerning (3). As a rule, when we consider modules over a ring, endo-
morphisms will be written opposite the scalars. Thus, for a left module, we’ll
write endomorphisms on the right of the arguments, and consequently, we’ll

3n- V (or sometimes n¥’) denotes the direct sum of n copies of the R-module V.
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use, the right-hand rule for mapping composition. This convention means, in
essence, that we’ll be using sometimes the left-hand rule and sometimes the
right-hand rule. Whichever rule is being used, however, should always be
clear from the context, as it is dictated by the side on which the mappings are
written. The adoption of this convention enables us to completely get rid of
the formation of opposite rings in the formulation of the Wedderburn—Artin
theory. Another considerable notational advantage is the following: If R is a
ring and V is a left R-module, with E = End(gV) viewed as a ring of right
operators on V, then V = gV becomes as (R, E)-bimodule.
We now return to give the

Proof of (3.3). Since D is a simple ring, the simplicity of R follows from (3.1).
We may view R = M,(D) as a left D-vector space, and, as such, R has finite
D-dimension n2. Since the left ideals of R are D-subspaces of R, it is clear
that they must satisfy the DCC as well as the ACC.

Let V be the n-tuple column space D", viewed as a right D-vector space.
The ring R = M,(D) acts on the left of V by matrix multiplication, so we
can view V as a left R-module. In fact R may be identified with End(Vp) by
using the usual matrix representation of linear transformations. This shows
that zV is a faithful R-module, and facts in linear algebra (over a division
ring) imply that it is a simple R-module. (Alternatively, one can check by a
direct matrix calculation that, for any v # 0 in V, R-v = V. This clearly
implies the simplicity of gV.)

Now consider the direct sum decomposition

R=%Ud YU,

where U, (1 < i < n) is the left ideal of R consisting of matrices.all of whose
columns other than the ith are equal to zero. As a left R-module, U, is clearly
isomorphic to gV, so kR = n - V is semisimple. This shows that the ring R is
left semisimple. To show the uniqueness of V, let V' be another simple left
R-module. Since V' =~ R/m for some maximal left ideal mc R, V' is a
composition factor of gR. By the Jordan-Holder Theorem, it follows that
V'=v. )

Finally, let us compute E := End(gV'). We have a natural ring homo-
morphism A: D — E defined by

v-Ald)=v-d (veV,deD).

The proof will be complete if we can show that A is an isomorphism. The
injectivity of A is clear since D acts faithfully on ¥p. To prove the surjectivity
of A, consider f € E. Writing

r=1. (d e D),



§3. Structure of Semisimple Rings 33

we have
a (010-0(1) a 0 o\ (¢
*
AT | N | D | VY B
a, \ a 0 - 0 0 a 0 - O .
(a|d a)
= : =\ : |A@d).
\and Qan

Hence f = A(d). QED

In order to produce more examples of semisimple rings, we make the fol-
lowing observation on finite direct products of rings.

(3.4) Proposition. Let R,,..., R, be left semisimple rings. Then their direct
product R= Ry x --- x R, is also a left semisimple ring.

Proof. Let R; = U;; @ --- @ Wim,, where each U;; is a minimal left ideal of
Ri. Viewing R; as an ideal in R, U;; is also a mit;imal left ideal of R. From

RR=R®--®R =D U,
ij
we conclude that R is left semisimple. = QED

From (3.3) and (3.4), it follows that, if D,,..., D, are division rings, then
for arbitrary natural numbers ny,...,n,,

My, (D1) x - -+ x My, (D)

is a left semisimple ring. This gives a good stock of examples of left semi-
simple rings. Remarkably, it turns out that these are all the examples! This is
the content of the following celebrated result.

(3.5) Wedderburn—Artin Theorem. Let R be any left semisimple ring. Then
R = My, (D)) X -- - x My, (D;) for suitable division rings D\, ..., D, and posi-
tive integers n,,...,n,. The number r is uniquely determined, as are the pairs
(ny,Dy),...,(n,,D,) (up to a permutation). There are exactly r mutually
nonisomorphic left simple modules over R.

Before we give the proof of this theorem, let us first prove another classical
result, due to Issai Schur.

(3.6) Schur’s Lemma. Let R be any ring, and rV be a simple left R-module.
Then End(RrV) is a division ring.
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Proof. Let ‘0 # f € End(gV’). Then im(f) #0 and ker(f) # V. Since
im(f) and ker(f) are both submodules of V, it follows that im(f) = V and
ker(f) = 0; i.e., fis invertible in End(gV'). QED

To prove the Wedderburn—Artin Theorem, let R be a left semisimple ring.
Decompose gR into a finite direct sum of minimal left ideals. Grouping these
according to their isomorphism types as left R-modules, we can write

(A) RR=mV,® --- ®n,V,,

where Vi, ..., V, are mutually nonisomorphic simple left R-modules. If V is
any simple left R-module, V is isomorphic to a quotient of xR and hence (by
the Jordan—Holder Theorem) isomorphic to some V;. Therefore {V,..., V;}
is a full set of mutually nonisomorphic left simple R-modules.

Let us now compute the R-endomorphism rings of the two modules in (A),
using the convention that endomorphisms of left modules are written on the
right. For gR, the R-endomorphisms are given by right multiplications by
elements of R, so End(gR) =~ R. (This is the analogue of (1.12) for the left
regular module.) To compute End(m V|, @ --- @ n,V;), let D; = End(V;). By
Schur’s Lemma, each D; is a division ring, and by Exercise 1.20,
End(n;V;) = M, (D;). Since there is no nonzero homomorphism from ¥; to
Vi fori # j, we have

EndmV, @ - ®n,V,) = End(mVy) x --- x End(n,V,)
= My, (D)) x - x My, (Dy).

Thus, we get a ring isomorphism R = M, (D) x --- x M,, (D,).

To prove the uniqueness of this decomposition, suppose we have another
isomorphism

R =My (D]) x -+ x My (D),
where Dy, ..., D; are division rings. Let V' be the unique simple left module
over M,/(D;). We can also view V' as a simple left module over R; clearly
V' # V/ as R-modules if i # j. By (3.3) and (3.4) we have
(A") RR=nm V@ --- ®@nly'
By the Jordan-Hoélder Theorem, we see from (A) and (A’) that r = s and
that (upon reindexing) n; = n/, and V; = ¥/ for all i. Writing R; = M,,(D;),
we have by (3.3)(3):
D; = Endg (V') = Endg(V,") = Endg(V;) = D;

foralli. QED

Since M,,,(Dy) x --- x M, (D,) is right semisimple as well as left semi-
simple, we have the following interesting consequence of (3.5).

(3.7) Corollary. A left semisimple ring R is always right semisimple (and
conversely).
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From now on, we may, therefore, speak of ““‘semisimple rings” without the
adjectives “left” or “right.”

Note that the existence of an isomorphism

R =M, (D) x --- x M, (Dy)

in (3.5) amounts to the fact that there are ideals By, ..., B, in R such that
R=B, @ --- @ B,, and that, as a ring, each B; is isomorphic to the simple
ring M, (D;). The following general lemma on direct decompositions of a
ring implies that the B;’s are not only determined up to isomorphism as
rings, but they are, in fact, uniquely determined as ideals in R. In the sequel,
we shall call them the simple components (or Wedderburn components) of the
(semisimple) ring R.

(3.8) Lemma. Let R be a ring with nonzero ideals By, ...,B, and Cy,...,C;
such that
R=Bl@ s @Br=CI® .t @Cs

and such that each B; as well as each C; is indecomposable as an ideal (i.e., not
a direct sum of two nonzero subideals). Then r = s, and after a permutation of
indices, Bi = C; for 1 <i<r.

Proof. Viewing the B,’s as rings, R = B) x --- x B,. Under this isomorphism,
the ideal C) in R corresponds to an ideal I, x - -- x I, where each /; is an
ideal in B; (see Exercise 1.8). Since C) is indecomposable as an ideal, all but
one I; must be zero. After a permutation of indices, we may assume
L =-.-=1,=0, and so C, < B,. Similarly, we have B, < C; for some i.
But then C; < C; implies that i = 1; hence C, = B,. Repeating the same
argument for the other C;’s, we obtain the desired conclusion.  QED

Let R be a semisimple ring. By (3.5) and (3.8), we know that R has a finite
number of uniquely determined simple components: they are minimal (two-
sided) ideals in R, and R is their direct sum. One may ask the following
natural question: Is it possible to give a more intrinsic construction of
these simple components? We shall show that this is indeed possible, even
independently of the proof we have given for (3.5). In particular, the con-
struction below provides a second route to the existence of the “simple
decomposition” of R.

For any minimal left ideal % in a ring R, let By be the sum of all the
minimal left ideals of R which are isomorphic to U as left R-modules. The
following general properties of By are valid without any assumptions on the
ring R.

(3.9) Lemma. (1) By is an ideal of R. (2) If A, A’ are minimal left ideals
which are not isomorphic as left R-modules, then By - By = 0.

Proof. For (1), it is enough to show that, if B is a minimal left ideal with
B = U (as left R-modules), then B - r = By for any r € R. But B - r (as a left
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R-module) is a homomorphic image of B, so we can only have B-r =0
or B.r=B =N In either case, B -r = By. For (2), it is enough to show
that A - A’ = 0. Assume, on the contrary, that A - a’ # 0 for some a’ € A’.
Since A’ is a minimal left ideal, we must have A -a’ = A’. But then
A= A-a’ = A’ (as left R-modules), a contradiction. ~ QED

Now assume R is a semisimple ring. We can decompose gR as
AU D 0D - @Y,
where each U; is a minimal left ideal. We may assume the indexing is
arranged in such a way that A, ..., A, are pairwise nonisomorphic (as left
R-modules), and that each ¥; is isomorphic to (exactly) one of U,,...,U,.
Let B; = By, (1 <i <r). By (3.9)(1), these are ideals in R; their sum includes
all A; (1 <i<n), and so must be equal to R. By (3.9)(2), we also have
B, - B; = 0 for i # j; from this, we see easily that
(*) R=B @ --- ®B,.
Note that for any minimal left ideal U of R, we have (by the Jordan-Holder
Theorem) A = A; for some i < r, and so By = B; for the same i. (The B;’s
are just the isotypic components of gR in the sense of Exercise 2.8. Thus,
the direct sum decomposition in (*) would also have followed from that
exercise.) Finally, we claim that, for each i, B; is a simple, left artinian ring.
The fact that B; is left artinian is clear, since R itself is left artinian (by (2.6))
and B; is a homomorphic image of R. To see that B; is simple, let / # 0 be an
ideal of B;. Then Iis also an ideal in R, and so / contains a minimal left ideal
A of R. By what we said earlier, By is one of By,..., B,; since By contains
A < B;, we must have By = B;. We finish by showing that any minimal
left ideal B = U is contained in /, for then we must have / 2 By = B;. Fix
an R-module isomorphism ¢: A — B. Since A is a direct sumnrand of gR,
we have U = R - e for some idempotent e € A (see Exercise 1.7). Then A - e =
(R-e)e=A, and so
B=9pUA)=¢(U-e)=U-g(e) =1,

as desired.

Note that, by the above method, we have decomposed the semisimple ring
R into a finite number of simple components, independently of the proof of
(3.5). As a by-product of this construction, we have the following variation
of the Wedderburn—Artin Theorem, characterizing the class of simple left
artinian rings.

(3.10) Theorem. Let R be a simple ring. The following statements are
equivalent:

(1) R i;v left artinian.

(2) R is (left) semisimple.

(3) R has a minimal left ideal.

(4) R = M, (D) for some natural number n and some division ring D.
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Proof. Since R is simple, (2) < (4) follows from (3.5). Thus we need only
show the equivalence of (1), (2), and (3). Now (1) = (3) is obvious, and
(2) = (1) is done in (2.6), so the only implication left is (3) = (2). Let A be a
minimal left ideal of R and consider the ideal By. Since R is simple, By = R.
But then gR is a semisimple R-module, so (2) follows.  QED

From the equivalences in (3.10), it follows that if a simple ring R is left
artinian, then it is also right artinian (and conversely, by symmetry). For
brevity, we shall henceforth refer to such a ring R as a simple artinian ring,
without the adjectives “left” or “right.”” Note that, by (2.6), such a ring is
also left and right noetherian.

The classification of simple artinian rings as matrix rings over division
rings is usually regarded as a part of the Wedderburn—Artin Theorem. There
are several possible ways to arrive at this classification. We have described
one approach in the foregoing. Because of the great importance of the
Wedderburn—Artin Theorem, it will be worthwhile to describe another
approach, due to M. Rieffel. This approach is no more complicated than the
one we have already described, and yet it gives a more general result which is
meaningful for any simple ring (not just the ones satisfying the descending
chain condition). The result is the following.

(3.11) Theorem. Let R be a simple ring, and U be a nonzero left ideal. Let
D = End( ) (viewed as a ring of right operators on N). Then the natural
map f: R — End(Wp) is a ring isomorphism.

(In the literature, this property of g is sometimes referred to as the
“Double Centralizer Property.”)

Proof (M. Rieffel). By definition, the natural map f takes r € R to the left
multiplication by r on . This f'is a ring homomorphism into End(Ap) (the
latter being viewed as a ring of /left operators on A). Since R is simple, f is
injective; we finish by showing that fis surjective. First let us show that, for
reWUand he E := End(Up), we have

(3.12) h-f(r) = f(h(r)) € E.

In fact, for any a € A, right multiplication by a on U gives an element in D,
s0 h(ra) = h(r)a. From this, we have

(k- f(r)(a) = h(ra) = h(r)a = f(h(r))(a),

hence (3.12). From (3.12), it follows that E - f(A) = f(A). Since R is simple
and A # 0, we have A- R = R and so f(R) = f(A)f(R). But then

E-f(R)=E-f(W[(R) < f(WS(R) = f(R),

so f(R) is a left ideal in E. Since f(R) clearly contains the identity of E, this
implies that f(R)=E. QED



38 1. Wedderburn—Artin Theory

Using the theorem above, it is easy to give another proof of the structure
theorem for simple left artinian rings (or simple rings with minimal left ideals).

(3.13) Corollary. Let R be a simple ring with a minimal left ideal. Then
R = M, (D) for some n and some division ring D, both of which are uniquely
determined.

Proof. The uniqueness of n and D follows from (3.3). To prove their
existence, let A be any minimal left ideal of R. By Schur’s Lemma,
D := End( ) is a division ring, so A is a right vector space over D. By
(3.11), we have R = E := End(Up). Thus, E is simple. If dimp¥ is infinite,
the set of endomorphisms of finite rank in E would give an ideal different
from (0) and E. Thus, we must have n := dimpq < oo, and hence R =~ E =~
M, (D), as desired. QED

Now let R be any semisimple ring. Using the “By’’ construction, we have
a unique decomposition of R into its simple components, say

R=B|X~~XB,.

Each B, is a simple left artinian ring, so by (3.13), B; = M, (D;) for some
integer n; and some division ring D;. This gives a second proof of the
Wedderburn—Artin Theorem. '

In later chapters (and in Lectures), when we go more deeply into the study
of the structure of rings, we will find several results which are of the same
genre as the Wedderburn-Artin Theorem. For instance, Jacobson’s structure
theorem on left primitive rings and Morita’s theorem on the equivalence of
module categories are both more powerful results than the Wedderburn-
Artin Theorem, and may be regarded as generalizations of it. To prove these
more powerful results, we shall need to use certain new ideas and methods.
In the special case of simple (left) artinian rings, these higher methods will
yield two more proofs of the structure theorem (3.13) for such rings. How-
ever, in order to preserve the historical perspective of this structure theorem,
we have refrained in this section frbm using the more powerful methods of
primitive rings or the tools of category equivalences. In this way, we have
tried to make the exposition of the Wedderburn—Artin Theorem as ele-
mentary as possible. Later, when we study the more general theorems
of Jacobson and Morita, we will be able to see how the main idea of the
Wedderburn-Artin Theorem evolved into its various higher forms.

To conclude our discussion of the Wedderburn—Artin Theorem, let us
remark on two of its special cases. Let k be a field and let R be a finite-
dimensional k-algebra. Since any left (or right) ideal of R is a k-subspace of
R, any chain of such ideals has bounded length. In particular, R is left (and
right) noetherian and artinian. If R is a simple algebra, we have by (3.13)
R = M, (D) for some n and some division ring D. Since D is characterized as
the R-endomorphism ring of the unique left simple R-module V, D has also
the structure of a (finite-dimensional) k-algebra. Similarly, if R is a finite-
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dimensional semisimple k-algebra, then
R =M, (D)) x -+ x My, (D),

where each D; is a finite-dimensional k-division algebra. We shall refer to
this fact as the Wedderburn Theorem, since this was the case originally
treated by Wedderburn in his 1907 paper. If the ground field k is algebrai-
cally closed, each D; must be k itself and we have

R =M, (k) x -+ x My, (k).

In the special case when k = C, this fact goes back even earlier to the
Estonian mathematician T. Molien.

If we work in the category of commutative rings, the Wedderburn-Artin
Theorem is basically an easy result. Since simple commutative rings are just
fields, the decomposition argument following (3.9) shows that any semisimple
commutative ring is a finite direct product of fields (and conversely). Rings of
this type occur, for instance, in linear algebra. Recall that a linear operator T
on a finite-dimensional vector space V over a field k is said to be semisimple
iff any T-invariant subspace of V has a T-invariant complement. Assuming
some future results (cf. (11.1) and (11.7) (1)), it can be seen that T is semi-
simple iff the subalgebra k[T of Endy (V) is semisimple. Now if m(x) is the
minimal polynomial of T, and

m(x) = my(x)® -- ‘m,('x)" € k[x],

where the m;(x)’s are distinct irreducible factors, then

(3.14) K[T) = k["] H [; ki)

m;( x)e')

This gives a decomposition of k[T] into a finite direct sum of indecom-
posable ideals. From (3.8), it follows that k[T'] is semisimple iff each

k[x]/ (mi(x)%)
is a field; i.e., iff each ¢; = 1. This is a well-known characterization of semi-
simple operators in linear algebra. Note that, in the special case when k is
algebraically closed, this characterization boils down to: T is semisimple iff it
is diagonalizable.

Since we have completely determined the structure of artinian simple
rings, one may wonder how much of this structure theory can be extended to
nonartinian simple rings. For left noetherian simple rings, there does exist
a fairly substantial structure theory (see, for instance, Cozzens—Faith [75]);
however, the structure of general simple rings remains difficult. We shall not
go into this subject in this book. To close this section, we shall, instead, give
some examples of nonartinian simple rings. This will serve to beef up our
stock of nontrivial examples of rings started in §1.

The first example to be constructed is based on the following observation.
Suppose we have a chain of rings

RysR SRS ---
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which share the same identity; if each R; is a simple ring, then so is the
union
R=J R.
i20

In fact, let / be a nonzero ideal in R. Then / N R; # 0 for some i, and / N R;
is an ideal in R;. Since R; is simple, I ~ R; contains 1, and so I = R. To
construct an explicit example, let D be a fixed division ring and consider
Ri = My (D) (i > 0). We shall regard R; as a subring of Ri,1 by identifying

a 2' x 2! matrix M with the 2/*' x 2/*! matrix M0 . In this way, we
. . . 0 M
have a chain of simple rings

RhSRiSERE -,

where Ro = D. Let R be their union. This is a simple ring; however, we shall
show below that it is not (left) artinian. For i > 0, let ¢; be the matrix unit in
R; with | in the (1. 1)-position, and zeros elsewhere. Each ¢; is to be viewed
as an element of R by using the embeddings

RicsR. € --- R

It is easy to see that. for every /. ¢;_| = e;;1¢; € Ri;1. Hence we have a
descending chain '

Reg 2 Rey 2 Rey; = ---

of left ideals in R. We shall show that this is a stricrly descending chain by
showing that, for each /, ¢; ¢ Re;,,. This will complete the proof that R is a
nonartinian simple ring. Assume, for the moment, that e; € Re;y). Then
ei € Rjei,) for some j > i, so e; = Mej;,) € R; for some 2/ x 2/ matrix M
However, the (2' +1,2' + 1) entry of Me;,; is 0, and the (2 +1.2" + 1)
entry of ¢; (viewed as a matrix in R;) is 1. This gives the desired contradiction.
We leave it to the reader to show that the ring R here is also not left (or
right) noetherian.

To get a second example of a nonartinian simple ring, let D be a division
ring as before, and let

V = @ €,‘D
i>

be a right D-vector space of countably infinite dimension. Let £ = End(Vp)
and let 7 be the ideal of E consisting of endomorphisms of finite rank. We
claim that the quotient R := E[I is a simple ring. To see this, let U be any
ideal of R properly containing /; we fix an endomorphism g € U\ /. It suffices
to show that, for suitable endomorphisms f,h € E, we have fgh =1, for
then A must be the unit ideal. Write ¥ = ker g ® U and let {u;,u,...} be a
basis for U. Then {g(u),g(u2), ...} are linearly independent, so there exists
f € E which sends each g(y;) to ¢,. Finally, let h € E be the endomorphism
which sends each ¢; to u;. Then fgh(e;) = f(g(u;)) = e; for any i, so we have
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fgh =1, as desired. Next, we claim that the simple ring R is not left no-
etherian. To see this, we choose another basis of V consisting of the vectors

{wj: 1<i<oo, 1 <j< o},
and, for n > 1, let
U, ={feE: f(w;)=0 fori>nandj=>1}.

Then, 0 = A, = A, < --- is a chain of left ideals in E. We finish by showing
that '

W+IcsWp+IcU3+1< ---
is a strictly increasing chain. To show that

U, +1 G Wy +1,

consider an endomorphism f € U, with the property that f(w,;) = wy; for
allj. If f = h+ k where he U, and k € I, then

Woj = f(Wnj) = h(Wn;) + k(Wnj) = k(wanj)

for all j. But then k(V) 2 Z;Z, wy;D, contradicting the fact that k is an
endomorphism of finite rank. This shows that R is not left noetherian, and
hence also not left artinian, by (3.3) and (3.10). More explicitly, a strictly
decreasing chain of left ideals containing / can be constructed by using the
same idea: we simply take

B,={f€eE: f(wj))=0 fori<nand;>1}
and show, as before, that
B +I2B,+12---

For further properties of the ring E, see Exercises 14 and 15 below.

To conclude this chapter, we shall present some more constructions of
nonartinian simple rings by using skew polynomials and skew Laurent
polynomials. We first consider the case of the differential polynomial ring
k([x;d], where ¢ is a derivation on the ring k. Let us call an ideal A of k a
o-ideal if 5(U) = A. We shall say k is d-simple if k # (0) and the only.d-ideals
in k are (0) and k. Using these notions, we have the following characteriza-
tion for k[x;d] to be a simple ring, in the case when k is a Q-algebra.

(3.15) Theorem. For any Q-algebra k with a derivation 8, R = k(x;d] is a
simple ring iff k is -simple and 6 is not an inner derivation on k.

Proof. First assume 4 is inner, so that, for some c € k, d(b) = cb — bc for all
b e k. Then, as we have observed in (1.9), R=k[f] for t=x—c, so R is
clearly not simple. Next assume k has a d-ideal ¥ # (0), k. Then

I:= {Za,.x"eR: aﬂa,eﬂ}:@l-k
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1s an ideal of R since

xZa,—x’ = z:a,-xi+l + Zé(a,)xi el

if all a; € . Since 7 # (0), R, again R is not simple. This proves the “only
if” part of the theorem. To prove the converse, assume k is d-simple, but R is
not simple, with, say, an ideal I # (0), R. We finish by showing that  must
be inner. To see this, let n be the minimum degree for the nonzero (left)
polynomials in 7, and let U be the set of leading coefficients a of polynomials
Jf €1 of degree n, together with 0. Observing that

xf—fx=4d(a)x"+---,

we see easily that U is a (nonzero) d-ideal of k, so 1 € U; i.e., there exists a
polynomial g = x" 4+ dx"~' 4 ... in I Since I # R,n > 0. For any b € k, we
see easily by induction that x"b = bx" + nd(b)x"~' + -+, so

bg — gb = (bd — db — nd(b))x"~" + (lower-degree terms).
Since bg — gb € I (and Q < k), we see that

=o8)- (3

for every b € k, so d is an inner derivation. QED

(3.16) Corollary (Amitsur). Ler k be any simple ring of characteristic 0. Then
Sfor any non-inner derivation 6 on k, R = k(x;d] is a nonartinian simple ring.

Proof. The center C of k is a field (by Exercise 3.4 below), so char k =0
implies that Q < C; i.e., k is a Q-algebra. Obviously & is d-simple, so the
theorem applies. The descending chain of left ideals

Rx2Rx*2 -
shows that R is not (left) artinian.  QED

(3.17) Corollary. Let ko be any simple ring (resp., domain) of characteristic 0.
Then the Weyl algebras A,(ko) (n =-1) are all nonartinian simple rings (resp.,
domains).

Proof. Since A4,(ko) = A1(An-1(ko)), it suffices to prove the Corollary for
n = 1. The fact that A4;(ko) is nonartinian follows as in the last corollary. To
show that A4,(ko) is simple, we use the identification A4;(ko) = ko[y][x;d],
where 6 = d/dy on k = ko[y]. Since y is in the center of ko[y] but 6(y) =1,
we see that J is not an inner derivation on k. We finish by showing that,
though k is not simple, it is 6-simple. Let W be any nonzero J-ideal of k. If
f = ay" + - -- has minimal degree n among the nonzero (left) polynomials in
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QI,’then
af
) ==L = =l e
N & nay"—" + €

implies that na = 0. Since a # 0 and Q < ky, we must have n = 0. Thus
f =aeWnky, and the fact that ko is a simple ring implies that 1 € A N ko,
so A =ko[y]. QED '

Though the A,(ko)’s are not artinian, it can be shown that they are noe-
therian if the ground ring ky is noetherian. Thus, (3.17) provides an inter-
esting class of noetherian simple rings (resp., domains). We note, however,
that the assumption on the characteristic of k is essential in (3.17). In fact, if
ko has characteristic p > 0, then in

Ar(ko) = kolx, y>/(xy —yx = 1),

we have (by induction on m) x™y — yx™ = mx™~!, and hence x? commutes
with y (as well as with x). Therefore 4,(ko)x” is a nonzero ideal < A4;(ko), so
A (ko) is not simple. Similarly, the higher Weyl algebras are also not simple.

Next we shall present the analogue of (3.15) for skew Laurent poly-
nomials. Here, we start with a base ring k equipped with an automorphism
o, and consider the ring R = k[x,x"';0] of skew Laurent polynomials
defined in (1.8). The elements of R have the form Y ;_, a;x’ where a; € k,
r<s in Z, and multiplication for elements of R is induced by the rule
x‘a = ¢'(a)x’. The inner order of a is the smallest natural number » such that
¢” is an inner automorphism of k. If no such natural number n exists, we say
that ¢ has infinite inner order. In analogy to the case of derivations consid-
ered before, we call an ideal U < k a o-ideal if (W) = A, and we say that k
is a-simple if k # (0), and the only g-ideals of k are (0) and k. Using this
terminology, we can give an explicit criterion for R = k[x,x" ;0] to be
simple, in analogy to (3.15). Our presentation here follows a paper of D.A.
Jordan (84].

(3.18) Theorem. For k and R = k[x, x™'; g] as above, the following statements
are equivalent:

(1) R is a simple ring.
(2) k is a-simple and o has infinite inner order.

(3) k is a-simple, and there is no natural number m for which ™ is an inner
automorphism of k induced by a unit of k fixed by ¢.

Proof. First we prove (2) « (3), which can be done without reference to the
ring R. Of course, we need only prove (3) = (2). Suppose, for some n > 1, 0"
is an inner automorphism, say ¢”(r) = brb~! for all r, where b € U(k). Let
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a=b-a(b)-a*(b)---a"""(b) € U(k). Since " (b) = b, we have
a(a) = a(b)a’(b)---a"(b)
= a(6"b)a*(a"b) - - - a"(c"b)
= a"(a(b)a’(b)---a" (b))
= b(a(b)a?(b) -~ a"(b))b™"
=ac"(b)b™' = a.

Now consider the inner automorphism of k induced by the unit a/(b) (i > 0).
For c € k, we have

o'(b)ca’(b)”! .= o'(ba"(c)b7")
=a'(a"(a7(c)))
=0"(c).

Thus, the inner automorphism induced by ¢'(b) (for any i > 0) is ¢”. It fol-
lows that the inner automorphism induced by a = b - o(b) - -- 6"~} (b) is 6"".
Since a(a) = a, this gives what we want.

Next we shall prove (1) = (3). Assuming (1), let A # 0 be a o-ideal in .
Then Ux, x"': 0] is easily seen to be a (nonzero) ideal in R. Therefore we
must have A[x,x };0] = R, and so A = k. Next, assume that, for some
n > 1, there is a unit a € U(k) fixed by & such that ¢"(c) = aca‘I for all
c € k. We claim that a'x" is in the center of R. To see this, it suffices to
show that a~!x” commutes with x and with any c € k. This is seen as follows:

1

x-a xn =a_(a—l)xn+l -1 n+l -1_n

=a x =a 'x"-x,

“Ixn caca ' x"=c-a 'x".

a'x"-c=a'e"(c)x"=a"
Therefore, 1 + a~'x" is central in R, and, being a nonunit, it generates an
ideal #(0), R in R, contradicting (1).

We finish by proving now (3) = (1). Assuming (3), let / # 0 be an ideal in
R. Clearly, I nk[x;0] # 0. The leading coefficients of the nonzero poly-
nomials in / N k[x;o] of minimal degree (say n), together with 0, form a
nonzero ideal A in k. If

byx" + -+ + by € I nk|x;a],
we also have
X(bpx" + - + bo)x~' € I nk|x; al;
hence a(b,) € U, and similarly 67! (b,) € U. This shows that ¢(A) = A and
so, by (3), A = k. Using this, we can find a monic polynomial

S(x) =x" +apx" '+ tage I nk[x;a].

The polynomials f(x) — xf(x)x~! and cf(x) — f(x)o~"(c) (for c € k) both
belong to I N k[x; o] and have degree < n. Hence they must be both zero,



§3. Structure of Semisimple Rings 45

which shows that a; = a(q;) and ca; = a;0'"(c) forallcek and i <n-— 1.
In particular, a;k = ka;, and this is a ¢-ideal in k. If some a; # 0, then, by (3),
we must have a;k = ka; = k, so a; € U(k). But then ¢ = aia""(c)a,.", and
hence 6"~/(c) = ajca;!, for all ¢ € k, in contradiction to (3). Thus, all a; must
be zero, and so f(x) = x" € I. Since x" € U(R), we have now I = R, as de-
sired. QED

The following easy consequence of (3.18) yields another large family of
nonartinian simple rings.

(3.19) Corollary. Let k be any field with an automorphism a of infinite order.
Then R = k|x, x~ 1 o] is a nonartinian simple domain.

Proof. The simplicity of the domain R follows from (3.18). The descending
chain of left ideals

R-(x+1)2R-(x+1)’2---

shows that R is not (left) artinian. (In general, a domain R can never be left
or right artinian, unless it is a division ring: see Exercise 1.19.) QED

Exercises for §3

Ex. 3.1. Show that if R is semisimple, so is M,(R).

Ex. 3.2. Let R be a domain. Show that if M,(R) is semisimple, then R is a
division ring.

Ex. 3.3. Let R be a semisimple ring.

(a) Show that any ideal of R is a sum of simple components of R.

(b) Using (a), show that any quotient ring of R is semisimple.

(c) Show that a simple artinian ring S is isomorphic to a simple component
of R iff there is a surjective ring homomorphism from R onto S.

Ex. 3.4. Show that the center of a simple ring is a field, and the center of a
semisimple ring is a finite direct product of fields.

Ex. 3.5. Let M be a finitely generated left R-module and E = End(yM).
Show that if R is semisimple (resp. simple artinian), then so is E.

Ex. 3.6A. Let M be a left R-module and E = End(xM). If g M is a semi-
simple R-module, show that Mg is a semisimple E-module.

Ex. 3.6B. In the above Exercise, if Mg is a semisimple E-module, is g M
necessarily a semisimple R-module?

Ex. 3.7. Let R be a simple ring which is finite-dimensional over its center k.
(k is a field by Exercise 4 above.) Let M be a finitely generated left R-module
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and let E = End(gxM). Show that
(dimy M)? = (dimy R)(dimy E).

Ex. 3.8. For R asin Exercise 7, show that R is isomorphic to a matnx algebra
over its center k iff R has a nonzero left ideal A with (dimy QI) < dimy R.

Ex. 3.9. (a) Let R, S be rings such that M,,(R) = M,(S). Does this imply
that m = nand R = S?

(b) Let us call a ring 4 a matrix ring if 4 = M,,(R) for some integer m > 2
and some ring R. True or False: “A homomorphic image of a matrix ring is
also a matrix ring”?

Ex. 3.10. Let R be any semisimple ring.

(1) Show that R is Dedekind-finite, i.e. ab = 1 implies ba = | in R.

(2) If a € R is such that I = aR is an ideal in R, then I = Ra.

(3) Every element a € R can be written as a unit times an idempotent.
Remark. (3) expresses the fact that'semisimple rings are “‘unit-regular”: for a
more general view of this, see Exercises 4.14B and 4.14C.

Ex. 3.11. Let R be an n?-dimensional algebra over a field k. Show that
R = M, (k) (as k-algebras) iff R is simple and has an element whose minimal
polynomial over k has the form (x —ay)---(x — a,) where a,,....a, €k.
(Hint. For the “if”” part, produce a chain of left ideals of length # in R, and
apply the Wedderburn-Artin Theorem.)

Ex. 3 12 For a subset S in a ring R, let anny(S) = {ae R:aS =0} and
ann,(S) = {a € R: Sa = 0}. Let R be a semisimple ring, / be a left ideal and
Jbea right ideal in R. Show that anny(ann,(I)) = I and ann,(ann,(J)) =

Ex. 3.13. Let R be a simple, infinite-dimensional algebra over a field .
Show that any nonzero left R-module V is also infinite-dimensional over k.

Ex. 3.14. (Over certain rings, the “rank” of a free module may not be
defined.) Let D be a division ring, V = 6—)2, e;D, and E = End(Vp). Define
fi. f> € Eby fi(en) = €2, fr(€n) = €2,1 for n > 1. Show that { /), f,} form a
free E-basis for Eg. Therefore, as right E-modules, E = E?; using this, show
that E” =~ E" for any finite m,n > 0!

Ex. 3.15. Show-that the ring E above has exactly three ideals: 0, E, and the
ideal consisting of endomorphisms of finite rank.

Ex. 3.16. Generalize the exercise above to the case of E = End(Vp), where
dimp V = a is an arbitrary infinite cardinal. (Hint. For any infinite cardinal
B < a, let Eg be the ideal of E consisting of all endomorphisms of rank < f.
Show that the ideals of E are: 0, E, and all the Ep’s. It follows, in particular,
that E/FE, 1s a simple ring.)

Ex. 3.17. (K.A. Hirsch) Let k be a field of characteristic zero, and (a;;) be an
m x m skew symmetric matrix over k. Let R be the k-algebra generated by
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X1, -+, Xm With the relations x;x; — x;x; = a;; for all i, j. Show that R is a
simple ring iff det(a;;) # 0. In particular, R is always nonsimple if m is odd.
(Hint. After a congruence transformation, we may assume that (a;;) consists

of a number of diagonal blocks ( Ol (1)) together with a zero block of size

r>0. If r > 0, x,, generates a proper ideal in R. If r = 0, then m = 2n for
some n, and R is the nth Weyl algebra 4, (k) over k.)

Ex. 3.18. (Quebbemann) Let k be a field of characteristic zero, and let R be
the Weyl algebra A4;(k) with generators x, y and relation xy — yx = 1. Let
p(y) € k[y] be a fixed polynomial.

(a) Show that R- (x — p(y)) is a maximal left ideal in R, and that the simple
R-module ¥V = R/R - (x — p(y)) has R-endomorphism ring equal to k.

(b) Show that R — End(V}) is injective but not an isomorphism.

(Hint. Identify V with k[y] and show that x — p(y) acts as differentiation on
k[y]. If v(y) € V\{0} has degree m, R - v(y) contains (x — p(y))™ - v, which
is a nonzero constant. Finally, let f € End(gV) and let f(1) = g(y). Then
S(x-1) =xf(1) shows that dg/dy =0. Therefore ge k and f(v(y)) =
S((y)- 1) =v(y)g.)

Ex. 3.19. True or False: “If I is a minimal left ideal in a ring R, then M, (/)
is a minimal left ideal in M,(R)"*?

Ex. 3.20. Let %; (1 <i < n) be ideals in a ring R, and let A = (). ;. If each
R/¥,; is semisimple, show that R/ is gemisimple.

Ex. 3.21. For any finitely generated left module M over a ring R, let u(M)
denote the smallest number of elements that can be used to generate M. If R
is an artinian simple ring, find a formula for u(M) in terms of (M), the
composition length of M.

Ex. 3.22. (1) Generalize the computation of (M) in the above exercise to
the case of a finitely generated left module M over a semisimple ring R.

(2) Show that u is subadditive, in the sense that u(M @ N) < u(M) + u(N)
for finitely generated R-modules M, N.

(3) Show that N = M = u(N) < u(M).

Ex. 3.23. Show that a nonzero ring R is simple iff each simple left R-module
is faithful.

Ex. 3.24. (Jacobson) A subset S in a ring R is said to be nil (resp. nilpotent)
if every s € S is nilpotent (resp. if S™ = 0 for some m, where S™ denotes the
set of all products s, - - - s,, with s; € S).

(1) Let R = M,(D) where D is a division ring. Let S = R be a nonempty nil
set which is closed under multiplication. Show that S$” = 0.

(2) Let R be any semisimple ring. Show that any nonempty nil set S < R
closed under multiplication is nilpotent.



CHAPTER 2 |
Jacobson Radical Theory

Historically, the notion of the radical was a direct outgrowth of the notion of
semisimplicity. It may be somewhat surprising, however, to remark that the
radical was studied first in the context of nonassociative rings (namely, finite-
dimensional Lie algebras) rather than associative rings. In the work of
E. Cartan, the radical of a finite-dimensional Lie algebra A4 (say over C) is
defined to be the maximal solvable ideal of A: it is obtained as the sum of all
the solvable ideals in 4. The Lie algebra A is semisimple iff its radical is zero,
i.e., iff it has no nonzero solvable ideals. Cartan characterized the semi-
simplicity of a Lie algebra in terms of the nondegeneracy of its Killing form,
and showed that any semisimple Lie algebra is a finite direct sum of simple
Lie algebras. Moreover, he classified the finite-dimensional simple Lie alge-
bras (over C). Therefore, the structure theory of finite-dimensional semi-
simple Lie algebras is completely determined.

The theory of semisimple rings we developed in the last chapter may be
viewed as the analogue of Cartan’s theory in the context of associative rings.
It was developed by Molien and Wedderburn for finite-dimensional (asso-
ciative) algebras, and generalized later by Artin to rings satisfying the de-
scending chain condition. In the last chapter, we based the development of
this theory on the use of semisimple (or completely reducible) modules; this
treatment is somewhat different from the original treatment of Wedderburn.
In developing the theory of finite-dimensional algebras over a field, Wed-
derburn defined for every such algebra 4 an ideal, rad A, which is the largest
nilpotent ideal of A4, i.e., the sum of all the nilpotent ideals of A. In par-
allel with Cartan’s theory, the (finite-dimensional) algebra 4 is semisimple
iff its radical is zero. Such an algebra A is (uniquely) the direct product
of a finite number of finite-dimensional simple algebras A;, and each 4; is

48
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(uniguely) a matrix algebra over a finite-dimensional division algebra. This
beautiful theory of Wedderburn laid the modern foundation for the study of
the structure of finite-dimensional algebras. Artin extended Wedderburn’s
theory to rings with the minimum condition (appropriately called Artinian
rings). For such rings R, the sum of all nilpotent ideals in R is nilpotent, so R
has a largest nilpotent ideal rad R, called the Wedderburn radical of R. As
we saw in the last Chapter, Wedderburn’s theory of simple and semisimple
algebras can be extended successfully to rings satisfying the descending chain
condition on one-sided ideals.

What about rings which do not satisfy Artin’s descending chain condition?
For these rings R, the sum of all nilpotent ideals need no longer be nilpotent;
thus, R may not possess a largest nilpotent ideal, and so we no longer
have the notion of a Wedderburn radical (see Ex. 4.25). The problem of
finding the appropriate generalization of Wedderburn’s radical for arbitrary
rings remained untackled for almost forty years. Finally, in a fundamental
paper in 1945, N. Jacobson initiated the general notion of the radical of
an arbitrary ring R: by definition, the (Jacobson) radical, rad R, of R is the
intersection of the maximal left (or maximal right) ideals of R. For rings
satisfying a one-sided minimum condition, the Jacobson radical agrees with
the classical Wedderburn radical, so, in general, the former provides a good
substitute for the latter. Ever since its inception, Jacobson’s general theory
of the radical has proved to be fundamental for the study of the structure of
rings. In this chapter, we shall present the basic definition and properties
of the Jacobson radical, and study the behavior of the radical under cer-
tain changes of rings. In the next chapter, we shall apply this material to
the representation theory of algebras and groups, and explain the basic
connections between ring theory and group representation theory, with some
applications to group theory itself.

Needless to say, this chapter is a beginning, not an end. Having defined
the Jacobson radical for arbitrary rings, we are led to a more general notion
of semisimplicity: a ring R is called Jacobson (or J-) semisimple if rad R = 0.
These J-semisimple rings generalize the semisimple rings in Chapter 1, and
therefore should play an important role in the study of rings possibly not
satisfying the descending chain condition. We shall try to develop this theme
in more detail in Chapter 4. Also, there are several other radicals which can
be defined for arbitrary rings, and which provide alternative generalizations
of the Wedderburn radical. These other radicals may not be as fundamental
as the Jacobson radical, but in one way or another, they reflect more accu-
rately the structure of the nil (and nilpotent) ideals of the ring, so one might
say that these other radicals resemble the Wedderburn radical more than
does the Jacobson radical. However, we can do only one thing at a time. So,
in this chapter, we focus our attention on the Jacobson radical; other kinds
of radicals (upper and lower nilradicals and the Levitzki radical) will be
taken up in a future chapter.
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§4. The Jacobson Radical

As we mentioned in the Introduction, the Jacobson radical of a ring R,
denoted by rad R, is defined to be the intersection of all the maximal left
ideals of R. Note that if R # 0, maximal left ideals always exist by Zorn’s
Lemma, and so rad R # R. If R = 0, then there are no maximal left ideals;
in this case, of course, we define the Jacobson radical to be zero.

In the definition of rad R above, we used the maximal left ideals of R, so
rad R should be called the left radical of R, and we can similarly define the
right radical of R (by intersecting the maximal right ideals). It turns out,
fortuitously, that the left and right radicals coincide, so the distinction is,
after all, unnecessary. We shall now try to prove this result: this is done by
obtaining a left-right symmetric characterization of the (left) radical rad R.
First we prove a lemma characterizing the elements of rad R in terms of the
left-invertible elements of R, and in terms of the simple left R-modules.

(4.1) Lemma. For y € R, the following statements are equivalent:
(1) yerad R;
(2) 1 — xy is left-invertible for any x € R;
(3) yM = 0 for any simple left R-module M.

Proof. (1) = (2) Assume y erad R. If, for some x, 1 —xy is not left-
invertible, then R - (1 — xy) < R is contained in a maximal left ideal m of R.
But 1 — xy € m and y € m imply that 1 € m, a contradiction.

(2) = (3) Assume ym #0 for some me M. Then we must have
R-ym = M. In particular, m = x - ym for some x € R, so (I — xy)m=0.
Using (2), we get m = 0, a contradiction.

(3) = (1) For any maximal left ideal m, R/m is a simple left R-module, so
by (3), y- R/m =0 which implies that y e m. By definition, we have
yerad R. QED

For any left R-module M, the annihilator of M is defined to be
ann M = {re R: rM =0}.

This is easily seen to be an ideal of R. Consider the special case of a cyclic
module M: we can take M to be R/, where U is a left ideal in R. In this

case
ammM={reR: r-R/UA=0}={reR: rRcs A}

This is easily seen to be the largest ideal of R contained in . It is sometimes
called the core of the left ideal . (If R happens to be commutative then, of
course, ann(R/A) = A.) The Lemma (4.1) above has the following immedi-
ate consequence. i
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(4.2) Corollary. rad R = (| ann M, where M ranges over all the simple left
R-modules. In particular, rad R is an ideal of R.

The next result is a refinement of (4.1). It adds a fourth condition to the
list in (4.1) which is a strengthening of the condition (2) there. We could have
proved all four equivalences in one stroke, but the proof below will show
that it is more convenient to prove (4.1) (and (4.2)) first before adding the
fourth equivalent condition.

(4.3) Lemma. For y € R, the following statements are equivalent:
(1) yerad R;
(2)' 1 — xyz € U(R) (the group of units of R) for any x, z € R.

Proof. Since (2)’ = (2) in (4.1) (by letting z = 1), it suffices to prove (1) =
(2). Let yerad R, x,z€ R. By (4.2), yz e rad R, so by (4.1), there exists
u € R such that u(l — xyz) = 1. Again by (4.2), xyz € rad R, so another
application of (4.1) shows that u = 1 + u(xyz) is left-invertible. Since u is
also right-invertible, we have u € U(R) and hence 1 — xyze U(R). QED

(4.4) Remark. Since (2) and (2)’ involve only the notion of invertible and
left-invertible elements, it is perhaps not unreasonable to ask for a direct
proof for (2) = (2)’, not using the notion of the radical. Such a proof can
indeed be given, using an exercise from Chapter 1. Suppose y € R satisfies (2)
in (4.1), and let x,z € R. Then there exists v € R such that (1 — zxy) = 1.
Now v =1 + (vzx)y is left-invertible as well as right-invertible, so v € U(R)
and therefore 1 —z(xy)e U(R). By Exercise 1.6, it follows that
1 — (xy)z € U(R).

Let us now record some consequences of the results above.

(4.5) Corollary. (A) rad R is the largest left ideal (and hence the largest ideal)
A < R such that 1 + A = U(R). (B) The left radical of R agrees with its right
radical.

Proof. (A) follows from (4.1), (4.2) and (4.3). Since (A) gives a left—right
symmetric characterization of rad R, the conclusion (B) follows. (Of course,

(2)’ in (4.3) is another left-right symmetric characterization of rad R.)
QED

For later reference, we record here one more property of the Jacobson
radical. The proof of this is immediate, so we suppress it.

(4.6) Proposition. Let U be any ideal of R lying in rad R. Then
rad(R/W) = (rad R)/A.
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The notion of the Jacobson radical of a ring leads to a new notion of
semisimplicity, which we now introduce.

(4.7) Definition. A ring R is called Jacobson semisimple (or J-semisimple for
short) if rad R = 0.

Jacobson semisimple rings are also called semiprimitive rings in the litera-
ture; we shall henceforth use these two terms interchangeably. Of course, the
latter term may seem a little mysterious at this point, since we have not yet
introduced the notion of primitive rings. After we have introduced primitive
rings in a later chapter, the reader will be able to put the term “semiprimitive
rings” in a better perspective. At this point, the reader should be warned
that, in many books and papers, “J-semisimplicity” is taken as the definition
of “semisimplicity.” We will nor adopt this convention as it will confuse the
J-semisimple rings in the sense of (4.7) with the semisimple rings we studied
in Chapter 1. (The precise relationship between these two notions will be
clarified a little later.)

In a manner of speaking, Jacobson semisimple rings are ubiquitous: for
any ring R, R/rad R is a J-semisimple ring associated with R (see (4.6)). One
might hope to study the structure of a ring R by first studying the structure
of R/rad R. The two rings R and R/rad R share certain common properties,
as we shall show in the following. '

(4.8) Proposition. R and R/rad R have the same simple left modules. An ele-
ment x € R is left-invertible (resp., invertible) in R iff X € R is left-invertible
(resp., invertible) in R := R/rad R.

Proof. The first statement follows easily from (4.2). For the second state-
ment, it is enough to treat the case of left-invertibility. The “only if” part
is clear. For the “if” part, take y € R such that px = 1€ R. Then | -
yxerad R, so

yx€l+rad R< U(R).

Clearly this implies that x has a left inverse in R.  QED

Next we shall study the relationship between rad R and the nil (resp.,
nilpotent) ideals of R. Let us first recall the appropriate definitions.

(4.9) Definition. A one-sided (or two-sided) ideal A < R is said to be nil if A
consists of nilpotent elements; U is said to be nilpotent if A" = 0 for some
natural number n.

Note that A” =0 means that a;---a, =0 for any set of elements
ai,...,a, € A. This condition is much stronger than A being nil. For
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instance, in the (commutative) ring
R=Z[x1,x2,x3,...]/(x},x3,x3,...),

the ideal A generated by x, X3, X3, . .. is nil, but easily shown to be not nil-
potent. One advantage of “nilpotent” over “nil” is seen from the following
easy result. :

(4.10) Lemma. Le: W; (1 < i < m) be a finite set of left ideals in R. If each W,
is nilpotent, then Wy + - - - + W,, is also nilpotent.

Proof. By induction, it is enough to handle the case m = 2. Changing nota-
tions, let A, B be nilpotent left ideals, say A" = 0 = B". For € = A + B, we
claim that €2 = 0. To see this, consider a product

(@1 +by)--- (a2 + b2y)
of 2n elements in € (a; € A, b; € B). When this product is expanded, each
term in it is a product of 2n elements, some from A and some from B. In
each of these terms, there will be at least n factors from U, or else at least n

factors from B. Since A, B are left ideals, it follows from A" = B™ = 0 that
such a product is zero, and so €" = 0 as claimed. QED

(4.11) Lemma. If a left (resp., right) ideal A < R is nil, then N < rad R.

Proof. Let y € A. Then for any x € R, xy € A is nilpotent. It follows that
1 — xy has an inverse (given by Y 2,(xy)’). Therefore, by (4.1), we have
yerad R. QED

We are now ready to show that the Jacobson radical provides a good
generalization of the Wedderburn radical in that, in the case of left artinian
rings, the two radicals indeed coincide.

(4.12) Theorem. Let R be a left artinian ring. Then rad R is the largest nil-
potent left ideal, and it is also the largest nilpotent right ideal.

Proof. In view of the above lemma, we are done if we can show that
J := rad R is nilpotent. Applying the left DCC to -

J2J27 2 -,
there exists an integer k such that
Jk=Jt =... =1 (say).

We claim that I = 0. Indeed, if I # 0, then, among all left ideals A such that
I-A # 0, we can choose a minimal one, say Uy (by the left DCC). Fix an
element a € Ay such that I - a # 0. Then

I-(la)=I*a=1Ia#0,
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so by the minimality of g, we have I -a = Uy. Thus, a = ya for some
y €1 < rad R. But then (1 — y)a = 0 implies that a = 0 since 1 — y € U(R).
This is a contradiction, so we must have I = J* = 0. QED

The theorem we just proved and the lemma preceding it have the follow-
ing pleasant consequence:

(4.13) Corollary. In a left artinian ring, any nil |-sided ideal is nilpotent.

In ring theory, there are many similar results of the “nil implies nilpotent™
variety. The one above is the first one we encounter in our exposition. There
will be a few other such results that will be developed in future chapters.

If R is a commutative ring, then any nilpotent element of R is contained in
rad R (since all the nilpotent elements form a nil ideal). If R is not commu-
tative, however, this may no longer be the case. For instance, let D be any
division ring, and R = M, (D) (n > 2). Using the known structure of left
ideals in R (as developed in Chapter 1), it is easy to see that rad R = 0. Thus,
R has no nonzero nil left ideals, but nevertheless, nilpotent elements abound.

The next theorem gives the basic connection between the semisimple rings
as we have defined them in Chapter 1, and the J-semisimple rings defined in
4.7).

(4.14) Theorem. For any ring R, the following three statements are equivalent:
(1) R is semisimple.
(2) R is J-semisimple and left artinian.

(3) R is J-semisimple, and satisfies DCC on principal left ideals.

Proof. (1) = (2). Assume R is semisimple, and let A = rad R. There exists a
left ideal B such that R = A @ B. If A # 0, then B is contained in a maxi-
mal left ideal m. But then m U, a contradiction.

(2) = (3) is trivial, so it only remains to show that (3) = (1). Assume R
satisfies (3). We can derive the following two properties of R:

(a) Every left ideal W # 0 contains a minimal left ideal I. (Indeed, choose
I to be a minimal member of the family of nonzero principal left
ideals = U; then I is clearly minimal as a left ideal.)

(b) Every minimal left ideal B is a direct summand of grR. (In fact, since
B # 0 = rad R, there exists a maximal left ideal m not containing B.
Then Brm=0and so kR=BHm.)

Now assume R is not semisimple. Take a minimal left ideal B,, and write
RR =%B; @ U;. Then A, # 0, and so (by (a)) there exists a minimal left ideal
B, < A,. By (b), B, is a direct summand in xR and hence also in U, so we
can write Ay, = B, @ A,. Continuing in this fashion, we get a descending
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chain of left ideals
Uy2U22U; 2 ---

These are direct summands of gxR, so they are principal left ideals of R. This
contradicts (3), so R must be semisimple. = QED

In the theorem above, of course, we can also show (2) = (1) without
routing through the condition (3). Assuming R is left artinian, we can write
rad R = ()_, m; for a finite number of maximal left ideals my,...,m,. If
rad R = 0, then R embeds into («Df:, R/m;, so gR is semisimple. However, it
is nice to have the extra equivalent condition (3). More importantly, the class
of rings satisfying the DCC on principal left ideals turn out to be of inde-
pendent interest: these are the right (not left!) perfect rings which we shall
study in a later chapter. Using this terminology, (1) < (3) in the theorem
says that R is semisimple iff R is J-semisimple and right perfect. This result
will be rather “clear” from the more general perspective of perfect rings
from §§23-24. Also worth noting is the fact that the same result is true with
“J-semisimple” above replaced by ‘“‘semiprime”: see (10.24).

When Artin proved his analogues of Wedderburn’s structure theorems
for left DCC rings in 1927, he did not seem to realize that left DCC in fact
implies left ACC. Throughout his work, he assumed, in fact, that the rings in
consideration satisfy both chain conditions. The result that left DCC implies
left ACC was obtained only some years later, independently by C. Hopkins
and J. Levitzki. Using the notion of the Jacobson radical, we shall now give
a proof of this very important result.

(4.15) Hopkins-Levitzki Theorem (1939). Let R be a ring for which rad R is
nilpotent, and R = R/rad R is semisimple. (Such a ring R is called semi-
primary.) Then for any R-module r M, the following statements are equivalent:

(1) M is noetherian.
(2) M is artinian.
(3) M has a composition series.

In particular, (A) a ring is left artinian iff it is left noetherian and semiprimary;
(B) any finitely generated left module over a left artinian ring has a composi-
tion series.

Proof. By (4.12) and (4.14), a left artinian ring is semiprimary. Thus, (A)
follows from the equivalence of (1) and (2), applied to the left regular
module gR. (B) follows from the equivalence of (2) and (3) since a finitely
generated left module over a left artinian ring is also artinian.

We have observed before (cf. (1.19)) that, for any M, (3) implies (1) and
(2). To complete the proof, it is therefore enough to show that (1) = (3) and
(2) = (3) for semiprimary rings.
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Assume M is either goe_therian or artinian. For J = rad R, fix an integer n
such that J” = 0 and let R = R/J. Consider the filtration

M2JM2J’M2 ---2J"M=0.

It is enough to show that each filtration factor J'M /J**!' M has a composi-
tion series. But J'M /J™*! M is either noetherian or artinian, as a module over
R. Since R is semisimple, J'M /J'+' M is a direct sum of simple R-modules.
The chain condition on J:M /J™#! M implies that this direct sum must be
finite, so J'M /J**' M does have a composition series as an R-module.

QED

For an example of a semiprimary ring which is neither left nor right
artinian (resp., noetherian), see Exercise 26.

We now give some examples illustrating the notion of the Jacobson
radical.

(1) The ring Z, or more generally, any full ring R of algebraic integers in a
number field K ([K : Q] < o) is J-semisimple. In fact, if 0 # a € R, then
only a finite number of prime ideals contain it. On the other hand, there are
infinitely many nonzero prime (= maximal) ideals in R, so a cannot be in the
Jacobson radical.

(2) Let R be a commutative affine algebra over a field k. By this we mean
that R is finitely generated as a k-algebra, say R = k[x), ..., x|/, where A
is an ideal in the polynomial ring k[x), ..., x,]. By Hilbert’s Nullstellensatz,
the radical of U, defined by

VU= {f ek[x,...,xa]: f" €U for some r},

coincides with the intersection of all the maximal ideals of k[xi,...,x,]
containing A. (A full proof of this will be given in the next section in the
more general context of Hilbert rings: see (5.4).) From this, it follows that
rad R is exactly the nil radical

Nil R = {re R: ris nilpotent}.

In particular, it follows that R is J-semisimple iff R is reduced (i.e., R has no
nonzero nilpotent elements).

(3) For commutative rings R in general, rad R may not be equal to the nil
radical Nil R. For instance, if R is a commutative local domain, then
Nil R = 0, but rad R is the unique maximal ideal of R, which is nonzero if R
is not a field.

(4) Let V be an n-dimensional vector space over a field k, and let

R=A)=kd NP ® - dN\'F)
be its exterior algebra. Let m be the ideal /\'(V) @ - ®N\"(V). Since

vAav=0 for any vector ve V, we see easily that m"*' =0. Thus
m S rad R. From R/m = k, it follows that m = rad R, and that m is the
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unique maximal left (resp., right) ideal of R. (In the terminology of §19, R is
a (noncommutative) local ring.)

(5) Any simple ring R is J-semisimple, since rad R, being an ideal <R,
must be zero.

(6) Let k be a division ring, and R be the ring of upper triangular n x n
matrices with entries in k. Let J be the subset of R consisting of matrices with
zeros on the main diagonal. We claim that J = rad R. First, it is easy to see
that J is an ideal of R, and that J” = 0. Thus, J < rad R. By (4.6), we have
(rad R)/J = rad(R/J). But R/J is isomorphic to the ring of n x n diagonal
matrices, so

R/J=kx --xk

is semisimple. This gives rad(R/J) =0, and so rad R=J. From the
decomposition of R/J, we see that, up to isomorphism, there are exactly n
simple left R-modules, each being 1-dimensional over k. The ith one, M;, is
given by gk, with the action

ap * '
b= a,-,b (fOI’ be k)
0 Qnn

There is also a natural left R-module V, given by the space of column n-
tuples with the usual matrix action of R on the left. It is of interest to com-
pute the composition factors of g V. To do this, let V; (0 < i < n) be the set
of column n-tuples with the last n — i entries = 0. These are easily seen to be
R-submodules of V, giving a filtration

O=WcsVc  -SV,=V.

The filtration factor V;/V;_, is 1-dimensional over k, with k-basis given by
the ith unit column vector e;. The R-action on V;/V;_, is given by

(aj) - (ei + Vie1) = aiiei + Vi,

Thus, V;/V,_, = M,, and the composition factors of gV are precisely
{M,...,M,}, each occurring with multiplicity 1. As an easy exercise, the
reader can verify that J'V = V,_;, and that gV is “uniserial,” that is,

O=VocsVic---SV,=V

is the only composition series for g V.
(7) What is the Jacobson radical of a full matrix ring Mp,(R) over a given
ring R? The hardly surprising answer is that

rad M,(R) = M,(rad R).

For the inclusion “2,” it suffices to show that aerad R implies
that aE;; € rad M,(R), i.e., that N =1 — M -aE; is invertible for every
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M ¢ M,(R). (As usual, the Ej;’s denote the matrix units.) Write
M = Z'nkakf. Then

N=1-M-aE;=1-) mjaEy;=1-maE;-> muak.
K k#j
Write (1 — m,,~a)'l as 1 — b, where b€ R. Then I — bEj; is the inverse of
I — mjaEj;, so

(I —=bE))N =1—(I - bE;) Y miaEy =1~ muaEy.

k#j k#j
Since the matrix on the RHS is invertible (with inverse / + ), y myaEyj), it
follows that N is invertible. This shows that rad(M,(R)) = M,(rad R). For
the reverse inclusion, write rad M, (R) = M,(¥), where U is a suitable
ideal in R (see (3.1)). For ae U, we have then a-I € rad M,(R) so
I —b-al = (1 —ba)l is invertible for any b € R. This clearly implies that
1 — ba is invertible in R and so, by (4.1), aerad R. Thus, ¥ < rad R,
from which we have rad M,(R) = M,(rad R). (A more general method for
deriving the equation rad M,(R) = M, (rad R) will be given later by using
the theory of idempotents; see (21.14).)

(8) Ler.R be aring such that S := U(R) v {0} is a division ring. Then R is
J-semisimple. To see this, note that S nrad R is an ideal in S, so it is zero.
Now let yerad R. Then 1+ ye U(R) = S. Subtracting 1, we see that
yeESnrad R=0.

(4.16) Corollary. Any ring R freely generated by a set of indeterminates {x;}
over a division ring k is J-semisimple.

Proof. By an easy degree argument, a polynomial in the indeterminates {x;}
is invertible iff it is a nonzero constant in k. Thus U(R) u {0} = k, so the
Corollary follows from the preceding observation (8). @~ QED

By exactly the same degree argument, we can also deduce from (8):

(4.17) Corollary. Let k be any division ring. Then any polynomial ring k[{x;}]
in the commuting variables {x;} is J-semisimple. The skew polynomial rings
k|x; a] (o any endomorphism of k) and k|x;0) (6 any derivation of k) are also
J-semisimple.

(9) Let k be a field, and R be a k-algebra. An element x € R is said to
be algebraic over k if it satisfies a nontrivial polynomial equation with co-
efficients in k. We have the following interesting description of the algebraic
elements in the Jacobson radical of R.

(4.18) Proposition. Ler x € rad R, where R is a k-algebra. Then x is algebraic
over k iff x is nilpotent.
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Proof. The “if” part is obvious. For the converse, let x € rad R be algebraic
over k. Write down a polynomial equation for x in ascending degrees, say

X +ax™t 4 4axT" =0
where a; € k. Since
l+ayx+---+a,x"€l+rad R< U(R),

it follows that x” = 0 so we must have r > 1 and x is nilpotent. = QED

A k-algebra R is said to be an algebraic algebra if every element x € R is
algebraic over k. The Proposition we just proved, together with (4.11), imply
the following:

(4.19) Corollary. Let R be an algebraic algebra over k. Then rad R is the
largest nil ideal of R.

At this point, we ought to mention some examples of algebraic algebras.
First, any finite-dimensional algebra over a field k is clearly an algebraic
k-algebra. In general, then, an algebraic algebra is just a k-algebra which is a
union of its finite-dimensional k-subalgebras. For some infinite-dimensional
examples, we can take algebraic field extensions K/k with [K : k] = co.
Further examples are given by group algebras kG over groups G which
are locally finite (any finitely generated subgroup of G is finite): here, any
element « = a,g; + --- + a,gn of kG belongs to the finite-dimensional k-
subalgebra kH where H is the (finite) group generated by g, ..., gn. In par-
ticular, if G is any abelian torsion group, then kG is an algebraic k-algebra.

There are some further consequences of (4.18) which involve the consid-
eration of the cardinal numbers, |k| and dim, R. We shall give some such
consequences in the following

(4.20) Theorem (Amitsur). Suppose dimy R < |k| (as cardinal numbers),
where R is a k-algebra. Then rad R is the largest nil ideal of R.

Proof. It suffices to show that rad R is nil. First suppose k is a finite
field. The hypothesis implies that R is a finite ring. In particular R is left
artinian, so by (4.12), rad R is, in fact, nilpotent. In the following, we
may therefore assume that k is infinite. To show that rad R is nil, it suffices
(by (4.18)) to show that every rerad R is algebraic over k. For any
aek*=k\{0}, a—r=a(l —a'r)e U(R). Since dim; R < |k| = |k*|, the
elements {(a—r)™': aek*} cannot be k-linearly independent. Therefore,
there exist distinct elements a),...,a, € k* such that there is a dependence
relation

Z"jb.-(a,- -n7 =0,
i=1
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where b; € k are not all zero. Clearing denominators, we have
n —_—
Zbi(al —r)y---(ai—r)---(a,—ry=0,
i=1

where, as usual, wedge means omission of a factor. Therefore, r is a root of
the k-polynomial

f(x)=2b,~(a| —X)~'(;—\x)---(a,.—x).

Since f(a;) = b [; ,;(a; — ai) is nonzero at least for some i, f is not the zero
polynomial. Therefore, r is algebraic over k, as claimed. @ QED

(4.21) Corollary. Let R be a countably generated algebra over an uncountable
field k. Then rad R is the largest nil ideal of R.

Proof. As a k-vector space, R has a countable basis, so the hypothesis
dimy R < |k| in the Theorem is fulfilled. = QED

To conclude this section, we shall prove the following result which is of
fundamental importance in the theory of rings and modules.

(4.22) Nakayama’s Lemma. For any left ideal J < R, the following state-
ments are equivalent:

(1) J =rad R.

(2) For any finitely generated left R-module M, J- M = M implies that
M=0.

(3) For any left R-modules N = M such that M /N is finitely generated,
N +J-M = M implies that N = M.

Proof. (1) = (2). Assume M # 0. Then, among all submodules & M, there is
a maximal one, say M’. (This M’ exists by Zorn’s Lemma, in view of the
finite generation of M.) Then M /M’ is simple, and so J - (M/M') = 0; i.e.,
J-M < M’ In particular, J - M # M.

(2) = (3) follows by applying (2) to the quotient module M/N.

(3) = (1). Suppose some element y € J is not in rad R. Then y ¢ m for
some maximal left ideal m of R. We have m+J = R so, a fortion,
m +J - R = R. From (3) it follows that m = R, a contradiction. = QED

Remark. (1) = (2) can also be proved without Zormn’s Lemma, as follows. If
J-M=M and M #0, let m,...,m; be a minimal set of generators
(k = 1). We can then write m; = rym; + - - - + rymy, for suitable r; € J. Since
1 — r; is a unit, this implies that m; € Rm; + - - - + Rmy, a contradiction.
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While we have called (4.22) Nakayama’s Lemma, the idea behind this
lemma originated from the work of more than one mathematician. In the
commutative case and when M itself is an ideal of R, (1) = (2) was dis-
covered and used effectively by W. Krull. The module-theoretic formulation
of (2), (3) above is due to G. Azumaya and T. Nakayama. When Nakayama
himself was asked what would be the correct attribution of (4.22) (see Nagata
[62], p. 213), he suggested modestly that it should be Krull-Azumaya in the
commutative case, and Jacobson—-Azumaya in the noncommutative case.
Since this is obviously too complicated, we shall follow the majority of
mathematicians and call (4.22) Nakayama’s Lemma. Most often, this
Lemma is used in the form (3) for J = rad R.

We close this section by discussing a very important class of rings which is
“between” semisimple rings and J-semisimple rings. These are the von
Neumann regular rings, discovered (around 1935) by John von Neumann in
connection with his work on continuous geometry and operator algebras.
The following memorable result is “Part II, Chapter 2, Theorem 2.2” in von
Neumann’s book “Continuous Geometry.”

(4.23) Theorem. For any ring R, the following are equivalent:
(1) ForanyaceR, there exists x € R such that a = axa.
(2) Every principal left ideal is generated by an idempotent.
(2)" Every principal left ideal is a direct summand of rR.
(3) Every finitely generated left ideal is generated by an idempotent.
(3)" Every finitely generated left ideal is a direct summand of grR.

Since the condition (1) is left-right symmetric, we see that the same
theorem also holds with the word “left” replaced by “right” in the last four
conditions. In general, an element a € R is said to be von Neumann regular if
a€aRa. If every ae R is von Neumann regular, we say that R is a von
Neumann regular ring. The conditions (2), (2)’, (3), (3)’ above (and their right
analogues) are therefore characterizations of such rings.

Proof of (4.23). (2) @ (2)' and (3) « (3)’ are easy (see Exercise 1.7). Let us
prove (1) < (2). Assume (1), and consider a principal left ideal R - a. Choose
x € R such that axa = a. Then

e:= xa = xaxa = ¢,

andee R-awhilea=axa=aee R-e,so R-a= R-e. Conversely, assume
(2) and let a e R. Writing R-a = R -e where e = ¢?, we have e = xa and
a = ye for some x,y € R. Then

axa = ye-e = ye = a.

Since (3) obviously implies (2), it only remains to show that (2) = (3). By
induction, it suffices to show that, for any two idempotents e, f,/ = Re + Rf
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is generated by an idempotent. Now / = Re + Rf(1 —e) and Rf(1 —e) = Re’
for some idempotent e’, for which e’e € Rf (1 — e)e = 0. Thus, e’(e’ + ¢) = ¢’,
which leads easily to

I = Re+ Re' = R(e' + e).

Therefore, I = Re” for some idempotent e”. (An explicit choice for e” is
e+ e’ —ee', as the reader may check.) QED

(4.24) Corollary. Semisimple = von Neumann regular = J-semisimple.

Proof. The first implication follows from the characterization (2)’ of von
Neumann regular rings. (In view of this characterization, we see, in fact, that
von Neumann regularity is a very natural weakening of semisimplicity.) The
second implication follows from the general observation that, if a € aRa in
any ring R, then a € rad R = a = 0. Indeed, if a = axa where x € R, then
a(l — xa) = 0 implies a = 0 since 1 — xa € U(R).

The earlier result (4.14) that semisimple rings are exactly the left (resp.,
right) artinian J-semisimple rings has the following good analogue.

(4.25) Theorem. Semisimple rings are exactly the left (resp., right) noetherian
von Neumann regular rings.

Proof. We have already seen that semisimple rings are left noetherian and
von Neumann regular ((2.6) and (4.24)). Conversely, if a ring R is left no-
etherian and von Neumann regular, then every left ideal of R is finitely
generated and hence a direct summand of gR, by using the characterization
(3)’ of (4.23). Therefore, R is (left) semisimple. = QED

(4.26) Corollary. If a von Neumann regular ring is left noetherian, then it is
noetherian and artinian.

Note that direct products and quotient rings of von Neumann regular
rings are all von Neumann regular. Any Boolean ring (a ring in which every
element is idempotent) is von Neumann regular. More generally, any ring in
which every element a satisfies a"®) = a for some n(a) > 2 is von Neumann
regular.

For an element @ in a von Neumann regular ring R, there exist usually
more than one x € R such that ¢ = axa. Any such x may be thought of as a
kind of pseudo-inverse of a. (If a € U(R), then of course x is unique and
x = a~'.) The idea of such pseudo-inverses is best illustrated by the proof of
the following Proposition, which provides a big class of examples of von
Neumann regular rings.

(4.27) Proposition. Let M be any semisimple (right) module over a ring k.
Then R = End(My) is von Neumann regular.
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Proof. Consider any f € R, with K := ker f. Fix a k-submodule N = M such
that-M = K @ N. Then f maps N isomorphically onto N’ := f(N), and we
can find another k-submodule K’ = M such that M = K’ @ N’. Now define
g € R to be such that g(K') = 0 and g|N' is the inverse of f|N. Then clearly
fof =f'  QED

In the above, if k is a division ring, then M is always semisimple. In the
special case when M has finite dimension n over k, the Proposition shows
that M, (k) is von Neumann regular. By taking finite direct products of such
matrix rings, we have a round-about way of seeing that semisimple rings are
von Neumann regular. But we could have taken infinite direct products to
get nonsemisimple examples. And of course, if dim Mj is infinite, we get
nonsemisimple, non-Dedekind-finite examples as well.

Finally, we note that the two rings R constructed on p. 40 are both simple
non-noetherian von Neumann regular rings.

Exercises for §4

In this book we deal only with rings with an identity element. In particular,
the theory of the Jacobson radical was developed in the text for rings with an
identity. However, by doing things a little more carefully, the whole theory
can be carried over to rings possibly without an identity. In Exercises 1-7
below, we sketch the steps necessary in developing this more general theory;
in these exercises, R denotes a ring possibly without 1.

Ex. 4.1. In R, define ao b = a + b — ab. Show that this binary operation is
associative, and that (R, o) is a monoid with zero as the identity element.

Ex. 4.2. An element a € R is called left (resp. right) quasi-regular if a has a
left (resp. right) inverse in the monoid (R, o) with identity. If a is both left
and right quasi-regular, we say that a is quasi-regular.

(1) Show that if ab is left quasi-regular, then so is ba.

(2) Show that any nilpotent element is quasi-regular.

(3) Show that, if R has an identity 1, the map ¢: (R,o) — (R, x) sending a
to 1 — a is a monoid isomorphism. In this case, an element a is left (right)
quasi-regular iff 1 —a has a left (resp. right) inverse with respect to ring
multiplication.

Ex. 4.3. A set I < Ris called quasi-regular (resp. left or right quasi-regular)
if every element of [ is quasi-regular (resp. left or right quasi-regular). Show
that if a left ideal I = R is left quasi-regular, then it is quasi-regular.

Ex. 4.4. Define the Jacobson radical of R by
rad R = {a € R: Rais left quasi-regular}.

Show that rad R is a quasi-regular ideal which contains every quasi-regular
left (resp. right) ideal of R. (In particular, rad R contains every nil left or
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right ideal of R.) Show that, if R has an identity, the definition of rad R here
agrees with the one given in the introduction to this section.

Ex. 4.5. A left ideal I < R is said to be modular (or regular') if there exists
e € R which serves as a “‘right identity mod I”’; i.e. re = r (mod I) for every
reR.

(a) Show that if / < R is a modular left ideal, then / can be embedded in a
modular maximal left ideal of R.

(b) Show that rad R is the intersection of all modular maximal left
(resp. right) ideals of R. (Hint. If e € R is not left quasi-regular, then I =
{r—re: re R} is a modular left ideal not containing e.)

Ex. 4.6. A left R-module M is said to be simple (or irreducible) if R- M # 0
and M has no R-submodules other than (0) and M. Show that g M is simple
iff M = R/m (as left R-modules) for a suitable modular maximal left ideal
m < R. Show that rad R is the intersection of the annihilators of all simple
left R-modules.

Ex. 4.7. Show that rad(R/rad R) = 0, and that, if I is an ideal in R, then,
viewing I as a ring, rad I = I nrad R. This shows, in particular, that a ring
R may be equal to its Jacobson radical: if this is the case, R is said to be a
radical ring. Show that R is a radical ring iff it has no simple left (resp. right)
modules.

In the following problems, we return to our standing assumption that all rings
to be considered have an identity element.

Ex. 4.8. An ideal I < R is called a maximal ideal of R if there is no ideal of
R strictly between I and R. Show that any maximal ideal  of R is the anni-
hilator of some simple left R-module, but not conversely. Defining rad’R to
be the intersection of all maximal ideals of R, show that rad R < rad’'R, and
give an example to show that this may be a strict inclusion. (rad’R is called
the Brown-McCoy radical of R.)

Ex. 4.9. Let R be a J-semisimple domain and a be a nonzero central element
of R. Show that the intersection of all maximal left ideals not containing a is
zero.

Ex. 4.10. Show that if /: R — S is a surjective ring homomorphism, then
f(rad R) < rad S. Give an example to show that f(rad R) may be smaller
than rad S.

Ex. 4.11. If an ideal / < R is such that R/I is J-semisimple, show that
I 2 rad R. (Therefore, rad R is the smallest ideal I = R such that R/I is
J-semisimple.)

! We mention this alternate term only because it is sometimes used in the literature. Since “‘reg-
ular” has too many meanings, we shall avoid using it altogether.
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Ex. 4.12A. Let %; (i € I) be ideals in a ring R, and let A = (), ;. True or
False: “If each R/, is J-semisimple, then so is R/A”?

Ex. 4.12B. Show that, for any direct product of rings [] R;, rad([TR;) =
[Irad Ri;. (Therefore, any direct product of J-semisimple rings is J-
semisimple.)

Ex. 4.13. Let R be the ring of all continuous real-valued functions on a
topological space. Show that R is J-semisimple, but “in most cases” not von
Neumann regular.

Ex. 4.14. (Generalization of (4.27).) Show that a ring R is von Neumann
regular iff IJ = I n J for every right ideal I and every left ideal J in R.

Ex. 4.14A. Let R = End;,(M) where M is a right module over a ring k.
Show that an element f € R is von Neumann regular iff ker(f) and im(f)
are both direct summands of M.

Ex. 4.14B. For any ring R, show that the following are equivalent:
(1) For any a € R, there exists a unit u € U(R) such that a = aua.
(2) Every a € R can be written as a unit times an idempotent.

(2)" Every a € R can be written as an idempotent times a unit.

If R satisfies (1), it is said to be unit-regular.

(3) Show that any unit-regular ring R is Dedekind-finite.

Ex. 4.14C. (Ehrlich, Handelman) Let M be a right module over a ring &
such that R = End,(M) is von Neumann regular. Show that R is unit-
regular iff, whenever M = K @ N = K’ ® N’ (in the category of k-modules),
N = N'implies K = K'.

Ex. 4.14D. Let M be a semisimple right k-module. Show that R = End, (M)
in unit-regular iff the isotypic components M; of M (as defined in Exercise
2.8) are all finitely generated.

Ex. 4.15. For a commutative ring R, show that the following are equivalent:
(1) R has Krull dimension 0.2
(2) rad R is nil and R/rad R is von Neumann regular.
(3) For any a € R, the descending chain Ra = Ra? 2 - - - stabilizes.
(4) For any a € R, there exists n > 1 such that a” is regular (i.e. such that
a" € a"Ra").

Specializing the above result, show that the following are also equivalent:
(A) R is reduced (no nonzero nilpotents), and K-dim R = 0.
(B) R is von Neumann regular.
(C) The localizations of R at its maximal ideals are all fields.

Ex. 4.16. (Cf. Exercise 1.12) A left R-module M is said to be cohopfian if
any injective R-endomorphism of M is an automorphism.

2Recall that the Krull dimension of a commutative ring R is the supremum of the lengths of
chains of prime ideals in R. In particular, K-dim R = 0 means that all prime ideals in R are
maximal ideals. ’



66 2. Jacobson Radical Theory

(1) Show that any artinian module M is cohopfian.

(2) Show that the left regular module zR is cohopfian iff every non right-0-
divisor in R is a unit. In this case, show that zR is also hopfian.

Remark. The fact that xR is cohopfian => gz R is hopfian may be viewed as
an analogue of the fact that gxR is artinian = gR is noetherian. It is, how-
ever, easy to see that gR is hopfian need not imply that gz R is cohopfian (e.g.
take R = Z).

Ex. 4.17. Let R be a ring in which all descending chains
Ra2Ra*2Ra’>2 --- (foraeR)

stabilize. Show that R is Dedekind-finite, and every non right-O-divisor in R
is a unit. (Comment. Rings satisfying the descending chain condition above
are known as strong n-regular rings. For more details, see Exercise 23.5.)

Ex. 4.18. The socle soc(M) of a left module M over a ring R is defined to be
the sum of all simple submodules of M. Show that
soc(M)< {meM: (rad R) -m = 0},
with equality if R/rad R is an artinian ring.
Ex. 4.19. Show that for any ring R, soc(gR) (= sum of all minimal left

ideals of R) is an ideal of R. Using this, give a new proof for the fact that if R
is a simple ring which has a minimal left ideal, then R is a semisimple ring.

Ex. 4.20. For any left artinian ring R with Jacobson radical J, show that
soc(rR)={re R: Jr=0} and soc(Rg)={reR: rJ =0}.
Using this, construct an artinian ring R in which soc(gR) # soc(Rg).

Ex. 4.21. For any ring R, let GL,(R) denote the group of units of M,(R).
Show that for any ideal / < rad R, the natural map GL,(R) — GL,(R/I) is
surjective. (Hint. First prove this for n = 1.)

Ex. 4.22. Using the definition of rad R as the intersection of the maximal
left ideals, show directly that rad R is an ideal. (Hint. For yerad R, re R,
and m any maximal left ideal, we must have yr € m. We may assume that
r ¢ m,so m+ Rr= R. Look at R — R/m given by right multiplication by r,
and show that the kernel is a maximal left ideal.)

Ex. 4.23. (Herstein) In commutative algebra, it is well known (as a con-
sequence of Krull’s Intersection Theorem) that, for any commutative
noetherian R, ﬂnzl(rad R)" = 0. Show that this need not be true for non-
commutative right noetherian rings.

Ex. 4.24. For any ring R, we know that
rad(R) = {re R: r+ U(R) < U(R)}.
Give an example to show that this need not be an equality. (Hint. Let /(R)

be the set on the RHS, and consider the case R = A[tf] where 4 is a com-
mutative domain. Here, rad(R) =0, but U(R) = U(A) shows that I(R)
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contains rad(A), which may not be zero. Of course, equality does hold
sometimes; see, for instance, Exercise 20.10B.)

Ex. 4.25. Let R be the commutative Q-algebra generated by x), x3,... with
the relations x; = 0 for all n. Show that R does not have a largest nilpotent
ideal (so there is no “Wedderburn radical” for R).

Ex. 4.26. Let R be the commutative Q-algebra generated by x), x;, ... with
the relations x;x; = 0 for all i, j. Show that R is semiprimary, but neither
artinian nor noetherian. (For a noncommutative example, see Exercise 20.5.)

§5. Jacobson Radical Under Change of Rings

The main problem we shall consider in this section is the following: suppose
S is a ring, and R is a subring of S, what kind of relations hold between the
Jacobson radical of R and the Jacobson radical of S? In general, we certainly
cannot expect that one radical would “determine” the other, but if we are
given more specific information on the pair of rings R and S, it is reasonable
to expect that certain inclusion relations hold between rad R and Rnrad S,
or between rad S and S-(Rnrad S). This section is devoted to results
of this general sort. In particular, we shall consider the behavior of the
Jacobson radical under polynomial extensions of rings, and under scalar
extensions of algebras over fields.

To begin this section, we shall first work with commutative rings. To de-
termine the behavior of the Jacobson radical under a polynomial extension
turns out to be fairly straightforward in the commutative case. In the fol-
lowing, let T = {t;: i e I} be a (nonempty) set of commuting independent
variables over a commutative ring R. Recall that Nil/ R denotes the ideal of
nilpotent elements of R. The following theorem gives the complete determi-
nation of the Jacobson radical of R[T] = R[t;: i € I].

(5.1) Theorem (E. Snapper). Let R be a commutative ring and let R[T) be a
polynomial ring over R. Then rad R[T] = Nil(R[T]) = (Nil R)[T).

Proof. Recall that a ring is called reduced if it has no nonzero nilpotent
elements. Since R/Nil R is reduced, it is easy to see that (R/Nil R)[T] is
reduced. But

(R/Nil R)|T] = R[T)/(Nil R)[T],
so it follows that (Nil R)[T] = Nil(R[T)). Also, Nil(R[T]) < rad(R[T)), so it
only remains to show the reverse inclusion. For this, we may assume that T’
is a singleton, say r. Let

S() =ro+---+rpt" € rad(R|t)).
Then

14+tf(t) =14rot+ -+ rpt" € U(R[]).

Let p be any prime ideal in R. Then the invertibility of the polynomial above
in (R/p)[f] implies that each r; € p. Since this holds for all prime ideals
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p < R, we have r; € Nil R by a standard theorem in commutative algebra.
Thus, f(t) € (Nil R)[1]. QED

(5.2) Corollary. Let R and T be as above. Then R[T| is Jacobson semisimple
iff R is reduced.

Next we shall obtain some general results about a class of commutative
rings called Hilbert rings. These results will be strong enough for us to
deduce the classical Hilbert Nullstellensatz which we alluded to in Example
(2) of §4. First we prove the following result on finitely generated commuta-
tive ring extensions.

(5.3) Theorem. Let R = A be commutative domains such that A is finitely
generated as an R-algebra, and R is J-semisimple. Then A is also J-semisimple.

Proof. It suffices to treat the case where 4 = R{a]. We may assume that a
is algebraic over the quotient field K of R, for otherwise we are done by
Snapper’s Theorem above. Assume that there exists a nonzero element
berad A. Then a and b are both algebraic over K. Let

n m
Z it z sit' € RJl)
i=0 i=0 .
be polynomials of the smallest possible degrees n,m > 1, satisfied, respec-
tively, by @ and b. Since 4 is a domain,

S0 = —Zsibi erad A
i=1
is not zero, and so r,sp # 0. From rad R = 0, we can find a maximal ideal m
of R such that r,sy ¢ m. Upon localizing at S = R\m, r, becomes a unit, so
a satisfies a monic equation over S™'R; in particular, S~'4 = (S~'R)[q] is
finitely generated as a module over S~'R. By Nakayama’s Lemma (4.22),

(rad ST'R)- S 'A< 57'A.

In particular, m- 4 < A. Let m’ be a maximal ideal of 4 containing m - 4.
Then clearly m’ n R = m, and so so ¢ m implies that so ¢ m’, contradicting
the fact that s¢ € rad A. QED

It is now convenient to define Hilbert rings. A commutative ring (resp.,
domain) R is called a Hilbert ring (resp., Hilbert domain) if every prime ideal
in R is an intersection of maximal ideals. If R is Hilbert, clearly so is every
homomorphic image R/U; moreover, rad R is the intersection of all prime
ideals of R, so rad R = Nil R. In particular, if R is a Hilbert domain, then R
is J-semisimple.

(5.4) Corollary. Let R = A be commutative rings such that A is finitely gen-
erated as an R-algebra and R is a Hilbert ring. Then A is also a Hilbert ring.
(In particular, rad A = Nil A.)
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Proof. Let p = 4 be a prime ideal. Then A4/p is a finitely generated domain
over R/p n R. The latter is a Hilbert domain so rad(R/p n R) = 0. By the
Theorem, rad(A/p) = 0, which means precisely that p is the intersection of
all the maximal ideals containing p. Therefore, 4 is Hilbert.  QED

Taking R above to be a field k, it follows from (5.4) that any commutative
k-affine algebra A is Hilbert. This proves the assertions made about A4 in
Example (2) of §4. To complete our discussion of Hilbert’s Nullstellensatz,
we give one more result on commutative J-semisimple domains.

(5.5) Theorem. Let R = A be commutative domains such that rad R = 0 and
A is finitely generated as an R-algebra. If A is a field, then so is R, and A/R is
a finite (algebraic) field extension.

Proof. First let us treat the “monogenic” case: 4 = R[a]. Clearly a must be
algebraic over the quotient field of R. Let

> rit' e Rl

i=0
be a polynomial (with r, # 0) satisfied by a, and let m be a maximal ideal in
R with r, ¢ m. (Such a maximal ideal exists because rad R = 0.) As we saw
in the .proof of (5.3), m- 4 < A. Since 4 is a field, the ideal m - A must be
zero. Therefore, m itself is zero, which implies that R is a field. To treat
the general case, let 4 = R[ay,...,a,] and write R’ = R[a;]. By (5.3),
rad R’ = 0. Invoking an inductive hypothesis (on m), we see that R’ is a field
and each a; (2 <i < m) is algebraic over R’. By the monogenic case, we
conclude that R is a field and q, is algebraic over R. It follows that each a; is
algebraic over R, and that 4/R is a finite (algebraic) field extension.

QED

In the special case when R is already assumed to be a field, Theorem (5.5)
is known as Zariski’s Lemma in commutative algebra. Stated in another
form, this says that, for any field R, and any maximal ideal m of the poly-
nomial ring R(xy,...,xn), the quotient ring R[x,,...,Xn)/m is a finite field
extension of R. In case R is algebraically closed, this implies, in particular,
that m has the form (x) — by,...,x, — by) for suitable b;,...,b,€ R. It
follows that any proper ideal N < R|x),...,xn] has a zero in R™: this is the
so-called Weak Nulistellensatz. The Strong Nullstellensatz is essentially the
geometrical translation of the fact that rad 4 = Nil A for any (commutative)
affine algebra A over a field. In (5.3), (5.4), (5.5), we have succeeded in
extending these basic results in commutative algebra to a somewhat more
general setting by using the notion of the Jacobson radical. Our treatment
here follows the ideas of Eagon [67].

We shall now leave commutative rings and consider again general rings.
Our next goal will be to extend the result (5.1) to the noncommutative case.
The main trouble in this case is that the nilpotent elements of R need no
longer form an ideal (or even an additive group), so we first need to find a
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substitute for the expression (Ni/ R)[T] in Snapper’s Theorem. Also, since the
proof of this theorem depends heavily on the commutativity of R, some new
ideas are needed to extend the proof to the case of noncommutative rings.

Before we proceed to the consideration of R[T], it will be convenient to
collect a few general facts about the behavior of the radical under a change
of rings. In the first result below, we consider a pair of rings R < S and study
sufficient conditions on R and S from which we can draw the conclusion
Rnrad S < rad R.

(5.6) Proposition. Let R = S be two rings. Assume either
(1) as a left R-module, rR is a direct summand of rS, or

(2) there is a group G of automorphisms of the ring S such that R is the
subring of fixed points S := {se S: g(s) = s Vg € G}.

Then Rnrad S < rad R.

Proof. First assume (1). Write S = R® T where T is a suitable left R-
submodule of gS. We are done if we can show that e Rnrad S = 1 —rg
is right-invertible in R. Let

=0 =-r)r+n=(1 = ro)r + (1 = ro)t,

where re R and teT. Since S=R®T and 1€ R, this implies that
(1 = ro)r = 1, as desired.

Next assume that R = S¢, where G is as in (2). We proceed as in the proof
of (1). For roe Rnrad S, let (1 —rg)s =1 where se S. Clearly s is fixed
under the action of G. Hence s € S¢ = R so | — rg is right-invertible in R.

QED

Next, let i R — S be a ring homomorphism. We shall investigate suffi-
cient conditions under which we can conclude that i(rad R) < rad S. One
such sufficient condition which readily comes to mind is that i: R — S be
surjective. Under this assumption, an easy application of (4.1) shows that
i(rad R) < rad S. (This was Exercise 4.10.) In the following, we shall try to
develop a more general sufficient condition. Note that, via the homo-
morphism i: R — S, we can view S as a bimodule zSk. For ease of notation,
we shall denote the left and right R-actions on S by multiplication: for
instance, if r € R and s € S, r - s shall mean i(r)s.

(5.7) Proposition. Let i: R — S be as above. Assume that
S=R-x;+---+R-x,
where each x; commutes (elementwise) with i(R). Then i(rad R) < rad S.

Proof. Note that if M is any left S-module, we can view M also as a left R-
modulé via i. Let J := rad R. To prove that i(J) < rad S, it suffices to show
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that J annihilates every simple left S-module M (see (4.1)). Write M = S - a
for some a € M. Then

M=(R‘X|+"‘+R'xn)a=R'X]a+"'+R‘Xnav

so gM is finitely generated. Consider J - M. This is an S-submodule of M
since
xi(J- M)y=x;J- M=J-xxM<cJ M.

Since M # 0, Nakayama’s Lemma (4.22) implies that J - M < M. Recalling
that g M is a simple module, we have J - M = 0, as desired. QED

(5.8) Remark. The proof above shows that the conclusion i(rad R) < rad S
is already valid under the following considerably weaker hypothesis on
x; (1 <j < n): For each x;, there exists a ring automorphism g; of R such
that x; - r = o;(r) - x; (for every r € R). For, under this hypothesis, we have
already x;-J = g;(J) - xj = J - x; (J = rad R being clearly invariant under
all automorphisms of R), and the rest of the proof goes over without any
change.

The Proposition above is most often used in the following somewhat
simpler form: .

(5.9) Corollary. Let R be a commutative ring and S be an R-algebra such that
S is finitely generated as an R-module. Then (rad R) - S < rad S.

After the above preliminaries, we shall now resume the consideration of a
polynomial extension, R = S := R[T), where T = {1;: i € I} is a nonempty
set of independent (commuting) variables. (Of course, we shall not assume
that R is commutative.) The following nice result of Amitsur [56] describes
the structure of the radical of S = R[T], thus providing a noncommutative
analogue of Snapper’s Theorem (5.1).

(5.10) Amitsur’s Theorem. Let R be any ring, and S = R[T]. Let J =rad S
and N = RnJ. Then N is a nil ideal in R, and J = N|[T|. In particular, if R
has no nonzero nil ideal, then S is Jacobson semisimple.

The proof of this important theorem will be presented in several steps. In
the following, the notations introduced in (5.10) will be fixed. Let us first
prove the easier part.

(5.10A) Propeosition. N is a nil ideal in R.

Proof. Let a € N and ¢ = 1;, be one of the variables. Then 1 — at is invertible
in R[T), say (1 — at)g(T) = 1. Setting all variables ¢; (i # ip) equal to zero,
we have

(1—at)a+at+---+at")=1
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for some a; € R. Comparing coefficients, we have
a=1, a =aapg=a, ..., a,=aa,_) =a",

and 0 = aa, = a"*!, as desired. = QED

The next two results establish the truth of (5.10) in the case of one vari-
able, T = {r}. Our treatment here is modeled upon that of Passman [91]
(p- 192), following an earlier idea of G. Bergman (cf. Exercise 8 below).

(5.10B) Proposition. Ler S = R[t], J =rad S, and ay,...,an, € R. If f(1) =
ao+ait+---+apt" €J, then a;t' € J for all i.

Proof. The conclusion is clearly true for » = 0. By induction, we may assume
the truth of the conclusion (for all rings R) for smaller n. Let p be any prime
number > n, and let R, be the ring

RO/ 4L+ 407,

To simplify notations, we shall write { for the image of { in Ry; then {? = 1
in R;. Note that, for any positive integer j < p, we have

(5.11) pe(t’ - R,

In fact, in the quotient ring R;/({/ — 1)R, we have Z/ =1 and hence f = 1.
Therefore, 1 +{+---+° =0 implies that 5 = 0. Now let S) = R,[f] and
Jy = rad S,. Since

S\=S®IS® - @S

and ( is central in S|, we have J; S = J by (5.6) and (5.7). Applying the
automorphism 7 — {t on Sy, f(1) € J < J, leads to f({t) € J; and hence

Cf) —fC) =aoC" =) +a((" =1+ + a1 (" ="y e .

Invoking the inductive hypothesis (over R)), we have a;(" — (')t € J; and
hence a;({" " —1)t'eJ, for any i<n-—1. Using (5.11), we see that
pa;t' € Jy n' S = J. Applying this argument to another prime g > n, we have
also ga;t* € J; therefore, a;t' € J for all i < n— 1. Since f(1) € J, it follows
that a,t” € J as well. QED

(5.10C) Proposition. In the notation of (5.10B), if f(t) € J, then a; € J for
all i. .

Proof. Applying the automorphism ¢ — 1+ | on R{t], the earlier conclusion
a;t' € J leads to

ai(l+0) =a;+iat+---+ait' e J.
Applying (5.10B) again, we see thata; € J. QED
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For another proof of (5.10C) using somewhat different ideas, in the case
‘when R is an algebra over a field, see Exercises (3) and (4) below.

Coming back now to Amitsur’s Theorem (5.10), our remaining task is
to deduce the general case of many variables from the case of one variable
settled in (5.10C).

Proof of (5.10). The desired conclusion J = N[T] (N = J n R) means that, if
a polynomial f(T) € J, then all of its coefficients must belong to J. To see
this, we induct on the number m of variables appearing in f. If m = 0, this is
clear. If m > 0, fix a variable ¢ appearing in f. Write T = T U {¢} (disjoint
union) and f(T) = ¥, ai(To)t'. Applying (5.10C) to R[T] = R[To]1], we see
that a;(Ty) € J for all i. Since the number of variables actually appearing in
each a;(Tp) is. <m — 1, the induction proceeds. = QED

At this point, let us make some comments about Amitsur’s Theorem
(5.10). One drawback of this theorem is that it does not ‘“‘determine” what
N = Rnrad R[T] really is, other than that it is a nil ideal. Now in any ring
R, there is always a largest nil ideal, since the sum of all nil ideals is nil. (The
easy proof of this can be found in (10.25).) Let us denote this largest nil ideal
by Nil* R; it is called the upper nilradical of R. An interesting problem is to
determine whether the N in Amitsur’s Theorem is indeed equal to Ni/* R, so
that rad R[T] = (Nil* R)[T]. In other words:

(5.12) Problem. If ] is a nil ideal in R, is I[T] < rad R[T]?

If I is in fact nilpotent, say 1" = 0, then clearly /{T]" =0 and we can
conclude from (4.11) that /[T] < rad R[T). But if I is only nil, and R is
noncommutative, (5.12) has remained a difficult unsolved problem in ring
theory. In fact, (5.12) turns out to be equivalent to another famous problem
in ring theory called Kéthe’s Conjecture. For more information on this, see
§10 and Exercise 10.25.

In the case when R is an algebra over a field %, it is possible to obtain an
analogue of (5.10) for the algebra R(T). Here, R(T) is defined to be the
scalar extension of the k-algebra R when we enlarge the scalars from & to
k(T), the rational function field over k in the set of variables T. Since k(T) is
the quotient field of k[T] and R ®, k[T] = R[T), R(T) is the localization of
R(T] at the central multiplicative set k[T]\{0}. For the structure of the rad-
ical of R(T), we have the following analogue of (5.10), also due to Amitsur.

(5.13) Theorem. Let J' = rad R(T) and N' = RnJ'. Then N' is a nil ideal
in R, and J' = N'(T) := N' ®, k(T). In particular, if R has no nonzero nil
ideals, then R(T) is Jacobson semisimple.

Proof. The proof here runs along the same line as in the case of a polynomial
extension. Repeating the earlier arguments, we can show that, in the case of
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one variable, whenever q; € R:

) ) ait’ € rad R(1) = all a; € rad R(1).

In the case of many variables, consider f(T)/g(T) € J', where f(T) € R[T]
and 0 # g(T) € k[T). We have f(T) € g(T)J' < J', so it suffices to show that
f(T) e J' implies that all coefficients of f are in J'. Inducting on the number
of variables appearing in f, write f(T) = 3" a;(To)t' as in the proof of (5.10),
where T = Ty U {r}. Let R* = R(T,), viewed as an algebra over k* = k(7).
We can make the following identifications:

R(T) = R® k(To) @1y k(To,1) = R* ®- k*(1) = R*(1).

From }_ a;(T,)t' € J’, we conclude from (1) (applied to R*) that a,(Ty) € J'
for all i, so we are done by induction as before.

To complete the proof of (5.13), we still have to show that N’ is a nil ideal
in R. In fact a somewhat stronger statement is true for scalar extensions of
algebras. We shall now investigate, in more detail, the behavior of the radi-
cal of algebras under scalar extensions. Then result (5.15) we prove below
will, in particular, imply that the ideal N’ in (5.13) is nil.

Let R be a k-algebra where & is a field, and let K 2 k be a field extension.
We can form the algebra RX := R ®, K, in-which multiplication is defined
by

(r®a)(r'®a’)=r'®aa’ for r.,r'eR and a,a’ eK.

The K-algebra RX is called the scalar extension of R to the new scalar field
K. The subring R® k = R® 1 of RX is isomorphic to R, so we shall identify
it with R. Note that we do not need to impose any condition on the exten-
sion K 2 k; thus, this may be a transcendental extension as well as an alge-
braic extension. The following sequence of results describes the relationship
between the two radicals rad R and rad RX.

(5.14) Theorem. For any k-algebra R and any field extension K [k, we have
Rnrad RX crad R. If K/k is an algebraic extension, or if dim; R < o,
then Rnrad R =rad R. If [K : k] = n < oo, then

(rad R¥)" < (rad R)*(= (rad R) ®; K).
Proof. Let {¢;} be a basis of K as a k-vector space, with, say e;, = 1. Then
RE=R® DR e
i#ip
is a direct sum decomposition of RX as a left R-module. Therefore,
Rnrad RX < rad R by (5.6). If dim;, R < oo, then by (4.12) rad R is nilpo-
tent, so (rad R)* < RX is also nilpotent. Therefore (rad R)® < rad RX and
hence rad R = R rad RX. To prove the same inclusion for K /k algebraic
(and for arbitrary R), an easy direct limit argument reduces the consid-

eration to the case [K : k] =n < oo. In this case, the direct sum decom-
position for RX above is finite, and each e; centralizes R. By (5.7), we
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have rad R < Rnrad RX, as desired. Finally, to see that (rad RX)" <
(rad R) ® K, let V be any simple right R-module. Then VX = V ®, K is a
right RX-module. Viewed as an R-module,

n

Vi @P(Vee)

i=1

has composition length n. Therefore, viewed as an RX-module, VX has
composition length <n. Thus, for any ze (rad RX)", VX .z=0. Write
z=3r; ®e; where r; € R. For any v € V, we have

0=(:®l)(2r,®e,) =Zvr,~®e,~=>vr,-=0 (l SiSn).

Therefore V-r;=0 and so r,erad R for all i, from which we have
z=Yri®ee(rad RY®K. QED

If K/k is not an algebraic extension, the inclusion R ~rad RX < rad R
may no longer be an equality. In fact, we shall show below that in this case,
R rad RX is always a nil ideal. So, if rad R itself is not nil, we have a strict
inclusion R nrad RX < rad R.

(5.15) Proposition. Let K /k be a field extension which is not algebraic. Then
for any k-algebra R, R ~rad RX is a nil ideal in R. (This shows, in particular,
that the ideal N' in (5.13) is nil.)

Proof. Let ae Rnrad RX and let te K be transcendental over k.
Applying the first part of (5.14) to the extension k(7) = K, we see that
ae Rnrad R To see that a is nilpotent, it suffices therefore to assume
that K = k(r). Since 1 — ar € U(RX), there exists an equation

(I—an)-f(1)/g(1) =1,

f(y=bo+bjt+ - +but™ R[] (bm#0),
gy =cotcit+-+ cma ™ € ki)

where

Comparing coefficients, we get co = by, ¢c; = b; —ab;,_; (1 <i <m+ 1), with
the convention that b,,,; = 0. Solving the b;’s in terms of the ¢;’s, we have,

inductively, ) ,
bi=a'co+a'c;+-- +ai.

For i = m, the fact that b,, # 0 implies that ¢y, ..., cn are not all zero. For
i = m + 1, therefore, the equation

0=>bm =a™'co+ -+ aCm + Cms1
shows that a is algebraic over k. Since a € rad R*", it follows from (4.18)
that a is nilpotent. QED

From here on we shall focus our attention on scalar extensions of algebras
when K /k is a separable algebraic extension. In this case, one can obtain
very specific information: see (5.17) below.
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(5.16) Lemma. Let R be a k-algebra, and K/k be a separable algebraic
extension. If R is J-semisimple, then so is RX .

Proof. If z € rad RX, then, for some L < K of finite degree over k, we have
ze Rt nrad RX < rad R*, by (5.14). Therefore we may assume that K /k is
finite. Let E be the normal hull of K over k; then E/k is finite Galois. By
(5.14) (applied to E/K),

rad RX < rad(R¥)® = rad RE.

Therefore it suffices to show that rad R = 0. Let ey, ... ., e, be agk-basis for
E, and let G be the Galois group of E/k. We can extend the G-action to
RE = R®, E by identifying o € G with 1 ® o. Given any element

z=Zr,«®e,»erad RE,

we have, for any ¢ € G and any index j:

o(zej) = o(z ri® e,-ej) = Z ri ® o(eie;).

These elements belong to rad R% since rad R® is an ideal of Rf which is
invariant under all automorphisms. Summing these elements over g € G and
writing ““tr” for the field trace of E/k, we get

Z ri® Z a(eiej) = Z ri @ tr(eje;)
oeG
= Z r; tr(eiej) ®1.

This element belongs to Rnrad RE crad R=0 (see (5.14)); hence
Y- ritr(eie;) = O for all j. Since E/k is separable, the trace form

(x,y) = tr(xy)
is nondegenerate; equivalently, the k-matrix (1r(e;e;)) is invertible. From the

linear equations ) _, r;tr(e;e;) = 0, we conclude, therefore, that r; = 0 for all j,
andsoz=0. QED

(5.17) Theorem. Let R be a k-algebra, and K/k be a separable algebraic
extension. Then rad(RX) = (rad R)X.
Proof. By (5.14), we have (rad R)* < rad(R¥). Moreover,

RX /(rad R)X = (R/rad R)*.

Since R/rad R is J-semisimple, the Lemma implies that (R/rad R)*
J-semisimple. By (4.6), it follows that rad(RX) = (rad R)*.  QED

Note that the hypothesis that K/k be separable is essential in (5.16) and
(5-17). If K contains inseparable elements over k, counterexamples are easy
to find. The following is perhaps everyone’s favorite counterexample. Let
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k be a field of characteristic p > 0 and suppose a € k\kP. Let K = k(a)
where a” = a, so K is a purely inseparable extension of k. As a k-algebra,
R:= K is of course semisimple (it is a field!), but the scalar extension
RX = R®, K = K ®; K is isomorphic to
k[t] ~ K __Kig _ K[

(tr—a) = (#—a) (#—a?) (1—a)

This is not semisimple; in fact its radical is clearly the nilpotent ideal
(t—a)/(t — a)?. Tracing back through the isomorphism, we have that
rad(K ®; K) is generated by the nilpotent element 1 ® « —a ® 1. In fact,
with the notation above, AX is never J-semisimple for any k-algebra 4 con-

taining K in its center, since 4 ®, K has a central nilpotent element
IQa—a®1.

K ®

Exercises for §5

Ex. 5.0. (This exercise refines some of the ideas used in the proof of (5.6).)
For any subring R < S, consider the following conditions:

(1) rRis a direct summand of xS and Rp is a direct summand of Sg.

(2) Ris a full subring of S in the sense that R~ U(S) < U(R).

(3) Rnrad S < rad R.

(For examples of full subrings, see, for mstance Exercises 1.13 and 6.3.)
(A) Show that (1) = (2) = (3).

(B) Deduce from thc above that, if C = Z(S) (the center of S), then
Cnrad S<rad C.

(C) Does equality hold in general in (B)?

Ex. 5.1. Let R be a commutative domain and S~!' R be the localization of R
at a multiplicative set S. Determine if any of the following inclusion relations
holds:

(@) rad R< Rnrad S7'R,

(b) Rnrad S™'R < rad R,

(c) rad ST'R < S~!(rad R).

Ex. 5.2. Give an example of a ring R with rad R # 0 but rad R[t] = 0.

In the following two exercises, we sketch another proof of (5.10C) in the case
when R is an algebra over a field k. As in (5.10C), we let J = rad R[t] and
N=RnJ.

Ex. 5.3. Assume k is an infinite field. Show that J = N|[1]. (Hint. First show
that J#0=>N#0. Let f(t)=ao+ait+---+a,t"eJ\{0} with n
chosen minimal. For any a € k, f(¢+ a) — f(t) € J implies that f(t+a) =
f(2). Setting 1 = 0 gives a,a” + - - - + a;a = 0 for any a € k. Since X is infinite,
this implies thata, = --- = a; = 0.)

Ex. 5.4. Assume k is a finite field. Show that J = N[¢]. (Hint. Let k be the
algebraic closure of k, and R = R ®; k, J = rad(R|t]). By the first part of
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(5 14), J = Rlti]nJ. Let f(t) =ao + ayt + --- + ant" € J. Then f(¢) € J, and,
since k is infinite, Exercise 3 yields a; € J for all i. But then q;e RnJ =
RA(R[]nJ)=RAJ=N)

Ex. 5.5. Let R be any ring whose additive group is torsion-free. Show
(without using Amitsur’s Theorem) that J = rad R[f] # 0 implies that
RnJ #0. (Hint. Let f(r) e J\{0} be of minimal degree and consider
Slt+1)—f()eld)

Ex. 5.6. For any ring R, show that the Jacobson radical of the power series
ring A = R([f]] is given by

={a+1tf(1): aerad R, f(1) € A}.

Ex. 5.7. For any k-algebra R and any finite field extension K /k, show that
rad R is nilpotent iff rad RX is nilpotent.

Ex. 5.8. (This problem, due to G. Bergman, is the origin of the proof of
(5.10B).) Let R be a graded ring, i.e.

R=Ry®R ® ---

where the R;’s are additive subgroups of R such that R;R; = R;,; (for all /, )
and 1 € Ry. Show that J = rad R is a graded ideal of R, in the sense that J
has a decomposition

J=h@/® -,
where J; = J n R;. (Hint. Use the ideas in the proof of (5.10B).)

Ex. 5.9. Let A = R[T], where T is an infinite set of commuting indetermi-
nates. Show that rad A is a nil ideal.

Ex. 5.10. Let us call a commutative ring R *‘rad-nil” if its Jacobson radi-
cal is nil, that is, if rad(R) = Nil(R). [Examples include: (commutative)
J-semisimple rings, algebraic algebras and affine algebras over fields, etc.]
Show that:

(1) a commutative ring is Hilbert iff all of its quotients are rad-nil;

(2) any commutative artinian ring is Hilbert;

(3) any commutative ring is a quotient of a rad-nil ring.

(4) Construct a commutative noetherian rad-nil ring that is not Hilbert.

§6. Group Rings and the J-Semisimplicity Problem

In §1 we have explained the formation of a group ring. This not only gives a
nice source of examples of noncommutative as well as commutative rings,
but also provides the basic connection between ring theory and the theory of
group representations. Classically, group rings of finite groups over the
complex numbers provided some of the earliest nontrivial examples of semi-
simple rings. For infinite groups, the associated group rings are no longer
semisimple; the study of this class of rings can be used, therefore, as a guide
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to the general study of nonsemisimple rings. On the other hand, ideas and
results in ring theory have had very important impact on the development of
the theory of representations of groups. In the 1920’s, Emmy Noether ini-
tiated the viewpoint that representations of groups amount to modules over
the associated group rings. From this viewpoint, the Wedderburn structure
theory of finite-dimensional algebras has natural interpretations in the frame-
work of finite group representations. In particular, this enabled Noether to
re-prove effectively many of the classical results of Frobenius and Schur in
representation theory from a ring-theoretic perspective. This section will be
devoted to the elementary study of group rings, with special emphasis on the
question of semisimplicity (and J-semisimplicity). The major application of
this material to representation theory will be given in §8 of the next chapter.

We begin by recalling the basic relationship between group representa-
tions and modules over group rings. To simplify matters, the base co-
efficients are assumed to form a field k. For any (multiplicative) group G, let
R = kG be the group ring (or group algebra) of G over k. An n-dimensional
representation of G over k is defined, classically, to be a homomorphism D
from G to GL,(k), the general linear group of invertible n x n matrices over
k. (D stands for Darstellung, the German word for representation.) Given
such a homomorphism, G then acts as a group of linear transformations on
k"; we denote this action by (¢,v) — o - v, for 6 € G and v € k". If we extend
this action to the group ring R = kG by taking

(Z aaa) = a,(0-v),

geG oeG

the vector space k" becomes a (left) R-module. Conversely, if we are given a
left R-module V such that dimy V = n, then G acts as a group of linear
transformations on V, and, by fixing a k-basis on V, we obtain a represen-
tation D of G by n x n invertible matrices. If we use a different k-basis for V,
a routine computation shows that the resulting representation D’ of G differs
from D by an inner automorphism of GL,(k). Two representations D, D'
which differ by an inner automorphism of GL,(k) are said to be equivalent.
Conversely, it is easy to show that two equivalent representations give rise to
a pair of isomorphic (left) kG-modules. Thus, equivalence classes of finite-
dimensional representations of G may be identified with isomorphism classes
of left kG-modules finite-dimensional over k. In this sense, the study of rep-
resentations of G and the study of (left) kG-modules are essentially equiva-
lent. The k-representations of G afforded by irreducible kG-modules are
called the irreducible representations of G over k.

Classically, the representation theory of finite groups over fields of char-
acteristic zero is of special importance. The most basic ring-theoretic result
in this setting is that the associated group ring is a semisimple ring (in the
sense of §2). This famous result is due to H. Maschke in 1898. Maschke’s
Theorem is also valid for fields & whose characteristic does not divide the
order of G (as pointed out by Dickson), but not valid otherwise. We state
below this theorem of Maschke, with its modern embellishments.
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(6.1) Theorem. Let k be any ring and G be a finite group. Then R = kG is
semisimple iff k is semisimple and |G| - 1 is a unit in k.

Proof. For the “if” part, let W be an R-submodule of a left R-module V.
We want to show that W is an R-module direct summand of V. Fix a k-
homomorphism f: V — W such that f|W is the identity. (Such a map
exists since W is a k-module direct summand of V.) We shall modify f into
a map g with the same properties as f, but such that g is a homomorphism of
R-modules. If such a g can be found, then V = W @ ker(g) gives what we
want. We define g: V' — V by the following “averaging’ device:
g(v) := IGI_' Za"f(av), veV.
oeG

Since g(v) € |G| ™' Y, 0™ - W < W, we may view the k-homomorphism g
as from Vto W. If ve W, then

g9(0) =G Y o7 (ov) = v,
oeCG

so g is the identity on W. Finally, the following computation shows that g is
an R-homomorphism: for any 7 € G,

g(w) =1G|™' > 07! (f (o1 1))

oeG
=1G™" )" 1" f(a'v)
o'eG
= 1g(v).
For the ““only if” part of the theorem, assume now that R = kG is semi-
simple. We have a ring homomorphism (the augmentation map)
e: kG —k

defined by taking ¢|k = Id; and ¢£(G) = 1. Therefore, as a homomorphic
image of kG, k is semisimple (cf. Exercise 3.3). We finish by showing that
any prime p dividing |G| is a unit in k. By Cauchy’s Theorem in group theory,
there exists an element ¢ € G of order p. Since the semisimple ring R is
von Neumann regular (see (4.24)), there exists an element « € R such that
(1 = o)a(l — 6) =1 — o, from which
[1-(1-0)]-(1-0)=
By the Lemma below, we can write
l-(1-d)a=B-(1+c+---+0°")

for some f € R. Applying the augmentation map &, we have 1 = &(f) -ﬁ, S0
p =p - lisinvertible in k, as desired. @ QED

We now supply the missing link in the argument above.

(6.2) Lemma. For re R=kG, and € G of order p, r-(1 —0) =0 iff
reR-(1+o+---+a°7h).
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Proof. We need only prove the “only if”” part. Let r =Y ;r.7. We shall
induct on the number n of 7’s occurring in r with nonzero coefficients. If
n =0, then r = 0 and we are done. Otherwise, look at some 7 with r, # 0.
Since

r=r-g=r-g>=---,

the group elements 7,10, ...,7¢?! all appear in r with the same coefficient
r;. Therefore
r=rc4 104+ 1071 + ( k-combination of )

other group elements

=rt(l4+o+---+a?")+r (say).

Since r- (1 — o) =0 implies that r'- (1 — o) =0, the proof proceeds by
induction. QED

In Maschke’s Theorem, we have considered only finite groups. The fol-
lowing supplement to the theorem explains why.

(6.3) Proposition. Let k # 0 be any ring, and G be an infinite group. Then the
group ring R = kG is never semisimple.

Proof. For the augmentation map ¢: kG — k defined above, let A = ker(e)
be the “augmentation ideal.” Assuming R = kG is semisimple, we have
R = A D B where B — Ris a suitable left ideal. Write

A=R-e and B=R-f,

where e, f are idempotents such that e + f = 1 (see Exercise 1.7). Clearly, e, f
are not zero. We have A-f =Re-f =0, s0 (6 — 1)f =0, ie., f =af, for
any g € G. Let 7 € G be a group element which appears in f with a nonzero
coefficient. Then ot appears in f with the same coefficient, for any o € G.
This means that f involves all group elements of G; since G is infinite, this
contradicts the definition of a group ring. QED

After Jacobson introduced the Jacobson radical in 1945, one obtains a
new notion of semisimplicity for rings possibly not satisfying any chain
conditions: a ring R is called Jacobson semisimple if rad R = 0. In view of
Maschke’s classical result that the group ring of a finite group over a field of
characteristic zero is semisimple, a natural question would be to ask whether
the group ring of an arbitrary group over a field of characteristic zero is
always J-semisimple. The earliest result in this direction is due to C. Rickart
[50] who used Banach algebra methods to show that, for any group G, the
complex and real group algebras CG and RG are, indeed, J-semisimple.
Later, Amitsur and Herstein showed independently that kG is J-semisimple
for k any uncountable field of characteristic zero. Improving this result fur-
ther, Amitsur [59] showed that, for any field k of characteristic zero, kG is
J-semisimple except perhaps when k is a field of algebraic numbers (i.e.,
when k is an algebraic extension of Q). In this case, a number of difficulties
remain, and the problem seems to be still unsolved as of this date. Consid-
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erable work has also been devoted to special classes of groups, e.g., ordered
groups, abelian groups, solvable groups, and certain linear groups. For all the
special classes considered so far, the known answers to the J-semisimplicity
problem have been uniformly affirmative. Analogous results have also been
obtained for fields of characteristic p.

In the following, we shall give an exposition of the results on the J-
semisimplicity problem described above. We shall follow the chronological
order of these results in spite of the (obvious) fact that the later results are
stronger than the earlier ones. The motivation for this approach is, in part,
that we want to preserve the historical perspective of the problem: it was
Rickart’s pioneering result on the J-semisimplicity of CG and RG that gave
the main impetus to the effort for solving the same problem over arbitrary
fields of characteristic zero. A second reason for including Rickart’s result is
that Rickart’s proof used certain interesting ideas from the theory of topo-
logical algebras. It is hoped that a study of this proof will provide a glimpse
of the interaction between the purely ring-theoretic methods and the meth-
ods of functional analysis and complex analysis.

(6.4) Rickart’s Theorem. For any group G, the complex group algebra CG is
J-semisimple. (In view of (5.7), this implies that the real group algebra RG
is also J-semisimple.)

For the sake of a self-contained exposition, we shall present Rickart’s
proof in a somewhat disguised form, following Passman [77], pp. 269-271.
In this version of the proof, one does not need to introduce the general
terminology of Banach algebras used in Rickart’s paper. Nevertheless, this
proof will be sufficient to convey the general flavor of Rickart’s analytic
methods.

Let us first give an overview of the proof. For any element & = )" a,g in
the complex group algebra CG, we define the trace of « to be tr(a) = «; € C.
The proof of (6.4) consists of two main parts.

(6.5) Lemma (The Algebraic Part). If rad(CG) # 0, there exists an element
o € rad(CG) such that, for any m > 1,

tr@®")eR and tr(a®*") > 1.

(6.6) Lemma (The Analytic Part). For any « € rad(CG),

lim wr(a") =0 inC.
n—oo

Obviously, these two lemmas give the desired conclusion rad(CG) = 0.
Now we must prove these lemmas! Since the algebraic part is the easier one,
we shall do it first.

We begin by recalling the idea of an involution. By an involution on a
ring k, we mean an additive homomorphism *: k — k such that a** = a and
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(ab)™ = b*a* for all a, b € k. (The latter implies that 1* = 1.) For instance, if
k is a commutative ring, the identity map a — a* = a gives an involution on
k, and the transpose map on matrices gives an involution on M, (k). The
usual complex conjugation map gives an involution on C.

If k is a ring with an involution ~, we can define on any group ring kG:

(Z agg) = Z &g7".
It is easy to check that this gives an involution on kG extending the given
involution on k. In the following, we shall take k to be C, with ‘““bar” given

by complex conjugation. The group algebra R = CG then has an involution
*, as defined above.

Proof of (6.5). For any o = ) a,g € R, we have
trate) =Y Ggag =Y lagl* 2 | |* = [er of?,

geG geG

where |z| denotes the modulus of a complex number z. In particular, if o is a
*-symmetric element (i.e., a* = a), then by induction on m > 1 we have
r(@?”) > [ir «|*” in R. If rad(R) contains a nonzero element f =3 B,9,
then 1r(B°B) = 3~ |B,|* # 0 and we have

a:=pg"B/tr(B*B) e rad R
since rad R is an ideal. Clearly, a* = a, tr(a) = 1, so by what we said above,
tr(«®") is a real number > 1 foralln. QED

Next, we shall try to do the *Analytic Part” (Lemma 6.6). To begin
the proof, let us first set up some notations. For a =) a,g € R, define
|| = 3" |ag| € R. One checks easily the following properties:

(1) lorof <o,
(2) le+ Bl < |af + |81,
() loBl < lal - 1BI-

In view of (2), if we define a distance function on R by
dist(a, p) := | — B,

R becomes a metric space. Thus, we can talk about continuity of functions to
or from R. For instance, by property (1) above, tr: R — C is a continuous
(C-linear) function. }

In the following, let a be a fixed element of rad R. Then for any z e C,
1 — za € U(R), so we can define a function ¢: C — R by

p(z)=(1-za)"'eR.
The proof of (6.6) depends on the following three crucial properties of ¢.
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(A) ¢ is continuous at every z € C.
(B) ¢ is differentiable at every z € C.
(C) If |z2| is sufficiently small, then p(z) = Y_,>  a"z" € R.

Here, (A) is a consequence of the fact that the inverse map on R is con-
tinuous. To.give a more detailed proof, consider two points y,z € C. Since
¢(y) and ¢(z) commute, we have

o(y) — o(z) = [(1 = z0) — (1 = yw))(1 = yo) ' (1 = zar) ™'
= (y—2) ap(y)ep(z).

This implies that, for a given z, |¢(y)| is bounded in a suitable neighborhood
of z. In fact, from (6.7), we have

le(¥)| < lo(@)| + |y =zl - lp(¥)] - | 9(2)],

6.7

s0
lo)I- (1 =y =z - |a 9(2)]) < lo(2)]-

If y is sufficiently close to z, we can make the expression in parentheses to be
21/2, so |p(y)| < 2|¢(2)], and (6.7) gives

lo(») — 0(2)] < 2lal - |y — 2] - lo(2)|*.
This implies (A), and also shows that

’ . — @z .
68 @)= tim 22D i o p()p) = a p(a)?,
y=z  y—z y—z
for every z € C. Now let z be such that |z| - |«| < 1. Then |zoz| lz] - |o] < 1,
and the usual geometric series argument shows that ¢(z) = Y >, z"a". In

fact, for any integer N:

N
o(z) — Zz"a" = ¢(z){l - (1 - za) Zz } o(2)(za)V !,
n=0

n=0
SO
N
p(z) = Y 2"a"| < lo(2)|- V1.
n=0

From this estimate, we see that

N
p(z) - 2"

n=0

a’l -0 as N — oo,

proving (C).

Proof of (6.6). For any group element g € G, we can define tr;: R — C by
sending any a« = ), _; axh € R to a, € C. This map is clearly continuous and
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C-linear, and our earlier trace map ““tr” is just ¢r). For any fixed « € rad R
and g € G, we shall show more generally that

lim try(a") =0
n— oo
Let
f=trgop: C—C; e, f(2) =try(l —za)” '

By (B), fis an entire function (with f'(z) = try(a (o(z) )), and by (C):

o0 Q0
6.9) f(z)=1r, (Z oz"z") = Z trg(a”)z"

n=0 n=0
for sufficiently small |z|. In particular, (6.9) gives the Taylor expansion of
£ at the origin. Since f'is entire, a well-known theorem in complex analysis
guarantees that this Taylor series has infinite radius of convergence, and
converges to f everywhere in C. At the point z = 1, this yields

() HOEDIACH!

n=0

But then the nth term of this series must converge to 0, as desired. QED

(6.10) Remark By definition, f(1) is trg(l —a)~". If we knew that |« < 1,
then (1 — a)™' = % " would hold in R, and we would have the equation
(*) by takmg trace. But of course, we did not know that |«| < 1, nor that
S ya" would converge in R. Therefore, we have to invoke a basic theorem
on entire functions to justify the key equation (*).

While the proof of (6.6) was designed to use a minimum amount of anal-
ysis, a few remarks on its hidden connections to Banach algebras are in
order. In Rickart’s original proof, G is thought of as a locally compact group
with the discrete topology, and one considers the C-algebra of L'-integrable
functions from G to C with respect to the Haar measure, the multiplication
of functions being given by “convolution.” This algebra, traditionally de-
noted by L!(G), may be called the “analyst’s version” of the group algebra:
it is a Banach algebra over C. The discrete group algebra CG can be em-
bedded as a dense subring of B:= L!(G) by identifying 3" a,g with the
function g — a,. For any element « in the Banach algebra B, the resolvent
set of a is

{zeC: z—ae U(B)},

and on this resolvent set, the “resolvent function”

¥(z)=(z-a)"
is analytic, with values in B. The function ¢ used in our proof of (6.6) is just
a slight variant of y, namely ¢(z) = y(z7')/z. The argument in (6.6), applied
in the general setting of analytic functions with values in a Banach space,
shows that the radical of a complex Banach algebra B is “‘topologically nil,”
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1.6, any element « in it has «” — 0. It follows easily from this that rad B is
the largest topologically nil (1-sided or 2-sided) ideal in B. This is, therefore,
the general fact which underlies the analytic lemma (6.6). On the other hand,
the algebraic lemma (6.5) made crucial use of the *-involution on CG; this
amounts to exploiting the standard C*-algebra structure in L'(G). The
argument on the 2"-powers of *-symmetric elements essentially shows that,
in a C*-algebra, the only topologically nil 1-sided ideal is the zero ideal.
In particular, this argument suffices to show that any C*-algebra over C is
Jacobson semisimple.

Having thus explained the proof of Rickart’s Theorem, we shall now
return to more conventional ring theory. Our next goal is to discuss
Amitsur’s results on the J-semisimplicity of group rings in characteristic zero
and Passman’s analogous results in characteristic p. The methods we use to
establish these results will be purely algebraic. We begin by proving a result
on nil one-sided ideals in group rings of characteristic zero. The idea used in
the proof of the Proposition below is very similar to that used for Lemma
6.5.

(6.11) Proposition. Let k be a ring with an involution * such that

Zai‘a; =0= allai;d ink.
Then, for any group G, the group ring R = kG has no nonzero nil left ideals. In
particular, this conclusion holds in the following two cases:

(a) k is a commutative ring which is formally real, in the sense that
Sl =0=alla; =0.

(b) k is an algebraically closed field of characteristic zero.?

Proof. For « = 3 a,g € R, we define 1r(a) = o, as before, and we extend * to
an involution on R by defining a* to be Za;g". Since

r(a’a) =) aro,
the hypothesis on (k, *) amounts to:
tr(@*a) =0=a=0 inR.

Assume that R has a nonzero nil left ideal B, say with 0 # € B. Then
0#y:=p°BcB, and y* =y. Choose n>1 so that y" # 0 = y"*'. For
a:=y", we have a*a = a? = y?" = 0, but by what we said above, a =0, a
contradiction. If k is a formally real commutative ring, we can take the
involution * to be the identity on k, and the argument above applies. Now let

3The conclusion that kG has no nonzero nil left ideals actually holds for all fields k of charac-
teristic zero, without the assumption that k be algebraically closed. However, we shall not prove
this more general result here.



§6. Group Rings and the J-Semisimplicity Problem 87

k be an algebraically closed field of characteristic zero. By a basic theorem
in field theory, we know that k = ko[i] where ko is a real-closed field c k,
and i = vV—1. (A real-closed field is a formally real field with no formally
real proper algebraic extensions.) Defining (a+bi)* =a—-bi on k
(a,b € ko), the fact that ko is formally real gives:

0= Z(aj +bji)‘(aj + b;i) = Zaf + ijz =a;=b=0 V]
Therefore, the first part of the Proposition applies to k<G. = QED

Note that the last part of the Proposition can be used to give another
proof of the characteristic zero case of Maschke’s Theorem. Indeed, let k be
a field of characteristic 0, and let G be a finite group. Since l_(G is artinian,
(rad kG)" = 0 for some n, and hence ((rad kG) - k)" = 0 for k the algebraic
closure of k. By the Proposition, we have (rad kG)-k =0 and hence
rad kG = 0, showing that kG is semisimple. (In the case of characteristic p, a
similar remark can be made after the proof of (6.13).) However, the argu-
ment in (6.11) works for any group G, and our present goal is to get theo-
rems on the J-semisimplicity of kG for possibly infinite groups. In fact, we
are now ready to prove the following result of Amitsur [S9], which extends
Rickart’s Theorem from the complex base field to “almost” any field of
characteristic zero.

(6.12) Amitsur’s Theorem. Letr K be a nonalgebraic field extension of Q. Then
Jor any group G, the group ring KG is J-semisimple.

Proof. Let F = Q({x;}), where {x;} is a (nonempty) transcendence basis for
K /Q. Note that the scalar extension QG ®g F is just FG. Let J = rad FG.
By (5.13), N=JnQG is a nil ideal of QG and J=N®gF =N -F.
However, by Proposition 6.11(a), QG has no nonzero nil left ideals; hence
N =0 and so J = 0. This shows that FG is J-semisimple. Since we are in
characteristic zero, K/F is a separable algebraic extension. Therefore, by
(5.16), the scalar extension FG ® r K = KG is also J-semisimple. = QED

Next we shall try to obtain the characteristic p analogue of the above
result. We first need a characteristic p analogue of the nonexistence of non-
zero one-sided nil ideals. To do this, we introduce the following group-
theoretic notion: for a prime p, we say that a group G is a p’-group if G has no
element of order p. Note that, by Cauchy’s Theorem, if G is a finite group,
this condition simply means that p does not divide the order of G.

The characteristic p analogue of (6.11), due independently to D.S. Passman
and 1.G. Connell, is as follows.

(6.13) Proposition. Ler k be a commutative reduced ring of prime character-
istic p > 0. Let G be any p’-group. Then R = kG has no nonzero nil left ideals.
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Proof. Assume R has a nonzero nil left ideal B, say

o¢ﬂ=2ﬂgg}es.

After left multiplying # with a suitable group element, we may assume that
r(f) = B, # 0. We claim that 1r(8?) = (1r(B))”. If so, then by iteration,

1r(B?") = (1r(B))"" #0

for every n, and we get the desired contradiction. To show our claim, note

that
r(p?) = "((Zﬂgg)”) =D Bobo By

where the sum is over the set S of (ordered) p-tuples (g, . .. ,9p) of group
elements such that g, - - - g, = 1. The cyclic group H = (o) of order p acts on
S by

a*(glv”'vgp) = (gzsu-vgpvgl)‘

The H-orbits on S have cardinality either 1 or p. For an orbit of cardinality
p, since all the p-tuples in the orbit make the same contribution to 1r(f*), the
total contribution is a multiple of p, and therefore is zero. Now look at a
singleton orbit H * (gy,...,g,). We must have g, = g, = -- - = g, and hence
g¥ = 1. Since G is a p’-group, we have g, = --- = g, = 1. Therefore, there
is a unique singleton orbit in-S, and its contribution to () is BY, as
claimed. QED

In order to prove the characteristic p analogue of (6.12), we need the
following intermediate result.

(6.14) Proposition. Let K/F be an algebraic extension of fields of character-
istic p, and let G be a p’-group. If FG is J-semisimple, so is KG.

Proof. First let us assume that [K : F] = n < co. By (5.14),
(rad(KG))" < (rad FG) - K,

and, by hypothesis, rad FG = 0. Thus, rad KG is a nilpotent ideal. By the
above Proposition, therefore, rad KG = 0. Now drop the assumption that
[K : F] < 0. Given any element « € rad KG, we can find a field Ko € K of
finite degree over F such that a« € KoG. According to (5.14), we have

a € KoGnrad KG < rad KyG.
But by the case we have already treated, rad KoG = 0 and so a = 0.
QED

‘The following analogue of Amitsur’s Theorem (6.12) was proved by
Passman in 1962.
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(6.15) Passman’s Theorem. Let K be a nonalgebraic field extension of F,
(the field of p elements). Then for any p'-group G, the group ring KG is
J-semisimple.

Proof. As before, let {x;} be a (nonempty) transcendence basis for K/F,, and
let F = Fp({x}). By (6.13), F,G has no nonzero nil left ideals. Arguing as in
the proof of (6.12), we see that FG is J-semisimple. Applying (6.14) to the
algebraic extension K/F, it follows that KG is also J-semisimple. = QED

It is perhaps not unreasonable to conjecture that (6.12) and (6.15) both
remain true in the case when K is algebraic over its prime field. To prove
this conjecture, it would suffice to show that, for any group G, QG is J-
semisimple, and that, in case G is a p’-group, F,G is J-semisimple. Once
these cases are known, the general case can be deduced affirmatively from
(5.16) (since a prime field is perfect so all of its algebraic extensions are sep-
arable). In spite of considerable effort, however, this problem has remained
unsolved. Surprising as it might seem, it is the case when K is a prime field
that presents the so far insurmountable difficulties.

In the case of characteristic p, one may also ask for necessary conditions
for a group ring KG to be J-semisimple. One rather obvious necessary con-
dition is that any finite normal subgroup H < G must be a p’-group. For, if
there exists such an H with |H| divisible by p, then the elementa =3, ./
is in the center of KG with «®> = |H|x = 0. But then KG - « is a nonzero ideal
with square zero and so KG is not J-semisimple. However, for KG to be
J-semisimple, it is not necessary that G itself be a p'-group. For instance, if G
is the infinite dihedral group, then G has elements of order 2, but Wallace
has shown that KG is J-semisimple for all fields K of characteristic 2 (cf.
Exercise 14). If G is the group consisting of permutations of an infinite set S
moving only finitely many elements of S, then G has elements of order p for
all primes p, but Formanek has shown that KG is J-semisimple for a/l fields,
independently of their characteristics. Many other similar examples are now
known, leaving not much of a clue as to precisely when group algebras are
J-semisimple over fields of characteristic p.

We now finish this section by studying some other problems concerning
group rings which are related to the J-semisimplicity problem. One of these
is the unit problem, and the other is the zero-divisor problem. These prob-
lems are of interest mainly for the class of torsion-free groups, i.e., groups
without nonidentity elements of finite order.

First let us define the notion of “‘nontrivial units.” In any group ring kG
over a ring k, we always have the units a - g, where ais a unitin k and g € G.
These are called the trivial units of kG; other units of kG are called nontrivial
units. As an example, for any group G with at most four elements, the inte-
gral group ring ZG has only trivial units. To see this, first assume |G| = 2.
Then ZG = Z[1})/(¢* — 1), which is isomorphic to

{(a,b)eZ x Z: a=b (mod2)}.
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Thus, ZG has exactly four units, which are necessarily trivial. The compu-
tations for |G| = 3,4 are similar and are left to the reader. On the other
hand, if |G| = 5, we have seen in (1.4) that ZG has nontrivial units.

For infinite groups, one simple example to keep in mind is that of the
infinite cyclic group G = {x). For any domain k, kG is the ring of Laurent
polynomials k[x, x~'], and an easy degree argument shows that kG has only
trivial units, and is a domain. Repeating this argument, one sees that the
same holds for any finitely generated free abelian group, and hence also for
any torsion-free abelian group. :

In general, for any torsion-free group G and any domain &, the following
are important problems for the study of group rings:

(6.16) Problem U. Are units of kG all trivial?
(6.17) Problem R. Is kG always reduced?

(6.18) Problem D. Is kG always a domain?

(6.19) Problem J. If G # {1}, is kG J-semisimple?

Of course, Problem J is related to the earlier material on J-semisimplicity
in this section, except that we now allow k to be a domain instead of a field.
Note that since G is assumed to be torsion-free, we need not impose the
p'-group assumption on G, even if k has characteristic p > 0. Note also that,
for Problem D to have an affirmative answer, the torsion-freeness of G is a
necessary condition, for if G has an element x of finite order n > 1, then

(x—D(x""+.- - +x+1)=0 inkG

shows that kG has zero-divisors. Indeed, the idea of Problem D is that, if
no such element of finite order is available, then perhaps kG will not have
zero-divisors.

The four problems raised in (6.16)-(6.19) are somewhat interconnected.
The known relationship between the four can be summarized as follows:

R D

7

N
J

Here, U = R means that if the answer to Problem U is “‘yes,” then so is the
answer to Problem R, etc. Since any domain is reduced, the implication
D = R is trivial. The reverse implication R = D is rather deep and requires
substantial work for its proof. We shall postpone this implication, and first
prove the following Proposition which gives the two other implications
U = R, U = J, under much weaker assumptions on k and G.

(6.20) U

(6.21) Proposition. Ler k £ 0 be a ring and G # {1} be a group such that
A = kG has only trivial units.
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(1) If k is reduced and G has no element of order 2, then A is reduced.
(2) A is J-semisimple except when k| = |G| = 2.

Proof. (1) It suffices to show that, for a € 4, > =0 = a = 0. From a? =0,
we have
(l-a)(l4+a)=1-a2=1,

so 1 — « is a unit, and we have | — a = ag for some ae U(k) and g € G. If
g # 1, the equation

0=a2=(l—ag)2= 1 — 2ag + a%g?

gives a contradiction since g # 1 # g2 and hence there is no term to “cancel
out” 1. Thus we must have g=1, whence a =1—-aek. But then
a? =0 = o = 0 since k is reduced. For (2), note that if |k| = |G| = 2, say
G =<{g), then U(4) =G, but rad A ={0,g — 1} # 0, so this case is an
exception. Now assume we are not in this case and let a € rad A. Then the
unit 1 — a has the form ag, where a € U(k) and g € G. We claim again that
g = 1. Assume, instead, that g 1. If |k| > 3, there exists b € k\{0, 1} and

l—ab=1-b+abg
is a nontrivial unit. If |G| > 3, there exits h € G\{l,g™'} and now
l—ah=1-h+agh

is a nontrivial unit. Therefore, we must have g =1, and so a =1 —aek.
Now for any 4 # 1 in G, the unit 1 + ah must be trivial, hence a = 0.
QED

Next we shall try to give an account for the implication “R = D.” The
usefulness of this lies in the fact that, combined with (6.21)(2), it gives
the implication “U = D” which is not so easy to obtain otherwise. For the
proof of “R = D,” we need several group-theoretic lemmata.

(6.22) Lemma. Let G be a group such that the center H = Z(G) has finite
index n in G. Then G is n-abelian; i.é., (ab)" = a"b" for all a,b € G.

Proof (Sketch). The easiest proof of this makes use of the transfer homo-
morphism ¢: G — H/H', where H' denotes the commutator subgroup of H.
Since H is abelian, H' = {1} here, and using the definition of ¢, it can be
seen that ¢(a) = a" € H. Since ¢ is a homomorphism, we have

(ab)" = p(ab) = p(a)p(b) =a"b" e H. QED

For any group G, we define A(G) to be the subgroup of G consisting of
elements g € G with only finitely many distinct conjugates. A(G) is a sub-
group since, for a,b € A(G),

x Yab)x = (x"'ax)(x"'bx) (xe G)
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can take only finitely many values in G. Note that
(6.23) A(G)={geG: [G: Ca(g)] < 0},

and that A(G) is a characteristic subgroup of G, with A(A(G)) = A(G). For
instance, if G is the infinite dihedral group

{a,b: b2 =1, bab™' = a1,

then A(G) is the characteristic subgroup <{a).

A group H is called an f.¢. group (finite conjugate group) if every element
of H has only finitely many conjugates in H. Clearly, any subgroup and any
quotient group of an f.c. group are also f.c. From what we said above, it
follows that, for any group G, A(G) is a normal f.c. subgroup of G. Let us
record the following important consequence of (6.22) for f.c. groups.

(6.24) Corollary. Any torsion-free f.c. group G is abelian.

Proof. For x,y € G, we want to show that xy = yx. Since any subgroup
of G is f.c., we may assume that G is generated by x and y. Then
Z(G) = Cg(x) n Cg(y) has finite index, say n, in G. By (6.22),

n_n.n

Ty = 7D Ty = )T M Ty =1
since x" € Z(G). But G is torsion-free, so x 'y 'xy = 1. QED

A second group-theoretic lemma needed is the following.

(6.25) Neumann’s Lemma. Let H,,...,H, be subgroups in a group G.
Suppose there are finitely many elements a;; (1 <i <m,1 <j <n) in G such
that

o=

n
=1 j=

H,~a,~,-.
1

Then some H; is of finite index in G.

Proof. We proceed by induction on m, the case m =1 being clear. For
m > 2, we may assume that [G : H,] is infinite, so there is a right coset H\b
disjoint from Uj"=l Ha);. Then

m n
Hlb < U U Hiaij,
i=2 j=1
and right multiplication by b 'a) gives
m n
Hya < U U H,~a,~,~b"a|k.
i=2 j=1

This shows that G is covered by a finite number of right cosets of
H,, ..., Hy, so we are done by induction. QED
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Let k be any ring and A be a subgroup of a group G. We can define a
projection map 7 = ns: kG — kA by:

(626) n(z agg) =) ay.

geiG gel

(6.27) Proposition. (a) 7 is a homomorphism of (kA, kA)-bimodules, i.e.

n(a . Zagg-ﬁ) =a u(Zagg)ﬂ
geG geG
for all o, B € kA.
(b) Let N be a right ideal of kG. Then U = n(A) - kG. In particular,
A #0=7n(A) #0.

Proof. (a) follows directly from the definition (6.26). For (b), pick right coset
representatives g; (i € 1) such that G = | J,_, Agi. Then
kG =@ kA -g..
iel
For ye U, write y =Y, , aigi, where o; € kA. Multiplying this from the
right by g; !, we see that «; = n(yg; ') € n(Y) (since A is a right ideal), and
this shows that y e n(U) - kG. QED

The crucial point in the proof of “R = D” is the following ingenious
result of Passman.

(6.28) Proposition. Let k be a ring and G be any group. Let A = A(G) and
n = na. Then for any two elements y,y' € kG, we have

YkGy' = 0= n(y)n(y') = 0 € kA.

Before we prove this Proposition, let us first show how it can be used to
ascertain the implication “R = D” in (6.20).

Proof of “R = D”. In this proof, k denotes a domain, and G denotes a
torsion-free group. We assume that kG is reduced, and proceed to prove that
kG is a domain. Assume, instead, that there exist nonzero y,y’ € kG such
that 'y = 0. For any 7 € kG,

ry')? = yoy'yey' =0,
so yty’ = 0, since kG is reduced. This shows that y kG y’' = 0. Let &t = ma(g).
By (6.27)(b), n(ykG)#0, so =n(yr) #0 for some 7€kG. Similarly,
n(t'y’') # 0 for some 7’ € kG. On the other hand, yz kG t'y' = y kG y’' = 0, so
(6.28) implies that z(yz)n(t’y’) = 0 in kA. But A = A(G) is f.c. and torsion-
free, so by (6.24) it is abelian. By the observation made before (6.16) (or by
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(6.29) below), we know that kA is a domain, in contradiction to the equation
n(yt)n(z'y’) =0. QED

To conclude our arguments, we now present

Proof of (6.28). Here, ¥ and G are arbitrary, and A = A(G). Given
y kG y' =0, it suffices to show that z(y)y’ = 0, for (6.27)(a) will then give
0 = n(n(y)y") = n(y)n(y’). Write y = y, + y,, where

Yo=aiy+---+au, (u, €h),
Vi=bioy+---+bmom (vi¢A), and
Y =cwi+- -+ cawn (w; €G).

Then the subgroup C := (") Cg(u/) has finite index in G since each Cg(u,)
does. Assume that 0 # 7(y)y’ = y,»’ and fix an element g € G which appears
with a nonzero coefficient in y,y’. If v; happens to be conjugate to gwj‘l in G,
we also fix an element g;; € G so that g;;'v;g; = gw; ' If v; is not conjugate to
gwj", we just take g; = 1. The hypothesis y kG " = 0 implies, in particular,
that x~'yxy’ = 0 for every x € C. Since x commutes with each u,, this gives

yoyl = (alul +---+ arur)y,
= —x"'b1vy + - + bm) X (C1Wy + -+ -+ Cawy).

Since g appears on the LHS, we must have g = x~v;xw; for some i, ;. Thus,
v; is conjugate to gw; ', so we have

- -1 —
X 'v,~x = gwj = gij 'vigij;

that is, x € Cg(v;)g;;. Here, x € C is arbitrary, so

Cc U CG(U,‘)g,'j.
ij
Since [G : C] < o, it follows that G itself is covered by a finite number of
right cosets of Cg(vy),...,Cg(vm). This contradicts Neumann’s Lemma,
since v; ¢ A implies that each C¢(v;) has infinite index in G.  QED

Now that we have established the interconnections (6.20) between the
Problems U, R, D, and J, we see that the strongest possible “theorem”
would be an affirmative answer to Problem U, for this would imply affir-
mative answers to all the other problems (for k¥ a domain and G a torsion-
free group). We shall now try to find some classes of groups for which
Problem U has indeed an affirmative answer.

The best known class of such groups is the class of ordered groups. We say
that a multiplicative group G is ordered if there is given a total ordering “‘<”
on the elements of G such that, for any x, y, z € G, we have

x<y=xz<yz and zx<zy.
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A prototype for ordered groups is the multiplicative group R* of positive
real numbers, with its usual ordering. The additive groups Z, Q, and R are
also ordered groups with respect to their usual orderings; each of these can
be order-embedded into R* by the exponential map a — e where e>11In
fact, the exponential map gives an order-isomorphism from R onto R™.

Given an ordering “<”’ on a multiplicative group G, its positive cone P
is defined to be the set of elements x € G with x > 1. This cone has the
following properties:

(1) P-P< P,
(2) G\{1} is the disjoint union of Pand P~! = {x~': xe P};
(3) zPz ' = Pforany z€ G.

Conversely, if we are given a set P = G satisfying these three properties, we
can define ““‘<” by:

x<ye=xlyePe= yx'eP.

It is straightforward to check that “ <’ makes G into an ordered group, with
positive cone P. Because of this, it is often more convenient to define order-
ings on groups by specifying their positive cones.

Note that any ordered group (G, <) is always torsion-free. For, if g > 1,
then

l<g<gi<---,
and if g < 1, then
1>9g>4*>--,

so g" is never equal to 1. However, there exist torsion-free groups which
cannot be ordered. For instance, the group G generated by two elements x, y
with the relation yxy~! = x~! is an extension of Z(= {x)) by Z(= {»)) so it
is torsion-free. But G cannot be ordered since the positive cone of any ordering
on G has to contain one, and hence both, of x, x~!, which is impossible. For
abelian groups, the situation is much better: we shall show a little later that
an abelian group G can be ordered iff G is torsion-free.

We show next that all the problems raised in (6.16)-(6.19) have affirma-
tive answers for the class of ordered groups.

(6.29) Theorem. Let k be a domain and (G, <) be an ordered group. Then
A = kG has only trivial units and is a domain. If G # {1}, A is J-semisimple.

Proof. Consider a product aff where

a=aigi+ -+ Gmgm, N <---<gm ai#0 (1<i<m),
B=bihy 4t bphn, B < <hy b#0 (1<j<n)
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We have g h < g;h;, with equality iff i = j = 1. Thus, the “smallest” group
element appearing in af is g, (with nonzero coefficient a,b,), and similarly
the “largest” one is gmh, (with nonzero coefficient a,b,). In particular,
off #0, and if aff = fa = 1, we must have m =n=1,s0 a = a\gy, f = b\,
with a)b) = bya; =1 in k and g)h) = 1 in G. This proves that A is a domain,
and that A has only trivial units. The last statement of the theorem now
follows from (6.21)(2). (Note that for this proof, we do not need to use the
implication “U = D in (6.20).) QED

As an application of (6.29), we shall give the following complete solution
to the J-semisimplicity Problem for abelian group algebras over fields.

(6.30) Theorem. Ler k be a field and G be an abelian group.
(1) If char k =0, then A = kG is J-semisimple.
(2) If char k = p, then A = kG is J-semisimple iff G is a p’-group.

Proof. First assume that char k = p and 4 is J-semisimple. Then G must be
a p’-group, for if x € G has order p, then ((x - 1)4)”? =0 and rad A 2
(x — 1)4 # 0. Now assume that char k = 0, or that chark =p and G is a
p’-group. To show that kG is J-semisimple, we may assume that G is finitely
generated. For, if o € rad kG, there exists a finitely generated subgroup
Go < G such that a € kGy. Then a € kGy nrad kG < rad kG (see Exercise
3), so it suffices to show that rad kG, = 0. If G is finitely generated, we can
write G = G, x H where G, is the torsion subgroup of G and H is a free
abelian group of finite rank. As is easily verified, 4 = kG is isomorphic to the
group ring RH where R = kG,. Since G, is finite and char k does not divide
its order, Maschke's Theorem (6.1) implies that R is semisimple, and so
R =~ k) x --- x k,, where the k;’s are suitable fields. We have an isomorphism

A=RH = (ky x -+ X kp,)H = kyH x --- x kyH,

so it suffices to show that each k;H is J-semisimple. But H is an ordered
group since H =Z x---x Z can be given the lexicographic ordering.
Therefore, the J-semisimplicity of k;H follows from (6.29).  QED

In view of (6.29), it is of interest to know more examples of ordered
groups. In the proof above, we have seen that a free abelian group of finite
rank can be ordered (say lexicographically). In what follows, we shall prove
two standard results on the orderability of groups:

(1) An abelian group can be ordered iff it is torsion-free (Theorem of
Levi);

(2) Any free group can be ordered (Theorem of Birkhoff, Iwasawa and
Neumann).
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These results lead to more examples of group rings which are J-semisimple
domains. The fact that free groups can be ordered will also prove to be
useful later when we study the problem of embedding free algebras into divi-
sion rings; see (14.25).

(6.31) Theorem. Let G be either a torsion-free abelian group or a free group.
Then G can be ordered. In particular, for any domain k, kG has only trivial
units, and is a J-semisimple domain if G # {1}.

Proof. First assume G is torsion-free and abelian. Then G embeds into

= Q ®z G which is a Q-vector space. Clearly, it suffices to construct a
positive cone P for G,. To do this, we use again the idea of the lexicographic
ordering. Choose a Q-basis {g;: i € I} for Gy, and fix a total ordering “<”
on the indexing set /. Using the additive notation for G,, we can define P to
be the set of elements

a1gi, + - - + angi,,

where i} < --- < ipinTand a, > 0in Q. It is easy to check that P satisfies the
axioms of a positive cone. Therefore P induces an ordered group structure
on G| (and hence on G).
Next assume G is a free group. We shall construct a positive cone on G;
however, this construction will not be entirely self-contained. We have to
invoke the following known properties of the free group G:

(6.32) Magnus—Witt Theorem. Define the lower central series
Go2GVWoGg¥ ...

of a free group G by G\ =[G, G (the commutator group) and G"+V =
[G,G"] (n > 1). Then (,,, G™ = {1}, and each G™ /G"*Y) is free abelian.

For a proof of this, we refer the reader to the book “Combinatorial Group
Theory” (Sec. 5.7) of Magnus, Karrass, and Solitar (Dover, 1976), or the
book “Finite Groups II” (pp. 380-383) by Huppert and Blackburn
(Springer, 1982). Granting this result, we can construct a positive cone P on
the free group G as follows. Since G /G"*Y) is free abelian, there exists a
positive cone P, in G /G("tY) defining on it the structure of an ordered
abelian group. Now let P be the subset of G consisting of all elements g # 1
with the property that, if n is the (unique) integer such that g € G\ G"+V
then the coset gG**!) belongs to P,. Clearly, G is the disjoint union of {1},
P and P7'. It is also easy to check that, for any z € G, z~' Pz < P. For, if
g € G is such that g € G"\G"*!) and gG"*") € P,, then 27 gz € G\ G"+V
and

z'gz=g-¢g7'z77"gze g (G, G"] = gG"*"),
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so z~'gzG'"*! € P,. To complete the proof that P is a positive cone on G, it
only remains to show that P- P < P. Let g, & be elements in P, with

ge G(n)\G(n+l)’ he G(m)\G(m+I)’ and
gG\"*V e P, hG™) € Py,

To show that ghe P, we may assume that m>n. If m > n, then
he G™ < G"*V; in this case gh € G"\G"*") and

ghG(n+|l — gG(n+l) € an

so by definition .gh € P. If m = n, then gG"*"), hG"*") ¢ P, imply that
ghG"™*!) € P,; in particular, gh € G™\G"*") so again ghe P. QED

In the literature on group rings, there are many other classes of groups G
for which one or more of the Problems (6.16)-(6.19) have been shown to
have affirmative answers, especially in the case when k is a field. For an
excellent treatise of these and other related problems over various classes of
groups, we refer the reader to Passman [77].

Exercises for §6

In the following exercises, k denotes a field and G denotes a group, unless
otherwise specified.

Ex. 6.1. Let V be a kG-module and H be a subgroup in G of finite index n
not divisible by char k. Modify the proof of Maschke’s Theorem to show
the following: If V is semisimple as a kH-module, then V is semisimple as a
kG-module.

Ex. 6.2. Let 4 be a normal elementary p-subgroup of a finite group G such
that the index of the centralizer Cg(A) is prime to p. Show that for any
normal subgroup B of G lying in A, there exists another normal subgroup C
of G lying in 4 such that 4 = B x C. (Hint. Consider the conjugation action
of G on A and apply Maschke’s Theorem with k = F,.)

Ex. 6.3. Let G be a finite group whose order is a unit in a ring k, and let
W < V be left kG-modules.

(1) If W is a direct summand of V as k-modules, show that W is a direct
summand of ¥ as kG-modules.

(2) If Vis projective as a k-module, show that V'is projective as a kG-module.

Ex. 6.4. (This exercise is valid for any ring k.) For any subgroup H of a
group G, show that
(*) kHNUkG)< UkH) and kH nrad kG < rad kH.

Deduce that, if kH is J-semisimple for aﬁy finitely generated subgroup H of
G, then kG itself is J-semisimple.

Ex. 6.5. (Amitsur, Herstein) If k is an uncountable field, show that, for any
group G, rad kG is a nil ideal. (Hint. Use Exercise 4 above and (4.21).)



§6. Group Rings and the J-Semisimplicity Problem 99

Ex. 6.6. Let H be a normal subgroup of G. Show that I = kG - rad kH is an
ideal of kG. If rad kH is nilpotent, show that I is also nilpotent. (In partic-
ular, if H is finite, / is always nilpotent.)

Ex. 6.7. (For this Exercise, we assume Wedderburn’s Theorem that finite
division rings are commutative. A proof of this theorem will be given in
(13.1).) Show that if ko is any finite field and G is any finite group, then
(koG/rad koG) ®, K is semisimple for any field extension K = ko.

Ex. 6.8. Let k = K be two fields and G be a finite group. Show that
rad(KG) = (rad kG) ®, K

(Hint. It is enough to treat the case where k has characteristic p > 0. From
Exercise 7, deduce that, in this case, rad(kG) = (rad F,G) ®¢, k, and
rad(KG) = (rad F,G) ®¢, K.)

Ex. 6.9. Let k = K and G be as above. Show that a kG-module M is semi-
simple iff the KG-module MX = M ®, K is semisimple.

Ex. 6.10. Let k be a commutative ring and G be any group. If kG is left
noetherian (resp. left artinian), show that kG is right noetherian (resp. right
artinian).

Ex. 6.11. (Holder’s Theorem) An ordered group (G, <) is said to be archi-
medean if, for any a,b > 1 in G, we have a < b" for some integer n > 1.
Show that if (G, <) is archimedean, then G is commutative and (G, <) is
order-isomorphic to an additive subgroup of R with the usual ordering. ~

Ex. 6.12. Assume char(k) = 3, and let G = S; (symmetric group on three
letters).

(1) Compute the Jacobson radical J = rad(kG), and the factor ring kG/J.
(2) Determine the index of nilpotency for J, and find a k-basis for J' for
each i.

(The case where char(k) =2 will be covered by the first part of the next
exercise.)

Ex. 6.13. (Passman) Assume char k = 2. Let A be an abelian 2’-group and
let G be the semidirect product of 4 and a cyclic group {x) of order 2, where
xactson Abya— a'.

(1) If |4| < oo, show that rad kG =k -3_ . ;9, and (rad kG)? =

(2) IfA4is inﬁnite, show that kG has no nonzero nil ideals.

(Hint. Any element in kG can be expressed in the form a + fx, a, f € kA. For
A=Y yeq %aackA, leta =3 a,a”'; then xa = a’x. Let I be any nil ideal
in kG. If a + Bx eI, show that (a + Bx)(a* + x8°) = aa* +ﬁ(B and con-
clude that aa* = BB*. Then show that (a + fx)™ = (a + «*)™ " (« + fx) and
deduce a = a*.)

Ex. 6.14. (Wallace) Assume char k = 2, and let G = A4 - (x) as in Exercise
13, where A is the infinite cyclic group (). (G is the infinite dihedral group.)
Show that R = kG is J-semisimple (even though G has an element of order
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2). (Hint. Let H; = (y*)> (1 <i < o0) and note that G; = G/H; is a dihedral
group of order 2 - 3/, Show that ¢: kG — []2, kG; 1s injective. By part (1) of
Exercise 13, (rad kG; ) = 0. Deduce that (rad kG) = 0 and conclude from
part (2) of Exercise 13 that rad kG = 0.)

Ex. 6.15. (Dietzmann's Lemma) Let G be a group generated by x,...,x,
where each x; has finite order and has only finitely many conjugates in G.
Show that G is a finite group.

Ex. 6.16. (1) Let G be a group such that [G: Z(G)] < co. Show that the
commutator subgroup [G, G] is finite.
(2) Let G be an f. c. group, i.e. each g € G has only finitely many conjugates
in G. Show that [G, G] is torsion. If, moreover, G is finitely generated, show
that [G, G] is finite.
Ex. 6.17. For any group G, let
A(G)={geG: [G: Cs(g)] < @}, and

A*(G) = {g € A(G): g has finite order}.
(1) Show that A*(G) is a characteristic subgroup of G and that A*(G) is the
union of all finite normal subgroups of G. (Hint. For a,b € A*(G), Exercise
15 shows that the conjugates of @ and b generate a finite normal subgroup of
G) .
(2) (B.H. Neumann) Show that A(G)/A™(G) is torsion-free abelian. (Hint.
A(G)/A*(G) is torsion-free and f.c. Apply (6.24).)

Ex. 6.18. A total ordering “<” of the elements of a group G is said to be a
right ordering of G if x < y = xz < yz for any x, y, z € G. Show that Theo-
rem (6.29) remains valid as long as the group G can be right-ordered.

Ex. 6.19. For any von Neumann regular ring k, show that any finitely gen-
erated submodule M of a projective k-module P is a direct summand of P
(and hence also a projective k-module). (Hint. Reduce to the case where P is
a free module )k @ --- @ e,k. Map M to e,k by coordinate projection, and
induct on n.)

Ex. 6.20. Show that the conclusion of the last exercise is equivalent to the
fact that, if k is a von Neumann regular ring, then so is M, (k) for any n > 1.

Ex. 6.21. (Auslander, McLaughlin, Connell) For any nonzero ring k and
any group G, show that the group ring kG is von Neumann regular iff & is
von Neumann regular, G is locally finite (that is, any finite subset in G gen-
erates a finite subgroup), and the order of any finite subgroup of G is a unit’
in k. (Hint. For the “only if” part, use the fact that, if h,..., A, generate a
subgroup H < G, then

> kG- (h- 1)—21(0 (ki —1).

heH
The “if”” part can be deduced from Exercnse 19 and (1) of Exercise 3.)



CHAPTER 3

Introduction to Representation Theory

After studying the J-semisimplicity problem for the group ring in the last
chapter, a natural topic to discuss next will be the representation theory of
groups. We have already explained, in the introduction to §6, how ring
theory may be brought to bear on group representation theory by viewing
representations as modules over group rings. From this viewpoint, many
facts in the representation theory and character theory of finite groups can
be deduced from facts concerning modules over finite-dimensional algebras.
This ring-theoretic approach to group representation theory was first effec-
tively used by Emmy Noether, and subsequently greatly popularized by her
disciples and followers.

In this chapter, we shall give a short introduction to representation theory,
from the ring-theoretic (and module-theoretic) perspective. Our goal will be
to illustrate the role played by the methods of ring theory in the development
of the representation theory of finite groups. In the beginning section, we
first study more generally modules over finite-dimensional algebras, and
establish the basic facts about irreducible modules, scalar extensions and
splitting fields. In the second section, we specialize these facts to group
algebras and develop the rudiments of group representation theory and
character theory. The results obtained from representation theory are, in
turn, applied to obtain ring-theoretic information about group algebras, e.g.,
the structure of their unit groups and idempotents. In the final section of the
chapter, we make a short excursion into the theory of linear groups over a
field k. Here, the groups G studied may no longer be finite, but the role of the
group algebra kG may often be replaced by that of the finite-dimensional k-
algebra spanned by G in an appropriate matrix algebra. Thus, the tools of
ring theory still prove to be effective in analyzing the structure of G. We
shall study in this section some classical results of Burnside, Schur, Lie and

101



102 3. Introduction to Representation Theory

Kolchin, using a combination of techniques from group theory, ring theory
and linear algebra. Throughout this exposition, the notion of the Jacobson
radical of a ring plays a fundamental role.

§7. Modules Over Finite-Dimensional Algebras

The module theory we shall develop in this section is essentially a refinement
or elaboration of the general structure theory of semisimple rings given in
Chapter 1. In the category of finite-dimensional algebras, certain aspects of
this structure theory can be made somewhat more explicit. Therefore, we can
often expect to get sharper results for finite-dimensional algebras than for
artinian rings. It is true that many such results can eventually be generalized,
in one form or another, to artinian rings. However, at this early stage, it
seems best not to worry about these generalizations so that we can focus our
attention on finite-dimensional algebras (and their modules).

Throughout this section, k denotes a field whose characteristic is arbitrary,
unless stated otherwise. We shall consider finite-dimensional k-algebras, usu-
ally denoted by R, with Jacobson radical rad R. Note that subalgebras and
quotient algebras of R are all finite-dimensional; hence they are left and right
artinian rings. In particular, by (4.14), R := R/rad R is semisimple, so the
structure theory developed in §3 applies to R.

(7.1) Notation. Let R = B) x --- x B, be the decomposition of R into simple
components, and let M; (1 < i < r) be the unique simple left module over B;.
Then My, ..., M, form a complete set of (isomorphism classes of ) simple left
R-modules; by (4.8), they form a complete set of simple left R-modules. Let

D; = End(B‘M,') = End(RMi)v

and n; = dimp, M;. By the Wedderburn theory, B; = End(Mi)D, =M, (D;).
(Recall that elements of D; are composed as right operators on M, so that we
can avoid forming opposite rings in applying the Wedderburn theory.) We
have then

R=M, (D) x - x My (D,), and
ﬁRE”]MI ® - ®nM,

The important thing to note here is that each of the objects above has a
natural structure as a k-vector space, and as such, it is finite-dimensional. In
particular, B; and D; are finite-dimensional k-algebras. For later reference,
we record the following useful facts.

(7.2) Propeosition. In the notation of (7.1), we have
(1) di'nk M,' =n; dimk Di.
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(2) dimy R = dimy rad R+ Y_]_, n? dimy D;.

1

(3) The natural map R — End(M,), is onto.

In the special case when D; = k, the last part of the Proposition amounts
to the following classical fact.

(7.3) Burnside’s Lemma. Let M be a finite-dimensional right k-vector space
and A be a k-subalgebra of End( M) such that M is simple as a left A-module.
IfEnd(AM) =k, then A = End(M,).

In general, the D;’s are (finite-dimensional) k-division algebras, by Schur’s
Lemma. The extent to which we can determine the structure of D; would
largely depend on the nature of k. The easiest case is when k is an algebrai-
cally closed field. In this case D; must be k itself (for, if d € D;, then k[d] is a
finite field extension of k, and hence d must be in k). Consequently, we have

R = Mnl(k) XX Mm(")v
and (7.2) simplifies to dim, M; = n; and

dimy R = dimy rad R + En,z
- =l
Also, in (7.3), the condition End(4M) = k is automatic and therefore can be
removed: this gives in fact Burnside’s Theorem in its original form.

Without any condition on k and M, of course D; may not be equal to k.
To give an example, let k = Q and consider R = QG where G = {(g) is the
cyclic group of order 3. Let M = Q(w) where w is a primitive cubic root of
unity. Via the surjection QG — Q(w) (sending g to w), M becomes a (left)
simple R-module. Clearly D = End(gM) is given by right multiplications of
Q(w), so D =~ Q(w) 2 Q.

We might also consider the converse question: Let M be a left R-module;
if End(rM) =k, is RM necessarily simple? In general, the answer to this
question is “no.” For instance, let R be the ring of upper triangular matrices

{(g ﬁ )} over k, and let M = k?, viewed as a left R-module by matrix

multiplication. If a k-endomorphism on k2 given by (x y) commutes
. 2 b ' z w
with all 0 o) 2measy computation shows that y=2z=0and x=w.
d
Therefore End(gM) =k, but gM is not simple, as {(0): dek} is a

proper R-submodule. The question raised above has an affirmative answer
only if we are willing to add more conditions. For instance, if gM is
semisimple, the answer becomes “yes.” In fact, if M = M'@® M" with
M' # 0 #* M", then the endomorphism of M obtained by projecting M to
M’ is clearly not a scalar multiplication.
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The simple R-modules M with the property that End(gM) = k are of
special significance. Our next goal will be to characterize these modules.
We first need some notations. Let K 2 k be an extension of the ground
field k. Then we have the K-algebra RX := R®, K obtained by ‘scalar
extension.” For any (left) R-module M, we also have a scalar extension
M¥ := M ®, K, which is a (left) RX-module via the action

(r®a)(m®b) =rm® ab.

The following fact about homomorphisms between extended modules is of
fundamental importance.
(7.4) Lemma. Let R be a k-algebra (not necessarily of finite dimension over k)
and let M, N be left R-modules, with dimy M < co. Then the natural map

6: (Homg(M,N))X — Homg«(M* N¥)
is an isomorphism of K-vector spaces.
Proof. Let {a;:ie I} be a k-basis of K. Then MX has a decomposition

@,(M ®a;), and similarly for NX. Consider an R*-homomorphism
f: M¥ — NX Then

Sf(m®1) Zg: m) ® a;

where g;: M — N are uniquely determined k-linear maps. We claim that
each g; is an R-homomorphism. To see this, let re R and m € M. On the one
hand, we have

frm@1) =" gi(rm) ® a;;
on the other hand,

Sim@ 1) =f((r®1)(m®1))
=@ (T amea)
—‘ngl ) ® a;.

This implies that g;(rm) = rg;(m), so g; € Homg(M, N) for all i. Also, since
dimy M < oo, it is easy to see that only a finite number of the g;’s can
be nonzero. Thus g:= > gi ®a; makes sense, and g is an element of
(Homg(M,N))* which maps to f under the natural map. 6. This shows
the surjectivity of #. For the injectivity of 6, note that any element in
(Homg(M,N))* can be written in the form Y ,fi®a; where fie
Homg(M, N). If this maps to zero under 6, then

o:Eo(f,.opa,)(m@ 1) =Zf}(m)®ai
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implies that fi(m) =0 for all me M, and therefore }_,f; ® a; = 0. (This
argument does not depend on the finite dimensionality of M.)  QED

We are now ready to characterize the simple R-modules M with
End(gM) = k.

(7.5) Theorem. Let R be a k-algebra (not necessarily finite-dimensional), and
let M be a simple left R-module with dim; M < . The following statements
are equivalent.

(1) End(gM) = k.

(2) The map R — End(M,) expressing the R-action on M is surjective.
(3) For any field extension K 2 k, MX is a simple RX-module.
4)

4) There exists an algebraically closed field E 2 k such that ME is a
simple RE-module.

If one (and hence all) of these conditions holds, we say that M is an absolutely
simple (or absolutely irreducible) R-module.

Proof. Clearly (3) = (4), so it suffices to show
@=(1)=2)=3).

Assume (4) holds. Since E is algebraically closed, this implies that
Hompge(ME, ME) = E and therefore, by (7.4), Homg(M, M) = k. (Actually
this uses only the trivial injectivity part of (7.4). The nontrivial surjectivity
part will be used a bit later.) Next, (1) = (2) follows from Burnside’s Lemma
(7.3). Now assume (2). To prove (3), we may replace R by End(M;). If
M; = k", we can then identify R with the full matrix algebra M, (k). With
these identifications, we have MX = K” and RX = M, (K), so MX is a (left)
simple RX-module, as desired. = QED

Next we introduce the important notion of a splitting field. The algebras to
be considered in the rest of this section will be assumed to be finite-
dimensional.

(7.6) Definition. Let R be a (finite-dimensional) k-algebra. We say that a
field K 2 k is a splitting field for R (or that R splits over K) if every left
irreducible RX-module is absolutely irreducible.

Strictly speaking, the K above should be called a left splitting field, since
we use left R-modules in its definition. The following characterization, how-
ever, shows that this notion is left-right symmetric, so the distinction will not
be necessary.
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(7.7) Theorem. In the notation of (7.6), K is a (left) splitting field for R iff
RX [rad(RX) is a finite direct product of matrix algebras over K.

Proof. To simplify the notation, we may as well take K = k. If each
irreducible R-module A, is absolutely irreducible, then by (7.5), each
D; = Endgr(M;) is k so R/rad R is a finite direct product of matrix algebras
over k. The converse is proved similarly. QED

In a similar vein, we also have the following characterization whose easy
proof is omitted.

(7.8) Corollary. A k-algebra R splits over k iff
dimy R = dimy(rad R) + > _(dimi M;)?,
where { M} is a full set of simple left R-modules.

Note that any k-algebra R has a splitting field: in fact, R always splits over
E, the algebraic closure of k. The following proposition reduces the consid-
eration of splitting fields to the case of semisimple algebras.

(7.9) Proposition. An extension K = k is a splitting field for R iff it is a split-
ting field for R := R/rad R.

Proof. Since we assume dimy R < oo, (5.14) implies that
(rad R)* < rad(R¥).
Therefore, the radical of
RX =~ R¥/(rad R)®

is given by rad(RX)/(rad R)*, and so the simple left modules over RX are
the same as those over RX /rad(RX), or those of RX. The Proposition now
follows immediately from the definition of a splitting field. @~ QED

In applications, it is often convenient to work with splitting fields which
are finite-dimensional over k. The following Proposition guarantees that
such splitting fields do exist if the ground field k is a perfect field.

(7.10) Propesition. Any algebra R over a perfect field k splits over some finite
extension K of k. ’

Proof. By (7.9), we may assume that R is semisimple. Since k is perfect, the
algebraic closure E of k is separable over k and therefore, by (5.16), RE is
semisimple. By Wedderburn’s Theorem, Rf is a finite direct product of
matrix algebras over E. The matrix units defining such a decomposition,
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being finite in number, lie in RX for some K < E of finite degree over k.
Therefore, RX is a finite direct product of matrix algebras over K, and so K
is a splitting field for R. ~ QED

(7.11) Remark. In the proof above, the hypothesis that k be perfect was only
used to see that R is semisimple. Therefore, the Proposition is valid for any
semisimple k-algebra R for which R remains semisimple, where E is the
algebraic closure of k. Such algebras are called separable k-algebras; we shall
not digress to discuss their further properties here.

In elementary field theory we have the notion of a splitting field for a
polynomial. Our definition (7.6) for the splitting field of an algebra is, in fact,
a generalization of this. To see the connection, let f € k[tf] be a polynomial
over k, and let R be the quotient ring k[t]/(f), viewed, as usual, as a finite-
dimensional k-algebra.

(7.12) Proposition. An extension K 2 k is a splitting field for the algebra
R = k[1]/(f) iff K is a splitting field for f in the sense of field theory.

Proof. Let f = f" --- £ be a factorization of f into irreducible factors in
K[1]. Then

R®K = KI/(f - ) = T] K/ (™)
i=1
and so
RX frad(R¥) = ] KI1/(f).
=1

Here K; := K[t]/(f;) are field extensions of K with [K; : K| = deg f;. By (7.7),
K is a splitting field for R iff K; = K for all i. This is the case iff all f;’s have
degree 1, i.e., iff f splits completely in K.  QED

Next we prove a result relating the simple modules of an algebra R to
those of the extended algebra RX.

(7.13) Proposition. Let R be a k-algebra and K = k be a field extension.
Then:

(1) any simple left RX-module V is a composition factor of MX for some
simple left R-module M; and

(2) if My, M; are non-isomorphic simple left R-modules, then MX and MX
cannot have a common composition factor.

Proof. (2) Let R/rad R = B, x --- x B, be the decomposition of R/rad R
into its simple components. We may assume that M; is the unique simple
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module of B, (i = 1,2). Let a; € R be chosen such that @, in R/rad R is the
unit element of B). Then a) ® 1 acts as the identity on any composition
factor ¥, of M, and acts as zero on any composition factor V, of M¥.
Clearly, this implies that V| # ¥, as RX-modules. To prove (1), let

O0=l<---<l,=R
be a composition series of the left regular module gR. Then
0=Ifc .- cIX=RX

is a filtration of the left regular module RX. Any simple left RX-module V is
a composition factor of the latter, so ¥ is a composition factor of some
X 1K = (1, /)%, QED

The following Proposition gives some of the nice properties of a splitting
field.

(7.14) Proposition. Ler K 2 k be a splitting field for the k-algebra R. Let
{Vi.....V} be a full set of left simple RX-modules. Then for any field
LK {VE...., VLY is a full set of left simple R:-modules. In particular, L
is also a splitting field for R.

Proof. By the definition of a splitting field, vk,..., VL are simple modules
over R’ and by (7.13)(2), these are mutually nonisomorphic. (Another way
to see the latter is to use (7.4).) By (7.13)(1), each simple R‘-module is iso-
morphic to one of V1, ..., V,L. This proves the first statement in the Propo-
sition. Since each V! is clearly absolutely irreducible, it follows that L is a
splitting field for R.  QED

Next we would like to derive some general results on the number of simple
modules over an algebra R. These results will have nice applications in the
next section when we try to determine the number of irreducible representa-
tions of a finite group over a splitting field. We shall, however, formulate our
results with sufficient generality so that they are meaningful over arbitrary
fields (see (7.17)).

First we give a general definition. For any ring R, and elements a,b € R,
let [a,b] denote the element ab — ba: this is called the additive commutator
(or sometimes Lie product) of the elements a,b. The additive subgroup of
R generated by all [a,b] is denoted by [R, R]. If R is a k-algebra where k
is a commutative ring, then [R, R] is a k-submodule of R. In general, (R, R]
is neither a left nor a right ideal of R. Some properties of [R, R] are as
follows.

(7.15) Lemma. Let R be a ring of characteristic p, where p is a prime. Let
S =[R,R]. Then
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(1) Foranyay,...,a,€ R, (@1 +---+a,)” =a’ +---+a?" (mod S) for
allr > 0.
(2) seS=sP eSforallr>0.
Proof. Clearly it suffices to prove (1), (2) for r = 1. If S were an ideal, (1)
would follow easily by working in the quotient ring R/S of characteristic p.
Since S may not be an ideal, we have to argue more carefully. Regarding
ay,...,a, as (noncommuting) symbols, the expansion of (aj + -+ a,)?
consists of n? distinct words of length p in ay,...,a,. The cyclic group G
of order p acts on these words by cyclic permutations. Using the definition of
S, we see easily that two words in the same orbit are always congruent
modulo S. Now there are exactly n singleton orbits, consisting, respectively,

ofaf,...,af. The other orbits are of cardinality p.' Summing over each orbit
in R, we get modulo S an element of p - R = 0. Thus,

(@ +---+am)’ =al +---a? (mod S).
Finally, let s = }"(a;b; — b;a;) € S. Modulo S, we have

sh = Z(aibi - biai)P

=) ((aibi)’ - (bia)").
= Z(d,’ . (b,~a,~)P" b; — (biai)p_lbi . ai)’
Therefore, s” € S. QED

(7.16) Lemma. Let R = M, (k) where k is a commutative ring. Then
[R,R] = {M € M,(k): tr(M)=0}.
Proof. The inclusion “<” follows from the observation that tr(MN) =

tr(NM). To prove the reverse inclusion, let S = [R, R}, and let {E;} be the
matrix units. If i # j, we have

E,:,' = E,','E,‘j - E,']'E,',' € S, and
E,’ - E.U = E,_,E}, — E},E,j eS.

Noting that S is a k-module, we have, for any M = (a;;), the following
congruence:

M= Za.,E., Za,, Ei=)_aiEn (mod 5).

In particular, if tr(M ) =0, thisimplies M e S. QED

! The number of nonsingleton orbits is (n” — n)/p. This, incidentally, gives another proof of
Fermat’s Little Theorem: n? = n (mod p).
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Using (7.16) (but not (7.15)), we can derive the following result on the
number of simple modules over a k-algebra R, in the case when k is a split-
ting field for R.

(7.17) Theorem. For a finite-dimensional k-algebra R, let
T(R)=rad R+ [R,R).
If R splits over k, then the number of left simple R-modules (up to isomor-
phism) is dim; R/T(R); moreover, T(R) contains all nilpotent elements of R.
Proof. Let R = R/rad R. Since [R, R] maps onto [R, R] under the projection
map, we have
dimy R/T(R) = dim; R/[R,R).
By (7.7),
R=A,x - x4,

where each 4, is a me_ltri_x algebra over k, and r is the number of simple left
R-modules. Clearly [R, R] = []/_,[4i, 4], so

() R/|R,R) = ﬁAi/[Ai.Ai].
i=1

Each factor on the RHS has k-dimension 1 by (7.16). Therefore, taking k-
dimensions in (1), we have r = dim; R/[R, R]. The last conclusion follows
from (7.16) since any nilpotent matrix over k has trace zero. = QED

From (7.17), we can deduce the following result which is valid over any
field k.

(7.18) Corollary. Let R be a k-algebra and K 2 k be a splitting field for R.
Let r (resp., r') be the number of simple left R-modules (resp., RX-modules).
Thenr <r' <dim; R/T(R).

Proof. The first inequality follows from (7.13)(2). For the second inequality,
note that, by the theorem above, r’ = dimx RX /T(RX). Since
[R,R® < [R¥,RX] and (rad R)* < rad(R¥),
we have T(R)X = T(RX) and so
r' = dimyx R¥/T(RX) < dimx R®/T(R)¥ = dim, R/T(R). QED
To conclude this section, we shall discuss briefly the notion of characters.
For any (finite-dimensional) k-algebra R and any (left) R-module M of finite

dimension over k, we can associate a function y,.: R — k defined by
xm(a) = tr(a), where, for any a € R, 1r(a) denotes the trace of the linear
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transformation on M given by left multiplication of a. Clearly, y,, is a k-
linear functional on R: it is called the character associated with the R-module
M. Note that if we have an exact sequence of R-modules

0>M >M—->M' >0

each of which is finite-dimensional over k, then, computing the traces using
suitable bases on the three modules, we get x,, = xp + X+ In particular,
the composition factors of a module M, counted with multiplicities, com-
pletely determine the character y,,. The converse of this is also true, in the
characteristic zero case: this is the next result.

(7.19) Theorem. Ler R be a k-algebra where char k = 0, and let M be a left
R-module with dimy M < co. Then y,, completely determines the composition
factors of M, counted with multiplicities. More precisely, if M, M' are R-
modules (of finite k-dimensions) with x,; = X, then M and M' have the same
composition factors, counted with multiplicities; if M and M’ are both semi-
simple, then in fact M =~ M'.

Proof. Using the notation of (7.1), suppose M; (1 < i < r) occurs as a com-
position factor for M with multiplicity m; > 0. Then

M= Zmixﬂ.rl,v
i=1

and our job is to show that y,, determines the integers {m,...,m,}. Let
aj € R (1 <i <r) be chosen such that g; in R/rad R is the identity of the ith
simple component of R/rad R. Then a; acts as zero on M; for j # i, and acts
as the identity on M;. Computing the character y,, on a; we have
xm(ai) = m; dimp M;. Since char k = 0, this gives

m; = xp(ai)/dime M;

in k, and therefore the same equation holds in Q, for 1 <i < r. The rest is
clear. QED

Without the assumption that M be semisimple, y,, will not determine the
isomorphism class of M, even in characteristic 0. For instance, over the two-
dimensional k-algebra R = k|f]/(t?), the module M = ke, ® ke, with the -
action f(e)) = e;, t(e2) = 0 has character y,, given by y,,(a + bt) = 2a for
a,b € k. The module M’ = k? with the trivial t-action has the same charac-
ter, but clearly M % M’. If the characteristic of k is p > 0, then y,, need not
determine the composition factors of M; in fact, it may not even determine
dimy M. For instance, let M, M> be nonisomorphic simple R-modules.
Then

M=M® &M,

M=M®® - dM
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(p copies each) both have zero characters, but they may have different di-
mensions, and they do not even have a composition factor in common.
We do have the following result which holds in any characteristic.

(7.20) Theorem. Let M, M’ be modules over the k-algebra R, with M abso-
lutely irreducible over R. Assume either (1) dimy M = dimy M’ or (2) M’ is
irreducible. Then M = M' iff s = xps--

Proof (“'If” part). Using again the notation of (7.1), let us assume M = M,
and that, for any i/, M, occurs as a composition factor of multiplicity m; in
M’. Since M is absolutely irreducible, the map

R — B, = End(M)),

is a surjection. Pick a € R such that a projects to a k-endomorphism of trace
1 in B, and projects to zero in B, = End(M;), fori > 2. Then

1 =ypla) = xp(a) = ZleMi(a) =myy(@a)=m -1
i=1

in k. In particular, as an integer, m; > 1. If we assume either (1) or (2), this
clearly forces my = --- =m, =0 and m; = 1. Therefore M’ = M, = M.
QED

(7.21) Corollary. Let R be a k-algebra which splits over k. Then two simple
R-modules are isomorphic iff they have the same character.

Throughout this section, we have focused our attention essentially on
irreducible (and absolutely irreducible) modules over algebras. If the algebra
in question happens to be semisimple, this would give a fairly complete pic-
ture of the module theory over the algebra. But if the algebra is not semi-
simple, what we did in this section will certainly nor be enough to reveal
the general behavior of the modules over the algebra. In the nonsemisimple
case, the role of the irreducible modules is to be replaced by that of the
indecomposable modules. (A nonzero module is said to be indecomposable
if it is not a direct sum of two nonzero submodules.) The classification of
indecomposable modules over an algebra is an extremely complicated task
which is beyond the scope of this book. We shall, however, study some of the
basic facts on indecomposable modules in a later section, in the more general
setting of artinian rings. To conclude this section, let us give some examples.
of indecomposable modules over finite-dimensional algebras. In particular,
we shall see that such algebras may have infinitely many mutually non-
isomorphic indecomposable modules.

First we consider 2-dimensional algebras (over a field k). Such an algebra
R has the form k[x]/(g(x)) where ¢g(x) is a monic quadratic polynomial. If
g(x) is irreducible in k[x], R is a quadratic field extension of &, so the only
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indecomposable R-module is gR. If g(x) = (x — a)(x — b) where a # b in k,
then R = k x k is semisimple, and the indecomposable R-modules are just
the simple R-modules, of which there are two, up to isomorphism. Finally, if
g(x) = (x — a)* where a € k, then

R = k[x]/(x — a)* = k[x]/(x?).

We shall see below that R also has precisely two indecomposable modules.

Consider more generally R = k[x]/(x"). A finitely generated R-module is
just a finite-dimensional k-vector space equipped with an endomorphism 1
with " = 0. By the Jordan Canonical Form Theorem, any such R-module is
isomorphic to ny M, @ --- ® n,M,, where

M; = R/(%') =k[x]/(x") (1<i<r),

and the nonnegative integers ny,...,n, are uniquely determined. In particu-
lar, M, ..., M, are the only indecomposable R-modules.

While a 2-dimensional algebra can have at most two indecomposable
modules, algebras of dimension > 3 may have infinitely many indecompo-

sable modules. In the following, we shall work with the algebra R with two
commuting generators a, f, subject to the relations

a?=p*=af=0.

We have dim; R =3, as {1,a,8} is a k-basis of R. Define an R-module
M = M3, of k-dimension 2n+1 by M = U @ V, where U has basis
Uy, - .., un, V has basis vy, ...,v,, with

a(U)=0, B(U)=0,
a(v;i) =uw; and P(v;) =uiy fori>1.

Similarly, ‘define an R-module M = M, by M = W @ V, where W has
basis wi, ..., w,, V has basis vy, ..., v,, with
a(W)=0, B(W)=0, a(v;)=w,
B(v;)=wi_y fori>2, and pf(v)=0.

Here we used the notation M for M,,, since M is easily seen to be iso-
morphic to M /kuy.

(7.22) Proposition. M = M,,,, and M = M, are both indecomposable
modules over the 3-dimensional commutative algebra

R=k{a,B: a® = p* = aff = fa = 0).

In particular, R has indecomposable modules in every positive dimension.

Proof. To prove the indecomposability of M, we first make the following
observation: ’
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(7.23) If S is any nonzero k-subspace of V, then S & aS.

In fact, let m be the largest integer such that S < kv, + - - - + kv,. Then there
exists a vector s = amvm + - - - + a,v, with a,, # 0. But then

Bs = amum_1 + -+ - + @y ¢ aS,

as oS < kup + - - - + ku,. Next, for any nonzero R-module N = M, we claim
that

dim N > 1 + 2 dim =n(N),

where 7 is the projection of M onto V with respect to the decomposition
M = U @® V. To prove this, we may assume that S := z(N) # 0. Since «,f
act as zero on U, we have aS = aN = N and S = N = N. On the other
hand, aS + S < U, so n induces a surjection N/(aS + S) — S. Therefore,
by (7.23):

dim N > dim(aS + BS) + dim S
>1+dmaS+dmS
=14+2dimS.

as claimed. If M = N ® N’ where N, N’ are nonzero R-submodules, then
S+ S8 =V forS':=na(N'), and we have

dim N +dim N' > 2 + 2(dim S +dim S') > 2 + 2n,

a contradiction. Next we try to prove the indecomposability of M = M, =
W @ V. Here we let 7 be the projection of M onto ¥ with respect to this
k-decomposition. Suppose we have a decomposition M = N @ N’, where
N,N' are nonzero R-modules. Let S =#(N) and S’ =#(N'). If either
BS & aS, or BS' & aS’, or dim S + dim S' > n, we will get a contradiction as
before. Therefore, we- may assume that BS < aS, fS’' < aS’, and that
V=S®S'. We claim that §,S’ are both nonzero. Indeed, if say, S' =0
and S =V, then

NcW=aV=aS=aN< N,

a contradiction. Therefore, W = aV = aS @ aS’ is a decomposition of W
into nonzero k-subspaces. Let A be the k-endomorphism of W defined
by A(w;)=w;y for i>2, and A(w;) =0. Then A(aS)=pS < aS and
AMaS') = BS’ < aS’. Therefore W =aS @ aS’ is a decomposition of W
into a direct sum of two nonzero k[]-modules. This is impossible since
k(2] = k[x]/(x"), and, as k[4]-module, W = k[1] is indecomposable.

QED

Next we shall construct a family of 2-dimensional indecomposable mod-
ules over R. For any element a € k, define the R-module M(a) as follows:
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M(a) = kw @ kv, with action
aw=0, av=w, and Bw=0, pv=aw.

1 0 a .
0) and f— (0 0) with respect

to the ordered basis {w, v}. Note that the module M> considered in (7.22) is
Jjust M(0).

. . 0
In matrix notation, we have a — 0

(7.24) Proposition. For any a € k, M(a) is an indecomposable R-module. If
a #a' ink, then M(a) £ M(a’) as R-modules.

Proof. The first assertion is clear, since « and f must act trivially on an R-
module of k-dimension 1. Now assume h: M(a) — M(a’) is an R-module
isomorphism. We represent M(a’) as kw’ @ kv’ with

aw' =0, av’'=w', pw' =0, and B’ =a'w'

Say
h(w)=bw' +cv' and h(v) =dw' +ev'

Then h(aw) = ah(w) gives 0 = a(bw’ + cv’) = cw’, so ¢ =0. With this,
h(av) = ah(v) gives bw' = a(dw' + ev’) = ew’, so b =e. Finally, h(fv) =
Bh(v) gives ’

abw' = B(dw’ + ev') = ea'w'.

Since (l: ‘:) = ((I; ‘:) is invertible, we have b =¢ # 0, and hence
a=d. QED

The Proposition above shows that the cardinality of isomorphism types
of indecomposable 2-dimensional R-modules is at least as large as the car-
dinality of k. In particular, if k is an infinite field, R has infinitely many
mutually nonisomorphic 2-dimensional indecomposable modules. Note that
Mj,u41, M), and the M(a)’s may also be viewed as modules over the finite-
dimensional commutative algebras k[x, y]/(x",y*) for r,s > 2. Now consider
the elementary p-group G with two generators f, g, and let k be a field of
characteristic p. Then

kG = k[X, Y]/(X? —1,YP — 1) = k[X, Y]/((X = 1)?,(Y = 1)P).

Since (by a ‘“‘change of variables™) this is isomorphic to k[x, y]/(x?, y?), it
follows that kG has indecomposable modules in every positive dimension,
and that it has mutually nonisomorphic indecomposable 2-dimensional
modules M (a) given by the matrix representations:

11 1 a
f”(o 1)’ and g’"’(o 1)’

where a € k.



116 3. Introduction to Representation Theory

The above examples serve to show that there is a lot to be said about
the determination and classification of indecomposable modules over finite-
dimensional algebras. In the representation theory of algebras, an algebra R
is said to be of finite representation type if R has only finitely many finite-
dimensional indecomposable modules (up to isomorphism). Otherwise, R is
said to be of infinite representation type. For instance, k[x]/(x") has finite
representation type, but k|x, y]/(x", y*) for r,s > 2 has infinite representation
type. The Brauer—Thrall Conjecture in representation theory stated that if an
algebra R has infinite representation type, then it has indecomposable modules
of arbitrarily large dimension. This conjecture was proved by Roiter in 1968,
and subsequently extended by M. Auslander to artinian rings. A stronger
version of the Brauer-Thrall Conjecture stated that if an algebra R has infi-
nite representation type, then there is an infinite sequence dy < d, < --- such
that R has infinitely many indecomposable modules at each dimension d,. So
far this stronger conjecture has been proved by Nazarova and Roiter over
algebraically closed fields, and subsequently by Ringel over perfect fields.
The modern representation theory of algebras is a very rich subject on which
there has been a lot of exciting research. However, due to space limitation,
we will not be able to go into the details of this theory. For a good intro-
duction to this subject, see Pierce [82].

Exercises for §7

In the following exercises, k denotes a field.

Ex. 7.1. Let M, N be finite-dimensional modules over a finite-dimensional
k-algebra R. For any field K = k, show that MX and NX have a common
composition factor as RX-modules iff M and N have a common composition
factor as R-modules. (Hint. Use (7.13)(2).)

Ex. 7.2. Let R be a finite-dimensional k-algebra which splits over k. Show
that, for any field K 2 k, rad(RX) = (rad R)X.

Ex. 7.3. Let R be a finite-dimensional k-algebra, M be an R-module and
E = Endg M. Show that if f € E is such that f(M) < (rad R)M, then
f € rad E. (Hint. Show that the set of such /’s form a nilpotent ideal in E.)

Ex. 7.4. Let R be a left artinian ring and C be a subring in the center Z(R)
of R. Show that Nil C = C nrad R. If R is a finite-dimensional algebra over
a subfield k = C, show that rad C = C nrad R.

Ex. 7.5. Let R be a finite-dimensional k-algebra which splits over k. Show
that any k-subalgebra C = Z(R) also splits over k.

Ex. 7.6. For a finite-dimensional k-algebra R, let T(R) = rad R+ [R, R],
where [R, R] denotes the subgroup of R generated by ab — ba for all a,b € R.
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Assume that k has characteristic p > 0. Show that
T(R)< {aeR: a*" €[R,R] for some m > 1},
with equality if & is a splitting field for R.

Ex. 7.7. Using (4.1) and (7.13), give another proof for the fact (already
established in (5.14)) that for any finite-dimensional k-algebra R and any
field extension K 2 k, (rad R)* < rad(R¥).

Ex. 7.8. Let R be a finite-dimensional k-algebra and let L 2 K 2 k be fields.
Assume that L is a splitting field for R. Show that X is a splitting field for R
iff, for every simple left RL-module M, there exists a (simple) left RX-module
U such that UL = M.

Ex. 7.9. If K 2k is a splitting field for a finite-dimensional k-algebra R,
does it follow that K is also a splitting field for any quotient algebra R of R?

Ex. 7.10. (Suggested by I. Emmanouil) Give a basis-free proof for (7.4) in
the case when M is a finitely presented left module over R. (Hint. Note that
(7.4) is true when M = R". Now apply the left exact functor Homg(-, N) to
a finite presentation R” — R" - M — 0.)

§8. Representations of Groups

At the beginning of §6, we have commented on the fundamental connections
between ring theory and the representation theory of groups. For a field &
and a group G, if we view the k-representations of G as afforded by modules
over the group algebra kG, the study of the representation theory of G then
becomes a special case of the study of modules over algebras. This ring-
theoretic perspective of representation theory stems from a classical paper
of E. Noether [29], who based her ideas in part on the earlier work of
T. Molien. Since we have already developed in the last section the basic facts
on simple modules and splitting fields of algebras, it is now easy to specialize
this information to group algebras and deduce the standard classical results
in group representations. This is done in the first half of this section. The
second half goes on to study the theory of group characters, focusing on the
semisimple case. We shall relate the arithmetic properties of the characters of
the irreducible representations 6f a group G to the ring structure of the group
algebra kG. This enables us to give a couple of nice ring-theoretic applica-
tions of the theory of characters.

As we have explained before, it will be convenient to view representations
of G over k as given by kG-modules. Unless specified otherwise, G will be
assumed to be a finite group, and all representations considered will be finite-
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dimensional over k. Thus the kG-modules affording the representations will
be finite-dimensional k-vector spaces. Unless stated otherwise,.the charac-
teristic of k will be arbitrary. If char k does not divide |G| (including the case
when char k = 0), kG is semisimple by Maschke’s Theorem (6.1) and so all
representation modules are semisimple. On the other hand, if char k divides
|G| then kG is no longer semisimple; the representations in this case are
classically known as modular representations (after L.E. Dickson).

The fundamental objects used in studying the k-representations of G can
be laid down as in (7.1). Recapitulating, let M, ..., M, be a complete set of
simple left kG-modules; let D; = End(ycM;) and n; = dimp, M;. Then we
have

(8.1) Theorem.
(1) kG/rad kG = M,, (D) x --- x My, (D).
(2) As aleft kG-module, kG[rad kG =mM\, @ --- ®nM
(3) dimy M; = n; dim; D;.
(4) |G| = dimy(rad kG) + Y_]_, n? dimy D;.

In the special case when G is abelian, this result simplifies further, for then
all the n;’s are 1 and all the D;’s are commutative (so they are finite field
extensions of k). In this case

kG/rad kG =~ Dy x --- x D,,

and the D;’s, viewed as ideals in kG/rad kG, afford the r different irreducible
representations of G over k.

Based on what we did in the last section, there is a natural notion of a
splitting field for a group G.

(8.2) Definition. We say that a field k is a splitting field for G if the group
algebra kG splits over k (in the sense of (7.6)).

Using our earlier result (7.10), we shall establish the following basic fact
in representation theory.

(8.3) Theorem. Let k be any field, and G be any group. Then some finite
extension K 2 k is a splitting field for G.

Proof. Let ko be the prime field of k, and k be the algebraic closure of k.
Since ko is perfect, (7.10) implies that a finite extension ky 2 ko in & is a
splitting field for G. Let K = k - k;, the field compositum being formed in k.
Clearly K is a finite extension of k, and by (7.14), k; being a splitting field for
G implies the same for K. QED
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In_the proof above, we only knew that the splitting field k, exists, but we
were not able to describe more concretely the construction of k; or to control
its size. At this point, it is appropriate to mention without proof a famous
result of Brauer. Let m be the exponent of G, i.e., the smallest integer such
that g™ = 1 for every g € G. According to Brauer’s Theorem, in case kg = Q,
the splitting field k|, may be taken to be Q({,,) where {,, is a primitive mth
root of unity. And, in case ko = F,, k; may be taken to be Z[{,,]/p where p is
any prime ideal of Z[(,,| containing p. For proofs of these results, we refer
the reader to Curtis and Reiner [62] (p. 292 and p. 592).

Over a splitting field, of course, the representations of a group are much
nicer to deal with, and they also-have more definitive meanings. Take, again,
the case of an abelian group G. Over a splitting field k, we have all D; = k as
well as all n; = 1, so all dimy M; = 1. Thus, the irreducible k-representations
are l-dimensional; they correspond to the different homomorphisms of G
into the multiplicative group k* of the field k. (For a converse of this in the
semisimple case, see Exercise 2 in this section.)

We shall now give some more examples, first in the characteristic 0 case,
then in the modular case.

Let G = {g) be a cyclic group of order n, and let R = kG We shall
determine the simple R-modules (i.e., irreducible representations of G over k)
for k = Q, R, and C respectively.

First, for k = C or Q({), where { is a pnmmve nth root of unity, we have
the decomposition

_kix] - kA <
R ——— = k.
(x"=1) — H H(x=¢" H
Thus, k is a splitting field for G and there are n simple R-modules M; = k
(1 <i < n), with g acting via multiplication by {' on M;.

Secondly, for kK = Q, we have the following decomposition of R into its
simple components:

~ QX _ QY alx
R= (x"=1) (nd|,,¢.1(X)) = E‘!(q’d(x)) = HQ(CJ).

Here {4 is a primitive dth root of unity, and ®,(x) is the dth cyclotomic
polynomial, i.e., the minimal polynomial of {; over Q, where d denotes a
positive divisor of n. A typical simple R-module is N; = Q({;), on which g
acts via multiplication by {,. When Nj is tensored up to C, it splits into ¢(d)
1-dimensional representations of G which map g into the different primitive
dth roots of unity in C*. Here, ¢ denotes the Euler function, and (8.1)(4)
recovers the familiar formula n = 3_ , ¢(d).
Finally, let k = R. Consider first the case n = 2m + 1. Then

Rix] e rx PRI
*Tonmme-oe-m = Uemoe-or

Therefore, there is a unique 1-dimensional R-module (with trivial G-action),
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and there are m two-dimensional simple R-modules
V,=C=R? (1<j<m)

with g acting via multiplication by {’, i.e., as a rotation by the angle 27j/n
(clockwise or counterclockwise). Upon scalar extension, V; @z C = M; ®
M,_;. The case n = 2m is analyzed similarly, with

T Rl
R=RxR _ ——
< ,H (x-O)x=0)

Here there are two 1-dimensional R-modules supported by R, with g acting
as I and —/ respectively, and there are m — 1 two-dimensional simple R-
modules '

Vi=C=R? (I<j<m-1),
with g acting via multiplication by {’. Again,
Vj ®RC = Mj @ M,,_.j.

This example gives a good illustration of (7.13) relating the simple modules
of QG, RG and CG.

To give a nonabelian example, let G be the quaternion group of order 8,
generated by two elements a, b with relations

a*=1, b’=a®> and b 'ab=a".

We first try to construct the irreducible representations of G over Q.
Here, the commutator subgroup G’ is {a’), and G/G’ is the Klein 4-group.
The latter has four homomorphisms into {+1} which lead to four different
QG-modules M;, M,, M3, M4, each 1-dimensional over Q. The correspond-
ing simple components are ~Q, by (8.1)(3). To construct one more QG-
representation, consider D, the division ring of rational quaternions. As is
well-known, we can realize G as a subgroup of D* by identifying a with / and
b with j, so that

G = {1, +i, +j, tk}.

Thus, D may be viewed as a (left) QG-module Ms. Since G spans D as a
Q-vector space, this @G-module is irreducible. (A QG-submodule would
amount to a left ideal of D, but D is a division ring.) The corresponding
simple component is just D. In the formula

8 =G| = Zni dim M;,
i=1

we already have dim M, = --- = dim M, = 1 and dim Ms = 4. Hence all
n; = 1, r = 5, and the simple decomposition of QG is

OxQx0OxQxD,
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so, @ is not a splitting field for G. If we replace the ground field Q by R,
the same analysis remains valid, with D replaced by the real quaternions.
(Incidentally, the computations above hint at interesting connections be-
tween representation theory of groups and the study of finite multiplicative
subgroups of division rings.)

What happens in the example above if we choose the ground field to
be K = Q(v/—1)? The modules M,, ..., M,, being one-dimensional, clearly
remain irreducible when we extend the scalars from Q to K; however, Ms
does not. The simple component D of QG, upon tensoring up to K, becomes
M, (K) as is easily verified. The unique left M>(K)-module M; occurs twice
in the decomposition of M,(K) into minimal left ideals. Therefore the left
regular module KG decomposes as

M} ® M} ® M; ® M, ®2M;,

where M/ = M; ®q K fori <4,and wehaven =ny =ny =ny =1,n5=2.
By working explicitly with matrices, the irreducible 2-dimensional KG-
representation afforded by Mj is seen to be:

0 1 0o v-I .
, bw— t 1 .
aw— ( _1 O> ( ST o ) (up to equivalence)

Clearly, the quadratic extension K of Q is a splitting field for G.

Let us now give an example to illustrate the relations between representa-
tions in characteristic zero and those in characteristic p. The group under
study will be the symmetric group G = S3, and we shall consider the three
fields Q, F,, and F;. Over k = Q, we have two 1-dimensional (irreducible)
representations: the trivial representation M), and the sign representation
M. There is also a natural 2-dimensional representation M, given by

ke, @ ke, (-Dke;/k ey + e+ e3),

where G acts by permuting the unit vectors e, e, e3. This is easily seen to be
irreducible, and since 6 = |G| = 12 + 12 + 22, {M, M|, M,} is a full set of
simple (left) QG-modules and Q is a splitting field for G.

Next, let k = [,. Here we have the trivial representation M; = M|, and
we have the 2-dimensional representation M, which is easily checked to be
irreducible. By explicit computation, we see that D, = End(xcM3) =k, so
ny = 2 and M, is in fact absolutely irreducible. From the equation

6 = |G| = dimy(rad kG) + > _ n? dimy D;

i=1
= dimy(rad kG) + 1 +4+ -+ -,
we see that r = 2, dimy(rad kG) = 1, and k = [ is a splitting field for G.

Incidentally, this enables us to determine rad kG explicitly. In fact, let
0=73 .69 €kKG. Clearly k-o is an ideal of square zero. Therefore, the
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computation above implies that rad kG = k - 6. The composition factors of
kaG are {M|, M|, Mz, Mz}.

Finally, consider k = F3;. Here, we have the two distinct 1-dimensional
representations M), M|, but the 2-dimensional representation M, is no
longer irreducible. (Check that e, — e, generates a proper kG-submodule!)
In the following, we shall prove Theorem (8.4) which implies that the
normal 3-Sylow group {(123)) of G must act trivially on any irreducible kG-
representation. Thus, the irreducible k-representations of G are the same
as those of G/{(123)), so M\, M| are the only possibilities. The equation
(8.1)(4) implies that dimy rad kG = 4, and that k = F; is a splitting field for
G. We leave it as an exercise for the reader to show that the composition
factors of kG are {M,, M, M\, M|, M|, M|}.

We shall now give the theorem which was used in the argument above.

(8.4) Theorem. Let k be a field of characteristic p >0, and G be a finite
group. Then any normal p-subgroup H < G acts trivially on any simple left
kG-module. Thus, simple left kG-modules are the same as simple left k|G /H)-
modules. (In particular, if G is a p-group, then the only simple left kG-module
is k, with trivial G-action.)

One of the main tools used for the proof of the theorem is the following.

(8.5) Clifford’s Theorem. Let k be any field, and H be a normal subgroup of a
(possibly infinite) group G. If V is a simple left kG-module, then yyV is a
semisimple k H-module.

Proof. Let M be a simple kH-submodule of V. Foranyge G, g- M is also a
kH-submodule of V since

h(gM) = g(h*M) = gM,

where h9 = g~'hg € H. Moreover, gM is a simple kH-module because if M’
is a kH-submodule of it, g~'M’ would be a kH-submodule of M. Now
consider V' :=3%" _-gM. This is a semisimple kH-module, and since it is
also a kG-submodule of V, we have V' = V. QED

Proof of (8.4). In view of Clifford’s Theorem, we are reduced to proving that
H acts trivially on any simple kH-module M. We do this by induction on
|H|, the case |H| = 1 being trivial. If |[H| > 1, let h # | be an element in the
center of H, say of order p”". Since

(h=1)"" =h" —1=0€kH,

h — 1 acts as a nilpotent transformation on M, so its kernel is nonzero.
Let My ={me M: hm =m} # 0. This is a kH-submodule of M and so
My = M. Therefore, M may be viewed as a (simple) k[H /{h)]-module, and
we are done by induction. QED
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In any finite group G, let 0,(G) denote the intersection of all its p-Sylow
groups. Clearly O,(G) is the largest normal p-subgroup of G. We have the
following nice characterization of O,(G) in terms of the modular repre-
sentations of G.

(8.6) Corollary. Let k be a field of charac;teristic p >0, and G.be a finite
group. For h € G, the following are equivalent:

(1) he Oy,(G).
(2) h acts trivially on all simple left kG-modules.
(3) h— 1€ rad(kG).

(Note that, although (2) and (3) ostensibly depend on the ground field &,
the condition (1) does not.)

Proof. (2) < (3) is trivial, and (1) = (2) follows from (8.4) since O,(G) is
normal. Now assume (2). By considering a composition series of the left
regular module kG, we see that 4 — 1 acts as a nilpotent transformation on
kG. Thus, for a sufficiently large integer n,

(h—=1)P" =h" - 1.=0€kG;

i.e., the order of h is a power of p. How let H be the set of all elements 4 of G
satisfying (2). This H is easily seen to be a normal subgroup of G, and what
we did above shows that H is a p-group. Thus H < O,(G) and we are
done. QED

(8.7) Corollary (Wallace). Let k be a field of characteristic p, and G be a
finite group with a normal p-Sylow group H. Then

radkG=y kG-(h-1)
heH

with dimy rad kG = [G : H] (|[H| - 1).
Proof. Since (& — 1)g = g(h9 — 1) for any g € G, the left ideal

A=) kG-(h-1)
heH
is in fact an ideal, and this lies in rad kG by (8.4). The quotient kG/U
is easily seen to be isomorphic to k[G/H]. (We have a natural map from
kG/W — k[G/H], and an inverse can be easily constructed.) Since
p = char k is not a divisor of |G/H|, k[G/H] is semisimple by Maschke’s
Theorem. Therefore (from (4.6)) we have rad kG = W and

dimy, rad kG = |G| - |G/H| =[G : H] (H|-1). QED



124 3. Introduction to Representation Theory

(8.8) Corollary. Let k be a field of characteristic p, and G be a finite p-group.
Then J = rad kG equals the augmentation ideal of kG, and we have JI¢! = 0.
If G is generated as a group by {g,.....g,}, then J is generated as a left ideal

by{gi—1.....9.—1}.

Proof. The first conclusion follows from (8.7) since the augmentation ideal is
generated as a k-space by {g — 1: g € G}. For the second conclusion, note
that ,ckG has |G| composition factors. Since J acts trivially on each, we have
JI6 = 0. The third conclusion is left as an exercise. ~ QED

For a prime p, an element g in a finite group G is said to be p-regular if
p does not divide the order of g. A conjugacy class € of G is said to be p-
regular if one, and hence all, elements of € are p-regular. Actually, in these
definitions, it is convenient to allow for the possibility that p be zero: by
definition, any element and any conjugacy class are always O-regular. In the
results (8.4), (8.6) above, we saw that certain group elements whose orders
are powers of p essentially play no role in determining the structure of the
irreducible representations at characteristic p. Thus the group elements
which govern the behavior of these representations ought to be the p-regular
elements. In 1935, Brauer gave more substance to this viewpoint by proving
the following beautiful result.

(8.9) Brauer’s Theorem. Ler G be a finite group, and k be a splitting field of G
of characteristic p > 0. Then the number of irreducible kG-representations is
equal to the number of p-regular conjugacy classes of G.

In (7.17), the number of irreducible kG-representations was determined to
be dim; R/T(R) where R = kG and T(R) = rad R + [R, R]. The idea of the
proof of (8.9) is that, for R = kG, dimy R/T(R) can further be computed
in purely group-theoretic terms. To begin this computation, we first give
another characterization of [R, R]. The following characterization is valid for
‘any group G and for any commutative ring k.

(8.10) Lemma. An element a € R = kG belongs to (R, R| iff the sum of its
coefficients over each conjugacy class of G is zero.

Proof. For the “only if” part, we may assume that a = ab — ba where
a,be kG. Writinga = )_ayg and b = }_ byh, we have

a=" a,bu(gh— hg),
g,h
so it suffices to deal with ay = gh — hg. Since gh, hg are conjugate in G, the
desired conclusion in this case is clear. For the converse, note that if g;, g, € G
are conjugate, then we can write g, = gh, g2 = hg for suitable g,h € G, so
g1 = g2 (mod [R, R]). Consider a conjugacy class € = {gi,....g»} and an
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element
a=¢4g;+ -+ &gn €kG.
By the foregoing,
a= (e +---+&)g1 (mod [R, R]).

Thus, if &y +--- +& =0, we have x € [R,R]. QED

In the following, let {a;: i € I} be a complete set of representatives of the
conjugacy classes of a group G. The lemma, together with its proof, clearly
imply the following.

(8.11) Corollary. Let R = kG, where G is any group and k is any commutative
ring. Then R/[R, R] is a free k-module with basis

{ai+[R,R]: iel}.

Now let J be the subset of I such that {a;: j€ J} is a complete set of
representatives of the p-regular conjugacy classes of G. (From here on, we
assume again G is finite and k is a field.) We now complete the proof of
Brauer’s Theorem by proving the following analogue of (8.11).

(8.12) Lemma. Let k be a splitting field for G of characteristic p > 0, and let
R = kG. Then R/T(R) is a k-vector space with basis

{a;+ T(R): jeJ}.

Proof. If p = 0, we have rad R = 0 so T(R) = [R, R]. In this case ] = J and
we are done by (8.11). In the following, we may, therefore, assume p > 0.
Let g € G. By standard group theory, there is a factorization g = ab = ba
where a is p-regular and ?" = 1 for some n. Since a and b commute, we have

(ab—a)f" =a”"b?" —a?" =0 € R,

so ab —a is nilpotent. By the second conclusion of (7.17), we get g =
ab = a (mod T(R)). We have also observed before that, if g,g’ are con-
jugate, then g = g’ (mod [R, R]). Therefore, the a;’s (j € J) span R/T(R)
as a k-space. To finish, we need to show that

D gaje T(R)=>allg; =0 ink.
jeJ
Write 3, ,¢&a; =c+d where cerad R, d € [R,R]. Let m be the LCM
of the orders of the a;’s. Then p is a unit modm so for some N,
=1 (mod m). Choose N large enough so that cP" = 0; this is possible
smce c € rad R is nilpotent. Let g = p". Then a" = g; for each j € J, and, by
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(7.15)(2), d7 € [R, R]. Hence, by (7.15)(1),

0=c= (Z ga; — d)q = Zej’a}’ —-di= Zs]f’aj (mod [R, R]).
Now by (8.11), all sjq =0and hence allg; =0. QED

(8.13) Corollary. For any field k of characteristic p > 0, the number of irre-
ducible kG-representations is bounded by the number of p-regular conjugacy
classes in G.

Proof. This follows from Brauer’s Theorem and (7.18).  QED

It is worthwhile to point out that, in the semisimple case, there is another,
more or less “dual,” method by which one can deduce the two results (8.9)
and (8.13). In fact, assume p = char k does not divide |G|. Let ¢,,...,¥; be
the (necessarily p-regular) conjugacy classes of G, and let

C12= ZgGkG

ges,

As an analogue of (8.11), one can show easily that Ci,. .., C, form a k-basis
of Z(kG), the center of kG.? Let

kG = M,, (D)) x --- x My, (D,),

where the D;’s are k-division algebras, and r is the number of irreducible
kG-representations. Taking centers, we have

(3.19) Z(kG) = Z(Mp, (D)) x - -+ x Z(Mp,(Dy))
= Z(D)) x --- x Z(D,),

and so s =) ;_, dimx Z(D;) > r. If k happens to be a splitting field, then
D; = k for all i, and the inequality becomes an equality.

Our next goal is to discuss characters of group representations. Recall
that, for any module M over R = kG of finite dimension over k, there is
an associated k-linear character x,,: R — k. Since the elements of G form a
k-basis of R, we can think of x,, as a function from G to k, extended by
linearity to R. Note that, for any g,h € G,

xm(ghg™") = xp(h);

i.e., xu is constant on each conjugacy class of G. In the following, we shall
show that we can get a lot more specific information on characters for
representations of groups than for representations of general algebras. Our
intention, however, is not to give a full treatment of the character theory

2This statement is, in fact, valid for any commutative ring k.
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of groups. Since our primary interest is in ring theory, we shall focus our
attention only on those aspects of character theory which have repercussions
on the structure of group rings. To illustrate the interplay between character
theory and ring theory, we shall derive a few ring-theoretic applications of
group characters at the end of our discussion. The applications of group
characters to the structure of groups is also an important topic; this, how-
ever, lies beyond the scope of this book, and will not be explored in detail
here.

To simplify the exposition, we shall assume in the following that char k
does not divide |G|, and that k is a splitting field for G. The notations used in
(7.1) for the simple modules over R = kG will be fixed. Since k is a splitting
field, all D;’s are equal to k, and n; = dim; M;. We write x; = x,, and let
{e1,...,e} be the central idempotents in R giving the Wedderburn decom-
position of R into its simple components. For any g € G, let C, € R denote
the sum of the group elements in the conjugacy class of g. Now consider
Z(kG). This has two different k-bases:

{ei: 1<i<r}, and {C,: geG}.
(The latter set, of course, has cardinality r, not |G|.) Our first result gives

explicit formulas expressing one basis in terms of the other.

(8.15) Proposition. (1) ¢; = |G| 'n; Y 0eG x:(g71g. (Since conjugate elements
have the same coefficients in the summation, the RHS is a k-linear combina-
tion of the C;’s.) In particular, char k does not divide n; for any i.

(2) Cg=my>,xi(g)ei/ni, where my is the cardinality of the conjugacy
class of g.

Proof. Let x,, denote the character of the left regular representation,
afforded by gR. Clearly, y,,,(1) = |G|, and y,,,(g9) = 0 if g # 1. To prove (1),
write e; = Y, a; »h where a; » € k. Then, for any g € G,

erg(eig_|) = Zaitheg(hg_l) = aiglGl-
h
On the other hand, x,., = 3_; njx;, so
1 _ 1 -
aig = I—Glxreg(eig = Gi Z nixi(eg™").
j

Since e; acts as J; (Kronecker deltas) on M,, xj(eig-‘)=5,-jxj(g").
Therefore,
n; _
el

as claimed in (1). Since ¢; # 0, the formula in (1) implies that ni#0ek;ie.,
char k does not divide n;.
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To prove (2), write C; = 3, b, je;. Applying x; leads to

my x;(9) = Zbg.i xj(ei) = by ; nj,

and so by,; = myx;(g)/n;, as claimed in (2). QED

We can now derive the following two famous character formulas due to
G. Frobenius.

(8.16) Theorem (First and Second Orthogonality Relations).

(A > xilg7xi(9) = 641Gl

B) Y xilgxih™") = JICG(g)Il where 6 = 1 if g, h are conjugate, and 6 = 0
if g, h are not conjugate, and Cg(g) denotes the centralizer of g in G.

Proof. (A) follows by applying ; to (8.15)(1) and canceling #;. For (B), we
plug (8.15)(1) into (8.15)(2) to get

Co=mq) ala! ‘|G|Z xi(h ™)k

=25 (S x| h.
1615\

Noting that m, = [G : Cg(g)], the formula (B) follows by comparing co-
efficients of / on the two sides of the equation. =~ QED

We should perhaps explain the term “‘orthogonality relations” used for the
two formulas in (8.16). A function u: G — k is called a class function if u is
constant on each conjugacy class of G. The set F;(G) of all class functions on
G forms a k-vector space of dimension r (the number of conjugacy classes of
G). On F;(G), we can introduce an inner product, defined by

1 )
(V] = @;ﬂ(g "Yv(g)

Similarly, in the r-dimensional k-space Z(kG), we can introduce an inner
product, defined by

le.fl = ﬁ&(a)x&ﬁ»

where, for f =} 8,9, B means 3" B,9™". With respect to these inner prod-
ucts, (8.16) amounts to (1) and (2) of the Corollary below.

(8.17) Corollary. Under the hypotheses made in the paragraph preceding (8.15):
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(1) The r irreducible characters {y;} form an orthonormal basis of Fy(G).

(2) The r class sums {C,: g € G} form an orthogonal basis of Z(kG), with
(Cg> Cg) = my.

(3) Fx(G) and Z(kG) are dual spaces of each other, under the pairing
(#,@) — p(a). Moreover, {n;'y;} and {e;} are dual bases of one
another.

In view of the last conclusion above, it is of interest to record the values of
n;'y; on the other basis {C,} of Z(kG), which are

1 _my
;‘_x.-(Cg) = xi(9)-

By (8.15)(2), these are precisely the “coordinates” of C, in terms of the basis

{ei} of Z(kG), as we could have predicted from (8.17)(3). In characteristic
zero, we have the following important arithmetic information.

(8.18) Theorem. Assume that char k = 0 and let A be the ring of algebraic
integers in k (i.e., elements of k which satisfy a monic polynomial equation
over Z). Then

(1) For any geG, Cye > A-¢. (In other words, xi(C,)/n;i=
xi(g)mg/n; € A for all i.)

(2) For any i, |Glei/nje Y_A-C,.

Proof. Look at Z(ZG) < Z(kG). Since the commutative ring Z(ZG) =
3" Z - C, is finitely generated as an abelian group, each C, € Z(ZG) is inte-
gral over Z. Therefore, the coordinates of C, with respect to the decompo-
sition [];_, k - e; are also integral over Z. This proves (1). For (2), note that
for any g € G and any (finite-dimensional) kG-module M, yx,,(g) € A. In fact,
let T be the matrix of the action of g with respect to a k-basis of M. Then
T" = I for n = order of g. Therefore, all eigenvalues of T (in the algebraic
closure of k) are nth roots of unity. Since x,,(g) is the sum of these eigen-
values, we have y,,(g) € A. Thus, (2) follows from (8.15)(1). QED

From (1) and (2) above, we have

geie ZA. <ZA.ej) c ZA-ej.
' g J J

Thus, |G|/nie AnQ = Z. This shows that, in characteristic zero, the de-
grees {n;} of the irreducible kG-representations are divisors of |G|. By arguing
a little more carefully, we can further refine this result, as follows.

(8.19) Theorem. Let k and A be as in (8.18) and let H = Z(G) (the center of
G). Then
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(1) (Schur) Each n; divides |G : H).

(2) Eachn; < \/[G- HI.

(3) If G is a p-group, then each n} divides |G : H|.

Proof. To simplify the notation, let y = y;,, n = n; and M = M;. We may
assume that G acts faithfully on M. (If K is the kernel of the G-action, we
may replace G by G = G/K. Since there is a surjection G/Z(G) — G/Z(G),
[G : Z(G)] is a divisor of [G : Z(G)].)

Since End(,cM) = k, the center H = Z(G) acts on M by scalar multi-
plications; i.e., h-m = u(h)m where he H, me M, and u is a homo-
morphism from H to k\{0}. Since the H-action on M is also faithful, u is
in fact a monomorphism. Note that, for ge G and he H, we have
x(gh) = x(hg) = u(h)x(g)-

Now define an-equivalence relation ““ ~** on G by declaring

g~a iff a=gh where g is conjugate to g, and h € H.
Then x(97")x(g) is constant on each ~-equivalence class. For, if a = g, h, is
as above, then
x@ "Yx(@) = x(hi'' g7 x(grh)
= u(h " Yl )x(a7 (@)
= x(g7" x(9)-

For g € G, let C{(g) denote the ~-equivalence class of g. We claim that, if
x(g) # 0, then |C¢(g)| = my|H| where m, is the number of elements conju-
gate to g. To see this, it suffices to show that, for any a ~ g, the factorization
a = g,h; in the foregoing notation is unique. In fact, if a = g,h, is another
such factorization, then x(g1)u(h) = x(g2)u(h2). Since x(g1) = x(g2) =
1(g) # 0, we have u(hi) = u(ha) and 0 1 = ha, g1 = g2.

Now, changing notations, let {g;} be a complete set of representatives for
the ~-equivalence classes C¢(g) with x(g) # 0. Then

IGl =" x(g7")x(9)
q
=D _ICUg)| - x(g; x(e))
J
= |H|- Y mgx(g; " )x(g)-
j

And so, using (8.18)(1),

|G : H]

n ZX(QJ_I) -mg x(gj)/ne AnQ=12Z.
J
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This proves (1). For (2), let D: kG — End(M,) be the representation asso-
ciated with M. By (7.3), D is surjective; i.e., {D(g): g € G} spans End(Mj).
But for he H, D(gh) = u(h)D(g). Thus, End(M,) is already spanned by
{D(t;)} where {1} is a complete set of coset representatives modulo H.
Comparing dimensions, we get n?> < [G : H], as asserted in (2), If G is a
p-group, then n? and [G: H| are both powers of p, and (2) amounts to
n?|[G:H). QED

Remark. It6 has further improved Schur’s result (8.19)(1) by showing that n
above actually divides [G : H] for any abelian normal subgroup H of G.

If we fix a set of representatives {a;: 1 < < r} for the conjugacy classes of
a group G, we can form an r x r matrix whose (i, j)-entry is x;(a;). This
matrix is called the character table of G (with respect to the splitting field k).
With the quantitative results on characters obtained so far, it is an easy and
rather pleasant task to compute the character tables of groups of small
order. The irreducible representations of S3 and the quaternion group of
order 8 have been worked out before, so it is trivial to write down their
character tables. To avoid repetitions, we deal here with S;, 44 and 4s. For
convenience, we will take k = C, although, as we shall see, a much smaller
field will suffice.

For G = S, the five conjugacy classes are represented by

(1), (12), (123), (1234) and (12)(34),

and their cardinalities are 1, 6, 8, 6, and 3. We have exactly two linear
characters (characters associated with 1-dimensional representations): y,
the trivial character, and y,, the sign character. We have also a standard
3-dimensional representation, afforded by the module

My =key @ ke, @ kes D kes/k - (e) + e2 + €3 + e3),

on which G acts by permuting the ¢;’s. It is easy to see that M, is irreducible,
by verifying that its character y, satisfies

> 1497 )xa(9) = 1G]

(see Exercise 10). We get another 3-dimensional representation Ms =
M; ®, M,, with G acting diagonally. Its character x5 is obtained by “twist-
ing” x, with the sign character y,. Since 12 + 12 + 32 + 32 = 20, the only
“missing” irreducible module is a certain M; of dimension 2. This can be
constructed by using the well-known fact that

H = {1,(12)(34), (13)(24), (14)(23)}

is a normal subgroup in S; with S4/H =~ S3. Thus M3; may be obtained by
taking the irreducible 2-dimensional representation of S3, and lifting it to S;.
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The character table for S, is therefore as follows (the first column being the
degrees of the various irreducible representations):

() (12) (123) (1234) (12)(34)
nl 1 1 1 1 1
ol 1 -1 I -1 !
xl2 o0 -1 0 2
Xa | 3 1 0 -1 -1
xs | 3 -l 0 1 -1

For the tetrahedral group G = 4, of order 12, we have the normal sub-
group H <1 A4 (constructed above), with 44/H cyclic of order 3. Thus we
obtain three linear characters y,, x,. x3 by lifting those of As/H. The kSs-
module M,, viewed as a kA4-module, affords a character x4, and can be
shown to be irreducible (over kA4,) by using the same idea as in the kS case.
Since 12+ 12+ 12 + 32 = 12 = |44, the determination of the irreducible
characters is complete. Taking 1, (12)(34), (123), and (132) as the repre-
sentatives for the conjugacy classes (with cardinalities 1, 3, 4, and 4), we
arrive at the following character table:

() (12)(34) (123) (132)

nll 1 1 1
0|1 1 ) w?
x| 1 1 w? w
Xa | 3 -1 0 0

Here, w denotes a primitive cubic root of unity. One can verify that the
irreducible 3-dimensional representation used above is equivalent to the
representation of 4, as the rotation group of the regular tetrahedron.

For the alternating group G = As, the computations become even more
interesting. This is the smallest noncyclic simple group; in particular,
[G.G] = G and G has only one linear character, x,. Next, we have a 4-
dimensional standard representation

5
My=@P k-ei/k-(er+---+es),
i=1

which can be shown to be irreducible over 45 by a character computation
(cf. Exercise 10). For the conjugacy classes, we can take as representatives

{(1), (12)(34), (123), (12345), (13524)};
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the class cardinalities are 1, 15, 20, 12, and 12 respectively. We have
12+ n? +n} + 4% + n? = 60,

so n2+n?+n2=43. The only possibility is (up to a permutation)
ny = n3 = 3, ns = 5. Here, M, and M3 can be obtained by the two different
ways of representing As as the rotation group of the icosahedron. Their
characters y,, y3 are computed by using the fact that a matrix representing a
rotation of degree 6 in 3-space has trace 1 + 2 cos 8. For the two icosahedral
representations at hand, 6 can only be 0°, 180°, 4-120°, or multiples of 72°.
This enables us to determine x, and y; as in the following table. (We leave
the details to the reader.) Note that y, and y; are conjugate under the non-
trivial automorphism of Q(v/5). Alternatively, we can also obtam M; from
M; by “twisting” M, with the automorphism g — (12)g(12)~" of 4s.

(1) (12)(34) (123)  (12345) (13524)

ol 1 1 1 1
% | 3 -1 0 (1+V5/2 (1-V5)/2
3 -1 0 (1-Vv5/2 (1+V5))2
xa | 4 0 1 -1 -1
xs | 5 1 -1 0 0

There are various ways to construct explicitly the representation module Ms.
By identifying As with

PSLy(Fs) = SLy(Fs)/ (1),

we get a permutation representation of As on the six points {e),e3,...,es} of
the projective line over Fs. Then M5 can be obtained as the module

(—Bk e,/k (er +---+e6),

Pt
where As acts on {e),...,es} by the permutation representation just de-
scribed. Another way to get this permutation representation is to let 45 act
by conjugation on the six 5-Sylow-groups of Ss. If we assume the knowledge
of Ms and its character x5, then the two characters y,, y; associated with the
icosahedral representations can in turn be determined by the orthogonality
relations.

Of course, our brief treatment of group representations so far has only
barely scratched the surface of a vast and very beautiful subject. For more
comprehensive treatments of the subject, we refer the reader to the books of
Feit, Curtis and Reiner, and Isaacs. Note that our treatment has particularly
stressed the ring-theoretic perspective, so that we saw how the notions of
modules, idempotents, and Wedderburn decomposition played a role in the
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development of representation theory. To close this section, we shall give
tworing-theoretic applications of the methods developed so far. Note that,
while we have assumed throughout that k is a splitting field for G, this does
not necessarily limit the applications to the splitting field case since we can
always “‘go up” to a splitting field k, apply results over k, and try to pull
back the information. In fact, both of the applications presented below con-
cern group rings over arbitrary rings of algebraic integers. We shall obtain
interesting information on the units and idempotents of such integral group
rings by using character methods. The following elementary fact about
complex numbers will be needed; its easy proof is left to the reader.

(8.20) Lemma. Let w,,...,w, € C be such that \w,| = --- = |w,| = 1. Then
jwr + -+ + wp| < n, with equality iff o) = - - = w,.

The following result determines the central units of finite (multiplicative)
order in certain integral group rings.

(8.21) Theorem. Let k be an arbitrary field of algebraic numbers, and A be its
ring of algebraic integers. Let a be a central unit of finite order in AG, where G
is a finite group. Then a = w - g for some g € Z(G) (the center of G), and some
root of unity w € A.

In the case when G is abelian, this result was first proved by G. Higman.
Here, we generalize Higman’s method of proof by using general character
theoty so that we get the version (8.21) above which is meaningful for any
finite group G.

We should note, however, that there are more general results in the liter-
ature dealing with (not necessarily central) units of finite order in AG where
G is any group and 4 is any integral domain of characteristic zero. Theorem
8.21 above is only a special case of these more general results.

Proof of (8.21). We may clearly assume that [k : Q] < co. To prove the
theorem, we are also free to replace k by any algebraic extension k' 2 k.
In fact, let A’ be the ring of algebraic integers in k’. Suppose we know the
result for 4’G. Then, since o remains central in 4’G, we can write a = @’ - g
for some ge Z(G) and some root of unity w’e A’. But then o' =
ag~' e A' N AG = A.

After suitably enlarging k, we may therefore assume that k is Galois over
Q, and is a splitting field for G. We shall now use the general notations in
(8.15) through (8.19). Since a € Z(kG) N AG, we can write

o= Zbie,- = Zagg,

where b; € k and a, € 4. Fix an integer m such that o™ = 1. Then, comput-
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ing in Z(kG) = []/_, k - ei, we have b™ = 1; in particular, |b;| = 1 (for all i).
(We think of k as a subﬁeld of C; the absolute value refers to the modulus
of a complex number.) Expressing the ¢;’s in terms of the g’s by (8.15)(1),
we get

1
a;=—Y nbixi(g™").
612"
‘Now fix a g € G such that az # 0, and write

Xi(g_l) =wji + - + Win,,

where {w;} are the characteristic roots of a matrix giving the g~!-action on
M;. As we have observed before, the w;;’s are roots of unity. Therefore, by
(8.20),

8.22) lag| = = Z”ibiwij < “aanz =1.
ij i

For any o € Gal(k/Q), a similar argument yields |a;| < | and so

INksaag)l = [ lag1 < 1.

But since a, € 4, we have Ny q(a,) € Z and so |Ny/q(a,)| = 1. In particular
the inequality in (8.22) must be an equahty By (8.20), all the bjw;;’s must be
equal, say

b,-w,-j=w (lSiSI’, lS]Sn,)

Then x,(g7") = njw; = njw/b;, and

ag = IGIan .

We also need an expression for x;(g). Since the g-action on M; has charac-

teristic roots wj', ..., w},!, we have
%(9) = o' + -+ + wp) = nibi/o,

so n;b; = wy;(g). Now consider any h € G which is not conjugate to g. Then

LI o N -1y
ap = lGI Z"lle1(h |GI ZXJ(g)XI ) - 0

by the Second Orthogonality Relation (8.16)(B). Therefore, we have
o = wC,4. On the other hand, we have

ICa(9)l = D_xi(@xila™) = Y_nf =1Gl.

This implies that g € Z(G) and so a = wg, as desired. = QED
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(8.23) Remark. The proof above actually showed more than was asserted in
(8.21). Instead of requiring that a € AG, all we need is that « = 3" a,g has at
least one nonzero coefficient g, € 4. If, however, all a, ¢ 4, then «™ = | may
not imply that a is a k-multiple of a group element (see Exercise 27).

Let us now record a few consequences of (8.21).

(8.24) Corollary. If G is a finite group with a trivial center, then any central
unit of finite order in AG is a root of unity in A. If G is a finite abelian group
and A is the ring of algebraic integers in a number field k which is not totally
imaginary (i.e., k has at least one real embedding), then any unit of finite order
in AG has the form +g where g € G.

(8.25) Corollary (G. Higman, S.D. Berman). Let A be as in (8.21), and G, H
be finite groups. If AG and AH are isomorphic as rings, then Z(G) and Z(H)
are isomorphic as groups.

Proof. If AG =~ AH as rings, then their groups of central units of finite order
are also isomorphic. By (8.21), we get U x Z(G) = U x Z(H), where U is
the group of roots of unity in A. By the uniqueness part of the Fundamental
Theorem on Finite Abelian Groups, it follows easily that Z(G) = Z(H).
QED

We conclude with the following result on idempotents in integral group
rings which can be proved by applying the same kind of arithmetic methods
used above.

(8.26) Theorem. Let A and k be as in (8.21), and G be any finite group. Then
AG has no idempotents except 0 and 1.

Proof. Again we use the general notations set up earlier in this section. Let
e =73 ayg € AG be an idempotent, and let

e’=l—e=Za;geAG

be its complementary idempotent. Let 8, . . ., 6;,, be the characteristic values
of the action of e on M;. We see easily that each 6 is an idempotent.
Therefore 6;; € {0,1} and

xi(e) =6y +---+ 6, €{0,1,...,n}.

Applying the character x,,, = 3_nix;, we get

1 1 &
(8'27) a = TG—IXreg (z agg) = la; niXi(e) € Q’
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and so

1 2
< < — s = 1.
0<a < |G]Zn' 1
Since aj € AnQ = Z, this implies that a; € {0,1}, and, similarly, a; €
{0,1}. In view of a; +aj =1, we may assume, say a; = 1, and a; = 0.
From (8.27), we see that

xi(e) =0 + -+ bin, = m;,

and so each 8; = 1. This implies that the e-action on M; is invertible, so this
action is in fact the identity. It follows that e also acts as the identity on
kG=@,;niM;,soe=1. QED

The theorem above first appeared in a paper of R. Swan who proved the
following fact on projective modules over AG: if P is a finitely generated
(left) projective module over AG, then'k ®, P is a finitely generated free
module over kG; in particular, dim; k ® 4 P = A-rank of P is a multiple of |G|.
This implies (8.26) for, if AG had a nontrivial idempotent e, then P = 4G - e
would have been a projective AG-module with A-rank strictly between 0 and
|G|. The character-theoretic proof given above is from a paper of Takahashi.
For yet another proof, see Exercise 13 below.

Exercises for §8

Ex. 8.1. Give an example of a pair of finite groups G, G’ such that, for some
field k, kG =~ kG’ as k-algebras, but G # G’ as groups.

Ex. 8.2. Let k be a field whose characteristic is prime to the order of a finite
group G. Show that the following two statements are equivalent:

(a) each irreducible kG-module has k-dimension 1;

(b) G is abelian, and k is a splitting field for G.

Ex. 8.3. Let G = S;3. Show that QG =~ Q x Q x M,(Q) and compute the
central idempotents of QG which give this decomposition of QG into its
simple components. Compute, similarly, the decompositions of QG,, QG,,
where G, is the Klein 4-group, and G; is the quaternion group of order 8.

Ex. 8.4. Let R = kG where k is any field and G is any group. Let / be the
ideal of R generated by ab — ba for all a,b € R. Show that R/I = k[G/G'] as
k-algebras, where G’ denotes the commutator subgroup of G. Moreover,
show that 7 = 3~ _..(a — 1)kG.

Ex. 8.5. For any field k and for any normal subgroup H of a group G, show
that kH nrad kG = rad kH.

Ex. 8.6. In the above Exercise, assume further that [G : H] is finite and
prime to char k. Let V be a kG-module and W be a kH-module. Show that
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(1) Vis a semisimple kG-module iff 4 V is a semisimple kH-module.

(2) W is a semisimple kH-module iff the induced module kG ®;y W is a
semisimple kG-module.

(Hint. Use Clifford’s Theorem (8.5) and Maschke’s Theorem as generalized
in Ex. 6.1.)

Ex. 8.7. (Villamayor, Green-Stonehewer, Willems) Let k be a field, and H
be a normal subgroup of a finite group G. Show that rad kG = kG - rad kH
iff char k 4 [G : H]. (Hint. For the “if” part, use the two exercises above. For
the “only if” part, note that, if we view k[G/H]| as a left kG-module, rad kH
acts as zero on k[G/H|. Thus, if rad kG = kG - rad kH, k[G/H] is a semi-
simple kG-module and therefore a semisimple k[G/H]-module. Now use

6.1).)

Ex. 8.8. Let G be a finite group such that, for some field k, kG is a finite
direct product of k-division algebras. Show that any subgroup H = G is
normal. (Hint. Let m = |H| and a = ¥, ., h € kH. Show that La is a cen-
tral idempotent in kG.)

Ex. 8.9. Show that the First Orthogonality Relation in (8.16)(A) can be
generalized to

Y (g7 x;(hg) = 851Gl xi(h)/m,

geG .
where A is any element in G, and n; = x;(1). ((8.16)(A) was the special case of
this formula for h = 1.) ‘

Ex. 8.10. Under the same assumptions on kG as in Exercise 9, let Fx(G) be
the k-space of class functions on G, given the inner product

1 _
(1, V] =@Zg:#(g Yv(g).

Show that, for any class function f € Fx(G), there is a “Fourier expansion”
f =Y_,1f xixi» and that, for any two class functions f, f' € Fi(G), there is
a “Plancherel formula™

=3 (il
Assuming that char k = 0, show that f = x,, for some kG-module M iff
[f,xi] is a nonnegative integer for all i, and that M is irreducible iff
Demoxar) = 1.

Ex. 8.11. Let k be the algebraic closure of [, and K = k(1), where 7 is an
indeterminate. Let G be an elementary p-group of order p? generated by a, b.
Show that

(%) aHA=<(]) :) b~—»B=((l) :)

defines a representation of G over K which is not equivalent to any repre-
sentation of G over k.
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Ex. 8.12. Let k be any field of characteristic 2, and let G = S4. Let M be the
kG-module given by .

ke, ® --- @ke4/k(e| +--- +e4),

on which G acts by permuting the e;’s. Compute the kG-composition factors
of M.

Ex. 8.13. Give the following alternative proof to (8.26) (due to D. Cole-
man): Let e=) a,g and ¢ =1 —e be complementary idempotents in
AG. Over the quotient field k of 4, we have kG =e- kG ® ¢’ - kG. Show
that dimy (e - kG) = x,,4(¢) = a; - |G|, and conclude that a, is a nonnegative
rational integer. Since dimy (e - kG) < |G|, it follows that a; =0 or 1, and
hence e =0 or 1.

Ex. 8.14. (Kaplansky) Let G = {x) be a cyclic group of order 5. Show that
u =1 - x2 — x3 is a unit of infinite order in ZG, with inverse v = 1 — x — x*.
Then show that

U(ZG) =<uy x (+G) =2 D 1, ® Zs.

For the more computationally inclined reader, show that a = 2x* — x* —
3x2—x+2 is a unit of infinite order in ZG, with inverse b = 2x* —
3x3 4+ 2x2 — x — 1. (Hint. Let { be a primitive 5th root of unity. Under the
natural map from ZG to Z[{] mapping x.to {, xu goes to (1 +{)>. Now
verify that U(ZG) maps injectively into U(Z[{]), and that 1 + { is a funda-
mental unit of Z[(], i.e., U(Z[{]) =<1 +{> - {£('})

Ex. 8.15. For finite abelian groups G and H, show that RG =~ RH as R-
algebras iff |G| = |H| and |G/G?| = |H/H?|.

Ex. 8.16. Show that, for any two groups G, H, there exists a (nonzero) ring
R such that RG =~ RH as rings.

Ex. 8.17. Using the theory of group representations, show that for any
prime p, a group G of order p? must be abelian.

Ex. 8.18. Let G = {+1,4i,+j,+k} be the quaternion group of order 8. We
have shown that, over C, G has four 1-dimensional representations, and a
unique irreducible 2-dimensional representation D. Construct D explicitly,
and compute the character table for G.

Ex. 8.19. Let G be the dihedral group of order 2n generated by two elements
r,s with relations 7" = 1, s> = 1 and sr s™! = r~!. Let 6 = 2n/n.
(1) For any integer # (0 < h < n), show that

cos h@ —sin h6 1 0
Du(r) = (sin h@ cos h8 )’ Dis) = (0 —l)
defines a real representation of G.
(2) Show that, over C, D, is equivalent to the representation D;, defined by

D;(r)=(“'ow ego)’ D;(s)=(‘,’ (',)
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(3) For n=2m+ 1, show that D,,..., D, give all irreducible representa-
tions of G (over R or over C) with dimensions > 1. For n = 2m, show the
same for Dy,...,D,,_,.

(4) Construct the character table for G.

(5) Verify that the two nonabelian groups of order 8 (the dihedral group
and the quaternion group) have the same character table (upon a suitable
enumeration of the characters and the conjugacy classes of the two groups).

Ex. 8.20. Let G = S,, which acts irreducibly on
M = Qe @ Qe; @ Qe; @ Qey/Q(e) + €2 + €3 + e3).

Let M' = 0 ® M, where o denotes the sign representation of G. Show that
M’ is equivalent to the representation D of G as the group of rotational
symmetries of the cube (or of the octahedron).

Ex. 8.21. Show that, over Q, G = A5 has four irreducible representations, of
dimensions 1, 4, S, 6 respectively.

Ex. 8.22. For any finite group G and any field k, is it true that any irreduc-
ible representation of G over k is afforded by a minimal left ideal of kG? (The
answer is yes, but don’t get very discouraged if you can’t prove it.)

Ex. 8.23. If a finite group G has at most three irreducible complex repre-
sentations, show that G = {1},7,,Z; or Ss.

Ex. 8.24. Suppose the character table of a finite group G has the following
two rows:

g1 g2 g3 9a gs de g1

ull 1 1 & o o o| w=e

vi2 -2 0 -1 -1 1 1

2m’/3)

Determine the rest of the character table.

Ex. 8.25. (Littlewood’s Formula) Lete = s a,9 € kG be an idempotent,
where k is a field and G is a finite group. Let x be the character of G afforded
by the kG-module kG - e. Show that for any h € G,

x(h) = |Ca(h)| - Y aq,

geC

where C denotes the conjugacy class of 47! in G. (Hint. Compute x(h) as the
trace of the linear transformation o +— hae on kG.)

Ex. 8.26. Let G = S3, and & be any field of characteristic 3.

(a) Show that there are only two irreducible representations for G over &,
namely, the trivial representation and the sign representation.

(b) It is known that there are exactly six (finite-dimensional) indecom-
posable representations for G over k (see Curtis-Reiner: Representation
Theory of Finite Groups and Associative Algebras, p. 433). Construct these
representations. (Hint. Let G act by permutation on V = ke, ® kes ® ke;,
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and let V = V/k - (e1 + ez + e3). Consider the kG-modules k (with trivial G-
action), ¥, V, and “twist” these by the sign representation.)

Ex. 8.27. Let G be a cyclic group of prime order p > 2. Show that the group
of units of finite order in QG decomposes into a direct product of G with
{£1} and another cyclic group of order 2. (Hint. Look at the Wedderburn
decomposition of QG.)

Ex. 8.28. Let G be the group of order 21 generated by two elements a, b with
the relations a’ = 1, b3 = 1, and bab™! = a2.

(1) Construct the (five) irreducible complex representations of G, and com-
pute its character table.

(2) Construct the (three) irreducible rational representations of G, and de-
termine the Wedderburn decomposition of the group algebra QG. (Hint. Let
{ be a primitive 7th root of unity. Note that K = Q({) affords a six dimen-
sional irreducible rational representation of G, with a acting as multiplica-
tion by £, and b acting as the Galois automorphism { — ¢2. Then show that
Endqg(K) is given by the field F = Q(v—=7) < K; this gives a Wedderburn
component M;(F) for QG.)

(3) How about RG, and the real representations of G?

§9. Linear Groups

In this section, we shall study subgroups.of GL(V) where V is a finite-
dimensional vector space over a field k. These groups G are usually referred
to as linear groups (or matrix groups). They come with a natural representa-
tion, namely that afforded by the kG-module V. Here, we no longer assume
that G is finite. But since V is finite-dimensional over k, we can still apply
some of the methods of representation theory to study the structure of G.
There are many beautiful classical results on the structure of linear groups;
we shall examine a few of these in this section. Again, our main objective is
not so much to embark on a systematic study of linear groups, but rather to
illustrate the relevance of the methods of ring theory to this study.

Most of the results presented in the first half of this section revolve around
a famous problem which originated from the work of W. Burnside. Recall
that a group G is said to be rorsion (or periodic) if every g € G has a finite
order. Let G be a finitely generated torsion group. If G is abelian, it is easy to
show that G must be finite. In 1902, Burnside raised the following provoca-
tive question:

(9.1) General Burnside Problem (GBP). Let G be a finitely generated torsion
group. Is G necessarily finite?

There is a weaker version of this problem, obtained by imposing a stronger
hypothesis on G. A group G is said to be of bounded exponent if there exists a:
natural number N > 1 such that g¥ = 1 for every g € G. The smallest such
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number N is called the exponent of G. The weaker version of (9.1) is the
following.

(9.2) Bounded Burnside Problem (BBP). Ler G be a finitely generated group
of bounded exponent. Is G necessarily finite?

One of the main goals of this section is to study these two problems for
linear groups. The classical results on (GBP) and (BBP) for linear groups, in
fact, provided some of the early motivation for studying these problems in
general. Before we go on to study linear groups, however, it will be useful to
give a quick survey of what is currently known about (GBP) and (BBP), so
that the reader can have an overview of this area of study.

The answer to (GBP) is “‘no” in general. In 1964, Golod showed that, for
any prime p, there exists an infinite p-group G generated by two elements.
(Recall that G is a p-group if every element of G has a finite p-power order.)
As for (BBP), the full answer is not completely known. If we let N be the
exponent of G, the answer to (BBP) turns out to depend on N. For N =2,
the answer is clearly “‘yes” as G must be abelian. For N = 3,4, 6, the answers
are still “yes,” by results of Burnside (1902), Sanov (1940), and M. Hall
(1958). For N > 72, Novikov announced a negative answer to (BBP) in
1959; however, the details were never published. For N odd ahd >4381, the
negative answer to (BBP) appeared in the work of Novikov and Adjan in
1968. Later, the negative answer was extended by Adjan to all odd N > 665.
There was recent progress on the even N case too: in 1996, Lysénok obtained
the negative answer to (BBP) for all even N > 8000. Thus, the finite number
of cases left open for (BBP) are: odd N from 5 to 663, and even N from 8 to
8000.

There is also another version of Burnside’s Problem, called the Restricted
Burnside Problem (RBP), which asks if the “universal Burnside group”
B(r,N) (defined as the quotient of the free group on r generators by the
normal subgroup generated by all Nth powers) has a largest finite quotient.
In 1959, Kostrikin announced a positive solution to (RBP) for N prime. In
the late 80s, (RBP) was affirmed by Zelmanov for all r and all N. For his
spectacular solution to (RBP) in all cases, Zelmanov received a Fields Medal
at the Ziirich International Congress for Mathematicians in 1994.

After the brief survey above, we shall now proceed to study (GBP) and
(BBP) for linear groups. The main tool is our earlier characterization of
absolutely irreducible modules over algebras which was based on Burnside’s
Lemma (7.3). This characterization leads to the following very useful fact on
traces.

(9.3) Trace Lemma. Let k be a field and let G be a subsemigroup of the gen-
eral linear group GL,(k) such that under the natural action, k" is an absolutely
irreducible module over the semigroup algebra kG. Assume that the trace
function tr: G — k has a finite image of cardinality r. Then |G| < .
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Proof. By (7.5), kG — M,(k) is onto. This means that there exist
g1, --.,gn2 € G which form a k-basis for M, (k). Consider the map

£: My(k) — k™
giyen by '
&(0) = (tr(ogr), ..., ir(oga)), @ = (05) € Ma(k).

This is clearly a k-linear map. We claim that it is a monomorphism (and
therefore an isomorphism). Indeed, suppose &(o) =0. Then for any
y € Mp(k), we have tr(o - y) = 0. Letting y be the matrix unit E,,, this gives
gji =0, so 6 =0 as claimed. It follows that |G| = |¢(G)| < r" since for
o € G, each of the n? coordinates of &(c) can take at most r different
values. QED

We shall now prove the following classical result of Burnside which pro-
vides an affirmative answer to (BBP) for linear groups in certain character-
istics. Note that we do not have to assume that G is finitely generated in this
result.

(9.4) Burnside’s First Theorem. Let k be a field of characteristic p > 0 and
let G be a subgroup of GL,(k). If G has exponent N<owand pf N, then
|G] < N"' < .

Proof. We may clearly assume that k is algebraically closed. If n =1, we
have G < k\{0}. Since the equation x" = 1 has at most N solutions in k, the
theorem is clear in this case. We now assume n > 2. For any g € G, each
characteristic value a of g is an Nth root of unity. Since tr(g) is a sum of n
such a’s, it takes at most r = N" values in k as g ranges over G. If G acts
irreducibly on k", then k" is an absolutely irreducible kG-module and we
have
|Gl < =N"
by the Trace Lemma above. Now assume the G-action is reducible on k”.
After choosing a suitable basis on k”, we may assume that the elements g of
h . ' .
G have the form (%‘ g ) where g;, g, are square matrices of fixed sizes,
2
say n; and n,. Let G; (i = 1,2) be the group of the matrices g; which arise in
this manuer. Invoking an inductive hypothesis on n, we may assume that
|Gi| < N (i = 1,2). Now consider the homomorphism G — G, x G, send-

A h) is in the
g2

ing g € G to (g1,92). This is an injection, for if g = ( 0

kemnel, then g) = I, g, = I and

I hY I N-h
—3 N= —
=9 (o 1) (o I )

implies that N -h = 0. Since N is not a multiple of p = char k, we have
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h = 0. Therefore,
IG| <1G\| - |Go| < N™ - N™ < Nm+m)’ = N# QED

Note that the theorem may no longer hold if we do not impose the con-
dition that p = char k be prime to the exponent of G. In fact, for an infinite
field k of characteristic p > 0, the (abelidn) group

6= {(1*): ner) < o

has exponent N = p, but has cardinality equal to that of k. (In fact, G is
isomorphic to the additive group of k.)

By an argument very similar to that used to prove (9.4), we get the
following.

(9.5) Burnside’s Second Theorem. A linear group G < GL,(k) is finite iff it
has a finite number of conjugacy classes.

Proof. (“If”” part) As before, we may assume that k is algebraically closed.
The hypothesis on G implies that tr(G) is a finite set in k. If G acts irredu-
cibly on k", we are done by the Trace Lemma as before. If G acts reducibly
on k", we use the same notations as in the proof of (9.4). Since G,, G, also
have finitely many conjugacy classes, they are finite by invoking an inductive
hypothesis on n. The kernel H of G — G, x G is a normal subgroup in G,

I h . L
consisting of matrices ( 0 1) € G. This subgroup is abelian since

o0 (00100

From (G : H] < |G| |G,| < oo, it follows that any g € H has only finitely
many G-conjugates. (The centralizer Cg(g) 2 H has finite index in G.) Since
there are only finitely many G-conjugacy classes, H must be finite. Therefore,
G is also finite.  QED

Next we shall deal with the General Burnside Problem for linear groups.
The main result, (9.9) below, states that (GBP) has an affirmative answer for
linear groups in any characteristic. This was first proved by Schur in the case
of characteristic zero, in 1911; the adaptations needed for the proof in the
case of characteristic p were given by Kaplansky. Our presentation of this
result is preceded by two lemmata.

(9.7) Lemma. The (GBP) has an affirmative answer for any ( finitely gen-
erated torsion) group G which has an abelian subgroup H of finite index.

Proof. Let G=g/H U --- UguH and let {g1,...,gm,--.,gn} be a set which
is closed under “inverses” and which generates the group G. Let g;g; = g,h;
where 1 < r < m and h; € H. Let Hy be the subgroup of H generated by the
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(finitely many) A;’s. Since H is abelian, Hy is finite. For any s < n we have
9s9i9; = g.\'grhij = glh:rhi} € gIHOy

for some ¢t < m. By induction, it follows that any word in {g;: | <i < n} hes
in |/, 9iHo. Therefore, G = UL, giHo is finite. ~ QED

(9.8) Lemma. Let k be a field and G be a finitely generated torsion subgroup
of GL, (k). Then G has a bounded exponent.

Proof. We may clearly assume that k& is finitely generated over its prime field
P. Fix a purely transcendental extension ko/P within k such that
|k : ko] = r < 0. Now G = GL,(k) acts faithfully on k". Viewing k" as k",
G acts faithfully on k§". Thus we are reduced to considering G S GLn(ko).
For g € G, let my(t) € ko|t] be the minimal polynomial of g (as a matrix over

ko)-

Case 1. P = Q. Since g € G has finite order, the zeros of my(f) are all roots of
unity. Thus, the coefficients of m,(r) are algebraic integers. But since kp is
purely transcendental over Q, the only algebraic integers in ko are the ratio-
nal integers, so m,(t) € Z[t]. On the other hand, expressing the coefficients
of m, by elementary symmetric functions of its roots, we see that these
coefficients are bounded in absolute value. Therefore there are only a finite
number of different m,(t)’s as g ranges over G. Since m,(t) uniquely deter-
mines the order of g, it follows that G has a bounded exponent.

Case 2. P = [, where p is a prime. We show as in Case 1 that my(1) € F,[1].
Since |F,| = p, there are again only a finite number of different my()’s.
Therefore, we are done as before. QED

We are now ready to give the solution of (GBP) for linear groups.

(9.9) Theorem (Schur). Let k be a field and G be a finitely generated torsion
subgroup of GL,(k). Then G is finite.

Proof. Since we already know that G must have a bounded exponent by
the Lemma above, we can try to “recycle” the proof of the First Burnside
Theorem (9.4). Let us, therefore, refer to the notations set up in that proof.
The only difference occurs at the very end: We have (in the reducible case) a
homomorphism & G — G) x G, where (by inductive hypothesis) G; and G,
are finite. This implies that

netre={( ¥) o)

has finite index in G. But H is also abelian as we have shown in (9.6).
Therefore the finiteness of G follows from (9.7). QED

In view of the above results, it is useful to recall the following term in-
troduced in Exer. (6.21): a group G is said to be locally finite if every finitely
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generated subgroup of G is finite. Clearly, such a group is torsion; the converse
problem, asking if every torsion group is locally finite, is precisely (GBP). In
view of this remark, we can restate (9.9) in the following equivalent form:

(9.9') Theorem. A linear group G < GL,(k) over a field k is torsion iff it is
locally finite.

In order to get more results on linear groups, we shall now introduce
another definition:

(9.10) Definition. A linear group G < GL(V) is said to be completely reduc-
ible if V is a completely reducible (= semisimple) module over &G, i.e., if V'is
a (finite, direct) sum of simple kG-submodules.

Note that in this section, the linear groups G = GL(V) under consider-
ation are usually infinite. If G is indeed infinite, the group algebra kG is never
semisimple, by (6.3). Nevertheless, the specific kG-module ¥ may happen to
be semisimple, in which case G is by definition completely reducible. Let
Span; (G) be the subspace of End; V spanned by the elements of G. Since G
is a group, this is clearly a k-subalgebra of End, V; itis, in fact, the image of
the natural homomorphism kG — End) V. The following simple proposi-
tion helps to clarify the notion of a completely reducible linear group.

(9.11) Proposition. The linear group G = GL(V) is completely reducible iff
the k-algebra S := Span(G) is semisimple.

Proof. Assume S is semisimple. Then V is a semisimple module over S and
therefore over kG. Conversely, if V is semisimple over kG, then V is a faithful
semisimple module over S. Since (rad S)- V =0, rad S = 0. As S is a finite-
dimensional k-algebra, this implies that S is a semisimple ring. QED

Of course, not every linear group is completely reducible, even if
char k = 0. For instance, if dim; V =2, it is easy to show that the group of
matrices of the form ((l) ‘;) is not completely reducible.

What are some examples of completely reducible groups? If G = GL(V)
is finite and p = char k does not divide |G|, then by Maschke’s Theorem, G
is always completely reducible. By a slight generalization of Maschke’s
Theorem (see Exercise 6.1), we have the following improved statement:

(9.12) Theorem. Let G < GL(V') and H be a subgroup of finite index m in G
such that char k y m. If H is completely reducible, then so is G.

To relate Schur’s Theorem (9.9) to the notion of completely reducible
groups, let us make the following observation.

(9.13) Lemma. Let G < GL(V). If every finitely generated subgroup of G is
completely reducible, then so is G.
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Proof. Let gy,...,gm € G (m < 00) be chosen such that they form a k-basis

of Span,(G), and let H be the subgroup of G generated by {gi,...,gm}-

Since Span,(G) = Span,(H), the desired conclusion follows from (9.11).
QED

We can now record the following nice consequence of Schur’s Theorem
9.9).

(9.14) Proposition. Ler G < GL,(k) be a group such that every element g € G
has finite order prime to char k. Then G is completely reducible.

Proof. By (9.9) and Maschke’s Theorem, every finitely generated subgroup
H of G is finite and completely reducible. Now use (9.13). QED

In group theory, a subgroup H of a group G is said to be subnormal in G if
there exists a finite chain of subgroups

G=6G2G2--2G,=H

such that each G, is normal in G;. Clifford’s Theorem (8.5) leads easily to
the following sufficient condition for complete reducibility:

(9.15) Proposition. Let H be a subnormal subgroup of a linear group
G < GL(V). If G is completely reducible, then-so is H.

Proof. By induction, it suffices to treat the case when H is normal in G.
Write gV as a sum of simple kG-modules ¥; and apply Clifford’s Theorem
toeach V;. QED

Given a linear group G < GL,(V'), one might ask what part of the struc-
ture of G would constitute the obstruction to G being completely reducible.
This is a rather subtle problem which we shall not be able to answer fully.
We can, however, account for part of the obstruction to G being completely
reducible by looking at a certain radical of G, called its unipotent radical.
This unipotent radical of G is related to the Jacobson radical of Span,(G),
although, in general, the former does not determine the latter. In the balance
of this section, we shall try to explain the mathematical ideas which lead to
the definition of the unipotent radical. The study of this radical is interesting
from the viewpoint of this chapter as it brings together various ideas from
ring theory, group theory and linear algebra. Actually, some of its motiva-
tion comes from Lie’s early work on solvable Lie algebras, though, in order
to keep this exposition self-contained, we shall not try to develop the details
of the Lie algebra connection here. '

We begin by introducing the following definition.

(9.16) Definition. Letr Ae k, and V be an n-dimensional k-vector space.
A linear transformation g e Endy V is said to be A-potent if g = A+ go
where go is nilpotent (equivalently, if the characteristic polynomial of g is
(r=A)" ek[1)). ‘
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Thus, “0-potent” means simply “nilpotent.” If A #0 and g is A-potent,
then g is invertible, for, if g = A + go with go nilpotent, then g~' is given by

A= 2"go+ A2 - ).

In the important special case when 4 =1, we speak of g as a unipotent
transformation.

Let G = GL(V) be a linear group and A be a subset of k* = k\{0}. We
shall say that G is A-potent if there is a surjection A: G — A such that, for
any g € G, g is A(g)-potent. In the special case when A = {1}, we speak of G
as a unipotent group. If G is A-potent, it turns out that A must be a subgroup
of k* and 1 must be a group homomorphism. These facts, however, are not
immediate consequences of the definitions.

Note that if g e GL(V'), then g is A-potent iff g is A times a unipotent. Thus
the unipotent case is of particular importance. Before we go on, the follow-
ing basic observation is in order.

(9.17) Proposition. Let k be a field of characteristic p > 0. Then g€ GL(V) is
unipotent iff it is a p-element (i.e., its order is a power of p). Thus, a linear
group G = GL(V') is a unipotent group iff it is a p-group.

Proof. If g?" =1, then (g—1)" =0so g =1+ (g — 1) is unipotent. Con-
versely, if g = 1 + go where g' = 0, then for p” > m, we have

g =1+g2 =1. QED

The Proposition above suggests that the study of unipotent groups is a
generalization of the study of p-subgroups of GL(V') in characteristic p. In
the following, we shall try to prove a few basic properties of unipotent
groups (or more generally, A-potent groups); our considerations will be valid
in all characteristics.

Suppose we fix a basis on V and identify GL(V') with GL,(k). A matrix is
called unitriangular if it is upper triangular and has 1’s on the diagonal. The
set of unitriangular matrices forms the unitriangular group UT,(k); this is
clearly a unipotent group. The group k* - UT,(k) of invertible upper trian-
gular matrices with constant diagonals is a k*-potent group, and any sub-
group of k* - UT,(k) is a A-potent group for some A. Note that the groups
UT,(k), k* - UT,(k) are determined up to a conjugation in GL(V'). The
basic result on A-potent groups is the following:

(9.18) Theorem (Lie, Kolchin, Suprunenko). Let G = GL(V') be a A-potent
group (with respect to a surjection i: G — A < k™). Then

(1) Any irreducible Span,(G)-module M of finite k-dimension has k-
dimension one.

(2) With respect to a suitable k-basis on V, we have G < k* - UT,(k).
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Before we proceed to the proof of this classical theorem, let us first record
some of its interesting consequences. (These consequences, in fact, help
clarify the meaning of the theorem itself.)

(9.19) Corollary.

(1) The A in (9.18) must be a subgroup of k*, and A is a group homo-
morphism.

(2) Any unipotent group is conjugate in GL(V') to a subgroup of UT,(k).

(3) UT,(k) is a maximal unipotent subgroup of GL,(k), and any maximal
unipotent subgroup of GL,(k) is conjugate to UT,(k).

Proof. (1), (2) are both clear from the theorem. To prove (3), note that, by
Zorn’s Lemma, any unipotent subgroup in GL,(k) can be enlarged into a
maximal unipotent subgroup. In particular, maximal unipotent subgroups G
of GL,(k) do exist. Consider any such G. By the theorem, there exists an
invertible matrix p such that pGp~! < UT,(k). Since UT,(k) is unipotent
and pGp~' is maximal unipotent, we must have pGp~' = UT,(k). This
proves both statements in (3). QED

Note that, in view of (9.17), if k has characteristic p > 0, (3) above says
precisely that UT,(k) is a p-Sylow subgroup of GL,(k), and that any two p-
Sylow subgroups of GL,(k) are conjugate. Thus, the Sylow Theorems hold
for GL,(k) for the particular prime p. This, however, does not mean that we
can skip the proof in the characteristic p case, since, in general, the Sylow
Theorems need not hold for infinite groups. If k is a finite field, say
k =F, (g =p"), then GL,(k) is a finite group of order

920 @ -1)q"-9)(g" - ¢ (a"-a""),
while UT, (k) is a finite group of order ¢"*~"/2. Since ¢"'~"/2 is precisely
the p-part of |GL,(k)| as computed in (9.20), this shows directly that UT,(k)
is a p-Sylow subgroup of GL,(k) in this case. Thus, for finite fields
k = Fq (9 = p"), the statements (2), (3) of (9.19) are indeed implied by the
Sylow Theorems for finite groups. In this case, incidentally, the fact that
any irreducible module over a unipotent group G has k-dimension 1 (with
trivial G-action) is also known to us already: see (8.4). The results (9.18),
(9.19) for arbitrary fields (of any characteristic) may therefore be regarded as
generalizations of the corresponding results for the special case k = F,.

To get another corollary out of (9.18), recall that the lower central series
of a group G is defined to be the series

GO ol oGg® o ...

where G = G, G\ = [G, G] (the commutator subgroup), and, inductively,
G = (G, G"~V). The group G is said to be nilpotent of class r if G") = {1},
but G-V # {1}. We leave it as an exercise for the reader to verify that the
unitriangular group UT,(k) over any field & is nilpotent of class n — 1 for
n > 2. It follows easily from (9.18) that
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. 21) Corollary. Any A-potent group in GL,(k) is nilpotent of class < n ( for
n>12).

In the light of (9.17), we may regard this as a generalization of the well-
known fact that any finite p-group is nilpotent.

After the above discussion of Theorem (9.18), we would now like to pro-
ceed to its proof, which will be carried out in three steps. (The notations in
(9.18) will be fixed in the following.)

Step 1. It is enough to prove (1) in (9.18). For, if (1) is true, then, for any kG-
composition series

V=Vos¥>-- >0,

each ¥;/V,,, is 1-dimensional. With respect to a suitable basis on V, every
g € G has the upper triangular form. Since g is A(g)-potent, its dnagonal
entries must all be A(g). Therefore, G < k* - UT,(k), as desired.

Step 2. (1) (and hence (2)) in (9.18) is true in case k is algebraically closed.
Without loss of generality, we may assume that G =2 k* = k* - I. (If not, we
can replace G by k* - G.) Suppose the M in (1) has k-dimension m. Let H be
the image of G under G — End, M and let Hy be the (normal) subgroup of
H consisting of endomorphisms of determinant 1. Since we can take mth
roots in k (k is assumed to be algebraically closed here), H = k* - Hy.
The characteristic polynomial of hy € Hy has the form (r—A)™, with
A™ = det hg = 1. Therefore tr(hy) = mi assumes at most m values in k. Since
Hp acts (absolutely) irreducibly on M, the Trace Lemma (9.3) implies that
H, is finite. For p = char k > 0, we claim that every p’-element hy € Hy is a
scalar matrix. In fact, let r be the order of hy, with p ¥ r. Then Ay satisfies the
polynomials

-1 and (t-A1)",

and therefore hg also satisfies their g.c.d. But this g.c.d. is 1 — A since ¢" — 1
has no multiple roots. Therefore, #g = 4 - I, as claimed. If p = 0, our claim
gives H = k*, so clearly m = 1. If p > 0, the claim implies that H = k* - P
where P is a p-Sylow subgroup of Hy. If hy € P, then Ay must be unipotent by
(9.17) and therefore tr(hg) = m - 1. Since P acts (absolutely) irreducibly on
M, the Trace Lemma gives |P| = 1. We have now H = k* so clearly m must
be 1. (Alternatively, we can get m = 1 by-using the earlier result that, for
any finite p-group P, the only irreducible kG-module is k, with the trivial
P-action.)

Step 3. We shall now prove (9.18)(1) in the general case. Let M and m be as
above. After replacing G by its image under G — End, M, we may assume
that G acts faithfully on M. Let E be the algebraic closure of k. By what
we did in Step 1 and Step 2, there exists an E-basis in M£ = M ®, E with
respect to which G lies in E* - UT,(E). In other words, for any ge G,
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g — A(g)! is an upper triangular matrix over E with a zero diagonal. By an
easy calculation, we see that the product of any m such matrices is zero. Now
choose r to be the smallest integer such that

(91— A(q1))---(9r — AMgr)) =0 foranyg,...,g9,€G.

Ifr =1, then G € k*, so clearly m = 1. Now assume r > 2. Then there exist
g2,.-.-,9r € G such that

w:= (g2 — A(g2)) -~ (g — A(gr))0 # 0

for some ve M. But then (g — A(g))w=20 for any ge G, so k-w is a
kG-submodule of M. Since M is irreducible, we must have M = k - w, and so
m =1 as desired. QED

In the case when G is a unipotent group, (9.18) is usually known as
Kolchin’s Theorem (proved by E.R. Kolchin in 1948 in a pioneering paper
on algebraic groups). We shall now give an application of this result. (For
another application, see Exercise 4.)

(9.22) Theorem. Every linear group G = GL(V') (over an arbitrary field k) has
a unique maximal normal unipotent subgroup H. (We call H the unipotent
radical of G.) The quotient group G/H is isomorphic to a certain completely
reducible linear group over k.

Proof. Let {V),...,V,} be the composition factors of V as a kG-module.
Let H be the normal subgroup of G consisting of elements g € G which act
trivially on all ¥;. For any such g, (g — 1)" acts as zero on ¥ and so H is
unipotent. Conversely, if Hy is any normal unipotent subgroup of G, and M
is any finite dimensional irreducible Span;(G)-module (e.g., any V;), then
by Clifford’s Theorem (8.5), M is a semisimple Span,(Hp)-module and by
(9.18)(1), Ho acts trivially on M. This shows that Hy = H and yields the
following characterization of H:

9.23) H = {ge G: g acts trivally on all finite-dimensional
: irreducible Spany(G)-modules}.

Let V=V @ --- @ ¥,. Then H is the kernel of G — GL(V) so G := G/H
may be viewed as a linear group in GL( V). Since V is a semisimple kG-
module, G is completely reducible. ~ QED

The following consequence of this theorem (and its proof) is to be com-
pared with (8.6) in the light of (9.17).

(9.24) Corollary. Let G < GL(V) be a linear group over k, and S = Spany, G.
Then the unipotent radical H of G is given by

H={geG: g—1€rad S}.
In particular, G is completely reducible only if H = {1}.

Note that G having a trivial unipotent radical H is only a necessary con-
dition for G = GL(V) to be completely reducible, but in general not a suffi-
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cient condition. If H = {1}, then by (9.22), G may be viewed as a completely
reducible linear group actingon V=V, @ --- @ ¥, but G may not be a
completely reducible group acting on V itself, as the following easy example
shows.

Let k be a field of characteristic p > 0, and let G be a finite group which
has no nontrivial normal p-subgroup. Let ¥ = kG and let G act by left
multiplication on V. Since G acts faithfully on V, we can view G as a sub-
group of GL(V). As a linear group, G has trivial unipotent radical by (9.17).
However, if p divides |G|, V is not a semisimple kG-module by (6.1), and
therefore G is nor a completely reducible group acting on V.

The notion of the unipotent radical is of great significance in the theory
of algebraic groups. The algebraic groups in GL(V) which have trivial
unipotent radicals are essentially the so-called reductive groups. For a more
detailed study of these groups, we refer the reader to Humphreys’ book
*“Linear Algebraic Groups™ (Springer, 1975).

Exercises for §9

Ex. 9.1. Let G < GL,(k) be a linear group over a field k. Show that G is
an f.c. group (i.e. every conjugacy class of G is finite) iff the center Z(G) has
finite index in G. Show that every finite group can be realized as a linear
group, but not every infinite group can be realized as a linear group.

Ex. 92 Can every finite group be realized as an irreducible linear group? (A
linear group G = GL(V') is said to be irreducible if G acts irreducibly on V.)

Ex. 9.3. Let & be any field of characteristic 3, G = S3 and let V be the kG-
module
ke) @ ke, @ kes/k(e) + ex + e3),

on which G acts by permuting the e,’s. Show that this realizes G as a linear
group in GL(V). Is G a completely reducible linear group? What is its uni-
potent radical? Determine Span, (G) and its Jacobson radical.

Ex. 9.4. Let k be a field of characteristic zero.

(1) Show that any unipotent subgroup G < GL,(k) is torsion-free.

(2) If G is a maximal unipotent subgroup of GL,(k), show that G is a
divisible group.

Ex. 9.5. Let k be an algebraically closed field, and G = GL,(k) be a com-
pletely reducible linear group. Show that G is abelian iff G is conjugate to a
subgroup of the group of diagonal matrices in GL,(k).

Ex. 9.6. Let k be a field of characteristic zero. Let G = GL,(k) be a linear
group, and H be a subgroup of finite index in G. Show that G is completely
reducible iff H is. (Hint. [G : H] < oo implies that H contains a normal sub-
group Hy of G such that (G : Hy) < o©.)



CHAPTER 4

Prime and Primitive Rings

In commutative ring theory, three basic classes of rings are: reduced rings,
integral domains, and fields. The defining conditions for these classes do not
really make any use of commutativity, so by using exactly the same condi-
tions on rings in general, we can define (and we have defined) the notions of
reduced rings, domains, and division rings. However, a little careful thought
will show that this is not the only way to generalize the former three classes.
In fact, the defining conditions for these classes are conditions on elements of
a ring. When we move from commutative rings to noncommutative rings, an
alternative way of generalizing an “element-wise” condition should be to
replace the role of elements by that of ideals. By making these changes judi-
ciously in the basic definitions, we are led to the notions of semiprime rings,
prime rings, and (left or right) primitive rings. The following chart more or
less summarizes the overall situation:

commutative direct alternative
category . generalizations generalizations
{reduced comm. rings} = C  {reduced rings} C {semiprime rings}
v V] v
{integral domains} C {domains} C {prime rings}
v v v '
{fields} C  {divisionrings} C  {(l-sided) primitive rings}

This chapter is mainly concerned with the three classes of rings constitut-
ing the last column of the so-called ““alternative generalizations.” In §10,
after introducing the notion of prime and semiprime rings, we give a brief
treatment of the theory of radicals for noncommutative rings. The notions of
upper, lower nilradicals and the Levitzki radical are introduced as interesting
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alternatives to the notion of the Jacobson radical. In general, these four
radicals are mutually distinct, but for specific classes of rings, two or more of
them may coincide. Some of the facts for the Jacobson radical are shown to
have -analogues for the other kinds of radicals. However, it is not our inten-
tion to try to extend every result on the Jacobson radical in Chapter 2 to the
other kinds of radicals.

Section 11 studies the structure theory of (left) primitive rings due to N.
Jacobson. Examples are given to show how this structure theory can be used
to prove nontrivial results in noncommutative ring theory. In §11-12, the
importance of the class of J-semisimple rings emerges once again. These
rings are the same as the semiprimitive rings, and they are characterized as
subdirect products of (left) primitive rings. If a certain proposition is true for
division rings, it is sometimes possible to use Jacobson’s structure theory to
deduce the same proposition for left primitive rings, and, via subdirect
product representations, for semiprimitive rings. To deduce the same prop-
osition for arbitrary rings would, however, involve “lifting through™ the
Jacobson radical; this is usually very difficult, and often impossible. Never-
theless, a number of remarkable theorems on rings have been proved by
means of this useful procedure.

§10. The Prime Radical; Prime and Semiprime Rings

In commutative ring theory, the notions of prime ideals and radical ideals
play very important roles. We begin by recalling these two basic notions. Let
R be a commutative ring, and U be an ideal in R. We say that U is a prime
ideal if U # R, and for a,b € R,

abe U impliesthatae Uorbe U.
We say that U is a radical ideal if, for a € R,
a" e U for some n > 1 implies that a e U.

In commutative algebra, it is well-known that U is a radical ideal iff U is an
intersection of prime ideals. (If U = R, we regard U as the intersection of an
empty family of prime ideals). For any ideal U, there is a smallest radical
ideal containing U, namely, the intersection of all prime ideals 2 U. This
radical ideal is denoted by VL. It can also be characterized as

{xe R: x" € U for some n > 1},

hence the notation. As a special case, we have /(0) = Nil(R), the ideal of
nilpotent elements of R.

To begin this section, we shall try to generalize the well-known results
above to the noncommutative setting. While our presentation is geared
toward the noncommutative case, the results we obtain are, of course, also
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valid for the commutative case. Therefore, the facts mentioned in the last
paragraph will all be re-proved instead of assumed. They are stated explicitly
above purely as motivation for the more general treatment needed for the
noncommutative case.

Let us first define the notion of a prime ideal for an arbitrary ring.

(10.1) Definition. An ideal p in a ring R is said to be a prime ideal if p # R
and, for ideals U, B < R,

U-Bcp impliesthat U < por B < p.

For an element a € R, let us write (@) = RaR: this is the ideal generated by
a in R. The following proposition offers several other characterizations of
prime ideals.

(10.2) Proposition. For an ideal p < R, the following statements are equiva-
lent:

(1) p is prime.

(2) Fora,be R, (a)(b) < p implies thatae p or b e p.

(3) Fora,be R, aRb < p implies thata€ p or b € p.

(4) For left ideals U,B in R, UB < p implies that U < p or B < p.
(4)" For right ideals U, B in R, UB < p implies that U < p or B < p.

Proof. It is enough to show that (1) = (2) = (3) = (4) = (1). The first
two implications and the last one are trivial. For (3) = (4), assume that
UB < p, but U & p, where U, B are left ideals. Fix an element a € U\p.
For any b € B, we have aRb < UB < p, so by (3), b € p. This shows that
Bcp. QED

As an example, note that any maximal ideal m in R is prime. For, if U, B
are ideals not contained in m, then m + U = R = m + B, and hence

= (m+U)(m+B) =m+ UB,

which implies that UB & m.

In commutative algebra, prime ideals are closely tied to multiplicatively
closed sets. The complement of a prime ideal is multiplicatively closed, and,
given a (nonempty) multiplicatively closed set S, an ideal disjoint from S and
maximal with respect to this property is always a prime ideal. We shall now
prove the analogues of these facts for arbitrary rings. First we have to adapt
the notion of 'a multiplicatively closed set to the noncommutative setting.

(10.3) Definition. A nonempty set S < R is called an m-system if, for any
a,b € S, there exists r € R such that arb € S.
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For instance, a (nonempty) multiplicatively closed set S is an m-system.
The converse is not true: for a € R, {a,a?,a* a%, ...} is an m-system, but not
multiplicatively closed in general.

From the characterization (3) of a prime ideal, we deduce the following:

(10.4) Corollary. An ideal p < R is prime iff R\p is an m-system.

(10.5) Proposition. Let S = R be an m-system, and let p be an ideal maxi-
mal with respect to the property that p is disjoint from S. Then p is a prime
ideal.

Proof. Suppose a ¢ p, b ¢ p, but (a)(b) < p. By the maximal property of
p, there exist s,s' € S such that se p + (a), s"e p + (b). Take r e R with
srs' € S. Then

srs' € (p + (@) R(p + (5)) S p + (a)(b) < p,

a contradiction. Thus, p must be a prime ideal. = QED

Next we need a generalization of the notion of vU. We adopt the
following:

(10.6) Definition. For an ideal U in a ring R, let
VU := {se R: every m-system containing s meets U} ,
c {se R: s" €U for some n > 1}.

In the special case when R is a commutative ring, one can check that the
inclusion “<” above is actually an equality. For, assume that some s” € U.
Let S be any m-system containing s. From the definition of an m-system,
there exists an r € R with s"r € S. But then S meets U at s"r, so s € V. From
this, we see easily that, in the commutative case, VU is an ideal. In the gen-
eral case, whether VU is an ideal or not is certainly not clear from the defi-

nition (10.6). We shall now prove the following result which, in particular,
settles this question—affirmatively. '

(10.7) Theorem. For any ring R and any ideal W < R, VU equals the inter-
section of all the prime ideals containing W. In particular, VU is an ideal in R.

Proof. We first prove the inclusion “<”. Let s € v and p. be any prime
ideal = U. Consider the m-system R\p. This m-system cannot contain s, for
otherwise it meets M and hence also p. Therefore, we have s € p. Conversely,
assume s ¢ VU. Then, by definition, there exists an m-system S containing s
which is disjoint from U. By Zorn’s Lemma, there exists an ideal p 2 U
which is maximal with respect .to being disjoint from S. By (10.5), p is a
prime ideal, and we have s ¢ p, as desired. @ QED

N
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We shall now define the notion of a semiprime ideal. It will be shown a
little bit later that this is the correct generalization of the notion of a radical
ideal in the commutative case.

(10.8) Definition. An ideal € in a ring R is said to be a semiprime ideal if, for
any ideal U of R, U? < € implies that U < €. (For instance, a prime ideal is
always semiprime.)

We have the following result in parallel with (10.2).

(10.9) Proposition. For any ideal €, the following statements are equivalent:

(1) € is semiprime.

(2) ForaeR, (a)*> <G implies that a € G.

(3) For ae R, aRa = € implies that a € €.

(4) For any left ideal U in R, U < € implies that U < G.

(4)' For any right ideal U in R, W* < € implies that U < €.

The proof of this proposition is similar to that for (10.2). It is, therefore,
left as an exercise for the reader.

To parody (10.3), we define a set S < R to be an n-system if, forany a € S,
there exists an r € R such that ara € S. Then, it follows from (10.9) that an
ideal € < R is semiprime iff R\€ is an n-system.

Next, we need the following crucial lemma relating m-systems and n-
systems.

(10.10) Lemma. Let N be an n-system in a ring R and let a € N. Then there
exists an m-system M < N such thatae M.

Proof. We define M = {a),a3,as,...} inductively as follows: a; = a, a; =
aynia) € N (for some ry), a3 = ayra; € N (for some r,),..., etc. To show
that M is an m-system, we must show that, for any i,j, a;Ra; contains
an element of M. But if i < j, a;Ra; contains a;Ra;, which contains a;,; € M,
and if i > j, a;Ra; contains a;Ra;, which contains a;,; € M. QED

(10.11) Theorem. For any ideal € < R, the following are equivalent:

(1) € is a semiprime ideal.

(2) € is an intersection of prime ideals.

(3) € =VE.

(From (1) < (3), we see that, in the commutative setting, semiprime
ideals are precisely the radical ideals.)
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Proof of (10.11). (3) = (2) is clear since, by (10.7), V€ is an intersection of
prime ideals. (2) = (1) is also clear: in fact, from Definition (10.8), it is
obvious that the intersection of any family of semiprime (or prime) ideals
is always semiprime. It remains to prove (1) = (3). For a semiprime ideal
¢, we must show that & < €. Let a¢ €. Then N := R\C is an n-system
containing a. By the Lemma above, there exists an m-system M < N such
that ae M. But then M is disjoint from €, so, from Definition (10.6),
a¢ V€. QED

(10.12) Corollary. For any ideal € < R, /€ is the smallest semiprime ideal in
R which contains €.

In the special case when € = 0, the inclusion relation observed in Defi-
nition (10.6) shows that /(0) is always a nil ideal. This leads us to a new
notion of radical:

(10.13) Definition. For any ring R, we define Nil, R := /(0). This is called
(Baer's) lower nilradical or the Baer-McCoy radical of R. It is the smallest
semiprime ideal in R, and is equal to the intersection of all the prime ideals
in R. Because of the latter, Nil, R is also called the prime radical of R in the
literature. Since Nil, R is nil, we have by (4.11):

(10.14) Nil, R < rad R.

(10.15) Definition. A ring R is called a prime (resp., semiprime) ring if (0) is a
prime (resp., semiprime) ideal.

We make the following immediate observations. (a) For an ideal U < R,
R/U is prime (resp., semiprime) iff U is a prime (resp., semiprime) ideal. (b)
As we have stated in the Introduction, in the category of commutative rings,
prime rings are the integral domains, and semiprime rings are the reduced
rings. And, of course, for any commutative ring R, Nil, R is just Nil R, the
ideal of all nilpotent elements in R.

(10.16) Proposition. For any ring R, the following are equivalent:

(1) R is a semiprime ring.

(2) Nil, R=0.

(3) R has no nonzero nilpotent ideal.

(4) R has no nonzero nilpotent left ideal.

Proof. (1) < (2) is clear from Definition (10.15). Next we shall prove
4 =03)=1)=>(4).
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The first two implications are also clear. For (1) = (4), let R be a semiprime
ring and let U be a nilpotent left ideal. Choose n (=>1) minimal such that
U"=0.If n > 1, then (U"')? = ¥~ < U” = 0 implies that U"' = 0 (cf.
(10.9)), contradicting the minimality of n. Thusn =1and U=0. QED

The following offers a list of examples (and nonexamples) of prime and
semiprime rings.

(10.17) Examples.
(a) Any domain is a prime ring.
(b) Any reduced ring is a semiprime ring.
(c) Any simple ring R is a prime ring (see the paragraph after (10.2)).

(d) For any ring R, the quotient R/Nil, R is a semiprime ring naturally
associated with R. If f: R — § is a surjective homomorphism of rings,
it is easy to check that f(Nil, R) < Nil, S, so finduces a surjection of
semiprime rings R/Nil. R — S/Nil, S.

(e) From (10.14), we see that rad R = 0 implies that Nil, R = 0; i.e., any
semiprimitive (= J-semisimple) ring is semiprime. In particular, semi-
simple rings and von Neumann regular rings are all semiprime.

(f) Any direct product of semiprime rings is semiprime. On the other
hand, the direct product of two or more nonzero rings is never a prime
ring.

The following Proposition and (10.20) below enable us to generate more
examples of prime and semiprime rings.

(10.18) Proposition. Let T be a set of variables which commute with one
another as well as with elements of a ring R. Then the polynomial ring A = R[T)
is prime (resp., semiprime) iff R is prime (resp., semiprime). The same state-
ment holds for the ring of Laurent polynomials R[T,T™'].

Proof. We shall deal with the “prime” case and leave the (completely anal-
ogous) “semiprime” case to the reader. Suppose A is prime and aRb =0
where a,b € R. Then clearly adb =aR|[T]b =0, and so a=0 or b=0.
Conversely, suppose R is prime and f4g = 0, where f, g € R[T). There exists
a finite set Ty <= T such that f, g € R[T)), and clearly fR[T,]g = 0. Therefore,
it is enough to deal with the case where T is finite. Using induction, we are
finally reduced to the case 4 = R([f] for a single variable 1. In the notation
above, let g, b be the leading coefficients of f and g. Then fR[t]g = 0 implies
that aRb = 0, so either a = 0 or b = 0; i.e., either f = 0 or g = 0. The proof
for the case of the ring of Laurent polynomials R[7, T~!] is similar. QED
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The Proposition above leads directly to the complete determination of the
prime radical of a polynomial ring R[T]. (It is worth noting that the argu-
ments needed here are simpler than those needed for the determination of the
Jacobson radical of R[T]. And also, the description obtained for Nil, R[T] is
much more explicit.) The case of the Laurent polynomial ring R[T, T~!] can
be handled as well.

(10.19) Theorem (Amitsur, McCoy). For any ring R, we have Nil, R[T]| =
(Nil, R)[T), and Nil,(R[T,T~")) = (Nil, R)[T,T™").

Proof. Let /= Nil, R. Then R/I is semiprime and so, by (10.18),
R[T)/I|T) = (R/I)[T] is also semiprime. This means that /[T] is a semi-
prime ideal in R[T], so we have I[T] = Nil. R[T]. To show the reverse
inclusion, we need to show that J/[T] = p for any prime ideal p of R[T]. Note
that p R is a prime ideal in R. For, if aRb e p n R where a,b € R, then
aR[T)b = (aRb)[T] < p, and so we have eitherae pn Ror b € pn R. Since
pN R is prime, we have I < pn R < p; therefore, I[T] < p, as desired.
The same proof works for R[T,T"!] to give the second equation in the
Theorem. QED

We also have similar results for matrix rings.

(10.20) Proposition. 4 ring R is prime (resp.,'semiprime) iff M,(R) is prime
(resp., semiprime).

(For instance, if R is any domain, then M,(R) is a prime ring, although it
is not a domain for n > 1.)
Proof. Again we shall handle only the “prime” case and leave out the
‘“‘semiprime” case. Assume R # 0 is not prime. Then there are nonzero ideals
A, Bin R such that 4 - B = 0. But then M, (4) - M,(B) = 0, so M,(R) is not
prime. Conversely, if M,(R) # 0 is not prime, then it has nonzero ideals U,
B such that U - B = 0. By (3.1), we have U = M,(4) and B = M,,(B), where
A, B are (nonzero) ideals in R. But then U - 8B = 0 implies that 4 - B = 0, so
Ris not prime. QED

(10.21) Theorem. For any ring R, we have Nil, M,(R) = M,(Nil. R).

The idea of the proof is the same as that for (10.19). The details will be left
to the reader (as Exercise 22).

Let us now consider the case of group rings kG. While the problem of
finding a criterion for kG to be semiprimitive is unsolved, the problem of
finding criteria for kG to be prime.or semiprime has been completely solved
by I.G. Connell and D.S. Passman, respectively. This will be presented in
(A) and (B) below.
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(A) Connell’s Theorem. Let k be a ring and G be a group. Then the group ring
R = kG is prime iff k is prime and G has no finite normal subgroup # {1}.

Proof. First suppose R is prime. If 4, B are ideals in k such that 4- B =0,
then (AR) - (BR) =0 too, and we have AR=0 or BR=0, s0 A =0 or
B = 0. This shows that k is prime. If H is a finite normal subgroup of G,
then the left ideal M of R generated by all h — 1 (h e H) is an ideal, and it is
annihilated by the (left) ideal B generated by ), _, A. Since R is prime, U
must be zero, so H = {1}. For the converse, assume that k is prime, and that
G has no finite normal subgroup # {1}. Consider the characteristic sub-
group A = A(G) of G defined in (6.23). This group is torsion-free, for by
Dietzmann’s Lemma (Exercise 6.15) any torsion element in A and all of
its G-conjugates would generate a finite normal subgroup of G. Since A is
also an f.c. group, (6.24) implies that A is abelian. Therefore, any finitely
generated subgroup Ag < A is free abelian, and by (10.18), kA is prime.
An easy direct limit argument now shows that kA is prime. To show that
kG is prime, suppose y kG y' = 0, where y,7y' € kG. Let n : kG — kA be the
(kA, kA)-bimodule homomorphism in (6.26) and (6.27). By (6.28), we have
n(y kG)n(y' kG) = 0. Since n(y kG), n(y' kG) are right ideals in the prime
ring kA, one of them must be zero. It then follows from (6.27) (b) that one of
7 kG, y' kG is zero; that is, either y=0ory’ =0. QED

(B) Passman’s Theorem. Let k be a ring and G be a group. Then the group
ring R = kG is semiprime iff k is semiprime and the order of any finite normal
subgroup of G is not a O-divisor in k.

Proof. First suppose R is semiprime. Then it follows as in the above proof
that & is semiprime. Let H = {h,, ..., h,} be a finite normal subgroup of G.
Then, for the ideals U, B defined in the first part of the above proof, we have

UNB)’ cUB =0.
Since R is semiprime, U N B = 0. If a € k is such that na = 0, then
alhm+---+h)=ah - 1)+ ---+alh,—1)eUnB =0,

so we must have a = 0. This shows that n = |H| is not a 0-divisor in k. For
the converse, we shall limit ourselves to the case when k is a field. First assume
char k = 0. Here we must show that R is semiprime without any condition
on G. But if 7 is a nilpotent ideal of kG, then [ - k is a nilpotent ideal of kG,
where X is the algebraic closure of k. By (6.11)(b), 7 -k = 0, so 7 = 0. Next
assume char k = p, and that G has no finite normal subgroup of order divisi-
ble by p. Then A = A(G) is a p’-group, for, by Dietzmann’s Lemma, any ele-
ment in A of order p and its G-conjugates would generate a finite normal
subgroup in G, of order divisible by p. To show that kG is semiprime, let
y € kG be such that y kG y = 0. Then (6.28) implies that n(y kG)n(y kG) = 0,
where # = m, is as defined in (6.26). Since A is a p’-group, (6.13) implies that
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the right ideal #(y kG) of kA is zero. By (6.27)(b), we conclude that y kG = 0;
hence y=0. QED

Next we shall try to relate semiprime rings to semisimple rings. We start
with the following basic lemma on minimal left ideals in any ring.

(10.22) Brauer’s Lemma. Let U be a minimal left ideal in a ring R. Then we
have either U = 0, or W1 = Re for some idempotent e € .

Proof. Assume U? #0. Then U-a#0 for some a€ U, and therefore
U - a = U. Choose e € U such that a = ea. The set

I={xel: xa=0}

is a left ideal < U, since e ¢ I. Therefore / = 0. On the other hand, we have
e? —eel and (e — e)a = 0; hence e2 — e = 0. Since gU is minimal, we
conclude that W = Re.  QED

(10.23) Corollary. If U is a minimal left ideal in a semiprime ring R, then
U = Re for some idempotent e € U.

Proof. We cannot have U> = 0 by (10.16). QED

We can now prove the following analogue of our earlier result (4.14),
replacing “J-semisimple” there by “‘semiprime.”

(10.24) Theorem. For any ring R, the following three statements are
equivalent:

(1) R is semisimple.
(2) R is semiprime and left artinian.

(3) R is semiprime and satisfies DCC on principal left ideals.

Proof. It suffices to prove (3) = (1). We claim that the same arguments used
in the proof of (4.14) apply here. In fact, in that proof, the only place we
used the J-semisimple hypothesis on R was in proving the statement (b)
there. But if R is semiprime, (b) does hold according to (10.23). Therefore,
the proof for (4.14) carries over completely. QED

In the balance of this section, we shall briefly discuss two other kinds
of radicals which can be associated with a ring R. These are: the upper nil
radical Nil* R, and the Levitzki radical L-rad R. To define the former, we
first make the following easy observation.

(10.25) Lemma. Let U be a nil left ideal, and B be a nil ideal in a ring R.
Then U + B is a nil left ideal.
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Proof. Let c e U + B. Working first in R/®B and lifting to R, we see that
c" € B for some n > 1. Since B is nil, we have (c")™ = 0 for some m > 1.
Hence U+ Bisnil. QED

The Lemma implies, in particular, that the sum of any family of nil ideals
in a ring is always nil. This leads to the following definition.

(10.26) Definition. Let Ni/* R be the sum of all nil ideals in R. We call
Nil* R the upper nilradical of R. This is the largest nil ideal of R; hence

Nil* R={a€eR: (a)isnil}.

(10.27) Propesition. For— any ring R, we have Nil. R< Nil* R<rad R. If
R is commutative, then Nil, R = Nil* R = Nil R. If R is left artinian, then
Nil, R = Nil* R =rad R.

Proof. The first inclusion follows since Nil, R is a nil ideal; the second
inclusion follows (from (4.11)) since Nil* R is a nil ideal. If R is commuta-
tive, Nil, R and Nil* R both coincide with Nil(R); hence they are equal.
Finally, let R be left artinian. By (4.12), rad R is a nilpotent ideal. Since (0) is
the only nilpotent ideal in R/Nil, R, it follows that rad R = Nil, R. Hence,
all three radicals are equal. QED

A large class of rings with a zero upper nilradical is given by group rings.
Recall from (6.13) that, if k is any reduced commutative ring of prime char-
acteristic p > 0, then Nil* kG = 0 for any p’-group G. And in characteristic
zero, if k is a ring with involution * such that

D afai=0= allg;=0

(for instance k as in (6.11)(a), (b)), then Nil* kG = 0 for any group G, by
(6.11). In fact, using the argument in (6.11), we see the following: If R is any
ring with an involution * such that a*a = 0 => a = 0 in R, then R has no non-
zero nil left ideals. In particular, Nil* R = 0. This applies, for instance, to any
ring R of bounded operators on a complex Hilbert space which is closed with
respect to T — T*, where T* denotes the adjoint of T. (Here, if T*T =0,
then

| To)l? = (Tv, Tvd = (v, T*Tvd =0 for all vectors v

implies that T = 0.)

Quite generally, for any ring R and any element x € R, the principal left
ideal R - x is nil iff the principal right ideal x - R is nil. Therefore, R has no
nonzero nil left ideal iff it has no nonzero nil right ideal. In this case, we may
refer to R as a ring without nonzero nil one-sided ideals. In this connection,
there is a famous unsolved problem: If R has no nonzero nil ideals, does it
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Sfollow that R has no nonzero nil one-sided ideals? The truth of this was con-
jectured many years ago by G. Kéthe.

(10.28) Kaothe’s Conjecture. If Nil” R =0, then R has no nonzero nil one-
sided ideals.

It is easy to see that the following are two equivalent formulations of the
same conjecture:

(10.28a) Every nil left or right ideal of a ring R is contained in Nil* R.
(10.28b) The sum of two nil left (resp., right) ideals of R is also nil.

The equivalence of (10.28a) to (10.28) is clear from (10.25), and
(10.28a) = (10.28b)
follows from the fact that Ni/* R is a nil ideal. To see that

(10.28b) => (10.28a),

note that in general, R - x is nil implies that R - xr is also nil, for any r € R.
From this, it follows that the sum of all nil left ideals in any ring R coincides
with the sum of all nil right ideals. If (10.28b) holds, this common sum is a
nil ideal, and therefore contained in Nil* R. Some further interesting equiv-
alent formulations of K&the'’s Conjecture can be found in Exercise 25 of this
section.

In spite of the many great advances made in ring theory in recent times,
Koéthe’s Conjecture has remained unsolved in general. For several special
classes of rings, the Conjecture has been shown to be true. One such class is,
of course, the class of right artinian rings (for which Nil* R = rad R). It
turns out that the Conjecture is true even for the larger class of right no-
etherian rings. To prove this, we follow a remarkable argument of Y. Utumi.

(10.29) Lemma. Assume that R satisfies the ACC for right annihilators
ann,(a) = {x € R: ax = 0}, where a € R. Then:

(1) Any nil one-sided ideal U is contained in Nil, R;

(2) Any nonzero nil right (resp., left) ideal B contains a nonzero nilpotent
right (resp., left) ideal.

In particular, if R is also semiprime, then every nil one-sided ideal is zero.
Proof. (1) Assume U is a nil right ideal ¢ Nil, R. Among the elements in

U\Nil, R, choose a such that ann,(a) is maximal. Since Nil, R is semiprime,
there exists x € R such that axa ¢ Nil, R. Now ax € U is nilpotent, so there
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exists.an integer k& > 1 such that (ax)" =0%# (ax)"". Then
ann.(axa) 2 ann,(a)

since x(ax)*~2 belongs to ann,(axa) but not to ann.(a). Since axae
U\ Nil, R, this contradicts the choice of a. If U is a nil left ideal instead, then
for any a’ € U, a’R is a nil right ideal, so a’R < Nil, R by the above. There-
fore, we also have U < Nil, R.

(2) Among the nonzero elements of B, choose b such that ann,(b) is
maximal. It suffices to show here that bxb = 0 for all x € R, for then we’ll
have (bR)? = (Rb)2 = 0. If B is a right ideal, we can repeat the argument in
(1) to get bxb = 0. Now assume ‘B is a left ideal and bxb # 0. Then xb € B is
nilpotent, so there exists an integer k > 1 such that (xb)* = 0 # (xb)*~'. But
then xb € ann,( (xb)"") and xb ¢ ann,(b), so we have

ann,(b) < ann,((xb)k_l)»

a contradiction. QED

The last part of the lemma above leads to the quickest known proof of an
earlier theorem of J. Levitzki.

(10.30) Levitzki’s Theorem. Let R be a right noetherian ring. Then every nil
one-sided ideal U of R is nilpotent. We have Nil, R = Nil* R, and this is the
largest nilpotent right (resp., left) ideal of R.

Proof. In view of (1) in the Lemma above, it suffices to show that Nil, R is
nilpotent. Since R is right noetherian, there exists a maximal nilpotent ideal
N in R. Then R/N has no nonzero nilpotent ideals, so R/N is semiprime.
This shows that N 2 Nil, R, and hence Nil, R = N is nilpotent. = QED

For a little bit of history on Levitzki’s Theorem, the following remark
from p. 51 of N.J. Divinsky’s book “Rings and Radicals” is of interest: “Fate
seems to have had a hand in suppressing this result. Levitzki proved it in
August, 1939, but because of the war and other peculiar circumstances it did
not appear in print until 1950, and then in a relatively obscure journal with a
minor mistake in the proof! Rumors circulated that this theorem was true
but it was not noticed until Jacobson put it into his 1956 book. However, the
minor flaw remained!”

Clearly, Levitzki’s Theorem implies the truth of Kothe’s Conjecture for
right noetherian rings. There are other classes of rings for which Kéthe’s
Conjecture has been shown to be true. For instance, let R be an algebra over
a field k such that either R is algebraic over k, or dimy R < |k| (as cardinal
numbers); then by (4.19) and (4.20), Nil* R = rad R. In these cases, it is clear
that any nil one-sided ideal is contained in Nil* R. It is also known that an
important class of rings called PI-algebras (over an arbitrary field k) satisfy
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Kéthe’s Conjecture. For these algebras R, it turns out that Nil/, R = Nil* R,
if R is finitely generated over k, A. Braun has shown even that Nil, R =
Nil* R = rad R, and that this is a nilpotent ideal in R.

We shall now conclude this section with some brief remarks on the
Levitzki radical of a ring R. This radical is defined using the notion of
“locally nilpotent” sets. We say that a set S < R is locally nilpotent if, for
any finite subset {s),...,s,} =S, there exists an integer N such that any
product of N elements from {s,...,s,} is zero. In other words, S is locally
nilpotent if any subring without identity generated by a finite number of
elements in S is nilpotent. As a rule, we shall use this notion for the one-sided
ideals of R. Note that, if U < R is a one-sided ideal, then

U is nilpotent = U is locally nilpotent => U is nil.

One major difference between “nil” and ‘““locally nilpotent’ is the following.
Let U, B be one-sided nil ideals in R. If Kothe's Conjecture were true, then
U, B would be in Nil* R and hence RUR, RBR and U + B would all be nil.
However, since Kothe's Conjecture has not been proved, these conclusions,
in general, remain in doubt. The inaccessibility of these conclusions presents
a major obstacle in working with nil one-sided ideals. For locally nilpotent
one-sided ideals, the situation is far more pleasant, as we can see from the
following result.

(10.31) Proposition. Let U, B be locally nilpotent one-sided ideals in R. Then
RUR, RBR and U + B are locally nilpotent.

Proof. Assume, say U is a left ideal. To show that U - R is locally nilpotent,
take a finite set {b;} < U - R where

b = Za,’jrij (aj €U, rjeR).
J

Consider the finite set S = {r,a;} = U. Since U is locally nilpotent, there
exists an integer N such that the product of any N elements from S is zero.
Now clearly the product of any N + 1 of the b;’s is zero, so U - R is locally
nilpotent. A similar argument can be applied to show that U + B is locally
nilpotent. QED

Since local nilpotence is a finitary property, it follows easily from (10.31)
that the sum of all locally nilpotent ideals in a ring R is locally nilpotent. We
denote this sum by L-rad R; this is called the Levitzki radical of R. It is the
largest locally nilpotent ideal of R, and contains every locally nilpotent one-
sided ideal of R. Moreover, we have

(10.32) Nil, R< L-rad R< Nil* R < rad R.

The second inclusion is clear as L-rad R is a nil ideal. To see the first inclu-
sion, it suffices to show that L-rad R is a semiprime ideal (since any semi-
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prime ideal contains Nil, R). Let U be an ideal such that
U’ < L-rad R.

We see easily that, since U? is locally nilpotent, so is U, and therefore
U < L-rad R. This shows that L-rad R is semiprime, as desired.

In general, the three inclusions in (10.32) are strict inclusions. First of all,
it is easy to give examples of rings R for which Ni/* R < rad R. For instance,
if R is any commutative domain with a unique maximal ideal m # 0, then
rad R = m, but the three other radicals are all zero. In the following, we
shall give an example of a ring R for which L-rad R, and hence Nil* R, are
bigger than Nil/, R. This example is taken from a paper of J. Ram.

Let R be the ring A4[x; g] of twisted polynomials over a commutative ring
A that will be specified later. The polynomials in R are written as Y_ a;x’,
and are multiplied according to the twist equation xa = o(a)x, where g is a
fixed automorphism of the ring 4. We shall now define 4. Fixing a field k,
we take A to be the commutative k-algebra with generators ¢; (i € Z) and
relations ¢, t;,1;, = 0, where | < i; < i3 range over all increasing arithmetic
progressions of length 3 in Z. As a k-vector space, a basis of A is given by
monomials

n n,
{07}
where i; < --- < i, is a sequence in Z containing no arithmetic progression of

length 3. We shall take o to be the k-automorphism of 4 (well-) defined by
o(t;) = tiyy (for any i € Z). We shall show that

(1) R = A[x; 0] is a prime ring, but
(2) L-rad R #0.

To show (1), assume, on the contrary, that there exist nonzero polynomials
f,g with f4|x;a]lg = 0. Let a,b € A be the leading coefficients of f,g. Then
Jfx’g = 0 implies that ac"*/(b) = 0 for any j > 0, where n is the degree of f.
This is, however, impossible, since, by choosing j to be very large, we can
guarantee that the monomials in ¢"*/(b) are disjoint from those of a and
that, in the expansion of a - ¢"*/(b), the products of the monomials in a with
those in "+ (b) do not contain three variables whose suffixes form an arith-
metic progression. This proves (1).

For (2), we shall show that the right ideal tox - R in R is locally nilpotent. If
so, then fox - R < L-rad R, and therefore L-rad R # 0. Consider n elements

tox-f; (1<i<n)

in fox - R. We must find an integer N such that the product of any N elements
among {fox - f;} is zero. Without loss of generality, we may assume that

fi=ax"' wherer(i)>1,and 1 <i<n.

Then tox - f; = too(a;)x"". For any N, a product (toxf;, ) - - - (foxf;,,,) has the
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form

(10.33) a- 190" (to)a" W12 (g5) . . . g )+ AN (g0 yxc )+t r(ina)

= @loliy) iy vrtin) Iyt X,

where a € 4. Consider the increasing sequence

(10.34) 0< r(i|) < r(i.) +rh)<--- < r(h))+---+ T(iN).

Note that the gap between any two consecutive integers in this sequence is
bounded by m := max{r(1),...,r(n)}. Using a classical theorem of van der
Waerden, it is known that there exists an integer N, depending only on m,
such that any N-term sequence as in (10.34) contains an arithmetic pro-
gression of length 3. (See the article ““ Arithmetic progressions contained in
sequences with bounded gaps” by M.B. Nathanson in Canad. Math. Bull.
23(1980), 491-493.) For this N, the product in (10.33) is zero, and therefore
(toxf;,) - - - (toxf;,,,) = O for any choices of i, ... iy from {1,...,n}. This
completes the proof that tox- R < L-rad R.

Exercises for §10

Ex. 10.0. Show that a nonzero central element of a prime ring R is not a
zero-divisor in R. In particular, the center Z(R) is a (commutative) domain,
and char R is either 0 or a prime number.

Ex. 10.1. For any semiprime ring R, show that Z(R) is reduced, and that
char R is either O or a square-free integer.

Ex. 10.2. Let p < R be a prime ideal, U be a left ideal and B be a right ideal.
Does UB < p imply that U < p or B < p?

Ex. 10.3. Show that a ring R is a domain iff R is prime and reduced.

Ex. 10.4. Show that in a right artinian ring R, every prime ideal p is maxi-
mal. (Equivalently, R is prime iff it is simple.)

Ex. 10.4*. For any given division ring k, list all the prime and semiprime
ideals in the ring R of 3 x 3 upper triangular matrices over k.

Ex. 10.5. Show that the following conditions on a ring R are equivalent:
(1) All ideals # R are prime.
(2) (a) The ideals of R are linearly ordered by inclusion, and

(b) All ideals I < R are idempotent (i.e. 2 = I).

Ex. 10.6. Let R = End(Vi) where V is a vector space over a division ring k.
Show that R satisfies the properties (1), (2) of the exercise above. In partic-
ular, every nonzero homomorphic image of R is a prime ring. (Hint. The
ideal structure of R was determined in Exercise 3.16.)
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Ex. 10.7. For any integer n # 0, show that (1) R= (; nZZ ) is a prime

. Z nZ)\ . . . . .
ring, but R’ = ( 0 nZ ) is not, and (2) R is not isomorphic to the prime
ring M5(2). '

Ex. 10.8. (a) Show that a ring R is semiprime iff, for any two ideals U, ®B in
R, UB = 0 implies that U " B = 0.

(b) Let U, B be left (resp. right) ideals in a semiprime ring R. Show that
UB = 0 iff BU = 0. If U is an ideal, show that ann,(U) = ann,(U).

Ex. 10.8*. Show that, with respect to inclusion, the set of semiprime ideals
in any ring forms a lattice having a smallest element and a largest element.
Give an example to show, however, that the sum of two semiprime ideals
need not be semiprime.

Ex. 10.9. Let 7 < R be a right ideal containing no nonzero nilpotent right
ideals of R. (For instance, / may be any right ideal in a semiprime ring.)
Show that the following are equivalent: (1) I is an artinian module; (2) Iy is
a finitely generated semisimple module. In this case, show that (3) 7 =eR
for an idempotent e € 1.

Ex. 10.10A. Let N,(R) be the sum of all nilpotent ideals in a ring R.

(1) Show that N;(R) is a nil subideal of Nil, R which contains all nilpotent
one-sided ideals of R.

(2) If Ni(R) is nilpotent, show that N1(R) = Nil, R.

(3) Show that the hypothesis and conclusion in (2) both apply if ideals in R
satisfy DCC.

Ex. 10.10B. K.eeping the notations of Exercise 10A, give an example of a
(necessarily noncommutative) ring R in which N{(R) < Nil, R.

Ex. 10.11 (Levitzki) For any ring R and any ordinal a, define N,(R) as
follows. For a = 1, N)(R) is defined as in Exercise 10A. If « is the successor
of an ordinal g, define

No(R) = {re R: r+ Ng(R) € N\(R/Ng(R))}
If « is a limit ordinal, define
Nu(R) = |) Np(R).
p<a

Show that Nil. R = N,(R) for any ordinal a with Card a > Card R.

Ex. 10.12. Let I be a left ideal in a ring R such that, for some integer n > 2,
a" =0 forallael. Show that a"'Ra" ' =0 forallael.

Ex. 10.13. (Levitzki, Herstein) Let I # 0 be a left ideal in a ring R such that,
for some integer n,a" =0 forallael. .

(1) Show that I contains a nonzero nilpotent left ideal, and R has a nonzero
nilpotent ideal. )

(2) Show that I < Nil, R.
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Ex..10.14. (Krull, McCoy) Show that any prime ideal p in a ring R contains
a minimal prime ideal. Using this, show that the lower nilradical Nil, R is
the intersection of all the minimal prime ideals of R.

Ex. 10.15. Show that if the ideals in R satisfy 4CC (e.g. when R is left
noetherian), then R has only finitely many minimal prime ideals.

Ex. 10.16. (McCoy) For any ideal U in a ring R, show that v consists of
s € R such that every n-system containing s meets U.

Ex. 10.17. (Levitzki) An element a of a ring R is called strongly nilpotent if
every sequence a,,a,,as, . .. such that a; = a and a,,, € a,Ra, (Vn) is even-
tually zero. Show that Nil, R is precisely the set of all strongly nilpotent
elements of R.

Ex. 10.18A. (1) Let R = S be rings. Show that R n Nil,(S) < Nil.(R).

(2) If R < Z(S), show that R~ Nil,(S) = Nil.(R).

(3) Let R,K be algebras over a commutative ring k such that R is k-
projective and K 2 k. Show that R~ Nil,(R®, K) = Nil.(R).

Ex. 10.18B. Let R be a k-algebra where k is a field. Let K /k be a separable
algebraic field extension.

(1) Show that R is semiprime iff RX = R ®; K is semiprime.

(2) Show that Nil,(RX) = (Nil,(R))X.

Ex. 10.19. For a ring R, consider the following conditions:

(1) Every ideal of R is semiprime.

(2) Every ideal I of R is idempotent (i.e. I? = I).

(3) R is von Neumann regular.

Show that (3) = (2) ¢ (1), and that (1) = (3) if R is commutative. (It is of
interest to compare this exercise with Ex. S above.)

Ex. 10.20. Let Rad R denote one of the two nilradicals, or the Jacobson
radical, or the Levitzki radical of R. Show that Rad R is a semiprime ideal.
For any ideal I < Rad R, show that Rad(R/I) = (Rad R)/I. Moreover, for
any ideal J < R such that Rad(R/J) = 0, show that J 2 Rad R.

Ex. 10.21. Let R[T] be a polynomial ring over R, and let N = Rnrad R(T).
Show that N is a semiprime ideal of R and that L-rad R< N < Nil* R,
where L-rad R denotes the Levitzki radical of R. (Hint. Show that
(L-rad R)[T] is a nil ideal in R[T).)

Ex. 10.22. Supply the details for the proof of (10.21).

Ex. 10.23. Let / be a nil left ideal of a ring R.

(1) Show that the set of matrices in M,(R) whose kth column consists of
elements of 7 and whose other columns are zero is a nil left ideal of M,(R).
(2) If T,(R) is the ring of n x n upper triangular matrices over R, show that
T,(I) is a nil left ideal in 7,(R).
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Ex. 10.24. (Krempa-Amitsur) Let / be an ideal of a ring R such that, for all
n, M, (I) is a nil ideal in M, (R). Show that I[f] < rad R[t] (Hint. Reduce to
showing that any polynomial /(1) = 1 +a;7+ --- + a," is a unit in R[s] for.
any ay,...,a, € 1. Let g(r) = 1 + 32, b;t' be lhe inverse of f in R[[f]], and
let A be the companion matrix

0 —ay
1 0 —dap-1
1 —a)

Show that 4" € M,,(I) and hence A is nilpotent. Conclude from this that
b; = 0 for sufficiently large i.)

Ex. 10.25. Using (23) and (24), show that the following are eqliivalent:

(1) Kothe’s Conjecture (“the sum of two nil left ideals in any ring is nil”).
(1)) The sum of two nil 1-sided ideals in any ring is nil.

(2) If Iis a nil ideal in any nng R, then M, (7) is nil for any n.

(2) If Iis a nil ideal in any ring R, then Mz(l ) is nil.

(3) Nil*(M,(R)) = M(Nil* (R)) for any ring R and any n.

(4) If I'is a nil ideal in any ring R, then I(f] < rad R[1].

(5) rad (R[t]) = (Nil* R)|1] for any ring R.

(

Note that, if true, (5) would give a much sharper form of Amitsur’s Theo-
rem in (5.10). But of course (5) may very well be false. As to (4), Amitsur
had once conjectured that, if I < R is a nil ideal, then I[1] is also nil. This
would certainly have implied the truth of (4) (and hence of Kéthe’s Conjec-
ture!). However, A. Smoktunowicz [00] has recently produced a counter-
example to Amitsur’s conjecture. While this counterexample did not dis-
prove Kothe’s Conjecture, it certainly seemed to have lent credence to the
(long-held) suspicion that the Conjecture is false.)

§11. Structure of Primitive Rings;
the Density Theorem

In this section, we introduce a new class of rings called left primitive rings.
The central result in the section is the Density Theorem of Jacobson and
Chevalley. For the class of left artinian rings, this theorem gives another
approach to the Wedderburn—Artin Theorem on the structure of (artinian)
simple rings. For rings possibly without chain conditions, the Density The-
orem sheds llght on the structure of left primitive rings, characterizing them
as ““dense” rings of linear transformations on right vector spaces over divi-
sion rings. This structure theorem on left primitive rings may therefore be
viewed as a generalization of the Wedderburn—-Artin Theorem on artinian
simple rings.



172 4. Prime and Primitive Rings

To lead up to the definition of a left primitive ring, we first call attention
to the following characterization of a semiprimitive (= J-semisimple) ring,
which is an easy consequence of (4.1).

(11.1) Proposition. A ring R is semiprimitive iff R has a faithful semisimple
left module M.

Proof. Suppose M exists. Since (by 4.1)) rad R acts as zero on all left simple
R-modules, we have (rad R) - M = 0. Then the faithfulness of M implies
that rad R = 0, so R is semiprimitive. Conversely, assume rad R = 0. Let
{M;} be a complete set of mutually nonisomorphic simple left R-modules.
Then M = @), M; is semisimple, and

ann(M) = () ann(M,) = rad R
by (4.1). Since rad R = 0, M is a faithful R-module. =~ QED

Motivated by the Proposition above, we now give the definition of a left
primitive ring.

(11.2) Definition. A ring R is said to be left (resp., right) primitive if R has a
faithful simple left (resp., right) module. (Note that such R is necessarily # 0.)

While the notion of semiprimitivity is left-right symmetric, the notion of
primitivity is not. An example of a left primitive ring which is not right
primitive was constructed by G. Bergman in 1965. Other such examples were
found later by A.V. Jategaonkar.

Before we study left primitive rings in more detail, it is useful to extend the
notion of left primitivity from rings to ideals. -

(11.3) Definition. An ideal M < R is said to be left (resp., right) primitive if
the quotient ring R/U is left (resp., right) primitive.

We have the following easy characterization of left primitive ideals.

(11.4) Proposition. An ideal W in R is left primitive iff U is the annihilator of a
simple left R-module.

Proof. First suppose Y = ann M, where M is a simple left R-module. Then
M may be viewed as a simple R/U-module, and as such, it is faithful.
Therefore R/U is a left primitive ring. Conversely, suppose R/U is a left
primitive ring, and let M be a faithful simple left R/U-module. Then, viewed
as an R-module, g M remains simple, and its annihilator in R is 2. QED

From (4.2) and (11.4), we have the following

(11.5) Corollary. The Jacobson radical rad R is the intersection of all the left
(resp., right) primitive ideals in R.
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Next we try to relate left primitive rings to other classes of rings we studied
before.

(11.6) Proposition. A simple ring is left (and right) primitive. A left primitive
ring is both semiprimitive and prime.

Proof. The first statement is obvious since, if R is simple, R must act faith-
fully on any nonzero module. The fact that a left primitive ring is semi-
primitive is clear from (11.1) and (11.2). Finally, let R be a left primitive
ring, and let M be a faithful simple left R-module. Consider any nonzero
ideal U in R. Clearly U - M is an R-submodule of M, and the faithfulness of
rM implies that U - M # 0. Therefore U - M = M. If B is another nonzero
ideal in R, we then have

(BUM =BUM)=8B-M=M,
so BU # 0. This verifies that R is a prime ring.  QED
The Proposition we just proved completes the following chart of impli-

cations, which is to be compared with the chart in the Introduction to
Chapter 4:

semisimple = = semiprimitive = semiprime
]T(if DCC) f[ ]T
simple => left primitive — prime

In general, none of the implications is reversible. However, for left arti-
nian rings, the horizontal implications can be replaced by equivalences, as
we shall now show.

(11.7) Proposition. Let R be a left artinian ring. Then

(1) R is semisimple <=> R is semiprimitive < R is semiprime.

(2) R is simple <= R is left (resp., right) primitive <=> R is prime.
Proof. The two equivalences in (1) follow respectively from (4.14) and (10.24).
To prove (2), it is enough to show that, if R is prime (and left artinian), then
R is simple. Since R is semiprime, it follows from (1) that R is semisimple. If

there is more than one simple component, R would fail to be prime. There-
fore there is only one simple component, i.e., R is simple. = QED

In the category of commutative rings, the notion of (left) primitive rings
also does not add anything new, in view of the following observation.

(11.8) Propasition. 4 commutative ring R is a (left) primitive ring iff it is a field.

Proof. The “if” part is clear. For the converse, let R be primitive and let M
be a faithful simple left R-module. Then M =~ R/m for some maximal ideal
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min R. Since m - M = 0, it follows that m = 0. This clearly implies that R is
afield. QED

ln principle, left primitive rings are ubiquitous. For, if R is any nonzero
ring, and M is any simple left R-module, then R/ann(M) is a left primitive
ring. To give a more explicit example, we proceed as follows. Let k be any
division ring, ¥ be a right k-vector space, and let E = End(V}), operating on
the left of V. Clearly, V is a faithful simple left E-module, so E is a left
primitive ring. If dim; V = n < oo, then of course E = M, (k) is an artinian
simple ring. But if dimy V is infinite, then E gives an example of a non-
simple, noncommutative, and nonartinian left primitive ring. The class of
left primitive rings constructed above is important because we shall see later
in this section that a general left primitive ring R “resembles” £ = End(V;)
in a certain sense.

We have pointed out before that a left primitive ring need not be right
primitive. However, for the class of rings which possess minimal one-sided
ideals, it turns out that left primitivity and right primitivity are both equiv-
alent to primeness, and furthermore, these properties imply the uniqueness
of the isomorphism type of the faithful simple left (resp., right) modules.
This result will be proved in (11.11) below. To prepare ourselves for this
proof, we first point out an interesting fact concerning one-sided minimal
ideals in a semiprime ring.

(11.9) Lemma. Let R be a semiprime ring, and a € R. If Ra is a minimal left
ideal, then aR is a minimal right ideal.

Proof. It suffices to show that, for any nonzero element ar € aR, we have
a € arR. Since R is semiprime, arsar # 0 for some s € R. Let ¢: Ra — Ra be
the R-homomorphism defined by

o(x) = xrsa, for any x € Ra.

Since ¢(a) = arsa # 0 and Ra is simple, ¢ is an isomorphism. Let y be the
inverse of ¢. Then

a = yg¢(a) = Y(arsa) = ary(sa) earR. QED

(11.10) Remark. If R is not semiprime, the conclusion of the lemma may
no longer hold. For instance, if k is any division ring and R is the ring of
2 x 2 upper triangular matrices over k, then the matrix unit a = E}; gener-
ates a minimal left ideal Ra = kE);, but aR = Ej k + Ej2k is not a minimal
right ideal as it contains the ideal / = E)>k. The ring R here is not semiprime
since /2 = 0.

With the aid of (11.9), we can now prove the following.

(11.11) Theorem. Let R be a ring with a minimal left ideal . The following
properties are equivalent:
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(1) R is prime.
(2) R is left primitive.
(3) R is right primitive.

If these properties hold, then R also has a minimal right ideal B. Any faithful
simple left (resp., right) R-module is isomorphic to g (resp., BR).

Proof. In general, (2) or (3) implies (1). Now assume (1). We claim that g
is a faithful R-module. Indeed, if r € R is such that rU = 0, then (Rr)¥U = 0,
so by (10.2), Rr =0, i.e., r = 0. Since g is also a simple module, (2) fol-
lows. Now consider any faithful simple left R-module M. Then A - m # 0 for
some m € M, so by the irreducibility of M, we have M = A - m. The map

A—A-m=M

sending a € A to am € M is clearly an R-module isomorphism from U to M.
By (11.9), R has also a minimal right ideal, so the remaining conclusions
follow from left-right symmetry.  QED

The above theorem applies nicely to the ring E = End(V;), where Vis a
nonzero right vector space over the division ring k. In fact, let V = vk ® I
where v e V is a fixed nonzero vector, and let e € E be the projection of V
onto vk with kernel V. The map ¢: Ee — gV defined by ¢(re) = r(v) (for
every r € E) is clearly a surjective E-homomorphism. If ¢(re) = 0, then

(re)(v) =r(v) =0 and (re)(K)=0

imply that re = 0. Thus, ¢: Ee — V is an E-isomorphism, so Ee is a minimal
left ideal of E. Since E is left primitive, (11.11) implies that it is also right
primitive. Moreover, Ee =~ ¢V is the unique faithful simple left E-module,
and eE'.is the unique faithful simple right E-module (up to isomorphism).

Recall that, by Theorem 3.10, if a simple ring has a minimal left ideal,
then it is already left and right artinian. The remarks in the last paragraph
show however that, for left primitive rings, this situation does not prevail. In
fact, the left (and right) primitive ring E = End(V;) in the last paragraph has
a minimal left (resp., right) ideal, but if din;, V is infinite, E is neither left nor
right artinian. ’

For any ring R, let soc(gR) be the socle of R as a left R-module, i.e.,
soc(gR) is the sum of all minimal left ideals of R. (If there are no minimal
left ideals, this sum is defined to be zero.) We call soc(gR) the left socle of R,
and define the right socle soc(Rg) similarly. It is easy to see that both socles
are ideals of R. In general, these may be different ideals. But for semiprime
rings R, they are equal in view of (11.9). In this case we may write soc(R) for
either socle. This notation can be used in particular for 1-sided primitive
rings. For instance, the left (and right) primitive ring E = End(Vi) con-
sidered above has a nonzero socle. In Exercise 18 below, several criteria are
given for a left primitive ring to have a nonzero socle, and a method for
computing this socle is described.
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Next we shall give a few more examples of left primitive rings. In partic-
ular, we would like to construct left primitive rings which admit non-
isomorphic faithful simple left modules. (Such rings have necessarily zero
socles.) The first example below is, in fact,.a simple domain.

Let k be a division ring of characteristic zero, and let § be a non-inner
derivation on k. Then, by Amitsur’s Theorem (3.16), the differential poly-
nomial ring R = k[x;d] is a simple domain. For any a € k, M, = R/R(x — a)
is easily seen to be a simple left R-module. To work with M, more explicitly,
we use the decomposition

R=R(x—-a)®k

to identify M, with k. Under this identification, the R-action on k = M, is
determined by x * b = ba + 6b for b € k, in view of

xb = bx +6b = b(x — a) + ba + 6b.

Since R is simple, any M, is faithful. When is M, = M, , as R-modules?
Suppose f: M, — M, is an R-isomorphism. Then there exists ¢ € k\{0}
such that f(b) = bc for all b € k, and we have f(x * b) = x x f(b), that is,

(ba + 6b)c = bea’ + (bc)
= bca' + (8b)c + bic,

or equivalently, a = ca’c™! 4+ éc - ¢~'. Conversely, if this equation holds for
some ¢ # 0, then, by rcversmg the above argument we have M, = M, .. We
say that a is d-conjugate to a’ if

a=ca'c’' +éc-¢' for some ¢ #0.

By what we said above (or by a direct check), d-conjugacy is an equivalence
relation on k, and the isomorphism classes of simple left R-modules of the type
M, are in one-one correspondence with the 5-conjugacy classes of k. Note that
the class of 0 consists of all “logarithmic derivatives” dc-c~!, where
¢ € k\{0}. Therefore, there exist two nonisomorphic (faithful) simple left
R-modules if k has an element which is not a logarithmic derivative with re-
spect to 4. Here, R has zero socle, since it is a domain but not a division ring.
In the above example, R was simple. To get some nonsimple examples, we
shall look at skew polynomial rings of the type R = k|x;a], where o is an
endomorphism of the division ring k. We begin by noting that Euclidean
algorithm does hold in R for one-sided division: If f(x), g(x) are left poly-
nomials in R with f 3 0, then there exist unique g(x) and r(x) such that

g(x) = g(x)f (x) + r(x),

with r(x) = 0 or deg r(x) < deg f(x). In particular, if U is a left ideal in R,
the usual Euclidean algorithm argument shows that 2 is a principal left ideal
generated by any polynomial in U with the least degree. As for the ideals of
R, we have the following result.
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(11.12) Proposition. Assume that o is not an automorphism of finite inner
order on k. (This includes the case when & is not onto.) Then the nonzero ideals
of R =k[x;o] are R-x™, m > 0.

Proof. Using the twist equation xa = a(a)x, it is easy to see thateach R - x™ is
an ideal. Conversely, let 2 be any nonzero ideal of R. Then A = R - f where

f=x"+ap x4+ 4 a,x"

with m > n > 0 and a, # 0. We are done if we can show that m = n. First,
note that

Sx—xf = (@mt — 0(@m_1))x™ + -+ + (an — a(@y))x"*!
belongs to A = R - f, so it must be of the form ¢f for some ¢ € k. Com-
paring the coefficients of x"”, we see that ¢ =0, so o(a;) = a; for every i.
Next, for any a ek, fa— o™ (a)f € U has degree < m, so it must be zero.
Looking at its coefficient of x”", we get a,6"(a) — 6™ (a)a, = 0. Therefore,
o"(a,a) = 6™(aa,), and so

a,a = 6" "(aa,) = o™ "(a)a,,

since ¢ is always injective. If m > n, this would imply that o is an auto-
morphism of finite inner order. Since we assumed this is not the case, we
must have m =nand f = x™. QED

(11.13) Proposition. Under the hypothesis of (11.12), M, = R/R(x — a) is a
Jaithful simple left R-module for every a € k\{0}, so R is a left primitive ring.
We have M, =~ M, as R-modules iff a = a(c)a’c™" for some c € k\{0}.

Proof. Clearly, M, is a simple module. Also, it is easy to check that
x"¢ R(x—a) fora#0andm2>0,

so by (11.12), R(x — a) does not contain any nonzero ideal of R. Therefore,
ann(M,) = 0, so M, is a faithful simple left R-module for every a # 0. As be-
fore, we shall identify M, with k, using the decomposition R = R(x — a) @ k.
Here, the x-action on k = M, is given by x * b = g(b)a for b € k, since

xb = o(b)x = o(b)(x — a) + a(b)ae R.

Now suppose we have an isomorphism f: M, — M,.. Then there exists
c € k\{0} such that f(b) = bc for all b € k = M,. The homomorphism con-
dition f(x * b) = x * f(b) here amounts to a(b)ac = a(bc)a’, or equivalently
a = o(c)a’c™!. Conversely, if this holds for some ¢ # 0, then by reversing the
above argument we have M, = M,.. QED

We say that a € k\{0} is a-conjugate to a’ € k\{0} if a = o(c)a’c™! for
some ¢ € k\{0}. Under the hypothesis of (11.12), we see that the isomorphism
classes of the faithful simple left R-modules of the form M, are in one-one
correspondence with the o-conjugacy classes of k\{0}. Using this, we can
construct a left primitive ring R with infinitely many distinct faithful simple
left modules. For instance, let k = R(r) and let R = k|x; 0], where ¢ is the
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R-automorphism of k sending ¢ to ¢ + 1. In k, define

deg(f/g) = deg [ —deg g for f,g e R[]\{0}.
Then, for any nonzero ¢ = c(t) € R(¢),

a(c)e™ = c(t+1)/c(1)

has degree 0. Therefore a(t) is o-conjugate to a’(¢) only if they have the same
degree. In particular, M, M,, M,, ... are mutually nonisomorphic faithful
simple left R-modules.

In the last two examples, we exploited the presence of a nontrivial twist on
the skew polynomial rings k[x;d] and k[x; o] to give the proof of their left
primitivity. However, even in the untwisted case, the class of rings k|x]
affords some nice examples of left (and right) primitive rings, as the follow-
ing result shows.

(11.14) Proposition. Let k be a division ring which is not algebraic over its
center C, and let R = k(x|. Then for any a € k which is not algebraic over C,
M, = R/R(x — a) (resp., R/(x — a)R) is a faithful simple left (resp., right)
R-module. In particular, R is left and right primitive. The isomorphism classes
of simple modules of the type M, (a € k) are in one-one correspondence with
the conjugacy classes of k.

Proof. We shall work with left modules in this proof, the case of right modules
being similar. Since R(x — a) is a maximal left ideal, M, = R/R(x — a) is a
simple left R-module. As before, we identify M, with k via the decomposi-
tion R= R(x—a)@®k. Here, as in the proof of (11.13), the x-action
on k=M, is x*xb = ba for any be k. Assume that ann(M,) # 0. Since
ann(M,) is an ideal, Exercise 1.16 shows that it contains a nonzero
g(x) = 3, cix' € C[x]. But then

0=g(x)*1= Z(cix‘) *x1 = Zciai

7 i
shows that a is algebraic over C, a contradiction. We can show as in the two
earlier examples that

M,=M, iff a=ca'c”' forsome cek\{0}.

This gives the last conclusion in the Proposition.  QED

Having given the above examples of left primitive rings, we shall now
return to the general theory. Our next goal is to prove the Density Theorem
of Jacobson and Chevalley (11.16). The structure theorem on left primi-
tive rings ((11.19) below) will be seen to be a consequence of this Density
Theorem.

First let us define the notion of density. Let R, k be two rings, and
V = rVk be an (R, k)-bimodule. We write E = End(Vi), which operates on
V from the left. We say that R acts densely on V, if, for any f € E and any
vy,...,0, € V, there exists r € R such that rv; = f(v;) fori=1,2,...,n. To
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explain why this property is referred to as “density,”” we make the following
observation. Let 4 be the topology on E defined by taking as a basis all sets
of the form

{geE: glv)=v; (1i<n)}

where » is any natural number, and v;, v are arbitrary elements of V. It is
easy to see that R acts densely on ¥ (in the sense defined above) iff, under
the natural map from R to E, the image of R is a dense subring of E with
respect to the topology 7.

Before stating the Density Theorem, we need the following preliminary
result.

(11.15) Lemma. In the notation above, assume that rV is a semisimple R-
module, and that k = End(rV). Then any R-submodule W of V is an E-sub-
module (and, of course, conversely).

Proof. Take a suitable R-submodule W' of ¥V such that V= W @ W', and
let e € k be the projection of ¥ on W with respect to this decomposition.
Then, for any f € E, we have

S(W) = f(We) = (S W)e S W,
so Wis an E-submodule of V. QED

The Lemma above prepared us for the proof of the following fundamental
result.

(11.16) Density Theorem (Jacobson, Chevalley). Let R be a ring and V be a
semisimple left R-module. Then, for k = End(rV'), R acts densely on V.

Proof. As before, let E = End(V;). For f € E and vy,...,v, € V, we seek an
element r € R such that rv; = f(v;) for all i. The idea of the proof, after N.
Bourbaki, is to apply the Lemma above to the semisimple R-module V = V"
(direct sum of n copies of V). First we compute that

k := End(xV) = End(gV")
= M, (End(rV)) = Ma(k).

Now define [V oV by taking f=U.f....f). We claim that
f € End( V;). To see this, let é € k, and represent & as a matrix (e;;), where
e;j € k. Then, for any (w1,...,wn) € v

Sy, wa)e) =I(Z Wieit, - > Wiein)
- ((Ewar)e A (S o)

= (Zf(wi)eila ey Zf(wi)ein)
= (fom).... SO
= (f(wi,...,wn))&,
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as desired. Now consider the cyclic R-submodule W of V generated by
(v1,--.,vs) € V. By the preceding Lemma (applied to W < V), W is stabi-
lized by End(V; z), in particular by /. Thus,

f(D|,...,U,,)—(f(U] 1""f(v’l))
remains in W = R - (v,,...,v,), so there exists an r € R such that f(v;) = r;
fori=1,2,...,n QED

(11.17) Corollary. Let R, V, k and E be as in the Density Theorem. If Vj is
finitely generated as a (right) k-module, then the natural map p: R — E is
onto.

Proof. Let v),...,v,€ V be a finite set of generators of V as a right k-
module. Let f € E. By the Density Theorem, there exists an r € R such that
rv; = f(v;) for all i. For any v € V, write v = }_ v;a; where a; € k. Then

ro-= Z r(via;) = Z(rvi)a,- = Z(f(v,-))a,»
= f(z Uiai) = f(v),

andso f =p(r). QED

The main case of interest in the Density Theorem (11.16) is when V is a
simple R-module. However, for the above formulation to work, it is neces-
sary to deal more generally with semisimple modules, for, even if gV itself
is simple, the auxilliary module V (to which we applied Lemma (11.15)) is
only semisimple. Therefore, we may as well let gV be a semisimple module
(instead of a simple module) in the statement of (11.16).

In the important case when V is a simple left R-module, the endo-
morphism ring kK = End(grV') is a division ring by Schur’s Lemma, so Vis a
right vector space over k. This suggests that linear algebra should play a role
in studying the action of R on the simple module V.

To proceed more formally, let us recall a useful definition in linear
algebra. Let V; be a right vector space over a division ring k, and let
E = End(V;). A subset S < E is said to be m-transitive on V if, for any set of
n < m linearly independent vectors vy, ...,v, and any other set of n vectors
v,-..,0, in V, there exists s € S such that s(v;) = v] for all i. We say that S'is
a dense set of linear transformations on V; if S is m-transitive for all (finite) m.
The following Proposition ensures that thlS terminology is consistent with
the one we have adopted before.

(11.18) Proposition. Let V be an (R, k)-bimodule where k is a division ring.
Let E = End(V;) and let p: R — E be the natural map. Then R acts densely
on Vi iff p(R) is a dense ring of linear transformations on V.

Proof. The “only if” part is clear. For the “if”’ part, assume p(R) is a dense
ring of linear transformations on V. Let f € E and let vy,...,v, € V. After a
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reindexing, we may assume that vy, ..., v, are k-linearly independent, and
that each v; is a k-linear combination of v, . . ., v,,. Since p(R) is m-transitive
on V, there exists r € R such that rv; = f(v;) for i < m. By linearity, it fol-
lows that this equation holds for alli <n. QED

Combining (11.16), (11.17) and (11.18), we obtain the following important
result which is sometimes also referred to as the “Density Theorem.”

(11.19) Structure Theorem for Left Primitive Rings. Let R be a left primitive
ring and V be a faithful simple left R-module. Let k be the division ring
End(rV). Then R is isomorphic to a dense ring of linear transformations on
Vi. Moreover:

(1) If R is left artinian, then n .= dimy V is finite, and R =~ M,(k).

(2) If R is not left artinian, then dimy V is infinite, and for any integer
n >0, there exists a subring R, of R which admits a ring homo-
morphism onto M, (k).

(Note that (1) here recovers the Wedderburn—Artin Theorem for left arti-
nian simple rings, since these are exactly the left artinian left primitive rings,
by (11.7). The proof below is independent of, and more general than, our
earlier proof in §3. Thus, (11.19) may be thought of as a generalization of the
Wedderburn—Artin Theorem.)

Proof. Since rV is faithful, the natural map
p: R — E := End(V;)

is injective. By (11.16) and (11.18), p(R) is a dense ring of linear trans-
formations on V;. This proves the first conclusion. Now assume dimy V =
n < oo. By (11.17), we have p(R) = E, so R =~ M,(k) and R is left artinian.
Next assume dim; V is infinite. Fix a sequence of linearly independent
vectors vy, v,...in V, and let

n
Vo= Zv,-k (1<n< o)
i=1

Finally, let
R,={reR: r(V,) = V,} (asubringof R);
A, ={reR: r(V,) =0} (an ideal of R, and a left ideal of R).

Then R, /N, acts faithfully on the k-space V,. By the n-transitivity of R (on
V), any k-linear endomorphism of V, can be realized as the action of some
r € R,. Therefore the natural map R,/¥, — End((V,),) is an isomorphism,
giving R, /N, =~ M, (k). Moreover, by (n + 1)-transitivity, there exists r € R
such that

rop=---=rv,=0 but ro,, #0,
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so U, 2 A, for all n. Therefore, A; 2 U, 2 --- is a strictly decreasing
chain of left ideals in R, so R is not left artinian. A moment’s reflection
shows that we have now proved both (1) and (2) in the Theorem. = QED

Instead of starting with a left primitive ring R and looking at a faithful
simple R-module gV and its endomorphism ring k, we can also start with an
arbitrary division ring k and an arbitrary right vector space V. From this
perspective, we look at E = End(V;) and consider rings of linear trans-
formations R = E. We have defined earlier the notion of m-transitivity for
R (m=1,2,...) and R is dense iff it is m-transitive for all m. As a further
consequence of the Density Theorem, we shall now show that, to check the
density of R, it is enough to check 2-transitivity.

(11.20) Theorem. Let R be a ring of linear transformations on a nonzero right
vector space V over a division ring k. Then:

(1) R is l-transitive iff gV is a simple R-module. If this is the case, R is a
left primitive ring.

(2) The following are equivalent: (a) R is 2-transitive; (b) R is 1-transitive
and End(rV') = k; (c) R is dense in E := End(V}).
Proof. (1) is obvious. For (2), we have (b) = (c) by (1) and the Density
Theorem, and (c) = (a) is clear. Therefore, we only need (a) = (b). Assume
R is 2-transitive (in particular 1-transitive). Consider any 1 € End(gr V). Fix
a nonzero vector v € V; we claim that v and vA are k-linearly dependent.
Indeed, if not, there would exist (by 2-transitivity) an r € R such that rv =0
but r(vd) # 0. However, since A€ End(grV'), we have r(vi) = (rv)A =0, a
contradiction. Now write vA = va, where a € k. For any w e V, the |-tran-
sitivity of R implies that w = sv for some s € R. But then

wi = (sv)A-= s(vd) = s(va) = (sv)a = wa.

Therefore A = a € k. This shows that End(g V') = k. QED

In certain special cases, the 1-transitivity of R < E may already imply 2-
transitivity (and hence density). For instance, if & is an algebraically closed
field, and dim, V < oo, then for any k-subalgebra

R< E = End(V).

I-transitivity of R will already force R to be E. In general, however, 1-
transitivity is weaker than density. To see this, we can construct an example
as follows. Let k be a field which is not algebraically closed, and let R o k
be a field extension of finite degree > 1. We view R as a right k-vector space
V and embed R in E = End(Vj) by identifying r € R with the left multipli-
cation by r on R. Since R is a field, gV is simple so R is 1-transitive on V. On
the other hand, an easy check shows that R is not 2-transitive on V. Note
that here, End(gV) =~ R 2 k.
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As an illustration, we shall construct some explicit examples of dense rings
of linear transformations (thereby obtaining more examples of left primitive
rings). The first example, due to I. Kaplansky, is prompted by the question:
what can we say about the center Z(R) of a left primitive ring R? Since a left
primitive ring R is also a prime ring, Z(R) is a (commutative) domain by
Exercise 10.0. The following well-known example of Kaplansky shows that
Z(R) can be any prescribed commutative domain.

Let 4 be a commutative domain and let k be its quotient field. Let

©

Vi =@ eik,

i=1

and let R be the subring of E = End(V;) consisting of endomorphisms of V'
with matrices of the form

M

(11.21) r= ,

where M is any finite matrix over k, and a € A. This ring R is clearly dense in
E so it is a left primitive ring. What is its center Z(R)? Say the matrix r
above lies in Z(R), with M € M, (k). Then certainly M € Z(M,(k)) so M is

0\ .
a scalar matrix, say b - I, (b € k). By the same analysis, ( a) is also a

0
scalar matrix in M,,;(k), so we must have b = a. Therefore,
Z(R)={a-I: ae 4}

is isomorphic to 4. (For another construction, see Exercise 11.)

Our second example of a dense ring of linear transformations follows
ideas of Jacobson and Samuel. Let k be a field, /" and E be as above, and let
f € E be defined by

fler1) =0, f(e))=e-; for i=>2.
Further, let g € E be any endomorphism with the property that

(11.22) For any m > 1,g™e| = e, where Iitrgo r(m) = oo.
m—

Let R be the k-subalgebra of E generated by f and g. (Note that we have
k = Z(E) since k is a field.) We claim that R acts irreducibly on V (so R is a
left primitive ring). For, if W < V is a nonzero R-submodule, there exists a
nonzero vector w e W which has the shortest representation as a linear
combination of the ¢;’s, say

w=e;ay +e,ar+---+ean,

where i; < --- < iy, and each a; # 0. Applying f it we get a nonzero element
S"'(w) with a shorter representation unless n = 1. Therefore W contains e;,,



184 4. Prime and Primitive Rings

and also
S Ney) =er.

Applying to e, a large power of g followed by a suitable power of f, we see
that W contains ¢; for all j > 1, so W = V. Next we claim that R is dense in
E. For this, it suffices (by the Density Theorem) to show that End(gV) = k.
Let A€ End(grV). Since f(e;A) = (f(e)))A =0 and ker(f) = ejk, we can
write e;4 = e,a for some a € k. For any J, we can write e; = f*g'e; for suit-
able integers s, 7. But then

= (f'g'er)A = f*g'(e1a) = ¢a,
hence A = a € k.

By choosing g differently satisfying (11.22), we get different examples of
left primitive rings R. For instance, if we define g by g(e;) = e, foralli > 1,
it may be checked that all relations between f and g are consequences of the
relation fg=1; ie., the k-homomorphism D: k{x,y) — R given by
D(x) = f and D(y) = g has kernel (xy — 1). Assuming this fact (which is the
content of Exercise 9), it follows that

k<x, y>/(xy = 1)

is a left primitive ring. On the other hand, by choosing g in another wayj, it
is possible to arrange that there be no relations between f and g, so that R is
k-isomorphic to k{x, y).

(11.23) Proposition (Samuel). Define g by g(e;) = e;2,y for all i. Then the
k-homomorphism D: k{x, y> — R defined by D(x) = f, D(y) = g is an iso-
morphism. In particular, it follows that the free algebra A := k{x, y) is left
primitive. '

Proof. The definition of g certainly fulfills the condition specified in (11.22).
Thus, once we have shown that D is an isomorphism, the left primitivity of 4
follows. Via the representation D, V becomes a left A-module, with x and y
acting respectively as f'and g. Our job is to show that A acts faithfully on V.
Let us say that an element z € 4 is “eventually zero” on V if ze; = 0 for all
sufficiently large i. We will show that, if z is eventually zero on V, then
z =0 € A. In particular, this will establish the faithfulness of 4,V

Let H be any monomial in x and y. For sufficiently large i, He; has the
form e,;), where A is a (uniquely determined) monic polynomlal in Z[r] with
deg h = 2¢, where d = deg, H. (For instance, if H = yx2y, then for i > 2,

H e = yxPea,) = yep_y = ex,
where A(1) = (12 — 1)2 + 1.) We claim that

If H,H' are different monomials in x and y,
then h(1) # h'(t) in Z[1).

First assume this claim. If z = }_ a;H; € A where a; € k and {H;} are dif-
ferent monomials, then for sufficiently large i,

(11.249)
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(11.25) zei = (Y aH))ei =Y qjen-

By (11.24), the h;’s are all different, so for large i, the A;(i)’s are all different.
Therefore, if z # 0 in A, then in view of (11.25), z cannot be “‘eventually
zero” on V. '

We now prove the claim (11.24). If H and H' end with the same letter
(x or y), we are done by invoking an inductive hypothesis. Therefore, we
need only consider the case where H = H,x and H' = H|y. The polynomial
h'(1) associated with H’ has only even powers of t. However, since the
polynomial associated with x is 7 — 1, the A(t) associated with H is seen
(inductively) to be of the form

2=

where m = deg, H; and n is a positive integer. Thus A(r) # h'(r). QED

(11.26) Corollary. For any field k, any free k-algebra in finitely or countably
many (and at least two) indeterminates is a left primitive ring.

Proof. Since the algebra R above is freely generated by f and g, it follows
from (1.2) that the algebra R,, generated by {fg': i > 0} is also a free alge-
bra on these generators. We have R, = Uf: | Rn, where

R, =k{{fg': 0<i<n})

is a free algebra on n + 1 generators. We claim that R, (and hence R, for
2 < n < o) acts irreducibly on V. Once we have proved this, it follows that
R, is left primitive for 2 < n < 0. To prove the claim, we proceed as before:
Let W < V be a nonzero R;-submodule of V. The same argument used in
the proof of the irreducibility of R shows that ¢; € W. But then W also
contains

fo*(er) = es, (fg%)%(er) = (fg°)(es) = exs9, ,

and hence W contains all e;. QED

Note that, in the above, R, = k{f, fg)> does not act irreducibly on V, since
e - k is an R;-submodule. However, we need not work with R, as the case of
the free algebra on two generators has already been dealt with.

At this point, we should point out that E. Formanek has proved that, over
any field k, any free algebra k{X) with |X| > 2 is always left (and right)
primitive. We shall not prove this result for an arbitrary field & here. How-
ever, using a different method, we can prove this result for any countable
field k. In fact, we can even relax the assumption that k be a field! The result
we shall prove is the following:

(11.27) Theorem (E. Formanek). Let k be any (not necessarily commutative)
countable domain, and let {x;: i € 1} be any set of independent indeterminates
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over k. If || = 2, then k{{x;: i € 1}) (the ring generatedffeely over k by {x;})
is a left primitive ring.

It is remarkable that, in this Theorem, we do not need any hypothesis on
the domain k, other than that it be countable. The balance of this section will
be devotegd to the proof of this beautiful result. To begin the proof, let us
observe the following slight reformulation of the notion of a left primitive
ring.

(11.28) Lemma. A ring R is left primitive iff there exists a left ideal N < R
which is comaximal with any ideal A’ # 0. (U and N’ comaximal means that
A+A =R)

Proof. If such an U exists, we may assume (after an application of Zorn’s
Lemma) that it is a maximal left ideal. The annihilator of the simple left R-
module R/ is an ideal in A, and so it must be zero. This shows that R is left
primitive. Conversely, if R is left primitive, there exists a faithful simple left
R-module, which we may take to be R/ for some (maximal) left ideal
A < R. A nonzero ideal A’ cannot lie in A (for otherwise A’ annihilates
R/N) and so must be comaximal with 4.  QED

In order to prove (11.27), we state a more general result of Formanek on
semigroup rings.

(11.29) Theorem. Let A, B be two semigroups # {1}, and let G = A * B be
their free product. Let k be any domain with |k| < |G|. Then the semigroup
ring R = kG is left primitive unless |A| = |B| = 2.

Assuming this theorem, let us first complete the proof of (11.27). We refer
to the notations there. Since |I| > 2, we can write the free semigroup gen-
erated by {x;: i € I} as a free product G = A4 x B, where A, B are free semi-
groups # {1}. If k is countable, (11.29) applies to show that

kG =k&{x;: iel)

is a left primitive ring. Incidentally, this kind of argument also leads to
another proof of the fact that any commutative domain k is the center of a
left primitive ring R, since we can take R to be k{x;: i e I') for a sufficiently
large indexing set 1.

We shall now begin the proof of (11.29). The proof will be presented in the
case when A, B are both infinite. This is the case needed for the application
in the paragraph above. The case when one (or both) of A, B is finite uses
similar ideas and will be left to the reader.

Recall that the nonidentity elements of G = 4 * B are reduced words
whose letters belong alternately to A* = 4\{1} and to B* = B\{1}. We say
that such a word has type AB if it begins with a letter in A* and ends with a
letter in B*. Similarly we can define words of type 44, BA and BB. The
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length of a reduced word is defined to be the total number of its letters; the
length of the identity element is taken to be zero.

By interchanging 4 and B if necessary, we may assume that (4| > |B|.
Since |k| < |G|, we have |R| = |A4]. For the rest of the proof, we fix a 1-1
correspondence a — a(a) between A* and R\{0}. For each a € 4*, we shall
define another element f(a) € R with the following properties:

(1) For eachae A*, Bla)e | + R-a(a) - R.
(2) {B(a): ae€ A*} generates a left ideal A < R.

If we can construct such B(a)’s, then the left ideal U in (2) will be comax-
imal with any nonzero ideal A’ in R (since A’ contains some a(a)). The left
primitivity of R then follows from (11.28).

For re R\{0}, let max-supp(r) dencte the set of elements in G of
maximal length in the support of r. For each ae 4*, fix an element
ag(a) € max-supp(a(a)). We now fix an element b € B*, and define S(a) to be

1 + ba(a)a + a(a)ab if ap(a) has type AB or ag(a) =1,
1 + ba(a)ba + a(a)bab if ag(a) has type AA,
1 + a(a)bab + aa(a)ba if ap(a) has type BA,
1 + a(a)ab + aa(a)a if ap(a) has type BB.

(11.30)

Clearly the property (1) is satisfied, so we need only verify (2). In the course
of proving (2), we will also be able to see why the definition of B(a) is
arranged as in (11.30).

First let us analyze the case when ag(a) is of type 4B. Say

%(a) € max-supp(a(a))

has length n. Since it has type 4B, bag(a)a and ag(a)ab are both reduced
words. They have length n+ 2 and therefore belong to max-supp(f(a)).
Thus, any element in max-supp(f(a)) has length n + 2, and ends with a or
ab. Note also that ag(a)ab begins in A and bag(a)a begins in B.

After similarly analyzing the other three cases, we see that the definitions
in (11.30) have been arranged so that (for each a € 4*) f(a) has the following
properties:

(3) Each element in max-supp(p(a)) ends with either a or ab.

(4) There exist elements in max-supp(B(a)) which begin in A and which
begin in B.

Using these properties, we can now verify (2). Consider a left multiple
r- B(a) (r € R\{0}) and let ry € max-supp(r). In view of (4), we can choose
an element

Bo(a) € max-supp(p(a))

such that ro - fy(a) is already a reduced word in G and hence belongs to
max-supp(r - B(a)). Furthermore, any element in max-supp(r - f(a)) arises in
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this way; in particular, by (3), such an element must end with a or with ab.
Now consider a finite sum ) 7, r;8(a;), where r; € R\{0} and ay,...,am
are different elements in 4°. From the foregoing analysis, we see that the
max-supp(rif(a;))’s are disjoint for 1 < i < m. In particular, >_7, r;(a;) can

never be 1, and so {B(a): a e A"} generates a left ideal < R, as desired.
QED

Exercises for §11

Ex. 11.1. Show that a homomorphic image of a left primitive ring need not
be left primitive.

Ex. 11.2. Show that a ring R can be embedded into a left primitive ring iff
either char R is a prime number p > 0, or (R,+) is a torsion-free abelian

group.

Ex. 11.3. Let R be a left primitive ring. Show that for any nonzero idem-
potent e € R, the ring A = eRe is also left primitive.

Ex. 11.4. Which of the following implications are true?
(@) R left primitive <= M, (R) left primitive.
(b) R left primitive <= R[] left primitive.

Ex. 11.5. Let R be a ring which acts faithfully and irreducibly on a left
module V. Let ve V' and U be a nonzero right ideal in R. Show that
A-v=0=0v=0.

Ex. 11.5*. For any left ideal / in a ring R, define the core of I to be the sum
of all ideals in I. Thus, core(I) is the (unique) largest ideal of R contained in I.
(1) Show that core(I) = ann(V) where V is the left R-module R/I. (In par-
ticular, V is faithful iff core(I) = 0.)

(2) Show that R/I is faithful only if / n Z(R) = 0, where Z(R) is the center
of R.

Ex. 11.6. (Artin-Whaples) Let R be a simple ring with center k (which is a
field by Exercise 3.4). Let x),...,x, € R be linearly independent over k.
Show that, for any y,,..., y, € R, there exist ay,...,an and by,...,b, in R
such that y; = 3°7, a;x;b; for every i. (Hint. Let R° be the opposite ring of
R. Let A = R®; R act on R by the rule (a ®, b°P)x = axb. Show that R is
a simple left 4-module with End(,R) = k. Then apply the Density Theorem.)

Ex. 11.7. Let E = End(V,) where V is a right vector space over the division
ring k. Let R be a subring of E and A be a nonzero ideal in R. Show that R is
dense in E iff A is dense in E.

Ex. 11.7*. Let E = End(¥;) be as in Exercise 7, and let R < E be a dense
subring.
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(1) For any a € R with finite rank, show that a = ara for some r € R.
(2) Deduce that the set

S ={aeR: rank(a) < o}
is a von Neumann regular ring (possibly without identity).

Ex. 11.8. Let ¥V = @, eik where k is a field. For any n, let S, be the set
of endomorphisms A€ E = End(¥;) such that 1 stabilizes ), ek and
A(e;) = 0 for i > n+ 1. Show that

is a dense set of linear transformations. For any i, j, let E; € E be the linear
transformation which sends e; to e; and all e (' # j) to zero. Show that any
k-subalgebra R of E containing all the E;’s is dense in E and hence left
primitive.

Ex. 11.9. (Jacobson) Keep the notations above and define f,ge€ E by
g(ei) = ei+1, f(ei) = ei-y (with the convention that e¢p = 0). Let R be the
k-subalgebra of E generated by fand g.

(1) Use Exercise 8 to show that R acts densely on V.

(2) Show that R is isomorphic to S :=k{x,y)/(xy—1), with a k-
isomorphism matching f with x and g with y. (Hint. Show that for any i, j,
g'~!f7=! — g'fJ = Ej;, in the notation of Exercise 8.)

Ex. 11.10. For a field k, construct two left modules V, V'’ over the free
algebra R = k{x, y) as follows. Let ¥ = V' = 7 e;k. Let R act on V by:

Xe€; = €j—1, Yei = e€p,y,
and let R act on V' by
Xe; = €j-1, Yei =€p,)

(with the convention that ey = 0). Show that V, ¥V’ are nonisomorphic
faithful simple left R-modules. (Hint. To show that ¥ % V' as R-modules,
note that x2y annihilates e, in V, but does not annihilate any nonzero vector
in V')

Ex. 11.11. Let A4 be a subring of a field K. Show that the subring S of
K{x),...,xn) (n > 2) consisting of polynomials with constant terms in 4 is
a left primitive ring with center A4.

Ex. 11.12. Let & be a field of characteristic zero. Represent the Weyl algebra
R = k{x,y)/(xy — yx — 1) as a dense ring of linear transformations on an
infinite-dimensional k-vector space V, and restate the Density Theorem in
this context as a theorem on differential operators. (Hint. Let gV = k[y]
with y € R acting as left multiplication by y and x € R acting as D = d/dy
(formal differentiation). Choosing the basis {e¢, = y": n > 0} on V, we have
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yen = en4) and xe, = ne,_) (with e_; = 0). The R-module p V is simple, with
End(RV) =k (more generally, see Exercise 3.18), so R acts densely on V.
Elements ) a;;y'x’ € R act as differential operators }_ a;»'D’ on k[y].)

Ex. 11.13. Let R be a left primitive ring such that a(ab — ba) = (ab — ba)a
for all a,b € R. Show that R is a division ring. (Hint. Let zV be a faithful
simple R-module with k = End(,V). It suffices to show that dim,V = 1.
Assume instead there exist k-linearly independent vectors u, ve V. By the
Density Theorem, there exist a, b € R such that au = u, av = 0, and bu = v,
bv = 0. The equation a(ab — ba) = (ab — ba)a applied to u shows that v = 0,
a contradiction.)

Ex. 11.14. Let R be a left primitive ring such that 1 + r2 is a unit for any
r € R. Show that R is a division ring.

In the next four exercises (15 through 18), let R be a left primitive ring, rV be
a faithful simple R-module, and k be the division ring End(gV'). Recall that, by
the Density Theorem, R acts densely on V. ~

Ex. 11.15. For any k-subspace W < V, let

ann(W) = {re R: rW = 0},
and, for any left ideal A < R, let

ann(A) = {ve V: v =0}.

Suppose n = dimy W < co. Without assuming the Density Theorem, show by
induction on n that ann(ann(W)) = W. From this equation, deduce that R
acts densely on V;. If, in addition, R is left artinian, show that dim;, V < oo,
R = End(V,), and ann(ann(N)) = A for any left ideal A = R. In this case,
W +— ann(W) gives an inclusion-reversing one-one correspondence between
the subspaces of ¥; and the left ideals of the (simple artinian) ring R.

Ex. 11.16. For any r € R of rank m (i.e. dimy rV = m), show that there exist
r,-...,rm € Rr of rank 1 such that r=r, +---+r,. (Hint. Write rV =
ek @ --- @ e,k and apply the Density Theorem.)

Ex. 11.17. (1) Show that A < R is a minimal left ideal of R iff A = Re
where e € R has rank 1, and that (2) 8 < R is a minimal right ideal of R iff
B = eR where e € R has rank 1.

Ex. 11.18. Show that the following statements are equivalent:

(1) soc(R) #0,

(2) R contains a projection of ¥ onto a line,

(3) there exists a nonzero r € R of finite rank, and

(4) for any finite-dimensional k-subspace W < V, R contains a projection of
V onto W.

Finally, show that soc(R) = {re R: rank(r) < o}.
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Ex. 11.19. Show that a ring R is left primitive iff R is prime and R has a
faithful left module of finite length.

Ex. 11.20. For any division ring k with center C, show that the following are
equivalent:

(1) k[x] is left primitive,

(2) k[x] is right primitive,

(3) there exists 0 # f € k[x] such that k[x]f n C[x] = 0.

(Hint. Show that, if 0 # gf € C[x], then gf = fg.)

Ex. 11.21. Show that the Density Theorem (11.16) need not hold if the gV
there is not a semisimple module. (Hint. Let R = (l(; :) acton V = (:)
by matrix multiplication. We have shown before (7.4) that End(gV) =k,
but no element of R can take ( (l)) to (?) , S0 R is not even 1-transitive. For

another counterexample, take R=27, V = Q.)

§12. Subdirect Products and
Commutativity Theorems

In this section, we introduce the notion of subdirect products and try to
explain how to use such subdirect product representations in the general
study of the structure of rings. We start by formally defining a subdirect
product representation.

(12.1) Definition. Let Rand {R;: ie I} berings,ande: R — [];,.; Ribean
injective ring homomorphism. We say that ¢ represents R as a subdirect
product of the R;’s if each of the maps R — R; (obtained by composing ¢
with the coordinate projections) is onto. (More informally, we say that R is
a subdirect product of the R;’s.) We say that the subdirect product repre-
sentation above is a trivial representation if one of the maps R — R, is an
isomorphism.

We observe that R can be represented as a subdirect product of
{R,‘ ciel }

iff there exists, for every i, a surjective ring homomorphism ¢,;: R — R, such
that ﬂ,. <1 ker ¢; = 0. The case of a trivial representation occurs when one of
the ¢,’s 1s already an isomorphism. This case is not of much interest since the
presence of the other ¢,’s will no longer play a significant role.

(12.2) Proposition and Definition. For a nonzero ring R, the following state-
ments are equivalent:
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(1) Every representation of R as a subdirect product of other rings is trivial.
(2) The intersection of all nonzero ideals of R is nonzero.
(3) R has a nonzero ideal which is contained in all other nonzero ideals.

If R satisfies these properties, we shall say that R is subdirectly irreducible;
otherwise, we say that R is subdirectly reducible.

Proof. We have clearly (2) < (3), so what we need is (1) & (2).

(1) = (2). Let {U;: i e I} be the nonzero ideals of R and let R; = R/U;. If
ﬂﬁl; =0, we have an obvious subdirect product representation R — [ R;
with each R — R, not an isomorphism. This contradicts (1).

(2) = (1). Consider any subdirect product representation ¢: R — [[R;
and let A; = ker(R — R;). If each A; # 0, then (\A; # 0 by (2), contra-
dicting the fact that ¢ is injective. Therefore, some U; = 0; 1.e., ¢ is a trivial
representation.  QED

Let us say that an ideal L < Riis litrle if L # 0 and L is contained in every
nonzero ideal of R. By (12.2), R has a little ideal L iff R is subdirectly irre-
ducible; in this case, clearly, L is unique and is equal to the intersection of all
nonzero ideals in R. In the following, we shall give some examples of sub-
directly reducible and subdirectly irreducible rings.

(1) Clearly, dny simple ring R is subdirectly irreducible. (Its little ideal is
given by R itself.)

(2) A semisimple ring is subdirectly irreducible iff it has only one simple
component.

(3) Z/(p™) (p-a prime) and k[1}/(p(1)") (k a field, p(r) an irreducible
polynomial) are subdirectly irreducible, for all n > 0. Their little ideals
are, respectively, (p"~')/(p") and (p(1)"™")/(p(1)").

(4) Z is not subdirectly irreducible, since it cannot have a little ideal. In
fact, for any infinite set of primes {p;}, the natural map

z—T[z/e!) (i >0)

is a nontrivial representation of Z as a subdirect product of subdirectly
irreducible rings. (A similar statement can be made about the polyno-
mial ring k[7] in (3), noting that k[7] has always infinitely many
primes.)

(5) Let R = ZG where G is a finite group. Then R is not subdirectly irre-
ducible. By (4), we may assume that G # {1}. Since QG is semisimple,
but not simple, we have an isomorphism

e: QG —Cy x---x G,
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.where r > 2 and the C/’s are simple rings. Then each projection
QG — C; has a nonzero kernel, so ZG — C; has also a nonzero
kernel. Letting 4; be the image of ZG in C;, we have then a nontrivial
subdirect product representation

€: ZG — Ay x --- X A,.

For instance, if G is the cyclic group of order n, then & represents
ZG as a subdirect product of the rings Z[(,], where d ranges over all
positive divisors of n.

(6) Let R be a prime ring. If soc(R) # 0, then R is subdirectly irreducible,
with soc(R) as its little ideal. To see this, it suffices to see that any
minimal left ideal U is contained in every nonzero ideal /. Since R is
prime, we have 0 # 7 - A < A. The minimality of A then implies that
A=7-AcI

(7) The converse of (6) is false. Indeed, let R be a nonartinian simple ring.
Then R is prime and subdirectly irreducible, but soc(R) = 0 by (3.10).

(8) A left primitive ring need not be subdirectly irreducible. For instance,
the left primitive ring R constructed in (11.13) has clearly no little ideal
(by (11.12)), so R is subdirectly reducible.

The role of subdirectly irreducible rings is seen from the following result.

(12.3) Birkhoff’s Theorem. Any nonzero ring R can be represehted as a
subdirect product of subdirectly irreducible rings.

Proof. For any a # 0 in R, let m, be an ideal maximal with respect to the
property that a ¢ m,. (Such an ideal exists by Zorn’s Lemma.) In R/m,, any
nonzero ideal must contain a + m, so R/m, is subdirectly irreducible. Since
(a0 Ma = 0, the natural map

R — H R/m,
a#0
represents R as a subdirect product of the subdirectly irreducible rings
R/m,. QED

This theorem suggests that, in a way, we may view the subdirectly irre-
ducible rings as the building blocks for arbitrary rings. However, the structure
of subdirectly irreducible rings can still be very complicated, and one cannot
realistically hope to describe them completely. In the category of commuta-
tive rings, some work has been done by McCoy and Divinsky toward the
determination of the subdirectly irreducible rings. We shall carry out this
determination only in the easy case of commutative reduced rings.
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(12.4) Proposition. Ler R be a commutative reduced ring. Then R is sub-
directly irreducible iff R is a field.

Proof. (“Only if”"). Let R be subdirectly irreducible. Clearly R has only
trivial idempotents. (If e is an idempotent other than 0 and 1, then

R=~Rex R-(1—-e)

is a nontrivial (sub)direct product representation.) Fix an element a # 0 in
the little ideal of R. Since a? # 0, we have a € (a?) so a = a?b for some
b€ R. But then ab = a’b? = (ab)2 implies that ab =1 (since ab # 0). For
any ¢ # 0, we have a € Rc. Since a is a unit, ¢ is also a unit. Therefore, Ris a
field. QED

Returning now to the study of arbitrary rings, we have the following
result.

(12.5) Theorem. A4 nonzero ring R is semiprime (resp., semiprimitive) iff R is a
subdirect product of prime (resp., left primitive) rings.

Proof. Assume R is semiprime (resp., semiprimitive). Let {;} be the family
of prime (resp., left primitive) ideals in R. Then (), = 0 so R is a subdirect
product of the prime (resp., left primitive) rings { R/;}. Conversely, assume
there is a subdirect product representation R — [[ R; where the R;’s are
prime (resp., left primitive) rings. Then, for any i,

9.[,‘ = ker(R 4 R,)

is a prime (resp., left primitive) ideal, and (\¥; = 0. Since Nil, R (resp.,
rad R) is contained in [)2; = 0, it must be zero. = QED

There also exists a parallel result which gives a subdirect product charac-
terization of a (possibly noncommutative) reduced ring. For this result, we
need a lemma. Let us say that an ideal p in a ring R is completely prime if
R/p is a domain. Clearly a completely prime ideal is always prime.

(12.6) Lemma. Ler R be a reduced ring. If p is a minimal prime in R, then p is
completely prime.

Proof (following Rowen [88]). Let S = R\p, and let S’ 2 S be the (multi-
plicative) monoid generated by S. We claim that 0 ¢ S’. For otherwise,
we’ll have an equation s ---s, =0, with all 5;€ S and with » minimal.
Clearly, n > 2. Since R is reduced and (s,Rs) ---:r,,_,)2 =0, we have
SaRsy ---s,_) = 0. But p is prime, so there exists an element s := s,rs| € S,
for some r € R. We have then ss; - --s,_1 = 0, in contradiction to the mini-
mal choice of n. With